text1
stringlengths
13
1.97M
Test apparatus and measurement apparatus for measuring an electric current consumed by a device under test There is provided a test apparatus for testing a device under test, which includes a voltage supplying section that supplies a voltage to the device under test through a wire, a first capacitor that is arranged between the wire and a common potential in series, a current detecting section that detects a current flowing through the wire at a location closer to the device under test than the first capacitor is, an integrating section that outputs an integration value obtained by integrating a difference between the current detected by the current detecting section and a predetermined reference current, and a judging section that judges whether the device under test is a pass or a failure based on the integration value. BACKGROUND 1. Technical Field The present invention relates to a test apparatus and a measurement apparatus. Particularly, the present invention relates to a test apparatus and a measurement apparatus for measuring an electric current consumed by a device under test (load). 2. Related Art A test apparatus has a function of measuring an average current to be consumed by a device under test when the device operates. The test apparatus detects a current output from a power source device that supplies a drive voltage to the device under test, and measures the average current consumed by the device under test. Here, the power source device is slow in responding to any change in the current consumed by the load. Accordingly, the test apparatus has a bypass capacitor having relatively large capacitance, between its power source line and the ground, in order to compensate for any response delay of the current output from the power source device. With this, the test apparatus can supply a drive current to the device under test even in a case where it makes the device under test operate in such a manner as would require the current consumed by the device under test to change quickly. Here, in a case where the test apparatus has a bypass capacitor, the current to be consumed by the device under test and the current output from the power source device do not coincide. Hence, the test apparatus cannot correctly measure the average current consumed by the device under test, by detecting the output current from the power source device. Thus, a conceivable test apparatus to overcome this problem is such one that has, near the device under test, an AD converter which samples the drive current to be supplied to the device under test. However, since the drive current supplied to the device under test changes quickly, the test apparatus has to make the AD converter perform sampling quickly. Accordingly, the test apparatus has to be provided with a high-performance AD converter. Further, since there will be a large amount of data that should be taken in, the test apparatus has to be provided with a data memory having a large capacity. Furthermore, in testing multiple devices under test of about several hundreds or so simultaneously, the test apparatus has to have the same number of current measuring sections as the number of devices under test. Therefore, it is preferred that the test apparatus be structured as a simple circuit in order to be able to measure the average current consumed by the device under test. When measuring the current of the device under test, a measurement error is caused by an offset in the operating amplifier used by the measuring circuit. To solve this problem, it is necessary to adjust the offset to be equal to zero. But if a plurality of measurement channels are provided, it is necessary to adjust the offset of each channel because each operating amplifier has a different offset. To achieve this, a way to adjust the error caused by the offset automatically and with the same process is sought. During the initial evaluation of the device under test, the value of the value of the current may be sought in addition to the test result indicating pass/fail of the current test of the device under test. Therefore, a way to easily obtain the current value is desired. SUMMARY Therefore, it is an object of an aspect of the innovations herein to provide a test apparatus and a measurement apparatus, which are capable of overcoming the above drawbacks accompanying the related art. The above and other objects can be achieved by combinations described in the independent claims. The dependent claims define further advantageous and exemplary combinations of the innovations herein. According to a first aspect related to the innovations herein, one exemplary test apparatus may include a test apparatus for testing a device under test, having: a voltage supplying section which supplies a voltage to a device under test through a wire; a first capacitor which is arranged between the wire and a common potential in series; a current detecting section which detects a current flowing through the wire at a location which is closer to the device under test than the first capacitor is; an integrating section which outputs an integration value obtained by integrating a difference between the current detected by the current detecting section and a predetermined reference current; and a judging section which judges whether the device under test is a pass or a failure based on the integration value. According to a second aspect related to the innovations herein, one exemplary measurement apparatus may include a measurement apparatus for measuring a current flowing through a load, having: a first capacitor which is arranged between a wire for supplying a voltage to the load and a common potential in series; a current detecting section which detects a current flowing through the wire at a location closer to the load than the first capacitor is; and an integrating section which outputs an integration value obtained by integrating a difference between the current detected by the current detecting section and a predetermined reference current. According to a third aspect related to the innovations herein, one exemplary test apparatus may include the test apparatus according to the first aspect, wherein the integrating section has: an integrating circuit which stores charges corresponding to a current indicating the difference between the current detected by the current detecting section and the reference current in a capacity element, and outputs an integration voltage that occurs across both ends of the capacity element as the integration value; and an offset correcting section that corrects an offset occurring at an input of the integrating circuit. According to a fourth aspect related to the innovations herein, one exemplary test apparatus may include the test apparatus according to the first aspect, further including an AD converting section that measures the integration value, wherein the AD converting section has: a recording section that records digital values obtained by measuring the integration value for each measurement cycle; and a processing section that scales the digital values obtained respectively for each measurement cycle recorded on the recording medium with measured values obtained when only the reference current is input before or after a series of measurements. The above summary of the invention is not intended to list all necessary features of the present invention, but sub-combinations of these features can also provide an invention. DESCRIPTION OF EXEMPLARY EMBODIMENTS One aspect of the present invention will be described below through an embodiment of the invention, but the embodiment below is not intended to limit the invention set forth in the claims, or all the combinations explained in the embodiment are not necessarily essential to the means of solving provided by the invention. FIG. 1shows the configuration of a test apparatus10according to the present embodiment, together with a device under test (DUT)200. The test apparatus10comprises a signal generating section17, a voltage supplying section18, a measurement apparatus20, a reference voltage generating section21, a signal acquiring section22, and a system control device23, and tests the DUT200. The DUT200is tested by the test apparatus10, for example, while it is loaded on a performance board or the like. The signal generating section17supplies a test signal corresponding to a test pattern to the DUT200. The voltage supplying section18supplies a voltage to the DUT200through a wire12. The voltage supplying section18may, for example, supply a voltage for driving the DUT200, to a power source terminal of the DUT200. The voltage supplying section18may, for example, detect a voltage (drive voltage Vdd) at a point (a detection end14) on the wire12that is near the DUT200and control its output voltage such that the detected drive voltage Vdd becomes a predetermined value. The measurement apparatus20measures an average consumption current of the DUT200(for example, an average consumption current when the DUT200is in operation). Then, the measurement apparatus20judges whether the average consumption current of the DUT200is larger or not (or smaller or not) than a predetermined reference current IREF. Note that the measurement apparatus20may, for example, be located at a device interface section such as a socket or the like, into which the performance board and the DUT200are inserted. The reference voltage generating section21generates a reference voltage VREFfor generating the reference current IREF, and supplies it to the measurement apparatus20. The reference voltage generating section21supplies the reference voltage VREFto the measurement apparatus20, for example, prior to a test, in accordance with the control of the system control device23. The signal acquiring section22judges whether an output signal to be output from the DUT200in response to a test signal is a pass or a failure. In addition, the signal acquiring section22judges whether the DUT200is a pass or a failure based on a result of judgment by the measurement apparatus20. The system control device23includes a memory which stores a program therein, a CPU which executes the program, etc. The system control device23exchanges data with the signal generating section17, the voltage supplying section18, the reference voltage generating section21, and the signal acquiring section22to control the testing operation of the test apparatus10. FIG. 2shows the configuration of the measurement apparatus20according to the present embodiment, together with the voltage supplying section18and the DUT200. The measurement apparatus20comprises a first capacitor24, a second capacitor26, a current detecting section28, an integrating section30, a judging section32, a setting section34, and a control section36. The first capacitor24is arranged between the wire12and a common potential in series. For example, the first capacitor24may be connected to the wire12at a location closer to the voltage supplying section18than the detection end14is. The common potential may, for example, be a ground potential, or any other reference potential. When the current to be consumed by the DUT200changes quickly and an output current IPfrom the voltage supplying section18lags behind in responding to that change, the first capacitor24can supply the DUT200with a current to be consumed that amounts to this change. The second capacitor26is arranged between the wire12and the common potential in series at a location closer to the DUT200than the first capacitor24is. The second capacitor26may, for example, be connected to the wire12at a location farther from the DUT200than the detection end14is. Further, the second capacitor26has smaller capacitance than the first capacitor24. The capacitance of the second capacitor26may be, for example, about 1/10 to 1/1000 of the capacitance of the first capacitor24. When a high-frequency noise such as a ripple or the like gets superimposed on the wire12, the second capacitor26can drop the noise to the common potential (for example, the ground potential). Accordingly, it is preferred that the second capacitor26be connected to the wire12at a location as close to the DUT200as possible. The current detecting section28detects a current IRMflowing through the wire12, at a location that is closer to the DUT200than the first capacitor24is and farther from the DUT200than the second capacitor26is. That is, the current detecting section28detects the current IRMflowing through the wire12at a location between the first capacitor24and the second capacitor26. Here, since the current detecting section28detects the current flowing through the wire12at the location closer to the DUT200than the first capacitor24is, it can detect a current, which is the sum of the current supplied from the voltage supplying section18to the DUT200and the current supplied from the first capacitor24to the DUT200. That is, the current detecting section28can detect a current that coincides with a drive current IDDto be supplied to the DUT200. Accordingly, even in a case where the output voltage IPfrom the voltage supplying section18gets behind in responding to any change in the current to be consumed by the DUT200and hence the current to be consumed by the DUT200and the output current IPfrom the voltage supplying section18lose coincidence, the current detecting section28can correctly detect the drive current IDDto be supplied to the DUT200. Note that the second capacitor26likewise supplies a current to the DUT200when the current to be consumed by the DUT200changes quickly. However, since the capacitance of the first capacitor24is larger than that of the second capacitor26, the current to be supplied from the first capacitor24to the DUT200is larger than the current to be supplied from the second capacitor26to the DUT200(for example, about 10 times to 1000 times larger). Accordingly, the current IRMflowing through the wire12between the first capacitor24and the second capacitor26can be said to be approximately the same as the drive current IDDto be supplied to the DUT200. Thus, the current detecting section28can correctly detect the drive current IDDto be supplied to the DUT200. The current detecting section28may include, for example, a detection resistor42and a potential difference detecting section44. The detection resistor42is arranged so as to intervene in the wire12at a location between the first capacitor24and the second capacitor26in series. The detection resistor42may be, for example, a minute resistor of about several milliohms. The potential difference detecting section44outputs a detection voltage VXwhich is proportional to the potential difference between both the ends of the detection resistor42. Such a current detecting section28can output the detection voltage VXwhich is proportional to the current IRMflowing through the wire12between the first capacitor24and the second capacitor26. Instead of the above, the current detecting section28may include a coil arranged intervening in the wire12at a location between the first capacitor24and the second capacitor26in series, and a detecting section which detects the current flowing through that coil. Such a current detecting section28can also detect the current IRMflowing through the wire12between the first capacitor24and the second capacitor26. The integrating section30outputs an integration value obtained by integrating the difference between the current IRMdetected by the current detecting section28and the predetermined reference current IREF. For example, the integrating section30may store the charges that correspond to the current indicating the difference between the current IRMdetected by the current detecting section28and the predetermined reference current IREF, in any capacity element. Then, for example, the integrating section30may output an integration voltage that occurs across both the ends of the capacity element in which the charges are stored, as the integration value. An example of a detailed configuration of the integrating section30will be explained with reference toFIG. 3. Since this integrating section30integrates the difference between the current IRMdetected by the current detecting section28and the reference current IREF, it will output an integration value (integration voltage) which is larger than 0 in a case where the average current of the current IRMis equal to or smaller than the reference current IREF, and which is equal to or smaller than 0 in a case where the average current of the current IRMis larger than the reference current IREF. Here, the current IRMdetected by the current detecting section28coincides with the drive current Idd to be supplied to the DUT200. That is, the average current of the current IRMcoincides with the average consumption current of the DUT200. As known from this, the integrating section30can output an integration value (integration voltage) which is larger than 0 when the average consumption current of the DUT200is equal to or smaller than the reference current IREFand which is equal to or smaller than 0 when the average consumption current of the DUT200is larger than the reference current IREF. The judging section32judges whether the DUT200is a pass or a failure based on the integration value output from the integrating section30. The judging section32may judge whether the average consumption current of the DUT200is larger or not (or smaller or not) than the predetermined reference current IREF, by, for example, comparing whether the integration value output from the integrating section30is larger or not (or smaller or not) than a predetermined threshold (for example, 0). The judging section32may, for example, output a judgment which indicates a pass (the average consumption current is equal to or smaller than the predetermined reference current IREF) in a case where the integration value is positive, and which indicates a failure (the average consumption current is larger than the predetermined reference current IREF) in a case where the integration value is negative. The setting section34sets the integrating section30to be at the reference current IREF, prior to a test. The setting section34may, for example, set the reference current IREFaccording to the type, grade, or the like of the DUT200, or the content of the test on the DUT200or the like. This allows the measurement apparatus20to judge, for example, whether the average consumption current of the DUT200exceeds an upper limit (or falls below a lower limit) designated as the specifications of the DUT200. The control section36controls the integration period of the integrating section30. For example, the control section36controls the integrating section30to start integrating at a test start timing and controls the integrating section30to terminate integrating at a test end timing. Further, in a case where the integrating section30stores the charges corresponding to the current indicating the difference between the current IRMdetected by the current detecting section28and the reference current IREFin the capacity element, the control section36may, prior to a test, discharge the charges stored in the current detecting section28in its capacity element to zero the charges from the capacity element. By doing so, the control section36can make a correct integration voltage be output from the integrating section30. Since the measurement apparatus20as described above stores the integration value, it has only one sampling value that should be retained and does not therefore have to have a data memory or the like. Further, this measurement apparatus20can correctly compare the average consumption current of the DUT200and the reference current IREFeven when the current to be consumed by the DUT200fluctuates quickly. Furthermore, since the measurement apparatus20can be a simply-structured circuit to be able to measure the average consumption current of the DUT200, a small apparatus scale will suffice even in a case where, for example, several-hundred DUTs200are to be tested at a time. FIG. 3shows one example of the configuration of the integrating section30and the judging section32according to the present embodiment. For example, the integrating section30may include an integrating circuit50, a reference current source52, a current letting-flow section54, and a discharging section56. Further, the judging section32may include a comparator58, for example. The integrating circuit50stores the charges corresponding to the current indicating the difference between the current IRMdetected by the current detecting section28and the reference current IREFin the capacity element, and outputs an integration voltage VMthat occurs across both the ends of the capacity element as an integration value. For example, the integrating circuit50may include an operating amplifier60and an integrating capacitor62. The operating amplifier60has its non-inverting input terminal connected to the common potential. The integrating capacitor62is connected between the output terminal and inverting input terminal of the operating amplifier60. The integrating circuit50having this configuration stores charges corresponding to an input current input to the inverting input terminal of the operating amplifier60in the integrating capacitor62. Then, the integrating circuit50can output the integration voltage VMthat occurs across both the ends of the integrating capacitor62in which the charges are stored. Note that the integrating circuit50outputs the integration voltage VM, which has been inverted in positive/negative characteristic from the result of integrating the input current. The reference current source52gets the reference current IREFto flow out from the inverting input terminal of the operating amplifier60. The current letting-flow section54makes the current IRMdetected by the current detecting section28flow into the inverting input terminal of the operating amplifier60. Accordingly, the reference current source52and the current letting-flow section54can supply the current indicating the difference obtained by subtracting the reference current IREFfrom the current IRMdetected by the current detecting section28to the inverting input terminal of the operating amplifier60as an input current thereto. The reference current source52may, for example, include a first voltage follower circuit64and a first reference resistor66. The first voltage follower circuit64has its input terminal supplied with a reference voltage −VREFfrom the setting section34and outputs a voltage equal to the reference voltage −VREFfrom its output terminal. The first reference resistor66is connected between the output terminal of the first voltage follower circuit64and the inverting input terminal of the operating amplifier60, and has a predetermined resistance value RREF1. The reference current source52having this configuration can make the reference current IREF(=VREF/RREF1), which is obtained by dividing the reference voltage VREFby the resistance value RREF1, flow out from the inverting input terminal of the operating amplifier60. The current letting-flow section54may, for example, include a second voltage follower circuit68and a second reference resistor70. The second voltage follower circuit68has its input terminal supplied with the detection voltage VXfrom the current detecting section28and outputs a voltage equal to the detection voltage VXfrom its output terminal. The second reference resistor70is connected between the output terminal of the second voltage follower circuit68and the inverting input terminal of the operating amplifier60, and has a predetermined resistance value RREF2. The current letting-flow section54having this configuration can make the current IRM(=VX/RREF2), which is obtained by dividing the detection voltage VXby the resistance value RREF2, flow into the inverting input terminal of the operating amplifier60. The resistance value RREF2may, for example, be determined beforehand based on the relationship between the detection voltage VXfrom the current detecting section28and the current IRMflowing through the wire12. The discharging section56discharges the charges stored in the integrating capacitor62of the integrating circuit50prior to a test. For example, the discharging section56may include a discharging switch72, a first switch74, and a second switch76. The discharging switch72causes a short circuit across both the ends of the integrating capacitor62in discharging the integrating capacitor62. Further, the discharging switch72opens both the ends of the integrating capacitor62during a test. The first switch74connects the input terminal of the first voltage follower circuit64to the common potential in the discharging operation. The first switch74connects the input terminal of the first voltage follower circuit64to the reference voltage −VREFduring a test. The second switch76connects the input terminal of the second voltage follower circuit68to the common potential in the discharging operation. The second switch76connects the input terminal of the second voltage follower circuit68to the detection voltage VXduring a test. The discharging section56having this configuration can discharge the charges stored in the integrating circuit50in the discharging operation. Also, the discharging section56can store the charges corresponding to the current indicating the difference between the current IRMdetected by the current detecting section28and the reference current IREFin the integrating circuit50during a test. The comparator58compares the integration voltage VMoutput from the integrating circuit50with the common potential (for example, the ground potential), and outputs a judgment corresponding to the result of comparison. That is, the comparator58can detect whether the integration voltage VMoutput from the integrating circuit50is positive or negative, and output a judgment corresponding to whether it is positive or negative. For example, in a case where the integration voltage VMis positive (for example, equal to or larger than 0), the comparator58may judge that the average consumption current of the DUT200is equal to or smaller than the predetermined reference current IREFand hence output a pass judgment. Further, for example, in a case where the integration voltage VMis negative (for example, smaller than 0), the comparator58may judge that the average consumption current of the DUT200is larger than the predetermined reference current IREFand output a failure judgment. As such, since the comparator58needs only to detect the positive or negative characteristic of the integration voltage VMoutput from the integrating circuit50, judging whether a pass or a failure is available with a simple configuration. FIG. 4shows one example of the drive current Idd to be supplied to the DUT200during a test (which is equal to the current to be consumed by the DUT200). For example, the test apparatus10may control the DUT200to operate during a test such that a drive current Idd as shown inFIG. 4flows through the DUT200. That is, the test apparatus10may control the DUT200to operate during a test such that the drive current Idd switches between 0.50 A and 1.00 A within a 4 μs period (with a duty ratio of 50%) as shown inFIG. 4. As a result, the average consumption current of the DUT200after the time (0 μs) is 0.75 A. In the example ofFIG. 4, prior to the time (0 μs), the test apparatus10controls the DUT200to operate such that the average consumption current is 0.50 A. FIG. 5shows a result of simulating the output current IPoutput from the voltage supplying section18in a case where the DUT200is controlled to operate as shown inFIG. 4.FIG. 5shows a simulation result under a regulated condition that the first capacitor24is 330 μF, the second capacitor26is 1 μF, a wire resistance from the voltage supplying section18to the detection end14is 5 mΩ, a wire resistance from the detection end14to the DUT200is 5 mΩ, and the voltage value of the detection end14is 1.20V.FIG. 6toFIG. 9show simulation results obtained under the same condition. As shown inFIG. 5, the voltage supplying section18outputs an output current IPwhich does not timely respond to the average consumption current of the DUT200. Specifically, the voltage supplying section18outputs an output current IPwhich will reach the average consumption current (0.75 A) of the DUT200at a time 200 μs. FIG. 6shows a result of simulating the drive voltage Vdd in a case where the DUT200is controlled to operate as shown inFIG. 4. The voltage supplying section18reduces its output voltage during a period in which it increases its output current IP. Then, the voltage supplying section18returns the output voltage to its original after the output voltage IPgets stabilized. Accordingly, the drive voltage Vdd gradually decreases until before the output current IPbecomes stabilized (time 0 μs to time 200 μs) and gradually increases after the output current IPbecomes stabilized (after time 200 μs), as shown inFIG. 6. FIG. 7shows a result of simulating a current ICL1which flows through the first capacitor24in a case where the DUT200is controlled to operate as shown inFIG. 4. The current ICL1which flows through the first capacitor24changes its amplitude in synchronization with the fluctuations of the drive current Idd. In a case where the output current IPlags behind in responding to a change in the average consumption current of the DUT200, the first capacitor24supplies a current to fill the shortage, which is the difference obtained by subtracting the output current IPfrom the average consumption current, to the DUT200. Accordingly, during the period in which the voltage supplying section18increases the output current IP(before time 200 μs), the average value of the current ICL1takes a negative value. After the time at which the output current IPbecomes stabilized (after time 200 μs), the average value of the current ICL1increases from a negative value toward 0. FIG. 8shows a result of simulating a current ICL2which flows through the second capacitor26in a case where the DUT200is controlled to operate as shown inFIG. 4. The current ICL2which flows through the first capacitor24changes its amplitude in synchronization with the fluctuations of the drive current Idd. However, since the second capacitor26has much smaller capacitance than that of the first capacitor24, it cannot supply a current enough to fill the shortage, which is the difference obtained by subtracting the output current IPfrom the average consumption current, to the DUT200. Hence, the average value of the current ICL2takes 0 even when any change occurs in the average consumption current of the DUT200. FIG. 9shows a result of simulating the current IRMwhich flows through the wire12between the first capacitor24and the second capacitor26in a case where the DUT200is controlled to operate as shown inFIG. 4. As shown inFIG. 9, the average value of the current IRMis 0.75 A all the time. That is, even during the period in which the voltage supplying section18increases the output current IP(before time 200 μs), the average value of the current IRMcoincides with the average consumption current of the DUT200. The test apparatus10judges whether the average consumption current of the DUT200is larger than the predetermined reference current IREFor not, based on the integration value obtained by integrating the difference between the current IRMflowing through the wire12between the first capacitor24and the second capacitor26and the reference current IREF. Accordingly, the test apparatus10can accurately judge whether the average consumption current of the DUT200is larger than the reference current IREFor not at all the times. FIG. 10shows the configuration of the test apparatus10according to a first modification of the present embodiment, together with the DUT200.FIG. 11shows one example of a reference current IREFwhich is set by a search section82of the test apparatus10according to the first modification. The test apparatus10according to the present modification has generally the same functions and configuration as those of the test apparatus10shown inFIG. 1, so those members that have generally the same configuration and function as those of the members shown inFIG. 1will be denoted by the same reference numerals in the drawing and explanation for such members will be omitted but for any differences. The test apparatus10according to the present modification may further comprise a search section82. In the present modification, the CPU in the system control device23executes a measuring program for measuring the current value of a current flowing through a wire, and hence makes the system control device23function as the search section82. The search section82varies the reference current IREFfrom test to test based on the judgment produced in the previous test by using a binary search method, and determines the current value (absolute value) of the current IRMflowing through the wire12. To be more specific, the search section82first sets the reference current IREF, which takes the center value of a measurement range, which is a range of current values to be measured. Then, the search section82makes the test apparatus10perform the test. That is, the search section82makes the test apparatus10judge whether the average consumption current of the DUT200is larger than the reference current IREFor not. Subsequently, the search section82determines to which of the upper and lower ranges within the measurement range that are divided at the level of the reference current IREFthe current IRMflowing through the wire12belongs. Then, the search section82sets the range determined to include the current IRMas a new measurement range, and sets a new reference current IREF, which takes the center value of the new measurement range. Then, the search section82repeats the above process plural times and narrows down the range to which the current IRMflowing through the wire12belongs to determine the current value (absolute value) of the current IRMflowing through the wire12. As shown inFIG. 11for example, the search section82, for example, first sets the center of a first measurement range (for example, 0 A to 1 A) to be the reference current IREF(for example, 0.5 A). Then, the search section82makes the test apparatus10perform a first test. The search section82determines to which of a lower range (0 A to 0.5 A) and an upper range (0.5 A to 1 A), which are obtained by dividing the measurement range to upper and lower parts at the reference current IREF, the current IRMflowing through the wire12belongs, based on the judgment (a pass or a failure) obtained from the first test. In the present example, the first test turns out a failure judgment and hence the search section82determines that the current IRMbelongs to the upper range (0.5 A to 1 A). Then, the search section82sets the determined range (0.5 A to 1 A) as a new measurement range, and sets a new reference current IREF(for example, 0.75 A), which takes the center value of the new measurement range. Then, the search section82makes the test apparatus10perform a second test and repeats the same process as that in the first test. The search section82do the same things for the third test and thereafter. Then, the search section82narrows down the range to which the current IRMbelongs, and ultimately determines the current value of the current IRM. As obvious from the above, the test apparatus10according to the present modification can measure the absolute value of the average consumption current of the DUT200. FIG. 12shows the configuration of the measurement apparatus20according to a second modification of the present embodiment, together with the DUT200. The measurement apparatus20according to the present modification has generally the same functions and configuration as those of the measurement apparatus20shown inFIG. 2, and thus those members that have generally the same configuration and function as those of the members shown inFIG. 2will be denoted by the same reference numerals in the drawing and explanation for such members will be omitted but for any differences. The measurement apparatus20according to the present modification comprises a first integrating section30-1, a second integrating section integrating section, a first judging section32-1, a second judging section32-2, and a selecting outputter84instead of the integrating section30and the judging section32. Each of the first integrating section30-1and the second integrating section integrating section stores charges corresponding to a current indicating the difference between the current IRMdetected by the current detecting section28and the predetermined reference current IREFin a capacity element, and outputs the integration voltage that occurs across both the ends of the capacity element. Each of the first integrating section30-1and the second integrating section integrating section may, for example, have the configuration shown inFIG. 3. The first judging section32-1judges whether the DUT200is a pass or a failure based on the integration voltage output from the first integrating section30. The second judging section32-2judges whether the DUT200is a pass or a failure based on the integration voltage output from the second integrating section30. Each of the first judging section32-1and the second judging section32-2may, for example, have the same configuration and function as those of the judging section32. The selecting outputter84selects and outputs the judgment output from a designated one of the first judging section32-1and the second judging section32-2. The control section36controls the integration period and discharge period of the first integrating section30-1and second integrating section integrating section. Further, the control section36notifies the selecting outputter84of a designated one of the first judging section32-1and the second judging section32-2from which the judgment should be output. Here, the control section36selects the first integrating section30-1and the second integrating section integrating section alternately from test to test, such that the selected one stores charges and outputs an integration value. Then, the control section36controls the second integrating section integrating section to discharge the stored charges while the first integrating section30-1is storing charges. Further, the control section36controls the first integrating section30-1to discharge the stored charges while the second integrating section integrating section is storing charges. The measurement apparatus20according to this modification can eliminate time in which no test can be performed for the purposes of discharging. Hence, the test apparatus10having this measurement apparatus20can shorten the time taken for tests. FIG. 13shows a configuration of a test apparatus300according to a third modification of the present invention, along with the DUT200. The test apparatus300according to the present modification has generally the same functions and configuration as those of the test apparatus10shown inFIGS. 1 to 3, so those members that have generally the same configuration and function as those of the members shown inFIGS. 1 to 3will be denoted by the same reference numerals in the drawing and explanation for such members will be omitted but for any differences. The test apparatus300tests the DUT200and is provided with the signal generating section17, the voltage supplying section18, a measurement apparatus310, the reference voltage generating section21, the signal acquiring section22, the system control device23, and an AD converting section320. The measurement apparatus310has the same function and configuration as the measurement apparatus20. The measurement apparatus310is provided with the first capacitor24, the second capacitor26, a current detecting section330, an integrating section340, a judging section350, and a control section360. The control section360may have the same function as the setting section34and the control section36. FIG. 14shows a configuration of the current detecting section330according to the present modification, along with the voltage supplying section18and the DUT200. The current detecting section330may include the detection resistor42, the potential difference detecting section44, and an input switching section332. The detection resistor42can be used in place of the coil. The input switching section332selects one of (i) a detection input for detecting the current IRMflowing through the wire12and (ii) a correction input that is equivalent to an input causing the current flowing through the wire12to be zero. The input causing the current flowing through the wire12to be zero may be exemplified by an input causing a short between the inputs of the potential difference detecting section44. When the input switching section332selects the correction input, the output Vx of the potential difference detecting section44outputs the offset error. For example, when the offset of the potential difference detecting section44is 100 μV and the gain is 100, the offset error voltage is (offset)×(gain+1)=10.1 mV. If Idd is 2 A and the detection resistor42is 5 mΩ, the gain is 100, and therefore the signal output voltage is 1V. In this case, the measurement of 2 A includes an offset error voltage of approximately 1%, which is not a small error. FIG. 15shows an exemplary configuration of the integrating section340according to the present modification. The integrating section340includes the integrating circuit50, the discharging section56, a reference current source342, a reference switching section344, and an offset correcting section346. The integrating circuit50includes the operating amplifier60and the integrating capacitor62. The integrating circuit50stores, in the integrating capacitor62, a charge corresponding to the difference in current between the reference current IREFand the current IRMdetected by the current detecting section330. This integrating capacitor62is an example of a capacity element. The integrating circuit50outputs the integration voltage VMgenerated at both ends of the capacity element as the integration value. The discharging section56includes the discharging switch72. Before beginning the test, the discharging section56discharges the charge stored in the integrating circuit50. The reference current source342outputs the reference current IREFfrom the input of the integrating circuit50. The reference current source342includes the first voltage follower circuit64and the first reference resistor66. The second reference resistor70has the same function as the first current letting-flow section54. The reference switching section344selects whether the reference input of the reference current source342connects to the reference voltage VREFor to the ground voltage. The offset correcting section346corrects the offset occurring at the input of the integrating circuit50. The offset correcting section346includes the correction capacitor402that stores the offset error voltage output by the current detecting section330, when the input switching section332selects the correction input and the reference switching section344selects the ground voltage, i.e. during correction. When the input switching section332selects the detection input and the reference switching section344selects the reference voltage, i.e. during measurement, the offset correcting section346outputs a voltage equal to −1 times the offset error voltage stored in the correction capacitor402. The switch404is a short during correction and is open during measurement. As shown inFIG. 15, the offset error voltage stored in the correction capacitor402is input to the positive input of the operating amplifier400and the output is fed back to the negative input of the operating amplifier400, so that the output V1of the operating amplifier400is equal to the stored offset error voltage. On the other hand, the output V1is connected to the feedback portion of the first voltage follower circuit64via the resistance406, and therefore, if the resistance406and the resistance408have equal resistance values, the value equal to −1 times the output V1is superimposed on the output V2of the first voltage follower circuit64. This generates a reference current component that cancels out the current caused by the offset error voltage, thereby decreasing the effect of the offset error voltage. FIG. 16shows an exemplary configuration of the judging section350according to the present modification. The judging section350includes an offset holding section352that holds the offset occurring at the output of the integrating circuit50, when the input switching section332selects the correction input and the reference switching section344selects the ground voltage, i.e. during correction. The offset holding section352includes an offset capacitor452and a switch454. The offset occurring at the output of the integrating circuit50is stored in the offset capacitor452. The switch454is a short during correction and is open during measurement. When the input switching section332selects the detection input and the reference switching section344selects the reference voltage, i.e. during measurement, the judging section350judges whether the DUT200is defective based on the offset voltage held by the offset capacitor452of the offset holding section352. This enables correcting of the offset occurring upstream from the comparator58, so that the current can be accurately measured. A low-voltage amplifying section354may be provided that amplifies the integration value and supplies the amplified integration value to the judging section350. Since the offset correction sets the integration value to a sufficiently low level, amplifying the integration value using the low-voltage amplifying section354has significant meaning. The AD converting section320measures the integration value. The AD converting section320can record the digital values obtained by measuring the integration value for each measurement cycle in a recording section, measure the values obtained when only the reference current is input before or after a series of measurements, and scale the digital values of each measurement cycle recorded on the recording medium with the measured values. The recording section and the processing section that performs the scaling process may be provided to the system control device23. The AD converting section320enables the current value to be scaled by measuring the reference current only once before or after the series of measurements. This scaling is used to obtain the current value of the digital values measured in each measurement cycle. FIG. 17shows an exemplary operation of the test apparatus300according to the third embodiment. Here, XSTSP represents the control signal of the switch404, XIN represents the control signal of the input switching section332, and XREF represents the control signal of the reference switching section344. Current measurement is performed while all of these control signals are logic L, i.e. during the period t(n). In the current measurement, the difference between the current Idd flowing through the DUT200and the reference current, shown by the dotted lines inFIG. 17, is detected as the output VM(V4) of the integrating circuit50. The defectiveness judgment is based on whether the output VM(V4) is positive or negative. Furthermore, ta represents the period over which the output VM(V4) is held, and the integration value, which is the output from the AD converting section320, is acquired during this period. The acquired integration value is scaled with the integration value of only the reference current measured during the period t(ref). One aspect of the present invention has been explained above using an embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. Various modifications or alterations can be made upon the above-described embodiment. It is obvious from the claims that any embodiment upon which such modifications or alterations are made can also be included in the technical scope of the present invention.
FR 1093211 A1
Method of controlling playback condition, optical disk, optical disk drive device and program Playback durability of a writable optical disk is ensured. A method of controlling a playback condition includes continuously irradiating an optical disk with a laser beam having a power level lower than a mark formation level and detecting a change of a state of a signal caused by a return light from the optical disk, and setting a playback condition for the optical disk according to the change of the state of the signal. The playback durability of the optical disk can be ensured by adaptively controlling the playback condition as stated above. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing or suppressing degradation of a recorded state of a writable optical disk in an optical disk drive device. 2. Description of the Related Art For example, JP-A-2006-309921 discloses an evaluation method of an optical recording medium in which the evaluation of playback durability of the optical recording medium can be performed in a short time and with high precision. Specifically, an operation laser power for heating a recording layer up to a recording operation temperature is obtained; the temperature of the recording layer when a laser beam having a specified playback laser power is irradiated at data playback is obtained based on the ambient temperature at the data playback, the playback laser power and the operation laser power; a relation between the playback laser power at the data playback and a playback endurance frequency is obtained; and a relation between the temperature of the recording layer at the data playback and the playback endurance frequency is obtained from the relation between the playback laser power at the data playback and the playback endurance frequency. However, no consideration is made on measures to enable the playback while the durability is kept. In order to play back information recorded on an optical disk, a laser beam having a playback power is irradiated to the optical disk. According to standards, the disk must withstand more than one million times laser irradiation than the playback power. Until now, no serious problem occurs in CDs and DVDs. However, when a laser of a shorter wavelength is used for a high capacity optical disk based on the Blu-ray standard or HD-DVD standard, there is a tendency that even if the amount of power output is small like the playback power as compared with the record power, the laser has the energy amount to disrupt coloring matter coupling. Thus, in a writable optical disk, the state of recorded medium becomes liable to degrade by repeated playback, and the problem of the playback durability becomes serious. It is ideal that in combinations of all commercialized optical disk drives and optical disks themselves, sufficient playback durability is obtained, and playback degradation does not occur in any playback environment, or does not reach such a level that a problem occurs in a recording and playback system. However, actually, the lasers of the optical disk drives and the optical disks have individual variations at the time of production and due to change over lapsed time, and the change of outside environment such as temperature also has an influence. Therefore, according to the related art, it is difficult to ensure a sufficient margin. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique for ensuring playback durability of a writable optical disk. According to a first aspect of the invention, a method of controlling a playback condition includes a step of continuously irradiating an optical disk with a laser beam having a power level lower than a mark formation level and detecting a change of a state of a signal caused by a return light from the optical disk, and a step of changing and setting a playback condition for the optical disk according to the change of the state of the signal. The playback condition is adaptively controlled as stated above, so that the playback durability of the optical disk can be ensured. According to a second aspect of the invention, a method of controlling a playback condition includes a step of irradiating a track of an optical disk with a laser beam having a power level lower than a mark formation level and detecting a state of an initial signal as a state of a signal caused by a return light from the track of the optical disk, a step of continuously irradiating the track of the optical disk with a laser beam having a power level lower than the mark formation level for a specified time or a specified number of times and detecting a state of a second signal as a state of a signal caused by a return light from the track of the optical disk, a step of calculating a variation or a rate of change of a state of a signal based on the state of the initial signal and the state of the second signal, a step of using data representing a relation between a variation or a rate of change of a state of a signal and a compensation amount of a playback condition for the optical disk and specifying the compensation amount of the playback condition corresponding to the calculated variation or the rate of change of the state of the signal, and a step of setting a playback condition in which the specified compensation amount of the playback condition is reflected. As the variation or the rate of change of the state of the signal becomes large, the playback durability of this optical disk becomes low. Accordingly, when the data representing the relation between the variation or the rate of change of the state of the signal and the compensation amount of the playback condition for the optical disk is prepared, an adjustment can be made to the suitable playback condition, and the playback durability can be ensured. According to a third aspect of the invention, a method of controlling a playback condition includes a first detection step of irradiating a track of an optical disk with a laser beam having a power level lower than a mark formation level and detecting a state of an initial signal as a state of a signal caused by a return light from the track of the optical disk, a second detection step of continuously irradiating the track of the optical disk with a laser beam having a power level lower than the mark formation level and detecting a state of a second signal as a state of a signal caused by a return light from the track of the optical disk, a step of calculating a variation or a rate of change of a state of a signal based on the state of the initial signal and the state of the second signal, a step of, when the variation or the rate of change of the state of the signal exceeds a threshold, using data representing a relation between a time or a laser irradiation frequency and a compensation amount of a playback condition for the optical disk and specifying the compensation amount of the playback condition corresponding to the time between the first detection step and the second detection step or the laser irradiation frequency, and a step of setting a playback condition in which the specified compensation amount of the playback condition is reflected. Here, the laser irradiation frequency may be the number of times the disk makes one rotation and the laser beam is repeatedly irradiated to the same position. It is understood that when the variation or the rate of change of the state of the signal exceeds the specified threshold before the laser irradiation time or the laser irradiation frequency becomes large, the playback durability of this optical disk is low. Accordingly, when the data representing the relation between the time or the laser irradiation frequency and the compensation amount of the playback condition for the optical disk is prepared, an adjustment can be made to the suitable playback condition, and the playback durability can be ensured. According to a fourth aspect of the invention, a method of controlling a playback condition includes a step of recording data on a track of an optical disk under a recording condition, a step of irradiating the track with a laser beam having a power level lower than a mark formation level and detecting a state of an initial signal as a state of a signal caused by a return light from the track, a step of continuously irradiating the track of the optical disk with a laser beam having a power level lower than the mark formation level for a specified time or a specified number of times and detecting a state of a second signal as a state of a signal caused by a return light from the track of the optical disk, a step of calculating a variation or a rate of change of a state of a signal based on the state of the initial signal and the state of the second signal, a step of using data representing a relation between a variation or a rate of change of a state of a signal and a compensation amount of a playback condition for the optical disk and specifying the compensation amount of the playback condition corresponding to the calculated variation or the rate of change of the state of the signal, and a step of setting a playback condition in which the specified compensation amount of playback condition is reflected. For example, a code pattern is actually recorded in a test recording area, and the variation or the rate of change of the state of the signal can be acquired in an environment close to actual playback. That is, the adjustment of the playback condition can be performed more appropriately. According to a fifth aspect of the invention, a method of controlling a playback condition includes a step of recording data on a track of an optical disk under a recording condition, a first detection step of irradiating the track with a laser beam having a power level lower than a mark formation level and detecting a state of an initial signal as a state of a signal caused by a return light from the track, a second detection step of continuously irradiating the track with a laser beam having a power level lower than the mark formation level and detecting a state of a second signal as a state of a signal caused by a return light from the track, a step of calculating a variation or a rate of change of a state of a signal based on the state of the initial signal and the state of the second signal, a step of, when the variation or the rate of change of the state of the signal exceeds a threshold, using data representing a relation between a time or a laser irradiation frequency and a compensation amount of a playback condition for the optical disk and specifying the compensation amount of the playback condition corresponding to the time between the first detection step and the second detection step or the laser irradiation frequency, and a step of setting a playback condition in which the specified compensation amount of the playback condition is reflected. Besides, the state of the signal of the first to the third aspects of the invention may be a reflectivity level. Besides, the state of the signal of the first, the fourth and the fifth aspects of the invention may be one of a voltage level of a code in the data recording, a β value, an asymmetry value, a jitter value and an error value. Further, the playback condition may be a level of a laser power at playback or a rotational speed of a spindle motor. According to a sixth aspect of the invention, a method of controlling a playback condition includes a step of reading information relating to a change of a state of a signal caused by a return light from an optical disk, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, from a memory in an optical disk drive or the optical disk in which the information relating to the change of the state of the signal is stored, and a step of changing and setting a playback condition for the optical disk according to the information relating to the change of the state of the signal. As stated above, the information relating to the change of the state of the signal may not be calculated by the optical disk drive device, but may be read from the memory in the optical disk drive device or the optical disk. Incidentally, the playback condition in which the playback durability is considered may be read from the memory in the optical disk drive device or the optical disk and may be set. According to a seventh aspect of the invention, an optical disk records data representing a relation between a variation or a rate of change of a state of a signal caused by a return light from an optical disk, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, and a compensation amount of a playback condition for the optical disk. When the optical disk as stated above is prepared, the processes as described above can be performed, the suitable playback condition is set, and the playback durability can be ensured. According to an eighth aspect of the invention, an optical disk records data representing a relation between a time or a laser irradiation frequency, from a laser irradiation start, obtained when a variation or a rate of change of a state of a signal caused by a return light from a track, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, exceeds a threshold and a compensation amount of a playback condition for the optical disk. According to a ninth aspect of the invention, an optical disk drive device includes a memory that stores data representing a relation between a variation or a rate of change of a state of a signal caused by a return light from an optical disk, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, and a compensation amount of a playback condition for the optical disk. According to a tenth aspect of the invention, an optical disk drive device includes a memory that stores data representing a relation between a time or a laser irradiation frequency, from a laser irradiation start, obtained when a variation or a rate of change of a state of a signal caused by a return light from a track, which is generated as a result of continuously irradiating an optical disk with a laser beam having a power level lower than a mark formation level, exceeds a threshold and a compensation amount of a playback condition for the optical disk. According to an eleventh aspect of the invention, an optical disk stores at least one of information relating to a change of a state of a signal caused by a return light from an optical disk, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, and a data playback condition for the optical disk. By doing so, the processes as described above can be performed, the suitable playback condition is set, and the playback durability can be ensured. According to a twelfth aspect of the invention, an optical disk drive device includes a memory that stores at least one of information relating to a change of a state of a signal caused by a return light from an optical disk, which is generated as a result of continuously irradiating the optical disk with a laser beam having a power level lower than a mark formation level, and a data playback condition that is determined according to the change of the state of the signal and can prevent or suppress degradation of playback quality of the optical disk. A program for causing a processor to execute a method of the invention can be created, and the program is stored in, for example, a storage medium or a storage device such as a flexible disk, an optical disk such as a CD-ROM, a magneto-optical disk, a semiconductor memory, a hard disk, a nonvolatile memory of a processor, or any other computer readable medium. Besides, the program may be distributed by digital signals through a network. Incidentally, the data in the middle of processing may be temporarily stored in a storage device such as a memory of a processor. According to the invention, the playback durability of a writable optical disk can be ensured. DETAILED DESCRIPTION OF THE INVENTION A drive system of a first embodiment of the invention will be described with reference to a functional block diagram ofFIG. 1. The drive system of the embodiment of the invention includes an optical disk drive device100and an I/O system (not shown) including a display unit such as a television set and an operation unit such as a remote controller. The optical disk drive device100includes a memory127for storing data in the middle of processing, data of processing results, reference data in the processing, and the like, a controlling circuit125including a CPU (Central Processing Unit) and a memory circuit126for storing a program to cause a process described later to be performed, an interface unit (hereinafter abbreviated to an I/F)128as an interface to the I/O system, a characteristic value detection unit124to detect an amplitude level of an RF signal as a playback signal, an equalizer131and a data demodulator circuit123for performing a process to decode that a code of which length is read from the RF signal as the playback signal, a pickup unit110, a data modulator circuit129that performs a specified modulation on data outputted from the controlling circuit125and to be recorded and outputs it to a laser diode (hereinafter abbreviated to an LD) driver121, the LD driver121, and a servo controlling circuit132for a rotational control unit of an optical disk150and a spindle motor133and for the pickup unit110. Incidentally, the length of the code read from the RF signal is, for example, 2T to 8T and 9T of a synchronous code in the case of Blu-ray standards. Besides, in the case of HD-DVD standards, the length is 2T to 11T and 13T of a synchronous code. The pickup unit110includes an objective lens114, a beam splitter116, a detection lens115, a collimate lens113, an LD111, and a photo detector (PD)112. In the pickup unit110, a not-shown actuator is operated according to the control of the servo controlling circuit132, and focusing and tracking are performed. The controlling circuit125is connected to the memory127, the characteristic value detection unit124, the I/F128, the LD driver121, the data modulator circuit129, the servo controlling circuit132and the like. The characteristic value detection unit124is connected to the PD112, the controlling circuit125and the like. The LD driver121is connected to the data modulator circuit129, the controlling circuit125and the LD111. The controlling circuit125is connected also to the I/O system through the I/F128. Next, the outline of a process when data is recorded on the optical disk150will be described. First, the controlling circuit125causes the data modulator circuit129to perform the specified modulation processing on the data to be recorded on the optical disk150, and the data modulator circuit129outputs the modulated data to the LD driver121. Incidentally, the controlling circuit125controls the spindle motor133to rotate at a specified rotational speed through the servo controlling circuit132. The LD driver121drives the LD111based on the received data and in accordance with a specified recording condition (strategy and parameter) and causes the laser beam to be outputted. The laser beam is irradiated to the disk150through the collimate lens113, the beam splitter116, and the objective lens114, and forms a mark and a space on the optical disk150. Incidentally, in this embodiment, the optical disk drive device100may be such that data can not be recorded. Besides, the outline of a process when data recorded on the optical disk150is played back will be described. In accordance with the instruction from the controlling circuit125, the LD driver121drives the LD111to output a laser beam. The controlling circuit125controls the spindle motor133to rotate at a specified rotational speed through the servo controlling circuit132. The laser beam is irradiated to the optical disk150through the collimate lens113, the beam splitter116, and the objective lens114. The reflected light from the optical disk150is inputted to the PD112through the objective lens114, the beam splitter116and the detection lens115. The PD112converts the reflected light from the optical disk150into an electric signal and outputs it to the characteristic value detection unit124and the like. The equalizer131and the data demodulator circuit123perform a specified decoding processing on the outputted playback signal, and outputs the decoded data to the display unit of the I/O system through the controlling circuit125and the I/F128, and the playback data is displayed. The characteristic value detection unit124is not used in normal playback. Next, the process of the embodiment will be described with reference toFIGS. 2 to 5. First, the user sets the optical disk150(optical disk on which data can be written at least once) to optical disk drive device100. The controlling circuit125reads initialization information, such as a data playback position (for example, a specified track in a test area), a laser power level and a rotational speed of the spindle motor133, previously stored in the memory127or the like, and sets it in the LD driver121, the servo controlling circuit132and the like (step S1). Although the laser power level is set to a value lower than a recording laser power level, that is, a mark formation level, it is preferable that a value higher than a normal playback laser power level is adopted. This is for causing a change of a playback signal described later to occur in a short time. Besides, a specified code may not be written at the data playback position. Next, the controlling circuit125causes the LD driver121to start laser irradiation to the foregoing data playback position (step S3). The laser irradiation is continuously performed. When the laser irradiation is started, a return (reflected) light from the optical disk150is converted into an electric signal by the PD112, and is outputted to the characteristic value detection unit124. The characteristic value detection unit124detects a state of a signal caused by the return light, and outputs it to the controlling circuit125, and the controlling circuit125stores it in the memory127(step S5). Step S5is performed at least twice, that is, immediately after step S3and after a specified time elapses or laser irradiation is performed a specified number of times. However, the change mode of the state of the signal, for example, a linear type, a saturation type, or an exponential function type may be determined by performing step S5more times. Incidentally, when playback degradation does not occur, as shown by a solid line “Ref.” in the graph ofFIG. 3(the vertical axis represents voltage level, and the horizontal axis represents time), an almost constant voltage level is detected by the characteristic value detection unit124. The voltage level approximately represents the reflectivity level of the optical disk150, and here, it is indicated that the reflectivity is constant. On the other hand, when the signal degradation occurs by repeated playback, the voltage level is changed. In general, when the optical disk150is of the Low-to-High type, the voltage level is changed to the high voltage side as indicated by a dotted line. When the optical disk150is of the High-to-Low type, the voltage level is changed to the low voltage side as indicated by an alternate long and short dash line. That is, the reflectivity is changed. Incidentally, the voltage level based on the return light from the optical disk150may not directly be used, but another index may be calculated, and the index value may instead be used as the state of the signal. Accordingly, the voltage level detected immediately after step S3is stored as a state of a reference signal or a state of an initial signal in the memory127, and it is determined what signal state is obtained after a specified time elapses. At the time point when the detection at step S5is ended, the controlling circuit125causes the LD driver121to end the laser irradiation. The controlling circuit125derives the variability of the detected state of the signal (step S7). Specifically, a difference between a first voltage level as the state of the reference signal (the state of the initial signal) and a second voltage level as a state of a signal (a second state of a signal) after the specified time elapses, that is, a variation or a rate of change is calculated. For example, the rate of change may be calculated as (first voltage level−second voltage level)/(first voltage level). Also as described above, the change mode of the state of the signal may also be determined. Thereafter, the controlling circuit125specifies a compensation amount of a playback condition corresponding to the derived variability of the state of the signal (step S9). For example, a correspondence table of a variability of a state of a signal and a compensation amount to be applied, or data of an expression to calculate a compensation amount to be applied from a variability of a state of a signal is stored in the memory127, and the compensation amount corresponding to the derived variability of the state of the signal is specified by using the correspondence table or the expression. When the variability includes the change mode, for example, correspondence tables or expressions corresponding to respective types are prepared. Incidentally, also described later, the correspondence table or the expression may be recorded on the optical disk150, not the memory127, and may be read from the optical disk150. For example, a system may be adopted in which with respect to the optical disk150having high playback degradation, it is necessary to reduce the playback laser power level; however, with respect to the optical disk150having little playback degradation, the laser power level is not much reduced. Specifically, as shown in the graph ofFIG. 4(the vertical axis represents the compensation amount of playback power, and the horizontal axis represents the amount of signal state transition), the relation between the amount of signal state transition and the compensation amount of playback power is expressed by a downward-sloping curve. This is because, since it is assumed that the compensation amount is added to the normal playback condition, it becomes large in the negative direction. That is, when the amount of signal state transition increases, the absolute value of the compensation amount of playback power increases. When the amount of signal state transition is a threshold or less, it is unnecessary to change the playback power, and therefore, the compensation amount is 0. When the compensation amount is made excessively large, the C/N ratio of the playback signal at the data playback deteriorates, and therefore, it is preferable that the upper limit of the compensation is also set. Incidentally, the curve shown in the graph ofFIG. 4is merely an example, and there is also a case where the compensation amount is represented by another shape curve. Besides, a system may be adopted in which with respect to the optical disk150having high playback degradation, the rotational speed or the rotating speed of the spindle motor133is increased to shorten the time of laser irradiation, and with respect to the optical disk150having little playback degradation, the rotational speed of the spindle motor133is not increased very much. Specifically, as shown in the graph ofFIG. 5(the vertical axis represents the compensation amount of rotational speed of playback spindle, and the horizontal axis represents the amount of signal state transition), the relation between the amount of signal state transition and the compensation amount of rotational speed of playback spindle is expressed by an upward-sloping curve. Incidentally, when the amount of signal state transition is a threshold or less, it is unnecessary to change the rotational speed of the spindle motor133, and therefore, the compensation amount is 0. When the compensation amount is made excessively large, the C/N ratio of the playback signal at the data playback deteriorates, and therefore, it is preferable that the upper limit of the compensation amount is also set. Incidentally, the curve shown in the graph ofFIG. 5is merely an example, and there is also a case where the compensation amount is expressed by another shape curve. As stated above, although the playback condition is the laser power level at the playback or the rotational speed of the spindle motor133, another playback condition may be adjusted. Besides, the relation as shown inFIG. 4orFIG. 5may be held as data in a table form or in an expression form. The controlling circuit125sets the playback condition, in which the specified compensation amount of the playback condition is reflected on the normal playback condition, in the LD driver121or the servo controlling circuit132(step S11). That is, the compensation amount is added to the normal playback condition to specify the playback condition for subsequent data playback. When the laser power level is the playback condition, the specified playback condition is set in the LD driver121. When the rotational speed of the spindle motor133is the playback condition, the specified playback condition is set in the servo controlling circuit132. The process as stated above may be performed before the data playback is performed, so that the playback degradation can be prevented or suppressed. That is, the playback durability of the data writable optical disk150can be ensured. A functional block diagram of a drive system of a second embodiment of the invention is the same as that of the first embodiment shown inFIG. 1. However, a process as shown inFIG. 6is performed. First, the user sets an optical disk150(optical disk on which data can be written at least once) to an optical disk drive device100. A controlling circuit125reads initialization information, such as a data playback position (for example, a specified track in a test area), a laser power level and a rotational speed of a spindle motor133, previously stored in a memory127or the like, and sets it in an LD driver121, a servo controlling circuit132and the like (step S21). Although the laser power level is set to a value lower than a recording laser power level, that is, a mark formation level, it is preferable that a value higher than a normal playback laser power level is adopted. Besides, a specified code may not be written at the data playback position. Next, the controlling circuit125causes the LD driver121to start laser irradiation to the data playback position (step S23). The laser irradiation is continuously performed. When the laser irradiation is started, a return (reflected) light from the optical disk150is converted into an electric signal by a PD112, and is outputted to a characteristic value detection unit124. The characteristic value detection unit124detects a state of a signal caused by the return light, and outputs it to the controlling circuit125, and the controlling circuit125stores it in the memory127(step S25). The state of the signal is the same as that explained in the first embodiment. First, the state of the signal immediately after step S23is detected as a state of a reference signal or a state of an initial signal. Besides, measurement of an elapsed time or counting of a laser irradiation frequency is started from the first execution of step S23. The controlling circuit125determines whether the elapsed time reaches a specified time or the laser irradiation frequency reaches a specified number of times (step S27). When the elapsed time does not reach the specified time, or the laser irradiation frequency does not reach the specified number of times, return is made to step S25. On the other hand, when the elapsed time reaches the specified time, or the laser irradiation frequency reaches the specified number of times, the controlling circuit125causes the LD driver121to end the laser irradiation. The controlling circuit125derives a variability of the detected state of the signal (step S29). Specifically, a difference between a first voltage level as the state of the reference signal (the state of the initial signal) and a second voltage level as a state of a signal (a second state of a signal) after the specified time elapses, that is, a variation or a rate of change is calculated. For example, the rate of change may be calculated as (first voltage level−second voltage level)/(first voltage level). As described in the first embodiment, the change mode of the state of the signal may also be determined. Thereafter, the controlling circuit125specifies a compensation amount of a playback condition corresponding to the derived variability of the state of the signal (step S31). For example, a correspondence table of a variability of a state of a signal and a compensation amount to be applied, or data of an expression to calculate a compensation amount to be applied from a variability of a state of a signal is stored in the memory127, and the compensation amount corresponding to the derived variability of the state of the signal is specified by using the correspondence table or the expression. When the variability includes the change mode, for example, correspondence tables or expressions corresponding to respective types are prepared. Incidentally, the correspondence table or the expression may be recorded on the optical disk150, not the memory127, and may be read from the optical disk150. Step S31is also similar to step S9in the first embodiment. Similarly to the first embodiment, the playback condition is the laser power level at playback or the rotational speed of the spindle motor133, however, another playback condition may be adjusted. The controlling circuit125sets the playback condition, in which the specified compensation amount of the playback condition is reflected on the normal playback condition, in the LD driver121or the servo controlling circuit132(step S33). That is, the compensation amount is added to the normal playback condition to specify the playback condition for subsequent data playback. When the laser power level is the playback condition, the playback condition is set in the LD driver121. When the rotational speed of the spindle motor133is the playback condition, the playback condition is set in the servo controlling circuit132. The process as stated above may be performed before the data playback is performed, so that the playback degradation can be prevented or suppressed. That is, the playback durability of the data writable optical disk150can be ensured. A functional block diagram of a drive system of a third embodiment of the invention is the same as that of the first embodiment shown inFIG. 1. However, a process as shown inFIG. 7is performed. First, the user sets an optical disk150(optical disk on which data can be written at least once) to an optical disk drive device100. A controlling circuit125reads initialization information, such as a data playback position (for example, a specified track in a test area), a laser power level and a rotational speed of a spindle motor133, previously stored in a memory127or the like, and sets it in an LD driver121, a servo controlling circuit132and the like (step S41). Although the laser power level is set to a value lower than a recording laser power level, that is, a mark formation level, it is preferable that a value higher than a normal playback laser power level is adopted. Besides, a specified code may not be written at the data playback position. Next, the controlling circuit125causes the LD driver121to start laser irradiation to the foregoing data playback position (step S43). The laser irradiation is continuously performed. When the laser irradiation is started, a return (reflected) light from the optical disk150is converted into an electric signal by a PD112, and is outputted to a characteristic value detection unit124. The characteristic value detection unit124detects a state of a signal caused by the return light, and outputs it to the controlling circuit125, and the controlling circuit125stores it in a memory127(step S45). The state of the signal is the same as that explained in the first embodiment. First, the state of the signal immediately after step S43is detected as a state of a reference signal or a state of an initial signal. Besides, measurement of an elapsed time or counting of a laser irradiation frequency is started from the first execution of step S43. The controlling circuit125determines whether the state of the signal reaches a target level (step S47). In the case of the Low-to-High optical disk150, the target level is a level in which a specified rate α (for example, 5%) is added to the state of the reference signal. In the case of the High-to-Low optical disk150, the target level is a level in which the state of the reference signal is reduced by the specified rate α. That is, it is determined whether the playback degradation occurs, and whether the state of the signal is changed from the state of the reference signal by the specified rate α or more. When the state of the signal does not reach the target level, the controlling circuit125determines whether the elapsed time reaches a specified time or the laser irradiation frequency reaches a specified number of times (step S49). When the elapsed time does not reach the specified time or the laser irradiation frequency does not reach the specified number of times, return is made to step S45. On the other hand, when the elapsed time reaches the specified time or the laser irradiation frequency reaches the specified number of times, since the playback degradation is low, even if the specified time or the specified number of times is attained, the state of the signal is not changed to the target level. In that case, the laser irradiation is stopped and shift is made to step S51. When the state of the signal reaches the target level, the controlling circuit125causes the LD driver121to end the laser irradiation. The controlling circuit125derives a playback durability index of the optical disk150(step S51), as will be described below. As indicated by a curve “a” or “b” in the graph ofFIG. 8(the vertical axis represents normalized voltage, and the horizontal axis represents time or frequency), in the case of the Low-to-High optical disk150, when the playback degradation occurs, as the laser irradiation time or the frequency increases, the voltage rises. In the case of the optical disk150which is liable to be subjected to playback degradation, as indicated by the curve “b”, a time “b” (called degradation time) or a frequency “b” (called deterioration frequency) required to reach the target level (for example, 1+α) becomes short. On the other hand, in the case of the optical disk150which is not easily subjected to playback degradation, as indicated by the curve “a”, the degradation time “a” or the deterioration frequency “a” required to reach the target level (for example, 1+α) becomes larger. Accordingly, the degradation time and/or the deterioration frequency can be used as a playback durability index. Also in the case of the High-to-Low optical disk150, the degradation time and/or the deterioration frequency can be used as the playback durability index. However, when it is determined at step S49that the specified time or the specified frequency is attained, a value obtained by adding a suitable value (which may include 0) to the specified time or the specified frequency may be used as a degradation time or a deterioration frequency. Thereafter, the controlling circuit125specifies a compensation amount of a playback condition corresponding to the derived playback durability index (step S53). For example, a correspondence table of a playback durability index and a compensation amount to be applied, or data of an expression to calculate a compensation amount to be applied from a playback durability index is stored in the memory127, and the compensation amount corresponding to the derived playback durability index is specified by using the correspondence table or the expression. Incidentally, the correspondence table or the expression may be recorded on the optical disk150, not the memory127, and may be read from the optical disk150. When the playback condition is the laser power, the compensation amount as shown inFIG. 9is specified. In the graph ofFIG. 9, the vertical axis represents the compensation amount of playback power, and the horizontal axis represents playback durability index. As shown in the figure, as the playback durability index becomes a small value, the absolute value of the compensation amount of the playback power becomes large. When the playback durability index increases, the absolute value of the compensation amount of the playback power decreases proportionally, and when the playback durability index increases to a certain degree, the compensation amount of the playback power becomes 0. Incidentally, when the compensation amount is made excessively large, the C/N ratio of the playback signal at data playback deteriorates, and therefore, it is preferable that the upper limit of the compensation amount is also set. Incidentally, the curve ofFIG. 9is merely an example, and there is also a case where the compensation amount is expressed by another shape curve. When the playback condition is the rotational speed or the rotating speed of the spindle motor133, the compensation amount as shown inFIG. 10is specified. InFIG. 10, the vertical axis represents the compensation amount of rotational speed of playback spindle, and the horizontal axis represents playback durability index. As shown in the figure, when the playback durability index becomes a small value, the compensation amount of rotational speed of playback spindle becomes a large value. When the playback durability index increases, the compensation amount of rotational speed of playback spindle approaches 0 according to that. When the playback durability index increases to a certain degree, the compensation amount of rotational speed of playback spindle becomes 0. Incidentally, when the compensation amount is made excessively large, the C/N ratio of the playback signal at data playback deteriorates, and therefore, it is preferable that the upper limit of the compensation amount is also set. Incidentally, the curve ofFIG. 10is an example, and there is also a case where the compensation amount is expressed by another shape curve. The controlling circuit125sets the playback condition, in which the specified compensation amount of the playback condition is reflected, in the LD driver121or the servo controlling circuit132(step S55). That is, the compensation amount is added to the normal playback condition to specify the playback condition for subsequent data playback. When the laser power level is the playback condition, the playback condition is set in the LD driver121. When the rotational speed of the spindle motor133is the playback condition, the playback condition is set in the servo controlling circuit132. The process as stated above may be performed before the data playback is performed, so that the playback degradation can be prevented or suppressed. That is, the playback durability of the data writable optical disk150can be ensured. A functional block diagram of a drive system of a fourth embodiment of the invention is the same as that of the first embodiment shown inFIG. 1. In the first to the third embodiments, a laser beam is irradiated to an area where data is not recorded, and the degree of playback degradation can be artificially specified when no recording is performed. In this embodiment, a method is described in which test recording is performed to actually write a specified code, and playback is performed to actually specify the degree of playback degradation. Hereinafter, a process will be described with reference toFIG. 11andFIG. 12. Of course, recording may be performed with the first to third embodiments as well. First, the user sets an optical disk150(optical disk on which data can be written at least once) to an optical disk drive device100. A controlling circuit125reads initialization information, such as a data recording position (for example, a specified track in a test area), a recording laser power level, a playback laser power level, and a rotational speed of the spindle motor133, previously stored in a memory127or the like, and sets it in an LD driver121, a servo controlling circuit132and the like (step S61). Although the playback laser power level is set to a value lower than a recording laser power level, that is, a mark formation level, it is preferable that a value higher than a normal playback laser power level is adopted. Next, the controlling circuit125outputs a specified sign row to a data modulator circuit129, and causes the specified sign row to be recorded on a specified track of the optical disk150through the LD driver121and an LD111(step S63). The controlling circuit125causes the LD driver121to start laser irradiation to the specified track at the playback laser power level which is set as described above and to start data playback (step S65). The laser irradiation is continuously performed. When the laser irradiation is started, a return (reflected) light from the optical disk150is converted into an electric signal by a PD112, and is outputted to a characteristic value detection unit124. The characteristic value detection unit124detects a signal state of a playback signal caused by the return light and outputs it to the controlling circuit125. For example, voltage levels of playback signals (2T to 8T signs) in the case of Low-to-High of Blu-ray standards are as shown inFIG. 12. InFIG. 12, the vertical axis represents voltage, and the horizontal axis represents time. In the case of the Low-to-High type, when a 2T mark is played back, a I2H level can be obtained, and when a 2T space is played back, a I2L level can be obtained. When a 3T mark is played back, a I3H level can be obtained, and when a 3T space is played back, a I3L level can be obtained. When a 8T mark is played back, a I8H level can be obtained, and when a 8T space is played back, a I8L level can be obtained. When playback degradation occurs by repeatedly performing the data playback, similarly to the first to the third embodiments, these voltage levels are changed to the high voltage side when the optical disk150is of the Low-to-High type, or are changed to the low voltage side when the optical disk150is of the Low-to-High type. Incidentally, the variation amount often varies according to the sign, the balance between the signs is lost, and the recording quality deteriorates. Then, for example, with respect to one sign, a voltage level (also called an amplitude level) is detected by the characteristic value detection unit124, and may be directly adopted as a signal state evaluation index. Voltage levels are detected with respect to plural signs, an operation is performed on those values, and a signal state evaluation value may be calculated. Besides, in addition to the simple voltage level, an evaluation index such as a β value, an asymmetry value, a jitter value or an error value known to those skilled in the art may be adopted as the signal state evaluation index. In such a case, characteristic values required to calculate such known values by the controlling circuit125are detected by the characteristic value detection unit124, and are outputted to the controlling circuit125. The controlling circuit125uses the output from the characteristic value detection unit124, calculates a previously determined signal state evaluation index, and stores it in the memory127(step S67). The value of the signal state evaluation index calculated immediately after step S65is performed is treated as a reference value or a starting value. Besides, measurement of an elapsed time or counting of a laser irradiation frequency is started from the execution of step S65. The controlling circuit125determines whether the elapsed time reaches a specified time or the laser irradiation frequency reaches a specified number of times (step S69). When the elapsed time does not reach the specified time, or the laser irradiation frequency does not reach the specified number of times, return is made to step S67. On the other hand, when the elapsed time reaches the specified time, or the laser irradiation frequency reaches the specified number of times, the controlling circuit125causes the LD driver121to end the laser irradiation. The controlling circuit125derives the variability of the signal state evaluation index (step S71). Specifically, a difference between the reference value (state of an initial signal) of the signal state evaluation index and the value (state of a second signal) of the signal state evaluation index calculated at step S67performed lastly, that is, a variation or a rate of change is calculated. For example, a rate of change may be calculated as (the state of the initial signal−the state of the second signal)/(the state of the initial signal). Also, a change mode, such as a shape of a change curve of a signal state evaluation index, may also be specified. Thereafter, the controlling circuit125specifies a compensation amount of a playback condition corresponding to the derived variability of the signal state evaluation index (step S73). For example, a correspondence table of a variability of a signal state evaluation index and a compensation amount to be applied, or data of an expression to calculate a compensation amount to be applied from a variability of a signal state evaluation index is stored in the memory127, and the compensation amount corresponding to the derived variability of the signal state evaluation index is specified by using the correspondence table or the expression. When the variability includes the change mode, correspondence tables or expressions corresponding to respective types are prepared. Incidentally, the correspondence table or the expression may be recorded on the optical disk150, not the memory127, and may be read from the optical disk150. Similarly to the first embodiment, the playback condition is the laser power level at playback or the rotational speed of the spindle motor133. Accordingly, the relation between the amount of the signal state transition and the compensation amount of the playback power shown inFIG. 4is similar to the relation between the variability of the signal state evaluation index and the compensation amount of the playback power. Similarly, the relation between the amount of the signal state transition and the compensation amount of the rotational speed of the playback spindle shown inFIG. 5is similar to the relation between the variability of the signal state evaluation index and the compensation amount of the rotational speed of the playback spindle. Similarly to the first embodiment, although the playback condition is the laser power level at playback or the rotational speed of the spindle motor133, another playback condition may be adjusted. The controlling circuit125sets the playback condition, in which the specified compensation amount of the playback condition is reflected on the normal playback condition, in the LD driver121or the servo controlling circuit132(step S75). That is, the compensation amount is added to the normal playback condition to specify the playback condition for subsequent data playback. When the laser power level is the playback condition, the playback condition is set in the LD driver121. When the rotational speed of the spindle motor133is the playback condition, the playback condition is set in the servo controlling circuit132. The process as stated above may be performed before the data playback is performed, so that the playback degradation can be prevented or suppressed. That is, the playback durability for the data writable optical disk150can be ensured. A functional block diagram of a drive system of a fifth embodiment of the invention is the same as that of the first embodiment shown inFIG. 1. Also in this embodiment, test recording is performed to actually write a code, and playback is performed to actually specify the degree of playback degradation. Hereinafter, a process will be described with reference toFIG. 13. First, the user sets an optical disk150(optical disk on which data can be written at least once) to an optical disk drive device100. A controlling circuit125reads initialization information, such as a data recording position (for example, a specified track in a test area), a recording laser power level, a playback laser power level, and a rotational speed of the spindle motor133, previously stored in a memory127or the like, and sets it in an LD driver121, a servo controlling circuit132or the like (step S81). Although the playback laser power level is set to a value lower than a recording laser power level, that is, a mark formation level, it is preferable that a value higher than a normal playback laser power level is adopted. Next, the controlling circuit125outputs a specified sign row to a data modulator circuit129, and causes the specified sign row to be recorded on the specified track of the optical disk150through the LD driver121and an LD111(step S83). The controlling circuit125causes the LD driver121to start laser irradiation to the specified track at the playback laser power level which is set as described above and to start data playback (step S85). The laser irradiation is continuously performed. When the laser irradiation is started, a return (reflected) light from the optical disk150is converted into an electric signal by the PD112, and is outputted to a characteristic value detection unit124. The characteristic value detection unit124detects a signal state of a playback signal caused from the return light and outputs it to the controlling circuit125. This process is the same as that of step S65of the fourth embodiment. That is, for example, a voltage level is detected by the characteristic value detection unit124with respect to one sign, and may be directly used as the signal state evaluation index. Voltage levels are detected with respect to plural signs, and an operation may be performed on those values to calculate the signal state evaluation value. Besides, in addition to the simple voltage level, an evaluation index such as a β value, an asymmetric value, a jitter value, or an error rate value known to those skilled in the art may be adopted as the signal state evaluation index. The controlling circuit125uses the output from the characteristic value detection unit124, calculates the previously determined signal state evaluation index, and stores it in the memory127(step S87). The value of the signal state evaluation index calculated immediately after step S85is performed is treated as the reference value or the starting value of the signal state evaluation index. Besides, measurement of an elapsed time or counting of a laser irradiation frequency is started from the execution of step S85. The controlling circuit125determines whether the value of the signal state evaluation index reaches a target level (step S89). In the case of the signal state evaluation index which increases when the playback degradation advances, the target level is a level in which a specified rate a (for example, 5%) is added to the reference value of the signal state evaluation index. In the case of the signal state evaluation index which decreases when the playback degradation advances, the target level is a level in which the reference value of the signal state evaluation index is reduced by the specified rate α. That is, it is determined whether the playback degradation occurs and whether the state of the signal is changed from the reference value of the signal state evaluation index by the specified rate a or more. When the value of the signal state evaluation index does not reach the target level, the controlling circuit125determines whether the elapsed time reaches a specified time or the laser irradiation frequency reaches a specified number of times (step S91). When the elapsed time does not reach the specified time or the laser irradiation frequency does not reach the specified number of times, return is made to step S87. On the other hand, when the elapsed time reaches the specified time or the laser irradiation frequency reaches the specified number of times, the playback degradation is low, and even if the specified time or the specified number of times is attained, the state of the signal does not change to the target level. In such a case, the laser irradiation is stopped and shift is made to step S93. When the value of the signal state evaluation index reaches the target level, the controlling circuit125causes the LD driver121to end the laser irradiation. The controlling circuit125derives the playback durability index of the optical disk150(step S93). With respect to the playback durability index, the same way of thinking as that of the third embodiment is adopted. That is, there are properties that the value of the signal state evaluation index reaches the target level quickly when the playback degradation is high, and the value of the signal state evaluation index does not reach the target level quickly when the playback degradation is low. Thus, the degradation time as the time required to reach the target level or the deterioration frequency as the laser irradiation frequency required to reach the target level is adopted as the playback durability index. However, when it is determined at step S91that the specified time or the specified number of times is attained, a value obtained by adding a suitable value (which may include 0) to the specified time or the specified number of times may be used as the degradation time or the deterioration frequency. Thereafter, the controlling circuit125specifies the compensation amount of the playback condition corresponding to the derived playback durability index (step S95). For example, a correspondence table of a playback durability index and a compensation amount to be applied, or data of an expression to calculate a compensation amount to be applied from a playback durability index is stored in the memory127, and the compensation amount corresponding to the derived playback durability index is specified by using the correspondence table or the expression. Incidentally, the correspondence table or the expression may be recorded on the optical disk150, not the memory127, and may be read from the optical disk150. This process is the same as that of step S53of the third embodiment. That is, when the playback condition is the laser power level, the absolute value of the compensation amount is made to become large as the value of the playback durability index becomes small, and the compensation amount is made to approach 0 as the value of the playback durability index becomes large. When the playback condition is the rotational speed of the spindle motor133, the compensation amount of the rotational speed of the playback spindle becomes a large value as the playback durability index becomes a small value, and the compensation amount of the rotational speed of the playback spindle approaches 0 as the playback durability index increases. The controlling circuit125sets the playback condition, in which the specified compensation amount of the playback condition is reflected, in the LD driver121or the servo controlling circuit132(step S97). That is, the compensation amount is added to the normal playback condition to specify the playback condition for subsequent data playback. When the laser power level is the playback condition, the playback condition is set in the LD driver121. When the rotational speed of the spindle motor133is the playback condition, the playback condition is set in the servo controlling circuit132. The process as stated above may be performed before the data playback is performed, so that the playback degradation can be prevented or suppressed. That is, the playback durability for the data writable optical disk150can be ensured. Other Embodiment In the foregoing embodiments, the laser irradiation is continuously performed, the change of the playback signal is detected and the various processes are performed. However, the process may take a relatively long time. Then, values corresponding to the variability at step S7(first embodiment) or S29(second embodiment), the playback durability index at step S51(third embodiment) or step S93(fifth embodiment), and the variability of the signal state evaluation index at step S71(fourth embodiment) are stored in the memory127of the optical disk drive device100, and the values may be read and used. Besides, these values may be stored for each type of the optical disk150. Similarly, values on the optical disk150may be recorded of the optical disk150. Further, the compensation amount itself of the playback condition or the playback condition itself after the compensation may be stored in the memory127or the optical disk150. Besides, the rate for determining the target level, or the value of the specified time or the specified number of times may also be stored in the memory127or the optical disk150. As described above, when data is held on the optical disk150, it may be held in a Lead-in area as shown inFIG. 14. The Lead-in area is roughly divided into a system Lead-in area, a connection area and a data Lead-in area. The system Lead-in area includes an initial zone, a buffer zone, a control data zone, and a buffer zone. The connection area includes a connection zone. Further, the data Lead-in area includes a guard track zone, a disk test zone, a drive test zone, a guard track zone, an RMD duplication zone, a recording management zone, an R-physical format information zone, and a reference code zone. In this embodiment, the control data zone of the system Lead-in area includes a recording condition data zone170. For example, the data as described above are held in the recording condition data zone170. Although embodiments of the invention are described above, the invention is not limited to these. For example, the functional block diagram ofFIG. 1is for explaining the embodiments, and is not always coincident with the actual circuit and module constitution. Besides, with respect to the process flow, when the processing result is the same, the processing order may be exchanged, or the processing may be executed in parallel. The structure and the operation of the present invention are not limited to the above descriptions. Various modifications may be made without departing from the spirit and scope of the present invention. While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
2QQMQÎ La présente invention est relative à un procédé eil *3 {^IQ^jafeil pour coucher des substances fluides sur des bandes de produits en mouvement et, plus particulièrement, à un procédé qui permet d'atteindre des vitesses de couchage maximales plus élevées que; celles obtenues jusqu'à ce jour, 5 On a décrit au brevet français 1 093•9^6 un procédé de couchage où une nappe de solution s'écoule d'une trémie, de manière continue, sur une bande en mouvement. Grâce à ce procédé,on peut augmenter considérablement ,;la vitesse de couchage et réduire l'épaisseur de la couche en appliquant sur les faces de la partie de la nappe comprise entre la trémie et la surface de la bar.de, partie 10 ci-après appelée ménisque, des pressions différentes. On exerce sur la face • de la nappe en regard de la bande une pression inférieure à celle qui s'exerce sur l'autre face de cette nappe. Suivant le brevet français 1 093 Ç66 on maintient- cette dépression au moyen d'une chambre disposée en regard de la face de la bande sur laquelle sera couchée la nappe. Cette dépression est comprise 15 entre 25 Fa et 1250 Fa, et elle est engendrée par un dispositif d'aspiration approprié. L'une des difficultés présentées par un tel procédé de couchage, particulièrement pour le couchage d'une bande de papier, réside en ce que le ménisque et la surface de la bande sont perturbés lorsqu'on atteint une certai— 20. ne vitesse de couchage critique. Cette vitesse de couchage est fonction d'un certain nombre de facteurs tels que la nature précise de la surface à coucher et les propriétés physiques et chimiques de la substance de couchage» Lorsqu'on atteint cette vitesse critique, le ménisque n'est pas" complètement rompu mais oscille plutôt, au hasard, provoquant des irrégularités dans la couche et 25 parfois emprisonnant des bulles d'air- dans celle-ci, On n'est pas sûr des causes exactes de cet effet mais un certain nombre de facteurs ont été déterminés et sont éliminés dans le procédé suivant la présente invention,1 La présente invention a pour objet un procédé de couchage permettant d'atteindre des vitesses de couchage maximales supérieures d'environ 50 ai ou 30 plus, à celles obtenues avec- le procédé de couchage classique, ce procédé pouvant être appliqué avec un appareil de couchage classique ayant subi de légères modifications peu coûteuses. L'invention a aussi pour objet roi .appareil:de couchage permettant d'atteindre des vitesses de couchage supérieures à celles obtenues jusqu'ici. 35 Le procédé d'application d'une couche de composition liquide sur une bande continue, suivant l'invention, dans lequel on maintient des pressions différentes sur les deux faces d'un ménisque formé par la composition liquide entre un dispositif d'application et la surface de la bande 'entraînée devant-ce dispositif sans contact avec celui—ci, la pression la plus faible s'exër— 40 ç.ar.t sur- la face du- ménisque qui vient, au contact de la bande, est -caractérisa 69 01280 2 2''00001 en ce qu'on soumet la face de la bande qui doit recevoir la couche à un dégazage en continu appliqué en amont du ménisque, dans la zone de plus faible pression, de manière à éliminer là couche d'air entraînée par la dite face de la bande. Suivant un mode de réalisation la pression de dégazage est inférieure 5 à la plus faible pression appliquée au ménisque et s'exerce sur toute la largeur de la bande. L'appareil de couchage, suivant la présente invention, comprend une surface support pour une bande de produit animée d'un mouvement continu, une trémie placée à une certaine distance de ce support et de la surface du pro— 10 duit sur laquelle elle débite, d'une manière continue, une nappe de composition liquide formant ainsi un ménisque, enamont de la trémie, une chambre de dépression dont l'ouverture est dirigée vers la face du ménisque venant au contact de la bande et recouvre une certaine longueur du produit à coucher au voisinage immédiat de ce ménisque, des moyens reliés à cette chambre pour abaisser la 15 pression s"exerçant sur cette face du ménisque par rapport à celle s'exerçant sur son autre face, cet appareil étant remarquable en ce qu'il comprend un dispositif d'aspiration supplémentaire logé dans cette chambre de dépression, pour éliminer, en amont du point de coucte.ge, la couche d'air entraînée par la face de la bande qui recevra la couche. 20 Au dessin annexé, donné seulement à titre d'.exemple : - la Pig. 1 est schéma de profil, avec coupe partielle, d'un mode de réalisation d'un appareil suivant l'invention ; — la Fig. 2 est une coupe partielle agrandie d'un ménisque, formé sur un appareil d'un autre type. 25 On a découvert que les vitesses de couchage critiques atteintes suivant les procédés classiques où un ménisque de substance de couchage est formé entre une trémie.et la surface d'une bande en mouvement et où on maintient des pressions différentes sur les faces opposées du ménisque peuvent être augmentées d'environ 50 ^ si la surface de la bande est soumise à une aspiration juste 30 avant le ménisque pour éliminer la couche d'air entraînée par cette bande. De préférence, cette aspiration devra être appliquée à l'intérieur de la chambre de dépression qui déjà réduit la pression sur la face du ménisque qui vient au contact de la bande. La Pig. 1 représente un appareil de couchage suivant la présente in-35 vention qui comprend un rouleau 10 supportant une bande W à coucher. Ce rour-leau est animé d'un mouvement de rotation continu par des moyens appropriés, non représentés, pour entraîner la bande dans le sens indiqué par les flèches dessinées le long de celle-ci. Une trémie 12, munie d'une fente verticale d'écoulement 13, transversale à la bande et dont la longueur est églae à la 40 largeur de cette dernière, est disposée à une certaine distance de la surface 69 01288 2000001 de la bande supportée par le rouleau 10. One pompe à débit constant, non représentée, débite dans une cavité 15 de la trémie une composition de couchage liquide L qui s'écoule à travers la fente 13 en une nappe S d'épaisseur pratiquement uniforme qui ensuite s'écoule par gravité sur un plan incliné 16. Tandis 5 que la nappe de liquide s'écoule par gravité le long du plan 16, son uniformité dans la direction "transversale s'améliore jusqu'à ce qu'elle forme un ménisque 18 franchissant l'espace compris entre une lèvre 19 de la trémie et la surface de la bande. Comme représenté à la Fig. 1, le ménisque 18 présente la forme d'une goutte ou d'un bourrelet qui s'étend sur toute la largeur de la bande. Ce 10 ménisque vient au contact de la bande qui se déplace pour entraîner par capillarité une couche C d'épaisseur uniforme d'une composition de couchage. On peut former initialement ce ménisque soit en pompant momentanément un excès de la composition de couchage dans la trémie, soit en amenant la trémie suffisamment près de la surface de la bande pour amorcer le ménisque puis en l'é— 15 loignant jusqu'à ce que le ménisque présente la forme désirée. Après avoir formé le ménisque de la composition de couchage, on règle le débit de la pompe de manière à ce que le débit compense la quantité de la composition de couchage entraînée par la bande. Afin d'éviter que le ménisque ne soit entraîné par la bande et ne soit 20 rompu, habituellement, comme décrit au brevet français 1 093 966, on réduit la pression sur la face du ménisque en regard de la bande non couchée. Pour cela, on dispose une chambre de dépression 20 en amont du point où se forme le ménisque. Cette chambre de dépression comprend une enceinte de forme générale pa— rallélépipédique ne comprenant pas de paroi sur sa face supérieure. On peut 25 fixer la chambre de dépression en un point 21 de la trémie et une partie d'une paroi 22 de la trémie à laquelle cette chambre est fixée peut former une partie" de la paroi arrière de l'enceinte. La paroi antérieure 23 de la chambre de dépression peut être écartée en 24 de la surface de la bande à coucher d'une faible distance par exemple 0,381 mm du côté de l'entrée. Ainsi le rouleau 30 support 10 et/ou la bande H supportée par celui—ci forme la paroi supérieure de la chambre de dépression. Cette chambre est reliée par un conduit 25 qui peut communiquer avec des moyens non représentés pour réduire la pression à l'intérieur de celle-ci. Le conduit 25 peut être muni d'une vanne V pour régler la pression dans la chambre 20. 35 Comme décrit au brevet français 1 093 9^6 on peut maintenir dans la chambre de dépression un vide partiel de 25 Pa à 1250 Pa en fonction de la vitesse de couchage et/ou de la viscosité de la composition de couchage pour éviter que le ménisque ne soit entraîné par la bande provoquant ainsi sa rupture. 40 Un appareil de couchage tel que décrit ci—dessus est bien connu et on 69 01208 2000001 a trouvé qu'il présentait certains avantages quant à l'accroissement de la vitesse de couchage et la réduction de l'épaisseur de la couche qui peut être appliquée sur une surface en mouvement. On a trouvé cependant que de tels appareils présentent une vitesse maximale critique au-dessus de laquelle le ménis-5 que 18 commence à osciller au hasard provoquant des irrégularités importantes dans le couchage et l'entraînement de bulles d'air dans la couche. A première vue, il semblait que l'on puisse éviter ces inconvénients en augmentant simplement l'aspiration dans la chambre de dépression. Quand on a essayé d'augmenter la dépression on a trouvé que ce n'était pas là le moyen d'éviter cet 10 inconvénient car le ménisque était aspiré dans la chambre de dépression provoquant sa rupture avant que n'apparaîsse un accroissement de la vitesse maximale critique de couchage. On a aussi découvert qu'il y avait une limite bien définie à la différence de pression que l'on peut appliquer sur les deux faces du ménisque sans entraîner l'aspiration de celui—ci dans la chambre de dépres— 15 sion et sa rupture. Suivant la présente invention on augmente la vitesse de couchage maximale critique de ce type d'appareil d'environ 50 $ en soumettant la surface de la bande légèrement en amont du point de couchage à une aspiration supérieure à celle exercée dans l'ensemble de la chambre de dépression. Ce but est at— 20 teint en munissant la chambre de dépression 20 d'un dispositif d'aspiration supplémentaire 30. Comme représenté, ce dispositif d'aspiration est formé par une fente étroite 31 adjacente de la bande et qui s'étend transversalement sur toute la largeur de la trémie. L'aspiration est appliquée à la fente 31 au moyen d'un collecteur approprié 33 efcd'une source d'aspiration distincte de cel-25 le produisant la dépression dans la chambre 20. Comme représenté à la Fig.1, un conduit 26 à la partie inférieure d'un collecteur 33 peut être connecté à une source d'aspiration, non représentée qui est indépendante de celle de la chambre 20. La fente 31 peut être distante de la surface de la bande W d'environ 0,762 nui et la paroi du collecteur traversée par cette fente présente 30 une surface concave concentrique au rouleau support de manière à assurer une action plus efficace de l'aspiration. A la Fig. 1 le dispositif d'aspiration est représenté comme étant monté à l'intérieur de la chambre de dépression 20 mais sa position par rapport au ménisque 18 n'est pas critique dans la mesure où ce dispositif est à l'in-35 térieur ou forme la paroi antérieure 23 de cette chambre, comme on l'a décrit ce dispositif d'aspiration doit couvrir la totalité de la largeur de la trémie même si seulement une partie de cette largeur est utilisée pour le couchage. EXEMPLE 1 - Suivant cet exemple le dispositif d'aspiration 30 est placé de manière à former la paroi antérieure 23 de la chambre de dépression 20 et la 40 fente 31 est disposée.à une distance de 0,508 mm de la bande W à coucher. La 69 01288 . -2000001 largeur de la fente elle-même est de 0,762 mm elle s'étend sur toute la largeur de la trémie 12 qui est de 3Ê,1 cm même si la bande à coucher occupe seulement 12,7 c"i au centre de la trémie. En conséquence, la distance séparant le dispositif d'aspiration du cylindre support est de 0,762 mm, l'épaisseur de 5 la bande étant de 0,254 mm. Pour le couchage d'une composition liquide consistant en une dispersion d'halogénures d'argent photosensibles dont la viscosité est de 10 mPl sur une bande de papier, la vitesse critique maximale est comprise entre 23,4«t 27,4 m/mn quand on utilise un dispositif de couchage usuel muni seulement d'une chambre de dépression, la vitesse critique d'un système usuel 10 muni d'un dispositif d'aspiration supplémentaire, suivant la présente invention, sera comprise entre 36,6 et 39»6 m/mn et le débit du dispositif d'aspiration est de 0,510 m^/mn et la pression dans le collecteur est de 5»48 kpa. EXEMPLE 2 — Pour cet exemple on utilise la même composition de couchage- et la même bande de papier, le dispositif d'aspiration étant distant de 0,762 mm du 15 papier (1,016 mm du cylindre support). Cette disposition entraîne une au g-mentation de la vitesse maximale critique du même ordre de grandeur que celle obtenue au premier exemple. EXEMPLE 3 - Suivant cet exemple, on porte la'largeur de la fente du dispositif d'aspiration à 1,27 mm ce qui entraîne une augmentation de la vitesse maximale 20 critique qui est alors comprise entre 45,7 m/mn et 48,8 m/mn. Bans ces conditions le débit du dispositif d'aspiration est de 0,623 m^/mn et la pression dans le collecteur est 4j23 kPa. On a découvert que l'efficacité du dispositif d'aspiration augmente avec la largeur de la fente en vertu, il faut croire, du débit de l'air. Cepen-25 dant, quand la largeur de la fente est supérieure à 1,27 mm l'efficacité du dispositif tombe d'une manière remarquable pour des raisons non encore connues. La distance séparant le dispositif d'aspiration de la bande peut varier entre 0,508 mm et 0,762 mm sans affecter les performances du système. Les distances au-delà de cette échelle n'ont pas été essayées. 30 II semble que le débit d'air soit le paramètre important puisque pour une certaine dimension de la fente la vitesse critique diminue quand on réduit le débit d'air. Le pourcentage d'accroissement de la vitesse critique et le débit d'air sont directement proportionnels dans l'intervalle de débits essayés jusqu'ici par exemple entre 0,283 et 0,623 m/mn. 35 Quand on transporte une bande de produit, il est bien connu qu'une couche d'air se déplace en même temps qu'elle et que la vitesse augmentant la quantité d'air entraînée augmente aussi. Le volume de cette couche d'air varie aussi en fonction des caractéristiques de la surface de la "bande à coucher, par exemple, elle augmente avec la rugosité de: la surface. Pour cette 40 raison une bande de papier entraînera, à une vitesse, donnée, une couche d'air 69 01288 2000001 plus épaisse que celle entraînée par un film de matière plastique à cause de la plus grande rugosité de sa surface. Il faut croire que cette couche d'air ' est dirigée vers le ménisque dans les dispositifs de couchage usuels et est augmentée par le courant d'air dans la région de basse pression juste avant le 5 point de couchage et que si la pression ainsi engendrée immédiatement en-dessous du ménisque est assez grande elle entraînera une instabilité de celui—ci. Le niveau exact de la pression, nécessaire pour provoquer l'instabilité du ménisque et qui augmentera avec la vitesse de couchage, dépendra d'un certain nombre de propriétés de la bande à coucher et de la composition de couchage, par 10 exemple, la rugosité de la surface de la bande, la viscosité de la substance de couchage, les caractéristiques de mouillabilité aussi bien de la surface de la bande que de celle de la composition de couchage, etc.. Le rôle du dispositif d'aspiration est d'éliminer, ou de limiter fortement, la couche d'air arrivant au point de couchage. Ceci réduit non seulement les possibilités 15 d'entraîner de l'air sous la couche mais de plus réduit le pression de l'air immédiatement avant le ménisque ou au point où le ménisque vient au contact avec la surface de la bande. En raison de sa disposition à prolimité de la surface de la bande, ce dispositif d'aspiration élimine principalement l'air entraîné par la bande et ne semble pas réduire d'une manière sensible la près— 20 sion dans la chambre de dépression. Toute tendance que peut présenter le dispositif d'aspiration à réduire la pression dans la chambre au point ou le ménisque pourrait être rompu peut être évitée en réglant la vanne V du circuit d'aspiration de la chambre pour maintenir une dépression voulue par exemple de 25 Pa à 1250 Pa. 25 Bien que la Pig. 1 représente une trémie du type qui débite d'une manière continue une nappe de substance de couchage pour former un ménisque en forme de bourrelet entre la trémie et la surface de la bande à coucher, la présente invention n'est pas limitée à l'utilisation d'un tel appareil de couchage. Par exemple, la trémie peut être du type à extrusion comme représenté à 30 la Pig. 1 du brevet français 1 093 966 et à la Pig. 2 de la présente demande où une nappe de substance de couchage L' est débitée sous pression à partir d'une fente de trémie 60 formée par deux lèvres 61, 62 d'une trémie placée à une certaine distance d'une bande W' animée d'un mouvement de translation par un rouleau support 10'. Dans ce cas, le ménisque compris entre la trémie et 35 la surface de la bande présente la forme d'un ruban 18' sur les faces opposées duquel on applique des pressions différentes au moyen d'une chambre de dépression 20'. En ce qui concerne la présente invention la forme du ménisque est peu importante pourvu qu'il soit continu. Donc dans toute la présente description et dans les revendications quand on se réfère à la masse de liquide com-40 prise entre la trémie.et la surface de la bande comme étant une nappe continue 69 01289 2 00001 une telle terminologie comprend une masse de liquide qtieile qu'en soit la forme par exemple tin bourrelet ou une goutte de substance comme représenté à la Pig. 1 ou un ruban de substance comme représenté à la Pig. 2, etc..
Stationary vibration isolation system and method for controlling a vibration isolation system The invention relates to a stationary vibration isolation system and to a method for controlling such a system which comprises a damper effective in a horizontal direction which includes a fluid of variable viscosity. CROSS-REFERENCE TO RELATED APPLICATIONS European Patent Application No. 13 153 155.0, with a filing date of Jan. 29, 2013, is incorporated herein by reference. FIELD OF THE INVENTION The invention relates to a stationary vibration isolation system which is used in particular in semiconductor industry for accommodating lithography apparatus, and further relates to a method for controlling such a vibration isolation system. BACKGROUND OF THE INVENTION Stationary vibration isolation systems such as those used for mounting lithography apparatus are known in practice. Such a vibration isolation system typically comprises mechanical or pneumatic springs on which a table or frame is mounted with vibration isolation, which table or frame serves to receive a lithography apparatus to be isolated. Further, such vibration isolation systems are typically configured as so-called active vibration isolation systems in which sensors are provided at the anti-vibration mounted load and/or on the ground, which are configured as position-velocity sensors or acceleration sensors to measure vibrations, and the vibrations are actively counteracted using actuators. In particular Lorentz motors are used as the actuators. A problem is that vibration isolation systems do not always only have the task to isolate the anti-vibration mounted load from vibrations from the environment, but that the anti-vibration mounted load likewise causes vibrations. In particular, photolithography steppers comprise a displaceable table which causes an acceleration of the anti-vibration mounted load in one direction or another when altering the direction or speed thereof. Such vibrations caused by the anti-vibration mounted machine itself can be reduced by means of active vibration isolation using actuators, such as Lorentz motors. A problem, however, is that there is a tendency of increasing the size of such lithography apparatus, which involves a correspondingly greater moving mass. Accordingly, the counteracting forces generated by the actuators have to be increased correspondingly, which makes the configuration of appropriate actuators more and more complex. Published patent application EP 2 295 829 A1 (Integrated Dynamics Engineering GmbH) discloses a vibration isolation system in which, additionally, the pneumatic springs are used to provide counteracting forces. However, pneumatic springs are only useful to provide counteracting forces in a vertical direction. Moreover, pneumatic springs which are controlled by means of valves exhibit a delayed response behavior, so that in case of very fast motions of the anti-vibration mounted load compensation is not sufficiently possible. OBJECT OF THE INVENTION Therefore, an object of the invention is to mitigate the drawbacks of the prior art. More particularly, a vibration isolation system is to be provided, which enables to compensate in a simple manner for forces produced by motions of the anti-vibration mounted load, in particular by motions of a displaceable table. In particular, the need for ever increasing force actuators should be avoided. SUMMARY OF THE INVENTION The object of the invention is already achieved by a stationary vibration isolation system and a method for controlling a vibration isolation system according to any of the independent claims. Preferred embodiments and modifications of the invention are set forth in the respective dependent claims. The invention relates to a stationary vibration isolation system intended to accommodate machines in vibration-isolated manner, in particular lithography apparatus. The stationary vibration isolation system is in particular intended to receive photolithography steppers. The system comprises a load that is anti-vibration mounted in both the horizontal and vertical directions. The load typically comprises a frame or table on which the lithography apparatus is arranged. Furthermore, the anti-vibration mounted load comprises a moving mass. The moving mass in particular is a displaceable table such as those used in photolithography steppers. Due to changes in motion of the moving mass such as alterations in speed and alterations of direction, a force is produced which may result in undesirable motions of the anti-vibration mounted load. Typically, such a force mainly acts in a horizontal direction. According to the invention, the anti-vibration mounted load is coupled to the base via a damper which is effective at least in horizontal direction, and which damper comprises a fluid of variable viscosity. The base of a vibration isolation system typically defines a frame which rests on the ground. However, it is also conceivable to use the ground itself as a base of the vibration isolation system and to install springs and dampers directly on the ground. The at least one damper couples the base with the anti-vibration mounted load and is able to absorb vibrations, at least temporarily. The gist of the invention is to use a fluid of variable viscosity. By using a fluid of variable viscosity, a mechanical coupling of the anti-vibration mounted load and the base may be induced temporarily. In this manner, in particular force impacts of displaceable tables can be diverted to the base. The subject-matter of the invention benefits from the fact that the movements of steppers are usually quite rapid, whereas a vibration isolation system is especially intended to counteract slow movements, in particular of less than 100 Hz. In case of such slow movements, the fluid of variable viscosity merely acts as a slightly viscous damping element. Upon changes in motion of the anti-vibration mounted load, however, a very high damping effect is provided by virtue of an increasing viscosity, which damping is in particular at least ten times greater, and so the force is diverted to the base. In this way, forces generated by motions of the anti-vibration mounted load can be offset at least partially by a frictional connection to the base. The actively controlled force actuators, in particular Lorentz motors, which preferably continue to be provided, need no longer be adapted so that they are able to compensate for all the forces produced by the anti-vibration mounted load itself. A non-Newtonian fluid may be used as the fluid of variable viscosity. In a non-Newtonian fluid, the viscosity of the fluid increases with the shear rate. Thus, the damping effect of the damper increases with the rapid movements of a displaceable table of a lithography stepper. This system may be employed as a purely passive system without electronic control. Further, an electrorheological or magnetorheological fluid may be used as the fluid. Electrorheological and magnetorheological fluids are materials in which the viscosity may be altered very quickly by an electric or magnetic field. Such fluids are particularly known from active shock absorbers, such as those used in motor vehicles. The use of an electrorheological or magnetorheological fluid allows the damper to be integrated into an active vibration isolation system. It is in particular possible to provide an active control which detects the motion of the mass and based thereon controls the viscosity of the electrorheological or magnetorheological fluid. In particular so-called feed-forward control may be provided, in which the motion of the anti-vibration mounted mass, in particular the motion of a displaceable table, is not only detected passively using a sensor, but in which the known motion pattern of the table is used to generate compensation signals so to speak in advance. In one modification of the invention, the anti-vibration mounted load is additionally coupled to the base in the vertical direction via a damper which comprises a fluid of variable viscosity. In this way, vertical force components may also be compensated for. In one embodiment of the invention, the fluid of variable viscosity is arranged in a vibration isolator. In particular it is possible to use a vibration isolator configured as a pneumatic spring, in which the piston has an extension which is immersed in a chamber containing the fluid of variable viscosity. An advantage of this embodiment of the invention is that all components of the damper may be incorporated in the isolators. In an alternative embodiment of the invention, the damper is configured as an external component, which in particular provides for retrofitability of a conventional vibration isolation system in a simple manner. The invention further relates to a method for controlling a vibration isolation system that comprises a lithography apparatus including a moving mass. Based on the movement of the mass, a damper which is effective at least in a horizontal direction and which comprises an electrorheological or magnetorheological fluid is controlled so that the damping effect increases upon a change in motion of the mass, i.e. in the event of an acceleration applied on the system by the mass. The change in motion of the mass may be detected by a sensor. Preferably in this case, known motion information, in particular that of a displaceable table, is accounted for in controlling the damper. Preferably, at least one sensor detects vibrations of the anti-vibration mounted load and/or of the ground, and based thereon actuators are controlled for active vibration isolation, in particular Lorentz motors. In one modification of the invention, both the vibration of the ground or of the lithography apparatus detected by the sensors and the detected motion of the mass are considered in calculating a signal for controlling the actuator. The motion of the mass, in particular of the displaceable table, is not only used for controlling the damper in feed-forward control, but also for controlling the actuator. DETAILED DESCRIPTION The subject matter of the invention will now be explained in more detail with reference to the drawings ofFIGS. 1 to 6by way of schematically illustrated exemplary embodiments. In this vibration isolation system, the ground4is used as a base for receiving an anti-vibration mounted load2. The anti-vibration mounted load2is coupled with the ground4via vibration isolators3which are typically configured as a pneumatic spring. Furthermore, the vibration isolation system comprises sensors. In this exemplary embodiment, sensor5is provided as a position sensor, sensor6as a speed or acceleration sensor of the anti-vibration mounted load2in the vertical direction, and sensor7as a sensor effective in the horizontal direction. By virtue of sensors5,6,7it is possible to use compensating signals to control an actuator23, by means of a control device (not shown). In this exemplary embodiment, actuator23is integrated in vibration isolator3. In particular a Lorentz motor is used as the actuator. Actuator23is effective both in the horizontal and vertical directions in this exemplary embodiment. The anti-vibration mounted load2comprises a lithography apparatus1which in this exemplary embodiment is configured as a displaceable table of a stepper that changes its direction of movement8. Due to the acceleration caused thereby, forces are applied to the anti-vibration mounted load2. The vibrations or motions of the anti-vibration mounted load2in form of a table together with components placed thereon may be counteracted by controlling actuator23. However, with increasing size of the lithography apparatus1, bigger and bigger actuators are required. Therefore, according to the invention, the anti-vibration mounted load2may be coupled with the base or ground4via dampers9, as shown inFIG. 2. Dampers9comprise a fluid of variable viscosity (not shown), so that the damping effect is variable. Forces applied by the lithography apparatus1as a result of a motion of the displaceable table may now be diverted to the ground4, due to a frictional connection via dampers9, so that the requirements on the actuators of the system are reduced. FIG. 3schematically illustrates a vibration isolator3in which the fluid of the damper is integrated in the vibration isolator3. Vibration isolator3is configured as a pneumatic spring and includes a working space13. A preferably controllable valve14may be used to control the pressure in the working space13. Vibration isolator3further comprises a piston11on which the anti-vibration mounted load rests. Working space13is sealed on the piston side by a membrane12which is secured on the housing of working space13by means of a clamping ring10. Above membrane12, a seal15is arranged which enables to introduce a fluid between membrane12and seal15, in particular a liquid of variable viscosity. Fluid16may be a non-Newtonian fluid, for passively changing the damping effect, or an electrorheological or magnetorheological fluid, for actively changing the damping effect. If now, due to a change of motion of a displaceable table, a force, in particular a horizontal force, is applied to the piston11which is rigidly connected to the anti-vibration mounted load, the viscosity of fluid16can be increased, whereby a frictional connection is established between piston11and clamping ring10. At least horizontal force components may be diverted to the base in this manner, at least partially. FIG. 4shows another schematic view, in which the illustrated vibration isolator substantially corresponds to the vibration isolator shown inFIG. 3, being configured as a pneumatic spring including a working space13. A fluid16of variable viscosity is arranged between piston11and clamping ring10. In this exemplary embodiment, the fluid is an electrorheological fluid16. When installed in a vibration isolation system, isolator3is controlled by a control device21. Control device21is connected to the lithography apparatus1. Changes in the direction of movement8of the displaceable table are communicated from lithography apparatus1to control device21. Based on this change of motion, the control device determines the force generated by lithography apparatus1and based thereon controls the power source22by means of which the viscosity of fluid16is controlled. Thus, the vibration isolation system comprises a feed-forward control which in the event of forces caused by the lithography apparatus, preliminarily achieves a frictional connection between the anti-vibration mounted load and the base. It will be understood that control device21moreover may be part of an active control and may additionally control actuators for active vibration isolation (23inFIG. 1). FIG. 5shows another exemplary embodiment of a vibration isolator3which is likewise configured as a pneumatic spring including a working space13. This vibration isolator3likewise comprises a piston11. Working space13is sealed by a membrane12, which is secured on the housing of the working space by means of clamping ring10. In this exemplary embodiment, piston11has an extension18which projects into the working space13of the isolator. Within working space13, a chamber17is provided which is filled with a fluid16of variable viscosity. If the fluid is an electrorheological fluid, the viscosity of the fluid16may be controlled by applying a voltage between the wall of chamber17and extension18. FIG. 6shows a sectional view of a practical vibration isolator3. It comprises working space13. Piston11is movable relative to the working space both in the horizontal and vertical directions and may be fixed to the anti-vibration mounted load by means of fastening element19. Furthermore, clamping ring10can be seen, by means of which the working space is sealed using a membrane. The piston now comprises extension18which projects into the preferably sealed chamber17which is arranged within the working space and which comprises a fluid16of variable viscosity. Vibration isolator3further comprises a foot20by means of which it may be fixed on the ground or on a base. By increasing the viscosity of fluid16, a frictional connection may be achieved between piston11and the housing of working space13and thus ultimately between the anti-vibration mounted load and the base. The invention permits in a very simple manner to divert forces which are caused by an anti-vibration mounted load, in particular by a stepper, to the ground, at least partially, so that they do not need to be completely counteracted by actuators. LIST OF REFERENCE NUMERALS
Les vannes à papillon ont des avantages reconnaQX ité et de facilité de commande, ce dernier résultant de l'équilibrage des poussées axiales des fluides à obturer. Toutefois un inconvénient majeur de ces vannes est celui de ne pas se prêter à la réalisation dlune obturation parfaite du fluide commandé, dans les cas où cette étanchéité est nécessaire. La présente invention remédie à cet inconvénient en réunissant, dans un mouvement de commande unique, deux temps successifs 10----- manoeuvre de fermeture progressive du papillon, jusqu'à sa position perpendiculaire à l'axe de la conduite 2"----- déplacement du papillon (parallèlement à lui-même) jusqu'à son application sur un siège circulaire ce second temps pouvant utilement se décomposer en deux périodes~: a/-- rapprochement du papillon contre une butée circulaire, et b/-- continuation du même mouvement provoquant la compression d'un joint périphérique; ces temps ou périodes se répétant en sens inverse lors de l'ouverture de la vanne Les figures annexées montrent à titre d'exemple non limitatif une forme de réalisation préférée de l'invention (fig.l à 6 avec papillon à siège; et fig.7 à 9 avec joint pariphérique). La fig.1 montre une élévation-coupe de la commande, en position fermée; Lafig.2montre une coupe selon 2-2 de la fiig.1 La fig.3 montre une coupe selon 3-3 de la fig.1 La fig.4 est une coupe de la vanne, en plan, en position ouverte. La fig.5 est une eue à plus grande échelle du déverrouillage automatique de la commande rotative du papillon en fin du ler temps; La fig.6 montre le détail de commande du déplacement parallèle du papillon à partir du commencement du 2e temps; La fig.7 montre à très grande échelle le joint périphérique et sa position au début du 2e temps; La fig.8 le montre de même à la fin de la période a/ du 2e temps; La fig.9 le montre enfin à la fin de la période b/ du 2e temps. Sur ces figures les mêmes références désignent les mêmes organes 10 est le corps de vanne, comportant des brides lOt pour son raccordement aux tuyauteries, il est ltarbre de commande, 12 est le papillon, qui est accouplé en rotation à l'arbre 11 par un verrou à bascule 13 dont le ressort 13t sollicite le bec 13" à pénétrer dans la rainure 11' de 11 ( fig.2 et et 5 ). L'arbre 11 torte deux parties excentrées 14 tournant dans des coussinets 15 (fiv6) dont les faces externes peuvent coulisser entre le papillon 12 et des guides 16 vissés sur lui, mais maintenue à distance convenable par des entretoises 1? ; ces dernières maintenant l'arbre 11 dans le centre de 12 par des facettes 17'. D'autre part l'alésage du corps 10, généralement cylindrique, est usiné dans la zone de fermeture du papillon 12 en une forme sensiblement sphérique (rayon R, fig.3) et I'extérieur du papillon lui-même est usiné dans la forme sensiblement correspondante. Si lton désire que le 2e temps soit réalisé en deux périodes, le papillon est équipé dlun joint périphérique 18 susceptible d'être comprimé entre un redan 12' de 12 et la bague coulissante 19 disposée pour être la premiere å venir en contact avec le corps 10 lors de la poussée de 12 dans le sens de son écartement de l'arbre 11. Fonctionnement On conçoit aisément qu'ainsi disposée la commande en rotation de l'arbre 11 en sens A(fig.4 & 5) entraînera le papillon 12 de sa position ouverte (fig.4) à sa position perpendiculaire (fig.3) mais que dans la fin de cette course rotative de 900 le verrou 13 butera sur le talonlO" solidaire de 10 (fig.5), et qu'à partir de ce moment, la cannelure 11' étant désaccouplée de 13", l"arbre 11 continuera sa rotation en sens A et,par les deux excentriques 14, éloignera le papillon 12 de l'arbre 11, en réalisant successivement ---- soit l'application directe de la périphérie de 12 contre 10 (par progres sion en sens F, fiv.5); ; ---- soit ce mouvement en deux périodes, par a/-- application de la bague 19 et du joint 18 contre lO(fig.7 à 8); puis b/-- compression du joint 18 entre 19 et 12' (fig 8à9) et son "fluage" radial entre 12' et 10, assurant une étanchéité cl'autant plus accentuée que l'action en rotation sur l'arbre 11 aura été plus énergique. Bien entendu la forme de réalisation ci-dessus décrite et représentée ne l'est qu'à titre d'exemple et peut varier dans une large mesure sans porter atteinte aux caractéristiques de llinvention, revendiquées ci-après. REVENDICATIONS 1.---- Commande de vanne à papillon par arbre en rotation dans un même sens, en deux temps successifs 1" manoeuvre de fermeture progressive du papillon, jusqu'à sa position perpendiculaire à l'axe de la conduite 2" déplacement du papillon (parallèlement à lui-même) jusqu'à son application sur un siège circulaire, lors ces temps se répétant en sens inverse due l'ouverture de la vanne 2---- Commande selon revendication 1, dans laquelle le deuxième temps énoncé est décomposé en deux périodes successives a/-- rapprochement du papillin contre une butée circulaire; et b/--- continuation du même mouvement provoquant la compression dlun joint périphérique; ces périodes ye répétant en sens inverse lors de ltouverture de la vanne
Method for operating a metering unit of a catalytic converter In order to ensure optimum metering of a reagent to be metered into an exhaust gas during operation of a metering unit of a catalytic converter of a combustion system, in particular an internal combustion engine of a motor vehicle, in any operating state of the catalytic converter and/or in any operating state of the combustion system, a method and a device for operating a metering unit of a catalytic converter of a combustion system provide that, based on a steady-state value of the reagent quantity to be metered during a steady-state operating state of the catalytic converter and/or the combustion system, the quantity of the at least one reagent is determined and adjusted using at least one dynamic correction factor which is dependent on at least one of the performance characteristics of the catalytic converter and on at least one of the performance characteristics of the combustion system. The dynamic correction factor and/or a nitrogen oxide correction factor are obtained from a dynamic correction characteristics map or a nitrogen oxide correction characteristics map only as a function of performance characteristics of the internal combustion engine, in particular the engine speed and the injected fuel quantity, and of performance characteristics of the catalytic converter, preferably the nitrogen oxide emission and the temperature of the exhaust gas downstream from the catalytic converter. BACKGROUND INFORMATION To reduce the emission of pollutants, in particular the emission of nitrogen oxides during the operation of combustion systems, exhaust systems of internal combustion engines in motor vehicles are equipped with catalytic converters. Using these, most of the hydrocarbons and carbon monoxide contained in the exhaust gas are burned. However, a large portion of harmful nitrogen oxides, which are discharged into the environment, remains in the exhaust gas when conventional catalytic converters are used. The nitrogen oxide content in the exhaust gases can also be reduced by using reduction-type catalytic converters. Reduction of nitrogen oxides by adding reduction agents to an exhaust gas flow, also known as selective catalytical reduction (SCR), is known from European Patent Application No. EP 1 024 254. The reduction agent quantity is determined here based on a load variable, e.g., injected fuel quantity and/or the engine speed, and at least one performance characteristic, e.g., the exhaust gas temperature upstream from the catalytic converter. Moreover, by using at least one characteristics map, the reduction agent quantity is adjusted as a function of at least one additional performance characteristic, e.g., the exhaust gas temperature downstream from the catalytic converter. For this purpose, a temperature difference is formed between the actual temperature and the setpoint temperature of the exhaust gas downstream from the catalytic converter. Different characteristics maps, in which an adjusted reduction agent quantity is stored as a function of the engine speed and the injected fuel quantity, are provided for different temperature differences. In order to take into account all occurring temperature differences as completely as possible and to achieve optimum adjustment, as many characteristics maps as possible are used, so that the reduction agent quantity can be accurately determined. Maximum nitrogen oxide conversion and minimum emission of unconverted reduction agent (reduction agent slip) is to be ensured in each operating state of the internal combustion engine and/or the catalytic converter, in particular at different temperatures, different injected fuel quantities, and/or different engine speeds. Prior to the initial startup of the engine and/or the catalytic converter, the characteristics maps must be recorded (calibrated) in advance, by the manufacturer, for example. The more characteristics maps are used, the greater is the metering accuracy during each operating state of the catalytic converter and/or each operating state of the combustion system, but also the greater is the calibration complexity and the more complex is the assignment of the characteristics maps. SUMMARY OF THE INVENTION The present invention is based on the technical problem of improving a method and a device for operating a metering unit of a catalytic converter of a combustion system, in particular an SCR catalytic converter of an internal combustion engine in a motor vehicle, e.g., a utility vehicle, in such a way that metering of the quantity of reagent to be metered, in particular of a reduction agent such as a urea/water solution, takes place by requiring little calibration complexity based on as few as possible characteristics maps and still achieving an optimum pollutant reduction and that, in particular, the amount of nitrogen oxides in the exhaust gas is reduced in such a way that specified limiting values are not exceeded. It is essential, in particular in view of the use of internal combustion engines in motor vehicles in different countries having different emission guidelines, to provide a number of different catalytic converters which meet the particular emission guidelines and which, in case of need, are quickly exchangeable. This requires in particular a marked reduction in the calibration complexity. In the method according to the present invention, a steady-state value of a reagent quantity to be metered (steady-state reagent value) is determined based on an assumed steady-state operating state of the catalytic converter and/or the combustion system, characterized by the current performance characteristics, independent of the performance characteristics of the catalytic converter, the steady-state value being adjusted using at least one dynamic correction factor (dynamic correction). As a function of at least one of the performance characteristics of the catalytic converter and at least one of the performance characteristics of the combustion system, the dynamic correction factor is obtained from a dynamic correction characteristics map. In terms of the present invention, steady-state means that constant (steady-state) operating states of the catalytic converter and/or the combustion system over a longer period of time are assumed, e.g., operating states predetermined by the manufacturer. Therefore, steady-state values correspond to values of the particular variables during steady-state operating states, e.g., characterized by a constant nitrogen oxide emission and a constant exhaust gas temperature downstream from the catalytic converter. The steady-state reagent value is dynamically adjusted to changes, in the exhaust gas temperature for example, via the dynamic correction. In other words, the dynamic correction takes into account that, during operation of the combustion system and the catalytic converter, indeed no steady-state but rather dynamic operating states prevail during the actual operating situation. It is an advantage here that not only operation-relevant parameters of the combustion system and the catalytic converter, the exhaust gas in particular, are used, but also steady-state values, preferably stored in characteristics maps, in which constant (steady-state) operating states of the catalytic converter and/or the combustion system are assumed. Only one additional characteristics map (exhaust gas temperature characteristics map) for the steady-state value of the exhaust gas (steady-state exhaust gas temperature value), which is separately calibratable for each catalytic converter by the manufacturer, and the determination of the actual exhaust gas temperature downstream from the catalytic converter, with which the steady-state exhaust gas temperature value is adjusted, are necessary. Thus, using only three variables to be measured, namely the exhaust gas temperature value downstream from the catalytic converter, a value for the engine speed, and a value for the injected fuel quantity and only three corresponding characteristics maps, namely the dynamic correction characteristics map, the exhaust gas temperature characteristics map, and a characteristics map for the steady-state reagent value (reagent characteristics map), the necessary reagent quantity is accurately determinable. In a preferred embodiment of the method, the steady-state reagent value is additionally adjusted using a nitrogen oxide correction factor as a measure for the deviations between a steady-state value for a nitrogen oxide emission (steady-state nitrogen oxide value) from a nitrogen oxide characteristics map and the present nitrogen oxide emission value, preferably by multiplication. The steady-state nitrogen oxide value is stored in the nitrogen oxide characteristics map as a function of the value for the engine speed and the value for the injected fuel quantity. This has the considerable advantage that erroneous metering due to fluctuations in the nitrogen oxide emission, which may take place statically, as well as dynamically, is drastically reduced. Erroneous metering may occur when the determination of the steady-state reagent value was based on a constant, steady-state nitrogen oxide emission. The adjustment to the actual situation in which the nitrogen oxide emission changes dynamically takes place due to the fact that the quantity of the at least one reagent is determined from the steady-state reagent value via correction using the deviation from the actual amount of nitrogen oxide. It is an additional advantage that only the value of the nitrogen oxide emission is necessary, which is advantageously determined using a nitrogen oxide sensor or via simulation of engine data, measured values, and/or characteristic maps by computing differential equations and/or functionals. The nitrogen oxide emission value is accurately detectable using the nitrogen oxide sensor, whereas the simulation of the nitrogen oxide emission value has the advantage that no nitrogen oxide sensor is necessary, since variables which are detected anyway are used, preferably the values for engine speed and the injected fuel quantity. A further advantageous embodiment of the method provides the adjustment of the quantity of the at least one reagent using a value of the operating time of the catalytic converter, a value of the operating time of the combustion system, a value of the ambient temperature, a value of the coolant temperature of the combustion system and/or a value of the air moisture, e.g., via multiplication with a corresponding factor. This has the advantage that metering is adjusted to changing environmental influences, whereby the metering accuracy is markedly improved. In the device according to the present invention at least one means for determining the steady-state reagent value, one correction means for executing the dynamic correction, one dynamic correction characteristics map in which at least one dynamic correction factor is stored, and detection means for detecting at least one of the performance characteristics of the catalytic converter, and at least one of the performance characteristics of the combustion system are provided, with which an adjustment of the steady-state output variables to dynamically changing operating conditions may take place in a simple manner and without great technical complexity. The difference between the steady-state exhaust gas temperature as a performance characteristic and the exhaust gas temperature downstream from the catalytic converter as another performance characteristic is preferably stored in the dynamic correction characteristics map, making quick access to these performance characteristics possible. In addition, an advantageous embodiment provides for a control unit having a dynamic correction characteristics map and/or a nitrogen oxide characteristics map. It is an advantage here that, without great technical complexity, the characteristics maps for the dynamic correction are storable in a single control unit, e.g., by programming, and are quickly accessible. A further advantageous embodiment provides a nitrogen oxide sensor for determining the nitrogen oxide emission value and/or a processor unit for simulating the nitrogen oxide emission value from engine data, measured values and/or characteristics maps via computation, e.g., based upon differential equations and/or functionals. It is possible to determine the nitrogen oxide emission value simply and quickly by using the nitrogen oxide sensor, whereas in the simulation an additional sensor may be omitted altogether. DETAILED DESCRIPTION The method and the device according to the present invention are explained below in connection with a metering unit50, illustrated inFIG. 1, of an SCR catalytic converter10of a controlled diesel catalytic converter (cd-modulcat) of an internal combustion engine3in the form of a diesel engine of a commercial motor vehicle for metering a urea/water solution (UWS)200as a reduction agent into exhaust gases for selective catalytic reduction of nitrogen oxides in particular. However, the method and the device are not limited to metering unit50of the SCR catalytic converter10or to the use in a utility vehicle or any other motor vehicle having a diesel engine. Instead, they are useable anywhere where exhaust gases of a combustion system, e.g., an oil heating system or a gasoline engine, are to be purified. Instead of the cd-modulcat, any other catalytic converter, of a direct-injection gasoline engine for example, may be provided. In addition, the method and the device are not limited to metering UWS200, in fact, also other and multiple different liquid and/or gaseous reagents, also as a mixture, may be metered. Instead of being metered into exhaust gases, UWS200may also be metered into other liquid and/or gaseous fluids. SCR catalytic converter10is connected to engine3via an exhaust pipe20. During the operation of engine3, untreated exhaust gas of engine3is supplied to SCR catalytic converter10in a direction (flow direction) indicated by an arrow25. The exhaust gas is purified in SCR catalytic converter10in a manner known per se. Purified exhaust gas is discharged into the environment downstream from SCR catalytic converter10via an exhaust tract30(Arrow35). Using metering unit50, UWS200is supplied to exhaust pipe20via a metering line40to reduce the nitrogen oxides contained in the untreated exhaust gas in a manner known per se. UWS200in turn is supplied to metering unit50from a container206via a UWS feed line205. In principle, metering unit50may also be connected to a different device for supplying UWS200. Using a control unit90, metering unit50is controllable via a control line110. Quantity400of UWS200, determinable as a function of the performance characteristics of SCR catalytic converter10and engine3, is determinable, preferably computable, using control unit90, as described in connection withFIG. 2. A value for the exhaust gas temperature TCat,nof the purified exhaust gas is detectable as a performance characteristic of SCR catalytic converter10using a temperature sensor160in exhaust tract30and is transmittable to control unit90via a temperature signal line165. A value for engine speed n as a first performance characteristic of engine3is detectable using an engine speed sensor140of engine3and is transmittable to control unit90via an engine speed signal line145. Likewise, a value for injected fuel quantity ME as a second performance characteristic of engine3is detectable using a fuel measuring device142of engine3and is transmittable to control unit90via an injection signal line147. In principle, injected fuel quantity ME may be obtained from a characteristics map in a known manner based on a load signal from an accelerator pedal path, so that fuel measuring device142may be omitted. In principle, other performance characteristics characterizing engine3and/or SCR catalytic converter10, which are detectable using appropriate detecting means, may alternatively or additionally be used. In a first exemplary embodiment of the method according to the present invention, illustrated inFIG. 2, the detected values for engine speed n and injected fuel quantity ME are transmitted to a first steady-state characteristics map (exhaust gas temperature characteristics map)300in which a steady-state value of the exhaust gas temperature downstream from SCR catalytic converter10is stored as a function of the values for engine speed n and injected fuel quantity ME. In terms of the present invention, steady-state means that constant (steady-state) operating states of SCR catalytic converter10and engine3are assumed, e.g., operating states predetermined by the manufacturer. Therefore, steady-state values correspond to values of the particular variables during steady-state operating states, e.g., characterized by a constant nitrogen oxide emission and a constant exhaust gas temperature downstream from SCR catalytic converter10. Steady-state characteristics maps are determined, e.g., by the manufacturer, via measurements on an engine test bench in steady-state operating states of engine3and SCR catalytic converter10. In addition, a steady-state value for the UWS quantity to be metered (UWS steady-state value320) is determined from a second steady-state characteristics map (UWS characteristics map310) as a function of the values for engine speed n and injected fuel quantity ME. Moreover, UWS steady-state value320may be picked up at an interface Ext and may, in principle, be transmitted to a processor unit or an output unit (not shown). But interface Ext may also be omitted. UWS characteristics map310is determined, e.g., by the manufacturer, using a variation of UWS metering during steady-state operation of engine3and a defined UWS slip. UWS steady-state value320corresponds to the UWS quantity to be expected during a steady-state operating state of catalytic converter10, characterized, for example, by a steady-state exhaust gas temperature. UWS steady-state value320is calibrated during a steady-state operating state at a predetermined, tolerable UWS slip. A dynamic correction factor380is determined from exhaust gas setpoint temperature value305and the difference360between exhaust gas setpoint temperature value305and exhaust gas temperature value TCat,nfrom an additional characteristics map (dynamic correction characteristics map370). Difference360is computed using a subtractor350. Using the dynamic correction value, UWS steady-state value320is adapted to the actually prevailing operating states which change dynamically and which are characterized, for example, by changes in the nitrogen oxide emission during the operation of engine3, in the possible conversion rate of UWS200as a function of a catalytic converter temperature and/or in the amount of UWS200stored in catalytic converter10. Dynamic correction characteristics map370is also determined on an engine test bench, e.g., by the manufacturer. UWS steady-state value320is dynamically adapted to changes, in the exhaust gas temperature for example, using the dynamic correction. In other words, the dynamic correction takes into account that, during operation of engine3and SCR catalytic converter10, actually no steady-state but rather dynamic operating states prevail during the actual operating situation. The same reference numbers identify the elements of the second exemplary embodiment of the method according to the present invention illustrated inFIG. 3which are identical to those of the first exemplary embodiment described inFIG. 2, so that, with regard to their description, full reference is made to the first exemplary embodiment. This second exemplary embodiment differs from the first exemplary embodiment illustrated inFIG. 2in that, subsequent to the dynamic correction, quantity400of UWS200is multiplied by a deviation factor590of the nitrogen oxide emission using an additional multiplier600. Deviation factor590is computed by dividing a filtered nitrogen oxide emission value560by a likewise filtered steady-state value of the nitrogen oxide emission (filtered steady-state nitrogen oxide value570) using a quotient generator580. Filtered nitrogen oxide emission value560is determined from a nitrogen oxide emission value505using a first filter F1. In turn, nitrogen oxide emission value505is detected upstream from SCR catalytic converter10using a nitrogen oxide sensor, for example (not shown). In principle, instead of using the nitrogen oxide sensor, nitrogen oxide emission value505may also be simulated from a model (not shown) via computing differential equations and/or functionals based on engine data, measured values, and/or characteristics maps. Filtered steady-state nitrogen oxide value570is determined from a steady-state value of the nitrogen oxide emission (steady-state nitrogen oxide value550) via filtering using a second filter F2. In principle, filter F1and filter F2may be dispensed with, which then may result in value fluctuations caused, for example, by electromagnetic interference signals. Filtered steady-state nitrogen oxide value570and steady-state nitrogen oxide value550correspond to the nitrogen oxide emission to be expected during a constant (steady-state) operating state of SCR catalytic converter10, in particular at a constant exhaust gas temperature. Steady-state nitrogen oxide value550is obtained from a fourth steady-state characteristics map (nitrogen oxide characteristics map520) as a function of the values for injected fuel quantity ME and engine speed n. Nitrogen oxide characteristics map520is determined on an engine test bench during a steady-state operating state of SCR catalytic converter10, e.g., by the manufacturer. The four characteristics maps or steady-state characteristics maps300,310,370, and520, described in connection withFIGS. 2 and 3, may, in principle, be stored in control unit90and may, in a manner known per se, be imported or changed via data transmission or software-related programming. They may, however, also be stored at a different location, in an engine control unit, for example. In principle, the values for engine speed n and/or injected fuel quantity ME may also be transmitted via a bus system, e.g., a controller area network (CAN). Instead of or in addition to the values of engine speed n and injected fuel quantity ME, other performance characteristics of engine3may also be used. As described in connection withFIG. 2, instead of basing dynamic correction factor380on exhaust gas temperature value TCat,nand exhaust gas setpoint temperature value305, it may also be obtained from dynamic correction characteristics map370based on nitrogen oxide emission value505and steady-state nitrogen oxide value550or another performance characteristic of SCR catalytic converter10, the dynamic correction characteristics map370being appropriately calibrated beforehand. Deviation factor590, described in connection withFIG. 2, may then be obtained, as a function of exhaust gas temperature value TCat,nand exhaust gas setpoint temperature value305, from an appropriate characteristics map which is also calibrated beforehand. Instead of exhaust gas temperature value TCat,n, other performance characteristics of SCR catalytic converter10may be used here.
Les colonnes de vide-ordures situées dans les immeubles modernes représentent autant de foyers permanents d'infection si elles ne sont pas périodiquement nettoyées et désinfectées. Le nettoyage proprement dit de ces colonnes suppose la mise en oeuvre de moyens à caractère mécanique ou physique relativement importants, et qui ne peuvent par conséquent pas être mis en jeu avec une fréquence très éleve.- Par ailleurs, les règlements d'hygiène, tenant compte de l'impossibilité sur le plan économique d'imposer de tels nettoyages à une fréquence très élevée, en limitent la cadence à un minimum d'une intervention annuelle. Il est bien évident qu'unie telle fréquence est insuffisante pour éliminer les risques dtinfection et de propagation d'infection par l'intercommunication qui s t établit d'étage en étage, et d'appartement à appartement par le moyen des colonnes de vide-ordures, sans qui il soit d'ailleurs possible de prévoir un équipement de saosbu dtobturateurs,suffisamment étanches pour éliminer le risque de propagation des foyers microbiens. I1 apparaît donc nécessaire d'effectuer des opérations de désinfection des colonnes, sinon continues, du moins avec une fréquence suffisamment élevée pour que tout risque de développement d'un foyer d'infection soit pratiquement éliminé. Ceci suppose une cadence d'intervention qui dépend évidemment de la température ambiante régnant dans la colonne, aussi bien que du nombre de foyers branchés sur- la colonne, mais en tout état de cause, la fréquence nécessaire pour obtenir une sérilisation satisfaisante des éventuels foyers d'infection est telle qu'il ne peut être envisagé d'intervenir avec les moyens habituels et qu'il est nécessaire de prévoir un dispositif permanent pouvant être mis en action quotidiennement ou même plusieurs fois par jour par le responsable du gardiennage de l'immeuble au moyen d'une manoeuvre simple, voire automatiquement suivant un horaire prédéterminé. A cet effet, le dispositif de désinfection de colonne de vide-ordures selon l'invention est essentiellement caractérisé en ce qu'il comprend des injecteurs de liquide désinfectant étagés le long de la colonne et reliés par une canalisation à une source de délivrance du liquide désinfectant sous pression, per mettant une désinfection semi-continue de la colonne. Une forme de réalisation de l'invention est ci-après décrite, à titre d'exemple, et en référence au dessin annexé, dont la figure unique est une vue schématique d'un tel dispositif de désinfection. Au dessin, la colonne de vide-ordures est figurée en 1 et les vide-ordures d'étage en 2. Le dispositif de désinfection comprend plumeurs injecteurs 3 régulièrement etagés le long de la colonne, et débouchant dans celle-ci en vue d'y diffuser de manière convenablement répartie un liquide désinfectant qui leur est amené par une canalisation 4 latérale à la colonne de videordures. Cette canalisation 4, destinée à être alimentée sous pression en liquide désinfectant, est ici reliée à cet effet au refoulement d'une pompe 5, de préférence du type volumétrique, ayant un tube d'aspiration 6 qui plonge dans un réservoir à liquide désinfectant 7. Ce dernier pouvant être place un niveau quelconque, le sera de préférence au voisinage immédiat du local où débouche inférieurement le vide-ordures. La pompe 7 est entraînée par un moteur électrique 8, qui sera de préférence mis sous tension par l'intermédiaire d'une minuterie, ici schématisée en 9, ou d'un contacteur temporisé selon le temps pendant lequel on veut faire durer chaque injection de désinfectant. Chaque injecteur peut notamment être constitué sous forme de trompe hydraulique assurant, par des entrées d'air ambiant au niveau des gicleurs, une émulsion du liquide désinfectant conduisant à une fine pulvérisation de celui-ci dans la colonne à désinfecter. Les injecteurs peuvent aussi être du type produisant chacun deux jets se rencontrant l'un l'autre pour obtenir la pulvérisation désirée du liquide. Une variante de réalisation de la délivrance du liquide désinfectant sous pression peut consister avantageusement, lorsque 1' immeuble est raccordé à un réseau d'air comprimé ou dispose d'un tel réseau en propre, à utiliser cet air comprimé pour refouler le liquide désinfectant dans la canalisation 4, par exemple en maintenant le réservoir 7 sous pression et en y faisant directement plonger la canalisation 4 d'alimentation des injecteurs pourvue à la sortie du réservoir d'un robinet à commande manuelle ou électromagnétique, dont l'ouverture autorisera l'injection et la fermeture l'arrêtera. Une telle variante peut aussi se concevoir avec son propre groupe motocompresseur. Avec une commande él.ectrique de mise en fonctionnement temporisé du dispositif, la désinfection peut aussi être entièrement automatisée en plaçant la minuerie ou l'or- gane de temporisation sous la dépendance d'une horloge de commande. REVENDICATIONS 1. Dispositif de désinfection de colonne de vide-ordures, caractérisé en ce qutil comprend des injecteurs de liquide désinfectant étagés le long de la colonne et reliés par une canalisation à une source de délivrance du liquide désinfectant sous pression, permettant une désinfection semi-continue de la colonne. 2. Dispositif de désinfection d'après 1, caractérisé en ce que les injecteurs sont constitués sous forme de trompe hydraulique assurant une émulsion du liquide désinfectant avec l'air ambiant. 3. Dispositif de désinfection d'après 1, caractérisé en ce que la délivrance du désinfectant sous pression est effectuée à l'aide d'un groupe motopompe puisant dans un réservoir de désinfectant et refoulant dans ladite canalisation. 4. Dispositif de désinfection d'après 1, caractérisé en ce que la délivrance du désinfectant sous pression est effectuée par mise sous pression d'air comprimé d'un réservoir de désinfectant dans lequel plonge ladite canalisation, pourvue d'un robinet de commande d'injection.
TECHNIQUES PERTAINING TO DOCUMENT PRINTING Techniques pertaining to printing a document are disclosed. A computer server may receive decoded document metadata and locate a document in a document repository using the document metadata. The server may determine whether the document metadata is indicative of a most recent version of the document and, if not, retrieve the most recent version of the document. The server may also create a tag for the retrieved most recent version of the document comprised of up to date document metadata in which the tag data is embedded in a graphic that is merged with the most recent version of the document. The server may create a print job for the most recent version of the document and send the print job to a network enabled printer over a network connection. DETAILED DESCRIPTION Often, a user would like to print the most recent version of a document from a document management application for an enterprise. In some cases, the user may not know certain document metadata such as the document identifier and document location but may have a paper copy of the document. The paper copy of the document may or may not be the most recent version of the document and the user may wish to obtain an updated printed copy of the most recent version of the document from the enterprise's document management application. This objective may be achieved if the existing document is tagged with metadata that can be scanned or imaged and subsequently interpreted by (or on behalf of) the document management application. FIG. 1Aillustrates an embodiment of a system architecture100for printing documents. This embodiment described herein facilitates the identification and printing of an updated version of a document from a document management application using a printed copy of the document that may or may not be the most recent version. The existing printed copy of the document may include a graphic106somewhere within the document. The graphic106may be relatively inconspicuous such as a logo, a watermark, or some other visual indicator. The graphic106may be more naturally integrated into the document than say, for instance, a bar code. The graphic106may be tagged with document metadata. The metadata may include, for example, a document identifier a document location, and a document version, among other types of metadata. The document identifier may be indicative of a name or title of the document or a numeric identifier given the document by the document management application115. The document location may be indicative of a location for the document, such as a universal resource locator (URL), a drive/directory identifier, a network address, or some other suitable location information indicative of the location of the document within the file management system. The document version data may be indicative of the specific version of the document that was printed. One common function of document management applications may be to save newer versions of the same document. Thus, multiple versions detailing the evolution of a document may be stored in the document management system. A tagged document105may be the current printed version of a document in the user's possession. The user may wish to print the most recent version of the document, however. This task may be difficult if the user does not know the document metadata offhand in order to directly access the document management system. The tagged document105includes the document metadata embedded in a non-human readable format. Moreover, the document metadata may be inconspicuously integrated into a graphic106somewhere within the tagged document105. The graphic106is likely designed to be a natural part of the tagged document105such as a logo or watermark or the like. The graphic106need not be present on every page of a multi-page document. If the graphic is present on multiple pages, then any page containing the graphic may be scanned to retrieve and automatically print the latest version of the document. The user may be in possession of or near a network enabled imaging device capable of imaging or scanning the tagged document105, more specifically, the graphic106containing the embedded metadata. Such an imaging device may include, but is not limited to, a scanner165, a camera equipped tablet computer170, a camera equipped smartphone or PDA175. Using one of the aforementioned devices, the user may scan the graphic106(e.g., tag scan107) or take a picture of the graphic106(e.g., tag scan107) using the internal camera. In this embodiment, the scanner165, tablet computer170, or smartphone/PDA175may decode the image of the graphic106to recover the document metadata. The recovered document metadata may be uploaded to the server110in a web service call154. The server110may include components such as a processing component101, a document management application115, a document repository125, a document tagging module130, a print job module135, and a network interface111. The document management application115may receive a web service call154that includes recovered document metadata. The recovered document metadata is presented to the document management application115. The document management application115may then interpret the document metadata to search for and locate the document within a document repository125. In the process of searching, the document management application115may further determine if the document version identifier in the document metadata corresponds to the most recent version of the document. If not, the most recent version of the document is returned to the document management application115. This retrieved document along with the document metadata may then be forwarded to a print job module135. Before creating and forwarding the actual print job133, the metadata is forwarded to a document tagging module130. The document tagging module130may then create a tag to be merged with or incorporated into the document to be printed to create the print job133. The process of creating a metadata tag comprised document metadata may utilize, for example, a technique known as clustered dot half-toning as is commonly used in both dry toner and liquid toner electro-photographic processes. More specifically, the tagging method may take as input any grayscale image (e.g., logo) and a payload of data (e.g., document metadata) to be encoded and produce a bi-tonal clustered dot halftone of that image in which selected halftone clusters are shifted to carry varying numbers of bits from the payload data. The resulting data bearing halftone is referred to as a “graphical tag”. The graphical tag image may then be merged with the document to be printed to create the print job133. In addition, because of the small size and large number of clustered dot cells in printed halftones, the bit density is quite high (over2,000per square inch. The print job module135may then create a print job133comprised of the document and the graphical document metadata tag to be sent to a remote network enabled printer160where it can be executed. The result is a printed copy of the most recent version of the original tagged document105. FIG. 1Billustrates another embodiment of a system architecture100for printing documents. This embodiment described herein also facilitates the identification and printing of an updated version of a document from a document management application using a printed copy of the document that may or may not be the most recent version. The existing printed copy of the document may include a graphic106somewhere within the document. The graphic106may be relatively inconspicuous such as a logo, a watermark, or some other visual indicator. The graphic106may be more naturally integrated into the document than say, for instance, a bar code. The graphic106may be tagged with document metadata. The metadata may include, for example, a document identifier a document location, and a document version, among other types of metadata. The document identifier may be indicative of a name or title of the document or a numeric identifier given the document by the document management application115. The document location may be indicative of a location for the document, such as a universal resource locator (URL), a drive/directory identifier, a network address, or some other suitable location information indicative of the location of the document within the file management system. The document version data may be indicative of the specific version of the document that was printed. One common function of document management applications may be to save newer versions of the same document. Thus, multiple versions detailing the evolution of a document may be stored in the document management system. A tagged document105may be the current printed version of a document in the user's possession. The user may wish to print the most recent version of the document, however. This task may be difficult if the user does not know the document metadata offhand in order to directly access the document management system. The tagged document105includes the document metadata embedded in a non-human readable format. Moreover, the document metadata may be inconspicuously integrated into a graphic106somewhere within the tagged document105. The graphic106is likely designed to be a natural part of the tagged document105such as a logo or watermark or the like. The graphic106need not be present on every page of a multi-page document. If the graphic is present on multiple pages, then any page containing the graphic may be scanned to retrieve and automatically print the latest version of the document. The user may be in possession of or near a network enabled imaging device capable of imaging or scanning the tagged document105, more specifically, the graphic106containing the embedded metadata. Such an imaging device may include, but is not limited to, a scanner165, a camera equipped tablet computer170, a camera equipped smartphone or PDA175. Using one of the aforementioned devices, the user may scan the graphic106(e.g., tag scan107) or take a picture of the graphic106(e.g., tag scan107) using the internal camera. The scanner165may scan the graphic106and upload the scanned image (e.g., encoded tag data152) to a cloud based document rendering server (the “server”)110over a network150such as the Internet. Similarly, the tablet computer170or the smartphone/PDA175may take a picture of the graphic106and upload the image (e.g., encoded tag data152) to the server110. In this embodiment, the scanned or photo image of the graphic has not been decoded prior to uploading to the server110. The server110may include components such as a processing component101, data tag decoder120, a document management application115, a document repository125, a document tagging module130, a print job module135, and a network interface111. The data tag decoder120may receive the uploaded encoded tag data152from any of the scanner165, the tablet computer170, smartphone/PDA175or other suitable network enabled imaging device. The data tag decoder120may analyze the image of the graphic106to decode the data embedded into the graphic106. Once decoded, the decoded tag data122indicative of the document metadata may be forwarded to the document management application115. The document management application115may receive decoded tag data122that includes the recovered document metadata. The recovered document metadata is presented to the document management application115. The document management application115may then interpret the document metadata to search for and locate the document within a document repository125. In the process of searching, the document management application115may further determine if the document version identifier in the document metadata corresponds to the most recent version of the document. If not, the most recent version of the document is returned to the document management application115. This retrieved document along with the document metadata may then be forwarded to a print job module135. Before creating and forwarding the actual print job133, the metadata is forwarded to a document tagging module130. The document tagging module130may then create a tag to be merged with or incorporated into the document to be printed to create the print job133. The print job module135may then create a print job133comprised of the document and the graphical document metadata tag to be sent to a remote network enabled printer160where it can be executed. The result is a printed copy of the most recent version of the original tagged document105. FIG. 2illustrates an embodiment of a scanner165. The scanner165includes a processing component205, an imaging device210, a communications interface215, and an image processing application220. Some embodiments may also include a tag decoder application225. The processing component205may be operative to control the other components in the scanner165. The imaging device210may be operative to scan an image of a paper document that has been placed in a viewing area of the imaging device210. Specifically, a user may place a part of the document that contains the graphic106with the encoded tag data152within the field of view of the imaging device210. The imaging device210may then capture an image of the graphic106. The captured image may be forwarded to the image processing application220for processing. The processing may include formatting the image data for transport across a network150to server110via the communications interface215. The formatted image may then be transported across the network150to the server110. In some cases the scanner165may be coupled with a computer that is coupled with the network150such that the formatted image data is sent to the server110through the computer. Moreover, the scanner may be coupled to the network or a computer over a wired or wireless connection. Typical wireless connections may include the Bluetooth protocol or any of the 802.11 family of protocols used ubiquitously for local area network (LAN) connections. In embodiments that include a tag decoder application225, the captured image data may be subject to the same processing as described above with respect to the data tag decoder120ofFIG. 1. Thus, the image processing application220decodes the image to recover the document metadata for the scanned graphic106. The image processing application220may then create a web service call to the server110in which the web service call includes the document metadata. The web service call may then be forwarded to the server110over network150by means described above. FIG. 3illustrates an embodiment of a tablet computer170and a smartphone/PDA175. The tablet computer170and smartphone/PDA175may each include a processing component305, a camera device310, a communications interface315, and an image processing application320. Some embodiments may also include a tag decoder application325. The processing component305may be operative to control the other components in the tablet computer170and smartphone/PDA175. The camera device310may be operative to photograph an image of a paper document that has been placed in a viewing area of the camera device310. Specifically, a user may place a part of the document that contains the graphic106with the encoded tag data152within the field of view of the camera device310. The camera device310may then capture an image of the graphic106. The captured image may be forwarded to the image processing application320for processing. The processing may include formatting the image data for transport across a network150to server110via the communications interface215. The formatted image may then be transported across the network150to the server110. The tablet computer170and smartphone/PDA175may be coupled to the network or a computer over a wireless connection. Typical wireless connections may include the Bluetooth protocol, any of the 802.11 family of protocols used ubiquitously for local area network (LAN) connections, or one or more RF cellular protocols capable of interfacing a mobile communications network with a network150such as the Internet. In embodiments that include a tag decoder application325, the captured image data may be subject to the same processing as described above with respect to the data tag decoder120ofFIG. 1. Thus, the tag decoder application325decodes the image to recover the document metadata for the scanned graphic106. The image processing application320may then create a web service call to the server110in which the web service call includes the document metadata. The web service call may then be forwarded to the server110over network150by means described above. FIG. 4illustrates an embodiment of a logic flow. The logic flow400may be representative of some or all of the operations executed by one or more embodiments described herein. The embodiments are not necessarily limited to the examples described herein. In the illustrated embodiment shown inFIG. 4, the logic flow400may permit the server110to receive and process document metadata to search for and obtain a document, create a tag for the document with up to date metadata and create a print job133that includes the tag and the document. The print job133may then be sent such that a network enabled printer160connected through the network150may be caused to print the print job133. The logic flow400may be representative of some or all of the operations executed by one or more embodiments described herein. In the illustrated embodiment shown inFIG. 4, the logic flow400may scan or photograph the tagged document105at block405. For example, a scanner165or tablet computer170or smartphone/PDA175(or other suitable imaging device) may capture an image of the graphic106within a tagged document105that contains the encoded document metadata. A scanner165may scan the graphic portion106of the tagged document105while a camera equipped tablet computer170or camera equipped smartphone/PDA175may take a photo of the graphic portion of the tagged document105. The scanner165, tablet computer170, or smartphone/PDA175may or may not be equipped with a tag decoder application. In the illustrated embodiment shown inFIG. 4, the logic flow400may decode the tag data embedded within the graphic at block410. For example, if the imaging device (e.g., scanner165, tablet computer170, or smartphone/PDA175) is equipped with a tag decoder application225,325, the graphic106may be decoded by the imaging device to recover the document metadata of the tagged document105. In the illustrated embodiment shown inFIG. 4, the logic flow400may make a web service call154to server110at block415. For example, the imaging device may be communicatively coupled with the network150(or may be communicatively coupled with an intermediate device such as a computer that is communicatively coupled with the network150). The imaging device may create a web service call154that contains the decoded document metadata. The web service call154may then be uploaded to a document management application115operative on server110via a network interface111. In the illustrated embodiment shown inFIG. 4, the logic flow400may process the document metadata to determine the most recent version of the tagged document105at block420. For example, the document management application115may parse the document metadata to determine document characteristics such as document name, document location, and document version number. Using this information the document management application115may search for and retrieve the document from document repository125at block425. For example, upon locating the document in the document repository, the document management application115may determine if the version of the found document is newer than the version contained in the metadata. The document management application115may then retrieve the most recent version of the document. In the illustrated embodiment shown inFIG. 4, the logic flow400may create a tag for the retrieved document comprising updated metadata at block430. For example, the document tagging module130may utilize, for example, a technique known as clustered dot half-toning as is commonly used in both dry toner and liquid toner electro-photographic processes. More specifically, the tagging method may take as input any grayscale image (e.g., logo) and a payload of data (e.g., document metadata) to be encoded and produce a bi-tonal clustered dot halftone of that image in which selected halftone clusters are shifted to carry varying numbers of bits from the payload data (e.g., a graphical tag). The metadata tag may be requested by and then returned to the print job module135. In the illustrated embodiment shown inFIG. 4, the logic flow400may create a print job133for the retrieved document at block435. For example, the print job module135may receive the retrieved document and updated document metadata from the document management application115. The print job module135may then forward the updated metadata to the document tagging module130. The document tagging module130may then create the graphical tag containing the updated metadata. The graphical tag may then be returned to the print job module135. The print job module135may then create a print job133by merging the graphical tag with the retrieved document. The print job133may be intended for a remote network enabled printer160. The logic flow400may send the print job133to a network enabled printer160at block440. For example, the print job module135may forward the print job133to the network interface111for subsequent transfer to a network enabled printer160over network150. In the illustrated embodiment shown inFIG. 4, the logic flow400may print the print job133at block445. For example, the network enabled printer160may receive and queue the print job133. The print job133may then be printed according to its place in the printer queue. The printed document is indicative of the most recent version of the original tagged document105. In addition, the printed document will print with an updated graphic106containing document metadata for the most recent version of the document. This will allow the user to perform the same process at a later date if subsequent newer versions of the document are created. FIG. 5illustrates an embodiment of a logic flow. The logic flow500may be representative of some or all of the operations executed by one or more embodiments described herein. The embodiments are not necessarily limited to the examples described herein. In the illustrated embodiment shown inFIG. 5, the logic flow500may permit the server110to receive tag data indicative of document metadata, decode the tag, and process the document metadata to search for and obtain a document. The logic flow500may also create a tag for the document with up to date metadata and create a print job133that includes the tag and the document. The print job133may then be sent such that a network enabled printer160connected through the network150may be caused to print the print job133. The logic flow400may be representative of some or all of the operations executed by one or more embodiments described herein. In the illustrated embodiment shown inFIG. 5, the logic flow500may scan or photograph the tagged document105at block505. For example, a scanner165or tablet computer170or smartphone/PDA175(or other suitable imaging device) may capture an image of the graphic within a tagged document105that contains the encoded document metadata. A scanner165may scan the graphic portion106of the tagged document105while a camera equipped tablet computer170or camera equipped smartphone/PDA175may take a photo of the graphic portion106of the tagged document105. The scanner165, tablet computer170, or smartphone/PDA175may or may not be equipped with a tag decoder application. In the illustrated embodiment shown inFIG. 5, the logic flow500may send an image of the graphic106containing the encoded tag data152to a data tag decoder120operative on server110at block510. For example, the imaging device may be communicatively coupled with the network150as described above. If the imaging device (e.g., scanner165, tablet computer170, or smartphone/PDA175) is not equipped with a tag decoder application, the imaging device may upload the encoded tag data152via communications interface215,315to data tag decoder120operative on server110via network interface111for further processing and printing of the most recent version of the document. In the illustrated embodiment shown inFIG. 5, the logic flow500may decode the tag data embedded within the graphic106at block515. For example the graphic106may be decoded by the data tag decoder120operative on server110to recover the document metadata of the tagged document105. In the illustrated embodiment shown inFIG. 5, the logic flow500may process the document metadata to determine the most recent version of the tagged document105at block520. For example, the document management application115may parse the document metadata recovered by the data tag decoder120to determine document characteristics such as document name, document location, and document version number. Using this information the document management application115may search for and retrieve the document from document repository125at block525. For example, upon locating the document in the document repository, the document management application115may determine if the version of the found document is newer than the version contained in the metadata. The document management application115may then retrieve the most recent version of the document. In the illustrated embodiment shown inFIG. 5, the logic flow500may create a tag for the retrieved document comprising updated metadata at block530. For example, the document tagging module130may utilize, for example, a technique known as clustered dot half-toning as is commonly used in both dry toner and liquid toner electro-photographic processes. More specifically, the tagging method may take as input any grayscale image (e.g., logo) and a payload of data (e.g., document metadata) to be encoded and produce a bi-tonal clustered dot halftone of that image in which selected halftone clusters are shifted to carry varying numbers of bits from the payload data (e.g., a graphical, metadata bearing tag). The metadata tag may be requested by and then returned to the print job module135. In the illustrated embodiment shown inFIG. 5, the logic flow500may create a print job133for the retrieved document at block535. For example, the print job module135may receive the retrieved document and updated document metadata from the document management application115. The print job module135may then forward the updated metadata to the document tagging module130. The document tagging module130may then create the graphical tag containing the updated metadata. The graphical tag may then be returned to the print job module135. The print job module135may then create a print job133by merging the graphical tag with the retrieved document. The print job133may be intended for a remote network enabled printer160. The logic flow400may send the print job133to a network enabled printer160at block440. For example, the print job module135may forward the print job133to the network interface111for subsequent transfer to a network enabled printer160over network150. In the illustrated embodiment shown inFIG. 5, the logic flow500may print the print job133at block545. For example, the network enabled printer160may receive and queue the print job133. The print job133may then be printed according to its place in the printer queue. The printed document is indicative of the most recent version of the original tagged document105. In addition, the printed document will print with an updated graphic106containing document metadata for the most recent version of the document. This will allow the user to perform the same process at a later date if subsequent newer versions of the document are created. It should be noted that the embodiments described herein may operate successfully and independently of a particular document management application115. Many document management applications utilize representational state transfer (REST) based interfaces and application programming interfaces (APIs) that facilitate the inclusion of document metadata in a print request (e.g., document identifier, document location, and instruction to print). REST-style architectures are comprised of clients and servers. Clients may initiate requests to servers while the servers process requests and return appropriate responses. Requests and responses may be built around the transfer of representations of resources. A resource can be essentially any coherent and meaningful concept that may be addressed. A representation of a resource is typically a document that captures the current or intended state of a resource. The client may send requests when it is ready to make the transition to a new state. While one or more requests are outstanding, the client may be considered in transition. The representation of each application state may contain links that may be used the next time the client chooses to initiate a new state transition. Thus, REST facilitates the transaction between web servers by allowing loose coupling between different services.
La présente invention a pour objet un appareil médical entrant dans la catégorie de ceux utilisés pour donner les soins nécessaires à certains malades ou opérés. Les opérations chirurgicales consécutives à certaines affections intestinales comportent, à titre provisoire ou définitif, le remplacement de l'anus naturel par un orifiee pratiqué dans l'intestin et appelé anus artificiel. Pour les personnes ainsi opérées l'évacuation des matières intestinales par leur anus artificiel comporte des difficultés et impose des servitudes matérielles particulières. Dans l'état actuel de la technique, il existe des appareils spéciaux qui ont été conçus pour recueillir et tenir enfermées les matières intestinales quand celles-ci sont spontanément évacuées par l'intestin et l'anus artificiel. Ces appareils sont essentiellement constitués par une poche en matière plastique dont la seule ouverture est maintenue appliquée de manière aussi étanche que possible autour de l'anus artificiel. Leur fixation est assurée soit par une ceinture soit par une surface adhésive. Cependant, et particulièrement pendant la période postopératoire, l'évacuation des matières intestinales des personnes ainsi opérées ne se produit pas spontanément mais nécessite l'administration de lavements. Or il n'existe pas d'appareils destinés à faciliter l'administration de lavements ainsi que l'acheminement et le déversement des matières intestinales et des liquides de lavement dans un bassia susceptible de les recevoir, alors que cette opération, souvent accompagnée de projections de liquides et de matières, se produit de façon pratiquement difficile et fréquemment malpropre, tant pour le patient que pour les personnes qui l'assistent. Les poches précédemment mentionnées ne peuvent convenir à cet usage. Outre qu'elles ne sont pas prévues pour retenir en volume et en poids les quantités correspondantes à l'opération considérée, elles retiennent les matières évacuées au lieu de permettre leur rejet. De plus, elles ne peuvent entre mise en place qu'après l'administration du lavement, c'est à dire trop tardivement. L'appareil, objet de la présente invention, permet d'administrer des lavements aux personnes considéréee et d'acheminer les matières évacuées par l'anus artificiel depuis celui-ci juequ'à un récipient quelconque, tant pendant la durée de l'administration du lavement que pendant celle de 1'évacuation qui doit normalement lui succéder. Il est essentiellement constitué par un conduit souple et imperméable comportant trois ouvertures appropriées. Le conduit a pour but de canaliser les liquides et matières depuis l'anus artificiel jusqu'au bassin receptacle. A cet effet il devra entre constitué pas un matériau imperméable et souple afin de pouvoir épouser la forme du corps pour la partie appliquée sur celui-ci et sur son trajet et de pouvoir adopter les sinuosités nécessaires pour relier l'anus artifi- ciel au bassin. Sa section et sa longueur peuvent entre arreté-es avec de très larges tolérances. Précisons que sa section devra avoir au minimum, tout au moins pour la partie destinée à lui Btre appliquée, une surface supérieure à celle d'un anus artificiel mais n'a aucune raison d'filtre exagérément grande. Sa longueur sera celle convenable pour aller de l'anus artificiel à un bassin dont la position peut outre assez librement modifiée.Sa forme n'est pas nécessairement rectiligne. A titre d'exemple non-limitatif indiquons que ce conduit pourrait titre aisément constitué par un segment de tubé en matière plastique souple dont la section serait comprise entre I6 et 200 cmê et une longueur comprise entre 20 et 50 centimètres. La première ouverture est située à une des extrémités du conduit ou à proximité de celle-ci, soit que l'on utilise pour la constituer tout ou partie de la section mdme du conduit soit que cette section étant fermée onspratique latéralement une découpe. Cette première ouverture, comme dans les poches existantes et précédemment mentionnées, a la dimension voulue pour venir s'appliquer autour de 1'anus artificiel et y être fixée par un procédé connu. la seconde ouverture est destinée à permettre l'intro duction dans l'anus artificiel et éventuellement par là dans l'intestin d'une sonde, d'une canule et de tous embouts et tuyaux d'amenée des liquides de lavement ou à injecter provenant d'un quelconque réoipient approprié. Elle devra Stre de dimension suffisante pour permettre le passage des embouts ou tubes précédemment définis et leur convenable orientation. Elle sera placée soit exactement en face de la première ouverture soit légèrement décalée par rapport à celle-ci. que ce décalage réponde à des commodité de fabrication soit qu'il satisfasse à une plus grande facilité d'obturation comme il ent dit ci-après. Si cette deuxième ouverture est décalée par rapport à la première, sa position devra entre telle qu'elle puisse être amenée, graoe à la souplesse du conduit, suffisamment on face de la première pour remplir son office. Ce sera le cas par exemple quand utilisant la section d'un tub pour ménager une de ces deux premières ouvertures, l'autre se trouvera placée à angle droit. Cette seconde ouverture devra être facilement obturable Si la construction de l'appareil ne comporte aucune disposition particulière à cet effet et que ce deuxième orifice est simplement constitué par une ouverture pratiquée par découpe dans le conduit, on pourra compléter l'appareil par de petites pièces indépendantes ayant tout ou partie d'une de leur face adhésive de manière à pouvoir outre appliquées sur cette seconde ouverture par simple pression. Ces éléments séparés sont inclue dans la présente invention. Il sera bon alors de décaler, comme il est indiqué précédemment, cette seconde ouverture par rapport à la première et ceci afin qu'en procédant à l'obturation on n'ait pas à effectuer de pression sur l'anus artificiel. Cette seconde ouverture pourra être également agencée ou façonnée pour être facilement obturable. Ce façonnage peut consister entoarer celle-ci d'un petit condmit en forme de cheminée par lequel on introduira les embouts et tubes précédement définis. Fendant l'administration du lavement ce petit conduit peut être plus ou moins maintenu eppliqué ur les embouts cu tubes précédemment définis par simple pression des doigte ou autre afin de rendre l'ouverture étanche.Après ce premier acte opératoire et les embouts ou tubes ayant été retirés, l'obturation sera effectuée par pincement soit que ce petit conduit comporte une surface interne adhésive soit que l'on nlace une pince indépendante ou incorporée. A titre å exemple on limitatif, ce petit conduit peut entre constitué par un court segment d'un tube en matière plastique de faible diamètre soudé au conduit principal. La troisième ouverture est destinée à permettre l'écoulement des matières et liquides dans le bassin destiné les recevoir. Elle est située à l'outre extrémité du nonduit ou à proximité de celle-ci, soit que l'on utilise pour la constituer tout ou partie de la section même du conduit soit que cette section étant fermée on pratique latéralement une découpe. Sa surface doit titre suféisente pour permettre le rejet facile des liquides et matières. Le processus d'emploi de l'appareil découle de sa construction même: après avoir appliqué l'orifice correspondant autour de l'anus artificiel, on procède par la deuxième ouverture à l!administration du lavement. Les liquides rejetés en cours d'opération sont évacués par le conduit. Après administration du lavement, la deuxième ouverture est obturée pour la durée de l'évacuation des liquides et matières. Puis elle est réouverte pour permettre à nouveau le passage d'un tube d'amenée d'eau ou de liquide non pas aux firs d'introduction dans 1' # anus mais pour permettre son lavage ainsi que le lavage intérieur de l'appareil. REVENDICATIONS Appareil destiné à faciliter l'administration de lavements aux personnes pourvues d'un snus artificiel ainsi que l'acheminement et l'évacuation de leurs matières intestinales et constitué par un conduit de dimension approprié en matière souple et imperméable, comportant trois ouvertures spécialement positionnées, dimensiènnées et agencées : la première pour être fixée de manière étanche autour d'un anus artificiel, la deuxième pour etre obturable et permettre le passage d d'une sonde ou tout embout de tuyau, la troisième pour l'évacuation des liquides et matières.
Illuminated Visual Display Container Having Minimal Glare An improvement to a lighted drinking container is provided. A problem exists with prior art illuminated drinking containers wherein glare hits the users' eyes upon use of the container (or upon tilting the glass towards the face to drink the liquid therein). The improvement disclosed herein provides an opaque or translucent barrier to allow for light to scatter away from the eye of the user, thus making the use of the container more comfortable while maintaining the illumination features thereof. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The invention is described in detail below with reference to the drawings. Such discussion is for purposes of illustration only. Modifications within the spirit and scope of the present invention, set forth in the appended claims, will be readily apparent to one of skill in the art. Terminology used throughout the specification and claims herein is given its ordinary meaning as defined by the American Heritage Dictionary, the Merriam-Webster Online Dictionary, the Macmillan Dictionary, and Digital Lighting & Rendering by Jeremy Bim, consistent with the exemplary definitions set forth immediately below. Glare—An intense, blinding light; to shine with a harsh uncomfortably brilliant light; to shine with a very strong light that makes you feel uncomfortable. Direct Light—Light that travels in a straight line from a light source to a surface which it illuminates. Scattered Light—Light that has bounced off of other surfaces, or has been scattered or reflected or focused by other surfaces, before illuminating an object. Rim—The upper or outer edge of an object, or herein, of the container; the edge of an open container or circular object; the outer often curved or circular edge or border of something. Opaque—Is difficult to see through; impenetrable by light; neither transparent nor translucent; blocking the passage of radiant energy and especially light. Translucent—Light with sufficient diffusion to prevent perception of distinct images; transmitting and diffusing light so that objects beyond cannot be seen clearly. Iridescent—Showing changing colors in different types of light; having or exhibiting a display of colors producing rainbow effects. Brightness also is used to describe the subjective sensation of light intensity. This sensation largely depends on the overall layout of the scene being viewed. Extreme brightness may be described as glare. Each of the embodiments, herein described, have been constructed allowing for the amount of direct light present in the peripheral wall space or cavity and exiting through the upper rim of the inner container that is attached to the outer container to be measured using a standardized measuring fixture, standardized light source, light switch (on/flash/off), and industrial grade light meter. The inventive embodiments described herein minimize direct light and maximize scattered light from the light source, thus eliminating the glare that is experienced by a user when drinking from prior art container embodiments, (US'549 and US'196) while providing aesthetically pleasing, unobstructed and effective illumination of a message and/or design that appears on a paper insert and/or interior liner, a plastic insert and/or interior liner, a textile insert and/or interior liner, a metallic insert and/or interior liner, a paper and/or plastic and/or textile and/or metallic sleeve, cap, and/or any surface of the container. An embodiment of the present invention provides an illuminated container, comprising an outer container wall made of clear material and the inner container wall made of opaque material. Opaque material as defined herein may include a material which in and of itself is opaque or dark to the eye, or can include the use of a coating, a paper insert and/or interior liner, a plastic insert and/or interior liner, a textile insert and/or interior liner, a metallic insert and/or interior liner, a paper and/or plastic and/or textile and/or metallic sleeve, cap, or some other method, such as textured surfaces and/or additives to the base material that functions as an opaque material and/or appears to a viewer to be opaque. The bottom of the outer container is the same for all embodiments described herein, and may be clear or be made of translucent material. Translucent is as defined hereinabove. A translucent material is further defined herein to include a material in and of itself translucent, or a material that through the use of a coating, a paper insert and/or interior liner, a plastic insert and/or interior liner, a textile insert and/or interior liner, a metallic insert and/or interior liner, a paper and/or plastic and/or textile and/or metallic sleeve, cap, or some other method, such as textured surfaces and/or additives to the base material, is made to function as a translucent material and/or to appear to a viewer to be translucent. Relative to the bottom, it is as described in US '549, and US '196, with perhaps additional lights as the user may desire, including any colors the user may desire. While lights may be present around the perimeter of the container, a light may also optionally be positioned at the bottom center of the container to allow light to shine directly through, and upwards towards the liquid inside. For all embodiments, at least one light source sufficient to illuminate a visual display is utilized. The source may be white light and/or colored light, and is positioned on any surface of the container in order to introduce light directly into the peripheral wall space or cavity to create an illuminated peripheral wall space or cavity. Preferably the light source is at the base of the container, but may also be along the peripheral wall space or cavity. It may also be on and/or along the rim or upper portion of the container. Other sources of light may be placed on the top portion of the container. While the light source may be bulbs or light emitting diodes (LEDs), they may also be in the form of a light emitting sheet or other industry acceptable manner or device, which fits within the confines of the presently described container. While glare can be minimized by limiting or reducing light intensity, one has to balance intensity with the ability to illuminate the visual display for maximum effect. The present invention relates to an illuminated container, comprising an outer container having a peripheral wall and a bottom at a first end of the peripheral wall; an inner container having a peripheral wall and a bottom at a first end of the peripheral wall, wherein the outer container surrounds the inner container such that the outer and inner containers are substantially concentric about a first axis, and wherein the outer and inner containers define a space or cavity therebetween; a rim disposed between the outer and the inner containers, wherein the rim joins the peripheral walls of the outer and inner containers; and at least one light source positioned such that the light source directs light into the peripheral wall space or cavity and onto the inner container and out through the rim. The outer container may be substantially clear, or may be substantially translucent. The inner container may be substantially opaque, or may be substantially translucent, or may be substantially clear. The upper rim of the inner container, (and attached to the outer container), may be substantially opaque, or may be substantially translucent, or may be substantially clear. The upper rim and combinations thereof are configured to reduce a glare produced by the light source from between 99% to 5% compared to the control container. Preferably is an upper rim and combinations thereof configuration to reduce a glare produced by the light source about 60% when compared to the control container. As defined herein, substantially clear refers to the transmittance of a material wherein only a nominal amount of attenuation or absorption is present; substantially translucent refers to the transmittance of a material wherein at least about 10% of incident light is scattered; and substantially opaque refers to the transmittance of a material wherein less than about 50% of incident light is transmitted. The peripheral wall space or cavity may be substantially vacant, or may be provided with a filler material that is configured to reduce the glare produced by the light source. Preferably reduction in glare is from between about 66% to about 52% compared to the control container. The illuminated container may also include at least one light source, for example, a bulb or a light emitting diode (LED), a light emitting sheet or other industry acceptable material or device, which fits within the confines of the presently described container. Alternatively, an illuminated container is disclosed, comprising: an outer container having a peripheral wall and a bottom, the outer container peripheral wall and bottom being at least partially light-pervious; an inner container having an outer surface, the inner container positioned at least partially within the outer container to form a peripheral wall space or cavity between at least a portion of the inner container outer surface and the outer container peripheral wall; at least one light source positioned such that the light source directs light into the peripheral wall space or cavity and on to the inner container outer surface, the illuminated portion of the inner container outer surface being at least partially visible through the outer container peripheral wall; and a rim disposed between the outer and the inner containers, wherein the rim joins the peripheral walls of the outer and inner containers, wherein at least one component selected from the inner container, the outer container, the rim and combinations thereof is prepared from a suitable material and/or is configured to substantially reduce a glare produced by light exiting through the rim and upper edge of the container walls as compared to a container having a clear outer walled container, a clear inner walled container, a clear rim, and a vacant peripheral wall space or cavity through which light travels. Referring now toFIGS. 1 and 1A, an example light testing setup for an illuminated container, is shown without the battery pack. The light testing setup is used to measure the amount of glare that is observed by the user's eyes.FIG. 1illustrates use of the glass without the illumination, whileFIG. 1Aillustrates the glass in a lighted mode. It is evident that a glare exists and forms around the eye area of the user, which is undesirable.FIG. 1Ademonstrates the use position of the prior art illuminated containers. FIG. 2illustrates a prior art illuminated container (interchangeably referred to as the ‘Control Container’) with clear walls. The control container200includes an outer container formed by a peripheral wall202and a base204attached at the bottom of the peripheral wall202. An inner container is housed inside the outer container202and is formed by a peripheral wall206and a base208attached at the bottom of the peripheral wall206. The outer and inner containers define a space or cavity therebetween that is sealed by a rim210. The rim can be straight across or angled to form a slant. The outer container, the inner container and the rim210are made of a clear material, and there is provided a light source at the bottom of the outer container, as disclosed by U.S. Pat. Nos. 6,923,549 and 6,511,196, entire contents of which are herein incorporated by reference. The light source may be anything used as a standard in the industry and also as described in US '549 and US'196. The base of the container may be as described and employed by the industry for holding a light source and compatible with the containers' multiple walls. As described in the foregoing description, the control container when illuminated, results in a glare around the eyes of the user. Referring now toFIG. 3, an illuminated container300with a clear outer wall202, an opaque inner wall302and an opaque rim304, in accordance with an embodiment of the present invention, is shown. The illuminated container300is similar in construction to the illuminated container200ofFIG. 2and additionally includes the opaque inner wall302and the opaque rim304. This embodiment was found to reduce glare experienced by the user by about 99%. Additional details of the opaque wall and the opaque rim are provided in the forthcoming description. FIG. 4illustrates an illuminated container400with a translucent outer wall, a translucent inner wall and a translucent and/or iridescent filler material402disposed in a space or cavity defined by the inner and outer walls, in accordance with an embodiment of the present invention. The illuminated container400is similar in construction to the illuminated container200ofFIG. 2, and additionally includes filler material in the cavity. In various embodiments of the present invention, the translucent material includes, but is not limited to, frosted glass, sheer cloth, tracing paper, chipped plastics, and the like. Alternatively, any suitable iridescent material can be used, without departing from scope and spirit of the present invention. The objective behind using such a material is to minimize direct light and maximize scattered light and to produce light of varied colors giving an aesthetically pleasing effect to the user. This configuration limits the ability to easily see any visual display printed on the inner container wall, and hence it is preferred that any display be on the outer container wall. This embodiment was found to reduce glare experienced by a user by about 66%.FIG. 5illustrates an illuminated container with a clear outer wall, a clear inner wall and an opaque rim502, in accordance with an embodiment of the present invention. The illuminated container500is similar in construction to the illuminated container200ofFIG. 2with the additional feature of an opaque rim. This arrangement allows for maximum printability on all available surfaces of the illuminated container, and also allows for illumination of any liquid inside the container. This embodiment was found to reduce glare experienced by a user by about 52%. A skilled artisan would appreciate that whileFIGS. 2-5describe various configurations of the illuminated container of the present invention, numerous other configurations are possible. Further, while the embodiments are described for holding liquids, other items may be placed or stored in the containers and illuminated with the light source. The illuminated container may also be used as a non-drinking tool, but one employed for storage of smaller items, or as a showcase item. Some of the exemplary configurations are explained below: An embodiment of the present invention provides an illuminated container comprising an outer container wall made of clear material and inner container wall made of opaque material and the upper rim of the inner container, (and attached to the outer container), made of opaque material. In another embodiment, an illuminated container is described that includes an outer and inner container wall and the upper rim of the inner container, (and attached to the outer container), made of translucent material as defined herein. The peripheral wall space or cavity that is formed between the inner surface of the outer container wall and the outer surface of the inner container wall is filled with clear and/or translucent and/or iridescent material. In yet another embodiment, an illuminated container is described that includes an outer and inner container wall and the upper rim of the inner container, (and attached to the outer container), made of clear material and the peripheral wall space or cavity is filled with clear and/or translucent and/or iridescent material. Another embodiment involves an illuminated container, which includes an outer container wall made of clear material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), made of translucent material wherein the space or cavity is filled with clear and/or translucent and/or iridescent material. In a further embodiment, an illuminated container including an outer container wall made of translucent material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), made of clear material. The peripheral wall space or cavity that is formed between the inner surface of the outer container wall and the outer surface of the inner container wall is filled with clear and/or translucent and/or iridescent material. In yet another embodiment, an illuminated container is disclosed, comprising an outer and inner container wall made of clear material, and the upper rim of the inner container, (and attached to the outer container), is made of opaque material or through the use of a coating, a paper insert and/or interior liner, a plastic insert and/or interior liner, a textile insert and/or interior liner, a metallic insert and/or interior liner, a paper and/or plastic and/or textile and/or metallic sleeve, cap, or some other method, such as textured surfaces and/or additives to the base material, is made to function as an opaque material and/or to appear to the eye as an opaque material. In another embodiment, an illuminated container is disclosed, comprising an outer and inner container wall and the upper rim of the inner container, (and attached to the outer container), made of translucent material. Another embodiment, involving an illuminated container, comprises an outer container wall made of clear material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), made of translucent material. In a further embodiment, an illuminated container is disclosed, comprising an outer container wall made of translucent material, and the inner container wall and the upper rim of the inner container, (and attached to the outer container), made of clear material. In yet another embodiment, an illuminated container, comprising an outer container wall made of clear material and the inner container wall made of clear material, and the upper rim of the inner container, (and attached to the outer container), made of translucent material. While the light source described herein comprises bulbs or light emitting diodes, the light source may also be in the form of a light emitting sheet or other industry acceptable device, which fits within the confines of the presently described container. For example a bulb, a light emitting diode, a light emitting sheet, a light with a solar panel, a regular or rechargeable type battery system, or any other light emitting source commonly found in the commercial market. The light provided can be white or of any color or combination of colors, but is preferably red, green, blue to allow for a mixing of the light to form other colors. The light can be steady or flashing, whatever is most comfortable and desirable for the user. FIGS. 6 and 7are graphs illustrating experimental results of various lighting tests, in accordance with various embodiments of the present invention. EXAMPLES The experiment conducted measured the direct light, or glare, emitted from the container with an illuminated interior visual display by a user while drinking from the illuminated container. Each of the embodiments, herein listed, were constructed to allow the direct light transmitted through the peripheral wall space or cavity and through the upper rim to be measured using a standardized measuring fixture, standardized light source, light switch (on/flash/off), and industrial grade light meter. Comparative experiments were similarly conducted to measure the direct light or glare emitted from a control container, such as one described in US Pat. Nos. US'549 and US'196, and as discussed above. The containers were designed as described below, with each number representing the noted numbered container. The control container was made of all clear components. 1. The outer container wall was made of clear material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), were made of opaque material. The opaque feature of the invention can be any color desirable to the user. For example, chrome, black, or any dark colors, or any light colors which reflect light away from the user's eye area can be employed. A cap or sleeve, preferably plastic but any suitable material, can also be used to create the opaque feature. This embodiment was found to reduce glare experienced by the user by about 99% compared to the control container. 2. The outer container wall was made of translucent material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), were made of translucent material. The peripheral wall space or cavity was filled with clear and/or translucent and/or iridescent material. This embodiment was found to reduce glare experienced by the user by about 66% compared to the control container. The filler material should be considered relative to the desired location of any visual display on the container. Having filler material within the space or cavity of the container can limit the location of the visual display since less surface area is available for an easily viewed display. For example, it may be difficult to see a display which is printed on the inner container wall and essentially behind the filler material. 3. The outer container wall was made of clear material and the inner container wall and the upper rim of the inner container, (and attached to the outer container), were made of a clear material. The cavity was filled with clear and/or translucent and/or iridescent material. This configuration is especially desirable due to the visual effect obtained once the container is filled with liquid and the light causes a glow throughout the container, the display utilized, and the liquid within the container. A limitation for the visual display is that printing on the inner container cannot be easily observed through the outer container wall. This embodiment was found to reduce glare experienced by the user by about 60% compared to the control container. 4. The outer container wall was made of clear material and the inner container wall and the upper rim were made of a translucent material. The peripheral wall space or cavity was filled with clear and/or translucent and/or iridescent material. This embodiment was found to reduce glare experienced by the user by about 59% compared to the control container. 5. The outer container wall was made of translucent material and the inner container wall and the upper rim were made of clear material. The peripheral wall space or cavity was filled with clear and/or translucent and/or iridescent material. This embodiment was found to reduce glare experienced by the user by about 52% compared to the control container. 6. The outer container wall, and the inner container wall were made of clear material, and the upper rim of the inner container, (and attached to the outer container), was made of opaque material. This embodiment was found to reduce glare experienced by the user by about 52% compared to the control container. 7. The outer container wall, the inner container wall and the upper rim were made of translucent material. This embodiment was found to reduce glare experienced by the user by about 22% compared to the control container. 8. The outer container wall was made of clear material and the inner container wall and the upper rim of the inner container were made of translucent material. This embodiment was found to reduce glare experienced by the user by about 21% compared to the control container. 9. The outer container wall was made of translucent material and the inner container wall and the upper rim of the inner container were made of clear material. This embodiment was found to reduce glare experienced by the user by about 10% compared to the control container. 10. The outer container wall and the inner container wall were made of clear material, and the upper rim was made of translucent material. This embodiment was found to reduce glare experienced by the user by about 5% compared to the control container. The experiments provided data to quantify, in Lux and Foot Candles, the amount of direct light or glare being transmitted to the user's eyes when the container is positioned as if a user was drinking therefrom. Data from the various container-embodiments were compared to the control container and the amount of change in glare detectable by a user as he/she was drinking from the improved subject container was measured. All containers disclosed are aesthetically pleasing, minimize glare, and allow for at least one surface to place a visual display or design which can be illuminated. Experiment Procedure A. Equipment and MaterialsThe following equipment and materials were utilized for measuring glare during use of the containers:The measuring fixture allowed for identical placement of the containers as shown inFIGS. 1 and 1A. A standard battery pack was employed to power the operating light source for the present experiments. The light source allowed for identical illumination of containers (FIG. 1Aillustrates light transmission with light source on)Light Switch: allows for On/Flash/Off3 new AAA batteries were utilized for each measurementIndustrial grade light meterControl container (FIG. 2)Container #1 (FIG. 3)Container #2 (FIG. 4)Container #3Container #4Container #5Container #6 (FIG. 5)Container #7Container #8Container #9Container #10 B. Steps Taken to Conduct the Experiments 151. Located a space in which internal and external illumination can be controlled.2. Positioned the Measuring Fixture on a table.3. Placed 3 New Batteries in the Power Source for the Light Source.4. Attached the Control Container to the Light Source.5. Positioned the Control Container in the Container Holding Fixture.6. Positioned the Light Meter Sensor in the Sensor Holding Fixture.7. Activated the Light Meter.8. Activated the Light Source (On Mode)9. Logged the Lux reading from the Meter.10. Logged the Foot Candle reading from the Meter.11. Activated the Light Source (Flashing Mode)12. Logged the Lux reading from the Meter.13. Logged the Foot Candle reading from the Meter.14. Removed the Control Container from the Container Holding Fixture.15. Detached the Control Container from the Light Source.16. Aside the Control Container.17. Repeated Steps 3 thru 16 for Containers #1 thru #10. Experimental Data and Results The data noted herein were as displayed by the AMPROBE LM-200LED light meter for the control container and each of the numbered containers #1 thru #10. A decrease in value means a reduction of glare, hence #1 value is best for scattering light away from the user, and #10 value is considered least desirable from a glare reduction perspective. To validate the measurements for LUX, experiments were conducted measuring Foot Candle (FC). The data obtained between FC and LUX results were consistent and hence considered validated. The results are presented graphically inFIGS. 6 and 7and illustrate, as compared to the Control Container, that each of the experimental configurations for the numbered containers provide a decrease in Direct Light that hits the users' eyes upon use of the container (or upon tilting the glass towards the face to drink the liquid therein). All containers having at least one surface and/or the rim opaque were found to minimize glare during use while illuminated. However it appears that even at least a translucent rim reduces the glare sufficiently to increase comfortable use such that the light is not bothersome to the user. Container 3 can have a visual display on the outside of the container wall. While the invention has been described in detail, modifications within the spirit and scope of the invention will be readily apparent to those of skill in the art. It should be understood that aspects of the invention and portions of various embodiments may be combined or interchanged either in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention. The discussion herein is focused on the problem associated with glare of an illuminated container, and not with the manufacture of such a container. The container can be manufactured by standard industry processes such as injection molding, vacuum forming, or the like. Those skilled in the art will recognize other methods which do not deter from the scope herein.
j. -. présente invention est relative aux fours électriques de verrerie et plus particulièrement à un ensemble d ' électroc-es et de dispositif d1 alimentation, en vue d'obtenir une disti-ibution plus uniforme du courant électrique de chauffage dans le bain de verre 5 contenu dans le four de verrerie. Le chauffage plus régulier assuré par cet enseable d'électrodes et de connexions g'amenée de la puissance, conformément à l'invention, produit une fusion plus uniforme du verre dans le four et permet un fonctionnement plus efficace du four et en augmente la durée de vie» 10 Le cliauffage électrique est utilisé depuis de nombreuses an nées dans la technique des fours de verrerie, soit seul soit en combinaison avec des sources de chaleur alimentées par un combustible. Dans les installations utilisant le chauffage électrique, un certain nombre d'électrodes plongent dans le bain de verre, et le 15 courant électrique passe entre les électrodes dans le matériau contenu dans le four et assure ainsi le chauffage et la fusion du verre. Une grande variété de configurations de montage des électrodes a été proposée etj le plus souvent' les. electroc.es traversent les parois latérales ou le fond du four de manière à assurer une 20 répartition du courant dans le bain permettant de chauffer le verre par effet Joule. Une des difficultés majeures rencontrées dans un four de verrerie chauffé électriquement consiste dans l'établissement et le maintien d'une distribution uniforme du courant de chauffage tra-25 versant le verre pendant son traitement dans un four. Ceci est dû, au moins en partie, au coefficient négatif de température de la résistivité du verre. Autrement dit, à mesure que le verre s'échauffe, sa résistivité décroît au lieu d'augmenter, comme c'est le cas avec les conducteurs électriques plus usuels. L'intensité 30 traversant le verre fondu dans le four a un effet cumulatif : à mesure que la zone de matériau traversé par le courant s'élève en température, par chauffage par effet Joule, la résistance du matériau décroît, tendant ainsi à augmenter encore l'intensité du courant passant dans les parties plus chaudes du bain de verre. Le 35 résultat est une tendance à créer ce qui est appelé les "points chauds" dans un four qui tendent à court-circuiter le courant qui doit passer dans les parties plus froides du four» La conséquence en est un chauffage et une fusion non uniformes du verre contenu dans le four et une diminution du rendement de fonctionnement du 40 four. 69 04112 2. 20 00005 Le problème se trouve particulièrement aggravé dans les grands fours dans lesquels les électrodes traversent les parois latérales du four du fait que des courants de court-circuit tendent à s'établir à la périphérie du bain de verre contenu dans le 5 four tandis que le verre qui est au centre du four n'est pas suffisamment chauffé par les électrodes noyées dans le verre. Ce problème du chauffage péripnérique oii des veines chaudes localisées dans le matériau du bain est pratiquement évité conformément à l'invention grâce à un nouveau mode d'espacement et d'orientation 10 des électrodes, combiné à un mode de connexion d'amenée de la puissance, qui assure une répartition optimale du courant datis la zone centrale du four et réduit le plus possible le chauffage localisé et les lignes de courant de court-circuit à la périphérie du four près ties parois latérales comme il s'en produit dans les fours de 15 construction antérieure. Ces résultats sont obtenus en partis par un agencement symétrique de six électrodes qui sont rapprochées par paires, en sorte que leurs extrémités se trouvent d'une manière générale aux sommets d'un hexagone présentant l'aspect d'un triangle triplement tronquée 20 En même temps, les électrodes sont connectées au secondaire d'un transformateur triphasé, lequel secondaire est connecté suivant ce qu'on pourrait appeler une configuration ouverte ou à secondaire isolé à l'extérieur du bain. Les électrodes sont connectées au secondaire du transformateur de tell® manière que la tension de crê— 25 te de phase de l'un des enroulements du secondaire n'apparaisse pas entre des électrodes adjacentes. Ce mode de connexion se révèle capable d'améliorer sensiblement les conditions de fusion dans le four de sorte que la partie centrale du four fond en même temps et de la même façon que le matériau qui se trouve près des parois la— 30 térales du four. En d'autres ternes, grâce à ce nouveau mode de montage et de connexion des électrodes3 les veines chaudes sont réduites de façon significative au point d'être sensiblement, sinon -complètement éliminées. En" conséquence, l'invention vise à fournir s 35 - un mode de montage permettant 11 application uniforme de la chaleur électrique à un four de verrerie; - ' - un mode de montage et d'amenée "de la puissance d'alimentation d'électrodes de chauffage capable de diminuer au maximum,sinon d'éliminer complètement! les courants localisés ou les points chauds kO électriques dans- Je four, en particulier à proximité des parois 69 04112 3. 2C00005 latérales du four; - un agencement ci1 électrodes pour fours électriques ayant pour effet l'augmentation du rendement et ,rie la durée de vie du four en évitant la création de points chauds ou de veines chaudes 5 dans le four, en particulier au voisinage de ses parois; - des électrodes de four électrique agencées et connectées de manière à assurer un chauffage plus uniforme du verre dans le four; les électrodes sont rapprochées par paires, les électrodes individuelles de chaque paire étant à faible distance l'une de l'autre 10 de sorte que leurs extrémités intéx'ieures soient approximativement situées aux sommets d'un hexagone présentant l'aspect d'un triangle triplement tronqué. En outre, les électrodes sont connectées au secondaire d'un transformateur triphasé, les enroulements du secondaire du transformateur étant connectés suivant une configu-15 ration ouverte de manière que la tension de crête de phase d'un enroulement du secondaire du transformateur n'apparaisse pas entre électrodes adjacentes. D'autres caractéristiques de l'invention apparaîtront au cours de la description qui va suivre. 20 Au dessin annexé, donné uniquement à titre d'exemple : - la Fig. 1 représente un four électrique de construction antérieure du type four continu de verrerie, dans lequel l'espacement et la configuration des électrodes visent à produire un chauf-. fage uniforme dans le verre; 25 - la Fig. 2 représente de même tin four antérieur, de type ré cent, dans lequel le nombre d'électrodes est augmenté et leur agencement tend à assurer une distribution plus uniforme des courants de chauffage par effet Joule dans le matériau placé dans le four; - la Fig. 3 représente de même une coupe horizontale d'un four 30 hexagonal du type illustré sur les Fig. 1 et 2 où apparaît le nouveau mode d'espacement des électrodes suivant l'invention, les extrémités intérieures des électrodes étant disposées par paires et traversant les parois du four de manière alternée; et, - la Fig. 4 représente un schéma de circuit électrique illus-35 trant le nouveau mode de connexion suivant l'invention, entre un transformateur triphasé alimenté par une source de courant triphasé et les électrodes placées dans le four représenté sur la Fig. 3» -En se référant à la Fig. 1, un four électrique désigné dans son ensemble par 10, comporte des parois 12 en forme d'hexagone 40 dans lesquelles passent de manière alternée des électrodes allon— ,A - V. 2000005 69 04112 gées 14, 16 et 18. La Fig. 1 représente une vue en coupe horizontale d'un four de construction antérieure de type bien connu; il s'agit d'un four électrique à fonctionnement continu dont les trois électrodes 14, 16 et 18 traversent les parois latérales sous le 5 niveau du verre. Les fours de ce type général constituent des réalisations antérieures bien connues comme par exemple dans le brevet américain N° 1 905 534. Ce four est du type à fonctionnement continu et comporte de façon conventionnelle un orifice par lequel s'écoule le 10 verre fondu sortant du four dans la direction de la flèche 20 sur la Fig. 1. L'écartement et la longueur des électrodes 14, 16 et 18 sur la Fig. 1 visent à augmenter l'intensité du courant de chauffage traversant la zone centrale 22 du four. Toutefois, quand les élec— 15 trodes sont connectées à une source usuelle de courant triphasé, on constate que, dans la configuration de la Fig. 1, il existe une forte tendance à la création de veines chaudes dans le verre entre le bout de l'électrode 14 et la base de l'électrode 16, c'est-à-dire entre les points 24 et 26 de la Fig. 1. De la même manière, 20 des veines chaudes tendent à se former entre le bout 28 de l'électrode 16 et la base 30.de l'électrode 18 et, de même, entre le bout 32 de l'électrode 18 et la base 34 de l'électrode 14. En conséquence de ces veines chaudes périphériques, la partie centrale 22 du four ne donne pàs une fusion OOin/ tar suite, les zon'es au 25 voisinage de la périphérie du four deviennent plus chaudes que le verre qui se trouve au centre 22, et en raison de la diminution de la résistance du verre avec l'accroissement de la température, il s'établit dans le four des lignes de courant plus intense qui coïncident avec cette zone de verre plus chaud et de plus faible 30 résistance. Cette dissipation supplémentaire de chaleur entre points chauds d'électrodes s'entretient d'elle-même parce que plus la zone s'échauffe meilleure conductrice de courant elle devient, avec un nouvel accroissement de la chaleur dissipée. Quand se produisent de telles veines chaudes sur le périmètre du four, la fu- -35 sion est moins efficace au centre et il y a une usure supplémentaire des réfractaires formant les parois latérales du four, d'où une durée de vie réduite du four. Les électrodes de grande longueur sont également très fragiles. La Fig. 2 illustre de même en coupe horizontale un four de 40 construction antérieure, plus récente, proposée pour obténir une 5 2000005 69 04112 répartition plus uniforme du courant dans le matériau contenu dans le four de verrerie. Sur la Fi;?. 2, le four- désigné par la référence générale 40, a aussi une section hexagonale, à la manière du four 10 illustre- sur la Fig. 1 . Le four 40 de la Fig„ 2 est pourvu 5 de parois latérales 42. Chaque section des parois latérales du four est traversée par une électroae d'un ensemble de six électrodes 44, 46, 48, 50, 52 et 54. Un four de ce type général est décrit, à titre d'exemple, dans le brevet des Etats-Unis d'Amérique N° 2 993 079» et il diffère du four représenté sur la Pi;*'. 1, "non 10 seulement par l'agencement des électrodes mais aussi par le fait que l'écoulement du verre se fait par une gorge suivant la ligne 56, sur la Fig. 2. La zone centrale du four est désignée par 58 sur la Fig. 2. Dans cet exemple, les électrodes sont connectées à une source de courant triphasé par un transformateur diviseur de 15 phases délivrant six phases dont chacune est connectée à une électrode différente de l'ensemble des électrodes 44 à 54 sur la Fig. 2. L'agencement illustré sur la Fig.* 2 évite le problème de la rupture des électrodes et vise à obtenir une uniformité de la ré-20 partition du courant, en particulier au centre du four. Cependant, ce dernier objectif ne peut être atteint en raison de l'échauffe-ment local du verre autour de chacune des électrodes qui produit des veines d'écoulement préférentiel du courant au périmètre du t four près des parois 42. 25 A titre d'illustration, une électrode de type classique ayant un diamètre d'environ 32 mm et une longueur immergée d'environ 50 cm-, possède une couche superficielle de verre, d'une aire voisine .2 de 516 cm , que doit traverser tout courant entrant dans l'electro-de ou en sortant. Au.contraire, au milieu du four, l'aire de la 30 surface offerte au passage du courant est de l'ordre de centaines de décimètres carrés. Il est évident que dans l'agencement de la Fig. 2, la chute de tension à travers, l'aire limitée et la résistance, plus élevée de ce fait, au voisinage des électrodes est plus grande par unité de longueur parcourue que dans le contre du 35 four. Cette plus grande chute de tension au voisinage des électrodes s'accompagne d'une dissipation supplémentaire de chaleur au niveau des électrodes qui est à l'origine d'une plus gratiue complication. Sur la Fig. 2, quand les électrodes 44, 46,' 48, 50, 52 40 et 54 sont sous tension, la région du verre immédiatement voisine 2000005 69 04112 des électrodes devient plus chaude d'environ 55°C« Cette dissipa-Lion supplémentaire de chaleur se propage dans toutes les directions. L'effet sur le bain, cependant, n'est pas symétrique car la chaleur rayonnant depuis l'électrode 48 en direction de l'électro-5 de 46 est rencontrée par la chaleur rayonnant de l'électrode 46 en direction de l'électrode 48. En conséquence, l'espace compris entre les électrodes 46 et 48 se trouve chauffé préférentiellement. Le même effet se produit entre les électrodes 48 et 54 mais à un moindre degré du fait de la plus grande distance entre ces élec— 10 irodes. Par suite, la zone circulaire de verre comprise entre les zones hachurées 64, 66, 68, 70, 12 et 74 sur la Fig. 2, autour des électrodes respectives devient plus chauue que le verre se trou- ae circulâtion vanfc au centre 58 du four, et constitue une zone préférentielle/au courant par suite de sa résistance réduite. Ici encore, cette dis-15 sipation supplémentaire de chaleur dan? la sone circulaire rejoignant les points chauds des électrodes « ' entretient d'elle-même parce que plus cette zone s'échauffe meilleure conductrice elle de vient5 ce qui augmente encore la dissipation de chaleur. Cet effet est bien connu et résulte du coefficient, négatif de température de 20 la résistivité du verre. Des graphiques illustrant des données sur-ce point sont représentés au chapitre 12 du manuel "Handbook. of Glass Manufacture" (volume II). Quand de telles veines chaudes se produisent le long du périmètre du four, elles s'accompagnent d'une usure supplémenta.ire des blocs réfractaires du revêtement inté— 25 rieur du four de verrerie classique, avec diminution de la durée de vie du four. La nouvelle construction conformément à l'invention est illus trée sur les Fig. 3 et 4. La Fig. 3 représente encore une vue en coupe horizontale d'un four, désigné d'une façon générale par 80; 30 ce four est semblable aux fours représentés sur les Fig. 1 et 2 à l'exception de la disposition des électrodes et du mode d'écoulement du matériau du four qui, dans le cas présent, sort par un o-rifice suivant la flèche 82 sur la Fig. 3. Le four est de configuration hexagonale et possède une paroi latérale 84 formée de sec-35 tions 86 s 88, 9°, 92 s 94 et 96° Sur la Fig. 3, les électrodes 98, 100, 102, 104, 106 et '108 sont des électrodes à section circulai™ re semblables à celles qui sont illustrées sur la.Fig. 2; elles traversent d'une manière alternée les sections de paroi du four représenté sur la Fig. 31 de manière à ê.tre noyées dans le verre 40 contenu dans le four» Ici encore, les électrodes individuelles 69 04112 2000005 sont entourées d'un volume de verre de température plus élevée schématisé par les zones hachurées 118, 120, 122, 124, 120 et 128. La zone centrale du four est désignée sur la Fig. 3 par la référen ce 110. . 5 L'agencement des électrodes illustré sur la Fig. 3 diffère de celui de la Fig. 2 tout d'abord en ce quo les électrodes sont rapprochées par paires de manière que leurs extrémités se trouvent situées approximativement aux sommets d'un hexagone indiqué par une ligne en pointillé 112, affectant le contour d'un triangle tri 10 plement tronqué. Les points chauds 118, 120, 122, 124, 126 et 128 au niveau des électrodes ne peuvent coopérer de façon préférentiel le avec les points chauds adjacents, en particulier du fait du plus grand espace de refroidissement qui les sépare et qui fait in tervenir les sections intermédiaires de la paroi, en l'occurrence 15 la section 86 entre les électrodes 108 et 98, la section 90 entre les électrodes 120 et 122 et la section 94 entre les électrodes adjacentes 124 et 126. Dans le cas de l'agencement illustré sur la Fig. 3 où la formation d'un périmètre chaud conducteur est évité, la tension de crête de phase entre des électrodes, comme les élec— 20 trodes 100 et 106, permet une dissipation effective de chaleur dans le centre 110 du bain. De même, la tension de crête de phase entre les électrodes 102 et 108 et entre les électrodes 98 et 104 contribue à un chauffage utilisant toute l'énergie des phases successives, suivant la nature triphasée de la source, dans la partie 25 centrale 110 du four. Sur la Fig. 4 est représenté un schéma de circuit illustrant le mode de distribution de l'énergie électrique aux électrodes de la Fig. 3. Dans un but explicatif, les électrodes représentées sur les Fig. 3 et 4 sont affectées des lettres A à F, les électrodes 30 correspondantes portant les mêmes lettres dans chacune des deux figures. En se référant à la Fig. 4, les électrodes sont connectées à une source de courant triphasé 130 par l'intermédiaire d'un transformateur triphasé désigné d'une façon générale par la référence 132. La source 130 peut être d'un type de construction clas-35 sique et, par exemple, peut être constituée par une ligne ou un réseau d'alimentation triphasé relié aux bornes respectives 134, 136 et 138 d'un primaire 140 de transformateur, au moyen de conduc teurs représentés par des lignes en pointillé 142, 144 et 146. Le primaire 140 comprend trois enroulements connectés en triangle et kO possédant des extrémités communes 134, 136 et 138 qui sont reliées s 2000005 é9 04112 reliées aux trois conducteurs de phase différents de la source 130. Le secondaire du transformateur comporte trois enroulements séparés 152, 154 et 156 connectés suivant une configuration ouverte ou isolée, c'est-à-dire que les extrémités opposées de l'enrou-5 lement 152 sont reliées par des conducteurs 160 et 162 aux électrodes respectives 100 et 106j de même les extrémités de l'enroulement 154 sont reliées par des conducteurs 164 et 166 aux électrodes respectives 98 et 104, tandis que l'enroulement 156 a ses extrémités reliées par des conducteurs 168 et 170 aux électrodes 108 10 et 102 respectivement. Lorsque les électrodes sont connectées de la manière illustrée, le diagramme dte phases du transformateur a la forme d'une étoile à six branches dont les vecteurs se recoupent én leurs centres respectifs. Il apparaît que le four ne fonctionne pas convenablement si les enroulements secondaires ne sont 15 pas isolésautrement dit. si les électrodes portées sur la même section de la paroi-, comme les électrodes A et B, sont reliées électriquement entre elles à l'extérieur du four. Dans un mode de réalisation construit conformément à l'invention, le four possède une paroi 84 formée de sections 86, 88, 90, 20 92, 94 et 96 ayant toutes une longueur de 180 cm. Il apparaît que pour Tin four hexagonal.de cette dimension, un espacement entre les paires d'électrodes, c'est-à-dire entre des électrodes comme A et B, compris entre 60 et 90 cm donne de bons résultats. En général, l'intervalle entre les électrodes doit être approximativement com-25 pris entre le tiers et la moitié de la longueur d'un côté de la paroi du four. Dans le triangle triplement tronqué ou l'hexagone irrégulier formé par les extrémités des électrodes, le^ petits côtés de l?hexagone irrégulier peuvent avoir une longueur comprise approximativement entre le quart et les deux tiers de la longueur 30 d.es grands côtés, La longueur d'immersion des électrodes dans ce four est de l'ordre de 45 à 65 cm. Cette longueur peut être aussi réduite à 20 cm et aller jusqu'à 115 cm pour différentes tailles de four. Les électrodes utilisées sont en molybdène et sont fabriquées suivant le brevet des Etats-Unis d'Amérique N° 35 2 693 498. A titre de variante, on peut employer, si on le désire, des électrodes en oxyde d'étain. Il faut remarquer que la tension appliquée entre les électrodes A et F n'est pas la tension de phase totale mais, en réalité, la tension de phase diminuée de la tension qui apparaît entre les 40 électrodes C et D. La valeur réelle de la tension qui est appli 69 04112 2000005 quée entre les électrodes A et F est, par exemple, d'environ 60 ^ de la tension de phase. Bien que le transformateur 132 soit illustré avec son enroulement primaire connecté en triangle, le primaire peut, si on le désire, être monté en étoile. 5 II est évident, d'après ce qui précède, que l'invention per met de réaliser un montage joerfectionné, comme celui qui est illustré sur les Fig. 3 et 4, augmentant l'uniformité de la répartition du courant et partant de la chaleur électrique dans toute la masse de verre du four et, en particulier, appliquant le courant de 10 chauffage à la zone centrale du four. Ce but est atteint d'une manière relativement simplifiée avec un montage peu coûteux et, en particulier, est évitée de cette façon la création de lignes préférentielles d ' échauff ement ou de veines chaudes sur toute la" périphérie du four, comme c'est le cas dans les réalisations anté-15 rieures connues. L'invention permet non seulement l'amélioration du rendement de 1'opération, en assurant une fusion uniforme du verre à l'intérieur du four5 mais encore augmente la durée de vie du four, en réduisant•l'usure des blocs réfractaires qui revotent l'intérieur des parois du four. 20 Bien qu'une description ait été faite de l'invention en rap port avec un mode spécifique de réalisation, mettant en oeuvre six électrodes horizontales immergées dans tin four de verrerie à fonctionnement continu, ayant en coupe la forme d'un hexagone, il est clair que l'invention ne se limite pas à cette description et qu'— 25 elle est susceptible de nombreuses autres variantes de forme et de réalisation. Par exemple, dans la mise en oeuvre de l'invention, iln'est pas nécessaire que la forme extérieure du four soit celle d'un hexagone, et on trouve dans le brevet des Etats-Unis d'Amérique N° 2 993 079 sur la Fig. 3> un agencement convenant à l'usage 30 en liaison avec l'invention, la relation interne décrite précédemment se conservant dans un four présentant une autre forme, comme la forme rectangulaire ou carrée. Sur la Fig. 3» la ligne de l'orifice d'écoulement pst illustrée par la flèche 82, l'orifice lui-même n'étant pas représenté pour plus de clarté et de simplicité. 35 Bien entendu, l'orifice peut être d'un type conventionnel, comme illustré, par exemple, sur la Fig. 3*du brevet des Etats-Unis d'Amérique N° 2 993 079- A titre de variante, 15agencement de l'invention peut être utilisé en même temps qu'une évacuation du verre fondu ménagée au centre du fond du four si on le désire. Egalement, hO au lieu de disposer les électrodes horizontalement, elles peuvent 69 04112 traverser verticalement le fond du four, leurs axes étant alors espacés approximativement comme les extrémités des électrodes horizontales illustrées. L'invention peut être incorporée dans d'autres formes spécifi-5 ques sans s'éloigner de son esprit ou de ses caractéristiques essentielles. Le mode d'application décrit doit donc être considéré sous tous rapports comme illustratif et non limitatif, la portée de l'invention étant indiquée dans les revendications ci-après plutôt que dans la description qui précède^ et toutes les varian-10 tes qui sont comprises dans le sens et les équivalences possibles de ces revendications appartiennent à l'invention. 69 04112 2000005 - REVENDICATIONS. - 1 — Ensemble d'électrodes pour four de verrerie, caractérisé en ce qu'il comprend au inoins six électrodes, normalement noyées dans le bain de verre, qui sont groupées par paires de Sorte que 5 leurs extrémités forment les sommets d'un triangle triplement tronqué, et des moyens pour connecter ces électrodes à un circuit électrique triphasé. 2 - Ensemble suivant la revendication 1, caractérisé en ce que les moyens de connexion sont constitués par trois enroulements 10 secondaires de transformateur, isolés électriquement entre eux à l'extérieur du bain, dont les vecteurs respectifs de tension sont dans la relation normale d'une alimentation triphasée. 3 - Ensemble suivant la revendication 2, caractérisé en ce que les électrodes sont disposées dans un four hexagonal, et tra- 15 versent par paires les parois du four. h — Ensemble suivant la revendication 2, caractérisé en ce que les électrodes sont agencées par paires dans on four hexagonal, 11intervalle entre les extrémités intérieures d'une paire étant compris approximativement entre le tiers et la moitié de la Ion— 20 gueur d'un côté de l'hexagone. 5 — Ensemble suivant la revendication 2, caractérisé en ce - que les électrodes ont leurs extrémités intérieures plongées sous la surface du bain de verre d'un four de verrerie. 6 — Ensemble suivant la revendication 2, caractérisé en ce 25 que l'intervalle entre les électrodes de chaque paire est compris approximativement entre le quart et les deux-tiers de l'intervalle séparant les paires adjacentes. 7 - Ensemble suivant la revendication 5» caractérisé en ce que les moyens de connexion comportent trois enroulements de secon— 30 daire de transformateur, les extrémités opposées de ces enroulements étant connectés à des extrémités différentes de ces électrodes. ' , 8 - Ensemble suivant la revendication 7» caractérisé en ce que l'une des extrémités de chaque enroulement est connectée à une 35 première électrode distincte et l'autre extrémité de chaque enroulement est connectée à une seconde électrode différente, cette seconde électrode étant, pour chaque enroulement, la troisième qui suit ladite première électrode. 9 - Ensemble suivant la revendication 8, caractérisé en ce 40 que les extrémités de chaque enroulement secondaire sont électri- 69 04112 12. 2000005 quement isolées des âutres enroulements secondaires à l'extérieur du four. 10 - Ensemble suivant la revendication 5» caractérisé en ce que chaque section de la paroi du four a une longueur d'environ •5 180 cm, les électrodes sont en molybdène et de section circulaire, l'intervalle entre les électrodes de chaque paire est compris entre 60 et 90 cm, le moyen de connexion comporte un transformateur triphasé reliant les électrodes à un réseau d'alimentation triphasé, le transformateur ayant trois enroulements de sortie dont cha-10 cun est connecté à une paire d'électrodes séparées par le plus grand intervalle »
MULTIPLE MEDIA ACCESS CONTROL (MAC) ADDRESS RESOLUTION VERTICAL TRAVEL One or more devices or stations include a globally unique media access control (MAC) address, and one or more local virtual MAC Addresses. The local virtual MAC addresses are generated by an external entity, such as server. The stations and the server may be connected through an access point. DETAILED DESCRIPTION Additional Unique media access control (MAC) addresses are provided to one or more devices or stations in a network if the device needs more than one MAC address. The unique MAC addresses may be generated and verified by a MAC address generation and verification server. Overview Described herein are architectures, platforms and methods that allow unique MAC addresses to be provided to one or more devices or stations in a local network, where the unique MAC addresses are local to the network. Devices or stations may keep their globally unique assigned MAC addresses. A personal wireless area network (WPAN) is a network used for communication among computing devices (for example, personal devices such as telephones and personal digital assistants) close to one person. The reach of a WPAN may be a few meters. WPANs may be used for interpersonal communication among personal devices themselves, the devices participating in the WPAN may be connected via an uplink to a higher level network, for example the Internet. In order to support a WPAN, multiple MAC addresses may be used. Although in theory, using the OSI model, WPAN (and WLAN) may implement a single MAC address. However, the use of a single MAC addresses may be problematic. For example, when a device may have different host interfaces that are connected to different sub-systems. For example, there may be a display that is connected via a high definition multimedia interface (HDMI) connecting to the graphic sub-system while data is connected via peripheral component interconnect express to the main CPU sub-system. A different type of constrain could be a specific very low latency PAN service that use short messages. In this case, adding long structure to support OSI based routing creates high inefficiency. The millimeter-wave WPAN and/or mmWave network may allow very high data rates (e.g., over 2 Gigabit per second (Gbps)) applications such as high speed Internet access, streaming content download (e.g., video on demand, high-definition television (HDTV), home theater, etc.), real time streaming and wireless data bus for cable replacement. Sonic portions of the detailed description, which follow, are presented in terms of algorithms and symbolic representations of operations on data bits or binary digital signals within a computer memory. These algorithmic descriptions and representations may be the techniques used by those skilled in the data processing arts to convey the substance of their work to others skilled in the art. Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, or transmission devices. The terms “a” or “an”, as used herein, are defined as one, or more than one. The term plurality, as used herein, is defined as two, or more than two. The term another, as used herein, is defined as, at least a second or more. The terms including and/or having, as used herein, are defined as, but not limited to, comprising. The term coupled as used herein, is defined as operably connected in any desired form for example, mechanically, electronically, digitally, directly, by software, by hardware and the like. The term personal basic service set (PBSS) as used herein is defined as a basic service set (BSS) which forms an ad hoc self-contained network, operates in the DBand, includes one PBSS control point (PCP), and in which access to a distribution system (DS) is not present but an intra-PBSS forwarding service is optionally present. The term PCP as used herein, is defined as a station or STA that operates as a control point of the mmWave network. The term access point (AP) as used herein, is defined as an entity that has STA functionality and provides access to the distribution services, via the wireless medium or WM for associated STAs. The term directional band (DBand) as used herein is defined as any frequency band wherein the Channel starting frequency is above 45 GHz. The term DBand STA as used herein is defined as a STA whose radio transmitter is operating on a channel that is within the DBand. The terms “traffic” and/or “traffic stream(s)” as used herein, are defined as a data flow and/or stream between wireless devices such as STAs. The term “session” as used herein is defined as state information kept or stored in a pair of stations that have an established a direct physical link (e.g., excludes forwarding); the state information may describe or define the session. The term “wireless device” as used herein includes, for example, a device capable of wireless communication, a communication device capable of wireless communication, a communication station capable of wireless communication, a portable or non-portable device capable of wireless communication, or the like. In some embodiments, a wireless device may be or may include a peripheral device that is integrated with a computer, or a peripheral device that is attached to a computer. It should be understood that the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the circuits and techniques disclosed herein may be used in many apparatuses such as stations of a radio system. Stations intended to be included within the scope of the present invention include, by way of example only, WLAN stations, wireless personal network (WPAN), and the like. Types of WPAN stations intended to be within the scope of the present invention include, although are not limited to, stations capable of operating as a multi-band stations, stations capable of operating as PCP, stations capable of operating as an AP, stations capable of operating as DBand stations, mobile stations, access points, stations for receiving and transmitting spread spectrum signals such as, for example, Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK), Orthogonal Frequency-Division Multiplexing (OFDM) and the like. Some embodiments may be used in conjunction with various devices and systems, for example, a video device, an audio device, an audio-video (A/V) device, a Set-Top-Box (STB), a Blu-ray disc (BD) player, a BD recorder, a Digital Video Disc (DVD) player, a High Definition (HD) DVD player, a DVD recorder, a HD DVD recorder, a Personal Video Recorder (PVR), a broadcast HD receiver, a video source, an audio source, a video sink, an audio sink, a stereo tuner, a broadcast radio receiver, a display, a flat panel display, a Personal Media Player (PMP), a digital video camera (DVC), a digital audio player, a speaker, an audio receiver, an audio amplifier, a data source, a data sink, a Digital Still camera (DSC), a Personal Computer (PC), a desktop computer, a mobile computer, a laptop computer, a notebook computer, a tablet computer, a server computer, a handheld computer, a handheld device, a Personal Digital Assistant (PDA) device, a handheld PDA device, an on-board device, an off-board device, a hybrid device, a vehicular device, a non-vehicular device, a mobile or portable device, a consumer device, a non-mobile or non-portable device, a wireless communication station, a wireless communication device, a wireless AP, a wired or wireless router, a wired or wireless modem, a wired or wireless network, a wireless area network, a Wireless Video Are Network (WVAN), a Local Area Network (LAN), a WLAN, a PAN, a WPAN, devices and/or networks operating in accordance with existing WirelessHD™ and/or Wireless-Gigabit-Alliance (WGA) specifications and/or future versions and/or derivatives thereof, devices and/or networks operating in accordance with existing IEEE 802.11 (IEEE 802.11-2007: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications) standards and amendments, 802.11ad (“the IEEE 802.11 standards”), IEEE 802.16 standards, and/or future versions and/or derivatives thereof, units and/or devices which are part of the above networks, one way and/or two-way radio communication systems, cellular radio-telephone communication systems, Wireless-Display (WiDi) device, a cellular telephone, a wireless telephone, a Personal Communication Systems (PCS) device, a PDA device which incorporates a wireless communication device, a mobile or portable Global Positioning System (GPS) device, a device which incorporates a GPS receiver or transceiver or chip, a device which incorporates an RFID element or chip, a Multiple input Multiple Output (MIMO) transceiver or device, a Single input Multiple Output (SIMO) transceiver or device, a Multiple Input Single Output (MISO) transceiver or device, a device having one or more internal antennas and/or external antennas, Digital Video Broadcast (DVB) devices or systems, multi-standard radio devices or systems, a wired or wireless handheld device, a Wireless Application Protocol (WAP) device, or the like. Some embodiments may be used in conjunction with suitable limited-range or short-range wireless communication networks, for example, “piconets”, e.g., a wireless area network, a WVAN, a WPAN, and the like. Example System Environment FIG. 1illustrates a system-level overview of an exemplary system environment100for communicating between a wireless device or device102each one device may be identified by one or more MAC addresses. Device102may be referred to as STA in network or system environment100, one or more device(s)102may be considered a STA. Device102includes various devices, such as laptop computers, tablet computers, smart phones, etc. Furthermore, it is to be understood that device102may include other devices. Device102is identified by one or more MAC addresses, including a unique globally assigned MAC address. The MAC addresses are used to communicate with various other devices and/or access points. In this example, device102communicates with an Internet access point or AP104through a wireless connection106. Traffic or traffic steams are sent through wireless connection106. In certain implementations, the wireless connection106may be implemented using WiGig or IEEE 802.11ad specification, and operate over the 60 GHz frequency spectrum. Device102may be a DBand STA operating in the DBand. In addition, the wireless connection106may be a directed or beam formed link to the AP104. Furthermore, device102may be in session with AP104. When communicating with AP104, device102includes a unique MAC address in frames sent to the AP104, where the unique MAC address identifies the frames as sent by the device102. This unique MAC address may be a global MAC address that has been pre-assigned to the device104. For example, device102may include a NIC that is identified by the global MAC address. For example, when communicating with the Internet, a global MAC address is preferable. In this example, the AP104is connected via a wired/wireless (or combination) connection108to the Internet110. In this example, device102further communicates with a docking station112. In general the docking station112may connect many devices such as a display, a mass storage and others to the device102(i.e., mobile device such as notebook or cellular phone) via a wireless link. A different unique MAC address or MAC addresses are is used to communicate with the docking station112. In other words, the MAC address used to communicate to AP104is different than the MAC addresses used to communicate to the docking station112. Device102may communicate with the docking station112through a wireless connection114. In certain implementations, the wireless connection106may be implemented using WiGig or IEEE 802.11ad specification, and operate over the60GHz frequency spectrum. In addition, the wireless connection114may be a directed or beam formed link to the docking station112. A display116may be connected to the docking station112through wired connection118, such as a high definition multimedia interface (HDMI) or display port connection. Furthermore a mass storage device120may have wired connection122, such as universal serial bus or serial advance technology attachment. In particular, the different unique MAC addresses of device102may be used to provide different services, or support different applications resident on device102. Different applications may be supported by different communication layers on the OSI model. For example, an audio/video application in device102may employ one MAC address in the STA102to deliver audio/video traffic to the display via the docking STA112, and a file transfer application in device102may employ a different MAC address in the STA102to deliver data to/from mass storage via the docking station112. In certain implementations, the docking STA may also use different MAC addresses per different application/services. Example System with MAC Address Generation and Verification Server FIG. 2illustrates a system-level overview of an exemplary system environment200implementing multiple stations or STAs202that are assigned MAC addresses by a separate MAC Address Generation and Verification Server(s) or MAGV server204. The STAB202(1)-202(N) may be devices such as device102described above, and may include various devices such as laptop computers, tablet computers, smart phones, etc. It is to be understood that other devices, as described above, may also be included. The MAGV server204may be a standalone device or reside in a PCP or AP station. In certain implementations, the MAGV server204may be part of another device defined as a “Group Owner”, where communication between the MAGV server204and the STAs202may be through various communication bands, including the mmWave band. The ACV204may be supported at complex controlled environment such as enterprise, as well as at ad-hoc user environment in which proximity is guaranteed. At complex environments, MAGV204may not necessarily be directly connected to a device via the same media. As an example, the mmWave signal of a specific device may not be adequate for MAGV. Therefore, service may be tunneled. At the ad-hoc environment, MAGV204functionality is likely to be provided by the same device that provides the PCP function. STAs202may communicate through an AP, or personal basic service set control point (PCP)206, In certain implementations, the MAGV server204may be included as part of PCP206. In such implementations, the MAGV server204may communicate over the mmWave band, such as a mmWave network discussed above, In specific, the PCP206communicates with the STAs202over the mmWave band. In certain implementations communication may be over a mmWave or WiGig radio band, implementing a60GHz frequency, using directed or beam formed links. Such communication links are represented by communication links208(1) to208(N). Certain implementations, where the MAGV server204is a standalone device, provide for a “Group Owner”, the PCP206, another AP, or other device to act as a “proxy” for the MAGV server204. In other words, device202(2) that needs service of allocation of multiple addresses connects to the MAGV server204through the proxy206using the connections208(2) and212. In the exemplary embodiment of the invention the PCP206is served as a proxy. In certain implementations, MAGV server204may be connected to multiple APs or PCPs to cover overlapping basic service sets (OBSS). The MAGV server204may be part of a separate network210, connected to PCP206through wired/wireless connection212. The network210can include the Internet and cloud-based networks/services. In other implementations, server204is part of a local network, and in specific included as part of system200. In certain implementations, a direct link, such as a beam formed link, may be establish with the MAGV server204and one or more of the STAs202. Such a direct link is shown by example as link214. MAGV server204may be discovered by the STAs202through various methods, including known Level 2 (L2) service discovery techniques. Other methods of discovering the MAGV server204, include the PCP206advertising or broadcasting services of the MAGV server204to the STAs202. In certain implementations, the PCP206is used as a proxy that redirects the STAs202(1) to the MAGV server204. In other cases the STAs202(N) and MAGV server204may communicate directly via direct link214. The MAGV server204specifically provides unique MAC addresses to the STAs202. The unique MAC addresses may be local to the network of the STAs202, where such a network includes system200. Furthermore, each station may have more than one local, also known as “virtual”, MAC address. Each local/virtual MAC address is generated or verified by the MAGV server204. Since the MAC addresses are generated and verified at a central provider, i.e., MAGV server204, each MAC address is unique. Therefore, in a local network, such as system200, contention regarding same MAC addresses at different STAs202is avoided. FIG. 3shows an example device or station (STA)300that implements multiple media access control (MAC) addresses. Device300includes one or more processors, processor(s)302. Processor(s)302may be a single processing unit or a number of processing units, all of which may include single or multiple computing units or multiple cores. The processor(s)302may be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate signals based on operational instructions. Among other capabilities, the processor(s)302may be configured to fetch and execute computer-readable instructions or processor-accessible instructions stored in a memory304or other computer-readable storage media. Memory304is an example of computer-readable storage media for storing instructions which are executed by the processor(s)302to perform the various functions described above. For example, memory304may generally include both volatile memory and non-volatile memory (e.g., RAM, ROM, or the like). Memory304may be referred to as memory or computer-readable storage media herein. Memory304is capable of storing computer-readable, processor-executable program instructions as computer program code that may be executed by the processor(s)302as a particular machine configured for carrying out the operations and functions described in the implementations herein. Memory304may include one or more operating system(s)306, and may store one or more applications308. The operating system(s)306may be one of various known and future operating systems implemented for personal computers, audio video devices, etc. The applications308may include preconfigured/installed and downloadable applications. In addition, memory304can include data310. The device300may include a module312for management of multiple locally administered MAC Addresses for allocation. The device300may include communication interface(s), and particularly a radio314. Radio314may be coupled to two or more antennas. For example radio314may couple to antennas316and318. Radio314may include at least a receiver (RX)320, a transmitter (TX)322and a beam forming (BF) controller324, although the scope of the present invention is not limited in this respect. The device300may include a network interface card or NIC326. As well known in the art, devices, such as device300may include various communication layers as defined by the International Organization for Standardization (ISO) Open Systems Interconnection model (OSI) model. The lowest layer (1) is the Physical layer that is called PHY and provides connection to the media. For example antennas are part of the PHY layer. The second layer is the Data. Link Layer that includes two sub layers , the MAC layer and Logical Link Control (LLC) layer. In general, NIC326is a physical representation of the logical layers. NIC326may include a global MAC address (not shown) that is unique to the device and NIC326, and one or More MAC Layers328. Furthermore, NIC326may include a beam forming control and management module330. NIC326supports global and local MAC addresses. Module312provides for separate support of multi MAC allocation. The beam forming may receive support from PHY and MAC. In general NIC326supports MAC level functionality fully or partially. Device300may include one or more communication stacks332, which may be actual or virtual, to process and implement the global MAC address the locally assigned MAC addresses. In this regard, each communication stack332may include a MAC layer328. The different communication stacks332may use different protocols, in communicating with other application devices like display, TV, mass storage, mouse, keyboard, printer, etc. or in communication with Internet specific applications like entailing, WEP browsing etc. The example device300described herein is merely an example that is suitable for some implementations and is not intended to suggest any limitation as to the scope of use or functionality of the environments, architectures and frameworks that may implement the processes, components and features described herein. Generally, any of the functions described with reference to the figures can be implemented using software, hardware (e.g., fixed logic circuitry) or a combination of these implementations. Program code may be stored in one or more computer-readable memory devices or other computer-readable storage devices. Thus, the processes and components described herein may be implemented by a computer program product. MAC Address Data Structure FIG. 4shows example data structures400for a MAC address which can for multiple MAC addresses of a device. As discussed above, a MAC address can be a globally unique MAC address or locally defined and administered MAC address. Data structure402shows a MAC address with 6 bytes, represented by 6 octets, with the most significant byte at the 1st octet, and the least significant byte at the 6th Octet. Data structure404further defines the 6 octets or 6 bytes of data structure402. The three bytes of the 1st, 2nd and 3rd octets identify a unique “Organizationally Unique Identifier” or OUT406. The OUT406may identify a particular vendor of the device or NIC. The three bytes of the 4th, 5th and 6th octets may be specific to a network interface card or NIC, and may be referred to as a NIC specific identifier408. Data structure410further defines that the 1st octet (which is part of the OUI identifier406) has 8 bits “b1” to “b8”. At block412, if the bit “B1” is set to “0” the MAC address is unicast, if set to “1” the MAC address is multicast. Block414, defines that the if bit “b2” is set to “0” the MAC address is globally unique, and if the bit “b2” is set to “1” the MAC address is locally administered. The MAGV server204may generate the virtual MAC address. Therefore in an implementation, the second least significant bit of the most significant byte of the address shall be set to “locally administered” (never to match the globally unique. The OUT shall repeat the OUI of the globally unique address406of the STA. The 3rd byte shall repeat the 3rd byte of the globally unique address of the STA. The 1st and the 2nd bytes are used to generate the virtual addresses. Data Structures for MAC Address Generation and Verification As discussed above, STAs202may communicate through PCP206, to access and communicate with MAGV server204. In particular, MAGV server204provides and authenticates local or virtual MAC address for STAs202. STAs202may request and receive such MAC addresses from MAGV server204. PCP206need not know the context of the request and may be used to merely pass along the request and response between the STAs202and MAGV server204. To provide the address generation and verification service, MAC Address (MA)resolution information elements are defined to be used with known action frames like probe request and response and information request and response. FIG. 5shows example data structures for media access control (MAC) address generation and verification. MAC address resolution information element500is a data structure that includes an element ID field502, a length field504, an instruction filed506, a globally unique MAC address field508, and a virtual/locally administered MAC address field510. Instruction field506may further be defined by “number of virtual MAC addresses (e.g., 1 to 8)”512, “approve/rejected defined by ‘0’ or provided/approved defined by ‘1”’514, and keep alive field516. MAC address resolution information element500, also referred to as MAC address resolution information element500, is used by the STA202to request multiple MAC addresses from the MAGV server204, and is used by the MAGV server204to deliver the requested MAC addresses to the requesting STA202. In an example, if the MAC address resolution information element500is received by the MAGV server204and the instruction506is set to “0” the MAGV server204may verity the addresses sent in the virtual/locally administered MAC address field510. In this case the field510contains the locally administered MAC addresses sent by STA202for verification and the MAGV server204may respond with field514set to “1” (approve) if after comparison with the data base it verifies that the addresses are locally unique. The MAGV server204shall respond with field514set to “0” (rejected) if after comparison with the data base it verifies that one or more of the addresses are not locally unique. If the instruction in the field506is set to “1” in the request frame the MAGV server204server shall provide as many virtual addresses as set in the number of virtual MAC addresses field512. in this case there is no need to include the virtual MAC addresses fields in the MAC address resolution information element sent by the STA202. The MAGV server204may respond with the requested number of virtual MAC addresses, with field514set to “1” (i.e., approve) if the procedure succeeds, or “0” (i.e., rejected). The globally unique MAC address in the field508may be used to generate the Locally unique MAC addresses by copying the OUI part of the address as defined in paragraph 47. The keep alive field516may be used to prevent the allocated addresses resetting by the MAGV server204. In certain implementations, the MAGV server204may reset a “MAC address (MA) verification timer” when the MAGV server204receives a MAC resolution information element identified with the globally unique address508of the STA and with keep alive field516set to “1.” It does not matter which proxy, if any, is used to deliver the MA resolution information element. In certain implementations, the MAGV server204resets the allocation when the MA verification timer expires. In certain implementations, MAC address resolution information element500contained in the management action frames may be enveloped in Quality of Service (QoS) data frames that the MAC frame body contains an LLC header with ethertype equal to 89-0d and specific payload type that indicates enveloping of management action frame. The MAC header of the enveloped action frame may contain the receiving address (RA) that is equal to the address of the MAGV server204. The envelope allows any device to be a proxy of the MAGV Server, for example the PCP206may provide the MAGV service or alternatively be PCP206may serve as a to deliver the management action frame to other device. Example Process FIG. 6shows a flow chart for an exemplary process600for assigning and verifying local media access control (MAC) addresses. The order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or alternate method. Additionally, individual blocks may be deleted from the method without departing from the spirit and scope of the subject matter described herein. Furthermore, the method may be implemented in any suitable hardware, software, firmware, or a combination thereof, without departing from the scope of the invention. At block602, request is generated or verification is performed. For example, a STA or device may request the MAGI server204to generate one or more virtual/local MAC addresses or to verify one or more addresses generated by the STA or device itself. In the latter case the STA or device includes the generated addresses in the MA Information element for verification. As discussed above, the request may be made by one or more devices or STAs in a network, connected to an AP or PCP. The AP or PCP may forward the requests to a MAC address generation and verification server. At block604, a device or STA, sends an action frame with MAC address resolution information element that contains unique global MAC address, where the global MAC address is particular to the device or STA. Likewise, the action frame may be sent through an AP/PCP as discussed. Furthermore, as discussed above, the request of602and sending of604, may be in the form of a MAC address information element that is included in an existing or known action frame. For example, the action frame is enveloped in the QoS Data frame. The QoS data frame contains the LLC header with ethertype equal to 89-0d and the specified payload type. At block606, a redirection may be performed. in particular, a frame (i.e., action frame) is redirected to the MAGV server, and may be performed by an AP or PCP. At block608, the unique virtual/local MAC addresses may be generated or verified. The generating may be performed by and at the MAC address generation and verification server. The generated virtual/local MAC addresses may be specific to a network that the requesting device or STA resides. The verifying of the uniqueness of the virtual/local MAC addresses as delivered by the requesting device(s) or STA may be performed by the MAGV server. At block610, the virtual/local MAC addresses are delivered to requesting devices or STAs. Furthermore confirmation may be made as to the virtual/local MAC addresses sent by devices or STAs. This may be performed by the MAGV server. At block612, redirection may be performed as to an action frame that includes the MAC information element to the requesting STA. The redirection may be performed by an AP or PCP.
i-c. présente invention a pour objet un produit donnant aux résines de chlorure de polyvinyle des propriétés anti-buées. Elle se rapporte aussi aux compositions utilisées dans ce but et aux résines ayant des propriétés anti-buées et contenant ce produit. 5 La condensation de l'humidité avec formation de gouttes, souvent appelée buée ou brouillard, se produit fréquemment sur des emballages en matières plastiques transparentes. Quand pareille condensation se produit par suite dë l'humidité régnant à l'intérieur de l'emballage, celui-ci perd sa transparence et 10 les produits qui sont partiellement cachés attirent beaucoup moins la clientèle. Il importe surtout de réduire cette condensation quand il s'agit de matières commestibles ayant une forte teneur en eau et se trouvant dans des films plastiques transparents. Pour cette application on se sert actuellement beaucoup 15 de films de polyoléfines tels que le polyéthylène. En conséquence, on a proposé diverses compositions dans le but de réduire la tendance que peut avoir 1'humidité à se condenser en gouttelettes sur les films plastiques. On sait que des matières tensio-actives ont la propriété 20 de réduire la tendance à la formation de buées. Mais ces matières tensio-actives, qui donnent des résultats satisfaisants avec les polyoléfines ne conviennent pas avec les résines de chlorure de polyvinyle. Ce fait est dO à la présence d'un mélange stabilisant complexe, indispensable pour donner une stabilité thermique suffi-25 santé pendant la durée du traitement. Les résines de chlorure de polyvinyle sont fort instables quand elles sont portées aux températures requises pour leur traitement par suite d'une libération de chlore, le plus souvent sous forme d'acide chlorhydrique. Le mélange stabilisant capable 30 d'améliorer la résistance à la dégradation thermique doit contenir des produits pouvant fixer l'acide chlorhydrique libéré ainsi que des produits qui réduisent là coloration due à l'oxydation ou qui maintiennent la transparence. C'est actuellement une pratique courante de prendre un mélange de trois ou quatre produits pour 35 stabiliser des résines de chlorure de polyvinyle. Des mélanges semblables font l'objet de nombreux brevets et notamment des brevets USA N° 2 564 646, USA N° 2 716 092 et USA N° 2 997 454. Les matières tensio-actives, qui sont utilisées avec d'autres résines comme les polyoléfines pour leur donner des 40 propriétés anti-buées, ne conviennent pas avec les résines de 2 2000006 69 00002 chlorure de polyvinyle. En effet» elles affectent fâcheusement la stabilité thermique et détruisent parfois complètement le mélange stabilisant. Dans ce cas, il faut trouver une nouvelle formulation pour le stabilisant thermique et le produit anti-buées.. 5 Le brevet américain USA N° 3 048 263 décrit des agents anti-buées qui peuvent être ajoutés à des polyoléfines telles que le polyéthylène et le polypropylène. Il s'agit de monoglycérides d'acides gras dérivés des graisses ou de mélanges de mono- et diglycérides des mêmes acides. D'après ce brevet, ce sont les 10 monoglycérides qui agissent pour donner aux films de polyéthylène une résistance aux ouées. Les brevets britanniques N° 941 757 et N° 941 796, préconisent les monoglycérides d'acides gras, les esters et éthers de l'oxyde d'éthylène, les esters et éthers de sorcitan contenant au moins un radical d"oxyde d'éthylène ainsi 15 que les aminés et les amides contenant hu Eïioins deux radicaux d'oxyde d'éthylène, tous ces composés contenant au moins un radical acyle appartenant à un acide gras dérivé des graisses et contenant de 12 à 24 atomes de carbone» Ces agents anti-buées ne peuvent pas être utilisés en même temps que les stabilisants 20 habituels des résines de chlorure de polyvinyle, particulièrement celles destinées à l'emballage des matières comestibles parce qu'ils détruisent l'action des stabilisants. Selon la présente invention, des esters partiels de polyglycéryle avec des acides gras non saturés peuvent donner 25 aux résines de chlorure de polyvinyle des propriétés anti-buées tout en n'exerçant aucune action fâcheuse sur l'efficacité des stabilisants thermiques habituels. Par conséquent, l'invention permet d'obtenir des agents anti-buées pour les résines de chlorure de polyvinyle, ces agents contenant des esters partiels 30 de polyglycéryle- dont au maximum 75 % des radicaux hydroxyles sont estérifiés par des acides gras non saturés, ces agents pouvant contenir éventuellement d'autres composés adjuvants tels que plastifiants, stabilisants thermiques, stabilisants à la lumière ou autres produits habituellement ajoutés à ces résines. 35 Les résines de chlorure de polyvinyle contenant de tels agents anti-buées avec ou sans stabilisants thermiques ou à la lumière et autres additions jouissent de propriétés anti-buées et possèdent en même temps les propriétés particulières dues aux divérses ■ additions « 40 De préférence, la proportion des radicaux hydroxyles 69 0000? 3 2000006 des polyglycéryles estérifiés ne doit pas dépasser 50 %. Le degré d'estérification est déterminé en comparant l'indice d'hydroxyle et l'indice de saponification. Ainsi, si les indices d'hydroxyle et de saponification sont égaux, la moitié des 5 radicaux hydroxyles sont estérifiés. Si l'indice d'hydx-oxyle est le double de 1'indice de saponification, le tiers des radicaux hydroxyles est estérifié. Des méthodes pour déterminer les indices d'hydroxyle et de saponification se trouvent dans The Officiai and Tentative Methods of the American Cil Chemists* Society A.O.C.S. 10 Methods Cd-3-25 et Cd-13-60. Les agents anti-buées de l'invention sont pratiquement des 2-hydroxy-polyoxypropylène glycols estérifiés par un acide gras non saturé. Il y a au moins un radical hydroxyle estérifié par molécule ; d'autre part, au maximum 75 % des radicaux 15 hydroxyles sont estérifiés. Ces agents sont définis par la formule générale : (R-C-0)a (OH)b ° \ / 0 * ' R-C-C- ^-Ct^-CH-C^oJ nRx dans laquelle : - R est un radical d'un acide gras non saturé ayant environ de 20 8 à 24 atomes de carbone. Des exemples de R sont lauroléyl, oléyl, ricinoléyl, linoléyl, linolényl, myristoléyl, palmitoléyl, gadoléyl, pétroléyl, érucyl, cétoléyl, nervonyl et brassidyl } n est le nombre de radicaux glycéryl dans le polyglycérol ; 25 c'est un nombre compris entre 2 et environ 12, de préférence entre 2 et 8 ; a et b sont respectivement les nombres de radicaux esters et hydroxyles. La somme (a + b) est égale à n, le nombre total de radicaux hydroxyles dans le polyglycérol est (n + 2), 30 (b + 1) doit être au moins égal à 25 % de (n +2), de pré férence (b + 1) est égal a 50 % de (n + 2) R^ désigne un atome d'hydrogène ou un radical (R-C-O-). Comme exemples on citera les esters partiels oléyliques de polyglycérols ayant de 3 à .14 radicaux hydroxyles et de 2 à 35 environ 12 radicaux glycéryles dans le molécule ainsi que les esters correspondants de ricinoléyle, linoléyle, érucyle, palmitoléyle et myristoléyle. 4 2000006 69 00002 Plusieurs définitions de R sont possibles dans la même molécule : c'est le cas quand le polyglycérol est estérifié par un mélange d'acides. De semblables mélanges sont obtenus notamment à partir de produits naturels comme les huiles végétales telles 5 que : huile de graine de coton, huile de graine de lin, huile de graine de colza, huile d'olive, huile de soja. Les produits de l'invention peuvent contenir une certaine quantité d'esters saturés dans lesquels R désigne un radical d'un acide saturé tel que l'acide laurique ou l'acide stéarique. En général, la pro-10 portion des radicaux saturés R dans le produit de l'invention ne dépasse pas 40 % du total. Certaines huiles végétales naturelles ou partiellement hydrogénées peuvent contenir en mélange des stéarates et des esters non saturés comme les oléates ou les linoléates. Ces produits réagissent avec le polyglycérol sans éli-15 mination des acides saturés. Les esters partiels de polyglycérol sont compatibles avec les produits d'addition habituels des résines de chlorure de polyvinyle tels que plastifiants, stabilisants thermiques et stabilisants à la lumière. Dans certains cas, les esters partiels 20 de polyglycérol augmentent l'efficacité des produits d'addition. On sait, par exemple, que les composés époxydés augmentent la résistance des résines de chlorure de polyvinyle à la dégradation thermique, bien qu'ils soient inefficaces s'ils sont emfJoyés seuls. Cependant, quand un ester partiel de 25 polyglycérol de l'invention ne se trouve pas avec un stabilisant thermique habituel, il y a une action stabilisante. Ainsi, l'èster partiel de polyglycérol paraît devoir augmenter, la résistance à la dégradation thermique des résines de chlorure de polyvinyle contenant des composés époxydés. Par conséquent, 30 pareils mélanges.constituent- une réalisation avantageuse des agents anti-buées de l'invention. Comme composé époxydé (stabilisant et éventuellement plastifiant) on peut se servir de n'importe quel produit organique contenant au moins un radical époxy. On prend de O à 100 parties 35 de composé époxydé pour 100 parties de résine, suivant les résultats voulus. Il faut rappeler que les composés époxydés sont des plastifiants de ces résines. N'importe quel composé époxydé convient pour cet usage. Les composés époxydés sont en principe aliphatiques ou cycloali-40 phatiques mais des radicaux aromatiques, hétérocycliques ou 69 00002 5 2000006 alieycliquet peuvent être présents. Les composés époxydés ont de 10 à 150 atomes d'atomes de carbone environ. Des composés à longue chaîne sont en même temps des plastifiants. Comme composés époxydés ayant une action plastifiante faible ou nulle, on peut 5 citer les acides époxy-carboxyliques tels que l'acide époxy-stéarique et l'acide époxy-érucique, les glycidyl éthers des alcools et phénols polyhydriques tels que : la triglyciayl glycérine, le diglycidyléther du diéthylèneglycol, le glycidyléther d'époxystéaryle, le l,4-bis-(2,3-époxy-propoxy)-benzène, le 10 4,4'-bis-(2,3-époxy-propoxy)-diphényléther, le 1,S-bis-(2,3-époxy-propoxy) -octane, le 1,4-bis-(2,2-époxy-propoxy)-cyclohexane, le 1,3-bis-(4,5-époxy-propoxy)-5-chlorobenzène ; les époxy-polyéthers des phénols polyhydriques obtenus par réaction d'un phénol polyhydrique avec un époxydé haloaéné ou une aihalohydrine, 15 tels que les produits de réaction de résorcinol, de catéchol, d'hydroquinone, de méthylrésorcinol ou de phénols polynucléaires comme le 2,2-bis-(4-hydroxyphényl)-propane (Bisphénol A), le 2,2-bis-(4-hydroxyphényl)-butane, le 4,4S-dihydroxybenzophénone, ou le 1,5-dihydroxynaphtalène avec des époxydés halogénés tels 20 que le 3-chloro-l,2-époxybutane, le 3-chloro-l,2-époxyoctane ou l'épichlorhydrine. On trouvera plus loin une liste de composés époxydés qui sont à la fois stabilisants et plastifiants. Les stabilisants thermiques additionnels que l'on peut employer avec les esters partiels de polyglycérol comprennent 25 notamment les sels des acides monocarboxyliques et des métaux polyvalents, des métaux alcalins ou leurs mélanges. Les sels de métaux alcalins à employer dans ce but sont des sels de sodium, de lithium, de potassium, de rubidium ou de césium et d'acides carboxyliques ayant de 2 à environ 30 atomes 30 de carbone ou de mélange de ces acides ou de ces métaux. Les acides mono- ou polycarboxyliques sont aliphatiques, cycloaliphatiques, aromatiques ou hétérocycliques oxygénés. Ils peuvent être à volonté substitués par des atomes d'halogène ou de soufre et des radicaux hydroxyles ou sulfhydryles. Les acides 35 hétérocycliques oxygénés contiennent des atomes de carbone et d'oxygène dans le noyau, tels que les acides furoïques alkyl-substitués. Comme exemples de ces. acides, on mentionnera : l'acide caproïque, l'acide caprique, l'acide 2-éthylhexoxque, l'acide énanthique, l'acide caprylique, l'acide pélargonique, l'acide 40 hendécanoïquet l'acide laurique, l'acide tridécanoïque, l'acide , 2000006 69 00002 6 pentadécanoïque, l'acide margarique, l'acids araciiidique, l'acide heneicosanoïque, l'acide benhénique, l'acide tricosanoïque, l'acide tétracosanoïque, l'acide pentacosanoîque, l'acide céxotique, l'acide hephacosanoïque, l'acide octacosanoïque, l'acide nonacosa-5 noïque, l'acide triacontanoïque, l'acide subérique, l'acide azélaïque, l'acide séoacique, l'acide brassylique, l'acide thap-sique, l'acide 2-propyl-1,2,4-pentanêtricarboxylique, l'acide chlorocaproïcue, l'acide hydroxycaprique, l'acide stéarique, l'acide hydroxy stéarique, l'acide palmitique, l'acide oléique, 10 l'acide linoléique, l'acide myristique, l'acide oxalique, l'acide adipique, l'acide succinique, l'acide tartrique, l'acide alpha-naphtoxque, l'acide dodécyl thioéther propionique C,^S(CH^)^CŒJH l'acide hexahydrobenzoxque, l'acide benzoxque, l'acide phtalique, l'acide phénylacétique, l'acide téréphtalique, l'acide glutarique, 15 le monométhylsuccinate, l'acide isobutv®.bcnzaïque, le monoéthyl-ester de l'acide phtalique, l'acide évhylbenzoxque, l'acide isopropylbenzoïque, l'acide ricinoléique, l'acide maléique, l'acide fumarique, le maléate de mono-éthyle s l'acide p-t-butylbenzoxque, l'acide n-hexylbenzoxquel'acide salicylique, l'acide bêta-20 naphtoxque, l'acide bêta-naphtalène benzoxque, l'acide ortho-benzoylbenzoxque, les acides naphténiques dérivés du pétrole, l'acide abiétiques l'acide dihydroabiétique et l'acide méthylfuroîque. Les acides gras mixtes dérivés des huiles et graisses 25 alimentaires (dérivés, par exemple, du suif, de l'huile de noix de coco, de l'huile de graines de cotonP de l'huile de soja» de l'huile de mais et de l'huile d'arachides) sont particulièrement intéressants dans les mélanges de stabilisants non toxiques. Dans ce cas, les huiles d'où proviennent ces huiles peuvent être 30 hydrogénées. Peuvent également servir les fractions obtenues par distillation fractionnée de ces huiles. Les sels de métaux alcalins à préférer contiennent du sodium, du potassium ou du lithium et des acides gras monocarboxyliques ayant de 8 à 18 atomes de carbone. 35 Les sels de métaux polyvalents dérivent de n'importe quel acide gras aliphatique monocarboxyliqua ayant de. ,8 à 18 atomes de carbone^ Tous les acides mo no c s r bo ;p/l iq us ?. cités plus haut conviennento On peut se servir de mélanges d'acides et de métaux» N'importe quel métal polyvalent peut Stre utilisé. Les 40 meilleurs résultats sont obtenus avec le bsriuns, le calcium, le 7 2000006 69 00002 manganèse, le zinc, le cadmium, l'étain, le cuivre, le fer, le cobalt ou le .nickel ; le barium, le zinc, le calcium et l'étain étant préférables. Pour les stabilisants non toxiques on recommande le zinc, le magnésium et le calcium. 5 En choisissant des sels de métaux polyvalents non toxiques et des sels de métaux alcalins non toxiques ou leurs mélanges, on ootient des résines de chlorure de polyvinyle qui peuvent servir pour l'emballage de produits alimentaires. Etant données les propriétés anti-buées des esters 20 partiels de polyglycérol de l'invention, pareils mélanges non toxiques sont particulièrement intéressants. D'autres mélanges de sels de métaux polyvalents sont recommandables comme ceux qui sont décrits et revendiqués dans les brevets USA N° 3 003 998, 3 003 999 et 3 004 OOO. 15 Les phosphites organiques sont des stabilisants additionnels des résines de chlorure de polyvinyle. Ils peuvent contenir des radicaux alkyl, aryl, alkaryl, arylalkyl, cycloali-phatiques, hétérocycliques contenant de 1 à 20 atomes de carbone et de 1 à 3 hétéroatomes autres que l'azote. Ces phosphites sont 20 acides quand un ou deux atomes d'hydrogène sont reliés à l'atome de phosphore par un atome d'oxygène ; ils sont neutres quand toutes les valences sont saturées par les groupes organiques précédents qui peuvent être monovalents, bivalents ou trivalents, comme par exemple : 0-Ro / ^ R^-O-P 25 0-R3 dans laquelle R^, R£ et désignent un atome d'hydrogène ou un radical organique, l'un d'eux au moins étant un groupe organique. Quand les radicaux R sont bivalents ou trivalents, on peut avoir des noyaux hétérocycliques tels que 0 R/ P-0-R,-0H V ou des phosphites dimères tels que 0 0 / \ / \ r/ P-0-R4-0-P^ r4 X0' 0 30 *9 00002 8 2000006 où représente un radical bivalent dérivé d'un glycol ou d'un bisphénol ou d'un phénol hydrogéné. Comme exemples de phosphites organiques, on cite le phosphite de triphényle, le phosphite de diphényle, le phosphite .5 de monophényle, le phosphite de tricrésyle, le phosphite de tris-(diméthylphényle), le phosphite de tri-n-butyle, le phosphite de tris-(2-éthylhexyle), le phosphite de triisooctyle, le phosphite de diisooctyle, le phosphite de monoisooctyle, le phosphite de tridodécyle, le phosphite de diisooctyle monophényle, le phosphite 10 de mono-(2-éthylhexyle) diphényle, le phosphite de phényle néopentylglycol, le phosphite d'isooctyle propylèneglycol, le phosphite d'isooctyle diphényle, le phosphite de tris(p-t-octylphényle), le phosphite de tris-(p-t-nonylphényle), le phosphite de tris-(p-t-nonyl-o-crésyle), le bisphosphite de 15 diéthylèneglycol et bis-butylèneglycol, le phosphite de tribenzyle, le phosphite d'isobutyle dicrésyle, le phosphite d'isooctyle bis-(p-t-octylphényle), le phosphite de tris-(2-cy«lohexylphényle), le phosphite de tri-alpha-naphtyle, le phosphite de trifuryle, le phosphite de tri-tétrahydrofurfuryle, le phosphite de tricyclo-20 hexyle et le phosphite de tricyclopentyle. . Peut être également employé dans des mélanges stabilisants un sel d'un métal polyvalent et d'un phénol hydrocarbo-substitué. L'hydrocarbure substituant contenant de 4 à 24 atomes de carbone. Le métal peut être un métal alcalinoterreux ou un 25 autre métal polyvalent tel que cadmium, calcium, barium, bismuth, antimoine, plomb, zinc et étain. Parmi les phénolates de métaux polyvalents, on cite les phénolates de magnésium, de barium, de calcium, de strontium, de cadmium, de plomb, d'étain et de zinc du n-butylphénol, de l'isoamylphénol, de l'isooctylphénol, du 30 2-éthylhexylphénol, du t-nonylphénol, du n-décyl.phénol, du t-dodécylphénol, t-octylphénol, de l'ishexylphénol, de l'octa-décylphénol, du diisobutylphénol, du méthyl-propylphénol, du diamylphénol, du méthyl-isohexylphénol, du méthyl-t-octylphénol, du di-t-nonylphénol, du di-t-dodécylphénol, de l'orthophényl-35 phénol et du para-phénylphénol. Le phénolate métallique doit être compatible avec la résine et avec le plastifiant éventuellement employé. Sont également utiles comme stabilisants supplémentaires, les antioxydants phénoliques et notamment les phénols alkyl-40 substitués ayant de 6 à 30 atomes de carbone dont au maximum 69 00002 9 2000006 24 a oc rue s m car do ne dans le ou les groupes alkyliques. Les anti-oxyciducs phénol loue s peuvent être mono- ou polynucléaires. Ils peuvent contenir un radical arnino. Le nombre de radicaux alkyl vaziti de 1 à 5 , ixs sont de préférence en positions ortho ou 5 para par rapport -a l'hydroxyie phénolique. On préfère les phénols a empêchement slérique .yant des substituants alkyliques ou autres en chacune des positions ortho par rapport à l'hyaroxyle. Comme exemples d'anti-oxydants phénoliques, on cite : le phénol, le résorcinol, le catéchol, 1'eugénol, le pyrogallel, 10 le crésol, 1'alpha-naphtol, le p-octylphénol, le bêta-naphtol, le p-dodécylphénol, le p-octadécylphénol, le p-isooctyl-m-ciésol, le p-isohexyl-o-crésol, le 2,6-di-t-butylphénol, le 2,6-ai-isoprcpylphénol, le 2,6-di-t-butyl-p-crésol, le méthylène-bis-(2,6-di-t-butylphéncl), le 2,2-ois~(4~hydroxyphényl}-propane, le 15 méthylène-bis-(p-crésol;, le 4,45-thiobisphénol,-le 4,4-méthylène-bis-(2-t-butyl-6-méthylphénol) le cyclohexylidène-bis-(2-t-butylphénol) ; le 4,4'-thio-Dis-(3-méthyl-ô-t-butylphénol), le 2,2-thio-bis-{4-méthyl-6-t-»rjutyiphénol}, le 2,6-di-isooctyl-résorcinol, le 4-octylnhyrogallol et le 3,5-di-t-butylcatéchol. 20 Parmi les aminophénols il y a le 2-isooctyl-p-aminophénol, le N-stéaroyl-p-aminophénoi, le 2,6-di-isobutyl-p-aminophénol et le N-éthylhexyl-p-aminophénol. En général, les propriétés anti-buées des produits de l'invention suffisent pour les résines de chlorure de polyvinyle 25 contenant de 0,1 à 10 parties en poids d'ester partiel de polyglycérol et 100 parties de résine. On préfère prendre de 0,5 à 5 parties environ. On ajoutera éventuellement de 0,025 a 10 parties en poids d'un stabilisant thermique ou d'un mélange de tels stabilisants ; les proportions préférables étant de 0,5 à 5 30 parties pour 100 parties de résine. On peut aussi ajouter des stabilisants à la lumière du type habituellement employé avec les résines de chlorure de polyvinyle. D'excellents stabilisants à la lumière sont des produits 35 contenant le radical 2-hydroxybenzophénone et l'acyloxybenzo-phénone et éventuellement des produits portant.des substituants inertes sur l'un ou l'autre noyau phénolique ou encore sur les deux noyaux, les substituants étant surtout des radicaux alkyl, acyl, alkoxy et hydroxyle. On a par exemple, le 2,2'-di-40 hydroxybenzophénone, le linoléyl-2,2'-dihydroxybenzophénone. BAD ORIGINAL 69 00002 2000006 D'autres stabilisants à la lumière, également utiles, sont les o-hydroxybenzotriazoles , les hyuroxyaryl-1,3,0-lriaziii s les dérivés de l'acide dialkylhydroxybenzoï'que, les phénylsali cy la tes et les hydroxybenzyloxybenzophenones décrits dans le brevet canadien N° 752 902 déposé le i2 Septembre 1962. On peut consulter aussi le brevet USA N° 3 261 791. L'invention s'applique a n'importe quelle résine de chlorure de polyvinyle. L1expression "chlorure de polyvinyle" comprend tout polymère ayant au moins la suite récurrente X f -=CH - C -I i Cl X et contenant au moins 40 % de chlorée Dans cette suite, X désigne un atome d'hydrogène ou de chlore», ] es ho mo polymères de chlorure de vinyle. tous les X sont de>~ atomes d'hydrogène. L'expression "Chlorure de polyvinyle" désigne donc non seulement les homopolymères de chlorure de vinyle mais aussi les chlorures de polyvinyle chlorés tels que décrits"dans le orevet britannique N° 893 288 déposé le 23 Décembre 1958 et publié le 4 Avril 1962 au nom de Goodrich ainsi que les copolymères .de chlorure de vinyle et d'autres monomères copolymérisables en proportions moins importantes tels que les copolymères de chlorure de vinyle et d'acétate de vinyle, les copolymères de chlorure de vinyle avec les acides maléique et fumarique ou leurs esters et les copolymères de chlorure de vinyle avec le styrène» L'invention s'applique également aux mélanges contenant uns proportion importante de chlorure de polyvinyle et d'autres résines synthétiques telles que le polyéthylène chloré et le copolymère acrylonitrile, butadiène et styrène0 Les produits anti-buées de l'invention, avec ou sans stabilisants supplémentaires, sont d'excellents stabilisants aussi bien pour les résines plastifiées que non plastifiées. Les produits contenant moins de 10 % de plastifiant sont considérés comme des résines rigides ; les produits contenant de 10 à 15 % de plastifiant sont considérés comme des résines semi-rigides « Une quantité de plastifiant comprise entre 15 et 100 parties sn poids pour 100 parties de résine permettra d'obtenir un chlorure de polyvinyle plastifié de type courante Quand on ajoute des bad original 69 00002 " 2000006 plastifiants, ceux-ci peuvent être incorporés selon les méthodes habituelles. -On utilise des plastifiants normaux tels que le phtalate de dioctyle, le sébacate de dioctyle et le phosphate de tricrésyle. 5 Des plastifiants particulièrement avantageux sont les esters supérieurs époxydés contenant de 20 à environ 150 atomes de carbone. Ces esters dérivent de produits ayant une insaturation dans l'acide ou dans l'alcool nécessaire à la préparation des esters. 10 Des exemples d*acides non saturés sont les acides oléique, linoléique, linolénique, érucique, ricinoléique et brassidique ; ils peuvent être estérifiés avec des alcools mono-ou polyhydroxyliques de manière à obtenir un produit contenant le nombre d'atomes de carbone voulu. Des alcools monohydroxyliques 15 sont, par exemple, l'alcool butylique, l'alcool 2-éthylhexylique, l'alcool laurylique, l'alcool isooctylique, l'alcool stéarylique, et l'alcool oléylique. Les alcools octyliques sont à préférer. Des alcools polyhydroxyliques sont, par exemple, le pentaérythritol le glycérol, 1'éthylèneglycol, le 1,2-propylèneglycol, le 1,4-buty-20 lèneglycol, le néopentylglycol, l'alcool ricinoléique, l'érythritol le mannitol et le sorbitol. Le glycérol est à préférer. Ces alcools peuvent être totalement ou partiellement estérifiés par l'acide époxydé. Sont également utiles les mélanges époxydés des acides gras supérieurs se trouvant dans les huiles naturelles 25 telles que l'huile de soja époxydée, l'huile d'olive époxydée, l'huile de graines de coton époxydée, les esters époxydés des acides gras de l'huile de tall, l'huile de noix de coco époxydée et le suif époxydé. Parmi celles-ci on préfère l'huile de soja époxydée. 30 Les alcools, à chaînes longues ou courtes, peuvent contenir un groupe époxy et les acides peuvent être à chaînes longues ou courtes. On cite comme exemples l'acétate d'époxystéary-le, le stéarate de glycidyle et le méthacrylate de glycidyle polymérisé. 35 On peut ajouter une petite quantité, généralement pas plus de 0,1 % d'un agent de partage ou lubrifiant. Des lubrifiants habituels sont des acides aliphatiques supérieurs et leurs sels contenant de 12 à 24 atomes de carbone tels que l'acide stéarique, l'acide pentachlorostéarique, l'acide laurique, l'acide palmiti-40 que et l'acide myristique, les huiles lubrifiantes minérales, le 5 10 15 20 25 30 9 35 40 69 00002 2000006 stéarate de polyvinyle, le polyéthylène et la cire de paraffine. La préparation des résines de chlorure de polyvinyle stabilisées avec les esters partiels de polyglycérol s'effectue selon les procédés habituels. Le stabilisant choisi, ainsi que le plastifiant éventuel, est mélangé avec la résine sur des rouleaux malaxeurs à une température suffisante pour rendre la masse fluide, ce qui simplifie l'homogénéisation. La température varie de 121 à 232° C. Un malaxage d'une durée de 5 minutes suffit généralement pour obtenir un mélange homogène que l'on lamine en feuilles d'épaisseurs voulues. Les esters partiels de polyglycérol, utilisés dans les exemples, sont définis par leurs indices de saponification et leurs indices d'hydroxyle. Il s'agit évidemment de valeurs moyennes étant donné que les esters partiels sont des mélanges complexes où coexistent des produits de poids moléculaires différents et d'indices s'étendant dans des limites assez variables. Ainsi, un produit estérifié à 50 % contient des parties estérifiées à 25 % et à 75 % et même une faible proportion est estérifiée à ÎOO % tandis qu'une autre ne l'est pas du tout. Dans les exemples, les échantillons sont soumis aux essais suivants :' Essai I . On met contre la bouche une feuille à essayer Essai II On met 25 ml d'eau à 25° C dans un récipient ayant une ouverture de 10 cm. On tend sur cette ouverture une feuille à essayer d'une épaisseur de 0,075 mm que l'on fixe au moyen d'un caoutchouc. On place le toût dans une enceinte refroidie à 4° C. On observe les échantillons quand une buée se forme. Dans les exemples, on indique toutes les parties en On prépare une série de résines de chlorure de polyvinyle d'une épaisseur de 0,5 mm. On respire par la bouche et on note quand une buée se forme sur la surface. poids. Exemple 1 dont la composition est : - Homopolymère de chlorure de vinyle 100 p Diamond 450 - Plastifiants Phtalate de dioctyle 35 p. 15 p. 1,5 p. Huile de soja époxydée - Agent anti-buée Voir Tableau I On mélange les produits précédents dans un malaxeur à 69 00002 2000006 2 rouleaux et a une température de 177° C pendant 3 minutes. On lamine le oroduit en feuilles de 0,075 et C,5 mm d'épaisseur. Le Tableau I donne les résultats obtenus TABLEAU I Echant. Agent anti-buée Essai I Essai II Témoin A Néant Buée moins de 30 sec. Témoin B Monooléate de Buée moins de 30 sec. Giyeéryle Exemple I Oléate de x Pas de pas de buée polyglycéryle kX' buée après 1 heure (x) L'oléate de oolyglycéryle contient en moyenne 3 unités de 10 giyeéryle par molécule» L'indice de saponification est égal à 140 et l'indice d'hydroxyle est égal à 300„ Le Témoin As --ai ne contient pas d'agent anti-buée et le Témoin B, qui contient d'j monooléate de giyeéryle, agent anti-buée faisant partie de la technique antérieure,, ne donnent pas de 15 résultats satisfaisants dans tous les essais. Dans l'exemple I> on introduit de l'oléate de polyglycéryle» produit de l'invention, et on ne constate pas de formation de buée même après une heure, dans l'essai II. Exemple 2 20 On prépare une série de résines de chlorure de poly vinyle destinées à l'emballage de la viande et contenant divers émulsifiants comme agents anti-buée» - Homopolymère de chlorure de vinyle 100 p„ Diamond 450 25 - Plastifiants- Adipate de dioctyle 35 p. Huile de soja époxydée 16,55 p. - Stabilisants- Stéarate de calcium 0,20 p. Stéarate de zinc 0,15 p. 2,6-di-p-t-butyl-p-crésol 0,10 p. 30 - Agent anti-buée Voir Tableau II 1,5 p. On commence par mélanger les stabilisants et l'agent anti-buée ; on introduit la résine et puis les plastifiants. Comme dans l'exemple 1, on obtient des feuilles de 0,075 et 0,5 mm d'épaisseur. On les soumet aux essais I et II. 35 Le Tableau II donne les résultats obtenus. 69 00002 14 2UUU0U6 TABLEAU II —- Echent. Agent, anti-buée Témoin C Gléate de polyoxy-éthylène sorbitan (Tween BO) Témoin D Monooléate de giyeéryle (Emcoi G.:.:OP) 5 Exemple 2 Oléste de polyglycéryle (x) Essai I Buée Buée Pas de buée Essai II moiris de 30 sec» moins de 30 sec. pas de buée après 1 heure 15 (x) L'oléate de polyglycéryle contient :m moyenne 10 unités de giyeéryle par molécule, Lsindice d e s a po n i ï i l s t ±o n e st de 135- et l'indice d'hydroxyle de 230» La comparaison des résultats des Témoins C et D avec 10 l'exemple 2 montre la supériorité des estera partiels de polyglycéryle comr.e agents anti-bués -an présence des staoilisants normaux des résines de chlorure de poi,-vinyle servant à l'emballage des aliments. Exemple 3 On prépare des résines de chlorure de polyvinyle ayant les compositions suivantes t. - Homopolymère de chlorure de vinyle XOO p„ - Plastifiant - Phtalate de dioctyle 50 p. - Stabilisant - Stéarate de zinc ' 0,5 p. 2,6-di-t-butyi-p-crésol 0,1 p. - Agent anti-buée Voir Tableau III ls5 p. La préparation des feuilles de 0,075.et 0,5 mm d'épaisseur se fait comme précédemment. On soumet les feuilles aux essais I et II. On découpe des échantillons de 2,5 x 2,5 cm 25 que l'on met dans une étuve à 177° C pour déterminer la stabilité thermique. Les résultats se trouvent dans le Tableau III. 20 30 ,Essai I E s s s i II TABLEAU III Témoin E buée moins de 30 sec. Exemple 3 (x) Pas de buée. Pas de buée après une heure 69 00002 2000006 Stabilité th'ermique 0 min. 5 min. 10 min. 15 min. 20 min. 25 min. Témoin E incol. transp. . noir noir noir noir noir Exemple 3 (x) incol. transp. incol.-transp. incol. transp. incol. transp. taches noires noir 10 15 20 25 30 35 (x) Le Témoin E contient du monooléate de giyeéryle. L'exemple 3 contient de l'oléate de polyglycéryle ayant en moyenne 4 unités de giyeéryle par molécule, un indice de saponification de 141 et un indice d'hydroxyle de 275. La comparaison du Témoin E et de l'exemple 3 confirme la supériorité des produits de l'invention comme agents antibuée. Pour ce qui concerne la stabilité thermique, le Témoin E devient noir après 5 minutes de chauffage à 177° C tandis que le produit de l'exemple 3 est encore incolore et transparent après 15 minutes. On peut en conclure que les produits de l'invention sont en même temps des stabilisants thermiques des résines de chloruré de polyvinyle. Exemple 4 On prépare des résines de chlorure de polyvinyle ayant les compositions suivantes - Homopolymère de chlorure de vinyle Diamond 450 - Plastifiants - phtalate de dioctyle huile de soja époxydée - Stabilisants - Stéarate de zinc 2,6-di-t-butyl-p-crésol - Agent anti-buée Voir Tableau IV 100 p. 35 p. 15 p. 0,5 p. 0,1 p. 1,5 p. On procède comme précédemment. Le Tableau IV donne les résultats. Essai I Essai II TABLEAU IV Témoin F Buée moins de 30 secondes Exemple 4 (x) Pas de buée pas de buée après 1 heure 69 00002 2000006 Témoin F Exemple 4 (x) 10 15 20 25 30 Stabilité thermique (191° C) 0 min. 15 min. 30 min. 45 min. 60 min. 75 min. incol. transp. incol. transp. jaune pale jaune pale jaune clair jaune clair noir jaune noir jaune et noir noir noir (x) Le Témoin F contient du monooléate de giyeéryle (Emcol GMOP), L'exemple 4 contient de l'oléate de polyglycéryle ayant en moyenne 4 unités de giyeéryle par molécule, un indice de saponification de 141 et un indice d'hydroxyle de 275. La comparaison du Témoin F et de l'exemple 4 montre l'augmentation de résistance thermique à 191° C de la résine contenant le produit de l'invention. Le Témoin F devient noir après 45 minutes, alors que le produit de l'exemple 4 est encore jaune ; il ne dévient noir qu'après 75 minutes. La supériorité de l'action anti-buée est démontrée par les essais I et II. Exemple 5 On prépare dçs résines de chlorure de polyvinyle ayant les compositions suivantes : - Homopolymère de chlorure de vinyle 100 p. (poids moléculaire moyen) - Plastifiants - Adipate de dioctyle 20 p. Huile de soja époxydée 15 p. ». - Phosphite de tri-nonylphényle 1,0 p. - Anti-buée et stabilisant Voir Tableau V 1,5 p. On procède comme précédemment. Le Tableau V donne les résultats. TABLEAU V 35 - Huile de soja époxydée - Stéarate de zinc - 2,6-di-t-butyl -p-crésol - Stéarate de calcium - Oléate de polyglycéryle (x) Essai I Essai II Témoin G 1,16 p. 0,15 p. 0,075 p. 0,115 Buée Buée immédiate Exemple 5 0,175 p. 0,250 p. 0,075 p. 1,00 p. Pas de buée Pas de buée après 1 heure 69 00002 17 2000006 Stabilité G min. 15 min. 30 min. 45 min. 60 min. 75 min. 90 min. 105 min. 120 min. thermique à 191° C Témoin G incol. transp. jaune clair jaune jaune foncé jaune foncé jaune foncé jaune foncé jaune foncé jaune foncé Exemple 5 incol. transp. jaune très clair jaune clair jaune jaune jaune jaune foncé jaune foncé jaune foncé avec coins noirs. (x) L'oléate de polyglycéryle contient en moyenne 4 unités de giyeéryle par molécule ; l'indice de saporaiication est égal à 141 et l'indice d'hydroxyle est égal à 275. En comparant le Témoin G et l'exemple 5, on constate que le produit de l'invention est plus actif que celui de la technique antérieure non seulement comme anti-buée mais aussi comme stabilisant thermique. Il y a lieu de remarquer que l'exemple 5 ne contient qu'un sel métallique. Or, il est bien connu que le stéarate de calcium exerce une action synergique. On en conclut qu'une amélioration plus grande est obtenue avec l'oléate de polyglycéryle qui est le produit selon l'invention. Exemple 6 On prépare une résine de composition - Homopolymère de chlorure de vinyle 100 p. - Plastifiants - Phtalate de dioctyle 35 p. Huile de soja époxydée 15 p. - Stabilisants - Oléate-stéarate de zinc 0,25 p. 2,6-di-t-butyl-p-crésol 0,10 p. - Produit de glycérolyse du polyglycérol 1,5 p. et de l'huile de graines de coton Indice de saponification = 132 Indice d'hydroxyle = 255 On procède comme dans l'exemple I. Aucune buée ne se forme dans les essais I et II. On en conclut que les esters partiels de polyglycérol dérivés des huiles non saturées sont également efficaces comme agents anti-buée pour les résines de chlorure de polyvinyle. 69 00002 is 2000006 Exemple 7 On prépare des résines de compositions suivantes - Homopolymère de chlorure de vinyle 100 p. Diamond 450 5 - Plastifiants - Phtalate de dioctyle 20 p» Huile de soja époxydée 15 p. - Stabilisants - Stéarate de calcium 1,0 p. Stéarate de zinc 0,25 p. 2,6-di-t-butyl-p-crésol 0,075 p. - Agent anti-buée composé de PGO (oléate de. 1,5 p. polyglycéryle.comme dans l'exemple 3 et 20 de PGS (stéarate de polyglycéryle) On opère comme dans l'exemple 2. Le Tableau VI donne les résultats de l'essai I» TABLEAU VI 15 PGS PGO % PGO Essai I A 0 0 0 Buée B 0 1,5 100 Pas de buée C 1,5 0 0 Buée D 0,75 0,75 50 Buée _ E 0,5 1,0 67 Pas de buée F 1,0 0,5 33 Buée G 1,25 0,25 16,7 Buée H 0,25 1,25 83,3 Pas de buée 20 Du Tableau VI, il résulte que 40 % environ d'esters partiels de polyglycéryle dérivés d'acides gras saturas peuvent 25 être mélangés aux esters partiels dérivés d'acides gras,non saturés sans provoquer une diminution de 1£ action anti-buée des produits de l'invention. - REVENDICATIONS - 1. Produit, anti-buée pour résine de chlorure de polyvi-30 nyle augmentant la résistance à la formation de buées ainsi qu*à la dégradation thermique, caractérise par le fait qu'il contient d'une part un ester partiel- dsun-polyglycérol avec un acide aliphatique non saturé ayant environ de 8 à 24 atomes de carbone et dont au maximum 75 % des radicaux hydroxyles du polyglycérol 35 sont estérifiés-et d''autre part un composé époxydé ayant-environ de 10 à 60 atofties de carbone.- • 2. Produit anti-buce pour résine de chlorure de polyvi- 69 00002 19 2000006 nyle selon 1, dans lequel l'agent ânti-buée est un oléate de polyglycéryle ayant de 2 à environ 12 radicaux giyeéryle et de 2 à environ 12 radicaux hydroxyles libres par molécule. 3. Produit anti-buée pour résine de chlorure de polyvi-5 nyle selon 1, dans lequel au maximum 50 % des radicaux hydroxyles de l'ester partiel sont estérifiés. 4. Produit antibuée pour résine de chlorure de polyvinyle selon 1, dans lequel le composé époxydé est un plastifiant époxydé des résines de chlorure de polyvinyle. 10 .5. Produit anti-buée pour résine de chlorure de polyvi nyle selon 1, dans lequel le composé époxydé est une huile de soja époxydée. 6. Composition stabilisante de résine de chlorure de polyvinyle augmentant la résistance à la formation de buées ainsi 15 qu'à la dégradation thermique et contenant (l) un ester partiel d'un polyglycérol avec un acide non saturé ayant environ de 8 à 24 atomes de carbone et dont au maximum 75 % des radicaux hydroxyles du polyglycérol sont estérifiés ; (2) un composé époxydé ayant environ de 10 a 60 atomes de carbone et (3) un 20 stabilisant thermique de résine de chlorure de polyvinyle. 7. Composition stabilisante de résine de chlorure de polyvinyle selon 6, dans laquelle au maximum 50 % des radicaux hydroxyles de l'ester partiel sont estérifiés. 8. Composition stabilisante de résine de chlorure de 25 polyvinyle selon 6, dans laquelle le stabilisant thermique est un sel d'un acide gras et d'un métal polyvalent. 9. Composition stabilisante de résine de chlorure de polyvinyle selon 8, dans laquelle le métal polyvalent est le zinc. 30 10. Composition stabilisante de résine de chlorure de polyvinyle selon 8, dans laquelle le métal polyvalent est le calcium. 11. Composition stabilisante de résine de chlorure de polyvinyle selon 6, contenant un phosphite organique. 35 12. Composition stabilisante de résine de chlorure de polyvinyle selon 6, contenant un antioxydant phénolique. 13. Résine de chlorure de polyvinyle ayant une résistance améliorée à la formation de buée contenant (l) une résine de chlorure de polyvinyle ayant une tendance à se couvrir de buées 40 et (2) un ester partiel d'un polyglycérol avec un acide alipha- 69 00002 20 2000006 tique non saturé ayant de 8 à 24 atomes de carbone environ et dont au maximum 75 % des radicaux hydroxyles du polyglycérol sont estérifiés, cet ester se trouvant en quantité suffisante pour augmenter la résistance à la formation de buées. 5 14. Résine de chlorure de polyvinyle selon 13, dans la quelle au maximum 50 % des radicaux hydroxyles de l'ester partiel sont estérifiés. 15. Résine de chlorure de polyvinyle selon 13, dans laquelle se trouve un ester partiel d'un polyglycérol avec un 10 acide aliphatique monocarboxylique saturé ayant environ de 8 a 24 atomes de carbone en quantité ne dépassant pas environ 60 moles pour ÎOO moles d'ester partiel d'un polyglycérol avec un acide aliphatique non saturé. 16. Résine de chlorure de polyvinyle selon 13, dans 15 laquelle se trouve un ester partiel de polyglycérol et d'acide oléiaue. 17. Résine de chlorure de polyvinyle ayant une résistance améliorée -à la formation de buées et à la dégradation thermique contenant (l) une résine de chlorure de polyvinyle et 20 (2) une composition stabilisante selon 1. .18. Résine de chlorure de polyvinyle ayant une résistance améliorée à la formation de buées et à la dégradation thermique contenant (l) une résine de chlorure de polyvinyle et (2) une composition stabilisante selon 6. 25 19. Résine de chlorure de polyvinyle ayant une résistan ce améliorée à la formation de buées et à la dégradation thermique contenant (l) une résine de chlorure de polyvinyle et (2) une composition stabilisante selon 8. 20. Résine de chlorure de polyvinyle ayant une meilleure 30 résistance à la formation de buées et à la dégradation thermique contenant (l) une résine de chlorure de polyvinyle et (2) une composition stabilisante selon 11. 21. Résine de chlorure de polyvinyle ayant une meilleure résistance à la formation de buées et à la dégradation thermique 35 contenant (1) une résine de chlorure de polyvinyle et (2) une composition stabilisante selon 12.
Controllable coolant pump A controllable coolant pump driven by a belt pulley for internal combustion engines is equipped with a valve slide. A seal is disposed on the outer edge of the wall plate between the plate and the outer cylinder of the valve slide. At least one additional flow outlet opening is disposed on the pump housing, the outlet volume stream of which openings can be additionally controlled, aside from the controllable volume stream that exits from the flow exit opening. The flow outlet opening from which the controllable outlet volume stream exits is connected with an outflow opening disposed near the rear wall of the valve slide, in the pump chamber rear wall, via an outflow channel. The outflow opening is enclosed by a ring seal disposed in the pump chamber rear wall, which enters into operative engagement with the valve slide in its rear end position. CROSS REFERENCE TO RELATED APPLICATIONS This application is the National Stage of PCT/DE2012/000846 filed on Aug. 17, 2012, which claims priority under 35 U.S.C. §119 of German Application No. 10 2011 113 040.7 filed on Sep. 9, 2011, the disclosure of which is incorporated by reference. The international application under PCT article 21(2) was not published in English. The invention relates to a controllable coolant pump driven by way of a belt pulley, for internal combustion engines. In the course of constant optimization of internal combustion engines with regard to the lowest emissions and low fuel consumption, warming up of the engine after a cold start, as quickly as possible, has great importance. The following interrelationships come to bear in this. The viscosity of the oil decreases with an increasing oil temperature, and, at the same time, the friction at all oil-lubricated moving components also decreases. At the same time, after what is called the “start-up temperature,” the catalysts also become active, so that it is aimed at to further shorten this time window, in order to thereby guarantee that the catalysts become effective quickly. Experiments within the scope of engine development have shown that a very effective measure for faster engine warm-up is the “standing water” during the cold-start phase. For this reason, the coolant volume situated in the water jacket of the cylinder block should not be exchanged during the cold-start phase, in order to prevent any unnecessary heat transport. Likewise, the cylinder head should also not have coolant flowing through it during the cold-start phase, in order to bring the exhaust gas temperature to the desired level as quickly as possible. In order to bring about this fastest possible engine warm-up, switchable coolant pumps were introduced in past years, with great success, which make it possible to reduce the coolant volume stream that exits from the pump to “zero” during the cold-start phase. A design of this switchable pump that has proven itself in practice was also disclosed by the applicant in WO 2009/143832 A2. During the further course of engine development, with the target direction of further lowering of fuel consumption, what are called split-cooling systems are increasingly being used at this time. In these new systems, the cylinder head and the cylinder block are supplied with an individually controlled coolant stream, by way of separate connectors. The background of these systems is the fact that the cylinder block should preferably experience higher coolant temperatures than the cylinder head. The oil-lubrication friction locations in the cylinder block (i.e. the piston module and the crankshaft bearings) cause greater friction losses, because of the reduced oil viscosity at higher working temperatures. For the cylinder head, in contrast, the requirement exists, after the engine has warmed up (i.e. after the cold-start phase), to reliably protect the valve crosspieces, which are subject to thermal stress, by means of good cooling, and furthermore to bring about good filling of the combustion chamber. In the state of the art, cooling systems or distributor devices for the cooling system of internal combustion engines, having split-cooling concepts, were already described in DE 44 07 984 A1 and in DE 44 32 292 A1, which allow individual flow through the cylinder head and the cylinder block. The significant disadvantage of these systems described in DE 44 07 984 A1 and also in DE 44 32 292 A1 is not only the great equipment technology effort, which necessarily requires not only the coolant pump but also separate lines and valves in the cooling circuit, which can then be opened or closed as needed, but also the great construction volume connected with these systems. A more recent solution of the split-cooling systems was described in MTZ [Motortechnische Zeitschrift=Technical Motor/Engine Journal] June 2011 on page 473. Here, the valves required to control the volume streams are brought together in the pump housing; two electrically driven rotary slide valves are required for this purpose. In this solution, too, the equipment technology effort and the construction volume are enormous. This solution is also eliminated for many engine applications, if only due to the great required construction volume. Furthermore, a cooling system for liquid-cooled internal combustion engines is known from EP 2 169 233 A2, having a multi-flow coolant pump, the pump flows of which are assigned to separate coolant circuits, in each instance, and in which at least one of the pump flows can be changed, with regard to the conveying output, by means of a valve slide. Furthermore, a controllable coolant pump is known from DE 10 2009 036 602 A1, having an inlet channel, a pump wheel, and a displaceable valve slide disposed on the outer circumference of the pump wheel, which pump is characterized in that at least three outlet channels that proceed in spiral shape from the pump wheel are disposed in the pump housing, whereby the valve slide always controls, i.e. opens or closes all three outlet channels at the same time. The invention is therefore based on the task of developing a controllable coolant pump that can be driven by way of a belt pulley, which eliminates the aforementioned disadvantages of the state of the art, and, in this connection, on the one hand guarantees optimal warm-up of the engine during the cold-start phase, by means of complete “zero leakage,” and, at the same time, on the other hand allows individually controllable flow of coolant through cylinder head and cylinder block, at a low drive power, with minimal equipment technology effort and the smallest possible construction space requirement, i.e. even with a very limited installation space for the coolant pump in the engine space, in order to guarantee optimal, demand-appropriate, individual cooling of cylinder block and cylinder head both during the cold-start phase and in ongoing operation, so that not only the cylinder block but also the cylinder head can be run at optimal working temperatures, in individually controllable manner, so that the friction losses, the fuel consumption and also the emission of pollutants are clearly reduced over the entire working range of the engine, whereby the solution to be developed, in special designs, is supposed to guarantee not only separate, individually controlled coolant supply to cylinder head and cylinder block, but also, at the same time, without great additional effort and construction space, continuous cooling of the exhaust gas recirculation. According to the invention, this task is accomplished by means of a controllable coolant pump for internal combustion engines, driven by way of a belt pulley, in accordance with the characteristics of the independent claim of the invention. Advantageous embodiments, details, and characteristics of the invention are evident from the dependent claims and from the following description of the solution according to the invention, in connection with the three representations of two different designs of the solution according to the invention. FIG. 1shows the controllable coolant pump according to the invention, in a design for individually controlled coolant supply to cylinder head and cylinder block and simultaneous continuous coolant supply to the exhaust gas recirculation, for example, in a side view, in section, with the position of the valve slide in a center position. A pump shaft5, driven by a belt pulley, for example, is disposed in a pump housing1having a flow entry region2and a flow exit opening3for exit of a controllable conveyed volume stream, in a pump bearing4. An impeller wheel6is disposed at the free, flow-side end of this pump shaft5, so as to rotate with it. The pump chamber rear wall7is situated between the impeller wheel6and the pump bearing4. A wall plate8is disposed between the impeller wheel6and the pump chamber rear wall7, fixed in place on the housing. A working cylinder9is disposed on the circumference of the pump shaft5, fixed in place on the housing, in the pump housing1, in which cylinder a working piston10is movably disposed, activated by control pressure. The rear wall12of a valve slide13having an outer cylinder14is disposed on the working piston10. This outer cylinder14, which is variably movable using the working piston10, now covers the outflow region15of the impeller wheel6, as a function of the control pressure. A reset spring11is disposed between the wall plate8fixed on the housing and the working piston(s)10that can be moved in the longitudinal pump shaft direction or the valve slide13that is connected with the working piston10, which spring guarantees precise, reproducible positioning of the outer cylinder14at the outflow region15of the impeller wheel6, as a function of the control pressure. It is essential to the invention that a seal18is disposed on the outer edge17of the wall plate8, between the edge and the outer cylinder14of the valve slide13. This seal18prevents flow around the valve slide13in the region of the outer edge17of the wall plate8and thereby allows separate pressure buildup in front of and behind the wall plate8. According to the invention, two further flow outlet openings16are disposed on the pump housing1, whereby the outlet volume stream that exits from one of the flow outlet openings16cannot be controlled, and here serves for continuous coolant supply to the exhaust gas recirculation. The outlet volume stream that exits from the other flow outlet opening16can be controlled, along with the controllable volume stream that exits from the flow exit opening3. It is characteristic that the flow outlet opening16from which the non-controllable outlet volume stream exits is directly connected with an outlet connector20disposed in the wall plate8, by means of an outlet channel19, in the pump housing1. It is also essential to the invention that the other flow outlet opening16, from which not only the controllable volume stream that exits from the flow exit opening3but also a controllable outlet volume stream exit, is connected with an outflow opening22disposed in the region of the rear wall12of the valve slide13, in the pump chamber rear wall7, by way of an outflow channel21, whereby this outflow opening22is enclosed by a ring seal23disposed in the pump chamber rear wall7, which enters into operative engagement with the valve slide13in the rear end position of the latter. The solution according to the invention makes it possible that even when the outer cylinder14of the valve slide13lies against the housing in the front end position, i.e. when the outer cylinder14of the valve slide13covers the outflow region of the impeller wheel, an uncontrolled coolant volume stream along the inner wall of the outer cylinder14, by way of the outlet connector20, into the outlet channel19, for cooling of the exhaust gas recirculation, is guaranteed, as it is, of course, in every other position of the valve slide, as well. The two aforementioned controllable volume streams of the coolant pump according to the invention are integrated, according to the invention, into an individual through-flow of cylinder head and cylinder block of an internal combustion engine, as follows. The controllable volume stream that exits from the flow exit opening3serves for separate, controlled coolant supply to the cylinder head, and the controllable outlet volume stream that furthermore exits from the controllable coolant pump according to the invention by way of the outflow opening22and the outflow channel21disposed in the pump chamber rear wall7serve for separate, controlled coolant supply to the cylinder block. In the design shown inFIGS. 1 and 2, the control pressure in the working cylinder(s)9is generated for defined displacement of the valve slide13by a working pump25disposed outside of the pump housing1, and controlled by way of a working valve26disposed outside of the pump housing1. In the cold-start phase, the valve slide13is first moved into the front end position, so that the outer cylinder14of the valve slide13lies against the housing. This position of the valve slide is not shown in any of the twoFIGS. 1 and 2. In this front end position, the valve slide brings about the result that both of the controllable volume streams that exit from the coolant pump according to the invention,i.e. the controllable volume stream that exits from the flow exit opening3,and the controllable outlet volume stream that exits by way of the outflow opening22disposed in the pump chamber rear wall7and the outflow channel21 are completely regulated. This front end position of the valve slide guarantees fast engine warm-up during the cold-start phase by means of the “standing water,” thereby avoiding any unnecessary heat transport, so that rapid warm-up of all modules of the engine is guaranteed during the cold-start phase. After the operating temperature of the cylinder head has been reached in the cold-start phase, the valve slide moves into the rear end position under a partial load, by means of spring reset. Through-flow and cooling of the cylinder head are now released, while through-flow of the cylinder block continues to be prevented. In this manner, the oil temperature can be further increased at the relevant friction locations such as the piston module and crankshaft bearing, despite active cylinder head cooling, and thus the viscous oil friction can be further reduced. Only once the oil temperature reaches the predetermined limit value is the valve slide moved into a defined intermediate position, and thereby demand-appropriate cooling of the cylinder block and of the cylinder head is released. As a result of the spring reset of the valve slide, through-flow of the cylinder block is prevented when the internal combustion engine is shut off, and as a result, the stored heat energy can be stored longer and is available again when the engine is started again. This positive effect is particularly active if what is called an electrical over-run pump is used, which serves for cooling components subject to great thermal stress, such as the turbocharger. Even in the case of active over-run cooling, the stored heat of the engine block is maintained and contributes to a reduction in fuel consumption when the engine is started again. One of these possible defined intermediate positions of the valve slide, which are moved to within the scope of demand-appropriate cooling of the cylinder block and of the cylinder head, is the center position shown inFIG. 1, for example, whereby the demand appropriate through-flow of cylinder head and cylinder block, as explained, is guaranteed as a function of the position of the valve slide, in each instance. FIG. 2now shows the controllable coolant pump according to the invention fromFIG. 1, with continuous coolant supply to the exhaust gas recirculation by way of the outlet channel19, with a section that lies somewhat differently, in a side view. The section line is selected, in thisFIG. 2, in such a manner that now a path measurement sensor24disposed in the pump housing becomes visible, which serves to precisely detect the position of the valve slide, in each instance, in order to control the valve slide by way of regulating the control pressure of the working pump25, in such a manner that demand-appropriate individual coolant supply to cylinder head and cylinder block is guaranteed. InFIG. 2, the valve slide is now situated in its rear end position and lies against the ring seal23disposed in the pump chamber rear wall7there, in its transition region from the outer cylinder14into the rear wall12, from the press-down pressure of the reset spring11, and thereby closes the outflow opening22disposed in the pump chamber rear wall7, forming a seal. This position of the valve slide, shown inFIG. 2, in its rear end position, brings about very good cooling of the cylinder head in accordance with the required current coolant demand, in each instance, in the case of a non-cooled cylinder block (cool head and warm feet). InFIG. 3, another design of the controllable coolant pump according to the invention, for individually controlled coolant supply to cylinder head and cylinder block is now shown in section, in a side view. This solution shown inFIG. 3represents a further development of the design of a controllable coolant pump already disclosed by the applicant in WO 2009/143832 A2, which has proven itself in practice for many years, in which the control pressure in the working cylinder9is generated for defined displacement of the valve slide13, by a working pump25disposed in the pump housing1, and is controlled by way of a working valve26disposed in the pump housing1. The solution shown inFIG. 3now allows, as was already explained in connection withFIGS. 1 and 2, demand-dependent individually controlled separate coolant supply to cylinder head and cylinder block. In this representation, the valve slide13is again in a center position, analogous toFIG. 1. The path measurement sensor24also shown inFIG. 3, in operative engagement with the working pump25disposed in the pump housing1and the working valve26also disposed in the pump housing1, guarantees, by means of precise detection of the working position of the valve slide13, in each instance, in connection with precise regulation of the control pressure of the working pump25, that the coolant supply to cylinder head and cylinder block can be individually controlled as a function of demand. In the case of the design shown inFIG. 3, as well, the controllable volume stream that exits from the flow exit opening3serves for separate controlled coolant supply to the cylinder head, and the additional controllable outlet volume stream that also exits from the controllable coolant pump according to the invention, by way of the outflow opening22disposed in the pump chamber rear wall7and the outflow channel21, serves for separate controlled coolant supply to the cylinder block. The explanations concerning the method of effect and the function of the controllable coolant pump according to the invention, in connection withFIGS. 1 and 2, apply in the figurative sense also for the design shown inFIG. 3. It is possible that the cylinder block can be operated at a higher coolant temperature, as compared with the cylinder head, during ongoing operation, by means of the solution according to the invention, thereby clearly reducing not only the pollutant emissions but also the friction losses and the fuel consumption over the entire working range of the engine. By means of the solution presented here, separate coolant supply to cylinder head and cylinder block can be guaranteed with the least construction space requirement, i.e. even in the case of very greatly limited installation space for the coolant pump in the engine space. At the same time, reliable activation of the valve slide is always guaranteed, at very low drive power. In the case of the design shown inFIG. 3, as well, not only can separate, individually controlled coolant supply to cylinder head and cylinder block be guaranteed, by means of placing an outlet connector20in the wall plate8and connecting this outlet connector20with a flow outlet opening16, by way of an outlet channel19(analogous to the representations inFIGS. 1 and 2), but so can continuous cooling of the exhaust gas recirculation (as was already explained in connection withFIGS. 1 and 2). REFERENCE SYMBOL LIST
ùi uuûui ï 2000007 L'invention concerne un compteur binaire à grande vitesse de rétablissement. Bien que l'on connaisse déjà les compteurs binaires à fluide t.™pe dans lequel on dispose en cascade une paire d'amplifica-i?- bis tables, il faut reconnaître que les compteurs connus jusqu'à ce jour ne possédaient pas une sensibilité suffisante à la pression et n'étaient pas indépendants de la charge à la sortie ) ils nécessitaient en outre des impulsions d'entrée bien définies, ainsi que diverses autres containtes. On voit donc que ces comp-10 teurs présentaient de nombreux inconvénients dans les applications pratiques. On appelle amplificateur bistable du type "Lock-on" (ou à blocage), un amplificateur dans lequel le jet de puissance ou l'impulsion d'entrée sa bloque sur l'une ou l'autre des parois 15 d'une chambre d'interaction,, ledit jet de puissance étant sensiblement dirigé en totalité vers l'un ou l'autre des deux orifices de sortie, en réponse aux signaux de fluide appliqués aux ajutages de commande. Une porte exclusive ou "inhibiteur" est un dispositif à 20 fluide dans lequel le jet de puissance est intercepté par un passage de sortie unique. Ce dispositif possède un ajutage de commande tel que le jet peut être dévié de l'orifice de sortie et dirigé vers l'atmosphère. Une porte ET, est un dispositif à fluide dans lequel un jet 25 de puissance est habituellement dirigé vers l'une des deux sorties. Le jet est dévié vers l'autre sortie lorsque des impulsions de fluide sont reçues par l'ajutage de commande, en provenance des deux sources différentes. Un dispositif à impulsions peut être l'un de ceux décrits 30 dans le brevet français N° 1.528.142, délivré au nom de la demanderesse. Ce peut être aussi tout dispositif à fluide produisant une impulsion, dans lequel ladite impulsion, d'une durée finie, peut être obtenue en réponse à un signal ayant une durée quelconque excédant l'impulsion de sortie prédéterminée. 35 La présente invention a pour but de fournir un compteur bi naire à fluide, simple, direct, robuste et bon marché, possédant une grande sensibilité aux fortes pressions et n'exigeant pas de signal d'impulsion d'entrée de valeur parâlfcement définie et dont le fonctionnement est indépendant de la charge à la sortie et 69 00003 2 2r00007 résolvant en outre les inconvénients émanérés ci-dessus. En résumé, le dispositif selon l'irisation est un compteur binaire à grande vitesse de rétablissement, ayant une grande sensibilité à la pression et dont le fonctionnement ne dépend pas de 5 la charge à la sortie. Ce compteur binaire -aoeporte un amplificateur biâable, deux portes exclusives et un dispositif d'impulsions de fluide, délivrant des impulsions d'un signal de durée prédéterminée. La sortie de chacune des pestes exclusives est reliée aux orifices de commande opposés de 1jamplificateur bistable, tandis 10 que 1'entrée des portes exclusives est reliée â la sortie du dispositif d'impulsions. Une réaction, en provenance des sorties de l'amplificateur bistable, est dirigée vçz-s les orifice» de commande des portes exclusives„ Dans une sesende forme de réalisation, il peut être prévu d'utiliser cle-s poî-;es ET à la place des 15 portes exclusives» Les caractéristiques ci-dessus, ainsi que d'autres caractéristiques secondaires de 1'invention, assortiront de façon plus détaillée dans la description ci-après de Zovms particulières d@ 1'invention, données à titre indicatif et non limitatif, en réfé-20 rence aux 'dessins en annexe sur lesquels s - la Pig. I représente une vue selxSfa&'éîQue d'une forme de réalisation du compteur binaire selon l'intention - - la Fig„ 2 est une vue schématique d'une, autre forme fie réalisation - 25 Sous l'expression "fluide", on entend dans la présente des cription s tout fluide compressible, tel que l'air, l'azote, ou autre gaz, ou tout fluide incompressible, tel que Ie eau ou d3au~ très liquides. Les fluides compressibles, ainsi que les fluides incompressibles considérés„ peuvent contenir des matières solides, JO L'invention n'est en outre pas limitée à l'utilisation d'un fluide particulier. La Fig. I représente une forme de réalisation d'un compteur binaire selon la présente invention, qui comprend s un amplificateur bistable I0; et une paire de portes exclusives 12 et l4„ 35 L'amplificateur à fluide 10 comporte un jet de puissance ou ajutage d'entrée I6S une paire de passages de sortie 18 et 20 et quatre ajutages de commande 22, 24, 26 et 28. L'orifice -d'entrée 16 de l'amplificateur bistable est .relié k \m® source d® fluide convenable 30. La porte exclusive 12 ccsaipor-te un orifice d'entrée 69 00003 3 2000007 32, un passage de sortie 34 et un ajutage de commande 36. La porte exclusive 14 présente un orifice d'entrée 38# un passage de sortie 40 et un ajutage de commande 42. Un dispositif d'impulsions de fluide 44 fournit un signal 5 de fluide, dont la durée est finie et réglable, au niveau du passage de sortie 46. Des signaux sont fournis par la source 48 et appliqués, d'une part vers l'ajutage de commande 50, et d'autre part, à travers la ligne à retard 54, vers l'ajutage de commande 52. Un jet de puissance est émis à partir de l'entrée du 10 Jet 56 et traverse habituellement un passage de sortie 58. Le dispositif d'impulsions de fluide 44 utilisé est analogue à celui décrit dans le brevet précédemment cité. Un passage de sortie 46 du dispositif à impulsions de fluide 44, est relié aux orifices d'entrée 32 et 38 des portes exclu-15 sives 12 et 14, respectivement, par l'intermédiaire des passages 60. Un ajutage de commande 36 de la porte exclusive 12 est relié au passage de sortie opposé 20 d'un amplificatair bistable 10, par l'intermédiaire du passage 62 et l'ajutage de. commande 42 de la porte exclusive 14 est-relié au passage de sortie opposé 18 de 20 l'amplificateur à fluide 10, par l'intermédiaire du passage 64. Le passage de sortie 20 de 1*amplificateur bistable 10 est relié, par l'intermédiaire du passage 66, à un dispositif d'utilisation convenable 68, tel que l'indicateur d'un compteur binaire. Un tel système indicateur peut consister en un dispositif à volet 25 d'affichage, qui compte et indique le nombre d'impulsions de fluide reçues. Le passage 70 est relié au passage de sortie 18 de l'amplificateur bistable 10 et est habituellement relié à l'étage suivant du compteur, non représenté. Le débit de fluide délivré dans le passage 70 sera utilisé à l'entrée de l'étage suivant. 30 Le fonctionnement du compteur binaire représenté sur la Fig. I est le suivant : Un jet de puissance, provenant d'une source convenable, traverse l'entrée 56 du dispositif d'impulsions de fluide 44, et ressort par le passage 58. Ce dispositif est-du type monostable dans lequel le jet de puissance continuera à circu-35 1er à travers le passage de sortie 58 tant qu'il ne sera pas dévié vers le passage de sortie 46 sous l'effet d'un signal émis par l'ajutage de commande 50. Lorsqu'un signal est émis depuis la source 48, une fraction de celui-ci s'écoule à travers l'ajutage de commande 50 et provoque la déflexion du jet de puissance vers le 69 00003 4 2000007 passage de sortie 46, tandis que l'autre fraction de ce signal est contrainte de traverser la ligne à retard 54, pour sortir à travers l'ajutage de commande opposé 52. Lorsque la seconde fraction du signal atteint l'ajutage de commande 52 où il est émis, 5 le jet de puissance se met à battre et passe à nouveau à travers le passage 58. La durée de l'impulsion émise à travers le passage entre de sortie 46 est déterminée par la différence/le temps nécessaire à la première fraction du signal pour s'écouler à travers l'ajutage de commande 50 et le temps qui est nécessaire pour que la 10 seconde fraction du même signal traverse la ligne à retard 54 et s'écoule à travers l'ajutage de commande 52. On voit donc facilement que la durée de l'impulsion émise à travers le passage de sortie 46 peut etre réglée à une valeur prédéterminée en agissant de façon convenable sur la longueur des conduits que parcourt le 15 fluide avant d'aboutir aux ajutages de commande 50 et 52. Un jet de puissance en provenance de la source 30 est émis à travers l'orifice d'entrée 16 de l'amplificateur bistable 10. Pour le besoin de la description, on supposera au départ que ce jet de puissance traverse le passage de sortie 18. Dès qu'un 20 signal de fluide arrive en provenance de la source 48, une impulsion de durée prédéterminée est émise à travers la sortie 46. Cette impulsion est transmise, par les passages 60, vers les orifices d'entrée 32 et 38 des portes exclusives 12 et 14, respectivement. Puisque le jet de puissance émis à travers l'orifice 25 d'entrée 16 de l'amplificateur bistable 10 s'écoule à travers le passage de sortie 18, une partie de celui-ci est dérivée, par l'intermédiaire du passage 64, vers l'ajutage de commande 42 de la porte exclusive 14. La fraction de l'impulsion qui s'écoule par l'orifice d'entrée 38 de la porte exclusive 14 sera déviée 50 par le courant de réaction à travers l'ajutage de commande 42 et sera dirigée vers l'atmosphère. La fraction de l'impulsion qui s'écoule par l'orifice d'entrée 32 de la porte exclusive 12 pénétrera dans le passage de sortie 34 de la porte exclusive 12 et sera émise depuis l'ajutage de commande 22 de l'amplificateur 35 bistable 10. Cette fraction ne sera pas déviée puisqu'aucun fluide ne sera émis par l'ajutage de commande 36 de la porte exclusive 12 en ce point à ce moment. Lorsque l'impulsion est émise par l'ajutage de commande 22 de l'amplificateur à fluide 10, le jet de puissance qui s'écoule par l'orifice d'entrée 16 se met à 69 00003 5 2000007 battit ete passage de sortie 18 vers le passage de sortie 20, par suite le courant à travers le passage de réaction 64 s'arrête et un circuit de réaction analogue s'établit à travers le passage de réaction 62 vers l'ajutage de commande 36 de la porte exclusive 5 12, Le restant du courant traversant le passage 66 sera dirigé vers le dispositif d'utilisation 68 et détecté par ce dernier. Lorsque l'impulsion suivante sera transmise à travers le passage de sortie 46 du dispositif à impulsions de fluide 44, elle sera de façon analogue dirigée vers les deux dérivations 10 du passage 60 et sera émise à travers les orifices d'entrée 32 et 38 des portes exclusives 12 et 14. Cette fois-ci cependant, la fraction de l'impulsion qui s'écoule par l'orifice d'entrée 32 sera déviée par le courant de réaction émis à travers l'ajutage de commande 36 de la porte exclusive 12, et sera déversée 15 dans l'atmosphère, tandis que la fraction de l'impulsion qui s'écoule par l'orifice d'entrée 38 de la porte exclusive 14 sera interceptée par le passage de sortie 40 et sera émise par l'ajutage de commande 26 de 1'amplificateur bistable 10. De-cette façon, le jet de puissance en provenance de l'orifice d'entrée 16 de 20 l'amplificateur 10 se mettra à battre du passage de sortie 20 vers le passage de sortie 18, à partir duquel le cycle recommencera à nouveau. Si l'on se reporte encore à la Fig. I, on voit qu'une seconde paire d'ajutages de commande 24 et 28 ont été prévus dans l'am-i25 plificâteur bistable 10, pour exciter et restaurer le compteur binaire de la présente invention. Pour les besoins de la description, on supposera que le "0" correspond au fonctionnement lorsque le fluide traverse le passage 70, et que le "I" correspond au fonctionnement lorsque le fluide traverse le passage 66 en direc-30 tion de l'appareil utilisateur 68. Lorsqu'on désire restaurer le compteur, on le ramène à l'état "0" ; un signal de fluide est dirigé depuis une source convenable, non représentée, à travers l'ajutage de commande de restauration 28 de l'amplificateur 10. Ceci obligera le jet, émis depuis l'orifice d'entrée 16, soit à 35 continuer de s'écouler à travers le passage 18, soit à basculer du passage de sortie 20 vers le passage de sortie 18, s'il se trouvait à être en train de circuler à travers le passage de sortie 20. D'autre part, lorsqu'on désire préexciter le compteur binaire, un signal d'excitation est délivré à partir d'une source 69 00003 6 2000007 convenable, non représentée, à travers 1'ajutage de commande d'excitation 24. Cette manoeuvre amènera le jet de puissance émis depuis l'orifice d'entrée 16, soit â continuer de circuler à travers le passage de sortie 20, soit à basculer depuis le 5 passage de sortie 18 vers le passage de sortie 20, si le courant était initialement établi dans le passage de sortie X@„ façon, le dispositif d'utilisation détectera pjî signal tant la valeur "I". Il faut noter que le dispositif d'impulsions de fluide %% 10 doit fournir une impulsion dont la duré® est inférieure à la somme du temps de commutation de l'amplificateur bistable 10 et du temps de réaction à travers les passages 62 et 64 f pour empêcher l'oscillation du compteur. Une autre forme de réalisation ûe la présente invention est 15 représentée sur la Fig. 2, où l'on wit que les portes exclusives de la Fig. 1 ont été remplacées par ûmb portes ET 72 et 74c La porte ET 72 comporte un orifice dfentrée 76, une pair© de passages de sortie 78 et 80, un ajutage de commande 82. Le 3et de puissance délivré par une source convenable 83 est émis à travers 20 l'orifice d'entrée 76 et circule normalement dans le passage de sortie 80. L'ajutage de commande 82 est relié à deux sources de signaux et le dispositif est conçu de telle sorte qusun sigaal provenant des deux sources à la fois doit être présent pour pro-» voquer la déviation du jet de puissanee depuis le passage de 25 sortie 80 vers le passage de sortie 1T 780 Le passage de sortie 80 débouche dans l'atmosphère., tandis que le passage de sortie 78 est relié à un ajutage de commande 22 de 1'amplificateur bistable 10. Un courant du signal de coramande est fourni par l'intermédiaire du passage de réaction 845 relié d'une part au passa» 30 ge de sortie 18 de l'amplificateur bistable 10, et d'autre part à l'ajutage de commande 82 de la porte ET 72. L'autre source du courant de signal de commande est fournie par l'intermédiaire du dispositif à impulsions de fluide 44 à travers les deux dérivations du passage 86. 55 De façon analogue, la porte ET 74 présente un orifice d'en trée 88, une paire de passages de sortie 90 et 92, et ira ajutage de commande 94. Le passage de sortie 92 de la port© ET 74 débouche dans l'atmosphère, tandis que le pasEr-g® de -sorti® •ET 9© est relié à l'ajutage de ceaaaanâe 26 ûe i.eamplificateur"Mstable 10. 69 00003 7 2C00007 L'ajutage de commande 94 de la porte ET 74 est relié à la fois au passage de sortie 20 de l'amplificateur bistable 10 à travers le passage de réaction 96 et à la sortie du dispositif d'impulsions de fluide 44, par l'intermédiaire du passage 86^ L'orifi-5 ce d'entrée 88 est relié à une source convenable 97 de fluide. Le fonctionnement de cette firme de réalisation du compteur binaire est le suivant : Pour faciliter la description, on supposera qu'au départ le jet de puissance qui s'écoule par l'orifice d'entrée 16 traverse le passage de sortie 18. En con-10 séquence, une fraction de ce jet de puissance sera dérivée par l'intermédiaire du passage de réaction 84 et sera émise à travers l'ajutage de commande 82 de la porte ET 72. La porte ET est conçue de telle sorte que le jet de puissance qui s'écoule par l'orifice d'entrée 76 sera émis à travers le passage de sor-15 tie 80, à moins qu'un signal ne parvienne depuis deux sources, au niveau de l'ajutage de commande 82, au quel cas le jet de puissance sera dévié vers l'orifice de sortie ET 78. Par conséquent, lorsqu'une impulsion de fluide est délivrée par l'intermédiaire du dispositif d'impulsions 44, elle est transmise à 20 travers le passage 86 vers les ajutages de commande 82 et 94 des portes ET 72 et 74 respectivement. Puisque la porte ET 74 nécessite la présence d'un signal en provenance du dispositif d'impulsions de fluide 44 et d'un signal de réaction en provenance du passage de sortie 20 de l'amplificateur bistable 10, avant que 25 son jet de puissance ne soit dévié du passage de sortie 92 vers lè passage de sortie ET 90, elle ne sera pas affectée par la fraction de l'impulsion de fluide en provenance du dispositif 44 seul. D'autre part, lorsque la fraction du signal en provenance du dispositif 44 traverse l'ajutage de commande 82 de la porte 30 ET 72, elle se combine avec l'impulsion de réaction qui traverse le passage 84 et oblige le jet de puissance de la porte ET 72 à basculer du passage de sortie 80 vers le passage de sortie ET 78, au quel cas elle est transmise, par l'intermédiaire de l'ajutage de commande 22 de l'amplificateur bistable à fluide. A ce moment, 35 le jet de puissance traversant le passage de sortie 18 de l'amplificateur 10 basculera vers le passage de sortie 20, et par conséquent une fraction de celui-ci sera réinjectée par l'intermédiaire du passage de réaction 96 vers l'ajutage de commande 94 de la porte ET 74. Lorsque l'impulsion suivante sera délivrée par 69 00003 8 2000007 le dispositif d'impulsions 44, elle n'affectera pas le courant traversant la porte ET 72 comme il a été décrit plus haut. Cependant elle se combinera avec le signal de réaction traversant le passage 96 et sera émise à travers l'ajutage de commande 94 de 5 la porte ET 74, obligeant le jet de puissance à basculer du passage de sortie 92 vers le passage de sortie ET 90. Ce signal traversera l'ajutage de commande 26 de l'amplificateur 10 et provoquera la déviation du jet de puissance du passage de sortie 20 vers le passage de sortie 18. Le dispositif d'utilisation 68 10 détectera ces impulsions de la même façon que précédemment et les comptabilisera. Il est bien évident que l'on s'est contenté de décrire le fonctionnement d'un seul étage de compteur binaire et que si l'on désire des niveaux de comptage supérieurs, il sera nécessaire de 15 prévoir une pluralité d'interconnexions de tels étages, selon tout moyen connu. Il est bien évident que les paramètres de configuration des dispositifs à fluide spécifiques que l'on pourrait envisager, dépendent au moins de la densité du fluide utilisé, de la tempé-20 rature de fonctionnement, de la pression, ainsi que des caractéristiques du jet de sortie au niveau du point d'utilisation. Bien que la présente description ait été faite à partir de formes particulières de réalisation, il est bien évident que l'on peut y apporter de nombreuses modifications dans les détails 25 sans sortir pour autant du cadre de l'invention. 69 00003 9 2000007 - REVENDICATIONS - Il est revendiqué, comme faisant l'objet de l'invention : 1°) Un compteur binaire à fluide, caractérisé par le fait qu'il est constitué des éléments suivants : 5 a) Un amplificateur bistable, comportant un orifice d'en trée, une paire de passages de sortie et une pluralité d'ajutages de commande ; b) Un premier dispositif à fluide, comportant un ajutage de commande et au moins un passage de sortie, un passage de sortie 10 dudit dispositif étant relié à l'un des ajutages de commande de l'amplificateur bistable j c) Un second dispositif à fluide, comportant un ajutage de commande et au moins un passage de sortie, un passage de sortie dudit dispositif étant relié à l'un'des ajutages de com- 15 mande dudit amplificateur bistable à l'opposé de l'ajutage de commande considéré en b) i d) Un dispositif d'impulsion de fluide, comportant un passage de sortie pour délivrer des impulsions d'un signal de fluide vers les premier et second dispositifs précités ; 20 e) Un premier passage de réaction- relié, d'une part à un passage de sortie dudit amplificateur bistable, et d'autre part à l'ajutage de commande dudit premier dispositif à fluide ; f) Un second passage de réaction relié, d'une part à l'autre passage de sortie dudit amplificateur bistable, et d'au- 25 tre part à l'ajutage de commande dudit second dispositif à fluide. 2*) Une forme de réalisation du compteur binaire selon la revendication I, dans laquelle les dispositifs à fluide considérés sont des portes exclusives, comportant chacune un orifice d'entrée, un ajutage de commande et un passage de sortie, le passage 30 de sortie du dispositif à impulsions de fluide étant relié aux deux orifices d'entrée des portes exclusives. « 10 69 00003 2000007 3°) Une forme de réalisation du compteur binaire, selon la revendication I, dans laquelle les dispositifs à fluide considérés sont chacun des portes ET, comportant un orifice d'entrée, un ajutage de commande permettant la liaison à deux sources de si-Ç gnaux de fluide, un passage de sortie ET et un second passage de sortie, remarquable notamment par les liaisons suivantes des éléments entre eux : a) Le passage de sortie ET de la première porte ET est relié à un ajutage de commande de l'amplificateur bistable, tan- 40 dis que le passage de sortie ET de la seconde porte ET est relié à l'ajutage de commande de l'amplificateur bistable, situé à l'opposé du précédent ; b) Le premier passage de dérivation est effectué entre l'ajutage de commande de la première porte ET et la sortie cor- j|£ respondante de l'amplificateur bis ta aie j c) Le second passage de dérivation est effectué d'une part entre l'ajutage de commande de la seconde porte ET et d'autre part son passage de sortie correspondant de l'amplificateur bistable j 20 d) Le passage de sortie du dispositif d'impulsion de flui de est relié à chacun des ajutages de commande des première et seconde portes ET. 4°) Un compteur binaire, suivant l'une des revendications I, 2 ou 3# comportant en outre des moyens permettant d'assurer l'excitais" tion et la restauration dudit compteur. 5°) Un compteur binaire, suivant l'une des revendicatiôns I, 2 ou 3, et 4, prolongé par un dispositif d'utilisation comptabilisant les impulsions délivrées.
Card edge connector with detecting structure A card edge connector includes an ejector (3) with a pushing portion (32) extending from distal end thereof, the ejector (3) moves between an opening station and a locking station, and at least pair detecting contacts (4) which includes two detecting pins (41, 42), one of the detecting pins defines a spring engaging arm having an engaging portion (425) opposite to the pushing portion (32) which presses on the engaging portion (425) in the locking station or leave the engaging portion (425) in the opening station, thereby making the two detecting pins engage or disengage with each other for detecting if a memory card is inserted in the card edge connector or not. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a card edge connector, and more particularly to a card edge connector with detecting structure. 2. Description of the Related Art Card edge connector is usually assembled on a mother board and then engages with a daughter board for interconnecting between the two boards. U.S. Pat. No. 7,922,506 issued to Harlan et al. on Apr. 12, 2011, discloses a card edge connector having an insulative housing and a plurality of contacts retained in the insulative housing. The insulative housing defines an inserting slot for receiving the daughter board. Each of the contacts includes a retaining portion retained in the sidewall, a contacting arm extending into the inserting slot from one end of the retaining portion for contacting with the daughter board and a soldering tail extending outwards to the insulative housing from another end of the retaining portion for connecting with and extending through the mother board. The contacting arms of the contacts are arranged in two rows in a width direction of the sidewall, respectively being received in two sidewalls disposed at both sides of the inserting slot. However, if the daughter board is not inserted in the inserting slot correctly, the user can not be remaindered in time because of the daughter board has been disposed in an internal of the card edge connector. Therefore, an improved card edge connector are desired to overcome the disadvantages of the related arts. SUMMARY OF THE INVENTION An object of the present invention is to provide a card edge connector with detecting function because of added detecting structure. In order to achieve the above-mentioned object, a card edge connector for engaging with a memory card in accordance with a preferred embodiment of the present invention includes a longitudinal insulative housing having a pair of sidewalls and an inserting slot therebetween for receiving the memory card and a receiving opening communicating with the inserting slot, a plurality of contacts arranged two arrays along a longitudinal direction, an ejector being mounted into the receiving opening and comprising a pushing portion extending towards the insertion slot from distal end thereof, the ejector movably engages with the insulative housing and thus moves between an opening station in which the memory card is permitted inserted into or pushed outwards and a locking station in which the memory card is positioned in the inserting slot, and at least pair detecting contacts which includes a first detecting pin and a second detecting pin received and retained in corresponding receiving slots formed by the insulative housing, the second detecting pin defines a spring engaging arm having an engaging portion protruding to the insertion slot and opposite to the pushing portion which presses on the engaging portion in the locking station or leave the engaging portion in the opening station, thereby making the second detecting pin engage or disengage with the first detecting pin for detecting if the memory card is inserted in the card edge connector or not. DETAILED DESCRIPTION OF THE INVENTION Reference will now be made to the drawing figures to describe the preferred embodiments of the present invention in detail. Referring toFIGS. 1 and 2, a card edge connector100is adapted to be mounted on a printed circuit board (PCB) (not shown) and then engage with a memory card (not shown) for interconnecting between both thereof. The card edge connector100includes a longitudinal insulative housing1, a plurality of contacts2retained in the longitudinal insulative housing1, an ejector3movably engaging with the insulative housing1and thus moving between an opening station in which the memory card is permitted inserted into or pushed outwards and a locking station in which the memory card is positioned in the card edge connector100, and at least one pair of detecting contacts4retained in the insulative housing1for detecting whether the memory card is inserted into the card edge connector100or not. The insulative housing1includes a pair of longitudinal sidewalls11opposite to each other in a width direction thereof and a pair of tower portions12upwards integrally protruding from both ends of the sidewalls11, thereby forming an inserting slot101for receiving the memory card. The tower portion12has a receiving opening121for receiving the ejector3and an engaging recess123concaved from two opposite inner walls of the receiving opening121for locking the ejector3therein when the ejector3is disposed at the locking station. The ejector3is mounted into the receiving opening121and includes a base portion30, a pair of rotating shafts31protruding from both sides of the base portion30and pivoting in a pair of shaft hole122formed by the tower portion12, a pushing portion or kicker32extending towards the insertion slot101from one end of the base portion30in the opening station for pushing the memory card outwardly, an operating portion33disposed at distal end of the ejector3and a locking portion or locker34disposed at opposite end of the operating portion33and extending towards the insertion slot101from another end of the base portion30for locking the memory card. The insulative housing1defines a plurality of receiving grooves110for receiving the contacts2therein. The contacts2are arranged two arrays along a longitudinal direction, while opposite to each other in the width direction, respectively being disposed at both sidewalls11. Each of the contacts2includes a retaining portion21retained in the insulative housing1, a contacting arm22extending into the inserting slot13upwardly from one end of the retaining portion21and having a protecting portion221engaging on receiving grooves110for limiting the contacting arm22moving overly and a first contacting portion222for contacting with the memory card and a soldering tail23extending outwards from another end of the retaining portion21for being soldered to the PCB. Referring toFIGS. 3 to 5, the detecting contacts4are retained in the tower portion12and occupy original structure of the card edge connector100, i.e. do not need change present lay-out on the PCB. The pair of detecting contacts4includes a first detecting pin41and a second detecting pin42both received in corresponding receiving slots124of the tower portion12and opening downwards for making the detecting contacts4being mounted upwards to the receiving slots124. The first detecting pin41and the second detecting pin42are both bended from metal strips and are spring for being capable of engaging or disengaging with each other. The first detecting pin41includes a main body411received in the tower portion12, a retaining portion412extending from the main body411and positioned in the tower portion12, a soldering tail413extending outwards from the main body411for positioning on the PCB, a positioning portion414extending from one side of the main body411for preventing the first detecting pin41from moving in the longitudinal direction and an second contact portion415extending from another side of the main body411and movable engaging with a spring engaging arm420formed by the second detecting pins42. The second detecting pins42has a similar structure and also defines a main body421, a retaining portion422, a soldering tail423and a positioning portion424, except the above-mentioned spring engaging arm420extending one side of the main body421and being different from the engaging portion415. The soldering tails413,423both define an arc-shaped locking sections (respectively marked as4131,4231) for elastically extending through and steadily locking on the PCB. The spring engaging arm420includes an engaging portion425protruding into the insertion slot101and opposite to the pushing portion32of the ejector3, a third contact portion426moveable contacting with and opposite to the second contact portion415, i.e. the contact portion426engage or disengage with the second contact portion415because the engaging portion425moving along with the ejector3. The pushing portion32includes an inner section320extending towards the insertion slot101for engaging with the memory card in the opening station and an outer section321opposite to the inner section320and thus pressing on the engaging portion425of the second detecting pin42in the locking station. When the ejector3is turned outwards and disposed at the opening station in which the pushing portion32leaves the engaging portion, the second contact portion415and the third contact portion426are both in original status and disengage with each other, the memory card is permitted to insert into the insertion slot101. When the memory card is inserted into the insertion slot101, the memory card pushes downwards the pushing portion32for driving the ejector3rotate to the locking station. The outer section321of the pushing portion32presses on the engaging portion425which moves and drives the third contact portion426engage with the second contact portion415because of a pressing force (marked as arrow F) generated by the pushing portion32, the locking portion34presses on the memory card until the memory card is received in the insertion slot101. The base portion30further defines a protruding tuber301engaging with the engaging recess122for locking the ejector3in the locking station. When the ejector3is again turned outwards, the memory card is pushed outwards by the inner section320of the pushing portion32which withdraws the pressing force F pressing on the second detecting pins42. The second contact portion415and the third contact portion426disengage with each other again. The PCB defines an LED light which electrically connects with the first detecting pin41and the second detecting pin42, thereby forming a series circuit or a parallel circuit. If it is a series circuit, the first detecting pin41and the second detecting pin42form a switch controlling the LED light off or on. When the first detecting pin41and the second detecting pin42are connected, the LED light is turn on for telling user the memory card is inserted. Otherwise the LED light is turn off for telling user the memory card is taken out. If it is a parallel circuit, the first detecting pin41and the second detecting pin42are disposed on one divided circuit and work as a switch for making the LED light disposed on the other divided circuit be short or not, then controlling the LED light be on or off. Referring toFIG. 6, in another embodiment, a first detecting pin51and a second detecting pin52respectively defines a pin-shaped soldering tails511,521different from the soldering tails413,423in the first embodiment for easily being mounted in the PCB. The first detecting pin51and a second detecting pin52also worked as a switch in a series circuit or a parallel circuit for reminding user if the memory card is inserted or not. It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the board general meaning of the terms in which the appended claims are expressed.
i/'ir.yein.ion a essentiellement p4ur objet un dispositif de contrôle destiné à éviter le pompage ou l'engorgement d'un compresseur tel qu'un compresseur axial à 'tage rultiple utilisé comme organe d'entrée d'un noteur à turbine-5 Dans le domaine des compresseurs axiaux à étages nultioles, il est connu d'utiliser un mécanisme de conmnde de dérivation ou de prélèvement d'air, disposé notamment "à la sortie ou compresseur, de façon à éviter le fonctionnement instable ou pompage du compresseur. De tels mécanismes sont commandes par des dispositifs divers comman-10 dé# en fonction r'p certaines variables, telles que les di^^rses pressions mises en jeu, et/ou le rapoort de C07npressic.n, la temoérature ambiante, 1î vitesse d© rotation du co?noressour, etc... -variable?: qui ont une relation déteminée avec les conditions d'engorgement ou de pompage susceptibles d'apparaître dans?l'isn ou plusieurs 15 étages du compresseur. En général la détection des ïa'1 'orts de compression du comprftsssux -1o que la comptai son d'une ou plusieurs pressions mises en jeu dans le compresseur avec un rapport de compression mesuré, avec de r>i.us la mesure de la température et/ou de la vitesse du compresseur s«lge un déploiement relativement impor-^ tant d'un certain nombre d'é.l(faents compliqués et de combinaison» qui a tendance à rendre le dispositif d© commande de prélèvement aussi lourd qu'encombrant et souvent peu fidèle tout en augmentant de façon notable son prix de revient. Un autre inconvénient des dispositifs antérieurs connus résulte 25 de la marge de sécurité relativement grande exigée par le dispositif de comsande lors du contrôle de la dérivation d'air provenant du compresseur dans des conditions d'un pompage probable du compie*-seur, marge qui inversement affecte le rendement ou l'eff acité du compresseur. Enfin les dispositifs antérieurs de 3ar leur concenfj.n 30 générale sont difi'iciler ent adaotables d'un compresseur à un untro ayant des caractéristiques différentes. C'est pourquoi l'invention vise essentielle;ent un dispositif de contrôle dans lequel l'ensemble formant vanne d'écoulement susceptible d'éviter l'engorgement d'un compresseur est contrôlé par 35 un dispositif différentiel simple uniquement sensible h des différences de pression. Plus particulièrement le dispositif de contrôle selon l'invention qui est du type comportant une soupape de conirnande maintenu© nensalement dans sa position de fermeture et conçue pour contrôler 40 1# débit d'air dans une conduite reliant la sortie du compresseur à un réservoir d'air à pression relativement basse en fonction d© la, BAD ORIGINAL 2 69 00005 2000098 comm.in.ie de moyens de contrôle commandant le péplacement de ladite souonpe de commande, est caractérisé en ce que les moyens dé contrôle comportant des éléments de commande sensibles respectivement aux pressions totales de deux prises d'air disposées respectivement à 5 l'entrée et à la sortie du compresseur et sensibles également à la pression statique de l'une desdites prises d'air de façon à coranan— der l'ouverture de la soupape de commande en fonction de l'inéquation ■ Ptx - Psx^ K (P't3 - P't2) dans laquelle» P»t3 et P»t2 dési« 10 gnent respectivement des pressions d'air variant respectivement en fonction des pression totales desdites orises d5 tir de sortie et d'entrée du compresseur, Ptx et Psx désignent respectivement de# pressions totale et statique .de l'une :d®s ps-ises, d'à Lrç et K désigne une constante prédéterminée, 15 D'autres avantages et caractéristiques de la présents invention nooaraîtront à la lecture de la description qui-va suivre «t «pi s© réfère aux dessins ci-annexés donnés uniquement à titre d'exemples dans lesquels t La Figure 1 est une représentation schématique 6. * un moteur h 20 turbine è gaz comportant un dispositif de contrôle pour eompressetir selon la présente invention, Les Figures 2, 3 et 4 sont des vues schématiques partielles d® divers modes de réalisation d'un dispositif de contrôle pour compresseur selon l'invention, 25 La Figure 5 est une représentation graphique de la courbe de pompage du compresseur et des courbes diagrammes du compresseur à vitesse corrigée MA/FÊ3 constante e-t à débit de sortie corrigé W constant avec en ordonnée le rapport de compression et en abeisse le débit d'entrée corrigé W et 30 La Figure 6 est une représentation graphique de la courbe de pompage du compresseur et des courbes diagrammes du compresseur à vitesse corrigée N\[t%3 constante avec les mêmes coordonnées que , celles de la Figure 5. Dans la description qui suit on utilisera un c@rtais» nombre de 35 symboles définis comme suit en fonction de® différentes variables ou grandeurs mises en jeu dans le fonctionnement du compresseur t Pt2, Ps2 et Tt2 désignent respectivement la pression totale, la pression statique et la température absolue de l'air à l'admission du compresseur, 40 Pt3, Pa3 et Tt3 désignent r es p e c t i vsaaeis t la pression ta taie, BAD ORIGINAL 69 00005 2000008 la pression statique et la température absolue de l'air à la sortie du compresseur, pt2 and pt3 désignent respectivement les pressions relatives ramenées à la pression atmosphérique de référence (1 Atm») à l'en-5 trée et à la sortie du compresseur, tt2 et it3 désignent respectivement les températures relatives ramenées à la température atmosphérique de référence (15°C soit 288° K) à l'entrée et à la sortie du compresseur et W et N désignent respectivement le débit massique et la vites-10 se de rotation du compresseur. Si l'on considère la Figure 1, la référence numérique 20 désigne un moteur à turbine à gaz d'un type classique comportant une admission d'air 22 conduisant à un compresseur axial 24 alimentant •n sir comprimé un ensemble de chambres de combustion ou tubes à 15 finales 26 aAlmentés par ailleurs en carburant sous pression venant d'une commande d'alimentation classique* non représentée* t-e mélange air»carbktrant est enflammé da façon à engendrer un flux da gaz moteurs chauda qui traversent une turbine 28 reliée au compresseur 34 par une liaiaaa mécanique 32 pour entraîner l'ensemble turbine-com-20 prasseur en rotatioa, gaz qui sont ensuite évacués par une tuyère da aartia 30 vers l'atmosphère de façon à définir la poussée propulsive du moteur ttk Si l'on considère la Figure 5 et la courbe caractéristique de pompage du compresseur désignée par "ligna de pompage** on admettra 25 que l'aire située au-dessus da la ligne de pompage représente la région de ianetiomement du compresseur dans laquelle le fonctionnement du compresseur risque d'être aa$st à un phénomène d'instabilité particulièrement dangereux appelé généralement phénomène de pompage ou d'engorgement. Cest pourquoi da façon à éviter une chute de ren-30 dement notable du compresseur et éventuellement untf détérioration définitive de ca dernier* «m positionnera le point da ^fonctionnement du compresseur de préférence dans la région située en dessous de la ligne de pompage* C'est pourquoi l'on propose pour éviter un-tel phénomène de prélever ou de dériver un certain débit d'air à la sor-35 tie du compresseur en fonction da certains paramètres qui varient selon les probabilités de pompage du compresseur. Dans le mode de réalisation de la Figura 1 * la référence 34 désigne le boîtier d'un dispositif de commanda comportant un ensemble de chmnbres 36» 38 et 40 séparées par deux membranes de section dif— 40 férente 42 et 44 fixées de façon étanche à leur périphérie au bot BAD ORIG'NAL 69 00005 tier 34. Une tige 48 conmndant un élément farinant valve à clapet 46 est fixée de façon convenable aux parties centrales ces membranes 42 et 44. L'élé :ent c'e v-.i*/e 46 :-st Tins! positionné en fonction des pressions c!,air agissant sur les deux membranes 42 et 44 de façon à 5 contrôler la section c'a passage efficace d'un orifice d'admission 50 débouchant dans la chambre 36a Un passage d'évacuation 52 relie la chambre 36 à un tube de Pitot classique 56 dispose à l'admission du compresseur et exposé ainsi à la pression totale ou pression d5 arrêt Pt2 de l'air entrant dans le compresseurc Un passage 56 relie 10 la chambre 38 à un détecteur de pression d'un type classique 58 exposé à la pression statique ou nression naroi Ps3 de l'air sortant du compresseur. Un passage 60 relie la chambre 40 à un tube de Pitot classique 62 disposé à la sortie du compresseur et ainsi exposé à la pression totale ou pression d'arrêt Pt3 de l'air sortant du compresseur. Une valve de Privation ou de ^relèvement d'air est agencée dans un boîtier 64 pourvu d'un orifice d'ad; ission 66 relié s une conduite 68 débouchant à la sortie du compresseur 22 et un orifice d*éva=> cuation 70 conduisant è un réservoir d'air à pression relativement 20 basse P^ tel que l'atmosphère. La communication entre les orifices 66 et 70 est contrôlée par un élément de valve 72 qui, fixé de façon convenable à la "partie centrale d'une membrane 76 maintenue sur sa oérioh-'rie au boîtier 34, coopère normalement de façon étanche avec un siège de valve 74 sous l'action d°un ressort 78. Un passage 25 axial 80 comportant un étranglement 82 est orévu à travers l'élément de valve 76 pour relier l'orifice d'admission 66 à une chambre d© contrôle 84 définie entre la membrane 76 et le boîtier 64. Un passage 86 relie la chambre 34 à l'orifice de contrôle 50 du dispositif de commande 34. La position de l'élément 46 qui contrôle 3a section 30 de oassage efficace de l'orifice de contrôle 50, commande ainsi la pression d'air Px dans la chambre 84. Cette oression de contrôle Fx agit sur la me brane 76 à 1'encontre de la pression de l?air sortant du compresseur Pt3 agissant sur la surface relativement plus faible de 1*élément rie valve 72 ot de la Pression atmosph-'rique PA agissant ê~i 35 sur la section dif f 'rentic-lle efficace de la nonbrane 76. Dans le cas où 1 ;s trois pressions P , Pt3 et Px sont égaies, le ressort 78 maintient la valve 72 en contact ctanche sur son siège 74. Lorsque le compresseur tourne de telle sorte que la pression disponible à la sortie Pt3 est relativement élevée, la vaiv-3 72 demeure dans sa 40 position d@ fermeture jusqu*à es que la valve 46 s'ouvre suffisa— rent P©^ établir de part et d'autre da 15étranglement 12 la prsoaim BAD ORIGINAL 69 00005 * 2000008 différentielle Pt3 - Px nécessaire oour suxnonter la force du ressort 78 comme cela sera expliqué plus loin. Si l'on considère naintenant le mode de réalisation illustré à la Figure 2 la référence 88 désigne le boîtier d'un dispositif de 5 commande, qui joue d'ailleurs un rôle similaire à celui de la Fig. 1, comDortant deux membranes séparées 90 et 92 fixées de façon étanche sur leur périphérie au boîtier 88 de façon à définir avec ce dernier les chambres 94, 96 et 98* La chanabre 98 est reliée par un passage 100 à une prise paroi à la pression statique Ps3 prévue tO dans un venturi 102 disposé à la sortie du cpmpresseur 24. La chambre 96 est reliée p=r un passage 104 à une prise Pitot 106 disposée de façon convenable dans le col du venturi 102 et exoosée à la pression d'arrêt P't3 de l'air sortant du compresseur et passant dans le venturi 102. Un passage 108 comportant deux orifices à section t5 limitée ou diaphragmes 110 et 112 disposés en séries relie la chambre 96 avec le oassage 52 conduisant au tube de Pitot 54 exposé à la pression d'arrêt Pt2 de l'air entrant dans le compresseur. Les membranes 90 et 92 sont fixées de façon convenable à une tige 114 qui est à son tour fixée sur l'extrémité mobile d'une capsule 116 20 fixée à sa base au boîtier 88» Un passage 118 relie la chambre 94 à la portion du passage 108 située entre les deux orifices à section limitée 110 et 112 et exposée à la pression P't2 qui varie en fonction des tressions P*3 en aront de l'orifice 112 et Pt2 en aval de l'ofifice 110 comme cela sera expliqué plus loin. 25 Un levier 120 monté pivotant dans le boîtier 88 est fixé à l'un* de ses extrémités à la tige 114 et h son autre extrémité sur un élément de valve assisté 122 qui coooère avec un siège de valve 124 de façon à définir la section de oassage efficace du conduit 86 qui lui est relié. L'orifice 124 relie le conduit 86 à une cavité 126 30 elle-même reliée par l'intermédiaire d'un passage 128 au passage 52 exposé à la pression totale Pt2 de l'air entrant dans le compresseur. Comme dans le node de réalisation de la Figure 1, le passage 86 est relié à la chambre 84 du boîtier 64 de la valve de commande de dérivation d'air 72. 35 Si l'on considère aintenant ls Figure 3, représentant un troi sième mode de réalisation du dispositif selon l'invention, la référence 130 désigne un boîtier divisé en trois charabres 132, 134 et 136 par deux membranes 138 et 140 fixées de façon étanche a leur périphérie au boîtier 130. La chambre 134 est exposée par un passage 40 142 à la pression paroi ou pression statique Ps2 de l'air entrant 69 00005 6 2000008 dans le compresseur. La chambre 136 est reliée par un passage 144 h une prise Pitot 54 disoosé à l'admission du compresseur. Un passage 146 comportant deux diaphragmes 148 et 150 dont les sections de passage limitées sont dans un rapport donné, est relié d'une nart 5 a une prise de Pitot 62 exposée à la pression totale Pt3 de l'air sortant du compresseur et d'autre part au passage 142 à la pression statique d'admission Ps2. La chambre 132 est reliée par un passage 152 à la section du passage 146 disposée entre les deux diaphragmes 148 et 150 et exposée à la pression P's2. Les membranes 138 et 140 10 sont fixées de façon étanche à une tige 154 commandant un élément de valve 156 coopérant avec un siège de valve 158 pour contrôler la section de passage d'évacuation du conduit 86 à la pression totale d'admission Pt2. Comme dans le dispositif représenté à la Fig« 1, le conduit 86 est relié à la chambre cl® contrôle 84 du bottier 15 de valve de dérivation 64, Si l'on considère enfin la Figure 4 illustrant un quatrième mode de réalisation d'un dispositif de commande selon l'invention on remarque que l'ensemble membranes et valve d© commande est remplacé par un ensemble de commande fluidique ce qui diminue avanta— 20 geusement les frottements et autres Inconvénients des commandes mécaniques® On a ainsi représenté une valve de commande fluidique comportant un ofifiee d'admission 160 reliée 1 une source régulé® de fluide sous pression Pr qui peut être oar exemple engendrée h partir de la pression de sortie du compresseur» Le jet de puissance 25 ejecté de l'orifice 160 traverse un eanal 162 comportant deux orifices de commande 164 et 166 disposés en vis a vis perpendiculaire»® ment au jet de puissance de façon à ce que les jets de contrôle venant des orifices 164 et 166 soient susceptibles de faire dévier le jet de puissances vers l'un ou l'autre de deux orifices d'évacua-30 tion 168 et 170 en fonction de la différence de puissance des deux jets de commande. On remarquera que les parois du canal 162 en aval des orifices de commande 164 et 166 comportent deux évidements situés en vis à vis 172 et 174 destinés à éviter le "collage" du jet de puissance par effet "Coanda" sur l'une ou l'autre des parois du 35 canal 162. Il résulte que la valve fluidique établit entre les orifices 5fm*.. i 2000008 çon c-v-n-/ .ncVii^ .r a c on --.t *73 * 1- ,-ression statique d'adbis-sl~n . s ! '4u cor : :'"sc '"vt t.*n ' ^aîr' " 1V.0 co •••."• :-nt r;trjx ■ i a -ïraqnes liî :.i -iu ;-«3 -.su c^-iïoss^ur t. c ^-s^l„ 17S« Un passa-je 186 çornort'jnt 5 »jtn -"-la'-\i O Ut& .-lie, •- c ci- .rr'o i-_:~ ** la nrtio du passée »SC rie «osco onrse les cou h -.-i. : nra,,..ies li-2 yt 184, Los orifices évacuation IîSG ut 17U s mi zeli-'s re -active— cent par des -^sagaa 1X et *> -eux ch^e .^ros 104 ot 19C- :'ur boîtier 198, séparées >ar une ^c-br-sne „>?>:> vixoe de façon c >nvena— to ble :: un r.prc-es3uro i'-oux es-.liv;uor le -.lus ci :ii-- «r.v jossiele la fonctionnanent de& •.•is.'usitiie ;"'é c.su-.=.isi-';& (!'crlts ei«- ositior.nr le oo— int :".c. sonc-ioïïn-.? ent du cc:v:-resGeur si lJon vent éviter X*'veniua® litO 'un ."«npage i-'un ou -.i.t»8is«urs •St.si-.c-s ce ee dernier» A cette fin, :-r rappelle -:,uc Xô c^n:î?8l*i »-:« :*0-pagc- ru conp vosseur est ba«> s'e r.ur la -roi-"•-ion suiv *nte s *-1 i I -J;.? i-r.?a c =.'u c nrens'mr. Lj Fi-.j. 5 ccr. -srte J-j ilercent les courbes cinçramr.es du cororos® 25 seur 1 d:'bit eo s r*.ie c-rrin- n'fini -.;*:r « TvTt3/' .-t3 constant, débit • •ui es "c lî' d't. -.^.ântrds corxiço défini, -iar i. V ct2/pt2 nar la :3o*;r une efi J cacité noninc-le de ootnpresssur de 05 . on sait 30 que . Tt3/T:.2 ^ i 3/'t t2) ' c».' -ui -jer^iet d*.'crise la relation 'ci*:^eiic3 s:n:c, !.. foxr-e =, «■ .-i (^4) (2) -»el.'t.r r. arcir laquelle on r. * t,rnc n? Lor c";-r:'.-;c-s «. V tt3/-;t3 cvvtSw^r. ; t.:c la fi;-u.c 5. 3h ;•.•• •• -.-nw ' u*: 1 «ixi:-une rsia 1-n uai. ac entre le rai ort lie c -s esei'-n ; . ei le- -l'aio =.:s '^..rtie c .,; 3.i^.5 û c3/pt3 sur le cuprbo de ••oi■■na-'jts «iu co;n*J2'®33e-::-t une uu.;~e f.-;nc.ion de contrîlc - -5vi t®r i5er.tr To f,a -nint t'e fonc-ionne -t»nt du cœs» .>ress^.sî c«uns la r >?i- n d'instabili'c-i ->ouï s0ex ?ri:nôr ;~-^r la roia» *(tt2/-:t2 ~-fsl {:) f'.-e.s laquelle I-î fonction 40 tion êad original 8 2000008 69 00005 W \[TÏ3/pt3 ^ fs2 (Pt3/Pt2) dans laquelle fs2 est définie par la courbe de pompage. D'autre part W VTt3/pt3 est proportionnel au nombre de Mach de l'air sortant du compresseur de telle sorte que t W Vtt3/pt3 « f (Pt3/Ps3). En combinant les deux dernières rela— 5 tions, il résulte que Pt3/Ps3^.fs3 (Pt3/Pt2) (3) relation qui, étant exprimée uniquement avec des pressions facilement mesurables sur le compresseur, permet une passibilité commode de contrôler le pompage de ce dernier. Cependant on concevra aisément que la mesure directe de 10 rapports de pression est relativement difficile et demande en particulier une combinaison complexe de tout un ensemble de dispositifs ce qui, pour des raisons évidentes, n*est pas souhaitable. Cependant on remarquera que la pression totale d'évacuation Pt3 intervient deux fois dans l'inégalité (3) de telle sorte que la 15 forme de la fonction f3 peut être modifiée pour permettre de ne mesurer que des pressions différentielles au lieu de rapports de pression. De nombreuses méthodes mathématiques connues sont disponibles pour permettre de développer une fonction donnée en une série finie de termes ou de fonctions permettant une approximation 20 relativement bonne de ladite fonction donnée. Ainsi , il est possi Pt3 - Ps3 ^ K (Pt3 - Pt2) (4) On peut vérifier la validité de la relation (4) par rapport % la relation (3) définissant l'inégalité entre les rapports Pt3/Ps3 25 et Pt3/Pt2 en divisant chaque membre de l'inégalité (4) par Pt3, on obtient alors t Pt3 - Ps3 ^ „ Pt3 - Pt2 Ft3 ^ * pt3 ou encore 1 ~ Pt3/Ps3 > K ^ - Pt3/Pt2^ relation 30 Pt3/Ps3 > Pt3/Pt2 (6) K + (1-K) (Pt3/Pt2) En choisissant K pour un point de fonctionnement correspondant à 100% du débit d'entrée corrigé sur la courbe de pompage de la figure 5, le rapport de compression correspondant est d'environ 2,63* En supposant que le nombre de .Mach de 1*air sortant du compresseur 35 au point de fonctionnement choisi soit de 0#15 le rapport entre la pression totale et la pression statique de l'air sortant du compresseur, soit Pt3/Ps3 est de 1,016, De la relation (5) on tire alors 69 00005 "9 2000008 la valeur du coefficient !C ' - rjmr - K (1 - xra5 soit K - °'0258 La comrbe A de la figure 5 représente la relation (4) avec la valeur de K précédente de 0,0258 dans laquelle une valeur du rap-5 port de pression Pt3/Ps3 est calculée pour chaque valeur du rapport de compression Pt3/Pt2. Le nombre de Mach de l'air sortant du compresseur est déterminé à partir de la valeur calculée du rapport d« pressions Pt3/Pt2, Le pourcentage du débit éSair de sortie corrigé W -\Tît3/pt3 est égal au rapport multiplié par cent du nombre jO de Mach de ce damier. Les courbes B et C de la Figure 5 représentent respectivement la même relation (4) pour des nombres de Mach de l*air sortant du compresseur plus élevées de 0,5 et 0,85 pour la même condition de 100 % de débit d'air corrigé. On notera que la concavité des courbes A, B et C diminue avec le nombre de Mach* f| La Figure 1 représente un dispositif simple sensible h une pression différentielle susceptible de commander la valve de pré-l&vaneatt d'air en fonction de la relation (4) ci—dessus. La valeur âQ coefficient K est déterminée par le rapport des surfaces efficaces des membranes 42 et 44 qui seront choisies de façon à obtenir 20 l'approximation désirée d'une courbe de pompage donnée. Dans ce mode de réalisation de la Figure 1, la valve 72 est maintenue normalement sur son siège 74 par le ressort 78 ainsi que par la pression Px dans la chambre 84 et empêche ainsi l'évacuation de l*air sortant du compresseur vers un réservoir à pression relativement basse P^. 25 L*air venant du compresseur gagne la chambre 84 h travers le diaphragme 82» et la valve 48 par la conduite 86. La valve 46 est commandée par les deux membranes 42 et 44 en fonction de la relation t Ptf «* * 152 dans laquelle Al et A2 représentent les surfaces efficaces des deux membranes 42 et 44 respectivement* La 30 valve 46 sera ainsi sollicitée vers sa position d'ouverture dès que le rapport deviendra supérieur au rapport des surfaces qui, comme indiqué plus haut, est sensiblement égal au coefficient K choisi* L'ouverture de la valve 46 entraîne la chute de la pression Px dans la chambre 84 et un accroissement correspondant de la Jê chute de pression de part et d'autre de l'orifice 82 entraînant une . aatrtttlt de la valve 72. L'ouverture de la valve 72 permet ainsi é'eUfMHkter le débit de sertie corrigé de façon à maintenir le peint da fiftttl*m#feOnt 4a compresseur en dessous de la courbe de psapega w,. » mt JULJ..,. _ On comprendra aisément qu'une diminution «Mal* »UI la Fi««* S. 69 OOOOS ° 2000008 piO Pfi3 du rapoort de pression _ p*| en dessous de la valeur K telles» définie par le rapport A1/A2 maintient les valves 46 et 72 dans leur position fermées. Si l'on considère la Figure 2 l'augmentation de pression 5 Pt3 - Pt2 est appliquée de part et d'autre des diaphragmes 110 et 112 engendrant ainsi entre ces derniers une pression intermédiaire P't2. On peut facilement démontrer que P't2 * Pt3 ffi (Pt3/Pt2), relation dans laquelle fB dépend du rapport des sections de passage efficaces des diaphragmes 110 et 10 112. En substituant la différentielle Pt3 — P't2 à la différentielle Pt3 - Pt2 dans la relation (4) on obtient * Pt3 - Ps3 « K (Pt3 - P't2) = K Pt3 { 1 - fB (Pt3/Pt2)), relation qui peut s'écrire aussi en divisant les deux membres par Pt3 sous la forme 15 1 - pt3/ps3 » K (1 - fg(Pt3/Pt2)) (7) ce qui démontre une fois de plus la validité de la relation (4) exprimée avec les rapports Pt3/Ps3 et Pt3/Pt2. En choisissant de façon convenable les diaphragmes 110 et 112» on peut alors modifier la courbure da la courbe définie par l'équation (4) comme on le désire. Par exemple 20 pour un jeu de diaphragmes présentant un rapport da section de 1t5 avec 100% de débit d'air corrigé, un nombre de Mach de 0*5 pour 1* air sortant du compresseur et un facteur K correspondant à 100% da débit corrigé, on obtient la courbe D, dont on notera la concavité par rapport aux courbes A, B et C. Les courbes A* B, C et D conver» 25 gent au point défini par le rapport de compression Pt3/Pt2 s t et par la valeur nulle du débit corrigé W Vtt2/pt2 * 0# leutt pente dépendant de la valeur K choisie.Comme mentionné ci-dessus la concavité des courbes A, B, C et D varie avec le nombre de Mach du flux aertant du compresseur, concavité qui augmente d'ailleurs avec la 30 présence des diaphragmes 110 et 112» On notera que l'on peut déplacer la courbe D sensiblement parA» lèlement à elle-même de façon à permettre une meilleur* approximation de la courbe de pompage de la Figure 5« En effet, l'équation (4) peut s'écrira i Pt3 - Ps3 ^ K (Pt3 - K1 Pt2) soit en divisant par 35 le facteur Pt3 a |f 1 ~ PtJ - Pt5 ^ K { * *" ?t3/Pti^ W BAD ORIGINAL ZI apparaît au vu (Sa 1*équation (8) que la courbe 8 ainsi définie converge au point défini par W vrtt3|/pt2 » 0 et Pt3/Pt2 » K1 69 00005 " 2000008 ce qui permet en modifiant le facteur Kt de déplacer la courbe D jusqu'à la c.ourbe E pour laquelle » 1,1 et K* Ainsi à partir de la courbe de pompage à 100a, du débit corrigé et d'un nombre de toc h du flux sortant égal à 0,5. 5 Comme représenté à la Figure 2, il est possible en utilisant un venturi 102 d'obtenir une meilleure mesure de la différentielle Pt3 — Ps3 et d'améliorer ainsi l'adaptation des courbes A,B,C ou D, En effet le venturi 102 permet de mesurer un nombre de Mach supérieur dans un rapport donné au nombre de Mach du flux d'air sortant 10 du compresseur, ce qui permet de diminuer efficacement la courbure de la courbe D, par exemple* On comprendra également que le venturi 102 peut être remplacé par un diffuseur 190 indiqué en tirets sur la Figure 2 de façon à augmenter la courbure de la courbe D si on le désire en mesurant un nombre de Mach inférieur à celui du flux 15 sortant du compresseur* Dans le mode de réalisation de la Figure 2 la pression P't2 dans la chambre 94 agit sur le soufflet 116 et la membrane 90 tandis que la membrane 92 est soumise à la différentielle P*t3 - P's3» Le rapport des surfaces efficaces du soufflet 116 et de la meabrane 90 détermine le coefficient K1 défini dans la 20 relation (8)« On notera que la différentielle de pression P't3 — P't2 agissant sur la membrane 90 h laquelle s'ajoute la pression P't2 agissant fur le soufflet 116 stabilisant ainsi le levier 120 et la valve 122 quand les pressions différentielles ci-dessus atteignent une relation déterminée liée au rapport des surfaces des 25 meBbranes 90 et 92* Cependant la surface efficace de la membrane 90 est définie par rapport à la surface du soufflet 116 qui d'ailleurs charge le levier 120 pour solliciter la valve 122 dans sa direction d'ouverture pour une pression différentielle donnée* L'actionnement de la valve 122 est le même que celui décrit en référence à la 30 Figure 1, Le dispositif décrit à la Figure 3 est le même que celui représenté à la Figure 1 sinon que l'on mesure la pression d'entrée statique Ps2 au lieu de la pression statique de sortie Ps3« La membrane 140 de plus grand diamètre est sensible à la pression diffé-35 rentielle Pt2 - Ps2 et la membrane 138 est sensible à la pression différentielle P's2 - Ps2* En effet la relation (4) peut encore s'icrire Pt2 - Ps2 K (Pt3 Pt2) (9) relation dans laquelle K désigne le rapport des surfaces efficaces des membranes 138 et 140 et 4q qui peut aussi s'écrire s BAD ORIGINAL 69 00005 2000008 Pt2/Ps2 * K - K(pt3 - Pt2) - 1 ' la courbe G de ia figure 6 représente la courbe engendrée en appliquant la différentielle de pression Pt2 — Ps2 à la membrane 140 et la différentielle ofe pression P's2 — Ps2 sur la membrane 138 en supposant un rapport 5 de section de massage entre les deux diaphragmes 148 et 150 égal à 1,5 et un nombre de Mach inférieur à 0,5. La courbe F de courbure plus prononcée représente la courbe de fonctionnement pour un dispositif ne comportant pas de diaohragmes mais une simple prise de pitot comme indiqué à la Figure 1. Si la mesure du nombre de Mach 10 du flux sortant du compresseur est avantageuse de par 1*importance de l'écart entre pression totale et pression statique, il est des cas où l'on peut préferer mesurer le nombre de Mach du flux d'air entrant dans le compresseur, en particulier lorsque ce dernier est pourvu d'aubes fixes à positions variables ou encore de prise de 15 prélèvement d'air entre étages. Dans le dispositif de commande représenté à la Figure 4, qui est du m#me type que celui illustré à la Figure 3 en tant que principe de fonctionnement, la valeur K de la relation (9) est déterminée par la section relative des orifices de commande 164 «t 20 166 de la valve fluidique. Etant donné que la valeur du rapport de compression Pt3/Pt2 pour lequel le débit d'air s'annule ne peut être augmenté, comme par un soufflet dans le dispositif de la figure 2, on définit un réglage supplémentaire par les diaphragmes 182 et 184 alimentés par les pressions Pt3 et Ps2* 25 Si le diaphragme 182 est bouché, le rapport Pt3/P's2 de part et d'autre de l'orifice amont 184 est constant et la pression intermédiaire P't3 est considérée comme K1 dont la valeur dépend du rapport des étranglements 182 et 184. En supposant un débit relativement important à travers les diaphragmes 182 et 184, la faible 30 quantité d'air prélevée par le passage 186 vers l'orifice 166 ne modifiera pas notablement la relation constante définie ci-dessus* , L'application d'un faible débit à l'orifice 166 résulte dans un contrôle qui est équivalent à t" Pt2 - Ps2 >-K (Kj Pt3 - Ps2), le diaphragme 182 étant bouché* g 35 La courbe résultante se comporterait comme si son rapport de com- q pression Pt3/Pt2 pour un débit nul était égal à t/K1 jusqu'à ce que gj le rapport de compression devienne suffisament bas pour déboucher z 1*étranglement 182 pour laquelle la courbe décroîtrait jusqu'à ^ Pt3/Pt2 » 1 à débit nul» La différentielle de pression entre les 40 passages d'évacuation 168 et 170 agit sur la membrane 200 pour 69 00005 13 2000008 commaaaas en conséquence l'ouverture de la valve 2Q2. Bien -intendu, l'invention n'est pas limitée aux modés de réalisation décrits et représentés ci-dessus, bien des modifications peuvent y être apportées sans oour cela sortir du cadre de la présente invention. 69 00005 2000008 REVENDICATIONS 1. L'invention a essentiellement pour objet un dispositif de contrôle destiné à éviter le pompage d'un compresseur axial à éta~ ges multiples, dispositif qui est du type comportant une soupape de commande maintenue normalement dans sa position de fermeture et con-» 5 çue pour contrôler le débit d'air dans une conduite reliant la sortie du compresseur à un réservoir d'air à pression relativement basse en fonction de la commande de moyens de contrôle crarmandant le déplacement de ladite soupape de commande, l'invention étant caractérisée en ce que les moyens de contrôle comportent des éléments de ^ commande sensibles respectivement aux pressions totales de deux prises d'air disposées respectivement à l'entrée et à la sortie du compresseur et sensibles également à la pression statique de l'une desdites prises d'air de façon à commander l'ouverture de la soupape de commande en forwtion de l'inéquation i 15 Ptx - Psx >K (P't3 - P't2) dans laquelle, P't3 et P't2 dési gnent respectivement des pressions d'air variant respectivement en fonction des pressions totales desdites prises d'air de sortie et d'entrée du compresseurt Pis et Psx désignent respectivement des pressions totale et statique de l'une des prises 20 gne une constante prédéterminée, 2. Dispositif de contrôle selon la revendication 1 caractérisé en ce que les éléments de commande précités sont réalisés par des membranes flexibles dont les parties centrales respectives sont re*» liées par un élément de commande de valve contrôlant l'actionnement 25 de ladite soupape, 3. Dispositif de contrôle selon la revendication 1 caractérisé en ce que les éléments de commande précités sont réalisés par des moyens fluidiques susceptibles de contrôler une pression différentielle de commande d'un moteur relié à la soupape de commande, 30 4, Dispositif de contrôle selon l'une quelconque des revendi cations précédentes caractérisé en ce que l'une des prises d'air , est disposée dans un venturi, 5, Dispositif de contrôle selon l'une quelconque des revendications 1 à 3 caractérisé en ce que l'une des prises d'air est dis- 35 posée dans un diffuseur. 6, Dispositif de contrôle selon la revendication 1 caractérisé en ce que l'une au moins de» pressions P't? «t P't2 précitées varie en fonction du rapport des pressions totales d'entrée et de sortie du compresseur, BAD ORIGINAL
Combustion engine and gas handling system for pneumatic operation of a valve actuator A combustion engine includes, a first controllable engine valve (8) arranged to selectively open/close a combustion chamber (7) included in the combustion engine (1), and a gas handling system arranged to drive the first engine valve (8), which gas handling system includes a closed pneumatic pressure fluid circuit, wherein the closed pressure fluid circuit includes, coupled in series with each other, a compressor (31) and a valve actuator (10) that are operatively connected to the first engine valve (8). The combustion engine is characterized by the gas handling system further including a gas accumulator (38) that is connected with the closed pressure fluid circuit via at least one gas accumulator conduit (39), which includes a controllable valve (40). A gas handling system for pneumatic control of a valve actuator is also described. TECHNICAL FIELD OF THE INVENTION The present invention relates in general to a combustion engine suitable for powering a vehicle, such as a car or a truck, a boat etc. or a machine such as an electric power generation unit or the like. The combustion engines concerned are camshaft free piston engines, which are also known under the concept “engines with free valves”. The present invention relates in particular to a combustion engine comprising a first controllable engine valve arranged to selectively open/close a combustion chamber included in the combustion engine, and a gas handling system arranged to drive said first engine valve, which gas handling system comprises a closed pneumatic pressure fluid circuit, wherein the closed pressure fluid circuit comprises, coupled in series with each other, a compressor and a valve actuator that is operatively connected to said first engine valve. In a second aspect, the present invention relates to a gas handling system for pneumatic operation of a valve actuator. BACKGROUND OF THE INVENTION AND STATE OF THE ART In a camshaft free combustion engine a pressure fluid, such as a liquid or a gas, is used to achieve a displacement/opening of one or more engine valves. This means that the camshafts, and related equipment, that conventional combustion engines use to open engine valves to let air in respective let exhaust fumes out from the combustion chamber, has been replaced by a less volume demanding and more controllable system. In an engine that is constructed for significant angular momentum outputs, the pressure in the combustion chamber is increasing proportional to an increased angular momentum output, and the force that is required to open the valve actuator to open the, in relation to the combustion chamber inward opening, engine valve consequently also increases proportional to an increased angular momentum output. At high numbers of revolutions, such as 6-8000 rpm, a very fast opening of the engine valve is also required for the filling of air respective evacuation of exhaust fumes from the engine cylinder not to be restricted. These requirements, i.e. the need for an extremely fast opening at high frequencies in a high performance engine having high counter pressure in the combustion chamber of the engine at the opening of the exhaust valves, require the pressure of the pressure fluid upstream of the valve actuator to be high, in the order of 8-30 bar. Downstream the valve actuator, the pressure fluid has a lower pressure, in the order of 3-6 bar. At high numbers of revolution and high engine loads, the pressure difference between the low pressure side and the high pressure side should be in the order of 15-20 bar to achieve a correct operation of the valve actuators, and when the engine is idle running, or at low numbers of revolution and low loads, the pressure difference between the low pressure side and the high pressure side only needs to be in the order of 2-5 bar. The lower pressure difference at low numbers of revolution is desirable when the pressure is increased by way of a compressor from the low pressure side to the high pressure side, and at the pressure increase, energy consumption occurs that increases concurrently with increased pressure on the high pressure side. In situations that require fast acceleration and/or very fast change from low numbers of revolution and low load to high numbers of revolutions and high load, for example when entering on a busy main road or at a sudden overtaking of a slow moving vehicle, the pressure difference between the low pressure side and the high pressure side must immediately be increased to achieve the acceleration that the driver requires. A conventional compressor is dimensioned to be able to generate pressure differences with greatly varying magnitude, they are however not dimensioned to satisfy the requirement of immediate shifts between separate great pressure difference levels and pressure fluid flows. Furthermore, there is inertness in the present systems to go from a great pressure difference to a small pressure difference, i.e. when the vehicle again is operated at low numbers of revolution after the short/temporary rise in numbers of revolutions/engine load, it will take time before the pressure difference and thereby the high energy consumption has decreased to a desired level. BRIEF DESCRIPTION OF THE PURPOSE OF THE INVENTION The aim of the present invention is to set aside the abovementioned drawbacks and shortcomings of the previously known combustion engines and to provide an improved combustion engine. A fundamental object of the invention is to provide an improved combustion engine of the initially defined type, which is arranged to be able to immediately increase the pressure difference between the low pressure side and the high pressure side by increasing the pressure on the high pressure side of the pressure fluid circuit at the need of a rapid increase in the numbers of revolution/engine load of the combustion engine. A further object with the present invention is to provide a combustion engine that can rapidly go from a great pressure difference to a small pressure difference between the low pressure side and the high pressure side. It is another object with the present invention to provide a combustion engine that, after each sudden increase in pressure difference, is self priming before the subsequent need for a sudden increase of pressure difference. BRIEF DESCRIPTION OF THE FEATURES OF THE INVENTION According to the invention, the main object is at least achieved by way of the initially defined combustion engine and of a gas handling system for pneumatic operation of a valve actuator having the features defined in the independent claim. Preferred embodiments of the present invention are further defined in the subsequent dependent claims. According to a first aspect of the present invention, a combustion engine of the initially defined type is provided that is characterized in that the gas handling system further comprises a gas accumulator that is connected to the closed pressure fluid circuit via at least one gas accumulator conduit, which includes a controllable valve. According to a second aspect of the present invention, a gas handling system for pneumatic operation of a valve actuator is provided comprising a closed pneumatic pressure fluid circuit, wherein the closed pressure fluid circuit comprises, coupled in series with each other, a compressor and a valve actuator. The gas handling system is characterized by comprising a gas accumulator that is connected to the closed pressure fluid circuit via at least one gas accumulator conduit, which comprises a controllable valve. The present invention is thus based on the insight that a gas accumulator is arranged to store earlier pressure peaks to rapidly be able to supply a large volume of pressure fluid under high pressure to the closed pressure fluid circuit, for the purpose of achieving an immediate pressure increase on the high pressure side of the pressure fluid circuit. According to a preferred embodiment of the present invention, the closed pressure fluid circuit comprises a primary pressure fluid channel that extends from the compressor to an inlet opening of the valve actuator, wherein the gas accumulator is connected to the primary pressure fluid channel via a first gas accumulator conduit, which comprises a controllable valve. According to a preferred embodiment of the present invention, the gas accumulator is connected to said primary pressure fluid channel via a second gas accumulator conduit, which comprises a non-return valve arranged to allow a flow in a direction toward the gas accumulator. This way, it is guaranteed that when the controllable valve in the first gas accumulator conduit is closed, the pressure in the gas accumulator is always equally high as the highest pressure peak in the high pressure side of the closed fluid circuit. According to a preferred embodiment, the compressor has a variable displacement. This means that the pressure increase of the high pressure side of the pressure fluid circuit can be sped up further by increasing the displacement of the compressor in connection with a rapidly increased number of revolutions or load. The size of the displacement is preferably controlled by the pressure difference between the upper side and lower side of the compressor pistons, i.e. the pressure ratio over the compressor. According to a preferred embodiment, the closed pressure fluid circuit comprises a secondary pressure fluid channel that extends from the cylinder head chamber to the compressor, wherein the gas accumulator is connected with said secondary pressure fluid channel via a third gas accumulator conduit, which comprises a controllable valve. Thereto, it is preferred that a non-return valve is arranged in said secondary pressure fluid channel upstream the position where the third gas accumulator conduit discharge in the secondary pressure fluid channel, wherein the non-return valve is arranged to allow a flow in a direction toward the compressor. This leads to the average pressure on the uppers side of the compressor pistons increases, which leads to a rapid increase in the displacement of the compressor. Further advantages with and features of the invention are evident from the remaining dependent claims and from the following detailed description of preferred embodiments. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Reference is initially made toFIG. 1that is a schematic depiction of a part of an inventive combustion engine, generally denoted1. The combustion engine1comprises a cylinder block2with at least one cylinder3. Said cylinder block2generally comprises three or four cylinders3. In the shown embodiment reference is made only to one cylinder3, it should nevertheless be realized that he equipment described below in relation to the shown cylinder3is preferably applied to all of the cylinders of the combustion engine1, in the embodiment the combustion engine comprises more cylinders. Furthermore, the combustion engine1comprises a piston4that is axially displaceable in said cylinder3. The movement, axial displacement back and forth, of the piston4is transferred on a conventional manner to a connection rod5connected to the piston4, the connection rod5in turn is connected to and drives a crank shaft (not shown) in rotation. The combustion engine1also comprises a cylinder head6that together with said cylinder3and said piston4delimits a combustion chamber7. In the combustion chamber7the ignition of a mix of fuel and air occurs in a conventional manner and is not further described herein. The cylinder head6comprises at least one controllable first engine valve8, also known as a gas exchange valve. In the shown embodiment, the cylinder head also comprises a controllable second engine valve9. The one engine valve8constitutes, in the shown embodiment, an inlet valve that is arranged to selectively open/close for supply of air to the combustion chamber7, and the second engine valve9constitutes in the shown embodiment an air outlet valve, or exhaust valve, that is arranged to selectively open/close for evacuation of exhausts form the combustion chamber7. The combustion engine1further comprises a first valve actuator, generally denoted10, that is operatively connected to said first engine valve8and that is arranged in a closed pressure fluid circuit of the combustion engine1. The valve actuator10comprises a pneumatic pressure fluid circuit with at least one inlet opening11for pressure fluid and at least one outlet opening12for pressure fluid. The pressure fluid is a gas or a gas mixture, preferably air or nitrogen gas. Air has the advantage that it is easy to change the pressure fluid or to supply more pressure fluid if the closed pressure fluid circuit leak, and nitrogen gas has the advantage that it lacks oxygen, which prevents oxidation of other elements. In the case the combustion engine comprises several valve actuators are these arranged in parallel to one another in said closed pressure fluid circuit. Each valve actuator can be operatively connected with one or more engine valves, the combustion engine can for example comprise two air inlet valves8, which are jointly driven by the same valve actuator10. Nevertheless, it is preferred that each valve actuator operates one engine valve each to achieve the greatest possible controllability of the operation of the combustion engine1. The description below of the combustion engine will only include one engine valve8and one valve actuator10, but it should be realized that the corresponding also applies to all engine valves and valve actuators if nothing else is said. The combustion engine1also comprises a cylinder head chamber13that forms part in said closed pressure fluid circuit and that is delimited by said cylinder head6and at least a first cylinder head mantle14. In the shown embodiment, the cylinder head mantle14is divided in two parts, which are individually attachable to and releasable from the cylinder head6by way of bolts. The cylinder head chamber13preferably presents a volume in the order of 3-10 liter, typically in the order of 5-6 liter. In an alternative embodiment, only a cylinder head mantle14is present that, together with the cylinder head6, delimits the cylinder head chamber13. The at least one outlet opening12of the valve actuator10is in fluid communication with the cylinder head chamber13, i.e. that the pressure fluid leaving the valve actuator10via said at least one outlet opening12flows out in the cylinder head chamber13. In those case where the combustion engine1comprises several valve actuators, all outlet openings of the valve actuators for pressure fluid discharge in the same cylinder head chamber. Preferably, the whole of the valve actuator10is arranged in said cylinder head chamber13, and it is also preferred that the valve actuator10is releasably connected to said cylinder head mantle14, for example by a bolt16, or similar holding means. In this embodiment, the valve actuator10accordingly “hangs” in the cylinder head mantle14without being in contact with the cylinder head6. If the valve actuator10should be in contact with both the cylinder head mantle14and the cylinder head6, a construction wise disadvantageous tolerance chain is achieved. Reference is now made toFIG. 2, which shows a schematic depiction of the valve actuator10. The valve actuator10comprises an actuator piston disc17and an actuator cylinder21delimiting a downward open cylinder volume. The actuator piston disc17divides said cylinder volume in a first upper part19and a second lower part20and is axially displaceable in said actuator cylinder21. The actuator piston disc17forms part of an actuator piston, generally designated21, that is arranged to contact and drive said first engine valve8. The actuator piston further comprises means22for play elimination in axial direction in relation to said first engine valve8. The play eliminating means22are preferably hydraulic, and assures that when the actuator piston disc21is in its upper turn position, the actuator piston21remains in contact with the first engine valve8when it is closed, for the purpose of correcting for assembly tolerances, heat expansion, etc. Accordingly, the axial length of the actuator piston21is adjusted by way of the play eliminating means22. The other part20of the cylinder volume of the valve actuator10is in fluid communication with said cylinder head chamber13. This way, it is guaranteed that the same pressure acts on the actuator piston disc17from the first part19of the cylinder volume respective from the second part20of the cylinder volume when the actuator piston21is in the upper turn position. Thereby, the sealing between the actuator piston disc17and the actuator cylinder12is not critical, but some leakage can be allowed for minimizing the resistance to displacement of the actuator piston disc17, and in resting position, the actuator piston disc is not affected by changes in the low pressure level. The valve actuator10comprises a controllable inlet valve23that is arranged to open/close the inlet opening12, a controllable outlet valve27that is arranged to open/close the outlet opening11, a hydraulic circuit, generally designated25, that in turn comprises a non-return valve26arranged to allow filling of the hydraulic circuit25, and a controllable emptying valve27arranged to control the emptying of the hydraulic circuit25. It should be pointed out that the valves in the valve actuator10are schematically depicted and can for example be constituted by sliding valves, seat valves, etc. Furthermore, several of the abovementioned controllable valves may be constituted by a single body. Each valve can further be directly or indirectly electrically controlled. With directly electrically controlled is meant that the position of the valve is directly controlled by, for example, an electro-magnetic device, and with indirect electrically controlled is meant that the position of the valve is controlled by a pressure fluid that in turn is controlled by, for example, an electro-magnetic device. To achieve a displacement of the actuator piston disc17downward for opening the engine valve8, the inlet valve26is opened to allow a filling of pressure fluid with a high pressure in the upper part19of the cylinder volume. When the actuator piston21is displaced downward, the non-return valve26of the hydraulic circuit25opens, whereupon hydraulic liquid is sucked in and replaces the volume that the actuator piston21leaves. Thereafter, the inlet valve23is closed and the pressure fluid that has entered in the upper part19of the cylinder volume is allowed to expand, whereupon the actuator piston disc17continues its movement downward. When the pressure fluid in the upper part19of the cylinder volume is not able to displace the actuator piston disc17further, i.e. when the pressure on the under side of the actuator piston disc17and the return spring28of the engine valve8is as high as the pressure on the upper side of the actuator piston disc17, the actuator piston disc17stops. The actuator piston disc17is held (locked) in its lower position a desired amount of time by keeping the emptying valve27of the hydraulic circuit25closed at the same time as the non-return valve26of the hydraulic circuit25is automatically closed. To achieve a return movement, the outlet valve24is opened to allow an evacuation of pressure fluid from the upper part19of the cylinder volume, and additionally the emptying valve27of the hydraulic circuit25is opened, whereupon the actuator piston disc is displaced upward when the hydraulic liquid is evacuated from the hydraulic circuit25, and at the same time, the pressure fluid is evacuated from the upper part17of the cylinder volume to the cylinder head chamber13. Reference is now made primarily toFIG. 3, which shows a partly cross-sectional schematic perspective view of, among other things, a cylinder head and cylinder head mantles. The cylinder head mantle14comprises a pressure fluid manifold29that is connected to the at least one inlet opening11of the valve actuator10. The pressure fluid manifold29extends along the axial length of the cylinder head mantle14. Said pressure fluid manifold29forms part of a primary pressure fluid channel30that extends from a compressor31to the at least one inlet opening11of the valve actuator10. The compressor31is arranged to supply a pressure fluid under high pressure to the valve actuators. Furthermore, a secondary pressure fluid channel32(see alsoFIG. 1) extends from the cylinder head chamber13to said compressor31. The volume of the primary pressure fluid channel30, high pressure side, shall be kept as small as possible so that the temperature of the pressure fluid will sink as little as possible from the compressor31to the valve actuator10. The volume of the cylinder head chamber13and the secondary pressure fluid channel32, low pressure side, shall on the other hand be maximized so that the pressure ratio between the low pressure side and the high pressure side is affected as little as possible when the compressor31pulls gas/pressure fluid from the low pressure side. Preferably, the volume of the cylinder head chamber13and the secondary pressure fluid channel32is at least ten times greater than the volume of the primary pressure fluid channel30, most preferably at least15times greater. The compressor31has variable compressor volume/displacement, or by other means adjustable outflow, and generally the compressor31is driven by the crank shaft of the combustion engine1. At high numbers of revolutions and high torque output, higher pressure of the pressure fluid in the primary pressure fluid channel30is required, and at low numbers of revolutions and low torque output, lower pressure of the pressure fluid in the primary pressure fluid channel30is required. The pressure difference between the high pressure side and the low pressure side is in the order of 15-20 bar at high numbers of revolution/torque loads and in the order of 2-5 bar at low numbers of revolution and low engine loads. The compressor31is preferably of the type axial piston pump or swashplate pump, which provides a variable displacement by way of several pistons with variable stroke, where all pistons are arranged in mutually different positions in their respective cycles. The stroke is determined by the inclination of a glide plate, which acts against, and by rotation drives the pistons to perform an axial movement, and central axis of the glide plate performs a nutating motion. For each revolution the glide plate is turned, all pistons will perform one cycle. The inclination of the glide plate is thus variable/adjustable. The pressure level on the high pressure side in in the order of 8-30 bar to, with sufficient speed, open an inward opening engine valve where a high counter pressure is present in the combustion chamber, and the pressure level on the low pressure side is in the order of 4-8 bar. The cylinder head mantle14further comprises a hydraulic liquid manifold33that is connected with an inlet opening34of said hydraulic circuit25of the valve actuator10. The hydraulic liquid manifold33extends along the axial length of the cylinder head mantle14, parallel to the pressure fluid manifold29. A pump35, or the like, is arranged to supply a pressurized hydraulic liquid to the hydraulic liquid manifold33via a conduit36. The cylinder head mantle14further comprises all necessary electric infrastructure (not shown) for, among other things, controlling the first valve actuator10, for various sensors, etc. Reference is now primarily made to theFIGS. 4-9, which schematically show alternative embodiments of a gas handling system according to the invention for pneumatic control of a valve actuator10, which gas handling system comprises a pneumatic closed pressure fluid circuit. In theFIGS. 4-9, a compressor is shown to the right, the primary pressure fluid channel30(high pressure side) at the upper edge, the valve actuator10to the left, and the secondary pressure fluid channel32(low pressure side) at the lower edge. The pressure fluid thus flows counter-clockwise in the figures, which is illustrated by way of an arrow37inFIG. 4. Essential to the present invention is that the gas handling system comprises a gas accumulator38that is connected to the closed pressure fluid circuit via at least one gas accumulator conduit, which includes a controllable valve. Reference is now made toFIG. 4, which shows a preferred first embodiment. In this embodiment, the gas accumulator38is connected with said primary pressure fluid channel30via a first gas accumulator conduit39, which comprises a controllable valve40. At the need of a rapid pressure increase on the high pressure side from a low pressure level to a high pressure level, for example as a response to the accelerator paddle in the vehicle being rapidly pushed down and/or that the number of revolutions rapidly increases, the controllable valve40in the first gas accumulator conduit39is opened, whereupon the closed in volume, that has a higher pressure level than the pressure level present on the high pressure side, flows into the primary pressure fluid channel30and provides an immediate pressure rise on the high pressure side. The pressure level in the gas accumulator is lowered somewhat. The volume of the gas accumulator38is preferably at least five times greater than the volume in the primary pressure fluid channel30. Preferably, the compressor31has a variable displacement31that is controlled by the pressure relation over the compressor and the pressure on the lower side of the compressor pistons, whereupon the compressor31is arranged to, at a pressure increase on the high pressure side, achieve an automatic increase of the displacement of the compressor31, which lead to a further pressure increase. Preferably, a first pressure sensor41is connected with the gas accumulator38, and a second pressure sensor42is connected with the primary pressure fluid channel30, to ensure that the pressure level in the gas accumulator38is higher than the pressure level in the primary pressure fluid channel30before the controllable valve40in the first gas accumulator conduit39is opened. In the shown embodiment, a third pressure sensor43is also connected with the secondary pressure fluid channel32to be able to determine the pressure relation between the low pressure side and the high pressure side. When the pressure in the gas accumulator38is used to briefly rise the pressure level in the primary pressure fluid channel30, the controllable valve40in the first gas accumulator conduit39is closed. When the pressure level on the high pressure side again shall be lowered, the controllable valve40is opened in the first gas accumulator conduit39for refilling the gas accumulator38. The compressor31is preferably active to refill the gas accumulator to a predetermined level, irrespective of the need of pressure fluid with high pressure to the valve actuator10is remaining or not. Reference is now made toFIG. 5, which shows a second embodiment. Only differences in relation to the embodiment according toFIG. 4will be described. In addition to the first embodiment according toFIG. 4, the combustion engine1comprises a second gas accumulator conduit44that extends between the primary pressure fluid channel30and the gas accumulator38, and that comprises a non-return valve44, which is arranged to allow a flow in a direction toward the gas accumulator38. This way, it is guaranteed that hat the controllable valve40in the first gas accumulator conduit39can be closed as soon as a desired pressure increase has been achieved in the primary pressure fluid channel30. Thereafter, the non-return valve45in the second gas accumulator conduit44guarantees that the latest achieved highest pressure peak in the primary pressure fluid channel30is forwarded to and saved in the gas accumulator38. Accordingly, a simpler and automatic priming of the gas accumulator38is achieved. Further, the second gas accumulator conduit44also comprises flow restriction means44′, which for example are implemented by way of a constriction. The purpose of the flow restriction means44′ is to delay/limit so that the increased pressure that the compressor31delivers is not at first hand used to refill the gas accumulator38. Reference is now made toFIG. 6, which shows a third embodiment. Only differences with respect to the embodiments according toFIGS. 4 and 5will be described. In this embodiment, and in the subsequent embodiments, a cylinder head mantle13is also shown that is arranged between the secondary pressure fluid channel32and the valve actuator10. It should nevertheless be remarked that the cylinder head chamber13can be dispensed with in the third and the subsequent embodiments, and can be included in the first and the second embodiment. In the third embodiment according toFIG. 6, the gas handling system comprises a gas accumulator conduit47that extends between the gas accumulator38and the secondary pressure fluid channel32and that comprises a controllable valve48. The first gas accumulator conduit39that is shown in the first and second embodiments is not present in the third embodiment. At the need for a rapid pressure increase on the high pressure side from a low pressure level to a high pressure level, the controllable valve48in the third gas accumulator conduit47is opened, whereupon the closed in volume of pressure fluid flows into the secondary pressure fluid channel32. Thereby, the compressor31will be fed with a more dense pressure fluid, which gives a more rapid increase of the displacement of the compressor31and thereby provides a more rapid pressure increase on the high pressure side. Preferably, the third gas accumulator conduit47is connected with the secondary pressure fluid channel32close to or in direct connection with the compressor, in other words, the third gas accumulator conduit47is most preferably connected with the secondary pressure fluid channel32in the interface between the compressor31and the secondary pressure fluid channel32. Preferably, the compressor31has a variable displacement that is controlled by the pressure relation over the compressor31and the pressure on the under side of the compressor pistons, whereupon the compressor31is arranged to, at a pressure rise at the inlet of the compressor31, automatically increase the displacement of the compressor. Reference is now made toFIG. 7, which disclose a fourth embodiment. Only differences in relation to the embodiment according toFIG. 6will be described. In the fourth embodiment according to claim7, the second gas accumulator conduit44comprises, in addition to the non-return valve45, a controllable valve45′ to prevent a refilling of the gas accumulator38when the need for a pressure rise on the high pressure side remains. It is further preferred that a non-return valve49is arranged in the secondary pressure fluid channel32upstream the position where the third gas accumulator conduit47discharge in the secondary pressure fluid channel32, which non-return valve49is arranged to allow a flow in the direction toward the compressor, and thus preventing that the supplied pressure fluid flows into the cylinder head chamber13. In an alternative (not shown) embodiment, the third gas accumulator conduit47is connected directly to the compressor31and the non-return valve49is also preferably arranged in the compressor31. The controllable valve45′ in the second gas accumulator conduit44further leads to the gas accumulator38not being refilled/primed before said controllable valve45″ is opened. This leads to the volume in which the pressure should rise is kept at a minimum, whereupon a quicker pressure rise is achieved. When the need for a high pressure in the primary pressure fluid channel30decline/cease, the controllable valve45′in the second gas accumulator conduit44is opened, whereupon pressure fluid flows into the gas accumulator38. Additionally, the displacement of the compressor31will automatically decrease, which gives an even faster pressure drop on the high pressure side. Reference is now made toFIG. 8, which shows a fifth embodiment. Only differences in relation to earlier described embodiments will be described. The fifth embodiment is a combination of the first embodiment according toFIG. 4and the fourth embodiment according toFIG. 7. However, this embodiment comprises no second gas accumulator conduit. The fifth embodiment provides a possibility to open and release pressure fluid from the gas accumulator38, either in the primary pressure fluid channel30, via the first gas accumulator conduit39, or in the secondary pressure fluid channel32, via the third gas accumulator conduit47. Reference is now made toFIG. 9, which shows a sixth embodiment. Only differences with respect to the earlier embodiments will be described. The sixth embodiment is a combination of the second embodiment according toFIG. 5and the fourth embodiment according toFIG. 7. However, this embodiment comprises no controllable valve in the second gas accumulator conduit44. Similar to the fifth embodiment according toFIG. 8, the sixth embodiment provides a possibility to open and release the pressure fluid from the gas accumulator, either in the primary pressure fluid channel30, via the first gas accumulator conduit39, or in the secondary pressure fluid channel32, via the third gas accumulator conduit47. Additionally, the sixth embodiment provides the automatic refilling function of the second embodiment according toFIG. 5. Conceivable Modifications of the Invention The invention is not limited to only the abovementioned and embodiments shown in the drawings, which only have an illustrating and exemplifying purpose. This patent application is intended to cover all modifications and variants of the preferred embodiments described herein, and the present invention is consequently defined by the wording of the enclosed claims and the equipment can thus be modified in all conceivable ways within the framework of the enclosed claims. It should also be pointed out that all information about/concerning terms such as above, below, upper, lower, etc. shall be interpreted/read with the equipment oriented in accordance with the figures, with the drawings oriented in such a way that the reference numbers can be read in a correct manner. Consequently, such terms indicates only relative relationships in the shown embodiments, which relationships can be changed if the equipment according to the invention is provided with another construction/design. It should be pointed out that even if it is not explicitly stated that features from a specific embodiment can be combined with the features of another embodiment, this should be regarded as obvious when so is possible.
Comme il est bien connu,les polyblends ou caoutchoucs avec interpolymères du type styrène/acrylonitrile, ont des avantages importants car ils constituent des compositions présentant des propriétés désirables y compris la solidité et la résistance chi-5 mique tout en ayant en même temps une bonne formabilité. De telles compositions de caoutchouc modifiées, tendent cependant, généralement, à montrer une turbidité élevée et uns transparence faibxe s ou une opacité, de sorte que l'on a eu de grandes difficultés à adapter de telles compositions à des usages pour lesquels un 10 certain degré de transparence était désiré. L'on s'est efforcé d'obtenir de telles compositions de typ--. A.B.S. ayant un degré raisonnable de transparence pour des applications comprenant l'emballage et le revêtement de papiers. L'une des voies suivies pour obtenir cette transparence a été l'utilisa-15 tion de relativement petites particules de caoutchouc, c'est-à- dire moindre que 0,3 microns, de manière à minimiser 1'interférence avec les rayons lumineux traversant la matière. Cependant on a également fait des efforts pour ajuster l'indice de réfraction de caoutchouc avec celui de 1'interpolymère de manière a minimiser 2 0 la turbidité qui peut être produite même lorsqu'on utilise de petites particules de caoutchouc. De plus, on a trouvé que des greffes sur caoutchouc à petites particules n'optimisent pas les qualités de la composition, en ce qui concerne la résistance au choc et l'usage de grandes par-25 ticules ayant un diamètre moyen de l'ordre de 0,7 à 3 microns apporte des avantages sérieux en ce qui concerne la solidité et la résistance au choc. Cependant, les compositions contenant des particules de cette dimension sont généralement opaques. Plus récemment, il a été trouvé que des polyblends du type 30 A.B.S. contenant un constituant caoutchouc fortement greffé tend à montrer un degré de transparence désirable lorsque la dimension moyenne des particules est inférieure à environ 0,3 microns. De tels polyblends ont été produits par des procédés de polymérisation avec émulsion et offrent cette transparence seulement aux teneurs 35 élevées de caoutchouc initialement réalisées. Des efforts pour réduire la teneur en caoutchouc du polymère obtenu par mélange avec un interpolymère de la même composition que 1'interpolymère du superstrat copolymère greffé et de la matrice originale ont eu pour résultat un accroissement de la 40 turbidité lorsque la quantité d1 interpolymère mélangé augmente. 69 00006 2 Un but de la présente invention est de fournir de nouveaux polyblends qui montrent un degré avantageux de transparence sur une large" gamme de teneur en caoutchouc. C'est également un autre but de l'invention que d'obtenir 5 de tels polyblends par usage de composants qui peuvent être facilement et économiquement préparés et mélangés dans certaines proportions pour s'accorder aux besoins "de l'application particulière recherches ainsi qu'à la teneur en caoutchouc. un autre but est de fournir de telles compositions qui mon-10 tr-rnz un degré de transparence suffisamment élevé en dépit de l'iiiclu s i ou de petites quantités d'un copolymère greffé de particules ayant des dimensions relativement grandes. un autre but de l'invention -r-st de fournir des méthodes pour fabriquer1 des polyblends ayant un degré élevé de transparence 15 avec des méthodes qui soient simples5 relativement économiques et propres à fournir une large gamme en ce qui concerne la teneur de caoutchouc. On a maintenant trouvé que ce qui précède et les buts indiqués peuvent être facilement atteints dans un polyblend qui corn- 2 0 porte : A/ un constituant greffé de polymérisation contenant un copolymère greffé ayant un substrat de caoutchouc diène et un superstrat d'un iterpolymère consistant au moins principalement d'un hydrocarbure aromatique monovinyliaénique et un monomère polaire 25 choisi du groupe consistant en nitriles insaturés, acrylates, alkacrylates, fumarates, maléates et leurs mélanges. L'interpolymère matrice est d'une composition distincte de celle de 1'interpolymère du constituant greffé de polymérisation mais physiquement compatible avec lui. Le copolymère greffé a une 3 0 dimension de particules moyenne d'environ 0,01 à 0,3 microns et un rapport superstrat à substrat de 50-100/100. L'indice de réfraction de 1'interpolymère superstrat est distinct de celui du substrat de caoutchouc diène et l'indice de réfraction de 1'interpolymère matrice est substantiellement égal à l'indice de ré-3 5 fraction apparent du constituant greffé de polymérisation mais distinct des indices de réfraction à la fois"du substrat caoutchouc diène et de 1'interpolymère du constituant greffé. En addition au copolymère greffé, à petites particules, à fort greffage, on peut incorporer de petites quantités d'un copo-40 lymère greffé à grosses particules, c'est-à-dire d'une taille 69 00006 3 2000009 moyenne d'environ 0,8 à 2,0 microns, ayant essentiellement la même composition chimique. Ce copolymère greffé à grosses particules utilise également un substrat caoutchouc diène et un superstrat de pratiquement la même composition chimique que -celle du 5 constituant copolymère greffé à petites particujj| fortement greffé. Selon la pratique usuelle ce constituant/à grosses particules contiendra également quelque interpolymère non greffé ; des résistances au choc améliorées de façon sensible peuvent être obtenues sans perte excessive en transparence comme il sera expliqué 10 plus en détail par la suite. En déterminant la dimension des particules, on prépare une dispersion de copolymère greffé et on prend une microphotographie électronique. On doit compter et mesurer approximativement 2 00 à 1 000 particules pour obtenir un nombre moyen significatif. 15 La théorie du processus de la présente invention n'est pas complètement comprise mais l'on croit que le constituant copolymère greffé se comporte comme s'il constituait une phase unique dispersée à l'intérieur du constituant matrice de composition chimique différente. En dépit du fait que les copolymères greffés 20 qui ont été étudiés conformément à la présente invention contiennent d'appréciables quantités d'ùn interpolymère non greffé de la même composition que le superstrat du greffé sur caoutchouc, on n'observe pas une turbidité du type qui serait rencontrée en mélan géant cet interpolymère avec celui de la matrice, ce qui indique 25 son apparente coopération avec le copolymère greffé comme une phase unique dispersée à l'intérieur de 1'interpolymère matrice. Ainsi, les particules du copolymère fortement greffé et 1'interpolymère non greffé ainsi produit, provoquent un indice de réfraction apparente du constituant entier qui peut être égalé ou appro-30 ché d'une façon très serrée par l'indice de réfraction de 1'interpolymère matrice en dépit du fait qu'il s'agit d'une composition .chimique et d'un indice de réfraction distincts de-ceux de 1'interpolymère du constituant greffé et du substrat de caoutchouc. Lorsque les composants de la présente invention comportent 35 un copolymère greffé à grosses particules, la théorie pour une transparence continue est encore moins expliquable cependant ; il se peut que le constituant à petites particules fortement greffé et le constituant greffé à grandes particules ne constituent qu'une seule phase dispersée à l'intérieur du polymère matrice. En apparence les petites particules assurent l'homogé- 40 69 00006 2000009 néi"té du copolymère greffé à l'intérieur de la matrice et dissimulent la présence du greffé à grosses particules qui se traduirait par l'effet nuisible que de telles particules auraient sur la transparence. De toute façon les grosses particules ne rendent .5 pas la composition opaque en dépit de leur présence dans la composition en quantités qui la rendrait opaque en l'absence de petites particules du copolymère fortement greffé. Interpolymère du copolymère greffé L'interpolymère du copolymère greffé constituant le super-10 strat et la matière non greffée consiste au moins principalement d'un hydrocarbure aromatique monovinylidénique et d'un nitrile non saturé c'est-à-dire que des monomères représentent au moins 50 % en poids et de préférence au moins 75 % du poids d'interpolymères. Il est très désirable que de tels monomères représentent 15 ensemble au moins 85 % du poids de 1'interpolymère, les compositions usuelles commerciales sont pratiquement entièrement formées de tels monomères bien que de faibles quantités c'est-à-dire moins de 5 % en poids d'autres composants tels que des agents de transfert de chaînes des modificateurs, etc puissent être in-20 corporés. Des exemples d'hydrocarbures aronëriques monovinylidéniques qui£>euvent être utilisés dans les inter polymère s sont : le styrol, les dérivés monoaromatiques monovinylidéniques QC-alcoylés c'est-à-dire ^Hiiéthylstyrène, Q( -éthylstyrène, ^ -méthylvinyltoluène, 25 C* -méthyl dialcoyl-styrènes, etc; les styrènes avec substituant alcoyle sur le noyau, par exemple le vinyltoluène, o-éthylstyrène, p-éthylstyrène, le 2,4 dimethylstyrène etc ; les styrènes halogé-nés sur le noyau, c'est-à-dire l'o-chlorostyrène, le p-chloro-styrène, l'o-bromostyrène, le 2,4 dichlorostyrène etc ; les sty-30 rênes .avec substituants alcoyle et halogène sur le noyau c'est-à-dire le 2-chloro-4-méthylstyrène, le 2,6-dichloro-4-méthylsty-rène etc; le vinyl anthracene etc ; les substituants alcoyles ont généralement 1 à 4 atomes de carbone et peuvent comporter des groupes isopropyle et isobutyle. 35 Si on le désire, des mélanges de ces monomères aromatiques monovinylidéniques peuvent être utilisés. Des exemples de nitriles non saturés qui peuvent être utilisés dans les interpolymères sont l'acrylonitrile, le métacrylonitri-le, l'éthacrylonitrile, 1' 0( -méthylène glutaronitrile et leurs 40 mélanges. 69 00006 2000009 Des exemples de monomères qui peuvent être interpolymérisés avec les hydrocarbures aromatiques monovinylidéniques ét les nitriles non saturés sont les mono-acides non saturés en alpha ou beta et leurs dérivés c'est-à-dire l'acide acrylique, l'acry-5 late de méthyle, l'acrylate d'éthyles l'acrylate de butyle, le 2-éthylhexylacrylate« l'acide métacrylique, et leurs este rs ; l'acrylamide, le metacrylamide; les maléates ou fumarates di-al-coyles tels que les maléates diméthylique3 diéthylique, dibutylique, les fumarates correspondants , etc. 10 Comme il est connu dans la technique, la quantité de ces comonomères qui peuvent être incorporés dans les interpolymères peuvent varier en fonction de divers facteurs. Les interpolymères contiennent au moins 30 % en poids de monomère aromatique roonovinylidénique et de préférence au moins 15 50 % en poids. Ils contiennent également au moins 10 % en poids de nitrile non saturé et de préférence a.u moins 20 % en poids. En plus, ils peuvent contenir jusqu'à 50 % en poids de monomères copolymérisables, mais de préférence moins de 25 % et plus avantageusement moins de 15 % . Du point de vue de la pratique commer-20 ciale la plus avantageuse, la formulation monomère contient 30 à 90 % et de préférence 50 à 80 % en poids de l'hydrocarbure aromatique monovinylidénique et 70 à 10 % et de préférence 5 0 à 20 % en poids du nitrile non saturé. Comme il est bien connu dans la technique, le polyblend 25 est produit en polymérisant les monomères en présence de caoutchouc préformé. On admet généralement qu'une partie du polymère formé se greffe sur la caoutchouc préformé puisqu'il n'est généralement pas possible d'extraire le caoutchouc de la masse poly-mérisée avec les solvants usuels du caoutchouc bien qu'une cer-30 taine partie du polymère de caoutchouc peut ne pas être en combinaison chimique actuelle avec le polymère. Le rapport du superstrat au substrat peut varier de 50-250/ 100 mais est de préférence d'environ 80-200/100. Puisqu'on/atteint généralement pas un rendement de greffage 35 de 100 % au moins une partie des monomères polymérisés en présence du caoutchouc préformé ne se combinera pas chimiquement de sorte qu'il se forme un interpolymère non greffé qui est normalement une matrice pour le copolymère greffé. Cette partie peut être accrue ou diminuée en fonction du rapport de la quantité de 40 monomères de caoutchouc, la formulation particulière du monomère, 69 00006 6 2000009 la nature du caoutchouc et les conditions de polymérisation. Généralement, il est désirable d'utiliser des réactions de greffage a haute efficacité de manière à réduire le taux de 1!interpolymère non greffé. La quantité d'interpolymère non greffé 5 variera normalement dans l'intervalle d'environ 10 à 10 0 parties pour 10 0 parties de copolymère greffé, la proportion 10 à 50 parties pour 100 parties étant préférable. Le substrat caoutchouc du copolymère greffé Les caoutchoucs sur lesquels 1'interpolymère peut être greffé 10 durant la polymérisation en leur présence pour constituer le -substrat du copolymère greffé sont les caoutchoucs de diène ou des mélanges de caoutchoucs de diène, c'est-à-dire tout polymère caoutchouteux (un polymère ayant une température de transition de second ordre pas plus élevée que 0° de préférence pas plus 15 haute que -20°C comme déterminé par l'essai ASTM D-746 52T) de un ou plus diènes-1,3 conjugués, par exemple butadiène, isoprène3 piperylène, chloroprène, etc... de tels caoutchoucs comprennent les homopolymères et les interpolymères de diènes-1,3 conjugués5 avec jusqu'à environ 30 pour cent en poids de un ou plusieurs 2 0 monomères non saturés monoéthyliquement copolymérisables, tels que les hydrocarbures aromatiques monovinylidéniques (par exemple styrène, aralcoylstyrène tel que le o-, m-, et p-méthylstyrène, 2,l-diméthylstyrène, le ar-éthylstyrène5 p-tert-butylstyrène5 etc; un Q( -alcoylstyrène, tel que 1' ©f-méthylstyrène, l'Qf-éthylstyrène, 25 l'O^-méthyl-p-méthylstyrène, etc ; le vinyl-naphtalène etc.); les hydrocarbures aromatiques monovinylidéniques halogénés sur le noyau, par exemple : les o-, m-, et p-chlorostyrène; le 2,1 dibromostyrène, 2-méthyl-4-chlorostyrène, etc ; acrylonitrile., métacrylonitriles, acrylates d'alcoyle par exemple acrylate de 30 méthyle, acrylate de butyle, le 2-éthylhexylacrylate etc.) les méta-acrylates d'elcoyle correspondants ; les acrylamides (par exemple 1'acrylamide, métacrylamide, N-butyl acrylamide etc) ; les cétones non saturés (par exemple le vinyl-méthyl-cétone, le méthyl-isoproprenyl cétone etc) ; lesû{ -oléfines (par exemple 35 l'éthylène, le propylène etc) ; les pyridines ; les esters viny-liques (par exemple l'acétate de vinyle, le stéarate de vinyle etc) les halogénures de vinyle et de vinylidène (c'est-à-dire les chlorures et lœ bromures de vinyle et de vinylidène etc) et dérivés analogues. 4-0 Bien que le caoutchouc puissè contenir jusqu'à 2 % d'un 69 00006 7 2000009 agent de réticulation rapporté au poids du monomère ou des monomères formant le caoutchouc, une réticulation excessive peut présenter des problèmes pour la dissolution du caoutchouc dans les monomères en vue de la réaction de polymérisation par greffe. En 5 plus, une réticulation excessive peut provoquer une perte des caractéristiques caoutchouteuses. L'agent de réticulation peut être un quelconque des agents usuellement utilisés pour la réticulation des caoutchoucs de diènes, par exemple le divinylbenzène, le diallylmaléate, le diallylfumarate, le diallyl-adipate, l'acry-10 late d'allyle, le métacrylate d'allyle, les di-acrylates et di-méta-acrylates des alcools polyhydroxylés par exemple le diméta-crylate d'éthylène-glycol etc. Un groupe préféré de caoutchoucs sont cœx consistant es sent ââ.-lement en 75 à 100 pour cent en poids de butadiène et/ou isoprène 15 et jusqu'à 25 pour cent en poids d'un monomère choisi au groupe formé par les carboxylates non saturés (c'est-à-dire les acrylates et métacrylates) et les nitriles non saturés (c'est-à-dire l'a-crylonitrile) ou des mélanges. Des substrats particulièrement avantageux sont l'homopolymère de butadiène ou Un interpolymère 20 de 90 à 95 pour cent en poids de butadiène et 5 à 10 pour cent en poids d'acrylonitrile. Des techniques variées sont ordinairement utilisées pour poly-mériser les monomères y compris la polymérisation en masse, en suspension ou en émulsion. La polymérisation par émulsion peut ê-25 tre utilisée pour produire une .émulsion de latex qui est utile comme base pour la polymérisation par émulsion du copolymère greffé. Le procédé de polymérisation avec greffage Dans le procédé de polymérisation avec greffage, les monomères 30 et substrats de caoutchouc sont émulsifiés dans l'eau par usage d'agents émulsifiants convenables tels que- les savons d'acide gras, les sulfates et sulfonates d'alcoyle ou d'alcoyl-aryle, les savons de métaux alcalins ou d'ammonium, les aminés alipha-tiques des sels d'acides minéraux à longue chaîne etc. Les agents 35 émulsifiants qui se sont révélés les^lus avantageux sont l'oléate» le palmitate, le stéarate et les autres savons de soude. Généralement, l'agent émulsifiant est introduit en quantité d'environ 1 à 15 parties en poids pour 100 parties en poids des monomères, mais la quantité ne doit pas réduire indûment la taille de parti-40 cules de la phase dispersée. 69 00006 2000009 La quantité d'eau dans laquelle le monomère et le substrat de caoutchouc sont émulsifiés peut varier suivant l'agent émulsi-fiant, les conditions de polymérisation et les monomères particuliers. Cependant, on doit tenir compte que le rapport du mono-5 mère à l'eau tendra à affecter la dimension des particules dispersées. Généralement, le rapport de l'eau au monomère avec les savons de métaux&lcalins est compris entre 80-150/100 et est de préférence d'environ 90-125/100. Si on le désire, un latex aqueux formé dans la polymérisa-10 tion par émulsion du substrat de caoutchouc peut fournir le milieu aqueux dans lequel les monomères sont incorporés avec ou sans addition d'agents émulsifiants, etc. Cependant, le caoutchouc peut être dissous dans les monomères et le mélange émulsifié ou le latex peut être préparé séparément. 15 De façon générale, l'agent émulsifiant ajouté durant la polymérisation du mélange constitutif du monomère diène pour produire un latex de caoutchouc utile pour la présente invention est en quantité moindre que 4 % en poids basé sur le poids de monomères. 2 0 La quantité de l'agent émulsifiant présent à un moment quelconque durant la polymérisation du substrat de caoutchouc ne doit pas être excessive au point de diminuer la dimension des particules dispersées en dessous de 0,01 microns et doit être suffisant pour empêcher la formation d'un dépôt et l'aggloméra-25 tion ou l'accroissement de taille des particules au dessus de 0,25 microns en diamètre. Généralement, l'agent émulsifiant qui a été ajouté pour la polymérisation du substrat de caoûtchouc sera suffisant pour l'émulsion des monomères pourjLa réaction de polymérisation par greffe. Cependant, en vue d'obtenir une 30 stabilité du latex et un plus grand contrôle sur 1'émulsion et la dimension des particules, de petites quantités d'agent émulsifiant peut être ajouté durant la réaction de polymérisation avec greffage. Cependant, une telle addition doit être contrôlée de près 35 de manière à ne pas affecter défavorablement la dimension des particules de la phase dispersée. Divers initiateurs de polymérisation à radical libre, solu-bles dans l'eau sont utilisés d'habitude pour une polymérisation par émulsion de monomère de caoutchouc y compris les catalyseurs 40 conventionnels peroxy et perazo et le latex qui en résulte peut 69 00006 9 2000009 être utilisé comme le milieu aqueux avec lequel les monomères de 1'interpolymère sont mélangés. De cette façon, le catalyseur pour la polymérisation du caoutchouc peut fonctionner en tout ou en partie comme le cataly-5 seur pour la polymérisation avec greffage. Cependant, un catalyseur additionnel peut être ajouté au moment de la polymérisation avec greffage. Des exemples de catalyseurs peroxy convenables sont les peroxydes de métaux alcalins, les persulfates, les per-borates, les peracétates et percarbonates etAe peroxyde d'hydro-10 gène. Si on le désire, les catalyseurs peuvent être activés pour former des systèmes "redox". En plus, il peut être avantageux d'y inclure un catalyseur soluble dans l'huile tels que ceux identifiés ci-après pour des procédés de polymérisation combinés émulsion-masse. 15 Cependant, d'autres catalyseurs générateurs de radicaux li bres peuvent être utilisés tels qu'une radiation actinique. La concentration de catalyseur déterminera naturellement pour une grande part le taux de polymérisation et le degré final de conversion. 20 De même, le catalyseur particulier déterminera la quantité requise pour obtenir le taux désiré de réaction;généralement, la quantité de catalyseur est maintenue avantageusement en-dessous de 1,5 % en poids des monomères, et de préférence en-dessous de 0,7 % en poids des monomères, les catalyseurs préférés étant les 25 catalyseurs peroxy. Des régulateurs de poids moléculaires peuvent être inclus dans la formulation d'émulsion pour une réaction de polymérisation avec greffage de manière à contrôler le poids moléculaire et obtenir les propriétés désirées. 30 Des exemples de régulateurs de poids moléculaires sont les alcoyl-mercaptons et terpènes supérieurs, d'une manière particulière , le N-dodecyl-mercapton, le tert-dodecyl-mercapton, le ter-pinolène, le d-limonene etc. Suivant un procédé préféré, les monomères polymérisables 35 sont ajoutés au latex en relativement petites quantités, et de préférence de façon continue, pendant un temps assez long pour rendre minimale la quantité de monomères copolymérisés dans le latex.à un instant quelconque durant la partie initiale de la réaction de polymérisation avec greffe et même après. En limitant la 40 quantité des monomères n'ayant pas réagi présents dans le latex 69 00006 2'" 00009 et particulièrement durant la phase initiale de polymérisation il a été trouvé que le greffage des monomères sur le substrat de caoutchouc peut être favorié. De même, il a été trouvé qu'un excès de catalyseur durant les phases initiales de la réaction 5 de polymérisation tend à favoriser la réaction de greffage. Les conditions particulières de polymérisation employées varieront avec la composition du monomère et le catalyseur. Généralement, la réaction augmentera avec un accroissement de la température bien qu'un facteur de limitation soit la détério-10 ration possible des propriétés du produit et également une diminution du taux de greffage et l'instabilité possible du latex. Généralisent, des températures d'environ 30 à 100°C et des pressions d'environ 0-3,5 Kg/cm2 ont été trouvées convenables pour une bonne réaction de polymérisation avec greffage. Si on le dé-15 sire, on peut utiliser une atmosphère inerte au-dessus du latex polymérisant. Lorsque1la réaction de polymérisation a atteint le degré désiré de- conversion des monomères, qui normalement est supérieur à 90 I, on peut extraire les monomères n'ayant pas réagi et le 2 0 latex coagulé ; le polyblend est extrait sous la forme d'une par ticule qui est lavée pour un processus ultérieur. La quantité d'interpolymère non greffé produit par la réaction de polymérisation avec greffage varie avec le rendement de la réaction de greffage et le rapport du monomère au substrat de caoutchouc 25 en charge. Comme indiqué précédemment la quantité d'interpolymère non greffé varie normalement à l'intérieur d'une marge d'environ 10 I 100 parties pour 100 parties de copolymère, un rapport d'environ 10 à 50 parties pour 100 parties de copolymère étant préférable. 30 Détermination de l'indice de réfraction apparent du copolymère greffé L'indice de réfraction apparent de la matière fortement greffée peut être déterminé par une mesure selon les méthodes conventionnelles. Cependant, il a été trouvé que l'indice de 3 5 réfraction apparent peut être généralement déduit de façon ap proximative des indices de réfraction connus des constituants, sans nécessiter des mesures d'essai particulier et avec tur:degré raisonnablement élevé d'exactitude. Dans cette méthode de calcul, on utilise les indices de ré-40 fraction connus du-composant particulier c'est-à-dire le substrat 69 00006 2000009 de caoutchouc ou 11 interpolymère. L'indice de réfraction d'un composant particulier est multiplié par le nombre d'unités, de poids et l'on obtient la moyenne pour la somme des deux composants. Cette moyenne représente l'indice de réfraction apparent de la 5 composition entière comprenant à la fois le copolymère greffé non et 1'interpolymère/greffé qui est produit simultanément. Généralement, les indices de réfraction pour les substrats de caoutchouc et pour les interpolymères peuvent être facilement obtenus de la littérature publiée. 10 Par exemple, le changement dans l'indice de réfraction des copolymères styrène/acrylonitrile est essentiellement linéaire en fonction du changement en composition dans une variation du rapport styrène/acrylonitrile d'environ 80/20 à 40/60 de sorte qu'une simple représentation graphique fournit une méthode facile 15 pour déterminer l'indice de réfraction du copolymère dans toute composition donnée. Des représentations graphiques similaires faci-litant les calculs peuvent être préparas à partir d'informations publiées ou par détermination des indices de réfraction des compositions particulières pour interpolymères contenant d'autres 20 monomères en addition au styrène et à 1'acrylonitrile ou pour les interpolymères d'autres hydrocarbures aromatiques monovinylidénir ques et autres nitriles. Interpolymère de matrice Comme indiqué précédemment 1'interpolymère de la matrice 25 consiste principalement d'un hydrocarbure aromatique monovinyli-dénique et d'un monomère polaire choisi dans le groupe formé par les : nitriles non saturés, acrylates, alkacrylates, fumarates, maléates et mélanges de ceux-ci. En plus de ces deux classes de monomères qui doivent comprendre la partie prédominante de l'in-30 terpolymère, de petites quantités d'autres monomères de vinyle copolymérisables et compatibles peuvent être incorporées à l'inférieur de 1'interpolymère comme il sera expliqué plus complètement ci-après, Des exemples d'hydrocarbures aromatiques monovinylidéniques 35 qui peuvent être utilisés dans les interpolymères sont : le styrène, les composés mono-aromatiques, 0(-alcoylés monovinylidéniques, par exemple 0(-méthylstyrène ; ° vinyltoluène ;-méthyl dialcoylstyrène, etc ; les styrènes avec dans le noyau substituants alcoylésJ par exemple le vinyl-toluène, le o-éthyl-40 styrène, le p-éthylstyrène, le 2,4-diméthylstyrène, etc ; les 69 00006 12 2000009 styrènes avec substituants halogènes dans le noyau, par exemple 1'o-chlorostyrène, le p-chlorostyrène, l'o-bromostyrène, le 2,4-dichorostyrène, etc ; les styrènes avec substituants alcoyles et halogènes dans le noyau par exemple le 2-chloro-4-méthylsty-5 rêne, le 2,6-dichloro-4-méthylstyrène, etc ; le vinyle naphtalène; le vinylanthracè.ne, etc. Les substituants alcoyles ont généralement 1 à 4 atomes de carbone et peuvent comprendre les groupes isopropyl et isobutyl. Si on le désire, des mélanges de tels monomères aromatiques mono-10 vinylidéniques peuvent être utilisés. Le styrène et 1$ alcoyl-styrènes sont préférés. Des exemples de nitriles non saturés qui peuvent être utilisés dans les interpolymères sont les acrylonitriles, le métha-crylonitrile, 1'éthacrylonitrile, 1'0( -méthylène glutaronitrile 15 et les mélanges de ces corps. Les acrylates, alkacrylates, fumarates et maléates comprenant non seulement les acides mais également les anhydrides acides et leurs esters alcoylés généralement les groppes alcoyles des esters auront 1 à 15 atomes de carbone et de préférence 1 à 8 2 0 atomes de carbone dans leurs chaînes. Les alkacrylates auront normalement une chaîne alcoyle de 1 à 6 atomes de carbone et de préférence 1 à 4 atomes de carbone. Des exemples de composés sont l'acide acrylique, 1'acrylate de méthyle, 1'acrylate d'éthyle, 1'acrylate de butyle, le 2-éthyl-2 5 hexyl-acrylate ; l'acide métacrylique, le métacrylate de méthyle, le métacrylate d'éthyle, etc; l'acide étacrylique, l'acide buta-crylique et leurs esters, etc ; l'acide fumarique, le fumarate de diméthyle, le fumarate de diéthyle, etc ; l'acide maléique l'anhydride d'acide maléique, le maléate de diméthyle, le maléate 30 de diéthyle, le maléate de dibutyle, etc. Comme indiqué précédemment, les divers monomères polaires peuvent être utilisés séparément ou en combinaisons diverses pour la copolymérisation avec les hydrocarbures aromatiques, mo- p novinylidéniques. Des terpolymères et tétrapolymères apportéjbnt 35 normalement la plus grande opportunité pour une souplesse de l'ajustement de l'indice de réfraction de 1'interpolymère de matrice avec l'indice de réfraction apparent du constituant de polymérisation greffé tout en gardant les propriétés optimales pour 1'interpolymère. Cependant, les copolymères de styrène avec 40 seulement 1'acrylonitrile ou le méthacrylate de méthyle, par 69 00006 2000009 exemple, sont grandement satisfaisants pour de nombreuses applications . Généralement, les hydrocarbures aromatiques monovinylidéniques comprendront 40 à 70 % en poids de 1'interpolymère - et le 5 au les monomères polaires en comprendront 30 à 60 % en poids. En plus, des quantités minimes d'autres monomères de vinyle qui sont copolymérisables avec les hydrocarbures aromatiques monovinylidéniques et les monomères polaires, peuvent être incorporés avec les interpolymères; généralement, de tels monomères doivent 10 comprendre moins de 15 % en poids de 11 interpolymère et les compositions préférées sont celles formées entièrement en pratique d'hydrocarbures aromatiques monovinylidéniques et de monomères polaires. Des exemples de tels monomères de vinyle copolymérisables sont l'acide itaconique et ses esters, l'acide mésaconique 15 et ses esters, les cétones non saturés telles que la vinyl-méthyl-cétone et la méthyl-isopropenyl-cétone, les pyridines etc. L'interpolymère de matrice doit être en lui-même transparent mais il n'est pas nécessaire qu'il ait la limpidité de l'eau. Bien que 1'interpolymère de matrice puisse être préparé par 20 toute technique de polymérisation convenable englobant les procédés par suspension par émulsion et par masse, le procédé préféré pour produire 1'interpolymère utilise la technologie de polymérisation par masse de manière à obtenir le maximum de clarté. La polymérisation par émulsion tend à introduire des impuretés 25 colorantes dans le polymère en raison des sels utilisés pour la coagulation, les agents émulsifiants, etc. Le poids moléculaire de 1'interpolymère doit être choisi de manière à procurer à la composition les propriétés mécaniques désirables combinées avec une facilité satisfaisante de produc-30 tion. En plus, 1'interpolymère de matrice doit être physiquement compatible avec le constituant de polymérisation greffé comme il est connu dans la technique. Ainsi, 1'interpolymère de matrice aura normalement au moins quelque monomère polaire semblable en nature chimique ou en composition avec le nitrile non saturé de 35 1'interpolymère du constituant greffé de polymérisation. L'indice de réfraction de 1'interpolymère de matrice peut être déterminé par les méthodes d'essai usuelles ou par référence à la littérature publiée. Si on le désire, des représentations graphiques des divers interpolymères peuvent être ^utilisées pour 40 déterminer 1'interpolymère de matrice à utiliser avec un consti- 69 00006 2000009 tuant greffé de polymérisation donné. Autres composants En plus du constituant greffé de polymérisation constitué par le substrat de caoutchouc fortement greffé, il a été trouvé 5 que de relativement petites quantités d'autres constituants greffés de polymérisation de semblable composition chimique peuvent être incorporés dans les produits constituants de la présente invention de manière à améliorer la balance des propriétés sans effet indu sur la transparence. Comme il a déjà été indiqué de 10 petites quantités d'un constituant greffé de polymérisation à vent ^ grosses particules peu/ etre incorporée a cet effet. Cependant il est également possible d'inclure un autre constituant greffé de polymérisation de dimension de particules comparables qui a été greffé à un plus faible degré de manière à retenir un plis haut 15 degré de caractéristiques quasi-caoutchouteuses.; Par usage, d'un tel constituant greffé de polymérisation à plus grandes particules et/ou d'un tel constituant greffé de polymérisation plus faiblement greffé à petites particules, les propriétés de résistance au choc et autres propriétés des- poly-20 blends peuvent être améliorées de sorte que de tels additifs sont souvent désirables et doivent être considérés comme entrant dans le cadre de la présente invention. Cependant, quel que soit le constituant greffé de polymérisation additionnel particulier, choisi, il doit avoir une composi-25 tion chimique qui est pratiquement la même que celle du constituant greffé de polymérisation fortement greffé pour éviter la. formation d'une phase additionnelle et la perte de transparence. Du point de vue de l'efficacité optimale, les composants greffés de polymérisation additionnels- utilisent sensiblement 30 l'a même composition pour les substrats de caoutchouc et pour les interpolymères bien que de minimes variations soient acceptables telles que par exemple l'usage d'un copolymère butadiène/styrène (90/10) et d'un copolymère butadiène/acrylonitrile (90/10) pour les substrats et un copolymère styrène/acrylonitrile pour l'in-3 5 terpolymère d'un constituant greffé de polymérisation et un sty-rène/alpha-méthyl styrène/acrylonitrile terpolymère pour 1'interpolymère de l'autre- L'information concernant les compositions des substrats de caoutchouc et les interpolymères du constituant de polymérisation ^0 greffé à petites particules fortement greffé est également appli 69 00006 2000009 cable ici et.ne sera pas répétée. Le constituant greffé de polymérisation à grosses particules présente une dimension moyenne de particules de l'ordre de 0,6 à 2,5 microns avec plus de 75 % des particules ayant des dimensions 5 oomprises entre 0,5 et 2,6 microns,comme la dimension moyenne de particules augmente dans cette marge le pourcentage en poids du greffé sunfcaoutchouc à grosses particules requis pour obtenir une résistance au choc comparable décroît mais les particules au-dessus de 2,0 microns tendent à minimiser l'action coopérative 10 hautement effective des grosses et petites particules et ainsi à diminuer le brillant de façon excessive. De préférence, le constituant greffé à grosses particules présente une taille de particules de l'ordre de 0,8 à 1,5 microns. Le rapport superstrat/substrat du copolymère greffé à grosses 15 particules peut varier largement de 10-250/100. Suivant le procédé de polymérisation employé, le rapport préféré est environ 5 0-15 0/ 100 pour des greffés produits par des techniques de suspension ou masse/suspensions et 10-50/100 pour des greffés produits par des techniques de latex utilisant des particules de caoutchouc agglo-20 mérées. Comme il est suggéré, des particules à grosses dimensions peuvent être obtenues par des techniques de masse ou de suspension ou en variant la taille deafaatières d'émulsion par des techniques d'ensemençage et d'agglomération. Les grosses particules sont avantageusement produiteg^ar une 25 combinaison de procédés de polymérisation masse-suspension dans lesquels les monomères substrat de caoutchouc et catalyseur (aussi bien que les autres constituants facultatifs) sont soumis à un réacteur convenable et ensuite polymérisé en masse par chauffage à une température d'environ 75 à 125°C pendant une durée d'en-30 viron 1 à 48 heures et à une pression de 1 à 7 Kg/cm2 jusqu'à ce /âne portion de monomère ait été polymérisée, généralement environ 15 à 50 % en poids, avec agitation usuelle pour aider le transfert de chaleur durant la réaction. La durée de cette polymérisation partielle dépendra du catalyseur, des pressions Et des 35 températures utilisées et des monomères particuliers et de leurs proportions. Généralement, on préfère conduire un tel procédé de prépolymérisation pour convertir approximativement 20 à 35 % en poids de monomère. Tout catalyseur générateur de radical libre peut être utilisé, 40 y compris une radiation actinique. Il est préférable d'incorporer 69 00006 16 2000009 un catalyseur oonvenable pour polymériser le monomère tels que les systèmes conventionnels, monomères, composés peroxy et perazo solubles et "redox". Des exempts de catalyseurs sont les peroxydes de di-tert-butyle, de bBnzoyle, de lauroyle, d'allyle 5' de toluyle, de diperphtalate, de di-tert-butyle, le peracé"feate de tert-butyle, le perbenzoate de tert-butyl, le peroxyde de dicumyle le peroxyde de tert-butyl et de carbonate d'isopropyl, 2,5-diméthyl 2,5-di-(tert-butyl-peroxy)hexane, 2,5-diméthyl-2,5-di (tert-butyl peroxy) hexyne-3, hydroperoxydes de tert-butyl, de cuméne , de p-10 menthane, de cyclo-pentane, de di-isopropylbenzène, de p-tert-butylcumène, de pinane, 2,5-dihydroperoxy de 2,5-dimethylhexane, etc. et des mélanges de ceux-ci. Le catalyseur est généralement incorporé en quantité de l'ordre de 0,001 à 1,0 % en poids et de préférence de l'ordre de 15 0,005 à 0,5 % en poids de matière polymérisable suivant les monomères et le cycle désiré de polymérisation. Le sirop fourni par la composition partiellement polymérisée est ensuite mélangé avec de l'eau en présence d'un agent de suspension tels que les interpolymères acide acrylique acrylate sui-20 vant le brevet U.S.A. N° 2.945.013 accordé le 12 juillet 1960 et le brevet U.S.A. N° 3.051.682 accordé le 28 août 1962. Des auxiliaires de dispersion secondaire peuvent également être ajoutés pour obtenir la suspension désirée du sirop dans l'eau. L'agent de suspension est ajouté de préférence à l'eau bien 25 qu'il puisse être ajouté aux monomères "alunitio"ou durant la polymérisation initiale. Cette suspension est soumise à l'agita-tioryfet chauffée à une température d'environ 7 5 à 200°C .pour une période de 1 à 48 heures pour obtenir pratiquement une complète polymérisation des monomères. 30 De préférence, une telle polymérisation est effectuée à une température d'environ 100 à 170°C pendant 1 à 20 heures suivant le catalyseur et la quantité qu'on en utilise. Après achèvement pratiquement complet de la réaction de polymérisation, on extrait les monomères n'ayant pas réagis ou les constituants résiduels 35 volatils, et les perles de polymères sontééparées par centrifu-gation, lavage et séchage. Suivant une alternative, les substrats de caoutchouc et les monomères peuvent être mis en suspension dans l'eau tout d'abord, et l'entière réaction de polym-érisation conduite par suspension. 40 Quel que soit le procédé des monomères additionnels, des cataly- 69 00006 17 2000009 seurs et autres constituants peuvent être introduits dans la . composition polyméris cible. à différents stades du procédé de polymérisation si on le désire. Pour réduire les exigences en équipement particulier, un 5 procédé de polymérisation par émulsion est avantageusement utilisé pour préparer les constituants copolymères à grosses particules. Généralement, la dimension des particules du copolymère greffé peut varier par variation de la dimension du substrat de caoutchouc utilisé. Par exemple, un latex de caoutchouc qui a usuel-10 lement des particules de petites dimensions, c'est-à-dire moins de 0,2 microns, peut subir-un crémage par usage de sels de métaux polyvalents, ou être acidulé ou subir une agglomération d'un certain nombre des petites particules de caoutchouc entre une plus grande masse. Pendant la réaction de greffage, les monomères 15 de polymérisation se grefferont sur cette agglomérat et fourniront un copolymère greffé de plus grandes dimensions. En plus, on peut utiliser les techniques d'ensemençage durant la polymérisation du caoutchouc et/ou durant la polymérisation du latex du copolymère greffé, peuvent être utilisés pour 20 faire varier la taille des particules ainsi produites. Un copolymère greffé qui est relativement .peu greffé doit avoir un rapport superstrat à substrat d'environ 10-50/1010 et de préférence environ 20-45/100. La taille de ses particules peut varier d'environ 0,1 à 1 micron et est de préférence environ 25 0,15 à 0,75 microns. On utilise, de préférence le procédé de polymérisation par émulsion usuelfepour produire ce constituant greffé. En addition à la matrice, au constituant de polymérisation greffé à petites particules et fort greffage et aux" composants 30 greffés de polymérisation à greffage relativement léger et/ou à grosses particules, d'autres matériaux facultatifs peuvent être ajoutés à la composition, suivant l'usage recherché et la nature de ces matériaux comme par exemple des plastifiants et des 'chatges Leur quantité et leur nature détermineront l'ef£»et possible sur 35 la transparence des blends. Généralement, il est nécessaire d'incorporer des stabiliseurs et des antioxydants pour empêcher la dégradation du copolymère greffé et souvent celle des interpolymères. Bien que les. stabiliseurs et les antioxydants puissent être 40 incorporés au moment du mélangeage des constituants pour former 69 00006 18 2000009 le polyblend final, il est généralement plus avantageux d'incorporer ces matériaux dans les constituants individuels après leur formation, de manière à minimiser la tendance à la dégradation ou à l'oxydation durant le formage et le stockage. 5 Formation du polyblend . Le final polyblend peut être- préparé en travaillant les constituants de toutes les façons usuelles par laminage extrusion, mélangeage, etc. Si 1'interpolymère de matrice est préparé par le procédé de polymérisation par émulsion, le latex qui en résulte 10 peut être travaillé avec le latex du constituant greffé de polymérisation et le mélange latex est coagulé, lavé et séchë. Généralement, les polyblends peuvent contenir 2 à 3 % en poids de caoutchouc fourni par le substrat caoutchouc du ou des composants greffés de polymérisation et les compositions préférées 15 en contiendront normalement 2 à 20 L Lorsqu'un constituant de polymérisation greffé à grosses particules et/ou un constituant de polymérisation greffé à faible greffage et petites particules sont incorporés dans le polyblend, de tels constituants doivent être ajoutés en quantité telle que le rapport de leur quantité 2 0 de caoutchouc au caoutchouc du composant de polymérisation fortement greffé soit inférieur à 25/100 et de préférence moindre que 12/100. Normalement, de tels constituants greffés de modification procureront un rapport caoutchouc/caoutchouc d'au moins 2 à 5/100 pour un raisonnable bénéfice du point de vue de la résistance au 25 choc. GénéralEmènt, il s'est révélé désirable d'inclure au moins quelque constituant greffé de polymérisation à grosses particules et, lorsque ce constituant est produit par une technologie de suspension ou de masse/suspension, on ajoute favorablement quelques quantités additionnelles d'un constituant de polymérisation 30 greffé à greffage relativement faible. Comme il a été précédemment indiqué, 1 'indice"7?éfraction de 1'interpolymère de matrice est distinct des indices de réfraction^" la fois le substrat de caoutchouc et l'inter—polymère du constituant de polymérisation greffé. Cette différence dans l'in-35 dice de réfraction sera d'au moins 0,01 d'au moins un des deux éléments du compesant greffé de polymérisation et peut être for- -tement distinct des deux à la fois, suivant le rapport des deux éléments dans le constituant greffé de polymérisation. Dans le même contexte l'indice de réfraction de l'interpo-M-0 lymère du copolymère greffé de polymérisation est substantielle 69 00006 2000009 ment: distinct de celui du substrat de caoutchouc, c'est-à-dire au moins une différence de 0,02 unités et même généralement'plus. Un exemple de cette différence est l'indice de réfraction d'environ 1,520 pour un substrat de polybutadiène et un indice 5 de réfraction d'environ 1,555 pour un copolymère styrène/acrylonitrile (70/30) fournissant une différence de 0,035 unités. Les polyblends produits selon la présente invention sont substantiellement transparents, c'est-à-dire que la transmission à travers un spécimen moulé de 0,25 mm d'épaisseur pour une lon-10 gueur d'onde de 500 millimicrons est d'au moins 50 % et est généralement beaucoup plus grande. Les compositions peuvent varier de la limpidité de l'eau au jaune léger suivant les composants du caoutchouc et les impuretés. Une coloration jaunâtre peut être neutralisée par incor-15 poration de couleur bleue appropriée. Cependant, ils apportent. des avantages considérables de transparence permettant leur application à l'emballage, au recouvrement et autres usages où la transparence est avantageuse et où le reste des autres propriétés de la famille des polyblends du type A.B.S. offre des avantages 20 significatifs. Les compositions préférées utilisent les copolymères greffés d'homopolymères ou des copolymères n'ayant pas plus de 10 % en poids de nitriles et d'alcoyl acrylates comme le substrat de caoutchouc et les interpolymères de 5 0-80 en poids de styrène ou 25 d'alcoyl-styrènes avec 50-20 % en poids d'acrylonitrile, métfta— crylonitrile ou méthylène glutacrylonitrile comme auperstrat. Les interpolymères de matrice comportent de préférence 40-70 % en poids de styrène ou alooyl-styrènes et 60-30 % en poids d*a-crylonitrile, méthâcrylonitrile, Ot-méthylène-glutaronitrile, des 30 esters inférieurs d'alcoyl-acrylate et alkacrylate (1-4 atomes de carbone dans les groupes alcoyles) ou mélanges d'entre eux. Les terpolymères de styrène, les métacrylates d'acrylonitrile et de méthyle ont été particulièrement utiles. Des exemples de compositions de la présente invention seront 35 décrits ci-après, toutes les- proportions étant données en poids à moins qu'il n'en soit indiqué autrement. EXEMPLE I PARTIE A A 250 parties de latex de copolymère butadiène/acrylonitrile 40 (93/7) contenant approximativement 45 % de parties solides et 69 00006 20 2000009 3,25 parties d'un savon dit "rubber reserve soap" comme émulsifiant, on ajoute 33 0 parties d'eau et 0,3 parties de persulfate de potassium. On fait un mélange de 112 parties de styrène, 48 parties 5 d'acrylonitrile et 1,3 partie de terpinolène qui est ajouté de façon continue à 1'émulsion pendant une période d'environ six heures tandis que le réacteur est soumis aux conditions de polymérisation. Durant le cycle de polymérisation, la température est main~ 10. tenue à environ 6.5 à 8 0° C et la pression à environ 0 à 1 Kg/cm2, le cycle total étant d'environ huit heures. Des additions égales de "rubber reserve soap" sont ajoutées au mélange polymérisant respectivement l'une trois heures et l'autre quatre heures après le début du cycle. Un catalyseur additionnel de persulfate est 15 ajouté en cinq quantités égales de 0,13 parties chacune après des périodes de une, deux heures un quart, trois heures un quart, quatre trois-quart et six heures. On a trouvé que le latex contenait ion copolymère greffé ayant un rapport superstrat/substrat d'environ 80/100 et une dimension de particules (moyenne numéri-20 que) de 0,13 microns. PARTIE B Un second copolymère greffé de latex est préparé en utilisant un substrat de caoutchouc butadiène/styrène. A un latex contenant 100 parties de caoutchouc et environ 6 parties de savon ainsi que 25 0,2 partie de persulfate de potassium, on ajoute 50 parties d'un nâange de monomères styrèhe et acrylonitrile (80/20) pendant line période d ' environ une heure et demie. Durant le cycle de polymérisation, la température est maintenue dans l'intervalle 5 0-7 0°C et la pression de 0 à 1 kg/cm2 après que la polymérisation 3 0 soit achevée, on'constate que le copolymère greffé a un rapport superstrat à substrat d'environ 37 à 100 et a une dimension de particules d'environ 0,05 micron (moyenne numérique). PARTIE C Le latex de la pairtie A est mélangé avec le latex de la 35 partie B dans un rapport de 943/57 et le latex combiné est coagulé, lavé et séché pour récupérer 1£ chapelure de caoutchouc. PARTIE D On prépare un copolymère par polymérisation par suspension d'un mélange styrène/acrylonitrile dans des conditions sévèrement 40 contrôlées pour minimiser la turbidité. Le polymère résultant 69 00006 21 2000009 contient 7 0 parties de styrène et 30 parties d'acrylonitrile. Au moulage, on a trouvé que des spécimens de cette composition ont la limpidité de l'eau et montrent une très faible turbidité. PARTIE E 5 On a pr.é/'paré une série de composition à teneur de caout chouc variée utilisant le coagulat mélangé de la partie C et le copolymère cristallin à faible turbidité S.A.N. de la partie D. UNe composition de contrôle est préparée en utilisant un copolymère typique commercial S.A.N. (67/33) montrant une turbidité 10 normale, à la place de copolymère S.A.N. de la pafctie D. Ces divers polyblends sont moulés en plaques par compression et évalués quant à la transparence - la composition contenant 3 00 parties du coagulat mélangé de la partie C et 20 0 parties du copolymère S.A.N. de là partie D, (24- % de caoutchouc) s'est mon-15 trée plus transparente que les spécimens produits par mélange de 200 parties du coagulat mélangé de la partie C avec 3 00 parties du copolymère S.A.N. de la partie D(16 % de caoutchouc). Les derniers spécimens à leur tour ont été trouvés plus transparents que les spécimens produits par mélange de sailement 100 20 parties du coagulat mélangé de la partie C avec 3 00 parties du copolymère S.A.N. de la partie D (10 % de caoutchouc). En fait, Ces derniers spécimens sont essentiellement opaques De façon surprenante, les spécimens produits par mélange de 100 parties de coagulat mélangé de partie C aT-ec 300 parties 25 du copolymère plus conventionnel S.A.N. de turbidité initiale plus grande se sont révélés être plus transparents que les spécimens prokîduits avec le copolymère .S.A.N. à basse turbidité de la partie D. Ainsi, on peut voir que la turbidité du copolymère de 30 matrice initial et le pourcentage du caoutchouc du polyblend ne sont pas des facteurs essentiels affectant la transparence de la composition puisque l'opacité augmente de façon surprenante lorsque la quantité de caoutchouc s'abaisse en utilisant un copolymère compatible S.A.N. à faible turbidité comme diluant. 35 EXEMPLE II PARTIE A Un terpolymère de styrène, acrylonitrile et méthacrylate de méthyle est préparé par suspension dans 750 grammes d'eau, de 400 g de styrène, 175 g d'acrylonitrile et 125 g de métacryla-40 te de méthyle. 69 00006 22 2000009 Comme stabiliseur, on ajoute 0,7 gramme de 2,6-di-paracresol butyle tertiaire et 0,4- g de di-peroxy de butyle tertiaire est ajouté comme catalyseur. La suspension est chauffée à 120°C et maintenue à cette 5 température environ une heure et demie, on ajoute un agent de suspension qui consiste en 4 g dé chlorure de sodium, 5 0cc d'eau et 4 cc d'une solution aqueuse à 5 % d'un copolymère de 4,5 moleS % de 2-éthyl-hexyl-acrylate et 95,5 mol^ % d'acide acrylique qui a une viscosité spécifique d'environ 4 comme il est déterminé 10 dans une solution à 1 % dans l'eau à 25°C. La suspension est chauffée à 135°C pendant une heure puis est chauffée à 150°C pendant une heure et demie. Après achèvement du cycle de polymérisation, la suspension est refroidie, centrifugée, lavée et séchée pour récupérer le 15 polymère sous forme de perles. Des plaques d'interpolymère sont moulées par compression et ont montré avoir la limpidité de l'eau. La viscosité spécifique de 1'interpolymère s'est révélée de 0,125 et la teneur de styrène résiduelle être de 0,3 6 %. PARTIE B 20 Le procédé de la partie A est rep-/été exceptée que 0,7 g de terpinP-lène sont ajoutés comme un régulateur de poids moléculaire. Les spécimens moulés de cette composition se sont montrés avoir également la limpidité de l'eau, la visicosité spécifique de la composition est réduite de 0,105 et la teneur de styrène 25 résiduel est 1,72 %. PARTIE C " Le procédé de la partie A est répété excepté que la charge de monomères est 455 g de styrène, 175 g d'acrylonitrile et 70 g de métacrylage de méthyle. Le catalyseur est augmenté de 0,5 g 30 et on ajoute 0,4 g de terpinone. L^omposition s'est révélée produire également des spécimens ayant la limpidité de l'eau et la viscosité spécifique est 0,116. PARTIE D Le processus de la partie C est répété " excepté que la charge 35 de monomères est de 35 0 g de styrène, 17 5 g d'acrylonitrile et 17 5 g de métacrylate de méthyle. On a trouvé que la composition fournissait desspécimens ayant une légère coloration îjaune et av€ï£' un peu moins de transparence. La visoosité spécifique de la composition est 0 ,114. 40 - 69 00006 23 2000009 PARTIE E Les divers terpolymères des parties A-D sont mélangés avec lin constituant greffé de polymérisation, produit pratiquement suivant la partie A de l'exemple I excepté que le substrat de caoutchouc est un copolymère de 90 parties de butadiène-et 10 5 parties de styrène. La rapport de 1'interpolymère de matrice aux constituants de polymérisation greffés est de 240/100 pour fournir un polyblend contenant 10 % de caoutchouc. Tous les spécimens transmettent plus que 50 % de la lumière et montrent des , niveaux relativement bas de turbidité. 10 Des spécimens d'essai ont été moulés et évalués. Ce^spéci- mens ont tous un coefficient de résistance au choc Izod de 0,069 Kgm par 2550/2111 . Une flexibilité accrue sur la matrice rend ces matériaux satM'aisants pour quelques applications. Les spécimens produits à partir du terpolymère de la partie D montent 15 la plus grande transparence. Ceux produits à partir des terpoly-mèfces des parties A et B tombent entre ces terpolymères en ce qui concerne la transparence. Comme on peut le voir d'après ces essais les polyblends produits suivant la présente invention rendent possibles des 20 perfectionnements dans les propriétés des polymères de matrice et un haut degré de transparence. Ceci fait contraste acec les spécimens produits à l'exemple I à un niveau comparable de caoutchouc qui étaient essentiellement opaques. De plus, les spécimens des polyblends produits en utilisant l1interpolymère de la partie D 25 ont été trouvés plus transparents que les spécimens moulés de I ' interpolymère de matrice "pêï- se" EXEMPLE III On prépare un polyblend semblable à ceux produits dans la partie E de l'exemple II excepté que le copolymère greffé mélangé 30 de latex de la partie C de l'exemple I est utilisé en conjonction avec les interpolymères de matrice des parties' A et C de l'exemple II dans les quantités suivantes 7 00 g d'interpolymère et 100 g du constituant copolymère greffé. Dans les deux cas, la résistance "Izod" des polyblends a été trouvé comparable aux '.valeurs d'im-35 pact des meilleurs polyblends contenant du caoutchouc de l'exemple II et la transparence est pratiquement la même en dépit de la présence du constituant de copolymère relativement faiblement greffé. EXEMPLE IV 40 69 00006 2" 2000009 Un mélange est préparé avec 2 b ,4- parties du produit de latex iœLangé de la partie C de l'exemple I, 67, 2 parties du copolymère S.A.N. à faible poids moléculaires de l'exemple I.et 7,4 parties d'un copolymère greffé ayant un homopolymère butadiène comme '5 substrat et un copolymère styrène/acrylonitrile comme superstrat. La composition contient 14 parties de caoutchouc, 6 0 parties de styrène et 26 parties d'acrylonitrile, la rapport superstrat/ substrat est d'environ 0,9 à 1/1 et la taille moyenne des partieules est d'environ 0,9 microns - des spécimens moulés avec 10 ce mélange présentent un coefficient de résistance "Izod" de 0,24 Sgm par 25 m/m et montrent une turbidité élevée et une transparence relativement faible. PARTIE B Lq^irocédé de la partie A est répété en substituant au copo-15 lymère S.A.N. de l'exepple I le terpolymère de la partie A de l'exemple II. Des spécimens moulés avec ce mélange ont un coefficient de résistence "Izod" de 0,24 Kgm par m/m et se sont révélés être extrêmement transparents avec une turbidité relativement basse. 20 Ainsi, on voit d'après la description détaillée précédente et les exemple s particuliers, que la présente invention offre de nouveaux polyblends qui montrent un degré avantageux de trançaren-ce sur une large gamme de teneurs en c®utchouc. Les polyblends peuvent être simplement et économiquement préparés et obtenus 25 à partie de constituants qui peuvent être facilement stockés et qui permettent d'obtenir des polyblends dont les propriétés correspondent aux besoins particuliers des différentes applications comme aux teneurs de caoutchouc et autres propriétés. Il est particulièrement significatif que la présente invention 30 permette l'incorporation de copolymère greffé à relativement grosses particules pour améliorer grandement la résistance au choc tout, en maintenant la transparence désirable. Ainsi, au lieu d'essayer d'accorder les indices de réfraction du substrat de caoutchouc et de 1'interpolymère, la présente in-35 vention permet d'ajuster convenablement les -'compositions chimiques tout en étant en mesure de maintenir les hauts ùegjts de transparence désirables. Il est certain que de nombreuses variantes peuvent êteappor-tées aux procédés décrits sans s'écarter de l'esprit et de la por-40 tée de l'invention. 69 00006 2000009 REVENDICATIONS 1# Polyblend relativement transparent comprenant : (A) un constituant greffé de polymérisation contenant un copolymère greffé ayant un substrat de caoutchouc diène et un superstrat d'un interpolymère consistant au moins principalement en 5 un hydrocarbure aromatique monovinylidénique et un nitrile non saturé, et un interpolymère non greffé de la même composition que ce superstrat, ce copolymère greffé ayant une dimension moyenne de particules d'environ 0,01 à 0,3: microns et un rapport superstrat de à substrat de 50 à 200/100 11 indice/réfract i o n de cet interpoly-10 mère superstrat étant distinct de celui de ce substrat de caout-chouc-diène et, (B) un constituant matrice formé par un interpolymère d'un hydrocarbure aromatique monovinylidénique et un monomère polaire choisi dans le groupe formé par les nitriles non saturés, 15 les acrylates, les alkacrylates, les fumarates, les maléates et leurs mélanges, cet interpolymère matrice étant d'une composition distincte de celle de 1'interpolymère du constituant greffé de polymérisation mais physiquement compatible avec eux, cet interpolymère matrice ayant un indice de réfraction pratiquement égal 20 à. l'indice de réfraction apparent du constituant greffé de polymérisation mais distinct des indices de réfraction d'à la fois le substrat de caoutchouc diène et 1'interpolymère de ce constituant greffé. 2. Le polyblend selon 1 dans lequel cet hydrocarbure aro— 25 matique monovinylidénique de 1 * interpolymère de la matrice et du constituant greffé de polymérisation est le styrène. 3. Le polyblend selon 1 dans lequel le nitrile non saturé de 1'interpolymère du constituant greffé de polymérisation est 1'acrylonitrile. 20 Le polyblend selon 1 dans lequel le substrat de'caout chouc du copolymère greffé contient au moins environ 75 en poids de diène conjugué choisi dans le groupe formé par les homopolymère» de caoutchouc diène et les interpolymères caoutchouteux contenant au moins 75 $ en poids 'd'un diène conjugué. 35 5. Polyblend selon 1 dans lequel l'hydrocarbure aromatique monovinylidénique et le nitrile non saturé comprennent au moins 69 00006 26 2000009 Il : 85 f" en poids de 1'interpolymère du constituant greffé de polymérisation. 6. Le polyblend selon 1 dans lequel le rapport du superstrat au substrat est de 80 à 200/100. 5 7. Le polyblend selon 1 dans lequel cet interpolymère de ce composant greffé de polymérisation est un interpolymère styrfcne/ acrylonitrile et dans lequel cet interpolymère de ce constituant de matrice est un interpolymère de styrène de (1) un monomère de styrène, (2) un monomère nitrile non saturé, et (3) un monomère 10 ester d'alkacrylate d'alcoyle. 8. Le polyblend selon 7 dans lequel cet interpolymère de matrice est un terpolymère de styrène/ acrylonitrile méthyl métha— crylate. 9. Le polyblend selon 1 dans lequel 0-20 fo en poids du 15 caoutchouc de ce polyblend est formé par un constituant greffé additionnel de polymérisation contenant un copolymère greffé ayant un substrat de caoutchouc diène et un superstrat d'un interpolymère consistant au moins principalement d'un hydrocarbure arona-tique monovinylidénique et un nitrile non saturé et un interpolymèie 20 non greffé de la même composition que le superstrat, l'indice de réfraction de cet interpolymère superstrat étant distinct de celui du substrat de caoutchouc diène. 10. Le polyblend selon 9 dans lequel ce constituant greffé additionnel de polymérisation a une dimension moyenne de parti- 25 cules d'environ 0,60 à 2,25 microns. 11. Polyblend selon 9 dans lequel ce constituant greffé additionnel de polymérisation a une dimension moyenne de particules d'environ 0,1 à 1 micron et un rapport de superstrat au substrat d'environ 10 à 50/100. 30 12. Polyblend selon 9 dans lequel le constituant greffé additionnel de polymérisation comporte un premier constituant greffé additionnel de polymérisation ayant une dimension moyenne de particules d'environ 0,60 à 2,5 microns et un second constituant greffé additionnel de polymérisation d'environ 0,1 à 1 micron avec 35 un rapport de superstrat à substrat d'environ 10 à 50/100. 13. Le polyblend selon 9 dans lequel 1'interpolymère de 69 00006 2000009 ces constituants greffés de polymérisation est un interpolymère styrène/acrylonitrile et dans lequel cet interpolymère de constituant de matrice est un interpolymère styrène de (1) un monomère styrène, (2) un monomère nitrile non saturé, et (3) tin monomère 5 ester d'alkacrylate d'alcoyle. 14. Le polyblend selon 13 dans lequel 1'interpolymère de matrice est un terpolymère de styrène/acrylonitrile/méthyl métha-crylate. 15. Procédé pour préparer un polyblend comportant les tO phases suivantes : (A) polymérisation d'un premier mélange polymérisable contenant une composition monomère et un caoutchouc diène pré-, polyœérisé pour greffer au moins une portion des monomères de polymérisation sur ce caoutchouc, cette composition monomère con- 15 sistant au moins principalement d'un hydrocarbure aromatique mone-* ▼inylédinique et d'un nitrile non saturé, (B) à recueillir de la première réaction de polymérisation un constituant greffé de polymérisation contenant un interpolymère-non greffé et un copolymère greffé ayant une dimension 20 «oyenne de particules, basée sur une moyenne arithmétique d'environ 0,01 à 0,3 microns, ce copolymère greffé ayant un rapport superstrat à substrat de 50-200/100, 1'interpolymère ayant un indice de réfraction distinct de celui de ce caoutchouc diène, (C) à polymériser un second mélange-polymérisable conte-25 nant un monomère consistant essentiellement d'un hydrocarbure aromatique monovinylidénique et un monomère polaire choisi dans le groupe formé par les nitriles non saturés, acrylates, alkacrylates, fumarates, maléates et mélanges de ces corps, (D) à recueillir de la seconde réaction de polymérisation 30 un interpolymère de matrice d'une composition distincte de celle de 11 interpolymère du constituant greffé de polymérisation mais physiquement compatible avec lui, cet interpolymère de matrice ayant un indice de réfraction substantiellement égal à l'indice de réfraction apparent du const tuant greffé de polymérisation 35 Mis distinct des indices de réfraction d'à la fois des substrats de caoutchouc diène et de 1'interpolymère de ce constituant greffé et à Mélanger le constituant greffé de polymérisation et le cons— 69 00006 2000009 tituant de matrice pour constituer un polyblend relativement transe parent. 16. Procédé selon 15 dans lequel l'hydrocarbure aromatique monovinylidénique de ces premier et second mélanges polymé- 5 risables est le styrène. 17. Le procédé selon 15 dans lequel le rapport du superstrat au substrat est de 80 à 200/100. 18. Le procédé selon 15 dans lequel les monomères de ce second mélange polymérisable comprend (1) un monomère styrène, 10 (2) un monomère nitrile non saturé, et (3) un monomère ester d'alkacrylate d'alcoyle. 19. Le procédé selon 15 dans lequel est mélangé avec le premier constituant de polymérisation greffé, pré-mentionné, et le constituant de matrice un constituant greffé, additionnel de 15 polymérisation contenant un copolymère greffé ayant un substrat de caoutchouc diène et un superstrat d'un interpolymère consistant au moins principalement d'un hydrocarbure aromatique monovinylidénique et un nitrile non saturé, et un interpolymère non greffé de la même composition que ce superstrat, l'indice de réfraction 20 de cet interpolymère de superstrat étant distinct de celui du substrat de caoutchouc diène et de l'indice de réfraction de cet interpolymère de matrice, le substrat de caoutchouc de ce constituant greffé, additionnel de polymérisation fournissant 10 à 20 en poids du caoutchouc total dans ce polyblend. 25 20. Le procédé selon 19 dans lequel ce constituant greffé additionnel de polymérisation a une dimension de particules d'environ 0,60 à 2,5 microns. 21. Le procédé selon 19 dans lequel ce constituant de polymérisation greffé additionnel a une dimension de particules 30 d'environ 0,1 à 1 micron et un rapport de superstrat à substrat d'environ 10 à 50/100. 22. Le procédé selon 19 dans lequel ce constituant greffé additionnel de polymérisation comporte un premier composant greffé, additionnel de polymérisation ayant une dimension moyenne de par- 35 ticules d'envi r on 0,60 à, 2,5 microns, et un second composant gref*» fé additionnel de polymérisation d'environ 0,-1 à 1 micron avec un 69 00006 29 2000009 rapport de superstrat à substrat d'environ 10 à 50/100. 23. Le procédé selon 19 dans lequel les monomères de ce premier mélange de polymères comprend le styrène et 1'acrylonitrile et dans lequel les monomères de ce second mélange polymérisable comprend (1) un styrène monomère, (2) un monomère nitrile non saturé, et (3) un monomère ester d'alkacrylate d'alcoyle. 24. Le procédé selon 23 dans lequel les monomères de ce second mélange polymérisable sont le styrène, 1'acrylonitrile et le méthacrylate de méthyle.
Drop box with thermal isolation A drop box for a rotational molding system includes a substantially rigid outer shell, a substantially rigid inner shell, configured to contain unmelted polymer material, and thermal insulating material, disposed between the inner and outer shells. Substantially rigid bridge material interconnects the inner and outer shells and forms part of the rigid structure thereof. The bridge material is configured to provide a thermal break between the inner and outer shells, to reduce heat transfer therebetween. BACKGROUND 1. Field of the Invention The present invention relates generally to rotational molding processes and apparatus. More particularly, the present invention relates to an improved thermally insulated drop box for holding polymer material during rotational molding. 2. Related Art In rotational molding, a mold is simultaneously rotated about multiple (usually two) axes while being heated in an oven. Polymer material (usually powder or pellets) in the mold melts and is spread around the inside of the mold by the rotational motion. After sufficient time, the mold is removed from the oven and allowed to cool while still rotating. After sufficient cooling, rotation can be stopped and the article can be removed from the mold. It is sometimes desirable to inject polymer material into the mold while it is rotating in the oven. To do this, a drop box or canister can be attached to the mold. The drop box is a thermally insulated container that holds the additional polymer material (again, usually powder or pellets) and shields it from melting temperatures until an appropriate time during the process. Then, a plunger or other device withdraws from the opening of the drop box to allow the additional polymer material to flow into the mold while the mold is rotating. An important aspect of drop boxes is their thermal insulating ability. A typical drop box comprises a double-walled metal container (having, e.g. a partially conical shape) with insulation disposed between the walls. Unfortunately, the configuration of prior drop boxes tends to conduct heat to the inside of the box. This conduction is generally not sufficient to hinder one use of the drop box or subsequent uses that are temporally spaced. That is, the rate of conduction usually is not so fast as to prevent the drop box from insulating its contents while the mold and other elements heat up within the oven during rotational molding. However, it can become a problem where a drop box is very rapidly prepared for reuse, and has insufficient opportunity to cool down between uses. SUMMARY It has been recognized that it would be advantageous to develop for a rotational molding system a drop box that provides better insulation for its contents. It has also been recognized that it would be advantageous to develop a drop box for a rotational molding system that can shield its contents from thermal energy even when down time between subsequent uses is quite brief. In one aspect thereof, the invention advantageously provides a drop box for a rotational molding system, comprising a substantially rigid outer shell, a substantially rigid inner shell, configured to contain unmelted polymer material, and first thermal insulating material, disposed between the inner and outer shells. Second thermal insulating material is also provided, and interconnects the inner and outer shells and forms part of the rigid structure thereof. The second thermal insulating material is configured to provide a thermal break between the inner and outer shells, so as to reduce heat transfer therebetween. In accordance with another aspect thereof, the invention provides a drop box for a rotational molding system, comprising a substantially rigid insulated body, including an outer shell and an inner shell, configured to contain unmelted raw polymer material within. A substantially rigid insulating material interconnects the inner shell and the outer shell, and is configured to reduce thermal conduction therebetween. In accordance with yet another aspect thereof, the invention provides a rotational molding system, comprising a mold, an apparatus for simultaneously rotating and heating the mold, and a drop box, attached to the mold. The drop box includes a substantially rigid outer shell, a substantially rigid inner shell, configured to contain unmelted polymer material, a first insulating material, disposed between the inner and outer shells, and a second insulating material, interconnecting the inner and outer shells and forming part of the rigid structure thereof, configured to reduce transfer of heat from the outer shell to the inner shell and the unmelted polymer material. DETAILED DESCRIPTION As noted above, drop boxes are frequently associated with molds in rotational molding processes. A cross-sectional view of a typical prior art drop box100is provided inFIG. 2. The drop box generally comprises a container that encloses an internal space102, and is configured to contain raw polymer material (e.g. powder or pellets) intended for introduction into a mold, as described in more detail below. The container can be generally cylindrical, hexagonal, octagonal, or some other shape in plan, and is typically tapered or partially conical in cross-section. The drop box generally comprises a container body104, with an openable lid106. The lid and the body include a substantially rigid outer shell108, and a rigid inner shell110. Between the inner shell and the outer shell, the walls of the drop box are provided with a heavy layer of insulation112. The rigid shell can be of metal, such as stainless steel, and for use is securely connected to an outer surface or wall114of a mold, which is typically also of metal (e.g. cast aluminum). The connection of the drop box to the mold can be a releasable connection, such as with bolts and the like, or can be a permanent connection, such as by welding. The drop box100includes at its lower end an opening or aperture116that is aligned with a corresponding opening118in the mold wall114. These aligned openings allow polymer material to flow from the drop box into the interior cavity120of the mold. As shown in the drawings, the lower portion122of the drop box is tapered to help channel the polymer material toward the mold opening118. The inner surfaces124of the inner shell110can be coated with a non-stick material, such as polytetrafluourethylene (PTFE or Teflon®) to help prevent undesired adhesion of polymer material inside the drop box. Similarly, the materials surrounding the aperture118can be selected to prevent adhesion of the contained polymer material thereto. Some other aspects and features of drop boxes that are not shown in the view ofFIG. 2are shown in the views ofFIGS. 3 and 4. As shown inFIG. 3, a canister or drop box130is disposed on the outer periphery of a mold132. The drop box130can be attached or held onto the periphery of the mold132by brackets170and connecting rods172. The mold depicted in the figures is a mold for a table top, and includes table frame members134disposed therein, to be encased in the finished rotationally molded product. However, it will be appreciated that a table mold is an exemplary application only. Those skilled in the art will recognize that rotational molds of other types and configurations can be used with drop boxes. Additionally, while the drop box shown inFIG. 3is attached to a portion of the mold corresponding to the table top, it will be apparent that the drop box can be attached to other portions of the mold, and that the placement of the drop box on the mold can vary with the size and configuration of the mold. As noted above, the drop box130is configured to hold a supply of one or more raw polymer materials136, which are allowed to “drop” or flow into the mold132at a set time (or temperature) during the heating and/or cooling process. The drop box shown inFIG. 3includes a device for selectively blocking the access hole or aperture140between the inner volume of the drop box and the inner cavity142of the mold. In the embodiment ofFIG. 3, this device for blocking the aperture comprises a plunger144, which normally blocks the access hole, but when actuated by an actuator146, draws away from the access hole to allow the materials stored inside the canister to flow into the inner cavity of the mold. The plunger may be pneumatically, electrically, or hydraulically actuated to open. Its actuation may be triggered electrically, through either a hard-wired connection or a wireless radio frequency control system. Other mechanisms for selectively blocking and opening the access opening can also be used. Those skilled in the art will recognize that more than one drop box may be attached to a mold to allow more than one “drop” or discharge of material into the mold during the molding process. Likewise, a drop box with more than one chamber may be used for the same purpose, as depicted inFIG. 3. The drop box130ofFIG. 3contains a first polymer136a, which may be, for example, polymer pellets of relatively small size, and a second polymer136b, which may be a polymer having larger sized particles. To produce a rotationally-molded article in accordance with one rotational molding method, the mold132is first opened, and, depending on the desired combination of structural, physical and aesthetic properties desired, one or more of several procedures may be followed. Typically, the inside surfaces of the open mold are first treated with a release agent, which allows the finished product to be easily removed from the mold. Suitable release agents include silicones or Teflon®. These and other suitable release agents are well known in the art, and are readily commercially available. A frame134or other reinforcing members may then be inserted into the inner mold cavity142. After insertion of the frame, raw polymer material, usually in the form of powder or pellets, can be placed in the mold for forming a part (e.g. an outer polymer skin) of the molded article. Suitable polymers can include thermoset plastic or thermoplastic compounds, and may contain ultraviolet light inhibitors, anti-oxidants, reagents, or color additives as desired. Exemplary materials include polyethylene, polypropylene, polyvinyl chloride, and composite polyester. Other materials may also be used. Additionally, while the polymer material placed inside the mold is usually in the form of powder or pellets, liquids may also be used, and may be sprayed onto the interior mold surface. In one mode of the rotational molding method, with the frame134and polymer material in the mold132, the mold is then closed. At this point, the drop box130is attached to the mold, having its aperture140in line with the corresponding opening in the mold, and one or more raw polymer materials in the form of powder or pellets are placed into the drop box. The actuator146is attached to the drop box to control operation of the plunger144, to allow the contents of the drop box to be introduced into the mold at the proper time. When fully prepared, the mold132is attached to a rotational molding machine150which is placed into an oven152, as shown inFIG. 4. The mold assembly is mounted on a frame154, which is fixedly attached to the end of a rotatable shaft156. The shaft is part of the rotational molding machine, and is driven to rotate about its longitudinal axis, in the direction shown by arrows158, by a first mechanical power source160, such as an electric motor. The first mechanical power source for the shaft in turn is mounted on a rotatable spindle162, which has a longitudinal axis that is substantially perpendicular to that of the shaft. The spindle is rotatably mounted on a frame164, and is rotationally driven by a second mechanical power source (not shown), such as an electric motor. The first and second mechanical power sources for the rotatable shaft and spindle, respectively, are configured to rotate their respective elements at speeds of anywhere from about 1 rpm to about 16 rpm, though other speeds may be used. A speed in the range of about 6 rpm to about 8 rpm is not uncommon. These components thus have the capacity to simultaneously rotate one or more molds about two orthogonal axes. This is typical of rotational molding. As the mold132continuously rotates about multiple axes, the polymer in the mold is caused to spread out within the mold. Simultaneously, the oven152, having heating elements166, heats the mold and its contents, which causes the polymer particles to begin to melt and adhere to the inner surface of the mold. It will be apparent that a variety of heating systems can be used for heating the oven, such as electrical resistive heating elements, gas-fired convection systems, etc. The result of the heating and rotating is to form a layer of melted polymer around the inner surface of the mold. At a preset time or temperature, the aperture140of the drop box130opens, allowing its contents to flow into the inner cavity142of the mold132. Because the drop box is thermally insulated, the temperature of the polymer within the drop box will not have reached the temperature of the mold and its surroundings by the time the polymer material inside the mold does so. The contents of the drop box can include other polymer materials, and can also include foaming agents to allow the production of a rotationally molded article with an expanded polymer foam core. Many “drops” of polymer materials, colors, or reagents may be made into the mold132as desired, whether from a single drop box130having more than one chamber (as inFIG. 3), or from multiple drop boxes attached to the same mold (not shown). For example, after the first polymer material is allowed to form a shell within the mold, a second shell polymer material may be dropped into the mold, to form a second layer inside the first. Thus one or more additional layers of polymer may be deposited one inside another. The second and subsequent layers of polymers can be of such a characteristic that each layer will mold, in sequential order, after the outer shell has been formed. Through this process, multiple materials can be molded into a laminate which becomes integrally connected into a strong mass. The heating cycle heats the mold and its contents at a controlled rate from room temperature up to a certain maximum temperature, depending on the specific properties of the materials that are being used. The temperature may be held at certain plateaus during the heating cycle to allow certain processes to take place before triggering others. The maximum temperature may be maintained for some period of time to allow the desired reactions to go to completion, or upon reaching the desired temperature, the heating cycle may be immediately discontinued. When the heating cycle is completed, the mold132is removed from the oven152, and allowed to continue rotating in a cooling area (not shown) for a given time period. The cooling cycle may last, for example, for about 25-35 minutes under various methods. While the mold is cooling, additional material drops may still be made into the inner cavity140of the mold. After cooling, the molded part is removed, and the process can be repeated. Unfortunately, when producing rotationally molded articles in accordance with the method outlined above, the configuration of many drop boxes tends to conduct heat to the inside of the box. As noted above, a typical drop box comprises a metal shell that includes metal parts that are continuous from the exterior to the interior. Because metals are thermal conductors, this construction tends to conduct heat into the interior of the drop box. However, this conduction can cause the contents of the drop box to heat up too high. For example, the polymer that is contained in the drop box may include foaming agents or other substances that need to be maintained at below 100° F. prior to their introduction into the mold. However, the outside environment of the rotational molding oven may be at or above 600° F. Conduction of heat from the exterior to the interior of the drop box is generally not sufficient to hinder one use of the drop box or subsequent uses that are relatively widely spaced in time. However, heat conduction can become a problem where a drop box is very rapidly reused time after time. With rapid reuse, the interior can gradually heat up above an allowable temperature, and thus cause the interior of the drop box to be too hot at the beginning of a molding cycle. Additionally, molds for rotational molding, which are often made of cast aluminum that is extensively machined, can be very expensive, making it cost effective to use fewer molds more frequently, rather than to have many expensive molds that are used less frequently. Likewise, if a rotational molding process is streamlined so as to allow a given mold to be prepared for reuse very quickly after removal of the previously molded item from the mold (i.e. short turnaround time), the mold and drop box may have insufficient opportunity to cool down between uses, and the interior of the drop box can begin to heat up. Advantageously, the inventors have developed an improved drop box that provides a thermal break between the interior and exterior of the box. A cross-sectional view of one embodiment of such a drop box10is provided inFIG. 1. The drop box generally comprises a container body12, with a lid14hingedly attached to the body. The lid is openable to allow material to be placed therein, and includes a latch16, such as a cam latch, to allow the lid to be closed and secured. Other types of latching mechanisms can also be used. While a device for blocking the aperture or access opening30, such as a plunger mechanism (144inFIG. 3) is not shown in the view ofFIG. 1, this and other features common to drop boxes generally are presumed to be present. The body12of the drop box10comprises a shell having substantially rigid inside and outside walls22a,22b. Similarly, the lid14comprises an outer shell wall24. These walls can be of metals, such as stainless steel, as described above. The surface of the inner shell22acan be treated or provided with a non-stick coating, such as Teflon®, to help prevent polymer material from sticking to it. Disposed between the inner and outer shell walls, and within the lid, is heavy thermal insulating material26, such as tightly packed wool or fiberglass, or the like. Advantageously, the inner and outer shell walls,22a,22b, are not directly connected to each other, but instead are connected by a substantially rigid bridge material that forms part of the structure of the drop box, and also provides a thermal break or thermal isolation between the inner and outer shells. Specifically, the drop box includes a bottom flange28that surrounds the aperture30between the drop box10and the mold32, and a top rim34that abuts a lower mating surface36of the lid14. The lower flange and the top rim are formed of solid pieces of substantially rigid insulating material, and interconnect the inner and outer shells. Likewise, the lower mating surface of the lid can be of the same or similarly functioning solid insulating material, as shown. Alternatively, the central portion of the inside of the lid (i.e. the region away from the area of mating with the top rim) could include a metal inner surface or some other material different from the thermal bridge material. The bridge material serves as a thermal break between the inside and outside of the drop box. This rigid insulating material mechanically functions as part of the structure of the drop box because it structurally supports and connects the inner and outer box portions. At the same time, it also thermally separates or isolates the outside and inside metal surfaces. One suitable insulating material that the inventors have used to form the thermal break is solid polytetrafluorethylene (Teflon®), which is commercially available from Dupont® and can be machined into any desired shape and configuration. Thus, the bottom flange28, top rim34, and lower mating surface36of the lid14can be machined to exactly the proper shape and size for their respective functions, and can also be provided with holes for fasteners, etc. A close-up cross-sectional detail view of the top rim34and lid14of the drop box is provided inFIG. 5. As shown, the outer shell22band inner shell22aare attached to the top rim with fasteners38, though other attachment mechanisms can be used. A lip40of the outer shell may be provided to cover some or all of the outer exposed portion of the top rim, for the sake of appearance, though this feature is not required and does not significantly affect the functioning of the drop box. The outer shell or wall24of the lid is attached to the upper side of the lower mating surface36of the lid with fasteners42, and a lip44may be provided to cover the outer edge of the lower mating surface for a pleasing appearance. Because the outer shell surfaces are not directly connected to the inner shell portions, a thermal break is created between these structures. A close-up cross-sectional view of the bottom flange28is shown inFIG. 6. The bottom flange is connected to the outer and inner shells22b,22a, with fasteners46, and provides a thermal break therebetween. As with the top rim, a lip48of the outer shell may be formed to extend down and cover the outer exposed portion of the bottom flange, for the sake of appearance. The bottom flange provides the structure of the box that directly contacts the mold32. The flange can have a tab50that fits tightly into a slot52on the mold, and can be sealed with flexible sealant such as silicone to prevent leakage. The invention thus provides a drop box that can be used and reused in rapid succession without its interior heating up beyond tolerable limits for use.
La présente invention concerne un dispositif de brochage présentant plusieurs outils amovibles pour le brochage extérieur de la périphérie d'une pièce. la partie de support de la broche présente des sièges disposés radialement pour recevoir les outils, de sorte qu'ils déterminent correctement a mesure suivant laquelle le tranchant s'approche progressivement de la pièce, tant dans le sens axial que dans le sens radial. Tous les outils pour le dispositif peuvent être fabriqués suivant les mêmes dimensions, ce qui réduit le coût ainsi que le temps ndcessaire pour l'entretien du dispositif de brochage. La présente invention a trait à des broches et elle concerne plus particulièrement un dispositif de brochage pour le brochage extérieur d'une pièce au moyen d'outils amovibles. Différents types d'outils ont été utilisés dans le passé pour le brochage extérieur simultané de la périphérie d'une pièce. Le brochage extérieur de ce type est principalement effectué en utilisant un jeu d'anneaux de brochage dentés à l'intérieur qui sont supportés rigidement et en alignement axial dans un support en forme de coupe. Le brevet américain No. 2.629.294 décrit un dispositif de brochage de ce type. Un inconvénient du dispositif de brochage extérieur du type à anneau provient du fait que, Si l'une des dents contenues dans chaque anneau est détériorée, tout l'anneau doit généralement être remplacé et castre mis au rebut, en raison du temps et des frais que nécessite l'affûtage de toutes les dents de l'anneau. Un autre inconvénient réside dans le fait que chaque anneau de brochage doit présenter un diamètre intérieur des dents qui augmente ou qui diminue progressivement en valeur par rapport à l'anneau suivant la série, de sorte qu'il n'y a pas deux anneaux identiques et interchangeables dans le dispositif de brochage. Le but de l'invention est de créer un dispositif de brochage extérieur présentant des outils pouvant etre remplacés individuellement dans un support. Le support présente plusieurs sibges disposés radialement pour la réception des outils et qui peuvent ëtre placés, par exemple, dans des plans ou des couches horisontaus, tandis que des moyens d'ajustement des sièges coopèrent de façon à amener les outils de chaque plan successif progressivenent dans leur position de brochage correcte Conformément à l'invention, il est possible que tous les outils du dispositif de brochage soient formés à partir d'ébauches identiques, ce qui réduit fortement le coat initial du dispositif de brochage.De même, du fait qu'il est possible de remplacer des outils individuels, les frais d'entretien du dispositif de brochage suivant l'invention sont considérablement réduits, étant donné que les dents détériorées des outils peuvent être réa fûtées en vue d'une utilisation ultérieure ou peuvent être mises au rebut. Un autre avantage de l'outil de brochage suivant l'in- vention provient du fait que les outils sont conçus de façon à pouvoir être placés dans le support de l'outil de brochage, de sorte que les tranchants des outils peuvent seulement être orientés suivant une position axiale unique. Cette caractéristique évitant les erreurs et assurant que tous les tranchants sont alignés correctement est d'une extrême importance dans un dispositif de brochage dans lequel doivent etre placés un nombre élevé d'outils et dans lequel un seul outil présentant un mauvais alignement rendrait la pièce inutilisable. L'invention crée, par conséquent, un dispositif de brochage perfectionné présentant des outils interchangeables dont les dimensions sont standardisées. L'invention crée, en outre, un dispositif de brochage pour le brochage extérieur de la périphérie d'une pièce, dans lequel des outils interchangeables coopèrent avec des sièges prévus dans le support, de sorte que chaque outil est aligné axialement et disposé radialement dans la position correcte lorsqu'il est placé dans le support. L'invention crée, de plus, un dispositif de brochage dans lequel les outils peuvent être placés d'une seule manière corrects afin d'éviter un désalignement involontaire du tranchant d'un ou de plusieurs coutils. Des formes de- réalisation de l'objet de l'invention sont représentées, à titre~d'exemples non limitatiis, aux desains annexés. La figure 1 est une vue en perspective d'une partie d'une brocheuse verticale utilisant le dispositif de brochage suivant l'invention. La figure 2 est une vue en perspective, partie en coupe, d'une forme de réalisation d'un dispositif de brochage réalisé conformément à l'invention. La figure 2a est une vue en perspective, à plus grande échelle, d'un outil du dispositif de brochage représenté à la figure 2. La figure 3 est une coupe verticale partielle, à plus grande échelle, illustrant un outil placé dans le support représenté à la figure 1. La figure 4 est une coupe verticale partielle prise suivant la ligne 4-4 de la figure 3. La figure 5 est une vue en plan d'une partie d'une variante de réalisation du dispositif de brochage suivant les figures 1 à 4. La figure 6 est une coupe transversale partielle, à plus grande échelle, de la variante de réalisation suivant la figure 5. La figure 7 est une coupe de cette variante de réalisation suivant la ligne 7-7 de la figure 6. La figure 8 est une vue en coupe longitudinale d'une autre forme de réalisation de l'invention. La figure 9 est une vue partielle, à plus grande échelle, du dispositif suivant la figure 8. La figure 10 est une coupe transversale suivant la ligne 10-10 de la figure 8. La figure 11 est une vue à plus grande échelle d'une partie du dispositif représenté à la figure 10. La figure 12 est une coupe partielle suivant la ligne 12-12 de la figure 11. Le dispositif de brochage suivant l'invention est conçu principalement pour le brochage extérieur de la périphérie d'une pièce, par exemple pour le brochage de rainures rectilignes ou pour le taillage d'engrenages hélicoïdaux. Il est à noter, toutefois, que l'invention peut être appliquée à d'autres formes de brochage et que la description suivante fait uniquement éta-t de iormes de réalisation préférées ; de nombreuses modifications peuvent castre apportées sans sortir du cadre de l'invention. La figure 1 représente une partie d'une brocheuse ver- ticale 10 du type à poussoir et présentant un seul poste de travail. La brocheuse 10 comporte un piston 12 effectuant un mouvement de va-et-vient sur lequel est montée une pièce 14 dans laquelle sont taillées des rainures ou des cannelures en poussant la pièce à travers un dispositif de brochage désigné dans son ensemble par 16.Il est à noter que des rainures ou des cannelures hélicoïdales peuvent être également taillées par une rotation relative entre la pièce et le dispositif de brochage autour de leur axe longittidinal conmun. Bien que le dispositif de brochage 16 soit représenté dans une brocheuse verticale du type à poussoir, il est à noter que le diepoattot de brochage suivant l'invention peut entre utilisé dans d'autre. types de brocheuses et il est également possible de-monter le dispositif de brochage sur le piston effectuant le mouvement de va-et-vient de la machine tandis que la pièce est maintenue à l'extrémité d'un poste iixe. Comme le montre la vue en perspective de la figure 2, le dispositif de brochage comporte un support 18 qui est de préférence de configuration cylindrique et qui présente une ouverture s'étendant axialement sous forme d'un alésage cylindrique 20. Le support 18 des broches est monté dans un bottier de support approprié 22 présentant des brides 24 formant une seule pièce avec le support et présentant des moyens de fixation tels que les trous 26 permettant la fixation du dispositif sur la brocheuse au moyen de vis. Le support 18 est maintenu contre la rotation dans un évidement cylindrique 27 du bottier 22 par des moyens appropriée tels que la clavette et la rainure de clavette indiquées en 28. Un anneau d'arrêt 30 est placé sur le bottier 22 de façon à-s'étendre sur le dessus du. support 18 et il présente plusieurs trous de montage 3' pour la réception de vis (non représentées) dont les extrémités filetées s'engageant dans les trous taraudés se trouvant dans le dessus du boiter 22. Plusieurs rainures annulaires sont formées dans la paroi extérieure support 18 des broches. Trois rainures 32, 33 et 34 sont seulement représentées et elles s'étendent toutes autour de la périphérie du support comme cela est visible dans une coupe à plus grande échelle représentée à la figure 3. Chacune des rainures présente une profondeur radiale augmentant progressivement au fur et à mesure que les rainures sont situées plus pres du dessus du support dee broche.. eci revient à dire que la rainure 32 présente un diamètre intérieur 35 qui est supérieur au diamètre intérieur 36 de la rainure 33 qui est à son tour supérieur au diamètre intérieur 37 de la rainure 34. Dans chacune des rainures annulaires se trouvent plusieurs ouvertures ou alésages 38 alignés radialement et constituant des moyens de support pour les outils et qui traversent les parois du support 18. Chacun des alésages 38 présente une partie de diamètre plus importante 40 qui est taraudée pour ia réception d'éléments filets tels que les vis d 'arrêt 42. Il est à noter, voir figure 2, que les axes communs 43 des parties 40 et des alésages radiaux 38 sont décalés ver ticalement par rapport au plan de symétrie des rainures 32, 33 et 34 pour une raison qui est expliquée dans ce qui suit. Cilaeun des alésages radiaux 38 est conçu pour recevoir de manière coulissante un outil individuel 44 représenté à plus grande échelle à la figure 2a. Tous les outils 44 du dispositif de brechage présente almonsions uniformes et chseun d'une und. @@@ und n@ les @au l'q ment de coupe, uns per@e cylindrique den@@die 48 se une partie de tête 50 qui est sselanque latéralement. Il ressort des figures que la largeur des rainures 32, 33 et 34 ent inférieure au diamètre de l'alésage 38 mais que ses dimensions sont prètues de façon à recevoir les têtes 50 des outils lorsqu'elles sond orientées de façon que leurs faces 54 se trouvent dans le plan horizontal de chaque rainure.Dans la forme de réalisation illustrée, le côté supérieur de chaque rainure 32, 33 oú 34 est placé essentiellement tangentiellement or alésages radiaty 38 de por recevoir chaque tête 50 é'on teil seulement sin f'outil 34 correspondant est orienté correctement. Pendant le fonctionnement, chaque groupe on chaque solche d'outile 44 croisant une rainure particulière, telle de la rainure 33, peuvent être insérés dans chacun des alésages radiaux respectifs 38 dans une seule position axiale dans laquelle l'élément de coupe 46 de chaque outil est orienté de façon que son tranchant 58 sôit dirigé vers le bas. Les outils peuvent seulement être placés dans leur position radiale respective dans le support 18 de sorte que leurs épaulements 56 sont placés sur le fond de la rainure 32, 33 ou 74 lorsque la tête 50 disposée excentriquement est orientée dans la position illustrée i la figure 3.Par conséquent les tranchants 58 de chaque couche d'outils sont disposés sur un diamètre commun qui est concentrique à l'alésage longitudinal 20 du support 18. Lorsque chaque vis d'arrêt 42 est vissée dans la partie 40 appropriée, son extrssemitess s'applique contre la face d'extrssemitsse 60 de l'outil pour arrêter la position de celui-ci de sorte que le tranchant 58 dépasse d'une distance excite prédéterminée de la face annulaire de l'alésage longitudinal 20 du support.Il ressort de la figure 2 que les vis d'arrêt 42 présentent des évidements hexagonaux appropriés pour la réception de clés spéciales permettant le vissage de chaque vis d'arrêt dans la position correcte. lie cette façon chaque couche d'u- tila 44 peut être mise en position correcte, de sorte que les tranchants des outils se trouvent sur des cercles concentriques successifs dont les diamètres diminuent progressivement au fur ex à mesure outils approchent de la rainure supérieure 54. une telle disposition entraîne une taille progressive approplace de la surface de la place lorsque celle-ci avance dans l'alesage longitudinal 20 du support de pendant une opération deusinage. Le fait que tous les outils du dispositif de brochage sont de dimensions et de configuration uniformes, de manière à permettre des remplacements, constitue un autre avantage de l'invention. n outre, tous les outils 44 peuvent être rénovés en affûtant tous les éléments de coups 46 exactement de la même manière et en disposant les outils de façon quelconque dans le dispositif de brochage, de sorte que celui-ci peut continuer @usiner le même type de pièce que précédement, c'est-à-dire avant l'afiátage. La longueur de la tige indiquée par d a la Figure 4 peut être maintenue constante en enlevant par meulage der faces 56 des épaulements des outils une épaisseur qui est identique a l'enlèvement pratiqué sur les tranchants.Au fur et a mesure que la partie de tête :o est réduite en épaisseur dans le sens longitudinal après chaque affûtage, les vis 42 sont avancées davantage dans les taraudages 40 afin de compenser la diminution- de la longueur axiale totale de l'outil. Les figures 5 et 6 représentent une variante de réalisation d'un support 18 de broches pouvant être monté dans un boitier, comme décrit précédemment ; cettevariante de réalisation comporte plusieurs rainures 70 disposées longitudinalement et plusieurs outils 44 disposés radialement dans des ouvertures radiales 48 appropriées traversant 7 a paroi du support 18. Il est ainsi possible de disposer plusieurs couche d'outils dals le support 18 de la même façon que dans la forme de réalisation illustrée aux figures 2 à 4, afin de permettre ainsi le brochage de la surface périphérique d'une pièce désignée par 14 à la figure 5.Lorsqu'une telle pièce est déplacée par rapport au dispositif de brochage, en étant forcée à travers l'alésage longitudinal 20 du support 18. Comme le montrent les figures 5 et 6, l'axe de chaque rainure longitudinale 70 est légèrement décalé par rapport à un rayon 72 du support 18, de sorte que chacune des rainures 70 agit comme un moyen d'orientation et de guidage d'une clavette allongée 74 qui est brasée, soudée ou fixée d'une autre manière sur la face postérieure de chacune des parties de tête élargies 50 de chaque outil 44, de sorte que chaque outil peut être inséré seulement dans chacune des ouvertures 38 lorsque le tranchant de l'outil est orienté correctement pour le taillage de la pièce.Chaque outil est maintenu en position au moyen d'un élément fileté ou une vis d'arrêt 42 pouvant être introduit dans un orifice taraudé 40 dont I'axeest aligné avec l'axe radial 72 qui est commun à chaque outil 44 et à son ouverture radiale appropriée 48. Chaque outil 44 est maintenu en position par le serrage de la vis d'arrêt 42 de la meme façon que décrit précédemment, relativement à la forme de réalisation illustrée aux figures 2 à 4. Il est évident que l'agencement représenté aux figures 5 et 6 et présentant des rainures disposées longitudinalement peut être préiéré à l'agencement représenté aux figures 2 à 4 et présentant des rainures annulaires disposées sur la périphérie pour certaines applications dans lesquelles les outils de chaque couche sont disposés directement au-dessus des outils de la couche précédente ou lorsque les couches sont disposées en spirale. Il est également évident que la conformation des outils 44 des figures 5 à 7 et présentant l'élément d'orientation 74 attaché est essentiellement équivalent à la coniormation de l'outil décrite relativement aux figures 2 à 4. Les figures 8 à 12 illustrent une forme de réalisation différente du dispositif de brochage décrit dans ce qui précède et qui comporte un boftier 16 en forme de coupe présentant une bride de-upport 24 et un alésage 27 s'étendant axialement qui présente une partie 75 de diamètre réduit près de son fond, comme représenté aux figures 8 et 9. Plusieurs anneaux de support portant les références 76a à 76h sont disposés dans l'alésage 27 du bottier 22. L'alésage 27 présente plusieurs évidements arqués 78 ayant des dimensions variables et se trouvant en communication avec l'ouverture taraudée 80 pour permettre l'introduction de fluides de refroidissement et de lubrification à l'intérieur du boitier de brochage 16. Un anneau de recouvrement approprié 30 est prévu sur le bottier 22 et est utilisé comme moyen de serrage et de maintien pour les anneaux de support 76. L'anneau de recouvrement 30 présente une ouverture centrale 82 pour le passage de la pièce et l'anneau est relié au boitier 16 par des moyens appropriés tels que des vis 83. Chaque anneau de support 76 présente un évidement annulaire périphérique 84 disposé sur le dessus de l'anneau et servant à la réception d'un anneau de maintien 86. Chacune des bagues de support 76a à 76h présente, par conséquent, un anneau de maintien 86a à 86h reçu dans un évidement annulaire correspondant 84a à 84h. Comme cela est indiqué le mieux à la figure 8, l'anneau de support supérieur 76a présente un goujon 88 s'engageant dans un trou du couvercle 81.De façon anaiogue, chaque anneau de support 76 est fixé et verrouillé de façon appropriée par rapport à l'anneau de support suivant situé au-dessus de lui, par exemple, par un goujon 90 engagé dans un trou correspondant 92 se trouvant dans l'anneau suivant, voir figure 12, l'emplacement de ces goujons étant décalé d'un anneau à l'autre afin d'éviter des erreurs lors de l'assemblage de la broche. De cette façon, les anneaux de support empilés sont maintenus de façon fixe daw le boîtier 16, si bien que les outils portés par les anneaux de support sont alignés correctement pour une opération de brochage, comte indiqué dans ce qui suit. Chaque anneau de support 76 présente un ou plusieurs outils 94 présentant une forme paralldlFpipédique qui sont reçus dns des rainures 96 disposées radialement et formées sur le dessus de chacune des bagues de support ; pour des raisons de commodité, quelques outils seulement ont te représentés aux dessins. la profondeur des rainures 96 est supérieure Q l'épais- seur des outils 94 (figure 9) pour permettre l'amende de fluides de refroidissement et de lubrification aux trachants des outils depuis un passage 98 et des évidements 78 ; de façon analogue, chaque anneau de maintien 86 étant légèrement plus- minee que les évidements annulaires 84 afin d'éviter des obstructions à l'écoulement du liquide. doue représenté à la figure 7, le diamètre intérieur de chacun des anneaux de maintien 86a à 86h diminue progressivement au fur et à mesure que la dimension radiale des évidements annulaires 84a à 84h associés augmente progressivement depuis l'extrémité supérieure en direction de l'extrémité inférieure du dispositif de brochage, comme indiqué aux dessins. Au moyen de cet agencement, les outils supportés par chaque anneau de support sont mis dans une position qui provoque leur extension progressive sur une distance prédéterminée à l'intérieur de l'ouverture axiale 100 formée par l'assemblage des anneaux. Des moyens de serrage 102 appropriés pour les outils, voir figure 10 et 11, sont prévus pour chaque outil afin d'assurer son serrage dans la position correcte. Ces moyens de serrage peuvent être constitués par tout dispositif classique à coin et à vis, par exemple, afin de maintenir chaque outil en position dans sa rainure radiale 96 appropriée se trouvant dans chaque anneau de support 76a à 76h, la face postérieure 104 de l'outil se trouvant en contact avec la face 106 disposée vers l'intérieur de l'anneau de maintien 86. Dans la forme de réalisation représentée aux figures 9 à 11, les outils sont affûtés, si on le désire, par meulage de la partie supérieure du tranchant de façon à maintenir une longueur totale de chaque outil restant constante après plusieurs aiittages successifs. Toutefois, compte tenu du prix réduit des outils, il est généralement préférable de les jeter lorsqu'ils sont usés et de les remplacer par des outils standardisés nouveaux. Il est à noter qu'une façon de remise en état d'un dispositif de brochage s'applique également aux formes de réalisation décrites précédemment en raison du prix relativement faible des outils comparativement au coût total du dispositif. La présente invention crée par conséquent des outil de brochage pour le brochage de la surface d'une pièce en for çant cette dernière à travers l'ouverture du dispositif de brochage, cette opération étant généralement appelée "brochage en "pot", l'ensemble de brochage présentant plusieurs outils standardisés d'un faible prix qui remplacent l'utilisation d'un dispositif de brochage fixe ou d'un dispositif de brochage constitué par plusieurs anneaux superposés présentant des dents faisant saillie radialement et formant une seule pièce avec l'anneau. L'invention n'est pas limitée à la forme de réalisation représentée et décrite en détail, car diverses modifications peuvent y être apportées sans sortir de son cadre. BYENDICATIONS 1 - Dispositif de brochage pour machines-outils comportant un boîtier, un support placé dans ce boitier-et présentant une ouverture axiale permettant le passage d'une pièce, le support présente plusieurs sièges disposés radialement qui sont conçpspour la réception d'un outil amovible et des moyens permettant la iixation de chaque outil dans chaque siège pour déterminer la mesure suivant laquelle chaque outil fait saillie radialement dans l'ouverture axiale de sorte qu'une pièce déplacée par l'ouverture est brochée par les tranchants des outils 2 - Dispositif de brochage suivant la revendication 1, caractérisé en ce que le support présente des butées coopérant successivement avec des outils choisis pour permettre la mise en place des outils suivant une distance radiale uniforme à l'intérieur de l'ouverture axiale et le support présente des moyens d'orientation coopérant avec chacun des outils en vue de l'orien- tation de chaque outil dans une position axiale uniforme 3 - Dispositif de brochage suivant les revendications 1 et 2 caractérisé en ce que les sièges sont constitués par des alésages radiaux s'étendant à travers le support et ce dernier présente une série de rainures annulaires périphériques présentant une profondeur qui augmente progressivement sur la périphérie extérieure du support, chaque rainure croisant i son tour des alésages déterminés et des moyens d'orientation sont formés sur chacun des outils et présente des dimensions permettant la réception dans la rainure annulaire associée pour permettre l'orientation axiale de l'outil. 4 - Dispositif de brochage suivant les revendications 1, 2 et 3 caractérisé en ce que les sièges sont constitués par des alésages radiaux s'étendant à travers le support et ce dernier pressente une série de rainures périphériques, essentiellement longitudinales , chaque rainure croisant & son tour des alésages déterminés, les têtes de chacun des outils présentent des butées coopérant avec des organes d'arrêt dans les alésages pour déterminer la projection de chacun des-outils dans l'ouverture disposée axialement, des moyens d'orientation étant asso cids avec les têtes coopérant dans les rainures pour orienter axialement les outils. 5 - Dispositif de brochage suivant les revendications 1, , 3, et 4 caractérisé en ce que chaque alésage présente une extrcmité extérieure d'un plus grand diamètre servant à la réception de moyens de retenue agencés pour venir en contact avec la partie de tête de l'outil de sorte que ce dernier est maintenu rigidement dans le support. 6 - Dispositif de brochage suivant les revendications 1, 2, 3, 4 et 5 caractérisé en ce que la partie de plus grand diamètre de l'alésage est taraudée et les moyens de retenue sont constitués par des vis sans t$te. 7 - Dispositif de brochage suivant les revendication. 1, 2, 3, 4, 5 et 6 caractérisé en ce que le support colporte plusieurs anneaux de support disposée dans le bottier et chacun des anneaux de support présente plusieurs rainures disposées radialement pour la réception des outils. 8 - Dispositif de brochage suivant les revendications 1, 2, 3, 4, 5, 6 et 7 caractérisé en ce que chaque anneau de support présente un évidement annulaire près de sa périphérie extérieure et un anneau de maintien est reçu dans chaque évide- ment annulaire de sorte que l'anneau de maintien constitue une face de réception continue des outils qui est agencée pour,re- tenir radialement les outils associés à chaque anneau de support 9 - Dispositif de brochage suivant les revendications 1, 2, 3, 4, 5, 6, 7 et 8 caractérisé en ce que l'évidement annulaire de chaque anneau de support consécutif présente une dimension radiale qui augmente progressivement, chaque anneau de support,présentant une dimension radiale qui est complémentaire de l'évidement associd de sorte que les' outils de chaque anneau se trouvent à une distance radiale uniforme à l'intérieur de 1' ouverture axiale. 10 - Dispositif de brochage suivant les revendications 1, 2,3,- 4, 5, 6, 7, 8 et 9 caractérisé en ce que le dispositif de brochage comporte un support cylindrique présentant une ouverture axiale pour le passage d'une pièce devant être broché, plusieurs outils allongés disposés radialement et montés dans ces supports, chacun des outils présentant un tranchant iaisant saillie sur une distance prédéterminée à l'intérieur de l'ouverture axiale et effectuant un taillage sur la pièce mentionne pendant son passage à travers l'ouverture axiale, des butées se trouvant sur les outils et coopérant avec des butées du support pour déterminer la position radiale de chacun des outils et des moyens d'orientation sur les outils qui coopèrent avec des moyens d'orientation du support pour définir l'orientation des tran- chants des outils par rapport à l'axe. 11 - Dispositif de brochage suivnt les revendications 1, 2, 3, 4, 5, 6, 7, 8, 9 et 10 caracterisé en ce que le dispositif de brochage comporte plusieurs anneaux superposés présentant chacun au moins une rainure disposés radialement pour la réception d'un outil, des moyens pour serrer cet outil dans cette rainure, des butées associées avec chacun des anneaux et venant en contact avec l'extrémité postérieure de l'outil pour définir la position radiale de cet outil et des moyens maintenant les anneaux assemblés suivant un ordré prédéterminé.~
Computer security system and method A computer security system comprises a secure platform adapted to receive sensitive data from an agent. The secure platform is also adapted to cooperate with a trusted platform module (TPM) to encrypt the sensitive data via a TPM storage key associated with the agent. BACKGROUND Various types of sensitive information are generally stored on a computer system such as, but not limited to, passwords, personal information, authentication mechanisms and data, and various types of computer system access credentials. The sensitive information may be user-generated, software-generated, stored on the computer system at the factory, or otherwise generated and stored on the computer system. However, at least because there are generally multiple users and/or agents accessing or utilizing a particular computer system, the sensitive information and/or security information used to protect such information or authenticate a user and/or agent requesting access to the sensitive information generally remains susceptible to hacking and/or discovery by unapproved or unauthenticated entities. Thus, there is a need to securely store such types of sensitive information on the computer system. DETAILED DESCRIPTION OF THE DRAWINGS The preferred embodiments of the present invention and the advantages thereof are best understood by referring toFIGS. 1-5of the drawings, like numerals being used for like and corresponding parts of the various drawings. FIG. 1is a diagram illustrating an embodiment of a computer security system10in accordance with the present invention. In the embodiment illustrated inFIG. 1, system10comprises a processor12communicatively coupled to a secure platform13. In the embodiment illustrated inFIG. 1, secure platform13comprises a basic input/output system (BIOS)14. However, it should be understood that other systems, applications, modules or engines may be used as a secure platform including, but not limited to, an operating system (O/S) or a security software application. In the embodiment illustrated inFIG. 1, processor12and secure platform13are also communicatively coupled to a trusted platform module (TPM)16. In the embodiment illustrated inFIG. 1, BIOS14comprises a security module20and a memory22. Security module20may comprise software, hardware, a combination of software and hardware. In operation of at least one embodiment of the present invention, security module20cooperates with TPM16to provide secure storage of sensitive information such as, but not limited to, platform and/or device-specific sensitive information (e.g., passwords, codes, and/or other types of sensitive information of which security is desired). In the embodiment illustrated inFIG. 1, security module20comprises a registration module30, an authentication module32and an access module34. Registration module30is used to receive sensitive information or data, cooperate with TPM16to encrypt the sensitive information, and store the encrypted sensitive information, identified as encrypted sensitive data40, in memory22. Authentication module32is used to authenticate or otherwise verify the identity of a source providing sensitive information to be protected or requesting access to the sensitive information. Access module34is used to cooperate with TPM16to decrypt the encrypted sensitive data40and provide or otherwise enable access to the decrypted sensitive information by a requesting entity. The sensitive information to be protected may comprise any type of information such as, but not limited to, information associated with initiating and/or accessing secure computer resources, a hard drive lock password, network access authorization information, and/or software application initiation or access passwords. In the embodiment illustrated inFIG. 1, memory22also comprises agent identification data42and a TPM storage key44. Agent identification data42comprises information associated with authenticating an identity of a trusted agent50. Trusted agent50may comprise a user accessing system10, a software application, such as a hard drive or disc encryption software application, or any other type of entity adapted to generate and/or provide sensitive information of which protection is desired and/or request access to secure or protected sensitive information. However, it should also be understood that sensitive information may be generated or otherwise provided by another entity (e.g., a password or code generated by BIOS14). Thus, in operation, authentication of trusted agent50may be performed using any type of secure authentication method such as, but not limited to, a series of handshake signals, query/response exchanges, or password verification. TPM storage key44is used by TPM16to encrypt the sensitive information for which security protection is desired. TPM storage key44comprises information generated and/or interpretable by TPM16, such as an opaque binary large object (BLOB). In some embodiments of the present invention, TPM storage key44is associated with trusted agent50. For example, in a user-based embodiment, TPM storage key44is generated by TPM16based on authentication of a particular user (e.g., based on a TPM16password or access credential provided by the particular user). In other embodiments, TPM storage key44is associated with a particular software application or computer-based system such that TPM storage key44is generated by TPM16based on authentication of a particular software application or computer-based system. In yet other embodiments of the present invention, TPM storage key44is associated with secure platform13(e.g., BIOS14). In such an embodiment of the present invention, TPM storage key44is generated by TPM16based on authentication of secure platform13(e.g., via a TPM16password or credential provided by BIOS14). FIGS. 2A and 2Bare diagrams illustrating an embodiment of authentication and registration operations using system10in accordance with the present invention. In some embodiments of the present invention, the authentication and registration operations are performed for trusted agent50(e.g., a user of system10or a software application). However, it should be understood that the authentication and registration operations may be performed for other types of computer resource applications or systems (e.g., authentication and registration of BIOS-generated sensitive information). Referring toFIG. 2A, in operation, authentication module32performs an authentication operation by requesting or otherwise acquiring agent identification data42and authentication data60from trusted agent50. For example, agent identification data42comprises information corresponding to an identity of trusted agent50such as, but not limited to, a username or device serial number. Authentication data60comprises information associated with at least accessing and/or utilizing TPM16and/or otherwise verifying an identity of the agent50attempting to access or otherwise utilize TPM16, such as, but not limited to, a TPM password or biometric. The authentication process may be performed for a single agent50or multiple agents50(i.e., such as multiple users in a shared computing environment and/or multiple software applications or systems). In the embodiment illustrated inFIG. 2A, authentication module32verifies or otherwise authenticates the identity of agent50by verifying and/or otherwise authenticating agent identification data42and/or authentication data60associated with the trusted agent50(e.g., by comparing and/or correlating received agent identification data42and/or authentication data60with known or stored data and/or values). Authentication module32also performs at least a first stage of the registration operation. For example, in operation, authentication module32transmits authentication data60associated with agent50to TPM16, and requests generation by TPM16of TPM storage key44based on authentication data60. Registration module30receives and stores TPM storage key44(e.g., in memory22of BIOS14). However, it should also be understood that, after authentication of agent50by authentication module32, control of the registration operation may be passed from authentication module32to registration module30to request generation by TPM16of TPM storage key44. For example, in this embodiment, registration module30receives authentication data60associated with agent50from agent50and/or authentication module32and transmits authentication data60associated with agent50to TPM16, and requests generation by TPM16of TPM storage key44based on authentication data60. Referring toFIG. 2B, registration module30performs a second stage of a registration operation to acquire sensitive data70. Sensitive data70comprises any type of information in which security is of a concern or which security is to be maintained such as, but not limited to, equipment or device passwords (e.g., a hard drive lock password) and access credentials (e.g., network and/or software application access credentials). However, it should also be understood that sensitive data70may be acquired from agent50during an earlier stage of the registration operation. In the second stage of the registration operation, registration module30transmits TPM storage key44and sensitive data70to TPM16and requests TPM16to encrypt sensitive data70using TPM storage key44. For example, in some embodiments of the present invention, TPM storage key(s)44are not stored by TPM16to further prevent access to TPM storage key(s)44by hostile sources. TPM16encrypts sensitive data70using TPM storage key44, thereby forming encrypted sensitive data40, and transmits encrypted sensitive data40to registration module30. In some embodiments of the present invention, registration model30then stores, or causes to be stored, in memory22encrypted sensitive data40. However, in other embodiments of the present invention, encrypted sensitive data40may be transmitted to another entity for storage (e.g., agent50). In the embodiment illustrated inFIGS. 2A and 2B, the registration operation is described in terms of multiple stages; however, it should be understood that the registration operation ofFIGS. 2A and 2Bmay also be considered to be performed in a single stage. FIG. 3is a diagram illustrating a sensitive information access operation using system10. In operation, during the access process, security module20requests or otherwise receives from agent50information for authenticating an identity of agent50requesting access to the sensitive information (e.g., at least when access to sensitive information is not temporal with a process in which the identity of agent has been previously authenticated or as otherwise designated by security policies). For example, in operation, authentication module32receives or otherwise acquires from agent50authentication data60and agent identification data42. Where agent50comprises a user of system10(e.g., a person), system10may be configured to request identification data42from the user or access stored identification data42and display available identification data42to the user to enable selection by the user (e.g., via an input/output device) of particular identification data42. After authentication of agent50, security module20performs or otherwise requests decryption of encrypted sensitive data40. For example, in operation for some embodiments of the present invention, access module34identifies and/or otherwise retrieves TPM storage key44and encrypted sensitive data40corresponding to the agent50based on the agent identification data42. However, it should be understood that in other embodiments of the present invention, agent50may provide the encrypted sensitive data40to access module34during the access operation. Access module34transmits TPM storage key44, authentication data60and encrypted sensitive data40to TPM16and requests verification or authentication of authentication data60and decryption of encrypted sensitive data40. For example, in some embodiments of the present invention, TPM16is instructed or requested to verify authentication data60using TPM storage key44. In response to successful verification or authentication of authentication data60, TPM16decrypts encrypted sensitive data40using TPM storage key44and transmits the decrypted sensitive data70to access module34. Access module34may then transmit sensitive data70to particular devices or applications (e.g., agent50or another device, system or application) or otherwise use sensitive data70to perform or authorize a particular computer security function. In the embodiment illustrated inFIGS. 2A,2B and3, system10is configured to protect sensitive data70provided or otherwise generated by agent50(e.g., a user, such as a person, a software application, or another type of computer system or application). However, it should also be understood that sensitive data70may be provided or otherwise generated by secure platform13(e.g., by BIOS14). For example, in some embodiments of the present invention, BIOS14may be configured to generate sensitive data70(e.g., in response to a request from agent50or another computer or software application/system). Further, in some embodiments of the present invention, secure platform13is configured or otherwise performs operations as agent50(e.g., secure platform13obtaining a TPM storage key44associated therewith and/or otherwise requesting encryption of sensitive information and/or access to encrypted sensitive information via TPM storage key44). In some embodiments of the present invention, BIOS14, for example, is configured to generate sensitive data70(e.g., based on a request by agent50or another computer or software application/system). In such an embodiment of the present invention, BIOS14also communicates with and otherwise authenticates its identity with TPM16based on identification data and/or authentication data associated with BIOS14. Thus, in this embodiment of the present invention, BIOS14authenticates its identity with TPM16(e.g., via handshake signals, query/response exchange(s), or another type of authentication method) and obtains from TPM16its own TPM storage key44. The TPM storage key44associated with BIOS14is used to encrypt the sensitive data70generated or otherwise provided by BIOS14via TPM16and is also used to decrypt the resulting encrypted sensitive data40. As discussed above, the encrypted sensitive data40may be stored in memory22of BIOS14or transmitted to a requesting entity (e.g., agent50or another computer software application or system). FIG. 4is a flow diagram illustrating an embodiment of a computer security authentication and registration method using system10in accordance with the present invention. The method begins at block300, where authentication module32and registration module30are initiated. At block302, authentication module32requests agent identification data42. At block304, authentication module32receives agent identification data42. At block306, authentication module32requests authentication data60from agent50. At block308, authentication module32receives authentication data60from agent50. At block318, TPM storage key44and agent identification data42are stored in memory22. At block320, registration module30requests sensitive data70from agent50. However, it should be understood that in some embodiments or applications of the present invention, a request for sensitive data70may be unnecessary. At block322, registration module30receives sensitive data70from agent50. At block324, registration module30transmits sensitive data70and TPM storage key44to TPM16. At block326, registration module30requests encryption by TPM16of sensitive data70using TPM storage key44. At block328, TPM16encrypts sensitive data70using TPM storage key44, thereby generating encrypted sensitive data40. At block330, registration module30receives encrypted sensitive data40from TPM16and transmits and/or stores the encrypted sensitive data40. For example, in some embodiments of the present invention, registration module30stores encrypted sensitive data40in memory22. In other embodiments of the present invention, registration module30transmits encrypted sensitive data40to agent50or another designated system or application. FIG. 5is a flow diagram illustrating an embodiment of a computer security method for accessing protected information using system10in accordance with the present invention. The method begins at block400, where access module34requests or retrieves agent identification data42. For example, as described above, agent identification data42may be provided by agent50or retrieved from memory22for selection by agent50(e.g. a user of system10). At block402, access module34requests authentication data60from agent50. At block404, access module34receives authentication data60from agent50. At block406, access module34retrieves TPM storage key44associated with agent50based on agent identification data46. At block408, access module34transmits TPM storage key44and authentication data60to TPM16. At block410, access module34requests verification or authentication of authentication data60by TPM16using TPM storage key44. However, it should be understood that authentication module32may be used to perform an authentication operation to verify or otherwise authenticate the identity of agent50. At decisional block412, a determination is made whether authentication data60is verified based on TPM storage key44. If authentication data60is not verified or otherwise authenticated by TPM16, the method returns to block400. If authentication data60is verified or otherwise authenticated by TPM16, the method proceeds to block414, where access module34retrieves encrypted sensitive data40associated with or otherwise requested by agent50from memory22. It should be understood that encrypted sensitive data40may also be provided by agent50(e.g., if the encrypted sensitive data40is not stored in memory22of secure platform13). At block416, access module34retrieves TPM storage key44associated with agent50. At block418, access module34transmits encrypted sensitive data40and TPM storage key44associated with agent50to TPM16. At block420, access module34requests decryption of encrypted sensitive data40by TPM16using TPM storage key44. At block422, TPM16decrypts encrypted sensitive data40using TPM storage key44. At block424, TPM16transmits, or access module34otherwise receives, decrypted sensitive data70. Access module34may then use decrypted sensitive data70to perform or otherwise access a secure computer application or operation or provide the decrypted sensitive data70to agent50. In the embodiment depicted inFIGS. 4 and 5, sensitive data70is generated or otherwise provided by agent50. However, as described above, it should be understood that secure platform13(e.g., BIOS14or another type of trusted platform or system) may be used to generate and/or otherwise provide the sensitive data70. For example, and not by way of limitation, in a drive-lock application, BIOS14may be used to generate a drive-lock password as the sensitive data70. In this embodiment of the present invention, BIOS14may be used to cooperate with TPM16to encrypt the drive-lock password using a TPM storage key44associated with BIOS14. The encrypted password may then be forwarded to the drive-lock mechanism for storage. Thus, when access to the drive is requested, the drive-lock mechanism requests access to the drive-lock password by forwarding the encrypted drive-lock password to access module34, which, after authentication of the drive-lock mechanism, forwards the encrypted drive-lock password to TPM16with the TPM storage key44for decryption. After decryption, access module34forwards the decrypted drive-lock password to the drive-lock mechanism for unlocking the drive device. Thus, in this embodiment of the present invention, the decrypted drive-lock password is not stored on the system (e.g., only transiently available). Thus, embodiments of the present invention enable secure storage of sensitive information using cryptographic properties of a trusted platform module (i.e., TPM16). In some embodiments of the present invention, the sensitive information is provided or otherwise generated by a user of the system (e.g., a person), a computer or software application system, or by a secure platform also used to store an encrypted form of the sensitive information (e.g., BIOS14). It should be understood that in the methods described inFIGS. 4 and 5, certain functions may be omitted, combined, or accomplished in a sequence different than depicted inFIGS. 4 and 5. Also, it should be understood that the methods depicted inFIGS. 4 and 5may be altered to encompass any of the other features or aspects described elsewhere in the specification.
La présente invention concerne les compteurs binaires et plus particulièrement les compteurs binaires à fluide susceptibles d'accomplir les fonctions de comptage "croissant et décroissant". Un compteur du type ci-dessus présente un intérêt'tout parti 5 culier pour la commande d'une machine, telle que par exemple la commande du positionnement d'une table en X et Y. Une autre application des compteurs binaires de ce type peut consister à commander l'emmagasinage par comptage dans le sens croissant 5 lorsqu® une unité entre dans le compteur binaire et dans le sens décrois-10 sant, lorsqu'une unité en est extraite. Une porte NON-OU est un dispositif à fluide dans lequel le courant d'entrée ou jet de puissance est sensiblement dirigé dans sa totalité vers l'un des passages de sortie. Ce dispositif possède une pluralité d'ajutages de commande, disposés de telle façon 15 qu'un signal de fluide appliqué à l'un quelconque d'entre eux obligera le jet de puissance à dévier vers l'autre passage de sortie. Le passage de sortie qu'emprunte habituellement le jet, lors qu'aucun signal n'est appliqué à l'ajutage de commande, est désigné sous l'expression : "sortie NON-OU-, tandis que le passage 20 vers lequel le jet de puissance est dévié par un signal traversant au moins l'un des ajutages de commande est désigné sous l'expression s "sortie OU". Une porte exclusive, ou "inhibiteur" à fonction ET passive, est un dispositif à fluide comportant une paire d'orifices d'en-25 trée et une paire de passages de sortie. Chaque jet de puissance émis individuellement par l'un des orifices d'entrée est intercepté par m unique passage de sortie. Lorsqu'un jet de puissance est émis depuis les deux orifices d'entrée, chaque jet dévie l'autre et aucun jet n'est intercepté par l'un ou l'autre des passages 50 de sortie, mais les deux jets sont mis à l'atmosphère. La présente invention a donc pour but un compteur à fluide, & étages, du type "up and down"^ sïmpïe^Slfrec§^ et cl>onS marché, qui possède les avantages ci-dessus. En bref, selon l'invention, il a été mis au point un comp-35 teur, du type précité, comportant une pluralité d'étages de compteur binaire, qui sont couplés les uns aux autres par une série de combinaisons de portes exclusives ©t NON-GUo 3Le passage de sortie NON-OU de ladite porte NON-OU est relié à l'entrée du second étage 69 00009 2 2000011 L'un des orifices d'entrée de la porte exclusive est relié au premier passage de sortie du premier étage du compteur, tandis que les deux passages de sortie de la porte exclusive sont reliés aux ajutages de commande de la porte NON-OU à fluide. Une source 5 de signaux de fluide est reliée à l'autre orifice d'entrée de la ■ porte exclusive pour commander le sens dans lequel le compteur enregistrera <> Les caraetêriâiques ei-dessus, ainsi que d'autres caraete= ristiques secondaires et les avantages qui en résultent, apparaî-10 tront de façon plus complète dans la description ci-après, en référence au dessin unique, qui représente une vue schématique d'un compteur à fonctionnement croissant et décroissant selon la présente invention. Sous l'expression "fluide", on entend, dans la présente 15 description, tout fluide compressible, tel que l'air, l'azote, ou autre gaz, ou tout fluide incompressible, tel que l'eau ou d'autres liquides. Les fluides compressibles, aussi bien que les fluides incompressibles considérés, peuvent contenir «les matières solides. L'invention n'est en outre pas limitée à l'utilisation 20 d'un fluide particulier. La forme de réalisation représentée sur la figure jointe comporte un premier étage de compteur binaire 10 et un second étage de compteur binaire 12, qui peuvent être de n'importe quel type. Ce peut être, par exemple, un compteur binaire dans lequel 25 un signal de fluide s'écoule d'abord par l'un des orifices de sortie puis ensuite par l'autre, en réponse à des impulsions successives appliquées à l'entrée de l'étage.L'étage de compteur binaire 10 représenté, a son entrée reliée à une source convenable 14 d'impulsions à compter. L'étage 10 comporte aussi des passages de 30 sortie 16 et 18. De façon analogue, l'étage de compteur binaire 12 comporte une entrée 20 et une paire de passages de sortie 22 , et 24. La porte exclusive 26 comporte une paire d'orifices d'entrée 28 et 30 et une paire de passages de sortie 32 et 34. Ces éléments 35 sont disposés de façon telle que le jet qui s'écoule par l'orifice d3entrée 28 sera intercepté par le passage de sortie 34, à moins qu'il ne.soit dévié par ailleurs. De façon analogue, le jet de puissance qui s'écoule par l'orifice d'entrée 30 sera intercepté par le passage de sortie 32« On voit en outre qu'une source de 69 00009 3 2000011 signaux de fluide 36 est reliée à l'orifice d'entrée 30 de la porte exclusive 26. La porte NON-OU comporte un orifice d'entrée 40, une paire d'ajutages de commande 42 et 44, une sortie NON-OU 46 ét une sor-5 tie OU 48. L'orifice d'entrée 40 de la porte 38 est relié à une source convenable de fluide 50. Le passage de sortie 16 du premier étage de compteur binaire 10 est relié à l'orifice d'entrée 28 de la porte exclusive 26.Les passages de sortie 32 et 34 de la porte exclusive 26 sont reliés 10 aux ajutages de commande 42 et 44 de la porte NON-OU 38. Le passage de sortie NON-OU 46, de la porte NON-OU 38, est relié à l'ertrée 20 du second étage de compteur binaire 12. Le passage de sortie 18 du premier étage de compteur binaire 10 et le passage de sortie 24 du second étage de compteur binaire 15 12 sont reliés à un dispositif d'utilisation convenable 52, tel qu'un système indicateur de comptage binaire. Un tel système peut consister en un dispositif à volet d'affichage, qui compte et indique le nombre d'impulsions reçues. Le passage de sortie 22 du second étage de compteur binaire 12 est habituellement relié à l'é-20 tage suivant du compteur, non représenté. Le courant de fluide qui circule dans le passage 22 servira de jet d'entrée pour cet étage suivant. Afin de faire en sorte que tous les étages comptent dans le "sens croissant et décroissant", un dispositif analogue, constitué par la combinaison d'une porte exclusive et d'une 25 porte NON-OU, sera prévu entre le second étage et le troisième étage, etc... Le fonctionnement du compteur selon l'invention est le suivant : Une source convenable d'impulsions de fluide 14 est reliée à l'entrée du premier étage binaire 10 et une source de signaux 30 de fluide 36 est reliée à l'orifice d'entrée 30 de la porte exclusive 26. La source 36 est d'un type qui fournit un jet de puissance continu, qui peut être interrompu par tout moyen convenable. Par conséquent, un jet de puissance peut être émis par l'orifice d'entrée 30 de la porte exclusive 26 ou peut être totalement in-35 terrompu. Une source convenable de fluide 50 est aussi reliée à l'orifice d'entrée 40 de la porte NON-OU 38, pour délivrer un jet de puissance continu. Pour les besoins de la description du fonctionnement, on supposera que le jet de sortie de l'étage de compteur binaire IO 69 00009 4 2000011 passe, au départ, à travers le passage de sortie 16 et que le jet du second étage de compteur binaire 12 s'écoule à travers le passage de sortie 22. Le circuit sera tout d'abord décrit en considérant la procédure de comptage dans le "sens croissant" et, par 5 conséquent, la source de signaux de fluide 36 est ouverte, de sorte qu'un jet de puissance se trouve émis par l'orifice d'entrée 30 de la porte exclusive 26. Dans ces conditions, les jets émis par les orifices d'entrée 28 et 30 de la perte exclusive 26 se dévieront mutuellement et il ne passera aucun courant dans les 10 passages de sortie 32 et 34. Par suite, le jet de puissance provenant de l'orifice d'entrée 40 de la porte NON-OU 38 traversera la sortie NON-OU 46, puisqu*aucun signal de fluide n'est présent au niveau de l'un ou l'autre de ses ajutages de commande 42 ou 44. Lorsque la première impulsion est délivrée par la source 14 15 le jet de fluide qui traverse le passage de sortie 16 du premier étage de compteur binaire 10 sera commuté vers le passage de sortie 18. Lorsque le courant cessera dans le passage de sortie 16, le courant qui s'écoule par l'orifice d'entrée 28 de la porte exclusive 26*se trouvera interatompu. Par conséquent, le jet émis 20 par l'orifice, d'entrée 30 de la porte exclusive 26 sera intercepté par le passage de sortie 32 et transmis à l'ajutage de commande 44 de la porte NON-OU 38. Le jet de puissance en provenance de l'orifice d'entrée 40 de la porte NON-OU 38, qui *. auparavant traversé le passage de sortie NON-OU, sera obligé de eoia&uter vers le 25 passage de sortie OU .48 sous l'effet du fluide de commande disponible à l'ajutagj de commande 44. Ceci obligera le fluide du second étage binaire/à continuer à être émis à travers le passage de sortie 22, puisque les étages du comiteur binaire ne commutent pas lorsque le fluide d'entrée est interrompu, tandis qu'ils commutent 30 lorsqu'une nouvelle impulsion est injectée. En supposant que la condition initiale du dispositif d'utilisation 52 indiquait la lecture d'un "0", lorsque le fluide émis r par le premier étage du compteur binaire était commuté vers le passage de sortie 18, le dispositif d'utilisation 52 indiquera mainte-35 nant la lecture d'un "I". Lorsque la seconde impulsion est délivrée par la source 14 au premier étage du compteur binaire 10, la sortie est à nouveau coninutée et le courant circulera à travers le passage de sortie 16 et cessera de circuler dans le puisage de sortie 18. Il en résultera 69 00009 5 2000011 une absence, de courant de fluide de commande au niveau des orifices 42 et 44 de la porte NON-OU 38, puisque les courants qui s'écoulent depuis les orifices d'entrée 28 et 30 de la porte exclusive 26 se dévieront mutuellement, empêchant ainsi l'un et l'autre 5 d'être intercepté par les passages de sortie 32 et 34. Puisqu' aucun courant de fluide de commande ne sera disponible au niveau de la porte NON-OU 38, le jet de puissance commutera du passage de sortie OU 48 vers le passage de sortie NON-OU 46. Il en résultera une nouvelle impulsion pour le second étage de compteur binaire 10 12, obligeant le courant du fluide de sortie à commuter du passage de sortie 22 vers le passage de sortie 24. Le dispositif d'utilisation 52 est, par conséquent, alimenté par un signal en provenance du seul second étage de compteur binaire 12 et l'on pourra donner à ce signal la valeur "2". Lorsque la source 14 dé-15 livrera une troisième impulsion, le courant de sortie du premier étage de compteur binaire 10 sera commuté à nouveau vers le passage de sortie 18. Le jet émis à nouveau par l'orifice d'entrée 30 de la porte exclusive 26 sera intercepté par le passage de sortie 32 de celle-ci, délivrant un jet de commande au niveau de l'aju-20 tage de commande 44 de la porte NON-OU 38, à la suite de quoi le jet de puissance émis par le passage de sortie 46 de la porte NON-OU 38 sera conmuté vers le passage de sortie 48 de celle-ci. La sortie du second étage binaire 12 continuera à diriger un jet dans le passage de sortie 24. Il en résultera pour le dispositif d'uti-25 lisation, l'injection d'une impulsion indiquant la lecture d'un "I", transmise par le passage de sortie 18 du premier étage de compteur binaire 10 et une impulsion indiquant la lecture d'un "2" transmise par le passage de sortie 24 du second étage de compteur binaire 12, donc la lecture de la somme, soit un total de "3"• 30 Le procédure de comptage dans le "sens décroissant" est dé crite ci-dessous : Pour les bësoins de la description, on supposera que.le jet émis par l'orifice d'entrée 30 de la porte exclusive 26 est arrêté par l'interruption du signal de la source 36 et que le compteur 35 est dans un état tel que le dispositif d'utilisation affiche le chiffre "3". Dans ces conditions, le jet sortant du premier étage de conpteur binaire 10, circulera dans le passage de sortie 18 et ' le jet sortant du second étage de compteur binaire 12, circulera dans 1* passage de sortie 24. Lorsque i1impulsion suivante sera 69 00009 6 2000011 délivrée par la source d'impulsions 14, le courant de sortie du premier étage du compteur binaire 10 sera commuté du passage.de sortie 18 vers le passage de sortie 16. Ce courant sera émis de l'orifice d'entrée 28 de la porte exclusive 26 et intercepté par 5 le passage de sortie 34 dè celle-ci. Il en résultera un courant de commande au niveau de l'ajutage de commande 42 de la porte NON-OU 38, obligeant le jet de puissance à dévier du passage de sortie NON-OU 46 vers le passage de sortie 48. Puisque cette déviation interrompt simplement le fluide du second étage de eomp-10 teur binaire 12, le fluide de sortie de cet étage continuera à traverser le passage de sortie 24. Puisque le courant traversant le passage de sortie 18 du premier étage de compteur binaire 10 a été interrompu, le dispositif d'utilisation 52 ne recevra de courant qu'en provenance du second étage de compteur binaire 12, 15 par l'intermédiaire du passage de sortie 24, ce qui représente la lecture d'un "2". L'impulsion suivante, délivrée par la source 14, fera commuter à nouveau le courant de sortie, du passage 16 vers le passage de sortie 18, du premier étage de compteur binaire 10, interrom-20 pant le courant dans l'orifice d'entrée 28 de la porte exclusive 26. Puisqu'aucun courant de fluide de commande n'est délivré par aucun des ajutages de commande 42 ou 44 de la porte NON-OU 38, le jet de puissance émis par l'orifice d'entrée 40 de la porte NON-OU sera commuté du passage de sortie OU 48 vers le passage de sortie 25 NON-OU 46, délivrant un signal vers l'entrée 20 du second étage du compteur binaire 12. Le courant de sortie du second étage 12 sera alors commuté du passage de sortie 24.vers le passage de sortie 22 de ce dernier. Cet état aura pour effet l'injection d'un courant vers le dispositif d'utilisation 52, uniquement en prove-30 iiance du premier étage de compteur binaire à travers le passage de sortie 18, entraînant l'affichage d'un "I" dans le dispositif d'utilisation 52. On voit donc clairement que le comptage s'effectue maintenant dans le sens décroissant. On comprendra aisément que l'injection d'un courant dans 35 l'orifice d'entrée 30 de la porte exclusive 26 provoquera un comptage dans le sens croissant, tandis que l'interruption de ce courant provoquera un comptage dans le sens décroissant. Cette procédure peut être poursuivie selon toute séquence particulière, le dispositif d'utilisation affichant la lecture du résultat net. 69 00009 2000011 On comprend aussi aisément que lorsque le présent compteur croissant et décroissant est utilisé de façon continue, aussi bien que lorsque les éléments sont comptés en binaire, un registre à décalage, avec les éléments de logique à fluide qui l'accompagnent, 5 ou tout dispositif analogue, pourrait être utilisé en liaison avec le dispositif d'utilisation, de façon que le total atteint à cet instant soit conservé lorsque le sens de comptage est inversé. On peut aussi utiliser avec le compteur croissant et décroissant selon l'invention, tout autre moyen particulier permettant de con-10 server le résultat de l'opération, et qui ne fait pas partie de la présente invention. Il est bien évident que les paramètres de configuration des dispositifs à fluide spécifiques que l'on pourrait envisager, dépendent au moins de la densité du fluide utilisé, de la tempé-15 rature de fonctionnement, de la pression, ainsi que des caractéristiques du jet de sortie au niveau du point d'utilisation. Bien que la présente description ait été faite à partir de formes particulières de réalisation, il est bien évident que l'on peut y apporter de nombreuses modifications dans les détails 20 sans sortir pour autant du cadre de l'invention. 69 00009 8 2000011 - REVENDICATIONS - Il est revendiqué, comme faisant l'objet de l'invention : 1°) Un compteur à fluide, caractérisé par le fait qu'il est constitué par la liaison entre eux des éléments suivants, de la fa-5 çon ci-après indiquée : - un premier et un second étages de compteur, comportant "chacun une entrée et une première et seconde sorties ; - une porte à fluide NON-OU, comportant un orifice d'entrée, un passage de sortie NON-OU, un passage de sortie OU et une plu- 10 ralité d'ajutages de commande, ledit passage de sortie NON-OU étant relié à ladite entrée du second étage du compteur ; - une porte exclusive, comportant un premier et second orifices d'entrée et une paire de passages de sortie, ledit premier orifice d'entrée de la porte exclusive étant relié au premier 15 orifice d'entrée dudit premier étage du compteur, ladite paire de passages de sortie de la porte exclusive étant reliée à au moins l'un des ajutages de commande de la porte à fluide NON-OU. 2°) Un compteur à fluide selon la revendication I, comportant en outre une source de signaux de fluide connectée au second orifice 20 d'entrée de la porte exclusive. 3°) Un compteur à fluide selon la revendication I, comportant en outre un dispositif d'utilisation relié au second passage de sortie des deux étages du comjiEur.
Mass air flow sensor having off axis converging and diverging nozzles A mass air flow sensor for an internal combustion engine is provided. The sensor has a pair of opposed nozzles. A converging nozzle has a first conical throughbore having a first throughbore axis, the first throughbore has first and second apertures, the first aperture has a diameter greater than the second aperture. The diverging nozzle has a second conical throughbore having a second through axis. The throughbore has third and fourth apertures, with the third aperture having a diameter greater than the fourth aperture. A first hotwire sensor positioned within the first aperture. A second hotwire sensor positioned within the second aperture. FIELD The present disclosure relates to air flow sensors and, more particularly, to a bi-directional mass air flow sensor for use in a combustion engine. BACKGROUND Competition in the automotive industry has increased the need to develop technology for superior engines. Electronic monitoring and microsecond control systems provide a level of sophistication and performance that has not previously been available in automotive engines. Accurate input to these control systems has become an important priority. Of particular relevance is the precise control of the air-fuel ratio. Electronic port fuel injectors have nearly become standard on today's modern engine. These devices have achieved a very high degree of reliability and accurate fuel delivery control. Combustion air control is equally important, and the measurement of this air flow is done with a mass air flow sensor or a manifold absolute pressure sensor. FIG. 1shows an example of the induction air velocity downstream of the air cleaner in the induction system of a production four cylinder internal combustion engine. Shown are regions of negative and positive flows. Although the mass air flow sensor unit has the advantage of measuring the mass air flow rate directly, special problems arise in the measurement of this combustion air in that traditionally only part of the intake stream is sampled and the total mass flow is estimated from this bypass fraction.FIG. 1shows the flows in the bypass tube and main bore of traditional mass air flow sensors. Shown are comparisons of the bypass flows with total mass flows in the main bore at various engine speeds with different throttle positions under motoring and firing conditions.FIG. 1additionally shows a typical example of air flow in the induction system of an engine under normal operating conditions. Complicated induction system flows make an accurate correlation of bypass flow to total flow a difficult problem, particularly in operating regions which exhibit flow reversals.FIGS. 2A and 2Bshow an example of a prior art typical mass air flow sensor assembly having a single hotwire sensor which measures the mass flow of air passing through the air intake by measuring changes in resistance caused by heat loss. The graph shows mass air flow sensor signals measured along with crank angles over a range of throttle positions. The mass air flow sensor signals were measured to be compared with velocities measured by laser doppler velocimetry in the main base and the bypass tube of the mass air flow sensor assembly. This comparison can be used to determine the differences of the sensitivity and response time between the laser doppler velocimetry system and the mass air flow hotwire sensor. FIGS. 3A and 3Bshow total flow rates calculated based on the average velocity over 720 crank angle degrees across unit sectional area. Here, flow rate (+) means a flow rate calculation based only on the positive velocities, while flow rate (abs) is calculated based on the average velocities of absolute values of measured velocity. The flow rate without a parenthetical notation stands for net the flow rate. For lower than 50% of throttle position, these three flow rates are identical because no backflow exists in those throttle positions. For higher than 50% of throttle position, the backflow affects the flow rate in main bore. The net flow rate was decreased with increasing the throttle position at throttle position higher than 50%. A similar trend was found when the measured flow just upstream of the bypass was used to calculate total flow rate. Since the backflow at the entrance to the bypass is small, the effect of backflow is small on the flow rate in the bypass. The net flow rate through the bypass increases when the throttle position increases with the flow rate (abs) and the flow rate (+). This is different from the flow rate in the main bore. A mass air flow sensor which can provide the current net flow rate into an engine assembly will promote enhanced control of air-fuel ratios in the combustion chamber of an internal combustion engine. This has particular significance for: Premix gasoline engines operating above mid throttle position; diesel engines especially during transients; stratified charge spark ignition engines; in all engines which have variable cam timing the calibration effort can be substantially reduced by implementation of an accurate mass air flow sensor. SUMMARY It is an object of the present invention to overcome the disadvantages of the prior art. As such, a mass air flow sensor is provided which has a first sensing element configured to provide a first signal when air flow is in a first direction and provide a second signal when air flow is in a second direction; and, a second sensing element configured to provide a third signal when air flow is in the first direction and provide a fourth signal when air flow is in the second direction. The first sensing element has a first converging conical flow passage, while the second sensing element has a second diverging conical flow passage. Each sensor has an associated hot-wire velocity probe. In one embodiment to the invention, the mass air flow sensor has a first sensing element with a converging nozzle having a first open end with a first diameter and a second open end with a second diameter which is less than the first diameter. The hotwire sensor is disposed proximate to the first open end. Differences in the measured resistances from the hotwire velocity probe is used to calculate the difference in flow, and as such, are used to calculate both the mass flow and the direction of the flow within the mass air flow sensor. In another embodiment, the mass air flow sensor has a converging nozzle, having a first conical throughbore with first and second apertures, the first aperture having a diameter greater than the second aperture. The sensor also has a diverging nozzle having a second conical throughbore with third and fourth apertures, said third aperture having a diameter greater than the fourth aperture. A first hotwire sensor is positioned within the first aperture and a second hotwire sensor is positioned within the third aperture. In another embodiment, a mass air flow sensor for an internal combustion engine has a converging nozzle having a first conical throughbore having a first throughbore axis. The first throughbore has first and second apertures; the first aperture has a diameter greater than the second aperture. A diverging nozzle is provided having a second conical throughbore having a second through axis, the second conical throughbore has third and fourth apertures, said third aperture has a diameter greater than the fourth aperture. A first flow sensor is positioned within the first aperture, and a second flow sensor is positioned within the second aperture. In another embodiment, an internal combustion engine is taught having an air intake and a mass air flow sensor disposed within the air intake. The mass air flow sensor has a converging nozzle having a first conical throughbore having a first throughbore axis. The first throughbore has first and second apertures, the first aperture having a diameter greater than the second aperture. The mass air flow sensor also has a diverging nozzle having a second conical throughbore with a second through axis. The second throughbore has third and fourth apertures with the third aperture having a diameter greater than the fourth aperture. A first hotwire sensor is positioned adjacent to the first aperture, and a second hotwire sensor is positioned adjacent the third aperture. DETAILED DESCRIPTION The mass air flow sensors10shown inFIGS. 4A and 4Bare configured to measure unsteady, direction-reversing, mass flow rate as shown inFIG. 1. It is envisioned the sensor10will be integrated on engines8for1implementation of the advanced engine control. The sensor utilizes a pair of variable-area inserts or nozzles12,14; each variable-area insert is associated with one of two hotwire sensors16,18to accelerate/decelerate the flow locally around the sensors (seeFIGS. 4A and 4B). The variable-area inserts function as a diffuser or nozzle, depending on the flow direction of the gas being measured. For instance, if the flow direction is as indicated inFIG. 4A, the first variable insert12acts as a nozzle or converging nozzle and variable insert14acts as a diffuser or diverging nozzle, with one hotwire16,18placed at the center of the large area of each of the variable inserts. When the flow of air if reversed, first variable area insert12functions as a diffuser or diverging nozzle while the second functions as a nozzle or converging nozzle. The angle of the diffuser is deliberately chosen to be steep, forcing the flow to separate at the entrance, and making the diffuser operate in the “jet” regime. This is done in order to avoid the unsteady effects associated with internal diffuser separation and the generally poor performance of diffusers at low Reynolds numbers. It is important, however, to keep the length of the variable insert12,14less than twice the small-area diameter (i.e., L/d<2; seeFIG. 4Afor definition of terms) in order to ensure that the measurements are done within the potential core of the jet, and avoid the influence of turbulence in the shear-layer surrounding the core. The first variable insert12has a converging nozzle has a first conical throughbore20with first and second apertures22,24. The first aperture22has a diameter greater than the second aperture. The second variable insert14has a second conical throughbore26with third28and fourth apertures30. The third aperture28has a diameter greater than the fourth aperture30. A first sensor16is positioned adjacent to or within the first aperture22. A second sensor18is positioned adjacent to or within the second aperture24. The first and second conical throughbores20,26define first and second through axis the first axis is parallel to the second axis30,32. The first aperture22defines a first surface34and the second aperture24defines a second surface36, said first and second surfaces34,36being parallel. The third aperture28defines a third surface38said first and third surface being parallel. The first throughbore20has a first length L1and the second throughbore26has a second length L2equal to the first length L1. The first length L1is greater than the first diameter divided by the second diameter. The system further has a processor40for receiving a first signal indicative of a first flow rate in a first direction from the first sensor16and second signal from the first sensor16indicative of a first flow rate in an opposite direction. The processor additionally receives a third signal from the second sensor18indicative of the flow rate. The processor40determines the difference or sum of the first and third signals. The processor40can additionally apply a scaling factor or function to the measured signals or the difference of the signals. Sensors16and18designate a cylindrical flow rate detecting element. The cylindrical flow rate detecting sensors16and18may be prepared by winding a platinum wire as a heat-sensitive resistor on a ceramic pipe in coiled fashion, or by depositing a platinum film on a ceramic pipe and subjecting the ceramic pipe to spiral cut. The sensors16,18are heated to be warmer than the temperature of a fluid by a predetermined temperature, and the heating current to the sensors16,18can be used as a signal indicative of a flow rate. In the jet regime, the hotwire sensors16,18at the exit of the diffuser measures a velocity that is slightly higher than the main-stream velocity (Uo) because of the narrowing of the potential core. On the other hand, at the entrance of the nozzle, hotwire sensor16senses a velocity that is significantly lower than the main-stream velocity. For an ideal, inviscid flow, the velocity at the entrance of the nozzle would be that of the main stream divided by the variable inserts12,14area ratio (where the area ratio is defined as D2/d2for a circular geometry). In the actual flow, the deceleration at the entrance to the nozzle is lower than given by the area ratio, but the degree of deceleration is still related to the area ratio. Thus, the latter could be used at the design stage to increase/decrease the deviation of the velocity measured by hotwire sensor16from Uo. It should be noted that the flow deceleration at the entrance to the variable insert nozzle occurs because the pressure at the exit of the variable insert nozzle is forced to be the same as that of the main (approaching) stream, and hence the velocity at the exit of the variable insert nozzle will be similar to the main-stream velocity. Consequently, the area variation, in conjunction with mass conservation, will force the velocity through the large area to be slower than through the smaller one, leading to deceleration below U0. Based on the above description, it is clear that the output voltage of hotwire sensor18is larger than that of hotwire sensor16for the flow direction indicated inFIG. 4A. The opposite would be true for the flow in the reverse direction. Thus, the flow direction could be detected from the difference of the two voltages and the velocity magnitude could be estimated from either voltage, or their sum. Unlike the dual-sensor mass flow sensors, however, the flow acceleration/deceleration is achieved without introducing flow unsteadiness. Any flow unsteadiness that is observed (see below) is significantly lower than the difference between the outputs of the hotwires, thus guaranteeing proper detection of the velocity direction and magnitude. Proof of the variable insert mass air flow sensor design was conducted in a wind tunnel prior to construction of a full sensor for use in the HECC engine. The test involved construction of a variable-area insert with d=11.1 mm, D=16 mm and L=6.3 mm, which was held in the freestream inside the test section as shown inFIG. 5. A hotwire probe16was used to measure the velocity at the center of the large-area of the variable insert for two different orientations of the variable insert. One orientation corresponded to the nozzle flow and the other to the diffuser. The mean velocity measured by the hotwire sensor16in each of the orientations (denoted by Unand Udfor the nozzle and diffuser orientations respectively) is plotted versus the freestream velocity inFIG. 6. The results are quite consistent with the above description of the variable insert mass air flow sensor with the velocity measurement at the nozzle entrance being substantially lower than that at the diffuser exit. Both velocities seem to be related to the freestream velocity through a multiplicative constant (as seen from the fact that both Unand Udappear to follow a straight line that pass through the origin). Moreover, the ratio of Un/Udremains practically independent of flow velocity (within less than 1%) and equal to 1.74 (note that the area ratio of the variable insert is approximately 2). The results inFIGS. 6A and 6Bprovide evidence that the variable inset mass air flow sensors should work well for measuring the magnitude and direction of steady flows. Two sample time series obtained at the lowest and highest values of the freestream velocity are displayed in the top and bottom plots ofFIG. 7, respectively. In each plot, two time series are displayed corresponding to the diffuser and nozzle orientation for the same freestream velocity. Also note that the bandwidth of the measurements has been limited to 500 Hz, which is well above that of a typical automotive hotwire sensor16. FIG. 7shows that for both freestream velocities, the measurement at the nozzle inlet is free of any significant unsteadiness. Some unsteadiness, however, is found for the measurements at the exit of the diffuser for the high flow velocity. Nevertheless, this unsteadiness is substantially smaller than the difference between Unand Ud, and therefore it should not result in any ambiguity in determining the flow direction. Similarly, the influence of this small unsteadiness on the velocity-magnitude determination could be remedied by using the output from the sensor at the entrance of the nozzle for the magnitude measurement.
i 2000012 La présenta invention s© rapporte â 'on dispositif perfectionné pour l'épluchage des oignons et autres végétaux semblables. Dans la demande de brevet néerlandais a0 285.3^5 est décrit tin dispositif pour étêter st équouter d©3 végétaux* notamment des 5 oignons, ce dispositif cciapert-ant une bande transporteuse, pour le transport des végétaux, qid, s© déplaça 3ôl Il est souvent nécessaire après ©es opérations d'enlever 15 également les couches externes de la pelure• La présente invention se rapporte à un dispositif perfec-tionmé obtenu par la combinaison du dispositif d'étêtage et d'é-queutage connu ot d'un dispositif permettant de soumettre les végétaux à un traitement supplémentaire d'enlèvement des couches 20 externes de la pelure. La présente invention se rapporte à un dispositif pour l'épluchage des oignons et autres végétaux semblables qui comporte une plaque, table ou bande transporteuse munie d'orifices ou do; parties creusées pouvant recevoir les oignons déjà étêtés et 25 équeutés et qui comporte au-dossus de la dite plaque, table ou bande un appareil en forme d'entonnoir animé d'un mouvement de va et vient du haut vers le bas, cet appareil en forme d'entonnoir étant pourvu d'une tuyère d'éjection d'air comprimé dirigée vers los oignons ot reliée à un réservoir de gaz sous pression. 50 Suivant un autre mode de réalisation, la présente invention a pour objet un dispositif pour l'épluchage ainsi que pour l'étê-tage et 1'équeutage synchronisés des oignons dans lequel, au moment où l'opération de sectionnement a lieu, et done où la bande transporteuse est arrêtée, l'ensemble comportant la tuyère d'é-35 jectien d'air comprimé pour l'enlèvement des couches de pelure oxfeenM, so déplace vers le bas et# par ouverture d'une vanne ou l'an rebiuet, donne naissance & un courant d'air comprimé. L'oignon ost, do préférence placé sur un d®o orifices de la bande transporteuse• 69 00012 2O0O&Î2 L'air comprimé peut êventuell©ia©nt; être, au préalable, préchauffé» Il est apparu, en opérant de la façon décrite, que la courant d'air comprimé permettait l^enlêvesent de la couche extewio ou éventuellement de couches externes. Appôa les différentes cpê» 5 rations, la bande transporteuse represaâ sea dâplasement et amêsa© les oignons vers l'extérieur du dispositif, é vent us 1 lemsnt vei»3 tsa réservoir approprié. De préférence, la tuyère dféjection ©st légèrement incliaée vers le "bas par rapport â la verticale Un ergot, de diamètre inférieur au diamètre des orifices de 15 la bande, disposé suivant l'axe des cLits orifices et animé d'un mouvement de va-et-vient du bas vers 1© haut en synchronisme aires les opérations indiquées ci-dessus, eey Introduit dans les orifices de la dite bande, lorsque 1® mouvement de la bande ©st interrompu, de sorte que, l'oignon soit légèï:,îsmeis.t soulevé par le Le dispositif disposé au-dessus de la bande transporteuse a, de 25 préférence, la forme d'un entonnoir et comporte autour de son bord inférieur, où le diamètre est le plus grand, une bordure en caoutchouc qui ,lors du mouvement du haut vers le bas du dispositif en forme d'entonnoir qui comporte la tuyère d'éjection, est appliquée contre la bande transporteuse de façon à y donner une benne adhé-30 rence et à diriger le courant d'air comprimé dans la direction de l'oignon. L'invention sera mieux comprise à la lecture de la description suivant®, et de la figure jointe, données à titre d'exemples non limitatifs de modes de réalisation de l'invention. 35 La partie droite de la figure représente 1© dispositif pour ététer et équeuter les végétaux tel que .èêerit dans la demande de brevet m«erlandais précité, les parties d® c® dispositif non essentielle» pour la eompréheasioa de la pressât© lavent!on n'ayant pas été représentées. 69 00012 2000012 Le dispositif de la figure comporte un bâti 1 auquel les groupes mobiles d'étêtage et d'équeutage sont fixés» Le dispositif transporteur, formé d'une bande, est représenté schématique-ment en 2, et est supposé se déplacer de la droite vers la gauche de la figure. Lorsqu'un oignon se trouve exactement entre les couples de sectionnement 3 et if., le déplacement de la bande s'arrête et les groupes d'étêtage et d'équeutage commencent à effectuer leurs mouvements vers la bande transporteuse. Ces couples de sectionnement sont reliés entre eux par l'intermédiaire d'une bielle 5 qui, lorsque le déplacement de la bande est arrêté, engendre le déplacement des deux couples l'un vers l'autre et la saisie des oignons. Afin d'obtenir un sectionnement convenable, et dans la même juste mesure des oignons de toutes dimensions, les couples de sectionnement 3 et lj. sont montés élastiquement sur les cylindres animés de mouvement de va et vient* L'entraînement de l'ensemble se fait au moyen d'un moteur électrique . A un certain moment un oignon étêté et équeuté vient à passer, au cours du déplacement ultérieur de la bande, sous l'appareil en ferme d'entonnoir 11, le mouvement de la bande est-'; à ee moment arrêté pour un certain intervalle de temps» Cet appareil en forme d'entonnoir est animé d'un mouvement vers le bas on synchronisme avee le mouvement de déplacement des couples 3 et lj. l'un ver» l'autre et l'oignon est entouré par les bords do la cavité en ferme d'entonnoir. Les éléments de couplage entre les couples de sectionnement et le dispositif d'épluchage sont obtenus à l'aide d'une pièce 7 qui supporte le cylindre 8 dans lequel se trouve un ressort 9 en outre, soutient la conduite d'air comprimé l6. Lorsque l'appareil 11 est soulevé, le ressort 9 est comprimé et la vanne d'arrivée 17 de l'air comprimé est fermée. Il est possible de disposer un grand nombre de ces appareils en forme d'entonnoirs les uns derrière les autres sur une rangée, les profilés 12 servant à relier ces différents appareils en forme de cylindres entre eux. Dès que l'oignon est arrivé en regard de l'appareil 11, celui-ci est abaissé vers le bas et la bordure 18, par exemple on caoutchouc, donne lieu à une jonction étanche entre l'appareil U et la partie de la bande transporteuse qui entoure l'orifice 19 formé dans la dite bande. 69 00012 2000012 La bande est pourvue en son milieu d'une ouverture dans laquelle, en même temps que le courant d'air s'exerce, un ergot 13 est introduit dans l'ouverture, ledit ergot étant fixé à l'extrémité d'un élément élastique llf. A l'aide d'un dispositif non représenté 5 l'ergot est poussé vers le haut de façon à légèrement soulever l'oignon. En même temps que ce mouvement a lieu, et le mouvement de déplacement de la bande transporteuse étant arrêté, l'arrivée d'air est ouverte de sorte qu'un violent courant d'air frappe la face supérieure de l'oignon, atteigne la pelure externe et provo-10 que la rotation de l'oignon, et éventuellement également de la tuyère 15 par un dispositif de transmission approprié, de façon à agir sur la périphérie complète de l'oignon, ce qui permet, ainsi qu'il est apparu, d'enlever facilement la pelure externe, cette pelure tombant lors du mouvement ultérieur de la bande, «.près que 15 l'appareil 11 ait été soulevé. Après ce traitement les couples 3 et Ij. se séparent et l'ensemble de l'appareil 11 ainsi que de la tuyère 15 se déplacent vers le haut, la bande étant à nouveau mise en mouvement, jusqu'à, ce que le cycle décrit ci-dessus reprenne. 20 Bien entendu, l'invention n'est pas limitée au mode de réa lisation représenté, elle est susceptible de nombreuses autres variantes accessibles à l'homme de l'art suivant les applications envisagées, sans que l'on s'écarte de l'esprit de l'invention. 69 00012 5 2C00012 REVENDICATIONS L'invention a pour objet ï 1) Un dispositif pour l'épluchage des oignons et autres végétaux semblables qui comporte une plaqtie? table ou bande transpor- 5 teuse manie d'orifices ou ds parties creusées pouvant recevoir les oignons déjà étêtés et équeutês caractérisé en ce que au-dessus de la dite plaque, table ou bande, s® trouve un appareil mobile pourvu d'une tuyère d'éjection dirigée vers les oignons ou autres végétaux et reliée à un réservoir de gaz sous pression, des orga-10 nés étant en outre prévus pour que dès qu'un oignon ou autre végétal arrive sous cet appareil mobile, un courant de gaz comprimé soit exercé qui détache et enlève la pelure externe, 2) Un dispositif pour l'épluchage des oignons et autres végétaux semblables suivant la revendication 1, caractérisé en ce que 15 la tuyère d'éjection est légèrement Inclinée vers le bas par rapport à l'axe vertical et en ce que le courant d'air Imprime un mouvement de rotation à l'oignon, la tuyère elle-même subissant éventuellement un mouvement de rotation. 3) Un dispositif pour l'épluchage des oignons et autres végé-20 taux semblables suivant les revendications 1 ou 2, caractérisé en e« que la bande transporteuse est pourvue d'un orifice pouvant recevoir les végétaux dans lequel, lors de l'arrêt du déplacement de la bande, un ergot animé d'un mouvement de va et vient soulève le dit oignon et permette au gaz de s'échapper par le dit orifice. 25 Un dispositif pour l'épluchage des oignons et autres végé taux semblables suivant une des revendications précédentes caractérisé en ce que l'appareil mobile, pourvu d'une tuyère d'éjection, a la forme d'un entonnoir renversé et comporte autour de son bord Inférieur un dispositif d'étanchéité. 30 5) tfn dispositif pour l'épluchage des oignons et autres végé taux semblables suivant une des revendications précédentes caractérisé en ce que le dispositif transporteur ainsi que le dispositif d'étêtage et d'équeutage sont entraînés simultanément et de façon synchrone par un dispositif approprié.
Apparatus, a method and a computer program for video coding and decoding A method comprising: encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access (STSA) picture; encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. TECHNICAL FIELD The present invention relates to an apparatus, a method and a computer program for video coding and decoding. BACKGROUND Scalable video coding refers to coding structure where one bitstream can contain multiple representations of the content at different bitrates, resolutions or frame rates. In these cases the receiver can extract the desired representation depending on its characteristics. Alternatively, a server or a network element can extract the portions of the bitstream to be transmitted to the receiver depending on e.g. the network characteristics or processing capabilities of the receiver. A scalable bitstream typically consists of a base layer providing the lowest quality video available and one or more enhancement layers that enhance the video quality when received and decoded together with the lower layers. In order to improve coding efficiency for the enhancement layers, the coded representation of that layer typically depends on the lower layers. A coding standard or system may refer to a term operation point or alike, which may indicate the scalable layers and/or sub-layers under which the decoding operates and/or may be associated with a sub-bitstream that includes the scalable layers and/or sub-layers being decoded. In SHVC (Scalable extension to H.265/HEVC) and MV-HEVC (Multiview extension to H.265/HEVC), an operation point definition may include a consideration a target output layer set. In SHVC and MV-HEVC, an operation point may be defined as a bitstream that is created from another bitstream by operation of the sub-bitstream extraction process with the another bitstream, a target highest temporal level, and a target layer identifier list as inputs, and that is associated with a set of target output layers. However, the scalability designs in the contemporary state of various video coding standards have some limitations. For example, in SHVC, pictures of an access unit are required to have the same temporal level. This disables encoders to determine prediction hierarchies differently across layers, thus limiting the possibilities to use frequent sub-layer up-switch points and/or to achieve a better rate-distortion performance. Moreover, a further limitation is that temporal level switch pictures are not allowed at the lowest temporal level. This disables to indicate an access picture or access point to a layer that enables decoding of some temporal levels (but not necessarily all of them). SUMMARY Now in order to at least alleviate the above problems, methods for encoding and decoding restricted layer access pictures are introduced herein. A method according to a first embodiment comprises receiving coded pictures of a first scalability layer; decoding the coded pictures of the first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on a lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; decoding the selected layer access picture. According to an embodiment, the step-wise temporal sub-layer access picture provides an access point for layer-wise initialization of decoding of a bitstream with one or more temporal sub-layers. According to an embodiment, the step-wise temporal sub-layer access picture provides an access point for layer-wise bitrate adaptation of a bitstream with one or more temporal layers. According to an embodiment, the method further comprises receiving an indication about the step-wise temporal sub-layer access picture in a specific NAL unit type provided along the bitstream. According to an embodiment, the method further comprises receiving an indication about the step-wise temporal sub-layer access picture with an SEI message defining the number of decodable sub-layers. According to an embodiment, the method further comprises starting decoding of the bitstream in response to a base layer containing an intra random access point (TRAP) picture or a step-wise temporal sub-layer access (STSA) picture on the lowest sub-layer; starting step-wise decoding of at least one enhancement layer in response to said at least one enhancement layer containing an IRAP picture or an STSA picture on the lowest sub-layer; and increasing progressively the number of decoded layers and/or the number of decoded temporal sub-layers. According to an embodiment, the method further comprises generating unavailable pictures for reference pictures of a first picture in decoding order in a particular enhancement layer. According to an embodiment, the method further comprises omitting the decoding of pictures preceding the TRAP picture from which the decoding of a particular enhancement layer can be started. According to an embodiment, the method further comprises labeling said omitted pictures by one or more specific NAL unit types. According to an embodiment, the method further comprises maintaining information which sub-layers of each layer have been correctly decoded. According to an embodiment, starting the step-wise decoding comprises one or more of the following conditional operations:when a current picture is an IRAP picture and decoding of all reference layers of the IRAP picture has been started, the IRAP picture and all pictures following it, in decoding order, in the same layer are decoded.when the current picture is an STSA picture at the lowest sub-layer and decoding of the lowest sub-layer of all reference layers of the STSA picture has been started, the STSA picture and all pictures at the lowest sub-layer following the STSA picture, in decoding order, in the same layer are decoded.when the current picture is a TSA or STSA picture at a higher sub-layer than the lowest sub-layer and decoding of the next lower sub-layer in the same layer has been started, and decoding of the same sub-layer of all the reference layers of the TSA or STSA picture has been started, the TSA or STSA picture and all pictures at the same sub-layer following the TSA or STSA picture, in decoding order, in the same layer are decoded. A method according to a second embodiment comprises receiving coded pictures of a first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; sending the coded pictures of the first scalability layer and the selected layer access picture in a bitstream. An apparatus according to a third embodiment comprises: at least one processor and at least one memory, said at least one memory stored with code thereon, which when executed by said at least one processor, causes an apparatus to perform at least receiving coded pictures of a first scalability layer; decoding the coded pictures of the first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; decoding the selected layer access picture. An apparatus according to a fourth embodiment comprises: at least one processor and at least one memory, said at least one memory stored with code thereon, which when executed by said at least one processor, causes an apparatus to perform at least receiving coded pictures of a first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; sending the coded pictures of the first scalability layer and the selected layer access picture in a bitstream. According to a fifth embodiment there is provided a computer readable storage medium stored with code thereon for use by an apparatus, which when executed by a processor, causes the apparatus to perform: receiving coded pictures of a first scalability layer; decoding the coded pictures of the first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; decoding the selected layer access picture. According to a sixth embodiment there is provided an apparatus comprising a video decoder configured for decoding a bitstream comprising an image sequence, the video decoder comprising means for receiving coded pictures of a first scalability layer; means for decoding the coded pictures of the first scalability layer; means for receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; means for selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; means for ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; means for decoding the selected layer access picture. According to a seventh embodiment there is provided a video decoder configured for decoding a bitstream comprising an image sequence, wherein said video decoder is further configured for: receiving coded pictures of a first scalability layer; decoding the coded pictures of the first scalability layer; receiving coded pictures of a second scalability layer, the second scalability layer depending on the first scalability layer; selecting a layer access picture on the second scalability layer from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer; ignoring coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture; decoding the selected layer access picture. A method according to an eighth embodiment comprises encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture; encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. According to an embodiment, the step-wise temporal sub-layer access picture provides an access point for layer-wise initialization of decoding of a bitstream with one or more temporal sub-layers. According to an embodiment, the step-wise temporal sub-layer access picture is an STSA picture with TemporalId equal to 0. According to an embodiment, the method further comprises signaling the step-wise temporal sub-layer access picture in the bitstream by a specific NAL unit type. According to an embodiment, the method further comprises signaling the step-wise temporal sub-layer access picture in a SEI message defining the number of decodable sub-layers. According to an embodiment, the method further comprises encoding said second or any further scalability layer to comprise more frequent TSA or STSA pictures than the first scalability layer. An apparatus according to a ninth embodiment comprises: at least one processor and at least one memory, said at least one memory stored with code thereon, which when executed by said at least one processor, causes an apparatus to perform at least encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture; encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. According to a tenth embodiment there is provided a computer readable storage medium stored with code thereon for use by an apparatus, which when executed by a processor, causes the apparatus to perform: encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture; encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. According to an eleventh embodiment there is provided an apparatus comprising a video encoder configured for encoding a bitstream comprising an image sequence, the video encoder comprising means for encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; means for encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, means for encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture; means for encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and means for encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. According to a twelfth embodiment there is provided a video encoder configured for encoding a bitstream comprising an image sequence, wherein said video encoder is further configured for: encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant, encoding one or more first syntax elements, associated with the first picture, with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture; encoding one or more second syntax elements, associated with the second picture, with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture; and encoding at least a third picture on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. A method according to a thirteenth embodiment comprises encoding a first picture on a first scalability layer and on a lowest temporal sub-layer; encoding a second picture on a second scalability layer, wherein the first picture and the second picture belong to same access unit, encoding one or more syntax elements, associated with the said access unit, with a value indicating whether temporal level identifier values are aligned for the coded first and second pictures within said access unit. A method according to a fourteenth embodiment comprises receiving a bitstream comprising an access unit having a first picture encoded on a first scalability layer and on a lowest temporal sub-layer and a second picture encoded on a second scalability layer; decoding, from the bitstream, one or more syntax elements, associated with the said access unit, with a value indicating whether temporal level identifier values are aligned for the coded first and second pictures within said access unit; and selecting a decoding operation for said first and second pictures according to said value. DETAILED DESCRIPTION OF SOME EXAMPLE EMBODIMENTS The following describes in further detail suitable apparatus and possible mechanisms for encoding an enhancement layer sub-picture without significantly sacrificing the coding efficiency. In this regard reference is first made toFIGS. 1 and 2, whereFIG. 1shows a block diagram of a video coding system according to an example embodiment as a schematic block diagram of an exemplary apparatus or electronic device50, which may incorporate a codec according to an embodiment of the invention. FIG.2shows a layout of an apparatus according to an example embodiment. The elements ofFIGS. 1 and 2will be explained next. The electronic device50may for example be a mobile terminal or user equipment of a wireless communication system. However, it would be appreciated that embodiments of the invention may be implemented within any electronic device or apparatus which may require encoding and decoding or encoding or decoding video images. The apparatus50may comprise a housing30for incorporating and protecting the device. The apparatus50further may comprise a display32in the form of a liquid crystal display. In other embodiments of the invention the display may be any suitable display technology suitable to display an image or video. The apparatus50may further comprise a keypad34. In other embodiments of the invention any suitable data or user interface mechanism may be employed. For example the user interface may be implemented as a virtual keyboard or data entry system as part of a touch-sensitive display. The apparatus may comprise a microphone36or any suitable audio input which may be a digital or analogue signal input. The apparatus50may further comprise an audio output device which in embodiments of the invention may be any one of: an earpiece38, speaker, or an analogue audio or digital audio output connection. The apparatus50may also comprise a battery40(or in other embodiments of the invention the device may be powered by any suitable mobile energy device such as solar cell, fuel cell or clockwork generator). The apparatus may further comprise a camera42capable of recording or capturing images and/or video. The apparatus50may further comprise an infrared port for short range line of sight communication to other devices. In other embodiments the apparatus50may further comprise any suitable short range communication solution such as for example a Bluetooth wireless connection or a USB/firewire wired connection. The apparatus50may comprise a controller56or processor for controlling the apparatus50. The controller56may be connected to memory58which in embodiments of the invention may store both data in the form of image and audio data and/or may also store instructions for implementation on the controller56. The controller56may further be connected to codec circuitry54suitable for carrying out coding and decoding of audio and/or video data or assisting in coding and decoding carried out by the controller. The apparatus50may further comprise a card reader48and a smart card46, for example a UICC and UICC reader for providing user information and being suitable for providing authentication information for authentication and authorization of the user at a network. The apparatus50may comprise radio interface circuitry52connected to the controller and suitable for generating wireless communication signals for example for communication with a cellular communications network, a wireless communications system or a wireless local area network. The apparatus50may further comprise an antenna44connected to the radio interface circuitry52for transmitting radio frequency signals generated at the radio interface circuitry52to other apparatus(es) and for receiving radio frequency signals from other apparatus(es). The apparatus50may comprise a camera capable of recording or detecting individual frames which are then passed to the codec54or the controller for processing. The apparatus may receive the video image data for processing from another device prior to transmission and/or storage. The apparatus50may also receive either wirelessly or by a wired connection the image for coding/decoding. With respect toFIG. 3, an example of a system within which embodiments of the present invention can be utilized is shown. The system10comprises multiple communication devices which can communicate through one or more networks. The system10may comprise any combination of wired or wireless networks including, but not limited to a wireless cellular telephone network (such as a GSM, UMTS, CDMA network etc), a wireless local area network (WLAN) such as defined by any of the IEEE 802.x standards, a Bluetooth personal area network, an Ethernet local area network, a token ring local area network, a wide area network, and the Internet. The system10may include both wired and wireless communication devices and/or apparatus50suitable for implementing embodiments of the invention. For example, the system shown inFIG. 3shows a mobile telephone network11and a representation of the internet28. Connectivity to the internet28may include, but is not limited to, long range wireless connections, short range wireless connections, and various wired connections including, but not limited to, telephone lines, cable lines, power lines, and similar communication pathways. The example communication devices shown in the system10may include, but are not limited to, an electronic device or apparatus50, a combination of a personal digital assistant (PDA) and a mobile telephone14, a PDA16, an integrated messaging device (IMD)18, a desktop computer20, a notebook computer22. The apparatus50may be stationary or mobile when carried by an individual who is moving. The apparatus50may also be located in a mode of transport including, but not limited to, a car, a truck, a taxi, a bus, a train, a boat, an airplane, a bicycle, a motorcycle or any similar suitable mode of transport. The embodiments may also be implemented in a set-top box; i.e. a digital TV receiver, which may/may not have a display or wireless capabilities, in tablets or (laptop) personal computers (PC), which have hardware or software or combination of the encoder/decoder implementations, in various operating systems, and in chipsets, processors, DSPs and/or embedded systems offering hardware/software based coding. Some or further apparatus may send and receive calls and messages and communicate with service providers through a wireless connection25to a base station24. The base station24may be connected to a network server26that allows communication between the mobile telephone network11and the internet28. The system may include additional communication devices and communication devices of various types. The communication devices may communicate using various transmission technologies including, but not limited to, code division multiple access (CDMA), global systems for mobile communications (GSM), universal mobile telecommunications system (UMTS), time divisional multiple access (TDMA), frequency division multiple access (FDMA), transmission control protocol-internet protocol (TCP-IP), short messaging service (SMS), multimedia messaging service (MMS), email, instant messaging service (IMS), Bluetooth, IEEE 802.11 and any similar wireless communication technology. A communications device involved in implementing various embodiments of the present invention may communicate using various media including, but not limited to, radio, infrared, laser, cable connections, and any suitable connection. Video codec consists of an encoder that transforms the input video into a compressed representation suited for storage/transmission and a decoder that can uncompress the compressed video representation back into a viewable form. Typically encoder discards some information in the original video sequence in order to represent the video in a more compact form (that is, at lower bitrate). Typical hybrid video codecs, for example many encoder implementations of ITU-T H.263 and H.264, encode the video information in two phases. Firstly pixel values in a certain picture area (or “block”) are predicted for example by motion compensation means (finding and indicating an area in one of the previously coded video frames that corresponds closely to the block being coded) or by spatial means (using the pixel values around the block to be coded in a specified manner). Secondly the prediction error, i.e. the difference between the predicted block of pixels and the original block of pixels, is coded. This is typically done by transforming the difference in pixel values using a specified transform (e.g. Discrete Cosine Transform (DCT) or a variant of it), quantizing the coefficients and entropy coding the quantized coefficients. By varying the fidelity of the quantization process, encoder can control the balance between the accuracy of the pixel representation (picture quality) and size of the resulting coded video representation (file size or transmission bitrate). Inter prediction, which may also be referred to as temporal prediction, motion compensation, or motion-compensated prediction, reduces temporal redundancy. In inter prediction the sources of prediction are previously decoded pictures. Intra prediction utilizes the fact that adjacent pixels within the same picture are likely to be correlated. Intra prediction can be performed in spatial or transform domain, i.e., either sample values or transform coefficients can be predicted. Intra prediction is typically exploited in intra coding, where no inter prediction is applied. One outcome of the coding procedure is a set of coding parameters, such as motion vectors and quantized transform coefficients. Many parameters can be entropy-coded more efficiently if they are predicted first from spatially or temporally neighboring parameters. For example, a motion vector may be predicted from spatially adjacent motion vectors and only the difference relative to the motion vector predictor may be coded. Prediction of coding parameters and intra prediction may be collectively referred to as in-picture prediction. FIG. 4shows a block diagram of a video encoder suitable for employing embodiments of the invention.FIG. 4presents an encoder for two layers, but it would be appreciated that presented encoder could be similarly extended to encode more than two layers.FIG. 4illustrates an embodiment of a video encoder comprising a first encoder section500for a base layer and a second encoder section502for an enhancement layer. Each of the first encoder section500and the second encoder section502may comprise similar elements for encoding incoming pictures. The encoder sections500,502may comprise a pixel predictor302,402, prediction error encoder303,403and prediction error decoder304,404.FIG. 4also shows an embodiment of the pixel predictor302,402as comprising an inter-predictor306,406, an intra-predictor308,408, a mode selector310,410, a filter316,416, and a reference frame memory318,418. The pixel predictor302of the first encoder section500receives300base layer images of a video stream to be encoded at both the inter-predictor306(which determines the difference between the image and a motion compensated reference frame318) and the intra-predictor308(which determines a prediction for an image block based only on the already processed parts of current frame or picture). The output of both the inter-predictor and the intra-predictor are passed to the mode selector310. The intra-predictor308may have more than one intra-prediction modes. Hence, each mode may perform the intra-prediction and provide the predicted signal to the mode selector310. The mode selector310also receives a copy of the base layer picture300. Correspondingly, the pixel predictor402of the second encoder section502receives400enhancement layer images of a video stream to be encoded at both the inter-predictor406(which determines the difference between the image and a motion compensated reference frame418) and the intra-predictor408(which determines a prediction for an image block based only on the already processed parts of current frame or picture). The output of both the inter-predictor and the intra-predictor are passed to the mode selector410. The intra-predictor408may have more than one intra-prediction modes. Hence, each mode may perform the intra-prediction and provide the predicted signal to the mode selector410. The mode selector410also receives a copy of the enhancement layer picture400. Depending on which encoding mode is selected to encode the current block, the output of the inter-predictor306,406or the output of one of the optional intra-predictor modes or the output of a surface encoder within the mode selector is passed to the output of the mode selector310,410. The output of the mode selector is passed to a first summing device321,421. The first summing device may subtract the output of the pixel predictor302,402from the base layer picture300/enhancement layer picture400to produce a first prediction error signal320,420which is input to the prediction error encoder303,403. The pixel predictor302,402further receives from a preliminary reconstructor339,439the combination of the prediction representation of the image block312,412and the output338,438of the prediction error decoder304,404. The preliminary reconstructed image314,414may be passed to the intra-predictor308,408and to a filter316,416. The filter316,416receiving the preliminary representation may filter the preliminary representation and output a final reconstructed image340,440which may be saved in a reference frame memory318,418. The reference frame memory318may be connected to the inter-predictor306to be used as the reference image against which a future base layer picture300is compared in inter-prediction operations. Subject to the base layer being selected and indicated to be source for inter-layer sample prediction and/or inter-layer motion information prediction of the enhancement layer according to some embodiments, the reference frame memory318may also be connected to the inter-predictor406to be used as the reference image against which a future enhancement layer pictures400is compared in inter-prediction operations. Moreover, the reference frame memory418may be connected to the inter-predictor406to be used as the reference image against which a future enhancement layer picture400is compared in inter-prediction operations. Filtering parameters from the filter316of the first encoder section500may be provided to the second encoder section502subject to the base layer being selected and indicated to be source for predicting the filtering parameters of the enhancement layer according to some embodiments. The prediction error encoder303,403comprises a transform unit342,442and a quantizer344,444. The transform unit342,442transforms the first prediction error signal320,420to a transform domain. The transform is, for example, the DCT transform. The quantizer344,444quantizes the transform domain signal, e.g. the DCT coefficients, to form quantized coefficients. The prediction error decoder304,404receives the output from the prediction error encoder303,403and performs the opposite processes of the prediction error encoder303,403to produce a decoded prediction error signal338,438which, when combined with the prediction representation of the image block312,412at the second summing device339,439, produces the preliminary reconstructed image314,414. The prediction error decoder may be considered to comprise a dequantizer361,461, which dequantizes the quantized coefficient values, e.g. DCT coefficients, to reconstruct the transform signal and an inverse transformation unit363,463, which performs the inverse transformation to the reconstructed transform signal wherein the output of the inverse transformation unit363,463contains reconstructed block(s). The prediction error decoder may also comprise a block filter which may filter the reconstructed block(s) according to further decoded information and filter parameters. The entropy encoder330,430receives the output of the prediction error encoder303,403and may perform a suitable entropy encoding/variable length encoding on the signal to provide error detection and correction capability. The outputs of the entropy encoders330,430may be inserted into a bitstream e.g. by a multiplexer508. The H.264/AVC standard was developed by the Joint Video Team (JVT) of the Video Coding Experts Group (VCEG) of the Telecommunications Standardization Sector of International Telecommunication Union (ITU-T) and the Moving Picture Experts Group (MPEG) of International Organisation for Standardization (ISO)/International Electrotechnical Commission (IEC). The H.264/AVC standard is published by both parent standardization organizations, and it is referred to as ITU-T Recommendation H.264 and ISO/IEC International Standard 14496-10, also known as MPEG-4 Part 10 Advanced Video Coding (AVC). There have been multiple versions of the H.264/AVC standard, integrating new extensions or features to the specification. These extensions include Scalable Video Coding (SVC) and Multiview Video Coding (MVC). The High Efficiency Video Coding (H.265/HEVC) standard was developed by the Joint Collaborative Team-Video Coding (JCT-VC) of VCEG and MPEG. The standard is or will be published by both parent standardization organizations, and it is referred to as ITU-T Recommendation H.265 and ISO/IEC International Standard 23008-2, also known as MPEG-H Part 2 High Efficiency Video Coding (HEVC). There are currently ongoing standardization projects to develop extensions to H.265/HEVC, including scalable, multiview, three-dimensional, and fidelity range extensions, which may be abbreviated SHVC, MV-HEVC, 3D-HEVC, and REXT, respectively. Some key definitions, bitstream and coding structures, and concepts of H.264/AVC and HEVC are described in this section as an example of a video encoder, decoder, encoding method, decoding method, and a bitstream structure, wherein the embodiments may be implemented. Some of the key definitions, bitstream and coding structures, and concepts of H.264/AVC are the same as in HEVC—hence, they are described below jointly. The aspects of the invention are not limited to H.264/AVC or HEVC, but rather the description is given for one possible basis on top of which the invention may be partly or fully realized. Similarly to many earlier video coding standards, the bitstream syntax and semantics as well as the decoding process for error-free bitstreams are specified in H.264/AVC and HEVC. The encoding process is not specified, but encoders must generate conforming bitstreams. Bitstream and decoder conformance can be verified with the Hypothetical Reference Decoder (HRD). The standards contain coding tools that help in coping with transmission errors and losses, but the use of the tools in encoding is optional and no decoding process has been specified for erroneous bitstreams. In the description of existing standards as well as in the description of example embodiments, a syntax element may be defined as an element of data represented in the bitstream. A syntax structure may be defined as zero or more syntax elements present together in the bitstream in a specified order. In the description of existing standards as well as in the description of example embodiments, a phrase “by external means” or “through external means” may be used. For example, an entity, such as a syntax structure or a value of a variable used in the decoding process, may be provided “by external means” to the decoding process. The phrase “by external means” may indicate that the entity is not included in the bitstream created by the encoder, but rather conveyed externally from the bitstream for example using a control protocol. It may alternatively or additionally mean that the entity is not created by the encoder, but may be created for example in the player or decoding control logic or alike that is using the decoder. The decoder may have an interface for inputting the external means, such as variable values. A profile may be defined as a subset of the entire bitstream syntax that is specified by a decoding/coding standard or specification. Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the specified size of the decoded pictures. In many applications, it might be neither practical nor economic to implement a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile. In order to deal with this issue, levels may be used. A level may be defined as a specified set of constraints imposed on values of the syntax elements in the bitstream and variables specified in a decoding/coding standard or specification. These constraints may be simple limits on values. Alternatively or in addition, they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied by picture height multiplied by number of pictures decoded per second). Other means for specifying constraints for levels may also be used. Some of the constraints specified in a level may for example relate to the maximum picture size, maximum bitrate and maximum data rate in terms of coding units, such as macroblocks, per a time period, such as a second. The same set of levels may be defined for all profiles. It may be preferable for example to increase interoperability of terminals implementing different profiles that most or all aspects of the definition of each level may be common across different profiles. The elementary unit for the input to an H.264/AVC or HEVC encoder and the output of an H.264/AVC or HEVC decoder, respectively, is a picture. A picture given as an input to an encoder may also referred to as a source picture, and a picture decoded by a decoded may be referred to as a decoded picture. The source and decoded pictures are each comprised of one or more sample arrays, such as one of the following sets of sample arrays:Luma (Y) only (monochrome).Luma and two chroma (YCbCr or YCgCo).Green, Blue and Red (GBR, also known as RGB).Arrays representing other unspecified monochrome or tri-stimulus color samplings (for example, YZX, also known as XYZ). In the following, these arrays may be referred to as luma (or L or Y) and chroma, where the two chroma arrays may be referred to as Cb and Cr; regardless of the actual color representation method in use. The actual color representation method in use can be indicated e.g. in a coded bitstream e.g. using the Video Usability Information (VUI) syntax of H.264/AVC and/or HEVC. A component may be defined as an array or single sample from one of the three sample arrays arrays (luma and two chroma) or the array or a single sample of the array that compose a picture in monochrome format. In H.264/AVC and HEVC, a picture may either be a frame or a field. A frame comprises a matrix of luma samples and possibly the corresponding chroma samples. A field is a set of alternate sample rows of a frame and may be used as encoder input, when the source signal is interlaced. Chroma sample arrays may be absent (and hence monochrome sampling may be in use) or chroma sample arrays may be subsampled when compared to luma sample arrays. Chroma formats may be summarized as follows:In monochrome sampling there is only one sample array, which may be nominally considered the luma array.In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.In 4:4:4 sampling when no separate color planes are in use, each of the two chroma arrays has the same height and width as the luma array. In H.264/AVC and HEVC, it is possible to code sample arrays as separate color planes into the bitstream and respectively decode separately coded color planes from the bitstream. When separate color planes are in use, each one of them is separately processed (by the encoder and/or the decoder) as a picture with monochrome sampling. When chroma subsampling is in use (e.g. 4:2:0 or 4:2:2 chroma sampling), the location of chroma samples with respect to luma samples may be determined in the encoder side (e.g. as pre-processing step or as part of encoding). The chroma sample positions with respect to luma sample positions may be pre-defined for example in a coding standard, such as H.264/AVC or HEVC, or may be indicated in the bitstream for example as part of VUI of H.264/AVC or HEVC. A partitioning may be defined as a division of a set into subsets such that each element of the set is in exactly one of the subsets. In H.264/AVC, a macroblock is a 16×16 block of luma samples and the corresponding blocks of chroma samples. For example, in the 4:2:0 sampling pattern, a macroblock contains one 8×8 block of chroma samples per each chroma component. In H.264/AVC, a picture is partitioned to one or more slice groups, and a slice group contains one or more slices. In H.264/AVC, a slice consists of an integer number of macroblocks ordered consecutively in the raster scan within a particular slice group. When describing the operation of HEVC encoding and/or decoding, the following terms may be used. A coding block may be defined as an N×N block of samples for some value of N such that the division of a coding tree block into coding blocks is a partitioning. A coding tree block (CTB) may be defined as an N×N block of samples for some value of N such that the division of a component into coding tree blocks is a partitioning. A coding tree unit (CTU) may be defined as a coding tree block of luma samples, two corresponding coding tree blocks of chroma samples of a picture that has three sample arrays, or a coding tree block of samples of a monochrome picture or a picture that is coded using three separate color planes and syntax structures used to code the samples. A coding unit (CU) may be defined as a coding block of luma samples, two corresponding coding blocks of chroma samples of a picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is coded using three separate color planes and syntax structures used to code the samples. In some video codecs, such as High Efficiency Video Coding (HEVC) codec, video pictures are divided into coding units (CU) covering the area of the picture. A CU consists of one or more prediction units (PU) defining the prediction process for the samples within the CU and one or more transform units (TU) defining the prediction error coding process for the samples in the said CU. Typically, a CU consists of a square block of samples with a size selectable from a predefined set of possible CU sizes. A CU with the maximum allowed size may be named as LCU (largest coding unit) or coding tree unit (CTU) and the video picture is divided into non-overlapping LCUs. An LCU can be further split into a combination of smaller CUs, e.g. by recursively splitting the LCU and resultant CUs. Each resulting CU typically has at least one PU and at least one TU associated with it. Each PU and TU can be further split into smaller PUs and TUs in order to increase granularity of the prediction and prediction error coding processes, respectively. Each PU has prediction information associated with it defining what kind of a prediction is to be applied for the pixels within that PU (e.g. motion vector information for inter predicted PUs and intra prediction directionality information for intra predicted PUs). The directionality of a prediction mode for intra prediction, i.e. the prediction direction to be applied in a particular prediction mode, may be vertical, horizontal, diagonal. For example, in HEVC, intra prediction provides up to 33 directional prediction modes, depending on the size of PUs, and each of the intra prediction modes has a prediction direction assigned to it. Similarly each TU is associated with information describing the prediction error decoding process for the samples within the said TU (including e.g. DCT coefficient information). It is typically signalled at CU level whether prediction error coding is applied or not for each CU. In the case there is no prediction error residual associated with the CU, it can be considered there are no TUs for the said CU. The division of the image into CUs, and division of CUs into PUs and TUs is typically signalled in the bitstream allowing the decoder to reproduce the intended structure of these units. In HEVC, a picture can be partitioned in tiles, which are rectangular and contain an integer number of LCUs. In HEVC, the partitioning to tiles forms a regular grid, where heights and widths of tiles differ from each other by one LCU at the maximum. In a draft HEVC, a slice is defined to be an integer number of coding tree units contained in one independent slice segment and all subsequent dependent slice segments (if any) that precede the next independent slice segment (if any) within the same access unit. In HEVC, a slice segment is defined to be an integer number of coding tree units ordered consecutively in the tile scan and contained in a single NAL unit. The division of each picture into slice segments is a partitioning. In HEVC, an independent slice segment is defined to be a slice segment for which the values of the syntax elements of the slice segment header are not inferred from the values for a preceding slice segment, and a dependent slice segment is defined to be a slice segment for which the values of some syntax elements of the slice segment header are inferred from the values for the preceding independent slice segment in decoding order. In HEVC, a slice header is defined to be the slice segment header of the independent slice segment that is a current slice segment or is the independent slice segment that precedes a current dependent slice segment, and a slice segment header is defined to be a part of a coded slice segment containing the data elements pertaining to the first or all coding tree units represented in the slice segment. The CUs are scanned in the raster scan order of LCUs within tiles or within a picture, if tiles are not in use. Within an LCU, the CUs have a specific scan order.FIG. 5shows an example of a picture consisting of two tiles partitioned into square coding units (solid lines) which have been further partitioned into rectangular prediction units (dashed lines). The decoder reconstructs the output video by applying prediction means similar to the encoder to form a predicted representation of the pixel blocks (using the motion or spatial information created by the encoder and stored in the compressed representation) and prediction error decoding (inverse operation of the prediction error coding recovering the quantized prediction error signal in spatial pixel domain). After applying prediction and prediction error decoding means the decoder sums up the prediction and prediction error signals (pixel values) to form the output video frame. The decoder (and encoder) can also apply additional filtering means to improve the quality of the output video before passing it for display and/or storing it as prediction reference for the forthcoming frames in the video sequence. The filtering may for example include one more of the following: deblocking, sample adaptive offset (SAO), and/or adaptive loop filtering (ALF). In SAO, a picture is divided into regions where a separate SAO decision is made for each region. The SAO information in a region is encapsulated in a SAO parameters adaptation unit (SAO unit) and in HEVC, the basic unit for adapting SAO parameters is CTU (therefore an SAO region is the block covered by the corresponding CTU). In the SAO algorithm, samples in a CTU are classified according to a set of rules and each classified set of samples are enhanced by adding offset values. The offset values are signalled in the bitstream. There are two types of offsets: 1) Band offset 2) Edge offset. For a CTU, either no SAO or band offset or edge offset is employed. Choice of whether no SAO or band or edge offset to be used may be decided by the encoder with e.g. rate distortion optimization (RDO) and signaled to the decoder. In the band offset, the whole range of sample values is in certain cases divided into 32 equal-width bands. For example, for 8-bit samples, width of a band is 8 (=256/32). Out of 32 bands, 4 of them are selected and different offsets are signalled for each of the selected bands. The selection decision is made by the encoder and may be signalled as follows: The index of the first band is signalled and then it is inferred that the following four bands are the chosen ones. The band offset may be useful in correcting errors in smooth regions. In the edge offset type, the edge offset (EO) type may be chosen out of four possible types (or edge classifications) where each type is associated with a direction: 1) vertical, 2) horizontal, 3) 135 degrees diagonal, and 4) 45 degrees diagonal. The choice of the direction is given by the encoder and signalled to the decoder. Each type defines the location of two neighbour samples for a given sample based on the angle. Then each sample in the CTU is classified into one of five categories based on comparison of the sample value against the values of the two neighbour samples. The five categories are described as follows:1. Current sample value is smaller than the two neighbour samples2. Current sample value is smaller than one of the neighbors and equal to the other neighbor3. Current sample value is greater than one of the neighbors and equal to the other neighbor4. Current sample value is greater than two neighbour samples5. None of the above These five categories are not required to be signalled to the decoder because the classification is based on only reconstructed samples, which may be available and identical in both the encoder and decoder. After each sample in an edge offset type CTU is classified as one of the five categories, an offset value for each of the first four categories is determined and signalled to the decoder. The offset for each category is added to the sample values associated with the corresponding category. Edge offsets may be effective in correcting ringing artifacts. The SAO parameters may be signalled as interleaved in CTU data. Above CTU, slice header contains a syntax element specifying whether SAO is used in the slice. If SAO is used, then two additional syntax elements specify whether SAO is applied to Cb and Cr components. For each CTU, there are three options: 1) copying SAO parameters from the left CTU, 2) copying SAO parameters from the above CTU, or 3) signalling new SAO parameters. The adaptive loop filter (ALF) is another method to enhance quality of the reconstructed samples. This may be achieved by filtering the sample values in the loop. The encoder may determine which region of the pictures are to be filtered and the filter coefficients based on e.g. RDO and this information is signalled to the decoder. In typical video codecs the motion information is indicated with motion vectors associated with each motion compensated image block. Each of these motion vectors represents the displacement of the image block in the picture to be coded (in the encoder side) or decoded (in the decoder side) and the prediction source block in one of the previously coded or decoded pictures. In order to represent motion vectors efficiently those are typically coded differentially with respect to block specific predicted motion vectors. In typical video codecs the predicted motion vectors are created in a predefined way, for example calculating the median of the encoded or decoded motion vectors of the adjacent blocks. Another way to create motion vector predictions is to generate a list of candidate predictions from adjacent blocks and/or co-located blocks in temporal reference pictures and signalling the chosen candidate as the motion vector predictor. In addition to predicting the motion vector values, it can be predicted which reference picture(s) are used for motion-compensated prediction and this prediction information may be represented for example by a reference index of previously coded/decoded picture. The reference index is typically predicted from adjacent blocks and/or or co-located blocks in temporal reference picture. Moreover, typical high efficiency video codecs employ an additional motion information coding/decoding mechanism, often called merging/merge mode, where all the motion field information, which includes motion vector and corresponding reference picture index for each available reference picture list, is predicted and used without any modification/correction. Similarly, predicting the motion field information is carried out using the motion field information of adjacent blocks and/or co-located blocks in temporal reference pictures and the used motion field information is signalled among a list of motion field candidate list filled with motion field information of available adjacent/co-located blocks. Typical video codecs enable the use of uni-prediction, where a single prediction block is used for a block being (de)coded, and bi-prediction, where two prediction blocks are combined to form the prediction for a block being (de)coded. Some video codecs enable weighted prediction, where the sample values of the prediction blocks are weighted prior to adding residual information. For example, multiplicative weighting factor and an additive offset which can be applied. In explicit weighted prediction, enabled by some video codecs, a weighting factor and offset may be coded for example in the slice header for each allowable reference picture index. In implicit weighted prediction, enabled by some video codecs, the weighting factors and/or offsets are not coded but are derived e.g. based on the relative picture order count (POC) distances of the reference pictures. In typical video codecs the prediction residual after motion compensation is first transformed with a transform kernel (like DCT) and then coded. The reason for this is that often there still exists some correlation among the residual and transform can in many cases help reduce this correlation and provide more efficient coding. Typical video encoders utilize Lagrangian cost functions to find optimal coding modes, e.g. the desired Macroblock mode and associated motion vectors. This kind of cost function uses a weighting factor λ to tie together the (exact or estimated) image distortion due to lossy coding methods and the (exact or estimated) amount of information that is required to represent the pixel values in an image area: C=D+λR,(1) where C is the Lagrangian cost to be minimized, D is the image distortion (e.g. Mean Squared Error) with the mode and motion vectors considered, and R the number of bits needed to represent the required data to reconstruct the image block in the decoder (including the amount of data to represent the candidate motion vectors). Video coding standards and specifications may allow encoders to divide a coded picture to coded slices or alike. In-picture prediction is typically disabled across slice boundaries. Thus, slices can be regarded as a way to split a coded picture to independently decodable pieces. In H.264/AVC and HEVC, in-picture prediction may be disabled across slice boundaries. Thus, slices can be regarded as a way to split a coded picture into independently decodable pieces, and slices are therefore often regarded as elementary units for transmission. In many cases, encoders may indicate in the bitstream which types of in-picture prediction are turned off across slice boundaries, and the decoder operation takes this information into account for example when concluding which prediction sources are available. For example, samples from a neighboring macroblock or CU may be regarded as unavailable for intra prediction, if the neighboring macroblock or CU resides in a different slice. An elementary unit for the output of an H.264/AVC or HEVC encoder and the input of an H.264/AVC or HEVC decoder, respectively, is a Network Abstraction Layer (NAL) unit. For transport over packet-oriented networks or storage into structured files, NAL units may be encapsulated into packets or similar structures. A bytestream format has been specified in H.264/AVC and HEVC for transmission or storage environments that do not provide framing structures. The bytestream format separates NAL units from each other by attaching a start code in front of each NAL unit. To avoid false detection of NAL unit boundaries, encoders run a byte-oriented start code emulation prevention algorithm, which adds an emulation prevention byte to the NAL unit payload if a start code would have occurred otherwise. In order to enable straightforward gateway operation between packet- and stream-oriented systems, start code emulation prevention may always be performed regardless of whether the bytestream format is in use or not. A NAL unit may be defined as a syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes. A raw byte sequence payload (RBSP) may be defined as a syntax structure containing an integer number of bytes that is encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0. NAL units consist of a header and payload. In H.264/AVC and HEVC, the NAL unit header indicates the type of the NAL unit. In H.264/AVC, the NAL unit header indicates whether a coded slice contained in the NAL unit is a part of a reference picture or a non-reference picture. H.264/AVC NAL unit header includes a 2-bit nal_ref_idc syntax element, which when equal to 0 indicates that a coded slice contained in the NAL unit is a part of a non-reference picture and when greater than 0 indicates that a coded slice contained in the NAL unit is a part of a reference picture. The header for SVC and MVC NAL units may additionally contain various indications related to the scalability and multiview hierarchy. In HEVC, a two-byte NAL unit header is used for all specified NAL unit types. The NAL unit header contains one reserved bit, a six-bit NAL unit type indication, a three-bit nuh_temporal_id_plus1 indication for temporal level (may be required to be greater than or equal to 1) and a six-bit reserved field (called nuh_layer_id). The temporal_id_plus1 syntax element may be regarded as a temporal identifier for the NAL unit, and a zero-based TemporalId variable may be derived as follows: TemporalId=temporal_id_plus1−1. TemporalId equal to 0 corresponds to the lowest temporal level. The value of temporal_id_plus1 is required to be non-zero in order to avoid start code emulation involving the two NAL unit header bytes. The bitstream created by excluding all VCL NAL units having a TemporalId greater than or equal to a selected value and including all other VCL NAL units remains conforming. Consequently, a picture having TemporalId equal to TID does not use any picture having a TemporalId greater than TID as inter prediction reference. A sub-layer or a temporal sub-layer may be defined to be a temporal scalable layer of a temporal scalable bitstream, consisting of VCL NAL units with a particular value of the TemporalId variable and the associated non-VCL NAL units. The six-bit reserved field (nuh_layer_id) is expected to be used by extensions such as a future scalable and 3D video extension. It is expected that these six bits would carry information on the scalability hierarchy. Without loss of generality, in some example embodiments embodiments a variable LayerId is derived from the value of nuh_layer_id for example as follows: LayerId=nuh_layer_id. In the following, layer identifier, LayerId, nuh_layer_id and layer_id are used interchangeably unless otherwise indicated. NAL units can be categorized into Video Coding Layer (VCL) NAL units and non-VCL NAL units. VCL NAL units are typically coded slice NAL units. In H.264/AVC, coded slice NAL units contain syntax elements representing one or more coded macroblocks, each of which corresponds to a block of samples in the uncompressed picture. In HEVC, coded slice NAL units contain syntax elements representing one or more CU. In H.264/AVC, a coded slice NAL unit can be indicated to be a coded slice in an Instantaneous Decoding Refresh (IDR) picture or coded slice in a non-IDR picture. In HEVC, a coded slice NAL unit can be indicated to be one of the following types: In HEVC, abbreviations for picture types may be defined as follows: trailing (TRAIL) picture, Temporal Sub-layer Access (TSA), Step-wise Temporal Sub-layer Access (STSA), Random Access Decodable Leading (RADL) picture, Random Access Skipped Leading (RASL) picture, Broken Link Access (BLA) picture, Instantaneous Decoding Refresh (IDR) picture, Clean Random Access (CRA) picture. A Random Access Point (RAP) picture, which may also be referred to as an intra random access point (IRAP) picture, is a picture where each slice or slice segment has nal_unit_type in the range of 16 to 23, inclusive. A RAP picture contains only intra-coded slices, and may be a BLA picture, a CRA picture or an IDR picture. The first picture in the bitstream is a RAP picture. Provided the necessary parameter sets are available when they need to be activated, the RAP picture and all subsequent non-RASL pictures in decoding order can be correctly decoded without performing the decoding process of any pictures that precede the RAP picture in decoding order. There may be pictures in a bitstream that contain only intra-coded slices that are not RAP pictures. In HEVC a CRA picture may be the first picture in the bitstream in decoding order, or may appear later in the bitstream. CRA pictures in HEVC allow so-called leading pictures that follow the CRA picture in decoding order but precede it in output order. Some of the leading pictures, so-called RASL pictures, may use pictures decoded before the CRA picture as a reference. Pictures that follow a CRA picture in both decoding and output order are decodable if random access is performed at the CRA picture, and hence clean random access is achieved similarly to the clean random access functionality of an IDR picture. A CRA picture may have associated RADL or RASL pictures. When a CRA picture is the first picture in the bitstream in decoding order, the CRA picture is the first picture of a coded video sequence in decoding order, and any associated RASL pictures are not output by the decoder and may not be decodable, as they may contain references to pictures that are not present in the bitstream. A leading picture is a picture that precedes the associated RAP picture in output order. The associated RAP picture is the previous RAP picture in decoding order (if present). A leading picture is either a RADL picture or a RASL picture. All RASL pictures are leading pictures of an associated BLA or CRA picture. When the associated RAP picture is a BLA picture or is the first coded picture in the bitstream, the RASL picture is not output and may not be correctly decodable, as the RASL picture may contain references to pictures that are not present in the bitstream. However, a RASL picture can be correctly decoded if the decoding had started from a RAP picture before the associated RAP picture of the RASL picture. RASL pictures are not used as reference pictures for the decoding process of non-RASL pictures. When present, all RASL pictures precede, in decoding order, all trailing pictures of the same associated RAP picture. In some drafts of the HEVC standard, a RASL picture was referred to a Tagged for Discard (TFD) picture. All RADL pictures are leading pictures. RADL pictures are not used as reference pictures for the decoding process of trailing pictures of the same associated RAP picture. When present, all RADL pictures precede, in decoding order, all trailing pictures of the same associated RAP picture. RADL pictures do not refer to any picture preceding the associated RAP picture in decoding order and can therefore be correctly decoded when the decoding starts from the associated RAP picture. In some drafts of the HEVC standard, a RADL picture was referred to a Decodable Leading Picture (DLP). When a part of a bitstream starting from a CRA picture is included in another bitstream, the RASL pictures associated with the CRA picture might not be correctly decodable, because some of their reference pictures might not be present in the combined bitstream. To make such a splicing operation straightforward, the NAL unit type of the CRA picture can be changed to indicate that it is a BLA picture. The RASL pictures associated with a BLA picture may not be correctly decodable hence are not be output/displayed. Furthermore, the RASL pictures associated with a BLA picture may be omitted from decoding. A BLA picture may be the first picture in the bitstream in decoding order, or may appear later in the bitstream. Each BLA picture begins a new coded video sequence, and has similar effect on the decoding process as an IDR picture. However, a BLA picture contains syntax elements that specify a non-empty reference picture set. When a BLA picture has nal_unit_type equal to BLA_W_LP, it may have associated RASL pictures, which are not output by the decoder and may not be decodable, as they may contain references to pictures that are not present in the bitstream. When a BLA picture has nal_unit_type equal to BLA_W_LP, it may also have associated RADL pictures, which are specified to be decoded. When a BLA picture has nal_unit_type equal to BLA_W_DLP, it does not have associated RASL pictures but may have associated RADL pictures, which are specified to be decoded. When a BLA picture has nal_unit_type equal to BLA_N_LP, it does not have any associated leading pictures. An IDR picture having nal_unit_type equal to IDR_N_LP does not have associated leading pictures present in the bitstream. An IDR picture having nal_unit_type equal to IDR_W_LP does not have associated RASL pictures present in the bitstream, but may have associated RADL pictures in the bitstream. When the value of nal_unit_type is equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, RSV_VCL_N12, or RSV_VCL_N14, the decoded picture is not used as a reference for any other picture of the same temporal sub-layer. That is, in HEVC, when the value of nal_unit_type is equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, RSV_VCL_N12, or RSV_VCL_N14, the decoded picture is not included in any of RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr of any picture with the same value of TemporalId. A coded picture with nal_unit_type equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, RSV_VCL_N12, or RSV_VCL_N14may be discarded without affecting the decodability of other pictures with the same value of TemporalId. A trailing picture may be defined as a picture that follows the associated RAP picture in output order. Any picture that is a trailing picture does not have nal_unit_type equal to RADL_N, RADL_R, RASL_N or RASL_R. Any picture that is a leading picture may be constrained to precede, in decoding order, all trailing pictures that are associated with the same RAP picture. No RASL pictures are present in the bitstream that are associated with a BLA picture having nal_unit_type equal to BLA_W_DLP or BLA_N_LP. No RADL pictures are present in the bitstream that are associated with a BLA picture having nal_unit_type equal to BLA_N_LP or that are associated with an IDR picture having nal_unit_type equal to IDR_N_LP. Any RASL picture associated with a CRA or BLA picture may be constrained to precede any RADL picture associated with the CRA or BLA picture in output order. Any RASL picture associated with a CRA picture may be constrained to follow, in output order, any other RAP picture that precedes the CRA picture in decoding order. In HEVC there are two picture types, the TSA and STSA picture types that can be used to indicate temporal sub-layer switching points. If temporal sub-layers with TemporalId up to N had been decoded until the TSA or STSA picture (exclusive) and the TSA or STSA picture has TemporalId equal to N+1, the TSA or STSA picture enables decoding of all subsequent pictures (in decoding order) having TemporalId equal to N+1. The TSA picture type may impose restrictions on the TSA picture itself and all pictures in the same sub-layer that follow the TSA picture in decoding order. None of these pictures is allowed to use inter prediction from any picture in the same sub-layer that precedes the TSA picture in decoding order. The TSA definition may further impose restrictions on the pictures in higher sub-layers that follow the TSA picture in decoding order. None of these pictures is allowed to refer a picture that precedes the TSA picture in decoding order if that picture belongs to the same or higher sub-layer as the TSA picture. TSA pictures have TemporalId greater than 0. The STSA is similar to the TSA picture but does not impose restrictions on the pictures in higher sub-layers that follow the STSA picture in decoding order and hence enable up-switching only onto the sub-layer where the STSA picture resides. Parameters that remain unchanged through a coded video sequence may be included in a sequence parameter set. In addition to the parameters that may be needed by the decoding process, the sequence parameter set may optionally contain video usability information (VUI), which includes parameters that may be important for buffering, picture output timing, rendering, and resource reservation. There are three NAL units specified in H.264/AVC to carry sequence parameter sets: the sequence parameter set NAL unit containing all the data for H.264/AVC VCL NAL units in the sequence, the sequence parameter set extension NAL unit containing the data for auxiliary coded pictures, and the subset sequence parameter set for MVC and SVC VCL NAL units. In HEVC a sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs or one or more SEI NAL units containing a buffering period SEI message. A picture parameter set contains such parameters that are likely to be unchanged in several coded pictures. A picture parameter set RBSP may include parameters that can be referred to by the coded slice NAL units of one or more coded pictures. In a draft HEVC standard, there was also a third type of parameter sets, here referred to as an Adaptation Parameter Set (APS), which includes parameters that are likely to be unchanged in several coded slices but may change for example for each picture or each few pictures. In a draft HEVC, the APS syntax structure includes parameters or syntax elements related to quantization matrices (QM), adaptive sample offset (SAO), adaptive loop filtering (ALF), and deblocking filtering. In a draft HEVC, an APS is a NAL unit and coded without reference or prediction from any other NAL unit. An identifier, referred to as aps_id syntax element, is included in APS NAL unit, and included and used in the slice header to refer to a particular APS. In another draft HEVC standard, an APS syntax structure only contains ALF parameters. In a draft HEVC standard, an adaptation parameter set RBSP includes parameters that can be referred to by the coded slice NAL units of one or more coded pictures when at least one of sample_adaptive_offset_enabled_flag or adaptive_loop_filter_enabled_flag are equal to 1. In the final published HEVC, the APS syntax structure was removed from the specification text. In HEVC, a video parameter set (VPS) may be defined as a syntax structure containing syntax elements that apply to zero or more entire coded video sequences as determined by the content of a syntax element found in the SPS referred to by a syntax element found in the PPS referred to by a syntax element found in each slice segment header. A video parameter set RBSP may include parameters that can be referred to by one or more sequence parameter set RBSPs. VPS may provide information about the dependency relationships of the layers in a bitstream, as well as many other information that are applicable to all slices across all (scalability or view) layers in the entire coded video sequence. H.264/AVC and HEVC syntax allows many instances of parameter sets, and each instance is identified with a unique identifier. In order to limit the memory usage needed for parameter sets, the value range for parameter set identifiers has been limited. In H.264/AVC and HEVC, each slice header includes the identifier of the picture parameter set that is active for the decoding of the picture that contains the slice, and each picture parameter set contains the identifier of the active sequence parameter set. In a draft HEVC standard, a slice header additionally contains an APS identifier, although in the published HEVC standard the APS identifier was removed from the slice header. Consequently, the transmission of picture and sequence parameter sets does not have to be accurately synchronized with the transmission of slices. Instead, it is sufficient that the active sequence and picture parameter sets are received at any moment before they are referenced, which allows transmission of parameter sets “out-of-band” using a more reliable transmission mechanism compared to the protocols used for the slice data. For example, parameter sets can be included as a parameter in the session description for Real-time Transport Protocol (RTP) sessions. If parameter sets are transmitted in-band, they can be repeated to improve error robustness. A parameter set may be activated by a reference from a slice or from another active parameter set or in some cases from another syntax structure such as a buffering period SEI message. A SEI NAL unit may contain one or more SEI messages, which are not required for the decoding of output pictures but may assist in related processes, such as picture output timing, rendering, error detection, error concealment, and resource reservation. Several SEI messages are specified in H.264/AVC and HEVC, and the user data SEI messages enable organizations and companies to specify SEI messages for their own use. H.264/AVC and HEVC contain the syntax and semantics for the specified SEI messages but no process for handling the messages in the recipient is defined. Consequently, encoders are required to follow the H.264/AVC standard or the HEVC standard when they create SEI messages, and decoders conforming to the H.264/AVC standard or the HEVC standard, respectively, are not required to process SEI messages for output order conformance. One of the reasons to include the syntax and semantics of SEI messages in H.264/AVC and HEVC is to allow different system specifications to interpret the supplemental information identically and hence interoperate. It is intended that system specifications can require the use of particular SEI messages both in the encoding end and in the decoding end, and additionally the process for handling particular SEI messages in the recipient can be specified. Several nesting SEI messages have been specified in the AVC and HEVC standards or proposed otherwise. The idea of nesting SEI messages is to contain one or more SEI messages within a nesting SEI message and provide a mechanism for associating the contained SEI messages with a subset of the bitstream and/or a subset of decoded data. It may be required that a nesting SEI message contains one or more SEI messages that are not nesting SEI messages themselves. An SEI message contained in a nesting SEI message may be referred to as a nested SEI message. An SEI message not contained in a nesting SEI message may be referred to as a non-nested SEI message. The scalable nesting SEI message of HEVC enables to identify either a bitstream subset (resulting from a sub-bitstream extraction process) or a set of layers to which the nested SEI messages apply. A bitstream subset may also be referred to as a sub-bitstream. A coded picture is a coded representation of a picture. A coded picture in H.264/AVC comprises the VCL NAL units that are required for the decoding of the picture. In H.264/AVC, a coded picture can be a primary coded picture or a redundant coded picture. A primary coded picture is used in the decoding process of valid bitstreams, whereas a redundant coded picture is a redundant representation that should only be decoded when the primary coded picture cannot be successfully decoded. In HEVC, no redundant coded picture has been specified. In H.264/AVC, an access unit (AU) comprises a primary coded picture and those NAL units that are associated with it. In H.264/AVC, the appearance order of NAL units within an access unit is constrained as follows. An optional access unit delimiter NAL unit may indicate the start of an access unit. It is followed by zero or more SEI NAL units. The coded slices of the primary coded picture appear next. In H.264/AVC, the coded slice of the primary coded picture may be followed by coded slices for zero or more redundant coded pictures. A redundant coded picture is a coded representation of a picture or a part of a picture. A redundant coded picture may be decoded if the primary coded picture is not received by the decoder for example due to a loss in transmission or a corruption in physical storage medium. In H.264/AVC, an access unit may also include an auxiliary coded picture, which is a picture that supplements the primary coded picture and may be used for example in the display process. An auxiliary coded picture may for example be used as an alpha channel or alpha plane specifying the transparency level of the samples in the decoded pictures. An alpha channel or plane may be used in a layered composition or rendering system, where the output picture is formed by overlaying pictures being at least partly transparent on top of each other. An auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome redundant coded picture. In H.264/AVC, an auxiliary coded picture contains the same number of macroblocks as the primary coded picture. In HEVC, a coded picture may be defined as a coded representation of a picture containing all coding tree units of the picture. In HEVC, an access unit (AU) may be defined as a set of NAL units that are associated with each other according to a specified classification rule, are consecutive in decoding order, and contain one or more coded pictures with different values of nuh_layer_id. In addition to containing the VCL NAL units of the coded picture, an access unit may also contain non-VCL NAL units. In H.264/AVC, a coded video sequence is defined to be a sequence of consecutive access units in decoding order from an IDR access unit, inclusive, to the next IDR access unit, exclusive, or to the end of the bitstream, whichever appears earlier. In HEVC, a coded video sequence (CVS) may be defined, for example, as a sequence of access units that consists, in decoding order, of an IRAP access unit with NoRaslOutputFlag equal to 1, followed by zero or more access units that are not IRAP access units with NoRaslOutputFlag equal to 1, including all subsequent access units up to but not including any subsequent access unit that is an IRAP access unit with NoRaslOutputFlag equal to 1. An IRAP access unit may be an IDR access unit, a BLA access unit, or a CRA access unit. The value of NoRaslOutputFlag is equal to 1 for each IDR access unit, each BLA access unit, and each CRA access unit that is the first access unit in the bitstream in decoding order, is the first access unit that follows an end of sequence NAL unit in decoding order, or has HandleCraAsBlaFlag equal to 1. NoRaslOutputFlag equal to 1 has an impact that the RASL pictures associated with the IRAP picture for which the NoRaslOutputFlag is set are not output by the decoder. There may be means to provide the value of HandleCraAsBlaFlag to the decoder from an external entity, such as a player or a receiver, which may control the decoder. HandleCraAsBlaFlag may be set to 1 for example by a player that seeks to a new position in a bitstream or tunes into a broadcast and starts decoding and then starts decoding from a CRA picture. When HandleCraAsBlaFlag is equal to 1 for a CRA picture, the CRA picture is handled and decoded as if it were a BLA picture. A Structure of Pictures (SOP) may be defined as one or more coded pictures consecutive in decoding order, in which the first coded picture in decoding order is a reference picture at the lowest temporal sub-layer and no coded picture except potentially the first coded picture in decoding order is a RAP picture. All pictures in the previous SOP precede in decoding order all pictures in the current SOP and all pictures in the next SOP succeed in decoding order all pictures in the current SOP. A SOP may represent a hierarchical and repetitive inter prediction structure. The term group of pictures (GOP) may sometimes be used interchangeably with the term SOP and having the same semantics as the semantics of SOP. The bitstream syntax of H.264/AVC and HEVC indicates whether a particular picture is a reference picture for inter prediction of any other picture. Pictures of any coding type (I, P, B) can be reference pictures or non-reference pictures in H.264/AVC and HEVC. H.264/AVC specifies the process for decoded reference picture marking in order to control the memory consumption in the decoder. The maximum number of reference pictures used for inter prediction, referred to as M, is determined in the sequence parameter set. When a reference picture is decoded, it is marked as “used for reference”. If the decoding of the reference picture caused more than M pictures marked as “used for reference”, at least one picture is marked as “unused for reference”. There are two types of operation for decoded reference picture marking: adaptive memory control and sliding window. The operation mode for decoded reference picture marking is selected on picture basis. The adaptive memory control enables explicit signaling which pictures are marked as “unused for reference” and may also assign long-term indices to short-term reference pictures. The adaptive memory control may require the presence of memory management control operation (MMCO) parameters in the bitstream. MMCO parameters may be included in a decoded reference picture marking syntax structure. If the sliding window operation mode is in use and there are M pictures marked as “used for reference”, the short-term reference picture that was the first decoded picture among those short-term reference pictures that are marked as “used for reference” is marked as “unused for reference”. In other words, the sliding window operation mode results into first-in-first-out buffering operation among short-term reference pictures. One of the memory management control operations in H.264/AVC causes all reference pictures except for the current picture to be marked as “unused for reference”. An instantaneous decoding refresh (IDR) picture contains only intra-coded slices and causes a similar “reset” of reference pictures. In HEVC, reference picture marking syntax structures and related decoding processes are not used, but instead a reference picture set (RPS) syntax structure and decoding process are used instead for a similar purpose. A reference picture set valid or active for a picture includes all the reference pictures used as reference for the picture and all the reference pictures that are kept marked as “used for reference” for any subsequent pictures in decoding order. There are six subsets of the reference picture set, which are referred to as namely RefPicSetStCurr0(a.k.a. RefPicSetStCurrBefore), RefPicSetStCurr1(a.k.a. RefPicSetStCurrAfter), RefPicSetStFoll0, RefPicSetStFoll1, RefPicSetLtCurr, and RefPicSetLtFoll. RefPicSetStFoll0and RefPicSetStFoll1may also be considered to form jointly one subset RefPicSetStFoll. The notation of the six subsets is as follows. “Curr” refers to reference pictures that are included in the reference picture lists of the current picture and hence may be used as inter prediction reference for the current picture. “Foll” refers to reference pictures that are not included in the reference picture lists of the current picture but may be used in subsequent pictures in decoding order as reference pictures. “St” refers to short-term reference pictures, which may generally be identified through a certain number of least significant bits of their POC value. “Lt” refers to long-term reference pictures, which are specifically identified and generally have a greater difference of POC values relative to the current picture than what can be represented by the mentioned certain number of least significant bits. “0” refers to those reference pictures that have a smaller POC value than that of the current picture. “1” refers to those reference pictures that have a greater POC value than that of the current picture. RefPicSetStCurr0, RefPicSetStCurr1, RefPicSetStFoll0and RefPicSetStFoll1are collectively referred to as the short-term subset of the reference picture set. RefPicSetLtCurr and RefPicSetLtFoll are collectively referred to as the long-term subset of the reference picture set. In HEVC, a reference picture set may be specified in a sequence parameter set and taken into use in the slice header through an index to the reference picture set. A reference picture set may also be specified in a slice header. A long-term subset of a reference picture set is generally specified only in a slice header, while the short-term subsets of the same reference picture set may be specified in the picture parameter set or slice header. A reference picture set may be coded independently or may be predicted from another reference picture set (known as inter-RPS prediction). When a reference picture set is independently coded, the syntax structure includes up to three loops iterating over different types of reference pictures; short-term reference pictures with lower POC value than the current picture, short-term reference pictures with higher POC value than the current picture and long-term reference pictures. Each loop entry specifies a picture to be marked as “used for reference”. In general, the picture is specified with a differential POC value. The inter-RPS prediction exploits the fact that the reference picture set of the current picture can be predicted from the reference picture set of a previously decoded picture. This is because all the reference pictures of the current picture are either reference pictures of the previous picture or the previously decoded picture itself. It is only necessary to indicate which of these pictures should be reference pictures and be used for the prediction of the current picture. In both types of reference picture set coding, a flag (used_by_curr_pic_X_flag) is additionally sent for each reference picture indicating whether the reference picture is used for reference by the current picture (included in a *Curr list) or not (included in a *Foll list). Pictures that are included in the reference picture set used by the current slice are marked as “used for reference”, and pictures that are not in the reference picture set used by the current slice are marked as “unused for reference”. If the current picture is an IDR picture, RefPicSetStCurr0, RefPicSetStCurr1, RefPicSetStFoll0, RefPicSetStFoll1, RefPicSetLtCurr, and RefPicSetLtFoll are all set to empty. A Decoded Picture Buffer (DPB) may be used in the encoder and/or in the decoder. There are two reasons to buffer decoded pictures, for references in inter prediction and for reordering decoded pictures into output order. As H.264/AVC and HEVC provide a great deal of flexibility for both reference picture marking and output reordering, separate buffers for reference picture buffering and output picture buffering may waste memory resources. Hence, the DPB may include a unified decoded picture buffering process for reference pictures and output reordering. A decoded picture may be removed from the DPB when it is no longer used as a reference and is not needed for output. In many coding modes of H.264/AVC and HEVC, the reference picture for inter prediction is indicated with an index to a reference picture list. The index may be coded with variable length coding, which usually causes a smaller index to have a shorter value for the corresponding syntax element. In H.264/AVC and HEVC, two reference picture lists (reference picture list 0 and reference picture list 1) are generated for each bi-predictive (B) slice, and one reference picture list (reference picture list 0) is formed for each inter-coded (P) slice. A reference picture list, such as reference picture list 0 and reference picture list 1, is typically constructed in two steps: First, an initial reference picture list is generated. The initial reference picture list may be generated for example on the basis of frame_num, POC, temporal_id (or TemporalId or alike), or information on the prediction hierarchy such as GOP structure, or any combination thereof. Second, the initial reference picture list may be reordered by reference picture list reordering (RPLR) commands, also known as reference picture list modification syntax structure, which may be contained in slice headers. In H.264/AVC, the RPLR commands indicate the pictures that are ordered to the beginning of the respective reference picture list. This second step may also be referred to as the reference picture list modification process, and the RPLR commands may be included in a reference picture list modification syntax structure. If reference picture sets are used, the reference picture list 0 may be initialized to contain RefPicSetStCurr0first, followed by RefPicSetStCurr1, followed by RefPicSetLtCurr. Reference picture list 1 may be initialized to contain RefPicSetStCurr1first, followed by RefPicSetStCurr0. In HEVC, the initial reference picture lists may be modified through the reference picture list modification syntax structure, where pictures in the initial reference picture lists may be identified through an entry index to the list. In other words, in HEVC, reference picture list modification is encoded into a syntax structure comprising a loop over each entry in the final reference picture list, where each loop entry is a fixed-length coded index to the initial reference picture list and indicates the picture in ascending position order in the final reference picture list. Many coding standards, including H.264/AVC and HEVC, may have decoding process to derive a reference picture index to a reference picture list, which may be used to indicate which one of the multiple reference pictures is used for inter prediction for a particular block. A reference picture index may be coded by an encoder into the bitstream is some inter coding modes or it may be derived (by an encoder and a decoder) for example using neighboring blocks in some other inter coding modes. In order to represent motion vectors efficiently in bitstreams, motion vectors may be coded differentially with respect to a block-specific predicted motion vector. In many video codecs, the predicted motion vectors are created in a predefined way, for example by calculating the median of the encoded or decoded motion vectors of the adjacent blocks. Another way to create motion vector predictions, sometimes referred to as advanced motion vector prediction (AMVP), is to generate a list of candidate predictions from adjacent blocks and/or co-located blocks in temporal reference pictures and signalling the chosen candidate as the motion vector predictor. In addition to predicting the motion vector values, the reference index of previously coded/decoded picture can be predicted. The reference index is typically predicted from adjacent blocks and/or co-located blocks in temporal reference picture. Differential coding of motion vectors is typically disabled across slice boundaries. The advanced motion vector prediction (AMVP) or alike may operate for example as follows, while other similar realizations of advanced motion vector prediction are also possible for example with different candidate position sets and candidate locations with candidate position sets. Two spatial motion vector predictors (MVPs) may be derived and a temporal motion vector predictor (TMVP) may be derived. They may be selected among the positions shown inFIG. 6: three spatial motion vector predictor candidate positions603,604,605located above the current prediction block600(B0, B1, B2) and two601,602on the left (A0, A1). The first motion vector predictor that is available (e.g. resides in the same slice, is inter-coded, etc.) in a pre-defined order of each candidate position set, (B0, B1, B2) or (A0, A1), may be selected to represent that prediction direction (up or left) in the motion vector competition. A reference index for the temporal motion vector predictor may be indicated by the encoder in the slice header (e.g. as a collocated_ref_idx syntax element). The motion vector obtained from the co-located picture may be scaled according to the proportions of the picture order count differences of the reference picture of the temporal motion vector predictor, the co-located picture, and the current picture. Moreover, a redundancy check may be performed among the candidates to remove identical candidates, which can lead to the inclusion of a zero motion vector in the candidate list. The motion vector predictor may be indicated in the bitstream for example by indicating the direction of the spatial motion vector predictor (up or left) or the selection of the temporal motion vector predictor candidate. Many high efficiency video codecs such as HEVC codec employ an additional motion information coding/decoding mechanism, often called merging/merge mode/process/mechanism, where all the motion information of a block/PU is predicted and used without any modification/correction. The aforementioned motion information for a PU may comprise one or more of the following: 1) The information whether ‘the PU is uni-predicted using only reference picture list0’ or ‘the PU is uni-predicted using only reference picture list1’ or ‘the PU is bi-predicted using both reference picture list0 and list1’; 2) Motion vector value corresponding to the reference picture list0, which may comprise a horizontal and vertical motion vector component; 3) Reference picture index in the reference picture list0 and/or an identifier of a reference picture pointed to by the motion vector corresponding to reference picture list0, where the identifier of a reference picture may be for example a picture order count value, a layer identifier value (for inter-layer prediction), or a pair of a picture order count value and a layer identifier value; 4) Information of the reference picture marking of the reference picture, e.g. information whether the reference picture was marked as “used for short-term reference” or “used for long-term reference”; 5)-7) The same as 2)-4), respectively, but for reference picture list1. Similarly, predicting the motion information is carried out using the motion information of adjacent blocks and/or co-located blocks in temporal reference pictures. A list, often called as a merge list, may be constructed by including motion prediction candidates associated with available adjacent/co-located blocks and the index of selected motion prediction candidate in the list is signalled and the motion information of the selected candidate is copied to the motion information of the current PU. When the merge mechanism is employed for a whole CU and the prediction signal for the CU is used as the reconstruction signal, i.e. prediction residual is not processed, this type of coding/decoding the CU is typically named as skip mode or merge based skip mode. In addition to the skip mode, the merge mechanism may also be employed for individual PUs (not necessarily the whole CU as in skip mode) and in this case, prediction residual may be utilized to improve prediction quality. This type of prediction mode is typically named as an inter-merge mode. One of the candidates in the merge list may be a TMVP candidate, which may be derived from the collocated block within an indicated or inferred reference picture, such as the reference picture indicated for example in the slice header for example using the collocated_ref_idx syntax element or alike In HEVC the so-called target reference index for temporal motion vector prediction in the merge list is set as 0 when the motion coding mode is the merge mode. When the motion coding mode in HEVC utilizing the temporal motion vector prediction is the advanced motion vector prediction mode, the target reference index values are explicitly indicated (e.g. per each PU). When the target reference index value has been determined, the motion vector value of the temporal motion vector prediction may be derived as follows: Motion vector at the block that is co-located with the bottom-right neighbor of the current prediction unit is calculated. The picture where the co-located block resides may be e.g. determined according to the signalled reference index in the slice header as described above. The determined motion vector at the co-located block is scaled with respect to the ratio of a first picture order count difference and a second picture order count difference. The first picture order count difference is derived between the picture containing the co-located block and the reference picture of the motion vector of the co-located block. The second picture order count difference is derived between the current picture and the target reference picture. If one but not both of the target reference picture and the reference picture of the motion vector of the co-located block is a long-term reference picture (while the other is a short-term reference picture), the TMVP candidate may be considered unavailable. If both of the target reference picture and the reference picture of the motion vector of the co-located block are long-term reference pictures, no POC-based motion vector scaling may be applied. Scalable video coding may refer to coding structure where one bitstream can contain multiple representations of the content, for example, at different bitrates, resolutions or frame rates. In these cases the receiver can extract the desired representation depending on its characteristics (e.g. resolution that matches best the display device). Alternatively, a server or a network element can extract the portions of the bitstream to be transmitted to the receiver depending on e.g. the network characteristics or processing capabilities of the receiver. A scalable bitstream typically consists of a “base layer” providing the lowest quality video available and one or more enhancement layers that enhance the video quality when received and decoded together with the lower layers. In order to improve coding efficiency for the enhancement layers, the coded representation of that layer typically depends on the lower layers. E.g. the motion and mode information of the enhancement layer can be predicted from lower layers. Similarly the pixel data of the lower layers can be used to create prediction for the enhancement layer. In some scalable video coding schemes, a video signal can be encoded into a base layer and one or more enhancement layers. An enhancement layer may enhance, for example, the temporal resolution (i.e., the frame rate), the spatial resolution, or simply the quality of the video content represented by another layer or part thereof. Each layer together with all its dependent layers is one representation of the video signal, for example, at a certain spatial resolution, temporal resolution and quality level. In this document, we refer to a scalable layer together with all of its dependent layers as a “scalable layer representation”. The portion of a scalable bitstream corresponding to a scalable layer representation can be extracted and decoded to produce a representation of the original signal at certain fidelity. Scalability modes or scalability dimensions may include but are not limited to the following:Quality scalability: Base layer pictures are coded at a lower quality than enhancement layer pictures, which may be achieved for example using a greater quantization parameter value (i.e., a greater quantization step size for transform coefficient quantization) in the base layer than in the enhancement layer. Quality scalability may be further categorized into fine-grain or fine-granularity scalability (FGS), medium-grain or medium-granularity scalability (MGS), and/or coarse-grain or coarse-granularity scalability (CGS), as described below.Spatial scalability: Base layer pictures are coded at a lower resolution (i.e. have fewer samples) than enhancement layer pictures. Spatial scalability and quality scalability, particularly its coarse-grain scalability type, may sometimes be considered the same type of scalability.Bit-depth scalability: Base layer pictures are coded at lower bit-depth (e.g. 8 bits) than enhancement layer pictures (e.g. 10 or 12 bits).Chroma format scalability: Base layer pictures provide lower spatial resolution in chroma sample arrays (e.g. coded in 4:2:0 chroma format) than enhancement layer pictures (e.g. 4:4:4 format).Color gamut scalability: enhancement layer pictures have a richer/broader color representation range than that of the base layer pictures—for example the enhancement layer may have UHDTV (ITU-R BT.2020) color gamut and the base layer may have the ITU-R BT.709 color gamut.View scalability, which may also be referred to as multiview coding. The base layer represents a first view, whereas an enhancement layer represents a second view.Depth scalability, which may also be referred to as depth-enhanced coding. A layer or some layers of a bitstream may represent texture view(s), while other layer or layers may represent depth view(s).Region-of-interest scalability (as described below).Interlaced-to-progressive scalability (also known as field-to-frame scalability): coded interlaced source content material of the base layer is enhanced with an enhancement layer to represent progressive source content. The coded interlaced source content in the base layer may comprise coded fields, coded frames representing field pairs, or a mixture of them. In the interlace-to-progressive scalability, the base-layer picture may be resampled so that it becomes a suitable reference picture for one or more enhancement-layer pictures.Hybrid codec scalability (also known as coding standard scalability): In hybrid codec scalability, the bitstream syntax, semantics and decoding process of the base layer and the enhancement layer are specified in different video coding standards. Thus, base layer pictures are coded according to a different coding standard or format than enhancement layer pictures. For example, the base layer may be coded with H.264/AVC and an enhancement layer may be coded with an HEVC extension. It should be understood that many of the scalability types may be combined and applied together. For example color gamut scalability and bit-depth scalability may be combined. The term layer may be used in context of any type of scalability, including view scalability and depth enhancements. An enhancement layer may refer to any type of an enhancement, such as SNR, spatial, multiview, depth, bit-depth, chroma format, and/or color gamut enhancement. A base layer may refer to any type of a base video sequence, such as a base view, a base layer for SNR/spatial scalability, or a texture base view for depth-enhanced video coding. Various technologies for providing three-dimensional (3D) video content are currently investigated and developed. It may be considered that in stereoscopic or two-view video, one video sequence or view is presented for the left eye while a parallel view is presented for the right eye. More than two parallel views may be needed for applications which enable viewpoint switching or for autostereoscopic displays which may present a large number of views simultaneously and let the viewers to observe the content from different viewpoints. Intense studies have been focused on video coding for autostereoscopic displays and such multiview applications wherein a viewer is able to see only one pair of stereo video from a specific viewpoint and another pair of stereo video from a different viewpoint. One of the most feasible approaches for such multiview applications has turned out to be such wherein only a limited number of views, e.g. a mono or a stereo video plus some supplementary data, is provided to a decoder side and all required views are then rendered (i.e. synthesized) locally be the decoder to be displayed on a display. A view may be defined as a sequence of pictures representing one camera or viewpoint. The pictures representing a view may also be called view components. In other words, a view component may be defined as a coded representation of a view in a single access unit. In multiview video coding, more than one view is coded in a bitstream. Since views are typically intended to be displayed on stereoscopic or multiview autostrereoscopic display or to be used for other 3D arrangements, they typically represent the same scene and are content-wise partly overlapping although representing different viewpoints to the content. Hence, inter-view prediction may be utilized in multiview video coding to take advantage of inter-view correlation and improve compression efficiency. One way to realize inter-view prediction is to include one or more decoded pictures of one or more other views in the reference picture list(s) of a picture being coded or decoded residing within a first view. View scalability may refer to such multiview video coding or multiview video bitstreams, which enable removal or omission of one or more coded views, while the resulting bitstream remains conforming and represents video with a smaller number of views than originally. Region of Interest (ROI) coding may be defined to refer to coding a particular region within a video at a higher fidelity. There exists several methods for encoders and/or other entities to determine ROIs from input pictures to be encoded. For example, face detection may be used and faces may be determined to be ROIs. Additionally or alternatively, in another example, objects that are in focus may be detected and determined to be ROIs, while objects out of focus are determined to be outside ROIs. Additionally or alternatively, in another example, the distance to objects may be estimated or known, e.g. on the basis of a depth sensor, and ROIs may be determined to be those objects that are relatively close to the camera rather than in the background. ROI scalability may be defined as a type of scalability wherein an enhancement layer enhances only part of a reference-layer picture e.g. spatially, quality-wise, in bit-depth, and/or along other scalability dimensions. As ROI scalability may be used together with other types of scalabilities, it may be considered to form a different categorization of scalability types. There exists several different applications for ROI coding with different requirements, which may be realized by using ROI scalability. For example, an enhancement layer can be transmitted to enhance the quality and/or a resolution of a region in the base layer. A decoder receiving both enhancement and base layer bitstream might decode both layers and overlay the decoded pictures on top of each other and display the final picture. The spatial correspondence between the enhancement layer picture and the reference layer region, or similarly the enhancement layer region and the base layer picture may be indicated by the encoder and/or decoded by the decoder using for example so-called scaled reference layer offsets. Scaled reference layer offsets may be considered to specify the positions of the corner samples of the upsampled reference layer picture relative to the respective corner samples of the enhancement layer picture. The offset values may be signed, which enables the use of the offset values to be used in both types of extended spatial scalability, as illustrated inFIG. 19aandFIG. 19b. In case of region-of-interest scalability (FIG. 19a), the enhancement layer picture110corresponds to a region112of the reference layer picture116and the scaled reference layer offsets indicate the corners of the upsampled reference layer picture that extend the area of the enhance layer picture. Scaled reference layer offsets may be indicated by four syntax elements (e.g. per a pair of an enhancement layer and its reference layer), which may be referred to as scaled_ref_layer_top_offset118, scaled_ref_layer_bottom_offset120, scaled_ref_layer_right_offset122and scaled_ref_layer_left_offset124. The reference layer region that is upsampled may be concluded by the encoder and/or the decoder by downscaling the scaled reference layer offsets according to the ratio between the enhancement layer picture height or width and the upsampled reference layer picture height or width, respectively. The downscaled scaled reference layer offset may be then be used to obtain the reference layer region that is upsampled and/or to determine which samples of the reference layer picture collocate to certain samples of the enhancement layer picture. In case the reference layer picture corresponds to a region of the enhancement layer picture (FIG. 19b), the scaled reference layer offsets indicate the corners of the upsampled reference layer picture that are within the area of the enhance layer picture. The scaled reference layer offset may be used to determine which samples of the upsampled reference layer picture collocate to certain samples of the enhancement layer picture. It is also possible to mix the types of extended spatial scalability, i.e apply one type horizontally and another type vertically. Scaled reference layer offsets may be indicated by the encoder in and/or decoded by the decoder from for example a sequence-level syntax structure, such as SPS and/or VPS. The accuracy of scaled reference offsets may be pre-defined for example in a coding standard and/or specified by the encoder and/or decoded by the decoder from the bitstream. For example, an accuracy of 1/16th of the luma sample size in the enhancement layer may be used. Scaled reference layer offsets may be indicated, decoded, and/or used in the encoding, decoding and/or displaying process when no inter-layer prediction takes place between two layers. Some coding standards allow creation of scalable bit streams. A meaningful decoded representation can be produced by decoding only certain parts of a scalable bit stream. Scalable bit streams can be used for example for rate adaptation of pre-encoded unicast streams in a streaming server and for transmission of a single bit stream to terminals having different capabilities and/or with different network conditions. A list of some other use cases for scalable video coding can be found in the ISO/IEC JTC1 SC29 WG11 (MPEG) output document N5540, “Applications and Requirements for Scalable Video Coding”, the 64thMPEG meeting, Mar. 10 to 14, 2003, Pattaya, Thailand. A coding standard may include a sub-bitstream extraction process, and such is specified for example in SVC, MVC, and HEVC. The sub-bitstream extraction process relates to converting a bitstream, typically by removing NAL units, to a sub-bitstream, which may also be referred to as a bitstream subset. The sub-bitstream still remains conforming to the standard. For example, in HEVC, the bitstream created by excluding all VCL NAL units having a TemporalId value greater than a selected value and including all other VCL NAL units remains conforming. In HEVC, the sub-bitstream extraction process takes a TemporalId and/or a list of nuh_layer_id values as input and derives a sub-bitstream (also known as a bitstream subset) by removing from the bitstream all NAL units with TemporalId greater than the input TemporalId value or nuh_layer_id value not among the values in the input list of nuh_layer_id values. A coding standard or system may refer to a term operation point or alike, which may indicate the scalable layers and/or sub-layers under which the decoding operates and/or may be associated with a sub-bitstream that includes the scalable layers and/or sub-layers being decoded. Some non-limiting definitions of an operation point are provided in the following. In HEVC, an operation point is defined as bitstream created from another bitstream by operation of the sub-bitstream extraction process with the another bitstream, a target highest TemporalId, and a target layer identifier list as inputs. The VPS of HEVC specifies layer sets and HRD parameters for these layer sets. A layer set may be used as the target layer identifier list in the sub-bitstream extraction process. In SHVC and MV-HEVC, an operation point definition may include a consideration a target output layer set. In SHVC and MV-HEVC, an operation point may be defined as A bitstream that is created from another bitstream by operation of the sub-bitstream extraction process with the another bitstream, a target highest TemporalId, and a target layer identifier list as inputs, and that is associated with a set of target output layers. An output layer set may be defined as a set of layers consisting of the layers of one of the specified layer sets, where one or more layers in the set of layers are indicated to be output layers. An output layer may be defined as a layer of an output layer set that is output when the decoder and/or the HRD operates using the output layer set as the target output layer set. In MV-HEVC/SHVC, the variable TargetOptLayerSetIdx may specify which output layer set is the target output layer set by setting TargetOptLayerSetIdx equal to the index of the output layer set that is the target output layer set. TargetOptLayerSetIdx may be set for example by the HRD and/or may be set by external means, for example by a player or alike through an interface provided by the decoder. In MV-HEVC/SHVC, a target output layer may be defined as a layer that is to be output and is one of the output layers of the output layer set with index olsIdx such that TargetOptLayerSetIdx is equal to olsIdx. In MV-HEVC/SHVC, a profile_tier_level( ) syntax structure is associated for each output layer set. To be more exact, a list of profile_tier_level( ) syntax structures is provided in the VPS extension, and an index to the applicable profile_tier_level( ) within the list is given for each output layer set. In other words, a combination of profile, tier, and level values is indicated for each output layer set. While a constant set of output layers suits well use cases and bitstreams where the highest layer stays unchanged in each access unit, they may not support use cases where the highest layer changes from one access unit to another. It has therefore been proposed that encoders can specify the use of alternative output layers within the bitstream and in response to the specified use of alternative output layers decoders output a decoded picture from an alternative output layer in the absence of a picture in an output layer within the same access unit. Several possibilities exist how to indicate alternative output layers. For example, each output layer in an output layer set may be associated with a minimum alternative output layer, and output-layer-wise syntax element(s) may be used for specifying alternative output layer(s) for each output layer. Alternatively, the alternative output layer set mechanism may be constrained to be used only for output layer sets containing only one output layer, and output-layer-set-wise syntax element(s) may be used for specifying alternative output layer(s) for the output layer of the output layer set. Alternatively, the alternative output layer set mechanism may be constrained to be used only for bitstreams or CVSs in which all specified output layer sets contain only one output layer, and the alternative output layer(s) may be indicated by bitstream- or CVS-wise syntax element(s). The alternative output layer(s) may be for example specified by listing e.g. within VPS the alternative output layers (e.g. using their layer identifiers or indexes of the list of direct or indirect reference layers), indicating a minimum alternative output layer (e.g. using its layer identifier or its index within the list of direct or indirect reference layers), or a flag specifying that any direct or indirect reference layer is an alternative output layer. When more than one alternative output layer is enabled to be used, it may be specified that the first direct or indirect inter-layer reference picture present in the access unit in descending layer identifier order down to the indicated minimum alternative output layer is output. In MVC, an operation point may be defined as follows: An operation point is identified by a temporal_id value representing the target temporal level and a set of view_id values representing the target output views. One operation point is associated with a bitstream subset, which consists of the target output views and all other views the target output views depend on, that is derived using the sub-bitstream extraction process with tIdTarget equal to the temporal_id value and viewIdTargetList consisting of the set of view_id values as inputs. More than one operation point may be associated with the same bitstream subset. When “an operation point is decoded”, a bitstream subset corresponding to the operation point may be decoded and subsequently the target output views may be output. As indicated earlier, MVC is an extension of H.264/AVC. Many of the definitions, concepts, syntax structures, semantics, and decoding processes of H.264/AVC apply also to MVC as such or with certain generalizations or constraints. Some definitions, concepts, syntax structures, semantics, and decoding processes of MVC are described in the following. An access unit in MVC is defined to be a set of NAL units that are consecutive in decoding order and contain exactly one primary coded picture consisting of one or more view components. In addition to the primary coded picture, an access unit may also contain one or more redundant coded pictures, one auxiliary coded picture, or other NAL units not containing slices or slice data partitions of a coded picture. The decoding of an access unit results in one decoded picture consisting of one or more decoded view components, when decoding errors, bitstream errors or other errors which may affect the decoding do not occur. In other words, an access unit in MVC contains the view components of the views for one output time instance. A view component may be referred to as a coded representation of a view in a single access unit. Inter-view prediction may be used in MVC and may refer to prediction of a view component from decoded samples of different view components of the same access unit. In MVC, inter-view prediction is realized similarly to inter prediction. For example, inter-view reference pictures are placed in the same reference picture list(s) as reference pictures for inter prediction, and a reference index as well as a motion vector are coded or inferred similarly for inter-view and inter reference pictures. An anchor picture is a coded picture in which all slices may reference only slices within the same access unit, i.e., inter-view prediction may be used, but no inter prediction is used, and all following coded pictures in output order do not use inter prediction from any picture prior to the coded picture in decoding order. Inter-view prediction may be used for IDR view components that are part of a non-base view. A base view in MVC is a view that has the minimum value of view order index in a coded video sequence. The base view can be decoded independently of other views and does not use inter-view prediction. The base view can be decoded by H.264/AVC decoders supporting only the single-view profiles, such as the Baseline Profile or the High Profile of H.264/AVC. In the MVC standard, many of the sub-processes of the MVC decoding process use the respective sub-processes of the H.264/AVC standard by replacing term “picture”, “frame”, and “field” in the sub-process specification of the H.264/AVC standard by “view component”, “frame view component”, and “field view component”, respectively. Likewise, terms “picture”, “frame”, and “field” are often used in the following to mean “view component”, “frame view component”, and “field view component”, respectively. In the context of multiview video coding, view order index may be defined as an index that indicates the decoding or bitstream order of view components in an access unit. In MVC, the inter-view dependency relationships are indicated in a sequence parameter set MVC extension, which is included in a sequence parameter set. According to the MVC standard, all sequence parameter set MVC extensions that are referred to by a coded video sequence are required to be identical. A texture view refers to a view that represents ordinary video content, for example has been captured using an ordinary camera, and is usually suitable for rendering on a display. A texture view typically comprises pictures having three components, one luma component and two chroma components. In the following, a texture picture typically comprises all its component pictures or color components unless otherwise indicated for example with terms luma texture picture and chroma texture picture. A depth view refers to a view that represents distance information of a texture sample from the camera sensor, disparity or parallax information between a texture sample and a respective texture sample in another view, or similar information. A depth view may comprise depth pictures (a.k.a. depth maps) having one component, similar to the luma component of texture views. A depth map is an image with per-pixel depth information or similar. For example, each sample in a depth map represents the distance of the respective texture sample or samples from the plane on which the camera lies. In other words, if the z axis is along the shooting axis of the cameras (and hence orthogonal to the plane on which the cameras lie), a sample in a depth map represents the value on the z axis. The semantics of depth map values may for example include the following:1. Each luma sample value in a coded depth view component represents an inverse of real-world distance (Z) value, i.e. 1/Z, normalized in the dynamic range of the luma samples, such as to the range of 0 to 255, inclusive, for 8-bit luma representation. The normalization may be done in a manner where the quantization 1/Z is uniform in terms of disparity.2. Each luma sample value in a coded depth view component represents an inverse of real-world distance (Z) value, i.e. 1/Z, which is mapped to the dynamic range of the luma samples, such as to the range of 0 to 255, inclusive, for 8-bit luma representation, using a mapping function f(1/Z) or table, such as a piece-wise linear mapping. In other words, depth map values result in applying the function f(1/Z).3. Each luma sample value in a coded depth view component represents a real-world distance (Z) value normalized in the dynamic range of the luma samples, such as to the range of 0 to 255, inclusive, for 8-bit luma representation.4. Each luma sample value in a coded depth view component represents a disparity or parallax value from the present depth view to another indicated or derived depth view or view position. The semantics of depth map values may be indicated in the bitstream for example within a video parameter set syntax structure, a sequence parameter set syntax structure, a video usability information syntax structure, a picture parameter set syntax structure, a camera/depth/adaptation parameter set syntax structure, a supplemental enhancement information message, or anything alike. Depth-enhanced video refers to texture video having one or more views associated with depth video having one or more depth views. A number of approaches may be used for representing of depth-enhanced video, including the use of video plus depth (V+D), multiview video plus depth (MVD), and layered depth video (LDV). In the video plus depth (V+D) representation, a single view of texture and the respective view of depth are represented as sequences of texture picture and depth pictures, respectively. The MVD representation contains a number of texture views and respective depth views. In the LDV representation, the texture and depth of the central view are represented conventionally, while the texture and depth of the other views are partially represented and cover only the dis-occluded areas required for correct view synthesis of intermediate views. A texture view component may be defined as a coded representation of the texture of a view in a single access unit. A texture view component in depth-enhanced video bitstream may be coded in a manner that is compatible with a single-view texture bitstream or a multi-view texture bitstream so that a single-view or multi-view decoder can decode the texture views even if it has no capability to decode depth views. For example, an H.264/AVC decoder may decode a single texture view from a depth-enhanced H.264/AVC bitstream. A texture view component may alternatively be coded in a manner that a decoder capable of single-view or multi-view texture decoding, such H.264/AVC or MVC decoder, is not able to decode the texture view component for example because it uses depth-based coding tools. A depth view component may be defined as a coded representation of the depth of a view in a single access unit. A view component pair may be defined as a texture view component and a depth view component of the same view within the same access unit. Depth-enhanced video may be coded in a manner where texture and depth are coded independently of each other. For example, texture views may be coded as one MVC bitstream and depth views may be coded as another MVC bitstream. Depth-enhanced video may also be coded in a manner where texture and depth are jointly coded. In a form of a joint coding of texture and depth views, some decoded samples of a texture picture or data elements for decoding of a texture picture are predicted or derived from some decoded samples of a depth picture or data elements obtained in the decoding process of a depth picture. Alternatively or in addition, some decoded samples of a depth picture or data elements for decoding of a depth picture are predicted or derived from some decoded samples of a texture picture or data elements obtained in the decoding process of a texture picture. In another option, coded video data of texture and coded video data of depth are not predicted from each other or one is not coded/decoded on the basis of the other one, but coded texture and depth view may be multiplexed into the same bitstream in the encoding and demultiplexed from the bitstream in the decoding. In yet another option, while coded video data of texture is not predicted from coded video data of depth in e.g. below slice layer, some of the high-level coding structures of texture views and depth views may be shared or predicted from each other. For example, a slice header of coded depth slice may be predicted from a slice header of a coded texture slice. Moreover, some of the parameter sets may be used by both coded texture views and coded depth views. Scalability may be enabled in two basic ways. Either by introducing new coding modes for performing prediction of pixel values or syntax from lower layers of the scalable representation or by placing the lower layer pictures to a reference picture buffer (e.g. a decoded picture buffer, DPB) of the higher layer. The first approach may be more flexible and thus may provide better coding efficiency in most cases. However, the second, reference frame based scalability, approach may be implemented efficiently with minimal changes to single layer codecs while still achieving majority of the coding efficiency gains available. Essentially a reference frame based scalability codec may be implemented by utilizing the same hardware or software implementation for all the layers, just taking care of the DPB management by external means. A scalable video encoder for quality scalability (also known as Signal-to-Noise or SNR) and/or spatial scalability may be implemented as follows. For a base layer, a conventional non-scalable video encoder and decoder may be used. The reconstructed/decoded pictures of the base layer are included in the reference picture buffer and/or reference picture lists for an enhancement layer. In case of spatial scalability, the reconstructed/decoded base-layer picture may be upsampled prior to its insertion into the reference picture lists for an enhancement-layer picture. The base layer decoded pictures may be inserted into a reference picture list(s) for coding/decoding of an enhancement layer picture similarly to the decoded reference pictures of the enhancement layer. Consequently, the encoder may choose a base-layer reference picture as an inter prediction reference and indicate its use with a reference picture index in the coded bitstream. The decoder decodes from the bitstream, for example from a reference picture index, that a base-layer picture is used as an inter prediction reference for the enhancement layer. When a decoded base-layer picture is used as the prediction reference for an enhancement layer, it is referred to as an inter-layer reference picture. While the previous paragraph described a scalable video codec with two scalability layers with an enhancement layer and a base layer, it needs to be understood that the description can be generalized to any two layers in a scalability hierarchy with more than two layers. In this case, a second enhancement layer may depend on a first enhancement layer in encoding and/or decoding processes, and the first enhancement layer may therefore be regarded as the base layer for the encoding and/or decoding of the second enhancement layer. Furthermore, it needs to be understood that there may be inter-layer reference pictures from more than one layer in a reference picture buffer or reference picture lists of an enhancement layer, and each of these inter-layer reference pictures may be considered to reside in a base layer or a reference layer for the enhancement layer being encoded and/or decoded. A scalable video coding and/or decoding scheme may use multi-loop coding and/or decoding, which may be characterized as follows. In the encoding/decoding, a base layer picture may be reconstructed/decoded to be used as a motion-compensation reference picture for subsequent pictures, in coding/decoding order, within the same layer or as a reference for inter-layer (or inter-view or inter-component) prediction. The reconstructed/decoded base layer picture may be stored in the DPB. An enhancement layer picture may likewise be reconstructed/decoded to be used as a motion-compensation reference picture for subsequent pictures, in coding/decoding order, within the same layer or as reference for inter-layer (or inter-view or inter-component) prediction for higher enhancement layers, if any. In addition to reconstructed/decoded sample values, syntax element values of the base/reference layer or variables derived from the syntax element values of the base/reference layer may be used in the inter-layer/inter-component/inter-view prediction. In some cases, data in an enhancement layer can be truncated after a certain location, or even at arbitrary positions, where each truncation position may include additional data representing increasingly enhanced visual quality. Such scalability is referred to as fine-grained (granularity) scalability (FGS). SVC uses an inter-layer prediction mechanism, wherein certain information can be predicted from layers other than the currently reconstructed layer or the next lower layer. Information that could be inter-layer predicted includes intra texture, motion and residual data. Inter-layer motion prediction includes the prediction of block coding mode, header information, block partitioning, etc., wherein motion from the lower layer may be used for prediction of the higher layer. In case of intra coding, a prediction from surrounding macroblocks or from co-located macroblocks of lower layers is possible. These prediction techniques do not employ information from earlier coded access units and hence, are referred to as intra prediction techniques. Furthermore, residual data from lower layers can also be employed for prediction of the current layer. Scalable video (de)coding may be realized with a concept known as single-loop decoding, where decoded reference pictures are reconstructed only for the highest layer being decoded while pictures at lower layers may not be fully decoded or may be discarded after using them for inter-layer prediction. In single-loop decoding, the decoder performs motion compensation and full picture reconstruction only for the scalable layer desired for playback (called the “desired layer” or the “target layer”), thereby reducing decoding complexity when compared to multi-loop decoding. All of the layers other than the desired layer do not need to be fully decoded because all or part of the coded picture data is not needed for reconstruction of the desired layer. However, lower layers (than the target layer) may be used for inter-layer syntax or parameter prediction, such as inter-layer motion prediction. Additionally or alternatively, lower layers may be used for inter-layer intra prediction and hence intra-coded blocks of lower layers may have to be decoded. Additionally or alternatively, inter-layer residual prediction may be applied, where the residual information of the lower layers may be used for decoding of the target layer and the residual information may need to be decoded or reconstructed. In some coding arrangements, a single decoding loop is needed for decoding of most pictures, while a second decoding loop may be selectively applied to reconstruct so-called base representations (i.e. decoded base layer pictures), which may be needed as prediction references but not for output or display. SVC as allows the use of single-loop decoding. It is enabled by using a constrained intra texture prediction mode, whereby the inter-layer intra texture prediction can be applied to macroblocks (MBs) for which the corresponding block of the base layer is located inside intra-MBs. At the same time, those intra-MBs in the base layer use constrained intra-prediction (e.g., having the syntax element “constrained_intra_pred_flag” equal to 1). In single-loop decoding, the decoder performs motion compensation and full picture reconstruction only for the scalable layer desired for playback (called the “desired layer” or the “target layer”), thereby greatly reducing decoding complexity. All of the layers other than the desired layer do not need to be fully decoded because all or part of the data of the MBs not used for inter-layer prediction (be it inter-layer intra texture prediction, inter-layer motion prediction or inter-layer residual prediction) is not needed for reconstruction of the desired layer. A single decoding loop is needed for decoding of most pictures, while a second decoding loop is selectively applied to reconstruct the base representations, which are needed as prediction references but not for output or display, and are reconstructed only for the so called key pictures (for which “store_ref_base_pic_flag” is equal to 1). FGS was included in some draft versions of the SVC standard, but it was eventually excluded from the final SVC standard. FGS is subsequently discussed in the context of some draft versions of the SVC standard. The scalability provided by those enhancement layers that cannot be truncated is referred to as coarse-grained (granularity) scalability (CGS). It collectively includes the traditional quality (SNR) scalability and spatial scalability. The SVC standard supports the so-called medium-grained scalability (MGS), where quality enhancement pictures are coded similarly to SNR scalable layer pictures but indicated by high-level syntax elements similarly to FGS layer pictures, by having the quality_id syntax element greater than 0. The scalability structure in SVC may be characterized by three syntax elements: “temporal_id,” “dependency_id” and “quality_id.” The syntax element “temporal_id” is used to indicate the temporal scalability hierarchy or, indirectly, the frame rate. A scalable layer representation comprising pictures of a smaller maximum “temporal_id” value has a smaller frame rate than a scalable layer representation comprising pictures of a greater maximum “temporal_id”. A given temporal layer typically depends on the lower temporal layers (i.e., the temporal layers with smaller “temporal_id” values) but does not depend on any higher temporal layer. The syntax element “dependency_id” is used to indicate the CGS inter-layer coding dependency hierarchy (which, as mentioned earlier, includes both SNR and spatial scalability). At any temporal level location, a picture of a smaller “dependency_id” value may be used for inter-layer prediction for coding of a picture with a greater “dependency_id” value. The syntax element “quality_id” is used to indicate the quality level hierarchy of a FGS or MGS layer. At any temporal location, and with an identical “dependency_id” value, a picture with “quality_id” equal to QL uses the picture with “quality_id” equal to QL-1 for inter-layer prediction. A coded slice with “quality_id” larger than 0 may be coded as either a truncatable FGS slice or a non-truncatable MGS slice. For simplicity, all the data units (e.g., Network Abstraction Layer units or NAL units in the SVC context) in one access unit having identical value of “dependency_id” are referred to as a dependency unit or a dependency representation. Within one dependency unit, all the data units having identical value of “quality_id” are referred to as a quality unit or layer representation. A base representation, also known as a decoded base picture, is a decoded picture resulting from decoding the Video Coding Layer (VCL) NAL units of a dependency unit having “quality_id” equal to 0 and for which the “store_ref_base_pic_flag” is set equal to 1. An enhancement representation, also referred to as a decoded picture, results from the regular decoding process in which all the layer representations that are present for the highest dependency representation are decoded. As mentioned earlier, CGS includes both spatial scalability and SNR scalability. Spatial scalability is initially designed to support representations of video with different resolutions. For each time instance, VCL NAL units are coded in the same access unit and these VCL NAL units can correspond to different resolutions. During the decoding, a low resolution VCL NAL unit provides the motion field and residual which can be optionally inherited by the final decoding and reconstruction of the high resolution picture. When compared to older video compression standards, SVC's spatial scalability has been generalized to enable the base layer to be a cropped and zoomed version of the enhancement layer. MGS quality layers are indicated with “quality_id” similarly as FGS quality layers. For each dependency unit (with the same “dependency_id”), there is a layer with “quality_id” equal to 0 and there can be other layers with “quality_id” greater than 0. These layers with “quality_id” greater than 0 are either MGS layers or FGS layers, depending on whether the slices are coded as truncatable slices. In the basic form of FGS enhancement layers, only inter-layer prediction is used. Therefore, FGS enhancement layers can be truncated freely without causing any error propagation in the decoded sequence. However, the basic form of FGS suffers from low compression efficiency. This issue arises because only low-quality pictures are used for inter prediction references. It has therefore been proposed that FGS-enhanced pictures be used as inter prediction references. However, this may cause encoding-decoding mismatch, also referred to as drift, when some FGS data are discarded. One feature of a draft SVC standard is that the FGS NAL units can be freely dropped or truncated, and a feature of the SVC standard is that MGS NAL units can be freely dropped (but cannot be truncated) without affecting the conformance of the bitstream. As discussed above, when those FGS or MGS data have been used for inter prediction reference during encoding, dropping or truncation of the data would result in a mismatch between the decoded pictures in the decoder side and in the encoder side. This mismatch is also referred to as drift. To control drift due to the dropping or truncation of FGS or MGS data, SVC applied the following solution: In a certain dependency unit, a base representation (by decoding only the CGS picture with “quality_id” equal to 0 and all the dependent-on lower layer data) is stored in the decoded picture buffer. When encoding a subsequent dependency unit with the same value of “dependency_id,” all of the NAL units, including FGS or MGS NAL units, use the base representation for inter prediction reference. Consequently, all drift due to dropping or truncation of FGS or MGS NAL units in an earlier access unit is stopped at this access unit. For other dependency units with the same value of “dependency_id,” all of the NAL units use the decoded pictures for inter prediction reference, for high coding efficiency. Each NAL unit includes in the NAL unit header a syntax element “use_ref_base_pic_flag.” When the value of this element is equal to 1, decoding of the NAL unit uses the base representations of the reference pictures during the inter prediction process. The syntax element “store_ref_base_pic_flag” specifies whether (when equal to 1) or not (when equal to 0) to store the base representation of the current picture for future pictures to use for inter prediction. NAL units with “quality_id” greater than 0 do not contain syntax elements related to reference picture lists construction and weighted prediction, i.e., the syntax elements “num_ref_active_1x_minus1” (x=0 or 1), the reference picture list reordering syntax table, and the weighted prediction syntax table are not present. Consequently, the MGS or FGS layers have to inherit these syntax elements from the NAL units with “quality_id” equal to 0 of the same dependency unit when needed. In SVC, a reference picture list consists of either only base representations (when “use_ref_base_pic_flag” is equal to 1) or only decoded pictures not marked as “base representation” (when “use_ref_base_pic_flag” is equal to 0), but never both at the same time. Another categorization of scalable coding is based on whether the same or different coding standard or technology is used as the basis for the base layer and enhancement layers. Terms hybrid codec scalability or standards scalability may be used to indicate a scenario where one coding standard or system is used for some layers, while another coding standard or system is used for some other layers. For example, the base layer may be AVC-coded, while one or more enhancement layers may be coded with an HEVC extension, such as SHVC or MV-HEVC. Work is ongoing to specify scalable and multiview extensions to the HEVC standard. The multiview extension of HEVC, referred to as MV-HEVC, is similar to the MVC extension of H.264/AVC. Similarly to MVC, in MV-HEVC, inter-view reference pictures can be included in the reference picture list(s) of the current picture being coded or decoded. The scalable extension of HEVC, referred to as SHVC, is planned to be specified so that it uses multi-loop decoding operation (unlike the SVC extension of H.264/AVC). SHVC is reference index based, i.e. an inter-layer reference picture can be included in a one or more reference picture lists of the current picture being coded or decoded (as described above). It is possible to use many of the same syntax structures, semantics, and decoding processes for MV-HEVC and SHVC. Other types of scalability, such as depth-enhanced video, may also be realized with the same or similar syntax structures, semantics, and decoding processes as in MV-HEVC and SHVC. For the enhancement layer coding, the same concepts and coding tools of HEVC may be used in SHVC, MV-HEVC, and/or alike. However, the additional inter-layer prediction tools, which employ already coded data (including reconstructed picture samples and motion parameters a.k.a motion information) in reference layer for efficiently coding an enhancement layer, may be integrated to SHVC, MV-HEVC, and/or alike codec. In MV-HEVC, SHVC and/or alike, VPS may for example include a mapping of the LayerId value derived from the NAL unit header to one or more scalability dimension values, for example correspond to dependency_id, quality_id, view_id, and depth_flag for the layer defined similarly to SVC and MVC. In MV-HEVC/SHVC, it may be indicated in the VPS that a layer with layer identifier value greater than 0 has no direct reference layers, i.e. that the layer is not inter-layer predicted from any other layer. In other words, an MV-HEVC/SHVC bitstream may contain layers that are independent of each other, which may be referred to as simulcast layers. A part of VPS, which specifies the scalability dimensions that may be present in the bitstream, the mapping of nuh_layer_id values to scalability dimension values, and the dependencies between layers may be specified with the following syntax: The semantics of the above-shown part of the VPS may be specified as described in the following paragraphs. splitting_flag equal to 1 indicates that the dimension_id[i][j] syntax elements are not present and that the binary representation of the nuh_layer_id value in the NAL unit header are split into NumScalabilityTypes segments with lengths, in bits, according to the values of dimension_id_len_minus1[j] and that the values of dimension_id[LayerIdxInVps[nuh_layer_id]][j] are inferred from the NumScalabilityTypes segments. splitting_flag equal to 0 indicates that the syntax elements dimension_id[i][j] are present. In the following example semantics, without loss of generality, it is assumed that splitting_flag is equal to 0. scalability_mask_flag[i] equal to 1 indicates that dimension_id syntax elements corresponding to the i-th scalability dimension in the following table are present. scalability_mask_flag[i] equal to 0 indicates that dimension_id syntax elements corresponding to the i-th scalability dimension are not present. In future 3D extensions of HEVC, scalability mask index 0 may be used to indicate depth maps. dimension_id_len_minus1[j] plus 1 specifies the length, in bits, of the dimension_id[i][j] syntax element. vps_nuh_layer_id_present_flag equal to 1 specifies that layer_id_in_nuh[i] for i from 0 to MaxLayersMinus1 (which is equal to the maximum number of layers specified in the VPS minus 1), inclusive, are present. vps_nuh_layer_id_present_flag equal to 0 specifies that layer_id_in_nuh[i] for i from 0 to MaxLayersMinus1, inclusive, are not present. layer_id_in_nuh[i] specifies the value of the nuh_layer_id syntax element in VCL NAL units of the i-th layer. For i in the range of 0 to MaxLayersMinus1, inclusive, when layer_id_in_nuh[i] is not present, the value is inferred to be equal to i. When i is greater than 0, layer_id_in_nuh[i] is greater than layer_id_in_nuh[i−1]. For i from 0 to MaxLayersMinus1, inclusive, the variable LayerIdxInVps[layer_id_in_nuh[i]] is set equal to i. dimension_id[i][j] specifies the identifier of the j-th present scalability dimension type of the i-th layer. The number of bits used for the representation of dimension_id[i][j] is dimension_id_len_minus1[j]+1 bits. When splitting_flag is equal to 0, for j from 0 to NumScalabilityTypes−1, inclusive, dimension_id[0][j] is inferred to be equal to 0 The variable ScalabilityId[i][smIdx] specifying the identifier of the smIdx-th scalability dimension type of the i-th layer, the variable ViewOrderIdx[layer_id_in_nuh[i]] specifying the view order index of the i-th layer, DependencyId[layer_id_in_nuh[i]] specifying the spatial/quality scalability identifier of the i-th layer, and the variable ViewScalExtLayerFlag[layer_id_in_nuh[i]] specifying whether the i-th layer is a view scalability extension layer are derived as follows: Enhancement layers or layers with a layer identifier value greater than 0 may be indicated to contain auxiliary video complementing the base layer or other layers. For example, in the present draft of MV-HEVC, auxiliary pictures may be encoded in a bitstream using auxiliary picture layers. An auxiliary picture layer is associated with its own scalability dimension value, AuxId (similarly to e.g. view order index). Layers with AuxId greater than 0 contain auxiliary pictures. A layer carries only one type of auxiliary pictures, and the type of auxiliary pictures included in a layer may be indicated by its AuxId value. In other words, AuxId values may be mapped to types of auxiliary pictures. For example, AuxId equal to 1 may indicate alpha planes and AuxId equal to 2 may indicate depth pictures. An auxiliary picture may be defined as a picture that has no normative effect on the decoding process of primary pictures. In other words, primary pictures (with AuxId equal to 0) may be constrained not to predict from auxiliary pictures. An auxiliary picture may predict from a primary picture, although there may be constraints disallowing such prediction, for example based on the AuxId value. SEI messages may be used to convey more detailed characteristics of auxiliary picture layers, such as the depth range represented by a depth auxiliary layer. The present draft of MV-HEVC includes support of depth auxiliary layers. Different types of auxiliary pictures may be used including but not limited to the following: Depth pictures; Alpha pictures; Overlay pictures; and Label pictures. In Depth pictures a sample value represents disparity between the viewpoint (or camera position) of the depth picture or depth or distance. In Alpha pictures (a.k.a. alpha planes and alpha matte pictures) a sample value represents transparency or opacity. Alpha pictures may indicate for each pixel a degree of transparency or equivalently a degree of opacity. Alpha pictures may be monochrome pictures or the chroma components of alpha pictures may be set to indicate no chromaticity (e.g. 0 when chroma samples values are considered to be signed or 128 when chroma samples values are 8-bit and considered to be unsigned). Overlay pictures may be overlaid on top of the primary pictures in displaying. Overlay pictures may contain several regions and background, where all or a subset of regions may be overlaid in displaying and the background is not overlaid. Label pictures contain different labels for different overlay regions, which can be used to identify single overlay regions. Continuing how the semantics of the presented VPS excerpt may be specified: view_id_len specifies the length, in bits, of the view_id_val[i] syntax element. view_id_val[i] specifies the view identifier of the i-th view specified by the VPS. The length of the view_id_val[i] syntax element is view_id_len bits. When not present, the value of view_id_val[i] is inferred to be equal to 0. For each layer with nuh_layer_id equal to nuhLayerId, the value ViewId[nuhLayerId] is set equal to view_id_val[ViewOrderIdx[nuhLayerId]]. direct_dependency_flag[i][j] equal to 0 specifies that the layer with index j is not a direct reference layer for the layer with index i. direct_dependency_flag[i][j] equal to 1 specifies that the layer with index j may be a direct reference layer for the layer with index i. When direct_dependency_flag[i][j] is not present for i and j in the range of 0 to MaxLayersMinus1, it is inferred to be equal to 0. The variable NumDirectRefLayers[iNuhLId] may be defined as the number of direct reference layers for the layer with nuh_layer_id equal to iNuhLId based on the layer dependency information. The variable RefLayerId[iNuhLId][j] may be defined as the list of nuh_layer_id values of the direct reference layers of the layer with nuh_layer_id equal to iNuhLId, where j is in the range of 0 to NumDirectRefLayers[iNuhLId]−1, inclusive, and each item j in the list corresponds to one direct reference layer. The variables NumDirectRefLayers[iNuhLId] and RefLayerId[iNuhLId][j] may be specified as follows, where MaxLayersMinus1 is equal to the maximum number of layers specified in the VPS minus 1: VPS may also include information on temporal sub-layers, TemporalId-based constraints on inter-layer prediction, and other constraints on inter-layer prediction, for example using the following syntax: The semantics of the above excerpt of the VPS syntax may be specified as described in the following paragraphs. vps_sub_layers_max_minus1_present_flag equal to 1 specifies that the syntax elements sub_layers_vps_max_minus1[i] are present. vps_sub_layers_max_minus1_present_flag equal to 0 specifies that the syntax elements sub_layers_vps_max_minus1[i] are not present. sub_layers_vps_max_minus1[i] plus 1 specifies the maximum number of temporal sub-layers that may be present in the CVS for the layer with nuh_layer_id equal to layer_id_in_nuh[i]. When not present, sub_layers_vps_max_minus1[i] is inferred to be equal to vps_max_sub_layers_minus1 (which is present earlier in the VPS syntax). max_tid_ref_present_flag equal to 1 specifies that the syntax element max_tid_il_ref_pics_plus1[i][j] is present. max_tid_ref_present_flag equal to 0 specifies that the syntax element max_tid_il_ref_pics_plus1[i][j] is not present. max_tid_il_ref_pics_plus1[i][j] equal to 0 specifies that within the CVS non-IRAP pictures with nuh_layer_id equal to layer_id_in_nuh[i] are not used as reference for inter-layer prediction for pictures with nuh_layer_id equal to layer_id_in_nuh[j]. max_tid_il_ref_pics_plus1[i][j] greater than 0 specifies that within the CVS pictures with nuh_layer_id equal to layer_id_in_nuh[i] and TemporalId greater than max_tid_il_ref_pics_plus1[i][j]−1 are not used as reference for inter-layer prediction for pictures with nuh_layer_id equal to layer_id_in_nuh[j]. When not present, max_tid_il_ref_pics_plus1[i][j] is inferred to be equal to 7. all_ref_layers_active_flag equal to 1 specifies that for each picture referring to the VPS, the reference layer pictures that belong to all direct reference layers of the layer containing the picture and that might be used for inter-layer prediction as specified by the values of sub_layers_vps_max_minus1[i] and max_tid_il_ref_pics_plus1[i][j] are present in the same access unit as the picture and are included in the inter-layer reference picture set of the picture. all_ref_layers_active_flag equal to 0 specifies that the above restriction may or may not apply. max_one_active_ref_layer_flag equal to 1 specifies that at most one picture is used for inter-layer prediction for each picture in the CVS. max_one_active_ref_layer_flag equal to 0 specifies that more than one picture may be used for inter-layer prediction for each picture in the CVS. A layer tree may be defined as a set of layers such that each layer in the set of layers is a direct or indirected predicted layer or a direct or indirect reference layer of at least one other layer in the set of layers and no layer outside the set of layers is a direct or indirected predicted layer or a direct or indirect reference layer of any layer in the set of layers. A direct predicted layer may be defined as a layer for which another layer is a direct reference layer. A direct reference layer may be defined as a layer that may be used for inter-layer prediction of another layer for which the layer is the direct reference layer. An indirect predicted layer may be defined as a layer for which another layer is an indirect reference layer. An indirect reference layer may be defined as a layer that is not a direct reference layer of a second layer but is a direct reference layer of a third layer that is a direct reference layer or indirect reference layer of a direct reference layer of the second layer for which the layer is the indirect reference layer. Alternatively, a layer tree may be defined as a set of layers where each layer has an inter-layer prediction relation with at least one other layer in the layer tree and no layer outside the layer tree has an inter-layer prediction relation with any layer in the layer tree. In SHVC, MV-HEVC, and/or alike, the block level syntax and decoding process are not changed for supporting inter-layer texture prediction. Only the high-level syntax, generally referring to the syntax structures including slice header, PPS, SPS, and VPS, has been modified (compared to that of HEVC) so that reconstructed pictures (upsampled if necessary) from a reference layer of the same access unit can be used as the reference pictures for coding the current enhancement layer picture. The inter-layer reference pictures as well as the temporal reference pictures are included in the reference picture lists. The signalled reference picture index is used to indicate whether the current Prediction Unit (PU) is predicted from a temporal reference picture or an inter-layer reference picture. The use of this feature may be controlled by the encoder and indicated in the bitstream for example in a video parameter set, a sequence parameter set, a picture parameter, and/or a slice header. The indication(s) may be specific to an enhancement layer, a reference layer, a pair of an enhancement layer and a reference layer, specific TemporalId values, specific picture types (e.g. RAP pictures), specific slice types (e.g. P and B slices but not I slices), pictures of a specific POC value, and/or specific access units, for example. The scope and/or persistence of the indication(s) may be indicated along with the indication(s) themselves and/or may be inferred. The reference list(s) in SHVC, MV-HEVC, and/or alike may be initialized using a specific process in which the inter-layer reference picture(s), if any, may be included in the initial reference picture list(s). For example, the temporal references may be firstly added into the reference lists (L0, L1) in the same manner as the reference list construction in HEVC. After that, the inter-layer references may be added after the temporal references. The inter-layer reference pictures may be for example concluded from the layer dependency information provided in the VPS extension. The inter-layer reference pictures may be added to the initial reference picture list L0if the current enhancement-layer slice is a P-Slice, and may be added to both initial reference picture lists L0and L1if the current enhancement-layer slice is a B-Slice. The inter-layer reference pictures may be added to the reference picture lists in a specific order, which can but need not be the same for both reference picture lists. For example, an opposite order of adding inter-layer reference pictures into the initial reference picture list 1 may be used compared to that of the initial reference picture list 0. For example, inter-layer reference pictures may be inserted into the initial reference picture 0 in an ascending order of nuh_layer_id, while an opposite order may be used to initialize the initial reference picture list 1. A second example of constructing reference picture list(s) is provided in the following. Candidate inter-layer reference pictures may be for example concluded from the layer dependency information, which may be included in the VPS, for example. The encoder may include picture-level information in a bitstream and the decoder may decode picture-level information from the bitstream which ones of the candidate inter-layer reference pictures may be used as reference for inter-layer prediction. The picture-level information may for example reside in a slice header and may be referred to as an inter-layer reference picture set. For example, the candidate inter-layer reference pictures may be indexed in a certain order and one or more indexes may be included in the inter-layer reference picture set. In another example, a flag for each candidate inter-layer reference picture indicates if it may be used as an inter-layer reference picture. As above, the inter-layer reference pictures may be added to the initial reference picture list L0if the current enhancement-layer slice is a P-Slice, and may be added to both initial reference picture lists L0and L1if the current enhancement-layer slice is a B-Slice. The inter-layer reference pictures may be added to the reference picture lists in a specific order, which can but need not be the same for both reference picture lists. A third example of constructing reference picture list(s) is provided in the following. In the third example, an inter-layer reference picture set is specified in the slice segment header syntax structure as follows: The variable NumDirectRefLayers[layerId] has been derived to be the number of direct reference layers for the layer with nuh_layer_id equal to layerId based on the layer dependency information. In the context of MV-HEVC, SHVC, and alike, NumDirectRefLayers[layerId] may be derived based on the direct_dependency_flag[i][j] syntax elements of VPS. The semantics of the above excerpt of the slice segment header syntax structure may be specified as described in the following paragraphs. inter_layer_pred_enabled_flag equal to 1 specifies that inter-layer prediction may be used in decoding of the current picture. inter_layer_pred_enabled_flag equal to 0 specifies that inter-layer prediction is not used in decoding of the current picture. num_inter_layer_ref_pics_minus1 plus 1 specifies the number of pictures that may be used in decoding of the current picture for inter-layer prediction. The length of the num_inter_layer_ref_pics_minus1 syntax element is Ceil(Log 2(NumDirectRefLayers[nuh_layer_id])) bits. The value of num_inter_layer_ref_pics_minus1 shall be in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. The variables numRefLayerPics and refLayerPicIdc[j] may be derived as follows: The list refLayerPicIdc[j] may be considered to indicate the candidate inter-layer reference pictures with reference to the second example above. The variable NumActiveRefLayerPics may be derived as follows: inter_layer_pred_layer_idc[i] specifies the variable, RefPicLayerId[i], representing the nuh_layer_id of the i-th picture that may be used by the current picture for inter-layer prediction. The length of the syntax element inter_layer_pred_layer_idc[i] is Ceil(Log 2(NumDirectRefLayers[nuh_layer_id])) bits. The value of inter_layer_pred_layer_idc[i] shall be in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. When not present, the value of inter_layer_pred_layer_idc[i] is inferred to be equal to refLayerPicIdc[i]. The variables RefPicLayerId[i] for all values of i in the range of 0 to NumActiveRefLayerPics−1, inclusive, are derived as follows: inter_layer_pred_layer_idc[i] may be considered to be picture-level information which ones of the candidate inter-layer reference pictures may be used as reference for inter-layer prediction, with reference to the second example above. The pictures identified by variable RefPicLayerId[i] for all values of i in the range of 0 to NumActiveRefLayerPics−1, inclusive, may be included in initial reference picture lists. As above, the pictures identified by variable RefPicLayerId[i] may be added to the initial reference picture list L0if the current enhancement-layer slice is a P-Slice, and may be added to both initial reference picture lists L0and L1if the current enhancement-layer slice is a B-Slice. The pictures identified by variable RefPicLayerId[i] may be added to the reference picture lists in a specific order, which can but need not be the same for both reference picture lists. For example, the derived ViewId values may affect the order of adding the pictures identified by variable RefPicLayerId[i] into the initial reference picture lists. In the coding and/or decoding process, the inter-layer reference pictures may be treated as long term reference pictures. A type of inter-layer prediction, which may be referred to as inter-layer motion prediction, may be realized as follows. A temporal motion vector prediction process, such as TMVP of H.265/HEVC, may be used to exploit the redundancy of motion data between different layers. This may be done as follows: when the decoded base-layer picture is upsampled, the motion data of the base-layer picture is also mapped to the resolution of an enhancement layer. If the enhancement layer picture utilizes motion vector prediction from the base layer picture e.g. with a temporal motion vector prediction mechanism such as TMVP of H.265/HEVC, the corresponding motion vector predictor is originated from the mapped base-layer motion field. This way the correlation between the motion data of different layers may be exploited to improve the coding efficiency of a scalable video coder. In SHVC and/or alike, inter-layer motion prediction may be performed by setting the inter-layer reference picture as the collocated reference picture for TMVP derivation. A motion field mapping process between two layers may be performed for example to avoid block level decoding process modification in TMVP derivation. The use of the motion field mapping feature may be controlled by the encoder and indicated in the bitstream for example in a video parameter set, a sequence parameter set, a picture parameter, and/or a slice header. The indication(s) may be specific to an enhancement layer, a reference layer, a pair of an enhancement layer and a reference layer, specific TemporalId values, specific picture types (e.g. RAP pictures), specific slice types (e.g. P and B slices but not I slices), pictures of a specific POC value, and/or specific access units, for example. The scope and/or persistence of the indication(s) may be indicated along with the indication(s) themselves and/or may be inferred. In a motion field mapping process for spatial scalability, the motion field of the upsampled inter-layer reference picture may be attained based on the motion field of the respective reference layer picture. The motion parameters (which may e.g. include a horizontal and/or vertical motion vector value and a reference index) and/or a prediction mode for each block of the upsampled inter-layer reference picture may be derived from the corresponding motion parameters and/or prediction mode of the collocated block in the reference layer picture. The block size used for the derivation of the motion parameters and/or prediction mode in the upsampled inter-layer reference picture may be for example 16×16. The 16×16 block size is the same as in HEVC TMVP derivation process where compressed motion field of reference picture is used. As discussed above, in HEVC, a two-byte NAL unit header is used for all specified NAL unit types. The NAL unit header contains one reserved bit, a six-bit NAL unit type indication (called nal_unit_type), a six-bit reserved field (called nuh_layer_id) and a three-bit temporal_id_plus1 indication for temporal level. The temporal_id_plus1 syntax element may be regarded as a temporal identifier for the NAL unit, and a zero-based TemporalId variable may be derived as follows: TemporalId=temporal_id_plus1−1. TemporalId equal to 0 corresponds to the lowest temporal level. The value of temporal_id_plus1 is required to be non-zero in order to avoid start code emulation involving the two NAL unit header bytes. The bitstream created by excluding all VCL NAL units having a TemporalId greater than or equal to a selected value and including all other VCL NAL units remains conforming. Consequently, a picture having TemporalId equal to TID does not use any picture having a TemporalId greater than TID as inter prediction reference. A sub-layer or a temporal sub-layer may be defined to be a temporal scalable layer of a temporal scalable bitstream, consisting of VCL NAL units with a particular value of the TemporalId variable and the associated non-VCL NAL units. In HEVC extensions nuh_layer_id and/or similar syntax elements in NAL unit header carries scalability layer information. For example, the LayerId value nuh_layer_id and/or similar syntax elements may be mapped to values of variables or syntax elements describing different scalability dimensions. In scalable and/or multiview video coding, at least the following principles for encoding pictures and/or access units with random access property may be supported.An IRAP picture within a layer may be an intra-coded picture without inter-layer/inter-view prediction. Such a picture enables random access capability to the layer/view it resides.An IRAP picture within an enhancement layer may be a picture without inter prediction (i.e. temporal prediction) but with inter-layer/inter-view prediction allowed. Such a picture enables starting the decoding of the layer/view the picture resides provided that all the reference layers/views are available. In single-loop decoding, it may be sufficient if the coded reference layers/views are available (which can be the case e.g. for IDR pictures having dependency_id greater than 0 in SVC). In multi-loop decoding, it may be needed that the reference layers/views are decoded. Such a picture may, for example, be referred to as a stepwise layer access (STLA) picture or an enhancement layer IRAP picture.An anchor access unit or a complete IRAP access unit may be defined to include only intra-coded picture(s) and STLA pictures in all layers. In multi-loop decoding, such an access unit enables random access to all layers/views. An example of such an access unit is the MVC anchor access unit (among which type the IDR access unit is a special case).A stepwise IRAP access unit may be defined to include an IRAP picture in the base layer but need not contain an IRAP picture in all enhancement layers. A stepwise IRAP access unit enables starting of base-layer decoding, while enhancement layer decoding may be started when the enhancement layer contains an IRAP picture, and (in the case of multi-loop decoding) all its reference layers/views are decoded at that point. In a scalable extension of HEVC or any scalable extension for a single-layer coding scheme similar to HEVC, IRAP pictures may be specified to have one or more of the following properties.NAL unit type values of the IRAP pictures with nuh_layer_id greater than 0 may be used to indicate enhancement layer random access points.An enhancement layer IRAP picture may be defined as a picture that enables starting the decoding of that enhancement layer when all its reference layers have been decoded prior to the EL IRAP picture.Inter-layer prediction may be allowed for IRAP NAL units with nuh_layer_id greater than 0, while inter prediction is disallowed.IRAP NAL units need not be aligned across layers. In other words, an access unit may contain both IRAP pictures and non-IRAP pictures.After a BLA picture at the base layer, the decoding of an enhancement layer is started when the enhancement layer contains an IRAP picture and the decoding of all of its reference layers has been started. In other words, a BLA picture in the base layer starts a layer-wise start-up process.When the decoding of an enhancement layer starts from a CRA picture, its RASL pictures are handled similarly to RASL pictures of a BLA picture (in HEVC version 1). Scalable bitstreams with IRAP pictures or similar that are not aligned across layers may be used for example more frequent IRAP pictures can be used in the base layer, where they may have a smaller coded size due to e.g. a smaller spatial resolution. A process or mechanism for layer-wise start-up of the decoding may be included in a video decoding scheme. Decoders may hence start decoding of a bitstream when a base layer contains an IRAP picture and step-wise start decoding other layers when they contain IRAP pictures. In other words, in a layer-wise start-up of the decoding process, decoders progressively increase the number of decoded layers (where layers may represent an enhancement in spatial resolution, quality level, views, additional components such as depth, or a combination) as subsequent pictures from additional enhancement layers are decoded in the decoding process. The progressive increase of the number of decoded layers may be perceived for example as a progressive improvement of picture quality (in case of quality and spatial scalability). A layer-wise start-up mechanism may generate unavailable pictures for the reference pictures of the first picture in decoding order in a particular enhancement layer. Alternatively, a decoder may omit the decoding of pictures preceding, in decoding order, the IRAP picture from which the decoding of a layer can be started. These pictures that may be omitted may be specifically labeled by the encoder or another entity within the bitstream. For example, one or more specific NAL unit types may be used for them. These pictures, regardless of whether they are specifically marked with a NAL unit type or inferred e.g. by the decoder, may be referred to as cross-layer random access skip (CL-RAS) pictures. The decoder may omit the output of the generated unavailable pictures and the decoded CL-RAS pictures. A layer-wise start-up mechanism may start the output of enhancement layer pictures from an IRAP picture in that enhancement layer, when all reference layers of that enhancement layer have been initialized similarly with an IRAP picture in the reference layers. In other words, any pictures (within the same layer) preceding such an IRAP picture in output order might not be output from the decoder and/or might not be displayed. In some cases, decodable leading pictures associated with such an IRAP picture may be output while other pictures preceding such an IRAP picture might not be output. Concatenation of coded video data, which may also be referred to as splicing, may occur for example coded video sequences are concatenated into a bitstream that is broadcast or streamed or stored in a mass memory. For example, coded video sequences representing commercials or advertisements may be concatenated with movies or other “primary” content. Scalable video bitstreams might contain IRAP pictures that are not aligned across layers. It may, however, be convenient to enable concatenation of a coded video sequence that contains an IRAP picture in the base layer in its first access unit but not necessarily in all layers. A second coded video sequence that is spliced after a first coded video sequence should trigger a layer-wise decoding start-up process. That is because the first access unit of said second coded video sequence might not contain an IRAP picture in all its layers and hence some reference pictures for the non-IRAP pictures in that access unit may not be available (in the concatenated bitstream) and cannot therefore be decoded. The entity concatenating the coded video sequences, hereafter referred to as the splicer, should therefore modify the first access unit of the second coded video sequence such that it triggers a layer-wise start-up process in decoder(s). Indication(s) may exist in the bitstream syntax to indicate triggering of a layer-wise start-up process. These indication(s) may be generated by encoders or splicers and may be obeyed by decoders. These indication(s) may be used for particular picture type(s) or NAL unit type(s) only, such as only for IDR pictures, while in other embodiments these indication(s) may be used for any picture type(s). Without loss of generality, an indication called cross_layer_bla_flag that is considered to be included in a slice segment header is referred to below. It should be understood that a similar indication with any other name or included in any other syntax structures could be additionally or alternatively used. Independently of indication(s) triggering a layer-wise start-up process, certain NAL unit type(s) and/or picture type(s) may trigger a layer-wise start-up process. For example, a base-layer BLA picture may trigger a layer-wise start-up process. A layer-wise start-up mechanism may be initiated in one or more of the following cases:At the beginning of a bitstream.At the beginning of a coded video sequence, when specifically controlled, e.g. when a decoding process is started or re-started e.g. as response to tuning into a broadcast or seeking to a position in a file or stream. The decoding process may input an variable, e.g. referred to as NoClrasOutputFlag, that may be controlled by external means, such as the video player or alike.A base-layer BLA picture.A base-layer IDR picture with cross_layer_bla_flag equal to 1. (Or a base-layer IRAP picture with cross_layer_bla_flag equal to 1.) When a layer-wise start-up mechanism is initiated, all pictures in the DPB may be marked as “unused for reference”. In other words, all pictures in all layers may be marked as “unused for reference” and will not be used as a reference for prediction for the picture initiating the layer-wise start-up mechanism or any subsequent picture in decoding order. Cross-layer random access skipped (CL-RAS) pictures may have the property that when a layer-wise start-up mechanism is invoked (e.g. when NoClrasOutputFlag is equal to 1), the CL-RAS pictures are not output and may not be correctly decodable, as the CL-RAS picture may contain references to pictures that are not present in the bitstream. It may be specified that CL-RAS pictures are not used as reference pictures for the decoding process of non-CL-RAS pictures. CL-RAS pictures may be explicitly indicated e.g. by one or more NAL unit types or slice header flags (e.g. by re-naming cross_layer_bla_flag to cross_layer_constraint_flag and re-defining the semantics of cross_layer_bla_flag for non-IRAP pictures). A picture may be considered as a CL-RAS picture when it is a non-IRAP picture (e.g. as determined by its NAL unit type), it resides in an enhancement layer and it has cross_layer_constraint_flag (or similar) equal to 1. Otherwise, a picture may be classified of being a non-CL-RAS picture. cross_layer_bla_flag may be inferred to be equal to 1 (or a respective variable may be set to 1), if the picture is an IRAP picture (e.g. as determined by its NAL unit type), it resides in the base layer, and cross_layer_constraint_flag is equal to 1. Otherwise, cross_layer_bla_flag may inferred to be equal to 0 (or a respective variable may be set to 0). Alternatively, CL-RAS pictures may be inferred. For example, a picture with nuh_layer_id equal to layerId may be inferred to be a CL-RAS picture when the LayerInitializedFlag[layerId] is equal to 0. A CL-RAS picture may be defined as a picture with nuh_layer_id equal to layerId such that LayerInitializedFlag[layerId] is equal to 0 when the decoding of a coded picture with nuh_layer_id greater than 0 is started. A decoding process may be specified in a manner that a certain variable controls whether or not a layer-wise start-up process is used. For example, a variable NoClrasOutputFlag may be used, which, when equal to 0, indicates a normal decoding operation, and when equal to 1, indicates a layer-wise start-up operation. NoClrasOutputFlag may be set for example using one or more of the following steps:1) If the current picture is an IRAP picture that is the first picture in the bitstream, NoClrasOutputFlag is set equal to 1.2) Otherwise, if some external means are available to set the variable NoClrasOutputFlag equal to a value for a base-layer IRAP picture, the variable NoClrasOutputFlag is set equal to the value provided by the external means.3) Otherwise, if the current picture is a BLA picture that is the first picture in a coded video sequence (CVS), NoClrasOutputFlag is set equal to 1.4) Otherwise, if the current picture is an IDR picture that is the first picture in a coded video sequence (CVS) and cross_layer_bla_flag is equal to 1, NoClrasOutputFlag is set equal to 1.5) Otherwise, NoClrasOutputFlag is set equal to 0. Step 4 above may alternatively be phrased more generally for example as follows: “Otherwise, if the current picture is an IRAP picture that is the first picture in a CVS and an indication of layer-wise start-up process is associated with the IRAP picture, NoClrasOutputFlag is set equal to 1.” Step 3 above may be removed, and the BLA picture may be specified to initiate a layer-wise start-up process (i.e. set NoClrasOutputFlag equal to 1), when cross_layer_bla_flag for it is equal to 1. It should be understood that other ways to phrase the condition are possible and equally applicable. A decoding process for layer-wise start-up may be for example controlled by two array variables LayerInitializedFlag[i] and FirstPicInLayerDecodedFlag[i] which may have entries for each layer (possibly excluding the base layer and possibly other independent layers too). When the layer-wise start-up process is invoked, for example as response to NoClrasOutputFlag being equal to 1, these array variables may be reset to their default values. For example, when there 64 layers are enabled (e.g. with a 6-bit nuh_layer_id), the variables may be reset as follows: the variable LayerInitializedFlag[i] is set equal to 0 for all values of i from 0 to 63, inclusive, and the variable FirstPicInLayerDecodedFlag[i] is set equal to 0 for all values of i from 1 to 63, inclusive. The decoding process may include the following or similar to control the output of RASL pictures. When the current picture is an IRAP picture, the following applies:If LayerInitializedFlag[nuh_layer_id] is equal to 0, the variable NoRaslOutputFlag is set equal to 1.Otherwise, if some external means is available to set the variable HandleCraAsBlaFlag to a value for the current picture, the variable HandleCraAsBlaFlag is set equal to the value provided by the external means and the variable NoRaslOutputFlag is set equal to HandleCraAsBlaFlag.Otherwise, the variable HandleCraAsBlaFlag is set equal to 0 and the variable NoRaslOutputFlag is set equal to 0. The decoding process may include the following to update the LayerInitializedFlag for a layer. When the current picture is an IRAP picture and either one of the following is true, LayerInitializedFlag[nuh_layer_id] is set equal to 1.nuh_layer_id is equal to 0.LayerInitializedFlag[nuh_layer_id] is equal to 0 and LayerInitializedFlag[refLayerId] is equal to 1 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. When FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0, the decoding process for generating unavailable reference pictures may be invoked prior to decoding the current picture. The decoding process for generating unavailable reference pictures may generate pictures for each picture in a reference picture set with default values. The process of generating unavailable reference pictures may be primarily specified only for the specification of syntax constraints for CL-RAS pictures, where a CL-RAS picture may be defined as a picture with nuh_layer_id equal to layerId and LayerInitializedFlag[layerId] is equal to 0. In HRD operations, CL-RAS pictures may need to be taken into consideration in derivation of CPB arrival and removal times. Decoders may ignore any CL-RAS pictures, as these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for output. Picture output in scalable coding may be controlled for example as follows: For each picture PicOutputFlag is first derived in the decoding process similarly as for a single-layer bitstream. For example, pic_output_flag included in the bitstream for the picture may be taken into account in the derivation of PicOutputFlag. When an access unit has been decoded, the output layers and possible alternative output layers are used to update PicOutputFlag for each picture of the access unit, for example as follows:If the use of an alternative output layer has been enabled (e.g. AltOptLayerFlag[TargetOptLayerSetIdx] is equal to 1 in draft MV-HEVC/SHVC) and an access unit either does not contain a picture at the target output layer or contains a picture at the target output layer that has PicOutputFlag equal to 0, the following ordered steps apply:The list nonOutputLayerPictures is the list of the pictures of the access unit with PicOutputFlag equal to 1 and with nuh_layer_id values among the nuh_layer_id values of the direct and indirect reference layers of the target output layer.The picture with the highest nuh_layer_id value among the list nonOutputLayerPictures is removed from the list nonOutputLayerPictures.PicOutputFlag for each picture that is included in the list nonOutputLayerPictures is set equal to 0.Otherwise, PicOutputFlag for pictures that are not included in a target output layer is set equal to 0. Alternatively, the condition above to trigger the output of a picture from an alternative output layer may be constrained to concern only CL-RAS pictures rather than all pictures with PicOutputFlag equal to 0. In other words, the condition may be phrased as follows:If the use of an alternative output layer has been enabled (e.g. AltOptLayerFlag[TargetOptLayerSetIdx] is equal to 1 in draft MV-HEVC/SHVC) and an access unit either does not contain a picture at the target output layer or contains a CL-RAS picture at the target output layer that has PicOutputFlag equal to 0, the following ordered steps apply: Alternatively, the condition may be phrased as follows:If the use of an alternative output layer has been enabled (e.g. AltOptLayerFlag[TargetOptLayerSetIdx] is equal to 1 in draft MV-HEVC/SHVC) and an access unit either does not contain a picture at the target output layer or contains a picture with PicOutputFlag equal to 0 at the target output layer lId such that LayerInitializedFlag[lId] is equal to 0, the following ordered steps apply: However, the scalability designs in the contemporary state of the above-described video coding standards have some limitations. For example, in SVC and SHVC, pictures (or alike) of an access unit are required to have the same temporal level (e.g. TemporalId value in HEVC and its extensions). This has the consequence that it disables encoders to determine prediction hierarchies differently across layers. Different prediction hierarchies across layers could be used to encode some layers with a greater number of TemporalId values and frequent sub-layer up-switch points and some layers with a prediction hierarchy aiming at a better rate-distortion performance. Moreover, encoders are not able to encode layer trees of the same bitstream independently from each other. For example, the base layer and an auxiliary picture layer could be encoded by different encoders, and/or encoding of different layer trees could take place at different times. However, presently layers are required to have the same (de)coding order and TemporalId of respective pictures. A further limitation, for example in SVC and SHVC, is that temporal level switch pictures, such as TSA and STSA pictures of HEVC and its extensions, are not allowed the lowest temporal level, such as TemporalId equal to 0 in HEVC and its extensions. This has the consequence that it disables to indicate an access picture or access point to a layer that enables decoding of some temporal levels (but not necessarily all of them). However, such an access point could be used, for example, for step-wise start-up of decoding of a layer in a sub-layer-wise manner and/or bitrate adaptation. Now in order to at least alleviate the above problems, methods for encoding and decoding restricted layer access pictures are presented hereinafter. In the encoding method, which is disclosed inFIG. 7, a first picture is encoded (750) on a first scalability layer and on a lowest temporal sub-layer, and a second picture is encoded (752) on a second scalability layer and on the lowest temporal sub-layer, wherein the first picture and the second picture represent the same time instant. Then one or more first syntax elements, associated with the first picture, are encoded (754) with a value indicating that a picture type of the first picture is other than a step-wise temporal sub-layer access picture. Similarly, one or more second syntax elements, associated with the second picture, are encoded (756) with a value indicating that a picture type of the second picture is a step-wise temporal sub-layer access picture. Then at least a third picture is encoded (758) on a second scalability layer and on a temporal sub-layer higher than the lowest temporal sub-layer. According to an embodiment, the step-wise temporal sub-layer access picture provides an access point for layer-wise initialization of decoding of a bitstream with one or more temporal sub-layers. Thus, the encoder encodes an access picture or access point to a layer, wherein the access picture or the access point enables decoding of some temporal sub-layers (but not necessarily all of them). Such an access point may be used for example for step-wise start-up of decoding of a layer in a sub-layer-wise manner (e.g. by a decoder) and/or bitrate adaptation (e.g. by a sender), as will be described further below. According to an embodiment, the step-wise temporal sub-layer access picture is an STSA picture with TemporalId equal to 0. FIG. 8illustrates an example, where an STSA picture with TemporalId equal to 0 is used to indicate a restricted layer access picture. InFIG. 8, both the base layer (BL) and the enhancement layer (EL) comprise pictures on four temporal sub-layers (TemporalId (TID)=0, 1, 2, 3). The decoding order of the pictures is 0, 1, . . . , 9, A, B, C, . . . , whereas the output order of the pictures is the order of pictures from left to right inFIG. 8. The decoded picture buffer (DPB) state or DPB dump for each picture inFIG. 8and subsequent figures shows the decoded pictures which are marked as “used for reference”. In other words, the DPB dump considers pictures marked as “used for reference” but does not consider pictures marked as “needed for output” (which might have already been marked “unused for reference”). The DPB state may include the following pictures:the picture in question being encoded or decoded (the bottom-most item in the indicated DPB state inFIG. 8and in subsequent figures);the pictures which are not used as reference for encoding (and decoding) the picture in question but may be used as reference for encoding (and decoding) subsequent pictures in decoding order (the items in the indicated DPB state with italics and underlining inFIG. 8and subsequent figures); andthe pictures that may be used as reference for encoding (and decoding) the picture in question (all other items in the indicated DPB state inFIG. 8and subsequent figures). The EL picture 1 is a layer access picture that provides access to sub-layers with TemporalId 0, 1, and 2 but does not provide access to sub-layer with TemporalId equal to 3. In this example there are no TSA or STSA pictures among the presented pictures (5,7,8, C, D, F, G) of TID 3 of the EL. According to an embodiment, the method further comprises signaling the step-wise temporal sub-layer access picture in the bitstream by a specific NAL unit type. Thus, rather than re-using the STSA nal_unit_type, a specific NAL unit type may be taken into use and may be referred to sub-layer-constrained layer access picture. According to an embodiment, the method further comprises signaling the step-wise temporal sub-layer access picture with an SEI message. The SEI message may also define the number of decodable sub-layers. The SEI message can be used in addition to or instead of using a NAL unit type indicating a sub-layer-constrained layer access picture or an STSA picture with TemporalId equal to 0. The SEI message may also include the number of sub-layers that can be decoded (at full picture rate) when the decoding of the layer starts from the associated layer access picture. For example, referring to the example inFIG. 8, the EL picture 1, which is a layer access picture, may be indicated to provide access to three sub-layers (TID 0, 1, 2). According to an embodiment, the method further comprises encoding said second or any further scalability layer to comprise more frequent TSA or STSA pictures than the first scalability layer. Thereby, a sender or a decoder or alike may determine dynamically and in a layer-wise manner how many sub-layers are transmitted or decoded. When the enhancement layer contains more frequent TSA or STSA pictures than in the base layer, finer-grain bitrate adjustment can be performed than what can be achieved by determining the number of layers and/or the number sub-layers orthogonally. It is remarked that when the alternative output layer mechanism is in use and there is no picture at the target output layer, a picture from the lower layer is to be output. Consequently, even if pictures from the target output layer are omitted from transmission, the output picture rate (of a decoder) may remain unchanged. FIG. 9illustrates an example when the base layer BL has fewer TSA pictures (pictures2,3,4) than the enhancement layer EL (pictures2,3,4,5,7,8, A, B, C, D, F, G). It is remarked that some prediction arrows from TID0 pictures are not included in the illustration (but can be concluded from the DPB dump). According to an embodiment, it is possible to encode non-aligned temporal sub-layer access pictures when only certain temporal levels are used for inter-layer prediction. In this use case, it is assumed that pictures of only some TemporalId values are used as reference for inter-layer prediction, which may be indicated in a sequence-level syntax structure, such as using the max_tid_il_ref_pics_plus1 syntax element of the VPS extension of MV-HEVC, SHVC and/or alike. It is further assumed that the sender knows that the receiver uses an output layer set, where only the EL is output. Consequently, the sender omits the transmission of BL pictures with a TemporalId value such that it is indicated not to be used as reference for inter-layer prediction. It is further assumed that the sender performs bitrate adjustment or bitrate adaptation by selecting adaptively the maximum TemporalId that is transmitted from the EL. FIG. 10shows an example, which is similar to the example inFIG. 9, but where BL pictures with TemporalId greater than or equal to 2 are not used as reference for inter-layer prediction, i.e. in MV-HEVC, SHVC, and/or alike this may be indicated by setting the max_tid_il_ref pics_plus1 syntax element between the base and enhancement layer equal to 2. According to an embodiment, which may be applied together with or independently of other embodiments, it is possible to encode non-aligned temporal sub-layer access pictures when TemporalId need not be aligned across layers in the same access unit. This may be utilized, for example, in scalable video coding schemes allowing pictures with different TemporalId values (or alike) in the same access unit. Having different TemporalId values for pictures in the same access unit may enable providing encoders flexibility in determining prediction hierarchies differently across layers, allowing some layers to be coded with a greater number of TemporalId values and frequent sub-layer up-switch points and some layers with a prediction hierarchy aiming at a better rate-distortion performance. Moreover, it provides flexibility to encode layer trees of the same bitstream independently from each other. For example, the base layer and an auxiliary picture layer could be encoded by different encoders, and/or encoding of different layer trees could take place at different times. By allowing encoders to operate independently from each other, the encoders have flexibility in determining a prediction hierarchy and the number of TemporalId values used according to the input signal. The encoder may indicate e.g. in a sequence-level syntax structures, such as VPS, whether TemporalId values or alike are aligned (i.e., the same) for coded pictures within an access unit. The decoder may decode e.g. from a sequence-level syntax structure, such as VPS, an indication whether TemporalId values or alike are aligned for coded pictures within an access unit. On the basis of TemporalId values or alike being aligned for coded pictures within an access unit, the encoder and/or the decoder may choose different syntax, semantics, and/or operation than when TemporalId values or alike might not be aligned for coded pictures within an access unit. For example, when TemporalId values or alike are aligned for coded pictures within an access unit, inter-layer RPS syntax, semantics, and/or derivation in the encoding and/or the decoding may utilize information which TemporalId values the pictures used as reference for inter-layer predication between a reference layer and a predicted layer may have and/or which TemporalId values the pictures used as reference for inter-layer predication between a reference layer and a predicted layer are not allowed have. For example, a syntax element called tid_aligned_flag may be included in the VPS and its semantics may be specified as follows: tid_aligned_flag equal to 0 specifies that TemporalId may or may not be the same for different coded pictures of the same access unit. tid_aligned_flag equal to 1 specifies that TemporalId is the same for all coded pictures of the same access unit. The tid_aligned_flag may be taken into account in deriving a list of candidate inter-layer reference pictures. For example, with reference to the above-described third example of constructing reference picture list(s), the pseudo-code to specify a list identifying candidate inter-layer reference pictures, refLayerPicIdc[ ] may be specified as follows: When TemporalId values are indicated to be aligned for all pictures in an access unit, the indicated maximum TemporalId value that may be used for inter-layer prediction affects the derivation of a list of candidate inter-layer reference pictures, i.e. only the pictures with a smaller or equal TemporalId value than the indicated maximum TemporalId value are included in the list of candidate inter-layer reference pictures. When TemporalId values may or may not be aligned for all pictures in an access unit, pictures of any TemporalId values are included in the list of candidate inter-layer reference pictures. FIG. 11shows an example where prediction hierarchies are determined differently across layers. In this example, the base layer (BL) is coded with a hierarchical prediction hierarchy in which codes all pictures with TemporalId of all pictures is equal to 0. It is assumed that the prediction hierarchy used in the BL has been used to obtain a good rate-distortion performance for the base layer. The enhancement layer (EL) has four sub-layers and frequent TSA pictures, which provide the capability of dynamically selecting how many sub-layers are transmitted for the EL. Similarly toFIG. 9, it is remarked that some prediction arrows from EL TID0 pictures are not included in the illustration ofFIG. 11(but can be concluded from the DPB dump). Likewise, the BL prediction arrows are excluded and can be concluded from the DPB dump. An embodiment, which may be applied together with or independent of other embodiments, is described next. With reference to the presented examples of VPS syntax and semantics as well as the above-described third example of constructing reference picture list(s), the following issues have been identified:When a list identifying candidate inter-layer reference pictures, refLayerPicIdc[ ] is derived, the condition “max_tid_il_ref_pics_plus1[refLayerIdx][LayerIdxInVps[nuh_layer_id]]>TemporalId” has the consequence that when max_tid_il_ref_pics_plus1[refLayerIdx][LayerIdxInVps[nuh_layer_id]] is equal to 0 (i.e., when only the IRAP pictures of the reference layer may be used as reference for inter-layer prediction), the index of the reference layer is not included in refLayerPicIdc[ ].max_tid_il_ref_pics_plus1[ ][ ] is used in the inter-layer RPS syntax and semantics in a suboptimal way, because:The syntax elements of inter-layer RPS are included in the slice header even if TemporalId is such that inter-layer prediction is disallowed according to the max_tid_il_ref_pics_plus1[ ][ ] values.The length of the syntax elements num_inter_layer_ref_pics_minus1 and inter_layer_pred_layer_idc[i] is determined on the basis of NumDirectRefLayers[nuh_layer_id]. However, a smaller length could potentially be determined if max_tid_il_ref_pics_plus1[ ][ ] and the TemporalId of the current picture were taken into account, and accordingly inter_layer_pred_layer_idc[i] could be an index among those reference layers that can be used as reference for inter-layer prediction for the present TemporalId. To have correct operation when only the IRAP pictures of the reference layer may be used as reference for inter-layer prediction, the pseudo-code to specify a list identifying candidate inter-layer reference pictures refLayerPicIdc[ ] may be specified as follows: As mentioned, the presently described embodiment may be applied together with other embodiments. The presently described embodiment may be applied with an embodiment in which the encoder may encode and/or the decoder may decode e.g. into/from a sequence-level syntax structure, such as VPS, an indication whether TemporalId values or alike are aligned for coded pictures within an access unit as described in the following. To have correct operation when only the IRAP pictures of the reference layer may be used as reference for inter-layer prediction, the pseudo-code to specify a list identifying candidate inter-layer reference pictures refLayerPicIdc[ ] may be specified as follows: Alternatively, when also utilizing max_tid_il_ref_pics_plus1[ ][ ] more optimally, the embodiment may be realized as described in the following paragraphs. The encoder may encode or the decoder may decode the inter-layer RPS related syntax elements with fixed-length coding, e.g. u(v), where the syntax element lengths may be selected according to the number of potential reference layers enabled by the nuh_layer_id value and the TemporalId value of the current picture being encoded or decoded. The syntax element values may indicate reference pictures among the potential reference layers enabled by the nuh_layer_id value and the TemporalId value. The potential reference layers may be indicated in a sequence-level syntax structure, such as VPS. The direct reference layers of each layer may be indicated separately from the sub-layers that may be used as reference for inter-layer prediction. For example, in MV-HEVC, SHVC and/or alike, the syntax elements direct_dependency_flag[i][j] may be used to indicate potential reference layers and the syntax elements max_tid_il_ref_pics_plus1[i][j] may be used to indicate whether inter-layer prediction may take place only from IRAP pictures and if that is not the case, the maximum sub-layer from which inter-layer prediction may take place. In the context of MV-HEVC, SHVC and/or alike, the variables NumDirectRefLayersForTid[lId][tId] and RefLayerIdListForTid[lId][tId][k] are derived based on VPS extension information. NumDirectRefLayersForTid[lId][tId] indicates the number of direct reference layers which may be used for inter-layer prediction of a picture with nuh_layer_id equal to lId and TemporalId equal to tId. RefLayerIdListForTid[lId][tId][k] is a list of nuh_layer_id values of direct reference layers which may be used for inter-layer prediction of a picture with nuh_layer_id equal to lId and TemporalId equal to tId. For example, the following pseudo-code may be used to derive NumDirectRefLayersForTid[lId][tId] and RefLayerIdListForTid[lId][tId][k], where MaxLayersMinus1 is the number of layers specified in the VPS minus 1 and LayerIdxInVps[layerId] specifies the index of the layer (in the range of 0 to MaxLayersMinus1, inclusive) within some structures and loops specified in the VPS. As mentioned, the presently described embodiment may be applied together with other embodiments. The presently described embodiment may be applied with an embodiment in which the encoder may encode and/or the decoder may decode e.g. into/from a sequence-level syntax structure, such as VPS, an indication whether TemporalId values or alike are aligned for coded pictures within an access unit as described in the following. To have correct operation when only the TRAP pictures of the reference layer may be used as reference for inter-layer prediction, the pseudo-code to derive NumDirectRefLayersForTid[lId][tId] and RefLayerIdListForTid[lId][tId][k] may be specified as follows: NumDirectRefLayersForTid[nuh_layer_id][TemporalId] is used instead NumDirectRefLayers[nuh_layer_id] in the inter-layer RPS syntax and semantics. Moreover, inter_layer_pred_layer_idc[i] is an index k to RefLayerIdListForTid[nuh_layer_id][TemporalId][k] (rather than an index k to RefLayerId[nuh_layer_id][k]). As a consequence, the syntax elements of inter-layer RPS are included in the slice header only if TemporalId is such that inter-layer prediction is disallowed according to the max_tid_il_ref_pics_plus1[ ][ ] values. Moreover, the length of the syntax elements num_inter_layer_ref_pics_minus1 and inter_layer_pred_layer_idc[i] is determined on the basis of NumDirectRefLayersForTid[nuh_layer_id][TemporalId] and hence may be shorter than if the lengths were determined on the basis of NumDirectRefLayers[nuh_layer_id]. For example, the following syntax may be used in the slice segment header syntax structure: The semantics of the above except of the slice segment header syntax structure may be specified as described in the following paragraphs. num_inter_layer_ref_pics_minus1 plus 1 specifies the number of pictures that may be used in decoding of the current picture for inter-layer prediction. The length of the num_inter_layer_ref_pics_minus1 syntax element is Ceil(Log 2(NumDirectRefLayersForTid[nuh_layer_id][TemporalId])) bits. The value of num_inter_layer_ref_pics_minus1 shall be in the range of 0 to NumDirectRefLayersForTid[nuh_layer_id][TemporalId]−1, inclusive. The variable NumActiveRefLayerPics may be derived as follows: inter_layer_pred_layer_idc[i] specifies the variable, RefPicLayerId[i], representing the nuh_layer_id of the i-th picture that may be used by the current picture for inter-layer prediction. The length of the syntax element inter_layer_pred_layer_idc[i] is Ceil(Log 2(NumDirectRefLayersForTid[nuh_layer_id][TemporalId])) bits. The value of inter_layer_pred_layer_idc[i] shall be in the range of 0 to NumDirectRefLayersForTid[nuh_layer_id][TemporalId]−1, inclusive. When not present, the value of inter_layer_pred_layer_idc[i] is inferred to be equal to refLayerPicIdc[i]. The variables RefPicLayerId[i] for all values of i in the range of 0 to NumActiveRefLayerPics−1, inclusive, may be derived as follows: In the case of hybrid codec scalability, a decoded picture of an external base layer may be provided for encoding and/or decoding of the enhancement layers, e.g. to serve as a reference for inter-layer prediction. In some embodiments, it may be required, for example in a coding standard, that the TemporalId values of the coded pictures in an access unit are the same, and the TemporalId value of the external base layer picture may be inferred to be equal to the TemporalId value of the pictures of the access unit which the external base layer picture is associated with. In some embodiments, it may be indicated, for example using the tid_aligned_flag or alike, whether the TemporalId values of the coded pictures in an access unit are required to be the same. When tid_aligned_flag or alike indicates that the TemporalId values of the coded pictures in an access unit are the same, the TemporalId value of the external base layer picture is inferred to be equal to the TemporalId value of the pictures of the access unit which the external base layer picture is associated with. Otherwise, the TemporalId value of the external base layer picture might not have an impact in the encoding or decoding of the pictures in the access unit which the external base layer is associated with and hence a TemporalId value for the external base layer picture needs not be derived. In some embodiments, the TemporalId value of the external base layer picture may be inferred to be equal to the TemporalId value of a selected picture in the access unit which the external base layer picture is associated with. The selected picture may be selected according to constraints and/or an algorithm, which may be specified for example in a coding standard. For example, the selected picture may be a picture for which the external base layer picture is a direct reference picture. If there are multiple pictures for which the external base layer picture is a direct reference picture, for example the one having the smallest nuh_layer_id value may be selected. There may be additional constraints on the TemporalId values of the pictures for an access unit which has an associated external base layer picture. For example, it may be required, e.g. by a coding standard, that the TemporalId values of each picture which use or may use the external base layer as an inter-layer reference picture has to be the same. Consequently, the TemporalId value of the external base layer picture may be derived from any picture for which the external base layer picture is a direct reference picture. A decoding method, which is disclosed inFIG. 12, utilizes a bitstream encoded according to any of the embodiments described above. As shown inFIG. 12, coded pictures of a first scalability layer are received (1200) and decoded (1202). Coded pictures of a second scalability layer are received (1204), wherein the second scalability layer depends on the first scalability layer. Then a layer access picture on the second scalability layer is selected (1206) from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on a lowest temporal sub-layer. Coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture are ignored (1208), and the selected layer access picture is decoded (1210). In an embodiment, the method ofFIG. 13may be appended in subsequent steps to those presented inFIG. 13as follows. The number of sub-layers the decoding of which is enabled by the selected layer access picture may be concluded. Then, pictures following, in decoding order, the selected layer access picture on those sub-layers whose decoding is enabled are sent, whereas pictures following, in decoding order, the selected layer access picture on those sub-layers whose decoding is not enabled are ignored until a suitable sub-layer access picture is reached. In addition to or instead of decoding, a bitstream encoded according to any of the embodiments described above may be utilized in bitrate adaptation by a sending apparatus (e.g. a streaming server) and/or by a gateway apparatus. In the bitrate adaptation method, which is shown inFIG. 13, coded pictures of a first scalability layer are received (1300). Coded pictures of a second scalability layer are also received (1302), wherein the second scalability layer depends on the first scalability layer. A layer access picture on the second scalability layer is selected (1304) from the coded pictures of a second scalability layer, wherein the selected layer access picture is a step-wise temporal sub-layer access picture on the lowest temporal sub-layer. Coded pictures on a second scalability layer prior to, in decoding order, the selected layer access picture are ignored (1306), and the coded pictures of the first scalability layer and the selected layer access picture are sent (1308) in a bitstream. In an embodiment, the decoding method ofFIG. 12may be appended in subsequent steps to those presented inFIG. 12as follows. The number of sub-layers the decoding of which is enabled by the selected layer access picture may be concluded. Then, pictures following, in decoding order, the selected layer access picture on those sub-layers whose decoding is enabled are decoded, whereas pictures following, in decoding order, the selected layer access picture on those sub-layers whose decoding is not enabled are ignored until a suitable sub-layer access picture is reached. According to an embodiment, the layer access picture is the step-wise temporal sub-layer access picture, which depending on the use case, provides an access point either for layer-wise initialization of decoding of a bitstream with one or more temporal sub-layers or for layer-wise bitrate adaptation of a bitstream with one or more temporal sub-layers. The decoding process may be carried out as a joint sub-layer-wise and layer-wise start-up process for decoding presented. This decoding start-up process enables sub-layer-wise initialization of decoding of a bitstream with one or more layers. Thus, according to an embodiment, the method further comprises starting decoding of the bitstream in response to a base layer containing an IRAP picture or an STSA picture on the lowest sub-layer; starting step-wise decoding of at least one enhancement layer in response to said at least one enhancement layer contains IRAP pictures; and increasing progressively the number of decoded layers and/or the number of decoded temporal sub-layers. Herein, the layers may represent an enhancement along any scalability dimension or dimensions, such as those described earlier, e.g. an enhancement in spatial resolution, quality level, views, additional components such as depth, or a combination of any of above. According to an embodiment, the method further comprises generating unavailable pictures for reference pictures of a first picture in decoding order in a particular enhancement layer. According to an alternative embodiment, the method further comprises omitting the decoding of pictures preceding, in decoding order, the TRAP picture from which the decoding of a particular enhancement layer can be started. According to an embodiment, said omitted pictures may be labeled by one or more specific NAL unit types. These pictures, regardless of whether they are specifically marked with a NAL unit type or inferred e.g. by the decoder, may be referred to as cross-layer random access skip (CL-RAS) pictures. The decoder may omit the output of the generated unavailable pictures and/or the decoded CL-RAS pictures. According to an embodiment, the method further comprises maintaining information which sub-layers of each layer have been correctly decoded (i.e. have been initialized). For example, instead of LayerInitializedFlag[i] used in the layer-wise start-up process presented earlier, a variable HighestTidPlus1InitializedForLayer[i] may be maintained for each layer identifier i. HighestTidPlus1InitializedForLayer[i] equal to 0 may indicate that no pictures have been correctly decoded in layer with identifier i since the start-up mechanism was last started. HighestTidPlus1InitializedForLayer[i]−1 greater than or equal to 0 may indicate the highest TemporalId value that of the pictures that have been correctly decoded since the start-up mechanism was last started. A start-up process may be initiated similarly or identically to what was described earlier for the layer-wise start-up mechanism. When a layer-wise start-up mechanism is initiated, all pictures in the DPB may be marked as “unused for reference”. In other words, all pictures in all layers may be marked as “unused for reference” and will not be used as a reference for prediction for the picture initiating the layer-wise start-up mechanism or any subsequent picture in decoding order. A decoding process for a start-up may be for example controlled by two array variables HighestTidPlus1InitializedForLayer[i] and FirstPicInLayerDecodedFlag[i] which may have entries for each layer (possibly excluding the base layer and possibly other independent layers too). When the start-up process is invoked, for example as response to NoClrasOutputFlag being equal to 1, these array variables may be reset to their default values. For example, when there 64 layers are enabled (e.g. with a 6-bit nuh_layer_id), the variables may be reset as follows: the variable HighestTidPlus1InitializedForLayer[i] is set equal to 0 for all values of i from 0 to 63, inclusive, and the variable FirstPicInLayerDecodedFlag[i] is set equal to 0 for all values of i from 1 to 63, inclusive. The decoding process may include the following or similar to control the output of RASL pictures. When the current picture is an IRAP picture, the following applies:If HighestTidPlus1InitializedForLayer[nuh_layer_id] is equal to 0, the variable NoRaslOutputFlag is set equal to 1.Otherwise, if some external means is available to set the variable HandleCraAsBlaFlag to a value for the current picture, the variable HandleCraAsBlaFlag is set equal to the value provided by the external means and the variable NoRaslOutputFlag is set equal to HandleCraAsBlaFlag.Otherwise, the variable HandleCraAsBlaFlag is set equal to 0 and the variable NoRaslOutputFlag is set equal to 0. According to an embodiment, starting the step-wise decoding comprises one or more of the following conditional operations: when a current picture is an IRAP picture and decoding of all reference layers of the IRAP picture has been started, the IRAP picture and all pictures following it, in decoding order, in the same layer are decoded. when the current picture is an STSA picture at the lowest sub-layer and decoding of the lowest sub-layer of all reference layers of the STSA picture has been started, the STSA picture and all pictures at the lowest sub-layer following the STSA picture, in decoding order, in the same layer are decoded. when the current picture is a TSA or STSA picture at a higher sub-layer than the lowest sub-layer and decoding of the next lower sub-layer in the same layer has been started, and decoding of the same sub-layer of all the reference layers of the TSA or STSA picture has been started, the TSA or STSA picture and all pictures at the same sub-layer following the TSA or STSA picture, in decoding order, in the same layer are decoded. These conditional operations may be specified in more details for example as follows. The decoding process may include the following to update the HighestTidPlus1InitializedForLayer for a layer. When the current picture is an IRAP picture and either one of the following is true, HighestTidPlus1InitializedForLayer[nuh_layer_id] is set equal to a maximum TemporalId value plus 1 (where the maximum TemporalId value may be e.g. specified in the VPS or pre-defined in a coding standard).nuh_layer_id is equal to 0.HighestTidPlus1InitializedForLayer[nuh_layer_id] is equal to 0 and HighestTidPlus1InitializedForLayer[refLayerId] is equal to the maximum TemporalId value plus 1 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. When the current picture is an STSA picture with TemporalId equal to 0 and either one of the following is true, HighestTidPlus1InitializedForLayer[nuh_layer_id] is set equal to 1.nuh_layer_id is equal to 0.HighestTidPlus1InitializedForLayer[nuh_layer_id] is equal to 0 and HighestTidPlus1InitializedForLayer[refLayerId] is greater than 0 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. When the current picture is a TSA picture or an STSA picture with TemporalId greater than 0 and both of the following are true, HighestTidPlus1InitializedForLayer[nuh_layer_id] is set equal to TemporalId+1.HighestTidPlus1InitializedForLayer[nuh_layer_id] is equal to TemporalId.HighestTidPlus1InitializedForLayer[refLayerId] is greater than or equal to TemporalId+1 for all values of refLayerId equal to RefLayerId[nuh_layer_id][j], where j is in the range of 0 to NumDirectRefLayers[nuh_layer_id]−1, inclusive. When FirstPicInLayerDecodedFlag[nuh_layer_id] is equal to 0, the decoding process for generating unavailable reference pictures may be invoked prior to decoding the current picture. The decoding process for generating unavailable reference pictures may generate pictures for each picture in a reference picture set with default values. The process of generating unavailable reference pictures may be primarily specified only for the specification of syntax constraints for CL-RAS pictures, where a CL-RAS picture may be defined as a picture with nuh_layer_id equal to layerId and LayerInitializedFlag[layerId] is equal to 0. In HRD operations, CL-RAS pictures may need to be taken into consideration in derivation of CPB arrival and removal times. Decoders may ignore any CL-RAS pictures, as these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for output. A picture having such nuh_layer_id (or alike) and TemporalId (or alike) for which decoding has not yet been initialized may be handled by a decoder in a manner that it is not output by the decoder. Decoding of nuh_layer_id (or alike) with any TemporalId (or alike) value may be considered initialized when there is an TRAP picture with that nuh_layer_id value and the decoding of all the direct reference layers of the layer with that nuh_layer_id value have been initialized. Decoding of nuh_layer_id (or alike) and TemporalId (or alike) may be considered initialized when there is a TSA or STSA picture (or alike) with that nuh_layer_id value and that TemporalId value, and the decoding of all the direct reference layers of the layer with that nuh_layer_id value and that Temporal value have been initialized, and (when TemporalId is greater than 0) the decoding of the layer with that nuh_layer_id value and that TemporalId value minus 1 has been initialized. In the context of MV-HEVC, SHVC and/or alike, the controlling of the output of a picture may be specified as follows or in a similar manner. A picture with TemporalId equal to subLayerId and nuh_layer_id equal to layerId may be determined to be output (e.g. by setting PicOutputFlag equal to 1) by the decoder if HighestTidPlus1InitializedForLayer[layerId] is greater than subLayerId at the start of decoding the picture. Otherwise, the picture may be determined not to be output (e.g. by setting PicOutputFlag equal to 0) by the decoder. The determination of a picture to be output may further be affected by whether layerId is among the output layers of the target output layer set and/or whether a picture to be output is among alternative output layers if a picture at an associated output layer is not present or is not to be output. Cross-layer random access skipped (CL-RAS) pictures may be defined to be pictures with TemporalId equal to subLayerId and nuh_layer_id equal to layerId for which HighestTidPlus1InitializedForLayer[layerId] is greater than subLayerId at the start of decoding the picture. CL-RAS pictures may have the property that they are not output and may not be correctly decodable, as the CL-RAS picture may contain references to pictures that are not present in the bitstream. It may be specified that CL-RAS pictures are not used as reference pictures for the decoding process of non-CL-RAS pictures. According to an embodiment, a layer access picture may be encoded by an encoder to a bitstream that contains only one layer. For example, a layer access picture may be an STSA picture with nuh_layer_id equal to 0 and TemporalId equal to 0. According to an embodiment, the decoder may start decoding from a layer access picture at the lowest layer. For example, the decoder may start decoding from an STSA with nuh_layer_id equal to 0 and TemporalId equal to 0. The decoding may comprise a sub-layer-wise start-up, for example as described above. For example, the decoding may comprise maintaining information which sub-layers of each layer have been correctly decoded (i.e. have been initialized) and switching to the next available sub-layer or layer when a suitable layer access picture, sub-layer access picture, or TRAP picture is available in decoding order. The bitstream being decoded may comprise only one layer or it may comprise several layers. The utilization of the embodiments in bitrate adaptation is discussed in view of several examples. InFIG. 14, it is assumed that the bitstream has been encoded as shown inFIG. 8and that the sender performs bitrate adjustment by selecting adaptively the maximum TemporalId that is transmitted from the EL. For the first GOP, no EL pictures are transmitted. For the second GOP, the sender determines to increase the video bitrate and transmits as many EL sub-layers as possible. As there are STSA pictures available at TID 0, 1 and 2 (i.e. pictures1, A and B, respectively), the sender switches up to transmit sub-layers with TID 0 to 2 starting from the second GOP of the EL. Switching up to TID 3 of the enhancement layer can take place later, when there is an EL IRAP picture or an EL TSA or STSA picture with TID equal to 3. It is noted that if the use of alternative output layers is enabled, pictures would be output constantly at “full” picture rate in this example. If the bitstream has been encoded such that at least one enhancement layer comprises more frequent TSA or STSA pictures than the base layer, for example as shown inFIG. 9, the sender may dynamically adapt the bitrate of the transmission in a layer-wise manner by determining how many sub-layers are transmitted. Bitrate adjustment or bitrate adaptation may be used for example for providing so-called fast start-up in streaming services, where the bitrate of the transmitted stream is lower than the channel bitrate after starting or random-accessing the streaming in order to start playback immediately and to achieve a buffer occupancy level that tolerates occasional packet delays and/or retransmissions. Bitrate adjustment is also used when matching the transmitted stream bitrate with the prevailing channel throughput bitrate. In this use case it is possible to use a greater number of reference pictures in the base layer to achieve better rate-distortion performance. In the example ofFIG. 15, it is assumed that the bitstream has been encoded as shown inFIG. 9and that it has been necessary to reduce the bitrate of the first GOP when the bitstream is transmitted. In this example, only the pictures with TemporalId (TID) equal to 0 are transmitted for the first GOP. It is further assumed that the bitstream can be transmitted at its full bitrate starting from the second GOP. As the second GOP in EL starts with TSA pictures, it is possible to start transmitting EL pictures with all TID values. In the example ofFIG. 16, it is assumed that the bitstream has been encoded such that non-aligned temporal sub-layer access pictures are encoded when only certain temporal levels are used for inter-layer prediction, as shown in the example ofFIG. 10. It is further assumed that the sender is aware that the receiver uses an output layer set where only the enhancement layer is an output layer and hence the transmission of BL sub-layers that are not used as reference for inter-layer prediction is omitted. It is also assumed it has been necessary to reduce the bitrate of the first GOP when the bitstream is transmitted. In this example, the EL pictures with TemporalId in the range of 0 to 2, inclusive, are transmitted for the first GOP. It is further assumed that the bitstream can be transmitted at its full bitrate starting from the second GOP. As the second GOP in EL starts with TSA pictures, it is possible to start transmitting EL pictures with all TID values. In the example ofFIG. 17, it is assumed that the bitstream has been encoded such that prediction hierarchies are determined differently across layers, as shown inFIG. 11. It is further assumed that the sender adjusts the bitrate of the transmitted bitstream, whereupon the sender chooses to transmit only three sub-layers (TID 0, 1 and 2) of the EL. It is noted that if the use of alternative output layers is enabled, pictures would be output constantly at “full” picture rate in this example. FIG. 18shows a block diagram of a video decoder suitable for employing embodiments of the invention.FIG. 18depicts a structure of a two-layer decoder, but it would be appreciated that the decoding operations may similarly be employed in a single-layer decoder. The video decoder550comprises a first decoder section552for base view components and a second decoder section554for non-base view components. Block556illustrates a demultiplexer for delivering information regarding base view components to the first decoder section552and for delivering information regarding non-base view components to the second decoder section554. Reference P′n stands for a predicted representation of an image block. Reference D′n stands for a reconstructed prediction error signal. Blocks704,804illustrate preliminary reconstructed images (I′n). Reference R′n stands for a final reconstructed image. Blocks703,803illustrate inverse transform (T−1). Blocks702,802illustrate inverse quantization (Q−1). Blocks701,801illustrate entropy decoding (E−1). Blocks705,805illustrate a reference frame memory (RFM). Blocks706,806illustrate prediction (P) (either inter prediction or intra prediction). Blocks707,807illustrate filtering (F). Blocks708,808may be used to combine decoded prediction error information with predicted base view/non-base view components to obtain the preliminary reconstructed images (I′n). Preliminary reconstructed and filtered base view images may be output709from the first decoder section552and preliminary reconstructed and filtered base view images may be output809from the first decoder section554. FIG. 20is a graphical representation of an example multimedia communication system within which various embodiments may be implemented. A data source1510provides a source signal in an analog, uncompressed digital, or compressed digital format, or any combination of these formats. An encoder1520may include or be connected with a pre-processing, such as data format conversion and/or filtering of the source signal. The encoder1520encodes the source signal into a coded media bitstream. It should be noted that a bitstream to be decoded may be received directly or indirectly from a remote device located within virtually any type of network. Additionally, the bitstream may be received from local hardware or software. The encoder1520may be capable of encoding more than one media type, such as audio and video, or more than one encoder1520may be required to code different media types of the source signal. The encoder1520may also get synthetically produced input, such as graphics and text, or it may be capable of producing coded bitstreams of synthetic media. In the following, only processing of one coded media bitstream of one media type is considered to simplify the description. It should be noted, however, that typically real-time broadcast services comprise several streams (typically at least one audio, video and text sub-titling stream). It should also be noted that the system may include many encoders, but in the figure only one encoder1520is represented to simplify the description without a lack of generality. It should be further understood that, although text and examples contained herein may specifically describe an encoding process, one skilled in the art would understand that the same concepts and principles also apply to the corresponding decoding process and vice versa. The coded media bitstream may be transferred to a storage1530. The storage1530may comprise any type of mass memory to store the coded media bitstream. The format of the coded media bitstream in the storage1530may be an elementary self-contained bitstream format, or one or more coded media bitstreams may be encapsulated into a container file. If one or more media bitstreams are encapsulated in a container file, a file generator (not shown in the figure) may be used to store the one more media bitstreams in the file and create file format metadata, which may also be stored in the file. The encoder1520or the storage1530may comprise the file generator, or the file generator is operationally attached to either the encoder1520or the storage1530. Some systems operate “live”, i.e. omit storage and transfer coded media bitstream from the encoder1520directly to the sender1540. The coded media bitstream may then be transferred to the sender1540, also referred to as the server, on a need basis. The format used in the transmission may be an elementary self-contained bitstream format, a packet stream format, or one or more coded media bitstreams may be encapsulated into a container file. The encoder1520, the storage1530, and the server1540may reside in the same physical device or they may be included in separate devices. The encoder1520and server1540may operate with live real-time content, in which case the coded media bitstream is typically not stored permanently, but rather buffered for small periods of time in the content encoder1520and/or in the server1540to smooth out variations in processing delay, transfer delay, and coded media bitrate. The server1540sends the coded media bitstream using a communication protocol stack. The stack may include but is not limited to one or more of Real-Time Transport Protocol (RTP), User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), Transmission Control Protocol (TCP), and Internet Protocol (IP). When the communication protocol stack is packet-oriented, the server1540encapsulates the coded media bitstream into packets. For example, when RTP is used, the server1540encapsulates the coded media bitstream into RTP packets according to an RTP payload format. Typically, each media type has a dedicated RTP payload format. It should be again noted that a system may contain more than one server1540, but for the sake of simplicity, the following description only considers one server1540. If the media content is encapsulated in a container file for the storage1530or for inputting the data to the sender1540, the sender1540may comprise or be operationally attached to a “sending file parser” (not shown in the figure). In particular, if the container file is not transmitted as such but at least one of the contained coded media bitstream is encapsulated for transport over a communication protocol, a sending file parser locates appropriate parts of the coded media bitstream to be conveyed over the communication protocol. The sending file parser may also help in creating the correct format for the communication protocol, such as packet headers and payloads. The multimedia container file may contain encapsulation instructions, such as hint tracks in the ISO Base Media File Format, for encapsulation of the at least one of the contained media bitstream on the communication protocol. The server540may or may not be connected to a gateway1550through a communication network. It is noted that the system may generally comprise any number gateways or alike, but for the sake of simplicity, the following description only considers one gateway1550. The gateway1550may perform different types of functions, such as translation of a packet stream according to one communication protocol stack to another communication protocol stack, merging and forking of data streams, and manipulation of data stream according to the downlink and/or receiver capabilities, such as controlling the bit rate of the forwarded stream according to prevailing downlink network conditions. Examples of gateways1550include multipoint conference control units (MCUs), gateways between circuit-switched and packet-switched video telephony, Push-to-talk over Cellular (PoC) servers, IP encapsulators in digital video broadcasting-handheld (DVB-H) systems, or set-top boxes or other devices that forward broadcast transmissions locally to home wireless networks. When RTP is used, the gateway1550may be called an RTP mixer or an RTP translator and may act as an endpoint of an RTP connection. The system includes one or more receivers1560, typically capable of receiving, de-modulating, and de-capsulating the transmitted signal into a coded media bitstream. The coded media bitstream may be transferred to a recording storage1570. The recording storage1570may comprise any type of mass memory to store the coded media bitstream. The recording storage1570may alternatively or additively comprise computation memory, such as random access memory. The format of the coded media bitstream in the recording storage1570may be an elementary self-contained bitstream format, or one or more coded media bitstreams may be encapsulated into a container file. If there are multiple coded media bitstreams, such as an audio stream and a video stream, associated with each other, a container file is typically used and the receiver1560comprises or is attached to a container file generator producing a container file from input streams. Some systems operate “live,” i.e. omit the recording storage1570and transfer coded media bitstream from the receiver1560directly to the decoder1580. In some systems, only the most recent part of the recorded stream, e.g., the most recent 10-minute excerption of the recorded stream, is maintained in the recording storage1570, while any earlier recorded data is discarded from the recording storage1570. The coded media bitstream may be transferred from the recording storage1570to the decoder1580. If there are many coded media bitstreams, such as an audio stream and a video stream, associated with each other and encapsulated into a container file or a single media bitstream is encapsulated in a container file e.g. for easier access, a file parser (not shown in the figure) is used to decapsulate each coded media bitstream from the container file. The recording storage1570or a decoder1580may comprise the file parser, or the file parser is attached to either recording storage1570or the decoder1580. It should also be noted that the system may include many decoders, but here only one decoder1570is discussed to simplify the description without a lack of generality The coded media bitstream may be processed further by a decoder1570, whose output is one or more uncompressed media streams. Finally, a renderer1590may reproduce the uncompressed media streams with a loudspeaker or a display, for example. The receiver1560, recording storage1570, decoder1570, and renderer1590may reside in the same physical device or they may be included in separate devices. A sender1540and/or a gateway1550may be configured to perform bitrate adaptation according to various described embodiments, and/or a sender1540and/or a gateway1550may be configured to select the transmitted layers and/or sub-layers of a scalable video bitstream according to various embodiments. Bitrate adaptation and/or the selection of the transmitted layers and/or sub-layers may take place for multiple reasons, such as to respond to requests of the receiver1560or prevailing conditions, such as throughput, of the network over which the bitstream is conveyed. A request from the receiver can be, e.g., a request for a change of transmitted scalability layers and/or sub-layers, or a change of a rendering device having different capabilities compared to the previous one. A decoder1580may be configured to perform bitrate adaptation according to various described embodiments, and/or a decoder1580may be configured to select the transmitted layers and/or sub-layers of a scalable video bitstream according to various embodiments. Bitrate adaptation and/or the selection of the transmitted layers and/or sub-layers may take place for multiple reasons, such as to achieve faster decoding operation. Faster decoding operation might be needed for example if the device including the decoder580is multi-tasking and uses computing resources for other purposes than decoding the scalable video bitstream. In another example, faster decoding operation might be needed when content is played back at a faster pace than the normal playback speed, e.g. twice or three times faster than conventional real-time playback rate. Available media file format standards include ISO base media file format (ISO/IEC 14496-12, which may be abbreviated ISOBMFF), MPEG-4 file format (ISO/IEC 14496-14, also known as the MP4 format), file format for NAL unit structured video (ISO/IEC 14496-15) and 3GPP file format (3GPP TS 26.244, also known as the 3GP format). The SVC and MVC file formats are specified as amendments to the AVC file format. The ISO file format is the base for derivation of all the above mentioned file formats (excluding the ISO file format itself). These file formats (including the ISO file format itself) are generally called the ISO family of file formats. The basic building block in the ISO base media file format is called a box. Each box has a header and a payload. The box header indicates the type of the box and the size of the box in terms of bytes. A box may enclose other boxes, and the ISO file format specifies which box types are allowed within a box of a certain type. Furthermore, the presence of some boxes may be mandatory in each file, while the presence of other boxes may be optional. Additionally, for some box types, it may be allowable to have more than one box present in a file. Thus, the ISO base media file format may be considered to specify a hierarchical structure of boxes. According to the ISO family of file formats, a file includes media data and metadata that are enclosed in separate boxes. In an example embodiment, the media data may be provided in a media data (mdat) box and the movie (moov) box may be used to enclose the metadata. In some cases, for a file to be operable, both of the mdat and moov boxes must be present. The movie (moov) box may include one or more tracks, and each track may reside in one corresponding track box. A track may be one of the following types: media, hint, timed metadata. A media track refers to samples formatted according to a media compression format (and its encapsulation to the ISO base media file format). A hint track refers to hint samples, containing cookbook instructions for constructing packets for transmission over an indicated communication protocol. The cookbook instructions may include guidance for packet header construction and include packet payload construction. In the packet payload construction, data residing in other tracks or items may be referenced. As such, for example, data residing in other tracks or items may be indicated by a reference as to which piece of data in a particular track or item is instructed to be copied into a packet during the packet construction process. A timed metadata track may refer to samples describing referred media and/or hint samples. For the presentation of one media type, typically one media track is selected. Samples of a track may be implicitly associated with sample numbers that are incremented by 1 in the indicated decoding order of samples. The first sample in a track may be associated with sample number 1. An example of a simplified file structure according to the ISO base media file format may be described as follows. The file may include the moov box and the mdat box and the moov box may include one or more tracks that correspond to video and audio, respectively. The ISO base media file format does not limit a presentation to be contained in one file. As such, a presentation may be comprised within several files. As an example, one file may include the metadata for the whole presentation and may thereby include all the media data to make the presentation self-contained. Other files, if used, may not be required to be formatted to ISO base media file format, and may be used to include media data, and may also include unused media data, or other information. The ISO base media file format concerns the structure of the presentation file only. The format of the media-data files may be constrained by the ISO base media file format or its derivative formats only in that the media-data in the media files is formatted as specified in the ISO base media file format or its derivative formats. The ability to refer to external files may be realized through data references. In some examples, a sample description box included in each track may provide a list of sample entries, each providing detailed information about the coding type used, and any initialization information needed for that coding. All samples of a chunk and all samples of a track fragment may use the same sample entry. A chunk may be defined as a contiguous set of samples for one track. The Data Reference (dref) box, also included in each track, may define an indexed list of uniform resource locators (URLs), uniform resource names (URNs), and/or self-references to the file containing the metadata. A sample entry may point to one index of the Data Reference box, thereby indicating the file containing the samples of the respective chunk or track fragment. Movie fragments may be used when recording content to ISO files in order to avoid losing data if a recording application crashes, runs out of memory space, or some other incident occurs. Without movie fragments, data loss may occur because the file format may typically require that all metadata, e.g., the movie box, be written in one contiguous area of the file. Furthermore, when recording a file, there may not be sufficient amount of memory space (e.g., RAM) to buffer a movie box for the size of the storage available, and re-computing the contents of a movie box when the movie is closed may be too slow. Moreover, movie fragments may enable simultaneous recording and playback of a file using a regular ISO file parser. Finally, a smaller duration of initial buffering may be required for progressive downloading, e.g., simultaneous reception and playback of a file, when movie fragments are used and the initial movie box is smaller compared to a file with the same media content but structured without movie fragments. The movie fragment feature may enable splitting the metadata that conventionally would reside in the movie box into multiple pieces. Each piece may correspond to a certain period of time for a track. In other words, the movie fragment feature may enable interleaving file metadata and media data. Consequently, the size of the movie box may be limited and the use cases mentioned above be realized. In some examples, the media samples for the movie fragments may reside in an mdat box, as usual, if they are in the same file as the moov box. For the metadata of the movie fragments, however, a moof box may be provided. The moof box may include the information for a certain duration of playback time that would previously have been in the moov box. The moov box may still represent a valid movie on its own, but in addition, it may include an mvex box indicating that movie fragments will follow in the same file. The movie fragments may extend the presentation that is associated to the moov box in time. Within the movie fragment there may be a set of track fragments, including anywhere from zero to a plurality per track. The track fragments may in turn include anywhere from zero to a plurality of track runs, each of which document is a contiguous run of samples for that track. Within these structures, many fields are optional and can be defaulted. The metadata that may be included in the moof box may be limited to a subset of the metadata that may be included in a moov box and may be coded differently in some cases. Details regarding the boxes that can be included in a moof box may be found from the ISO base media file format specification. A sample grouping in the ISO base media file format and its derivatives, such as the AVC file format and the SVC file format, may be defined as an assignment of each sample in a track to be a member of one sample group, based on a grouping criterion. A sample group in a sample grouping is not limited to being contiguous samples and may contain non-adjacent samples. As there may be more than one sample grouping for the samples in a track, each sample grouping has a type field to indicate the type of grouping. Sample groupings are represented by two linked data structures: (1) a SampleToGroup box (sbgp box) represents the assignment of samples to sample groups; and (2) a SampleGroupDescription box (sgpd box) contains a sample group entry for each sample group describing the properties of the group. There may be multiple instances of the SampleToGroup and SampleGroupDescription boxes based on different grouping criteria. These are distinguished by a type field used to indicate the type of grouping. The sample group boxes (SampleGroupDescription Box and SampleToGroup Box) reside within the sample table (stbl) box, which is enclosed in the media information (minf), media (mdia), and track (trak) boxes (in that order) within a movie (moov) box. The SampleToGroup box is allowed to reside in a movie fragment. Hence, sample grouping can be done fragment by fragment. In an embodiment, which may applied independently of or together with other embodiments, an encoder or another entity, such as a file creator, encodes or inserts an indication of one or more layer access pictures into a container file, which may for example conform to the ISO Base Media File Format and possibly some of its derivative file formats. A sample grouping for layer access pictures may for example be specified, or layer access picture may be indicated within another more generic sample grouping, e.g. for indication random access points. In some embodiments, a decoder or another entity, such as a media player or a file parser, decodes or fetches an indication of one or more layer access pictures into a container file, which may for example conform to the ISO Base Media File Format and possibly some of its derivative file formats. For example, the indication may be obtained from a sample grouping for layer access pictures, or from another more generic sample grouping, e.g. for indication random access points, which is also capable of indicating layer access pictures. The indication may be used to start decoding or other processing of the layer which the indication is associated with. It needs to be understood that an access unit for scalable video coding may be defined in various ways including but not limited to the definition of an access unit for HEVC as described earlier. Embodiments may be applied with different definitions of an access unit. For example, the access unit definition of HEVC may be relaxed so that an access unit is required to include coded pictures associated with the same output time and belonging to the same layer tree. When the bitstream has multiple layer trees, an access unit may but is not required to include coded pictures associated with the same output time and belonging to different layer trees. In the above, some embodiments have been described using MV-HEVC, SHVC and/or alike as examples, and consequently some terminology, variables, syntax elements, picture types, and so on specific to MV-HEVC, SHVC and/or alike have been used. It needs to be understood that embodiments could be realized with similar respective terminology, variables, syntax elements, picture types, and so on of other coding standards and/or methods. For example, in the above, some embodiments have been described with reference to nuh_layer_id and/or TemporalId. It needs to be understood that embodiments could be realized with any other indications, syntax elements, and/or variables for a layer identifier and/or a sub-layer identifier, respectively. In the above, some embodiments have been described with reference to a step-wise temporal sub-layer access picture on a lowest temporal sub-layer. It needs to be understood that embodiments could be realized similarly with any type of a layer access picture that provides correct decoding capability for a subset of pictures of the layers, such as for certain but not necessarily all sub-layers of a layer. In the above, some embodiments have been described in relation to encoding indications, syntax elements, and/or syntax structures into a bitstream or into a coded video sequence and/or decoding indications, syntax elements, and/or syntax structures from a bitstream or from a coded video sequence. It needs to be understood, however, that embodiments could be realized when encoding indications, syntax elements, and/or syntax structures into a syntax structure or a data unit that is external from a bitstream or a coded video sequence comprising video coding layer data, such as coded slices, and/or decoding indications, syntax elements, and/or syntax structures from a syntax structure or a data unit that is external from a bitstream or a coded video sequence comprising video coding layer data, such as coded slices. In the above, where the example embodiments have been described with reference to an encoder, it needs to be understood that the resulting bitstream and the decoder may have corresponding elements in them. Likewise, where the example embodiments have been described with reference to a decoder, it needs to be understood that the encoder may have structure and/or computer program for generating the bitstream to be decoded by the decoder. The embodiments of the invention described above describe the codec in terms of separate encoder and decoder apparatus in order to assist the understanding of the processes involved. However, it would be appreciated that the apparatus, structures and operations may be implemented as a single encoder-decoder apparatus/structure/operation. Furthermore, it is possible that the coder and decoder may share some or all common elements. Although the above examples describe embodiments of the invention operating within a codec within an electronic device, it would be appreciated that the invention as defined in the claims may be implemented as part of any video codec. Thus, for example, embodiments of the invention may be implemented in a video codec which may implement video coding over fixed or wired communication paths. Thus, user equipment may comprise a video codec such as those described in embodiments of the invention above. It shall be appreciated that the term user equipment is intended to cover any suitable type of wireless user equipment, such as mobile telephones, portable data processing devices or portable web browsers. Furthermore elements of a public land mobile network (PLMN) may also comprise video codecs as described above.
0001S La présente invention concerne un procédé d'oxydation d'hydrocarbures en phase vapeur et en particulier, un procédé visant à préparer l'anhydride maléique. Un procédé connu d'oxydation en phase vapeur pour la prépa-5 ration d'anhydride maléique est basé sur l'oxydation partielle catalytique dn benzène. Dans ce procédé, on met en contact à température élevée avec un catalyseur d'oxydation approprié un mélange gazeux contenant 1,5 % ou moins de benzène, en volume, le reste étant formé d'air. 10 Ce procédé est spécifique pour la préparation de l'anhy dride maléique en ce sens que les produits réactionnels ne contiennent pratiquement pas de sous-produits d'oxydation autres que l'anhydride carbonique et l'eau, mais il présente certaines difficultés. Ainsi, pour une quantité donnée de benzène, on doit 15 manipuler des quantités excessives d'air, la forte dilution de l'anhydride maléique formé et du benzène éventuellement inaltéré dans le mélange réactionnel complique la récupération de ces corps. Etant donné la difficulté de récupérer le benzène non converti dans un. mélange contenant de grandes quantités d*air, 20 il est nécessaire de travailler dans des conditions qui donnent des conversions élerées de benzène mais dans des conditions de conversion élevée, l'anhydride maléique formé s'oxyde plus facilement en anhydride carbonique et en eau et le rendement d'anhydride maléique êst ainsi diminué. 25 On a fait dès tentatives pour surmonter l'un ou l'autre de ces inconvénients. Ainsi par exemple, suivant une proposition antérieure permettant d'appliquer de moindres taux de conversion, on fait passer tin mélange gazeux comprenant -0,3 % en volume de benzène et formé d'air pour le reste à travers un premda: réac-30 teur dans lequel un tiers environ du benzène se convertit en anhydride maléique, puis on sépare l'anhydride maléique et on fait alors arriver le mélange gazeux à un deuxième réacteur dans lequel on convertit en anhydride maléique un autre tiers „du benzène. Suivant une autre proposition qui vise à améliorer le ren-35 dement thermique du procédé et à éviter de comprimer de grandes quantités d'air nouvellement introduit, on applique une technique de recyclage dans laquelle on mélange à de lsair et à du benzène une partie des gaz de sortie du réacteur pour obtenir ua mélange gazeux contenant 1,5 % en volume de benzène et dont la 40 composition se situe hors des limites d'explosion de ce mélange, 69 00018 2000013 v la quantité d'oxygène étant supérieure à celle qu'il faut théo-1 riquement pour oxyder complètement le benzène en anhydride carbonique et eau. L'équation qui représente l'oxydation du benzène en anhy™ 5 dride maléique avec un rendement théorique nécessite 4,5 moles d'oxygène par mole de benzène et celle qui représente l'oxydation complète du benzène en anhydride carbonique et en eau nécessite 7,5 moles d'oxygène par mole de benzène. Dans le procédé antérieur de préparation d'anhydride maléique par oxydation du ben-10 zène et dans les propositions faites antérieurement pour surmon«r ter l'un ou l'autre des inconvénients indiqués plus haut, on utilise toujours un excès d'oxygène sur la quantité théoriquement nécessaire à l'oxydation complète du benzène en anhydride carbonique et en eau. 15 L'invention prévoit un procédé de préparation d'anhydride maléique par oxydation partielle catalytique du benzène qui consiste à mettre en contact à température élevée un mélange gazeux de benzène et d'oxygène moléculaire avec un catalyseur d'oxydation fluidifié, le rapport molaire de l'oxygène au benzène dans 20 le mélange gazeux étant inférieur à 7$5;1j e^ à. séparer l'anhydride maléique du mélange réactionnel gazeux obtenu. De préférence, le rapport molaire oxygène : benzène dans le mélange gazeux est compris entre 0,5:1 et 4,5:1. Pour un mélange gazeux dans lequel le rapport molaire oxy-25 gène : benzène est inférieur à 7,5:1 et en particulier lorsqu'il est inférieur à 4,5=1, il est à prévoir que l'on obtiendra un mélange de produit contenant des quantités excessives de produits d'oxydation intermédiaires entre le benzène et l'anhydride maléique, en particulier des quantités excessives de 30 pr-benzoquinone. De façon surprenante, on a trouvé que dans le procédé suivant l'invention le mélange de produit ne contient pas de quantités notables de p-benzoquinone, la concentration de ce corps dans le mélange de produit étant inférieur à 0,01 % du poids d'anhydride maléique obtenu et pouvant descendre jus-35 qufà 10 parties par million. Le procédé suivant 1'invention permet d'utiliser dans la préparation d'anhydride maléique des mélanges gaseux de benzène et deoxygène contenant une plus fort© concentration de benzène qu'on ne croyait possible d'utiliser, antérieurement, dans la 40 préparation d'anhydride maléique. Pour ses mélanges, on peut 69 00018 3~ 2000013 obtenir un rendement mo3 aire d'anhydride maléique de 70 % ou davantage, relativement au benzène converti en produits d'oxydation. L'invention permet en outre d'utiliser des mélanges gazeux . 5 dent la composition se situe dans la gamme d'explosion pour le mélange particulier qu'on utilise. Il est évident qu'il est nécessaire de prendre des précautions appropriées dans la manipulation de ces mélanges avant et après le contact avec le catalyseur d'oxydation fluidifié. Pour un mélange gazeux de benzène 10 et d'air par exemple, la limite supérieure d'explosion correspond à un mélange contenant 8 % de benzène en volume et on peut utiliser des mélanges présentant une concentration de benzène un pou inférieure à ce chiffre et se situant dans la gamme d'explosion. 15 De préférence, le mélange gazeux contient un gaz diluant tel que l'azote, l'argon ou un autre gaz inerte, l'anhydride carbonique, l'oxyde de carbone, la vapeur d'eau ou des mélanges de ces gaz. On peut avantageusement utiliser l'air comme source d'oxygène et de gaz diluant à la fois et le mélanger à du ben-20 zène dans les proportions voulues pour former le mélange gazeur. On a trouvé que le mélange gazeux peut contenir de petites quantités de composés soufrés sans que cela exerce -une influence nuisible sur le procédé de l'invention. Cela est inattendu car dans le procédé connu de préparation de l'anhydride maléique 25 qui consiste à faire passer sur un catalyseur en couche fixe un mélange contenant 1,5 % en volume ou moins de benzène, le reste étant formé d'air, les composés soufrés ont un effet nuisible sur le catalyseur. Ainsi, dans le procédé de l'invention, on peut utiliser un benzène soufré c'est-à-dire un benzène contenant 30 de petites quantités de composés soufrés comme le sulfure de carbone et le thiophène. On peut avantageusement utiliser le benzène commercial qui contient par exemple jusqu'à 0,2 % en poids de soufre principalement sous forme de sulfure de carbone et de thiophène, ce qui assure une économie sur le prix de revient de 35 la matière première. On a trouvé en outre que lorsqu'on utilise un benzène contenant de petites quantités de composés soufrés,la teneur en soufre du benzène éventuellement récupéré dans le mélange de produit est très inférieure à celle du benzène introduit et que 40 l'on peut obtenir un benzène contenant moins de 10 parties par 69 00018 2000013 t , million environ de soufre. Ainsi, le procédé de l'invention permet d'obtenir un benzène pratiquement exempt de soufre qui constitue un produit supplémentaire utile, en partant d'un benzène commercial relativement peu coûteux. 5 On envisage d'utiliser dans le procédé de l'invention n'importe quel catalyseur à condition qu'il soit actif dans l'oxydation du benzène en anhydride maléique et qu'il soit susceptible d'être convenablement fluidifié. De préférence, le catalyseur est un mélange de catalyseurs sur un support inerte. 10 Comme exemples de mélanges appropriés, on citera ceux à base d'oxydes de tungstène, de vanadium ou de molybdène. Des mélanges particulièrement appropriés sont ceux qui contiennent à la fois de l'anhydride vanadique et de l^anhydride molybdique, le rapport de poids VgO^ : MoO^ étant avantageusement compris entre 3*1 et 15 1:4 et de préférence d'environ 1:2. De préférence, le mélange catalytique contient un additif tel qu'un oxyde de phosphore, le rapport de poids exprimé par le rapport entre ^2^5 -*-es au"frres oxydes étant compris entre 1:5 et 1:10. Le plus avantageux est que le mélange contienne les anhydrides vanadique, molybdique et 20 phosphorique, de préférence en un rapport de poids "V^O^ : MoO^ : PgOj. d'environ 1,0 : 2,0 : 0,4. Le support inerte du mélange catalytique peut être formé par exemple de gel de silice, d'alumine ou de carbure de silicium. Des supports particulièrement appropriés sont l'alumine p 25 fondue ayant une aire spécifique inférieure à 1 m /g et le gel p de silice ayantyûne aire spécifique inférieure à 400 m /g, de 2 préférence inférieure à 250 m /g. On peut préparer ces supports de gel de silice en chauffant à sec un gel de silice de plus grande aire spécifique à une température qui est de préférence 30 de 400-1100°C, avantageusement de 900-1000°C. La diminution d'aire spécifique obtenue dépend à la fois'de la température et du temps de chauffage et on peut obtenir un gel de silice présentant l'aire spécifique désirée en choisissant convenablement ces paramètres. On peut avantageusement effectuer le chauffage 35 à. sec du gel de silice à grande aire spécifique en le maintenant à l'état fluidifié pendant le chauffage, par exemple au moyen d'un courant d'air sec. Pour un catalyseur particulier, on choisit la température de réaction et le temps de contactée manière à obtenir pour un 40 taux de conversion particulier le rendement optimal d'anhydride 69 00018 -5- 2000013 maléique. En général, la température sera de 250-500°C et le temps de contact de 1-10 secondes environ. Dans le procédé de l'invention, la dissipation de la chaleur dégagée dans la réaction d'oxydation s'effectue plus rapide-5 ment que pour les procédés utilisant un catalyseur en couche fixe. L'état fluidifié du catalyseur utilisé dans l'invention facilite le réglage de la température de réaction et l'obtention d'un système stable de conditions de fonctionnement aussi bien au démarrage de la réaction que lorsqu'on passe, en cas de be-10 soin, d'un système de conditions de fonctionnement à un autre. On élimine efficacement les points chauds qui apparaissent souvent dans une couche fixe de catalyseur et qui donnent lieu à une suroxydation. Du fait qu'il utilise un catalyseur fluidifié, le procédé de l'invention comporte moins de risques qu'un pro-15 cédé dans lequel on utilise -un catalyseur en couche fixe et il est donc possible d'utiliser dans le procédé de l'invention un mélange gazeux de benzène et d'air, par exemple, dont la composition se situe dans la gamme d'explosion. En outre, on peut utiliser des réacteurs ayant une plus grande capacité qu'il 20 n'est raisonnable pour un catalyseur en couche fixe, ce qui entraîne une économie sur les investissements et les frais de fonctionnement. On peut séparer 1*anhydride maléique du mélange de produit sortant de la zone de réaction en lavant le mélange avec du ben-25 zène. On peut obtenir un anhydride maléique pratiquement exempt d'eau en mettant le mélange de produit en contact avec du benzène au reflux de sorte que l'anhydride maléique se dissout et se sépare sous l'action du reflux descendant de liquide et que l'eau présente dans le mélange de produit est entraînée dans la 30 vapeur de benzène qui monte. On peut ensuite séparer de façon connue le mélange ascendant de benzène et d'eau. Etant donné que la solution d'anhydride maléique obtenue de cette manière est pratiquement exempte d'eau, on évite l'hydrolyse de l'anhydride maléique en acide maléique et ensuite la formation d'acide fu-35 marique. On peut séparer l'anhydride maléique du benzène utilisé comme solvant par toute méthode appropriée et recycler le benzène . On illustrera maintenant l'invention par les exemples suivants : 69 00018 ~6" 2000013 Exemple 1 On utilise un catalyseur contenant, en poids, 6 % d'anhydride molybdique, 3 % d'anhydride vanadique, 1,2 % d'anhydride phosphorique, le reste étant de l'alumine fondue. L'alumine fon- 5 due présente une grosseur de particules de 0,09-0,3 mm et une p aire spécifique inférieure à 1 m /g et constitue un support pour les autres corps formant un mélange catalytique. On prépare le catalyseur comme suit : on chauffe un mélange comprenant 54 g d'anhydride molybdique et 50 ml de solution 10 aqueuse d'ammoniac 0,880 pour obtenir pratiquement la dissolution de l'anhydride molybdique et à ce mélange, on ajoute 200 ml d'acide chlorhydrique concentré, puis 100 g d'acide oxalique. On dissout dans la solution obtenue 27 g d'anhydride vanadique puis 10,8 g d'anhydride phosphorique pour obtenir une solution du mé-15 lange catalytique. On mélange la solution à 808,2 g du support d'alumine fondue indiqué plus haut qui absorbe complètement la solution. Du support imprégné, on élimine la vapeur d'eau, l'acide chlorhydrique et finalement le chlorure d'ammonium en chauffant le support, tout en agitant, jusqu'à ce qu'on obtienne une 20 matière sèche roulante, puis en fluidifiant le support dans un courant d'air à 200°0. On active le catalyseur formé en le chauffant pendant 6 heures à environ 450°C dans un courant d'air qui maintient le catalyseur à l'état fluidifié. On introduit le catalyseur dans un réacteur tubulaire ver-25 tical chauffé électriquement qui a un diamètre intérieur de 5 cm et une longueur de 120 cm, jusqu'à une hauteur de couche de 43 cm. On fait passer à travers le réacteur chauffé un mélange gazeux de benzène et d'air préchauffé à 120-150°C qui est mis en contact avec le catalyseur dans les conditions indiquées au 30 Tableau 1. Le mélange gazeux sert à fluidifier le catalyseur et à le maintenir dans cet état pendant toute l'opération. Le courant gazeux qui sort du réacteur et qui constitue le mélange de produit contient de l'air, du benzène inaltéré, de l'anhydride maléique, de l'anhydride carbonique et de l'eau; on 35 le fait passer à travers un filtre pour éliminer le catalyseur éventuellement entraîné puis on l'amène à une colonne de lavage garnie dans laquelle on met le courant gazeux en contact avec du benzène chaud en reflux. L'anhydride maléique est séparé du courant gazeux par le liquide en reflux qui descend et il se ras-40 semble au fond de la colonne sous forme de solution dans le ben 69 00018 2000013 zène. Le reste du courant gazeux, dans lequel l'eau formée pendant la réaction d'oxydation est entraînée sous la forme d'un mélange de benzène et d'eau, est refroidi en montant dans la colonne de manière à condenser le benzène et l'eau que l'on recueille et que l'on sépare dans une branche latérale disposée vers le haut de la colonne. Par ce mode de séparation, la solution d'anhydride maléique dans le benzène que l'on obtient est efficacement débarrassée d'eau. On évite ainsi l'hydrolyse de l'anhydride maléique en acide maléique et ensuite la formation d'acide fumarique. Pour déterminer la conversion du benzène en produits d'oxydation, on mesure le bilan de benzène du système. On détermine l'anhydride maléique et la p-benzoquinone de façon connue et on les exprime en parties par million présentes dans l'anhydride maléique formé. Les conditions de réaction appliquées et les résultats obtenus sont indiqués au Tableau 1. TABLEAU 1 20 25 30 35 10 15 ' Numéro d'opération 1 2 3 4 % en volume de benzène contenu dans le mélange gazeux de benzène et d'air 8,6 8,6 8,6 10,0 rapport molaire oxygène : benzène 2,23:1 2,23:1 2,23:1 1,89:1 température de réaction, °C 463 430 404 409 temps de contact, secondes 3,4 5,7 4,0 5,4 conversion molaire % de benzène en produits d'oxydation 20 21 16 18 rendement molaire % d'anhydri-dé maléique relativement au pourcentage molaire de benzène converti en produits d'oxydation 67 68 75 76 production d'anhydride malé-ique, g/litre de catalyseur/ heure 28 28 23,5 23 p-benzoquinone, parties par million 69 00018 -8- 2000013 Exemple 2 Cet exemple illustre l'utilisation d'un benzène contenant des composés soufrés. Dans les opérations 5 et 6 indiquées ci-dessous, le mélange 5 gazeux contient 8,6 % en volume de benzène, le reste étant de l'air. Dans l'opération 5> le benzène est pur et contient moins de 2 parties par million de soufre. Dans l'opération 6, le benzène contient 1 % en volume de thiophène, ce qui correspond à 0,46 % en poids de soufre. Pour les deux opérations, la tempéra-10 ture est de 420°C, le temps de contact de 3*8 secondes et le catalyseur et le procédé sont conformes à l'exemple 1. Les résultats obtenus au bout de 6 heures de fonctionnement sont indiqués au tableau 2. TABLEAU 2 Numéro d'opération Opération 5 benzène pur Opération 6 benzène contenant 1 % en volume de thiophène conversion molaire % de benzène en produits d'oxydation 19 20 rendement molaire % d'anhydride maléique relativement au pour centage molaire de benzène con verti en produits d'oxydation 69 69 p-benzoquinone, parties par million y\J Comme on le voit par les résultats ci-dessus, on n'obtient aucune différence effective dans la conversion du benzène ni dans le rendement d'anhydride maléique quand on introduit le composé soufré dans le mélange gazeux. Exemple 3 35 Dans cet exemple, on utilise des mélanges gazeux de ben zène et d'air contenant 8,6 % et 15,2 % de benzène en volume, avec des catalyseurs contenant, en poids, 15,3 % et 10,2 % de mélange catalytique, le reste étant formé de support. Le support pour chaque opération est le gel de silice. 69 00018 "9" 2000013 Pour obtenir le gel de silice servant de support pour une opération particulière, on chauffe à 900-1000°G un gel de silice ayant une aire spécifique de 500 m^/g et une grosseur de particules de 0,06-0,35 mm pendant heures, dans un tube, où le gel 5 est maintenu à l'état fluidifié par un courant d'air sec. Pendant le chauffage, il se produit une contraction du gel et par suite une diminution de l'aire spécifique. La diminution d'aire spécifique que l'on obtient est fonction de la température et du temps de chauffage. 10 On prépare le mélange catalytique et on le dépose sur le gel de silice de façon similaire à ce qui est indiqué pour l'exan-ple 1 et pour chaque opération l'appareil et le procédé sont aussi conformes à l'exemple 1. Le Tableau 3 indique la composition du catalyseur et du mé-15 lange gazeux, les conditions de réaction utilisées et les résultats obtenus pour une série d'opérations. TABLEAU 3 Numéro d'opération 20 7 8 9 10 % en volume de benzène contenu dans le mélange gazeux de benzène et d'air 15,2 15,2 8,6 8,6 25 rapport molaire oxygène : benzène 1,17:1 1,17:1 2,23:1 2,23:1 aire spécifique du support de silice, *2/g 500 150 353 153 mélange catalytique, % en poids du catalyseur total (mélange catalytique + support) MoO? 6,0 6,0 9,0 9,0 30 Y205 3,0 3,0 4,5 4,5 p2°5 1,2 1,2 1,8 1,8 température de réactd on, *0 326 325 280 280 35 temps de contact, secondes - - 6,15 6,15 4,3 4,3 % molaire de conversion du benzène en produits d'oxy-iatiom 3,5 9,8 5,4 5,8 A(\ 69 0001Ô 2000013 TABLEAU 3 (Suite) Numéro d'opération 7 8 9 10 rendement molaire % d'anhydride maléique relativement au pourcentage molaire de benzène converti en produits d'oxydation 49 58 48 65 production d'anhydride maléique, g/1 de catalyseur/h 5 7,5 5,5 8,1 p-benzoquinone, parties par million .Exemple 4 15 Cet exemple illustre l'utilisation, dans un procédé suivant l'invention, de mélanges gazeux de benzène et d'air dont la composition se situe dans la gamme d'explosion. Le catalyseur contient en poids 6 % de MoOj, 3 % de VgO^ et 1,2 % de sur 1111 suPPor-b de gel de silice ayant une aire 20 spécifique de 87 m^/g. Pour préparer le support, on chauffe un p gel de silice ayant une aire spécifique de 500 m /g de la façon indiquée à l'exemple 3; on prépare le mélange catalytique et on le dépose sur le support de façon similaire à ce qui est indiqué à 1'exemple 1. 25 Les résultats obtenus pour une série d'opérations sont in diqués au Tableau 4, Pour chaque opération, l'appareil et le procédé sont conformes à l'exemple 1 si ce n'est que lôrsqu'on utilise des mélanges gazeux se situant dans la gamme d'explosion, on inclut dans les tuyaux à gaz des organes appropriés d'arrêt 30 de retour de flamme. On utilise dans chaque opération «tia température de réaction de 315°C et un temps de contact de 4,3 secondes. 69 00018 -11- 2'. 00013 TABLEAU 4 Numéro d'opération 11 12 13 14 % en poids de benzène contenu dans le mélange gazeux de benzène et d'air 8,6 5,65 4,55 ' 3,37 rapport molaire oxygène : benzène 2,23:1 3,5:1 4,4:1 6,0:1 conversion molaire % de benzène en produits d'oxydation 7,3 9,0 11,0 % 90,0 rendement molaire % d'anhydride maléique relativement au pourcentage molaire de benzène converti en produits d'oxydation 67 56 50 41 production d'anhydride maléique, g/1 de catalyseur/h 10,5 7 5,5 27 p-benzoquihone, parties par million 69 00018 -12- 2000013 - REVENDICATIONS - 1 - Un procédé de préparation d'anhydride maléique par oxydation partielle du benzène, caractérisé en ce que l'on met en contact à température élevée un mélange gazeux de benzène et 5 d'oxygène moléculaire avec un catalyseur d'oxydation fluidifié, le rapport molaire oxygène : benzène dans le mélange gazeux étant inférieur à 7,5:1, et en ce que l'on Bépare l'anhydride maléique du mélange gazeux formé. 2 - Un procédé selon la revendication 1, caractérisé en 10 ce que le rapport molaire oxygène : benzène dans le mélange gazeux est inférieur à 4,5:1 et supérieur à 0,5:1. 3 - Un procédé selon les revendications 1 ou 2, caractérisé en ce que le benzène contient du soufre. 4 - Un procédé selon la revendication 3* caractérisé en 15 ce que la teneur en soufre du benzène, exprimée en soufre, est de 0,5 % au maximum en poids. 5 - Un procédé selon la revendication 3, caractérisé en ce que la teneur en soufre du benzène, exprimée en soufre, est de 0,2 % au maximum en poids. 20 6 - Un procédé selon l'une des revendications précédentes, caractérisé en ce que le mélange gazeux contient un gaz diluant qui est inerte vis-à-vis des réactifs et des produits. 7 - Un procédé selon la revendication 6, caractérisé en ce que le gaz diluant est l'azote. 25 8 - Un procédé selon la revendication 7i caractérisé en ce que la source d'azote et d'oxygène est l'air. 9 - Un procédé selon l'une des revendications précédentes, caractérisé en ce que la température élevée est comprise entre 250 et 500°C. 30 10 - Un procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur d'oxydation est formé d'un mélange catalytique propre à oxyder le benzène en anhydride maléique et d'un support inerte sur lequel est appliqué ce mélange. 11 - Un procédé selon la revendication 10, caractérisé en 35 ce que le mélange catalytique comprend un ou plusieurs des oxydes de tungstène, de vanadium et de molybdène. 12 - Un procédé selon l'une des revendications 10 ou 11, caractérisé en ce que le support inerte est un support d'aire spécifique réduite. 69 00018 "15~ 2C 00013 13 - Un procédé selon, la revendication 12, caractérisé en- ce que le support inerte est formé d'alumine fondue ayant une p aire spécifique inférieure à 1 m /g. 14 - Un procédé selon la revendication 12, caractérisé en 5 ce que le support inerte est un gel de silice ayant une aire spécifique inférieure à 400 m^/g. 15 - Un procédé selon la revendication 14-, caractérisé en ce que le gel de silice a une aire spécifique inférieure à 250 m2/g. 10 i6 - Un procédé selon l'une des revendications 11 à 15, caractérisé en ce que le mélange catalytique comprend à la fois de l'oxyde de vanadium et àqâ.;oxyde de molybdène. 17 - Un procédé selon la revendication 16, caractérisé en ce que le rapport de poids de l'oxyde de vanadium à l'oxyde de 15 molybdène est compris entre 3'^ et 1:4. 18 - Un procédé selon la revendication 17, caractérisé en ce que le rapport de poids de l'oxyde de vanadium à l'oxyde de molybdène est de 1:2. 1Q - Tin procédé selon l'une des revendications 11 à 18, 20 caractérisé en ce que le mélange catalytique contient en outre de 1'oxyde de phosphore. 20 - Un procédé selon la revendication 19, caractérisé en ce que le rapport de poids entre les oxydes de phosphore et les autres oxydes présents dans les mélanges catalytiques 25 est compris entre 1:5 et 1:10. 21 - Un procédé selon la revendication 19, caractérisé en ce que le mélange catalytique comprend de l'oxyde de vanadium, de l'oxyde de molybdène et de l'oxyde de phosphore en des rapports de poids de 2,5:5*1-30 22 - Un procédé selon l'une des revendications 1 à 21, caractérisé en ce que le temps de contact du mélange gazeux avec le catalyseur d'oxydation fluidifié est de 1-10 secondes. 23 - Un procédé selon l'une des revendications précédentes, caractérisé en ce que l'on sépare l'anhydride maléique du mélan- 35 ge réactionnel gazeux formé en lavant celui-ci avec du benzène. 24 - Un procédé selon la revendication 23, caractérisé en ce que l'en, lave le mélange réactionnel gazeux obtenu au moyen de b«naè*e Maintenu en reflux. 25 - Un procédé selon la revendication 24, caractérisé en 40 ce que l'«a *et le mélange réactionnel gazeux obtenu en contact 69 00018 2000013 t avec du benzène dans une zone contenant la phase vapeur du benzène en reflux, de sorte que l'anhydride maléique est séparé par le reflux de liquide qui se condense. 26 - Un procédé selon la revendication 25» caractérisé en 5 ce que l'on sépare l'eau présente dans 1© mélange gazeux obtenu en retirant de la zone des vapeurs contenant dm benzène et d© X'eaiio 27 - TJn procédé selon l'iœo -ios revendications préeé&eniîsa caractérisé en ce que l'on récupèr?- le benzène inaltéré qui s© '.O trouve éventuellement dans le mélange obtanu et que l*oa recycle au moins une partie du benzène récupéré vers la zone de réacticn0 28 - l'anhydride maléique pour autant qu'il est obtenu par un procédé selon l'une des revendications 1 à 27« BAD ORIGINAL
Reducing battery consumption at a user equipment The present disclosure presents a method and an apparatus for reducing battery consumption at a user equipment (UE). For example, the method may include configuring a 10 ms transmission mode on an uplink (UL) channel at the UE, indicating configuration of the 10 ms transmission mode to a base station in communication with the UE, compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. As such, reduced battery consumption at a UE may be achieved. BACKGROUND Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to reducing battery consumption at a user equipment (UE). Circuit-switched W-CDMA voice communications are performed over a dedicated channel (DCH). The DCH for voice is comprised of two logical channels, a dedicated traffic channel (DTCH) with a 20 ms transmission time interval (TTI) and a dedicated control channel (DCCH) with a 40 ms TTI. A dedicated physical control channel (DPCCH) carries control information generated at the physical layer, e.g., pilot, power control, and rate bits. The operation of these channels consumes battery power at a user equipment (UE), thereby reducing the time the UE can operate on battery power. Thus, there is a desire for reducing battery consumption at the UE during operation of these channels. SUMMARY The present disclosure presents an example method and apparatus for reducing battery consumption at a user equipment (UE). For example, the present disclosure presents an example method for configuring a 10 ms transmission mode on an uplink (UL) channel at the UE, indicating configuration of the 10 ms transmission mode to a base station in communication with the UE, compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. Additionally, the present disclosure presents an example apparatus for reducing battery consumption at a user equipment (UE) that may include means for configuring a 10 ms transmission mode on an uplink (UL) channel at the UE, means for indicating configuration of the 10 ms transmission mode to a base station in communication with the UE, means for compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, means for transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and means for performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI In a further aspect, the presents disclosure presents an example non-transitory computer readable medium storing computer executable code for reducing battery consumption at a user equipment (UE) that may include code for configuring a 10 ms transmission mode on an uplink (UL) channel at the UE, code for indicating configuration of the 10 ms transmission mode to a base station in communication with the UE, code for compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, code for transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and code for performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. Furthermore, in an aspect, the present disclosure presents an example apparatus for reducing battery consumption at a user equipment (UE) that may include a transmission mode configuring component to configure a 10 ms transmission mode on an uplink (UL) channel at the UE, a transmission mode indicating component to indicate configuration of the 10 ms transmission mode to a base station in communication with the UE, a compression component to compress a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, a transmission component to transmit the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and a discontinuous transmission (DTX) component to perform a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. DETAILED DESCRIPTION The present disclosure provides a method and apparatus for reducing battery consumption at a user equipment (UE) during operation of a dedicated channel (DCH) by configuring a 10 ms transmission mode on an uplink (UL) at the UE, indicating configuration of the 10 ms transmission mode to a base station in communication with the UE, compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI, and performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. Referring toFIG. 1, a wireless communication system100is illustrated that facilitates reducing battery consumption at a user equipment (UE). For example, system100includes a UE102that may communicate with a network entity110and/or base station via one or more over-the-air links114and/or116. For example, UE102may communicate with base station112on an uplink (UL)114and/or a downlink (DL)116. The UL114is generally used for communication from UE102to base station112and/or the DL116is generally used for communication from base station112to UE102. In an aspect, network entity110may include one or more of any type of network components, for example, an access point, including a base station (BS) or Node B or eNode B or a femto cell, a relay, a peer-to-peer device, an authentication, authorization and accounting (AAA) server, a mobile switching center (MSC), a radio network controller (RNC), etc., that can enable UE102to communicate and/or establish and maintain wireless communication links114and/or116, which may include a communication session over a frequency or a band of frequencies that form a communication channel, to communicate with network entity110and/or base station112. In an additional aspect, for example, base station112may operate according to a radio access technology (RAT) standard, e.g., GSM, CDMA, W-CDMA, HSPA or a long term evolution (LTE). In an additional aspect, UE102may be a mobile apparatus and may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. In an aspect, UE102may be configured to include a configuration manager104to configure a transmission mode106of an uplink (UL) channel at the UE. For example, in an aspect, configuration manager104may configure the transmission mode of a UL channel (e.g., dedicated physical control channel (DPCCH)) in a 10 ms transmission mode or a 20 ms transmission mode, where the value 10 ms or 20 ms indicates a duration of a transmission for the respective mode. In the present disclosure, the terms uplink (UL) and UL channel may be used interchangeably, and in an aspect, the UL or the UL channel may include, but is not limited to, an UL DPCCH. The UE uses the configured transmission mode for transmitting data on the UL (e.g., link114) from UE102to network entity110and/or base station112. In an aspect, the UL channel used for transmission in the 10 ms or 20 ms transmission mode may be a UL DPCCH that carries control information, e.g., pilot, power control, and rate bits, generated at the physical layer. In an aspect, when configuration manager104configures UE102to operate in the 10 ms transmission mode, UE102may compress a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission, and transmit the compressed transmission during a first 10 ms of the 20 ms TTI. Further, the UE may perform a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI In an additional or optional aspect, configuration manager104may configure UE102to receive a downlink (DL) dedicated physical channel (DPCH) during the whole duration of the 20 ms TTI or only during the first 10 ms of the 20 ms TTI. In a further additional aspect, configuration manager may configure UE102to suspend transmission of TPC commands to the base station during the second 10 ms of the 20 ms TTI as the UE may be in a discontinuous transmission (DTX) mode during the second 10 ms of the 20 ms TTI. Additional aspects, which may be performed in combination with the above aspects or independently thereto, are discussed below and may lead to further battery-efficient operation of UE102. FIG. 2illustrates an example aspect of a frame structure200of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode with an early block error rate (BLER) target of 1% at slot15, always-on DL DPCH, and suspended inner loop power control (ILPC), in a DL frame early termination-less (FET-less) operation of a dedicated channel (DCH). In an aspect, configuration manager104may configure UE102to operate in a 10 ms transmission mode240during transmission of a first voice frame (e.g., a 20 ms voice frame) that includes a first 10 ms radio frame204(e.g., radio frame1) and a second 10 ms radio frame208(e.g., radio frame2) on UL to base station112. UE102may indicate (e.g., notify) the configured transmission mode240to base station112by transmitting a transport format combination indicator (TFCI)226in the first 10 ms radio frame204on UL DPCCH224. In wireless networks, TFCI226may be used to indicate or inform the receiving side (e.g., base station112) of the current transport format combination (TFC) and how to decode, de-multiplex, and deliver the received data on the appropriate transport channels. For example, in an aspect, a most significant bit (MSB) of TFCI226may be set to a value of 1 to indicate the UE is configured for transmission in the 10 ms transmission mode. In an additional or optional aspect, the MSB of TFCI may be set to a value of 0 (at228) to indicate the UE is configured for transmission in the 20 ms transmission mode242, e.g., for transmitting a second voice frame (e.g., a 20 ms voice frame) that includes radio frame3(212) and radio frame4(216). In a further additional or optional aspect, two different blocks of TFCI values may be used to identify the two different transmission modes (e.g., 10 ms and 20 ms transmission modes). In an additional aspect, TFCI values may be sent using a shorter code over the first few slots, e.g., using the first 10 slots and a punctured code obtained by puncturing the R99 TFCI encoder. This may give base station112sufficient time to decode the TFCI values and identify whether the UE is in a 10 ms transmission mode or in a 20 ms transmission mode. In an optional aspect, dedicated physical control channel (DPCCH) of R99 may be used, and base station112may only collect the information about TFCI values over the first, e.g.,10, slots to decode the TFCI values early. In an aspect, UE102may dynamically switch between the 10 ms transmission mode240and the 20 ms transmission mode242based on a UE metric. For example, UE102may dynamically switch from 20 ms transmission mode242to the 10 ms transmission mode240based on available UE power headroom. UE power headroom is generally defined as transmission power left for the UE to use in addition to the power being used by the current transmission. Once the UE switches from the 20 ms transmission mode to the 10 ms transmission mode, UE102may indicate the current transmission mode (e.g., 10 ms transmission mode) to the base station using TFCI values configured at the UE (e.g.,226), as described above. In an aspect, when UE102is configured to operate in the 10 ms transmission mode240, UE102compresses the 20 ms transmission associated with a 20 ms transmission time interval (TTI) into one 10 ms compressed transmission and transmits the compressed radio frame during the duration of the first 10 ms of the 20 ms TTI. This allows the UE to enter a discontinuous transmission (DTX) mode230during the second 10 ms of the 20 ms TTI to reduce battery consumption at the UE. DTX mode230generally allows a UE to suspend or stop transmission of a channel where there are no packets for transmission on the channel to conserve battery power. In an aspect, when the UE102transmits the compressed transmission during the first 10 ms of the 20 ms TTI and enters the DTX mode230during the second 10 ms of the 20 ms TTI, network entity110and/or base station112may configure an early block error rate (BLER) target206at the base station112to enable the base station112to complete transmission on the DL earlier than normal (e.g., prior to the completion of the second 10 ms of the 20 ms TTI) so that the UE102can maximize savings by entering a discontinuous reception (DRX) mode on the DL at the UE. The BLER is generally defined as the ratio of the number of erroneous blocks received (e.g., at base station112) to the total number of blocks sent (e.g., from UE102). An erroneous block is defined as a transport block for which the cyclic redundancy check (CRC) failed. The early BLER target206as described herein allows increasing or maximizing battery savings at the UE102by enabling DRX operation. For example, the early DL BLER target206may be shape the DL decoding time and may force the UE102to decode the DL radio frame earlier in the TTI. For instance, in an aspect, the value of the early BLER target206may configured to e.g., 1%, which is the typical value used in R99 DCH communications, a higher value, or a residual BLER constraint of 1% for the overall link performance, or a combination of these. For example, when the early BLER target206is configured for 1% at slot15, the UE102may perform one decoding attempt at the early BLER target slot (e.g., slot15) and adjust its DL DPCH set point through outer loop power control (OLPC) mechanism to ensure that the DL DPCH decoding success rate meets the 1% BLER target set at slot15. The OLPC mechanism is generally used to maintain the quality of communication at the level of a bearer service quality requirement, while using as lower amount of power as possible. In an additional example, when the early BLER target206is configured to a value higher than 1%, the UE may have to perform two decoding attempts, one at the early target slot (e.g., slot15), and if not successful, another decoding attempt after one full TTI equivalent of DPCH packets are received (e.g., 20 ms for DTCH, 40 ms for DCCH+DTCH). Additionally, the UE102may use joint coding of classes A, B, and C bits and cyclic redundancy check (CRC) to test whether the first decoding attempt succeeds or not. Further, the UE102may adjust its OLPC set point for DL DPCH so that the decoding success rate for DL DPCH at the slot for the early BLER target206meets the value of the early BLER target206. The UE102may also keep track of overall BLER statistics of the packet, including DL DPCH frames that fail at the early decoding attempt, and may use a secondary decoding attempt at the end of the TTI. Furthermore, the UE102may adjust the OLPC set point in such a way that the overall BLER statistics meet the overall BLER target value. In an aspect, in the DL frame early termination-less (FET-less) operation (or without FET), the TTI values and physical channel procedures, e.g., rate matching, multiplexing, interleaving need not be different from R99 procedures. FET is generally defined as enabling a UE102(or base station112) to not have to transmit an entire frame if the UE102(or the base station112) has already successfully decoded the information and sent an acknowledgement (ACK) receipt. Additionally, mechanisms like joint coding of class A, B, and C adaptive multi-rate (AMR) codec bits may still be used to allow early decoding of DL DPCH before the early target slot. Further, the same DL DPCH TTI value may be used to process DL DTCH and DL DCCH channels with or without joint coding of Class A, B, and C bits. In an aspect, for example, network entity110and/or base station112may configure an early BLER target of 1% at slot15(e.g., at the end of the first 10 ms radio frame204). In an additional or optional aspect, if the early 1% BLER target at slot15206is a burden on the link capacity (e.g., achieving early 1% BLER at the end of slot15is not possible (or less probable) due to network conditions), the early BLER target of 1% may be configured at slot20(e.g., provides additional time, e.g., 5 more slots) or slot25(e.g., provides additional time, e.g., 10 more slots) for achieving the desired BLER. The configuration of slot numbers for early BLER target206may be configured based on the characteristics of the uplink (e.g., quality of the uplink, interference from other base stations, and/or UEs, etc.). In an additional aspect, network entity110and/or base station112may continue transmission of DL DPCH on the downlink beyond (or past) the early BLER target slot (e.g., slot15inFIG. 2) during the second 10 ms of the 20 ms TTI. However, when the UE102is in the 10 ms transmission mode240, UE102may not respond to transmit power control (TPC) commands from the base station112during the second 10 ms radio frame208, and the base station112may suspend transmitting TPC commands to the UE102. Therefore, in an aspect, base station112may suspend the inner loop power control (ILPC) mechanism at the base station112, represented at220inFIG. 2. ILPC, for example, in the uplink, is generally defined as the ability of the UE102transmitter to adjust its output power in accordance with one or more transmit power control (TPC) commands received on the downlink from the base station112in order to keep the received uplink signal-to-interference ratio (SIR) at a given SIR target. In an additional or optional aspect, network entity110and/or base station112may suspend (e.g., discontinue) transmission of DL DPCH on the downlink beyond the early BLER target slot (e.g., slot15inFIG. 2) during the second 10 ms of the 20 ms TTI. For example, base station112may perform a discontinuous transmission (DTX) of DL DPCH beyond the early BLER target slot in the second 10 ms of the 20 ms TTI. The DTX of DL DPCH past the early BLER target slot may improve link efficiency in the DL. In an aspect, the DTX of DL in response to suspension (e.g., possible gating) of DL DPCH may be applied at the physical channel level by DTX of the symbols over physical composite transport channel (CCtrCh). In an additional or optional aspect, UE102may be configured to operate in a 20 ms transmission mode240or dynamically switch to the 20 ms transmission mode242during the next TTI, e.g., through the duration of radio frames212and216. The UE102may indicate the 20 ms transmission mode to network entity110and/or base station112using a TFCI value of zero (at228), as described above. Additionally, in an aspect, the UE102may operate in a normal ILPC state222(e.g., no suspension of ILPC mechanism) during the second 10 ms216of the (second)) 20 ms s TTI. FIG. 3illustrates an example aspect of a frame structure300of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode with early BLER target of 1% at slot15, and discontinuous DL DPCH, in a DL FET-less operation of a DCH. In this example aspect illustrated inFIG. 3, early BLER target of 1% at slot15(at206) is configured with discontinuous transmission (DTX)314of DL DPCH beyond the early BLER target slot15. That is, DL DPCH202is not transmitted by base station112beyond slot15once the early BLER target is reached. In an additional aspect, because of the DTX314of DL DPCH on the downlink, this aspect further allows UE102to perform a discontinuous reception (DRX)332(in addition to DTX230on the UL) for additional battery savings. Additionally, base station112may suspend the inner loop power control (ILPC) mechanism at the base station112during the second 10 ms of the 20 ms TTI. FIG. 4illustrates an example aspect of a frame structure400of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode with early BLER target of 1% at slot20, discontinuous DL DPCH, and suspended ILPC. In this example aspect illustrated inFIG. 4, early BLER target of 1% at slot20(at406) is configured with discontinuous transmission (DTX)414of DL DPCH202beyond slot20of the second 10 ms of the 20 ms TTI. That is, DL DPCH202is not transmitted by base station112beyond slot20once the early BLER target406is reached at slot20. In an additional aspect, this allows UE102to perform a discontinuous reception (DRX)432(in addition to DTX230on the UL) beyond slot20at the UE for additional battery savings. Additionally, base station112may suspend the inner loop power control (ILPC) mechanism at the base station112during the second 10 ms of the 20 ms TTI. FIG. 5illustrates an example aspect of a frame structure500of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode for all BLER configurations, always-on DL DPCH, and always suspended ILPC. In this example aspect illustrated inFIG. 5, early BLER target of 1% may be configured for any slot during the duration of the second 10 ms radio frame208with always-on transmission of DL DPCH. Additionally, the ILPC mechanism is always suspended (e.g., for reducing complexity during implementation) during the duration of the second 10 ms of the 20 ms TTI, e.g., during radio frame2(208) and radio frame4(216), represented by520and522inFIG. 5. This eliminates the need for the base station to have to identify (or determine) whether the UL is in a 10 ms transmission mode or a 20 ms transmission mode. However, this may slightly impact the UL performance when the UL is in a 20 ms transmission mode due to the absence of ILPC during the second 10 ms of the 20 ms TTI. FIG. 6illustrates an example aspect of a frame structure600of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode with early BLER target of 1% at slot20, discontinuous DL DPCH, and always suspended ILPC. In this example aspect illustrated inFIG. 6, early BLER target of 1% is configured at slot20(at606) with discontinuous transmission (DTX)414of DL DPCH beyond the early BLER target slot20. Additionally, the ILPC mechanism is always suspended, e.g., at420and522, during the duration of the respective second 10 ms of the 20 ms TTI. FIG. 7illustrates an example aspect of a frame structure700of radio frames for downlink channel202and uplink channel224associated with UE102operating in a 10 ms transmission mode with early BLER target of 1% at slot20, discontinuous DL DPCH, and suspended ILPC. In this example aspect illustrated inFIG. 7, early BLER target of 1% is configured at slot20(at706) with discontinuous transmission (DTX)414of DL DPCH202beyond the early BLER target slot20. Additionally, the ILPC mechanism is suspended, e.g., at420, during the second 10 ms radio frame (208) from slots16-20. Although, 1% BLER value is illustrated inFIGS. 2-7, other BLER values may also be used. FIG. 8illustrates an example methodology800for reducing battery consumption during operation of a dedicated channel (DCH) at a user equipment (UE). In an aspect, at block802, methodology800may include configuring a 10 ms transmission mode on an uplink (UL) channel at the UE. For example, in an aspect, UE102and/or configuration manager104may include a specially programmed processor module, or a processor executing specially programmed code stored in a memory, to configure a 10 ms transmission mode240on an uplink (UL) channel at the UE. As described above, in reference toFIG. 2, for example, UL DPCCH224may be configured in the 10 ms transmission mode for reducing battery consumption at the UE. For instance, in an aspect, UE102and/or configuration manager104may configure the transmission mode of an UL channel (e.g., 10 ms transmission mode or 20 ms transmission mode) based on UE power headroom. In an aspect, as discussed below with regard toFIG. 9, configuration manager104may include a transmission mode configuration component902to perform this functionality. In an aspect, at block804, methodology800may include indicating configuration of the 10 ms transmission mode to a base station in communication with the UE. For example, in an aspect, UE102and/or configuration manager104may include a specially programmed processor module, or a processor executing specially programmed code stored in a memory, to indicate configuration of the 10 ms transmission mode to base station112in communication with UE102. For instance, in an aspect, UE102and/or configuration manager104may set of a value of TFCI226to a certain value (e.g., a value of 1) that identifies or indicates the 10 ms transmission mode, and transmitting TFCI226to base station112, such as via a communication component (e.g., transceiver) of UE102transmitting TFCI226in a radio frame on a communication link (e.g., UL DPCCH224). In an aspect, as discussed below with regard toFIG. 9, configuration manager104may include a transmission mode indicating component904to perform this functionality. In an aspect, at block806, methodology800may include compressing a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission. For example, in an aspect, UE102and/or configuration manager104may include a specially programmed processor module, or a processor executing specially programmed code stored in a memory, to compress a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission. For instance, in an aspect, UE102and/or configuration manager104may compress a 20 ms transmission (204,208) into a 10 ms compressed transmission for transmitting on UL114in 10 ms. The 20 ms transmission may be compressed, for example, by decreasing the spreading factor by 2:1 (i.e., increases the data rate so bits will get sent twice as fast), puncturing bits (which will remove bits from the original data and reduce the amount of information that needs to be transmitted), or changing of higher layer scheduling to use less timeslots for user traffic. In an aspect, as discussed below with regard toFIG. 9, configuration manager104may include a compression component906to perform this functionality. In an aspect, at block808, methodology800may include transmitting the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI. For example, in an aspect, UE102and/or configuration manager104may include a specially programmed processor module, or a processor executing specially programmed code stored in a memory, to transmit the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI. For instance, in an aspect, UE102and/or configuration manager104may transmit the compressed transmission to base station112, such as via a communication component (e.g., transceiver) of UE102. In an aspect, as discussed below with regard toFIG. 9, configuration manager104may include a transmission component908to perform this functionality. In an aspect, at block810, methodology800may include performing a discontinuous transmission (DTX) of the UL channel during a second 10 ms of the 20 ms TTI. For example, in an aspect, UE102and/or configuration manager104may include a specially programmed processor module, or a processor executing specially programmed code stored in a memory, to perform a discontinuous transmission (DTX), e.g., stop transmitting or enter a sleep mode, of the UL channel during a second 10 ms of the 20 ms TTI, e.g., to save battery power. In an aspect, as discussed below with regard toFIG. 9, configuration manager104may include a DTX component910to perform this functionality. Thus, as described above, reduced battery consumption at a UE may be achieved. Referring toFIG. 9, illustrated are an example configuration manager104and various sub-components for reducing battery consumption at a user equipment (UE). In an example aspect, configuration manager104may be configured to include the specially programmed processor module, or the processor executing specially programmed code stored in a memory, in the form of a transmission mode configuring component902, a transmission mode indicating component904, a compression component906, a transmission component908, and/or a discontinuous transmission component910, such as in specially programmed computer readable instructions or code, firmware, hardware, or some combination thereof. In an aspect, a component may be one of the parts that make up a system, may be hardware or software, and may be divided into other components. In an aspect, configuration manager104and/or transmission mode configuring component902may be configured to configure a 10 ms transmission mode on an uplink (UL) at the UE. For example, in an aspect, transmission mode configuring component902may be configured to configure a 10 ms transmission mode240on the UL at UE102. In an aspect, configuration manager104and/or transmission mode indicating component904may be configured to indicate configuration of the 10 ms transmission mode to a base station in communication with the UE. For example, in an aspect, transmission mode indicating component904may be configured to indicate that the UE is configured to transmit in a 10 ms transmission mode240to base station112. In an aspect, configuration manager104and/or compression component906may be configured to compress a 20 ms transmission associated with a 20 ms transmission time interval (TTI) into a 10 ms compressed transmission. For example, in an aspect, compression component906may be configured to compress a 20 ms transmission associated with a 20 ms TTI (204and208) into one 10 ms compressed transmission. In an aspect, configuration manager104and/or transmission component908may be configured to transmit the 10 ms compressed transmission during a first 10 ms of the 20 ms TTI. For example, in an aspect, transmission component908may be configured to transmit the compressed transmission to base station112during a first 10 ms204of the 20 ms TTI. In an aspect, configuration manager104and/or discontinuous transmission component910may be configured to perform a discontinuous transmission (DTX) of the UL during a second 10 ms of the 20 ms TTI. For example, in an aspect, discontinuous transmission component910may be configured to perform a discontinuous transmission of the UL during a second 10 ms208of the 20 ms TTI. In an additional or optional aspect, configuration manager104and/or DL DPCH configuring component912may be configured to receive a DL DPCH during whole duration of the 20 ms TTI. For example, in an aspect, DL DPCH configuring component912may be configured to receive a DL DPCH during whole duration of the 20 ms TTI, e.g., during the duration of radio frames204and208. For instance, in an aspect, UE102and/or configuration manager104may receive DL DPCH from base station112, e.g., via a communication component (e.g., transceiver) of UE102. In an additional or optional aspect, configuration manager104and/or TPC component914may be configured to suspend transmission of transmit power control (TPC) commands to the base station during the second 10 ms of the 20 ms TTI. For example, in an aspect, TPC component914may be configured to suspend transmission of transmit power control (TPC) commands to the base station during the second 10 ms of 20 ms TTI (e.g., radio frame208). For instance, in an aspect, UE102and/or configuration manager104may suspend transmission power control (TPC) commands on the UL channel by not responding to the TPC commands received on the DL from base station112, such as via a communication component (e.g., transceiver) of UE102. Referring toFIG. 10, in an aspect, UE102, for example, including configuration manager104, may be or may include a specially programmed or configured computer device to perform the functions described herein. In one aspect of implementation, UE102may include configuration manager104and its sub-components, including transmission mode configuring component902, transmission mode indicating component904, compression component906, transmission component908, and/or discontinuous transmission component910, such as in specially programmed computer readable instructions or code, firmware, hardware, or some combination thereof. In an aspect, for example as represented by the dashed lines, configuration manager104may be implemented in or executed using one or any combination of processor1002, memory1004, communications component1006, and data store1008. For example, configuration manager104may be defined or otherwise programmed as one or more processor modules of processor1002. Further, for example, configuration104may be defined as a computer-readable medium (e.g., a non-transitory computer-readable medium) stored in memory1004and/or data store1008and executed by processor1002. Moreover, for example, inputs and outputs relating to operations of configuration manager104may be provided or supported by communications component1006, which may provide a bus between the components of computer device1000or an interface for communication with external devices or components. UE102may include processor1002specially configured to carry out processing functions associated with one or more of components and functions described herein. Processor1002can include a single or multiple set of processors or multi-core processors. Moreover, processor1002can be implemented as an integrated processing system and/or a distributed processing system. User equipment102further includes memory1004, such as for storing data used herein and/or local versions of applications and/or instructions or code being executed by processor1002, such as to perform the respective functions of the respective entities described herein. Memory1004can include any type of memory usable by a computer, such as random access memory (RAM), read only memory (ROM), tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. Further, user equipment102includes communications component1006that provides for establishing and maintaining communications with one or more parties utilizing hardware, software, and services as described herein. Communications component1006may carry communications between components on user equipment102, as well as between user and external devices, such as devices located across a communications network and/or devices serially or locally connected to user equipment102. For example, communications component1006may include one or more buses, and may further include transmit chain components and receive chain components associated with a transmitter and receiver, respectively, or a transceiver, operable for interfacing with external devices. Additionally, user equipment102may further include data store1008, which can be any suitable combination of hardware and/or software, that provides for mass storage of information, databases, and programs employed in connection with aspects described herein. For example, data store1008may be a data repository for applications not currently being executed by processor1002. The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring toFIG. 11, by way of example and without limitation, the aspects of the present disclosure are presented with reference to a UMTS system1100employing a W-CDMA air interface, and may include a UE102executing an aspect of configuration manager104ofFIGS. 1 and 9. A UMTS network includes three interacting domains: a Core Network (CN)1104, a UMTS Terrestrial Radio Access Network (UTRAN)1102, and UE102. In an aspect, as noted, UE102(FIG. 1) may be configured to perform functions thereof, for example, including reducing battery consumption during operation of a dedicated channel (DCH) at the UE. Further, UTRAN1102may comprise network entity110and/or base station112(FIG. 1), which in this case may be respective ones of the Node Bs1108. In this example, UTRAN1102provides various wireless services including telephony, video, data, messaging, broadcasts, and/or other services. The UTRAN1102may include a plurality of Radio Network Subsystems (RNSs) such as a RNS1105, each controlled by a respective Radio Network Controller (RNC) such as an RNC1106. Here, the UTRAN1102may include any number of RNCs1106and RNSs1105in addition to the RNCs1106and RNSs1105illustrated herein. The RNC1106is an apparatus responsible for, among other things, assigning, reconfiguring, and releasing radio resources within the RNS1105. The RNC1106may be interconnected to other RNCs (not shown) in the UTRAN1102through various types of interfaces such as a direct physical connection, a virtual network, or the like, using any suitable transport network. Communication between UE102and Node B1108may be considered as including a physical (PHY) layer and a medium access control (MAC) layer. Further, communication between UE102and RNC1106by way of a respective Node B1108may be considered as including a radio resource control (RRC) layer. In the instant specification, the PHY layer may be considered layer 1; the MAC layer may be considered layer 2; and the RRC layer may be considered layer 3. Information herein below utilizes terminology introduced in the RRC Protocol Specification, 3GPP TS 1111.331 v11.1.0, incorporated herein by reference. The geographic region covered by the RNS1105may be divided into a number of cells, with a radio transceiver apparatus serving each cell. A radio transceiver apparatus is commonly referred to as a Node B in UMTS applications, but may also be referred to by those skilled in the art as a base station (BS), a base transceiver station (BTS), a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), an access point (AP), or some other suitable terminology. For clarity, three Node Bs1108are shown in each RNS1105; however, the RNSs1105may include any number of wireless Node Bs. The Node Bs1108provide wireless access points to a CN1104for any number of mobile apparatuses, such as UE102, and may be network entity110and/or base station112ofFIG. 1. Examples of a mobile apparatus include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a notebook, a netbook, a smartbook, a personal digital assistant (PDA), a satellite radio, a global positioning system (GPS) device, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, or any other similar functioning device. The mobile apparatus in this case is commonly referred to as a UE in UMTS applications, but may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. For illustrative purposes, one UE102is shown in communication with a number of the Node Bs1108. The DL, also called the forward link, refers to the communication link from a Node B1108to a UE102(e.g., link116), and the UL, also called the reverse link, refers to the communication link from a UE102to a Node B1108(e.g., link114). The CN1104interfaces with one or more access networks, such as the UTRAN1102. As shown, the CN1104is a GSM core network. However, as those skilled in the art will recognize, the various concepts presented throughout this disclosure may be implemented in a RAN, or other suitable access network, to provide UEs with access to types of CNs other than GSM networks. The CN1104includes a circuit-switched (CS) domain and a packet-switched (PS) domain. Some of the circuit-switched elements are a Mobile services Switching Centre (MSC), a Visitor location register (VLR) and a Gateway MSC. Packet-switched elements include a Serving GPRS Support Node (SGSN) and a Gateway GPRS Support Node (GGSN). Some network elements, like EIR, HLR, VLR and AuC may be shared by both of the circuit-switched and packet-switched domains. In the illustrated example, the CN1104supports circuit-switched services with a MSC1112and a GMSC1114. In some applications, the GMSC1114may be referred to as a media gateway (MGW). One or more RNCs, such as the RNC1106, may be connected to the MSC1112. The MSC1112is an apparatus that controls call setup, call routing, and UE mobility functions. The MSC1112also includes a VLR that contains subscriber-related information for the duration that a UE is in the coverage area of the MSC1112. The GMSC1114provides a gateway through the MSC1112for the UE to access a circuit-switched network1116. The GMSC1114includes a home location register (HLR)1115containing subscriber data, such as the data reflecting the details of the services to which a particular user has subscribed. The HLR is also associated with an authentication center (AuC) that contains subscriber-specific authentication data. When a call is received for a particular UE, the GMSC1114queries the HLR1115to determine the UE's location and forwards the call to the particular MSC serving that location. The CN1104also supports packet-data services with a serving GPRS support node (SGSN)1118and a gateway GPRS support node (GGSN)1120. GPRS, which stands for General Packet Radio Service, is designed to provide packet-data services at speeds higher than those available with standard circuit-switched data services. The GGSN1120provides a connection for the UTRAN1102to a packet-based network1122. The packet-based network1122may be the Internet, a private data network, or some other suitable packet-based network. The primary function of the GGSN1120is to provide the UEs104with packet-based network connectivity. Data packets may be transferred between the GGSN1120and the UEs102through the SGSN1118, which performs primarily the same functions in the packet-based domain as the MSC1112performs in the circuit-switched domain. An air interface for UMTS may utilize a spread spectrum Direct-Sequence Code Division Multiple Access (DS-CDMA) system. The spread spectrum DS-CDMA spreads user data through multiplication by a sequence of pseudorandom bits called chips. The “wideband” W-CDMA air interface for UMTS is based on such direct sequence spread spectrum technology and additionally calls for a frequency division duplexing (FDD). FDD uses a different carrier frequency for the UL and DL between a Node B1108and a UE102. Another air interface for UMTS that utilizes DS-CDMA, and uses time division duplexing (TDD), is the TD-SCDMA air interface. Those skilled in the art will recognize that although various examples described herein may refer to a W-CDMA air interface, the underlying principles may be equally applicable to a TD-SCDMA air interface. An HSPA air interface includes a series of enhancements to the 3G/W-CDMA air interface, facilitating greater throughput and reduced latency. Among other modifications over prior releases, HSPA utilizes hybrid automatic repeat request (HARQ), shared channel transmission, and adaptive modulation and coding. The standards that define HSPA include HSDPA (high speed downlink packet access) and HSUPA (high speed uplink packet access, also referred to as enhanced uplink, or EUL). HSDPA utilizes as its transport channel the high-speed downlink shared channel (HS-DSCH). The HS-DSCH is implemented by three physical channels: the high-speed physical downlink shared channel (HS-PDSCH), the high-speed shared control channel (HS-SCCH), and the high-speed dedicated physical control channel (HS-DPCCH). Among these physical channels, the HS-DPCCH carries the HARQ ACK/NACK signaling on the uplink to indicate whether a corresponding packet transmission was decoded successfully. That is, with respect to the downlink, the UE102provides feedback to Node B508over the HS-DPCCH to indicate whether it correctly decoded a packet on the downlink. HS-DPCCH further includes feedback signaling from the UE102to assist the Node B508in taking the right decision in terms of modulation and coding scheme and precoding weight selection, this feedback signaling including the CQI and PCI. HSPA Evolved or HSPA+ is an evolution of the HSPA standard that includes MIMO and 64-QAM, enabling increased throughput and higher performance. That is, in an aspect of the disclosure, the Node B508and/or the UE102may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the Node B508to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Multiple Input Multiple Output (MIMO) is a term generally used to refer to multi-antenna technology, that is, multiple transmit antennas (multiple inputs to the channel) and multiple receive antennas (multiple outputs from the channel). MIMO systems generally enhance data transmission performance, enabling diversity gains to reduce multipath fading and increase transmission quality, and spatial multiplexing gains to increase data throughput. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data steams may be transmitted to a single UE102to increase the data rate or to multiple UEs102to increase the overall system capacity. This is achieved by spatially precoding each data stream and then transmitting each spatially precoded stream through a different transmit antenna on the downlink. The spatially precoded data streams arrive at the UE(s)102with different spatial signatures, which enables each of the UE(s)102to recover the one or more the data streams destined for that UE102. On the uplink, each UE102may transmit one or more spatially precoded data streams, which enables Node B1108to identify the source of each spatially precoded data stream. Spatial multiplexing may be used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions, or to improve transmission based on characteristics of the channel. This may be achieved by spatially precoding a data stream for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity. Generally, for MIMO systems utilizing n transmit antennas, n transport blocks may be transmitted simultaneously over the same carrier utilizing the same channelization code. Note that the different transport blocks sent over the n transmit antennas may have the same or different modulation and coding schemes from one another. On the other hand, Single Input Multiple Output (SIMO) generally refers to a system utilizing a single transmit antenna (a single input to the channel) and multiple receive antennas (multiple outputs from the channel). Thus, in a SIMO system, a single transport block is sent over the respective carrier. Referring toFIG. 12, an access network1200in a UTRAN architecture is illustrated, and may include one or more UEs1230,1232,1234,1236,1238, and1240, which may be the same as or similar to UE102(FIG. 1) in that they are configured to include configuration manager104(FIGS. 1 and 9; for example, illustrated here as being associated with UE1236) for reducing battery consumption during operation of a dedicated channel (DCH) at the UE. The multiple access wireless communication system includes multiple cellular regions (cells), including cells1202,1204, and1206, each of which may include one or more sectors. The multiple sectors can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell. For example, in cell1202, antenna groups1212,1214, and1216may each correspond to a different sector. In cell1204, antenna groups1218,1220, and1222each correspond to a different sector. In cell1206, antenna groups1224,1226, and1228each correspond to a different sector. UEs, for example,1230,1232, etc. may include several wireless communication devices, e.g., User Equipment or UEs, including configuration manager104ofFIG. 1, which may be in communication with one or more sectors of each cell1202,1204or12012. For example, UEs1230and1232may be in communication with Node B1242, UEs1234and1236may be in communication with Node B1244, and UEs1238and1240can be in communication with Node B1246. Here, each Node B1242,1244,1246is configured to provide an access point to a CN1104(FIG. 11) for all the UEs1230,1232,1234,1236,1238,1240in the respective cells1202,1204, and1206. Additionally, each Node B1242,1244,1246may be base station112and/or and UEs1230,1232,1234,1236,1238,1240may be UE102ofFIG. 1and may perform the methods outlined herein. As the UE1234moves from the illustrated location in cell1204into cell1206, a serving cell change (SCC) or handover may occur in which communication with the UE1234transitions from the cell1204, which may be referred to as the source cell, to cell1206, which may be referred to as the target cell. Management of the handover procedure may take place at the UE1234, at the Node Bs corresponding to the respective cells, at a radio network controller1106(FIG. 11), or at another suitable node in the wireless network. For example, during a call with the source cell1204, or at any other time, the UE1234may monitor various parameters of the source cell1204as well as various parameters of neighboring cells such as cells1206and1202. Further, depending on the quality of these parameters, the UE1234may maintain communication with one or more of the neighboring cells. During this time, the UE1234may maintain an Active Set, that is, a list of cells that the UE1234is simultaneously connected to (i.e., the UTRA cells that are currently assigning a downlink dedicated physical channel DPCH or fractional downlink dedicated physical channel F-DPCH to the UE1234may constitute the Active Set). In any case, UE1234may perform the reselection operations described herein. Further, the modulation and multiple access scheme employed by the access network1200may vary depending on the particular telecommunications standard being deployed. By way of example, the standard may include Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB). EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. The standard may alternately be Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 1002.11 (Wi-Fi), IEEE 1002.16 (WiMAX), IEEE 1002.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE, LTE Advanced, and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system. The radio protocol architecture may take on various forms depending on the particular application. An example for an HSPA system will now be presented with reference toFIG. 13.FIG. 13is a conceptual diagram illustrating an example of the radio protocol architecture for the user and control planes. Turning toFIG. 13, the radio protocol architecture for the UE, for example, UE102ofFIG. 1configured to include configuration manager104(FIGS. 1 and 9) for reducing battery consumption during operation of a dedicated channel (DCH) at a user equipment (UE) is shown with three layers: Layer 1 (L1), Layer 2 (L2), and Layer 3 (L3). Layer 1 is the lowest lower and implements various physical layer signal processing functions. Layer 1 (L1 layer) is referred to herein as the physical layer1306. Layer 2 (L2 layer)1308is above the physical layer1306and is responsible for the link between the UE and Node B over the physical layer1306. In the user plane, L2 layer1308includes a media access control (MAC) sublayer1310, a radio link control (RLC) sublayer1312, and a packet data convergence protocol (PDCP)1314sublayer, which are terminated at the Node B on the network side. Although not shown, the UE may have several upper layers above L2 layer1308including a network layer (e.g., IP layer) that is terminated at a PDN gateway on the network side, and an application layer that is terminated at the other end of the connection (e.g., far end UE, server, etc.). The PDCP sublayer1314provides multiplexing between different radio bearers and logical channels. The PDCP sublayer1314also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between Node Bs. The RLC sublayer1312provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ). The MAC sublayer1310provides multiplexing between logical and transport channels. The MAC sublayer1310is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. The MAC sublayer1310is also responsible for HARQ operations. FIG. 14is a block diagram of a Node B1410in communication with a UE1450, where the Node B1410may be base station112of network entity110and/or the UE1450may be the same as or similar to UE102ofFIG. 1in that it is configured to include configuration manager104(FIGS. 1 and 9) for reducing battery consumption during operation of a dedicated channel (DCH) at the UE, in controller/processor1490and/or memory1492. In the downlink communication, a transmit processor1420may receive data from a data source1412and control signals from a controller/processor1440. The transmit processor1420provides various signal processing functions for the data and control signals, as well as reference signals (e.g., pilot signals). For example, the transmit processor1420may provide cyclic redundancy check (CRC) codes for error detection, coding and interleaving to facilitate forward error correction (FEC), mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM), and the like), spreading with orthogonal variable spreading factors (OVSF), and multiplying with scrambling codes to produce a series of symbols. Channel estimates from a channel processor1444may be used by a controller/processor1440to determine the coding, modulation, spreading, and/or scrambling schemes for the transmit processor1420. These channel estimates may be derived from a reference signal transmitted by the UE1450or from feedback from the UE1450. The symbols generated by the transmit processor1420are provided to a transmit frame processor1430to create a frame structure. The transmit frame processor1430creates this frame structure by multiplexing the symbols with information from the controller/processor1440, resulting in a series of frames. The frames are then provided to a transmitter1432, which provides various signal conditioning functions including amplifying, filtering, and modulating the frames onto a carrier for downlink transmission over the wireless medium through antenna1434. The antenna1434may include one or more antennas, for example, including beam steering bidirectional adaptive antenna arrays or other similar beam technologies. At UE1450, a receiver1454receives the downlink transmission through an antenna1452and processes the transmission to recover the information modulated onto the carrier. The information recovered by the receiver1454is provided to a receive frame processor1460, which parses each frame, and provides information from the frames to a channel processor1494and the data, control, and reference signals to a receive processor1470. The receive processor1470then performs the inverse of the processing performed by the transmit processor1420in the Node B1410. More specifically, the receive processor1470descrambles and de-spreads the symbols, and then determines the most likely signal constellation points transmitted by the Node B1410based on the modulation scheme. These soft decisions may be based on channel estimates computed by the channel processor1494. The soft decisions are then decoded and de-interleaved to recover the data, control, and reference signals. The CRC codes are then checked to determine whether the frames were successfully decoded. The data carried by the successfully decoded frames will then be provided to a data sink1472, which represents applications running in the UE1450and/or various user interfaces (e.g., display). Control signals carried by successfully decoded frames will be provided to a controller/processor1490. When frames are unsuccessfully decoded by the receive processor1470, the controller/processor1490may also use an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support retransmission requests for those frames. In the uplink, data from a data source1478and control signals from the controller/processor1490are provided to a transmit processor1480. The data source1478may represent applications running in the UE1450and various user interfaces (e.g., keyboard). Similar to the functionality described in connection with the downlink transmission by the Node B1410, the transmit processor1480provides various signal processing functions including CRC codes, coding and interleaving to facilitate FEC, mapping to signal constellations, spreading with OVSFs, and scrambling to produce a series of symbols. Channel estimates, derived by the channel processor1494from a reference signal transmitted by the Node B1410or from feedback contained in the midamble transmitted by the Node B1410, may be used to select the appropriate coding, modulation, spreading, and/or scrambling schemes. The symbols produced by the transmit processor1480will be provided to a transmit frame processor1482to create a frame structure. The transmit frame processor1482creates this frame structure by multiplexing the symbols with information from the controller/processor1490, resulting in a series of frames. The frames are then provided to a transmitter1456, which provides various signal conditioning functions including amplification, filtering, and modulating the frames onto a carrier for uplink transmission over the wireless medium through the antenna1452. The uplink transmission is processed at the Node B1410in a manner similar to that described in connection with the receiver function at the UE1450. A receiver1435receives the uplink transmission through the antenna1434and processes the transmission to recover the information modulated onto the carrier. The information recovered by the receiver1435is provided to a receive frame processor1436, which parses each frame, and provides information from the frames to the channel processor1444and the data, control, and reference signals to a receive processor1438. The receive processor1438performs the inverse of the processing performed by the transmit processor1480in the UE1450. The data and control signals carried by the successfully decoded frames may then be provided to a data sink1439and the controller/processor, respectively. If some of the frames were unsuccessfully decoded by the receive processor, the controller/processor1440may also use an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support retransmission requests for those frames. The controller/processors1440and1490may be used to direct the operation at the Node B1410and the UE1450, respectively. For example, the controller/processors1440and1490may provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions. The computer readable media of memories1442and1492may store data and software for the Node B1410and the UE1450, respectively. A scheduler/processor1446at the Node B1410may be used to allocate resources to the UEs and schedule downlink and/or uplink transmissions for the UEs. Several aspects of a telecommunications system have been presented with reference to a W-CDMA system. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
Les brevets des E.TJ.À. îîos 3*137=937 eF décrivent des procédés de production d'objets revêtus par liaison métallurgique au moyen d'explosifs. Selon les procédés décrits, les coUch.es métalliques qui doivent être 3 liées par voie métallurgique sont propulsées l'une contre l'autre par l'action d'un explosif si bien qu'elles sont amenées à entrer progressivement en collision à uebvitesse qui est inférieure à 120 °/o et de préférence inférieure à 100 % de la vitesse sonique du métal dans le 10 'Bystèae —— de revêtement possédant la vitesse sonique la plus élevée» Initialement, on espace les couches métalliques l'une de l'autre, éventuellement avec Un angle d'inclinaison qui ne dépasse pas 40°, mais de préférence l'angle d'inclinaison est d'environ 0° (c'est-à-dire que les couches sont pratiquement parallèles), on place une couche d'un explosif détonant à côté de la surface extérieure d'au moins l'une des couches, on amorce l'explosif et on provoque ainsi la collision progressive requise. A la suite de la mise en oeuvre d'un tel procédé, 20 on obtient trois types de zones de liaison, chacun entièrement métallurgique s une liaison directe métal-à-métal, une couche fondue uniforme ou bien un mélange des deux liaisons précédentes suivant un schéma sinueux. L'expression "liaison directe métal-à-métal" veut dire 25 que les métaux sont liés par leurs surfaces de contact de manière à établir une interface sans interposition entre les surfaces d'une couche de masse fondue solidifiée. L'expression "couche fondue uniforme" désigne une zone de liaison dans laquelle les métaux sont liés ensemble 30 par l'entremise d'une couche intercalaire de masse fondue solidifiée ayant une composition pratiquement homogène, de sorte qu'on obtient en réalité deux interfaces. ' Comme on peut le voir sur une coupe transversale prise " perpendiculairement à l'interface et parallèlement au 35 sens de la détonation, une zone de liaison à schéma sinueux est composée de régions individuelles à espacement périodique formées de masse fondue solidifiée entre les surfaces ou est établie la liaison directe métal-à— métal. Gela "ï&ut dire que dans la zone de liaison, il 40 existe une interface (métal-à-métal) aux emplacements où BAO ORIGINAL 69 00022 2 2000014 la liaison est du type direct métal-à-métal et deux interfaces (métal-masse fondue et masse fondue-métal) aux emplacements où des poches de masse fondue sont présentes. Quel que soit le type de la zone de liaison, il n'exis-5 te pratiquement aucune diffusion à travers une interface quelconque dans la zone de liaison du produit brut après ce traitement de liaison. Indépendamment des métaux que l'on se propose de lier par ce procédé, la liaison du type à masse fondue 10 donne un produit qui possède une résistance élevée au cisaillement ; en outre, dans les systèmes métalliques qui forment des alliages ductiles, ce genre de liaison permet d'obtenir un produit susceptible d'un façonnage poussé. Cependant, lorsqu'on forme des alliages fragiles 15 ou des composés intermétalliques, la couche fondue de liaison doit être extrêmement mince (par exemple inférieure à 10 microns et de préférence inférieure à 1 micron) si l'on veut que le produit possède l'aptitude au façonnage (ouvrabilité) exigée par des opérations de 20 formage et, même dans ce cas, la couêhe de'.revêtement ou du métal de base doit être relativement mince, par exemple d'une épaisseur inférieure à 3,2 mm environ. En conséquence, on préfère en règle générale un degré élevé de liaison directe métal-à-métal, comportant des 25 zones de fusiôn isolées les unes des autres, dans les systèmes qui doivent former des alliages fragiles ou des composés intermétalliques fragiles. C'est l'une des raisons pour lasquelles on préfère une zone de liaison sinueuse dont la majeure partie de la liaison est du 30 type direct mêta|*-à-métal. D'Une façon générale, on préfère également une zone de liaison sinueuse à une liaison pratiquement rectiligne car la première procure Une surface interfaciale plus étendue. 35 Dans la demande de brevet des E.U.A. îT° 503 261 on a décrit une technique perfectionnée de mise en oeuvre des procédés définis dans les deux brevets précités, de façon à obtenir des produits revêtus qui ne comportent qu'une quantité minimum de masse fondue solidifiée 40 à la zone de liaison et qui possèdent par conséquent 69 00022 3 2000014 des meilleures propriétés de résistance mécanique et de : ductilité. .Selon ce procédé de liaison par explosion, on espace initialement les couc".::es métalliques l'une de l'autre" suivant un angle qui est inférieur à 10° et qui est 5 de préférence d'environ 0° et ensuite on provoque la collision progressive entre les couches suivant un certain angle d'impact et à une vitesse inférieurs à celles qui produisent des quantités importantes de masse fondue solidifiée à l'interface ; on indique à titre d'exemple 10 que l'angle d'impact peut atteindre environ 20° et que les vitesses de collision peuvent être comprises entre environ 1400 et 2500 m/seconde. Les produits ainsi obtenus, y compris ceux dans lesquels l%tluiainium est lié à l'acier, sont liés sur au moins 90 % de chaque inter-15 face et ne possèdent qu'une faible teneur en masse fondue. Cependant, on a constaté que ce système aluminium/ acier, dont l'importance industrielle est grande, diffère a deux égards des autres combinaisons de métaux non-similaires. En premier lieu, dans le cas le plus 20 courant consistant à amener lte.luminium dans la couche d'acier, le fait de réduire la vitesse de collision en dedans de 1'intervalle indiqué, c'est-à-dire d'environ 2500 « environ 1400 m/seconde, ne provoque pas un accroissement de la liaison directe aluminium-acier aux 25 angles d'impact inférieurs à environ 20°. En second lieu, il est impossible d'établir entre 1'aluminium et l'acier la liaison préférée du type sinueux (c'est-à-dire Une liaison dans laquelle la masse fondue iuterfaciale est isolée entre des zones de liaison directe métal-à-métal) 30 si la vitesse de collision est inférieure à environ 2500 m/secènde lorsqu'on provoque la collision de l'aluminium avec l'acier aux angles d'impact indiqués. Les produits composites d'aluminium et d'acier prennent une importance technique toujours croissante 35 pour la construction de joints de transition dans les installations structurales et dans les systèmes électriques. Les joints de transition aluminium/acier du type structural, par exemple pour applications an construction navale et dans les réalisations aérospatia-leSj doivent posséder une résistance élevée à la traction 69 00022 4 2000014 et un degré élévé de ductilité. Dans les joints de transition pour systèmes électriques, il est souhaitable d'obtenir une conductivité aussi élevée que possible à travers la liaison aluminium/acier. Etant donné que l'alumi-5 nium et l'acier forment des composés intermétalliques qui sont fragiles et qui opposent une résistance notablement plus élevée au passage d'électricité que ce n'est le cas d'une liaison directe de l'aluminium à l'acier, on voit immédiatement que l'industrie aurait intérêt à disposer 10 de stratifiés aluminium/acier dans lesquels la liaison ne présente pas seulement une faible teneur en masse fondue mais aussi une proportion importante de liaison directe de l'aluminium à l'acier. La présente invention fournit un perfectionne-15 ment aux stratifiés aluminium/acier, perfectionnement selon lequel au moins une couche d'aluminium dont la limite élastique avant la liaison peut atteindre environ 1195 kg/cm.2 et une couche d'acier dont la limite élastique dans les conditions normalisées peut atteindre envi-20 ron 421S kg/cm'1 sont liées ensemble sur au moins 90 % . de leur interface par une liaison métallurgique sensiblement exempte de diffusion. Ce perfectionnement réside dans la liaison métallurgique et permet de constituer une liaison sinueuse qui est, au moins à raison d'environ 25 70 une liaison directe d'aluminium à l'acier, la partie. restante de la liaison étant constituée de zones individuelles, à espacement périodique, de masse fondue solidifiée, les dites zones étant séparées les unes des autres par la liaison directe précitée. 30 Quand on dit qu'une liaison est "sensiblement éxempte de diffusion", on entend par là que dans l'état brut après liaison, l'interface et les surfaces adjacentes ne présentent pas le gradient de composition qui est caractéristique des produits liés par diffusion. De 35 préférence, les stratifiés bruts de liaison ne présentent aucune diffusion à une interface quelconque quand on les examine à l'aide d'une sonde électronique et aussi par des techniques de sectionnement ayant une limite de résolUtion de 0,2 micron. 40 L'expression "masse fondue solidifiée" désigne 69 00022 5 2000014 un mélange des deux létaux considérés, c8est-à-dire des métaux qui appartiennent à la couche d'aluminium et à la couche d'acier ainsi que leurs composés intermétalliques. La composition de ce mélange est sensiblement uniforme, 5 c'est-à-dire que dans chaque "poche" de masse fondue, la composition est pratiquement homogène. L'invention a également pour objet un procédé perfectionné de liaison par explosion qui permet 3aformation des nouveaux produits spécifiés plus haut. Plus précisé-10 mentt ce procédé perfectionné consiste à exécuter Une collision progressive d'au moins une couéhe d'aluminium dont o la limite élastique peut atteindre environ 1195 kg/cm avec une couche d'acier dont la limite élastique dans les conditions normalisées peut atteindre environ 4218 kg/cm^, 15 à une vitesse de collision comprise entre environ 2500 et 3400 m/seconde et suivant un angle d'impact compris entre environ 14 et 25°, les surfaces en regard des couches étant disposées suivant un angle d'inclinaison inférieur à 5° avant la détonation de l'explosif. 20 On entend par vitesse de collision la vitesse a laquelle la ligne ou la zone de collision progresse le long des couches d'acier et d'aluminium à lier. L'angle d'impact est l'angle entre les couches d'acier et d'aluminium au moment de la collision. 25 Le terme "aluminium" utilisé pour décrire une cou che devant être liée directement à la couche d'acier, désigne l'aluminium pur ainsi que les alliages à base d'aluminium qui contiennent au moins 85 % d'aluminium en poids. Sauf stipulation contraire, le terme "acier" dé-30 signe un acier au carbone ainsi que des aciers faiblement alliés, c'est-à-dire des aciers àlliés contenant moins de 5 % en poids environ d'éléments d'alliage. D'autres buts et avantages de l'invention res-sortiront de la description qui va en être faite ci-après 35 en se référant au dessin annexé sur lequel : La Figure 1 est un graphique qui établit le rapport entre le pourcentage de liaison directe métal-à*-métal dans la zone interfaciale et la vitesse de collision dans un. exemple particulier de revêtement de l'acier 40 avec de l'aluminium selon l'invention ; et BAD ORIGINAL 69 00022 2000014 Les ligures 2 et 2A. sont des photomicrographies à deux grossissements différents d'une zone de liaison sinueuse que l'on obtient typiquement dans des stratifiés aluminium/acier préparés par le procédé selon l'invention. 5 Dans le présent procédé, on lie par voie métal lurgique une couche d'aluminium ayant Une limite élastique pouvant atteindre environ 1195 kg/cm^ à une couche d'acier dont la limite élastique dans des conditions nor-malisées peut atteindre environ 4218 kg/cm , par une tech-10 nique consistant à propulser explosion - - ia cou che d'aluminium vers la couche d'acier de manière à provoquer la collision progressive entre ces deux couches à une vitesse comprise entre environ 2500 et 3400 m/seconde et suivant un angle d'impact compris entre environ 14 et 25°. 15 Quand on effectue la liaison par explosièn dans l'intervalle indiqué de vitesses et dans l'intervalle indiqué dr angles d'impact, en utilisant un aluminium et un acier qui répondent aux spécifications indiquées, on obtient taxe liaison d'au moins 90% sous forme d'une zone 20 sinueuse pratiquement exempte de diffusion, dans laquelle au moins 70 % de la liaison est du type direct métal-à-métal (c'est-à-dire qu'au moins 70 % environ de la surface de liaison est une interface métal-à-métal) par opposition aux interfaces entre le métal respectif et la masse 25 fondue solidifiée. En raison du pourcentage élevé de liaison directe d'aluminium à l'acier, les produits selon l'invention possèdent des caractéristiques de rupture ductile aussi bien en cisaillement qu'en tension, ainsi qu'une résistance élevée aux chocs, comme on 30 peut le constater par l'impossibilité de séparer l'interface à l'aide d'un ciseau. Par conséquent , ces produits sont susceptibles d'un façonnage poussé sans apparition d'une rupture à la zone de la liaison. C'est en examinant la Figure 1 que l'on peut se 35 rendre compte de la façon dont varie la liaison en fonction de la vitesse de collision dans le cas particulier des stratifiés acier/aluminium préparés par explosion. Le graphique de la Figure 1 est représentatif des résultats que l'on obtient avec une couche d'aluminium ayant 40 12,7 mm d'épaisseur (aluminium du type 1100-F) dont 00a 69 00022 7 2000014 revêt'par explosion une couche d'acier AISI-SAE-1008 ayant 38,1 mm d'épaisseur, les couches métalliques ayant été initialêment disposées à peu près parallèlement l'une à l'autre avec un écarteiaent entre elles et la charge ex-5 plosive calculé de manière à établir un angle d'impact régulier de 18 à 20° entre les couches pendant la liaison. La courbe représentée à la Figure 1 passe par des points obtenus lorsqu'on porte la vitesse de la collision (c'est-à-dire la vitesse de la détonation de l'explosif 10 étant donné que les couches métalliques sont initialement à peu près parallèles) en abcisseset le pourcentage de liaison directe métal-à-métal ainsi obtenu. , en ordonnées. A une vitesse qui est tout juste de 2j?00 m/seconde environ, en observe une élévation abrupte de la valeur du 15 pourcentage de liaison métal-à-métal, ce qui correspond à la transition à partir d'une liaison sensiblement rec-tiligne ou irrégulière • une liaison nettement sinueuse. Une zone de liaison que l'on obtient de façon caractéristique à cette vitesse environ est représentée à la 20 Figure 2 qui est uns coupe transversale (grossissement 6,6 fois) perpendiculaire à la surface du produit composite et parallèle à la direction de la propagation de la détonation, de la droite vers la gauche, la Figure 2A est un grossissement de la zone entourée d'un rectangle 25 sur la Figure 2. (grossissement de 50 fois). L'interface est la ligne sinueuse continue entre la couche d'aluminium (dans le haut) et la couche d'acier (dans le bas). Gomme on le voit plus clairement sur la Figure 2à, une perpendiculaire tirée à travers la plupart des points de 30 l'interface ne traverse que l'aluminium et l'acier, c'est-à-dire que la liaison est de métal-à-métal. En quelques points, ces lignes perpendiculaires traversent successivement l'aluminium, la masse fondue solidifiée et l'acier. A la Figure 2A la référence 1 indique la zone 35 de liaison entre l'aluminium et l'acier alors que la référence 2 indique la zone de liaison entre l'aluminium et la masse fondue. Une zone de masse fondue solidifiée, aux endroits où la liaison se fait par l'entremise d'une telle masse fondue, est entièrement enrobée par la cou-40 che d'acier et n'apparaît pas à l'interface. On obtient 2UUU014 69 00022 ® la valeur du pourcentage de liaison métal-à-métal» dont il est question dans le présent contexte, en mesurant la longueur totale de l'interface sinueuse continue ainsi que les longueurs des petites sections de l1interface 3 où la liaison est entre l'aluminium et la masse métallique fondue. Le pourcentage de la liaison métal-à-métal est le quotient de la différence entre la longueur totale de l'interface sinueuse et la somme des longueurs desdites sections par la longueur totale de l'interface. 10 La vitesse de collision minimum pour former la zone sinueuse augmente légèrement avec la diminution de l'angle d'impact ; cela revient à dire que la ligne de transition (en tirets sur la Figure 1) se déplace vers la droite lorsque l'on réduit l'angle d'impact au-dessous 15 d'une valeur d'environ 18 à 20°. En règle générale, la vitesse minimum pour la formation de la zone sinueuse augmente sur un mode pratiquement linéaire entre environ 2500 et 2900 m/seconde pendant que l'angle d'impact diminue d'environ 20 à environ 14°. Quel que soit l'angle 20 d'impact choisi, la vitesse de collision utilisée doit être suffisante pour provoquer la formation de la liaison sinueuse. Aux vitesses de collision voisines de la valeur minimum qui permet la formation de la zone sinueuse, la 25 proportion de la masse fondue à l'interface est minimum et le pourcentage de liaison métal-à-métal est maximum. A ces vitesses, les zones de masse fondue sont à peu près entièrement enrobées dans la couche d'acier par les ondes sinusoïdales superposées. Dans certains cas, l'enrobage 30 est total et en ne détecte aucune masse fondue à l'interface (par exemple la présence de la masse fondue n'est pas visible avec un grossissement de 1000 fois). Lorsque l'on augmente là vitesse de collision, la proportion L de la masse fondue à l'interface s'accroît jusqu'au moment 35 où l'on atteint une vitesse (par exemple une vitesse de 3400 m/seconde) à laquelle le pourcentage de la liaison métal-à-métal ne dépasse plus environ 70, comme il est indiqué sur la Figure 1. Cette vitesse maximum reste à peu près la même bien que la vitesse minimum pour la 40 formation des ondes puisse être supérieure à environ BAD ORIGINAL 69 00022 2000014 i 2500 m/seconde, car à mesure de l'augmentation de cette vitesse minimum, on observe également Une élévation du taux de formation de la masse fondue en fonction de l'accroissement de la vitesse de collision. 5 Avec les stratifiés acier/aluminium selon l1inven tion, on a choisi des vitesses de collision dans l'intervalle d'environ 2^00 à 3^00 m/seconde car on obtient ainsi un pourcentage élevé de liaison directe aluminium-acier. Dans ces conditions, on bénéficie de la ductilité la plus 10 avantageuse à la liaison. De plus, étant donné qu'une liaison directe aluminium-acier ne possède pratiquement pas de résistance électrique mesurable, des liaisons sont avantageuses et même nécessaires quqnd les stratifiés doivent être utilisés dans des installations électriques 15 par exemple pour former des joints de transition» Que ce soit la résistance mécanique ou que ce soit la conducti-vité que l'on considère comme le paramètre fondamental, des liaisons qui contiennent au moins 90 % environ de jonction directe aluminium-acier sont les plus avanta-20 geuses et, pour cette raison, la vitesse de collision ne sera pas de préférence très supérieure à la vitesse de transition pour la formation des jonctions sinueuses. Par exemple quand cette vitesse de transition est d'environ 2500 m/seconde, la vitesse de collision ne dépasse pas 25 de préférence environ 2900 m/seconde. Pour assurer la formation des zones ondulées, on choisit de préférence l'explosif de manière que la vitesse de collision calculée soit supérieure d'au moins 100 m/seconde à la vitesse de transition, si bien que la vitesse minimum préfé-30 rée est d'environ 2600 m/seconde au moins. Dans l'intervalle des vitesses de collision indiqué si-dessus, les couches d'aluminium et d'acier doivent entrer en collision suivant un angle d'impact suffisant pour provoquer la formation des ondes mais pas au-35 dessous d'environ 14-°. En effot, au-dessous de cette valeur il est difficile de former des ondes malgré la vitesse de collision utilisée. Pour une épaisseur donnée de la couche d'aluminium, l'angle d'impact produit augmente avec l'accroissement de la charge explosive et 40 augmente également avec l'accroissement de l'écartement 69 00022 2000014 . ou de l'angle d'écartement initial-jusquFà une valeur maximum. En d'autres termes, l'angle d'impact augmente avec la vitesse de déplacement de l'aluminium et atteint sa valeur à&ximum avec 1'écarternent. L'angle d'impact maximum 5 que l'on utilisera est partiellement déterminé par la dimension des ondes désirées, et ces ondes augmentent en amplitude avec Ikccroissement de l'angle d'impact» En conséquence, l'angle d'impact maximum que l'on doit utiliser est l'angle au-dessus duquel l'amplitude des ondes obte-10 nues devient plus importante qu'on ne le désire. Gomme d'autre part, les dimensions des ondes augmentent également avec un accroissement de la vitesse de collision, en dedans de l'intervalle indiqué de ces vitesses, pour obtenir une amplitude maximum désirée d'une valeur fixe, 15 l'angle d'impact maximum que l'on doit utiliser diminue avec l'augmentation de la vitesse de collision. Dans tous les cas, l'angle d'impact ne doit pas dépasser environ 25° car avec un angle plus élevé, on observe des effets marginaux prononcés et des schémas irréguliers de 20 liaison, sans parler de la tendance à la formati#n de zone de masse fondue d'un volume suffisant pour av«lr une répercussion fâcheuàe notable sur la résistance de la liaison, fréquemment du fait de la solidification (vides) provoquée par le retrait de la masse fondue lors de son 25 refroidissement. On obtient les meilleurs résultats quand l'angle d'impact en fonctionnement régulier est compris entre environ 14"et 20°. On peut mesurer les angles d*impact à l'aide de séquences obtenues par une caméra de cadrage qui utilise une technique de déplacement de la 30 grille réfléchie» Une telle technique est décrite par W.Â. Allen et C.L. McCrary dans Beview of Scientific Instruments, Vol.24, pages 165-171 (1953). Ed. général, pour obtenir les angles d'impact qui conviennent pour la mise en oeuvre du présent procédé 35 suivant l'agencement parallèle préféré, on utilise Une charge explosive dont le poids représente environ 0,2 à 3 fois celui de la ou des couches à appliquer,et l'on utilise un écartement compris entre environ 1 et 6 fois l'épaisseur de la ou des couches.à appliquer. Le poids 40 de la charge explosive est le poids par unité de surface 69 00022 " 2000014 I . de la matière explosive à l'exclusion des ingrédients non-explosifs qui peuvent être présents dans une composition explosive quelconque. On peut appliquer le revêtement d'aluminium sur 5 Une face ou sur les deux faces d'un substrat d'acier. Si l'on désire appliquer deux couches d'aluminium sur le substrat d'acier, on peut effectuer cette opération en deux étapes ou bien oç. peut exécuter l'application simultanée par la propulsion des deux couches d'aluminium con-10 tre les faces respectives de l'acier. Chaque couche d'aluminium que l'on doit lier directement à une couche d'acier peut être de l'aluminium pur ou un alliage à "base d'aluminium qui contient au moins 85 % en poids d'aluminium; la limite élastique de l'aluminium ou de l'alliage 15 mesurée avant la liaison, c'est-à-dire au moment où la couche d'aluminium est prête pour la liaison, ne dépasse p pas environ 1195 kg/cm . Quand on utilise un alliage à base d'aluminium, lç. nature des éléments d'alliage n'est pas critique mais on préfère cependant des alliages qui 20 contiennent moins de 2,1 % en poids de magnésium et de silicium (cette proportion étant la valeur globale de ces deux ingrédients. D'autre part, la ou les couches d'aluminium que l'on désire lier à l'acier par le présent pro» cédé peuvent être à l'état entièrement recuit, partielle-25 ment recuit ou durci, la considération importante étant la limite élastique immédiatement avant la liaison. Parmi les aluminiums qui conviennent, on mentionnera les produits 1100-F, 300>-0, 5005-0, 54-57-0 et 6061-0 (numérotation et indications de revenu établies par Aluminum 30 Association). Après liaison, c'est-à-dire à l'état brut de liaison, la limite élastique de l'aluminium sera notablement plus élevée qu'avant la liaison, principalement en raison du durcissement notable "partravail" qui se produit dans la zone de liaison et à proximité 35 immédiate de cette dernière. Fréquemment( surtout larxf que l'aluminium présente une épaisseur d'au moins 6,35mm, au moins la surface externe de la couche d'aluminium possède Une limite élastique d'environ 1195 kg/cm? ou moins. On calcule commodément la limite élastique à par-40 tir des mesures de dureté Brinell sur la surface exté- 69 00022 12 2000014 rieure de la couche d1 aluminium. La limite élastique de la couche d'acier,mesUrée dans des conditions normalisées et avant la liaison, ne p dépasse pas environ 4218 kg/cm . Cette couche est formée 5 d'un acier au carbone ou d'un acier faiblement allié contenant moins de 5 % en poids environ d'éléments d'alliage. La nature de ces éléments d'alliage est sans importance et la seule exigence est que leur prsportion ainsi que la limite élastique de l'acier soient dans les 10 intervalles indiqués. La couche d'acier peut être à l'état normalisé ou recuit au moment de l'application du revêtement, mais de préférence l'acier est à l'état normalisé. Les aciers qui conviennent sont ceux ayant les désignations de l'ASTM: A-212-B (A-516-GR55 à 70) et 15 A-204 et ceux portant les désignations 1008 et 4620 de SAE. A l'état brut après liaison, la limite élastique de la couche d'acier sera sensiblement la même qu'avant la liaison car le durcissement par "travail" est faible et se limite à une très mince couche de l'acier, par exem-20 pie une couche d'environ 1,27 à 1,78 mm, à la zone de liaison. A l'état normalisé, la couche d'acier dans le produit final aura une limite élastique pouvant atteindre environ 4218 kg/cm . lans le cas de produits à deux couches, les coU-25 ches d'aluminium et d'acier ont en général une épaisseur d'au moins 3,2 mm environ, la liaison de couches plus minces étant possible mais rarement demandée. Pour la plupart des applications, l'épaisseur de la couche d'acier sera d'au moins 12,7 mm environ. Pratiquement, l'é-30 . paisseur de la-couche d'aluminium, c'est-à-dire de la couche appliquée par propulsion, ne dépassera pas normalement environ 50 mm. Quand les matières premières, c'est-à-dire les couches d'aluminium et d'acier, ne remplissent pas les 35 exigences précitées concernant les limites élastiques et les compositions, une liaison sinueuse est difficile à obtenir et, mSmo si on l'obtient, elle contiendra une proportion trop élevée de masse fondue solidifiée. La raison exacte de ce phénomène n'est pas connue mais on 40 pense que la résistance des métaux à la formation d'ondes 69 00022 13 2000014 provoque un dégagement de chaleur et , par voie de conséquence, une proportion accrue de masse fondue, lorsqu'on dépasse les limites indiquées concernant la proportion des éléments d'alliage et la limite élastique. H 5 convient de faire remarquer que ces limitations s'appliquent uniquement aux couches d'acier et d'aluminium que l'on se propose d'unir directement et non pas à des couches d'autres métaux que l'on peut avoir à lier à la surface extérieure de la couche d'aluminium et/ou à la sur» 10 face extérieure de la couche d'acier. Par exemple, une face de la couche d'acier peut être liée à une couche d'à luminium répondant aux exigences ci-dessus, alors que l'autre face de la couche d'acier pourra être liée à une couche d'un acier fortement allié, par exemple une cou-15 che d'acier inoxydable ; ou bien une face de l'aluminium peut être liée à une couche d'acier au carbone ou faiblement allié, comme il a été défini plus haut, alors que l'autre face de la couche d'aluminium sera liée à une couche d'un alliage à base d'aluminium dont la limite 2 20 élastique dépasse la valeur approximative de 1195 kg/*m • Dans un tel cas, »n peut unir simultanément les trois couches métalliques, ou bien commencer par lier deux d'entre elles et appliquer ensuite la troisième couche à la surface appropriée du stratifié à deux couches. 25 Une exigence supplémentaire pour permettre la for mation de liaisons sinueuses selon l'invention est que la couche d'aluminium qui doit être liée directement à la couche d'acier soit amenée en collision progressive avec cette dernière. En d'autres termes, chaque couche d'alu-30 minium est entraînée par voie explosive, soit directement par l'explosif lui-même, soit indirectement par l'entremise d'une couche métallique propulsée par l'explosif. Cette technique n'assure pas seulement la faible teneur déjà indiquée en masse de fusion dans les liaisons si-35 nueuses quand l'on utilise les vitesses de collision prescrites par l'invention, mais exige également la proportion minimum d'explosif pour établir les conditions appropriées de liaison car la masse de la couche d'aluminium par unité de surface est normalement bien inférieure 40 à celle de la couche d'acier. Bien que l'entraînement par ,4 2000014 69 00022 explosif puisse être appliqué éventuellement à la couche d'acier, il est plus avantageux de supporter en position la couche d'acier et de propulser, à l'aide de l'explosif contre elle la ou les couches d'aluminium. 5 Les couches métalliques peuvent être disposées de façon initialement parallèle et à distance l'une de l'autre, avec un angle d'inclinaison qui ne dépasse pas 5°. Des angles plus grands sont également possibles mais se traduisent normalement par l'obtention de liaisons 10 non-uniformes lorsqu'il s'agit de revêtir des tôles métalliques ayant des dimensions industrielles normales. On préfère que l'agencement soit pratiquement parallèle eaÉ la mise en oeuvre est ainsi plus facile et la zone liée présente une meilleure uniformité. On installe une 15 couche d'un explosif détonant à côté de la ou des couches métalliques à appliquer sur le substx-at et on amorce cet explosif de sorte que la détonation se propage à peu près parallèlement à la surface de la couche métallique adja» cente. Si les couches métalliques sont initialement parai-20 lèles, la vitesse de collision est égale à la vitesse de propagation de l'explosif et on utilise donc un explosif dont la vitesse de détonation et de propagation se situe entre 2500 et 3400 m/seconde. Quand on utilise toe techr.fc.3ue de revêtement comportant un angle d'inclinaison, 25 on peut faire appel à des explosifs dont les vitesses de détonation sont plus élevées car on peut alors établir la vitesse nécessaire de collision avec de tels explosifs (ayant une plus grande vitesse de détonation) par une augmentation de l'angle initial et/ou de la charge explo-30 sive. Des compositions explosives typiques qui conviennent pour la mise en oeuvre du présent procédé sont décrites dans la demande de brevet précitée dont les enseignements sont incorporés à titre de référence dans la 35 présente demande (demande de brevet E.U.A. N°503.261). On préfère que la couche d'explosif surplombe chaque bord de la couche métallique adjacente avec un porte-à-faux s'étendant sur une distance égale au moins au double et en général inférieure à environ 4,5 fois l'épaisseur de 40 ladite couche. Ce procédé élimine pratiquement les absen 69 00022 15 2000014 ces de liaison sur les bords du stratifié et par conséquent, on est assuré d'un degré maximum de liaison. Il est spécialement recommandé d'installer en supplément des pièces marginales de prolongement sur tous les bords 5 de la couche d'aluminium afin de réduire au minimum un amincissement éventuel des bords. Ces éléments de prolongement doivent avoir la même densité et la même épaisseur que la couche d'aluminium et avoir une largeur égale à peu près à la distance du porte—à—faux que l'explosif 10 établit par rapport à la couche entraînée. les techniques utilisées pour amorcer la ou les couches explosives , soutenir l'ensemble en cours d'assemblage, apprêter les surfaces métalliques et effectuer les autres opérations indispensables pour le procédé de 15 liaison sont décrites dans les deux brevets précités dont les enseignements sont incorporés dans la présente demande à titre de référence. Des moyens efficaces pour maintenir l'écartement sont décrits dans le brevet E.TJ.A. N° 3.205»574 et dans la demande de brevet E.TJ.A, H® 20 587.299.- De plus, de façon analogue aux procédés spécifiés dans les brevets et les demandes de brevets précités, on peut utiliser le procédé qui fait l'objet de la présente invention pour unir des couches d'aluminium 25 et d'acier ayant toute forme désirée, par exemple une forme plane ou tubulaire et on peut ainsi obtenir des stratifiés aluminium/acier sous forme de produits tels que des plaques, des feuilles, des bandes, des tiges, des barres, des tubes, etc. Sur le plan industriel, on 30 préfère des stratifiés dont les couches présentent une 2 surface interfaciale d'au moins 0,095 m et tout particulièrement des produits de forme plane. Les stratifiés aluminium/acier selon l'invention sont utiles pour la formation de joints de transi-55 tion dans des ensembles structuraux et dans des systèmes électriques dans lesquels des éléments d'aluminium doivent être unis à des éléments d'acier. L'utilisation de tels joints permet de surmonter le problème de la forma-, tion d'un composé intermétallique fragile, problème que 40 l'on rencontrait toujours lors du soudage par fusion de i6 2000014 69 00022 1'aluminium à l'acier ;en effet, quand on utilise des joints de transition, les composants en aluminium sont soudés à la partie aluminium du joint de transition alors que les composants en acier sont soudés à la par-5 tie acier de ce joint» Des stratifiés à deux couch.es dans lesquels une couche d'aluminium dont la limite élastique (avant liaison) est inférieure à 1195 kg/cm^ est liée à un acier au carbone ou faiblement allié (par exemple lorsqu'un aluminium 1100 ou 5005 est lié à un acier 10 1008 ou A-516-GR55) conviennent pour former les joints de transition dans certaines applications électriques ou de construction. Dans les installations où la partie en aluminium du joint de transition doit être soudée à un composant formé en un alliage d'aluminium dont la limite 15 élastique est supérieure à 1195 kg/cm^, il peut être sou-haitable pour assurer le maximum de résistance à la soudure d'utiliser un joint de transition en trois couches dans lequel un alliage d'aluminium à forte résistance (par exemple un alliage de la série des 5000, tel qu'un 20 aluminium 54-56 éu 5083) est lié à la couche d'aluminium du stratifié en deux couches. Dans un tel cas on peut également utiliser un aluminium ayant une limite élastique élevée selon l'invention, par exemple l'aluminium 54-54 ou 5086 en qualité de couche extérieure et un alu-25 minium préféré, par exemple 1100-0 ou -J? à titre de couche intercalaire. Des joints de transition dans lesquels une couche d'un autre métal, par exemple d'acier inoxydable 5doit être liée à la partie acier du composite en deux couches, avec ou sans couche d'un autre métal liée 30 à la couche d'aluniniua, sont également réalisables. On peut former un stratifié en trois couches par une technique de liaison explosive des trois couches simultanément dans les conditions définies plus haut, par exemple en installant les couches avec un écart ini-35 tial déterminé les unes des autres et en amorçant un explosif sur la surface externe de la couche extérieure d'aluminium. En variante, on peut lier deux couches au cours d'une première étape et ensuite lier la troisième 40 couche au produit composite, au cours d'une seconde étape. Par exemple, pour préparer un composite dans lequel BAD ORIGINAL 69 00022 17 2000014 une couche en aluminium est prise en sandwich entre une couche d'acier et une couche d'un aluminium plus résistant, on commence par unir la couche d'aluminium le moins résistant à l'acier dans les conditions précédemment ex-5 pliquées et ensuite on unit l1aluminium plus résistant à la face d'aluminium du composite résultant en utilisant des conditions moins limitées que celles qui ont été décrites à propos de la liaison acier/aluminium, par exemple les conditions décrites dans le brevet E.U.4 N° 10 3.137.937. Pour ce second stade, la vitesse de collision est avantageusement comprise entre 1800 et 3200 m/seconde mais pour éviter la formation de défauts de solidification qui sont associés avec l'apparition d'une quantité importante de la nasse fondue dans la zone de liaison. 15 Suivant une variante de réalisation, on lie ensemble d'abord les deux couches d'aluminium par un procédé convenable, par exemple par explosion ou par laminage, et ensuite on lie la surface d'aluminium le moins résistant à la surface de la couche d'acier* Les épaisseurs des 20 couches peuvent Ôtre de toute valeur appropriée à la condition que la couche d'aluminium qui est liée à l'acier soit d'une épaisseur d'au moins 0,76 mm pour assurer l'apparition d'ondes bien définies. L'utilisation des stratifiés selon l'invention 25 pour former des joints de transition peut se faire de n'importe quelle façon appropriée. Par exemple, oon^e joints de transition électriques on peut les utiliser dons des cellules de réduction d'aluminium, par exemple entre des barres omnibus en aluminium et des tiges cathodiques en 30 acier. En ce qui concerne l'utilisation de ces joints de transition dans le domaine de la'construction (par exemple de la construction navale), on peut notamment réunir Une superstructure en aluminium à un pont en acier, en s«udant la face acier du joint à une hiloire en acier 35 que l'on soude au pont en acier et on peut souder le côté aluminium du joint à la superstructure en aluminium. On peut utiliser des joints de transition pour réunir des accessoires d'un pont en acier, par exemple des bifces d'amarrage, à un pont en aluminium. Dans la cons-40 truction de wagons-citernes, on peut utiliser les joints 69 00022 18 de transition pour unir une citerne en aluminium à un châssis d'acier. Les- exemples suivants, dans lesquels la vitesse de collision est exprimée par la vitesse mesurée de la 5 détonation de l'explosif et dans lesquels le pourcentage de liaison métal-à-métal est déterminé comme il a été expliqué à propos des Figures 2 et 2A, servent à illustrer l'invention sans aucunement en limiter la portée. Exemples 1 à 7 10 On applique une tôle d'aluminium dont les dimen sions sont 4-5 x 60 cm à une tôle d'acier supportée ayant les Tînmes dimensions et pour cela on installe la tôle d'aluminium sur la tôle du soutien de façon que les surfaces en regard soient parallèles, mais avec un certain 15 écartement, on dispose une couche d'explosif sur la surface extérieure de 1'aluminium et en effectue Un amorçage ponctuel de l'explosif au centre du "bord court. Dans chaque cas, on soude par points des pièces marginales de prolongement ayant la môme composition et la môme épais-20 seur que la couche d'aluminium et présentant une largeur égale à quatre fois son épaisseur, sur les quatre "bords de la couche d'aluminium, la couche d'explosif recouvrant aussi bien la tôle d'aluminium que les pièces de prolongement. La composition explosive est un mélange 25 granulaire d'amatol 80/20 (c'est-à-dire 80 % de nitrate d'ammonium et 20 °/o de trinitrotoluène) et de 35 à 55 % de chlorure de sodium, par rapport au poids total de la composition, le pourcentage exact du chlorure de sodium étant réglé dans l'intervalle indiqué de manière à réali-30 ser les vitesses de collision prévues. Dans le Tableau ci-après on donne les détails nécessaires concernant les métaux, 1'écartement, la charge explosive, la vitesse de collision, Vangle d'impact et la nature des liaisons obtenues, Les limites élastiques indiquées pour les couches 35 d'aluminium indiquées sont les.limites élastiques réelles avant la liaison. Les couches d'acier sont dans un état normalisé et les couches d'aluminium présentent un revenu qui est indiqué par la désignation de Aluminum Association. Tous les produits sont liés sur plus de 90 % 40 de l'interface aluminium/acier, ne peuvent être déstratiBAD ORIGINAL 69 00022 19 2000014 fiée à l'aide d'un ciseau et présentent des ruptures du type ductile, les liaisons possèdent des résistances au cisaillement et à la traction plus élevées que selles du plus faible des deux métaux de base avant l'opération. 5 les mesures de résistance électrique effectuées sur des barres découpées dans les produits revêtus indiquent que pratiquement aucune résistance supplémentaire n'est introduite par la zone de liaison. Quand on répète le procédé de chacun des exemples 10 1 à 7 en utilisant les conditions indiquées dans le tableau mais en donnant à la couche d'aluminium une inclinaison d'environ 2° par rapport à la couche d'acier et en assurant entre les deux couches une séparation qui, à l'endroit le plus rapproché, est égale à l'espace indiqué 15 dans la première partie de l'exemple, on obtient le même type et le même degré de liaison. On peut également réaliser des stratifiés à trois couches (aluminium/acier/ aluminium) d»nt la liaison est du même type et du Sifme degré si l'on installe verticalement la couche d'acier 20 et les deux couches d'aluminium (la couche d'acier étant dans le milieu) et si l'on utilise une couche supplémentaire du même explosif, c'est-à-dire qu'on installe cette couche contre la surface externe de la seconde couche d'aluminium; dans ce cas on procède à l'amorçage simulta-25 né des deux couches explosives en des points correspondants, les autres conditions étant les mêmes que dans les exemples précités. Tableau Aluminium, métallique Acier de soutien. de base Ex, l'ype Epaisseur Limite Type Épaisseur (an) Limite XTQ (mm) élastique élastique (kg/cm2] (kg/cm2) 1 1100-H12 1^,5 844 C 1 08 38,1 2250 2 1100-H12 25,4 844 0 1008 38,1 2250 3 6061-0 12,7 562 0 1008 38,1 2250 4 1100-HI4 12,7 1195 G 1008 * 38,1 2250 5 1100-H14 4,77 1195 A-212-E 152 3445 6 3003-0 12,7 422 C 1008 38,1 2250 7, 1100-H12 ..2?,4 . 844 G 1008 38,1 2250 *A-516-Qualité 70 BAD ORIGNAL 69 00022 2000014 Tableau (suite) Ex 1T° Ecartement (mi-) Charge explosive* p (kg/duo Vitesse de collision (m/sec) Angle d ' impact (°) Type de zone de liaison % liaison directe aluminium/ acier 1 38,1 1,61 2520 18 sinueuse 98 2 57,15 2,58 2650 16 sinueuse 98 3 38,1 1,72 2710 16 sinueuse SA. 4 50,8 1,29 2850 17,5 sinueuse 92 5 25,4 .9,69 3020 17,5 sinueuse 85 6 38,1 1,61 3160 16 sinueuse 77 7 63,5 2,26 3300 16,2 sinueuse 75 15 compris le poids du chlorure de sodium. Exemple 8 (a) Sur une tôle d'acier ASTM A-516-GR55 (limite O élastique 2672 kg/cm ) dont les dimensions sont 40 x 80cm et dont l'épaisseur est de 12,7 nu, en applique sous 20 forme d'un revôtenent une tôle d'aluminium 1100-H14 ayant les mêmes dimensions et 6,35 mm d'épaisseur, par le môme procédé que dans leh exemples 1 à 7. La vitesse de collision est de 3060 m/seconde et l'àngle d'impact est de 19°* Dans le stratifié ainsi obtenu, la liaison couvre plus 25 de 90 % de l'interface et cette liaison est sinueuse, la liaison directe entre l'aluminium et l'acier étant d'environ 85 %» Il est impossible de déstratifier le produit à l'aide d'un ciseau et sa rupture est du type ductile. Les résistancea au cisaillement et à la traction des li-30 aisons sont plus élevées que celles de l'aluminium avafc la liaison. (b) Sur la couche d'aluminium du stratifié obtenu selon le paragraphe (a) ci-dessus, on applique une tôle d'aluminium 54-56-H321 ayant toujours les mômes di- 35 mensions et 6,35 ma d'épaisseur (limite élastique 2601 p kg/cm ), la technique d'application étant la même. La vitesse de collision est do 2230 m/seconde et l'angle d'impact est de 12°. Les couches d'aluminium sont liées sur plus de 90 % de l'interface par une liaison sinueu-40 se ductile. BAD ORtQINAL 69 00022 21 2000014 On utilise 1^- stratifié à trois couches du stade (b) ainsi que le stratifié à deux couches (aluminium de 12,7 mm d'épaisseur lié à l'acier le ''2,7 ma d'épaisseur) du stade (a) comme joints do transition dans une struc-5 ture qui simule une construction devant être effectuée à bord d'un ïiavirv, l'acier étant soudé à l'a.cier et l'aluminium étant: soudé à l'aluminium, sans aucune répercussion fâcheuse dans la zone de liaison. Il va de soi que l'on peut apporter diverses 10 modifications aux modes de mise en oeuvre qui ont été décrits sans sortir pour cela du cadre de cette invention tel que défini par les revendications annexées. ? BAD ORIGINAL 69.00022 22 REVENDICATIONS 1. Un stratifié lié par explosion, caractérisé en ce qu'il comprend au moins une couche d'aluminium dont la limite élastique avant liaison peut atteindre environ O 5 1195 kg/cm et une couche d'acier dont la limite élasti- 2 que à l'état normalisé peut atteindre environ 4218kg/cm , liées par voie métallurgique sur au moins 90 % de leur interface par une liaison sinueuse sensiblement exempte de diffusion comprenant, par unité de surface, au moins 10 70 % environ de liaison dir-jet^ de l'aluminium à l'acier, le complément étant constitué de zones espacées de façon périodique, formées d'une massa fondue solidifiée et séparées les unus des autres par ladite liaison directe. 2. Stratifié selon la revendication 1 caractérisé 15 en co que la limite élastique de la couche d'aluminium, directement après liaison, peut atteindre environ 1195 kg/cm2. 3. Stratifié selon la revendication 1, caractérisé en ce que ladite couche d'aluminium contient, en poids, 20 une quantité totale de magnésium et de silicium ne dépassant pas 2,1 °/o. 4. Stratifié selon la revendication 3, caractérisé en ce que la liaison sinueusa contient,par unité do surface fau moins 90 % de liaison directe de 1'aluminium à 25 l'acier. 5. Stratifié selon la revendication 3, caractérisé en ce qu'il comprend deux couches qui pré- p sentent une surface Interfaciale d'au moins 0,093 f la couche d'aluminium ayant, par unité de surface, un poids . 30 notablement plus faible que celui de l'acier, 6. Stratifié selon 1? revendication 3» caractérisé en ce qu'il comprend trois couches, ladite couche d'aluminium étant liée entre- la couche d'acier précitée et une couche d'aluminium dont la limite élastique 2 35 est supérieure à 1195 kg/cm . 7. Stratifié selon la revendication 6, caractéri-la surface sé en ce que/interfe.0 iale entre lesdites couches représente au moins 0,093 e"t la couche d'aluminium liée directement à l'acier appartient à la série d'aluminiums No 40 1100. BAD ORIGfNAL 69 00022 23 2000014 8. Un procédé de liaison métallurgique de couches métalliques par propulsion de ces couches l'une contre l'autre à l'aide d'un explosif, caractérisé en ce qu'on effectue une collision progressive d'au moins une 5 couche d'alutiiniun dont la limite élastique peut attein- O dre environ 1195 kg/cm avec une couche d'acier dont la limite- élastique à l'état normalisé peut atteindre envi-ron 4218 kg/cm , à une vitesse de collision comprise entre environ 2500 et 3400 mètres/seconde et qui est suffi-10 santé pour provoquer la formation d'une liaison sinueuse, avec un angle d'impact compris entre 14 et 25*, les sur- . faces en regard dos deux couches étant disposées, avant la détonation de 1'explosif, suivant un angle d'inclinaison inférieur à 5°. 15 9* Procédé selon la revendication 8, caractérisé en ce que la couche d'aluminium contient,en poids, une quantité totale de magnésium et de silicium ne dépassant pas 2,1 %. 10. Procédé selon la revendication caractérisé 20 en ce qu'il comporte le stade supplémentaire consistant à lier à une face de ladite couche d'aluminium une autre couche d'aluminium dont la limite élastique est supérieure à 1195 kg/cm^« 11. Procédé selon la revendication S, caractérisé 25 en ce que la vitesse de collision est d'au moins 2600 m/seconde environ, 12. Procédé selon la revendication 9,caractérisé en ce que l'angle d'impact ne dépasse pas environ 20°. 13. Procédé selon la revendication» 9, 30 caractérisé en ce que l'on dispose initialement la couche d'aluminium à peu près parallèlement à la couche d'acier, en espaçant ces deux couches d'une distance égale à environ 1 à 6 fois l'épaisseur de la couche d'aluminium, et on plc.06 une couche d'explosif sur la sur-35 face externe de la couche d'aluminium, le poids de cette couche explosive, par unité de surface, étant compris entre environ 0,2 et 3 fois celui do la couche d'aluminium et les dimensions de la couche d'explosif étant telle que cette couche dépasse au-delà de chaque bord 40 de la couche d'aluminium d'une distance égale au moins 69 00022 24 2000014 au double de l'épaisseur de la coucho d1aluminium. 14-. Procédé selon la revendication 13 j caractérisé en ce que l'angle d'irapact est compris entre environ 14- et 20° . 15. Procédé selon 1" revendication 13 > caractérisé en Ce que la vitesse de détonation de l'explosif est d'au noins 2600 nètres/seconde. BAD QRIGfNAL
Wireless liftgate control system A wireless control system can be used to selectively adjust the position of a liftgate platform with respect to a vehicle cargo hold. The wireless control system includes a transmitter for use in transmitting a wireless control signal, a receiver that receives the wireless control signal transmitted by the transmitter and communicates a corresponding control signal to an actuation device to adjust the platform and, a transmitter detection system that prevents the actuation device from operating unless the transmitter is positioned in a predetermined location. I. BACKGROUND OF THE INVENTION A. Field of Invention This invention pertains to the art of methods and apparatuses for vehicle liftgates, and more specifically to a wireless control system for a vehicle liftgate. B. Brief History It is well known in the art to provide a liftgate on the rear of a vehicle having a cargo hold or bed. The liftgate raises and lowers on demand by engaging actuators that power the liftgate. When the liftgate is in a raised position, the liftgate platform is at the level height of the vehicle bed, and cargo can be loaded and/or unloaded from the bed. When the liftgate is in a lowered position, cargo can be loaded and/or unloaded onto the liftgate platform. Typically, the liftgate is operated with a controller that includes buttons and/or switches that, when manipulated, engage the actuators to raise and lower the liftgate. Applicants believe that, for safety precautions, it is better to have the liftgate operator positioned relatively close to the liftgate as the liftgate platform is raised and lowered. This makes it easy for the liftgate operator to observe the operation of the liftgate and, for example, to immediately stop the motion of the liftgate platform if the cargo appears to be unsecured. Furthermore, liftgates often do not include side panels. This permits the liftgate to fold into a compact configuration during periods of non-use. Because of the open sides on the liftgate, and particularly as the liftgate is being raised, the cargo needs to be carefully watched and handled to prevent it from falling off of the liftgate. To achieve these results, it is advantageous to fix the position the liftgate control at the rear of the vehicle so that the operator is required to be relatively close to the liftgate and can easily view the cargo while operating the liftgate. Another known aspect of liftgates relates to the wiring typically used in connecting the components of a liftgate assembly. Typically, wire harnesses or other conductors are routed through the frame structure of the vehicle and connected to a power supply and the actuators of the liftgate. This can be a cumbersome installation process particularly in after-market installations. It would be advantageous to utilize a wireless control to send signals to the actuators of the liftgate thereby reducing or eliminating conductors that may be prone to damage during use of the liftgate. What is needed, therefore, is a liftgate control that can be easily installed without the use of cumbersome wire harnesses and that is positioned relatively close to the liftgate. Additionally, it would advantageous to provide a wireless control that can only be operated if the operator is in plain view of the liftgate. II. SUMMARY OF THE INVENTION According to one aspect of this invention, a wireless control system is used with a vehicle that has a cargo hold and a liftgate assembly. The liftgate assembly has a platform and an actuation mechanism for use in selectively adjusting the position of the platform with respect to the cargo hold. The wireless control system includes: (a) a transmitter for use in transmitting a wireless control signal, the transmitter having controls for selectively adjusting the platform; (b) a receiver that receives the wireless control signal transmitted by the transmitter and communicates a corresponding control signal to the actuation device to adjust the platform; and, (c) a transmitter detection system that prevents the actuation device from operating unless the transmitter is positioned in a predetermined location. According to another aspect of the invention, the transmitter detection system includes an electric circuit that is closed only when the transmitter is in the predetermined location. According to another aspect of the invention, the transmitter cannot transmit the wireless control signal when the electric circuit is open. According to another aspect of the invention, the actuation device is inoperative regardless of the wireless control signal when the electric circuit is open. According to another aspect of the invention, the wireless control system also includes a jumper circuit for use in selectively overriding the electric circuit. According to another aspect of the invention, the wireless control signal has a unique address data and the receiver communicates the corresponding control signal to the actuation device responsive to the unique address data. According to still another aspect of this invention, the transmitter has a self-contained power supply. One advantage of this invention is that there is no need to route a wire harness through the vehicle structure. Still another advantage of this invention is that the control is positioned relatively close to the liftgate so that the liftgate operator can easily observe the operation of the liftgate and the status of the associated cargo. IV. DESCRIPTION OF THE INVENTION Referring now to the drawings wherein the showings are for purposes of illustrating one or more embodiments of the invention only, and not for purposes of limiting the same,FIG. 1shows a liftgate assembly, shown generally at10, mounted in one of its usual environments, on the rear vertical corner posts14of the rear end opening16of a truck5having a cargo hold17. The liftgate assembly10includes a platform24and an actuation mechanism18for use in selectively adjusting the position of the platform24with respect to the cargo hold17. The platform24is shown in its full down position inFIGS. 1 and 4and it is shown partially folded inFIG. 3. The actuation mechanism18and thus the platform24and other liftgate assembly components may be controlled using a control system51according to this invention. It is to be understood that this invention will work equally well with liftgates positioned in any conventional manner including on vans and on the sides of truck trailers. With reference now toFIGS. 1 and 3, the actuation mechanism18may include a right hand or curb side columnar power assembly19and a left hand or street side columnar power assembly21. The curb side columnar assembly19may include a downwardly extendable and upwardly retractable runner assembly25. The street side columnar assembly21may include a companion downwardly extendable and vertically retractable runner assembly27. As will be discussed in a subsequent paragraph, the telescopically mounted runner assemblies25,27may be hydraulically operable in unison for raising and lowering the platform24between a ground level (shown inFIG. 1) and the level of a bed30of the body6. Another component of the liftgate assembly10may include a threshold plate32that is secured in a horizontally extending position to the rear edge of the bed30. The columnar assemblies19,21may be mirror image assemblies having substantially identical components. The curb side assembly19may differ in that the lower end portion of its runner assembly25may be fitted with a hydraulically powered crank mechanism, not shown, to effect movement of the platform24sections through the various stages. It should be noted that while the present embodiment discusses hydraulic actuation, this invention will also work well with any other type of actuation mechanisms18chosen with sound engineering judgment including electric actuation and pneumatic actuation. It should be further noted that while the present embodiment discusses a large platform liftgate, this invention may be applied to any type or size of liftgate. With continuing reference toFIGS. 1 and 3, under a box-like column cap44, the upper end of each column19,21rigidly mounts a parallel, spaced apart pair of substantially vertical power cylinder support plates46oriented parallel to the major axis of the column profile and having opposite ends resting on the column front and rear walls. The support plates46may be used to support a fluid powered linear actuator or cylinder49that is suspended from a pin, located adjacent the upper end of each column19,21not shown, as to hang within the cavity of the columns19,21respectively. The lower end of the hydraulic cylinder49may be displaceable in a direction parallel to the major axis of the column19,21. It should be noted that any quantity of hydraulic cylinders49may be used. However, in this embodiment one cylinder49is used in each of the columns19,21. The cylinder49may be of either the single or double acting type and may be controlled by valves, not shown. Electrical solenoids integrated into the valves may be used to shift spools, also not shown, as is very well known in the art. Shifting of the spools may cause hydraulic fluid to flow into and out of the cylinders49for use in providing a lifting force used to raise and lower the platform24and associated cargo. An entire hydraulic system including hydraulic pump control valves, operated by electrical solenoids and associate fluid power lines may be included. In that the make up of hydraulic systems is well known in the art, no further explanation will be offered at this time. With reference now toFIGS. 1,2and3, the actuation mechanism18may be controlled using the control system51. The control system51may comprise an electrical control54including a wire harness56that may be directly connected to the solenoids of the hydraulic system. In this manner, the electrical control54may send control signals through the wire harness56to engage the valve solenoids and subsequently the hydraulic cylinders49. In one embodiment, the control system51may be a wireless control system52. By “wireless” it is meant that the components of the control system52communicate electrically by electromagnetic signals transmitted through the air. In one embodiment, the wireless control system52may include a transmitter59for transmitting wireless signals, and a receiver63for receiving wireless signals. With reference now toFIGS. 1 and 2, the receiver63, which may be contained in a control housing65, receives the wireless signals transmitted by the transmitter59and communicates corresponding control signals to the actuation device18to move the platform24, as described above. The receiver63may include an antenna74to aid in receiving the wireless signals sent by the transmitter59. The receiver63may include a wiring harness56, which may include electrical wires56′ for obtaining power from the vehicle5and output wiring56″ for actuating the solenoids and switches of the actuation mechanism18to adjust the platform24as described above. The receiver63may be mounted anywhere on the vehicle5or liftgate assembly10as chosen with sound engineering judgment. With continuing reference toFIGS. 1-2, the transmitter59may generate an R.F. (Radio Frequency) signal, which may be FM (Frequency Modulated) modulated. The modulation may be a 120 bit data stream with start and stop bits, information concerning the selected switch being activated, and a specialized algorithm developed to ensure the validity of the transmission. The transmitter59may also transmit address information to enable the transmitter to “talk” to the receiver63. This address information may be set so that no two devices will be the same. The receiver63may receive the radio signal transmitted by the transmitter59, decode the data stream, and check for validity of the address and the start and stop bits of the received data. If this information is “correct,” a software algorithm may perform to accept or reject the information to be passed on to the receiver outputs. If for any reason this test fails, no output will be sent from the receiver63to activate the actuation mechanism18. Still referring toFIGS. 1-2, the transmitter59may require a power supply, which can be a battery pack72. The battery pack72may be located within a housing74of the transmitter59, or the transmitter59may obtain its power directly from a vehicle power source. For example, power supply wires76extending from the transmitter59may be adapted to be plugged into the auxiliary power outlet or cigarette lighter of vehicle5. The transmitter59may further include an antenna74′, for purposes of aiding in the transmission of control signals to the receiver63. The transmitter59may include a plurality of joysticks, switches and/or toggle switches79for controlling the movement and positioning of the platform24or any other liftgate assembly10component. Any number and configuration of switches79may be chosen as is appropriate for use in controlling the liftgate assembly10. With continuing reference toFIGS. 1-2, the transmitter59should be easily accessible to the operator of the liftgate assembly10. For safety precautions the transmitter59should be positioned in a convenient proximate location to the liftgate assembly10so that the operator may continuously observe movement of the platform24and any associated cargo. In one embodiment, the transmitter59is mounted permanently to the vehicle5, either within the cab of the vehicle5or at a location outside of the vehicle cab. In an alternate embodiment, the transmitter b is not permanently attached to the liftgate assembly10or the vehicle5, but instead may be portable. In this case, the transmitter59may be positioned in any desired location, including a location exterior to the vehicle5without the encumbrance wire harnesses or other electrical conductors. This is shown inFIG. 1. Of course, the transmitter59must be located within a predetermined range of receiver63so that the signals transmitted can reach the receiver b. With reference now toFIGS. 1-2and5-6, in order to assure that the operator is physically present to observe and oversee operation of the liftgate assembly10when it is being operated, the control system51may include a transmitter detection system61that prevents the actuation device18from operating to in any way adjust the liftgate assembly10unless the transmitter59is positioned in a predetermined location. The transmitter detection system61may include an electric circuit62that is closed or completed only when the transmitter59is in the correct predetermined location. The transmitter59may be electrically connected to the circuit62so that the transmitter59can only send a wireless signal to the receiver63if the circuit62is completed. In this case, when the transmitter59is not in the predetermined location, the transmitter59cannot send a control signal (regardless of the adjustment of controls79) to the receiver63. As a result, no signal is sent by the receiver63and operation of the actuation mechanism18is prevented. In an alternate embodiment, the transmitter detection system61may not affect the transmission of the wireless signal but rather the circuit62may prevent one or more portions of the actuation mechanism18from operating. In either case, the liftgate assembly10cannot be operated unless the transmitter59is positioned in the predetermined location. With reference now toFIGS. 1-2,5and7as noted above, the transmitter59may be mounted directly to the vehicle5, as shown inFIG. 1, in any conventional manner. The mount may be permanent or may be temporary, permitting the transmitter59to be portable, as will be discussed further below. In one embodiment, the transmitter59may have two open contacts64on the back surface of the transmitter59, as shown inFIG. 5.FIG. 7shows the circuit62for this embodiment including a battery or power source80(which could be the previously noted battery pack72), an open portion82defined by the open contacts64, a ground84and a space86which can contain other electric components as may be required. As is well known, an electric circuit is only complete (or closed) when current can flow from the power source80to ground84. When the circuit is not complete (or open) current cannot flow. As the operation of an electric circuit is well known, other details will not be provided here. For this embodiment, when the transmitter59is mounted to the vehicle5, the two open contacts64contact the metal surface of the vehicle5which bridges the open contacts64and thus completes or closes the circuit62. In this closed circuit condition, the transmitter59can be used to send a control signal to operate the actuation mechanism18. When the transmitter59is not mounted to the vehicle5, however, the open contacts64are not bridged and the circuit62remains open. In this open circuit condition, the transmitter59cannot send a control signal (or alternately, the actuation mechanism18cannot be operated). With reference now toFIGS. 1-2,6and7-8, in another embodiment, the transmitter59may have one or more magnetic contacts67on the back surface of the transmitter59, as shown inFIG. 6. For this embodiment, the circuit62ofFIG. 7applies except that the open portion82ofFIG. 7is replaced with the open portion82ofFIG. 8. For this embodiment, when the transmitter59is mounted to the vehicle5, the magnetic contact67contacts the metal surface of the vehicle5which bridges the open portion82and thus completes or closes the circuit62. In this closed circuit condition, the transmitter59can be used to send a control signal to operate the actuation mechanism18. When the transmitter59is not mounted to the vehicle5, however, the open portion82is not bridged and the circuit62remains open. In this open circuit condition, the transmitter59cannot send a control signal (or alternately, the actuation mechanism18cannot be operated). With reference now toFIGS. 2-4and7, in yet another embodiment, the wireless control system52may include a cradle60that holds the transmitter59in place during use. The cradle60may be constructed from metal, plastic or other material that resists corrosion from exposure to the environment. Any configuration of cradle60may be chosen that securely receives the transmitter59. The cradle60may be permanently affixed to the vehicle5, as shown, and accordingly the transmitter59may be permanently received within the cradle60. The cradle60may include an opening that allows access to the battery compartment of the transmitter59. This allows the operator to change the battery of the transmitter59as needed without removing the transmitter59from the cradle60. In one embodiment, the cradle60may be fixed in place via fasteners. Alternatively, the cradle60could be fashioned as part of the liftgate assembly10or the vehicle5. In any case, the transmitter59may be locked in place into the cradle60via a lockable latch that can only be removed for repairs or replacement of the transmitter59by an authorized individual. Still any manner of locking the transmitter59in place may be chosen with sound engineering judgment. The cradle60may include a set of contacts66. For this embodiment, the circuit62ofFIG. 7applies except that the contacts64ofFIG. 7are replaced with the contacts66ofFIG. 3. The circuit62is only closed when the transmitter59is properly seated in the cradle60to electrically connect the contacts66. In this way, if the operator removes the transmitter59from the cradle60in attempt to operate the transmitter59from a remote location, the circuit62will open and the actuation mechanism18will be prevented from operating. With reference now toFIGS. 1-2, in another embodiment, the transmitter detection system61narrows, in proximity and direction, the effective range of transmission to the receiver63. The transmitter59may include a proximity detection device that allows transmission of the wireless signal only if the transmitter59is in direct line of sight of and proximate to the receiver63. An Infrared transmitter and detector may be incorporated into the electric circuit62and permit the circuit62to be closed (completed) only when the transmitter59, and hence the operator, is within a predetermined distance from the liftgate assembly10. With reference now toFIGS. 1-4,7and9, in still another embodiment, the transmitter detection system61may include a jumper circuit100. The jumper circuit100can be used to override some of the electric circuit62requirements noted above. For this embodiment, the circuit62ofFIG. 7applies except that the open portion82ofFIG. 7is replaced with the open portion82ofFIG. 9. In one embodiment, the jumper circuit100is placed within the transmitter59and is selectively adjustable by an electric switch into an “on” (or closed) condition and an “off” (or open) condition. When the jumper circuit100is switched on (closed), the open contacts64are closed (as is the circuit62) by the jumper circuit100and the transmitter59can be used even when the transmitter is not mounted to the vehicle5. This permits the flexibility of manufacturing essentially the same transmitter59for use as either a permanent mount control or as a portable hand held control. In another embodiment, the jumper circuit100is placed within the cradle60and is selectively adjustable by an electric switch into an “on” (or closed) condition and an “off” (or open) condition. When the jumper circuit100is switched on (closed), the previously mentioned contacts66are closed (as is the circuit62) by the jumper circuit100and the transmitter59can be used even when the transmitter is not placed within the cradle60. This also provides flexibility of manufacturing the same transmitter59for use as either a cradle mount control or as a portable hand held control. It should be noted that when a jumper circuit100is used it is still possible to limit the distance from which the transmitter59can be used using, for example, the previously described proximity detection device. With reference now to all the FIGURES, the wireless control system52described above has been used with a liftgate assembly10. However, it should be noted that the wireless control system52of this invention could be used with other apparatuses in other applications as well; especially when it is desirable to require that the transmitter (and thus the operator) be at a predetermined location. Non-limiting examples of other uses for the wireless control system52are cranes, car haulers, tow trucks, electric winches used at marinas to lower boats into the water, and the like. The preferred embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods may incorporate changes and modifications without departing from the general scope of this invention. For example, the wireless control51, including the transmitter59and receiver63, may wirelessly operate on any type and configuration of signal modulation. Additionally, it should be understood that any form of wireless communication may be used to communicate signals from the transmitter59to the receiver63including, but not limited to, infrared, and other frequency ranges of electromagnetically generated signals. It should also be noted that any type and configuration of electrical or electronic circuitry may be utilized to construct the receiver63transmitter59and overall control system51as chosen with sound engineering judgment. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
i 2 00015 La présente invention concerne un tube électronique à onde progressive pour ul trasons. Un tube électronique conforme à l'invention permet d'amplifier des signaux ultrasoniques et, également, par effet piézo-électrique, des signaux électriques 5 en utilisant le principe du fonctionnement des tubes électroniques à onde progressive, avec des paramètres de gain analogues â ceux d'un tube classique à onde progressive et à des fréquences très basses (quelques MHz-). Les amplificateurs de ce type (tubes électroniques acoustiques) étaient inconnus jusqu'ici. 10 L'invention va être décrite en se référant au dessin annexé qui en repré sente, schématiquement en coupe longitudinale, un mode préféré de réalisation choisi, uniquement, à titre d'exemple non limitatif. Sur cette figure, on peut voir une enveloppe vide d'air 9 contenant un cristal de quartz pîézo-électrîque 1 . Un faisceau d'électrons 5, émis par une 15 cathode 6 et se déplaçant dans un champ électrique vers un élément 7, balaye la surface du quartz piézo-électrique 1 et/ou traverse ce dernier par une fente 8 ménagée dans sa partie axiale. Des organes appropriés 3, disposés à l'une des extrémités dudit quartz, permettent à ce faisceau d'électrons 5 d'engendrer, dans le quartz 1, une onde 20 superficielle ultrasonique 2. Par effet piézo-électrique, cette onde superficielle ultrasonique produit un champ électrique alternatif qui module ledit faisceau d'électrons. Cette onde superficielle est ensuite recueillie par des organes réceptifs appropriés 4, disposés à l'autre extrémité dudit quartz. Pour une valeur critique de la vitesse du faisceau d'électrons 5 il se produit 25 une amplification d'amplitude de cette onde superficielle. L'effet produit est identique à celui d'un tube à onde progressive classique mais il se produit à des vitesses critiques beaucoup plus basses. Un tube électronique ultrasonique conforme à l'invention peut trouver des applications universelles en éleclrontque et en électro-acoustique. 30 Bien entendu, l'invention n.est pas limitée aux termes de la description qui précède mais elle en comprend, au contraire, toutes les variantes à la portée d'un homme de l'art. 69 00024 2 2000015 revendications 1 . Tube électronique pour ultrasons caractérisé en ce qu'il comprend une enveloppe vide d'air contenant un cristal de quartz piézo-électrique susceptible d'être balayé par un faisceau d'électrons se déplaçant dans un champ électrique. 2. Tube électronique selon 1 caractérisé en ce que l'interaction entre l'onde superficielle piézo-électrique et le faisceau d'électrons peut entraîner une amplification de l'amplitude de ladite onde superficielle. 3. Tube électronique selon I ou 2, caractérisé en ce qu'il peut amplifier des signaux ultrasoniques. 4. Tube électronique selon 1 ou 2, caractérisé en ce qu'il peut amplifier des signaux électriques.
Semiconductor device A semiconductor device comprises a first memory cell comprising more than seven transistors and storing data in a latch circuit; and a second memory cell storing data in a capacitor; a sense amplifier having about the same circuit configuration of the first memory cell and detecting data stored in the second memory cell. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor device including both a static random access memory (SRAM) and a dynamic random access memory (DRAM). 2. Description of Related Art A semiconductor device comprising a semiconductor substrate both a SRAM and a DRAM are formed on is well known (for example, see Japanese Unexamined Patent Publication No. 10-041409). High-speed memory access can be obtained with the SRAM and large capacity with small area can be provided with the DRAM.FIG. 8shows a general circuit configuration of a SRAM cell, which is formed to like this semiconductor device. As shown inFIG. 8, the SRAM cell generally consists of six transistors. This SRAM cell has a latch circuit89. The latch circuit89includes NMOS transistors81,82and PMOS transistors83,84. Further, the SRAM cell includes transfer transistors85,86. The transfer transistors85,86transfer data stored in the latch circuit89to bit lines BL and /BL. In the SRAM cell formed as described above, threshold variation of transistors81-86becomes a great factor of malfunction according to progress in manufacturing miniaturization. Furthermore, because of lower control voltage for electric power saving, stability of operation gets worse. As a result, there is a problem that yield of manufacturing process becomes lower when the SRAM cell is formed to the semiconductor device. To improve the yield of manufacturing process, new approaches has been researched and developed. For one of the new approaches, a new configuration is applied to the SRAM cell as to obtain high stability even in low-voltage condition (for example, that is shown in “Approaches to control a SRAM variation for LSI are proposed in a stream”, Nikkei electronics, 2006.7, Vol. 17, p. 55-62). On the other hand, semiconductor device, which the DRAM is formed on, has a sense amplifier. As shown inFIG. 9, the sense amplifier of the DRAM comprises NMOS transistors91,92, PMOS transistors93,94, and transfer transistors95,96. A bit line BL and a complemental bit line /BL of the DRAM cell are connected to nodes n7, n8inFIG. 9. A potential difference between the bit lines BL, /BL is amplified by the NMOS transistors91,92and the PMOS transistors93,94. The NMOS transistors91,92and the PMOS transistors93,94are electrically connected each other like as the latch circuit89. Data based on the amplified potential difference is transferred to a data bus Bus and /Bus by the transfer transistors95,96. ComparingFIG. 8withFIG. 9, it can be seen that the NMOS transistors91,92of the sense amplifier correspond to the transistors81,82of the SRAM cell. The PMOS transistors93,94of the sense amplifier correspond to the transistors83,84of the SRAM cell. The transfer transistors95,96of the sense amplifier correspond to the transistors85,86of the SRAM. A circuit99(hereinafter, it is called as a latch circuit99) amplifying the potential difference between a pair of bit lines BL and /BL corresponds to the latch circuit89of the SRAM. This is, the sense amplifier of the DRAM has about the same configuration of the SRAM cell. As described above, when a circuit configuration of the SRAM cell is changed as to save electric power and rein in the negative effect of manufacturing variation, for the semiconductor device including both the SRAM and the DRAM, a configuration of the SRAM cell does not correspond to the sense amplifier of the DRAM. Hence, a tuning window of the SRAM cell does not correspond to the sense amplifier of the DRAM. The tuning window means manufacturing condition in which minimum manufacturing variation can be obtained. When the semiconductor device is manufactured with the tuning window of the SRAM cell, the sense amplifier of the DRAM tends to have a defect. As described above, for the semiconductor device including both the DRAM and the SRAM, when electric power saving is aimed, mass productivity cannot be obtained. SUMMARY According to an aspect of the present invention, there is provided a semiconductor device that includes a semiconductor device comprising; a first memory cell comprising more than seven transistors and storing data in a latch circuit; and a second memory cell storing data in a capacitor; a sense amplifier having about the same circuit configuration of the first memory cell and detecting data stored in the second memory cell. According to another aspect of the present invention, there is provided a semiconductor device comprising; a first memory cell comprising more than seven transistors and storing data in a latch circuit; and a second memory cell storing data in a capacitor; a sense amplifier having about the same circuit configuration of the first memory cell and detecting data stored in the second memory cell, wherein the first memory cell comprising a plurality of a first and a second conductivity type transistors, and wherein the sense amplifier comprising same number of the first and the second conductivity type transistors as the first memory cell. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring to attached figures, preferable embodiments of this invention are described hereinafter. First Embodiment FIG. 1shows a block diagram of a whole configuration of a semiconductor device according to a first embodiment. This semiconductor device10includes a SRAM block and a DRAM block. The SRAM block includes a plurality of SRAM cells CELL1. The SRAM cell CELL1includes a latch circuit (not shown) storing data. The DRAM block includes a plurality of DRAM cells CELL2and a plurality of sense amplifiers SA. The DRAM cell CELL2has capacitors storing data and transistors (not shown). Data stored in the DRAM cell is read out and output by the sense amplifier SA. FIG. 2shows a circuit configuration of the SRAM cell CELL1. This SRAM cell includes NMOS transistors21,22, PMOS transistors23,24, transfer transistors25,26, and read transistors27,28. In the NMOS transistor21, a source is connected to a ground voltage supply GND, a drain is connected to a node n1, and a gate is connected to a node2. In the NMOS transistor22, a source is connected to the ground voltage supply GND, a drain is connected to the node n2, and a gate is connected to the node n1. In the PMOS transistor23, a source is connected to an electric power supply VDD, a drain is connected to the node n1, and a gate is connected to the node n2. In the PMOS transistor24, a source is connected to the electric power supply VDD, a drain is connected to the node n2, a gate is connected to the node n1. As described above, the latch circuit29is composed with NMOS transistors21,22and PMOS transistors23,24. In the transfer transistor25, one terminal is connected to a bit line BL, the other terminal is connected to the node n1, and a gate is connected to a write word line WL (WRITE). In the transfer transistor26, one terminal is connected to a complemental bit line /BL, the other terminal is connected to the node n2, and a gate is connected to the write word line WL (WRITE). The read transistor27is connected to the read word line WL (READ), a drain is connected to the bit line BL, a gate is connected to the node. In the read transistor28, a source is connected to the read word line WL (READ), a drain is connected to the complemental bit line /BL, and a gate is connected to the node. In the SRAM cell CELL1configured as described above, at writing data, high level is supplied to the write word line WL (WRITE) so that transfer transistors25,26turn on. Hence, a pair of bit lines (BL and /BL) is connected to the latch circuit29. The pair of bit lines is charged according to data for writing. Hence, the data is transferred to the latch circuit29. At reading data, voltage is supplied to the read word line WL (READ). Here, the read transistors27,28turn on/off according to the data stored in the latch circuit29. According to switching condition on/off of the read transistors27,28, voltage level of the read word line WL (READ) is transferred to the bit line BL or the complemental bit line /BL. In this way, the data stored in the SRAM cell is read out. That is to say, the bit lines BL, /BL perform as output line of data in the SRAM cell. FIG. 3shows a circuit configuration of sense amplifier of the DRAM according to the first embodiment. This circuit has NMOS transistors31,32, PMOS transistors33,34, transfer transistors35,36, and transistors37,38. The transistors37,38correspond to the read transistors27,28ofFIG. 2. The transistors37,38are called as read transistors37,38hereinafter so thatFIG. 3corresponds toFIG. 2. In the NMOS transistor31, a source is connected to complemental sense enable SEB, which has an inverted voltage level of sense enable SE, a drain is connected to a node n3, and a gate is connected to a node n4. In the NMOS transistor32, a source is connected to the complemental sense enable SEB, a drain is connected to the node n4, and the gate is connected to the node n3. In the PMOS transistor33, a source is connected to sense enable SE, a drain is connected to the node n3, a gate is connected to the node n4. In the PMOS transistor34, a source is connected to the sense enable SE, a drain is connected to the node n4, a gate is connected to the node n3. In the transfer transistor35, one terminal is connected to a data bus BUS, the other terminal is connected to the node n3, a gate is connected a Y-select line Y-SELECT. In the transfer transistor36, one terminal is connected to a data bus BUS′, the other terminal is connected to the node n4, a gate is connected to the Y-select line Y-SELECT. The node n3is connected to the bit line BL, and the node n4is connected to the complemental bit line /BL. This circuit of the sense amplifier SA of the DRAM has the same configuration as the circuit of the SRAM cell CELL1of the SRAM as described above. NMOS transistors21,22; PMOS transistors23,24, transfer transistors25,26and read transistors27,28of the SRAM cell correspond to NMOS transistors31,32, PMOS transistors33,34, transfer transistors35,36and read transistors37,38of the sense amplifier SA of the DRAM. In the sense amplifier of the DRAM configured as described above, the circuit39(the latch circuit) amplifying potential difference between the bit lines (BL, /BL) amplifies the potential difference based on charge storage stored in a capacitor (not shown). The capacitor is connected to the pair of bit lines. When high level is supplied to the Y-select line Y-SELECT, the transfer transistors35,36turn on. Hence, a voltage amplified by the latch circuit39is transferred to a data bus lines BUS, BUS′. The voltage transferred to the bus lines BUS, BUS′ is judged so that the data stored in the capacitor corresponding to the DRAM cell is read out. That is to say, for the configuration of the sense amplifier of the DRAM, the bus lines BUS, BUS′correspond to a data output line. An advantage of the semiconductor device configured as explained above is described hereinafter. The conventional SRAM does not have the read transistors27,28. In the conventional SRAM, at reading data, data is read out based on a voltage level of the nodes n5, n6inFIG. 8, when the transfer transistors25,26turn on. For a circuit of the conventional SRAM at reading data, when the node n6is high level, both transfer transistor85and an NMOS transistor81turn on. At this time, if a resistance of the transfer transistor85is larger than a resistance of the NMOS transistor81because of manufacturing variation, current does not flow through the transfer transistor85but flow through the NMOS transistor81. As a result, data cannot be read out correctly in the conventional SRAM. In the first embodiment, in consideration of the problem that there is reading error due to resistance ratio between the transfer transistor85and the NMOS transistor81, a configuration is designed so that data does not been transferred to the bit lines BL, /BL through the transfer transistors25,26. That is to say, as shown inFIG. 2, the read transistors27,28are formed in the SRAM. Hence, at reading data, data can be read out correctly through the transfer transistor27,28without relation to a resistance difference between the transfer transistor85and the NMOS transistor81. According to the design of the SRAM, the read transistors37,38corresponding to the read transistors27,28, are formed in the sense amplifier of the conventional DRAM (seeFIG. 9). As shown inFIG. 3, a tuning window of the SRAM can be matched to a tuning window of the DRAM, because the amplifier of the DRAM is formed as the same design as the SRAM cell CELL1. Even if the control voltage is set to be low and operation environment becomes unstable, the control accuracy of the SRAM cell CELL1is ensured, because of the configuration of the SRAM cell CELL1. Further, the sense amplifier of the DRAM has the same configuration as the SRAM cell CELL1, both the electric power saving and higher productivity of the semiconductor device10can be obtained. Second Embodiment FIG. 4shows a circuit diagram of a SRAM cell CELL1A of a semiconductor device according to a second embodiment. Whole configuration is the same asFIG. 1. The same number is numbered to a component having the same function to omit of explanation. In the semiconductor device according to the second embodiment, a data protect transistor41is provided between the PMOS transistor23and the NMOS transistor21instead of the read transistor27of the first embodiment. In the data protect transistor41, a source is connected to the node n1, a drain is connected to the NMOS transistor21, and a gate is connected to a gate control line REB as shown inFIG. 4. For in the second embodiment, the gate of the transfer transistor25is connected to a write/read word line WL (WRITE/READ) and a gate of the transfer transistor26is connected to a write word line WL (WRITE). In the SRAM cell CELL1A of the semiconductor device according to the second embodiment, at writing data, high level is supplied to the write word line WL (WRITE) and the read/write word line WL (READ/WRITE). Hence, the transfer transistors25,26turn on and data transferred from the bit lines BL, /BL is stored in the latch circuit29A. At reading data, high level is supplied to the write/read word line WL (WRITE/READ) so that the transfer transistor25turns on. Low level is supplied to the write word line WL (WRITE) so that the transfer transistor26turns off. Low level is supplied to the gate control line REB so that the data protect transistor41turns off. As a result, according to a voltage level H/L of the node n1, level of the bit line BL is determined. As described above, in the second embodiment, the data protect transistor41is provided between the PMOS transistor23and the NMOS transistor21. At reading data, when the data protect transistor turns off, a path between the NMOS transistor21and the transfer transistor25can be cut. As a result, a ratio-less can be obtained. The ratio-less means without relation to resistance ratio between the transfer transistor25and the NMOS transistor21, data can be read out. A sense amplifier SAA of the DRAM is the same circuit configuration as the circuit inFIG. 4. When the circuit configuration inFIG. 4is applied as a sense amplifier of the DRAM, an electric power supply VDD inFIG. 4is changed to sense enable SE. A ground voltage supply GND is changed to the complemental sense enable. The complemental sense amplifier enable has inverted level of voltage to the sense enable SE. The bit line BL is changed to a data bus BUS and the complemental bit line /BL to a complemental data bus BUS′. The bit lines BL, /BL from the DRAM cell are connected to the nodes n1, n2inFIG. 4. The write/read word line WL (WRITE/READ) inFIG. 4is changed to a Y-select line Y-SELECT. As described above, because of the data transistor41, incidence of the error due to the resistance ratio between the NMOS transistor21and the transfer transistor25can be prevented. It makes that a fine operation can be obtain even in low-voltage condition. Further, it makes yield ratio improved and high productivity can be obtained in the semiconductor device providing both SRAM and DRAM. When the configuration of the SRAM cell CELL1A is formed in much the same way as the sense amplifier of the DRAM like the first embodiment, a manufacturing optimum condition of the SRAM cell can be conformed to that of the sense amplifier. Hence, an effect of the manufacturing variation can be reduced. Third Embodiment FIG. 5shows a circuit diagram of SRAM cell CELL1B of a semiconductor device according to a third embodiment. Whole configuration is the same as the configuration inFIG. 1. In the SRAM cell CELL1B of the third embodiment, a back gate control line VPSUB is provided instead of the read transistor27of the first embodiment. The back gate control line VPSUB controls back gate voltage of the PMOS transistors23,24. The other configuration is the same as the first embodiment. As shown inFIG. 5, the back gate control line VPSUB is connected to a back gate of the PMOS transistors23,24of SRAM cell CELL1B. In the SRAM cell configured as described above, at writing data, the back gate control line VPSUB is set to be high voltage. As a result, the PMOS transistors23,24are set to be difficult to turn on at writing data. At writing data, resistance of the PMOS transistors23,24is set to be high. Hence, a margin for writing can be maintained even at low voltage. A sense amplifier SAB of the DRAM of the semiconductor device according to the third embodiment is formed as the same configuration as an equivalent circuit inFIG. 5. When the configuration inFIG. 5is applied to the sense amplifier of the DRAM, the electric power supply VDD inFIG. 5is changed to sense enable SE, and the ground voltage supply GND is set to be complemental sense amplifier enable. The complemental sense amplifier enable has inverted level of voltage to the sense enable SE. The bit line inFIG. 5is set to be a data bus BUS, and the complemental bit line /BL is to be a complemental data bus BUS′. The bit lines BL, /BL from the DRAM cell are connected to the nodes n1, n2inFIG. 5. The word line inFIG. 5is changed to the Y-select line Y-SELECT. Herewith, it makes the margin for writing expanded and productivity improved in the semiconductor device. Fourth Embodiment FIG. 6shows an equivalent diagram of a SRAM cell CELL1C of the semiconductor device according to a fourth embodiment. Whole configuration is about the same as configuration inFIG. 1. In the SRAM cell CELL1C of the fourth embodiment, the bit line BL and the word line WL are provided for writing and reading individually. The SRAM cell CELL1C provides NMOS transistors21,22, the PMOS transistors23,24, and the transfer transistors25,26in the first embodiment. The SRAM cell CELL1C further comprises read NMOS transistor61,62. As shown inFIG. 6, in the read NMOS transistor61, a source is connected to a drain of the read NMOS transistor62, a gate is connected to the node n2, and a drain is connected to a read bit line BL (READ). In the read NMOS transistor62, a source is connected to the ground voltage supply GND, a drain is connected to the source of the read NMOS transistor61, a gate is connected to the read word line WL (READ). In the transfer transistor25, one terminal is connected to the write bit line BL (WRITE), the other terminal is connected to the node n1, and the gate is connected to the write word line WL (WRITE). In the transfer transistor26, one terminal is connected to the write bit line BL (WRITE), the other terminal is connected to the node n2, a gate is connected to the write word line WL (WRITE). In the SRAM cell CELL1C configured as described above, at writing data, high level is supplied to the write word line WL (WRITE) so that the transfer transistors25,26turn on. Hence data for writing is transferred from the write bit line BL (WRITE) to the latch circuit29. On the other hand, at reading data, high level is supplied to the read word line WL (READ) so that the read transistor62turn on. Hence, the read transistor61turns on/off based on a voltage level of the node n2. A voltage level of the read bit line /BL (READ) is determined. As described above, with providing the word line WL and the bit line BL for writing and reading individually, different transistor operates at reading and at writing. Hence, the ratio limit for reading is improved like the first and the second embodiment. Further, with providing the word line WL and the bit line BL for writing and reading individually, a change operation between reading and writing can be operated quickly. The sense amplifier SAC of the DRAM of the semiconductor device according to the fourth embodiment is formed as the same configuration as the equivalent circuit inFIG. 6. When the configuration inFIG. 6is applied to the sense amplifier, the electric voltage supply VDD inFIG. 6is set to be sense enable SE, and the ground voltage supply GND is set to be complemental sense enable SEB. The complemental sense enable has the inverted voltage level to the sense enable SE. The bit line inFIG. 6is set to be a data bus BUS, and the complemental bit line /BL is set to be a complemental data bus BUS′. The bit lines BL, /BL from the DRAM cell are connected to the node n1, n2inFIG. 5. The write word line WL (WRITE) is changed to a Y-select line Y-SELECT. Herewith, operation control and the ratio limit can be improved. Hence, productivity is improved in the semiconductor device including both SRAM and DRAM. Fifth Embodiment FIG. 7shows a circuit diagram of a SRAM cell CELL1D of the semiconductor device according to a fifth embodiment. Whole configuration is the same as the configuration inFIG. 1. For an aspect of the fifth embodiment, transfer gates71,72are provided instead of the transfer transistors25,26in the first embodiment. The transfer gate71is a NMOS transistor which gate is connected to a first word line WL1, and the transfer gate72is a PMOS transistor which gate is connected to a second word line WL2. As described above, with providing the transfer gates71,72, a resistance value of the transfer gates71,72can be lower than the transfer transistors21,22which consist of one transistor. Hence, at writing data, a resistance value of the PMOS transistors23,24is higher than the transfer gates71,72. Current flows from the node n1through the NMOS transistor21. Hence, it makes an operation error lessen. Here, the sense amplifier SAD of the DRAM of the semiconductor device according to the fifth embodiment is formed in much the same way as the equivalent circuit inFIG. 7. When the configuration inFIG. 7is applied to the DRAM, the electric power supply VDD is set to be sense enable SE and the ground voltage supply GND is set to be complemental sense enable SEB. The complemental sense enable SEB is inverted voltage level to the sense enable SE. The bit line BL inFIG. 7is changed to the data bus BUS and the complemental bit line /BL to complemental data bus BUS′. The bit lines BL, /BL from the DRAM cell are connected to the node n1, n2inFIG. 7. The write word line WL (WL1, WL2) inFIG. 7is changed to the Y-select line Y-SELECT. As described above, a tolerance for variation of P/N ratio can be improved at reading and writing, because the resistance value of the transfer gate71,72is designed to be lower than the transistors21-24. The transistors21-24constitute the latch circuit. Hence, the productivity is improved in the semiconductor device providing both DRAM and SRAM. As described above, in the embodiments from the first embodiment to the fifth embodiment, the SRAM cell is designed so that the margin for writing and reading of the SRAM is larger. The sense amplifier of DRAM is formed as to conform to the SRAM. However, only if the SRAM designed to improve the margin for writing and reading and the sense amplifier of the DRAM is formed according the design of the SRAM, the circuit configuration described in the first to the fifth embodiments is not limited. For a variety of the circuit configurations, the aspect of this invention can be obtained. As described above, in the embodiments from the first embodiment to the fifth embodiment, firstly the circuit is designed so that the margin for operation is larger and secondly the circuit configuration is applied to the sense amplifier of the DRAM. But, it may be the reverse method. That is to say, a circuit configuration designed for the sense amplifier of the DRAM may be applied to the SRAM cell. Even in this method, the aspect can be obtained that the tuning window of the SRAM is conformed to the tuning window of the DRAM. It is apparent that the present invention is not limited to the above embodiment but may be modified and changed without departing from the scope and spirit of the invention.
î 2000018 La présente invention se rapporte à une broche pour des métiers à filer et à retordre, retenue de façon sûre dans son support au moyen d'un verrouillage à billes empêchant la montée involontaire de la broche. 5 On connaît déjà des modes de réalisation dans lesquels le fût de la broche est retenu dans le support de la broche au voisinage de la noix à 1*aide de billes, de telle manière que le fût ne puisse pas se séparer du support de la broche lors de 1*enlèvement des canettes ou ne puisse pas monter pendant la rotation» 10 Suivant l'un de ces modeè de réalisation connus, la noix de la broche comporte plusieurs alvéoles dans chacun desquels est logée une bille« Ces billes sont poussées vers l'intérieur au moyen d'une bague montée de manière à pouvoir coulisser sur le pourtour extérieur de la noix, de sorte que ces billes pénètrent dans une gorge 15 du support de la broche. Cela empêche une montée involontaire du fût de la broche par rapport au support de cette dernière. En vue du déverrouillage, on pousse vers le haut la bague montée de manière à pouvoir coulisser sur la noix, de sorte que les billes glissent vers 1*extérieur lors du soulèvement du fût de la broche et 20 que ce fût se trouve entièrement libéré» Ce mode de réalisation présente plusieurs inconvénients» Il n'existe ainsi, par exemple, pas de sécurité spéciale empêchant les billes de tomber lorsque la bague est soulevée» En outre, la fabrication est onéreuse car les alvéoles doivent être adaptés au dia-25 mètre des bille», et doivent présenter vers l'intérieur un diamètre plus faible afin que les billes ne puissent pas tomber vers l'intérieur lorsqu'on retire le fût de la broche» En outre, le diamètre du fût de la broche doit être adapté de façon appropriée» En plus, la bague supplémentaire représente pour la noix une masse tournante 30 qui a un effet défavorable sur la rotation de la broche. À cela s'ajoute que les billes peuvent se bloquer très facilement dans les alvéoles sous l'effet de la rouille ou d'éventuelles barbes de fibres, ce qui fait que. le déverrouillage présente alors des difficultés» 35 Suivant un autre mode de réalisation connu, les billes sont logées dans une bague fixe entourée d'une bague extérieure tournante» Dans la bague fixe se trouve un trou pratiqué parallèlement à l'axe de la broche et recevant une bille sollicitée par un ressort» La bille s'engage en position de verrouillage ou de déverrouillage 40 ttvis un trou de la bague extérieure tournante» En position de 69 00046 2 2100018 verrouillage, les billes sont poussées par la bague extérieure dans des trous de la bague intérieure, ce qui fait que ces billes s'engagent dans une gorge du support de la broche. En vue du déverrouillage, on pousse les billes dans des trous appropriés de la 5 bague extérieure en faisant tourner cette dernières Ce mode de réalisation est très compliqué et onéreux et sa capacité de fonctionnement est également fortement compromise par la rouille» En outre, un autre inconvénient réside dans le fait que le verrouillage est rigide et ne s1 enclenche pas automatiquement 10 lors de l'introduction de la broche» En plus, on ne peut pas voir de l'extérieur si le verrouillage est correctement enclenché, La présente invention qui se distingue déjà par sa construction et sa manipulation simples remédie aux inconvénients des dispositifs de verrouillage de broche décrits ci-dessus» 15 L'invention est caractérisée par le fait qu'une cage suscep tible de tourner et de coulisser dans le sens social et comportant au moins deux billes est disposée dans 15espace intérieur de la noix de la broche. Cela présente l'avantage qu'il n'est pas nécessaire de prévoir des moyens supplémentaires sur la noix même et 20 qu*il est possible d'utiliser, au prix d'un agrandissement restreint, l'espace intérieur qui existe de toute manière dans la noix» La cage n'est mise en place dans la noix qu'avant le montage. A cet effet, selon une autre caractéristique de l*invention# les parties de la cage qui portent les billes sont mobiles dans le 25 sens radial» Lors de l'enfoncement de la cage, les billes s'engagent par une surface oblique dans la cavité de la noix, ce qui empêche la cage de tomber» Suivant une autre caractéristique avantageuse de l'invention, les billes s'engagent lors de l'opération de verrouillage dans une 30 rainure à surfaces obliques du support de la broche. En cas de montée involontaire de la broche, les billes sont poussées par une surface oblique prévue sur la noix de la broche contre la surface oblique supérieure de la rainure du support de la broche, et l'on obtient ainsi un simple roulement à billes à contact oblique qui 35 empêche toute usure lors de la rotation de la broche» De ce fait, une montée du fût de la broche est impossible» Le déverrouillage du fût de la broche s'effectue de la manière la plus simple possible. Suivant une autre caractéristique de l'invention, on engage à cet effet une pointe dans un trou de la 4© noix et on soulève la cage conjointement avec le fût de la broche 69 00046 3 2 à 1'aide de cette pointe, ce qui fait que les billes peuvent glisser sur la surface oblique du support de la broche. La cage avec les billes est normalement maintenue dans sa position par son poids propre. Dans le cas où cela s'avère insuffisant pour les mouvements de 5 verrouillage, la cage est maintenue dans sa position, suivant une autre caractéristique de l'invention, au moyen d'un ressort. Le verrouillage s'effectue automatiquement et sans actionnement manuel sup plémentaire, car la broche est correctement verrouillée dès qu'elle a atteint sa position# 10 Le verrouillage s'effectue exclusivement par conjugaison de forme. Les surfaces obliques de la noix de la broche et du support de la broche empêchent, en outre, la broche de se libérer d'elle-même sous l'effet de vibrations ou de chocs. Le dessin annexé représente schématiquement deux exemples de 15 réalisation non limitatifs de l'objet de la présente invention; sur ce dessin t La fig. 1 est une coupe de la noix avec le fût de la broche et la.partie supérieure du support de la broche^ avec une cage à billes tournantes, à l'état verrouillé; 20 la fig» 2 représente le même exemple que la fig. 1 , après mon tée du fût de la brochej la fig. 3 représente l'exemple selon les fig. 1 et 2 pendant l'opération de verrouillage; la fig. h est une vue en perspective de la cage; 25 la fig. 5 représente un exemple à billes fixes, à l'état ver rouillé ; la fig* 6 représente l'exemple selon la fig# 5 après montée du fût de la broche; la fig» 7 représente l'exemple selon les fig» 5 et 6 pendant 30 l'opération de déverrouillage. Le fût 1 de la broche porte la noix 2 dont la cavité intérieure 3 est élargie sous la forme de deux évidements annulaires h et 5 de diamètres différents# L'évidement h présente un plus faible diamètre que 1'évidement 5 et comporte une surface oblique 6 dirigée 35 vers le bas, tandis "que l'évidement 5 présente dans le bas et dans le haut des surfaces obliques 7j La cage 9 qui peut être réalisée en matière synthétique ou en tôle porte plusieurs billes 10 réparties à des intervalles réguliers Ces billes 10 sont Ibgéea dans la partie inférieur» 11 de la cage 9» Comme le montre la fig. k9 la partie inférieure 11 de la cage 9 est 69 00046 2000018 élastique grâce à la présence de fentes 12, de sorte que lors de la mise en place de la cage 9 dans la noix 2 de la broche, les segments 11 servant de logement aux billes 10 se trouvent d1abord poussés vers l'intérieur jusqu'à ce que les billes 10 atteignent l'évi— 5 dement 4 et s'y engagent» De ce fait, la cage 9 est fixée dans son ensemble et ne peut pas tomber, et elle est en même temps protégée contre d'éventuelles manipulations incorrectes du conducteur du métier. En outre, la cage 9 reste avec les billes 10 dans cette position par son poids propre. Pour assurer que la cage 9 ne change pas 10 de position, on peut encore prévoir un ressort 13 portant, d'une part, contre une surface 14 de la noix 2 et, d'autre part, contre la cage 9 et poussant ainsi la cage 9 vers le bas, ce qui fait que les billes 10 s'appliquent contre la surface oblique 6. Cependant, la longueur du ressort 13 est choisie de manière qu'en cas de mouve-15 ment de rotation relatif de la cage, le ressort ne s'appuie pas contre la noix. Comme le montrent les fig. 1 à 3 et 5 à 7| une bague de butée 16 est fixée par sertissage au support 15 de la broche. Au lieu de la bague de butée 16 fixée par sertissage, on peut également réali— 20 ser d'une seule pièce le support de la broche et la bague de butée. Dans la bague de butée 16 est pratiquée une rainure 17 délimitée vers le bas -par une surface oblique 18 et vers le haut par une surface oblique 19» Lorsqu'on engage le fût 1 de la broche dans le support 15, la cage 9 se déplace vers le haut et les parties 11 de 25 la cage, portant les billes 10 sont poussées dans l'évidement 5 par le collet 20« De ce fait, le fût 1 de la broche peut être engagé dans le support» Dès que le collet 20 a atteint sa position correcte par rapport à la noix 2, les billes 11 glissent le long de la surface oblique 19 vers l'intérieur et occupâtleur position de verrouil-30 lage, la cage 9 revenant dans sa position initiale sous l'effet de son poids propre ou sous la pression du ressort 13» Les billes 10 se trouvent maintenant dans la zone située entre la surface oblique-6 et la surface oblique 19. Lorsque la broche 11 ainsi verrouillée effectue un mouvement de montée involontaire, les billes 10 poussées 35 vers le haut par la surface oblique 6 s'appliquent contre la surface oblique 19 en empêchant ainsi tout mouvement de montée supplémentaire de la broche 1• Pour déverrouiller et pouvoir retirer le fût 1 de la broche, on engage une pointe 22 dans le trou 21 de la noix et on soulève la 40 cage de manière que lorsqu'on retire la broche 1, les billes 69 00046 5 .2000018 puissent être poussées par la surface oblique 6 vers 11 extérieur dans l'évidement 5 et libèrent ainsi la broche 1 qui peut alors être retirée vers le haut. Dans l'exemple de réalisation représenté sur les figures 1 à 5 3» les billes 10 et la cage 9» 11 tournent de façon synchrone pendant la rotation de la broche» car elles s * appliquent dans l'évidement h contre la surface oblique 6» Par contre, les fig. 5 à 7 représentent trn exemple dans lequel les billes restent fixes pendant la rotation de la broche. Le ver-10 rouillage et le déverrouillage s'effectuent cependant de la même manière que pour l'exemple représenté sur les fig. 1 à 3. Comme représenté pour les deux exemples, la surface 23 de l'évidement 4 est de préférence conique, ce qui signifie que le diamètre intérieur diminue vers le haut, cela afin qu® lors d'une 15 montée involontaire de la broche, les billes 10 s'appliquent étroitement contre la surface oblique 19 et ne puissent pas glisser dans l'évidement 5» ce qui pourrait provoquer un déverrouillage involontaire de la broche. L'invention n'est évidemment pas limitée aux exemples repré-20 sentés et diverses variantes sont possibles sans sortir du cadre de la présente invention, en particulier en ce qui concerne la réalisation de la cage. 69 00046 6 2000018 REVENDICATIONS 1• Broche pour des métiers à filer et à retordre, retenue de façon sûre dans son support au moyen d'un verrouillage à billes empêchant la montée involontaire de la broche, caractérisée par le 5 fait qu'une cage 9» 11 susceptible de tourner et de coulisser dans le sens eixial et servant de logement à au moins deux billes 10 est disposée dans l'espace intérieur 3 de la noix 2 de la broche. 2» Broche suivant la revendication 1, caractérisée par le fait que les parties de la cage 9» 11» qui portent les billes 10 sont 10 mobiles radialement« 3. Broche suivant les revendications 1 et 2, caractérisée par le fait que lors de l'opération de verrouillage, les billes 10 s'engagent dans une rainure 17 à surfaces obliques 18, 19 du support 15 de la broche» 15 40 Broche suivant les revendications 1 à 3 caractérisée par le fait que lors de la montée involontaire de la broche 1, une surface oblique 6 prévue sur la noix 2 de la broche pousse les billes 10 contre la surface oblique supérieure 19 de la rainure 17 du support 15 de la broche» 20 5» Broche suivant les revendications 1 à 4, caractérisée par le fait que pour le déverrouillage, la cage 9» 11 est soulevée conjointement avec le fût 1 de la broche au moyen d'une pointe engagée dans un trou 21 de la noix 2, les billes 10 glissant sur la surface oblique 19 du support 15 de la broche. 25 6« Broche suivant les revendications 1 à 5, caractérisée par le fait que la cage 9» 11 est retenue dans sa position au moyen d'un ressort 13»
Electrode support for fuel cells An electrode support for fuel cells, the electrode support being made of a porous material having a Ni phase of Ni or NiO and an inorganic skeletal material phase, wherein an oxidation/reduction expansion-suppressing metal M of at least one selected from the group consisting of Fe, Co and Mn is solidly dissolved in the Ni phase or is biasedly distributed on the grain boundaries between the Ni phase and the inorganic skeletal material phase. The electrode support has its volume very little expanded or contracted even in an environment in which it is exposed to the reducing atmosphere and the oxidizing atmosphere alternately. The fuel cell having the fuel electrode, electrolyte layer and oxygen electrode formed on the electrode support effectively prevents the occurrence of cracks or exfoliation caused by expansion and the like when the reduction/oxidation cycle is repeated accompanying the generation of electricity and stop of generation, and maintains reliability very excellently over extended periods of time. TECHNICAL FIELD The present invention relates to an electrode support for fuel cells. More specifically, this invention relates to an electrode support which is used in a solid oxide fuel cell having an electrode structure including a fuel electrode and an oxygen electrode with the electrolyte layer held therebetween, said electrode support supporting the electrode structure or a laminate of the electrolyte layer and the oxygen electrode layer. BACKGROUND ART In recent years, various kinds of fuel cell assembles have been proposed as energy sources of the next generation containing a stack of fuel cells in a container. FIG. 11shows a stack (cell stack) of conventional solid oxide fuel cells. The cell stack has a plurality of fuel cells1which are arranged in alignment, a collector member5of a metal felt being interposed between the one fuel cell1aand another fuel cell1bwhich are neighboring each other, and a fuel electrode7of the one fuel cell1abeing electrically connected to an oxygen electrode (air electrode)11of the other fuel cell1b. The fuel cell1(1a,1b) comprises an electrolyte9and the oxygen electrode11of electrically conducting ceramics formed in this order on the outer peripheral surface of the fuel electrode7of a cylindrical cermet (the inner space is a fuel gas passage), and has an interconnector13provided on the surface of the fuel electrode7which is covered with neither the electrolyte9nor the oxygen electrode11. As is obvious fromFIG. 11, the interconnector13is electrically connected to the fuel electrode7but so will not to be connected to the oxygen electrode11. The interconnector13is formed by using electrically conducting ceramics that is little subject to be degenerated with the fuel gas or the oxygen-containing gas such as the air. Here, the electrically conducting ceramics must be so dense as to reliably isolate the fuel gas flowing inside the fuel electrode7from the oxygen-containing gas flowing on the outer side of the oxygen electrode11 Further, the collector member5provided between the neighboring fuel cells1aand1bis electrically connected to the fuel electrode7of the one fuel cell1athrough the interconnector13and is further connected to the oxygen electrode11of the other fuel cell1b. Therefore, the neighboring fuel cells are connected in series. By containing the cell stack having the above-mentioned structure in the container, the fuel cell is used in the form of an assembly. For example, the fuel gas (hydrogen) flows inside the fuel electrode7and the air (oxygen) flows along the oxygen electrode11, and electricity is generated at about 750 to about 1000° C. In the above fuel cell, in general, the fuel electrode7comprises N1and Y2O3-containing ZrO2called stabilized zirconia (YSZ), the electrolyte9comprises ZrO2(YSZ) containing Y2O3, and the oxygen electrode11comprises a perovskite composite oxide of the type of lanthanum manganate. As the method of producing the above fuel cells, there has been known a so-called co-firing method which fires the fuel electrode7and the electrolyte9simultaneously. The co-firing method is a very simple process having a decreased number of production steps, and is advantageous for improving the yield of cell production and for decreasing the cost. Here, the Y2O3-containing ZrO2forming the electrolyte9has a coefficient of thermal expansion of about 10.8×10−6/° C. whereas the fuel electrode7supporting the electrolyte9contains Ni having a coefficient of thermal expansion of 16.3×10−6/t which is very larger than that of YSZ. In conducting the co-firing as described above, therefore, a difference in the thermal expansion becomes great between the electrolyte9and the fuel electrode7supporting the electrolyte arousing such problems as the occurrence of cracks in the fuel electrode7and exfoliation of the electrolyte9. As a fuel cell solving the above problems, there has been known a fuel cell obtained by forming a fuel electrode, an electrolyte and an oxygen electrode layer on a support board of a porous material which contains Ni and a rare earth oxide (Y2O3or Yb2O3) having a coefficient of thermal expansion lower than that of ZrO2(see patent document 1). According to the above fuel cell, the coefficient of thermal expansion of the support board can be brought close to the coefficient of thermal expansion of the electrolyte. At the time of co-firing, therefore, it is made possible to suppress the occurrence of cracks in the fuel electrode and exfoliation of the electrolyte from the fuel electrode.Patent document 1: JP-A-2004-146334 DISCLOSURE OF THE INVENTION Concerning the inconvenience stemming from the thermal expansion as described above, various proposals have been made as taught in the patent document 1. The fuel cell, however, further involves a problem of expansion due to the oxidation/reduction cycles in addition to the thermal expansion. That is, at the time of generating electricity, the interior of the fuel cell is exposed to the reducing atmosphere due to the supply of the fuel gas (hydrogen). When the generation is halted, however, no fuel gas is fed into the cell which is under a high-temperature condition from the standpoint of safety and economy. Therefore, the interior of the cell changes from the reducing atmosphere into the oxidizing atmosphere. In general, however, in order to maintain a predetermined strength, the fuel cell uses an electrode support; i.e., an electrode structure is formed on the electrode support, and the electricity is collected through the electrode support. For example, in the cells ofFIG. 11, the fuel electrode7is serving as an electrode support, and the electrolyte9and the oxygen electrode11are formed on the fuel electrode7which is the electrode support. The above electrode support, usually, occupies a majority proportion of the cell volume. Even in the fuel cell in which a laminated layer structure of fuel electrode, electrolyte and oxygen electrode is formed on the electrode support, the electrode support occupies a majority proportion of the cell. Therefore, stability of the electrode support plays an important role in the varying atmosphere. Here, the electrode support contains a metal for imparting electrically conducting property, and Ni is usually used as the metal. Ni has a function as a reforming catalyst for forming the fuel gas (hydrogen) from the natural gas and makes it possible to effectively utilize the fuel. Besides, Ni is also contained in the fuel electrode and is desired in forming the fuel electrode on the electrode support and in preventing inconvenience caused by the diffusion of elements between the fuel electrode and the electrode support under high-temperature conditions. However, the metal such as Ni undergoes the oxidation in an oxidizing atmosphere of when the generation of electricity is discontinued. Accompanying this, therefore, the volume of the electrode support expands. Further, the metal that is oxidized undergoes the reduction in a reducing atmosphere. Therefore, the electrode support that has expanded, then, contracts. Therefore, if the oxidizing atmosphere changes into the reducing atmosphere, it is theoretically considered that the electrode support resumes its initial volume. In practice, however, the volume does not return to the initial state but remains in a slightly expanded state. Upon repetitively changing the atmosphere (i.e., repeating the generation and stop of generation), therefore, the volume of the electrode support gradually increases. Due to the expansion of the electrode support, therefore, cracks occur in the electrolyte formed on the electrode support, electrolyte exfoliates, or the electrode support itself is cracked, which are the causes of destruction fatal to the cells. So far, however, almost no approach has been made concerning the mechanism of expansion of volume of the electrode support due to a change in the atmosphere or concerning the prevention of expansion of the volume of the electrode support. It is, therefore, an object of the present invention to provide an electrode support for fuel cells suppressing the expansion of volume even in an environment in which it is exposed to the reducing atmosphere and the oxidizing atmosphere alternately. Another object of the present invention is to provide a fuel cell which has the above electrode support and features improved reliability for extended periods of time. According to the present invention, there is provided an electrode support for fuel cells, the electrode support being made of a porous material having a Ni phase of Ni or NiO and an inorganic skeletal material phase, wherein an oxidation/reduction expansion-suppressing metal M of at least one selected from the group consisting of Fe, Co and Mn is solidly dissolved in the Ni phase or is biasedly distributed on the grain boundaries between the Ni phase and the inorganic skeletal material phase. In the electrode support of the invention, it is desired that: (1) the inorganic skeletal material is an oxide of a rare earth element; (2) the inorganic skeletal material is Y2O3; (3) the oxidation/reduction expansion-suppressing metal M is Mn, and is precipitated in the form of NiMn2O4, MnYO3or Y2NiO6on the grain boundaries; (4) the oxidation/reduction expansion-suppressing metal M is Fe, and is precipitated in the form of NiFe2O4or FeYO3on the grain boundaries; (5) Fe is biasedly distributed on the grain boundaries; and (6) the oxidation/reduction expansion-suppressing metal M is Co, and is solidly dissolved in the Ni phase. According to the present invention, further, there is provided a solid oxide fuel cell having a structure in which a fuel electrode, an electrolyte and an oxygen electrode are laminated in this order on one surface of the electrode support. The invention further provides a cell stack obtained by electrically connecting a plurality of fuel cells in series, and a fuel cell assembly obtained by containing the cell stack in a container. The electrode support for fuel cells of the invention is made of a porous material having a Ni phase (Ni or NiO) and an inorganic skeletal material phase. In particular, an important feature resides in that the oxidation/reduction expansion-suppressing metal M described above is solidly dissolved in the Ni phase or is biasedly distributed on the grain boundaries between the Ni phase and the inorganic skeletal material phase. Presence of the above metal M effectively suppresses the volume expansion caused by the reduction/oxidation cycles (repetition of change in the atmosphere between the reducing atmosphere and the oxidizing atmosphere). That is, the Ni phase imparts the electrically conducting property and the function of the reforming catalyst to the electrode support while the inorganic skeletal material phase comprises an inorganic material which remains stable against the oxidizing atmosphere and the reducing atmosphere, and forms a basic skeleton of the support. When the support (porous member) having the Ni phase and the inorganic skeletal material phase is alternately exposed to the reducing atmosphere and the oxidizing atmosphere (reduction and oxidation are repeated), the reduction and oxidation are alternately repeated in the Ni phase. If oxidized, the volume expands by an amount Ni oxidized. If the oxide is reduced, therefore, it is theoretically considered that the volume contracts and the initial volume will be resumed. As described above, however, the initial volume is not really resumed even after the oxide is reduced, and the electrode support gradually expands as the reduction and oxidation are repeated. Though the mechanism of expansion of the support through the reduction/oxidation cycles has not been clarified yet, the present inventors presume it as described below. If the Ni phase expands due to the oxidation, the inorganic skeletal material phase present around the Ni phase is pushed outward and the electrode support expands. Next, if the Ni phase reduces being exposed to the reducing atmosphere, NiO turns into Ni and contracts. However, the inorganic skeletal material (e.g., oxide of rare earth element) constituting the electrode support remains stable against the oxidation and reduction and exhibits poor wettability to the metal nickel (or oxide thereof). Therefore, even if the inorganic skeletal material phase in a state of being expanded by oxidation comes into favorable contact with the Ni phase that is expanded, the Ni phase partly separates away from the inorganic skeletal material phase when it is contracted due to the reduction (the inorganic skeletal material phase does not follow the Ni phase that contracts). As a result, it is considered that the volume of the electrode support that has expanded due to oxidation does not return back to the initial volume despite it is contracted by reduction and, therefore, the volume becomes slightly greater than the volume of before being oxidized. According to the present invention, the expansion due to the reduction/oxidation cycles is suppressed by making present a particular metal M. The present inventors presume the mechanism of suppression as described below. First, among the metals M for suppressing the oxidation/reduction expansion described above, Mn and Fe are reactive for Ni and inorganic skeletal material (e.g., Y2O3), and the reaction product thereof precipitates on the grain boundaries between the Ni phase and the inorganic skeletal material phase during the firing in the process for producing the electrode support or, if it is not the reaction product, are biasedly distributed on the grain boundaries in an enriched form. As a result, it is considered that wettability improves between the Ni phase and the inorganic skeletal material phase, and the inorganic skeletal material phase follows the Ni phase when the Ni phase contracts by reduction. Consequently, expansion due to the oxidation is offset by contraction at the time of reduction effectively avoiding the expansion of the electrode support due to the reduction/oxidation cycles. Further, these metals M are polyvalent metals and solidly dissolve in the Ni phase if their amounts are very small working to conspicuously increase the growing rate of the Ni oxide. When exposed to the oxidizing atmosphere, therefore, the Ni oxide grows into the pores in the electrode support which is the porous material. This is because oxygen is easily fed in the pores. Thus, as the Ni oxide quickly grows into the pores, the surrounding inorganic skeletal material phase is pulled by the Ni phase. Accordingly, expansion by the oxidation is very small in the oxidizing atmosphere, and contraction is often observed depending upon the cases. Therefore, the expansion due to the reduction/oxidation cycles is also effectively decreased even by an increase in the rate of growth of the Ni oxide due to the metal M that solidly dissolves in the Ni phase. Further, among the oxidation/reduction expansion-suppressing metals M, Co entirely and solidly dissolves in the Ni phase and does not form a reaction product with the inorganic skeletal material. However, wettability is improved between the Ni phase in which Co is solidly dissolved and the inorganic skeletal material phase. As a result, in the same manner as described above, the inorganic skeletal material phase follows the Ni phase when the Ni phase contracts due to the reduction effectively avoiding the expansion of the electrode support caused by the reduction/oxidation cycles. According to the present invention, precipitation of the reaction product of Ni or the inorganic skeletal material with the metal M, biased distribution thereof on the grain boundaries, and presence of the metal M solidly dissolved in Ni, can be confirmed by the X-ray diffraction (XRD) of the powder or by the X-ray microanalysis (EPMA) and, particularly, by the limited visual field electron diffraction image analysis (SAED) or the X-ray analysis (EDS), or by the secondary ion mass analysis (SIMS). As described above, the electrode support of the present invention is suppressed from expanding despite of subjected to the reduction/oxidation cycles. As will become clear from Examples appearing later, the electrode support of the invention exhibits an absolute value of a coefficient of linear expansion of not larger than 0.2% after subjected to the reduction/oxidation cycles three times repetitively. The electrode support of the invention can be used for the fuel cells by forming thereon the fuel electrode layer, electrolyte and oxygen electrode layer successively, works to effectively suppress cracks in the fuel electrode and in the electrolyte as well as exfoliation even when the start and stop are repeated, and contributes to improving reliability in the long run when put to a practical use in the general household where start/stop are frequent. BEST MODE FOR CARRYING OUT THE INVENTION The invention will now be described in detail with reference to the accompanying drawings. FIG. 1is a transverse sectional view of a fuel cell provided with an electrode support of the present invention, wherein the fuel cell generally designated at30is of the shape of a hollow flat plate and has an electrode support31which is flat in cross section and is of the shape of a slender plate as generally viewed. A plurality of fuel gas passages31aare penetrating through in the electrode support31in the lengthwise direction maintaining a suitable gap, and the fuel cell30has a structure in which various members are provided on the electrode support31. Usually, a plurality of the fuel cells30are connected in series by a collector member40to form cell stacks as shown inFIG. 2. The cell stacks are contained in a predetermined container so as to be used as a fuel cell assembly. As will be understood from the shape shown inFIG. 1, the electrode support31comprises a flat portion A and arcuate portions B at both ends of the flat portion A. Both surfaces of the flat portion A are formed nearly in parallel with each other, and a fuel electrode layer32is so provided as to cover the surfaces on one side of the flat portion A and of arcuate portions B on both sides thereof. Further, a dense electrolyte layer33is laminated so as to cover the fuel electrode layer32, and an oxygen electrode layer34is laminated on the electrolyte layer33on one surface of the flat portion A so as to be opposed to the fuel electrode layer32. Further, an interconnector35is formed on the other surface of the flat portion A where neither the fuel electrode layer32nor the solid electrode layer33is laminated. As will be clear fromFIG. 1, the fuel electrode layer32and the electrolyte layer33are extending up to both sides of the interconnector35, so that the surface of the electrode support31will not be exposed to the outer side. In the fuel cell of the above structure, a portion of the fuel electrode layer32facing the oxygen electrode layer34works as a fuel electrode to generate electricity. That is, an oxygen-containing gas such as the air flows through along the outer side of the oxygen electrode layer34, and a fuel gas (hydrogen) flows through the gas passages31ain the electrode support31. Upon being heated up to a predetermined working temperature, the electrode reaction represented by the following formula (1) takes place in the oxygen electrode layer34while the electrode reaction of the following formula (2) takes place in the fuel electrode layer32that works as the fuel electrode to generate electricity. Oxygen electrode: ½O2+2e−→O2−(solid electrolyte)  (1) Fuel electrode: O2−(solid electrolyte)+H2→H2O+2e−(2) The generated electric current is collected through the interconnector35attached to the electrode support31. That is, a plurality of the fuel cells30of the above structure are connected in series by the collector member40to form cell stacks shown inFIG. 2. The cell stacks are contained in the container so as to be used as a fuel cell assembly. By flowing the fuel gas (hydrogen) and the oxygen-containing gas into predetermined portions, the fuel cell assembly works as a cell. In the fuel cell30having the above structure, the electrode support31must be gas-permeable to permit the fuel gas to permeate through up to the fuel electrode layer32, must be electrically conducting to collect electricity through the interconnector35, and must, further, be resistant against developing cracks or exfoliation caused by a difference in the thermal expansion at the time of fabricating the fuel cell30by co-firing that will be described later. In order to satisfy the above requirement, the electrode support31is made of an electrically conducting porous material and contains a phase (Ni phase) of metal nickel (Ni) or an oxide (NiO) thereof and an inorganic skeletal material phase that forms a basic skeleton. That is, the Ni phase is for imparting electrically conducting property to the electrode support31, and even when the Ni phase is formed by the nickel oxide (NiO) or the nickel oxide forms the Ni phase in the oxidizing atmosphere, a favorable electric conduction is exhibited at the time of generating electricity by reason that in the reducing atmosphere, the metal Ni forms the Ni phase. Further, the Ni phase also works as a reforming catalyst. Therefore, even in case a natural gas (CH4) remains in the fuel gas (hydrogen), the Ni phase works to reform the natural gas into hydrogen making it possible to effectively utilize the fuel. Furthermore, the fuel electrode layer32that will be described later, usually, contains Ni. Upon containing the Ni phase in the electrode support31, diffusion of elements can be effectively avoided between the electrode support31and the fuel electrode layer32at the time of firing or generating electricity. The inorganic skeletal material phase is formed of an inorganic oxide which is stable against the oxidizing atmosphere or the reducing atmosphere, forms a basic skeleton of the electrode support31and imparts a predetermined strength thereto. As the inorganic oxide, an oxide of a rare earth element is preferably used in order to bring, particularly, the coefficient of thermal expansion of the electrode support31close to that of the electrolyte layer33and to prevent diffusion of elements into the electrolyte layer33. As the oxides of rare earth elements, there can be exemplified Y2O3, Lu2O3, Yb2O3, Tm2O3, Er2O3, Ho2O3, Dy2O3, Gd2O3, Sm2O3, and Pr2O3. Among them, however, Y2O3is preferred since it is particularly inexpensive. The above Ni component and the inorganic skeletal material are contained in the electrode support31at a volume ratio of Ni component:inorganic skeletal material=35:65 to 65:35 calculated as oxides in order to maintain a favorable electric conduction and to accomplish a coefficient of thermal expansion close to that of the electrolyte material forming the electrolyte layer33. The electrode support31must have a fuel gas permeability and, usually, has an open porosity of not smaller than 30% and, particularly, in a range of 35 to 50% and an electric conductivity of not smaller than 300 S/cm and, particularly, not smaller than 440 S/cm. It is desired that the electrode support31has a flat portion A of a length of, usually, 15 to 35 mm and an arculate portion B of a length (length of arc) of about 3 to 8 mm. It is further desired that the electrode support31has a thickness (distance between both surfaces of the flat portion A) of about 2.5 to 5 mm. The electrode support31of the present invention has various properties as described above, and it is particularly important that the oxidation/reduction expansion-suppressing metal M of at least one selected from the group consisting of Fe, Co and Mn is solidly dissolved in the Ni phase or is biasedly distributed on the grain boundaries between the Ni phase and the inorganic skeletal material phase. The biased distribution may be in the form of a reaction product with Ni or the organic skeletal material, or may be in an enriched form on the grain boundary. That is, when the electrode support31is formed of a porous material comprising the Ni phase and the inorganic skeletal phase as described above, the volume of the electrode support31expands due to the reduction/oxidation cycles accompanying the generation of electricity and stop of generation giving rise to the occurrence of cracks in the electrolyte layer33and exfoliation of the fuel electrode layer32spoiling reliability of the fuel cells over the long run. Upon making the above oxidation/reduction expansion-suppressing metal M present in the Ni phase or on the grain boundaries between the Ni phase and the inorganic skeletal material phase, however, it is allowed to effectively prevent the expansion of volume due to the reduction/oxidation cycles, that causes various inconveniences. That is, among the oxidation/reduction expansion-suppressing metals M, Mn and Fe exhibit reactivity to Ni and the inorganic skeletal material, and form reaction products with Ni or inorganic skeletal material through the firing in a process for producing the electrode support. There can be exemplified NiMn2O4as the reaction products of Mn and Ni; MnYO3as the reaction products of Mn and a rear earth element oxide (Y2O3); and Y2NiMnO6as the reaction products of Mn, Ni and a rare earth element oxide. There can be further exemplified, NiFe2O4as the reaction products of Fe and Ni; and FeYO3as the reaction products of Fe and a rear earth element oxide (Y2O3). The reaction product of the above metal M and Ni or inorganic skeletal material chiefly precipitates on the grain boundaries between the Ni phase and the inorganic skeletal material phase, and the reaction product that has precipitated on the grain boundaries improves the wettability between the Ni phase and the inorganic skeletal material phase. Further, the wettability between the Ni phase and the inorganic skeletal material phase is improved even by the metal M that is biasedly distributed on the grain boundaries in an enriched form in addition to the precipitation of the reaction product as will become understood from Experiment2appearing later. As a result, if the Ni phase contracts due to the reduction, the inorganic skeletal material phase follows the contraction of the Ni phase due to the reduction, whereby the expansion of the Ni phase due to the oxidation is offset by the contraction due to the reduction, effectively avoiding the expansion of the electrode support31due to the reduction/oxidation cycles. Further, when the polyvalent metal (the metal M) is solidly dissolved in the Ni phase, the Ni oxide grows at a very increased rate as descried earlier. That is, in the oxidizing atmosphere of when the generation is discontinued, the Ni oxide grows into the interior of pores in the electrode support (porous material)31, and the surrounding inorganic skeletal material phase is pulled inward by the Ni phase that grows due to the oxidation. As a result, the expansion due to the oxidation is very small and, often, contraction takes place. Therefore, the expansion due to the reduction/oxidation cycles can be effectively decreased even by suppressing the expansion due to the oxidation by having the metal M solidly dissolved therein as described above. Among the oxidation/reduction expansion-suppressing metals M, Co entirely and solidly dissolves in the Ni phase; i.e., wettability is improved due to the solidly dissolved impurity effectively avoiding the expansion of the electrode support31due to the reduction/oxidation cycles. The above description has dealt with the case of using Y2O3as the inorganic skeletal material, which, however, also holds even when the other rare earth element oxide is used as the inorganic skeletal material. In the present invention, the expansion due to the reduction/oxidation cycles can be decreased most effectively when a rare earth oxide and, particularly, Y2O3is used as the inorganic skeletal material and when the oxidation/reduction expansion-suppressing metal M is Mn, Fe or Co. The electrode support31may contain components in addition to Ni (or NiO), inorganic skeletal material and the oxidation/reduction expansion-suppressing metals M so far as the above-mentioned properties are not spoiled. In a state where the wettability is enhanced between the Ni phase and the inorganic skeletal material phase, the electrode support31may expand at the time of initial reduction (usually called reduction expansion). Though the reason has not been clarified yet, it is presumed that this stems from the precipitation of Ni as NiO is reduced. It has been experimentally confirmed that the reduction expansion can be effectively suppressed by having Mg and, particularly, MgO solidly dissolved in the Ni phase. The amount of Mg is desirably in a range of 0.1 to 20 mol % per the total amount thereof with Ni (Mg+Ni). In the present invention, the fuel electrode layer32triggers the electrode reaction of the formula (2) described above, and is made of a known porous and electrically conducting cermet. For example, the fuel electrode layer32is formed of ZrO2in which a rare earth element is solidly dissolved, and Ni and/or NiO. As the ZrO2(stabilized zirconia) in which the rare earth element is solidly dissolved, there can be used the one same as that used for forming the electrolyte layer33that will be described later. It is desired that the content of the stabilized zirconia in the fuel electrode layer32is in a range of 35 to 65% by volume and that the content of Ni or NiO is 65 to 35% by volume. It is further desired that the fuel electrode layer32has an open porosity of not smaller than 15% and, particularly, in a range of 20 to 40%, and has a thickness of 1 to 30 μm. If the thickness of the fuel electrode layer32is too small, its performance may drop. If the thickness of the fuel electrode layer32is too large, on the other hand, exfoliation may occur due to a difference in the thermal expansion between the electrolyte layer33and the fuel electrode layer32. In the example ofFIG. 1, the fuel electrode layer32is extending up to both sides of the interconnector35. However, the fuel electrode may be formed so as to be present at a position facing the oxygen electrode34. Namely, the fuel electrode layer32may be formed on only the flat portion A on, for example, the side where the oxygen electrode34is provided. Further, the fuel electrode layer32may be formed over the whole circumference of the electrode support31. In the present invention, it is desired that the electrolyte layer33as a whole is formed on the fuel electrode layer32in order to enhance the junction strength between the electrolyte layer33and the support31. The electrolyte layer33formed on the fuel electrode layer32is made of dense ceramics called ZrO2(stabilized zirconia) in which a rare earth element is solidly dissolved, usually, in an amount of 3 to 15 mol %. As the rare earth element, there can be exemplified Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Among them, however, Y and Yb are desired since they are inexpensive. From the standpoint of preventing gas permeability, it is desired that the stabilized zirconia ceramics forming the electrolyte layer33has a relative density (based on the Archimedes' method) of not smaller than 93% and, particularly, not smaller than 95% and has a thickness of 10 to 100 μm. The electrolyte layer33may be constituted by a perovskite composition of the type of lanthanum gallate in addition to being constituted by the stabilized zirconia. The oxygen electrode layer34is made of electrically conducting ceramics comprising a perovskite oxide of the so-called ABO3type. As the perovskite oxide, there can be preferably used a perovskite oxide of a transition metal and, particularly, at least one of an LaMnO3oxide, an LaFeO3oxide or an LaCoO3oxide having La on the A-site. Among them, the LaFeO3oxide is particularly desired from the standpoint of a high electrically conducting property at an operation temperature of about 600 to about 1000° C. The perovskite oxide may contain Sr in addition to La in the A-site, or may contain Co and Mn in addition to Fe in the B-site. The oxygen electrode layer34must have gas permeability. It is, therefore, desired that the electrically conducting ceramics (perovskite oxide) forming the oxygen electrode34has an open porosity of not smaller than 20% and, particularly, in a range of 30 to 50%. It is desired that the oxygen electrode layer34has a thickness of 30 to 100 μm from the standpoint of collecting electricity. At a position facing the oxygen electrode layer34, the interconnector35provided on the electrode support31comprises the electrically conducting ceramics which, however, comes in contact with the fuel gas (hydrogen) and the oxygen-containing gas. Therefore, the electrically conducting ceramics must have resistance against the reduction and resistance against the oxidation. As the electrically conducting ceramics, therefore, a peroviskite oxide (LaCrO3oxide) of the type of lanthanum chromite is usually used. In order to prevent the leakage of the fuel gas flowing inside the electrode support31and of the oxygen-containing gas flowing on the outer side of the electrode support31, further, the electrically conducting ceramics must be dense and must, desirably, have a relative density of not smaller than 93% and, particularly, not smaller than 95%. From the standpoint of preventing the leakage of gases and electric resistance, further, it is desired that the interconnector35has a thickness of 10 to 200 μm. If the thickness is smaller than the above range, gases tend to leak. If the thickness is larger than the above range, on the other hand, the electric resistance increases and the function for collecting electricity may decrease with a drop in the potential. As is understood fromFIG. 1, further, the dense electrolyte layer33is closely adhered to both sides of the interconnector35to prevent the leakage of gases. In order to improve the sealing, further, a junction layer (not shown) comprising, for example, Y2O3may be provided between the electrolyte layer33and both side surfaces of the interconnector35. It is desired to provide a P-type semiconductor layer39on the outer surface (upper surface) of the interconnector35. That is, in the cell stack assembled by stacking the fuel cells (seeFIG. 2), an electrically conducting collector member40is connected to the interconnector35. However, if the collector member40is directly connected to the interconnector35, the potential drops greatly due to non-ohmic contact, and the electricity-collecting performance drops. Upon connecting the collector member40to the interconnector35via the P-type semiconductor layer39, however, the two come into ohmic contact with each other, whereby the potential drops less effectively averting a drop in the electricity-collecting performance. For instance, an electric current from the oxygen electrode layer34of one fuel cell30can be efficiently conducted to the electrode support31of another fuel cell30. As the P-type semiconductor, there can be exemplified a perovskite oxide of a transition metal. Concretely, there can be used the P-type semiconductor having an electron conductivity larger than that of the LaCrO3oxide that constitutes the interconnector35. For example, there can be used P-type semiconductor ceramics comprising at least any one of an LaMnO3oxide, an LaFeO3oxide or LaCoO3oxide containing Mn, Fe or Co in the B-site. It is desired that the P-type semiconductor layer39has a thickness, usually, in a range of 30 to 100 μm. The interconnector35can also be directly provided on the flat portion A of the electrode support31on the side on where the electrolyte layer33is not provided. In this portion, too, the fuel electrode layer32may be provided, and the interconnector35may be provided on the fuel electrode layer32. That is, the fuel electrode layer32is provided over the whole circumference of the electrode support31, and the interconnector35is provided on the fuel electrode layer32. When the interconnector35is provided on the electrode support31via the fuel electrode layer32, a drop of potential is suppressed on the interface between the electrode support31and the interconnector35, which is advantageous. (Production of the Electrode Support and Fuel Cell) The electrode support31having the above-mentioned structure and the fuel cell equipped with the above electrode support31are produced as described below. First, a powder of Ni or of an oxide thereof, a powder of an inorganic skeletal material such as Y2O3and a powder of a compound containing the above-mentioned metal M for suppressing the oxidation/reduction expansion, are mixed at a predetermined ratio, and to which are further mixed an organic binder such as an acrylic resin or a polyvinyl alcohol and a solvent such as an isopropyl alcohol or water to prepare a slurry thereof. The slurry is then extrusion-molded into a molded body for forming an electrode support and is dried (the electrode support31is obtained by firing the molded body for forming the electrode support). As the compound which includes the oxidation/reduction expansion-suppressing metals M, there can be used any compound provided it solidly dissolves in the Ni phase or forms a reaction product that precipitates on the grain boundaries. Usually, however, the metal M is used as an oxide (e.g., Fe2O3, Mn2O3, Co3O4, etc.). Further, the metal M may be used in the form of an alloy with Ni when the metal M is to be solidly dissolved in the Ni phase. Next, the materials for forming the fuel electrode layer (Ni or NiO powder and a powder of stabilized zirconia), the organic binder and the solvent are mixed together to prepare a slurry and from which a sheet for forming the fuel electrode layer is formed. Instead of forming the sheet for forming the fuel electrode layer, further, a coating for forming the fuel electrode layer may be formed by applying a paste that is obtained by dispersing the material for forming the fuel electrode in a solvent, onto a predetermined position of the molded body for forming the electrode support. Moreover, the electrolyte powder such as the stabilized zirconia powder, the organic binder and the solvent are mixed together to prepare a slurry and from which a sheet is obtained for forming the electrolyte layer. The thus obtained molded body for forming the electrode support, the sheet for forming the fuel electrode and the sheet for forming the electrolyte are laminated so as to form a layer structure shown in, for example,FIG. 1, are dried and, as required, are calcined at a temperature of about 1000° C. Here, when a coating for forming the fuel electrode layer is formed on the surface of the molded body for forming the electrode support, the sheet for forming the electrolyte only may be laminated on the molded body for forming the electrode support. Thereafter, the interconnector material (e.g., LaCrO3oxide powder), the organic binder and the solvent are mixed together to prepare a slurry thereof and from which a sheet for the interconnector is prepared. The sheet for the interconnector is, further, laminated on a predetermined position of the laminate obtained above to thereby prepare a laminate for firing. Next, the laminate for firing is subjected to the treatment for removing the binder, and is co-fired in an oxygen-containing atmosphere at 1300 to 1600° C. A paste containing a material for forming the oxygen electrode (e.g., LaFeO3oxide powder) and a solvent, and, as required, a paste containing a material for forming the P-type semiconductor layer (e.g., LaFeO3oxide powder) and a solvent, are applied by dipping or the like method onto a predetermined position of the obtained sintered product, and are baked at 1000 to 1300° C. to produce a fuel cell30equipped with the electrode support31of the structure shown inFIG. 1. When metal nickel is used for forming the electrode support31and the fuel electrode layer32, Ni is oxidized into NiO due to the firing in the oxygen-containing atmosphere, which, however, can be returned back to Ni through the reduction treatment (or by the exposure to the reducing atmosphere at the time of generating electricity). The fuel cell30equipped with the electrode support31produced as described above is capable of effectively suppressing the expansion of volume of the electrode support31due to the reduction/oxidation cycles that accompany the generation of electricity (operation of the fuel cells30) and stop of generation. It is, therefore, made possible to effectively prevent inconveniences such as occurrence of cracks in the electrolyte layer33due to the expansion or occurrence of exfoliation of the electrode support31and, therefore, to maintain reliability over extended periods of time. (Cell Stack and Fuel Cell Assembly) Referring toFIG. 2, the cell stack is constituted by a set of a plurality of fuel cells30described above, by interposing the collector member40made of a metal felt and/or a metal plate between one fuel cell30and another fuel cell30neighboring each other up and down, and connecting the two in series with each other. That is, the electrode support31of the one fuel cell30is electrically connected to the oxygen electrode34of the other fuel cell30via the interconnector35, P-type semiconductor layer39and collector member40. As shown inFIG. 2, further, the cell stacks are arranged side by side, and the neighboring cell stacks are connected in series with each other by the conductor members42. The fuel cell assembly of the above structure contains the cell stacks ofFIG. 2in a container. The container is provided with an introduction pipe for introducing the fuel gas such as hydrogen from the external unit into the fuel cells30, and an introduction pipe for introducing the oxygen-containing gas such as the air into space on the outer side of the fuel cells30. Upon being heated at a predetermined temperature (e.g., 600 to 900° C.), the fuel cells generate electricity, and the fuel gas and the oxygen-containing gas after used are discharged out of the container. Not being limited to the above embodiment only, the present invention can be varied in a variety of ways without departing from the gist of the invention. For example, the electrode support31may be formed in a cylindrical shape, or the fuel cell30equipped with the electrode support31may include an intermediate layer having a suitable electrically conducting property formed between the oxygen electrode layer34and the electrolyte layer33. Further, the above embodiment has described the case where the fuel electrode layer32was formed on the electrode support31. However, the electrode support31itself may be imparted with a function of the fuel electrode, and the electrolyte layer and the oxygen electrode layer may be formed on the electrode support which works as the fuel electrode. EXAMPLE Described below are Experiments to demonstrate excellent effects of the present invention. An NiO powder having an average particle size of 0.5 μm and a Y2O3powder (having an average particle size of 0.6 to 0.9 μm) were mixed together in a manner that the amount of NiO after fired was 40% by volume calculated as Ni and the amount of Y2O3was 60% by volume. Next, an Mn2O3powder (average particle size of 0.7 μm) was externally added in amounts as shown in Table 1 per 100 parts by mass of the above mixed powder, and mixed. Table 1 also shows the amounts (mol %) of Mn relative to the total amounts of Ni and Mn. A slurry was prepared by mixing the above mixed powder, a pore-imparting agent (fibrous cellulose), an organic binder (polyvinyl alcohol) and water (solvent) together, extrusion-molded into a rectangular parallelopiped shape which was, then, dried, subjected to the treatment for removing the binder, and was fired in the open air at 1500° C. to prepare electrode supports (samples Nos. 1 to 4). However, the sample No. 1 did not at all contain the Mn2O3powder. The obtained electrode supports were machined into a height of 3 mm, a width of 4 mm and a length in the lengthwise direction of 40 mm, reduced in a reducing atmosphere of an oxygen partial pressure of about 10−19Pa at 850° C. for 16 hours, cooled while still being in the reducing atmosphere, and were measured for their lengths in the lengthwise direction before and after the reduction to find coefficients of linear expansion when reduced (first time) in accordance with the following formula, Coefficient of linear expansion=(length after the reduction−length before the reduction)/(length before the reduction) Next, the electrode supports were oxidized in an oxidizing atmosphere of 850° C. for 16 hours and were, thereafter, found for their coefficients of linear expansion in the same manner as described above. Similarly, further, the reduction/oxidation cycles were repeated three times to find the coefficients of linear expansion when reduced and oxidized up to three times, respectively. The results were as shown inFIG. 3and in Table 1. Further, the electrode supports machined as described above were measured for their electric conductivities by a 4-terminal method in a reducing atmosphere (850° C.) under an oxygen partial pressure of about 10−19Pa. The results were as shown in Table 1. TABLE 1Coefficient of linear expansion (%)SampleMn2O31st1st2nd2nd3rd3rdConductivityNo.mass ptsreductionoxidationreductionoxidationreductionoxidationS/cm*10.00.060.220.160.300.210.4364321.0 (1.5)0.070.020.08−0.010.07−0.0463331.5 (2.3)0.040.090.110.110.110.1162442.0 (3.0)0.080.160.150.200.180.19616Samples marked with * lie outside the scope of the invention.Coefficients of linear expansion represent the expansion when the sign is plus and the contraction when the sign is minus.In the column of Mn2O3amounts, values in parentheses are in mol % (Mn/Mn + Ni). It will be understood from the results of Table 1 that addition of the Mn2O3powder helps suppress the expansion due to the reduction/oxidation cycles. Further, if the amount of Mn2O3is small, the expansion becomes minus (contraction) and if the amount is large, the expansion increases. Further, as the amount of Mn2O3increases, the electric conductivity of the support slightly decreases but is still large enough. The amount of Mn is desirably in a range of 1 to 3 mol % per the total amount thereof with Ni (Mn+Ni). FIGS. 4 to 7illustrate the results of TEM analysis of the electrode support of the sample No. 3 produced above. It will be learned fromFIG. 4that Mn is present almost biasedly on the grain boundaries of Ni/Y2O3. FromFIGS. 5 to 7, it will be learned that Mn is distributed as a grain boundary phase of Ni/Y2O3, the grain boundary phase being Y2NiMnO6. It is, therefore, considered that the presence of the grain boundary phase suppresses the change in the shape of Ni in the reduction of the next time and suppresses the expansion of the electrode support caused by the subsequent reduction/oxidation cycles. Like in experiment 1, an NiO powder and a Y2O3powder were mixed together in a manner that the amount of NiO after fired was 48% by volume calculated as Ni and the amount of Y2O3was 52% by volume. An Fe2O3powder having an average particle size of 0.7 μm was mixed in amounts as shown in Table 2 to 100 parts by mass of the above mixed powder to prepare the electrode supports (samples Nos. 5 to 9) like in Experiment 1. Table 2 also shows the amounts (mol %) of Fe relative to the total amounts of Ni and Fe. The obtained electrode supports were measured for their coefficients of linear expansion after the reduction/oxidation cycles of three times in the same manner as in Experiment 1, and the results were as shown in Table 2 and inFIG. 8. Further, the electric conductivities were measured in the reducing atmosphere like in Experiment 1 to obtain the results as shown in Table 2. TABLE 2Coefficient of linear expansion (%)SampleFe2O3mass1st1st2nd2nd3rd3rdConductivityNo.ptsreductionoxidationreductionoxidationreductionoxidationS/cm*50.00.030.510.330.820.631.0846360.03 (0.04)0.060.150.12−0.090.10−0.0272770.2 (0.3)0.05−0.020.02−0.13−0.09−0.2074581.0 (1.3)0.08−0.040.01−0.08−0.05−0.11102492.0 (2.7)0.110.120.090.090.010.121220Samples marked with * lie outside the scope of the invention.Coefficients of linear expansion represent the expansion when the sign is plus and the contraction when the sign is minus.In the column of Fe2O3amounts, values in parentheses are in mol % (Fe/Fe + Ni). It will be understood from the results of Table 2 that addition of the Fe2O3powder helps suppress the expansion due to the reduction/oxidation cycles. Further, if the amount of Fe2O3is relatively small, the expansion becomes minus (contraction) and if the amount is large, the expansion increases. Further, as the amount of Fe2O3increases, the electric conductivity of the support becomes high. The amount of Fe is desirably in a range of 0.04 to 3 mol % per the total amount thereof with Ni (Fe+Ni). FIGS. 9 and 10illustrate the results of transmission electron microscope (TEM) analysis of the electrode supports. It will be learned from the results that no reaction product of Fe is precipitating on the grain boundaries of Ni/Y2O3but Fe is biasedly distributed being solidly dissolved in the Ni phase. It is considered that despite of biasedly distributed on the grain boundaries, Fe works to suppress the change in the shape of Ni in the reduction of the next time and suppress the expansion of the electrode support caused by the subsequent reduction/oxidation cycles. An NiO powder, a Y2O3powder and a Co3O4powder were mixed together in a manner that the amount of (Ni, Co)O after fired was 48% by volume calculated as a total of Ni and Co and the amount of Y2O3was 52% by volume to prepare the electrode supports (samples Nos. 10 to 12) in the same manner as in Experiment 1. Table 3 also shows the amounts (mol %) of Co relative to the total amounts of Ni and Co. The obtained electrode supports were measured for their coefficients of linear expansion after the reduction/oxidation cycles of three times in the same manner as in Experiment 1, and the results were as shown in Table 3. Further, the electric conductivities were measured in the reducing atmosphere like in Experiment 1 to obtain the results as shown in Table 3. TABLE 3Coefficient of linear expansion (%)SampleCo1st1st2nd2nd3rd3rdConductivityNo.contentreductionoxidationreductionoxidationreductionoxidationS/cm105.00.040.130.050.160.070.164581110.00.040.040.020.060.020.064601230.00.090.060.110.080.120.20466Co content is in mol % (Co/Co + Ni) It will be understood from the results of Table 3 that Co must be contained in an amount larger than that of Fe or Mn, and works to suppress the expansion of the support due to the reduction/oxidation cycles like the cases of Fe and Mn. It is desired that the amount of Co is in a range of 5 to 30 mol % per the total amount thereof with Ni (Co+Ni). The sample powders (samples Nos. 5 to 9) used in Experiment 2 were extrusion-molded in the same manner as in Experiment 2 to form the flat molded bodies for forming electrode supports, which were, thereafter, dried. Next, a ZrO2(YSZ) powder containing 8 mol % of Y2O3, an NiO powder, an organic binder (acrylic resin) and a solvent (toluene) were mixed together to prepare a slurry and from which a sheet for forming a fuel electrode layer was prepared. By using the above slurry of the mixture of the YSZ powder, organic binder (acrylic resin) and toluene, further, a sheet for forming a electrolyte layer was prepared. The sheet for forming the fuel electrode layer and the sheet for forming the electrolyte layer were laminated. The laminated sheets were wrapped around the molded body for forming the electrode support prepared above in a manner that one flat surface of the molded body was exposed (seeFIG. 1), and were dried. Further, a slurry was prepared by mixing an LaCrO3oxide powder having an average particle size of 2 μm, an organic binder (acrylic resin) and a solvent (toluene), and a sheet for forming the interconnector was prepared by using the slurry. The sheet for the interconnector was laminated on the exposed flat portion of the molded body for forming the electrode support to thereby prepare a sheet for sintering comprising the molded body for forming the electrode support, sheet for forming the fuel electrode layer, sheet for forming the electrolyte layer and sheet for forming the interconnector. Next, the sheet for sintering was subjected to the treatment for removing the binder and was co-fired in the open air at 1500° C. to obtain a sintered body. The obtained sintered body was immersed in a paste comprising an La0.6Sr0.4Co0.2Fe0.8O3powder (oxygen electrode material) having an average particle size of 2 μm and a solvent (normal paraffin) so as to form a coating for forming the oxygen electrode on the surface of the electrolyte layer formed on the sintered body. At the same time, the above paste was applied onto the outer surface of the interconnector to form a coating for forming the P-type semiconductor, followed by baking at 1150° C. to thereby fabricate fuel cells of the structure shown inFIG. 1(samples Nos. 13 to 17). The fabricated fuel cells possessed the flat portion A of the electrode support of a length of 26 mm, the arcuate portions B of a length of 3.5 mm and a thickness of 2.8 mm, the fuel electrode layer of a thickness of 10 μm, the electrolyte layer of a thickness of 40 μm, the oxygen electrode layer of a thickness of 50 μm, the interconnector of a thickness of 50 μm and the P-type semiconductor layer of a thickness of 50 μm. The electrolyte layer of the obtained fuel cell was analyzed for its cross section by using Electron Probe Micro-analyzer (EPMA) to confirm the elements diffused from the electrode support. Further, the hydrogen gas was flown into the gas passages in the electrode support and the air was flown along the outer side of the fuel cell (outer surface of the oxygen electrode) to generate electricity at 850° C. for 100 hours. Thereafter, the supply of hydrogen gas was discontinued and the fuel cell was allowed to cool naturally (electrode support was oxidized). Next, the interior of the fuel cell was pressurized while being submerged in water to observe if gas leaks. Further, occurrence of cracks in the electrode support and in the electrolyte layer, and exfoliation of the electrolyte layer and fuel electrode layer from the support board were observed by using a stereoscope. This cycle was repeated 3 times to obtain the results as shown in Table 4. Further, after the fuel cells have been fabricated, each fuel cell was measured for its generating ability after operated at 850° C. for 100 hours (generation of the first time) to find the results as shown in Table 4. TABLE 4ElectrodesupportDiffusionCracksGeneratingSample(sample)into solid1st1st2nd2nd3rd3rdperformanceNo.No.electrolytereductionoxidationreductionoxidationreductionoxidationW/cm2*135—noyesyesyesyesyes0.20146nonononononono0.41157nonononononono0.41168nonononononono0.43179nonononononono0.44Samples marked with * lie outside the scope of the invention. As will be learned from the results of Table 4, none of the fuel cells of the invention (samples Nos. 14 to 17) developed cracks or exfoliation in the fuel electrode layer or in the electrolyte layer. Further, there was almost no diffusion and the generating performance was as good as not smaller than 0.41 W/cm2.
' 2000020 La présente invention a trait à des dérivés d'acide péni-cilloïque de formule générale : H H J i S CIL R— CONH 0 G G> 5 T CI CO NH CH ^-COOH I MH (ÇH ) « I . R -HH-CH-COOH dans laquelle n est un chiffre de 1 à 4 ; R est un groupe 2-pentényle, n-pentyle, n-heptyle, allylthiométhyle, 5-amino-5 5-carboxypentyle, benzyle, carboxybenzyle,a -aminobenzyle, phénoxybenzyle, phénoxyméthyle, a-phénoxyéthyle, a-phénoxy-propyle, 2,6-diméthoxyphényle, 2-éthoxy-1-naphtyle, 3-carbo-xy-2-quinoxalinyle, 5-méthyl-3-phényl-4-isoxazolyle, 3- ( 2-chlorophényle) -5-mé.thyl-4-isoxazolyle ou 3-(2,6-dichloro-10 phényl)-5-méthyl-4-isoxazolyle ; et R^ est un atome d'hy drogène ou un groupe acyle inférieur, et à des sels correspondants, de même qu'à un procédé pour leur préparation. Le terme "acyle inférieur" tel qu'il est utilisé ici, désigne 15 un groupe acyle contenant 1 à 6 atomes de carbone, tel que, par exemple, les groupes formyle, acétyle, propionyle, butyryle, iso-butyryle, valéryle, isovaléryle, caproyle et isocaproyle. On a à faire à des modes d'exécution préférés de la présente invention menant, aux composés de formule I ci-dessus, lorsque 20 le substituant R est un groupe benzyle, a -aminobenzyle, phénoxyméthyle,a -phénoxyéthyle, 2,6-diméthoxyphényle, 2-éthoxy-1-naphtyle et 3-(2-chlorophényl) -5-méthyl-4-isoxazolyle. Un groupe préféré de "composés de formule I comprend les composés dans lesquels n désigne un chiffre de 2 à 4 et la compo-25 santé acide aminocarboxylique est présente sous la forme L. . Comme indiqué ci-dessus, les composés de formule I peuvent aussi exister sous forme de sels, de préférence sous forme de sels pharaaceutiquement acceptables. Comme exemples de sels, on peut 69 00019 2f-00020 citer des sels amino-organiques, par exemple, les sels de bis-benzylammonium et de bis-dicyclohexylammonium ou des sels minéraux, tels que, par exemple, les sels de sodium ou de calcium. Les composés de formule I se trouvant sous forme de sel non acceptable 5 en pharmacie peuvent facilement être transformés en sel pharmaceu-tiquement acceptable par des méthodes d'échange d'ions bien connues. Comme exemples de composés de formule I, on peut citer : La N^-(benzyl- a-pénicilloyl)-L-lysine 6 P 10 La N -(benzyl- a-pénicilloyl)-N -formyl-L-lysine 6 2 La N -(benzyl- «-pénicilloyl)-N -acétyl-L-lysine S 2 La N -(benzyl- 5 2 La N -(benzyl- a-pénicilloyl)-N -butyryl-L-ornithine i 2 L'acide N -(benzyl- a -pénicilloyl ) -N -caproyl-D- a. -~G -diamino-buty-15 rique La N^-(2-pentényl-cc -pénicilloyl)-L-lysine fi ? La N -(2-pentényl-a -pénicilloyl)-N -acétyl-L-lysine 6 2 La N -(2-pentényl- a-pénicQJLoyl)-N -formyl-L-lysine La N^-(allylthiométhyl- a-pénicilloyl)-L-lysine 20 La (allylthiométhyl- «-pénicilloyl)-N2-acétyl-L-lysine 6 2 La N -(allylthiométhyl-a -pénicilloyl)-N -formyl-L-lysine 6 2 La N -(phénoxyméthyl- a-pénicilloyl)-N -acétyl-L-lysine 6 2 La N -(phénoxyméthyl- a-pénicilloyl)-N -butyryl-L-lysine 6 2 La N -( a-aminobenzyl-a -pénicilloyl)-N -acétyl-L-lysine C p 25 La N -(2,6-diméthoxyphényl-a-pénicilloyl)-N -acétyl-L-lysine La N-(2-éthoxy-1-naphtyl- a-pénicilloyl)-N -acétyl-L-ornithine 6 2 La N -(3-carboxy-2-quinoxazinyl- a-pénicilloyl)-N -acétyl-L-lysine 6 2 La N -(5-méthyl-3-phényl-4-oxazolyl- a-pénicilloyl)-N -acétyl-L- lysine 30 La N^-/~3-(2-chlorophényl)-5-méthyl-4-isoxazolyl- a-pénicilloyl_7- 2 H -acétyl-L-lysine La N**-/""3-(2,6-dichlorophényl)-5-méthyl-4-isoxazolyl- a-pénicilloyl/ 2 -N, -formyl-L-ornithine. Le procédé de la présente invention est caractérisé en ce 35 qu'on fait réagir un composé de formule générale : 69 00019 3 2(00020 H H : ! s. CH_ r— corn—ô àr 0 ir I W flîT 3-( GO— N CH ^-COOH dans laquelle R a la même signification que ci-dessus, avec un dérivé d'acide diaminocarboxylique de formule générale R2-NH-CH— COOH I (ÇH2)n III NH2 dans laquelle n a la même signification que ci-dessus 2 et R est un groupe acyle inférieur ou un groupe amino-5 protecteur, en ce qu'on élimine un groupe amino-protecteur contenu dans le produit réactioxmel après la réaction, et en ce que, le cas échéant, on transforme le produit réactionnel en un sel. La réaction de composés de formule II avec des composés 10 de la formule III ci-dessus peut être effectuée commodément dans un milieu aqueux alcalin. La température réactionnelle se âfrue de préférence entre environ 5S et environ 302. Les composés de formule III peuvent exister sous forme optiquement active ou sous forme de racémate. Pour atteindre le "but de.cette invention, on préfère 15 employer un dérivé d'acide diamino-carboxylique faisant partie des séries L. Dans la préparation d'un composé de formule I dans laquelle R* est un atome d'hydrogène, on préfère employer comme substance de départ un composé de formule III dans laquelle R représente 20 un groupe amino protecteur. lie groupe protecteur est éliminé après la réaction avec le composé de formule II. Comme groupes amino protecteur appropriés, on peut citer ceux qui sont connus de la chimie des peptides, par exemple le groupe tert.-butyloxycarbonyle ou le groupe benzyloxycarbonyle. La séparation des groupes protec-25 teurs peut être effectuée de manière connue. Un groupe tert.-butylo- 69 00019 4 2000020 xycarbonyle peut, par exemple, être éliminé à l'aide de l'acide trifluoracétique. De manière analogue, le groupe benzyloxycarbo-nyle peut être éliminé par hydrogénation catalytique. Dans la mesure où elles ne sont pas connues, les substances 5 de départ du procédé de cette invention peuvent " être préparées de manière connue. les composés de formule I ci-dessus sont utiles pour l'inhibition de réactions allergiques se manifestant lors de l'administration de pénicillines. 10 Ainsi, la précipitation in vitro d'anticorps antibenzyl- pénicilloyle (obtenus à partir du sérum de lapin et de cobaye) par des antigènes benzylpénicilloyle peut être inhibée au moyen de 6 2 N -(benzyl-a -pénicilloyl)-N -formyl-L-lysine. En outre, on a trouvé que le dérivé d'acide pénicilloyle susmentionné inhibe l'hémaggluti-15nation par des antigènes benzylpénicilloyle d'érythrocytes préalablement incubés avec des anticorps antibenzylpénicilloyle. La contraction de l'iléon de cobaye, sensibilisé passivement au moyen de tf-globuline de lapin antibenzylpénicilloyle, provoquée par des antigènes benzylpénicilloyle (expérience de Schultz-Dale) peut de 20 même être inhibée. In vivo, les réactions allergiques à la pénicilline, par exemple l'anaphylaxie cutanée passive du cobaye de même que la réaction cutanée urticarienne du patient allergique à la pénicilline peut être inhibée. Les composés de la formule I sont utiles comme inhibiteurs 25 de réactions allergiques se manifestant après l'administration de pénicilline. Ces composés peuvent être utilisés sous des formes pharmaceutiques conventionnelles ; par exemple, les composés précités peuvent être mélangés avec des supports pharmaceutiques inertes, organiques ou inorganiques conventionnels, appropriés à l'adminis-30 tration parentérale ou entérale. Ils peuvent être administrés sous des formes pharmaceutique conventionnelles, de préférence parenté-ralement, par exemple, sous forme de solutions, de suspensions ou d1émulsions. D'autre part, les compositions pharmaceutiques contenant des composés de cette invention peuvent être stérilisées et/ou 35 peuvent contenir des substances auxiliaires, par exemple des agents conservateurs, stabilisants, de mouillage, d'émulsification, des sels régularisant la pression osmotique ou des composés tampons. 69 00019 5 2000020 Les compositions peuvent aussi être combinées avec d'autres substances thérapeutiquement utiles. Les exemples non limitatifs suivants sont destinés à illustrer l'invention. 5 Exemple 1 7,1 g de sel de sodium de la benzylpénicilline et 4,9 g de 2 N -tert.-butyloxycarbonyl-L-lysine sont dissous dans 60 ml d'eau et traités sous agitation à 59 avec 20 ml d'un© solution d'hydro-xyde de sodium N. Après 15 minutes, le pH est ajusté à 5-4 avec 10 de l'acide tartrique solide et la solution est extraite avec de l'acétate d'éthyle. Après lavage, dessiccation et évaporation de l'acétate d'éthyle, il reste 12,5 g de substance écumeuse qui peut être utilisée directement dans la prochaine étape. Par addition de benzylamine, on obtient le sel de mono-benzylammonium cristallisé 15 fondant à 113-1152, («)^ = +70,12, (e = 1,08 dans le méthanol). 11,4 g d'acide brut sont secoués avec 30 ml d'acide trifluoracétique à la température ambiante pendant 20 minutes. Après décantation, le résidu est lavé avec de l'éther et desséché jusqu'au lendemain dans un dessiccàteur sous vide sur de l'hydroxyde 20 de potassium. Le résidu est dissous dans 10 ml de pyridine et laissé à 2-42 pendant 3 jours. On obtient ainsi 2,5 g de N^-(benzyl-a-pénicilloyl)-L-lysine fondant à 220-2222 (déc.) ; (a)j^" = +77,62 (c = 0,94 dans l'acide acétique glacial). Exemple 2 2 25 8*7 g de N -formyl-L-lysine sont dissous dans 400 ml d'eau, traités avec 186 g de sel de potassium de la benzylpénicilline, ensuite immédiatement avec 500 ml d'une solution d'hydrœçrde de sodium 1N, et agités pendant 10 minutes sous refroidissement, de telle manière que la température se maintienne entre 15s et 202. 30 On ajoute ensuite un mélange de 3 litres d'acétate d'éthyle et de 300 ml de méthanol et simultanément 500 ml d'acide sulfurique 3N. Le mélange est agité pendant 5 minutes et la phase aqueuse est séparée. La phase organique est agitée pendant encore 5 minutes avec une solution aqueuse saturée de sulfate de sodium, desséchée avec 35 du sulfate de sodium et évaporée sous vide. Le résidu est repris dans 1,3 litre d'éthanol, traité avec 109 ml de benzylamine, puis à 402 avec de l'éther jusqu'à apparition d'un trouble. On obtient 69 00019 2000020 ainsi 245 g de sel de benzylammonium de la (benzyl- a-péni-cilloyl)-N^-formyl-L-lysine fondant à 142-145e ;(a)^5 = +66,62 (c = 1 dans l'eau). g 1,35 kg de sel de bis-benzylammonium de la N -(benayl- a-5 pénicilloyl)-N -formyl-L-lysine sont dissous dans 9 litres de méthanol et traités sous agitation avec une solution de 276 g de chlorure de calcium dihydraté dans 1,5 litre de méthanol. Les parties solides sont séparées par filtration et recristallisées dans le mélange eau/isopropanol (1:2). On obtient 700 g de sel.de v 6 2 * 10 calcium de la N -(benzyl- a-pénicilloyl)-N -formyl-L-lysine fondant à 260-2702 (déc.) ; (a)^ +81,12 (c = 1 dans l'eau). Ce sel de calcium peut aussi être obtenu à partir de l'acide obtenu comme résidu d1évaporation brut dans le premier paragraphe de cet exemple dans le mélange isopropanol/eau par addition de 15 quantités molaires d'acétate de calcium ou d'hydroxyde de calcium. Exemple 5 2 56 g de N -acétyl-L-lysine, dissous dans 300 ml d'eau, sont traités avec 112 g de sel de potassium de la benzylpénicilline, puis immédiatement avec 300 ml d'une solution d'hydroxyde de sodium 1îï. 20 Le mélange est agité pendant 10 minutes à 152, puis versé dans un mélange agité de 300 ml d'acide sulfurique 3N et 400 ml d'acétate d'éthyle et séparé par filtration après 10 minutes. Oncristallise le résidu dans le mélange éthanol/acétate d'éthyle ; on obtient 6 2 ainsi en deux fractions 113 g de N -(benzyl- a-pénicilloyl)-N - 25 acétyl-L-lysine fondant à 144-1462 ; (a)25 = +922 (c = 1 dans du B bicarbonate de potassium à 10 fi). Exemple 4 Selon la manière décrite dans l'exemple 2,on obtient, à partir de 58,3 g de N -acétyl-D-lysine et de 115 g de sel de potas- 30 sium de la benzylpénicilline, 92,6 g de sel de bis-benzylammonium S 2 de la N -(benzyl- a-pénicilloyl)-N -acétyl-D-lysine ; point de fusion à 133-1372 ;{a)£5 = + 61,42 (c = 1, dans l'eau). Exemple 5 Selon le procédé de l'exemple 2, on obtient, à partir de 2 35 11,6 g de N -butyryl-L-ornithine et de 21,4 g de sel de potassium de la benzyl-pénicilline, • 31 g de sel de bis-benzylammonium de la c 2 N-(benzyl-a -pénicilloyl)~N -butyryl-L-ornithine ; point de fusion 69 00019 7 2000020 ; i à 110—115e » (°025 = +612 (c = 1, dans l'eau). D Exemple 6 Selon l'exemple 2, on obtient, à partir de 18,3 g d'acide 2 N -caproyl-D- a , ^-diaminobutyrique et de 31»4 g de sel de potas-5 sium de la "Benzylpénicilline et par formation de sel avec la di-cyclohexylamine, 37,4 g de sel de bis-dicyclohexylammonium de A « _ l'acide N -(benzyl- a -pénicilloyl )-N -caproyl-D-a , ts -diaminobutyrique ; point de fusion à 167-1732 ; (a)25 = +602 (c = 1, dans 3) l'alcool). 10 Exemple 7 Selon le procédé de l'exemple 3, on obtient, à partir de 2 22,2 g de phénoxy-méthyl pénicilline, 10,9 g de N -acétyl-L-lysine ' g et 115 ml d'une solution d'hydroxyde de sodium 1U, 14 g de N -(phénoxyméthyl-a -pénicilloyl)-!^-acétyl-L-lysine fondant à 197-15 199fi ; (a)25 = +82,52 (c = i dans du bicarbonate de potassium à 10 *). D Exemple 8 Selon le procédé de l'exemple 3» on obtient, à partir de 21,8 g de sel de sodium de 1'allylthiométhyl pénicilline et de 20 11,7 g de -acétyl-L-lysine, 9 g de N^-(allylthiométhyl- a-pénicilloyl) -N^-acétyl-L-lysine fondant à 125-1272 ; (a)2^= +802 (c = 1, dans du bicarbonate de potassium à 10$). Exemple 9 On prépare par des techniques conventionnelles des ampoules 25 sèches contenant 100 mg de sel de calcium de la (benzyl- a-péni- 2 cilloyl)-N -formyl-L-lysine. Avant utilisation, on ajoute 1 à 5 ml d'eau ou de solution salée physiologique. 69 00019 8 2000020 Revendications 1. Procède pour la préparation de dérivés d'acide pénicilloïque de formule générale : H H | | 8^ CH R—OOHÏÏ—C G ■> CO NH CH ^COOH I JlH R1-KH-CH-GOOH dans laquelle n est un chiffre de 1 à 4 ; R est un groupe 2-5 pentényle, n-pentyle, n-heptyle, allylthiométhyle, 5-amino-5-carboxypentyle, "benzyle, carboxybenzyle, a-aminobenzyle, phé-noxybenzyle, phénoxyméthyle, a -phénoxyéthyle, a -phénoxypropyle, 2,6-àiméthoxyphényle, 2-éthoxy-1-naphtyle, 3-carboxy-2-quinoxa-linyle, 5-méthyl-3-phényl-4-isoxazolyle, 3-(2-chlorophényle)-5-10 méthyl-4-isoxazolyle ou 3-(2,6-dichlorophényl)-5-méthyl-4-iso-xazolyle ; et R* est un atome d'hydrogène ou un groupe acyle inférieur, et de sels correspondants, caractérisé en ce qu'on fait réagir un composé de formule générale : H H I l>°H, S. GH. R CONH—C — C II CO—N CH -^--COOH dans laquelle R a la même signification que ci-dessus, avec 15 "un dérivé d'acide diaminocarboxylique de formule générale : R—NH CH COOH III nh2 69 00019 9 2000020 2 dans laquelle n. a la même signification que ci-dessus et R est un groupe acyle inférieur ou un groupe amino-protecteur, en ce qu'on élimine un groupe amino protecteur- contenu dans le produit réactionnel après la réaction, et, le cas échéant, en 5 ce qu'on transforme le produit réactionnel en un sel. 2. Procédé suivant la revendication 1, caractérisé en ce que l'acide diamino-carboxylique précité se trouve sous la forme 1. 3. Procédé suivant le revendication 1 ou 2, caractérisé en ce que la benzyl-pénicilline est traitée avec une L-lysine protégée 2 10 en N , les groupes protecteurs étant ensuite éliminés. 4. Procédé suivant la revendication 1 ou 2," caractérisé en ce que 2 la benzylpénicilline est traitée avec la N -formyl-L-lysine. 5. Procédé suivant la revendication 1 ou 2, caractérisé en ce que la benzyl-pénicilline est traitée avec la N -acétyl-L-lysine. 15 6. Procédé suivant la revendication 1, caractérisé en ce que la benzyl-pénicilline est traitée avec la N -acétyl-D-lysine. 7. Procédé suivant la revendication 1 ou 2, .caractérisé en ce que 2 la benzyl-pénicilline est traitée avec la N -butyryl-L-ornithine. 8. Procédé suivant la revendication 1, caractérisé en ce que la 2 20 benzyl-pénicilline est traitée avec l'acide N -caproyl-D-a , -diamino-butyrique. 9. Procédé suivant la revendication ,1 ou 2, caractérisé en ce que 2 la phénoxy-méthyl-pénicilline est traitée avec la N -acétyl-L-lysine. 25 10.Procédé suivant la revendication 1 ou 2, caractérisé en ce que 2 l'allylthio-méthyl-pénicilline est traitée avec la N -acétyl-L-lysine . 11.Procédé pour la préparation de dérivés d'acide pénicilloïque comme décrit ci-dessus, en particulier dans les exemples. 30 12.Procédé pour la fabrication de préparations utiles pour l'inhibition de réactions allergiques se manifestant après l'administration de pénicilline, caractérisé en ce qu'un dérivé d'acide pénicilloïque de-la formule I est mélangé, comme substance active, avec des supports thérapeutiquement compatibles inertes 35 et non toxiques, tels qu'ils sont utilisés communément dans de telles préparations, et/ou des excipients. 13.Compositions utiles pour l'inhibition de réactions allergiques 69 00019 2000020 se manifestant après l'administration de pénicilline, contenant un dérivé d'acide péricilloïque de formule I et un support. 14. Composé de formule : H H ! ! .S CE, R CONH-C G 3 I^CH„ 00 ÏÎH—— CH COOH NH «jVn R1-NH-GH-GOOH dans laquelle n est un chiffre de 1 à 4 ? R est un groupe 5 2-pentényle, n-pentyle, n-heptyle, allylthiométhyle, 5-amino- 5-carboxypentyle, benzyle, carboxybensyle, a-aminobenzyle, phénoxybenzyle, phénoxyméthyle, a-phénoxyéthyle, a-phénoxy- propyle, 2,6-diméthoxyphényle, 2-éthoxy-1-naphtyle, 3-carboxy- 2-quinoxalinyle, 5-méthyl-3-phényl-4-isoxazolyle, 3-(2-chloro- 10 phényle)-5-méthyl-4-isoxazolyle ou 3- (2,6-ctLchlorophény 1 ) - 5-mé - 1 thyl-4-isoxazolyle ; et R est un atome d'hydrogène ou un groupe acyle inférieur. g 15. La N -(benzyl- a-pénicilloyl)-L-lysine. 16. Le sel de bis-benzylammonium de la N^-(benzyl-a -pénicilloyl)-15 N2-formyl-L-lysine. 6 2 17. Le sel de calcium de la N -(benzyl-a -pénicilloyl)-N -formyl- L-lysine . c 2 18. La N -(benzyl- a-pénicilloyl)-N -acétyl-L-lysine. g 19. Le sel de bis-benzylammonium de la N -(benzyl-a -pénicilloyl)-20 N2-acétyl-D-lysine. 20. Le sel de bis-benzylammonium de la N^-(benzyl- a-péaicilloyl)- 2 N -butyryl-L-ornithine. 21. Le sel de bis-diyclohexylammonium de l'acide N^-(benzyl- a - 2 pénicilloyl )-N -caproyl-D-a , ~s -diamino-butyrique. 6 2 25 22. La N -(phénoxyméthyl- a-pénicilloyl)-N -acétyl-L-lysine. 6 ♦ 2 23. La N -(allylthiométhyl-a-pénicilloyl)-N -acétyl-L-lysine. 24. Les produits obtenus suivant le procédé des revendications 1-11.
Compositions containing a buffer and a peroxide or peracid useful for treating wells Compositions containing a peroxide or peracid and an organic acid salt buffer are provided. Also provided is a method for utilizing such compositions for removing polymers from oil and gas wells, while simultaneously dissolving encountered calcium carbonate deposits. BACKGROUND OF INVENTION 1. Field of the Invention A family of mud removal systems for the simultaneous removal of all polymer-based drilling fluid damage is disclosed. The damage can include that caused by partially-hydrolyzed polyacrylamide (PHPA) polymer and particulates such as calcium carbonate. The systems are based on the synergistic combination of organic salt buffers and either peroxides or per-acids. The systems can also include catalase enzymes. 2. Description of Related Art Many wells are damaged in the course of drilling and workover by the use of drilling muds, drill-in fluids, kill fluids and kill-pills that contain, amongst other things, polymeric constituents. The latter may consist of a single polymer or may consist of mixtures of polymers in aqueous solution/suspension. These polymers may be added for the purposes of viscosification, leak-off control, lubrication, friction reduction and control of shales or other active clays. Typically, the polymers used for such purposes include xanthans (exo-polymers produced byXanthomonas Camperstrisand its relatives), starches (produced from corn, potato, etc), celluloses, guars, and derivatives of these main groups. Polyacrylamides may also be used, in particular so-called partially-hydrolyzed polyacrylamide (PHPA), which is used for shale encapsulation. In addition, most of these fluids contain some form of particulate to impart density and to improve fluid-loss control. The most common of these particulates is calcium carbonate although, occasionally, salt or barite may be used. Subsequent well productivity can be significantly impaired by the use of these mixtures of polymers and particulate materials, due to the persistence of residues in the well. Their removal can result in substantial improvements in production. Historically, removal of these materials has involved the use of soaking with strong mineral acids (e.g. hydrochloric acid), strong organic acids (e.g. sulphamic acid), or oxidizing agents (e.g. sodium hypochlorite or lithium hypochlorite). More recently, enzymes have been used to remove the polymeric constituents. Some polymers, however, are largely immune to enzymatic degradation (e.g. PHPA). Acids can hydrolyze some polymers, and can dissolve calcium carbonate. However, in practice, calcium carbonate is often coated with polymer residue, and its removal has been shown to be non-uniform, possible due to worm-holing of the acid through the cake. This results in non-optimal inflow performance, with higher drawdowns and, potentially, greater risk of early water breakthrough, fines migration, and formation failure. Additionally, the acid is corrosive and inefficient, and large volumes must be used in extended reach wells. While hypochlorites can destroy most polymers, they will not dissolve calcium carbonate and their high pH can cause problems if the formation contains any sensitive clays. Combining acids and hypochlorites generates chlorine gas, a potentially harmful material. Accordingly, prior treatments designed to target both polymers and calcium carbonate consisted of several steps. This complicates the operation, and causes additional expense due to the time involved. Thus, there exists a need for clean-up compositions and methods that are effective at removing both polymer deposits and calcium carbonate. The methods preferably accomplish the removal of both materials in a single step. SUMMARY OF INVENTION Compositions comprising buffered hydrogen peroxide or per-acids are attractive for use in treating oil and/or gas wells that contain polymer deposits or calcium carbonate. An example per-acid is peroxyacetic acid. The compositions can further comprise enzymes such as peroxidases. Methods for treating wells can be performed as single step treatments. DETAILED DESCRIPTION Compositions and methods have been identified that are capable of removing all polymers encountered thus far while, simultaneously, dissolving calcium carbonate. The treatment methods include a single step treatment of a well, effective at reducing or eliminating the presence of polymer deposits and calcium carbonate. The methods improve the permeability of the well, preferably to at least the level observed prior to formation of polymer deposits. Compositions One embodiment of the invention relates to well treatment compositions. The compositions can comprise, consist essentially of, or consist of water, a buffer, and hydrogen peroxide and/or a per-acid. The composition can further comprise iron-control agents, surface tension reducers, dispersants, corrosion inhibitors, clay stabilizers, and other components useful in treating wells. The water can generally be from any source. The water can be fresh water, brackish water, or salt water. The compositions can generally have any pH. For example, the pH can be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, or ranges between any two of these values. It is presently preferred that the pH be about 3.0 to about 5.0. The buffer can generally be any buffer system. Buffers commonly are a combination of an acid and its salt. For example, a buffer can comprise acetic acid and an acetate salt (such as sodium acetate, potassium acetate, or ammonium acetate), formic acid and a formate salt (such as sodium formate, potassium formate, or ammonium formate), citric acid and a citrate salt (such as sodium citrate, potassium citrate, or ammonium citrate), and other acid/salt buffer combinations. The buffer system can generally be present at any concentration. The buffer system can be present at a concentration of about 1 weight percent to about 30 weight percent. Example concentrations include about 1 weight percent, about 5 weight percent, about 10 weight percent, about 15 weight percent, about 20 weight percent, about 25 weight percent, about 30 weight percent, and ranges between any two of these values. Hydrogen peroxide can generally be present in the composition at a concentration of about 1 weight percent to about 6 weight percent. Example concentrations include about 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, and ranges between any two of these values. A concentration of about 3 weight percent to about 5 weight percent is presently preferred. The per-acid can generally be any per-acid. Examples of per-acids include peracetic acid, performic acid, perpropanoic acid, and perbutanoic acid. It is presently preferred that the per-acid be peroxyacetic acid (ethaneperoxoic acid; peroxyacetic acid; CH3CO3H). The per-acid can generally be present in the composition at a concentration of about 1 weight percent to about 15 weight percent, with a concentration of about 3 weight percent to about 10 weight percent being presently preferred. Examples of concentrations include about 1 weight percent, about 2 weight percent, about 3 weight percent, about 4 weight percent, about 5 weight percent, about 6 weight percent, about 7 weight percent, about 8 weight percent, about 9 weight percent, about 10 weight percent, about 11 weight percent, about 12 weight percent, about 13 weight percent, about 14 weight percent, about 15 weight percent, and ranges between any two of these values. The compositions can comprise both hydrogen peroxide and a per-acid, or hydrogen peroxide and an organic acid (such as acetic acid, formic acid, propanoic acid, or butanoic acid). The composition can further comprise accelerants or inhibitors to modify the rate of reaction with polymer deposits or calcium carbonate. Accelerants increase the rate of decomposition of peroxides. Examples of accelerants include peroxidase enzymes, and transition metal compounds (e.g. compounds of manganese, iron, copper, etc.). Accelerants can generally be present in the composition at a concentration of about 1–2 ppm to about 1–2 weight percent. Inhibitors decrease the rate of decomposition of peroxides. Examples of inhibitors include phosphate salts and phosphonate salts. Inhibitors can generally be present in the composition at a concentration of about 1–2 ppm to about 5 weight percent. Methods of Use The above described compositions are useful for treating oil and/or gas wells suspected of containing polymer deposits and/or calcium carbonate. Useful compositions include those comprising water, a buffer, and hydrogen peroxide and/or a per-acid. Alternatively, the methods can involve the use of a composition comprising water and hydrogen peroxide. The methods can comprise selecting an oil and/or gas well, and pumping one of the above described compositions into the well. The compositions are contacted with the well for a period of time sufficient to reduce or eliminate any polymer deposits and/or calcium carbonate. The methods can further comprise removing the compositions after the contacting period. The well is preferably treated with the compositions are in a single step. The pumping can be performed in a single pumping event, multiple pumping events, or as a continuous pumping process. The well can be “closed in”, allowing the compositions to contact the well for a period of time during which additional pumping or drilling is not performed. The following examples are included to demonstrate preferred embodiments of the invention. If not otherwise indicated, percentages are weight percentages. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the scope of the invention. EXAMPLES Filter Cake Removal Using Magnetic Funnel This analytic method was performed as follows. A magnetic funnel was mounted on an Erlenmeyer flask. A high permeability sand pack (k>10 D) was placed in the funnel and compacted. A brine solution was poured and the flow rate (by gravity) through the sand pack was measured. The mud was poured and vacuum was applied for 1 hour to form the mud cake. Any excess mud was removed. Brine was again poured to determine that no flow was achieved through the mud damaged sand pack by gravity and with vacuum applied. The permeability is essentially zeroed at this point. The treatment solution (warmed to 150° F. (66° C.) prior to use) was poured onto the sand pack. The vacuum was applied for about one minute to allow the treatment solution to absorb onto the cake. The sand pack was left to soak with the solution without vacuum and allowed to react with the mud cake for 1 hour. After the incubation period, the condition of the filter cake after the reaction was observed. Presence of any residual starch (for mud containing starch as viscosifying agent) in the sand pack was tested by the iodine spot test. The vacuum was applied to allow any remaining treatment solution to flow through the sand pack. A brine solution was again flowed (without vacuum) to determine the regain permeability. Filter Cake Removal Test Using a Fluid Loss Cell This analytic method was performed as follows. A fluid loss cell was fitted with an 80 US Mesh screen, and 100 g of 70–140 Mesh sand was placed on top of it. Water or brine solution (100 ml) was poured onto the sand and shut in to heat to 150° F. (66° C.) in about 20 minutes. Pressure was applied to the cell and the time to flow 100 ml of water/brine was noted. (In each case, the fluid passes straight through and could not be measured). The cell was drained leaving the sand saturated. The mud was conditioned to 150° F. (66° C.) in the atmospheric consistometer in 20 minutes before pouring into the pre-heated cell. Pressure was then applied to the cell. The bottom valve was opened and the fluid loss recorded. Excess mud was removed while taking care not to disturb the filter cake and sand pack. The treatment was poured in and shut in for test period. After the shut in period, the bottom valve was opened and the flow measured. An iodine spot test was carried out on mud containing starch. The treatment solution was poured off and the flow measured. Evaluation of High Salt Drill-In Fluid A formulation was prepared using the following components. A variety of mud removal systems were assayed with Method A (Example 1) and/or Method B (Example 2). The percent regained permeability is shown in the following table (ND=not determined), along with relevant comments. Enzyme S is an amylase enzyme commercially available from BJ Services Company (Houston, Tex.). Evaluation of KCl Xanthan/Starch Mud A formulation was prepared using the following components. A variety of mud removal systems were assayed with Method A (Example 1) and/or Method B (Example 2). The percent regained permeability is shown in the following table, along with relevant comments. Enzyme C is a cellulose-specific enzyme breaker commercially available from BJ Services Company (Houston, Tex.). Evaluation of Fresh Water PHPA Mud A variety of mud removal systems were assayed with Method A (Example 1) and/or Method B (Example 2). The percent regained permeability is shown in the following table (ND=not determined), along with relevant comments. Evaluation of PHPA Mud A mud sample was obtained containing PHPA, starch, xanthan, and sized calcium carbonate. A variety of mud removal systems were assayed using Method A (Example 1) and/or Method B (Example 2). The percent regained permeability is shown in the following table (ND=not determined), along with relevant comments. Corrosion Tests Performed on Chrome 13 and Super Chrome 13 Chrome 13 and Super Chrome 13 metals can be obtained from Savik Super-Chrome Inc. (Three Rivers, West Quebec, Canada). Metal corrosion tests were performed at 4000 psi (281 kg/cm2), with a contact time of 8 hours at room temperature. Test results were determined at 130° C., 150° C., and 170° C. as follows. Three acid systems were used, where LPCM=liters per cubic meter, and KPCM=kilograms per cubic meter. Ferrotrol chelating/reducing agent, D4 GB, CI-27 acid inhibitor, and HY-Temp corrosion inhibitor products are commercially available from BJ Services Company (Houston, Tex.). The results show that corrosion of Chrome 13 and Super Chrome 13 tubing with mild pH (buffered) peroxyacetic acid systems were within acceptable limits in each case and at high temperatures. Acetic acid alone is not strongly corrosive, but in certain cases, corrosion levels were above 0.02 lb/ft2(0.1 kg/m2), the maximum acceptable weight loss limit for high alloy tubing. Calcium Carbonate Solubility Tests Weighted portions of calcium carbonate chips (approximately 20/40 mesh size) were placed into a known volume of each test fluid. After 6 hours at atmospheric pressure and 180–200° F. (82–93° C.), the amount of dissolved calcium carbonate was determined. Four test acid systems were assayed, where LPCM=liters per cubic meter, and KPCM=kilograms per cubic meter. These resluts show that the peroxyacetic acid system containing 15% acetic acid and 1.5% hydrogen peroxide (buffered to pH 4) (test acid #4) dissolved significantly more calcium carbonate than the other systems, including 15% acid alone (test acid #1). Test Method to Assay Ability of Mudzyme Systems to Remove Drill in Fluid The following test procedure was used. 1. Mount the berea core or aloxite disk into the bottom of the HTHP fluid loss cell and close the bottom of the cell. Note an alternative to this is to build a +/−0.25 inch (0.635 cm) silica sand bed as the base to the drilling mud cake upon. 2. Pour 100 ml of filtered 2% KCl brine into the cell. Close the top of the cell and attach the nitrogen manifold. Set the pressure to 20 psi (1.4 kg/cm2). 3. Open the top valve of the cell and apply 20 psi (1.4 kg/cm2) of nitrogen pressure to the cell. 4. Open the bottom valve and record the time taken to collect 100 ml of brine in a graduated beaker (i.e. when nitrogen break through occurs) (Q1). 5. Shut off the nitrogen, remove the nitrogen manifold, and open the top of cell. 6. Close the bottom valve and pour 100 ml of the fluid containing the polymer (drilling mud) into the cell. 7. Close the top of the cell and attach the nitrogen manifold. Set the nitrogen pressure to 20 psi (1.4 kg/cm2). 8. open the top valve of the cell and apply 20 psi (1.4 kg/cm2) of nitrogen pressure to the cell. 9. Heat the cell to the required bottom hole temperature. 10. After shut in at bottom hole temperature for 30 minutes open the bottom valve and conduct a fluid loss test recording the volume of filtrate collected at 1, 4, 9, 16, 25, and 36 minutes (Q2). Close the bottom valve of the cell. 11. Release the pressure from the top of the cell and remove the nitrogen manifold. Cool the cell to room temperature and open the top of the cell. 12. Extract any liquid remaining in the cell, leaving the filter cake intact. 13. Add 100 ml of 2% KCl fluid to the cell. 14. Close the top of the cell and attach the nitrogen manifold. Set nitrogen pressure to 20 psi (1.4 kg/cm2). 15. Open the top valve of the cell and apply 20 psi (1.4 kg/cm2) of nitrogen pressure to the cell. 16. Open the bottom valve and record the time taken to collect 100 ml of brine in a graduated beaker (Q3). 17. Shut off the nitrogen, remove the nitrogen manifold, and open the top of cell. Extract any liquid remaining in the cell. 18. Add 100 ml treating fluid containing the desired enzyme and others additives to the cell. 19. Close the top of the cell and attach the nitrogen manifold. Set nitrogen pressure to 20 psi (1.4 kg/cm2). 20. Open the top valve of the cell and apply 20 psi (1.4 kg/cm2) of nitrogen pressure to the cell. 21. Heat the cell to 200° F. (93° C.) and allow the fluid to soak at this temperature for 12 hours. 22. Release the pressure from the top of the cell and remove the nitrogen manifold. Cool the cell to room temperature and open the top of the cell. Extract the remaining fluid from the cell. 23. Visually examine the disc for presence of filter cake. Where applicable, perform the iodine spot test for presence of starch. 24. Add 100 ml of 7.5% hydrochloric acid to the cell. Close the top of the cell and attach the nitrogen manifold. Set nitrogen pressure to 20 psi (1.4 kg/cm2). 25. Heat the cell to 200° F. (93° C.) and allow the fluid to soak at this temperature for 30 minutes. 26. Release the pressure from the top of the cell and remove the nitrogen manifold. Cool the cell to room temperature and open the top of the cell. Extract the remaining fluid from the cell. 27. Add 100 ml of 2% potassium chloride fluid to the cell. Close the top of the cell and attach the nitrogen manifold. Set nitrogen pressure to 20 psi (1.4 kg/cm2). Open the top valve of the cell and apply 20 psi (1.4 kg/cm2) of nitrogen pressure to the cell. 28. Open the bottom valve and record the time taken to collect 100 ml of brine in a graduated beaker (i.e. when nitrogen break through occurs) (Q4). 29. Shut off the nitrogen, remove the nitrogen manifold, dismantle/clean the cell, and prepared for further testing. Regarding step 23, the presence of starch is indicated by the formation of a blue color being produced when one drop of dilute iodine solution is placed on the surface of a filter cake. The absence of a blue color indicates that all starch has been degraded. The iodine spot test can only be used to detect the presence of starch. If starch is not present in the fluid used to form the filter cake, this test will be valid. The following mud system was used: Mudzyme and acid test results #1 The following mudzyme formulation was used. Ferrotrol chelating/reducing agent, Inflo acid-mutual solvent, GBW enzyme breaker, Cl acid inhibitor, and NE non-ionic surfactant products are commercially available from BJ Services Company (Houston, Tex.). Gpt stands for gallons per thousand gallons (liters per thousand liters). Mudzyme and acid test results #2 The following mudzyme formulation was used. Wellbore filter cake removal test using HTHP cell the following test procedure was used. 1. The Aloxite or berea disc was loaded into the cell. 2. The cell was filled with filtered brine, 2% KCl. 3. Pressure was applied and the cell allowed to come to temperature. 4. The bottom valve was opened and the time taken for 200 ml to pass through the disc at 100 psi (689 KPa) was recorded. 5. The pressure was bled from the cell slowly excess brine removed. 6. The cell was filled with the mud fluid. 7. The pressure was applied and the cell allowed to come to temperature. 8. After reaching temperature, open the bottom valve and record fluid loss at 1″, 4″, 9″, 16″, 25″ and 30″. Close the bottom valve of the cell. 9. The cell was shut-in until the desired time. 10. After the required shut-in time, excess mud was from the cell leaving the filter-cake intact. 11. The desired breaker fluid was added to the cell. 12. The pressure was applied, the cell allowed to come to temperature and the system was shut-in for four hours. 13. After the four hours shut-in period, the pressure was bled from the cell, and the treatment fluid extracted. 14. The disc was removed and examined for the presence of filter-cake. Iodine spot test was carried out for the presence of starch (presence of starch is indicated by a dark blue discoloration of the iodine). A few drops of HCl were placed onto the disc to determine the presence or absence of undissolved carbonate. 15. The disc was flipped and placed in the cell in the opposite orientation. 16. The cell was filled with filtered brine, and the time taken to flow 200 ml at 100 psi (689 KPa) was recorded. Evaluation of Filter Cake Removal Ability Four mud systems were used to evaluated the ability of various formulations to remove filter-cakes, as measured by the procedure of the previous Example. Two lacked drill solids, and two were the corresponding muds containing drill solids. Preparation of Breaker Fluids Six different breaker fluids were prepared or obtained for evaluation. They were a) buffered peroxyacetic acid; b) buffered mudzyme CS (a mixture of cellulase and amylase enzymes buffered with acetic acid and sodium acetate); c) Oxiclean (a mixture of oxidizing agents; generally ammonium persulphate, sodium perborate and fumaric acid); d) 1.2% sodium hypochlorite; e) 7.5% hydrochloric acid; and f) 7.5% hydrochloric acid with added sodium perborate. Fluid Loss Data Muds A–D were assayed for their cumulative fluid loss volume over time. The breaker fluids were assayed for their ability to disolve filter cakes. First, mud A was tested using all six breaker fluids. The results were as follows, showing that the buffered peroxyacetic acid was clearly more effective than the other compositions at removing the filter cake. Note, tests 5 and 6 were performed using berea discs instead of aloxite. Next, muds B, C, and D were evaluated with the buffered peroxyacetic acid. The results were as follows, showing favorable results obtained by use of the buffered peroxyacetic acid compositions. Note, test 8 was performed using berea discs instead of aloxite.
La présente invention est relative à dés soupapes de sûreté ou de détente pour les canalisations- ou les machines sous pression hydraulique, le terme "machines" englobant toutes les installations comportant une canalisation sous pression hydrauli-5 que ou, habituellement, sous pression d'huile. La présente invention a pour objet de créer une soupape de sûreté ou une soupape de soulagement en cas de surcharge, qui doit être insérée dans les canalisations sous pression hydraulique, et qui comporte une soupape d'échappement automatique fonc-10 tionnant conme soupape pilote pour une soupape de sûreté à piston équilibré, et possédant un dispositif d'absorption des chocs et des vibrations, afin d'éviter les chocs qui seraient susceptibles d'endommager en peu de temps le siège et la surface de soupape, ce dispositif servant à prévenir les battements ou rebonds fâcheux. 15 Suivant la présente invention, cette soupape de sûreté, contrôlée par soupape pilote, est du type à piston équilibré, et elle est construite et insérée dans le système de canalisations sous pression hydraulique, de façon à être maintenue fermée, jusqu'à ce que la pression sur les deux faces soit égale et qu'elle 20 s'ouvre presque instantanément sous l'influence de la pression hydraulique, chaque fois que, par suite de l'ouverture de la soupape pilote, la valeur de la pression aval (c'est-à-dire de la pression du liquide sur la face arrière du piston de la soupape), tombe sensiblement en dessous de la valeur de la pression amont. 25 Lorsque cette soupape pilote se ferme, en raison d'une réduction sensible de la pression de retenue sur la soupape de sûreté à piston équilibré, la soupape de sûreté se ferme également en raison du rétablissement de la pression de retenue. Cependant, afin d'obtenir un fonctionnement régulier et d'éviter les chocs 30 et les battements de la soupape de sûreté à piston équilibré, on a muni cette soupape d'un dispositif d'absorption des chocs et des vibrations. * Suivant une forme de réalisation préférée de la présente invention, un plongeur d'amortissement des chocs et des vibrations 35 est attaché au piston de la soupape de sûreté, à une certaine distance de la face amont du piston de la soupape. Ce plongeur coulisse librement, sans guidage étanche, dans une chambre ou dans un cylindre qui est plein de liquide, le tout étant construit de façon à permettre, pendant ce coulissement du plongeur, un écou-40 lement étranglé du fluide de chaque côté du plongeur à l'autre* 69 00023 2000021 Evidemment, cet écoulement étranglé peut être obtenu soit en ménageant des rainures ou rayures longitudinales le long de la périphérie du plongeur et/ou des parois du cylindre, ou également en ménageant des passages à écoulement étranglé dans le 5 plongeur, ou encore de petits conduits latéraux dans le cylindre, qui s'ouvrent aux deux extrémités, au delà des positions occupées par les faces du plongeur aux extrémités de sa course. Ces passages et/ou ces conduits à écoulement étranglé peuvent être également munis de petites soupapes automatiques, afin d'accroître ou 10 de réduire l'étranglement de l'écoulement dans une direction ou dans les deux directions. Suivant une forme de réalisation préférée de la présente invention, laquelle est montrée sur le dessin annexé, la soupape de sûreté est une soupape différentielle à piston en forme de ver-15 re à pied, qui est montée dans un cylindre et munie d'un passage étranglé qui met en communication des eûarsbres situées sur les deux faces du piston. Un plongeur d'amortissement du mouvement est suspendu au piston de la soupape de sûreté, ce plongeur cou- -lissant dans un cylindre rempli de liquide, et des moyens étant 20 prévus pour permettre un écoulement étranglé du liquide à travers ce plongeur. Cette soupape de sûreté est commandée par une soupape pilote, qui s'ouvre à chaque fois que des limites de pression de sécurité sont dépassées, et qui détermine de la sorte l'évacuation d'une certaine quantité de liquide de la chambre de 25 la soupape de sûreté adjacente, et permet ainsi l'ouverture de cette soupape, par suite de la pression du liquide sur la face opposée de la soupape de sûreté. Dans cette forme de réalisation préférée, la soupape de sûreté avec le plongeur qui lui est attaché, ainsi que les cylin-30 dres dans lesquels ces organes sont montés à glissement, ainsi que la soupape pilote, constituent ensemble un groupe unique susceptible d'être monté, par exemple par simple vissage, dans un organe-support ou bloc qui contient une partie du circuit hydraulique. 35 Une forme de réalisation préférée de la soupape de sûreté, comportant une soupape pilote automatique, va être décrite ci-après, à titre d'exemple, en se référant au dessin annexé. Dans ce dessin, la figure unique montre une coupe longitudinale par un plan diamétral, à travers une partie d'un 40 bloc-support, dans lequel est monté un groupe à soupape de 69 00023 3 2000021 sûreté. Sur le dessin, 1 désigne le corps cylindrique de la soupape de sûreté. Ce corps de soupape comporte une chambre cylindrique ou un cylindre intermédiaire 2, ainsi qu'une chambre 5 supérieure à fond fraisé 3, séparée de ce cylindre par une cloison 55 présentant un perçage 4 et un siège de soupape conique 5 . Dans la chambre supérieure 3, est montée .une soupape pilote à pointeau 6 présentant une tige 7 ; cette soupape est poussée contre le siège conique 5 par un ressort hélicoïdal cali-10 bré 8, comprimé entre une collerette, de butée sur la tige 7 et un bouchon fileté 9 qui constitue l'organe de fermeture de cette chambre, et qui sert également d'organe pour régler la pression du ressort 8. La soupape 6 est montée de façon à pouvoir s'écarter de son siège 5, lorsque la pression dans le cylindre 2 dépasse 15 un maximum prédéterminé, ce maximum pouvant être réglé aussi en vissant plus ou moins le bouchon 9 ; de la sorte, est constituée une soupape de sûreté primaire, qui, ainsi qu'on le verra plus loin, sert de soupape pilote déterminant l'ouverture de la soupape de sûreté disposée en dessous, en déterminant son ouverture et en 20 provoquant la sortie d'une certaine quantité de liquide sous pression de la chambre de soupape adjacente, à travers des orifices de sortie 24, 124, et cette soupape permet la fermeture de la soupape de sûreté ouverte, lorsqu'elle est elle-même fermée, dès que la pression du liquide s'abaiss'e en dessous d'une limite 25 prédéterminée. La chambre intermédiaire cylindrique 2, qui constitue le. cylindre pour la soupape de sûreté, constitue la section interne (la section supérieure sur le dessin) d'un alésage borgne 22, dont le fond est constitué par la cloison 55. Dans la section à 30 extrémité ouverte de cet alésage 22, est monté serré un manchon cylindrique 14 qui est maintenu à sa position finale, en butant contre une bague élastique d'arrêt .12. Ainsi, le manchon 14 diminue le diamètre de la section extrême du fond du cylindre 2, ainsi que la surface active de la face de fond 110 du piston 10, 35 lorsque celui-ci'porte contre le bord interne formant un siège 15 de ce manchon 14, en sorte que le piston fonctionne en soupape équilibrée à piston différentiel, qui ferme ou ouvre les larges orifices de sortie 23, 123, dans le corps 1. Le piston 10 a la forme d'un verre à pied, et il est 40 maintenu, habituellement, dans la position de fermeture, où il est 69 00023 4 2000021 appliqué contre le bord 15 du manchon 14 par un ressort 11 inséré entre l'intérieur du fond du verre et la cloison 55. Au-dessus du bord 15 du manchon 14, des orifices de sortie 23, 123, sont percés à travers le corps de soupape 1. 5 Un canal 17, 18, à travers le fond du piston 110 et à travers le pied 16, met en communication les chambres situées sur les deux faces du piston 10 et permet un écoulement étranglé du liquide. La chambre cylindrique 19, entourée par le manchon 14, 10 constitue un absorbeur de chocs ou un cylindre amortisseur, dans lequel un plongeur amortisseur de mouvement 13, réuni par le pied 16 au fond 110 de la soupape de sûreté à piston principal, est monté à glissement, de façon à se déplacer solidairement avec le piston de soupape de sûreté 10. Le plongeur 13, en glissant, 15 détermine un écoulement étranglé du liquide à travers ce piston. Ceci est obtenu, de préférence, en entaillant dans la périphérie du plongeur 13, une ou plusieurs rainures longitudinales 30, qui s'étendent le long de l'épaisseur totale du plongeur. Dans les parois de la chambre cylindrique 14, et dans une position inter-20 médiaire entre le fond 110 de la soupape à piston et le plongeur 13, des orifices radiaux 20-120 et 21-121 d'entrée, sont ménagés à travers les parois cylindriques adjacentes du corps 1 et du manchon 14. Les pièces décrites ci-dessus, sont enfermées dans le 25 corps cylindrique 1, qui est ouvert à son extrémité de fond, en correspondance avec le plongeur d'amortissement 13. L'ensemble forme un groupe de soupapes de sécurité qui est inséré dans un alésage borgne 31 d'un organe de support ou bloc K, qui fait partie de la canalisation sous pression hydraulique. Le corps 1 est 30 monté dans l'alésage 31, par vissage de la section filetée 25 dans une section taraudée correspondante de ce forage. Une tête 28 qui est, par exemple, hexagonale, rend faciles le vissage et le dévissage du groupe de soupapes de sécurité. Lorsque ce groupe est monté dans l'alésage 31, le fond de cet alésage borgne ferme 35 l'extrémité de base de l'ensemble, en complétant ainsi le cylindre du plongeur. Dans la paroi cylindrique de l'alésage 31, est ménagé un large canal annulaire S, qui s'étend au delà dès orifices de sortie 24-124 et 23-123. Dans ce canal annulaire, s'ouvre le 40 perçage radial SI réuni à une conduite conventionnelle de décharge 69 00023 5 2000021 de liquide (non représentée) . Le montage étanche au fluide du groupe dans l'alésage 31 du bloc K, est assuré par des joints annulaires 26, 27 et 32. Le bloc K peut constituer une partie de la canalisation hydraulique, dans laquelle est montée la soupape 5 de sûreté. Un autre canal annulaire ou une autre rainure annulaire H est ménagé dans la paroi cylindrique de l'alésage 31, en correspondance avec les orifices 20-120 et 21-121 de l'ensemble qui y est inséré. Dans ce canal annulaire, s'ouvre l'extrémité d'une 10 conduite conventionnelle Ml d'alimentation en fluide. Le fonctionnement de la soupape de sécurité décrite ci-dessus, est le suivant : Le liquide amené par Ml remplit la chambre de soupape à piston 22 et, à travers les conduits étranglés 18 et 17, également 15 la chambre aval 2. En même temps, une certaine quantité de liquide suinte à travers la rainure 30, dans la partie de fond du cylindre 29 de l'amortisseur. Tant que la soupape pilote 6 à pointeau demeure fermée, la soupape 10 de sûreté à piston équilibré, poussée contre son siège 15 par la pression liquide sur sa 20 face supérieure et par le ressort 11, demeure fermée, c'est-à-dire que le fond 110 repose contre le siège 15. Lorsque la pression du liquide dans la chambre 2 dépasse la valeur de sécurité, la soupape pilote 6 s'ouvre, et une certaine quantité de liquide sous pression passe à travers le perçage 4 25 de la chambre 2 dans la chambre 3 de la soupape à pointeau, d'où il est déchargé par les orifices de sortie 24. De la sorte, en raison de la diminution de la pression du liquide au-dessus du piston 10, ce piston est poussé vers le haut par la pression hydraulique, de façon à découvrir les grands orifices 23-123 et à 30 permettre une évacuation importante du liquide sous pression hors du système, à travers l'ouverture SI. Lorsque, après cette sortie, la pression du liquide tombe en dessous de la valeur de sécurité, la soupape piloté 6 peut se fermer', de sorte que la pression de liquide et la pres-35 sion du ressort îl. ramènent la soupape de sûreté 10 à sa position de fermeture. Les mouvements d'ouverture et de fermeture de la soupape de sûreté 10 sont amortis par le plongeur d'amortissement 13 qui y est attaché, en sorte que sa fermeture, en particulier, 40 s'effectue d'une manière très douce. 69 00023 6 2000021 Diverses variantes constructives peuvent être apportées au groupe ci-dessus décrit d'une soupape de sûreté commandée par soupape pilote, tout en demeurant dans le cadre de l'invention. 5 - REVENDICATIONS - 1. Soupape de sûreté pour canalisations sous pression hydraulique, du type comprenant un corps de soupape à piston, présentant un canal d'entrée et un canal de sortie, une soupape de sûreté à piston, montée dans ce corps et déterminant deux cham-10 bres séparées, à savoir, une chambre de pression amont délimitée par la face frontale du piston et communiquant directement avec le conduit d'entrée et une chambre aval ou chambre à pression de retenue, qui communique avec la chambre amont ou chambre antérieure à travers des passages étranglés, des conduits à écoulement 15 étranglé permettant au liquide de s'écouler lentement de l'une de ces chambres dans l'autre, des moyens pour maintenir fermée la soupape de sûreté tant que la pression du liquide est égale dans ces deux chambres séparées, et une soupape pilote automatique qui est ouverte par la pression du liquide dans cette chambre aval à 20 pression de retenue, lorsque sa valeur dépasse la valeur limite qui est considérée, comme limite de sécurité, après quoi, la soupape de sûreté à piston est d'abord entièrement ouverte d'une façon instantanée, par la pression momentanément prépondérante sur sa face amont en raison de la réduction automatique de la pression 25 de retenue aval, réduction déterminée par l'ouverture de la soupape pilote, et ensuite, après la fermeture automatique de la soupape pilote, la pression aval ou de retenue est rétablie et la soupape de retenue est de nouveau fermée, des moyens étant reliés à cette soupape de sûreté, afin d'amortir son mouvement, de façon 30 à prévenir les chocs et les vibrations. 2. Soupape suivant 1, caractérisée par le fait que les moyens pour maintenir fermée la soupape de sûreté chaque fois que la pression du liquide est égale sur les deux faces de la soupape de sûreté à piston, sont constitués par des ressorts. 35 3. Soupape de sûreté suivant 1, caractérisée par le fait qu'elle est du type à piston différentiel, la face aval du piston étant plus grande que sa face amont. 4. Soupape de sûreté suivant 1 et 3, caractérisée par le fait que des ressorts sont prévus pour pousser en outre la 40 soupape vers la position de fermeture. 69 00023 7 2000021 5 . Soupape de sûreté suivant 3 ou -4, caractérisée par le fait qu'elle comporte un piston différentiel en forme de verre à boire, la face amont du piston correspondant au cSté convexe du fond du verre . la paroi périphérique du piston en forme de verre 5 à boire, étant montée à glissement dans un cylindre, et le fond de ce piston en forme de verre à boire, butant, d'une manière sensiblement étanche, contre le bord d'un alésage cylindrique dont la section transversale est inférieure à celle du cylindre dans lequel coulisse la soupape en forme de verre à boire. 10 6. Soupape de sûreté suivant l'une des revendications précédentes, caractérisée par le fait que le dispositif pour amortir le mouvement de la soupape de sûreté comporte un plongeur glissant sans guidage étanche dans un cylindre rempli de liquide et constituant un prolongement du cylindre de soupape de sûreté, 15 et des moyens pour réunir ce plongeur à l'extrémité amont de la soupape à piston, afin de se déplacer solidairement avec lui et â' amortir son mouvement. 7. Soupape suivant 6, caractérisée par le fait que des alésages à écoulement étranglé s'étendent à travers le plongeur 20 et qu'une tige rigide relie la face amont de la soupape- à piston de sécurité au plongeur d'amortissement du mouvement. 3. Soupape suivant 6 ou 7, caractérisée par le fait que l'ajustage sans étanchéité du plongeur d'amortissement dans son cylindre, est obtenu en prévoyant sur la paroi périphérique 25 du plongeur, des zones espacées par rapport aux parois correspondantes du cylindre, et s'étendant le long de toute la hauteur du plongeur. 9. Soupape suivant S, caractérisée par le fait que les zones espacées de la. paroi du plongeur, ont la forme de rainures 30 qui s'étendent le long de la paroi périphérique du plongeur. 10. Soupape suivant 6 à 9, caractérisée par le fait que le plongeur est monté à glissement dans une chambre ou dans un cylindre qui présente des conduits longitudinaux à écoulement étranglé débouchant dans ce cylindre, de part et d'autre du 35 plongeur. 11. Soupape suivant 6 à 10, caractérisée par le fait que lés conduits à! écoulement* étranglé, ménagés dans la chambre cylindrique, débouchent dans cette chambre de part et d'autre du plongeur* quelle que soit la position de celui-ci. 40 12. Soupape suivant l'une des revendications 69 00023 8 2000021 précédentes, caractérisée par le fait que la soupape pilote est une soupape à pointeau montée dans une chambre réunie à la canalisation de décharge du liquide, cette soupape à pointeau étant poussée par un ressort dans sa position de fermeture, et suscepti-5 ble d'être ouverte par la pression du liquide qui dépasse la pression de sécurité dans la canalisation à pression hydraulique, dans laquelle la soupape est insérée, en sorte que la soupape de sûreté et la soupape pilote, le plongeur amortisseur et les cylindres ou le corps de soupape, constituent un groupe unique présen-10 tant des orifices les reliant à la canalisation sous pression d'un système hydraulique, des moyens étant également prévus pour relier ce groupe à un organe de support et de liaison qui fait partie intégrante du système hydraulique. 13. Soupape suivant 12, caractérisée par le fait que 15 l'organe qui fait partie intégrante du système hydraulique, est un bloc présentant un alésage borgne cylindrique, en partie taraudé, dans lequel sont prévus des conduits qui correspondent aux orifices de la soupape de sûreté, lorsque le bloc est entièrement vissé dans sa position de fonctionnement. 20 14.. Soupape de sûreté pour canalisations sous pression hydraulique, caractérisée par le fait qu'elle comporte une soupape à piston en forme de verre à boire, montée à ajustage serré dans une chambre allongée de forme correspondante, dite premier cylindre, ce cylindre étant fermé à l'une de ses extrémités par 25 un fond présentant un perçage formant siège d'une soupape pilote automatique soumise à l'action d'un ressort, un manchon est inséré dans une section de l'extrémité ouverte de ce premier cylindre, de façon à former un second cylindre coaxial qui possède un diamètre inférieur à celui du premier cylindre, et qui forme, par 30 son bord interne, un siège de soupape, contre lequel le fond fermé ou face amont du piston en forme de verre à boire, peut porter de façon sensiblement étanche, un plongeur d'amortissement de mouvement attaché rigidement au piston en forme de verre, à une certaine distance de son fond, et glissant à l'intérieur de la section 35 terminale externe dudit manchon, des passages qui permettent l'écoulement étranglé de liquide à travers le plongeur., une chambre d'entrée de fluide prévue entre le fond de la soupape de sûreté en forme de verre à boire et la face du plongeur, un conduit s'ouvrant dans cette chambre d'entrée de fluide et un conduit de 40 fluide permettant au fluide de s'écouler entre les chambres si 69 00023 9 2000021 tuées sur les deux faces du pistoc en forma de verre à boire, et des conduits de sortie qui mettent en communication la sortie de la soupape avec un large conduit de décharge qui communique avec des orifices dans le corps de la soupape de sûreté, lesquels sont 5 découverts dans la position d'ouverture de la soupape de sûreté, le tout étant agencé de telle façon que, lorsque la soupape pilote s'ouvre, et que la pression de retenue du fluide contre la face aval du piston en forme de verre est réduite, cette soupape à piston est déplacée, par la pression du fluide s'exerçant sur sa face 10 amont, jusqu'à sa position complètement ouverte, dans laquelle le conduit d'alimentation en fluide sous pression communique directement avec le conduit de décharge de fluide, jusqu'à ce que cette soupape de contrôle soit de nouveau fermée par la pression du ressort, et que la soupape de sûreté soit de nouveau amenée à sa 15 position de fermeture, les mouvements de la soupape de sûreté étant amortis par le plongeur d'amortissement attaché à la soupape. 15 . Soupape de sûreté pour les canalisations sous pression hydraulique, caractérisée par le fait qu'elle comporte 20 une soupape de sûreté du type à piston, un amortisseur attaché au piston de cette dernière, et une soupape pilote automatique commandée par la pression du liquide, et qui détermine, par son ouverture, l'ouverture complète presqu'instantanée de la soupape de sûreté, et un corps qui entoure cette soupape de sûreté avec son 25 amortisseur associé, et la soupape pilote formant un ensemble unique, et des moyens pour monter cet ensemble dans la canalisation sous pression, en le vissant dans un alésage borgne d'un bloc présentant des raccords avec les canalisations sous pression d'un système hydraulique.
Surrounding vehicle monitoring device and surrounding vehicle monitoring method A surrounding vehicle monitoring device includes an acquiring unit configured to acquire a midpoint between a rear left end position and a rear right end position of another vehicle, acquire a width of the other vehicle, and change a current position of a great change position to a corrected position and acquire a midpoint between a current position of a small change position and the corrected position as a position of the other vehicle in a case where a changing amount of the width is equal to or more than a first threshold. The great change position is one of the rear left end position and the rear right end position whose changing amount is the greater of the two. The small change position is another of the rear left end position and the rear right end position whose changing amount is the smaller of the two. TECHNICAL FIELD The present invention relates to a surrounding vehicle monitoring device and a surrounding vehicle monitoring method for monitoring another vehicle traveling around an own vehicle. BACKGROUND ART There is a conventional technique that uses a sensor such as a radar or a camera to acquire a position, speed, size, or the like of a preceding vehicle traveling in front of an own vehicle. In such a technique, if a following vehicle is present between the own vehicle and the preceding vehicle, the following vehicle occludes (covers) the preceding vehicle, so that information on the preceding vehicle cannot be acquired properly. To solve such a problem, WO2018/037508A1 discloses a monitoring device configured to detect whether the following vehicle occludes the preceding vehicle from a right side or a left side, and to acquire a position, which is shifted by half the width of the preceding vehicle from a non-occluded end thereof, as a position of the preceding vehicle. However, the monitoring device disclosed in WO2018/037508A1 complicates a procedure for determining an occurrence of occlusion. For example, the monitoring device disclosed in WO2018/037508A1 calculates a first angle between a line segment connecting an end of the preceding vehicle to the own vehicle and the traveling direction of the own vehicle, calculates a second angle between a line segment connecting an end of the following vehicle to the own vehicle and the traveling direction of the own vehicle, and determines that occlusion occurs when a difference between the first angle and the second angle is within a prescribed range. SUMMARY OF THE INVENTION In view of the above background, an object of the present invention is to provide a surrounding vehicle monitoring device and a surrounding vehicle monitoring method that can appropriately and easily acquire a position of another vehicle even if occlusion occurs. To achieve such an object, one aspect of the present invention provides a surrounding vehicle monitoring device (16) configured to monitor at least one other vehicle (61) traveling around an own vehicle (60), the surrounding vehicle monitoring device including: an acquiring unit (51) configured to periodically acquire a position, a speed, and a width of the other vehicle with respect to the own vehicle based on a signal from a sensor (6) configured to detect the other vehicle; and an estimating unit (52) configured to estimate a behavior of the other vehicle based on the position and the speed of the other vehicle, wherein the acquiring unit is configured to acquire a midpoint between a rear left end position and a rear right end position of the other vehicle as the position of the other vehicle, acquire the width of the other vehicle based on the rear left end position and the rear right end position, and change a current position of a great change position to a corrected position and acquire a midpoint between a current position of a small change position and the corrected position as the position of the other vehicle in a case where a first condition that a changing amount of the width in a prescribed period is equal to or more than a prescribed first threshold is satisfied, the corrected position being a position changed from a previous position of the great change position by a correction value that is preset so as to be smaller than a changing amount of the great change position from the previous position to the current position, the great change position being one of the rear left end position and the rear right end position whose changing amount in the prescribed period is the greater of the two, the small change position being another of the rear left end position and the rear right end position whose changing amount in the prescribed period is the smaller of the two. According to this aspect, in a case where the width of the other vehicle changes due to occlusion, the changing amount of the end position (namely, the great change position) in the prescribed period is reduced. Accordingly, the position of the other vehicle changes slowly in the prescribed period, so that it is possible to avoid determining that the other vehicle is in a specific behavior such as a lane change. In this way, the surrounding vehicle monitoring device according to this aspect can appropriately and easily acquire the position of the other vehicle even if occlusion occurs. In the above aspect, preferably, in a case where there is the other vehicle traveling more forward than the own vehicle in an adjacent lane adjacent to a reference lane where the own vehicle is traveling and a lateral speed of the other vehicle toward the reference lane is equal to or greater than a prescribed lateral speed threshold, the estimating unit determines that the other vehicle is cutting in the reference lane. According to this aspect, it is possible to determine a cut-in behavior based on a lateral position and a lateral speed of the other vehicle. In the above aspect of the present invention, the moving speed of the end position decreases according to the changing amount of the width of the other vehicle in the prescribed period. Accordingly, the lateral speed of the other vehicle becomes small even if occlusion occurs, so that it is possible to avoid determining the cut-in behavior. In the above aspect, preferably, the lateral speed threshold is set to a value that becomes smaller as a distance between the other vehicle and the reference lane becomes shorter. According to this aspect, it is possible to detect the cut-in behavior faster as the other vehicle is closer to the reference lane. In the above aspect, preferably, the acquiring unit is configured to change the current position of the great change position to the corrected position when not only the first condition but also a second condition that an absolute value of a lateral speed of the other vehicle with respect to the own vehicle is equal to or less than a prescribed second threshold is satisfied. According to this aspect, in a case where the other vehicle is moving laterally due to a curve or the like, it is possible to stop the correction of the end position due to occlusion in order to respond quickly to the movement of the other vehicle. In the above aspect, preferably, the acquiring unit is configured to acquire an inclination angle of the other vehicle with respect to the own vehicle based on the rear left end position and the rear right end position, and change the current position of the great change position to the corrected position when not only the first condition but also a third condition that an absolute value of the inclination angle is equal to or less than a prescribed third threshold is satisfied. According to this aspect, in a case where the other vehicle is moving laterally due to a curve or the like, it is possible to stop the correction of the end position due to occlusion in order to respond quickly to the movement of the other vehicle. In the above aspect, preferably, the acquiring unit is configured to acquire a distance between the other vehicle and the own vehicle, and change the current position of the great change position to the corrected position when not only the first condition but also a fourth condition that the distance is equal to or less than a prescribed fourth threshold is satisfied. According to this aspect, in a case where the other vehicle is relatively far from the own vehicle, it is possible to stop the correction of the end position due to occlusion in order to respond quickly to the movement of the other vehicle. In the above aspect, preferably, the acquiring unit is configured to acquire a relative speed of the other vehicle with respect to the own vehicle, and change the current position of the great change position to the corrected position when not only the first condition but also a fifth condition that the relative speed is equal to or less than a prescribed fifth threshold is satisfied. According to this aspect, in a case where the relative speed of the other vehicle is relatively high, it is possible to stop the correction of the end position due to occlusion in order to respond quickly to the movement of the other vehicle. In the above aspect, preferably, the acquiring unit is configured to change the current position of the great change position to the corrected position when not only the first condition but also a sixth condition that the changing amount of the small change position of the other vehicle is equal to or less than a prescribed sixth threshold. According to this aspect, in a case where the end position of the other vehicle on a non-occluded side is moving, it is possible to stop the correction of the end position due to occlusion and to reliably detect a lateral movement of the other vehicle in order to respond quickly to the movement of the other vehicle. Another aspect of the present invention provides a surrounding vehicle monitoring method used by a control device (15) mounted on an own vehicle (60) so as to monitor at least one other vehicle (61) traveling around the own vehicle, the surrounding vehicle monitoring method including: acquiring a midpoint between a rear left end position and a rear right end position of the other vehicle as a position of the other vehicle based on a signal from a sensor (6) configured to detect the other vehicle, and acquiring a width of the other vehicle based on the rear left end position and the rear right end position; changing a current position of a great change position to a corrected position and acquiring a midpoint between a current position of a small change position and the corrected position as the position of the other vehicle in a case where a first condition that a changing amount of the width in a prescribed period is equal to or more than a prescribed first threshold is satisfied, the corrected position being a position changed from a previous position of the great change position by a correction value that is preset so as to be smaller than a changing amount of the great change position from the previous position to the current position, the great change position being one of the rear left end position and the rear right end position whose changing amount in the prescribed period is the greater of the two, the small change position being another of the rear left end position and the rear right end position whose changing amount in the prescribed period is the smaller of the two; and estimating a behavior of the other vehicle based on the position of the other vehicle and a changing amount of the position in the prescribed period. According to this aspect, in a case where the width of the other vehicle changes due to occlusion, the changing amount of the end position (namely, the great change position) in the prescribed period is reduced. Accordingly, the position of the other vehicle changes slowly in the prescribed period, so that it is possible to avoid determining that the other vehicle is in a specific behavior such as a lane change. In this way, the surrounding vehicle monitoring method according to this aspect can appropriately and easily acquire the position of the other vehicle even if occlusion occurs. Thus, according to the above aspects, it is possible to provide a surrounding vehicle monitoring device and a surrounding vehicle monitoring method that can appropriately and easily acquire a position and a speed of another vehicle even if occlusion occurs. DESCRIPTION OF THE PREFERRED EMBODIMENT(S) In the following, a surrounding vehicle monitoring device and a surrounding vehicle monitoring method according to an embodiment of the present invention will be described with reference to the drawings. As shown inFIG.1, a vehicle system1includes a powertrain3, a brake device4, a steering device5, an external environment sensor6, a vehicle sensor7, a communication device8, a navigation device9, a driving operation device10, a Human Machine Interface (HMI)12, and a control device15. The surrounding vehicle monitoring device according to the embodiment of the present invention is configured as a surrounding vehicle monitoring unit16that is a portion of the control device15. The surrounding vehicle monitoring method according to the embodiment of the present invention is used by the control device15. The powertrain3is a device configured to apply a driving force to the vehicle, and includes a power source and a transmission, for example. The power source includes at least one of an internal combustion engine (such as a gasoline engine or a diesel engine) and an electric motor. The brake device4is a device configured to apply a brake force to the vehicle, and includes a brake caliper configured to press a brake pad against a brake rotor and an electric cylinder configured to supply an oil pressure to the brake caliper, for example. The brake device4may include a parking brake device configured to restrict rotation of wheels via wire cables. The steering device5is a device for changing steering angles of the wheels, and includes a rack-and-pinion mechanism configured to steer the wheels and an electric motor configured to drive the rack-and-pinion mechanism, for example. The powertrain3, the brake device4, and the steering device5are controlled by the control device15. The external environment sensor6is a sensor configured to capture electromagnetic waves and light from the surroundings of the vehicle so as to detect objects outside the vehicle or the like. The external environment sensor6includes radars17, lidars18(LIDARS), and external cameras19, for example. The external environment sensor6is configured to output a detection result to the control device15. Each radar17is configured to emit radio waves such as millimeter waves to the surroundings of the vehicle and capture reflected waves therefrom so as to detect a position (distance and direction) of each object. At least one radar17is attached to any portion of the vehicle. Preferably, the radars17at least include a front radar configured to emit radio waves toward the front of the vehicle, a rear radar configured to emit radio waves toward the rear of the vehicle, and a pair of left and right side radars configured to emit radio waves toward either side of the vehicle. Each lidar18is configured to emit light such as infrared rays to the surroundings of the vehicle and capture the reflected light therefrom so as to detect the position (distance and direction) of the object. At least one lidar18is provided at any position of the vehicle. Each external camera19is configured to image the surroundings of the vehicle including the object (for example, a surrounding vehicle or a pedestrian) present around the vehicle, a guardrail, a curb, a wall, a median, a road shape, and a road marking drawn on a road. Each external camera19may consist of a digital camera using a solid imaging element such as a CCD or a CMOS, for example. At least one external camera19is provided at any position of the vehicle. The external cameras19at least include a front camera configured to image the front of the vehicle, and may further include a rear camera configured to image the rear of the vehicle and a pair of side cameras configured to image either lateral side of the vehicle. Each external camera19may consist of a stereo camera, for example. The vehicle sensor7includes a vehicle speed sensor configured to detect a speed of the vehicle, an acceleration sensor configured to detect an acceleration of the vehicle, a yaw rate sensor configured to detect an angular velocity of the vehicle around a vertical axis, a direction sensor configured to detect the direction of the vehicle, and the like. The yaw rate sensor consists of a gyro sensor, for example. The communication device8is configured to mediate communication between inside devices (for example, the control device15and the navigation device9) and outside devices (for example, a surrounding vehicle or a server) arranged outside the vehicle. The control device15can wirelessly communicate with the surrounding vehicle via the communication device8. The navigation device9is a device configured to acquire a current position of the vehicle and provide route guidance to a destination and the like, and includes a GNSS receiving unit21, a map storage unit22, a navigation interface23, and a route determining unit24. The GNSS receiving unit21is configured to identify a position (latitude and longitude) of the vehicle based on a signal received from an artificial satellite (positioning satellite). The map storage unit22consists of a known storage device such as a flash memory or a hard disk, and is configured to store map information. The map information includes road information such as a road type (for example, an expressway, a toll road, a national road, or a prefectural road), the number of lanes on a road, a central position (3D coordinates including longitude, latitude and height) of each lane, shapes of road markings such as delimiting lines and lane boundaries, presence/absence of sidewalks, curbs, fences, or the like, locations of intersections, locations of merging points and branching points of the lanes, locations of emergency parking zones, a width of each lane, road signs, and the like. Further, the map information may include traffic regulation information, address information (an address and a zip code), facility information, telephone number information, and the like. The route determining unit24is configured to determine a route to the destination based on the position of the vehicle identified by the GNSS receiving unit21, the destination inputted to the navigation interface23, and the map information. Further, when determining the route, the route determining unit24may refer to the locations of the merging points and the branching points of the lanes included in the map information so as to determine a target lane, which is a lane where the vehicle should travel. The driving operation device10is configured to accept an input operation a driver performs to control the vehicle. For example, the driving operation device10includes a steering wheel, an accelerator pedal, and a brake pedal. Further, the driving operation device10may include a shift lever, a parking brake lever, and the like. A sensor for detecting an operation amount is attached to each component of the driving operation device10. The driving operation device10is configured to output a signal indicating the operation amount to the control device15. HMI12is configured to notify an occupant of various information by a display and a voice and accept an input operation by the occupant. The control device15consists of an electronic control unit (ECU) composed of a CPU, a ROM, a RAM, and the like. The CPU executes operation processing according to a program so that the control device15executes various vehicle control. The control device15may consist of one piece of hardware, or may consist of a unit including plural pieces of hardware. Further, the functions of the control device15may be at least partially executed by hardware such as an LSI, an ASIC, and an FPGA, or may be executed by a combination of software and hardware. The control device15is configured to combine various vehicle control so as to perform automatic driving control at each of plural levels. For example, in the automatic driving control at level 0, the control device15does not perform vehicle control, and the driver performs all driving operations. In the automatic driving control at level 1, the control device15performs Adaptive Cruise Control (ACC) and Lane Keeping Assistance (LKA). In the automatic driving control at levels 2 and 3, the driver monitors the surroundings of the vehicle, and the control device15performs all driving operations. The degree to which the driver monitors the surroundings of the vehicle differs between Levels 2 and 3. As shown inFIG.1, the control device15includes an automatic driving control unit35, a travel control unit36, and a storage unit37. The automatic driving control unit35includes an external environment recognizing unit40, an own vehicle position recognizing unit41, and an action plan unit42. The external environment recognizing unit40is configured to recognize obstacles around the vehicle, the shape of the road, presence/absence of sidewalks, and road markings based on the detection result of the external environment sensor6. For example, the obstacles may be a guardrail, a utility pole, a surrounding vehicle, and a person such as a pedestrian. The surrounding vehicle monitoring unit16is included in the external environment recognizing unit40. The surrounding vehicle monitoring unit16is configured to acquire states (for example, a position, a speed, and an acceleration) of the surrounding vehicle based on a signal from the external environment sensor6. The own vehicle position recognizing unit41is configured to recognize a traveling lane, which is a lane where the vehicle is traveling, and a relative position and an angle of the vehicle with respect to the traveling lane. For example, the own vehicle position recognizing unit41may recognize the traveling lane based on the map information stored in the map storage unit22and the position of the vehicle acquired by the GNSS receiving unit21. Further, the own vehicle position recognizing unit41is configured to extract from the map information the delimiting lines around the vehicle drawn on a road surface and compare the shapes of the delimiting lines around the vehicle with the shapes of the delimiting lines imaged by the external cameras19so as to recognize the relative position and the angle of the vehicle with respect to the traveling lane. The action plan unit42is configured to sequentially create an action plan for causing the vehicle to travel along the route. More specifically, the action plan unit42first determines events in which the vehicle travels in the target lane determined by the route determining unit24without coming in contact with the obstacles. Then, the action plan unit42generates a target trajectory where the vehicle should travel in the future based on the determined events. The target trajectory consists of trajectory points (points the vehicle should reach at respective times) that are aligned in order. The action plan unit42may generate the target trajectory based on a target speed and a target acceleration set for each event. At this time, information on the target speed and the target acceleration is expressed by intervals between the trajectory points. The travel control unit36is configured to control the powertrain3, the brake device4, and the steering device5such that the vehicle passes on time along the target trajectory generated by the action plan unit42. The storage unit37consists of ROM, RAM, and the like, and is configured to store information required for the processing executed by the automatic driving control unit35and the travel control unit36. In the following, the surrounding vehicle monitoring unit16will be described. The surrounding vehicle monitoring unit16is configured to monitor at least one other vehicle traveling around an own vehicle. The surrounding vehicle monitoring unit16includes an acquiring unit51and an estimating unit52. The acquiring unit51is configured to periodically acquire a position, a speed, and a width of the other vehicle with respect to the own vehicle based on the signal from the external environment sensor6configured to detect the other vehicle. The estimating unit52is configured to estimate a behavior of the other vehicle based on the position and the speed of the other vehicle acquired by the acquiring unit51. The acquiring unit51is configured to acquire information on the other vehicle based on signals from at least one of the radars17, the lidars18, and the external cameras19included in the external environment sensor6. In the following, an example in which the acquiring unit51acquires the information on the other vehicle from the lidars18will be described. In the present embodiment, as shown inFIGS.2A and2B, the lidars18include a left lidar18A provided at a front left end of the own vehicle60and a right lidar18B provided at a front right end of the own vehicle60. The left lidar18A and the right lidar18B each have a horizontal viewing angle of about 120 degrees and a vertical viewing angle of about 25 degrees. The left lidar18A has a field of view ranging from the front to the left of the own vehicle60, and the right lidar18B has a field of view ranging from the front to the right of the own vehicle60. The field of view of the left lidar18A and the field of view of the right lidar18B overlap with each other in front of the own vehicle60. The acquiring unit51is configured to periodically acquire the positions and the speeds of the other vehicles61and62(the other vehicles present around the own vehicle60) with respect to the own vehicle60based on the signals from the lidars18. The acquiring unit51is configured to acquire a rear left end position L and a rear right end position R of the other vehicle61based on the signals from the lidars18, and acquire a midpoint of a line segment connecting the rear left end position L and the rear right end position R as a position P of the other vehicle61with respect to the own vehicle60. Incidentally, the rear left end position L and the rear right end position R are relative positions with respect to the own vehicle60. The acquiring unit51is configured to acquire the speed of the other vehicle61with respect to the own vehicle60based on a difference between a previous position P(n−1) of the other vehicle61and a current position P(n) of the other vehicle61. Further, the acquiring unit51is configured to acquire the width W of the other vehicle61based on a difference between the rear left end position L and the rear right end position R. FIGS.2A and2Beach show a state where a preceding other vehicle61and a following other vehicle62, which follows the preceding other vehicle61, are present in an adjacent lane101adjacent to a reference lane100where the own vehicle60is traveling. Both the preceding other vehicle61and the following other vehicle62are traveling more forward than the own vehicle60. As shown inFIG.2A, in a case where the following other vehicle62is far from the preceding other vehicle61, the lidars18(left lidar18A and right lidar18B) can appropriately detect the rear left end position L, the rear right end position R, the position P, and the width W of the preceding other vehicle61with respect to the own vehicle60. However, as shown inFIG.2B, when the following other vehicle62approaches the preceding other vehicle61, laser beams emitted from the lidars18are blocked by the following other vehicle62, and cannot reach at least a portion of the preceding other vehicle61. Namely, the following other vehicle62occludes (covers) the preceding other vehicle61. InFIG.2B, the following other vehicle62occludes a right portion of the preceding other vehicle61, so that the laser beams emitted from the lidars18cannot reach the right portion of the preceding other vehicle61. Accordingly, the acquiring unit51acquires a reachable rightmost position (namely, a rightmost position among positions the laser beams from the lidars18can reach) of the preceding other vehicle61as the rear right end position R of the preceding other vehicle61. In this case, the rear right end position R of the preceding other vehicle61acquired by the acquiring unit51is arranged on the left of an actual rear right end position of the preceding other vehicle61. As a result, the position P of the preceding other vehicle61, which is acquired based on the rear left end position L and the rear right end position R of the preceding other vehicle61, is displaced to the left from the actual position of the preceding other vehicle61. Further, the width W of the other vehicle61, which is acquired based on the rear left end position L and the rear right end position R of the other vehicle61, becomes narrower than an actual width of the other vehicle61. Further, if a range of occlusion is extended as the following other vehicle62approaches the preceding other vehicle61, the rear right end position R of the other vehicle61acquired by the acquiring unit51moves leftward hour by hour. Accordingly, the position P of the other vehicle61acquired by the acquiring unit51moves leftward even if the other vehicle61does not move leftward. As a result, the acquiring unit51detects a leftward speed of the other vehicle61. In this way, when occlusion occurs, errors occur in the position, the speed, and the width of the other vehicle61acquired by the acquiring unit51. The acquiring unit51according to the present embodiment periodically executes an acquisition process shown inFIG.3, and acquires the position and the speed of the other vehicle61in order to suppress the errors that occur in the position and the like of the other vehicle61due to the above-mentioned occlusion. First, the acquiring unit51acquires current values of the rear left end position L, the rear right end position R, the position P, and the width W of the other vehicle61based on the signals from the lidars18(S1). The position P and the width W are acquired based on the rear left end position L and the rear right end position R. The position P is a position of the midpoint of the line segment connecting the rear left end position L and the rear right end position R. The width W is a distance between the rear left end position L and the rear right end position R. Next, the acquiring unit51acquires a changing amount ΔL of the rear left end position L based on a current value L(n) and a previous value L(n−1) (a value acquired in the last acquisition process) of the rear left end position L, acquires a changing amount ΔR of the rear right end position R based on a current value R(n) and a previous value R(n−1) (a value acquired in the last acquisition process) of the rear right end position R, acquires a changing amount ΔP of the position P based on a current value P(n) and a previous value P(n−1) (a value acquired in the last acquisition process) of the position P, and acquires a changing amount ΔW of the width W based on a current value W(n) and a previous value W(n−1) (a value acquired in the last acquisition process) of the width W (S2). Since the changing amount ΔL of the rear left end position L, the changing amount ΔR of the rear right end position R, the changing amount ΔP of the position P, and the changing amount ΔW of the width W are changing amounts in a short period, so that they can be called “changing speeds”. In another embodiment, the acquiring unit51may calculate each of these changing amounts based on the current value and the previous value acquired in the past acquisition process several times earlier than the last acquisition process. Next, the acquiring unit51determines whether a first condition that an absolute value of the changing amount ΔW of the width W is equal to or greater than a prescribed first threshold is satisfied (S3). The first condition is set for determining whether the other vehicle61is occluded and the changing amount in the occluded range is relatively large. In a case where the first condition is satisfied (a determination result of S3is Yes), the acquiring unit51determines whether a second condition that an absolute value of a lateral speed of the other vehicle61with respect to the own vehicle60is equal to or less than a prescribed second threshold is satisfied (S4). The lateral speed may be set based on the changing amount ΔP of the position P of the other vehicle61. In another embodiment, the lateral speed of the other vehicle61with respect to the own vehicle60may be acquired based on the smaller of the changing amount ΔL of the rear left end position L and the changing amount ΔR of the rear right end position R. The second condition is set for determining whether the other vehicle61has entered a curve. In a case where the second condition is satisfied (a determination result of S4is Yes), the acquiring unit51acquires an inclination angle θ of the other vehicle61with respect to the own vehicle60based on the rear left end position L and the rear right end position R of the other vehicle61, and determines whether a third condition that an absolute value of the inclination angle θ is equal to or less than a prescribed third threshold is satisfied (S5). The acquiring unit51may acquire the inclination angle θ of the other vehicle61with respect to the own vehicle60by calculating an angle in a horizontal plane between the front-and-rear direction and a line segment perpendicular to a line segment connecting the rear left end position L and the rear right end position R. The third condition is set for determining whether the other vehicle61inclines with respect to the own vehicle60. In a case where the third condition is satisfied (a determination result of S5is Yes), the acquiring unit51acquires a distance D between the other vehicle61and the own vehicle60, and determines whether a fourth condition that the distance D is equal to or less than a prescribed fourth threshold D4is satisfied (S6). The fourth condition is set for determining whether the other vehicle61is present within a prescribed distance from the own vehicle60. In a case where the fourth condition is satisfied (a determination result of S6is Yes), the acquiring unit51acquires a relative speed of the other vehicle61with respect to the own vehicle60, and determines whether a fifth condition that an absolute value of the relative speed is equal to or less than a prescribed fifth threshold is satisfied (S7). The fifth condition is set for determining whether the relative speed of the other vehicle61with respect to the own vehicle60is equal to or less than a prescribed value (namely, whether the relative speed thereof is relatively small). In a case where the fifth condition is satisfied (a determination result of S7is Yes), the acquiring unit51acquires a great change position and a small change position of the other vehicle61, and determines whether a sixth condition that a changing amount of the small change position of the other vehicle61is equal to or less than a prescribed sixth threshold is satisfied (S8). The great change position is one of the rear left end position L and the rear right end position R of the other vehicle61whose changing amount in a prescribed period is the greater of the two. The small change position is the other of the rear left end position L and the rear right end position R of the other vehicle61whose changing amount in the prescribed period is the smaller of the two. The acquiring unit51determines whether the smaller of the changing amount ΔL of the rear left end position L and the changing amount ΔR of the rear right end position R acquired in step S2is equal to or less than the sixth threshold. The sixth condition is set for determining whether the other vehicle61is moving laterally based on the changing amount of a non-occluded end of the other vehicle61. In a case where the sixth condition is satisfied (a determination result of S8is Yes), the acquiring unit51changes a current value of the great change position to a corrected position (S9). As described above, the great change position is one of the rear left end position L and the rear right end position R whose changing amount in the prescribed period is the greater of the two. The corrected position is a position changed by a preset correction value H from a previous position of the great change position. The correction value H is preset so as to be smaller than the changing amount ΔR of the rear right end position R from the previous value R(n−1) to the current value R(n) (namely, the changing amount of the great change position from the previous position to the current position). As shown inFIG.2B, in a case where the right portion of the other vehicle61which is not moving laterally is occluded, a corrected position calculated by adding the correction value H to the previous value R(n−1) of the rear right end position R, instead of the current value R(n) of the rear right end position R acquired by the lidars18, is set as the current value R(n) of the rear right end position R of the other vehicle61. This corrected current value R(n) of the rear right end position R is arranged between the previous value R(n−1) of the rear right end position R and the uncorrected current value R(n) of the rear right end position R. Accordingly, even if occlusion occurs, the changing amount ΔR of the rear right end position R(n) is regulated to the correction value H, and the movement of the rear right end position R(n) becomes slow. Upon correcting the current value of the rear left end position L or the rear right end position R, the acquiring unit51stores the corrected value as the current value. Then, the acquiring unit51uses the corrected value as the previous value when acquiring the next current value. After step S9, the acquiring unit51acquires the corrected position P of the other vehicle61based on one of the rear left end position L and the rear right end position R which has been corrected in step S8and the other of the rear left end position L and the rear right end position R which has not been corrected (S10). In step S11, the acquiring unit51acquires a lateral speed of the other vehicle61based on the current position P(n) and the previous position P(n−1) of the other vehicle61. In a case where step S11is performed after steps S8and S9, the current position P(n) is set to a corrected value. When an error occurs in the position of the other vehicle61due to occlusion, the degree of the error is lowered by the above-mentioned acquisition process. In the acquisition process, the determinations (S4to S8) based on the second to sixth conditions can be selected, and all or some of them may be omitted. The estimating unit52estimates a behavior (for example, a cut-in behavior, a lane change, a merging behavior, or the like) of each other vehicle61,62based on the positions and speeds of the other vehicle acquired by the acquiring unit51. In the following, a cut-in behavior detection process as an example of the process executed by the estimating unit52will be described with reference toFIG.4. The cut-in behavior detection process is executed based on the flowchart shown inFIG.4. First, the estimating unit52identifies a vehicle to be monitored, namely, a vehicle whose cut-in behavior is to be monitored (S21). The estimating unit52identifies the other vehicle that is present within a prescribed range from the own vehicle60based on the position of the other vehicle acquired by the acquiring unit51. Preferably, the prescribed range is set in the adjacent lane101adjacent to the reference lane100where the own vehicle60is traveling, and ranges from the own vehicle60to the other vehicle traveling in front of the own vehicle60in the reference lane100. Further, in a case where the other vehicle traveling in front of the own vehicle60in the reference lane100is present at a distance equal to or more than a prescribed threshold (for example, 100 m), the prescribed range is set in the adjacent lane101adjacent to the reference lane100where the own vehicle60is traveling, and ranges from the own vehicle60to the front thereof within the prescribed threshold. The estimating unit52determines whether the vehicle to be monitored is present (S22), and ends the cut-in behavior detection process in a case where the vehicle to be monitored is not present (a determination result of S22is No). In a case where the vehicle to be monitored is present (a determination result of S22is Yes), the estimating unit52determines whether the lateral speed of the other vehicle identified in step S21toward the reference lane100is equal to or greater than a prescribed lateral speed threshold (S23). The estimating unit52acquires the lateral speed of the other vehicle acquired by the acquiring unit51. The lateral speed may be a lateral movement amount in the prescribed period. In another embodiment, the estimating unit52may acquire the lateral movement amount of the other vehicle in the prescribed period based on the position of the other vehicle acquired by the acquiring unit51at each point in time. The lateral speed threshold is set to a value that becomes smaller as a distance between the other vehicle and the reference lane becomes shorter. The estimating unit52has a map of the lateral speed threshold which is set according to a distance between the position of the other vehicle and a delimiting line102that separates the adjacent lane101from the reference lane100. The map of the lateral speed threshold may define a relationship as shown inFIG.5, for example. In the map of the lateral speed threshold, the lateral speed threshold is set to a value that becomes smaller as the distance between the position of the other vehicle and the delimiting line102becomes shorter. Accordingly, the estimating unit52detects the cut-in behavior of the other vehicle at a lower lateral speed, as the other vehicle gets closer to the delimiting line102. In a case where the lateral speed of the other vehicle toward the reference lane100is equal to or more than the lateral speed threshold (a determination result of S23is Yes), the estimating unit52determines that the identified other vehicle is cutting in the reference lane100. Namely, the estimating unit52detects the cut-in behavior of the identified other vehicle (S24). In a case where either the determination result of step S22or S23is No, the estimating unit52does not detect the cut-in behavior of the other vehicle. In a case where the estimating unit52detects the cut-in behavior, the action plan unit42sets the other vehicle that is cutting in the reference lane100as the preceding vehicle to be followed. The travel control unit36may control the brake device4and the powertrain3so as to maintain the distance between the own vehicle and the preceding vehicle at a prescribed value. In the surrounding vehicle monitoring unit16according to the present embodiment, the changing speed of the end position becomes slow in a case where the width of the other vehicle changes due to occlusion. Accordingly, the changing speed of the position of the other vehicle becomes slow, and it is possible to avoid determining that the other vehicle is cutting in the reference lane. In this way, the surrounding vehicle monitoring unit16(the surrounding vehicle monitoring device) can appropriately and easily acquire the position of the other vehicle even if occlusion occurs. Concrete embodiments of the present invention have been described in the foregoing, but the present invention should not be limited by the foregoing embodiments and various modifications and alterations are possible within the scope of the present invention.
■ 1 La présenté invention se rapporte à des polymères greffés s , ;de 1 acrylonitrile qui présentent line forte .affinité pour les colorants acides et à un procédé pour leur préparation par greffage de l1acrylonitrile, éventuellement accompagné d'autres composés 5 copolymérisables, sur des polyéthers linéaires contenant des atomes d'azote quaternisés. En règle générale, les fils et filaments préparés à partir dès homopolymères de 1'acrylonitrile et des copolymères de l'acrylonitrile et de comonomères neutres possèdent vis-à-vis des 10 colorants une affinité qui ne répond pas aux exigences pratiques. On sait que l'on peut améliorer l'affinité des homopolymères et copolymères de l'acrylonitrile vis-à-vis des colorants acides par copolymérisation de l'acrylonitrile avec des aminés insaturées comme la vinylpyridine, l'isopropénylpyridine, les éthers 15 monovinylalkyliques d'amino-alcools, 1'acrylamide ou le méthacryla-mide, ou avec des esters glycidiques de l'aoide acrylique ou métha-crylique dont la fonction époxyde est ultérieurement scindée par des aminés. Bien que les copolymères obtenus de cette manière soient 20 réceptifs vis-à-vis des colorants acides, ils possèdent fréquemment de faibles valeurs K et les pellicules et filaments qu'ils servent à préparer possèdent une résistance mécanique insuffisante et ne conviennent que dans une mesure limitée aux applications industrielles, 'En outre, ces copolymères prennent des colorations parasitaires 25 très nettes sous les effets de la chaleur, aussi bien en solution qu'à l'état solide. On connaît également des polymères greffés de l'acrylonitrile sur des prépolymères tels que le "Nylon 6" par exemple. La présente■invention concerne, à titre de produits indus-30 triels nouveaux, des polymères greffés dê 1'acrylonitrile contenant au moins 50# en poids d'acrylonitrile polymérisé par greffage et éventuellement jusqu'à 10% en poids d'un autre monomère copoly-mérisé par greffage §t chois'i dans le groupé formé par-les composés acryliques et vinyliques, sur un support 3e greffage consistant en 35 5 à 40# en poids d'un polyéther linéaire contenant des atomes d'azote quaternisés et répondant à la formule générale : ' h- r1 r2 r1 1 »I -o-c-ch2-ît-;ch2-c - h ■ r5 ( \ h _j A{~} oh n 69 00030 2 2000022 «ans laquelle R1 représente un atome d'hydrogène ou un groupe alkyle de c1 à C- ; R2 représente un groupe alkyle de G1 a Cg ou un groupa cycloalkyle ; représente un groupe alkyle de G, à alkényle en ou C^, aralkyle ou carbalcoxyalkyle, et A^""' représente un 5 anicn halogénure ou un anion répondant à la formule î CH^-^ \~S05(_) ou CHj-SO^"^ 3 ( - ) R et A peuvent également représenter à eux deux le groupe ~CH2-CH2-CH2-3Q^~) ou le groupe -CHg-CHg-CH^CHg-SO^" \ et a est un nombre dont la valeur va d'environ 10 à 80 ; ce support de greffage présentant un poids moléculaire d'environ 1.000 à 10 15.000 et 1® polymère greffé ayant une valeir-." E (gelon ïlkentscHer, Celluioga 13 (1932), page 58) de 70 à 100 . Ces polymères sont stables à la chaleur et présentent une haute réceptivité vis-à-vis des colorants acides. L'invention comprend également un procédé pour préparer 15 ces polymères greffés de 1'acrylonitrile, procédé selon lequel on polymérise par greffage 1'acrylonitrile, accompagné éventuellement d'une proportion allant jusqu'à 10# d'un ou plusieurs autres monomères copolymérisables, sur un polyéther tel que spécifié ci-dessus, en milieu aqueux, en présence d'un catalyseur formant des radicaux ' 20 libres, à une température comprise entre 0 et 90°C. Les polyéthers basiques utilisés comme supports de,greffage et présentant des poids moléculaires d'environ 1.000 à 15.000. sont préparés eux-mêmes par des procédés connus, par exemple par condensation de diols contenant des atomes d'azote tertiaire, seuls 25 ou accompagnés, dans une mesure limitée, de glycols normaux, en présence de catalyseurs acides (par exemple H^PO^ ; H^SO^, ou des acides sulfoniques) à température élevée (par exemple 150 à 280°C).' Cependant, il est recommandé d'éviter les glycols normaux d'ans la préparation des polyéthers parce que ces glycols diminuent la pro-30 portion des atomes d'azote tertiaire par motif moléculaire fondamental, de sorte qu'il faut une quantité plus forte du support de greffage pour parvenir à une" affinité satisfaisante vis-à-vis dés colorants. Pour les mêmes.raisons, il-est recommandé d'utiliser des polyéthers basiques contenant au moins un atome d'azote tertiaire 35 par motif du polyéther. La quaternisation est ensuite effectuée à bad original 69 00030 3 2000022 [l'aide des agents classiques à cet effet. Si on le désire, les polyéthers portant des groupes hydroxyle terminaux peuvent être soumis au préalable à un allongement des chaînes à l'aide d'agents tels que des diisocyanates, des acides dicarboxyliques ou leurs dérivés 5 fonctionnels. Les diols contenant des atomes d'azote tertiaire sont des N-p-hydroxyalkylaminés du type obtenu par exemple par addition de l'oxyde d'éthylène, de propylène, de butylène, de styrène, éventuellement en mélanges, sur des aminés primaires de la série 10 aliphatique (comme la méthylamine, l'éthylamine, la butylamine, l'isobutylamine, la propylamine ou l'allylaminé), ou de la série cycloaliphatique (par exemple la cyclohexylaminé). Les polyéthers contenant des atomes d'azote tertiaire obtenus dans ces conditions sont quaternisés par les techniques 15 usuelles, dans l'alcool ou l'alcool aqueux, à l'aide des agents classiques à cet effet, par- exemple le sulfate de diméthyle, le p-toluène sulfonate de méthyle, la propane sultone, le chlorure de benzyle, le chloracétate dîéthyle ou le chlorure d'allyle. Après élimination de l'alcool sous vide, les composés salins sont dissous 20 dans l'eau et ce sont ces solutions qu'on utilise pour la réaction-de polymérisation greffée. On obtient par exemple un polyéther possédant le motif de structure répété de formule : o-ch2-ch2^ n-ch2-ch2 CH-j ch,so (-) et pouvant servir de support de greffage, par quaternisation du 25 polyéther de la N, N-di-{3-hydroxyéthylcyc 1 ohexylaminé à l'aide du sulfate de diméthyle.* On obtient un polyéther possédant le motif de structure répété de formule : * CH-j CH_ ch. I { + V 1 O-c-chg^ï'n - ch2-c 3 ■- CH. h 69 00030 4 2000022 ? par quaternisation du polyéther de la N,N-di-f3-hydroxypropylméthyl-amine à l'aide du p-toluène sulfonate de méthyle. Il s'est avéré avantageux d'utiliser dee sels de polyéthers contenant au moins un atome d'azote quaternisé parfonc-5 tion éther j en effet cette manière d1 opérer assure une haute affinité vis-à-vis des colorants. L' acrylonitrile est de préférence greffé sur les ■ poly¬éthers quaternisés en présence d'autres monomèrers" copolymérisables comme des esters acryliques ou méthacryliques, de l'acétate de 10 vinyle, du chlorure de vinyle, du chlorure de vinylidène ou des àmides acryliques. Eh particulier, cette manière d'opérer" permet de modifier la solubilité des polymères et pas seulement leur aptitude à la teinture. La contribution du support de greffage au poids total des ré'actifs à polymériser doit représenter de 5 à 15 en poids et de préférence de 10 à 20# en poids, exprimés"en les polyéthers non quaternisés. La réaction de polymérisation par greffage est effectuée en phase'aqueuse (on peut également opérer dans l'acide Citrique à 65# en poids) à l'aide de systèmes catalyseurs solubles dans 20 l'eau et formant des radicaux libres comme les peroxydes, les• composés azolques ou les systèmes îledox à base de composés pero-. xydés et de composés sulfurés aux faibles stades d'oxydation, par exemple les systèmes constitués de persulfates de potassium,- « de sodium ou d'ammonium d'une part, d'anhydride sulfureux, d'hydro-25 sulfites de métaux alcalins, de pyrosulfites de métaux alcalins, de thiosulfates de métaux alcalins et de composés ^-dicétoniques d'autre part. Parmi ces derniers, on citera l'acétylacétone, l'aoé-toacétanilide, l'acide barbiturique et le dibenzoylméthane. Le catalyseur est utilisé en quantités de 0,5 à 5# du poids tptal 30 des. réactifs de polymérisation. Le rapport entre l'agent oxydant et l'agent réducteur est de.-préférence de 1:0,5 à 1:10. L'e*au est de préférence utilisée en quantités de 5 à 15 fois et l'acide nitrique en quantité de 5 à 10 fois. La réaction de- polymérisation en phase aqueuse est e.ffec-35 tuée à une température de 26 à 90°C, de préférence de 40 à 70°G j la polymérisation dans l'acide nitrique est effectuée à une 69 00030 2000022 température de -10 à +30°C et de préférence de 0 à +5°C. La réaction de polymérisation greffée en phase aqueuse est effectuée de la manière suivante ; on règle le pH à une valeur de 1 à 7, on .chauffe la solution à température voulue et on ajoute 5 le système inducteur en une seule fois dans le mélange de monomères introduit au préalable ; on peut également introduire le système inducteur en continu,, avec une partie des monomères, dans le restant des réactifs. Les polymères greffés qui s'accumulent sont séparés par filtration sous vide, lavage et séchage. On les obtient 10 avec dé hauts rendements et ils possèdent des valeurs K de 70 à 100, telles qu'elles sont exigées pour les applications industrielles . Le mélange des composants polymérisables est dissous dans l'acide nitrique, de préférence avec un agent organique réduc-15 teur, et là polymérisation est induite par addition d'un agent oxydant, à une température de 0 à +5°C. Les polymères greffés restent en solution, de sorte que si on le désire, on peut filer directement les solutions-ou précipiter le polymère à l'eau et terminer comme décrit ci-dessus après 20 élimination de l'acide par lavage. Les pellicules préparées à partir d'une solution à 15# en poids environ dans le diméthylformamide présentent une haute affinité pour le colorant Bleu Direct Azilan A (Coitour Index, vol. I page 1264). Le polymère en solution dans le diméthylformamide ne 25 prend que des colorations parasitaires nulles ou faibles sous l'effet de la chaleur et peut être soumis .à filage. L'affinité du polymère vis-à-vis des colorants est mesurée par les méthodes ci-après. On prépare une pellicule mince (250 à 500 microns) recou-30 vrant une plaque de verre à l'aide d'une solution à 15-20# en poids du polymère dans le diméthylformamide. On laisse sécher la pellicule pendant 5 h à 50-60°C, -on la détache de la glace et on la fait bouillir pendant 1 h dans l'eau afin d'éliminer le diméthylformamide éventuellement entraîné. On fait ensuite bouillir la 35 pellicule pendant 1 h 30 dans 100 parties en volume de la solution de colorant (1 partie enr poids' de Bleu Direct Azilan A *et 8 parties en volume d'acide sulfurique à 10# en poids, dissoutes dans 1.000 parties en voluae d'eau); pour terminer, on fait encore bouillir pendant 1 h dans l'eau distillée. -- 69 00030 6 10 La pellicule teinte et séchée est dissoute dans 1.000 -parties en volume de diméthylformamide, et on mesure la valeur d'extinction de cette solution à 20°C, à la longueur d'onde indiqué Les résultats de la mesure sont exprimés par l'êxtinc- ' tion pour 1 g de. pellicule. Les exemples suivants illustrent l'invention sans toutefois la limiter ; dans ces exemples, les indications de parties-et de pour cent s'entendent en poids sauf indication contraire. ~ -EXEMPLE 1 . ; ..._ On reprend 14 parties du polyéther de formule : H-rrr- 0—(CH2)2-N-(CH2)2- v9 oh 21 poids moléculaire moyen 3.000, dans 50 parties en volume de méthanol et on ajoute 21 parties de p-toluène sulfonate de méthyle. On fait bouillir le mélange au reflux pendant 30 minutes puis on concentre jusqu'à consistance sirupeuse ; on dissout le sirop dans 9J0 parties 15 en volume d'eau réglée à un pH de 4. On ajoute 52,5 parties d'acrylonitrile et 3,5 parties d'acrylate de méthyle et on fait démarrer la polymérisation sous agitation à 50°C en présence d'azote à l'aide de 0,7 partie de persulfate de potassium et 0,7 partie de bisulfite de sodium. Après 16 h de réaction, on filtre le polymère 20 sous vide, on le lave avec soin et on le sèche à l'étuve à vide à 50-60°C. Rendement : 65 parties (73,3# de la théorie)'. }*" Le polymère présente une valeur K de 78. EXEMPLE 8 On met en suspension 14 parties du polyéther de formule : N h- o-(ch2)2-n-(ch2)2 oh bad original 27 25 poids moléculaire 4.600 environ, dans 50 parties en volume de méthanol, et on chauffe la suspension au reflux pendant 30 minutes avec 12 parties en volume de sulfate de diméthyle. On concentre le mélange de réaction jusqu'à consistance sirupeuse et on dissou^ le sirop dans 930 parties en volume d'eau j on règle le pH à 4.' 30 On ajoute à cette solution 3,5 parties d'acrylate de méthyle 69 00030 7 2000022 et 52,5 parties d'acrylonitrile ; on déclenche la polymérisation à 50°C en présence d'azote à l'aide de 0,7 p.artie de persulfate de potassium et 0,7 partie de bisulfite de sodium. Au bout de 18 h, -on traite le produit de réaction comme décrit dans l'exemple 1. Rendement : 57 parties (71# de la théorie). Le polymère greffé présente une valeur K de 8l. EXEMPLE 5 On fait bouillir au reflux pendant 30 minutes 14 parties du polyéther de formule : - H- . fHj ÇH3 0-C-eHo-N-CHo-C I 21 2 I H CH, H 3 OH 10 10 poids moléculaire environ 1.300, en solution dans 100 parties en volume dé méthanol, avec 12 parties en volume de. sulfate de diméthyle; on élimine ensuite le solvant. On dissout le résidu dans 930-parties en volume d'eau. On règle le pH entre 4 et 5, on ajoute 52,5 parties d'acrylonitrile et 3,5 parties .d'acrylate. de méthyle et on déclenche 15 la polymérisation à 50°C à l'aide de 0,7 partie de persulfate de potassium et 0,7 partie de bisulfite de sodium. La durée de réaction est de 5 h 30. On traite le produit de réaction comme décrit dans l'exemple 1 ; on obtient 57,5 parties (68,5# de la théorie) d'un polymère greffé de valeur K : 87. 20 - EXEMELE 4 On quaternise 14 parties du polyéther de l'exemple 3 par ébullition au reflux pendant 16 h dans 20 parties en volume d'étha-nol et 20 parties en poids de monochloracétate d'éthyle. Après éva-poration du solvant sous vide, on dissout le résidu dans 930 parties 25 en volume d'eau ; on ajoute 52,5 parties d'acrylonitrile .et 3,5 parties d'acrylate de méthyle et on déclenche la polymérisation à pH 2 et à 50°C à l'aide de 0,7.partie de persulfate de potassium et . 0,7 partie de bisulfite de sodium. On poursuit la polymérisation pendant 5 h au bout desquelles on filtre le polymère greffé sous 30 vide, on le lave et on le sèche. Rendement : 43 parties (51# de la théorie) Le polymère greffé présente une valeur K de 77. Aptitude à la teinture (des pellicules) par le Bleu Direct Azilan A ( 1 ongueur d' onde ; 590 mi 1 Hulcrona). 69 00030 8 2000022 Comparaison extinction poids de l7" Ion de pellicule (g"A) polyacrylonitrile contenant 2,?.% de 2-vinylpyridine polyacrylonitrile contenant 4,65# de 2-vinylpyridine polymère greffé de 11 exemple 2 polymère greffé de l'exemple 3 exemple 5 23,1 - 2^,0 22,3 - 22,9 16,7 - 17,1 13,2 On quaternise 14 parties du polyéther de formule h- 0-(ch2)2-n-(ch2)2 -gçj oh poids moléculaire moyen environ 11.000, par ébullitiori de-^CT inn dans 50 parties en volume de méthanol en présence de.12 parties en volume de sulfate de diméthyle et 2 parties en volume d'eau ; on en volume d'eau. On règle le pH de la solution à 6 par addition de carbonate de sodium ; on introduit 3,5 parties d'.acrylatë -de méthyle et 52,5 parties d'acrylonitrile et on déclenche la polymérisation sous agitation à 50°C en présence d'azote par 0,7 partie de persulfatl de potassium et 0,7 partie de bisulfite de sodium. On poursuit la polymérisation pendant 9 h à 50°C puis pendant encore 12 h à température ambiante. dissout le résidu, après évaporation du solvant, dans 930.parties On filtre le polymère sous vide, on le lave et on le sèche. Rendement : 60 parties (74,7# de la théorie); valeur K: 8l. Aptitude à la teinture (pellicule par le Bleu Direct Azilan A 578 millimicrons). poids de l'échantillon de pellicule EXEMPLE 6 On quaternise 7 parties du polyéther de formule : poids moléculaire moyen 4.900, en 40 minutes par 6 parties en volume de sulfate de diméthyle dans 20 parties en volume de méthanol bouillant. On évapore l'alcool sous vide, .on dissout le résidu dans 930 parties en volume d'eau et on règle le pH de la solution résiduelle 5 à 6 à l'aide de carbonate de sodium à 55°C. Après addition de 59,5 parties d'acrylonitrile et 3,5 parties d'acrylate de méthyle, on déclenche la polymérisation à l'aide de 0,7. partie de persulfate de potassium, 0,7 partie de bisulfite de sodium et 0,01 partie de FeSO^. On poursuit la polymérisation pendant 15 h à 55°C. On obtient 10 64 parties de polymère greffé sec (8l,5# de la théorie) ; " valeur K : 80. Aptitude à la teinture (pellicule, Bleu Direct Azilan A : 578 millimicrons.). 23 5 - 24 5 extinction ; . / -lv. ' poids de.1 échantillon de-pellicule ^ EXEMPLE 7 15 ' On fait bouillir au reflux pendant 1 h 14 parties „du - polyéther de l'exemple 2 avec 12 parties en volume de sulféte'de diméthyle dans 50 parties en volume de méthanol. On concentre le produit sous.vide jusqu'à consistance sirupeuse ; on dissout le sirop dans 300 parties en volume d'acide nitrique du commerce à 65# 20 et on refroidit à une température de 0 à 5°C. On ajoute 52 parties d'acrylonitrile, 3,5 parties d'acrylate de méthyle, 0,05*partie de Pe(N0^)^,9H2Q, dissoutes dans 2 parties en volume d'eau et également 0,3 partie en volume d^cétylacétone; on déclenche la polymérisation à lfaide de 1,5 parties de persulfate d*ammonium dans 5 parties en 25 volume dfeau. La durée de réaction est de 17 h 30 à 0-5°C. On obtient une solution laiteuse très visqueuse quTon coule sous forme dTun mince filet dans 10 à 15 fois son poids d'eau; le polymère précipite sous fôrme de filaments. On change lTeau à plusieurs reprisés jusqu*à nëutralité et on soumet le polymère à une division 30 physique; on lave avec soin et on sèche. Rendement : 58 parties ( 72# de la théorie ). Valeur K : 82 Aptitude à3a teinture ( pellicule, Bleu Direct Azilan A : 578 millimicrons). ».6 -21»1 extinction (g-l, - ^ poids de 1*échantillon de la pellicule ORIGNAL 69 00030 10 REVENDICATIONS 2000022 1. Un polymère greffé d*acrylonitrile comprenant au moins 50% en poids d*acrylonitrile polymérisé par greffage et jusqu*à lOff en poids dTun ou plusieurs comonomères copolymérisés par greffage 5 choisis dans le groupe formé par les composés acryliques et vinyli® que s sur un support de greffage consistant en 5 à 1+0% en poids d?us polyéther linéaire portant des atomes d*azote quaternisés et répondant à la formule générale : r H- R R R 0-C-CH, - feGH, h R- H (-) OH n 10 dans laquelle R représente des atomes dhydrogène ou des groupes alkyles en C^ à C^, R représente un groupe alkyle en C^ à C^ ou un groupe cycloalkyle, R^ représente un groupe alkyle en C^ à C^, al-kényle en C^ ou C^, aralkyle ou carbalcoxyalkyle et A(-) représente un anion halogénure ou un anion de formule : CH. '"O" SO- (-5 ou CH^ - so^ (-) 15 ou encore R^ et A^ forment ensemble les groupes -CH2-CH2-CH2-S0^~^ ou CHg-CHp-CHg-CHg-SO^^'"^, n est un nombre égal à environ 10 à 80, ce support de greffage présentant un poids moléculaire dTenviron 1.000 à 15.000, et le polymère greffé de 1'acrylonitrile présentant une valeur K ( selon Fikentscher, Cellulose Chemie 13, (1932), page 58) de 70 à 100. bad original, 69 00030 2000022 2. Un procédé de préparation de polymères greffés dfacrylonitrile contenant au moins 50% d*acrylonitrile copolymérisé, consistant à polymériser par greffage 1Tacrylonitrile associé.à un ou plusieurs monomères copolymérisables en proportions allant jusqu'à 10%, sur un polyéther linéaire contenant des atomes d'azote, représenté par la formule générale : h- R O 1 °-C -CH, H R- a(-) R I -G ■ I H •OH n dans laquelle R représente des atomes d'hydrogène ou des groupes 2 alkyles en C-^ à C^, R représente un groupe alkyle en C-j_ à ou un groupe cycloalkyle, R^ représente un groupe alkyle en à C^, alkér 10 nyle en ou aralkyle ou carbalcoxyalkyle et représente un anion halogénure ou un anion de formule : ou ch-, - so, (-) ou encore R^ et A^ forment ensemble les groupes -CHg-CHg-CHg-SO^"^ 1 n est un nombre égal à environ 10 à 80,' ou ch2-ch2-ch2-ch2-so4 caractérisé en ce que l'on effectue ladite polymérisation greffée en 15 milieu aqueux, en présence d'un catalyseur générateur de radicaux libres à une température de 0 à 90°C. 3. Le procédé selon la revendication 2, caractérisé en ce que l'on effectue la polymérisation greffée dans la solution aqueuse obtenue lors de la quaternisation du support de greffage sans iso- 20 lement préalable de ce support de greffage. 4. Le procédé selon la revendication 2, caractérisé en ce que l'autre monomère 'copolymérisable est l'acrylate de méthyle. 5. Le procédé selon la revendication 2, caractérisé en ce que le rapport du substrat de greffe quaternisé aux autres constitu- 25 ants pôlymérisables est de 30:70 à 5:95» 6. Le procédé selon la revendication 2, caractérisé en ce que l'on effectue la polymérisation greffée dans l'acide nitrique à environ 65% en présence d'un système Redox.
Method for the redistribution of polyorganosiloxanes Linear hydroxy endblocked linear polyorganosiloxanes, linear chloro-endblocked polyorganosiloxanes, and mixtures thereof, are redistributed in a process by contacting the linear polyorganosiloxanes, with a diorganodichlorosilane having the formula R′2SiCl2, wherein R′ is an alkyl group containing 1-8 carbon atoms; in the presence of an aqueous hydrochloric acid catalyst; to form a redistributed mixture containing cyclic polyorganosiloxanes and chloro-endblocked polyorganosiloxanes. The process generates less amounts of undesired branched siloxane species than processes which utilize an alumina catalyst. FIELD OF THE INVENTION This invention is directed to a process for the redistribution of high molecular weight linear hydroxy endblocked polyorganosiloxanes, high molecular weight linear chloro-endblocked polyorganosiloxanes, or mixtures thereof, with diorganodichlorosilanes to produce cyclic polyorganosiloxanes and chloro-endblocked polyorganosiloxanes of low molecular weight using aqueous hydrochloric acid as a catalyst. The reaction is promoted with good mixing to contact the two phases. The process has the advantage of generating less undesired branched siloxane species than a process which utilizes an alumina catalyst. BACKGROUND OF THE INVENTION Current industrial processes for the manufacture of silicone fluids, resins and rubbers typically require as starting materials either linear hydroxy endblocked polyorganosiloxanes or cyclic polyorganosiloxanes. These polysiloxanes can be produced by the hydrolysis of diorganodihalosilanes. This process results in a mixture of cyclic polyorganosiloxanes and linear hydroxy endblocked polyorganosiloxanes. Separation of this mixture to isolate a desired linear fraction or cyclic fraction results in an excess of linear materials or cyclic materials, as well as materials of undesired molecular weight. Therefore, a process which allows for converting the linear hydroxy endblocked polyorganosiloxanes and/or the linear chloro-endblocked polyorganosiloxanes to cyclic polyorganosiloxanes and that allows for adjusting the molecular weight of the polyorganosiloxane chains is desirable to allow recovery of these excess siloxanes. Known methods for enhancing the production of cyclic polyorganosiloxanes include cracking of the linear hydroxy endblocked polyorganosiloxanes, which is capital intensive; vacuum hydrolysis, which has poor enhancement capabilities; and aqueous hydrolysis, which tends to sacrifice chloride recovery. Other methods for enhancing the production of cyclic polyorganosiloxanes require the addition of solvents and/or surfactants which makes recovery of the product more difficult and can compromise product purity. Other catalysts, such as alumina, generate undesired branched siloxane species such as CH3SiO3/2through cleavage of organic groups from silicon. The present process offers advantages over previously described processes as noted above. In addition, the present process can be used not only to enhance the production of cyclic polyorganosiloxanes, but also to control the cyclic polyorganosiloxane content from about zero to greater than 90 percent by weight of the product. The aqueous HCl catalyst used herein improves the rate of redistribution while minimizing organic cleavage. The linear hydroxy endblocked polyorganosiloxanes and/or the linear chloro-endblocked polyorganosiloxanes can easily be redistributed to more desirable cyclic polyorganosiloxanes, and chloride-end terminated polyorganosiloxanes typically having 2-8 siloxane units. In addition, no solvents or surfactants are required, and the aqueous HCl catalyst is readily available. BRIEF SUMMARY OF THE INVENTION The invention relates to a process for the redistribution of linear hydroxy endblocked polyorganosiloxanes and/or linear chloro-endblocked polyorganosiloxanes. The process is carried out by contacting a linear hydroxy endblocked polyorganosiloxane having Formula I: with a diorganodichlorosilane having the formula R′2SiCl2; in the presence of a catalyst which facilitates the redistribution of polyorganosiloxanes. The catalyst is aqueous hydrochloric acid and it is typically used in an amount of 0.1-70 percent by weight based on the weight of the linear hydroxy endblocked polyorganosiloxane and/or chloro-endblocked polyorganosiloxane and diorganodichlorosilane. The aqueous catalyst may contain saturated concentrations of HCl at the temperature and pressure conditions at which the redistribution is conducted. A redistributed mixture is formed containing cyclic polyorganosiloxanes and linear chloro-endblocked polyorganosiloxanes having Formula II. In Formulas I and II, x and y have a value of 1-5,000; and R′, R1, and R2 represent alkyl groups containing 1-8 carbon atoms. The alkyl group can be, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, or sec- butyl. Most typically, the alkyl groups R′, R1 and R2 will comprise the methyl group. The preferred diorganodichlorosilane is dimethyldichlorosilane. The cyclic polyorganosiloxane in the redistributed mixture are typically cyclic polymers containing 3-8 silicon atoms. Chloro-endblocked polyorganosiloxanes in the redistributed mixture are predominately polymers having a degree of polymerization (DP) of 2-8. These and other features of the invention will become apparent from a consideration of the detailed description. DETAILED DESCRIPTION OF THE INVENTION According to the invention, linear hydroxy endblocked polyorganosiloxanes, linear chloro-endblocked polyorganosiloxanes, or mixtures thereof, are redistributed with a diorganodichlorosilane using aqueous hydrochloric acid as catalyst. The process results in the formation of cyclic polyorganosiloxanes and chloro-endblocked polyorganosiloxanes of low molecular weight, i.e., short chain length. The linear hydroxy endblocked polyorganosiloxanes and the linear chloro-endblocked polyorganosiloxanes that are redistributed according to the method of the invention are polymers having Formulas I and II. The catalyst used herein comprises aqueous hydrochloric acid, which is typically used in the redistribution reaction in an amount of from 0.1-70 percent by weight, based on the weight of the linear hydroxy endblocked polyorganosiloxanes, the linear chloro-endblocked polyorganosiloxanes, or mixtures thereof, and the diorganodichlorosilanes used in the reaction. The aqueous catalyst may contain saturated concentrations of HCl at the temperature and pressure conditions at which the redistribution is conducted. The cyclic polyorganosiloxanes formed as a result of the redistribution generally consist of mixtures of cyclic polyorganosiloxanes containing 3-8 silicon atoms including, for example, hexaalkylcyclotrisiloxanes such as hexamethylcyclotrisiloxane, octaalkylcyclotetrasiloxanes such as octamethylcyclotetrasiloxane, decaalkylcyclopentasiloxanes such as decamethylcyclopentasiloxane, dodecaalkylcyclohexasiloxanes such as dodecamethylcyclohexasiloxane, tetradecaalkylcycloheptasiloxanes such as tetradecamethylcycloheptasiloxane, and hexadecaalkylcyclooctasiloxanes such as hexadecamethylcyclooctasiloxane. The chloro-endblocked polyorganosiloxanes that are produced according to the redistribution method of the invention are polymers having Formula II. In one embodiment, a majority of these redistributed chloro-endblocked polyorganosiloxanes have a DP of 1-10, alternatively 2-8. The linear hydroxy endblocked polyorganosiloxanes, linear chloro-endblocked polyorganosiloxanes, or mixtures thereof, and diorganodichlorosilanes are contacted with the aqueous HCl catalyst which facilitates their redistribution to a mixture of cyclic polyorganosiloxanes and chloro-endblocked polyorganosiloxanes of low molecular weight. Contact of the catalyst with the linear polyorganosiloxanes and the diorganodichlorosilanes can be affected by standard means for contacting liquids, for example, by a batch process or by a continuous-flow process. The process can be conducted in any standard reactor suitable for mixing corrosive materials. The required contact time for the linear hydroxy endblocked polyorganosiloxanes, the linear chloro-endblocked polyorganosiloxanes, the mixtures thereof and the diorganodichlorosilanes with the catalyst to effect redistribution will depend upon such factors as temperature, type of linear polyorganosiloxanes and diorganodichlorosilanes, and concentration of the catalyst. In general, contact times up to 3 hours have been found useful. The preferred contact time is generally less than 30 minutes, most preferably less than 5 minutes. The process can be carried out at a temperature between 0-100° C., but it is preferably conducted at ambient or room temperature, i.e., 20-25° C. (68-77° F.). The amount of the linear hydroxy endblocked polyorganosiloxanes and/or the linear chloro-endblocked polyorganosiloxanes and the amount of the diorganodichlorosilanes that can be used in the redistribution reaction is the volume ratio necessary to generate the desired molecular weight distribution of linear chloro-endblocked polyorganosiloxanes. The determination of such volume ratios is within the scope of knowledge of those skilled in the art. EXAMPLES The following examples are set forth in order to illustrate the invention in more detail. The method of analysis used in the examples was Gel Permeation Chromatography (GPC) and Gas Chromatography (GC). Since GC is not able to measure higher molecular weight peaks, siloxane species of higher molecular weight that were present in the samples analyzed, are not included in the analysis results. For that reason, the percents by weight Before and After do not total 100 percent. The Before analysis results show values obtained on the mixture before it was added to the Teflon vessel. The After analysis results show values obtained after adding the mixture to the Teflon vessel, pressurizing the vessel with HCl, agitating the vessel by hand-shaking, allowing the contents to sit, relieving the pressure, opening the vessel, and sampling the siloxane mixture. A mixture was formed by mixing together 98 grain of a linear hydroxy endblocked polydimethylsiloxane and 140 gram of dimethyldichlorosilane Me2SiCl2. To a Teflon vessel was added 12.72 gram of 37 percent by weight aqueous hydrochloric acid, and 43.13 gram of the mixture of linear hydroxy endblocked polydimethylsiloxane and dimethyldichlorosilane. The vessel was sealed and pressurized to 100 psig with gaseous hydrogen chloride. The vessel was agitated by hand shaking for 5 minutes to achieve saturation concentrations of aqueous hydrochloric acid at these new conditions and facilitate contact between the two phases. The pressure was released and a sample of a chlorosilane/siloxane phase was removed and analyzed. GPC analysis showed that the siloxane chains were shortened. Analysis of the chlorosilane/siloxane mixture Before and After by GC is shown in Table 1. A mixture was formed by mixing together 98 gram of a linear hydroxy endblocked polydimethylsiloxane and 140 gram of dimethyldichlorosilane Me2SiCl2. To a Teflon vessel was added 11.5 gram of 37 percent by weight aqueous hydrochloric acid and 58.18 gram of the mixture of linear hydroxy endblocked polydimethylsiloxane and dimethyldichlorosilane. The vessel was sealed and pressurized to 100 psig with gaseous hydrogen chloride. The vessel was agitated by hand shaking periodically for 30 minutes, to achieve saturation concentrations of aqueous hydrochloric acid at these new conditions and facilitate contact between the two phases. The pressure was released and a sample of a chlorosilane/siloxane phase was removed and analyzed. GPC analysis showed that the siloxane chains were shortened. Analysis of the chlorosilane/siloxane mixture Before and After by GC is shown in Table 2. A mixture was formed by mixing together 103.61 gram of a hydroxy endblocked linear polydimethylsiloxane and 120.02 gram of dimethyldichlorosilane Me2SiCl2. To a Teflon vessel was added 10.37 gram of 37 percent by weight aqueous hydrochloric acid and 50.96 gram of the mixture of linear hydroxy endblocked polydimethylsiloxane and dimethyldichlorosilane. The vessel was sealed and pressurized to 100 psig with gaseous hydrogen chloride. The vessel was agitated by hand shaking initially to achieve saturation concentrations of aqueous hydrochloric acid at these new conditions, and facilitate contact between the two phases. The vessel was then allowed to sit for three hours. The pressure was released and a sample of a chlorosilane/siloxane phase was removed and analyzed. GPC analysis showed that the siloxane chains were shortened. Analysis of the chlorosilane/siloxane mixture Before and After by GC is shown in Table 3. In Tables 1-3, the apparent increase in branching is due to the loss of chloride mass from the mixture of the linear hydroxy endblocked polydimethylsiloxane and the dimethyldichlorosilane due to hydrolysis of the dimethyldichlorosilane. Other variations may be made in compounds, compositions, and methods described herein without departing from the essential features of the invention. The embodiments of the invention specifically illustrated herein are exemplary only and not intended as limitations on their scope except as defined in the appended claims.
' 2000023 La présente invention eoneerne des eopolymères vinyliques sur lesquels on greffe des séquences de polyamides et leur procédé de préparation par polycondensâtion d'acides N-carbaryloxy-aminocarboxyliques en présence de copolyraères vinyliques contenant des groupes isocyanate masqués. On sait déjà préparer des eopolymères vinyliques sur lesquels on greffe des séquences de polyamides. Par exemple, on a déjà décrit le greffage de chaînes de polyamides sur des eopolymères de monomères vinyliques qui contiennent des groupes car-b oxyle, par condensation de ces eopolymères avec des acides aminocarboxyliques ou leurs lactames. En outre, on a aussi proposé un procédé de préparation de polyamides de poids moléculaire élevé par réaction d'acides N-carbaryloxy-aminocarboxyliques entre eux, La présente invention a pour objet de nouveaux eopolymères vinyliques renfermant un polyamide greffé et contenant le motif récurrent de formule : ljjlH 0=C-0-Ar dans laquelle R1, représente un atome d'hydrogène ou de chlore ou un groupe méthyle/ phényle, méthylphényle, aeétoxy ou nitrile, 20 un radical ROCO (dans lequel R est un radical alkyle en C-^-C^) ou un radical : ^N-CO- R71/ 69 00031 2 2000023 dans lequel RV et RVI représentent chacun un atome d'hydrogène ou un groupe méthyle ou éthyle, R" représente un atome d'hydrogèrie ou de chlore ou un groupe méthyle, R'" représente un atome d'hy- TV drogène ou un groupe méthyle, R représente un atome d'hydrogène ou un groupe méthyle, A représente une simple liaison ou un groupe de formule : 15 CO I 0 1 CH. I ' CH, CH, ou B représente un radical alkylène en C^-Cjq* un radical phénylène, un radical phénylène chloro-, méthyl- ou méthoxy-substitué ou un radical phénylalkyle ou leurs combinaisons avec une chaîne laté-10 raie, Ar représente un radical phényle ou phényle substitué, n et m sont des nombres entiers, le rapport pondéral des motifs R' 1 R" i 1 -C - I 1 C- 1 1 R" 1 H et IV H I c + I H 20 25 A J NH dans le substrat de greffe étant d'environ 999 * 1 à. environ 9 : i et le rapport pondéral du substrat de greffe aux polyamides greffés sur ledit substrat étant dkiviron 10 : 1 à 1 : 50- Le poids moléculaire des chaînes latérales est de préférence compris entre 1 000 et 50 000. L'invention concerne également un procédé de préparation de eopolymères vinyliques renfermant une chaîne de polyamides greffée, qui consiste à effectuer la polycondensation d'acides N-carbaryloxy-aminocarboxyliques ou de leurs mélanges en présence de eopolymères vinyliques de monomères vinyliques qui contiennent des groupes isocyanate masqués, ladite polycondensation s'effectuant à des températures comprises entre environ 150 et environ 300°C. Les avantages du procédé selon l'invention résidenfcdans la vitesse élevée de la réaction de formation du polyamide à des ... SAD ORIGINAL 69 00031 3 2000023 températures relativement basses On évite ainsi la dégradation thermique des eopolymères vinyliques qui sont généralement instables lorsqu'ils sont exposés à des températures élevées pendant des périodes prolongées. Un autre avantage important réside dans 5 la nature de la formation du polyamide. Le greffage des acides N-carbaryloxy-aminocarboxyliques a lieu de manière spécifique sur les groupes isocyanate masqués contenus dans le copolymère. Ainsi, contrairement au procédé de greffage par polycondensation avec des acides aminocarboxyliques libres, leurs esters amides 10 ou lactames, on peut greffer pratiquement n'importe quels eopolymères vinyliques pourvu qu'ils contiennent des groupes isocyanate masqués, puisque des réactions secondaires indésirées avec les groupes fonctionnels des polymères vinyliques, tels que les groupes ester, amide ou nitrile,n'ont pas lieu. 15 Outre ces avantages concernant la possibilité presque illimitée d'utiliser n'importe quels eopolymères vinyliques, le procédé selon l'invention permet de faire varier la structure des polyamides greffés dans n'importe quelle mesure désirée, en utilisant différents acides N-carbaryloxy-aminocarboxyliques, par 20 exemple par condensation de différents acides N-carbaryloxy-amino-carboxylique, aliphatique et/ou aromatique-. Comme la condensation des acides N-carbaryloxy-amino-carboxyliques a lieu presque quantitativement, on obtient des produits qui contiennent de très faibles quantités de substance1 25 extractible. La gamme d'application possible du procédé de l'invention est. donc accrue par la possibilité d'effectuer aussi le greffage du polyamide dans des solvants. A titre de monomères vinyliques que l'on peut utiliser 30 pour la préparation des eopolymères vinyliques utilisés pour la greffe, on peut citer les composés suivants : éthylène, propylène, butadiène, chlorure de vinyle, styrène, styrènes méthylés au noyau, a-méthylstyrène, acétate de -vinyle, esters, amides et nitriles de l'acide acrylique et de l'acide méthacrylique. 35 On peut aussi utiliser ces monomères en mélange. On uti lise de préférence le styrène et les styrènes méthylés au noyau, l'a-méthylstyrène, les esters acrylique et méthacrylique et l'acry-lonitrile. A titre d'exemple d'isocyanates polymérisables appropriés 40 pour la copolymérisation avec ces monomères vinyliques, on peut citer les isocyanates suivants qui doivent être utilisés sous 69 00031 4 2000023 forme masquée : isocyanate de vinyle, isocyanate d'allyle, acry-late et méthacrylate de P-isocyanatoéthyle, isocyanate de p-allyl-oxyphényle, isocyanate ^de styrène mais de préférence isocyanate de p-isopropénylphényle. 5 On peut utiliser l'un quelconque des agents masquants connus dans la chimie des isocyanates pour masquer ces isocyanates, par exemple caprolàctame, phtalimide, imidazole, acétate d'éthyle, esters malonique et acétoxime mais de préférence phénols tels que le phénol, les o-, m-, et p-crésols et le p-tertiobutylphénol. 10 On copolymèrise ces isocyanates masqués avec les mono mères vinyliques en quantités de 0,1 à 10 % en poids de préférence de 1 à 7 % en. poids. Les eopolymères à groupes isocyanate masqués appropriés pour le procédé de l'invention peuvent être préparés de manière connue, par exemple selon le brevet français n° 1 54-1 502 15 ou le brevet belge n° 705 386. A titre d'acides N-carbaryloxy-aminocarboxyliques appropriés pour le greffage de polyamides selon l'invention on peut citer par exemple : l'acide N-carbophénoxy-p-aminoproprionique, l'acide N-carbophénoxy-6-aminocaproIque, l'acide N-carbo-20 phénoxy-ll-aminoundécanolque, l'acide N-carbo-(4-chlorophényl)-oxy-6-aminocaproIque, 1'acide N-carbo(4-tertiobutylphényl)-oxy-6-aminocaprolque, l'acide N-carbophénoxy-3-aminobenzoîque, l'acide N-carbophénoxy-4-aminobenzoîque, 1'acide N-carb ophénoxy-3-amino-4-méthylbenzoîque, 1'acide N-carbophénoxy-3-amino-4-chlorobenzoîque, 25 l'acide N-carbophénoxy-4-amino-3-méthoxybenzoîque, l'acide N-carbo-(4-chlorophényl)-oxy-3-aminobenzoîque, 1'acide N-carbo-(4-tertio-butylphényl)-oxy-3-aminobenzoîque, l'acide N-carbophénoxy-3-aminophénylacétique, 1'acide N-carbophénoxy-p-(3-aminophényl)-isobutyrique et l'acide N-carbophénoxy-3-aminocinnamique. 30 On peut aussi utiliser ces acides N-carbaryloxy-amino- carboxyliques en mélanges. On préfère utiliser l'acide N-carbophénoxy-6-aminoea-proîque, l'acide N-carbophénoxy-ll-amino-undécanoîque, l'acide N-carbophénoxy-3-aminobenzoîque et l'acide N-carbophénoxy-4-35 aminobenzoîque. On met en oeuvre le procédé selon l'invention en chauffant à la température de réaction le mélange du copolymère vinylique et de l'acide N-carbaryloxy-aminocarboxylique ou du mélange de différents acides N-carbaryloxy-aminocarboxyliques, si on le 40 désire avec des agents régulateurs de chaîne et en éliminant en 69 00031 5 2C0Q023 continu le phénol correspondant libéré, si on le désire sous pression réduite. Les températures de réaction sont en général comprises entre environ 150 et environ 300°C, de préférence entre 180 et 5 270°C. Les durées de réaction varient avec la température de réaction et sont en général comprises entre 10 et 180 mn. On peut réduire la pression jusqu'à 50 - 0,1 mm Hg pour terminer la réaction. On peut utiliser comme agents régulateurs de chaîne 10 des acides carboxyliques aliphatiques'tels que l'acide formique, l'acide acétique, l'acide stéarique. On introduit avantageusement une mole d'agent régulateur de chaîne par mole d'isocyanate masqué dans la polymérisation. Un autre mode de mise en oeuvre du procédé selon l'in-15 vention consiste à effectuer la polycondensation en solution. Selon ce procédé, on fait r-éagir un mélange du copolymère viny-lique avec l'acide ou les acides N-carbaryloxy-aminocarboxyliques, si on le désire en mélange avec des agents régulateurs de chaîne, à des températures de 150 à J00°C, si on le désire sous pression, 20 dans 5 à. 100 fois leur quantité dans un solvant organique qui peut contenir en outre des sels minéraux. On calcule le temps de réaction de telle manière que l'on obtienne des solutions à- la viscosité désirée permettant leur transformation immédiate ou bien l'isolement du polymère par addition de non-solvants 25 tels que l'eau. Des exemples de solvants appropriés pour ce mode opératoire comprennent N,N-diméthyIformamide, le N,N-diméthylacéta-mide, le N-méthylcaprolactame, la N-méthylpyrrolidone et la téfcra-méthylèneurée ainsi que les phénols et crésols. 30 Les sels que l'on peut utiliser sont par exemple le chlorure de lithium, le chlorure de magnésium, le chlorure de calcium et le chlorure de zinc. Dans les deux modes de mise en oeuvre du procédé de l'invention, on peut faire varier entre de larges limites les 35 proportions pondérales du copolymère vinylique et de l'acide N-carbaryloxy-aminocarboxylique selon les propriétés désirées du copolymère greffé. On préfère utiliser des mélanges dans lesquels la proportion pondérale copolymère vinylique/polyamide greffé dans le copolymère greffé est comprise entre 10 : 1 et 40 1 ! 50 . 69 00031 2000023 On peut utiliser les eopolymères de polyamides greffés sur eopolymères vinyliques comme matières thermoplastiques et comme additifs de matières thermoplastiques. On peut les transformer directement en masse fondue, par exemple par moulage par 5 injection pour produire des articles moulés ou à partir de leurs solutions par exemple pour produire des feuilles ou des revêtements. On peut aussi transformer les produits par des procédés de filage à l'état fondu ou de filage en solution pour former des filaments ayant de bonnes propriétés mécaniques. 10 Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. Les exemples 1 à 4 illustrent la préparation des eopolymères vinyliques utilisés pour le greffage des polyamides. EXEMPLE 1 15 On dissout 5 g de p-i s opropényIphény1c arbamate de phényle et 95 g*de styrène dans 100 g de xylène. Après addition de 1 g d'azobisisobutyronitrile, on effectue la polymérisation sous atmosphère d'azote à 80°C. On atteint un degré de conversion de 98 % après un temps de réaction de 27 h et on obtient une solu-20 tion jaune claire ayant une teneur en matières solides de 50 %. On introduit cette solution goutte à goutte lentement dans 500 ml d'éther de pétrole bouillant et on sépare par filtration le copolymère précipité, on le lave à l'éther de pétrole et on le sèche sous vide à 60°C . On obtient 85 g (85 #) d'une poudre incolore. 25 EXEMPLE 2 On ajoute line solution de 5 g de p-isopropénylphénylcarbamate de phényle dans 80,75 g de styrène et 14,25 g d'acrylonitrile à une solution de 1 g de laurylsulfate de sodium comme émulsifiant et 0,2 g de persuïfate de potâssium comme catalyseur dans 150 ml 30 d'eau. Après l'addition de 0,07 S de pyrosulfite de sodium, on chauffe l'émulsion à 60°C en agitant vigoureusement sous atmosphère d'azote. Lorsque la réaction de polymérisation fortement exothermique a démarrée, on refroidit le mélange réaetionnel. La durée totale de réaction est de 2 h à 60°C et 15 mn à 90°C. 35 On isole le polymère de l'émulsion par précipitation. par une solution de CaCl^ à 2 £>,,on lave jusqu'à élimination du sel par l'eau distillée et on sèche sous vide à 50°C. On obtient 95 g (95 %) d'une poudre incolore. BAD ORIGINAL 69 00031 7 2000023 EXEMPLE 3 On ajoute rapidement goutte à goutte 58 ml d'une solution de soude N à une solution de 265 nig d'alcool polyviny-lique et 7,32 g de MgS0^,7 HgO dans 300 ml d'eau en agitant. 5 On met en suspension dans ce milieu dispersant une solution de 1 g d'azobisisobutyronitrile et 2,5 g de p-isopropényl-phénylcarbamate de phényle dans 97*5 S de méthacrylate de méthyle et on polymérise en chauffant à 8o°C pendant 5 h sous atmosphère d'azote en agitant uniformément. Après refroidissement, on sépare 10 par filtration le polymère incolore en'perle , on l'agite avec de l'acide sulfurique N pendant environ 1 h on le lave jusqu'à neutralité par l'eau distillée et on le sèche sous vide à 60°C. On obtient 97 g (97 %) d'un copolymère incolore en perle . EXEMPLE 4 15 On polymérise 80 g de styrène, 15 d d'acrylate d'éthyle - et 5 S de p-isopropénylphénylcarbamate de phényle dans 100 g de xylëne comme décrit à l'exemple 1 et on isole le produit. Les exemples 5 à 22 ci-après illustrent la préparation de eopolymères vinyliques avec polyamides greffés. 20 La viscosité relative en solution des eopolymères gref fés est mesurée dans tous les cas sur une solution à 1 % dans le m-crésol à 25°C. EXEMPLE 5 On fait fondre à 180°C sous atmosphère d'azote un mé-25 lange de 29,7 g d'acide ll-carbophénoxyaminoundécanolque et 0,3 g du copolymère vinylique décrit à l'exemple 1 et on chauffe à 270°C pendant 60 mn. En même temps, on réduit la pression par intervalle de 10 mn de 260 à 100 puis 10 et moins de 1 mm Hg. Il se dégage du gaz carbonique et du phénol et on obtient une masse fondue vis-30 queuse limpide que l'on peut filer en filaments. La viscosité relative du copolymère greffé est de 5,52. EXEMPLES 6 à 16 On fait réagir comme çlans l'exemple 5 des mélanges 35 d'acide earbophénoxyamlnoearboxylique, de copolymère vinylique et d'agent régulateur de chaîûe comme indiqué dans le tableau annexé. 69 00031 8 2000023 Ce tableau Indique les conditions de réaction et les viscosités des eopolymères greffés résultants. On peut filer les eopolymères pour les transformer en filaments. EXEMPLE 17 5 Le présent exemple décrit le greffage en solution. On dissout un mélange de 28,5 g d'acide 6-carbophénoxyaminoea-prolque, 1,5 g du copolymère vinylique décrit à l'exemple 3 et 0,17 g d'acide stéarique dans 10 g de phénol à l80°C. Il se dégage du gaz carbonique par augmentation de la température à 270°C en 10 45 mn j on distille le phénol utilisé comme solvant en même temps que le phénol qui est libéré. Il reste une masse fondue limpide. On obtient la viscosité désirée en réduisant la pression à moins de 1 mm Hg en 10 mn. Le produit a line viscosité relative de 2,68. EXEMPLE 18 15 En utilisant le même mode opératoire que dans l'exem ple 17, on fait réagir un mélange de 24,0 g d'acide 6-carbophénoxy-aminocaprolque, 6,0 g du polymère décrit à l'exemple 3 et 0,68 g d'acide stéarique dans 25 g de phénol. Après un temps de réaction de 85 mn, on obtient un produit visqueux ayant une viscosité rela-20 tive de 3*42. EXEMPLE 19 On chauffe au reflux pendant 40 h un mélange de 30 g d'acide ll-carbophénoxyaminoundécanolque et 10 g du polymère vinylique préparé selon 1'exemple 4 dans 500 ml de diméthylacétamide 25 avec 5 % en poids de chlorure de lithium comme agent solubilisant. On précipite le polymère de la solution visqueuse par addition de 200 ml de méthanol et ensuite on le lave à l'eau jusqu'à éli-" minàtion du sel. La viscosité relative est de 1,38. EXEMPLE 20 30 La présent exemple décrit le greffage des eopolymères vinyliques selon l'exemple 4 avec des mélanges de différents acides carbophénoxyaminocarboxyliques. On fait fondre sous atmosphère d'azote à 180°C un mélange de 5 g de copolymère vinylique selon l'exemple 4, 10 g d'a-35 cide 11-carbophénoxyaminoundécanolque et 10 g d'acide 6-carbo- phénoxyaminocaprolque et ensuite on chauffe à 240°C pendant 30 mn, 1 2000023 69 0003! 9 pendant lesquelles il se dégage du gaz earfooslque et du phénol et on condense ensuite le mélange réactiormel pendant 20 mn à cette température sous une pression de 20 mm'Hg et ensuite pendant 3 mn à une pression de 41 mm Hg. Le produit a une viscosité de 5 2,10. EXEMPLE 21 Par le même procédé que dans l'exemple 20 mais en utilisant 15,0 g d'acide 11-carbophénoxyaminoundécanoique et 5 g d'acide carbophénoxy-3-aminobenzoîque, on obtient un copolymère 10 greffé ayant une viscosité de 2,47. EXEMPLE 22 : Dans des conditions analogues à celles utilisées dans l'exemple 19, mais avec un mélange de 15 g d'acide 6-carbophénoxy-aminocaprolque et 5 g d'acide carbophén6xy-3-aminobenzoïque, on 15 obtient un produit ayant une viscosité relative ,de 1,85. 69 00031 10 2000023 ;i ! REVENDICATIONS 1 - Un copolymère greffé de polyamide sur substrat de copolymère vinylique renfermant le motif récurrent de formule : R' R rt ? î - c R" H n 1 IV Rx H C -A NH CO I B NH _ j _i m CO B I NH I 0=C-0-Ar dans laquelle R1 représente un atome d'hydrogène ou de chlore ou 5 un groupe méthyle, phényle, méthylphényle, acétoxy, ou nitrile ou un radical ROCO dans lequel R est un groupe alkyle en ou le radical ,V R R^" "N-CO- dans lequel R^ et R^ représentent chacun un atome d'hydrogène ou un radical méthyle ou éthyle, R" représente un atome d'hydrogène ou 10 de chlore ou un groupe méthyle, R"' représente un atome d'hydrogène ou un groupe méthyle, R"^ représente un atome d'hydrogène ou un groupe méthyle, A représente une simple liaison ou un groupe de formule : - BAD ORIGINAL 69 00031 11 2000023 r 0 CH0 ou B représente un radical alkylène en un radical phénylène, un radical phénylène chloro-, méthyl- ou méthoxy-substitué ou un radical phénylalkyle ou leurs combinaisons dans une chaîne latérale, Ar représente un radical phényle ou phényle substitué et m et n sont des nombres entiers, le rapport pondéral des motifs V C R" R1" I C -I H et IV R I -C i A I NH H I C A 10 dafis le substrat de greffe étant d'environ 999 ' 1 à environ 9 '• 1 le rapport pondéral du substrat de greffe aux polyamides greffés sur celui-ci étant d'environ 10 : 1 à 1 :50. 2°) Le copolymère greffé selon la revendication 1, caractérisé en ce qu'il contient le motif récurrent de formule : T" -C R" R I C I H n i IV n H I r H i_ i -L m R I C I A l — NH CO I B I NH CO k I NH I 0=C-0-Ar dans, laquelle R' représente un groupe phényle, méthylphényle, nitrile ou un radical ROCO dans lequel R est un groupe alkyle en C^-Cjj, R" représente un atome d'hydrogène ou un groupe méthyle, 15 Rm représente un atome d'hydrogène, RIV représente un groupe 69 00031 2000023 méthyle, A représente un reste p-phénylène, B représente un radical alkylène en ou leurs combinaisons dans une chaîne latérale, Ar représente un groupe phényle et m et n sont des nombres entiers, le rapport pondéral R"1 C I R C- I H et 4ês motifs F ■F " A H ?-H NH Ar 000 à 50 000. dans le substrat de greffe étant d'environ 999 ' 1 à environ 9 : et le rapport pondéral du substrat de greffe aux polyamides greffés sur celui-ci étant d'environ 10 : 1 à 1 : 50, le poids moléculaire des motifs : CO i B I NH CO I B Ira o = t - o étant compris dans l'intervalle de y - Le polymère greffé selon la revendication 1 caractérisé en ce_qu'il contient le motif récurrent de formule i c i t H NH I CO i B I NH i CO ! B I NH -è- r n _ R'" 1 n i y À" 1 H — - n ,IV H i C- m 0 0 - Ar dans laquelle R' représente un groupe phényle, nitrile ou un radi cal R0C0 dans lequel R est ion groupe méthyle ou éthyle, R" représente un atome d'hydrogène ou un groupe méthyle, R"' représente IV l'hydrogène, R représente un groupe méthyle, A représente un groupe p-phénylène, B représente un radical alkylène en ^"^ÎO ou leurs combinaisons dans une chaîne latérale, Ar représente un groupe phényle et n et m sont des nombres entiers, le rapport pon 69 00031 4» «5 2-C 00023 déral des motifs- : R' 1 R"' i Vv 1 H i 1 -C - 1 1 C — 1 et — 1 -C - i 1 •c- . \ 1 R" 1 H - 1 A - ! NH 1 H dans le substrat de greffe étant d'environ 40 : 1 à 19 : 1 et le rapport pondéral du substrat de greffe ou polyamides greffés sur celui-ci étant d'environ 1 : 1 à 1 :50. 5 4 - Un procédé de préparation de eopolymères greffés de polyamide sur substrat de copolymère vinylique caractérisé en-ce qft'on effectue la polycondensation d'acides N-carbaryloxyamino-carboxyliques ou de leurs mélanges en présence de eopolymères vinyliques, de monomères vinyliques contenant des groupes isocyanate 10 masqués, ladite polycondensation s'effectuant à des températures comprises entre environ 150 et environ j500°C. 5 - Le procédé selon la revendication 4, caractérisé en ce qu'on effectue la polycondensation sous pression réduite. 6 - Le procédé selon la revendication 4, caractérisé en 15 ce qu'on effectue la polycondensation en présence de solvants organiques et sous pression suratmosphérique. / 7 - Le procédé selon la revendication 4, caractérisé en ce qu'on effectue la polycondensation en présence d'agents régulateurs de chaîne. 20 8 - Le procédé selon la revendication 4, caractérisé en ce qu'on utilise les eopolymères vinyliques contenant des groupes isocyanate masqué, et.les acides N-carbaryloxy-aminocarboxyliques dans une proportion pondérale de 10 : 0,02. 9 - Le procédé selon la revendication 4 caractérisé en 25 ce que les eopolymères vinyliques contenant des groupes isocyanate masqués contiennent 0,1 à 1CT % en poids du constituant vinylique qui contient le'groupe isocyanate masqué.
Functionalized esters, amides or urethanes of perfluorinated alcohols or amines as surface modifiers The invention describes a composition comprising a) an organic material which is susceptible to oxidative, thermal or light-induced degradation, and b) at least one melt additive of a compound of the formula I R1(I)R3XR2 wherein the general symbols are as defined in claim 1. The compounds of the formula I are useful as reducers of surface energy for organic materials, for example, for increasing the oil and water repellency of organic materials. The present invention relates to compositions comprising an organic material, preferably a synthetic polymer, susceptible to oxidative, thermal or light-induced degradation and to esters, amides or urethanes of perfluorinated alcohols as reducer of surface energy of these materials, for example as oil and water repellency agents for organic materials. The use of various fluorochemical compositions on fibers and fibrous substrates, such as for example textiles, carpets, paper, leather and non-woven webs to impart oil and water repellency is known for example in U.S. Pat. No. 6,127,485. This reference discloses hydrophobic and oleophobic fibers, films and molded articles comprising synthetic organic polymer wherein dispersed within the fiber, fabric or molded article and present at the surface of the fiber, fabric or molded article are fluorochemical compounds. The known fluorochemicals do not satisfy in every respect the high requirements which a melt additive is required to meet as reducers of surface energy for organic materials, for example, for increasing the oil and water repellency of organic materials. It has now been found that esters, amides or urethanes of perfluorinated alcohols are useful for various technical applications such as for example for increasing the oil and water repellency of organic materials like for example synthetic polymers. The present invention therefore provides a composition comprisinga) an organic material which is susceptible to oxidative, thermal or light-induced degradation, andb) at least a compound of the formula I andR12and R13are each independently of one another hydrogen, C1-C12alkyl or phenyl, or R11and R12together with the linking carbon atom, form a C5-C8cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C1-C4alkyl groups. A fluorine containing group is a branched or unbranched radical, which contains at least one fluoro atom, for example C1-C25fluoroalkyl, C1-C25fluoroalkyl is for example fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, pentafluorobutyl or perfluoroalkyl such as for example —CH2CH2(CF2)7CF3or —CH2CH2(CF2)3CF3. Alkanoylamino having up to 4 carbon atoms is a branched or unbranched radical, for example formylamino, acetylamino, propionylamino, butanoylamino or pivaloylamino. Interesting compositions comprise as component (b) at least a compound of the formula I wherein and R11is hydrogen or C1-C4alkyl. Preferred compositions comprise as component (b) at least a compound of the formula I wherein R3is C1-C25fluoroalkyl. Preference is also given to compositions comprising as component (b) at least a compound of the formula I wherein R6and R10are hydrogen. Particular preference is given to compositions comprising as component (b) at least a compound of the formula I wherein R7is C1-C18alkyl, C2-C18alkenyl, unsubstituted or with C1-C4alkyl or C1-C4alkanoylamino substituted phenyl; unsubstituted or C1-C4alkyl substituted phenylamino. Of interest are compositions comprising as component (b) at least a compound of the formula I wherein R12and R13are each independently of one another hydrogen or C1-C4alkyl, or R12and R13together with the linking carbon atom, form a cyclohexylidene ring. Also of interest are compositions comprising as component (b) at least one compound of the formula I, wherein R10is hydrogen, X is R11is hydrogen, Y is Z is C4-C12alkylene, 1,3-phenylene, 1,4-phenylene or The compounds of the formula I can be prepared in per se known manner, for example by esterification or amidation of a carboxylic acid with an alcohol or amide. The urethanes are preferably prepared by the reaction of an isocyanate with an alcohol. The compounds of the formula I are suitable as oil and water repellency agents for organic materials. Examples of organic materials which may be present in the compositions of the invention are following materials: 1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyvinylcyclohexane, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE). Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:a) radical polymerisation (normally under high pressure and at elevated temperature).b) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either π- or σ-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC). 2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE). 3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, ethylene/vinylcyclohexane copolymers, ethylene/cycloolefin copolymers (e.g. ethylene/norbornene like COC), ethylene/1-olefins copolymers, where the 1-olefin is generated in-situ; propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/vinylcyclohexene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides. 4. Hydrocarbon resins (for example C5-C9) including hydrogenated modifications thereof (e.g. tackifiers) and mixtures of polyalkylenes and starch. Homopolymers and copolymers from 1.)-4.) may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included. 6. Aromatic homopolymers and copolymers derived from vinyl aromatic monomers including styrene, α-methylstyrene, all isomers of vinyl toluene, especially p-vinyltoluene, all isomers of ethyl styrene, propyl styrene, vinyl biphenyl, vinyl naphthalene, and vinyl anthracene, and mixtures thereof. Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included. 6a. Copolymers including aforementioned vinyl aromatic monomers and comonomers selected from ethylene, propylene, dienes, nitriles, acids, maleic anhydrides, maleimides, vinyl acetate and vinyl chloride or acrylic derivatives and mixtures thereof, for example styrene/butadiene, styrene/acrylonitrile, styrene/ethylene (interpolymers), styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrene/maleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene such as styrene/butadiene/styrene, styrene/isoprene/styrene, styrene/ethylene/butylene/styrene or styrene/ethylene/propylene/styrene. 6b. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6.), especially including polycyclohexylethylene (PCHE) prepared by hydrogenating atactic polystyrene, often referred to as polyvinylcyclohexane (PVCH). 6c. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6a.). Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included. 7. Graft copolymers of vinyl aromatic monomers such as styrene or α-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpolymers; styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers, as well as mixtures thereof with the copolymers listed under 6), for example the copolymer mixtures known as ABS, MBS, ASA or AES polymers. 9. Polymers derived from α,β-unsaturated acids and derivatives thereof such as polyacrylates and polymethacrylates; polymethyl methacrylates, polyacrylamides and polyacrylonitriles, impact-modified with butyl acrylate. 10. Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers, for example acrylonitrile/butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/alkyl methacrylate/butadiene terpolymers. 11. Polymers derived from unsaturated alcohols and amines or the acyl derivatives or acetals thereof, for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1) above. 12. Homopolymers and copolymers of cyclic ethers such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers. 13. Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS. 14. Polyphenylene oxides and sulfides, and mixtures of polyphenylene oxides with styrene polymers or polyamides. 15. Polyurethanes derived from hydroxyl-terminated polyethers, polyesters or polybutadienes on the one hand and aliphatic or aromatic polyisocyanates on the other, as well as precursors thereof. 16. Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an elastomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol; as well as polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (RIM polyamide systems). 18. Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones, for example polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, polyalkylene naphthalate (PAN) and polyhydroxybenzoates, as well as block copolyether esters derived from hydroxyl-terminated polyethers; and also polyesters modified with polycarbonates or MBS. 21. Crosslinked polymers derived from aldehydes on the one hand and phenols, ureas and melamines on the other hand, such as phenol/formaldehyde resins, urea/formaldehyde resins and melamine/formaldehyde resins. 23. Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols and vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability. 24. Crosslinkable acrylic resins derived from substituted acrylates, for example epoxy acrylates, urethane acrylates or polyester acrylates. 26. Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, e.g. products of diglycidyl ethers of bisphenol A and bisphenol F, which are crosslinked with customary hardeners such as anhydrides or amines, with or without accelerators. 27. Natural polymers such as cellulose, rubber, gelatin and chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and their derivatives. 29. Naturally occurring and synthetic organic materials which are pure monomeric compounds or mixtures of such compounds, for example mineral oils, animal and vegetable fats, oil and waxes, or oils, fats and waxes based on synthetic esters (e.g. phthalates, adipates, phosphates or trimellitates) and also mixtures of synthetic esters with mineral oils in any weight ratios, typically those used as spinning compositions, as well as aqueous emulsions of such materials. 30. Aqueous emulsions of natural or synthetic rubber, e.g. natural latex or latices of carboxylated styrene/butadiene copolymers. Particularly referred organic materials are synthetic polymers, most preferably thermoplastic polymers. Especially preferred organic materials are polyacetals, polyolefins such as polypropylene or polyethylene, polyether/polyurethanes, polyesters such as polybutylene terephthalate, polycarbonates or polyamides. To be singled out for special mention is the efficacy of the compounds of the formula I [component (b)] as reducers of surface energy of the organic materials. Organic materials with low surface energy have intrinsically better properties like for example water and oil repellency, hydrophobicity, barrier properties, easy to clean, self cleaning, antigraffiti or solvent resistance. The compounds of the formula I will preferably be added to the organic material in concentrations of 0.01 to 10%, preferably 0.01 to 2%, typically 0.1 to 2%, based on the weight of said material. In addition to components (a) and (b), the compositions of the invention may comprise further additives, such as for example the following: 1.11. Benzylphosphonates, for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid. 2. UV Absorbers and Light Stabilizers 2.5. Nickel compounds, for example nickel complexes of 2,2′-thio-bis[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenylundecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands. 9. Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese. The further additives are typically used in concentrations of 0.01 to 10%, based on the total weight of the material to be treated. Preferred compositions of the invention comprise, as other additives phenolic antioxidants, light stabilizers and/or processing stabilizers. Incorporation of component (b) and, if desired, further additives into the synthetic polymers is carried out by known methods, for example before or during moulding or else by applying the dissolved or dispersed compounds to the synthetic polymer, if appropriate with subsequent slow evaporation of the solvent. The present invention also relates to a composition in the form of a masterbatch or concentrate comprising component (a) in an amount of from 5 to 90% and component (b) in an amount of from 5 to 80% by weight. Component (b) and, if desired, further additives, can also be added before or during polymerisation or before crosslinking. Component (b), with or without further additives, can be incorporated in pure form or encapsulated in waxes, oils or polymers into the synthetic polymer. Component (b), with or without further additives, can also be sprayed onto the synthetic polymer. It is able to dilute other additives (for example the conventional additives indicated above) or their melts so that they too can be sprayed together with these additives onto the polymer. Addition by spraying on during the deactivation of the polymerization catalysts is particularly advantageous, it being possible to carry out spraying using, for example, the steam used for deactivation. In the case of spherically polymerized polyolefins it may, for example, be advantageous to apply component (b), with or without other additives, by spraying. The synthetic polymers prepared in this way can be employed in a wide variety of forms, for example as foams, films, fibres, tapes, moulding compositions, as profiles or as binders for coating materials, especially powder coatings, adhesives, putties or especially as thick-layer polyolefin mouldings which are in long-term contact with extractive media, such as, for example, pipes for liquids or gases, films, fibres, geomembranes, tapes, profiles or tanks. The preferred thick-layer polyolefin mouldings have a layer thickness of from 1 to 50 mm, in particular from 1 to 30 mm, for example from 2 to 10 mm. The compositions according to the invention can be advantageously used for the preparation of various shaped articles. Examples are: I-3) Road traffic devices, in particular sign postings, posts for road marking, car accessories, warning triangles, medical cases, helmets, tires. I-5) Devices for space applications, in particular rockets and satellites, e.g. reentry shields. I-6) Devices for architecture and design, mining applications, acoustic quietized systems, street refuges, and shelters. II-1) Appliances, cases and coverings in general and electric/electronic devices (personal computer, telephone, portable phone, printer, television-sets, audio and video devices), flower pots, satellite TV bowl, and panel devices. II-2) Jacketing for other materials such as steel or textiles. II-3) Devices for the electronic industry, in particular insulation for plugs, especially computer plugs, cases for electric and electronic parts, printed boards, and materials for electronic data storage such as chips, check cards or credit cards. II-6) Applications in wire and cable (semi-conductor, insulation and cable-jacketing). III-5) Pipes (cross-linked or not) for water, waste water and chemicals, pipes for wire and cable protection, pipes for gas, oil and sewage, guttering, down pipes, and drainage systems. III-6) Profiles of any geometry (window panes) and siding. III-9) Intake and outlet manifolds. IV-1) Plates (walls and cutting board), trays, artificial grass, astroturf, artificial covering for stadium rings (athletics), artificial floor for stadium rings (athletics), and tapes. VI-1) Food packing and wrapping (flexible and solid), bottles. VII-2) Support devices, articles for the leisure time such as sports and fitness devices, gymnastics mats, ski-boots, inline-skates, skis, big foot, athletic surfaces (e.g. tennis grounds); screw tops, tops and stoppers for bottles, and cans. VII-4) Materials for optical and magnetic data storage. VII-6) Boxes for CD's, cassettes and video tapes; DVD electronic articles, office supplies of any kind (ball-point pens, stamps and ink-pads, mouse, shelves, tracks), bottles of any volume and content (drinks, detergents, cosmetics including perfumes), and adhesive tapes. Of special interest are compositions comprising as component (a) fibers and nonwovens. Thus, a further embodiment of the present invention relates to a shaped article, in particular a film, pipe, profile, bottle, tank or container, fiber containing a composition as described above. A further embodiment of the present invention relates to a molded article containing a composition as described above. The molding is in particular effected by injection, blow, compression, roto-molding or slush-molding or extrusion. The present invention also relates to a process for reducing the surface energy of organic materials which comprises incorporating into the organic material at least one compound of the formula I [component b)]. The preferred compounds of the formula I or component (b) respectively, and optionally further additives, in the process for reducing the surface energy [e.g. increasing the oil and water repellency] of organic materials are the same as those described for the composition. A preferred embodiment of the present invention is also the use of a compound of the formula I [component (b)] as reducer of surface energy [e.g. as oil and water repellency agent] for an organic material. The preferred compounds of the formula I or component (b) respectively, and optionally further additives, in the use as reducer of surface energy [e.g. increasing the oil and water repellency] of organic materials are the same as those described for the composition. The present invention further provides novel compounds of the formula I and R12and R13are each independently of one another hydrogen, C1-C12alkyl or phenyl, or R11, and R12together with the linking carbon atom, form a C5-C8cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C1-C4alkyl groups. Of special interest are the compounds of the formula I wherein R10is hydrogen, X is R11is hydrogen, Y is Z is C4-C12alkylene, 1,3-phenylene, 1,4-phenylene or The preferred meanings of the general symbols in the novel compounds of the formula Ia are the same as the preferred meanings of the general symbols set out in relation to the compositions of the invention. The following examples illustrate the invention further. Parts or percentages relate to weight. Preparation of the Compound of the Formula 101 17.8 g (40.0 mmol) of the fluorinated alcohol (Zonyl BA-L) and 4.45 g (44.0 mmol) of triethylamine are dissolved in 50 ml of tetrahydrofuran. 4.96 g (20.0 mmol) of 5-nitroisophthaloyl chloride is dissolved in 10 ml of tetrahydrofuran and slowly dropped to the reaction mixture at 0-10° C. under nitrogen atmosphere. A large mass of a white solid is formed and as the reaction becomes difficult to stir, 90 ml of tetrahydrofuran is added. The reaction mixture is stirred at room temperature for 12 hours. Diethyl ether (200 ml) is added and the organic phase is washed repeatedly with 1N NH4Cl and water until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 16.5 g of a yellow solid. The crude solid is purified by recrystallization in tetrahydrofuran/diethyl ether to give 13.1 g of the compound 101, white solid, m.p. 108-110° C.1H NMR: (300 MHz, CDCl3): δ=9.07 (s, ArH, 2H); 9.00 (s, ArH, 1H); 4.76 (t, J=6.3 Hz, OCH2CH2CF2, 4H); 2.80-2.55 (m, OCH2CH2CF2, 4H). Preparation of the Compound of the Formula 102 In an autoclave vessel (100 ml Glass-Camile), 8.50 g (8.00 mmol) of the compound of the formula 101 [prepared according to Example 1] and 0.50 g of the catalyst (Pd/C, 10% wt) are dissolved in 50 ml of tetrahydrofuran under inert gas. H2gas is then loaded until a pressure of 5 bar is obtained in the vessel. The reaction mixture is stirred for 12 hours at 75° C. The reaction mixture is cooled down to room temperature, then the catalyst is filtered off and the solvent is evaporated using a vacuum rotary evaporator to give 6.85 g of the compound 102, pale yellow solid, m.p. 132-133° C.1H NMR: (300 MHz, acetone-d6): δ=7.95-7.90 (m, ArH, 1H); 7.60-7.55 (m, ArH, 2H); 5.31 (br s, NH2, 2H); 4.68 (t, J=6.0 Hz, OCH2CH2CF2, 4H); 3.00-2.55 (m, OCH2CH2CF2, 4H). Preparation of the Compound of the Formula 103 1.21 g (1.20 mmol) of the compound of the formula 102 [prepared according to Example 2] and 0.14 g (1.40 mmol) of triethylamine are dissolved in 30 ml of tetrahydrofuran. 0.14 g (1.20 mmol) of pivaloyl chloride is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 6 hours. Diethyl ether (80 ml) is added and the organic phase is washed repeatedly with water until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 1.20 g of a pale brown wax. The crude product is purified by flash chromatography (hexane/ethyl acetate: 2:1) to give 1.10 g of the compound of formula 103, pale yellow wax.1H NMR: (300 MHz, acetone-d6): δ=9.09 (br s, NH, 1H); 8.70-8.65 (m, ArH, 2H); 8.40-8.30 (m, ArH, 1H); 4.74 (t, J=6.0 Hz, OCH2CH2CF2, 4H); 3.00-2.75 (m, OCH2CH2CF2, 4H); 1.34 (s, tert-butyl, 9H). Preparation of the Compound of the Formula 104 1.51 g (1.50 mmol) of the compound of the formula 102 [prepared according to Example 2] and 0.18 g (1.80 mmol) of triethylamine are dissolved in 40 ml of tetrahydrofuran. 0.15 g (0.70 mmol) of terephthaloyl chloride is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 12 hours. Ethyl acetate (100 ml) and tetrahydrofuran (50 ml) are added and the organic phase is washed repeatedly with water and brine until pH neutral. The aqueous phase is discarded and the material in suspension in the organic phase is filtered off to give 0.95 g of the compound of formula 104, white solid, m.p. 160-268° C.1H NMR: (300 MHz, tetrahydrofuran-d8): δ=9.95 (s, NH, 2H); 8.80-8.70 (m, ArH, 4H); 8.50-8.40 (m, ArH, 2H); 8.20-8.10 (m, ArH, 4H); 4.71 (t, J=6.0 Hz, OCH2CH2CF2, 8H); 2.95-2.70 (m, OCH2CH2CF2, 8H). Preparation of the Compound of the Formula 105 1.80 g (1.70 mmol) of the compound of the formula 102 [prepared according to Example 2] and 0.21 g (2.10 mmol) of triethylamine are dissolved in 40 ml of tetrahydrofuran. 0.21 g (1.70 mmol) of phenylisocyanate is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 24 hours. Diethyl ether (100 ml) is added and the organic phase is washed repeatedly with 1N NH4Cl, water and brine until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 2.00 g of a pale yellow solid. The crude product is purified by recrystallization in ethyl acetate to give 0.67 g of the compound of formula 105, white solid, m.p. 164-166° C.1H NMR: (300 MHz, acetone-d6): δ=8.58 (br s, NH, 1H); 8.55-8.45 (m, ArH, 2H); 8.35-8.25 (m, 1H); 8.25-8.15 (m, 1H); 7.65-7.50 (m, ArH, 2H); 7.35-7.20 (m, ArH, 2H); 7.10-6.95 (m, ArH, 1H); 4.74 (t, J=6.0 Hz, OCH2CH2CF2, 4H); 3.00-2.70 (m, OCH2CH2CF2, 4H). Preparation of the Compound of the Formula 106 2.25 g (2.18 mmol) of the compound of the formula 102 [prepared according to Example 2] and 0.27 g (2.62 mmol) of triethylamine are dissolved in 50 ml of tetrahydrofuran. 0.17 g (1.09 mmol) of 1,4-phenylenediisocyanate is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 24 hours. Water (50 ml) is added and the reaction mixture is stirred for 15 minutes, then the solid was filtered off and dried in an oven to give the compound of formula 106, white solid, m.p.>200° C. Preparation of the Compound of the Formula 107 6.92 g (15.6 mmol) of the fluorinated alcohol (Zonyl BA-L) and 2.37 g (23.4 mmol) of triethylamine are dissolved in 40 ml of tetrahydrofuran. 3.60 g (15.6 mmol) of 3,5-dinitrobenzoyl chloride is added portionwise to the reaction mixture at 0-10° C. under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 12 hours. Diethyl ether (100 ml) is added and the organic phase is washed repeatedly with 1N NH4Cl and water until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 9.40 g of a yellow solid. The crude product is purified by flash chromatography (hexane/ethyl acetate: 4:1) to give 7.50 g of the compound of formula 107, white solid, m.p. 111-113° C.1H NMR: (300 MHz, CDCl3): δ=9.30-9.25 (m, ArH, 1H); 9.20-9.15 (m, ArH, 2H); 4.80 (t, J=6.3 Hz, OCH2CH2CF2, 2H); 2.85-2.60 (m, OCH2CH2CF2, 2H). Preparation of the Compound of the Formula 108 18.8 g (71.1 mmol) of the fluorinated alcohol (Fluorochem Limited) and 8.63 g (85.3 mmol) of triethylamine are dissolved in 120 ml of dry toluene. 8.82 g (35.6 mmol) of 5-nitroisophthaloyl chloride is slowly added portionwise to the reaction mixture at 0-10° C. under nitrogen atmosphere. A large mass of a white solid is formed and as the reaction became difficult to stir, 280 ml of dry toluene is added. The reaction mixture is stirred at room temperature for 12 hours. Then water (300 ml) is added, the suspension is stirred for 1 hour and the solid is filtered off, washed repeatedly with water and dried in an oven to give 14.9 g of the compound of formula 108, white solid, m.p. 91-92° C.1H NMR: (300 MHz, acetone-d6): δ=9.00 (br s, ArH, 2H); 8.95 (br s, ArH, 1H); 4.83 (t, J=6.0 Hz, OCH2CH2CF2, 4H); 3.05-2.80 (m, OCH2CH2CF2, 4H). Preparation of the Compound of the Formula 109 In an autoclave vessel (100 ml Glass-Camile), 9.80 g (13.9 mmol) of the compound of the formula 108 [prepared according to Example 8] and 0.80 g of the catalyst (Pd/C, 10% wt) are dissolved in 50 ml of tetrahydrofuran under inert gas. H2gas is then loaded until a pressure of 5 bar is obtained in the vessel. The reaction mixture is stirred for 20 hours at 75° C. The reaction mixture is cooled down to room temperature, then the catalyst is filtered off and the solvent is evaporated using a vacuum rotary evaporator to give 8.00 g of the compound of formula 109, white solid, m.p. 131-133° C.1H NMR: (300 MHz, tetrahydrofuran-d8): δ=8.05 (br s, ArH, 1H); 7.53 (br s, ArH, 2H); 4.65 (t, J=6.3 Hz, OCH2CH2CF2, 4H); 4.00 (br s, NH2, 2H); 2.75-2.50 (m, OCH2CH2CF2, 4H). Preparation of the Compound of the Formula 110 1.78 g (2.64 mmol) of the compound of the formula 109 [prepared according to Example 9] and 0.38 g (3.70 mmol) of triethylamine are dissolved in 25 ml of tetrahydrofuran. 0.32 g (2.64 mmol) of pivaloyl chloride is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 1 hour. Diethyl ether (80 ml) is added and the organic phase is washed repeatedly with water until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 1.85 g of the compound of formula 110, pale yellow solid, m.p. 71-73° C.1H NMR: (300 MHz, CDCl3): δ=8.50-8.40 (m, ArH, 2H); 8.45-8.35 (m, ArH, 1H); 7.56 (br s, NH, 1H); 4.67 (t, J=6.3 Hz, OCH2CH2CF2, 4H); 2.75-2.55 (m, OCH2CH2CF2, 4H); 1.36 (s, tBu, 9H). Preparation of the Compound of the Formula 111 1.82 g (2.70 mmol) of the compound of the formula 109 [prepared according to Example 9] and 0.33 g (3.24 mmol) of triethylamine are dissolved in 70 ml of tetrahydrofuran. 0.27 g (1.35 mmol) of terephthaloyl chloride is added to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 2 hours. Ethyl acetate (200 ml) is added and the organic phase is washed repeatedly with water and brine until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 1.90 g of a pale yellow solid. The crude product is purified by flash chromatography (hexane/ethyl acetate: 2:1) to give 1.70 g of the compound of formula III, white solid, m.p. 187-223° C.1H NMR: (300 MHz, acetone-d6): δ=10.12 (s, NH, 2H); 8.85-8.80 (m, ArH, 4H); 8.45-8.40 (m, ArH, 2H); 8.23 (s, ArH, 4H); 4.77 (t, J=6.0 Hz, OCH2CH2CF2, 8H); 3.00-2.80 (m, OCH2CH2CF2, 8H). Preparation of the Compound of the Formula 112 3.40 g (5.05 mmol) of the compound of the formula 109 [prepared according to Example 9] and 0.62 g (6.07 mmol) of triethylamine are dissolved in 130 ml of tetrahydrofuran. 0.67 g (2.53 mmol) of 5-nitroisophthaloyl chloride is added portionwise to the reaction mixture at room temperature under nitrogen atmosphere. The reaction mixture is stirred at room temperature for 10 hours. Ethyl acetate (300 ml) is added and the organic phase is washed repeatedly with water and brine until pH neutral. The organic phase is dried over magnesium sulfate, filtered and concentrated using a vacuum rotary evaporator to give 3.80 g of a yellow solid. The crude product is purified by flash chromatography (hexane/ethyl acetate: 3:1) to give 0.90 g of the compound of formula 112, yellow solid, m.p. 175-184° C.1H NMR: (300 MHz, acetone-d6): δ=10.50 (s, NH, 2H); 9.10 (s, ArH, 3H); 8.85-8.80 (m, ArH, 4H); 8.50-8.40 (m, ArH, 2H); 4.78 (t, J=6.0 Hz, OCH2CH2CF2, 8H); 3.00-2.80 (m, OCH2CH2CF2, 8H). Preparation of the Compound of the Formula 113 Preparation of the Compound of the Formula 114 In an autoclave vessel (100 ml Glass-Camile), 2.30 g (1.51 mmol) of the compound of the formula 112 [prepared according to Example 12] and 0.25 g of the catalyst (Pd/C, 10% wt) are dissolved in 40 ml of tetrahydrofuran under inert gas. H2gas is then loaded until a pressure of 5 bar is obtained in the vessel. The reaction mixture is stirred for 6 hours at 75° C. The reaction mixture is cooled down to room temperature, then the catalyst is filtered off and the solvent is evaporated using a vacuum rotary evaporator to give 2.10 g of the compound of formula 114, pale yellow solid.1H NMR: (300 MHz, acetone-d6): δ=10.00 (s, NH, 2H); 8.85-8.70 (m, ArH, 4H); 8.45-8.35 (m, ArH, 2H); 7.82 (br s, ArH, 1H); 7.55-7.45 (m, ArH, 2H); 5.26 (br s, NH2, 2H); 4.76 (t, J=6.0 Hz, OCH2CH2CF2, 8H); 3.00-2.75 (m, OCH2CH2CF2, 8H). Preparation of the Compound of the Formula 115 Water and Oil Repellency in Polypropylene In order to determine the repellency properties of the compounds of the formula I, they are tested according to the following procedure. The sample preparation is a combination of polypropylene nonwovens and the additive and a thermal treatment (e.g. 130° C. for 10 minutes), which enables the migration of the additive to the surface and a proper surface rearrangement of the chemical groups. This extra heat cycle is needed to melt the compounds of the formula I in order to obtain a homogeneous redistribution over the surface of the substrate. An industrial sample of polypropylene nonwoven, fabric weight: 40 g/m2, is dipped into a 1% isopropanol solution of the test compound, simultaneously applying ultrasonic energy for one minute. After that, the sample is dried overnight at room temperature and then two hours at 90° C. in an oven. A part of the sample is afterwards annealed for 10 minutes at 130° C. The treated nonwoven samples are evaluated in the water repellency test similar to INDA test method 80.8 (99). The wetting behavior of the nonwovens is tested with a series of water/isopropanol mixtures. The observation of the wetting behavior is rated from 0 (water wetting, no repellency) to 10 (optimum water repellency). The results are summarized in Table 1. The treated nonwoven samples are evaluated in the oil repellency test similar to AATCC test method 118-1997/ISO 14419. This test follows the same concepts of the already described for water repellency test method, but using, as test solvents, a series of hydrocarbons. The observation of the wetting behavior is rated from 0 (no repellency) to 8 (optimum repellency). The results are summarized in Table 2. Polypropylene Nonwoven Fiber Compounding: The compound of formula 101 [prepared according to Example 1] is heated in an oven at 70° C. until it is completely liquid. This liquid is added at 10-20 ml/min to a twin-screw extrusion of polypropylene pellets via a heated graduated cylinder using a Leistritz MIC 27/GL-32D twin-screw extruder. The extruder zones are 150°-195° C. with the main screw at 500 RPM and the PP feeder at 200-250 RPM. The molten polymer and additive exit via a two orifice round die. The molten material is immediately cooled and solidified in a cold-water trough. The solidified strand is fed into a Conair/Jetro 304 Pelletizer. The polypropylene used for the spunbond processing is PP 3155 from ExxonMobil (melt flow rate 36 g/10 min) and PP 3546 from ExxonMobil (melt flow rate 1200 g/10 min) for the meltblown processing. Alternatively, the compound of formula 101 is made into masterbatches by those skilled in the technique. The masterbatch at the desired level is then tumble mixed with the appropriate polypropylene for making spunbond and meltblown nonwovens. Tumble Mixing The concentrate pellets are let down with additional polypropylene pellets and are mixed with a Marion SPS 1224 mixer, resulting in a desired additive concentration by weight. Spunbond Process Spunbond nonwoven polypropylene fibers are prepared from the tumble-mixed additive pellets prepared as above using a 1-meter wide Reicofil II Spunbond Pilot Line, under the following conditions: Extruder temperature of 200-220° C. Screen changer temperature of 205° C. Spin pump speed of 9 rpm. 4,000 Hole spinneret with a temperature gradient of 223-240° C. Bonder pressure of 260-300 PLI with bonding temperature of 130-140° C. Cooling air speed of 1700 rpm and suction air speed of 1500 rpm, and collection take up speed is adjusted to produce a nonwoven with a specific basis weight. Meltblown Process Meltblown polypropylene fibers are also prepared from the tumble-mixed additives pellets prepared as above using 24-inch Reifenhäuser Melt Blowing Pilot Line with Bi-component technology, under the following conditions: Extruder temperature of 160-240° C. for both A & B extruders. Screen changer temperature of 240° C. Spin pump speed of 16 rpm for both A & B extruders. Die temperature gradient of 240° C. Throughput 29.7 kg/h. Suction blower speed of 2000 rpm. Spin belt speed is adjusted to produce a nonwoven with a specific basis weight. Alternatively: Meltblown polypropylene fibers are also prepared from the tumble-mixed additives pellets prepared as above using a custom-built 6-inch Melt Blowing Pilot Line under the following conditions: Extruder temperature of 175-265° C. Die temperature of 265° C. Throughput 0.49 g/h/m (4.44 kg/h). Spin drum speed is adjusted to produce a nonwoven with a specific basis weight. The produced nonwoven samples are evaluated on their water/alcohol repellency behavior similar to INDA standards (International Nonwoven and Disposables Association). The results are summarized in Table 3. TABLE 3ExampleCompoundWater repellency17aa)—217bb)1% of compound 101c)717cb)2% of compound 101c)9a)Comparative Example.b)Example according to the invention.
i'a présente invention concerne un dispositif pour le contrôle de câbles, et son application la plus importante, bien que cela ne soit pas la seule, réside dans un dispositif de con trôle de câbles de force relié à un véhicule (c'est-à-dire à un châssis mobile) portant des équipements miniers, appelé parfois véhicule minier. L'équipement minier disposé sur le véhicule et qui détache le minerai du front de taille d'une mine souterraine est entraîné de façon classique par un ou plusieurs moteurs électriques triphasés qui reçoivent l'énergie électrique par des conducteurs de force disposés dans un câble traené derrière le véhicule. Les conducteurs de force du câble transmettent de façon classique du courant alternatif triphasé d'une tension élevée, qui est abaissé à une tension plus faible par un transformateur disposé sur le véhicule minier. Bye câble établit la liaison avec un point éloigné pouvant se trouver à une distance de 150 à 1 500 mètres ou davantage du véhicule minier où il prend fin sur un autre véhicule, appelé traîneau, qui porte des équipemeIts qui sont le plus avantageusement disposés à une grande distance du front de taille de la mine afin de réduire les risques d'explosion. I1 est évident que le danger d'une détérioration du câble existe, provoquant ainsi une rupture ou un court-circuit dans les conducteurs qui peut entrainer -des dangers graves, en raison dé la présence des conducteurs à haute tension dans le câble. Afin de réduire la possibilité qu'un câble détérioré provoque de tels dangers, il a été proposé d'incorporer dans le câble deux conducteurs de contrôle ou d'y incorporer un seul conducteur de contrôle avec le retour extérieur par la terre et qui transmet un courant et une tension relativement faible ;ces conducteurs sont branchés sur des interrupteurs de démarrage et d'arrêt pouvant entre commandésà la main et placés sur le véhicule minier.Lorsque l'interrupteur manuel de démarrage est actionné, un faible courant passe depuis le traîneau par les conducteurs de contrôle du câble vers le véhicule minier lorsque ces conducteurs ne présentent pas de ruptures ou de courtscircuits. (Lorsqu'il est question d'une paire de conducteurs de contrôle, ce terme désigne également l'équivalent constitué par un seul conducteur de contrôle plus un retour extérieur par la terre).Des moyens de palpagewdu courant tels que des relais ou d'autres moyens peuvent entre préyus pour répondre au courant passant dans les conducteurs de contrôle du c^able lors de la fermeture des interrupteurs, ce qui permet la transmission dune énergie électrique triphasée d'une haute tension à l'équipement minier lorsque la continuité existe dans le câble seulement. T0- tefois, ces dispositifs de contrôle de cibles proposés antérier- rement étaient relativement sensibles aux grandes variations dans les longueurs de câbles et lorsqu'un court-circuit ou une rupture se produisait dans le câble, aucune indication n'était donnée à l'opérateur si la défectuosité dans le câble était pro- voquée par un court-circuit ou par une rupttre. Linvention crée un dispositif pour le contrôle de câbles, analogue à celui décrit ci-dessus, qui est relativement insensible aux grandes variations des longueurs de câbles tells que des variations de longueurs de l'ordre de 150 à 1500 mètres; elle crée, de plus, un dispositif de contrôle comme décrit, dans le quel des indications concernant le défaut du câble sont transmises à ltopérateur pour informer celui-ci si la défectuosité dans les conducteurs de contrôle du câble est dûe à une rupture ou à un court-circuit. Conformément à la forme de réalisation préférée de l'invention, les conducteurs de contrôle mentionnés précédemment et se trouvant dans le cule transmettent du courant continu à un transmetteur de signaux qui est constitué, de préférence, par un vibreur à courant continu disposé dans le véhicule minier. Lorsqu'un interrupteur de dénarrage manuel situé sur le véhicule minier est actionné, la tension que présentent les conducteurs de contrôle est appliquée au transmetteur de signaux afin d'exciter celui-ci lorsqu'il y a continuité dards les conducteurs de contrôle. Dans ce cas, le transmetteur de signaux transmet un signal au traîneau par les mêmes conducteurs de contrôle !ui ont transmis le courait d'excitation au transmetteur de signaux.Un dispositif de palpage à courant continu disposé sur le traSneaui par exemple un relais à courant continu, est branché en série avec l'un des conducteurs de contrôle et un dispositif de paly- - de signaux pulsatoires, tel que l'enroulement primaire du transformateur est placé en série entre le dispositif de palpa@@ à courant continu et l'entrée du câble, de sorte que la présence d'un signal pulsatoire amené par les conducteurs de contrôle depuis le transmetteur de signaux induit une tension dans l'en- roulement secondaire du transformateur.Le relais à courant continu est isolé du signal pulsatoire par un filtre et l'enrou- lement secondaire du transformateur ne réagit pas au passage d'un courant continu stable dans l'enroulement primaire, étant donné que seulement un changement de l'intensité dans l'enroulement primaire peut induire une tension dans l'enroulement secondaire. Un relais ou un autre dispositif sensible à la tension est relié aux extrémités de l'enroulement secondaire du transformateur. L'excitation du relais à courant continu indique l'absence d'interruptions dans les conducteurs de contrôle et l'exci tatioh du relais couplé à l'enroulement secondaire du transfor- mateur mentionné précédemment indique l'absence de court-circuit dans les conducteurs de contrôle. es moyens sont prévus pour commander la transmission d'énergie à haute tension par les conducteurs de force dans le câble, ce qui permet la transmission de l'énergie seulement lorsque les moyens de palpage à courant continu et le dispositif de palpage d'un signal pulsatoire indiquent que les conducteurs de contrôle ne présentent pas d'interruptions ou de courts-circuits.Un appareil d'indication est également prévu qui réagit au dispositif de palpage à courant continu et au dispositif de palpage d'un signal pulsatoire pour indiquer automatiquement si un défaut dans le câble est dt à une interruption ou à un court-circuit des conducteurs de contrôle. es formes de réalisation de l'objet de l'invention sont représentées, à titre d'exemples non limitatifs, aux dessins annexés. Les fig. 1 et 1s représentent ensemble un schéma électrique du dispositif pour le contrôle de câbles conforme à l'invention suivm t une forme de réalisation préférée. ba fig. 2 est le dispositif de couplage préféré pour le transmetteur de signaux représenté dans son ensemble à la figure I. Les figures 1 et 1A illustrent une forme de réalisation de l'invention appliquée à un dispositif pour l'alimentation d'un ou de plusieurs moteurs électriques 2 (fig. Ili) qui entrainent un équiperlent minier v disposé sur un véhicule représenté par le rectangle en traits interrompus 4 et appelé le véhicule minier. A l'arrière du véhicule 4 se trouve un câblé qui est désigné dans son ensemble par la référence 6 et qui présente au moins trois conducteurs de force 6a, 6b et 6e pour la transmission d'un courant alternatif triphasé à haute tension et deux conducteurs de contrôle 6d et 6e.Le câble 6 est relié avec un véhicule-ou un traîneau désigné dans son ensemble par un rectangle en traits interrompus portant la référence 8 (fig. 1).Le traîneau porte une unité de commande délimitée par les traits mixtes 10. Dans la forme de réalisation industrielle préférée, toutes les composantes de l'unité de commande 1o sont supportées à l'intérieur d'un boîtier présentant une série de bornes 10a-10a', 10b-10b', 10c-10c'-1Uc", 10d et 1Oe-iOe'. Au traîneau 8 est relié un câble 13 à haute tension présentant trois conducteurs 13a, 13b et 1fc pour la transmisd'un courant alternatif triphasé à haute tension, par exemple d'une tension de plusieurs milliers de volts, telle qu'une tension de 4 000 V.Deux des conducteurs 13a et 13b sont reliés aux extrémités opposées à l'enroulement primaire 15a d'un transformateur d'abaissement de la tension 15 dont l'enroulement secondaire 15b est connecté sur les bornes 10a-10a' de l'unité de commande 10. le transformateur 15 peut, par exemple, abais- ser la tension jusqu'à 120 Volts environ, de sorte que les bornes. 10a-îOa' constituent une source de tension permettant le fonctionnement de plusieurs dispositifs électriques se trouvant sur le traîneau 8.Un fusible 17 est relié entre la borne 10a et l'une des extrémités de l'enroulement primaire 1a d'un autre transformateur d'abaissement de la tension 1 présentant un enroulement secondaire I 1sb aux bornes duquel apparaît par exemple une tension de l'ordre de 40 à 50 Volts. L'enroulement secondaire Ib est relié avec les entrées d'un redresseur biphasé 21 qui produit aux bornes de sortie 21a-21b une tension continue, la borne 21a étant négative par rapport à la borne 21b. Un condensateur de filtrage 23 est branché aux bornes 21a-21b afin d'obtenir une tension continue relativement stable sur deux conducteurs d'arrivez du circuit de commande 25-25'. Une bobine de relais à courant continu Xb1 qui est shuntée par une résistance 26 est reliée entre le conducteur 25 et l'enroulement primaire 27a d'un transformateur 27. Le condensateur de filtrage 29 est couplé entre la jonction à bobine du relais t51 et l'enroulement primaire 27a et le conducteur d'entrée 25' qui constitue un conducteur positif commun pour le circuit de commande en questÎon.. D'une façon décrite par la suite, un courant pulsatoire provenant du transmetteur de signaux- 30 se trouvant sur le véhicule minier 4 (wxg. 1 v3 passe par l'enroulement primaire 27a du transformateur 27 lorsqu'il n'y a pas d'interruption dans les conducteurs de contrôle 6d-6e pour induire une tension alter native dans l'enroulement secondaire 27b du transformateur 27. Un condensateur 31 peut être branché sur les autres extrémités de l'enroulement secondaire 27b et cet enroulement est couplé avec l'entrée d'un redresseur biphasé 3:5 qui redresse la ten sion alternative appliquée de sorte qu'on obtient une tension continue aux bornes de sortie 33a-3:5b de celui-ci.Une bobine de relais à courant continu RL2 est couplée aux bornes :5:5a- 33b et un condensateur de filtrage 35 est branché aux bornes du relais itL2. Le transformateur 27 et le circuit associé constituent un dispositif de palpage dVun signal pulsatoire qui détecte la présence d'un signal pulsatoire provenant du trans metteur de signaux ::50 en étant insensible à une tension conti nue stable Une diode Zener 37 est reliée entre le côté sortie de l'enroulement primaire 27a et le conducteur positif commun 25i, La diode zoner 37 laisse passer le courant lorsqu'une tension anormalement élevée apparaît dans le circuit, par exemple une tension de 60 Volts dans le dispositif de couplage décrit à titre d'exemple. Le fusible 39 est branché entre le côté sortie de l'enroulement primaire 27a et la borne de sorTie 1Oe. xe conducteur positif commun 25' est relié avec l'autre borne de sortie 10e'. Les conducteurs de contrôle 6d et 6e du câble 6 sont branchés entre les bornes de sortie lOe-lOe' de l'unité de commande et des bornes d'entrée 3Oa - 30b du transmetteur de signaux 30 monté sur le véhicule minier 4 (fig. 1A). Comme indiqué précédemment, le câble 6 peut varier en longueur dans les applications minières depuis une valeur d'environ 150 mètres à 1500 mètres ou davantage. Le transmetteur de signaux illustré :50 présente également une borne 30c et un fusible 42 est branché entre les bornes 3 b et 30c. Un interrupteur 44 à bouton poussoir normalement fermé est relié entre la borne 30c et un inter rupteur 46 à bouton poussoir normalement ouvert, est relié avec une borne 30d du transmetteur de signaux 30.Deux con .ducteurs 45-47 sont reliés entre les bornes 30a et 30b du transmetteur de signaux et entrée d'un vibreur à courant continu 48 qui produit un courant pulsatoire lorsqu'il est excité par une tension continue amenée par les conducteurs de contrôle mentionnés précédemment 6d-6e, le courant pulsatoire étant ramené au mdme circuit qui a excité le vibreur par l'intermédiaire des conducteurs de contrôle 6d-6e de sorte qu'un courant pulsatoire passe par l'enroulement primaire 27a du transformateur 27. Lorsque l'interrupteur 46 à bouton-poussoir qui est normalement ouvert est actionné temporairement, la sortie à courant continu du redresseur biphasé mentionné ci-dessus et portant la référence 21 est couplée au vibreur 48 si le câble 6 n'est pas court-circuité ou ne présente pas d'interruption. Par conséquent, si le conducteur de contrôle 6d ou 6e présente une interruption, la tension d'excitation continue n'est pas amenée au vibreur 48 et il n'y a pas de courant dans le relais l ou RL2. , De même, si les conducteurs de contrôle du câble 6d-6c sont court-circuités,, le vibreur 48 ne reçoit pas de tension d'excitation, bien que du courant continu continue à passer par la bobine du relais à courant continu RLî. i, d'un autre côté, le vibreur 48 reçoit une tension d'excitation depuis le re-- dresseur 21, un courant pulsatoire passe par la bobine primaire 27a de l'unité de commande lO pour exciter le relais iL2 couplé à la sortie du circuit en pont 33. Lorsque le câble 6 ne présente pas de défaut, la fermeture momentanée de l'interrupteur 46 à bouton-poussoir qui est normalement ouvert excite non seulement le vibreur *B mais effectue également l'excitation d'un relais OR disposé sur le véhicule minier 4 qui ferme deux contacts de maintien CR-1 normalement ouverts qui sont branchés en parallèle avec l'interrupteur à bouton-poussoir 46 au moyen de deux conducteurs 50-52 pour maintenir l'excitation du vibreur 48. Le vibreur peut être désexcité par une brève ouverture de l'interrupteur 44 à bouton-poussoir qui est normalement fermé. La bobine du relais CR est couplée, comme illustré, avec l'enroulement secondaire 54b d1un transformateur trois phasé 54 dont les enroulements primaires 54a sont reliés respectivement aux trois conducteurs 6a, 6k et 6c du câble 6 transmettant le courant alternatif triphasé à haute tension. Les différents earoulements secondaires 54b, 54c et 54d du transformateur 54 sont respectivement reliés au moteur triphasé 2. Les conducteurs à haute tension 6a, 6b et 6c sont respectivement reliés en série avec les contacts normalement ouverts MR-1, MR-2 et MIL-3 d'un relais MIL (fig. l) monté sur le traîneau 8. Les contacts MR-l, R~2 et MR-3 sont respectivement reliés avec les conducteurs à haute tension se trouvant dans le câble d'entrée 13. La bobine de relais ME de la forme de réalisation illustrée est accouplée aux bornes lOb, lOb' de l'unité de commande 10.Les contacts RLî-l et R2-1 qui sont normalement ouverts des relais RLl et RL2 sont reliés en série entre un conducteur 55 couplé à la borne d'entrée lOa' pour le courant alternatif de l'unité de commande et la borne lOb' de cette unité, tandis qu'un conducteur 56 relie la borne lOb de l'unité de commande avec la borne d'entrée 10a pour l'énergie de l'unité de commande, de sorte que la bobine de relais MR est excitée lorsque les relais ILLî et RL2 sont excités, ce qui indique que le câble 6 est en état de fonctionnement correct.Si une interruption ou un court-circuit existe dans le câble 6, soit l'un des deux contacts 2L-l ou 2L2-l, soit les deux restent ouverts pour maintenir la bobine de relais MR désexcitée et empêcher ainsi l'excitation du moteur 2 et du relais OR. Lorsque l'opérateur actionne l'interrupteur 44 à bouton-poussoir qui est normalement fermé, les relais RLl et RL2 sont désexcités et arrêtent l'ensemble du dispositif. Lorsqu'une interruption ou un court-circuit existe dans le conducteur de contrôle 6d et 6e, un dispositif d'indication indique s'il s'agit d'une interruption ou d'un court-circuit. Ce dispositif d'indication comporte une lampe 57 indiquant une interruption du circuit et une lampe 59 indiquant un court-circuito La lampe 57 indiquant une interruption du circuit est reliée entre les bornes lOc-lOc't de l'unité de commande et la lampe 59 indiquant -un court-circuit est reliée aux bornes 10c-10c' de cette unité. Un conducteur 60 relie la borne lOc avec la borne lOa d'alimentation. Un Jeu de contacts normalement ouverts ILLî2 du relais RL et un Jeu de contacts normalement fermé RL2-2 du relais RL2 sont reliés en série entre la borne 10c' de l'unité de commande et le conducteur 56 qui est branché sur la borne d'alimentation lOa. Par conséquent, si le relais RLl est excité et que le relais RL2 est désexcité, ce qui indique une interruption dans les conducteurs de contrôle 6d et 6e, la lampe indiquant une interruption de circuit est excitée par l'intermédiaire d'un circuit comportant le conducteur 60, la lampe 59 indiquant le court-circuit, les contacts Roi,2 et RL2-2 et le conducteur 56. Les contacts 2L1-3 du relais RILl sont branchés entre la borne lOc" de l'unité de commande et la jonction entre les contacts RILl.2 et RL22. Par conséquent,. lorsqu'une intérruption existe dans un conducteur de contr8le 6d ou 6e, la désexcitation des relais Rhl et iL2 qui en est le résultat provoque la fermeture d'un circuit d'alimentation de la lampe 57 indiquant une interruption, ce circuit étant- constitué par le conducteur 60, la lampe 57, les contacts RLî-3 et 2~2 et le conducteur 56. Pour contrôler le fonctionnement des lampes. 57 et 59 les interrupteurs 65 et 67 à bouton-poussoir qui sont normalement ouverts sont reliés respectivement entre les paires de bornes lOc"-lOd et lOc'-lOd. L'actionnement du boutonpoussoir 65 provoque l'allumage de la lampe 57, si cette dernière fonctionne correctement, et l'actionnement du boutonpoussoir 67 provoque l'allumage de la lampe 59 si elle est en bon état. La fig. 2 illustre la forme de réalisation préférée du vibreur 48. Comme indiqué, une diode Zener 69 est branchée aux bornes du transmetteur 30, de sorte qu'une surtension sur les conducteurs de contrôle 6d-6e provoque l'arrêt de conduction de la diode Zener 69. 0n suppose que le vibreur 48 est conçu pour fonctionner dans la gamme de tension continue provoquée par les grandes variations des longueurs des conducteurs de contrôle 6d-6e.Une partie de la tension continue apparaissant aux bornes du redresseur biphasé 21 est absorbée par le montage en parallèle de la bobine R$l et de la résistance 26, les conducteurs de contrôle 6d-6e et l'impédsnce de charge effective sur les conducteurs 6d-6e appliquée par le vibreur 48. Ce dernier comporte un interrupteur à semi-conducteur 71 qui est branché entre les conducteurs d'entrée 45 et 46. Comme illustré, l'unité de commutation comporte un transistor 73- positif-négatif positif dont l'émetteur 73a est relié, par l'intermédiaire d'une résistance 75, avec le conducteur 46 et dont le collecteur 73b est relié avec le conducteur 45.Un montage en série comportant un condensateur 77, une résistance 79 et un redresseur 81 est relié entre les conducteurs d'entrée 45 et 46, de sorte que le condensateur 77 est diargé par l'intermédiaire de la résistance 79 et le redresseur 81 pour fournir une tension continue servant à l'alimentation d'un oscillateur 82, m8me lorsque les conducteurs 45 et 46 sont momentanément reliés par le transistor 73, lorsque celui-ci est en état de conduction. L'oscillateur 82 comporte un multivibrateur plus ou moins classique qui est relié par les conducteurs 80 et 80' aux bornes du condensateur 77. L'oscillateur 82 commande un amplificateur transistorisé 83 comportant un transistor 87 négatif-positif-négatif dont la base 87a est commandée par la sortie de l'oscillateur 82, de façon alternative, pour rendre le transistor 87 conducteur et non-conducteur. L'émetteur 87b du transistor 87 est relié, par l'intermédiaire d'une résistance. 88, au conducteur 80 et le collecteur 87c du transistor 87 est relié, par une résistance 89, avec le conducteur 80'. L'émetteur 87b est relié, par l'intermédiaire d'une résistance 89',à la base 73c du transistor de commutation 73. Lorsque l'oscil- lateur 82 fait passer le transistor 87 négatif-positif- négatif alternativement à l'état de conduction et à l'état de non-conduction, le transistor de commutation 73 est rendu conducteur et non-conducteur de la même façon. Il est donc évident que l'invention crée un système de contrôle et/ou d'indication qui réagit à l'état du câble 6 en permettant l'amenée de la tension à l'équipement minier, par l'intermédiaire des conducteurs à haute tension du câble 6 lorsque les conducteurs de contrôle du câble ne présentent pas d'interruption ou de court-circuit seulement. De même, lorsqu'une interruption ou un court-circuit existe dans les conducteurs de contrôle, les lampes 57 et 59 indiquent le type de défaut dont il s'agit. En outre, le système de contrôle qui vient d'être décrit est relativement insensible à la longueur du câble 6, ce qui augmente la saleté de fonctionnement et accroît les applications possibles de l'équipement. Il est également à noter que l'unité de commande 10 et le transmetteur de signaux 30 peuvent dtre constitués par des unités standardisées pouvant être utilisées dans un grand nombre de systèmes différents présentant des longueurs de câbles différentes et des équipements divers qui sont reliés aux différentes bornes mentionnées. L'invention n'est pas limitée à la forme de réalisation représentée et décrite en détail, car diverses modifications peuvent y être apportées sans sortir de son cadres E E V E N i I O A T i O NS 1 - Dispositif pour le contrôle de défauts de câbles utilisé dans une installation pour l'amenée d'énergie électrique à un véhicule portant des équipements électriques, par l'intermédiaire des conducteurs de force se trouvant dans un câble relié au véhicule, depuis un point éloigné et pouvant être détérioré de façon à présenter une interruption ou un courtcircuit, caractérisé en ce qu'il réalise l'indication en faisant la disfindtion entre le câble présentant une interruption et un câble en court-circuit et qu'il comporte : des conducteurs de contrôle disposés dans le câble, une source d'alimentation couplée aux conducteurs de contrôle en un point éloigné, un transmetteur de signaux disposé sur le véhicule et couplé aux conducteurs de contrôle pour être alimenté par la source de courant d'alimentation lorsqu'une continuité existe dans les conducteurs de contrôle pour la transmission d'un signal par l'intermédiaire des conducteurs de contrôle vers le point éloigné, ce signal pouvant entre distingué du courant passant par la partie d'entrée des conducteurs de contrôle depuis cette source de courant d'alimentation, des moyens de palpage du premier état disposés au point éloigné pour le palpage du courant entre la source de courant d'alimentation et la partie d'entrée des conducteurs de contrôle, des moyens de palpage d'un second état disposés au point éloigné pour le palpage sélectif du signal pouvant être distingué produit par le transmetteur de signaux, et des moyens de commande reagis- sant aux moyens de palpage du premier et du second état pour établir l'indication d'un court-circuit lorsque les moyens de palpage du premier et du second état indiquent la présence d'un courant d'alimentation vers la partie d'entrée des conducteurs de contrôle et l'absence d'un signal pouvant être distingué au point éloigné. 2 - Dispositif suivant la revendication 1, caractérisé en ce que les moyens de commande comportent des moyens pour l'indication d'une interruption lorsque les moyens de palpage du premier état indiquent l'absence de passage de courant depuis la source de courant d'alimentation. 3 - Dispositif suivant la revendication 1, caractérisé en ce que les conducteurs de contrôle sont constitués par deux trajectoires -conductrices transmettant -toutes deux le courant pour l'alimentation du transmetteur de signaux et pour la transmission du signal pouvant être distingué produit par le transmetteur. 4 - Dispositif suivant la revendication 3, caractérisé en ce que le courant d'alimentation venant de la source mentionnée est un courant continu passant par des moyens de palpage du premier état qui fonctionnent à courant continu, le signal transmis par le transmetteur est un signal pulsatoire et les moyens de palpage du second état sont constitués par des moyens de palpage d'un courant pulsatoire. 5 - Dispositif suivant la revendication 4, caractérisd en ce que les moyens de palpage du courant pulsatoire comportent un transformateur présentant un enroulement primaire par lequel passent le courant continu stable venant de la source de courant d'alimentation et le signal pulsatoire transmis, de même qu'un enroulement secondaire aux extrémités duquel apparaît une tension induite par le signal pulsatoire et des moyens sensibles à cette tension induite. 6 - Dispositif suivant la revendication 1, caractérisé en ce que le véhicule est constitué par un véhicule minier, le câble est entraîné sur le sol de la mine derrière le véhicule, sur une distance considérable, et les moyens de palpage du premier et du second état de même que les moyens de contrôle sont supportés sur un second véhicule se trouvant à un point éloigné. 7 - Dispositif suivant la revendication 6, caractérisé en ce que les conducteurs de force du câble transmettent une tension de plusieurs milliers de volts et les conducteurs de contrôle peuvent transmettre une tension et un courant relativement faibles. 8 - Dispositif suivant les revendications 1, 2, 3, 4, 5, 6 et 7, caractérisé en ce que l'appareil de contrôle permet seulement la transmission d'énergie par les conducteurs de force lorsque le câble ne présente. pas de court-circuit ou d'interruption et les moyens de commande réagissent aux moyens de palpage du premier et du second état pour empocher la transmission d'énergie au véh-icule par les conducteurs de force lorsque les moyens de palpage du premier 'état indiquent qu'aucun courant d'alimentation ne passe par les parties d'entrée des conducteurs de contrôle, afin dteepeocher la transmission d'énergie au véhicule par les conducteurs de force lorsque les moyens de palpage du second état indiquent l'absence du signal pouvant être distingué au point éloigné et pour effectuer la transmission d'énergie au véhicule par les conducteurs de force lorsque les moyens de palpage du second état indiquent la présence du signal pouvant etre distingué au point éloigné. 9 - Dispositif suivant la revendication 8, caractérisé en ce que les conducteurs de contrôle sont constitués par deux conducteurs transmettant tous deux le courant pour l'alimenta- tion du transmetteur de signaux et pour la' transmission du signal ppuvant être distingué produit par le transmetteur de signaux. 10 - Dispositif suivant la revendication 6, caractérisé en ce qu'il comporte un interrupteur de démarrage à commande manuelle se trouvant sur le véhicule portant les équipements électriques, qui débranche normalement la source de courant d'alimentation du transmetteur de signaux et lorsque l'interrupteur est actionné il relie la source de courant d'alimentation au transmetteur, des moyens étant en outre prévus pour maintenir le couplage de la source de courant d'alimentation et du transmetteur de signaux lorsque l'interrupteur de démarrage est actionné initialement, de même qu'un interrupteur d'arrêt pouvant être actionné à la main pour arrêter momentanément le passage de courant d'alimentation vers le transmetteur, en vue de l'arrêt de l'ensemble du dispositif. li - Dispositif suivant les revendications 1, 2, 3, 4, 5, 6, 7, 8, 9 et 10, caractérisé en ce que le dispositif de contrôle du câble comporte deux conducteurs de contrôle se trouvant dans le câble, une source de courant d'alimentation continu stable couplée aux deux conducteurs de contrôle au point éloigné, un transmetteur de signaux de trouvant sur le véhicule et couplé aux conducteurs de contrôle pour être alimenté par ceux-ci lorsqu'il y a une continuité dans les conducteurs pour la transmission d'un courant pulsatoire par les deux conducteurs de contrôle vers le point éloigné, des moyens de palpage à courant continu se trouvant au point éloigné pour palper le passage d'un courant continu stable.. depuis la source de courant d'alimentation vers la partie d'entrée des conducteurs de contrôle, des moyens de palpage d'un courant variable se trouvant au point éloigné pour le palpage sélectif de la présence du courant pulsatoire produit par le transmetteur de signaux et des moyens de commande réagissant aux moyens de palpage à courant continu et à courant variable pour l'absence d'un courant continu dans ces moyens de palpage à courant continu ou la présence de courant dans ces moyens et l'absence d'un courant pulsatoire dans les moyens de palpage d'un courant variable e 12 - Dispositif suivant la revendication lI, c aractém risé en ce que les moyens de palpage à courant continu sont couplés en série avec l'un des deux conducteurs de contrôle, de sorte que du courant venant de la source de courant d'alimen- tation peut passer par ce conducteur, et on prévoit -des moyens de filtrage couplés aux moyens de palpage à courant continu pour isoler les moyens de palpage à courant continu du courant pulsatoire amené à travers les deux conducteurs de contrôle, depuis le transmetteur de signaux, les moyens de palpage-du courant variable comportant une partie qui est reliée en série avec l'un des conducteurs de contrôle. 13 - Dispositif suivant la revendication 12,caractérisé en ce que le transmetteur de signaux comporte un oscillateur, des moyens d'accumulation d'énergie électrique couplés entre les deux conducteurs de contrôle et l'oscilîateurpour l'accumulation d'énergie servant à l'alimentation de l'oscillateur, même lorsque les deux conducteurs de contrôle sont momentanément court-circuités, et un interrupteur normalement ouvert branché entre les deux conducteurs de contrôle, l'interrupteur étant ouvert et fermé par l'oscillateur lors de l'alimentation de celui-ci, afin de court-circuiter périodiquement les deux conducteurs de contrôle, en vue de la production d'un courant pulsatoire dans les conducteurs de contrôle.
A computer-implemented method includes generating a communication to be sent from a sender to a recipient who are related to one another by blood or employment; and scheduling delivery of the communication to the recipient based on a future location of the recipient. The content of the communication and the future location of the recipient are determined from an analysis of electronically-accessible resources by or about the sender, the recipient, or both. BACKGROUND This description relates to location-based communications from a sender to a recipient. A typical user of a social networking website communicates with other users of the social networking website by posting information about himself or information of interest to other users of the social network website in a manner that is accessible to the other users. For example, a user of a social networking website might post background information about himself, such as current job or activity information: information about events attended, such as concerts; events the user plans to attend, such as travel vacation sites; or personal events, such as birthdays or anniversaries. A user may also post information about recent acquisitions, such as the purchase of a new automobile or smartphone. Other users who have access to the user's posted information may contact the user to comment or review information about common shared interests or for other reasons. Some social networking websites filter or group connections based on, e.g., friendship, profession or job type, or geographical location. Social networks often span users within a single generation (e.g., Generation X or Generation Y) or at least within a limited age demographic. SUMMARY In a general aspect, a computer-implemented method includes generating a communication to be sent from a sender to a recipient who are related to one another by blood or employment; and scheduling delivery of the communication to the recipient based on a future location of the recipient. The content of the communication and the future location of the recipient are determined from an analysis of electronically-accessible resources by or about the sender, the recipient, or both. Embodiments may include one or more of the following. The method includes sending the communication to the recipient when the recipient is at or near the future location. The method includes sending the communication to a mobile computing device associated with the recipient. The method includes detecting a location of the recipient. In some cases, detecting a location of the recipient includes detecting GPS coordinates of a computing device associated with the recipient. In some cases, the method includes sending the communication to the recipient when the location of the recipient matches the future location. Scheduling delivery includes scheduling delivery of the communication to the recipient at a specified future time. In some cases, the method includes sending the communication to the recipient when the recipient is at or near the future location at the specified future time. In some cases, the method includes receiving time criteria for determining the specified future time; and determining the future time based on the time criteria. The method includes receiving location criteria for determining the future location; and wherein the future location is determined based on the location criteria. In some cases, the location criteria include at least one of a characteristic of the future location, a characteristic of the sender, and a characteristic of the recipient. Generating the communication includes generating a draft communication including at least some of the determined content; providing the draft communication to the sender; and receiving the communication from the sender. Generating the communication includes generating the communication including at least some of the determined content. The method includes conducting an automated analysis of the electronically-accessible resources to determine the content of the communication and the future location. The communication includes a multimedia message. The electronically-accessible resources include at least one of (a) electronically-accessible or mobile social networking facilities, (b) electronically-accessible or mobile periodicals, and (c) websites. The electronically-accessible resources include a database storing data relevant to the sender, the recipient, or both. In a general aspect, a computer-implemented method includes generating a communication to be sent from a sender to a recipient; and scheduling delivery of the communication to the recipient at a specified future time based on a future location of the recipient. The identity of the recipient, the content of the communication, the future time, and the future location of the recipient are determined from an analysis of electronically-accessible resources by or about the sender or the recipient. Embodiments may include one or more of the following. The method includes sending the communication to the recipient when the recipient is at or near the future location at the specified future time. The method includes sending the communication to a mobile computing device associated with the recipient. The method includes detecting a location of the recipient. In some cases, detecting a location of the recipient includes detecting GPS coordinates of a computing device associated with the recipient. In some cases, the method includes the communication to the recipient when the location of the recipient matches the future location. The method includes receiving location criteria for determining the future location; and wherein the future location is determined based on the location criteria. In some cases, the location criteria include at least one of a characteristic of the future location, a characteristic of the sender, and a characteristic of the recipient. The method includes receiving recipient criteria for determining the identity of the recipient; and wherein the identity of the recipient is determined based on the recipient criteria. In some cases, the recipient criteria include a relationship between the sender and the recipient, such as a future relationship between the sender and the recipient. In some cases, the recipient criteria include a characteristic of the recipient. The method includes receiving time criteria for determining the specified future time; and wherein the specified future time is determined based on the time criteria. Generating the communication includes generating a draft communication including at least some of the determined content; providing the draft communication to the sender; and receiving the communication from the sender. Generating the communication includes generating the communication including at least some of the determined content. The method includes conducting an automated analysis of the electronically-accessible resources to determine the content of the communication and the future location. The communication includes a multimedia message. The electronically-accessible resources include at least one of (a) electronically-accessible or mobile social networking facilities, (b) electronically-accessible or mobile periodicals, and (c) websites. The electronically-accessible resources include a database storing data relevant to the sender, the recipient, or both. In a general aspect, a computer-implemented method includes generating a communication to be sent from an employer to an employee; and scheduling delivery of the communication to the employee based on a future location of the employee. The content of the communication and the future location of the employee are determined from an analysis of electronically-accessible resources by or about the employee. Embodiments may include one or more of the following. The method includes sending the communication to the employee when the employee is at or near the future location. The method includes sending the communication to a mobile computing device associated with the employee. The method includes detecting a location of the employee. In some cases, the method includes sending the communication to the employee when the location of the employee matches the future location. Scheduling delivery includes scheduling delivery of the communication to the employee at a specified future time. In some cases, the method includes sending the communication to the employee when the employee is at or near the future location at the specified future time. In some cases, the method includes receiving time criteria for determining the specified future time; and determining the future time based on the time criteria. The method includes receiving location criteria for determining the future location; and wherein the future location is determined based on the location criteria. In some cases, the location criteria include at least one of a characteristic of the future location, a characteristic of the employer, and a characteristic of the employee. Generating the communication includes generating a draft communication including at least some of the determined content; providing the draft communication to the employer or an agent for the employer; and receiving the communication from the employer or the agent for the employer. Generating the communication includes generating the communication including at least some of the determined content. The method includes conducting an automated analysis of the electronically-accessible resources to determine the content of the communication and the future location. The electronically-accessible resources include at least one of (a) electronically-accessible or mobile social networking facilities, (b) electronically-accessible or mobile periodicals, and (c) websites. The electronically-accessible resources include a database storing data relevant to the employer, the employee, or both. These and other aspects, features, implementations, and advantages, and combinations of them, can be expressed as methods, apparatus, systems, components, program products, business methods, and means or steps for performing functions, or combinations of them. Other features, aspects, implementations, and advantages will become apparent from the description, the drawings, and the claims. The system that we describe here enables a communication to be sent from one party (sometimes called a sender) to one or more other parties (sometimes called recipients) based on a location of the recipient at a future time. In some examples, the communication is to be sent when the recipient is at a previously identified location (which we sometimes call a triggering location). For instance, a welcome message may be sent to travelers when they arrive at an airport. In some examples, the communication is to be sent when the recipient is at a triggering location at a previously identified time (which we sometimes call a triggering time). For instance, a coupon for use at a coffee shop may be sent to one or more potential customers who are within a certain distance of the coffee shop in the morning. In some examples, the system described here automatically identifies the one or more recipients of the communication, the triggering location, or the triggering time, or a combination of any two or more of them. In some examples, the sender identifies the one or more recipients of the communication, the triggering location, or the triggering time, or a combination of any two or more of them. The communication to the recipient may be generated by the system, the sender, or both. The system described here conducts an automated analysis of sources of information, such as websites, publications, social networks, or other electronically-accessible sources, or a combination of any two or more of them, to identify content for the communication that is to be sent to the recipient. The system may automatically generate the communication using some or all of the identified content. The system may also provide the identified content to the sender, who may then choose to include some or all of the identified content in the communication. We use the term “electronically-accessible” broadly to include, for example, accessible through a local area network (LAN), a wide area network (WAN), the Internet, a mobile phone network, or by any other method or combination of methods. Referring toFIG. 1, a system100enables a communication102to be sent from a sender104to a recipient106when the recipient106is at or near a triggering location108. The communication102may be a multimedia message (e.g., a message that includes voice, text, images, or video, or any combination of two or more of them) that is sent over a network110, such as the Internet, to a computing device112associated with the recipient106. The computing device112may be a personal computer, a mobile computing device such as a smartphone or a tablet, or another type of computing device. A communication system114, hosted on a server116, facilitates the sending of the communication102to the recipient106. In some examples, a registration module118in the communication system114registers a person as a potential recipient. For instance, the registration module118may collect personal information120, such as name, phone number, e-mail address, social networking information, or communication preferences, or a combination of any two or more of these. The registration module118may also collect device information122about the computing device112through which the person's location is to be tracked. The personal information120and device information122are stored in a recipient database124. In some examples, a person may register directly with the communication system114, e.g., through a recipient interface125. In some examples, a person is registered automatically with the communication system114, e.g., when he enrolls in a social network126or other electronically-accessible service or when he joins a particular group in a social network. In some examples, a person is registered with the communication system114by another party. For instance, a human resources officer of a corporation may register all employees of the corporation with the communication system114. In some examples, the sender104and the recipient106are related through a relationship, such as a family relationship, an employment relationship, or another type of relationship, or a combination of any two or more of them. For instance, in an example of a family relationship, the sender104may be a grandfather who wants to send a message to his as-yet-unborn grandchild (the recipient106) at a future time. In an example of an employment relationship, the sender104may be the human resources department of a corporation and the recipients106are employees of the corporation. In some examples, the sender104and the recipient106have no particular relationship. For instance, the sender104may be an advertiser sending a marketing offer or a coupon to one or more potential customers, who are the recipients106. The sender104(or an agent for the sender104) provides instructions128for the sending of the communication108to the communication system114by accessing a sender interface130using a computing device118, such as a personal computer or a mobile computing device or other type of computing device. For instance, the sender104may specify the recipient106, provide one or more recipient criteria to be used by the communication system114to identify the recipient106, specify the triggering location108, provide one or more location criteria to be used by the communication system114to identify the recipient, specify the triggering time, or provide one or more time criteria to be used by the communication system114to identify the triggering time, or a combination of any two or more of them. If the sender provided one or more of recipient criteria, triggering criteria, and triggering criteria, an analytics module131uses the provided criteria to identify the recipient106, the triggering location108, and the triggering time, respectively. The analytics module may use data stored in the recipient database124to identify one or more of the recipient106, the triggering location108, or the triggering time. The analytics module130may access data sources132, such as websites133, electronically-accessible publications135, social networks126, electronically-accessible databases127, or other electronically-accessible sources, or a combination of two or more of them, to identify one or more of the recipient106, the triggering location108, or the triggering time. The identity of the recipient106and the associated triggering location108, the triggering time, or a combination of two or more of them, as specified by the sender104or as identified by the analytics module131, are stored in a triggering database132. A communication module134facilitates the preparation of the communication102that is to be sent to the recipient106. In some examples, the communication module134identifies information that may be about or of interest to the sender104, the recipient106, or both, and automatically generates the communication102based on that information. For instance, the communication module134aided by the analytics module131may identify news articles, photographs, multimedia files, coupons or special offers, or other information, or a combination of any two or more of them, that are about or of interest to the sender104, the recipient106, or both. The automatically generated communication102may be approved by the sender102. In some examples, the communication module134generates a draft or template of a communication to be edited or completed by the sender104. For instance, a draft communication may include some of the information identified by the communication module134and may further include space for the sender to compose a message, insert a photograph, or otherwise supplement or edit the communication. In some examples, the sender104prepares the communication102with no assistance from the communication module134. In some examples, a communication102is prepared specifically for a particular recipient106(e.g., the grandfather sending a message to his grandchild). In some examples, a communication102is prepared for multiple recipients (e.g., a coupon sent to many prospective customers). The communication is stored in a communication database142of a storage module140. In some examples, the information about or of interest to the sender104, the recipient106, or both that is identified by the communication module134is also stored in the communication database142. In the illustrated example, the storage module is separate from the communication system114; in some examples, the storage module140may be co-located in the same physical location with the communication system. In some examples, a physical item138, such as a gift or a memento, may be sent to the recipient106along with the communication102. The physical item138may be stored in a physical storage, such as a warehouse, associated with the storage module140, until it is to be sent to the recipient106. The physical item138may also be ordered from a vendor144and sent directly to the recipient106. In some examples, the communication102may include a coupon or voucher for services (e.g., a massage or a car wash) to be provided by a vendor144. For each recipient106stored in the triggering database132, a location module136monitors the location of the computing device112associated with the recipient106(i.e., as a proxy for the location of the recipient106). For instance, the location module136may monitor the GPS coordinates of the computing device112, the proximity of the computing device to a WiFi hotspot, or another location-based signal. The location module136may monitor the location of the computing device112continuously or regular intervals, such as every 5 minutes, every hour, or every day. In some examples, the monitoring interval may be dependent on the nature of the triggering location108. For instance, if the triggering location is a city or country, the location module136may monitor the location of the computing device112less frequently than if the triggering location is a street address or a store. When the location module136detects that the recipient106is at or near the triggering location108(e.g., within a particular distance of the triggering location), the location module136alerts the communication module134, the sender104, or both. In some examples, the communication module134automatically sends the communication102to the recipient106. In some examples, the sender104instructs the communication module134to send the communication102to the recipient106. In some examples, the sender104and the recipient106may be the same person. For example, the sender104may request to be reminded of a planned trip, event, or visit in the future. For instance, the sender104may instruct the communication module134to send a communication102to his mobile telephone when he checks into his hotel on his trip to New York the next month. The sender102may specify that the communication102is to remind him to visit the Frick Museum and should contain images of important paintings at the museum. Referring toFIG. 2, in an example process for sending a communication from a sender to a recipient, the recipient is registered with the communication system (200). For instance, the recipient may provide information such as his name, contact information, or information about his computing device. The recipient may also provide information about the types of communications he is interested in receiving. For instance, the recipient may indicate that he only wants to receive communications from his friends in a particular social network or that he does not want to receive communications from commercial entities. The sender specifies the recipient, provides recipient criteria to be used by the communication system to identify the recipient, or both (202). If the sender provides recipient criteria, the communication system automatically determines the recipient (204). For instance, the recipient criteria may describe a relationship between the sender and the recipient (e.g., “my oldest granddaughter” or “hourly employees of BankOne Corp.”). The recipient criteria may describe one or more characteristics of the recipient (e.g., “professional women who live in Boston,” “people who are likely to attend the theater,” or “dog owners”). The sender specifies the triggering location, provides location criteria to be used by the communication system to identify the triggering location, or both (206). If the sender provides location criteria, the communication system automatically determines the location (208). The triggering location may be an address (e.g., 1911 Main Street, Philadelphia, Pa.) or a place (e.g., John F. Kennedy International Airport). The triggering criteria may describe one or more characteristics of the triggering location (e.g., “my mother's tennis club” or “coffee shops near the recipient's office”). In some examples, the sender specifies a threshold distance around the triggering location within which the recipient can be considered to be “at” the triggering location. In some examples, the communication system determines the threshold distance, e.g., based on the location or by applying a default threshold value. The sender may also specify the triggering time, provide time criteria to be used by the communication system to identify the triggering time, or both (210). If the sender provides time criteria, the communication system automatically determines the triggering time (212). The triggering time may be, for example, a specific time (e.g., 10:00 am), a period of time (e.g., the morning), a specific day (e.g., Monday), or a specific date (e.g., Jan. 1, 2013), or another time. The triggering time may be a threshold time (e.g., any time after Apr. 12, 2020). The time criteria may describe the triggering time in terms of an event (e.g., “my niece's birthday”), in terms of a propensity for an activity (e.g., “a period of time when the recipient is likely to buy ice cream”), or in another way. In some examples, no triggering time is specified and no time criteria are provided. In these examples, the communication is sent to the recipient whenever the recipient is at or near the triggering location. A communication is generated (214) by the sender, the communication system, or both. In some examples, the sender generates the communication and provide (e.g., upload) the communication to the communication system. In some examples, the communication is generated at a future time determined by the communication system, specified by the sender, or both. For instance, a communication that is to be sent on the tenth birthday of an as-yet-unborn grandson is generated only once the grandson is born. In some examples, the communication is generated immediately when the sender provides instructions to the communication system. In some examples, the communication system automatically generates the communication, e.g., based on data collected from electronically-accessible data sources, based on information about the recipient, or both. For instance, the communication system may include images from social networking websites in a communication generated for a recipient's birthday. In some examples, the communication is generated by a combination of the sender and the communication system. For instance, the communication system may collect potentially relevant data from online data sources, format the collected data into a draft communication, and provide the communication to the sender for editing. The communication system may also provide data to the sender, e.g., in a list form, so that the sender can prepare the communication based on the collected data. The communication system monitors the location of the recipient (216). For instance, the communication system monitors the GPS coordinates of the computing device associated with the recipient. If a triggering time was specified by the sender or identified by the communication system, the communication system monitors the location of the recipient at the triggering time. For instance, if the triggering time is a specific date, the communication system may monitor the location of the recipient on that date only. If the triggering time is a threshold time (e.g., any time after Apr. 12, 2020), the communication system begins monitoring the location of the recipient at or after the threshold time. When the communication system detects that the recipient is at or near the triggering location (218), the communication is sent to the recipient (220). In some examples, the communication is sent automatically. In some examples, the communication is sent after approval by the sender. Referring toFIG. 3, in some examples, a person enrolls with the communication system through a recipient interface300to register as a recipient available to receive communications through the communication system. The person enters personal information302, such as name, phone number, e-mail address, social networking information, or other personal information, or a combination of any two or more of these. In some examples, a person may be registered automatically with the communication system. For instance, a person may be registered, e.g., when he enrolls in a social network or other electronically-accessible service or when he joins a particular group in a social network. A person may also registered by another party. For instance, a human resources officer of a corporation may register all employees of the corporation. Upon registration, the person identifies one or more computing devices whose location is to be monitored by the computing system when a communication is to be sent to the person. In some examples, the person enters device information304about the computing device, such as a unique device identifier. In some examples, the device information304is populated automatically, e.g., if the person registers using the computing device he intends to associate with the communication or if the person is registered automatically. The person may enter device information404about one or more computing devices and may specify a device preference306, e.g., by marking a particular computing device as a preferred device. The person may also enter communication preferences (menu308), e.g., to indicate specific people, groups of people, or entities from which he does or does not wish to receive communications. For instance, the person may restrict his communication preferences such that, e.g., he receives communications only from his family members or only from people to whom he is linked on a social network. Referring toFIG. 4, an example sender interface400allows the sender to administer the sending of a communication to a recipient. The sender can specify the recipient402, e.g., by typing the name of the recipient, by selecting the recipient from a list of contacts (e.g., social network users with whom the sender is linked, family members, or business partners) or a list of suggested recipients (e.g., recipients suggested by the communication system), by speaking the name, or in another manner. The sender can also provide recipient criteria404, e.g., by typing recipient criteria, by selecting recipient criteria from a list of potential criteria, or in another manner. The sender can specify one or more triggering locations406for each recipient, e.g., by typing an address or a particular location, by identifying a location on a map, by selecting the triggering location from a list of potential triggering locations (e.g., recipients suggested by the communication system), by speaking the location, or in another manner. The sender can also provide location criteria408, e.g., by typing triggering criteria, by selecting triggering criteria from a list of potential criteria (e.g. triggering criteria suggested by the communication system), by speaking the location or in another manner. The sender can also specify one or more triggering times410or triggering criteria412for each recipient and each triggering location, e.g., by typing a triggering time or event, by selecting the triggering time from a list of potential triggering times or triggering criteria (e.g., triggering times suggested by the communication system), by speaking the time or event or in another manner. Using the sender interface,400, the sender can prepare or edit the communication (button414) using a built-in communication editor, upload a communication that was prepared elsewhere (button416), and view and approve a communication prepared by the communication system (button418). The sender can also monitor the status of a previously scheduled communication (e.g., to monitor the delivery of a communication) by selecting the communication from a menu420. Referring toFIG. 5, the analytics module131provides analytic capabilities that assist the sender in selecting a recipient, a triggering location, a triggering time, contents of the communication, or other details related to the delivery of a communication, or a combination of any two or more of them. In some embodiments, the analytics module131may act as a surrogate of a sender to generate responses (e.g., messages, offers and/or delivery instructions) based on historical data specific to the recipient. Recipient data, such as current or historical data retrieved from websites, social networks, publications, other electronically-accessible sources, recipient registration information, or other sources, or a combination of any two or more of them, are stored in a database500. A models library502stores search algorithms and forecasting models that can be used to analyze the recipient data stored in the database500. A predictive analytics submodule504applies the search algorithms and forecasting models stored in the models library502to select potential recipients, triggering locations, triggering times, contents of the communication, or other details related to the delivery of a communication. The predictive analytics submodule504may implement one or more forecasting techniques, including simple algorithms, future date calculation, including statistical techniques such as machine learning (e.g., as applied by IBM's Watson computer), game theory, and data mining. In some examples, the predictive analytics incorporate the robust, optimizing forecasting techniques of Pinto et al. (U.S. Pat. No. 7,499,897, issued on Mar. 3, 2009; U.S. Pat. No. 7,562,058, issued on Jul. 14, 2009; U.S. Pat. No. 7,725,300, issued on May 25, 2010; U.S. Pat. No. 7,730,003, issued on Jun. 1, 2010; U.S. Pat. No. 7,933,762, issued on Apr. 26, 2011; and U.S. patent application Ser. No. 10/826,949, filed Apr. 16, 2004, the contents of all of which are incorporated herein by reference), that manage historical data using missing values, which must be inferred. In some examples, the predictive analytics submodule504may be configured as described by Gruber et al. (U.S. patent application Ser. No. 12/987,982, filed Jan. 10, 2011, and U.S. patent application Ser. No. 13/492,809 filed Jun. 9, 2012, the contents of both of which are incorporated herein by reference). For instance, the predictive analytics submodule504may include an automated assistant receiving user input. The predictive analytics submodule504may also include an active ontology with representations of concepts and relations among concepts drawn from various databases of historical data. For instance, for the example in which the sender is an agent of a corporation, the corporate personnel database may be referenced in the active ontology. The predictive analytics submodule504may also include a language interpreter to parse the sender's input in order to derive a representation of the sender's intent in terms of the active ontology. The predictive analytics submodule504may also include a services orchestration component to output responses and instructions to implement the sender's intent. A results module506communicates the results of the analysis conducted by the predictive analytics submodule504to the communication module134, the triggering database132(FIG. 1), or both. In one example, potential triggering locations and triggering times for a recipient specified by the sender are identified by the predictive analytics submodule504and provided to the communications module134. The communications module134presents the potential triggering locations to the sender, who may select one or more of the locations. In one example, if the sender instructed the communication system to automatically identify recipients to whom coupons for a clothing store are to be sent, then the recipients identified by the predictive analytics submodule504are stored in the triggering database132without review by the sender. For example, the predictive analytics submodule504may select content for a communication to be sent to a recipient specified by the sender at a triggering location specified by the sender. For instance, a grandfather may instruct the communications system to prepare an autobiographical communication to be sent to his grandson when the grandson is in the vicinity of the Metropolitan Museum of Art. The predictive analytics submodule504conducts an analysis of data relevant to the grandfather to select content that may be included in the autobiographical communication. The data may be sourced from the grandfather's social networking profile (e.g. photographs or status updates), from publications or news articles about the grandfather, from websites visited by the grandfather, or from any other source having data accessible to the predictive analytics submodule504. The predictive analytics submodule504may also generate data relevant to the grandfather based, e.g., on historical data available about the grandfather. In some examples, the triggering location may also be used to identify content that may be included in the communication. For instance, content that is related to art, culture, or museums may be given special consideration in the selection of content for the grandfather's autobiographical communication. The selected content is provided to the communications module134, which may assemble the grandfather's communication or may provide the content to the sender for assembly. In another example, the predictive analytics submodule504may identify potential triggering locations, triggering times, or both for a particular recipient. Triggering locations and times may be identified based on the recipient's age, personal characteristics, home address, work address, commute pattern, travel habits, consumption habits, or other characteristics. For instance, a bar mitzvah date may be identified for a child based on the child's birth date. Appropriate religious holidays may be identified for a recipient based on the recipient's religious affiliation (e.g., as specified by the recipient or as inferred by the predictive analytics submodule504) or based on the prevailing religion in the region where the recipient lives. The predictive analytics submodule504may also identify appropriate times for delivery of a communication separately from identifying the triggering time. For instance, based on a recipient's age, profession, computer usage patterns, or other factors, the predictive analytics submodule504may estimate when the recipient is expected to wake up in the morning such that a communication is not delivered before the recipient wakes up. In another example, the predictive analytics submodule504may identify potential recipients based on an analysis of electronically-accessible sources of information, data stored in the recipient database, or both. For instance, potential recipients may be identified that meet one or more specified characteristics (e.g., high-income professional women or commuters who ride the 66 bus in the morning). Potential recipients may be identified by their relationship with the sender (e.g., all employees of Acme Corp. who live in the Chicago area or all social network connections of the sender). In some examples, the predictive analytics submodule504may have access to marketing databases to analyze characteristics of potential recipients. In some examples, the predictive analytics submodule504may have access to a list of past or potential customers of a business and may identify and rank potential recipients based on that list in terms of propensity to purchase based on historical data. Referring toFIG. 6, the preparation of communications and the delivery of communications to recipients are coordinated by the communication module134. A communications editor600may assemble a draft communication including some or all of the content selected by the analytics module131. The draft communication is provided to the sender for review, editing, and approval through the sender interface400. The communications editor600may also assemble the content selected by the analytics module131into a format (e.g., a summary presentation, a spreadsheet, or a series of documents) to be presented to the sender through the sender interface400. The sender may then prepare the communication. A recipient affinity database602stores recipient affinity information, such as preferences and interests of the recipients. In some examples, the recipient affinity information may be used to guide the communications editor in the assembly of the communication. In instances where the sender is incapacitated, the communications editor600, with the aid of the analytics module131, can serve as a surrogate in composing communications automatically. For example, the sender may be seriously ill or even dead at the time of delivery (e.g., the sender may be an incapacitated or dead grandparent of the recipient). If the sender user is incapacitated or dead, the communications editor600may carry out previous instructions of the sender and request confirmation as appropriate from a designated proxy of the sender, such as a parent of the recipient or an executor of the sender's estate. In some cases, the communications editor600may requests confirmation of the identity, or role, or both, of the designated proxy. For instance, if the executor of the sender's estate logs into the proximity messaging social network using the deceased sender's credentials, the executor may be considered to have been authenticated as the sender's proxy. In some examples, the communications editor600may review or edit a communication that was generated in the past to confirm that the communication is still valid, appropriate, or relevant, or a combination of any two or more of them. For instance, if a grandmother had previously prepared a communication with the message “Have a coffee on me at the Happy Coffee Shop” and including a coupon to the Happy Coffee Shop, the communications editor600may review the communication to determine whether the grandmother is still alive, whether the grandson drinks coffee, and whether the Happy Coffee Shop is still in business. For example, if the communications editor600determines that the grandson's religion denies him caffeine but that his favorite beverage is blueberry tea, and further determines that the Happy Coffee Shop has been purchased by a larger corporation, the communications editor may inform the grandmother of these changes, may automatically edit the communication to reflect these changes, or both. A delivery submodule604coordinates the delivery of a communication to a recipient. The delivery submodule604receives notification from the location module136(described below) when the recipient is at or near a triggering location. The delivery submodule604then accesses the triggering database to retrieve the triggering time, if any, associated with the recipient and the triggering location. If the triggering time is satisfied, the delivery submodule604causes the communication to be sent to the recipient's computing device. In some examples, the delivery submodule604may alert the sender that the communication has been sent or may ask the sender for authorization to send the communication. If a physical item is to be sent to the recipient, the delivery submodule604sends a message to the recipient to schedule delivery of the physical item using a vendor144, for example by a common carrier such as FEDEX, UPS, DHL, or the USPS, or to provide instructions for the recipient to retrieve the physical item. The communication may be sent to the recipient by voice, email, by text message, or by an alert in an application specific to the communication system. In some examples, the communication itself is sent, e.g., in the body of an email. In some examples, a link to the communication is sent and the recipient clicks on or otherwise follows the link to access the communication. Referring toFIG. 7, for each recipient, the location module136determines when the recipient arrives at or near one of the associated triggering locations. A monitoring submodule700accesses the triggering database132(FIG. 1) to determine which recipients are to be monitored and to retrieve the triggering location associated with each recipient. In some examples, the triggering time for each recipient is used by the monitoring submodule700to determine whether the recipient's location is to be monitored. For instance, if the triggering time for a particular recipient is far in the future, the monitoring submodule700may not monitor the location of that recipient. A coordinates submodule702in the location module136determines GPS coordinates for each triggering location by accessing maps and data sources. For instance, if the triggering location is “Royal Theater, Boston, Mass.,” the location submodule136determines the GPS coordinates for that location by determining the address of the theater (e.g., by accessing a website for the theater) and then identifying the GPS coordinates for that address. In some examples, the coordinates submodule702may perform analytics to determine GPS coordinates. For instance, if the triggering location is “the ice cream shop by the recipient's house,” the coordinates submodule702determines the address of the recipient's house, (e.g., by accessing the recipient database124(FIG.1)), identifies the ice cream shop nearest that address (e.g., by accessing maps or websites), and then identifies the GPS coordinates for the address of the ice cream shop. A GPS submodule706in the location module136monitors the location of the computing device associated with each recipient who is scheduled to receive a communication, e.g., by monitoring the GPS coordinates of the computing device. When the GPS submodule706determines that the GPS coordinates of a recipient's computing device are sufficiently close to the GPS coordinates of a triggering location for that recipient, the GPS submodule alerts the communication module134(FIG. 1). In some examples, a database704of proximity rules and algorithms is used to determine when the recipient is to be considered sufficiently close to the GPS coordinates of the triggering location. Referring toFIG. 8, an example storage module140includes a communication database142hosted on a storage server800connected to the network110. Communications, such as a communication generated by a sender, a communication generated automatically by the system, or both, can be stored in the communication database142. When the communication system determines a particular recipient is at a triggering location, the communication associated with that recipient is retrieved from the communication database142and transferred over the network110to the communication system, from where the communication is sent to the recipient. The communication database142may also store multimedia content about or potentially of interest to the sender, the recipient, or both. This multimedia content may be used by the system to generate a communication or may be provided to the sender to assist in the generation of a communication. Examples of multimedia content include, e.g., digitized speech, digitized music, digital text documents, digital photographs or videos, scanned documents or photographs, screenshots of websites, and other content. The storage module140may also include a facility802, such as a warehouse, for the storage of physical items138such as, e.g., photographs, mementoes, heirlooms, souvenirs, and other physical items. The storage server800stores information related to the physical items138stored in the facility802, such as inventory, status, location in the warehouse, scheduled delivery dates, and other information. The communication system described here can be used to send a location-based communication from a sender to a recipient in a wide variety of situations. Some examples uses of the communication system are described below. Referring toFIG. 9, in a first example, a grandmother wants to send her unborn first grandchild a message when the grandchild first visits the family homestead. The grandmother provides information to allow the communication system to later determine the identity of the unborn first grandchild (900). The grandmother also specifies the address of the family homestead (the triggering location) and indicates that the message is to be composed of photographs of and news clippings about the grandmother and grandfather (902). The communication system identifies the grandfather and retrieves potentially relevant photographs and news clippings. e.g., from social networking sites and newspaper and magazine websites (904). The photographs and news clippings are formatted into a draft message which is sent to the grandmother for editing and approval (906). Later, the communication system determines the identity of the grandmother's unborn first grandchild (908), e.g., from a birth announcement in a local newspaper, from a social networking post by the grandchild's parents, or from the grandchild's own enrollment in the communication system or an affiliated social networking site. The communication system monitors the location of the grandchild's computing device, one or more of the grandchild's parents' computing devices, or another proxy for the grandchild's location (910). When the communication system detects that the grandchild is at the family homestead (912), the message is sent to the computing device that is at that location (914). Referring toFIG. 10, in a second example, the Awake! Coffee Shop wants to send a coupon for use at the coffee shop to every registered recipient who passes within two miles of the coffee shop during the morning rush hour and who is a qualified prospect for purchases. The registered recipients may be people who were already registered with the communication system, e.g., by virtue of their enrollment in a social network site. The registered recipients may also be people who registered with the communication system in response to a promotion by the Awake! Coffee Shop, by the communication system itself or by another entity. For instance, the Awake! Coffee Shop may have notified its customers that those customers who register with the communication system would be eligible to receive coupons. In one example, social network users who “like” the Awake! Coffee Shop are automatically registered with the communication system. The communication system uses historical data regarding past purchases of potential recipients obtained from profiles of those potential recipients collected by the communication module134to enable the predictive analytics submodule504to determine the joint propensity of each potential recipient to purchase a particular type of beverage at a particular time of day (1002). When that joint propensity for a particular recipient reaches a predetermined threshold level (1003) and that recipient is in proximity to the Awake! Coffee Shop (1004), a personalized marketing message is automatically generated (1006) and delivered to a mobile device of the recipient (1008). For example, during the triggering time (i.e., during the morning rush hour), the communication system monitors the location of each registered recipient and sends a coupon to each recipient whose joint propensity reaches the threshold level and who passes within two miles of the coffee shop. In this example, there may be a vast number of potential recipients whose location the communication system may monitor (e.g. every registered recipient in the communication system or every registered recipient who has purchased coffee in the last year). The communication system may selectively monitor some potential recipients less frequently than others, or even not at all, to improve system performance. For instance, the communication system may monitor only registered recipients whose regular commute takes them past the Awake! Coffee Shop and whose joint propensity reaches the threshold level. Referring toFIG. 11, in a third example, the Boston Tourism Board prepares a welcome message to be sent to each traveler who is registered with the communication system upon the traveler's arrival at Boston's Logan International Airport. A traveler may register with the communication system, e.g., by “liking” a Boston-related entity on a social networking site, by purchasing a plane ticket to Boston, by reserving a hotel room in Boston, or by another action. Based on each registered traveler's profile and other historical data including, e.g., past purchases and attendance at events or restaurants, the predictive analytics submodule504calculates the propensity of each registered traveler to attend or patronize various restaurants, events, and other activities (1100). When a registered traveler arrives in Boston (1102), the communication system retrieves information such as maps, restaurant listings, and event schedules from publicly available websites and other sources of information (1104) and automatically generates a customized message including information determined to be most relevant to the traveler based on the calculated propensity of that traveler (1106). The customized message is delivered to the traveler (1108). In a fourth example, a human resources department of a corporation registers each employee of the corporation with the communication system. In some cases, the communication system may act as a surrogate for a corporate sender and use the corporate personnel database to identify recipients and, based on the profiles of the recipients, determine appropriate parameters and/or communications. The communication system may be used for location-based communication with the employees. In one example, a worksite in Atlanta, Ga., is in need of additional employees for a short-term project. The communication system may be used to send a message to all qualified employees who are within a certain distance (e.g., 100 miles) of the worksite alerting them to the project opportunity. In one example, an employee traveling to India requests that additional parts be sent to him for use in completing a repair. The communication system determines the location of the employee (e.g., the address of his hotel, the address of his worksite, or another location) and arranges for the additional parts to be sent directly to the employee. In one example, the corporation may offer a discounted health club membership to its employees. The communication system may be used to send a reminder message to any employee who passes within one mile of the health club. Referring toFIG. 12, in a fifth example, a mobile navigation device, such as a GPS device or mobile computing device installed in a car, may be linked to the communication system via the internet, a mobile communications network, or both. A sender can instruct the communication system to send a message to a recipient based on the location of the recipient's mobile navigation device. The message can be sent to the recipient's computing device (e.g., a smartphone), to the recipient's mobile navigation device, or both. For instance, a grandmother may instruct the communication system to send a message to her as-yet-unborn grandson if his car ever passes by the Coffee Café in New York City, as determined by the grandson's mobile navigation device (1200). The predictive analytics submodule504, using electronically-accessible sources, determines when the grandson acquires a car or other vehicle with a registered mobile navigation device (1202), the grandson's preferred caffeinated beverage if any (1204), and whether the Coffee Café still exists or has merged with another company (1206). If the grandmother's message is still relevant, the communication system delivers it to the car's mobile device when it passes a Coffee Café in New York City (1208). In case the grandmother is dead or incapacitated the communication system as her surrogate (described above) composes a relevant message and delivers it to the vehicle's mobile device. The message may include images, voice recordings, videos, icons to be clicked on, or other media, or a combination of any two or more of them. For instance, the message may include an icon that, when clicked, leads to a Quick Response (QR) code for a coupon to the Coffee Café. The grandson can scan the QR code with his smartphone and then bring the smartphone into the Coffee Café to redeem the coupon. As desired, the system may include more or fewer than the components illustrated. The system is described above with reference to block and flow diagrams of systems, methods, apparatuses, and/or computer program products according to examples. In some instances, the publisher and reader users may access the system by desktop or laptop computers. In some embodiments, the publisher and reader users may access the system by mobile devices such as smart phones. In some embodiments, the publisher and reader users may access the system by tablet computers or any commercial computing device connected to the internet. In some cases, the system may be constructed to operate on the internet independent of existing systems. The significant event system may operate using existing social networks, e.g., Facebook®), Google+®, or Yammer™ as platforms using existing application interfaces open to website developers. One or more blocks of the block diagrams and flow diagrams, and combinations of blocks in the block diagrams and flow diagrams, respectively, can be implemented by computer-executable program instructions. Some blocks of the block diagrams and flow diagrams may not necessarily need to be performed in the order presented, or may not necessarily need to be performed at all, in some cases.
a présente invention concerne des compositions d'enduction destinées à l'application sur des substrats non poreux en vue de former une pellicule temporaire de protection sur ces substrats. Des enduits temporaires sont généralement appliqués à des articles tels que des bandes et plaques métalliques et autres articles non poreux tels que ceux comportant des surfaces stratifiées en matiares plastiques ou peintes pour protéger de tels articles contre la rouille due à l'humidité de l'atmosphère, contre les dégâts dus à des impuretés de l'atmos- phère comme des produits chimiques véhiculés par l'air, contre l'abrasion due à la poussière, au sable, au gravier et aux éraflures, et aussi pour permettre l'usinage de l'article protégé sans endommager la surface protégée. Des enduits temporaires pour plaques et bandes métalliques comprennent en général des huiles grasses, de la graisse de suint et du pétrolatum, appliqués à chaud ou à froid, ou en solution. a Demanderesse a trouvé quelton peut utiliser des produits du type de l'huile de Thal, ou résine liquide, comme plastifiants pour améliorer la souplesse de pellicules forrnées de polymères et copolymères d'acétate de vinyle et de compositions polyacryliques , et que de telles pellicules, incorporant comme plastifiants des produits du type de la résine liquide, ou en dérivant, fournissent de bons enduits temporaires pour divers substrats, y compris des articles métalliques, et des surfaces stratifiées en matières plastiques et peintes. L'expression "produits du type de l'huile de Thal" ou 1,produits dérivés ou du type de la résine liquide", telle qu'utilisée dans le présent exposé, concerne tout acide gras ou mélange de tels acides gras que l'on trouve dans la résine liqui de, la colophane, des mélanges d'acides grtas de résine liquide et de colophan , d -s tettes de résine liquide et du brai de ré-sine liquide, les produits dérivés de la résine liquide s'obtiennent par la distillation fractionnée sous pression réduite de résine liquide brute que l'on obtient comme sous produit de la fabrication de la pâte à papier par le procédé au sulfate. Selon la présente invention,une composition destinée à l'application sur des substrats non poreux en vue de former dessus une pellicule de protection temporaire, comprend une émulsion d'acétate de polyvinyle, ou une émulsion de polyacrylate, en mélange avec 5 à 75 9'~ en poids d'un produit dérivé de résine liquide, par rapport au poids total de solides dans le mélange. De préférence le mélange comprend 10 à 20 %' en poids d'un produit dérivé de la résine liquide, par rapport au poids total des solides présents dans le mélange. le produit dérivé de la résine liquide peut servir seul ou en mélange avec des plastiliants normau pour polymères vinyliques comme le piltalate de dibutyle. L'eApressior "émulsions d'acétate de pol3rvinyle" englobe dans son cadre des émulsions d'homopolymères d'acétate de vinyle, qu'ils soient non plastifiés ou plastifiés à l'aide des plastifiants normaux pour polymères vinyliques, et des émulsions de copolymères d'acétate de vinyle avec des monomères vinyliques classiques, comme des esters acryliques, des esters méthacryliques, l'acide acrylique, l'acide méthacrylique, le styrène, l'acrylonitrile et le chlorure de vinyle. On peut préparer une composition appropriée en mélangeant le produit dérivé de résine liquide avec une émulsion d'acétate de polyvinyle ou tuile émulsion de polyacrylate à une température comprise entre 200 et 90C. Ou bien, on peut préparer la composition d'enduction en mélangeant à la température ambiante une solution du produit dérivé de la résine liquide dans un solvant hydrocarboné aliphatique ou aromatique avec une émulsion d'acétate de polyvinyle ou une émulsion de polyacrylate. Un solvant préféré est le xylène. Les compositions d'enduction résultantes sont utiles comme enduits protecteurs temporaires pour divers substrats. On peut les appliquer aux substrats par des tecmiques classiques comme la projection au pistolet de pulvérisation, le trempé, l'application à la brosse ou au rouleau.L'incorporation du produit dérivé de la résine liquide dans la pellicule d 'acétate de polyvinyle augmente la souplesse de la pellicule et pormet la formation de pellicules continues à des températures plus basses que dans les cas d'émulsions d'acétate de polyvinyle sans plastifiant. les compositions d'enduction peuvent être appliquées sur divers substrats où elles fournissent un enduit pro tecteur temporaire contre la rouille due à l'humidité de l'atmosphère, contre une attaque due aux produits chimiques véhiculés par l'air, et contre l'abrasion due à la poussière, au sable, au gravier et aux éraflures. Lorsqu'on le désire, on peut aisément enlever par "pelage" l'enduit temporaire du substrat. L'invention est en outre illustrée par les exemples non limitatifs suivants dans lesquels toutes les parties sont exprimées en poids. "Vandike 6100" est une émulsion d'acétate de polyvinyle hcmopolymère, contenant 55 % de solides ; "Vandike 6107" est une émulsion d'acétate de polyvinyle homopolymère dont la plastification interne est obtenue grâce à 7 % de phtalate de dibutyle par rapport aux solides de la résine ;; I,Van- dike 7085" est une émulsion de copolymère d'acétate de vinyle/ acrylate de butyle à plastification interne, et "Vandike 550" est une émulsion de copolymère polyacrylique à piastification interne à 100 %. "Vantal P" est un brai de résine liquide, dont l'indice d'acide est de 30 à 60 mg EOH/g, et c'est un semisolide aux températures ambiantes. '1Vantal Al" est un acide gras de résine liquide contenant environ 1 de de colophane, et "Vantal P." est de la colophane de résine liquide. Exemple 1 On dissout du "Vantal P" dans xylène de façon à obtenir une solution à 70 9 en poids que l'on délaye doucement dans-du "Vandike 6100". On effectue des expériences témoins sur du "Vandike 6100" non modifié et sur du "Vandike 6100" additionné de xylène, les compositions et leurs caractéristiques étant présentées ci-après 97,6 84,2 95,2 "Vantal P" - 5,5 - 11,0 Xylène - 2,4 2,4 4,8 4,8 en en poids de "Vantal P" par rapport aux solides totaux 0 10 0 20 0 Secondes Perspz après 1 jour 145 109 127 61 117 Secondes Persoz après 2 jours 146 108 140 61 120 Persoz après 7 jours 143 108 139 64 118 Température de formation de pellicule, OC, 18 11 16 5 16 On applique des pellicules, dont l'épaisseur à l'état humide est de 0,25 mm, sur une feuille de "Melinex" et l'on sèche à 220C. et 60 , d'humidité relative.Des mesures de la dureté Persoz indiquent que le "Vantal P" est un plastifiant pour les pellicules d'acétate de polyvinyle. Comme le montrent les compositions C et ii, le xylène joue aussi le rôle de plastifiant, mais l'effet est lydien moindre que lorsqu'on utilise le xylène et le "Vantal P" ensemble. On applique sur une feuille de "lielinex" des pellicules dont l'épaisseur à lé-tat humide est de 0,25 mm, et l'on sèche à différentes températures dans un réfrigérateur. On observe la température minimale nécessaire pour la formation d'une pellicule continue. les résultats obtenus à l'aide des compositions B et D montrent que le "Vantal P" produit un abaisssement intéressant de la valeur minimale de la température de formation de pellicule dans le cas du "Vandike 6100". les expériences témoins (compositions C et E) montrent que le xylène a peu d'effet. exemple 2 On dilue à l'eau les compositions B et D de l'exemple 1 et on les applique par projection au pistolet ou au trempé, sur des panneaux dégraissés, de façon à obtenir des pellicules ayant à sec la même épaisseur. On peut enlever ces pellicules simplement en les "pelant", alors qu'on ne peut enlever par "pelage" une pellicule de "Vandike 6100".Lorsqu'on conserve en milieu humide les panneaux ainsi enduits, on observe que l'enduit contenant 20 ,; de "Vantal P" assure une protection totale de l'acier. L'enduit avec 10 % de "Vantal P" donne une assez bonne protection de l'acier, qui ne montre que très peu de taches de rouille, par comparaison avec la forte formation de rouille observée lorsqu'on utilise du "Vandike 6100" non modififé à la même épaisseur de pellicule sèche. Exemple 3 On forme trois compositions d'enduction en délayant du "Vantal A1" dans du "Wndike 6100'1 à 20 C. dans des proportions de 5 % , 10 , et 20 2 en poids par rapport à la teneur totale en solides. On dilue les mélanges à l'eau et on les utilise pour enduire au trempé des Vanneaux d'acier. On sèche les panneaux ainsi endtlits, durant une semaine à la température ambiante, puis on les garde en milieu humide. On constate après ce magasinage qu'il est possible d'enlever par "pelage" les enduits des panneaux. les compositions d'enduits contenant 20 % de "Vantal Al" assurent la meilleure protection. Exemple 4 On dissout du "Yantal R" dans du xylène pour obtenir une solution à 40 9 en poids, et on la délaye dans du "Vandike 6100" pour obtenir des mélanges contenant 5 %;', 10 % et 20 ,% en poids de "Vantal R" , par rapport à la teneur totale en solides. On utilise chaque composition pour enduire des panneaux d'acier comme dans l'exemple 3, et l'on trouve qu'après un magasinage en milieu humide, tous les enduits peuvent être retirés des panneaux par "pelage". Une protection particulièrement bonne est assurée par les pellicules contenant 10 ffi et 20 7o en poids de "Vantal R". Exemple 5 On prépare 4 compositions d'enduction en délayant du "Vantal A dans du "V-ndike 6107" à la température ambiante dans les proportions de 5%, 10 %, 20 % et 30 % en poids, par rapport à la teneur totale en solides. On dilue les corlpositions à l'eau et les applique par projection au pistolet sur des pan veaux d'acier douz , d'aluminium et de Flatage d'étain et de chrome.On applique aussi les compositions par projection au pistolet sur une plaque d'acier revêtue d'une couche de finition acrylique décorative cuite au four, sur une feuille de polyester rerforcée par de la fibre de verre, et sur une surface stratifiée en mélamine-formaldéhyde. Dans d'autres expériences, on applique ces compositions par enduction au trempé et à la brosse sur les surfaces précitées. Dans chaque cas, l'enduit protecteur~temporaire peut être facilement enlevé par "pelage" d'une pellicule continue de sur le substrat. la pellicule donne au substrat une protection contre la rouille due à l'humidité de 1' atmosphère, contre les dégâts dus aux impuretés présentes dans l'atmosphère comme les produits chimiques véhiculés par l'air et contre l'abrasion due à la poussière, au sable, au gravier et contre les éra flues Exemple 6 On prépare 4 compositions d'enduction comme décrit à l'exemple 5 sauf qu'on remplace 11 émulsion "Vandike 6107" par l'émulsion de copolymère "Vandike 7085".On applique sur les surfaces énumérées à l'exemple 5 les compositions d'enduction par projection au pistolet de pulvérisation, enduction au trempé et à la brosse, et dans chaque cas, on obtient un enduit protecteur temporaire qu'on peut aisément enlever du substrat par pelage d'une pellicule continue. L'enduit assure une protection contre la rouille due à l'humidité de l'atmosphère contre les dégâts dus aux impuretés que contient l'atmosphère comme les produits chimiques véhiculés par l'air, et contre l'abrasion duc à la poussière, au sable, au gravier et aux éraflures. Exemple 7 On prépare 4 compositions d'enduction comme décrit à l'exemple 5, sauf qu'on remplace l'émulsion "Vandike 6107" par une émulsion de polyacrylate "Vandike 550". On applique aux surfaces énumérées à l'exemple 5 les compositions d'enduction au pistolet, par enduction au trempé et à la brosse, et l'on obtient dans cloaque cas un enduit de protection temporaire que l'on peut facilement enlever en pellicule continue du substrat. L'enduit assure une protection contre la rouille due à l'humidité de l'atmosphère, contre les dégâts du rux input tels présentes dns l'atmosphère comme les produits chimiques véhiculés par l'air, et contre l'abrasion due à la poussière, @@ @@@@, au gravier et aux éraflures. REVENDICAIONS 1. Composition d'enduction destinée à l'application à des substrats non poreux axin de former une pellicule protectrice temporaire sur ces substrats, caractérisée par le fait que cette composition comprend une émulsion d'acétate de polyvinyle -ou une émulsion de polyacrylate en mélange avec 5 à 35 /6 en poids d'un produit dérivé de l'huile de thal ou de résine liquide, par rapport au poids total des solides dans le mélange. 2. Composition d'enduction selon la revendication 1, caractérisée par le fait que cette composition comprend une émulsion d'acétate de polyvinyle ou une émulsion de polyacrylate en mélange avec 10 à 20 75 d'un produit dérivé de résine liquide, par rapport au poids total des solides dans le mélange. 3. Procédé de préparation d'une composition d'enduction selon la revendication 1, caractérisé par le fait que l'on incorpore le produit dérivé de la résine liquide dans l'émulsion d'acétate de polyvinyle ou dans l'émulsion de polyacrylate à une température comprise entre 200 et 900C. 4. Procédé de réparation d'une composition d'enduction selon la revendication 1, caractérisé par le fait qu'on incorpore une solution de produit dérivé de la résine liquide dissous dans un solvant hydrocarboné aliphatique ou aromatique, à la température ambiante dans l'émulsion d'acétate de polyvi- nyle ou dans l'émulsioake polyacrylate.
Anti-overpressure fuel tank The invention relates to a tank for receiving fuel, said tank comprising a venting system comprising a flap for closing an opening made in the tank, said flap being subjected to a float and mounted in a hinged manner in the tank so as to adopt a closed position, pushed by the float when the level of fuel in the tank reaches a certain threshold, and an open, venting position, driven by the float when the level of fuel is below said threshold. According to the invention, the flap comprises a valve controlled by means that can open the valve when the flap is in a closed position and the level of fuel is below said threshold. CROSS-REFERENCE TO RELATED APPLICATIONS This application is a national stage application under 35 U.S.C. § 371 of PCT Application No. PCT/FR2016/050085, filed on Jan. 18, 2016, which claims priority to and the benefit of French Application No. 1550916 filed on Feb. 5, 2015, which are incorporated herein by reference in their entirety. TECHNICAL DOMAIN The present invention concerns the technical domain of fuel tanks, of an aircraft for example, and more particularly it concerns a fuel tank equipped with a venting system for equalizing the internal pressure of the tank to atmospheric pressure, as a function of fuel consumption, in order to prevent any overpressure within said tank. The invention finds particularly advantageous application in a fuel tank subjected to an inerting system by means of the injection of an inert gas. PRIOR ART Known from the prior art is a fuel tank, of an aircraft for example, equipped with a venting system of the type comprising a flap for closing an opening to the exterior made in the tank. In particular, the flap is subjected to a float, and is mounted in a hinged manner within the tank so as to adopt a closed position, pushed by the float when the level of fuel in the tank reaches a certain threshold, and an open vented position, driven by the float when the level of fuel is below said threshold. In other words, during the phase of filling the fuel tank, the float valve remains open until the level of fuel, which is increasing, pushes the float and drives the flap in order to close the opening of the tank, making it possible to prevent fuel from being evacuated from the tank through said opening. Subsequently, in flight, and more particularly in fuel consumption phase, the level of fuel decreases so that the float drives the flap open by the effect of gravity, so that the flap adopts the open vented position and enables, by admission of exterior air, equalization of the internal pressure of the tank and the atmospheric pressure. However, this type of tank, equipped with a venting system, has certain disadvantages inherent to the structure thereof. Indeed, the movements of the fuel inside the tank, for example during pitching a rolling of an aircraft comprising such a tank, can cause, by action on the float, undesired closing of the flap. In particular, this is a major disadvantage when said tank is subjected to an inerting system by means of the injection of an inert gas. Indeed, in the domain of aeronautics, and in order to meet the new requirements concerning aircraft safety, and more particularly to avoid the risks of flammability of the mixture of air and fuel vapor in the tanks, the tanks are subjected to inerting systems, active under some conditions, such as for example when the oxygen content in the tank exceeds a certain threshold. Thus, the injection of inert gas while the flap is unintentionally closed causes the pressurization of the tank, which pressure maintains the flap in the closed position, even when the fuel is no longer exerting force on the float. The result is that the venting function of the tank is no longer ensured and the pressure increases inside the tank, which can have disastrous consequences. DESCRIPTION OF THE INVENTION One of the purposes of the invention, therefore, is to remedy these disadvantages by proposing a fuel tank equipped with a venting system, which is safe and which makes it possible to ensure—optimally and in every circumstance—the venting function of said tank, in order to avoid any overpressure within said tank. To that end, a fuel tank has been developed comprising a venting system comprising a flap for closing an opening made in the tank. The flap is subjected to a float, and is mounted in a hinged manner in the tank so as to adopt a closed position, pushed by the float when the level of fuel in the tank reaches a certain threshold, and an open vented position, driven by the float when the level of fuel is below said threshold. The flap comprises a valve controlled by means capable of opening the valve when the flap is in the closed position while the level of fuel is below said threshold, in order to prevent overpressure within said tank. In this way, when the flap is undesirably maintained in the closed position by the force exerted by internal pressure, the venting function of the tank is ensured by the valve. Thus, the tank according to the invention is safe. According to a first embodiment of the tank according to the invention, the valve is in the form of a rod mounted sliding within an orifice of the flap, between a position of opening and a position of closing the orifice. The rod comprises a first end with a shoulder intended to act as a stop for the closed position of the rod, and a second end with a shoulder forming a seat for a compression spring arranged around the rod and pressed against the flap in order to maintain the rod in the closed position. Thus, when the force exerted by the internal pressure on the valve exceeds the sum of the forces exerted on the valve by the atmospheric pressure and the spring, said valve is pushed into the open position, against said spring, and ensures venting of the fuel tank in order to prevent overpressure within said tank. According to a second embodiment of the tank according to the invention, the valve is subjected to a second float and mounted in a hinged manner in the tank such that said valve adopts a closed position, by being pushed by the second float when the level of fuel in the tank reaches a certain threshold, and an open vented position in order to prevent overpressure within said tank, by being driven by the second float when the level of fuel is below said threshold and the force exerted by the internal pressure on the valve is less than the sum of the forces exerted on the valve by the atmospheric pressure and by the weight of the second float. Advantageously, in this embodiment, the second float is subjected to the valve by means of an arm forming a lever arm for augmenting the force exerted by the second float on the valve. DETAILED DESCRIPTION OF THE INVENTION The invention concerns a tank (1), intended to receive fuel, and equipped with a venting system (2) for equalizing the internal pressure of the tank (1) to atmospheric pressure and avoiding any said tank. The invention concerns a tank (1) for any type of aircraft, civilian or military, such as an airplane or a helicopter for example. In a known way, the tank (1) comprises an opening (3) providing communication with the exterior of said tank (1) for the venting thereof. The venting system (2) of the tank (1) comprises a closing flap (4), mounted pivoting with respect to the tank (1) and around a pin (5) in order to adopt a closed position wherein it closes the opening (3) of the tank (1), and an open venting position wherein it frees said opening (3). The flap (4) is extended at the lower part by an arm (6) that terminates in a float (7). When the flap (4) is in the closed position, the arm (6) is essentially horizontal and in proximity to the opening (3) so that when the tank (1) is full, the action of the fuel on the float (7) maintains the flap (4) in the closed position to prevent any leakage of fuel through the vent opening (3). When the level of fuel decreases, the float (7) descends together with the level of fuel and causes the pivoting and opening of the flap (4) around the pin (5) for venting the tank (1). According to the invention, the flap (4) comprises a valve (8) in the form of a rod (8a) intended to ensure the venting of the tank (1) when the flap (4) is in the closed position and the level of fuel is below the threshold. More specifically, according to a first embodiment of the invention, illustrated inFIG. 1, the valve rod (8a) is mounted sliding within an orifice (9), in communication with the exterior, made in said flap (4). The valve rod (8a) is capable of sliding between a position of opening and a position of closing the orifice (9). At an upper end, the valve rod (8a) comprises an upper shoulder (10) intended to act as a stop for the closed position of said valve rod (8a). Said upper shoulder (10) advantageously comprises an O-ring (11) for sealing the valve rod (8a) in the closed position. The valve rod (8a) comprises a lower end comprising a lower shoulder (12) forming a seat for a compression spring (13), arranged around the valve rod (8a), on the one hand pressed against said lower shoulder (12), and on the other hand pressed against the flap (4). The compression spring (13) maintains the valve (8) in the closed position. The valve (8) is capable of adopting the open position, pushed by the force exerted by the internal pressure of the tank (1), against said compression spring (13). In effect, when the pressure increases inside the tank (1), for example when an inerting system injects inert gas into the tank (1), while the flap (4) is in the closed position by the action of the fuel on the float (7), due to the pitch or role of the aircraft, for example, the injection of said gas causes an increase in the internal pressure, and the force exerted by said internal pressure maintains the flap (4) in the closed position, even when the fuel is no longer acting on the float (7) of said flap (4). Thus, according to the invention, the internal pressure also exerts a force on the valve rod (8a) and tends to cause it to adopt the open position. Thus, when the force exerted by the internal pressure of the tank (1) on the valve rod (8a) exceeds the sum of the forces that maintain the valve rod (8a) in the closed position, namely those forces exerted by the atmospheric pressure and by the compression spring (13), the valve (8) is pushed into the open position, against said compression spring (13), and ensures a venting of the fuel tank (1). In this way, it can be seen that when the internal pressure of the tank (1) reaches a certain threshold, the valve (8) is opened and venting is ensured in a secure manner Of course, it is the compression spring (13) that determines the pressure at which the valve is to be opened (8). Indeed, the spring (13) is dimensioned to exert a force in order to maintain the valve (8) in the closed position, said force being equal to the force exerted by the difference between a first internal pressure threshold and the atmospheric pressure. Thus, it is possible to dimension the spring (13) so as to allow the opening of the valve (8) when the flap (4) is in the closed position and the level of fuel is below a defined threshold, from a certain desired internal pressure threshold. Of course, a person skilled in the art will know how to dimension said spring (13) based upon the desired internal pressure threshold. Based upon the foregoing, when the tank (1) comprises an internal pressure above the internal pressure threshold, the valve (8) is pushed into the open position, against the spring (13), by the force exerted by the internal pressure, and ensures a venting of the fuel tank (1). According to a second embodiment of the invention illustrated inFIG. 2, the operation of the flap (4) and the float (7) remain the same, even though the valve rod (8a) is controlled by a second float (14). Indeed, in this embodiment, the valve rod (8a) is not mounted sliding within the orifice (9) of the flap (4), but is mounted pivoting with respect to the flap (4) around the pin (5) to adopt a closed position wherein the upper shoulder (10) closes the orifice (9), and an open venting position wherein said valve rod (8a) frees said orifice (9). More precisely, the valve rod (8a) is attached perpendicularly to a second arm (15) extended at one end by the second float (14) and attached, pivoting around the pin (5), at another end to the flap (4). Thus, the valve rod (8a) is capable of adopting the open position, driven in rotation by the weight of the second float (14), and the closed position, pushed by the second float when the level of fuel in the tank (1) reaches a certain threshold. Thus, when the flap (4) is undesirably maintained in the closed position by the internal pressure, and the level of fuel is below the threshold, the weight of the second float (14) augmented by the leverage effect of the arm (15) causes the opening of the valve (8), while the force exerted by the internal pressure on the valve (8) is lower than the sum of the forces that tend to move the valve (8) towards the open position, namely those forces exerted by the atmospheric pressure and by the weight of the second float (14). The internal pressure that exerts a force on the valve (8), equal to the sum of the forces that tend to move the valve (8) to the open position, corresponds to the internal pressure threshold. In this way, in the event the flap (4) is undesirably maintained in the closed position, venting is ensured over a range of pressures, until the internal pressure exceeds the internal pressure threshold. It is obvious, of course, that it is the weight of the second float (14) that determines the internal pressure threshold at which the valve (8) is moved to the closed position. Indeed, the second float (14) and the length of the arm thereof are dimensioned in order to exert a force tending to open the valve (8), greater than the force corresponding to the difference between the forces exerted on the valve (8) by the internal pressure threshold and the atmospheric pressure. Thus, it is possible to dimension the second float (14) and the lever arm (15) thereof, such as to allow for the opening of the valve (8), when the flap (4) is in the closed position and the level of fuel is below a defined threshold, up to a certain desired internal pressure threshold. Of course, a person skilled in the art will know how to dimension said spring (14) and the arm (15) thereof, based upon the desired internal pressure threshold. It can be seen from the foregoing that the invention provides a fuel tank capable of ensuring venting safely and under any circumstance, in order to prevent any overpressure within said tank.
L'invention couvre une machine établie pour la fabrication continue de tubes en matière plastique armée obtenus par l'enrou- lement de mèches imprégnées d'une résine qui n'a pas fait prise ou qui n'a fait prise que d'une manière incomplète, cet enroulement étant effectué autour d'un tube de matière plastique refoulé de manière à se déplacer axialement le long d'un mandrin. Les mèches proviennent d'nne masse remplacée au-tomatiquement dès qu1el le estépuisée par une masse fraîche, les masses fraîches étant fournies à partir d'une réserve. Le procédé de fabrication comporte la prise et la vérification sous pression du tube au cours de sa fabrication continue. D'une manière générale,l'iwntion a pour objet la fabrication continue de tubes convenant particuLièrement au transport de fluides sous pression et elle vise notamment un procédé de fabrication permettant d'obtenir des tubes que l'on peut poser sur terre et sous la mer en très grandes longueurs1à savoir une longueur pratiquement inFinie en utilisant une seule machine. Suivant son aspect d'ensemble, l'invention utilise une machine assurant la formation continue de tubes en fibres agglutinées par l'intermédiaire de dispositifs fournissant sans interruption les fibres d'armature et les autres matériaux constitutifs des tubes, de manière à produire des tubes de longueur illimitée sans que l'on ait à effectuer en certains points des joirto@iements entre éléments de tube. Différentes propositions ontdéja été présentées pour la fabrication continue de tels tubes, mais dans tous les cas connus du demandeur, les machines antérieures n'étaient pas véritablement continues dans le sens où ce mot a été utilisé ci-dessus pour la définition générale de l'invention. Autrement dit, les machines antérieures fabriquaient bien des tubes de toute longueur désirée pour être posés notamment sur terre et au fond de la mer sans aucun joint intermédiaire, mais la continuité de telles machines s'appliquait antérieurement au cas de machines d'où le tube sort en bout sur une longueur toujours croissante,mais seulement jusqu'au moment où la machine doit s'arréter,en général parce que la fourniture de matières premières est épuisée, ce qui nécessite la confection de joints en certains points, même si l'on considère des longueurs importantes de tubes individuels et de joints peu nombreux. Le fonctionnement de la machine conforme à l'invention consiste à placer les mèches sur un mandrin qui ne tourne pas ou sur un manchon obtenu par refoulement, ces mèches étant imprégnées par un liant qui fait prise ou qui fond ultérieurement de manière à former un tube rigide ou semi-rigide. Dans le cas d'une agglutination par une résine, la résine d'imprégnation pourra être amenée à une prise partielle correspondant à ce que l'on appelle généralement l'état B, la prise complète étant assurée ensuite par chauffage. Les mèches sont constituées de proforence par un assemblage de fibres de verre ou autres et peuvent se présenter sous forme de cordons de section droite à peu près circulaire ou encore de rubans ou de bandes. Les mèches peuvent être fournies par des groupes de bobines ou de rouleaux tournants formant avec les supports et guides des bobines et le système de chauffage servant à l'agglutination des fibres, un poste de bobinage. On peur prévoir un ou plusieurs postes de bobinage supplémentaires de manière à pouvoir former des tubes de toute épaisseur de paroi. Suivant une forme d'exécution préférée de l'invention, des moyens sont prévus pour associer à chaque bobine ou groupe de bobi- nes fournissant la mèche an cours d'utilisation une bobine de rechange susceptible d'être amenée automatiquement en position d'utilisation lorsque la bobine ou l'une des bobines d'un groupe de bobines en cours d'utilisation est épuisée, des moyens étant prévus de plus pour remplacer automatiquement la bobine de rechange par une bobine de rechange fraîche provenant d'une réserve de bobines Ainsi on peut arriver à la production véritable continue d'un tube. On peut refouler par-dessus le mandrin une première couche de matière plastique ou autre pour servir à former une couche étanche vis-à-vis du fluide transporté par le tube. Dan-s le cas d'un manchon en matière plastique, on utilisera comme matière plastique a refouler pour former le manchon une matière thermoplastique telle qu'elle puisse se solidifier au moins partiellement avant la mise en place des couches constituées par les meches hélicoîdales. Le mandrin peut être refroidi par de l'eau pour faciliter la prise de la couche de matière plastique refoulée,qui peut d'ailleurs être refroidie également par application extérieure d'un agent de refroidissement pulvérisé avant la mise en place des mèches. Lorsqu'on procède au refoulement d'une première couche de matière plastique ou autre sur le mandrin, celui-ci peut présenter un diamètre réduit pour tenir compte de la contraction de cette couche de matière plastique pendant son refroidissement. De préférence le mandrin ne s'avancera pas au delà du point où la première couche de matière plastique s'est solidifiée suffisamment pour pouvoir recevoir les mèches du premier stade d'enroulement. Suivant une autre possibilité, la couche de matière plastique peut être appliquée intérieurement par extrusion dès que le tube a quitté le dispositif de chauffage du premier poste d'enroulement Ce dispositif de chauffage peut fonctionner sous l'effet de rayons infra-rolges ou bien par voie di- électrique ou radioélectrique. De plus, on peut diriger un gaz chaud sur les mèches lorsqu'elles ont été posées sur le mandrin afin de les soumettre à un chauffage préliminaire avant qu'elles n' arrivent devant le dispositif de chauffage associé au stade d'enroulement considéré. On peut appliquer une ou plusieurs couches de matière plastique à l'extérieur des mèches au cours de la fabrication du tube de manière à former des couches intermédiaires ou une gaine extérieure ou encore à la fois une ou plusieurs couches intermédiaires et une gaine extérieure. On peut appliquer ces couches supplémentaires à l'état liquide par refoulement ou bien par pulvérisation On pourrait encore les appliquer sous forme d'une poudre ou d'une fritte que l'on ferait fondre au cours du passage devant les dispositifs de chauffage. Tes bobines ou rouleaux fournissant les mèches comportent avantageusement un enroulement ne comprenant ni noyau ni gabarit de telle sorte que rien ne subsiste après épuisement. De tels bobines ou rouleaux formant des masses fournissant les mèches à appliquer en hélice peuvent être montéessurdes broches portées par un support annulaire dont l'axe cotncide avec celui du mandrin et qui est susceptible de tourner autour de ce dernier. Les broches sont dirigées soit vers l'avant de ce support annulaire, c'est-à-dire dans la direction d'avancement du tube, soit vers l'arrière . Les mèches axiales peuvent être fournies par des masses montées sur des broches fixes. Le principe général du fonctionnement apparaîtra clairement à la lecture de la description suivante d'une forme d'exécution de l'invention et de certaines variantes données à titre d'exemple en se référant aux dessins ci-4oints sur lesquels: La fi. 1 est une vue schématique en perspective d'une machine à bobiner les tubes. La fice 2 représente schématiquement l'ensemble du support de la masse tournante fournissant la machine. en mèches. La fig. 3 est une coupe verticale traversant une broche pointant une masse constituant une mèche avec les moyens assurant l'amenée successive des masses en position d'utilisation. Les figes. 4,5 et 6 représentent en coupe longitudinaie,pour trois positions relatives des éléments,le mécanisme faisant avancer les masses le long d'une broche horizontale. Les figs. 7,8 et 9 sont des vues en perspective des mécanismes fournissant des masses fraîches au support tournant portant les bobines. La fig. 10 représente le dispositif assurant le déplacement des mèches pendant que les masses ou bobines avancent le long de la broche qui les porte. LA fig. 11 représente un détail du dispositif de la fig. 10 La fig. 12 représente une variante du dispositif assurant le déplacement des mèches. La fig. 13 représente le dispositif permettant d'éprouver le tube terminé sous pression. En examinant en premier lieu la fig. 1 des dessins,on voit une tête de refoulement annulaire 1 de type connu assurant le refoulement par dessus le mandrin d t une couche tubulaire de matière plastique 2. Les bobines ou masses 4 montées sur les broches 7 fournissent les mèches axiales 3 qui sont amenées par l1intermé- Lit-ire de dispositifs tendeurs approwriés aux guides 24'appliquant ces mèches 3 à la surface de la matière plastique refoulée 2, Des bobines ou masses de rechange 8 sont potées également par les mêmes broches 7. Uh premier support annulaire 5 tourne autour du mandrin et porte excentriquement une broche 6 sur laquelle sont montées deux bobines ou masses 9 dont chacune fournit une mèche 10 destinée à former la première couche hélicoSdale 15 , cette fourniture se faisant par l'intermédiaire des tendeurs 11 et des guides 12. La broche 6 porte également au moins une masse ou bobine de rechange 13. Des jeux 23 sont maintenus entre les bobines ou masses successives, tant en ce qui concerne les mèches axiales que les mèches hélicoîdales. tn deuxième support annulaire 1k tourne autour du mandrin dam une direction opposée à celle de la rotation du premier support annulaire 5, ce second support portant une broche excentrique avec ses masses ou bobines 17 et 18, les détendeurs 19 et les guides 20 d'une manière eemblable à ce que lton a décrit pour le premier support annulaire 5, de telle sorte que l'on peut ainsi poser des mèches 21 pour former une deuxième couche hélicoîdale 22 où les spires forment un angle avec celles de la première couche hélicoRdale 15. Les extrémités libres 26 et 27 des mèches provenant des massa de rechange 13 et 18 sont maintenues eu place au voisinage des mèches 28 et 29 provenant des masses adjacentes correspondantes 9 et 17. I1 en est de mime pour les extrémités libres des mèches provenant desmasses de rechange 8 destinées à former les mèches axiales 3. Un dispositif de chauffage 24 assure liagglutination des mèches pour former le tube. IL faut prendre les mesures nécessaims pour l'évacuation de toutes les vapeurs produites au moment de la prise de la matière plastique. Des galets ou pistes 25 engrenant convenablement avec les supports annulaires 5 et 14 sont soumis pression pour entraîner le tube au fur et à mesure de sa formation. Les mèches axiales 3 servent à empêcher la tension exercée par ces galets sous pression 25 d'ouvrir les mèches hélicoîdales L5 et 22 avant que la matière plastique du tube n'ait fait prise. Des galets supplémentaires 128 peuvent être placés à différents endroits le long de la machine pour porter le tube et le mandrin ou bien le tube seul. Le dispositif représenté en fig. 1 ne permet qu'une fabrication relativement lente si les mèches 10 et 21 sont étroites. On peut arriver à une fabrication plus rapide en accroissant la vitesse de la machine. Ceci cependant entraînera des difficultés en ce qui concerne l'amenée des bobines ou masses formant les mèches hélicoRdales. On pourrait obtenir une fabrication plus rapide avec une vitesse de machine relativement lente en utilisant pour les mèches hélicoidales 10 et 21 des bandes d'une certaine largeur. Si les mèches axiales 3 sont constituées par des bandes dtune certaine largeur, elles pourront être etalées par les guides, de manière à recouvrir presque entièrement toute la périphérie du tube 2 en matière plastique reòulée.Les guides pourront dans ce cas être de forme annulaire et leur axe coincidera alors avec l'axe du mandrin. Il est cependant peu avantageux d'enrouler les mèches sur les bobines sous forme de bandes larges, étant donné que ceci introduira des manques de continuité importants au cours de la formation du tube lorsque'une bobine est épuisée. De plus, les masses ou bobines elles-memes devraient être dans ce cas de grande largeur et donc difficiles à manipuler. Suivant une forme d'exécution préférée9 on utilise un nombre plus élevé de broches sur chaque support annulaire et-chaque broche porte un nombre relativement important de bobines. Lorsqu'un ne broche est pleine, au moins une masse ou bobine portée par cette broche formera ur rechange; les autres formant les bobines de travail fourniront les mèches destinees à outre placées sur le tube. Les mèches provenant de chaque bobine de travail seront amenées par les dispositifs tendeurs et de guidage pour astre appliquées hélicordalement sur le tube, de la manleredécrite ci-dessus. Des mèches provenant de toutes les bobines de travail sur une broche donnée seront guidées de préférence de manière à se trouver adjacentes l'une à L'autre sur le tube sous forme de rubans ou de bandes. De même une série de broches fixes portant des bobines de travail et des bobines de rechange peuvent être utilisées pour les mèches axiales de manière à recouvrir complètement le mandrin ou le tube refoulé suivant le cas. Toutes les bobines portées par ureou plusieurs broches tant pour les couches axiales que pour les couches hélicoîdales peuvent être enroulées avec des mèches constituées au moins partie; lement par des filaments métalliques, de telle sorte que chaque mèche est électriquement conductrice sur toute sa longueur. De telles mèches noyées dans le tube terminé peuvent faciliter la détection électromagnétique de la position du tube par tout moyen connu, ou encore, on peut les utiliser comme conducteurs pour transmettre les signaux le long du tube. La fig. 2 est une vue en bout d'un support annulaire du type decrit ci-dessus et sur cette figure schématique on voit que le support annulaire 30 porte vingt broches 31 dont chacune porte un nombre de bobines ou de masses 32 dont au moins une est un rechange, les autres formant des bobines de travail. Les mèches 33 provenant de chaque bobine de travail ont amenées par l'intermédiaire des tendeurs 34 et des guides 35 sur le tube 36 pour y être posées suivant des hélices,Les mèches provenant de deux broches adjacentes sont amenées après avoir traversé les tendeurs correspondants à un seul guide pour être appliquées sur le tube 36 sous forme de bandes 37. Suivant une disposition possible on peut utiliser onze bobines de travail sur chaque broche 31. Chaque bande 37 sera donc constituée par vingt-deux mèches 33. Lorsqutune bobine portée par la broche est utilisée en laissant une place libre, les autres bobines disposées entre cet espace libre et l'extrémité extérieure de la broche seront repoussées les unes à la suite des autres de manière à combler cet intervalle.Si la machine est établie de manière à ce que l'axe du tube soit à peu près vertical, toutes les broches portant les bobines 1tant pour les mèches axiales que pour les mèches hélicoSdbes,pourront être dirigées de telle manière que ces bobines se déplaceront sous l'action de la penanteur. Suivant un procédé préféré les bobines seront étalonnées avant la mise en marche de la machine de telle sorte que sur la même broche deux bobines différentes ne contiendront jamais la même longueur de mèche, et aussi que ltépuisement ne puisse gagner qu'une seule bobine à la fois. De préférence aussi les bobines étalonnées doivent être disposées à l'origine avec des quantités croissantes de mèche à partir de ltextrémité intérieure de la broche ce qui assure que la bobine. qui est épuisée à un moment quelconque est toujours celle qui se trouve à l'intérieur à tout moment de la fabrication du tube. Une telle disposition obligera les bobines à tourner à des vitesses différentes et par suite elles doivent être disposées indépendanment sur la broche. I1 est prévu un ensemble de cliquets ou de loquets qui obligent les bobines à se déplacer à la suite les unes des autres en même temps que l'on obtient une séparation entre les différentes bobines portées par la broche. La fig. 3 fait comprendre le principe du fonctionnement d'un tel dispositif de loquets assurant le mouvement successif des bobines. La broche 38 est portée par le support annulaire 39 et est usinée ou établie de manière à présenter une rainure longitudinale 40. Un collier 41 sépare la bobine intérieure 42 de ce support annulaire 39. Une seconde bobine 49 est repré pentée comme portée par la mêe broche 38. A chaque emplacement de bobine 48,4S',4" est disposé un cliquet 43 susceptible de tourner autour d'un pivot 4Roea cliquets étant portés à l'intérieur de la rainure longitudinale 40 pour coopérer avec les loquets 45. Des ressorts 46 agissent de manière à faire pivoter chaque cliquet 43 afin que le bras 47 le plus court de chaque cliquet fasse saillie au-dessus de la surface de la broche 38 lorsqu'il n'y a pas de bobine à l'emplacement considéré, ce qui permet au loquet 5 agissant sur l'autre bras du cliquet de steffacer et de ibé- rer la bobine qui se trouve immédiatement au-dessus. Si la machine est montée de telle manière que 1'axe du tube soit à peu près horizontal, les bobines portant les mèches axiales peuvent encore être disposées de manière à se déplacer sous l'effet de la pesanteur. Cependant, les bobines fournissant les mèches destinées à être enroulées en hélice doivent se déplacer Le long des broches par d'autres moyens qui peuvent être pneumatiques, hydrauliques ou électro-magnétiques ou encore commandés par embiellage mécanique soit isolément ou en association avec un dispositif pneumatique, hydraulique ou électro-magnétique I1 en est de même pour les bobines formant les mèches axiales si leurs broches sont à peu près horizontales. Un dispositif pneumatique, hydraulique ou électro-magnétique, à associer par exemple avec le système déjà décrit en se référant à la fig. 3, peut recevoir un fluide gazaux, liquide ou électrique suivant le cas sous la commande du loquet 45 ou du cliquet 43 disposé à l'emplacement le plus proche d'une bobine du côté intérieur. De même un embiellage mécanique destiné à déplacer les bobines peut être disposé de manière à coopérer avec ces cliquets ou avec ces loquets. Les figs. 4,5 et 6 représentent le principe du fonctionnement d'un embiellage mécanique donné à titre d'exemple et servant à déplacer les bobines dans une direction horizontale. On y voit une bobine 50 montée sur une broche 51 présentant une rainure longitudinale 52. A l'intérieur de cette rainure est monté un déclic 53 qui est commandé avec un cliquet 43 monté à pivotement sur l'ergot 44, comme on l'a déjà décrit en se référant à la fig. 3. A l'intérieur de la même rainure 52 se trouve également une barre 54 susceptible de se déplacer d'un mouvement linéaire de va-et-vient à peu près parallèlement à l'axe de la broche 51.Ce mouvement de va-et-vient peut être obtenu par tous moyens appropriés à partir de la rotation du support annulaire déjà décrit en se référant aux figs. 1,2,3 Cette barre 54 porte les leviers 55 et 55 pivotant chacun autour de l'ergot correspondant 570u 58. L'un des bras du levier 55 porte un galet 59. Le levier 56 coopère avec un loquet 60 susceptible de se déplacer librement à l'intérieur de la barre 54. La fig. 4 représente cette barre 54 au voisinage d'une extrémité de sa course en l'abaence de toute bobine agissant de manière à abaisser le cliquet 43. Lorsque la barre 54 se déplace vers la gauche, le galet 59 porté par le levier 55 vient en prise avec le déclic 53, de manière à faire tourner les leviers 55 et 56 qui sont articulés l'un sur l'autre de façon à soulever le loquet 60. La fig. 5 représente les mêmes organes à un stade ultérieur du fonctionnement de cet embiellage, les leviers 55 et 56 ayant alors tourné d'un angle supplémentaire de manière à soulever le loquet 60 en déplaçant la bobine 50 avec la barre 54. La fig. 6 représente la barre 54 au voisinage de l'autre extrémité de son trajet. Le déclic 53 et le cliquet 43 ont tourné ensemble sous l'action combinée de la bobine 50 et du galet 51. Celui-ci a quitté l'extrémité du déclic 53 et les leviers 55 et 56 ont tourné de manière à permettre au loquet 60 de descendre. Aussi longtemps que le loquet 43 demeure en position abaissée sous l'action de la bobine 50, Le galet 59 se déplacera avec la barre 54 sans venir en prise avec le déclic 53. Le loquet 60 demeurera donc dans sa position abaissée jusqu'à ce que le déclic 43 soit soulevé à nouveau. Le mouvement successif des bobines sur l'une des broches comne décrit précédemment aura pour résultat qu'aucune bobine ne se trouvera en place à l'emplacement extérieur prévu sur cette broche. Pour assurer le fonctionnement continu des dispositions doivent être prises pour fournir une bobine à chaque broche immédiatement après la terminaison d'un mouvement d'avance des bobines les unes derrière les autres. On peut fournir les bobines pour les mèches axiales au moyen d'une simple goulotte ou d'une trémie étant donné que les broches destinées à ces mèches doivent être fixes. Les bobines formant les mèches hélicoîdales doivent être amenées sur des broches en mouvement. Dans le cas de machines présentant une faible consommation de bobines, e'est-à-dire dans le cas de machines présentant un petit nombre de mèches ou bien marchant à faible vitesse ou encore produisant des tubes de petit diamètre, il peut tre possible d'amener les bobines en place à la main. De préférence cependant il faut trouver des moyens pour amener automatiquement les bobines sur leurs broches. Dans un dispositif préféré, il est prévu un dispositif assurant une anenée à peu près continue de bobines jusqu'au voisinage immédiat de chaque support annulaire tandis que d'autres moyens prélèvent les bobines de leur dispositif de fourniture au moyen des broches sur lesquelles une ou plusieurs bobines manquent. Le fait qu'une broche ne présente pas zone bobine à son extrémité extérieure peut induire un index ou un repere à fonctionner ou à se déplacer sous 11 action de la broche de manière à coopérer avec un détecteur ou réceptuur correspondant monté sur le dispositif d'alimentation en bobines, ce qui à son tour provoque le transfert d'une bobine de ce dispositif d1alimantation jusque sur la broche. La fig, 7 représente à titre exemple une forme d'exécution d'un dispositif de ce genre. Un support annulaire 61 susceptible de tourner autour du tube 74 porte quatre broches 62 dont chacune porte une série étalonnée de bobines 63, la bobine extérieure 64 de chaque série étant la plus grosse. L'absence d'une bobine sur une broche 62 à la suite du mouvement des bobines les unes à la suite des autres sur cette broche amènera L'élément télescopique 65 de cette broche à faire saillie dans une direction axiale de la dite broche. Une goulotte 66 porte les bobines 67 destinées à etre fournies aux broches et présente une partie Incurvée 68 telle que le rayon du lieu du centre d'une bobine s'avançant le long de cette partie incurvée 68 soit parallèle à celui du trajet des broches 62.Les bobines 67 ne peuvent normalement s'avancer sur cette partie incurvée 68 en raison de la présence d'une butée 69. Sur la goulotte 66 est également monte un guide 70 présentant un profil 71 lormant rampe. L'élément télescopique 65 est partiellement repousse par 1a pr@fil 71 pour pénétrer ensuite complètement dans l'ouverture centrale de la bobine suivante 72 destinée à être appliquée sur la broche cette bobine étant ainsi entraînée en dehors de la butée 69. Pendant que la bobine 72 se déplace le long de la partie incurvée 68, une autre retape 73 repousse la bobine 72 le longs de la broche 62 en refoulant complètement ltélément télescopique 65 qui demeure verrouillé dans cette position effacée jusqu'au déplacement suivant des bobines sur une broche. La fig. 8 représente à titre d'exemple une forme d'exécution dtune variante suivant laquelle le support annulaire 75 porte les broches 76 et les bobines 77 de la manière déjà décrite. Un support 86 susceptible de tourner autour de l'axe du tube 79 comprend un collier 78 et au moins un bras 80 portant un récipient 81 rempli de bobines 82 convenablement espacées ltune par rapport à L'autre, le rayon de rotation des centres de ces bobines autour de l'axe du tube 79 étant égal à celui des broches 76, Un élément télescopique 83 prolonge axialement la broche 87 en l'absence de toute bobine à l'extrémité extérieure de cette broche, comme déjà décrit en se référant à la fig. 7; cet élément télescopique vient en prise avec un levier 84 qu'il repousse en obligeant un récepteur 85 à sortir axialement par rapport au récipient 81. L'élément télescopique 83 vient à cet effet au contact du récepteur 85 et fait tourner le support 86 autour de l'axe du tube 79. La rotation de ce support 86 oblige les bobines qutil porte à se déplacerdans la direction du support annulaire 75 et par suite une bobine se trouve ainsi chargée sur la broche 87. Imm@édiatement ensuite la même rotation du support 86 efface le récepteur 85 et ramène en place le levier 84. Le récipient 85 peut être retiré du bras 80 lorsqu'il est vide pour être remplacé par un autre récipient portant une nouvelle fourniture de bobines 82. La fig. 9 représente un autre exemple d'un procédé de fourniture de bobines auxbroches assurant Le transfert des mèches hélicoîdales Un support annulaire 88 porte huit broches 89. Pour plus de clarté on a représenté sur le dessin seulement une broche 89 chargée d'une pile étalonnée de bobinss 90. En fonctionnementm normal,toutes les broches 89 doivent porter des bobines 90. Un support auxiliaire 91 est solidarisé avec le support annulaire 88 par 11 intermédiaire d'une pièce tubulaire 92. L'écartement axial entre le support auxiliaire 91 et le support annulaire 88 est tel que les broches 89 ne puissent pas pénétrer das les évidements 94 ménagés dans le support 91. Les deux supports 91 et 88 tournent solidairement autour de l'axe du tube 93. Le support auxiliaire 91 présente huit évidements 94 dont les dimensions correspondent à la réception de bobines 95, chaque évidement 94 étant disposé de telle manière que l'axe de la bobine qu il peut porter coincide avec l'axe de la broche correspondante. Les bords extérieurs des évidements 94 présentent avantageusement ddes rayons importants de courbure 96.Autour du support auxiliaire 91 est monté une bague de garde fixe 97 qui ne tourne pas avec ce support auxiliaire et sert à maintenir en place les bobines 95, tout en pouvant former un appui pour le support auxiliaire 91 par l'intermédiaire de paliers appropriés. La bague de garde 97 présente une fente radiale 98 dont la largeur suffit à permettre à une bobine 99 de descendre directement dans un évidement 94. Une goulotte 100 de préférence ouverte fournit les bobines 101 à la partie supérieure du support annulaire 91. Une butée 102 empêche une telle bobine 99 de venir au contact du support auxiliaire 91 ou avec les bobines 95 en place tant qu'un évidement vide 94 ne se présente pas au-dessous de la goulotte 100.La butée 102 est soumise à l'action d'un détecteur déterminant la présence ou l'absence d'une bobine dans l'un quelconque des évidements 94. Lorsqu'unie bobine portée par une broche quelconque 89 est épuisée, il se produit à peu près comme décrit précédemment un déplacement des autres bobines les unes à la suite des autres, ces bobines comprenant la bobine 95 se trouvant à l'intérieur du support auxiliaire 91 sur la broche considérée. Suivant une variante, le support auxiliaire 91 et la bague de garde 97 peuvent coulisser sur la pièce tabulaire 92 et avancer de manière à placer simultanément des bobines sur toutes les broches, cette opération s'effectuant lorsqu'un détecteur approprié indique que sur toutes les broches il manque au moins une bobine. Pour empêcher tout manque de continuité non négligeable pendant 7a pose des mèches sur le tube pendant le déplacement des bobines les unes à la suite des autres comme décrit précédemment, il est nécessaire de s 'assurer que chaque mèche est transférée sur le tendeur et le guide voisin d'une manière à peu près simultanée avec le déplacement de la bobine - fournissant la mèche. Suivant une disposition particulière chaque mèche se déplacera à la suite du mouvement de sa bobine, ce que l'on obtient par une forme particulière donnée aux tendeurs et aux guides et en donnant des angles d'avance convenables auxmèches. Les figs. 10 et 11 représentent à titre d'exemple une forme d'exécution d'un dispositif que l'on peut utiliser pour obtenir un tel déplacement des mèches. La -fig. LO représente une disposition générale suivant laquelle les bobines 103 sont portées par une broche 104 portée elle-même par le support annulaire 105. Les mèches 106 provenant des bobines 103 sont appliquées par l'intermédiaire des tendeurs 107 et des guides 108 à un c ollecteur 109. Une bobine de rechange 126 ne fournissant momentanément pas de mèche est également montée sur la broche 104.Chaque tendeur 107 est constitué par une pièce 110 soumise à 11 action d'un ressort et dont la forme est telle que si une bobine 111 se déplace le Long de la broche L04 comme décrit précédemment, la mèche 112 provenant de cette bobine est amenée à traverser ce tendeur 107 pour occuper une position nouvelle 112'. Ce déplacement vers la position 112' obligera à son tour la mèche à se déplacer en traversant le guide 108 vers la position 112". Les parties 113 des mèches peuvent former des angles aigus avec le guide 108 dans leur trajet vers è collecteur 109.Les évdements 114 à l'intérieur du guide îog doivent présenter une forme appropriée pour empêcher les mèches 112,113 de se déplacer le long des guides 108 et des tendeurs L07 en raison de la présence de cet angle aigu. La fig 11 représente à titre d'exemple la forme que l'on peut donner aux évidements 116 d'un guide 115, les surfaces de ces évidements étant définies à peu près par î1interpénétration d'un e8ne oblique 117 et du guide 115. Lorsque la mèche à quitté le petit bout 118 de l'évidement 116, elle peut être repoussée légèrement vers l'arrière par rapport à 11 évidement 116. Des biseaux ou des arrondis 1!0 peuvent être prévus sur tout ou partie de la longueur des borts des évidements 114. Si pour une raison quelconque,il n'est pas possible de guider les mèches d'une manière telle qu'elles se déplacent d'une façon sAre Le long des tendeurs et des guides sous l'effet unique du déplacemeut des bobines, un dispositif complémentaire peut être prévu pour le déplacement des mèches, de préférence en coopération aved le dispositif produisant le déplacement des bobines les unes à la suite des autres comme décrit précédemment. La fig. 12 représente à titre d'exemple un tel dispositif de déplacement monté entre les tendeurs et les guides fixes. Les mèches 12L passent par dessus les tendeurs k22 et de là devant les barres 123,124 avant de traverser les guides 125. Les barres de déplacement 123,124 se déplacent l'une apres 1'au- tre en même temps que les bobines de telle sorte que les saillies 126 et 127 de ces barres repoussent les mèches 121 vers les positions suivantes qu'elles doivent occuper sur les tendeurs 122 et les guides 125. Suivant une variante on n'utilise qu'une barre de déplacement entraînant toutes les mèches simultanément, de préférence au moment où une bobine extérieure ou de rechange est amenée sur la broche. Suivant d'autres dispositifs,la e@ les barres de déplacement peuvent être montées entre la broche et les tendeurs ou encore on peut utiliser deux systèmes complets de barresde déplacement dont l'un est placé entre la broche et Les tendeurs et l'autre entre les tendeurs et les guides. Il peut être nécessaire pour diverses raisons de modifier l'angle de pose des mèches hélicoîdales, par exemple si sn désire produire un tube de diamètre différent ou bien si on change le nombre total de mèches. Dans ce ce cas, on peut prévoir des moyens pour modifier facilement la position du @ollecteur 109 représente en fig. 10 et son orientation par rapport au support annulaire 105 On peut également prévoir des moyens pour régler la position de certains tendeurs ou guides ou de tous es tendeurs et guides pour pouvoir maintenir des angles d'amenée convenables pour le mèches. A la fin du mouvement des bobines les unes à la suite des autres le long d'une broche comme décrit, une bobine de rechange est amenee sur la dite broche. L'extrémité extérieure libre de la mèche ca-enue dans cette bobine de rechange sera recueillie et maintenue au voisinage de la mèche fournie par la bobine de travail disposée le plus à l'extérieur. Lors du mouvement suivant des bobines le long de leur broche, l'extrémité de la mèche provenant de la bobine de rechange sera placée au contact de la mèche provenant de la bobine de travail extérieure re considérée et l'on applique une pression suffisante et une chaleur suffisante pour que 1 1on soit stir dTagglutiner les deux mèches de telle sorte quelles soient jointes grâce à la prise ultérieure de la résine qui les imprègne.De préférence cette opération se fait assez tot au cours du mouvement des bobines le long de leur broche, gracie à quoi le joit entre les mèches passe au delà des tendeurs et des guides avant que la bobine de travail la plus extérieure se déplace à son tour le long de la broche. On peut prévoir un dispositif pour éprouver d'une manière continue sous pression le tube terminé en maintenant à l'intérieur du tube une zone contenant un fluide sous pression. Une telle zone doit être fermée hermétiquement à chaque extrémité par des organes en forme de pistons couplés l'un à l'autre de manière à maintenir un espacement constant entre eux, ces organes pouvant se déplacer librement à l'intérieur du tube. On introduit le fluide sous pression dans la zone séparant les pistons sous un débit dont la valeur est égale à celle,que lton connaitldes fuites le long des pistons. Les fuites par les parois du tube seront décelées sous forme d'une chute de la pression d'alimentation en fluide.Suivant une disposition préférée, le dispositif servant à l'épreuve sous pression devra être placé dans le tube en un point où sa fabrication est terminée, Un exemple d'un tel dispositif servant à éprouver sous pression lEtrnchéité du tube est représenté en fig. 13. Le tube 129 quitte le mandrin après avoir fait prise. D'autres couches de matière plastique ou d'autres mèches nnn représentées peuvent encore lui être appliquées. On introduit un tube 131 dans le mandrin pour transférer un fluide sous pression dans une chambre 132 délimintée par les parois du tube 129 et par deux pistons 133 et 134. Ces pistons présentent des chanfreins importants 142 le long de leur bord dirigé vers le mandrin 130 de manière à faciliter leur introduction dans le tube au début de la fabrication.Les pistons 133 et 134 sont reliés par des tubes 135 qui les traversent et qui laissent échapper le fluide vers la partie 136 du tube 129 la plus éloignée du mandrin 130. Les tubes 135 sont flexibles ou bien reliés d'une manière flexible par leurs extrémités aux pistons 133 et 134, Le mandrin 130 présente un canal 137 s'étendant sur toute sa lon geur et par lequel on permet l'échappement du fluide qui a cheminé le long des pistons 133,134. La pression fluide dans le tube 129 et dans la chambre 132 est déterminée par le dispositif sensible à la pression 138. Lorsque les pistons 133 et 134 ne sont pas introduits dans le tube 129, ils peuvent venir reposer sur des supports ou dans des supports appropriés tels que 139. Ceux-ci peuvent présenter des biseaux servant à diriger le tube 129 au début de sa fabrication. Des galets 141 peuvent servir à porter le tube 129 et les appareils portés par ce dernier en cours de fabrication. Une machine servant à la fabrication de tubes conformément à L'invention peut être montée sur un véhicule approprié à partir duquel on peut poser le tube en cours de fabrication sur terre aussi bien que dans l'eau* On peut produire à peu près comme décrit deux tubes ou davantage d'une manière simultanée, sans qu'ils soient nécessairement du meme diamètre. Ces tubes peuvent être reliés L t un à l'autre par bridage ou par tous autres moyens, de manière à pouvoir reposer c8te à côte avec leurs axes à peu près parallè Les. Lorsqu'on pose les tubes dans l'eau, on peut faire en sorte qu'aun moins un des tubes soit rempli d'air ou d'un autre gaz assurant sa flottaison avec l'autre ou les autres tubes. Suivant une variante,lorsqu1on veut descendre les tubes au fond de l'eau au moins l'un des tubes doit être rempli e béton ou d'un ballast ou de tout autre produit lourd en particules, que l'on peut introduire dans le ou les tubes par pompage à partir d'une suspension dans un liquide. Les tubes à utiliser comme ballast ne sont pas nécessairement soumis à une épreuve sous pression en cours de fabrication, auquel cas on peut introduire avantageusement ce ballast dans les tubes au moyen d'un tube auxiliaire traversant le mandrin et pénétrant dans l'alésage du tube terminé. Lorsquton p:se des tubes au fond de la mer par exemple on peut utiliser pour le tube enfonçant 11 ensemble un ballast constitué avantageusement par des galets , du sable ou de la boue dragués à partir du fond de la mer. suivant une disposition avantageuse on peut produire simultanément à partir de la même machine plusieurs tubes coaxiaux enroulés simultanément avec des pièces d'écartement placées de manière à maintenir leur écartement et leur coùcentricité. Dans ce cas, le tube intérieur doit contenir les produits à transporter tels que du gaz tandis que l'intervalle annulaire entre un tube intérieur et un tube extérieur recevrait le ballast constitué par les produits provenant du fond de la mer.On s'assurerait ainsi que le tube intérieur est protégé mécanique ^t tandis que la force d'enfoncement serait uniforme et qu'aucune portion gênante ne pourrait s'introduire dans l'ensemble. Suivant une variante on pourrait remplir d'eau un seul tube pour assurer l1annulation de la flottabilité en cours de pose. Après La pose le tube peut être maintenu au fond de la mer par exemple en l'enrobant d'un ballast en béton, après quoi on peut expulser l'eau en utilisant La pression du gaz d'un sondage si lton doit utiliser le tube pour le transport du gaz naturel, Ainsi 7 on peut réduire sensiblement Les efforts subis par le tube en cours de pose et l'on pourra déposer le tube établi conformément a l'invention sous des profondeurs d'eau bien plus importantes que cela n'est possible à ce jour. Alors que l'on a décrit un tube en matière plastique synthétique ranforcée par des fibres de verre, il doit être bien entendu que l'on pourrait appliquer une technique analogue avec d'autres fibres ou filaments de renforcement tels que des filaments de carbone ou des fils d'acier à haute tension ainsi que d'autres liants tels que l'aluminium, le plomb, le zinc et leurs alliages, REVENDICATIONS 1.Machine pour la fabrication continue de tubes constitués par des fibres et des liants comprenant des dispositifs pour l'amenée ininterrompue des fibres servant à armer le tube en ême temps@ue les autres produits constituant le tube de manière à pouvoir produire des tubes de longueur illimitée, sans qu'il soit nécessaire d'effectuer en certains points d'opérations de jointoiement. 2. Machine suivant la revendication 1 comprenant des moyens pour enrouler en hélice sur un mandrin ou sur un manchon des mèches d'armature provenant de bobines d'alimentation et imprégnées à l'avance par un liant, ce liant étant amené à faire prise ou étant fondu après la pose des mèches sous forme d'un tube rigide ou semi-rigide i des moyens étant prévu pour associer à chaque bobine fournissant des mèches ou à chaque groupe de tellesbobines une bobine de rechange que l'on amène automatiquement en position d'utilisation lorsque cette bobine ou l'une des bobines de ce groupe de bobines est épuisée, après quoi la bobine de rechange est remplacée automatiquement par une nouvelle bobine de rechange provenant d'un magasin de bobines 3 Machine suivant la revendication 2 comportant une tête de refoulement annulaire repoussant par dessus un mandrin qui ne tourne pas une couche tub ti': aire des éléments formant le tube 2 cette couche avançant axialement dans une série de postes d'enrou- perlent comprenant chacun un support tournant autour de l'axe du mandrin avec les supports pour les bobines d'alimentation et les bobines de rechange et enfin des guides pour les mèches à enrouler en hélice. 4. Machine suivant la revendication 3 où @es mèches axiales de renforcement sont également posées sur le tube refoulé ces mèches axiales provenant de bobines montées sur des supports fixes 5 Machine suivant l'une quelconque des revendications précédentes où les bobines forment des masses ne comportant ni noyau ni gabarit 6 Machine suivant les revandications 2 et 5 où chaque bobine est portée par une broche portant plusieurs bobines dont au moins une constitue une rechange, tandis que des moyens sont prévus pour le déplacement automatique des bobines le long de leur broche pour amener la bobine de rechange en position d'utilisation lorsqu'une bobine en cours d'utilisation sur cette broche est épuisée 7.Machine suivant la revendication 6 où l'axe du mandrin est vertical ou à peu près vertical , ce qui permet aux broches portant les bobines fournissant les mèches hélicoîdales à être à peu près verticales, de telle sorte que le déplacement des bobines le long de leur broche se fait sous l'action de la pesanteur et est réglé par un dispositif automatique à loquet 8.Machine suivant la revendication 6 où l'axe du mandrin est horizontal ou à peu près horizontal de telle sorte que les broches portant les bobines fournissant les mèches hélicoîdales sont également horizontales , des moyens mécaniques étant prévus pour le déplacement des bobines sur chaque broche , ces dispositifs fonctionnant autormbtiquement dès que la broche considérée ne présente pas le nombre total normal de bobines de travail, ce fonctionnement déplaçant la bobine de rechange le long de sa broche vers une position de travail en complétant au total désiré le nombre des bobines sur la broche 9.Machine suivant les revendications 6,7 ou 8 comprenant de plus des moyens pour maintenir 1'alimentation en bobines fraîches, ce dispositif étant associé à un dispositif de transfert venant placer une bobine fraîche provenant de la réserve sur la broche porteuse sur laquelle manque une bobine 10.Machine suivant les revendications 3 et 9 où chaque support tournant fournissant des mèches à enrouler en hélice présente plusieurs broches portant des bobines , ces broches étant disposées parallèlement à l'axe du mandrin et autour de lui à la même distance radiale de cet axe , de telle sorte que les bobines fraîches provenant du magasin ou de la réserve avancent d'une manière intermittente pour arriver successivement en un point voisin du trajet suivi par ces broches au cours de leur rotation avec ce support, lEabsence d'une bobine sur l'une Ues broches déterminant le fonctionnement du dispositif de transfert au moment où la broche considérée arrive au voisinage de ce point, le dispositif de transfert servant àanener une bobine fraîche sur cette broche et à appliquer simultanément à cette bobine une accélération angulaire autour de 1 'axe du mandrin, de telle sorte que le transfert est effectué sans aucun arret de la rotation du support ll.tIachine suivant la revendication 10 où le magasin ou réserve de bobines fraîches comprend une goulotte le long de laquelle les bobines descendent sous l'effet de la pesanteur, 12.Mchine suivant la revendication 10 ou 11 où le dispositif de transfert comprend un support de bobine susceptible de tourner avec le support portant les broches 13.Machine suivant la revendication 9 où le magasin ou réserve de bobines fraîches comprend un récipient susceptible de tourner autour de l'axe du mandrin suivant un cercle ayant le même rayon que les broches montées sur leur support tandis que Le dispositif de transfert comprend des moyens pour prélever les bobines de telle sorte que le récipient de bobines subit une accélération angulaire sous lteffet de toute broche sur laquelle manque une bobine et est couplé momentanément avec cette broche pour assurer le transfert d'une bobine fraîche sur cette dernière 14.Machine suivant l'une des revendications 6 à 13, où les guides des mèches provenant de plusieurs bobines portées par une broche quelconque sont disposées suivant ate rangée parallèle à cette broche, selon une disposition telle que les mèches sont transférées automatiquement d'un guide au suivant le long de cette rangée, pendant que les bobines se déplacent le Long de la broche 15.Machine suivant la revendication 14 comprenant une ou plusieurs barres de déplacement de mèche agissant après le déplacement des bobines le long d'une broche de manière à venir en prise avec les mèches et à les déplacer d'une façon correspondante le long de la rangée de guides 16 Machine suivant l'une des revendications 6 à 15 comprenant des moyens pour lier l'extrémité de la mèche provenant d'une bobine de rechange à la mèche d'une bobine de travail le long de cette dernière au moment du déplacement de la bobine de rechange le long de la broche vers une position de travail 17. Machine suivant l'une quelconque des revendications précédentes comprenant un poste destiné à éprouver d'une manière continue le tube sous pression, ce tube traversant ce poste lorsqu'il a été formé 18 Machine suivant les revendications 2 et 17 où le dispositif d'épreuve à la pression comprend deux pistons reliés l'un à l'autre, disposés à l'intérieur du tube et autour desquels le tube glisse , ces pistons définissant entre ewr une chambre dans laquelle on applique une pression fluide par l'intermédiaire du mandrin 19 Machine suivant l'une quelconque des revendications précédentes, servant à établir simultanément au moins deux tubes juxtaposés ou coaxiaux 20 Machine suivant les revendications 2 et 19 comportant des moyens pour introduire des produits dans au moins l'un des tubes en passant par le mandrin correspondant en cours de fabrication 21. VéhicuLe terrestre ou marin équité avec une machine suivant l'une des revendications précédentes et permettant la pose continue d'un tube sur terre ou sur l'eau.
Transfer belt and image forming apparatus A transfer belt is configured to transfer a toner image carried on a first main surface of the transfer belt to a recording medium. When the transfer belt is pressed with pressure application three increased at a predetermined pressure application rate and is then pressed with certain pressure application force by using a lower block provided with a hole and an upper block, k2 [μm/s] satisfies 6≤k2≤30, k2 [μm/s] being determined by (a−b)/{2×(t2−t1)}, where a [μm/s] represents a maximum value of a displacement amount of a measurement region that is a portion of the first main surface corresponding to the hole, b [μm] represents a convergence value thereof, t1 [s] represents a time when the maximum value is observed, and t2 [s] represents a time when the displacement amount reaches (a+b)/2 again after the maximum value is observed. This application is based on Japanese Patent Application No. 2016-133310 filed with the Japan Patent Office on Jul. 5, 2016, the entire content of which is hereby incorporated by reference. BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a transfer belt that transfers a carried toner image to a recording medium, and an image forming apparatus including the transfer belt. Particularly, the present invention relates to a transfer belt at least including an elastic layer, and an image forming apparatus including the transfer belt. Description of the Related Art Generally, in an image forming apparatus, a toner image formed on a surface of a photoconductor is transferred onto a surface of a transfer belt at a primary transfer portion, whereby the toner image is carried by the transfer belt. Then, the toner image thus carried by the transfer belt is transferred to a recording medium, such as a sheet, at a secondary transfer portion. Normally, in the secondary transfer portion, a predetermined electric field is formed between a secondary transfer roller and a counter roller both constituting a nip portion. The electric field acts to cause the toner to move from the transfer belt, which passes through the nip portion, to the recording medium, which also passes through the nip portion. Accordingly, the toner image is transferred onto the recording medium at the secondary transfer portion. For such a transfer belt, various types of transfer belts have been proposed. A transfer belt including an elastic layer has been known as a transfer belt allowing for transfer onto a recording medium (for example, embossed paper) having a recording surface provided with irregularity. For example, Japanese Laid-Open Patent Publication No. 2014-85633 or Japanese Laid-Open Patent Publication No. 2014-102384 discloses a transfer belt in which an elastic layer composed of an acrylic rubber or the like is provided on a base layer constituted of an inelastic layer composed of polyimide or the like. Since the transfer belt having such an elastic layer is used, when the transfer belt is pressed against the recording medium at the nip portion of the secondary transfer portion, the transfer belt is deformed such that a portion of the front surface side of the transfer belt enters a recess provided in the surface of the recording medium. This leads to a reduced distance between the bottom surface of the recess of the recording medium and the front surface of the transfer belt. Accordingly, the action of the electric field is facilitated to promote the movement of the toner, thus attaining improved transferability to the recording medium having the recording surface provided with the irregularity. Even when such a transfer belt having the above-described elastic layer is used, the elastic layer provided in the transfer belt needs to have an increased thickness and a decreased hardness in order to achieve high transferability to a recording medium having a surface provided with a deeper recess. However, the transfer belt thus configured is cracked or worn at an early stage due to repeated use, thus resulting in significantly deteriorated image quality, disadvantageously. SUMMARY OF THE INVENTION In view of this, the present invention has been made to solve the above-described problem, and has an object to provide a transfer belt that can achieve high transferability to a recording medium having a surface provided with irregularity and that can suppress deterioration of image quality even in the case of repeated use, as well as an image forming apparatus including such a transfer belt. As a result of conducting diligent research by producing various types of belts including elastic layers, the present inventors have found that transferability is drastically improved only when using, as a transfer belt, a belt having a surface deformed to exhibit a predetermined characteristic behavior when pressure is applied thereto under a predetermined pressure application condition. Accordingly, the present inventors have completed the present invention. Here, by using an evaluation method employing a below-described displacement amount measuring device contrived by the present inventors, it is possible to evaluate whether or not a belt has a surface deformed to exhibit a predetermined characteristic behavior when pressure is applied thereto under a predetermined pressure application condition. A transfer belt according to the present invention at least includes an elastic layer, the transfer belt having a pair of exposed main surfaces constituted of a first main surface and a second main surface located opposite to each other, the transfer belt being for transferring a toner image carried on the first main surface to a recording medium, k2[μm/s] satisfying 6≤k2≤30 when a pressed region of the transfer belt is pressed at a pressure application rate of 4 [kPa/ms] until pressure application force reaches 200 [kPa] and then is uniformly pressed under the pressure application force of 200 [kPa] by using a lower block that has an upper surface having a protrusively curved elongated surface having a width of 20 [mm] and a curvature radius of 20 [mm] and that is provided with a hole formed at a top of the protrusively curved elongated surface and having a diameter of 1.25 [mm] and an upper block that has a lower surface having a recessively curved elongated surface having a width of 20 [mm] and a curvature radius of 20.3 [mm] so as to place the transfer belt on the upper surface of the lower block such that the first main surface faces the upper surface of the lower block and so as to sandwich a portion of the transfer belt between the protrusively curved elongated surface and the recessively curved elongated surface by lowering the upper block toward the lower block, the pressed region of the transfer belt being the portion of the transfer belt sandwiched between the protrusively curved elongated surface and the recessively curved elongated surface, k2[μm/s] being determined by (a−b)/{2×(t2−t1)}, where a [μm] represents a maximum value of a displacement amount of a measurement region that is a portion of the first main surface corresponding to the hole, b [μm] represents the displacement amount of the measurement region after the displacement of the measurement region is converged, t1[s] represents a period of time from a point of time at which the pressed region is started to be pressed to a point of time at which the maximum value of the displacement amount of the measurement region is observed, and t2[s] represents a period of time from the point of time at which the pressed region is started to be pressed to a point of time at which the displacement amount of the measurement region reaches (a+b)/2 again after the maximum value of the displacement amount of the measurement region is observed. Preferably in the transfer belt according to the present invention, b further satisfies 4≤b≤8. The transfer belt according to the present invention preferably further includes a base layer and a front layer in addition to the elastic layer. In that case, the first main surface is preferably defined by the front layer by providing the elastic layer to cover the base layer and providing the front layer to cover the elastic layer. An image forming apparatus according to the present invention includes: an image carrier and an intermediate transfer belt that both carry a toner image; a primary transfer portion that transfers the toner image carried by the image carrier to the intermediate transfer belt; and a secondary transfer portion that transfers the toner image carried by the intermediate transfer belt to a recording medium. The secondary transfer portion includes a secondary transfer roller, a counter roller facing the secondary transfer roller, and a nip portion formed by the secondary transfer roller and the counter roller. The intermediate transfer belt is disposed to pass through the nip portion. In the image forming apparatus according to the present invention, the transfer belt according to the present invention is used as the intermediate transfer belt. Preferably in the image forming apparatus according to the present invention, the first main surface of the intermediate transfer belt is disposed to face the secondary transfer roller. In that case, the secondary transfer roller preferably has a surface having a hardness higher than a hardness of a surface of the counter roller. Preferably in the image forming apparatus according to the present invention, the secondary transfer roller has a diameter of not less than 20 [mm] and not more than 60 [mm]. Preferably in the image forming apparatus according to the present invention, a maximum pressure in the nip portion is not less than 100 [kPa] and not more than 400 [kPa]. DESCRIPTION OF THE PREFERRED EMBODIMENTS The following describes embodiments of the present invention in detail with reference to figures. It should be noted that in the embodiments described below, the same or common portions are given the same reference characters in the figures and are not described repeatedly. FIG. 1is a cross sectional view of a transfer belt in an embodiment of the present invention. First, with reference toFIG. 1, a configuration of transfer belt1in the present embodiment will be described. As shown inFIG. 1, transfer belt1is constituted of a member having a first main surface1aand a second main surface1b, which are a pair of exposed main surfaces located opposite to each other. Transfer belt1includes a base layer2, an elastic layer3, and a front layer4. Elastic layer3is provided to cover base layer2, and front layer4is provided to cover elastic layer3. Accordingly, first main surface1ais defined by front layer4, and second main surface1bis defined by base layer2. For example, in an electrophotographic image forming apparatus or the like, transfer belt1serves to transfer a carried toner image onto a recording medium. The toner image is carried on first main surface1a. It should be noted that a specific, exemplary manner of attaching transfer belt1to such an image forming apparatus will be described later. Base layer2is a layer for improving mechanical strength of transfer belt1as a whole, and is constituted of a layer composed of an organic polymer compound, for example. Examples of the organic polymer compound of base layer2include: polycarbonate; a fluorine-based resin; styrene-based resins (homopolymer or copolymer including styrene or styrene substitute) such as polystyrene, chloropolystyrene, poly-α-methylstyrene, a styrene-butadiene copolymer, a styrene-vinyl chloride copolymer, a styrene-vinyl acetate copolymer, a styrene-maleate copolymer, styrene-acrylate ester copolymers (such as a styrene-methyl acrylate copolymer, a styrene-ethyl acrylate copolymer, a styrene-butyl acrylate copolymer, a styrene-octyl acrylate copolymer, and a styrene-phenyl acrylate copolymer), styrene-methacrylate ester copolymers (such as a styrene-methyl methacrylate copolymer, a styrene-ethyl methacrylate copolymer, and a styrene-phenyl methacrylate copolymer), a styrene-α-chloromethyl acrylate copolymer, and a styrene-acrylonitrile-acrylate ester copolymer; a methyl methacrylate resin; a butyl methacrylate resin; an ethyl acrylate resin; a butyl acrylate resin; modified acrylic resins (such as a silicone modified acrylic resin, a vinyl chloride modified acrylic resin, and an acrylic urethane resin); a vinyl chloride resin; a styrene-vinyl acetate copolymer; a vinyl chloride-vinyl acetate copolymer; a rosin modified maleic resin; a phenol resin; an epoxy resin; a polyester resin; a polyester polyurethane resin; polyethylene; polypropylene; polybutadiene; polyvinylidene chloride; an ionomer resin; a polyurethane resin; a silicone resin; a ketone resin; an ethylene-ethyl acrylate copolymer; a xylene resin and a polyvinyl butyral resin; a polyimide resin; a polyimide resin; a modified polyphenylene oxide resin; modified polycarbonate; a mixture thereof; and the like. It should be noted that base layer2may be constituted of a plurality of layers composed of different materials. A conducting agent may be added to base layer2in order to adjust a resistance value. For this conducting agent, only one type of conducting agent may be added, or a plurality of types of conducting agents may be added. The content of the conducting agent in base layer2is preferably, but not limited to, not less than 0.1 part by weight and not more than 20 parts by weight with respect to 100 parts by weight of the base layer material. Elastic layer3is a layer for providing elasticity to transfer belt1, and is constituted of a layer composed of an organic compound that exhibits viscoelasticity, for example. Examples of the organic compound of elastic layer3include a butyl rubber, a fluorine-based rubber, an acrylic rubber, an ethylene propylene rubber (EPDM), a nitrile butadiene rubber (NBR), an acrylonitrile butadiene styrene rubber, a natural rubber, an isoprene rubber, a styrene-butadiene rubber, a butadiene rubber, an ethylene-propylene rubber, an ethylene-propylene terpolymer, a chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene, a urethane rubber, syndiotactic 1, 2-polybutadiene, an epichlorohydrin-based rubber, a silicone rubber, a fluororubber, a polysulfide rubber, a potynorbornene rubber, a hydrogenated nitrite rubber, thermoplastic elastomers (such as a polystyrene-based elastomer, a polyolefin-based elastomer, a polyvinyl chloride-based elastomer, a polyurethane-based elastomer, a polyamide-based elastomer, a polyurea-based elastomer, a polyester-based elastomer, and a tluororesin-based elastomer), a mixture thereof, and the like. It should be noted that elastic layer3may be constituted of a plurality of layers composed of different materials. A conducting agent may be added to elastic layer3to exhibit electric conductivity. For the conducting agent, only one type of conducting agent may be added, or a plurality of types of conducting agents may be added. The content of the conducting agent in elastic layer3is preferably, but not limited to, not less than 0.1 part by weight and not more than 30 parts by weight with respect to 100 parts by weight of the elastic layer material. The content of the conducting agent in elastic layer3is an amount with which desired volume resistivity of transfer belt1is realized in total. The volume resistivity of transfer belt1is not less than 108[Ω·cm] and not more than 1012[Ω·cm], for example. The conducting agent includes an ion conducting agent and an electron conducting agent. The ion conducting agent includes silver iodide, copper iodide, lithium perchlorate, lithium trifluoromethanesultbnate, lithium salt of organic boron complex, lithium his imide ((CF3SO2)2NLi), and lithium iris methide ((CF3SO2)3CLi). The electron conducting agent includes: metals, such as silver, copper, aluminum, magnesium, nickel, and stainless steel; and carbon compounds, such as graphite, carbon black, carbon nano fibers, and carbon nano tubes. In addition to the conducting agent, elastic layer3may contain a non-fibrous resin and a fibrous resin. Examples of the non-fibrous resin include thermosetting resins, such as a phenol resin, a thermosetting urethane resin, an epoxy resin, and a reactive monomer; and thermoplastic resins, such as polyvinyl chloride, polyvinyl acetate, and thermoplastic urethane. The content of the non-fibrous resin in elastic layer3with respect to the elastic layer material is preferably, but not limited to, not less than 20 parts by weight and not more than 60 parts by weight with respect to 100 parts by weight of the elastic layer material. Examples of the fibrous resin include resin-based fibers such as cotton, hemp, silk, rayon, acetate, nylon, acrylic, vinylon, vinylidene, polyester, polystyrene, polypropylene, and aramid. The content of the fibrous resin in elastic layer3is preferably, but not limited to, not less than 10 parts by weight and not more than 40 parts by weight with respect to 100 parts by weight of the elastic layer material. Elastic layer3may further contain commonly used additive agent(s) such as a vulcanizing agent, a vulcanization accelerator, a vulcanizing aiding agent, a co-crosslinking agent, a softener, and/or a plasticizer. One of these additive agents may be added solely or two or more of the additive agents may be added in combination. Examples of the vulcanizing agent usable herein include sulfur, an organic sulfur-containing compound, an organic peroxide, and the like. Moreover, examples of the co-crosslinking agent include ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, a polyfunctional methacrylate monomer, triallyl isocyanurate, a metal-containing monomer, and the like, each of which serves as a co-crosslinking agent with an organic peroxide. The added amount of the co-crosslinking agent in elastic layer3is preferably, but not limited to, not more than 5 parts by weight with respect to 100 parts by weight of the elastic layer material. Although the material of front layer4is not particularly limited, front layer4is preferably composed of a material for improving transferability by reducing force of adhesion of toner to transfer belt1. In view of this, for example, front layer4usable herein can be composed of a material in which powders or particles of one or two or more of a fluororesin, a fluorine compound, carbon fluoride, titanium dioxide, and silicon carbide are dispersed in a base material such as polyurethane, polyester, an epoxy resin, or a mixture thereof. It should be noted that front layer4may be obtained by modifying the surface of elastic layer3. The powders and particles employed herein are of a material for reducing surface energy of first main surface1ato improve lubricity. These powders and particles may have different powder/particle sizes and may be dispersed therein. Alternatively, the surface energy of first main surface1amay be also reduced by using a fluorine-based rubber material and performing heat treatment to form a fluorine-rich layer in the surface thereof. It should be noted that front layer4does not necessarily need to be provided, and transfer belt1can be constituted only of base layer2and elastic layer3. Moreover, transfer belt1may be constituted only of elastic layer3without providing base layer2. Further, transfer belt1can include four or more layers by providing other layer(s) in addition to base layer2, elastic layer3, and front layer4. First main surface1aof transfer belt1preferably has a 10-point average surface roughness Rz of not less than 0.5 [μm] and not more than 9.0 [μm], more preferably, not less than 3.0 [μm] and not more than 6.0 [μm]. When 10-point average surface roughness Rz is less than 0.5 [μm], transfer belt1may be adhered to a contact member. When 10-point average surface roughness Rz is more than 9.0 [μm], toner, paper powders, and the like may be more likely to be accumulated in the irregularity portion to result in deteriorated imaging quality. It should be noted that 10-point average surface roughness Rz refers to surface roughness defined in JIS B0601 (2001). Here, transfer belt1in the present embodiment has a surface (i.e., first main surface1a) having a portion deformed to exhibit a predetermined characteristic behavior when evaluated based on an evaluation method using a below-described displacement amount measuring device. Details thereof will be described later. <Exemplary Usage of Transfer Belt> FIG. 2is a schematic view of a secondary transfer portion to illustrate one exemplary usage of the transfer belt shown inFIG. 1. Next, with reference toFIG. 2, the following describes the exemplary usage of transfer belt1in the present embodiment. It should be noted that the usage of transfer belt1in the present embodiment is not limited to this exemplary usage. The exemplary usage of transfer belt1inFIG. 2represents a specific example of a case where transfer belt1is attached to an electrophotographic image forming apparatus. In this case, transfer belt1is disposed to pass through a secondary transfer portion5of the image forming apparatus. Secondary transfer portion5includes a secondary transfer roller6and a counter roller7, which are disposed in parallel to face each other. A nip portion8is formed between secondary transfer roller6and counter roller7. Transfer belt1is disposed to extend through this nip portion8, and a recording medium1000is supplied to also pass through this nip portion8. Secondary transfer roller6is composed of a conductive material. A secondary transfer power supply6ais connected to secondary transfer roller6. Counter roller7includes: a core metal7acomposed of a conductive material; and a conductive elastic portion7bcovering a circumferential surface of core metal7a. Core metal7ais grounded. Accordingly, a predetermined electric field is formed in nip portion8by secondary transfer roller6, counter roller7, and secondary transfer power supply6a. Transfer belt1is disposed to extend therethrough at the counter roller7side relative to recording medium1000, whereas recording medium1000is supplied to pass therethrough at the secondary transfer roller6side relative to transfer belt1. It should be noted that transfer belt1is disposed such that first main surface1afaces the recording medium1000side (i.e., the secondary transfer roller6side) and second main surface1bfaces the counter roller7side. Accordingly, first main surface1aof transfer belt1is disposed to face recording surface1001of recording medium1000in nip portion8. Secondary transfer roller6is driven to rotate in an arrow AR1direction shown in the figure, and counter roller7is driven to rotate in an arrow AR2direction shown in the figure. Moreover, when transferring the toner image, secondary transfer roller6is pressed by a pressing structure (not shown) in an arrow AR3direction shown in the figure, with the result that secondary transfer roller6is pressed into contact with counter roller7with transfer belt1and recording medium1000being interposed therebetween. According to the rotation of secondary transfer roller6and the rotation of counter roller7, transfer belt1and recording medium1000are respectively conveyed in an arrow AR4direction and an arrow AR5direction shown in the figure. On this occasion, transfer belt1and recording medium1000are sandwiched between secondary transfer roller6and counter roller7under application of pressure and are accordingly brought into close contact with each other when passing through nip portion8. Moreover, on this occasion, the predetermined electric field described above acts on the closely contacted portions of transfer belt1and recording medium1000. Accordingly, the toner on first main surface1aof transfer belt1is adhered onto recording surface1001of recording medium1000, thereby transferring the toner image. Here, since the hardness of the surface of secondary transfer roller6is higher than the hardness of the surface of counter roller7, the portions of transfer belt1and recording medium1000sandwiched between secondary transfer roller6and counter roller7are curved along the surface of secondary transfer roller6. Accordingly, a recessively curved elongated surface is formed in first main surface1aof transfer belt1to extend along the axial direction of secondary transfer roller6. Onto this portion, the toner image is transferred. Transfer belt1in the present embodiment can secure excellent transferability not only in a case where a sheet of regular paper having a surface provided with no particular irregularity is used as recording medium1000, but also in a case where a sheet of embossed paper or the like having a surface provided with irregularity is used as recording medium1000; however, a mechanism thereof will be described later, and the following describes details of the above-described evaluation method employing the displacement amount measuring device. FIG. 3Ais a schematic view showing a configuration of the displacement amount measuring device, and each ofFIG. 3BandFIG. 3Cis a schematic view showing an operation of a pressure applying structure provided in the displacement amount measuring device.FIG. 4Ais a perspective view showing a lower block of the displacement amount measuring device shown inFIG. 3Awhen viewed from above.FIG. 4Bis a perspective view showing an upper block of the displacement amount measuring device shown inFIG. 3Awhen viewed from below. As shown inFIG. 3A, displacement amount measuring device100mainly includes a lower block110, an upper block120, a pressure applying structure130, a tension applying structure140, and a displacement meter150. As shown inFIG. 3AandFIG. 4A, lower block110is constituted of an aluminum block having a width of 50 [mm], a depth of 50 [mm], and a height of 20 [mm]. Lower block110has a protrusively curved elongated surface112in its upper surface111at a central portion in the width direction. Protrusively curved elongated surface112has a width of 20 [mm]. Protrusively curved elongated surface112has a curvature radius of 20 [mm]. In the top portion of protrusively curved elongated surface112located along the depth direction of lower block110, a hole113having a diameter of 1.25 [mm] (with a tolerance of ±0.02 [mm]) is provided at the central portion in the depth direction. It should be noted that a head portion151of displacement meter150is disposed at a position behind the opening plane of hole113. As shown inFIG. 3AandFIG. 4B, upper block120is constituted of an aluminum block having a width of 50 [min], a depth of 50 [mm], and a height of 20 [mm]. Upper block120has a recessively curved elongated surface122in its lower surface121at the central portion in the width direction. Recessively curved elongated surface122has a width of 20 [mm]. Recessively curved elongated surface122has a curvature radius of 20.3 [mm]. It should be noted that both a surface tolerance between upper surface111and protrusively curved elongated surface112of lower block110and a surface tolerance between lower surface121and recessively curved elongated surface122of upper block120are 0.02 [mm]. As shown inFIG. 3A, upper surface111of lower block110and lower surface121of upper block120are disposed to face each other. Here, lower block110and upper block120are positioned relative to each other, whereby protrusively curved elongated surface112and recessively curved elongated surface122are disposed to overlap with each other in the vertical direction. Pressure applying structure130is disposed above upper block120. Pressure applying structure130includes: a pressure applying member131, which is a block-shaped member; a spring132disposed between pressure applying member131and upper block120; a cam133disposed in contact with the upper surface of pressure applying member131; a shaft134coupled to cam133; and a drive motor135that drive to rotate shaft134. As shown inFIG. 3BandFIG. 3C, shaft134is driven by drive motor135to rotate in an arrow AR6direction shown in the figure, with the result that cam133coupled to shaft134is rotated together with shaft134. Accordingly, pressure applying member131is pressed down (in an arrow AR7direction shown in the figure). Accordingly, upper block120is pressed down by pressure applying member131with spring132being interposed therebetween, thereby applying a load to upper block120vertically downward. It should be noted that the magnitude of the load is determined by a press-down amount d of pressure applying member131. Press-down amount d of pressure applying member131can be adjusted by an amount of rotation of cam133. As shown inFIG. 3A, a belt S to be evaluated is disposed between lower block110and upper block120. The both ends of belt S are drawn out from between lower block110and upper block120. Tension applying structure140is connected to each of the both ends of belt S. Tension applying structure140includes a film141, a tape142, and a weight143. Film141is constituted of a film having a thickness of 100 [μm] and composed of polyethylene terephthalate. Tape142is constituted of an adhesive tape having a thickness of 30 [μm] and composed of polyimide. One end of film141is adhered to the end portion of belt S by tape142, and weight143is attached to the other end of film141. Here, tensile load provided by weight143is adjusted to 44 [N/m]. It should be noted that when belt S to be evaluated has a sufficient size, weight143may be directly attached to the both ends of belt S without using film141and tape142described above. Displacement meter150serves to detect displacement of the surface of belt S, and head portion151of displacement meter150is disposed in hole113of lower block110to face belt S as described above. Here, for displacement meter150, a micro head type spectral interference laser displacement meter provided by Keyence (spectral unit (model number: SI-F01U); head portion (model number: SI-F01)) is used. FIG. 5is a graph for illustrating the method for evaluating a belt using the displacement amount measuring device shown inFIG. 3A. Moreover,FIG. 6is an enlarged cross sectional view illustrating a vicinity of the hole of the lower block when the belt is fed with pressure using the displacement amount measuring device shown inFIG. 3A. Belt S is evaluated in the following procedure using displacement amount measuring device100shown inFIG. 3A. It should be noted that the evaluation is performed in an environment with a temperature of 20[° C.] and a humidity of 50[%]. First, before setting belt S in displacement amount measuring device100, pressure distribution is measured at a contact portion between protrusively curved elongated surface112of lower block110and recessively curved elongated surface122of upper block120. For the measurement of the pressure distribution, a tactile sensor (surface pressure distribution measuring system I-SCAN) provided by NITTA Corporation is used. Specifically, a measurement unit of the tactile sensor is inserted between lower block110and upper block120, pressure applying member131is pressed down, and pressure distribution after passage of 30 seconds is measured. This is repeated to adjust the pressure at and around the contact portion between protrusively curved elongated surface112and recessively curved elongated surface122to fall within a range of 200 [kPa]±40 [kPa]. Before the measurement, belt S is stored for 6 hours or more in an environment with a temperature of 20[° C.] and a humidity of 50 [%]. Belt S to be evaluated is sized to have a length of 60 [mm] corresponding to the width direction of each of lower block110and upper block120and have a length of 50 [mm] corresponding to the depth direction of each of lower block110and upper block120. It should be noted that the length corresponding to the width direction of each of lower block110and upper block120may be not less than 35 [mm] and not more than 300 [mm], and the length corresponding to the depth direction of each of lower block110and upper block120may be not less than 50 [mm] and not more than 150 [mm]. When the length corresponding to the width direction of each of lower block110and upper block120is insufficient, weight143may be attached to the both ends of belt S using film141and tape142described above. Next, the tactile sensor is removed, upper block120is moved down using pressure applying structure130such that lower block110and upper block120are lightly in contact with each other, and then this state is maintained for 30 seconds. Accordingly, the contact state is stabilized. Then, pressure applying structure130is used to press upper block120against lower block110. It is assumed that a pressure application condition herein is the same as a below-described pressure application condition for belt S (for details, see the pressure application condition for belt S below). Then, for 3 seconds from the start of application of pressure, the position of recessively curved elongated surface122of upper block120at the portion facing hole113of lower block110is measured using displacement meter150and is set as a below-described base line for displacement amount measurement of belt S. Next, upper block120is moved up to bring upper block120out of contact with lower block110, and then belt S is placed on upper surface111of lower block110. On this occasion, first main surface Sa of belt S faces downward (i.e., faces the lower block110side). It should be noted that attention is to be paid not to introduce a foreign matter between belt S and lower block110and between belt S and upper block120when placing belt S thereon. Next, upper block120is moved down using pressure applying structure130such that upper block120and belt S are lightly in contact with each other, and then this state is maintained for 30 seconds. Accordingly, the contact state is stabilized. Then, pressure applying structure130is used to press upper block120against belt S. As shown inFIG. 5andFIG. 6, belt S is pressed in the following manner: a pressed region PR of belt S to be sandwiched between protrusively curved elongated surface112and recessively curved elongated surface122is pressed for 50 [ms] with pressure application force increased at a pressure application rate of 4 [kPa/ms] until the pressure application force reaches 200 [kPa], and then pressed region PR is maintained to be pressed uniformly with the pressure application force of 200 [kPa]. The application of pressure to belt S is ended after 3 seconds from the start of application of pressure. For the 3 seconds from the start of application of pressure to the end of application of pressure, the position of a measurement region MR is measured using displacement meter150. Measurement region MR is a portion of first main surface Sa of belt S corresponding to hole113of lower block110. On this occasion, a region of belt S located around the portion including measurement region MR of belt S is sandwiched and compressed between lower block110and upper block120, with the result that the portion including measurement region MR of belt S is deformed to expand toward the inside of hole113. As a result of this deformation, the position of measurement region MR is changed. During each of the measurement of the base line and the measurement of the position of measurement region MR, the output of displacement meter150is sampled by a digital oscilloscope DL1640 provided by Yokogawa Electric Corporation. A sampling period on this occasion is set at 5 [ms]. Next, a difference between the measured position of measurement region MR and the base line is determined, thereby calculating displacement of measurement region MR of belt S as time series data. It should be noted that the measurement described above is performed ten times in total with the position of belt S placed on lower block110being changed such that the position of measurement region MR relative to belt S to be measured becomes different. When evaluating various belts each including an elastic layer by applying the above-described belt evaluation method employing displacement amount measuring device100, the following two patterns can be confirmed typically as patterns representing behaviors of displacements of the measurement regions of the belts. FIG. 7andFIG. 8are graphs respectively showing first and second patterns of the behaviors of displacements of the measurement regions of the belts. As shown inFIG. 7, the first pattern is such a pattern that: a displacement amount y of measurement region MR of belt S is increased by increasing the pressure application force for applying pressure to belt S after starting the application of pressure; a local peak of the displacement of measurement region MR of belt S appears around a point of time (i.e., 50 [ms]) when the pressure application force for pressing belt S reaches 200 [kPa]; then displacement amount y of measurement region MR of belt S starts to be decreased; and displacement amount y of measurement region MR of belt S is gradually decreased with passage of time to finally converge at a predetermined displacement amount. Specifically, it can be said that the first pattern has an overshoot portion in the transition of the displacement of measurement region MR of belt S. In the description below, the term “primary displacement” is employed to represent the displacement in the phase of increase of displacement amount y of measurement region MR of belt S in the first pattern, whereas the term “secondary displacement” is employed to represent the displacement in the phase of decrease of displacement amount y of measurement region MR of belt S in the first pattern. On the other hand, as shown inFIG. 8, the second pattern is such a pattern that: displacement amount y of measurement region MR of belt S is increased according to increase of pressure application force for applying pressure onto belt S after the start of the application of pressure; no local peak appears around a point of time (i.e., 50 [ms]) when the pressure application force for applying pressure onto belt S reaches 200 [kPa]; and then displacement amount y of measurement region MR of belt S is increased gradually to converge at a predetermined displacement amount. Specifically, it can be said that the second pattern has no overshoot portion in the transition of displacement of measurement region MR of belt S. <Pattern of Displacement of Transfer Belt in the Present Embodiment> Transfer belt1in the present embodiment is configured to exhibit the first pattern (i.e., the pattern with the overshoot portion) when evaluated by applying the belt evaluation method employing displacement amount measuring device100described above in detail. This is based on such a finding obtained by the present inventors that: when a plurality of types of belts exhibiting the first pattern and a plurality of types of belts exhibiting the second pattern were prepared and each of these belts was used as an intermediate transfer belt of an image forming apparatus to form an image on a sheet of embossed paper, transferability when using the belt exhibiting the first pattern is much more excellent than transferability when using the belt exhibiting the second pattern. It should be noted that details of experiments to obtain this finding (inclusive of a below-described experiment for checking a relation between ΔVadh and each of overshoot ratio E, primary displacement ratio k1and secondary displacement ratio k2, as well as a below-described experiment for checking performance) will be described later. High transferability can be secured in the belt exhibiting the first pattern because the front surface (i.e., first main surface) of the transfer belt is basically shook greatly when the transfer belt is fed with pressure from the backside surface (i.e., second main surface) side although details thereof will be described later. Therefore, attention should be paid to the above-described overshoot portion in order to realize a transfer belt that can secure high transferability to a recording medium, such as embossed paper, having a recording surface provided with irregularity. Here, with reference toFIG. 7, a [μm] is defined to represent the maximum value of displacement amount y, which is a local peak of the displacement of measurement region MR of belt S, whereas b [μm] is defined to represent a convergence value of displacement amount y after the displacement of measurement region MR of belt S is converged. Further, t1[s] is defined to represent a period of time from the point of time at which pressure is started to be applied to the point of time at which maximum value a [μm] is observed, whereas t2[s] is defined to represent a period of time from the point of time at which pressure is started to be applied to a point of time at which displacement amount y of measurement region MR of belt S reaches (a+b)/2 again after maximum value a [μm] is observed. In addition, overshoot ratio E [−], primary displacement ratio k1[μm/s], and secondary displacement ratio k2[μm/s] are defined as parameters indicating characteristic behaviors of the displacement of measurement region MR of belt S in the first pattern. Overshoot ratio E [−] is a parameter indicating the size of the overshoot, and is calculated by E=(a−b)/b. Primary displacement ratio k1[μm/s] is a parameter indicating an increase ratio (i.e., ratio of increase of the displacement amount) of the primary displacement, which is displacement until the local peak is reached, and is determined by k1=a/t1. Secondary displacement ratio k2[μm/s] is a parameter indicating a decrease ratio (i.e., ratio of decrease of the displacement amount) of the secondary displacement, which is displacement after the local peak is reached, and is determined by k2(a−b)/{2×(t2−t1)}. Overshoot ratio E [−], primary displacement ratio k1[μm/s], and secondary displacement ratio k2[μm/s] are parameters each indicating a degree of shaking of the front surface (i.e., first main surface) when the transfer belt is fed with pressure from the backside surface (i.e., second main surface) side. As the shaking of the front surface of the transfer belt involves a greater change, these parameters have larger values. More specifically, when overshoot ratio E [−] has a relatively large value, the front surface of the transfer belt is displaced more greatly. Moreover, as primary displacement ratio k1[μm/s] has a relatively larger value, the primary displacement of the transfer belt takes place at a higher speed. Moreover, as secondary displacement ratio k2[μm/s] has a relatively larger value, the secondary displacement of the transfer belt takes place at a higher speed. Here, transfer belt1in the present embodiment satisfies at least one of the following first to third conditions. It should be noted that the first to third conditions have been derived from results of the below-described experiment for checking the relation between ΔVadh and each of overshoot ratio E, primary displacement ratio k1, and secondary displacement ratio k2, as well as the below-described experiment for checking performance. The first condition is such a condition that overshoot ratio E [−] satisfies 0.2≤E≤3. When transfer belt1satisfies the first condition, high transferability to a recording medium having a surface provided with irregularity can be attained and image quality can be suppressed from being deteriorated due to repeated use. When overshoot ratio E [−] satisfies E<0.2, the front surface is not shook much even when the transfer belt is fed with pressure from the backside surface side, with the result that no sufficient effect can be expected in terms of transferability. On the other hand, when overshoot ratio E [−] satisfies 3<E, the transfer belt may be cracked or worn at an early stage due to repeated use, resulting in a concern of deterioration of image quality. The second condition is such a condition that primary displacement ratio k1[μm/s] satisfies 60≤k1≤320. When transfer belt1satisfies the second condition, high transferability to a recording medium having a surface provided with irregularity can be attained and image quality can be suppressed from being deteriorated by repeated use. When primary displacement ratio k1[μm/s] satisfies k1≤60, the front surface is not shook much even when the transfer belt is fed with pressure from the backside surface side, with the result that no sufficient effect can be expected in terms of transferability. On the other hand, when primary displacement ratio k1[μm/s] satisfies 320<k1, the transfer belt may be cracked or worn at an early stage due to repeated use, resulting in a concern of deterioration of image quality. The third condition is such a condition that secondary displacement ratio k2[μm/s] satisfies 6≤k2≤30. When transfer belt1satisfies the third condition, high transferability to a recording medium having a surface provided with irregularity can be attained and image quality can be suppressed from being deteriorated due to repeated use. When secondary displacement ratio k2[μm/s] satisfies k2<6, the front surface is not shook much even when the transfer belt is fed with pressure from the backside surface side, with the result that no sufficient effect can be expected in terms of transferability. On the other hand, when secondary displacement ratio k2[μm/s] satisfies 30<k2, the transfer belt may be cracked or worn at an early stage due to repeated use, resulting in a concern of deterioration of image quality. Here, when transfer belt1satisfies one of the first to third conditions, sufficiently high transferability can be secured; however, higher transferability can be secured when transfer belt1satisfies two of the first to third conditions, and very high transferability can be secured when transfer belt1satisfies all of the first to third conditions. In addition, when at least one of the first to third conditions is satisfied, it is preferable that convergence value b [μm] satisfies a condition of 4≤b≤8 as a fourth condition. When transfer belt1additionally satisfies the fourth condition, high transferability and suppression of deteriorated image quality can be more securely attained. It should be noted that each of overshoot ratio E [−], primary displacement ratio k1[μm/s], and secondary displacement ratio k2[μm/s] is determined by calculating an average value of four of values calculated from a total of ten pieces of time series data obtained by changing the positions of measurement region MR with the three largest values and the three smallest values being excluded in the belt evaluation method employing displacement amount measuring device100. <Relation Between Displacement Pattern and Transferability> Next, the following fully describes a reason why high transferability can be secured when an image is formed on a sheet of embossed paper using the belt exhibiting the first pattern as the intermediate transfer belt of the image forming apparatus. FIG. 9Ais a schematic view showing movement of toner to a sheet of embossed paper from a transfer belt constituted of only an inelastic layer.FIG. 9Bis a graph showing a relation between applied voltage and transfer efficiency in that case. As shown inFIG. 9A, when a toner image is transferred onto a sheet of embossed paper1000using a transfer belt constituted of only an inelastic layer, a recording surface1001of the sheet of embossed paper1000at a portion (hereinafter, this portion will be referred to as “protrusion1003” for the sake of convenience) with no recess1002is in contact with toner9located on first main surface1aof transfer belt1′. On the other hand, recording surface1001of the sheet of embossed paper1000at a portion with recess1002is not in contact with toner9located on first main surface1aof transfer belt1′. Accordingly, in order to move toner9to the bottom surface of recess1002of the sheet of embossed paper1000, toner9needs to fly from transfer belt1′. In order for toner9to fly from transfer belt1′, force received by toner9from the electric field needs to be higher than force of adhesion of toner9to transfer belt P. It should be noted that the force of adhesion is a total of non-electrostatic adhesion force (van der Waals force) and electrostatic adhesion force (electrostatic attractive force by charges of the charged toner and charges of a mirror image on the transfer belt). Here, force F received by toner9from the electric field is represented by F=q×dV/dx, where q represents an amount of charges of toner9, dV represents an electric potential difference between the sheet of embossed paper1000and transfer belt1′, and dx represents a distance between the sheet of embossed paper1000and transfer belt1′. Since force F is proportional to electric potential difference dV between the sheet of embossed paper1000and transfer belt as understood from this relation, applied voltage required for toner9to fly becomes larger as distance dx becomes longer. Therefore, as shown inFIG. 9B, applied voltage V1for attaining the maximum transfer efficiency in recess1002becomes higher than applied voltage V0for attaining the maximum transfer efficiency in protrusion1003. It should be noted that inFIG. 9B, a reference character c1003is provided to a curve indicating a relation between the applied voltage and the transfer efficiency for protrusion1003, and a reference character c1002(1′) is provided to a curve indicating a relation between the applied voltage and the transfer efficiency for recess1002. Normally, in the image forming apparatus, the applied voltage is set at a voltage around applied voltage V0for attaining the maximum transfer efficiency in protrusion1003. Therefore, as the transfer efficiency in recess1002is higher under the voltage around applied voltage V0, an image density difference become smaller between recess1002and protrusion1003of the sheet of embossed paper1000, thereby obtaining an image with high quality. FIG. 10Ais a schematic view showing movement of toner to a sheet of embossed paper from a transfer belt including an elastic layer.FIG. 10Bis a graph showing a relation between applied voltage and transfer efficiency in that case. As shown inFIG. 10A, when a transfer belt1″ including an elastic layer is used, transfer belt1″ is generally deformed such that a portion of transfer belt1″ at the first main surface1aside enters a recess1002of a sheet of embossed paper1000, thereby reducing a distance dx between the bottom surface of recess1002of the sheet of embossed paper1000and transfer belt1″. This leads to an effect of providing decreased applied voltage for attaining the maximum transfer efficiency in recess1002. This effect is a conventionally known effect, and is referred to as “deformation following effect” herein. Meanwhile, when transfer belt1″ including the elastic layer exhibits the first pattern, first main surface1ais shook greatly upon the deformation of transfer belt1″ and is accordingly deformed to expand and contract, thereby changing a positional relation between transfer belt1″ and toner9adhered thereto (i.e., changing the distance or contact area between toner9and first main surface1a). Accordingly, the force of adhesion of toner9to transfer belt1″ is decreased. This leads to an effect of providing further decreased applied voltage for attaining the maximum transfer efficiency in recess1002. This effect is not a conventionally known effect, is an effect found by the present inventors this time, and is referred to as “adhesion force reduction effect” herein. Accordingly, as shown inFIG. 10B, applied voltage V2for attaining the maximum transfer efficiency in recess1002becomes smaller than applied voltage V1for attaining the maximum transfer efficiency in recess1002when transfer belt1′ constituted of only the inelastic layer is used. It should be noted that inFIG. 10B, a reference character c1002(1″) is provided to a curve showing a relation between the applied voltage and the transfer efficiency for recess1002. Therefore, the transfer efficiency in recess1002becomes higher under a voltage around applied voltage V0than that in the case where transfer belt1′ constituted of only the inelastic layer is used, thereby reducing the image density difference between recess1002and protrusion1003of the sheet of embossed paper1000. Accordingly, an image with higher quality is obtained. Hereinafter, this will be described more in detail. FIG. 11is a schematic view for illustrating behavior of a belt exhibiting the second pattern shown inFIG. 8with respect to the recess of the sheet of embossed paper when the belt is used as a transfer belt.FIG. 12is a schematic view for illustrating behavior of a belt exhibiting the first pattern shown inFIG. 7with respect to the recess of the sheet of embossed paper when the belt is used as a transfer belt. It should be noted that for ease of understanding, toner is not illustrated inFIG. 11andFIG. 12. As described above, when the transfer belt passes through the nip portion of the secondary transfer portion, the transfer belt and the sheet of embossed paper is sandwiched between and pressed by the secondary transfer roller and the counter roller. On this occasion, generally, pressure received at one point on the transfer belt in the nip portion is temporally changed in such a manner that pressure is increased rapidly at the inlet portion of the nip portion, then the pressure is relatively unchanged, and then the pressure is decreased rapidly at the outlet portion of the nip portion. When the belt exhibiting the second pattern shown inFIG. 8is used as a transfer belt1X, behavior of first main surface1aof transfer belt1X with respect to recess1002of the sheet of embossed paper1000is as shown inFIG. 11. Here, inFIG. 11, a broken line represents a position of first main surface1awhen no displacement occurs. An alternate long and short dash line represents a position of first main surface1aat a point of time of start of the phase in which the pressure is relatively unchanged after the rapid increase in pressure onto transfer belt1X. A solid line represents a position of first main surface1aat a subsequent point of time of start of the rapid decrease of the pressure after the phase in which the pressure is relatively unchanged. In this case, transfer belt1X is deformed such that a portion of first main surface1afacing recess1002of the sheet of embossed paper1000enters recess1002of the sheet of embossed paper1000, thereby reducing the distance between the bottom surface of recess1002of the sheet of embossed paper1000and transfer belt1X. Accordingly, the deformation following effect described above is obtained. However, in this case, the displacement of the portion of first main surface1afacing recess1002is based on such simple deformation that first main surface1ais moved toward the bottom surface of recess1002. Accordingly, first main surface1ais not shook greatly and is only slightly deformed to be extended. Therefore, the positional relation between first main surface1aand the toner adhered thereto is not changed greatly, with the result that the force of adhesion of the toner to transfer belt1X is not reduced greatly. Accordingly, the above-described adhesion force reduction effect is hardly obtained. On the other hand, when the belt exhibiting the first pattern shown inFIG. 7is used as transfer belt1, behavior of first main surface1aof transfer belt1with respect to recess1002of the sheet of embossed paper1000is as shown inFIG. 12. Here, inFIG. 12, a broken line represents a position of first main surface1awhen no displacement occurs. An alternate long and short dash line represents a position of first main surface1aat a point of time of start of the phase in which the pressure is relatively unchanged after the rapid increase in pressure onto transfer belt1. A solid line represents a position of first main surface1aat a subsequent point of time of start of the rapid decrease of the pressure after the phase in which the pressure is relatively unchanged. In this case, transfer belt1is deformed such that a portion of first main surface1afacing recess1002of the sheet of embossed paper1000enters recess1002of the sheet of embossed paper1000, thereby reducing the distance between the bottom surface of recess1002of the sheet of embossed paper1000and transfer belt1. Accordingly, the deformation following effect described above is obtained. Further, in this case, strain of the elastic layer included in transfer belt1is concentrated on the center of a portion of first main surface1afacing recess1002, with the result that primary displacement occurs in this portion to cause the maximum displacement of first main surface1a, and then the secondary displacement, which is reverting displacement, occurs to cause first main surface1ato move away from the bottom surface of recess1002. On this occasion, the portion of first main surface1afacing, recess1002is deformed not only in the normal direction (X direction shown in the figure) of first main surface1ain the state before the deformation of transfer belt1but also in a direction (Y direction shown in the figure) orthogonal to the normal direction. These deformations are overlapped with each other, thereby causing high-speed and complicated deformation of first main surface1a. As a result, the positional relation between first main surface1aand the toner adhered thereto is changed greatly, thereby significantly reducing the force of adhesion of the toner to transfer belt1. Accordingly, not only the deformation following effect but also the adhesion force reduction effect are obtained, thereby achieving high transferability to a sheet of embossed paper or the like having a deeper recess. Thus, the adhesion force reduction effect is particularly remarkably obtained in the transfer belt exhibiting the first pattern, and a degree of the obtained effect is greatly related with the above-described overshoot portion in the first pattern. Specifically, when primary displacement ratio k1[μm/s] is sufficiently large, the primary displacement of first main surface1aof transfer belt1occurs at a high speed in the initial stage of passage of transfer belt1through the nip portion, thereby obtaining a high adhesion force reduction effect. Further, when overshoot ratio E [−] is sufficiently large, first main surface1aof transfer belt1is deformed at a high speed in a complicated manner in the middle stage of passage of transfer belt1through the nip portion, thereby obtaining a high adhesion force reduction effect. In addition, when secondary displacement ratio k2[μm/s] is sufficiently large, secondary deformation of first main surface1aof transfer belt1occurs at a high speed in the final stage of passage of transfer belt1through the nip portion, thereby obtaining a high adhesion force reduction effect. Here, with reference toFIG. 10B, ΔVtotal=ΔVgap−ΔVadh is established, where ΔVtotal represents a difference between applied voltage V1and applied voltage V2, ΔVgap represents an amount of reduction of the applied voltage for attaining the maximum transfer efficiency in recess1002due to the deformation following effect, and ΔVadh represents an amount of reduction of the applied voltage for attaining the maximum transfer efficiency in recess1002due to the adhesion force reduction effect. Since ΔVtotal is represented by V1-V2as described above, ΔVadh is represented by V1-V2-ΔVgap. Although each of V1and V2has an intrinsic value for each transfer belt, the value thereof can be derived through an experiment. ΔVgap can be derived experimentally from displacement amount y of measurement region MR of belt S measured using the above-described belt evaluation method employing displacement amount measuring device100. Therefore, based on these values, ΔVadh can be determined by calculation. <Experiment for Checking Relation Between ΔVadh and Each of Overshoot Ratio E, Primary Displacement Ratio k1, and Secondary Displacement Ratio k2> The present inventors manufactured a multiplicity of belts including elastic layers having different compositions by preparing various types and amounts of resins, additive agents, crosslinking agents and the like to be included in the elastic layers. These belts were evaluated based on the belt evaluation method employing displacement amount measuring device100to determine overshoot ratio E, primary displacement ratio k1, and secondary displacement ratio k2of each of the belts. From these belts, a plurality of belts having different overshoot ratios E, primary displacement ratios k1, and secondary displacement ratios k2were selected. Each of the plurality of selected belts was used to experimentally measure efficiency of transfer to a recess of a sheet of embossed paper, thereby determining the value of V2of each belt. Here, V2was measured in the following manner: displacement amount measuring device100shown inFIG. 3Awas employed; the belt to be measured and the sheet of embossed paper were sandwiched between lower block110and upper block120; voltage was applied to lower block110and upper block120to cause a potential difference between lower block110and upper block120; and the applied voltage was changed variously to find, as V2, a voltage for attaining the best transfer efficiency. Meanwhile, similar measurement was performed using inelastic belts to determine the value of V1of each belt. Based on a displacement amount of measurement region MR of each belt measured by the belt evaluation method employing displacement amount measuring device100, ΔVgap was determined by calculation. Based on the data of each of these belts, a relation between ΔVadh and each of overshoot ratio E, primary displacement ratio k1, and secondary displacement ratio k2is established.FIG. 13is a graph showing a relation between overshoot ratio E and ΔVadh. Moreover,FIG. 14is a graph showing a relation between primary displacement ratio k1and ΔVadh.FIG. 15is a graph showing a relation between secondary displacement ratio k2and ΔVadh. It should be noted that since displacement amount y has no local peak in the belt exhibiting the second pattern, displacement amount y at 50 [ms] was set as maximum value a. As understood fromFIG. 13, in the relation between overshoot ratio E and ΔVadh, ΔVadh was less than 50 [V] when overshoot ratio E was in the range of 0≤E<0.2, thus confirming that substantially no adhesion force reduction effect was obtained. On the other hand, when overshoot ratio E was in the range of 0.2≤E, ΔVadh tended to be increased to more than 50[V] as the value of overshoot ratio E became larger, thus confirming that a high adhesion force reduction effect was obtained. As understood fromFIG. 14, in the relation between primary displacement ratio k1and ΔVadh, ΔVadh was less than 50 [V] when primary displacement ratio k1was in the range of 0≤k1≤60, thus confirming that substantially no adhesion force reduction effect was obtained. On the other hand, when primary displacement ratio k1was in the range of 60≤k1, ΔVadh tended to be increased to more than 50[V] as the value of primary displacement ratio k1became larger, thus confirming that a high adhesion force reduction effect was obtained. As understood fromFIG. 15, in the relation between secondary displacement ratio k2and ΔVadh, ΔVadh was less than 50[V] when secondary displacement ratio k2was in the range of 0≤k2≤6, thus confirming that that substantially no adhesion force reduction effect was obtained. On the other hand, when secondary displacement ratio k2was in the range of 6≤k2, ΔVadh tended to be increased to more than 50 [V] as the value of secondary displacement ratio k2became larger, thus confirming that a high adhesion force reduction effect was obtained. The above results provide a ground for setting respective lower limit values of overshoot ratio E, primary displacement ratio k1, and secondary displacement ratio k2in the above-described first to third conditions. The above results indicate that in addition to the deformation following effect, a sufficient adhesion force reduction effect is obtained when the condition of the lower limit value one of the first to third conditions is satisfied. The present inventors manufactured a multiplicity of belts including elastic layers having different compositions by preparing various types and amounts of resins, additive agents, crosslinking agents and the like to be included in the elastic layers. These belts were evaluated based on the above-described belt evaluation method employing displacement amount measuring device100to determine overshoot ratio E, primary displacement ratio k1, and secondary displacement ratio k2of each of the belts. Moreover, each of the belts was subjected to an experiment for checking performance of each belt under a predetermined condition. In the experiment for checking performance, an image forming apparatus provided by Konica Minolta (digital multifunctional peripheral: bizhub PRESS C6000) was used. An intermediate transfer belt provided in this image forming apparatus was replaced with each of the above-described belts. The diameter and secondary transfer pressure of a secondary transfer roller were also changed or adjusted as required. In the experiment for checking performance, quality of transferability to a recess of a sheet of embossed paper, presence/absence of image noise after printing 10,000 sheets, quality of uniformity of transfer in the axial direction of the secondary transfer roller, presence/absence of void were checked for each of experiment examples 1 to 18 for which at least either the types of belts or the image formation conditions are different from one another. It should be noted that the term “void” refers to a phenomenon of transfer failure occurring at the central portion of a formed image such as a thin line or halftone dot. FIG. 16is a table showing image formation conditions and image formation results in the experiment for checking performance. As shown inFIG. 16, a total of ten types of transfer belts, A to D, O, F to I, and X, including elastic layers having different compositions were prepared as the belts. The transfer pressure was set in a total of five levels between 70 [kPa] and 500 [kPa]. The diameter of the secondary transfer roller was set in a total of five levels between 16 [mm] and 70 [mm]. Here, each of the types of belts A to D, O and F-I was manufactured by the present inventors, had a base layer composed of polyimide, and had an elastic layer composed of a nitrile rubber. On the other hand, the type of belt X was not manufactured by the present inventors, was an intermediate transfer belt used in a commercially available image forming apparatus, had a base layer composed of polyimide, and had an elastic layer composed of a chloroprene rubber. It should be noted that as a result of preliminarily performing image formation before the experiment for checking performance, it was confirmed that transferability to a recess of a sheet of embossed paper in the case where the hardness of the surface of the secondary transfer roller was higher than the hardness of the surface of the counter roller was more excellent than those in the case where the hardness of the surface of the secondary transfer roller was lower than the hardness of the surface of the counter roller and the case where the hardness of the surface of the counter roller was the same as the hardness of the surface of the secondary transfer roller. This is due to the following reason. That is, when the hardness of the surface of secondary transfer roller6is higher than the hardness of the surface of counter roller7, a recessively curved elongated surface is formed in first main surface1aof transfer belt1as also shown inFIG. 2. A surface portion of the recessively curved elongated surface is a portion to be compressed and therefore has room for great deformation, thereby facilitating an action for promoting deformation of first main surface1a. In order to check the quality of transferability, embossed paper with a product name “LEATHAC® 66” provided by Tokushu Tokai Paper Co., Ltd was used. Each sheet of embossed paper had a basis weight of 302 [g/m2]. A solid image was formed thereon. For determination thereof, a microdensitometer was used to measure reflection density of a sharp and deep recess and reflection density of a protrusion, and a density difference therebetween was calculated. When the density difference was less than 0.25, it was determined as “Good” When the density difference was not less than 0.25 and less than 0.40, it was determined as “Applicable”. When the density difference was not less than 0.40, it was determined as “Not Applicable”. (Presence/Absence of Image Noise) The presence/absence of the image noise was checked by printing a solid image using the apparatus after printing 10,000 sheets and then observing image quality of the solid image. Also, the transfer belt was observed to check whether or not the transfer belt was cracked or worn after printing 10,000 sheets. For determination thereof, when the transfer belt was not cracked or worn and there was no noise in the image, it was determined as “Good”. When the transfer belt was cracked and worn but there was no noise in the image, it was determined as “Applicable” When the transfer belt was cracked and worn and there was noise in the image, it was determined as “Not Applicable”. (Quality of Uniformity of Transfer in Axial Direction) In order to check the quality of uniformity of transfer in the axial direction of the secondary transfer roller, coated paper was used. Each sheet of coated paper had a basis weight of 151 [g/m2]. A solid image was formed thereon. For determination thereof, a microdensitometer was used to measure reflection densities at 20 random positions in the longitudinal direction of the sheet of coated paper, and a density difference between the maximum value and minimum value of the measured reflection densities was calculated. When the density difference was less than 0.10, it was determined as “Good”. When the density difference was not less than 0.10 and less than 0.20, it was determined as “Applicable”. When the density difference was not less than 0.20, it was determined as “Not Applicable”. In order to check the presence/absence of void, coated paper was used. Each sheet of coated paper had a basis weight of 151 [g/m2]. An image of five thin lines each having a length of 60 [mm] and a width of 3 dots was formed. The image was observed using a magnifier to check presence/absence of disturbance of the image. For determination thereof, when each thin line was not disturbed, it was determined as “Good”. When the thin line was only slightly disturbed, it was determined as “Applicable”. When the thin line was disturbed in an unacceptable manner, it was determined as “Not Acceptable”. In the comprehensive evaluation, one including the evaluation “Not Applicable” in one of the quality of transferability, the presence/absence of image noise, the quality of uniformity of transfer in the axial direction, and the presence/absence of void was determined as “Not Applicable”. One not including the evaluation “Not Applicable” and including the evaluation “Applicable” in the quality of transferability, the presence/absence of image noise, the quality of uniformity of transfer in the axial direction, and the presence/absence of void was determined as “Good” or “Applicable”. One including the evaluation “Good” in each of the quality of transferability, the presence/absence of image noise, the quality of uniformity of transfer in the axial direction, and the presence/absence of void was determined as “Excellent”, It should be noted that a difference between “Good” and “Applicable” in the comprehensive evaluation is as follows: one including the evaluation “Good” in each of the quality of transferability and the presence/absence of image noise was determined as “Good”, whereas one including the evaluation “Applicable” in at least one of the quality of transferability and the presence/absence of image noise was determined as “Applicable”. As understood fromFIG. 16, in each of experiment examples 1 to 13, 16, and 17 in which overshoot ratio E [−] satisfied 0.2≤E≤3 (i.e., satisfied the first condition), the adhesion force reduction effect was greatly exhibited, excellent transferability was obtained also in the recess of the sheet of embossed paper, and excellent results were obtained also in terms of image quality and durability. On the other hand, in each of experiment examples 14 and 18 in which overshoot ratio E[−] satisfied E<0.2, the adhesion force reduction effect was not sufficiently exhibited, and excellent transferability was not obtained in the recess of the sheet of embossed paper. Moreover, in experiment example 15 in which overshoot ratio E [−] satisfied 3<E, image noise occurred due to repeated use, thus resulting in problems in terms of image quality and durability. The above results provide a ground for setting the upper limit value and lower limit value of overshoot ratio E in the first condition. When a transfer belt is configured to satisfy the first condition, high transferability to a recording medium having a surface provided with irregularity can be achieved and image quality can be suppressed from being deteriorated by repeated use. Moreover, as understood fromFIG. 16, in each of experiment examples 1 to 13, 16, and 17 in which primary displacement ratio k1[μm/s] satisfied 60≤k1≤320 (i.e., satisfied the second condition), the adhesion force reduction effect was greatly exhibited, good transferability was obtained also in the recess of the sheet of embossed paper, and good results were obtained also in terms of image quality and durability. On the other hand, in each of experiment examples 14 and 18 in which primary displacement ratio k1[μm/s] satisfied k1<60, the adhesion force reduction effect was not sufficiently exhibited, and good transferability was not obtained in the recess of the sheet of embossed paper. Moreover, in experiment example 15 in which primary displacement ratio k1[μm/s] satisfied 320<k1, image noise occurred due to repeated use, thus resulting in problems in terms of image quality and durability. The above results provide a ground for setting the upper limit value and lower limit value of primary displacement ratio k1in the second condition. When a transfer belt is configured to satisfy the second condition, high transferability to a recording medium having a surface provided with irregularity can be achieved and image quality can be suppressed from being deteriorated by repeated use. Moreover, as understood fromFIG. 16, in each of experiment examples 1 to 13, 16, and 17 in which secondary displacement ratio k2[m/s] satisfied 6≤k2≤30 (i.e., satisfied the third condition), the adhesion force reduction effect was greatly exhibited, good transferability was obtained also in the recess of the sheet of embossed paper, and good results were obtained also in terms of image quality and durability. On the other hand, in each of experiment examples 14 and 18 in which secondary displacement ratio k2[μm/s] satisfied k2<6, the adhesion force reduction effect is not sufficiently exhibited, and good transferability was not obtained in the recess of the sheet of embossed paper. Moreover, in experiment example 15 in which secondary displacement ratio k2[μm/s] satisfied 30≤k2, image noise occurred due to repeated use, thus resulting in problems in terms of image quality and durability. The above results provide a ground for setting the upper limit value and lower limit value of secondary displacement ratio k2in the third condition. When a transfer belt is configured to satisfy the third condition, high transferability to a recording medium having a surface provided with irregularity can be achieved and image quality can be suppressed from being deteriorated by repeated use. Further, as understood fromFIG. 16, in experiment examples 1 to 13 in each of which one of the first to third conditions was satisfied and convergence value b [μm] satisfied 4≤b≤8 (i.e., satisfied the fourth condition), the adhesion force reduction effect was greatly exhibited, very good transferability was obtained also in the recess of the sheet of embossed paper, and very good results were obtained also in terms of image quality and durability. In addition, as understood fromFIG. 16, in each of experiment examples 1 to 11, 16, and 17 in which one of the first to third conditions was satisfied and the diameter of the secondary transfer roller was not less than 20 [mm] and not more than 60 [mm], good transferability was obtained also in the recess of the sheet of embossed paper, wear resistance was also good, and the density difference in the axial direction and the void were also in acceptable levels. On the other hand, in experiment example 12 in which the diameter of the secondary transfer roller was less than 20 [mm], a slight density difference was caused in the axial direction due to bending of the secondary transfer roller. Moreover, in experiment example 13 in which the diameter of the secondary transfer roller was more than 60 [mm], void occurred and thin line reproducibility was deteriorate slightly. Thus, when one of the first to third conditions is satisfied and the diameter of the secondary transfer roller is not less than 20 [mm] and not more than 60 [mm], an image having higher quality can be formed. In addition, as understood fromFIG. 16, in each of experiment examples 1 to 9, 12, 13, 16, and 17 in which one of the first to third conditions was satisfied and the maximum pressure in the nip portion of the secondary transfer portion was not less than 100 [kPa] and not more than 400 [kPa], good transferability was obtained also in the recess of the sheet of embossed paper, wear resistance was also good, and the density difference in the axial direction and the void were also in the acceptable levels. On the other hand, in experiment example 10 in which the maximum pressure in the nip portion of the secondary transfer portion was less than 100 [kPa], transfer pressure became unstable to result in a slight density difference in the axial direction. Meanwhile, in experiment example 11 in which the maximum pressure in the nip portion of the secondary transfer portion was more than 400 [kPa], the transfer pressure was too high, with the result that the void occurred and the thin line reproducibility was deteriorated slightly. Therefore, when one of the first to third conditions is satisfied and the maximum pressure in the nip portion of the secondary transfer portion is set at not less than 100 [kPa] and not more than 400 [kPa], an image having higher quality can be formed. The present inventors conducted a below-described additional experiment and confirmed that the following effects can be obtained as secondary effects according to the present invention: an effect of improving detachability of the recording medium from the transfer belt after the transfer; and an effect of improving cleanability for the transfer belt. For the additional experiment, the present inventors manufactured a multiplicity of belts including elastic layers having different compositions by preparing various types and amounts of resins, additive agents, crosslinking agents and the like to be included in the elastic layers. These belts were evaluated based on the belt evaluation method employing displacement amount measuring device100to determine secondary displacement ratio k2of each belt. A plurality of belts having different secondary displacement ratios k2were selected. As with the experiment for checking performance, in the additional experiment, an image forming apparatus provided by Konica Minolta (digital multifunctional peripheral: bizhub PRESS C6000) was used and an intermediate transfer belt provided in this image forming apparatus was sequentially replaced with the above-described plurality of belts, so as to check the detachability of recording medium and the cleanability. FIG. 17is a table showing image formation conditions and image formation results in the additional experiment. As shown inFIG. 17, for the types of belts, a total of five types of transfer belts, J to N, including elastic layers having different compositions were prepared. Transfer pressure was set at 200 [kPa] in each case. The diameter of the secondary transfer roller was set at 40 [mm] in each case. Here, each of the types of belts J to N was manufactured by the present inventors, and had a base layer composed of polyimide and had an elastic layer composed of a nitrite rubber. (Quality of Detachability of Recording Medium) In order to check the quality of detachability of the recording medium, regular paper with a product name “J paper” provided by Konica Minolta was used. Each sheet of regular paper had a basis weight of 64 [g/m2]. Images having different densities were formed. 1000 sheets of the regular paper were printed. The quality of detachability of the recording medium was determined based on the number of times of paper jams resulting from failure in detaching the sheets of regular paper in the secondary transfer portion during the printing. When no paper jam occurred, it was determined as “Good”. When the number of times of paper jams was not less than once and not more than three times, it was determined as “Applicable”. When the number of times of paper jams was not less than four times, it was determined as “Not Applicable”. In order to check the quality of cleanability, embossed paper with a product name “LEATHAC® 66” provided by Tokushu Tokai Paper Co., Ltd was used. Each sheet of embossed paper had a basis weight of 302 [g/m2]. The quality of cleanability was determined by observing whether or not a formed image had image noise resulting from remnants on the cleaning blade of the cleaning portion. When there is not such image noise, it is determined as “Good”. When there is such image noise in an acceptable level, it is determined as “Applicable”. When there is such image noise in an unacceptable level, it is determined as “Not Applicable”. As apparent from the experimental results of experiment examples 19 to 23 shown inFIG. 17, the detachability of the recording medium was better when using a transfer belt having a larger secondary displacement ratio k2[μm/s]. When transferring a toner image to a sheet of non-embossed paper, the surface of the transfer belt is deformed to completely follow the irregularity of the recording medium because a level difference between recess and protrusion therein is small, thus resulting in a large contact area between the surface of the transfer belt and the surface of the recording medium. Accordingly, the detachability is likely to be decreased. However, when a transfer belt having a large secondary displacement ratio k2[μm/s] is used, the surface of the transfer belt is deformed to completely follow the irregularity of the recording medium in the central portion of the nip portion in which the transfer pressure is the maximum but the surface of the transfer belt is reverted from the deformation near the outlet of the nip portion, thus resulting in a small contact area between the surface of the transfer belt and the surface of the recording medium. Accordingly, the recording medium is readily detached from the transfer belt. On the other hand, when a transfer belt having a small secondary displacement ratio k2[μm/s] is used, the surface of the transfer belt is deformed to completely tbllow the irregularity of the recording medium in the central portion of the nip portion and is then insufficiently reverted from the deformation even near the outlet of the nip portion, with the result that the contact area between the surface of the transfer belt and the surface of the recording medium is still large. Accordingly, the recording medium is less likely to be detached from the transfer belt. Moreover, as apparent from the experimental results of experiment examples 19 to 23 shown inFIG. 17, when a transfer belt having a small secondary displacement ratio k2[μm/s] is used, the cleanability is deteriorated. This is due to the following reason. That is, even when the transfer belt reaches the cleaning portion after the transfer belt is deformed to follow the level difference between the recess and protrusion of the sheet of paper in the secondary transfer portion, the surface of the transfer belt is not reverted from the deformation and the surface of the transfer belt therefore has irregularity, with the result that part of residual toner is avoided from the cleaning belt to cause cleaning failure. On the other hand, in the case where a transfer belt having a large secondary displacement ratio k2[μm/s] is used, when the transfer belt reaches the cleaning portion after the transfer belt is deformed to follow the level difference between the recess and protrusion of the sheet of paper in the secondary transfer portion, the transfer belt has been already reverted from the deformation, with the result that the surface of the transfer belt becomes smooth. Accordingly, cleaning failure is unlikely to occur. FIG. 18is a schematic view of an image forming apparatus in the present embodiment. With reference toFIG. 18, the following describes an image forming apparatus10in the present embodiment. It should be noted that image forming apparatus10shown inFIG. 18is a digital multifunctional peripheral. Image forming apparatus10in the present embodiment includes transfer belt1in the present embodiment as an intermediate transfer belt42a. Transfer belt1is used in basically the same manner as that in the exemplary usage already described usingFIG. 2. As shown inFIG. 18, image forming apparatus10includes an image scanning unit20, an image processing unit30, an image forming unit40, a sheet conveying unit50, and a fixing device60. Image forming unit40has image forming units41(41Y,41M,41C,41K) for forming an image using color toners of Y (yellow), M (magenta), C (cyan), and K (black). Since these image forming units41have the same configuration apart from the toner stored therein, signs representing the colors will be omitted below. Image forming unit40further includes an intermediate transfer unit42and a secondary transfer unit43. Image forming unit41has an exposing device41a, a developing device41b, a photoconductor drum41c, a charging device41d, and a drum cleaning device41e. Photoconductor drum41chas a surface having photoconductivity, and is a negative charge type organic photoconductor, for example. Photoconductor drum41cis an image carrier that carries a toner image. Charging device41dis, for example, a corona charger, but may be a contact charging device for charging photoconductor drum41cby bringing a contact charging member such as a charging roller, a charging brush, or a charging blade into contact with photoconductor dram41c. Exposing device41ais constituted of a semiconductor laser, for example. Developing device41bis, for example, a double-component development type developing device; however, developing device41bmay be a single-component development type developing device with no carrier. Intermediate transfer unit42includes: an intermediate transfer belt42aconstituted of transfer belt1in the present embodiment; a primary transfer roller42bfor pressing intermediate transfer belt42ainto contact with photoconductor drum41c; a plurality of supporting rollers42cincluding a counter roller42c1; and a belt cleaning device42d. Intermediate transfer belt42ais an endless transfer belt. Here, a primary transfer portion is mainly constituted of primary transfer roller42b. Intermediate transfer belt42ais suspended in the form of a loop on the plurality of supporting rollers42c, and is movable. When at least one drive roller of the plurality of supporting rollers42cis rotated, intermediate transfer belt42atravels at a constant speed in a direction of arrow α. Secondary transfer unit43includes an endless secondary transfer belt43a; and a plurality of supporting rollers43bincluding a secondary transfer roller43b1. Secondary transfer belt43ais suspended in the form of a loop on secondary transfer roller43b1and supporting rollers43b. Here, a secondary transfer portion is mainly constituted of secondary transfer roller43b1and counter roller42c1. Fixing device60includes: a fixing roller61that heats and melts toner on a sheet serving as a recording medium; and a pressure applying roller62that presses the sheet onto fixing roller61. Image scanning unit20has an automatic document feeder21and a document image scanning device22(scanner). Of these, document image scanning device22is provided with a contact glass, various types of lens systems, and a CCD sensor70. Moreover, CCD sensor70is connected to image processing unit30. Sheet conveying unit50has a sheet supplying unit51, a sheet ejecting unit52, and a conveyance path unit53. Sheet supply tray units51ato51cincluded in sheet supplying unit51store, in accordance with predetermined types, sheets (sheets of standard paper and sheets of special paper) identified based on basis weight, size, or the like. Conveyance path unit53has a plurality of conveying roller pairs, such as a resist roller pair53a. Sheet ejecting unit52is constituted of a sheet ejecting roller52a. Next, the following describes a process of image formation by image forming apparatus10. Document image scanning device22optically scans and reads a document on the contact glass. Reflected light from the document is read by CCD sensor70, and becomes input image data. The input image data is subjected to a predetermined image process in image processing unit30, and is then sent to exposing device41a. It should be noted that the input image data may be sent from an external personal computer, a mobile device, or the like to image forming apparatus10. Photoconductor drum41cis rotated at a certain circumferential speed. Charging device41dnegatively charges the surface of photoconductor drum41cuniformly. Exposing device41airradiates photoconductor drum41cwith laser light corresponding to the input image data of each color component, thereby forming an electrostatic latent image on the surface of photoconductor drum41c. Developing device41badheres toner to the surface of photoconductor drum41cto visualize the electrostatic latent image on photoconductor drum41c. In this way, a toner image corresponding to the electrostatic latent image is formed on the surface of photoconductor drum41c. The toner image on the surface of photoconductor drum41cis transferred to intermediate transfer belt42aby intermediate transfer unit42. Remaining non-transferred toner on the surface of photoconductor drum41cafter the transfer is removed by drum cleaning device41ehaving a drum cleaning blade that is slidably in contact with the surface of photoconductor drum41c. Intermediate transfer belt42ais pressed into contact with photoconductor drum41cby primary transfer roller42b, whereby the respective toner images of the colors are sequentially transferred to overlap with one another on intermediate transfer belt42a. Secondary transfer roller43b1is pressed into contact with counter roller42c1with intermediate transfer belt42aand secondary transfer belt43abeing interposed therebetween. Accordingly, a transfer nip is formed. A sheet is conveyed to the transfer nip by sheet conveying unit50and passes through this transfer nip. Inclination of the sheet is corrected and a timing of conveyance thereof is adjusted by a resist roller portion provided with resist roller pair53a. When a sheet is conveyed to the transfer nip, transfer bias is applied to secondary transfer roller43b1. Due to the application of transfer bias, the toner image carried by intermediate transfer belt42ais transferred to the sheet. Remaining non-transferred toner on the surface of intermediate transfer belt42ais removed by belt cleaning device42dhaving the belt cleaning blade that is slidably in contact with the surface of intermediate transfer belt12a. Belt cleaning device42dmay employ a cleaning method using a brush as long as belt cleaning device42dis configured to clean residual toner on intermediate transfer belt42a. Moreover, when toner having a high transfer ratio is used, no cleaning device may be used. The sheet having the toner image transferred thereon is conveyed to fixing device60by secondary transfer belt43a. Fixing device60heats and presses, at the nip portion, the conveyed sheet having the toner image transferred thereon. In this way, the toner image is fixed to the sheet. The sheet having the toner image fixed thereon is ejected out of the apparatus by sheet ejecting unit52including sheet ejecting roller52a. Here, the toner has a binder resin in which a coloring agent, and, if necessary, a charge control agent, a parting agent, or the like are contained to treat an external additive agent. Generally used, known toner can be used therefor. The toner preferably has particles having a volume average particle size falling within a range of not less than 2 [μm] and not more than 12 [μm], and has more preferably particles having a volume average particle size falling within a range of not less than 3 [μm] and not more than 9 [μm] in view of image quality. The toner preferably has a shape factor SF-1 of, but not limited to, 100 to 140. Shape factor SF-1 is determined from an average value of shape factors by using a scanner to randomly scan 100 images of the toner captured by a scanning electron microscope at ×5000 and then analyzing them using an image processing analysis device “LUZCX AP” (provided by Nireco). The average value of the shape factors (SF-1) is determined based on the following formula: SF-1−[{(absolute maximum length of particles)2/(projected area of particles)}×(π/4)]×100. For the external additive agent of the toner, fine particles of metal oxide such as silica or titania are used. The fine particles used herein has a small particle size of 30 [nm] or has a relatively large particle size of 100 [nm]. For powder flowability and charge control, inorganic particles having a primary average particle size of not more than 40 [nm] may be used. Further, inorganic or organic fine particles having a larger size may be used together as required to reduce adhesion force. Examples of the inorganic particles include: silica, titania, alumina, metatitanic acid, zinc oxide, zirconia, magnesia, calcium carbonate, magnesium carbonate, calcium phosphate, cerium oxide, strontium titanate, and the like. Moreover, in order to improve dispersibility and powder flowability, the surfaces of the inorganic particles may be treated additionally. The carrier is not particularly limited and a generally used, known carrier can be used, such as a binder type carrier or a coat type carrier. A carrier particle size is preferably, but not limited to, not less than 15 [μm] and not more than 100 [μm]. In the present embodiment above, it has been described that the present invention is applied to the digital multifunctional peripheral serving as the image forming apparatus and is applied to the intermediate transfer belt included therein as the transfer belt; however, the present invention can be also applied to a different image forming apparatus and a transfer belt included therein.
La présente invention concerne un procédé pour la préparation de composés hétérocycliques ; elle concerne également de nouveaux hétéro cycloimidazoles, avantageusement préparés par mise en oeuvre du susdit procédé, utilisables comme intéressants agents biologiques et 5 chimiothérapeutiques• La synthèse de systèmes organiques cycliques complexes (c'est-à-dire de composés comportant au moins deux cycles fusionnés) pose souvent au chimiste organicien de nombreux problèmes parmi lesquels figurent la nécessité de partir de matières premières Be se trouvant 10 pas dans le commerce, la mise en oeuvre d'opérations élémentaires multiples, et l'obtention de faibles rendements. Ces difficultés s'accroissent au fur et à mesure qu'augmente le degré de complexité du composé désiré. Ainsi, la technique antérieure met à la disposition du spécialiste divers moyens pour réaliser la synthèse d'imida-15 zoles, mais beaucoup d'entre eux ne sont pas adéquats en vue de la synthèse d'imidazoles comportant un cycle organique fusionné à la molécule» Moins nombreuses encore sont les méthodes de la technique antérieure adéquates en vue de la synthèse d'imidazoles ayant deux cycles fusionnés à leur molécule. 20 Un but de la présente invention est de mettre à la disposition de la technique des modes opératoires avantageux permettant de préparer certains imidazoles complexes- Ces modes opératoires utilisent des matières premières et des réactifs qu'il est facile de se procurer ; en outre, ils n'exigent qu'un nombre minimum d'opérations élé-25 mentaires, et permettent d'obtenir les produits désirés avec un bon rendement• Certaines 1,3-diméthyl-1,2,3,4-tétrahydrohétérocyclo/x,y-f7pu-rine-2,4-diones dont la synthèse peut s'effectuer pas mise en oeuvre des modes opératoires en question se sont révélées comme possédant 30 une activité biologique et pharmacologique inattendue et intéressante. En résumé, la présente invention fournit des moyens permettant de préparer des imidazoles à partir de composés contenant une fraction moléculaire du type 2H-1,2,4-thiadiazinyl-1-oxyde activé qui correspond à la formule-suivante : 35 0 l[ \/s\ / \r n 2 2000031 69 00011 L'expulsion de monoxyde de soufre à partir de ces fractions activées est une réaction étonnamment facile à la suite de laquelle le cycle thiadiazinyle se contracte pour former le système imidazole désiré. Selon la présente invention, une fraction moléculaire du type 5 thiadiazinyl-1-oxyde "activé" est une fraction qu'il est possible de préparer en faisant réagir une fraction moléculaire N-vinylamidine correspondant à la formule suivante : avec du chlorure de thionyle- Similairement, une fraction N-vinylamidine "activée" est une fraction qui forme un 2H-1,2,4-thiadiazi-ny1-1-oxyde par traitement par du chlorure de thionyle. Selon un 15 mode de réalisation préféré de la présente invention, le 2H-1,2,4-thiadiazinyl-1-oxyde est, en fait, préparé à partir du composé du type N-vinylamidine• Le procédé en question est plus spécialement avantageux quand les substituants vinyle et amidine de la fraction N-vinylamidine ac-20 tivée sont chacun pris ensemble pour fournir un système cyclique, ce qui a pour résultat la formation d'un produit du type imidazole à plusieurs cycles fusionnés» Ainsi, dans un mode de réalisation préféré de la présente invention, les deux substituants amidine fournissent un système cyclique hétéroaromatique, et dans un mode de réali-25 sation considéré comme encore plus avantageux, les substituants vinyle fournissent un système uracile» Ceci permet la préparation de 1,3-diméthyl-1,2,3,4-tétrahydrohétérocyclo/x,y-b7-6H-pyrimido/4,5-e7 b ,2,47thiadiazine-2,4,5-triones (I) et de 1,3-diméthyl-l,2,3,4-té-trahydrohétérocyclo/x,y-f7purine-2,4-diones (II) correspondant aux 30 formules suivantes : 10 H 35 CH. '3 CH. ■3 dans lesquelles A est tel que, lorsque A est lié à un groupe 69 00011 3 2000031 -N=C- selon la configuration suivante : il » alors cette confi- I / guration est un système cyclique hétéroaromatique tel, par exemple, que : 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2-(1, 3, -5 5-triazinyle), 3-(1,2,4-triazinyle), 5-(1,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2-(1 ,-3,4-oxadiazolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 2-(1,3,-4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1-isoquinoly-le et 4-quinazolyle ; 10 X est choisi parmi le groupe constitué par hydrogène, alcoyle comportant jusqu'à 6 atomes de carbone, alcoxy comportant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant de 2 à 5 atomes de carbone, halogène, chloroformyle, chloroformylalcoyle comportant de 2 à 5 atomes de carbone, carbalcoxy comportant de 2 à 5 atomes de carbo-15 ne et perfluoroalcoyle comportant jusqu'à 6 atomes de carbone ; et Y est choisi parmi le groupe constitué par hydrogène, alcoyle comportant jusqu'à 6 atomes de carbone, alcoxy comportant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant jusqu'à 6 atomes de carbone, halogène, carboxyle, carbalcoxy comportant de 2 à 5 atomes de 20 carbone, carboxyalcoyle comportant de 2 à 5 atomes de carbone, chi>-roformyle, chloroformylalcoyle comportant de 2 à 5 atomes de carbone, perfluoroalcoyle comportant jusqu'à 6 atomes de carbone, halogénomé-thyle, hydroxyle, hydroxyméthyle, di(alcoyl-inférieur)aminométhyle, 1-(4-méthylpipérazino)méthyle, 1-(4-méthylpipérazino)formyle et 25 1-(2,6-diméthylpipéridino)formyle. La nomenclature utilisée au cours de la présente description pour désigner des composés polycycliques correspondant aux formules I et II est conforme à celle des Chemical Abstracts. Par exemple, quand la substance-support contenant la fraction N-vinylamidine est 30 du 1,3-diméthyl-6-(2-pyridylamino)-uracile, les systèmes cycliques obtenus sont numérotés comme suit : n les lettres et les nombres intérieurs servant à spécifier les modes 69 00011 4 2000031 de fusion tandis que les nombres extérieurs servent à spécifier les positions sur le système final des cycles• Les produits des types thiadiazine et purine obtenus à partir dudit pyridylaminouracile sont, respectivement, la 1,3-diméthyl-1,2,3,4-tétrahydro/l,2-b7-6H-5 pyrimido/î,5-e7/l,2,47thiadiazine-2,4,5-trione et la 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione. On a découvert que de nouvelles purines correspondant à la formule II inhibent l'activité d'un enzyme du type 3',5'-nucléotide-phosphodiestérase ; elles manifestent aussi diverses activités phar-10 macologiques qui les rendent intéressantes et utilisables comme a-gents chimiothérapeutiques- De plus, bon nombre d'entre elles sont utilisables comme produits intermédiaires en vue de la synthèse d'autres composés compris dans le même groupe et qui sont d'intéressants agents- 15 Certains hétérocycloimidazoles faisant l'objet de la présente invention, ou leurs précurseurs, peuvent être sensibles à un traitement par du chlorure de thionyle et peuvent donc être plus facilement préparés en chauffant simplement un 1,3-diméthyl-6-(amino-sub-stitué)uracile approprié ayant un substituant chloro ou bromo en po-20 sition 5« Ces 5-hélogénouraciles sont eux-mêmes préparés en traitant du 1,3-diméthyl-6-chlorouracile par du pentachlorure de phosphore ou par du pentabromure de phosphore, et en condensant le 1,3-diméthyl-5,6-dihalogénouracile résultant avec 1'aminé hétérocyclique appropriée. 25 On peut décrire l'invention d'une manière plus détaillée comme suit : On a découvert que des 2H-1,2,4-thiadiazinyl-1-oxydes pouvant être préparés à partir de B-vinylamidines subissent facilement une déthionylation pour donner des imidazoles par la succession de réac-30 tions que l'on peut schématiser comme suit : H Dans certaines conditions, le tautomère à chaîne cyclique correspondant à la formule suivante : 5 2000031 69 00011 0 /%N R, 2 R •4 5 peut constituer une représentation plus précise de la substance que la forme sulfinamide du thiadiazinyl-1-oxyde. Toutefois, la forme sulfinamide sera constamment utilisée au cours de la présente description. Etant donné que des déthionylations ne se trouvent pas communément signalées dans la technique antérieure, l'expulsion de 10 monoxyde de soufre observée lors de la mise en oeuvre du procédé selon la présente invention est un phénomène inattendu. Pour déterminer si un 2H-1,2,4-thiadiazinyl-1-oxyde particulier est capable de subir la déthionylation désirée, il est nécessaire de déterminera, oui ou non il est activé, c'est-à-dire s'il peut être 15 préparé à partir d1 une N-vinylamidine• Etant donné que sa conversion initiale utilise du chlorure de thionyle, il convient de procéder en observant les précautions habituelles lors de l'utilisation de ce réactif, par exemple l'utilisation d'un système anhydre et l'utilisation facultative d'un éliminateur de chlorure d'hydrogène tel que du 20 carbonate de sodium pulvérisé. Il convient aussi de conduire la réaction en milieu réactionnel liquide communément constitué en utilisant assez de chlorure de thionyle pour qu'il puisse servir aussi de solvant. On peut aussi utiliser des solvants organiques communs, i-nertes à l'égard de la réaction, tels que chloroforme, chlorure de 25 méthylène et éther, et dans ce cas il est désirable de mettre en oeuvre au moins une proportion équivalente (en moles) de chlorure de thionyle en vue d'atteindre les meilleurs résultats. Il faut noter qu'il advient que le substrat contienne un site additionnel doté de réactivité à l'égard du chlorure de thionyle ; ce site peut avoir été 30 séparé à partir de la fraction N-vinylamidine, et dans ce cas une quantité additionnelle de chlorure de thionyle peut être nécessaire en vue d'obtenir le rendement maximum. N'importe quel 2H-1,2,4-thiadiazinyl-1-oxyde formé par cette réaction est activé dans le sens où 1'entend la présente invention et subira une déthionylation abou-35 tissant à l'obtention d'un imidazole- Selon la stabilité relative du 2Hr1,2,4-thiadiazinyl-1-oxyde particulier, le produit réellement isolé à partir de ladite réaction avec du chlorure de thionyle peut être soit le thiadiazinyl-1-oxyde, 69 00011 6 2000031 soit 1"imidazole- S'il est désirable d'isoler un thiadiazinyl-1-oxyde relativement instable, la réaction avec du chlorure de thionyle peut être conduite à des températures suffisamment basses pour é-viter la déthionylation facile-5 Habituellement, toutefois, on désire procéder d'une manière aus si directe que possible à partir du substrat (N-vinylamidine) pour aboutir à 1'imidazole, et dans ce cas on peut se dispenser d'isoler le produit intermédiaire que constitue le 2H-1,2,4-thiadiazinyl-l-oxyde à moins que cela apparaisse nécessaire- La formation de l'i-10 midazole à partir de la N-vinylamidine peut s'effectuer en un ou plus d'un stade, selon les conditions de réaction et la stabilité de l'intermédiaire que constitue le 2H-1,2,4-thiadiazinyl-1-oxyde. Par exemple, quand on conduit la réaction dans une quantité suffisante de chlorure de thionyle pour que ce réactif serve aussi de solvant, 15 on a constaté que cinq minutes de chauffage à reflux d'une solution de certains substrats du type N-vinylamidine suffisent pour provoquer une conversion directe en 1'imidazole désiré. D'autres N-vinylami-dines sont converties en le produit intermédiaire thiadiazinylé dans de telles conditions, et ce produit intermédiaire doit ensuite être 20 chauffé jusqu'à des températures aussi élevées que 300°C pour provoquer la déthionylation désirée. Encore d'autres N-vinylamidines peut être converties soit en les produits intermédiaires thiadiazi-nylés en les dissolvant dans du chlorure de thionyle à la température ambiante ordinaire, soit directement en 1'imidazole par chauffage 25 à reflux dans du chlorure de thionyle- Similairement, dans les cas où les 2H-1,2,*4-thiadiazinyl-1-oxy-des sont isolés, ils peuvent être convertis en imidazoles dans des conditions aussi diverses que chauffage à reflux dans du chlorure de thionyle pendant 5 à 90 minutes, chauffage jusqu'à 150°G sous une 30 pression de 0,05 mm de Hg, ou chauffage jusqu'à 300°0 pendant dix minutes sous la pression atmosphérique normale- Par conséquent, des conditions de réaction appropriées en vue de toute conversion comprise dans la portée de la mise en oeuvre du procédé selon la présente invention doivent être déterminées pour 35 chaque substrat particulier utilisé, et ceci peut être fait par mise en oeuvre de simples modes opératoires d'expérimentation bien connus des spécialistes. On peut avoir recours à n'importe lequel des nombreux modes opératoires couramment pratiqués en laboratoire pour déterminer si le produit de la réaction avec du chlorure de thionyle 40 est le 2H-1,2,4-thiadiazinyl-1-oxyde ou s'il est intervenu une dé- 69 00011 7 2000031 thionylation aboutissant à 1'imidazole : par exemple, spectrophoto-métrie, analyse élémentaire, détermination du poids moléculaire (en abrégé : PM). Bien entendu, le produit de réaction doit être hautement purifié avant de procéder à de tels essais afin que les résul-5 tats n'en soient pas obscurcis par la présence de chlorure de thionyle résiduel. Si le produit est le thiadiazinyl-1-oxyde, les conditions de réaction utilisées sont insuffisantes pour provoquer une déthionylation aboutissant à 1'imidazole, et il convient d'utiliser des conditions opératoires appropriées : température de réaction 10 plus élevée, temps de réaction plus long, ou pression plus basse. Bien entendu, il conviendrait d'opérer de la manière juste opposée s'il était désirable d'arrêter la réaction au stade thiadiazinyl-1-oxyde et de ne pas effectuer de déthionylation. A la lumière des considérations ci-dessus, on peut utiliser des 15 modes opératoires conformes aux principes suivants, les conditions réelles dépendant de la solubilité, de la réactivité et de la stabilité de la N-vinylamidine et du 2H-1,2,4-thiadiazinyl-1-oxyde : (A) la N-vinylamidine servant de substrat est dissoute dans un excès de chlorure de thionyle et l'on chauffe la solution à reflux pendant 20 un laps de temps après lequel on isole 1'imidazole produit ; (B) on dissout le substrat dans un excès de chlorure de thionyle et on chajf-fe la solution à reflux pendant un certain laps de temps en présence d'un accepteur d'acide tel que du carbonate de sodium ou de potassium finement pulvérisé, puis on isole l1imidazole ; (G) on dissout le 25 substrat dans un excès de chlorure de thionyle froid,.et après un bref laps de temps à une température modérée on chasse le solvant, et le 2H-1,2,4-thiadiazinyl-1-oxyde isolé est converti thermiquement en 1'imidazole constituant le produit désiré, sous pression réduite si nécessaire ; (D) on opère comme dans A à C mais en utilisant une 30 proportion de chlorure de thionyle aussi faible qu'une proportion molaire équivalente utilisée conjointement avec des solvants inertes-Dans chaque cas, le produit de réaction (que ce soit 1'imidazole ou le thiadiazinyl-1-oxyde) peut être isolé à partir du mélange réactionnel par mise en oeuvre de moyens normaux choisis par le spé-35 cialiste sur la base des conditions de réaction utilisées et de la stabilité de la substance obtenue- Par exemple, on peut chasser n'importe quel solvant sous vide et isoler le produit à partir du résidu par distillation, recristallisation, extraction, chromatogra-phie, sublimation, ou une combinaison d'au moins deux de ces modes 40 opératoires classiques- 69 00011 8 2000031 Ainsi qu'on l'a indiqué ci-dessus, le critère pour déterminer si un imidazole particulier peut être préparé par mise en oeuvre du procédé en question consiste à vérifier si, en traitant la N-vinylamidine correspondante par du chlorure de thionyle, on obtient le 2H-5 1,3,4-thiadiazinyl-1-oxyde. Il existe plusieurs considérations ou facteurs qu'un spécialiste reconnaîtra comme exerçant un effet sur le degré d'activation de tout N-vinylamidine ou thiadiazinyl-1-oxyde particulier. Une considération d'une importance primordiale sur la détermina-10 tion de l'activation de ces fractions moléculaires est l'exigence que l'atome d'azote faisant pont entre les deux parties de la fraction N-vinylamidine supporte un atome d'hydrogène et que l'atome de carbone en g du vinyle supporte un substituant capable de partir sous forme d'un cation ; l'hydrogène est préféré à cette fin, mais 15 le chlore, le brome et analogues peuvent convenir dans certains cas-Des substituants qui satisfont à ces exigences sont nécessaires pour que la réaction s'effectue, et si l'un et l'autre manquent, la fraction du substrat ne peut pas subir une conversion en imidazole. En outre, ledit substituant sur l'atome de carbone en p du vinyle est 20 de préférence situé dans la position cis par rapport au susdit atome d'azote formant pont- Lorsque le substituant se trouve situé ainsi, il en résulte un minimum d'empêchement stérique pour la fermeture du cycle. Les quatre autres positions libres de la N-vinylamidine peuvent 25 être liées à une grande variété de groupes ou radicaux pour rendre la fraction activée, le degré d'activation dépendant de divers facteurs. Pour qu'une N-vinylamidine soit convertible en un 2H-1,2,4-thiadiaziny1-1-oxyde, il est nécessaire que l'azote doublement lié et les atomes de carbone en (3 du vinyle de la N-vinylamidine servant 30 de fraction moléculaire soient dotés d'une réactivité appropriée, la réaction s'effectue par attaque électrophile au niveau de ces deux positions, vraisemblablement par formation initiale d'un produit intermédiaire instable du type N-chlorosulfinamide ; par conséquent, des substituants ne doivent pas diminuer excessivement la densité é-35 lectronique au niveau de ces positions par des effets d'induction et de conjugaison. Il convient aussi que des substituants n'interfèrent pas avec la réaction par interférence stérique ou en subissant eux-mêmes une réaction avec du chlorure de thionyle en des sites ad-jacents à la fraction. Il est donc désirable que les substituants 40 de la N-vinylamidine n'aient pas une forte tendance à arracher des 69 00011 2000031 électrons et qu'ils soient inertes à l'égard du chlorure de thionyle dans les conditions de réaction. Ces facteurs, et d'autres qui viendront facilement à l'esprit d'un spécialiste, ne doivent être considérés que comme étant de sim-5 pies indices de l'état activé des fractions N-vinylamidine et 2H-1,2,4-thiadiazinyl-1-oxyde, et ne doivent pas être considérés comme définissant une activation. Dans la mesure où. ils portent sur la facilité de conversion de la première fraction en la seconde, ils sont à considérer- Toutefois, la portée du procédé en question est défi-10 nie non pas par de tels facteurs et considérations, mais plutôt par la réalité effective d'une conversion de la N-vinylamidine en un thiadiazinyl-1-oxyde• Un mode de mise en oeuvre préféré du procédé selon la présente invention est la conversion, en imidazoles, de composés comportant 15 des fractions activées correspondant aux formules suivantes : 0 A 20 /\N^ /\N H dans lesquelles A est tel que, si A était lié à un groupe -N=C. se- N—x ^ Ion la configuration suivante : I! A , alors cette configuration 25 ' serait un système cyclique hétéroaromatique tel, par exemple, que : 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2—(1,3,5-tria-zinyle), 3-(1,2,4-triazinyle), 5—(1,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2-(1,3,4-oxadi-30 azolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 2-(1,3,4-thia-diazolyle), 2-(l-méthyl)imidazolyle, 2-quinolyle, 1-isoquinolyle et 4-quinazolyle• les imidazoles résultants, comportant un noyau aromatique fusionné dans la position î,2-, se forment facilement quand on opère dans les conditions de réaction sus-spécifiées-35 Une conversion spécialement préférée est celle de composés cor respondant aux formules suivantes : 69 00011 10 2000031 et dans lesquelles A est tel que défini ci-dessus ; et H et R1 sont chacun alcoyle comportant jusqu'à 6 atomes de carbone ou alcényle 10 comportant jusqu'à 6 atomes de carbone- Quand R et R1 sont chacun méthyle, on obtient de nouvelles 1,3-diméthyl-1,2,3,4-tétrahydrohé-térocyclo/x,y-f7purine-2,4-diones, composés présentant un intérêt inattendu. Une préparation directe de certains de ces dérivés d'hétérocy-15 clopurine, ou hétérocycloxanthine, s'effectue en soumettant des ami-nouraciles correspondant à la formule suivante : gïï3 ° 20 (III) dans laquelle A est tel que défini ci-dessus ; et X1 est choisi parmi le groupe constitué par hydrogène, alcoyle comportant jusqu'à 6 atomes de carbone, alcoxy comportant jusqu'à 6 atomes de carbone, al-25 coxyméthyle comportant jusqu'à 6 atomes de carbone, halogène, carbo-xyle, carbalcoxy comportant de 2 à 5 atomes de carbone, carboxyalco-yle comportant de 2 à 5 atomes de carbone et perfluoroalcoyle comportant jusqu'à 6 atomes de carbone, à des conditions appropriées de la susdite réaction avec du chlorure de thionyle, afin d'obtenir les 30 susdits 2H-1,2,4-thiadiazinyl-1-oxydes substitués correspondant à la formule I. De cette manière, il se forme directement des imidazoles correspondant à la formule II.dans laquelle Y est X. Des composés correspondant à la formule II dans laquelle Y est autre que X sont commodément préparés à partir d'autres composés possédant la formule 35 II qui peuvent être préparés directement par le procédé en question, ces transformations de Y étant effectuées par des réactions organiques communes bien connues des spécialistes- Par exemple, une voie convenable est la conversion de Y à partir de méthyle en bromométhy-le par traitement par du N-bromosuccinimide en présence de peroxyde 69 00011 ' 2000031 et de lumière, suivie d'une conversion du composé de bromométhyle en une grande variété d'autres composés. Par conséquent, méthyle et bromométhyle sont des modes de réalisation préférés de Y dans des composés correspondant à la formule II, ce qui aboutit à X et X1 com-5 me méthyle pour des modes de réalisation préférés de composés correspondant respectivement aux formules I et III. Sur la base d'autres considérations discutées ci-après, des modes de réalisation préférés additionnels de composés correspondant à la formule II sont ceux dans lesquels Y est hydrogène et A est tel 10 qu'un hétérocycle soit 2-pyridyle et 2-pyrimidyle. Par con- H A séquent, des modes de réalisation préférés spécifiques sont la 1,3,8-triméthyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione, dans 15 laquelle A est tel que soit 2-pyridyle et Y est 8-méthyle ; Il A ,C-' la 1,3-diméthyl-8-bromométhyl-1,2,3,4-t étrahydropyrido/2,1-f7purine- 2,4-dione, dans laquelle A est tel que soit 2-pyridyle et Y 20 II A est 8-bromométhyle ; la 1,3-diméthyl-1,2,3,4-tétrahydropyrimido/2,1-f7purine-2,4-dione, dans laquelle A est tel que soit 2-pyri- II A 25 midyle et Y est hydrogène ; et la 1,3,8-triméthyl-1,2,3,4-tétrahyâro-pyrimido/2, 1 -f7purine-2,4-dione, dans laquelle A est tel que Il A 30 soit 2-pyrimidyle et Y est 8-méthyle. Aux fins de synthèse, donc, les modes de réalisation préférés spécifiques de composés correspondant aux formules I et III sont ceux à partir desquels les susdites purines préférées sont préparés, c'est-à-dire le 1,3-diméthyl-6-/2-(4-méthyl)pyridylamino7uracile et la 1,3,9-triméthyl-1,2,3,4-tétra-35 hydropyrido//l, 2-b7-6H-pyrimido/4,5-e7/1,2-47thiadiazine-2,4,5-trio-ne ; le 1,3-diméthyl-6-(2-pyrimidylamino)uracile et la 1,3-diméthyl-1,2,3,4-tétrahydropyrimido/_1,2-b7-6H-pyrimido/4,5-e7,/l, 2,47thiadiazine-2, 4,5-trione ; et le 1,3-diméthy 1-6-/2-(4-méthyl)pyrimidylamino_7u-racile et la 1,3,9-triméthyl-1,2,3,4-tétrahydropyrimido/l,2-b7-°H-40 pyrimido/4,5-e7/1,2,47thiadiazine-2,4,5-trione- Il existe des faits prouvant que des composés correspondant à la formule suivante : 12 69 00011 2000031 ~D HtX / et les sulfoxydes correspondants se trouvent quelquefois formés com-10 me sous-produits lors de la mise en oeuvre du procédé en question, avec le chlorure de thionyle servant à établir un équilibre entre les formes sulfure et suifoxyde de la substance dimère. Ces substances sont normalement converties en les imidazoles désirés par un autre traitement par du chlorure de thionyle dans les conditions de réacti-15 on normales, ou par pyrolyse au cours d'une opération séparée avec formation concomitante d'une mole de la substance-substrat. On peut aussi en effectuer indépendamment la synthèse par diverses voies familières aux spécialistes de la chimie organique- Une variante de synthèse des 1,3-diméthyl-1,2,3,4-tétrahydrohé-20 térocyclo/x,y-f7pu.rine-2,4-diones a été découverte comme étant spécialement efficace quand le système d'hétérocycles fusionnés est sensible au chlorure de thionyle, ce qui a pour effet de rendre moins a-vantageux le susdit traitement par du chlorure de thionyle. Cette variante de mode opératoire implique la conversion de 5,6-dichloro-25 1,3-diméthyluracile ou de 5-bromo-6-chloro-1,3-diméthyluracile en composés correspondant à la formule suivante : 0 30 (III') dans laquelle A et X' sont tels que définis ci-dessus pour des compo-35 sés correspondant à la formule III, et Z est chlore ou brome» Z est de préférence du chlore- On peut isoler les composés possédant cette formule III', ou bien on peut les convertir directement en le composé correspondant possédant la formule II. On a découvert que du 5,6-dichloro-1,3-diméthyluracile peut être 40 effectivement synthétisé par le traitement approprié de 6-chloro- 13 2000031 69 00011 1,3-diméthyluracile par du pentachlorure de phosphore en solution dans de l'oxychlorure de phosphore. Il convient d'utiliser de préférence au moins environ une proportion équivalente (en moles) de pentachlorure de phosphore, et plus avantageusement un excès de 0,5 5 à 1,0 (en moles). On peut utiliser une proportion inférieure à la proportion molaire équivalente, mais il en résulte une diminution du rendement en produit» Il convient d'ajouter le réactif d'une manière réglée au cours de la réaction, la durée du temps de réaction n'est pas critique, mais on a constaté qu'une durée d'environ quatre 10 heures est adéquate à la température de reflux de l'oxychlorure de phosphore. Bien entendu, des températures de réaction plus basses nécessitent une augmentation correspondante de la durée du temps de réaction, le produit dichloro est facilement isolé par mise en oeuvre de techniques ordinaires, par exemple par élimination du solvant 15 et purification du résidu. D'une manière inattendue, il ne se forme pratiquement pas de substance perchloro dans ces conditions, et le rendement en dérivé dichloro est étonnamment plus grand que celui obtenu quand on utilise du chlorure de thionyle ou du chlore comme agents chlorants- 20 L'utilisation de pentabromure de phosphore à la place du penta chlorure de phosphore sus-spécifié fournit un mode opératoire équivalent pour la synthèse de 5-bromo-6-chloro-1,3-diméthyluracile• Le chauffage de chacun de ces deux 5 halogéno-6-chloro-1,3-di-méthyluraciles avec une aminé hétérocyclique ayant pour formule : où A et X' sont tels que définis ci-dessus a pour résultat la forma-30 tion de 1'imidazole désiré. Le produit intermédiaire correspondant à la formule III' peut être isolé en utilisant un sel de métal alcalin tel que le sel de sodium ou de potassium de l'aminé et en conduisant la réaction de condensation, de préférence dans un solvant inerte (tel que du diméthylsulfoxyde), à des températures modérées- Ce 35 produit intermédiaire peut ensuite être isolé par mise en oeuvre de modes opératoires normaux, et converti en 1'imidazole désiré par chauffage• A titre de variante, les deux substrats peuvent être chauffés ensemble initialement pour aboutir directement à l'imidazole désiré. 40 Que l'on opère ainsi ou que l'on chauffe le composé intermédiaire 25 A h2n 69 00011 H 2000031 correspondant à la formule III' au cours d'une opération élémentaire séparée, il est nécessaire d'opérer à une température suffisamment élevée pour provoquer une élimination du substituant 5-halogéno- St-il s'agit de conduire la réaction en un seul stade, la température 5 doit être suffisante pour provoquer un dégagement de deux équivalents molaires d'halogénure d'hydrogène, tandis qu'un équivalent seulement sera engendré si le composé intermédiaire correspondant à la formule III' doit être isolé, puis chauffé au cours d'un deuxième stade. Biai entendu, l'équivalent final sera du chlorure d'hydrogène si l'on utL-10 lise un 5-chlorouracile, et ce sera du bromure d'hydrogène si l'on utilise un 5-bromouracile- Des températures d'environ 250°C se sont révélées adéquates, et l'on peut effectuer le traitement soit dans un solvant à point d'ébullition suffisamment élevé, soit sans solvant- Un temps de chauffage aussi bref que 5 minutes s'est révélé 15 adéquat dans quelques cas ; toutefois, le temps n'est habituellement pas un facteur critique (le temps de 5 minutes est à 250°C). Il convient de noter que la condensation de 1'aminé et de l'ura-cile s'effectue sélectivement, avec une perte du substituant 6-chlaro intervenant dans tous les cas plutôt qu'une perte du substituant 5-20 chloro ou 5-bromo• Les nouvelles 1,3-diméthyl-1,2,3,4-tétrahydrohétérocyclo/x,y-f7purine-2,4-diones faisant l'objet de la présente invention inhibent l'activité de l'enzyme qu'est la 3',5'-nucléotide phosphodiestérase, qui catalyse la conversion de 1'adénosine-3',5'-monophosphate (en a-25 brégé : 3',5'-AMP cyclique) en adénosine-5'-monophosphate (en abrégé 5'-AMP). Par conséquent, dans des systèmes manifestant une activité phosphodiestérase et dans lesquels il est désirable de maintenir un taux élevé de 3',5'-AMP cyclique, on peut utiliser très avantageusement les composés faisant l'objet de la présente invention. Les com-30 posés en question sont des inhibiteurs suffisamment puissants pour _3 que des concentrations molaires aussi basses que 10 et même moins soient efficaces. L'aptitude des composés en question à inhiber l'activité enzymatique revêt une grande signification car il est bien connu que de nombreux tissus manifestent une activité de 3',5'-nuclé-35 otide phosphodiestérase cyclique, et que le mononucléotide 3',5'-AMP cyclique est un important régulateur ne nombreux processus cellulaires et tissulaires, par exemple la relaxation des muscles lisses, la lypolyse, et la glycogénolyse- Il est bien établi que de nombreux agents thérapeutiques bien connus, tels que la caféine, la théophyl-40 line, la papavérine, de diazoxyde et la thyroxine, inhibent la phos- 69 00011 15 2000031 phodiestérase, en affectant ainsi les taux de 3',5'-AMP cyclique, et que leur activité pharmacologique particulière est en corrélation a-vec le tissu spécifique dans lequel ils inhibent l'enzyme ; ils produisent le même effet pharmacologique que le 3',5'-AMP cyclique dans 5 un tissu donné- D'une manière similaire, une certaine activité phai>-macologique des composés en question est en corrélation avec le tissu spécifique dans lequel ils inhibent l'enzyme ; des inhibiteurs spécifiques des tissus des muscles lisses sont des relaxants des muscles lisses, et, parmi ceux-ci, ceux qui sont spécifiques des tissus 10 bronchiaux sont des bronchodilatateurs, tandis que ceux qui sont spécifiques du système cardiovasculaire sont des agents hypotensifs- L'aptitude des composés en question à inhiber la phosphodiestérase n'est pas restreinte uniquement à des applications chimiotbéra-peutiques, mais peut tout aussi bien être d'un grand intérêt in vitro 15 sur divers systèmes biologiques• Dans des cas où il est désirable de déterminer les caractéristiques et propriétés de certains systèmes enzymatiques autres que celui de la phosphodiestérase, il est souvent impossible d'observer et de mesurer divers effets sans inhiber d'abord l'activité phosphodiestérase- Par exemple, J- R- Turtle 20 et D. M. Kipnis, Biochemical and Biophysical Research Communications 28, 797 (1967), ont eu besoin d'un inhibiteur de l'activité phosphodiestérase pour élucider certaines particularités du système adényl-cyclase- Toutefois, deux substances seulement ont été trouvées utilisables pour cette application : les xanthines théophylline et ca-25 féine- Il existe des inconvénients considérables à utiliser ces deux agents : ce sont surtout des problèmes résultant de leurs caractéristiques de puissance (ou activité) et de solubilité. Les composés faisant l'objet de la présente invention et qui correspondent à la formule II ont une activité d'une puissance au moins comparable 30 comme inhibiteurs de la phosphodiestérase, et, en outre, la multiplicité de leurs systèmes cycliques et de leurs substituants fournit toute une gamme avantageuse de caractéristiques variées de solubilité, perméabilité tissulaire et spécificité tissulaire- Par conséquent, les composés en question laissent une plus grande liberté 35 pour le choix des conditions et modes opératoires, étant donné qu'il n'est pas nécessaire d'ajuster ces caractéristiques aux demandes d'un inhibiteur spécifique de la phosphodiestérase. L'aptitude des composés en question à inhiber l'enzyme phosphodiestérase les rend intéressants et utilisables aussi pour accroître 40 la perméabilité à l'égard de l'eau et le transport de cations pour et 69 00011 16 2000031 par certaines membranes provenant de sources animales. De plus, dans des cas où il est désirable d'obtenir le nucléoti-de 3',5'-AMP cyclique à partir de sources biologiques, les composés en question sont utilisables pour accroître la quantité de substance 5 isolable- Il a été observé que la théophylline accroît le taux de 3',R'-AMP cyclique dans certains milieux d'autant que 1500 et les composés en question one une activité du même ordre de grandeur- Dans une application du même genre, il est souvent intéressant, à des fins d'établissement d'un diagnostic, de déterminer le taux de 10 3',5'-AMP cyclique dans divers tissus animaux. Etant donné que les techniques communes de titrage pour déterminer la teneur d'un tissu en 3',5'-AMP cyclique font appel à un inhibiteur de la 3',5'-nucléo-tide phosphodiestérase cyclique, il y a grand avantage à utiliser des composés faisant l'objet de la présente invention. 15 Outre l'inhibition de la phosphodiestérase et les propriétés chimiothérapeutiques qui s'y rapportent, on a communément constaté parmi les composés correspondant à la formule II une activité diurétique. Un grand nombre des composés en question qui se sont révélés comme étant des agents diurétiques non seulement provoquent un ac-20 croissement de l'excrétion urinaire, mais aussi font apparaître un spectre plus favorable de l'excrétion des électrolytes, avec une diminution de la kaliurèse. Ce spectre des électrolytes est hautement désirable puisque, ainsi que cela est généralement connu dans l'art médical, l'utilisation de nombreux agents diurétiques connus conduit 25 à un appauvrissement des réserves du corps en potassium (état connu sous la dénomination d'hypokalémie)- Il existe en outre des signes que plusieurs des composés correspondant à la formule II sont des agents anti-inflammatoires, et sont donc intéressants en vue d'atténuer des troubles se traduisant 30 par une tuméfaction et une inflammation qui sont symptomatiques des rhumatismes, de l'arthrite et d'autres désordres qu'il est possible de traiter des des agents anti-inflammatoires- D'autre part, certains des composés possédant la formule II ont manifesté une activité comme agents anti-coccidiens-35 Certains composés correspondant aux formules I et III ont aussi manifesté une activité analogue à celle de composés ayant la formule II. Quand des composés faisant l'objet de la présente invention doivent être utilisés comme agents chimiothérapeutiques, il convient de 40 les administrer en ayant recours à des méthodes classiques, bien 69 00011 17 2000031 connues des spécialistes, la voie particulière d'administration é-tant choisie en partie compte tenu du traitement particulier envisagé- Le composé sera généralement administré avec un véhicule ou support pharmaceutique choisi selon la voie d'administration retenue et 5 selon la pratique pharmaceutique normale- Par exemple, les composés en question peuvent être associés à divers véhicules inertes, phar-maceutiquement acceptables, sous la forme de tablettes, comprimés, capsules, dragées, pilules, bonbons durs, poudres, aérosols, suspensions ou solutions aqueuses, solutions injectables, élixirs, sirops 10 et analogues- Parmi de tels véhicules figurent des diluants solides ou charges, des milieux aqueux stériles et divers solvants organiques non-toxiques- En outre, les compositions pharmaceutiques établies conformément à l'invention, destinées à être administrées par voie orale, peuvent être convenablement édulcorées et aromatisées par di-15 vers agents des types communément utilisés à de telles fins- Le véhicule particulier choisi et la proportion d'ingrédient actif par rapport au véhicule sont influencés par la solubilité et la nature chimique des composés thérapeutiques, la voie d'aministration choisie et les impératifs de la pratique pharmaceutique normale. Par 20 exemple, si les composés en question doivent être administrée oralement sous forme de tablettes ou de comprimés, on peut utiliser des excipients tels que lactise, citrate de sodium, carbonate de calcium, phosphate dicalcique- On peut aussi incorporer, à des tablettes ou comprimés pour l'administration des composés en question par voie 25 orale, divers désintégrants tels qu'amidon, acidœalginiques et certains silicates complexes, associés à des agents lubrifiants tels que stéarate de magnésium, lauryl-sulfate de sodium, talc. Pour l'administration par voie orale sous forme de capsules, le lactose et des polyéthylène glycols de hauts PM figurent parmi les substances 30 préférées utilisables comme véhicules pharmaceutiquement acceptables -Quand on doit utiliser des suspensions aqueuses par voie orale, les composés en question peuvent être associés à des agents de mise en émulsion ou en suspension. On peut aussi utiliser des diluants tels qu'éthanol, propylène glycol, glycérine et leurs associations, parmi 35 bien d'autres substances- Pour des inhalations et l'administration par voie parentérale, on peut utiliser des solutions ou suspensions des composés en question dans de l'huile de sésame ou d'arachide, ou des solutions dans du propylène glycol aqueux, aussi bien que des solutions aqueuses sté-40 riles des sels solubles décrits ci-après- Ces solutions particuliè 69 000n 18 2000031 res conviennent plus spécialement en vue d'injections intramusculaires et sous-cutanées- La solution aqueuse, y compris celle de sels solubles dissous dans de l'eau distillée pure, est utilisable aussi en injections intraveineuses à condition que son pH soit préalable-5 ment ajusté convenablement. Il convient que de telles solutions soient aussi convenablement tamponnées, si nécessaire, et que le diluant liquide soit d'abord rendu isotonique par l'adjonction de proportions suffisantes de chlorure de sodium ou de glucose- Les composés en question peuvent être administrés à l'aide d1-10 inhalateurs ou d'autres dispositifs similaires, en utilisant une préparation nébulisable présentée.sous forme d'une solution à 1 Il est nécessaire que l'ingrédient actif soit dans la composition en proportion telle que l'on puisse obtenir une forme posologi-que adéquate- Bien entendu, on peut administrer à peu près en même 15 temps plusieurs unités posologiques- Bien que des compositions contenant en poids moins de 0,005 d'ingrédient actif puissent être u-tilisées dans certains cas, on utilise de préférence des compositions contenant au minimum 0,005 f° de l'ingrédient actif, car autrement la proportion de véhicule devient excessivement importante. 20 L'activité croît avec l'augmentation de la concentration de l'ingrédient actif. La composition peut contenir en poids 10 50 fo, 75 ou 95 fo, voire même davantage, d'ingrédient actif. C'est le médecin qui doit déterminer la dose la plus convenable, laquelle varie selon l'âge, le poids et la réponse du patient 25 particulier aussi bien que selon la nature et le degré d'acuité des symptômes, et selon les caractéristiques pharmacologiques de l'agent particulier à administrer- Il convient généralement d'administrer initialement de faibles doses que l'on augmente ensuite progressivement jusqu'à ce que l'on atteigne le taux optimum- On constate sou-30 vent que, lorsqu'on administre la composition par voie orale, des quantités plus grandes de l'ingrédient actif sont nécessaires pour aboutir au même taux que celui obtenu par administration parentérsûe d'une petite quantité- En général, des doses comprises entre environ 0,02 et environ 200 mg d'ingrédient actif par kilogramme de poicb 35 du corps, administrées en une seule prise ou en prises multiples, se révèlent convenablement efficaces- Bien entendu, il existe des cas individuels où. des doses plus fortes ou plus faibles sont désirables sans s'écarter pour, autant de la portée de l'invention. En raison de la variété des hétérocycles et des substituants 40 compris dans la portée de la présente invention, certains des compo 69 00011foment 19 2000031 ses en questionnes sels avec des bases, d'autres peuvent former des sels d'addition avec des acides, et quelques-uns peuvent former des sels de ces deux types. Ceux des composés en question qui sont susceptibles de former des sels peuvent être convenablement administrés 5 sous forme de sels pharmaceutiquement acceptables, expression par laquelle on entend désigner ceux des sels qui n'ont pas une toxicité sensiblement plus grande que celle du composé libre. Par exemple, ceux des composés qui forment des sels avec des bases peuvent être administrés sous forme des sels de sodium, de calcium ou de magnési-10 um. Parmi les sels d'addition avec des acides pharmaceutiquement acceptables figurent des sels d'acides minéraux tels que les acides chlorhydrique, bromhydrique, iodhyurique, phosphorique, métaphospho-rique, nitrique et sulfurique, aussi bien que des sels d'acides organiques tels que les acides tartrique, acétique, citrique, maléique, 15 benzoxque, glycollique, gluconique, gulonique, succinique, arylsul-foniques tels qu'acide para-toluènesulfonique, et analogues* les sels pharmaciquement inacceptables, bien qu'ils ne soient pas utilisables en thérapeutique, peuvent être intéressants à utiliser en vue de l'isolement et de la purification des composés nouvel-20 lemenfcdécouverts. Ils sont utilisables en outre en vue de la préparation des sels pharmaceutiquement acceptables, utilisables en thérapeutique- Parmi ces sels "pharmaceutiquement inacceptables", on petit citer ceux formés avec les acides fluorhydrique et perchlorique• Les fluorhydrates sont particulièrement intéressants en vue de la prépa-25 ration des sels pharmaceutiquement acceptables- Les chlorhydrates, par exemples, peuvent être préparés par dissolution des fluorhydrates dans de l'acide chlorhydrique et cristallisation du chlorhydrate ainsi formé- Ci-après sont donnés différents exemples, bien entendu non limi-30 tatifs, de mise en oeuvre de la présente invention-Exemple I-- 1,3-diméthyl-6-(2-pyridylamino)uracile- On dissout 9,4 g (0,1 mole) de 2-aminopyridine dans 50 ml de diméthylsulfoxyde, puis on y ajoute par fractions tout en agitant et à l'abri de l'air, en vingt minutes, 4,53 g d'une solution de NaH à 35 53 % dans une huile minérale (0,1 mole). On continue à agiter pendant encore dix minutes pour compléter la formation du sel de sodium de la 2-aminopyridine. On ajoute par fractions 8,70 g (0,05 mole) de 1,3-diméthyl-6-chlorouracile en agitant et en refroidissant suffisamment pour maintenir la température à 30-40°C. La réaction est im-40 médiate et fortement exothermique. Après encore dix minutes d'agi 20 69 00011 2000031 tation, on verse le mélange réactionnel dans 4 volumes d'un mélange d'eau et de glace, puis on extrait à l'hexane pour éliminer l'huile minérale. On neutralise ensuite la solution par un excès d'acide ascétique ; le produit se sépare par cristallisation ; on le purifie en 5 le faisant recristalliser à partir d'un mélange de chlorure de méthylène et d'hexane- On obtient 7,5 g (65 %) du produit désiré ; P.F. 232,5 -235,5°G. Analyse : calculé pour : C 56,99 ; H 5,21 ; N 24,13 f° ; trouvé : C 56,91 ; H 5,00 ; N 24,08 JÈ. 10 Exemple II.- 0n prépare les 1,3-diméthyl-6-aminouraciles suivants par mise en oeuvre du mode opératoire décrit dans l'exemple I, mais en utilisant une quantité équivalente de 1'aminé appropriée à la place de la 2-aminopyridine spécifiée dans le susdit exemple I : 15 20 P n a 1 y calculé (.%) trouvé (%) P.F. (°C) G H N G H N 2-pyrimidyle 220-221 51,49 4,75 30,03 51,38 4,58 29,49 25 2-pyrazinyle 246 (déc.) 51,49 4,75 30,03 51,50 5,03 29,86 2-(5-méthyl-1,3,4-thia- diazolyle) 239-240,5 42,69 4,38 27,67 43,12 4,38 26,91 3-(6-méthoxy- 30 pyridazinyle) 240,5-241,5 50,18 4,98 26,61 50,45 5,20 26,60 2-(4-méthyl- pyridyle) 249,5-251,5 58,52 5,73 22,75 58,61 5,62 22,69 2-(5-méthyl- pyridyle) 224-225,5 58,52 5,73 22,75 58,67 5,81 22,73 35 2-(3-méthyl- pyridyle) 184,5-186 58,52 5,73 22,75 58,57 5,80 22,41 Exemple III.- On prépare les composés suivants par mise en oeuvre du mode o-pératoire décrit dans l'exemple I, mais en utilisant une quantité é-40 quivalente de l'aminé appropriée à la place de ladite 2-aminopyridine . 69 00011 21 2000031 5 10 15 25 Exemple IIIA. - 1,3-diméthyl-6-( 2-thiazolylamino )uracile. Dans 400 ml de diméthylsulfoxyde, on dissout 30 g (0,172 mole) de 1 ,3-diméthyl-6-clilorouracile et 14,9 g (0,172 mole) de 2-amino-30 thiazole. On agite la solution et on y ajoute, en 30 minutes, 15,96 g d'une solution à 53 % de MaH (0,344 mole) dans de l'huile minérale- On agite la solution pendant 10 minutes supplémentaires, puis on la verse dans 4 volumes d'un mélange d'eau et de glace, puis on extrait à l'hexane pour éliminer l'huile minérale- On neutralise 35 ensuite la solution à l'aide d'acide acétique ; le produit se sépare par cristallisation. On le purifie par recristallisation à partir de méthanol- On obtient ainsi 17,6 g (42 fo) du produit désiré-P.F. 216-217°0. Analyse : calculé pour C^H^QN^OgS : C 45,38 ; H 4,23 ; H 23,52 %• 40 trouvé : G 45,36 ; H 4,09 ; N 23,54 Exemple I1IB-- 0n prépare les composés suivants par mise en oeuvre du mode o-pératoire décrit dans l'exemple IIIA, mais en utilisant une quantité équivalente de 1'aminé appropriée à la place de la susdite aminé 45 (2-aminothiazole) : 4 —pyrimidyle 2-pyrimidyle 3—(1,2,4-triazinyle) 2-pyrazinyle 5-tétrazolyle 5-(1,2,4-triazolyle) 2-pyridinyle) 2-(1,3,5-triazinyle) 6-(1,2,4-triazinyle) 2-oxazolyle 2—(1,3,4-oxadiazolyle) 3-furazanyle 3-isothiazolyle 2-imidazolyle 2-quinolyle 1-isoquinolyle 4-quinazolyle 2,6-diméthyle 4-méthyle hydrogène 3-carboxyle 1-méthyle 1-carboxyméthyle 5-carboxyle hydrogène 3-méthyle 4-isopropyle hydrogène hydrogène 5-méthyle 1-méthyle hydrogène hydrogène hydrogène 69 00011 0 GH, 22 0 2000031 0 N" ! GH, lyxi ■N- H X' 3-(1,2,4-triazinyle) 5-carbéthoxy 3-isoxazolyle 5-bromo 10 2- ( 1,3,4-thiadiazolyle ) 5-chloro Exemple IV— 1,3-diméthyl-5,6-dichlorouracile On chauffe à reflux 100 g (0,58 mole) de 1,3-diméthyl-6-chloro-uracile.dans 1500 ml d1oxychlorure de phosphore- On y ajoute 330 g (1,58 mole) de pentachlorure de phosphore en opérant comme suit : 15 180 g pendant la première heure, 50 g pendant chacune des trois heures suivantes- La solution résultante est refroidie, filtrée pour en séparer le pentachlorure de phosphore en excès, puis concentrée sous vide. Le résidu est trituré avec 1200 ml de chloroforme pendant une heure puis filtré pour séparer le pentachlorure de phosphore ré-20 siduel- On concentre le filtrat sous vide, puis on lave le résidu à l'eau pour en éliminer de l'oxychlorure de phosphore et du pentachlorure de phosphore, et on le fait recristalliser à partir de 1100 ml d'éthanol- On obtient ainsi 80 g (66 fo) du produit désiré, P.F. 153,5-154,5°G. Analyse : 25 calculé pour CgHgN^C^ : G 34,40 ; H 3,08 ; N 13,31 ; Cl 33,9*} trouvé : C 34,60 ; H 2,78 ; N 13,00 ; Cl 33,12$. Exemple V.- 1,3-diméthyl-5-bromo-6-chlorouracile Lorsqu'on répète le mode opératoire de l'exemple IV, mais en u-tilisant la quantité équivalente de pentabromure de phosphore, on 30 obtient le produit désiré. Exemple VI.- 1,3-diméthyl-5-chloro-6-(2-pyrimidylamino)uracile On dissout 9,5 g (0,1 mole) de 2-aminopyrimidine dans 50 ml de diméthylsulfoxyde, puis on ajoute en vingt minutes, par fractions et tout en agitant à l'abri de l'air, 4,53 g de NaH à 53 % (0,1 mole) 35 dans de l'huile minérale. On continue ensuite à agiter pendant encore dix minutes pour compléter la formation du sel de sodium de la 2-aminopyrimidine. On ajoute par fractions et tout en agitant 11 g (0,05 mole) de 1,3-diméthyl-5,6-dichlorouracile (préparé comme dans l'exemple IV), en refroidissant suffisamment pour maintenir la tem 69 00011 23 2000031 pérature à 30-40°C. La réaction est immédiate et fortement exothermique* Après dix minutes supplémentaires d'agitation, on verse le mélange réactionnel dans 4 volumes d'eau et de glace, puis on extrait à l'hexane pour éliminer l'huile minérale- On neutralise ensuite la 5 solution par un excès d'acide acétique ; le produit se sépare par cristallisation. On le purifie par recristallisation à partir d'un mélange de chlorure de méthylène et d'hexane- P.F. 207-209,5°C. Analyse : calculé pour o^10^5^2^"'" : ^ 44»94" > H 3,75 ; N 26,22 $ ; 10 trouvé : C 44,78 ; H 3,54 ; N 26,17 $. Exemple VII.- 1,3-diméthyl-5-chloro-6-/ 2-(5-méthyl-1,3,4-thiadiazolyl)aminojuracile On répète le mode opératoire de l'exemple VI en utilisant une quantité équivalente de 2-amino-5-méthyl-1,3,4-thiadiazole à la pla- 15 ce de ladite 2-aminopyrimidine ; on obtient ainsi 9,3 g (72 fâ) du produit désiré, P.P. 255-257°C. Analyse : calc. pour C^ qN^CIS : G 37,57 ; H 3,50 ; N 24,34 ; Cl 12,32$; trouvé : C 38,59 ; H 3,30 ; U 24,41 ; Cl 12,39$. Exemple VIII.- 20 On répète le mode opératoire de l'exemple VI, mais en utilisant une quantité équivalente d'une aminé appropriée à la place de ladite 2-aminopyrimidine pour produire les composés suivants : GH3 l 25 30 P X' 35 40 2-pyridyle 2-pyrazinyle 3-pyridazinyl-e 2-pyridyle 4-pyrimidyle 2-pyrimidyle 3-(1,2,4-triazinyle) 2-pyrazinyle 5-tétrazolyle 5—(1,2,4-triazolyle) 2-pyridinyle) 2-(1,3,5-triazinyle 6-(1,2,4-triazinyle) hydrogène hydrogène 6-méthoxy 4-méthyle 2,6-diméthyle 4-méthyle hydrogène 3-carboxyle 1-méthyle 1-carboxyméthyle 5-carboxyle hydrogène 3-méthyle 69 00011 24 2000031 10 2-oxazolyle 2—(1,3,4-oxadiazolyle) 3-furazanyle 3-i so thiazolyle 2-imidazolyle 2-quinolyle 1 -isoquinolyle 4-quinazolyle 4-isopropyle hydrogène hydrogène 5-méthyle 1-méthyle hydrogène hydrogène hydrogène Exemple VIIIA.- 1,3-diméthyl-5-chloro-6-(2-thiazolylamino)uracile On répète le mode opératoire de l'exemple. III-A en utilisant u-ne quantité équivalente de 1,3-diméthyl-5,6-dichlorouracile à la place dudit monochlorouracile. On obtient ainsi 18,7 g (40 %) du pro-15 duit désiré ; P.ï". 217-219°G (déc-). Analyse : calc. pour CgH^N^C^ClS ; C 39,6 ; H 3,32 ; N 20,6 ; Cl 13,00 trouvé : G 39,73 ; H 3,61 ; N 19,74 ; Cl 13,15 Exemple VIII—B.— On répète le mode opératoire de l'exemple VIII-A en utilisant 20 une quantité équivalente d'une aminé appropriée à la place dudit 2-aminothiazole pour produire les composés suivants : 0 CH, 25 N 3 CH? Cl N-I H X' 30 3-0 ,2,4-triazinyle) 3-i so xazolyle 2-(1,3,4-thiadiazolyle) 5-earbéthoxy 5-bromo 5-chloro Exemple IX.- 1,3-diméthyl-5-bromo-6-(2-pyrimidylamino)uracile On répète le mode opératoire de l'exemple VI, mais en utilisant 35 une quantité équivalente de 1,3-diméthyl-5-bromo-6-chlorouracile, préparé de la manière décrite dans l'exemple V, à la place dudit 1,3-diméthyl-5,6-dichlorouracile pour produire le composé désiré-Exemple X. - 1,3-diméthyl-1,2,3,4-tétrahydropyrazino/1,2-b7-6H-pyrimido/4,5-e7/1,2,47thiadiazine-2,4,5-trione 40 On dissout 5,0 g (0,02 mole) de 1,3-diméthyl-6-(2-pyrazinylami- .no)uracile, préparé de la manière décrite dans l'exemple II, dans • 69 00011 25 2000031 100 ml de chlorure de thionyle à la température ambiante ordinaire et en agitant, dans des conditions anhydres- Après deux minutes, la solution devient limpide et il se forme, environ cinq minutes après, un précipité jaune contenant du chlorure. On chauffe le mélange pen-5 dant 20 minutes de plus à 50°G en agitant, ce qui a pour effet de redissoudre la substance solide. On chasse sous vide le chlorure de thionyle ; il se forme un résidu cristallin que l'on fait recristalliser deux fois à partir d'un mélange de chlorure de méthylène et d'hexane sans chauffer. On obtient ainsi 2,60 g (47 %) du produit dé-10 siré ; P.P. 159°C (déc.). Analyse : calc. pour C^H^N^O^S : S 11,45 ; Cl 0,00 % ; trouvé : S 10,85 ; Cl 0,51 Spectre de masse : M/e 279• Exemple XI.- 1,3-diméthyl-1,2,3,4-tétrahydrothiazolo/3,2-b7-6H-15 pyrimido/4,5-e7/1,2,47thiadiazine-2,4,5-trione• On dissout 5,0 g (0,02 mole) de 1,3-diméthyl-6-(2-thiazolylami-no)uracile dans 200 ml de chlorure de thionyle à la température ambiante ordinaire et en agitant, dans des conditions anhydres. On chasse le chlorure de thionyle sous vide, et l'on fait recristalliser le 20 résidu à partir d'un mélange de chlorure de méthylène et d'hexane. On obtient ainsi 5,3 g (92 fo) du produit désiré ; P.P. 218-220°C (déc.). Analyse : calc. pour CgHgN^Sg : G 38,03 ; H 2,84 ; S 19,77 % ; trouvé î C 37,57 ; H 2,01 ; S 21,82 Jfr. 25 Exemple XII.- 1,3,8-triméthyl-1,2,3,4-tétrahydro/T,3,47thiadiazolo 2-b7-6H-pyrimido/4, 5-e7/~,2,47thiadiazine-2,4,5-trione On dissout 10,0 g (0,04 mole) de 1,3-diméthyl-6-/2-(5-méthyl-1,3,4-thiadiazolyl)_7aminouracile, préparé de la manière décrite dans 30 l'exemple II, dans 200 ml de chlorure de thionyle, puis on chauffe dix minutes à reflux dans des conditions anhydres- On chasse ensuite le chlorure de thionyle sous vide, et l'on fait recristalliser le résidu à partir d'un mélange de chlorure de méthylène et d'hexane-On obtient ainsi 8,1 g (68 fo) du produit désiré, P.P. 240-242°C. 35 Analyse : calc. pour CgH^îï-O^Sg : G 36,11 ; H 3,03 ; H 23,40 ; S 21,42 fa ; trouvé : G 36,37 ; H 2,86 ; N 21,91 ; S 21,26 Exemple XIII.- 1,3,9-triméthyl-1,2,3,4-tétrahydropyrido/T,2-b7-6H-pyrimido/4 ,5-e7/1,2,47thiadiazine-2,4,5-trione 40 On répète le mode opératoire de l'exemple XII, mais en utilisant 69 00011 26 2000031 une quantité équivalente de 1,3-diméthyl-6-/2-(4-méthylpyridyl)_7a-minouracile, préparé de la manière décrite dans l'exemple II, à la place dudit thiadiazolylaminouracile• On obtient ainsi le produit désiré ; P.P. 249,5-251,5°C. 5 Exemple XIV.- 1,3-diméthyl-8-méthoxy-1,2,3,4-tétrahydropyridazino /2,3-b7-6H-pyrimido/4,5-e7jj , 2,47thiadiazine-2,4,5-trione On dissout 500 mg (0,002 mole) de 1,3-diméthyl-6-/3-(6-méthoxy-pyridazinyl)_^minouracile, préparé de la manière décrite dans l'ex-10 emple II dans 15 ml de chlorure de thionyle par chauffage au bain-marie- On chasse ensuite le chlorure de thionyle par ébullition dans un courant d'azote ; on fait recristalliser le résidu à partir d'un mélange de chlorure de thionyle et de chlorure de méthylène, et l'on obtient ainsi le produit désiré. 15 Exemple XV.- On prépare les composés suivants, dont la molécule contient une fraction 2H-1,2,4-thiadiazinyl-1-oxyde activé, en dissolvant 0,05 mole de l'un des 1,3-diméthyl-6-(substitué)aminouraciles, préparés de la manière décrite dans les exemples I-III, xdans 1,50 ml de chlo- /a une temperature 20 rure de thionyle dans des conditions anhydres/et pendant un temps suffisants pour provoquer une formation de chlorure d'hydrogène, mais insuffisante pour provoquer une décomposition thermique. 0 0 25 N CH, \/S N N I CH, 'N- 30 rkX -CH=CH-CH=CH- -C(CH3)=H-C(CH3)=CH- -CH=CH-C(CH5)=N- -N=CH-CH=N- 35 -CH=CH_N=N- -CH=CH-iT=C ( COCl ) — -N=îî-N(CH3)--H=CH-N(CH2C0Cl)--CH=C(COCl)-GH=GH- 69 00011 27 2000031 10 15 -CH=H-CH=ÏÏ- -N=CH-G(C02Et)=IJ- -N=G(CH5)-N=GH- -C(is o-Pr)=CH-0- -0-C(Br)=GH- -N=CH-Q- -0-N=CH- -S-C(GH5)=GH- -n=g(cl)-s- -CH=CH-N(CH5)- -C = C - CH=CH- -CH=CH - C=C - -CH=N — G=C - Exemple XVI.- On prépare les composés suivants, dont la molécule contient une fraction du type 2H-1,2,4-thiadiazinyl-1-oxyde activé, en dissolvant 0,05 mole de l'un des 1 ,3-disubstitué-6-(substitué)aminouraciles, 20 préparé de la manière décrite dans l'exemple I, dans 150 ml de chlorure de thionyle dans des conditions anhydres, à une température et pendant un temps suffisants pour provoquer la formation de chlorure d'hydrogène, mais insuffisants pour provoquer une décomposition thermique• 25 30 R R1 r% 35 C2H5 iso-C^H^ n-C6H13 ch2ch=cïl ch, °2H5 CH^ n-C6Hi3 CH2CH=CH2 (CH2)2CH=C(CH3)2 -ch=ch_ch=ch--ch=ch-ch=ch--ch=h-ch=ch--n=ch—s- -ch=c(ch3)_n=ch- 69 00011 28 2000031 Exemple XVII.- 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-fj"purine-2,4-dione On ajoute 8,0 g (0,035 mole) de 1,3-diméthyl-6-(2-pyridylamino) uracile, préparé comme dans l'exemple I, à 200 ml de chlorure de thi-5 onyle, et on chauffe le mélange 5 minutes à reflux dans des conditions anhydres. On chasse le solvant sous vide, puis on fait cristalliser le résidu à partir d'un mélange chloroforme/hexane/méthanol et on fait passer au travers d'alumine (activité III) avec du benzène. On sublime ensuite le produit, et l'on obtient ainsi 2,0 g (26 %) de 10 la substance désirée, P.F. 259-261°G. Analyse : calc. pour : C 57,38 ; H 4,38 ; N 24,34 $ ; trouvé : G 57,53 ; H 4,01 ; N 24,50 %. Exemple XVIII.- 1,3-diméthyl-1,2,3,4-tétrahydropyrimido/2,1-f7pu- rine-2,4-dione 15 On ajoute 10 g (0,043 mole) de 1,3-diméthyl-6-(2-pyrimidylami- no)uracile, préparé comme dans l'exemple II, à une suspension de 200 g de carbonate en poudre fine dans 400 ml de chlorure de thionyle dans des conditions anhydres. On chauffe le mélange 90 minutes à reflux en l'agitant vigoureusement, puis on le filtre. On chasse le 20 chlorure de thionyle à partir du filtrat sous vide, puis on reprend le résidu par un mélange d'eau (pH 12) et de chlorure de méthylène. Par une extraction très poussée à l'aide de chlorure de méthylène, puis élimination du solvant, on obtient le produit désiré que l'on purifie par recristallisation à partir d'un litre d'un mélange 2:1 25 eau:méthanol• .Rendement 5,7 g (56 %) ; P.P. 239-241°C. Analyse : calc. pour G^QH g N_02 : C 51,94 ; H 3,92 ; N 30,29 $ ; trouvé : G 52,23 ; H 3,98 ; N 30,19 %. Exemple XIX.- On prépare les imidazoles suivants en chauffant les sulfinami-30 des appropriés, préparés comme dans les exemples XI-XIV, jusqu'à une température comprise entre 150 et 300°G et suffisante pour provoquer un dégagement de sous-produits contenant du soufre, les produits désirés sont isolés par sublimation et purifiés par recristallisation. 35 CH* ^ Y 40 69 00011 29 2000031 A A r X A n i y -gh-gh-n-gh-5 -ch=gh-c(ch5)=ch- -n=c(och5)-ch=ch- -gh=gh-3--NiC(CH3)-S- P.F. (»C) 251-252,5 227-229 251-252 250,5-251,5 232-233 calculé (f») trouvé [i» H N h N 51,94 3,92 30,29 59,01 4,95 22,94 50,57 4,24 26,81 45,76 3,41 23,72 43,03 3,61 27,88 51,68 3,72 30,26 58,87 5,04 23,14 50,81 4,00 26,96 45,83 3,31 23,57 43,01 3,39 27,24 Exemple XX.- 10 On prépare les imidazoles suivants en traitant le 1,3-dim.éthyl- 6-(substitué)aminouracile approprié, préparé comme dans l'exemple III, par du chlorure de thionyle comme dans l'exemple X, et en soumettant le produit intermédiaire résultant, du type- 2H-1,2,4-thiadiazinyl-1 -oxyde, à une température suffisamment élevée, comme dans l1- 15 exemple XVII, pour provoquer un dégagement de sous-produits contenant du soufre. Quand la température de reflux du chlorure de thionyle est insuffisante, on isole le produit intermédiaire et on le chauffe comme dans l'exemple XIX. 0 ^_A Jï 20 25 -C 30 3 5 -g(ch^)=n-c(ghj)=ch--ch=gh-g(gh5)=n_ -h=ch-ch=n--ch=ch-n=n--ch=ch-n=c(c0c1)--ch=ch-n=c(c02h)_ * _sr=iî-if(CH5)--N=GH-N(CH2C0C1)--N=CH-N(CH2C02H)- * -ch=c(g0g1)-ch=ch-Par hydrolyse du substituant chloroformyle correspondant 69 00011 30 2000031 -CHrrCCOOgHJ-CHrrCH- * -ch=n-ch=n--N=GÏÏ-C(G02Et)=N-5 -n=g(gh3)-n=gh- -G(iso-Pr)=CH-0--0-C(Br)=CH--N=CH-0--0-N=CH- 10 -s-c(ch3)=ch- -N=C(Cl)-S--CH=CH-N(CEU )- — C=C - CH=CH- -GH=GH — G=G — 15 -CH=N— G = C - * Par hydrolyse du substituant chloroformyle correspondant. Exemple XXI.- On prépare les 1,2,3,4-tétrahydrohétérocyclo/x,y-f7purine-2,4-diones suivantes en traitant les 1,3-disubstitué-6-(substitué)amino-20 uraciles appropriés par du chlorure de thionyle, comme dans l'exemple XVI, et en chauffant le mélange réactionnel résultant jusqu'à u-ne température suffisante pour provoquer une expulsion de monoxyde de soufre. Lorsque la température de reflux du chlorure de thionyle est insuffisante, on isole le 2H-1,2,4-thiadiazinyl-1-oxyde et on le 25 chauffe comme dans l'exemple XIX. S S~k / Y 30 69 00011 31 2000031 R R' CLHc G0Hr- -CH=CH-CH=CH- 2 5 d o iso-G^Hr, CH, -GH=GH-CH=GH- 3 7 3 n-C6H13 n"G6Hi3 -CH=N-GH=GH- 5 CH2GH=GH2 GH2CH=CH2 -N=CH-S- GH5 (GH2)2GH=C(CH3)2 -GH=G(GH3)-IÎ=GH- Exemple XXII.- 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-f/purine-2,4-dione On dissout 209 mg (0,001 mole) de 1,3-diméthyl-5,6-dichloroura-10 cile dans 50 ml de diméthylsulfoxyde, et on y ajoute 10 équivalents de 2-aminopyridine. On chauffe le mélange 16 heures à 120°C sous atmosphère d'azote, et on chasse le solvant sous vide- On effectue ensuite une chromatographie du résidu au travers d'une alumine d'activité II dans du chloroforme pour aboutir à l'obtention du produit 15 désiré : ses propriétés physiques sont identiques à celles de la substance préparée dans l'exemple XVII. Exemple XXIII.- 1,3-diméthyl-1,2,3,4-tétrahydropyrimido/2,1-f7pu-rine-2,4-dione On place 250 mg (0,001 mole) de 1,3-diméthyl-5-chloro-6-(2-py-20 rimidyl)aminouracile, préparé comme dans l'exemple VI, dans un tube à sublimation et on chauffe dix minutes jusqu'à 250°C. Le produit désiré est ensuite recueilli par distillation sous vide, puis purifié par sublimation. On en obtient 120 mg (52 %). Ses propriétés physiques sont identiques à celles de la substance préparée dans 1'-25 exemple XVIII. Exemple XXIV.- 0n prépare les imidazoles suivants en chauffant le 1,3-diméthyl-5-chloro-6-(substitué)aminouracile approprié, préparé comme dans l'exemple VIII, par mise en oeuvre du mode opératoire de 1'exempleXXH. 3° oh, S ryY /•'Vï -N=C(CHO-S--CH=CH-S- 35 CH3 -CH=CH-N(CH3)- 69 00011 2000031 Exemple XXV.- 1,3-diméthyl-8-bromométhyl-1,2,3,4-tétrahydro-pyrido/2,1-fjpurine-2,4-dione A 250 ml de tétrachlorure de carbone sec, on ajoute 4,88 g -(0,02 mole) de 1,3,8-triméthyl-1,2,3,4-tétrahydropyrido/2,1-fJpuri-5 ne-2,4-dione, préparée comme dans l'exemple XIX, 3,70 g (0,0205 mole) de N-bromosuccinimide et 200 mg (0,5 millimole) de peroxyde de benzoyle. On soumet la suspension résultante, continuellement et vigoureusement agitée, à une forte irradiation ultraviolette. Après dix minutes, on atteint la température de reflux et il se forme une 10 solution limpide. On poursuit la réaction pendant encore dix minutes additionnelles, puis on refroidit le mélange et on le concentre sous vide. Le résidu cristallin résultant est trituré avec 100 ml d'eau ; on obtient le produit désiré par filtration, puis on le pu-rifie/à^parïîrrj^uiP~mèlangenbenzène/chloroforme. On recueille ainsi 15 3,10 g de produit (48 $), P.F. 266-268°C. Exemple XXVI.- 1,3-diméthyl-8-hydroxyméthyl-1,2,3,4-tétrahydro-pyrido/2,1-fJpurine-2,4-dione On met en suspension 1,50 g (4,6>5 millimoles) du composé 8-bro-mométhylé de l'exemple XXV dans 100 ml d'eau et 15 ml d'une solution 20 saturée de bicarbonate de sodium, puis on chauffe à reflux pendant deux heures après lesquelles la majeure partie de la substance s'est dissoute- On refroidit la solution, on la filtre, on neutralise le filtrat à l'acide acétique puis on le concentre jusqu'à la moitié de son volume- Il se forme ainsi un précipité que l'on recueille par 25 filtration et que l'on fait recristalliser à partir d'un mélange de chloroforme et de méthanol- On obtient ainsi 670 mg (55,5 f°) du produit désiré, P.F. 238-241,5°C. Exemple XXVII.- 1,3-diméthyl-8-diméthylaminométhyl-1,2,3,4- tétrahydropyrido/2,1-f7purine-2,4-dione• 30 On dissout 3,00 g (9,3 millimoles) du composé 8-bromométhylé de l'exemple XXV dans 250 ml de chloroforme et 100 ml de diméthylamine anhydre. On concentre ensuite la solution jusqu'au tiers de son volume, puis on lave avec 100 ml d'une solution 0,1N d'hydroxyde de sodium qui a été saturée de chlorure de sodium. La solution aqueuse 35 basique est ensuite extraite au chloroforme (2 x 50 ml) ; on réunit les extraits chloroformiques, on les sèche sur sulfate de sodium, puis on évapore à sec. On fait recristalliser le résidu d'abord à partir de cyclohexane, puis à partir de méthanol et l'on obtient ainsi le produit désiré sous forme de cristaux incolores, P-F. 147-40 149°C- Le rendement est de 1,60 g (60 $). Analyse : 69 00011 2000031 calc. pour C^H^N^Og : G 58,52 ; H 5,96 ; N 24,58 $ ; trouvé : G 58,24 ; H 5,72.; N 24,50 fi. Exemple XXVIII.- 1,5-diméthyl-8-(N-méthylpipérazino)méthyl-1,2,5,4- tétrahydropyrido/2,1-fJpurine-2,4-dione• 5 On dissout 1,00 g (5,1 millimoles) du composé 8-bromométhylé de l'exemple XXV dans 100 ml de chloroforme, et on y ajoute 5,00 g (20 millimoles) de N-méthylpipérazine. On chauffe le mélange résultant une heure à reflux, on le refroidit et on le lave par NaOH 0,1N. On lave la couche aqueuse avec de nouvelles fractions de chloroforme 10 (2 x 50 ml), puis on réunit les fractions chloroformiques, on les sèche sur sulfate de sodium, puis on évapore à sec sous vide- On fait recristalliser le résidu à partir de méthanol ; on obtient ainsi 430 mg (41 %) du produit désiré sous forme de cristaux incolores, P.P. 177-178°G. 15 Exemple XXIX.- 1,3-diméthyl-8-diéthylaminométhyl-1,2,3,4-tétrahydropyrido/2 ,1-fJpurine-2,4-dione On répète le mode opératoire de l'exemple XXVIII, mais en utilisant de la diéthylamine anhydre à la place de la susdite N-méthyl-pipérazine. On obtient ainsi 910 mg (47 %) du produit désiré, P.P. 20 126-128°C. Exemple XXX.- 1,3-diméthyl-8-méthoxyméthyl-1,2,3,4-tétrahydro-pyrido/2,1 -fJpurine-2,4-dione On mélange 3,95 g (14,4 millimoles) du composé 8-bromométhylé de l'exemple XXV avec 750 ml de méthanol chaud, et on y ajoute 2,64 25 g (57,6 millimoles) de méthoxyde de sodium. On chauffe le mélange à reflux pendant 90 minutes après lesquelles on obtient une solution limpide que l'on concentre ensuite jusqu'à environ 400 ml. On refroidit la solution ; il se forme un précipité que l'on recueille et que l'on fait recristalliser à partir de méthanol. On obtient ainsi 30 2,35 g (70 io) du produit désiré, P.P. 195-197,5°G. Analyse : calc. pour C^H^N^O^ : G 56,95 ; H 5,15 % ; trouvé : G 56,87 ; H 4,97 %. Exemple XXXI.- 1,5-diméthyl-8-carboxy-1,2,5,4-tétrahydro-pyrido/2,1-f7purine-2,4-dione 55 On ajoute 1,60 g (6,2 millimoles) du composé 8-méthoxyméthylé de l'exemple XXX à 100 ml d'eau bouillante, et l'on ajoute par fractions 4,80 g (51 millimoles) de permanganate de potassium aussi rapidement que la décoloration se produit (environ 20'minutes). On refroidit ensuite le mélange, puis on y fait barboter du bioxyde de 40 soufre afin de détruire le bioxyde de manganèse. Il se forme ainsi 69 00011 2000031 une solution incolore à partir de laquelle ne tardent pas à se former des cristaux que l'on recueille et purifie par une précipitation acide-base suivie d'une recristallisation à partir de méthanol. On obtient ainsi 410 mg (26 $) du produit désiré sous forme de cristaux 5 incolores, P.F. 360°C. Analyse : calculé pour C^H^N^O^ : G 52,55 ; H 3,68 $ ; trouvé : G 52,78 ; H 3,65 %■ Exemple XXXII.- 1,3,7-triméthyl-1,2,3,4-tétrahydropyrido/2,1-f/pu- rine-2,4-dione. 10 On dissout 7,0 g (0,0285 mole) de 1,3-diméthy1-6-/2-(5-méthyl- pyridyl)amino7uracile, préparé comme dans l'exemple II, dans 140 ml de chlorure de thionyle ; on observe un dégagement de chaleur et la formation de sous-produits gazeux. On évapore à sec sous vide la solution jaune limpide résultante, puis on chauffe le résidu jusqu'à 15 250°G sous un vide très poussé- Il se sépare par distillation une huile jaune qui cristallise en donnant le produit désiré que l'on fait recristalliser à partir de méthanol ; on obtient ainsi 3,59 g (56 c/o) dudit produit, P.P. 219-221 °G. Analyse : calculé pour C12H12K4°2 : G 59,01 ; H 4,95 $ ; 20 trouvé : G 58,99 ; H 5,19 $• Exemple XXXIII.- 1,3,9-triméthyl-1,2,3,4-tétrahydropyrido/2 ,1-f/purine-2,4-dione On répète le mode opératoire de l'exemple XXXII, mais en utilisant une quantité équivalente de 1,3-diméthyl-6-/2-(3-méthylpyridyl)-25 amino7uracile préparé comme dans l'exemple II. On chauffe le résidu de réaction jusqu'à 300°G sous un vide très poussé, et l'on obtient ainsi le produit désiré avec un rendement de 62 %, P.P. 251-253°G. Exemple XXXIV.- Sels pharmaceutiquement acceptables On prépare le sel d'addition, avec de l'acide chlorhydrique, de 30 la 1,3-diméthyl-8-diméthylaminométhyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione en mélangeant une solution alcoolique de la base libre avec une solution aqueuse d'acide chlorhydrique, puis en évaporant la solution résultante. On prépare d'autres sels d'addition, avec des acides pharmaceu-35 tiquement acceptables, de ce composé en ayant recours à ce même mode opératoire mais en utilisant, à la place de l'acide chlorhydrique sus-spécifié, l'un des acides bromhydrique, iodhydrique, nitrique, sulfurique, citrique, phosphorique, maléique, tartrique et lactique-Exemple XXXV.- Tablettes 40 On prépare un mélange pour tablettes (composition de base) à 69 00011 2000031 partir des ingrédients suivants, dans les proportions en poids indiquées : amidon de mais 20,0 phosphate dicalcique 74,0 5 acide alginique 16,0 A cette composition de base pour tablettes, on incorpore suffisamment de 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione pour fournir des tablettes contenant chacune 20, 100 et 250 mg d'ingrédient actif. On comprime la composition en tablettes, pesant 10 chacune 360 mg, par mise en oeuvre de moyens classiques-Exemple XXXVI.- Capsules On prépare un mélange contenant les ingrédients suivants, dans les proportions en poids indiquées : amidon de maïs 100 15 lauryl-sulfate de sodium 3,5 A ce mélange, on ajoute suffisamment de 1,3-diméthyl-1,2,3,4-tétra-hydropyrimido/2,1-f7purine-2,4-dione pour permettre de préparer des capsules contenant chacune 20, 100 et 250 mg d'ingrédient actif- On charge des capsules classiques, en gélatine dure, à raison de 350 mg 20 de composition médicamenteuse par capsule. Exemple XXXVII.- Préparation injectable Mille grammes de chlorhydrate de 1,3-diméthyl-8-diméthylamino-méthyl-1,2,3,4-tétrahydropyrido/2,1-f/purine-2,4-dione sont intimement mélangés et broyés avec 2500 grammes d'ascorbate de sodium- Le 25 mélange broyé sec est placé dans des ampoules et stérilisé avec de l'oxyde d'éthylène, après quoi on ferme les ampoules d'une manière stérile- Pour l'administration par voie intraveineuse, on ajoute suffisamment d'eau aux substances contenues dans les ampoules pour former une solution contenant 10 mg d'ingrédient actif par millili-30 tre de solution injectable. Exemple XXXVIII.- Suspension administrable par voie orale On prépare une suspension ayant la composition suivante : sorbitol aqueux à 70 $ 741,29 g glycérine pure pharmaceutique 185,35 g 35 gomme arabique (solution à 10 fo) 100,0 ml polyvinylpyrrolidone 0,5 g eau distillée : q. s. pour faire 1 litre On ajoute suffisamment de 1,3-diméthy1-1,2,3,4-tétrahydrothiazolo/2, 3-f/purine-2,4-dione pour atteindre une concentration de 23 mg d'in-40 grédient actif par millilitre. A cette suspension, on peut ajouter 69 00011 2000031 divers agents édulcorants et aromatisants pour améliorer les caractéristiques organoleptiques de la suspension. Exemple XXXIX.- Solution administrable par voie parentérale On prépare, selon la composition suivante, une solution de ingrédient actif 2,5 g polyéthylène glycol 200 400 ml eau distillée 100 ml 10 La solution résultante est à une concentration d'ingrédient actif de 5 mg/ml et convient pour toutes formes d'administration par voie parentérale, et spécialement pour l'injection intraveineuse -Exemple XL.- Inhibition de la phosphodiestérase Ces composés faisant l'objet de la présente invention sont éva-15 lués en ce qui concerne leur pouvoir inhibiteur de l'activité dé-phosphorylante de la 3',51-nucléotide-phosphodiestérase cyclique, activité par laquelle du 3',5'-adénosine-monophosphate se trouve converti en 51-adénosine-monophosphate• La 35'-nucléotide-phosphodiestérase cyclique est isolée par 20 mise en oeuvre du mode opératoire de R. W. Butcher et E. W. Suther-land, J. Biol. Ghem. 237, 1244 (1962) ; on procède à la purification en ayant recours à la troisième opération élémentaire qu'ils indiquent, à savoir par fractionnement au sulfate d'ammonium, dialyse et congélation, mais sans procéder à l'opération de fractionnement par 25 chromatographie qu'ils spécifient. La théophylline, un inhibiteur connu de l'enzyme, est comparée à chaque nouveau composé- On utilise donc au moins trois substrats, contenant chacun du 3',51-adénosine-monophosphate, pour chaque nouveau composé à évaluer. L'un contient le nouveau composé, un autre 30 contient de la théophylline, et le dernier ne contient pas du tout d'inhibiteur de la phosphodiestérase- Chaque substrat a un volume total de 2 ml, la concentration molaire de 31,5'-adénosine-monophos- —4- phate y est de 4 x 10 , il contient 0,02 ml de 3',5'-nucléotide-phosphodiestérase cyclique et 4,0 micromoles de MgSO^, 0,2 micromole 35 d'acide éthylènediaminetétraacétique et 80 micromoles d'un tampon adéquat, permettant de maintenir le pH à 7,5- Lorsque le substrat contient un nouveau composé dont il s'agit d'éprouver le pouvoir inhibiteur de la phosphodiestérase, ou contient le composé inhibiteur témoin, le composé en question est présent à une concentration molai-40 re de 10—^. 37 2000031 69 00011 On place chaque substrat dans une étuve à 30°0 pendant 30 minutes après lesquelles on interrompt la réaction par 10 minutes d'é-bullition. A ce moment, on ajoute 1 mg de venin de Orotolus atrox dissous dans 1 ml de solution-tampon à pH 7,5 (on utilise du venin 5 lyophilisé) ; on chauffe le nouveau mélange 30 minutes en étuve à 30°C, puis on interrompt aussi cette réaction par 10 minutes d'ébul-lition. Le venin réagit avec le 5'-adénosine-monophosphate, le produit de déphosphorylation, avec libération de phosphate minéral que l'on isole par recours à un mode opératoire d'échange d'ions. On ds*-10 se le phosphore minéral colorimétriquement par les méthodes de G. H. Fiske et Y. Subbaro-w, J. Biol- Chem. 66, 375 (1925). Dans ces conditions, une faible concentration finale de phosphate minéral indique la formation d'une petite quantité de 5'-adénosine-monophosphate et, par conséquent, que l'activité de la phosphodiestérase a été in- On prend l'inhibition pour cent comme étant cent fois la différence entre la concentration de phosphate minéral dans le substrat contenant le composé inhibiteur et la concentration dans le substrat ne contenant pas d'inhibiteur divisée par la concentration dans le 20 substrat sans inhibiteur. 15 hibée• On évalue ainsi les composés suivants : O A Y 25 0 GH^ Inhibition fo par la Inhibition $ théophylline 30 -CH=CH-N=CH--CH=CH-CH=CH--CH=CH-CH=IT--N=C(CH3)-S--CH=CH-S- 42 99 27 31 49 46 37 40 39 39 71 71 71 63 45 43 43 43 43 43 -N=C(0CH3)-CH=CH--CH-C(CH5)-CH=CH--CH^CH-CfL^CH^)- -CH=CH-C(CH20CH5)=CH- 69 00011 rVY 38 2000031 -N=C(OH) -CH=CH-5 -CH=CH-C(C02H)=GH--CH=CH-C(CH2N-Me 2)=CH--GH=GH-C(CH2N-Et 2)=CH- -GH=GH-G ( CH2/ jjT-Me )=CH_ -CH=GH-C(CH20H)=CH- Inhibition % 79 79 23 66 55 83 Inhibition $ par la théophylline 43 43 72 72 72 72 10 On procède similairement à l'épreuve des composés suivants afin de déterminer leur activité inhibitrice à l'égard de la phosphodiestérase : 15 20 Inhibition $ par la Inhibition % théophylline 69 37 56 55 Exemple XLI.- Activité bronchodilatatrice 25 Huit cobayes femelles conscients, que l'on a fait jeûner pen- dans 12 heures, reçoivent par voie orale une dose de 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione de 60 mg/kg. Des animaux-témoins reçoivent des doses d'une solution de chlorure de sodium. Une heure, après l'administration, on administre à chaque ani-30 mal un aérosol d'histamine- Le mode opératoire d'exposition à l'histamine consiste à nébuli- ser une solution aqueuse à 0,4 $ d'histamine, à une pression de 0,035 2 kg/cm , pendant une minute, dans uri récipient en matière plastique mesurant environ 203 mm x 203 mm x 305 mm. Immédiatement après avoir 35 établi ainsi un nuage d!gérosol dans le récipient, on place l'animal 39 2000031 69 00011 à l'intérieur de ce récipient. Après une minute d'exposition, on é-value l'état respiratoire, qui reflète une bronchoconstriction- Les évaluations sont notées et chiffrées comme suit : respiration normale (0), respiration légèrement approfondie (1), respiration pénible 5 (2), respiration très pénible et ataxie (3), et enfin inconscience (4). Le chiffre moyen pour le groupe d'essai est comparé à celui du groupe témoin, et la différence est exprimée en protection 5». La 1,3-diméthyl-1,2,3,4-tétrahydropyrido/2,1-f7purine-2,4-dione confère une protection de 14 f» contre une bronchoconstriction provoquée par 10 l'histasine de la manière décrite ci-dessus-Exemple XLII-- Activité diurétique Des composés dont on désire évaluer l'activité diurétique sont mis en suspension dans une solution saline à 0,9 f», à une concentration suffisante pour établir un taux posologique de 100 mg/kg quand 15 la solution saline est administrée à raison de 50 ml/kg- On administre la solution par voie orale (100 mg/kg) à des groupes de 12 souris que l'on a fait jeûner pendant les 20 heures précédentes- Des sous-groupes de 4 souris chacun sont placés dans une seule cage à métabolisme et l'on recueille l'urine pendant 5 heures- On détermi-20 ne des valeurs moyennes du volume d'urine pour chaque ensemble de trois sous-groupes ; on compare au groupe témoin n'ayant reçu que de la solution saline sans médicament, et l'on éprouve la signification par la méthode de Dunnett telle que décrite dans 1'American Statis-tical Association Journal, 50, 1096 (1955)-25 On évalue ainsi l'activité diurétique des composés suivants, et l'on constate qu'ils sont actifs- Les volumes d'urine sont exprimés en ml/kg/5 heures- 30 ch5 Volume d'urine 35 animaux d'essai témoins -CH=CH-CH=CH- -CH=CH-CH=N- -CH=CH-N=CH- -N=G(OH3)-S- 39,9 51.4 47,6 65.5 33,3 32,0 37,7 32.0 38.1 24,6 40 -CH=CH-3- 69 00011 CkX 40 2000031 Volume d'urine animaux d'essai témoins 10 -N=C(OCH5)-CH=CH- 53,3 27,1 -CH=CH-C(CH2N-Me 2)=CH- 42,4 28,7 -CH=GH-C(0H2N-Et2)=GH- 33,9 28,0 Au moyen d'un photomètre à flamme, on détermine les taux de sodium et de potassium dans les échantillons d'urine ci-dessus. On constate que les composés suivants abaissent considérablement le taux d'excrétion du potassium : 0 A v GH. N A- I GH, 15 -A> + /T/+ •R-apport d'excrétion Na /K 20 animaux d'essai témoins -CH=CH-CH=CH- 3,4 2,3 -CH=CH-CH=N- 5,5 2,3 -GH=CH-N=GH- 5,8 2,3 -N=C(CH5)-S- 5,5 3,3 -CH=CH-S- 4,2 2,5 -CH=CH-C(CH2N-Me2)=CH- 3,2 2,0 -CH=CH-C(CH2N_Et2)=CH- 3,5 2,2 Exemple XLIII»- Activité anti-inflammatoire 25 On évalue l'activité anti-inflammatoire des composés faisant l' objet de la présente invention en déterminant la réponse qu'ils provoquent vis-à-vis de l'essai à l'oedème provoqué par de la carraghé-nine sur la patte de rat. Des rats albinos mâles adultes non-anes-thésiés dont le poids du corps est de 150 à 190 g sont chacun numé-30 rotés, pesés et marqués avec de l'encre sur la malléole latérale droite. Une heure après l'administration du médicament par gavage à une dose de 100 mg/kg, on provoque un oedème par injection de 0,05 ml d'une solution à 1 % de carraghénine dans le tissu plantaire des pattes marquées. Immédiatement après, on mesure le volume de la patte 35 où l'on a pratiqué l'injection. L'accroissement de volume trois heu 41 2000031 69 00011 res après l'injection de carraghénine constitue la réponse individuelle- On. exprime l'activité en $ du témoin, ce qui revient à comparer l'accroissement de volume de la patte d'un animal traité à l'accroissement de volume de la patte d'un animal-témoin, non-traité. 5 Le composé servant d'étalon de comparaison est l'aspirine administrée par voie orale à 100 mg/kg. Les composés suivants ont été ainsi évalués : 10 ch5 fo d'un animal-témoin 15 Médicament en question Aspirine -ch=ch-ch=n- -ch=ch-ch=ch- -ch=ch-n=ch- 65,4 17,0 23,3 45,1 41,5 54,8 On procède à une évaluation similaire sur du 1,3-diméthy1-6-20 /5-méthyl-2-(1,3,4)thiadiazolylamino7uracile ; avec ce composé, on trouve 26,3 % du témoin ; aspirine, 57,9 % du témoin. 69 00011 42 2000031 Revendications 1. Procédé, pour la préparation d'un imidazole, caractérisé en ce qu'il consiste essentiellement à faire réagir un chlorure vi-nylique correspondant à la formule I suivante : 5 x (I) Cl dans laquelle Z' est hydrogène, chlore ou brome, avec une aminé correspondant à la formule II suivante : 10 NH, \ (II) avec élimination d'un équivalent molaire de chlorure d'hydrogène pour aboutir au produit correspondant à la formule III suivante : z' n/ 15 (III) H et en ce que a) ledit produit, quand Z1 est chlore ou brome, est encore admis à réagir pour donner un imidazole correspondant à la 20 formule IV suivante : \ N — (IV) par élimination des éléments d'un halogénure d'hydrogène (HZ'), ou bien en ce que b) ledit produit, quand Z' est de l'hydrogène, est 25 ensuite encore admis à réagir avec du chlorure de thionyle pour donner un 2H-1,2,4-thiadiazinyl-1-oxyde activé correspondant à la formule V suivante : 0 (V) 69 00011 43 2000031 et qui, par expulsion des éléments du monoxyde de soufre, conduit à la formation de l1imidazole correspondant à la formule IV. 2. Procédé selon la revendication 1, caractérisé en ce que le chlorure vinylique correspond à la formule VI suivante : 0 n i a \ N (VI) 0 | Cl fî' 10 dans laquelle Z' est hydrogène, chlore ou brome ; et R et R' sont des substituants identiques ou différents, et sont chacun choisis parmi des radicaux alcoyle comportant jusqu'à 6 atomes de carbone et des radicaux alcényle comportant jusqu'à 6 atomes-de carbone. 3- Procédé selon la revendication 1, caractérisé en ce que le 15 chlorure vinylique correspond à la formule VI, et 1'aminé correspond à la formule VII suivante : A (VII) 20 m2 N X dans laquelle A est tel que j| A soit un système hétéro- aromatique • y 4. Procédé selon la revendication 1, caractérisé en ce que le 25 chlorure vinylique correspond à la formule VI dans laquelle Z' est chlore ou brome, et 1'aminé correspond à la formule VIII suivante : (VIII) 30 dans laquelle A est tel que || A soit un cycle hétéroaroma- G ^ tique qui soit 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2—(1,3,5-triazinyle), 3—(1,2,4-triazinyle), 5-0,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2—(1,3,4-oxadiazolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 35 2-(1,3,4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1-isoquinolyle ou 4-quinazolyle ; X' est hydrogène, alcoyle comportant 69 00011 44 2000031 jusqu'à 6 atomes de carbone, alcoxy comportant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant jusqu'à 6 atomes de carbone, halogène, carboxyle, carbalcoxy comportant de 2 à 5 atomes de carbone, carboxyalcoyle comportant de 2 à 5 atomes de carbone, ou perfluoro-5 alcoyle comportant jusqu'à 6 atomes de carbone. 5» Procédé selon la revendication 4, caractérisé en ce que 1'-halogénure vinylique correspond à la formule VI dans laquelle H et H1 sont chacun méthyle. 6. Procédé selon la revendication 1 , caractérisé en ce que le 10 composé contenant un 2H-1,2,4-thiadiazinyl-1-oxyde activé correspond à la formule IX suivante : 15 dans laquelle A est tel que (IX) G -J soit un cycle hétéroaromatique choisi parmi le groupe constitué par 2-pyridyle, 2-pyrazinyle, 2-20 pyrimidyle, 4-pyrimidyle, 2-(1,3,5-triazinyle), 3-(1,2,4-triazinyle), 5-(1,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazo-lyle, 3-isoxazolyle, 2-(1,3,4-oxadiazolyle), 3-furazanyle, 2-thia-zolyle, 3-isothiazolyle, 2-(1,3,4-thiadiazolyle), 2-( 1-méthyl)imida-zolyle, 2-quinolyle, 1-isoquinolyle, et 4-quinazolyle ; et X est X' 25 tel que spécifié dans le revendication 4 et peut en outre être alcoxyméthyle comportant de 2 à 5 atomes de carbone, chloroformyle ou chloroformyl-alcoyle comportant de 2 à 5 atomes de carbone. 7. Procédé selon la revendication 1, caractérisé en ce que les imidazoles ainsi formés correspondent à la formule X suivante : 30 35 (X) dans laquelle A est tel que || A soit un cycle hétéroaromatique qui soit 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2- 69 00011 2000031 (1,3,5-triazinyle), 3-(1,2,4-triazinyle), 5-(1,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2-(1,3,4-oxadiazolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 2—(1,3,4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1 -5 isoquinolyle ou 4-quinazolyle ; Y est X tel que spécifié dans la revendication 6 et peut en outre être halogénométhyle, hydroxyle, hy-droxyméthyle, di(alcoyl-inférieur)aminométhyle, 1-(4-méthylpipérazi-no)méthyle, 1-(4-méthylpipérazino)formyle ou 1 — (2-,6-diméthylpipéri-dino)formyle. 10 8. Composés correspondant à la formule suivante : qui soit 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2-(1,3,5-triazinyle), 3-(1,2,4-triazinyle), 5-(1,2,4-triazinyle), 6- 20 (1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2-(1,3,4-oxadiazolyle),.3-furazanyle, 2-thiazolyle, 3-isothiazolyle,~ 2-(1,3,4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1-isoquinolyle ou 4-quinazolyle ; et Y est choisi parmi le groupe constitué par hydrogène, alcoyle comportant jusqu'à 6 atdmes de carbo-25 ne, alcoxy comportant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant jusqu'à 6 atomes de carbone, halogène, carboxyle, carbalcoxy comportant de 2 à 5 atomes de carbone, carboxyalcoyle comportant de 2 à 5 atomes de carbone, chloroformyle, chloroformylalcoyle comportant de 2 à 5 atomes de carbone, perfluoroalcoyle comportant 30 jusqu'à 6 atomes de carbone, halogénométhyle, hydroxyle, hydroxymé-thyle, di-(alcoyl-inférieur)aminométhyle, 1-(4-méthylpipérazino)méthyle, 1-(4-méthylpipérazino)formyle ou 1-(2,6-diméthylpipéridino)-formyle. 9- Composés selon la revendication 8, caractérisés en ce que 35 Y est hydrogène. 10. Composés selon la revendication 8, caractérisés en ce que Y est méthyle- 11. Composés selon la revendication 8, caractérisés en ce que Y est bromométhyle- 46 é9 00011 2000031 12. Composés selon la revendication 8, caractérisés en ce que n-n A est tel que || A soit 2-pyridyle. 13- Composés selon la revendication 8, caractérisés en ce que N-n A est tel que || A soit 2-pyrimidyle. 5 14- Composée selon la revendication 8, caractérisé:- en ce que N-n A est tel que |l A soit 2-pyridyle et Y est 8-méthyle- 15- Composé selon la revendication 8, caractérisé en ce que A est tel que II A soit 2-pyridyle et Y est 8-bromométhyle» 16. Composé selon la revendication 8, caractérisé en ce que 10 A est tel que II A soit 2-pyrimidyle et Y est hydrogène. 17- Composé selon la revendication 8, caractérisé en ce que A est tel que II A soit 2-pyrimidyle et Y est 8-méthyle-18. Composés correspondant à la formule suivante : 15 Six o A ^L- N ^ \1T CH, 3 N" 20 dans laquelle A est tel que II A soit un cycle hétéroaromatique ^C^ qui soit 2-pyridyle, 2-pyrazinyle,•2-pyrimidyle, 4-pyrimidyle, 2-(1,3,5-triazinyle), 3-(1,2,4-triazinyle), 5-(1,2,4-triazinyle), 6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle, 2-(1,3,4-oxadiazolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 25 2-(1,3,4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1-isoquinolyle ou 4-quinazolyle ; et X est hydrogène, alcoyle comportant jusqu'à 6 atomes de carbone, alcoxy comportant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant de 2 à 5 atomes de carbone, halogène, chloroformyle, chloroformyl-alcoyle comportant de 2 à 5 ato-30 mes de carbone, carbalcoxy comportant de 2 à 5 atomes de carbone, ou perfluoroalcoyle comportant jusqu'à 6 atomes de carbone- 69 00011 47 2000031 19- Composés selon la revendication 18, caractérisés en ce que X est hydrogène. 20. Composés selon la revendication 18, caractérisés en ce que X est méthyle. 5 21. Composés selon la revendication 18, caractérisés en ce que U-N A est tel que il A soit 2-pyridyle. 22. Composés selon la revendication 18, caractérisés en ce que N-n A est tel que II A soit 2-pyrimidyle. 23. Composé selon la revendication 18, caractérisé en ce que 10 A est tel que |l A soit 2-pyridyle et X est 9-méthyle. 24- Composé selon la revendication 18, caractérisé en ce que N "N A est tel que II A soit 2-pyrimidyle et X est hydrogène- 25- Composé selon la revendication 18, caractérisé en ce que A est tel que II A soit 2-pyrimidyle et X est 9-méthyle- 15 26. Composés correspondant à la formule suivante : CH, ° , X> Il A 20 y) CH, H 3 N-n dans laquelle Z est hydrogène, chlore ou brome ; A est tel que || A soit un cycle hétéroaromatique qui soit 2-pyridyle, 2-pyrazinyle, 2-pyrimidyle, 4-pyrimidyle, 2-( 1,3, 5-triazinyle ), 3- ( 1,2,4-triazinyle), 25 5-(1,2,4-triazinyle)6-(1,2,4-triazinyle), 3-pyridazinyle, 2-oxazolyle, 3-isoxazolyle; 2-(1,3,4-oxadiazolyle), 3-furazanyle, 2-thiazolyle, 3-isothiazolyle, 2-(1,3,4-thiadiazolyle), 2-(1-méthyl)imidazolyle, 2-quinolyle, 1-isoquinolyle ou 4-quinazolyle ; et X' est hydrogène, alcoyle comportant jusqu'à 6 atomes de carbone, alcoxy compor-30 tant jusqu'à 6 atomes de carbone, alcoxyméthyle comportant jusqu'à 6 atomes de carbone, halogène, carboxyle, carbalcoxy comportant de 2 à 5 atomes de carbone, carboxyalcoyle comportant de 2 à 5 atomes de 48 69 00011 2000031 ' carbone, ou perfluoroalcoyle comportant jusqu'à 6 atomes de carbone. 27 « Composés selon la revendication 26, caractérisés en ce que Z est hydrogène. 28. Procédé, pour la préparation de composés correspondant à la 5 formule suivante : 10 dans laquelle Z' est chlore ou brome, caractérisé en ce qu'il consiste essentiellement à faire réagir une solution, dans de l'oxychlorure de phosphore, de 6-chloro-1,3-diméthyluracile avec au moins environ une proportion molaire équivalente de pentachlorure de phosphore ou de pentabromure de phosphore. 15 29. Composés correspondant à la formule suivante : n 20 dans laquelle Z' est chlore ou brome. 30. Composition pharmaceutique, administrable par voie orale ou par voie parentérale pour tirer parti de l'activité biologique et pharmacologique d'ingrédients actifs qui sont au moins un des imi-25 dazoles complexes tels que spécifiés ci-dessus dans les revendications 8 à 27 inclusivement, caractérisée en ce qu'elle contient, pour constituer la dose posologique unitaire, une quantité d'ingrédients actifs qui généralement est avantageusement comprise entre environ 2 et environ 500 milligrammes afin d'en administrer, en général, d'en-30 viron 0,02 à environ 200 milligrammes par kilogramme de poids du corps du patient, le médecin devant déterminer la dose la plus convenable, laquelle varie selon l'âge, le poids et la réponse du patient particulier aussi bien que selon la nature et le degré d'acuité des symptômes, et selon les caractéristiques pharmacologique de l'agent 69 00011 2000031 (ou des agents) particulier(s) à administrer- 31 - Composition pharmaceutique selon la- revendication 30, caractérisée en ce qu'elle contient aussi, outre l'ingrédient (ou les ingrédients) actif(s) en question, un ou plusieurs adjuvants, véhi-5 cules, supports et/ou diluants pharmaceutiques solides ou liquides non toxiques, physiologiquement acceptables. 32. Composition pharmaceutique selon la revendication 30 ou 31, caractérisée en ce que, en vue d'une administration par voie orale notamment, elle contient aussi au moins un agent édulcorant et/ou 10 aromatisant d'usage classique en pratique pharmaceutique- 33- Composition pharmaceutique selon l.'une quelconque des revendications 30 à 32, caractérisé en ce que l'ingrédient (ou les ingrédients) actif(s) en question y est (sont) présent(s) sous forme d'un sel d'addition avec un acide pharmaceutiquement acceptable, et/ 15 ou d'un sel avec une base pharmaceutiquement acceptable.
Electronic device and control method thereof An electronic device is provided, which includes a display configured to receive a handwriting by touch and display the received handwriting, and a processor configured to display a handwriting input by at least two handwriting tools selected among different handwriting tools provided through the display by dividing layers of the handwriting according to a handwriting tool, and in response to a selection of a layer among the layers divided according to the handwriting tool, control to edit only a handwriting input by a handwriting tool corresponding to the selected layer. The present application is related to and claims priority under 35 U.S.C. § 119(a) from Korean Patent Application No. 10-2016-0087483, filed on Jul. 11, 2016 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety. TECHNICAL FIELD Aspects of the exemplary embodiments relate to an electronic device and a controlling method thereof, and more particularly, to an electronic device which performs inputting handwriting by touch and a controlling method thereof. BACKGROUND As a portable terminal such as a tablet PC and a smart phone have been distributed, a user's needs for inputting and outputting information intuitively through a handwriting input and the like has been expanded. According to the above, a portable terminal has departed from using a traditional UI method, for example, a separate composition such as a key board, a key pad, a mouse and the like for various user input, and evolved to use an intuitive UI method using a finger, a touch pen and the like to input information. Especially, in addition to a simple handwriting that inputs information, a handwriting inputting technique has been developed to draw a picture on a touch screen. According to the above, various types of handwriting tools such as a pencil, a brush, a highlighter and the like are provided, and a user may select one of the provided handwriting tools and input a handwriting by the tool. However, in a conventional art, after a handwriting is input by a plurality of handwriting tools, if it is required to modify the input handwriting, there is a limitation of modifying the handwriting by each kind of a handwriting tool. For example, when it is required to delete a handwriting input by one handwriting tool in an area where handwritings input by two handwriting tools are mixed, by using an eraser tool, there is inconvenience that the handwriting input by the other handwriting tool, which is near or overlaps with the handwriting, is deleted together. Accordingly, for an electronic device in which it is possible to input a handwriting, there is a need for a method of editing a handwriting according to a handwriting tool used to input the handwriting. SUMMARY An aspect of the exemplary embodiment has been made to address the problems described above and to provide an electronic device capable of editing an input handwriting conveniently and a method for controlling the electronic device. According to an exemplary embodiment, there is provided an electronic device including a display configured to receive a handwriting by touch and display the received handwriting, and a processor configured to display a handwriting input by at least two handwriting tools selected among different handwriting tools provided through the display by dividing layers of the handwriting according to a handwriting tool, and in response to a selection of a layer among the layers divided according to the handwriting tool, control to edit only a handwriting input by a handwriting tool corresponding to the selected layer. The processor may display a menu indicating the handwriting tool used for the input handwriting, and in response to a selection of a handwriting tooling the displayed menu, select a layer corresponding to the selected handwriting tool. The processor, in response to a selection of a part of an area in which the handwriting is input, may determine a handwriting tool corresponding to the handwriting input in the selected part, and select a layer corresponding to the determined handwriting tool. The processor, in response to an eraser tool being executed after one layer among the layers divided according to the handwriting tools is selected, may delete only a handwriting input by a handwriting tool corresponding to the selected layer according to a manipulation by the eraser tool. The processor, in response to a selection of a layer among the layers divided according to the handwriting tool, may move a handwriting input by a handwriting tool corresponding to the selected layer according to a manipulation by a touch input. The processor may display the layers divided according to the handwriting tool by dividing as subordinate layers according to a color of the input handwriting, and in response to a selection of a subordinate layer among the subordinate layers divided according to the color of the input handwriting, control to edit only a handwriting input with a color corresponding to the selected subordinate layer. According to an exemplary embodiment, there is provided a controlling method of an electronic device including dividing layers of a handwriting input by at least two handwriting tools selected among different handwriting tools provided through a display according to a handwriting tool and displaying the handwriting, and in response to a selection of a layer among the layers divided according to the handwriting tool, editing only a handwriting input by a handwriting tool corresponding to the selected layer. The controlling method of the electronic device may further include displaying a menu indicating the handwriting tools used for the input handwriting, and in response to a selection of a handwriting tool in the displayed menu, selecting a layer corresponding to the selected handwriting tool. The controlling method of the electronic device may further include in response to a selection of a part of an area in which the handwriting is input, determining a handwriting tool corresponding to the handwriting input in the selected part, and selecting a layer corresponding to the determined handwriting tool. The editing may include selecting one layer among the layers divided according to the handwriting tool, executing an eraser tool, and deleting only a handwriting input by a handwriting tool corresponding to the selected layer according to a manipulation by the eraser tool. The editing, in response to a selection of layer among the layers divided according to the handwriting tool, may move a handwriting input by a handwriting tool corresponding to the selected layer according to a manipulation by a touch input. The displaying may display the layers divided according to the handwriting tool by dividing as subordinate layers according to a color of the input handwriting, and the editing, in response to a selection of a layer among subordinate layers divided according to the color of the input handwriting, may edit only a handwriting input in a color corresponding to the selected subordinate layer. According to a variety of exemplary embodiments, a handwriting can be edited selectively according to a used handwriting tool, thereby convenience of the user may be improved. DETAILED DESCRIPTION Prior to explaining exemplary embodiments, an explanation will be made on a method by which embodiments of the present disclosure and drawings are disclosed. First of all, the terms used in the present specification and the claims are general terms selected in consideration of the functions of the various embodiments of the present disclosure. However, these terms may vary depending on intention, legal or technical interpretation, emergence of new technologies, and the like of those skilled in the related art. Further, some of the terms may be ones arbitrarily selected by the applicant. Unless there is a specific definition of a term, the term may be construed based on the overall contents and technological common sense of those skilled in the related art. Further, like reference numerals indicate like components that perform substantially the same functions throughout the specification. For the sake of explanation and understanding, different embodiments are described with reference to like reference numerals. That is, even if all the components in the plurality of drawings have like reference numerals, it does not mean that the plurality of drawings refers to only one embodiment. Further, the terms including numerical expressions such as a first, a second, and the like may be used to explain various components, but there is no limitation thereto. These terms are used only for the purpose of differentiating one component from another, without limitation thereto. For example, a numerical expression combined with a component should not limit the order of use or order of arrangement of the component. When necessary, the numerical expressions may be exchanged between components. The singular expression also includes the plural meaning as long as it does not differently mean in the context. In this specification, terms such as ‘include’ and ‘have/has’ should be construed as designating that there are such characteristics, numbers, operations, elements, components or a combination thereof in the specification, not to exclude the existence or possibility of adding one or more of other characteristics, numbers, operations, elements, components or a combination thereof. In the embodiments of the present disclosure, terms such as “module”, “unit”, “part”, and the like are terms used to indicate components that perform at least one function and operation, and these components may be realized in hardware, software or in combination thereof. Further, except for when each of a plurality of “modules”, “units”, “parts”, and the like needs to be realized in an individual hardware, the components may be integrated in at least one module or chip and be realized in at least one processor (not illustrated). Further, in embodiments of the present disclosure, when it is described that a portion is connected to another portion, the portion may be either connected directly to the other portion, or connected indirectly via another medium. Further, when it is described that a portion includes another component, it does not exclude the possibility of including other components, that is, the portion may further include other components besides the described component. Hereinafter, embodiments of the present disclosure will be explained with reference to the drawings. FIG. 1is a block diagram schematically illustrating a configuration of an electronic device according to an embodiment. As illustrated inFIG. 1, the electronic device100according to an exemplary embodiment includes a display110and a processor120. The electronic device100may be implemented as a smart phone, a cell phone, a Portable Multimedia Player (PMP), a MP3 player, a tablet PC, and a personal navigation apparatus and the like, which include a touch display in which a handwriting can be input by touch input of a user. In the exemplary embodiments, the electronic device100is implemented only as a smart phone, but the exemplary embodiments are not limited thereto. The electronic device100may be implemented as a variety of apparatuses mounting a touch screen including the above mentioned apparatuses. The display110may receive a handwriting by touch through a finger or a touch pen and display the input handwriting. Specifically, the display110may be implemented as a display panel (not illustrated) performing a function of displaying information output from the electronic device100, and a touch display which is composed of an input sense panel (not illustrated) performing an input function corresponding to touch by a user. Here, the display panel may be composed of Liquid Crystal Display (LCD) or Organic Light Emitting Diodes (OLED) and the like, and may be realized by being structurally integrated with the input sense panel. The display panel may display a variety of screens such as all sorts of states of movement, states of menu, states of executing an application, services, and the like including a handwriting screen of the electronic device100. Input sense panel may sense all sorts of inputs such as a single or multi touch input, a drag input, a handwriting input, and a drawing input by a user using all sorts of objects such as a finger and an electronic pen. The input sense panel may be realized by using one panel in which both finger inputs and pen inputs can be sensed, or using two panels such as a touch panel in which a finger input can be sensed and a pen recognition panel in which a pen input can be sensed. The processor120controls an overall operation of the electronic device100. Especially, the processor120may provide an area in which a handwriting by touch can be input and a handwriting tool through the display110. Here, the handwriting tool is a virtual tool capable of inputting a handwriting which may include a variety of handwriting tools such as a pencil, a ballpoint pen, a brush, a highlighter, and the like. If a handwriting is input by a selected handwriting tool, the processor120may control a handwriting effect corresponding to the selected handwriting tool to be displayed on the input handwriting. In addition, the handwriting tool may include a figure drawing tool, a text input tool, and the like. The processor120may display a menu window in which one handwriting tool among a plurality of different handwriting tools can be selected, and if one handwriting tool in the menu window is selected, control to input a handwriting by the selected handwriting tool. Here, the processor120may manage a handwriting input by the selected handwriting tool as one layer. Here, if another handwriting tool is selected on a single screen provided through the display110and a handwriting is input by the selected handwriting tool, the processor120may generate a layer additionally and manage the handwriting input by another handwriting tool on the additionally generated layer. That is, if at least two handwriting tools are selected among different handwriting tools and a handwriting is input by the selected tools, the processor120may constitute a handwriting input screen by dividing layers according to the selected handwriting tools. Here, on the display110, one handwriting screen in which a plurality of layers overlap is displayed. If one layer is selected among the layers divided according to the handwriting tools, the selected layer is activated to be in an editable state, and the processor120may edit only a handwriting input by a handwriting tool corresponding to the selected layer according to a manipulation of a user. This will be explained in more detail below with reference toFIGS. 2 and 8. FIG. 2is a view to explain a handwriting screen provided by an electronic device according to an exemplary embodiment. As illustrated inFIG. 2, the electronic device100input a handwriting through the display110and provide a handwriting screen in which the input handwriting can be displayed. Here, the handwriting screen may be provided as an application including a handwriting function installed in the electronic device100is executed. The handwriting screen may be composed of a handwriting area and a menu bar21located at a top of the handwriting area. The menu bar21may set a handwriting method input to the handwriting area, or include a function of editing a handwriting. If a user selects a pen menu22in the menu bar21, the processor120may display a subordinate menu for selecting a sort of handwriting tool, and if a user selects an eraser menu23, the processor120may display a subordinate menu for deleting a part of or an entire input handwriting. If a user selects a text menu24, the processor120may convert a handwriting input mode into a text input mode so a typing input can be performed on a handwriting area. If a mode is converted into the text input mode, the processor120may display a text cursor to input a text. FIG. 3is a view illustrating a handwriting tool selection menu provided in a handwriting screen according to an exemplary embodiment. If a user selects the pen menu22in the menu bar21, the processor120may display a subordinate menu30including a sort selection area in which a user can select a sort of handwriting tool, a thickness adjusting area in which a user can select a thickness of a handwriting tool, and a color selection area in which a user can select a color of a handwriting tool. If a handwriting is input by a handwriting tool selected among a plurality of handwriting tools (31-1˜13-7) displayed on the sort selection area, the processor120may generate a layer corresponding to the handwriting tool used to input the handwriting, and control to input only a handwriting input by the corresponding handwriting tool on the generated layer. As a user manipulates a thickness adjusting bar32in the thickness adjusting area, the processor120may adjust a thickness of a handwriting input by a selected handwriting tool, and if one color among a plurality of colors (33-1˜33-9) displayed on the color selection area is selected, the processor120may set the selected color as a color of a handwriting input by the selected handwriting tool. FIG. 4is a view illustrating a screen in which a handwriting is input by different handwriting tools according to an exemplary embodiment. After selecting a first handwriting tool among a plurality of handwriting tools and inputting a handwriting, a user may select a second handwriting tool which is a different kind of tool from the first handwriting tool and input a handwriting by the second handwriting tool in the same area where a handwriting by the first handwriting tool is input. According to a conventional art, there is a problem that because a handwriting input by the first handwriting tool and a handwriting input by the second handwriting tool overlap, when a user tries to edit only a handwriting input by the first handwriting tool or only a handwriting input by the second handwriting tool, it is difficult to edit the handwritings separately. For example, if a user performs an operation of deleting a part of a handwriting input by the first handwriting tool by using an eraser tool, a handwriting overlaps the corresponding part or a handwriting input by the second handwriting tool near the corresponding part may be also deleted by the eraser tool, and thus it is inconvenient for a user to erase only a part where the user wants to delete. However, if a handwriting is displayed by dividing a layer according to a handwriting tool, only a layer selected by a user is activated to be in an editable status, and thus the problem of inconvenience may be solved. For example, as illustrated inFIG. 4, after selecting a pencil among a plurality of handwriting tools and inputting a handwriting, a user may highlight an important part among an input handwriting by using a highlighter. Here, the user may highlight parts41,42and43where the user wants to highlight among a handwriting input by a pencil, by selecting a highlighter among a plurality of handwriting tools. Here, the processor120may display the handwriting input by a pencil and the handwriting input by a highlighter by dividing the handwritings on different layers, and the handwritings input on a handwriting area may be edited separately for each layer. As an exemplary embodiment illustrated inFIG. 5, a handwriting screen51in which ‘etiquette’, ‘user’, ‘prevention’ and ‘energy’ among a handwriting input by a first handwriting tool are highlighted by a second handwriting tool may be divided into a first layer52-1which only includes a handwriting input by the first handwriting tool and a second layer52-2which only includes a highlight that is a handwriting input by the second handwriting tool. Here, a screen in which the first layer52-1and the second layer52-2overlap is shown to a user. FIGS. 6, 7 and 8are views illustrating a process of editing a screen input by a specific handwriting tool according to an exemplary embodiment. As illustrated inFIG. 6, if an eraser menu23in the menu bar21at a top of a handwriting screen is selected, the processor120may control to display a subordinate menu60in which a method to delete an input handwriting can be selected. In the subordinate menu60, a radio button may be displayed, in which a deleting method such as deleting by a stroke61, deleting a touched area62, deleting a specific pen63and the like can be selected. The processor120may display handwriting tools used to input a handwriting, as a thumbnail image64-2, on an area62in which the deleting a specific pen63can be selected, and if a user touches a conversion icon64-1, the processor120may select a specific handwriting tool on the thumbnail image64-2rotationally. A layer corresponding to the specific handwriting tool selected according to the above mentioned method is chosen as a layer to be edited. After one layer among layers divided according to a handwriting tool used to input a handwriting is selected first, the processor120may control to delete only a handwriting input by a handwriting tool corresponding to the selected layer by a manipulation of the eraser tool as an eraser tool is executed in the menu bar21. A menu indicating a handwriting tool used for an input handwriting may be displayed separately. If a user selects the deleting a specific pen63, the processor120may display a menu indicating the handwriting tool used for the input handwriting separately, and if one handwriting tool is selected in the separately displayed menu, a layer corresponding to the selected handwriting tool may be selected. For an another exemplary embodiment, if a part of an area in which a handwriting is input is selected, the processor120may determine a handwriting tool corresponding to the handwriting input in the selected part, and select a layer corresponding to the determined handwriting tool. Specifically, if a user touches an area in which a handwriting is input, the processor120may determine a handwriting tool used to input a handwriting corresponding to the touched area, and activate a layer corresponding to the determined handwriting tool to be in an editable status. However, if an area in which handwritings input by different handwriting tools overlap is selected, the processor120may display a menu for selecting one of the handwriting tools corresponding to the handwritings input on the overlapped area. FIG. 7illustrates that a layer corresponding to a first handwriting tool is selected on a handwriting input screen illustrated inFIG. 4, and a part of an input handwriting is deleted on the selected layer. Specifically, when a layer corresponding to the first handwriting tool is activated, a user may delete some items such as ‘at a training institute’, ‘Hyodong's house’ and ‘to prepare material in advance’ among a handwriting input by the first handwriting tool with an eraser tool. Accordingly, deleted areas71,72and73may be displayed as a blank as illustrated inFIG. 7. As illustrated inFIG. 8, a user may substitute the deleted handwriting to other contents by writing changed contents such as ‘at a household appliances building’, ‘Tuna's house’, and ‘to be careful security material’ on the areas71,72and73which are displayed as a blank. In the above-described exemplary embodiments, an operation to delete an input handwriting according to a handwriting tool has been described. However, all editings including applying effect such as deleting, moving, copying, cutting, coloring, decorating and the like may be possible for each handwriting tool. For example, the processor120may control to move a handwriting input by a handwriting tool corresponding to a selected layer on a screen according to an operation by a touch input. A handwriting area which moves at this time may be an entire or a part of a handwriting area included in a selected layer. The processor120may display layers divided according to a handwriting tool by dividing into subordinate layers according to a color of an input handwriting, and in response to one subordinate layer among the subordinate layers divided according to the color of the input handwriting being selected, control to edit only a handwriting input by a color corresponding to the selected subordinate layer. For example, handwritings having different colors are input, even if the handwritings are written by the same handwriting tool, the processor120may generate a subordinate layer of a layer corresponding to the corresponding handwriting tool by a color, and divide the input handwriting into different subordinate layers by a color. Accordingly, if a user tries to edit only a handwriting input by a specific color, a user may select a subordinate layer corresponding to the specific color and edit only the handwriting input by the color. Here, the processor120may display a menu for selecting one of the colors used for the input handwriting, and if one color is selected in the displayed menu, the processor120may activate only a layer corresponding to the selected color and change the layer to be in an editable status. FIG. 9is a block diagram illustrating a detailed configuration of an electronic device according to another exemplary embodiment. As illustrated inFIG. 9, the electronic device100′ according to another exemplary embodiment may include a display110, the processor120, a storage130, a communicator140, an audio processor150, an audio output unit160, a video processor170and a user interface unit180. Hereinafter, explanation of the duplicate configuration as illustrated inFIG. 1will be omitted. The storage130may store a variety of modules to operate the electronic device100′. Specifically, the storage130may further store a base module which processes a signal transmitted from each hardware included in the electronic device100′, a storage module which manages a database or a registry, a security module, a communication module and the like. The communicator140is an element which performs communication with an external device according to various types of communication methods. The communicator140may include a WiFi chip, a Bluetooth chip, a wireless communication chip and the like, and perform a communication with another electronic device including a server. The audio processor150is an element which performs processing on audio data. The audio output unit160is an element which outputs audio data processed in the audio processor150. The video processor170is an element which performs various image processings such as decoding, scaling, noise filtering, frame rate converting, resolution converting and the like on an input image. The user interface180is an element to detect a user interaction to control an overall operation of the electronic device100′. Especially, the user interface180may include various interaction sensing apparatuses such as a camera (not illustrated), a microphone (not illustrated) and the like. The processor120may control an overall operation of the electronic device100′ by using all sorts of modules stored in the storage130. As illustrated inFIG. 9, the processor120includes a Random Access Memory (RAM)121, a Read Only Memory (ROM)122, a graphic processor123, a CPU124, first to nth interfaces125-1to125-n, and a bus126. Here, the RAM121, the ROM122, the graphic processor123, the CPU124, and the first to nth interfaces125-1to125-nmay be connected with one another via the bus126. The ROM122stores a command set, etc., for booting a system. The CPU124copies various application programs stored in the storage130into the RAM121, and performs various operations by executing the application programs copied into the RAM121. The graphic processor123generates a screen including various types of objects such as an icon, an image, a text, etc., by using an operator (not illustrated) and a renderer (not illustrated). The operator calculates attribute values, such as coordinate values, shapes, sizes, colors, etc., at which the objects are to be respectively displayed according to a layout of the screen. The renderer generates a screen of various layouts including objects based on the attribute values that are operated by the operator. The CPU124accesses the storage130and performs booting using an O/S stored in the storage130. In addition, the CPU124performs various operations using various programs, contents, and data stored in the storage130. The first to the nth interfaces (125-1to125-n) are connected to the above-described various elements. One of the interfaces may be a network interface connected to an external apparatus via network. FIG. 10is a flowchart illustrating a method of controlling an electronic device according to an exemplary embodiment. First, display a handwriting input by at least two handwriting tools selected among different handwriting tools provided through the display by dividing layers of the handwriting according to a handwriting tool S1010. Here, a menu indicating the handwriting tool used for the input handwriting can be displayed, and if one handwriting tool is selected in the displayed menu, a layer corresponding to the selected handwriting tool can be selected. As another exemplary embodiment, if a part of an area in which the handwriting is input is selected, a handwriting tool corresponding to the handwriting input in the selected part is determined, and a layer corresponding to the determined handwriting tool can be selected. After then, if one layer among the layers divided according to the handwriting tool is selected, only a handwriting input by a handwriting tool corresponding to the selected layer is edited S1020. Here, if an eraser tool is executed according to a user command after one layer among the layers divided according to the handwriting tools is selected, only a handwriting input by a handwriting tool corresponding to the selected layer can be deleted according to a manipulation by the eraser tool. In addition, if one layer is selected among the layers divided according to the handwriting tool, a handwriting input by a handwriting tool corresponding to the selected layer can be moved according to a manipulation by a touch input. According to various exemplary embodiments as in the above, a handwriting may be selectively edited according to a handwriting tool or a color, and thus a user may edit only a handwriting that the user wants to edit easily. The controlling method of an electronic device100according to the above-described various embodiments may be implemented as a program and stored in various recording mediums. That is, a computer program that has been processed by various processors and therefore has become capable of executing the aforementioned control methods may be stored in a non-transitory recording medium and be used. For example, anon-transitory computer readable medium may be provided, which stores a program performing displaying a handwriting input by at least two handwriting tools selected among different handwriting tools provided through the display by dividing layers of the handwriting according to a handwriting tool, and if one layer among the layers divided according to the handwriting tool is selected, editing only a handwriting input by a handwriting tool corresponding to the selected layer. The non-transitory computer readable medium is not a medium that stores data temporarily, such as a register, a cache, and a memory, but means medium that semi-permanently stores data and is readable by a device. Specifically, the above-described various applications or programs may be stored in a non-temporal recordable medium such as Compact Disk (CD), DVD, hard disk, Blu-ray disk, Universal Serial Bus (USB), memory card, ROM, and the like, and provided therein.
» t La présente invention est relative à un procédé de • fabrication de supports d'enregistrement magnétiques par préparation d'un mélange à base de particules magnétiques fines prétraitées, d'un liant amélioré et d'un solvant, dépôt de couches 5 de suspension des particules magnétiques dans le liant et le solvant sur le support, et séchage et durcissement des couches aimantables ainsi déposées. On sait déjà fabriquer des supports d'enregistrement magnétiqies par enduction de supports, tels que des feuilles, 10 des bandes ou des plaques de matière plastique ou de métaux non aimantables, avec une suspension d'une matière aimantable (qui doit présenter un minimum d'aimantabilité)-dans un liant et un solvant organique. En particulier, pour la fabrication de plaques magnétiques pour l'enregistrement des données, on impose 15 des exigences élevées à la pellicule de revêtement, généralement très mince. Le revêtement formé doit présenter une très bonne adhérence au support et une grande résistance aux solvants, à la chaleur, à l'humidité et surtout à l'abrasion. Le revêtement dans lequel la matière magnétique est enrobée dans un liant, 20 doit être à la fois très dur et pas trop cassant. Le liant employé pour la préparation de l'enduit détermine dans une grande mesure les propriétés mécaniques et chimiques du revêtement,. Les bandes magnétiques modernes sont soumises à rude épreuve, et l'utilisation des bandes magnétiques est un processus compliqué. Les 25 supports de magnétogrammes sont soumis à la chaleur et à l'abrasion, et la bande peut être détériorée par érosion de la couche qui contient les particules magnétiques du fait des particules détachées par abrasion qui adhèrent les unes aux autres et aux têtes d'enregistrement et de reproduction* ainsi que du retour 30 de matière détachée pair abrasion sur le support de magnétogramme à partir de la tête d'enregistrement. La nature de la matière détachée par abrasion a également de l'importance. Comme liant pour la suspension de pigment magnétique finement divisé, on a déjà recommandé diverses matières plastiques et divers mélan-35 ges de matières plastiques. C'est ainsi qu'on connaît l'emploi de copolymères du chlorure de vinyle ou du chlorure de vinylidène avec de petites quantités de comonomères tels que l'acétate de vinyle. On a également employé des polyamides et des combinaisons de résines époxydes avec des condensats phénol-formol comme 40 liants dans la fabrication des supports de magnétogrammes. On 69 00015 2000033 connaît également l'emploi d'un mélange de poly-isocyanates et . de composés hydroxylés niacromoléculaires. Mais les liants connus ne sont pas satisfaisants à tous les égards. Ils occasionnent des difficultés lors de la transformation, par exemple par suite 5 de variations de leur viscosité ou de la répartition du pigment, ou ils laissent à désirer au point de vue de 1'aimantabilité ou de la résistance chimique après séchage au four et finissage. On a découvert qu'on pouvait fabriquer avantageusement, en évitant les difficultés usuelles, des supports de magnétogram-10 mes doués d'une rétention nettement améliorée de la poudre magnétique dans la couche, d'excellentes propriétés magnétiques, et d'un niveau de tension particulièrement uniforme, par préparation d'une suspension de pigment magnétiqué finement divisé dans un mélange de liant, de solvant et éventuellement de produits 15 auxiliaires, dépôt d'une couche de suspension sur le support et séchage ou durcissement, avec traitement superficiel éventuel de la couche, en employant-comme liant un copolymère durcissa-ble A contenant les produits suivants copolymérisés: 1.- 20 /i à 65 % en poids d'alcénylbenzènes contenant 20 8 à 10 atomes de carbone. 2.- 20 c/o à 55 c/o en poids, en particulier 20 % à 45 /o, d'esters acryliques et/ou méthacryliques -d'alcanols contenant 1 à 12 atomes de carbone. 5.- 8 % à 55 7° en poids, en particulier 18 % à 25 % 25 d'acryloalcoxyméthylamides et ou de méthacrylo-alcoxyméthylanii-des ; 4.- 0,5 % à 30 c/o en poids, en particulier 0,5 % à 15 d'un autre monomère monoéthylénique, et un pigment magnétique pré-traité par une cire en une substan-50 ce cireuse. Le copolymère durcissable A doit être' en grande partie soluble dans les solvants usuels employés et être préparé à partir des monomères indiqués, ou contenir les quantités indiquées des éléments de structure correspondants. 35 Parmi les alcénylbenzènes contenant 8 à 10 atomes de carbone, on emploie de préférence le styrène. On peut cependant aussi employer les vinyltoluènes, les vinylxy1ènes ou l'a-méthyl-styrène. On copolymérise ces alcénylbenzènes à la dose de 20 % . à 65 % en poids, en particulier de 41 % à 51 %• L*emploi de plus 40 grandes quantités de styrène ou de vinyltoluène confère aux cou- 69 00015 i 1 2000033 ch.es une plus grande dureté. Parmi les esters acryliques et/où méthacryliaues d'al-canols contenant 1 à 12 atomes de carbone, en particulier 1 à £ atones de carcc-ne, on peut mentionner .le méthacrylate de néthyle, 5 l'acrylate d'éthyle, les acrylates et méthacrylates de t-butyle, de 2,2-dinGthylrentyle et de ^-éthylhexyle, ainsi que les mélanges de ces esters. Le choix de la nature et de la quantité des esters dépend de la modification qu'on veut apporter aux propriétés, en particulier à la dureté et à 1'élaoûicité de la couche. C'est 10 ainsi que l'emploi à petite dose, par exemple jusqu'à 25 en poids, d'esters acryliques d'alcools contenant 5 à 12 atomes de carbone avec de grandes quantités de styrène confère une bonne élasticité à la couche. Parmi les acrylo-alcoxyméthylainides et méthacrylo-alcoxy-15 méthylamides dent le groupe alcoxyle contient en particulier 1 à 8 atomes de carbone, qu'on copolymérise dans le copolymère A à la dose de E à 35 ^ en poids, en particulier de 16 /j à 25 en poids, ou dont le copolymère A contient les éléments de structure, figurent les éthers de 1 ' acrylo-hydroxyinéthylamide et de 20 méthacrylo-hydroxyméthylamide avec le n-butanol, l'alcool isobu-tylique, le 2-éthyl-1-hexanol, l'alcool banzylique et le 2-méthoxyéthanol. On préfère 1'acrylo-butoxyméthylamide et le mathacrylo-butoxyméthylamiâe. On peut modifier d'une manière connue les copolymères 25 employés comme liants suivant l'invention en copolymérisant jusqu'à 30 ",'0 en poids, en particulier .jusqu'à 15 '/•> en poids, d'un autre monomère monoéthylérique, en particulier d'un des monomères couramment employés dans la fabrication des vernis. Il est très avantageux de copolymériser 1 à 10 ;j en 30 poids d'acides carboxyliques éthyléniques contenant 3 à 5 atomes de carbone ou jusqu'à 15 P en poids, en particulier 2 fs à 11 /é, de monomères éthyléniques contenant un groupe hydroxyle alcoolique, ou les "ieux à la fois. Parmi les acides carboxyliques éthyléniques contenant 3 à 5 atomes de carbone, l'acide 35 acrylique et l'acide méthacrylique convienn t particulièrement- On peut cependant aussi employer l'acide crotonique ou l'acide ~ maléique. L'addition de ces acides fait durcir le liant à une £ température relativement basse ; ils contribuent aussi à la dureté du liant et à son adhérence au support. 40 Parmi les monomères éthyléniques contenant un groupe O D 69 00015 2000033 hydroxyle alcoolique figurent en particulier les monoesters acryliques et méthacryliques de glycols, en particulier les monoesters d1alcanediols ou d'oxa-alcanediols contenant 2 à 6 atomes de carbone, tels que le '1,4-butanediol, le 1,5-pentanediol, 5 le 1,2-propanediol, 1'éthylène-glycol et le diéthylène-glycol. L'addition de ces composés facilite le durcissement du liant et contribue à la résistance aux solvants et à la chaleur des couches obtenues. Parmi les autres comononères utilisables figurent l'acry-10 lamide, le méthacrylamide, 11acrylonitrile et le méthacrylonitri-le, le chlorure de vinyle et le chlorure de vinylidène, les II-vinylamides et les li-vinyl-lactanes, tels que 1'acéto-vinyl-méthylamide ou le îî-vinyl-hexanolactame. On obtient des copolyisères convenant bien à partir de 15 25 % à 32 % d'acrylate ou de méthacrylate de 2-éthylhexyle, 41 % à 51 % de styrène, 18 à Zy V= d'acrylo-butoxyméthylamide ou de méthacrylobutoxyr.éthylaniidè, et 0,5 ;» à 3 ^ d'acide acrylique ou d'acide méthacrylique. Les copolynères formés à partir de 40 c/o à 60 /ô de styrène, 20 ;'i à ï-j de l'ester acrylique ou 20 méthacrylique d'un alcanol contenant 5 à 8 atomes de carbone, 15 à 30 % d'un acrylo-alcoxyméthylamide 0u d' un mëthacrylo-àlcoxyaéthylamide, 3 '/J à 10 /-à de l'ester monoacrylique ou monoriéthacrylique d'un alcane-diol contenant 3 ou 4 atomes de carbone, et 0,5 c/° a 5 % d'acide 25 acrylique ou d'acide méthacrylique, conviennent très bien. Les copolymères employés comme constituants du liant suivant l'invention peuvent être préparés de la manière habituelle, par exemple par polymérisation en solution, en suspension ou en émulsion. Il est souvent avantageux d'ajouter au copolymère 30 durcissable À 5 .$« à 35 7° en poids, en particulier 6 à 20 /», d'un polyépoxyde durcissable. Les éthers polyglycidiques de polyalcools et surtout de polyphénols conviennent très ..bien, en particulier ceux du 2,2-bis-parahydroxyphényl-propane et de . 1'épichlorhydrine. 35 Comme pigment magnétique, on préfère les particules cylindriques ou cubiques d'oxyde de fer gamma, en particulier celles dont la granulométrie moyenne est de 0,1 à 2 ^1. On peut . j£| aussi employer les alliages finement divisés de métaux lourds, q en particulier de fer, de cobalt et/ou de nickel. .. a£ 40 Comme cires ou composés cireux, on peut employer les 69 Û001S * 2000033 cires naturelles telles que la cire de carnauba, la cire d'abeilles, l'ozokérite, ou les cires synthétiques, en particulier les composés cireux à masse moléculaire moyenne comprise entre 1000 et 10 000 par exemple, qui contiennent une certaine quanti-5 té d'oxygène combiné. Les cires de polyéthylène moyennement ramifié contenant 2 c/o à 6 % d'oxygène combiné et ayant un indice d'acide compris entre 20 et 50 conviennent particulièrement bien. On emploie de préférence ces cires ou composés cireux sous forme de suspensions aqueuses, généralement à la dose de 1 % à 7 c/o en 10 poids, de préférence 3 ?» à 5 %, par rapport au pigment magnétique. Le pré-traitement de la poudre magnétique consiste de préférence à la disperser dans la suspension aqueuse de cire et à faire couler une solution de sulfate d'aluminium jusqu'à précipitation. 15 En général ,on emploie 70 à 140 parties du liant de l'invention, en particulier 100 à 130 parties (poids sec), pour 1000 parties de poudre magnétique traitée. Pour préparer la suspension de pigment magnétique traité, on a avantage à disperser le pigment dans le liant de l'invention et dans une quantité 20 suffisante de solvant par un procédé de dispersion usuel, par exemple dans un broyeur à boulets. Parmi les solvants organiques utilisables figurent les hydrocarbures aromatiques tels que le benzène et le toluène, les éthers de glycols tels que l'éthyl-glycol, les éthers-esters de glycols tels que l'ester acétique 25 de 1'éthylglycol, les alcools tels que le propanol ou le butanol, les cétones telles que l'acétone et la mëthyl-éthyl-cétone, et leurs mélanges, ainsi 'que d'autres solvants et mélanges de solvants d'emploi courant dans les vernis. On peut dissoudre le liant dans le solvant et prédisperser le pigment magnétique dans 30 cette solution, ou mélanger directement le liant, le pigment magnétique et le solvant dans l'appareil à disperser. On ajoute à ce mélange les autres constituants à l'état solide ou sous forme de solutions-à 20-60 %. Il est avantageux de poursuivre l'opération de dispersion jusqu'à ce que le pigment magnétique 35 soit très finement dispersé, ce qui peut prendre un à quatre jours. Par filtration répétée, on obtient ensuite une suspension magnétique absolument homogène. Le dépôt de la suspension en couche sur le support peut" se faire par les procédés connus. Du fait de la grande dureté 40 et de l'excellente adhérence au support des couches préparées au moyen des liants de 1'invention et de pigments magnétiquesc 69 00015 2000033 ainsi que de l'excellent pouvoir de liaison du pigment du liant, le procédé de l'invention convient particulièrement à la fabrication de plaques magnétiques solides à support métallique, en particulier à support d'aluminium. Quand on dépose les couches 5 sur des plaques ou tambours métalliques, les mélanges de liant et de pigment magnétique suivant l'invention se prêtent particulièrement bien au procédé de coulée par centrifugation décrit dans le brevet américain 2 9^3 245. Dans ce procédé, on agite la suspension magnétique dans un appareil tournant, tout en ef-10 fectuant une nouvelle filtration. On coule ensuite le mélange au moyen d'un bras mobile sur les plaques-supports en rotation lente. En portant la vitesse de rotation à environ 600-1000 t/mn, on centrifuge l'excès de suspension magnétique, et on obtient une couche homogène de suspension sur la plaque. On enduit alors 15 l'envers d.e la plaque de la même façon. Il est évident que ce procédé d'enduction impose des exigences particulières aux propriétés de la suspension magnétique, donc du liant employé. Par chauffage de la couche déposée vers 120°-230°C, de 20 préférence pendant 30 à 60 minutes, on durcit le liant et on confère à la couche magnétique sa dureté définitive. On peut raccourcir la durée du durcissement et abaisser la température de durcissement en ajoutant des catalyseurs de durcissement tels que des acides, par exemple de l'acide phosphorique ou de l'aci-25 de hexahydrophtalique. On finit généralement la surface par polissage. Le procédé de l'invention se distingue par sa mise en oeuvre simple et sans incidents, même quand on emploie le procédé de coulée par centrifugation. Du fait de l'adhérence amélio-30 rée entre le pigment et le liant dans la couché magnétique, on peut obtenir, avec le même rapport en poids entre la poudre magnétique et le liant, des couches magnétiques si dures, si adhérentes et si résistantes à l'abrasion qu'on peut les assimiler à des émaux. 35 II est particulièrement remarquable que l'emploi des liants de l'invention permette d'obtenir une si bonne dispersion des pigments magnétiques que le dépôt par le procédé de coulée par centrifugation donne des couches exemptes de toute agglomé- . ration du pigment. 40 Dans les exemples qui suivent, les parties et pourcen tages sont en poids, sauf indication contraire. 69 00015 2000033 Préparation d'un enduit liquide Exemple 1 On disperse pendant 12 heures dans un broyeur à billes d'acier 100 parties de ?e ,0,. gamma (poudre magnétique) pré-traité 5 par une cire de polyéthylène 180 parties d'un mélange en parties égales de xylène et de butanol. 200 parties d'une solution à 55 % dans le même solvant d'un copolymère formé à partir de 10 44 c/o de styrène 28. % d'acrylate de 2-éthylhexyle 20 c,o de méthacrylo-butoxyméthylamide 2 °/o d'acide acrylique avec 5 parties d1oléo-hydroxyéthylamide comme dispersif. Par 15 filtration répétée, on obtient une suspension magnétique tout-à-fait homogène. Exemple 2 On disperse pendant deux heures dans un broyeur à boulets un mélange de : 20 100 parties de Fe-^0^ pré-traité par une cire de polyéthy lène 180 parties d'ester acétique de 1'éthylglycol 2 parties de lécithine de soya 31 parties de polyméthoxyde de vinyle 25 On introduit ensuite en agitant 193 parties d'une solu tion à 50 c/o dans un mélange en parties égales de xylène et de butanol de : 10 parties d'un copolymère formé à partir de 22 % de styrène 30 20 c/o de méthacrylo-butoxyméthylamide 58 % d'acrylate d'éthyle et 0,57 partie d'une résine époxyde de "Bisphénol A". On filtre la suspension magnétique sous pression à travers un papier filtre. Préparation d'un ensuit aimantable 35 Au moyen d'un appareil tournant, on agite la suspension magnétique, ce qui produit une nouvelle filtration. On verse ensuite le mélange sur des plaques d'aluminium de 30 cm de diamètre et environ 1 mm d'épaisseur en rotation lente. En portant la vitesse de rotation à 600-1000 t/mn, on centrifuge 40 11 excès de suspension magnétique, et on obtient une couche- 69 00015 8 2000033 homogène. On enduit de même l'envers des plaques. Par chauffage vers 1pO°G pendant une heure (ou à 220° pendant une demi-heure dans l'exemple 2), on durcit la couche magnétique, dont l'épaisseur est alors d'environ 8 yu. On peut raccourcir la durée de cuisson ou abaisser la température de cuisson en ajoutant des catalyseurs (composés acides tels que l'acide phosphorique, l'aciie hexahydrophtalique etc.) On finit ensuite la surface par meulage ou polissage. Essai de 1 'hor.or-énéité na^nétisue du revêtement» On soumet la couche magnétique à un enregistrement magnétique sur un appareil approprié. On projette la tension de lecture sur un oscillographe, qu'on photographie. - La figure 1 montre la courbe obtenue, les temps étant portés en abcisse et les niveaux de tension en ordonnée, pour une vitesse de rotation de la plaque magnétique de 1500 min- - La figure 2 a été obtenue de la même manière avec une plaque magnétique du commerce dont la couche magnétique a été préparée suivant les indications du brevet allemand 1 174443. On voit nettement que la couche magnétique préparée suivant l'invention donne un niveau de tension plus uniforme. 69 00015 9 2000033 REVENDICATIONS 1.- Procédé de fabrication de supports de magnétogrammes par préparation d'une suspension de pigment magnétique finement divisé dans un mélange de liant, de solvant et éventuellement de produits auxiliaires, dépôt d'une couche de cette suspension 5 sur le support et séchage, durcissement et éventuellement traitement superficiel, caractérisé par l'emploi comjae liant d'un copolymère durcissable dont les chaînes moléculaires contiennent les éléments structuraux des monomères suivants : 1) 20 % à 60 c/o en poids d'alcénylbenzènes contenant 10 8 à 10 atomes de carbone, 2) 20 cto à 55 % en poids d'esters acryliques et/ou méthacryliques d'alcanols contenant 1 à 12 atomes de carbone, 3) 8 /o à 35 % en poids d'alcoxyméthylamides de l'acide acrylique et/ou de l'acide méthacrylique, 15 4) 0,5 à 30 /o en poids d'autres monomères monoéthylé- niques et par l'emploi comme pigment d'un pigment magnétique pré-traité par une cire ou une substance cireuse. 2.- Procédé de fabrication de supports de magnétogrammes suivant revendication 1 dans lequel on ajoute au copolymère 5 /= à 20 35 % en poids d'un polyépoxyde durcissable. 3-- Procédé de fabrication de supports de magnétogrammes suivant revendication 1 dans lequel on dépose la suspension sur des plaques ou des tambours en métal non aimantable par le procédé de coulée par centrifugation. 25 4.- Supports de magnétogrammes fabriqués par les procédés des revendications 1. à 4.
Thermoform packaging machine with pulling device A thermoform packaging machine including a forming station, a sealing station, a cutting station and a film conveying unit. The film conveying unit includes a clamp chain arranged on a lateral edge of a bottom film, wherein the clamp chain cyclically conveys the bottom film in a direction of production during operation, the bottom film is advanced one cycle length in each cycle of the thermoform packaging machine. Further, the thermoform packaging machine may include a pulling device that pulls a pull section of the bottom film and/or a top film in a direction parallel to the direction of production relative to the lateral edge of the bottom film held by the clamp chain. CROSS-REFERENCE TO RELATED APPLICATIONS This Application claims priority to German Patent Application No. DE 10 2016 122 625.4, filed on Nov. 23, 2016, to Bernhard Grimm and Thomas Müller, currently pending, the entire disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION Thermoform packaging machines are known such as that described in EP 2 740 679 A1. For increasing the positioning accuracy of the films during cutting or sealing, the cutting station as well as the sealing station can be displaced in a direction parallel to the direction of production. To this end, a reference element, whose position relative to a packaging trough is known, is detected and the cutting station or the sealing station is adjusted on the basis of the detected position of the reference element and of the packaging trough position known relative thereto. This adaptation is disadvantageous insofar as the position of the respective station can only be adjusted relative to the entire film. In practice, it may happen that certain sections of the films are distorted relative to one another. This may be due to the product fed into the film trough. The larger the distance between the respective section and the normally used conveyor chains of the thermoform packaging machine is, the higher may be the degree of distortion. In addition, this effect may intensify with each cut carried out in the film compound before the packages are finally individualized. This film distortion may then lead to inaccuracies during sealing or cutting. It is the object of the present invention to provide a thermoform packaging machine that is improved with respect to the above-mentioned drawbacks. SUMMARY OF THE INVENTION According to the present invention, a thermoform packaging machine is provided, which comprises a forming station, a sealing station, a cutting station and a film conveying unit. The film conveying unit includes a clamp chain arranged on a lateral edge of a bottom film and used for cyclically conveying the bottom film in a direction of production, the bottom film being advanced in each cycle by one cycle length. The thermoform packaging machine according to the present invention may be characterized in that a pulling device is provided, which may be configured to pull, in a direction parallel to the direction of production, a pull section of the bottom film and/or of a top film relative to the lateral edge of the bottom film held by the clamp chain. One or a plurality of clamp chains may be provided; the film may here be gripped on only one edge by one or a plurality of clamp chains. Thermoform packaging machines in which each of the two lateral edges of a film may be respectively held by one or a plurality of clamp chains may be commonly used as well. In the following, the term lateral edge is to be understood as a margin area of a film/foil, which extends parallel to the direction of production. The term edge also relates to the surfaces of the film which may be inserted in clamps of the clamp chains. An advantageous effect of the configuration according to the present invention resides in that a distortion in a pull section of the top film and/or bottom film, which may be not directly held by the clamp chain, can be compensated. It will be advantageous when the pulling device may be arranged upstream of the sealing station or the cutting station at a distance corresponding to two cycle lengths at the most, preferably to not more than one or less than one cycle length. This may be advantageous in view of the fact that downstream of the pull section distortion may again occur, and the closer the pull section may be arranged to the sealing station or the cutting station, the smaller this distortion will be. It may be conceivable that the pull section of the bottom film and/or of the top film extends outside the lateral edge of the bottom film held by the clamp chain. In the case of a variant in which two clamp chains may be provided for holding at opposed edges of the bottom film; it may be conceivable that the pull section extends between the lateral edges held by the clamp chain. According to a possible variant, the pulling device comprises a clamping element and a counter-pressure bar, the clamping element being adapted to be pressed against the counter-pressure bar. The counter-pressure bar may be arranged e.g. below the bottom film and the clamping element may be arranged e.g. above the top film. A reversed mode of arrangement may be, however, conceivable as well. The counter-pressure bar and the clamping element may here be connected to one another by a bridge- or portal-shaped structure. Such a force-fit engagement variant has the advantage that no additional engagement features may be required at the film. According to a particularly advantageous embodiment, the clamping element may be coated with silicone. In this way, the coefficient of friction between the film and the clamping element can be increased and the risk of slipping of the film can be reduced. It will be advantageous when the clamping element, together with the counter-pressure bar, may be displaceable parallel to the direction of production by a displacement distance. In this way, pulling of the pull section can be enabled. According to a variant, the clamping element and the counter-pressure bar may be displaceable by a pneumatically or hydraulically operated cylinder. According to another variant, the clamping element and the counter-pressure bar may be displaceable by a stepping motor or a servomotor, preferably by means of a spindle or a crank. According to a particularly advantageous embodiment, a distance sensor may be provided for detecting the displacement distance, the distance sensor preferably detecting the displacement distance directly. A direct detection of the displacement distance can be carried out using an optical or ultrasound-based distance sensor. An indirect detection of the displacement distance, e.g. by detecting the position of the stepping motor or the servomotor, is, however, conceivable as well. It may be conceivable that the displacement distance may be controllable. This control may be of an electronic, mechanical, hydraulic or pneumatic type. This allows a particularly flexible adjustment of the displacement distance and, consequently, a flexible adaptation of the distortion correction. The displacement distance may be controllable, e.g. on the basis of the displacement distance detected by the distance sensor. According to a further variant, a stop may be provided for limiting the displacement distance. A stop may be of advantage for a controllable displacement distance as well as for a non-controllable displacement distance. A system without a controllable displacement distance having a stop represents a particularly simple and robust variant. According to a particularly advantageous embodiment, the clamping element may be adjustable in a direction perpendicular to the direction of production and preferably perpendicular to a clamping direction. The term clamping direction means here the direction in which the clamping element moves when it is pressed against the counter-pressure bar. It follows that an adjustment direction of the clamping element extends preferably in a plane parallel to the film plane and perpendicular to the direction of production. According to a further variant, the pulling device may comprise a plurality of clamping elements, each of them adjustable preferably in a direction perpendicular to, the direction of production and preferably perpendicular to a clamping direction. According to a particular the advantageous embodiment, a film distortion sensor may be provided, which may be configured for detecting a distortion of the pull section relative to the lateral edge of the bottom film held by the clamp chain. The film distortion sensor may e.g. be a camera capable of detecting e.g. the format of the troughs or the contours of the webs between the troughs. It is also conceivable to provide reference elements, such as print marks or holes, in the film, which may be detected by the film distortion sensor. According to a possible variant, the pulling device may be configured for pulling between advancing phases of two cycles. Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures. DETAILED DESCRIPTION OF THE INVENTION InFIG. 1atop view of a thermoform packaging machine1is shown. In the present embodiment, the thermoform packaging machine1comprises a film conveying unit2with clamp chains2a,2b. The latter are configured for cyclically advancing a bottom film3. As in the embodiment according toFIG. 1, two clamp chains2a,2bare provided in the following embodiments as well. It is, however, also conceivable to provide only a single clamp chain2a(cf.FIG. 8), i.e. on only one side of the film3. The thermoform packaging machine1comprises a forming station4. The forming station4is configured for forming troughs5in the bottom film3. A loading track6is provided downstream of the forming station4, when seen in a direction of production P. There, products7are put into the troughs5. A sealing station8is arranged downstream of the loading track6. The former is configured for sealing the troughs5by sealing a top film9onto them (cf.FIG. 2) and producing sealed seams10extending circumferentially around the troughs. In this way, sealed packages11are produced. The sealed packages11are advanced to a cutting station12. In the present embodiment, this cutting station12comprises two cutting devices12a,12b. In principle, the present invention is, however, applicable to all kinds of cutting stations, preferably to those carrying out cuts, which are offset in the direction of production P and which extend transversely to the direction of production P. The sealed packages11can be fully individualized at the cutting station12. Likewise, it is conceivable that the cutting station12only carries out certain cuts and that the packages are individualized further on downstream. InFIG. 1, a pulling device13according to the present invention (cf.FIG. 5a-5c) is merely indicated by a clamping location14. The latter is arranged in a pull section15, which will be explained in more detail hereinafter making reference toFIG. 2. InFIG. 2, the clamp chains2a,2bare shown in the perspective identified by Z-Z inFIG. 1. The bottom film3is held by the clamp chains2a,2bat lateral edges16a,16b. The pull section15extends between those lateral edges16a,16b. Hence, this pull section15is the area of the bottom film3and of the top film9that is not covered and/or held by the clamp chains2a,2b. With respect to the embodiment shown inFIG. 1, the clamping location14is arranged centrally in the pull section. Centrally means here in relation to a direction horizontally and transversely to the direction of production P. In the case of packages11or troughs5extending across the whole width of the pull section15, the clamping location14should be arranged on a web17provided between the troughs5. In general, the clamping location14should preferably be disposed on a web17arranged between troughs5. As regards the fundamental structural design, the thermoform packaging machines1shown inFIGS. 3 and 4mainly differ from the thermoform packaging machine1shown inFIG. 1in that a different number of tracks18of troughs5is formed in the bottom film3. This is merely intended to illustrate that the present invention is also applicable to this kind of thermoform packaging machines1. InFIGS. 5ato 5cvarious embodiments of pulling devices13are shown. The figures show a front view. The perspective is identified by the arrows A-A inFIGS. 1 and 3and by the arrows B-B inFIG. 4. The pulling devices shown inFIGS. 5ato 5cmainly differ in that different numbers of clamping elements19are provided. For the sake of clarity, only the bottom film3is shown inFIGS. 5ato5c. In addition to the one or the plurality of clamping elements19, the pulling device13comprises a counter-pressure bar20. The clamping elements19can be pressed against this counter-pressure bar20. In order to connect the counter-pressure bar20with the clamping element19, a bridge- or portal-shaped structure21may be provided. For operating, i.e. pressing, the respective clamping elements19against the counter-pressure bar20, clamping cylinders22may be provided. These clamping cylinders may be conventional hydraulic or pneumatic cylinders. The prefix “clamping” is only used for differentiating more easily between various cylinders. In order to compensate for a distortion between the lateral edges16a,16band the pull section15, the clamping element19is pressed against the counter-pressure bar20by operating the clamping cylinder22. Thereby, the top film9and the bottom film3are clamped between the clamping element19and the counter-pressure bar20. By displacing the structure21and, consequently, the clamping element22as well as the counter-pressure bar20, a distortion can be compensated. In order to increase the friction between the clamping element19and the top film9, the clamping element may have a coating provided thereon, for example, a silicone coating. The counter-pressure bar20may as well have a coating provided thereon, for example, a silicone coating, for increasing the friction with the bottom film3. Since the displacement for compensating the distortion takes place in the direction of production P and since the perspective shown inFIGS. 5ato 5cis directed in the direction of production P as well, components of the pulling device13which serve the purpose of displacement will be explained with reference toFIGS. 6ato6c. For the sake of clarity, some components, such as the structure21and the clamp chains2a,2b, are not shown inFIGS. 6ato 6c. The top film9and the troughs5are not shown either. The components shown in each of the three figures are the clamping element19, the clamping cylinder22provided for actuating the latter, and the counter-pressure bar20. For displacing the counter-pressure bar20and thus also the clamping element19, a displacement cylinder23is provided inFIG. 6a. This may be a conventional hydraulic or pneumatic cylinder. Similar to the use in the case of the clamping cylinder22, the prefix “displacement” is only used for making the cylinders more easily distinguishable. A piston rod24of the displacement cylinder23is connected to the counter-pressure bar20or the structure21. This has the effect that the counter-pressure bar20will be displaced in the direction of production P, when pressure is applied to the piston side of the displacement cylinder23. For limiting the displacement, a stop25may be provided. Alternatively or additionally to a stop25, the displacement may be controllable by closed loop control of the extension of the displacement cylinder23. To this end, a distance sensor26may be provided, which detects a displacement distance27. On the basis of the displacement distance detected, the displacement of the counter-pressure bar20can be controlled. The distance sensor26may be based on any principle of distance measurement, for example, on a transit time measurement of ultrasonic or laser signals. Additionally or alternatively, a distortion sensor28may be provided. As shown inFIGS. 6aand 6b, this sensor may be a camera29. This camera29may detect the position and/or the shape of the webs17between the troughs5and identify on the basis thereof a displacement between the lateral edges16a,16band the pull section15. The desired corrected arrangement of the pull section15can be detected by a camera29as well. As has already been indicated, a combination of the distance sensor26and the distortion sensor28or camera29may also be provided. As can be seen inFIG. 6a, the camera29may be arranged upstream of the clamping element19and, consequently, upstream of the pulling device13. The person skilled in the art will immediately recognize that the camera29may be mounted on the structure21as well as on other structures of the thermoform packaging machine1, which do not move together with the structure21. This last-mentioned configuration should be slightly preferred. An alternative embodiment of the displacement mechanism is shown inFIG. 6b. An alternative arrangement of the camera29, namely downstream of the pulling device and the clamping element19, is also shown. For displacing the counter-pressure bar20, a motor30is provided. This motor30may be a stepping motor or a servomotor. The rotary movement of the motor30can be converted into a linear movement of the counter-pressure bar20by a spindle31. To this end, it will suffice to provide a nut, for example a recirculating ball nut, which is secured to the counter-pressure bar20. A further alternative embodiment of a displacement mechanism is shown inFIG. 6c. A motor30is used in this case as well. However, for converting the rotary movement of the latter into a linear movement, a crank32is provided. This crank32is connected to the counter-pressure bar20. The latter is guided on a linear guide33. A linear guide may be provided in all the embodiments described. In addition to the stop25, a second stop34may be provided, which limits the displacement distance in a direction opposite to the direction of production P. The distortion sensor28shown in this embodiment is not a camera. It may be a sensor, which is based on optical principles, laser or infrared, or on acoustic principles, for example, ultrasound. Similar to the camera, it may be arranged downstream of the clamping element19, as shown inFIG. 6c. However, an arrangement upstream of the clamping element19is conceivable as well. The use of a motor30for the purpose of displacement has the advantage that conclusions about the displacement distance27can be drawn from the rotary position of the motor30and/or the number of revolutions. Such a determination of the displacement distance27may be provided alternatively or additionally to a distance sensor26. In combination with all the above described distortion sensors28, reference elements35may be provided on and/or in the bottom film3and/or the top film9. As is exemplarily shown inFIG. 7, these reference elements may be holes36and/or print marks37. These holes and/or print marks may be of advantage when detection is accomplished by simple distortion sensors28, as shown inFIG. 6c, as well as in combination with cameras29, as shown inFIGS. 6aand6b. As has already been indicated before, the invention is also applicable to thermoform packaging machines1in which only one clamp chain2ais provided. In this case, the pull section15extends, as shown inFIG. 8, outside the lateral edge16a, which is held by the clamp chain2a, up to the ends of the top film9and of the bottom film3located opposite the lateral edge16a. The constructions and methods described above and illustrated in the drawings are presented by way of example only and are not intended to limit the concepts and principles of the present invention. Thus, there has been shown and described several embodiments of a novel invention.
La présente invention est relative à_un procédé de fabrication continue de solution de polymères d'acrylonitrile dans le diméthylformamide, ainsi qu'à ces solutions. On sait déjà polyraériser l1acrylonitrile seul ou avec 5 de petites quantités d'autres monomères dans le diméthylformamide en présence de catalyseurs. Du fait de la constante de transfert élevée du dimétliylformamide, on n'obtient généralement que des polymères de masse moléculaire insuffisante pour la filature. Pour limiter le plus possible le transfert de chaînes et obtenir 10 des polyacrylonitriles de masse moléculaire élevée, on choisit généralement de basses températures de réaction. Bien entendu une température de réaction plus basse entraîne des durées de réaction plus longues et une occupation coûteuse des appareils de polymérisation. 15 On a déjà proposé de polymériser avec des concentrations d'acrylonitrile aussi élevées que possible pour limiter le transfert de chaînes. C'est ainsi que la demande de brevet allemand 1 195 051 décrit un procédé de polymérisation de 1'acrylonitrile dans le diméthylformamide à des concentrations auxquelles on peut 20 tout juste agiter le mélange réactionnel. Après dilution par paliers du mélange réactionnel avec du diméthylformamide, on poursuit la polymérisation. L'inconvénient de ce procédé est d'exiger des dispositifs d'agita>tion spéciaux pour agiter les mélanges réactionnels très visqueux à gélifier. Un autre inconvé-25 nient est l'abaissement de la masse moléculaire moyenne des polymères pendant la suite de la polymérisation. La polymérisation après dilution donne des polyacrylonitriles à faible masse moléculaire. Or, on sait que la présence de quantités importantes de fractions à faible masse moléculaire dans les polyacrylonitri-50 les entraîne des difficultés au cours de la filature des so-lutions de polymère et un abaissement de la résistance mécanique des fibres obtenues. La présenta invention a pour but de fournir un procédé de fabrication continue de solutions de polymères d'acrylonitrile 35 donnant un bon rendement volumique horaire. Un autre but de l'invention est de fournir un procédé de fabrication continue des solutions de polymères d'acrylonitrile dans lequel les conditions de la réaction, telles que la température de réaction et la concentration de monomères, de diméthylfor-40 mamide et de polymère dans le mélange réactionnel restent à peu 69 00016 2 2000034 près constantes pendant de longues périodes, et dans lequel les perturbations extérieures sont amorties. Un autre but de l'invention est de fournir un procédé de fabrication continue de solutions de polymères de 1'acrylonitrile dans lequel on n'ait pas à manier 5 de mélanges très visqueux et dans lequel il se forme peu d'oligomères. Un autre but de l'invention est de fournir un procédé de fabrication continue de solutions de polymères d'acrylonitrile qui soient d'une bonne couleur et qui puissent être filées en 10 fils d'une bonne blancheur. La présente invention permet d'atteindre ces buts et d'autres encore, qui ressortiront de ce qui suit. 'L'objet de la présente invention est un procédé de fabrication continue de solutions de polymères d'acrylonitrile par 15 polymérisation d'acrylonitrile ou de mélanges de monomères contenant au moins 85 % d'acrylonitrile en poids dans le diméthylformamide en présence d'amorceurs dans une zone de réaction dans laquelle on introduit du mélange frais en régime permanent et d'où l'on soutire en régime permanent la quantité correspondante 20 de mélange réactionnel en introduisant dans la zone de réaction des solutions de monomères à 30 - 50 % qu'on polymérise à 45°-70°C, en évacuant la chaleur dégagée par condensation à reflux sous pression réduite, et en arrêtant la polymérisation de la fraction soutirée à un taux de transformation compris entre 35 % 25 et 70 %. Un procédé particulièrement avantageux de fabrication continue de solutions de polymères d'acrylonitrile par polymérisation de 1'acrylonitrile ou de mélanges de monomères contenant au moins 85 % d'acrylonitrile dans le diméthylformamide en pré-30 sence d'amorceurs dans une zone de réaction, est celui dans lequel on introduit en régime parmanent dans la zone de réaction du mélange frais et on en soutire en régime permanent la quan-' tité correspondante de mélange réactionnel, et dans lequel on introduit dans la zone de réaction des solutions de monomères à 35 30-50 % qu'on polymérise à 45°-70°C, en évacuant la chaleur dégagée par condensation à reflux sous pression réduite, en maintenant une température de réaction constante en moyenne par régulation de la température du liquide refroidissant dans le réfrigérant, en maintenanVun rapport constant en moyenne des concentrations de 40 monomères et de diméthylformamide dans le mélange réactionnel par 69 00016 3 2000034 régulation de l'addition de diméthylf or mamide en fonction de la tension de vapeur au-dessus du mélange réactionnel, en maintenant une teneur constante en moyenne de polymère dans le mélange réactionnel par régulation de la durée de séjour, et en arrêtant 5 la polymérisation de la fraction soutirée à un taux de transformation compris entre 35 Y° et 70 c,'ô. Parmi les monomères utilisables avec 1'acrylonitrile, à des doses de 15 % en poids au maximum par rapport au total des monomères, figurent les acides carboxyliques a-éthyléniques tels 10 que l'acide acrylique et l'acide méthacrylique, leurs dérivés, par exemple leurs esters de composés monohydroxylés contenant 1 à 18 atomes de carbone, tels que l'acrylate de méthyle, l'acry-late de,butyle, 1'acrylate de 2-éthylhexyle et le méthacrylate de méthyl, les composés vinyliques aromatiques tels que le styrè-15 ne, les esters vinyliques d'acides monocarboxyliques, tels que l'acétate de vinyle et le propionate de vinyle, les halogénures de vinyle tels que le chlorure de vinyle et le chlorure de vinyli-dène. Pour améliorer les possibilités de teinture des polymères, on peut employer comme comonomères des composés copolymérisables 20 contenant des groupes acides ou basiques, en particulier à la dose de 0,5 % à 3 /° en poids par rapport au total des monomères. Parmi ces composés figurent l'acide styrène-sulfonique, l'acide propylènesulfonique, l'acide éthylène-sulfonique, le méthacrylate de 3-sulfopropyle, le méthacrylate de 2-sulfoéthyle et les sels 25 de ces acides, ainsi que la vinylpyridine, le vinyl-imidazole, l'acrylate de 2-diéthylaminoéthyle et le sulfate de méthacryloxy-éthyl-triméthylammonium. Les monomères employés avec l'acrylonitrile peuvent aussi être employés en mélange. On petit employer les amorceurs de polymérisation usuels 30 aux doses usuelles, par exemple 0,05 % à 0,5 % en poids par rapport au total des monomères. On a avantage à employer des amorceurs dont la décomposition en radicaux dans le diméthylformamide à la température de réaction se fait avec une demi-vie courte par rapport à la durée de séjour moyenne du mélange réac-35 tionnel. Il est bon d'employer des amorceurs dont la demi-vie à la température de réaction est de 0,5 à 5 heures, en particulier de 1 à 3 heures, par exemple le peroxyde d'acétyle et de cyclohexylsulfonyle, le peroxydicarbonate de cyclohexyle, le peroxydicarbonate d'isopropyle, le peroxypivalate de t-butyle, 40 le persulfate d'ammonium-ou 1'azo-cyclo-octanecarbonitrile. Les amo MurQQ)QJ4t être employés à l'état pur o^^n^Sâ^ge. On peut les introduire dans la zone de réaction avec les autre3 constituants, mais on a avantage à les introduire séparément, dissous dans une petite quantité de diméthylforrnamide. L'addition 5 séparée des amorceurs permet d'accélérer ou de ralentir facilement l'allure de la polymérisation. On met en oeuvre le procédé de l'invention dans les appareils usuels pour la polymérisation continue. Il est avantageux de bien mélanger les réactifs. Particulièrement simple est l'em-10 plci d'une cuve à agitation, au fond de laquelle on soutire • en moyenne autant de mélange réactionnel qu'on introduit de mélange frais par le haut. On introduit des solutions de monomères à- J0-50 de préférence à 35 % - 45 % dans le diméthylformamide. La température de réaction est de '+5°C à 70°C, de 15 préférence de 55°0 à &5°C. La chaleur de réaction est évacuée par condensation à reflux sous pression réduite. On choisit la pression de manière à atteindre exactement la tension de vapeur du mélange réactionnel à la température choisie et à évacuer les gaz inertes par le réfrigérant. Ces gaz inertes, tels que l'air, 20 peuvent s'introduire par des fuites vers l'intérieur de l'appareil ou par dissolution dans le diméthylformamide. La tension de vapeur est généralement comprise entre 50 et 300 mm de mercure, en particulier entre 75 et 200 mm de mercure environ, selon la température de réaction et les concentrations. 25 II est très avantageux de maintenir constantes les condi tions de réaction. Une température de réaction constante, un rapport de concentrations constant des monomères et du diméthylformamide dans le mélange réactionnel et une teneur constante en polymère du mélange réactionnel sont avantageux pour le main-30 tien d'un degré de polymérisation constant et d'une composition sensiblement constante du polyacrylonitrile. Une manière avantageuse de maintenir une température de réaction constante en moyenne consiste à régler la température du liquide refroidissant dans un réfrigérant à reflux exempt de 35 gaz inertes en fonction de la température de réaction. La température de réaction ne varie alcrs généralement que de quelques dixièmes de degré. Le rapport de concentrations choisi- des monomères et du diméthylformamide est maintenu constant piar régulation de l'arrivée de diméthylformamide. Cette régulation ae fait en 40 fonction de la tension dé vapeur au-dessus du mélange réactionnel. 69 00016 5 2000334 La solution de monomères dans le diméthylforrnamide qu'on introduit en continu contient alors plus ou moins de diméthylformamide. On règle la teneur en polymère du mélange réactionnel en agissant sur la durée de séjour du mélange réactionnel dans le réacteur. 5 Les fluctuations éventuelles de la vitesse de polymérisation sont ainsi compensées, ce qui favorise la constance du degré de polymérisation et du taux de transformation. On règle la durée de séjour du mélange réactionnel en fonction de la viscosité du mélange réactionnel, qu'on mesure en continu, par exemple en agis-10 sant sur le niveau du mélange réactionnel dans le réacteur. On effectue ces réglages à l'aide des régulateurs usuels, qui peuvent être à commande pneumatique et électrique. 'On arrête la polymérisation dans la fraction soutirée du mélange réactionnel par les procédés usuels, par exemple en 15 ajoutant les inhibiteurs de polymérisation ou de préférence en distillant rapidement les monomères résiduels sous pression réduite. On évite ainsi la formation de produits à faible masse moléculaire et l'abaissement résultant de la masse moléculaire moyenne du polyacrylonitrile. On peut réutiliser 1'acrylonitrile 20 non transformé. Il est avantageux que la teneur en polymère cLu mélange réactionnel soutiré soit de 12 % à 25 % en poids, en particulier de 15 % à 22 %. On polymérise généralement jusqu'à des taux de transformation compris entre 35 % et 70 %, de préférence entre 25 40 °/o et 60 %, avec des durées de séjour moyennes de 8 à 16 heures. Dans le procédé de l'invention, on ne cherche pas à obtenir le taux de transformation maximal. On peut ainsi limiter l'effet défavorable des transferts de chaîne, même à température élevée, c'est-à-dire que même à température élevée, on obtient des poly-30 acrylonitriles dont la masse moléculaire est suffisamment -grande pour la fabrication des fibres. L'élévation de la température de réaction permet de raccourcir la durée de séjour du mélange réactionnel dans le^ appareils. Aussi le rendement volumique horainer (quantité de polymère par unité de volume de mélange 35 réactionnel et par unité de temps) est-il meilleur dans le procédé de l'invention, malgré le taux de transformation plus bas, que par exemple dans le procédé de la demande de brevet allemand 1 195 051. Grâce au raccourcissement de la durée de séjour du mélange réactionnel dans la zone de réaction chauffée, 40 le polymère se colore moins, ce qui se manifeste par la blancheur 69 00016 2000034 des fibres fabriquées à partir des polymères obtenus. La température de réaction plus élevée et les taux de transformation limités du procédé de l'invention entraînent aussi un abaissement avantageux de la viscosité du mélange réactionnel, ce qui facilite 5 l'agitation et l'évacuation de la chaleur. La conduite de la réaction selon le procédé de l'invention, a le grand avantage que la polymérisation est dans une grande mesure insensible aux perturbations extérieures, même pendant de longues périodes. C'est ainsi que la pureté des monomères ou du 10 diméthylformamide peut devenir inférieure à la moyenne, d'où introduction dans le mélange réactionnel de substances qui influent sur la polymérisation. Les solutions de polyacrylonitrile obtenues selon l'invention donnent des fils ou des fibres d'une remarquable uniformité. 15 Les solutions de polyacrylonitrile obtenues selon l'in vention peuvent être filées en continu à l'état de fils ou de fibres par séchage ou précipitation, éventuellement après concentration ou dilution continue. L'omission de tout stockage des solutions améliore encore la blancheur des fils ou fibres 20 obtenues. Dans les exemples qui suivent, les parties et pourcentages sont en poids. Exemple 1 On introduit en continu dans une cuve à agitation, d'une 25 part 93,4- parties d'une solution de 35,5 parties d'acrylonitrile, 2,5 parties d'acrylate de méthyle et 0,38 partie de propylène-sulfonate de sodium dans 55 parties de diméthylformamide, d'autre part 6,6 parties d'une solution refroidie au-dessous de 5°C de 0,03 partie de peroxydicarbonate d'isopropyle dans 6,6 30 parties de diméthylformamide. On soutire en continu la même quantité du contenu de la cuve. On évacue la chaleur de polymérisation par condensation à reflux sous 100 mm de mercure, la température de refroidissement moyenne dans le réfrigérant à reflux "étant commandée par la température du mélange réactionnel. 35 La température de réaction est de 60°C. Le mélange contenu dans le réacteur se renouvelle en 12 heures. Après l'établissement du régime permanent, le produit soutiré du réacteur contient 19 % d'un polymère ayant une valeur de K égale à 81 (mesurée selon PIKENTSCHER^ Cellulosechemie 13, 58 (1932) ), ce qui correspond -4-0 à un taux de transformation de 49 % et un rendement volumique 69 00016 7 2000034 horaire de 14.10"*-^ (kilogrammes de polymère par litre de mélange réactionnel et par heure). On distille les monomères résiduels à 50°G jusque sous environ 10 mm de mercure, ce qui arrête la réaction, et on concentre jusqurà une teneur en polymère de 5 26 % par distillation du diméthylformamide. On évalue la couleur de la solution de filage en mesurant la transmission d'une lumière de 430 mji de longueur d'onde à travers une solution diluée à 10 % dans le diméthylformamide. Avec une épaisseur de 1 cm, la transmission est de 87 %• Les fils obtenus à partir de la solu-10 tion concentrée dans un bain de précipitation aqueux ont, avec un poids (titre) de 2,92 deniers, un pouvoir réflecteur de 66 % (mesure du degré de blancheur). Après trois heures de chauffage a 160°Ci Ie pouvoir réflecteur est de 35 c/° (mesure du jaunissement) . 15 EXEMPLE COMPARATIF • Dans un réacteur de polymérisation à agitation, on introduit une solution de 35>5 parties d'acrylonitrile, 2,5 parties d'acrylate de méthyle, 0,38 partie de propylène-sulfonate de sodium et 0,05 partie de peroxypivalate de t-butyle dans 61,6 20 parties de diméthylformamide, de telle sorte que le contenu du réacteur, maintenu à 50°C, se renouvelle en 16 heures. On soutire la même quantité de mélange réactionnel en moyenne. Après établissement du régmme permanent, le taux de transformation est de 44 %, et le polymère formé a une valeur de K égale à 89 • On dilue 100 25 parties du produit de réaction avec 55 parties de diméthylformamide et on polymérise en discontinu à 50°C pendant 16 heures. Le taux de transformation s'élève à 71 % 5 la valeur de K descend à 79. Le rendement volumique horaire global est de 5-10"^ seulement. Après séparation des monomères résiduels et concentration, 30 on obtient une solution de 26 La transmission de la lumière, mesurée comme dans l'exemple 1, est de 68 %. Les fils obtenus à partir de cette solution dans un bain de précipitation aqueux, avec ton poids (titre) de 5 deniers, ont un pouvoir réflecteur de 60 % (mesure du degré de blancheur). Après trois heures de chauf-55 fage à 160°C, le pouvoir réflecteur est de 26 % (mesure du jaunissement). Exemple 2 On introduit en continu dans une cuve à agitation, d'une part une solution de 55,5 parties d'acrylonitrile, 2,5 parties 40 de méthacrylate de méthyie et 0,38 partie de méthacryloxypropane- 69 00016 8 2000034 sulfonate de sodium, d'autre part, 6,6 parties d'une solution refroidie au-dessous de 5°C de 0,046 partie de peroxypivalate de t-butyle à 75 % dans 6,6 parties de diméthylformamide. On soutire en continu la même quantité du contenu de la cuve en moyenne. 5 On évacue la chaleur de réaction par condensation à reflux et on maintient une température de réaction moyenne de 60°C. La température du liquide refroidissant dans le réfrigérant est réglée d'après la température de réaction. En établissant line dépression qui correspond exactement à la tension de vapeur du 1Ç mélange réactionnel, on aspire les gaz inertes hors du réfrigérant. Si la teneur en monomères du mélange réactionnel augmente, par exemple par suite d'une composition erronée du mélange introduit, la tension de vapeur au-dessus du mélange réactionnel augmente à température constante. En fonction de cette tension de 15 vapeur, la quantité de diméthylformamide introduite est modifiée, en sorte que le rapport des concentrations de monomères et de diméthyl-formamide dans le mélange réactionnel reste constant en moyenne. Les fluctuations éventuelles de la teneur en polymère du mélange réactionnel se manifestent par les fluctuations de la 20 viscosité du mélange réactionnel, qui est mesurée en continu. La durée de séjour du mélange réactionnel dans le réacteur est réglée en fonction de la viscosité. Quand la viscosité augmente, la durée de séjour est raccourcie, et inversement. Le contenu de la cuve à agitation se renouvelle en douze heures. Après éta-25 blissement du régime permanent, le produit de réaction contient 20 °/o de polymère ayant une valeur de K égale à 86, mesurée d'après FIKENTSCHER, Cellulosechemie 1J5, 58 (1932), ce qui correspond à un taux de transformation de 52 % et à un rendement volumique horaire de 15*10 . On élimine les monomères residuels dans un 30 évaporateur à 50°C jusque sous environ 10 mm de mercure, ce qui arrête la polymérisation, et on concentre jusqu'à une teneur en polymère de 26 % par distillation du diméthylformamide. On évalue la couleur de la solution en mesurant la transmission d'une lumière- de 430 mu de longueur d'onde à travers une solution 35 diluée à 10 % dans le diméthylformamide. Avec une épaisseur de 1 cm, la transmission est de 89 %. Les fils obtenus à partir de la solution concentrée par filage dans un bain de précipitation aqueux ont un pouvoir réflecteur de 67 % avec un poids (titre) de 2,64 deniers. Après trois heures de chauffage à 40 160°C, le pouvoir réflecteur est de 32 %. 69 00016 9 2000034 Le procédé peut fonctionner très régulièrement pendant des semaines et donne des solutions qui fournissent des fils d'une grande uniformité* EXEMPLE 3 5 On introduit en continu dans une cuve à agitation une solution de 37»0 parties d'acrylonitrile, 1Ç0 partie de styrène, 0,40 partie de méthacryloxypropane-sulfonate de sodium et 0,05 partie de peroxypivalate de t-"butyle à 75 % dans 6156 parties de diméthylformamide. On soutire en continu la même quantité de 10 mélange réactionnel. On évacue la chaleur de réaction, par condensation à reflux, et on maintient une température de réaction moyenne de 60°C. La température du liquide refroidissant dans le réfrigérant est réglée en fonction de la température de réaction. En établissant une dépression qui correspond exactement à la 15 tension de vapeur du mélange réactionnel à la température de réaction, on aspire les gaz inertes hors du réfrigérant. Si la teneur en acrylonitrile du mélange réactionnel augmente, par exemple par suite d'une composition erronée du mélange introduit, la tension de vapeur au-dessus du mélange réactionnel augmente à 20 température constante. La quantité de diméthylformamide introduite est modifiée en conséquence, en sorte que le rapport des concentrations de monomères et de diméthylformamide dans le mélange réactionnel reste constant en moyenne. Les fluctuations éventuelles de la teneur en polymère du mélange réactionnel se ma-25 nifestent par des fluctuations de la viscosité du mélange réactionnel, qui est mesurée en continu. La durée de séjour du mélange réactionnel dans le réacteur est réglée en fonction de la viscosité. Quand la viscosité augmente, la durée de séjour est raccourcie, et inversement. Le contenu de la cuve à agi-30 tation se renouvelle en treize heures. Après établissement' du régime permanent, le produit de réaction contient 19 % de polymère ayant une valeur de K égale à 88, mesurée selon FIKEÎTTSCHER, Cellulosechemie 1_3,* 58 (1932), ce qui correspond à un taux de transformation de 50 % et à un rendement volumique horaire de 35 13*10"^. On élimine les monomères résiduels dans un évaporateur à 50°C jusque sous 10 mm de mercure environ, ce qui arrête la polymérisation, et on concentre jusqu'à 29 % de polymère par distillation du diméthylformamide. On évalue la couleur de la solution de"filage en mesurant la transmission d'une lumière de 40 430 m/i de longueur d'onde à travers une solution diluée à 10 % 69 00016 10 2000034 dans le diméthylformamide. Avec une épaisseur de 1 cm, la transmission est de 95 %• Les fils obtenus par filage à sec à 280°C ont un pouvoir réflecteur de 64 % avec un poids (titre) de 2,85 deniers. Après trois heures de chauffage à 160°C, le pouvoir 5 réflecteur est de 28 %. Les fils ont une longueur de rupture à sec de 28, 1 km. Le procédé peut fonctionner régulièrement pendant des semaines, et donne des solutions qui fournissent des fils d'une grande uniformité. Si l'on polymérise le mélange réactionnel, non pas en 10 continu suivant l'invention, mais en discontinu de la manière habituelle, on obtient après filage à sec des fils dont le pouvoir réflecteur est de 62 % et la longueur de rupture (mesurée à sec) de 15,4 km seulement. 69 00016 n 2000034 REVENDICATIONS 1.- Procédé de fabrication continue de solutions de polymères d1acrylonitrile par polymérisation d'acrylonitrile ou de mélanges de monomères contenant au moins 85 % en poids d'acrylonitrile dans le diméthylformamide en présence d'amorceurs 5 dans une zone de réaction, d'où on soutire en régime permanent une quantité de mélange réactionnel égale en moyenne à la quantité de mélange frais introduite, caractérisé comme suit : on introduit dans la zone de réaction des solutions de monomères à 50-50 %, on polymérise à 45°-70°C, on évacue la chaleur de réac-10 tion par condensation à reflux sous pression réduite, et on arrête la polymérisation de la fraction soutirée à un taux de transformation compris entre 35 % et 70 %. 2.- Procédé suivant la revendication 1, caractérisé en ' y ce qu'on introduit dans la zone de réaction des solutions de 15 monomères à 35-4-5 % et en ce qu'on polymérise à 55°-65°C. 3.- Solutions de polymères d'acrylonitrile dans le diméthylformamide obtenues selon les revendications 1 et 2. 4-.- Procédé de fabrication continue de solutions de polymères d'acrylonitrile par polymérisation d'acrylonitrile ou 20 cle mélanges de monomères contenant au moins 85 % en poids d"acrylonitrile dans le diméthylformamide en présence d'amorceurs dans une zone de réaction, d'où on soutire en régime permanent une quantité de mélange réactionnel égal en moyenne à la quantité de mélange frais introduite, caractérisé comme suit : 25 on introduit dans la zone de réaction des solutions de monomères à 30-50 /3, on polymérise à 45-70°C, on évacue la chaleur de réaction par condensation à reflux sous pression réduite, on maintient une température de réaction moyenne constante par régulation de la température du liquide refroidissant dans le réfri-30 gérant, on maintient un rapport moyen constant des concentrations de monomère et de diméthylformamide dans le mélange réactionnel par régulation de l'addition de diméthylformamide en fonction de la tension de vapeur au-dessus du mélange réactionnel, on maintient une teneur moyenne en polymère constante du mélange 35 réactionnel par régulation de la durée de séjour, et on arrête la polymérisation dans la fraction soutirée à des taux de trans- 69 00016 2000034 formation compris entre 35 % et 70 %. 5.- Procédé suivant la revendication 4, caractérisé en ce qu'on introduit dans la zone de réaction des solutions de monomères à 35 % - 45 c/ô et en ce qu'on polymérise à 55° - 65°C. 6.- Solutions de polymères d'acrylonitrile dans le diméthylformamide obtenues selon la revendication 4.
Coordinated scheduling method and related apparatus A coordinated scheduling method and a related apparatus are disclosed. The embodiments of this application may be applied to multi-frequency ultra-dense networking. The method includes: A base station first determines one or more frequencies corresponding to cells at a capacity layer and one or more frequencies corresponding to cells at a coverage layer. Some cells at the coverage layer are obtained by combining at least two cells having co-channel interference, and cells at the capacity layer are all cells that are not combined. In addition, the base station further obtains network information of the first terminal on at least one carrier set, and optimizes the current network based on the network information. TECHNICAL FIELD This application relates to the field of communication technologies, and in particular, to a method and a related apparatus for coordinated scheduling. BACKGROUND With rapid development of mobile internets, services, such as video telephony, streaming media, and mobile payment, have increasing requirements on the mobile networks. In a network, co-channel interference is unavoidable. The co-channel interference deteriorates signal quality of a user in an overlapping area. A smaller distance between base stations results in more severe co-channel interference and worse signal quality. Especially in multi-frequency ultra-dense networking, a distance between base stations is small for each frequency. As a result, for each frequency, co-channel interference is severe and signal quality of a user in an overlapping area of cells is poor. To resolve this problem, a current method is to combine two cells having co-channel interference on each frequency. However, the foregoing method resolves problems of the severe co-channel interference and the poor signal quality of the user in the overlapping area of the cells, and also results in other problems: Before the two cells are combined, two terminals that can use a same frequency resource at a same moment in the two cells cannot use a same frequency resource at a same moment after the cells are combined, that is, frequency resource usage is limited. Consequently, an average transmission rate of a terminal in the multi-frequency ultra-dense networking is reduced, especially when the multi-frequency ultra-dense networking is heavily loaded. SUMMARY Embodiments of this application provide a coordinated scheduling method and a related apparatus, to reduce co-channel interference and ensure an average transmission rate of a terminal in multi-frequency ultra-dense networking. A first aspect of the embodiments of this application provides a coordinated scheduling method. In multi-frequency ultra-dense networking, provided that a capacity layer and a coverage layer are obtained through division based on frequency, a base station determines one or more frequencies corresponding to cells at the capacity layer and one or more frequencies corresponding to cells at the coverage layer. The coverage layer includes a cell obtained by combining at least two cells having co-channel interference, to reduce co-channel interference of a current network. All the cells at the capacity layer are cells that are not combined, to ensure an overall capacity of a current network. The base station further obtains network information of a first terminal on at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to one cell. The base station optimizes the current network based on the network information. The division into the coverage layer and the capacity layer reduces the co-channel interference and ensures the overall capacity of the current network, so that an average transmission rate of a terminal in the multi-frequency ultra-dense networking is increased. In addition, the current network is optimized based on the network information, to further increase the average transmission rate of the terminal in the multi-frequency ultra-dense networking. Based on the first aspect, the embodiments of this application further provide a first implementation of the first aspect, that the base station optimizes the current network based on the network information includes:the base station determines a target carrier set of the first terminal based on the network information; andthe base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, where the target cell is a cell at the capacity layer or a cell at the coverage layer. The base station optimizes the current network through carrier scheduling, and may schedule the first terminal to the target carrier set with better signal quality and a better transmission rate. In addition, the carrier scheduling enables the first terminal to be located in the target cell, to balance load between cells. Based on the first implementation of the first aspect, the embodiments of this application further provide a second implementation of the first aspect, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the coverage layer, that the base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the base station schedules the first terminal from the overlapping area having co-channel interference at the capacity layer to the target cell corresponding to the target carrier set at the coverage layer, to implement cross-layer handover of the first terminal. This balances load between the coverage layer and the capacity layer, and makes full use of frequency resources of the capacity layer and the coverage layer, so that an average transmission rate of a terminal in the current network is increased. Based on the first implementation of the first aspect, the embodiments of this application further provide a third implementation of the first aspect, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the capacity layer, that the base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the base station schedules the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the capacity layer, to also implement cross-layer handover of the first terminal. This balances load between the coverage layer and the capacity layer, and makes full use of frequency resources of the capacity layer and the coverage layer, so that an average transmission rate of a terminal in the current network is increased. Based on the first implementation of the first aspect, the embodiments of this application further provide a fourth implementation of the first aspect, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the capacity layer, that the base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the base station schedules the first terminal from the capacity layer to the target cell corresponding to the target carrier set at the capacity layer, so that the first terminal is handed over between different cells at the capacity layer. Based on the first implementation of the first aspect, the embodiments of this application further provide a fifth implementation of the first aspect, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the coverage layer, that the base station schedules the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the base station schedules the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the coverage layer, so that the first terminal is handed over between different cells at the coverage layer. Based on the second implementation of the first aspect, the third implementation of the first aspect, the fourth implementation of the first aspect, or the fifth implementation of the first aspect, the embodiments of this application further provide a sixth implementation of the first aspect, that the base station determines a target carrier set of the first terminal based on the network information includes:the base station determines a transmission rate set of the first terminal based on the network information, where the transmission rate set includes a transmission rate of the first terminal on each carrier set; andthe base station determines the target carrier set of the first terminal based on the transmission rate set. The base station determines the target carrier set based on the transmission rate, so that a transmission rate of the scheduled first terminal can be ensured. Based on the sixth implementation of the first aspect, the embodiments of this application further provide a seventh implementation of the first aspect, when the first terminal is an accessed terminal,that the base station determines the target carrier set of the first terminal based on the transmission rate set includes:when at least one transmission rate in the transmission rate set is greater than a current transmission rate of the first terminal, the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal; andwhen no transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, the base station determines a carrier set corresponding to the current transmission rate as the target carrier set of the first terminal. The base station compares a transmission rate in the transmission rate set with the current transmission rate; when a transmission rate in the carrier set is greater than the current transmission rate, schedules the first terminal to a carrier set corresponding to the larger transmission rate; and when no transmission rate in the carrier set is greater than the current transmission rate, maintains the first terminal on a carrier set corresponding to the current transmission rate, helping ensure the transmission rate of the first terminal. Based on the seventh implementation of the first aspect, the embodiments of this application further provide an eighth implementation of the first aspect, when the first terminal is a to-be-accessed terminal,that the base station determines the target carrier set of the first terminal based on the transmission rate set includes:the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal, to ensure that a transmission rate can reach a largest value after the first terminal is accessed. Based on the second implementation of the first aspect, the third implementation of the first aspect, the fourth implementation of the first aspect, the fifth implementation of the first aspect, the sixth implementation of the first aspect, the seventh implementation of the first aspect, or an eighth implementation of the first aspect, the embodiments of this application further provides a ninth implementation of the first aspect, when there are at least two first terminals, that the base station schedules the first terminal to the target carrier set includes:the base station schedules one of the at least two first terminals to the target carrier set, where a ratio of a transmission rate of the scheduled first terminal to the current transmission rate is the largest among all of the at least two first terminals, to obtain a maximum gain of one-time scheduling. Based on the second implementation of the first aspect, the third implementation of the first aspect, the fourth implementation of the first aspect, the fifth implementation of the first aspect, the sixth implementation of the first aspect, the seventh implementation of the first aspect, or an eighth implementation of the first aspect, the embodiments of this application further provides a tenth implementation of the first aspect, when there are at least two first terminals, that the base station schedules the first terminal to the target carrier set includes:the base station preferentially schedules a first terminal with a largest transmission rate on the target carrier set, to ensure that more first terminals have relatively large transmission rates. A second aspect of the embodiments of this application provides a coordinated scheduling apparatus, including:a determining unit, configured to determine one or more frequencies corresponding to cells at a capacity layer and one or more frequencies corresponding to cells at a coverage layer;an obtaining unit, configured to obtain network information of a first terminal on at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to one cell; anda processing unit, configured to optimize a current network based on the network information, wherethe coverage layer includes a cell obtained by combining at least two cells having co-channel interference, and all the cells at the capacity layer are cells that are not combined. Based on the second aspect, the embodiments of this application further provide a first implementation of the second aspect, the processing unit is configured to:determine a target carrier set of the first terminal based on the network information; andschedule the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, where the target cell is a cell at the capacity layer or a cell at the coverage layer. Based on the first implementation of the second aspect, the embodiments of this application further provide a second implementation of the second aspect, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the coverage layer, the processing unit is configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the overlapping area having co-channel interference at the capacity layer to the target cell corresponding to the target carrier set at the coverage layer. Based on the first implementation of the second aspect, the embodiments of this application further provide a third implementation of the second aspect, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the capacity layer, the processing unit is configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the capacity layer. Based on the first implementation of the second aspect, the embodiments of this application further provide a fourth implementation of the second aspect, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the capacity layer, the processing unit is configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the capacity layer to the target cell corresponding to the target carrier set at the capacity layer, so that the first terminal is handed over between different cells at the capacity layer. Based on the first implementation of the second aspect, the embodiments of this application further provide a fifth implementation of the second aspect, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the coverage layer, the processing unit is configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the coverage layer, so that the first terminal is handed over between different cells at the coverage layer. Based on the second implementation of the second aspect, the third implementation of the second aspect, the fourth implementation of the second aspect, or the fifth implementation of the second aspect, the embodiments of this application further provide a sixth implementation of the second aspect, the processing unit is configured to:determine a transmission rate set of the first terminal based on the network information, where the transmission rate set includes a transmission rate of the first terminal on each carrier set; anddetermine the target carrier set of the first terminal based on the transmission rate set. Based on the sixth implementation of the second aspect, the embodiments of this application further provide a seventh implementation of the second aspect, when the first terminal is an accessed terminal,that the base station determines the target carrier set of the first terminal based on the transmission rate set includes:when at least one transmission rate in the transmission rate set is greater than a current transmission rate of the first terminal, the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal; andwhen no transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, the base station determines a carrier set corresponding to the current transmission rate as the target carrier set of the first terminal. Based on the sixth implementation of the second aspect, the embodiments of this application further provide an eighth implementation of the second aspect, when the first terminal is a to-be-accessed terminal,that the base station determines the target carrier set of the first terminal based on the transmission rate set includes:the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal. Based on the second implementation of the second aspect, the third implementation of the second aspect, the fourth implementation of the second aspect, the fifth implementation of the second aspect, the sixth implementation of the second aspect, the seventh implementation of the second aspect, or an eighth implementation of the second aspect, the embodiments of this application further provides a ninth implementation of the second aspect, when there are at least two first terminals, that the base station schedules the first terminal to the target carrier set includes:the base station schedules one of the at least two first terminals to the target carrier set, where a ratio of a transmission rate of the scheduled first terminal to the current transmission rate is the largest among all of the at least two first terminals. Based on the second implementation of the second aspect, the third implementation of the second aspect, the fourth implementation of the second aspect, the fifth implementation of the second aspect, the sixth implementation of the second aspect, the seventh implementation of the second aspect, or an eighth implementation of the second aspect, the embodiments of this application further provides a tenth implementation of the second aspect, when there are at least two first terminals, that the base station schedules the first terminal to the target carrier set includes:the base station preferentially schedules a first terminal with a largest transmission rate on the target carrier set. A third aspect of the embodiments of this application provides a communication apparatus, including at least one processor and a power supply circuit. The power supply circuit is configured to supply power to the processor, and related program instructions are executed by the at least one processor, to enable the communication apparatus to implement the method according to any one of the implementations of the first aspect of this application. A fourth aspect of the embodiments of this application provides a computer-readable storage medium, including instructions. When the instructions are run on a computer, the computer is enabled to perform the method according to any one of the implementations of the first aspect of this application. A fifth aspect of the embodiments of this application provides a computer program product. The computer program product includes computer software instructions. The computer software instructions may be loaded by using a processor to implement a procedure of the coordinated scheduling method according to any one of the implementations of the first aspect. It can be learned from the foregoing technical solutions that the embodiments of this application have the following advantages:The one or more frequencies corresponding to the cells at the capacity layer and the one or more frequencies corresponding to the cells at the coverage layer are determined. Then, the network information of the first terminal on the at least one carrier set is obtained. Finally, the current network is optimized based on the network information. At the coverage layer, the two cells having co-channel interference are combined, so that co-channel interference of the first terminal at the coverage layer is weak, signal quality is high, and a transmission rate is not excessively low due to the co-channel interference. At the capacity layer, there is no cell obtained through cell combination. Therefore, when the first terminal is located in a cell at the capacity layer, the transmission rate is not reduced due to limited frequency resources. Therefore, cooperation of the coverage layer and the capacity layer can reduce co-channel interference of the current network and ensure an overall capacity of the current network, to ensure the average transmission rate of the terminal in the current network. In addition, optimizing the current network based on the network information may further increase the average transmission rate of the terminal in the current network. DESCRIPTION OF EMBODIMENTS Embodiments of this application provide a coordinated scheduling method, to reduce co-channel interference and ensure an average transmission rate of a terminal in multi-frequency ultra-dense networking. The embodiments of this application may be applied to various communication systems, including but not limited to, a global system for mobile communications (GSM), a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, a general packet radio service (GPRS) system, a long term evolution (LTE) system, a frequency division duplex long term evolution (LTE-FDD) system, a time division duplex long term evolution (LTE-TDD) system, a universal mobile telecommunications system (UMTS), another wireless communication system using an orthogonal frequency division multiplexing (OFDM) technology, a developing 5th generation (5G) new radio (NR) communication system, and any usable communication system in the future. In the specification, claims, and the accompanying drawings of this application, the terms “first”, “second”, and the like are intended to distinguish between similar objects but do not necessarily indicate a specific order or sequence. It should be understood that data termed in such a way is interchangeable in proper circumstances, so that the embodiments described herein can be implemented in other orders than the order illustrated or described herein. In addition, the terms “include”, “have” and any other variants mean to cover the non-exclusive inclusion. For example, a process, method, system, product, or device that includes a list of steps or units is not necessarily limited to those units, but may include other units not expressly listed or inherent to such a process, method, product, or device. The embodiments of this application may be applied to an example network architecture of multi-frequency ultra-dense networking shown inFIG.1. The network architecture includes a plurality of frequencies. A frequency is a serial number of a center frequency of a used frequency band. To implement frequency resource reuse, there are a plurality of cells on each frequency. That is, the plurality of cells use the same frequency at the same time. FIG.1shows five cells in the multi-frequency ultra-dense networking. The five cells may share one frequency, may use two frequencies, or may use three frequencies. Herein, two frequencies are used as an example. It is assumed that the five cells share the two frequencies, three of the five cells may use one frequency, and the other two cells may use the other frequency. In the network architecture of the multi-frequency ultra-dense networking shown inFIG.1, one base station corresponds to one cell. It should be understood that, in the multi-frequency ultra-dense networking, one base station may have a plurality of cells, and one or more frequencies of all the cells of the base station may be the same or different. In the embodiments of this application, the base station may be a macro base station, a micro base station, a pico base station, a small cell, a relay station, or the like. A plurality of base stations may support a network of one or more of the foregoing technologies, or a future evolved network. The base station may include one or more co-site or non-co-site transmission reception points (TRPs). It can be learned fromFIG.1that, in the network architecture, cells are densely distributed, and a distance between base stations is small. Therefore, for each frequency in the multi-frequency ultra-dense networking, there are usually two cells having co-channel interference. Co-channel interference occurs in an overlapping area of two neighboring cells. A terminal in the overlapping area receives an unwanted signal and a wanted signal that have a same carrier. The unwanted signal causes interference to a receiver receiving the wanted signal of the same frequency. The terminal in the embodiments of this application may include various handheld devices, vehicle-mounted devices, wearable devices, or computing devices that have a wireless communication function, or other processing devices connected to a wireless modem. The terminal may be a mobile station (MS), a subscriber unit, a cellular phone, a smartphone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, or the like. It should be understood that the cells having co-channel interference are combined to resolve the co-channel interference. For better understanding of the cell combination,FIG.2is a schematic diagram of an example of the cell combination. It can be learned fromFIG.2that three original independent cells become one cell after the cell combination. However, if two cells having co-channel interference on each frequency are combined, frequency resource reuse in the multi-frequency ultra-dense networking is greatly reduced, and frequency resource usage is limited. Consequently, an average transmission rate of a terminal in the multi-frequency ultra-dense networking is reduced. To resolve this problem, the multi-frequency ultra-dense networking is layered in the embodiments of this application. Specifically, the multi-frequency ultra-dense networking is divided into a coverage layer and a capacity layer. A specific method for layering the multi-frequency ultra-dense networking is to select one or more frequencies from all frequencies of the multi-frequency ultra-dense networking as the coverage layer, and remaining frequencies are used as the capacity layer. At the coverage layer, two cells whose co-channel interference reaches a specified degree are combined. At the capacity layer, cells having co-channel interference are not combined. To better understand layered multi-frequency ultra-dense networking, a specific example is used below for description.FIG.3is a schematic diagram of another network architecture of multi-frequency ultra-dense networking according to an embodiment of this application. The network architecture includes three frequencies F1, F2, and F3, and further includes two base stations. Each base station includes three cells, and frequencies of the three cells of each base station are respectively F1, F2, and F3. In this embodiment, the frequency F1is selected as the coverage layer, and the frequency F2and F3are selected as the capacity layer. At the coverage layer, co-channel interference exists between cells of the two base stations. Therefore, the cells of the two base stations are combined to obtain a cell shown inFIG.3. At the capacity layer, there are four cells in total. It can be learned fromFIG.3that cells of the two base stations on the frequency F2overlap. That is, co-channel interference exists between the two cells, but the two cells are not combined. In the foregoing network structure, the coverage layer can meet a requirement of reducing co-channel interference in the multi-frequency ultra-dense networking, and the capacity layer ensures a capacity of the multi-frequency ultra-dense networking, to avoid a reduction of a transmission rate of a terminal due to a resource limitation, so that an average transmission rate of a terminal in the multi-frequency ultra-dense networking can be increased. Based on the multi-frequency ultra-dense networking shown inFIG.3, an embodiment of this application provides a coordinated scheduling method, which is described in detail below. FIG.4shows an embodiment of a coordinated scheduling method according to an embodiment of this application. The method includes the following operations.Operation101: Determine one or more frequencies corresponding to cells at a capacity layer and one or more frequencies corresponding to cells at a coverage layer. It should be noted that, in a process of layering multi-frequency ultra-dense networking, a base station in the multi-frequency ultra-dense networking is configured. The base station may determine, by using a configuration file, the one or more frequencies corresponding to the cells at the capacity layer and the one or more frequencies corresponding to the cells at the coverage layer. Operation101may be performed by one base station or two or more base stations in the multi-frequency ultra-dense networking. The coverage layer includes a cell obtained by combining at least two cells having co-channel interference, and all the cells at the capacity layer are cells that are not combined. The coverage layer may be one frequency or a plurality of frequencies. To maximize a coverage area of a cell, a smallest frequency in the multi-frequency ultra-dense networking may be selected as the coverage layer. The cells at the coverage layer are all cells corresponding to the frequency selected as the coverage layer. At the coverage layer, if co-channel interference between two cells reaches a specified strength, the two cells are combined. A strength of the co-channel interference can be determined in a plurality of manners, for example, may be determined based on cell overlapping. Specifically, if a difference between downlink levels that are of the two cells and received by the first terminal is less than a threshold, it is considered that the first terminal is located in an overlapping area of the two cells. Then, a quantity of first terminals located in the overlapping area may be counted, and an overlapping degree of the two cells is further determined based on the quantity of first terminals. If the overlapping degree reaches a preset overlapping degree, the two cells are combined. The capacity layer may be one frequency or a plurality of frequencies. To ensure an overall capacity of the multi-frequency ultra-dense networking, as many frequencies as possible are selected as the capacity layer. For example, if the smallest frequency in the multi-frequency ultra-dense networking is selected as the coverage layer, all other frequencies are used as the capacity layer. The cells at the capacity layer are all cells corresponding to the frequency selected as the capacity layer.Operation102: Obtain network information of the first terminal on at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to one cell. There may be one first terminal, or two or more first terminals. The first terminal may be a to-be-accessed terminal. For example, when the first terminal moves to a current network, the base station needs to connect the first terminal to a specific carrier set. Therefore, the base station needs to obtain the network information of the first terminal on the at least one carrier set, to determine the specific carrier set. The first terminal may alternatively be an accessed terminal. When the first terminal is the accessed terminal, if signal quality of the first terminal is lower than preset signal quality or a transmission rate of the first terminal is smaller than a preset transmission rate, the operation of obtaining network information may be performed. The operation of obtaining network information may be periodic. Duration of the periodicity is not limited in embodiments of this application, for example, may be 10 minutes or one hour. In this embodiment, each carrier set is related to a type of the first terminal. When the first terminal is a non-carrier aggregation user, the first terminal communicates with the base station by using a single carrier. Therefore, the carrier set includes one carrier. When the first terminal is a carrier aggregation user, the first terminal communicates with the base station by using a carrier group. Therefore, the carrier set includes two or more carriers. For a specific first terminal and configured multi-frequency ultra-dense networking, a total quantity of carrier sets and all types of carrier sets are determined. One carrier usually corresponds to one cell. Although the carrier group includes two or more carriers, only one carrier in the carrier group is a primary carrier, other carriers are all secondary carriers, and a cell corresponding to the primary carrier is a cell corresponding to the carrier group. Therefore, regardless of a quantity of carriers included in the carrier set, each carrier set corresponds to one cell. In this embodiment, network information of the first terminal on each carrier set may be obtained in a direct measurement manner. For example, the base station may send instructions to the first terminal, to indicate the first terminal to measure the network information and feed back the measured network information to the base station. Alternatively, the network information of the first terminal on each carrier set may be obtained in a non-measurement manner. For example, the base station obtains the network information by querying historical data, or the base station may obtain related network information from another base station. The network information may include one type, or may include two or more types. For example, the network information may include reference signal received power, a load of a cell corresponding to a carrier set, bandwidth information corresponding to the carrier set, and the like. A quantity of pieces and a type of network information are not specifically limited in embodiments of this application. To better reflect a status of the first terminal on each carrier set, types of network information may be obtained as many as possible. It may be understood that a manner of obtaining the network information also depends on the type of network information. For example, when the network information is the reference signal received power, the base station may measure the reference signal received power by using the first terminal. When the network information is the load of the cell corresponding to the carrier set, the base station cannot obtain the load of the cell corresponding to the carrier set through measurement by the first terminal, but can only interact with a base station of the cell corresponding to the carrier set, and obtain the load of the cell corresponding to the carrier set from X2 interface signaling in an interaction process.Operation103: Optimize the current network based on the network information. It should be noted that there are a plurality manners of optimizing the current network based on the network information. For example, when the network information is the load of the cell corresponding to the carrier set, the first terminal may be scheduled to a carrier set corresponding to a cell with smaller load, to optimize the current network. When the network information is the reference signal received power, the first terminal may be scheduled to a carrier set with larger reference signal received power, to optimize the current network. When the network information includes a plurality of parameters, the current network may be optimized based on the plurality of parameters, to increase an average transmission rate of a terminal in the current network. In conclusion, there are a plurality of methods for optimizing the current network. This is not limited in embodiments of this application. An example is used below to specifically describe a method for optimizing the current network. In another embodiment of the coordinated scheduling method provided in the present disclosure, the optimizing of the current network based on the network information includes the following steps. First, a target carrier set of the first terminal is determined based on the network information. It should be noted that a method for determining the target carrier set varies with the network information. For example, when the network information is the load of the cell corresponding to the carrier set, the target carrier set is determined based on the load, and the target carrier set may be a carrier set corresponding to the smallest load. When the network information is the reference signal received power, the target carrier set is determined based on the reference signal received power, and the target carrier set may be a carrier set corresponding to the largest reference signal received power. When the network information includes a plurality of types of information, a manner of determining the target carrier set is necessarily different from a manner of determining the target carrier set when the network information is one type of information. Based on the foregoing descriptions, a specific manner of determining the target carrier set is not limited in embodiments of this application. Then, the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, where the target cell is a cell at the capacity layer or a cell at the coverage layer. In this embodiment, because the target carrier set corresponds to the target cell, when the first terminal is scheduled to the target carrier set, the first terminal is located in the target cell corresponding to the target carrier set. A specific process is related to both a type of the first terminal and the target carrier set. Details are described below. When the first terminal is a to-be-accessed user, the first terminal is scheduled to the target carrier set. Regardless of a quantity of carriers included in the target carrier set, the first terminal is connected to the target cell corresponding to the target carrier set. When the first terminal is an accessed user, in a process of scheduling the first terminal to the target carrier set, cell handover may need to be performed, or the cell handover may not be performed first. In an embodiment, when the first terminal communicates with the base station by using a single carrier, if the target carrier set is not a current carrier set of the first terminal, in the process of scheduling the first terminal to the target carrier set, the first terminal needs to be handed over from a current cell to the target cell. When the first terminal communicates with the base station by using a carrier group, there are three cases. Case 1: The target carrier set remains unchanged, and is still the current carrier set of the first terminal. In this case, no scheduling operation needs to be performed, and the first terminal only needs to be maintained in the current cell. Case 2: The target carrier set is different from the current carrier set, but a primary carrier in the target carrier set is the same as a primary carrier in the current carrier set. This means that the target cell is still the current cell. Therefore, only a secondary carrier in the target carrier set needs to be changed, and no cell handover is required. Case 3: The target carrier set is different from the current carrier set, and the primary carrier in the target carrier set is also the same as the primary carrier in the current carrier set. This means that the target cell is not the current cell. Therefore, in the process of scheduling the first terminal to the target carrier set, the first terminal needs to be handed over from the current cell to the target cell. It should be noted that both carrier scheduling and cell handover are mature technologies, and certain specific processes of the carrier scheduling and cell handover are not described in detail in the present disclosure. It may be understood that, regardless of whether the first terminal is the to-be-accessed terminal or the accessed terminal, the target cell may be a cell at the coverage layer or a cell at the capacity layer. In this embodiment, cooperation of the coverage layer and the capacity layer can reduce co-channel interference of the current network and ensure an overall capacity of the current network, so that the average transmission rate of the terminal in the current network can be ensured. In addition, the current network is optimized based on the network information, to further increase the average transmission rate of the terminal in the current network. It should be noted that when the first terminal is a terminal that has accessed the current network, the current cell of the first terminal may be located at the coverage layer, or may be located at the capacity layer. Similarly, the target cell may be located at the coverage layer, or may be located at the capacity layer. Therefore, there are a plurality of cases in which the first terminal is scheduled to the target carrier set, so that the first terminal is located in the target cell corresponding to the target carrier set. A scheduling process is specifically described below based on a difference between the current cell and the target cell of the first terminal. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the coverage layer, that the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the first terminal is scheduled from the overlapping area having co-channel interference at the capacity layer to the target cell corresponding to the target carrier set at the coverage layer. In this embodiment, the current cell of the first terminal is located at the capacity layer, and the first terminal is located in the overlapping area having co-channel interference. If the capacity layer is overloaded or the co-channel interference is severe, the transmission rate and signal quality of the first terminal are reduced. In this case, it is assumed that the load of the coverage layer is small and frequency resources are relatively abundant, and the target cell corresponding to the target carrier set may be located at the coverage layer. If the target cell is a cell at the coverage layer, the base station finally hands over the first terminal from the capacity layer to the target cell at the coverage layer. FIG.5is a schematic diagram of an embodiment of scheduling on the target carrier set according to an embodiment of this application. It can be learned fromFIG.5that the current cell of the first terminal is a cell on a frequency F2, and the cell corresponding to the target carrier set is located on a frequency F1. According to the coordinated scheduling method provided in this embodiment, the first terminal is scheduled to the target carrier set, and the first terminal is handed over to the cell on the frequency F1. In this embodiment, handover of the first terminal from the capacity layer to the coverage layer not only resolves a co-channel interference problem of the first terminal and improves the transmission rate and signal quality of the first terminal, but also balances load of the capacity layer and coverage layer. In this way, the load of the capacity layer and the load of the coverage layer are relatively balanced, and frequency resources of the coverage layer and capacity layer are fully utilized, thereby increasing the average transmission rate of the terminal in the current network. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the capacity layer, that the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the first terminal is scheduled from the capacity layer to the target cell corresponding to the target carrier set at the capacity layer. Accordingly, in this embodiment, both the current cell of the first terminal and the target cell are located at the capacity layer, and the first terminal is handed over between different cells at the capacity layer. In the foregoing embodiment, in a process of scheduling the first terminal to the target carrier set, the first terminal is handed over from the capacity layer to the coverage layer. A specific scenario is used below for description. The first terminal is located in the overlapping area having co-channel interference. Both the signal quality and transmission rate of the first terminal are reduced due to the co-channel interference. In this case, assuming that the load of the capacity layer is not large, the target cell corresponding to the target carrier set may be another cell that does not have co-channel interference at the capacity layer. If the target cell is another cell at the capacity layer, the base station hands over the first terminal from the current cell at the capacity layer to the target cell at the capacity layer, so that the co-channel interference of the first terminal can be reduced, the transmission rate of the first terminal can be increased, and frequency resources of the coverage layer are not occupied, to ensure the transmission rate of the terminal at the coverage layer. In the foregoing two embodiments, the current cell of the first terminal is located at the capacity layer, and the first terminal is located in the overlapping area having co-channel interference. It may be understood that the current cell of the first terminal may alternatively be a cell that does not have co-channel interference at the capacity layer. In this case, a process of scheduling the first terminal to the target carrier set is similar to the scheduling process in the foregoing embodiments. The foregoing describes scheduling processes of the first terminal when the current cell of the first terminal is located at the capacity layer. The following describes the scheduling process when the current cell of the first terminal is located at the coverage layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the capacity layer, that the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the first terminal is scheduled from the cell at the coverage layer to the target cell corresponding to the target carrier set at the capacity layer. It may be understood that although co-channel interference of cells at the coverage layer is small, due to limited frequency resource usage, especially when the coverage layer is heavily loaded, the transmission rate of the first terminal is affected. Therefore, when the target cell is located at the capacity layer, the base station hands over the first terminal from the coverage layer to the capacity layer, to increase the transmission rate of the first terminal by using abundant frequency resources of the capacity layer, and reduce a limitation degree of usage of frequency resources of the coverage layer. Therefore, the average transmission rate of the terminal in the current network can be increased. FIG.6is a schematic diagram of another embodiment of scheduling on the target carrier set according to an embodiment of this application. It can be learned fromFIG.6that the current cell of the first terminal is located on a frequency F1, and the target carrier set is located in a set on a frequency F2. In the process of scheduling the first terminal to the target carrier set, the first terminal needs to be handed over from the current cell on the frequency F1to the target cell on the frequency F2, and the first terminal is handed over from the coverage layer to the capacity layer. It should be noted that the target cell corresponding to the target carrier set shown inFIG.6is a cell of a left base station on the frequency F2. Actually, the target cell may alternatively be a cell of a right base station on the frequency F2, or may be two cells on a frequency F3. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the coverage layer, that the first terminal is scheduled to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set includes:the first terminal is scheduled from the cell at the coverage layer to the target cell corresponding to the target carrier set at the coverage layer. In this embodiment, the current cell of the first terminal is located at the coverage layer. However, the load of the current cell may be very large, affecting the signal quality and transmission rate of the first terminal. In this case, when the load of the coverage layer is relatively small, its frequency resources are relatively abundant, and the load of the capacity layer is relatively large, and its frequency resources are insufficient, a target cell that is finally determined may be another cell at the coverage layer. When the target cell is another cell at the coverage layer, the base station hands over the first terminal from the current cell at the coverage layer to the target cell at the coverage layer. Through the handover of the first terminal inside the coverage layer, the transmission rate of the first terminal is increased, the load of the coverage layer and capacity layer is balanced, and the frequency resources of the coverage layer are fully utilized. The foregoing four embodiments specifically describe the processes of scheduling the first terminal to the target carrier set when the first terminal is the accessed terminal. The following specifically describes a process of scheduling the first terminal to the target carrier set when the first terminal is the to-be-accessed terminal.FIG.7is a schematic diagram of still another embodiment of scheduling on the target carrier set according to an embodiment of this application. It can be learned fromFIG.7that the target cell corresponding to the target carrier set is a cell on a frequency F1at the coverage layer. Therefore, a first mobile terminal is directly connected to the cell on the frequency F1at the coverage layer. It may be understood that when the target cell corresponding to the target carrier set is a cell at the capacity layer, the first terminal is directly connected to the cell at the capacity layer. It can be learned from the foregoing analysis that there are a plurality of manners of determining the target carrier set based on the network information, and one of the manners is specifically described below. In another embodiment of the coordinated scheduling method provided in the present disclosure, the determining of the target carrier set of the first terminal based on the network information includes:determining a transmission rate set of the first terminal based on the network information, where the transmission rate set includes a transmission rate of the first terminal on each carrier set; anddetermining the target carrier set of the first terminal based on the transmission rate set. It may be understood that in this embodiment, the transmission rate of the first terminal on each target carrier set is estimated based on the network information, and the target carrier set of the first terminal is then determined based on an estimation result. There are a plurality of methods for determining the transmission rate based on the network information, and the methods are related to a type and a quantity of pieces of network information. Therefore, this is not limited in embodiments of this application. The first terminal may be the accessed terminal, or may be the to-be-accessed terminal. Therefore, a process of determining the target carrier set in the two cases is separately described in detail in this embodiment. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is the accessed terminal,the determining of the target carrier set of the first terminal based on the transmission rate set includes:when at least one transmission rate in the transmission rate set is greater than a current transmission rate of the first terminal, determining a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal; andwhen no transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, determining a carrier set corresponding to the current transmission rate as the target carrier set of the first terminal. It may be understood that when the at least one transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, it indicates that the current transmission rate of the first terminal may further be increased. To increase the transmission rate of the first terminal to a largest value, in this embodiment, a carrier set corresponding to a largest transmission rate is used as the target carrier set. It should be noted that, in addition to the foregoing method for determining the target carrier set, a carrier set corresponding to any transmission rate larger than the current transmission rate in the carrier set may be further used as the target carrier set. When no transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, it indicates that the current transmission rate of the first terminal is the largest value. Therefore, the current carrier set of the first terminal is used as the target carrier set. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is a newly accessed terminal,the determining of the target carrier set of the first terminal based on the transmission rate set includes:determining a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal. It may be understood that when the first terminal is the newly accessed terminal, a current transmission rate is zero. Therefore, an estimated transmission rate does not need to be compared with the current transmission rate, and the carrier set corresponding to the largest transmission rate is the target carrier set. It should be noted that, in addition to the foregoing method for determining the target carrier set of the first terminal, the target carrier set of the first terminal may also be determined in another manner. For example, in the transmission rate set, any carrier set is selected from carrier sets corresponding to top three transmission rates as the target carrier set. In this embodiment, a process of obtaining the network information and determining the target carrier set based on the network information may be periodic. In one periodicity, there may be two or more first terminals that need to be scheduled. Therefore, all the first terminals need to be scheduled according to a specific priority. For example, the scheduling of the first terminal to the target carrier set may include:scheduling one of the two or more first terminals to the target carrier set, where a ratio of a transmission rate of the scheduled first terminal to the current transmission rate is the largest among all of the two or more first terminals. In this embodiment, a first terminal having a larger transmission rate gain ratio is preferentially scheduled. For example, it is assumed that there are two first terminals, and current transmission rates of the two first terminals are both 10 Kbps/s. The transmission rate of one first terminal is 1 Mbps/s on the target carrier set, and the transmission rate of the other first terminal is 500 Kbps/s on the target carrier set. According to the scheduling method in this embodiment, it is clear that a ratio of 1 Mbps/s to 10 Kbps/s is greater than a ratio of 500 Kbps/s to 10 Kbps/s. Therefore, in this embodiment, the first terminal whose transmission rate is 1 Mbps/s on the target carrier set is preferentially scheduled. In addition, all the first terminals may alternatively be scheduled according to another priority. For example, a first terminal with a largest transmission rate on the target carrier set may be preferentially scheduled. Specifically, it is still assumed that there are two first terminals, a current transmission rate of one first terminal is 100 Kbps/s and the transmission rate is 1 Mbps/s on the target carrier set, and a current transmission rate of the other first terminal is 10 Kbps/s and the transmission rate is 500 Kbps/s on the target carrier set. It is clear that a ratio of 1 Mbps/s to 100 Kbps/s is less than a ratio of 500 Kbps/s to 10 Kbps/s. However, according to the scheduling method in this embodiment, the first terminal whose transmission rate is 1 Mbit/s on the target carrier set is preferentially adjusted. FIG.8is a schematic diagram of an embodiment of a coordinated scheduling apparatus according to an embodiment of this application. An embodiment of this application provides a coordinated scheduling apparatus, including:a determining unit201, configured to determine one or more frequencies corresponding to cells at a capacity layer and one or more frequencies corresponding to cells at a coverage layer;an obtaining unit202, configured to obtain network information of a first terminal on at least one carrier set, where the carrier set includes at least one carrier, and each carrier set corresponds to one cell; anda processing unit203, configured to optimize a current network based on the network information, wherethe coverage layer includes a cell obtained by combining at least two cells having co-channel interference, and all the cells at the capacity layer are cells that are not combined. In another embodiment of the coordinated scheduling method provided in the present disclosure, the processing unit203is further configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal to the target carrier set, so that the first terminal is located in a target cell corresponding to the target carrier set, where the target cell is a cell at the capacity layer or a cell at the coverage layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the coverage layer, the processing unit203is further configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the overlapping area having co-channel interference at the capacity layer to the target cell corresponding to the target carrier set at the coverage layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the capacity layer, the processing unit203is further configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the capacity layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in an overlapping area having co-channel interference of two cells at the capacity layer, if the cell corresponding to the target carrier set is located at the capacity layer, the processing unit203is further configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the capacity layer to the target cell corresponding to the target carrier set at the capacity layer, so that the first terminal is handed over between different cells at the capacity layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first terminal is located in a cell at the coverage layer, if the cell corresponding to the target carrier set is located at the coverage layer, the processing unit203is configured to:determine the target carrier set of the first terminal based on the network information; andschedule the first terminal from the cell at the coverage layer to the target cell corresponding to the target carrier set at the coverage layer, so that the first terminal is handed over between different cells at the coverage layer. In another embodiment of the coordinated scheduling method provided in the present disclosure, the processing unit203is further configured to:determine a transmission rate set of the first terminal based on the network information, where the transmission rate set includes a transmission rate of the first terminal on each carrier set; anddetermine the target carrier set of the first terminal based on the transmission rate set. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first is an accessed terminal, the determining of the target carrier set of the first terminal based on the network information includes:when at least one transmission rate in the transmission rate set is greater than a current transmission rate of the first terminal, the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal; andwhen no transmission rate in the transmission rate set is greater than the current transmission rate of the first terminal, the base station determines a carrier set corresponding to the current transmission rate as the target carrier set of the first terminal. In another embodiment of the coordinated scheduling method provided in the present disclosure, when the first is a to-be-accessed terminal, the determining of the target carrier set of the first terminal based on the network information includes:the base station determines a carrier set corresponding to a largest transmission rate in the transmission rate set as the target carrier set of the first terminal. In another embodiment of the coordinated scheduling method provided in the present disclosure, when there are at least two first terminals, the scheduling of the first terminal to the target carrier set includes:the base station schedules one of the at least two first terminals to the target carrier set, where a ratio of a transmission rate of the scheduled first terminal to the current transmission rate is the largest among all of the at least two first terminals. In another embodiment of the coordinated scheduling method provided in the present disclosure, when there are at least two first terminals, the scheduling of the first terminal to the target carrier set includes:the base station preferentially schedules a first terminal with a largest transmission rate on the target carrier set. FIG.9is a schematic diagram of an embodiment of a communication apparatus according to an embodiment of this application. An embodiment of this application further provides an embodiment of a communication apparatus, including at least one processor301and a power supply circuit302. The power supply circuit302is configured to supply power to the processor301, and related program instructions are executed by the at least one processor301, to enable the communication apparatus to implement the method according to any one of the embodiments of this application. In this embodiment, the processor301may perform an operation performed by the coordinated scheduling apparatus in the embodiment shown inFIG.8. In this embodiment, specific function module division in the processor301may be similar to function module division in the units such as the determining unit, the obtaining unit, and the processing unit described inFIG.8. The power supply circuit302in this embodiment includes but is not limited to at least one of the following: a power supply subsystem, an electrical tube management chip, a power consumption management processor, or a power consumption management control circuit. An embodiment of this application provides a computer-readable storage medium, including instructions. When the instructions are run on a computer, the computer is enabled to perform the method according to any one of the embodiments of this application. An embodiment of this application further provides a computer program product. The computer program product includes computer software instructions. The computer software instructions may be loaded by using a processor to implement a procedure of the coordinated scheduling method inFIG.4. A person skilled in the art may clearly understand that, for the purpose of convenient and brief description, for detailed working processes of the foregoing systems, apparatuses, and units, refer to corresponding processes in the foregoing method embodiments.
i 2000035 69 00017 La p.rêseate in'r$ntion e.3t relative à un procédé d'hy-drodimérisation électrochinique de 1'acrylonitrile en adipoaiiri-trile. L'hydrodiaérisation de 1'acrylonitrile en adipodinitri-5 le est connue d'après une série de brevets. D'après le procéd'- des brevets américains- 3• 193 =480 et 3«193°4S1 et des brevets belces 679»514 et 59C06G7, l'élec-trolyse se fait dans des cellules divisées par des diaphragmes; d'après le procédé des brevets belges 683.934 et 684„436, elle se fait dans des cellules non divisées» 10 Bien que le brevet bel^je 679 «514 indique que le procédé peut être mis en oeuvre sans sel conducteur, seuls les procédas où l'on opère en présence de sels conducteurs ont été mis en oeuvre jusqu'ici, Cn sr.ploie généralement corne sels conducteurs des sels d' aisnonium quaternaires de certains acides„ On emploie eur-15 tcnt les sel£? de tétraét.-ylaxmoniun, nais on a également décrit 1 ' eiaplci de sels de tétrasethylarsionlum. * On a découvert qu'on pouvait améliorer le rendement de la préparation de 1'adipodinitrile par hydrodimérisation électrochimique directe de l'acrylonitrile en présence d'eau et d'un 20 sel d1 amm.oniun quaternaire dans une cellule d'électrolyse en employant corme sel d'ammonium quaternaire un mélange de sels 'de tétraméthylammonium et de tétraéthylammoniun, avec un rapport pondéral compris entre 1/4 et 4/l„ Les conditions de l'hydrodimérisation électrochimique 25 directe dans une cellule sans diaphragme sont dsgà connues. On fait passer un courant électrique à travers un électrolyte constitué principalement par de 1'acrylonitrile, de l'eau et un sel d'ammonium quaternaire, ici un mélange de sels de tétraméthylam-monium et de tétraéthylammonium. Dans 11électro-hydrodimérisation 30 sans disphragme, 1'électrolyte traverse les électrodes: on agite le liquide si les électrodes sont fixes, ou les électrodes si le liquide est quasi-stationnaire, ou les deuzr à la fois, de préférence par vibration. Dans tous les cas, on maintient le pH de 1'électrolyte entre 7>0 et 9j5 par addition continue d'une 35 base. On peut introduire d'abord le sel de tétraéthylanmonium et régler le pH au moyen de 1'hydroxyde de tétrométhylammonium, ou introduire d'abord le sel de tétraméthylammoïiium. et régler le pH au moyen de l'hydroxyde de tétraéthylammoniuiru On peut naturellement utiliser toutes les possibilités intermédiaires. 40 Le rapport acrylonitrile/eau est généralement compris bad original t 5 10 15 20 25 30 35 40 2 69 00017 2000035 entre 8/1 et 1/1, do préférence entre 6/1 yfc 2,;5/l» La 'quantité de sels conducteurs introduite est variable; avec des électrodes vibrantes2 comme par erenple dans le brevet belge 583o934, elle peut être très faible, par exemple 0}p ^ à 2 fa en poids seulement; nais on peut employer aussi une plus grande quantité de sel conducteur, par exemple jusqu'à 5 L'addition continue de base élève la concentration de sel conducteur» Si le procédé-est rais en oeuvre en discontinu, on ne laisse généralement pas la concentration de sel conducteur dépasser 10 JS. Liais il est plus avamtaseu:: :-e mettre le procédé en oeuvre en continu et de soutirer de la cellule d'électrolyse des quantités correspondantes de nélanie réactiomel, de nanière à obtenir une concentration c: netente de sel conducteur. D'après la présente invention, on maintient le rapport pondéral entre le sel de tétranethylam-nonium et le sel de tétraétfcylamoni"3 «nrcre 1/4 et 4/1, en particulier entre 1/2,5 et 2,5/l« On pr 'fèr-s la mise en oeuvre dans laquelle en introduit dans la cellule d®électrolyse un sel de tétraéthylarr.oniuri et on rè^le le pH par- addition d'iiydroxyde de t é t r an é t hyl aam oniun0 On utilise les densités de ooixrant et tensions usuelles, par exemple des densités de courant comprises entre 10 et 80 À/dn.2 et des tensions de 5 à .12 Ya Les sels de tétraéthylammonium et de tétraméthylaa-moniura dérivent de préférence d'acides arènesuifoniques ou al-kylarènesulfoniques? contenant par exemple 6 à 12 atones de carbone, ou d8 acides alliylsulfuriques, contenant par exemple 1 à 4 atones de carbone. Pami les sels utilisables figurent ceux de l'acide benzènesulfonique, des acides toluènesulfoniques, des acides cuxaènesulfoniques, des acides éthylbenzènesulf oniques, des acides naphtalênesuifoniques, de l'acide néthylsulfu-rique et de l'acide éthylsulfurique, ainsi que l'acide néthane-sulfonique et de l'acide éthanesuifonique. On peut aussi employer les sulfates, phosphates, perchlorates, fluorures, fluoborates et fluosulfonates de tétraéthylamiaonium et de- té-traméthylamnonium. On peut effectuer la réaction sans addition de solvants ou diluants organiques, nais il est avantageux d'ajouter des solvants polaires, de manière à obtenir une solution ou. suspension homogène ou presque homogène * Parmi les solvants utilisables figurent 1s acétonitrile, les éthers miscibles à bad original m 00017 2000035 l'eau tels que le dioxarme, le tétrahydrofuranne, l'éther nononé-thylique du glycol, l'oxyde d1isopropyle, ainsi que le diméthyl-formamide, le dinéthylsulfoxyde et. la dinéthylsulfone. Cn peut aussi employer des alcools inférieurs, par exemple contenant 1 à 5 3 atomes de carbone, tels que le zaéthanol, l'étliaaol, le propa-nol et l'alcool isopropyliaue. la teneur en solvant de 1'électrolyte est généralement comprise entre 2 fi et 30 % en poids (d'ans le cas où l'on emploie un solvant). Le procédé de l'invention peut être mis en oeuvre 10 dans toutes les cellules d'électrolyse usuelles pour l'électro-hydrodimérisation sans diaphragme. On peut employer pour l'anode et la catliode les matériaux d'usage courant dans l'électro-hydro-diinérisation de l1 acrylonitrile. La température et la pression d'électrolyse sont les mêmes que dans les autres procédés d'élec-15 tro-hydrodinérisation; on opère de préférence entre 20°C et 40°G et sous la pression atmosphérique» • On traite le mélange réactionnel comme dans les pro cédés connus. Avec une teneur en sels conducteurs inférieure à 2 fi, on peut par exemple séparer directement les fractions à bas 20 point d'ébullition dans un évaporateur à couciie mince, et isoler 11adipodinitrile par distillation sous pression réduite. Aux teneurs plus élevées en sels conducteurs, il est préférable de faire d'abord une extraction, avec un solvant organique, par exemple un hydrocarbure tel que le toluène ou un dérivé halogène 25 tel que le chlorure de méthylène, et de traiter ensuite l'extrait ainsi obtenu. Exemple On effectue 1'électrolyse dans une cellule sans diaphragme, comme celle qui est décrite dans l'exemple 1 et la fi-30 gure 3 du brevet belge 683«934, avec des électrodes vibrantes» Le mélange réactionnel se compose de 57 % d1 acrylonitrile,* 14 % d'eau, 0,5 ou 1,5 de sel conducteur et 28,5 % ou 27,5 % d'alcool isopropylique. On effectue 11électrolyse à 35°C avec une densité de cousant de 25 A/dni2, jusqu'à un rendement élec-35 trique théorique de 26,4 %. Sur le tableau, la colonne 1 indique le sel conducteur, la colonne 2 l'hydroxyde d'ammonium quaternaire employé pour régler le pH à 8, la colonne 3 la consommation spécifique de ces composés. Les anions des sels conducteurs sont abrégés comme suit î 40 NMe^ = tétraméthylammonium 69 2000035 KET^ = tétraétfrylamnonium MeSO^ = méthylsulfate EtSO^ = éthylsulfate Dans les colonnes indiquant les rendements, ADIT = adipodinitrile, PN = propionitrile, R = polyacrylonitrile oligomère. Les rendenents électriques sont arrondis à l'entier le plus voisine T À B L EAU Sel conducteur. / Base m mole de base par Ah Rendement matière, % i Rendement, électrique^ i- j .. Moyennes 7. ADN PN vu R ADîJ . T ADN - rondement ijiatii. re ADN rendement ^ICctriqiK 0,5 NMe4MeS04 NMe.OH 4 0,88 65 24 3 8 45 33 > 1,5 " 0,5 (NMe4)gS04 ii ii 0,95 1,53 66 68 24 18 3 3 7 11 44 52 32 27 67 . 49 .1,5 " n 1,61 70 17 3 10 54 26 | 0,5 Me «MeSO, 4 4 îïEt^OÏÏ 0,74 82,1 4s>5 2,7 10,7 73 8 ' j 1,5 . " 0,5 NEt4EtS04 1! NMe403 0,69 0,94 . 83,4 81,0 6,1 5,1 3,0. 1,9 7,5 12,0 74 74 10 9 82,1 75 î,0 " » 0,52 81 ,8 2,9 4.1 11,2 78 5 0,5 HEt4EtS04 NEt^OH 0,63 78,8 2,5 3,9 14,8 78 5 1,5 " 0,5 (îîEt4)2S04 n m 0,84 1,02 / 80,3 •,79,2 2,7 3,2 3,6 3,4 13,4 14,2 74 78 5 6 79,5 76,5 1,5 " . ii 0,87 79,6 2,6 3,7 14,1 76 5 o o o «w4 •%! (SJ O 'O o o QJ en 69 00017 BEVESDICATIOIT 000035 Procédé de préparation de 1'adipodinitrile par hydro-dimérisation électrochimique directe de 1 ' acrylonitrile en présence d'eau et d'un sel d'ammonium quaternaire corme sel conducteur, dans une cellule sans diaphragme, caractérisé par 1'emploi comme sel d' ammonium quaternaire d'u.n mélange de sels de tétra-méthylammonium et de tétraéthylammonium dans un rapport pondéral compris entre 1/4 et 4/10 bad original
MEDICAL NEEDLE To provide a medical needle capable of preventing malfunction of a movement mechanism at the time of use, and improving safety even further. A medical needle 1A includes: a needle portion 10; a case 20 which is capable of exposing a needle tip of the needle portion 10 from a distal end, and is capable of accommodating the needle portion 10; a movement mechanism M which moves the needle portion 10 inside the case 20; an operation portion 62 for operating the movement mechanism; and an operation regulation portion 80A that regulates operation of the operation portion 62. TECHNICAL FIELD The present invention relates to a medical needle. BACKGROUND ART Conventionally, as a medical needle used for blood sampling, blood transfusion, infusion, and the like, a type of medical needle is known that pulls the needle tip into a cylindrical case by using a spring force (for example, see Patent Literatures 1 and 2). In such a conventional medical needle, it is possible to prevent accidents in which users (such as medical workers and the patients themselves) are accidentally punctured by the medical needle after withdrawal of the needle (so-called accidental puncturing). It is also possible to prevent scattering of the blood remaining on the needle tip or inside the needle. CITATION LIST Patent Literature Patent Literature 1: National Publication of International Patent Application No. 2002-539897Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2019-155097 SUMMARY OF THE INVENTION Problems to be Solved by the Invention However, the medical needle disclosed in Patent Literature 2 has a configuration in which the needle tip is pulled inside the case by operating (pressing) an operation portion, which causes a movement mechanism to operate. The needle tip is covered with a cap before use, and in this state, for example, the operation portion is also covered with the cap to prevent malfunction of the movement mechanism. On the other hand, because the cap is detached during use, it is possible to operate the operation portion. If the operation portion is erroneously operated at the time of puncturing or during blood sampling, there is a problem that the movement mechanism malfunctions and causes the needle tip to be accommodated inside the case. An object of the present invention is to provide a medical needle which is capable of preventing malfunction of the movement mechanism during use, and improving safety even further. Means of Solving the Problems A medical needle according to the present invention includes: a needle portion; a case which is capable of exposing a needle tip of the needle portion from a distal end, and is capable of accommodating the needle portion; a movement mechanism which moves the needle portion inside the case until the needle tip protruding from the case is accommodated inside the case; an operation portion for operating the movement mechanism; and an operation regulation portion that regulates operation of the operation portion. Effects of the Invention According to the medical needle of the present invention, it is possible to prevent malfunction of the movement mechanism during use, and to improve safety even further. MODE FOR CARRYING OUT THE INVENTION In the present embodiments, for example, medical needles1A and1B (so-called winged needles), which are used by being secured following puncturing of the patient's skin at the time of blood sampling, blood transfusion, infusion, and the like, will be described as examples of the present invention. The medical needles1A and1B have a configuration in which the needle tip is pulled inside a case by using a spring force. First Embodiment FIG. 1andFIG. 2are exploded perspective views of a medical needle1A according to a first embodiment. In the description below, the side on which the needle tip protrudes in a longitudinal direction AX is referred to as the “distal end E1”, and the opposite side is referred to as the “proximal end E2”. Furthermore, a state where a predetermined length of the needle tip is protruding from the case20is referred to as the “first state”. A state where the needle tip is accommodated inside the case20is referred to as the “second state”. As shown inFIG. 1andFIG. 2, the medical needle1A includes a needle portion10, a case20, a cover portion30, a wing portion40, a biasing member50, an operation member60, a securing portion70, and an operation regulation portion80A. A case that accommodates the needle portion10is formed by the case20and the cover portion30. Furthermore, the biasing member50and the operation member60form a movement mechanism M for switching the needle portion10from the first state to the second state. A cap (not shown) is attached to the medical needle1A before use so as to cover the needle protruding from the case20. The cap is detachably attached so as to cover, for example, a section of the case20on the distal end E1side (including the upper surface of the operation portion62). In the medical needle1A, the cap, the case20, the cover portion30, the wing portion40, the operation member60, the securing portion70, and the operation regulation portion80A are formed of a plastic material such as polycarbonate or polypropylene. The needle portion10is a hollow needle having a flow path for blood or a drug solution. The needle portion10is made of a metallic material such as stainless steel, aluminum, aluminum alloy, titanium, or titanium alloy. The end portion of the needle portion10on the proximal end E2side (the end portion on the opposite side to the needle tip) is secured to the securing portion70by adhesion or the like, and is connected to a tube (not shown). The needle portion10may be made of a material other than a metallic material, such as a resin material. The case20has a cylindrical shape which is open at both ends, and a space for accommodating the needle portion10and the movement mechanism M is formed inside the case20along the longitudinal direction AX. For example, a circular opening21is provided on the distal end E1side of the case20. The diameter of the opening21is set slightly larger than the outer diameter of the needle portion10, and the needle tip is exposed through the opening21. A first engaging portion22that engages the operation portion62of the operation member60in the first state is provided on the upper surface of the case20on the distal end E1side. The first engaging portion22is, for example, a square hole that communicates with the internal space of the case20. Furthermore, a second engaging portion25that engages with the operation portion62of the operation member60in the second state is provided on the inner surface of the case20on the proximal end E2side (seeFIG. 4B). The second engaging portion25is, for example, a step provided on the inner surface of the case20. Insertion slits23for displaceably inserting the operation regulation portion80A into the case20are provided on both side surfaces of the case20on the distal end E1side. Furthermore, locking portions24for maintaining an engaged state with the cover portion30are provided on the upper surface and the lower surface of the case20on the proximal end E2side. The cover portion30is a lid member that closes the opening on the proximal end E2side of the case20. An opening31for passing a tube (not shown) connected to the needle portion10is provided at the end portion of the cover portion30on the proximal end E2side. Furthermore, the inner surface of the end portion is provided with a concave portion33into which an impact mitigating portion64of the operation member60enters in the second state (seeFIG. 4Aand the like). Moreover, the upper surface and the lower surface of the cover portion30are provided with engagement holes32that engage with the locking portions24of the case20. The wing portion40is a pair of wing members extending on both sides of the distal end of the case20, and, for example, is integrally formed with the case20. The wing portion40includes a grip portion41, and a thin-walled portion42formed thinner than the grip portion41. The grip portion41is configured to be rotatable by a predetermined angle about a groove43formed in the thin-walled portion42. The biasing member50is a member that exerts a biasing force to an extent that causes the operation member60to be pressed against the proximal end E2side of the cover portion30in the second state. The biasing member50is, for example, configured by a metallic compression coil spring, and is arranged on a section72on the distal end E1side of the securing portion70. The operation member60includes a joint portion61and an operation portion62. The joint portion61has, for example, a circular tube shape. The inner surface of the joint portion61on the distal end E1side is formed having a smaller diameter than the section on the proximal end E2side, and a groove63is provided along the longitudinal direction AX. The operation portion62is an operation lever for releasing the engagement between the case20and the operation member60(movement mechanism M) when the needle portion10is accommodated inside the case20. The operation portion62is, for example, arranged on the outer surface of the joint portion61, and is formed in a substantially letter-U shape along the longitudinal direction AX. The free end of the operation portion62has a bulging shape that can engage with the first engaging portion22and the second engaging portion25of the case20. The operation portion62functions as a leaf spring that bends in response to an external force applied to the free end, and exerts a restoring force (biasing force). The operation portion62is provided, for example, so that the separation distance from the joint portion61increases from the base of the letter-U shape toward the free end. As a result, when the operation member60is arranged inside the case20, an upward biasing force is generated in the operation portion62, and the engaged state with the first engaging portion22or the second engaging portion25is maintained. On the other hand, in the first state, when the operation portion62is downwardly pressed against the biasing force, the engaged state with the first engaging portion22is released. Further, an impact mitigating portion64for mitigating the impact when switching from the first state to the second state is provided on the proximal end E2side of the operation portion62. The impact mitigating portion64is formed, for example, having a curved shape that hangs down from the end portion of the operation portion62on the proximal end E2side. The impact mitigating portion64absorbs an impact by becoming more curved when a force greater than or equal to a predetermined force is applied. The securing portion70is, for example, a circular tubular member into which the end portion of the needle portion10on the proximal end E2side is inserted and secured. The outer surface of the securing portion70is provided with two flange portions71, which are arranged side by side at a substantially central position in the longitudinal direction. Furthermore, a ridge (reference numeral omitted) that corresponds to the groove63of the joint portion61is provided along the longitudinal direction AX on the lower side of outer surface of the securing portion70. The securing portion70is inserted into the joint portion61of the operation member60from the proximal end E2side. The securing portion70is inserted while engaging the ridge with the groove63of the joint portion61. A small-diameter section of the joint portion61is fitted between the two flange portions71as a result of the flange portion71on the distal end E1side being pushed in until it clears the end surface of the joint portion61on the proximal end E2side. Furthermore, the biasing member50is attached to the section72of the securing portion70which is exposed from the joint portion61. The operation regulation portion80A regulates pressing operations made with respect to the operation portion62. In the present embodiment, the operation regulation portion80A includes an arm82, which protrudes in a letter-L shape from the end portion of the cover portion30on the distal end E1side, and a head81provided on the free end of the arm82. The head81and a section of the arm82on the head81side are inserted into the case20from the insertion slit23. In the present embodiment, the operation regulation portion80A is integrally formed with the cover portion30. In a state where the medical needle1A is assembled, the head81is a section which is located between the joint portion61and the operation portion62of the operation member60. The head81includes a slit engaging portion81a, and the edge of the insertion slit23and the slit engaging portion81abecome engaged when the head81is press-fitted into the insertion slit23of the case20. The arm82includes a spring portion82athat functions as a leaf spring on the section which is connected to the cover portion30. The spring portion82abends in response to an external force applied to the arm82, and exerts a restoring force (biasing force). The spring portion82ais formed, for example, by bending the distal end E1side of the arm82so that it becomes separated from the case20. As a result, when the arm82is pressed toward the case20side, a biasing force is generated in the opposite direction to the pressing direction. For example, the medical needle1A is assembled as follows. First, the movement mechanism M comprising the biasing member50and the operation member60is attached to the needle portion10. Specifically, the operation member60and the biasing member50are inserted through from the needle tip in a state where the needle portion10is secured by the securing portion70. Then, the needle portion10, the securing portion70, and the movement mechanism M are inserted into the case20so that the needle tip protrudes from the opening21, and press-fitted up to a position where the first engaging portion22of the case20and the operation portion62of the operation member60become engaged. Then, the cover portion30is attached to the proximal end E2side of the case20. The first state is maintained as a result of the first engaging portion22of the case20and the operation portion62of the operation member60being engaged. At this time, the biasing member50is arranged in a state where it is compressed in the internal space of the case20. The edge of the biasing member50on the distal end E1side makes contact with the inner surface of the case20on the distal end side, and the edge on the proximal end E2side makes contact with the end surface of the operation member60on the distal end E1side (seeFIG. 4B). The state of the medical needle1A after assembling each of the members as described above is shown inFIG. 3A,FIG. 3B,FIG. 4A, andFIG. 4B.FIG. 3AandFIG. 3Bare perspective views of the medical needle1A.FIG. 3Bomits the case20and the wing portion40. Furthermore,FIG. 4Ais a cross-sectional view taken along line B-B inFIG. 4B.FIG. 4Bis a cross-sectional view taken along line A-A inFIG. 4A. After assembling each of the members, the arm82is in an unloaded state. As a result, the operation regulation portion80A is arranged outside the case20as shown inFIG. 3Aand the like. In this state, the arm82is pressed toward the case20side, and the head81is press-fitted into the insertion slit23due to a change in shape of the arm82. The state of the medical needle1A after press-fitting the operation regulation portion80A inside the case20is shown inFIG. 5A,FIG. 5B,FIG. 6A, andFIG. 6B.FIG. 5AandFIG. 5Bare perspective views of the medical needle1A.FIG. 5Bomits the case20and the wing portion40. Furthermore,FIG. 6Ais a cross-sectional view taken along line B-B inFIG. 6B.FIG. 6Bis a cross-sectional view taken along line A-A inFIG. 6A. After press-fitting the operation regulation portion80A, the arm82is in a state where it is biased in the opposite direction to the pressing direction. As a result, the operation regulation portion80A tries to restore a state where the arm82is not press-fitted (such asFIG. 3A). However, because the slit engaging portion81aof the head81engages with the edge of the insertion slit23of the case20, further restoration is inhibited, and the state in which the operation regulation portion80A is press-fitted inside the case20is maintained. At this time, the head81is downwardly positioned in the displacement direction of the operation portion62, that is to say, between the operation portion62and the joint portion61, and pressing operations made with respect to the operation portion62are regulated. Furthermore, the arm82is in a state where it is separated from the case20, and the regulation by the operation portion62can be released by pressing the arm82further toward the case20side. That is to say, the operation regulation portion80A is configured so as to be capable of switching between regulation of operation of the operation portion62, and releasing of the regulation. The state shown inFIG. 5Aand the like is the initial state of the medical needle1A. The medical needle1A is stored by attaching a cap to the needle tip when not in use. When the medical needle1A is used, the cap is detached to expose the needle tip. Then, the patient's skin is punctured by the needle portion10while the grip portion41of the wing portion40is being gripped. After the puncture is made, the grip portion41is expanded and taped down as necessary. At this time, although the operation portion62is exposed, pressing operations are disabled by the operation regulation portion80A. Therefore, at the time of use, it is possible to reliably prevent the operation portion62from being pressed and the movement mechanism M from malfunctioning, against the user's intent. When the needle tip is withdrawn from the patient's skin, the operation regulation of the operation regulation portion80A is released. Specifically, as shown inFIG. 7AandFIG. 7B, the arm82is pressed toward the case20side, and the head81is shifted to a position which is displaced from below the operation portion62. As a result, pressing operations can be made with respect to the operation portion62. When the operation portion62of the operation member60is pressed in this state, as shown inFIG. 8AandFIG. 8B, the movement mechanism M operates due to the action of the biasing member50, and the operation member60, the securing portion70, and the needle portion10move toward the proximal end E2side. As a result, the needle tip which is exposed from the case20is accommodated inside the case20. Therefore, it is possible to prevent accidental puncturing after withdrawal of the needle, and scattering of the blood remaining on the needle tip or inside the needle portion10. At this time, the action of the impact mitigating portion64mitigates the impact caused by the contact between the impact mitigating portion64and the cover portion30, and the generation of collision noises is also suppressed. Furthermore, the operation regulation portion80A returns to a state which is equivalent to the initial state shown inFIG. 5Aand the like. Note that the needle portion10may be accommodated inside the case20by pressing the operation portion62after the needle tip has firstly been withdrawn from the patient's skin. Second Embodiment FIG. 9is a perspective view of a medical needle1B according to a second embodiment.FIGS. 10A and 10Bare cross-sectional views of the main parts of the medical needle1B.FIG. 10Ashows a state where operation of the operation portion62is regulated.FIG. 10Bshows a state where the operation regulation of the operation portion62is released. In the medical needle1B, the configurations of the operation portion and the operation regulation portion are different to those of the medical needle1A according to the first embodiment; and the rest of the configuration is substantially equivalent to the medical needle1A. That is to say, the medical needle1B includes a needle portion10, a case20, a cover portion30, a wing portion40, a biasing member50, an operation member60, a securing portion70, and an operation regulation portion80B. In the medical needle1B, the operation portion62is arranged such that it protrudes from the case20toward the distal end E1side. Before use, the rear end portion of a cap C, which is attached so as to cover the needle tip, enters between the operation portion62and the distal end portion of the case20(the section provided with the opening21), which regulates pressing operations made with respect to the operation portion62. Furthermore, the operation regulation portion80B is formed on the end portion of the operation portion62on the proximal end E2side so as to extend in a letter-J shape. In the first state, the operation portion62is biased toward the proximal end E2side. Further, the operation regulation portion80B engages with the edge of the case20. At this time, a space is provided between the end surface of the joint portion61on the distal end E1side and the end surface of the distal end portion of the case20so that the operation portion62can be relatively moved toward the distal end E1side (and the case20toward the proximal end E2side). As a result, the biasing member50is in a state where it is capable of being compressed even more. In the medical needle1B, for example, by moving the case20toward the proximal end E2side and relatively moving the operation portion62toward the distal end E1side with respect to the case20, the engagement between the operation portion62and the case20is released, and the operation portion62is in pressable state (seeFIG. 10B). Furthermore, in the medical needle1B, the operation regulation of the operation portion62can be carried out with a simpler structure than that of the medical needle1A of the first embodiment. As described above, the medical needles1A and1B each include: a needle portion10; a case20which is capable of exposing the needle tip of the needle portion10from the distal end E1, and is capable of accommodating the needle portion10inside the case20; a movement mechanism M which moves the needle portion10inside the case20until the needle tip protruding from the case20is accommodated inside the case20; an operation portion62for operating the movement mechanism M; and operation regulation portions80A and80B that regulate operation of the operation portion62. According to the medical needles1A and1B, operation of the operation portion62is regulated by the operation regulation portions80A and80B. More specifically, even in a state where the cap C has been detached and the needle tip of the needle portion10is protruding from the case20, operation of the operation portion62is regulated by the operation regulation portions80A and80B. Consequently, the operation portion62cannot be easily operated regardless of the presence or absence of the cap C. Consequently, malfunction of the movement mechanism M that moves the needle portion10during use can be prevented, and the safety can be improved even further. Furthermore, the operation regulation portions80A and80B are configured so as to be capable of switching between regulation of operation of the operation portion62, and releasing of the regulation. As a result, the state in which operation of the operation portion62is regulated can be easily released. Therefore, the movement mechanism M can be operated without requiring complicated operations. Moreover, the operation portion62causes the movement mechanism M to operate due to an operation to displace from a predetermined position. Further, the operation regulation portions80A and80B are located in a displacement direction of the operation portion62, and regulate the displacement of the operation portion62. As a result, operation of the operation portion62is physically regulated. Therefore, malfunction of the movement mechanism M during use can be reliably prevented. The invention made by the present inventors has been specifically described above based on the embodiments. However, the present invention is not limited to the above embodiments, and can be changed without departing from the spirit of the present invention. FIGS. 11A and 11Bare cross-sectional views of the main parts of a medical needle1C according to a modification of the first embodiment.FIG. 11Ashows a state where operation of the operation portion62is regulated.FIG. 11Bshows a state where an operation regulation of the operation portion62is released. In the medical needle1C, the operation regulation portion80B according to the second embodiment is provided in addition to the operation regulation portion80A according to the first embodiment, and operation regulation of the operation portion62is carried out in two stages. That is to say, in the medical needle1C, the arm82is pressed toward the case20side, and the head81is shifted to a position which is displaced from below the operation portion62. In addition, the operation portion62is in a pressable state only after the case20has been moved toward the proximal end E2side (seeFIG. 11B). Therefore, in the medical needle1C according to the modification, malfunction of the movement mechanism M during use can be more reliably prevented. Furthermore, for example, the operation regulation portion is not limited to the configurations described in the embodiments and in the modification, and a rotary lock mechanism may be used. Moreover, the operation regulation portion may have any function that regulates operation of the operation portion. For example, the regulated state may be released as a result of a pressing force of the operation portion, for example by way of a bubble wrap material. In addition, for example, the operation regulation portion may be configured such that it cannot be easily operated by increasing the rigidity of the operation portion itself. Furthermore, in the above embodiments, cases have been illustrated and described where a compression coil spring is used as the biasing member50, and the compression coil spring is arranged on the distal end E1side of the operation member60. However, for example, a tension coil spring may be arranged on the proximal end E2side of the operation member60. Also, as the biasing member50, rubber or the like may be applied instead of a spring. In the above embodiments, a winged needle which is used by being secured following puncturing of a patient's skin has been illustrated and described. However, the present invention is not limited to this. For example, the present invention can be applied to an indwelling needle or the like used when carrying out a continuous intravenous drip infusion. The embodiments disclosed above are to be considered illustrative in all respects, and are not intended to be restrictive. The scope of the present invention is defined by the scope of claims, and not by the description above. It is intended that all modifications that fall within the meaning and scope equivalent to the scope of claims be included. DESCRIPTION OF REFERENCE NUMERALS
i 2000036 Cette invention concerne une mousse de polyuréthane peu perméable constituée par un polyuréthane de type polyéther dans lequel sont incorporés un hydrocarbure et un acide gras insaturé ou un mélange d'acides gras insaturés, ainsi qu'un procédé pour 5 fabriquer une mousse de polyuréthane de type polyéther, peu perméable, en faisant réagir un polyisocyanate et vin polyéther polyol en présence d'un hydrocarbure et d'un acide gras insaturé ou d'un mélange d'acides gras insaturés. Dans la fabrication des mousses de polyuréthane, dans 10 laquelle le polyuréthane est formé par la réaction entre un polyisocyanate et un composé polyhydroxylé, la formation de mousse ou expansion se fait par introduction de bulles de gaz dans le mélange réactionnel. Les bulles de gaz peuvent être introduites sous la forme d'un liquide vaporisable ajouté aux produits réagissants, 15 liquide qui est ensuite vaporisé par la chaleur de la réaction exothermique, ou bien par la formation d'anhydride carbonique dans une réaction accessoire entre l'eau présente dans le mélange réactionnel et un excès du polyisocyanate. Les détails de ces techniques utilisées pour produire des agents d'expansion sont bien con-20 nus dans la technique. Les mousses de polyuréthane peuvent être décrites en général, du point de vue physique, comme comprenant une multitude de cellules dodécaédriques ayant des parois pentago-nales. Les parois des cellules sont délimitées par de minces cordons allongés de la matière polyuréthane, cordons qui se rejoignent 25 en des points épaissis ou noeuds pour relier entre elles les parois de cellules contiguës.Sur les parois des cellules peuvent aussi s'étendre de minces membranes de polyuréthane, à l'état intact ou fracturé. Les mousses de polyuréthane se classent dans trois catégories générales : rigides, semi-rigides et souples. La répertoria-30 tion particulière de n'importe quelle mousse de polyuréthane donnée dépendra de sa résistance à la compression. En ce qui concerne certaines mousses de polyuréthane souple^ quand la réaction de formation du polyuréthane sera pratiquement terminée et que le produit final commencera à se refroidir, les gaz gonflants emprisonnés se 35 contracteront, en créant un vide partiel à l'intérieur des cellules individuelles qui forment la mousse de polyuréthane. A cause de la faiblesse structurelle relative des mousses de polyuréthane souples, d'une manière générale le non-relâchement du vide partiel provoquera un grave retrait de la mousse. En ce qui concerne ces mousses sou-40 pies, afin d'éviter ce retrait, on comprime quelque peu les mousses 69 00026 2 2000036 «ntre des cylindres pour briser un nombre suffisant de parois de cellules et relâcher les tensions internes de façon à empêcher tout retrait excessif. Avec les autres mousses souples, beaucoup de parois de cellules éclateront facilement sous les tensions normales 5 développées dans la réaction d'expansion. Normalement, dans les mousses souples, au moins environ 17 % des membranes de parois de cellules se brisent, en faisant des mousses obtenues des mousses "à cellules ouvertes", puisqu'un grand nombre de cellules sont ouvertes et communiquent avec la masse de mousse obtenue en présen-10 tant un obstacle relativement négligeable au passage des gaz à travers elle. Par contre, les mousses de polyuréthane rigides et semi-rigides ont une résistance et/ou une plasticité suffisantes lors de leur formation, pour résister à toute distorsion appréciable à la suite de telles pressions . 15 il est fort souhaitable d'avoir des mousses de polyuré thane souples et peu perméables pouvant servir de matières d ' étan-chéité, notamment dans la fabrication des automobiles. Par exemple, si un ventilateur est placé à proximité d'une paroi, on peut se permettre des variations appréciables dans l'emplacement relatif du 20 ventilateur et de la paroi séparant des automobiles différentes en insérant un morceau de mousse de polyuréthane souple comme matière d'étanchéité, la mousse étant comprimée à un degré variable, fonction de l'espace que la mousse doit occuper. Cependant, afin que 1'étanchéité soit efficace, la mousse doit présenter une forte ré-25 sistance au passage de 1'air à travers elle, c'est-à-dire qu'elle doit avoir une faible perméabilité„ Dans le passé, les mousses de polyuréthane qu'ois a utilisées le plus comme matières d'étanchéité, étaient du type polyester, c'est-à-dire qu'elles étaient produites par la réaction entre 30 un polyisocyanate et un polyester polyol. On procédait ainsi car on n'était pas en mesure de produire un bon polyéther peu perméable. Cependant, il vaut mieux être en mesure de produire un polyéther peu perméable utilisable, puisque les résines de polyéther sont meilleur marché que les polyesters, les mousses de polyéther 35 ont une plus grande résistance chimique que les polyesters, et les mousses de polyéthers sont plus facilement estampées que les polyesters. Par contre, les polyesters ont, sur les mousses de polyéther, 1'avantage de posséder une résistance à la traction et au déchirement plus grande. 40 La présente invention surmonte les inconvénients 69 00026 3 2000036 précédents de la technique antérieure en fournissant des mousses de polyuréthane du type polyéther qui possèdent une faible perméabilité, suivant les normes industrielles acceptées, et qui ont une perméabilité sensiblement plus faible que les mousses peu perméa-5 bles disponibles jusqu'à présent. En outre, par suite de la moindre perméabilité, qui résulte du plus petit nombre de parois de cellules fracturées dans la mousse, les mousses de la présente invention ont un effet hydraulique ou pneumatique qui les rend plus aptes à amortir les forces de type chocs. 10 La présente invention concerne une mousse de polyuréthane du type polyéther dans laquelle sont incorporés un polybutène et un acide gras insaturé, ou une combinaison d'acides gras insaturés, tels ceux que l'on trouve dans l'huile de tallôl. L'invention concerne aussi le procédé de fabrication des mousses de polyuréthane 15 peu perméables par réaction d'un polyéther polyol et d'un polyisocyanate en présence d'un polybutène et d'un acide gras insaturé ou d'une combinaison d'acides gras insaturés tels ceux que l'on trouve dans l'huile de tallôl. On a proposé d'employer des polybutènes dans la fabrica-20 tion de mousses de polyuréthane, comme agents d'ouverture de cellules. En d'autres termes, quand on ajoute un polybutène à une formulation de mousse formant un polyuréthane, le produit final aura conventionnellement davantage de cellules ouvertes, c'est-à-dire moins de parois de cellules intactes, qu'un produit fabriqué avec 25 une formulation sensiblement identique mais sans polybutène. On a également découvert que l'addition d'acides gras insaturés ou de combinaison de ces derniers, tels ceux que l'on trouve dans l'huile de tallôl, aux produits réagissants d'une formulation de formation de polyuréthane, avait pour effet d'ouvrir davantage de parois de 30 cellule, en donnant ainsi une mousse de perméabilité supérieure à celle que l'on obtiendrait sans l'additif. Cependant, on a découvert avec surprise que, en employant un polybutène et un acide gras insaturé ou une combinaison d'acides gras insaturés, dans un rapport d'environ 1:70 à environ 30:1 du polybutène à l'acide, le polybutè-35 ne étant présent dans une proportion représentant entre 0,1 % et 10 % dvi poids du composé polyhydroxylé, il se produisait ion effet marqué de fermeture des cellules, et le produit final était une mousse de type polyéther ayant une perméabilité sensiblement plus faible que les produits disponibles jusqu'à présent. Ces produits, 40 qui incorporent du polybutène et des acides gras insaturés, ont 69 00026 4 2000036 un effet hydraulique à cause de leur caractéristique de faible perméabilité et trouvent une application industrielle comme mousses d'amortissement de chocs, utilisables en emballage et dans les applications de ce genre. Bien entendu, le prix plus bas de la 5 résine de polyéther rend les mousses de cette invention souhaitables pour toute application dans laquelle on utilise des mousses de polyester plus coûteuses, et les mousses de cette invention ont des propriétés comparables ou supérieures. De plus, on a constaté que les mousses de cette invention avaient d'excellentes proprié-10 tés d'absorption sonore dans une gamme de fréquences étendue et étaient donc utiles comme matériaux d'isolation acoustique. Dans la fabrication de mousses de polyuréthane on fait réagir un polyisocyanate avec un composé polyhydroxylé, qui est des cas dans la plupart/un polyester polyol ou un polyéther polyol. Le 15 polyisocyanate le plus conventionnel utilisé dans la fabrication des mousses de polyuréthane est le toluène diisocyanate, qui est ordinairement commercialisé sous la forme d'un mélange 80:20 de l'isomère 2,4 et de l'isomère 2,6. D'autres polyisocyanates appropriés sont décrits dans le Brevet E..U.A. N° 3.025.200, qui décrit 20 aussi d'autres produits réagissants et d'autres méthodes généralement appropriés pour produire des mousses souples de polyuréthane. On incorpore souvent des catalyseurs dans le mélange réactionnel pour accélérer la réaction entre le polyisocyanate et le polyol. Bien qu'on puisse utiliser de nombreuses catégories de catalyseurs, 25 la N-éthylmorpholine et l'octanoate stanneux sont des catalyseurs tout particulièrement préférés. Les formulations utiliséespour les mousses souples de polyuréthane contiendront aussi d'habitude un surfactif destiné à servir de stabilisateur de cellules et à maintenir la stabilité de la mousse dès qu'elle se forme; les organo— 30 .. .• silicones sont particulièrement utiles à cette fin. Les mousses de polyuréthane produites selon cette invention sont des mousses de polyuréthane du type polyéther, produites par réaction d'un polyéther polyol avec tin polyisocyanate. Les polyéthers que l'on préfère particulièrement sont les polyéthers 35 d'oxyde d'alcoylèr.e, tels que les produits de réaction de l'oxyde d'éthylène, . . l'o^iyde de propylène, l'oxyde de butylène, 1'oxyde d'hexadécylène, le glycide, 1'oxyde de styrène, 11 oxyde de picoline ou le glycide méthylique, avec un composé contenant deux ou plusieurs hydrogènes réactifs, tel un glycol comme l'éthylène 40 glycol, le diéthylène glycol, le triéthylène glycol ou un glycol de 69 00026 5 2000036 ce genre, ou encore un triol comme le glycérol, le triméthylolpro-pane, le pentaérythritol ou le résorcinol. Les polyéthers qui ont la préférence sont les produits d'addition poly(oxyde de propylène), tels que les produits d'addition poly(oxyde de propylène) du gly-5 cérol. Si on utilise un glycol de polyalcoylène éther conformément à cette invention, les composés ayant des poids moléculaires compris dans l'intervalle d'environ 500 à environ 3500 donneront des mousses souples de polyuréthane et seront utilisables selon cette invention- 10 Selon l'invention, les polyuréthane s expansés du type polyéther contiennent une proportion de résine de polybutène comprise dans l'intervalle d'environ 0,1 à 10 % en poids, basée sur le poids de la résine de polyéther incorporée dans la formulation. L'es résines de polybutène sont généralement disponibles dans une 15 gamme de poids moléculaires d'environ 250 à environ 3000, qui conviennent à l'emploi selon la présente invention. Les polybutènes sont les résines que 1'on préfère employer dans la mise en oeuvre de cette invention* A cet égard, on doit remarquer que les polybutènes sont couramment commercialisés sous 20 forme de copolymères avec de petites quantités d'isoparaffines, et de tels copolymères entrent également dans le champ de protection de la présente invention. Bien qu'on préfère tout particulièrement employer les polybutènes selon cette invention, à cause de la supériorité de 25 leurs propriétés de faible perméabilité et de leurs autres caractéristiques structurales, le champ de protection de cette invention englobe la combinaison des acides gras insaturés précisés ici avec xrn produit du groupe composé de la paraffine de polypropylène liquide, du pétrolatum blanc et du pétrolatum jaune, pour obtenir 30 des mousses de polyuréthane du type polyéther ayant des propriétés de perméabilité diminuées, et donc utiles comme matériaux d'étanchéité . Au polybutène on incorporera une certaine quantité d'ion acide gras insaturé, ou d'un mélange d'acides gras insaturés, en 35 quantité telle que le rapport du polybutène à l'acide gras soit compris dans l'intervalle d'environ 1:70 à environ 30:1. L'intervalle préféré va de 1:60 à 20;1.1,-es acides gras convenant à l'emploi selon cette invention sont les acides gras insaturés, notamment ceux qui ont 16 ou 18 atomes de carbone par molécule, tels que 40 1'acide linoléique, 1'acide oléique, 1'acide palmitique et 1'acide 69 00026 & 2000036 stéarique. Les acides gras insaturés, notamment l'acide linoléique et l'acide oléique, se trouvent dans l'huile de tallôl qui est un sous-produit peu coûteux de la formation de pâte de bois par les procédés au sulfate ou au sulfite. Les huiles de tallôl, dans leur 5 état brut, ont une teneur appréciable en acides linoléique et oléique, mais elles contiennent aussi des quantités appréciables d'autres composés tels que les acides de colophane, les stérols et les alcools de haut poids moléculaire. L'huile de tallôl distillée, quoique plus coûteuse que l'huile de tallôl brute, est commerciali-10 sée à des prix tout à fait raisonnables. L'huile de tallôl distillée a une concentration beaucoup plus forte en acides gras insaturés que l'huile de tallôl brute et constitue donc, pour des raisons économiques, la source préférée d'acides gras insaturés dans cette invention. Les impuretés de l'huile de tallôl' brute, telles que les 15 acides de colophane, retarderont excessivement la réaction de formation du polyuréthane, et contribueront aussi à donner des propriétés indésirables, telles qu'une odeur désagréable, à la mousse finale produite. On doit remarquer que, quand on emploie différents rap-20 ports du polybutène à l'huile de tallôl, et qu'on incorpore dans la formulation différentes quantités de polybutène en regard du poids de résine de polyéther, il peut être souhaitable de faire varier la proportion de surfactif incorporée dans la formulation, pour régulariser la formation des cellules et améliorer le contrôle de la 25 forme définitive du produit final. La concentration du surfactif a peu d'importance pour la mi se en oeuvre de 1'invention. Cependant, afin d'améliorer au maximum les propriétés de la mousse obtenue, suivant les proportions spécifiques de polybutène et d'acides gras insaturés utilisées, il peut être souhaitable de faire varier les 30 proportions de surfactif. Le terme "indice", quand on l'utilise ici, désigne le rapport entre la quantité réelle de polyisocyanate incorporé dans le mélange réactionnel et la quantité théorique de polyisocyanate nécessaire pour la réaction avec tous les composés à hydrogène 35 actif, multiplié par 100. Le mécanisme spécifique de la réaction de formation du polyuréthane, due à la présence du polybutène et des acides gras insaturés, n'est pas élucidé avec certitude. Cependant, l'une des explications possibles de l'effet du polybutène et de l'huile de 40 tallôl est qu'ils agissent, en mélange, comme un plastifiant pour 69 00026 7 2000036 le polyuréthane. Par exemple, le polybutène et l'huile de tallôl sont fortement miscibles l'un à l'autre, et quand ils sont combinés dans la réaction de formation du polyuréthane et dispersés uniformément dans cette réaction, ils peuvent rendre le polyuréthane suf-5 fisamment plastique pour que les "fenêtres" des parois des cellules puissent résister aux pressions développées dans la réaction de formation du polyuréthane et ne se fissurent pas ni ne rétrécissent excessivement pendant cette réaction, à la suite de la production des gaz de formation de mousse. On sait aussi que le polybutène ne 10 réagit pas pendant la réaction de formation du polyuréthane. Quant aux acides gras insaturés, on pense qu'ils ne réagissent que dans une mesure très limitée, sinon pas du tout, pendant la réaction de formation du polyuréthane. On a aussi découvert que, dans certaines circonstances, 15 les acides gras insaturés n'étaient pas nécessaires pour que la combinaison avec le polybutène produise une mousse de polyuréthane du type polyéther et peu perméable. Avec une résine de polyéther ayant un poids moléculaire d'environ 1500 ou plus, par exemple avec un produit d'addition poly(oxyde de propylène) du glycérol, on 20 obtient, en employant de plus grandes quantités de polybutène et de surfactif, des mousses moins perméables que celles que l'on obtiendrait autrement, et on réduit la nécessité d'incorporer l'acide gras insaturé; cependant, afin d'obtenir les propriétés optimales de faible perméabilité, il est nécessaire d'incorporer les acides gras 25 insaturés selon les présentes indications. La caractéristique essentielle de ces formulations, pour éviter le besoin en acides gras insaturés, est la nécessité d'incorporer dans la formulation plus d'environ 1 partie en poids, par rapport au poids de la résine de polyéther,de surfactif, et d'incorporer dans la formulation environ 30 2,5 à 10 % en poids, par rapport au poids de la résine, de polybutène . Selon cette invention, une formulation de polyéther polyol contiendra à peu près-0,1 % à 10 % en poids de polybutène, par rapport au poids du polyol, et un rapport du polybutène à l'acide 35 gras insaturé ou au mélange d'acides gras insaturés compris dans l'intervalle d'environ 1 : 70 à environ 30 : 1. On préfère que le poids du polybutène représente entre environ 2,5 % et environ 5 % du poids du polyéther, et que le rapport du polybutène à l'acide gras insaturé soit compris entre environ 1:60 et environ 20:1. L'in-40 tervalle préféré des rapports du polybutène à l'acide gras va 69 00026 8 2000036 d'environ 1:3 à environ 3:1. Il vaut beaucoup mieux utiliser l'huile de tallôl distillée comme source d'acides gras insaturés car elle représente une "optimisation" des propriétés physiques pour un coût de production 5 relativement bas. A cet égard on doit remarquer qu'il vaudra mieux faire varier les quantités et les proportions de chaque ingrédient particulier en respectant les intervalles et les quantités précisés; les quantités et les rapports spécifiques utilisés dépendant, entre autres, de la résine ou des résines particulières employées, 10 du polyisocyanate employé, de la quantité et du type de catalyseur utilisés,de la proportion de surfactif utilisée,et de la combinaison particulière de. propriétés finales désirées, telles que la taille des pores, la résistance à la traction, la souplesse, la perméabilité, et les propriétés de ce genre. 15 Dans la mise en oeuvre de cette invention, la quantité de polybutène nettement préférée représente environ 5 % du poids de la résine. Le surfactif présent dans la formulation est de préférence limité à environ 1 % du poids de la résine, ou moins, et l'indice de polyisocyanate utilisé est de préférence dans l'inter-20 valle d'environ 95 à environ 105. Les polyesters nettement préférés sont les produits d'addition oxyde de propylène, de poids moléculaire 1500, du glycérol, et quand on les utilise l'indice sera pré-férablement égal à 105. On peut mettre en oeuvra le procédé de cette invention 25 en plaçant 1'isocyanate réagissant dans une première enceinte. On place dans une seconde enceinte le polyol, le surfactif, le constituant acide gras et le polybutène, et on mélange intimement en agitant. On ajoute alors à la seconde enceinte l'eau, le catalyseur et les autres additifs, et on mélange bien en agitant. On 30 ajoute ensuite à la seconde enceinte 1'isocyanate, tout en mélangeant, et on verse le mélange dans un récipient carré et à dessus ouvert approprié où ont lieu la réaction de formation du polyuréthane et la formation de la mousse. La méthode précédente est celle qui est utilisée dans les exemples exposés ici. Dans 35 un procédé continu on pourrait pré-mélanger les ingrédients comme signalé plus haut, et les mélanger finalement dans la tête mélan-geuse d'une machine continue de formation de mousse. Dans les exemples donnés dans les tableaux suivants, les ingrédients des formulations indiquées sont décrits de la façon 40 suivante : 69 00026 9 2000036 L'éther polyol de poids moléculaire 1000 est un produit d'addition oxyde de propylène du glycérol, vendu par Olin sous la marque Poly-G SF 1000. L'éther polyol de poids moléculaire 1500 est un produit d'addition oxyde de propylène du glycérol, vendu par 5 Jefferson Chemical Company sous la marque Thanol SF-1500. L-520 est un surfactif d'orgsno-silicone qui est vendu par Union Carbide. Tall Oil FA-1 est une huile de tallôl distillée vendue par Arizona Chemical Co. et composée de moins de 0,1 % d'humidité, de 10 0,0001 % ou moins de cendres, de 4,2 % d'acides de colophane, de 1,6 % d'insaponifiables et de 94,2 % d'acidâs gras. La teneur en acides gras est constituée par 8 % d'acide linoléique polyinsaturé conjugué, par 36 % d'acide linoléique non conjugué polyinsaturé, par 52 % d'acide oléique et par 4 % d'acides gras saturés. 15 Les polybutènes indiqués sont des polymères de butylène composés de façon prédominante de mono-oléfines de haut poids moléculaire et de quelques isoparaffines. Le polybutène H-300 a un poids moléculaire moyen de 1290 et il est commercialisé par la Amoco Chemicals Corporation» Le polybutène 6 a un poids molécu-20 laire moyen de 330, le polybutène 16 un poids moléculaire moyen de 640, le polybutène 32 un poids moléculaire moyen de 1400, et le polybutène 128 un poids moléculaire moyen de 2700; ces polybutènes sont tous commercialisés par la Chevron Chemical Company. Le phosphate de tris(bêta-chloroéthyle) est vendu par 25 Celanese Chemicals, et il est utilisé comme agent retardateur- de flamme. E X E M P L E S 1 2 3 4 5 6 7 8 9 10 Polyéter Polyol de P.M. 1000 (SF 1000) Oetanoate Stanneux 100 0,2 ff 0,2 M 0,2 ii 0,2 ii 0,2 » 0,2 » 0,2 ii 0,2 n 0, 2 n 0, 2 N-éthyImorpho1ine 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 1,25 Eau 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 Surfactif L-520 0,5 1,0 1,2 0,8 0,8 0,C 0, E 1,0 1,2 0, 9 Noir de fumée 0,5 0, 5 0, 5 0, 5 0, 5 0,5 0, 5 0, 5 0, 5 0, 5 Tall Oil FA-1 2,5 2, 5 2,5 2,5 5,0 7,5 5,0 5,0 5,0 6,25 Polybutène H-300 5,0 5, 0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 Toluène diisocyanate (TDI) 4 3, S 43,8 43£ 4 3,8 44,5 4 5, 2 44,5 44,5 44,5 43P Phospate de tris />chloréthyxe __ 5,0 Indice 95 95 95 95 95 35 95 95 95 95 perméabilité (kg/cm2) 0,168 0, 21 0,294 0,158 0,294 0,3C e 0, 2 94 0,301 0,3 01 0,203 69 00026 11 2000036 K . X _E_ M ^ P L . 13 S 11 12 13 14 15 Polvéther polyol de P.M. 1500 (SF 1500) Oetanoate Stanneux 100 0,1 100 0,1 100 0,1 100 0, 1 100 0, 1 N- éthyluorpholine -- — — — Tr iëthylèned iamine 0,1 0,1 0,1 0, 1 0, 1 Eau 2,25 2,0 2,0 2,0 2,0 Surfactif L- 520 0, 9 0,2 0, 5 0, 5 0,5 Noir de fumée 0.-5 — ----- — — Tall oil FA- 1 0, 5 2,0 2,0 2, O 2,0 Polvbutène 2, 5a 2,0b 2,0e 2,0d 2, C*5 TDI 39,9 39,3 39, 3 39, 3 39, 3 Indice 100 105 L05 105 105 Perméabilité (kg/c-a2) 0,175 0,105 0,158 0,161 0,147 phosphate de _ n tris y3 "" chlorêthyle ' — — — —- a Polvbutène H-300 3 Polybutène #& c Polvbut^ne #16 ^ Polybutène #32 e Polybutène £/ 12Ô E X E M P L E ! S 16 17 18 19 20 21 22 73 24 25 26 27 2 e Polyéther Polyol de P.M. 1000 (SF 1000) 100 H II II II II II II II II II II n Oetanoate Stanneux 0,2 0,2 0,2 0„2 0,2 Q,2 0,2, 0,2 0,2 0',2 0,2 0.,2 0,2 Eau 2,0 2,0 2,0 2, 0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 Surfactif L-520 2,0 2,0 2,0 2,0 2,0 2,0 1,0 2,0 1,0 0,5 0, 5 0, 5 0, 5 Acide gras insaturé 5,0* 5, 0b 5,0e 5,0^ 0, 5a 0, 9a 5,0a 5, 0a 9, la 9, 5a 9,75® 9,8 S3 9,86a Polybutène H-300 5,0 5,0 5,0 5,0 9,5 9,1 5,0 5,0 0, 9 0, 5 0,25 0,17 0,14 TDI 47,5 47, 5 47,5 47,5 47, 5 47, 5 47,5 47, 5 47, 5 47, 5 47, 5 47,5 47, 5 Indice 100 II II II II II II II II II II II II Perméabilité (kg/cm2) 0,175 0,175 0,182 0,182 Q14 0,182 0,147 0,175 0,154 0,175 Q2Î5 0,273 0,28 o O O O K> o> to Tall Oil FA-1 Acide oléique Acide Linoléique Huile de tallôl brute K) O O O O u> o- 29 Polvêther Polvol , de P.M. 1500 (SP 1500)' Oetanoate Stanneux 0,1 Triéthyl^nedxa'nine o, 1 Eau 2,0 Surfactif L-520 1,0 Polybutène H-300 10 TDI 39,3 Indice 105 E. X E M P L E 30 31 32 II II II 0, 1 0,1 0,2 0, 1 0, 1 2,5 2,0 2,0 1,0 1,0 1,0 10 10 10 44, 6 44, 9 39, 3 105 120 105 I «O 33 34 35 O O o K> II » II O* 0, 4 .... 0,1 0,4 0, 1' 2,0 2,0 2,0 1,0 1,0 1,0 10 10 5,0 H 39, 3 39, 3 39, 3 U) 105 105 10S Kl O O o o u» o 69 00026 14 2000036 Dans les exemples précédents les données de perméabilité sont exprimées en 3cg/cm2 effectifs. Dans les essais réels pour ef-« fectuer les évaluations de perméabilité qui ont donné les résultats indiqués, on a utilisé la méthode suivante. On place un échantillon 5 de la mousse d'essai, ayant des dimensions de 64 mm x 64 mm x 25 mm, sur l'extrémité ouverte d'un récipient de 7,5 litres ayant un tuyau de sortie de 2,85 cm de diamètre intérieur, et on scelle l'échantillon sur les bords à l'aide d'un raccord à bride. On remplit d'air le récipient, qui contient un manomètre pour permettre la 10 lecture de la pression interne, par un conduit à vanne approprié jusqu'à atteindre une pression effective interne de 0,35 kg/cm2, moment où on interrompt le débit d'air et on déclenche un chronomètre . Après que trente minutes se soient écoulées, on note la 15 pression interne du récipient. Puisque la seule sortie de l'air contenu dans le récipient se fait par 1:échantillon de mousse, la lecture finale de pression représente la perméabilité de l'échantillon à essayer. Pour les applications d'étanchéité industrielles un matériau utilisable doit donner une lecture, dans les conditions 20 d'essai précédentes, d'au moins 0,105 kg/cm2 effectif, pour être considéré comme peu perméable, bien que, s'il subsiste n'importe quelle pression mesurable au bout de 30 minutes, la mousse peut être considérée techniquement comme ayant une faible perméabilité. Dans les Exemples 1 à 11 le but de l'incorporation du 25 noir de fumée est purement et simplement de colorer la mousse, ce qui permet à la mousse d'être plus facilement identifiée quand on l'essaie conformément à certaines méthodes d'essai. On doit remarquer que dans les Exemples 29 à 35, on a constaté que toutes les formulations étaient peu perméables, par 30 observation subjective et non par la méthode exposée ci-dessus. Quand on prépare line mousse peu perméable en n'utilisant que du polybutène et un surfactif, la concentration du surfactif d'organo-silicone doit être au moins égale à environ 1 % du poids du polyéther polyol, et on peut incorporer dans la formulation plu-35 sieurs -unités de pourcentage du surfactif. Le surfactif représente de préférence d'environ 1 % à environ 3 % du poids du polyéther. Le polybutène représente de préférence dans la formulation d'environ 2,5 % à 10 % du poids du polyéther, et la quantité préférée représente environ 5 %. On doit remarquer que les mousses peu per-40 méables préparées sans employer d'acides gras insaturés sont 69 00026 2000036 préparées de la même manière que celle décrite ci-dessus pour la préparation des mousses peu perméables avec un acide gras insaturé. Les exemples précédents sont destinés à illustrer 1'invention, et ne sont pas de nature restrictive. On considère que des 5 modifications peuvent être apportées aux formulations révélées et décrites sans s'écarter de l'esprit et/ou du cadre de cette invention, en particulier puisque la technique de la fabrication des mousses souples de polyuréthane est une de celles dans lesquelles beaucoup de variables chimiques peuvent facilement être changées 10 pour modifier les caractéristiques chimiques et physiques finales de la mousse définitive formée. Par exemple, on peut utiliser, conformément à la présente invention, des mélanges artificiels des acides gras insaturés per se. 69 00026 2000036 REVENDICATI O N S 1. Une mousse de polyuréthane du type polyéther, souple et peu perméable, qui est le produit de la réaction d'un polyisocyanate organique et d'un polyéther polyol, les produits suivants étant incorporés à ladite mousse : 5 (1) un hydrocarbure constitué par un polybutène, un poly- propylène, une paraffine liquide, du pétrolatum blanc ou du pétrolatum jaune; et (2) au moins un acide gras insaturé; de telle sorte que, quand ledit hydrocarbure (1) est un polybutène 10 présent dans une proportion de 2,5 % à 10 % en poids du polyéther, alors ledit acide gras (2) puisse être remplacé par un surfactif d'organo-silicone dans une proportion d'au moins environ 1 % en poids du polyéther. 2- Une mousse selon la revendication 1, dans laquelle l'acide 15 gras insaturé ou le mélange d'acides gras insaturés, est l'acide oléique, l'acide linoléique, l'acide palmitique, l'acide stéarique, l'huile de tallôl distillée ou l'huile de tallôl brute. 3. Une mousse selon la revendication 1 ou 2, dans laquelle l'hydrocarbure est un polybutène. 20 4. Une mousse selon la revendication 3, dans laquelle le rapport pondéral du polybutène à l'acide gras est compris dans l'intervalle d'environ 1:70 à environ 30:1, et la quantité de polybutène représente entre environ 0,1 % et 10 % du poids du polyéther. 5. Une mousse selon la revendication 4, dans laquelle l'aci-25 de gras insaturé est présent sous la forme d'huile de tallôl distillée, le rapport du polybutène à l'acide gras est compris dans 1'intervalle d'environ 1:60 à environ 20:1, et la quantité de polybutène représente d'environ 2,5 % à 5 % du poids du polyéther. 6. Une mousse selon la revendication 5, dans laquelle le 30 polyéther polyol est un produit d'addition oxyde de propylène du glycérol, le rapport du polybutène à l'acide gras est compris dans l'intervalle d'environ 1:3 à environ 3:1, et la quantité de polybutène représente d'environ 2,5 % à 5 % du poids du polyéther. 7. Une mousse selon la revendication 6, dans laquelle le 35 polybutène a un poids moléculaire compris dans l'intervalle d'environ 300 à environ 3000. 8. Une mousse selon la revendication 7, contenant un surfactif d'organo-silicone en proportion inférieure à environ 1 % du poids du polyéther. 69 00026 2000036 9. Un procédé pour fabriquer une mousse de polyuréthane du type polyéther, souple et peu perméable, comprenant la réaction d'un polyisocyanate avec un polyéther polyol en présence de : (1) un hydrocarbure constitué par un polybutène, un poly- 5 propylène, une paraffine liquide, du pétrolatum blanc ou du pétrolatum jaune; et (2) au moins un acide gras insaturé; de telle sorte que, quand ledit hydrocarbure (1) est un polybutène présent dans une proportion de 2,5 % à 10 % en poids du polyéther, 10 alors ledit acide gras (2) puisse être remplacé par un surfactif d'organo-silicone dans une proportion d'au moins environ 1 % en poids du polyéther. 10. Un procédé selon la revendication 9, dans lequel 1'acide gras insaturé ou le mélange d'acides gras insaturés est l'acide 15 stéarique, l'acide palmitique, l'acide linoléique, l'acide oléique, l'huile de tallôl distillée ou l'huile de tallôl brute. 11. Un procédé selon la revendication 9 ou 10, dans lequel l'hydrocarbure est un polybutène. 12. Un procédé selon la revendication 11, dans lequel la 20 quantité de polybutène représente entre environ 0,1 % et environ 10 % du poids du polyéther. 13. Un procédé selon la revendication 12, -dans lequel le polybutène est présent en quantité représentant entre environ 2,5 % et environ 5 % du poids du polyéther,et le rapport du polybutène à 25 l'acide gras est compris dans l'intervalle d'environ 1:60 à environ 20:1. 14. Un procédé selon la revendication 13, dans lequel le polyéther est un produit d'addition oxyde de propylène du glycérol, l'acide gras insaturé est présent sous la forme d'huile de tallôl 30 distillée, et le rapport du polybutène à l'acide gras est compris dans 1'intervalle d'environ 1:3 à environ 3:1. 15. Un procédé selon la revendication 9, dans lequel le polyéther polyol a un poids moléculaire de plus de 1500 environ, et la réaction est effectuée en l'absence d'acide gras, et en présence 35 d'un surfactif d'organo-silicone dans une proportion représentant plus d'environ 1 % du poids dudit polyéther, et d'un polybutène dans une proportion représentant entre environ 2,5 % et environ 10 % du poids du polyéther.
Electric power steering device and control method thereof An electric power steering device includes a steering link that includes a plurality of connected steering shafts that connect a steering wheel to a steered wheel, a motor that provides a steering torque to assist the steering link, a torque sensor which is mounted to one of the steering shafts and which detects the steering torque of that steering shaft, a steering angle sensor which is mounted to one of the steering shafts and which detects a steering angle of that steering shaft, a calculating unit that calculates a steering assist amount based on the steering torque detected by the torque sensor, the steering angle detected by the steering angle sensor, and predetermined crossed axes angles between the connected steering shafts, and a motor controller that drives the motor so as to apply a steering assist force to the steering link based on the steering assist amount. As a result, it is possible to correct the torque by a simple method. INCORPORATION BY REFERENCE The disclosure of Japanese Patent Application No. 2001-263429 filed on Aug. 31, 2001, including the specification, drawings and abstract is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION 1. Field of Invention The invention relates to an electric power steering device that corrects, via a motor, a torque variation in a steering link in an automobile, as well as to a control method thereof. 2. Description of Related Art An electric power steering device that generates a steering assist force using a motor, such as that disclosed in Japanese Patent Application Laid-Open Publication No. 9-254804, has conventionally been known. In this electric power steering device, a first shaft, which is connected to a steering wheel, is connected to a second shaft by a first universal joint, and the second shaft is connected to a third shaft by a second universal joint, such that a steering link having a plurality of steering shafts is constructed. A torque sensor and a steering angle sensor are then provided on the first shaft and a motor that applies a steering assist force to a link that transmits rotational torque from the steering link to the wheels is provided on that link. This electric power steering device is also provided with a control unit that includes a control circuit, memory, and a drive circuit. In the memory is stored mapped torque correction data in order to obtain a rotational torque variation of the third shaft with respect to the steering force input to the first shaft. The control circuit determines an assist torque value based on a torque detection signal from the torque sensor, an angle detection signal from the steering angle sensor, and the torque correction data from the memory. The drive circuit then drives the motor based on that assist torque value. It is in this way that the steering assist force is obtained. With the foregoing electric power steering device, however, because the torque is corrected using mapped torque correction data, new torque correction data must be created every time the configuration is changed, e.g., every time the length of the steering shafts or the angle between them and the like are changed, that corresponds to that change, which is troublesome. Moreover, creating that torque correction data based on experimental values increases the number of man-hours increases even more. Still further, with an electric power steering device that is provided with a variable-ratio steering mechanism that changes the phase between the steering wheel and the end of the steering link opposite the steering wheel, it is extremely difficult to create appropriate correction data, and what is more, the mounting positions of the torque sensor and the steering angle sensor are limited. SUMMARY OF THE INVENTION In view of the foregoing problems, it is an object of this invention to provide an electric power steering device i) in which torque correction is possible by a simple method, ii) in which a torque sensor, a steering sensor, and a motor, and the like can be mounted to any portion of one of the steering shafts, and iii) which can also be provided with a variable-ratio steering mechanism. In order to achieve the foregoing objects, an electric power steering device is provided that includes i) a steering link which includes a plurality of connected steering shafts that connect the steering wheel with the steered wheels, ii) a motor that provides a steering torque to assist the steering link, iii) a torque sensor which is provided on one of the steering shafts and which detects a steering torque of the steering shaft, iv) a steering angle sensor which is provided on one of the steering shafts and which detects a steering angle of the steering shaft, v) a calculating unit that calculates a steering assist amount based on the steering torque detected by the torque sensor, the steering angle detected by the steering angle sensor, and predetermined crossed axes angles between the connected steering shafts, and vi) a motor controller that drives the motor so as to apply a steering assist force to the steering link. In addition, a control method is provided for an electric power steering device including a steering link that includes a plurality of connected steering shafts that connect the steering wheel with the steered wheels, a motor that provides a steering torque to assist the steering link, a torque sensor which is provided on one of the steering shafts and which detects a steering torque of that steering shaft, and a steering angle sensor which is provided on one of the steering shafts and which detects a steering angle of that steering shaft, includes the steps of calculating a steering assist amount based on the steering torque detected by the torque sensor, the steering angle detected by the steering angle sensor, and predetermined crossed axes angles between the connected steering shafts, and driving the motor so as to apply a steering assist force to the steering link based on that steering assist amount. According to an electric power steering device having the above described configuration and the above-described control method thereof, because the steering assist amount is obtained by calculation from the steering torque, the steering angle, and the crossed axes angle between each of the steering shafts, an appropriate assist force can always be applied to the steering link irrespective of the positional relationship, e.g., the crossed axes angle, between each of the steering shafts, thus giving the driver a uniformly stable steering feel. In addition, because the steering assist amount is calculated based on the steering torque that is detected by the torque sensor, the steering angle that is detected by the steering angle sensor, and the crossed axes angle between the steering shafts, the mounting locations of the torque sensor and the steering angle sensor are able be anywhere on the steering shafts, which improves the degree of freedom in the design of the construction. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS In the following description and the accompanying drawings, the present invention will be described in more detail in terms of exemplary embodiments. Hereinafter, a first exemplary embodiment of the invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view of an electric power steering device 10 according to a first embodiment of the invention, and FIG. 2 is a block diagram of the functions of the electric power steering device 10 shown in FIG. 1 . In the electric power steering device 10 , a lower end portion of a main shaft 12 , which is connected to a steering wheel 11 , is connected to an upper end portion of a mid shaft 14 via a first universal joint 13 . A lower end portion of the mid shaft 14 is connected to an upper end portion of an extension shaft 16 via a second universal joint 15 . A lower end portion of the extension shaft 16 is connected to a pinion gear which is housed within a gear box 17 and which engages with a rack bar 18 . Therefore, when the steering wheel 11 is turned, the rotational force is transmitted to the extension shaft 16 via the main shaft 12 , first universal joint 13 , mid shaft 14 , and second universal joint 15 so as to turn the pinion gear in the gear box 17 . The turning of the pinion gear in the gear box 17 selectively moves the rack bar 18 in the directions of arrows a and b, which in turn changes the direction of the steered wheels, not shown. The steering link includes the three steering shafts, which are the main shaft 12 , the mid shaft 14 , and the extension shaft 16 . Also in the figure, the crossed axes angle of the main shaft 12 and the mid shaft 14 is denoted as , and the crossed axes angle of the mid shaft 14 and the extension shaft 16 is denoted as . The first universal joint 13 is constructed such that a yoke joint 12 a , which is connected to the lower end of the main shaft 12 and which rotates integrally therewith, is connected via a cross-pin 13 a to a yoke joint 14 a , which is connected to the upper end of the mid shaft 14 and which rotates integrally therewith. Also, the second universal joint 15 is constructed such that a yoke joint 14 b , which is connected to the lower end of the mid shaft 14 and which rotates integrally therewith, is connected via a cross-pin 15 a to a yoke joint 16 a , which is connected to the upper end of the extension shaft 16 and which rotates integrally therewith. Mounted to the main shaft 12 are a steering angle sensor 19 that detects a rotation angle of the main shaft 12 when the steering wheel 11 is turned, a torque sensor 20 that detects a steering torque of the main shaft 12 , and an assist motor 21 which is a motor that applies a steering assist force to the main shaft 12 . The steering angle sensor 19 , torque sensor 20 , and assist motor 21 are each connected to a power steering ECU (electronic control unit) 22 . The power steering ECU 22 utilizes a computer, which is run according to a program routine, as its main component. When shown in a function block diagram such as that in FIG. 2 , the power steering ECU 22 includes a torque variation correction calculating portion 22 a , an assist amount calculating portion 22 b , and a motor driver 22 c that functions as motor driving means. The torque variation correction calculating portion 22 a receives as a steering angle signal a rotation angle of the main shaft 12 that is detected by the steering angle sensor 19 and calculates a correction value using the prerecorded crossed axes angles and and a (initial) phase of the upper and lower yokes. The torque variation correction calculating portion 22 a then sends this correction value to the assist amount calculating portion 22 b. The assist amount calculating portion 22 b receives this correction value sent from the torque variation correction calculating portion 22 a as well as a signal indicative of a torque value T detected by the torque sensor 20 . The assist amount calculating portion 22 b then calculates an assist amount based on these signals and sends a signal indicative of that assist amount to the motor driver 22 c . The motor driver 22 c then sends the signal received from the assist amount calculating portion 22 b to the assist motor 21 as a signal indicative of a drive current so as to drive the assist motor 21 . In the above configuration, when the crossed axes angle of the main shaft 12 and the mid shaft 14 , or the crossed axes angle of the mid shaft 14 and the extension shaft 16 is denoted as , the input/output relationship of the torque with the first universal joint 13 or the second universal joint 15 can be expressed with Expression 1. In both FIG. 3 and Expression 1, Tin denotes the torque of the shaft on the input side (the main shaft 12 or the mid shaft 14 ) and Tout denotes the torque of the shaft on the output side (the mid shaft 14 or the extension shaft 16 ). Also, in denotes the rotation angle of the shaft on the input side. In this case, the torque variation Tout/Tin with respect to the input angle in shown in Expression 1 changes in 180 degree cycles, as shown in FIG. 4 . Here, the input/output ratio of torque with the first universal joint 13 shown in FIG. 1 with respect to the angle of the yoke joint 12 a referenced when the yoke joint 12 a is orthogonal to a plane A that includes the main shaft 12 and the mid shaft 14 is expressed with curve a in FIG. 4 . Also, the input/output ratio of torque with the second universal joint 15 with respect to the angle of the yoke joint 14 b referenced when the yoke joint 14 b is orthogonal to a plane B that includes the mid shaft 14 and the extension shaft 16 is expressed with curve b in FIG. 4 . The phase difference between curve a and curve b is denoted as . The rotation angle of the input/output shaft at each yoke is expressed with Expression 2 below. g ( , in) out tan 1 tan in cos Expression 2 out denotes the rotation angle of the shaft on the output side, which in this case, is the rotation angle of the mid shaft 14 or the extension shaft 16 . In this way, because the torque ratio and the rotation angle can be expressed with Expression 1 and Expression 2, Expression 1 and Expression 2 can be used to obtain the torque variation of the main shaft 12 and the extension shaft 16 . That is, by denoting the torque of the main shaft 12 as a column shaft torque T 1 and its rotation angle as 1, denoting the torque of the mid shaft 14 as T 2 and its rotation angle as 2, and denoting the torque of the extension shaft 16 as T 3 and its rotation angle as 3, the mutual relationships between the torque T 1 , the torque T 2 , and the torque T 3 can be expressed with the following expressions. First, the torque variation T 2 /T 1 of the main shaft 12 and the mid shaft 14 can be expressed by the function in Expression 3 below. Also, a rotation angle variation expression g is expressed by 2 g( , 1). Next, the torque variation T 3 /T 2 of the mid shaft 14 and the extension shaft 16 can be expressed by the function in Expression 4 below. Therefore, the torque variation T 3 /T 1 of the main shaft 12 and the extension shaft 16 can be obtained by multiplying Expression 3 by Expression 4, which results in Expression 5 below. In the foregoing expressions, f denotes the torque ratio expression and g denotes the rotation angle variation expression. Therefore, according to Expression 5 it is possible to obtain the torque variation of the main shaft 12 and the extension shaft 16 . The target assist amount when there is no torque variation in the steering link will be referred to as basic assist amount. The correction value that corrects the assist motor 21 is obtained from the obtained torque variation. The motor driving current corresponding to the basic assist amount and the correction value flows to the assist motor 21 so as to drive the assist motor 21 . As a result, the target assist is able to be implemented without generating torque variation in the main shaft 12 . The assist amount reduces the steering force required by a driver to turn the steering wheel such that the sum of this assist amount and manual torque provided by the driver is the output torque applied to the main shaft 12 . Therefore, the relationship between this manual torque M, the motor assist torque PS (M, 1) and column shaft torque T 1 ( 1) is expressed with the following expressions. By making the target value of T 3 with respect to M an assist ratio As(M) function, Expression 9 below can be obtained. Here, the assist ratio As(M) function is usually determined by a preset expression or map. The manual torque M is a torque value detected by the torque sensor 20 . Therefore, by controlling the assist amount output to the assist motor 21 based on this theoretical expression so as to become PS(M, 1), the driver is able to steer smoothly without an unpleasant sensation from torque variation. In this case, the calculation process for the torque variation T 3 /T 1 F( 1) is performed by the torque variation correction calculating portion 22 a and the calculation process for the motor assist torque PS(M, 1) is performed by the assist amount calculating portion 22 b. Accordingly, with the electric power steering device 10 according to this exemplary embodiment, the assist amount is obtained by a calculation based on the crossed axes angle of the main shaft 12 and the mid shaft 14 , the crossed axes angle of the mid shaft 14 and the extension shaft 16 , the rotation angle of the main shaft 12 that is detected by the steering angle sensor 19 , and the torque of the main shaft 12 that is detected by the torque sensor 20 . Then, assist force is output from the assist motor 21 in accordance with this assist amount. Obtaining the assist amount based on the theoretical expression in this way enables the torque correction to be obtained simply without the need to create large amounts of data and perform complicated control, as is the case with the related art. Also, because the calculation process can be performed in accordance with the configuration of the steering link, the torque is able to be corrected irrespective of the configuration of the steering link. The control described above is with a column-type electric power steering device in which the steering angle sensor 19 , the torque sensor 20 , and the assist motor 21 are mounted to the main shaft 12 . According to another exemplary embodiment, however, the steering angle sensor 19 , the torque sensor 20 , and the assist motor 21 can also be mounted to another portion other than the main shaft 12 . For example, with a pinion-type electric power steering device in which only the steering angle sensor 19 is mounted to the main shaft 12 and the torque sensor 20 and the assist motor 21 are provided on a portion where the pinion gear in the gear box 17 and the rack bar 18 are connected, the assist amount can be obtained according to the following Expression 10. Tp in Expression 10 denotes a pinion engaging torque. From Expression 5 is obtained the expression T 3 F( 1) T 1 , and from this expression and Expression 10 is obtained the expression Tp F( 1) T 1 Ps( 1), such that Expression 11 below is obtained. By obtaining F( 1) using Expressions 1 and 5, the motor assist torque PS(M, 1) can be obtained. In this way, with the electric power steering device 10 according to the first exemplary embodiment, the torque can be corrected appropriately even when the torque sensor 20 and the assist motor 21 are mounted to a portion other than the main shaft 12 . Further, the torque sensor 20 and the assist motor 21 can be mounted to the mid shaft 14 and the steering angle sensor 19 can also be mounted to a portion other than the main shaft 12 . In this case, a suitable assist amount can be calculated by simply modifying the foregoing expression such that the mounting positions of the steering angle sensor 19 , the torque sensor 20 , and the assist motor 21 no longer become restricted. Further, FIG. 5 and FIG. 6 show an electric power steering device 30 according to a second exemplary embodiment of the invention. With this electric power steering device 30 , a steering angle control actuator 32 is mounted to a mid shaft 31 so as to enable a phase of an upper side portion 31 a and a lower side portion 31 b of the mid shaft 31 to change. This mid shaft 31 and steering angle control actuator 32 together serve as a variable-ratio steering mechanism which enables control such that when the steering wheel 11 is turned one complete revolution the extension shaft 16 will rotate two complete revolutions, for example. The steering angle control actuator 32 is then connected to a steering angle control ECU 33 that controls the steering angle control actuator 32 . The steering angle control ECU 33 is also connected to a vehicle speed sensor 34 , the steering angle sensor 19 , and the power steering ECU 22 . The configuration of other parts in this electric power steering device 30 is the same as with the aforementioned electric power steering device 10 and like parts will be denoted with like reference numerals. The steering angle control ECU 33 receives a steering angle signal indicative of the rotation angle of the main shaft 12 that is detected by the steering angle sensor 19 . The steering angle control ECU 33 also receives a vehicle speed signal indicative of the vehicle speed that is detected by the vehicle speed sensor 34 . The steering angle control ECU 33 then calculates a current value based on the steering angle signal and the vehicle speed signal to actuate the steering angle control actuator 32 , and then sends a signal indicative of the calculated current value to the steering angle control actuator 32 so as to actuate it. The steering angle control ECU 33 also receives a signal indicative of the operation angle of the mid shaft 31 that rotates with the actuation of the steering angle control actuator 32 , and then outputs it to the power steering ECU 22 . Further, the steering angle control ECU 33 controls the actuation angle of the steering angle control actuator 32 so that it, for example, rotates a large amount in the direction of the main shaft rotation with respect to the main shaft rotation angle when the vehicle is running at slow speeds, and only slightly, or in the reverse direction, when the vehicle is running at high speeds. Also, when the steering angle control actuator 32 is actuated and the phase of the upper side portion 31 a and the lower side portion 31 b of the mid shaft 31 have changed, the steering angle control ECU 33 takes the actuation angle of the mid shaft 31 as a relative angle by a calculation process and sends a signal indicative of that actuation angle to the torque variation correction calculating portion 22 a . This actuation angle is an actuation angle sensor value within the steering angle control actuator 32 that is generated as a result of the steering angle control ECU 33 driving the steering angle control actuator 32 , or an actuation command value of the steering angle control ECU 33 (or a drive control value). The torque variation correction calculating portion 22 a then obtains the torque variation by a calculation process using the steering angle signal from the steering angle sensor 19 and the actuation angle signal from the steering angle control ECU 33 , and sends a signal indicative of the obtained data to the assist amount calculating portion 22 b . This is done by modifying Expression 4 to T 3 /T 2 f( , 2 ). denotes the actuation angle of the steering angle control actuator 32 . Thereafter, just as with the control in electric power steering device 10 , the assist amount calculating portion 22 b receives a signal sent from the torque variation correction calculating portion 22 a and a torque signal indicative of the torque that is detected by the torque sensor 20 , and calculates the assist amount from these signals. The assist amount calculating portion 22 b then outputs a signal indicative of that assist amount to the motor driver 22 c , which in turn sends the received signal as a drive current signal to the assist motor 21 to drive the assist motor 21 . The torque variation T 3 /T 1 and the motor assist torque PS(M, 1) in this case are able to be obtained using Expressions 1 through 11. In this way, with the electric power steering device 30 according to this exemplary embodiment, the torque is able to be corrected appropriately even when a variable-ratio steering mechanism is provided, so that the driver is always able to have a steering sensation with no unpleasantness. Further, this can also be applied in the same way and with the same advantages when there are three or more joints. While the invention has been described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the preferred embodiments or constructions. To the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the preferred embodiments are shown in various combinations and configuration, which are exemplary, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the invention.
Sommaire de la découverte Des arylchloro (et bromo) carbonyl cétènes, les esters d'arylcarboxy cétène et les phénylesters aryl carbothioliques qui en dérivent, les méthodes pour les préparer et l'emploi des esters comme agents d'acylation pour produire des esters de dérivés arylacétyliques &alpha; -carboxy - et -carbothioliques de l'acide 6-amino pénicillanique et, par hydrolyse, les dérivés d'acide correspondants sont décrits. Fondement de l'Invention Cette invention concerne une série de nouveaux dérivés d'arylcarboxy cétènes, des méthodes pour les préparer, et leur em ploi comme intermédiaires pour la synthèse ultérieure. Plus particulièrement, elle concerne une série de nouvelles arylchlorocarbonyl cétènes et les homologues bromés correspondants; les nouveaux esters arylcarboxyliques et arylcarbothioliques de cétène qui en dérivent, l'emploi des esters comme nouveaux agents d'acylation pour acyler des amines telles que l'acide 6-aminopénicillanique, et les nouvelles acyl amines produites La production des cétènes des dérivés de l'acide malonique est décrite dans la littérature. Staudinger, Helv.Chim.Acta 8, 306 '1925) ,par exemple, a préparé une série de dialcoyl cétènes de faible poids moléculaire, par décomposition thermique des anhydrides maloniques di(alcoyl inférieur)substitués.Dans une modification de cette méthode en utilisant des anhydrides mixtes préparés à partir des acides maloniques disubstitués et de la diphényl cétène, Staudinger et al, ibid, 6, 291 (1923,et Ber. 46, 3539 (1913) ont préparé par décomposition thermique différentes cétènes disubstituées. Une autre méthode encore comprend la déshalogénation des halogénures d'&alpha;-halo-acycle avec du zinc (Staudinger, Ann. 356, 71 (1907); 380, 298 (1911)).Par extension de cette réaction, Staudinger et al, Ber. 42, 4908 (1909) ont préparé l'éthyl carbéthoxy cétène par déshalogénation du malonate de diéthyl-&alpha;-bromeo-&alpha;- éthyle. Une autre méthode, la décomposition des diazo cétones, a été utilisée pour préparer certaines diaryl cétènes (Smith et al, Org. Syntheses 20, 47, 1940; Gilman et al, Rec. trav. chim., 48, 464, 1929). On sait en outre que certains chlorures d'acétyle disubstitués subissent une déshydrohalogénation sous l'influence des amines tertiaires, en formant des céto cétènes.Cette méthode semble cependant etre limitée a la préparation de certaines céto cétènes aryliques et de haut poids moléculaire, toutes relative ment résistantes à la dimérisation (Staudinger et al, Ber.41, 594, 1908). La réaction de l'acide phénylmalonique avec le pentachlorure de phosphore (rapport molaire 1:2) en solution éthérée, est rapportée par Sorm et al (collection Czechoslov. Chem. Cammuns.20, 593-6, 1955) comme produisant du chlorure de phénylmalonyle. Les mêmes auteurs signalent (ouvrage cité) que, lorsque la réaction est conduite en l'absence d'un solvant et a la température de reflux, il se forme du chlorure de phénylchloromalonyle. Les produits sont tous deux isolés par distillation sous vide. La préparation des esters alcoyliques inférieurs de la phénylcarboxy cétène par décomposition thermique des diazocéto esters, a été décrite par Staudinger et al (Ber. 49, 2522, 1916). Cependant, la méthode utilisée par Staudinger est assez complexe et conduit globalement à des rendements assez médiocres. Le procédé de la présente invention utilisé pour préparer de tels esters, par contre, est simple et produit des rendements satisfaisants. L'emploi de cétènes comme agents d'acétylation est bien connu dans la technique. On sait aussi das la technique acyler les groupements amine au moyen d'anhydrides d'acide simples ou mixtes, d'halogénures d'acide, d'azides d'acide, de-thiolacétones, d'énols acylés ou d'acides carboxyliques avec des carbodiimides (Sheehan, Brevet E.U.A. 3.159.617, 10 Décembre 1964j. Cependant, l'introduction de groupements &alpha;-carboxy-arylacétyle dans l'acide 6-aminopénicillanique a été, jusqu'a présent, limitée à l'emploi1 comme agent d'acylatioard'un anhydride simple ou mixte, d'un halogénure d'acide arylmalonique ou d'un ester d'acide aryl malonique (Brevet E.U.A. 3.142.673, Brevet Britannique 1.004.670). Sommaire de l'invention On a maintenant découvert, de façon inattendue, qu'une grande variété d'aryl chlorocarbonyl cétènes, ainsi que les homologues bromés correspondants, pouvaient facilement être préparées par réaction des acides aryl maloniquesavec un agent d'halogénation, suivie d'une distillation sous vide du produit de réaction ainsi formé. Le procédé et les composés obtenus se résument par la réaction où R1, considéré en gros ici comme un groupement aryle,est choisi dans le groupe composé des radicaux : thiényle, furyle, pyridyle, phényle, et phényle substitué où le substituant est choisi dans le groupe composé des radicaux alcoyleinférieur, chlore, brame, alcoxy inférieur, di(alcoyl inférieur) amine et trifluorométhyle, et X est choisi dans le groupe composé du chlore et du brome. Le procédé de cette invention, eu égard aux indications de Sorm et al (ouvrage cité) suivant lesquelles le chlorure de phénylmalonyle et le chlorure de phénylchloromalonyle sont obtenus par action du pentachlorure de phosphore sur l'acide phénylmalonique en présence d'un solvant, et les produits sont récupérés par distillation sous vide, est tout à fait surprenant et inattendu. On a constaté que la répétition de la méthode de Sorm et al pour préparer le chlorure de phénylmalonyle donnait la phénylchlorocarbonyl cétène plutôt que le chlorure de phénylmalonyle. L'existence du composé cétène avait été complètement ignorée par Sorm et al. Le procédé comprend en général la réaction d'un acide malonique aryl substitué avec un agent d'halogénation choisi dans le groupe composé de P(X)5, P(x)3, PO(X)3 et SO(X)2, où X est tel qu'il est défini plus haut, à une température d'environ OOC à environ 500 C. Le dihalogénure ainsi produit se décompose thermiquement à environ 80-1000 C pour donner l'aryl halocarbonyl cétène. Les arylhalocarbonyl cétènes manifestent un double caractère fonctionnel et elles réagissent a la fois comme les halogénures d'acide et comme les cétènes. Elles sont donc valables comme inter médiaires pour ia synthèse ultérieure. Les alcools (R2-OH) et les thiophénols (R7SH), par exemple, réagissent avec les arylhalocarbonyl cétènes à basse température, par exemple d'environ -700 C à environ 300 C, en donnant les esters correspondants de cétènes arylcarboxyliques et arylcarbothioliques, qui sont utiles comme agents d'acylation. La réaction semble se produire d'abord avec le groupement cétène pour former un intermodiaire passager ou qui se réarrange avec élimination d'halogénure d'hydrogène en donnant l'ester de cétène arylcarboxylique ou arylcarbo thionique. Les nouveaux esters de cétène arylcarboxyliques et arylcarbothioliques de cette invention sont surtout intéressants comme agents d'acylation des amines avec production d'esters d'amines Ci -carbothioliques etO(-carboxy- -arylacétyliques. Ils sort particulièrement utiles pour acyler des amines telles que l'acide 6-amino-pénicillanique en vue de la production d'agents antibactériens connus ou nouveaux. Les méthodes de la technique antérieure utilisées pour introduire des groupements 8 -carboxy-arylacétyle dans les composés aminés tels que l'acide 6-aminopénicillanique, ont fait usage d'anhydrides d'acide, mixtes ou simples, ou d'halogénures d'acidesaryl maloniques.L'emploi des agents d'acylation antérieurs demande des précautions extrêmes durant les étapes de réaction et de récupération, afin d'obtenir des rendements satisfaisants et d'éviter la décarboxylation du groupement carboxyle. Par contre, les agents d'acylation de cette invention réagissent doucement et rapidement avec les amines à basse température et ne forment pas de sous-produies indésirables. Les halogénures d'acide et les esters des aryl carboxy cétènes rorment des 2--oxo-oxétènes (1,3--époxypropènes) 3-aryl substituées en solution. Ces composés réagissent d'une manière analogue à celle des composés dont ils dérivent. Les réactions précédentes sont résumées par la séquence suivante où R1 et X sont comme définis plus haut; X' est choisi dans le groupe composé de OR2 et SR7, où R2 est choisi dans le groupe composé des radicaux phényle phényle substitué où le substituant est choisi dans le groupe composé d'au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur, alcanoyle inférieur, carbo(alcoxy inférieur?, nitro, et di(alcoyl inférieur) amine; furyle quinolyle quinolyle méthyl-substitué phénazinyle 9, 10.-anthraquinonyle phénanthr ènequinonyle anthracényle phénanthryle (1,3-benzodioxolyle) 3- (2-méthyl-4-pyronyle) 3-(4-pyronyle) et N-(méthylpyridyle);; où Y2 est choisi dans le groupe composé de -CH-CH-O- -CH=CH-CH=CH -CH=CH-S- -C(O)-CH=CH-C(O)- et -CH2-CH2-S- -C(O)-C(O)-CH=CH-; où Z' est un radical alcoylène inférieur etest choisi dans le groupe composé de -(CH2)3 et -(CH2)4-, et de leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé des radicaux méthyle, chlore et brome; benzyle benzyle substitué où le substituant est choisi dansle groupe composé du chlore, du brome, du fluor, de l'al coyle inférieur, de l'alcoxy inférieur, de l'alcanoyle inférieur, du carbo(alcoxy inférieur), du nitro1 et du di(alcoyl inférieur) amine; phtalimidométhyle benzohydryle trityle cholestéryle; alcényle ayant jusqu'à 8 atomes de carbone; alcényle ayant jusqu'à 8 atomes de carbone;; (l-indanyl)méthyle (2-indanyl)méthyle furylméthyle pyri dylméthyle (2-pyrrolidono)méthyle (4-imidazolyl)méthyle [2,2-di(alcoyl inférieur)-1,3-dioxolon-4-yl]méthyle cycloalcoyle et cycloalcoyle (alcoyl inférieur) substitué ayant de 3 à 7 atomes de carbone dans la partie cyclo alcoyle; bicyclo [4.4.0]décyle thujyle fenchyle isofenchyle 7-. adamantanyle ac-indanyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé du méthyle, du chlore et du brome; ac tétrahydronaphtyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe com posé du méthyle, du chlore et du brome; alcoyle et alcoyle inférieur substitué où le substituant est choisi dans le groupe composé d'au moins un des radicaux suivants chlore brome fluor nitro carbo (aîcoxy inférieur) alcanoyle inférieur alcoxy inférieur cyano (alcoyl inférieur)mercapto (alcoyl inférieur)sulfinyle (alcoyl inférieur)sulfonyle; -CH2-CH2 -NR5R6 -CH2-CH2- CH2-NR5R6 -CH2-CH(CH3)-NR5R6, et -CH(CH3)-CH2-NR5R6 où -NR5R6 est choisi dans le groupe composé de -NH(alcanoyiCinférieur), /(alcoy:Winférieur ) -N (alcoyllinférieur) où les groupements (alcoyle inférieur) peuvent être identiques ou différents; et -N (alcoyl inférieur3aniline; et --ialcoylène inférieur)-Yl où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone, et où Y1 est choisi dans le groupe composé des radicaux azétidine aziridine pyrrolidine pipéridine morpholine thiomorpholine N- (alcoyl inférieur)pipérazine pyrrole imidazole 2-imidazoline 2,5-diméthylpyrrolidine 1,4,5,6 tétrahydropyrimidine 4-méthylpipéridine et 2,6-diméthylpipéridine; et R7 est choisi dans le groupe composé des radicaux phényle et phényle mono-, di-, et tri-substitlé où le substituant est choisi dans le groupe composé d'au moins un des radicaux chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur et trifluorométhyle, à condition qu'une seule des positions ortho par rapport au groupement thio du radical phényle soit substituée; et R est Parmi les groupements alcoyle inférieur, alcoxy inférieur, alcanoyle inférieur et carbo(alcoxy inférieur), on préfère ceux qui ont de un à quatre atomes de carbone dans les parties alcoyle, alcoxy ou alcanoyle, puisque les produits réagissants portant de tels groupeménts sont plus faciles à obtenir que ceux qui sont nécessaires pour de tels groupements ayant un plus grand nombre d'atomes de carbone. Sont également inclus dans le cadre de cette invention les sels pharmaceutiquement acceptables des nouveaux composés de Formule III dans lesquels le groupement acide,ouloe deux groupements acides sont mis en jeu dans la formation du sel. Des sels tels que ceux de sodium, de potassium, de calcium, de magnésium, d'ammonium et d'ammonium substitué, par exemple de procatne, de dibenzylamine, de N,N' -dibenzyléthylènediamine , de N,N'-bis (déhydroabiétyl) éthylènediamine, de l-éphènamine, de N-éthylpipéridine, de N-benzyl- phénéthylamine, des trialcoylamines, y compris de triéthylamine, ainsi que les sels formés avec d'autres amines qui ont été utilises pour former des sels avec la benzylpénicilline, sont utiles pour la préparation de compositions pharmaceutiquement excellentes de ces antibiotiques valables. Description détaillée de l'invention La production des arylchloro (et bromo) carbonyl cétènes comprend la réaction d'un aride arylmalonique avec un agent d'halogénation choisi dans le groupe composé de P:X)5, P(X)3, PO(âj3 et So(X)2, où X est comme défini ci-dessus, a des températures allant d'environ 0 C à environ 500 C, pendant des périodes allant d'environ une heure à environ 10 heures. La réaction est conduite en présence d'un système de solvants1 de préférence un système de solvants inerte vis-à-vis de la réaction. Des solvants appropriés sont les dialcoyl éthers, par exemple le diéthyl éther, le dipropyl éther, les mono- et diméthyl éthers d'éthylène glycol et de propylène glycol, le chlorure de méthylène et le chloroforme. La période de réaction e-t, bien entendu,fonction de la température de réaction et de la nature des produits réagissants. Cependant, pour une combinaison donnée de produits réagissants, les températures plus basses demandent des périodes de réaction plus longues que les températures plus hautes. Les proportions molaires de produits réagissants, c'està-dire d'acide aryl malonique et d'agent d'halogénation, peuvent varier largement, par exemple elles peuvent aller jusqu'à 1:10 ou davantage, mais pour donner des rendements satisfaisants, elles doivent être au moins stoechiométriques. Dans la pratique réelle on préfère un rapport stoechiométrique de produits réagissants. Les produits réagissants peuvent être ajoutés d'un seul coup ou séparément. Si on les ajoute séparément, l'ordre d'addition a peu d'importance. Cependant, il semble que la réaction soit plus douce et moins sujette à des réactions secondaires, comme le prouve la coloration du mélange réactionnel, en particulier à la distillation, quand on ajoute l'acide aryl malonique a l'agent d'halogénaiOn. Le mélange réactionnel, dans ces conditions, en général passe progressivement d'une couleur jaune à une couleur rouge. Le mélange réactionnel, pour l'ordre d'addition inverse, c'est-d-dire l'addition de l'agent halogénant à l'acide arylmalonique, passe progressivement du jaune au noir. Les arylhalocarbonyl cétènes produites sont isolées du mélange réactionnel par distillation sous vide. A cause de leur grande réactivité on les entrepose généralement sous atmosphère d'azote, à basse température et en l'absence de lumière. La réaction des aryl halocarbonyl cétènes avec les alcools et les thiophénols est conduite sur un rapport molaire 1:1 à une température d'environ -7O0C à environ 30 C, quand on veut transformer l'arylhalocarbonyl cétène en un ester de cétène. I1 vaut mieux utiliser un solvant inerte vis-à-vis de la réaction, tel que l'éthyl éther, le méthyl éther, le dioxane, le chlorure de méthylène, ou le chloroforme, pour permettre un meilleur mélange et un meilleur contre de la réaction. L'emploi d'un rapport molaire d'arylhalocarbonyl cétène à l'alcool ou au thiophénol supérieur à l:l,ou de températures supérieures à 300 C, conduit à des diesters d'acide malonique.Par exemple, quand on utilise deux moles d'alcool par mole d'arylhalocarbonyl cétène, il se forme le diester correspondant de l'acide arylmalonique. On obtient des demi-amides d'esters d'acide arylmalonique en faisant réagir les arylhalocarbonyl cétènes avec un alcool puis en faisant réagir l'ester d'arylcarboxy cétène obtenu avec une amine primaire ou secondaire, comme décrit ici. I1 n'est pas nécessaire d'isoler l'ester intermédiaire. On peut employer une amine tertiaire comme accepteur d'acide pour éliminer l'halogênure d'hydrogène produit pendant la formation de l'ester. Les esters d'arylcarboxy et d'aryl carbothiol cétènê produits comme décrit ci-dessus sont d'excellents agents d'acylation convenant particulièrement à l'acylation des amines pour former des -carbothiol- et des S -carboxyarylacêtyl amines Ils sont surtout intéressants comme agents pour l'acylation de l'acide 6aminopénicillanique. Beaucoup de composés esters de pénicilline de cette invention manifestent par administration buccale une absorption meilleure que celle produite par les formes correspondantes acide libre ou sel de métal alcalin. Ils repésentent par conséquent des formes de doses commodes et efficaces des&alpha;-carbothiol- et &alpha;-carboxy aryl pénicillines. De plus, un grand nombre des esters décrits ici, quoique inactifs ou relativement peu actifs vis-à-vis des organismes gramme négatifs per se, sont métabolisés en acide homologue, c'est-à-dire en &alpha; -carboxybenzylpénicilline, quand ils sont injectés par voie parentérale dans un animal, y compris dans le corps humain. ta transformation métabolique de tels esters en l'acide homologue se fait à une vitesse telle qu'il apparat une concentration efficace et prolongée de l'acide homologue dans le corps de l'animal. En effet, de tels esters jouent le rôle de sources de dépôt pour l'acide homologue.Sont particulièrement-utiles à cet égard les composés dans lesquels le groupement ester est -COoeH2CH2Y où Y1 est un groupement basique tel que le groupement di(alcoyl inférieur) amine, pyrrole, pyrrolidine, pipéridine, phtalimide, imidazoline ou diisopropylamine; et ceux dans lesquels le groupement ester (-COOR2)oon- tient un atome de carbone tertiaire, par exemple dans les radicaux tertiobutyle, trityle ou 2-naphtyle. L'acylation de l'acide 6-aminope-nicillanique est conduite à une température d'environ -7G C à environ 50 C et de préférence à une température d'environ 0 C à environ 300 C. La période de réaction va en général de quelques minutes à environ 5 Heures.On utilise en général un solvant inerte vis-à-vis de la réaction, comme l'acétate d'éthyle, le dioxane, le tétrahydrofurane, la méthyl isobutyl cétone, le chloroforme ou le chlorure de méthylène, pour faciliter l'agitation et le contrôle de la température. I1 s'est avéré particulièrement commode de former sabord l'ester d'arylcarboxy ou d'arylcarbothiol cêtène, comme décrit ci-dessus, et d'employer le mélange réactionnel, sans isolement de l'ester de cétone, directement dans la réaction d'acylation de l'amine. Dans ces caslà, on utilise une base organique, c'est-à-dire une amine tertiaire telle que la triéthylamine ou une autre tri-alcoylamine, de préférence une tri(alcoyl inférieur)amine, pour éliminer lthalogénure d'hydrogène produit dans la formation de l'ester de cétène.D'un point de vue pratique, on utilise l'acide 6-aminopénicillanique sous la forme de son sel de triéthylamine. Pour cette raison, le chlorure de méthylène est un solvant préféré puisque le sel de triéthylamine s'y dissout facilement. On peut aussi utiliser les sels de sodium ou de potassium de l'acide 6- aminopénicillanique, mais le sel préféré est le sel de triéthylamine à cause de sa plus gran- de solubilité dans les systèmes de solvants utilisés. On peut bien entendu utiliser comme accepteur d'acide un exces de l'amine a acyler, mais en général on évite de le faire, non seulement pour des raisons économiques mais aussi pour empôher une ammoniolyse possible du groupement ester. ta réaction est désirablement conduite sous atmosphère d'azote. On peut aussi conduire la réaction de N-acylation dans une solution aqueuse neutre ou alcaline en tirant profit de la vitesse de réaction plus faible des esters d'arylcarboxy ou d'arylcarbothiol cétène avec l'eau à un niveau de pH neutre ou alcalin, par rapport a la vitesse de réaction avec le groupement amine. La réaction est conduite à des températures allant d'une température à peine supérieure au point de congélation du système aqueux et jusqu'à environ 500 C, de préférence entre 0 C et environ 200C. Pour pouvoir atteindre de basses températures et pour faciliter la réaction, on a intérêt à employer un système de solvants mixte c'est-à-dire de l'eau plus un solvant organique inerte vis-à-vis de la réaction et miscible à l'eau, tel que le dioxane ou le tétrahydrofurane. I1 vaut mieux bien entendu que l'ester de cétène soit utilisé sous forme de solution dans le même solvant inerte vis-àvis de la réaction, et on l'ajoute de préférence à la solution aqueuse de l'acide 6-aminopénicillanique. Les produits acylés sont isolés par des méthodes conventionnelles. Une méthode typique comprend par exemple la concentration à sec du mélange réactionnel sous pression réduite, la dissolution du résidu dans un tampon de citrate (pH 5,5), en en extrayait le produit au chloroforme. Les extraits chloroformiqùes sont lavés avec le tampon de citrate (pH 5,5), séchés avec du sulfate de sodium anhydre et concentrés à sec. Dans une autre méthode, qui est intéressante pour isoler les produits d'acylation peu solubles dans le chlorure de méthylène ou le chloroforme, on suit la méthode ci-dessus mais en utilisant le n-butanol comme solvant d'extraction à la place du chloroforme. Le produit restant après élimination par évaporation du solvant n-butanol, est trituré avec de l'éther pour donner un solide amorphe. Dans une autre méthode encore, qui constitue essentiellement une variation des méthodes précédentes, on utilise du bicar bonate-de sodium (ou du bicarbonate de potassium) saturé à la place du tampon de citrate. Cette méthode produit bien entendu le sel de sodium (ou de potassium) du produit d'acylation. Au besoin, pour obtenir un produit solide, on triture le sel avec de l'éther. Dans une autre méthode encore, le résidu restant après élimination des matières volatiles du mélange réactionnel est repris dans l'eau à un pH d'environ 2,3 à 2,9, habituellement à environ pH 2,7, et la forme acide libre du produit d'acylation est extraite de la solution acide à l'aide de chloroforme, d'éther, de n-butanol ou d'un autre solvant approprié. L'extrait de chloroforme, d'éther ou de n--butanol est ensuite lavé avec de l'acide aqueux (pH 2,3-2,9j, et le produit est récupéré par lyophilisation ou par transformation en sel insoluble dans le solvant, par exemple par neutralisation avec une solution n-butanolique de 2-éthyl-hexanoate de sodium ou de potassium. Les esters sont transformés par des méthodes connues en acides correspondants; par exemple, quand R2 est un groupement benzyle ou benzyle substitué, son élimination se fait par hydrogénation catalytique dans un solvant inerte vis-à-vis de la réaction, tel que l'eau, l'éthanol, le dioxane, à un pH d'environ 5 à environ 9 et au voisinage de la pression atmosphérique et de la température ambiante. Les catalyseurs préférés sont le platine, le rhodium, le nickel et le palladium. Quand R2 est autre que le radical benzyle ou benzyle substitué, son élimination se fait par traitement avec un acide faible, ou par traitement enzymatique avec une estérase telle que l'homogénate du foie. Quand on veut préparer la forme acide libre des pénicillines décrites ici, les groupements esters préférés sont ceux dans lesquels R2 est le radical trityle tertiobutyle ou ss -diisopropyl- aminoéthyle. Ces groupements sont facilement éliminés par traite ment avec un acide faible, qui donne des rendements satisfaisants des formes acides voulues des pénicillines. Les produits intéressants de cette invention sont remarquablement efficaces dans le traitement d'un certain nombre d'infections gram-positives et gram-négatives chez les animaux, y compris l'homme. A cette fin, on peut employer les substances pures ou leurs mélanges avec d'autres antibiotiques. On peut les administrer seules ou en combinaison avec un excipient pharmaceutique choisi en se basant sur la voie d'administration choisie et sur la pratique pharmaceutique courante. Par exemple, on peut les administrer par voie buccale sous la forme de comprimés contenant des excipients tels que l'amidon, le lait, le sucre, certains types d'argile, etc..., ou bien en capsules, seules ou en mélange avec les mêmes excipients ou des excipients équivalenta.On peut aussi les administrer par voie buccale sous la forme d'élixirs ou de suspensions buvables qui peuvent contenir des agents parfumants ou colorants, ou bien les injecter par voie parentérale, c'est-à-dire par exemple, par voie intramusculaire ou sous-cutanée. Pour l'administration parentérale, il vaut mieux les utiliser sous la forme d'une solution aqueuse stérile qui peut être soit aqueuse, par exemple une solution dans l'eau, dans une solution saline isotoni-que, dans le dextrose isotonique, dans une solution de Ringer, soit non aqueuse, par exemple une solution dans les huiles grasses d'origine végétale (huiles de coton, d'arachide, de mais, de sésame) et autres véhicules non aqueux qui n'interfèrent pas avec l'efficacité thérapeutique de la préparation et qui ne sont pas toxiques dans le volume ou la proportion utilisés (glycérol, propylène glycol, sorbitol).De plus, on peut préparer avec avantage des compositions convenant pour la préparation extemporanée de solutions avant l'administration. De telles compositions peuvent contenir des diluants liquides, par exemple du propylène glycol, du diéthyl carbonate, du glycol, du sorbitol, etc..; des agents tampons, ainsi que des anesthésiques locaux et des sels minéraux pour leur donner des propriétés pharmacologiques désirables. Les doses buccales et parentérales, pour les composés décrits ici, peuvent atteindre en général, respectivement quelques 200 mg par kilog et 100 mg par kilog de poids corporel par jour. Les effets antimicrobiens de plusieurs esters d'Q(-carbo P benzyl pénicillines vis-à-vis de Staphylococcus aureus et d'Escherichia coli 5, sont présentés ci-dessous. Les essais ont été effectués dans des conditions normalisées dans lesquelles on a ensemencé avec l'organisme particulier précisé un bouillon nutritif contenant diverses concentrations de la substance d'essai, et on a observé et noté la concentration inhibitoire minimale (MIC) pour laquelle la croissance de chaque organisme a cessé. Les substances d'essai ont la formule suivante et on les essaie sous la forme de leurs sels de sodium ou de potassium. ta benzylpénicilline (sel de K), ainsi essayée, a donné respecfivement des valeurs de 0,156 et supérieure à 100 contre S. aureus et Escherichia coli. TABLEAU I -- Effets in Vitro R2 S.aureus E.coli l-naphtyle 0,39 6,25 5-(1,3-benzodioxolyle) 3,12 25 2-naphtyle 1,56 12,5 6--quinolyle 1,56 50 3-(2-méthyl-4-pyronyle) 0,78 50 H 1,25 3,12 phényle 3,12 25 o-méthylphényle 0,78 12,5 m-méthylphényle 0,78 6,25 p-méthylphényle 0,39 6,25 o-éthylphényle 0,39 25 o-isopropylphényle 0,39 12,5 o-formylphényle 1,56 25 o-acétylphényle 50 > 200 p-acétylphényle 25 > 200 o--nitrophényle 25 200 2,3-diméthylphényle 0,78 50 3,4-diméthylphényle 0,78 25 2,3-diméthoxyphényle 1,56 50 2-chloro-5-méthylphényle 3,12 3,12 4-chloro-3-méthylphényle 1,56 1,56 2-chloro-3,5-diméthylphényle 1,56 1,56 2-chloro-3,4-diméthylphényle 1,56 3,12 2-chloro-4,5-diméthylphényle 0,39 0,39 4-chloro-2,3-diméthylphényle 0,19 0,19 4-chloro-2,5-diméthylphényle 0,19 0,39 4-chloro-2,6 diméthylphényle 0,19 0,19 2,4-dichloro-6-méthylphényle 0,39 0,39 2,4-dichloro-3,5-diméthylphényle 1,56 3,12 4,5-dichloro-2,3-diméthylphényle 0,04 0,09 4-chloro-2-nitrophényle 25 > 200 1-(1,2,3,4-tétrahydronaphtyle) 0,39 12,5 2-(1,4-naphtoquinonyle) 12,5 > 200 4- indanyle 0,39 6,25 5 -indanyle 0,39 6,25 5-quinolyle 1,56 50 8-quinonyle 1,56 50 R2 S.aureus E.coli méthyle 0,625 50 éthyle 1,25 > 100 n-propyle 6,25 > 200 n-butyle 50 > 200 sec-butyle 3,12 > 200 2-méthylpropyle 3,12 > 100 hexyle > 200 octyle > 200 > 200 décyle > 200 > 200 tétradécyle > 200 > 200 2-cyanoéthyle 1,9 6,25 2 méthoxyéthyle 3,12 > 100 2-acétoxyéthyle 3,12 , 200 1-(1-carbéthoxy)éthyle 100 > 200 2-(1,2,3-tricarbéthoxy)propyle 1,56 200 2-chloroéthyle 50 > 200 2,2,2 trichloroéthyle 100 > 200 2,2,2 trifluoroéthyle 1,56 25 2-(2-trifluorométhyl)propyle 0,78 200 l-éthoxy-2,2,2-trifluoroéthyle 0,78 50 l-éthoxy-2,2,2-trichloroéthyle 0,78 -12,5 l-isopropoxy-2,2,2-trichloroéthyle 1,56 100 1-butoxy-2,2,2 trichloroéthyle 0,39 50 carbéthoxy éthoxy méthyle 25 100 dicarbéthoxy éthoxy méthyle 1,56 50 1-(2,3-dibutyryloxy)propyle > 500 > 200 3-oxobutyle 50 > 200 l,l-diméthyl acétonyle > 200 > 200 2-nitrobutyle 100 > 200 2-diméthylaminoéthyle 1,56 50 2-diéthylaminoéthyle . 0,78 12,5 2-di(n-propyl)aminoéthyle 0,78 6,25 2-di(isopropylEaminoéthyle 1,56 100 2-di(n-butyl)aminoéthyle 0,78 12,5 3-diméthylaminopropyle 0,78 25 3-di-(n-propyl)amino-2-propyle 0,39 3,12 2-pyrrolidinoéthyle 0,78 6,25 2-(2-imidazolino)éthyle 1,56 50 R2 S.aureus E.coli 2-(2,5-diméthylpyrrolidino)éthyle 1,56 12,5 2-(4-méthylpipéridino)éthyle 0,19 6,25 3- (pyrrolidino)propyle 0,19 12,5 3-pipéridinopropyle 1,56 12,5 3-morpholinopropyle 1,56 6,25 3-pyrrolidino-2-propyle 0,39 3,12 3-pipéridino-2-propyle 0,39 1,56 2-aziridinoéthyle 50 2-pyrrolidino-1-propyle 0,78 6,25 2-azétidinoéthyle 3,12 100 2-pipéridino-1-propyle 0,78 6,25 2-(2,6-diméthyl pipéridino)ethyle 1,56 12,5 2-morpholino-1-propyle 3,12 50 2-di(n-propylamino)-1-propyle 1,56 6,25 2-(N-méthylanilino)éthyle 0,39 100 3-di(n-propylamino)propyle 0,19 12,5 3-diméthylamino-2-propyle 1,56 25 3-morpholino-2-propyle 1,56 6,25 isopropyle 6,25 > 200 tert-butyle 1,56 100 crotyle > 200 2-imidazoloéthyle 1,56 50 [2,2-diméthyl-1,3-dioxolon-4-yl]méthyle 0,39 50 benzohydryle 0,78 12,5 2-carbéthoxyéthyle 100 > 200 4-quinolyle 3,12 > 200 2- (4-méthylquinolyle) .3,12 100 l-butyn-4-yle 3,12 > 200 trityle 1,56 25 phtalimidométhyle 0,78 12,5 2-pyridylméthyle 1,56 25 4-pyridylméthyle- 0,39 25 pyrrolidonométhyle 0,19 25 propargyle 0,78 25 4-imidazolylméthyle 1,56 100 p-méthoxyphényle 0,19 12,5 p-méthoxyphényle (sel de NEPi (a) 0,39 25 R2 S. aureus E.coli 6-chloro-2-méthylphényle 0,39 25 6-chloro-2-méthylphényle (sel de NEP) 0,04 6,25 4-chloro-2-méthylphényle 0,78 50 4-chloro-2-méthylphényle (sel de NEP) 0,09 3,12 4-chloro-3,5-diméthylphényle 1,56 25 4-chloro-3,5-diméthylphényle (sel de NEP) 0,39 3,12 4-chloro-2,3,5-triméthylphényle 0,045 6,25 1,1-diméthyl-2,2,2-trifluoroéthyle 0,19 50 m-fluorophényle 0,78 12,5 4-chloro-2,6-dinitrophényle â,56 200 6-chloro-2,4-dinitrophényle 3,12 200 2,5-diméthylphényle 0,39 6,25 2,5-diméthylphényle (sel de NEP) 0,04 3,12 3,5-diméthylphényle 0,78 6,25 3,5-diméthylphényle (sel de NEP) 0,09 3,12 2,4-dimOthylphényle 0,09 3,12 2,4-diméthylphényle (sel de NEP) 0,04 3,12 2,6-diméthylphényle 0,39 25 2,6-diméthylphényle (sel de NEP) 0,01 12,5 m-éthylphényle 1,56 3,12 m-éthylphényle (sel de NEP) 0,39 - 3,12 méthoxyphényle 3,12 25 p-éthoxyphényle 3,12 12,5 4,6-dibromo-2-méthylphényle 0,19 6,25 2,6-dibromophényle 3,12 25 2-méthoxy--4-méthylphényle 0,39 12,5 2-méthoxy-4-méthylphényle (sel de NEP) 0,04 3,12 4-chloro-2,3-diéthylphényle 0,19 25 2-néthyl-3-méthoxyphényle 0,39 12,5 2-méthyl-3-méthoxyphényle (sel de NEP) 0,09 6,25 4-(&alpha;,&alpha;; -diméthylbenzyl)phényle 0,78 25 5-éthyl-3-méthylphényle 0,39 12,5 4-(1-indanyl)phényle 0,78 50 2,4-(dicyclopent-2-ényl)phényle 0,05 12,5 p-fluorophényle 1,56 50 p-carbométhoxyphényle 0,78 12,5 p-carbo-n-propoxyphényle 0,78 12,5 2-(5,6,7,8-tétrahydronaphtyle) 0,39 3,12 R2 S.aureus E. coli 2-(5,6,7,8-tétrahydronaphtyle) (sel de NEP) 0,04 1,56 p-carbo-n-octyloxyphényle 0,39 50 m-diméthylaminophényle 0,78 12,5 p-diméthylaminophényle 1,56 12,5 o-propylphényle 0,79 25 p-propylphényle 0,39 12,5 2,4-dibromophényle 1,16 25 2-(N-méthylanilino)éthyle 0,19 25 7-adamantanyle 0,09 50 2-isopropoxyéthyle 1,56 200 2-pipéridinoéthyle 0,78 3,12 2-morpholinoéthyle 1,56 6,25 3-(N-méthylanilino)-2-propyle (sel de NEP) 0,09 25 3-i-éthylanilino)-2-propyle (sel de NEP) 0,09 25 2-(N-éthylanilino)éthyle (sel de NEP) 0,04 12,5 1-méthoxy-2,2,2-trichloroéthyle 100 200 dicarbométhoxyéthoxyméthyle 6,25 50 o-éthoxyphényle (sel de NEP) 1,16 6,25 2-n-butoxyéthyle 0,39 50 2-isopropoxyéthyle 1,56 - 200 m-acétylphényle 6,25 12,5 2-isopropylmercaptoéthyle 3,12 200 5-indanyle (sel de TEA) (b) 0,05 6,25 5-indanyle sel de morpholine) 0,05 1,56 Les effets in vitro des esters de benzylpénicilline &alpha; -carbothioli- ques sont donnés ci-dessous t R7 phényle 6,25 25 p-chlorophényle 3,12 25 o-isopropylphényle 6,25 100 (pour R1 = p-chlorophényle et R2 = 2-naphtyle 1,56 20O (a)NEP = N-éthylpipéridine (b)TEA -- triéthylamine Le tableau il présente les résultats obtenus in vivo pour plusieurs composés de cette invention, chez les souris (PO = voie d'administration buccale et SC = voie d'administration sous cutanée). Les valeurs sont obtenues dans des conditions normalisées. La méthode comprend la production d'une infection expérimentale aiguë par E. coli 266 chez les souris1 par incubation intrapéritonéale des souris avec une culture normalisée (10 6) d'E.coli 266 en suspension dans la mucine gastrique de porc à 5 %. Les composés d'essai, sous la forme de leurs sels de sodium ou de potassium, sont administrés aux souris infectées suivant un régime à doses multiples dans lequel la première dose est administrée 0,5 heure après l'inoculation et est renouvelée 4, 24 et 48 heures après. On détermine alors le pourcentage de souris survivantes. La DL100 de E. coli 266 (concentration la plus faible nécessaire pour produire une mortalité de 100 % chez les souris) est de 10 7. Des animaux témoins reçoivent des inoculums de 10 6, et 10 7, pour vérifier une variation possible de virulence qui peut se présenter. TABLEAU II - Résultats in vivo sur E. coli 266 chez les souris % de Survivants R2 PO(mg/kg) SC(mg/kg) 200 100 200 100 carbéthoxyéthoxyméthyle O 20 O 10 dicarbéthoxyéthoxyméthyle 30 0 60 40 1-isopropoxy-2,2,2-trichloroéthyle 20 20 40 30 l-butoxy-2,2,2-trichloroéthyle 10 20 -00 10 l-naphtyle 30 20 30 0 2-naphtyle 40 0 ' 50 10 5-indanyle 100 60 70 60 5-indanyle (sel de TEA) 100 70 100 100 4-indanyle 80 50 80 40 5-quinolyle 10 0 50 30 6-quinolyle 20 20 10 20 5-(1,3-benzodioxolyle) 30 20 30 50 m-méthylphényle 70 30 80 70 p-méthylphényle - 30 20 20 20 o-méthylphényle 30 0 0 10 o-éthylphényle 20 10 10 0 o-isopropylpnényle 90 60 50 50 2,3-diméthylphényle 80 10 80 60 3,4-diméthylphényle 80 30 50 20 4-méthoxyphényle 20 10 40 30 R2 (g) % de Survivants PO(mg/kg) SC 200 100 200 100 2,6-diméthoxyphényle 10 0 0 20 m-fluorophényle 70 20 50 20 2-chloro-6-méthylphényle 30 10 40 30 4-chloro-2-méthylphényle 40 0 20 30 2-chloro-5-méthylphényle 0 0 30 10 4-chloro-3-méthylphényle 70 10 60 30' 4--chloro-3-méthylphényle 70 10 60 30 2-chloro-3,4-diméthylphényle 20 20 30 0 4-chloro-3,5-diméthylphényle 60 10 60 30 4-chloro-2,3-diméthylphényle 90 60 90 60 4-chloro-2,6-diméthyIphényle 10 10 30 10 2-chloro-4,5-diméthyîphényle 20 20 70 10 4-chloro-2,5-diméthylphényle 0 0 10 0 2,4-dichloro-6-méthylphényle 10 10 10 20 2,4-dichloro-3,5-diméthylphényle 50 10 70 50 4-chloro-2,3,5-triméthylphényle 60 50 80 40 4-chloro-2,6-dinitrophényle 10 0 20 0 phényle 0 0 10 0 2-diméthylaminoéthyle O 0 10 R2 % PO(mg/kg SC(mg/kg) 200 200 100 200 100 2-azétidinoéthyle 10 0 0 0 2-pipéridino-1-propyle 80 70 2-(2,6-diméthyl pipéridino)éthyle 10 0 100 80 2-morpholino-1-propyle 10 30 40 20 2-di(n-propylamino)-1-propyle 0 10 90 60 2-(N-méthylanilino)éthyle 40 0 80 10 3-di(n-propylamino)propyle 0 0 80 90 3-diméthylamino-2-propyle 0 0 20 20 3-morpholino-2-propyîe 0 10 70 20 2-formamidoéthyle 20 O 20 10 H -- 0 -- 70 2-chloroéthyle 10 0 10 0 2-imidazoloéthyle 0 0 40 0 p-acétylphényle 0 0 10 0 2-acétoxyéthyle 0 0 0 10 [2,2-diméthyl-1,3-dioxolon-4-yl] méthyle 0 0 30 10 Benzohydryle O 0 50 10 acétonyl méthyle 10 0 0 10 2-nitrobutyle 10 0 0 0 2-(1,4-naphtoquinonyle) 0 0 -20 0 2-(4-méthylquinolyle) 0 0 30 0 phtalimidométhyle 20 10 30 0 2,3-diméthoxyphEnyle 10 0 0 20 2-pyridylméthyle O 0 20 0 4-pyridylméthyle 0 0 40 20 2-formylphényle 0 0 80 0 3-i2-méthyl-4-pyronyle) 0 0 30 0 propargyle 0 0 100 30 l-éthoxy-2,2,2-trichloroéthyle 70 0 70 20 4-imidazolylméthyle 20 10 30 10 5-indanyle (sel de NEP) 100 70 100 100 O-isopropylphényle 80 50 40 20 o-éthylphényle (sel de NEP) 20 10 10 0 (1,2,3-tricarbéthoxy)-2-propyle 0 10 10 0 1,1-diméthyl-2,2,2-trifluoroéthyle 20 0 60 20 2,2,2-trifluoroéthyle 10 0 20 0 R2 PO (mg/kg) % de Survivants PO(mg/kg) SC(mg/kg) 200 100 200 100 6-chloro-2,4-dinitrophényle 0 0 30 0 2,5--diméthylphényle 80 70 90 60 3,5-diméthylphényle 80 60 80 30 2,4-diméthylphényle 90 20 80 50 2,6-diméthylphényle 20 0 70 50 m-éthylphényle 90 60 100 70 m- éthoxyphényle 0 0 10 0 péthoxyphényle 60 10 70 50 4,6-dibromo-2-méthylphényle O 0 10 0 2,6-dibromophényle 0 10 60 40 2-méthoxy-4-méthylphényle 100 50 100 50 2-méthyl-2-méthoxyphényle 30 Q 40 30 5-éthyl-3-méthylphényle 40 0 30 10 4-(1-indanyl)phényle 20 10 10 20 2,4-(dicyclopent-2-ényl)phényle 70 10 60 30 p-fluorophényle 0 0 60 10 p-carbométhoxyphényle 0 0 80 20 p-carbo-n-propoxyphényle 0 0 60 20 2-(5,6,7,8-tétrahydronaphtyle) 100 60 50 3Q 2-(5,6,7,8-tétrahydronaphtyle) (sel de NEP) 42 19 p-carbo-n-octyloxyphényle 20 0 40 0 m-diméthylaminophényle 60 50 70 40 p-diméthylaminophényle 70 0 80 80 p-propylphényle 80 20 80 80 2,4-dibromophényle 60 30 50 30 2-(N-méthylanilino)éthyle 70 40 50 0 3-(N-méthylanilino)2-propyle (sel de NEP) 135 87 3-(N-éthylanilino)2-propyle (sel de NEP) 100 50 2-(N-éthylanilino)éthyle 60 50 l-méthoxy-2,2,2-trichloroéthyle 0 10 0 0 dicarbométhoxyéthoxyméthyle 0 0 40 20 0-éthoxyphényle 25 37 2-n-butoxyéthyle 9Q 0 70 60 2-isopropoxyéthyle o o 40 30 R2 % de Survivants PO(mg::kg) SC(mg/kg) @ 200 100 200 100 m-acétylphényle 10 0 60 20 2-isopropylmercaptoéthyle 0 0 20 0 5-indanyle (sel de morpholine) 100 70 100 100 (a)150 mg/kg (b)75 mg/kg (c)50 mg/kg Pour le composé de Formule III dans laquelle R1 est le radical phényle, X1 = SR7 et R4 la partie acide 6-aminopénicillanique, on présente les résultats suivants obtenus in vivo R7 P0(mg/kg) % de Survivants PO(mg/kg) SC(mg/kg) 200 200 100 200 100 phényle 0 0 60 20 p-chlorophényle 0 20 60 0 o-isopropylphényle 10 0 30 10 DONNEES INFRAROUGES ET CHROMATOGRAPHIQUES I.R. Rf isopropyle 3,05, 5,61, 5,75, 5,92, 6,0, 6,25, 6,55-6,6 tert-butyle 3,05, 5,61, 5,74, 5,82, 5,97, 0,2(a) 6,07 2-cyanoéthyle # 2,98, 4,45, 5,58, 5,68, 5,73, 6,23 2-méthoxyéthyle 3,0, 5,58, 5,72, 5,78, 5,91 0,45(b) 2-chloroéthyle 0,6(b) crotyle 3,05, 5,61, 5,73, 5,80, 5,95 0,9 6,25 2-imidazoloéthyle 3,0, 3,2-3,26, 3,83, 3,99, 0( ) 5,62, 5,72, 5,78 (sh), 5,97 p-acétylphényle ## 3,05, 5,63, 5,71, 5,95, 6,25 0,35(b) 2-acétoxéthyle # 3,05, 5,61, 5,75, 5,80, 5,95 0,3(b) 6,00, 6,24 2-acétylphényle 2,98, 5,63, 5,73, 5,95, 6,0,6,25 0,8(b) 2-pipéridinoéthyle! 3,0, 5,65, 5,76, 5,98, 6,25 0,05(b) [2,2-diméthyl-1,3- 3,05, 5,61, 5,71, 5,75, 5,91 0,45(b) dioxolon-4-yl]- 6,6, 6,25 méthyle benzohydryle 9 3,05, 5,62, 5,75, 5,78, 5,95 0,95( ) 6,25 2-diméthylamino 3,0, 5,63, 5,70, 5,75, 5,84, 0(b) éthyle $ 5,95, 6,25 2-pyrrolidino- 3,0, 5,66, 5,76, 5,98, 5,97 0(b) éthyle 4 2,2,2-trichloro- 3,37, 5,5, 5,73 (sh), 5,92, 0,6(b) éthyle 4 6,25, 6,66, 6,89 3-oxobutyl 3,36, 4,08, 4,32, 5,13, 5,21, 0,6(b) acétonylméthyle 5,25, 5,33, 5,37, 5,63 (sh), 5,8, 5,97, 6,06, 6,25, 6,67, 6,89 2-nitrobutyle 3,35, 3,4 (sh),3,45 (sh), 4,1 0,6(b) 4,3, 5,13, 5,23, 5,27, 5,35, 5,45, 5,75, 6,06, 6,25, 6,45, 6,78, 6,92 2-carbéthoxy- 3,36, 5,78, 5,97, 6,25, 6,62, 0,6(b) éthyle 4 6,78, 7,09 1,1-diméthyl- 3,35, 5,14, 5,63, 5,8, 6,02, 0,6(b) acétonyle 4 6,26, 6,55, 6,69 2-diéthylamino- 3,0, 5,63, 5,78, 5,95 0(b) éthyle 2-pyridylméthyle 3,05, 5,65, 5,78, 6,0, 6,10, 0(b) 6,3 o-nitrophényle * 3,08, 3,35, 4,33, 5,25, 5,39, 0,9(b) 5,63, 5,97, 6,23, 6,27, 6,62, 6,78, 6,99 4-chloro-2- * 3,34, 5,43, 5,49, 5,67, 5,85, 0,9(b) nitrophényle 5,97, 6,09, 6,21, 6,29, 6,56, 6,80, 6,89, 7,1 4-pyridylméthyle 2,97, 5,58-5,70, 5,92, 6,55 0(b) 3-diméthylamino- 2,87, 5,6, 5,72, 5,92, 5,98, 0,6(b) propyle 6,5 (B#) 2-naphtyle 3,05, 5,65, 5,71, 5,77, 5,97, 0,95(b) 6,15, 6,25 pyrrolidonométhyle 0,05(b) 2-di-n-propyl- 3,0, 4,18, 6,0, 5,73, 5,97, 0(b) aminoéthyle 6,19, 6,25 2-di-n-butyl- 3,0, 5,66-5,79, 5,97, 6,25 0(b) aminoéthyle R2 I.R. 2-diisopropylaminoéthyle 2(2, 5-diméthyl- (b) pyrrolidino)éthyle 0 2-formylphényle # 2,95, 3,35, 4,1, 5,7, 5,86 5,95, 6,2, 6,65, 6,8, 7,15 0,85 3-(2-méthyl-4pyronyle) propargyle 2-aziridinoéthyle 2,9, 3,35, 5,7, 4,0, 5,65, 5,7, 0(b) 6,05, 6,27, 6,7, 6,83, 6,95, 7,15, 7,25 1-éthoxy-2,2,2 trichîoroéthyîe 3-di-n-propylamino- 2,98y 3,00, 5,68 (Br), 5,83, 0(b) 2-propyle 6,01, 6,25 2-(4-méthylpipéridino)éthyle 3-pyrrolidino-2- 3,0 (Br, W), 5,66, 5,73, 5,80, propyle 6,0, 6,25 3-pipéridino-2- 3,0 (Br, W), 5,66, 5,72, 5,99, propyle 6,27 3-pyrrolidino- 3,05 (Br, W), 5,63, 3,75, 5,97 0(b) propyle # 6,25 1-(2,3-dibutyryl- 2,95, 3,35, 4,05, 5,73, 5,95, 0,75(b) oxy)propyle # 6,0, 6,2, 6,75, 6,85, 7,2 4-imidazolyl- 2,7, 2,95, 3,35, 4,05, 4,25, méthyle # 5,6, 5,75, 5,95, 6,2, 6,75, (b) 6,85, 7,2 5-(1,3-benzo- 2,95, 3,45, 5,6, 5,9, 6,15, 0(c) dioxolyle) # 6,6, 6,7, 6,8 5-(1,3-benzodi- 0,9(d) oxolyle) (sel de NEP) 5-indanyle # 3,36, 3,51, 5,63, 5,97,6,21, (sel de potassium) 6,63, 6,71, 6,78, 7,14 5-indanyle # 2,95, 3,35, 5,55, 5,7, 5,9, 1,0 6,2, 6,7, 6,8, 6,9, 7,15 5-indanyle # 2,,95, 3,35, 5,62, 5,95, 6,20 (sel de TEA) 6,72, 6,85, 7,15 R2 I.R.RE 5-indanyle (sel de 2,95, 3,4, 3,45, 4,1 (W), 5,6 (morpholine) 5,73, 5,9(Sh), 5,95, 6,2, 6,72, 6,85, 7,25 5-indanyle # 2,95, 4,5, 5,6, 5,7, 5,92 (sel de NEP) 6,18 6-quinolyle # 2,95, 3,35, 4,0, 5,55 (Sh), 5,65, 5,95, 6,10, 6,20, 6,60 6,75, 7,25 5-quinolyle 0,75(b) 4-quinolyle # 2,95, 3,05, 3,35,5,60, 5,80, 0,75(b) 5,95, 6,07, 6,25, 6,68, 6,85, 7,35 2-(1,4-naphto- 2,9, 3,35, 5,7, 6,0, 6,25, 6,3 1.0(c) quinolyle)+ 6,50, 6,80, 7,1 2-(4-méthyl-quinolyle) 1-butyn-4-yle 3-pipéridinopropyle 0(b (b 3-morpholinopropyle 2,92, 4 (Br, W), 5,6, 5,7, 0(b) 5,75, 5,87, 5,92, 6,ka, 6,5 3-morpholino-2- 2,9, 5,6 (W), 5,12, 5,92, 6,02 0(b) propyle 6,22 3-diméthylamino- 2,9, 5,57, 5,70, 5,85, 5,92, 0(b) 2-propyle 6,2, 6,6 2-pyrrolidino- 3,05 (Br), 5,66-5,75 (Br), 0(b) l-propyle 5,81, 5,95, 6,23 2-azétidinoéthyle 0(b) trityle 2,95, 3,35, 5,1, 5,5, 5,7, 5,9, 6,1, 6,25, 6,5, 6,65, 6,85, 7,15 1-éthoxy-2,2,2- 2,95, 3,35, 5,55, 5,9, 6,2, trifîuoroéthyle # 6,45, 6,85, 7,15 phthalimidométhyle# 2,95, 3,35, 5,55, 5,70, 5,90, 6,20, 6,60, 6,80, 7,15 2,3-diméthoxy- 2,95, 3,35, 3,50, 5,65, 5,9, 0,8(b) phényle # 6,2, 6,25, 6,65, 6,70, 7,15 3-di-n-propyl- 3,5 (Br), 5,63, 5,77, 5,97, aminopropyle # 6,20 m-tolyle # 3,05, 5,65, 5,72, 5,97, 6,22, 0,95 (d) 6,32 R2 I.R. Rf o-isopropylphényle # 3,05, 5,65, 5,75, 5,97, 6,27, 0,8(d) 6,65 o-isopropylphényle 3,0, 5,65, 5,72, 5,93, 6,23 (sel de potassium) l-naphtyle # 2,95, 3,35, 5,55, 5,70, 5,90 0,95(d) 6,20 6,30 6,65, 6,80, 7,15 4-indanyle + 2,95, 3,35, 5,55, 5,70, 5,90 6,20, 6,27, 6,67, 6,80, 7,15 4-indanyle 2,95, 3,10, 3,35, 5,60, 5,90 0,9(d) (sel de NEP) 6,17, 6,45, 6,75, 7,15 p-tolyle # 2,95, 3,35, 5,59, 5,70, 5,9 6,20, 6,65, 6,85, 7,15 o-éthylphényle + 2,95, 3,35, 5,60, 5,72, 5,92 0,75(d) 6,24, 6,55, 6,70, 6,85, 7,15 o-éthylphényle 2,97, 4,5 (Br), 5,6, 5,7, 0,95(b) (sel de NEP) 5,93, 6,20 o-tolyle + 2,95, 3,35, 5,60, 5,70, 5,92, 0,75(d) 6,20, 6,30, 6,68, 6,85, 7,15 o-tolyle + 2,95, 3,35, 4,5 (Br), 5,6, 0,92(b) (sel de NEP) 5,69, 5,92: 6,15 (1,2,3-tricarbétho- 3,0 (Br), 5,65, 5,8, 6,0, 6,2 0,95(d) xy)-2-propyle # 6,28 2-pipéridino- 2,92, 5,6, 5,68, 5,82, 5,95, 6,2 0(d) l-propyle 2-(2,6-diméthyl- 2,9, 5,6, 5,7, 5,87, 5,93,6,20 0(d) pipéridino)éthyle 2-morpholino-1- 2,9 2,95, 5,6-, 5,70, 5,85, (d) propyle 5,97, 6,23 2 di-n-propyl-amino- 2,95, 4(Br), 5,62, 5,72, 5,9 0(d) l-propyle (Sh), 5,95, 6,20 2-(N-méthyl-anilino) 2,97, 4,0(Br), 5,6, 5,72, 1,0(d) éthyle 5,87(Sh), 5,95, 6,23 3,4-diméthylphényle 3,0, 5,62, 5,7 (Sh), 5,9 1,0(d) 5,95, 6,24 (d) 3,4-diméthylphényle 2,90, 3,10, 3,35, 4,20, 5,60, 0,9(d) (sel de NEP) 5,90, 6,20, 6,42, 6,65, 6,85,7,15 2,3-diméthylphényle 2,95, 5,6 (Br), 5,87, 5,95, 6,23 0,9(d) 2,3-diméthylphényle 2,95, 3,10, 3,35, 5,62, 5,90, 0,9(d) (sel de NEP) 6,20, 6,45, 6,65, 6,77, 6,85,7,15 R2 I.R. R f p-méthoxyphényle # 2,95, 3,35, 3,50, 4,10, 5,60, 0,95(d) 5,70, 5,9 6,20, 6,65, 6,85, 6,92, 7,15 p-méthoxyphényle Q 3,0, 4,5 (Br), 5,65, 5,75, 0,85(d) (sel de NEP) 5,95, 6,22 6-chloro-2-méthyl- 2,95, 3,35, 5,55, 5,90, 6,20, 0,95(d) phényle Q 6,65, 6,80, 7,15 6-chloro-2-méthyl- 2,95, 3,15, 3,40, 4,45, 5,65, 0,9 (d) phényle (sel de NEP) 5,92, 6,23, 6,45, 6,67, 6,85, 7,15 4-chloro-2-méthyl- 2,95, 3,35, 5,69, 5,90, 6,10, 0,95 phényle 9 6,20, 6,45, 6,72, 6,92, 7,2 4-chloro-2-méthyl- 2,90, 4,2(Br), 5,62, 5,92, 0,9 phényle (Sel de NEP) 6,13, 6,20, 6,40 2-chloro-3,4-dimé- 2,95, 3,35, 5,55, 5,9, 6,23, 0,9(d) thylphényle # 6,65, 6,77, 6,80, 7,15 2-chloro-5-méthyl- 2,95, 3,35, 5,60, 5,9, 6,25 0,9(d) phényle + 6,45, 6,70, 6,90, 7,15 2-chloro-5-méthyl- 2,95, 4,2(Br), 5,62, 5,97, phényle (sel de NEP) 6,27, 6,40 4-chloro-2,5-di-- 2,95, 3,35, 5,60, 5,90, 6,20 0,95(d) méthylphényle 6,65, 6,85, 7,15 4-chloro-3,5- 2,95, 3,35, 5,60, 5,90, 6,10 1,0(d) diméthylphényle# 4-chloro-3,5- 2,95, 3,15, 3,35, 4,25, 5,65 diméthylphényle 5,95, 6,25, 6,40, 6,48, 6,65 (Sel de NEP) 6,77, 6,88, 7,15 4-chloro2,3- 2,95, 3,35, 5,60, 5,9, 6,20, diméthylphényle 4 6,65,. 6,80, 7,15 4-chloro-2,3- 2,95, 3,10, 3,40, 5,65, 5,90, diméthylphényle 6,20, 6,45, 6,65, 6,85, 7,15 (Sel de NEP) 4-chloro-2,6- 2,95, 3,37, 5,60, 5,90, 6,23, diméthylphényle Q 6,30, 6,65, 6,80, 7,20 2-chloro-4,5- 2,95, 3,37, 5,60, 5,90, 6,25, diméthylphényle $ 6,45, 6,68, 6,87, 7,20 2,4-dichloro-6- 2,95, 3,37, 5,60, 5,90, 6,25, 0,9(d) méthylphényle 9 6,45, 6,65, 6,65, 6,82, 7,15 2,4-dichloro-3,5- 2,95, 3,37, 5,60, 5,95, 6,25, 0,85(d) diméthylphényle # 6,65, 6,85, 9,2 R2 I.R.Rf 4-chloro-2,3,5- 2,95, 3,40, 5,62, 5,93, 6,10, 0,75(d) triméthylphényle # 6,20, 6,65, 6,85, 7,2 1-n-butoxy-2,2,2trichloroéthyle 1,0 dicarbéthoxyéthoxyméthyle 0,75(d) carbéthoxy- (d) éthoxyméthyle 1,O m-fluorophényle 3,0 (Br), t.63, 5,70, 5,88 (Sh), 5,95, 6,23 4-chloro-2,6- 3,0 (Br), 5,61, 5,66, 5,95, dinitrophényle 6,12, 6,19, 6,23 6-chloro-2,4- 3,0 (Br), 5,62, 5,97, 6,0, dinitrophényle 6,25 2,5-diméthylphényle 3,0, 5,63, 5,71, 5,90, 5,95, 0,95(d) 6,17 2,5-diméthylphényîe 2,95, 4,5 (Br), 5,6, 5,7, 0,95(d) (sel de NEP) 5,92, 6,3 3,5-diméthyl- 2,98, 5,63, 5,73, 5,91, 6,16 0,9(d) phényle # 6,25 3,5-diméthylphényle 2,90, 3,10, 3,35, 4,15, 5,60, (sel de NEP) 5,95, 6,15, 6,25, 6,65, 6,85, 7,15 2,4-diméthylphényle 2,95, 5,62, 5,72, 5,91, 5,95, 0,95(d) 6,22 2,4-diméthyl- 2,97, 4,3 (Br), 5,6, 5,7, 0,95(d) phényle #(sel de NEP)5,93, 6,17 2,6-diméthylphényle 2,95, 5,63, 5,73, 5,91, 6,22 0,95(d) 2,6-diméthylphényle 2,95, 3,10, 3,35, 5,32, 5,65 0,9(d) (sel de NEP) 5,95, 6,20, 6,45, 6,70, 6,90,7,15 m-éthylphényle 2,95, 5,63, 5,71, 5,91, 5,96,6,22 0,95(d) m-éthylphényle 3,0, 4,5, 5,65, 5,74, 5,96, 0,8(d) (Sel de NEP) 6,23 m-éthoxyphényle 3,0, 5,63, 5,71, 5,91, 5,95, 0,95(d) 6,21, 6,26 péthoxyphényle 2,95, 5,63, (Br), 5,71, 5,91, 0,95(d) 5,95, 6,15, 6,25 4,6-dibromo-2- 3,0, 5,63, 5,70, 5,92, 5,97 0,95(d) méthylphényle 6,25 R2 I.R.Rf 2,6-dibromophényle 3,0, 5,63, 5,66, 5,95 (Br), 0,95(d) 6,25 2-méthoxy-4-méthyl- 2,97, 3,40, 5,60, 5,70 (Sh), 0,9(d) phényle * 5,92, 6,23, 6,65, 6,83, 7,20 2-méthoxy-4-méthyl- 2,95, 3,15, 3,40, 5,65, 5,90, phényle (sel de NEP) 6,25, 6,47, 6,62, 6,87, 7,15 4-chloro-2,3- 2,95, 3,35, 5,60, 5,90, 6,10 0,9(d) diéthyîphényîe $ 6,23, 6,50, 6,80, 7,20 2-méthyl-3- 2,97, 3,40, 5,62, 5,70 (Sh), 0,9(d) méthoxyphényle Q 5,92, 6,20, 6,30, 6,80, 6,95, 7,15, 2-méthyl-3- 2,95, 3,10, 3,40, 5,65, 5,90, méthoxyphényle 6,20, 6,27, 6,45, 6,65, 6,77, (sel de NEP) 6,85, 7,15 4-(&alpha;,&alpha;;-diméthyl- 2,95, 3,35, 5,60, 5,70 (Sh), 0,95(d) benzyl)phényle # 6,92, 6,23, 6,65, 6,90, 7,15 5-éthyl-3- 2,97, 3,40, 5,60, 5,70 (Sh), 0,95(d) méthylphényle $ 5,92, 6,15, 6,27, 6,65, 6,85, 7,15 4-(1-indanyl)- 2,95, 3,35, 5,60, 5,70, 5,90 0,95(d) phényle 9 6,20, 6,45, 6,65, 6,85, 7,15 2,4-(dicyclopent- 2,95, 3,37, 5,58, 5,70, 5,92, 0,95(d) 2-ényl)phényle 5 6,23, 6,65, 6,85, 7,15 p-fluorophényle + 2,95, 3,35, 5,10, 5,61, 5,65, 0,95 .d) (Sh), 5,90, 6,23, 6,45, 6,65, 6,85, 7,20 p-carbométhoxy- 2,95, 3,35, 5,60, 5,75, 6,25 0,95(d) 6,65, 6,92, 7,15 p-carbo-n-propoxy-- 2,95, 3,25, 5,60, 5,80, 6,20, 0,95(d) phényle # 6,65 6,80, 7,15 2-(5,6,7,8-tétra- 2,95, 3,40 5,60, 5,73, 5,93, 0,95(d) hydronaphtyle)# 6,18, 6,70, 6,90, 7,15 2-(5,6,7,8-tétra- 2,85, 3,05, 3,35, 5,60, 5,90 hydronaphtyle) 6,15, 6,40, 6,62, 6,85, 7,10 (sel de NEP) p-carbo-n- 2,95, 3,35, 5,60, 5,80, 5,92 0,9(d) octyloxyphényle $ 6,10, 6,20, 6,65, 6,82, 7,02 m-diméthyl) 3,0(Br), 5,63, 5,73, 5,95, aminophényle 6,22 R2 I.R.Rf p-diméthyl 3,0, 5,63, 5,75, 5,97(Br), 6,22 aminophényle o-propylphényle 9 3,35, 5,6, 5,85, 5,95, 6,10, 6,20, 6,35, 6,65, 6,87, 7,15 ppropylphényîe * 2,95, 3,37, 5,60, 5,70, 5,90, 0,95\d) 6,20, 6,65, 6,85, 7,20 2,4-dibromophényle $ 2,95, 3,40, 3,50, 5,60, 5,80, 0,95(d) 6,10, 6,25, 6,65, 6,80, 7,10 p-tert-butylphényle 0,95(d) 2-(N-méthyl-anilino) 3,0(Br), 5,63, 5,78, 5,9-6,1 0,9(d) éthyle t (Br), 6,25 2-(N-méthyl-anilino) 2,98, 4,5 (Br), 5,62, 5,76, 5,95 0,85(d) éthyle $ (sel 6,25 de NEP) 3-(N-méthyl-anilino) 3,0(Br), 4,1(Br), NH3+, 5,65 0,95(d) -2-propyle # 5,84, 6,0, 6,25 (sel de NEP) 3-(N-éthyl-anilino) 3,0, 5,63, 5,81, 5,97, 6,25 0,95(d) -2-propyle # (sel de NEP) 2-(N-éthyl- 2,98, 4,4-4,5 (Br) NH3+,5,62 0,8(d) anilino)éthyle 5,77, 5,90, 6,25 (sel de NEP) 1-méthoxy-2,2,2trichloroéthyle dicarbométhoxyéthoxyméthyle o-éthoxyphényle 2,95, 3,10, 3,35, 5,60, 5,90, 6,20, 6,45, 6,65, 6,75, 6,90, 7,15 2-n-butoxye-thyle 3,01, 5,61, 5,7-5,8, 5,95, 7,7 (Br), 8,1(Br), 8,85 2-isopropoxyéthyle# 2,98, 5,59, 5,74, 5,92, 7,3 (Br), 8,7, 8,85 m-acétylphényle Q 2-éthoxyéthyle 5 3,0, 5,60, 7,56, 5,95, 6,24 8,89 8-quinolyle $ 2,95, 3,35, 4,05, 5,65, 5,95, 6,1, 6,2, 6,J, 6,65, 6,77, 7,25 R2 I.R.Rf 2-isopropylmercaptoéthyle 5-quinolyle 0,75 méthyle 3,05 (Br,W),5,60, 5,64, 5,79 0,6(b) 5,95, 6,25 méthyle 3 (Br, W), 5,61, 5,73, 5,81 (b) n-hexyle 3,05(Br, W), 5,61, 5,77, 5,80, 0,75(b) n-octyle 3,05, 5,61, 5,80, 5,94 n-décyle 1,0(b) tétradécyle 3,05, 5,61, 5,75, 5,79, 5,95 0,95(b) 6,07 phényle 3,05, 5,63, 5,70 (Br), 5,95, 0,8 6,27 phényle * 2,95, 3,35, 4,45, (Br), 5,59, 0,95 5,67, 5,90, 6,17 n-butyle 116c) sec-butyle 3,0 (Br, W), 5,63, 5,75, 5,83 0,8 5,97, 6,25 n-propyle 3,0 (Br, W), 5,63, 5,81 (Br), 0,8(b) 5,97, 6,25 isobutyle 3,0 (Br, W), 5,63, 5,81 (Br), 0,75(b) 5,97, 6,08, 6,25 o-isopropylphényle 0,95(d) 2-pipéridinoéthyle 3,38, 5,63, 5,78, 5,97, 6,25, 0,95(c) 6,62 2-morpholinoéthyle 3,38, 5,63, 5,78, 5,97, 6,25, 0,95 (c) 6,62 R1 p-chlorophényle 2,95, 4,25 (Br), 5,62, 5,8, 5,85, 5,93, 6,2 R 2 2-naphtyle R7 (où X' est SR7) phényle 2,95, 3,35 4,05, 5,05, 5,25, 0,85(b) 5,5, 5,85, 6,2, 6,7, 6,8, 6,85 7,15, 7,25 p-chlorophényle 2,95, 3,35, 4,05, 5,25, 5,6 0,8(b) 5,9, 6,25, 6,35, 6,65, 6,75, 6,85, 7,15 $ Courbes infrarouges tracées dans le chloroforme. Toutes les autres ont été tracées dans des pastilles de KBr. Systèmes chromatographiques- (a) chloroforme : éthanol à 95 % : acide formique (2:1:2) (b) benzène : acide acétique : eau (2:2:1) (c) butanol : eau u acide acétique (5:4:1) (d) isoamylacétate : acétate de sodium (0,1 M, pH 4,5) (e) pyridine : toluène : eau (5:20:10; tampon McIlvaines pH 3,0) EXEMPLE I Phénylchlorocarbonyl cétène A. A de l'acide phénylmalonique (20 g) dans de l'éthyl éther (100 ml) on ajoute du pentachlorure de phosphore (46 g). Il se produit une réaction vigoureuse. On met à reflux le mélange réactionnel pendant quatre heures puis on chasse en partie l'éther par chauffage au bain de vapeur. Le mélange réactionnel devient noir quand à peu près la moitié de l'éther a été chassée,et on chasse le reste de l'éther sous pression réduite (100 mm).On distille le résidu sous vide et on recueille la fraction bouillant à 75-900 C sous 1,5-4 mm. On redistille le produit, un liquide jaune, à 740 C et sous 1,5 mm. Le produit présente un pic accusé dans la région infrarouge du spectre à 4,69,k. Le renouvellement de cette méthode mais en utilisant 10 g d'acide phénylmalonique au lieu de 20 g, produit une réaction moins vigoureuse lors de l'addition du pfntachlorure de phosphore. On obtient le même produit. B. On ajoute du pentachlorure de phosphore (23 g), en un laps de temps de 5 minutes, à une solution agitée d'acide phénylmalonique (10 g) dans l'éthyl éther (50 ml) initialement à une température de 0 à 50 C. La température monte jusqu'à 130 C pendant l'addition. On met ensuite le mélange à reflux pendant 5 heures puis on le laisse reposer pendant une nuit à la température ambiante. L'élimination de l'éther sous 20 mm donne un concentré brun qui est distillé sous vide pour donner le produit désiré : p.e. 800-880 C sous 1,5-2,0 mm et 740 C sous 0,2 mm. C. A une solution agitée de pentachlorure de phosphore (46 g) dans l'éthyl éther (100 ml) on ajoute de l'acide phenylmalonique (10 g) en une période de deux minutes. On agite le mélange à la température ambiante pendant quatre heures puis on le met à reflux pendant quatre heures et on le laisse reposer pendant une nuit à la température ambiante On sépare l'excès de pentachlorure de phosphore par filtration, et on distille l'éther à la pression atmosphérique. Le mélange réactionnel passe progressivement d'une couleur jaune foncé à une couleur rouge. On distille le résidu sous vide pour obtenir le produit . p.e. 830--860 C sous 1,5 mm, sous la forme d'un liquide jaune. D. Le renouvellement de cette méthode mais en utilisant une quantité équivalente d'oxychlorure de phosphore comme agent d'halogénation à la place du pentachlorure de phosphore, donne le même produit. Exemple II On répète la méthode de l'Exemple I-C mais en employant le dérivé d'acide malonique approprié à la place de l'acide phénylmalonique, pour produire les composés suivants R1 ~~~~~~~~~~~ R1 1, 3-furyle 2-thiényle 2 pyridyle 3-thiényle 3 pyridyle 2-furyle 4-pyridyle o-tolyle o-bromophényle m-tolyle m-bromophényle p-tolyle o-chlorophényle o-méthoxyphényle p-chlorophényle m-méthoxyphényle m-chlorophényle p-méthoxyphényle o-butoxyphényle o-trifluorométhylphényle o-diméthylaminophényle p-trifluorométhylphényle o-diéthylaminophényle m-trifluorométhylphényle m-diméthylaminophényle o-isopropylphényle p-diméthylaminophényle Exemple III Le renouvellement des méthodes des Exemples I-C et II mais en utilisant PBr5 à la place de PC15, produit les composés bromés correspondants. Exemple IV Ester Méthylique de Phénylcarboxy cétène A une solution de phénylchlorocarbonyl cétène (0,5 g) dans le chloroforme sec (5 ml) on ajoute du méthanol anhydre (0,1 ml) à la température ambiante. De l'acide chlorhydrique se dégage. On agite le mélange, maintenu sous atmosphère d'azote, pendant 20 minutes, et on récupère le produit par évaporation du solvant. Exemple V Dibenzyl Phényl Malonate On ajoute de l'alcool benzylique (0,6 ml' à une solution de phénylchlorocarbonyl cétène (1,0 g) dans du chloroforme (12 ml) sec et ne contenant pas d'éthanol, à la température ambiante. De l'acide chlorhydrique se dégage presque immédiatement lors de l'ad- dition de l'alcool benzylique. On agite le mélange pendant cinq minutes, on ajoute encore de l'alcool benzylique (0,6 ml), et on continue l'agitation pendant trois heures. On chasse le solvant chloroforme par distillation Le résidu cristallise au repos. Après deux recristallisations dans l'hexane il fond à 69-70 C. Analyse Calculée pour C23H2004 : C = 76,65 H=5,59% Trouvée : C : 76,92; H=5,49% Exemple VI Phényl-N-Benzylmalonamate de Benzyle On ajoute de l'alcool benzylique (0,6 ml dans 2 ml de chlorure de méthylène) à une solution de phénylchlorocarbonyl cétène (1,0 g) dans du chlorure de méthylène (12 ml) à -70 C, dans un système clos rempli d'azote gazeux. On agite le mélange pendant trois minutes puis on ajoute de la benzylamine (1,2 mu dans 2 ml de chlorure de méthylène). Il se f-rme un précipité immédiat. On maintient le mélange à -70 C pendant une heure en le secouant de temps en temps, puis on le réchauffe jusqu'à la température ambiante te. On filtre le mélange et on concentre le filtrat à sec. Le résidu, un solide assez gommeux, est délayé dans l'éther, filtré, puis recristallisé deux fois dans l'hexane, p.f. 143-143,5 C. Analyse Calculée pour C23H21NO3: C=76,85; H 5,88 N= 3,89% Trouvée : C=76,67; H= 5,86; N 3,99 % La répétition de cet Exemple, mais en utilisant les composés des Exemples II et III à la place de la pnénylchlorocarbonyl cétène, donne les malonamates correspondants. Exemple VII On chauffe à reflux pendant six heures un mélange d'acide phénylmalonique (5g) et de chlorure de thionyle (30 ml), pour obtenir une solution jaune claire. L'élimination de l'excès de chlorure de thionyle par évaporation fournit la phénylchlorocarbonyl cétène brute. On obtient le composé pur par distillation sous vide. EXEMPLE VIII A une solution de la R1-halocarbonyl cétène appropriée (0,1 mole) dans laquelle R1 est le radical thiényle, furyle, pyridyle, phényle ou phényle substitué où le substituant est un radical alcoyle inférieur, chlore, brome, alcoxy inférieur, di(alcoyl inférieur) amine ou trifluorométhyle, dans le chlorure de méthylène (quantité -suffisante pour donner une solution claire et en général d'env-ron 5 à 10 ml par gramme de cétène), on ajoute l'alcool approprié R2OH (0,1 mole). On maintient le mélange réactionnel sous atmosphère d'azote et on l'agite pendant une période de 20 minutes à 3 heures, en prenant soin d'éviter l'humidité. La température peut aller d'environ -70 C à environ -20 C. Les composés ainsi préparés sont présentés ci-dessous. quand X' égale OR2. R2 5-- indanyle 5- (1, 3-benzodioxolyle) 2-naphtyle 6-quinolyle 3- (2-méthyl-4-.pyronyle) phényle o-méthylphényle m-méthylphényle pméthyîphényle o-éthylphényle o-isopropylphényle o-formylphényle o-acétylphényle p-acétylphényle o-nitrophényle 2,3-diméthylphényle 3,4-diméthylphényle 2,3-diméthoxyphényle 2-chloro-5-méthylphényle 4- cbloro- 3-méthylpbényle 2-chloro-3,5-diméthylphényle 2-chloro-3,4-diméthylphényle R2 4-chloro-2-nitrophényle 1-(1,2,3,4-tétrahydronaphtyle) 2-(1,4-naphtoquinonyle) 4--indanyle 5-quinolyle 8-quinolyle 3-(2-méthyl-4-pyronyle) méthyle éthyle n-propyle isopropyle n-butyle sec-butyle tert-butyle 2-méthylpropyle hexyle octyle décyle tétradécyle 2 cyanoéthyle 2-méthoxyéthyle 2-acétoxyéthyle R2 2-chloro-4, 5-diméthylphényle 4-chloro-2 , 3-diméthylphényle 4-chloro-2,5-diméthylphényle 4-chloro-2,6-diméthylphényle 2,4-dichloro-6-méthylphényle 2,4-dichloro-3,5-diméthylphényle 4,5 dichloro-2,3-diméthylphényle l-éthoxy--2 , 2,2-trichloroéthyle l-isopropoxy-2,2,2-trichloroéthyle 1-butoxy-2,2,2-trichloroéthyle carbéthoxy éthoxy méthyle dicarbéthoxy ethoxy méthyle 1-(2,3-dibutyryloxy)propyle 3-i sobutyle l,l-diméthyl acétonyle 2-nitrobutyle 2-diméthylaminoéthyle 2-diéthylaminoéthyle 2 di (n-propyl)aminoéthyle 2-di(isopropyl)aminoéthyle 2-di(n-butyl)aminoéthyle 2-diméthylaminopropyle 3-di-(n-propyl)amino-2-propyle 2-pyrrolidinoéthyle 2-(2-imidazolino)éthyle 2-(2,5-diméthylpyrrolidino)éthyle 2-(4-méthylpipéridinopéthyle 3-(pyrrolidino)propyle 3-pipéridinopropyle 3-morpholinopropyle 3-pyrrolidino-2-propyle 3-pipéridino-2-propyle 2-aziridinoéthyle 2-pyrrolidino-1-propyle 2-azétidinoéthyle 2-pipéridino-1-propyle m- fluorophényle 4-chloro-2,6-dinitrophényle R2 1-(1-carbéthoxy)éthyle 2-(1,2,3-tricarbéthoxy)propyle 2-chloroéthyle 2,2,2-trichloroéthyle 2,2,2-trifluoroéthyle 2- (2 trifluorométhyl)propyle 1-éthoxy-2,2,2-trifluoroéthyle 2-(2,6-diméthyl pipéridino)éthyle 2-morpholino- 1-propyle 2-di (n-propylamino) -1 propyle 3-di(n-propylamino)propyle 3 -diméthylamino-2-propyle 3-morpholino-2-propyle crotyle 2-imidazoloéthyle [2,2-diméthyl(-1,3-dioxolon-4y1]méthyle benzohydryle 2- carbéthoxyéthyle 4-quinolyle 2- (4-méthylquinolyle) 1-butyn-4-yle trityle phtalimidométhyle 2-pyridylméthyle 4-pyridylméthyle pyrrolidonométhyle propargyle 4-imidazolylméthyle l-naphtyle p-méthoxyphényle 6-chloro-2-méthylphényle 4-chloro-2 méthylphényle 4-chloro-3, 5-diméthylphényle 1,1-diméthyl-2,2,2-trifluoroéthyle 2,4-dibromophényle p-t-butylphényle 6-chloro-2,4 dinitrophényle 2,5-diméthylphényle 3,5-diméthylphényle 2,4-diméthylphényle 2,6-diméthylphényle m- éthylphényle m-éthoxyphényle p- éthoxyphényle 4, 6-dbromo-2 méthylphényle 2-morpholinoéthyle 2,6-dibromophényle 2-méthoxy-4.- méthylphényle 4-chloro-2,3-diéthylphényle 2-méthyl- 3 -méthoxyphényle 4(&alpha;,&alpha;;-diméthylbenzyl)phényle 5- éthyl- 3 -méthylphényle 4- (1-indanyl) phényle 2,4-(dicyclopent-2-ényl)phényle p-fluorophényle p- carbométhoxyphényle p-carbo-n-propoxyphényle 2-(5,6,7,8-tétrahydronaphtyle) p-carbo-n-octyloxyphényle m-diméthylaminophényle p-diméthylaminophényle o-propylphényle p-propylphényle 2-(N-méthylanilino)éthyle l-mé'choxy-2,2,2-trichloroéthyle 4-chloro-2,3,5-triméthylphényle dicarbométhoxyéthoxyméthyle o-éthoxyphényle 2-n-butoxyéthyle 2-isopropoxyéthyle m-acétylphényle 2-éthoxyéthyle 2-i sopropylmercaptoéthyle 7-adamantanyle 2- (2-imidazolino) éthyle 2-pipéridinoéthyle On prépare aussi les composés suivants pour X1 SR7 R7 - phényle p-chlorophényle o-isopropylphényle et le composé dans lequel R1 est le radical p-chlorophényle et R2 est le radical 2-naphtyle. Spectres in Vitro R2 I R. 2-diméthylaminoéthyle 1720,1740,2130,2960,3035 2-diéthylaminoéthyle 1720,1740,2130,2960,3035 2-di(n-propyl)aminoéthyle 1720,1740,2130,2960,3035 2-di(isopropyl)aminoéthyle 1720,1740,2130,2960,3035 2-di(n-butyl)aminoéthyle 1720,1740,2130,2960,3035 3-diméthylaminopropyle 1474,1640,1730,1750, 2130, 2960,3035 3-di-(n-propyl)amino-2-propyle 1720,1740,2130,2960,3035 2-pyrrolidinoéthyle 1500,1600,1725,1750,2130, 2960,3035 2-(2-imidazolino)éthyle 2-pipéridinoéthyle 1720,1740,2130,2960, 3035 2-morpholinoéthyle 1720,1740,2130,2960,3035 2- (2,5-diméthylpyrrolidino)- 1720,1740,2130,2960,3035 éthyle 2-(4-méthylpipéridino)éthyle 1720,1740,2130,2960,3035 3- (pyrrolidino)propyle 1720,1740,2130,2960,3035 3-pipéridinopropyle 1720,1740,2130,2960,3035 3-morpholinopropyle 1720,1740,2130,2960,3035 3-pyrrolidino-2-propyle 1720,1740,2130,2960,3035 3-pipéridino-2-propyle 1720,1740,2130,2960,3035 2-aziridinoéthyle 3025, 2950, 2880, 2550, 2400, 2325, 2125, 1730 2-pyrrolidino-1-propyle 3025, 2950, 2880, 2520, 2300(Br.), 2125, 1725 2-azétidinoéthyle 3012, 2941, 2703, 2315, 2119, 1748, 1639, 1587, 1493, 1439 2-pipéridino-1-propyle 3025, 2950, 2860, 2600, 2420, 2300(B), 2120, 1725, 1480, 1440 2-(2,6-diméthyl-pipéridino) 3020, 2940, 2860, 2525, éthyle 2300(B), 2120, 1725, - 1480, 1440 2-morpholino-1-propyle 3020, 2970, 2870, 2440, 2220(B), 2130, 1735, 1480, 1440 2-di(n-propylamino)-1- 3020, 2970, 2940, 2870, propyle 2550, 2300(B), 2120, 1725, 1480, 1450 R2 I.R. 2-(N-méthylanilino)éthyle 3-di(n-propylamino)propyle 3-diméthylamino-2-propyle 3020, 2950(B), 2300(B), 2130, 1735 3-morpholino-2-propyle 3025, 2940(B), 2300(B), 2120, 1735, 1480, 1440 Exemple IX Méthodes générales pour l'acylation de acide 6-Aminopénicillanique A une solution de l'aryl halocarbonyl cétèneapprc'priée (0,1 mole), dans laquelle R1 est le radical thiényle, furyle, pyridyle, phényle ou phényle substitué où le substituant est un radical alcoy2L inférieur, chlore, brome, alcoxy inférieur,di(alcoyl inférier amine ou trifluorométhyle, dans le chlorure de méthylène (quantité suffisante pour former une solution claire et en général d'environ 5 à 10 ml par gramme de cétène), on ajoute l'alcool approprié R2OH (0,1 mole). On maintient le mélange réactionnel sous atmosphère d'azote et on l'agite pendant une période de 20 minutes à 3 heures, en prenant soin d'éviter l'hlSmidité. La température peut aller d'environ -70 C à environ -200C. On prend ensuite le spectre infrarouge du mélange pour déterminer et confirmer la présence de l'ester de cétène. On ajoute une solution de sel de triéthylamine d'acide 6aminopénicillanique (0,1 mole) dans le chlorure de méthylène (50ml), et on agite le mélange entre -70 et -200C pendant dix minutes.On retire ensuite le bain de refroidissement et on agite continuellement le mélange réactionnel, puis on le laisse se réchauffer jusqu'à la température ambiante. On isole le produit par l'une des méthodes ci-dessous. Méthode A - On concentre à sec le mélange réactionnel sous pression réduite, et on reprend le résidu dans un tampon de citrate (pH 5,51 On extrait le produit de la solution de tampon avec du chloroforme. On lave l'extrait chloroformique avec le tampon de citrate (pH 5,5) puis on le sèche sur sulfate de sodium anhydre et on le concentre à sec pour obtenir le sel de sodium. Méthode B - On suit le processus de la Méthode A mais en utilisant du n-butanol comme solvant d'extraction à la place du chloroforme. On triture avec de l'éther le produit obtenu après évaporation du solvant n-butanol, pour obtenir un solide amorphe. Méthode C - Cette méthode, variante de la Méthode A, fait appel à une solution aqueuse saturée de bicarbonate de sodium (ou de po tassium) à la place du tampon de citrate, pour donner le sel de sodium (ou de potassium) de la pénicilline produite. On l'emploie en général pour récupérer les pénicillines produites qui sont peu solubles dans le chlorure de méthylène ou le chloroforme. Méthode D - On extrait deux fois le mélange réactionnel avec da bicarbonate de sodium ou de potassium aqueux staturé, on le lave a l'eau, on le sèche et on le concentre à sec pour obtenir le sel de sodium (ou de potassium). On triture avec de l'éther le produit, s'il n'est pas solide. Méthode E - Cette méthode, variante de la méthode D, est utilisée pour les pénicillines qui sont difficilement solubles dans le chlcrure de méthylène. On extrait avec du n-butanol la solution de bicarbonate de sodium (ou de potassium) (méthode D), on sèche l'extrait butanolique et on le concentre à sec. Méthode F - On utilise cette méthode pour isoler la forme acide libre des pénicillines. On reprend dans un acide aqueux, HC1 par exemple, à pH 2,7, le résidu restant après concentration à sec du mélange réactionnel, et on en extrait le produit au moyen de n-butanol. On lave l'extrait butanolique à l'acide aqueux (pH 2,7) puis on le lyophilise. Méthode F-l - On neutralise extrait butanolique de la méthode F avec une solution n-butanolique de 2-éthyl-hexanoate de potassium pour faire précipiter le sel de potassium de la pénicilline. On prépare ainsi les composés suivants quand X égale OR2ou SR7 et R2 et R7 sont comme énumérés à l'exemple VIII. Exemple X On transforme les sels de sodium et de potassium de l'exenFv ple IX en acides correspondants par neutralisation soigneuse des solutions aqueuses de leurs sels avec de l'acide phosphorique aqueux, puis par extraction de la forme acide dans la méthylisobutylcétone. On lave à l'eau les solutions dans la méthylisobutylcétone, on les sèche sur sulfate de sodium anhydre, on les filtre et on les concentre pour obtenir les acides libres. Exemple XI On transforme les acides libres des Exemples IX et X en leurs sels de calcium, de magnésium, d'ammonium, de procaine, de N,N'--dibenzyléthylènediamine, de N-éthylpipéridine, de dibenzylamine, de l-éphènamine, de triéthylamine, de N-benzyl-ss-phénéthylamine, de N,N-bis(déhydroabiétyl)éthylènediamine et de benzhydrylamine, par réaction de leurs solutions aqueuses avec un équivalent de la base appropriée. On récupère les sels par congélation-séchage. TABLEAU III : POINTS DE FUSION DES SELS R2 M P.F. ( C) 2-imidazoloéthyle H 110 (déc.) 5-indanyle morpholine 116-117 5-indanyle N-éthylpipéridine 139-141 5-indanyle triéthylamine 141-143 o-isopropylphényle potassium 193 (déc.) 4- indanyle N-éthylpipéridine 136-139 o-éthylphényle N-éthylpipéridine 140 (déc.) o-tolyle N-éthylpipéridine 104-145(d2Q 3,4-diméthylphényle N-éthylpipéridine 145-147 2,3-diméthylphényle N-éthylpipéridine 151-153 6-chloro-2-méthylphényle N-éthylpipéridine 150-151 4-chloro-2-méthylphényle N-éthylpipéridine 149-151 2-chloro-5-méthylphényle N-éthylpipéridine 144-145 (déc.) 4-chloro-3,5-diméthyl- N-éthylpipéridine 140-142 phényle 4-chloro-2,3-diméthyl- N-éthylpipéridine 144-147 phényle 2,5-diméthylphényle N-éthylpipéridine 144-150(dEo 3,5-diméthylphényle N-éthylpipéridine 147-149 2,4-diméthylphényle N-éthylpipéridine 142-149 (déc.) 2,6-diméthylphényle N-éthylpipéridine 150-151 m-éthylphényle N-éthylpipéridine 132-137 2-méthcb4-méthylphényle N-éthylpipéridine 150-152 2-méthyl- 3-méthoxyphényle N-éthylpipéridine 150-152 2- (N-méthylanilino) éthyle N-éthylpipéridine 69-77 3-(N-méthyianilino)-2- N-éthylpipéridine 86-92 propyle R2 M P.F.(0C.) 34N-éthylanilin 2- N-éthylpipéridine 86-97 propyle 2- (N-éthylanilino) éthyle N-éthylpipéridine 69-77 o-éthoxyphényle N-éthylpipéridine 138-142 Exemple XII On transforme les esters benzyliques et benzyliques sub stituFs de l'Exemple IX en leurs acides libres correspondants, par hydrogénation catalytique à la température ambiante.La méthode générale consiste à hydrogéner l'ester benzylique dans l'eau en présence d'une suspension de palladium à 10% préhydrogéné sur du charbon, jusqu'à ce que l'hydrogénation soit complète.Pour chaque fraction de 0,05 mole d'ester benzylique employée, on utilise 5,7 g de catalyseur et 1000 ml d'eau. Quand l'hydrogénation est complète, ce qu'on détermine par l'assimilation d'hydrogène, on filtre le mélange réactionnel, on ajuste le filtrat à pH 7,5 à l'aide de bicarbonate de sodium ou de potassium, puis on le concentre à sec sous pression réduite, et au-dessous de 400C. On purifie les produits par chromatographie sur colonne de cellulose et on les élue à l'aide d'un mélange de butanol-éthanol -eau, puis on les récupère de l'éluat par évaporation du solvant. Exemple XIII On agite, à la température ambiante. une solution da sel de triéthylamine de 1' -ïcarbo(5-indanyloxy)7-benzyl pénicilline 0,5 g) dans un petit volume de bicarbonate de sodium aqueux saturé (5 ml). On prélève des échantillons au bout de 10 minutes, de 30 minutes, puis à intervalles d'une demi--heure, et on les examine par chromatographie sur papier dans le système acétate d'isoamyle/ tampon de citrate-phosphate (pH 4,5) et par bioautographie(Bacillus subtiBi. On extrait aussi les échantillons au chloroforme (3 x 3 ml), on concentre les extraits réunis et on examine le concentré et l'échantil- lon aqueux épuisé par chromatographie sur papier et par bioautographie. L'ester, qui produit initialement une seule tache (Rf=0,9f sur un chromatogramme, semble s'équilibrer rapidement en deux épimères, comme le prouve l'apparition de deux taches dans le chromatogramme, Rf= 0,81 et 0,91. L'hydrolyse de l'ester est pratiquement complète au bout de deux heures, comme le prouvent l'absence de l'ester sur le chro matogramme et la présence d'&alpha;-carboxy benzyl pénicilline ainsi que d'une petite quantité de benzyl pénicilline. De la même manière, on transforme en acides correspondants le sel de sodiumd -/rcarbo(5-indanyloxy)/benzyl-pénicilline, le sel de sodium d'&alpha;-[carb(1-éthoxy-2,2,2-trichloroéthoxy)]benzylpénicil line, le sel de sodium d'&alpha; -(carboallyloxy)-benzylpénicilline, le sel de sodium d'&alpha;-(carbocyclohexyloxy)-benzylpénicilline, et 1' - (carbophénylthio)-benzylpénicilline. Exemple XIV On maintient à la température ambiante pendant 24 heures une solution dans leau du sel de sodium de l(carbo (2-di (n-propyl) amino)éthoxy/benzylpénicilline (0,5 g dans 5 ml). On règle automatiquement le pH à 7,0-7,2 en ajoutant du bicarbonate de sodium.On sèche ensuite la solution par congélation et on sépare le phénol sous-produit par trituration du résidu avec de l'éthanol, pour obtenir le sel disodique La répétition de cette méthode, mais à 35C C pendant deux heures, produit aussi le sel disodique. Au moyen de cette méthode on transforme les sels de sodium des esters de pénicilline suivants en leurs sels disodiques correspondants &alpha;-[carbo-(5-indanyloxy)]benzylpénicilline &alpha;-[carbo-(dicarbéthoxyéthoxy méthoxy)]benzylpénicilline &alpha;-(carbopropargyloxy)benzylpénicilline &alpha;-[carbo(2-bicyclo-[4.4.0]-décyloxy)]benzylpénicilline &alpha;-(carbophénylthio)benzylpénicilline Exemple XV Au sel de sodium de 1' -carbo/(2-N-méthylanilino) éthsxy7 benzylpénicilline (0,1 g) dans le chloroforme (5ml), on ajoute une solution de tampon de citrate (pH 5,5, 5 ml) et on secoue soigneusement le mélange obtenu pendant 75 minutes.On vérifie la couche aqueuse toutes les 15 minutes par chromatographie sur papier en utilisant le système acétate d'isoamyle/tampon de citrate-phosphate (pH 4,5), et par bioautographie (Bacillus subtilis). Au bout de 15 minutes, l'&alpha; -carboxybenzyl pénicilline est présente dans la phase aqueuse, ainsi qu'une forte proportion de l'ester de départ. Au bout de 60 minutes il n'y a plus d'ester dans la phase aqueuse. Le principal produit observé est l'&alpha; -carboxybenzylpénicilline. Une petite quantité de benzylpénicilline, son produit de dégradation, est aussi présente. On isole l'&alpha;-carboxybenzyl pénicilline par ly'ophilisation, et on purifie davantage le produit brut par chromatographie sur Sephadex LH 20 (dextrose réticulé commercialisé par HB Pharmacia, Uppsala, Sweden). Exemple XVI On prépare une base de comprimé en mélangeant les ingré- dients suivants dans les proportions pondérales indiquées. Sucrose, U.S.P. 80,3 Amidon de tapioca 13,2 Stéarate de magnésium 6,5 On mélange à la base une quantité suffisante de sel de sodium d'&alpha;-[carbo(2-di-(n-propyl)amino)-éthoxy]benzylpénicilline, pour former des comprimés contenant 25, 100 ou 250 mg d'ingrédient actif. Exemple XVII On prépare des capsules contenant 25, 100 ou 250 mg d'ingrédient actif, en mélangeant une quantité suffisante de sel de sodium d'&alpha;-[carbo(5-idanyloxy]benzylpénicilline au mélange suivant (proportions données en parties pondérales). Carbonate de calcium, U.S.P. 17,6 Phosphate dicalcique 18,8 Trisilicate de magnésium 5,2 Lactose, U.S.P. 5,2 Fécule de pomme de terre 5,2 Stéarate de magnésium A 0,8 Stéarate de magnésium B 0,35 Exemple XVIII On prépare une suspension de sel de sodium dlS -/carbo(l- éthoxy-2,2,2-trichloroéthoxy)jbenzylpénicilline ayant la composition suivante Composé de pénicilline 31,42 g Sorbitol aqueux à 70% 714,29 g Glycérine, U.S.P. 185,35 g Gomme acacia(solution à 10%) 100 ml Polyvinyl pyrrolidone 0,5 g Parahydroxybenzoate de butyle 0,172g Parahydroxybenzoate de propyle 0,094g Eau distillée pour faire un litre On peut ajouter à cette suspension divers agents édulcoranta et parfumants, ainsi que des colorants acceptables. La suspension contient à peu près 25 mg de composé de pénicilline par millilitre. Exemple XIX On melange et on broie intimement le sel de sodium de l -[carbo-(3-di-(n-propyl)-amino)propoxy]benzylpénicilline(10g) avec du citrate de sodium (4% en poids). On place le mélange broyé et sec dans des fioles, on stérilise à l'oxyde d'éthylène et on bouche les fioles de façon stérile. Pour l'administration parentérale, on ajoute aux fioles une quantité d'eau suffisante pour former des solutions contenant 25 mg d'ingrédient actif pa-r millilitre. Préparation A Acides maloniques On prépare les acides aryl maloniquessuivants, qui n'a vaient jamais été décrits dans la littérature, par la méthode de Wallingford et al, J. Am. Chem. Soc. 63, 2056-2059 (1964), qui consiste à condenser un alcoyl carbonate, habituellement le diéthyl carbonate, avec une proportion équimolaire de l'éthyl aryl acétate désiré, en présence d'un excès (4 à 8 fois) d'éthylate de sodium, et en éliminant continuellement l'alcool sous-produit du mélange réactionnel. On hydrolyse en acides les esters ainsi produits, par des méthodes connues. R1 R1 o-méthoxyphényle 3-pyridyle m-méthoxyphényle 4-pyridyle p-méthoxyphényle o-b ut oxyphényle o-trifluorométhylphényle o-diméthylaminophényle m-trifluorométhylphényle o-diéthylaminophényle p-trifluorométhylphényle m-diméthylaminophényle o-isopropylphényle p-diméthylaminophényle 3-furyle On prépare l'acide orthQfluorophénylacétique nécessaire à partir de l'o-trifluorobenzonitrile, par la méthode de Corse, et al, J. Am. Chem. Soc. 70, 2841 (1948), qui comprend (a) la transformation du nitrile en o-trifluorométhylacétophénone par une réaction de Grignard avec l'iodure de méthylmagnésium, puis par hydrolyse; (b) réaction de l'acétophénone avec du soufre et de la morpholine a 135 C pendant 16 heures, puis par traitement à l'acide acétique glacial et à l'acide chlorhydrique. Préparation B Aminoi sopropanol s On prépare les aminoisopropanols suivants en faisant réagir l'oxyde de propylène avec l'amine appropriée. La méthode comprend en général la réaction de l'oxyde de propylène avec une solution aqueuse de l'amine, dans un rapport molaire de 1,0 a 1,4 et dans un tube scellé. On secoue le tube scellé et on le laisse reposer pendant une nuit, puis on le chauffe à 800C pendant six heures, puis à 950C pendant quatre heures. On refroidit alors le tube, on prélève son contenu et on déplace l'aminoisopropanol de son sel à l'aide de carbonate de potassium. On sépare le produit, s'il est liquide, on le sèche avec de l'hydroxyde de potassium solide, puis on le distille sous pression réduite. On sépare le produit par filtration, s'il est solide, et on le recristallise dans un solvant approprie. NR5R6 NR 5R6 diméthylamine pipéridine diéthylamine pyrrolidine di-n-propylamine pyrrole diisopropylamine morpholine di-n-butylamine thiomorpholine 1,4,5,6-tétrahydropyrimidine imidazoline N-éthylpipérazine imidazolidine Préparation C 2-Aminopropanols On prépare les 2-aminopropanols suivants,ayant la formule dans laquelle NR5R6 représente un groupement di(alcoyl inférieur) amine ou un groupement hétérocyclique, par la méthode de Moffett, Org. Syn., Coll. Vol. IV, p. 834, qui comprend la réduction à l'hydrure de lithium aluminium de l'ester précurseur approprié, de formule ledit ester étant préparé comme décrit par Moffett, Org. Syn., Coll. Vol. IV, p. 466, par réaction de l'amine désirée avec 1' -bromopropionate d'éthyle. -NR5R6 -NR5R6 di(n-propyl)amine pipéridine di(n-butyl)amine morpholine diisopropylamine thiomorpholine 1,4,5,6-tétrahydropyrimidine pyrrole N-méthylpipérazine imidazoline N-n-butylpipérazine imidazolidine Préparation D Préparation des (alcoyl inférieur)sulfinylalcanols On mélange l'(alcoyl inférieur mercaptoalcanol approprié à une proportion équimolaire d'acide m-chloroperbenzosque dans une quantité de chloroforme suffisante pour permettre une agitation facile.On met le mélange à reflux pendant deux heures, puis on le refroidit pendant une nuit t on le filtre pour séparer l'acide m-chlorobenzolque. On concentre alors le filtrat à peu près à un tiers de son volume, on le laisse reposer pendant une nuit et on le filtre de nouveau pour séparer l'acide m-chlorobenzoique. On ajoute le filtrat à de l'eau (3 à 4 ml par mi de filtrat), on agite soigneusement et on filtre de nouveau. On récupère le produit du filtrat par élimination du solvant.On prépare de cette manière les composés suivants Z R1 -CH2-CH2 - CH3 -CH2-CH2- C2H5 -CH2-CH2- C4H9 -CH2-CH2- i-C4H -CH2-CH2-CH2- C3H7 -CH2-CH2-CH2-CH2- C2H5 -CH2-CH(CH3)- CH3 On peut employer d'autres peracides, tels que l'acide acétique, l'acide performique ou l'acide monoperphtalique, ou le peroxyde d'hydrogène dans l'acide acétique glacial, à la place de l'acide m-chloroperbenzoique. On préfère cependant ce dernier pere- cide car l'acide m-chlorobenzotque sous-produit est facilement séparé et on évite une suroxydation du mercaptan en dioxyde. Préparation E Préparation des (alcoyl inférieur)sulfonylalcanols (1) On oxyde l'(alcoyl inférieur) mercaptoalcanol désiré selon la méthode de préparation B, mais en utilisant comme agent oxydant deux proportions molaires d'acide m-chlorobenzoique au lieu d'une. (2) Autrement, on oxyde davantage les (alcanoyl inférieur) sulfinylalcanols de la préparation B, à l'aide d'une proportion equimolaire d'acide m-chloroperbenzoique, pour obtenir les composés sulfcnylés correspondants. On préfère la première méthode parce que les mercaptans de départ sont plus faciles à obtenir que les composés sulfinylés. On prépare ainsi les composés suivants Z1 R1 Méthode -CH2-CH2- CH3 1 -CH2-CH2- C2H5 2 -CH2-CH2- C4H9 1 -CH2-CH2 -CH2- C3H7 1 -CH2-CH2-CH2-CH2- C2H5 -1 -CH2-CH(CH3)- CH3 1 REVENDICATIONS 1. Composés de formule dans laquelle R1 est le radical thiényle, furyle, pyridyle, phényle, ou phényle substitué où le substituant est un radical al coyle inférieur, chlore, brome, alcoxy inférieur, di-(al coyl inférieur) amine ou trifluorométhyle X' est -OR2 ou -SR7 où R2 est l'hydrogéne quand R. est autre aue le radical phényle nh6- nyle substitue, ou @@-thiényle; le radical phényle, ou le radical phényle substitué dans lequel le substituant est au moins un des groupements chlore, brome, fluor, al coyle inférieur , nitro, di(alcoyl inférieur) , alcoxy inférieur, alcanoyle onférieur, ou carbo(alcoxy inférieur); furyle, quinolyle quinolyle méthyl-substitué phénazinyle 9, 10.-anthraquinonyle phénanthrènequinonyle anthracényle phénanthryle (1,3-benzodioxolyle) 3-(2-méthyl-4-pyronyle) 3-(4-pyronyle) et N- (méthylpyridyle) où Y2 est choisi dans le groupe composé de -CH=CH-O- -CH=CH-CH=CH -CH=CH-S- -C(O)-CH=CH-C(O)- et -CH2-CH2-S- -C(O)-C(O)-CH=CH-; -CH=N-CH-CH- où Z' est un radical alcoylène inférieur et est choisi dans le groupe composé de -(CH2)3- et -(CH2)4-, et de leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé des radicaux méthyle, chlore et brome;; benzyle benzyle substitué où le substituant est choisi dans le groupe composé du chlore, du brome, du fluor, de l'al coyle inférieur, de l'alcoxy inférieur, de l'alcanoyle inférieur, du carbo(alcoxy inférieur), du nitro, et du di(alcoyl inférieur)amine; phtalimidométhyle benzohydryle trityle cholestéryle; alcényle ayant jusqu'à 8 atomes de carbone alcynyle ayant jusqu'à 8 atomes de carbone; (1-indanyl)méthyle (2- indanyl ) méthyle furylméthyle pyridylméthyle (2-pyrrolidono)méthyle (4-imidazolyl)méthyle [2,2-di(alcoyl inférieur)-1,3-dioxolon-4-yl]méthyle cycloalcoyle et cycloalcoyle (alcoyl inférieur)substitué ayant de 3 à 7 atomes de carbone dans la partie cyclo alcoyle; bicyclo [4.4.0.]décyle thujyle fenchyle isofenchyle 7- adamantanyle ac-indanyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé du méthyle, du chlore et du brome; ac-tétrahydronaphtyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe com posé du méthyle, du chlore et du brome; alcoyle et alcoyle inférieur substitué où le substituant est choisi dans le groupe composé d'au moins un des radicaux suivants chlore brome fluor nitro carbo (alcoxy inférieur) alcanoyle inférieur alcoxy inférieur cyano (alcoyl inférieur)mercapto (alcoyl inférieur)sulfinyle (alcoyl inférieur)sulfonyle; -CH2-CH2 -NR5R6 -CH2-CH2 - CH2 -NR5R6 -CH2-CH(CH3 )-NR5R6, et -CH (CH3) -CH2-NR5R6 où -ER5R6 est choisi dans le groupe composé de -NH(alcanoyle inférieur), (alcoyle inférieur) - N où \ (alcoyle inférieur) les groupements (alcoyle inférieur) peuvent être identiques ou différents ; et -N(alcoyl inférieur)aniline; et -(alcoylène inférieur)-Yl où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone; et où Y1 est choisi dans le groupe composé des radicaux azétidine aziridine pyrrolidino pipéridine morpholine thiomorpholine N-(alcoyl inférieur) pipérazine pyrrole imidazole 2-imidazoline 2,5-diméthylpyrrolidine 1,4,5,6-tétrahydropyrimidine 4-méthylpipéridine et 2,6-diméthylpipéridine; où chacun des radicaux alcoxy inférieur, alcoyle inférieur ou alcanoyle inférieur a de 1 a 4 atomes de carbone, et où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone ; et R7 est l'hydrogène ou le radical phényle, phényle mono-, di-, ou tri-substitué où le substituant est au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur ou triflu orométhyle, a condition qu'une seule des positions en ortho du groupement thio de la partie phényle soit substituée; où chacun des radicaux alcoyle inférieur et alcoxy inférieur contient de 1 à 4 atomes de carbone. 2. Les composés de la revendication 1, dans lesquelles RI est le radical phényle et ru est où Z' est un radical alcoylène inférieur, ainsi que leurs sels pharmaceutiquement acceptables. 3. Les composés de la revendication 1, dans lesquelles R1 est le radical phényle et R2 est un radical phényle substitué dans lequel au moins un substituant est un radical alcoyle inférieur, ainsi que leurs sels pharmaceutiquement acceptables. 4. L'&alpha;-[carbo(5-indanyloxy)]benzylpénicilline et ses sels pharmaceutiquement acceptables. 5. L'&alpha;-[carbo(4-indanyloxy)]benzylpénicilline et ses sels pharmaceutiquement acceptables. 6. L'&alpha;-[carbo{2-(5,6,7,8-tétrahydronaphthyloxy)] benzyl pénicilline et ses sels pharmaceutiquement acceptables. 7. L'oi-/Carbo(4-chloro-2-méthylphénoxy)7b pénicilline et ses sels pharmaceutiquement acceptables. 8. L'&alpha;-[carbo(o-isopropylphénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 9. L'&alpha;-[carbo(3, 4-diméthylphénoxyr7benzyl pénicilline et ses sels pharmaceutiquement acceptables. 10, L'&alpha;-[carbo(4-chloro-2,3-diméthylphénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 11. L'&gamma;-[carbo(o-méthylphénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 12. L'&alpha;-[carbo(m-éthylphénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 13. L'ci -[carbo-(2-chloro-4-méthylphénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 14. L'&alpha;-[carbo(2,3-diméthylpénoxy)]benzyl pénicilline et ses sels pharmaceutiquement acceptables. 15. L -Lcarbo (2, 4-diméthylphénoxy)~ ?benzyl pénicilline et ses sels pharmaceutiquement acceptables. 16. L'&alpha;-[carbo(4-méthoxy-2-méthylphénoxy)~ /benzyl pénicilline et ses sels pharmaceutiquement acceptables. 17. Un procédé pour préparer les acyl pénicillines de formule dans laquelle M est choisi dans le groupe composé de l'hydrogène, du sodium, du potassium et des radicaux tri(alcoyl inférieur) amine, qui comprend la réaction de avec un composé de formule Rl - C = C = O O = C dans laquelle Rl est le radical thiényle, furyle, pyridyle, phényle;; ou phényle substitué où le substituant est un radical al coyle inférieur, chlore, brome, alcoxy inférieur, di- (al coyl inférieur) amine ou trifluorométhyle X' est -OR2 ou -SR7 où R2 est l'hydrogène ou le sodium, le radical phényle, ou le radical phényle substitué dans lequel le substituant est au moins un des groupements chlore, brome, fluor, al coyle inférieur), nitro, di(alcoyl inférieur)amine aîcoxy inférieur, alcanoyle inférieur ; ou carbo (alcoxy inférieur); furyle, quinolyle quinolyle méthyl-substitué phénazinyle 9, lO-anthraquinonyle phénanthr ènequinonyle anthracényle phénanthryle (1,3-benzodioxolyle) 3- (2-méthyl-4-pyronyle) 3-(4-pyronyle) et N- (méthylpyridyle); où Y2 est choisi dans le groupe composé de -CH=CH-O- -CH=CH-CH=CH -CH=CH-S- -C(O)-CH=CH-C(O)- et -CH2-CH2-S- C (0)-C (O) -CH=CH-; -CH=N-CH=CH où Z' est un radical alcoylène inférieur et est choisi dans le groupe composé de -(CH2)3 et -(CH2)4-, et de leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé des radicaux méthyle1 chlore et brome;; benzyle benzyle substitué où le substituant est choisi dans le groupe composé du chlore, du brome, du fluor, de l'al coyle inférieur, de l'alcoxy inférieur, de l'alcanoyle inférieur, du carbo(alcoxy inférieur), du nitro, et du di(alcoyl inférieur)amine; phtalimidométhyle b enzohydryle trityle cholestéryle; alcényle ayant jusqu'à 8 atomes de carbone alcynyle ayant jusqu'à 8 atomes de carbone; (1-indanyl)méthyle (2-indanyl)méthyle furylméthyle pyridylméthyl e (2-pyrrolidono)méthyle t4-imidazolyl)méthyle [2,2-di(alcoyl inférieur)-1,3-dioxolon-4-yl)]méthyle cycloalcoyle et cycloalcoyle (alcoyl inférieur) substitué ayant de 3 à 7 atomes de carbone dans la partie cyclo alcoyle; bicyclo [4.4.0.]décyle thujyle fenchyle isofenchyle 7.. adamantanyle ac-indanyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé du méthyle, du chlore et du brome; ac-tétrahydronaphtyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe com posé du méthyle, du chlore et du brome; alcoyle et alcoyle inférieur substitué où le substituant est choisi dans le groupe composé d'au moins un des radicaux suivants chlore brome fluor nitro carbo (alcoxy inférieur) alcanoyle inférieur alcoxy inférieur cyano (alcoyl inférieur)mercapto (alcoyl inférieur)sulfinyle (alcoyl inférieur)sulfonyle; -CH2-CH2 -NR R -CH2-CH2- CH2-NR R -CH2-CH(CH3)-NR5R6, et -CH(CH3)-CH2-NR5R6 où -NR5R6 est choisi dans le groupe composé de -NH(alcanoyle inférieur), ,(alcoyle inférieur) où les groupements \ (alcoyle inférieur) (alcoyle inférieur) peuvent être identiques ou différents ; et -N(alcoyl inférieur) aniline; et -(alcoylène inférieur)-Y1 où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone; et où Y1 est choisi dans le groupe composé des radicaux azétidine aziridine pyrrolidine pipéridine morpholine thiomorpholine N-(alcoyl inférieur) pipérazine pyrrole imida zole 2-imidazoline 2,5-diméthylpyrrolidine 1,4,5,6-tFtrahydropyrimidine 4-méthylpipéridine et 2,6-diméthylpipéridine; où chacun des radicaux alcoxy inférieur, alcoyle inrérieur ou alcanoyle inférieur a de 1 à 4 atomes de carbone, et où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone ; et R7 est l'hydrogène ou le sodium, ou le radical phényle, phényle mono-, di-, ou tri-substitué où le substituant est au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur ou trifluorométhyle, à condition qu'une seule des positions en ortho du groupement thio de la partie phényle soit substituée; Cù chacun des radicaux alcoyle inférieur et alcoxy inférieur contient de 1 à 4 atomes de carbone, dans un solvant inerte vis-à-vis de la réaction et à une température d'environ -700C à environ 300C ; et, si on le désire, où R2 ou R7 est l'hydrogène ou le sodium, par traitement des composés de Formule III, par hydrolyse à l'aide de carbonate de sodium aqueux ou par hydrolyse à l'aide d'un acide faible, ou encore par traitement enzymatique avec une estérase, ou bien où R2 est le radical benzyle ou benzyle substitué, par hydrogénation catalytique à la température ambiante. 18. Composés de formule dans laquelle R1 est le radical thiényle furyle pyridyle phényle phényle substitué où le substituant est un radical alcoyleinférieur, chlore, brome, alcoxy inférieur, di(al coyl inférieur) amine ou trifluorométhyle et X est X, - OR2 ou -SR7 où X est un halogène où R2 est le radical phényle, ou le radical phényle substitué dans lequel le substituant est au moins un des groupements chlore, brome, fluor, al coyle inférieur), nitro, di(alcoyl inférieur)amine, alcoxy inférieur, alcanoyle inférieur ou carbo(alcoxy inférieur furyle, quinolyle quinolyle méthyl- substitué phénazinyle 9,10 anthraquinonyle phénanthr ènequinonyle anthracényle phénanthryle (1,3-benzodioxolyle) 3-v2-méthyl-4-pyronyle) 3-(4-pyronyle) et N- (méthylpyridyle); où Y2 est choisi dans le groupe composé de -CH=CH-O- -CH=CH-CH=CH -CH--CH-S- -C (0) -CH=CH-C (O)- et -CH2-CH2-S- C(O)-C(O)-CH=CH-; -CH=N-CH=CH où Z' est un radical alcoylène inférieur et est choisi dans le groupe composé de -(CH2)3 et -(CH2)4-, et de leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé des radicaux méthyle, chlore et brome;; benzyle benzyle substitué où le substituant est choisi dans le groupe composé du chlore, du brome, du fluor, de l'al coyle inférieur, de l'alcoxy inférieur, de l'alcanoyle inférieur, du carbo(alcoxy inférieur), du nitro, et du di(alcoyl inférieur)amine; phta limidométhyle b-enzohydryle trityle cholestéryle; alcényle ayant jusqu'à 8 atomes de carbone alcynyle ayant jusqu'à 8 atomes de carbone; (1-indanyl)méthyle (2-indanyl)méthyle furylméthyle pyridylméthyle (2-pyrrolidono)méthyle (4-imidazolyl)méthyle [2,2-di(alcoyl inférieur)-1,3-dioxolon-4-yl]méthle cycloalcoyle et cycloalcoyle (alcoyl inférieur)substitué ayant de 3 à 7 atomes de carbone dans la partie cyclo alcoyle; bicyclo [4.4.0.]décyle thujyle fenchyle isofenchyle 7-adamantanyle ac-indanyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé du méthyle, du chlore et du brome; ac-tétrahydronaphtyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe com posé du méthyle, du chlore et du brome; alcoyle et alcoyle inférieur substitué où le substituant est choisi dans le groupe composé d'au moins un des radicaux suivants chlore brome fluor nitro carbo (alcoxy inférieur) alcanoyle inférieur alcoxy inférieur cyano (alcoyl inférieur)mercapto (alcoyl inférieur)sulfinyle (alcoyl inférieur)sulfonyle; -CH2-CH2-NR R -CH2-CH2- CH2-NR5R6 -CH2-CH(CH3 )-NR5R61 et -CH(CH3)-CH2-NR5R6 où -NR5R6 est choisi dans le groupe composé de -NH(alcanoyle inférieur), (alcoyle inférieur) - NN où - (alcoyle inférieurl les groupements (alcoyle inférieur) peuvent etre identiques ou différents ; et -N(elcoyl inférieur)aniline et -(alcoylène inférieur)-Yl où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone et où Y1 est choisi dans le groupe composé des radicaux a zétidine aziridine pipéridine morpholine thiomorpholine N-(alcoyl inférieur) pipérazine pyrrole imida zole 2-imidazoline 2,5-diméthylepyrrolidine 1,4,5,6-tétrahydropyrimidine 4-méthylpipéridine et 2, ; où chacun des radicaux alcoxy inférieur, alcoyle inférieur ou alcanoyle inférieur a de 1 à 4 atomes de carbone, et où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone ; et b est le radical phényle, phényle mono-,di-, ou tri-substitué où le substituant est au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur ou trifluorométhyle, à condition qu'une seule des positions en ortho du groupement thio de la partie phényle soit substituée , chacun des radicaux alcoyle inférieur et alcoxy inférieur contient de 1 à 4 atomes de carbone. 19. Un procédé pour préparer des composés de formule dans laquelle RI est le radical thiényle furyle pyridyle phényle phényle substitué où le substituant est un radical alcoyle inférieur, chlore, brome, alcoxy inférieur, di(alcoyl inférieur) amine ou trifluorométhyle et X' est X, -OR2 ou où X est un halogène où R2 est le radical phényle1 ou phényle substitué où le substituant est au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur, alcanoyle inférieur, carbo(alcoxy inférieur), nitro, ou di (alcoyl inférieur) amine furyle quinolyle quinolyle méthyl-substitué phénazinyle 9,10-anthraquinonyle phénanthr ènequinonyle anthracényle phénanthryle (1,3-benzodioxolyle) 3- (2-méthyl-4-pyronyle) 3-(4-pyronyle) et N- (méthylpyridyle) ;; ou y2 est choisi dans le groupe composé de -CH=CH-O- -CH=CH-CH=CH -CH=CH-S- -c (O) -CH=CH-C (O)- et -CH2-CH2-S- C(O)-C(O)-CH=CH-; -CH=N-CH=CH où Z' est un radical alcoylène inférieur et est choisi dans le groupe composé de -(CH2)3- et -(CH2)4-, et de leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé des radicaux méthyle, chlore et brome; benzyle benzyle substitué où le substituant est choisi dans le groupe composé du chlore, du brome, du fluor, de l'al coyle inférieur, de l'alcoxy inférieur, de l'alcanoyle inférieur, du carbo(alcoxy inférieur), du nitro, et du di (alcoyl inférieur)amine; phtalimidométhyle benzohydryle trityle cholestéryle;; alcényle ayant jusqu'à 8 atomes de carbone alcoyle ayant jusqu'à 8 atomes de carbone; (l-indanyl)méthyle (2-indanyl)méthyle furylméthyle pyri dylméthyl e (2-pyrrolidono)méthyle (4-imidazolyl)méthyle [2,2-di(alcoyl inférieur)-1,3-dioxolon-4-yl]méthyle cycloalcoyle et cycloalcoyle (alcoyl inférieur) substitué ayant de 3 à 7 atomes de carbone dans la partie cyclo alcoyle; bicyclo [4.4.0.]décyle thujyle fenchyle isofenchyle 7 adamantanyle ac-indanyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe composé du méthyle, du chlore et du brome; ac-tétrahydronaphtyle et leurs dérivés substitués dans lesquels le substituant est choisi dans le groupe com posé du méthyle, du chlore et du brome; alcoyle et alcoyle inférieur substitué où le substituant est choisi dans le groupe composé d'au moins un des radicaux suivants chlore brome fluor nitro carbo (alcoxy inférieur) alcanoyle inférieur alcoxy inférieur cyano (alcoyl inférieur)mercapto (alcoyl inférieur)sulfinyle (alcoyl inférieur)sulfonyle; -CH2-CH2-NR R -CH2-CH2- CH2-NR5R6 -CH2-CH(CH3)-NR5R6, et -CH(CH3)-CH2-NR5R6 où -NR5R6 est choisi dans le groupe composé de -NH(alcanoyle inférieur), (alcoyle inférieur) - N où alcoyle inférieur) les groupements (alcoyle inférieur) peuvent etre identiques ou différents ; et -N(alcoyl inférieur) aniline; et -(alcoylène inférieur) -Y1 où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone et où Y1 est choisi dans le groupe composé des radicaux azétidine aziridine pyrrolidine pipéridine morpholine thiomorpholine N-(alcoyl inférieur) pipérazine pyrrole imida zole 2-imidazoline 2,5-diméthylpyrrolidine 1,4,5,6-tétrahydropyrimidine 4-méthylpipéridine et 2,6-diméthylpipéridine; où chacun des radicaux alcoxy inférieur, alcoyle inférieur ou alcanoylc inférieur a de 1 à 4 atomes de carbone, et où le radical alcoylène inférieur contient de 1 à 3 atomes de carbone ; et N est le radical phényle, phényle mono-, di-, ou tri-substitué où le substituant est au moins un des groupements chlore, brome, fluor, alcoyle inférieur, alcoxy inférieur ou trifluorométhyle, à condition qtiune seule des positions en ortho du groupement thio de la partie phényle soit substituée; ; oQ chacun des radicaux alcoyle inférieur et alcoxy inférieur contient de 1 à 4 atomes de carbone en faisant réagir les acides maloniques de formule ou leurs dérivés, avec un agent d'halogénation pour former des composés de formule dans laquelle X est un halogène, et, au besoin, en faisant réagir lesdits composés avec des composés de formule X' - H pour obtenir les composés de formule I dans laquelle X' est -OR2 ou -SR7 et R1 est tel qu'il est défini plus haut.
Film forming method An object of the present invention is to provide a film forming method capable of forming a film by an aerosol deposition with high accuracy patterning. The object of the present invention is achieved by aerosolizing a raw material liquid including a film forming material; supplying the aerosol to a base material; and forming a film of the film forming material on the base material, in which the base material has, on a film forming surface, a liquid-repellent region which has liquid repellency to the raw material liquid and a lyophilic region which has lyophilicity to the raw material liquid, and in a case where a width of the liquid-repellent region is L and a diameter of the aerosol is D, “D>L” is satisfied. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method by an aerosol deposition. 2. Description of the Related Art As a film forming technique of thin film, a technique for forming a film from a film forming material by aerosolizing a raw material liquid including the film forming material, supplying the generated aerosol to a base material by transporting the generated aerosol with a carrier gas, and vaporizing a solvent in the aerosol adhering to the base material has been known. The technique for forming a film is also called an aerosol deposition. In the aerosol deposition, a film is formed using very small aerosol compared to liquid droplets in a film formation such as ink-jet and spray coating. Therefore, according to the aerosol deposition, a film having high following property (coverage property) to an unevenness and the like of the base material and having a uniform thickness can be precisely formed. In the film formation by the ink-jet, the liquid droplets can be selectively landed on a target position. For example, in the ink-jet, a wiring pattern can be formed by landing ink liquid droplets according to a target wiring pattern. In contrast, in the aerosol deposition, basically, the aerosol is supplied substantially uniformly over the entire surface of the base material. That is, in the aerosol deposition, it is not possible to selectively form a film on a desired position on the base material. In contrast, it has been proposed that a film is formed in a desired region of the base material using the aerosol deposition to form a film according to a wiring pattern or the like, by forming a liquid-repellent region having liquid repellency to the raw material liquid and a lyophilic region having lyophilicity to the raw material liquid on the base material with a pattern. For example, WO2013/176222A discloses a device manufacturing method comprising: a step of forming a functional layer in which lyophilicity and liquid repellency are modified by irradiation with light energy on a surface of a base material (substrate); a light patterning step of generating a pattern imparted with contrast due to lyophilicity and liquid repellency by irradiating patterned light energy to the functional layer on the base material; and a deposition step of converting a functional solution including molecules or particles of a material substance for an electronic device into aerosol (mist) and of spraying gas in which the aerosol is mixed with a carrier gas onto the surface of the base material which has been treated in the light patterning step. SUMMARY OF THE INVENTION As disclosed in WO2013/176222A, by forming a lyophilic region and a liquid-repellent region on a base material, it is possible to suppress adhesion of aerosol to the liquid-repellent region and selectively adhere the aerosol only to the lyophilic region. Therefore, by forming a liquid-repellent region and a lyophilic region on a base material according to a target pattern of a film, the film having the target pattern can be formed by the aerosol deposition. As described above, the aerosol served for the film formation by the aerosol deposition is very small compared to liquid droplets such as the ink-jet. Therefore, in many cases, a target pattern cannot be formed with high accuracy even though the liquid-repellent region and the lyophilic region are formed on the base material with a pattern. An object of the present invention is to solve such problems in the related art, and is to provide a film forming method capable of performing a film formation of a target pattern with high accuracy by an aerosol deposition. In order to solve the problems, the present invention has the following configuration.[1] A film forming method comprising:aerosolizing a raw material liquid including a film forming material;supplying the aerosol to a base material; andforming a film of the film forming material on the base material,in which the base material has, on a film forming surface, a liquid-repellent region which has liquid repellency to the raw material liquid and a lyophilic region which has lyophilicity to the raw material liquid, andin a case where a width of the liquid-repellent region is L and a diameter of the aerosol is D, “D≥L/2” is satisfied.[2] The film forming method according to [1], in which the aerosol is supplied to the base material while vibrating the base material.[3] The film forming method according to [1] or [2], in which the aerosol is supplied to the base material while heating the base material.[4] The film forming method according to [3], in which the base material is heated such that a temperature of a surface of the base material is 100° C. or higher.[5] The film forming method according to [3] or [4], in which a boiling point of a solvent or a dispersion medium included in the raw material liquid is 100° C. or lower.[6] The film forming method according to any one of [1] to [5], in which the lyophilic region and the liquid-repellent region of the base material are formed by performing lyophilic treatment on an entire film forming surface of the base material and then forming a pattern having liquid repellency to the raw material liquid.[7] The film forming method according to any one of [1] to [6], in which “D≥L” is satisfied.[8] The film forming method according to any one of [1] to [7], in which the lyophilic region and the liquid-repellent region form a wiring pattern.[9] The film forming method according to [8], in which the wiring pattern is a line-and-space wiring pattern.[10] The film forming method according to any one of [1] to [9], in which the film forming material is a conductive material. According to the film forming method of the present invention, it is possible to form a film having a target pattern with high accuracy by an aerosol deposition. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the film forming method according to an embodiment of the present invention will be described in detail based on suitable embodiments shown in the accompanying drawings. The embodiments described below exemplify an example of the present invention, and the scope of the present invention is not limited thereto. In addition, in order to clarify the description of each constitutional member, the dimensions of each constitutional member in the drawings are appropriately changed. Therefore, the scale in the drawings is different from the actual one. Furthermore, in the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. FIG. 1conceptually shows an example of a film forming apparatus for the film forming method according to the embodiment of the present invention. The film forming apparatus10shown inFIG. 1is an apparatus for forming a film on a base material Z by the above-described aerosol deposition, and has an aerosol generating portion12and a film forming portion14. The aerosol generating portion12and the film forming portion14are connected by a guide pipe16. As described later, the film forming method according to the embodiment of the present invention uses a base material Z which has a lyophilic region having lyophilicity to a raw material liquid M and has a liquid-repellent region having liquid repellency to the raw material liquid M, and in a case where the width of the liquid-repellent region is L and the diameter of aerosol A is D, the film forming method according to the embodiment of the present invention satisfies “D≥L/2” (refer toFIG. 2). Except for satisfying the condition, the film forming method according to the embodiment of the present invention basically forms a film in the same manner as a known aerosol deposition (mist deposition). Therefore, the film forming apparatus10and the like shown inFIG. 1are basically a known apparatus for forming a film by the aerosol deposition. In addition to the members shown in the drawings, the film forming apparatus10may have various members included in the known apparatus for forming a film by the aerosol deposition, such as supply means for the raw material liquid M, collecting means for the aerosol A (raw material liquid M) which does not serve for the film formation, and purifying means for carrier gas. In the following description, the lyophilic region and the liquid-repellent region formed on the base material Z are conveniently referred to as a “lyophilic/repellent pattern”. The aerosol generating portion12aerosolizes the raw material liquid M which is obtained by dissolving or dispersing a film forming material in a solvent or a dispersion medium, and supplies the generated aerosol A to the guide pipe16. The aerosol A is sent to the film forming portion14through the guide pipe16. In the film forming apparatus10, the aerosol generating portion12has a raw material container20containing the raw material liquid M, a container24containing a part of the raw material container20, an ultrasonic vibrator26disposed on a bottom surface of the container24, and a gas supply means28supplying the carrier gas for sending the aerosol A to the film forming portion14through the guide pipe16. Water W is contained in the container24. The water W is contained in the container24in order to transmit ultrasonic waves generated by the ultrasonic vibrator26to the raw material liquid M. Therefore, the ultrasonic vibrator26is immersed in the water W. In addition, at least a part of the container24containing the raw material container20is also immersed in the water W. In a case where the ultrasonic vibrator26vibrates, the water W propagates the ultrasonic vibration so as to ultrasonically vibrate the raw material container20, thereby ultrasonically vibrating the raw material liquid M contained in the raw material container20. By ultrasonically vibrating the raw material liquid M, the raw material liquid M is aerosolized and the aerosol A of the raw material liquid M is generated. That is, the raw material container20, the container24, and the ultrasonic vibrator26constitute a so-called ultrasonic atomizer. In the film forming method according to the embodiment of the present invention, the method for ultrasonically vibrating the raw material liquid M is not limited to the method for ultrasonically vibrating the raw material liquid M by propagating ultrasonic waves using the water W, that is, an intermediate solution. For example, a known method used for ultrasonic vibration of the raw material liquid M in the aerosol deposition can be used, such as a method for ultrasonically vibrating the raw material liquid M through the raw material container20by disposing the ultrasonic vibrator26on a lower surface of the raw material container20, and a method for ultrasonically vibrating the raw material liquid M directly by disposing the ultrasonic vibrator26on a bottom surface of the raw material container20. In the film forming method according to the embodiment of the present invention, the film forming material (film to be formed) is not limited, and various materials which can be formed into a film by the aerosol deposition can be used. Examples thereof include liquid crystal compounds, organic electroluminescent materials, metal alkoxide compounds, silicon compounds such as silicon dioxide (silica) and tetraethoxysilane, ceramic powders such as lead zirconate titanate (PZT) and aluminum oxide (alumina), metal oxides of zinc, alumina, zirconia, silica, perovskite, and the like, transparent electrode materials such as indium tin oxide (ITO), silver halide, and metal nanoparticles, polysaccharides such as gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, starch, water-soluble resins such as cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, polyacrylic acid, polyalginic acid, polyhyaluronic acid, and carboxy cellulose, molecules which become oxide semiconductors and organic semiconductors, and carbon nanotubes. Among these, transparent electrode materials such as indium tin oxide, silver halide, and metal nanoparticles and conductive materials used for a wiring on a substrate of a semiconductor device and the like, such as carbon nanotubes, can be suitably used as the film forming material in the present invention. The solvent or the dispersion medium used in the preparation of the raw material liquid M is not limited, and according to the film forming material, various liquids can be used as long as a liquid can dissolve or disperse the film forming material. Examples thereof include organic solvents, for example, amides such as N,N-dimethylformamide, sulfoxides such as dimethyl sulfoxide, heterocyclic compounds such as pyridine, hydrocarbons such as benzene and hexane, alkyl halides such as chloroform and dichloromethane, esters such as methyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ethers such as tetrahydrofuran and 1,2-dimethoxyethane, alkyl alcohols such as methanol, ethanol, and propanol, and the like. In addition, water is also exemplified as the solvent or dispersion medium. It is preferable to use any one of ion exchange water, distilled water, and pure water as the water. The solvent and the dispersion medium may be used as a mixture of two or more thereof. As described later, in the film forming method according to the embodiment of the present invention, for the purpose of moving the aerosol A on the base material Z by Leidenfrost effect, it is preferable that aerosol is supplied to the base material Z while heating the base material Z. On the other hand, the film forming method according to the embodiment of the present invention forms a film on the base material Z having the lyophilic/repellent pattern, but in a case where drying of the aerosol A proceeds by heating, the effect of the lyophilic/repellent pattern is reduced. In consideration of this point, it is preferable that the solvent (dispersion medium) used in the preparation of the raw material liquid M is a liquid having a boiling point of 100° C. or lower. The raw material liquid M may include various binders and coupling agents as necessary for the purpose of improving adhesiveness of the film after the film formation, improving the film hardness, and the like. In addition, the raw material liquid M may include a polymerizable monomer as necessary in order to increase the film hardness of the film to be formed. The ultrasonic vibrator26is not limited, and various ultrasonic vibrators (generating means for ultrasonic vibration) used for aerosolizing (misting) the raw material liquid M in the aerosol deposition can be used. The frequency of the ultrasonic vibration by the ultrasonic vibrator26is also not limited, and it is sufficient that the frequency of the ultrasonic vibration, which can aerosolize the raw material liquid M, is appropriately set according to composition and the like of the raw material liquid M. The frequency of the ultrasonic vibration for aerosolizing the raw material liquid M is approximately 15 kHz to 3 MHz. As described later, in the film forming method according to the embodiment of the present invention, the width L of the liquid-repellent region in the lyophilic/repellent pattern and the diameter D of aerosol satisfy “D≥L/2”. In the aerosol deposition, the diameter D of the aerosol A can be adjusted by adjusting one or more of density (concentration) of the raw material liquid M, surface tension of the raw material liquid M, and frequency of the ultrasonic vibration. In the film forming method according to the embodiment of the present invention, the aerosolization of a raw material liquid M is not limited to the ultrasonic vibration of the raw material liquid M, and various known aerosolizing method for the raw material liquid M, which are used in the aerosol deposition, can be used. Examples of the aerosolizing method include a pressuring type, a rotating disk type, an orifice vibration type, and an electrostatic type. The pressuring type is a method of aerosolization by colliding a liquid with a gas having increased flow velocity by applying pressure. The rotating disk type is a method in which liquid dropped on a high-speed rotating disk is aerosolized at an edge of the disk by centrifugal force. The orifice vibration type is a method in which liquid droplets are cut and aerosolized by applying vibration at the time of passing the liquid droplets through an orifice having fine holes. The electrostatic type is a method in which liquid is aerosolized by applying a DC or AC voltage to a thin tube through which liquid droplets pass. The gas supply means28is a means for introducing the carrier gas into the raw material container20through a gas supply pipe28a. By the carrier gas supplied from the gas supply means28, the aerosol A floating in the raw material container20is transported from the raw material container20to the film forming portion14through the guide pipe16. The gas supply means28is not limited, various known gas supply means used for supplying the carrier gas in the aerosol deposition, such as a fan, a blower, a gas cylinder, and compressed air, can be used. Alternatively, the carrier gas may be supplied to the raw material container20by suction from an outlet30aof the film forming portion14described later. The supply amount of gas by the gas supply means28is not also limited. Here, it is preferable that the gas supply means28supplies the carrier gas so that gas flow in the raw material container20, the guide pipe16, and the film forming portion14(in a casing30described later) is a laminar flow. In a case where the gas flow including aerosol becomes the laminar flow, a film having a uniform thickness can be formed on the surface of the base material Z. The supply amount of the carrier gas in the gas supply means28is preferably 3×10−3to 5×10−3m3/min and more preferably 1×10−3to 3×10−3m3/min. In the film forming method according to the embodiment of the present invention, the carrier gas is not limited, and various known gases used as a carrier gas in the aerosol deposition, such as inert gas of argon, nitrogen, and the like, air, gas obtained by aerosolizing the film forming material, and gas obtained by aerosolizing another film forming material, can be used. On the other hand, the film forming portion14has a casing30, a support32supporting the base material Z, and a vibration device34. The support32is disposed in the casing30. The vibration device34is provided as a preferred embodiment, and in the drawings, is abutted and fixed to a lower surface of the casing30. In addition, as a preferred embodiment, the support32incorporates heating means. In the film forming method according to the embodiment of the present invention, the base material Z is not limited, and various materials which are used as a base material in the film formation by the aerosol deposition can be used. In addition, as the base material Z, microchannel chip base materials such as micro-total analysis systems (μTAS), various circuit base materials on a silicon wafer, biotemplate base materials, and the like can also be used. That is, in the film forming method according to the embodiment of the present invention, various members having unevenness on the surface can be used as the base material Z. In the film forming method according to the embodiment of the present invention, before forming a film on the base material Z, a film forming surface of the base material Z may be subjected to a surface treatment as necessary. As the surface treatment of the base material Z, various treatments performed in the aerosol deposition according to the types of the solvent (dispersion medium) included in the raw material liquid M and the film forming material can be used. Examples thereof include a rubbing treatment for imparting alignment to the base material Z in a case of forming a film of a liquid crystal compound. The general method of the rubbing treatment is described in, for example, “Handbook of Liquid crystals” (published by Maruzen, Oct. 30, 2000). Furthermore, as the surface treatment of the base material Z, formation of a base layer can also be used for the purpose of improving adhesiveness, ensuring surface smoothness, and the like. It is sufficient that a known method such as a coating method and a printing method is performed for the formation of a base layer according to the base layer to be formed. In the film forming method according to the embodiment of the present invention, the base material Z has the lyophilic/repellent pattern in which the lyophilic region having lyophilicity to the raw material liquid M and the liquid-repellent region having liquid repellency to the raw material liquid M are formed on the film forming surface. In the present invention, having lyophilicity refers to that a contact angle between the film forming surface of the base material Z and the raw material liquid M is less than 90°. On the other hand, having liquid repellency refers to that the contact angle between the film forming surface of the base material Z and the raw material liquid M is 90° or more. The contact angle can be measured, for example, using a commercially available device such as DropMaster700 manufactured Kyowa Interface Science Co., Ltd. in accordance with JIS R 3257. In the film forming method according to the embodiment of the present invention, as conceptually shown inFIG. 2, the lyophilic/repellent pattern formed on the base material Z corresponds to, for example, a wiring pattern formed on a substrate of a semiconductor device and the like, and is a so-called line-and-space pattern. InFIG. 2, the upper part is a view of the base material Z as viewed from a surface direction of main surface, and is a view as viewed in the same direction asFIG. 1. In addition, the lower part is a view of the base material Z as viewed from a direction orthogonal to the main surface, and is a view (plane view of the base material Z) showing the film forming surface of the base material Z. The main surface is the largest surface of a sheet-like material (a plate-like material and a film-like material). As conceptually shown inFIG. 2, in the film forming method according to the embodiment of the present invention, in a case where the width of the liquid-repellent region Za in the lyophilic/repellent pattern is L and the diameter of the aerosol A is D, the width L of the liquid-repellent region Za and the diameter D of the aerosol A satisfy “D≥L/2”. The diameter of the aerosol A is, in other words, the particle diameter (particle size) of the aerosol particles. In the present invention, the width L of the liquid-repellent region Za is, in other words, the diameter of the largest inscribed circle inscribed in the liquid-repellent region Za. Specifically, for example, in the width L of the liquid-repellent region Za, in a case where a lyophilic/repellent pattern formed on the base material Z is a line-and-space pattern corresponding to the wiring pattern, which is conceptually shown inFIG. 2, the diameter of the largest inscribed circle inscribed in the liquid-repellent region Za basically matches a line width of the linear liquid-repellent region Za. In addition, in a case where the lyophilic/repellent pattern is a so-called sea-island like (sea-island structure) pattern in which the liquid-repellent region Za has an island-like lyophilic region Zb, the width L of the liquid-repellent region Za is the diameter of the largest inscribed circle which is not overlapped with the lyophilic region Zb and is inscribed in the liquid-repellent region Za, that is, the width L of the liquid-repellent region Za is the diameter of the largest circle which can be formed without overlapping the lyophilic region Zb in the region surrounded by a plurality of the lyophilic regions Zb. In this case, the shape of the island in the sea-island like lyophilic/repellent pattern is not limited, and various shapes such as polygonal shapes of a circle, an ellipse, a triangle, a quadrangle, and the like, and irregular shapes can be used. Since the film forming method according to the embodiment of the present invention has such a configuration, in the film formation by the aerosol deposition to the base material Z on which the lyophilic/repellent pattern is formed, the adhesion and film formation of the aerosol A to the liquid-repellent region Za is suppressed, the aerosol A selectively adheres to the lyophilic region Zb, and a target pattern can be formed on the film with high accuracy. As described above, unlike the ink-jet in which liquid droplets are selectively landed at a desired position on the base material, in the aerosol deposition, the aerosol A is uniformly supplied to the entire surface of the base material Z, and it is basically impossible to form a film having a desired pattern. In contrast, as described in WO2013/176222A, by forming a lyophilic/repellent pattern on the film forming surface of the base material Z, it is possible to suppress the adhesion of the aerosol A to the liquid-repellent region, selectively adhere the aerosol A to the lyophilic region, and form a patterned film having a desired pattern. The aerosol A is very small compared to liquid droplets in the ink-jet or the like. In addition, in the aerosol deposition, the film forming material forms a film on the base material Z by evaporating the solvent (dispersion medium) from the aerosol A adhering to the base material Z. Therefore, in the aerosol deposition, in a case where the aerosol A is significantly smaller than the width L of the liquid-repellent region Za, the solvent evaporates from the aerosol A which is a very small liquid droplet during the aerosol A adhering to the liquid-repellent region Za moves from the liquid-repellent region Za to the lyophilic region Zb, thereby the film forming material forms a film on the liquid-repellent region Za. In contrast, in the film forming method according to the embodiment of the present invention, the width L of the liquid-repellent region Za and the diameter D of the aerosol A satisfy “D≥L/2”. Therefore, in a case where the aerosol A reached the liquid-repellent region Za rolls one rotation, the aerosol A reaches the lyophilic region Zb and is retained in the lyophilic region Zb to form a film. Therefore, according to the film forming method according to the embodiment of the present invention, in the aerosol deposition, the adhesion and film formation of the aerosol A to the liquid-repellent region Za is suppressed, the aerosol A selectively adheres to the lyophilic region Zb, and a target patterned film is formed with high accuracy. That is, for example, in a case of a wiring pattern shown inFIG. 4, the aerosol A can appropriately adhere only to the position where the wiring is to be formed, and a wiring pattern can be formed with high accuracy. In the film forming method according to the embodiment of the present invention, the width L of the liquid-repellent region Za and the diameter D of the aerosol A preferably satisfy “D≥L”. In a case where the width L of the liquid-repellent region Za and the diameter D of the aerosol A satisfy “D≥L”, the adhesion and film formation of the aerosol A to the liquid-repellent region Za is more suitably suppressed, the aerosol A selectively adheres to the lyophilic region Zb more reliably, and a desired patterned film is formed with higher accuracy. In the film forming method according to the embodiment of the present invention, the upper limit of the diameter D of the aerosol A is not limited. However, in a case where the diameter D of the aerosol A is too large, that is, the aerosol A is too large, the lyophilic region Zb cannot completely retain the aerosol A, and the aerosol A may reach the liquid-repellent region Za and the accuracy of patterning may be reduced. In consideration of this point, it is preferable that the width L of the liquid-repellent region Za and the diameter D of the aerosol A satisfy “D≤2L”. That is, in the film forming method according to the embodiment of the present invention, it is preferable that “2L≥D≥L/2” is satisfied. In particular, in a case where the lyophilic/repellent pattern is the line-and-space wiring pattern shown inFIG. 4, it is preferable that “D≤L+Lb” in which the width of a linear lyophilic region Zb is Lb is satisfied. That is, in this case, it is preferable that “L+Lb≥D≥L/2” is satisfied. In the film forming method according to the embodiment of the present invention, the width L of the liquid-repellent region Za is not limited to a configuration in which the width L is uniform over the entire film formation region of the base material Z, and one or more portions of the base material Z may have portions (regions) in which the width L of the liquid-repellent region Za is different. In the film forming method according to the embodiment of the present invention, it is sufficient that at least a part of the liquid-repellent region Za satisfies “D≥L/2”. However, in order to form a patterned film with high accuracy, it is preferable that 70% or more of the total area of the liquid-repellent region Za satisfies “D≥L/2”, it is more preferable that 80% or more of the total area of the liquid-repellent region Za satisfies “D≥L/2”, and it is particularly preferable that 99% or more of the total area of the liquid-repellent region Za satisfies “D≥L/2”. In the film forming method according to the embodiment of the present invention, the method for forming the lyophilic/repellent pattern, that is, the lyophilic region and the liquid-repellent region on the base material Z are not limited, and various known methods can be used according to composition of the raw material liquid M such as the forming material of the base material Z and the solvent (dispersion medium). Examples thereof include a method forming a lyophilic pattern on a surface of the base material Z which has liquid repellency by a transcription, a plasma treatment, an ozone irradiation, an ultraviolet (UV) irradiation, a UV ozone irradiation, an electron beam (EB) irradiation, a photolithography, and the like, and a method forming a liquid-repellent pattern on a surface of the base material Z which has lyophilicity by a transcription, a gravure printing, an ink-jet, a photolithography, and the like. The base material Z which has liquid repellency and the base material Z which has the lyophilicity may be the base material Z of which the surface is subjected to a liquid-repellent treatment to have liquid repellency or the base material Z of which the surface is subjected to a lyophilic treatment to have lyophilicity. Examples of forming the lyophilic/repellent pattern on the base material Z include a method in which, in a case where the water is used as the solvent of the raw material liquid M, the entire surface of the base material Z is subjected to a hydrophilic treatment and then a water-repellent pattern formed by a water repellent is transferred to the liquid-repellent region Za. For example, the entire surface of the base material Z is subjected to a UV ozone treatment and the hydrophilic treatment in advance. In addition, as conceptually shown inFIG. 3, an unevenness precursor36having unevenness according to a lyophilic/repellent pattern is prepared. In the unevenness precursor36, convex portions36acorrespond to the liquid-repellent region Za and concave portions36bcorrespond to the lyophilic region Zb. Next, as conceptually shown inFIG. 3, a water repellent H forms a film on an uneven surface of the unevenness precursor36by, for example, vapor deposition. Next, the convex portions36aof the unevenness precursor36on which the film of the water repellent H is formed is abutted to the base material Z of which the entire surface is subjected to the hydrophilic treatment and pressed. Thereafter, by spacing the convex portion36aof the unevenness precursor36from the base material Z, the water repellent H of the convex portions36ais transferred to the base material Z, and the lyophilic/repellent pattern composed of the liquid-repellent region Za and the lyophilic region Zb is formed on the base material Z. Examples of the water repellent H include a fluorine-based compound and a silicon-based compound. Furthermore, a commercially available water repellent may be used. Various known film forming methods such as, other than the vapor deposition, a gas phase deposition method such as sputtering and a coating method can be used for forming the film of the water repellent H on the unevenness precursor36. In addition, the film of the water repellent H may be formed only on distal end surface of the convex portion36aby coating, transcription, and the like. In addition, the transcription of such a water-repellent pattern may be performed using microcontact printing, gravure offset printing, gravure printing, letterpress printing, intaglio printing, offset printing, pad printing, and the like. In the film forming method according to the embodiment of the present invention, the measuring method of the diameter of the aerosol A is not limited, and various known methods for measuring diameter (particle size) of particles can be used. Examples thereof include a method for measuring the diameter of the aerosol A by injecting laser sheet light into a space where the aerosol A is present using a laser sheet light source for visualization, capturing an image with a high-speed camera, and analyzing the image. In addition, the particle size of the aerosol A may be measured by visualizing the aerosol A using a commercially available fine particle visualization system. Examples of the commercially available fine particle visualization system include ViEST manufactured by SHIN NIPPON AIR TECHNOLOGIES CO., LTD. At the time of measuring (calculating) the diameter by visualizing the aerosol A, image processing may be performed as necessary. The measurement position of the diameter of the aerosol A is not limited, but it is preferable to measure the diameter at a position where the aerosol A flows. Therefore, as an example, it is preferable that the diameter of the aerosol A is measured in the guide pipe16. In addition, in a case where the raw material liquid M is aerosolized by the ultrasonic vibration, the diameter D of the aerosol A may be obtained by the following equation. In the following equation, ρ indicates the density of the raw material liquid M, σ indicates the surface tension of the raw material liquid M, and f indicates the frequency of the ultrasonic vibration, respectively. D=0.68[(π*σ)/(ρ*f2)]1/2 The equation is described in J.Accousticai Sot.Amer.34 (1962) 6. Except for a case where the diameter of the aerosol A unexpectedly changes due to collision and the like of the aerosol A's, it is considered that the diameter of the aerosol A is basically the same from the generation of the aerosol A to the moving in the guide pipe16to the arrival at the base material Z. In addition, it is considered that the diameter of the aerosol A arriving at the base material Z is basically uniform over the entire surface of the base material Z, except for the case where the diameter of the aerosol A unexpectedly changes. In the film forming method according to the embodiment of the present invention, the diameter D of the aerosol A is not limited, but is preferably 20 to 50 μm, more preferably 10 to 20 μm, and still more preferably 1 to 10 μm. As described above, the diameter D of aerosol can be adjusted by adjusting one or more of density of the raw material liquid M, surface tension of the raw material liquid M, and frequency of the ultrasonic vibration. The support32is a supporting means for mounting and supporting the base material Z. In the film forming method according to the embodiment of the present invention, the supporting means for the base material Z is not limited to the support32mounting the base material Z, and various known supporting means for a sheet-like material, such as a supporting means for sandwiching an end portion of the sheet-like material, can be used. In a case of roll-to-roll described later, a roller in a supplying portion (film forming portion) of the aerosol A, which transports the base material Z, a drum (can) in the supplying portion of the aerosol A, which winds and transports the base material Z, and the like act as the supporting means for the base material Z. The roller transporting the base material Z is, for example, a transport roller, a pair of the transport rollers, and the like. In the film forming method according to the embodiment of the present invention, at the time of supplying the aerosol A, it is preferable that the base material Z is heated. Correspondingly, in the film forming apparatus10, the support32incorporates heating means. Since the aerosol A moves on the base material Z due to the Leidenfrost phenomenon (Leidenfrost effect) by supplying the aerosol A to the base material Z while heating the base material Z, the moving of the aerosol A from the liquid-repellent region Za to the lyophilic region Zb is promoted, and the patterning accuracy of film formation can be further improved. The heating temperature of the base material Z is not limited, and it is sufficient that the temperature at which the Leidenfrost phenomenon occurs may be appropriately set according to the solvent used for the raw material liquid M. It is preferable that the heating of the base material Z is performed such that the surface of the base material Z is 100° C. or higher, and it is more preferable that the heating of the base material Z is performed such that the surface of the base material Z is 150° C. or higher. The heating of the base material Z is preferably performed at a temperature not higher than a temperature at which the base material Z is damaged, according to the forming material of the base material Z. Here, in a case where the drying of the aerosol A proceeds by heating, the effect of the lyophilic/repellent pattern formed on the base material Z is reduced. In consideration of this point, the surface temperature of the base material Z by heating is preferably 300° C. or lower and more preferably 200° C. or lower. Furthermore, in consideration of this point, it is preferable that the solvent (dispersion medium) used in the preparation of the raw material liquid M is a liquid having a boiling point of 100° C. or lower, as described above. As the heating method of the support32, various known heating methods such as a method using a heater or the like can be used. In addition, as the heating method of the base material Z, other than the heating of the support32, various known methods of heating sheet-like material, such as heating by a lamp and direct heating by a heater, can be used. The film forming apparatus10in the drawing includes the vibration device34on the lower surface of the support32. The vibration device34is provided as a preferred embodiment, and is a vibration device which vibrates the base material Z at the time of supplying the aerosol A to the base material Z. In the film forming portion14, the support32is provided so as to be abutted to the bottom surface (inner wall surface) of the casing30. The vibration device34is provided so as to be abutted to the lower surface of the casing30. Therefore, in a case where the vibration device34vibrates the casing30, the support32vibrates, and the base material Z supported by the support32vibrates. The film forming method according to the embodiment of the present invention is a method forming a target patterned film, in film formation by the aerosol deposition, by adhering the aerosol A only to the lyophilic region Zb using the base material Z which has the lyophilic/repellent pattern (liquid-repellent region Za and lyophilic region Zb). Therefore, by supplying the aerosol A to the base material Z while vibrating the base material Z, the moving of the aerosol A adhering to the liquid-repellent region Za to the lyophilic region Zb is promoted, and the patterning accuracy of film formation can be further improved. In addition, by supplying the aerosol A to the base material Z while vibrating the base material Z, the film forming speed can be improved. In the aerosol deposition, a sea-island like film is formed by adhering the aerosol A to the base material Z and drying the aerosol A. Here, the aerosol A not fixed to the base material Z is discharged from the base material Z as rolling down. Therefore, in the aerosol deposition in the related art, a lot of aerosols A are not effectively served for the film formation, and the film forming speed is low. In contrast, by supplying the aerosol A to the base material Z while vibrating the base material Z, it is possible to suppress the aerosol A from rolling down the base material, and by moving the aerosol A on the base material Z and colliding the aerosol A's with each other, liquid droplets of the aerosol A aggregate. As a result, it is considered that the aerosol A is easily fixed on the base material Z and the film forming speed is improved. In the film forming method according to the embodiment of the present invention, in a case of vibrating the base material Z, the frequency of vibrating the base material Z is not limited. In order to suitably obtain the effect of vibrating the base material Z, the frequency of vibrating the base material Z is preferably 50 Hz or more, more preferably 100 Hz or more, and still more preferably 200 Hz or more. In addition, in the film forming method according to the embodiment of the present invention, in a case of vibrating the base material Z, the frequency of vibrating the base material Z is preferably 10 kHz or less, more preferably 5 kHz or less, and still more preferably 1 kHz or less. In a case where the aerosol A adheres to the base material Z, the aerosol A's are bonded to each other to become a liquid similar to the raw material liquid M. Here, in a case where the base material Z is vibrated at a frequency of more than 10 kHz, the liquid similar to the raw material liquid M adhering to the base material Z is in a state of being ultrasonically vibrated, is aerosolized again and separated from the surface of the base material Z, and the film forming speed may be reduced. In the film forming method according to the embodiment of the present invention, in a case of vibrating the base material Z, the speed of vibrating the base material Z is not limited. However, in order to suitably obtain the effect of vibrating the base material Z, it is preferable to vibrate the base material Z at a certain speed or higher. The speed of vibrating the base material Z is preferably 0.1 mm/sec or more, more preferably 0.5 mm/sec or more, and still more preferably 1 mm/sec or more. On the contrary, in a case where the speed of vibrating the base material Z is too high, problems such as the load on the apparatus increases, the load on the base material Z increases, the aerosol A easily rolls down from the base material Z, and the aerosol A is dried before moving may occur. Therefore, the amplitude of vibrating the base material Z is preferably 10 mm/sec or less, more preferably 8 mm/sec or less, and still more preferably 5 mm/sec. The vibration device34is not limited, and various known vibrating means capable of vibrating the support32can be used according to the support32supporting the base material Z. In the present invention, the support (supporting means) supporting the base material Z includes the roller in the roll-to-roll as described above. Examples of the vibration device34include a vibration means using a piezo element, a vibration motor (eccentric motor), a vibration means using a movable coil, and a vibration means using a pneumatic actuator, a hydraulic actuator, and the like. In addition, as the vibration device34, a commercially available vibrator (vibration device) can be also suitably used. In the film forming method according to the embodiment of the present invention, the vibrating method of the base material Z is not limited to the method for vibrating the supporting means for the base material Z. For example, in a case where the base material Z is in a state capable of vibrating alone at the supply position of the aerosol A to the base material Z, that is, at the film formation position, such as a case where the base material Z is supported by the supporting means sandwiching the end portion and a case where the base material Z is transported by the pair of the transport rollers in the roll-to-roll described later, blowing means for blowing and vibrating the base material Z, means for irradiating a sound wave on the base material Z to vibrate the base material Z, for example, a speaker, and the like are also suitably used as the vibrating means for the base material Z. In the film forming method according to the embodiment of the present invention, the timing of starting vibration in a case of vibrating the base material Z is not limited, but it is preferable to start the vibration of the base material Z before supplying the aerosol A to the base material Z. For example, in the film forming apparatus10shown inFIG. 1, it is preferable that, after the vibration of the base material Z (support32) by the vibration device34is started, the driving of the ultrasonic vibrator26is started, and then the aerosolization of the raw material liquid M is started. In a case of vibrating the base material Z, in order to suitably obtain the effect of the vibration, it is preferable that the base material Z is always vibrated during a state where the aerosol A is supplied to the base material Z. By starting the vibration of the base material Z before starting the supply of the aerosol A to the base material Z, it is possible to reliably bring the base material Z into a state of vibrating at the time of supplying the aerosol A. In the film forming method according to the embodiment of the present invention, the base material Z may be vibrated in a surface direction of the main surface of the base material Z, in a direction orthogonal to the main surface of the base material Z, or in both directions of the surface direction of the main surface of the base material Z and the direction orthogonal to the main surface of the base material Z. In addition, the base material Z may be vibrated in a linear reciprocation, or in a trajectory which draw shapes such as a circle, an ellipse, and a polygonal shape. Hereinafter, the act of the film forming apparatus10shown inFIG. 1will be described. In the film forming apparatus10shown inFIG. 1, the base material Z on which a liquid-repellent pattern is formed is mounted on the support32. Thereafter, in a case where the ultrasonic vibrator26ultrasonically vibrates while the raw material container20contains the raw material liquid M, ultrasonic waves are transmitted to the raw material liquid M through the water W and the raw material liquid M is ultrasonically vibrated. By ultrasonically vibrating the raw material liquid M, the raw material liquid M is aerosolized. As a result, the aerosol A generated by aerosolizing the raw material liquid M floats in the raw material container20. Next, the carrier gas is supplied from the gas supply means28into the raw material container20through the gas supply pipe28a. The aerosol A floating in the raw material container20is transported from the raw material container20to the guide pipe16by the carrier gas, and is transported from the guide pipe16into the casing30of the film forming portion14. The aerosol A may be concentrated by, for example, heating the guide pipe16as necessary. In a case where the aerosol A is transported into the casing30of the film forming portion14, the aerosol A is supplied to the base material Z which is mounted on the support32. Furthermore, the solvent evaporates from the aerosol A supplied (adhering) to the base material Z, and the film forming material included in the aerosol A (raw material liquid M) forms a film on the base material Z. The aerosol A not served for the film formation is discharged from the outlet30aof the casing30. Here, in the film forming method according to the embodiment of the present invention, the lyophilic/repellent pattern is formed on the base material Z, and the width L of the liquid-repellent region Za and the diameter D of the aerosol A satisfy “D≥L/2”. Therefore, as described above, the aerosol A suitably adheres selectively to the lyophilic region Zb, and as a result, a target patterned film can be formed with high accuracy of patterning. Preferably, by vibrating the base material Z with the vibration device34or by heating the base material Z with the heating means incorporated in the support32, a patterned film with higher accuracy can be formed. In the film forming method according to the embodiment of the present invention, after forming a film on the base material Z, the formed film may be irradiated with UV, electron beam, and active radiation such as radiations, for example, α-ray, β-ray, γ-ray, and the like as necessary. For example, in a case where the film forming material is a polymerizable liquid crystal compound, after forming a film on the base material Z, the film may be irradiated with UV to cure (polymerize) the polymerizable liquid crystal compound. Examples of light source generating ultraviolet light include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, and LED. In the film forming method according to the embodiment of the present invention, a film formation by roll-to-roll can be used. In particular, as described above, since the film forming speed can be improved by vibrating the base material Z, the roll-to-roll can be more suitably used by vibrating the base material Z. As well known, the roll-to-roll is a manufacturing method in which the base material Z is sent out from a base material roll obtained by winding a long base material Z to a roll shape, while transporting the long base material Z in the longitudinal direction, the base material Z is continuously subjected to treatments such as film formation, and the treated base material Z is wound into the roll shape again. By using the roll-to-roll, productivity can be significantly improved. In the following description, the roll-to-roll is also referred to as “RtoR”. FIG. 4conceptually shows an example of the film forming method according to the embodiment of the present invention using RtoR. Since the film forming apparatus shown inFIG. 4uses many of the same members as the film forming apparatus10shown inFIG. 1, the same members are denoted by the same reference marks, and the description will mainly be given to different parts. In a film forming apparatus40shown inFIG. 4, the long base material Z is transported in the longitudinal direction (in the drawing, direction of arrow x) by a transport roller42and a transport roller46. A pair of the transport rollers may be used instead of the transport rollers. A casing30A in a film forming portion14A a rectangular housing of which a lower surface is opened. In addition, the vibration device34is disposed below the base material Z so as to sandwich the base material Z together with the casing30A. The casing30A is provided between the transport roller42and the transport roller46in the transport direction of the base material Z. Therefore, in the film forming apparatus40, the transport roller42and the transport roller46become the supporting means of the base material Z. In the film forming apparatus40, while the base material Z having the lyophilic/repellent pattern is transported by the transport roller42and the transport roller46in the longitudinal direction, a film is formed by supplying the aerosol A when the base material Z passes under the casing30A. Preferably, the base material Z is vibrated by the vibration device34disposed below the casing30A. As a result, a patterned film with higher accuracy can be formed and the film forming speed can be improved. In RtoR, blowing means for blowing and vibrating the base material Z, means for irradiating a sound wave on the base material Z to vibrate the base material Z, for example, a speaker, and the like are suitably used as the vibration device34, as described above. In addition, the base material Z may be vibrated by vibrating the transport roller42and/or the transport roller46as the supporting means. As described above, it is preferable to start the vibration of the base material Z before supplying the aerosol A. Therefore, in the film forming apparatus40in the drawing using RtoR, it is preferable that the vibration device34vibrates the base material Z from upstream more than the casing30A, specifically, it is preferable that the vibration device34vibrates the base material Z from immediately downstream of the transport roller42on the upstream side. As described above, the film forming method according to the embodiment of the present invention forms a patterned film on the base material Z having the lyophilic/repellent pattern by the aerosol deposition. Here, in a case where RtoR is used in the present invention, the formation of the lyophilic/repellent pattern (the liquid-repellent region Za and the lyophilic region Zb) and the film formation by the aerosol deposition may be continuously performed by providing a device forming the lyophilic/repellent pattern upstream of the casing30A. For example, as conceptually shown inFIG. 5, a water-repellent pattern transcription device54is provided upstream of the film forming apparatus40(casing30A) and a UV ozone treatment device52is provided upstream of the water-repellent pattern transcription device54. In addition, water is used as the solvent of the raw material liquid M. At this time, while transporting the base material Z in the longitudinal direction (direction of arrow x), first, the entire surface of the base material Z is subjected to a UV ozone treatment using the UV ozone treatment device52to be hydrophilized. Next, using the water-repellent pattern transcription device54, a water-repellent pattern formed by microcontact printing or the like is transferred from the transfer roller54ato the surface of the base material Z of which the entire surface is hydrophilized. As a result, the lyophilic/repellent pattern is formed on the surface of the base material Z. Thereafter, while transporting the base material Z, by the film forming apparatus40according to the film forming method according to the embodiment of the present invention, a film is formed on the base material Z on which the lyophilic/repellent pattern is formed. Thereby, the aerosol A adheres in a pattern only to the hydrophilic region, and the film forming material can form a film with a pattern. While transporting the sheet-shape (cut sheet-shape) base material Z shown inFIG. 1, of which a plurality are arranged in the transport direction, using a transport means such as a belt conveyor and a roller conveyor, by performing the hydrophilic treatment using the UV ozone treatment device52and the transcription of the water-repellent pattern using the water-repellent pattern transcription device54on transported base material Z, the manufacturing method as shown inFIG. 5can also be used to the manufacturing method in which a film is formed by the film forming apparatus40which performs the film forming method according to the embodiment of the present invention. Hereinbefore, the film forming method according to the embodiment of the present invention has been described in detail, but the present invention is not limited to the above-described example and various improvements and changes can be made without departing from the spirit of the present invention. EXAMPLES Hereinafter, the features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not construed as being limited by the specific examples described below. A raw material liquid having the following composition was prepared. The density of the prepared raw material liquid was 0.93 g/cm3and the surface tension thereof was 24 mN/m. The density of the raw material liquid was measured in accordance with JIS Z 8804: 2012. In addition, the surface tension of the raw material liquid was measured by a hanging drop method (pendant drop method). Polymerizable liquid crystal compound (LC-1-1)80 parts by massPolymerizable liquid crystal compound (LC-2)20 parts by massPhotopolymerization initiator (manufactured by3 parts by massChiba Japan Co., Ltd., Irgacure 907)Alignment control agent FP21 part by massAlignment auxiliary agent FP30.4 parts by massMethyl ethyl ketone193 parts by massCyclohexanone50 parts by mass A 100 μm-thick PET film (manufactured by TOYOBO Co., Ltd., COSMOSHINE A4100) was prepared. The PET film was cut into 50×50 mm to obtain a base material. The surface of the base material was irradiated with UV ozone for 10 seconds using UVO Cleaner 144X (28 mW/cm2) manufactured by Jelight Company Inc., and the entire surface of the base material was subjected to a hydrophilic treatment. An unevenness precursor shown inFIG. 3was prepared. The unevenness precursor had a stripe-shape unevenness pattern in which a linear concave portion and a linear convex portion were alternately arranged in parallel in a direction orthogonal to the longitudinal direction. In the unevenness precursor, the width of the convex portion was 1 μm and the width of the concave portion was 3 μm (that is, one pitch of the concave portion and the convex portion was 4 μm), and the depth of the concave portion was 2 μm. A water repellent (manufactured by DAIKIN INDUSTRIES, Co., Ltd., Optool DSX) was vapor-deposited on the uneven surface of the unevenness precursor. The film thickness of the water repellent was 30 nm. The unevenness precursor on which a film of the water repellent was formed was pressed onto the hydrophilic treated surface of the base material, and the film of the water repellent which was formed on a distal end surface of the convex portion was transferred to the base material. As a result, a line-and-space (strip-shape) lyophilic/repellent pattern in which the width of a liquid-repellent region, that is, the diameter of the largest inscribed circle of the liquid-repellent region was 1 μm, and in which the width of the concave portion, that is, the width of the lyophilic region was 3 μm was formed on the surface of the base material. The base material on which the lyophilic/repellent pattern was formed was mounted on a support of a film forming portion in the film forming apparatus shown inFIG. 1. LW 139. 141-75 manufactured by ARBROWN Co., Ltd. was used as a vibration device of the film forming portion. Using the vibration device, the base material (support) was vibrated at a frequency of 500 Hz and a vibration speed of 2 mm/sec. In addition, the support of the film forming portion was heated using a hot plate such that the surface (film forming surface) of the base material was 100° C. After starting the vibration and heating of the base material, the aerosolization of the raw material liquid was started by vibrating an ultrasonic vibrator of an aerosol generating portion at 1.7 MHz. IM4-36D manufactured by SEIKO GIKEN INC. was used as the ultrasonic vibrator. Using air as a carrier gas, the generated aerosol was transported from a raw material container to a film forming chamber through a guide pipe. The flow rate of the carrier gas was 2.8×10−3m3/min. Under these conditions, the aerosol was supplied to the base material for 60 seconds to form a film. After forming a film for 60 seconds, the base material was taken out of the film forming portion, and heated by blowing hot air at a temperature of 60° C. and a wind speed of 2 m/min for 60 seconds. Thereafter, the base material was placed on the hot plate at 30° C. and irradiated with UV for 6 seconds under an atmosphere of 300 ppm of an oxygen concentration using a UV irradiator (manufactured by Fusion UV Systems, electrodeless lamp “D bulb”, illuminance of 60 mW/cm2) to fix a liquid crystal layer, thereby forming a liquid crystal film. The thickness of the formed liquid crystal film was 3.5 μm. Using a reflecting spectrographic film thickness meter (manufactured by OTSUKA ELECTRONICS Co., Ltd, FE 3000), the film thickness of the lyophilic region was measured as the film thickness of the liquid crystal film. Regard this point, the same applies to other examples. In addition, in a case of calculating the diameter of the aerosol using D=0.68[(π*σ)/(ρ*f2)]1/2described above, the diameter of the aerosol was 2 μm. Examples 2 to 4 Liquid crystal films were formed in the same manner as in Example 1, except that, the widths of the convex portion, that is, the widths of the liquid-repellent region in the unevenness precursors were changed to 2 μm (Example 2), 3 μm (Example 3), and 4 μm (Example 4). A liquid crystal film was formed in the same manner as in Example 1, except that the frequency of the ultrasonic vibrator was changed to 0.7 MHz. In a case of calculating the diameter of the aerosol using the equation described above, the diameter of the aerosol was 3.7 μm. A liquid crystal film was formed in the same manner as in Example 1, except that the frequency of the ultrasonic vibrator was changed to 0.6 MHz and the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 8 μm. In a case of calculating the diameter of the aerosol using the equation described above, the diameter of the aerosol was 4.1 μm. A liquid crystal film was formed in the same manner as in Example 1, except that the base material was not heated and the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 4 μm. A liquid crystal film was formed in the same manner as in Example 1, except that the base material was not vibrated and the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 4 μm. A liquid crystal film was formed in the same manner as in Example 1, except that the base material was not heated and not vibrated, and the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 4 μm. Comparative Example 1 A liquid crystal film was formed in the same manner as in Example 1, except that the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 8 μm, and the base material was not vibrated and heated. Comparative Example 2 A liquid crystal film was formed in the same manner as in Example 1, except that the width of the convex portion, that is, the width of the liquid-repellent region in the unevenness precursor was changed to 8 μm. The produced liquid crystal films were observed and photographed with a microscope, the observed image was subjected to image analysis, the area occupied by the liquid crystal in the liquid-repellent region (water-repellent region) was calculated, and a liquid crystal adhesion rate was calculated. In the image analysis, the area was automatically calculated by surrounding the contour of the image of the liquid crystal portion in the liquid-repellent region using ImageJ which is free software (open source software), and the proportion of the area occupied by the liquid crystal in the liquid-repellent region was obtained and defined as the liquid crystal adhesion rate. A case where the liquid crystal adhesion rate is less than 1% was evaluated as very good; a case where the liquid crystal adhesion rate is 1% or more and 5% or less was evaluated as good; a case where the liquid crystal adhesion rate is more than 5% and 10% or less was evaluated as slightly good; and a case where the liquid crystal adhesion rate is more than 10% was evaluated as poor. The results are shown in the table. As shown in Table 1, according to the film forming method according to the embodiment of the present invention in which the width L of the liquid-repellent region and the diameter D of the aerosol satisfy “D≥L/2”, the aerosol adhering to the liquid-repellent region, that is, the amount of the film forming material which forms a film on the liquid-repellent region is significantly suppressed, and a patterned film with high accuracy can be formed. In particular, in Examples 1, 2, and 5 in which the width L of the liquid-repellent region and the diameter D of the aerosol satisfy “D≥L”, the amount of the liquid crystal (film forming material) adhering to the liquid-repellent region can be very suitably suppressed and the liquid crystal adhesion rate in the water-repellent region was almost 0%. From the comparison between Examples 7 to 9 and the other examples, by supplying the aerosol while vibrating the base material, or by supplying the aerosol while heating the base material, it is possible to prevent the aerosol (film forming material) from adhering to the liquid-repellent region and have a pattern with high accuracy. In contrast, in the comparative examples in which the width L of the liquid-repellent region and the diameter D of the aerosol do not satisfy “D≥L/2”, a lot of the aerosol, that is, the film forming material adheres to the liquid-repellent region, and a patterned film with high accuracy cannot be formed. For example, the present invention can be suitably used for manufacturing optical elements, manufacturing semiconductor elements, manufacturing electric elements, manufacturing solar cells, and the like. EXPLANATION OF REFERENCE
On sait que l'on peut polymériser l'isoprène par des catalyseurs organométalliques mixtes à base de trialkylaluminiutn et de tétrachlorure de titane pour obtenir des polymères dans lesquels les unitds monomères sont reliées par des liaisons 1,4 cis. Dans Ces polymères, la teneur en enchaSnement 1,4-cis est de 96 à 98fui. Les polymères d'isoprène de ce type sont très semblables au caoutchouc naturel par leurs propriétés physiques et chimiques. Cependent, les propriétés des produits de vulcanisation de ces psl:jrnrs d'isoprène diffèrent un peu des produits correspondants drivés du caoutchouc naturel dans certains domaines critiques d'application. On effectue habituellement la polymérisation de l'iso- prène par des catalyseurs organométalliques mixtes en solution, en utilisant comme solvants des hydrocarbures aliphatiques ou aromatiques,par exemple butane, pentane, hexaneS isooctane, cyclohexane, benzène ou toluène. On peut utiliser comme constituants du catalyseur des trialkylaluminium, si on le désire, en combinaison avec leurs éthdrates, et le tétrachlorure de titane. On traite la solution de polymère par entratnement à la vapeur, le polyisoprène étant obtenu sous forme de morceaux . On recycle le solvant distillé dans le procédé après l'avoir séché par distillation azdotropique. I1 a été indiqué par J. C. D'Janni, dans Kautschuk und Gummi, 19, n" 3, 138 (1966) que activité des catalyseurs de polymérisation augmente avec la longueur de channe des radicaux alkyle du trialkylaluminium. On a également indiqué que les trialkylaluminium portant des groupes alkyle ramifiés, par exemple des groupes isobutyle ou isohexyle, donnent des catalyseurs ayant une activité considérablement plus élevée que les trialkylaluminium ayant des radicaux alkyle non ramifiés. Ceci s'applique également aux catalyseurs modifiés par l'éther. On a proposé divers éthers, comprenant 1 'éther dith liqueltéther diisopropylique, l'anisole et le diphényléther pour modifler les catalyseurs organométalliques mixtes utilisés pour la polymérisation de l'isoprène. La présente invention concerne un procédé pour la préparation de polyisoprène de structure sensiblement 1,4-cis, consistant à polymériser l'isoprène en présence d'un catalyseur comprenant un produit de réaction du triéthylaluminium, du tétrachlorure de titane et d'un éther de formule générale R1-O-R1, dans laquelle R1 représente un radical alkyle ayant 3 à 6 atomes de carbone, le rapport molaire triéthylalyminium/éther étant de 1:0,3 à 1:0,6 et le rapport molaire triéthylaluminium/ tétrachlorure de titane étant de 0,15:1 à 1,2:1. Les éthers appropriés correspondant à la formule ci-dessus comprennent notamment l'éther dipropylique et de préférence l'éther di-n-butylique. Le rapport molaire triéthylaluminiumy éther est de préférence de 1:0,3 à 1:0,4 et le rapport molaire triéthylaluminium/tétrachlorure de titane est de préférence de G,8:1 à 1:1. L'avantage obtenu selon ltinvention par l'utilisation de triéthylaluminium est évident lorsque l'on prépare le catalyseur en ajoutant les constituants, triéthylaluminium avec son éthérate et tétrachlorure de titane, au mélange total solvantmonomère. En général, cependant, on prépare le catalyseur en ajoutant les constituants à une quantité de solvant inerte telle que l'on obtienne une suspension de catalyseur contenant de 0,05 à 0,5, et de préférence de Osl à 0,3 mole/litre d'halogénure de titane L'ordre addition des constituants du catalyseur nta pas une importance essentielle.Dans un mode de mise en oeuvre préféré de l'invention, on introduit simultanément en agitant dans un réacteur des solutions 0,2 à 0,6 M des constituants du catalyseur La température pendant la préparation du catalyseur peut se situer dans l'intervalle de -30 à t-500G, et de préférence de -5 à +5 cO Après avoir préparé le catalyseur, on peut le faire mûrir à une température de -30 à -D0 Cs et de préférence de -5 à + 500. Même après des temps de mûrissage extrêmement courts, par exemple 5 minutes, un catalyseur ayant la composition selon l'invention atteint son activité maximale, qui reste totalement inchangée pendant une longue durée, par exemple plusieurs jours Bien que l'on ait déjà indiqué qu'il soit possible de modifier les catalyseurs organométalliques mixtes par mûrissage, de telle manière qu'il se forme peu de constituants extractibles (oligomères ou constituants de très bas poids moléculaire) pendant la polymérisation de isoprène, des durées de murissage prolongées ou des traitements pïealables compliqués sont nécessaires à cet effet, comme décrit par exemple dans les brevets allemands n 10091.758 et n 1.117.877. Cependant, dans les brevets ci dessus mentionnés, le triisobutylaluminium est également préféré au triéthylaluminium.On ajoute le catalyseur organométallique mixte préparé selon l invention à un mélange monotnère-solvant qui contient de 8 à 40% de préférence de 10 à 15 d'isoprène, en quantités telles que 0,5 à 2 millimoles, t de préférence de 0,8 à 1,5 millimole d'halogénure de titane soient utilisées par 100 g d'isoprène. Comme on le sait déjà, la température de polymérisation a une influence considérable sur le poids moléculaire, mesuré par la viscosité en solution ( ) des polymères (C.F. Gibbs et Coll. Rubber World, 144, n 1, 69, (1961). En raison de l'activité notablement plus élevée des catalyseurs utilisés selon l'invention, on peut réduire la température de polymérisation de O-OOC à 0-5 C p*~ur la même quantité de catalyseur; néanmoins, il est encore possible d'obtenir des vitesses de polymérisation encore plus élevées. Ltactivité élevée des catalyseurs selon l'invention permet aussi une plus grande latitude du choix de la concentration de monomère.Ceci signifie qu'en utilisant le catalyseur selon l'invention, il est possible d'obtenir des polymères ayant un poids moléculaire particulièrement élevez conjointement avec des vitesses de polymérisation élevées. I1 a aussi été indiqué que les taux élevés de conversion entrassent une diminution notable du poids moléculaire1 déterminés par viscosimétrie (voir W.M. Saltmann et Coll. Rubber and Plastics Age (London) 5502 May 1965). Au contraire, il n'y a pas de diminution des poids moléculaires déterminés par viscosimétrie lorsqu'on utilise le système catalytique Al(C2H5)3-(C4H9)20-TiCl4, même avec des taux de conversion extrêmement élevés t95 à 100%). Même après une conversion limitée (10 àî5%), les poids moléculaires ont atteint leur valeur finale. Même une agitation prolongée de la solution de polymère contenant le catalyseur après une conversion complète ne produit pas de réduction du poids moléculaire ni d'augmentation de la quantité de constituants de bas poids moléculaire ou extrac tiblesprésentsdans le polymère. Ces propriétés du système catalytique utilisé selon l'invention offrent certains avantages techniques importants. I1 est possible de poursuivre la polymérisation jusqu'à des taux de conversion extrêmement élevés sans influencer défavorablement la qualité du polymère et d'utiliser plus efficacement l'espace réactionnel disponible. En outre, il est facile de maintenir constante la qualité du polymère, que la polymérisation s'effectue en continu ou en discontinu. Les radicaux alkyle des composés de trialkylammonium peuvent être transformés en faibles proportions en composés chlorés et en alcools correspondants, en partie pendant la préparation des catalyseurs et en partie pendant la désactivation. Lorsque l'on effectue la polymérisation en continu, ces composes entrent dans le circuit du solvant. Lorsque l'on utilise des alkylaluminium comportant des radicaux alkyle à longue chaîne ou ramifiée, ces composés s'accumulent facilement dans le circuit du solvant et peuvent influencer défavorablement la polymérisation de l'isoprène. Cependant, lorsque l'on utilise le triéthylaluminium, ces composés sont automatiquement éliminés dans l'étape de traitement du cycle de distillation à la vapeur pour la solution de polymère (éthanol) ou bien on peut facilement les éliminer par distillation au sommet de la colonhe de séchage si le solvant recycld est séché par voie azéotropique, en raison du bas point d'ébullition du dérivé (chlorure d'éthyle). Le procédé de polymérisation peut être mis en oeuvre d'une manière particulièrement régulière et on peut obtenir un polyisoprène 1,4-cis de qualité particulièrement élevée à l'aide du système catalytique selon l'invention. Pour apprécier les qualités des polymères, les propriétés de traitement et les données de vulcanisation, on utilise un mélange sans charge particulièrement critique. Cependant, ce polyisoprène 1,4-cis a une qualité exceptionnelle même dans des produits vulcanisés fortement renforcés contenant des charges. On peut utiliser ce polymère pour l'une quelconque des applications du caoutchouc naturel de très bonne qualité, par exemple dans les produits en caoutchouc du commerce ou pour les pneumatiques de véhicules à moteur lourd. Le sous-traitant bénéficie de l'avantage d'une qualité uniforme dans les propriétés du caoutchouc brut (par exemple viscosité Mooney et dureté Defo) et les propriétés du produit vulcanisé. Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. EXEMPLE 1 Le présent exemple illustre les différentes activités des catalyseurs non préformés préparés avec le triéthylaluminium (essai A) et avec le triisobutylaluminium (essai B). On introduit 1000 g de n-hexane et 200 g d'isoprène en absence d'oxygène dans un récipient muni d'un mécanisme d'agitation. On ajoute en agitant à 20"C, 6 millimoles de trialkylaluminium, 2,4 millimoles de di-n-butyléther et 6 millimoles de tétrachlorure de titane. I1 se forme immédiatement une suspension brun foncé du catalyseur.On obtient les résultats suivants Essai A Essai B A1(C2H5)) 6,0 m.moles = o, 685 g Al(isoC4H9)3 - 6,0 m.moles = 1,188 g (C4H9)20 2,4 m.moles = 0,312 g 2,4 m.moles = 0,312 g Tical4 6,0 m.moles = 1,180 g 6,0 m.moles = 1,140 g Essai A Essai B Température de polymérisation . 250C 300C Période d'induction x) 3 mn 35 mn Degré de conversion après 4 h 95% 24% Viscosité en solution ( ) à 25 C dans le toluène 5,0 4,16 *) La période d'induction est le temps-qui s'écoule depuis le moment où lton ajoute le catalyseur jusqu'à ce que l'on atteigne un degré de conversion de 2% du monomère en polyisoprène. EXEMPLE 2 Le présent exemple illustre la comparaison des catalyseurs préformés à base de triéthylaluminium et à base de triisobutylaluminium. Les essais montrent que les catalyseurs préparés selon l'invention avec du triéthylaluminium présentent toujours un avantage technique, indépendamment du procédé de préformation et de la qualité des monomères. On utilise pour ces essais trois échantillons d'isoprène A > B et C ayant une teneur croissante en cyolopentadiène. Dans les essais décrits ci-dessous, on introduit 20 litres de n-hexane et 2500 g d'isoprène dans un autoclave de 40 litres en l'absence d'oxygène et d'humidité, puis on ajoute le catalyseur. Les quantités des constituants individuels du catalyseur utilisées sont indiquées dans le tableau I annexé. On effectue les essais 1 et 2 avec l'isoprène de qualité A. Pour ce groupe d'essais, on prépare le catalyseur de la manière suivante On ajoute 7 ml d'isoprène à 160 ml d'hexane anhydre et on refroidit le mélange à 100 C. On ajoute ensuite les constituants du catalyseur, TiC14, A1R3 et (C4H9)20 dans cet ordre en agitant et dans les quantités indiquées dans le tableau I annexé. On fait mûrir le catalyseur pendant 20 minutes à 0 C. On effectue les essais 3 et 4 avec l'isoprène de qualité B. On prépare le catalyseur de la manière suivante On introduit A1R3 et le di-n-butyléther dans 170 ml d'hexane à 200C. On ajoute TiC14 en refroidissant par la glace. On fait mûrir le catalyseur pendant 5 minutes à 5 C. On effectue les essais 5 et 6 avec l'isoprène de qualité C. On prépare le catalyseur comme dans les essais 3 et 4. Ces essais montrent que le catalyseur selon l'invention est moins sensible aux impuretés présentes dans les monomètres. EXEMPLE 3 Préparation du catalyseur pour l'essai n 1 On introduit 34 ml de n-hexane dans un récipient sec muni d'un mécanisme d'agitation et rempli d'azote. On ajoute uniformément en agitant à 0 C une solution de 0,626 g (33 millimoles) de TiC14 dans 67 ml de n-hexane et une solution de 0,339 g (29,7 millimoles) d'Al(C2H5)3 et 0,154-g de (n-C4Hg)20 dans 67 ml de n-hexane. On agite la suspension brune résultante de catalyseur pendant 30 minutes à 0 C. On prépare de manière semblable les catalyseurs pour les essais 2 à 6. Les quantités utilisées sont indiquées dans le tableau II annexé. Polymérisation, essai n 1 On introduit 30 litres d'hexane anhydre, 2000 g d'isoprène dans un autoclave sec muni d'un mécanisme d'agitation. On refroidit ensuite le contenu de l'autoclave à 8 C en atmosphare d'azote. On ajoute à cette température la suspension de catalyseur. La polymérisation commence immédiatement sans période d'induction. On absorbe la chaleur dégagée pendant la réaction de polymérisation par refroidissement extérieur de telle sorte que la température de polymérisation s'élève lentement à 120C en une période de 3 heures. A la fin de cette période, le degré de conversion a atteint 100%. On arrête la polymérisation par addition d'une solution de 22 g de 2,6-ditertiobutyl-4-méthyl- phénol et 50 ml d'éthanol dans 1 litre d'hexane. On précipite le polymère de sa solution dans l'hexane par l'éthanol et on le sèche sous vide à 500C. Les renseignements sur la polymérisation et le caoutchouc brut fournis par les essais 1 à 6 sont indiqués dans le tableau III annexé. Essai d'application I1 est important de noter que l'on obtient des polymères de viscosité particulièrement élevée en utilisant le catalyseur selon l'invention (essais 1 à 3). Ceci s'applique tant à la viscosité en solution ( )qu'à la viscosité de la substance exprimée par la viscosité Mooney (norme allemande DIN 53523) et à la plasticité selon Baader (Defo, norme allemande 53514). L'expérience a montré que la viscosité Mooney est moins caractéristique des polyisoprène- l,4-cis de poids moléculaire élevé que leur dureté et leur élasticité Defo. Les polymères que l'on prépare selon l'invention en utilisant du triéthylaluminium présentent tous des valeurs Defo assez élevées. Ceci est important ce ce qui concerne les propriétés de traitement du polyisoprène- 1,4-cis. En raison du gradient de cisaillement plus élevé existant dans le traitement sur cylindre ou dans un malaxeur interne, on obtient une distribution optimale des auxiliaires de vulcanisation et des charges dans les polymères de viscosité élevée. Outre leurs propriétés de traitement, le comportement des polyisoprèneb -cis dans la vulcanisation est également très -portantO Une preuve particulièrement critique de la qualité des polymères est fournie avantageusement par un mélange sans charge, dénommé gomme qui contient simplement des activateurs de réticulation (par exemple ZnO, acide stéarique et accélérateur) et un agent de réticulation (par exemple le soufre). Formulation d'essai, gomme Caoutchouc 100, 0 parties ZnO 2,5 parties Acide stéarique 1,0 partie Soufre 2,0 parties Disulfure de dibenzothiazyle 0,7 partie Diphénylguanidine 0,3 partie Traitement Cylindre 400 x 200 mm Température 400C Vitesse de rotation 24 tr/mn Friction 1:1,2 Temps de malaxage 7 minutes Aucun des caoutchoucs synthétiques classiques, à l'exception du polyisoprène-l,4-cis ne donne dans ce mélange des riétés de vulcanisation satisfaisantes.Cet essai est particulièrement avantageux aussi pour mettre en évidence les différences de qualité des polyisoprène-1,4-cis. Par exemple, le polyisoprène1,4-cis de ce mélange préparé avec le n-butyllithium comme iniateur de polymérisation donne dans le produit de vulcanisation des résultats non satisfaisants, les résistances à la rupture et de structure limitées s' accompagnent de faibles valeurs de contrainte et également de faibles duretés du produit vulcanisé, c'est-à-dire que le rendement de réticulation n'est pas approprié. Les résultats du produit de vulcanisation des polymères des essais 1 à 6 dans ce mélange sont indiqués dans le tableau IV annexé. La comparaison des résultats obtenus sur le produit vulcanisé avec le produit selon l'invention (essais 1 à 3) et avec les produits obtenus en utilisant le triisobutylaluminium (essais 4 à 6) et avec un produit commercial montre que les pou mères des essais 1 à 3 ont des propriétés de résistance plus élevées et plus étendues et en même temps un rendement plus élevé de réticulation comme le montrent les valeurs de module (contrainte à 300 et 500% d'allongement), dureté et résilience. Ce meilleur ensemble de propriétés est aussi beaucoup plus mis en évidence par comparaison avec le produit du commerce. EXEMPLE 4 L'appareillage utilisé pour la polymérisation continue de l'isoprène aomprend 5 réacteurs et une unité de dosage du solvant, du monomère et des composants du catalyseur, et également l'appareillage secondaire nécessaire. Les Réacteurs ont chacun une capacité de 60 litres de liquide, sont munis d'une enveloppe de refroidissement pour la dissipation de la chaleur de polyméirisation, sont munis d'agitateurs très efficaces pour solution à haute viscosité, et sont reliés entre eux par des canalisations de telle manière que l'on puisse faire circuler la solution de polymérisation du fond d'un récipient au sommet du suivant. On introduit le solvant et le monomère séparément, directement dans le premier récipient du groupe de polymérisation.On introduit les composants du catalyseur au moyen de pompes doseuses d'abord dans un récipient intermédiaire muni d'un mécanisme d'agitation dans lequel ils forment le catalyseur actif que l'on introduit ensuite dans le premier récipient de polymérisation sous forme d'une dispersion de catalyseur. La totalité du système de polymérisation est sous atmosphère d'azote.On introduit uniformément et à ddbit constant des substances suivantes dans cet appareillage de polymérisation 61 > 5 litres/heure d'hexane, 6,6 litres/heure d'isoprène, 0,258 litre/ heure d'une solution 0,218 M de tétrachlorure de titane, et 0,242 litre/heure d'une solution contenant ou 210 M par litre de triéthylaluminium et 0ru65 M par litre de di-n-butyl éther Le temps de contact moyen est d'environ 4 heures et demie. Un état d'équilibre est atteint au plus tôt 15 heures après le début de l'alimentation et on peut le caractériser par les degrés de conversion caractéristiques suivants pour un schéma de température de 100C dans le récipient 1 > 200C dans le récipient 2, et 300Cdans les récipients 3 à 5 : dans le récipient 1, le degré de conversion est de 38 à 432 ; dans le récipient 2, de 61 à 66%: dans le récipient 3, de 74% à 79%; dans le récipient 4, de 81 à 86ç; et dans le récipient 5, de 88 à 93%. Après sa sortie du récipient 5 > on précipite la solution de polymère, en agitant, par du méthanol contenant 1 de 2,6-ditertiobutyl-4-méthylphénol. On isole le polymère et on le sèche sous vide à 700 C. Un échantillon caractéristique donne les valeurs suivantes de viscosité: Viscosité Mooney M1-4' à 1000C : 89 Plasticité selon Balader, Defo 80 C (H/E) : 2150/36 Le comportement à la vulcanisation du polymère dans un mélange sans charge, comme l'indique l'exemple 3, est représenté dan le tableau V annexé. Le présent exemple mottre que le système eatalytique selon l'invention donne un polyisoprène d'excellente qualité aussi bien lorsque l'on effectue la polymérisation en continu ou en discontinu. REVENDICATION Dans un procédé pour la production de polyisoprène de structure sensiblement 1,4-cis, utilisant un produit de réaction d'un trialkylaluminium,de tétrachlorure de titane et d'un éther comme catalyseur de polymérisation, le perfectionnement caractérisé en ce que l'on effectue la polymérisation avec le triéthylaluminium comme trilkylaluminium, le tétrachlorure de titane et un é:er de formule générale R1-O-R1 dans laquelle R1 représente un radical alkyle ayant 3à 6 atomes de carbone, le rapport molaire triéthylaluminium/éther étant de 1:0,3 à 1.:0,6 et le rapport molaire triéthylaluminium/tétraohlorure de titane étant de 0,:l à 12:1.
Austenitic stainless steel TECHNICAL FIELD The present invention relates to an austenitic stainless steel. BACKGROUND ART TP316H that is defined by ASME (American Society of Mechanical Engineers) SA213 and SA213M contains Mo and is excellent in corrosion resistance at high temperatures, and is therefore widely used as a material for heat-transfer pipes and heat exchangers in thermal power generation plants and petrochemical plants. For example, Patent Document 1 discloses a proposition of an austenitic stainless steel, which, similarly to TP316H, contains Mo, and also contains Ce to enhance high-temperature corrosion resistance. Further, Patent Document 2 discloses a proposition of an austenitic stainless steel and the like, which also contains Nb, Ta and Ti to enhance high temperature strength. In this connection, as disclosed in Non-Patent Documents 1 and 2, it is widely known that TP31611 containing Mo, when used for a thick-walled structural member at a high temperature, causes creep damage that is attributable to a-phase precipitation. For example, Non-Patent Document 2 proposes suppressing a-phase precipitation by increasing the Ni balance and lowering an Nv-Nc value. LIST OF PRIOR ART DOCUMENTS Patent Documents SUMMARY OF INVENTION Technical Problem However, in a case where the degree of stability of the austenite phase is increased by adopting the measures described in Non-Patent Document 2, cracking is liable to occur in a weld heat-affected zone. In particular, it has been found that in the case of a welded joint shape under strong constraints, such as when used for a thick-walled welded structure such as an actual large scale plant, in some cases cracking in weld heat-affected zones cannot be prevented. Therefore, there is a need to suppress the occurrence of cracking that occurs when performing welding and realize excellent weldability. Further, on the other hand, even in a case where excellent weldability is achieved, the creep strength may in some cases deteriorate when made into a welded structure. Therefore, there is a need to realize stable creep strength as a structure in addition to weldability. An objective of the present invention is to provide an austenitic stainless steel that can achieve both excellent weldability when subjected to welding, and stable creep strength as a structure. Solution to Problem The present invention has been made to solve the problems described above, and the gist of the present invention is the following austenitic stainless steel. (1) An austenitic stainless steel having a chemical composition consisting of, by mass %: the balance: Fe and impurities, where, each symbol of an element in the above formulas represents a content (mass %) of the corresponding element contained in the steel. (2) The austenitic stainless steel according to (1) above, wherein: the chemical composition contains, by mass %, one or more types of element selected from Sn, Sb, As and Bi in a total amount within a range of more than 0% to not more than 0.01%. (3) The austenitic stainless steel according to (1) or (2) above, wherein the chemical composition contains, by mass %, one or more types of element selected from: Advantageous Effects of Invention According to the present invention, an austenitic stainless steel can be obtained that can achieve both excellent weldability when subjected to welding, and stable creep strength as a structure. DESCRIPTION OF EMBODIMENTS The present inventors conducted detailed studies for achieving both excellent weldability when subjected to welding, and stable creep strength as a structure. As a result, the present inventors obtained the following findings. As the result of conducting studies regarding cracking that occurred in welded joints when using thick-walled austenitic stainless steel, the present inventors discovered that: (a) cracking occurs at grain boundaries adjacent to fusion boundaries and at grain boundaries that are slightly away from fusion boundaries; (b) with regard to the former, fusion traces are observed at grain boundaries, and the cracking is liable to occur in component systems in which the stability of the austenite phase is high; (c) with regard to the latter, fusion traces are not observed at grain boundaries, and the cracking is liable to occur as the content of S increases. Therefore, it is considered that the former is so-called “liquation cracking”, resulting from the increase in the stability of the austenite phase, which makes it easy for P and S to undergo grain-boundary segregation in a thermal cycle during welding. Consequently, the melting point in the vicinity of grain boundaries decreases, the grain boundaries melt, and the locations in question open as cracking due to thermal stress. It is also considered that the latter is so-called “ductility-dip cracking”, and is cracking that occurs when S that underwent grain-boundary segregation in a thermal cycle during welding causes the sticking force at the grain boundaries to decrease, and thermal stress exceeds the sticking force, causing the relevant portions to open. Further, as the result of intensive studies, the present inventors ascertained that, in thick-walled austenitic stainless steel having a composition that is the object of the present invention, in order to consistently prevent cracking in weld heat-affected zones it is necessary that the value of Cr+Mo+1.5×Si is not less than 18.0 and the value of Ni+30×(C+N)+0.5×(Mn+Cu+Co) is not more than 19.5, and also the content of S is limited to not more than 0.0015%. In addition, the present inventors found that it is necessary to contain a prescribed amount or more of Cu and Co in order to sufficiently obtain an effect that reduces weld crack susceptibility. In this connection, although cracking during welding can be prevented by adopting the above measures, it was found that in a case where the value of Cr+Mo+1.5×Si is more than 20.0 or a case where the value of Ni+30×(C+N)+0.5×(Mn+Cu+Co) is less than 14.5, on the contrary the austenite phase becomes unstable and a 6 phase forms during use at a high temperature and the creep strength decreases significantly. Further, although on one hand S has an adverse effect on weld cracks, S increases the weld penetration depth when welding, and in particular has an effect of improving the weldability in fabrication during root pass welding. From the viewpoint of weld cracks, it was found that when the content of S is controlled to be 0.0015% or less, the weld penetration depth is not adequately obtained in some cases. Although, in order to solve this problem, it suffices to simply increase the weld heat input, increasing the heat input increases the hot cracking susceptibility when welding. Therefore, the present inventors also discovered that when it is desired to adequately obtain this effect, it is effective to contain one or more types of element selected from Sn, Sb, As and Bi in an amount within a predetermined range. It is considered that this is because these elements influence the convection of the molten pool during welding and also evaporate from the molten pool surface to contribute to formation of a current path, and thereby promote melting in the depth direction. The present invention was made based on the findings described above. The respective requirements of the present invention are described in detail hereunder. (A) Chemical Composition The reasons for limiting each element are as follows. Note that, the symbol “%” with respect to content in the following description means “mass percent”. C makes the austenite phase stable and also combines with Cr to form fine carbides, and improves the creep strength during use at high temperatures. However, if C is contained in excess, carbides precipitate in a large amount, which leads to sensitization of the weld zone. Therefore, the content of C is set within the range of 0.04 to 0.12%. The content of C is preferably 0.05% or more, and more preferably is 0.06% or more. Further, the content of C is preferably not more than 0.11%, and more preferably is not more than 0.10%. Si is an element that has a deoxidizing action, and is also required to secure corrosion resistance and oxidation resistance at high temperatures. However, if an excessive amount of Si is contained, the stability of the austenite phase will decrease, which will result in a decrease in the creep strength. Therefore, the content of Si is set within the range of 0.25 to 0.55%. The content of Si is preferably 0.28% or more, and more preferably is 0.30% or more. Further, the content of Si is preferably not more than 0.45%, and more preferably is not more than 0.40%. Similarly to Si, Mn is an element that has a deoxidizing action. Mn also makes the austenite phase stable and contributes to improvement of the creep strength. However, if an excessive amount of Mn is contained, it will result in a decrease in creep ductility. Therefore, the content of Mn is set within the range of 0.7 to 2.0%. The content of Mn is preferably 0.8% or more, and more preferably is 0.9% or more. Further, the content of Mn is preferably not more than 1.9%, and more preferably is not more than 1.8%. P: 0.035% or less P is an element which is contained as an impurity, and segregates at crystal grain boundaries of weld heat-affected zones during welding and increases liquation cracking susceptibility. P also decreases the creep ductility. Therefore, an upper limit is set for the content of P, and is 0.035% or less. The content of P is preferably 0.032% or less, and more preferably is 0.030% or less. Note that, although it is preferable that the content of P is reduced as much as possible, that is, although the content may be 0%, extreme reduction of the content of P will lead to an increase in costs at the time of steel production. Therefore, the content of P is preferably 0.0005% or more, and more preferably is 0.0008% or more. S: 0.0015% or less Similarly to P, S is contained in the alloy as an impurity, and segregates at crystal grain boundaries of weld heat-affected zones during welding and increases liquation cracking susceptibility as well as ductility-dip cracking. Therefore, an upper limit is set for the content of S, and is 0.0015% or less. The content of S is preferably not more than 0.0012%, and more preferably is not more than 0.0010%. Note that although it is preferable that the content of S is reduced as much as possible, that is, the content may be 0%, while S is still an effective element for increasing the weld penetration depth during welding. Therefore, the content of S is preferably 0.0001% or more, and more preferably is 0.0002% or more. Cu enhances the stability of the austenite phase and contributes to improving the creep strength. Further, the influence of imparting segregation energy of P and S and the like is small in comparison to Ni and Mn, and thus an effect of reducing grain-boundary segregation and decreasing weld crack susceptibility can be expected. However, if an excessive amount of Cu is contained, it will result in a decrease in hot workability. Therefore, the content of Cu is set within the range of 0.02 to 0.80%. The content of Cu is preferably 0.03% or more, and more preferably is 0.04% or more. Further, the content of Cu is preferably not more than 0.60%, and more preferably is not more than 0.40%. Co is an element that, similarly to Cu, enhances the stability of the austenite phase and contributes to improving the creep strength. Further, the influence of imparting segregation energy of P and S and the like is small in comparison to Ni and Mn, and thus an effect of reducing grain-boundary segregation and decreasing weld crack susceptibility can be expected. However, because Co is an expensive element, if an excessive amount of Co is contained, it will result in an increase in the cost. Therefore, the content of Co is set within the range of 0.02 to 0.80%. The content of Co is preferably 0.03% or more, and more preferably is 0.04% or more. Further, the content of Co is preferably not more than 0.75%, and more preferably is not more than 0.70%. Ni is an essential element for ensuring the stability of the austenite phase during use for an extended period. However, Ni is an expensive element, and containing a large amount of Ni leads to an increase in the cost. Therefore, the content of Ni is set within the range of 10.0 to 14.0%. The content of Ni is preferably 10.2% or more, and more preferably is 10.5% or more. Further, the content of Ni is preferably not more than 13.8%, and more preferably is not more than 13.5%. Cr is an essential element for ensuring oxidation resistance and corrosion resistance at a high temperature. Further, Cr also forms fine carbides and contributes to ensuring creep strength. However, containing a large amount of Cr will reduce the stability of the austenite phase, and on the contrary, will be detrimental to the creep strength. Therefore, the content of Cr is set within the range of 15.5 to 17.5%. The content of Cr is preferably 15.8% or more, and more preferably is 16.0% or more. Further, the content of Cr is preferably not more than 17.2%, and more preferably is not more than 17.0%. Mo is an element which dissolves in the matrix and contributes to the enhancement of creep strength and tensile strength at high temperatures. In addition, Mo is effective for improving corrosion resistance. However, if the content of Mo is too large, it will decrease the stability of the austenite phase and will be detrimental to creep strength. In addition, because Mo is an expensive element, if the content of Mo is excessive, it will result in an increase in the cost. Therefore, the content of Mo is set within the range of 1.5 to 2.5%. The content of Mo is preferably 1.7% or more, and more preferably is 1.8% or more. Further, the content of Mo is preferably not more than 2.4%, and more preferably is not more than 2.2%. N makes the austenite phase stable, and also dissolves or precipitates as nitrides and contributes to improving high temperature strength. However, if an excessive amount of N is contained, it will lead to a decrease in ductility. Therefore, the content of N is set within the range of 0.01 to 0.10%. The content of N is preferably 0.02% or more, and more preferably is 0.03% or more. Further, the content of N is preferably not more than 0.09%, and more preferably is not more than 0.08%. Al: 0.030% or less Al is added as a deoxidizer. However, if a large amount of Al is contained, the cleanliness of the steel will deteriorate and the hot workability will decrease. Therefore, the content of Al is set to 0.030% or less. The content of Al is preferably 0.025% or less, and more preferably is 0.020% or less. Note that, although it is not particularly necessary to set a lower limit for the content of Al, that is, although the content may be 0%, an extreme reduction will lead to an increase in the production cost of the steel. Therefore, the content of Al is preferably 0.0005% or more, and more preferably is 0.001% or more. O: 0.020% or less O (oxygen) is contained as an impurity. If the content of O is excessive, hot workability will decrease and it will also result in a deterioration in toughness and ductility. Therefore, the content of O is 0.020% or less. The content of O is preferably 0.018% or less, and more preferably is 0.015% or less. Note that, although it is not particularly necessary to set a lower limit for the content of O, that is, although the content may be 0%, an extreme reduction will lead to an increase in the production cost of the steel. Therefore, the content of O is preferably 0.0005% or more, and more preferably is 0.0008% or more. As described above, Cr, Mo and Si exert an influence on the stability of the austenite phase. Therefore, it is necessary for the content of each of these elements to not only fall within the ranges described above, but also to satisfy formula (i) below. If the middle value in formula (i) is more than 20.0, the stability of the austenite phase will decrease, and during use at a high temperature a brittle σ phase will be formed and the creep strength will decrease. On the other hand, if the middle value in formula (i) is less than 18.0, although the stability of the austenite phase will increase, hot cracking is liable to occur during welding. The left-hand value in formula (i) is preferably 18.2, and more preferably is 18.5. On the other hand, the right-hand value in formula (i) is preferably 19.8, and more preferably is 19.5: 18.0≤Cr+Mo+1.5×Si≤20.0  (i) where, each symbol of an element in the above formula represents a content of (mass %) of the corresponding element that is contained in the steel. Further, Ni, C, N, Mn, Cu and Co exert an influence on the stability of the austenite phase. Therefore, it is necessary for the content of each of these elements to not only fall within the ranges described above, but also to satisfy formula (ii) below. If the middle value in formula (ii) is less than 14.5, the stability of the austenite phase will not be sufficient, and during use at a high temperature a brittle σ phase will be formed and the creep strength will decrease. On the other hand, if the middle value in formula (ii) is more than 19.5, the austenite phase will become excessively stable, and hot cracking is liable to occur during welding. The left-hand value in formula (ii) is preferably 14.8, and more preferably 15.0. On the other hand, the right-hand value in formula (ii) is preferably 19.2, and more preferably 19.0: 14.5≤Ni+30×(C+N)+0.5×(Mn+Cu+Co)≤19.5  (ii) where, each symbol of an element in the above formulas represents a content (mass %) of the corresponding element that is contained in the steel. In the chemical composition of the steel of the present invention, in addition to the elements described above, one or more types of element selected from Sn, Sb, As and Bi may also be contained within the ranges described below. The reason is described hereunder. Sn, Sb, As and Bi exert an influence on convection of the molten pool during welding, and promote heat transport in the vertical direction of the molten pool, and have an effect of increasing the weld penetration depth by evaporating from the molten pool surface and forming a current path to increase the degree of concentration of the arc. Therefore, one or more types of element selected from these elements may be contained as necessary. However, if an excessive amount of these elements is contained, the cracking susceptibility at heat affected zones during welding will increase, and therefore the content of each of these elements is 0.01% or less. The content of each of these elements is preferably 0.008% or less, and more preferably 0.006% or less. When it is desired to obtain the aforementioned effect, the content of one or more types of element selected from the aforementioned elements is preferably more than 0%, more preferably is 0.0005% or more, further preferably is 0.0008% or more, and still more preferably is 0.001% or more. Further, in the case of containing a combination of two or more types of element selected from the aforementioned elements, the total content of the elements is preferably 0.01% or less, more preferably is 0.008% or less, and further preferably is 0.006% or less. In the chemical composition of the steel of the present invention, in addition to the elements described above, one or more types of element selected from V, Nb, Ti, W, B, Ca, Mg and REM may also be contained within the ranges described below. The reasons for limiting each element are described hereunder. V combines with C and/or N to form fine carbides, nitrides or carbo-nitrides and contributes to the creep strength, and therefore may be contained as necessary. However, if contained in excess, a large amount of carbo-nitrides will precipitate and result in a reduction in the creep ductility. Therefore, the content of V is set to 0.10% or less. The content of V is preferably 0.09% or less, and more preferably is 0.08% or less. Note that, when it is desired to obtain the aforementioned effect, the content of V is preferably 0.01% or more, and more preferably is 0.02% or more. Nb is an element that, similarly to V, combines with C and/or N and precipitates within grains as fine carbides, nitrides or carbo-nitrides and contributes to enhancing the creep strength and tensile strength at a high temperature, and therefore may be contained as necessary. However, if contained in excess, a large amount of carbo-nitrides will precipitate and result in a reduction in the creep ductility. Therefore, the content of Nb is set to 0.10% or less. The content of Nb is preferably 0.08% or less, and more preferably is 0.06% or less. Note that, when it is desired to obtain the aforementioned effect, the content of Nb is preferably 0.01% or more, and more preferably is 0.02% or more. Ti is an element that, similarly to V and Nb, combines with C and/or N to form fine carbides, nitrides or carbo-nitrides and contributes to creep strength, and therefore may be contained as necessary. However, if contained in excess, a large amount of carbo-nitrides will precipitate and result in a reduction in the creep ductility. Therefore, the content of Ti is set to 0.10% or less. The content of Ti is preferably 0.08% or less, and more preferably is 0.06% or less. Note that, when it is desired to obtain the aforementioned effect, the content of Ti is preferably 0.01% or more, and more preferably 0.02% or more. W is an element that, similarly to Mo, dissolves in the matrix and contributes to enhancement of creep strength and tensile strength at high temperatures, and therefore may be contained as necessary. However, if contained in excess, W will reduce the stability of the austenite phase and, on the contrary, will result in a decrease in the creep strength. Therefore, the content of W is set to 0.50% or less. The content of W is preferably 0.40% or less, and more preferably 0.30% or less. Note that, when it is desired to obtain the aforementioned effect, the content of W is preferably 0.01% or more, and more preferably 0.02% or more. B causes grain boundary carbides to finely disperse to thereby enhance the creep strength, and also segregates at the grain boundaries to strengthen the grain boundaries and has a certain effect for reducing ductility-dip cracking susceptibility in weld heat-affected zones, and therefore may be contained as necessary. However, if contained in excess, conversely, B will increase liquation cracking susceptibility. Therefore, the content of B is set to 0.005% or less. The content of B is preferably 0.004% or less, more preferably is 0.003% or less, and further preferably is 0.002% or less. Note that, when it is desired to obtain the aforementioned effect, the content of B is preferably 0.0002% or more, and more preferably 0.0005% or more. Ca has an effect that improves hot workability during production, and therefore may be contained as necessary. However, if contained in excess, Ca will combine with oxygen and cause the cleanliness to markedly decrease, and on the contrary will cause the hot workability to deteriorate. Therefore, the content of Ca is set to 0.010% or less. The content of Ca is preferably 0.008% or less, and more preferably is 0.005% or less. Note that, when it is desired to obtain the aforementioned effect, the content of Ca is preferably 0.0005% or more, and more preferably is 0.001% or more. Similarly to Ca, Mg has an effect that improves hot workability during production, and therefore may be contained as necessary. However, if contained in excess, Mg will combine with oxygen and cause the cleanliness to markedly decrease, and on the contrary will cause the hot workability to deteriorate. Therefore, the content of Mg is set to 0.010% or less. The content of Mg is preferably 0.008% or less, and more preferably 0.005% or less. Note that, when it is desired to obtain the aforementioned effect, the content of Mg is preferably 0.0005% or more, and more preferably 0.001% or more. Similarly to Ca and Mg, REM has an effect that improves hot workability during production, and therefore may be contained as necessary. However, if contained in excess, REM will combine with oxygen and cause the cleanliness to markedly decrease, and on the contrary will cause the hot workability to deteriorate. Therefore, the content of REM is set to 0.10% or less. The content of REM is preferably 0.08% or less, and more preferably 0.06% or less. Note that, when it is desired to obtain the aforementioned effect, the content of REM is preferably 0.0005% or more, and more preferably 0.001% or more. As used herein, the term “REM” refers to a total of 17 elements that are Sc, Y and the lanthanoids, and the aforementioned content of REM means the total content of these elements. In the chemical composition of the steel of the present invention, the balance is Fe and impurities. As used herein, the term “impurities” refers to components which, during industrial production of the steel, are mixed in from raw material such as ore or scrap or due to various factors in the production process, and which are allowed within a range that does not adversely affect the present invention. (B) Production Method Although a method for producing the austenitic stainless steel according to the present invention is not particularly limited, for example, the austenitic stainless steel can be produced by subjecting steel having the chemical composition described above to hot forging, hot rolling, heat treatment and machining in that order according to a normal method. Hereunder, the present invention is described specifically by way of examples, although the present invention is not limited to these examples. Example Test materials having a thickness of 15 mm, a width of 50 mm, and a length of 100 mm were prepared from ingots that were cast by melting steels having the chemical compositions shown in Table 1, by performing hot forging, hot rolling, heat treatment and machining. Various performance evaluation tests that are described below were conducted using the obtained test materials. A bevel having the shape shown inFIG. 1was prepared at an end part in the longitudinal direction of the aforementioned test materials. Thereafter, two of the test materials with the bevel were butted together and butt welding was performed by TIG welding without using a filler material. Two welded joints were prepared for each test material, respectively, with a heat input of 8 kJ/cm. Among the obtained welded joints, those in which a root bead was formed across the entire length of the weld line in both welded joints were determined as having good weldability in fabrication, and were determined as “pass”. Among these, welded joints in which the root bead width was 2 mm or more across the entire length were determined as being “good”, and welded joints in which there was a portion in which the root bead width was less than 2 mm at even one part were determined as being “acceptable”. Further, in a case where there was a portion in which a root bead was not formed at even one part among the two welded joints were determined as “fail”. Thereafter, the periphery of the aforementioned welded joint which had undergone only root pass welding was subjected to restraint-welding onto a commercially available steel plate. Note that, the commercially available steel plate was a steel plate defined in JIS G 3160 (2008) of SM400B steel grade which had a thickness of 30 mm, a width of 200 mm and a length of 200 mm. Further, the restraint-welding was performed using a covered electrode ENi6625 defined in JIS Z 3224 (2010). Thereafter, multi-pass welding was performed by TIG welding in the bevel. The multi-pass welding was performed using a filler material corresponding to SNi6625 defined in JIS Z 3334 (2011). The heat input was set in the range of 10 to 15 kJ/cm, and two welded joints were prepared for each of the test materials. Specimens for microstructural investigation were taken from five locations in one of the welded joints prepared from each test material. A transverse section of each of the obtained specimens was mirror-polished and then etched before being observed by optical microscopy to determine whether cracks were present in the weld heat-affected zones. A welded joint for which no cracks were observed in all of the five specimens was determined as “pass”, and a welded joint in which cracks were observed was determined as “fail”. In addition, a round-bar creep rupture test specimen was taken from the remaining one welded joint of the welded joints produced from test materials whose weld crack resistance was evaluated as “pass”. The specimen was taken in a manner so that the weld metal was at the center of the parallel portion, and a creep rupture test was performed under conditions of 650° C. and 167 MPa in which the target rupture time of the base metal was approximately 1,000 hours. A welded joint in which rupturing occurred in the base metal and for which the rupture time was 90% or more of the target rupture time of the base metal was determined as “pass”. A summary of the results of these tests is shown in Table 2. As will be understood from Table 2, the results showed that in Test Nos. 1 to 6 in which steels A to F that satisfied the requirements defined by the present invention were used, the test specimens had the required workability and weld crack resistance during production of the welded joints and were also excellent in creep strength. Further, as will be understood by comparing Test No. 4 with Test Nos. 5 and 6, in a case where S was reduced, an improvement in the weldability by containing one or more types of element selected from Sn, S, As and Bi was recognized. In contrast, with respect to steel G as a Comparative Example, because the content of S was outside the range defined by the present invention, in Test No. 7 which used the steel G, cracking that was determined as being ductility-dip cracking occurred in the weld heat-affected zones. Further, steel H was below the lower limit of formula (i) and also more than the upper limit of formula (ii), and therefore in Test No. 8 in which the steel H was used, the stability of the austenite phase was excessively high, segregation of S and P was promoted by the welding thermal cycle, and cracking that was determined as being liquation cracking occurred in weld heat-affected zones. Steel I was below the lower limit of formula (ii) and steel J exceeded the upper limit of formula (i), and therefore, because the stability of the austenite phase was insufficient, in Test Nos. 9 and 10 which used steel I and steel J, respectively, in the creep test at high temperature, a σ phase was formed and the required creep strength was not obtained. Further, steel K was below the lower limit of formula (i) and steel L exceeded the upper limit of formula (ii), and therefore in Test Nos. 11 and 12 which used steel K and steel L, respectively, the stability of the austenite phase was excessively high, segregation of S and P was promoted by the welding thermal cycle, and cracking that was determined as being liquation cracking occurred in weld heat-affected zones. In addition, because steels M, N and O did not contain one of, or both of, Cu and Co, in Test Nos. 13 to 15 which used the steels M, N and O, respectively, an effect of reducing grain-boundary segregation of P and S was not obtained, and cracking that was determined as being liquation cracking occurred in the weld heat-affected zones. As described above, it was found that the required weldability in fabrication and weld crack resistance as well as excellent creep strength were obtained only in a case where the requirements of the present invention were satisfied. INDUSTRIAL APPLICABILITY According to the present invention, an austenitic stainless steel can be obtained that can achieve both excellent weldability when subjected to welding, and stable creep strength as a structure.
, 2000039 La présente invention concerne des perfectionnements aux engrenages destinés au frisage en général-et, en particulier, des roues dentées destinées au frisage de fil. Le frisage de fil au moyen de roues dentées, par exemple 5 de fils en polymères synthétiques comme ceux dérivant de substances polyacryliques, de polyamides, de polyesters, de poly-oléfines, etc, et du verre, est réalisé par le procédé simple consistant à faire passer le fil à travers la zone d1engrène-ment de deux ou plusieurs roues dentées, dont l'une au moins 10 est entraînée positivement. Le fil, ou un seul filament si celui-ci constitue le "fil" subit un frisage sinusoïdal dont la fréquence dépend de l'écar-tement des dents des roues dentées et dont l'amplitude dépend de la profondeur d'engrènement mutuel des dents. 15 La pratique courante, à l'heure actuelle, consiste en ce que la roue dentée de commande imprime un mouvement rotatif à la roue dentée commandée par l'intermédiaire du fil. S'il existe des bords vifs quelconques sur les dents des roues dentées, ceci peut provoquer un effilochage ou même la rupture des filaments 20 individuels du fil due à l'action de pincement exercée par les dents de commande sur les dents commandées. Une certaine atténuation de ce défaut peut être obtenue en fabriquant au moins l'une des roues dentées en une matière plastique synthétique comme, par exemple, le "Delriii" (marque 25 de fabrique) qui est une matière à base de polyoxyméthylène. Néanmoins, cet agencement ne donne pas entière satisfaction à d'c.utres points de vue, à savoir le fait que la roue dentée en matière plastique, qui est la roue folle, est plus susceptible de se rainurer sous l'action des enroulements du 30 fil et, d'une façon générale, de s'user, qu'une roue dentée en acier par exemple. « Par conséquent, l'invention concerne l'amélioration du problème de l'effilochage du fil d'une façon qui n'est pas nuisible à la durée de vie avant usure des roues dentées. 35 L'invention offre des engrenages destinés au frisage, qui comprennent deux roues dentées venant en prise afin d'imprimer un mouvement rotatif par une (ou plusieurs) de ces roues dentées qui est commandée et pour imposer un frisage à une matière pas- 69 00039 2000039 -2- sant entre elles, au moins lrune des roues dentées étant une structure unitaire à gradin présentant une denture sur une partie de plus grand diamètre et une denture sur une partie de plus petit diamètre, les dents des deux dentures engrenant 5 mutuellement avec les dents de l'autre roue dentée. • L'invention fournit également un procédé de frisage d'un fil, qui consiste à faire passer le fil entre deux ou plusieurs roues dentées en contact d1engrsnement pour imprimer un mouvement rotatif par une (ou plusieurs) des roues dentées qui est 10 entraînée et pour imposer un frisage au fil circulant entre elles, l'une au moins des roues dentées étant une structure unitaire à gradin présentant une denture sur une partie de plus grand diamètre et une denture sur une partie de plus petit diamètre, les dents des deux dentures engrenant mutuelle-15 ment avec les dents de l'autre roue dentée. De préférence, les dents des deux ou de toutes les roues dentées sont de forme à développante, de façon que, sur toute la gamme de fonctionnement des roues dentées agissant de façon à saisir le fil pendant la période complète d'engrènement, un 20 intervalle sensiblement constant soit maintenu entre les côtés des dents où le fil est saisi. Grâce à ce moyen, il est possible d'assurer ^ue le fil ne soit jamais pincé par les dents qui s'engrènent*- de sorte qu'un effilochage est au moins sensiblement réduit, même si -25 les roues dentées sont toutes deux ou toutes faites en métal, si l'on veut réduire au minimum les problèmes dus à l'usure des roues dentées. On se rendra compte que la force d'entraînement totale est entièrement transmise de la roue dentée de commande à la 30 roue dentée commandée ou aux roues dentées commandées par les dents se trouvant autour de la périphérie de la partie de plus grand diamètre de la roue dentée ou des roues dentées ayant une structure à gradin, de façon qu'il n'existe pas de contact réel entre les côtés des dents dans la partie de frisage de 35 plus petit diamètre. En fait, la grandeur du gradin se trouvant entre les deux parties de la ou des roues dentées à gradin est calculée de façon à permettre un espacement minimal entre les côtés des 69 00039 , 2000039 -3- dents de la partie de frisage, de façon que le diamètre particulier du fil à friser puisse être reçu sans pincement, alors que le fil peut encore être saisi d'une manière satisfaisante lors de son passage entre les roues dentées.-5 II est à remarquer que les roues dentées à -gradin suivant l'invention, tout en étant de structure unitaire, constituent un important perfectionnement par rapport aux systèmes de roues dentées connus dans lepquels les paires de roues dentées de commande et les paires de roues dentées de frisage sont respec-10 tivement montées sur deux arbres, lion seulement les roues dentées en une seule pièce sont fabriquées d'une façon plus simple et moins coûteuse, mais il n'est pas nécessaire, comme dans le système des roues dentées séparées, de tailler les roues dentées séparément «t de les monter ensuite sur leurs arbres respectifs 15 avec une extrême précision l'une par rapport à l'autre, en tenant compte du fait que l'espacement entre les flancs des dents de commande et de frisage est de l'ordre de 0,0254 ou 0,0508 mm Suivant une autre forme de réalisation de l'invention, une paire de roues dentées de frisage comprend une roue dentée 20 à denture droite et une roue dentée à gradin venant en contact d'engronament. Pour un fil de polymère synthétique de 40 deniers/ 13 filaments, la différence entre la partie de plus "grand diamètre de la roue dentée à gradin et la partie de plus petit diamètre à l'endroit du diamètre du cercle primitif des dents et 25 du diamètre extérieur est de 0,228 mm. Les deux roues dentées peuvent être en acier inoxydable ou même en une matière plastioue synthétique ; ou, selon une variante, la roue dentée de corîmande de construction à gradin est en acier inoxydable et la roue dentée commandée est en une 30 matière plastique synthétique comme le "Delrin", qui est une matière polyoxyméthylénique. Les dents se trouvant autour de la périphérie des roues dentées peuvent avoir des dimensions et un-écartement réguliers, ou, si de nouveaux effets sont nécessaires, l'espacement peut 35 être ir*égulier (les roues dentées étant appariées sous ce rapport) ou oxi peut faire varier l'amplitude des dents à la périphérie des roues dentées. 69 00039 2000039 -4- Cependant, normalement, un écartement et une amplitude réguliers des dents sont avantageux, mais un certain décalage du frisage est habituellement ultérieurement nécessaire, et ceci peut être effectué en soumettant le fil à une agitation 5 par la turbulence de l'air avant de le renvider. Un certain degré de décalage de la frisure peut être obtenu en agençant les dents hélicoïdalement autour de la périphérie de la roue dentée, plutôt qu'avec leurs pointes parallèles à leur axe. De préférence, avec n'importe quelle dent conformée, les poin-10 tes sont arrondies. L'exemple suivant est donné à titre illustratif, mais non limitatif, de l'invention. Un fil de 40 deniers, de 13 filaments, filé à partir de polyhexaméthylène-adipamide est admis à la vitesse de 1OOO 15 mètres/minute eur deux roues dentées de frisage en acier inoxydable comprenant une roue dentée à denture droite et une roue dentée à gradin en contact d1engrènement. La tension du fil en aval des roues dentées varie entre 8 et 12 g. Les dimensions des deux roues dentées sont les suivantes ! 20 Diamètre extérieur de la partie de commande Diamètre extérieur de la partie de frisage 25 largeur d'ensemble Largeur de la partie de commande Largeur ce la partie de frisage Nombre de dents 30 Pas diamétral Gradin Roue dentée à Roue dentée à denture gradin (folle) droite (de commande) 77,4 mm 77,-2 mm 17,46 mm 4,76 mm 9,52 mm 363 120 77,4 mm 77,-4 mm 17,46 mm 4,76 mm 9,52 mm 363 120 0,11 mm Au bout de 60 heures de fonctionnement, on n'observe pas d'effilochage ni de ruptures du fil ou d'usure des roues dentées et on obtient un fil frisé d'une façon satisfaisante, alorJ 35 qu'en répétant l'essai "avec deux roues dentées à denture droite, on remarque au-ssitôt un effilochage et des ruptures du fil et, au bout de-60 heures de fonctionnement, il s'est produit une usure importante des roues dentées. 69 00039 2000039 -5- REÎEN-DICAIIOIS 1 - Engrenage de frisage, caractérisé par le fait qu'il comprend deux roues dentées en contact d'engrènement pour imprimer le mouvement rotatif au moyen d'une (ou plusieurs) roue 5 dentée qui est entraînée et pour imposer un frisage à une matière passant entre elles, l'une au moins des roues dentées étant uns structure unitaire à gradin présentant une denture sur une partie de plus grand diamètre et une denture sur une partie de plus petit diamètre, les dents des deux dentures 10 engrenant avec les dents de l'autre roue dentée. 2 - Engrenage de frisage suivant la revendication 1, caractérisé par le fait que deux roues dentées seulement viennent en contact d'engrènement. 3 - Engrenage de frisage suivant la revendication 1 ou 15 2, caractérisé par le fait qu'une des roues dentées seulement présente une structure unitaire à gradin. 4 - Engrenage de frisage suivant la revendication 2 ou 3, caractérisé par le fait qu'une- roue dentée à denture droite et une roue dentée à gradin sont en contact d'engrènement. 20 5 - Engrenage de frisage suivant l'une quelconque des re vendications précédentes, caractérisé par le fait qu'une seule des roues dentées est entraînée. 6 - Engrenage de frisage suivant l'une quelconque des revendications précédentes, caractérisé par le- fait que les 25 dents de deux ou de toutes les roues dentées sont à développante. 7 - Engrenage de frisage suivant l'une quelconque des revendications précédentes, caractérisé par le fait que deux ou toutes les roues dentées sont en métal. 30 8 - Engrenage de frisage suivant l'une quelconque des revendications 1 à 6, caractérisé par le fait que deux ou toutes les roues dentées sont en une matière plastique. 9 - Engrenage de frisage suivant l'une quelconque des revendications 1 à 6, caractérisé par le fait que les roues 35 dentées en métal et en matière plastique sont en contact d'engrènement . 10 - Engrenage de frisage suivant la revendication 7 ou 9» caractérisé par le fait que le métal est l'acier inoxydable. 69 00039 2000039 -6- 11 - Engrenage de frisage suivant la revendication 8 ou 9, caractérisé par le fait que la matière plastique est dérivée du polyoxymétliylène. 12 - Engrenage de frisage suivant l'une quelconque des 5 revendications précédentes, caractérisé par le fait que les dents des roues dentées sont agencées hélicoîdalement autour de leur périphérie. 13 - Un procédé pour fiser tin fil, caractérisé par le fait qu'il consiste à faire passer le fil entre deux ou plu- 10 sieurs roues dentées en contact d'engrènement pour imprimer le mouvement rotatif par l'une (ou plusieurs) des roues dentées qui est entraînée etpour imposer un frisage au fil passant entre elles, au moins l'une des roues dentées étant une structure unitaire à gradin présentant une denture sur une 15 partie de plus grand diamètre et une denture sur une partie de plus petit diamètre, les dents des deux dentures engrenant avec les dents de l'autre roue dentée. 14 - Un procédé suivant la revendication 13, caractérisé par le fait que le fil frisé est soumis à un traitement destiné 20 à décaler la frisure. 15 - A titre de produit industriel nouveau, un fil frisé produit par les roues dentées de l'une ou l'autre des revendications 1 à 12. 16 - À titre de produit industriel nouveau, un fil frisé 25 obtenu au moyen du procédé des revendications 13 à 15 ou de tout autre procédé lui conférant les mêmes caractéristiques. 17 - T'il frisé suivant la revendication 15 ou 16, caractérisé par le faifciqu'il dérive de polyhexaméthylène-adipamide.
Correcting distortions A system comprising: a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields; and one or more computer systems configured to: cause the magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receive a first plurality of signals from the magnetic sensor; determine data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determine a distortion term that corresponds to a first position of the magnetic sensor; cause the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receive a third plurality of signals from the magnetic sensor; and determine a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency. TECHNICAL FIELD This disclosure relates to correcting distortions, for example, correcting distortions in an Electromagnetic Tracking (EMT) system. BACKGROUND Augmented Reality (AR) and Virtual Reality (VR) systems can use Electromagnetic Tracking (EMT) systems to aid location of devices in various contexts (e.g., gaming, medical, etc.). Such systems utilize a magnetic transmitter in proximity to a magnetic sensor such that the sensor and the transmitter can be spatially located relative to each other. Improper calibration of the transmitter with respect to the sensor (or vice versa) can cause the EMT system to report incorrect positions for the sensor or transmitter. SUMMARY Electromagnetic Tracking (EMT) systems, including those that are employed as part of an Augmented Reality (AR) and/or a Virtual Reality (VR) system, can employ one or more techniques for improving the determination of the position and orientation of a magnetic sensor relative to a magnetic transmitter. For example, one or more techniques may be employed to reduce/eliminate positional errors caused by distortions in the tracking environment (e.g., due to the presence of metallic and/or magnetic object at or near the tracking environment). To ensure that the transmitter and sensor can provide accurate position and orientation measurements to the user, such distortions can be compensated for in the system. For example, one or more terms indicative of distortion in the tracking environment (e.g., a distortion term) can be determined, and future measurements provided by the sensor can be corrected using the one or more distortion terms. In general, in an aspect, a system includes a magnetic transmitter configured to generate magnetic fields; a magnetic sensor configured to generate signals based on characteristics of the magnetic fields received at the magnetic sensor; and one or more computer systems configured to: cause the magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receive a first plurality of signals from the magnetic sensor; determine data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determine, based on the first plurality of signals and the data indicative of the position and orientation of the magnetic sensor at the first position, a distortion term that corresponds to a first position of the magnetic sensor; cause the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receive a third plurality of signals from the magnetic sensor; and determine, based on the third plurality of signals received from the magnetic sensor and the distortion term, a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency. Implementations can include one or more of the following features in any combination. In some implementations, determining data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor comprises: causing the magnetic transmitter to generate a second plurality of magnetic fields at a second frequency; and receiving a second plurality of signals from the magnetic sensor. In some implementations, determining data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor comprises: obtaining optical data related to the position and orientation of the magnetic sensor at a first position using an optical system; and determining the data indicative of the position and orientation of the magnetic sensor at the first position based on the optical data. In some implementations, the first and second plurality of magnetic fields are generated when the magnetic transmitter remains at a first position and a first orientation, and the first and second plurality of signals are generated by the magnetic sensor while the magnetic sensor remains at the first position and a first orientation. In some implementations, the first plurality of signals is represented as a first 3×3 matrix of data, the second plurality of signals is represented as a second 3×3 matrix of data, and the distortion term is represented as a 3×3 matrix of data. In some implementations, the 3×3 matrix of data corresponding to the distortion term is calculated at least in part by subtracting the second 3×3 matrix of data from the first 3×3 matrix of data. In some implementations, the magnetic transmitter and the magnetic sensor are each associated with an inertial measurement unit (IMU) configured to provide inertial data. In some implementations, the 3×3 matrix of data corresponding to the distortion term is calculated at least in part by multiplying the difference between the first 3×3 matrix of data and the second 3×3 matrix of data by inertial data of the magnetic transmitter and inertial data of the magnetic sensor obtained while the magnetic transmitter remains at a first position and a first orientation and the magnetic sensor remains at the first position and a first orientation. In some implementations, multiplying the difference between the first 3×3 matrix of data and the second 3×3 matrix of data by the inertial data while the magnetic transmitter and the magnetic sensor remain at their respective first positions and orientations results in the 3×3 matrix of data corresponding to the distortion term to be rotated into an initial reference frame that corresponds to the first orientation of the magnetic transmitter and the first orientation of the magnetic sensor. In some implementations, the 3×3 matrix of data corresponding to the distortion term at the initial reference frame is multiplied by inertial data of the magnetic transmitter and inertial data of the magnetic sensor obtained when the magnetic transmitter is at a second position and a second orientation and the magnetic sensor is at the second position and the second orientation to obtain a distortion term at a second reference frame, wherein the distortion term at the second reference frame is represented as a 3×3 matrix of data. In some implementations, multiplying the 3×3 matrix of data corresponding to the distortion term at the initial reference frame by the inertial data obtained when the magnetic transmitter and the magnetic sensor are at their respective second positions and orientations results in the 3×3 matrix of data corresponding to the distortion term at the initial reference frame to be rotated into the second reference frame, wherein the 3×3 matrix of data corresponding to the distortion term at the second reference frame corresponds to the second orientation of the magnetic transmitter and the second orientation of the magnetic sensor. In some implementations, the third plurality of signals is represented as a third 3×3 matrix of data, and the third 3×3 matrix of data corresponds to the second reference frame. In some implementations, the third plurality of signals include distortions due to presence of one or more conductive or magnetic objects at or near a tracking environment of the system, and a third position and orientation of the magnetic sensor relative to the magnetic transmitter that corresponds to the third plurality of signals includes inaccuracies in one or more dimensions. In some implementations, the one or more computer systems are further configured to: determine, based on the third 3×3 matrix of data corresponding to the second reference frame and the 3×3 matrix of data corresponding to the distortion term at the second reference frame, an undistorted term that corresponds to the second position and orientation of the magnetic sensor; and determine, based on the undistorted term, the second position and orientation of the magnetic sensor relative to the magnetic transmitter. In some implementations, the undistorted term is determined by subtracting the 3×3 matrix of data corresponding to the distortion term at the second reference frame from the third 3×3 matrix of data corresponding to the second reference frame. In some implementations, the undistorted term corresponds to a correct position and orientation of the magnetic sensor, and the second position and orientation of the magnetic sensor represent the correct position and orientation of the magnetic sensor. In some implementations, the second position and orientation of the magnetic sensor does not include inaccuracies that would otherwise be caused by distortions in the third plurality of signals due to presence of one or more conductive or magnetic objects at or near a tracking environment of the system if the undistorted term were not considered. In some implementations, the first frequency is 30 KHz or greater. In some implementations, the second frequency is 1.1 KHz or less. In some implementations, the second frequency is 100 Hz. In general, in another aspect, a method includes: causing a magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receiving, from a magnetic sensor, a first plurality of signals; determining data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determining, based on the first plurality of signals and the data indicative of the position and orientation of the magnetic sensor at the first position, a distortion term that corresponds to a first position of the magnetic sensor; causing the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receiving, from the magnetic sensor, a third plurality of signals; and determining, based on the third plurality of signals received from the magnetic sensor and the distortion term, a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency. In general, in another aspect, one or more non-transitory computer-readable media store instructions operable to cause a computing device to perform operations comprising: causing a magnetic transmitter to generate a first plurality of magnetic fields at a first frequency; receiving, from a magnetic sensor, a first plurality of signals; determining data indicative of a position and orientation of the magnetic sensor at a first position of the magnetic sensor; determining, based on the first plurality of signals and the data indicative of the position and orientation of the magnetic sensor at the first position, a distortion term that corresponds to a first position of the magnetic sensor; causing the magnetic transmitter to generate a third plurality of magnetic fields at the first frequency; receiving, from the magnetic sensor, a third plurality of signals; and determining, based on the third plurality of signals received from the magnetic sensor and the distortion term, a second position and orientation of the magnetic sensor relative to the magnetic transmitter, wherein the first frequency is greater than the second frequency. Advantages of the systems and techniques described herein include employing multiple modes of operation for the system. For example, in a first operating mode (e.g., a normal or typical mode of operation), the system may be configured to operate at a relatively high frequency (e.g., 30 KHz). Such a frequency may include one or more advantages, such as improved speed, better suitability for customer/applications, etc.). However, the first operating mode may be susceptible to errors. As such, the system may also be configured to operate in a second operating mode (e.g., a specialized operating mode). The second operating mode may be occasionally applied when circumstances warrant (e.g., when the magnetic sensor and magnetic transmitter temporarily cease movement). In the second operating mode, the system may be configured to operate at a comparatively lower frequency (e.g., 100 Hz), which may not be susceptible to the aforementioned errors, but may include one or more disadvantages that are not suited for a normal/typical operating mode (e.g., too slow). Information obtained during operation in the second mode at the second frequency, during which effects of potential distortions in the tracking environment are reduced or minimized, can be used to correct measurements obtained when the system is operating in the first mode at the first frequency. For example, one or more distortion terms can be determined and used to compensate for distortions in the tracking environment, thereby resulting in an accurate position and orientation of the magnetic sensor relative to the magnetic transmitter to be provided while the system is operating in the first operating mode. In some implementations, rather than operating in a second operating mode, the system may be configured to employ one or more other techniques for obtaining measurements that are not impacted by environmental distortions, For example, an optical system (among others) can be used to determine a clean pose of the sensor and/or the transmitter based on optical data. In this way, the pose of the sensor as determined based on the optical data may be taken as truth data indicative of the actual pose of the sensor. In some implementations, the tracking environment can be mapped prior to the pose of the sensor being determined. For example, distortion terms corresponding to various locations within the tracking environment can be determined ahead of time. When a true pose of the sensor is to be determined, a previously obtained distortion term that corresponds to the location of the sensor can be used to compute a clean pose of the sensor. In this way, distortion terms need not be determined in real time. In some implementations, once a distortion term is identified, either the transmitter or the sensor (e.g., the receiver) can be “rotated” to a different pose. In other words, characteristics of the fields generated by the transmitter or data provided by the sensor can be modified such that it corresponds to a pose other than the current pose of the transmitter and/or the sensor. In this way, the transmitter and/or the sensor is rotated in a simulated manner. DETAILED DESCRIPTION An Electromagnetic Tracking (EMT) system can be used in gaming and/or surgical settings to track devices (e.g., gaming controllers, head-mounted displays, medical equipment, robotic arms, etc.), thereby allowing their respective three-dimensional positions and orientations to be known to a user of the system. AR and VR systems also use EMT systems to perform head, hand, and body tracking, for example, to synchronize the user's movement with the AR/VR content. Such systems use a magnetic transmitter in proximity to a magnetic sensor to determine the position and orientation (P&O) of the sensor relative to the transmitter. Such systems can employ one or more techniques for improving the determination of the P&O of the sensor relative to the transmitter. For example, one or more techniques may be employed to reduce/eliminate positional errors caused by distortions in the tracking environment. For example, the EMT system may be sensitive to metallic objects, which can manifest as distortion in the tracking environment (e.g., distortions of the magnetic fields generated by the transmitter and/or sensed by the sensor). Distortion can include conductive distortion and ferromagnetic distortion. Conductive distortion is generally caused by eddy currents set up within conductive objects by alternating magnetic fields (e.g., such as those produced by the transmitter). The eddy currents generate additional magnetic fields, which can be indistinguishable from those produced by the transmitter. These additional fields can cause the EMT system100to report erroneous P&O results. Ferromagnetic distortion can be caused by magnetic reluctance of materials at or near the tracking environment106. Such magnetic reluctance “bends” the magnetic fields from their normal geometry. Such distortions cause the magnetic fields to depart from a magnetic field model on which a P&O algorithm is based, thereby causing erroneous P&O results to be reported. To ensure that the transmitter and sensor can provide accurate P&O measurements to the user, such distortions can be compensated for in the system; for example, distortions can be compensated for by determining one or more terms indicative of distortion in the tracking environment (e.g., a distortion term) and using the one or more distortion terms to correct future measurements provided by the sensor. In some implementations, a distortion term can be determined for an initial sampled location (e.g., an initial P&O of the sensor) and used to correct a P&O measurement at a subsequent sampled location (e.g., a subsequent P&O of the sensor) close to the initial sampled location. The distance between the initial location and the subsequent location may depend on the distortion gradients at the sampled locations. An undistorted (e.g., “clean”) pose output of the sensor at the initial sampled location may be acquired using one or more low distortion trackers (e.g., trackers that are minimally impacted by distortions or trackers that are not susceptible to distortions). In some implementations, the low distortion tracker may be configured to operate the system at a relatively low frequency, thereby minimizing or eliminating the effects of distortions in the tracking volume. In this way, a “trusted vector” (e.g., a true P&O) of the sensor is determined. Alternatively or additionally, the undistorted pose output of the sensor at the initial sampled location may be acquired using one or more other techniques (e.g., one or more other “low distortion trackers”) that are minimally or not susceptible to distortion. For example, in some implementations, an optical system including one or more cameras mounted at the sensor, the transmitter, and/or one or more location(s) at or near the tracking volume can be used to determine the trusted vector indicative of the true P&O of the sensor based on visual data. In some implementations, other types of low distortion trackers can be used to compensate output of the sensor, for example, infrared tracking, acoustic tracking, or another P&O tracking method that is not susceptible or less susceptible to distortion effects of metal in the environment (e.g., as compared to the normal operating mode that employs high frequency EM tracking, as described herein), to name a few. In some implementations, distortion terms can be determined for a plurality of locations within a tracking volume during a “mapping” or “initialization” routine. For example, distortion terms indicative of environmental distortion throughout the tracking volume can be obtained by moving the sensor throughout the tracking volume and recording the P&O output of the sensor (e.g., distorted P&O measurements). A corresponding clean P&O measurement indicative of the true P&O of the sensor can be determined for the various distorted P&O measurements, and a corresponding distortion term can be determined for a particular location within the tracking volume. The clean P&O measurements (e.g., corresponding to the trusted vectors) can be determined using a low distortion tracker (e.g., the optical system, the low frequency mode, etc.), as described briefly above and in more detail below. In this way, distortion terms can be correlated to various clean poses within the tracking volume, and in some implementations, additional distortion terms can be determined for other locations within the tracking volume (e.g., locations that were not specifically sampled) using one or more extrapolation techniques. The distortion terms mapped throughout the tracking volume can be used to determine an undistorted P&O of the sensor when the sensor is positioned, for example, at or near a location that corresponds to a distortion term, as described in more detail below. FIG. 1shows an example of an EMT system100that can be used as part of an AR/VR system. The EMT system100includes at least a magnetic sensor112, an orientation measurement device (OMD)122, a magnetic transmitter114, and another OMD124. The OMDs122,124are relatively insensitive (or, e.g., not sensitive) to metal in the environment. Therefore, the OMDs122,124can be used to determine the clean orientation of the sensor112and/or the transmitter114. In some implementations, the OMDs122,124may include one or more inertial measurement units (IMUs) and/or an optical system that can measure an orientation of the sensor112relative to the transmitter114, or vice versa. In some implementations, the sensor112and OMD122are incorporated at a head-mounted display (HMD)102and the magnetic transmitter114and OMD124are incorporated at a controller104. The EMT system100also includes sensor processing142and transmitter processing144. The sensor processing142and transmitter processing144may be located at the HMD102and/or the controller104, either separately or together, or may alternatively be located at a separate electronic device (e.g., a computer system). The EMT system100may also include a low distortion tracker132. The low distortion tracker132is relatively insensitive (or, e.g., not sensitive) to metal in the environment. Therefore, like the OMDs122,124described above, the low distortion tracker132can be used to determine the clean P&O of the sensor112and/or the transmitter114. In some implementations, the low distortion tracker132may include an optical system with one or more cameras located at the HMD102and/or the controller104. Such an optical system can be used instead of or in addition to a low-frequency operating mode that is not susceptible to environmental distortions. In general, the EMT system100is configured to compensate for distortions at or around a tracking environment. For example, a “distorted” P&O output of the sensor112at an initial pose may include errors due to environmental distortion. A “clean” P&O of the sensor112can be determined at the initial pose using a technique that is not susceptible to environmental distortions. For example, an optical system or a low-frequency operating mode can be used to determine the clean/true P&O of the sensor112(e.g., sometimes referred to as a trusted vector), an example of which is described in more detail below. Using both the distorted P&O and the clean P&O of the sensor112at the initial pose, a distortion term that corresponds to the initial pose can be determined. When the sensor112is subsequently positioned at a new pose, the distortion term that corresponds to the initial pose can then be used to correct a distorted P&O output of the sensor112at the new pose. While two particular low distortion trackers are described herein, it should be understood that other low distortion trackers can be used. One of the functions of the low distortion tracker is to develop the trusted vector that corresponds to the clean/true P&O of the sensor112based on one or more measurements. The trusted vector represents a true position and orientation of the sensor112. Thus, any technique for determining the true position and orientation of the sensor112may be included in the EMT system100for the purposes described herein. In some implementations, rather than or in addition to determining distortion terms substantially in real time as described above, the tracking environment may be mapped ahead of time. In this way, distortion terms indicative of environmental distortions that correspond to various poses within the tracking environment can be determined as part of an initialization routine, and such distortion terms can subsequently be applied to distorted P&O outputs of the sensor112to provide a clean P&O of the sensor112. Such an implementation is described in more detail below. FIG. 2shows an example of the EMT system100ofFIG. 1. The EMT system100includes at least a head-mounted display (HMD)102that includes the magnetic sensor112and the OMD122, and a controller104that includes the magnetic transmitter114and the OMD124. In some examples, a VR system uses computer technology to simulate the user's physical presence in a virtual or imaginary environment. VR systems may create three-dimensional images and/or sounds through the HMD102and tactile sensations through haptic devices in the controller104or wearable devices to provide an interactive and immersive computer-generated sensory experience. In contrast, AR systems may overlay computer-generated sensory input atop the user's live experience to enhance the user's perception of reality. For example, AR systems may provide sound, graphics, and/or relevant information (e.g., such as GPS data to the user during a navigation procedure). Mixed Reality (MR) systems—sometimes referred to as hybrid reality systems—may merge real and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real-time. The HMD102and the controller104are configured to track position (e.g., in x, y, and z) and orientation (e.g., in azimuth, altitude, and roll) in three-dimensional space relative to each other. For example, the transmitter114is configured to track the sensor112(e.g., relative to a reference frame defined by the position and orientation of the transmitter114), and/or the sensor112is configured to track the transmitter114(e.g., relative to a reference frame defined by the position and orientation of the sensor112). In some implementations, the system100is configured to track the position and orientation (e.g., the P&O) of the sensor112and/or the transmitter114in a tracking environment106of the EMT system. In this way, the P&O of the HMD102and/or the controller104can be tracked relative to each other and relative to a coordinate system defined by the EMT system100. For example, the HMD102and the controller104can be used to perform head, hand, and/or body tracking, for example, to synchronize the user's movement with the AR/VR content. While the tracking environment106is illustrated as being a defined space, it should be understood that the tracking environment106may be any three-dimensional space, including three-dimensional spaces without boundaries (e.g., large indoor and/or outdoor areas, etc.). The particular sensor112and transmitter114employed by the EMT system100may be determined by the procedure type, measurement performance requirements, etc. In some implementations, the transmitter114includes three orthogonally wound magnetic coils, referred to herein as the X, Y, and Z coils. Electrical currents traveling through the three coils cause the coils to produce three orthogonal sinusoidal magnetic fields at a particular frequency (e.g., the same or different frequencies). In some implementations, time division multiplexing (TDM) may also be used. For example, in some implementations, the coils may produce magnetic fields at the same frequency (e.g., 30 KHz) but at non-overlapping times. The sensor112also includes three orthogonally wound magnetic coils, referred to herein as the x, y, and z coils. Voltages are induced in the coils of the sensor112in response to the sensed magnetic fields by means of magnetic induction. Each coil of the sensor112generates an electrical signal for each of the magnetic fields generated by the coils of the transmitter114; for example, the x coil of the sensor112generates a first electrical signal in response to the magnetic field received from the X coil of the transmitter114, a second electrical signal in response to the magnetic field received from the Y coil of the transmitter114, and a third electrical signal in response to the magnetic field received from the Z coil of the transmitter114. They and z coils of the sensor112similarly generate electrical signals for each of the magnetic fields generated by the X, Y, and Z coils of the transmitter114and received at/by they and z coils of the sensor112. As described in more detail below, in some implementations, the transmitter114may be configured to use a particular frequency depending on a mode in which the transmitter114is currently operating. For example, in a first mode (e.g., during normal operation of the transmitter114as implemented in the EMT system100or in an AR or VR system), the transmitter114may be configured to generate magnetic fields at a frequency of 30 KHz or greater (e.g., 30 KHz, 34 KHz, etc.) In some implementations, in a second mode (e.g., for minimizing the effects of potential distorters in the environment), the transmitter114may be configured to generate magnetic fields at a frequency of 1.1 KHz or less (e.g., 1.1 KHz, 1 KHz, 100 Hz, etc.). The data from the sensor112can be represented as a matrix of data (e.g., a 3×3 matrix), sometimes referred to as a measurement matrix, which can be resolved into the P&O (e.g., sometimes referred to as the pose) of the sensor112with respect to the transmitter114, or vice versa. In this way, the P&O of the sensor112and the transmitter114is measured. An example of a 3×3 signal measurement matrix (e.g., sometimes referred to as an S-matrix) is shown below, where each matrix element represents the sensor signal in the indicated coil of the sensor112(x, y, z) due to energizing a single coil of the transmitter114(X, Y, Z), and where the columns represent the signal produced by the coils of the transmitter114(X, Y, Z) and the rows represent signals measured by the coils of the sensor112(x, y, z): It should be understood that the particular mathematic processes described herein are a result of merely one example technique for determining a pose of a sensor relative to a transmitter. The particular mathematical transforms performed may differ, as those skilled in the art would understand. The exemplary mathematics should not be interpreted as limiting the general inventive concept of using a low distortion tracker to correct a pose of the sensor and/or transmitter at a subsequent sampled location, as described herein. The sensor processing (142ofFIG. 1) and the transmitter processing (144ofFIG. 1), which may be incorporated in the HMD102and/or the controller104or located separately from the HMD102and controller104, are configured to determine the P&O of the HMD102relative to the controller104and vice versa based on characteristics of the magnetic fields generated by the transmitter114and the various electrical signals generated by the sensor112. In some implementations, the sensor processing142and the transmitter processing144may be implemented as one or more computer systems. For example, one or more computer systems may be configured to resolve the data from the sensor112into the P&O of the sensor112. In some implementations, the one or more computer system can include EM sensor processing functionality and/or EM transmitter processing functionality. In some implementations, one or more computer systems incorporated into the HMD102and/or the controller104(or, e.g., the sensor112and/or the transmitter114) may be configured to determine the P&O of the sensor112. In some implementations, EM sensor processing functionality and EM transmitter processing functionality may be incorporated into a single computer system (e.g., at the HMD102/sensor112, at the controller104/transmitter114, or at a separate computer system). The sensor112, the transmitter114, and/or the separate computer system may be configured to communicate information to each other (e.g., via a wireless connection, a wired connection, etc.). As described below, a separate computer system may also be configured to determine the P&O of the sensor112and transmitter114, and such information may be provided to the HMD102and/or the controller104. The AR/VR system and/or the EMT system100can employ one or more techniques for improving the determination of the P&O of the sensor112relative to the transmitter114. For example, one or more techniques may be employed to reduce/eliminate positional errors caused by distortions in the tracking environment106. The EMT system100may be sensitive to metallic objects, which can manifest as distortion in the tracking environment106(e.g., distortions of the magnetic fields generated by the transmitter114and/or sensed by the sensor112). Distortion can include conductive distortion and ferromagnetic distortion. Conductive distortion is generally caused by eddy currents set up within conductive objects by alternating magnetic fields (e.g., such as those produced by the transmitter114). As mentioned above, the eddy currents can generate additional magnetic fields, which can be indistinguishable from those produced by the transmitter114. These additional fields can cause the EMT system100to report erroneous P&O results. For example, an algorithm for determining the P&O of the sensor112based on sensor signals may employ a field model of the magnetic fields generated by the transmitter114with no additional fields due to eddy current, and as such, the reported results do not provide an accurate representation of the P&O of the transmitter114and/or the sensor112when distortions are present. Ferromagnetic distortion can be caused by magnetic reluctance of materials at or near the tracking environment106. Such magnetic reluctance “bends” the magnetic fields from their normal geometry, again causing the magnetic fields to depart from the magnetic field model on which the P&O algorithm is based, thereby causing erroneous results to be reported. To ensure that the transmitter114and sensor112can provide accurate P&O measurements to the user, such distortions can be compensated for in the EMT system100, for example, by determining one or more terms indicative of distortion in the tracking environment106(e.g., a distortion term), and using the one or more distortion terms to correct future measurements provided by the sensor112. A particular distortion term may correspond to a particular position within the tracking environment106. In some implementations, a particular distortion term may correspond to a particular P&O of the sensor112relative to a particular P&O of the transmitter114. In some implementations, a particular distortion term may correspond to a particular position of the sensor112relative to a particular position of the transmitter114, and the particular distortion term can be mathematically adjusted to correspond to various orientations of the sensor112and/or the transmitter114at the particular position, as described in more detail below. In some implementations, the EMT system100may determine an initial distortion term while the sensor112and the transmitter114are in an initial P&O (e.g., an initial reference frame). Thereafter, the sensor112and/or the transmitter114may move to a second P&O (e.g., a second reference frame). The distortion term obtained at the initial reference frame can be used to mathematically adjust the sensor measurements provided by the sensor112when the sensor112is at the second P&O to provide an accurate (e.g., correct, or “true”) position of the sensor112relative to the transmitter114. In other words, the sensor measurements provided by the sensor112when the sensor112is at the second P&O may otherwise include inaccuracies due to distortions in the tracking environment106. The distortion term can be representative of such distortions. Thus, the distortion term may be used to remove the effects of such distortions from the sensor signal when the sensor112is at the second P&O. While the EMT system100is configured to determine the orientation of the sensor112and the transmitter114relative to each other by employing electromagnetic tracking techniques, the sensor112and the transmitter114are each associated with an orientation measurement device (OMD)122,124configured to provide information related to the orientation of the sensor112and the transmitter114. In some implementations, the OMD122,124are inertial measurement units (IMUs) that are configured to provide inertial data that corresponds to the sensor112and transmitter114. In some implementations in which IMUs are employed, each of the OMDs122,124may be configured to collect inertial data that corresponds to (e.g., is associated with) the sensor112and the transmitter114. In some implementations, the IMUs include one or more accelerometers and/or one or more gyroscopes configured to collect the inertial data. The inertial data can be used to determine, among other things, the orientation of the sensor112and the transmitter114. For example, the IMUs may be configured to measure specific force and/or angular rate, which can be used to determine an orientation, heading, velocity, and/or acceleration of the IMU (and, e.g., the HMD102and controller104). In some implementations, the determined velocity and/or acceleration can be used to assist in determining the position of the sensor112and the transmitter114. For example, the determined velocity and/or acceleration can be used to determine a change in position of the sensor112and/or the transmitter114over time. The inertial data can be communicated between the one or more computer systems described above. For example, in some implementations, the inertial data related to the sensor112may be wirelessly provided to the transmitter114and vice versa. In some implementations, a separate computer system may facilitate the exchange of inertial and other data between the sensor112and the transmitter114. In some implementations, rather than IMUs being employed, the OMDs122,124may include an optical system that is used to determine the orientation of the sensor112relative to the transmitter114and vice versa. In this way, the true orientation of the sensor112and/or the transmitter114can be determined based on optical data rather than inertial data. In some implementations, the sensor112may produce degraded (e.g., inaccurate) data due to operation in an EM distorted environment, thereby resulting in inaccurate pose output. Described herein are EM distortion compensation systems and techniques for determining a “clean” (e.g., undistorted) S-matrix representative of the pose of the sensor112. The clean/undistorted S-matrix representative of an accurate P&O of the sensor112at an arbitrary reference frame (i) (e.g., an arbitrary P&O) may be denoted as Scleani, which can be computed according to Equation (1): Scleani=Sreci−Sdisti(1) where Sreciis a degraded S-matrix (e.g., due to inaccuracies caused by distorters at or near the tracking environment106) when the sensor112is at the arbitrary reference frame i and Sdistiis a distortion term corresponding to the arbitrary reference frame i. As Sreciis measured, the systems and techniques described herein are directed to finding the distortion matrix Sdistiat the arbitrary reference frame. The magnitude of a signal matrix from the sensor112remains constant over arbitrary rotations of rows and columns (e.g., via the Frobenius norm). In the systems and techniques described herein, the rows and columns of the S-matrices correspond to physical orientations of the sensor112and transmitter114. In some implementations, an S-matrix obtained when the sensor112and transmitter114are at an initial reference frame (e.g., initial reference frame0) may be used to compute a distortion term at the initial reference frame0, the distortion term at the initial reference frame0can be used to determine a distortion term at another reference frame (e.g., an arbitrary reference frame i), and the distortion term at the arbitrary reference frame i can be used to determine the P&O of the sensor112at the arbitrary reference frame i (e.g., at a later time relative to a time at which the distortion term at the initial reference frame0is obtained). In the example illustrated inFIG. 2, the HMD102/sensor112and the controller104/transmitter114are at an initial reference frame0. In particular, the HMD102/sensor112are at an initial reference frame (S P&O0) and the controller104/transmitter114are at an initial reference frame (T P&O0). In the initial reference frames S P&O0and T P&O0, the sensor112and the transmitter114are each at a first (e.g., initial) position and orientation. In some implementations, the initial reference frame corresponds to a time at which the sensor112and the transmitter114have ceased or substantially ceased movement for a period of time (e.g., as determined by the OMDs122,124). With the sensor112and the transmitter114at the initial reference frame, a first measurement is obtained by the sensor112. In particular, the coils of the transmitter114are configured to generate a first plurality of magnetic fields at a first frequency. The first frequency may be a frequency at which the EMT system100, AR, and/or VR systems are configured to operate under normal operating conditions (e.g., during typical use of the EMT system100). In some implementations, the first frequency may be used when the EMT system100is operating in a first/normal mode of operation. The first frequency may be a frequency of 30 KHz or greater (e.g., 30 KHz, 34 KHz, etc.). In some implementations, the first frequency is one that may be susceptible to inaccuracies due to potential distorters in the tracking environment106. A first plurality of signals is received from the sensor112. For example, the sensor112is configured to generate signals based on characteristics of the magnetic fields received at the sensor112. The magnetic fields received at the sensor112may be largely based on the magnetic fields generated by the transmitter114at the first frequency. However, one or more potential distorters in the tracking environment106, among other things, may cause the generated magnetic fields to “bend” from their normal geometry. Such distortions may cause the first plurality of signals received from the sensor112to provide an incorrect P&O of the sensor112relative to the transmitter114. The first plurality of signals can be represented as a first 3×3 S-matrix of data, referred to herein as Srec0. For example, Srec0is received while the sensor112and transmitter114are at the initial reference frame S P&O0and T P&O0and the transmitter114generates magnetic fields at the first frequency. With the sensor112and the transmitter114still at or close to the initial reference frame0, a true pose of the sensor112is determined (e.g., an actual pose of the sensor112without inaccuracies due to distortions). For example, in some implementations, a second measurement is obtained by the sensor112. In particular, the coils of the transmitter114are configured to generate a second plurality of magnetic fields at a second frequency. The second frequency may be a frequency at which the EMT system100, AR, and/or VR systems are configured to operate under a specialized operating condition (e.g., while the sensor112and the transmitter114are stationary or almost stationary, for example, while a user of the EMT system100temporarily stops moving). In some implementations, the second frequency may be used when the EMT system100is operating in a second/undistorted mode of operation. The second frequency may be a frequency of 1.1 KHz or less (e.g., 1.1 KHz, 1 KHz, 100 Hz, etc.). In some implementations, the second frequency is one that is unsusceptible (or, e.g., significantly less susceptible than the first frequency) to inaccuracies due to potential distorters in the tracking environment106. A second plurality of signals is received from the sensor112. For example, the sensor112is configured to generate signals based on characteristics of the magnetic fields received at the sensor112. The magnetic fields received at the sensor112may be largely based on the magnetic fields generated by the transmitter114at the second frequency. Any potential distorters in the tracking environment106may have a limited impact on the magnetic fields generated using the second frequency. As such, potential distorters may not cause (or, e.g., may cause to a significantly lesser extent) the magnetic fields generated at the second frequency to “bend” from their normal geometry relative to the magnetic fields generated at the first frequency. Therefore, the second plurality of signals received from the sensor112provide an accurate P&O of the sensor112relative to the transmitter114. The second plurality of signals can be represented as a second 3×3 S-matrix of data, referred to herein as Sclean0. For example, Sclean0is received while the sensor112and transmitter114are at the initial reference frame S P&O0and T P&O0and the transmitter114generates magnetic fields at the second frequency. Sclean0is referred to as a “clean” S-matrix because it is assumed to accurately correspond to “clean” (e.g., undistorted) magnetic fields received at the sensor112. In other words, Sclean0theoretically represents the signals that would be provided by the sensor112in an environment that does not include any distortions. As such, it is expected that Sclean0can be resolved into an accurate (e.g., true, correct, actual, etc.) P&O of the sensor112when the sensor112is at the initial reference frame. In some implementations, Sclean0can be determined using the low distortion tracker132. That is, rather than operating the sensor112and transmitter114in a low-frequency operating mode to determine the clean pose of the sensor112, an optical system including one or more cameras can be used to determine a clean, undistorted pose of the sensor112at the initial reference frame. The low distortion tracker132along with the sensor processing142and transmitter processing144can be used to represent the clean pose of the sensor112at the initial reference frame as a 3×3 matrix of data, as Sclean0. In some implementations, the OMDs122,124corresponding to the sensor112and the transmitter114, when implemented as IMUs, may provide inertial data while the sensor112and the transmitter114are at the initial reference frame0. Such inertial data can be used to determine an orientation of the sensor112and the transmitter114. In some implementations, the orientations as determined based on the inertial data may be taken as accurate orientation data (e.g., the true orientation of the sensor112and the transmitter114). In some implementations, the IMUs may each be a 9-axis IMU, and the orientation data may be provided to the sensor processing142and/or the transmitter processing144. As described above, in some implementations, the OMDs122,124may be implemented at least in part by an optical system that includes one or more cameras. The optical system can determine the true orientation of the sensor112and/or the transmitter114using optical data. In this way, using IMU(s) and/or an optical system, data indicative of the orientation of the sensor112and transmitter114can be determined. A distortion term that corresponds to the initial reference frame0, Sdist0, may be calculated according to Equation (2): Sdisto=Rso(Sreco−Scleano)Rto(2) where Srec0is the S-matrix of the sensor112received while the sensor112and transmitter114are at the initial reference frame and while the transmitter114generates magnetic fields at the first frequency, Sclean0is the S-matrix of the sensor112received while the sensor112and transmitter114are at the initial reference frame and while the transmitter114generates magnetic fields at the second frequency, Rs0is data indicative of the orientation of the sensor112at the initial reference frame, and Rt0is data indicative of the orientation of the transmitter114at the initial reference frame. In particular, the difference between Srec0and Sclean0are rotated into the initial reference frame0by multiplying the difference by Rs0and Rt0. The distortion term that corresponds to the initial reference frame0, Sdist0, may be stored (e.g., by the one or more computer systems) and used to calculate a distortion term at an arbitrary reference frame i, (e.g., Sdisti), for example, once the sensor112and/or the transmitter114resume movement. For example, after the sensor112and/or the transmitter114move to a second position and orientation that correspond to a second reference frame S P&Oiand T P&Oi, as illustrated inFIG. 3, the initial distortion term Sdist0can be rotated into the second reference frame i according to Equation (3): Sdisti=RsiSdistoRsi(3) where Rsiis data indicative of the orientation of the sensor112at the second reference frame i, and Rtiis data indicative of the orientation of the transmitter114at the second reference frame i. In other words, the distortion term that corresponds to the initial reference frame0, Sdist0, is multiplied by data indicative of the position and orientation of the sensor112and transmitter114at the second reference frame in order to rotate the initial distortion term, Sdist0, into the second reference frame i, the product of which is represented as Sdisit. With the sensor112and the transmitter114at the second reference frame i, a third measurement is obtained by the sensor112. In particular, the coils of the transmitter114are configured to generate a third plurality of magnetic fields at the first frequency (e.g., in the first mode that uses the frequency at which the EMT system100, AR, and/or VR systems are configured to operate under normal operating conditions). As described above, in some implementations, the first frequency is one that may be susceptible to inaccuracies due to potential distorters in the tracking environment106. A third plurality of signals is received from the sensor112. For example, the sensor112is configured to generate signals based on characteristics of the magnetic fields received at the sensor112. The magnetic fields received at the sensor112may be largely based on the magnetic fields generated by the transmitter114at the third frequency. However, one or more potential distorters in the tracking environment106, among other things, may cause the generated magnetic fields to “bend” from their normal geometry. Such distortions may cause the third plurality of signals received from the sensor112to provide an incorrect P&O of the sensor112relative to the transmitter114at the second reference frame i. The third plurality of signals can be represented as a third 3×3 S-matrix of data, referred to herein as Sreci. For example, Sreciis received while the sensor112and transmitter114are at the second reference frame S P&Oiand T P&Oiand the transmitter114generates magnetic fields at the third frequency. Based on the third 3×3 S-matrix of data (e.g., Sreci), and based on the distortion term at the second reference frame i, (e.g., Sdisti), an undistorted term, Scleani, is determined. In particular, Scleaniis determined according to Equation (4): Scleani=Sreci−RsiRzoT(Sreco−Scleano)RtoRtiT(4) where the undistorted term, Scleani, is an S-matrix that is representative of an accurate (e.g., true, correct, actual, etc.) P&O of the sensor112when the sensor112is at the second reference frame i (e.g., at S P&Oi and T P&Oi, which correspond to the second position and orientation of the sensor112and the second position and orientation of the transmitter114). In other words, the third 3×3 S-matrix of data, Sreci, may include distortions due to presence of one or more conductive or magnetic objects at or near the tracking environment106of the EMT system100, and if a P&O of the sensor112were calculated based on Sreci, the P&O may include inaccuracies in one or more dimensions. As such, the distortion term at the second reference frame, Sdisti, is subtracted from Srecito produce a calculated S-matrix that can be resolved into an accurate P&O for the sensor112in the second reference frame (e.g., at the second P&O). In this way, the calculated second P&O of the sensor112does not include inaccuracies that would otherwise be caused by distortions in Srecidue to presence of one or more conductive or magnetic objects at or near the tracking environment106if the undistorted term, Scleani, were not considered. In some implementations, as the sensor112and/or the transmitter114move within the tracking environment106(e.g., relative to the initial, 0, and second, i, reference frames), the initial distortion term, Sdist0, may be of minimal use at the subsequent position. For example, characteristics of the tracking environment106at subsequent positions may be significantly different than those at the initial reference frame (e.g., due to a relatively high distortion gradient), and as such, the initial distortion term, Sdist0, obtained at the initial reference frame may not be representative of distortion that are present at the subsequent positions. As such, additional distortion terms that correspond to various positions of the sensor112and/or transmitter114within the tracking environment106can be obtained. Such distortion terms can be obtained for various reference frames that correspond to a position and/or orientation of the sensor112and/or a position and/or orientation of the transmitter114. In some implementations, a distortion term can be obtained for a particular sensor112/transmitter114P&O when the sensor112and transmitter114temporarily cease movement during use. The implementations described above are directed to techniques for determining a clean pose of the sensor112based on undistorted measurements obtained with the assistance of a low-frequency operating mode and/or an optical system that are not susceptible to environmental distortions. The distorted and undistorted measurements at an initial location are used to determine a distortion term at the initial location, and the distortion term is used to correct a distorted measurement when the sensor112is at a subsequent location. The distortion term is determined around the same time that the pose of the sensor112is being determined. However, in some implementations, distortion terms corresponding to various locations within the tracking environment106can be determined ahead of time. For example, a map of environmental distortions throughout the tracking environment106can be created. The map can be acquired as part of an initialization routine, or may be initiated by a user at a later time upon software command. When a true pose of the sensor112is to be determined, a previously obtained distortion term that corresponds to the location of the sensor112can be used to compute a clean pose of the sensor112. In this way, distortion terms need not be determined in real time. To map the tracking environment106, the transmitter114may be situated at a fixed location at or near the tracking environment106. The sensor112is then moved (e.g., slowly) throughout the tracking environment106. The sensor112may be moved manually (e.g., by a user) or mechanically (e.g., according to a predetermined path within the tracking environment106, for example, by a robotic arm). By way of non-limiting example, the sensor112can move in a roughly circular path horizontally (e.g., co-planar) around the transmitter114. The sensor112can be moved around the transmitter114at different radii on different parallel planes in space. As the sensor112is moved throughout the tracking environment106, distorted pose sensor outputs (Srec0) are determined and saved for the various positions. At the same time, clean pose outputs (Sclean0) are determined (e.g., using an optical system and/or a low-frequency operating mode). In this way, the clean pose of the sensor112is determined for the various locations at which the distorted pose sensor outputs are obtained, and corresponding distortion terms (Sdist0) are correlated to the various clean poses. In this way, distortion data for the entire tracking volume may be taken, given a sufficient spacing of samples. The system100can then produces one or more low bandwidth surface distortion maps having relatively low distortion gradients. For example, the system100produces a surface curve fit of the distortion terms Sdist0(e.g., the distortion matrices) using a low-order curve-fit function, for example a surface least-square fit (or other surface curve-fit). The process is repeated for various distortion matrix surfaces. In this way, the entire tracking volume (or, e.g., substantially the entire tracking volume) can be mapped to clean pose locations. In other words, the surface curve fit can be used to map substantially all of the tracking volume even though every location within the tracking volume may not necessarily have been sampled to determine a distortion term. The mapping data can be stored by the system100for later use, as described in more detail below. Following the mapping, the surface maps can be used for environmental distortion correction. In particular, when the clean pose of the sensor112is to be determined, the system100can identify a distortion term that corresponds to a pose of the sensor112and use the distortion term to correct the distorted pose sensor outputs. For example, the system100first produces a sample of a clean pose output (Sclean0) at an initial sampled location in the tracking environment106. The clean pose output Sclean0can be determined as described above using an optical system and/or a low-frequency operating mode. The system100then correlates the initial clean pose output Sclean0to a particular location (e.g., a nearest location) in the environmental distortion map (e.g., within a tolerance) to select a matching initial distortion term Sdist0. When the sensor112is subsequently positioned at a new pose, a distorted pose sensor output Srecimeasurement is made. Using, e.g., Equation 3, a nominal distortion at the current pose is calculated. Then, using, e.g., Equation 4, the clean pose output of the sensor112at the current pose (Scleani) is calculated. The clean pose output (Scleani) can then be correlated to the particular location in the environmental distortion map (e.g., within a tolerance) to select the next matching distortion term in the global reference frame, and the process repeats to determine the pose of the sensor112at a subsequent position. In some implementations (e.g., if the tracking volume is sufficiently mapped), the clean pose output of the sensor112at the current pose can be calculated using a distortion term that corresponds to the current pose. In other words, it may not be necessary to use the initial distortion term Sdist0to calculate the distortion term that corresponds to the current pose Sdistiusing Equation 3, but rather, the clean pose output (Scleani) can be calculated directly using the distortion term at the current pose Sdistias obtained from the mapping. In some implementations, the various distortion terms (e.g., “initial” distortion terms obtained while the transmitter112and sensor114have stopped moving, as well as other distortion terms calculated based on “initial” distortion terms) and/or the distortion maps described above can be stored by the one or more computer system and/or by a database (e.g., a remote database) in communication with the one or more computer systems. In some implementations, the various distortion terms can together be used to build a distortion map of a particular tracking environment (e.g., the tracking environment106ofFIGS. 1-3). Distortion terms obtained for particular P&O of the sensor112and a particular P&O of the transmitter114can provide a data point for building the map. Stored distortion terms that correspond to particular P&O of the sensor112and transmitter114can be useful if, at a later time, the sensor112and transmitter114subsequently return to the previously-determined P&O. For example, the stored distortion term for a particular P&O of the sensor112and transmitter114can again be used when the sensor112and transmitter114return to the same or similar P&O. Such distortion terms can be re-used when the characteristics of the tracking environment106have not changed over time. In some implementations (e.g., when the EMT sensor100is moved to a new location, and/or when conductive objects are added/removed from the tracking environment106or from areas proximate to the tracking environment106), the tracking environment106may be re-mapped to correspond to new distorters that may be present at or near the new tracking environment106. In some implementation, the distortion terms may be used to create a numerical model of distortions in the tracking environment106in order to infer distortion terms that correspond to non-sampled P&O of the sensor112and transmitter114. For example, an initial distortion map may be created based on an initial set of distortion terms obtained for the tracking environment106. Based on the sampled distortion terms, other distortion terms may be inferred for positions and orientations within the tracking environment106that were not specifically sampled (e.g., positions and orientations near sampled positions and orientations). Additional distortion terms can be added to the distortion map to improve its reliability. As the additional distortion terms are added, the numerical model of distortions in the tracking environment106can be updated to reflect the additional data points that are available. Over time, the numerical model can be improved such that the EMT system100can provide P&O information for the sensor112having improved accuracy. In some implementations, an accurate P&O of the sensor112may be provided without necessarily obtaining a new initial distortion term (e.g., when the sensor112and transmitter114temporarily cease movement). For example, a stored distortion term may be used to correct the P&O of the sensor112on-the-fly based on the numerical model of the tracking environment106. FIG. 4is a flowchart of an exemplary process400of determining a distortion term and determining a second (e.g., correct) position of a magnetic sensor relative to a magnetic transmitter (e.g., the magnetic sensor112and the magnetic transmitter114of the EMT system100ofFIGS. 1-3). One or more steps of the method may be performed by the one or more computer systems described herein. At step402, a magnetic transmitter114generates a first plurality of magnetic fields at a first frequency. The first frequency may be a frequency at which the EMT system100is configured to operate under normal operating conditions (e.g., during typical use of the EMT system100and/or the AR and/or VR system). In some implementations, the first frequency may be used when the EMT system100is operating in a first/normal mode of operations. In some implementations, the first frequency is one that may be susceptible to inaccuracies due to potential distorters in the tracking environment106. For example, the first frequency is 30 KHz or more (e.g., 30 KHz). At step404, a first plurality of signals are received from the magnetic sensor112. The signals are based on characteristics of the magnetic fields received at the magnetic sensor112. While the magnetic fields received at the magnetic sensor112may be largely based on the first plurality of magnetic fields generated by the magnetic transmitter114at the first frequency, potential distorters in the tracking environment106may cause the first plurality of signals to provide an incorrect P&O of the magnetic sensor112relative to the magnetic transmitter114. The first plurality of signals can be represented as a first 3×3 S-matrix of data, Srec0. For example, Srec0is received while the magnetic sensor112and the magnetic transmitter114are at an initial reference frame0(e.g., S P&O0and T P&O0) and while the magnetic transmitter114generates the first plurality of magnetic fields at the first frequency. At step406, for example, with the magnetic sensor112and the magnetic transmitter114still at or close to the initial reference frame0, the magnetic transmitter114generates a second plurality of magnetic fields at a second frequency. The second frequency may be a frequency at which the EMT system100, AR, and/or VR systems are configured to operate under a specialized operating condition (e.g., while the magnetic sensor112and the magnetic transmitter114are stationary or almost stationary, for example, while a user of the EMT system100temporarily stops moving). In some implementations, the second frequency may be used when the EMT system100is operating in a second/undistorted mode of operation. In some implementations, the second frequency is one that is unsusceptible (or, e.g., significantly less susceptible than the first frequency) to inaccuracies due to potential distorters in the tracking environment106. For example, the second frequency may be a frequency of 1.1 KHz or less (e.g., 100 Hz). The second frequency is typically less than the first frequency (e.g., significantly less). For example, the first frequency may be two order of magnitude (or more) greater than the second frequency. At step408, a second plurality of signals are received from the magnetic sensor112. The signals are based on characteristics of the magnetic fields received at the magnetic sensor112. The magnetic fields received at the magnetic sensor112may be largely based on the second plurality of magnetic fields generated by the magnetic transmitter114at the second frequency. Any potential distorters in the tracking environment106may have a limited impact on the second plurality of magnetic fields generated using the second frequency. As such, potential distorters may not cause (or, e.g., may cause to a significantly lesser extent) the second plurality of magnetic fields generated at the second frequency to “bend” from their normal geometry (e.g., as compared to the first plurality of magnetic fields generated at the first frequency). Therefore, the second plurality of signals received from the magnetic sensor112may provide an accurate P&O of the magnetic sensor112relative to the magnetic transmitter114. The second plurality of signals can be represented as a second 3×3 S-matrix of data, Sclean0. For example, Sclean0is received while the magnetic sensor112and the magnetic transmitter114are still at the initial reference frame0(e.g., S P&O0and T P&O0) and while the magnetic transmitter114generates the second plurality of magnetic fields at the second frequency. Sclean0is referred to as a “clean” S-matrix because it is assumed to accurately correspond to “clean” (e.g., undistorted) magnetic fields received at the magnetic sensor112. In other words, Sclean0theoretically represents the signals that would be provided by the magnetic sensor112in an environment that does not include any distortions. As such, it is expected that Sclean0can be resolved into an accurate (e.g., true, correct, actual, etc.) P&O of the magnetic sensor112when the magnetic sensor112is at the initial reference frame0. In some implementations, Sclean0may be determined based on optical data provided by an optical system, as described above. For example, Sclean0can be determined using the low distortion tracker132, which may be implemented as an optical system with one or more cameras. Rather than operating the sensor112and transmitter114in a low-frequency operating mode to determine the clean pose of the sensor112, the optical system can be used to determine a clean, undistorted pose of the sensor112at the initial reference frame. The low distortion tracker132along with the sensor processing142and transmitter processing144can be used to represent the clean pose of the sensor112at the initial reference frame as a 3×3 matrix of data, as Sclean0. At step410, a distortion term is determined based on the first plurality of signals and the second plurality of signals received from the magnetic sensor112. The distortion term corresponds to a first position of the magnetic sensor112. For example, the distortion term corresponds to the initial reference frame0(e.g., while the magnetic sensor112and the magnetic transmitter114are at the first position and orientation corresponding to the initial reference frame S P&O0, T P&O0). In some implementations, the distortion term that corresponds to the initial reference frame0is determined at least in part by subtracting Sclean0from Srec0. In some implementations, when the OMDs122,124include IMUs, IMUs that correspond to the magnetic sensor112and the magnetic transmitter114may provide inertial data while the magnetic sensor112and the magnetic transmitter114are at the initial reference frame0. Such inertial data can be used to determine an orientation of the magnetic sensor112and the magnetic transmitter114at the initial reference frame0. In some implementations, the orientations as determined based on the inertial data may be taken as accurate orientation data (e.g., the true orientation of the magnetic sensor112and the magnetic transmitter114). The orientation data may be provided to the one or more computer systems (e.g., to the EM transmitter processing and/or the EM sensor processing and/or a separate computer system). In some implementations, the OMDs122,124may include an optical system that is used to determine the orientation of the sensor112and/or the transmitter114 In some implementation, data indicative of the orientation of the magnetic sensor112at the initial reference frame, Rs0, and data indicative of the orientation of the magnetic transmitter114at the initial reference frame, Rt0, is used to rotate the difference between Srec0and Sclean0into the initial reference frame0. In particular, the difference between Srec0and Sclean0are rotated into the initial reference frame0by multiplying the difference by Rs0and Rt0. Once the difference is rotated into the initial reference frame0(or, e.g., one the difference is confirmed to be in the initial reference frame0), the distortion term that corresponds to the initial reference frame0is given as Sdist0. In some implementation, the distortion term that corresponds to the initial reference frame, Sdist0, can be used to calculate a distortion term at a new reference frame (e.g., a second reference frame i). For example, the magnetic sensor112and/or the magnetic transmitter114may resume movement and move to a second position and second orientation that correspond to the second reference frame S P&Oi and T P&Oi, as illustrated inFIG. 3. The initial distortion term, Sdist0, can be rotated into the second reference frame i according to Equation (3) above. In particular, inertial data indicative of the orientation of the magnetic sensor112at the second reference frame, Rsi, and inertial data indicative of the orientation of the magnetic transmitter114at the second reference frame, Rti, can be multiplied by the initial distortion term, Sdist0, in order to rotate the initial distortion term, Sdist0, into the second reference frame i. The product of this multiplication is Sdisti, a distortion term that corresponds to the second frame i. At step412, the magnetic transmitter114generates a third plurality of magnetic fields at the first frequency (e.g., in the first mode of operation). The third plurality of magnetic fields may be generated by the magnetic transmitter114after the magnetic sensor112and/or the magnetic transmitter114have moved to the second reference frame i. For example, after the magnetic sensor112and/or the magnetic transmitter114move to the second position and second orientation that correspond to the second reference frame S P&Oiand T P&Oi, the third plurality of magnetic fields are generated. As described above, in some implementations, the first frequency is one that may be susceptible to inaccuracies due to potential distorters in the tracking environment106. At step414, a third plurality of signals are received from the magnetic sensor112. The signals are based on characteristics of the magnetic fields received at the magnetic sensor112. While the magnetic fields received at the magnetic sensor112may be largely based on the third plurality of magnetic fields generated by the magnetic transmitter114at the first frequency, potential distorters in the tracking environment106may cause the third plurality of signals to provide an incorrect P&O of the magnetic sensor112relative to the magnetic transmitter114. The third plurality of signals can be represented as a third 3×3 S-matrix of data, Sreci. For example, Sreciis received while the magnetic sensor112and the magnetic transmitter114are at the second reference frame i (e.g., S P&Oiand T P&Oi) and while the magnetic transmitter114generates the third plurality of magnetic fields at the first frequency. At step416, the second position and orientation of the magnetic sensor112relative to the magnetic transmitter114(e.g., at the second reference frame i) are determined based on the third plurality of signals received from the magnetic sensor112and the distortion term. For example, the second position and orientation of the magnetic sensor112relative to the magnetic transmitter114are determined based on the third 3×3 S-matrix of data (e.g., Sreci), and based on the distortion term at the second reference frame i, (e.g., Sdisti). In some implementations, determining the second position and orientation of the magnetic sensor112relative to the magnetic transmitter114at the second reference frame i includes determining an undistorted term, Scleani, which can be determined according to Equation (4) above. The undistorted term, Scleani, is an S-matrix that is representative of an accurate (e.g., true, correct, actual, etc.) P&O of the magnetic sensor112when the magnetic sensor112is at the second reference frame i (e.g., at S P&Oi and T P&Oi, which correspond to the second position and orientation of the magnetic sensor112and the second position and orientation of the magnetic transmitter114). In other words, the third 3×3 S-matrix of data, Sreci, may include distortions due to presence of one or more conductive or magnetic objects at or near the tracking environment106of the EMT system100, and if a P&O of the magnetic sensor112were calculated based on Sreci, the P&O may include inaccuracies in one or more dimensions. As such, the distortion term at the second reference frame, Sdisti, can be subtracted from Srecito produce a calculated S-matrix that can be resolved into an accurate P&O for the magnetic sensor112in the second reference frame (e.g., at the second P&O). In this way, the calculated second P&O of the magnetic sensor112does not include inaccuracies that would otherwise be caused by distortions in Srecidue to presence of one or more conductive or magnetic objects at or near the tracking environment106if the undistorted term, Scleani, were not considered. In some implementations, distortion terms for various poses within the tracking environment106can be determined ahead of time as part of a mapping procedure, as described in more detail above. The distortion terms can be used to calculate undistorted terms for the sensor output when the sensor112is subsequently positioned. As described above, the EMT system100can be operated using software executed by a computing device, such as one or more computer systems operating on the HMD102/sensor112and/or the controller104/transmitter114, and/or one or more separate computer system in communication with the sensor112and the transmitter114. In some implementations, the software is included on a computer-readable medium for execution on the one or more computer systems.FIG. 5shows an example computing device500and an example mobile computing device550, which can be used to implement the techniques described herein. For example, determining and/or adjusting distortion terms and determining the P&O of the sensor112may be executed and controlled by the computing device500and/or the mobile computing device550. Computing device500is intended to represent various forms of digital computers, including, e.g., laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other appropriate computers. Computing device550is intended to represent various forms of mobile devices, including, e.g., personal digital assistants, cellular telephones, smartphones, and other similar computing devices. The components shown here, their connections and relationships, and their functions, are meant to be examples only, and are not meant to limit implementations of the techniques described and/or claimed in this document. Computing device500includes processor502, memory504, storage device506, high-speed interface508connecting to memory504and high-speed expansion ports510, and low speed interface512connecting to low speed bus514and storage device506. Each of components502,504,506,508,510, and512, are interconnected using various busses, and can be mounted on a common motherboard or in other manners as appropriate. Processor502can process instructions for execution within computing device500, including instructions stored in memory504or on storage device506, to display graphical data for a GUI on an external input/output device, including, e.g., display516coupled to high-speed interface508. In some implementations, multiple processors and/or multiple buses can be used, as appropriate, along with multiple memories and types of memory. In addition, multiple computing devices500can be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, a multi-processor system, etc.). Memory504stores data within computing device500. In some implementations, memory504is a volatile memory unit or units. In some implementation, memory504is a non-volatile memory unit or units. Memory504also can be another form of computer-readable medium, including, e.g., a magnetic or optical disk. Storage device506is capable of providing mass storage for computing device500. In some implementations, storage device506can be or contain a computer-readable medium, including, e.g., a floppy disk device, a hard disk device, an optical disk device, a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. A computer program product can be tangibly embodied in a data carrier. The computer program product also can contain instructions that, when executed, perform one or more methods, including, e.g., those described above with respect to determining and/or adjusting distortion terms and determining the P&O of the sensor112. The data carrier is a computer- or machine-readable medium, including, e.g., memory504, storage device506, memory on processor502, and the like. High-speed controller508manages bandwidth-intensive operations for computing device500, while low speed controller512manages lower bandwidth-intensive operations. Such allocation of functions is an example only. In some implementations, high-speed controller508is coupled to memory504, display516(e.g., through a graphics processor or accelerator), and to high-speed expansion ports510, which can accept various expansion cards (not shown). In some implementations, the low-speed controller512is coupled to storage device506and low-speed expansion port514. The low-speed expansion port, which can include various communication ports (e.g., USB, Bluetooth®, Ethernet, wireless Ethernet), can be coupled to one or more input/output devices, including, e.g., a keyboard, a pointing device, a scanner, or a networking device including, e.g., a switch or router (e.g., through a network adapter). Computing device500can be implemented in a number of different forms, as shown inFIG. 5. For example, the computing device500can be implemented as standard server520, or multiple times in a group of such servers. The computing device500can also can be implemented as part of rack server system524. In addition or as an alternative, the computing device500can be implemented in a personal computer (e.g., laptop computer522). In some examples, components from computing device500can be combined with other components in a mobile device (e.g., the mobile computing device550). Each of such devices can contain one or more of computing device500,550, and an entire system can be made up of multiple computing devices500,550communicating with each other. Computing device550includes processor552, memory564, and an input/output device including, e.g., display554, communication interface566, and transceiver568, among other components. Device550also can be provided with a storage device, including, e.g., a microdrive or other device, to provide additional storage. Components550,552,564,554,566, and568, may each be interconnected using various buses, and several of the components can be mounted on a common motherboard or in other manners as appropriate. Processor552can execute instructions within computing device550, including instructions stored in memory564. The processor552can be implemented as a chipset of chips that include separate and multiple analog and digital processors. The processor552can provide, for example, for the coordination of the other components of device550, including, e.g., control of user interfaces, applications run by device550, and wireless communication by device550. Processor552can communicate with a user through control interface558and display interface556coupled to display554. Display554can be, for example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED (Organic Light Emitting Diode) display, or other appropriate display technology. Display interface556can comprise appropriate circuitry for driving display554to present graphical and other data to a user. Control interface558can receive commands from a user and convert them for submission to processor552. In addition, external interface562can communicate with processor542, so as to enable near area communication of device550with other devices. External interface562can provide, for example, for wired communication in some implementations, or for wireless communication in some implementations. Multiple interfaces also can be used. Memory564stores data within computing device550. Memory564can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units. Expansion memory574also can be provided and connected to device550through expansion interface572, which can include, for example, a SIMM (Single In Line Memory Module) card interface. Such expansion memory574can provide extra storage space for device550, and/or may store applications or other data for device550. Specifically, expansion memory574can also include instructions to carry out or supplement the processes described above and can include secure data. Thus, for example, expansion memory574can be provided as a security module for device550and can be programmed with instructions that permit secure use of device550. In addition, secure applications can be provided through the SIMM cards, along with additional data, including, e.g., placing identifying data on the SIMM card in a non-hackable manner. The memory564can include, for example, flash memory and/or NVRAM memory, as discussed below. In some implementations, a computer program product is tangibly embodied in a data carrier. The computer program product contains instructions that, when executed, perform one or more methods, including, e.g., those described above with respect to determining and/or adjusting distortion terms and determining the P&O of the sensor112. The data carrier is a computer- or machine-readable medium, including, e.g., memory564, expansion memory574, and/or memory on processor552, which can be received, for example, over transceiver568or external interface562. Device550can communicate wirelessly through communication interface566, which can include digital signal processing circuitry where necessary. Communication interface566can provide for communications under various modes or protocols, including, e.g., GSM voice calls, SMS, EMS, or MMS messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication can occur, for example, through radio-frequency transceiver568. In addition, short-range communication can occur, including, e.g., using a Bluetooth®, WiFi, or other such transceiver (not shown). In addition, GPS (Global Positioning System) receiver module570can provide additional navigation- and location-related wireless data to device550, which can be used as appropriate by applications running on device550. Device550also can communicate audibly using audio codec560, which can receive spoken data from a user and convert it to usable digital data. Audio codec560can likewise generate audible sound for a user, including, e.g., through a speaker, e.g., in a handset of device550. Such sound can include sound from voice telephone calls, recorded sound (e.g., voice messages, music files, and the like) and also sound generated by applications operating on device550. Computing device550can be implemented in a number of different forms, as shown inFIG. 5. For example, the computing device550can be implemented as cellular telephone580. The computing device550also can be implemented as part of smartphone582, personal digital assistant, or other similar mobile device. Various implementations of the systems and techniques described here can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include one or more computer programs that are executable and/or interpretable on a programmable system. This includes at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The systems and techniques described here can be implemented in a computing system that includes a backend component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a frontend component (e.g., a client computer having a user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described here), or a combination of such backend, middleware, or frontend components. The components of the system can be interconnected by a form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network (LAN), a wide area network (WAN), and the Internet. In some implementations, the components described herein can be separated, combined or incorporated into a single or combined component. The components depicted in the figures are not intended to limit the systems described herein to the software architectures shown in the figures. A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims.
i 2000040 La présente invention concerne la fabrication de conducteurs isolés du genre dans lequel le conducteur est entouré par un tube d'-une matière isolante thermoplastique qui, sur la totalité ou sur la majeure partie de sa longueur, a une section trans— 5 rersale sensiblement plus grande que celle du conducteur mais qui est déformé localement soit d'une façon continue sur sa longueur soit par intervalles sur sa longueur jusqu*a ïui degré qui exerce une constriction sur le conducteurt ou sur chacun de plusieurs conducteurs, afin de maintenir une position désirée à l'intérieur 10 du tube, le diélectrique du conducteur étant constitué, de ce fait, normalement pour sa majeure partie par de l'air ou un autre gaz à l'intérieur du tube, ou bien à des endroits où le tube est resserré localement, par de l'air ou un gaz entre la paroi étranglée du tube et un recouvrement extérieur reliant les cons-15 trictions. De tels conducteurs isolés seront appelés ici par la suite des nconducteurs isolés à tube étranglé"* Des conducteurs isolés de ce genre et/ou des procédés pour les fabriquer sont décrits, par exemple dans les brevets britanniques n« 430.581, 492.071, 502.092 et 722.591. 20 La présente invention a pour objet un procédé et un appareil pour fabriquer un conducteur isolé à tube étranglé, d'une façon plus rapide et moins onéreuse qu'on ne peut le faire par les procédés existants et par l'utilisation d'appareils existants. Dans la fabrication d'aï conducteur isolé à tube étranglé, 25 conformément à la présente invention, un tube à section transversale surdimensionnée en matière isolante thermoplastique enfermant un ou plusieurs conducteurs est, lorsque la paroi du tube se trouve dans tin état momentanément ramolli par de la chaleur, localement déformé par un jet ou des jets d'un fluide 30 dirigé à l'endroit ou aux endroits où la constriction ou étranglement est nécessaire. On forme normalement le tube par extrusion autour du conducteur» „ * Afin d'assurer la localisation désirée de l'étranglement ou 35 constriction, il est nécessaire de localiser les effets du jet de fluide dirigé à l'endroit du tube. On peut obtenir ce résultat jusqu'à un certain degré en profilant de façon appropriée l'aju*-tage qui émet le jet. Toutefois, la demanderesse préfère également localiser l'étranglement en interposant entre la paroi du 69 00045 2 2000040 tube et l'ajutage ouochç.gue .ajutage un écran ou des écrans percés et diriger le jet/â î'endroit du tube à travers une ouverture ou des ouvertures ménagées dans l'écran ou les écrans. Un tel écran est de préférence disposé près de la paroi du tube» 5 La forme de l'ouverture, ou de chaque ouverture, ainsi que la forme et la nature du jet ou de chaque jet, dépendent de la forme de constriction requise. L'écran peut être constitué par un manchon entourant étroitement le tube et à travers lequel le tube et le conducteur qui y est contenu sont tirés alors que le 10 tube se trouve dans un état momentanément ramolli par de la chaleur. Sans le cas où il est nécessaire d'étrangler le tube à des intervalles fréquents sur sa longueur de manière à transformer le tube en une série de renflements reliés entre eux et entourant un seul conducteur, ce manchon comportera dans sa paroi une fente 15 s'étendant circonférenciellement, à laquelle un jet de fluide est dirigé à des intervalles de temps qui dépendent de l'espacement longitudinal des étranglements qu'on désire obtenir. La longueur circonférencielle de la fente peut varier j elle peut par exemple s'étendre sur un arc correspondant par exemple à un angle 20 compris entre 90° et 150°, et être associée à une ouverture similaire ménagée sur le côté diamétralement opposé du tube, de manière que le tube s'étrangle à un degré qui permet de faire porter des côtés diamétralement opposés du conducteur. De telles ouvertures peuvent être associées à une seconde paire d'ouvertures 25 décalées longitudinalement, par exemple ayant une longueur d'un pas des étranglements nécessaires et décalées de 90° circonféren-ciellement à partir de la première paire d'ouvertures, à laquelle des jets de fluide sont dirigés simultanément avec le fonctionnement des jets dirigés à la première paire. Au lieu çjue ces paires 30 d'ouverture soient espacées longitudinalement d'une longueur d'un pas des étranglements nécessaires, on peut les espacer longitudinalement de n'importe quelle distance appropriée et diriger les jets sur ces ouvertures à des moments appropriés. Dans une variante, l'écran tubulaire peut être divisé en deux tronçons plus,courts 35 qui sont longitudinalement espacés l'un de l'autre, de manière & constituer une ouverture s'étendant circonférenciellement sur 360®. Les jets de fluide dirigés sur les ouvertures peuvent être également dirigés de manière à tomber sur la surface entière 69 00045 3 2000040 du tube thermoplastique découvert par les ouvertures, ou bien on peut les concevoir de manière à leur faire balayer les zones découvertes par les ouvertures. Dans ce dernier, cas, il peut être désirable que les ouvertures ou chaque ouverture aient une. forme 5 hélicoïdale et que l'allure du balayage soit telle que le jet ou chaque jet ait, après être passé à travers les ouvertures, une composante longitudinale de vitesse égale à la vitesse d'avance du tube* Lorsqu'un jet annulaire est nécessaire, on peut utiliser un ajutage annulaire constitué par une fente circonférencielle 10 complète pratiquée dans la paroi intérieure d'une chambre annulaire sous pression* Dans le cas où l'action d'un seul jet de fluide ne suffit pas pour créer le degré de constriction nécessaire à une zone donnée, on peut faire agir sur cette zone un autre jet ou d'autres jets* 15 Chacun de ces jets peut fonctionner à travers une autre ouverture espacée longitudinalement de l'ouverture précédente, et on peut les projeter à temps de manière à les faire tomber sur la zone où sont tombés le jet ou les jets précédents de la série de jets* Dans le cas où il est nécessaire d'obtenir une ligne héli-20 eoldale de constriction dans la paroi d'un tube thermoplastique, le manchon formant écran percé et le jet tombant sur la partie du tube qui est découverte par l'ouverture peuvent tourner à l'unisson autour du tube à une vitesse telle que l'étranglement hélicoïdal formé fjLans la paroi du tube ait le pas désiré. Ici encore, 25 l'étranglement peut être effectué en deux ou plus de deux opérations en utilisant deux ou plus de deux ouvertures espacées les unes des autres à la fois dans le sens axial et dans une direction angulaire. Dans le cas où un ou plusieurs étranglements longitudinaux 30 du tube thermoplastique sont nécessaires, on peut pratiquer dans le manchon formant écran une ou plusieurs ouvertures longitudinales à travers chacune desquelles un ou plusieurs jets du fluide sont dirigés à l'endroit de la zone découverte de la paroi du tube thermoplastique. Dans ce cas, le jet ou les jets fonctionnent 35 de préférence en continu, pendant que le tube thermophastique est en mouvement. L'écran tubulaire à travers lequel passe le tube thermoplas— tique peut être constitué par n'importe quelle matière appropriée* Actuellement, la demanderesse préfère utiliser du polytétrafluo-40 réthylène, en raison de son point de ramollissement relativement 69 00045 4 2000040 élevé et de son faible coefficient de friction avec la plupart des matières isolantes thermoplastiqueso Pour éviter au minimum le risque que la surface extérieure du tube thermoplastique à étrangler durcisse prématurément du fait de son contact avec l'écran 5 tubulaire avant d'atteindre l'ouverture ou les ouvertures de ce dernier, la demanderesse peut chauffer l'écran tubulaire ou au moins une partie de ce dernier entre l'extrémité à laquelle le tube thermoplastique pénètre et l'ouverture ou les ouvertures, et cela au moyen d'un dispositif de chauffage par résistance enroulé fO autour de la paroi de l'écran ou noyé dans cette paroi. De plus, en vue d'empêcher un refroidissement prématuré du tube thermoplastique devant être étranglé, la demanderesse peut utiliser un fluide chaud ou même très chaud au lieu d'un fluide qui se trouve à la température ambiante ou en dessous de cette dernière. 15 Actuellement, la demanderesse préfère de l'air chaud envoyé à l'ajutage ou aux ajutages à une pression comprise entre 3,5 et 4,2 kg/cm2, en excès de la pression régnant dans le tube. A ce sujet, il faut se rappeler qu'il est généralement nécessaire, quand on extrude un tube de matière therraoplastique, de maintenir 20 à l'intérieur de ce dernier une pression interne supérieure à la pression atmosphérique ou une autre pression extérieure, jusqu'à ce que le tube extrudé se soit refroidi à un degré tel qu'il soit capable de résister à un aplatissement sous l'effet de la pression externe à laquelle il est soumis. Par exemple, dans le cas d'un 25 tube de polythène, d'un diamètre extérieur d'environ 6,35 mm et d'une épaisseur de paroi de 0,38 mm, la pression manométrique du fluide interne peut être comprise entre 0,7 et 1,4 kg/cm2 et celle du fluide envoyé aux jets peut être comprise entre 4,2 et 5,6 kg/cm2« 30 La demanderesse préfère utiliser des jets d'un fluide gazeux au lieu de jets d'un liquide pour obtenir l'étranglement* En général, des jets d'air comprimé donnent satisfaction. D'une façon générale, il est de plus économique d'effectuer l'étranglement requis dans le tube thermoplastique à mesure que ce dernier 35 est débité de l'extrudeuse qui le produit. Autrement dit, l'opération de constriction sera effectuée à un certain point entre l'orifice d'extrusion et le bain d^'eaà. ou autre agent de refroidissement dans lequel passe le tube extrudé avant de parvenir à un dispositif d'envidage. Toutefois, lorsque c'est nécessaire, un 40 tube de matière isolante thermoplastique devant être étranglé 69.00045 5 2000040 autour d'un conducteur ou de conducteurs peut être réchauffé avant qu'on essaye de procéder à des étranglements» Le réchauffage peut être limité aux régions des constrictions ou bien il peut être général* Dans le premier cas, si la paroi du tube est 5 assez mince, un jet ou des jets de fluide suffisamment chauds peuvent être dirigés aux endroits où le tube doit être étranglé, et ce jet ou ces jets peuvent jouer le double rôle de ramollir la paroi du tube et de former l'étranglement ou les étranglements. Dans mie variante, un jet ou des jets de fluide très chauds 10 peuvent précéder le jet ou les jets qui effectuent l'étranglement. Lorsque l'on effectue les étranglements locaux dans un tube réchauffé contenant un seul conducteur, il faut prendre généralement des précautions spéciales pour que le degré d'étranglement dans les diverses directions radiales soit tel que le conducteur 15 soit bien centré à l'intérieur du tube# Afin qufon puisse comprendre plus complètement l'invention on va en pousser la description, à titre illustratif et non limitatif en se référant au dessin annexé, sur lequel : les fig. 1 et 2 représentent deux genres d'un appareil con-20 forme à l'invention pour la production de conducteurs uniques isolés à tube étranglé, conducteurs du genre dans lequel le tube est étranglé à des intervalles fréquents sur sa longueur de manière k comporter une série de renflements reliés entre eux entourant le conducteur j 25 la fig. 3 représente l'appareil conforme à la présente in vention et servant à la production de conducteurs uniques isolés à tube étranglé, conducteurs du genre comportant un étranglement hélicoïdal continu. L'appareil de la figo 1 est constitué essentiellement par 30 une extrudeuse 1 servant à extruder un tube surdimensionné 2 • autour d'un conducteur 3, par deux ajutages 4 et par des dispositifs comprenant un obturateur variable 5 servant à envoyer de l'air comprimé aux ajutages à des intervalles, de façon à créer des jets qui tombent sur le tube 2 alors qu'il est encore très 35 chaud, pour y créer des étranglements 6 espacés longitudinalement. L'obturateur variable 5 est normalement actionné à des intervalles qui sont inversement proportionnel*- à la vitesse à laquelle le tube 2:aaerge de 1 »extrudeuse, grâce à. quoi les étranglements 6 seront uniformément espacés, mais dans une variante on peut faire 40rarier l'espacement, de préférence sans ordre préconçu, entre 69 00045 6 2000040 des limites prédéterminées* Une fois que ldte étranglements requis ont été formés, on refroidit brusquement le produit par immersion dans de l'eau 7 de la manière habituelle. 5 L'appareil représenté sur la fig. 2 diffère de celui qui est représenté sur la fig. 1 en ce que les ajutages fixes alimentés par intermittences 4 sont remplacés par des ajutages 8 alimentés en continu et qu'un écran tubulaire 9 comporte des ouvertures circonférencielles 10. 10 On obtient une déformation intermittente grâce à un mouvement oscillant entre les ajutages 8 et l'écran 9 dans une direction parallèle à l'axe du conducteur. Selon l'agencement d'alimentation en air comprimé qu'on a adopté, il peut être plus commode de faire osciller les ajutages alors que l'écran reste fixe, ou vice Tersa* 15 Dans l'appareil représenté sur la figo 3, l'ajutage 11 est supporté sur un rotor 12 entraîné à une vitesse proportionnelle à la vitesse d'avance du tube 2, et il est continuellement alimenté en air comprimé par l'intermédiaire d'une chambre annulaire 13 formée entre les parties fixes et rotatives des roulements 14 qui 20 supportent le rotor, les déplacements du tube et du rotor se combinant pour créer un étranglement hélicoïdal continu 15* Il y a lieu de noter que l'invention est applicable non seulement à la fabrication de câbles à conducteurs coaxiaux mais également à la fabrication de paires ou de quartes, en pratiquant des étrangle-25 ments sur un tube isolant d'une matière thermoplastique en continu ou par intermittence, de manière à diviser ce dernier, le long de toute sa longueur ou par intervalles, en deux ou quatre compartiments contenant chacun un conducteur* Les parois des compartiments ainsi formées peuvent chacune s'étendre dans un plan coïncidant 30 avec l'axe du tube étranglé ou bien elles peuvent chacune s'étendre de façon hélicoïdale de manière à constituer une paire torsadée ou une quarte torsadée* Le procédé de fabrication du conducteur isolé à tube étranglé conformément à la présente invention présente l'avantage^ par rapport 35 à des procédés utilisés couramment, qu'il est capable de vitesses de production plus élevées et qu'il supprime la nécessité de courroies de moulage sans fin coûteuses et qui nécessitent d'être remplacées à des intervalles assez rapprochés-. Il a également l'avantage de permettre la possibilité de former un réseau cyclique 69 00045 r 2G0Û040 superposé d'étranglements aboutissant à une suppression facile d'une irrégularité d'impédance en déclenchant sans ordre prédéterminé la sortie du fluide des jets, ou le commencement du balayage des jets. 69 00045 2000040 REVENDICATIONS r 1°.- Procédé pd%r fabriquer uii conducteur isolé comprenant un tube étranglé et comportant un ou plusieurs conducteurs qui sont enfermés dans un tube surdimensionné d'une matière isolante thermo-5 plastique et, lorsque la paroi du tube se trouve dans un état momentanément ramolli par la chaleur qui le déforme localement, procédé caractérisé par le fait que la paroi du tube est déformée par un jet ou des jets d'un fluide dirigé à l'endroit ou aux endroits où l'étranglement est nécessaire,, 14 2°0- Procédé suivant la revendication 1, caractérisé par le fait que le tube surdimensionné de matière isolante thermoplastique est extrudé autour du conducteur ou des conducteurs, 3°.- Procédé suivant la revendication 1 ou 2, caractérisé en ce que le jet ou les jets de fluide est ou sont dirigés à l'endroit t5 ou aux endroits où l'étranglement est nécessaire, à travers une ouverture ou des ouvertures d'un écran ou d'écrans percés interposés entre la paroi du tube et l'ajutage ou les ajutages à partir duquel ou desquels le jet ou les jets sont émis. 4°.- Procédé suivant la revendication 3, caractérisé en ce 20 qu'il consiste à faire balayer le jet ou les jets sur la région ou les régions découvertes par l'ouverture ou les ouvertures. 5°»- Procédé suivant la revendication 4, caractérisé en ce que l'écran ou chaque écran est un manchon entourant étroitement le tube et comportant une ouverture hélicoïdale, la vitesse de 35 balayage étant telle que le jet ou chaque jet possèdent, après être passés à travers l'ouverture, une composante longitudinale de vitesse égale à la vitesse d'avance du tube. 6°.- Procédé suivant la revendication 3, caractérisé en ce qu'il consiste à faire tourner l'écran, et le jet ou chaque jet 30 à l'unisson autour du tube pour créer une ligne hélicoïdale d* étranglement. 7°.- Procédé suivant la revendication 3 ou la revendication 6, caractérisé en ce que le jet ou chaque jet est continuellement dirigé sur la paroi du tube. 35 8®.— Procédé suivant n'importe laquelle des revendications précédentes, caractérisé en ce qu'il consiste à chauffer le fluide envoyé au jet. 9®.- Procédé suivant n'importe laquelle des revendications précédentes, caractérisé en ce qu'il consiste à diriger deux on 69 00015 2000040 ou plus de deux jets successivement sur la même région où un étranglement est nécessaire» 10°.— Appareil pour fabriquer un conducteur isolé à tube étranglé par le procédé revendiqué dans la revendication 1, 5 comportant un dispositif pour constituer un tube surdimensionné,. une matière isolante enfermant un ou plusieurs conducteurs, et un dispositif pour déformer le tube localement à un endroit ou à des endroits où il est dans un état temporairement déformé par de la chaleur, appareil caractérisé en ce que le dispositif précité pour ■JO déformer le tube est constitué par un ou plusieurs ajutages servant à diriger un jet de fluide sur la paroi du tube, et un dispositif pour envoyer du fluide à l'ajutage ou aux ajutages» 11°.- Appareil suivant la revendication 10, caractérisé en ce que le dispositif servant à constituer un tube surdimensionné de 15 matière isolante enfermant le conducteur ou les conducteurs est une extrudeuse» 12*»- Appareil suivant la revendication 10 ou la revendication 11, caractérisé en ce qu'il comprend un écran ou des écrans percés pour localiser l'effet du jet ou de chaque jet de fluide, 20 13°.- Appareil suivant la revendication 12, caractérisé en ce que l'écran ou chaque écran est constitué par un écran percé entourant étroitement le tube. 14e.- Appareil suivant la revendication 13, caractérisé en ce que le manchon ou chaque manchon comporte au moins une ouverture 25 sous forme d'une fente s'étendant circonférenciellemeht. 15°»- Appareil suivant la revendication 14, caractérisé en ce que le manchon ou chaque manchon comporte au moins deux ouvertures sous forme de fentes s'étendant circonférenciellement sur un arc correspondant à un angle compris entre 90 et 150° et situées 30 diamétralement en opposition les unes par rapport aux autres. 16°.— Appareil suivant la revendication 14, caractérisé en ce que le manchon ou chaque manchon est divisé en deux tronçons longitudinalement espacés de manière à former une ouverture s'étendant circonférenciellement sur 360°. 35 17°»- Appareil suivant n'importe laquelle des revendications 14 k 16, caractérisé en ce qu'il comporte un dispositif pour faire balayer le jet ou les jets sur la région ou les régions découvertes par l'ouverture ou les ouvertures» 69 00045 ,0 200004Û « 18°.- Appareil suivant la revendication 13, caractérisé en ce que 1*ouverture au chaque ouverture de l'écran est hélicoïdale, et que cet appareil comporte un dispositif pour faire balayer un jet ou des jets sur l'ouverture ou chaque ouverture à une vitesse 5 telle que le jet ou chaque jet possède, après avoir traversé l'ouverture, une composante longitudinale de vitesse égale à la vitesse d'avance du tube. 19°.- Appareil suivant la revendication 13, caractérisé en ce qu'il comprend un dispositif pour faire tourner l'écran et le 10 jet ou chaque jet à l'unisson autour du tube0 20°.- Conducteur isolé à tube étranglé, caractérisé en ce qu'il a été obtenu par le procédé ou l'appareil suivant n'importe laquelle des revendications précédentes.
Projection lens system and image projection device A projection lens system projects an image of a reduction side into a magnification side in an image projection device, a back glass being disposed on the reduction side. In the projection lens system, all of one or more negative lenses that satisfy, in a surface on the reduction side or a surface on the magnification side, condition |h/H|<2.0 defined by height h of a most off-axis principal ray and height H of an axial ray passing through a highest pupil position satisfy conditions Tn≥98.5% and Dn/Db≤0.05 defined by transmittance Tn, thickness Dn of the negative lens on an optical axis, and total thickness Db of the back glass. TECHNICAL FIELD The present disclosure relates to a projection lens system that projects an image of a reduction side into a magnification side, and an image projection device including the projection lens system. BACKGROUND ART PTL 1 discloses an optical system for successfully correcting chromatic aberrations and reducing a shift in focus position due to a temperature change in an image projection device and an imaging device. In the optical system of PTL 1, at least two positive lenses in which the Abbe number, anomalous dispersion property, rate of change in refractive index with respect to temperature changes, and the like are set in appropriate ranges are disposed closer to the reduction side than a diaphragm. As a result, the shift in the focus position caused by the change in refractive index due to the temperature change can be reduced, while the axial chromatic aberration is successfully corrected by increasing the width of an axial light flux. PTL 1 describes that a lamp used as a light source is a cause of high temperature in the image projection device. CITATION LIST Patent Literature SUMMARY The present disclosure provides a projection lens system and an image projection device that can improve the image quality of an image when the brightness of the image projection device is increased. A projection lens system according to the present disclosure is a lens system that projects an image of a reduction side into a magnification side in an image projection device, a back glass being disposed on the reduction side. The projection lens system includes one or more negative lenses. Each of the one or more negative lenses has a surface on the reduction side and a surface on the magnification side. Each of the one or more negative lenses satisfies following condition (1) in the surface on the reduction side or the surface on the magnification side. All of the one or more negative lenses satisfy following conditions (2) and (3), |h/H|<2.0  (1) Tn≥98.5%  (2) Dn/Db≤0.05  (3) where h indicates a height of a most off-axis principal ray, H indicates a height of an axial ray passing through a highest pupil position, Tn indicates a transmittance of light having a wavelength of 460 nm when a lens material of the one or more negative lenses has a thickness of 10 mm, Dn indicates a thickness of the one or more negative lenses on an optical axis, and Db indicates a total thickness of the back glass. An image projection device according to the present disclosure includes the projection lens system described above and an image forming element. The image forming element forms an image. According to the projection lens system and the image projection device according to the present disclosure, it is possible to improve the image quality of an image when the brightness of the image projection device is increased. DESCRIPTION OF EMBODIMENTS Exemplary embodiments will be described below in detail with reference to the drawings as appropriate. Here, excessively detailed description will be omitted in some cases. For example, detailed description of already well-known matters and duplicated description of the substantially same configurations will be omitted in some cases. This is to prevent the following description from becoming unnecessarily redundant, thereby facilitating the understanding of those skilled in the art. Here, the applicant provides the accompanying drawings and the following description such that those skilled in the art can fully understand the present disclosure, and therefore, does not intend to limit the subject matters described in the claims by the accompanying drawings and the following description. First Exemplary Embodiment Hereinafter, a first exemplary embodiment of a projection lens system and an image projection device according to the present disclosure will be described with reference to the drawings. An outline of an image projection device including a projection lens system according to the first exemplary embodiment of the present disclosure will be described with reference toFIG.1.FIG.1is a block diagram illustrating image projection device1according to the present exemplary embodiment. Image projection device1according to the present exemplary embodiment is, for example, a high brightness projector having a light output of 20,000 lumens or more. In image projection device1, as illustrated inFIG.1, image light3showing various images2is generated by using image forming element11and the like, and image light3enters projection lens system PL. Projection lens system PL emits projection light35so as to magnify image2of entering image light3. Projection light35from projection lens system PL projects projection image20obtained by magnifying image2on external screen4or the like. In image projection device1as described above, it is required to increase brightness so as to project projection image20more brightly. In increasing the brightness of image projection device1, it is assumed that image quality of projection image20is degraded by following factors. That is, it is assumed in image projection device1that, when image light3having high brightness travels in projection lens system PL, a significant temperature change occurs in particular lens element Ln near diaphragm A or the like in projection lens system PL. The temperature change of lens element Ln changes a shape and a refractive index of lens element Ln, and thus may have various influences on performance of projection lens system PL, such as a shift in focus position, occurrence of spherical aberrations, and a variation in back focus. In addition, the heat distribution of lens element Ln due to image light3may occur either uniformly or locally. It is considered that an influence of heat, such as a shift direction of the focus position, in a uniform case is different from that in a local case. As described above, in increasing the brightness of image projection device1, it is assumed that the performance of projection lens system PL becomes unstable due to the influence of heat according to the brightness of image2to be projected, and the image quality of projection image is degraded. Consequently, in the present exemplary embodiment, projection lens system PL is configured so as to reduce the influence of heat due to image light3with high brightness. As a result, it is possible to reduce the influence of heat in increasing the brightness of image projection device1, stabilize the performance of projection lens system PL, and improve the image quality of projection image20. 2. About Image Projection Device A configuration of image projection device1according to the present exemplary embodiment will be described below with reference toFIG.1. As illustrated inFIG.1, image projection device1according to the present exemplary embodiment includes light source10, image forming element11, transmission optical system12, and projection lens system PL. Image projection device1is configured with, for example, a DLP system. The light output of image projection device1may be more than or equal to 30,000 lumens. Light source10is, for example, a laser light source. Light source10includes, for example, a blue LD (semiconductor laser) element and has a peak wavelength near 450 nm. Light source10emits white illumination light30by, for example, combining various colors. Illumination light30is irradiated to image forming element11via transmission optical system12with a uniform illuminance distribution. Light source10may include a Koehler illumination optical system. Image forming element11is, for example, a digital mirror device (DMD). Image forming element11has, for example, an image forming surface including a mirror element for each pixel, and forms image2on the image forming surface based on an external video signal or the like. Image forming element11spatially modulates illumination light30on the image forming surface to generate image light3. Image light3has directionality for each pixel on the image forming surface, for example. Image projection device1may include a plurality of image forming elements11such as three chips corresponding to RGB. Image forming element11is not limited to the DMD and may be, for example, a liquid crystal element. In this case, image projection device1may be configured with a 3LCD system or an LCOS system. Transmission optical system12includes a translucent optical element and the like, and is disposed between image forming element11and projection lens system PL. Transmission optical system12guides illumination light30from light source10to image forming element11. Further, transmission optical system12guides image light3from image forming element11to projection lens system PL. Transmission optical system12may include various optical elements such as a total internal reflection (TIR) prism, a color separation prism, a color combination prism, an optical filter, a parallel plate glass, a crystal low-pass filter, and an infrared cut filter. Hereinafter, the optical element in transmission optical system12is referred to as “back glass” in some cases. Projection lens system PL is mounted on image projection device1, for example, as a module. Hereinafter, in projection lens system PL, a side facing outside of image projection device1is referred to as a “magnification side”, and a side opposite to the magnification side is referred to as a “reduction side”. Various back glasses of transmission optical system12are disposed on the reduction side of projection lens system PL. Projection lens system PL includes a plurality of lens elements Ln and diaphragm A. A number of lens elements Ln is, for example, more than or equal to 15. This makes it possible to successfully correct various aberrations in projection lens system PL. Diaphragm A is, for example, an aperture diaphragm. In projection lens system PL, an aperture degree of diaphragm A is fixed in advance to, for example, an open state. Projection lens system PL may be incorporated in image projection device1without being modularized. Hereinafter, details of projection lens system PL according to the present exemplary embodiment will be described. 3. About Projection Lens System In the first exemplary embodiment, first to third examples in which projection lens system PL configuring a negative-lead zoom lens system will be described as a specific example. The negative-lead zoom lens system is a lens system that includes a plurality of lens groups that move during zooming and in which a lens group on a most magnification side has a negative power. 3-1. First Example Projection lens system PL1of the first example will be described with reference toFIGS.2to3. FIG.2is a lens arrangement diagram in various states of projection lens system PL1according to the first example. Following lens arrangement diagrams each illustrate an arrangement of various lenses when a whole system such as projection lens system PL1is focused at 4,000 mm. A left side in the figure is a magnification side or object side of the whole system. A right side in the figure is a reduction side or image side of the whole system. In each figure, a position of image plane S is illustrated on a rightmost side, that is, on the reduction side. Image plane S corresponds to the image forming surface of image forming element11. FIG.2(a)is a lens arrangement diagram at a wide-angle end of projection lens system PL1according to the first example.FIG.2(b)is a lens arrangement diagram at an intermediate position of projection lens system PL1according to the first example.FIG.2(c)is a lens arrangement diagram at a telephoto end of projection lens system PL1according to the first example. The wide-angle end means a shortest focal length state where the whole system has shortest focal length fw. The intermediate position means an intermediate focal length state between the wide-angle end and the telephoto end. The telephoto end means a longest focal length state where the whole system has longest focal length ft. Based on focal length fw at the wide-angle end and focal length ft at the telephoto end, a focal length at the intermediate position is defined as fm=√(fw×ft). Line arrows indicated betweenFIG.2(a)andFIG.2(b)are lines obtained by connecting positions of lens groups at the wide-angle end, the intermediate position, and the telephoto end in this order from a top of the figure. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by straight lines, which is different from an actual movement of each lens group. Symbols (+) and (−) attached to reference signs of the respective lens groups indicate positive and negative of the power of each lens group. Projection lens system PL1of the first example includes 18 lens elements L1to L18constituting three lens groups G1to G3. As illustrated inFIG.2(a), first, second, and third lens groups G1, G2, G3are arranged in order from the magnification side to the reduction side of projection lens system PL1. Projection lens system PL1functions as a zoom lens system by moving each of first to third lens groups G1to G3along an optical axis of projection lens system PL1during zooming. In projection lens system PL1, first to eighteenth lens elements L1to L18are arranged in order from the magnification side to the reduction side. Each of first to eighteenth lens elements L1to L18configures a positive lens or a negative lens. The positive lens has a biconvex shape or a positive meniscus shape and thus has a positive power. The negative lens has a biconcave shape or a negative meniscus shape and thus has a negative power. First lens group G1includes first to seventh lens elements L1to L7, and has a negative power. First lens element L1has a negative meniscus shape, and is arranged with its convex surface facing the magnification side. Second lens element L2has a biconvex shape. Third lens element L3has a positive meniscus shape, and is arranged with its convex surface facing the magnification side. Fourth lens element L4has a negative meniscus shape, and is arranged with its convex surface facing the magnification side. Fifth lens element L5has a negative meniscus shape, and is arranged with its convex surface facing the magnification side. Sixth lens element L6has a biconcave shape. Seventh lens element L7has a biconvex shape. Second lens group G2includes eighth to tenth lens elements L8to L10, and has a positive power. Eighth lens element L8has a positive meniscus shape, and is arranged with its convex surface facing the magnification side. Ninth lens element L9has a negative meniscus shape, and is arranged with its convex surface facing the magnification side. Tenth lens element L10has a biconvex shape. Third lens group G3includes eleventh to eighteenth lens elements L11to L18, and has a positive power. Diaphragm A is disposed on the magnification side of eleventh lens element L11. Eleventh lens element L11has a biconcave shape. Twelfth lens element L12has a biconvex shape. Thirteenth lens element L13has a positive meniscus shape, and is arranged with its convex surface facing the reduction side. Fourteenth lens element L14has a biconvex shape. Fifteenth lens element L15has a biconcave shape. Sixteenth lens element L16has a biconvex shape. Seventeenth lens element L17has a negative meniscus shape, and is arranged with its convex surface facing the reduction side. Eighteenth lens element L18has a biconvex shape. FIGS.2(a) to2(c)illustrate, as an example of transmission optical system12, three back glasses L19, L20, L21arranged between eighteenth lens element L18on the most reduction side in projection lens system PL1and image plane S. Back glasses L19to L21are, for example, various prisms, filters, cover glasses, and the like. In each figure, back glasses L19to L21for one image plane S corresponding to one image forming element11are illustrated for convenience of description. Projection lens system PL1can be used for various transmission optical systems12when a plurality of image forming elements11are used. Projection lens system PL1constitutes a substantially telecentric system on the reduction side to which light from image plane S enters through back glasses L19to L21. It is thus possible to reduce a color shift and the like due to a coating of a prism in transmission optical system12. Further, the light from image plane S of image forming element11can be efficiently taken into projection lens system PL1. FIG.3is an aberration diagram illustrating various longitudinal aberrations of projection lens system PL1according to the first example. The following aberration diagrams exemplify various longitudinal aberrations in a focused state at 4,000 mm. FIG.3(a)illustrates aberrations at the wide-angle end of projection lens system PL1according to the first example.FIG.3(b)illustrates aberrations at the intermediate position of projection lens system PL1according to the first example.FIG.3(c)illustrates aberrations at the telephoto end of projection lens system PL1according to the first example.FIGS.3(a),3(b),3(c)each include a spherical aberration diagram showing a spherical aberration on horizontal axis “SA (mm)”, an astigmatism diagram showing an astigmatism on horizontal axis “AST (mm)”, and a distortion aberration diagram showing a distortion aberration on horizontal axis “DIS (%)” in this order from the left side in the respective figures. In each spherical aberration diagram, vertical axis “F” represents an F number. Also, a solid line denoted by “d-line” in the figures indicates properties of a d-line. A broken line denoted by “F-line” indicates properties of an F-line. A broken line denoted by “C-line” indicates properties of a C-line. In the respective astigmatism diagrams and the respective distortion aberration diagrams, vertical axis “H” indicates an image height. In addition, a solid line denoted by “s” in the figures indicates properties of a sagittal plane. A broken line denoted by “m” indicates properties of a meridional plane. The aberrations in various states illustrated inFIGS.3(a),3(b),3(c)are based on a first numerical example in which projection lens system PL1of the first example is specifically implemented. The first numerical example of projection lens system PL1will be described later. 3-2. About Measures for Heat in Increasing Brightness Using projection lens system PL1of the first example described above, measures for heat of projection lens system PL1in increasing the brightness of image projection device1according to the present exemplary embodiment will be described with reference toFIGS.4to6.FIG.4is a table illustrating sufficiency of various conditions in projection lens system PL1according to the first example. The table illustrated inFIG.4shows which of all lens elements L1to L18in projection lens system PL1of the first example satisfies following conditions (1) to (8). The symbol “∘” in items for each lens indicates that the corresponding condition is satisfied, and the blank indicates that the corresponding condition is not satisfied. In addition, the symbol “/” indicates that the lens is not a target lens for determining the corresponding condition from the viewpoint of the power of the lens or the like. FIG.4also shows various parameters related to conditions (1) to (8). Various parameters include |h/H| to be described later, a lens transmittance, Dn/Db, vd, |fn/f|, and dn/dt. Regarding the power of the lens, the positive lens is denoted by “P”, and the negative lens is denoted by “N”. Further, lens materials of the lens elements L1to L18are also shown. In the present exemplary embodiment, all negative lenses that satisfy condition (1) in projection lens system PL1are configured to satisfy condition (2) and condition (3). Condition (1) is a condition for specifying a lens that is easily affected by heat of image light3in image projection device1and easily affects the performance of projection lens system PL1. Condition (1) is expressed by a following inequality. |h/H|<2.0  (1) Here, h indicates the height of a most off-axis principal ray on a surface on the magnification side or a surface on the reduction side of a lens that is a determination target. H indicates a maximum height of an axial ray on the same surface of the lens. It is considered that a lens having a value exceeding an upper limit value defined by the right side of the above inequality does not cause a concentration of rays to be described later and is less likely to be affected by heat. Whether condition (1) is satisfied or not is determined by whether a minimum value of |h/H| on the left side of the above inequality between the wide-angle end and the telephoto end of projection lens system PL1is smaller than the upper limit value. The heights h and H of rays for each lens in condition (1) will be described with reference toFIG.5. FIG.5is an optical path diagram illustrating an optical path of a ray in projection lens system PL1according to the first example.FIG.5illustrates a most off-axis principal ray31and an axial ray32passing through a highest pupil position in projection lens system PL1. Most off-axis principal ray31is emitted from a position farthest from optical axis5on image plane S and passes through a center position of diaphragm A. A light flux of the axial ray is emitted from the position of optical axis5on image plane S. In the light flux of the axial ray, axial ray32passing through the highest pupil position is defined by a ray passing through the pupil position, that is, the highest position of diaphragm A. The heights of various rays are based on optical axis5. FIG.5illustrates heights h, H of rays31,32in first lens element L1and ninth lens element L9in projection lens system PL1of the first example.FIG.5illustrates heights h, H using positions where respective rays31,32pass through physical surfaces of lens elements L1, L9. Heights h, H of rays31,32may be measured on a main surface on an optical magnification side or an optical reduction side of the lens. As illustrated inFIG.4, in the first example, first lens element L1does not satisfy condition (1), whereas ninth lens element L9satisfies condition (1). As illustrated inFIG.5, in first lens element L1, height h of most off-axis principal ray31is larger than height H of axial ray32. On the other hand, in ninth lens element L9, height h of most off-axis principal ray31is much smaller than height H of axial ray32. FIG.6illustrates an enlarged view of a vicinity of ninth lens element L9illustrated inFIG.5. In first lens element L1ofFIG.5, most off-axis principal ray31is separated from axial ray32. On the other hand, in ninth lens element L9, most off-axis principal ray31overlaps axial ray32near a center of ninth lens element L9, as illustrated inFIG.6. As described above, it is assumed in the lens satisfying condition (1) that rays of light emitted at various points on image plane S are concentrated near the center of the lens and thus a local temperature change is likely to occur. Consequently, according to the present exemplary embodiment, various conditions for reducing the influence of heat are imposed on a lens that satisfies condition (1) and is easily affected by heat, thus stabilizing the performance of projection lens system PL1. In particular, a negative lens is assumed to be affected by heat, for example, a focus position is sensitively shifted by the local temperature change. Following conditions (2) and (3) are thus imposed on all negative lenses that satisfy condition (1). Condition (2) is expressed by the following inequality. Tn≥98.5%  (2) Here, Tn indicates a transmittance at which light having a wavelength of 460 nm passes through a lens material of a negative lens having a thickness of 10 mm. The transmittance is, for example, an internal transmittance. In general, the lens material is more likely to absorb energy of light having a shorter wavelength, and a light source having a particularly strong peak intensity for blue light is usually used in an image projection device. A reference transmittance is thus set to the wavelength mentioned above. According to condition (2), it is possible to achieve high transmittance Tn of the negative lens and reduce energy absorbed by the negative lens when a ray passes through the negative lens. If transmittance Tn of the negative lens is less than a lower limit value of condition (2), that is, 98.5%, the energy absorbed by the negative lens becomes large, and the influence of heat is excessively exerted on the negative lens. Consequently, transmittance Tn of the negative lens is preferably more than or equal to 99%. Condition (3) is expressed by the following inequality. Dn/Db≤0.05  (3) Here, Dn indicates a thickness of a portion of the negative lens located on the optical axis. Db indicates a total thickness of various back glasses arranged on the reduction side of projection lens system PL1.FIG.5illustrates thickness Dn of ninth lens element L9and total thickness Db of back glasses L19, L20, L21in the first example. More specifically, total thickness Db is a sum of the thickness of back glass L19, the thickness of the back glass L20, and the thickness of back glass L21. According to condition (3), by making the negative lens thinner, absorption of energy by the negative lens when a rays pass through the negative lens can be reduced. If thickness Dn of the negative lens exceeds the upper limit value of condition (3), that is, 0.05×Db, the energy absorbed by the negative lens becomes large, and the influence of heat is excessively exerted on the negative lens. Thickness Dn of the negative lens is preferably less than or equal to 0.035×Db. Returning toFIG.4, in projection lens system PL1of the first example, sixth to eighteenth lens elements L6to L18satisfy condition (1). In the present exemplary embodiment, all the lenses on the reduction side of diaphragm A in projection lens system PL1may satisfy condition (1). As a result, a distance between diaphragm A and the lens on the reduction side can be reduced, and a total length of projection lens system PL1can also be reduced. In the first example, among sixth to eighteenth lens elements L6to L18satisfying condition (1), sixth lens element L6, ninth lens element L9, eleventh lens element L11, fifteenth lens L15, and seventeenth lens element L17are negative lenses. As illustrated inFIG.4, all the negative lenses satisfying condition (1) described above satisfy conditions (2) and (3). As a result, it is possible to reduce the influence of heat on the negative lens, which easily affects the performance of projection lens system PL1, thus stabilizing the performance of projection lens system PL1. In the present exemplary embodiment, all negative lenses satisfying condition (1) may further satisfy following condition (4). In projection lens system PL1of the first example, all the negative lenses satisfying condition (1) described above satisfy condition (4), as illustrated inFIG.4. Condition (4) is expressed by the following inequality. |fn/fw|>1.2  (4) Here, fn indicates a focal length of one negative lens. As described above, fw indicates the focal length at the wide-angle end of the whole system. According to condition (4), it is possible to achieve long focal length fn of the negative lens, thus reducing the influence of heat such as a shift in focus position. If the negative lens has a value less than the lower limit value of condition (4), the power of the negative lens or the like may sensitively vary depending on image2to be projected. By weakening the power of the negative lens specified by condition (1) according to condition (4), stability of the performance of projection lens system PL1can be improved. Moreover, in the present exemplary embodiment, at least one of all the negative lenses may satisfy condition (5). In projection lens system PL1of the first example, as illustrated inFIG.4, two lenses, that is, first lens element L1and seventeenth lens element L17satisfy condition (5). Condition (5) is expressed by the following inequality. vn<40  (5) Here, vn is the Abbe number of a lens material of the negative lens. For example, Abbe number vd based on the d line can be adopted as the Abbe number. In general, a lens material having a higher Abbe number tends to have a higher transmittance and is thermally advantageous. However, it is difficult to successfully correct the chromatic aberration of projection lens system PL1only with the negative lens having a value that exceeds the upper limit value of condition (5). By including a negative lens that satisfies condition (5) in projection lens system PL1, it is possible to successfully correct the chromatic aberration while achieving heat resistance when the brightness is increased. In particular, the chromatic aberration can be successfully corrected when a high zoom or a wide angle is achieved in projection lens system PL1. It is preferable that Abbe number vn of at least one negative lens is smaller than 36. Moreover, in the present exemplary embodiment, all the positive lenses satisfying condition (1) may satisfy following condition (6). As illustrated inFIG.4, in projection lens system PL1of the first example, the positive lenses satisfying condition (1) are seventh lens element L7, eighth lens element L8, tenth lens element L10, twelfth lens element L12, thirteenth lens element L13, fourteenth lens element L14, sixteenth lens element L16, and eighteenth lens element L18. In the first example, all the positive lenses satisfying condition (1) described above satisfy condition (6). Condition (6) is expressed by the following inequality. Tp>98.5%  (6) Here, Tp indicates the transmittance of light having a wavelength of 460 nm when a lens material of the positive lens has a thickness of 10 mm, like transmittance Tn of the negative lens. According to condition (6), it is possible to achieve high transmittance Tp also in the positive lens, thus further stabilizing the performance of projection lens system PL1. If transmittance Tp of the positive lens is less than the lower limit value of condition (6), the amount of energy absorbed becomes large, and thus the influence of heat is concerned. Transmittance Tp of the positive lens is preferably more than or equal to 99%. Moreover, in the present exemplary embodiment, at least four of the positive lenses satisfying condition (1) may satisfy following condition (7). In projection lens system PL1of the first example, as illustrated inFIG.4, five lens elements, that is, eighth lens element L8, tenth lens element L10, fourteenth lens element L14, sixteenth lens element L16, and eighteenth lens element L18satisfy condition (7). Condition (7) is expressed by the following inequality. dn/dt<−4.5×10−6(7) Here, dn/dt indicates a temperature coefficient of a relative refractive index of a lens material of the positive lens at room temperature. The room temperature ranges from 20° C. to 30° C., for example. In a positive lens having a negative temperature coefficient of the refractive index, the influence of a change in shape and the influence of a change in refractive index may be offset when the focus position is shifted due to a local temperature change. According to condition (7), the stability of the performance of projection lens system PL1can be improved, and the chromatic aberration can be successfully corrected. Moreover, in the present exemplary embodiment, at least one of the positive lenses satisfying condition (1) may satisfy following condition (8). In projection lens system PL1of the first example, as illustrated inFIG.4, two lenses, that is, twelfth lens element L12and thirteenth lens element L13satisfy condition (8). Condition (8) is expressed by the following inequality. vp<40  (8) Here, vp indicates the Abbe number of the lens material of the positive lens. If all the positive lenses satisfying condition (1) exceed the upper limit value of condition (8), it becomes difficult to successfully correct the chromatic aberration in projection lens system PL1. According to condition (8), it is possible to successfully correct the chromatic aberration especially in a case of a high zoom or a wide angle while achieving the heat resistance when the brightness is increased. Abbe number vp of at least one positive lens is preferably smaller than 36. 3-3. Second Example The measures for high brightness described above can be implemented not only in projection lens system PL1of the first example but also in any projection lens system. Projection lens system PL2of a second example will be described with reference toFIGS.7to9. FIG.7is a lens arrangement diagram in various states of projection lens system PL2according to the second example.FIGS.7(a),7(b),7(c)are lens arrangement diagrams at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL2, respectively, similarly toFIGS.2(a) to2(c). Projection lens system PL2of the second example includes 16 lens elements L1to L16. In projection lens system PL2, first to sixteenth lens elements L1to L16are arranged in order from the magnification side to the reduction side, as in the first example. Projection lens system PL2of the second example includes three lens groups G1to G3to constitute a zoom lens system, as in the first example.FIGS.7(a) to7(c)illustrate back glasses L17to L19as an example of transmission optical system12. In projection lens system PL2of the second example, first lens group G1includes first to sixth lens elements L1to L6, and has a negative power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a biconvex shape. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a negative meniscus shape, and its convex surface faces the magnification side. Fifth lens element L5has a biconcave shape. Sixth lens element L6has a biconvex shape. Second lens group G2includes seventh and eighth lens elements L7, L8, and has a positive power. Seventh lens element L7has a negative meniscus shape, and its convex surface faces the magnification side. Eighth lens element L8has a biconvex shape. Seventh lens element L7and eighth lens element L8are bonded to each other. Third lens group G3includes ninth to sixteenth lens elements L9to L16, and has a positive power. Diaphragm A is disposed on the magnification side of ninth lens element L9. Ninth lens element L9has a biconcave shape. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a biconvex shape. Twelfth lens element L12has a biconvex shape. Thirteenth lens element L13has a biconcave shape. Fourteenth lens element L14has a biconvex shape. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the reduction side. Sixteenth lens element L16has a biconvex shape. FIG.8is an aberration diagram illustrating longitudinal aberrations of projection lens system PL2according to the second example.FIGS.8(a),8(b),8(c)illustrate aberrations at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL2, respectively, similarly toFIGS.3(a) to3(c). The aberrations illustrated inFIGS.8(a) to8(c)are based on a second numerical example to be described later. FIG.9illustrates sufficiency of conditions (1) to (8) in projection lens system PL2according to the second example. The table illustrated inFIG.9shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L16in projection lens system PL2of the second example, as in the first example. Projection lens system PL2of the second embodiment can also improve the image quality of projection image20when the brightness of image projection device1is increased. 3-4. Third Example Projection lens system PL3of a third example will be described with reference toFIGS.10to12. FIG.10is a lens arrangement diagram in various states of projection lens system PL3according to the third example.FIGS.10(a),10(b),10(c)are lens arrangement diagrams at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL3, respectively, similarly toFIGS.2(a) to2(c). Projection lens system PL3of the third example includes 17 lens elements L1to L17. In projection lens system PL3, first to seventeenth lens elements L1to L17are arranged in order from the magnification side to the reduction side, as in the first example. Projection lens system PL3of the third example includes three lens groups G1to G3to constitute a zoom lens system, as in the first example.FIGS.10(a) to10(c)illustrate back glasses L18to L20as an example of transmission optical system12. In projection lens system PL3of the third example, first lens group G1includes first to sixth lens elements L1to L6, and has a negative power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a biconvex shape. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a biconcave shape. Fifth lens element L5has a biconcave shape. Sixth lens element L6has a biconvex shape. Second lens group G2includes seventh to ninth lens elements L7to L9, and has a positive power. Seventh lens element L7has a positive meniscus shape, and its convex surface faces the magnification side. Eighth lens element L8has a negative meniscus shape, and its convex surface faces the magnification side. Ninth lens element L9has a biconvex shape. Third lens group G3includes tenth to seventeenth lens elements L10to L17, and has a positive power. Diaphragm A is disposed on the magnification side of tenth lens element L10. Tenth lens element L10has a biconcave shape. Eleventh lens element L11has a biconvex shape. Twelfth lens element L12has a biconvex shape. Thirteenth lens element L13has a biconvex shape. Fourteenth lens element L14has a biconcave shape. Fifteenth lens element L15has a biconvex shape. Sixteenth lens element L16has a negative meniscus shape, and its convex surface faces the reduction side. Seventeenth lens element L17has a biconvex shape. FIG.11is an aberration diagram illustrating longitudinal aberrations of projection lens system PL3according to the third example.FIGS.11(a),11(b),11(c)illustrate aberrations at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL3, respectively, similarly toFIGS.3(a) to3(c). The aberrations illustrated inFIGS.11(a) to11(c)are based on a third numerical example to be described later. FIG.12illustrates sufficiency of conditions (1) to (8) in projection lens system PL3according to the third example. The table illustrated inFIG.12shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L17in projection lens system PL3of the third example, as in the first example. Projection lens system PL3of the third example can also improve the image quality of projection image20when the brightness of image projection device1is increased. 3-5. About First to Third Examples Projection lens systems PL1to PL3of the first to third examples described above can project image2on the reduction side in image projection device1to the magnification side as projection image20. Projection lens systems PL1to PL3constitute a zoom lens system including diaphragm A and a plurality of lens groups G1to G3. Lens group G1closest to the magnification side in lens groups G1to G3has a negative power. Negative-lead projection lens systems PL1to PL3satisfy following condition (9) in the present exemplary embodiment. Condition (9) is expressed by the following inequality. 2<fr/fw<4.5  (9) Here, fr indicates the focal length at the wide-angle end on the reduction side of diaphragm A. Condition (9) defines ratio fr/fw of focal length fr to focal length fw at the wide-angle end of the whole system. Specifically, fr/fw=3.34 is satisfied in projection lens system PL1of the first example. In projection lens system PL2of the second example, fr/fw=3.73 is satisfied. In projection lens system PL3of the third example, fr/fw=2.74 is satisfied. According to condition (9), the performance of projection lens systems PL1to PL3constituting the negative-lead type zoom lens system can be successfully achieved. If the ratio exceeds the upper limit value of condition (9), it becomes difficult to maintain telecentricity on the reduction side while keeping a long back focus. If the ratio is less than the lower limit value of condition (9), it becomes difficult to correct the aberration, and the image quality of projection image20projected on the magnification side may be degraded. Ratio fr/fw is preferably larger than 2.5 and less than 4.0. Second Exemplary Embodiment A second exemplary embodiment will be described below with reference to the drawings. While the first exemplary embodiment has described an example in which projection lens system PL constitutes a zoom lens system, projection lens system PL is not limited to the zoom lens system. The second exemplary embodiment will describe projection lens system PL configured to form an intermediate image therein. Hereinafter, description of configurations and operations similar to those of image projection device1and projection lens system PL according to the first exemplary embodiment will be appropriately omitted, and fourth to sixth examples will be described as examples of projection lens system PL according to the present exemplary embodiment. 1. Fourth Example Projection lens system PL4according to a fourth example of the present disclosure will be described with reference toFIGS.13to16. FIG.13is a lens arrangement diagram of projection lens system PL4according to the fourth example.FIG.14is an aberration diagram illustrating longitudinal aberrations of projection lens system PL4according to the fourth example. The aberration diagram of the present exemplary embodiment includes a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram in this order from the left side of the figure, as in the first exemplary embodiment. In the astigmatism diagram and the distortion aberration diagram according to the present exemplary embodiment, vertical axis “w” indicates a half angle of field. FIGS.13,14illustrate the arrangement of various lenses and various aberrations, respectively in a focused state where a projection distance of projection lens system PL4according to the fourth example is 4,000 mm. A fourth numerical example corresponding to projection lens system PL4of the fourth example will be described later. As illustrated inFIG.13, projection lens system PL4of the fourth example includes 22 lens elements L1to L22. In the present exemplary embodiment, first to twenty-second lens elements L1to L22in projection lens system PL4are arranged in order from the magnification side to the reduction side, as in the first exemplary embodiment. Further,FIG.13also illustrates back glasses L23to L25as an example of transmission optical system12. In the present exemplary embodiment, first to twenty-second lens elements L1to L22in projection lens system PL4constitute magnification optical system51and relay optical system52. Magnification optical system51is located closer to the magnification side than relay optical system52is. Magnification optical system51includes first to eleventh lens elements L1to L11, and has a positive power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a negative meniscus shape, and its convex surface faces the magnification side. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a positive meniscus shape and its convex surface faces the reduction side. Fifth lens element L5has a biconvex shape. Sixth lens element L6has a biconcave shape. Fifth lens element L5and sixth lens element L6are bonded to each other. Seventh lens element L7has a biconvex shape. Eighth lens element L8has a biconvex shape. Ninth lens element L9has a biconcave shape. Eighth lens element L8and ninth lens element L9are bonded to each other. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a positive meniscus shape, and its convex surface faces the magnification side. Relay optical system52includes twelfth to twenty-second lens elements L12to L22, and has a positive power. Twelfth lens element L12has a positive meniscus shape, and its convex surface faces the reduction side. Thirteenth lens element L13has a biconcave shape. Twelfth lens element L12and thirteenth lens element L13are bonded to each other. Fourteenth lens element L14has a positive meniscus shape, and its convex surface faces the reduction side. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the magnification side. Sixteenth lens element L16has a biconvex shape. Diaphragm A is disposed between sixteenth lens element L16and seventeenth lens element L17. Seventeenth lens element L17has a negative meniscus shape, and its convex surface faces the magnification side. Eighteenth lens element L18has a biconvex shape. Nineteenth lens element L19has a biconcave shape. Twentieth lens element L20has a biconvex shape. Nineteenth lens element L19and twentieth lens element L20are bonded to each other. Twenty-first lens element L21has a negative meniscus shape, and its convex surface faces the reduction side. Twenty-second lens element L22has a biconvex shape. FIG.15is an optical path diagram illustrating an optical path of a ray in projection lens system PL4according to the fourth example. In the present exemplary embodiment, projection lens system PL4includes intermediate imaging position MI between magnification optical system51and relay optical system52. Projection lens system PL4forms an image at intermediate imaging position MI that is conjugate with a reduction conjugate point on image plane S with relay optical system52on the reduction side interposed between intermediate imaging position MI and the reduction conjugate point. Further, imaging at intermediate imaging position MI of projection lens system PL4is performed such that intermediate imaging position MI is conjugate with a magnification conjugate point located at a projection position of screen4or the like with magnification optical system51on the magnification side interposed between intermediate imaging position MI and the magnification conjugate point. According to projection optical system PL4of the present exemplary embodiment, as illustrated inFIG.15, an angle between most off-axis principal ray31and axial ray32reaches near a right angle on the magnification side, and thus a wide angle of view of projection image20can be achieved. FIG.16illustrates sufficiency of conditions (1) to (8) in projection lens system PL4according to the fourth example. The table illustrated inFIG.16shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L22in projection lens system PL4of the fourth example, as in the first exemplary embodiment. Projection lens system PL4of the fourth example can also improve the image quality when the brightness is increased. 2. Fifth Example Projection lens system PL5of a fifth example will be described with reference toFIGS.17to20. FIG.17is a lens arrangement diagram of projection lens system PL5according to the fifth example.FIG.18is an aberration diagram illustrating longitudinal aberrations of projection lens system PL5.FIGS.17,18illustrate the arrangement of various lenses and various aberrations, respectively in a focused state where the projection distance of projection lens system PL5according to the fifth example is 4,000 mm. A fifth numerical example corresponding to projection lens system PL5of the fifth example will be described later. FIG.19illustrates an optical path of a ray in projection lens system PL5according to the fifth example. Projection lens system PL5of the fifth example includes magnification optical system51closer to the magnification side than intermediate imaging position MI is, and relay optical system52closer to the reduction side than intermediate imaging position MI is, as in the fourth example. In the fifth example, magnification optical system51includes first to eleventh lens elements L1to L11, and has a positive power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a negative meniscus shape, and its convex surface faces the magnification side. First lens element L1and second lens element L2are bonded to each other. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a positive meniscus shape, and its convex surface faces the reduction side. Fifth lens element L5has a biconvex shape. Sixth lens element L6has a biconcave shape. Fifth lens element L5and sixth lens element L6are bonded to each other. Seventh lens element L7has a biconvex shape. Eighth lens element L8has a biconvex shape. Ninth lens element L9has a biconcave shape. Eighth lens element L8and ninth lens element L9are bonded to each other. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a positive meniscus shape, and its convex surface faces the magnification side. Relay optical system52includes twelfth to twenty-second lens elements L12to L22, and has a positive power. Twelfth lens element L12has a positive meniscus shape, and its convex surface faces the reduction side. Thirteenth lens element L13has a biconcave shape. Twelfth lens element L12and thirteenth lens element L13are bonded to each other. Fourteenth lens element L14has a biconvex shape. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the magnification side. Sixteenth lens element L16has a biconvex shape. Diaphragm A is disposed between sixteenth lens element L16and seventeenth lens element L17. Seventeenth lens element L17has a negative meniscus shape, and its convex surface faces the magnification side. Eighteenth lens element L18has a biconvex shape. Nineteenth lens element L19has a biconcave shape. Twentieth lens element L20has a biconvex shape. Nineteenth lens element L19and twentieth lens element L20are bonded to each other. Twenty-first lens element L21has a negative meniscus shape, and its convex surface faces the reduction side. Twenty-second lens element L22has a biconvex shape. FIG.20illustrates sufficiency of conditions (1) to (8) in projection lens system PL5according to the fifth example. The table illustrated inFIG.20shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L22in projection lens system PL5of the fifth example, as in the first exemplary embodiment. Projection lens system PL5of the fifth example can also improve the image quality when the brightness is increased. 3. Sixth Example Projection lens system PL6of a sixth example will be described with reference toFIGS.21to24. FIG.21is a lens arrangement diagram of projection lens system PL6according to the sixth example.FIG.22is an aberration diagram illustrating longitudinal aberrations of projection lens system PL6.FIGS.21,22illustrate the arrangement of various lenses and various aberrations, respectively in a focused state where the projection distance of projection lens system PL6according to the sixth example is 4,000 mm. A sixth numerical example corresponding to projection lens system PL6of the sixth example will be described later. FIG.23illustrates an optical path of a ray in projection lens system PL6according to the sixth example. Projection lens system PL6of the sixth example includes magnification optical system51closer to the magnification side than intermediate imaging position MI is, and relay optical system52closer to the reduction side than intermediate imaging position MI is, as in the fourth example. In the sixth example, magnification optical system51includes first to eleventh lens elements L1to L11, and has a positive power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a negative meniscus shape, and its convex surface faces the magnification side. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a biconvex shape. Fifth lens element L5has a biconvex shape. Sixth lens element L6has a biconcave shape. Fifth lens element L5and sixth lens element L6are bonded to each other. Seventh lens element L7has a biconvex shape. Eighth lens element L8has a biconvex shape. Ninth lens element L9has a biconcave shape. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a positive meniscus shape, and its convex surface faces the magnification side. Relay optical system52includes twelfth to twenty-second lens elements L12to L22, and has a positive power. Twelfth lens element L12has a positive meniscus shape, and its convex surface faces the reduction side. Thirteenth lens element L13has a biconcave shape. Twelfth lens element L12and thirteenth lens element L13are bonded to each other. Fourteenth lens element L14has a positive meniscus shape, and its convex surface faces the reduction side. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the magnification side. Sixteenth lens element L16has a biconvex shape. Diaphragm A is disposed between sixteenth lens element L16and seventeenth lens element L17. Seventeenth lens element L17has a negative meniscus shape, and its convex surface faces the magnification side. Eighteenth lens element L18has a biconvex shape. Nineteenth lens element L19has a biconcave shape. Twentieth lens element L20has a biconvex shape. Nineteenth lens element L19, twentieth lens element L20, and twenty-first lens element L21are bonded to each other. Twenty-first lens element L21has a negative meniscus shape, and its convex surface faces the reduction side. Twenty-second lens element L22has a biconvex shape. FIG.24illustrates sufficiency of conditions (1) to (8) in projection lens system PL6according to the sixth example. The table illustrated inFIG.20shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L22in projection lens system PL6of the sixth example, as in the first exemplary embodiment. Projection lens system PL6of the sixth example can also improve the image quality when the brightness is increased. 4. About Fourth to Sixth Examples Projection lens systems PL4to PL6of the fourth to sixth examples described above include magnification optical system51and relay optical system52so as to have intermediate imaging position MI where imaging is performed inside the projection lens systems. In the present exemplary embodiment, projection lens systems PL4to PL6satisfy following condition (10). Condition (10) is expressed by the following inequality. 8<|fr/f|<12  (10) Here, fr indicates the focal length closer to the reduction side than diaphragm A is. f indicates the focal length of the whole system. Specifically, fr/f=10.08 is satisfied in projection lens system PL4of the fourth example. In projection lens system PL5of the fifth example, fr/f=9.28 is satisfied. In projection lens system PL6of the sixth example, fr/f=10.23 is satisfied. According to condition (10), the performance of projection lens systems PL4to PL6each having intermediate imaging position MI can be successfully achieved. If the ratio exceeds the upper limit value of condition (10), it becomes difficult to maintain the telecentricity on the reduction side while keeping a long back focus. If the ratio is less than the lower limit value of condition (10), it becomes difficult to correct the aberration, and the image quality of projection image20may be degraded. Ratio fr/f is preferably larger than 8.5 and less than 11. Third Exemplary Embodiment A third exemplary embodiment will be described below with reference to the drawings. While the first exemplary embodiment has described an example in which projection lens system PL is of a negative-lead type, projection lens system PL may be of a positive-lead type. In the positive-lead type, the lens group closest to the magnification side in a zoom lens system has a positive power. The third exemplary embodiment will describe projection lens system PL that constitutes a positive-lead zoom lens system. Hereinafter, description of configurations and operations similar to those of image projection device1and projection lens system PL according to the first exemplary embodiment will be appropriately omitted, and seventh to ninth examples will be described as examples of projection lens system PL according to the present exemplary embodiment. 1. Seventh Example Projection lens system PL7according to the seventh example of the present disclosure will be described with reference toFIGS.25to27. FIG.25is a lens arrangement diagram in various states of projection lens system PL7according to the seventh example.FIGS.25(a),25(b),25(c)are lens arrangement diagrams at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL7, respectively, similarly toFIGS.2(a) to2(c). Projection lens system PL7of the seventh example includes 16 lens elements L1to L16constituting five lens groups G1to G5. As illustrated inFIG.25(a), first to fifth groups G1to G5are arranged in order from the magnification side to the reduction side of projection lens system PL7. In the present exemplary embodiment, projection lens system PL7functions as a zoom lens system by moving each of first to fifth lens groups G1to G5along an optical axis during zooming, as in the first exemplary embodiment. In projection lens system PL7, first to sixteenth lens elements L1to L16are arranged in order from the magnification side to the reduction side, as in the first exemplary embodiment.FIGS.25(a) to25(c)illustrate back glasses L17to L19as an example of transmission optical system12. In the projection lens system PL7of the seventh example, first lens group G1includes first and second lens elements L1, L2, and has a positive power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a biconvex shape. First lens element L1and second lens element L2are bonded to each other. Second lens group G2includes third to fifth lens elements L3to L5, and has a negative power. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a negative meniscus shape, and its convex surface faces the magnification side. Fifth lens element L5has a positive meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4and fifth lens element L5are bonded to each other. Third lens group G3includes sixth lens element L6, and has a negative power. Sixth lens element L6has a biconcave shape. Fourth lens group G4includes seventh to fourteenth lens elements L7to L14, and has a positive power. Diaphragm A is disposed on the magnification side of seventh lens element L7. Seventh lens element L7has a biconvex shape. Eighth lens element L8has a negative meniscus shape, and its convex surface faces the reduction side. Ninth lens element L9has a biconvex shape. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a biconcave shape. Twelfth lens element L12has a biconvex shape. Thirteenth lens element L13has a negative meniscus shape, and its convex surface faces the reduction side. Fourteenth lens element L14has a biconvex shape. Fifth lens group G5includes fifteenth and sixteenth lens elements L15, L16, and has a positive power. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the magnification side. Sixteenth lens element L16has a positive meniscus shape, and its convex surface faces the magnification side. FIG.26is an aberration diagram illustrating longitudinal aberrations of projection lens system PL7according to the seventh example.FIGS.26(a),26(b),26(c) illustrate aberrations at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL7, respectively, similarly toFIGS.3(a) to3(c). The aberrations illustrated inFIGS.26(a) to26(c)are based on a seventh numerical example to be described later. FIG.27illustrates sufficiency of conditions (1) to (8) in projection lens system PL7according to the seventh example. The table illustrated inFIG.27shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L16in projection lens system PL7of the seventh example, as in the first exemplary embodiment. Projection lens system PL7of the seventh example can also improve the image quality when the brightness is increased. 2. Eighth Example Projection lens system PL8of an eighth example will be described with reference toFIGS.28to30. FIG.28is a lens arrangement diagram in various states of projection lens system PL8according to the eighth example.FIGS.28(a),28(b),28(c)are lens arrangement diagrams at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL8, respectively, similarly toFIGS.2(a) to2(c). Projection lens system PL8of the eighth example includes four lens groups G1to G4to constitute a zoom lens system, as in the seventh example. Projection lens system PL8of the eighth example includes 17 lens elements L1to L17. In projection lens system PL8, first to fourth lens groups G1to G4and first to seventeenth lens elements L1to L17are arranged in order from the magnification side to the reduction side, as in the seventh example.FIGS.28(a) to28(c)illustrate back glasses L18to L20as an example of transmission optical system12. In projection lens system PL8of the eighth example, first lens group G1includes first and second lens elements L1, L2, and has a positive power. First lens element L1has a negative meniscus shape, and its convex surface faces the magnification side. Second lens element L2has a positive meniscus shape, and its convex surface faces the magnification side. Second lens group G2includes third to fifth lens elements L3to L5, and has a negative power. Third lens element L3has a negative meniscus shape, and its convex surface faces the magnification side. Fourth lens element L4has a biconcave shape. Fifth lens element L5has a biconcave shape. Sixth lens element L6has a biconvex shape. Third lens group G3includes seventh to twelfth lens elements L7to L12, and has a positive power. Seventh lens element L7has a biconcave shape. Eighth lens element L8has a biconvex shape. Diaphragm A is disposed between eighth lens element L8and ninth lens element L9. Ninth lens element L9has a negative meniscus shape, and its convex surface faces the reduction side. Tenth lens element L10has a positive meniscus shape, and its convex surface faces the reduction side. Eleventh lens element L11has a biconvex shape. Twelfth lens element L12has a negative meniscus shape, and its convex surface faces the reduction side. Fourth lens group G4includes thirteenth to seventeenth lens elements L13to L17, and has a positive power. Thirteenth lens element L13has a biconvex shape. Fourteenth lens element L14has a biconcave shape. Thirteenth lens element L13and fourteenth lens element L14are bonded to each other. Fifteenth lens element L15has a biconvex shape. Sixteenth lens element L16has a negative meniscus shape, and its convex surface faces the reduction side. Seventeenth lens element L17has a biconvex shape. FIG.29is an aberration diagram illustrating longitudinal aberrations of projection lens system PL8according to the eighth example.FIGS.29(a),29(b),29(c)illustrate aberrations at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL8, respectively, similarly toFIGS.3(a) to3(c). The aberrations illustrated inFIGS.29(a) to29(c)are based on an eighth numerical example to be described later. FIG.30illustrates sufficiency of conditions (1) to (8) in projection lens system PL8according to the eighth example. The table illustrated inFIG.30shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L17in projection lens system PL8of the eighth example, as in the first exemplary embodiment. Projection lens system PL8of the eighth example can also improve the image quality when the brightness is increased. 3. Ninth Example Projection lens system PL9of a ninth example will be described with reference toFIGS.31to33. FIG.31is a lens arrangement diagram in various states of projection lens system PL9according to the ninth example.FIGS.31(a),31(b),31(c)are lens arrangement diagrams at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL9, respectively, similarly toFIGS.2(a) to2(c). Projection lens system PL9of the ninth example includes three lens groups G1to G3to constitute a zoom lens system, as in the seventh example. Projection lens system PL9of the ninth example includes 19 lens elements L1to L19. In projection lens system PL9, first to third lens groups G1to G3and first to nineteenth lens elements L1to L19are arranged in order from the magnification side to the reduction side, as in the seventh example.FIGS.28(a) to28(c)illustrate back glasses L20to L22as an example of transmission optical system12. In projection lens system PL9of the ninth example, first lens group G1includes first to fourth lens elements L1to L4, and has a positive power. First lens element L1has a biconvex shape. Second lens element L2has a positive meniscus shape, and its convex surface faces the magnification side. Third lens element L3has a biconcave shape. Fourth lens element L4has a positive meniscus shape, and its convex surface faces the magnification side. Third lens element L3and fourth lens element L4are bonded to each other. Second lens group G2includes fifth to ninth lens elements L5to L9, and has a negative power. Fifth lens element L5has a positive meniscus shape, and its convex surface faces the magnification side. Sixth lens element L6has a negative meniscus shape, and its convex surface faces the magnification side. Seventh lens element L7has a biconcave shape. Eighth lens element L8has a biconcave shape. Ninth lens element L9has a positive meniscus shape, and its convex surface faces the magnification side. Third lens group G3includes tenth to nineteenth lens elements L10to L19, and has a positive power. Diaphragm A is disposed on the magnification side of tenth lens element L10. Tenth lens element L10has a biconvex shape. Eleventh lens element L11has a negative meniscus shape, and its convex surface faces the reduction side. Twelfth lens element L12has a biconvex shape. Thirteenth lens element L13has a biconcave shape. Fourteenth lens element L14has a biconvex shape. Thirteenth lens element L13and fourteenth lens element L14are bonded to each other. Fifteenth lens element L15has a negative meniscus shape, and its convex surface faces the magnification side. Sixteenth lens element L16has a biconcave shape. Seventeenth lens element L17has a positive meniscus shape, and its convex surface faces the reduction side. Eighteenth lens element L18has a biconvex shape. Nineteenth lens element L19has a biconvex shape. FIG.32is an aberration diagram illustrating longitudinal aberrations of projection lens system PL9according to the ninth example.FIGS.32(a),32(b),32(c)illustrate aberrations at the wide-angle end, the intermediate position, and the telephoto end of projection lens system PL9, respectively, similarly toFIGS.3(a) to3(c). The aberrations illustrated inFIGS.32(a) to32(c)are based on a ninth numerical example to be described later. FIG.33illustrates sufficiency of conditions (1) to (8) in projection lens system PL9according to the ninth example. The table illustrated inFIG.33shows a correspondence between each of conditions (1) to (8) and each of lens elements L1to L19in projection lens system PL5of the fifth example, as in the first exemplary embodiment. For example, projection lens system PL9of the ninth example includes fourteenth lens element L14that satisfies condition (1) but does not satisfy condition (4). Projection lens system PL9of the ninth example can also improve the image quality when the brightness is increased. 4. About Seventh to Ninth Examples Projection lens systems PL7to PL9of the seventh to ninth examples described above constitute a positive-lead zoom lens system in which lens group G1closest to the magnification side has a positive power. In the present exemplary embodiment, projection lens systems PL7to PL9satisfy following condition (11). Condition (11) is expressed by the following inequality. 0.5<fr/ft<2.0  (11) Here, fr indicates a combined focal length of all lenses closer to the reduction side than diaphragm A is in projection lens system PL9. Focal length fr is measured at the telephoto end, for example. Condition (11) defines ratio fr/ft of focal length fr to focal length ft at the telephoto end of the whole system. Specifically, fr/ft=0.83 is satisfied in projection lens system PL7of the seventh example. In projection lens system PL8of the eighth example, fr/ft=1.73 is satisfied. In projection lens system PL9of the ninth example, fr/ft=0.63 is satisfied. According to condition (11), the performance of projection lens systems PL7to PL9constituting the positive-lead type zoom lens system can be successfully achieved. If the ratio exceeds the upper limit value of condition (11), it becomes difficult to maintain the telecentricity on the reduction side while keeping a long back focus. If the ratio is less than the lower limit value of condition (11), it becomes difficult to correct the aberration, and the image quality of projection image20may be degraded. Ratio fr/ft is preferably larger than 0.6 and less than 1.8. Numerical Example The first to ninth numerical examples for the first to ninth examples of projection lens systems PL1to PL9described above will be shown below. 1. First Numerical Example The first numerical example corresponding to projection lens system PL1of the first example will be shown below. In the first numerical example, Table 1-1 shows surface data, Table 1-2 shows various data, Table 1-3 shows single lens data, Table 1-4 shows zoom lens group data, and Table 1-5 shows zoom lens group magnification. TABLE 1-5GROUPFIRSTWIDE-GROUPSURFACEANGLEINTERMEDIATETELEPHOTO110.022880.022880.02288216−2.28121−3.60026−15.982403220.125330.092420.02444 2. Second Numerical Example The second numerical example corresponding to projection lens system PL2of the second example will be shown below. In the second numerical example, Table 2-1 shows surface data, Table 2-2 shows various data, Table 2-3 shows single lens data, Table 2-4 shows zoom lens group data, and Table 2-5 shows zoom lens group magnification. TABLE 2-5GROUPFIRSTWIDE-GROUPSURFACEANGLEINTERMEDIATETELEPHOTO110.025090.025090.02509214−1.76128−2.39032−4.334113180.131650.111770.07111 3. Third Numerical Example The third numerical example corresponding to projection lens system PL3of the third example will be shown below. In the third numerical example, Table 3-1 shows surface data, Table 3-2 shows various data, Table 3-3 shows single lens data. Table 3-4 shows zoom lens group data, and Table 3-5 shows zoom lens group magnification. The fourth numerical example corresponding to projection lens system PL4of the fourth example will be shown below. In the fourth numerical example, Table 4-1 shows surface data, Table 4-2 shows various data, and Table 4-3 shows single lens data. The fifth numerical example corresponding to projection lens system PL5of the fifth example will be shown below. In the fifth numerical example, Table 5-1 shows surface data, Table 5-2 shows various data, and Table 5-3 shows single lens data. The sixth numerical example corresponding to projection lens system PL6of the sixth example will be shown below. In the sixth numerical example, Table 6-1 shows surface data, Table 6-2 shows various data, and Table 6-3 shows single lens data. The seventh numerical example corresponding to projection lens system PL7of the seventh example will be shown below. In the seventh numerical example, Table 7-1 shows surface data, Table 7-2 shows various data, Table 7-3 shows single lens data, Table 7-4 shows zoom lens group data, and Table 7-5 shows zoom lens group magnification. The eighth numerical example corresponding to projection lens system PL8of the eighth example will be shown below. In the eighth numerical example, Table 8-1 shows surface data, Table 8-2 shows various data, Table 8-3 shows single lens data, Table 8-4 shows zoom lens group data, and Table 8-5 shows zoom lens group magnification. TABLE 8-5GROUPFIRSTWIDE-GROUPSURFACEANGLEINTERMEDIATETELEPHOTO11−0.03991−0.03991−0.0399125−0.41263−0.45265−0.48951313−0.77026−0.87747−1.020954260.442830.433730.42331 9. Ninth Numerical Example The ninth numerical example corresponding to projection lens system PL9of the ninth example will be shown below. In the ninth numerical example, Table 9-1 shows surface data, Table 9-2 shows various data, Table 9-3 shows single lens data, Table 9-4 shows zoom lens group data, and Table 9-5 shows zoom lens group magnification. The exemplary embodiments have been described above as examples of the technique in the present disclosure. For that purpose, the accompanying drawings and the detailed description have been provided. The constituent elements illustrated in the accompanying drawings and described in the detailed description may include constituent elements essential for solving the problems, as well as constituent elements that are not essential for solving the problems but required to exemplify the above technique. Therefore, it should not be immediately assumed that the unessential constituent elements are essential constituent elements due to the fact that the unessential constituent elements are described in the accompanying drawings and the detailed description. Note that the exemplary embodiments described above are provided to exemplify the technique in the present disclosure. Therefore, it is possible to make various changes, replacements, additions, omissions, and the like within the scope of the claims and equivalents thereof. Summary of Aspects Hereinafter, various aspects according to the present disclosure will be exemplified. A first aspect according to the present disclosure is a projection lens system that projects an image of a reduction side into a magnification side in an image projection device, a back glass being disposed on the reduction side. The projection lens system includes one or more negative lenses that have a surface on the reduction side and a surface on the magnification side and that satisfy following condition (1) in the surface on the reduction side or the surface on the magnification side. All of the one or more negative lenses satisfying condition (1) satisfy following conditions (2) and (3), |h/H|<2.0  (1) Tn≥98.5%  (2) Dn/Db≤0.05  (3) where h indicates a height of a most off-axis principal ray, H indicates a height of an axial ray passing through a highest pupil position, Tn indicates a transmittance of light having a wavelength of 460 nm when a lens material of the one or more negative lenses has a thickness of 10 mm, Dn indicates a thickness of the one or more negative lenses on an optical axis, and Db indicates a total thickness of the back glass. According to the projection lens system described above, under condition (1), all of the negative lenses that are assumed to be easily affected by heat when the brightness of the image projection device is increased and are assumed to easily affect the performance of the projection lens system satisfy conditions (2) and (3) for reducing the influence of heat. As a result, it is possible to reduce a variation in a projection image due to high brightness of the image projection device and improve the image quality. According to a second aspect, in the projection lens system of the first aspect, all of the one or more negative lenses satisfying condition (1) further satisfy following condition (4), |fn/fw|>1.2  (4) where fn indicates a focal length of the one or more negative lenses, and fw indicates a focal length at a wide-angle end of a whole system. According to the projection lens system described above, by weakening the power of the negative lens that is easily affected by heat in advance under condition (4), it is possible to stabilize the variation in the projection image when the brightness is increased. According to a third aspect, in the projection lens system of the first aspect, at least one of the one or more negative lenses satisfies following condition (5), vn<40  (5) where vn indicates an Abbe number of a lens material of at least one of the one or more negative lenses. According to the projection lens system described above, by setting the Abbe number of at least one of all negative lenses to be less than the upper limit value of condition (5), it is possible to successfully correct chromatic aberrations while reducing the influence of heat when the brightness is increased. Consequently, it is possible to improve the image quality of the projection image when the brightness is increased. According to a fourth aspect, the projection lens system of the first aspect constitutes a substantially telecentric system on the reduction side. Consequently, it is possible to reduce a color shift in the back lens on the reduction side and the like. According to a fifth aspect, the projection lens system of the first aspect includes a diaphragm and one or more positive lenses disposed closer to the reduction side than the diaphragm is. All of the one or more negative lenses are disposed closer to the reduction side than the diaphragm is, and all of the one or more positive lenses satisfy condition (1). As a result, the projection lens system can be downsized. According to a sixth aspect, the projection lens system of the first aspect further includes one or more positive lenses that satisfy condition (1). All of the one or more positive lenses satisfying condition (1) satisfy following condition (6), Tp>98.5%  (6) where Tp indicates a transmittance of light having a wavelength of 460 nm when a lens material of the one or more positive lenses has a thickness of 10 mm. As a result, it is possible to reduce the influence of heat on the positive lens and improve the image quality of the projection image. According to a seventh aspect, the projection lens system of the first aspect includes at least 15 lenses. According to the projection lens system described above, it is possible to successfully correct various aberrations in the projection lens system. According to an eighth aspect, the projection lens system of the first aspect further includes four positive lenses that satisfy condition (1). The four positive lenses satisfying condition (1) satisfy following condition (7), dn/dt<−4.5×10−6(7) where dn/dt indicates a temperature coefficient of a relative refractive index of a lens material of the four positive lenses at room temperature. As a result, it is possible to reduce the influence of heat on the positive lens and improve the image quality of the projection image. According to a ninth aspect, the projection lens system of the first aspect further includes a positive lens that satisfies condition (1). The positive lens satisfying condition (1) satisfies following condition (8), vp<40  (8) where vp indicates an Abbe number of a lens material of the positive lens. As a result, it is possible to reduce the influence of heat on the positive lens and improve the image quality of the projection image. According to a tenth aspect, the projection lens system of the first aspect further includes a diaphragm. The projection lens system constitutes a zoom lens system including a plurality of lens groups. In the lens groups, a lens group closest to the magnification side has a negative power. The projection lens system satisfies following condition (9), 2<fr/fw<4.5  (9) where fr indicates a focal length at a wide-angle end closer to the reduction side than the diaphragm is, and fw indicates a focal length at the wide-angle end of a whole system. The projection lens system described above can improve the image quality of the projection image as a negative-lead zoom lens system. According to an eleventh aspect, the projection lens system of the first aspect further includes a diaphragm. The projection lens system has an intermediate imaging position where an image is formed inside the projection lens system. In the projection lens system, a magnification optical system constituted by a plurality of lenses disposed closer to the magnification side than the intermediate imaging position is has a positive power. A relay optical system constituted by a plurality of lenses disposed closer to the reduction side than the intermediate imaging position is has a positive power. The projection lens system satisfies following condition (10), 8<|fr/f|<12  (10) where fr indicates a focal length closer to the reduction side than the diaphragm is, and f indicates a focal length of a whole system. According to the projection lens system described above, it is possible to improve the image quality of the projection image in a lens system using the intermediate imaging position. According to a twelfth aspect, the projection lens system of the first aspect further includes a diaphragm. The projection lens system constitutes a zoom lens system including a plurality of lens groups. In the lens groups, a lens group closest to the magnification side has a positive power. The projection lens system satisfies following condition (11), 0.5<fr/ft<2.0  (11) where fr indicates a focal length closer to the reduction side than the diaphragm is, and ft indicates a focal length at a telephoto end of a whole system. The projection lens system described above can improve the image quality of the projection image as a positive-lead zoom lens system. A thirteenth aspect is an image projection device including the projection lens system of the first aspect and an image forming element that forms an image. The image projection device described above can improve the image quality of an image when the brightness is increased. INDUSTRIAL APPLICABILITY The present disclosure is applicable to, for example, an image projection device having a light output of 20,000 lumens or more, and a projection lens system mounted on the image projection device. REFERENCE MARKS IN THE DRAWINGS
ê9 00057 ' 1000041 Jj63 "oensomorphanes, donc un graiid. nombre possède une activité analgésique importante, sont préparés jusqu3à ce jour par des procédés jui comprennent une crclisation à catalyse acide des 2"(4-lusbhozr-ben.-^ i;~1 ,3»4 -trialecpl-1,2ff5*6-tétrahydropyri-5 dines f euraissant un inélange de 1 s 2 s 3 5 4 § 5 P b-liexahydro-316 , 11 -trialcoyl-216-aétIianr.-3-ben3EZQcin-8-ol2 isosières» Cette cyclisa-iiorî ne peut- être effectuée que dans des conditions extrêmes, g1 eai-a-dire des températures d*envii'on 180e sont requises pour effectuer la cyclisationj on obtient ainsi généralement des rende-10 œents peu élevée avec des produits secondaires non désirés© Ce;; conditions ezctrêces rendent aussi difficile la production de nombreux bensomorphanee pliaraiaceutiGuenient intéressants e Cette invention est basée sur la découverte qu'une ey-clisation à catalyse acide peut avoir li^u dans des condition!: 15 plus douces icwfc en fournissant de ncuxtaux cccpcsés utiles d&Utë la préparation de benccmorpiianes pharmaceutiqueaent actifs,, On peut réaliser cela, conformément à 1'invention, en utilisant comme substance de départ un composé pyridine substitué à l'atonie d'ar.ote par un groupe attracteur d1 électrons,, c3est-a-dire un 20 groupe qui neutralise la basicité de 13atome d'azote. Ainsi, la présente invention a trait à un nouveau procédé pour la préparation de dérivés de benzemorpliane caractérisé en ce qu'un dérivé de tétralivdropyridine de la formule générale dans laquelle R est un atome d'hydrogène, un groupe alcoyle 1 p *3 inférieur ou acyle; R est un groupe -COR ou -S0oR : 2 R est un atonie d1 hydrogène, un groupe alcoyle inférieur ou "Z 35 aryle et R est un groupe alcoyle inférieur ou aryle, ou un dérivé 4-hydroxy-hexahydropyridine correspondant, est cycli-sé par traitement avec un catalyseur acide, après quoi, le cas échéant, le composé résultant de la formule générale : BAD ORIGINAL é9 60057 2 J000041 est traité davantage de manière à éliminer ou à modifier le substituant et/ou de manière à convertir 1s groupe -OR en un groupe hydrozy® Les dérivés de 4-l1-2'drcîy-îissabydirspyridiiies pouvant ê~re ut": 13 se ecùme nul:--, tan ce ôe départ dans 1s prés ex? t procédés u--fciit être représentés par la formule générale la Tel qu'il est utilisé loi « le terme "alcoyle inférieur-" désigne des groupes alocyle b chaîne droite ou ramifiée avec 1 à G atonies de carbones par exemple les groupes méthyle, étliyle, propyle , isopropyle, butyle » butyle tertiaires pentyle, h©syle, lxeptyle5 octyle9 etc«0 j le terme "aryle" désigne des groupes pliényla ou naplityle substitués ou non -substitués; le ternie "acyle" désigne des groupes alcanoyle inférieurs contenant jusqusk 6 atomes de carbone, par exemple le groupe acétyle; et des groupes "fcen.EO.yle ou naphtoyle substitués ou non substitués» Les-composés englobés par les formules I et la peuvent être des composés optiquement actifs et les racémates de même que les antipodes cfextrogyre et lévogyre sont appropriés à l'utilisation dans cette invention. Tous les composés englobés par les formules I et la sont appropriés à l'utilisation dans le procédé de cette infention, cependant, on préfère les composés de la formule I et la où R^ représente un groupe : 0 0 h |, -G-H, -C-alcoyle inférieur ou -SO^-alcoyle inférieur, parce que BAD ORIGINAL ê9 00057 3 Î002041 ces composés sont particulièrement efficaces dans ce procédé, c'est-à-dire on obtient des rendements plus élevés dans des conditions plus douces. Ces .composés sont utiles dans le procédé de cette inven-5 tion sous l'une des formes D,L ou racémique. Parmi les composés préférés, les dérivés îT-formyle et îî-acétyle sont particulièrement avantageux, étant donné qu'on obtient, en les cyclisant, des rendements très élevés, par exemple des rendements supérieurs à 90 D'autre part, les groupes N-10 formyle et Iï-acétyle peuvent être éliminés des produits de cycli-sation avec facilité dans des conditions douces® Lorsqu'il s'agit de benzomorphanes, le produit résultant de l'élimination des groupes formyle ou acétyle est le composé non substitué qui n'a été obtenu, jusqu'à ce four, que par élimination de groupes 15 alcoyle de l'atome d'azote à l'aide de méthodes pénibles dans des conditions extrêmes, par exemple à l'aide de la dégradation de von Braun. Les benzomorphanes obtenus par cyclisation selon la présente invention, c'est-à-dire les composés de la formule II 20 sont des intermédiaires utiles pour la production de composés connus pharmaceutiquement intéressants, par exemple, la pentazoci-ne (2-diméthylallyl-5 »9-diméthyl-2'-hydroxy-6,7-benzomorphane) peut être préparée par élimination du groupe attracteur d'électrons du composé cyclisé, par O-déméthylation du groupe méthoxy 25 et par substitution du groupe diméthylallyle sur l'azote. D'autre part, l'atome d'azote peut être substitué, par exemple, par le groupe cyclopropylméthyle. Les produits réactionnels peuvent aussi être transformés, par réduction avec l'hydrure de lithium-alumi-nium, en un mélange de composés, à savoir de 1,2,3,4,5,6-hexa-30 hydro-8-méthoxy-3»6a:,11a-triméthyl-2,6-méthano-3-benzazocine• et de 1 ,2,3,4,5,6-hexahydro-8Hiiéthoxy-3,6oc,11 p-triméthyl-2,6-méthano-3-benzazocine. Les compoq.es définis par la formule II peuvent être optiquement actifs et toutes les formes, c'est-à-dire les formes 35 racémiques, D et L, rentrent dans le cadre de cette invention» Les conditions utilisées dans la cyclisation de composés des formules I et la dépendent de la nature spécifique du groupe attracteur d'électron B."', de la température, du temps et de la quantité de même que de la nature du catalyseur acide 40 utilisé. 69 00057 4 2000041 Généralement, on opère entre 0° et 160°. Cependant, on obtient les meilleurs résultats à des températures entre 50 et 100°, selon l'acide utilisé, le groupe attracteur d'électrons présent et la durée de réaction désirée. 5 les durées de réaction sont variables et dépendent de la quantité ou de l'identité du catalyseur acide, de la nature du groupe attracteur d'électron et de la température. Par exemple, lorsqu'on utilise un mélange de 50 à 1, en poids, l'acide phos-phorique et d'acide sulfurique concentré comme catalyseur et des 10 températures d'environ 70°, la réaction dure environ une demi- journée. Des températures plus élevées, par exemple entre 100° et 160°, réduisent la durée de réaction et des températures moins élevées, par exemple entre 0° et 50°, prolongent la durée réactionne lie jusqu'à 2 à 4 jours, lorsqu'on augmente la quantité 15 d'acide sulfurique utilisée dans le catalyseur, la durée de réaction diminue mais les rendements sont moins bons. La quantité de catalyseurs acide-utilisée n'est pas importante, étant donné que même des quantités minimes, c'est-à-dire inférieures à 1 mole, produisent une réaction. Cependant, des quantités d'acide 20 supérieures à une mole réduisent la durée réactionnelle à des durées pratiquement intéressantes. Les acides pouvant être utilisés pour catalyser la cyclisation sont des acides organiques et inorganiques, soit en mélange, soit seuls. Ces acides peuvent être utilisés en présence 25 de solvants, mais cela n'est pas nécessaire. La concentration de l'acide n'est pas importante, mais on utilise généralement des acides concentrés accessibles dans le commerce. Comme acides appropriés, on peut citer, par exemple, HC1, HBr, HJ, HF, H^SO^, H^PO^, PSO^H, l'acide polyphosphorique (APP), l'acide polyphos-30 phorique estérifié (EPP), POCl^, des acides de Lewis, HC00H, CEjCOOH, GLjCCOOH, F^CCOOH, l'acide £-toluènesulfonique, etc... On préfère particulièrement H^PO^, HC1, HgSO^, APP ou des mélanges contenant ces derniers. Les composés de formule I et la sont équivalents flans 35 ce procédé, étant donné que, quelque soit le composé utilisé comme substance de départ, le composé correspondant de formule II est produit. Les composés des formules I et la et l'acide sont mélangés et le mélange est chauffé à des températures appropriées 40 jusqu'à ce que la réaction soit complète. Cette réaction peut se 69 00057 5 2000041 faire dans une atmosphère inerte, par exemple dans une atmosphère d'azote. On recueille généralement les produits par extraction, bien que l'invention ne soit pas limitée à cette méthode. On peut traiter les produits de cyclisation de benzo-5 morphane de manière à éliminer le groupe attracteur d8 électrons suivant le schéma réactionnel suivant : Cette réaction peut être effectuée à lîaide d'un hydro-xyde de métal alcalin dans le méthanol, ou à isaide d5un acide, 15 par exemple de l'acide chlorhydrique dans le méthanol. Le produit résultant contenant un azote non substitué peut être substitué à l'atome d'azote par des moyens connus, par exemple l'azote peut être méthylé avec le formaldéhyde et l'hydrogène sur du nickel Raney de manière à fournir des composés connus pharmaceutiquement 20 utiles, par exemple des analgésiques, de même il peut être transformé selon des réactions connues en d'autres composés à utilité pharmaceutique, par exemple analgésique » On peut obtenir des benzomorphanes H-alcoylés en réduisant le groupe attracteur d'électrons» par exemple, le groupe 25 0 0 " it -C-H ou -C-alcoyle inférieur des produits de cyclisation de benzomorphane avec de l'hydrure de lithium-aluminium suivant le schéma réactionnel suivant ; 35 Lorsqu'on préfère comme produit réactionnel au racémate un antipode optique, on peut dédoubler l'un quelconque des intermédiaires ou les produits finals selon des méthodes connues, par exemple en formant un tartrate ou un sel de brucine. Cependant, on dédouble avantageusement au préalable la substance de départ 40 et utilise la forme D ou L suivant la configuration désirée pour 69 00057 ÎC00041 le produit final. Les produits de cyclisation de benzomorphane sont habituellement un mélange d'isomères, les hydrogènes en les positions 6 et 11 étant soit et,oc ou le premier composé est prédominant, 5 habituellement selon le rapport d'environ 4 à 1, comme cela est déterminé par chromatographie en phase vapeur (OPV). La méthode de préparation des composés contenant le groupe attracteur d'électrons varie suivant la nature du groupe0 Par exemple, on peut fixer un groupe formyle à l'atome d*azote en 10 faisant réagir la 2-(4-méthoxybenzyl)-3f4-dimêthyl-1,2,5s6-tétra-hydropyridine avec le formiate de méthyle. La 2-(4—méthoxybenzyl)-3,4-diméthyl-1,2,5»6-tétrahydropyridine peut être acétylée avec l'anhydride acétique dans la pyridine ou ëthoxycarbonylée avec le chloroformiate d'éthyle ou carbamoylée avec de l'urée ou benzoylée 15 avec du chlorure de benzoyle, ces réactions étant toutes des réactions conventionnelles utilisant des conditions bien connues0 La 2-(4-méthoxybenzyl)-3»4-diméthyl-1,2,5,6-tétrahydro-pyridine, la substance de départ dans la synthèse de benzomor-phane, est un composé nouveau et peut être préparée par réaction 20 du chlorure de p-méthoxybenzyle avec la 594-lutidine dans un solvant approprié suivi de la réaction du chlorure de 1-(4-méthoxybenzyl )-3»4-diméthyl-pyridj nium avec un réactif de G-rignard formé à partir du chlorure de p-méthoxybenzyle. Le produit résultant est alors réduit avec le borohydrure de sodium en 25 milieu alcalin en la 1 s 2-di (4-méthoxybenzyl)-3 »4-diméthyi- 1,2,5» 6-tétrahydropyridiiie , qui est transformée en le chlorhydrate et réduite avec l'hydrogène en présence d'un catalyseur de charbon palladié. Les exemples suivants illustrent l'invention sans en 30 limit er la portée. Les points de fusion sont mesurés dans des capillaires avec un appareil de Thomas Hoover, ils sont non corrigés , de même que les points d'ébullition. Exemple 1 - 22 g de 3,4-diméthyl-2-(p-méthoxybenzyl)-5,6-dîhydro-35 1(2H)-pyridinecarboxaldéhyde sont ajoutés sous agitation à un mélange d'acide phosphorique (200 g) et d'acide sulfurique concentré (4 g) et le mélange résultant est chauffé à 70° pendant 17 heures sous azote. Le mélange réactionnel est refroidi dans un bain de glace, dilué avec 400 ml d'eau glacée, et extrait avec du 40 chloroforme (3 x 250 ml). Les couches organiques combinées sont 69 00057 7 2000041 lavées avec de l'eau (200 ml), desséchées sur du sulfate de magnésium et filtrées. La concentration du filtrat fournit 21,8 g (99 fi) de produit consistant en un mélange de 1,4,5,6-tétrahydro-6a,11 a-diméthyl-8-méthoxy-2,6-méthano-3-benzazocine-3(2H)-5 carboxaldéhyde et de 1,4,5,6-tétrahydro-6ce,11 j3-diméthyl-8-méthoxy-2,6-méthano-3-benzazocine-3(2H)-carboxaldéhyde a L»analyse par chromatographie en phase vapeur indique pour ces isomères un rapport d,environ 4:1» Cette substance bout à 160-167°/0,1 mm. L'analyse fournit pour la formule moléculaire C^gH^NOg (259,35) 10 les valeurs suivantes : Calculées : C = 74,10 ; H = 8,16 ; I = 5,40 Trouvées : C = 73,99 ; H = 8,02 ; Sf = 5,25» La substance de départ utilisée dans le procédé ci-dessus peut être obtenue comme suit : 15 1 kg d'alcool p-méthoxybenzylique est dissous dans 3,7 litres de benzène sec ne contenant pas de thiophène et la solution est refroidie dans un bain de glace. On fait barboter l'acide chlorhydrique dans la solution, la température intérieure étant maintenue sous 20° i Lorsque 113 ml d'eau ont été recueillis 20 et éliminés, on ajoute à la solution benzénique 300 g de sulfate de magnésium anhydre. La solution est filtrée et le benzène est éliminé sous vide (température du bain d'eau 30°). Le produit est le chlorure de p-méthozy-benzyle brut. Cette substance peut être utilisée sous forme brute ou elle peut être distillée (point 25 d'ébullition à 77-9°/1 mm, la chromatographie en phase vapeur fait apparaître une composante présente à 97,5 fi). 430 g (2,75 moles) de chlorure de p-méthoxybenzyle brut sont ajoutés à une solution agitée de 268 g (2,5 moles) de 3,4-lutidine dans 800 ml d1acétonitrile. On peut initier la réaction 30 exotherme en faisant bouillir quelques ml de solution avec un volume égal d'acétone jusqu'à cristallisation et en ensemençant ensuite la solution. Le mélange est agité à la température ambiante pendant 2 heures et filtré. Le produit est lavé avec 200 ml d'acétonitrile, puis desséché dans une étuve à vide à 50° 35 jusqu'au lendemain. Le produit fond à 191-3° (agglomération à 188°). Une petite portion est recristallisée dans l'acétone et fond à 192-3°. Ce produit est le chlorure de 1-(4-méthoxybenzyl)-3,4-diméthyl-pyridinium. Analyse Cl5Hi8C1N0 40 Calculé : C = 68,31 ; H = 6,83 69 00057 8 2000041 Trouvé : G = 68,24 ; H = 7,06. A 60 g de copeaux de magnésium et 60 g de poudre de magnésium dans 1 litre d'éther sec refluant, on ajoute pendant 5 heures, 156 g de chlorure de p-méthoxybenzyle dans 1 litre 5 d'éther sec, sous azote. Le réactif de Grignard résultant est filtré sous azote à travers de la laine de verre et ajouté rapidement à une suspension saturée de chlorure de 1-(4-méthoxybenzyl)-3,4-diméthylpyridinium (236 g, 0,9 mole) dans 2 litres d'éther sec. Le mélange réactionnel est agité jusqu'au lendemain à la tem-10 pérature ambiante. Il est alors versé sur une solution de chlorure d'ammonium et de glace. La couche éthérée est séparée, desséchée (carbonate de potassium anhydre) et l'éther est séparé par distillation. Le produit brut, à savoir la 1 ,2-di-(4-méthoxybenzyl)-3,4-diméthyl-1,2-dihydropyridine, est une huile rougeâtre. 15 25,4 g de borohydrure de sodium sont ajoutés par portions à un mélange agité rapidement de 241 g de 1,2-di-(4-méthoxy-benzyl)-3,4-diméthyl-1,2-dihydropyridine brut et de 350 ml d'hydroxyde de sodium IN dans 540 ml de méthanol pendant une période de 20 minutes sans refroidissement. Après l'addition, 20 le mélange est chauffé au reflux pendant 2 heures. Le mélange est refroidi, dilué avec 500 ml d'eau et l'huile est extraite à l'éther. L'extrait d'éther est desséché sur du carbonate de potassium anhydre et l'éther est séparé par distillation. La fraction principale distille entre 210° et 235°/1 mm. L'huile est dissoute 25 dans 500 ml d'éther sec et on transforme le produit en le chlorhydrate en faisant barboter du gaz chlorhydrique dans la solution. L'éther est décanté du chlorhydrate pâteux et 300 ml d'acétone sont ajoutés. Le mélange est chauffé au reflux jusqu'à ce que le sel pâteux se solidifie. Le produit est filtré; point de fusion 30 à 196-200°o Les cristaux sont recristallisés dans le mélange acétone/méthanol; on obtient le chlorhydrate de 1,2-di-(4-méthoxybenzyl) -3,4-diméthyl-1,2,5,6-tétrahydropyridine (point de fusion à 203-206°). Analyse C^H^gïïOg.HCl 35 Calculé : C = 71,22 ; H = 7,75 Trouvé ï C = 71,06 ; H = 8,08. 5 g de catalyseur de charbon palladié à 10 sont ajoutés à 38,8 g (1 mole) de chlorhydrate de 1,2-di-(4-méthoxybenzyl )-3,4-diméthyl-1j2,5,6-tétrahydropyridine dans 250 ml de méthanol. 40 Le mélange est secoué dans tin appareil d'hydrogénation de Parr 9 flOOST 2000041 pendant 6 heures à une pression de 23 kg et à la température ambiante ou jusqu'à absorption de 0,1 mole d'hydrogène» Le mélange est filtré et le filtrat est concentré sous vide. On cristallise le résidu (l'huile) en le chauffant au reflux avec 5 100 ml d'acétate d'éthyle. La première fraction fond à 145-7°. On obtient une seconde fraction en éliminant l'acétate d'éthyle et' en ajoutant l'éther de manière à solidifier lshuile restante» Le solide brut est recristallisé dans le mélange acétone/méthanolo Les fractions combinées sont recristallisées dans le mélange acé-10 tate d'éthyle/méthanol. Le chlorhydrate de 2-(,4-méthoxvbenzyl)-3 , 4-diméthyl-1,2,5,6-tétrahydropvridine obtenu fond à 148-150°c Analyse G1 ^H^NOoïïCl Calculé s C = 67s28 % H = 8S22 5 îT = 5<>25 Trouvé ; Q - 67,31 ; H = 8,76 ; N = 5S21 15 Une solution de 21 g de 2-( 4-méthoxybenzyl)-3 £,4-dimé- thyl-1,2,5,6-tétrahydropyridine dans 90 ml de formiate de méthyle fraîchement distillé est chauffée dans un récipient de verre sous azote (18 atmosphères) pendant 21 heures à 60-62°« L'excès de formiate de méthyle est alors éliminé sous pression réduite; on 20 obtient ainsi 22 g de 3 s 4-dimé th.yl-2- (p-méthoxybenzyl)-5,6- dihydro-1(2H)-pyridinecarbaxaldéhyde brut (point d'ébullition à 150-156°/0,1 mm). Exemple 2 - 21,8 g d'un mélange de 1,4,5,6-tétrahydro-6as11œ- et de 25 11p-diméthyl-8-méthoxy-2,6-méthano-3-benzazocine-3(2H)-carboxaldéhyde (rapport 4:1) dans du tétrahydrofurane anhydre (195 ml) sont ajoutés goutte à goutte à une suspension d'hydrure de lithium-aluminium (1 ,95 g) dans le té trahydr ofurane anhydre (195 ml)» Après reflux pendant 5 heures sous azote, le mélange 30 est refroidi à la température ambiante et l'acétate d'éthyle-(100 ml) suivi de l'eau (30 ml) est ajouté goutte à goutte. La suspension résultante est desséchée sur du sulfate de sodium, filtrée et le filtrat est concentré sous pression réduite. On distille le résidu (point d'ébullition 138-142°/0,4 mm) de manière 35 à obtenir tm mélange brut de 1 s2,3,4,5,6-hexahydro-8-méthoxy-3,6cc,11a-triméthyl-2j6-méthano-3-benzazocine et de 1,2,3,4,5,6-hexahydro-8-méthoxy-3,6a,11^-triméthyl-2,6-méthano-3-benzazocine selon un rapport d'environ 4:1, comme cela est indiqué par l'analyse par chromâtographie en phase gazeuse. Cette substance 40 a un point d'ébullition à 115-120°/0,1 mm. 10 69 00057 2000041 Exemple 5 - 1291 g de mélange brut des composés préparés dans 1.®ererc» pie 2 fournissent» par traitement avec de l'acide bromhydrique s 48 io dans l'acétone, 12,9 g (79 $) d'un mélange de bromhy&rate a.e 5 1 o2,3»4»5 9.6-hexahydro-3-mé thoxy-3 ? 6a, 11 cr-trimé*hyX«-2 s 6-métîiaae-3-benzazocine fondant à 230~232° © Après plusieurs reorisvalli8?== tions dans le mélange isopropanol/éther, on obtient le bromhydrate de 1 ;2»3f4»5p 6 -hexahydro-8-mé thoxy-3 j6a?11 >x-trimét>fl-216-métîianc ïgs 10 avec un échantillon authentique), les propriétés spectroseopiqu.es de ce composé (infrarouge, ultraviolet» spectre de résonance magnétique nucléaire, spectrogramme de masse) sont aussi ident-'.'-■ ques à celles de la substance authentique-Exemple 4 - 15 Un mélange brut de 1,19 g de 1 f 4^ 5 ? 6-tétrahydrn-6œ;. 11 f'- et 11 @-diméthyl-8-méthoxy~2s6-métha;r>.o-'ai-benzazQcine-3 (2E)~ carboxaldéhyde (rapport 4:1) est dissous dans 25 ml de méthanol et 10 ml d'hydroxyde de sodium aqueux 25U sont ajouté-So Après chauffage de ce mélange sous reflux pendant 14 heures , le méthane! 20 est éliminé sous pression réduite et la suspension aqueuse résultante est extraite avec le chlorure de méthylène 0 Par élimination du solvant sous vide, on obtient mi mélange brut de 1,2,3,4j5»6-hexahydro-8-méthoxy~6a,11a:-diaétîayl~2p6-aiéthÊao»3" benzasoeine et 1 ,2,3»4»5#6-hexahyd2,o-8-âaéthosy-6a,11 |3=diméthyl-25 2,6-métha22.o-3~benzazociiie. le produit est distillé (point d'ébullition à 11 5-130°/0,05 mm) et un échantillon est traité avec de l'acide bromhydrique• On obtient un mélange de bromhydrate qui, après plusieurs recristallisations dans le mélange isopropa-nol/ether, fournit le bromhydrate de 1 «2.,3f495,ô-hexshydro-S-30 méthoxy-6a,11a-diméthyl-2,6-méthano-3-benzazocine fondant à 160-162°. 69 00057 2000041 BE7ENDICATIQHS 1. Procédé pour la préparation, de. dérivés de benzomor-phane, caractérisé en ce qu'un dérivé de tétrahydropyridine de la formule générale 10 dans laquelle S est un atome d'hydrogène, un groupe alcoyle inférieur ou acyle ; R® est un groupe -COR^ ou -S0oR^ ; 2 15 R est un atome d'hydrogène, un groupe alcoyle inférieur ou aryle et 3 R est un groupe alcoyle inférieur ou aryle, ou un dérivé 4-hydroxy-hexahydropyridine correspondant, est cycli-sé par traitement avec un catalyseur acide, après quoi, le cas 20 échéant, le composé résultant de la formule générale 25 N-R1 II est traité davantage de manière à éliminer ou à modifier le substituant R^ et/ou de manière à convertir le groupe -OR en un groupe hydroxy. 30 2. Procédé suivant la revendication 1, caractérisé en ce que la cyclisation est effectuée à une température entre environ 0° et environ 160°. 3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que la cyclisation est effectuée à une température entre 35 environ 50° et environ 100° et que le catalyseur acide est un mélange d'acide phosphorique et d'acide sulfurique. 4» Procédé suivant les revendications 1f 2 ou 3, caractérisé en ce qu'on utilise comme substance de départ de la formule I le 3»4-diméthyl-2-(p-méth.oxybenzyl)-5>6-dihydro-1(2H)-40 pyridinecarboxaldéhyde. 69 00057 2000041 5. Procédé suivant la revendication 4, caractérisé en ce que le produit de cyclisation, qui est un mélange de 1,4,5»6-tétrahydro-6a,11a-diméthyl-8-méthoxy-2,6-méthano-3-benzazocine-3(2H)-carboxaldéhyde et de 1,4»5,6-tétrahydro-6a,11 (3-diméthyl-8— 5 méthoxy-2,6-^aéthano-3-benzazoeine-3(2H)-carboxaldéhyde, est traité avec l'hydrure de lithium alumi.Tiiuïïi de manière à former un mélange de 1,2,3,4,5»6-hexahydro-8-méthoxy-3,6a,11a-triméthyl-2,6-méthano-3-benzazocine et de 1,2,3,4,5,6-hexahydro-8-méthoxy-3,6a,11 p-triméthyl-2,6-niéthario-3-berLzazocine. tO 6. Procédé suivant la revendication 4, caractérisé en ce que le produit de cyclisation est hydrolysé de manière à fournir un mélange de 1 ,2,3,4»5,6-hexahydro-8-méthoxy-6a,11a-diméthyl-2,6-méthano-3-benzazocine et de 1,2,3,4,5,6-hexahydro-8-méthoxy-6a, 11 (3-diméthyl-2,6-méthano-3-benzazocine. 15 7» Procédé pour la préparation de dérivés de benzomor- phane, comme décrit ci-dessus, en particulier dans les exemples. 8. les produits obtenus selon le procédé des revendications 1 à 7. 9. Dérivés de benzomorphane de la formule générale 20 25 dans laquelle R est -un atome d1hydrogène, un groupe alcoyle inférieur ou acyle ; 1 2 3 R est un groupe -COR ou -SOR ; o 30 R est un atome d'hydrogène, un groupe alcoyle inférieur ou aryle; et 3 R est un groupe alcoyle inférieur ou aryle. 10. Un composé suivant la revendication 9, dans 1 2 3 laquelle R est le groupe formyle et R, R et R représentent 35 chacun tin groupe méthyle. 11. Les dérivés de tétrahydropyridine de la formule générale ï 69 00057 13 2000041 àC' 1' ' dans laquelle R est un atome d'hydrogène,, un groupe alcoyle inférieur ou 10 acyle ; 1 ^ 3 R est un groupe -COR ou -202. j 2 R est un atome d'hydrogène^ un. groupe a.lcoyle inférieur on aryle ; et 3 R est un groupe alcoyle inférieizr ou aryle s 15 et les dérivés de 4-h^rdroxj-h0s:ahydro-pyridine correspondants. 12« Composés suivant la revendication 11, dans 1 2 3 laquelle R est le groupe formyle et R, R et R représentent chacun un groupe méthyle e / \ BAD ORIG'NAL
Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis Novel synthetic forms of etherified oxidized phospholipids and methods of utilizing same for preventing and treating atherosclerosis and other related disorders, as well as inflammatory disorders, immune mediated diseases, autoimmune diseases and proliferative disorders, are provided. In addition, methods of synthesizing etherified and esterified oxidized phospholipids and of using same for preventing and treating atherosclerosis and other related disorders are also provided. FIELD AND BACKGROUND OF THE INVENTION The present invention relates to defined, oxidized LDL (oxLDL) components for prevention and treatment of atherosclerosis and related diseases and disorders, as well as other inflammatory, immune mediated, autoimmune and proliferative diseases and disorders and, more particularly, to methods and compositions employing oxidized phospholipids effective in inducing mucosal tolerance and inhibiting inflammatory processes. Cardiovascular disease is a major health risk throughout the industrialized world. Atherosclerosis, the most prevalent of cardiovascular diseases, is the principal cause of heart attack, stroke, and gangrene of the extremities, and as such, the principle cause of death in the United States. Atherosclerosis is a complex disease involving many cell types and molecular factors (for a detailed review, see Ross, 1993, Nature 362: 801-809). The process, which occurs in response to insults to the endothelium and smooth muscle cells (SMCs) of the wall of the artery, consists of the formation of fibrofatty and fibrous lesions or plaques, preceded and accompanied by inflammation. The advanced lesions of atherosclerosis may occlude the artery concerned, and result from an excessive inflammatory-fibroproliferative response to numerous different forms of insult. For example, shear stresses are thought to be responsible for the frequent occurrence of atherosclerotic plaques in regions of the circulatory system where turbulent blood flow occurs, such as branch points and irregular structures. The first observable event in the formation of an atherosclerotic plaque occurs when inflammatory cells such as monocyte-derived macrophages adhere to the vascular endothelial layer and transmigrate through to the sub-endothelial space. Elevated plasma LDL levels lead to lipid engorgement of the vessel walls, with adjacent endothelial cells producing oxidized low density lipoprotein (LDL). In addition, lipoprotein entrapment by the extracellular matrix leads to progressive oxidation of LDL by lipoxygenases, reactive oxygen species, peroxynitrite and/or myeloperoxidase. These oxidized LDL's are then taken up in large amounts by vascular cells through scavenger receptors expressed on their surfaces. Lipid-filled monocytes and smooth-muscle derived cells are called foam cells, and are the major constituent of the fatty streak. Interactions between foam cells and the endothelial and smooth muscle cells surrounding them produce a state of chronic local inflammation which can eventually lead to activation of endothelial cells, increased macrophage apoptosis, smooth muscle cell proliferation and migration, and the formation of a fibrous plaque (Hajjar, D P and Haberland, M E, J. Biol Chem September 1997 12; 272(37):22975-78). Such plaques occlude the blood vessels concerned and thus restrict the flow of blood, resulting in ischemia, a condition characterized by a lack of oxygen supply in tissues of organs due to inadequate perfusion. When the involved arteries block the blood flow to the heart, a person is afflicted with a ‘heart attack’; when the brain arteries occlude, the person experiences a stroke. When arteries to the limbs narrow, the result is severe pain, decreased physical mobility and possibly the need for amputation. Oxidized LDL has been implicated in the pathogenesis of atherosclerosis and atherothrombosis, by its action on monocytes and smooth muscle cells, and by inducing endothelial cell apoptosis, impairing anticoagulant balance in the endothelium. Oxidized LDL also inhibits anti-antherogenic HDL-associated breakdown of oxidized phospholipids (Mertens, A and Holvoet, P, FASEB J October 2001; 15(12):2073-84). This association is also supported by many studies demonstrating the presence of oxidized LDL in the plaques in various animal models of atherogenesis; the retardation of atherogenesis through inhibition of oxidation by pharmacological and/or genetic manipulations; and the promising results of intervention trials with anti-oxidant vitamins (see, for example, Witztum J and Steinberg, D, Trends Cardiovasc Med 2001 April-May; 11(3-4):93-102 for a review of current literature). Indeed, oxidized LDL and malondialdehyde (MDA)-modified LDL have been recently proposed as accurate blood markers for 1stand 2ndstages of coronary artery disease (U.S. Pat. No. 6,309,888 to Holvoet et. al. and U.S. Pat. No. 6,255,070 to Witztum, et al.). Reduction of LDL oxidation and activity has been the target of a number of suggested clinical applications for treatment and prevention of cardiovascular disease. Bucala, et al. (U.S. Pat. No. 5,869,534) discloses methods for the modulation of lipid peroxidation by reducing advanced glycosylation end product, lipid characteristic of age-, disease- and diabetes-related foam cell formation. Tang et al., at Incyte Pharmaceuticals, Inc. (U.S. Pat. No. 5,945,308) have disclosed the identification and proposed clinical application of a Human Oxidized LDL Receptor in the treatment of cardiovascular and autoimmune diseases and cancer. Atherosclerosis and Autoimmune Disease Because of the presumed role of the excessive inflammatory-fibroproliferative response in atherosclerosis and ischemia, a growing number of researchers have attempted to define an autoimmune component of vascular injury. In autoimmune diseases the immune system recognizes and attacks normally non-antigenic body components (autoantigens), in addition to attacking invading foreign antigens. The autoimmune diseases are classified as auto- (or self-) antibody mediated or cell mediated diseases. Typical autoantibody mediated autoimmune diseases are myasthenia gravis and idiopathic thrombocytopenic purpura (ITP), while typical cell mediated diseases are Hashimoto's thyroiditis and type I (Juvenile) Diabetes. The recognition that immune mediated processes prevail within atherosclerotic lesions stemmed from the consistent observation of lymphocytes and macrophages in the earliest stages, namely the fatty streaks. These lymphocytes which include a predominant population of CD4+ cells (the remainder being CD8+ cells) were found to be more abundant over macrophages in early lesions, as compared with the more advanced lesions, in which this ratio tends to reverse. These findings posed questions as to whether they reflect a primary immune sensitization to a possible antigen or alternatively stand as a mere epiphenomenon of a previously induced local tissue damage. Regardless of the factors responsible for the recruitment of these inflammatory cells to the early plaque, they seem to exhibit an activated state manifested by concomitant expression of MHC class II HLA-DR and interleukin (IL) receptor as well as leukocyte common antigen (CD45R0) and the very late antigen 1 (VLA-1) integrin. The on-going inflammatory reaction in the early stages of the atherosclerotic lesion may either be the primary initiating event leading to the production of various cytokines by the local cells (i.e endothelial cells, macrophages, smooth muscle cells and inflammatory cells), or it may be that this reaction is a form of the body's defense immune system towards the hazardous process. Some of the cytokines which have been shown to be upregulated by the resident cells include TNF-α, IL-1, IL-2, IL-6, IL-8, IFN-γ and monocyte chemoattractant peptide-1 (MCP-1). Platelet derived growth factor (PDGF) and insulin-like growth factor (ILGF) which are expressed by all cellular constituents within atherosclerotic plaques have also been shown to be overexpressed, thus possibly intensifying the preexisting inflammatory reaction by a co-stimulatory support in the form of a mitogenic and chemotactic factor. Recently, Uyemura et al. (Cross regulatory roles of IL-12 and IL-10 in atherosclerosis. J Clin Invest 1996 97; 2130-2138) have elucidated type 1 T-cell cytokine pattern in human atherosclerotic lesions exemplified by a strong expression of IFN-γ but not IL-4 mRNA in comparison with normal arteries. Furthermore, IL-12-a T-cell growth factor produced primarily by activated monocytes and a selective inducer of Th1 cytokine pattern, was found to be overexpressed within lesions as manifested by the abundance of its major heterodimer form p70 and p40 (its dominant inducible protein) mRNA. Similar to the strong evidence for the dominance of the cellular immune system within the atherosclerotic plaque, there is also ample data supporting the involvement of the local humoral immune system. Thus, deposition of immunoglobulins and complement components have been shown in the plaques in addition to the enhanced expression of the C3b and C3Bi receptors in resident macrophages. Valuable clues with regard to the contribution of immune mediated inflammation to the progression of atherosclerosis come from animal models. Immunocompromised mice (class I MHC deficient) tend to develop accelerated atherosclerosis as compared with immune competent mice. Additionally, treatment of C57BL/6 mice (Emeson E E, Shen M L. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol 1993; 142: 1906-1915) and New-Zealand White rabbits (Roselaar S E, Schonfeld G, Daugherty A. Enhanced development of atherosclerosis in cholesterol fed rabbits by suppression of cell mediated immunity. J Clin Invest 1995; 96: 1389-1394) with cyclosporin A, a potent suppressor of IL-2 transcription resulted in a significantly enhanced atherosclerosis under “normal” lipoprotein “burden”. These latter studies may provide insight into the possible roles of the immune system in counteracting the self-perpetuating inflammatory process within the atherosclerotic plaque. Atherosclerosis is not a classical autoimmune disease, although some of its manifestations such as the production of the plaque which obstructs the blood vessels may be related to aberrant immune responsiveness. In classical autoimmune disease, one can often define very clearly the sensitizing autoantigen attacked by the immune system and the component(s) of the immune system which recognize the autoantigen (humoral, i.e. autoantibody or cellular, i.e. lymphocytes). Above all, one can show that by passive transfer of these components of the immune system the disease can be induced in healthy animals, or in the case of humans the disease may be transferred from a sick pregnant mother to her offspring. Many of the above are not prevailing in atherosclerosis. In addition, the disease definitely has common risk factors such as hypertension, diabetes, lack of physical activity, smoking and others, the disease affects elderly people and has a different genetic preponderance than in classical autoimmune diseases. Treatment of autoimmune inflammatory disease may be directed towards supression or reversal of general and/or disease-specific immune reactivity. Thus Aiello, for example (U.S. Pat. Nos. 6,034,102 and 6,114,395) discloses the use of estrogen-like compounds for treatment and prevention of atherosclerosis and atherosclerotic lesion progression by inhibition of inflammatory cell recruitment. Similarly, Medford et al. (U.S. Pat. No. 5,846,959) disclose methods for the prevention of formation of oxidized PUFA, for treatment of cardiovascular and non-cardiovascular inflammatory diseases mediated by the cellular adhesion molecule VCAM-1. Furthermore, Falb (U.S. Pat. No. 6,156,500) designates a number of cell signaling and adhesion molecules abundant in atherosclerotic plaque and disease as potential targets of anti-inflammatory therapies. Since oxidized LDL has been clearly implicated in the pathogenesis of atherosclerosis (see above), the contribution of these prominent plaque components to autoimmunity in atheromatous disease processes has been investigated. Immune Responsiveness to Oxidized LDL It is known that oxidized LDL (Ox LDL) is chemotactic for T-cells and monocytes. Ox LDL and its byproducts are also known to induce the expression of factors such as monocyte chemotactic factor 1, secretion of colony stimulating factor and platelet activating properties, all of which are potent growth stimulants. The active involvement of the cellular immune response in atherosclerosis has recently been substantiated by Stemme S., et al. (Proc Natl Acad Sci USA 1995; 92: 3893-97), who isolated CD4+ within plaques clones responding to Ox LDL as stimuli. The clones corresponding to Ox LDL (4 out of 27) produced principally interferon-γ rather than IL-4. It remains to be seen whether the above T-cell clones represent mere contact with the cellular immune system with the inciting strong immunogen (Ox LDL) or that this reaction provides means of combating the apparently indolent atherosclerotic process. The data regarding the involvement of the humoral mechanisms and their meaning are much more controversial. One recent study reported increased levels of antibodies against MDA-LDL, a metabolite of LDL oxidation, in women suffering from heart disease and/or diabetes (Dotevall, et al., Clin Sci 2001 November; 101(5): 523-31). Other investigators have demonstrated antibodies recognizing multiple epitopes on the oxidized LDL, representing immune reactivity to the lipid and apolipoprotein components (Steinerova A., et al., Physiol Res 2001;50(2): 131-41) in atherosclerosis and other diseases, such as diabetes, renovascular syndrome, uremia, rheumatic fever and lupus erythematosus. Several reports have associated increased levels of antibodies to Ox LDL with the progression of atherosclerosis (expressed by the degree of carotid stenosis, severity of peripheral vascular disease etc.). Most recently, Sherer et al. (Cardiology 2001;95(1):20-4) demonstrated elevated levels of antibodies to cardiolipin, beta 2GPI and OxLDL, in coronary heart disease. Thus, there seems to be a consensus as to the presence of Ox LDL antibodies in the form of immune complexes within atherosclerotic plaque, although the true significance of this finding has not been established. Antibodies to Ox LDL have been hypothesized as playing an active role in lipoprotein metabolism. Thus, it is known that immune complexes of Ox LDL and its corresponding antibodies are taken up more efficiently by macrophages in suspension as compared with Ox LDL. No conclusions can be drawn from this consistent finding on the pathogenesis of atherosclerosis since the question of whether the accelerated uptake of Ox LDL by the macrophages is beneficial or deleterious has not yet been resolved. Important data as to the significance of the humoral immune system in atherogenesis comes from animal models. It has been found that hyperimmunization of LDL-receptor deficient rabbits with homologous oxidized LDL, resulted in the production of high levels of anti-Ox LDL antibodies and was associated with a significant reduction in the extent of atherosclerotic lesions as compared with a control group exposed to phopsphate-buffered saline (PBS). A decrease in plaque formation has also been accomplished by immunization of rabbits with cholesterol rich liposomes with the concomitant production of anti-cholesterol antibodies, yet this effect was accompanied by a 35% reduction in very low density lipoprotein cholesterol levels. Thus, both the pathogenic role of oxidized LDL components and their importance as autoantigens in atherosclerosis, as well as other diseases, have been extensively demonstrated in laboratory and clinical studies. Mucosal Tolerance in Treatment of Autoimmune Disease Recently, new methods and pharmaceutical formulations have been found that are useful for treating autoimmune diseases (and related T-cell mediated inflammatory disorders such as allograft rejection and retroviral-associated neurological disease). These treatments induce tolerance, orally or mucosally, e.g. by inhalation, using as tolerizers autoantigens, bystander antigens, or disease-suppressive fragments or analogs of autoantigens or bystander antigens. Such treatments are described, for example, in U.S. Pat. No. 5,935,577 to Weiner et al. Autoantigens and bystander antigens are defined below (for a general review of mucosal tolerance see Nagler-Anderson, C., Crit Rev Immunol 2000;20(2):103-20). Intravenous administration of autoantigens (and fragments thereof containing immunodominant epitopic regions of their molecules) has been found to induce immune suppression through a mechanism called clonal anergy. Clonal anergy causes deactivation of only immune attack T-cells specific to a particular antigen, the result being a significant reduction in the immune response to this antigen. Thus, the autoimmune response-promoting T-cells specific to an autoantigen, once anergized, no longer proliferate in response to that antigen. This reduction in proliferation also reduces the immune reactions responsible for autoimmune disease symptoms (such as neural tissue is damage that is observed in MS). There is also evidence that oral administration of autoantigens (or immunodominant fragments) in a single dose and in substantially larger amounts than those that trigger “active suppression” may also induce tolerance through anergy (or clonal deletion). A method of treatment has also been disclosed that proceeds by active suppression. Active suppression functions via a different mechanism from that of clonal anergy. This method, discussed extensively in PCT Application PCT/US93/01705, involves oral or mucosal administration of antigens specific to the tissue under autoimmune attack. These are called “bystander antigens”. This treatment causes regulatory (suppressor) T-cells to be induced in the gut-associated lymphoid tissue (GALT), or bronchial associated lymphoid tissue (BALT), or most generally, mucosa associated lymphoid tissue (MALT) (MALT includes GALT and BALT). These regulatory cells are released in the blood or lymphatic tissue and then migrate to the organ or tissue afflicted by the autoimmune disease and suppress autoimmune attack of the afflicted organ or tissue. The T-cells elicited by the bystander antigen (which recognize at least one antigenic determinant of the bystander antigen used to elicit them) are targeted to the locus of autoimmune attack where they mediate the local release of certain immunomodulatory factors and cytokines, such as transforming growth factor beta (TGF-β), interleukin-4 (IL-4), and/or interleukin-10 (IL-10). Of these, TGF-β is an antigen-nonspecific immunosuppressive factor in that it suppresses immune attack regardless of the antigen that triggers the attack. (However, because oral or mucosal tolerization with a bystander antigen only causes the release of TGF-β in the vicinity of autoimmune attack, no systemic immunosuppression ensues.) IL-4 and IL-10 are also antigen-nonspecific immunoregulatory cytokines. IL-4 in particular enhances (T helper Th2) Th2response, i.e., acts on T-cell precursors and causes them to differentiate preferentially into Th2cells at the expense of Th1responses. IL-4 also indirectly inhibits Th, exacerbation. IL-10 is a direct inhibitor of Th1responses. After orally tolerizing mammals afflicted with autoimmune disease conditions with bystander antigens, increased levels of TGF-β, IL-4 and IL-10 are observed at the locus of autoimmune attack (Chen, Y. et al., Science, 265:1237-1240, 1994). The bystander suppression mechanism has been confirmed by von Herreth et al., (J. Clin. Invest., 96:1324-1331, September 1996). More recently, oral tolerance has been effectively applied in treatment of animal models of inflammatory bowel disease by feeding probiotic bacteria (Dunne, C, et al., Antonie Van Leeuwenhoek 1999 July-November; 76(1-4):279-92), autoimmune glomerulonephritis by feeding glomerular basement membrane (Reynolds, J. et al., J Am Soc Nephrol 2001 January; 12(1): 61-70) experimental allergic encephalomyelitis (EAE, which is the equivalent of multiple sclerosis or MS), by feeding myelin basic protein (MBP), adjuvant arthritis and collagen arthritis, by feeding a subject with collagen and HSP-65, respectively. A Boston based company called Autoimmune has carried out several human experiments for preventing diabetes, multiple sclerosis, rheumatoid arthritis and uveitis. The results of the human experiments have been less impressive than the non-human ones, however there has been some success with the prevention of arthritis. Oral tolerance to autoantigens found in atherosclerotic plaque lesions has also been investigated. Study of the epitopes recognized by T-cells and Ig titers in clinical and experimental models of atherosclerosis indicated three candidate antigens for suppression of inflammation in atheromatous lesions: oxidized LDL, the stress-related heat shock protein HSP 65 and the cardiolipin binding protein beta 2GP1. U.S. patent application Ser. No. 09/806,400 to Shoenfeld et al. (filed Sep. 30, 1999), which is incorporated herein in its entirety, discloses the reduction by approximately 30% of atherogenesis in the arteries of genetically susceptible LDL-RD receptor deficient transgenic mice fed with oxidized human LDL. This protective effect, however, was achieved by feeding a crude antigen preparation consisting of centrifuged, filtered and purified human serum LDL which had been subjected to a lengthy oxidation process with Cu++. Although significant inhibition of atherogenesis was achieved, presumably via oral tolerance, no identification of specific lipid antigens or immunogenic LDL components was made. Another obstacle encountered was the inherent instability of the crude oxidized LDL in vivo, due to enzymatic activity and uptake of oxidized LDL by the liver and cellular immune mechanisms. It is plausible that a stable, more carefully defined oxidized LDL analog would have provided oral tolerance of greater efficiency. The induction of immune tolerance and subsequent prevention or inhibition of autoimmune inflammatory processes has been demonstrated using exposure to suppressive antigens via mucosal sites other than the gut. The membranous tissue around the eyes, and the mucosa of the nasal cavity, as well as the gut, are exposed to many invading as well as self-antigens and possess mechanisms for immune reactivity. Thus, Rossi, et al. (Scand J Immunol 1999 August; 50(2):177-82) found that nasal administration of gliadin was as effective as intravenous administration in downregulating the immune response to the antigen in a mouse model of celiac disease. Similarly, nasal exposure to acetylcholine receptor antigen was more effective than oral exposure in delaying and reducing muscle weakness and specific lymphocyte proliferation in a mouse model of myasthenia gravis (Shi, F D. et al., J Immunol 1999 May 15; 162 (10): 5757-63). Therefore, immunogenic compounds intended for mucosal as well as intravenous or intraperitoneal administration should optimally be adaptable to nasal and other membranous routes of administration. Thus, there is clearly a need for novel, well defined, synthetic oxidized phospholipid derivatives exhibiting enhanced metabolic stability and efficient tolerizing immunogenicity in intravenous, intraperitoneal and mucosal administration. Synthesis of Oxidized Phospholipids Modification of phospholipids has been employed for a variety of applications. For example, phospholipids bearing lipid-soluble active compounds may be incorporated into compositions for trans-dermal and trans-membranal application (U.S. Pat. No. 5,985,292 to Fournerou et al.) and phospholipid derivatives can be incorporated into liposomes and biovectors for drug delivery (see, for example, U.S. Pat. Nos. 6,261,597 and 6,017,513 to Kurtz and Betbeder, et al., respectively, and U.S. Pat. No. 4,614,796). U.S. Pat. No. 5,660,855 discloses lipid constructs of aminomannose derivatized cholesterol suitable for targeting smooth muscle cells or tissue, formulated in liposomes. These formulations are aimed at reducing restenosis in arteries, using PTCA procedures. The use of liposomes for treating atherosclerosis has been further disclosed in WO 95/23592, to Hope and Rodrigueza, who teach pharmaceutical compositions of unilamellar liposomes that may contain phospholipids. The liposomes disclosed in WO 95/23592 are aimed at optimizing cholesterol efflux from atherosclerotic plaque and are typically non-oxidized phospholipids. Modified phospholipid derivatives mimicking platelet activation factor (PAF) structure are known to be pharmaceutically active in variety of disorders and diseases, effecting such functions as vascular permeability, blood pressure, heart function inhibition etc. It has been suggested that one group of these derivatives may have anti cancerous activity (U.S. Pat. No. 4,778,912 to Inoue at al.). However, the compound disclosed in U.S. Pat. No. 4,778,912 possesses a much longer bridge between the phosphate and the tertiary amine moiety than in the phosphatidyl group and therefore is not expected to be immunologically similar to Ox LDL. U.S. Pat. No. 4,329,302 teaches synthetic phosphoglycerides compounds—lysolechitin derivatives—that are usable in mediating platelet activation. While the compounds disclosed in U.S. Pat. No. 4,329,302 are either 1-O-alkyl ether or 1-O-fatty acyl phosphoglycerides, it was found that small chain acylation of lysolechitin gave rise to compounds with platelet activating behaviour, as opposed to long-chain acylation, and that the 1-O-alkyl ether are biologically superior to the corresponding 1-O-fatty acyl derivatives in mimicking PAF. The structural effect of various phospholipids on the biological activity thereof has also been investigated by Tokumura et al. (Journal of Pharmacology and Experimental Therapeutics. July 1981, Vol. 219, No. 1) and in U.S. Pat. No. 4,827,011 to Wissner et al., with respect to hypertension. Another group of modified phospholipid ether derivatives has been disclosed which was intended for chromatographic separation, but might have some physiological effect (CH Pat. No. 642,665 to Berchtold). Oxidation of phospholipids occurs in vivo through the action of free radicals and enzymatic reactions abundant in atheromatous plaque. In vitro, preparation of oxidized phospholipids usually involves simple chemical oxidation of a native LDL or LDL phospholipid component. Investigators studying the role of oxidized LDL have employed, for example, ferrous ions and ascorbic acid (Itabe, H., et al., J. Biol. Chem. 1996; 271:33208-217) and copper sulfate (George, J. et al., Atherosclerosis. 1998; 138:147-152; Ameli, S. et al., Arteriosclerosis Thromb Vasc Biol 1996; 16:1074-79) to produce oxidized, or mildly oxidized phospholipid molecules similar to those associated with plaque components. Similarly prepared molecules have been shown to be identical to auto-antigens associated with atherogenesis (Watson A. D. et al., J. Biol. Chem. 1997; 272:13597-607) and able to induce protective anti-atherogenic immune tolerance (U.S. patent application Ser. No. 09/806,400 to Shoenfeld et al., filed Sep. 30, 1999) in mice. Likewise, Koike (U.S. Pat. No. 5,561,052) discloses a method of producing oxidized lipids and phospholipids using copper sulfate and superoxide dismutase to produce oxidized arachidonic or linoleic acids and oxidized LDL for diagnostic use. Davies et al. (J. Biol. Chem. 2001, 276:16015) teach the use of oxidized phospholipids as peroxisome proliferator-activated receptor agonists. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC, see Example I for a 2-D structural description) and derivatives thereof such as 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are representative examples of mildly oxidized esterified phospholipids that have been studied with respect to atherogenesis (see, for example, Boullier et al., J. Biol. Chem. 2000, 275:9163; Subbanagounder et al., Circulation Research, 1999, pp. 311). The effect of different structural analogs that belong to this class of oxidized phospholipids has also been studied (see, for example, Subbanagounder et al., Arterioscler. Thromb. Nasc. Biol. 2000, pp. 2248; Leitinger et al., Proc. Nat. Ac. Sci. 1999, 96:12010). However, in vivo applications employing oxidized phospholipids prepared as above have the disadvantage of susceptibility to recognition, binding and metabolism of the active component in the body, making dosage and stability after administration an important consideration. Furthermore, the oxidation techniques employed are non-specific, yielding a variety of oxidized products, necessitating either further purification or use of impure antigenic compounds. This is of even greater concern with native LDL, even if purified. Thus, there is a widely recognized need for, and it would be highly advantageous to have, a novel, synthetic oxidized phospholipid and improved methods of synthesis and use thereof devoid of the above limitations. SUMMARY OF THE INVENTION According to the present invention there is provided a compound having a formula: or pharmaceutically acceptable salts thereof, wherein:(i) A1and A2are each independently selected from the group consisting of CH2and C═O, at least one of A1and A2being CH2;(ii) R1and R2are each independently selected from the group consisting of an alkyl chain having 1-27 carbon atoms andwherein X is an alkyl chain having 1-14 carbon atoms, Y is selected from the group consisting of:—OH, —H, alkyl, alkoxy, halogen, acetoxy and aromatic functional groups; andZ is selected from the group consisting of:and —OH, whereas R4is an alkyl, at least one of R1and R2beingas described above; and(iii) R3is selected from the group consisting of H, acyl, alkyl, phosphocholine, phosphoethanolamine, phosphoserine, phosphopardiolipin and phosphoinositol. According to further features in the preferred embodiments of the invention described below, R3is a non-phosphatidyl moeity, and as such the compound is a diglyceride. According to still further features in the described preferred embodiments each of A1and A2is CH2. According to still further features in the described preferred embodiments R1is an alkyl chain having 1-27 carbon atoms and R2is as described hereinabove. According to another aspect of the present invention there is provided a pharmaceutical composition for prevention and/or treatment of atherosclerosis, cardiovascular disorders, cerebrovascular disorders, peripheral vascular disease, stenosis, restenosis and/or in-stent-stenosis in a subject in need thereof, the composition comprising, as an active ingredient, a therapeutically effective amount of the compound described hereinabove and a pharmaceutically acceptable carrier. According to further features in preferred embodiments of the invention described below, the pharmaceutical composition is packaged and identified for use in the prevention and/or treatment of at least one disorder selected from the group consisting of atherosclerosis, cardiovascular disorders, cerebrovascular disease, peripheral vascular disorders, stenosis, restenosis and/or in-stent-stenosis. According to yet another aspect of the present invention there is provided a pharmaceutical composition for prevention and/or treatment of an inflammatory disorder, an immune mediated disease, an autoimmune disease and a proliferative disorder selected from the group consisting of aging, rheumatoid arthritis, juvenile rheumatoid arthritis, inflammatory bowl disease and cancer in a subject in need thereof, comprising, as an active ingredient, a therapeutically effective amount of the compound described hereinabove and a pharmaceutically acceptable carrier. According to further features in preferred embodiments of the invention described below, the pharmaceutical composition is packaged and identified for use in the prevention and/or treatment of an inflammatory disorder, an immune mediated disease, an autoimmune disease and a proliferative disorder selected from the group consisting of aging, rheumatoid arthritis, juvenile rheumatoid arthritis, inflammatory bowl disease and cancer. According to yet further features in preferred embodiments of the invention described below, each of the pharmaceutical compositions described above is designed for inducing tolerance to oxidized LDL via mucosal administration. According to further features in preferred embodiments of the invention described below, each of the pharmaceutical compositions described above is designed for nasal, oral, subcutaneous or intra- peritoneal administration, alone or in combination with additional routes of immunomodulation. According to still further features in preferred embodiments of the invention described below, the compound reduces immune reactivity to oxidized LDL in the subject. According to still further features in preferred embodiments of the invention described below, each of the pharmaceutical compositions described above further comprises a therapeutically effective amount of at least one additional compound selected from the group consisting of HMG CoA reductase inhibitors (Statins) mucosal adjuvants, corticosteroids, anti-inflammatory compounds, analgesics, growth factors, toxins, and additional tolerizing antigens. According to still another aspect of the present invention there is provided a pharmaceutical composition for prevention and/or treatment of a disease, syndrome or condition selected from the group consisting of atherosclerosis, cardiovascular disorders, cerebrovascular disorders, peripheral vascular disease, stenosis, restenosis and/or in-stent-stenosis in a subject in need thereof, comprising, as an active ingredient, a therapeutically effective amount of a synthetic LDL derivative, or pharmaceutically acceptable salts thereof, the composition further comprising a pharmaceutically acceptable carrier. According to an additional aspect of the present invention there is provided a method of prevention and/or treatment of atherosclerosis, cardiovascular disease, cerebrovascular disease, peripheral vascular disease, stenosis, restenosis and/or in-stent-stenosis in a subject in need thereof, the method comprising administering a therapeutically effective amount of the compound of the present invention as described hereinabove. According to yet an additional aspect of the present invention there is provided a method of prevention and/or treatment of an inflammatory disorder, an immune mediated disease, an autoimmune disease and a proliferative disorder selected from the group consisting of aging, rheumatoid arthritis, juvenile rheumatoid arthritis, inflammatory bowl disease and cancer in a subject in need thereof, the method comprising administering a therapeutically effective amount of the compound of the present invention as described hereinabove. According to yet further features in preferred embodiments of the invention described below, the compound is administered via mucosal administration. According to further features in preferred embodiments of the invention described below, the administration of the compound is nasal, oral, subcutaneous or intra-peritoneal administration, alone or in combination with additional routes of immunomodulation. According to still further features in preferred embodiments of the invention described below, the administration of the compound reduces immune reactivity to oxidized LDL in the subject. According to further features in preferred embodiments of the invention described below, the compound is administered in addition to a therapeutically effective amount of at least one additional compound selected from the group consisting of HMG CoA reductase inhibitors (Statins), mucosal adjuvants, corticosteroids, anti-inflammatory compounds, analgetics, growth factors, toxins, and additional tolerizing antigens. According to still further features in preferred embodiments of the invention described below, preferred compounds that are usable in the context of the present invention include 1-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-3-phosphocholine (D-ALLE), 3-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-1-phosphocholine (L-ALLE) and racemic mixtures thereof; 1-hexadecyl-2-(5′-carboxy-butyl)-sn-glycero-3-phosphocholine (CI-201) and its corresponding acetals and any combination of the above. According to yet a further aspect of the present invention there is provided a method of synthesizing an oxidized phospholipid, the method comprising: (a) providing a phospholipid backbone including two fatty acid side chains, wherein at least one of the fatty acid side chains is a mono-unsaturated fatty acid; and (b) oxidizing the unsaturated bond of the mono-unsaturated fatty acid to thereby generate the oxidized phospholipid. According to further features in preferred embodiments of the invention described below the phospholipid backbone further includes a moiety selected from the group consisting of H, acyl, alkyl, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl cardiolipin and phosphatidyl inositol. According to still further features in preferred embodiments of the invention described below the mono unsaturated fatty acid is C2-15. According to yet further features in preferred embodiments of the invention described below the oxidized phospholipid is 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, (POVPC), and the mono-unsaturated fatty acid is 5-hexenoic acid. The present invention successfully addresses the shortcomings of the presently known configurations by providing novel synthetic oxidized LDL derivatives and methods of inducing immune tolerance to oxidized LDL utilizing same, as well as a novel approach of synthesizing oxidized LDL derivatives. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is of methods and compositions employing synthetic oxidized phospholipids effective in inducing mucosal tolerance and inhibiting inflammatory processes contributing to atheromatous vascular disease and sequalae. Experimental and clinical evidence indicates a causative role for oxidized LDL and LDL components in the etiology of the excessive inflammatory response in atherosclerosis. Both cellular and humoral immune reactivity to plaque related oxidized LDL have been demonstrated, suggesting an important anti-oxidized LDL auto-immune component in atherogenesis. Thus, oxidized LDL and components thereof, have been the targets of numerous therapies for prevention and treatment of heart disease, cerebral-vascular disease and peripheral vascular disease. Although the prior art teaches that oral administration of LDL can result in 30% reduction in atherogenesis, such a protective effect was observed following administration of a crude antigen preparation consisting of centrifuged, filtered and purified human serum LDL which had been subjected to a lengthy oxidation process with Cu++. Although significant inhibition of atherogenesis was achieved, presumably via oral tolerance, no identification of specific lipid antigens or immunogenic LDL components was made. Another obstacle encountered was the inherent instability of the crude oxidized LDL in vivo, due to enzymatic activity and uptake of oxidized LDL by the liver and cellular immune mechanisms. Such an inherent instability is also associated with in vivo applications that utilize other oxidized LDL derivatives, such as POVPC and PGPC (described hereinabove). In view of the growing need for oxidized LDL derivatives devoid of these inherent instability, and as the presently known studies that relate to atherogenesis involve synthetic oxidized LDL derivatives that typically include esterified phospholipids such as 1,2-O-fatty acyl phosphoglycerides, the present inventors have envisioned that synthetic oxidized LDL derivatives which include etherified phospholipids can serve as stable, novel agents for inducing immune tolerance to oxidized LDL. While reducing the present invention to practice, the present inventors have synthesized a novel class of well-defined synthetic oxidized LDL derivatives (etherified phospholipids) and have uncovered that administration of such oxidized LDL derivatives can induce immune tolerance to oxidized LDL and thus inhibit atherogenesis, while avoiding the abovementioned limitations. Hence, according to one aspect of the present invention there is provided a compound having the general formula: or pharmaceutically acceptable salts thereof, wherein:(i) A1and A2are each independently selected from the group consisting of CH2and C═O, at least one of A1and A2being CH2;(ii) R1and R2are each independently selected from the group consisting of an alkyl chain having 1-27 carbon atoms andwherein X is an alkyl chain having 1-24 carbon atoms, Y is selected from the group consisting of:—OH, —H, alkyl, alkoxy halogen, acetoxy and aromatic functional groups; andZ is selected from the group consisting of:and —OH, whereas R4is an alkyl, at least one of R1and R2beingand(iii) R3is selected from the group consisting of H, acyl, alkyl, phosphocholine, phosphoethanolamine, phosphoserine, phosphocardolipin and phosphoinositol. In one embodiment of the present invention, one of A1and A2is CH2and hence the compound of the present invention is a mono-etherified phospholipid having an O-fatty acyl component. However, in a preferred embodiment of the present invention each of A1and A2is CH2and hence the compound of the present invention is a dietherified phospholipid. Such dietherified phospholipids do not include the inherent instable O-fatty acyl component and are hence characterized by improved in vivo stability, particularly as compared with the presently known synthetic oxidized pholpholipids (e.g., POVPC and PGPC). As is described in the formula hereinabove, at least one of R1and R2is an oxidized alkyl chain. However, since in naturally occuring oxidized LDL derivatives the oxidized alkyl chain is typically located at the second position, and since it has been demonstrated that the biological activity of several phospholipids directly depends on the structure thereof (see the Background section for a detailed discussion), in a preferred embodiment of the present invention R1is a non-oxidized alkyl chain while R2is an oxidized alkyl chain. As is further described in the formula hereinabove, the oxidized alkyl chain include oxidized functional groups such as (aldehyde), (carboxylic acid) and (acetal). One example of a novel etherified oxidized phospholipid of the present invention is 2,5′-Aldehyde Lecithin Ether (ALLE): 1-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-3-phosphocholine (D-ALLE), 3-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-1-phosphocholine (L-ALLE)], and the racemic mixture thereof, the synthesis and use of which are further detailed in the Examples section which follows. However, as aldehydes are known as unstable compounds, which tend to be easily oxidized, preferred examples of novel etherified oxidized phospholipids according to the present invention include the acid derivative 1-Hexadecyl-2-(5′-Carboxy-butyl)-sn-glycero-3-phosphcholine (also referred to hereinafter as IC-201), and its corresponding acetals 1-Hexadecyl-2-(5′,5′-Dimethoxy-pentyloxy)-sn-glycero-3-phosphcholine and 1-Hexadecyl-2-(5′,5′-Diethoxy-pentyloxy)-sn-glycero-3-phosphcholine (seeFIG. 10for 2-D structural formulas), the synthesis and use of which are also further detailed in is the Examples section which follows. In this respect it should be noted that carboxylic acid derivatives of oxidized etherified phospholipids have been disclosed in CH Pat. No. 642,665. However, CH Pat. No. 642,665 teaches etherified phospholipids in which the carboxylic acid is located at the first position of the phospholipid backbone and hence, as is discussed hereinabove, it is assumed that such compounds would not be as biologically active as the corresponding compounds bearing the carboxylic acid group at the second position of the phospholipid backbone. Studies on the structure-activity relationship with respect to the location of the oxidized alkyl chain in the phospholipid backbone, which are aimed at more clearly demonstrating the superior activity of etherified oxidized phospholipids having an oxidized alkyl chain at the second position of the phospholipid backbone, are currently being conducted by the present inventors. As is described in the formula hereinabove, R3is either a phosphatidyl moiety (e.g., phosphocholine, phosphoethanolamine etc.) or a non-phosphatidyl moiety (e.g., acyl or alkyl). When R3is a non-phosphatidyl moiety, the resultant compound is not a phospholipid, rather a diglyceride compound. Such diglyceride compounds retain similar structure characteristics and as such in all probability would posses antigenicity and immune tolerizing activity. Thus, these compounds can also be used in prevention and/or treatment of atherosclerosis related disorders, and employed and applied similarly to the oxidized phospholipid derivatives described herein. As is described in the Examples section that follows, the compounds of the present invention have been found to induce immune tolerance to oxidized LDL. Thus, according to another aspect of the present invention there is provided a method of inducing immune tolerance to oxidized LDL in a subject such as a human being. Such immune tolerance can be used in the prevention and/or treatment of disorders associated with plaque formation, including but not limited to atherosclerosis, atherosclerotic cardiovascular disease, cerebrovascular disease, peripheral vascular disease, stenosis, restenosis and in-stent-stenosis. Some non-limiting examples of atherosclerotic cardiovascular disease are myocardial infarction, coronary arterial disease, acute coronary syndromes, congestive heart failure, angina pectoris and myocardial ischemia. Some non-limiting examples of peripheral vascular disease are gangrene, diabetic vasculopathy, ischemic bowel disease, thrombosis, diabetic retinopathy and diabetic nephropathy. Non-limiting examples of cerebrovascular disease are stroke, cerebrovascular inflammation, cerebral hemorrhage and vertebral arterial insufficiency. Stenosis is occlusive disease of the vasculature, commonly caused by atheromatous plaque and enhanced platelet activity, most critically affecting the coronary vasculature. Restenosis is the progressive re-occlusion often following reduction of occlusions in stenotic vasculature. In cases where patency of the vasculature requires the mechanical support of a stent, in-stent-stenosis may occur, re-occluding the treated vessel. As is further detailed in the Examples section which follows, the method, according to this aspect of the present invention is effected by administering to the subject a therapeutically effective amount of the synthetic etherified oxidized phospholipids of the present invention described hereinabove. Recently, phospholipids and phospholipid metabolites have been clearly implicated in the pathogenesis, and therefore potential treatment, of additional, non-atherosclerosis-related diseases. Such diseases and syndromes include, for example, oxidative stress of aging (Onorato J M, et al, Annal NY Acad Sci 1998 November 20;854:277-90), rheumatoid arthritis (RA)(Paimela L, et al. Ann Rheum Dis 1996 August;55(8):558-9), juvenile rheumatoid arthritis (Savolainen A, et al, 1995;24(4):209-1 1), inflammatory bowel disease (IBD)(Sawai T, et al, Pediatr Surg Int 2001 May;17(4):269-74) and renal cancer (Noguchi S, et al, Biochem Biophys Res Commun 1992 Jan. 31;182(2):544-50). Thus, the compounds of the present invention can also be used in a method for prevention and/or treatment of non-atherosclerosis related diseases such as infalammatory disorders, immune mediated diseases, autoimmune diseases and proliferative disorders. Non-limiting examples of such disorders and diseases include aging, RA, juvenile RA, IBD and cancer, as is described hereinabove. While the etherified oxidized phospholipids of the present invention can be synthesized using modifications of prior art approaches, while reducing the present invention to practice, the present inventors have uncovered a novel method for synthesizing such compounds, which can also be utilized for synthesizing other classes of oxidized phospholipids (e.g., esterified oxidized phospholipids). Thus, according to another aspect of the present invention there is provided a method of synthesizing an oxidized phospholipid. The method is effected by first providing a phospholipid backbone including two fatty acid side chains, at least one of the fatty acid side chains being a mono-unsaturated fatty acid (preferably a C2-15fatty acid), followed by oxidizing the unsaturated bond of the mono-unsaturated fatty acid, thereby generating the oxidized phospholipid. The oxidation of the unsaturated bond can be performed using known oxidizing agents such as, for example, potassium meta periodate. Examples of phospholipid backbones suitable for synthesis of, for example, an esterified oxidized phospholipid according to the teachings of the present invention include, but are not limited to lecithin, which includes two O-fatty acyl side chains, and lysolecithin which includes a single O-fatty acyl side chain and as such must undergo an additional synthesis step of adding an additional fatty acid side chain prior to oxidation. The novel synthesis method of the present invention can be used, for example, for synthesizing the esterified phospholipid POVPC, which, as is detailed in the Background section hereinabove, is known to be associated with atherogenesis. When utilized to synthesize POVPC, the phospholipid backbone includes 5-hexenoic acid as the mono-unsaturated fatty acid side chain. The novel synthesis approach of the present invention provides several advantages over prior art synthesis approaches. In this synthetic method, a defined mono unsaturated acid of desired length and structure is reacted with a molecule having lysolecithin backbone to give monounsaturated phospholipids, which is then oxidized at the desired unsaturated double bond. The advantages of such a novel approach is in its specificity and simplicity. Oxidizing mono-unsaturated phospholipids having lecithin backbone results in a single, desired specific product and therefore commercial product work up and purification is made much more efficient. Such a reaction provides specific, desired oxidized phospholipids, traversing the need to perform complicated separations and purification. Furthermore, using this method it is possible to design and synthesize oxidized phospholipids by oxidation of mono-unsaturated phospholipids with a double bond at the end of the chain, enabling the use of substantially short unsaturated acid chains in the synthetic process. Such mono-unsaturated short acid chains are relatively inexpensive, and thus reducing the costs associated with synthesis. As such, the synthesis method of the present invention could therefore be conveniently adapted for large-scale manufacturing processes. A detailed description of synthesis of etherified and esterified oxidized phospholipids according to the teachings of the present invention is provided in the Examples section which follows. The immune tolerance inducing compounds described herein can be utilized in the therapeutic applications described hereinabove, by being administered per se, or in a pharmaceutical composition where it is mixed with suitable carriers or excipients. Thus, according to another aspect of the present invention, there are provided pharmaceutical compositions for prevention and/or treatment of atherosclerosis, cardiovascular disorders, cerebrovascular disorders, peripheral vascular disease, stenosis, restenosis and/or in-stent-stenosis in a subject in need thereof. The pharmaceutical compositions according to this aspect of the present invention comprise, as an active ingredient, a therapeutically effective amount of the etherified oxidized phospholipid of the present invention or any other synthetic oxidized LDL derivative and a pharmaceutically acceptable carrier. The pharmaceutical compositions of the present invention can further be used for prevention and/ot treatment of inflammatory disorders, immune mediated diseases, autoimmune diseases and proliferative disorders such as, but not limited to, aging, RA, juvenile RA, IBD and cancer. Herein the term “active ingredient” refers to the compounds (e.g., ALLE and CI-201) accountable for the biological effect. Suitable routes of administration may, for example, include oral, rectal, transmucosal, especially transnasal, intestinal or parenteral delivery, including intramuscular, subcutaneous and intramedullary injections as well as intrathecal, direct intraventricular, intravenous, inrtaperitoneal, intranasal, or intraocular injections. Alternately, one may administer the pharmaceutical composition in a local rather than systemic manner, for example, via injection of the pharmaceutical composition directly into a tissue region of a patient. In a preferred embodiment of the present invention, the pharmaceutical compositions are designed for inducing tolerance to Ox LDL via mucosal administration. Further preferably, the pharmaceutical compositions of the present invention are designed for nasal, oral or intraperitoneal administration, as is detailed hereinafter. The pharmaceutical composition of the present invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides. Pharmaceutical compositions suitable for use in context of the present invention include compositions wherein the active ingredients are contained in an amount effective to achieve the intended purpose. More specifically, a therapeutically effective amount means an amount of active ingredients effective to prevent, alleviate or ameliorate symptoms of a disorder (e.g., atherosclerosis) or prolong the survival of the subject being treated. Dosage amount and interval may be adjusted individually to provide plasma or brain levels of the active ingredient are sufficient to induce or suppress angiogenesis (minimal effective concentration, MEC). The MEC will vary for each preparation, but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. Detection assays can be used to determine plasma concentrations. The present invention illustrates for the first time that synthetic derivatives of oxidized phospholipids, etherified oxidized phospholipids in particular, can be used to prevent and treat atherosclerosis in a subject, while being devoid of limitations inherent to treatments utilizing biologically derived forms of oxidized LDL or other classes of synthetic derivatives of oxidized LDL. The present invention also provides a novel approach for synthesizing oxidized phopholipids. The present invention also provides novel oxidized phospholipid ethers, utilizable for treatment of atherosclerosis and related disorders, as well as other inflammatory and immune related disorders and diseases. EXAMPLES Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include biochemical and immunological techniques. Such techniques are thoroughly explained in the literature. See, for example, “Cell Biology: A Laboratory Handbook”, Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), “Basic and Clinical Immunology” (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), “Selected Methods in Cellular Immunology”, W.H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; and “Methods in Enzymology” Vol. 1-317, Academic Press; Marshak et al., all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference. Materials and General Methods Apo-E knock out mice used in our experiments are from the atherosclerosis prone strain C57BL/6J-Apoetm1unc. Mice homozygous for the Apoetm1uncmutations show a marked increase in total plasma cholesterol levels which is unaffected by age or sex. Fatty streaks in the proximal aorta are found at 3 months of age. The lesions increase with age and progress to lesions with less lipid but more elongated cells, typical of a more advanced stage of pre-atherosclerotic lesion. Strain Development: The Apoetm1uncmutant strain was developed in the laboratory of Dr. Nobuyo Maeda at University of North Carolina at Chapel Hill. The 129-derived E14Tg2a ES cell line was used. The plasmid used is designated as pNMC109 and the founder line is T-89. The C57BL/6J strain was produced by backcrossing the Apoetm1uncmutation 10 times to C57BL/6J mice [11,12]. The mice were maintained at the Sheba Hospital Animal Facility (Tel-Hashomer, Israel) on a 12-hour light/dark cycle, at 22-24° C. and fed a normal fat diet of laboratory chow (Purina Rodent Laboratory Chow No. 5001) containing 0.027% cholesterol, approximately 4.5% total fat, and water, ad libitum. I. Intraperitioneal immunization with ALLE: The phospholipid ether analog (ALLE D+L) was coupled to purified protein derivative from tuberculin (PPD). The stock solution of ALLE (D+L) was dissolved in ethanol (99 mg/ml). 5 mg ALLE (D+L), (50.5 μl from stock solution) was diluted to 5 mg/ml with 0.25M phosphate buffer, pH 7.2, by stirring on ice. 1.5 mg of D- and L-ALLE in 300 μl of phosphate buffer were added to 0.6 mg PPD dissolved in 300 μl of phosphate buffer. 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid-HCl (5 mg; Sigma, St.Louis, Mo.) dissolved in 50 μl of water was added by stirring at 4° for 20 min. The remaining active sites were blocked with 100 μl of 1M glycine. Coupled compounds were dialyzed against phosphate-buffered saline (PBS), adjusted to 3 ml with PBS and stored at 4° C. Immunization with 0.3 ml (150 kg) antigen per mouse was performed intraperitoneally 4 times every 2 weeks. II. Subcutaneous immunization with Human oxidized LDL: Human oxidized LDL was prepared from human plasma pool (d-1.019 to 1.063 gram/ml by ultracentrifugation) and was Cu-oxidized overnight (by adding 15 μl 1 mM CuSO4to each ml of LDL previously diluted to 1 mg/ml concentration). The oxidized LDL was dialyzed against PBS and filtrated. For immunization, oxidized LDL was dissolved in PBS and mixed with equal volumes of Freund's incomplete adjuvant. Immunizations were performed by single subcutaneous injection of 50 μg antigen/mouse in 0.2 ml volume. One to three days following the last oral administration the mice received one immunization, and were sacrificed 7-10 days post immunization. Cholesterol Level Determination: At the completion of the experiment, 1-1.5 ml of blood was obtained by cardiac puncture, 1000 U/ml heparin was added to each sample and total plasma cholesterol levels were determined using an automated enzymatic technique (Boehringer Mannheim, Germany). FPLC Analysis: Fast Protein Liquid Chromatography analysis of cholesterol and lipid content of lipoproteins was performed using Superose 6 HR 10/30 column (Amersham Pharmacia Biotech, Inc, Peapack, N.J.) on a FPLC system (Pharmacia LKB. FRAC-200, Pharmacia, Peapack, N.J.). A minimum sample volume of 300 μl (blood pooled from 3 mice was diluted 1:2 and filtered before loading) was required in the sampling vial for the automatic sampler to completely fill the 200 μl sample loop. Fractions 10-40 were collected, each fraction contained 0.5 ml. A 250 μl sample from each fraction was mixed with freshly prepared cholesterol reagent or triglyceride reagent respectively, incubated for 5 minutes at 37° C. and assayed spectrophotometrically at 500 nm. Assessment of Atherosclerosis: Quantification of atherosclerotic fatty streak lesions was done by calculating the lesion size in the aortic sinus as previously described [16] and by calculating the lesion size in the aorta. Briefly, after perfusion with saline Tris EDTA, the heart and the aorta were removed from the animals and the peripheral fat cleaned carefully. The upper section of the heart was embedded in OCT medium (10.24% w/w polyvinyl alcohol; 4.26% w/w polyethylene glycol; 85.50% w/w nonreactive ingredients) and frozen. Every other section (10 μm thick) throughout the aortic sinus (400 μm) was taken for analysis. The distal portion of the aortic sinus was recognized by the three valve cusps that are the junctions of the aorta to the heart. Sections were evaluated for fatty streak lesions after staining with oil-red O. Lesion areas per section were scored on a grid [17] by an observer counting unidentified, numbered specimens. The aorta was dissected from the heart and surrounding adventitious tissue was removed. Fixation of the aorta and Sudan staining of the vessels were performed as previously described [21]. Proliferation assays: Mice were fed with ALLE, POVPC or PBS as described for assessment of atherosclerosis, and then immunized one day following the last feeding with oxidized LDL prepared from purified human LDL as described above. Proliferation was assayed eight days after immunization with the oxidized LDL as follows: Spleens or lymph nodes were prepared by meshing the tissues on 100 mesh screens. (Lymph nodes where immunization was performed, and spleens where no immunization performed). Red blood cells were lysed with cold sterile double distilled water (6 ml) for 30 seconds and 2 ml of NaCl 3.5% were added. Incomplete medium was added (10 ml), cells were centrifuge for 7 minutes at 1,700 rpm, resuspended in RPMI medium and counted in a haemocytometer at 1:20 dilution (10 μl cells+190 μl Trypan Blue). Proliferation was measured by the incorporation of [3H]-Thymidine into DNA in triplicate samples of 100 μl of the packed cells (2.5×106cells/ml) in a 96 well microtiter plate. Triplicate samples of oxidized LDL (0-10 μg/ml, 100 μl/well) were added, cells incubated for 72 hours (37° C., 5% CO2and about 98% humidity) and 10 μl3[H]-Thymidine (0.5 μCi/well) were added. After an additional day of incubation the cells were harvested and transferred to glass fiber filters using a cell harvester (Brandel) and counted using β-counter (Lumitron). For assay of cytokines the supernatant was collected without adding3[H]-Thymidine and assayed by ELISA. A separate group of mice were fed with ALLE or PBS and immunized with oxidized LDL as described above, one day following the last fed dose. Draining inguinal lymph nodes (taken 8 days after immunization) were collected from 3 mice from each of the groups, for the proliferation studies. 1×106cells per ml were incubated in triplicates for 72 hours in 0.2 ml of culture medium in microtiter wells in the presence 10 μg/ml oxidized LDL. Proliferation was measured by the incorporation of [3H]-thymidine into DNA during the final 12 hours of incubation. The results are expressed as the stimulation index (S.I.): the ratio of the mean radioactivity (cpm) of the antigen to the mean background (cpm) obtained in the absence of the antigen. Standard deviation was always <10% of the mean cpm. RT-PCR analysis: Aortas were removed out of treated and untreated mice (in a sterile manner) and freezed in liquid nitrogen. The aorta were mashed on screen cup and the RNA production was performed using Rneasy kit (QIAGEN). RNA samples were examined in spectrophotometer and normalized relative to β-actin. Reverse transcription of RNA to cDNA and PCR with primers was performed with “Titan one tube RT-PCR kit” (ROCHE). Results were detected on 1% agarose gel and were documented on film. Statistical Analysis: A one way ANOVA test was used to compare independent values. p<0.05 was accepted as statistically significant. Example I 2,5′-Aldehyde Lecithin Ether (ALLE) was synthesized according to a modification of general methods for synthesis of ether analogs of lecithins communicated by Eibl H., et al. Ann. Chem. 709:226-230, (1967), W. J. Baumann and H. K. Mangold, J. Org. Chem. 31,498 (1996), E. Baer and Buchnea J B C. 230,447 (1958), Halperin G et al Methods in Enzymology 129,838-846 (1986). The following protocol refers to compounds and processes depicted in 2-D form in FIG.1. Hexadecyl-glycerol ether: D-Acetone glycerol (4 grams) for synthesis of L-ALLE or L-Acetone glycerol for synthesis of D-ALLE, powdered potassium hydroxide (approximately 10 grams) and hexadecyl bromide (9.3 grams) in benzene (100 ml) were stirred and refluxed for 5 hours, while removing the water formed by azeotropic distillation (compare W. J. Baumann and H. K. Mangold, J. Org. Chem. 29: 3055, 1964 and F. Paltauf, Monatsh. 99:1277, 1968). The volume of the solvent was gradually reduced to about 20 ml, and the resulting mixture was cooled to room temperature and dissolved in ether (100 ml). The resulting solution was washed with water (2×50 ml), and the solvent was removed under reduced pressure. A 100 ml mixture of 90:10:5 methanol:water:concentrated hydrochloric acid was added to the residue and the mixture was refluxed for 10 minutes. The product was extracted with ether (200 ml) and was washed consecutively with water (50 ml), 10% sodium hydroxide (20 ml) and again with water (volumes of 20 ml) until neutral. The solvent was removed under reduced pressure and the product (8.8 grams) was crystallized from hexane to give 7.4 grams of pure 1-hexadecyl-glyceryl ether (compound I,FIG. 1) for synthesis of D-ALLE or 3-hexadecyl-glyceryl ether for synthesis of L-ALLE. 5-Hexenyl-methane sulfonate: A mixture of 5-hexene-1-ol (12 ml) and dry pyridine (25 ml) was cooled to between −4° C. and −10° C. in an ice-salt bath. Methanesulfonyl chloride (10 ml) was added dropwise during a period of 60 minutes, and the mixture was kept at 4° C. for 48 hours. Ice (20 grams) was added, the mixture was allowed to stand for 30 minutes, and the product was extracted with ether (200 ml). The organic phase was washed with water (20 ml), 10% hydrochloric acid, 10% sodium bicarbonate (20 ml) and again with water (20 ml). The solvent was evaporated and the crude product was chromatographed on silica gel 60 (100 grams) using a mixture of 80:20 CHCl3:EtOAc as eluent, to give 14 grams of 5-hexenyl-methane sulfonate. 1-Hexadecyloxy-3-trityloxy-2-propanol (or D-ALLE) or 3-Hexadecyloxy-1-trityloxy-2-propanol (for L-ALLE) (compound II): 1-Hexadecyloxy-glycerol (for D-ALLE) or 3-Hexadecyloxy-glycerol (for L-ALLE) (7.9 grams), triphenylchloromethane (8.4 grams) and dry pyridine (40 ml) were heated at 100° C. for 12 hours. After cooling, 300 ml of ether and 150 ml of ice-cold water were added, and the reaction mixture was transferred to a separatory funnel. The organic phase was washed consecutively with 50 ml of ice water, 1% potassium carbonate solution (until basic) and 50 ml of water, then dried over anhydrous sodium sulfate. The solvent was evaporated, the residue was dissolved in 150 ml of warm petroleum ether and the resulting solution was cooled at 4° C. over night. After filtration of the precipitate, the filtrate was evaporated and the residue was recrystallized from 20 ml of ethyl acetate at −30° C., yielding 8.2 grams of 1-Hexadecyloxy-3-trityloxy-2-propanol (for D-ALLE) or 3-hexadecyloxy-1-trityloxy-2-propanol (for L-ALLE) (compound II, FIG.1), melting point 49° C. 1-Hexadecyl-2-(5′-hexenyl)-glyceryl ether for D-ALLE) or 3-hexadecyl-2-(5′-hexenyl)-glyceryl ether (for L-ALLE) (compound IV): 1-Hexadecyloxy-3-trityloxy-2-propanol (for D-ALLE) or 3-Hexadecyloxy-1-trityloxy-2-propanol (for L-ALLE) (compound II,FIG. 1) (5.5 grams) was etherified with 5-hexenyl-methanesulfonate, using powdered potassium hydroxide in benzene solution as described above. The crude product 1-Hexadecyloxy-2-(5′-hexenyloxy)-sn-3-trityloxy-propane (for D-ALLE) or 3-Hexadecyloxy-2-(5′-hexenyloxy)-sn-3-trityloxy-propane (for L-ALLE) (compound III,FIG. 1) was dissolved in 100 ml of 90:10:5 methanol:water:concentrated hydrochloric acid and the mixture was refluxed for 6 hours. The product was extracted with ether, washed with water and the solvent was removed. The residue was dissolved in petroleum ether (100 ml) and was kept in 4° C. for overnight, causing most of the triphenyl carbinol to be deposited. After filtration and removal of the solvent from the filtrate the crude product was chromatographed on silica gel 60 (40 grams), using a mixture of 1:1 chloroform:petroleum ether as eluent, to give 1.8 grams of pure 1-hexadecyl-2-(5′-hexenyl)-glyceryl ether (for D-ALLE) or 3-hexadecyl-2-(5′-hexenyl)-glyceryl ether (for L-ALLE) (compound IV, FIG.1). A solution of 1-hexadecyl-2-hexenyl-glyceryl ether (for D-ALLE) or 3-hexadecyl-2-hexenyl-glyceryl ether (for L-ALLE) (compound IV,FIG. 1) (2 grams) in dry chloroform (15 ml) was added dropwise into a stirred, cooled solution (−4° C. to −10° C.) of dry triethylamine (3 ml) and 2-bromoethyl dichlorophosphate (1.25 ml, prepared as described hereinbelow) in dry chloroform (15 ml), during a period of 1 hour. The mixture was kept at room temperature for 6 hours and then heated to 40° C. for 12 hours. The resulting dark brown solution was cooled to 0° C. and 0.1M potassium chloride (15 ml) was added. The mixture was allowed to reach room temperature and was stirred for 60 minutes. Methanol (25 ml) and chloroform (50 ml) were added and the organic phase was washed with 0.1M hydrochloric acid (20 ml) and water (20 ml). The solvent was evaporated and the crude product was dissolved in methanol (15 ml), the solution was transferred to a culture tube and was cooled in an ice-salt bath. Cold trimethylamine (3 ml, −20° C.) was added and the tube was sealed. The mixture was heated to 55° C. for 12 hours, cooled to room temperature and the solvent evaporated using a stream of nitrogen. The residue was extracted with a mixture of 2:1 chloroform:methanol (25 ml) and washed with 1M potassium carbonate (10 ml) and water (2×10 ml). The solvent was removed under educed pressure and the crude products were chromatographed on silica gel 60 (20 grams), using a mixture of 60:40 chloroform:methanol, to give 1.5 grams of 1-hexadcyl-2-(5′-hexenyl)-sn-glycero-3-phosphocholine (for D-ALLE) or 3-hexadcyl-2-(5′-hexenyl)-sn-glycero-1-phosphocholine (for L-ALLE) (compound V, FIG.1). The structure of compound V was confirmed by NMR and mass spectrometry. A solution of Compound V (0.5 gram) in formic acid (15 ml) and 30% hydrogen peroxide (3.5 ml) was stirred at room temperature over night. The reaction mixture was diluted with water (50 ml), and extracted with a mixture of 2:1 chloroform:methanol (5×50 ml). The solvent was evaporated under reduced pressure and the residue was mixed with methanol (10 ml) and water (4 ml), then stirred at room temperature for 60 minutes. 80% phosphoric acid (2 ml) and potassium meta periodate (0.8 gram) were then added. The mixture was kept at room temperature overnight, diluted with water (50 ml) and extracted with 2:1 chloroform:methanol (50 ml). The organic phase was washed with 10% sodium bisulfite (10 ml) and water (10 ml). The solvent was removed under reduced-pressure and the crude product was chromatographed on silica gel 60 (10 grams), using a mixture of 1:1 chloroform:methanol as elunet, to give 249 mg of 1-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-3-phosphocholine (for D-ALLE) or 3-hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-1-phosphocholine (for L-ALLE) (compound VI, FIG.1), exhibiting an Rfof 0.15 (TLC system, 60:40:8 chloroform:methanol:water) and a positive reaction with dinitrophenylhydrazine. The chemical structure of Compound VI was confirmed by NMR and mass spectrometry. In an alternative process, the ethylenic group was converted to an aldehyde group by ozonization and catalytic hydrogenation with palladium calcium carbonate. Preparation of 2-bromoethyl dichlorophosphate: 2-Bromoethyl dichlorophosphate was prepared by dropwise addition of freshly distilled 2-bromoethanol (0.5M, prepared as described in Gilman Org. Synth. 12:117, 1926) to an ice-cooled solution of freshly distilled phosphorous oxychloride (0.5M) in dry chloroform,during a one hour period, followed by 5 hours reflux and vacuum distillation (bp 66-68° C. at 0.4-0.5 mm Hg). The reagent was stored (−20° C.) under nitrogen in small sealed ampoules prior to use (Hansen W. H et al. Lipids 17(6):453-459, 1982). 1-Hexadecyl-2-(5′-oxo-pentanyl)-sn-glycero-3-phosphcholine (Compound VI, prepared as described above), 0.55 grams (0.001 mol), was dissolved in t-BuOH (30 ml). A solution of NaClO2(0.9 gram, 0.01 mol) and NaH2PO4(0.96 gram, 0.07 mol) in 25 ml water was added dropwise during a period of 30 minutes and the mixture was stirred at room temperature for 3 hours. The reaction mixture was acidified to pH=3 with concentrated hydrichloric acid and extracted with a mixture of 2:1 chlroform:methanol. The organic phase was separated and the solvent was evaporated. The residue was purified by chromatography over silica gel using a mixture of chloroform:methanol:water (70:27:3), to give 1-hexadecyl-2-(5′-carboxy-butyl)-sn-glycero-3-phosphcholine (0.42 gram, 72% yield). NMR and mass spectrometry confirmed the chemical structure (Compound I, FIG.10). Synthesis of 1-Hexadecyl-2-(5′,5′-dimethoxy-pentyloxy)-sn-glycero-3-phosphcholine: 1-Hexadecyl-2-(5′-hexenyl)-sn-glycero-3-phosphcholine (compound V, prepared as described above), 0.50 gram (0.89 mmol), was dissolved in formic acid (15 ml) and hydrogen peroxide 30% (3.5 ml) was added. The reaction mixture was stirred overnight at room temperature. After addition of water (50 ml) the product was extracted with a mixture of 2:1 chloroform:methanol (2×50 ml). The organic phase was washed with aqueous 10% sodium bicarbonate (10 ml) and water (10 ml) and the solvent was removed under reduced pressure. The residue (0.4 gram) was dissolved in methanol (10 ml), aqueous 10% sodium hydroxide (4 ml) was then added and the reaction mixture was stirred at room temperature for 1 hour. 80% Phosphoric acid (2 ml) and potassium meta periodate (0.8 gram) were thereafter added and stirring was continued for over night. A mixture of 2:1 chloroform:methanol (50 ml) was then added and the organic phase was washed with aqueous 10% sodium bisulfite (10 ml) and water (10 ml), and the solvent was removed under vacuum. The residue (0.3 gram) was purified by chromatography over silica gel (10 grams) using a mixture of chloroform:methanol (60:40 to 40:60) as graduated eluent, to give 1-hexadecyl-2-(5′,5′-dimethoxy-pentyloxy)-sn-glycero-3-phosphcholine (0.25 gram, 46% yield). NMR and mass spectrometry confirmed the chemical structure (Compound IIa, FIG.10). Crude 1-Hexadecyl-2-(5′-hexenyl)-sn-glycero-3-phosphcholine (compound V, prepared as described above), 50 mg (0.088 mmol), was dissolved in ethanol (10 ml), under a nitrogen atmosphere. Triethyl orthoformate (0.053 ml, 0.0476 gram, 0.32 mmol) and 3 drops of conc. sulfuric acid were added and the reaction mixture was stirred overnight at room temperature. Dichloromethane (75 ml) was then added and the reaction mixture was transferred to a separatory funnel, washed successively with water (75 ml), aqueous 2.5% sodium bicarbonate solution (75 ml) and water (75 ml), and was dried over anhydrous sodium sulfate. After filtration, the solvent was removed under vacuum, to give 50 mg of crude 1-hexadecyl-2-(5′,5′-diethoxypentyloxy)-sn-glycero-3-phosphocholine. The structure was confirmed by CMR and MS spectroscopy (Compound IIb, FIG.10). A mixture of 1-hexadecanoyl-sn-3-glycerophosphocholine (compound I, FIG.2), L-α-palmitoyl-lysophosphatidylcholine (3 grams), 5-hexenoic acid (1.2 ml), 1,3-dicyclohexylcarbodiamide (DCC, 4.05 grams) and N,N-dimethylaminopyridine (DMP, 1.6 grams) in dichloromethane (100 ml, freshly distilled from phosphorus pentoxide) was thoroughly stirred for 4 days at room temperature. The mixture was then chromatographed on silica gel 60 (40 grams) and the product, 1-hexadecanoyl-2-(5′-hexenoyl)-sn-3-glycerophosphocholine (2.8 grams, compound II,FIG. 2) was eluted with a mixture of 25:75 chloroform:methanol. The eluent was dissolved in 30% hydrogen peroxide:formic acid (4:15) and the solution was stirred overnight at room temperature. Water (50 ml) were added, the product was extracted with 2:1 chloroform:methanol (100 ml) and the organic phase was washed with water. The solvent was evaporated under reduced pressure, the residue was dissolved in methanol (15 ml) and 10% ammonia solution (5 ml) and the solution was stirred at room temperature for 6 hours. The crude 1-hexadecanoyl-2-(5′,6′-dihydroxy)-hexanoyl-sn-3-glycerophosphocholine (compound III,FIG. 2) (structure confirmed by NMR and mass spectrometry) was further reacted without puirofocation. 80% phosphoric acid (3 ml) and sodium metaperiodate (1 gram) were added to the solution and the mixture was stirred at room temperature for overnight, and was thereafter extracted with a mixture of 2:1 chloroform:methanol. The product was purified by chromatography on silica gel 60 (20 grams), using a mixture of 25:75 chloroform:methanol as eluent. 850 mg of 1-hexadecanoyl-2-(5′-oxopentanoyl)-sn-3-glycerophosphocholine (POVPC, compound IV,FIG. 2) were obatined, exhibiting chromatographic mobility of lecithin on TLC, and positive dinitrophenyl hydrazine reaction. The structure was assessed by NMR and mass spectrometry. Alternatively: the ethylenic group was converted to an aldehyde by ozonization and catalytic hydrogenation with palladium calcium carbonate. Example II Immunization Against L-ALLE+D-ALLE Specifically Inhibits Atherogenesis in Genetically Disposed (ApoE-Knock Out) Mice The present inventors have demonstrated that immunization with the stable, etherified synthetic LDL component ALLE can reduce the extent of atherosclerotic plaque formation in susceptible mice. 19 female 5-7 weeks old Apo E/C 57 mice were divided into 3 groups. In group A (n=6) the mice were immunized intreperitoneally, as described in Materials and Methods section above, with 150 μg/mouse L-ALLE+D-ALLE once every 2 weeks (0.3 ml/mouse) X4. In group B (n=6) the mice were immunized with tuberculin toxin Purified Protein Derivative (PPD) once every 2 weeks (0.3 ml/mouse). In group C (n=7) the mice received no immunization. Mice from all three groups were bled prior to immunization (Time 0), and at one week after the second immunization for determination of anti-ox LDL antibodies, anti-ALLE antibodies and lipid profile. Atherosclerosis assessment was performed as described above, 4.5 weeks post 4thimmunization. The mice from all groups were weighed at 2 week intervals throughout the experiment. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen inFIG. 3, the results depicted in Table I demonstrate the significant reduction in atheromatous lesions measured in the heart tissues of the ALLE immunized mice, compared to both PPD and unimmunized control mice. No significant effect is apparent on other parameters measured, such as weight gain, triglyceride or cholesterol blood levels, or immune competence, as measured by the levels of the immunosuppressive cytokine TGF-β. Thus, immunization with the synthetic oxidized LDL component ALLE (a mixture of racemic forms D- and L-) confers significant (>50%) protection from atherosclerotic lesion formation in these genetically susceptible apoE-knockout mice. A significant but less dramatic reduction in plaquing was observed in mice immunized with PPD. Example III Inhibition of Atherogenesis in Genetically Predisposed (ApoE-Knockout) Mice by Induction of Oral Tolerance with L-ALLE and D-ALLE Intraperitoneal immunization with the ester analogs of plaque lesion components was effective in inhibiting atherogenesis in apoe-knockout mice (FIG.1). Thus, the ability of L- and D-ALLE to suppress atherogenesis through oral tolerance was investigated. 34 male 8-10 week old Apo E knock out mice were divided into three groups. In group A (n=11) oral tolerance was induced by administration by gavage of L-ALLE+D-ALLE suspended in PBS (1 mg/mouse) for 5 days every other day. In group B (n=11) mice received 10 μg/mouse L-ALLE+D-ALLE suspended in PBS for 5 days every other day. (0.2 ml/mouse). Mice in group C (n=12) received PBS (containing the same volume of ethanol as in groups A+B). Mice were bled prior to feeding (Time 0) and at the conclusion of the experiment (End) for determination of lipid profile. Atherosclerosis was assessed in heart, aorta, and serum as described above 8 weeks after the last feeding. Mice were weighed every 2 weeks during the experiment. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen fromFIG. 4, the results depicted in Table 2 demonstrate a striking attenuation of atherosclerotic progression measured in the tissues of mice fed low doses (10 μg−1 mg/mouse) of ALLE, compared to unexposed control mice. No significant effect is apparent on other parameters measured, such as weight gain, triglyceride or cholesterol blood levels, or immune competence, as measured by the levels of the immunosuppressive cytokine TGF-β. Thus, the synthetic oxidized LDL component ALLE is a potent inducer of oral tolerance, conferring significant (>50%) protection from atherosclerosis in these genetically susceptible apoE-knock out mice, similar to the protection achieved with peritoneal immunization (see FIG.1). Example IV Inhibition of Atherogenesis in Genetically Predisposed (ApoE-Knock Out) Mice by Induction of Oral and Nasal Tolerance with L-ALLE Mechanisms of mucosal tolerance are active in the nasal mucosa as well as the gut. Thus, nasal exposure and oral exposure to L- and D-ALLE were compared for their effectiveness in suppressing atherogenesis in apoE-knockout mice. 34 male 7-10 weeks old Apo E knock out mice were divided into 3 groups. In group A (n=11) oral tolerance was induced by administration by gavage of L-ALLE suspended in PBS (1 mg/mouse/0.2 ml) for 5 days every other day. In group B (n=11) nasal tolerance was induced as described in Materials and Methods by administration of 10 μg/mouse/10 μl L-ALLE suspended in PBS every other day for 3 days. Mice in group C (n=12) received PBS administered orally and nasally (containing the same volume of ethanol as in groups A+B). Mice were bled prior to feeding (Time 0) and at the conclusion of the experiment (End) for determination of lipid profile. Atherosclerosis was assessed in heart and aorta as described above, 8 weeks after the last feeding. Mice were weighed every 2 weeks during the experiment. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen fromFIG. 5, the results depicted in Table 3 demonstrate effective (as effective as oral-tolerance) inhibition of atherogenesis measured in the tissues of mice receiving nasal exposure to low doses (10 μg/mouse) of ALLE, compared to unexposed control mice. Induction of nasal tolerance, like oral tolerance, had no significant effect on other parameters measured, such as weight gain, triglyceride or cholesterol blood levels. Thus, the synthetic oxidized LDL component ALLE is a potent inducer of nasal as well as oral tolerance, conferring significant (approximately 50%) protection from atherogenesis in these genetically susceptible apoE-knock out mice, similar to the protection achieved induction of oral tolerance alone. Example V Suppression of Specific Anti-Ox LDL Immune Reactivity in Genetically Predisposed (ApoE-Knock Out) Mice by Oral Administration of L-ALLE or POVPC Tolerance induced by mucosal exposure to oxidized analogs of LDL may be mediated by suppression of specific immune responses to the plaque-related antigens. POVPC (1-Hexadecanoyl-2-(5′-oxo-pentanoyl)-sn-glycerophosphocholine) is a non-ether oxidized LDL analog, which, unlike ALLE is susceptible to breakdown in the liver. Lymphocyte proliferation in response to oral exposure to both POVPC and the more stable analog ALLE was measured in apoe-knock out mice. 8 male, 6 week old Apo Eknock out mice were divided into 3 groups. In group A (n=2) oral tolerance was induced with 1 mg/mouse L-ALLE suspended in 0.2 ml PBS, administered by gavage, as described above, every other day for 5 days. In group B (n=3) oral tolerance was induced with 1 mg/mouse POVPC suspended in 0.2 ml PBS, administered per os as described above, every other day for 5 days. The mice in group C (n=3) received oral administration of 200 μl PBS every other day for 5 days. Immune reactivity was stimulated by immunization with Human oxidized LDL as described above in the Materials and Methods section, one day after the last feeding. One week after the immunization lymph nodes were collected for assay of proliferation. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen fromFIG. 6, the results depicted in Table 4 demonstrate significant suppression of immune reactivity to Human oxidized-LDL antigen, measured by inhibition of proliferation in the lymph nodes of apoE-knock out mice. Lymphocytes from mice receiving oral exposure to atherogenesis-inhibiting doses (1 mg/mouse) of ALLE or POVPC showed a reduced stimulation index following immunization with ox-LDL, as compared to control (PBS) mice. Since induction of oral, like nasal, tolerance had no significant effect on other parameters measured, such as weight gain, triglyceride or cholesterol blood levels, or immune competence (see Tables 1, 2 and 3), these results indicate a specific suppression of anti-ox-LDL immune reactivity. Thus, oral administration of the synthetic oxidized LDL component L-ALLE is an effective method of attenuating the cellular immune response to immunogenic and atherogenic plaque components in these genetically susceptible apoe-knock out mice.FIG. 4also demonstrates a similar, if less effective inhibition of proliferation with oral administration of the less stable synthetic oxidized LDL component POVPC. Example VI Inhibition of Atherogenesis in Genetically Predisposed (ApoE-Knock Out) Mice by Induction of Oral Tolerance with D- and L-Isomers of ALLE, and POVPC Since feeding of ALLE and POVPC was shown to inhibit early atherogenesis and immune reactivity to plaque-related Human LDL antigen, the ability of both D- and L-isomers of the ether LDL analog, and the non-ether analog POVPC to suppress the progression of atherogenesis in older mice was compared. Their effect on the triglyceride and cholesterol fractions of VLDL was also monitored by FPLC. 57 male, 24.5 week old Apo Eknock out mice were divided into 5 groups. In group A (n=11) oral tolerance was induced with 1 mg/mouse L-ALLE suspended in 0.2 ml PBS, administered by gavage, as described above, every other day for 5 days. In group B (n=9) oral tolerance was induced with 1 mg/mouse D-ALLE suspended in 0.2 ml PBS, administered per os, as described above, every other day for 5 days. In group C (n=10) oral tolerance was induced with 1 mg/mouse POVPC suspended in 0.2 ml PBS, administered by gavage, as described above, every other day for 5 days. Control group D (n=10) received oral administration of PBS (containing the same volume of ethanol as in groups A,B,C). Base line group was sacrificed on time=0. Oral administration of the tested antigens took place every 4 weeks (5 oral feedings; every other day) starting at 24.5 weeks age, during 12 weeks (3 sets of feedings). Mice were bled prior to feeding (Time 0), after the 2ndset of feeding and at the conclusion of the experiment (End) for determination of lipid profile, lipid fractionation and plasma collection. Atherosclerosis was assessed as described above in the heart and aorta and spleens collected for proliferation assay 12 weeks after the first feeding. Weight was recorded every 2 weeks throughout the experiment. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen fromFIG. 7, the results depicted in Table 5 demonstrate effective inhibition of late stage atherogenesis measured in the tissues of older mice following protracted oral exposure to moderately low doses (1 mg/mouse) of the D- and L-isomers of ALLE, and POVPC compared to PBS-fed control mice. Induction of oral tolerance had no significant effect on other parameters measured, such as weight gain, total triglyceride or cholesterol blood levels. Thus, the synthetic oxidized LDL components D-, L-ALLE and POVPC are individually potent inducers of oral tolerance, conferring nearly complete protection from atheromatous progression (as compared with lesion scores at 24.5 weeks) in these genetically susceptible apoE-deficient mice. Surprisingly, it was observed that the inhibition of atherogenesis by these oxidized LDL analogs is accompanied by a significant reduction in VLDL cholesterol and triglycerides, as measured by FPLC (FIGS.8and9). Example VII Inhibition of Atherogenesis in Genetically Predisposed (ApoE-Knock Out) Mice by Induction of Oral Tolerance with CI-201 The ability of a stable form of an etherified phospholipid, the acid derivative of ALLE IC-201, to suppress atherogenesis through oral tolerance was investigated. Male 12 week old ApoE KO mice were divided into two groups. In group A (n=14) oral tolerance was induced by administration by gavage of CI-201 (0.025 mg/dose) suspended in PBS for 8 weeks every day (5 times a week). Mice in group B (n=15) received PBS (control). Atherosclerosis was assessed as described above. All mice were fed normal chow-diet containing 4.5% fat by weight (0.02% cholesterol) and water ad libitum. As can be seen fromFIG. 11, the results demonstrate a striking attenuation of atherosclerotic progression measured in the tissues of mice fed low doses of CI-201, as compared with unexposed control mice (PBS). Aortic sinus lesion in the CI-201 treated group was 125,192±19,824 μm2and in the control group (PBS treated) was 185,400±20,947 μm2, demonstrating a decrease of 33% (P=0.051) of the aortic sinus lesion by oral administration of CI-201 in low dose. IL-10 expression in the aorta was higher by 40% in the CI-201 treated group, as compared with the control group. The elevated expression levels of IL-10 in the target organ, the aorta, support the induction of oral tolerance by CI-201 administration. Thus, the stable synthetic oxidized LDL-201, was also found to be a potent inducer of oral tolerance. Example VIII Cytokine Expression in the Aorta of Mice Treated with Oxidized Phospholipids (ALLE, CI-201, Et-Acetal, Me-Acetal & OxLDL) in ApoE Knock Out Mice The effect of ALLE, CI-201, its correspondong acetal derivatives Et-acetal and Me-acetal (Compounds IIa and IIb,FIG. 10) and oxLDL on cytokine expression in the target organ—the aorta—was evaluated using RT-PCR as described hereinabove. ApoE knock out mice were orally administered with 1 mg/mouse ALLE, 1 mg/mouse CI-201, 1 mg/mouse Et-acetal, 1 mg/mouse Me-acetal, 0.1 mg/mouse oxLDL or 0.2 ml/mouse PBS. Oral administrations took place 5 times every other day. The expression of the anti-inflammatory cytokine IL-10 and the proinflammatory cytokine IFN-γ and IL-12 were determined 8 weeks after final oral administration. As can be seen inFIGS. 12aand12b, mice treated with ALLE, CI-201, Et-acetal, Me-acetal and oxLDL showed elevated levels of IL-10 as compared with the control PBS-treated group. As can be seen inFIGS. 12cand12d, an oposite effect was shown in the expression level of IFN-gamma and IL-12. Reduced expression levels of IFN-gamma was detectable in mice treated with ALLE, CI-201, Me-acetal and oxLDL and reduced levels of IL-12 was detectable in mice treated with ALLE, CI-201, Et-acetal and oxLDL. References 1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809. 3. Libby P, Hansson G K. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5-15. 10. Weiner H, Freidman A, Miller A. Oral tolerance: immunologic mechanisms and treatment of animal and human organ specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994; 12: 809-837. 13. Palinski W, Ord V A, Plump A S, Breslow J L, Steinberg D, Witztum J L. Apo-E-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994; 14: 605-616. 23. Halperin G et al Methods in Enzymology 129,838-846, 1986.
Iiô prê£>&u.vià 1-j.yôiiuivjii coîiz.z*:î&$ ~ua. procédé st isn appareil parsiettaat de vérifier le degré d*humidification à5 mie matièrs en grains, par exemple de sable de moulage. On connaît par exemple un procédé du genre ci-dessus et ua 5 appareil destiné à la mise en oeuvre du procédé (brevet allemand n° 1.180.084-). le procédé co^mu ess caractérisé par 1s fait que l'on prélève se. continu un échantillon de la aatière en grains qui se trouve dans le mélangeur s" qu'on le tasse et que l'on détermine 10 sur cet échantillon des -caractéristiques de ij-ésistanss liées à la capacité de moulage, les additifs étant alors amenés au mélangeur en fonction des caractéristiques de résistance et de la capacité de moulage déterminées. L'appareil destiné à la mise en oeuvre du procédé connu est caractérisé par le fait qu'un Eté-15 langeur comporte au moint un organe servant à tasser un échantillon de matière en giûi:is tiré du mélangeur, des moyens de transport de Ieéchantillon tassé, un appareil d0essai servant à déterminer la résistance dû 1®échantillon tassé qui lui est amené, et des moyens propres à amener de façon dosée un additif au 20 mélangeur, les moyens de dosage pouvant itre commandés en fonction de la résistance de 18 échantillon tassé» On a observé que le procédé ci-dessus ne réagit qu'ave© une faible sensibilité au degré d'humidification du_sable, lorsqu'on utilise par exemple le sable déjà relativement sec qui sert 25 généralement dans les machines à mouler automatiques modernes„ Par exemple dans les sables à teneur croissante en bento-nite, l'accroissement de la résistance à la compression à vert est si grand qu'il faudrait régler à nouveau l'appareil d'essai antérieurement connu si l'on traitait un sable présentant une 30 teneur différente en bentonite. L'invention a pour but de fournir un procédé et un appareil qui permettent de vérifier automatiquement la capacité de moulage du sable de_ moulage indépendamment de sa teneur en liants. 35 Suivant l'invention, on résout le problème grâce à un pro cédé dans lequel, pour vérifier le degré d'humidification de la matière en grains, on mesure la diminution&e hauteur - après tassement — relativement à la hauteur de ïa matière déversée sans tassement. 40 L'appareil destiné à la mise en oeuvre du procédé est ûs- BAD ORIGINAL^ 69 00059 2000042 ractérisé par un récipient ouvert en haut présentait une haute-ss prédéterminée pour recevoir un échantillon de la matière en grains non tassée, une racle disposée au bord supérieur du récipient et un- dispositif de compression servant à appliquer une 5 pression prédéterminée à la matière en grains qui se trouve dans le récipient, ainsi quç$ar un dispositif de mesure et de réglage en liaison fonctionnelle avec le dispositif de compression, ser= vant à mesurer la diminution de hauteur de la matière en grains tassée relativement à la hauteur de la matière déversée sans tas-10 sement et à régler l'addition d'eau au mélange à préparer. A la différence du brevet allemand n° 1,180,044 dans lequel on détermine des caractéristiques de résistance de la matière en grains pour régler un degré de capacité de moulage, le procédé suivant l'invention tire parti de la propriété que pos-15 sèdent les sables de moulage de présenter, pour une force de compression déterminée, une hauteur finale de tassement très variable, même.quand la teneur en eau ne diffère que de 0,1 Un exemple d'exécution de l'invention est représenté sché~ matiquement par les dessins sur lesquels : 20 la figure 1 montre un appareil servant à déterminer auto matiquement par intermittence la compressibilité et donc le degré d'humidification; la figure 2 montre schématiquement les étapes de travail de l'appareil des figures 1 et 3; 25 la figure 3 est une élévation d'une partie de l'appareil, suivant la ligne III-III de la figure 1 ; la figure 4 est une élévation frontale d'un appareil servant à déterminer automatiquement en continu la capacité de tassement et donc le degré d'humidification; 30 la figure 5 est un plan de l'appareil de la figure 4, et la figure 6 est un graphique montrant, pour quatre mélanges expérimentaux différents, la compressibilité de ceux-ci ou la hauteur finale de tassement que l'on peut atteindres en fonction du pourcentage d'eau. 35 Suivant l'exemple de la figure 1, l'appareil 20 servant à doser les additifs ameaés -au mélangeur 1 et à donner à la matière en grain la capacité de moulage nécessaire se compose d'un tuyau d'amenée 21- dans lequel sont prévues en série des soupapes magnétiques de commande 22, 23» 24, 25 et 26 qui pré-40 sentent différentes grandeurs.de passage. Quand la soupape 22 69 00059 -3- 2000042 est seule ouverte, une quantité relativement faible de l'additif essentiellement formé d'eau est amené de façon dosée au mélangeur 1 par le tuyau 21 et quand les soupapes 23» 24, 25 ®t 26 sont ouvertes, une quantité croissante de l'additif est ame-5 née au mélangeur 1. Les soupapes 22-26 sont commandées en fonction de la capacité de moulage de la matière en grains contenue dans le mélangeur 1, capacité qui est mesurée par le dispositif 20. Pendant le processus de mélange dans le mélangeur 1, de 10 la matière en grains est tout d'abord amenée aux fins de prélèvement d'échantillon, par l'ouverture 2 et par un canal incliné 3» dans des cylindres d'essai 41, 42, 43 et 44 d'un tambour en rotation intermittente, 40. La matière en grains qui glisse le long du canal incliné 3 passe devant une roue à palettes 4 qui 15 est mise en rotation par un moteur 6 alimenté par une source de courant non représentée par l'intermédiaire de conducteurs électriques 5* La roue à palettes 4 sert à briser les amas ou grumeaux de la matière en grains qui est amenée du mélangeur 1 au tambour 40 ou aux cylindres d'essai. 20 Le tambour 40 est solidaire d'un axe de rotation 45 dis posé verticalement, qui est lui-même monté de manière à pouvoir tourner dans le carter 46 d'un train réducteur 48 relié mécaniquement à un moteur électrique 47» Sur le carter 46_est en outre prévu un automate temporisé 49 qui est actionné par l'intermé-25 diaire de quatre cames 50 distribuées uniformément, à la périphérie du tambour 40 et met en marche et arrête par intermittence le moteur électrique 47. Suivant la figure 3, les quatre cylindres d'essai 41-44 solidaires du tambour 40 sont distribués avec espacement uni-30 forme à la périphérie de celui-ci. i. ce propos, il faut remarquer particulièrement que le tambour 40 peut aussi porter tin plus grand nombre de cylindres d'essai si cela apparaît approprié . Par la mise en action de l'automate temporisé 49, le tam-35 bour en rotation 40 est amené à l'arrêt, par mise hors d'action du moteur électrique 47j dans une position où deux pistons 53 et 54 actionnables hydrauliquement sont alignés concentrique-ment sur deux cylindres 41-44- à la fois et peuvent aller et venir dans ceux-ci» 40 Les pistons 53 ®t 54- sont en liaison fonctionnelle par 69 00059 l'intermédiaire de tiges de piston 55 et 56 avec des cylindres de travail 51 et 52 qui sont disposés sur un bâti 60 solidaire du carter 46. Le piston 53 sert à tasser avec une pression constante la matière en grains qui se trouve dans l'un des cylindres 5 d'essai 41-44 tandis que le piston 54- est prévu pour éjecter, par un trou 57 prévu dans le carter 46, la matière tassée par le piston 53. Au bâti 60 est en outre relié solidairement le dispositif doseur 20 qui présente des contacts de manoeuvre 27, 28, 29, 30 10 et 31 situés à des hauteurs différentes et reliés par des conducteurs électriques 32 aux soupapes de commande électromagnétiques 22-26, ces contacts étant actionnés à l'aide d'une glissière de contact 53 solidaire de la tige de piston 55* Au-dessus de la surface supérieure du tambour 40 est disposée une racle 59 soli-15 daire du bâti 60 et qui, pendant que le tambour 40 tourne dans le sens des aiguilles d'une montre, racle de celui-ci la matière déversée au-dessus du bord des cylindres d'essai 41-44 par le canal incliné 3» Sur le carter 46 est disposé un interrupteur 66 qui est 20 actionné par les cames 50 du tambour 40 et qui, par l'intermédiaire de conducteurs non représentés, excite les solénoïdes 64 et 65 de soupapes hydrauliques de commande 62 et 63 prévues sur les cylindres de travail 51 et 52, afin d'alimenter hydraulique-ment les cylindres de travail 51 et 52. Quand par suite de la 25 rotation du tambour 40 assurée par le déclenchement de l'automate temporisé 49 les cames 50 arrivent hors de portée de 1 ' interrupteur 66, l'excitation des solénoïdes 64 et 65 est interrompue, ce qui fait que les soupapes de commande 62 et 63 sont ramenées à leur position initiale et que les pistons 53 et 54- se retirent 30 à leur position initiale au-dessus du tambour 40, par exemple sous l'action d'un ressort. Par la figure 2, on peut voir essentiellement le cycle de travail de l'appareil. Dans la rotation intermittente du tambour 40, Tin échantillon de la matière en grains arrive tout d'abord, 35 par le canal incliné 3s dans l'un des cylindres 41, 42, 43 ou 44. Une fois que l'un des cylindres a été rempli dans un laps de temps déterminé, 1'automate temporisé 49 déclenche la rotation du tambour 40 et fait -tourner celui-ci de 90° jusqu'à ce que le cylindre d'essai arrive à une position alignée coaxialement par 40 rapport au piston 53 et que la matière en grains soit en même Î0ÔÔ042 69 00059 2000042 •ceiayo raclée de la surface du tambour 40 à l'aide de la racle 39 de telle sorte que le sable qui se trouve.dans le cylindre d'essai forme an plan avec la surface supérieure du tambour 40. Après la rotation de 90e du tambour 40, l'interrupteur 66 situé sur le 5 carter 66 est fermé par l'une des cames 50 du tambour 40 et actionne les solénoïdes 64, 65 des soupapes 629 63 j le piston'53 tassant grâce au cylindre de travail 51 1© sable déversé sans tassement dans l'un des cylindres d'essai, en appliquant une pression déterminée, jjusqu' à la hauteur finale de tassement, 10 piston 54- éjectant à nouveau du cylindre d'essai, grâce au cylindre de travail 52, le sable déjà tassé„ Pour faciliter la compréhension, 021 signalera qu8après chaque rotation de 90e dans le sens des aiguilles d'une montres le tambour 40 est arrêté par l'automate 49, que simultanément 15 un échantillon de matiere est amené à 18un des cylindres d'essai 41-44, que 18ëchant-ixlon est tassé dans un autre cylindre e-u que dans un autre cylindre l'échantillon est expulsé à nouveau, et qu:à chaque nouvelle rotation de 90° du tambour 40, le processus décrit se répète. Voir aussi figures 1 et 2. 20 Quand le piston de tassement 53 tasse l'échantillon de ma tière en grains en fonction de la teneur en eau, jusqu'à une hauteur déterminée, la glissière de butée 58 solidaire de la tige de piston 55 et perpendiculaire à celle-ci arrive, selon la hauteur de tassement atteinte par la matière qui se trouve dans cha-25 que cylindre, dans la région de l'un des contacts .27-51 et ferme l'un de ceux-ci, ce qui actionne un solénoïde des soupapes hydrauliques de commande 22-26. Lorsque la matière en grains est très facile à tasser, on obtient une très faible hauteur finale de tassement. Si par con-30 tre on n'arrive qu'à un faible tassement de la matière» on- obtient une grande hauteur finale de tassement. La hauteur finale p minimale de tassement réalisable avec une pression de 10 "kg/cm par exemple constitue une indication montrant que pour atteindre l'état prêt au moulage (manuel) il ne faut pas ajouter d'eau à 35 la matière tandis que par contre la hauteur finale maximale de tassement réalisable à la même pression indique que pour obtenir cet état, il faut ajouter une quantité d'eau relativement grande. Voir aussi le graphique de la figure 6. Quand le piston de tassement 53 atteint par exemple, sui-40 vant le graphique de la figure 6, pour une pression de 10 kg/crn^ 69 00059 ~6" 2000042 et un diamètre de 50 mm dans un cylindre de 100 mm de hauteur totale, une hauteur finale de tassement représentant environ 75?' de la hauteur totale du cylindre, une quantité d'eau relativement grande est amenée au mélangeur 1 par le tuyau 21® Par contres si 5 le piston 53 n'atteint qu'une hauteur finale de tassement d®environ 55 % àe. la hauteur totale du cylindre d!essai3 la matière en grains à.préparer - indépendamment de sa teneur en bentonite -ne nécessite pas d'eau car elle se trouve dans un état prêt ta moulage (manuel). Le degré d'humidificcticsn nécessaire est ré-10 glable grâce à la hauteur finale de tassement„ Le graphique de la figure 6 indique sn abscisses la tensnz-en eau en pourcentage et en ordonnées les pourcentages sur la hauteur totale de 100 mm du cylindre d'e^sei, qui présente dans cet exemple un diamètre de 50 mm0 La courbe 70 correspond à tm 15 mélange d'essai de matière en grains contenant 5 % de fcsntonit© de Bavière. La courbe 71 par contre correspond à un mélange d'essai contenant 7»5 % de bentonite9 la courbe 72 à un mélange contenant 10 % de bentonite et la courbe 75 à un sable utilisa» ble dans la pratique. Les points 7"- indiquent l'état prêt au 20 moulage manuel, d'après l'essai manuel par un. opérateur expérimenté, la matière ayant une hauteur finale de tassement constante et déterminée et une teneur en eau déterminée. On peut voir une caractéristique très importante et avantageuse t à savoir que des sables de moulage présentant différentes teneurs en sr-25 gile liante sont dans un état prêt au moulage aasmel à peu près pour la même hauteur finale de tassement mais pour des teneurs en eau différentes. Les contacts 27-31 sont disposés sur le dispositif doseur 20 de façon telle et reliés par des conducteurs électriques 32 50 aux soupapes de commande 22-26 du tuyau à additifs de façon telle que la soupape de commande 26 qui présente la plus grande ouverture de passage est reliée au contact du haut y 319 et que la soupape de commande 22 présentant la plus petite ouverture de passage est relié au contact inférieur 27 du dispositif doseur 35 20. Les soupapes magnétiques 23, 24 et 25 reliées aux contacts 28, 29, 30 présentent, de bas en haut, des ouvertures de passage croissantes» Si le piston de tassement 53 se trouve à une hauteur relativement faible dans l'un des cylindres 41-44, la glissières 40 de butée 58 qui passe le long des contacts 27-31 et qui est so 69 00059 -7- 2000042 lidaire de la tige de piston 55 actionne le contact 27 et donc, par l'intermédiaire du conducteur J2, la soupape de commande 22 qui a la plus petite ouverture de passage, de sorte que par le tuyau 21, une quantité d'eau relativement faible est amenée au 5 mélangeur 1. Si par contre le piston 53 est à une grande hauteur dans l'un des cylindres 4-1-4-4, la glissière 58 actionne le contact 31 du dispositif doseur 20 et donc, par le conducteur 32, la soupape a «s oormaxiae tÉj4ui a la plus grande ouverture de passage de sorte que par le tuyau 21, une quantité d'eau relative-10 ment grande est amenée au mélangeur 1. Selon le contact 27-31 qui a été actionné par l'intermédiaire du piston de tassement 53 à l'aide de la glissière de butée 58? l'une des soupapes 22- qui présentent: des ouvertures de passage relativement grandes est actionnée de la façon décrite plus haut, de manière à 15 amener au mélangeur 1, par le tuyau 21, en fonction de la hauteur finale de tassement de l'échantillon tassé qui se trouve dans l'un des cylindres 4-1-44-, la quantité d'eau nécessaire pour obtenir l'état prêt au moulage. le mélangeur 1 se compose d'une cuve 7 dans laquelle la 20 matière en grains est mélangée à l'aide de rotors 9 et de socs 10 tournant autour d'un arbre disposé verticalement 8. Bien entendu, dans le cadre de l'invention, il est possible aussi d'utiliser un mélangeur conçu sous une autre forme -si cela apparaît avantageux. 25 L'appareil représenté par les figures 4 et 5> servant à déterminer automatiquement en continu la capacité de tassement et donc le degré d'humidification nécessaire pour obtenir Tin état désiré de la matière en grains, se compose d'un canal 11, d'une courroie sans fin 15 guidée par des rouleaux 12 et 13» 30 soutenue par une plaque 14 et entraînée par un moteur 16,-dans le sens de la flèche 17» à une vitesse de rotation constante. En outre, on a prévu un rouleau 19 pouvant pivoter autour d'un point d'appui 18 pour comprimer la matière qui se trouve sur la courroie sans fin 15, et un dispositif doseur 80 qui se compose 35 de contacts 32-36 et de soupapes magnétiques de commande 75-79 reliées à ceux-ci par des conducteurs électriques 38, présentant des ouvertures de passage de grandeur différente et disposées sur •un tuyau à eau 37 menant au mélangeur 1. le doseur 80 est en liaison fonctionnelle avec le rouleau 19 par l'intermédiaire 40 de deux bras de levier 67 et 68 pouvant pivoter autour du point 69 00059 ~8~ 2000042 d'appui 18 et solidaires l'un de l'autre. Le bras de levier 67 présente une disposition et une structure telle que lorsqu'il pivote autour du point 18, il ferme ou ouvre les contacts 32-36 disposés sur tin support en arc de cercle 69. 5 De part et d'autre de la courroie sans fin 15 sont en ou tre prévues des parois latérales de même hauteur, 81 et 82, qui forment avec la courroie sans fin 15 un récipient à travers lequel la matière en grains est guidée pendant le processus de transport. Au bord supérieur des parois latérales 81 et 82 sont 10 prévus le canal 11 destiné à la matière en grains et une râcle en V, 83, qui râcle jusqu'au bord supérieur des parois latérales 81 et 82 la matière amenée par la courroie sans fin 15, ce qui fait que la couche de matière transportée par la courroie 15 présente une hauteur déterminée et une surface limite supérieure 15 plane. L'appareil décrit ci-dessus, servant à déterminer automatiquement en continu la capacité de tassement et donc le degré d'humidification de la matière en grains, fonctionne comme suit: Du mélangeur 1, un échantillon de la matière en grains est 20 amené en continu, par l'ouverture 2 et le canal incliné 3» (jusqu'au canal 11 et passe simultanément le long de la roue à palettes 4 qui est en liaison d'entraînement avec un moteur 6 alimenté par une source de courant non représentée plus précisément. La roue à palettes 4 sert à briser les amas et grumeaux de l'é-25 chantillon de matière éjecté par l'ouverture 2 du mélangeur. En partant du canal 11, la matière arrive entre les parois latérales 81 et 82 sur la courroie sans fin 15 et est transportée par celle-ci dans le sens de la flèche 17» La matière en grains qui dépasse le bord supérieur des parois latérales est raclée 30 par la râcle 83 de sorte qu'elle forme un plan avec le bord supérieur des parois latérales 81, 82. La couche de matière qui se trouve encore à l'état meuble entre les parois latérales 81, 82 et la courroie 15 arrive par le processu^de transport dans la région du rouleau 19 qui la tasse sous une pression 35 déterminée. Le rouleau 19 pénètre plus ou moins profondément - selon la teneur en eau - dans la couche de matière qui se trouve sur la courroie 15 et actionne les contacts 32-36 reliés par les conducteurs électriques 38 aux soupapes magnétiques 75-79* Les soupapes 75-79» de façon analogue aux soupapes 22-26 40 de l'exemple de la figure 1, présentent des ouvertures de pas 69 00059 -9- 2000042 sage de différente grandeur de sorte que par la fermeture des contacts électriques 32-36, cinq ouvertures de passage de grandeur différente sont libérées sur le tuyau à eau 37• Gomme on. l'a déjà dit, une grande capacité de tassement 5 de la matière en grains indique un faible besoin d'eau et une faible capacité de tassement indique un besoin d'eau relativement grand. Les soupapes 75-79 prévues sur le tuyau 37 présentent, de gauche à droite sur la figure 4-, des ouvertures de passage de 10 plus en plus grandes. Lorsque l'un, des contacts 32-36 du dispositif doseur 80 est actionné à l'aide du levier 67? 18une des soupapes 75-79 est mise en action et libère9 avec son ouverture respective fixée, le passage de l'eau par le tuyau 37 afin de 16amener, dans 15 la quantité voulue, à la matière en grains qui se trouve dans 3.® mélangeur 1. Quand la matière a une plus forte teneur en eau9 la rouleau 19 pénètre de plus en plus profondément dans la couche de matière en grains située sur la courroie sans fin 15 jusqu'à ce que finalement, quand 18 état prêt au moulage (manuel) est 20 atteint, le levier 67 soit temporairement dévié vers la droite par l'intermédiaire du contact 36 du dispositif doseur 80, et que le tuyau 37 soit temporairement fermé. Quand la siccité de la matière qui se trouve dans le mélangeur 1 augmente, le levier 67 est au contraire dévié à nouveau vers la gauche et actionae9 25 selon le degré d'humidification de la matière en grains, l'un des contacts 36-32 de sorte que, de la façon décrite plus hautD la matière située dans le mélangeur 1 peut recevoir automatiquement la quantité d'eau nécessaire pour lui donner l'état désiré0 indépendamment de l'état où elle se trouvait. 30 II faut remarquer particulièrement qu'au sens de 1*inven tion les soupapes et organes de réglage du dispositif doseur 20 et/ou 80 peuvent avoir une structure quelconque et qu'en outre on peut prévoir un nombre plus ou moins grand de soupapes présentant des ouvertures de passage différentes, sur le tuyau qui 35 mène au mélangeur, lorsque cela apparaît avantageux. Un avantage notable du procédé suivant l'invention réside dans le fait que le réglage de l'état prêt au moulage se fait de façon sûre et exacte même quand le sable est dans un état relativement sec. 40 Grâce au procédé suivant 1'inventiont on supprime la dé 69 00059 "°" 2000042 termination subjective du degré d1 humidité d'tui sable de moialac"1 par essai manuel et on effectue cette détermination avec un aprr-reil prévu à cet effet» Le procédé suivant l'invention convient également pour 5 miner des échantillons de sable en laboratoire eu pour déterminer expérimentalement le degré d*hi®idification d8échantillons de sable et pour régler le degré d'humidification de sables util: sés dans des installations de préparation de sable» BAD ORIGINAL 69 00059 -11- 2000042 - REVENDICATIONS - 1 - Un procédé pour vérifier le degré d'humidification d'une matière en grains telle qu'un sable de moulage, caractérisé en ce que l'on mesure la diminution de hauteur après tasse- 5 ment, relativement à la hauteur de la matière déversée sans , tassement. 2 - Un procédé selon la revendication 1, caractérisé en ce que l'on utilise la valeur déterminée par la mesure de la diminution de hauteur pour régler l'amenée d'eau. 10 3 - Un appareil pour la mise en oeuvre du procédé selon la revendication 2, caractérisé en ce qu'il'comporte un récipient ouvert en haut présentant une hauteur prédéterminée pour recevoir un échantillon de la matière en grains non tassée, une râcle disposée au bord supérieur du récipient et m dispositif de 15 pression servant ~à appliquer une pression prédéterminée à.la matière en grains qui se trouve dans le récipient, ainsi qu'un dispositif de mesure et de réglage en liaison fonctionnelle avec le dispositif de compression, servant à mesurer la diminution de hauteur de la matière en grains tassée relativement à 20 la hauteur de la matière déversée sans tassement et à régler l'addition d'eau au mélange à préparer. 4 - Appareil selon la revendication 3> caractérisé en ce qu'il comporte au moins un cylindre d'essai ouvert en haut, présentant une hauteur déterminée et destiné à recevoir un échan- 25 tillon de la matière déversée sans tassement et que le dispositif de compression est constitué par un piston de compression disposé au-dessus de ce cylindre et pouvant pénétrer dans celui-ci, relié par une tige de piston à un cylindre de travail, la tige de piston étant en liaison fonctionnelle, par l'intermé-30 diaire d'une glissière de butée, avec un dispositif doseur servant à mesurer la hauteur finale de tassement de la matière et avec tin dispositif servant à régler l'addition d'eau. 5 - Appareil-selon la revendication 3> caractérisé par le fait qu'il comporte une courroie transporteuse sans fin munie de 35 deux parois latérales qui la limitent des deux côtés et qui présentent une hauteur prédéterminée de manière à'recevoir un échantillon de la matière déversée sans tassement, et que le dispositif de compression est formé d'un rouleau disposé au-dessus de la courroie, entre les parois latérales, et qui est en liaison 40 fonctionnelle, par l'intermédiaire de bras pouvant pivoter au 69 00059 2000042 tour d'un point d'appui, avec un dispositif doseur servant à mesurer la hauteur finale de tassement de la matière et un dispositif servant à régler l'addition d'eau.
Vehicle The present disclosure relates to a vehicle having a body, a first vehicle door, and a second vehicle door arranged behind the first vehicle door in a vehicle longitudinal direction. The first and second vehicle doors are each movably coupled to the body such that the first and second vehicle doors are movable between a closed position and an open position in a sliding-pivoting manner. The vehicle includes at least one passive locking device that interlockingly connects one of the first and second vehicle doors to the body of the vehicle when set at the closed position to form a vehicle pillar of the body of the vehicle. TECHNICAL FIELD The present invention relates to a vehicle having a body and at least two vehicle doors arranged one behind the other in the vehicle longitudinal direction without a separating vehicle pillar, which can each be moved between a closed position and an open position. BACKGROUND Vehicles having at least two vehicle doors arranged one behind the other in the vehicle longitudinal direction without a separating vehicle pillar are known in numerous variations. DE 10 2017 008 872 A1 discloses a motor vehicle having a door device which comprises a vehicle door, a guide link which at least partially delimits a guide path along which the vehicle door can be movably guided and which is arranged on the body of the motor vehicle, a first guide element movably coupled to the guide rail and coupled to a first door region of the vehicle door, and a second guide element rotatably coupled to the body of the motor vehicle and rotatably coupled to a second door region of the vehicle door. The first guide element has two element regions arranged at a distance from one another in the vehicle transverse direction of the motor vehicle, of which element regions a first element region is non-rotatably connected to the vehicle door and a second element region is movably coupled to the guide rail. The motor vehicle can be designed, for example, as a four-door convertible without B-pillars. From DE 10 2018 108 378 A1, a vehicle having a center-opening door assembly mounted on a passenger compartment and an active latch mechanism for the center-opening door assembly is known. The center-opening door assembly includes a rear door panel mounted on a rear hinge and a front door panel mounted on a front hinge. This type of center-opening door assembly typically lacks a fixed hinge pillar by which the rear door panel mounted on a rear hinge could be supported in a closed configuration. Instead, the rear door panel mounted on a rear hinge is provided with an upper and a lower latch mechanism, each of which engaging in cooperating latches arranged on a vehicle roof frame and a sill. The front door panel mounted on a front hinge engages in a center-mounted latch arranged on the rear door panel mounted on a rear hinge. The upper latch mechanism is supported by a reinforcement plate and is mounted in an articulated manner to engage in a latch under the active control of an actuator, for example, a cable. For preventing vertical movements of the rear door panel mounted on the rear hinge relative to the front door panel mounted on a front hinge in a closed configuration during vehicle travel, a supplemental latch mechanism is used for the center-opening door assembly. The supplemental latch mechanism includes a pin associated with the front door panel mounted on the front hinge. The supplemental latch mechanism further includes a seat associated with the rear door panel mounted on the rear hinge. In this case, the pin and the interacting seat mesh to reduce or prevent a movement of the front door panel mounted on a front hinge perpendicular to the rear door panel mounted on a rear hinge. SUMMARY The problem addressed by the invention is that of providing a vehicle having a body and at least two vehicle doors arranged one behind the other in the vehicle longitudinal direction, which in the closed state improve the rigidity and load distribution of the vehicle body. This problem is solved by a vehicle having the features of the claimed embodiments. Advantageous embodiments of the invention with additional developments are specified in the dependent claims. In order to provide a vehicle having a body and at least two vehicle doors arranged one behind the other in the vehicle longitudinal direction, which in the closed state improve rigidity and load distribution of the vehicle body, at least one of the vehicle doors is designed to form a vehicle pillar of the body in a closed position. In this case, at least one passive locking device is designed to interlockingly connect the integrated vehicle pillar to the body in the closed state of the corresponding vehicle door. In addition, the at least two vehicle doors arranged one behind the other in the vehicle longitudinal direction are movably coupled to the body in a sliding-pivoting manner, so that they can be moved between the closed position and an open position. In an advantageous embodiment of the vehicle, the at least one passive locking device can be designed to interlockingly connect the integrated vehicle pillar to a structural component of the body in the closed position. In this case, for example, a first passive locking device can be designed to interlockingly connect the integrated vehicle pillar to a first structural component designed as a roof frame in the closed position. A second passive locking device can be designed, for example, to interlockingly connect the integrated vehicle pillar to a second structural component designed as a sill in the closed position. With the vehicle pillar integrated in the vehicle door, the rigidity of the body in the region of the door cutout can be increased during driving when the vehicle doors are in the closed position and a corresponding load path can be provided between the roof frame and the sill, analogous to an existing B-pillar. However, in the open position of the vehicle doors, the space available for boarding and exiting can be significantly increased, since no B-pillar impedes boarding and exiting. In a further advantageous embodiment of the vehicle, at least one first reinforcement element on a vertical frame portion of a first vehicle door and/or at least one second reinforcement element on a vertical frame portion of a second vehicle door can form the integrated vehicle pillar. The first vehicle door can be arranged behind the second vehicle door in the direction of travel. In this case, a first sliding-pivoting kinematics can movably mount the first vehicle door on a C-pillar of the body in a sliding-pivoting manner, and a second sliding-pivoting kinematics can movably mount the second vehicle door on an A-pillar of the body in a sliding-pivoting manner. For example, a front vertical frame portion of the first vehicle door facing the second vehicle door can be reinforced by the at least one first reinforcement element and form the vehicle pillar integrated into the first vehicle door. Alternatively, for example, a rear vertical frame portion of the second vehicle door facing the first vehicle door can be reinforced by the at least one second reinforcement element and form the vehicle pillar integrated into the second vehicle door. In a preferred embodiment, at least one first reinforcement element on the front vertical frame portion of the first vehicle door and at least one second reinforcement element on the rear vertical frame portion of the second vehicle door can jointly form the integrated vehicle pillar. As a result, the additional weight of the reinforcement elements can be distributed over the vehicle doors. In a further advantageous embodiment of the vehicle, the at least one passive locking device can comprise a body-side receiving element and a door-side locking element. In this case, the door-side locking element can be designed to be inserted into the body-side receiving element by a pivoting movement of the corresponding vehicle door and interlockingly locked in the body-side receiving element by a locking sliding movement of the corresponding vehicle door. This allows for a particularly simple and cost-effective realization of the automatic interlocking locking of the integrated vehicle pillar to the body by the closing movement of the corresponding vehicle door. In a further advantageous embodiment of the vehicle, the body-side receiving element can comprise a receiving opening and a locking opening. The body-side receiving element can be designed, for example, as a keyhole bore or as a link guide. The door-side locking element can be designed, for example, as a locking bolt. The locking bolt can be designed to be, for example, cylindrical or mushroom-shaped or dovetail-shaped. The receiving opening and the locking opening of the body-side receiving element can be adapted to the shape of the locking bolt such that, in the closed position, the locking bolt can mesh with the body-side receiving element in a bayonet-like manner. The features and combinations of features mentioned above in the description, as well as the features and combinations of features mentioned below in the description of the figures and/or shown only in the figures, can be used not only in the respectively specified combination but also in other combinations or in isolation without departing from the scope of the invention. Embodiments of the invention, which are not explicitly shown or explained in the figures but derive therefrom and can be produced by separated combinations of features from the embodiments explained, are thus to be regarded as included and disclosed. DETAILED DESCRIPTION As can be seen fromFIGS.1to3, a vehicle1according to an illustrated embodiment of the invention comprises a body1A and at least two vehicle doors3,3A,3B arranged one behind the other in the vehicle longitudinal direction x, which can each be moved between a closed position and an open position and are movably coupled to the body1A in a sliding-pivoting manner, and at least one passive locking device10,10A,10B,10C,10D. At least one of the vehicle doors3,3A,3B forms a vehicle pillar9of the body1A in the closed position, wherein the at least one passive locking device10,10A,10B,10C,10D interlockingly connects the integrated vehicle pillar9of the corresponding vehicle door3,3A,3B to the body1A in the closed position. As can also be seen fromFIG.1, a vehicle door3A is arranged behind a second vehicle door3B in the direction of travel. In this case, the first vehicle door3A comprises a continuous door frame4A having a front vertical frame portion4.1which is reinforced by a ribbon-shaped first reinforcement element5A. In addition, a first sliding-pivoting kinematics6A movably mounts the first vehicle door3A in a sliding-pivoting manner on a C-pillar9C of the body1A of the vehicle1. The second vehicle door3B is arranged in front of the first vehicle door3A in the direction of travel and comprises a continuous door frame4B having a rear vertical frame portion4.2which is reinforced by a ribbon-shaped second reinforcement element5B. Furthermore, a second sliding-pivoting kinematics6B movably mounts the second vehicle door3B in a sliding-pivoting manner on an A-pillar9A of the body1A of the vehicle1. As can also be seen fromFIG.1, the two vehicle doors3A,3B each comprise an electric door lock7A,7B. A first electric door lock7A thus secures the first vehicle door3A against unauthorized opening. A second electric door lock7B secures the second vehicle door3B against unauthorized opening. As can also be seen fromFIG.1, in the depicted embodiment of the vehicle1, the first reinforcement element5A of the first vehicle door3A and the second reinforcement element5B of the second vehicle door3B jointly form the integrated vehicle pillar9which in this case corresponds to a B-pillar9B. As can also be seen fromFIG.1, in the closed position, a first passive locking device10A interlockingly connects a part of the integrated vehicle pillar9integrated into the first vehicle door3A or the first reinforcement element5A to a first structural component2designed as a roof frame2A. In the closed position, a second passive locking device10B interlockingly connects the part of the integrated vehicle pillar9integrated into the first vehicle door3A or the first reinforcement element5A to a second structural component8designed as a sill8A. In addition, in the closed position, a third passive locking device10C interlockingly connects a part of the integrated vehicle pillar9integrated into the second vehicle door3B or the second reinforcement element5B to the first structural component2designed as a roof frame2A. In the closed position, a fourth passive locking device10D interlockingly connects the part of the integrated vehicle pillar9integrated into the second vehicle door3B or the second reinforcement element5B to the second structural component8designed as a sill8A. In an alternative embodiment of the vehicle1(not depicted), only the first reinforcement element5A of the first vehicle door3A forms the integrated vehicle pillar9. In this alternative embodiment, in the closed position, only the first reinforcement element5A of the first vehicle door3A is interlockingly connected to the roof frame2A via the first passive locking device10A and interlockingly connected to the sill8A via the second passive locking device10B. In a further alternative embodiment of the vehicle1(not shown), only the second reinforcement element5B of the second vehicle door3B forms the integrated vehicle pillar9. In this alternative embodiment, only the second reinforcement element5B of the second vehicle door3B is interlockingly connected to the roof frame2A via the third passive locking device10C and interlockingly connected to the sill8A via the fourth passive locking device10D in the closed position. As can also be seen fromFIGS.1to3, the passive locking devices10,10A,10B,10C,10D each comprise a body-side receiving element12and a door-side locking element14. In this case, the door-side locking element14is inserted into the body-side receiving element12by a pivoting movement of the corresponding vehicle door3and interlockingly locked in the body-side receiving element12by a locking sliding movement of the corresponding vehicle door3. For this purpose, the body-side receiving element12comprises a receiving opening12.1and a locking opening12.2. As can also be seen fromFIG.2, the body-side receiving element12in the depicted embodiment of the first passive locking device10A is designed as a keyhole bore12A having a larger receiving opening12.1and a smaller locking opening12.2and is arranged on the roof frame2A. The door-side locking element14is designed as a mushroom-shaped locking bolt14A having a wider bolt head14.1and a narrower bolt shaft14.2which is arranged on a base plate14.3. The mushroom-shaped locking bolt14A in the embodiment shown is inserted into the receiving opening12.1by a combined pivoting movement in the vehicle longitudinal direction x and the vehicle transverse direction y and locked in the locking opening12.2by the subsequent sliding movement in the vehicle longitudinal direction x. In contrast to the first passive locking device10A, the body-side receiving element12of the second passive locking device10B is arranged on the sill8A. The third passive locking device10C is designed mirrored to the first passive locking device10A, and the fourth passive locking device10D is designed mirrored to the second passive locking device10B. As can also be seen fromFIG.3, the body-side receiving element12in the depicted fifth embodiment of the passive locking device10E is designed as a link guide12B with a receiving opening12.1and a locking opening12.2. The door-side locking element14is designed as a mushroom-shaped locking bolt14A having a wider bolt head14.1and a narrower bolt shaft14.2which is arranged on a base plate14.3. In the embodiment shown, the mushroom-shaped locking bolt14A is inserted into the receiving opening12.1by a combined pivoting movement in the vehicle longitudinal direction x and the vehicle transverse direction y in a predetermined insertion direction EFR and rotated about an axis of rotation by a subsequent sliding movement in the vehicle transverse direction y corresponding to a locking direction VRR and thus locked in the locking opening12.2, as shown by the dashed representation of the locking bolt14A. Since the receiving opening12.1and the locking opening12.2of the body-side receiving element12are adapted to the shape of the locking bolt14A, the locking bolt14A meshes in a bayonet-like manner with the body-side receiving element12in the closed position. When the corresponding vehicle door3is opened, the locking bolt14A in the locking opening is first rotated in an opposite unlocking direction ERR and then guided out of the receiving opening12.1in an opposite retraction direction AFR. Alternatively, the locking bolt14A can be designed to be cylindrical or dovetail-shaped. LIST OF REFERENCE SIGNS
' 2000043 L'invention cdîicerne un dispositif" pour régler un embrayage hydraulique à l'aide de son remplissage, en particulier pour une commande de ventilateur réglable de moteur à combustion interne, surtout pour les véhicules automobiles, l'embrayage comprenant 5 une enceinte de travail, une enceinte de réserve reliée à celle-ci et des tuyaux de puisage stationnaires dans cette dernièreJ dont le diamètre efficace est réglable et qui ramènent le liquide d'embrayage dans l'enceinte de travail» Les embrayages hydrauliques du type précité sont connus. 10 On fait généralement pivoter les tuyaux de puisage, de sorte que leur orifice ou leurs orifices se trouvent sur des diamètres variables. On peut ainsi régler la part du liquide se trouvant dans l'enceinte de travail et, par conséquent, le glissement de l'embrayage. On doit, toutefois, déplacer les tuyaux de puisage 15 à partir d'un organe-émetteur dans les deux directions c'est-à-dire que pour un glissement plus grand de l'embrayage on doit diminuer leur diamètre efficace (pivotement dans une direction) et pour un glissement plus petit on doit augmenter leur diamètre efficace (pivotement dans 1:autre direction). 20 Toutefois, avec certaines dispositions de réglage on dé sire souvent obtenir avec le même mouvement de l'organe-émetteur une inversion du sens de remplissage de l'embrayage. Ce problème se présente par exemple lorsqu'avec les commandes de_ventilateurs de moteurs à combustion interne mentionnées ci-dessus, qui 25 sont généralement réglées, en fonction de la température, l'or-gane-émetteur tombe en panne à cause d'un défaut quelconque. Dans ce cas on désire alors connecter l'embrayage. L'invention résoud le problème posé pour les dispositifs décrits ci-dessus en montant au moins deux tuyaux de puisage, JO formant un certain angle entre eux, sur un support commun de façon à pouvoir les déplacer linéairement ou suivant un arc à l'aide de ce support, dans un plan normal à l'axe de celui-ci en fonction à peu près linéaire d'un organe-émetteur. L'embrayage lui-même peut être conçu comme embrayage hydraulique ou comme 35 embrayage visqueux. Avec le dispositif suivant l'invention on peut régler de la manière habituelle en fonctionnement normal le remplissage de l'embrayage et, par conséquent, le glissement en fonction de 1'organe-émetteur. Si l'organe-émetteur tombe en panne ou si, 40 par exemple, les organes de transmission entre celui-ci et un 69 00060 2 2000043 palpeur de température deviennent non-étanches, 15 organe-émetteur est déplacé par un ressort ou par son élasticité propre dans une direction correspondant aux températures descendantes et l'autre tuyau de puisage entre alors en action? refoule de nouveau le li-5 quide dans 1"enceinte de travail de 1Bembrayage et connecte de nouveau celui-ci. Dans l'exemple d'application considéré on peut alors éviter une surchauffe du moteur. Dans un mode de réalisation préféré de l'invention les deux tuyaux de puisage placés sur leur support forment entre eux un 10 angle de 180°. On aurait pu évidemment choisir un autre angle, par exemple 90 ou 120°. La direction de mouvement du support peut coïncider avec la direction longitudinale d'un tuyau de puisage ou de deux tuyaux de puisage, on former le même angle avec les deux tuyaux de puisage. L'orifice de deux tuyaux de 15 puisage est dirigé dans tous les cas la manière connue à l'opposé du sens de rotation de l'embrayage. Il y a lieu dcutiliser généralement des tuyaux de puisage de meme longueur. Toutefois, suivant l'invention les deux tuyaux de puisage peuvent avoir des longueurs différentes. La position médiane du support des tuyaiax 20 de puisage peut correspondre au remplissage minimal de l'embrayage. On peut ainsi arriver à ce que l'embrayage puisse rester déconnecté dans la zone de température voulue ou ne puisse fonctionner qu'avec un faible glissement. Dans un mode de réalisation de l'invention, on a prévu 25 comme support commun une languette qui traverse axialemsnt le carter d'embrayage en partant des tuyaux de puisage et est actionnée en dehors de celui-ci, d'une part, par 1'organe-émetteur et, d'autre part, par une force de ressort. En particulier, pour l'exemple d'application préféré dé-30 crit ci-dessus l'invention propose dsutiliser comme organe-émetteur un soufflet de dilatation connu en soi, relié à un palpeur de température par un tube capillaire et placé dans un carter, et de relier ce soufflet par une tige de piston guidée dans le carter à la languette du support des tuyaux de puisage. Le système-35 émetteur peut être rempli - comme il est également connu - d'un liquide, ou on peut prévoir à cet effet aussi un liquide pouvant s'évaporer. Dans ce dernier cas on obtient une caractéristique à coude brusque ou fortement infléchie en fonction de la température . 40 Dans un mode de réalisation suivant l'invention, la tige 69 00060 5 2000043 de piston traverse la languette du support des tuyaux de puisage et est reliée à un ressort à lame bandé. Celui-ci fournit alors la force de rappel. Dans un autre mode de réalisation de l'invention la languette du support des tuyaux de puisage se trouve 5 entre la tige de piston et un ressort hélicoïdal placé dans son prolongement et s'appuyant avec son autre extrémité contre le carter. Les exemples de réalisation représentés sur les dessins annexés montrent les détails de l'invention. 10 Sur ces dessins : La figure 1 montre un schéma de construction d'un embrayage à viscosité suivant l'invention; la figure 2 montre un schéma de la disposition des tuyaux de puisage de l'embrayage selon la figure 1; 15 la figure 3 montre la caractéristique de réglage de cet embrayage ; les figures 4 et 5 montrent deux modes de réalisation de l'organe-émetteur. Sur les figures 1 et 2 le carter 10 de l'embrayage forme 20 avec une poulie à courroie trapézoïdale 11 la partie menée de l'embrayage entraînée par le vilebrequin du moteur à combustion interne refroidi par air. Sur l'arbre de sortie 12 de l'embrayage se trouve le ventilateur 13. L'embrayage a une enceinte de travail 14 et une enceinte de réserve 15 reliées ensemble par 25 des trous 16. Le liquide de l'embrayage s'écoule par ces trous de l'enceinte de travail 14 dans l'enceinte de réserve 15» Dans celle-ci se trouvent sur une languette support 17 deux tuyaux de puisage 18 comportant un conduit d'évacuation commun 19 qui ramène le liquide dans l'enceinte de travail 14. 30 Sur la figure 2 les tuyaux de puisage 18 sont décalés de 180° l'un par rapport à l'autre. Ils ont la même longueur et leurs orifices 20 sont dirigés à l'opposé du sens de rotation de l'embrayage. Dans la position représentée aucun des deux tuyaux de puisage ne plonge dans l'anneau de liquide 21 et l'em-35 brayage est en quelque sorte déconnecté. Dans la disposition décrite jusqu'ici les deux tuyaux de puisage 18 peuvent se déplacer linéairement à l'aide de leur languette support 17 et cela, selon la figure 2, vers la droite ou la.gauche à partir de la position médiane représentée. Ce mouvement est causé par 40 un organe-émetteur que l'on décrira avec précision ci-après. 69 00060 4 2000043 Lors du mouvement mentionné du support des tuyaux de puisage vers la droite ou la gauche l'un ou l'autre des tuyaux de puisage plonge dans l'anneau de liquide 21 et puise dans celui-ci le liquide pour le ramener dans l'enceinte de travail 14 de l'embrayâ-5 ge. Dans ce cas l'embrayage sera donc plus ou moins rempli c'est-à-dire que son glissement sera plus petit, ou autrement dit l'embrayage sera connecté. On obtient ainsi la caractéristique de réglage représentée sur la figure 3» qui montre que dans les deux cas en s'écartant de la position médiane le nombre de tours 10 du ventilateur monte jusqu'à sa valeur maximale. Sur la figure 4 un carter 22 est fixé à demeure sur une pièce, par exemple sur une plaque, et dans ce carter est monté un soufflet à dilatation 23, connu en soi comme organe-émetteur. Le soufflet 23 est relié par un tube capillaire 24 à un palpeur 15 de température non représenté que l'on peut placer par exemple sur la culasse d'un moteur refroidi par air. Sur le soufflet à dilatation 23 est fixée une tige de piston 25 guidée dans le carter 22. Sur cette tige de piston 25 est fixée la languette 17 du support des tuyaux de puisage. La tige de piston agit, de 20 plus, à l'opposé d'un ressort à lame 26 bandé monté également à demeure de manière non représentée en détail, par exemple sur la même plaque. Ce ressort à lame fournit la force de rappel du soufflet à dilatation 23. Le mode de fonctionnement de cet organe-émetteur est connu en soi. Lors de l'augmentation de la tempéra-25 ture à l'endroit de la mesure le soufflet 23 se dilate et pousse la tige de piston 25 et, par conséquent, la languette support 17 des tuyaux de puisage à l'opposé de l'action du ressort à lame 26, vers la gauche. L'embrayage est ainsi connecté comme on l'a déjà décrit ci-dessus. Si le tube capillaire 24 ou un autre 30 endroit du système devient non étanche, le ressort à lame 26 pousse la languette support 17 à partir de sa position médiane ou à partir de la position dépendant de la température complètement vers la droite jusqu'à une butée, de sorte que l'embrayage est alors aussi connecté. 35 Sur la figure 5 la languette 17 du support des tuyaux de puisage se trouve entre la tige de piston 25 du soufflet de dilatation 23 et un ressort hélicoïdal 27 s'appuyant avec son autre .extrémité contre une butée fixe. Le mode de fonctionnement de cette disposition est en principe le même que celui que l'on a 40 décrit en regard de la figure 4. 69 00060 2000043 - REVENDICATIONS - La présente invention concerne : 1. Un dispositif pour régler un embrayage hydraulique à l'aide de son remplissage, en particulier pour une commande de 5 ventilateur réglable de moteurs à combustion interne, surtout pour les véhicules automobiles, l'embrayage comprenant une enceinte de travail, une enceinte de réserve reliée à celle-ci et des tuyaux de puisage stationnaires dans cette dernière, dont le diamètre efficace est réglable et qui ramènent le liquide d'em-10 brayage dans l'enceinte de travail, caractérisé en ce qu'au moins deux tuyaux de puisage, formant un angle entre eux, sont montés sur un support commun et peuvent se déplacer linéairement ou suivant un arc à l'aide de ce support dans un plan normal à l'axe de celui-ci en fonction à peu près linéaire d'un 15 organe-émetteur. 2. Un dispositif suivant la revendication 1, caractérisé en ce que les deux tuyaux de puisage (18) sur leur support (17) sont décalés de 180° l'un par rapport à l'autre. 3. Un dispositif suivant les revendications 1 ou 2, carac-20 térisé en ce que les deux tuyaux de puisage ont des longueurs différentes. 4. Un dispositif suivant une ou plusieurs des revendications 1 à 3i caractérisé en ce que comme support commun est prévue une languette (17) traversant axialement le carter d'embra- 25 yage (10) en partant des .tuyaux de puisage (18) et.actionnée en dehors de celui-ci, d'une part, par l'organe-émetteur (23) et, d'autre part, par une force de ressort (26), (27). 5. Un dispositif suivant la revendication 4, caractérisé en ce que comme organe-émetteur est prévu un soufflet à dilata- 30 tion (23)» connu en soi, relié à un palpeur de température.par un tube capillaire (24) et monté dans un carter (22), et en ce que ce soufflet est relié par une tige de piston (25), guidée dans le carter, à la languette (17). 6. Un dispositif suivant la revendication 5» caractérisé 35 en ce que la tige de piston (25) traverse la languette (17) et est reliée à un ressort à lame (26) bandé. 7» Un dispositif suivant la revendication 5, caractérisé en ce que la languette (17) est placée entre la tige de piston (25) et un ressort hélicoïdal (27) se trouvant dans son prolonge-40 ment et dont l'autre extrémité s'appuie contre une pièce fixe.
Semiconductor memory A semiconductor storage device includes a memory cell array that stores data and includes a plurality of memory cells two dimensionally arrayed on row and column lines extending along row and column directions, at least one of the memory cells assigned to a redundant memory cell having a larger area size than the other memory cells, the plurality of memory cells and at least one of the redundant memory cells arrayed on at least one of the row lines. CROSS-REFERENCE TO RELATED APPLICATION This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2009-170574 filed on Jul. 21, 2009, the entire contents of which are incorporated herein by reference. FIELD The embodiment of the present invention discussed herein relates to a semiconductor memory. BACKGROUND Semiconductor memories have been known each of which contains alternative redundant memory cells provided in the row direction, in addition to memory cells normally used in system operations. In such a semiconductor memory, a redundant memory cell has a larger area than a normal memory cell. An alternative redundant memory cell and a defective normal memory cell are selected double. In the configuration, since a redundant memory cell has a larger area than a normal memory cell, correct data of the redundant memory cell is output even when the normal memory cell and the redundant memory cell are selected double. Semiconductor memories with a redundant circuit have also been known which connect a high-sensitivity sense amplifier containing a transistor having a high drivability which is higher than the drivability of a sense amplifier used for a normal memory cell array to a spare cell in a spare row. When the redundant memory cells are provided in the row direction as described above, the area of the corresponding sense amplifier may be increased with the increase in area of the redundant memory cells. As a result, the areas of the sense amplifiers increase in all columns. This may largely influence on a size of the area of the entire semiconductor memory. In semiconductor memories with a redundant circuit, high sensitivity sense amplifiers may be provided to all spare cells in a spare row. This largely influence on a size of the entire area of the semiconductor memory. The followings are a reference documents.[Patent Document 1] Japanese Laid-open Patent Publication No. 06-36592[Patent Document 2] Japanese Laid-open Patent Publication No. 01-213990 SUMMARY According to an aspect of an embodiment, a semiconductor storage device includes a memory cell array that stores data and includes a plurality of memory cells two dimensionally arrayed on row and column lines extending along row and column directions, at least one of the memory cells assigned to a redundant memory cell having a larger area size than the other memory cells, the plurality of memory cells and at least one of the redundant memory cells arrayed on at least one of the row lines, and a plurality of sense amplifiers that amplify a first output signal from the memory cells, at least one of the sense amplifiers arrayed on the respective column lines, at least one of the sense amplifiers assigned to a redundant sense amplifier that amplifies a second output signal from the redundant memory cell having a larger area size than the other sense amplifiers, the plurality of sense amplifiers and at least one of the redundant sense amplifiers arrayed on at least one of the row lines. DESCRIPTION OF EMBODIMENTS With reference to drawings, embodiments will be described in detail below. FIG. 1illustrates a schematic diagram of a static random access memory (SRAM) macro functioning as a semiconductor memory. The SRAM macro refers to a circuit block functioning as an SRAM. The SRAM macro inFIG. 1includes memory cell arrays111, local blocks112, data paths113, a timer114and decoders115. In each of the memory cell arrays111, memory cells11(not illustrated inFIG. 1) are arranged two-dimensionally in the row and column directions. As illustrated inFIG. 1, the row direction of the memory cell arrays111is the horizontal direction while the column direction is the vertical direction. Therefore, in the memory cell array111, a series of memory cells11aligned in the horizontal direction are memory cells11in a row while a series of memory cells11aligned in the vertical direction is memory cells11in a column. For convenience of illustration,FIG. 1only illustrates a part of the memory cells11contained in the memory cell arrays111. The other memory cells11are not illustrated inFIG. 1. The lengths in the row direction of the memory cells11are uniformly L, and the memory cells11also have a uniform length in the column direction. The timer114performs operation control over the entire SRAM macro. The timer114receives control signals and address signals from external circuits of the timer114. In accordance with a control signal and address signal, the timer114may switch between the ON and OFF states of the SRAM macro, adjust the operating timing or designate a memory cell11from or to which data is to be read or written, for example. The decoders115transmit a write enable signal to the corresponding local block112in accordance with a control signal from the timer114. The write enable signal enables reading data from a designated memory cell11or writing data to a designated memory cell11. The data paths113control external input/output to/from the SRAM macro on data read from memory cells11and data to be written to memory cells11. In reading data from memory cells11, the corresponding local block112controls so as to determine a signal acquired from the memory cell array111from the sense amplifier (not illustrated). Then, the corresponding local block112transmits the signal to the corresponding data path113. In writing data to a memory cell11, the corresponding local block112controls so as to transmit the data received from the data path113to the memory cell array111. Then, the corresponding local block112controls so as to write the data to the corresponding memory cell11. In memory cell arrays111, data are written to memory cells11being the target of the data writing on the basis of the signals received from the decoders115and local blocks112. Moreover, data are read from memory cells11being the target of the data writing. In other words, an address signal designating the memory cell11being the target of the data reading or writing is transferred from the timer114to the decoder115. Then, the decoder115decodes the transferred address signal. As a result, the memory cell11is accessed. The SRAM macro inFIG. 1may include an alternative redundant memory cell (not illustrated) provided for a defective memory cell11in a memory cell array111. The redundant memory cells may be built in the row direction in the memory cell arrays111and be connected via special word lines, for example. In addition, as described above, correct data in the redundant memory cell may be output when the area of the redundant memory cell is larger than normal memory cells and a redundant memory cell and a defective normal memory cell are selected double. In this way, providing redundant memory cells in the row direction of the memory cell array110and increasing the area of the redundant memory cells and thus the area of all corresponding sense amplifiers as described above may largely influence on the area of the semiconductor memory. In view of the problem, the following embodiments are configured to improve the yield of semiconductor memories, improve the working velocity and provide uniform characteristics in an entire semiconductor memory. FIG. 2illustrates a schematic plan view of an SRAM macro functioning as a semiconductor memory according to a first embodiment. The SRAM macro inFIG. 1includes memory cell arrays110, local blocks120, data paths130, a timer140and decoders150. In each of the memory cell arrays110, memory cells11are arranged two-dimensionally in the row and column directions. As illustrated inFIG. 2, the row direction of the memory cell arrays110is the horizontal direction inFIG. 2while the column direction is the vertical direction inFIG. 2. Therefore, in the memory cell arrays110, a series of memory cells11aligned in the horizontal direction are memory cells11in a row while a series of memory cells11aligned in the vertical direction is memory cells11in a column. For convenience of illustration,FIG. 2only illustrates a part of the memory cells11and12contained in the memory cell arrays110, and the other memory cells11and12are not illustrated. The lengths in the row direction of the memory cells11are uniformly L1. Moreover, the lengths in the row direction of the redundant memory cells12, which may be described later, are uniformly L2that is longer than L1. The lengths in the column direction of each of the memory cells11and12are uniform. The areas of the memory cells11are uniformly A1. Moreover, the areas of the redundant memory cells12are uniformly A2that is larger than A1. The size comparison relationship of A1and A2results in that A2>A1because L2>L1. The timer140performs operation control over the entire SRAM macro. The timer140receives control signals and address signals from external circuits. The timer140may switch between the ON and OFF states of the SRAM macro in accordance with a control signal and address signal. Moreover, the timer140may adjust the operating timing or designate a memory cell11or12from or to which data is to be read or written, for example. The decoders150transmit a write enable signal to the corresponding local block120and memory cell array110in accordance with a control signal from the timer140. The write enable signal enables reading data from designated memory cells11or12or writing data to designated memory cells11or12. The data paths130control external input/output to/from the SRAM macro on data read from memory cells11or12and data to be written to the memory cells11or12. In reading data from the memory cell11or12, the corresponding local block120controls so as to determine a signal acquired from the memory cell array110from the sense amplifier21or22. Then, the corresponding local block120transmits the signal to the corresponding data path130. In writing data to a memory cell11or12, the corresponding local block120controls so as to transmit the data received from the data path130to the corresponding memory cell array110. Then, the corresponding local block120controls so as to write the data to the corresponding memory cell11or12. In the memory cell arrays110, data are written to the memory cells11or12being the target of the data writing, or read from the memory cells11or12being the target of the data reading on the basis of the signals received from the decoder150and local block120. In other words, an address signal designating the memory cell11or12being the target of the data reading or writing is transferred from the timer140to the decoder150. Then, the decoder150decodes the address signal. As a result, the memory cell11or12becomes accessible. In the SRAM macro according to the first embodiment inFIG. 2, the redundant memory cells12are provided in the column direction in the columns at the right and left ends of the memory cell arrays110. In other words, referring toFIG. 2, the memory cells12in a total of two columns uniformly having a length of L2in the row direction of the memory cell arrays110are uniformly assigned as redundant memory cells12in the memory cell arrays110. As illustrated inFIG. 4, which may be described later, a redundant sense amplifier22and the redundant memory cells12in the same column share bit lines BL and XBL in each of the memory cell arrays110. In order to improve the operating characteristics of the SRAM macro when a redundant memory cell12is actually used instead of a defective memory cell11, the transistors contained in the redundant memory cells12have a larger size than the transistors contained in the normal memory cells11, as described later. Similarly, the number of transistors contained in each of the redundant sense amplifiers22is larger than the number of transistors contained in each of the normal sense amplifiers21. More specifically, as described later with reference toFIG. 5, in each of the redundant memory cells12, the contained transistors have the same length in the column direction as the length of the normal memory cells11. Moreover, the contained transistors have the longer length only in the row direction. In each of the redundant sense amplifiers22, the contained transistors have the same length in the column direction as the length of the normal sense amplifiers21. Moreover, more transistors are aligned in the row direction. Thus, both of the redundant memory cells12and redundant sense amplifiers22may be longer only in the row direction. This may reduce the influence on the layout in the SRAM macro, in comparison with the case where the redundant memory cells12and redundant sense amplifier22are longer in both of the row direction and column direction. According to this embodiment, the redundant memory cells12are arranged in the column direction of the memory cell array110as described above. The arrangement of the memory cells12may eliminate the necessity for word lines for the redundant memory cells12, and the necessity for increasing the drive capability of the word lines may hardly be considered. The sizes of the redundant memory cells12and redundant sense amplifiers22may be increased uniformly in the column direction. Thus, the size of the transistors in the redundant memory cells12and redundant sense amplifier22may be increased at the same time. The circuit in the SRAM macro is configured such that a redundant memory cell is to be used instead of an actually defective memory cell11, as described laterFIGS. 18 to 22. Like another embodiment as described later with reference toFIG. 3, the size of the transistors may be increased in the memory cells and sense amplifiers at positions where the required operating characteristics are not acquired in the SRAM macro. As a result, the entire SRAM macro may provide a uniform operating characteristic. The positions where the required operating characteristics are not acquired in the SRAM macro may refer to the farthest column from or the nearest column to the decoders150and the timer140at the center of the SRAM macros according to another embodiment inFIG. 3, for example. The reasons are as follows: The required operating characteristics such as operating timing and margins of the transistors contained in the memory cells11and sense amplifiers21in far and significantly close areas from the center of the SRAM macros are largely different from those of the transistors in the other area than the area. According to a second embodiment inFIG. 3, the difference is addressed by changing the size of the transistors in the memory cells11and sense amplifiers21. According to the second embodiment inFIG. 3, as described above, the size of transistors even in the memory cells11and sense amplifier21at positions where the required operating characteristics are not acquired in the SRAM macro are increased like those in the redundant memory cells12and redundant sense amplifiers22. InFIG. 3, like numbers refer to like components to those inFIG. 2, and the repetitive description may be omitted. The second embodiment inFIG. 3is different form the first embodiment inFIG. 2as follows. According to the second embodiment inFIG. 3, in the memory cell arrays110in the SRAM macro, the lengths in the row direction of the memory cells13in the neighboring columns to the decoders150and the timer140at the center and the sense amplifiers (not illustrated) in the column are uniformly L3. The length L3is longer than the length L1in the row directions of the normal memory cells11. According to the second embodiment inFIG. 3, the lengths in the row direction of the memory cells13in the farthest columns from the decoders150and the timer140at the center and the sense amplifiers (not illustrated) in the columns are uniformly L3in the memory cell arrays110in the SRAM macro. The expression “the farthest columns from the decoders150and the timer140at the center of the SRAM macro” refers to the columns that are one-column closer to the center than the column of the redundant memory cells12, as illustrated inFIG. 3. The length in the column direction of the memory cells13is equal to the length of the normal memory cells11. The area of each of the memory cells13is A3. Moreover, the area of each of the memory cells13is larger than the area A1of each of the normal memory cells11. The size comparison relationship of A1and A3results in that A3>A1because L3>L1. Each of the memory cells13in the neighboring column to the decoders150and the timer140at the center may sometimes be called an end memory cell13. Moreover, each of the memory cells13in the farthest columns from the decoders150and the timer140at the center of the SRAM macro may sometimes be called as “end memory cell”. Similarly, each of the sense amplifiers (not illustrated) in the same columns as those of the end memory cells13may sometimes be called as “end amplifier”. As described above, according to the first embodiment inFIG. 2and the second embodiment inFIG. 3, the size of transistors in partial memory cell arrays110and local blocks120contained in an SRAM macro are increased. Moreover, the number of transistors therein is increased. According to the first embodiment inFIG. 2, the sizes of transistors in the redundant memory cells12are uniformly larger than those of the normal memory cells11in each of the memory cell arrays110. The number of parallel transistors in the redundant sense amplifiers22is larger than the number of parallel transistors in the normal sense amplifiers. According to the second embodiment inFIG. 3, the sizes of transistors in the redundant memory cells12and the end memory cells13are uniformly larger than the size of transistors in the normal memory cells11. The number of parallel transistors in the redundant sense amplifiers22and the end amplifiers is higher than the number of parallel transistors in the normal sense amplifiers. As a result, the influence on the layout within the SRAM macro may be suppressed. Moreover, the stability and the sensitivity of the operations in the entire SRAM macro may be increased. In other words, the increased size of transistors may reduce the scatterings in performance between the transistors, as described later with reference toFIG. 12. The increased size of transistors may improve the stability of the operations in the entire SRAM macro as a result. The performance of memory cells increases as the size of transistors increases. The sensitivity increases as the number of parallel transistors in sense amplifiers increases. Thus, when the redundant memory cell12and redundant sense amplifier22are used instead of a defective memory cell11and the corresponding sense amplifier21, the sensitivity of the entire SRAM macro may improve. According to the second embodiment inFIG. 3, uniform operating characteristics may be expected in the SRAM macro. In other word, according to the second embodiment inFIG. 3, the size of transistors in the memory cells having different required operating characteristics is increased so as to address the difference in required operating characteristics as described above. Furthermore, uniform operating characteristics may be expected within the SRAM macro. The increased size of the transistors may minimize the scatterings in characteristic values in manufacturing. Thus, the yield of the applied products may be improved, as described later inFIG. 12. FIG. 4illustrates the connection of signal lines in the vicinity of the redundant memory cells12and the redundant sense amplifiers22in memory cell arrays110in an SRAM macro of the first embodiment inFIG. 2. As illustrated inFIG. 4, the redundant memory cells12arranged in the column direction share bit lines BL and XBL, like the normal memory cells in the column direction in the other columns. Each row of the memory cell arrays110contains normal memory cells11and a redundant memory cell12. The normal memory cell11and the redundant memory cell12in each row shares word lines WL0, WL2. . . and WLN (also collectively called as word lines “WL”). According to the second embodiment inFIG. 3, as described above, the end memory cells13are arranged in the column direction in certain columns in the memory cell arrays110. The end memory cells13also share the bit lines BL and XBL. According to the second embodiment, the each row in the memory cell arrays110contains normal memory cells11, redundant memory cells12and end memory cells13. The normal memory cells11, redundant memory cells12and end memory cells13share the word lines WL in the rows. FIG. 5illustrates the layout in the column having the redundant memory cells12and the vicinity in a memory cell array110.FIG. 6illustrates a simplified layout of each of the memory cells11and12. The end memory cells13in the second embodiment inFIG. 3have the same layout withFIGS. 5 and 6.FIG. 7illustrates a circuit configuration of each of the memory cells11and12. The end memory cells13in the second embodiment inFIG. 3also have the same circuit configuration withFIGS. 5 and 6. FIG. 8illustrates a simplified layout of a redundant sense amplifier22. The end amplifiers in the second embodiment inFIG. 3have the same layout withFIG. 8.FIG. 9illustrates a circuit configuration of each of normal sense amplifiers21, redundant sense amplifiers22and illustrates another embodiment of the end amplifiers23illustrated inFIG. 3. FIG. 10Ais a schematic diagram of each of transistors T11to T13and T21to T23contained in a redundant memory cell12. The transistors contained in each of the end memory cells13in the second embodiment inFIG. 3have the same configuration.FIG. 10Bis a schematic diagram of each of transistors T11to T13and T21to T23contained in a normal memory cell11. FIG. 11Ais a schematic diagram of each of transistors T31, T41, T32, and T42contained in a redundant sense amplifier22. The transistors contained in each of the end amplifiers in the second embodiment inFIG. 3have the same configuration.FIG. 11Bis a schematic diagram of each of transistors T31, T41, T32, and T42contained in a normal sense amplifier21. As illustrated inFIGS. 5,6,7, and10A and10B, each of the memory cells11and12contains six transistors T11to T13and T21to T23. The same is true in each of the end memory cells13in the second embodiment inFIG. 3. The transistors T11and T21are P-channel metal oxide semiconductor field effect transistors (MOSFETs), and the transistors T12, T22, T13, and T23are N-channel MOSFETs. A pair of the transistors T11and T12function as an inverter12, as illustrated inFIG. 13A, which will be described later. Similarly, a pair of the transistors T21and T22functions as an inverter IL The transistors T13and T23are turned on by a signal of the word line WL and allow the signal to pass through between the corresponding memory cell11or12and the bit line BL and XBL. Each of the transistors T11to T13and T21to T23has a gate electrode PG of polysilicon, a drain electrode and source electrode containing a diffusion layer DL. The gate lengths of the gate electrodes PG in the six transistors T11to T13and T21to T23in the memory cells11and12are uniformly11. The same is true in the end memory cells13in the second embodiment inFIG. 3. The gate widths of the gate electrodes PG in the six transistors T11to T13and T21to T23in the normal memory cells11are uniformly w1. On the other hand, the gate widths of the gate electrodes PG in the six transistors T11to T13and T21to T23in the redundant memory cells12are uniformly w2. Here, the size comparison relationship of w1and w2is w2>w1. The same is true in the end memory cells13in the second embodiment inFIG. 3. In other words, the redundant memory cells12and the end memory cells13in the second embodiment inFIG. 3have transistors T11to T13and T21to T23having a larger gate width than the gate width of the normal memory cells11. As a result, the redundant memory cells12and end memory cells13extends in the row direction, in comparison with the normal memory cells11. The increase in length in the row direction is determined quantitatively to be consistent with the increase in area of the local block120. The increase in area of the local block120is caused by the increase in gate width of each of the transistors T31, T32, T41, and T42in the redundant sense amplifiers22and the end amplifiers in the second embodiment inFIG. 3. The increase in gate width of the redundant memory cells12as described above in comparison with the gate width of the normal memory cells11allows larger current I2flowing than the current I1in the normal memory cells11when the transistors T11to T13and T21to T23are turned on as illustrated inFIG. 10. Next, as illustrated inFIGS. 5,8,9, and11A and11B, each of the sense amplifiers21and22contains four transistors T31, T32, T41, and T42. The same is true in the end amplifiers in the second embodiment inFIG. 3. The transistors T31and T41are P-channel MOSFETs, and the transistors T32and T42are N-channel MOSFETs. Each of the transistors T31and T32functions as an inverter112, as illustrated inFIG. 13B, which may be described later. Similarly, each of the transistors T41and T42functions as an inverter I11. Each of the sense amplifiers21and22has a latch configuration in which the two inverters I11and I12are connected in a loop form. Each of the transistors T31, T32, T41and T42has a gate electrode PG of polysilicon, and a drain and source containing a diffusion layer DL. The gate lengths of the gate electrodes PG of the four transistors T31, T32, T41, and T42contained in the sense amplifiers21and22are uniformly12. The same is true in the end amplifiers in the second embodiment inFIG. 3. In the four transistors T31, T41, T32, and T42contained in the normal sense amplifier21, the gate widths of the gate electrodes PG of the N-channel MOSFETs T32and T42are uniformly w11. The gate widths of the gate electrodes PG of the P-channel MOSFETs T31and T41are uniformly w12. In this case, since the P-channel MOSFETs have a worse current characteristic, the gate widths are adjusted to obtain w11>w12for consistency of the current characteristic with the N-channel MOSFETs. In the four transistors T31, T41, T32, and T42contained in a redundant sense amplifier22, the gate widths of the gate electrodes PG of the N-channel MOSFETs T32and T42are uniformly w21. The gate widths of the gate electrodes PG of the P-channel MOSFETs T31and T41are uniformly w22. For the same reason, w21>w22. The gate width w12=the gate width w22, and the gate width w11=the gate width w21. However, in a redundant sense amplifier22, as illustrated inFIG. 8, the four transistors T31, T41, T32, and T42include two transistors T31-1and T32-2, T41-1and T41-2, T32-1and T32-2, and T42-1and T42-2, which are connected in parallel. As a result, inFIG. 11A, when the far P-channel MOSFET T31or T41is turned on, currents (not illustrated) flow in parallel from the source electrodes of the far right and left parallel-connected two transistors inFIG. 11Ato the drain electrodes at the center. Similarly, the near N-channel MOSFET T32or T42is turned on ON, the currents I21and I22flow in parallel from the drain electrodes of the parallel-connected two transistors at the near center inFIG. 11Ato both right and left sources. In the normal sense amplifier21inFIG. 11B, when the far P-channel MOSFET T31or T41is turned on, current (not illustrated) flows from the far left source to the right drain inFIG. 11B. Similarly, when the near N-channel MOSFET T32or T42is turned on, the current I11flows from the near right drain electrode to the left source inFIG. 11B. In a redundant sense amplifier22, as described above, the transistors T31, T41, T32, and T42have the two transistors T31-1and T32-2, T41-1and T41-2, T32-1and T32-2, and T42-1and T42-2, which are connected to each other in parallel. This doubles the current between the source electrodes and the drain electrodes of the parallel connected transistors when the transistors T31, T41, T32, and T42are turned on, compared with the normal sense amplifier21. As a result, the equivalent effect may be acquired to the double gate widths of the transistors T31, T41, T32, and T42. In the redundant sense amplifier22, as described above, the transistors T31, T41, T32, and T42respectively have the two transistors T31-1and T32-2, T41-1and T41-2, T32-1and T32-2, and T42-1and T42-2, which are connected to each other in parallel. In this case, the two transistors which are connected to each other in parallel are arranged in the row direction, as illustrated inFIG. 8. As a result, the length L2in the row direction of the redundant sense amplifier22is longer than the length L1in the row direction of the normal sense amplifier21as illustrated inFIG. 5. Similarly, according to the second embodiment inFIG. 3, the length L3in the row direction of the end amplifier23is longer than the length L1in the row direction of the normal sense amplifier21. As descried above, the transistors in the redundant memory cells12and redundant sense amplifiers22have a larger gate width than the transistors in the normal memory cells11and normal sense amplifiers21. The configuration of the transistors in the redundant memory cells12and redundant sense amplifiers22provides the equivalent effect to those having the longer gate widths. The same is also true in the end memory cells13and end amplifiers23in the second embodiment inFIG. 3. The increase in gate width of the transistors increases the value of current flowing in the transistors when the transistors are turned on. Thus, the performance and sensitivity of the redundant memory cells12and redundant sense amplifiers22may be improved. The same is also true in the end memory cells13and end amplifiers23in the second embodiment inFIG. 3. The characteristics of a transistor may strongly depend on a threshold voltage mainly. The threshold voltage varies between transistors due to scatterings in manufacturing. The scattering values strongly depend on the area (L*W) of the transistor. When the magnitude of a scattering value is σVth, the relationship may be as illustrated inFIG. 12, for example. The redundant memory cells12and redundant sense amplifiers22(and the end memory cells13and end amplifiers23in the second embodiment inFIG. 3) have a larger area than the normal memory cells11and normal sense amplifiers21. Thus, the scattering values are relatively small. This may stabilize the characteristics of the redundant memory cells12and redundant sense amplifiers22(and the end memory cells13and end amplifiers23in the second embodiment inFIG. 3). Moreover, the improvement in yield of the SRAM macro may be expected. FIG. 13Ais a circuit diagram of a memory cell11or12(which is also true in the end memory cells13in the second embodiment inFIG. 3).FIG. 13Bis a circuit diagram of a sense amplifier21or22(which is also true in the end amplifier23).FIGS. 14A and 14Bare circuit diagrams in the vicinity of the memory cell arrays110.FIG. 15is a circuit diagram of the entire SRAM macro.FIG. 16is a timing chart in reading.FIG. 17is a timing chart in writing. As illustrated inFIG. 13A, the memory cell has a latch configuration in which the inverters I1and I2are connected in a loop form. The input/output terminals RNL and RNR of the latch are connected to the bit lines BL and XBL through the transistors T13and T23for selecting the memory cell. As illustrated inFIG. 13B, the sense amplifier has a latch configuration in which the inverters I11and I12are connected in a loop form. A source electrode NS of the N-channel MOSFETs included in the inverters I11and I12are connected to a transistor T60that receives a sense-amplifier enable signal SAE. As illustrated inFIG. 14A, a timer140and decoders150receive a clock signal CLK, an address signal and a write enable signal (collectively called an ADS) from external circuits and outputs a signal of the word line WL, a column select signal CS and the sense-amplifier enable signal SAE. As illustrated inFIG. 14B, the signal of the word line WL is given to a memory cell array110, and a row of memory cells included in the memory cell array110is thus selected. The column select signal CS and sense-amplifier enable signal SAE are given to the local block120, and a column of the memory cells contained in the memory cell array110is thus selected. The local block120and memory cell arrays110are connected via bit lines BL and XBL. For convenience of description, RBL and RXBL inFIG. 14Brefer to the bit lines BL and XBL of the columns having redundant memory cells12and redundant sense amplifiers22. As illustrated inFIG. 14B, write data WD to be output to a memory cell array110are given through a latch (write data latch) of a data path130to the local block120. The read data RD retrieved from a memory cell array110is once received through the local block120by a latch (read data latch) of the data path130. Then, the read data RD is then output to an external circuit. As illustrated inFIG. 15, the timer140includes a latch141that receives a write enable signal WE, a row address signal RA and a column address signal CA (collectively called an ADS) from external circuits. The timer140further includes a clock control portion142that externally receives a clock signal CLK from an external circuit and generates internal clock signals CLK1, CLK2, and CLK3. The decoder150includes a decoder151that decodes a row address signal RA to generate a word line signal WL. Moreover, the decoder150includes a decoder152that decodes a column address signal CA to generate a column select signal CS. The data path130includes the write data latch131that once latches write data WD. Moreover, the data path130includes the read data latch132that once latches read data RD. As illustrated inFIG. 15, the local block120includes an amplifier121that amplifies write data WD and outputs the write data WD via the bit lines BL and XBL to a memory cell array110. The local block120further includes a bit pre-charger122that pre-charges the corresponding bit lines included in a memory cell array110. The local block120further includes a sense amplifier123(including the sense amplifiers21and22) that amplifies and fixes read data RD. The local block120further includes a multiplexer124that selects read data RD in the column designated by the column select signal CS. FIG. 15separately illustrates the local blocks120and the data paths130above and below the memory cell array110.FIG. 15is separately illustrated for the purpose of easy understanding of the flow of signals of write data WD and read data RD and the circuit configuration. The real layout within the SRAM macro is as illustrated inFIG. 2or3. FIG. 16Aillustrates a waveform of the clock signal CLK.FIG. 16Billustrates waveforms of address signals RA and CA.FIG. 16Cillustrates a waveform of a signal in the word line WL.FIG. 16Dillustrates a waveform of the column select signal CS.FIGS. 16E and 16Fillustrate waveforms of signals at internal nodes RNL and RNR in a memory cell, respectively.FIG. 16Gillustrates a signal waveform of the sense-amplifier enable signal SAE.FIGS. 16H and 161illustrate waveforms of signals of the bit lines BL and XBL, respectively.FIG. 163illustrates a signal waveform of read data RD. In order to read data, a row included in a memory cell array110is selected in accordance with the signal of the word line WL generated on the basis of a row address signal RA. A column included in the memory cell array110is selected in accordance with the column select signal CS generated on the basis of the column address signal CA. From memory cells in the row selected in accordance with the word line WL and the column selected in accordance with the bit lines BL and XBL, read data RD is retrieved through the sense amplifier123in the column. The read data RD is output through the multiplexer124and read data latch132. Here, the sense amplifier123(21or22) latches the signal resulting from the amplification of the signal output from the memory cell11or12to the bit lines BL and XBL to fix the read data RD. In the example inFIGS. 16A to 163, data with a low output signal RD are read, as illustrated inFIG. 163. In this case, as illustrated inFIG. 161, the bit line XBL becomes low. As illustrated inFIG. 163, the read data RD becomes low. The broken waveform inFIG. 161is an example of the waveform when the memory cell is a redundant memory cell12. In the case with a redundant memory cell12, the bit line XBL becomes low earlier than the case with the normal memory cell case (as indicated by the solid waveform GB) as illustrated inFIG. 161. In other words, the redundant memory cells12and redundant sense amplifiers22allow faster reading operation than the normal memory cells11and sense amplifiers21. This is because, as described above, the redundant memory cells12and redundant sense amplifiers22include larger transistors or more parallel transistors than the normal memory cells11and normal sense amplifiers21and may proportionally provide higher performance. FIG. 17Aillustrates a waveform of the clock signal CLK.FIG. 17Billustrates waveforms of the address signals RA and CA.FIG. 17Cillustrates a waveform of write data WD.FIG. 17Dillustrates a waveform of a signal in the word line WL.FIG. 17Eillustrates a waveform of the column select signal CS.FIG. 17Fillustrates waveforms of signals of the bit lines BL and XBL.FIG. 17Gillustrates waveforms of signals at internal nodes RNL and RNR, respectively, in a memory cell. In order to write data, a row included in a memory cell array110is selected in accordance with the signal of the word line WL generated on the basis of a row address signal RA. A column included in the memory cell array110is selected in accordance with the column select signal CS generated on the basis of the column address signal CA. To memory cells in the row selected in accordance with the word line WL and the column selected in accordance with the bit lines BL and XBL, write data WD are written through the write data latch131and amplifier121. In the example inFIGS. 17A to 17G, as illustrated inFIG. 17F, the bit line XBL becomes low. Through the transistors T13and T23, the signals at the internal node RNR becomes high level, and the signal at the internal node RNL becomes low level. Then, the write data WD is written. The broken waveform inFIG. 17Gis an example of the waveforms when the memory cell is the redundant memory cell12. In the case with a redundant memory cell12, the change in state from low level to high level in the internal node RNR and the change in state from high level to low level in the internal node RNL are faster than the case with a normal memory cell (as indicated by the solid waveform GRC) as illustrated inFIG. 17G. In other words, the redundant memory cells12allow faster writing operations than the normal memory cells11. This is because, the redundant memory cells12contain larger transistors than the normal memory cells11and may proportionally provide drive capability as described above. Next, with reference toFIGS. 18 to 20, there may be described a redundant replacement applicable to both of the SRAM macros according to the first embodiment inFIG. 2and the second embodiment inFIG. 3. According to the redundant replacement, when a defective memory cell11or a defective sense amplifier21exists within an SRAM macro, it is replaced by a redundant memory cell12or redundant sense amplifier22, respectively. As a result, the fraction defective of the SRAM macro may be reduced. As described above, the replacement of the failed (or defective) memory cell11or failed (or defective) sense amplifier21by a redundant memory cell12or redundant sense amplifier22may be simply called a “redundant replacement” hereinafter. Redundant data RDI for use in implementing the redundant replacement are prestored in a storage (not illustrated) provided outside of an SRAM macro. An SRAM macro product requiring a redundant replacement reads and uses the stored redundant data RDI when the redundant data RDI is used. FIG. 18illustrates a circuit that reads and decodes redundant data RDI. The circuit is also provided in the data paths130within the SRAM macro. Here, the redundant data RDI itself is acquired in advance through tests on the SRAM macro products before shipment. The circuit includes N latches201, N inverters202, and a decoder203. The redundant data RDI are read in advance from the storage where the redundant data RDI is prestored by a system operation when the SRAM macro product is powered on. The read redundant data RDI are sequentially stored in a series of the latches201on the basis of the pulses of serial latch clock signals LC. The redundant data RDI stored in the latches201in this way are permanently held in the latches201until the SRAM macro is powered off. After stored in the latches201in this way, the N-bit redundant data RDI are input through the inverters202to the decoder203. Then, the N-bit redundant data RDI are decoded in the decoder203. As a result, two to the nth power redundant select signals Dec_data_in_xx are output from the decoder203. In the output data, 1 bit indicating a defective memory cell only has “1”, and the other bits all have “0”. The “xx” in the redundant select signals Dec_data_in_xx indicates a value of 0, 1, 2, . . . , 35, . . . . The “xx” is also called an “n”. FIG. 19illustrates an example of a circuit that replaces a memory cell11and sense amplifier21for one bit of a failed (or defective) part by a redundant memory cell12and redundant sense amplifier22on the basis of the redundant select signal Dec_data_in_xx output from the decoder203in data writing. The circuit is also included in the data paths130of the SRAM macro. This example assumes that write data WD, Write_Data_in_xx, for 36 bits are input. In other words, each of the rows of the memory cell array110includes37memory cells11and12for a total of 37 bits including 36 normal memory cells11and one redundant memory cell12. The local block120includes the corresponding 37 sense amplifiers21and22. In other words, the memory cell array110has 37 columns in this example. One column (which is the left end column inFIG. 19) out of the 37 columns is for the redundant memory cells12and redundant sense amplifiers22. In this example, a total of 37 redundant replacement circuits251are provided to each of the 37 columns as illustrated inFIG. 19. Each of the redundant replacement circuits251has a circuit configuration illustrated inFIG. 20. The redundant replacement circuit251has a NOR element NO1, inverters INV1and INV2, and NAND elements NA1to NA6. In order to perform a redundant replacement, 1 bit of the redundant select signal Dec_data_in_xx (also called Dec_D_xx or Dec_D_n) has a value of “1”, as described above. The redundant replacement circuit251evaluates both data of write data Write_Data_in_xx (also called WD_xx or WD_n) and the redundant select signal Dec_data_in_xx. Then, the redundant replacement circuit251outputs the write data WD_out_xx and XWD_out_xx and a judgment signal Judge_xx. The write data Write_Data_in_xx are sequentially transferred to the left inFIG. 19in the 37 redundant select circuits251as WD_inout_xx and XWD_inout_xx. The redundant select signal Dec_data_in_xx is sequentially transferred as Red_D_xx to the left inFIG. 19in the 37 redundant select circuits251. The memory cells11and sense amplifier21in the column with the judgment signal Judge_xx having a value of “0” are determined as the target of the redundant replacement. Then, the memory cells11and sense amplifier21are replaced by the redundant memory cell12and redundant sense amplifier22. In the memory cell array110, write data WD are written in the row designated by the signal of the word line WL and the columns for 36 bits excluding the bit of the memory cell11replaced as the target of the redundant replacement as described above. The operations by the redundant replacement circuit251may be described in detail below. If the redundant replacement circuit251belongs to the column being the target of the replacement, the redundant select signal Dec_D_xx (Dec_D_n inFIG. 20) has a value of “1”. The signal is inverted by the inverter INV1to a value “0”. Then, the signal is output as a judgment signal Judge_n. If the judgment signal having a value of “0” is given to the NAND elements NAX and NAY inFIG. 19, the elements NAX and NAY functioning as gates close their gates. Thus, write data are not output to the memory cells11in the column. Therefore, writing is not performed on the memory cells11in the column to be replaced. The redundant select signal Red_d_n−1 to be given to the redundant select circuit251has a value of “1” if the column on the right-hand side of the column to which the redundant replacement circuit251belongs is the target of the replacement. The element NO1outputs a value “0” if one of the input redundant select signals Dec_D_n and Red_D_n−1 has a value of “1”. The output value “0” is inverted by the inverter INV2to a value “1” Then, the output value “0” is transferred as Red_D_n to the adjacent left-hand redundant select circuit251. If the element NO1outputs a value “0” to the elements NA1and NA2, the elements NA1and NA2functioning as gates close their gates and do not output write data WD_in_n and XWD_in_n to the memory cells11of the column. In other words, when one of the column itself and the adjacent right-hand columns is the target of the replacement, write data to be written to the column are not output to the memory cells11in the column. On the other hand, if the redundant select signal Red_D_n−1 having a value of “1” transferred from the adjacent right-hand column is input to the elements NA3and NA4, the elements NA3and NA4functioning as gates open their gates. Thus, the write data WD_in_n−1 and XWD_in_n−1 to be written to the memory cells11in the adjacent right-hand column are output through the NAND elements NA5and NA6instead. In other words, if one of the column itself and the adjacent right-hand columns is the target of the replacement, the write data to be written to the adjacent right-hand column is output to the memory cells11in the column. On the other hand, if the elements NO1outputs a value “1” to the elements NA1and NA2, the elements NA1and NA2functioning as gates open their gates. Thus, the write data WD_in_n and XWD_in_n to be written to the memory cells11in the column are output through the NAND elements NA5and NA6. In other words, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, the write data to be written to the column is output to the memory cells11in the column. On the other hand, if the redundant select signal Red_D_n−1 transferred from the adjacent right-hand column and having a value of “0” is input to the elements NA3and NA4, the elements NA3and NA4functioning as gates close their gates. Thus, the write data WD_in_n−1 and XWD_in_n−1 to be written to the memory cells11in the adjacent right-hand column are not output. In other words, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, the write data to be written to the adjacent right-hand column are not output to the memory cells11in the column. In this way, with the redundant select circuit251, if one of the column itself and the adjacent right-hand columns is the target of the replacement in columns of the memory cell arrays110, write data to be written to the column are sequentially output to the memory cells11in the adjacent left-hand column. On the other hand, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, write data to be written to the column is directly output to the memory cells11in the column. As a result, to the right columns of the column to be replaced, the write data WD to be written to the column are directly and normally written to the memory cells11in the columns. On the other hand, to the column to be replaced and the left columns, the write data WD to be written to the adjacent right-hand column are written to the memory cells11in the columns. In this way, data are not written to the memory cells11in the column to be replaced. The data to be written to the memory cells11in the left columns of the column to be replaces are written to the memory cells11in the left columns sequentially shifted by one. Thus, the redundant replacement may be implemented. FIG. 21illustrates an example of a circuit that performs a redundant replacement on a memory cell11and sense amplifier21for one bit of a failed (or defective) part by a redundant memory cell12and redundant sense amplifier22on the basis of the redundant select signal Dec_data_in_xx output from the decoder203in data reading. The circuit is also included in the data path130of the SRAM macro. In this example, Read_Data_in_xx and XRead_Data_in_xx (also called RD_in_xx and XRD_in_xx, respectively) that are read data RD for 37 bits are input. Each of the rows of the memory cell array110includes one redundant memory cell12and 36 normal memory cells. The local block120includes the corresponding 37 sense amplifiers21and22. In other words, in this example, the memory cell array110has 37 columns. One column (which is the left end column inFIG. 21) out of the 37 columns has the redundant memory cells12and redundant sense amplifiers22. Also in this example, as illustrated inFIG. 21, a total of 37 redundant replacement circuits252are provided to each of the 37 columns. Each of the redundant replacement circuits252has a circuit configuration illustrated inFIG. 22. The redundant replacement circuit252has a NOR element NO2, inverters INV21and INV22, and NAND elements NA11to NA16. In order to perform a redundant replacement, 1 bit of the redundant select signal Dec_data_in_xx (also called Dec_D_xx) has a value of “1”, as described above. The redundant replacement circuit252evaluates both data of read data Read_Data_in_xx and XRead_Data_in_xx (also called RD_in_xx or XRD_in_xx) and the redundant select signal Dec_data_in_xx. Then, the redundant replacement circuit252outputs the read data RD_out_xx and XWD_out_xx and a judgment signal Judge_xx. The read data Read_Data_in_xx and XRead_Data_in_xx are sequentially transferred to the right inFIG. 21in the 37 redundant select circuits252as RD_inout_xx and XRD_inout_xx. The redundant select signal Dec_data_in_xx is sequentially transferred as Red_D_xx to the left inFIG. 19in the 37 redundant select circuits252. In the column with the judgment signal Judge_xx having a value of “0”, the memory cells11and sense amplifier21in the column are determined as the target of the redundant replacement. Then, the column is replaced by the column of the redundant memory cell12and redundant sense amplifier22. In the memory cell array110, read data RD are retrieved in intersections of the row designated by the signal of the word line WL and the 36 columns for 36 bits excluding the bit of the column replaced as the target of the redundant replacement as described above. The operations by the redundant replacement circuit252may be described in detail below. If the column that the redundant replacement circuit252belongs to is the column being the target of the replacement, the redundant select signal Dec_D_xx (Dec_D_n inFIG. 22) has a value of “1”. The signal is inverted by the inverter INV21to a value “0”. Then, the signal is output as a judgment signal Judge_n. The judgment signal having a value of “0” controls the transistor TX. Then, the read signals RD_in_n and XRD_in_n involved in the column become high. Thus, the read data from the memory cells11in the column are not output. Therefore, the data are not retrieved from the memory cells11in the column being the target of the replacement. The redundant select signal Red_d_n−1 to be given from the adjacent right-hand redundant select circuit252has a value of “1” if the column on the right-hand side of the column to which the redundant replacement circuit252belongs is the target of the replacement. The element NO2outputs a value “0” if one of the input redundant select signals Dec_D_n and Red_D_n−1 has “1”. The output value “0” is inverted by the inverter INV22to a value “1”. Then, the output value is transferred as Red_D_n to the adjacent left-hand redundant select circuit252. If the element NO2outputs a value “0” to the elements NA11and NA12, the elements NA11and NAl2functioning as gates close their gates. Then, the elements NA11and NAl2do not handle the read data RD_in_n and XRD_in_n retrieved from the memory cells11of the column as the output RD_out_xx and XRD_out_xx of the column. In other words, when one of the column itself and the adjacent right-hand columns is the target of the replacement, read data from the memory cells11in the column are not output as the output RD_out_xx and XRD_out_xx. If the redundant select signal Red_D_n−1 having a value of “1” transferred from the adjacent right-hand column is input to the elements NA13and NA14, the elements NA13and NA14functioning as gates open their gates. Thus, the read data RD_in_n+1 and XRD_in_n+1 retrieved from the memory cells11in the immediate left column are output through the NAND elements NA15and NA16instead. In other words, if one of the column itself and the adjacent right-hand columns is the target of the replacement, the read data from the immediate left column is output to the memory cells11in the column. On the other hand, if the elements NO2outputs a value “1” to the elements NA11and NA12, the elements NA11and NA12functioning as gates open their gates. Thus, the read data RD_in_n and XRD_in_n retrieved from the memory cells11in the column are output through the NAND elements NA15and NA16. In other words, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, the read data from the memory cells11in the column are directly output. If the redundant select signal Red_D_n−1 transferred from the immediate right column and having “0” is input to the elements NA13and NA14, the elements NA13and NA14functioning as gates close their gates. Thus, the read data RD_in_n+1 and XRD_in_n+1 retrieved from the memory cells11in the immediate left column are not output. In other words, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, the read data from the memory cells11in the immediate left column are not output. In this way, with the redundant select circuit252, if one of the column itself and the adjacent right-hand columns is the target of the replacement in columns of the memory cell arrays110, read data retrieved from the memory cells11in the immediately left column are output. On the other hand, if one of the column itself and the adjacent right-hand columns is not the target of the replacement, read data retrieved from the memory cells11in the column are directly output. As a result, to the right-hand columns of the column to be replaced, the read data retrieved from the memory cells11in the columns are directly and normally output. On the other hand, to the column to be replaced and the left-hand columns, the read data retrieved from the memory cells11in the immediate left columns are output. In this way, read data retrieved from the memory cells11in the column to be replaced are not output. The read retrieved from the memory cells11in the left-hand columns of the column to be replaced are output from the memory cells11in the left columns sequentially shifted by one. Thus, the redundant replacement may be implemented. According to the second embodiment inFIG. 3, the end memory cells13and end amplifiers23have a larger area than normal memory cells11and normal sense amplifiers21. However, the configurations of the end memory cells and end amplifiers are not limited to the configuration. According to another embodiment, the end memory cells and end amplifiers may have a smaller area than normal memory cells and normal sense amplifiers. According to the embodiment, for example, as illustrated inFIG. 23, the memory cells in the column neighboring to the decoders150may be handled as end memory cells14. The length L4and area A4in the row direction may be smaller than the length L1and area A1of the normal memory cells11. This allows a lower performance of the end memory cells14than the normal memory cells11. Similarly, the sense amplifier (not illustrated) in the column may be handled as an end amplifier, and its length and area in the row direction may be smaller than a normal sense amplifier. This allows a lower sensitivity than a normal sense amplifier.
La présente invention se rapporte à un profilé à feuillure pour châssis de fenêtre comportant une gouttière de réception de condensât derrière lui et un canal d'évacuation de condensât sous le châssis de "bordure de la fenêtre, la paroi de ce canal présen-5 tant une section transversale fermée avec toutefois des ouvertures transversales communiquant avec la gouttière de réception et avec l'extérieur- Un objet principal de l'invention est de donner à un tel profilé une forme grâce à laquelle on peut le réaliser en une résine 10 artificielle, plus particulièrement sous la forme d'un profilé fabriqué par extrusion d'une matière thermoplastique„ afin d'obtenir les avantages de cette matière par rapport aux profilés classiques en aluminium,, Ces avantages reposent pour une grande partie sur les propriétés calorifiquement isolantes des matières 15 plastiques, car on a trouvé que les grands ennuis causés par la pourriture dans les encadrements de fenêtres sont principalement causés par l'humidité qui se condense sur les surfaces des profilés en alumi.ni.T3m qui sont en contact avec des parties de l'encadrement de la fenêtre. Même des opérations intenses d'entretien à 20 des intervalles réguliers et en particulier une peinture très soigneuse ne pouvaient pas éliminer ces inconvénients, et de plus en pratique on ne peut pas compter sur la régularité et le soin avec lesquels un tel service d'entretien devrait avoir lieu. Un autre objet de l'invention est d'obtenir, entre la partie 25 à feuillure et une plaque protectrice pour l'encadrement extériQïœ de la fenêtre, une liaison étanche à l'eau qu'on peut constituer d'une seule pièce avec le profilé. Un autre objet de l'invention, est d'obtenir une forme ayant une résistance suffisante pour supporter la fenêtre sans danger de déformation de la matière plas-30 tique et des ouvertures d'évacuation même quand celles-ci ont la forme de fentes assez allongées. En relation avec ce qui précède, un autre objet de l'invention est de parer à .la possibilité que le condensât puisse geler dans les ouvertures et canaux d'évacuation par lesquels, dans 35 les réalisations connues, la gouttière de réception du condensât déborde, avec tous les inconvénients qui en résultent. L'invention et des détails à appliquer en rapport avec elle sont définis dans les revendications qui suivront et exposés dans la description en se reportant au dessin, dans lequel on 4-0 présente un mode d'exécution. 69 00063 2 2000044 La figure 1 représente schématiquement une coupe, et la figure 2, une vue en perspective d'un détail. Le profilé 1 à feuillure de châssis pour vitre représenté sur la figure 1 est entièrement en une matière plastique telle que le 5 chlorure de polyvinyle. 2 désigne l'encadrement de fenêtre, 3 le seuil intérieur et 4- un seuil extérieur. Le "bord inférieur d'une vitre 5 est situé dans la feuillure 6 proprement dite d3un cadre en forme de canal. Bien qu'on utilise une matière plastique, on obtient une force portante suffisante parce que la paroi avant 7 10 et la paroi arrière 8 du canal 6 se dirigent vers le bas à 1'état de parois parallèles portées par la paroi transversale de support 25 qui est en même temps le fond d'un canal d'évacuation 12. La paroi supérieure 24 de cette gouttière constitue une autre paroi transversale entre les parois verticales 7 et 8 et est en même 15 temps le fond de la feuillure 6 du châssis. La paroi inférieure 25 du canal dsévacuation 12 se continue vers l'extérieur par une plaque de couverture 9 pour le seuil 4 de l'encadrement de fenêtre. Le bras 8 est collé au seuil intérieur 3 et la plaque de couverture 9 au seuil 4 d'une façon qui 20 sera décrite plus loin en détail. La gouttière 11 de réception du condensât est fixée à la paroi 8 juste en dessous du fond 24 du cadre mobile» de sorte qu'on peut ménager des ouvertures d'évacuation 13, désignées sur la figure 1 par des flèches, faisant commun!quer le fond de la goût-25 tière de réception 11 avec le canal 12. Celui-ci a une section transversale sensiblement rectangulaire» et des ouvertures d'évacuation indiquées par la flèche 14 font communiquer ce canal 12 avec l'extérieur. La représentation en perspective de la figure 2 montre que 30 les ouvertures d'évacuation 14 sont décalées par rapport aux ouvertures d'évacuation 13; dans la figure, la coupe passe à travers une ouverture 13» de sorte qu'on évite un courant d'air direct. Dans la réalisation suivant l'invention, les ouvertures tel-35 les que 13 et 14 ont la forme de fentes longitudinales, de sorte que la sortie d'eau est agrandie et que le risque de gel est diminué. Ge risque est en outre diminué à cause des grandes dimensions du canal 12. En outre, l'élongation des trous 13 et 14 permet d'insérer obliquement sans difficulté une tige depuis le côté 40 intérieur à travers à la fois les fentes 13 et 14 afin de netto 69 00063 3 2000044 yer les ouvertures et le canal 12. Comme ce canal a la forme d'un canal dont les côtés les plus longs sont verticaux, il y a suffisamment de place pour disposer une bande ou tablette 15 anti-courant d'air partant de la paroi 5 arrière 8 du canal 12 et située entre les ouvertures d'évacuation 13 de cette paroi et les ouvertures d'évacuation /14 de la paroi avant 7 clu canal 12. La bande anti-courant d'air 15 est inclinée vers le bas et vers son bord terminal libre à partir de son bord de fixation. La direction d'un courant d'air pénétrant par les fentes 14- est ainsi modifiée et sa force est 10 affaiblie. On comprend qu'on empêche ainsi complètement les courants d'air gênants et la pénétration de pluie à travers les fentes d'évacuation 13» tandis que le condensât peut s'écouler librement vers l'extérieur. Une bande marginale 16 inclinée vers l'intérieur, comme indi-15 qué par un trait interrompu sur la figure 1, est disposée sur le bord supérieur de la gouttière de réception 11 et contribue à guider vers le haut, le. long de la vitre 5» l'air extérieur ayant pénétré quand il y a un fort vent. Cela contribue également considérablement à empêcher la gouttière 11 de se salir. 20 Le présent profilé a une résistance structurelle suffisante pour pouvoir être en une matière plastique et on peut ainsi fabriquer le profilé par extrusion d'une matière thermoplastique. On obtient ainsi des avantages importants par rapport aux profilé métalliques tels que les profilés en aluminium. 25 A cause de leur conductibilité thermiqu^levée, de tels profilés métalliques prennent pratiquement la température extérieure, et des différences importantes de température apparaissent ainsi entre le bois de l'encadrement de la fenêtre et les parties du profilé qui sont en contact avec le bois. La conséquence en 30 est que de l'eau provenant du bois se condense, par exemple sous le fond de la gouttière 11, c'est-à-dire à un endroit qui n'est pas accessible dans les opérations d'entretien, et un processus de destruction commence. Du condensât se forme également sur le côté extérieur libre de la gouttière 11 et ce condensât produit 35 une humidité continue dans la région où le côté extérieur repose sur le seuil 3. Des symptômes analogues apparaissent sur le seuil extérieur. Un inconvénient des profilés traditionnels en aluminium est en outre que de la glace se forme rapidement sur eux. De l'eau entre le profilé et le bois gèle de façon répétée. Un 40 endommagement progressif et une destruction sont produits par la 69 00063 dilatation. La conductibilité thermique des matieres plastiques ,telles qu'on les utilisé de préférence suivant l'invention, par exemple au chlorure de polyvinyle, diffère peu de la conductibilité thermique du bois, de sorte que les inconvénients décrits 5 plus hauts, qui donnent en pratique lieu à de grandes pertes économiques, sont complètement éliminés. Ûn a trouvé que le condensât ne se congèle pratiquement plus, tout au moins aux endroits qui constituent un danger pour la corrosion des seuils en bois. Il est par conséquent entièrement dans les limites de l'in-10 vention de compléter ses résultats en évitant également l'humidité sur le côté supérieur d'un encadrement de fenêtre en bois, but pour lequel le seuil extérieur 4 est entièrement recouvert par la plaque profilée 3. Cette plaque 9 repose par des nervures, telles que 17, 18 et 19» en saillie vers le bas. Deux d'entre elles, 18 15 et 19» qui sont situées dans la région centrale, ont un bord respectif replié 20 et 21 ayant la forme d'un pied agrandi de support La fermeture du bord extérieur du seuil 4 est assurée par une bande marginale 22 repliée vers le bas et en saillie à partir d'une nervure 23. Celle-ci se projette perpendiculairement à partir de 20 la bande marginale 22 et s'appuie sur le bord extérieur du seuil 4. Les faces inférieures de la couverture 9 de l'encadrement de fenêtre et du fond du canal 25 sont collées aux surfaces correspondantes de l'encadrement de fenêtre. Afin d'obtenir une surface parfaitement jointive de collage 25 même quand des irrégularités se présentent dans la surface de l'encadrement de fenêtre, tout en maintenant une surface supérieure parfaitement lisse de la plaque de couverture 9» l'espace inférieur de la plaque de couverture comprenant les nervures 17» 18, 19 et 23 est garni d'une couche 24 de matière poreuse (figu-30 re 1) telle qu'une matière plastique en mousse à structure de cellules fermées, par exemple de la mousse de polyuréthane. On peut disposer une couche de colle sur la face inférieure du remplissage en matière plastique en mousse, mais on peut à la place donner des propriétés adhésives au remplissage lui-même en ma-35 tière plastique en mousse. On obtient ainsi en même temps une excellente fermeture dans les joints de coin, là où les extrémités de la plaque de couverture 9 rencontrent les montants de l'encadrement de fenêtre. Il est évident que les profilés à feuillure suivant l'inven-40 tion n'exigent ni vis, ni dispositif analogue de fixation, de 69 00063 5 2000044 sorte que le risque de pénétration d'eau et de corrosion du bois lié à de tels dispositifs peut être évité* • Le danger de bris de la vitre est également réduit quand on utilise des profilés en matière plastique et de la matière plas-5 tique en mousse comme matériaux élastiques, car on obtient une certaine souplesse. Grâce à ces propriétés9 on peut même disposer le profilé sous une vitre de fenêtre dans la position représentée sur la figure 1 si on donne une forme ronde au coin où les parois 25 et 8 se ren-10 contrent, Dans des cas particuliers, tels que l'application dans des régions où régnent des températures très basses au-dessous de 0® et des fortes pression de vent, on peut recourir avantageusement à une mesure supplémentaires à savoir disposer un composé antl-15 gel dans le trajet d'évacuation de condensât. Le canal 12 convient bien pour recevoir un remplissage constitué par un composé granulé anti-coagulant au moins dans la région où les ouvertures 13 s'ouvrent dans le canal, le composé se dissolvant suffisamment en entrant en contact avec l'eau pour empêcher ainsi l'eau de geler. 20 Quand la granulation est suffisamment grossière, on peut disposer dans le canal une grande quantité de l'agent sans que celui-ci obstrue le passage de l'eau. Comme l'opération de dissolution n'a lieu que graduellement et seulement dans des périodes- dans lesquët les du condensât passe, ce stock durera longtemps. Mais le rechar-25 gement peut également avoir lieu.à travers les fentes 13 et 14. 69 00063 6 2000044 EEVEKDI CATIONS 1. Profilé à feuillure pour châssis de fenêtre comportant taxe gouttière de réception de condensât derrière lui et un canal d1 évacuation de condensât sous le châssis de bordu-5 re de la fenêtre, la paroi de ce canal présentant une section transversale fermée avec toutefois des ouvertures transversales communiquant avec la gouttière de réception et avec 1'extérieur- ce profilé présentant les caractéristiques suivantes j le châssis pour la bordure* de la fenêtre et le 10 canal d'évacuation sont formés ensemble entre deux parois sensiblement parallèles- à savoir une paroi avant et une paroi arrière du profilé, reliées par un»? paroi de fond de châssis et par une paroi de fond de canal d*évacuation^ cette dernière se continuant vers 13extérieur à partir de 15 la paroi avant par une plaque de cc*..:veï-ture de 18 encadrement de fenêtre, la gouttière de- réception, étant fixée sur la paroi arrière du profilé juste au-dessous du foaâ du châssis» 2e Profilé suivant 1s dans lequel les ouvertures trans- 20 versales des parois du canal d'évacuation ont la forae de fentes s'étendant dans la direction longitudinale du profilé, 3e Profilé suivant 1 ou 2S dans lequel la section trans versale du canal d'évacuation a sensiblement la forma d'un 25 rectangle dont les grands côtés verticaux sont respectivement constitués par une partie de la paroi avant et de la paroi arrière du profilé, la paroi arrière étant munie le long de sa longueur d'une tablette anti—courant d'air en saillie dans le canal d'évacuation entre les ouvertures transversales 30 communiquant avec la gouttière de réception et les ouvertures communiquant avec 1'extérieur. 4o Profilé suivant 3, dans lequel la tablette anti- courant d'air est inclinée vers le bas depuis son- bord d'attache et est située sous les ouvertures communiquant avec la 35 gouttière de réception jusqu'à son bord libre situé au-dessous des ouvertures d'évacuation faisant communiquer le canal d'évacuation avec l'extérieur» 5o Profilé suivant l'une des revendications précédentes dans lequel la plaqué de couverture de l'encadrement de fenê— 40 tre porte des nervures en saillie et dirigées vers le bas. 69 00063 7 2000044 6o Profilé suivant 5» dans lequel au moins les nervures situées dans la zone centrale de la plaque de couverture de l'encadrement présentent un élargissement de support en forme de pied» 5 7® Profilé suivant l'une des revendications précédentes dans lequel la plaque de couverture de l'encadrement de fenêtrejrés«nte une portion marginale repliée vers le bas et en saillie au delà d'une nervure en saillie vers l'intérieur qui est disposée sensiblement perpendiculairement à cette portion marginale» 10 8. Profilé suivant 5* > 6. ou T. dans lequel les espaces entie les nervures en saillie de la plaque de -couverture sont garnis d'une matière poreuse telle que par exemple une matière plastique en mousse. 9. Profilé suivant l'une des revendications précédentes dans 15 lequel le profilé est entièrement en une résine artificielle, et est plus particulièrement fabriqué par extrusion d'une matière thermoplastique. 10. Profilé suivant l'une des revendications précédentes dans lequel au moins le côté de la plaque de couverture de l'encadre- 20 ment de fenêtre et' la partie inférieure de la paroi arrière du canal d'évacuation, ainsi que le fond de la gouttière de réception du condensât sont collés à des surfaces correspondantes de l'encadrement de fenêtre» 11. Profilé suivant 8. dans lequel on applique comme remplis-25 sage une matièr^plastique en mousse ayant des propriétés adhési- ves entre les nervures de la plaque de couverture de l'encadrement de fenêtre» 12. Profilé suivant l'une des revendications précédentes dans lequel le bord supérieur de la gouttière de réception du conden- 30 sat porte une partie marginale inclinée vers l'intérieur. 13. Profilé à feuillure pour châssis de fenêtre possédant une gouttière de réception pour du condensât présentant, à partir de la gouttière, des ouvertures d'évacuation passant au-dessous de la feuillure du châssis, spécialement présentant un canal d'éva- 35 cuation pour l'eau ayant une section transversale sensiblement fermée et située au-dessous de la feuillure du châssis, la caractéristique de ce châssis étant que des composés anti-gel sont disposés dans le trajet de sortie du condensât» 14. Profilé suivant 13. dans lequel on dispose un composé an 69 00063 2000044 tigel granulé dans le canal d'évacuation pour le condensât au moins dans la région dans laquelle s'ouvrent les ouvertures communiquant avec la gouttière de réception du condensât.
Printers and duplexers for printers Printers and duplexers are described herein. An example duplexer for a printer includes a waste ink roller movable between a concealed region and a receiving region. BACKGROUND Some printers are only capable of simplex i.e., one-sided) printing on a print substrate. On the other hand, some printers are capable of duplex (i.e., two-sided) printing. DETAILED DESCRIPTION Duplexers may be placed into and removed from printers. For example, duplexers may be periodically removed from the printer to access and clear a paper jam in a print substrate path, provide service to the duplexer, and the like. The duplexer may include a waste ink roller to receive waste ink thereon. That is, a printer may include a print head to periodically spit waste ink therefrom to refresh nozzles thereof. At times, during removal of the duplexer from the printer, a user may unintentionally contact the waste ink, for example, from the duplexer such as on the waste ink roller. Such unintentional contact may result in an undesirable transfer of waste ink from the waste ink roller to the user. In examples, a duplexer may include a cover, a housing, and a waste ink roller. The housing may be coupled to the cover. The housing may include a chamber disposed therein having a concealed region and a receiving region. The receiving region may be adjacent to the concealed region such that the concealed region may be disposed below and adjacent to the cover. The waste ink roller may be movable between the concealed region and the receiving region. The waste ink roller may selectively receive the waste ink from a print head of the printer. Accordingly, the waste ink roller may be placed in a receiving region to receive waste ink in the installed position and in a concealed region to shield a user from waste ink on the waste ink roller in the uninstalled position. Thus, an amount of waste ink transferred from the waste ink roller to the user may be reduced. FIG. 1is a block diagram of an example duplexer100for a printer. The example duplexer100includes a chamber102and defines a print substrate path104. The illustrated print substrate path104includes a duplex path106and an output path108. The example duplexer100may guide a print substrate along the substrate path104to the duplex path106and/or to the output path108. Alternatively, in some examples, a portion of the duplex path106may include an output path. The chamber102functions as a spittoon to collect and/or store fluids within the duplexer100. Example fluids that may be collected in the chamber102include shipping fluids, waste ink from print cleaning processes, and/or other fluids associated with printers. As used herein, a shipping fluid refers to any fluid used to maintain a printer component in operable condition while printer component moves through shipping or transit channels. For example, print heads (e.g., print bar heads, scanning inkjet heads) may be filled with a shipping fluid to prevent the print heads and/or nozzles from drying and/or clogging. The duplexer100of the illustrated example may be installed and/or removed from a printer to, for example, facilitate the clearing of paper jams that may occur during printing. In some examples, a user of the printer may easily remove the duplexer100to obtain access to a blocked substrate path. Because the chamber102is internal to the duplexer100, there is no need to remove a separate spittoon to address such paper jams. FIG. 2is a block diagram of an example image forming apparatus200(e.g., a printer) including the duplexer100with the integrated chamber or spittoon102. The example printer200ofFIG. 2receives a print substrate206from a print substrate supply208and generates an image on one or both sides of the print substrate206using a print bar210. To generate the image(s) on the print substrate206, the print bar210ejects ink onto a side of the print substrate206facing the print bar210according to a print pattern as the print substrate206travels along a substrate path212. A printed image, as used herein, refers to any graphic(s), alphanumeric character(s), glyph(s), and/or any other pattern(s) or mark(s) that may be formed by applying ink to a substrate. In simplex or one-sided printing, the print substrate206exits the printer200via an output substrate path214after the print bar210generates the image on the first side of the print substrate206. The second side of the substrate206is not printed in this process. On the other hand, in duplex or two-sided printing, the duplexer100causes the print substrate206to follow a duplex substrate path106. In particular, after a first pass along the substrate path212and print bar210, the duplexer100diverts the print substrate206from the substrate path212as in simplex printing. However, at a location216along the substrate path212, the duplexer100reverses the direction of the print substrate206to direct the print substrate206to the duplex substrate path106instead of the output substrate path214. Alternatively, in some examples, a portion of the duplexer substrate path106may include an output path. The example duplexer100illustrated inFIG. 2uses a passive diverter. However, an active diverter may be used to direct the print substrate206to the duplex substrate path106and/or to the output substrate path214. By diverting the print substrate206to the duplex substrate path106, the duplexer100flips the print substrate206to cause the second side of the print substrate206to face the print bar210during a second pass along the substrate path212. After flipping, the duplexer100directs the flipped print substrate206along the duplex substrate path106(e.g., around the duplexer100) and back onto the substrate path212for the print bar210to generate an image on the second side of the print substrate206. After performing duplex printing, the duplexer202then permits the print substrate206to exit the print stage the output substrate path214. As in other image forming apparatus, the example printer200ofFIG. 2periodically or aperiodically performs one or more cleaning operations on the print bar210to maintain subjective print quality and/or increase the useful life of the print bar210. One such cleaning operation is spitting, in which the print bar ejects excess ink to reapply moisture to ink nozzles and prevent and/or clear clogged nozzles. This waste ink is collected into the chamber102. FIG. 3is a schematic diagram of an example duplexer300having an integrated waste substance chamber302. The example duplexer300may be used to implement the duplexer100ofFIGS. 1 and 2. The example duplexer300ofFIG. 3includes a housing304defining a duplex printing path306. A print substrate (e.g., the print substrate206ofFIG. 2) travels along the duplex printing path306to enable printing on a second side of the print substrate as explained above in connection withFIG. 2. A platen308guides the print substrate adjacent the print bar210. The waste substance chamber302is integrated within and defined by the housing304and/or one or more walls or partitions internal to the housing304. The example waste substance chamber302ofFIG. 3includes an absorber310to absorb shipping fluid and/or waste ink. The absorber310may be constructed using absorbent foam or any other desired absorbent material. While the absorber310illustrated inFIGS. 3-5is constructed using a rectangular foam pad, the absorber310may be any other shape and/or size. In the illustrated example, the absorber310may be removed from the waste substance chamber302. Removing the absorber310facilitates refreshing the duplexer300by enabling replacement of the absorber310and, thus, a re-use of the duplexer300. The example duplexer300ofFIG. 3further includes a waste ink roller312to collect waste ink ejected from the print bar210. The waste ink roller312of the illustrated example is provided with a scraper314to remove ink from the waste ink roller312by scraping the waste ink roller312as it rotates (e.g., clockwise in the view ofFIG. 3). By scraping the waste ink roller312, the scraper314reduces and/or prevents substantial build-up of waste ink on the roller312. In the absence of such scraping, waste build up can potentially interfere with print quality. The example waste ink roller312may be rotated by, for example, an actuator such as a motor. The scraper314causes the waste ink to drop from the waste ink roller312into the waste substance chamber302and/or onto the absorber310. During cleaning operations, the example print bar210of the illustrated example generates ink aerosol in addition to waste ink droplets. Ink aerosol may be undesirable, as it can interfere with the operation of the print bar210and/or contaminate other areas of a printer. To reduce an amount of ink aerosol escaping to other areas of the printer, the duplexer300of the illustrated example further includes an aerosol collection chamber316. In some examples, the aerosol collection chamber316may be an aerosol passageway for air and aerosol to travel, for example, towards an aerosol filter. In the illustrated example, a permeable wall318defines the example waste substance chamber302and separates the waste substance chamber302from the aerosol collection chamber316. In some examples, the wall318has holes to permit gas (e.g., aerosol) flow between the waste substance chamber302and the aerosol collection chamber316. As illustrated inFIG. 4below, the aerosol collection chamber316of the illustrated example includes an output port to be coupled to an aerosol filter. In some examples, the aerosol filter includes a vacuum to pull air and aerosol particles suspended in the air from the waste substance chamber302to the aerosol filter through the permeable wall318and the aerosol collection chamber316. In addition to the aerosol collection chamber316, the example duplexer300ofFIG. 3includes bulb seals320and322. The bulb seals320and322of the illustrated example deform to seal between the platen308and a spit roller sled324to reduce or prevent the ink aerosol from escaping and contaminating other portions of a printer200. The spit roller sled324of the illustrated example supports the roller312, the scraper314, and the bulb seals320and322. The spit roller sled324ofFIG. 3is movable relative to the housing304. Specifically, when the duplexer300is correctly installed in the printer200, the spit roller sled324moves upward along a track325in the housing304to engage the platen308. When the duplexer300is removed from the printer200, the spit roller sled324retracts along the track325into the waste substance chamber302as illustrated inFIG. 4and described in more detail below. In some examples, the track325may include one of a variety of paths to move the split roller sled324between its respective intended locations. During cleaning operations, the print bar210ejects waste ink onto the waste ink roller312. The waste ink roller312rotates to release the waste ink into the waste substance chamber302. The scraper314scrapes waste ink from the waste ink roller312as the waste ink roller rotates. The example duplexer300ofFIG. 3is installed in the printer200in such a position as to define a duplex printing path306(e.g., the duplex printing path106ofFIG. 2) in combination with several print substrate rollers326a,326b,326c,326d,326e. In general, the print substrate rollers326a-326eare constructed with relatively high-friction surfaces which, when brought into contact with a print substrate, generate sufficient translational force to advance the print substrate along a desired path. The print substrate path212ofFIG. 2is defined by the platen308. As the print substrate is directed along the print substrate path212, the print bar210forms an image by applying ink to a first side of the print substrate. The print substrate travels further along the platen308to a guide ramp328which, in combination with a diverter329of the duplexer300, directs the print substrate upward toward the print substrate roller326a. The print substrate roller326ais a bi-directional roller and may turn in either direction. In the view ofFIG. 3, the print substrate roller326aturns clockwise (as illustrated inFIG. 3) to advance the print substrate toward an output path214. If the print substrate is to have an image printed on the second side, the print substrate roller326areverses its direction of rotation to counter-clockwise such that after the print substrate passes the diverter329, the print substrate is directed through the duplex path306adjacent a rear side of the diverter329. The rollers326b-326dcontact the print substrate and advance the print substrate along the duplex path306. The rollers are assisted in guiding the substrate adjacent the duplexer300by a substrate guide332in the example ofFIG. 3. The example substrate guide332may be attached to the duplexer300or may be a separate structure in the printer. The example duplexer300ofFIG. 3also includes several star wheels334to guide the print substrate while reducing physical contact with the printed image. As the print substrate traverses the duplex path306, the print substrate roller326eand/or another print substrate guide attached to the printer (not shown) directs the print substrate onto the platen308(e.g., back onto the substrate path212) with the second side facing the print bar210. Thus, the print bar210may form an image on the second side of the print substrate. After the print bar forms the image, the guide ramp328of the platen308again directs the print substrate toward the roller326a. Since, in this example, both sides of the print substrate have been printed, the roller326arotates clockwise to direct the print substrate toward the output print substrate path214. The print substrate continues along the output path214to an output tray and/or to further printing processes. As illustrated inFIG. 3, the example housing304may include a removable cover336to facilitate removal of the spit roller sled324and/or access to the waste substance chamber302and/or the absorber310. In some other examples, however, the cover336is not removable and is instead a part of the housing304. The cover336contains ink aerosol in combination with the bulb seals320and322to reduce and/or prevent contamination of other portions of the printer200. FIG. 4is another schematic diagram of the example duplexer300ofFIG. 3but showing the duplexer300when uninstalled from a printer. As illustrated inFIG. 4, when the duplexer300is uninstalled, the spit roller sled324is retracted into the waste substance chamber302to protect the waste ink roller312from damage. The duplexer300may be removed to, for example, facilitate the removal of a paper jam from the printer and/or to refresh the duplexer300as explained below. Because the waste substance chamber302is located within the duplexer300, the waste substance chamber302is removed with the duplexer300and does not require separate action to remove the waste substance chamber320to access the paper path. As illustrated inFIGS. 5 and 6, a thumb hole502may be provided in the duplexer300to facilitate removal of the duplexer300. The example spit roller sled324, which supports the waste ink roller312, the scraper314, and the bulb seals320and322, is coupled to the housing304in the track325. The track325is oriented at an angle to translate horizontal movement (in the views ofFIGS. 3 and 4) of the spit roller sled324into elevation of the sled324. Thus, when the duplexer300is installed into the printer in a lateral installation direction402, the spit roller sled324may contact a structure (e.g., a cover stop) on the printer that forces the spit roller sled324along the track325to the installed position illustrated inFIG. 3. Conversely, when the duplexer300is uninstalled from the printer, the spit roller sled324is allowed to travel along the track325to the uninstalled position illustrated inFIG. 4. To move the spit roller sled324to the retracted position ofFIG. 4, the duplexer300may be provided with springs to urge the sled324to the retracted position. While the example duplexer300ofFIGS. 3 and 4includes a retractable spit roller sled324, the spit roller sled324may be stationary and/or may retract, rotate, lift, etc., in another direction and/or via another mechanism. The example retractable spit roller sled324ofFIGS. 3 and 4is to advantageously protect the waste ink roller312from damage when the duplexer300is uninstalled and facilitate installation and removal of the duplexer300to/from the printer. The illustrated spit roller sled324also provides access to the waste substance chamber302, including the absorber310, by retracting in a direction such that the absorber310is exposed and may be grasped for removal from the chamber302. Alternatively, the absorber310may be replaced when a newly installed duplexer having a new absorber is provided. In some examples, the spit roller sled324may be removed from the duplexer300to access the chamber302and/or the absorber310. For example, when the duplexer300is in an uninstalled position (as illustrated inFIG. 4), one end of the sled324may be lifted through the illustrated opening404in the housing304. When the end of the spit roller sled324is removed, the remainder of the spit roller sled324may be lifted from the housing304via the opening404because the sled324ofFIGS. 3-6is not attached to (e.g., may be separated from) the track325. For example, the removable cover336may be removed to allow the spit roller sled324to be removed from the chamber302. After removing the spit roller sled324, the absorber310may be removed from the chamber302via the opening404in the housing304. In some examples, the spit roller sled324may retract such that the absorber310may be accessed and removed via the opening404without removing the spit roller sled324. Additionally or alternatively, the removable cover336may be removed from the housing304to enlarge the opening404through which the spit roller sled324may be removed. FIG. 5is a perspective view of the example duplexer300ofFIG. 3. The duplexer300is shown in an installed position inFIG. 5. In particular, the waste substance chamber302, the housing304, the absorber310, the waste ink roller312, the aerosol collection chamber316, the wall318, the bulb seals320and322, the spit roller sled324, the diverter329, and the substrate guide332are illustrated in more detail inFIG. 5. An example thumb hole502is shown inFIG. 5. The thumb hole502may be used by a user of the printer to grip the duplexer300for installation and/or removal of the duplexer300into and/or from the printer. The example print substrate roller326bis not illustrated inFIG. 5. However, a roller support504to support the print substrate roller326bis shown inFIG. 5. The example duplexer300includes another roller support that is not illustrated inFIG. 5to avoid obscuring other parts of the duplexer300. As shown inFIG. 5, the example waste substance roller312includes an outer shell and several spokes connecting the shell to the axis. The roller312as illustrated inFIG. 5has the advantage of being relatively lightweight and low-cost while being resistant to deformation. However, any other structural implementation may be used for the waste substance roller312. FIG. 6is another perspective view of the example duplexer300ofFIG. 3. The example duplexer300is illustrated in an installed position inFIG. 6. As illustrated inFIG. 6, the example duplexer300includes an aerosol filter port602. The aerosol filter port602may be coupled to an aerosol filter and a vacuum source, which draws air including waste ink aerosol from the waste substance chamber302via the permeable wall318and the aerosol collection chamber316. FIG. 7is a flowchart illustrating an example method700to refresh a duplexer. While an example method700of refreshing a duplexer is illustrated inFIG. 7, one or more of the blocks illustrated inFIG. 7may be added, combined, divided, re-arranged, omitted, eliminated and/or implemented in any other way. The example method700may be performed on a duplexer including a chamber (e.g., any of the duplexers ofFIG. 1-6) by, for example, a manufacturer, a refurbisher, a repairer, a user and/or any other person or entity (any of which may be referred to as a “refresher”) to extend the operating life of the duplexer. The example method700begins when the refresher receives a duplexer (e.g., the duplexer300ofFIG. 3) containing a waste substance (block702). An example refresher may be a refurbisher who receives spent duplexers, removes waste from the same, and resells the refurbished duplexers. Thus, receiving the duplexer300may include, for example, receiving the duplexer300from a remote location and/or removing the duplexer300from a printer. The waste substance, such as waste ink, shipping fluid, and/or other waste substances generated by a printer, may be contained in the example waste substance chamber302and/or in the absorber310ofFIG. 3. The refresher removes the absorber310and/or the waste ink roller312from the duplexer300(block704). In some examples, the waste ink roller312and/or the removable cover336are removed to enable access to the absorber310. In some other examples, however, the waste ink roller312, the spit roller sled324, and/or the removable cover336permit sufficient access (e.g., by retracting as shown inFIG. 4) to the absorber310and the waste substance chamber302to permit access to the absorber310when the duplexer300is uninstalled from the printer. The refresher may also remove loose (e.g., unabsorbed) waste substances from the waste substance chamber302(block706). For example, any waste ink or other substances not stored in the absorber310may be poured, wiped, and/or otherwise removed from the waste substance chamber302. The refresher may then remove dried waste ink from the waste substance chamber302and/or the aerosol collection chamber316(block708). The refresher then replaces the absorber310and/or the waste ink roller312, and/or may insert a new absorber310and/or a new waste ink roller312(block710). For example, the refresher may insert a new absorber and/or partially or completely empty the absorber310and the waste ink roller312of waste substances and replace the emptied absorber310in the chamber302. If the refresher did not remove the waste ink roller312(e.g., when performing block704), the refresher does not replace or insert a new waste ink roller312. The removable cover336may also be replaced (e.g., if the cover336was removed to access the absorber310and/or the chamber302). The refresher then prepares the duplexer300for sale, for return to a customer, and/or for reinstallation in a printer (block712). In some examples, the refresher may reinstall the duplexer300in a printer. In some other examples, the refresher may package a duplexer300for shipment and/or sale to a user of the printer to install the refreshed duplexer300in a printer. The example method700may then end or return to block702to refresh another duplexer. FIG. 8is a block diagram of an example duplexer in accordance with the teachings herein. The duplexer800may be usable with a printer. Referring toFIG. 8, in some examples, the duplexer800may include a cover836, a housing804, and a waste ink roller812as previously discussed. The housing804may be coupled to the cover836. The housing804may include a chamber802disposed therein having a concealed region802aand a receiving region802b. The receiving region802bmay be adjacent to the concealed region802asuch that the concealed region802amay be disposed below and adjacent to the cover836. The waste ink roller812may be movable between the concealed region802aand the receiving region802b. The waste ink roller may812selectively receive the waste ink from a print head of the printer. FIGS. 9A and 9Bare cross-sectional views of the example duplexer ofFIG. 8in accordance with the teachings herein and shown in an uninstalled position and an installed position, respectively.FIGS. 10A and 10Bare perspective views of the example duplexer ofFIG. 8in accordance with the teachings herein and shown in an uninstalled position and an installed position, respectively. For sake of illustration of the duplexer900, a printer is not illustrated inFIG. 10B. Referring toFIGS. 9A-10B, in some examples, the duplexer900may include the housing804, the cover836, and the waste ink roller812as previously discussed, for example, with respect to the duplexer800ofFIG. 8. The housing804may include an upper portion804a, a lower portion804c, an intermediate portion804b, and a chamber802. The intermediate portion804bmay be disposed between the upper portion804aand the lower portion804c. The chamber802may include a concealed region802a, a receiving region802b, and an aerosol collection chamber916. The receiving region802bmay be adjacent to the concealed region802asuch that the concealed region802amay be disposed below and adjacent to the cover836. The aerosol collection chamber916may be disposed adjacent to the receiving region802b. That is, a permeable wall918may be disposed between the aerosol collection chamber916and the receiving region802bto allow gas flow including aerosol to pass from the receiving region802bto the aerosol collection chamber916. In some examples, the aerosol collection chamber916may include an output port1012to be coupled to an aerosol filter including a vacuum to pull air and aerosol particles suspended in the air from the chamber802to the aerosol filter through the permeable wall918and the aerosol collection chamber916. For example, the aerosol collection chamber916may be an aerosol passageway for air and aerosol to pass there through. Referring toFIGS. 9A-10B, in some examples, the cover836may include a first end coupled936ato the housing804and a second end936b. In some examples, the cover836may be removable from the housing804to provide access to the chamber802. Alternatively, in some examples, the cover836may not be removable and be a part of the housing804. The waste ink roller812may selectively receive the waste ink from a print head910of the printer. The waste ink roller812may be movable between the concealed region802aand the receiving region.802bFor example, the waste ink roller812may move to the concealed region802asuch that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer900in an uninstalled position with respect to the printer (FIGS. 9A and 10A). Additionally, the waste ink roller812may move to the receiving region802bto receive the waste ink from the print head910such that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer900in an installed position with respect to the printer (FIGS. 9B and 10B). Referring toFIGS. 9A-10B, in some examples, the duplexer900may also include a sled824, a spring930, tracks1002, a scraper914, an opening924, an absorber910, and a print substrate path904. The sled824may be coupled to the waste ink roller812. The sled824may move the waste ink roller812between the concealed region802aand the receiving region802b. For example, the sled824may be coupled to one end of a spring930and include a stopper portion924a. Another end of the spring930may be coupled to the housing804to move the waste ink roller812coupled to the sled824to the concealed region802asuch that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer800in an uninstalled position with respect to the printer as illustrated inFIG. 9A. For example, a user may pull the duplexer900in a lateral uninstallation direction933to remove it from the printer. In some examples, the sled824may move the waste ink roller812to the concealed region802asuch that at least fifty percent of an exterior surface area of the waste ink roller812is disposed therein. The tracks1002(FIG. 10A), for example, may be disposed on the housing804and receive each end of the waste ink roller812to guide it when moved between the receiving region802band the concealed region802a. Additionally, as illustrated inFIG. 9B, the stopper portion924aof the sled824may contact a stop surface908aof the printer such as a portion of the platen908to move the waste ink roller812to the receiving region802bto receive the waste ink from the print head910such that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer800in an installed position with respect to the printer. That is, in the installed position, the engagement between the stopper portion924aand the stop surface908alimits the spring930from moving the waste ink roller812coupled to the sled824to the concealed region802a. For example, a user may push the duplexer800in a lateral installation direction932to install it in the printer. Referring toFIGS. 9A and 9B, the scraper914may include a first end914acoupled to the sled824and a second end914bin contact with the waste ink roller812. The scraper914may remove the waste ink from the waste ink roller812. The opening924may be disposed between the second end936bof the cover836and the housing804. The opening924may be disposed substantially parallel to a lower portion804cof the housing804. In some examples, at least a portion of the waste ink roller812extends above the opening924in the receiving region802bto receive the waste ink from the print head910. The absorber910may be located in the chamber802and store at least one of the waste ink and a storage fluid. In some examples, the print substrate path904may guide a print substrate as previously discussed with respect toFIGS. 1-7. For example, the print substrate may be guided for simplex printing and duplex printing. FIG. 11is a block diagram of an example printer in accordance with the teachings herein. Referring toFIG. 11, in some examples, a printer1100may include a frame950, a platen908, a print head910, and a duplexer900. In some examples, the duplexer900may include the housing804, the cover836, the waste ink roller812, and the sled824as previously described with respect to the duplexer800and900ofFIGS. 8-10B. The platen908may receive a print substrate. The print head910may form an image on a print substrate disposed on the platen908and eject waste ink. In some examples, the print head910may include a print bar, and the like. The duplexer800may be placed in an installed position and uninstalled position with respect to the frame950. The duplexer800may include a cover836, a housing804, a waste ink roller812, and a sled824as previously discussed with respect toFIGS. 8-10B. Referring toFIG. 11, in some examples, the housing804may be coupled to the cover836. The housing804may include a chamber802disposed therein having a concealed region802aand a receiving region802badjacent to the concealed region802asuch that the concealed region802ais disposed below and adjacent to the cover836. The waste ink roller812may selectively receive the waste ink from the print head910. The sled824may be coupled to the waste ink roller812to move the waste ink roller812between the concealed region802aand the receiving region802b. The sled824may be movable with respect to the housing804. For example, the sled824may move the waste ink roller812to the concealed region802asuch that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer900in the uninstalled position. Additionally, the sled824may move the waste ink roller812to the receiving region802bsuch that a portion of the waste ink roller812is disposed therein in response to placement of the duplexer900in the installed position. FIG. 12is a flowchart illustrating an example method of uninstalling a duplexer from a printer in accordance with the teachings herein. In block S1210, a housing including a chamber having a concealed region and a receiving region adjacent to the concealed region of the duplexer is removed from the printer by a user to place the duplexer in an uninstalled position with respect to the printer. In block S1212, a waste ink roller is automatically moved from the receiving region to the concealed region disposed below and adjacent to a cover coupled to the housing in response to the removing of the housing from the printer. For example, the waste ink roller may be automatically moved to the concealed region such that at least a portion of the waste ink roller is disposed therein. Additionally, a sled coupled to the waste ink roller may move to move the waste ink roller to the concealed region such that at least fifty percent of an exterior surface area of the waste ink roller is disposed therein. In block S1214, the user is shielded from contacting the waste ink roller during the removing of the housing from the printer. In some examples, the user may be shielded when at least fifty percent of an exterior surface area of the waste ink roller is disposed in the concealed region. It is to be understood that the flowcharts ofFIGS. 7 and 12illustrate architecture, functionality, and/or operation of examples of the present disclosure. If embodied in software, each block may represent a module, segment, or portion of code that includes one or more executable instructions to implement the specified logical function(s). If embodied in hardware, each block may represent a circuit or a number of interconnected circuits to implement the specified logical function(s). Although the flowcharts ofFIGS. 7 and 12illustrate a specific order of execution, the order of execution may differ from that which is depicted. For example, the order of execution of two or more blocks may be rearranged relative to the order illustrated. Also, two or more blocks illustrated in succession inFIGS. 7 and 12may be executed concurrently or with partial concurrence. All such variations are within the scope of the present disclosure. Although certain methods, apparatus, and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. To the contrary, the scope of coverage includes all methods, apparatus, and articles of manufacture falling within the scope of the appended claims.
L'invention concerne un procédé de fabrication par laminage, à partir d'aciers de construction au carbone et alliés, de barres et de profilés présentant des dimensions transversales plus grandes, dépassant 4 mm, que celles des éléments qui ont été laminés iusqu'à présent à chcud. Les méthodes actuelles de calcul des constructions en acier admettent comme critère de résistance de base la limite d'élasticité conventionnelle ou effective Re. C'est pourquoi la tendance générale est d'atteindre, pour les matériaux de construction, les plus grandes valeurs possibles de la limite d'élasticité ainsi qu'un indice élevé de l'amélioration qualitative d'un acier qui est exprimé par le rapport de la limite d'élasticité à la résistance à la rupture Re/Rm. Les procédés de fabrication de tôles, de barres et de profilés prévoient aussi bien le laminage à chaud que le laminage a froid et l'étirage. Pour des raisons d'économie et de technologie, les tôles fines sont fabriquées, généra-lement, par laminage à froid. Les produits obtenus, ainsi, se caractérisent, en comparaison aux produits fabriqués par déformation plastique à chaud, par une grande résistance Rm, un allongement relativement réduit (05 ou a]g) ainsi que par une bonne qualité de la surface et une bonne précision des dimensions. Les tôles et barres épaisses ne sont fabriquées que par laminage â chaud, leur qualité et résistance étant inférieures aux particularités correspondantes des produits traités â froid. On connaTt et on applique des méthodes de laminage de finition à froid de tôles fines et fortes, laminées préalablement à chaud, afin d'obtenir une qualité de surface requise. Pendant le laminage de finition, le matériau est soumis, en une ou plusieurs passes, à un écrouissage global de 0,4 à 2% ; on note/ alors, un accroissement minimum de la dureté et de la résistance, accompagné d'une réduction de la limite d'élasticité, même jusqu'à 30%, ainsi que de la résilience (effet Bauschinger). Le phénomène de l'accroissement de la dureté et de la résistance accompagné de la réduction de la limite d'élasticité, de l'allongement et de la résilience, dû à la transformation par déformation plastique à froid, est généralement connu et mis en application. Les propriétés de résistance des matériaux laminés à froid sont régularisées entre autres par le choix adéquat de l'écrouissage, cependant. 69 00054 2 2000045 les effets de renforcement par traitement à froid, c'est-à-dire les changements de structure et de résistance ne se manifestent nettement qu'au moyen d'écrouis-sages globaux supérieurs à 20%, ce qui est appliqué généralement dans le laminage froid. 5 Etant donné qu'aussi bien le laminage à chaud que la déformation à froid n'assurent pas l'obtention, pour les fabrications en acier, de propriétés mécaniques optimales, des travaux sont entrepris dans le monde entier, visant à perfectionner les aciers, surtout ceux de construction. Afin d'assurer un accroissement de la limite d'élasticité, fout en obtenant 10 un allongement satisfaisant, une bonne résilience et une grande soudabilité des aciers de construction, la technologie actuelle et les travaux de recherches sont orientés dans les voies suivantes : élever le degré d'alliage des aciers, traitement thermomécanique, développement de la méthode de durcissement dispersif de l'acier au moyen d'adjuvants de vanadium, de barylium, de niobium, de titane 15 et d'autres éléments. Bien que ces méthodes assurent une amélioration de la résistance Re et un accroissement du rapport Re/Rm d'environ 0,6 pour les aciers au carbone non traités thermique ment et jusqu'à environ 0,9 pour aciers fortement alliés et traités thermiquement, elles sont cependant très coûteuses en raison du coût des matériaux utilisés, de la dépense de travail et de temps exigée par 20 l'application de ces processus et enfin, par égard à la nécessité de mettre en oeuvre des installations onéreuses pour les traitements thermique. Souvent, le prix de revient de ces aciers est encore plus élevé en raison du grand nombre de rebuts. L'invention a pour but de mettre au point un procédé simple et bon marché 25 de fabrication de tôles, de barres et de profilés à forte épaisseur, à limite d'élasticité la plus élevée possible et d'un bon indice Re/Rm, tout en assurant un allongement satisfaisant, une bonne résilience, ainsi que la possibilité de programmer l'orientation des propriétés "Re" et "a" à un niveau établi d'avance. Conformément à l'invention, le procédé de fabrication de produits laminés 30 à forte épaisseur en aciers de construction au carbone et alliés, répondant au but susmentionné, consiste à soumettre des produits laminés à chaud à un traitement supplémentaire à froid, en une ou plusieurs passes, l'écrouissage unitaire ou global devant se situer dans la gamme des écrouîssages sous-critiques de 5 à 10%. 69 00054 3 2000045 On a constaté qu'un tel traitement à froid, en une ou plusieurs passes avec écrouissage global de 5 à 10%, de produits épais et laminés à chaud augmente sensiblement la limite d'élasticité, la réduction de l'allongement étant infime et comprise dans les limites des normes en vigueur. 5 On a constaté que l'accroissement de la limite d'élasticité est beaucoup' plus rapide que celui de la résistance, sans modifications nettes de la structure cristalline des produits. Par exemple, l'accroissement de la limite d'élasticité de tôles de construction en acier soudable, s'élevait à 70% et le rapport Re/Rm a atteint 0,95 comme pour aciers alliés traités thermiquement. En outre, l'appli-10 cation du procédé selon l'invention permet d'améliorer la qualité de surface, la résistance à l'abrasion et la limite d'endurance, ainsi que de réduire la gamme des divergences dimensionnelles (épaisseur, diamètre), et, par conséquent, d'appliquer sur une plus large échelle une transformation par déformation plastique assurant des tolérances minimales. 15 Les résultats obtenus et les possibilités d'amélioration des propriétés mécani ques par application du procédé selon l'invention sont illustrés par des données relevées â titre d'exemple et se rapportant à l'acier CSt3 dont la composition chimique est, en pourcentage, la suivante : C - 0,13, Mn - 4, P - 0,011, S -0,033, Cr - 0,09, Ni - 0,01, AI - 0,03, Cu - 0,13. 20 Une tôle forte en acier de cette nature a été soumise, après laminage à chaud, à une seule passe â froid assurant un écrouissage qui s'élève à 6% et l'on a obtenu un matériau dont la limite d'élasticité a augmenté de 80% (Re - 43 kg/mm2) sans baisse d'allongement par rapport aux exigences de la "norme PN/H-84010" , selon laquelle Re = 24 kg/mm2 et a^ * 26%. Le rapport 25 Re/Rm s'est accru de 0,7 à 0,9. L'application d'un écrouissage dans les limites de 8 à 10% apporte un nouvel accroissement de Re avec baisse de a^ de 23%, la valeur de 05 n'étant cependant pas inférieure à 20%. L'application du procédé selon l'invention permet de fabriquer, pour un prix de revient relativement bas, de l'acier de construction au carbone et 30 allié soudable et présentant tes plus ha utes valeurs de Re. Il devient ainsi possible de prévoir une nouvelle classe d'aciers au carbone et alliés, à limite d'élasticité accrue qui permettra de réduire la consommation d'acier utilisé comme matériau de construction et dont l'économie est directement proportionnelle â l'accroissement de la limite d'élasticité. De plus, les aciers de 69 00054 4 2000045 construction au carbone fabriqués par procédé selon l'invention peuvent remplacer, dans de nombreuses branches de l'industrie, des aciers alliés et aciers au carbone traités thermiquement, beaucoup plus coûteux. Les possibilités d'utilisation de ces aciers existent pratiquement dans toutes les branches de la technique. 5 A titre d'exemple d'utilisation, on peut citer les clés plates, les tiges, les axes, les goulottes, les godets, les pelles, les charrues et autres éléments de ce genre, par exemple, pour machines et engins miniers, agricoles, de bâtiment. Le procédé selon l'invention peut être appliqué à tous les aciers de construction au carbone et alliés, avant tout aux aciers qui ne vieillissent pas. Les 10 meilleurs résultats sont obtenus avec des aciers de construction au carbone à faible et moyenne teneur en carbone. Les aciers de construction transformés par déformation plastique conformément à l'invention et soumis ensuite à un traitement thermique de recuit à une température de 300 à 400°C, présentent un nouvel accroissement de Re. L'effet d'un nouvel accroissement Re peut être 15 également atteint, selon l'invention, en réalisant un traitement à une température élevée de 100 à 400°C. La valeur optimale est obtenue pour une température de 250°C. L'application du procédé selon l'invention aux aciers qui présentent une tendance au vieillissement dynamique après écrouissage, relève en réalité leurs 20 propriétés de résistance, surtout la limite d'élasticité, mais n'assure pas la stabilité de ces aciers et c'est pourquoi, ils ne peuvent être utilisés qu'en tant qu'aciers destinés aux pièces et produits desquels on ne requiert pas de propriété mécanique stable au fur et à mesure de l'écoulement du temps. Bien entendu, l'invention n'est pas limitée aux termes de la description 25 qui précède mais elle en comprend, au contraire, toutes les variantes à la portée d'un homme de métier. §9 (10054 5 2C00045 BEVMDICATIOHS - 1 . Procédé de fabrication, à partir d'aciers de construction au carbone et alliés, de tôles, de barres et de profilés présentant une forte épaisseur, une limite d'élasticité élevée et un rapport Re/Rm compris entre les limites de 0,80 à 0,95, et qui, après un laminage à chaud, sont soumis à un laminage à froid 5 caractérisé en ce que le laminage à froid est réalisé en une ou plusieurs passes en assurant un écrouissage global de 5 à 10%. 2. Procédé selon 1 caractérisé en ce que Se matériau est soumis à un écrouissage à froid, dans une gamme de 5 à 10%, et à une température élevée de 100 à 400°C . 10 3. Procédé selon 1 caractérisé en ce que la matériau déformé à froid en ménageant un écrouissage de 5 à 10%, est soumis à un traitement de recuit à une température de 300 à 400°C. BAD ORIGINAL
Support frame for electronic device A support frame for supporting an electronic device includes a fixing base for grasping the electronic device, two support assemblies, an angle adjusting mechanism connecting the fixing base to the support assemblies, and an adjusting plate. The angle adjusting mechanism includes a connecting member, a mating member, and an adjusting assembly. The connecting member is connected to the support assembly. The adjusting assembly includes an adjusting shaft and an adjusting cap engaged with the adjusting shaft. The connecting member and the mating member are sleeved on the adjusting shaft. The adjusting plate is sleeved on the adjusting shaft, and positioned between the connecting member and the mating member. BACKGROUND 1. Technical Field The present disclosure generally relates to support frames, and particularly, to a support frame for electronic device. 2. Description of the Related Art Portable electronic devices, such as a tablet computer or a portable navigation system, can be positioned in a car using a supporting frame at any given time. However, the support frame installed in the car cannot be adjusted, so that a user cannot get a better viewing angle of the portable electronic devices. Therefore, there is room for improvement within the art. DETAILED DESCRIPTION Referring toFIG. 1, an embodiment of a support frame100is used for fixing and supporting an electronic device200. The support frame100includes a first support assembly10, a second support assembly20, a pivot assembly30, an angle adjusting mechanism50, an adjusting plate70, and a fixing base90. The first support assembly10is rotatably connected to the second support assembly20via the pivot assembly30. The angle adjusting mechanism50is connected to the second support assembly20and the first support assembly10via the pivot assembly30. The adjusting plate70is movably connected to the fixing base90via the angle adjusting mechanism50. The fixing base90is uses for fixing the electronic device200. In an illustrated embodiment, the electronic device200is a portable navigation system. Referring toFIGS. 3 and 4, the first support assembly10includes a first support member11, a first grasping member13, and a first adjusting member15. The first support member13includes a main portion111, a hinge portion113, and an assembly portion115. The hinge portion113and the assembly portion115are formed on opposite ends of the main portion111. The assembly portion115defines a first assembly groove1151in a middle portion. The first grasping member13is rotatably mounted on the assembly portion115via the first adjusting member15. The first grasping member13is substantially rectangular, and defines a second assembly groove131. The first grasping member13can be rotated relative to the assembly portion115, so that the second assembly groove131is opposite to the first assembly groove1151to cooperatively form a grasping groove1311(seeFIG. 1), and then the first grasping member13is fastened to the assembly portion115tightly via the first adjusting member15. The second support assembly20has a similar structure as the first support assembly10. The second support assembly20includes a second support member21, a second grasping member23, and a second adjusting member25. The second support member21includes a main portion211, a hinge portion213, and an assembly portion215. The hinge portion213and the assembly portion215are formed on opposite ends of the main portion211. The assembly portion215defines a first assembly groove2151in a middle portion. The second grasping member23is rotatably mounted on the assembly portion215via the second adjusting member25. The first grasping member13is substantially rectangular, and defines a second assembly groove131. The second grasping member23can be rotated relative to the assembly portion215, so that the second assembly groove231is opposite to the first assembly groove2151, thereby cooperatively forming a grasping groove2311(seeFIG. 1), and then the second grasping member23is fastened to the assembly portion215tightly via the second adjusting member25. The pivot assembly30includes an operating member31and an adjusting pole33. The operating member31forms a plurality of protrusions311along a periphery of the operating member31. In the illustrated embodiment, the adjusting pole33is a screw. The angle adjusting mechanism50includes a connecting member51, a mating member53, and an adjusting assembly55. The connecting member51includes a base portion511, a connecting portion513and a support portion515extending from opposite ends of the base portion511. The connecting portion513defines a receiving groove5131for receiving the hinge portions113,213. The adjusting pole33extends through the connecting member51, the hinge portions113of the first support assembly10, the hinge portions213of the second support assembly20, and engages with the operating member31. The adjusting pole33extends through the connecting member51, the hinge portion113of the first support assembly10, the hinge portion213of the second support assembly20, and fixed to the operating member31. Therefore, the first support assembly10and the second support assembly20are rotatably connected to the connecting member51. The support portion515is substantially U-shaped, and a restricting end517is connected to the support portion515. The restricting end517is substantially hollow semi-spherical, and forms a hollow cylindrical positioning protrusion5171. The mating member53is also substantially hollow semi-spherical, and a diameter of the mating member53is smaller than a diameter of the restricting end517. The mating member53forms a hollow positioning pole531sleeved on the positioning protrusion5171. The adjusting assembly55includes an adjusting shaft551and an adjusting cap553engaged with the adjusting shaft551. The adjusting shaft551extends through positioning pole531of the mating member53, the restricting end517, and is threaded with the adjusting cap553. The adjusting plate70is positioned between the mating member53and the connecting member51. The adjusting plate70includes a main body71, a positioning portion73, and a plurality of hook portions75, in which the positioning portion73and the hook portions75extend from opposite sides of the main body71. In the illustrated embodiment, the adjusting plate70has four hook portions75. The fixing base90include a base body91and four grasping portions (not labeled) extending from an edge of the base body91. A center portion of the base body91defines four engaging holes911for receiving the hook portions75of the adjusting plate70. The grasping portions cooperatively hold the electronic device200. In the illustrated embodiment, each grasping portion forms a curve surface931in an end away from the base body91, thereby mating with the electronic device200. Referring toFIGS. 1 through 4, in assembly of the support frame100, the adjusting pole33extends through the connecting portion513, the hinge portions113of the first support assembly10, the hinge portions213of the second support assembly20, and engages with the operating member31. The adjusting plate70is positioned between the connecting member51and the mating member53. The adjusting shaft551extends through positioning pole531of the mating member53, the positioning portion73of the adjusting plate70, the positioning protrusion5171of the connecting member51, and engages with the adjusting cap553. The hook portions75of the adjusting plate70engage into the engaging holes911of the fixing base90. After the support frame100is assembled, the electronic device200is grasped by the fixing base90. In use, the operating member31is rotated to loosen the first support assembly10and the second support assembly20from connecting member51. An angle between first support assembly10and the second support assembly20is then adjusted to a predetermined angle, and the operating member31is rotated again to fix the first support assembly10and the second support assembly20. The first support assembly10and the second support assembly20can be fixed in a car (not shown). If a viewing angle of a user relative to electronic device200needs to be changed, the adjusting cap553is adjusted to loosen the adjusting plate70, the connecting member51, and mating member53from each other. The adjusting plate70is adjusted, and a positioned of the electronic device200is thus changed. After the electronic device200is adjusted to a predetermined position, the adjusting cap553is adjusted again to fix the adjusting plate70between the connecting member51and the mating member53. The viewing angle of the user relative to electronic device200can be adjusted by adjusting the operating member31and the adjusting cap553. Therefore, the support frame100has a simple structure and can be easily operated to adjust the position of the electronic device200. While the present disclosure has been described with reference to particular embodiments, the description is illustrative of the disclosure and is not to be construed as limiting the disclosure. Therefore, various modifications can be made to the embodiments by those of ordinary skill in the art without departing from the true spirit and scope of the disclosure, as defined by the appended claims.
OV UUUOÔ 1 2000046 La présente invention est relative â un procédé de produc-tion d'aliments pour le "bétail* Plus particulièrement, elle concerne un procédé de production d'aliments pour le "bétail à partir de cellules de microorganismes, et surtout un procédé de ce 5 genre dans lequel on peut utiliser aussi "bien les parois cellulaires que le contenu des cellules. Jusqu'à ce jour, de nombreux genres dsaliments ou d'additifs pour aliments destinés au bétail ont été produits à partir de cellules de microorganismes ou de diverses liqueurs de fer— 10 mentation aqueuses» Toutefois8 ces produits possèdent l'inconvénient, du fait que les cellules de microorganismes ont des parois cellulaires rigides par elles-mêmes, que ces parois ne sont pas digérées et, en outre, que des parties considérables du contenu des cellules ne sont pas digérées et restent non utilisées. Par 15 exemple, les parois cellulaires des "bactéries Gram négatives ne sont que partiellement détruites par un traitement avec des agents tensio-actifs ou des solvants organiques, celles des "bactéries Gram positives par traitement avec un lysozyme et celles de certaines levures par traitement avec un glucanase. Toutefois, 20 ces traitements ne conviennent pas pour une application générale en raison de leurs propriétés spécifiques pour des cellules de microorganismes et on ne peut pas les utiliser dans un procédé de production à l'échelle industrielle parce qu'ils sont très onéreux. Bien que, pour éviter de tels inconvénients, un procé— 25 dé de production d'un aliment pour le "bétail, qui consiste à traiter des cellules de microorganismes dans des conditions extrêmement sévères, de manière à décomposer leurs grosses molécules pour abaisser le poids des molécules,ait été mis au point, un tel procédé n'est pas avantageux en raison du prix de revient 30 et de la nécessité de soumettre la solution à des opérations de traitement ultérieures. La présente invention a pour objet s - un procédé perfectionné de production d'un aliment pour le bétail, procédé qui pallie les inconvénients et les insuffi— 35 sances des procédés de la technique antérieure j - un procédé de production d'un aliment pour le bétail, qui peut Stre mis en oeuvre d'une manière efficace et relativement simple ; - un procédé de production d'un aliment pour le bétail, 40 procédé qui peut Stre mis en oeuvre avantageusement à l'échelle 69 00066 2 2000046 industrielle, avec un prix de revient faible ; - l'obtention d'ion aliment pour le bétail, de qualité éle«» vée et d'une utilisation étendue® Les caractéristiques et avantages de la présente invention 5 qui viennent d'être exposés apparaîtront, ainsi que d'autres, à la lecture de la description qui va suivre. A la suite de divers examens concernant les problèmes qui viennent d'être mentionnés, la demanderesse a constaté que, lors®» qu'on chauffe les cellules de micro organisme s dans un acide dilué, 10 pendant un laps de temps court, les parois cellulaires sont détruites en majeure partie et la protéine des cellules n'est que très faiblement modifiée par ce traitement. La demanderesse a donc mis au point tin procédé de production, à partir de cellules de microorganismes, d'aliments pour le bétail qui possèdent un 15 taux de digestibilité élevé» Le tableau 1 expose les résultats obtenus par la mise en oeuvre de la présente invention, ces résultats étant déterminés de la manière suivante. On met en suspension 100 g de cellules séchées de Corynebacterium glutamieum (Micrococcus glutamicus 20 ATCC 13032)et de ïorulopsis famata (ATCG 15586) dans 500 ml d'acide chlorhydrique d'une concentrationdè 0,3 à 1 N, on traite la suspension avec de l'eau bouillante pendant 30 minutes, on la refroidit, on l'ajuste au pH 4, on récupère les cellules de microorganismes par centrifugation et on les soumet à un essai 25 de digestibilité en utilisant de la trypsine et de la pepsine» A cet effet, on met en suspension les cellules de microorganismea traitées par un acide (sèches) et les cellules non traitées (sèches) dans un tampon au phosphate se trouvant au pH 8 (dans le cas de la digestion de la trypsine) et dans tin tampon à l'acé— 50 tate au pH 1,8 (dans le cas de la digestion de la pepsine), à une concentration de 10 mg/ml. On y ajoute ensuite 1 mg/ml de solution de trypsine ou de pepsine dans un rapport de 10 % (volume/volume) , en maintenant la température à 37°• Après 5 heures, on détermine la digestibilité. De plus, on effectue des ex-35 périences témoin en utilisant de la caséine du commero®, pour faire la comparaison. La digestibilité est déterminée d'après la formule suivante x 69 00066 3 2Ô00046 Digestibilité (%) Azote soluble dans TCA à 7 % après traitement par un ^ acide Azote total dans la matière de départ TABLEAU 1 Azote solubie dans TCA à 7 % dans le témoin. . ^ x/lOO Azote solubie dans* TGA à 7 % dans le témoin Digestibilité de la trypsine (pH 8) Digestibilité de la pepsine (pH 1,8) Cellules de microorga*» nisme non traitées Cellules de microorga— nisme traitées par un acide Cellules de microorganisme non traitées Cellules de microorga» nisme traitées par un acide Sormebacterium glutamieum (Hi-îrococcus çlutamicus ATCC îsw 42,3 % * 76,2 % 21,6 % * 41,9 % Porulopsis 53,4 % ** 73,4 % 20,8 % ** 39,5 % . 8M&t& {me 15586) * 74,9 % * 40,1 % •** Caséine 98,6 % 62,8 % 25 Jotfc î * Traitées avec de l'acide chlorhydrique 1N ** Traitées avec de l'acide chlorhydrique. 0,3^ *** Montre la digestibilité des enzymes du commerce TGA » acide trichloracétique• Gomme on peut le voir d'après le tableau 1, l'effet du 30 traitement par un acide est important. On suppose qu'un tel effet est principalement déterminé par une rupture des liaisons des polys&ccharides qui existent couramment dans les parois cellulaires des micro organisme s. Après le traitement, environ 89 % de l'azote total et environ 95 % de l'azote des protéines (azo-35 te insoluble dans TCA chaud à"7"%) se trouvant dans les cellules non traitées subsistent dans les cellules de microorganismes traitées, et on les précipite en vue de les récupérer en ajustant le pH de la solution traitée à une valeur comprise entre 3 et 5* On peut donc voir que le traitement par un acide n'exer- 40 e» un effet que sur les parois des cellules et non pas sur la areAiifle qui est- contenue, au. sein d*s cellules. 69 00066 4 2000046 ÏL est donc évident que le procédé conforme à la présente ! invention est entièrement différent du traitement classique par lin acide utilisé dans la technique antérieure. De plus, le procédé de la présente invention présente de nombreux avantages qui 5 le rendent extrêmement précieux. Dans l'opération de traitement par un acide conforme à la présente invention, on peut utiliser des acides minéraux aussi "bien que des acides organiques. Les acides minéraux qui peuvent itre utilisés comprennent par exemple l'acide chlorhydrique, 10 l'acide sulfurique, l'acide nitrique, etc... Des acides organi» ques appropriés comprennent par exemple l'acide citrique, l'acide acétique, l'acide oxalique, l'acide succinique, etc... On peut modifier la température de traitement et la concentration de l'acide, de façon appropriée, selon le genre des cel-15 Iules de microorganismes en cours de traitement et selon leur concentration® De préférence, on exécute le traitement pendant environ 5-20 minutes, à une température d'environ 90 à 98°C et avec une concentration de l'acide de 0,3-Hf® Après le traitement par l'acide, on ajuste la suspension à un pH de 3-5 en vue de déter-20 miner !J.a précipitation des petites quantités de protéine qui ont été éluées® On sépare et on récupère les matières insolubles qui peuvent également être utilisées comme aliments pour le bétail* Dans une variante, après le traitement par un aeide, on peut utiliser la totalité de la solution traitée comme aliment après 25 l'avoir neutralisée et l'avoir fait sécher dans l'état où elle se trouve• On donne 1* exemple suivant uniquement à titre indicatif et non limitatif de la portée de la présente invention® Sauf mention contraire, les pourcentages s'entendent en poids® 50 EXEMPTiF. 1 On met en suspension, dans 50 litres d'acide chlorhydrique 11, 10 kg de cellules de microorganisme résiduelles provenant de la fermentation de l'acide glutamique (cellules séchées contenant 12,2 % d'azote total et 9»1 % d'azote des protéines). On place la. 35 suspension dans un récipient chemisé de verre et on la-maintient à 95-98"C pendant 10 minutes, tout en l'agitant. Ensuite, on verse de l'eau froide dans la double enveloppe du récipient et on refroidit la suspension jusqu'à la température ambiante, puis on ajuste son pE à 4 avec de la soude caustique 40 10H® Les cellules de microorganisme traitées par un acide, obte— 69 00066 2000046 nues en les séparant de la solution traitée dans une centrifugeuse , après avoir ajusté le pH, sont mises en suspension dans 1000 litres d'eau et sont ensuite séchées par pulvérisation. On obtient ainsi 9,2 kg de cellules traitées. Les cellules contien-5 nent 11,8 % d'azote total et 9,5 % d'azote des protéines. On effectue le même essai de digestibilité que ci-dessus avec la soin,® tion traitée résultante. Après 5 heures de digestion, les taux de digestibilité obtenus sont de 78,7 % dans le cas de la trypsi« ne et de 41,8 % dans le cas de la pepsine. 10 EXEMPLE 2 On met en suspension dans 50 litres d'acide sulfurique 0s3Sf . 10 kg de cellules de microorganisme [cellules séchées de Torulop-» sis famata (ATCC 15586) contenant 7«8 % d'azote total et 6,2 % d'azote des protéines]. 15 On traite la suspension de la mtme manière que dans l'exem ple 1* • On obtient ainsi 7S3 kg de cellules traitées. Ces cellules contiennent 9,8 % d'azote total et 8,1 % d'azote des protéines* On effectue le mtme essai de digestibilité que ci-dessus-et 20 on obtient des taux de digestibilité de 76 % dans le cas de la trypsine et de 43 % dans le cas de la pepsine. Il est bien entendu que la description qui précède n'â été donnée qu'à titre indicatif et non limitatif de la portée de la présente invention et qu'on peut y apporter de nombreuses modifi-25 cations sans sortir pour cela du cadre de la présente inventiono BEVESDICATIONS 1. Procédé de production d'un aliment pour le bétail à partir de cellules de microorganismes, procédé qui consiste à traiter lesdites cellules avec tin acide et à chauffer ensuite la suspeh— 30 sion résultante, ce qui fait que seules les parois cellulaires se trouvent principalement détruites et que le contenu des cellules reste sensiblement non modifié, lesdites cellules résultantes pouvant ttre utilisées comme aliment pour du bétail. 2. Procédé de la revendication 1, dans lequel-l'aeide pré-35 cité est un acide minéralo 3. Procédé de la revendication 1, dans lequel l'acide précité est un acide carboxylique organique* 4. Procédé de la revendication 1, dans lequel la concentration. de l'acide est comprise entre environ 0,3 et 1If. ^ 5* Procédé de la revendication 1, dans lequel-le chauffage 69 00066 6 2000046 est exécuté à une température d'environ 90 à 98°C« \ 6. Procédé de la revendication 1, comprenant en outre une opération de récupération des cellules, qui consiste à ajuster le pH de la suspension chauffée à une valeur de 3 à 5 et à sépa-5 rer de cette suspension les protéines précipitées et les substaa-ces insolubles. 7» Procédé de la revendication 1, qui comprend en outre les opérations de neutralisation et de séchage de la suspension chauffée» 10 8o Procédé de production d'un aliment pour bétail à partir de cellules de microorganismes, qui consiste à traiter lesdites cellules avec un acide minéral dilué ou un acide carboxyiiqtiG organique, à chauffer ensuite la suspension résultante à une tem« pérature d'environ 90 à 98°G9 pendant moins d'environ 1 heure, 15 grâce à quoi seules les parois cellulaires sont pratiquement détruites et le contenu des cellules reste sensiblement non modifié, et à récupérer ensuite les cellules dans la suspension chauffée ou bien à neutraliser et sécher la suspension chauffée telle qu'elle se présente. 20 9. Procédé de la revendication 8, dans lequel la concentra tion de l'acide est comprise entre environ 0,3 et 1N. 10. Procédé de la revendication 8, dans lequel ledit acide est pris dans le groupe comprenant l'acide chlorhydrique, l'acide sulfurique et l'acide nitrique. 25 11. Procédé de la revendication 8, dans lequel ledit acide est pris dans le groupe comprenant l'acide citriqufe, l'acide acétique, l'acide oxalique et l'acide succinique» 12. Procédé de la revendication 8, dans lequel les cellules de microorganismes sont des cellules de Corynebacterium glutamicum 30 (Micrococcus glutamicus ATCC 13.032)» 13» Procédé de la revendication-8, dans lequel lesdites cellules de microorganismes sont des cellules de Torulopsis famata (ATCC 15586).
Filter system A filter system comprises a hollow fiber membrane filter having pores; and an electrostatic adsorption filter partially or wholly having positive charges to be ion adsorbed with nanoparticles of negative charges by an electrostatic attraction, the nanoparticles which exist in the water, and the electrostatic adsorption filter configured to remove in advance the nanoparticles from the water to be supplied to the hollow fiber membrane filter, to prevent a water passing amount of the hollow fiber membrane filter from being rapidly reduced. According to the present invention, the viruses existing in raw water may be removed in accordance with a size exclusion mechanism of the hollow fiber membrane filter, and the nanoparticles, which cause the reduction of the water passing amount of the hollow fiber membrane filter, may be removed using the electrostatic adsorption filter. CROSS-REFERENCE TO RELATED PATENT APPLICATIONS This application is a U.S. National Stage Application under 35 U.S.C. §371 of PCT Application No. PCT/KR2015/007336, filed Jul. 15, 2015, which claims priority to Korean Patent Application No. 10-2014-0093466, filed Jul. 23, 2014, whose entire disclosures are hereby incorporated by reference. TECHNICAL FIELD The present disclosure relates to a filter system that filters viruses existing in raw water to provide purified water. BACKGROUND ART Various filters are used for a filter system which is to purify water. Representative examples of the filters include a reverse osmosis membrane filter and a hollow fiber membrane filter. The reverse osmosis membrane filter refers to a filter that reversely uses osmosis phenomenon. In a heavily doped solution and a lightly doped solution, which are separated from each other by a semi-permeable membrane, water is moved from the lightly doped solution to the heavily doped solution by naturally passing through the semi-permeable membrane. This phenomenon will be referred to as osmosis phenomenon, and at this time, a water level difference between the heavily doped solution and the lightly doped solution will be referred to as an osmotic pressure. If a pressure more than the osmotic pressure is given to the heavily doped solution, water is moved from the heavily doped solution to the lightly doped solution by passing through the semi-permeable membrane on the contrary to the natural phenomenon. This phenomenon will be referred to as reverse osmosis phenomenon, and at this time, a water level difference between the lightly doped solution and the heavily doped solution will be referred to as a reverse osmotic pressure. The reverse osmosis membrane filter is comprised to purify water by allowing water molecules only to pass through the semi-permeable membrane. The hollow filter membrane filter is based on a thread-like filter of which center portion is empty, such as a bamboo. Pores are formed in the hollow filter membrane filter to filter target materials to be removed, which are mixed with water, and pass through water molecules. If water passes through the hollow filter membrane filter by using a water pressure, target materials to be removed, which are greater than the pores, fail to pass through the pores, and the water molecules smaller than the pores may pass through the hollow filter membrane filter. The hollow filter membrane filter is comprised to purify raw water by using the principle described as above. However, it is known that the hollow filter membrane filter fails to filter finer materials as compared with the reverse osmosis membrane filter. Viruses of target materials to be removed from the raw water are formed at a fine size invisible to the naked eye. Particularly, if viruses, such as Noro viruses, which adversely affect a human's body, are contained in drinking water, such viruses cause a stomachache, whereby it is essentially required to remove the viruses from the filter system. However, since the viruses are formed at a fine size, it is general that the reverse osmosis membrane filter is more effective to remove fine materials than the hollow fiber membrane filter. Therefore, the reverse osmosis membrane filter has been generally used to remove viruses from raw water. However, the applicant has devised a hollow fiber membrane, which may remove viruses, through studies and development of the hollow fiber membrane. Since the hollow fiber membrane, which may remove viruses, has pores of which sizes are smaller than those of the viruses, a problem has been raised in that a discharge capacity is rapidly reduced due to nanoparticles existing in water with the passage of time. Therefore, a filter system, which may solve the problem that a discharge capacity is rapidly reduced due to nanoparticles when a hollow fiber membrane for removing viruses is used, may be considered. DISCLOSURE OF INVENTION Technical Problem An object of the present invention is to provide a filter system comprised to avoid a rapid reduction of a discharge capacity, which occurs when a hollow fiber membrane having pores of which sizes may remove viruses is applied to a filter. Another aspect of the detailed description is to provide a filter system that may remove a factor, which makes an exchange cycle of a hollow fiber membrane be short. Other aspect of the detailed description is to provide a filter system that may be applied to various stages by using an electrostatic adsorption filter and a hollow fiber filter. Solution to Problem To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a filter system, including: a hollow fiber membrane filter having pores; and an electrostatic adsorption filter partially or wholly having positive charges to be ion adsorbed with nanoparticles of negative charges by an electrostatic attraction, the nanoparticles which exist in water, and the electrostatic adsorption filter configured to remove in advance the nanoparticles from the water to be supplied to the hollow fiber membrane filter, to prevent a water passing amount of the hollow fiber membrane filter from being rapidly reduced. According to one embodiment of the present invention, each of the pores may be formed at a size smaller than 25 nm to remove viruses of an average size of 25 nm or more from water. According to another embodiment of the present invention, the electrostatic adsorption filter may include a hollow portion forming a flow path of the water to supply the water having the nanoparticles removed therefrom, to the hollow fiber membrane filter; and an ion adsorption portion formed to surround the hollow portion to allow the water to pass through the ion adsorption portion and flow to the hollow portion, and forming a pleated outer surface around the hollow portion to increase a surface area which is in contact with the water. As an example, the ion adsorption portion may include a non-woven fabric support; glass fibers attached to a surface of the non-woven fabric support; and an ion adsorption material formed on a surface of the glass fibers by grafting, providing positive charges to be ion adsorbed with the nanoparticles of negative charges existing in the water passing through the non-woven fabric support. As another example, the ion adsorption portion may include a non-woven fabric support; fibrillate celluloses attached to a surface of the non-woven fabric support; and an ion adsorption material formed on a surface of the celluloses by grafting, providing positive charges to be ion adsorbed with the nanoparticles of negative charges existing in the water passing through the non-woven fabric support. The ion adsorption material may include alumina, the alumina being dissociated into a positive ion of AlO+and a negative ion of OH−in the water and providing positive charges required for ion adsorption by using the positive ion of AlO+. According to still another embodiment of the present invention, the filter system may further comprise a housing for accommodating therein the hollow fiber membrane filter and the electrostatic adsorption filter to form a single module, wherein an inner flow path of the housing includes a raw water supply flow path for flowing raw water to the electrostatic adsorption filter; a connection flow path connected from the electrostatic adsorption filter to the outer surface of the hollow fiber membrane filter to flow the water having the nanoparticles primarily removed therefrom while passing through the electrostatic adsorption filter, to the hollow fiber membrane filter; and a discharge flow path flowing the water having viruses secondarily removed therefrom while passing through the hollow fiber membrane filter, to the outside of the housing. According to further still another embodiment of the present invention, the filter system may further comprise a first housing for accommodating therein the hollow fiber membrane filter and a second housing for accommodating therein the electrostatic adsorption filter, whereby the hollow fiber membrane filter and the electrostatic adsorption filter are respectively built in their housings. According to further still another embodiment of the present invention, the filter system may further comprise a carbon block filter comprised to remove residual chlorine remaining in the water by allowing the water to pass through a carbon block, wherein the carbon block filter is arranged to purify at least one of water having the nanoparticles removed therefrom while passing through the electrostatic adsorption filter, and water having viruses removed therefrom while passing through the hollow fiber membrane filter. The carbon block filter may surround an outer surface of the carbon block to remove in advance the nanoparticles from the water to be supplied to the carbon block. The carbon block filter may include an adsorption material to additionally remove heavy metals or organic compounds, and wherein the adsorption material forms the carbon block filter by being mixed with a raw material of the carbon block together with a binder and by undergoing a compression molding process (pressing). Advantageous Effects of Invention According to the present invention comprised as above, the nanoparticles, which cause a reduction of a flow rate of the hollow fiber membrane filter for removing viruses, may be removed in advance using the electrostatic adsorption filter in accordance with a size exclusion mechanism. Therefore, the nanoparticles existing in the water are removed in advance prior to passing through the hollow fiber membrane filter, whereby the flow rate of the hollow fiber membrane filter may be prevented from being reduced. Also, according to the present invention, viruses may be removed by organic combination of the electrostatic adsorption filter and the hollow fiber membrane filter and it is not necessary to early exchange the filter with another one, whereby performance of the filter system may be improved. Also, according to the present invention, the filter system includes the electrostatic adsorption filter and the hollow fiber membrane filter as essential elements, and may be formed in a single stage or enlarged to multi-stages if necessary. BEST MODE FOR CARRYING OUT THE INVENTION Description will now be given in detail of the exemplary embodiments, with reference to the accompanying drawings. For the sake of brief description with reference to the drawings, the same or equivalent components will be provided with the same reference numbers, and description thereof will not be repeated. It is to be understood that the singular expression used in this specification includes the plural expression unless defined differently on the context. In this specification, it is to be understood that the terms such as “include” and “has” are intended to designate that features, numbers, steps, operations, elements, parts, or their combination, which are disclosed in the specification, exist, and are intended not to previously exclude the presence or optional possibility of one or more other features, numbers, steps, operations, elements, parts, or their combinations. FIG. 1is a flow chart illustrating a filter system100according to one embodiment of the present invention. The filter system100includes a hollow fiber membrane filter110and an electrostatic adsorption filter120. In order to purify raw water or embody a system (water purifier) for purifying raw water as a product, elements more than those shown inFIG. 1will be required. However, essential elements related to technical spirits of the present invention are only shown inFIG. 1, and the other elements are omitted. The hollow fiber membrane filter110is comprised to remove viruses. The hollow fiber membrane filter110is provided with pores having an average size smaller than that of viruses to remove viruses existing in water. The average size of the pore provided in the hollow fiber membrane filter according to the related art was in the range of 100 nm, approximately. However, since the average size of viruses is in the range of 25 nm to 27 nm, the hollow fiber membrane filter of the related art cannot remove the viruses. The reason why that the hollow fiber membrane filter of the related art has pores greater than viruses is that the function of the hollow fiber membrane filter of the related art has no relation to removal of viruses. Unlike the hollow fiber membrane filter of the related art, the hollow fiber membrane filter110of the present invention is intended to remove viruses. To this end, the hollow fiber membrane filter110suggested in the present invention has pores having an average size smaller than that of viruses to remove the viruses. Since the average size of viruses to be removed from water is in the range of 25 nm to 27 nm, the average size of the pores of the hollow fiber membrane filter110is formed at 25 nm or less. In order to obtain reliability in removing viruses, the average size of the pores of the hollow fiber membrane filter110is preferably formed at 20 nm, approximately. The hollow fiber membrane filter110having pores of an average size smaller than about 25 nm may remove viruses existing in water in accordance with a size exclusion mechanism. In particular, it is advantageous in that the hollow fiber membrane filter110for removing viruses in accordance with the size exclusion mechanism may remove viruses regardless of kinds of raw water. A related art filter for removing viruses in another manner not the size exclusion mechanism has been suggested. However, the related art filter has a problem in that its performance is determined depending on conditions of raw water, such as pH, etc. Since the hollow fiber membrane filter110of the present invention is based on the size exclusion mechanism, it is advantageous in that the hollow fiber membrane filter110is not affected by conditions of raw water. However, nanoparticles having a size of about 200 nm or less as well as viruses exist in raw water such as piped water. If the hollow fiber membrane filter110is allowed to pass through raw water to remove viruses from the raw water including nanoparticles, the pore of the hollow fiber membrane filter110is blocked by the nanoparticles in accordance with the passage of time. For this reason, a problem occurs in that a discharge capacity of the hollow fiber membrane filter110is rapidly reduced. In the hollow fiber membrane filter of the related art, which has pores having an average size of about 100 nm, the phenomenon that the discharge capacity is rapidly reduced by the nanoparticles has not been found significantly. Therefore, the problem of the discharge capacity reduced by the nanoparticles in the hollow fiber membrane filter of the related art did not affect performance of the filter system. However, in the filter system100that uses the hollow fiber membrane filter110having pores of an average size smaller than about 25 nm as in the present invention, the discharge capacity reduced by the nanoparticles greatly affects performance of the filter system. At present, filters of a filter system which are generally used are exchanged with another ones periodically. However, the discharge capacity reduced by the nanoparticles makes an exchange cycle of the hollow fiber membrane filter110be shorter. Also, the reduction of the discharge capacity causes reduction of the amount of purified water provided to users, the reduction of the discharge capacity acts as a factor, which makes quality of the filter system be evaluated at a low level, in view of the users. The present invention suggests a filter system100that uses an electrostatic adsorption filter120and a hollow fiber membrane filter110together to solve the problem of the discharge capacity, which may be reduced by application of the hollow fiber membrane filter110having pores of which size may remove viruses. The electrostatic adsorption filter120partially or wholly has positive charges to be ion-adsorbed with nanoparticles of negative charges by an electrostatic attraction, the nanoparticles which exist in water. Most of particle materials existing in water in the range of pH of drinking water have negative charges, and nanoparticles to be removed by the electrostatic adsorption filter120also have negative charges. Therefore, the nanoparticles may be ion-adsorbed with the positive charges by the electrostatic attraction. The electrostatic adsorption filter120removes in advance the nanoparticles from water to be supplied to the hollow fiber membrane filter110, thereby preventing the discharge capacity of the hollow fiber membrane filter110from being rapidly reduced by the nanoparticles. In view of the pass through order of water, the electrostatic adsorption filter120is arranged prior to the hollow fiber membrane filter110. Therefore, water purified by the filter system100primarily passes through the electrostatic adsorption filter120and secondarily passes through the hollow fiber membrane filter110. Since the electrostatic adsorption filter120removes in advance the nanoparticles from water to be supplied to the hollow fiber membrane filter110, viruses may exist in water B that has passed through the electrostatic adsorption filter120. However, the nanoparticles that cause the reduction of the discharge capacity are removed by the electrostatic adsorption filter120. Therefore, if water B that has passed through the electrostatic adsorption filter120is supplied to the hollow fiber membrane filter110, the reduction of the discharge capacity may be prevented from occurring in the hollow fiber membrane filter110. Water C purified in the filter system100may be divided into raw water A, primary purified water B, and secondary purified water C. The raw water A indicates water prior to passing through the filter system100, and means water which is not purified at all. For example, the raw water A includes piped water. The primary water B indicates water that has passed through the electrostatic adsorption filter120. If the raw water A passes through the electrostatic adsorption filter120, nanoparticles are removed from the raw water A, and the raw water A becomes the primary purified water B. The primary purified water B may be understood as water which nanoparticles are removed from the raw water A. Viruses may exist in the primary purified water B. The secondary purified water C indicates water that has passed through the electrostatic adsorption filter120and the hollow fiber membrane filter110in due order. If the primary purified water B passes through the hollow fiber membrane filter110, viruses are removed from the primary purified water B, and the primary purified water B becomes the secondary purified water C. The secondary purified water C may be understood as water which viruses are removed from the primary purified water B. Since the nanoparticles are removed by the electrostatic adsorption filter120and the viruses are removed by the hollow fiber membrane filter110, the nanoparticles and viruses little exist in the secondary purified water C. According to the present invention, the viruses existing in the raw water A may be removed by the hollow fiber membrane filter110. Also, the nanoparticles that cause the reduction of the discharge capacity may be removed by the electrostatic adsorption filter120. In particular, the electrostatic adsorption filter120is comprised to remove in advance the nanoparticles from water to be supplied to the hollow fiber membrane filter110without removing the nanoparticles from the water that has passed through the hollow fiber membrane filter110. Therefore, according to the present invention, the size exclusion mechanism may be used to remove viruses and prevent the discharge capacity of the hollow fiber membrane filter110from being reduced. Hereinafter, a detailed structure of the hollow fiber membrane filter110and the electrostatic adsorption filter120will be described. FIG. 2ais a perspective view illustrating a hollow fiber membrane filter110applied to a filter system100(seeFIG. 1) according to the present invention, andFIG. 2bis an enlarged photo of a hollow fiber membrane. The hollow fiber membrane filter110ofFIG. 2ais formed by grouping a bundle of hollow fiber membranes112ofFIG. 2b. A lower end of the hollow fiber membrane filter110is potted by a resin such as polyurethane to block a flow of water, and its upper end spurts out water toward the center of the hollow fiber membranes as the resin is cut after potting. The hollow fiber membrane112means a thread-like membrane of which center portion is empty. The hollow fiber membrane112is provided with pores (not shown), each of which has a size of 25 nm or less to remove viruses. It is preferable that the pores are formed to have an average size of about 20 nm to remove viruses more clearly. A flow path111, which may discharge water, is formed at a center portion of the hollow fiber membrane filter110. Water is supplied into an outer surface of the hollow fiber membrane filter110. Viruses existing in the water fail to pass through the pores while the water is passing through the hollow fiber membrane filter110, whereby the viruses are removed from the water. Arrows inFIG. 2arepresent flows of water. The water is discharged out through the flow path111formed at the center portion of the hollow fiber membrane filter110. FIG. 3ais a perspective view illustrating an electrostatic adsorption filter120applied to a filter system100(seeFIG. 1) according to the present invention. The electrostatic adsorption filter120includes a hollow portion121and an ion adsorption portion122. The hollow portion121forms a flow path that may discharge out water. For example, the hollow portion121may form a flow path of water, which provides water having the nanoparticles removed therefrom, to the hollow fiber membrane filter110. The ion adsorption portion122is formed around the hollow portion121to allow water to flow to the hollow portion121. The water is supplied into the hollow portion121through the ion adsorption portion122formed on the outer surface of the electrostatic adsorption filter120. While the water is passing through the ion adsorption portion122, nanoparticles of negative charges existing in the water are adsorbed to the ion adsorption portion122by an electrostatic attraction. The water having the nanoparticles removed therefrom is discharged out through the flow path formed in the hollow portion121. Arrows ofFIG. 3arepresent flows of water. The ion adsorption portion122forms a pleated outer surface around the hollow portion121to increase a surface area which is in contact with the water. Since the ion adsorption portion122removes the nanoparticles which exist in the water by an electrostatic attraction, the ion adsorption portion122may remove more nanoparticles if the ion adsorption portion122has more opportunities of contact with the nanoparticles. Therefore, if the ion adsorption portion122forms a pleated outer surface as shown inFIG. 3a, the surface area which is in contact with the water is increased. The number of pleats (or the number of mountains) may be controlled to control the surface area. The ion adsorption portion122having a pleated outer surface may remove more nanoparticles as compared with a flat outer surface. FIG. 3bis a conceptual view illustrating a detailed configuration of an ion adsorption portion122. The ion adsorption portion122is comprised to remove nanoparticles of negative charges, which exist in water, by using an electrostatic attraction. The ion adsorption portion122includes a non-woven fabric support122a, glass fibers122band an ion adsorption material122c. The non-woven fabric support122aforms an outer surface of the electrostatic adsorption filter120. In particular, the non-woven fabric support122ais made in a shape of a sheet, and may form a pleated outer surface of the electrostatic adsorption filter120through processing. The non-woven fabric support122asupports the glass fibers122b. The non-woven fabric support122ais provided with pores through which water passes. The glass fibers122bare attached to a surface of the non-woven fabric support122a. The glass fiber122bis to fix the ion adsorption material122c. The fibrillate glass fibers122bare randomly arranged on the surface of the non-woven fabric support122aand get tangled up together. A gap of about 2 μm to 3 μm may be formed between the glass fibers122b, and water may pass through the gap. Particles greater than the gap may be removed from the water in accordance with the size exclusion mechanism. The ion adsorption material122cis formed by grafting on the surface of the glass fibers122b. Grafting means a process for fixing the ion adsorption material122cto the surface of the glass fibers122b, and includes a step of fixing the ion adsorption material122cto the glass fibers122bthrough physical rolling. The ion adsorption material122cprovides positive charges to be ion adsorbed with nanoparticles of negative charges existing in the water that passes through the felt. The ion adsorption material122cincludes alumina AlOOH. AlOOH is dissociated into a positive ion of AlO+and a negative ion of OH−in the water. The ion adsorption material122cprovides positive charges required for ion adsorption by using the positive ion of AlO+. The positive charges may have a size of about +80 mV. The nanoparticles having negative charges may be ion-adsorbed with the ion adsorption portion122by the positive charges provided by the ion adsorption material122c. FIG. 3cis another conceptual view illustrating a detailed configuration of an ion adsorption portion122′. A non-woven fabric support122a′ is the same as that described inFIG. 3b. Therefore, a description of the non-woven fabric support122a′ will be replaced with the description ofFIG. 3b. The ion adsorption portion122′ includes celluloses122b′ instead of the glass fibers122bused inFIG. 3b. The celluloses122b′ are attached to a surface of the non-woven fabric support122a′. The celluloses122b′ are also intended to fix an ion adsorption material122c′. The fibrillate celluloses122b′ are randomly arranged on the surface of the non-woven fabric support122a′ and get tangled up together. A gap of about 0.5 μm to 1 μm may be formed between the celluloses122b′, and water may pass through the gap. Particles greater than the gap may be removed from the water in accordance with the size exclusion mechanism. The celluloses122b′ have several advantages as compared with the glass fibers122b(seeFIG. 3b). First of all, the celluloses122b′ are not harmful to a human body. Since the electrostatic adsorption filter120(seeFIG. 3a) is an element of the filter system100(seeFIG. 1) which forms drinking water, the celluloses should not be harmful to a human body. Since harmlessness of the celluloses122b′ is approved as compared with the glass fibers122b(seeFIG. 3b), the celluloses122b′ are suitable for the element of the electrostatic adsorption filter120(seeFIG. 1) for processing drinking water. Also, since a gap smaller than that of the glass fibers122b(seeFIG. 3b) is formed between the celluloses122b′, performance for removing impurities existing in water in accordance with the size exclusion mechanism may be more improved than that of the glass fibers122b(seeFIG. 3b). The ion adsorption material122c′ is formed by grafting on the surface of the celluloses122b′. A description of the ion adsorption material122c′ will be replaced with the description ofFIG. 3b. FIG. 4ais a photo illustrating an ion adsorption portion122shown inFIG. 3b. In the photo, bright color portions at a left lower end and a right upper end correspond to the non-woven fabric support, and dark colored fibers from a left upper end to a right lower end correspond to the glass fibers. The particles arranged on the surface of the glass fibers correspond to alumina. FIG. 4bis a conceptual view illustrating a mechanism of nanoparticles ion-adsorbed to an ion adsorption portion ofFIG. 4a. Referring toFIG. 4a, three glass fibers are arranged to get tangled together. A triangular gap is formed among the three glass fibers, and water may pass through the gap. Alumina fixed to the surface of the glass fibers provides positive ions required for ion adsorption. Therefore, positive charges are generated on the surface of the glass fibers. Since the nanoparticles existing in the water have negative charges, the nanoparticles are ion-adsorbed with the positive ions existing on the surface of the glass fibers while water is passing through the glass fibers. An arrow inFIG. 4brepresents a flow of water. Hereinafter, the effect of removal of the nanoparticles and the effect of preventing the discharge capacity from being reduced in accordance with application of the electrostatic adsorption filter120(seeFIG. 1) together with the hollow fiber membrane filter110(seeFIG. 1) will be described with reference to graphs and Tables. FIG. 5is a graph illustrating an effect of preventing a discharge capacity from being reduced by application of an electrostatic adsorption filter. A horizontal axis means an accumulated discharge capacity (unit L), and a vertical axis means a flow rate (unit L/min). A reduction of the flow rate according to increase of the accumulated discharge capacity means that the pores of the hollow fiber membrane filter are blocked by the nanoparticles, and means that exchange cycle of the hollow fiber membrane filter is short. InFIG. 5, a line X is the result of the hollow fiber membrane filter only without the electrostatic adsorption filter, and a line Y is the result of the electrostatic adsorption filter and the hollow fiber membrane filter. First of all, referring to the case where water is purified using the hollow fiber membrane filter only without the electrostatic adsorption filter, it is noted that the flow rate is reduced continuously in accordance with the increase of the accumulated discharge capacity. An initial flow rate is about 1.4 L/min, whereas a flow rate is only 0.5 L/min when the accumulated discharge capacity reaches about 1000 L. Therefore, if water is purified using the hollow fiber membrane filter only without the electrostatic adsorption filter, the pores of the hollow fiber membrane filter are blocked by the nanoparticles, and the hollow fiber membrane filter should early be exchanged with another one. Next, referring to the case where the electrostatic adsorption filter and the hollow fiber membrane filter are used together in the line Y, it is noted that the initial flow rate is maintained as it is even though the accumulated discharge capacity is increased. The flow rate is little changed even though the accumulated discharge capacity reaches about 2000 L. If the electrostatic adsorption filter and the hollow fiber membrane filter are used together, since the nanoparticles are removed by the electrostatic adsorption filter, the pores of the hollow fiber membrane filter may be prevented from being blocked, and the flow rate (discharge capacity) of the hollow fiber membrane filter may be prevented from being reduced. FIG. 6is a graph illustrating an effect of nanoparticles removed by application of an electrostatic adsorption filter120(seeFIG. 1). A horizontal axis means a size (unit μm) of nanoparticles, and a vertical axis means the number (counts/ml) of nanoparticles per unit flow rate. The number of nanoparticles per unit flow rate was measured by being divided into particles of 0.05 μm or less, particles of 0.1 μm or less, and particles of 0.2 μm or less. The case where piped water (raw water) and the electrostatic adsorption filter are only used was illustrated in Table 1 as compared with the case where the electrostatic adsorption filter and the hollow fiber membrane filter are used together. A plurality of nanoparticles exist in piped water per size. In particular, most of the piped water is filled with nanoparticles of 0.05 μm or less and nanoparticles of 0.1 μm or less. As can be seen in the graph ofFIG. 6and Table 1, the electrostatic adsorption filter may remove 90% or more of the nanoparticles existing in the piped water. It is noted fromFIG. 6and Table 1 that the electrostatic adsorption filter may remove the nanoparticles, and the reduction of the discharge capacity of the hollow fiber membrane filter, which is caused by the nanoparticles, is mitigated. Hereinafter, a filter system formed by modification or application of the electrostatic adsorption filter and the hollow fiber membrane filter, which are described as above, will be described. FIG. 7is a conceptual view illustrating that an ion adsorption portion222is coupled to a carbon block231. The filter system (not shown) may further include carbon block filters231,232aand232bcomprised to remove residual chlorine remaining in water by allowing the water to pass through the carbon block231. The carbon block filters231,232aand232bare formed in such a manner that covers232aand232bare respectively coupled to an upper end and a lower end of the carbon block231. A hollow portion may be formed at a center portion of the carbon block231, and the covers232aand232bare provided with holes formed to correspond to the hollow portion of the carbon block231. The ion adsorption portion222may be coupled with the carbon block231to form a complex filter230. The ion adsorption portion222surrounds the carbon block231to previously provide nanoparticles from water which will be supplied by the carbon block231. Preferably, the ion adsorption portion222is formed as one layer to prevent the flow rate from being reduced. Water is supplied into an outer surface of the complex filter230, and the nanoparticles existing in the water are removed by the ion adsorption portion222. The water having the nanoparticles removed therefrom passes through the carbon block231, and the residual chlorine remaining in the water is removed by the carbon block231. Also, heavy metals or organic compounds existing in the water may additionally be removed by an adsorption material provided in the carbon block231. The filter system100(seeFIG. 1) may be comprised of the complex filter230and the hollow fiber membrane filter110(seeFIG. 1) only. A carbon block filter (not shown) or the complex filter230may be provided with an adsorption material (not shown) to additionally remove the heavy metals or organic compounds. The adsorption material may be mixed with the material of the carbon block231together with a binder (not shown) and undergo a compression molding process (pressing), whereby the carbon block filter may be formed. The adsorption material includes hydrated iron and silica material, for example. The hydrated iron is comprised to remove arsenic (As) existing in the water, and the silica material is comprised to remove lead existing in the water. Also, the adsorption material may include a material that removes chloroform which is a main organic compound existing in the water. FIG. 8is a cross-sectional view illustrating that a hollow fiber membrane filter310and an electrostatic adsorption filter320are built in a single housing310. The filter system300may be formed as a single stage filter which is a combined type of the electrostatic adsorption filter320and the hollow fiber membrane filter310. The filter system300includes the hollow fiber membrane filter310, the electrostatic adsorption filter320, and the housing310. The electrostatic adsorption filter320and the hollow fiber membrane filter310are arranged inside the housing310. The electrostatic adsorption filter320and the hollow fiber membrane filter310may be deposited inside the housing310in due order as shown inFIG. 8. The housing310is provided with an inlet301aforming an inlet flow path of raw water, and an outlet301bforming a flow path for discharging purified water. The inner flow path of the housing301includes a raw water supply flow path302a, a connection flow path302b, and a discharge flow path302c. The raw water supply flow path302ais connected from the inlet301ato the outer surface of the electrostatic adsorption filter320to flow the raw water to the electrostatic adsorption filter320. The raw water supplied through the inlet301aof the housing301is supplied to the outer surface of the electrostatic adsorption filter320along the raw water supply flow path302a. The water supplied to the electrostatic adsorption filter320passes through the ion adsorption portion122(seeFIG. 3a) arranged on the outer surface of the electrostatic adsorption filter320and flows to the hollow portion121(seeFIG. 3a) of the electrostatic adsorption filter320. The connection flow path302bis connected from the electrostatic adsorption filter320to the outer surface of the hollow fiber membrane filter310to flow the water having the nanoparticles primarily removed therefrom while passing through the electrostatic adsorption filter320, to the hollow fiber membrane filter310. The water discharged through the hollow portion121(seeFIG. 3a) of the electrostatic adsorption filter320flows to the outer surface of the hollow fiber membrane filter310along the connection flow path302b. Viruses existing in the water are removed by the hollow fiber membrane filter310. The discharge flow path302cis connected to the outlet301bto flow the water having viruses secondarily removed therefrom while passing through the hollow fiber membrane filter310, to the outside of the housing301. The water supplied to the inlet301aof the housing301is discharge to the outlet301bof the housing301by passing through the raw water supply flow path302a, the electrostatic adsorption filter320, the connection flow path302b, the hollow fiber membrane filter310and the discharge flow path302c. In this process, the nanoparticles and viruses existing in the water are respectively removed by the electrostatic adsorption filter320and the hollow fiber membrane filter310in due order. If the electrostatic adsorption filter320and the hollow fiber membrane filter310are arranged in the single housing301and the raw water supply flow path302a, the connection flow path302band the discharge flow path302care connected as described above, the filter system300may be formed as one module. The filter system300comprised as one module may reduce its size as compared with the filter system300that separately includes the electrostatic adsorption filter320and the hollow fiber membrane filter310. Therefore, if the filter system300comprised as one module is used, a small sized water purifier may be obtained. FIG. 9is a conceptual view illustrating that a hollow fiber membrane filter410and an electrostatic adsorption filter420are respectively built in their respective housings401and401′. The filter system400includes a first housing401for accommodating therein the hollow fiber membrane filter410and a second housing401′ for accommodating therein the electrostatic adsorption filter420, whereby the hollow fiber membrane filter410and the electrostatic adsorption filter420are respectively built in their respective housings401and401′. The hollow fiber membrane filter410and the electrostatic adsorption filter420are formed as their respective modules. Water first passes through the electrostatic adsorption filter420and then passes through the hollow fiber membrane filter410. If the hollow fiber membrane filter410and the electrostatic adsorption filter420are formed as separate modules as shown inFIG. 9, the size of the modules is more increased than that of the single module described inFIG. 8. However, since the hollow fiber membrane filter410and the electrostatic adsorption filter420depend on their respective exchange cycle, it is advantageous in that it is not necessary to exchange both of the two filters410and420when any one of the two filters410and420fails to carry out its function. As shown inFIG. 9, the filter system400may include the hollow fiber membrane filter410and the electrostatic adsorption filter420. Also, the filter system400′ may include the complex filter430described inFIG. 7and the hollow fiber membrane filter410. The latter filter system400′ may additionally remove residual chlorine, heavy metals or organic compounds existing in the water as compared with the former filter system400. FIG. 10is a conceptual view illustrating that a filter system500is enlarged to three stages. The filter system500includes an electrostatic adsorption filter520, a hollow fiber membrane filter510, and a carbon block filter540. The electrostatic adsorption filter520, the hollow fiber membrane filter510, and the carbon block filter540are formed as their respective modules. Functions of each of the electrostatic adsorption filter520, the hollow fiber membrane filter510and the carbon block filter540will be replaced with the aforementioned description thereof. Referring toFIG. 10, water is purified while passing through the electrostatic adsorption filter520, the hollow fiber membrane filter510, and the carbon block filter540in due order. The electrostatic adsorption filter520removes nanoparticles, the hollow fiber membrane filter510removes viruses, and the carbon block filter540removes residual chlorine. If the carbon block filter540includes an adsorption material, the carbon block filter540may additionally remove heave metals or organic compounds. The carbon block filter540is arranged to purify at least one of water having the nanoparticles removed therefrom while passing through the electrostatic adsorption filter520, and water having viruses removed therefrom while passing through the hollow fiber membrane filter510. Therefore, the carbon block filter540may be moved from the rear side of the hollow fiber membrane filter510to the rear side of the electrostatic adsorption filter520as shown inFIG. 10. However, there is no change in the arrangement of the electrostatic adsorption filter520arranged prior to the hollow fiber membrane filter510. FIG. 11is a conceptual view illustrating that a filter system600is enlarged to four stages. The filter system600includes an electrostatic adsorption filter620, a first carbon block filter631, a hollow fiber membrane filter610, and a second carbon block filter640. At least one of the first carbon block filter631and the second carbon block filter640may include an adsorption material (not shown). Referring toFIG. 11, water is purified while passing through the electrostatic adsorption filter620, the first carbon block filter631, the hollow fiber membrane filter610, and the second carbon block filter640in due order. The electrostatic adsorption filter620removes nanoparticles, the hollow fiber membrane filter510removes viruses, and the first carbon block filter631and the second carbon block filter640remove residual chlorine. As at least one of the first carbon block filter631and the second carbon block filter640includes an adsorption material (not shown), whereby heavy metals or organic compounds may additionally be removed. The order of the respective filters may be changed. However, there is no change in the arrangement of the electrostatic adsorption filter620arranged prior to the hollow fiber membrane filter610. The filter system600includes the electrostatic adsorption filter620and the hollow fiber membrane filter610as essential elements, and may be enlarged to multi-stages. According to the present invention, the nanoparticles, which cause the reduction of the flow rate of the hollow fiber membrane filter for removing viruses, may be removed in advance using the electrostatic adsorption filter in accordance with the size exclusion mechanism. Therefore, the nanoparticles existing in the water are previously removed prior to passing through the hollow fiber membrane filter, whereby the flow rate of the hollow fiber membrane filter may be prevented from being reduced. The filter system described as above is not limited to the configurations and methods of the aforementioned embodiments, and all or some of the embodiments may be comprised selectively in combination so that various modifications may be made in the embodiments. INDUSTRIAL APPLICABILITY The present invention may be used for various industrial fields such as water purifiers.
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @spi@@@urs appartenant au type ei@dessous désigué pu@ "type spécifié", comprenant un chariot à roues dans lequel sont montées une brosse rotative, un ventilateur pour ces une certaine aspiration t un moteur électrique commandant à la feis la brosse @otative et le ventilateur. Généralerent, dans un aspirateur du type spécifié, il exis@@ un manche verti@al à l'arrière du chariot au moyen duquel le chariot est propulse sur la surface devant entre nettoyée, et un sac à poussire suspendu au manche.Au cours du nettoyage d'une surface donnée telle qu'un tapis, le moteur entraine la brosse rota tive qui est disposée à l'avant du chariot ainsi que le ventilateur pour aspirer la peussière qui est agitée et dégagée de la surface par la brosse rotative, puis transférée dans le sac à poussière Dans de nomhreuses @@chines du type spécifié telles qu'elles sont utilisées à l'heure @ctuelle, il a été prévu qu'elles soient utilisées seulement somme nettoyeuses pax aspiration au moyen d'une tuyauterie flenible connestée à l'entrée du ventilateur, de sorte que l'appareil peut seulement être employé pour cette fonction sans utilisation de la brosse rotative. Sur un type d'aspirateu@ du type spécifié utilisé à l'heure actuelle, lorsqu'il est souhaitable de passer de l'opération de brossage à l'opération indépendante d'aspiration en utilisant la tuyauterie flexible, il est nécessaire d'arrêter l'appareil et de déconnecter manuellement la commande de la brosse rotative pour connecter ensuite à l'aspirateur la tuyauterie flexible avant que l'appareil puisse être utilise comme aspirateur seulement.Dans un autre appareil du type spécifié employé à l'heure actuelle,il n'est pas prévu de dispositif pour déconnecter la commande de la brosse rotative, de sorte que, lorsqu'une tubulure flexible est connectée pour employer l'aspirateur seulement, le moteur élec trique commande encore la brosse rotative et une quantité considérable d'énergie est dissipée dans cette action, réduisant ainsi la capacité d'aspiration de appareil. Un objet de l'invention est de prévoir un aspirateur amélioré du type spécifié dans lequel la conversion d'un appareil nettoyeur-du type à brosse rotative en un appareil ayant seulement une fonction d'aspiration au moyen d'une tuyauterie flexible,peut être faite aisément sans qu'aucune manipulation compliquée soit requise, et de prévoir en outre que l'énergie totale fournie par le moteur électrique soit appliqu@ @@@@@lateu@ sans qu'ausune quantité d'énergie soit dissipée dans la commande de la brosse rotative dont l'utilisation n'est pas exigée pendant le temps où l'appareil ne remplit que la fonction d'aspiration. Selon l'invention, il est prévu un aspirateur du type spécifié comprenant un elbrayage dans la transmission entre le moteur et la brosse. L'embrayage peut être commandé à la main L'aspirateur comprend un arbre de commande de brosse, pour transmettre le mouvement à ladite brosse @onté rotatif sur le chariot et aligné axialement avec un second arbre commandé par le moteur, une extrémité de commande de l'arhre de la osse état adjacente mais séparée par un certain inter-talle d'une extrémité du second arbre et un embrayage pouvant transmettre le mouvement de rotation du second arbre a 3'arbre de mande de la brosse. L'expression " arbre de commande de la brosse" doit être in- terprétée comme désignant un arbre par lequel la brosse est eEa- traînée sur un côté de l'embrayage et n'est donc pas limitée 2 1 l' arbre réel sur lequel la brosse est montées L'embrayage peut être constitué par un ressort hélicoldal a gencé pour encercler les extrémités adjacentes desdits arbres afin d'exercer sur ces extrémités un serrage permettant l'accou- plement en rotation du second arbre et de l'arbre de commande de la brosse, et par un dispositif pour comprimer axialement le ressort afin de dégager ce dernier de son accouplement angulaire avec les arbres Le deuxième arbre peut être un arbre de commande de ventila teur. L'expression "arbre de commande de ventilateur" doit être ir terprétée comme désignant tout arbre par lequel le ventilateur est entraîné sur l'autre côté de l'embrayage et n'est donc pas limitée à l'arbre réel sur lequel le ventilateur est monté. Le moteur électrique peut être disposé dans le chariot d'une manière transversale par rapport à ce dernier, le ventilateur étant monté sur l'arbre de commande et il est prévu un arbre creux de ventilateur s'étendant axialement de ce ventilateur vers le côté du chariot éloigné du moteur, ledit arbre creux constituant ledit arbre de commande du ventilateur. L'arbre de commande de la brosse peut comprendre un arbre creux s'étendant d'une extrémité d'un arbre monté sur ledit côté du chariot éloigné du moteur et il est prévu une bande flexible entre la brosse et ledit arbre, ledit arbre creux s'étendant axialement vers l'extrémité de l'arbre creux de commande du ventilateur. L'aspirateur peut comprendre un système de volets pour interrompre la communication entre le ventilateur et la brosse. Une réalisation de l'invention va être décrite ci-dessous plus en détail en faisant référence aux dessins ci-annexés dans lesquels La fig. 1 est une vue en élévation d'un aspirateur selon 1' invention. La fig. 2 est une vue en plan de l'aspirateur de la fig. 1, mais avec certaines pièces enlevées afin de rendre le dessin plus clair. La fig. 3 est une vue en plan détaillée d'une partie de l'aspirateur de la fig. 1 montrant la position du clapet de tubulure souple et du clapet de brosse correspondant à la seule opération d'aspiration. La fig. 4 est une vue similaire à celle de la fig. 3, montrant les mêmes pièces en position correspondant au fonctionnement de la brosse rotative. La fig. 5 est une coupe suivant 5-5 de la fig. 4. La fig. 6 est une coupe suivant 6-6 de la fig. 3. La fig. 7 est une vue éclatée montrant les quatre pièces du mécanisme de clapet En se référant maintenant aux dessins et, en particulier,aux fig. 1 et 2, un aspirateur 10 comprend un chariot Il comportant deux parties principales , à savoir, une partie inférieure 12 qui a la forme d'une pièce moulée pourvue de quatre roulettes 13 en contact avec le sol, et une partie supérieure 14 qui présente la forme d'un couvercle amovible. A l'arrière du chariot 11, il est prévu une paire de roulettes 13 en contact avec le sol et un manche 15 monté pivotant à l'arrière du chariot 11 autour d'un axe horizontal 16 et qui, normalement, s'étend en position pratiquement verticale,mais qui est pourvu d'un dispositif bien connu 17 parle quel ce manche 15 peut pivoter vers le bas dans un certain nombre de positions prédéterminées jusque une position basse où il se trouve pratiquement 1 1'horizontale afin de pouvoir déplacer 1'aspirateur sous des objets relativement bas tels que des lits De plus,un sac à pous- sière conventionnel est suspendu au manche 15 au voisinage de son ex trémité supérieure afin qu'il soit disposé le long du manche 15. A la partie avant du chariot 11 il est prévu un capotage 19 s'étendant transversalement, ayant une section transversale en forme d'U inversé et dans lequel est montée rotative une brosse 20 qui est maintenue à ses extrémités par des paliers appropriés 21 logés dans les parois d' 'extrémité du capotage 19. Sur l'un des côtés du capotage 19, se trouve un conduit 22 s'étendant parallèlement à l'axe longitudinal de l'aspirateur et connectant ce dernier à son extrémité avant avec ledit capotage 19 et à son extrémité arrière communiquant avec une chambre 24 qui va être décrite plus en détail ci-dessous. Sur le côté du chariot 11 éloigné du conduit 22 se trouve un moteur électrique 25 disposé avec son arbre de commande 26 dans le sens transversal de l'appareil et dans un plan horizontal. Sur 1' arbre de commande 26 se trouve monté un ventilateur 27 logé dans un carter 28 pourvu d'un orifice de sortie 29 communiquant au moyen d'une connexion convenable avec le sac à poussière 18 d'une façon conventionnelle. Le carter 28 du ventilateur 27 présente, sur une paroi latérale 31 située du côté éloigné du moteur électrique 25, une ouverture centrale d'entrée 32 au travers de laquelle passe l'extrémité de l'arbre de commande 26 pour former un arbre creux de ventilateur 33 alors que l'ouverture 32 est également pratiquée dans une paroi de ladite chambre 24. La brosse rotative 20 est commandée par une courroie flexible 5an fin 34 s'enroulant autour d'une rainure 35 s'étendant circoz férentiellement autour de la brosse rotative 20, d'une part, et passant autour d'un arbre en forme de tonneau 36 porté par les paliers étanches 37, d'autre part, ces paliers étant montés sur les parois latérales opposées dudit conduit 22 et disposés de fa çon que l'arbre 36 soit aligné par rapport à l'arbre crew- 33. S'étendant vers l'intérieur à partir dudit arbre de commande 36 de la courroie en caoutchouc 34, se trouve un autre arbre creux 38, aligné par rapport à l'arbre creux de ventilateur 33 tout en étant libre en rotation par rapport à l'arbre de commande 36 et qui constitue un arbre de commande de brosse. Les extrémités intérieures des arbres creux 38 et 33 sont proches l'une de l'autre de sorte qu'un intervalle faible 39 est ménagé entre les deux. Un mécanisme d'embrayage 40 est prévu entre les demi-arbres creux 33 et 38 et comprend un ressort hélicoidal 41 qui, dans son état comprimé, a une longueur suffisante pour s'étendre autour de l'arbre creux 38 sur l'arbre de commande de la brosse ainsi qu' autour de l'extrémité conique 42 de 1'arbre.creux 33 s'étendant à partir du ventilateur 27. Afin de désaccoupler l'embrayage 40 en amenant le ressort 41 à son état comprime, il est prévu un collier de dégagement 43 qui peut être constitué par un matériau convenable en plastique tel que du "NYLON", ou par un matériau métallique7 qui est monté autour des deux demi-arbres creux 33 et 38, et qui peut coulisser axialement par rapport à ces deux demi-arbres9 de sorte qu'il peut se déplacer pour amener le ressort 41 à état comprimé.Le collier de dégagement 43 est positionné, de sorte que le ressort 41, à son extrémité la plus proche du ventilateur 279 s'engage sur un rebord 44 forme sur le collier de dégagement 43 et un dispositif, décrit ci-dessous, est prévu pour déplacer axialement le collier de dégagement 43 et l'éloigner du ventilateur 27 et comprimer le ressort 41 contre un ëpaulement-butee 45 formé sur le demi-arbre creux 38 de commande de la brosse de arbre 36 adja cent à un palier étanche 3 porté par une paroi du conduit 22. Ainsi, lorsque le collier de dégagement 43 est déplacé dans le sens suivant lequel le ressort 41 est comprimé, ce dernier est complètement retiré de la partie conique à l'extrémité 42 du dems arbre creux de ventilateur 33, de sorte qu'il n'existe plus de connexion de commande entre ledit demi-arbre 33 et ledit demiarbre de commande de la brosse 38 connecté à l'arbre 36. Lorsque le collier de dégagement d'embrayage 43 est déplacé dans le se opposé, c'est-à-dire vers le ventilateur 27, le ressort 41 peut se détendre et, de cette façon, peut encercler le demi-arbre creux de ventilateur 33, l'extrémité de l'arbre 42 ayant une forme cob nique pour faciliter l'engagement.Avec le.ressort 41 disposé pour que ses spires se détendentdanslesensapproprîécorrespondant au sens de rotation du demi-arbre creux de ventilateur 33, l'effet d'une telle rotation est de provoquer un serrage du ressort 41 sur le demi-arbre creux 33 du ventilateur 27 ainsi que sur le demi-arbre creux 38 de commande de la brosse de l'arbre 36, de façon à établir une commande positive sans aucun patinage entre les deux arbres. Le mécanisme de commande du collier de dégagement d'embraya ge comprend un bras 46 ayant à une de ses extrémités une fourche te 47 qui entoure le collier de dégagement d'embrayage 43, alors que, à son autre extrémité, ce bras est assujetti à une broche 48 verticale de sorte que le bras 46 s'étend radialement dans un plan horizontal à partir de ladite broche ou pivot 48. Sur le chariot 11, il est également prévu (fig. 5 à 7) une soupape rotative supérieure désignée par l'indice 50 et une soupape rotative inférieure désignée par l'indice 51, les deux pieces de la soupape superieure étant représentées dans la vue tee de la fig. 7 en A et B, alors que les deux pie ces de la soupape rotative inférieure sont representées en C et D sur la même fig. 7. La soupape rotative inférieure 51 comprend un corps cylindre que extérieur qui fait, en général, partie intégrante de la partie inférieure 12 du chariot 11 et qui comprend un cylindre 52 pourvu sur sa paroi orifices 53 diamétralement opposés (fig. 5 er 6). Ce cylindre 52 est logé dans le conduit d'air 22 qui amène au capotage 19 recouvrant la brosse rotat@ve 20, et, lorsque l'as piration est appliquée sur ladite brosse rotative 20, le sens du flux d'air est dirigé suivant la flèche @ de la fig. 3, allant vers le ventilateur 27 qui est disposé a l'arrière de 10 ensemble (fig. 3) sensiblement dans l'axe matérialisé en 54. L'ensemble soupape rotative intérieure 51 comprend également un organe 55 pouvant se déplacer angulairement nt et montre en C dans la ue éclatée de la fig. 7, ais qu'un cylindre 56 ayant dans ses parois des orifices 57 diamètralement opposés et présentant à son extrémité supérieure une collerette 58 se projetant radiale et , de sorte que, lorsque le cylindre 56 s'ajuste dans le cy lindre 52, il est supporté par la collerette 58 qui engage ur le bord supérieur du cylindre 52 (fig. 5), cette figure montrant ce cylindre ou clapet 56 dans la positlon où les orfices 57 sont en alignement avec les orifices 53, établissant ainsi une commun- cation entre le conduit 22 allant vers le capotage de bosse rota te 9 et le ventilateur 27, ce qu permet à l'aspiration d'etre appliquée à la brosse rotative 20. Le rebord 58 du corps de clapet cylindrique 56 comporte dans sa race supérieure une rainure 59 qui engage avec un organe a déplacement angulaire faisant partie de ensemble de soupape supérieure 50, comme on va l'expliquer ci-dessous. Cet ensemble de soupape rotative suprieure 50 comprend un corps de soupape 60 pouvant se déplacer angulairement et un siège de soupape fixe 61 montrés sur la fig. 7 en A et B. Le corps de soupape fixe 61 comprend une pièce cylindrique extérieure 62 et une pièce cylindrique intérieure 63 faisant partie intégrante de la première, cet ensemble unitaire étant fixé sur la structure interne du chariot 11, et la pièce cylindrique extérieure 62 comporte un orifice 64 pratiqué dans sa paroi, orifice qui correspond avec un orifice 65 pratiqué dans la paroi de la pièce cylindrique intérieure 63. Le fond 66 de la partie cylindrique extérieure 62 comporte en 67 une rainure incurvée dans laquelle s'engage un téton 68 porté par l'organe 60 se déplaçant angulairement, montré en A dans la fig. 5. L'organe 60 comprend un corps cylindrique 69 comportant dans sa paroi un orifice 70 et sur sa face supérieure, une poignée 71 étendant vers l'extérieur et une collerette 72 s'étendant radialement. Le corps de soupape 60 pouvant se déplacer angulairement s' ajuste dans la pièce fixe 61 de façon que la paroi du cylindre 69 occupe l'espace annulaire existant entre les cylindres 62 et 63 de la.pièce 61 avec l'ergot 68 se projetant dans la rainure incurvée 67 pratiquée dans le fond 66 du cylindre extérieur 62, comme montré dans l'ensemble de la fig. 5, ensemble dans lequel on peut observer que le téton 68 s'engage dans la rainure 59 du corps de soupape 56 faisant partie de l'ensemble de soupape rotative inférieure 51. L'ensemble de soupape rotative supérieure 50 est maintenu en position par la tête d'une vis 73 s'engageant au-dessus de la collerette 72 de l'organe se déplaçant angulairement 69 tout en laissant cette collerette libre en rotation et en ayant seulement une action de maintien de l'ensemble en position. L'extrémité supérieure 74 de la pièce 61 de l'ensemble de soupape rotative 50 assure la connexion avec l'extrémité d'une tubulure flexible de l'aspirateur (non montrée) et, dans la pratique, cette tubulure flexible peut être connectée d'une façon permanente à l'extrémité 74 alors que son autre extrémité,lorsque le service ne l'exige pas, peut être maintenue sur le manche au moyen d'un crochet convenable, ledit manche étant fixé à l'arrière du chariot 11. L'un des bras de la fourchette 47 comporte un doigt 75 adapté pour venir s'engager dans une boutonnière incurvée radiale 76 pratiquée dans la paroi du corps de soupape 56. Les fig. 4 et 5 montrent l'ensemble soupape,rotative en po sition telle que l'aspiration est dirigée sur la brosse rotative 20 et telle que le ressort d'embrayage 40 est engagé pour entrai nerla brosse en rotation. rotative Ainsi, dans l'ensemble soupape inférieure 51, les orifices 57 sont en face des orifices 53 pour assurer une communication directe entre la brosse rotative 20 et le ventilateur 27, alors que, dans l'ensemble soupape rotative supérieure 50, l'orifice 70 ne correspond pas aux orifices 64 et 65 de sorte que lesdits orifices sont obturés par la paroi du cylindre 69 et qu'aucune aspiration n'est appliquée à la connexion de tubulure souple 74. En se référant à la fig. 4, on voit que l'embrayage 40 se trouve en position engagée, le manchon ou collier de dégagement 43 étant déplacé vers le ventilateur 27, d'où il résulte que le bras 46 pivote dans le sens inverse des aiguilles d'une montre par suite de l'engagement du doigt 75 dans la boutonnière 76 du corps de soupape 69. Lorsqu'on veut utiliser l'appareil .aspirateur pour une fonction d'aspiration seulement, la poignée 71 de l'organe 69 est manoeuvrée de façon que ledit organe 69 tourne dans le sens inverse des aiguilles d'une montre pour venir dans la position montrée fig. 3 et 6. Ainsi le bras 46 est lui-même pivoté pour déplacer le collier ou manchon de dégagement d'embrayage 43 en l'éloignant du ventilateur 27, ce qui a pour effet de désaccoupler l'embrayage 40.Simultanément, les orifices 57 de la soupape rotative inférieure 51 sont mis hors de correspondance avec les orifices 53 de façon que la paroi du cylindre 56 obture les orifices 53 alors que, dans la soupape rotative supérieure 50, l'o- rifice 70 de l'organe 69 est mis en correspondance avec les orifices 64 et 65, de sorte que la succion ou aspiration est appliquée à la connexion 74 de la tubulure flexible, le sens de succion étant indiqué par la flèche G en fig. 6. Ainsi, le changement de mode de fonctionnement de l'ensem- ble soupapes qui fait passer l'appareil de la marche avec brosse rotative à la marche avec aspiration seulement, déconnecte également, d'une façon automatique, la commande de la brosse rotative, alors que le changement inverse du fonctionnement en aspiration seule au fonctionnement avec brosse rotative engage également d'une façon automatique l'embrayage pour assurer la commande de la brosse rotative. Ainsi, le changement d'un mode de fonctionnement à un autre mode de fonctionnement peut être effec tué sans stopper le moteur de l'aspirateur et avec la tubulure flexible supportée par le manche de l'appareil.L'usager peut alors utiliser l'appareil comme appareil de nettoyage à brosse rotative avec la possibilité de brancher l'aspiration de temps en temps suivant les nécessités et sans pour cela être obligé de manipuler une connexion quelconque de la tubulure souple, la seu- le opération requise étant un simple deplagement de la poignée Ta d'une position à une autre. L'aspirateur comporte une paire de roulettes en contact avec le sol au voisinage de l'extrémité avant du chariot, chaque roulette étant montée sur une manivelle 77 avec un dispositif permettant de mouvoir cette manivelle angulairement de façon à déplacer les roues 13 vers le haut et vers le bas par rapport au chariot 117 afin de revoler le degré de contact entret-'brosse rotative 20 et la surface à nettoyer et, de plus, pour soulever la brosse 20 suffisamment pour la dégager complètement de ladite surface lorsqu'il est désirable d'utiliser l'appareil pour une opération d'aspiration seulement.Lorsqu'on la compare avec les dispositifs de la technique antérieure qui élèvent simplement la brosse rotative pour la dégager de la surface au cours de chaque opération d'aspiration, la présente invention prévoit un aspirateur dans lequel, non seulement la brosse est soulevée, mais encore le conduit assurant l'aspiration au capotage de la brosse est rendu hermétique et la commande de la brosse est complètement déconnectée, de sorte que l'énergie totale du moteur électrique est rendue disponible pour la commande du ventilateur, assurant ainsi une efficacité maximale au cours de l'opération de succion proprement dite. De plus, la présence de la soupape pour obturer le conduit allant à la brosse rotative, comme on l'a décrit ci-dessus, assure que, lorsque l'appareil est utilisé pour une opération d'aspiration seulement, l'efficacité maximale d'aspiration est obtenue en ouvrant complètement l'entrée principale d'air au venti- laveur Un avantage important,pour lutilisateur,d'un aspirateur selon l'invention, réside dans le fait que le passage du fonctionnement en brosse rotative au fonctionnement par aspiration seulement et vice-versa, peut être effectué alors que l'appareil est encore en fonctionnement, simplement en déplaçant par un simple mouvement un levier qui est disposé de façon à pouvait être manoeuvré dans certains cas, par le pied de l'opérateur si cela apparaît désirable. REVENDICATIONS 1. Aspirateur comprenant un chariot à roulettes, une brosse rota tive montée sur le chariot de façon à pouvoir être amenée en con tact avec le sol, un ventilateur pour creer une succion ou aspiration, un conduit reliant ladite brosse audit ventilateur, un moteur électrique et un dispositif de commande pour entraîner le ventilateur et la brosse, caractérisé par le fait que ledit dispositif ae commande comporte un embrayage (40) inséré dans le système de transmission de mouvement (26,33,38,36,34) s'étendant du moteur (25) à la brosse (20). 2. Aspirateur selon la revendication 1, caractérisé par le fait que l'embrayage (40) peut être commandé à la main. 3. Aspirateur selon la revendication 1 ou 2, caractérisé par le fait qu'il comporte un arbre de commande de brosse (38) aligné avec un second arbre (33) commande par e @ moteur (25), l'une des extrémités de l'arbre de commande (83 étant adjacente et separée par un petit intervalle par rapport à une extrémité du second arbre (33), l'embrayage (40) étant suscptible de transmettre le mouvement de rotation du second arbre (33) à l'arbre de commande de la brosse (38). 4. Aspirateur selon la revendication 3, caractérisé par le fait que 17 embrayage (40) comprend un ressort hélicoïdal (41) agence pour entourer les extrémités adjacentes des arbres (38) et (33) et pour exercer une action de serrage sur es arbres afin e communi quer un mouvement de rotation du second arbre (33) à l'arbre de commande de brosse (38), un dispositif (43) étant prévu pour comprimer axialement le ressort (413 afin de le dégager de sa posi- tion d'entrainement des deux arbres (33) et (38). 5. Aspirateur selon la revendication 4, caractérisé par le fait que le ressort (41:) prend appui sur une butée (45) de l'un des arbres (38) et sur un organe de transmission de pression (43) soli daire de l'autre arbre (33) et pouvant se déplacer dans le sens axial desdits arbres (38),(33), de sorte que, pour un sens de déplacement, l'organe (43) comprime le ressort (41) contre la butée (45) pour libérer le ressort (41) de son engagement de commande avec l'arbre (33), alors que, pour le sens de déplacement oppose, l'organe de trarsselsslon de pression 43 permet au ressort (41) de s'étendre axialement et d'accoupler le susdit arbre (33). o. Aspirateur selon la revendication 5, caracterise par le fait que le dispositif de butée (453 est prévu sur ledit arbre de com mande de la brosse (38). 7. Aspirateur selon l'une quelconque des revendications de 4 à , caractérisé par le fait que le sens d'enroulement dudit ressort hélicoldal (41) est tel par rapport au sens dé rotation des arbres (33),(38) , que le ressort (41) exerce une action de serrage sur lesdits arbres (33),(38) pour transmettre le mouvement de rotation du second arbre (33) à l'arbre de commande de la brosse (38). 8. Aspirateur selon l'une quelconque des revendications 5 à 7, ca- ractérisé par le fait que l'organe de transmission de pression643) peut être actionné par un système de levier mécanique (46),(48) prévu sur le chariot (12) et susceptible de déplacer ledit organe (43) dans le sens axial. 9. Aspirateur selon l'une quelconque des revendications 3 à 8, caractérisé par le fait que le second arbre (33) est un arbre de commande du ventilateur 10. Aspirateur selon la revendication 9, caractérisé par le fait que le moteur électrique (25) est disposé sur le chariot 12 pour que son arbre de commande (26) s'étende transversalement par rapport audit chariot (12), le ventilateur (27) étant monté sur 1' arbre de commande (26), et par le fait qu'un arbre creux de ventilateur (33) s'étend axialement à partir du ventilateur vers le côté du chariot (12) éloigne du moteur (25), ledit arbre creux de ventilateur (33) constituant ledit arbre de commande du ventilateur. 11. Aspirateur selon la revendication 10, caractérisé par le fait que l'arbre de commande de la brosse (38) comprend un arbre creux (38) s'étendant d'une extrémité de l'arbre (36) monté sur ledit côté du chariot (12) éloigné du moteur (25) et par le fait qu'une bande flexible (34) est prévue entre la brosse (20) et ledit arbre (36), l'arbre creux (38) s'étendant axialement vers l'extrémité de l'arbre creux de ventilateur (33). 12. Aspirateur selon l'une des revendications 10 ou 11, caractérisé par le fait que l'arbre creux de ventilateur (33) comporte une partie conique (4V) à son extrémité libre. 13. Aspirateur selon la revendication 5 ou selon l'une quelconque des revendications 6 à 12 dépendant directement ou indirectement de la revendication 5, caractérisé par le fait que l'organe de transmission de pression (43) est un collier ou manchon qui comporte une butée (44) dirigée vers l'intérieur à une de ses extré mités, ladite butée s'engageant avec ledit ressort (41) et une butée dirigée vers l'extérieur étant prévue à l'autre extrémité pour s'engager avec ledit système de levier mécanique (46). 14. Aspirateur selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il comporte un dispositif à soupapes pour couper la communication entre le ventilateur (27) et la brosse (20). 15. Aspirateur selon la revendication 14, caractérisé par le fait que le dispositif à soupapes (50) coupe la communication entre le ventilateur (27) et la brosse (20) lorsque l'embrayage (40) est manoeuvré pour interrompre la transmission du mouvement du moteur (25) à la brosse (20). 16. Aspirateur selon l'une des revendications 14 ou 15, caractérisé part le fait que ledit arbre de commande de brosse (38) et ledit second arbre (33) sont logés dans une chambre (24) dont l une des parois (31) comporte une ouverture (37) coïncidant avec une ouverture d'entrée d'un carter (28) entourant ledit ventilateur (27) et dont la paroi opposée comporte une ouverture faisant communiquer un conduit (22) avec un capotage (19) à l'intérieur duquel la brosse (20) est montée, ledit dispositif à soupapes (50) étant disposé dans ladite chambre (24) et pouvant être commandé pour couper toute communication entre le ventilateur (27) et le conduit (22) 17. Aspirateur selon la revendication 16, caractérisé par le fait que la chambre (24) est pourvue d'un dispositif (74) permettant la fixation d'une tubulure flexible de sorte que lorsque le dispositif à soupapes (50) est actionné pour couper ladite communication entre le ventilateur (27) et le conduit (22), la totalité de la succion ou aspiration dudit ventilateur (27) est dirigée vers la tubulure flexible.
Methods and devices for tissue treatment using shock waves and electromagnetic field Devices and methods for tissue treatment produce a shock wave therapy and electromagnetic field therapy. The shock wave therapy provides stimulation of the blood circulation and stimulates the treated cells. The electromagnetic field enables thermal treatment of tissue. Combination of both therapies improves soft tissue treatment, mainly connective tissue in the skin area and fat reduction. FIELD OF THE INVENTION The invention relates to method and device for soft tissue treatment, mainly connective tissue in the skin area and fat reduction. BACKGROUND OF THE INVENTION Human skin is tissue which is commonly treated in order to improve its visual appearance. Skin is composed of three basic elements: the epidermis, the dermis and the hypodermis or so called subcutis. The outer and also thinnest layer of skin is the epidermis. Epidermis contains mainly stratified squamous epithelium of which the outer side keratinizes and ensures coverage whereas the inner side contains a pigment. The dermis consists of collagen, elastic tissue and reticular fibers. The hypodermis is the lowest layer of the skin and contains hair follicle roots, lymphatic vessels, collagen tissue, nerves and also fat forming a subcutaneous white adipose tissue (SWAT). SWAT is formed by aggregation of fat cells ranging up to 120 microns in diameter and containing as much as 95% glycerides and fatty acids by volume. Overeating and unhealthy lifestyles may result in an increase of size and/or number of the fat cells. The fat cells create lobules which are bounded by connective tissue, fibrous septa (retinaculum cutis). Another part of adipose tissue is located in peritoneal cavity and is known as abdominal obesity. Visceral fat layer forming visceral white adipose tissue (VWAT) is located between parietal peritoneum and visceral peritoneum, closely below muscle fibers adjoining the hypodermis layer. Excess of adipose tissue in subcutaneous or abdominal area may be perceived as aesthetically undesirable, mainly in the buttocks, thighs, abdomen or hips, where even weight loss after dieting and exercise may not lead to satisfactory results. Moreover, in the last few decades, more people suffer from growth of visceral white adipose tissue (VWAT) mainly in their abdominal area. Visceral fat has been also linked to various cardiovascular diseases and diabetes. The undesirable topographic skin appearance may also be caused by changes in dermal or sub-dermal layer of the skin, especially by excessive number or volume of fat cells, weakening of fibrous septas, loss of elasticity and/or limited lymph flow, which may result in accumulation of toxins. Shock waves are acoustic waves characterized by steep pressure amplitude growth in comparison to the surrounding pressure. Despite their relationship with other mechanical waves, shock waves are different mainly in pressure magnitude and shape of the pressure wave. In comparison to ultrasound waves where the pressure periodically oscillates with limited bandwidth and amplitude, shock waves are characterized by non-linearity during the wave propagation. In the present invention, shock wave propagation is characterized by swift positive pressure increase in the range from one nanosecond up to 100 microseconds with positive peak pressure amplitudes up to 150 MPa. In comparison, regular ultrasound methods have positive peak pressure amplitudes up to about 3 MPa. The pulse duration (based on the time the pressure exceeds a half value of peak positive pressure) is preferably in the range of hundreds of nanoseconds to 10-100 of microseconds. There are four main principles for generating shock waves: electrohydraulic, piezoelectric, electromagnetic and ballistic. The shock waves produced by electrohydraulic principle, piezoelectric principle or electromagnetic principle are traditionally used for destruction of calculi e.g. kidney stones. As these shock waves are focused, they may be characterized as hard shock waves because the energy is directed into small point in the tissue. The ballistic shock waves have a naturally non-focused/radial propagation. Radial/non-focused propagation is characterized by smooth propagation. Various non-invasive methods for skin treatment containing light, radiofrequency, microwave, and ultrasound treatment has been previously developed. Nevertheless, improved treatments in aesthetic medicine are needed. SUMMARY OF THE INVENTION Methods and devices for a non-invasive treatment of soft tissue including SWAT, VWAT and connective tissue use a shock wave therapy and electromagnetic field therapy. A ballistic mechanism of shock wave generation may be used. The ballistic shock wave mechanism contains a projectile striking against an applicator head for generating the shock wave. The ballistic shock waves have a naturally non-focused, planar or moderately focused propagation. Ballistic shock wave methods of propagation are characterized by smooth propagation. Also other non-focused, radial or moderately focused methods may be used. The electromagnetic field may be generated by a bipolar, monopolar, unipolar electrodes in direct, indirect or even noncontact arrangement with the skin surface. The electromagnetic field frequency may be in the range from 0.1 MHz to 10 GHz. The electromagnetic field may be generated by a laser diode module or a LED. The electromagnetic field wavelength may be preferably in the range from 600 nm to 1200 nm. Combinations of both therapies provide new soft tissue treatment with reduced risk of adverse effects. Treatment may lead to remodeling of a soft tissue in the skin area including white adipose tissue. Remodeling may include reduction in number and/or volume of the visceral white adipose tissue and/or the subcutaneous white adipose tissue. Treatment may also lead to improvement of connective tissue elasticity, mainly elasticity of fibrous septae connecting the dermis to underlying fascia. Although neocollagenesis is normally induced at temperatures higher than 48° C., the combination of shock wave and electromagnetic field enables improved results at lower temperatures and with less stress of the tissue. Temperature of the soft tissue during the treatment may be about 32-48° C. According to another embodiment the temperatures may reach above 50° C. which leads to thermal denaturation of collagen and collagen shrinkage. The sum of the energy flux density of the shock wave and electromagnetic field applied to the patient simultaneously, successively or in overlap is typically above 1 mW·mm−2. With the simultaneous method, EMF and SWT are both used simultaneously during the time interval e.g. 1-10 seconds. In the successive method, EMF is used during a first time interval of e.g., 1-5 seconds. EMF is then stopped and SWT is used in a subsequent time interval of e.g., 6-10 (immediately afterwards the EMF ends, with the combined application time in this example totaling to 10 seconds). In the overlapping method, EMF is used during a first time interval from e.g., 1-7 seconds, and SWT is used in a second overlapping time interval of e.g., 4-10 seconds (wherein during the second time interval the EMF and SWT are simultaneously applied over the second interval starting at 4 seconds and ending at 7 seconds). In comparison with known techniques, the present device and method enable gentle treatment with no surgery and reduced amounts of energy delivered into the tissue. The present methods and device may provide improved soft tissue treatment, mainly in skin region such improving skin laxity, skin tightening, wrinkles reduction and including fat cells elimination. GLOSSARY “lipolysis” includes apoptosis and/or necrosis of the targeted adipocytes. “shock wave” is characterized by swift positive pressure increase in the range from ones of nanoseconds up to tens of microseconds with positive peak pressure amplitudes up to 150 MPa. The pulse duration (based on the time the pressure exceeds a peak positive pressure/2) is approximately in the range of hundreds of nanoseconds to tens of microseconds. “soft tissue remodeling” or “remodeling of soft tissues” means reorganization or renovation of existing tissue with improvement of its elasticity and visual appearance, including reduction of white adipose tissue in number and/or volume. DETAILED DESCRIPTION FIG. 1shows an example of shock wave propagation. Shock waves are acoustic waves characterized steep pressure amplitude growth in comparison to the surrounding pressure. The shock waves are characterized by non-linearity during the wave propagation. The positive peak pressure is above 0.1 MPa, more preferably 3 MPa, even more preferably at least 7 MPa, most preferably at least 15 MPa. The peak pressure in the positive maximum may be up to 150 MPa. The pulse duration of the shock wave (based on the time the pressure exceeds a half value of peak positive pressure) may be preferably in the range of hundreds of nanoseconds to tens of microseconds. In comparing mechanical waves e.g. ultrasound and shock waves, not only are there differences in the shape and the propagation, but there are also significant differences between the physical effect of ultrasound and shock waves on the treated tissue, and particularly a cavitation effect. Cavitation is formation of gas bubbles in a fluid environment which occurs during the negative pressure wave in the liquid. Ultrasonic cavitation bubbles represent acoustic inhomogeneity in which incoming acoustic energy is absorbed and dissipated. Due to the high frequency of ultrasound waves, the acoustic energy may lead to rapid growth of cavitation bubbles and later to inertial cavitation effects, with breakup of the bubbles and violent damage of the surrounding tissue. Shock waves can reduce cavitation and the violent break up of cells resulting from cavitation. The repetition rate of the shock wave may be in the range from 0.1 Hz to 100 Hz, more preferably in the range from 0.5 to 50 Hz, most preferably in the range from 1 Hz to 40 Hz. Four main principles for generating shock waves are used: electrohydraulic, piezoelectric, electromagnetic and ballistic. The shock waves produced by spark discharge, piezoelectric principle or electromagnetic principle are traditionally used for destruction of calculi e.g. kidney stones and based on its wave propagation it is possible to summarize them as focused. These three methods are also sometimes referred as hard shock waves because the energy is directed into small point in the tissue. On the other hand the electrohydraulic, piezoelectric, electromagnetic principle may be suitable if they are non-focused/radial, planar or moderately focused, and therefore softened. Ballistic shock waves have a naturally non-focused/radial, planar or moderately focused propagation. Non-focused/radial, planar shock waves are characterized by smooth/soft propagation and therefore are preferred. Ballistic shock waves may be generated by striking of a bullet inside a guiding tube to a percussion guide. The bullet may be accelerated by pressurized gas, electric field, magnetic field or other technique. Also other principles (e.g. electrohydraulic, piezoelectric and electromagnetic) for generating non-focused, radial or moderately focused shock waves may be used. Moderate focus means varying levels of focused ultrasound energy or focal point in a distance longer than the treated tissue extends, where the energy in the focal point is not sufficient to cause harm of tissue. In order to achieve the best results in the soft tissue, the energy flux density of the shock waves is preferably in the range between 0.001 mW·mm−2and 160 mW·mm−2, more preferably in the range between 0.001 mW·mm−2and 100 mW·mm−2, most preferably in the range between 0.001 mW·mm−2and 50 mW·mm−2. Electromagnetic field used for heating the soft tissue may be radiofrequency field or microwave field, typically in the range of 0.1 MHz to 25 GHz, more preferably in the range from 0.1 MHz to 435 MHz, most preferably in the range from 0.1 MHz to 28 MHz. All the above mentioned waves may cause movement of charged particles e.g. ions, rotation of dipolar molecules or polarization of normally non polar particles and therefore increase the tissue temperature. The device for proposed therapy may include a bipolar electrode system, where electrodes alternate between active and return function and where the thermal gradient beneath electrodes is almost the same during treatment. However, a group of bipolar electrodes may be used as well. Alternatively, a monopolar electrode system may be used. With the monopolar arrangement, the return electrode has a sufficiently large area in comparison to active electrode. The return electrode is in contact with skin of the patient and may by positioned relatively farther from the active electrode. A unipolar electrode may also optionally be used. Both capacitive and resistive electrodes may be used. In order to increase deep tissue heating by the electromagnetic field, the distance between electrodes may be varied; the electromagnetic field may be phase shifted or modulated; or an external magnetic field may be applied. According to another embodiment, the electromagnetic field may be represented by near infrared waves generated by at least one laser diode module or LED approximately in the range from 600 nm to 1200 nm, more preferably from 630 nm to 990 nm. The emission output power of the laser diode module or LED are in the range from about 10 mW to about 10 W. Energy flux density of the electromagnetic field is preferably in the range between 0.01 mW·mm−2and 10 000 mW·mm−2, more preferably in the range between 0.1 mW·mm−2and 5 000 mW·mm−2, most preferably in the range between 0.5 mW·mm−2and 1 000 mW·mm−2. The sum of energy flux density of the shock wave and electromagnetic field applied to the patient simultaneously, successively or in overlap should be preferably above 0.1 mW·mm−2, more preferably above 1 mW·mm−2, most preferably above 5 mW·mm−2, generally up to a maximum of 100, 500 or 1000 mW·mm−2. FIG. 2shows schematic example of positioning of the system for skin treatment. The system for skin treatment20applies a combination of electromagnetic and shock wave energy into the soft tissue. The system may include a power supply21connected to an energy source. The system for skin treatment20includes at least one applicator24which may be placed inside a case or may be separated from the system for skin treatment20and connected by a cable. The microprocessor control unit22with user interface23provides communication between the electromagnetic field treatment unit25and shock wave treatment unit27. User interface23allows setting up the treatment parameters and also may provide the operator various treatment information. The electromagnetic field treatment unit25and shock wave treatment unit27may be placed in at least one applicator24. However the treatment units may also have separate applicators. The applicator24may preferably contain a sensor unit26 The sensor unit26may contain one or more sensors for sensing temperature, resistance, contact with skin or force applied to skin. The temperature sensor measures and monitors the temperature of the treated tissue. Temperature can be analyzed by a microprocessor control unit22. The temperature sensor may be a contact sensor, contactless sensor (e.g. infrared temperature sensor) or invasive sensor (e.g. a thermocouple) for precise temperature measuring of deep layers of soft tissue. The microprocessor control unit22may also use algorithms to calculate the deep or upper-most. A temperatures feedback system may control the temperature and based on set/pre-set limits, alert the operator in human perceptible form e.g. on the user interface23. In a limit temperature condition, the device may be configured to adjust output power, activate cooling or stop the therapy. A resistance sensor may measure the skin resistance, since it may vary for different patients, as well as the humidity, wetness and sweat may influence the resistance and therefore the behavior of the skin to electromagnetic field. Based on the measured skin resistance, the skin impedance may also be calculated. The contact and/or force applied by the applicator on the skin surface may be measured piezoresistively, mechanically, optically, electrically, electromagnetically or magnetically. The measured information from the contact and/or force sensor may influence the start of the therapy or generation of electromagnetic or mechanic field by treatment units. The system for skin treatment20generates electromagnetic waves and shock waves enabling improvement of the soft tissue, mainly connective tissue in the skin area. The connective tissue in the skin area contains layer epidermis28and dermis29; white adipose tissue in hypodermis30and peritoneal cavity32. The other soft tissue below the skin area e.g. muscular tissue31remains untreated and unharmed. The therapy may stimulate the blood circulation or may also create micro-disruptions of treated tissue, and/or create movement, rotation or polarization of particles by induced current and/or magnetic field which increase the temperature of treated tissue. The combined therapy may result in increased cell membrane permeability, which may result in increased liquefying of fat and/or lipolysis. Combination of both therapies highly reduces the risk of adipocytes inflammation. Without being bound to the theory, it is believed that the shock wave may increase the penetration depth and enable remodeling of the visceral white adipose tissue which is located in the peritoneal cavity32. The shock waves, in combination with electromagnetic field, may result in reduction of visceral fat cells. Therefore the overall number and/or volume of SWAT and/or VWAT may be reduced. Temperature of the treated tissue during the therapy may be increased to about 32-48° C. Also neovascularization may be induced based on increased angiogenic grow factors VEGF, and also PCNA, NOS etc. Improvement of microvascular network may also result in better lipid metabolism functionality. Another soft tissue improvement is in the field of tissue elasticity. The micro-disruptions also lead to improved tissue regeneration and in combination with electromagnetic field therapy induces neocollagenesis, neoelastogenesis and improvement of tissue elasticity. Although neocollagenesis is normally induced at higher temperatures than 32-48° C., the combination of shock wave and electromagnetic field enables improved results at temperatures in this range, resulting in less stress of the tissue. The shock waves also have analgesic and myorelaxative effects which increase the comfort of therapy. In another embodiment, the method and device may include a suction unit. The suction unit provides a vacuum or negative pressure on the treated skin. The suction unit may improve the contact shock wave treatment unit and/or electromagnetic field treatment unit with the skin surface and ensure better therapy. The arrangement of shock wave treatment unit27and electromagnetic wave treatment unit25may be in one or more separate applicators24. Where one applicator is used, the applicator24may contain one treatment electrode designed for transmission of mechanical waves and electromagnetic waves into the soft tissue. However, the shock wave treatment unit27and electromagnetic wave treatment unit25may be designed with separate wave outputs organized in concentric, axial symmetrical or non-symmetrical ways. The methods and device described may provide an overall solution for soft tissue treatment, mainly in skin region including reduction in size and or volume of fat cells. The therapy also enables improvement of cellulite. The cellulite may be treated preferably without shrinkage of collagen fibers, since the triple helix structure is not denatured. Instead the method and system cause only micro-disruption at increased temperatures in the range 32-48° C. which increases the repair processes and collagen deposition. Briefly stated, a method for soft tissue treatment of a patient includes positioning an applicator adjacent to the soft tissue of the patient; transmitting shock waves into the soft tissue of the patient causing mechanical stimulation of the soft tissue of the patient; transmitting electromagnetic waves from the applicator into the soft tissue with the electromagnetic waves heating the soft tissue; and remodeling soft tissues via the combination of shock waves and electromagnetic waves. The method may remodel the soft tissue and cause reduction of the VWAT and/or the SWAT; reduction in the number of adipose cells; reduction in the volume of adipose cells; and/or improve connective tissue elasticity or cellulite appearance. The method may also improve elasticity of fibrous septae connecting the dermis to underlying fascia. Thus, novel apparatus and methods have been shown and described. Various changes and substitutions may of course be made without departing from the spirit and scope of the invention. The invention, therefore, should not be limited except by the following claims and their equivalents.
Gette invention concerne des aspirateurs appartenant au type ci-dessous,désigné par "type spécifié", comprenant un chariot à roulettes sur lequel sont montés une brosse rotative, un ventilateur créant une certaine dépression et un moteur- électrique entraînant à 5 la fois la brosse rotative et 2e ventilateur. Généralement, dans un aspirateur du type spécifié, il existe à l'arrière du chariot un manche vertical au moyen duquel ce chariot est propulsé sur la surface à nettoyer, un sac à poussière étant suspendu au manche. Au cours du nettoyage d'une surface donnée, tel-10 le qu'un tapis, le moteur entraîne la brosse rotative disposée à 1' avant du chariot ainsi que le ventilateur qui sert à aspirer la poussière, préalablement agitée et dégagée de la surface à nettoyer par la brosse rotative, et à la transférer dans le sac à poussière„ Pour de nombreux appareils du type spécifié utilisés jusqu'à 3_5 maintenant, il était prévu de les employer seulement comme appareils de nettoyage par aspiration grâce à une tuyauterie flexible connectée à l'entrée du ventilateur, de sorte que l'appareil pouvait être utilisé de cette façon sans faire usage de la brosse rotative. Sur un type d'aspirateur du type spécifié utilisé à l'heure ac-20 tuelle, lorsqu'il est désirable de passer de l'opération de brossage à l'opération d'aspiration seule en utilisant la tuyauterie flexL-ble, il est nécessaire d'arrêter l'appareil et de déconnecter manuellement la commande de la brosse rotative pour connecter ensuite la tuyauterie flexible sur l'appareil avant que ce dernier ne puisse 25 être employé comme aspirateur seulement. Dans un autre appareil du type spécifié employé à l'heure actuelle, il n'est pas prévu de déconnecter la commande de la brosse rotative de sorte que, lorsqu'une tubulure flexible est branchée pour utiliser l'aspirateur suivant le mode d'aspiration seulement, le moteur électrique continue à comman-30 der la brosse rotative et une quantité considérable d'énergie est ainsi dissipée réduisant, de ce fait, la capacité d'aspiration de l'appareil. Un objet de l'invention est de prévoir un aspirateur amélioré du type spécifié dans lequel la conversion d'un appareil nettoyeur 35 à brosse rotative en un appareil ayant seulement une fonction d'aspiration au moyen d'une tuyauterie flexible, peut être faite aisément sans qu'aucune manipulation compliquée soit requise, et de prévoir en outre que l'énergie totale fournie par le moteur électrique 69 00069 2 2000048 » soit délivrée au ventilateur sans qu'aucune quantité d'énergie soit dissipée dans la marche de la brosse rotative dont l'utilisation nf est pas exigée lorsquê l'appareil fonctionne en succion seulement. Selon l'invention, il est prévu un aspirateur du type spécifié 5 comprenant un système de conduits susceptibles de recevoir une tubulure flexible pour appliquer la succion créée par le ventilateur à un dispositif de soupape susceptible d'interrompre l'application de la succion créée par le ventilateur à la brosse rotative. Une réalisation de l'invention va être décrite ci-dessous plus 1C en détail en faisant référence aux dessins ei-annexés dans lesquels: La fig. 1 est une vue enélévation d'un aspirateur selon l'invention. La fig. 2 est une vue en plan de l'aspirateur de la fig. 1, cer*-taines pièces ayant été omises pour rendre le dessin plus clair. 15 La fig. 3 est une vue en plan détaillée d'une partie de l'aspi rateur de la fig. 1 montrant la position du clapet de tubulure souple et du clapet de brosse correspondant à l'opération d'aspiration seulement. La fig. 4 est une vue similaire à celle de la fig*3, montrant 20 les mêmes pièces en position correspondant au fonctionnement de la brosse rotative. La fig. 5 est une coupe suivant 5-5 de la fig. 4. La fig. 6 est une coupe suivant 6-6 de la fig. 3. La fig. 7 est une vue éclatée montrant les quatre pièces du mé-25 canisme de soupape ou clapet. En se référant maintenant aux dessins, en particulier aux fig. 1 et 2, un aspirateur 10 comprend un chariot 11 comportant deux parties principales, à savoir une partie inférieure 12 constituée par une pièce moulée pourvue de quatre roulettes 13 en contact avec 30 le sol, et une partie supérieure 14 présentée sous forme d'un couvercle ou capotage amovible. A l'arrière du chariot 11, il est prévu une paire de roulettes 13 en contact avec le sol et un manche 15 monté pivotant autour d'un axe horizontal 16 et qui, normalement, se trouve en position pratiquement verticale, mais qui est pourvu 35 d'un dispositif conventionnel 17 grâce auquel ce manche 15 peut pivoter vers le bas dans Un certain nombre de positions prédéterminées jusqu'à une position basse où il se trouve pratiquement à l'horizontale, ce qui permet de déplacer l'aspirateur sous des objets re- 69 00069 3 2000048 latirement "bas tels que des lits. De plus, un sac à poussière conventionnel est suspendu au manche 15 au voisinage de son extrémité supérieure afin qu'il reste disposé le long de ce manche. A la partie avant du chariot 11, il est prévu un capotage 19 5 s'étendant transversalement et ayant une section transversale en forme d'U inversé, dans lequel est montée une brosse rotative 20 maintenue à ses extrémités par des paliers appropriés 21 logés dans les parois latérales du capotage 19* Sur l'un des côtés du capotage 19, se trouve un conduit 22 s* 10 étendant parallèlement à l'axe longitudinal de l'aspirateur et connectant ce dernier par son extrémité avant avec ledit capotage 19, alors que, par son extrémité arrière, il communique avec une chambre 24 qui va être décrite plus en détail ci-dessous. Sur l'autre côté du chariot 11 (côté éloigné du conduit 22), se 15 trouve un moteur électrique 25 disposé avec son arbre de commande 26 dans le sens transversal de l'appareil et dans un plan horizontal* Sur l'arbre de commande 26, se trouve monté un ventilateur 27 logé dana un carter 28 pourvu d'un orifice de sortie 29 communiquant avec le sac à poussière 18. Le carter 28 du ventilateur 27 comporte 20 une paroi latérale 31 située du côté éloigné du moteur électrique 25 «t présentant une ouverture centrale d'entrée 32 au travers de laquelle passe l'extrémité de l'arbre de commande 26 pour former un arbre creux de ventilateur 33 alors que l'ouverture 32 est également pratiquée dans une paroi de la chambre 24. 25 La brosse rotative 20 est commandée par une courroie flexible sans fin 34 s'enroulant sur une gorge 35 s'étendant circonférentiel-lement autour de la brosse rotative 20, d'une part, et passant autour d'un arbre en forme de tonneau 36 porté par les paliers étan-ch.es 37, d'autre part, ces paliers étant montés sur les parois la-30 térales opposées du conduit 22 et disposés de façon que l'arbre 36 soit aligné avec l'arbre creux 33. S'étendant vers l'intérieur à partir dudit arbre 36 se trouve un autre arbre creux 38 aligné par rapport à l'arbre creux de ventilateur 33 tout en étant libre en rotation par rapport à l'arbre de commande 36 et qui constitue un 35 arbre de commande de la brosse* Les extrémités intérieures des arbre» creux 38 et 33 sont proches l'une de l'autre de sorte qu'un faible intervalle 39 est ménagé entre elles. Un nécanisme d'embrayage 40 est prévu entre les demi-arbre creux 69 00069 4 2000048 33 et 38 et comprend un ressort hélicoïdal 41 qui, dans son état non comprimé, a une longueur axiale suffisante pour s'étendre autour de l'arbre creux 38 sur l'arbre de commande de la brosse, admsi qu'autour de l'extrémité conique 42 de l'arbre creux 33 s'étendant 5 à partir du ventilateur 27. Afin de désaccoupler l'embrayage 40 en amenant le ressort 41 à son état comprimé, il est prévu un collier ou manchon de dégagement 45 pouvant être constitué par un Matériau convenable plastique tel que le ^ETLOF1 ou par un îsateriau métallique 0 0® collier 43 est 10 iiiuiiié eoulissant sur les deux demi-arbres creux 53 et 38, de sosrë® qu'il peut se déplacer pour amener le ressort 41 à l'état comprimée Le susdit collier ou manchon de dégagement 43 est positionné de telle sorte que le ressort 41« à son extrémité la plus proche du ventilateur 27» prend appui sur un rebord 44 formé dans le coliies?, 15 Un dispositif, décrit ci-dessous, est prévu pour déplacer axialement le collier 43 et l'éloigner du ventilateur 27 en comprimant, de ce fait, le ressort 41 contre un épaulement de butée 45 formé sur le demi-arbre creux 38, de l'arbre 36, adjacent à un palier étanche 37 porté par une paroi du cGnâiiit 22 0 20 êânaip lorsque le collier 43 se -iéplaoo daas 1© sens snivafit lequelressort 41 est comprimé, ce dernier est complètement tiré de la partie conique à l'extrémité 42 du demi-arbre creux â© ventilateur 33, de sorte qu'il n'existe plus de transmission de mouvement entre ledit demi-arbre 33 et ledit demi-arbre de commande de 25 la brosse 38 connecté à l'arbre 36. Lorsque le collier 43 est déplacé dans le sens opposé, c'est-à-dire, vers le ventilateur 27, le ressort 41 peut se détendre et, de cette façon, peut enserrer le demi-arbre creux de ventilateur 33, l'extrémité 42 de l'arbre ayant une forme conique pour faciliter l'engagement. Si l'oh a soin de 30 disposer le ressort 41 pour que ses spires se détendent dans le sens correspondant au sens de rotation du demi-arbre creux de Tentila-teur 33j l'effet de cette rotation est d'amener un serrage du ressort 41 sur le demi-arbre creux 33 du ventilateur 27 ainsi que sur le demi-arbre creux 38 de commande de la brosse, de façon à établir 35 une commande positive sans aucun patinage entre les deux arbres. le mécanisme de commande du collier 43 comprend un bras 46 portant à une de ses extrémités une fourchette 47 entourant ledit collier 43, alors que, à son autre extrémité, ce bras pivote sur une 69 00069 5 2000048 broche 48 généralement verticale de sorte que le bras 46 s'étend radialement dans un plan horizontal en pivotant autour de ladite broche 48. Sur le chariot 11, il est également prévu (fig. 5 à 7) une sou-5 pape rotative supérieure désignée par l'indice 50 et une soupape rotative inférieure désignée par l'indice 51, les deux pièces constituant la soupape supérieure étant représentées dans la vue éclatée de la fig. 7 en A et B, alors que les deux pièces constituant la soupape rotative inférieure sont représentées en G et D sur la même 10 fig. 7. La soupape rotative inférieure 51 comprend un corps cylindrique extérieur venu d'une pièce avec la partie inférieure 12 du chariot 11 et qui comporte, à son tour, un cylindre 52 pourvu sur sa paroi d'orifices 53 diamétralement opposés (fig. 5 et 6). Ce cylindre 52 15 est logé dans le conduit d'air 22 qui mène au capotage 19 recouvrant la brosse rotative 20 et, lorsque l'aspiration est appliquée sur ladite brosse 20, le flux d'air est dirigé suivant la flèche F de la fig. 3 allant vers le ventilateur 27 qui est disposé à l'arrière de l'ensemble (fig. 3) sensiblement dans l'axe matérialisé en 54. 20 L'ensemble soupape rotative inférieure 51 comprend également un organe 55 pouvant se déplacer angulairement et montré en G dans la vue éclatée de la fig. 7, ainsi qu'un cylindre 56 portant dans ses parois des orifices 57 diamétralement opposés et à son extrémité supérieure une collerette 58 se projetant radialement de sorte que, 25 lorsque le cylindre 56 vient s'ajuster dans le cylindre 52, il est supporté par la collerette 58 qui vient reposer sur le bord supérieur du cylindre 52 (fig. 5). Cette figure montre ce cylindre 56 dans la position où les orifices 57 sont en alignement avec les orifice?^ de sorte qu'une communication est ainsi établie entre le 30 conduit 22 allant vers le capotage 19 de la brosse rotative et le ventilateur 27 pour permettre à l'aspiration d'être appliquée à ladite brosse 20. La collerette 58 du corps de clapet cylindrique 56 comporte dans sa face supérieure une rainure 59 qui coagit avec un organe à dépla-35 cernent angulaire faisant partie de l'ensemble de soupape supérieure 50 comme on va l'expliquer ci-dessous. Cet ensemble de soupape rotative supérieure 50 comprend un corps de soupape 60 pouvant se déplacer angulairement et un siège de soù- 69 00069 6 2000048 pape fixe 61, tous deux montrés en A et B dans les vues éclatées de la fig. 7. le corps de soupape fixe 61 comprend une pièce cylindrique extérieure 62 et une pièce cylindrique intérieure 63 faisant partie intégrante de la première, cet ensemble unitaire étant fixé 5 sur la structure interne du chariot 11. La pièce cylindrique extérieure 62 comporte un orifice 64 pratiqué dans sa paroi, orifice qui correspond à un orifice 65 pratiqué dans la paroi de la pièce cylindrique intérieure 63. Le fond 66 de la partie cylindrique extérieure 62 comporte en 10 67 une rainure angulaire dans laquelle s'engage un téton 68 porté par l'organe 60 se déplaçant angulairement et montré en A dans la fig. 5. L'organe 60 comprend un corps cylindrique 69 présentant dans sa paroi un orifice 70 et, sur sa face supérieure, une poignée 71 s' étendant vers l'extérieur, ainsi qu'une collerette 72 s'étendant 15 radialement. Le corps de soupape 60 pouvant se déplacer angulairement s'ajuste dans la pièce fixe 61 de façon que la paroi du cylindre 69 occupe l'espace annulaire existant entre les cylindres 62 et 63 de la pièce 61, le téton 68 s'engageant dans la rainure courbe 67 pratiquée 2Q dans le fond 66 du cylindre extérieur 62, comme montré sur la fig.5 où l'on peut observer que le téton 68 s'engage dans la rainure 59 du corps de soupape 56 se déplaçant angulairement et faisant partie de l'ensemble de soupape rotative inférieure 51» L'ensemble de soupape rotative supérieure 50 est maintenu en 25 position par la tête d'une vis 73 s'engageant au-dessus de la collerette 72 de l'organe 69» tout en laissant cette collerette libre en rotation et en ayant seulement une action de maintien en position dudit ensemble. L'extrémité supérieure 74 de la pièce 61 de l'ensemble de sou-30 pape rotative 50 assure la connexion avec l'extrémité d'une tubulure flexible de l'aspirateur (non montrée) et, dans la pratique, cette tubulure flexible peut être connectée d'une façon permanente à l'extrémité 74 alors que son autre extrémité, lorsque son usage ne l'exige pas, peut être maintenue sur le manche au moyen d'un 35 crochet convenable, ledit manche étant fixé à l'arrière du chariot 11. L'un des bras de la fourchette 47 comporte un doigt 75 adapté pour venir s'engager dans une rainure incurvée 76 s'étendant radia- 69 00069 7 2000048 lement et pratiquée dans la paroi du corps de soupape rotative 56. Les fig. 4 et 5 montrent l'ensemble soupape rotative en une position telle que l'aspiration est dirigée sur la brosse rotative 20 et telle que le ressort d'embrayage 40 est engagé pour entraîner la 5 brosse en rotation. Ainsi, dans l'ensemble soupape rotative inférieure 51» les orifices 57 sont en face des orifices 53 pour assurer une communication directe entre la brosse rotative 20 et lo ventilateur 27 3 alors cjxe3 clans l'ensemble soupape rotative supérieurs 503 l'orifice 70 ne ca~-;— 10 respond pas aux orifices 64 et 65 de sorte que lesdits orifiees sont obturés par la paroi du cylindre 69 et qu'aucune succion n'est appliquée à la connexion de tubulure souple 74o Sa se référant à 1p, fige 4- ©a voit que l'embrayage 40 se vs en position engagée, le manchon ou collier de dégagement 43 ayant 15 été déplacé vers le ventilateur 27, d'où il résulte que le bras 46 a pivoté dans le sens inverse des aiguilles d'une montre par suite de l'engagement de l'extension 75 dans la rainure 76 du corps de soupape rotative supérieure 69» Lorsqu'on veut utiliser l'appareil aspirateur pour une fonction 20 de succion seulement, la poignée 71 de l'organe 69 est saisie et pi=» votée afin que ledit organe 69 tourne dans le sens inverse du sens des aiguilles d'une montre pour venir occuper la position montrée sur les fig. 3 et 6. Ainsi, le bras 46 pivote lui-même pour déplacer le manchon de dégagement 43 et l'éloigner du ventilateur 27 afin de 25 désaccoupler l'embrayage 40. Simultanément, les orifices 57 de la soupape rotative inférieure 51 sont mis hors de correspondance avec les orifices 53 de façon que la paroi du cylindre 56 obture ces orifices 53, alûrs que, dans la soupape rotative supérieure 50, l'orifice 70 de l'organe à mouvement angulaire 69 est en correspondance 30 avec les orifices 64 et 65 de sorte que la succion est appliquée à la connexion 74 de la tubulure flexible, le sens de cette succion • 9 étant indiqué par la flèche G fig» 6, Ainsi, le changement de mode de fonctionnement de l'ensemble soupape, qui fait passer l'appareil de la marche avec brosse rotati-35 ve à la marche avec aspiration seulement, déconnecte également d'une façon automatique la commande de la brosse rotative alors que le changement inverse de mode de fonctionnement en aspiration seule en fonctionnement avec brosse rotative, engage d'une façon également 2000048 69 00069 automatique l'embrayage pour assurer la eommande de la "brosse rotative. Ainsi le passage d'un mode de fonctionnement à un autre peut être effectué sans arrêter le moteur de l'aspirateur et avec la tubulure flexible supportée par le manche de l'appareil, l'usager peut 5 alors utiliser ledit appareil comme appareil de nettoyage à brosse rotative avec la possibilité de brancher de temps à autre l'aspiration suivant les nécessités sans pour cela être obligé de manipuler une connexion quelconque de la tubulure souple, la seule opération requise étant une simple manoeuvre de la poignée 71 d'une position 10 à une autre. L'aspirateur comporte une paire de roulettes en contact avec le sol au voisinage de l'extrémité avant du chariot, chaque roulette étant montée sur un maneton de manivelle 77 selon un dispositif permettant de mouvoir cette manivelle angulairement de façon à déplacer 15 ses roues 13 vers le haut ou vers le bas par rapport au chariot 11 afin de régler le degré de contact entre la brosse rotative 20 et la surface à nettoyer et, en outre, afin de pouvoir soulever suffisamment la brosse 20 pour la dégager complètement de ladite surface lorsqu'il est désirable d'utiliser l'appareil pour une opération d1 20 aspiration seulement. Lorsqu'on la compare avec les dispositifs de la technique antérieure qui élèvent simplement la brosse rotative pour la dégager de la surface au cours de chaque opération d'aspiration, la présente invention prévoit un aspirateur dans lequel, non seulement la brosse est soulevée, mais encore, le conduit assurant 25 l'aspiration au capotage de la brosse est rendu hermétique, la con-mande de la brosse étant complètement déconnectée, de sorte que 1* énergie totale délivrée par le moteur électrique est rendue disponible pour la commande du ventilateur assurant ainsi une efficacité maximale au cours de l'opération de succion proprement dite. 30 De plus, la présence de la soupape obturant le conduit allant à la brosse rotative, comme on l'a exposé ci-dessus, donne l'assurance que, lorsque l'appareil est utilisé pour une simple action d'aspiration, l'efficacité maximale de succion est obtenue du fait de 1' ouverture complète de l'entrée principale de l'air au ventilateur. 35 Un avantage important, pour l'usager d'un aspirateur selon l'in vention, réside dans le fait que le passage du fonctionnement en brosse rotative au fonctionnement en aspiration simple, et vice— versa, peut être effectué alors que l'appareil est en fonctionneMat 69 00069 2000048 en. déplaçant simplement un levier unique qui est disposé de façon à pouvoir être manoeuvré éventuellement par "le pied de l'opérateur lorsque cela parait désirable. 69 00069 10 2000048 REVENDICATIONS - . lo Aspirateur comprenant un chariot à roulettes, une brosse rotative montée sur le chariot de manière à être amenée en contact avec le sol, un ventilateur pour créer une succion ou aspiratioh., 5 un conduit pour recevoir une tubulure flexible et y appliquer la succion, un moteur électrique et un dispositif de commande pour entraîner ledit ventilateur et ladite brosse à partir dudit moteur, caractérisé par le fait qu'il comporte en outre un dispositif à soupape (50,51) pouvant être manoeuvré pour interrompre l'application 10 de la succion créée par le ventilateur (27) sur la brosse (20). 2. Aspirateur selon la revendication 1, caractérisé par le fait que ledit dispositif à soupapes (50,51) peut être manoeuvré pour interrompre l'application de la succion à la tubulure flexible lorsque ce dispositif à soupapes (50,51) assure l'application de la 15 succion sur la brosse 20 et vice-versa. 3. Aspirateur selon la revendication 2, caractérisé par le fait que le dispositif à soupapes comprend une première soupape et une seconde soupape disposées coaxialement et alignées l'une avec l'autre, chaque soupape (50,51) comportant un organe fixe cylindrique 20 muni d'orifices (52,61) et un organe cylindrique muni d'orifices et pouvant se déplacer angulairement (55,60) disposé concentriquement à l'intérieur dudit organe fixe (52,61), les organes pouvant se déplacer angulairement (55,60) étant rotatifs et l'agencement étant tel que, dans une position extrême de ces organes, les orifices d' 25 une soupape (50,51) sont ouverts .à l'aspiration du ventilateur àlcrs que les orifices de l'autre soupape sont fermés à ladite aspiration, tandis que dans l'autre position extrême des organes actionnés manuellement la position relative des orifices est inversée. 4. Aspirateur selon la revendication 3, caractérisé par le fait 30 que l'un des organes angulairement mobiles (55,60) peut être commandé à la main et coagit mécaniquement avec l'autre desdits organes, de sorte que les deux organes se déplacent simultanément. 5. Aspirateur selon la revendication 4, caractérisé par le fait que l'un des ensembles soupapes (51) est disposé au-dessus de l'au- 35 tre (50), l'axe de rotation de ces ensembles étant substantiellement vertical. 6. Aspirateur selon la revendication 5, caractérisé par le fait que chaque organe mobile angulairement (55,60) est disposé concen- 69 00069 ix 2000048 triquement à l'intérieur de l'organe fixe cylindrique correspondant (52,61). 7. Aspirateur selon la revendication 6, caractérisé par le fait que l'organe supérieur (60) pouvant se déplacer angulairement est 5 pourvu d'une poignée (71) s'étendant extérieurement et au moyen de laquelle on peut lui impartir un mouvement angulaire déterminé autour dudit axe commun. 8. Aspirateur selon la revendication 7, caractérisé par le fait que ladite poignée (71) est disposée de telle manière qu'elle peut 10 être manoeuvrée au pied par l'usager. 9. Aspirateur selon la revendication 8, caractérisé par le fait que le dispositif à soupape (50,51) est disposé à l'intérieur d'une chambre (24) prévue sur ledit chariot (12), ladite chambre (24) ayant un conduit (22) menant de la chambre à un capotage (19) à 1' 15 intérieur duquel la brosse rotative (20) est montée et une ouverture (32) faisant communiquer ladite chambre avec ledit ventilateur (27). 10. Aspirateur seloh la revendication 9, caractérisé par le fait que l'ensemble de soupape supérieure (51) s'étend au travers d'une 20 paroi de ladite chambre (24) et est susceptible de recevoir la tubulure flexible•
Vortioxetine intermediate and synthesis process thereof The present invention provides a new intermediate II and a method for synthesizing the same. The method comprises: (a) firstly diazotizing a compound of formula I as a raw material, and then halogenating to obtain an intermediate II; and (b) reacting the intermediate II with a compound III to obtain a compound IV, hydrolyzing the obtained compound IV directly without being separated to obtain Vortioxetine represented by compound V. The intermediate II can be used for synthesizing Vortioxetine. CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/CN2015/075018 filed Mar. 25, 2015, which claims priority to Chinese patent application of No. 201410193538.9, filed May 9, 2014. The entire contents of the referenced applications are incorporated into the present application by reference. FIELD OF INVENTION The present invention belongs to the field of pharmaceutical chemical industry, and in particular relates to a new compound intermediate applicable to preparing Vortioxetine as an antidepressant, a method for synthesizing Vortioxetine intermediate and a new method for synthesizing Vortioxetine. BACKGROUND OF THE INVENTION Vortioxetine hydrobromide is a new medicine used for treating adult patients who have major depressive disorder, and developed by Lundbeck pharmaceutical company, the second biggest pharmaceutical manufacturer in Denmark. It is approved by U.S. Food and Drug Administration on Sep. 30, 2013. It has a chemical name of 1-[2-(2,4-dimethylphenylthio)phenyl]piperazine hydrobromide, and a following chemical structure: Several synthesis routes of Vortioxetine and the derivatives thereof are disclosed in the PCT Publication WO2003029232. Synthesis route I is shown as follows: Ortho-fluoronitrobenzene and 2,4-dimethyl thiophenol are used as raw materials to synthesize an intermediate (2,4-dimethylphenyl)(2-nitrophenyl)thioether. Then an intermediate (2,4-dimethylphenyl)(2-aminophenyl)thioether is obtained by catalytic hydrogenating with palladium/carbon. In route 1a, this intermediate is reacted with a mixture of di(2-bromoethyl)amine and di(2-chloroethyl)amine to obtain the final product Vortioxetine. In route 1b, the intermediate (2,4-dimethylphenyl)(2-aminophenyl)thioether is reacted with N-(tert-butoxycarbonyl) iminodiacetic acid to obtain an intermediate 1-tert-butoxycarbonyl-4-[(2,4-dimethylphenylthio)phenyl]-3,5-dioxopiperazine. It is reduced by lithium aluminum hydride or borane to obtain an intermediate 4-tert-butoxycarbonyl-[(2,4-dimethylphenylthio)phenyl]-1-piperazine, which is treated with hydrochloric acid to obtain the final product Vortioxetine. The synthesis route 2 is shown as follows: 4-tert-butoxycarbonyl-1-piperazine as a raw material is reacted with η6-1,2-dichlorobenzene-η5-cyclopentadienyl iron(II) to obtain 4-({4-[η6-(2-chlorophenyl)η5-cyclopentadienyl iron(II)]-1-tert-butoxycarbonylpiperazine, which is then reacted with 2,4-dimethylthiophenol to obtain an intermediate. The final product Vortioxetine is then obtained by treating the obtained intermediate with hydrochloric acid. Another synthesis route is disclosed in Journal of Medicinal Chemistry 2011, 54, 3206-3221: The method for synthesizing the intermediate IIA has been reported in the PCT Publication WO2004067703. That is, the intermediate IIA is obtained by reacting 1,2-dibromo-benzene with 1-tert-butoxycarbonylpiperazine under the catalysis of BINAP and palladium acetate. The synthesis route is shown as follows: The expensive and specific palladium reagent and phosphine complex are required in the method for synthesizing the intermediate IIA reported in the PCT Publication WO2004067703. The yield is very low, only 52%. Therefore, the method is hard to industrialize, and the cost is very high. Moreover, according to the prior art, during the process of preparing Vortioxetine, the compound IV is formed by reacting the intermediate IIA with the compound III, then separated, purified and further hydrolyzed to obtain Vortioxetine represented by compound V. However, it should be noted that by adopting this method to prepare Vortioxetine, the yield is not high and an additional separation step is involved, which increases the cost. It is not suitable for industrial production. SUMMARY OF THE INVENTION In a first aspect, the present invention provides a method for synthesizing an intermediate II: in the compound of formula II: R is a protective group for amino, which can be selected from: tert-butoxycarbonyl (Boc), 9-fluorenylmethoxycarbonyl (Fmoc), carboxybenzyl (Cbz), acetyl (Ac) or trifluoroacetyl (Tfa); and R is preferably tert-butoxycarbonyl or acetyl; X is halogen, selected from chlorine, bromine or iodine, and more preferably bromine, the method comprises the following steps: firstly diazotizing the compound of formula I as a raw material, and then halogenating to obtain an intermediate II: The synthesis of the compound of formula I as a raw material can refer to the example 1 of the present invention or other prior arts such as that described in Journal of Medicinal Chemistry, 2004, 47(3), 744-755, which is incorporated herein by reference in its entirety. There are two methods for the diazotizing reaction of the compound of formula I, using NaNO2/inorganic acid in water-oil system, and using alkyl nitrite (e.g., tert-butyl nitrite) in non-aqueous system. The said inorganic acid is HX or sulfuric acid. The diazonium salt obtained from the diazotizing reaction is halogenated directly to obtain the corresponding compound II without being separated. The halogenating agent used in halogenating reaction is selected from: NaX, KX, LiX, MgX2, CuX, CuX2or a mixture of any two thereof or a mixture of copper sulfate and NaX, wherein the preferred halogenating agent is a mixture of CuBr and the aforementioned metal bromide, more preferably a mixture of cuprous bromide and sodium bromide, or a mixture of cuprous bromide and lithium bromide. The inventors found that the yield of compound II can be increased in particular by adopting the mixture of cuprous bromide and sodium bromide, or the mixture of cuprous bromide and lithium bromide as the halogenating agent. The molar ratio of compound of formula I to halogenating agent is such that the compound of formula I is fully halogenated. It is preferably 1:1.5 to 1:8.0, more preferably 1:4, and still preferably 1:2. The inventors found that the yield of compound II can be increased by adopting the molar ratio of compound of formula I to the halogenating agent of 1:4. The temperature of the halogenating reaction is 20 to 100° C., preferably 65 to 85° C., and more preferably 75 to 85° C. The temperature of halogenating reaction of 65 to 85° C. is advantageous for the reaction system. According to the method for preparing intermediate II of Vortioxetine provided in the present invention, the yield is relatively high, the use of expensive and specific palladium reagent and phosphine complex is avoided, and thus the cost of Vortioxetine is effectively reduced, thereby being suitable for industrial production. Moreover, the method for preparing the intermediate II of Vortioxetine of the present invention avoids the use of expensive and specific palladium reagent and phosphine complex, thus it also avoids the extreme process conditions related to the use of palladium reagent and phosphine complex, and is process-friendly. In a second aspect, the invention provides a method for preparing Vortioxetine by one-pot reaction from intermediate II, comprising reacting the intermediate II with a compound III to obtain a compound IV, hydrolyzing the compound IV directly without being separated to obtain Vortioxetine represented by a compound V. The synthesis route is shown as follows: The inventors unexpectedly found that Vortioxetine can be obtained by directly hydrolyzing the compound IV obtained from reacting the intermediate II with the compound III without being separated. This can not only reduce the steps of synthesizing Vortioxetine thereby reducing the cost, but also increase the yield significantly. Moreover, the inventors apply the intermediate II of Vortioxetine prepared by the method for synthesizing Vortioxetine intermediate according to the first aspect of the invention into the method for synthesizing Vortioxetine according to the second aspect of the invention. This not only avoids the use of expensive palladium reagent and phosphine complex, but also reduces the steps of synthesizing Vortioxetine, and increases the yield significantly, thereby effectively reducing the cost of Vortioxetine. In a third aspect, the invention also relates to the following intermediate compound of general formula II, wherein, R is 9-fluorenylmethoxycarbonyl (Fmoc), carboxybenzyl (Cbz), acetyl (Ac) or trifluoroacetyl (Tfa), and preferably acetyl; X is halogen, selected from chlorine, bromine or iodine, and more preferably bromine. Moreover, the inventors found that compared to the compound of formula IIA disclosed in the prior art, these intermediates can further significantly shorten the subsequent reaction time during preparing Vortioxetine. In a last aspect, the invention relates to a method for synthesizing Vortioxetine represented by formula V, comprising: reacting the intermediate II according to the third aspect of the invention with compound III, wherein bis(2-diphenylphosphinophenyl)ether is used as phosphine ligand, In a preferred embodiment, the obtained compound IV is hydrolyzed directly without being separated to obtain Vortioxetine represented by compound V. In another preferred embodiment, the molar ratio of bis(2-diphenylphosphinophenyl)ether to intermediate II is 0.3 to 6.0%, preferably 0.75 to 1.5%, and more preferably 0.75 to 0.9%. The inventors found that the yield of Vortioxetine can be increased in a molar ratio of 0.75 to 1.5%, in particular 0.75 to 0.9% of bis(2-diphenylphosphinophenyl)ether to intermediate II. The reason for this is that the activity of palladium catalyst is increased, while the amount of palladium catalyst used is decreased. In the subsequent purification process, the operation related to removing palladium can be simplified to increase the yield. The inventors unexpectedly found that the use of bis(2-diphenylphosphinophenyl)ether as phosphine ligand can effectively facilitate reaction. In addition, compared with other phosphine ligand, bis(2-diphenylphosphinophenyl)ether is much cheaper, thereby further decreasing the cost. DETAILED DESCRIPTION OF THE INVENTION Preparation of Compound I: 4-tert-butoxycarbonyl-1-(2-aminophenyl)piperazine Ortho-fluoronitrobenzene (14.1 g, 0.1 mol), 4-tert-butoxycarbonyl-1-piperazine (18.6 g, 0.1 mol), and potassium carbonate (13.8 g, 0.4 mol) were added to acetonitrile (140 ml), stirred and heated to reflux. After reacting for 16 h, the reaction system was cooled to room temperature, filtered under reduced pressure to remove inorganic salts. Then, the filter cake was washed with acetonitrile (40 ml), and the filtrate was merged and concentrated to a slurry system under reduced pressure. Ethanol (140 ml) was added and concentrated to obtain a slurry system, after that ethanol (140 ml) was added, and stirred until clarification. Then a wet palladium/carbon (7% palladium) (1.12 g) was added. The system was purged with nitrogen gas (40 psi) for three times and then hydrogen gas (40 psi) for three times. Hydrogenation was carried out, under the pressure of 30 to 40 psi and at the temperature of 35 to 40° C. for 10 h, then cooled to room temperature, and filtered to remove palladium/carbon. The filter cake was washed with ethanol (30 ml), and the filtrate was merged and concentrated to dry under reduced pressure. A pale yellow solid of 25.3 g was obtained, and the yield was 91.2%; MS+=278.2. 2-acetyl-piperazinylnitrobenzene (24.9 g, 0.1 mol) was added to ethanol (250 ml), and stirred until clarification. A wet palladium/carbon (1.12 g) was added, and hydrogenated (35 to 40° C., 40 psi) for 3 h. The reaction system was cooled to room temperature, and filtered to remove palladium/carbon. The filter cake was washed with ethanol (30 ml), and the filtrate was merged, and concentrated to dry under reduced pressure. Then, a pale yellow solid of 22.0 g was obtained, and the yield was 100%; MS+=220.3. EXAMPLE 2-1: PREPARATION OF COMPOUND II: 4-tert-butoxycarbonyl-1-(2-bromophenyl)piperazine Concentrated sulfuric acid (98%) (7.6 g, 0.077 mol) was dropped slowly into water (180 ml), stirred, and cooled to 0 to 5° C. 4-tert-butoxycarbonyl-1-(2-aminophenyl)piperazine (20.0 g, 0.072 mol) was added slowly into the system and stirred. Sodium nitrite (5.2 g, 0.077 mol) was added into water (20 ml), stirred until clarification, and then slowly dropped into the raw material system while controlling the temperature to 0 to 10° C. After the completion of dropping, the reaction system was raised to room temperature, and stirred for half an hour to form a diazonium salt system. Sodium bromide (41.6 g, 0.288 mol) and cuprous bromide (10.4 g, 0.072 mol) were added into water (80 ml), stirred mechanically, and heated to an internal temperature of about 80° C. Then the aforementioned obtained diazonium salt system was dropped slowly into the system. After the completion of dropping, the reaction was performed for 3 h while maintaining the temperature. Then heating was stopped, and the reaction system was cooled to room temperature. Ethyl acetate (200 ml) was added, stirred for half an hour, and filtered under reduced pressure. The filter cake was washed with ethyl acetate (50 ml). The obtained dark green filtrate was layered. Aqueous phase was extracted with ethyl acetate (200 ml) once. Organic phases were merged, dried with anhydrous sodium sulfate (10.0 g, 0.07 mol), and then filtered under reduced pressure to remove the solids. The filtrates were merged, and distilled to remove acetyl acetate. The residue was distilled under reduced pressure (2 mm Hg), and the distillate in the range of 70 to 80° C. was collected to obtain a pale yellow oil of 18.42 g. The yield was 74.9%; MS+=341.1. EXAMPLES 2-2 to 2-19 Referring to example 2-1, the substituent groups R and X as well as halogenating agent are changed, and the results of the yields are shown in table 1. From the examples above, it can be seen that, compared with the method for synthesizing the intermediate IIA reported in the PCT Publication WO2004067703, the method for preparing the intermediate II of Vortioxetine provided by the invention not only has a higher yield, but also avoids the use of expensive and specific palladium reagent and phosphine complex, thereby effectively reducing the cost, and being suitable for industrial production. Moreover, the method for preparing the intermediate II of Vortioxetine provided by the invention avoids the use of expensive and specific palladium reagent and phosphine complex, thus it avoids the extreme process conditions related to the use of palladium reagent and phosphine complex, and is process-friendly. Preparation of Compound V: Vortioxetine Hydrobromide 4-tert-butoxycarbonyl-1-(2-bromophenyl)piperazine (24.6 g, 0.07 mol), 2,4-dimethyl-thiophenol (10.0 g, 0.07 mol), sodium tert-butoxide (10.0 g, 0.1 mol), tri(dibenzalacetone)dipalladium (Pd2(dba)3) (0.78 g, 0.8 mmol) and 1,1′-binaphthyl-2,2′-bis(diphenylphosphine) (BINAP) (2.2 g, 3.5 mmol) were added into toluene (150 ml), and stirred. It was purged with nitrogen gas for three times and then protected with nitrogen gas. The system was heated to reflux, reacted for 24 h, cooled to room temperature, and filtered to remove insoluble substance. The filter cake was washed with toluene (30 ml), and the filtrate was merged and concentrated to dry under reduced pressure to obtain claret-red oil. The cold (0 to 10° C.) ethyl acetate (100 ml) was dropped slowly and a large amount of orange-yellow solid was precipited. The system was stirred for 2 h while maintaining the temperature, and filtered under reduced pressure. The filter cake was washed with cold ethyl acetate (20 ml) to obtain orange solid, and dried to obtain compound IV. Compound IV was added into methanol (150 ml), and stirred until clarification. 48% hydrobromic acid (20 ml) was dropped slowly, and earthy yellow solid was separated out gradually from the system. The system was heated to reflux and reacted for 2 h, then cooled to 0 to 15° C., and stirred for 16 h. The system was concentrated to about 30 ml under reduced pressure. 200 ml ethyl acetate was added, and concentrated to get a slurry. A large amount of yellow solid was separated out from the system. Methyl tert-butyl ether (100 ml) was added, stirred for half an hour at room temperature and filtered. The filter cake was washed with methyl tert-butyl ether (30 ml) to obtain yellow solid of 18.2 g. The yield was 66.2%. MS+=299.2. Preparation of Compound V: Vortioxetine Hydrobromide 4-acetyl-1-(2-bromophenyl)piperazine (19.8 g, 0.07 mol) prepared in example 2-3, 2,4-dimethyl-thiophenol (10.0 g, 0.07 mol), sodium tert-butoxide (10.0 g, 0.1 mol), tri(dibenzalacetone)dipalladium (Pd2(dba)3) (0.78 g, 0.8 mmol) and 1,1′-binaphthyl-2,2′-bis(diphenylphosphine) (BINAP) (2.2 g, 3.5 mmol) were added into toluene (150 ml), and stirred. It was purged with nitrogen gas for three times and protected with nitrogen gas. The system was heated to reflux and reacted for 10 h, then cooled to room temperature, and filtered to remove insoluble substance. The filter cake was washed with toluene (30 ml), and the filtrate was merged, and concentrated to dry under reduced pressure to obtain claret-red oil. The cold (0 to 10° C.) ethyl acetate (100 ml) was dropped slowly, and a large amount of orange-yellow solid was separated out. The system was stirred for 2 h while maintaining the temperature, and then filtered under reduced pressure. The filter cake was washed with cold ethyl acetate (20 ml) to obtain orange-yellow solid, and dried to obtain compound IV. Compound IV was added into methanol (150 ml), and stirred until clarification. 48% hydrobromic acid (20 ml) was dropped slowly, and earthy yellow solids were separated out gradually from the system. The system was heated to reflux and reacted for 2 h, then cooled to 0-15° C., and stirred for 5 h. The system was concentrated to about 30 ml under reduced pressure. 200 ml ethyl acetate was added, and concentrated to get a slurry. A large amount of yellow solid was separated out from the system. Methyl tert-butyl ether (100 ml) was added, stirred for half an hour at room temperature, and filtered. The filter cake was washed with methyl tert-butyl ether (30 ml) to obtain yellow solid of 18.2 g. The yield was 67.2%. MS+=299.2. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 3-2, except that 4-trifluoroacetyl-1-(2-bromophenyl)piperazine prepared in example 2-4 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 66.9%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 3-2, except that 4-acetyl-1-(2-chlorophenyl)piperazine prepared in example 2-17 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 67.8%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 3-2, except that 4-acetyl-1-(2-iodophenyl)piperazine prepared in example 2-18 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 66.8%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 3-2, except that 4-carboxybenzyl-1-(2-bromophenyl)piperazine prepared in example 2-2 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 66.4%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 3-2, except that 4-(9-fluorenylmethoxycarbonyl)-1-(2-bromophenyl)piperazine prepared in example 2-5 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 66.1%. Preparation of Compound V: Vortioxetine Hydrobromide 4-tert-butoxycarbonyl-1-(2-bromophenyl)piperazine (24.6 g, 0.07 mol), 2,4-dimethyl-thiophenol (10.0 g, 0.07 mol), sodium tert-butoxide (10.0 g, 0.1 mol), tri(dibenzalacetone)dipalladium (Pd2(dba)3) (0.78 g, 0.8 mmol) and 1,1′-binaphthyl-2,2′-bis(diphenylphosphine) (BINAP) (2.2 g, 3.5 mmol) were added into toluene (150 ml), and stirred. It was purged with nitrogen gas for three times and then protected with nitrogen gas. The system was heated to reflux and reacted for 24 h, then cooled to room temperature, and filtered to remove insoluble substance. The filter cake was washed with toluene (30 ml), and the filtrate was merged, and concentrated to dry under reduced pressure to obtain claret-red oil. Methanol (150 ml) was added, and stirred to clarification. 48% hydrobromic acid (20 ml) was dropped slowly, and earthy yellow solids were precipitated gradually from the system. The system was heated to reflux and reacted for 2 h, then cooled to 0 to 15° C., and stirred for 16 h. The system was concentrated to about 30 ml under reduced pressure. 200 ml ethyl acetate was added, and concentrated to get a slurry. A large amount of yellow solid was separated out from the system. Methyl tert-butyl ether (100 ml) was added, and stirred for half an hour at room temperature. The system was filtered, and the filter cake was washed with methyl tert-butyl ether (30 ml) to obtain yellow solid of 20.6 g. The yield was 75.3%. 4-acetyl-1-(2-bromophenyl)piperazine (19.8 g, 0.07 mol) prepared in example 2-3, 2,4-dimethyl-thiophenol (10.0 g, 0.07 mol), sodium tert-butoxide (10.0 g, 0.1 mol), tri(dibenzalacetone)dipalladium (Pd2(dba)3) (0.78 g, 0.8 mmol) and 1,1′-binaphthyl-2,2′-bis(diphenylphosphine) (BINAP) (2.2 g, 3.5 mmol) were added into toluene (150 ml), and stirred. It was purged with nitrogen gas for three times and then protected with nitrogen gas. The system was heated to reflux and reacted for 10 h, then cooled to room temperature, and filtered to remove insoluble substance. The filter cake was washed with toluene (30 ml), and the filtrate was merged, and concentrated to dry under reduced pressure to obtain claret-red oil. Methanol (150 ml) was added, and stirred to clarification. 48% hydrobromic acid (20 ml) was dropped slowly, and earthy yellow solids were percitated gradually from the system. The system was heated to reflux and reacted for 2 h, then cooled to 0 to 15° C., and stirred for 5 h. The system was concentrated to about 30 ml under reduced pressure, and 200 ml ethyl acetate was added and concentrated to get a slurry. A large amount of yellow solid was separated out from the system. Methyl tert-butyl ether (100 ml) was added, and stirred for half an hour at room temperature. The system was filtered, and the filter cake was washed with methyl tert-butyl ether (30 ml) to obtain yellow solids of 20.6 g. The yield was 78.3%. Vortioxetine hydrobromide was prepared in the same manner as that in example 4-2, except that 4-trifluoroacetyl-1-(2-bromophenyl)piperazine prepared in example 2-4 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 76.9%. Vortioxetine hydrobromide was prepared in the same manner as that in example 4-2, except that 4-acetyl-1-(2-chlorophenyl)piperazine prepared in example 2-17 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 77.8%. Vortioxetine hydrobromide was prepared in the same manner as that in example 4-2, except that 4-acetyl-1-(2-iodophenyl)piperazine prepared in example 2-18 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 76.8%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 4-2, except that 4-carboxybenzyl-1-(2-bromophenyl)piperazine prepared in example 2-2 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 76.4%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 4-2, except that 4-(9-fluorenylmethoxycarbonyl)-1-(2-bromophenyl)piperazine prepared in example 2-5 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 76.1%. Preparation of Compound V: Vortioxetine Hydrobromide 4-acetyl-1-(2-bromophenyl)piperazine (30.0 g, 0.106 mol) prepared in example 2-3, 2,4-dimethyl-thiophenol (14.7 g, 0.106 mol), potassium tert-butoxide (35.67 g, 0.318 mol), tri(dibenzalacetone)dipalladium (Pd2(dba)3) (0.243 g, 0.27 mmol) and bis(2-diphenylphosphino phenyl)ether (DPEphos) (0.428 g, 0.8 mmol) were added into toluene (300 ml), and stirred. It was purged with nitrogen gas for three times and then protected with nitrogen gas. The system was heated to reflux and reacted for 10 h, and cooled to room temperature. 150 ml water was added, stirred for 30 min, and filtered to remove insoluble substance. The filter cake was washed with toluene (30 ml), and the filtrate was merged. Toluene layer was separated, and toluene phase was concentrated to dry under reduced pressure to obtain claret-red oil. Methanol (120 ml) and an aqueous solution (60 ml) of KOH (29.7 g, 0.53 mol) were added. The system was heated to reflux and reacted for 24 h. The system was concentrated to about 90 ml under reduced pressure, and 300 ml toluene and 90 ml water were added. Toluene phase was separated. 26.8 g (0.159 mol) of 48% hydrobromic acid was dropped into the toluene phase. A large amount of solid was separated out. The system was stirred for 2 h at 0 to 20° C., and filtered. The filter cake was washed with 15 ml toluene once to obtain yellow solid of 35.1 g. The yield was 87.4%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 5-1, except that 4-trifluoroacetyl-1-(2-bromophenyl)piperazine prepared in example 2-4 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 85.2%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 5-1, except that 4-acetyl-1-(2-chlorophenyl)piperazine prepared in example 2-17 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield was 67.4%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 5-1, except that 4-acetyl-1-(2-iodophenyl)piperazine prepared in example 2-18 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield is 81.7%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 5-1, except that 4-carboxybenzyl-1-(2-bromophenyl)piperazine prepared in example 2-2 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield is 77.6%. Preparation of Compound V: Vortioxetine Hydrobromide Vortioxetine hydrobromide was prepared in the same manner as that in example 5-1, except that 4-(9-fluorenylmethoxycarbonyl)-1-(2-bromophenyl)piperazine prepared in example 2-5 was used instead of 4-acetyl-1-(2-bromophenyl)piperazine. The yield is 80.5%. The description of examples above is only used for helping to understand the processes and core concepts of the invention. It is pointed out that for the person having ordinary skill in the art, various improvements and modifications can be also made in the present invention without departing from the principle of the present invention, and these improvements and modifications are fallen into the protection scope of the claims of the present invention.
La présente invention concerne un procédé de préparation de dérivés d'amidon comestibles non gélifiés. Plus particulièrement, elle vise une réaction par voie sèche pour la préparation d'éthers d'amidon non gélifiés et un procédé de purification de ces éthers d'amidon. I1 est bien connu qu'on peut obtenir sous diverses formes des éthers d'amidon hydroxy-alcoylés en faisant réagir des oxydes d'alcoylidène avec des matières amylacées en présence de catalyseur différents et dans des conditions de réaction différentes. Par exemple, on peut préparer des amidons hydroxy-alcoyLés en traitant de 11 amidon à l'aide d'une solution aqueuse concentrée d'alcali avant ou pendant l'addition d'un oxyde d'alcoylidène. L'un des inconvénients de cette technique est que l'alcali a pour effet de détruire la structure granulaire de l'amidon. Cet- te technique a encore l'inconvénient d'exiger un matériel de traitement spécial coûteux si lton désire obtenir un dérivé d'amidon sec, en poudre. On a ultérieurement constaté qu'on peut conserver à l'amidon sa structure granulaire en traitant une suspension d'amidon aqueuse à l'aide d'une solution d'alcali relativement diluée, puis en faisant réagir la suspension d'amidon avec un oxyde d'al coylidène. outefois, le degré de substitution de l'amidon est si faible qu'il faut appliquer de la chaleur pour solubiliser l'amidon dans l'eau. Il est aussi connu qu'on peut obtenir un amidon granulaire plus fortement substitué en faisant réagir un amidon granulaire sec avec un oxyde d'alcoylidène en présence d'un catalyseur tel qu'hydroxyde de sodium ou d'un sel neutre tel que chlorure de sodium. Xtune manière générale, on opère ce genre de réaction par voie sèche, en réseau fermé, sous pression et à haute température. Bien que cette réaction permette d'obtenir un amidon plus fortement substitué et donc apte à gonfler dans l'eau froide, elle présente encore de nombreux inconvénients, dont l'un est qu'elle exige un temps prolongé pour donner un amidon suffisamment substitué pour pouvoir gonfler dans l'eau froide. Un autre inconvénient est que l'amidon résultant a un goût peu agréable, notamment lorsqu'on utilise du chlorure de sodium comme catalyseur. La présente invention vise un procédé perfectionné pour la préparation d'amidons hydroxyalcoylés comestibles, non gélifiés, suivant lequel on peut faire réagir plus efficacement un amidon granulaire sec avec un oxyde d'alcoylidène, de manière à réduire le temps nécessaire à l'obtention d'amidons gonflant'-dans l'eau froide. Les amidons obtenus par-ce procédé ont une coloration et un goût améliorés. Le principe de l'invention consiste à faire réagir un amidon non gélifié avec un oxyde dtalcoyliaène en présence d'un Ca- talyseur formé par un sel d'acide phosphorique polybasique, soluble dans l'eau. Parmi les sels d'acide phosphorique polybasiques, solubles dans l'eau, particulièrement indiqués pour catalyser la réaction suivant l'invention figurent les ortho- et pyro-phosphates métalliques secondaires et tertiaires solubles dans l'eau et notamment ceux dans lesquels l'anion métal est un métal alcalin ou alcalino- > erreux. A titre d'exemple de tels phosphates métalliques catalyseurs convenables, on peut citer les phosphates disodique, trisodique, dipotassique, tripotassique, trimagnésique, dilithique et trilithique. On peut ajouter le phosphate catalyseur à l'amidon granula ire de toute manière lui permettant de se répartir uniformément dans l'amidon. Par exemple, on peut l'ajouter à l'amidon sous forme de solution concentrée projetée sur l'amidon sec ou mélanger éventuellement l'amidon granulaire avec une solution diluée au catalyseur, quton dessèche ensuite. Si amidon granulaire est sous forme de suspension, on peut lui ajouter à doses catalytiques le catalyseur à l'état solide, qui se dissout dans la suspension d'amidon. Une fois le catalyseur complètement dissous, on élimine l'excès d'eau et on dessèche l'amidon granulaire avant de-le mettre en contact avec l'oxyde d'alcoylidène.Outre l'eau, on peut éventuellement utiliser comme véhicule pour le catalyseur des solvants organiques ou mélanges d'eau et de tels solvants, par exemple d'alcool et d'eau ou d'acétone et d'eau. Le pourcentage de catalyseur utilisé pour préparer des éthers d'amidon hydroxy-alcoylés, ramené au poias'damidon sec, est de préférence de 0,5 à 1,5 %, bien qu'il puisse n'être que ae 0,1 % ou dépasser 5,5 %0. Dans la plupart des cas, il est contre-indiqué d'utiliser moins de 0,1 % ou plus ae 5,5 % de catalyseur, car si la dose de catalyseur est trop faible, la réaction est lente, tandis qu'en utilisant une dose trop'forte, on provoque une certaine décoloration du dérivé-atamidon obtenu. De plus, l'utilisation de fortes doses de catalyseur est indésirable du point de vue du contrôle de qualité, notamment lorsqu'on désire obtenir des produits à faible teneur en cendres et à faible indice Gardner de coloration. Après addition du catalyseur à l'amidon granulaire, on ramène par dessication la teneur en humidité de la-combinaison amidon-catalyseur, ramenée au-poids total d'amidon, en deçà de 15 % et, de préférence, entre 8 et 13 %. D'une manière générale, on maintient la teneur en humidité de l'amidon au-dessus de 5 %, car pour des teneurs inférieures, la réaction tend à être beaucoup plus lente. Quand la teneur en humidité dépasse 15 %, l'humidité de l'amidon tend à se condenser sur les parois -du réacteur, formant des globules d'amidon soluhflisé qui provoquent l'agglomération du dérivé d'amidon final.En conséquence, dans la présente description, on entend par "amidon granulaire sec" un amidon ayant une teneur en humidité, ramenée à son propre poids, inférieure à 15 %, bien que des amidons contenant en poids plus de 15 % d'humidité puissent sembler secs tant à 1'oeil qu'au toucher. Après obtention de la teneur voulue en humidité, on ajoute directement l'oxyde d'alcoylidène à l'amidon granulaire sec. On peut soit ajouter tout l'oxyde d'alcoylidène en une seule fois, soit l'incorporer lentement en une temps de quelques minutes à plusieurs heures ou davantage. Le pourcentage d'addition d'oxyde d'alcoylidène peut varier dans une large gamme, selon le degré de substitution désiré: ce pourcentage d'addition, par rapport au poids d'amidon ramené à sec, peut être au minimum de 1 % et au maximum 300 %. Pour la plupart des amidons, et notamment ceux de mass denté, on ajoute en général l'oxyde d'alcoylidène à raison de 20 à 25 /0. Pour ces pourcentages d'addition, l'amidon hydroxy-alcoylé gonfle dans l'eau froide et est plus facile à disperser dans l'eau. Pour la fécule de pommes de terre non modifiée, par exemple, il faut en géné.ral 30 à 35 % environ d'oxyde d'alcoylidène tel qu'oxyde de propylène pour rendre l'amidon apte à gonfler dans l'eau froide et à se bien disperser dans l'eau. Parmi les oxydes d'alcoylidène qu'on peut faire réagir avec un amidon en présence du phosphate catalyseur suivant l'in vention figurent tous ceux à structure époxyde, notamment l'oxy- de d'éthylène, l'oxyde de propylène, l'oxyde de butylène, l'oxy- de de styrène, le monoxyde de butadiène et l'épichlorhydrine. Toutefois, il est à noter que les produits obtenus à l'aide de ces réactifs peuvent avoir des propriétés différentes. Par exemple, un amidon ayant réagi avec de l'oxyde d'éthylène ou de propylène peut être apte à gonfler aans- l'eau froide-, tandis qu'un amidon ayant réagi avec de l'épichlorhydrine peut former des produits présentant des liaisons transversales qui risquent de s'opposer au gonflement dans l'eau froide. Pour la réaction d'oxyde de styrène et d'amidon, le produit principal est probablement l'éther 2-hydroxy-2-phényléthylique d'amidon. Les conaitions dans lesquelles on doit faire réagir à sec l'amidon avec un oxyde d'alcoylidène, en présence d'un phosphate catalyseur soluble dans l'eau, ne sont pas particulièrement critiques et peuvent varier dans une gamme assez large. Toutefois, pour que la réaction ait un rendement maximum, il faut maintenir certaines des conditions de réaction dans certaines gammes préférées. Par exemple, il faut maintenir la température de réaction entre 60 et 880C. En deçà de 600C, le temps de réaction doit eAtre beaucoup plus long, tandis qu'au-delà de 8800, les dérivés d'amidon hydroxy-alcoylés risquent d'avoir une couleur insatisfaisante. D'une manière générale, on opère la réaction d'hydroxyalcoylation sous pression d'au moins 140 kPa. Toutefois, s'il n'y a que faible détérioration du produit, on peut opérer sous 14GO kPa ou aavantage.Pour la plupart des réactions portant sur de l'amidon et sur de l'oxyde d'éthylène ou de propylène, des pressions ae 240 à 520 kPa sont satisfaisantes, notamment quand la température de réaction est de 79 à 880C, Les amidons susceptibles d'hydroxy-alcoylation par le procédé et à l'aide du catalyseur suivant l'invention peuvent castre tout amidon de tubercules ou de céréales modifié ou non, à conaition qu'il contienne encore des groupes hydroxyles actifs. On peut par exemple utiliser des amidons provenant de malus, de froment, de tapioca, de sagou, de riz, de sorgho, de mais-vis- queux, de mais à haute teneur en amylose.On peut aussi utiliser les fractions amylose et amylopectine d'amidons ainsi que des amidons modifiés, par exemple ailués à l'acide, oxydés, dépolymérisés en dextrine, des amidons hydroxy-éthylés dilués à l'acide et des amidons cationiques, ou des amidons à polymérisation réticulée, opérée par exemple à l'épichlorhydrine. Les amidons à polymérisation réticulés hydroxy-alcoylés précités sont particulièrement précieux dans les industries alimentaires ou dans celles où l'amidon doit pouvoir gonfler dans l'eau ou avoir une viscosité assez stable. De plus, les amidons à polymérisation réticulée hydroxy-alcoylés ont un comportement excellent au cycle gel-dégel, une limpidité supérieure et de très bonnes propriétés rhéologiques. Les amidons obtenus suivant l'invention peuvent aussi servir d'épaississants pour projections agricoles dans lesquelles l'eau servant à reconstituer la composition à proJeter provient de cours d'eau et lacs à la température de la glace fondante. Les dérivés d'amidons suivant l'invention peuvent encore servir d'apprêts et d'enduits dans les industries du papier et du textile.La facilité avec laquelle on peut les reconstituer dans de l'eau froide ou tiède est intéressante dans les applications où la viscosité doit varier comme celle d'amidon frachement cuit. Dans la présente invention et dans son résumé, on parlera de dérivés d'amidon non gélifiés et/ou de dérivés d'amidon aptes à gonfler et à se disperser dans l'eau froide. Les expressions "amidon non gélifié" et "amidon gonflant dans l'eau froide" ont, dans la présente description, les significations suivantes : au microscope polarisant, les grains d'amidon non gélifié présentent une croix sombre formée de cristaux rayonnant autour du hile. D'une manière générale, l'amidon dans cet état est biréfringent. Toutefois, lorsqu'on ajoute de l'eau, par exemple, à un amidon non gélifié gonflant dans l'eau froide, les croix ob- servées dans les grains d'amidon aeviennent de moins en moins distinctes et finissent par disparaître complètement.Ce phénomène apparaît aussi quand on porte une suspension d'amidon ne gonflant pas dans l'eau à son point; de gélification. L'amidon gonfle se disperse bien dans l'eau et le coefficient de transmission optique de la dispersion augmente. Très souvent, on dit d'un amidon gonflé et dispersé dans de l'eau qu'il est en solution. On a constaté qu'on peut catalyser l'hydroxy-aîcoylation d'amidon à l'aide d'un sel d'acide phosphorique polybasique soluble dans l'eau, mais on a de plus constaté qu'on peut obtenir un dérivé d'amidon hydroxy-alcoylé à substitution plus unciforme, par réaction suivant l'invention, si l'on opère en présence d'un "fluidifiant" tel que phosphate tricalcique. Bien qu'on comprenne mal jusqu'à présent la raison de cette amélioration, on pense qu'on obtient un produit plus uniformément substitué, ayant une aptitude plus uniforme à gonfler dans l'eau froide. Outre qu'il permet d'obtenir un produit de réaction plus uniformément substitué, un *'fluidifiant" fournit en outre un produit plus apte à s'écouler librement et à etre fluidisé. On constate aussi qu'il réduit au minimum l'agglomération d'amidon sur les parois du réacteur et sur les pales de l'agitateur pendant réaction. Le "fluidifiant" préféré est le phosphate tricalcique, mais on peut aussi utiliser d'autres corps tels qu'oxyde et carbonate de magnésium. La proportion defluiaifiant" nécessaire à l'obtention de bons résultats peut varier dans une large gamme. Toutefois, d'une manière générale, le mieux est d'utiliser la proportion de "fluidifiant" apte à maintenir l'anion à -ltétat sensiblement fluide pendant réaction. On obtient d'excellents.résultats en utilisant le "fluidifiant11 à raison de 0,05 à 3,5 % ou plus et, de préférence, à raison de 0,1 à 1,5 o. On ajoute en général le "fluidifiant" à l'amidon avant addition de l'oxyde d' alcoylidène. Toutefois, on peut aussi ajouter le fluidifiant au produit de réaction final si l'on désire seulement que ce dernier soit bien fluide, c'est-à-dire apte à s 'écouler librement. Quand on a obtenu le dérivé d'amidon hydroxy-alcoylé on peut le purifier et le rendre propre à la consommation en le mettant en contact avec un mélange eau/alcool dans un rapport d'environ O,1 à 0,7. Quand l'amidon hydroxy-alcoylé est, par exemple, un amidon hyaraxy-propylé granulaire, soluble dans l'eau à raison d'au moins 98 %, le rapport en poids eau/alcool du mélange est de préférence de 0,2 à 0,5 environ. Si le rapport eau/alcool du mélange dépasse nettement 0,5, l'amidon hydroxy-propylé risque de gonfler beaucoup, perdant sa structure granulaire. Par contre, si le rapport eau/alcool du mélange est très inférieur à 0,2, on ne débarrasse que faiblement l'amidon des odeurs et goals indésirables. Bien qu'on puisse utiliser à la purification suivant l'invention tout monoalcool tel que méthanol, éthanol, propanol, isopropanol, butanol, isobutanol, ou pentanols et hexanols, le monoalcool préféré est l'éthanol, notamment si le dérivé d'amidon purifié doit entre utilisé dans l'industrie alimentaire. La proportion de mélange eau-alcool nécessaire pour purifier efficacement des amidons hydroxy-alcoylés n'est pas particu lièrement critique et peut varier dans une gamme assez large. Toutefois, on obtient d'excellents résultats en utilisant 1,0 à 2,0 parties de solvant par partie d'amidon. Dans la plupart des cas, on obtient cependant de bons résultats en utilisant au minimum 0,25 partie et au maximum 10,0 parties de solvant par partie d'amidon. Pour des raisons d'économie, on reste en général dans la partie basse de cette gamme. L'ordre ae combinaison de l'amidon hydroxy-propylé granulaire avec le mélange eau-alcool n'est pas non plus critique. Dans la plupart des cas, on ajoute l'amidon au mélange eau-alcool. Toutefois, on peut éventuellement inverser l'ordre d'adai- tion. Après avoir combiné ensemble l'amidon et le solvant de purification, on agite de préférence la combinaison pour former une suspension continue des grains d'amidon dans le mélange eaualcool. On porte ainsi au maximum la surface de contact entre l'amidon et le solvant de purification, ce qui tend à rendre la réaction plus efficace. On peut encore améliorer le rendement de la réaction de purification en mettant l'amidon en contact avec un mélange eaualcool à température légèrement élevée. Toutefois, il faut éviter avec soin des températures susceptibles de provoquer une perte de solvant notable ou de faire disparaître dans l'amidon l'état gélifié. Des températures de 2 à 650C sont le plus souvent satisfaisantes, mais on opère en général de préférence entre 27 et 490C. Cette gamme préférée est particulièrement indiquée pour laver un amidon hydroxy-propylé soluble dans l'au froide à l'aide d'un mélange eau-éthanol. La purification des amidons nydroxy-alcoylés est efficace quand on ajuste et qu'on maintient le pH du mélange eau-alcool à 7 ou au-dessous. Pour des amidons hydroxy-propylés solubles dans l'eau froide, on maintient de préférence le pH du mélange eau-alcool entre 3,5 et 7,0.- Si le pH du mélange eau-alcool dépasse 7, on risque fort de voir disparaître l'état granulaire de l'amidon. Si ce pH est nettement inférieur à 3,5, on risque une hydrolyse de l'amidon. Les amidons hydroxy-alcoylés susceptibles de purification par le procédé suivant-l'invention répondent en gros à la définition suivante : amidons hydroxy-alcoylés présentant un degré de substitution suffisant pour Strie solubles dans l'eau froide à raison d'au moins 50 %. Autrement dit, l'amidon est soluble à 50 c, au moins dans de l'eau à température ambiante et perd à 50 % au moins sa structure granulaire. Un amidon est jugé granulaire quand ses grains présentent, au microscope polarisant, un motif en croix sombre. Par contre, si l'amidon revient soluble, les croix observées deviennent moins distinctes et finissent par disparaître complètement.Dans la plupart des cas, l'amidon hydroxy-alcoylé est soluble dans l'eau froide quand il comporte 5. à 15 % en poids environ de groupes hydroxy-alcoylés. Bien que les amidons hydroxy-alcoylés soumis à la purification qu'on vient de décrire soient d-e préférence obtenus par catalyse à laide d'un sel d'acide phosphorique polybasique soluble dans l'eau (ce qui réduit la formation d'impuretés), on peut aussi utiliser des amidons hydroxy-alcoylés obtenus par d'autres procédés, par exemple par procédé tel que décrit dans le brevet des Stats-Unis n 2.516.634. Suivant ce brevet, on fait réagir un amidon granulaire avec un oxyde d'alcoylidène en présence d'un catalyseur alcalin à des températures de 24 à 790Q et, de préférence, de 38 à 650C.Bien que ce brevet concerne surtout la réaction de quantité faible (1-à 5 0/o) d'oxyde d'alcoylidène avec un amidon, on peut adopter sensiblement le meAme procédé pour faire réagir avec l'amidon un pourcentage d'oxyde de propylène atteignant 25 C/o, Les exemples ci-dessous illustrent l'invention, mais sont dépourvus de tout caractère limitatif. Exemple 1 A une suspension d'amidon à 210 Bé, on ajoute comme catalyseur au phosphate disodique solide à une dose suffisante pour que le pourcentage de catalyseur, ramené au poids de l'amidon sec, soit de 1 à 1,5 %. On filtre ensuite la suspension de catalyseur et d'amidon, puis on dessèche le dépôt d'amidon jusqu'à ramener sa teneur en humidité entre 8 et 11 %. On met alors l'amidon traité au catalyseur dans un flacon d'une capacité de 1,1 litre et l'on ajoute de l'oxyde de propylène à raison de 25 rsó du poids de l'amidon ramené à sec. On ferme le flacon et on le chauffe au bain-marie maintenu à une température de 74 à 820C, pendant un temps de huit à-neuf heures.L'analyse du produit ré -vèle qu'il est hydroxy-propylé à raison de Il à 15 % et presque apte à gonfler en tot-alité (à 100 %) dans l'eau froide. On répète l'exemple ci-dessus, mais en substituant au phosphate disodique du sulfate de sodium. On constate que pour obtenir un produit ayant une aptitude à gonfler dans liteau comparable à celle obtenue par catalyse au phosphate disodique, il faut poursuivre la réaction, sensiblement dans les mêmes conditions, pendant un temps de seize à dix-huit heures, c'est-à-dire double de celui nécessaire pour catalyse au phosphate disodique. En répétant l'exemple ci-dessus dans des conditions optimales pour d'autres oxydes d'alcoylidène, tels qu'oxyde d'éthylène ou épichlorhydrine, on obtient des résultats comparables. Exemples 2 à 10 On répète l'exemple 1, sous réserve qu'on utilise un amidon ayant subi une polymérisation réticulée à l'acroléine, ayant une fluidité dans l'alcali (NaOH 0,25 N) de 49 cm3, pour démontrer l'effet catalytique exercé par divers sels d'acide phosphorique polybasiques solubles dans l'eau sur la préparation d'éthers hydroxy-propylés d'amidons présentant des liaisons transversales. On opère la réaction à 820C pendant des temps de quatre à vingt-quatre heures. On détermine pour tous les produits les viscosités de Brookfield, portées dans le tableau I cidessous. Ces indices reflètent le degré de substitution de l'amidon hydroxy-propylé. TABLEAU I Données comparées sur des amidons hydroxy-propylés par voie sèche à l'aide de divers catalyseurs. NO d'E- Nature du Temps de Concentra- Viscosité Gout et colo- xemple catalyseur réaction tion de la Brooklield ration (h) suspension (cps) d'amidon 2 NaCl 4 10 % 135 ~ 3 Na2HPO4 " 'r 2.760 - 4 Na2SO4 " n 7 - 5 NaGl 8 5 % 9.800 médiocres 6 Na2HPO4 in n 10.100 Satisfaisart 7 Na2S 4 " " 3.700 Passables 8 NaGl 15 " 8*280 Médiocres 9 Na2HP04 " n 8.280 Satisfaisants 10 Na2S 4 " " 8.260 Médiocres Le tableau ci-dessus montre clairement la supériorité du phosphate disodique sur le chlorure de sodium et sur le sulfate disodique. C'est pour des temps de réaction de quatre heures que cette supériorité catalytique s'affirme le mieux.Pour des temps de réaction de huit heures, l'effet catalyseur est encore nettement supérieur à celui du sulfate disodique et sensiblement égal à celui du chlorure de sodium; toutefois, le produit obtenu par catalyse au chlorure de sodium est en général contre-indique pour la consommation. Au-delà de quinze heures, le degré de substitution de l'amidon est sensiblement le même pour les trois catalyseurs; néanmoins, le goût et la couleur des produits obtenus à l'aide de catalyseurs autres que phosphates sont dans l'ensemble médiocres. Dans ces cas, il faut en général soumettre le produit à plusieurs lavages de purification avant de pouvoir le vendre pour la consommation. Quand on obtient un produit ayant un goût et une coloration "satisfaisants", on peut réduire nettement le nombre de lavages de purification. On détermine les viscosités de Brookfield sur des suspen sions d'amidon à des concentrations de 5 et 10 % à l'aide d'un viscosimètre de Brookfield, modèle RVT. On agite le mélange et l'on mesure la viscosité à 20 tours/minute au bout de cinq minutes. Pour des viscosités inférieures à 5000 cps, on utilise une broche n 3, pour des viscosités de 5000 à 10.000 cps, une broche n 4 et et pour des viscosités dépassant 10.000 cps, une broche n 5. Exemples 11 à 17 Sauf qu'on utilise les divers phosphates portés dans le tableau 2 ci-dessous, on procède comme dans l'exemple 1 pour préparer les éthers d'amidon hydroxy-propylés. Sauf pour 1'exem- ple 17, où l'on utilise 3,0 g de catalyseur par 100 g d'amidon, la dose de catalyseur est dans chaque exemple de n à 1,5 g de catalyseur par 100 g d'amidon. TABLEAU 2 N d' TRature u emps de o aptitude à gonfler exemple phosphate réaction dans l'eau froide 11 NaH2P 4 8 heures moins de 10 % 12 Na2HPO4 " 90 à 99 % 13 Na3PO4 .. 90 à 99 % 14 K2HP04 " 90 à 99 % 15 Iti2h2 4 n 90 à 99 % 16 Ca3E04 24 heures moins de 10 % 17 (NH4)2H904 " moins de 10 % Ces exemplesmontrent que pour préparer des amidons hydroxyalcoylés gonflant dans l'eau froide, le catalyseur préféré est un sel métailique d1 acide phosphorique polybasique soluble dans l'eau. Exemple 18 On répète l'exemple 1, sous réserve qu'au phosphate disodique on substitue comme catalyseur du phosphate tricalcique. On opère la réaction à 820C, pendant un temps de seize heures. L'étude du produit révèle qu'il ne gonfle dans l'eau qu'à concurrence de moins de 1C C,0'0 On renvoie l'amidon hydroxy-propylé partiellement apte à gonfler dans l'eau dans la chambre de réaction, et on le fait réagir pendant vingt-quatre heures encore. L'étude du produit révèle qu'il n'est encore que partie-llement apte à gonfler dans l'eau froide.Toutefois, quand on répète l'expérience ci-dessus à l'aide d'un mélange catalytique contenant des phosphates tant disoaique que tricalcique, on constate que le produit gonfle dans l'eau froide à 100 % sans former de grumeaux. De plus, certains signes témoignent que, quand le catalyseur contient une faible proportion de fluidifiant tel que phosphate tricalcique, on obtient un produit plus uniformément substitué. Exemple 19 Dans un ballon de 5 1 à trois goulots, on met 500 g d'un amidon hydroxy-propylé granulaire brut, soluble-dans l'eau froide, obtenu en faisant réagir de l'amidon granulaire avec de l'oxyde de propylène préparé par le procédé décrit dans l'exemple 1, en suspension dans 750 ml d'un mélange eau/alcool dans un rapport de 0,3. lie ballon est muni d'un agitateur mécanique à arbre en verre muni d'une palette en "Téflon" (en forme de segment de cercle de 10 cm de long et de 2 cm de large en son milieu). On ajuste entre 5,5 et 6,5 le pH de la suspension d'amidon dans le mélange eau-alcool, puis on porte à 3SOC. Après avoir agité pendant trente minutes environ, on -sépare par filtration l'amidon granulaire du mélange eaujalcool et on l'examine.On constate que le produit lavé a un goût satisfaisant et un indice de coloration Gardner relativement faible, de 5 à 7 (ramené à un étalon secondaire formé par une plaque blanche de Gardner). L'analyse du filtrat montre encore que le procédé de purification suivant l'invention permet de débarrasser l'amidon hydroxy-propylé granulaire, soluble dans l'eau froide, de la quasi-totalité (98 à 100 %) des corps responsables du mauvais goût de l'amidon. Quand on répète l'exemple ci-dessus avec des amidons hydroxy-propylés obtenus par d'autres procédés, par exemple par celui décrit dans le brevet des Etats-Unis d'kmérique n 2.516.634, on obtient sensiblement les meAmes résultats. Quand les teneurs en impuretés de l'amidon se révèlent supérieures à la normale, une série de lavages peut être nécessaire pour supprimer le mauvais goût et la coloration indésirables. Exemples 20 à 25 Ces exemples montrent que le rapport eau/alcool est très important si l'on doit éliminer en quasi-totalité les corps gê- nants tout en conservant aux amidons hydroxy-propylés la structure granulaire. Sous réserve qu'ou fait varier le rapport eau/alcool,- on répète le processus décrit dans l'exemple 1.Les résultats obtenus sont portés dans le tableau 3 ci-dessous. TÂBLEkU 3 n0 d' Rapport en Rendement V/o Etat de Goûts de exemple poids eau/ de la puri- l'amidon l'amidon alcool fication 20 1 - Gonflé Médiocre 21 0,7 87,0 Commençant Satisfaisant à gonfler 22 0,5 93,0 Granulaire Bon 23 C,3 99,0 Granulaire Bon 24 0,1 83,0 Granulaire Satisfaisant 25 0,05 10,0 Granulaire Médiocre On fait détermine le goût de l'amidon par un jury de cinq personnes expérimentées, par des procédés d'essai normali sés. Exemples 26 à 30 Ces exemples montrent l'effet exercé par la température sur la purification suivant l'invention. Sous réserve qu'on adopte les diverses températures portées dans le Tableau 4, on procède comme décrit dans exemple 1. TABLEAU 4 N d'- Température Rendement indice Urdner Goût exemple du mélange op de la pu- de colorationh eau/alcool rification ("c) 26 10 1,0 7,2 Satisfaisant 27 24 95,0 6,7 Bon 28 38 99,0 6,0 Bon 29 52 97,0 6,5 Bon 30 66 93,0 7,5 Satisfaisant Les indices de coloration indiqués sont ceux obtenus à l'aide d'un photomètre automatique de Gardner et d'une plaque blan che, fornant étalon secondaire, vendus par la Gardner Instru ments, Inc. De ce qui précède, il ressort que, si la température du mélange eau/alcool agit relativement peu sur le rendement de purification, il semble que les températures les plus élevées agissent sur l'indice Gardner de coloration. Exemples 31 à 33 Ces exemples montrent qu'on peut purifier les amidons hydroxy-propylés à l'aide de divers monoalcools. Sous réserve de celles portées dans le Tableau 5, les conditions de purification sont celles inaiquées dans l'exemple 1. TABLEAU 5 N d'- Nature de Rapport Tempéra- Indice Rendement exemple l'alcool en poids ture C Gardner % de puri eau/alcool de colo- fication ration 31 Méthylique 0,3 52 6,7 99,0 32 Ethylique 0,3 52 6,5 99,0 33 Iso-propylique 0,3 52 7,0 97,0 En opérant la purification précitée sur des amidons hydroxy-alcoylés d'autres types, par exemple hydroxy-éthylés, on obtient sensiblement les mêmes résultats satisfaisants. - MVLls hTIGIE lia présente invention concerne 1 - Un procédé de préparation d'éthers- d'amidon hydroalcoylés non gélifiés, consistant essentiellement à faire réagir un amidon granulaire sec avec un oxyde d'alcoylidène en présence d'une quantité catalytique d'un sel métallique d'acide phosphorique polybasique, soluble dans l'eau. 2 - Un procédé selon la revendication 1, caractérisé en ce que le sel polybasique soluble dans l'eau est un sel métallique dibasique ou tribasique acide phosphorique. 3 - Un procédé selon la revendication 2, caractérisé en ce que le sel métallique soluble dans liteau contient un anion métal choisi parmi les métaux alcalins et alcalino-terreux. 4 - Un procédé selon la revendication 3, caractérisé'en ce que le sel métallique soluble dans l'eau est du phosphate disodique. 5 - Un procédé selon l'une des revendications 1 à 4, caractérisé en ce que le catalyseur est présent à raison d'au moins 0,1 ,b du poids d'amidon ramené à sec. 6 - Un procédé selon la revendication 5, caractérisé en ce que le catalyseur est présent à raison de 0,5 à 1,5 h du poids d'amidon ramené à sec. 7 - Un procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on fait réagir l'amidon en présence de quantités efficaces d'un "fluidifiant" insoluble dans l'eau. 8 - Un procédé selon la revendication 7, caractérisé en ce que le fluidifiant est du phosphate tricalcique. 9 - Un procédé selon la revendication 7, caractérisé en ce qu' on ajoute le fluidifiant à raison de 0,05 à 3,5 % du poids d'amidon ramené à sec. 10 - Un procédé de préparation d'amidons hydroxy-alcoylés, consistant essentiellement à traiter un amidon granulaire à l'aide d'une quantité catalytique d'une solution de sel métallique d'acide phosphorique polybasique, soluble dans l'eau, à dessécher l'amidon jusqu'à ramener sa teneur en humidité en deçà de 15 % du poids de l'amidon et à traiter l'amidon desséché à l'aide d'une quantité d'oxyde d'alcoylidène suffisante pour fournir un dérivé d'amidon complètement soluble dans l'eau froide. 11 - Un procédé de purification d'amidon hydroxy-alcoylé soluble dans l'eau froide, consistant essentiellement à laver l'amidon dans un mélange d'eau et d'alcool, pendant un temps suffisant pour en éliminer la quasi-votaiité des impuretés, le rapport eau/alcool du mélange étant de 0,1 à 0,7, puis à séparer du mélange un amidon hydroxy-alcoylé non gélifié purifié. 12 - Un procédé selon la revendication 11, caractérisé en ce que la température du mélange eau/alcool est inférieure à 66 C. 13 - Un procédé selon l'une des revendications Il ou 12, caractérisé en ce que le rapport eau/alcool est de 0,2 à 0,5. 14 - Un procédé selon l'une des revendications 11 à 13, caractérisé en ce que l'amidon hydroxy-alcoylé est un amidon hyaroxy-propylé. 15 - Un procédé selon l'une des revendications 11 à 14, caractérisé en ce qu'on maintient le pH du mélange eau/alcool au-dessous de 7,0. 16 - Un procédé selon l'une des revendications 11 à 15, caractérisé en ce qu'on maintient la température du mélange eau/alcool entre 2 et 660C et son pH entre 3,5 et 7,0 environ. 17 - Un procédé selon l'une des revendication 11 à 16, caractérisé en ce que l'alcool est de l'alcool éthylique.
LOCATION CORRELATION BETWEEN QUERY SCRIPT AND DATA FLOW A computerized mechanism to automatically correlate positions of query script to portions of a data flow representation of the query script. When parsing the query script to generate the tokens, at least some of the tokens have an associated script location marker that identifies a location in the query script where the token originated from. The syntax tree of multiple nodes is then formulated, each node comprising one or more of the tokens parsed from the query script. Accordingly, the syntax tree retains the script location markers. A data flow representation of the query script is then formulated into a data flow representation. That data flow representation might, for instance, be based on the syntax tree, but augmented with data types of the various data flows. Nevertheless, the location marker is retained within the data flow representation. BACKGROUND Computing systems and associated networks have revolutionized the way human beings work, play, and communicate. Nearly every aspect of our lives is affected in some way by computing systems. More recently cloud computing has enabled users to offload much of the processing, storage, network I/O, memory, and other resource usage to various datacenters. This offloading of hardware capability is often referred to as Infrastructure As A Service (IAAS). Datacenters can also provide Platforms As A Service (PAAS), and even Software As a Service (SAAS). Since the users themselves typically do not have to be concerned about which datacenter or computing system are providing such hardware and software, the user is now able to be less concerned about the location of the hardware that is supporting the service, or how the services are being accessed. To the user, it is as though the user is simply reaching up into the nearest cloud or portion of the sky to obtain the desired computing service. The service seems ever present. With data now often being moved into the cloud, the ability to store large quantities of data has improved greatly, enabling a technology field often referred to simply as “Big Data”. For instance, big data queries may be processed against very large quantities of data, and those queries are efficiently processed in the cloud computing environment, allowing rapid return of results. Big data queries, like normal database queries, are typically declarative in form and are often referred to as “query script” or “script”. There currently exist a variety of languages in which big data queries may be authored. When queries are processed, they are first parsed into tokens, and then the grammar set appropriate for the script language is then used to construct a syntax tree (also sometimes referred to as an “Abstract Syntax Tree” or AST). BRIEF SUMMARY At least one embodiment described herein relates to a computerized mechanism to correlate positions of query script to portions of a data flow representation of the query script. Visualizations of such correlation would allow an author or reviewer of the query script to be able to quickly see what portions of the query script are going to cause what data flows. This gives the viewer and intuitive view on the operation of the query script. When parsing the query script to generate the tokens, at least some of the tokens have an associated script location marker that identifies a location in the query script where the token originated from. For instance, the script location marker might be a line identifier of the query script. The syntax tree of multiple nodes is then formulated, each node comprising one or more of the tokens parsed from the query script. Accordingly, the syntax tree retains the script location markers. A data flow representation of the query script is then formulated into a data flow representation. That data flow representation might, for instance, be based on the syntax tree, but augmented with data types of the various data flows. Nevertheless, the script location marker is retained within the data flow representation. Accordingly, when the data flow representation is visualized, each visualized node can be shown with its corresponding script portion emphasized. For instance, the data flow representation might be visualized on one half of a display, and the query script shown on the other half of the display. When a portion of the query script is selected, the corresponding portion of the visualized data flow portion may likewise be emphasized to show this correlation. Likewise, when a portion of the data flow representation is selected, the corresponding portion of the query script may be emphasized to show the correlation. This allows for more intuitive drafting and review of query script through computerized correlation of locations with the query script. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. DETAILED DESCRIPTION At least one embodiment described herein relates to a computerized mechanism to correlate positions of query script to portions of a data flow representation of the query script. Visualizations of such correlation would allow an author or reviewer of the query script to be able to quickly see what portions of the query script are going to cause what data flows. This gives the viewer and intuitive view on the operation of the query script. When parsing the query script to generate the tokens, at least some of the tokens have an associated script location marker that identifies a location in the query script where the token originated from. For instance, the script location marker might be a line identifier of the query script. The syntax tree of multiple nodes is then formulated, each node comprising one or more of the tokens parsed from the query script. Accordingly, the syntax tree retains the script location markers. A data flow representation of the query script is then formulated into a data flow representation. That data flow representation might, for instance, be based on the syntax tree, but augmented with data types of the various data flows. Nevertheless, the script location marker is retained within the data flow representation. Accordingly, when the data flow representation is visualized, each visualized node can be shown with its corresponding script portion emphasized. For instance, the data flow representation might be visualized on one half of a display, and the query script shown on the other half of the display. When a portion of the query script is selected, the corresponding portion of the visualized data flow portion may likewise be emphasized to show this correlation. Likewise, when a portion of the data flow representation is selected, the corresponding portion of the query script may be emphasized to show the correlation. This allows for more intuitive drafting and review of query script through computerized correlation of locations with the query script. Some introductory discussion of a computing system will be described with respect toFIG. 1. Then, the general structure and operation of a mechanism to correlate positions of query script to portions of a data flow representation of the query script will be described with respect toFIGS. 2 through 7. Finally, a specific example user experience will be described with respect to the user interfaces illustrated inFIGS. 8 through 18. Computing systems are now increasingly taking a wide variety of forms. Computing systems may, for example, be handheld devices, appliances, laptop computers, desktop computers, mainframes, distributed computing systems, datacenters, or even devices that have not conventionally been considered a computing system, such as wearables (e.g., glasses). In this description and in the claims, the term “computing system” is defined broadly as including any device or system (or combination thereof) that includes at least one physical and tangible processor, and a physical and tangible memory capable of having thereon computer-executable instructions that may be executed by a processor. The memory may take any form and may depend on the nature and form of the computing system. A computing system may be distributed over a network environment and may include multiple constituent computing systems. As illustrated inFIG. 1, in its most basic configuration, a computing system100typically includes at least one hardware processing unit102and memory104. The memory104may be physical system memory, which may be volatile, non-volatile, or some combination of the two. The term “memory” may also be used herein to refer to non-volatile mass storage such as physical storage media. If the computing system is distributed, the processing, memory and/or storage capability may be distributed as well. The computing system100also has thereon multiple structures often referred to as an “executable component”. For instance, the memory104of the computing system100is illustrated as including executable component106. The term “executable component” is the name for a structure that is well understood to one of ordinary skill in the art in the field of computing as being a structure that can be software, hardware, or a combination thereof. For instance, when implemented in software, one of ordinary skill in the art would understand that the structure of an executable component may include software objects, routines, methods that may be executed on the computing system, whether such an executable component exists in the heap of a computing system, or whether the executable component exists on computer-readable storage media. The term “executable component” is also well understood by one of ordinary skill as including structures that are implemented exclusively or near-exclusively in hardware, such as within a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or any other specialized circuit. Accordingly, the term “executable component” is a term for a structure that is well understood by those of ordinary skill in the art of computing, whether implemented in software, hardware, or a combination. In this description, the terms “component”, “service”, “engine”, “module”, “evaluator”, “monitor”, “scheduler”, “manager”, “module”, “compiler”, “virtual machine”, “container”, “environment” or the like may also be used. As used in this description and in the case, these terms (whether expressed with or without a modifying clause) are also intended to be synonymous with the term “executable component”, and thus also have a structure that is well understood by those of ordinary skill in the art of computing. In the description that follows, embodiments are described with reference to acts that are performed by one or more computing systems. If such acts are implemented in software, one or more processors (of the associated computing system that performs the act) direct the operation of the computing system in response to having executed computer-executable instructions that constitute an executable component. For example, such computer-executable instructions may be embodied on one or more computer-readable media that form a computer program product. An example of such an operation involves the manipulation of data. The computer-executable instructions (and the manipulated data) may be stored in the memory104of the computing system100. Computing system100may also contain communication channels108that allow the computing system100to communicate with other computing systems over, for example, network110. While not all computing systems require a user interface, in some embodiments, the computing system100includes a user interface112for use in interfacing with a user. The user interface112may include output mechanisms112A as well as input mechanisms112B. The principles described herein are not limited to the precise output mechanisms112A or input mechanisms112B as such will depend on the nature of the device. However, output mechanisms112A might include, for instance, speakers, displays, projectors, tactile output, valves, actuators, holograms, virtual reality environments, and so forth. Examples of input mechanisms112B might include, for instance, microphones, touchscreens, holograms, cameras, keyboards, accelerometers, levers, pedals, buttons, knobs, mouse of other pointer input, sensors of any type, a virtual reality environment, and so forth. For instance, cloud computing is currently employed in the marketplace so as to offer ubiquitous and convenient on-demand access to the shared pool of configurable computing resources. Furthermore, the shared pool of configurable computing resources can be rapidly provisioned via virtualization and released with low management effort or service provider interaction, and then scaled accordingly. FIG. 2illustrates a flow200representing a process for correlating query script to portions of a data flow representation of that query script in accordance with the principles described herein. The flow200begins with the accessing of a query script210. The query script210is drafted in accordance with a query language. In some embodiments, the query language is a big data query language. Examples of big data query languages include Hive query language, Spark SQL, BigQuery, although there are numerous other examples of big data query languages. The principles described herein are not limited to any particular big data query language, and are not limited to big data query languages at all. The query script may be visualized (as represented by arrow201A) into a visual representation201B that is output on a display250. For instance, if the process occurs on the computing system100ofFIG. 1, the query script may be visualized on a display represented as one of the output mechanisms102A. The script query is first parsed (as represented by arrow211) into multiple tokens220. This may be performed by, for instance, the parser of a compiler. In this particular example, the tokens220are shown as including three tokens222A,222B and222C. However, the ellipses222D symbolically represent that the principles described herein is not limited to the number of tokens that query script is parsed into. A typical segment of query script will often have many more than three tokens. One, some, or all of the tokens may have a corresponding script location marker that identifies what portion of the query script the token is located in or originated from. In this example, all of the tokens222A,222B and222C have a corresponding script location marker223A,223B and223C. For instance, the script location marker might be a line identifier for one or more lines, perhaps in conjunction with a horizontal offset position or range for each line. Accordingly, there is enough information within the script location marker to highlight or otherwise visually emphasize the token itself within with query script. The collection of tokens220is then formulated (as represented by arrow221) into a syntax tree230comprising multiple nodes, each including one or more tokens. The formulation of tokens into syntax trees are known in the art and thus will not be described in detail herein. However, unlike conventional formulation of syntax trees, some or all of those script location markers remain associated with the tokens when the tokens are included within nodes of the syntax tree. This continued inclusion of the script location markers is represented by the syntax tree230including asterisk232. The syntax tree230is then evaluated by an evaluator235to thereby generate (as represented by arrow231) a data flow representation240of the syntax tree230. The data flow representation240also continues to include the script location markers for the tokens as represented by the data flow representation240having asterisk241. For instance, the data flow representation240is illustrated inFIG. 2as having the script location markers223A,223B and223C that are associated with the respective tokens222A,222B and222C. Accordingly, the script location markers223A,223B and223C are in the data flow representation240and remain associated with the original tokens222A,222B,222C. This allows positions and/or portions within the data flow representation to be correlated with positions in the query script using the appropriate script location marker. As represented by arrow202A, a visualization202B of the data flow representation may be presented on the display250. For instance, if the process occurs on the computing system100ofFIG. 1, the data flow visualization202B may be visualized on a display represented as one of the output mechanisms112A. The visualization202B of the data flow representation is illustrated inFIG. 2as including controls241A,241B and241C that are visually associated with visualizations243A,243B and243C of the respective tokens222A,222B and222C within the visualization201B. Each of the controls241A,241B and241C also has a reference (as represented by corresponding arrows242A,242B and242C) to the respective script location markers223A,223B and223C of the respective tokens222A,222B and222C. Using this script location marker, when a control is selected in the visualization of the data flow, the appropriate portion (e.g., a token) of the visualization201B of the query script is highlighted. For instance, upon selecting control241A, a visualization243A of the token222A within the visualization201B of the query script210may be visually emphasized as represented by arrow244A. Upon selecting control241B, a visualization243B of the token222B within the visualization201B of the query script210may be visually emphasized as represented by arrow244B. Upon selecting control241C, a visualization243C of the token222C within the visualization201B of the query script210may be visually emphasized as represented by arrow244C. In addition to representing tokens, the boxes243A,243B and243C within the visualization201B of the query script210may also themselves represent controls visually associated with the tokens. Furthermore, in addition to representing controls, the boxes241A,241B and241C within the visualization202B of the data flow representation240may also themselves represent visualized portions of the data flow representation that corresponding to the respective tokens222A,222B and222C. For instance, upon selecting control243A, a visualization241A of the node222A within the visualization202B of the data flow representation240may be visually emphasized as represented by arrow245A. Upon selecting control243B, a visualization241B of the token222B within the visualization202B of the data flow representation240may be visually emphasized as represented by arrow245B. Upon selecting control243C, a visualization241C of the token222C within the visualization202B of the data flow representation240may be visually emphasized as represented by arrow245C. The visualization202B of the data flow representation240may also include other controls251A and251B that allow for other types of operations on the visualization202. For instance, as an example only, control251A might filter a view of the visualization to perhaps only a subset of the nodes of the data flow representation, or may perhaps aggregated nodes of the data flow representation. Control252might, for instance, visually emphasize visualized nodes having a particular relationship with a selected visualized node. For instance, the visually emphasized nodes might be the upstream and/or downstream nodes of a selected node of the data flow representation. FIG. 3Arepresents an example of a syntax tree300A and will be used as an example throughout the remainder of this description. However, the principles described herein apply regardless of the particular structure of the syntax tree300and the precise structure of the syntax tree300will depend on the content of the query script and the query language in which the query script is authored. In this particular syntax tree300, there are five nodes shown including nodes310A,320A,330A,340A and350A. Each node of the syntax tree300A is symbolically illustrated inFIG. 3Aas a circle. Furthermore, there are five relation311A,321A,331A,341A and351A. Each relation of the syntax tree is symbolically illustrated inFIG. 3Aas a dotted line. FIG. 3Brepresents an example of a data flow representation300B, and is similar to the syntax tree300A ofFIG. 3A. In the illustration ofFIG. 3B, each node of the data flow representation300B is represented as a square, and each flow is represented as an arrow line. In this example, there is one node of the data flow representation300B corresponding to each node of the syntax tree300A. For instance, nodes310A,320A,330A,340A and350A of the syntax tree300A correspond to respective nodes310B,320B,330B,340B and350B of the data flow representation300B. Furthermore, there is one data flow311B,321B,331B,341B and351B for each corresponding link311A,321A,331A,341A and351A of the syntax tree300A. However, data flows often do not have one to one representations between links in the syntax diagram and data flows, and often there may be one or more nodes of a syntax tree in a single node of a data flow. Accordingly, the similarity in appearance between the syntax tree300A ofFIG. 3Aand the data flow representation300B ofFIG. 3Bis merely for purpose of clarity in explaining the principles described herein. FIG. 4illustrates a flowchart of a method400for correlating positions of query script to portions of a data flow representation of the query script. The method400might be performed just once with respect to a query script that is not anticipated to change. However, the method400might also be performed whenever a query script changes. Accordingly, the author of a query script might always be able to tell the correlation between the query script they are drafting and a data flow representation, and also be able to understand what portion of the query script corresponds to what portion of the data flow representation, and vice versa. The method400may be performed by, for instance, the computing system100ofFIG. 1. The method400includes accessing a query script (act401). For instance, inFIG. 2, the query script210is accessed. Again, this accessing might occur often, even perhaps whenever the query script changes in a small way. The query script is also visualized (act410). For instance, if the method400is performed by the computing system100, the query script might be displayed on a display, which is an example of the output mechanisms112A. In addition, a syntax tree is formulated in a manner that retains the script location marker of the tokens within the syntax tree (act420). Furthermore, the data flow representation is created from the syntax tree in a manner that retains the script location marker of the tokens within the data flow representation (act421). Accordingly, positions in the data flow representation are correlated with positions in the query script (act422) using the script location marker for at least some of the tokens included within the nodes in the syntax tree. Furthermore, the data flow representation is visualized (act423). For instance, if the method400is performed by the computing system100, the data flow representation might be displayed on a display, perhaps next to the visualization of the query script. FIG. 5illustrates a flowchart of an example method500for formulating the syntax tree and represents an example of the act420ofFIG. 4. The method500includes parsing the query script to generate multiple tokens (act510), each of at least some of the tokens having an associated script location marker that identifies a location in the query script from where the token originated. For instance, inFigure 2, the query script210is parsed as represented by arrow211into tokens220having script location markers223A,223B and223C. This may be performed by, for instance, a parser of a compiler, the parser being slightly modified so that when a token is parsed out of the query script, a script location marker is created that identifies the query script location that the token came from, and then the script location marker is associated with the token such that when the token moves or is copied, the script location marker remains associated with the corresponding token. Next, a syntax tree is formulated having multiple nodes (act520). As previously mentioned, each node of the syntax tree has one or more tokens parsed from the query script. The syntax tree retains the script location markers associated with the tokens, because the syntax tree includes the tokens and the script location markers follow the respective tokens. An example of a syntax tree is an Abstract Syntax Tree (AST). FIG. 6illustrates a flowchart of an example method600for formulating a data flow representation from a syntax tree and represents an example of the act421ofFIG. 4. The method600may be performed by the evaluator235ofFIG. 2for example, to build the data flow representation240from the syntax tree230. The method600includes first accessing (act610) the syntax tree. For instance, inFIG. 2, the evaluator235access the syntax tree230. Again, an example of the syntax tree230is the syntax tree300A ofFIG. 3A. The evaluator then evaluates (act620) each of at least some of the nodes of the syntax tree to identify the various data types of the node. For instance, the evaluator635ofFIG. 2evaluates each node of the syntax tree in order to identify the data types of input(s) and output(s) of the node. If the syntax tree230were structured as the syntax tree300A ofFIG. 3A, the evaluator would perform the act620for each of the nodes310A,320A,330A,340A and350A of the syntax tree.FIG. 7illustrates a flowchart of a method700for evaluating a node of the syntax tree and represents one example of how the act620may be performed.FIG. 7will be explained in detail further below. The evaluator then formulates (act630) a data flow representation based on the syntax tree and augmented with the data types identified in the acts of evaluating. For instance, inFIG. 2, the evaluator235formulates the data flow representation240. As previously mentioned, in order to generate the data flow representation, the evaluator evaluates (act620) each of at least some of the nodes of the syntax tree.FIG. 7illustrates a flowchart of a method700for evaluating a node of the syntax tree. The goal of the evaluation of each node is to identify a data type of any output(s) from that node. First, the evaluator identifies (act710) a data type of one or more inputs to the node of the syntax tree. It may be that there are no inputs to the node of the syntax tree. In that case, act710may be skipped. Furthermore, it may be that due to upstream nodes not having been evaluated yet, the data type of one of the input(s) to the node may not yet be identifiable. In that case, the method700is deferred for that particular node of the syntax tree. Accordingly, the evaluation of nodes is subject to evaluation of an order of dependency of the nodes of the syntax tree. For instance, referring toFIG. 3A, node310A is evaluated so that the data types of the inputs311B to the node320A may be identified. Furthermore, node320A is evaluated prior to nodes330A and340A so that the inputs321B and331B to the respective nodes330A and340A may be identified. Nodes230A and240A are then evaluated so that inputs341B and351B to the node350A may be identified. Once the input data type of the input(s) (if any) are determined for a given node of the syntax tree, the grammar set of the query script may then be applied to the one or more tokens of the node (act720) to thereby identify (act730) output data types of output(s), if any, of the node of the syntax tree. The method700ofFIG. 7will now be described with respect to the syntax tree300A ofFIG. 3A. In order to generate the data flow representation300B ofFIG. 3B, the data types of each of the input(s), if any, and the output(s), if any, of the nodes of the syntax tree300A are determined. To do so, the method700is applied to each node of the syntax tree300A beginning at node310A, which is a dependee node for all other nodes of the syntax tree300A. As for node310A, the data types of the input(s) of the node310A are identified (act710). In the case of node310A, there are no inputs to the node310A. The grammar rules of the query language are then applied (act720) to the token(s) of the node in order to identify (act730) an output data type311B of the node310A. By so doing, node310B having output data flows311B may be formulated (seeFIG. 3B). Node320A is then ready to be evaluated, being a dependent node from node310A, and given that the output data type of the output of its dependee node310A has been determined. Again, the method700is performed, this time for node320A. As for node320A, the input(s) of the node320A are identified (act710). The input data type of the input of the node320A in this case is the same as the output type of the output311B of the node310B. Accordingly, the input data type can be readily identified. Now, the grammar rules of the query language are applied (act720) to the token(s) of the node320A in order to identify (act730) an output data type321B and331B of the node320A. By so doing, node320B having output data flows321B and331B may be formulated (seeFIG. 3B). Either and both of nodes330A and340are then ready to be evaluated. When the method700is performed for node330A, the input(s) of the node330A are identified (act710). The input data type of the input of the node330A in this case is the same as the output data type of the output321B of the node320B. Accordingly, the input data type can be readily identified. Now, the grammar rules of the query language are applied (act720) to the token(s) of the node330A in order to identify (act730) an output data type341B of the node330A. By so doing, node330B having output data flow341B may be formulated (seeFIG. 3B). When the method700is performed for node340A, the input(s) of the node340A are identified (act710). The input data type of the input of the node340A in this case is the same as the output data type of the output331B of the node320B. Accordingly, the input data type can be readily identified. Now, the grammar rules of the query language are applied (act720) to the token(s) of the node340A in order to identify (act730) an output data type351B of the node340A. By so doing, node340B having output data flow341B may be formulated. The method700may now be performed for node350A. The input types of inputs to the node350A are identified (act710). The input data types of the inputs of the node350A in this case is the same as the output data type of the output341B of the node330B, and the same as the output data type of the output351B of the node340B. There is no need to perform act720and730with respect to node350A since there are no output data flows from the node350A. Accordingly, node350B of the data flow representation300B may be formulated, thereby completing the formulation of the data flow representation300B ofFIG. 3B. A user experience will now be described with respect to several user interfaces with respect toFIGS. 8 through 18. Each of theFIGS. 8 through 18represents a user interface that may be displayed on a display (e.g., one of the output mechanism112A) of the computing system (e.g., computing system100). FIG. 8illustrates a user interface in which only the query script is illustrated. Accordingly, the user interface ofFIG. 8represents an example of the visualization201B ofFIG. 2. To switch over to the visualization of the data flow representation, the user might select the “Diagram tab” represented within circle810.FIG. 9illustrates the resulting user interface in this example user experience. Accordingly,FIG. 9represents an example of the visualization202B ofFIG. 2. Alternatively, in eitherFIG. 8(the query script view) orFIG. 9(the data flow representation view), the user might select the split control820to view the query script and the associated data flow representation side by side.FIG. 10illustrates the resulting user interface showing the script view1010and the data flow representation view1020. Selecting something in the data flow representation view1020will visually emphasize the relevant script. For instance,FIG. 11is similar toFIG. 10, except that the user has selected the node circled by circle1110. This results in the corresponding token being visually emphasized as represented by circle1120. ThroughoutFIGS. 11 through 18, the selected node in the data flow representation view is represented by the node having rightward leaning hash marking. Otherwise emphasized nodes are represented by the node having dotted fill. Conversely, selecting (e.g., putting the cursor over) somewhere in the script view will select the corresponding node in the data flow representation view. For instance,FIG. 12is similar toFIG. 10, except that the user has put the cursor at the location represented by circle1210in the script view, causing the corresponding node1220of the data flow representation view to be visually emphasized. Note that in the views ofFIGS. 11 and 12, where a node of the data flow representation has been selected (either directly as inFIG. 11, or view placing the cursor in the corresponding script portion as inFIG. 12), the upstream and downstream nodes may be visually emphasized. This may be illustrated more clearly inFIG. 13, in which node1310is selected. That causes the corresponding upstream nodes1307,1308and1309, and the corresponding downstream nodes1311and1312to be visually emphasized also. The user might also choose to show only the related nodes of a given node by interacting with a control associated with that node. For instance, inFIG. 14, the user might open a drop down menu1410and select the “Only related nodes” option1420resulting in the user interface ofFIG. 15. InFIG. 15, only the selected node1310, and its related nodes1307,1308,1309,1311and1312are shown. As illustrated in the user interface ofFIG. 16, there may be options for showing and hiding properties of the statement within the diagram (as represented within the circle1610). The user can choose how much of the properties, and which properties, to display. In this case, the user has selected to see the schema, the condition, the filter, and the sort properties of the nodes. Furthermore, whileFIGS. 9 through 16show that the nodes of the data flow representation view represent operations (e.g., statements), and the edges represent data flows (e.g., rowsets), the user can switch this so that the nodes represent data flows and the edges represent operations. For instance, inFIG. 17, the user may interact with a control, such as in the form of a drop down control1710and select the “Rowsets” option1720.FIG. 18represents the resulting user interface with rowsets represented by nodes, and statements represented by edges. Accordingly, an effective and automated mechanism for correlating query script positions with data flow representation positions has been described, along with various other convenient user experiences. This allows for more efficient drafting of correct and intended query script, and for the efficient evaluation of the same.
-1- 2000052 10 15 20 25 30 35 40 La présente invention concerne des compositions sensibles à la lumière, qui fournissent après l'exposition et le développement, une image photographique de qualité; l'invention se rapporte également aux procédés de reproduction d'images, utilisant de telles compositions. Les compositions photosensibles de l'invention permettent d'obtenir des images photographiques nettes, de bonne densité, présentant un fond clair et stable, que l'on peut obtenir facilement et rapidement. Les compositions sensibles à la lumière (ou photosensibles) de l'invention comprennent le sel d'argent d'un tétraazaîndène de formule générale s où E représente un atome d'hydrogène ou un groupe alkyle, aral-kyle ou alkylthio-; et E2, Qu:i- sont semblables ou différents, représentent un atome d'hydrogène, ou un groupe alkyle inférieur ou alkyle substitué; ou encore, E^ et E2 réunis forment avec l'atome d'azote un cycle pouvant contenir d'autres hétéroatomes; et T représente un atome d'hydrogène ou un groupe alkyle, alkylthio-, aryle ou amino- ; ledit composé étant intimement associé avec un halogénure d'argent. Ces dérivés d'argent du tétraazaindène étant solubles dans l'eau, les compositions de l'invention peuvent être rapidement développées et fixées, selon les procédés humides usuels, pour donner d'excellentes images, de très bonne densité pour la quantité d'argent contenue dans la composition et présentant en outre un degré de voilage très faible. Dans la formule générale précédente, E représente, de préférence, luqétome d'hydrogène ou un groupe alkyle ou alkylthio-; E^ et représentent un groupe alkyle inférieur ou substitué; ou E^ et Eg réunis forment avec l'azote un cycle contenant d'au- t? Û0O7S "2" 2000052 , très hétéroatomes; et Y représente un atome d'hydrogène ou un groupe alkyle ou alkylthio- . La quantité préférable d'halogénure d'argent présent dans la composition est de 0,1 à 50. % en poids, la quantité optimale -5 étant généralement de l'ordre de,10 % en poids. Selon un mode-de réalisation, on peut par exemple traiter une solution aqueuse de tétraazaindène par du nitrate d'argent, pour former son sel d'argent. On ajoute ensuite de l'halogénure soluble pour former l'halogénure d'argent in situ, à partir soit 10 de l'excès, de nitrate d'argent, soit du sel soluble d'argent du tétraazaindène. La composition est ensuite enduite sur un sup-. port photographique, tel que le verre, ou une pellicule, ou du papier. Selon une autre forme de réalisation, l'halogénure soluble peut être présent dans, ou sur les feuilles de papier, 15 sur lesquelles le sel d'argent de tétraazaindène est ensuite enduit. On peut préparer les sels de tétraazaindène en faisant réagir une solution aqueuse des dérivés de tétraazaindène, de formule ci-dessus, ou de leurs sels solubles, de pH ajusté à 6-8,5 20 par l'acide nitrique, avec 0,5 à 1,5 d'équivalents molaires d'un sel d'argent soluble, comme par exemple le nitrate d'argent. Les sels d'argent ainsi obtenus sont solubles dans l'eau, mais on peut les faire précipiter ou cristalliser par concentration de leur solution. 25 On peut utiliser jusqu'à 1,5 d'équivalent molaire du sel d'argent soluble, la limite préférable étant de l'ordre de 0,5 à. 0,95 équivalents molaires. Il semble que l'excès de tétraazaindène agisse comme stabilisateur ou agent anti-voile dans le système, auquel on ajoute ensuite une solution d'un liant, solu-50 ble dans l'eau, tel que la gélatine, ou le copolymère d'acétate-alcool de polyvinyle (vendu sous la dénomination.commerciale de "Gelvatol"), avant de l'enduire sur un support convenable. Selon encore un autre mode de réalisation des compositions de l'invention, on prépare une solution d'un mélange de tétra-55 azaindène et du sel d'argent, qu'on enduit sur un support contenant un halogénure soluble, de façon qu'une partie de cet halo-génure soit extraite du substrat pour former -un halogénure d'argent dans la composition enduite. Les halogénures d'argent convenant à l'invention sont par 40 exemple le chlorure, le bromure ou l'iodure d'argent, ou leurs 69 00075 2000052 mélanges. ' ■ * La composition est généralement enduité sur un support photographique, en papier, matière plastique ou verre, et, après exposition à l'image lumineuse, les zones exposées à la lumière de 5 la couche de revêtement sont révélées à l'aide d'un révélateur humide comme celui vendu sous la dénomination commerciale de révélateur universel P.Q. (Phénidone-Hydroquinone) ou M.Q. L'image est ensuite fixée de façon usuelle à l'aide d'un fixateur au thiosulfate, cette fixation étant rapidement effectuée grâce à 10 la solubilité dans l'eau du sel d'argent de tétraazaindène. Ce mode de développement de l'image est préférable, car il permet d'obtenir des images de bonne qualité, par un développement et une fixation rapides. On peut, cependant, aussi enduire une couche de la composition avec une solution d'hydroquinone, avant 15 exposition, puis simplement chauffer, à environ 160°C, par exemple, ou encore on peut effectuer le développement et la fixation en une seule opération, en traitant la couche, après exposition, par une solution alcaline. Une application à laquelle les compositions de l'invention 20 conviennent particulièrement bien, est celle des images de premier intermédiaire dans la reproduction diazo, pour lesquelles on peut utiliser les compositions sans les fixer, dans la producticc. d'un grand nombre de copies. L'un des grands avantages de ce procédé est celui d'obtenir 25 des images photographiques extrêmement nettes, d'une définition linéaire atteignant 1000 lignes par mm. Cette qualité rend les compositions de l'invention particulièrement utiles pour la production et la reproduction de micro-images. Les compositions photosensibles de l'invention ne sont sen-30 sibles qu'à la lumière ultra-violette et bleue, mais on peut étendre leur spectre de sensibilité vers les plus grandes longueurs d'ondes par addition d'un sensibilisateur spectral, comme par exemple un colorant du type cyanine ou merocyanine. On suppose que la photosensibilité des compositions de l'in-35 vention est due à l'incorporation d'halogénure d'argent, les sels d'argent des tétraazaindènes n'étant que peu, ou pas du tout, photosensibles. Par ailleurs, une fois l'image latente formée dans l'halogénure d'argent, son développement ultérieur met en jeu l'argent provenant du sel d'argent du tétraazaindène. 40 L'invention sera mieux comprise à la lecture de la descrip- 69 00075 2000052 tion détaillée qui va suivre de quelques éxè'mples non limitatifs * de modes de réalisation suivant l'invention. Exemple 1 On dissout 17,7 S du sel de diéthylamine du 5-diéthylamino-5 méthyl-4-hydroxy-6-méthyl-2 méthylthio-1,3,3a,7-tétraazaindène (dont la préparation est décrite dans la demande de brevet 55-364/66 au nom de la demanderesse) dans de l'eau et suffisamment d'acide nitrique ZE pour obtenir 100 ml de solution de pH 8,0. A cette solution, agitée et chauffée à 35°C, on ajoute 10 37*5 ei1 de nitrate d'argent M au moyen d'une tubulure en verre, puis 3)75 nil d'une solution M de bromure de potassium. On ajoute ensuite au mélange 100 ml d'une solution aqueuse à 12 % de gélatine, 6 ml d'une solution à 4 % d'alun de chrome et 0,4 ml de l'agent tensio-actif vendu sous la dénomination commerciale de 15 "Teepol 610". Cette émulsion est enduite, sous une épaisseur à l'état humide d'environ 0,127 111131 sur u11® pellicule de polyester transparent, puis séchée. Après exposition de la couche à travers tua. cliché photogra-phique négatif, à 2,84 o 10^ mètres bougies secondes de lumière 20 de tungstène, la pellicule est développée pendant 15 secondes dans le révélateur universel P.Q., dilué à raison d'1 partie de révélateur dans 9 parties d'eau. On obtient line diapositive blanche et noire, de densité 5,0 et de contraste 1,0. Exemple 2 25 On dissout 17>7 S du sel de diéthylamine de 5-diéthylamino-méthyl-4-hydroxy-6-méthyl-2-méthylthio-1,3,3a,7-"fcétraazaindène dans de l'eau et suffisamment d'HNO^, 2N pour obtenir 100 ml d'une solution de pH 8,0. A cette solution agitée et chauffée à 35°C» on-ajoute 37»5 ml d'AgïTO^, M à travers un tube de verre, 50 puis 3»75 de KBr, M puis 10 ml d'une solution aqueuse 0,001 M du colorant sensibilisateur suivant : s ch5 S CïïP I CS I * C CH C =: C . f 35 CH / \ ^ N CO l CH2C00NH4 On ajoute à ce mélange 100 ml d'une solution aqueuse à 12 % de gélatine, 6 ml d'une solution aqueuse à 4 % d'alun de chrome et 0-,4 ml de Teepol 610. Cette émulsion est enduite sous une épais-40 seur à l'état humide d'environ 0,127 nua sur une pellicule de £9 00075 -5- 2000052 polyester transparent, puis séchée. Après exposition et développement dans les mêmes conditions que celles décrites dans l'exemple 1, on obtient une diapositive blanche et noire, de densité 2,6 et contraste 1,1. La-mesure de 5 la sensibilité de la pellicule montre qu'elle a été étendue à la région verte du spectre, sous l'effet du colorant sensibilisateur . Exemple 3 On dissout 17» 7 g du sel de diéthylamine de 5-âiéthylamino-10 méthyl-4-hydroxy-6-méthyl-2-méthylthio-1,3,3a,7-tétraazaindène dans de l'eau additionnée d'une quantité suffisante d'HîTO^, 2N pour obtenir 100 ml d'une solution de pH 8,0. A ce mélange agité et chauffé à 35°C» on ajoute 100 ml d'une solution aqueuse à 12 % de gélatine, puis 37,5 ml d'une solution M d'AgHO^ à tra-15 vers un tube de verre, puis 3,75 ml d'une solution M de KBr, et enfin 6 ml d'une solution à 4 % d'alun de chrome et 0,4 ml de Teepol 610. On applique cette émulsion sous une épaisseur à l'état humide d'environ 0,127 mm sur une pellicule de polyester transparent. 20 Après exposition dans les mêmes conditions que celles de l'exemple 1, la pellicule est développée pendant 20 secondes comme dans l'exemple 1, pour fournir une diapositive blanche et noire de densité 2,0 et contraste 2,0. Exemple 4 25 On dissout 15»2 g du sel de sodium de 5-diéthylaminométhyl-4-hydroxy-6-méthy1-2-méthylthio-1,3,3a,7-tétraazaindène dans de l'eau et suffisamment d'HNO^, 2ÎT pour obtenir 100 ml d'une solution de pH 8. A cette solution agitée et chauffée à 35°C» on ajoute 100 ml d'une solution aqueuse à 12 °/o de gélatine, puis 30 37»5 ml d'une solution M de AgNO^, à travers un tube de verre, puis 3»75 ml d'une solution M de K01, et 0,4 ml de Teepol 610. Cette émulsion est enduite sous une épaisseur d'environ 0,127 mm à l'état humide, puis séchée. Après exposition à travers un cliché négatif à 1,25 . 10^ 35 mètres bougies secondes de lumière du tungstène, la pellicule est développée pendant 10 secondes comme dans l'exemple 1, pour donner une diapositive blanche et noire, de densité 2,4 et de contraste 4,0. Exemple 5 40 On dissout 17,7 g du sel de diéthylamine de 5-diéthylamino- 69 00075 -6- 2000052 10 méthyl-4-hydroxy-6-méthyl-2-niéthylthio-1,3,3a, 7~té tr aa'zaindène dans de l'eau et suffisamment d'MO^, 2N pour obtenir 100 ml d'une solution de pH 8,0. A cette solution agitée et chauffée à 35°Cj on ajoute 100 ml d'une solution aqueuse à 12 % de gélatine, puis 37,5 ml d'une solution M d'AgïTO^, à travers un tube de verre, puis 3,75 ml d'une solution M de KBr, puis 10 ml d'une solution aqueuse du colorant sensibilisateur suivant : S" CH, S. CHP \ \/ CS r * c= ch— c== c \ H2C^ / \ -N ÎT CO CH, 3 / \ ch2coonh4 On ajoute enfin au mélange 6 ml d'une solution à 4 % d'alun de 15 chrome et 0,4 ml de Teepol 610. Cette émulsion est enduite sous une épaisseur à l'état humide d'environ 0,127 mm sur une pellicule de polyester transparent, puis séchée. Après exposition et développement comme dans l'exemple 1, on obtient une diapositive blanche et noire, de densité 2,9 et de 20 contraste 1,5. La sensibilité de la pellicule a été étendue à la région verte du spectre, par le colorant sensibilisateur. Exemple 6 On dissout 1 g du sel de diéthylamine de 5-diéthylaminométhyl-4-hydroxy-6-méthyl-2-méthylthio-1,3,3a,7-^étraazaindène dans 25 10 ml d'eau et le pH est ajusté à 6,0 par HNO^. On ajoute 5 ml d'une solution aqueuse à 20 % d'acétate de polyvinyle partiellement hydrolysé (Gelvatol), puis, sous lumière de protection rouge, une solution de 0,3 g d'AgïTO^ dans 2,5 ml d'eau. Il ne se produit aucune cristallisation immédiate et on applique cette 30 solution sur un papier contenant 0,1 mg de chlorure soluble par p dm , puis on sèche. Au cours de l'application, une partie au moins du chlorure soluble s'incorpore dans la composition de revêtement, qui contient jusqu'à 4,3 % en poids d'AgCl (pourcentage calculé). 35 Le papier ainsi enduit est exposé à la lumière à travers un cliché négatif, puis développé dans une solution de 1 partie de révélateur universel PQ dans 19 parties d'eau. Après lavage à l'eau à température ambiante, on obtient une image noire de bonne qualité, avec un faible voile du fond. L'image ainsi obtenue 40 est fixée, c'est-à-dire qu'elle résiste à toute exposition ulté- 69 00075 2000052 rieure à la lumière. Lorsque la solution initiale est appliquée après cristallisation, on obtient une image de qualité comparable. Sur une autre feuille de papier enduit de la composition pho-5 tosensible, on applique une couche additionnelle d'une solution alcoolique d'hydroquinone, puis on sèche et expose à la lumière comme précédemment. L'image est développé^ar immersion dans une solution alcaline, puis fixée par lavage à l'eau. Une autre feuille est développée, après exposition, par chauffage, à l'é-10 tat sec, à 160°C. Exemple 7 On dissout 0,85 g du sel de diéthylamine de 5-diéthylamino- méthyl-4-hydroxy-6-méthyl-1,3,3a,7-tétraazaindène dans 10 ml d'eau et le pH est ajusté à 2,5 par ÏÏHO^. On ajoute 5 ml d'une 15 solution de gélatine à 12 puis, sous lumière de protection rouge, \ine solution de 0,3 g d'AgïTO^ dans 2,5 ml d'eau. Il se forme une suspension de cristaux fins, qu'on applique sur un 2 papier contenant 0,1 mg de chlorure soluble par dm , puis on sèche. Au cours de cette application, une partie au moins du 20 chlorure soluble s'incorpore dans la composition de revêtement, qui contient jusqu'à 4,3 % d'AgCl (calculé). On expose ce papier à la lumière à travers un cliché négatif et on développe dans une solution de 1 partie de révélateur universel PQ dans 19 parties d'eau. Après lavage à l'eau à tem-25 pérature ambiante, on obtient une image noire et nette, avec voile faible; l'image est stable à toute exposition ultérieure à la lumière. Sur une autre feuille de papier revêtue de cette composition photosensible, on applique une couche additionnelle d'une solu-30 tion d'hydroquinone, puis on sèche et expose à la lumière comme précédemment. On développe par immersion dans une solution alcaline, et fixe par lavage à l'eau. Une autre feuille est développée, après exposition, par chauffage à 160°C. Exemple 8 35 On dissout 0,85 S du sel de diéthylamine de 5-diéthylamino-méthyl-4-hydroxy-6-méthyl-2-méthylthio-1,3,3a,7-tétraazaindène dans de l'eau, dont on ajuste le pH à 8 et le volume à 3s75 ml. On dissout 0,3 g d'AgïTo^ dans 2,5 ml d'eau sous lumière de protection rouge et les deux solutions sont introduites simultané-40 «entrer des tubulures dans un mélange de 6 ml d'une solution 69 00075 "8" 2000052 aqueuse M/1000 de 1 /f"2 ' (3 ' -méthyl-thiazolidine)_72-méthyl-2 /~5"(2"-thio-3"~carboxyméthyl-thiazolid-4"-one)_7diméthinemero-cyanine, dont on a ajusté le pH à 7 par l'ammoniaque, et de 1 ml de Gelvatol aqueux à 20 %. L'émulsion obtenue est appliquée sur 5 un papier contenant 0,1 mg de chlorure soluble par dm^, puis séchée. Au cours de l'application au moins une partie du chlorure soluble s'incorpore dans la composition de revêtement, qui contient jusqu'à 4,3 % en poids d'AgCl (calculé). . On expose à la lumière à travers un cliché négatif, puis on 10 développe dans une solution de 1 partie du révélateur universel PQ dans 19 partiés d'eau. On lave à l'eau à température ambiante et on obtient une image noire nette, de voile très faible, et stable à la lumière. Le gain obtenu dans la vitesse d'obtention d'image est de 50 15 par rapport à une composition semblable, mais dénuée de colorant sensibilisateur. Exemple 9 On dissout 0,7 g de 4-hydroxy-6-méthyl-5-pipéridinométhyl-1,3,3a,7-tétraazaindène dans 10 ml d'eau et on ajuste le pH à 20 2,5 par HNo^. On ajoute 5 ml de Gelvatol à 20 %, puis, sous lumière rouge protectrice, une solution de 0,3 g d'AgîTo^ dans 2,5 ml d'eau. La suspension de cristaux fins ainsi obtenue est appliquée sur un papier contenant 0,1 mg de chlorure soluble 0 par dm , puis séchée. Au cours de cette application, une partie 25 au moins du chlorure soluble est incorporée dans la composition qui contient jusqu'à 4,3 % en poids d'ACl (calculé). On expose à la lumière à travers un cliché négatif et on développe dans une solution de 1 partie du révélateur universel PQ dans 19 parties d'eau. On lave ensuite à température ambiante 30 pour obtenir une image noire et nette, avec très peu de voile. Sur une autre feuille du papier enduit de la composition, on applique une couche additionnelle d'hydroquinone, qu'on sèche et expose à la lumière comme précédemment. On développe en trempant le papier dans une solution alcaline, et on fixe par la-35 vage à l'eau. Une autre feuille est développée, après exposition, par chauffage à l'état sec à 160°C. Exemple 10 On dissout 2,81 g de 5-Diéthylaminométhyl-4-hydroxy-2-méthyl-6-méthylthio-1,3,3a•>7-tétraazaindène dans 15 ml d'eau et à cette 40 solution, agitée et chauffée à 45°C, on ajoute 35 ml d'une solu tc 5 10 15 20 25 30 35 40 00075 2000ÛS2 tion à 10 % de gélatine. On ajoute lentement 10 ml d'une solution M d'AgïïOj, tout en agitant et on continue l'agitation pendant 10 minutes, puis on ajoute lentement 1,0 ml d'une solution M de bromure/iodure de K contenant 3 % d'iodure. On continue l'agitation pendant encore 10 minutes, puis on ajoute 2 ml d'une solution à 5 % d'alun de chrome et on applique cette émulsion sur un papier à la baryte, sous une épaisseur à l'état humide d'environ 0,076 mm, puis on sèche. Après exposition à travers un cliché négatif à 1,14 . 10^ mètres bougies secondes de lumière du tungstène, on développe pendant 13 secondes comme dans l'exemple 1 pour obtenir une diapositive blanche et noire, de densité 1,66 et de contraste 1,84. Exemple 11 On dissout 1,56 g de 5-diéthylaminométhyl-4-hydroxy-2,6-bis méthylthio-1,3j3a,7_'feétraazaindène et 0,2 g de soude dans 15 ml d'eau. A cette solution, agitée et chauffée à 45°C, on ajoute 35 ml d'une solution à 10 % de gélatine. On ajoute ensuite lentement, tout en agitant, 10 ml d'une solution 0,5 M d'AgNo^, on continue à agiter pendant 10 minute^ et on ajoute lentement 1,0 ml d'une solution 0,5 M de bromure/iodure de potassium à 3 % d'iodure. On continue à agiter pendant encore 10 minutes, puis on ajoute 2 ml d'une solution à 5 % d'alun de chrome, et 1'émulsion est appliquée sur un papier à la baryte, sous une épaisseur à l'état humide d'environ 0,076 mm. On recommence ensuite l'application, pour obtenir un revêtement d'épaisseur double. Après exposition à travers un cliché négatif à 1,7 . 10 mètres bougies secondes de lumière du tungstène, on développe pendant 15 secondes comme dans l'exemple 1, pour obtenir une diapositive blanche et noire, de densité 0,98 et de contraste 0,66. Exemple 12 On dissout 3,58 g de 4-hydroxy-6-méthyl-2-méthylthio-5-morpho-linométhyl-1,3,3a,7-tétraazaindène et 0,8 g de soude dans 15 ml d'eau, et à cette solution, agitée et chauffée à 45°0, on ajoute 35 ml d'une solution à 10 % de gélatine. On ajoute ensuite lentement, et en agitant, 10 ml d'une solution M d'AgîTo^, on continue à agiter pendant 10 minutes, puis on ajoute lentement 1,0 ml d'une solution M de bromure/iodure de potassium à 3 % d'iodure. Après agitation pendant encore 10 minutes, on ajoute 2 ml d'une solution à 5 % d'alun de chrome et l'émulsion est appliquée sous une épaisseur à l'état humide d'environ 0,076 mm sur un papier à 69 00075 _1°" 2000052 la baryte, et séchée. Après exposition, à travers tin cliché négatif, à 1,36 . 10^ mètres bougies secondes de lumière du tungstène, on développe pendant 30 secondes comme dans l'exemple 1, pour obtenir une 5 diapositive, blanche et noire, de densité 1,97 et contraste 1,9. Exemple 13 On dissout 2,93 g de 4-hydroxy-6-méthyl-2-méthylthio-5-pipéridinométhyl-1,3,3a,7-tétraazaiïidène et 0,4 g de soude dans 15 ml d'eau et à la solution, agitée et chauffée à 45°C, on 10 ajoute 35 ml d'une solution de gélatine à 10 %, On ajoute ensuite lentement, en agitant, 10 ml d'une solution M d'AgHo^, on continue à agiter pendant 10 minutes, et on ajoute 1,0 ml d'une solution M de bromure/iodure de potassium, à 3 % d'iodure. On -i -l continue l'agitation pendant 10 minutes, on ajoute 2 ml d'une * 15 solution à 5 % d'alun de chrome, et 1'émulsion est enduite sous une épaisseur à l'état humide d'environ 0,076 mm sur un papier à la baryte, et séchée. C Après exposition à travers un cliché négatif à 1,136 . 10 mètres bougies secondes de lumière du tungstène, on développe 20 pendant 20 secondes comme dans l'exemple 1, pour obtenir une diapositive noire et blanche, de densité 1,56 et contraste 1,5» Exemple 14 On dissout 2,51 g de 4-hydroxy-5-hydroxyéthyléthylaminométhyl-6-méthyl-1,3,3a,7-tétraazaindène et 0,35 g de soude dans 15 ml Ji 25 d'eau, et à la solution agitée et chauffée à 45°C, on ajoute | 35 ml d'une solution à 10 % de gélatine. On ajoute ensuite lentement, en agitant, 10 ml d'une solution M d'AgHo^, on continue à agiter pendant 10 minutes, puis on ajoute lentement 1,0 ml d'une solution-M d'iodure/bromure de potassium, à 3 % d'iodure. On 30 continue l'agitation pendant 10 minutes, et on ajoute 2 ml d'une solution à 5 % d'alun de chrome, puis 1'émulsion est appliquée, sous une épaisseur à l'état humide d'environ 0,076 mm sur du papier à la baryte, et séchée. C. Après exposition à travers un cliché négatif à 1,137 • 10 35 mètres bougies secondes de lumière du tungstène on développe pendant 45 secondes comme dans l'exemple 1, pour obtenir une diapositive blanche et noire, de densité 1,3 et contraste 0,75-Exemple 15 On dissout 2,67 g de 5-diéthylaminométhyl-4-hydroxy-2-méthyl-40 thio-1,3,3a,7-tétraazaindène dans 15 ml d'eau, et à la solution t? 00075 " 2000052 agitée et chauffée à 45°C, on ajoute 35 d'une solution à 10 % de gélatine. On ajoute ensuite lentement," en agitant, 10 ml d'une solution M d'AgSTo^, on continue l'agitation pendant 10 minutes, et on ajoute lentement 1,0 ml d'une solution M de bromure/ 5 iodure de potassium à 3 % d'iodure. On continue l'agitation pendant 10 minutes, on ajoute 2 ml d'une solution à 5 % d'alun de chrome, et lrémulsion est appliquée sous une épaisseur à l'état humide d'environ 0,076 mm sur du papier à la baryte, et séchée. Après exposition à travers un cliché négatif à 1,516 . 10^ 10 mètres bougies secondes de lumière du tungstène, on développe pendant 40 secondes, comme dans l'exemple 1, pour obtenir une diapositive blanche et noire, de densité 1,6 et contraste 1,6. On voit d'après les exemples qui précèdent, que les compositions de l'invention permettent d'obtenir des images excellentes, 15 que l'on peut facilement et rapidement développer et fixer. On voit aussi que la densité des images est très bonne, si on considère la quantité relativement faible d'argent contenue dans les compositions. Bien entendu, l'invention n'est nullement limitée aux exem-20 pies décrits, elle est susceptible de nombreuses variantes accessibles à l'homme de l'art, suivant les applications envisagées et sans qu'on s'écarte pour cela du cadre de l'invention. 19 p -10 15 20 25 50 55 « 40 "12~ 2000052' - hevewdicatiôks - 1 - Composition sensible à la lumière, caractérisée eu qu'elle comprend un sel d°argent de tétraazaindène, de formule générale : où K est un atome d'hydrogène ou un groupe alkyle. aralkyle ou 12 alkylthio- ; E et E , qui peuvent être semblables ou différent représentent tin atome d'hydrogène ou tm groupe alkyle inférieur- i 2 ou substitué; ou encore E et E forment ensemble avec l'atome d'azote un cycle qui peut contenir d'autres hétéroatomes que l'azote; et Y représente un atome d'hydrogène ou un groupe alkyle, alkylthio- , aryle ou amino- ; ledit composé étant intimement associé avec un halogénure d'argent. 2 — Composition telle que décrite en 1 dans laquelle la quantité d'halogénure d'argent présent est de 0,1 à 50 % en poids. 3 - Composition telle que décrite en 1 dans laquelle l'halogénure d'argent est présent à raison de 10 % en poids. 4 - Composition telle que décrite en 1, 2 ou 3 dans laquelle l'halogénure d'argent est le chlorure, bromure et/ou iodure. 5 - Composition telle que décrite en 1 à 4 qui contient un liant soluble dans l'eau. 6 - Composition telle que décrite en 5 dans laquelle le liane est la gélatine ou un copolymère d'acétate-alcool de polyvinyle„ 7 - Composition telle que décrite en l'un quelconque des paragraphes précédents, qui contient un sensibilisateur spectral pour étendre la sensibilité de la composition vers les grandes longueurs d'onde. 8 - Composition telle que décrite en 7 dans lequel le sensibilisateur est un colorant du type cyanine ou merocyanine. 9 - Application à un élément de reprographie de la compositicr décrite en l'un quelconque des paragraphes précédents, caractérisée en ce que ladite composition est appliquée en couche sur BAD ORIGINAL 69 0007S "13" 2000052 tua support photographique. 10 - Application à un élément de reprographie tel que décrit en 9 dans lequel la couche de composition photosensible comporte un revêtement d'hydroquinone, grâce auquel, après expçsition de 5 la couche à une image lumineuse, on peut développer l'image formée, soit par chauffage, soit par traitement par une solution alcaline. 11 - Procédé de fabrication de l'élément décrit en 9» selon lequel on traite une solution aqueuse du tétraazaindène par un 10 sel soluble d'argent, pour former le sel d'argent du tétraazaindène, puis, avant ou après l'application du mélange sur le substrat, le mélange est mis en contact avec un halogénure soluble, de façon qu'une certaine quantité d'halogénure d'argent soit incorporée dans le mélange. 15 12 - Procédé tel que décrit en 11, selon lequel on ajoute une solution aqueuse d'halogénure au mélange, avant de l'appliquer sur le substrat. 13 - Procédé tel que décrit en 11, selon lequel la solution aqueuse du tétraazaindène a un pi de 6,0 à 8,5) et on la traite 20 par 0,5 à 1,5 équivalents molaires du sel soluble d'argent. 14 - Procédé tel que décrit en 13» selon lequel on traite la solution aqueuse de tétraazaindène par 0,5 à 0,95 équivalent molaire du sel soluble d'argent. 15 - Procédé tel que décrit en l'un quelconque des paragraphes 25 11 à 14, selon lequel le sel soluble d'argent est le nitrate d1 argent. 16 - Procédé tel que décrit en 11 selon lequel le substrat contient une certaine quantité d'halogénure soluble, et lorsque le mélange est appliqué sur ledit substrat, une partie de l'ha- 30 logénure soluble est entraîné du substrat pour former de l'halogénure d'argent dans la couche appliquée.
System to Measure Thickness of an Object A system that measures a thickness of an object includes a conveyor to convey the object and an engagement member movable in response to the thickness of the object. The system further includes a lever connected to the engagement member, the lever movable with the movement of the engagement member, and a measurement device to measure the thickness of the object based on a measured position of the lever. BACKGROUND In paper handling systems, it is often necessary or desirable to detect the sheet quantity of paper products to determine whether the correct number of sheets of paper are being handled or transported. For example, one particular system that is useful to detect the thickness of paper and sheet products is on envelope inserting machines that insert product such as advertisements, promotional materials, booklets, billing statements, or other material into host-product, such as envelopes, magazines, or newspapers. In many cases, the insert product has intrinsic value, such as a credit card, a driver's license, and/or a promotional or discount coupon. In such a case, it is important that the envelope inserting machine insert only one such insert into the host-product. Further, even in cases where the insert product does not have much intrinsic value, it is important to insert only one of such product to each subscriber. For example, the insert product may have information particular to and/or confidential to each subscriber. If multiple insert products are inserted into a single host product, then subscribers will be sent insert products that have information for and of another subscriber. Envelope inserting machines and other paper-handling systems have used sheet quantity detectors to detect the sheet quantity of the inserts or other paper. The individual inserts may be single sheet or multiple sheets. If more than the desired thickness (or number of inserts) is detected, corrective action usually needs to be taken to remove the excess. This increases the chance for human error in an insert operation that has deadlines in getting the fully-inserted product to its ultimate destination, such as a subscriber's home or newsstand. Attempts to detect sheet quantity of inserts have included contact sensors, radiation sources and detectors, fiber optic light sensors, Hall sensor devices, and measuring the capacitance of the document. However, those attempts have met varying degrees of success, and some of them are affected by the temperature and humidity of the environment, as well as other process variables. As such, increasing the efficiency and reliability for these detectors remains a priority to avoid delays when operating envelope inserting machines and other paper-handling systems. Calibrating these legacy devices can also be complicated, time consuming, or problematic. DETAILED DESCRIPTION In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. In addition, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. The use of “top,” “bottom,” “above,” “below,” and variations of these terms is made for convenience, but does not require any particular orientation of the components. Accordingly, disclosed is a system and assembly for measuring a thickness of an object, such as a sheet product that may be conveyed along a conveyor. A sheet product may refer to a product including one or more sheets, such as sheets of paper, plastic, and/or other material. For example, a sheet product may refer to a sheet including an attachment thereto, such as a sheet of paper including a plastic card attached thereto, in which the sheet may or may not be inserted into another sheet product, such as inserted within an envelope. As such, the present disclosure contemplates multiple arrangements and configurations of a sheet product. For example, a sheet product may include one or more sheets, attachments, and/or materials, in which a system and/or assembly in accordance with the present disclosure may be used to measure a thickness of the sheet product. Further, those having ordinary skill in the art will appreciate that, though the present disclosure specifically mentions a sheet product as an example of an object that may have a thickness measured, other objects may be used and have a thickness measured without departing from the scope of the disclosure. As such, a system and assembly for measuring a thickness of an object may include a conveyor to convey the object and a lever movable in response to the thickness of the object. The lever may include an engagement member to engage an object as it passes the engagement member, the lever being movable with the movement of the engagement member. Further, a measurement device may be included to measure the thickness of the object. In particular, the measurement device may be used to measure movement of the lever, such as when engaged and when not engaged with the object, in which the measurement device may be able to measure the thickness of the object based on a measured movement of the lever. Referring now toFIGS. 1A,1B, and1C, multiple schematic views of a system100to measure a thickness of an object102in accordance with one or more embodiments of the present disclosure are shown. In particular,FIG. 1Ashows a view of the system100when an object is not present for measurement,FIG. 1Bshows a view of the system100when an object102B is present to measure a thickness thereof, andFIG. 1Cshows a view of the system100when an object102C is present to measure a thickness thereof. As shown, the objects102B and102C may be sheet products in accordance with one or more embodiments of the present disclosure. In addition to other elements and components, the system100, as shown, may include a conveyor110, an engagement member120, a lever130, and a measurement device140. The conveyor110may be used to convey an object102into and out of engagement with the engagement member120. As such, as an object102travels on the conveyor110and may be engaged and contacted by the engagement member120, causing the engagement member120to move in response to the thickness of the object102. When engaged with the engagement member120, the object102may be positioned between the engagement member120and the conveyor110, such as shown inFIGS. 1B and 1C. Otherwise, when no object is present, the engagement member120may return to a position against the conveyor110, such as shown inFIG. 1A. The lever130may be connected to the engagement member120, in which the lever130may move in accordance with the movement of the engagement member120. For example, as shown, the lever130may be rotatably connected to an axis132, in which the lever130may rotate about the axis132in response to the movement of the engagement member120. The measurement device140may be used to measure the movement of the lever130and/or the engagement member120. As such, the thickness of the object102may be measured based upon the measured movement or position of the lever130and/or the engagement member120. For example, a comparison of the measured position of the lever130and/or the engagement member120when no object is present within the system100and the engagement member120is not in contact or engaged with an object, such as shown inFIG. 1A, with the measured position of the lever130and/or the engagement member120when an object102is present within the system100and the engagement member120is in contact or engaged with the object102, such as shown inFIGS. 1B and 1C, may result in an output from the measurement device140that corresponds to and is based upon the thickness of the object102. As shown, the lever130may rotatably connected to the axis132to move and rotate about the axis132in response to the movement of the engagement member120. As such, the axis132may be used to define an engagement side134A and a free side134B for the lever130. In such an embodiment, the engagement member120may be connected to the engagement side134A of the lever130. Further, the measurement device140may be operably coupled to the free side134B of the lever130, in which the measurement device140may be used to measure the movement of the free side134B of the lever130when measuring and determining a thickness of an object within the system100. As shown inFIGS. 1A,1B, and1C, the engagement member120may be connected to an end of the lever130, such as the end of the lever130on the engagement side134A, and the measurement device140may be operably to another end of the lever130, such as the end of the lever130on the free side134B. However, those having ordinary skill in the art will appreciate that the present disclosure is not so limited, as the engagement member and the measurement device may be connected and/or operably coupled to any location of the lever, such as by having the engagement member and the measurement device connected and/or operably coupled to the same side and/or same end of the lever without departing from the scope of the present disclosure. As shown inFIG. 1A, when no object is present within the system100, the engagement member120may be positioned against the conveyor110, and as shown inFIGS. 1B and 1C, when an object102is present within the system100, the object102may be positioned between the engagement member120and the conveyor110. Accordingly, in one or more embodiments of the present disclosure, the engagement member120may be biased towards the conveyor110. This configuration may facilitate having the engagement member120contact and engage the object102when present within the system100, or having the engagement member120contact and engage the conveyor110when no object is present within the system100. As such, a biasing mechanism may be used to bias the engagement member120towards the conveyor. For example, in one or more embodiments, a biasing mechanism, such as a spring or other biasing mechanism known in the art, may be positioned about the axis132of the lever130to bias the lever130, thereby biasing the engagement member120connected to the lever130towards the conveyor110. One having ordinary skill in the art will appreciate, however, that other configurations and arrangement may be used to bias the engagement member towards the conveyor, such as by having a biasing mechanism coupled between the conveyor and the engagement member and/or lever to bias (e.g., “pull”) the engagement member towards the conveyor. As shown inFIGS. 1A,1B, and1C, the engagement member120may include a roller, such as by having the roller rotatably connected to the lever130. As such, as the object102enters into engagement with the engagement member120, the roller may physically contact and engage the object102, in which the roller may rotate about an axis that rotatably connects the roller to the lever130. This connection between the roller and the lever130may facilitate the movement of the object102along the conveyor110when entering into the system100and contacting and engaging the roller. However, those having ordinary skill in the art will appreciate that the present disclosure is not so limited, as the engagement member in accordance with the present disclosure may be any type of engagement member know in the art that may contact and engage an object, which may or may not be rotatably connected to the lever within the system, without departing from the scope of the present disclosure. In accordance with one or more embodiments of the present disclosure, a lever used within a system of the present disclosure may include one or more arms. For example, as shown inFIGS. 1A,1B, and1C, the lever130may include a single arm, such as by having the arm rotatably connected to the axis132with the engagement member130connected thereto. Those having ordinary skill in the art, however, will appreciate that the lever130may include more than one arm, such as by having a first arm connected to the axis132, with a second arm and/or a third arm connected to one or both ends of the first arm. In such an embodiment, the engagement member120and the measurement device140may be connected and/or operably coupled to the first arm, second arm, or third arm without departing from the scope of the present disclosure. Further, in accordance with one or more embodiments of the present disclosure, a measurement device used within a system of the present disclosure may include any measurement device known in the art. For example, the measurement device may include a mechanical, electrical, optical, and/or any other type of measurement device known in the art, in which the measurement device may be used to measure the movement and/or rotation of the lever and/or the engagement member as the lever and/or engagement member moves in response to the thickness of an object. As discussed above, a system in accordance with the present disclosure may be used to measure a thickness of an object, such as the thickness of a sheet product. For example, in paper handling systems or other similar systems, it may be necessary or desirable to detect a thickness of an object, such as the thickness or sheet quantity within a sheet product to determine whether the correct number of sheets is included within the sheet product. As such, a system and/or assembly of the present disclosure may be used within such an embodiment. In one or more embodiments, a system in accordance with the present disclosure may be used to not only measure a thickness of an object, but the system may also be used to determine if the object has too small or too large of a thickness for the purpose of the object. For example, if a sheet product has too many sheets or too few of sheets, when the system measures the thickness of the sheet product, the system may compare the measured thickness of the sheet product with a predetermined quantity and/or with the thickness of other sheet products that have been measured. If the thickness is greater or less than a given quantity or range, such as by comparing the measured thickness of the object with a certain tolerance (e.g., within 5% of a desired thickness), the system may be used to alert that the sheet product or object is too large or too small. This condition may allow the system to be stopped, in which the sheet product or object may be inspected to determine if the sheet product or object needs to be altered (e.g., add or remove particular sheets) for the desired purpose. For example, in one or more embodiments, when the object102B having a desired thickness is received into the system100and is measured, such as shown inFIG. 1B, the system100may allow the object102B to be received into the system100on the conveyor110and then out through the system100using the conveyor110. However, when the object102C having an undesired thickness, such as being too thick or too thin, is received into the system100and is measured, such as shown inFIG. 1C, the system100may allow the object102C to be received into the system100on the conveyor100, but the system100may send an alert to prevent the object102C from continuing to pass through the system100without being independently checked or verified. As such, in one or more embodiments, a system in accordance with the present disclosure may include a programmable logic controller and/or an amplifier. For example, as shown inFIG. 1A, the measurement device140, such as a fiber optic unit, may be included with and/or connected to an amplifier172and/or a programmable logic controller170. The programmable logic controller170may be used to receive an output from the measurement device, in which the programmable logic controller may use the output from the measurement device to determine a thickness of an object based upon the measurements taken using the measurement device. Further, the amplifier172may be used to amplify a signal from the measurement device, such as by using an optical amplifier to amplify an optical signal. As such, a programmable logic controller and/or an amplifier may be used in accordance with one or more embodiments of the present disclosure to facilitate measuring a thickness of an object. In particular, a programmable logic controller and/or an amplifier may be used when sending, receiving, and/or controlling signals from multiple devices and components, such as signals produced, sent, received, and/or controlled by a measurement device in accordance with the present disclosure. For example, the programmable logic controller may be used to determine the thickness of the object based upon the difference of the positions measured of the lever and/or the engagement member using the measurement device. The programmable logic controller may be used to determine if an object is too thick and/or too thin when measured for thickness, such as described above. Further, the system may be self-calibrating, such as by having the programmable logic controller automatically calibrate the system based upon an initial output from the measurement device received by the programmable logic controller when the system is originally activated or turned on. For example, in one or more embodiments, a calibration controller may be used to initiate a calibration process, such as when the engagement member is in a non-engaged position. After the calibration process has then been initiated and/or completed, movement of the engagement member away from the non-engaged position may be measured to correspond to a thickness of an object engaged by the engagement member. Furthermore, the system may be used to have only certain intervals or “gates” when measuring the thickness of an object, and then ignoring the measurements provided by the system otherwise. For example, a programmable logic controller may be used to only receive and/or read an output from the measurement device when an object has been received into the system, thereby enabling the system to ignore other information that may be irrelevant and/or otherwise confuse the system. Referring still toFIGS. 1A,1B, and1C, and as discussed above, the measurement device140may be used to measure the movement of the lever130and/or the engagement member120. In an embodiment in which the measurement device140is measuring the movement of the lever130, such as when the lever130moves with the engagement member120in response to the thickness of an object102, the measurement device140may be distanced further from the axis132of the lever130than the engagement member120. For example, the measurement device140may measure the free side134B of the lever130, in which the measurement device140may be further from the axis132of the lever130than the engagement member120on either the measurement side134B and/or the engagement side134A. By having the measurement device140further from the axis132than the engagement member120, this arrangement or configuration enables the measured movement of the lever130to be amplified when the engagement member120moves in response to the thickness of an object102. For example, in an embodiment in which the measurement device140is three times further from the axis132than the engagement member120, the measured movement of the lever130may be three times movement of the engagement member120when moving in response to the thickness of an object102. Such an arrangement or configuration may enable a system in accordance with the present disclosure to increase in accuracy when measuring a thickness of an object. Referring now toFIG. 2, a perspective view of a system200for measuring a thickness of an object in accordance with one or more embodiments of the present disclosure is shown. As with the above, the system200may include a conveyor210that may convey the object and an engagement member220that may move in response to the thickness of the object. Further, the system200may further include a lever230that may be connected to and movable with the engagement member220, such as rotatable about an axis232, and may include a measurement device240that may measure the thickness of the object based on a measured movement of the lever230. Further, as shown, a measurement device support250may be used to mount the measurement device240for measuring the movement or position of the lever230and/or the engagement member220. The measurement device support250may include one or more arms or brackets, such as to fix the measurement device240in a relative position within the system200. As shown inFIG. 2, the measurement device support250may be connected between the measurement device240and the lever230, such as the axis232of the lever230. Further, a deflection member260may be connected between the measurement device240and the lever230and/or the engagement member220, such as by having the deflection member260connected between the measurement device240and the measurement device support250. The deflection member260may be used to have the measurement device240deflect with respect to the measurement device support250, the lever230, and/or the engagement member220. For example, as shown inFIG. 2, the deflection member260may include a screw that may be selectively rotated to deflect an arm of the deflection member260with respect to the other portions of the deflection member260, thereby deflecting the measurement device240connected to the deflection member260. As such, by including the deflection member260, the measurement device240may be selectively deflected to have the measurement device240in a desired position for measuring the lever230and/or the engagement member220. As discussed above, in accordance with one or more embodiments, a fiber optic unit may be used as a measurement device240. In use, the fiber optic unit may emit therefrom and receive therein a light source, such as a focused beam of light from a light-emitting diode (“LED”). In such an embodiment, the amount of light received within the fiber optic unit may be used to measure the distance of the movement of the lever, such as when measuring the thickness of the object102received within the system100. In such an embodiment, the measurement device240may include a lens242and/or a lens kit with a fiber optic cable244operably coupled and connected to the lens242. As such, a modulated light source may be emitted through the lens242and received back through the lens242and into the cable244. In particular, in one embodiment, the light source may be sent out of an outer portion of the cable244, with an inner portion of the cable244then receiving the light source.
L'invention concerne une machine à distribuer uniformément des substances dispersibles ou liquides, notamment des grains ou des engrais, qui comporte un réservoir ainsi que des organes distributeurs répartis uniformément en direction- transversale à celle de la marche sur une barre centrale et sur des bras latéraux articulées au-delà du réservoir. Il s'agit de rendre repliables, de chaque c8té de la machine, un ou plusieurs bras latéraux et un traceur d'extrOmité pivotants. La machine conforme à l'invention est caractérisée par le fait que chaque bras latéral présente une articulation aussi bien à son extrémité extérieure qu'à son extrémité tournée vers la machine. L'articulation, déjà connue du bras à son extrémité voisine de la machine permet d'amener celui-ci à une position de transport par pivotement vers la machine autour d'un axe quelconque. La seconde articulation rend possible d'une part l'agencement pivotant d'un traceur capable d'être mis en action, hors l'action ou aussi dans une position de transport, d'autre part l'interposition d'un autre bras latéral à organes distributeurs également repliable en position dc transport. Les axes de pivotement peuvent être choisis verticaux, horizontaux ou obliques. En cas de fixation articulé d'un ou de plusieurs autres bras latéraux, le dernier à partir de la machine comporte une articulation supplémentaire sur son extrémité extérieure. Cette disposition permet d'articuler sur chacun des deux bras latéraux extérieurs un traceur que l'on peut ainsi par pivotement, mettre à volonté en position de transport, en mdme temps que le bras latéral correspondant, ou en action ou hors d'action. L'invention sera mieux comprise à l'aide d'un mode de réalisation pris comme exemple non limitatif et illustré par le dessin annexé, sur lequel t la fig. 1 est une vue an plan d'une machine conforme à ladite invention ; la fig. 2 est une vue de l'avant de la mdme machine. Cette machine 1 se compose essentiellement d'un réservoir d'alimentation 2, d'un dispositif de répartition 5 entratné par l'arbre 3 et le mécanisme 4, d'une barre centrale 6 et de deux bras latéraux 7, 7'. Le produit prélevé dans le réservoir~'2 est acheminé vers les organes distributeurs 9, agencés en ouvre-sillons, par l'intermédiaire du dispositif de répartition 5, des tubulures de sortie 8 et de canalisations non représentées sur le dessin. Les distributeurs 9 sont reliés par des leviers 10 a' la barre centrale 6 et aux bras latéraux 7, 7'. Ces derniers 7, 7' peuvent pivoter sur les articulations 11, 11' de la barre centrale 6. Chaque bras latéral 7, 7' comporte à son extrémité extérieure une autre articulation 12, 12' pour l'agencement pivotant des traceurs 13, 13'. Le levier à main 14 et les organes de traction 15, 15' assurent la mise en action ou hors d'action desdits traceurs 13, 13'. Les articulations 11, 11' et 12, 12'~permettent de replier en la position de transport représentée en trait discontinu sur la fig. 2 aussi bien les bras latéraux 7 7' que les traceurs 13, 13'0 On fixe les bras latéraux 7, 7' en cette position de transport sur le réservoir 2 au moyen des organes de serrage 16, 161. ~EVEXDICiTIONS lo Machine à distribuer uniformément des substances dispersibles ou liquides, notamment des grains ou des engrais, qui comporte un réservoir ainsi que des organes distributeurs répartis uniformément en direction transversale à celle de la marche sur une barre centrale et sur des bras latéraux articulés au-delà du réservoir machine caractérisée par le fait que chaque bras latéral 7, 7' présente une articulation 11, 111, 12, 12' aussi bien à son extrémité extérieure qutà son extrémité tournée vers la machine. 2.- Machine selon la revendication 1 caractérisée par le fait qu'en cas de fixation articulée d'un ou de plusieurs autres bras latéraux, le dernier de ces bras 'a partir de la machine comporte une articulation supplémentaire sur son extrémité extérieure.
HYDRAZONE AMIDE DERIVATIVE AND APPLICATION THEREOF IN PREPARATION OF MEDICAMENTS FOR PREVENTING AND TREATING ALOPECIA The present disclosure provides a brand-new hydrazone amide derivative and an application thereof in preparation of medicaments for preventing and treating alopecia. The structural formula of the hydrazone amide derivative is shown in formula (I), and the hydrazone amide derivative is a brand-new compound for stimulating hair follicle growth and preventing and treating alopecia. TECHNICAL FIELD The present disclosure relates to the field of biomedicine, in particular to a hydrazone amide derivative and use thereof as a hair follicle growth stimulator in preparation of medicaments for preventing and treating alopecia. BACKGROUND Alopecia is a skin disease characterized by hair loss. There are many kinds of alopecia, including alopecia areata, pseudo-alopecia areata, papular alopecia, alopecia totalis, alopecia caused by mental factors, alopecia caused by lack of nutrients, seborrheic alopecia, alopecia caused by drug chemotherapy, androgenetic alopecia, etc. Human hair not only has biological and physiological functions, but also plays an important role in psychology and sociology because hair thickness and hairstyle have obvious influence on human appearance. At present, with the improvement of living standards, people have increasingly demands for beauty. Hair loss affects the appearance and negatively affects the patient's psychology, thus reducing the patient's quality of life. It can be seen from various kinds of hair loss that many reasons cause hair loss, but the reasons for most hair loss are still unclear, which brings great difficulties to treatment. At present, the most effective methods for treating androgenetic alopecia are topical administration of minoxidil lotion and oral administration of finasteride (Chen Shuxin, Li Jiehua, Mo Yufang,Clinical observation on the clinical efficacy of minoxidil lotion combined with finasteride in treatment of androgenetic alopecia, International Medicine & Health Guidance News, 2006, 12(6):64-65.). According to experimental research, adding minoxidil (minuodier) can increase the growth time of cultured hair follicles in vitro. Minoxidil stimulates and maintains hair follicle growth, prolongs hair follicle growth period, enables tiny hair follicle to grow big and promotes hair papilla angiogenesis, thus playing an important role in the treatment of alopecia. Finasteride is a 4-azasteroid compound and is a specific inhibitor of intracellular enzyme type II 5α-reductase in the process of testosterone metabolism into stronger 5α-dihydrotestosterone. However, it has been proved that minoxidil and finasteride have significant defects so far. Local administration of minoxidil can cause side effects to some extent, such as rash, local inflammation, headache, hirsutism, etc., while oral administration of finasteride has been determined to produce hormone dysfunction that has potential negative effects on sexual life and have genetic and reproductive toxicity. Therefore, it is of great significance to develop new drugs for preventing and treating alopecia with small side effects. SUMMARY The inventor found that the drugs for treating osteoporosis have the function of treating alopecia. Based on this, the inventor of this application made further research on the basis of a new type of compound with anti-osteoporosis function discovered in the self-owned laboratory, and surprisingly found that this new type of compound with anti-osteoporosis function is still superior in stimulating hair follicle growth and preventing and treating alopecia, and has the advantage of less toxic and side effects, and has a wide market application prospect. In a first aspect of the present disclosure, the present disclosure provides a compound of Formula (I), or a stereoisomer, a geometric isomer, a tautomer, a nitrogen oxide, a hydrate, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug of the compound of Formula (I), in which: X and Y are each independently selected from C1-C6alkyl, hydroxyl, sulfhydryl, amino, nitro or cyano, wherein the C1-C6alkyl, the hydroxyl, the sulfhydryl and the amino are independently substituted with R1or R3; R1and R3are independently hydrogen, cyano, nitro, alkoxy, alkylamino, hydroxyl, amino, fluorine, chlorine, bromine, linear alkyl, cycloalkyl, alkenyl, a five- to ten-membered heterocyclic ring, a five- to ten-membered aromatic heterocyclic ring, or a benzene ring, or R1together with Y or R3together with X forms a five- to ten-membered heterocyclic ring or a five- to ten-membered aromatic heterocyclic ring, wherein the linear alkyl, the cycloalkyl, the alkenyl, the five- to ten-membered heterocyclic ring, the five- to ten-membered aromatic heterocyclic ring and the benzene ring are independently and optionally substituted with R′, R2is cyano, nitro, alkoxy, alkylamino, cycloalkyl, linear alkyl, alkenyl, a five- to six-membered ring, a five- to six-membered aromatic heterocyclic ring, or a benzene ring, wherein the linear alkyl, the cycloalkyl, the alkenyl, the five- to six-membered ring, the five- to six-membered aromatic heterocyclic ring and the benzene ring are independently and optionally substituted with R′, According to an embodiment of the present disclosure, X is an oxygen atom or an amine group; and Y is C1-C4alkylene, an oxygen atom, or an amine group. According to an embodiment of the present disclosure, R1is hydrogen or C1-C3linear alkyl. According to an embodiment of the present disclosure, R1is hydrogen or C1-C3linear alkyl. According to an embodiment of the present disclosure, R1is hydrogen or C1-C4alkyl; R2is a benzene ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring; and R3is a five- to six-membered heterocyclic ring containing N or O, a five-membered heteroaromatic ring containing N, O or S, a six-membered heteroaromatic ring containing one or two nitrogen atoms, a benzene ring, or or R3together with X forms a five- to ten-membered heterocyclic ring containing an N atom or an O atom. According to an embodiment of the present disclosure, R1is hydrogen; R2is a benzene ring; R3is a pyridine ring, a pyrimidine ring, a pyrazine ring, or R3together with X forms According to an embodiment of the present disclosure, the compound does not comprise a compound represented by formula (1): According to an embodiment of the present disclosure, it is a compound having one of the following structures, or a stereoisomer, geometric isomer, tautomer, nitrogen oxide, hydrate, solvate, metabolite, pharmaceutically acceptable salt or prodrug of the compound having one of the following structures: As a more preferred solution, compounds 2, 4, 24 and 28 among the above structural formulas have significant advantages in promoting hair follicle growth. In a second aspect of the present disclosure, the present disclosure provides a pharmaceutical composition including the compound described above. According to an embodiment of the present disclosure, the pharmaceutical composition further includes a pharmaceutically acceptable carrier, an excipient, a diluent, an adjuvant, a vehicle or any combination thereof. In a third aspect of the present disclosure, the present disclosure provides use of the compound described above or the pharmaceutical composition described above in manufacture of a medicament for stimulating hair follicle growth. In a fourth aspect of the present disclosure, the present disclosure provides use of the compound described above or the pharmaceutical composition described above in manufacture of a kit for stimulating hair follicle growth. In a fifth aspect of the present disclosure, the present disclosure provides use of the compound described above or the pharmaceutical composition described above in manufacture of a medicament for treating or preventing alopecia. Compared with the prior art, the present invention has the following advantages and effects: The hydrazone amide derivatives provided by the present disclosure can stimulate hair follicle growth to some extent, and have better safety. The hydrazone amide derivatives provided by the present disclosure have a simple structure and easy to synthesize; moreover, these compounds have low toxicity and can be safely used for preventing and treating alopecia. DESCRIPTION OF EMBODIMENTS Embodiments of the present disclosure are described in detail below, and examples of the embodiments are shown in the accompanying drawings. The embodiments described below with reference to the accompanying drawings are illustrative, which aims to explain the present disclosure, but should not be interpreted as limiting the present disclosure. The term “include” or “comprise” is an open-ended expression, i.e., including the content specified in the present disclosure but not excluding the content in other aspects. “Stereoisomers” refer to compounds that have the same chemical structure but differ in the spatial arrangement of atoms or moieties. Stereoisomers include enantiomers, diastereomers, conformational isomers (rotamers), geometric isomers (cis/trans isomers), atropisomers, etc. “Chirality” refers to a molecule that cannot overlap with its mirror image. “Achirality” refers to a molecule that can overlap with its mirror image. “Enantiomers” refer to two isomers of a compound that are each a mirror image of the other one but cannot overlap with each other. “Diastereomers” refer to stereoisomers that have two or more chiral centers and molecules of which are not mirror images of each other. Diastereomers have different physical properties such as melting point, boiling point, spectral properties and reactivity. A mixture of diastereomers can be separated by high-resolution analytical operations, for example, electrophoresis, and chromatography such as HPLC. The definitions and rules of stereochemistry used in the present disclosure generally follow “McGraw-Hill Dictionary of Chemical Terms (1984)”, S. P. Parker, Ed., McGraw-Hill Book Company, New York; and “Stereochemistry of Organic Compounds”, Eliel, E. and Wilen, S., John Wiley & Sons, Inc., New York, 1994. Many organic compounds exist in optically active forms, i.e., they are capable of rotating a plane of plane-polarized light. When describing optically active compounds, the prefixes D and L, or R and S are used to denote the absolute configurations of the molecule with respect to one or more chiral centers. The prefixes d and 1, or (+) and (−) are symbols used to specify a rotation of plane-polarized light caused by a compound, where (−) or 1 indicates that the compound is levorotatory, and the prefix (+) or d indicates that the compound is dextrorotatory. When specific stereoisomers are enantiomers, and a mixture of such isomers is called an enantiomeric mixture. A mixture of enantiomers in 50:50 is called a racemic mixture or a racemate, which may occur when there is no stereoselectivity or stereospecificity in a chemical reaction or process. Any asymmetric atom (for example, carbon, etc.) of the compound of the present disclosure can be present in a racemate- or enantiomer-enriched form, for example, present in (R)-, (S)-, or (R, S)-configuration. In some embodiments, in terms of (R)- or (S)-configuration, each asymmetric atom has an enantiomeric excess of at least 50%, an enantiomeric excess of at least 60%, an enantiomeric excess of at least 70%, an enantiomeric excess of at least 80%, an enantiomeric excess of at least 90%, an enantiomeric excess of at least 95%, or an enantiomeric excess of at least 99%. In accordance with the selection of starting materials and methods, the compounds of the present disclosure may be present as one of the possible isomers or a mixture thereof, such as a racemate and a mixture of diastereomers, depending on the number of asymmetric carbon atoms. The optically active (R)- or (S)-isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be in the E or Z configuration; and if the compound contains disubstituted cycloalkyl, the substituent of the cycloalkyl may have a cis or trans configuration. Any obtained mixture of stereoisomers can be separated into pure or substantially pure stereoisomers, enantiomers, diastereomers according to the differences in physical and chemical properties of components, for example, by chromatography and/or fractional crystallization process. The term “tautomer” or “tautomeric form” refers to structural isomers that have different energies and can be interconverted by crossing a low energy barrier. If tautomerism is possible (for example, in solution), a chemical equilibrium of tautomers can be reached. For example, protontautomer (also known as prototropic tautomer) includes interconversion through proton migration, such as ketone-enol isomerization and imine-enamine isomerization. Valence tautomer includes interconversion through recombination of some bonding electrons. A specific example of ketone-enol tautomerization is interconversion of 2,4-pentanedione and 4-hydroxy-3-penten-2-one tautomeric isomers. Another example of tautomerism is phenol-ketone tautomerization. A specific example of phenol-ketone tautomerization is interconversion of 4-hydroxypyridine and pyridin-4(1H)-one tautomeric isomers. Unless otherwise indicated, all tautomeric forms of the compound of the present disclosure shall fall within the scope of the present disclosure. In each part of the present specification, the substituents of the compounds disclosed in the present disclosure are disclosed according to the group types or ranges. In particular, the present disclosure includes each independent sub-combination of respective members within these group types and ranges. For example, the term “C1-C6alkyl” specifically refers to independently disclosed methyl, ethyl, C3alkyl, C4alkyl, C5alkyl, and C6alkyl. In each part of the present disclosure, linking substituents are described. When the structure clearly requires a linking group, the Markush variables listed for the group should be understood as the linking group. For example, if the structure requires a linking group and the Markush group definition of the variable recites “alkyl” or “aryl”, it should be understood that the “alkyl” or “aryl” respectively represents the linking alkylene group or arylene group. As described in the present disclosure, the compounds of the present disclosure can be optionally substituted with one or more substituents, such as the compounds represented by the above general formulas, or particular examples, subclasses, and a type of compounds included in the present disclosure. It should be understood that the term “optionally substituted” and the term “substituted or unsubstituted” are interchangeably used. Generally speaking, the term “optionally”, whether it precedes the term “substituted”, means that one or more hydrogen atoms in a given structure may be substituted or unsubstituted by specific substituents. Unless otherwise indicated, an optionally substituted group may have a substituent substituted at each substitutable position of the group. When more than one position in the given structural formula can be substituted by one or more substituents selected from specific groups, the substituents substituted at the respective positions can be the same or different from each other. The term “alkyl” used in the present disclosure includes linear or branched saturated monovalent hydrocarbyl group of 1-20 carbon atoms, where the alkyl can be independently and optionally substituted with one or more substituents described in the present disclosure. In some embodiments, the alkyl group contains 1-10 carbon atoms; in some other embodiments, the alkyl group contains 1-8 carbon atoms; in some other embodiments, the alkyl group contains 1-6 carbon atoms; in some other embodiments, the alkyl group contains 1-4 carbon atoms; in some other embodiments, the alkyl group contains 1-3 carbon atoms; and in some other embodiments, the alkyl group contains 2-6 carbon atoms. Further examples of the alkyl group include, but are not limited to, methyl (Me, —CH3), ethyl (Et, —CH2CH3), n-propyl (n-Pr, —CH2CH2CH3), isopropyl (i-Pr, —CH(CH3)2), n-butyl (n-Bu, —CH2CH2CH2CH3), 2-methylpropyl or isobutyl (i-Bu, —CH2CH(CH3)2), 1-methylpropyl or sec-butyl (s-Bu, —CH(CH3)CH2CH3), tert-butyl (t-Bu, —C(CH3)3), n-pentyl (—CH2CH2CH2CH2CH3), 2-pentyl (—CH(CH3)CH2CH2CH3), 3-pentyl(—CH(CH2CH3)2), 2-methyl-2-butyl(-C(CH3)2CH2CH3), 3-methyl-2-butyl(-CH(CH3)CH(CH3)2), 3-methyl-1-butyl (—CH2CH2CH(CH3)2), 2-methyl-1-butyl (—CH2CH(CH3)CH2CH3), n-hexyl (—CH2CH2CH2CH2CH2CH3), 2-hexyl (—CH(CH3)CH2CH2CH2CH3), 3-hexyl (—CH(CH2CH3)(CH2CH2CH3)), 2-methyl-2-pentyl (—C(CH3)2CH2CH2CH3), 3-methyl-2-pentyl (—CH(CH3)CH(CH3)CH2CH3), 4-methyl-2-pentyl (—CH(CH3)CH2CH(CH3)2), 3-methyl-3-pentyl (—C(CH3)(CH2CH3)2), 2-methyl-3-pentyl (—CH(CH2CH3)CH(CH3)2), 2, 3-dimethyl-2-butyl (—C(CH3)2CH(CH3)2), 3, 3-dimethyl-2-butyl (—CH(CH3)C(CH3)3), n-heptyl, n-octyl, etc. The term “alkane group” and its prefix “alkane” used herein both include straight and branched saturated carbon chains. The term “amino” refers to —NH2. The term “alkoxy” used in the present disclosure involves alkyl, as defined in the present disclosure, connected to a main carbon chain through an oxygen atom. Such examples include, but are not limited to, methoxy, ethoxy, propoxy, and the like. The term “cycloalkyl” refers to a monovalent or multivalent saturated monocyclic, bicyclic or tricyclic ring system containing 3-12 carbon atoms. The bicyclic or tricyclic ring system may include fused rings, bridged rings, and spiro rings. In an embodiment, cycloalkyl contains 3-10 carbon atoms; in another embodiment, cycloalkyl contains 3-8 carbon atoms; in another embodiment, cycloalkyl contains 3-6 carbon atoms. Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. The cycloalkyl group is optionally substituted with one or more substituents described in the present disclosure. The term “aryl” refers to a monocyclic, bicyclic and tricyclic carbon ring system containing 6-14 ring atoms, or 6-12 ring atoms, or 6-10 ring atoms, at least one ring of which is aromatic. The aryl group is usually, but not necessarily, connected to the core moiety through the aromatic ring of the aryl group. The term “aryl” can be used interchangeably with the term “aromatic ring”. Examples of the aryl may include phenyl, naphthyl, and anthranyl. The aryl group is optionally substituted with one or more substituents described in the present disclosure. The term “heteroaromatic ring” refers to a monocyclic, bicyclic and tricyclic ring system containing 5-12 ring atoms, or 5-10 ring atoms, or 5-6 ring atoms, at least one ring of which is aromatic and at least one ring of which contains one or more heteroatoms. The heteroaromatic ring is usually, but not necessarily, connected to the core moiety through the aromatic ring of the heteroaromatic ring. The term “heteroaryl” can be used interchangeably with the term “heteroaromatic ring”, “aromatic heterocyclic ring” or “heteroaromatic compound”. The heteroaryl group is optionally substituted with one or more substituents described in the present disclosure. In an embodiment, the heteroaryl group, consisting of 5 to 10 atoms, contains 1, 2, 3, or 4 heteroatoms independently selected from O, S, or N. As described in the present disclosure, a ring system with a substituent R′ connected to a core ring of the ring system through one bond represents that the substituent R′ can be substituted at any substitutable or any suitable position on the ring. For example, formula a represents that any substitutable position on the B′ ring can be substituted with R′, e.g., shown in formula b, formula c and formula d. In addition, it should be noted that, unless explicitly stated otherwise, the expressions used throughout the present disclosure such as “each of . . . and . . . is independently”, “ . . . and . . . are each independently” and “ . . . and . . . are respectively independently” are interchangeable and should be understood in a broad sense. They mean that in different groups, the specific options expressed by the same symbols do not affect each other; or in the same group, the specific options expressed by the same symbols do not affect each other. For example, in “—(C(R7)2)n1—NR8—(C(R)2)n1—”, the specific options of each R7can be the same or different, and the expressed specific items can also be the same or different; the specific options of each n1 can be the same or different, and the expressed specific items can also be the same or different. Further, for example, in formula (I), the specific options of each of R2, R3or R4may be the same or different, and the specific items expressed by R2, R3and R4may also be the same or different. The term “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable when administered to humans and generally do not produce allergies or similar inappropriate reactions, such as gastrointestinal discomfort, dizziness, and the like. Preferably, the term “pharmaceutically acceptable” as used herein refers to those approved by a federal regulatory agency or a national government or recorded in the US Pharmacopoeia or other generally recognized pharmacopoeia for use in animals, more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient or matrix that is administered together with the compound. These pharmaceutical carriers can be sterile liquids such as water and oils, including those derived from petroleum, animals, plants, or synthetic sources, such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. Water, aqueous saline solution, aqueous dextrose, and glycerite are preferably used as carriers, especially for injectable solutions. Suitable carriers of medicaments are described in “Remington's Pharmaceutical Sciences”, by E. W. Martin. The “hydrate” of the present disclosure refers to the compound or its salt provided by the present disclosure with chemical or non-chemical equivalent water bonded thereto by non-covalent intermolecular force, i.e., an associated complex formed when the solvent molecule is water. The “solvate” of the present disclosure refers to an associated complex formed by one or more solvent molecules and the compound of the present disclosure. The solvents for forming the solvate include, but are not limited to, water, isopropanol, ethanol, methanol, dimethyl sulfoxide, ethyl acetate, acetic acid, and aminoethanol. The “nitrogen oxide” of the present disclosure means that, when the compound contains several amine functional groups, one or more nitrogen atoms can be oxidized to form N-oxide. Specific examples of N-oxides are N-oxides of tertiary amines or N-oxides of the nitrogen atom of nitrogen heterocycle. An oxidant such as hydrogen peroxide or peracid (such as peroxycarboxylic acid) can be used to process a corresponding amine to form N-oxide (see Advanced Organic Chemistry, Wiley Interscience, 4th edition, Jerry March, pages). In particular, N-oxides can be prepared by the method by L. W. Deady (Syn. Comm. 1977, 7, 509-514), in which, for example, the amine compound reacts with m-chloroperoxybenzoic acid (MCPBA) in an inert solvent such as dichloromethane. The term “prodrug” used in the present disclosure indicates a compound that is converted into a compound represented by formula (I) in vivo. Such conversion is affected by a prodrug hydrolysis in blood or an enzymatic conversion into a parent structure in blood or tissues. The prodrug compounds of the present disclosure may be esters. In the present disclosure, the esters serving as prodrugs include phenyl esters, aliphatic (C1-24) esters, acyloxymethyl esters, carbonate esters, carbamate esters and amino acid esters. For example, a compound in the present disclosure contains hydroxyl, which can be acylated to obtain a compound in the form of a prodrug. Other forms of the prodrug include phosphate esters, for example, the phosphate ester compounds obtained by phosphorylation of the hydroxyl group on the parent structure. For a full discussion of prodrugs, please refer to the following literatures: T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, J. Rautio et al., Prodrugs: Design and Clinical Applications,Nature Review Drug Discovery,2008, 7, 255-270, and S. J. Hecker et al., Prodrugs of Phosphates and Phosphonates,Journal of Medicinal Chemistry,2008, 51, 2328-2345. All tautomeric forms of the compounds of the present disclosure are included in the scope of the present disclosure, unless otherwise indicated. In addition, the structural formulas of the compounds described in the present disclosure include enriched isotopes of one or more different atoms, unless otherwise indicated. The present disclosure includes isotopically-labeled compounds, which are equivalent to the compounds represented by formula (I), but one or more atoms thereof are replaced by atoms with atomic mass or mass number different from the common atomic mass or mass number in nature. Examples of isotopes that can be introduced in the compounds of the present disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, and chlorine, such as2H,3H,13C,11C,14C,15N,18O,17O,31P,32P, 35S,18F and36Cl. The compounds of the present disclosure containing the above isotopes and/or other isotopes of other atoms, prodrugs thereof, and pharmaceutically acceptable salts of the compounds or the prodrugs all fall within the scope of the present disclosure. The isotopically-labeled compounds of formula (I) of the present disclosure and their prodrugs can generally be prepared in this way: when performing the following procedures and/or the processes disclosed in the examples and preparation examples, the non-isotopically labeled reagents are replaced by the isotopically-labeled reagents that are easily available. “Metabolite” refers to a product obtained by metabolizing a specific compound or its salt in vivo. The metabolite of one compound can be identified by techniques well known in the art, and its activity can be characterized by assays as described in the present disclosure. Such a product may be obtained through oxidation, reduction, hydrolysis, amidation, deamidation, esterification, de-esterification, or enzyme cleavage of the administrated compound, or the like. Accordingly, the present disclosure includes the metabolites of the compound, including metabolites produced by fully contacting the compound of the present disclosure with a mammal for a period of time. Various pharmaceutically acceptable salt forms of the compounds of the present disclosure are useful. The term “pharmaceutically acceptable salts” refers to the salt forms that are apparent to pharmaceutical chemists, that is, they are substantially non-toxic and can provide the desired pharmacokinetic properties, palatability, absorption, distribution, metabolism or excretion. Other factors, which are more practical in terms of properties and are also important in terms of selection, include: the cost of raw materials, ease of crystallization, yield, stability, hygroscopicity, and fluidity of the resulting crude drugs. In brief, the pharmaceutical composition can be prepared from an active component and a pharmaceutically acceptable carrier. As used herein, a “pharmaceutically acceptable salt” refers to an organic or inorganic salt of the compound of the present disclosure. The pharmaceutically acceptable salts are well known in the art, as described in the literature: S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19, 1977. Salts formed by pharmaceutically acceptable non-toxic acids include, but are not limited to, inorganic acid salts formed by reacting with amino groups, including hydrochloride, hydrobromide, phosphate, sulfate, perchlorate, nitrate, etc; and organic acid salts such as acetate, propionate, glycollate, oxalate, maleate, malonate, succinate, fumarate, tartrate, citrate, benzoate, mandelate, methanesulfonate, ethanesulfonate, tosylate, sulfosalicylate, etc., or the salts obtained through other methods such as ion exchange described in book literatures. The present disclosure also contemplates quaternary ammonium salts formed by any compound with a group containing N. Water-soluble or oil-soluble or dispersed products can be obtained by quaternization. The salts of alkali metal or alkaline earth metal include sodium salts, lithium salts, potassium salts, calcium salts, magnesium salts, iron salts, zinc salts, copper salts, manganese salts, aluminum salts, etc. The pharmaceutically acceptable salts further include suitable and non-toxic ammoniums, quaternary ammonium salts and amine cations formed by counterions, such as halides, hydroxides, carboxylates, hydrosulfates, phosphates, nitrates, C1-8sulfonates and aromatic sulfonates. The ammonium salts, such as but not limited to N, N′-dibenzylethylenediamine, chloroprocaine, choline, ammonia, diethanolamine and other hydroxyalkylamines, ethylenediamine, N-methyl glucosamine, procaine, N-benzylphenethylamine, 1-p-chlorobenzyl-2-pyrrolidine-1′-ylmethyl-benzimidazole, diethylamine and other alkylamines, piperazine, and tris(hydroxymethyl)aminomethane; alkaline earth metal salts, such as but not limited to barium, calcium and magnesium; transition metal salts, for example, including, but not limited to zinc. In this specification, the structure shall prevail if the chemical name is different from the chemical structure. Unless otherwise specified, the abbreviations of any amino acids and other compounds used in the present disclosure are the commonly used and recognized abbreviations, or refer to IUPAC-IUB Commission on Biochemical Nomenclature (see Biochem. 1972, 11: 942-944). One object of the present disclosure is to provide a new compound with the effect of stimulating hair follicle growth. A second object of the present disclosure is to provide a new compound with remarkable effects in treatment or prevention of alopecia. A third object of the present disclosure is to provide a preparation method of the compound with the effect of stimulating hair follicle growth. A fourth object of the present disclosure is to provide use of the compound in treating or preventing alopecia. The compound provided by the present disclosure has significant activity in stimulating hair follicle growth, and can be used as a lead compound for treating or preventing alopecia. The present disclosure will be further illustrated below with reference to specific examples and drawings, but the examples do not limit the present disclosure in any form. Unless otherwise specified, the reagents, methods and devices adopted in the present disclosure are conventional reagents, methods and devices in the art. Unless otherwise specified, the reagents and materials used in the present disclosure are all commercially available. Example 1 Synthesis of Hydrazone Amide Derivatives The synthesis scheme of hydrazone amide derivatives is illustrated as above. Substituted acetoacetic acid, 1,3-dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP), and substituted alcohol or ammonia were added into dichloromethane, and stirred for 8 h at room temperature. The solvent was removed using a rotary evaporator, and the corresponding acetoacetamide or acetoacetate was obtained after purifying with column chromatography. Ammonias with different substituents were added to methanol, and hydrochloric acid and sodium nitrite in equal amounts were added and stirred at room temperature for 0.5 hours. Then, the substituted acetoacetamide or acetoacetate was added and stirred at room temperature for 10 hours, and the desired hydrazone amide derivatives were obtained after filtering. Example 2 Synthesis of Compound 1 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 150 mg of Compound 1, with a yield of 72%. Example 3 Synthesis of Compound 2 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 4-aminobenzoic acid reacted together to obtain 160 mg of Compound 2, with a yield of 77%. Example 4 Synthesis of Compound 3 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 3-aminobenzoic acid reacted together to obtain 141 mg of Compound 3, with a yield of 67%. Example 5 Synthesis of Compound 4 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 75 mg of methyl 2-aminobenzoate reacted together to obtain 187 mg of Compound 4, with a yield of 86%. Example 6 Synthesis of Compound 5 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 54 mg of 2-aminophenol reacted together to obtain 103 mg of Compound 5, with a yield of 53%. Example 7 Synthesis of Compound 6 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 62 mg of 2-aminobenzyl alcohol reacted together to obtain 155 mg of Compound 6, with a yield of 77%. Example 8 Synthesis of Compound 7 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 2-amino-3-methylbenzoic acid reacted together to obtain 124 mg of Compound 7, with a yield of 57%. Example 9 Synthesis of Compound 8 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 2-amino-4-methylbenzoic acid reacted together to obtain 132 mg of Compound 8, with a yield of 61%. Example 10 Synthesis of Compound 9 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 2-amino-5-methyl-benzoic acid reacted together to obtain 105 mg of Compound 9, with a yield of 49%. Example 11 Synthesis of Compound 10 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 77 mg of 2-amino-5-fluorobenzoic acid reacted together to obtain 108 mg of Compound 10, with a yield of 50%. Example 12 Synthesis of Compound 11 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 77 mg of 2-amino-4-fluorobenzoic acid reacted together to obtain 136 mg of Compound 11, with a yield of 62%. Example 13 Synthesis of Compound 12 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 81 mg of 2-amino-3-cyanobenzoic acid reacted together to obtain 92 mg of Compound 12, with a yield of 41%. Example 14 Synthesis of Compound 13 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 2-amino-4-cyanobenzoic acid reacted together to obtain 172 mg of Compound 13, with a yield of 78%. Example 15 Synthesis of Compound 14 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 91 mg of 2-amino-5-nitrobenzoic acid reacted together to obtain 167 mg of Compound 14, with a yield of 72%. Example 16 Synthesis of Compound 15 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 85 mg of 2-amino-5-chlorobenzoic acid reacted together to obtain 179 mg of Compound 15, with a yield of 79%. Example 17 Synthesis of Compound 16 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 4-amino-5-pyridinedicarboxylic acid reacted together to obtain 164 mg of Compound 16, with a yield of 79%. Example 18 Synthesis of Compound 17 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 4-amino-5-hydroxylbenzoic acid reacted together to obtain 133 mg of Compound 17, with a yield of 61%. Example 19 Synthesis of Compound 18 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 91 mg of 2-aminoisophthalic acid reacted together to obtain 111 mg of Compound 18, with a yield of 48%. Example 20 Synthesis of Compound 19 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 91 mg of 2-aminoterephthalic acid reacted together to obtain 141 mg of Compound 19, with a yield of 61%. Example 21 Synthesis of Compound 20 According to the procedure described in Example 1, 186 mg of ethyl 2-amino-4-methylthiazole-5-carboxylate, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 200 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, with a yield of 74%. 135 mg of ethyl-4-methyl-2-acetoacetylthiazolamide-5-carboxylate, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 76 mg of 2, 5-diaminobenzoic acid reacted together to obtain 130 mg of Compound 20, with a yield of 62%. Example 22 Synthesis of Compound 21 According to the procedure described in Example 1, 114 mg of 2-amino-4-methylthiazole, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 185 mg of 4-methyl-2-acetoacetylthiazolamide, with a yield of 93%. 100 mg of 4-methyl-2-acetoacetylthiazolamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 102 mg of Compound 21, with a yield of 59%. Example 23 Synthesis of Compound 22 As described in Example 1, 100 mg of 2-aminothiazole, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 139 mg of 2-acetoacetylthiazolamide, with a yield of 76%. 91 mg of 2-acetoacetylthiazolamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 102 mg of Compound 22, with a yield of 59%. Example 24 Synthesis of Compound 23 According to the procedure described in Example 1, 150 mg of 2-amino-benzothiazole, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 158 mg of 2-acetoacetylbenzothiazolamide, with a yield of 68%. 116 mg of 2-acetoacetylbenzothiazolamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 117 mg of Compound 23, with a yield of 61%. Example 25 Synthesis of Compound 24 According to the procedure described in Example 1, 92 mg of aniline, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 125 mg of acetoacetanilide, with a yield of 71%. 88 mg of acetoacetanilide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 97 mg of Compound 24, with a yield of 59%. Example 26 Synthesis of Compound 25 According to the procedure described in Example 1, 93 mg of 2-aminopyridine, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 104 mg of 2-acetoacetpyridinamine, with a yield of 59%. 88 mg of 2-acetoacetpyridinamine, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 85 mg of Compound 25, with a yield of 52%. Example 27 Synthesis of Compound 26 According to the procedure described in Example 1, 99 mg of 4-aminopiperidine, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 128 mg of 3-oxo-N-piperidine-4-butanamide, with a yield of 70%. 91 mg of 3-oxo-N-piperidine-4-butanamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 75 mg of Compound 26, with a yield of 45%. Example 28 Synthesis of Compound 27 According to the procedure described in Example 1, 133 mg of tetrahydroisoquinoline, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 129 mg of 1-tetrahydroisoquinolinebutyl-1,3-dione, with a yield of 60%. 108 mg of 1-tetrahydroisoquinolinebutyl-1,3-dione, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 86 mg of Compound 27, with a yield of 47%. Example 29 Synthesis of Compound 28 According to the procedure described in Example 1, 88 mg of morpholine, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 106 mg of acetoacetylmorpholinylamine, with a yield of 63%. 85 mg of acetoacetylmorpholinylamine, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 89 mg of Compound 28, with a yield of 56%. Example 30 Synthesis of Compound 29 According to the procedure described in Example 1, 119 mg of 2-amino-5-cyanopyridine, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 137 mg of 5-cyanopyridine-2-acetoacetamide, with a yield of 67%. 101 mg of 5-cyanopyridine-2-acetoacetamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 88 mg of Compound 29, with a yield of 50%. Example 31 Synthesis of Compound 32 According to the procedure described in Example 1, 110 mg of 2-amino-6-hydroxylpyridine, 206 mg of DCC, 10 mg of DMAP, and 102 mg of 3-oxobutyric acid reacted together to obtain 160 mg of 6-hydroxylpyridine-2-acetoacetamide, with a yield of 83%. 96 mg of 6-hydroxylpyridine-2-acetoacetamide, 0.5 ml of hydrochloric acid (1M), 34 mg of sodium nitrite, and 70 mg of 2-aminobenzoic acid reacted together to obtain 106 mg of Compound 30, with a yield of 62%. Example 32 Animal Experiments Experiment method: 100 8-week-old female mice were divided into 10 groups with 10 mice in each group. They were randomly divided into a normal group, a model group and administration groups. The mice in the model group and the administration groups were fasted overnight and subjected to bilateral ovariectomy after anesthesia with 0.1 ml of 10% chloral hydrate. After the bilateral ovariectomy, penicillin injection 0.1 ml/per mouse was injected once a day for seven times to prevent infection. After 4 weeks of modeling, the experiment was carried out by oral administration. The medicament was prepared with normal saline, and administered 10 mg/kg/day to each mouse in the administration groups. The normal group and model group were given only normal saline. After 4 weeks of administration, the hair on the back of the mice was observed. Cured: Alopecia was completely cured, with no difference with the normal group. Ameliorated: Alopecia was ameliorated, with significant difference from the model group, but small difference from the normal group. Ineffective: Alopecia was not ameliorated, with no difference from the model group. The therapeutic effect is shown in Table 1. It can be seen from Table 1 that the total effective rates of compounds 2, 4, 24 and 28 were all 100% o. The cure rates of compounds 2, 24 and 28 were 100% o. As shown inFIGS. 3, 8 and 9, the hair of mice given these three drugs could be completely recovered, with no difference from the normal group (FIG. 1). The results show that these compounds can effectively promote the growth of hair and can be used as a new class of drugs for treating alopecia. In the description of this specification, the description referring to the terms “an embodiment”, “some embodiments”, “an example”, “specific examples”, or “some examples” means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expression of the above terms does not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials, or characteristics may be combined in any one or more embodiments or examples in any suitable manner. In addition, without contradicting each other, different embodiments or examples and features of different embodiments or examples described in the specification can be combined by those skilled in the art. Although the embodiments of the present disclosure have been shown and described above, it should be understood that the above-mentioned embodiments are illustrative and shall not be interpreted as limiting the present disclosure, and within the scope of the present disclosure, those skilled in the art can make changes, modifications, replacements and variations to the above embodiments.
20000S5 On. peut préparer des polymères de formule H H 0 5 0« C-0 par un procédé connu, par fusion de l'acide 3,3'-dicarboxybenzi-10 dine-NjN'-diacétique avec des alcalis et oxydation subséquente. Une autre synthèse pour préparer les polymères précités, utilise le même composé que l'on fait réagir avec 1'anhydride acétique et l'acétate de sodium, le produit de réaction est ensuite saponifié et on provoque la polymérisation par oxydation. 15 les produits pouvant être obtenus par ces procédés sont re lativement d'un poids moléculaire faibleo Ils sont solubles dans l'acide trifluoroacétique, dans l'acide sulfurique concentré et partiellement dans le diméthylsulfoxyde ou dans une solution alcaline d'hyposulfite. En outre leur spectre infra-rouge qui pré- A 20 sente à 1725 cm une "bande indiquant la présence de groupes C«0 —1 non conjugués terminaux et à 3334- cm une "bande indiquant la présence de groupes NH términaux indique que les chaînes moléculaires sont relativement courtes, car avec l'augmentation du poids moléculaire ces "bandes disparaissent» 25 On obtient également des polymères relativement de "bas poids moléculaire d'après un procédé similaire dans lequel on fait intervenir comme matières de départ outre les dérivés benzidiniques, également les dérivés phényl inique s, naphthyléniques et diphény-lèniques analogues» La réaction s'effectue de préférence d'après 30 les principes ci-dessus indiqués. Les produits qui se séparent "bien qu'ils possèdent une très bonne résistance à la température sont solubles dans les lessives alcalines. La présente invention a pour objet un nouveau procédé de synthèse pour la préparation de polymères résistant à des tempé-35 ratures élevées, contenant les enchaînements répétés : o 73 2000055 10 O H .C^Ar^C. t n H O où R désigne tua groupe phénylène, diphénylène, diphényléther, di-phénylméthane ou naphtylène et ^ signifie isomérie. Le procédé est caractérisé par le fait qu'on chlorure en solution des dérivés bis-(2,4-dioxypyridine) aromatiques condensés, de formule générale' 15 o jl M' o«=c_ 0 H OH I Ar ÎE2 A Hi Ar a H on COH 20 qu'on alcoxyle le produit de chloruration avec de l'alcoolat de sodium/de potassium, qu'on décarboxyle le produit intermédiaire obtenu en solution alcoolique, aqueuse ou alcoolique - aqueuse et qu'enfin on effectue la cyclisation avec polymérisation simultanée à des températures comprises entre 20 et 300°C et de préférence entre 100 et 200°C en présence d'un acide et de préférence en présence d'acide polyphosphorique» On peut obtenir les dérivés bis-(2,4—dioxypyridine) aroma-^5 tiques condensés, par réaction du diester d'acide diaryl-diami-nomalonique avec de l'acide polyphosphorique, le diester de l'acide diaryl-diaminomalonique étant de préférence des produits de réaction d'esters maloniques avec des diamines aromatiques comme la phénylènediamine, la benzidine, la diphénylétherdiamine, la 30 diphénylméthanediaminé ou la naphtylènediamine. Le procédé selon l'invention est schématisé par les réactions ci-après : BAD ORIGINAL 69 00095 2000055 F g ■» C.^ 0.0" 71 No I Ar i H2\ /S, /° . C F 0Ho I 2 c«o N I H H i Nv S G. IL G. 0-cf pci2 Ohloruration ^ gj, C-O. i 1 0 H 10 15 20 + EO" - Cl ï ï Jî Cv /\ \ OE 0-C Ar eo4 / \ » EO / \ïï-c eo • o N.' \ 0 M c-c: OE \ OE NH, (H+) - EOH + H20 (OH") O n - co. H N •G Ar 0« ^ n/ t H G' n Les polymères obtenus sont de couleur bleu foncé à noir, 25 ils sont insolubles dans les solvants connus et infusibles* En atmosphère d'azote, ils sont stables jusqu'à environ 500°G et ce n'est qu'à des températures supérieures qu'ils commencent à se décomposer lentement avec scission d'ammoniaque* Si l'on effectue la polycondensation c'est-à-dire le der-30 nier stade de la réaction dans de l'acide chlorhydrique ou sulfu-rique bouillant on obtient encore des molécules relativement courtes dont le spectre infra-rouge présente des bandes CO iso-lées à 1730 cm . Par contre on n'observe pas la présence de telles bandes dans le spectre infra-rouge de polymères que l'on 35 obtient par réaction de polycondensation à environ 100°G« en présence d'acide polyphosphorique. Ici les vibrations CO des polymères conjugués sont déplacées vers des longueurs d'onde plus courtes (1600 cm"*'')* L'invention sera mieux comprise à l'aide des exemples non 00095 2000055 limitatifs suivants ! i IRYWPT.'K 1 a) chloruration s On chauffa à 1'ébullition 11.,2 g de bis—[2,4-dihydroxy». 5 quiïiolyl~(6) ]-méthane dans un mélange de W il de dioxane, 20 e! d'acide chlorhydrique concentré et de 8 ml d'eau. Après avoir éloigné la source de chaleur on y ajoute goutte à goutte, tout en agitant, 35 ml de solution de à 30 %, de façon que la réaction exothermique se poursuive avec ébullition lente. Après IQ la fia de l'addition de î^Og on laisse bouillir encore pendant 15 mi pour continuer la réaction puis on refroidit le mélange, à la suite de quoi l'huile précédemment séparée cristallise progressivement dans toute sa masse. Après séparation par filtratioa on obtient des cristaux jaunes qui recristallisés dans le dioxa-15 ne ou dans un mélange dioxane/eau peuvent être reprécipités. On obtient 14,5 g soit 92 % de la théorie de bis-[l,2,3,4—tétra-hydro-3,3-dichloro-2,4-dioxo-quinolyl-(6)]-méthane (I) fondant à 145°0o Analyse î C H H Cl 20 Calculé : 48,33 2,14 5,93 30,04 Trouvé î 48,6 2,6 5,68 29,6 h) méthoxylation î On ajoute à une solution de 7 g de sodium dans 125 ml de méthanol une suspension de 23,6 g de composé (I) dans 125 ml 25 de méthanol absolu. On laisse chauffer le mélange au reflux pendant 5 nui et la réaction s'effectue avec des solutions du produit chloréo Après refroidissement à la température ambiante on verse la solution sur un mélange de 25 ml de HC1 concentré et 350 ml d'eau glacée et on sépare par filtration après une heure de re-30 pos le bis-[l,2,3, 4-tétrahydro-3,3-diméthoxy-2,4-dioxo-quino-lyl-(6)]-méthane, (II) et on lave le précipité avec de l'eau neutre» On obtient 21 g de produit soit un rendement de 92 Aprè:: recristallisation dans l'isopropanol le produit fond à 144°C« 35 Analyse : C H y Calculé : 60,79 4,88 6,16 Trouvé 60,8 5,3 6,07 c) décarboxylation : On chauffe au reflux, dans une atmosphère d'azote, 10 g 40 de composé (II) dans 50 ml de HaOH 2N, tout en agitant. Après re^ BAD ORIGINAL 69 00095 200005S froidissement, du milieu réactionnel une huile se sépare. On décante la solution aqueuse surnageante, on verse sur l'huile un peu de méthanol, à la suite de quoi l'huile *e solidifie lentement sous forme de masse cristalline. On sépare par aspiration la 5 solution surnageante et on obtient 7,5 g soit 85 % de la théorie de bis-[l-amino-2-(glyoxal-diméthylacétalyl)-phényl-4)]-méthane (III), sous forme de cristaux jaunes. Après recristallisation dans le méthanol le produit fond à 89-90°C. Analyse t G H ' N 10 Calculé 62,67 6,51 6,96 trouvé 62,3 6,8 6,9 d) polycondensation : On chauffe pendant 1 heure à 100°C, 3 g de composé (III) dans de l'acide chlorhydrique à 20 %• Très rapidement, avec scis-15 sion d'alcool, ee sépare un composé de couleur "bleu foncé à noir ayant la structure suivante 20 v A CHo A J xr xk .CO. ^ _CH,_ _ , \CN. ^ On sépare le produit par filtration, on le lave jusqu'à neutralité et on le sèche, les rendements sont quantitatifs. le polymère précipité présente dans son spectre infra-rouge à côté des bandes CO conjuguées à 1600 cm encore des bandes C0 isolées 25 terminales à 1700 cm"" . Ceci semble indiquer qu'il s'agit encore d'une molécule polymère à courte chaîne. Si on effectue la polycondensation dans 5 ml d'acide phos-phorique en chauffant pendant 3 h à 100°C, on obtient des polymères ayant tin poids moléculaire plus élevé que le composé pré-30 cité de formule IV. On dilue le mélange après refroidissement à la température ambiante avec de l'eau, on aspire le précipité à la trompe, on le lave jusqu'à neutralité et le sèche. Le spectre ✓ \ «I infra-rouge ne montre pas de bande CO isolée à 1730 cm • Le polymère est insoluble dans les solvants usuels j il est infusi-35 ble et dans tme atmosphère d'azote il est stable jusqu'à 500°Co •RYKMPLE 2 a) chloruration t On chauffe à l'ébullition comme dans l'exemple^1, 11,2 g de bis—[2,4-dihydroxy-quinolyl-(6)j-éther, dans 40 ml/dioxane, é9 00095 2000055 20 ml de HC1 concentré et 8 ml d'eau et on y ajoute 35 ml de H2O2 à 30 %. Le traitement et la purification s'effectuent comme ci-dessuso On obtient 14,5 g de Lbis-(1,2,3,4-tétrahydro-3,3-dichloro-2,4-dioxoquinolyl-(6)]-éther (V) = soit 92 % de la théorie, P.F. : 160°C. Analyse : G H N Cl 10 29,91 29,4 Calculé : 45,60 1,70 5,90 Trouvé : 45,9 1,9 5,87 t») méthoxylation : On fait réagir 23,7 g de composé V avec 7 g de sodium dans du méthanol absolu èt on traite comme dans l'exemple 1. On obtient 21 g soit 92 % de la théorie, de bis-[l,2,3,4—tétrahydro-3,3-diméthoxy-2,4-dioxoquinolyl-(6)]-éther (VI). Après recristallisation dans l'isopropanol le composé fond à 151°C« 15 Analyse s G H N Calculé î 57,89 4,42 6,14 Trouvé s 58,0 4,8 6,4 c) décarboxylation : On fait réagir 10 g de composé méthoxy VI, comme dans 20 l'exemple 1, avec NaOH 2N et on continue le traitement comme dans l'exemple 1o On obtient 6,4 g soit 72 % de la théorie de bis-[l-amino-2— (glyoxal-diméthyl-acétaly1)-phényl-4]-é ther (VII) sous forme de cristaux jaunes. Après recristallisation issis du méthanol, le 25 produit fond à 94°C. C H N 59,40 5,98 6,93 59,8 6,08 6,6 d) polycondensation î 30 On chauffe pendant une heure à 100°C, 3 g de composé VII dans de l'acide chlorhydrique à 20 %. Il se produit scission d'alcool et formation d'un composé de couleur bleu foncé à noir ayant la structure ci-après : Analyse : Calculé Trouvé 35 VIII tV 69 00091» 7 2000055 On sépare ce produit par filtration à la trompe, on le a ve à. m. lté et on le sèche. Le rendement est quantitatifo I e polyKbï-o précipité présente dans son spectre infra-rouge à «si efrcé des bandes 00 conjuguées à 1600 ci" également des bandes 5 GO isolées i"sr-iain*3es à 1730 cm » Ceci indique qu'il s'agit d'un polymère à chaîne courte. Si on effectue la polycondensation dans 5 ml d'acide poly-phc-sphoriq^e en chauffant pendant 3 h à 100°C, on obtient des i olymôx es do formule YIII précitée ayant un poids moléculaire sm-10 périeur. On dilue ensuite le mélange avec de l'eau après refroidissement. à la température ambiante7on sépare le précipité par filtration à la trompe, on le lave jusqu'à neutralité et on le sèche» Le spectre infra-rouge ne montre aucune bande CO isolée à 1730 cm~*^ mais uniquement le déplacement des vibrations CO eon- —1 15 juguées à 1600 cm • Ce polymère est insoluble dans les solvants usuels, il est infusible et dans une atmosphère d'azote il est stable jusqu'à 500oCo •pTTRMPT.-g 5 a) chloruration : 20 Comme dans l'exemple 1 on fait réagir 10,7 g de bis-[2,4- dihydroxy-quinoline-(6)] dans 40 ml de dioxane, 20 ml d'acide chlorhydrique concentré et 8 ml d'eau® On ajoute 35 ail de H^Og à 30 % et on traite comme dans l'exemple 1c On obtient 14,5 g de bis-[1,2,3,4^-tétrahydro-3*3-dichloro-25 2,4-dioxo-quinoline-(6)] (IX) fondant à une température supérieure à 350°C. On purifie ce produit par cristallisation dans un mélange de * tétrahydrofurane/eau» Analyse : _Ç_ H N Calculé t 47,19 1,76 6,11 30 Trouvé : 47,4 1,9 5,9 b) méthoxylation : On fait réagir comme dans l'exemple 1, 22,9 g de composé II avec 7 g de sodium dans du méthanol absolu, on continue l'opération comme dans l'exemple 1. On obtient 21 g soit 95 % de la 35 théorie de bis-[l,2,3,4-tétrahydro-3,3-diméthoxy-2,4-dioxo-quino~ line-(6)] (X) fondant à 300°C. Analyse t __C_ _H_ N Calculé : 59,9 4,58 6,36 Trouvé : 58,9 4,52 6,93 40 c) dé c ar boxyl at i on : ^ BAD ORIGINAL 69 00095 8 2000055 10 15 On chauffe comme dans l'exemple 1 à 11ébullition 10 g de composé (X) avec 50 ml de NaOH 2 H et on continue le traitement comme dans l'exemple 1. On obtient 2,5 g soit 28 % de la théorie de bis-[l-amino-2-(glyoxal-diméthylâcétalyl-phényl-4) XI sous fos me de cristaux jaunes fondant à 145°C. Analyse s C H- S Calculé : 61,84 6,23 2,21 Trouvé : 61,9 6,48 6,9 d) polycondensation : On chauffe à 100°C, 3 g de eomposé XI dans de 1'acide chlorhydrique à 20%. Il se sépare rapidement, avec scission d'al® cool, tin composé de couleur bleu foncé à noir ayant la structure suivante t (xii) m. 20 On sépare le produit par filtration à la trompe, on le la ve à la neutralité et on le sèche. Les rendements sont quantita-^ tifs. Le polymère précipité présente dans son spectre infra-rou-ge à côté des bandes CO conjuguées à 1600 cm" également des bandes CO isolées terminal» à 1730 cm • Ceci indique qu'il s'a-25 git d'une molécule de polymère à courte chaîne» Si on effectue la polycondensation dans 5 ni d' acide phoeuphorique , en chauffant pendant 3 h à 100°C, on obtient des polymères de formule XII dé poids moléculaire plus élevé. On dilue le mélange, après refroidissement à la température ambiante, avec 30 de l'eau,on aspire le précipité à la trompe^on le lave à neutralité et on le.sècheo Le spectre infra-rouge ne montre aucune ban- —1 de CO isolée à 1730 cm mais uniquement des vibrations CO con- i juguées à 1600 cm"" . Le polymère est insoluble dans les solvants usuels, il est infusible et sous atmosphère d'azote il est 35 stable jusqu'à 500°. * bad origine i9 0009S « 2000055 20 ketetoicatiohs 1. Procédé de préparation de polymères résistant à des températures élevées et présentant des enchaînements répétés de formule t O N H » /°\ /N .c xa/ c. \(/ H M O 10 où R résigne un groupe phénylène, diphény2ène,diphényléther, di-phénylméthane, ou naphtylène, ^ indique isomérie, caractérisé par le fait qu'on chlorure en solution des dérivés his-(2,4-dioxypyridine) aromatiques condensés de formule générale t 15 OH OH ,/°V HoC' "Ar i n./ H r/\ /° S » H 0*2 «O HO^ ^Ar^^^H H0\ Scos H qu'on alcoyle le produit de chloruration avec de 15alcoolat de sodium ou de potassium, qu'on décarhoxyle le produit intermédiaire qui se sépare, @n solution alcoolique,, aqueuse ou alcoo-25 lique-aqueuse et qu'enfin on effectue la cyclisation avec polymérisation simultanée à des températures comprises entre 20 et 300°C et de préférence entre 100 et 200°C, en présence d'un acide. 2. Procédé suivant la revendication 1 caractérisé par le 30 fait qu'on effectue la réaction de polycondensation en présence d'acide polyphosphorique®
Syntactic polyurethane elastomers for use in subsea pipeline insulation Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polymer polyol which has a liquid polyether polyol as a continuous phase and polymer particles dispersed in the liquid polyether polyol, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry. This invention relates to syntactic polyurethane elastomers useful as subsea pipe and architecture insulation. Subsea pipelines are used globally to deliver petroleum and/or natural gas from subsea wellhead collection facilities at the ocean surface. Cold sea temperatures can cause solid waxes and hydrates to form as the production fluids are pumped to the surface. This problem is ameliorated by applying a thermally-insulating layer to the exterior of the pipe. Rigid polyurethane foams are widely used as thermal insulation. These are commonly made by reacting a polyisocyanate with a curing agent in the presence of a blowing gas. The blowing gas becomes trapped in cells in the foam. The trapped gas is largely responsible for the thermal insulation properties of the foam. In most applications, the polyurethane insulating foams are rigid materials. However, a highly rigid polyurethane is unsuitable as subsea pipeline insulation, because its mechanical strength is not sufficient to withstand high pressures typically encountered in subsea applications. The foam densifies and can collapse under the pressure of the seawater, and the densified material is a poor thermal insulator. In addition, the material is too brittle to withstand bending the pipeline undergoes during production, installation and use. An elastomeric insulating material is needed. Therefore, so-called “syntactic” elastomers have been developed for the subsea pipeline applications. The syntactic elastomers contain hollow microspheres embedded in an elastomeric polyurethane matrix. The microspheres are generally made of glass or other hard material that can withstand the high undersea pressures. The polyurethane matrix is a reaction product of a polyisocyanate, a “polyol” component and a “chain extender”. The “polyol” is typically a polyether having 2 to 4 hydroxyl groups and an equivalent weight per hydroxyl group of 1000 to 6000. The “chain extender” is typically a diol having an equivalent weight of up to about 125. 1,4-butanediol is the most commonly used chain extender in these applications. The polyol, chain extender and polyisocyanate are mixed and cured in the presence of the microspheres to form the syntactic foam. The curing reaction requires a catalyst to obtain reasonable production rates. For decades, the catalyst of choice has been an organomercury type, phenylmercury neodecanoate. This organomercury catalyst has many benefits. It provides a very useful curing profile. Reaction systems containing this organomercury catalyst react slowly at first and build viscosity gradually for a period of time. This characteristic provides valuable “open time”, during which the reaction mixture can be degassed and introduced into the mold or other place where it is to be cured. After this slow initial cure, the polymerization rate accelerates, so curing times are reasonably short. Polyurethanes made using organomercury catalysts also have very good physical properties. The organomercury catalysts are coming under regulatory pressure, and there is now a desire to replace them with different catalysts. Although a very wide range of materials is known to catalyze the curing reaction, it has proven to be very difficult to duplicate the performance of the organomercury catalysts. Many catalysts fail to provide the favorable curing profile of organomercury catalysts. Even when the curing profile can be approximated using alternative catalysts, the good physical properties obtained using organomercury catalysts have proven to be difficult to duplicate. One catalyst that has found use in syntactic polyurethane elastomer applications is a mixture of a zinc carboxylate and a small amount of a zirconium carboxylate. This catalyst provides a curing profile similar to, but not quite as beneficial as, the organomercury catalysts. However, a very significant and previously unknown problem has been found when using this catalyst. The applied syntactic elastomer tends to crack. The cracking problem can be quite pronounced when the substrate has a complex exterior geometry such as pipe segments when the substrate is branched or contains external surface features. Another problem seen when using non-organomercury catalysts is that the polyurethane does not bond well to itself. This is a very significant shortcoming. It is common to apply the thermal insulation in multiple layers or to apply the thermal insulation to different portions of the substrate at different times. A bondline is formed where the separate layers or sections come into contact. Even when a single layer of polyurethane insulation is applied, bondlines can form when the reaction mixture divides into multiple flow fronts as it flows around the part and the separate flow fronts meet. When the polyurethane does not adhere to itself very strongly, cracks appear at the bondlines. This leads to a loss of thermal insulation efficiency and can expose the underlying substrate to the corrosive effects of seawater. What is needed in the art is a method of making a syntactic polyurethane elastomer, which does not contain a mercury catalyst, which is resistant to cracking even when cast in confined complex geometries and which bonds well to itself. This invention is in one aspect a cured syntactic polyurethane elastomer which is a reaction product of a reaction mixture comprising one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of based on the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst, wherein the reaction mixture is essentially devoid of mercury compounds. The invention is also a method for making a syntactic polyurethane elastomer, comprising a) forming a reaction mixture containing at least one polymer polyol having a continuous phase containing one or more polyether polyols including a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst, wherein the reaction mixture is essentially devoid of mercury compounds, and b) curing the reaction mixture to form the syntactic polyurethane elastomer. The process of the invention is suitable for applying a syntactic polyurethane elastomer to a substrate. Substrates of interest are parts that require thermal insulation. Subsea pipe and architecture is a substrate of particular interest. An important advantage of this invention is that the syntactic polyurethane elastomer adheres well to itself and to other cured polyurethane elastomers. This is an especially important advantage when multiple sections of the syntactic polyurethane elastomer are applied to a substrate, these sections are in contact with each other, and good bonding between the sections is wanted. Thus, in certain embodiments, the invention is a process for producing a substrate having an applied syntactic polyurethane elastomer. This process comprises the steps of a) forming a first section of syntactic polyurethane elastomer on at least a portion of the substrate by (i) applying a first reaction mixture containing one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst to at least a portion of the substrate, wherein the first reaction mixture is substantially devoid of mercury compounds, and (ii) at least partially curing the first reaction mixture to form the first section of syntactic polyurethane elastomer, and then b) forming a second section of syntactic polyurethane elastomer on at least a portion of the substrate by (i) applying a second reaction mixture containing one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined the weight of particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst to at least a portion of the substrate and in contact with the first section of syntactic polyurethane elastomer to form at least one bondline between the first section of syntactic polyurethane elastomer and the second reaction mixture, wherein the second reaction mixture is substantially devoid of mercury compounds, and (ii) at least partially curing the second reaction mixture to form the second section of syntactic polyurethane elastomer adherent to the first section of syntactic polyurethane elastomer. The polymer polyol has a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 dispersed polymer particles. The dispersed polymer particles constitute, 1 to 50 wt.-%, preferably 5 to 25 wt.-%, of, the combined weight of the particles and all polyether polyol(s) in the reaction mixture. The hydroxyl equivalent weight of the polyether polyol preferably is at least 1500 and is preferably up to 3000. The polyether polyol(s) preferably have a nominal functionality of 2 to 6, preferably 2 to 4 and more preferably 2 to 3. The “nominal functionality” of a polyether polyol refers to the average number of oxyalkylatable groups per molecule on the initiator compound(s) used to make the polyether polyol. Actual functionalities may be somewhat lower than nominal functionalities in some instances. Initiators that are useful for producing the polyether polyol(s) include, for example, water, ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propane diol, dipropylene glycol, tripropylene glycol, glycerin, trimethylolpropane, trimethylolethane, pentaerythritol and other aliphatic polyalcohols having a hydroxyl equivalent weight up to about 400. Primary and secondary amines are also useful initiators but may cause the polyols to be more reactive than desired, so hydroxyl-containing initiators are preferred. A preferred polyether polyol is prepared by adding propylene oxide and ethylene oxide to a difunctional or trifunctional initiator to produce a polyol having a hydroxyl equivalent weight of 1500 to 2500, especially 1800 to 2200, and containing 5 to 30% by weight polymerized ethylene oxide. The polymerized ethylene oxide may be randomly polymerized with the propylene oxide, may form one or more internal blocks and/or, most preferably, may form terminal blocks that result in primary hydroxyl groups. An especially preferred type of polyether polyol is made by homopolymerizing propylene oxide or randomly copolymerizing 75-99.9 weight percent propylene oxide and 0.1 to 25 weight percent ethylene oxide onto a trifunctional initiator, and optionally capping the resulting polyether with up to 30% by weight (based on total product weight) ethylene oxide to form a polyether polyol having an equivalent weight of at least 1000. This polyol preferably has an equivalent weight of 1000 to 3000, especially 1500 to 2500. The dispersed polymer particles may be, for example, polyurea, polyurethane, or a polymer of one or more vinyl monomers. The vinyl monomers can be, for example, various polyolefins (such as polymers and copolymers of ethylene), various polyesters, various polyamides, various polycarbonates, various polymers and copolymers of acrylic and/or methacrylic esters, a homopolymer or copolymer of styrene and the like. In some embodiments, the dispersed particles are styrene-acrylonitrile copolymer particles. The dispersed particles in some embodiments have particle sizes from 100 nm to 25 mm, more typically from 250 nm to 10 mm. The dispersed polymer particles preferably are grafted onto at least a portion of the polyether polyol molecules that form the continuous phase. Dispersions of polyurea particles can be prepared by reacting a primary or secondary amine with a polyisocyanate in the presence of the polyether polyol. Methods for producing polyurea dispersions are described, for example, in WO 2012/154831. Dispersions of polyurethane particles can be prepared by reacting a low equivalent weight polyol or aminoalcohol with a polyisocyanate in the presence of the polyether polyol. Methods for producing such dispersions are described, for example, in U.S. Pat. No. 4,305,857, WO 94/20558, WO 2012/154820. Dispersions of polymerized vinyl monomers can be prepared by the in situ polymerization of such monomers in the polyether polyol. Such methods are described, for example, U.S. Pat. Nos. 4,513,124, 4,588,830, 4,640,935 and 5,854,386. Alternatively, dispersions of this type can be formed in a melt dispersion process, in which a previously-formed vinyl polymer is melted and dispersed into the polyether polyol. Methods of this type are described in U.S. Pat. No. 6,613,827 and WO 2009/155427. The polymer polyol may be produced at a higher solids level and then diluted with additional polyether polyol to bring the solids content down to the aforementioned ranges. The additional polyether polyol can be the same as or different than that used to prepare the higher solids polyether polyol. The additional polyether polyol can be added as a separate component of the reaction mixture that is cured to form the syntactic polyurethane elastomer. For purposes of this invention, a chain extender is one or more compounds having two to three hydroxyl groups and a hydroxyl equivalent weight of up to 125. A preferred type of chain extender is an aliphatic glycol or glycol ether. The aliphatic glycol is a straight-chain or branched alkane having two hydroxyl groups. The glycol ether is a straight-chain or branched aliphatic ether or polyether. The hydroxyl equivalent weight preferably is up to 100 and more preferably up to 75. The hydroxyl groups are preferably on different carbon atoms. The chain extender more preferably is a straight-chain compound in which the carbon atoms are bonded to the terminal carbon atoms. Examples of chain extenders are ethylene glycol, 1,2-propylene glycol, 1,3-propane diol, 1,4-butane diol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, glycerin, trimethylol propane, trimethylolethane, or an alkoxylate of any of the foregoing having an equivalent weight of up to 125. Preferred among these are the α,ω-alkylene glycols such as ethylene glycol, 1,3-propane diol, 1,4-butane diol and 1,6-hexane diol. 1,4-butanediol is especially preferred. A preferred amount of chain extender is 5 to 25 parts by weight for 100 parts by weight of the polyether polyol. A still more preferred amount is 10 to 20 parts by weight on the same basis. Especially preferred polyisocyanates are diphenylmethane diisocyanate (MDI), including the 2,4′-, 2,2′- and 4,4′-isomers or mixtures of two or more of such isomers, “polymeric” MDI products which include a mixture of MDI and one or more polymethylene polyphenylisocyanates, and modified MDI products that contain uretondione, uretonimine, isocyanurate, biuret, allophonate, carbodiimide, urethane or urea linkages and have an isocyanate equivalent weight of 130 to 200. A preferred isocyanate index is 90 to 125, and a still more preferred isocyanate index is 90 to 115. The catalyst is a non-mercury catalyst, by which is meant a catalyst that does not contain mercury compounds other than possibly as a trace impurity (constituting no more than 0.1% by weight of the weight of the catalyst). The catalyst (and the amount used) preferably is selected to provide a slow initial reaction for a period of 1 to 10 minutes, followed by an accelerated cure. The catalyst may be a thermally activated type, such as an encapsulated or blocked type. Various types of amines and metal urethane catalysts are useful, including, for example, certain tertiary phosphines such as a trialkylphosphine or dialkylbenzylphosphine; chelates of metals such as Be, Mg, Zn, Cd, Pd, Ti, Zr, Al, Sn, As, Bi, Cr, Mo, Mn, Fe, Co and Ni; metal salts of strong acids, such as ferric chloride, stannic chloride, stannous chloride, antimony trichloride, bismuth nitrate and bismuth chloride; strong bases, such as alkali and alkaline earth metal hydroxides, alkoxides and phenoxides; alcoholates or phenolates of various metals, such as Ti(OR)4, Sn(OR)4and Al(OR)3, wherein R is alkyl or aryl, and the reaction products of the alcoholates with carboxylic acids, beta-diketones and 2-(N,N-dialkylamino)alcohols; alkaline earth metal, Bi, Pb, Sn or Al carboxylate salts; and tetravalent tin compounds, and certain tri- or pentavalent bismuth, antimony or arsenic compounds. Also useful are blocked amine catalysts as described in WO 2013/04333, copper catalysts as described in WO 2012/06263, zinc catalysts as described in WO 2012/06264, and substituted bicyclic amidine catalysts as described in WO 2013/002974. A preferred catalyst is a zinc carboxylate catalyst. The zinc carboxylate catalyst is a zinc salt of a carboxylic acid. The carboxylic acid is preferably a monocarboxylic acid having 2 to 24, preferably 2 to 18, more preferably 6 to 18 and especially 8 to 12, carbon atoms. A mixture of carboxylates may be present. All or a portion of the zinc carboxylate catalyst may engage in a rearrangement to form species which contain Zn—O—Zn linkages. These species are considered as zinc carboxylates for purposes of this invention. The preferred zinc carboxylate catalyst may be used by itself or in combination with one or more other metal carboxylate catalysts. The other metal may be, for example, a group 3-12 metal other than mercury. The zinc carboxylate preferably constitutes at least 90 weight percent, at least 99 weight percent or at least 99.9 weight percent of such a mixture. A particularly useful catalyst mixture is a mixture of 98-99.99 weight percent of one or more zinc carboxylates and 0.01 to 2 weight percent of one or more zirconium carboxylates. Such a mixture may contain small amounts (up to 5 weight percent, more preferably up to 0.5 weight percent and even more preferably up to 0.01 weight percent) of other metal (other than mercury) carboxylates. The amount of zinc carboxylate catalyst may be 0.01 to 1 part, preferably 0.01 to 0.5 part and more preferably 0.01 to 0.2 parts per 100 parts by weight polyether polyol. In some embodiments, no nitrogen-containing catalyst, tin catalyst, or other catalyst for the reaction of polyol groups with isocyanate groups is present. The reaction mixture is also essentially devoid of mercury compounds, preferably containing no more than 0.01 weight percent mercury, more preferably containing no more than 0.001 weight percent mercury. The microspheres consist of a shell, which encapsulates either a vacuum or a gas. The shell is approximately spherical. It defines a hollow space, which contains the encapsulated vacuum or gas. The gas may be, for example, air, nitrogen, oxygen, hydrogen, helium, argon, a hydrocarbon or other gas. The shell is capable of withstanding the pressures encountered during the use of the syntactic polyurethane elastomer. The shell may be, for example, glass or other ceramic. The microspheres are generally of the non-expandable type. Non-expandable types are preferred. The microspheres may have a density of, for example, 0.1 to 0.6 g/cc. The particle size preferably is such that at least 90 volume percent of the microspheres have a diameter of 5 to 100 μm, preferably 10 to 60 μm. Glass microspheres are preferred. Suitable microspheres include commercially available products such as 3M™ Microspheres from 3M Corporation and Expancel™ microspheres from Akzo Nobel. The microspheres constitute 5 to 50 weight percent, preferably 15 to 30 weight percent of the reaction mixture and the resulting syntactic polyurethane elastomer. Upon curing, the microspheres become embedded in a polyurethane matrix that forms in the curing reaction. Apart from the presence of the microspheres themselves, the polyurethane matrix is preferably non-cellular, as a cellular material becomes easily crushed under high submarine pressures. Accordingly, the reaction mixture preferably has at most very small quantities (such as up to 0.5% by weight in total) of water or other chemical or physical blowing agent. Preferably, physical blowing agents and chemical blowing agents other than water are not added into the reaction mixture. Commercially available polyether polyols often contain small amounts, such as up to 0.25 weight percent, of water, and this water may be carried into the reaction mixture with the polyether polyol(s). Other starting materials may contain similarly small amounts of water. It is preferred, however, not to add water in addition to that (if any) carried in with the raw materials and it is in any case preferred that the reaction mixture contains no more than 0.25 weight percent water, preferably no more than 500 parts per million, based on the entire weight of the reaction mixture. Moreover, it is preferred to include one or more components that function to help prevent foaming. One such component is a water scavenger, i.e., a material that adsorbs or absorbs water or otherwise ties up any water as may be present and thereby reduce the ability of that water to react with isocyanates during the curing reaction. Zeolites, molecular sieves, fumed silica and other desiccants can be used for this purpose. An anti-foam agent of various types can be used. The anti-foam agent acts to destabilize any gas bubbles as may form in the reaction mixture and cause them to collapse. Water scavengers and anti-foam agents are typically used in small amounts, such as 0.1 to 5 parts by weight per 100 parts by weight of the polyether polyol. The reaction mixture may contain one or more isocyanate-reactive materials in addition to the chain extender and the polyether polyol described above. However, such isocyanate-reactive materials, if used at all, are preferably used in small amounts, such as up to 5 parts by weight total per 100 parts by weight of the polyether polyol and more preferably up to 2 parts or up to 0.5 parts by weight total per 100 parts by weight of the polyether polyol. Examples of additional isocyanate-reactive materials of this type are polyester polyols, polyether polyols having equivalent weights of less than 1000, crosslinkers (compounds having 3 or more hydroxyl groups or 1 or more primary or secondary amino groups and an equivalent weight of up to 250), and the like. Other optional ingredients include epoxy resins, particulate fillers (in addition to the microspheres), fibers, reinforcing agents, colorants, biocides, preservatives and antioxidants. Fillers, fibers and reinforcing agents may be used in weights up to 200 parts per 100 parts by weight polyether polyol, but preferably are used in small quantities, such as up to 50 parts or up to 20 parts by weight per 100 parts by weight polyether polyol, and may be omitted entirely. Colorants, biocides, preservatives and antioxidants preferably are used in very small quantities, such as up to 5 or up to 2 parts by weight per 100 parts by weight polyether polyol, if used at all. Another optional ingredient is a ß-diketone compound. The ß-diketone is a compound in which two keto groups are separated by a methylene group, including compounds having the structure: wherein each R is independently hydrocarbyl or inertly substituted hydrocarbyl. Preferably, each R is independently an alkyl group, which may be linear, branched or cyclic, which may by aryl-substituted or otherwise inertly substituted. More preferably, each R is independently an alkyl group (linear, branched or cyclic) having 1 to 8, especially 1 to 4 carbon atoms. The presence of a ß-diketone compound has been found to improve the bond between multiple sections of the syntactic polyurethane elastomer, when such sections are formed sequentially as described below. The bond strength is in some cases increased very substantially when the ß-diketone compound is present. Additionally, when the ß-diketone compound is included in the reaction mixture, the bond line, when visualized microscopically at a magnification of 100×, is often seen to have fewer defects, compared to when the ß-diketone compound is not present in an otherwise identical formulation, to the point that no defects are visible under such magnification. The bondline in some cases is no longer visible under such magnification. This effect is seen especially when the non-mercury catalyst is a zinc carboxylate catalyst. The ß-diketone compound may constitute, for example, at least 0.05, at least 0.06, or at least 0.10 to 1% of the combined weight of all components of the reaction mixture except the polyisocyanate(s). In some embodiments, the ß-diketone constitutes up to 0.5% or up to 0.25% of such weight. A preferred amount is 0.06 to 0.5%. A more preferred amount is 0.10 to 0.25% and a still more preferred amount is 0.1 to 0.2%, on the same basis as before. Alternatively, the amount of the ß-diketone compound can be expressed in terms of the amount of non-mercury catalyst, particularly when the non-mercury catalyst is a metal catalyst. The weight of ß-diketone compound may be, for example, 1 to 10, preferably 1 to 5, more preferably 2 to 5 and still more preferably 3 to 4 times that of the metal non-mercury catalyst(s). Still another optional ingredient is an epoxy resin, which may constitute, for example 1 to 15, preferably 3 to 10 and more preferably 3 to 7 percent of the combined weight of all ingredients except the polyisocyanate(s). The presence of the epoxy resin has been found to produce smaller hard segment domains, which in turn is believed to have a beneficial effect on the ability of the syntactic polyurethane elastomer to adhere to itself. Epoxy resins include, for example, glycidyl ethers of bisphenols, epoxy novolac resins, epoxy cresol resins, and the like, especially those having an epoxy equivalent weight of up to 500 or up to 250. A syntactic polyurethane elastomer is formed by mixing the various components and allowing them to cure. It is often convenient to formulate the components into a polyol component which contains the polyether polyol and chain extender (and any other isocyanate-reactive species, as may be present) and a separate isocyanate component that contains the polyisocyanate(s). Other ingredients can be formulated into either the polyol or isocyanate component, although it is typical to formulate most or all of these into the polyol component. To make the polyurethane, the polyol component and isocyanate component are mixed at proportions sufficient to provide an isocyanate index as indicated above, and allowed to cure. The components can be heated when the polyisocyanate and isocyanate-reactive materials are mixed, or can be mixed at ambient temperature. Preheating can be to 30 to 100° C., for example. The components are generally cured in a mold; the mold can be preheated if desired to a similar temperature. Heat can be applied throughout the curing process if desired, but this is not always necessary or desirable, as the curing reaction is exothermic. Curing is performed until the syntactic polyurethane elastomer has developed enough strength to be demolded without permanent damage or distortion. Once demolded, the syntactic polyurethane elastomer can be post-cured if desired. The cured syntactic elastomer includes a polyurethane matrix formed in the curing action, in which the microspheres are embedded. The content of microspheres will generally be essentially the same as the content of microspheres in the reaction mixture. As before, the polyurethane matrix preferably is non-cellular apart from the presence of the embedded microspheres. The invention has particular advantages in applications in which multiple sections of the syntactic polyurethane elastomer are applied to a substrate, such that the successively-applied sections meet and form a bondline. In such embodiments, a first reaction mixture as described herein is applied to the substrate and at least partially cured to form a first section of syntactic polyurethane elastomer. The curing in this step is continued until the polymer has developed enough green strength to be demolded (if in a mold) or otherwise to maintain its shape during subsequent operations. Then, a second reaction mixture as described herein is applied to the substrate and in contact with the first section of syntactic polyurethane elastomer. This forms a bondline between the first section of syntactic polyurethane elastomer and the second reaction mixture. The second reaction mixture is then at least partially cured to form the second section of syntactic polyurethane elastomer adherent to the first section of syntactic polyurethane elastomer. The bond strength at the bondline is preferably at least 5 MPa, more preferably at least 6 MPA and still more preferably at least 8 MPa, as measured by ASTM D638, modified such that the test sample contains the bondline. The foregoing process can be extended to any number of applied sections. The individual sections may cover all or only a portion of the substrate. The second and any successive sections may be applied on top of the first section, to form a multilayer syntactic polyurethane coating. Alternatively, the different sections may be applied to adjacent portions of the substrate such that the later-applied section(s) come into contact with one or more earlier-applied section(s) to form a bondline. By “bondline”, it is meant the point or points at which the sections are in contact with each other. Pipelines (including subsea pipelines or land pipelines) and subsea architecture are substrates of particular interest to this invention. Such a substrate can be made of any material that is suitable for its intended use, provided it can withstand the temperatures of the polyurethane-curing process. Polymeric and ceramic materials can be used to make the substrate, and these materials can be reinforced if desired. The preferred materials of construction for pipelines and subsea architecture are metals, especially steel. The substrate may also be coated with a corrosion inhibiting material, including, for example, fusion-bonded epoxy, thermally-sprayed aluminum, a liquid-curable epoxy resin, and the like, prior to being coated with thermal insulation. Pipe segments may be, for example, 1 to 20 meters in length, and 2 centimeters to 2 meters in diameter. The pipe segments may have diameters of at least 10 centimeters or at least 15 centimeters, and may have diameters up to 1 meter, up to 0.5 meters or up to 0.35 meters. The applied coating of syntactic polyurethane elastomer may be 1 to 25 centimeters thick and is preferably 2.5 to 10.2 centimeters thick. The ends of the pipe segments may be flanged or otherwise adapted (via various fittings, for example) to be joined to an adjacent pipe segment to produce a joint between the adjacent pipe segments. The pipe or undersea architecture may be linear or have a more complex structure. It may be, for example, branched, curved or have other non-linear configurations. It may have external features that protrude partially or completely through the applied syntactic polyurethane elastomer section(s). Another significant advantage of this invention is that the syntactic polyurethane elastomer section(s) are very resistant to cracking at or near branch points and at or near sites at which protrusions partially or completely through the layer(s). Prior to this invention, this performance has been difficult to achieve without using mercury catalysts. For pipe and undersea architecture applications, the syntactic polyurethane elastomer may be applied in thicknesses of 2.5 to 20 cm, especially 5 to 12 cm. These thicknesses are usually sufficient to provide the necessary thermal insulation. The following examples are provided to illustrate the invention and are not intended to limit the scope thereof. All parts and percentages are by weight unless indicated otherwise. EXAMPLE 1 AND COMPARATIVE SAMPLES A AND B The Polyether Polyol is a nominally trifunctional polyether made by adding propylene oxide and then ethylene oxide to a trifunctional initiator. The Polyether Polyol contains about 15% ethylene oxide by weight. It contains mainly primary hydroxyl groups and has a hydroxyl equivalent weight of about 2050. The Polymer Polyol is a graft dispersion of styrene-acrylonitrile particles in the Polyether Polyol. The Polymer Polyol contains about 40% by weight of the dispersed styrene-acrylonitrile particles. The Zn/Zr catalyst is a mixture of zinc and zirconium carboxylates in which the weight ratio of zinc to zirconium is 99-99.5:0.5-1. The catalyst contains some species having M-O-M linkages, wherein M stands for the metal, i.e. either Zn or Zr. The organomercury catalyst is a commercial grade of phenylmercury neodecanoate. The microspheres are 3M grade S38HS glass microspheres. Polyisocyanate A is a modified MDI having an isocyanate equivalent weight of 163 and an isocyanate functionality of about 2.1. Polyurethane Elastomer Example 1 and Comparative Samples A and B are made from the formulations set forth in Table 1. TABLE 1Ingredient (parts by weight)Comp. A*Comp. B*Ex. 1Polyether Polyol62.462.647Copolymer Polyol0015.61,4-Butanediol10.610.611.8Organomercury catalyst0.3500Zn/Zr catalyst00.030.03Acetylacetone00.180.18Water scavenger2.52.52.5Antifoam agent0.020.020.02Microspheres23.623.623.6Polyisocyanate ATo 104 indexTo 104 indexTo 104 index% Dispersed polymer0010%particles, based on polyetherpolyolsNote:for purposes of this invention, the mixture of the Polyether Polyol and Copolymer Polyol are together considered as the “polymer polyol” component; i.e., in Example 1, the Copolymer Polyol is considered to have been diluted with the Polyether Polyol to form a polymer polyol in which the solids content is 10% by weight. Syntactic polyurethane elastomers are made from each of these formulations. The polyol, chain extender, water scavenger and antifoam agent are mixed on a laboratory mixer, followed by the catalyst and microspheres. The polyisocyanate is then mixed in. The resulting reaction mixture is then poured into sections1and2of the mold illustrated inFIG. 1and allowed to cure. As shown inFIG. 1, mold5includes base7and walls6which define a mold cavity. The overall mold length is 317 mm. Risers4extend upward from base722 mm from each end through the depth (from front-to-rear, as shown inFIG. 1) of the mold cavity. Risers4are 22 mm high and 25 mm wide. Removable insert8rests in the mold cavity, dividing the mold cavity into two sections (designated by reference numerals1and2inFIG. 1), which are mirror images of each other. Insert8has a trapezoidal cross-section, and extends across the entire depth of the mold cavity. The top and bottom surfaces of insert8are 153 and 58 mm long, respectively. Walls10of insert8rise from base7at about an angle of about 45° from horizontal. To make Example 1, the reaction mixture poured into sections1and2is cured isothermally at 50° C. For Comparative Samples A and B, the curing temperatures are 70 and 120° C., respectively. After this curing step, insert8is removed from the mold. This leaves two sections of cured elastomer in the mold, one residing in section1of the mold cavity and the second residing in section2of the mold cavity. The space occupied previously by insert8(designated as section3inFIG. 1b) is now unfilled. A fresh batch of the reaction mixture is prepared, poured into section3and cured as before. The resulting syntactic polyurethane elastomer in each case consists of three sections, as shown inFIG. 2. Syntactic polyurethane elastomer14includes two sections A, which correspond, respectively, to sections1and2of the mold cavity. Section B corresponds to section3of the mold cavity. Bondlines12exist at the interface between Section B and each Section A. To test the adhesion of Section B to an adjacent Section A, test specimen13is cut from elastomer14along dotted line11(FIG. 2). As shown inFIG. 3, test specimen13includes a portion of Section B and one of Sections A of elastomer14, and includes a portion of one of the bondlines12. For each of the samples, the strength of bondline12is evaluated according to ASTM D638, modified to use the test sample containing the bondline. The ultimate stress at failure is taken as an indication of the bond strength between the adjacent sections of each sample. Results are as indicated in Table 2. Comparative Sample A represents a traditional system based on a mercury catalyst. The data for Comparative Sample A represents a baseline case. When the mercury catalyst is replaced with the Zn/Zr catalyst (Comparative Sample B), the bond strength is reduced by two-thirds. Example 2 shows the effect of using a polymer polyol. Bond strength exceeds the level obtained with the mercury catalyst, even though the Zn/Zr catalyst is used. As a further evaluation of the bondline, micrographs are taken of each of Comparative Samples A and B and Example 1. These micrographs formFIGS. 4-6, respectively. As seen inFIG. 4, almost no noticeable bond line is seen when the system is catalyzed with an organomercury catalyst (the location of the bondline is indicated in each ofFIGS. 4-6by line “BL”). Comparative Sample B exhibits a wide bondline with poor adhesion, as seen inFIG. 5. This shows that the substitution of the mercury catalyst with the Zn/Zr catalyst does not allow one to approach the results obtained using the mercury catalyst. AsFIG. 6shows, the separation at bondline in Example 1 is insignificant, more closely resembling that of Comparative Sample A than Comparative Sample B.FIG. 6shows the effect of using the polymer polyol to provide dispersed polymer particles; substantial improvement in the bondline is seen, despite using the Zn/Zr catalyst which is shown in Comparative Sample B to lead to a poorer bondline in the absence of the polymer polyol. The defects in the bondline have an importance apart from their potential effect on bond strength, which may be small in a given case. The defects create pathways for water penetration during use in subsea applications (as well as others in which the coated substrate may be immersed). The water penetration over time can lead to hydrolysis of the polyurethane, debonding of the polyurethane from the substrate, corrosion of the underlying substrate, and loss of thermal insulation effect of the coating, among other problems. SPECIFIC EMBODIMENTS In specific embodiments, the invention is: 1. A cured syntactic polyurethane elastomer which is a reaction product of a reaction mixture comprising one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of based on the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst, wherein the reaction mixture is essentially devoid of mercury compounds. 2. The preceding embodiment, wherein the cured syntactic elastomer comprises a polyurethane matrix in which the microspheres are embedded. 3. Any preceding embodiment, wherein the cured syntactic elastomer forms a coating on a substrate. 4. A process for making a syntactic polyurethane elastomer, comprising forming a reaction mixture containing at least one polymer polyol having a continuous phase containing one or more polyether polyols including a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst, wherein the reaction mixture is essentially devoid of mercury compounds, and b) curing the reaction mixture to form the syntactic polyurethane elastomer. 5. Embodiment 4, wherein in step b) is performed on the surface of a substrate to form a coating of the syntactic polyurethane elastomer on the substrate. 6. A process for producing a substrate having an applied syntactic polyurethane elastomer, comprising the steps of a) forming a first section of syntactic polyurethane elastomer on at least a portion of the substrate by (i) applying a first reaction mixture containing one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined weight of the particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst to at least a portion of the substrate, wherein the first reaction mixture is substantially devoid of mercury compounds, and (ii) at least partially curing the first reaction mixture to form the first section of syntactic polyurethane elastomer, and then b) forming a second section of syntactic polyurethane elastomer on at least a portion of the substrate by (i) applying a second reaction mixture containing one or more polyether polyols including at least one polymer polyol having a continuous phase of a liquid polyether polyol having a hydroxyl equivalent weight of at least 800 and dispersed polymer particles, the dispersed polymer particles constituting 1 to 50 wt.-% of the combined the weight of particles and all polyether polyol(s) in the reaction mixture, 5 to 50 weight percent of microspheres based on the total weight of the reaction mixture, 1 to 30 parts by weight of a hydroxyl-terminated chain extender per 100 parts by weight of the polyether polyol(s), an aromatic polyisocyanate in amount to provide an isocyanate index of 80 to 130 and a non-mercury catalyst to at least a portion of the substrate and in contact with the first section of syntactic polyurethane elastomer to form at least one bondline between the first section of syntactic polyurethane elastomer and the second reaction mixture, wherein the second reaction mixture is substantially devoid of mercury compounds, and (ii) at least partially curing the second reaction mixture to form the second section of syntactic polyurethane elastomer adherent to the first section of syntactic polyurethane elastomer. 7. Embodiment 6, wherein the reaction mixture is essentially devoid of mercury compounds. 8. Embodiment 6 or 7, wherein the bondline has a bond strength of at least 5.0 MPa. 9. Embodiment 8, wherein the bondline has a bond strength of at least 8.0 MPa. 10. Any of embodiments 6-9, wherein the bondline is not visible under a magnification of 100×, and/or has no visible defects when visualized microscopically at a magnification of 100×. 11. Any of embodiments 4-10 wherein the substrate is a pipe (for subsea or land use) or undersea architecture. 12. Embodiment 11, wherein the pipe (for subsea or land use) or undersea architecture is branched, curved or has another non-linear configuration. 13. Embodiment 11 or 12, wherein the pipe (for subsea or land use) or undersea architecture has one or more external features that protrude partially or completely through the applied syntactic polyurethane elastomer. 14. Any preceding embodiment, wherein the polymer polyol is a graft dispersion of polyurea or polyurethane particles in the polyether polyol. 15. Any of embodiments 1-13, wherein the polymer polyol is a graft dispersion of particles of a vinyl polymer in the polyether polyol. 16. Embodiment 15, wherein the polymer polyol is a graft dispersion of particles of a homopolymer of polystyrene or a copolymer of styrene and acrylonitrile in the polyether polyol. 17. Any preceding embodiment, wherein the polyether polyol is prepared by adding propylene oxide and ethylene oxide to a difunctional or trifunctional initiator to produce a polyol having a hydroxyl equivalent weight of 1500 to 2500 and containing 5 to 30% by weight polymerized ethylene oxide, wherein the polymerized ethylene oxide is randomly polymerized with the propylene oxide and the polymerized ethylene oxide forms one or more internal blocks and/or forms terminal blocks that result in primary hydroxyl groups. 18. Any of embodiments 1-16, wherein the polyether polyol is made by homopolymerizing propylene oxide or randomly copolymerizing 75-99.9 weight percent propylene oxide and 0.1 to 25 weight percent ethylene oxide onto a trifunctional initiator, and optionally capping the resulting polyether with up to 30% by weight (based on total product weight) ethylene oxide to form a polyether polyol having an equivalent weight of 1500 to 2500. 19. Any preceding embodiment, wherein the chain extender is 1,4-butanediol. 20. Any preceding embodiment, wherein the non-mercury catalyst includes a zinc carboxylate. 21. Any preceding embodiment, wherein the reaction mixture contains 15 to 30 weight percent microspheres. 22. Any preceding embodiment, wherein in the cured syntactic polyurethane elastomer, the microspheres are dispersed in a non-cellular polyurethane matrix. 23. Any preceding embodiment, wherein the reaction mixture contains no more than 500 parts by weight of water per million parts by weight of the reaction mixture. 24. Any preceding embodiment, wherein the reaction mixture contains a ß-diketone compound. 25. Embodiment 24, wherein the ß-diketone is a compound having the structure: wherein each R is independently hydrocarbyl or inertly substituted hydrocarbyl. 26. Embodiment 25, wherein each R is independently a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms. 27. Embodiment 24, wherein the ß-diketone compound is one or more of acetylacetone (pentane-2,4-dione), hexane-2,4-dione, heptane-3,5-dione and 2,2,6,6-tetramethyl-3,5-heptanedione. 28. Any of embodiments 24-28, wherein the ß-diketone compound constitutes 0.05 to 1% of the combined weight of all components of the reaction mixture except the polyisocyanate(s). 29. Embodiment 28, wherein the ß-diketone compound constitutes 0.1 to 0.25% of the combined weight of all components of the reaction mixture except the polyisocyanate(s). 30. Any of embodiments 24-30, wherein the non-mercury catalyst is one or more metal catalyst(s), and the weight of the ß-diketone compound 1 to 10 times that of the metal non-mercury catalyst(s). 31. Embodiment 30, wherein the non-mercury catalyst is one or more metal catalyst(s), and the weight of the ß-diketone compound 2 to 5 times that of the metal non-mercury catalyst(s). 32. Embodiment 30, the non-mercury catalyst is one or more metal catalyst(s), and the weight of the ß-diketone compound 3 to 4 times that of the metal non-mercury catalyst(s). 33. Any preceding embodiment, wherein the reaction mixture contains at least one water scavenger.
, 2000056 69 00094, La présente invention a pour objet un procédé pour préparer des dérivés bis-(2,4-dihydroxypyridine)-aromatiques condensés de formule générale t 0 0 OH OH n n tt 15 20 25 30 H20 kr' ÇH2 ^ HjT xAr' CH oi\/\/'-° ^— ho\/v'0H 10 H H où Ar désigne un groupe aromatique et w signifie isomé- rie. Ar peut désigner t 0-0-0-00 où H désigne un groupe alkylène, un groupe cétonique, un atome d'oxygène ou de soufre. On trouve décrit dans la littérature un grand nombre de synthèses, destinées à préparer la 2,4-dihydroxyquinoléine H oc>. M ces synthèses ayant été exécutées entres autres par E. Ziegler et ses collaborateurs. D'après l'un de ces procédés on chauffe à 300°C environ le dianilide malonique ®a présence de chlorure d'aluminitua et on hydrolyse ensuite le 4—anilinocarbostyryle formé, à l'aide d'acide chlorhydrique et sous pression pour obtenir 35 la 2,4-dihydroxyqtiinolêineo D'après un autre procédé on fait réagir l'anilide malonique avec l'acide polyphosphorique dans le rapport d'environ 1:10 à 1?0°C. On a également préparé la 2,4-dihydroxyquinoléine à partir 40 de dianilide malonique ou de monoanilide malonique en présence 69 00096 2000056 d'acide polyphosphorique, le rapport du composé malonique à l'acide phosphorique étant d'environ 1:7* La température de réaction est comprise entre 100 et 150pCo On n'a jusqu'ici pas préparé des composés contenant deux noyaux 2,4--dihydroxypyridiniques condensés avec des noyaux aromatiques o On a découvert qu'on peut obtenir des composés de formule générale q OH NEL K 0. 10 Owsf ^ HO-^ m H2°- /°-° - H\ /\ ,JW» G NH C N « » 15 0 OH où Ar désigne un groupe aromatique précité et désigne iso- merie, en faisant chauffer à 180-300°C des groupes aryles de nature ci-dessus indiquée, avec de l'acide polyphosphorique, dans le rapport en poids 1:0,25 à 1:5, et en précipitant le produit 20 de réaction avec de l'eau glacée. On peut obtenir le dialkyl ester de l'acide diaryl-diamirLo-malonique, de façon connue, par réaction de l'ester malonique avec des diaminés aromatiques. On utilise selon l'invention com-cL me diaryl ester/acide diaryl-diamidomalonique, de préférence les 25 produits de réaction de l'ester de l'acide malonique avec la phé-nylène diamine, la benzidine, la diphénylétherdiamine, la diphé-nylméthanediamine et la naphtalènediaminé. Dans les diamines ayant deux noyaux les groupes aminés peuvent se trouver soit sur Tin seul noyau soit sur deux noyaux différents. 30 Les groupes alkyl esters des dialkyles esters d'acide diaryl-diamidomalonique sont de préférence des groupes méthyli-que ou éthylique « Les rapports en poids des dialkylesters de l'acide diaryl-diamidomalonique par rapport à l'acide phosphorique sont compris 55 entre 1:0,25 et 1:5» On utilise pour des raisons d'économie de préférence des quantités relativement faibles d'acide polyphosphorique. Lors de l'a précipitation du produit de réaction avec de l'eau glacée, l'acide polyphosphorique se trouve fortemeirfe dilué et on ne peut le récupérer par les procédés de rectification 40 usuels. Dans ces ca&, c^est—à-dire quand èn utilise de petites £•? 00096 3 2000056 quantités d'acide polyphosphorique, il est avantageux d'utiliser des températures de réaction supérieures à 200°G. La réaction est en général terminée après 30 mn environ. On laisse alors refroidir la masse réactionnelle et on précipite 5 le produit de réaction à l'aide d'eau glacée. Les composés précipités sont faciles à séparer par filtration et on les purifie par lavage à l'eau# Les réactions s'effectuent avec de très bons rendements qui correspondent à 90-100 % du rendement théorique. Les dérivés bis-(2,4-dihydroxypyridine)-aromatiques conden-10 sés selon l'invention constituent des matières de départ précieuses pour la préparation de colorants. L'invention sera mieux comprise à l'aide des exemples non limitatifs suivants : EXEMPLE 1 15 On ajoute à 10,7 g d'ester diéthylique de l'acide 4,4'- diphényléther-diamidomalonique, quelques gouttes (3 g environ) d'acide polyphosphoriqueon fond tout en agitant et on chauffe pendant 30 mn à 230°C« La réaction a lieu avec production importante de mousse. Après refroidissement on ajoute au produit réac-20 tionnel de l'eau glacée, on sépare par filtration le bis-i_2,4-di-hydroxyquinoléine-(6)]-éther et on le lave soigneusement avec de l'eau. Après séchage on obtient 7»9 g soit 94 % de la théorie d'une substance presque incolore, soluble dans les lessives et qui ne fond pas jusqu'à une température de 350°C. On peut faire 25 recristalliser cette substance dans le diméthylformamide. La comparaison des spectres dans 1'infra-rouge de l'ester d'acide malonique introduit avec le produit de réaction montre un déplace-ment des bandes amide à 3290 et 1.550 cm"" ainsi que de la bande CO ester à 1744 cm~^o 30 EXEMPLE 2 Comme dans l'exemple 1, on ajoute à 10,6 g d'ester dié-thylique d'acide 4,4*-diphénylméthane-diamido-malonique environ 3 g d'acide polyphosphorique et on chauffe pendant 30 mn à 230°C 69 00096 2000056 OHM 3 On dissout 103 g d'ester diéthylique d'acide diphényldiami-domalonique dans 350 g d'acide phosphorique et on chauffe pendant 30 mn à 180°C. On laisse ensuite refroidir le mélange réac-tionnel d'abord à l'air puis on le verse sur la glace. On laisse 5 déposer pendant quelques temps puis on sépare par filtration le bis-[2,4-dihydroxyquinoléine—(6)], on le lave avec de l'eau et on le sèche. Le produit est également soluble dans les lessives. Le rendement est de 95 % de la théorie. La comparaison des spectres infra-rouge de l'ester de l'acide malonique introduit et du pro-10 duit final montre un déplacement des bandes çmide et ester» -RTPlfPT.-R 4 On chauffe pendant 30 mn à 230°C, 4- g d'ester diéthylique de l'acide naphtalène-1,8-diamidodimalonique avec 10 g d'acide polyphosphorique. Après refroidissement on verse la solution 15 dans de l'eau glacée et on sépare le précipité par filtration. On obtient 90 % de 2,4,9,11-tétrahydro-quino-(7,8-h)-quinoléine qu'on peut faire recristalliser dans le diméthylformamide. Le point de fusion est supérieur à 300°G. Le spectre infra-rouge ne montre aucune bande ester à 1730 cm" ni de bande amide à 3.290 20 et 1.550 cm"\ RXWPT/R 5 On chauffe pendant 30 mn à 250°C, 10 g d'ester diéthylique de l'acide phénylène-1,4-diamido-dimalonique avec 20 g d'acide polyphosphorique. Après refroidissement de la solution, on verse 25 le mélange dans l'eau glacée et on sépare le précipité pair filtration. On obtient 6,6 g, soit 91 % de la théorie de 2,4,7,9-tétrahydro-pyrido-(2,3-g)-quinoléine. Après recristallisation dans le diméthylformamide, le spectre infra-rouge ne montre pas A A de bande ester à 1730 cm ni de bande amide à 3290 et 1550 cm . fe9 00096 3 REVENDICATIONS Procédé de préparation de dérivés Ms-2,4-dihydroxypyridi.- ne) de formule générale O O OH OH n m a t ' /\ J-O /\ ' t i 10 H H où Ar désigne un groupe aromatique et en particulier G • 0-0 ' 00 °u 15 où E désigne un groupe alkylène, cétonique, un atome d'oxygène ou de soufre et ^ signifie isomérie, caractérisé par le fait qu'on chauffe à 180—300°Q un dialkylester d'un acide diaryl=dia= 20 midomalonique dans lequel les groupes aryles ont la nature ci-dessus indiquée avec l'acide polyphosphorique dans le rapport en poids 1*0,25 à 1:5 et qu'on précipite le produit de la réaction à l'aide d'eau glacée» gAO GRSG^aL
Cutting tools with Al—Cr—B—N/Ti—Al—N multilayer coatings The present invention relates to a multilayer coating system deposited on at least a portion of a solid body surface and containing in the multilayer architecture Al—Cr—B—N individual layers deposited by means of a physical vapor deposition method characterized in that in at least a portion of the overall thickness of the multilayer coating system the Al—Cr—B—N individual layers are combined with Ti—Al—N individual layers, wherein the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other, and wherein the thickness of the Al—Cr—B—N individual layers is thicker than the thickness of the Ti—Al—N individual layers, and thereby the residual stress of the multilayer coating system is considerably lower in comparison to the residual stress of the corresponding analogical Al—Cr—B—N monolayer coating. The present invention relates to coatings deposited by means of physical vapour deposition methods. These coatings are based principally on nitrides of aluminium, chromium and boron and possess improved wear resistance. Furthermore these coatings may particularly be applied on cutting tools. According to the present invention Al—Cr—B—N films are part of a multilayer coating architecture. STATE OF THE ART Both Ti—Al—N and Cr—Al—N are well-established wear resistant coating systems. On the one side Ti—Al—N is e.g. widely used for machining of hardened steel. It is structurally stable up to about 900° C. in the presence of oxygen. However Ti—Al—N loses hardness significantly at temperatures higher than 600° C. On the other side Cr—Al—N has, at least after hot temperature applications in oxygen atmosphere a higher hardness than Ti—Al—N and a much better oxidation resistance. Cr—Al—N is even structurally stable up to 1100° C. in the presence of oxygen. However, in comparison with other coatings Cr—Al—N does not improve essentially the performance of coated cutting tools in machining hardened steels. Because of the very interesting properties of the nitrides of titanium and aluminium and the nitrides of chromium and aluminium many new designs of coating systems still include these nitrides or are based on them. The document WO2006084404 discloses a coating system designed to be especially used as a hard coating with extremely high oxidation resistance for protecting cutting tools that also require wear protection. The described coating system comprises at least a main layer on a surface of a substrate, a buried layer and an outer surface layer, wherein the surface layer comprises AlCrZ, where Z can be N, C, B, CN, BN, CBN, NO, CO, BO, CNO, BCNO or CBNO. The buried layer comprises any one of the following materials or their combinations: a metal nitride, carbide or carbonitride a metal silicon nitride, carbide, or carbonitride, wherein the metal is at least one transition metal of the IVB, VB or VIB group or a multilayer of the materials or a material or a combination or a multilayer of the materials comprising at least one metal or carbon, preferably a diamond like carbon layer. The main layer comprises a nitride, carbide or carbonitride or a multilayer of nitride, carbide or carbonitride material. The main layer can be deposited on the workpiece either directly or via an interjecting adhesion layer, which can be an aforementioned transition metal or metal nitride, preferably AlCr, AlTi, Cr, Ti, AlCrN, AlTiN, TiN or CrN. Likewise in WO2008037556 is disclosed an AlCrN-based coating system that also contemplate a combination with TiAlN. More exactly following is disclosed in document WO2008037556: a coating system for improving wear resistance consisting of at least one layer with the following composition: (Al1-a-b-cCraBbZc)X, where X is at least one of N, C, CN, NO, CO, CNO and Z is at least one of W, Mo, Ta, Cb (also referred to Nb) and wherein there is valid 0.2≦a≦0.5, 0.01≦b≦0.2 and 0.001≦c≦0.04. Furthermore it is disclosed that the addressed at least one AlCrBZX layer may thereby be applied directly on the surface of the workpiece body or may be applied to form the outermost layer of the coating system. Likewise it is mentioned that the at least one AlCrBZX layer may be embedded within a multilayer system between a first layer subsystem towards the surface of the workpiece body and a second layer subsystem towards the surface of the coated body. Still further it is mentioned that in a multilayer system more than one of the addressed AlCrBZX layers of equal or of varying stoichiometry and/or material composition may be provided. Thereby, such layers of AlCrBZX type may reside directly one upon the other with different stoichiometry and/or material composition or may be separated by respective coating layer subsystems. Furthermore it is disclosed that the coating system may comprise at least one interlayer of (TidAle)N or (CrfAlg)N between the substrate and the outermost layer, where 0.4≦d 0.6, 0.4≦e≦0.6, 0.4≦f≦0.7 and 0.3≦g≦0.6. Thereby the addressed TiAlN or CrAlN interlayer may be provided so that it is one layer of a multilayer subsystem between the surface of the body and the AlCrBZX layer. Furthermore the coating system may comprise a multiyayer of alternating layers of at least one of the addressed interlayers and of at least one of the AlCrBZX layers. Furthermore, document JP2009012139 discloses a cutting tool whose surface is coated with a hard AlCrBN coating layer that possess a layer thickness of 0.8-5 μm. It is mentioned that the described AlCrBN coating layer provides high hardness, excellent lubricity and wear resistance in high speed cutting of materials with high weld ability. The disclosed AlCrBN coating consists of a first film deposited on the substrate surface having a composition of (AlXCr1-XBY)Nzwith 0.5≦X≦0.7, 0.001≦Y≦0.1, 0.9≦Z≦1.25, X+Y<0.75 and a second film deposited on the first film having a composition of (AlaCr1-aBb)Ncwith 0.4≦a≦0.7, 1≦b≦2.5, 0.25≦c≦0.68. The overall coating has an average composition of AlαCr1-αBβNγwhere 0.55≦α≦0.7, 0.003≦β≦0.12, 0.8≦γ≦1.25. OBJECTIVE OF THE INVENTION The inventors observed that effectively single layer coatings of Al—Cr—B—N exhibit improved hardness and tribological behaviour in comparison to the well-established Al—Cr—N coatings. However there is still a need for further improvement. Al—Cr—B—N coatings exhibit in spite of their interesting properties also a very high residual stress. It worsens the cutting performance of the tools coated with these promising coating films. That is especially disadvantageous in applications requiring high coating thicknesses where particularly low residual stresses in the coatings are required in order to avoid coating delamination. It is an objective of the present invention to provide coatings which exhibit a low residual stress, an enhanced hardness and improved wear coefficients as compared to Al—Cr—N and Al—Cr—B—N monolayer coatings. DESCRIPTION OF THE INVENTION In order to attain reduced residual stresses in Al—Cr—B—N coatings different multilayer structures were synthetized by means of physical vapour deposition processes, preferably using reactive cathodic arc ion plating deposition methods. The inventors surprisingly observed that the multilayer coating structures that particularly combine alternately Al—Cr—B—N and Ti—Al—N individual layers, especially when the thickness of the Al—Cr—B—N individual layers is thicker than the thickness of the Ti—Al—N individual layers, predominantly maintaining basically a ratio of 2:1 concerning the thickness of the Al—Cr—B—N individual layers related to the thickness of the Ti—Al—N individual layers exhibit impressive low residual stresses and impressive high hardness at the same time. Through the addition of Ti—Al—N individual layers it was possible to improve considerably the elasticity of the coating. Consequently the coating adhesion strength, endurance strength and toughness of the coating could be considerably overall improved. Thus the inventors disclose a coating with low residual stress in combination with enhanced hardness and good tribological properties. According to an embodiment of the present invention, a combination of Al—Cr—B—N and Ti—Al—N is realized in a multilayer architecture with at least two Ti—Al—N layers and at least two Al—Cr—B—N layers deposited alternately and where the individual layer that is nearest to the substrate surface is a Ti—Al—N layer, and the individual layer that is nearest to the coating surface is an Al—Cr—B—N layer. More preferably at least three Ti—Al—N layers and at least three Al—Cr—B—N layers are deposited alternately. The first Ti—Al—N layer may have a different layer thickness in comparison to the other Ti—Al—N individual layers and may also be deposited direct on the substrate surface in order to be used as adhesion layer. The last Al—Cr—B—N layer may have a different thickness in comparison to the other Al—Cr—B—N individual layers and may also be deposited as outermost layer. According to a preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coatings are synthetized by cathodic arc evaporation in N2atmosphere at 3.5 Pa and 500° C. in an industrial-scale Oerlikon Balzers INNOVA deposition system. In order to form the multilayer architecture, the Al—Cr—B—N layers are deposited from at least one alloyed source material target containing aluminium, chromium and boron with the following element composition: AlxCryBz, where x+y+z=1, x=1.8·y and 0.1≦z≦0.3 (x, y and z values are given here in atomic fractions). The Ti—Al—N layers are deposited from at least one alloyed source material target containing aluminium and titanium. In this preferred embodiment TiAl-targets with element composition of 50:50 in atomic per cent were used. Furthermore the design of the multilayer coating according to this embodiment consists of a 0.3 μm-thick Ti—Al—N first layer deposited on the substrate surface, followed by eight iterations of 0.2 μm Al—Cr—B—N and 0.1 μm Ti—Al—N individual layers deposited alternated (bilayer period thickness of the multilayer: 0.3 μm) and concluding with a 0.8 μm Al—Cr—B—N layer as outermost layer, resulting in an overall coating thickness of around 3.5 μm. X-ray diffraction revealed that all coatings exhibit a face-centered cubic structure in the as-deposited state. X-ray photoelectron spectroscopy showed peaks indicating the formation of a BxNyphase in the Al—Cr—B—N outermost layer. It was also observed that increasing B content results in a grain refinement. After examination of mechanical and tribological properties of different Al—Cr—B—N coatings deposited as simple monolayer coatings by varied element compositions and thickness, it could be determined that Al—Cr—B—N monolayer coatings exhibit maximal hardness of around 43 GPa by basically residual stresses of around −1.5 GPa, and good resistance against wear. Similar examinations of mechanical and tribological properties were also carried out in coatings synthetized according to the present invention. In order to obtain representative conclusions about the advantages of Al—Cr—B—N/Ti—Al—N multilayer coatings synthetized according to the present invention in comparison to Al—Cr—B—N monolayer coatings, the Al—Cr—B—N individual layers of the multilayer coatings were synthetized by analogical coating parameters as those used by the deposition of the examined Al—Cr—B—N monolayer coatings. For the comparison, the Al—Cr—B—N/Ti—Al—N multilayer coatings synthetized according to the present invention were deposited with similar overall coating thickness as the analogical Al—Cr—B—N monolayer coatings. In the context of this patent specification the word analogical is used to relate Al—Cr—B—N monolayer coatings and Al—Cr—B—N/Ti—Al—N multilayer coatings whose:respective Al—Cr—B—N layers are deposited by same coating parameters and using same type of source material targets with equal targets element composition, andoverall coating thickness is almost equal. The comparison revealed a significant improvement of mechanical and tribological properties. Especially astonishing were the obtained combination of a very high hardness and very low residual stress at the same time exhibited by the multilayer coatings synthetized according to the present invention. Multilayer coatings synthetized according to the present invention using alloyed source material targets AlxCryBzwith z values between 0.15 and 0.25 for the deposition of the Al—Cr—B—N individual layers exhibited the best mechanical and tribological properties. Very low residual stresses of around −0.25 GPa and enhanced hardness of around 50 GPa as well as improved tribological properties, including wear coefficients in the range of 4×10−16m3/Nm at 500° C. could be measured. Particularly because of the extremely low residual stresses and consequently the overall improved coating adhesion strength and endurance strength observed by the Al—Cr—B—N/Ti—Al—N multilayer coatings synthetized according to the present invention a further preferred embodiment of the invention is the synthesis of Al—Cr—B—N/Ti—Al—N multilayer coatings with relative thick coating thickness in comparison to conventional physical vapour deposition processes deposited by means of for example sputter and arc evaporation methods. According to this embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coatings are deposited having an overall coating thickness equal or thicker than 3 μm, preferably equal or thicker than 5 μm. Coating thicknesses thicker than 10 μm, 20 μm and even up to 30 μm can be realized and the coatings still preserve their excellent properties as described above. In some applications such thicknesses are preferred as it even may further increase the livetime. Even higher thicknesses than 30 μm can be realized. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating, the coating is synthetized by reactive cathodic arc evaporation. Due to the deposition using arc evaporation, macro particles of metallic materials from target are present in the coating, which significantly deviate in their composition and properties from the rest of the coating. This is a result of the typical production of droplets which did not fully react with the reactive gas during arc evaporation. These macro particles (droplets) may be kept small enough that they don't worsen the mechanical, thermal, chemical and tribological properties of the Al—Cr—B—N/Ti—Al—N multilayer coatings synthetized according to the present invention. However at the same time these macro particles still contribute to improve the overall coating endurance strength by adding plasticity. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating is a nano-laminated coating, whose Al—Cr—B—N individual layers having a thickness≦100 nm, preferably having a bilayer period of the Al—Cr—B—N and Ti—Al—N nano-layers between 75 and 15 nm. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating, the coating contains an additional adhesion layer for a further improvement of the coating adhesion to substrate and/or an additional outermost layer or toplayer that can be for example a decorative layer or running-in layer. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating, the coating having in the coating thickness direction at least one area with a thickness of at least 1 μm where the Al—Cr—B—N/Ti—Al—N multilayer architecture is characterized in that the bilayer period of the Al—Cr—B—N and Ti—Al—N individual layers is constant. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating, the coating having in the coating thickness direction at least one Al—Cr—B—N/Ti—Al—N multilayer architecture area with constant bilayer period as defined in the previous embodiment and having in addition at least one Ti—Al—N layer with different thickness as the Ti—Al—N individual layers contained in the at least one multilayer architecture area with constant bilayer period. According to a further preferred embodiment of the present invention the Al—Cr—B—N/Ti—Al—N multilayer coating, the coating having in the coating thickness direction at least one Al—Cr—B—N/Ti—Al—N multilayer architecture area with constant bilayer period as defined in the previous embodiment and having in addition at least one Al—Cr—B—N layer with different thickness as the Al—Cr—B—N individual layers contained in the at least one multilayer architecture area with constant bilayer period. Disclosed is a multilayer coating system deposited on at least a portion of a solid body surface and containing in the multilayer architecture Al—Cr—B—N individual layers deposited by means of a physical vapour deposition method characterized in that in at least a portion of the overall thickness of the multilayer coating system the Al—Cr—B—N individual layers are combined with Ti—Al—N individual layers, wherein the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other, and wherein the thickness of the Al—Cr—B—N individual layers is thicker than the thickness of the Ti—Al—N individual layers, and thereby the residual stress of the multilayer coating system is considerably lower in comparison to the residual stress of the corresponding analogical Al—Cr—B—N monolayer coating system and preferably the hardness of the multilayer coating system is larger or equal to the hardness of the corresponding analogical Al—Cr—B—N monolayer coating In the multilayer coating system as mentioned before the thickness ratio of the Al—Cr—B—N individual layers related to the Ti—Al—N individual layers in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other can be basically 2:1. In the multilayer coating system as mentioned before the layer composition of the Al—Cr—B—N layers contained in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other can be AlaCrbBcNdwith a+b+c=1, a=9/5·y, 0.1≦z 0.3 where a, b and c are the atomic fractions determined after element analysis taking only the elements Al, Cr and B into account for the element balance. In the multilayer coating system as mentioned before c the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other can contain at least two Ti—Al—N and two Al—Cr—B—N individual layers, more preferably at least three Ti—Al—N and three Al—Cr—B—N individual layers. In the multilayer coating system as mentioned before the thickness of the Ti—Al—N and Al—Cr—B—N individual layers in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other preferably remains constant. In the multilayer coating system as mentioned before the element composition of the Al—Cr—B—N individual layers in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other preferably constant. In the multilayer coating system as mentioned before the Al—Cr—B—N and Ti—Al—N individual layers in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other can be nano-layers whose corresponding individual thicknesses are each one≦100 nm, preferably the bilayer period defined as the sum of the thicknesses corresponding to one Al—Cr—B—N and one Ti—Al—N individual nano-layer is ≦100 nm, preferably is the bilayer period between 75 and 15 nm. In the multilayer coating system as mentioned before an additional Ti—Al—N individual layer can be deposited between the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other and the substrate surface and whose values of thickness and elements concentration are equal or different to the corresponding values of the Ti—Al—N individual layers contained in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other. In the multilayer coating system as mentioned before an additional Al—Cr—B—N individual layer can be deposited between the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other and the coating surface and whose values of thickness and elements concentration are equal or different to the corresponding values of the Al—Cr—B—N individual layers contained in the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other. In the multilayer coating system as mentioned before the additional Ti—Al—N individual layer can be deposited directly on the substrate surface and/or the additional Al—Cr—B—N individual layer is deposited as outermost layer. In the multilayer coating system as mentioned before an additional adhesion layer not consisting of Ti—Al—N can be deposited directly on the substrate surface to improve the coating adhesion to substrate and/or an additional outermost layer not consisting of Al—Cr—B—N is deposited on the coating surface as top layer, this layer can be for example a thin decorative layer or a running-in layer. In the multilayer coating system as mentioned before the overall coating thickness of the multilayer coating system can be chosen to be equal or thicker than 3 μm, preferably equal or thicker than 5 μm. Also the overall coating thickness can be chosen to be equal or thicker than 10 μm, 20 μm, and even up to 30 μm or thicker according to the application requirements. In the multilayer coating system as mentioned before at least the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other is preferably synthetized by reactive cathodic arc evaporation. Due to the deposition using arc evaporation macro particles of metallic materials from target are present in the coating, which significantly deviate in their composition and properties from the rest of the coating. These macro particles contribute to improve the overall coating endurance strength by adding elasticity and they don't worsen the mechanical, thermal, chemical and tribological properties of the Al—Cr—B—N/Ti—Al—N multilayer coatings. In the multilayer coating system as mentioned before at least the coating portion where the Al—Cr—B—N and Ti—Al—N individual layers are preferably deposited alternately one on each other exhibit a face-centered cubic structure in the as-deposited state. In the multilayer coating system as mentioned before the outermost layer can be an Al—Cr—B—N layer that exhibits the formation of BxNy. According to the invention a solid body can be at least partially coated with a multilayer coating system variant of those that was described before. The solid body can be for example a cutting tool or a forming tool or mould or die or a precision component or an automotive component, or a component to be used in the motor industry or in the aerospace industry, like for example a turbine component. In particular the invention can be used for the following applications: In particular the invention can be used for the following applications: 1. Tools:disposable inserts on the basis of hard metal, cermet, boron nitride, silicon nitride or silicon carbide for milling, turning or drillingmilling cutters such as ball-headed cutters and end mill cuttersthread milling cuttershob cuttersshape cuttersstick bladesdrillsscrew tapsborersengraving toolsreamers 2. Forming and stamping tools:forms for aluminium pressure die castingforms for plastic coatingextrusion diestools for sheet formingstamps for stamping metalssmith's jaws, especially for hot forgingtools for hot crimping The invention disclosed in this patent document includes the method for manufacturing a coated solid body with the multilayer coating system described before according to the present invention.
Les lampes-éclair actuellement en usage utilisent en général des métaux combustibles déchiquetés tels que le zirconium ou l'aluminium comme matière productrice d'éclairs Ces métaux brins lent à des vitesses variables afin de produire un intense éclair lumineux pour les applications photogs;aphiguesO Certaines de ces applications exigent une lampe-éclair produisant une caractéristique de temps jusqu'à la crête rapide et d'émission lumineuse de courte durée.On obtient généralement ce résultat en utilisant le métal zirconium comme matière productrice d'éclair0 Une autre caractéristique importante de construction des lampes-éclair notamment en ce qui concerne leur usage pour la photographie en couleur est la caractéristique de température de couleur de la lumière émise par la combustion de la matière productrice d'éclair.La température de couleur est une caractéristique lumineuse qui in- disque la valeur relative do température à laquelle un corps noir idéal émet une énergie rayonnante évoquent une réponse de couleur dtun sujet éclairé, de la même teinte et saturation que celles évoquées par l'énergie rayonnante dune source données Cette caractéristique de température de couleur est importante par rapport à celle de la lumière du pour. La caractéristique de température de -otler associée aux conditions extérieures de lumière du jouir est d'eriAron 6000 C, et lei films photegraphiques dits pour extérieurs sont destinés à répondre à ces conditIons.Lorsqu'on cherche à utiliser le même Silm pour les intérieurs avec ltéclairage artificiel, la réponse, m;me à des niveaux élevés d'éclairement, est tout-à-fait différente, en raison de la caractéristique beaucoup plus basse de température de couleur produite par les sources d'éclairage artificiel.Les lampes-éclair dans lesquelles l'alu- minium déchiqueté est utilisé comme matière productrice dtéclair présente une caractéristique de température de couleur d'environ 3800 K alors que des lampes similaires utilisant le métal zirconium ont une caractéristique de température de couleur d'environ 41 000K. Ces valeurs de température de couleur concernent une lampe de dimension AG-1 avec remplissage d'oxygène et dimensions de clinquant normalisés. Ces lampes sont en général recouvertes d'un vernis bleu destiné à améliorer la caractéristique de température de couleur0 Ce vernis, toutefois, absorbe aussi la lumière et par suite réduit le niveau total d'éclairement. La technique connaît le magnésium comme métal qui au cours de sa combustion dans vue lampe-éclair émet une lumière ayant une caractéristique élevée de température de couleur0 En général, toutefois, les lampes-clairs au magnésium présentent une trè.s mauvaise caractéristique de temps jusqu'à la crête et de durée de lumière émise.De alliages de zirconium et de magnésium ont aussi été utilisés comme combustible dans les lampes -eclairsQ Les lampes utilisant les alliages de ces métaux n'ont pas été papables de combiner une caractéristique élevée de température de couleur avec une caractéristique rapide de temps jusqu'a la crête et de courte durée, qui est désirée dans une 'ampe-éclair du commerce.On a également fabriqué des lampes renfermant des mélanges de brins de clianquants découpés à des largeurs variant selon le régime de combustion des métaux utilisés L'effet général dans ces lampes réside dans une certaine augmentation de la température de couleur, mais celle-ci s'accom- pagne d1une- durée d'éclair relativement longue, ce qui est en général Inacceptable commercialement La présente invention a pour objet d'offrir une lampe éclair perfectionnée présentant un niveau général d'éclairement plus élevé ainsi qu'une caractéristique sepérieure de température de eouleuz tout en conservant une caractéristique t émission lumineuse rapide jusqu'à la crête et de courte durée. A cette fin, l'invention consiste n une lampe-éclair dont le remplissage de métal combustible consiste on brins d'au moins deux métaux différents, en contact intime, l'un au moins des métaux étant choisi de manière à bruie rapidement au moment de l'inflammation dans l'atmosphère d'oxygène de la lampe, l'autre au moins étant enflammé principalement par l'ignition de ce métal à combustion rapide, et étant choisi de manière à produire, à l'inflammation dans l'atmosphère d'oxygène de la lampe, de la lumière actinique d'une caractéristique élevée de température de couleur L'invention ressortira mieux de la description qui va suivre en référence au dessin annexé, sur lequel - la fig0 1 est une vue en élévation d'une forme de réalisation de la lampe-éclair selon l'invention - la fig. 2-es une vue fragmentaire agrandie, en coupe transversale, du combustible producteur d'éclair utilisé dans 1? forme préféré et de réalisation - la fig. 3 est une vue fragmentaire agrandie, en coupe transversale, d 'une autre forme de réalisation du combustible producteur d'éclair ; et - la fig. 4 est une vue fragmentaire agrandie, en coupe transversale, d'une autre forme encore de réalisation du combustible-éclair. À la fig. 1, qui représente la forme de réalisation particulièrement préférée, la lampe-éclair 10 comprend une enveloppe scellée transmettant la lumière, 12, dtune matière telle que le verre. les entrées de courant 14 et 16 sont scellées à travers l'enveloppe et sont intérieurement reliées par le filament 18 d'inflammation. Ce filament 18 est recouvert d'une matière d'amor çage 20, typiquement du zirconium pulvérisé mélangé à du perchlorate de potassium et un liant. Les Ventrées de courant 14, t6 sont extérieurement adaptées pour être connectées à une source dténer- gie électrique pour allumer la lampe. L'enveloppe renferme une atmosphère d'oxygène sous une pression de 5 atm., environ. Le remplissage de métal 22 se compose de brins comprenant au moins deux métaux individuels adhérents l'un à l'autre. Dans la forme préférée de réalisation représentée à la figo 2, une feuille de clinquant de magnésium 26 environ 0,008 mm d'épaisseur est recouverte de chaque côté d'une couche 28 de 0,008 mm d'épaisseur de métal zirconium adhérant intimement au clinquant 26. Cette adhérence intime peut être obtenue en métallisant sous vide le zirconium sur la feuille de magnésium, dans une chambre sous vide. La métallisation sous vide permet un contrôle précis de 1 1épais- seur de la couche déposée, et assure en même temps le contact intime entre les couches de métal. On peut également réunir les minces couches de létaux par laminage à froid simultané des couches individuellea ou par autres techniques de laminage qui permettent d'obtenir le contact intime entre les feuilles métalliques. La feuille métallique à minces couches ainsi obtenue est découpée et déchiquetée selon les techniques classiques. La matière déchiquetée est incorporée dans une enveloppe de lampe-éolair nor malisée en une quantité déterminée qui dépend de la dimension de cette 3ample. La lampe-éclair est ensuite remplie d'oxygène. Dans la forme de réalisation représentée à la fig. 3, une mince couche 30 de zirconium adhère à une mince couche 32 de magnésium. On peut faire varier l'épaisseur des couches pour contraler les caractéristiques désirées démission lumineuse. A titre d'exemple la couche 30 de zirconium peut avoir 02 2 d'éasseur, et celle de magnésium 92 environ 0,006 mm d'épaisseur. Une quantité déterminée de cette matière déchiquetée est incorporée dans une lampe-éclair de dimension particuliêre. Selon une autre forme de réalisation représentée à la fig0 4, une âme de magnésium 34 est enclose dans une gaine filamentaire 36 de zirconium. Encore à titre d'exemple, l'amie de magnésium a environ 0,008 mm de diamètre, et la gaine de zirconium 36, qui l'entoure, a environ 0,008 mm d'épaisseur. Une quantité déterminée de cette matière est incorporée dans une lampe-éclair de dimension particulière, en groupant cette matière pratiquement uniformément dans l'espace enclos par 11 enveloppe. D'autres métaux présentant une caractéristique élevée de température de couleur au moment de leur combustion, tels que le thorium, peuvent être substitués au magnésium dans les exemples cités ci-dessus. Le zirconium peut être remplacé par l'aluminium pour être utilisé soit avec le magnésium, soit avec le thorium. La caractéristique de temps jusqu'à la crête relative à la lampe que l'on vient de décrire est établie de manière à être pratiquement la même que celle observée dans le cas d'une lampe de dimension AG-1 remplie de zirconium pur, qui présente un temps jusqu'à la crête d'environ 8 à 12 millisecondes selon le remplissage d'oxygène et la dimension des brins. Le temps durant lequel un niveau de brillance d'une émission de 1/2 crête est entretenu dans une lampe courante remplie de zirconium est d'environ 15 millisecondes.De même la lampe décrite dans ce qui précède, comportant du zirconium lié à du magnésium a une durée d'intensité de 1/2 crête d'environ 15 millisecondes Les caractéristiques de temps jusqu'à la crête et de durée sont plus longues de plusieurs millisecondes en ce qui concerne une lampe de dimension AG-l remplie d'aluminium. Pour la spécification d'une caractéristique de température de couleur en ce qui concerne un métal particulier, ce paramefl- dépend des paramètres particuliers de la lampe On sait que les lampes utilisant le magnésium comme combustible produisent une lumière présentant une caractéristique de température de couleur supérieure à 5000 K. De même, on peut s'attendre à ce qu'une lampe-éclair contenant du thorium comme combustible produise une lumière ayant une caractéristique de température de couleur pouvaift atteindre jusqu'à environ 5000 K. Les lampes-éclairs décrites dans les précédents exemples produisent une lumière actinique avec une caractéristique élevée de température de couleur, une caractéristique d'émission lumineuse à tempo très rapide jusqu'à la crête, st une caractéristique d'émission lumineuse de courte durée. La lampe peut eAtre recouverte d'un vernis bleu afin d'accroftre encore la caractéristique de température de couleur. Bien que l'usage du vernis bleu ddinue lXémission lumineuse générale, la densité de la couche de vernis requise avec la présente lamie est réduite au minimum, de sorte que, pour une lumière ayant des caractéristiques comparables de température de couleur, la présente lampe pourvue d'un revêtement de vernis moins dense présente une plus forte émission lumineuse. On peut faire varier 1 'épaisseur relative des brins métalliques particuliers afin de modifier les caractéristiques d'émission lumineuse, ainsi que le taux de leur combinaison pour une lampe particulière. Dans les formes de réalisation utilisant le thorium comme métal d'ame, un effet supplémentaire désirable est obtenu du fait que le revetement de zirconium fait fonction d'écran de rétentio pour le métal thorium, lequel est radioactif à un certain degré, ce qui réduit au minimum les problèmes posés par la radioactivité. On a décrit et représenté des métaux particuliers dans les exemples illustrant l'invention. Il n'est pas nécessaire que les brins métalliques individuels soient constitués de métaux individuels purs ; ils sont choisis de manière que l'inflammation de l'élément le plus réactif et brillant le plus rapidement commande le régime d'inflammation du second élément métallique consistant en une matière qui présente une haute caractéristique de température de couleur. On remarquera que l'on peut choisir et réaliser différentes combinaisons de métaux ou de leurs alliages, qui restent dans la portée de la présente invention. REVENDICATIONS 1. - Lanpe-éelair dont le remplissage de métal combustible se compose de brins d'eau moins deux métaux différents, en contact intimeS l'un des métaux étant choisi de manière à brûler rapidement au moment de son inflammation dans l'atmosphère d'oxygène de la lampe, l'autre métal au moins étant enflammé principalement par l'inflammation du métal à combustion rapide, et étant choisi de manière à produire au moment de sen inflammation dans l'atmosphère d'oxygène de la lampe, une lumière actinique de caractéristique élevée de température de couleur. 2. - Lampe selon revendication 1, dans laquelle cet autre métal est le magnésium. 3. - Lampe selon les revendications 1 ou 2, dans laquelle le métal à combustion rapide est le zi-Iconium. 4. - - Lampe selon les revendications 2 et 3, dans laquelle chaque brin se compose d'une couche de zirconium adhérant à une couche de magnésium. 5. - Lampe selon les revendications 2) et 3) dans laquelle chaque brin se compose de couches de zirconium adhérant de chaque côté d'une couche de magnésium. 6. Lampe selon les revendicatiols 2) et 3) dans laquelle chaque brin se compose d'une âme de magnésium enclose dans une gaine filamentaire de zirconium. 7. - Lampe selon l'une ou l'autre des revendications 1) à 6) dans laquelle l'enveloppe de la lampe porte un mince revêtement de vernis bleu destine à accroître encore la caractéristique de température de couleur de la lumière actinique transmise
Vehicle battery fluid supply system with vacuum source A system for supplying fluid to a battery, a vacuum source, a vehicle, a combination, a method for supplying fluid to a battery and a method of charging a battery. The fluid supply system supplies fluid to a battery in a vehicle, the vehicle including a frame supporting the battery, the battery including a battery cell, fluid being transmittable to the battery cell. The system is defined as including a hydraulic circuit connecting the battery to a tank. The hydraulic circuit is defined as including an inlet conduit connectable to tank, an outlet conduit connectable to the battery cell, and a vacuum source connectable to the battery cell and to the tank. The vacuum source is defined as including a pump having a pump inlet conduit connectable to the tank, and a pump outlet, and a venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet is connectable to the tank. The pump is operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank and through the battery cell. FIELD OF THE INVENTION The present invention relates to liquid electrolytic batteries and, more particularly, to a fluid supply system for adding water to the liquid electrolyte in the batteries. BACKGROUND OF THE INVENTION Battery-powered vehicles, such as, for example, golf carts and utility vehicles, require periodic charging of the batteries and replenishment of liquid electrolyte in the batteries. SUMMARY OF THE INVENTION One independent problem with existing filling devices and procedures is that a separate fluid hook-up step is required before the liquid electrolyte can be replenished in the batteries. Another independent problem with existing filling systems and procedures is that, each time the batteries are replenished with fluid, a separate fluid source must be connected to the filling system, and fluid must be replenished, even if only a small amount of fluid must be replenished. Yet another independent problem with existing filling systems and procedures is that a separate source of pressure is required to supply fluid to the filling system. Such a separate pressurized source may be a pump or a vacuum connected to the filling system. A further independent problem with existing filling systems and procedures is that, if a vacuum source is used to cause fluid flow through the batteries, the vacuum source may draw battery gas from the batteries and may return the battery gas to the source of fluid or tank. The battery gas may then be vented when an operator accesses the tank. An independent problem with a venturi is that, if the venturi is above the fluid level in a fluid system, the venturi will not produce the necessary suction to cause fluid flow in the system. The present invention provides a system for supplying fluid to a battery, a vehicle and a method for supplying fluid to a battery which substantially alleviate one or more of the above-described and other problems with existing filling systems and procedures. More particularly, in some aspects, the present invention provides a fluid supply system in which fluid flow through a venturi supported on the vehicle frame creates a vacuum which causes fluid flow through the battery. In some aspects, the present invention provides a fluid supply system including a vacuum source to cause fluid flow through the battery and a gas separator to separate battery gas from the fluid flowing from the battery. In some aspects, the present invention provides a fluid supply system including a venturi for creating a vacuum to cause fluid flow through the battery and a muzzle for collecting fluid to submerge the venturi outlet. In particular, the present invention provides a system for supplying fluid to a battery, the battery including a battery cell, fluid being transmittable to the battery cell. The system is defined as comprising a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, and an outlet conduit connectable to the battery cell, and a vacuum source connectable to the battery cell and to the tank. The vacuum source is defined as including a pump having a pump inlet connectable to the tank and a pump outlet, a venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, and a muzzle connectable to the venturi outlet, fluid being collectable in the muzzle to submerge the venturi outlet, the pump being operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank, through the battery cell, and from the venturi outlet. In some constructions, the system may further comprise a gas separator connectable to the battery cell, fluid and gas from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. Preferably, the muzzle collects an amount of fluid sufficient to create a vacuum at the second inlet. The muzzle may include at least one opening allowing fluid flow from the venturi outlet. The venturi outlet has a cross-sectional outlet area, and the at least one opening has a cross-sectional opening area, the opening area preferably being greater than the outlet area. Preferably, the muzzle provides a seal at the connection to the venturi outlet. The muzzle is preferably connectable between the venturi outlet and the tank so that fluid flows from the venturi outlet to the tank. Also, the present invention provides a system for supplying fluid to a battery in a vehicle, the vehicle including a frame supporting the battery, the battery including a battery cell, fluid being transmittable to the battery cell. The system is defined as comprising a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, and an outlet conduit connectable to the battery cell, and a vacuum source connectable between the battery cell and the tank. The vacuum source is defined as including a pump having a pump inlet connectable to the tank and a pump outlet, and a venturi supported on the vehicle, the venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, the pump being operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank, through the battery cell, and from the venturi outlet. In some constructions, the system may further comprise a gas separator connectable to the battery cell, fluid and gas from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. Also, the vacuum source may include a muzzle connectable between the venturi outlet and the tank, fluid being collectable in the muzzle to submerge the venturi outlet. In addition, the present invention provides a system for supplying fluid to a battery, the system comprising a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, a vacuum source connectable to the battery cell and to the tank, the vacuum source being operable to cause fluid flow from the tank and through the battery cell, and a gas separator connectable to the battery cell, fluid and gas from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. Preferably, the gas separator includes a vent, the separated gas being vented through the vent. The battery cell has an air space having a size, and the gas separator preferably has a size substantially equal to the size of the air space. The gas separator is preferably connectable to the tank, fluid being transferable between the gas separator and the tank. The vacuum source has an inlet, and the vacuum source inlet may be connectable to the gas separator. In some constructions, the vacuum source includes a pump having a pump inlet conduit connectable to the gas separator, and a pump outlet, and a venturi supported on the vehicle, the venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet connectable to the gas separator, the pump being operable to cause flow through the venturi, flow through the venturi causing fluid flow through the battery cell and from the venturi outlet to the gas separator. The vacuum source may include a muzzle connectable between the venturi outlet and the tank, fluid being collectable in the muzzle to submerge the venturi outlet. Further, the present invention provides a vacuum source for supplying fluid from a tank to a battery, the battery including a battery cell, fluid being transmittable to the battery cell. The vacuum source is defined as comprising a pump connectable to the tank, a venturi including a nozzle connectable to the pump, the nozzle discharging fluid received from the pump, a suction inlet connectable to the battery cell, and a discharge outlet, and a muzzle connectable to the discharge outlet, fluid being collectable in the muzzle to submerge the discharge outlet, the pump being operable to cause fluid flow through the venturi, fluid flow through the venturi causing suction at the suction inlet, the suction causing fluid flow through the battery cell and from the battery cell through the suction inlet. Also, the present invention provides a vacuum source for supplying fluid from a tank to a battery in a vehicle, the vehicle including a frame supporting the battery, the battery including a battery cell, fluid being transmittable to the battery cell. The vacuum source is defined as comprising a pump connectable to the tank, and a venturi supported on the frame. The venturi is defined as including a nozzle connectable to the pump, the nozzle discharging fluid received from the pump, a suction inlet connectable to the battery cell, and a discharge outlet, the pump being operable to cause fluid flow through the venturi, fluid flow through the venturi causing suction at the suction inlet, the suction causing fluid flow through the battery cell and from the battery cell through the suction inlet. In addition, the present invention provides a vehicle comprising a frame supported for movement over ground, a motor supported by the frame and operable to selectively drive the vehicle, a battery supported by the frame and electrically connectable with the motor, the battery including a battery cell, fluid being transmittable to the battery cell, and a hydraulic circuit connecting the battery to a tank for holding fluid. The hydraulic circuit is defined as including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, and a vacuum source supported on the frame. The vacuum source is defined as including a pump having a pump inlet connectable to the tank and a pump outlet, and a venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, the pump being operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank and through the battery cell. In some constructions, the vehicle may be a golf cart. Also, the tank may be supported on the frame. The tank may have a first outlet for supplying fluid to the vacuum source, an inlet for receiving fluid from the vacuum source, and a second outlet for supplying fluid to the battery cell. In some constructions, the vehicle may further comprise a gas separator connectable to the battery cell, gas and fluid from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. In some constructions, the vacuum source may include a muzzle connectable to the venturi outlet, fluid being collectable in the muzzle to submerge the venturi outlet. The vehicle may further comprise a second battery supported by the frame and electrically connectable with the motor, the second battery including a second battery cell, fluid being transmittable to the second battery cell. The pump may be operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank and through the first battery cell and through the second battery cell. The vehicle may further comprise a controller connectable to the pump for controlling fluid replenishment to the battery. The controller may activate the pump when the fluid level is low in the battery cell to cause fluid flow from the tank to the battery cell. Preferably, the battery is connectable with the motor to selectively power the motor. Further, the present invention provides a combination comprising a vehicle and a system for supplying fluid to the battery. The system is defined as including a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, and a vacuum source. The vacuum source is defined as including a pump having a pump inlet connectable to the tank and a pump outlet, a venturi having a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, and a muzzle connectable to the venturi outlet, fluid being collectable in the muzzle to submerge the venturi outlet, the pump being operable to cause flow through the venturi, flow through the venturi causing fluid flow from the tank, through the battery cell, and from the venturi outlet. In some constructions, the vacuum source may be supported on the frame. Also, the hydraulic circuit may be supported on the frame. In addition, the tank may be supported on the frame. In some constructions, the combination may further comprise a gas separator connectable to the battery cell, gas and fluid from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. Also, the present invention provides a combination comprising a vehicle and a system for supplying fluid to the battery. The system is defined as including a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, a vacuum source connectable to the battery cell and to the tank, the vacuum source being operable to cause fluid flow from the tank and through the battery cell, and a gas separator connectable to the battery cell, fluid and gas from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. In addition, the present invention provides a combination for supplying fluid to a battery, the battery including a battery cell, fluid being transmittable to the battery cell. The combination is defined as comprising a vacuum source connectable to the battery cell and to a tank for holding fluid, the vacuum source being operable to cause fluid flow from the tank and through the battery cell, and a gas separator connectable to the battery cell, fluid and gas from the battery cell flowing into the gas separator, the gas being separated from the fluid in the gas separator. Further, the present invention provides a method for supplying fluid to a battery, the battery including a battery cell, fluid being transmittable to the battery cell. The method is defined as comprising the acts of providing a system for supplying fluid to the battery, the system including a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, and a vacuum source connectable between the battery cell and the tank, the vacuum source including a pump including a pump inlet connectable to the tank and a pump outlet, a venturi including a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, a muzzle connectable to the venturi outlet, collecting fluid in the muzzle to submerge the venturi outlet, and operating the pump to cause fluid flow through the venturi, flow through the venturi causing fluid flow from the tank and through the battery cell. The providing act may include providing a gas separator connectable to the battery cell, wherein the operating act includes causing fluid and gas to flow from the battery cell to the gas separator, and the method may further comprise the act of separating the gas from the fluid in the gas separator. Also, the present invention provides a method for charging a battery, the battery including a battery cell, fluid being transmittable to the battery cell. The method is defined as comprising the acts of providing a system for supplying fluid to the battery, the system including a hydraulic circuit connecting the battery to a tank for holding fluid, the hydraulic circuit including an inlet conduit connectable to the tank, an outlet conduit connectable to the battery cell, and a vacuum source connectable between the battery cell and the tank, the vacuum source including a pump including a pump inlet connectable to the tank and a pump outlet, a venturi including a first inlet connectable to the pump outlet, a second inlet connectable to the battery cell, and a venturi outlet, a muzzle connectable to the venturi outlet, collecting fluid in the muzzle to submerge the venturi outlet, charging the battery, operating the pump to cause fluid flow through the venturi, flow through the venturi causing fluid flow from the tank and through the battery cell, ceasing operation of the pump to stop fluid flow through the battery cell, continuing to charge the battery, and ceasing charging of the battery. The providing act may include providing a gas separator connectable to the battery cell, wherein the operating act includes causing fluid and gas to flow from the battery cell to the gas separator, and the method may further comprise the act of separating the gas from the fluid in the gas separator. One independent advantage of the present invention is that, is some aspects and in some constructions, the fluid source is supported on the vehicle. Therefore, a separate fluid hook-up step is not required before the liquid electrolyte can be replenished in the batteries. Another independent advantage of the present invention is that, in some aspects and in some constructions, the fluid supply system automatically replenishes the necessary fluid to the batteries when necessary and each time the batteries are to be replenished. The operator is only required to add fluid to the system when no fluid remains in the fluid source after replenishment. Yet another independent advantage of the present invention is that, in some aspects and in some constructions, the pressure source is supported on the vehicle. Therefore, a separate source of pressure is not required. A further independent advantage of the present invention is that, in some aspects and in some constructions, the battery gas drawn from the batteries is not returned to the source of fluid or tank. The battery gas is separated in and vented from a gas diverter or gas separator. Another independent advantage of the present invention is that, in some aspects and in some constructions, even if the venturi is above the fluid level in a fluid system, with the muzzle, the venturi will produce the necessary suction to cause fluid flow in the system. Other independent features and independent advantages of the present invention are apparent to those skilled in the art upon review of the following detailed description, claims and drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A portion of a vehicle10, such as, for example, an electric car, a golf car or a utility vehicle, including at least one electrolyte battery14and a fluid supply system18for supplying fluid to the battery14, is illustrated inFIG. 1. The vehicle10includes a frame22supported by wheels for movement over ground. The vehicle10also includes a motor26(schematically shown) supported on the frame22and operable to power the vehicle10. In the illustrated construction, the motor26is electrically connectable with a plurality of batteries14(four shown) to selectively power the vehicle10. A steering assembly (not shown) is provided to control movement of the vehicle10. The fluid supply system18includes a source of fluid, such as a tank30for holding fluid. In the illustrated construction, the tank30is supported on the frame22. The tank30includes (seeFIGS. 1–2) a container34into which fluid is poured through a removable cap38and from which fluid is supplied to the batteries14. The tank30may also include a strainer element (not shown) for removing debris from the fluid supply and preventing the debris from entering the tank30. In some aspects and in the illustrated construction, the system18also includes (seeFIG. 2) a gas separator or gas diverter40, which includes a vent42for venting battery gas generated during operation and charging of the batteries14. In the illustrated construction, the vent42includes a flame arrestor46to prevent any flame from passing into the container34, should the vented gases ignite. In the illustrated construction, the gas diverter40is supported on the frame22. In the illustrated construction, the gas diverter40has a volume about the size of the air space of a battery cell58. It should be understood that, in other constructions (not shown), the gas diverter40may be larger or smaller than the size of the air space of the battery cell(s)58. The fluid supply system18also includes a hydraulic circuit50connecting the battery14to the tank30. The hydraulic circuit50includes a fluid supply member (not shown) provided by, in the illustrated construction, a filling pod54and connectable to a battery cell58. Fluid is supplied to the cell58through the fluid supply member, and gases are vented from the battery cell58through the fluid supply member. The filling pod54(shown inFIG. 1) may include a number of fluid supply members, each associated with and supplying fluid to a battery cell58. The hydraulic circuit50also includes a vacuum source62. In some aspects and in the illustrated construction, the vacuum source62is supported on the frame22. The vacuum source62includes a pump66and a jet pump eductor or venturi70. The vacuum source62also includes a conduit74connectable between the outlet of the pump66and the venturi70. The venturi70defines a motive fluid inlet or first inlet78, a suction fluid inlet or second inlet82, and a discharge fluid outlet or venturi outlet86. In the construction shown inFIG. 2, the hydraulic circuit50also includes a conduit90connectable between the gas diverter40and the battery cell58. The gas diverter40acts as a fluid supply tank for the fluid supply system18. The gas diverter40receives fluid from the tank30by a conduit94, which acts as a water trap between the tank30and the gas diverter40. The conduit94remains filled with fluid even when the tank30and gas diverter40are empty, so that only fluid will pass between the tank30and the gas diverter40. Gas is vented only through the vent42and is not passed to the tank30, because of the water trap provided by the conduit94, preventing the battery gas from being vented when the operator removes the fill cap38. It should be understood that, in some aspects and in other constructions (not shown), the gas diverter40may be used with another vacuum source (not shown) to separate and divert any battery gas drawn from the battery cells58by such a vacuum source. It should also be understood that, in some aspects and in other constructions (not shown), the gas diverter40may be supported off the vehicle10such as at a replenishment station or on a replenishment cart to separate and divert any battery gas from the battery cells58caused by the vacuum source or pressure source at such a station or on such a cart. The hydraulic circuit50includes a conduit98connectable between the battery cell58and the vacuum source62. A conduit102is connectable between the gas diverter40and the vacuum source62, and a conduit106is connectable between the vacuum source62and the gas diverter40. The vehicle10also includes an on-board computer110(illustrated inFIG. 2). The on-board computer110is similar to the controller described in U.S. Pat. No. 6,087,805, issued Jul. 11, 2000, which is hereby incorporated by reference. Generally, the on-board computer110records the amount of energy in the battery14and determines when to allow the battery14to be charged. When the energy in the battery14falls below a predetermined level, the on-board computer110will allow the battery14to be charged. The on-board computer110also controls the replenishment of battery fluid. The on-board computer110controls operation of the pump66. The on-board computer110monitors the energy (in ampere-hours) removed from the battery14and uses the record of removed energy to determine the timing of battery charging. The on-board computer110also determines the total duration of a charging cycle by measuring the rate of change of the charging current. The on-board computer110determines the amount of charge on the battery14by measuring the energy added to the battery14during charging. In addition, by keeping a history of the removal and supply of energy to the battery14during operation and charging, respectively, the on-board computer110determines when the pump66should be activated so that fluid is supplied to the battery14. The on-board computer110estimates the fluid level in the battery14and activates the pump66, when necessary, to supply fluid to the battery14. It should be understood that, in other constructions (not shown), the fluid supply system18may include a sensor (not shown) for sensing the fluid level in the battery14. Such a sensor would provide a signal to the on-board computer110to indicate the fluid level in the battery14and/or that fluid replenishment is necessary, and the on-board computer110would then activate the pump66to supply fluid to the battery14. The venturi70is shown in more detail inFIGS. 3–5. In some aspects and in the illustrated construction, the venturi70is supported on the frame22. The venturi70includes a nozzle114which directs a high velocity fluid stream through the venturi70. The size and shape of the nozzle114can be modified to effect changes in the fluid flow and suction parameters. The venturi70also includes a first inlet78, a second inlet82, and a venturi outlet86. Fluid flow through the venturi70is illustrated inFIG. 4. As shown inFIGS. 5–6, a muzzle118is connectable between the venturi outlet86and the gas diverter40. The muzzle118captures the high velocity fluid stream and collects enough fluid at the venturi outlet86to direct the fluid against the walls of the venturi70and to submerge the venturi outlet86. A small amount of back pressure is generated at the venturi outlet86, which allows suction at the second inlet82. The suction at the second inlet82causes fluid flow from the battery cell58through the conduit98. Filling of the muzzle118also converts the high velocity, low volume flow of the nozzle114to a low velocity, high volume flow to return the fluid to the gas diverter40. The muzzle118(seeFIGS. 5–6) includes openings122to allow the fluid to pass through to the gas diverter40. The total cross-sectional area of the openings122in the muzzle118is greater than the cross-sectional area of the venturi outlet86, such that fluid flow is slightly restricted after the high velocity stream is slowed down by the venturi70. The muzzle118allows the venturi70to function as described above even though the venturi outlet86may be above the fluid level in the gas diverter40. If, in the system18, the venturi outlet86is below the fluid level, the fluid surrounding the venturi outlet86would create the back pressure, and the muzzle118may not be necessary. It should be understood that, in some aspects and in other constructions (not shown), the muzzle118may be supported off the vehicle10and used with a venturi70which is supported off the vehicle10(i.e., in a replenishment station or on a replenishment cart). In such constructions, the muzzle118ensures proper operation of the venturi70even if the venturi70is positioned above the fluid level in such a system (not shown). In the construction shown inFIG. 2, fluid is initially supplied to the tank30. During fluid replenishment, the pump66is operated by the on-board computer110, which causes fluid flow from the gas diverter40through the conduit102. The fluid flows through the pump outlet74and through the first inlet78. Fluid flows through the nozzle114and through the venturi70and collects at the muzzle118. As fluid collects at the muzzle118, back pressure develops in the venturi70, and a vacuum is generated at the second inlet82, which causes fluid flow from the battery cell58through the conduit98and through the second inlet82. Filling of the muzzle118also converts the high velocity, low volume flow of the nozzle114to a low velocity, high volume flow to return the fluid to the gas diverter40. As the characteristics of the fluid flow in the venturi70change, a vacuum is generated at the second inlet82, which causes fluid flow from the battery cell58through the conduit98and through the second inlet82. The vacuum also causes fluid flow from the gas diverter40through the conduit90to the battery cell58to replenish the battery cell58in a closed loop. Preferably, replenishment of fluid to the battery cell(s)58, if necessary, is accomplished during charging of the battery14under the control of the on-board computer110. During the initial portion of the charging cycle, fluid is supplied to the battery cells58, and the battery14is charged. Any fluid and gas flowing from the battery cells58flows to the gas diverter40and is vented from the system18. During this initial portion of the charging cycle, little gas is typically produced by the battery cells58. As the charging cycle continues (for example, at about three-quarters of the cycle), more gas begins to be produced by the battery cells58. During this portion of the charging cycle, fluid is not supplied to the battery cells58. The vacuum source62does not operate to draw battery gas from the battery cells58. Any gas flowing from the battery cells58is separated in the gas diverter40and vented from the system18. It should be understood that, in some other operations, charging of the battery14and replenishment of the battery cells58may be conducted in another manner. For example, replenishment of fluid to the battery cells58may be provided separately from charging of the battery14(before or after charging). Also, replenishment may be conducted during another portion(s) of the charging cycle or during the whole charging cycle. An alternative construction of a fluid supply system18A is illustrated inFIG. 7. Common elements are identified by the same reference number “A”. The construction shown inFIG. 7is similar to the construction illustrated inFIG. 2. However, as shown inFIG. 7, the tank30A is connected to the pump66A rather than to the gas diverter40A. The gas diverter40A acts as a fluid supply source to the battery cell (not shown, but similar to battery cell58A), and the tank30A acts as a fluid supply source to the pump66A. The tank30A is connected to the gas diverter40A through the conduit94A, the gas diverter40A is connected to the battery cell, and the battery cell is connected to the second inlet82A of the venturi70A. In the construction shown inFIG. 7, fluid is initially supplied to the tank30A. During fluid replenishment, the pump66A is operable to cause fluid flow from the tank30A through the pump66A. The fluid flows through the pump outlet74A and through the first inlet78A. Fluid flows through the venturi70A and collects downstream of the venturi70A. As the fluid collects downstream of the venturi70A, the fluid is converted from the high velocity, low volume flow to a low velocity, high volume flow to return the fluid to the gas diverter40A. As the characteristics of the fluid flow in the venturi70change, a vacuum is generated at the second inlet82A, which causes fluid flow from the battery cell58A through the second inlet82A. The vacuum also causes fluid flow from the gas diverter40A to the battery cell58A to replenish the battery cell58A in a closed loop. It should be understood that the constructions of the fluid supply system18shown inFIGS. 2 and 7may be used in a single or multi-battery systems. It should also be understood that, in the multi-battery system, the fluid supply system18may include more than one battery14connected in series, parallel, or series/parallel combination. One or more of the above-identified or other independent features and independent advantages of the invention are set forth in the following claims:
i 2000058 La présente invention a trait à des compositions thermo-plastiques, solides et plus particulièrement à des compositions polymères comprenant des mélanges de polyamides et d'interpolymères éthylène-amide. 5'-. Récemment, on s'est beaucoup intéressé aux mélanges de différents polymères avec des polyamides en particulier du type "Nylon" ponr obtenir des compositions résineuses présentant les propriétés désirables des "Nylons" tout en réduisant au minimum certains des inconvénients dans certains emplois et surtout en 10 réduisant le prix du produit final fabriqué avec le Nylon seul. Par exemple, le prix élevé et les difficultés inhérentes à la fabrication ont empêché les pellicules de Nylon non supportées de prendre de l'importance du point de vue commercial. En outre, le moulage et l'extrusion d'articles en "Nylon" exigent un grand 15 nombre d'analyses vu qu'un excès d'humidité dans la résine avant le stade de travail a pour résultat une ténacité réduite et la présence de vides dans le produit fini. Etant donné que le nylon est hygroscopique le contrôle de la teneur en humidité est souvent très difficile. Il est bien connu aussi que le Nylon n'est pas 20 facilement utilisable pour les opérations de moulage du type par compression du fait de son point de fusion élevé et de son hygros-copicité. D'autre part, on peut produire des polymères d'oléfine de façon économique et on peut les utiliser aisément pour le formage sous vide, le moulage par compression, moulage par souf-25 flage et procédé de travail à l'état de pellicule non supportée. On a constaté qu'on peut obtenir des compositions polymères très utiles qui présentent certaines des propriétés les plus désirables des Nylons mais beaucoup moins d'inconvénients en mélangeant des interpolymères éthylène-amide et des polyamides. 30 En conséquence, l'invention a pour objet des compositions thermoplastiques nouvelles adaptées à la production de pellicules, d'objets moulés, d'objets obtenus par extrusion. L'invention a encore pour objet des mélanges d'interpolymères éthylène-amide et polyamide qui présentent certaines pro-35 priétés dues à une certaine synergie, comparées à celles des composante individuels. - L'invention vise aussi des mélanges de polyamides qui présentent une aptitude au travail améliorée par rapport aux 69 00099 2000058 polyamides non mélangés. On obtient les nouvelles compositions de la présente invention, en mélangeant en poids environ 5 à 95 et de préférence 10 à 30 % d'un polyamide avec 95 à 5 % de préférence 30 à 70 % 5 d'un interpolymère éthylène-amide. Les interpolymères éthylène-amide utilisables suivant l'invention comportent de 1 à 60 % en poids d'au moins un composé de formule « /H CH„ = C - C - N L ' \ R1 R2 dans laquelle R^ est choisi dans le groupe comprenant l'atome 10 d'hydrogène, le radical méthyle et R^ est choisi dans le groupe comprenant l'atome d'hydrogène, les radicaux alcoyles, aryles, hydroxy-alcoyles, cyano-alcoyles, poly (oxyde d'éthylène) à extrémité de chaine hydroxylée et alcoyles avec substituants cétoniques. 15 Les polyamides utilisés suivant la présente invention sont tous des polyamides synthétiques à longue chaxne présentant des groupes amides récurrents comme partie intégrante de la chaîne polymère principale. Comme exemples de ces résines polyamides convenables, utilisables dans la préparation des mélanges de 20 la présente invention on cite "Nylon-6,6" préparé par condensation de l'hexaméthylènediamine et de l'acide adipique, le "Nylon-6,10" préparé à partir de l'hexaméthylènediamine et l'acide sébacique, les polymères de l'acide epsilon-amino-caproï-que ou du caprolactame, appelé aussi "Nylon-6", le polyamide-11, 25 produit d'auto-condensation du ll-amino undecanoxque et les interpolymères de condensation de l'hexaméthylènediamine, 1'epsilon-caprolactame, l'acide adipique et l'acide sébacique, polyamides de condensation de l'hexaméthylène diamine et de l'acide adipique modifiés par le formaldéhyde et le méthanol ^ les polyamides 30 obtenus par la réaction d'une diamine linéaire- avec des acides dimères dérivant des dimères de 1'isobutène et les polymères de condensation préparés.à partir des acides gras insaturés polymé-risés avec différents dérivés polyamines et produits analogues, tous ces polymères comportant le groupement fonctionnel (CNH- ) BAD- QRfâlW-'d l' 69 00099 3 2000058 dans la chaîne principale du polymère. Bien que les polyamides utilisés puissent être différents d'une façon très nette quant à leur propriétés physiques suivant les matières premières, les conditions de réaction et les agents 5 modificateurs utilisés lors de leur production, les résines les plus utiles pour la production des compositions nouvelles de la présente invention sont en général toutes des matières normalement solides. En particulier les résines polyamides préférées sont "Nylon-6,6", "Nylon-6,10" et polyamides obtenus par réaction d'une 10 diamine linéaire avec des acides dimères obtenus à partir de dimères de 1'isobutène. Les interpolymères éthylène-amide sutilisés suivant la présente invention sont la plupart du temps^réparés par polymérisation par fournée ou en continu de l'éthylène et d'un amide 15 avec la formule donnée ci-dessus, à des pressions supérieures à la pression atmosphérique, comprises entre 350 et 4- 200 kg/cm2 à des températures comprises entre 100 et !+00oC en présence d'initiateurs à radicaux libres tels que l'oxygène moléculaire, les peroxydes, hydroperoxydes, peroxycarbonates, persulfates, 20 composés azo'iques, etc. On peut utiliser des agents modificateurs de polymérisation ou agents de transfert de chaîne lors de la fabrication de ces interpolymères si on le désire. Comme exemple d'amides représentés par la formule ci-dessus utilisables pour la préparation des interpolymères éthylène-amide, 25 on cite acrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, N-méthylacrylamide, N-éthylacrylamide, N-tert-amylacrylamide, N-tert-octylacrylamide, N-cyanoéthylacrylamide, N-hydroxyméthyla-crylamide, N-phénylacrylamide, N-tolylacryiamide, N-2-(2-éthoxy)-éthoxyéthylacrylamide, di-acétone-acrylamide et méthacrylamide 30 et ses dérivés N-méthyl-, N-éthyl-, N-propyl-, N-amyl-, N-cyano-méthyl-, N-cyanoéthyl-, N-cyanopropyl-, N-hydroxyméthyl-, N-hydro-xyéthyl, N-hydroxypropyl-, N-hydroxybutyl-, N-phényl-, N-tolyl-, N-2-(2-méthoxy>éthoxyéthyl- et dérivés analogues. Les amides particulièrement préférés pour préparer les interpolymères sont 35 N-isopropylacrylamide, N-méthyllolacrylamide, acrylamide, méthacrylamide et diacétone-acrylamide. On peut obtenir les compositions "polyblends" de la présente invention par tout moyen désiré grâce auquel on réalise Ù9 00099 20000S8 un mélange homogène. Comme - exemple de technique de mélange convenable, on cite co-extrusion, laminage, sur calandre, lange par fusion dans toute sorte d'appareils de-travail des matières plastiques ou de mélange dé solutions par exemple en dissol-5 vant séparément les composants du mélange dans un solvant commun en mélangeant ensuite les solutions- et en co-précipitant les polymères par un non-solvant commun. La présente invention sera mieux illustrée par les exemples ci-après qui sont donnés à titre illustratif et nullement limi-10 tatif de l'invention. Exemple 1 On prépare une série de. "polyblends" par mélange de solutions de 3 polyamides différents et d'interpolymères éthylène-amide différents indiqués au tableau 1 ci-après. Les polyamides 15 utilisés sont un "Nylon-6,6" qualité pour malage, vendu par la Mons^to Company, un "Nylon-6,10" qualité pour moulage, vendu par la Société E.I. du Pont de Nemours and Co et une résine connue sous la marque déposée "Emerez 1530" vendue par la Société Emery Industries E.C. Cette dernière est un polyamide obtenu par la 2 0 réaction de diamines linéaires et de "acides dimères" dérivés de dimères de 1'isobutylène. Sauf pour "Emerez 15 30" qu'on utilise tel que reçu, tous les polyamides utilisés sont sèches sous vide dans un four pendant 4-8 heures à 80°C sous courant continu d'azote traversant le four à une vitesse d'écoulement faible, pour 25 chasser l'eau du polymère. - TABLEAU I Interpolymères de l'éthylène utilisés Désignation Ami.de % poids dans indice de le polymère fusion 30 Polymère A N-Isopropylacrylamide 58,0 ' 3,1 Polymère B N-Isopropylacrylamide- 14,8 3,0 Polymère C N-Méthylolacrylamide 2,8 0,4 On prépare d'abord des solutions séparées comportant 5 % en poids de polyamide et d'interpolymère éthylène-amide respec-35 tivement, en dissolvant les polymères dans un solvant convenable. Lorsque les polymères sont complètement dissous, on mesure différentes quantités de chacune des solutions et on les mélange pour obtenir les compositions de mélanges désirées. Après mélange 69 00099 5 2000058 des solutions, on soumet les polymères à une co-précipitation dans 5 à 7 volumes d'un non solvant convenable. Ensuite, on filtre les mélanges sous vide, on les lave avec des grandes quantités de non-solvant et on les sèche dans un four sous vide purgé 5 à l'azote à 80°C pendant 48 heures. Les systèmes solvants et non-solvants utilisés pour obtenir chacun des mélanges sont reportés au tableau II ci-après TABLEAU II Solvants et non-solvants utilisés pour le mélange en passant 10 par les solutions Mélange Solvant Non-solvant "Nylon 6,6" - Polymère A Alcool benzylique Acétate d'éthyle "Nylon 6,6" - Polymère B 0 à 50 % "Nylon 6,6" o-Chlorophénol Hexane 15 75 et 90 % "Nylon 6,6" o-Chlorophénol Acétone "Nylon 6,10" - Polymère A Alcool benzylique Acétate d'éthyle "Nylon 6,10" - Polymère B 0 à 50 % "Nylon 6,10" o-Chlorophénol Hexane 75 et 90 % "Nylon 6,10" o-Chlorophénol Acétone 20"Emerez 1530" - Polymère B Benzène + 2% n.butanol/Hexane "Emerez 1530" -Polymère C Benzène + 2% n.butanol On détermine les propriétés physiques des- "polyblends" et on indique les résultats obtenus aux tableaux III à VTII ci-dessous. A titre de comparaison, on donne les résultats obtenus sur 25 les composants de mélange eux-mêmes. Toutefois, dans le cas du "Nylon-6,6" on ne peut pas obtenir les propriétés du fait de son inaptitude à subir le moulage par compression pour obtenir des plaques. Les méthodes utilisées pour la détermination de l'indice de fusion et de la densité ont été décrites dans Journal of 30 Applied Polymer Science 8_, 839 (1964) et J. Polymer Science A-2, 13 01, 1964, respectivement. Toutes les autres déterminations ont été réalisées sur des échantillons de 0,5 mm, en principe obtenus par moulage par compression. On utilise une méthode standard ASTM D-1822 61 T pour l'essai de choc en traction en utilisant une 35 éprouvette S. On soumet l'éprouvette- "L" de ce procédé à un étirage de 5 cm/min. dans une machine d'essai en traction Instron jusqu'à ce que l'échantillon subisse une rupture. A partir de la coube des forces, on calcule la traction à la limite élastique 69 00099 6 20000S8 et la traction à la rupture, rapportée aux dimensions de ^échantillon non allongé. Le module sécante 2 % est analogue à celui qui est obtenu sur des bandes de 12,5 mm, de 0,5 mm d'épaisseur soumises à un étirage de 2,5 cm/min dans la machine d'essai 5 Instron. BAD ORIGINAL o o TABLEAU III Propriétés de mélangés Polymère A (Interpolymère Ethylène N-Isopropylacrylamide)-"Nylon-6,6" % en poids Module Polymère A !fNylon-6,6" kg/cm2 Traction à la limite d'allongement élastique kg/cm2 Allongement Traction Allongement à la limite à la à la rup-d'élasticité rupture ture % kg/cm2 % Résistance au choc en traction kg-m/cm2 O O O vQ O 100 0 7170 370 9 490 430 2,3 90 10 74-60 340 9 500 440 2,3 75 25 7830 355 9 460 410 2,4 50 50 9030 400 9 510 360 1,0 tsr en 00 ç> vO TABLEAU IV Propriétés de mélanges Polymère B (Interpolymère Ethylène-N-Isopropylacrylamide>-"Nylon-6,6" O O o vO »o % en poids Module Traction à la limite d'allongement élastique kg/cm2 Allongement à la limite d'élasticité Traction Allongement à la à la rupture rupture Résistance au choc en traction Polymère B "Nylon-6,6" kg/cm2 % kg/cm2 kg-m/cm2 100 0 3670 180 10 290 570 1,8 90 10 ' 407 0 200 1 9 320 540 4 ,5 7 5 25 4180 180 9 260 330 3 ,5 5 0 5 0' ■ 6600 260 9 280 110 0,9 25 7 5 9200' 260 9 280 110 0 ,8 TABLEAU V Propriétés de mélanges de Polymère A (interpolymère Ethylène-N-Isopropylaerylamide)-"Nylon-6,10" % en poids Polymère A "Nylon-6,10" Module kg/cm2 Traction à la limite d'allongement élastique kg/cm2 Allongements Traction Allongement Résistance à la limite à la à la au choc en d'élasticité rupture rupture traction % kg/em2 % kg-m/cm2 C- s.Q O O O vO o 100 90 75 50 25 0 10 25 50 75 7170 742Q 7700 9500 10360 370 350 350 430 480 9 9 9 8 9 490 440 460 470 400 430 420 410 300 70 2,3 2,9 2,9 1,6 non mesu rée 100 12060 570 450 140 7 M o -o TABLEAU VI Propriétés de mélanges de Polymère B (interpolymère Ethylène-N-Isopropylacrylamide)-"Nylon-6,10" en poids Polymère B "Nylon-6,10" Module kg/cm2 Traction à la limite d'allongement élastique kg/cm.2 Allongement Traction Allongement Résistance à la limite à la a la au choc en d'élasticité rupture rupture ■ traction % kg£cm2 % kg-m/cm2 O O o -o o 100 0 3670 180 10 290 5'7 0 1,8 90 ■10 40 30 190 9 320 550 3,9 75 25 4350 200 9 270 330 3,8 5 0 50 6320 300 8 3 Q 0 85 1,0 25 75 8530 450 8 450 200 1,1 10 90 9930 . 490 8 490 300 1,0 0 100 10475 580 8 530 290 1,8 F* o NJ O o o m co TABLEAU VII Propriétés de mélanges de Polymère B (interpolymère Ethylène-N-Isopropylacrylamide)-"Emerez 15 3 0* % en poids Module -kg/cm2 Polymère B "Emerez 153 0" Traction à la limite d'allongement élastique kg/cm2 Allongement Traction à la limite à la d'élasticité rupture % kg/cm2 Allongement Résistance à la au choc en rupture traction % kg-m/cm2 100 0 3670 180 10 290 570 1,8 90 10 3080 157 12 290 585 3 ,4 75 25 3120 159 14 279 660 2,1 50 50 2960 162 15 210 610 0,0 25 75 ' 2770 163 17 103 70 0,0 10 90 2870 166 17 97 60 0 ,0 0 100 2490 157 21 rupture à la limite d'allongement élastique 0,0 TABLEAU VIXI Propriétés de mélanges de Polymère (interpolymère Ethylènè-Méthylolacrylamide) "Emereg 15 30" Traction à la Allongement, Traction Allongement Résistance limite d'al- à la limite à la à la au choc en % en poids Module longement élas- d'élasticité rupture rupture traction % kg/cm2 % kg-m/cm2 ' Polymère C "Emerez 15303fig/cm2 kg/cm2 O O O nO 100 80 20 100 2470 2490 150 140 157 18 19 21 17 0 180 690 700 rupture à la,limite d'allongement élastique 0,8 1,4 0,0, N3 hft O o en a> t? 00099 13 2000056 Ainsi qu'il ressort de l'observation des données des tableaux III-VIII, il y a un effet de synérgie&arqué, inattendu sur la résistance au choc en traction pour les mélanges avec 10 à 25 % de polyamide. On doit noter aussi que cet effet de syner-5 gie inattendu sur les propriétés de résistance aux chocs est obtenu sans préjudice pour les autres propriétés physiques nécessaires. En général,. les compositions de la présente invention sont utilisables pour fabriquer des pellicules,. moulages et 10 objets extrudés. Les mélanges polyamides interpolymères éthylène-amide peuvent être moulés par compression beaucoup plus facilement que les polyamides correspondants seuls. En fait, comme on l'a indiqué ci-dessus, le "Nylon-6,6" pur ne peut pas être moulé par compression. 0n a trouvé que les mélanges polyamides inter-15 polymères coulent plus facilement que des polyamides non mélangés. Comme il est bien connu de l'homme de l'art, les propriétés d*é-coulement sont très importantes dans les opérations de moulage. On peut ajouter des charges et des agents de renforcement dans les compositions pour les rendre convenables poiir des appli-20 cations particulières. On peut introduire'des pigments et des colorants pour donner des compositions colorées et on peut utiliser des agents stabilisants et anti-oxydants pour empêcher1 la dégradation et préserver le mélange. 69 00099 2000058 REVEBDXCATIOMS 1. Composition polymère comprenant an poids de 5 à &5 % environ d'un polyamide et de 95 à 5 % d'un interpolymère d'ethylène avec 1 à 60 % d'au moins un composé de formule CH0 = C - £ - M 'r„ 2 ' 1 5 dans laquelle R^ est choisi dans le groupe comprenant l'atome d'hydrogène et le radical méthyle et R£ est choisi dans le groupe comprenant l'atome d'hydrogène, les radicaux alcoyles, aryles, hydroxy-alcoyles, cyano-alcoyles, les radicaux de polymères d'oxyde d'éthylène avec hydroxyle en bout de chaîne et les ra-10 dicaux alcoyles avec substituants cétoniques. 2. Composition suivant 1 dans laquelle le polyamide est présent en quantité de 10 à 30 % en poids et 1'interpolymère en quantité de 90 à 70 % en poids. 3. Composition suivant 2 dans laquelle ledit polyamide 15 est un produit de réaction de lThexaméthylènediamine et de l'acide adipique. 4. Composition suivant 2 dans laquelle ledit polyamide est un produit de réaction de l'hexaméthylènediamine et de l'acide sébacique. 20 5. Composition suivant 2 dans laquelle ledit polyamide est un produit de réaction d'une diamine linéaire et d'un acide dimère dérivé du dimère de 1'isobutylène. 6. Composition suivant 3 dans laquelle ledit interpolymère est un interpolymère d*ethylène et de N-isopropylacrylamide. 25 7. Composition suivant 4- dans laquelle ledit interpolymère est un interpolymère de l'éthylène et de diacétone-acrylamide. 8. Composition suivant 4 dans laquelle ledit interpolymère est un interpolymère d'éthylène et d'acrylamide. 9. Composition suivant 4 dans laquelle ledit interpolymère 30 est un interpolymère d'éthylène et de méthacrylamide. 10. Composition suivant 4 dans laquelle ledit interpolymère est un interpolymère d'éthylène et de N-isopropylacrylamide. 11» Composition suivant 5 dans laquelle ledit interpolymère est un interpolymère d'éthylène et de N-isopropylacrylamide. 35 12. Composition suivant 5 dans laquelle ledit interpolymère est un interpolymère d'éthylène et de N-méthylolacrylamide.
Host computer virtual memory within a network interface adapter A system and method of mapping a host computer address space into a network interface adapter (NIA) address space. A network interface processor within the NIA requests a memory allocation from the host computer. The host computer responds with an assigned base address in the host computer address space, and a length defining the contiguous addresses within the host computer address space equal to the allocation requested by the NIA processor. A hardware trap is set such that an interrupt to the NIA processor is generated when the host computer attempts to access data at an address within the allocated address range of host computer contiguous addresses. The network interface processor translates the received host address to a physical address within the NIA address space, reads the data at the respective NIA physical address, and transfers the data to the host computer. BACKGROUND OF THE INVENTION The present application relates generally to computer software boot techniques, and more particularly to the execution of computer boot techniques within a network interface adapter. In a typical computer system interconnected to a network, a network interface adapter (NIA) acts as an interface between the host computer and a computer network. The NIA performs the necessary interface functions for transmitting and receiving data over the computer network. The NIA includes a memory for storing data or software program code images that the host computer utilizes in communicating over the computer network. As such, the data and software program code images must be accessible to the host computer in order to be accessed and utilized by the host computer. In order for these resources to be accessible to the host computer, they must be included in the host computer address space. To be included within the host computer address space, these resources need to have memory addresses assigned to them that are accessible by the host computer. Prior art systems have stored such data and software program code images in serial EEPROMs. However, a bottleneck may exist in the transfer of a data image or a code image from the NIA to the host computer due to the serial nature and speed of such EEPROMs. It would therefore be desirable to have an NIA that is capable of storing data and software program code images having a non-static host address, and of transferring the data and software program code images stored at an NIA address, which is specifiable and is independent of the host computer address, to the host computer more efficiently. BRIEF SUMMARY OF THE INVENTION Consistent with the present invention, a system and method are disclosed for accessing a data image stored within a network interface adapter (NIA) by a host computer. Upon boot up, the NIA requests an allocation of memory space from the host computer that may be accessed by the host computer. The host computer responds with an individual base address and memory allocation. Each of the base addresses supplied is within the host computer address space. When the host computer attempts to read data contained within the address space assigned to the NIA, the address is trapped on the NIA, and the NIA processor is notified. The NIA processor reads the address requested by the host computer, and translates the address in the host computer address space into a physical address in the NIA address space. Upon locating the data at the applicable physical address, the NIA processor transfers the data to the host computer. Other features, functions, and aspects of the invention will be evident from the Detailed Description of the Invention that follows. DETAILED DESCRIPTION OF THE INVENTION U.S. patent application Ser. No. 09/590,892 filed Jun. 9, 2000 entitled HOST COMPUTER VIRTUAL MEMORY WITHIN A NETWORK INTERFACE ADAPTER is hereby incorporated herein by reference. Consistent with the present invention, a system and method of performing a virtual boot of data in a network interface adapter (NIA) is disclosed. The host computer reads a PCI configuration register that has been loaded with a predetermined request for the memory needed for the BIOS ROM. The host computer responds with an assigned base address in the host computer address space, and an allocation of a range of contiguous addresses within the host computer address space equal to the amount of memory requested by the NIA processor. A hardware trap within the NIA is set to occur on the base address and the range of contiguous addresses assigned to the NIA by the host computer such that, when the host computer attempts to access an address within the range of contiguous addresses, the network interface processor is notified. In response to notification of the receipt of an address within the specified range, the network interface processor translates the address within the host computer address space to a physical address within the NIA address space. The network interface processor then locates and transfers the contents of the address(es) to the host computer. As used herein, “data” may include software program code, or any other information used by a software program during execution. FIG. 1depicts a system10including a NIA14that is capable of performing a virtual boot of a data image or a software program code image under the control of a NIA processor24within the NIA14, according to the present invention. The processor may comprise an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) processor integrated on an application specific integrated circuit (ASIC)44with other components, as discussed later in greater detail. The NIA14includes a PCI interface40that couples the network interface processor24to a PCI bus13via a plurality of registers. These registers can include PCI configuration registers36, address registers38, data transfer registers37, and status registers39. In the presently disclosed embodiment, the PCI configuration registers36comprise a plurality of registers that are used to pass configuration requests from the NIA14to the host computer12, configuration responses from a host computer12to the NIA14, and configuration data between both the NIA14and the host computer12. The address registers38comprise a plurality of registers, and are used to pass an address or addresses to the NIA containing data or software program code required by the host computer. The addresses passed to the NIA from the host computer will be located within the host computer address space. The data transfer registers37are employed in the transmission of data, software program code, or other information between the NIA14and the host computer12. The status registers39may be used to provide a status indicator of whether the host computer is reading or writing data to a memory location in the NIA memory. A ROM26, External RAM34, Instruction RAM28, Data RAM30, and Flash RAM32are coupled to the NIA processor24to enable the processor24to read and write instructions and data from and to the respective memories, as applicable. A cryptographic processor34, may be coupled to the NIA processor24. The cryptographic processor34is employed to accelerate cryptographic functions within the NIA14. The NIA processor24is also coupled to a NIA network interface42, which is coupled to a network to permit reception and transmission of information over the network. A hardware logic or state machine35is coupled to the PCI Bus Interface40and to the ARM processor24. The hardware logic or state machine35traps on an address on the PCI bus interface40that is within a predetermined address range, and notifies the ARM processor24thereof. In the presently disclosed embodiment, the NIA is coupled to the host computer12via a host PCI interface20. The host computer12includes a host processor16, a host memory18, and control logic19. The host processor16is communicably coupled to the host memory18and the host PCI interface20. The NIA14may be fabricated integrally on a motherboard with host computer electronics or alternatively as a separate network interface adapter card. As indicated above, the NIA processor24may comprise an ARM processor. The ARM processor may be integrated on the ASIC44along with the ROM26, IRAM28, DRAM30, the PCI configuration registers36, the address registers38, the data transfer registers37, and the hardware logic or state machine35. More specifically, the NIA14provides a request for configuration data from the host computer12via the PCI configuration data registers36, the PCI bus interface40, the PCI bus13, and the host PCI interface20. Such configuration data can include a request for address assignments within the host computer address space from the host computer for resources within the NIA. Such a request can be made, for example, for address assignments associated with the input/output (I/O) of the NIA14, the RAM or ROM memory contained within the NIA14, and BIOS ROM used by the NIA14. Memory addresses for data images and software program code images are contained within the Flash RAM32. In a preferred embodiment, the NIA14requests a BIOS ROM address for netboot code contained within the Flash RAM32. Additionally, the host computer12can request to read data assigned within in its own memory space that is physically located within the NIA14by providing an address to the NIA processor via the address registers38. As will be explained in more detail below, the physical memory contained within the NIA14has a different physical address than that assigned by the host computer12in the configuration response. Accordingly, when the NIA processor24is notified that the host computer12is requesting to read data from an address within the host computer address space assigned to the NIA14, the NIA processor24translates that address to a physical address contained within the NIA address space. As discussed in more detail below, in one embodiment, in which the data being retrieved by the host computer12resides within the Flash RAM32, the NIA processor locates the physical address of data being retrieved within the Flash RAM32. As will be discussed below, the Flash RAM32includes a section containing section headers that include a pointer to the beginning of each section. Using the address from the host computer, the NIA processor computes an offset from the assigned base address, and uses this offset to locate the physical address of the data within the particular section of the Flash RAM32. The NIA processor24then transfers the data associated with the address to the host computer. Thus, the operation of translating from a virtual boot memory address to a physical address is completely transparent to the host computer12. A technique for translating between the host address space and the NIA address space to facilitate reading from and writing to the NIA address space is described below. In the case of a read operation, the NIA processor translates the host address as described herein, retrieves the data from an NIA memory such as the Flash RAM at the location(s) specified by the translated address(es), and writes the data into the data transfer registers for transmittal to the host computer. In the case of a write operation, the NIA processor translates the host address as described herein, retrieves the data from the data transfer registers37, and writes the data into the desired physical memory location in the NIA memory. The hardware logic or state machine35is responsible for monitoring the PCI bus interface40and notifying the NIA processor24when one or more predetermined conditions occur. The hardware logic or state machine35may be either a combinatorial logic or a state machine that is operative to monitor certain bus, address, or data lines for an occurrence of these certain conditions. These predetermined conditions may include particular addresses that are being accessed by the host computer12, predetermined data, or commands. More specifically, the hardware logic or state machine determines whether the respective host operation is a read or a write operation, and sets the appropriate status bit in the status register to identify the operation, as applicable. The hardware logic or state machine35also monitors the PCI bus interface40for an address within the host computer address space that has been assigned to the NIA14. The hardware logic or state machine35is further operative to notify the NIA processor24upon the occurrence of one of the predetermined conditions. This notification may be in the form of an interrupt to the NIA processor24or via a status bit accessible to the NIA processor24. The organization of the Flash RAM32in the presently disclosed system is illustrated in FIG.2. In a preferred embodiment, the Flash RAM32comprises a serial device that is organized as a paginated memory and contains 512 pages. The Flash Ram contains 264 bytes per page. The first entry in the Flash RAM32is a unique ASCII string202that may be verified by the processor to indicate that the Flash RAM32has been loaded with the appropriate code image. The next entries in the Flash RAM32include section headers204. The section headers may include two entries. The first entry is a section identifier206that identifiers the code within the respective section. The second entry in the section headers204is a section pointer208that provides a software pointer to the address of the first location within the section corresponding to the section identifier. In a preferred embodiment, there are a maximum of 16 sections stored within the Flash RAM32. A static data section210may contain static configuration data such as the PCI device identifier, MAC address, and serial numbers and other manufacturing parameters of the NIA. In one embodiment, the NIA includes a PCI device ID that signifies the type of cryptographic processor expected to be populated on the NIA. The static data section210also includes a header portion located at the beginning of the section. The header portion contains a section length parameter212, a load address214, and a checksum216derived from the data stored within static section210. Although the header portion associated with the static data section210contains a load address, it is not used in the presently illustrated embodiment. Variable data section218may contain variable configuration data, which is typically the configuration data for the NIA. This variable data may include the factory default configuration data and in one embodiment, may be modified by a user. The variable data section218also includes a header portion located at the beginning of the variable data section218containing a section length parameter220that defines the length of the respective section, a load address222that specifies the memory location in NIA memory at which to store the variable data and a checksum224derived from the data stored within the variable section218. Although the section header associated with the variable data section218contains a load address, this load address is not used. Variable prime data section226may contain factory default configuration settings for the NIA that are used as a data backup for the variable data stored in variable data section218. In one embodiment, to ensure the integrity of the data stored in this page, the user is unable to over-write that data stored in this section. The variable prime data stored in variable prime data section226of the Flash RAM32may be used by the host processor to rewrite certain invalid data values stored in other pages and sections within the Flash RAM32. Variable prime data section226includes a header portion located at the beginning of the section containing a section length parameter228defining the length of the respective section, a load address230that specifies the NIA memory address, and a checksum232derived from the data stored within variable prime section226. Although the header portion contains a load address, this load address is not used. A boot image section234contains the boot software for the NIA. This boot software code includes self diagnostic software code herein discussed. Preferably the boot image code is stored in contiguous pages of memory within the boot image section234or may be stored in contiguously linked pages. The boot image section234also includes a header portion located at the beginning of the boot image section234. The header portion contains a section length parameter236that defines the length of the boot image section234, a load address238that provides the address where the boot software code is to be loaded in NIA memory, and a checksum240derived from the data stored within the boot image section234. The sleep image code may be divided into a number of sections, depending on the system requirements. The sleep code may be divided into a plurality of sections, each being loaded into a different RAM module in the NIA. The Sleep image-1section242contains the first section of the sleep software code. The Sleep image-1section242includes a header portion located at the beginning of the section. The header portion contains a section length parameter244defining the length of the sleep image section, a load address246that defines the memory and address where the first section of the sleep software code is to be loaded, a checksum248derived from the software code stored within the sleep image-1section242, and a next-section-pointer250. The next section pointer250provides a software pointer link to the location in the Flash RAM32where the subsequent section of sleep software code is stored. In the embodiment illustrated inFIG. 2, a second sleep image section, i.e., sleep image-2section252, is provided. Sleep image-2section252provides a second section of sleep software code that will be loaded into a different RAM module than the sleep image-1software code. A header portion is located at the beginning of the section. The header portion contains a section length parameter254that defines the length of the sleep image-2section, a load address256identifying the memory and address into which the sleep image-2section is to be loaded, a checksum258derived from the software code stored within the sleep image-1section242, and a next-section-pointer260. The next section pointer260provides a software pointer link to the location in the Flash RAM32where the subsequent section of sleep software code is stored, if a sequential section is present. It should be understood that there may be as many sections of sleep software code as needed for a given system. The netboot image section262contains the Net boot software code and contains the code for establishing the communication parameters between the NIA and the network. The Net boot image section includes a header portion located at the beginning of the section. The header portion includes a section length parameter264, a load address266providing an address where the Net boot software code could be loaded, and a checksum268derived from the data stored within the Net boot image section262. Although the header portion associated with the netboot image section262contains a load address, it is not used in the presently illustrated embodiment. During the boot up process, the NIA14requests memory allocations from the host processor24, for a certain amount of memory sufficient to accommodate information to be transferred from the NIA to the host. The host processor assigns for each such allocation a base address within the host address space, and a length defining contiguous memory addresses within the host address space. This allocation establishes a range of addresses within the host computer address space that will accommodate the information to be transferred from the NIA14. This allows the host processor to access the NIA memory by reading data contained at a memory address within the host address space. Hardware logic or state machine35monitors the interface between the NIA14and the host computer12and traps on an address that is within the range of memory addresses assigned by the host computer to the NIA. The NIA processor24is notified (preferably by an interrupt) when the host computer is attempting to access one or more addresses within the range of addresses assigned to the NIA14. The NIA processor24reads the address(es) written to the address registers38by the host computer and translates the host computer address(es) into a physical address contained within the NIA address space. The NIA processor24then transfers the requested data from the respective physical NIA memory address to the host computer using the data registers37. The method of translating from a host address space to an NIA address space is further described in the flow diagram of FIG.3. The NIA processor24requests a memory allocation within the address space of the host computer12, as depicted in step302. The NIA processor24may request memory allocations for various functions such as the I/O of the NIA14, the memory space contained within the NIA14, and the ROM BIOS of the NIA14. The host computer12responds to the NIA with a base address within the host address space for each memory allocation requested by the NIA14, and a length that defines the allocated size of the contiguous address space within the host computer12, as depicted in step304. Each function therefore receives a base address and a contiguous range of memory addresses extending from the assigned host computer base address. Each NIA memory allocation request, however, does not have to be contiguous in the host computer address space or with any other host computer allocation. The host computer requests data contained within an NIA memory, and provides to the NIA a host computer address within the range of memory addresses assigned by the host computer to the NIA, as depicted in step306. The host address is checked to verify that it is within the address space assigned by the host computer12to the NIA14, as depicted in step308. A high speed processor, combinatorial logic, or a state machine may be used to trap the incoming address within the specified range. If the address received from the host computer is within the range of host computer addresses allocated to the NIA14, then the NIA processor24is notified that the host computer12is requesting data from the NIA14, as depicted in step310. The NIA processor24reads the address or addresses in the address register38, as depicted in step312. The NIA processor24translates the received host address into a physical address contained within the NIA address space, as depicted in step314. For example, if the NIA14requested a memory allocation for the BIOS ROM to be assigned to the netboot code, then as described above, the netboot code would receive a particular base address and a contiguous range of memory addresses within the host computer address space having a length equal to the netboot code length. Accordingly, for the host computer to access a memory address that is within the Bios ROM address range, the NIA processor will locate the netboot code section within the NIA address space. The data may be contained within the Flash RAM32, and the NIA processor24can utilize the section header section204of the Flash RAM32to locate the particular section within it. The NIA processor24accesses the contents of the physical address within the NIA address space that corresponds to the host computer address, as depicted in step316. The NIA processor may determine the offset of the host computer address from the host computer assigned base address. Using this offset, the NIA processor locates the desired data within the physical memory of the NIA address space by accessing the contents that are offset from the beginning address of the physical memory section within the NIA address space in which the data resides. In one embodiment, in which the Flash RAM32contains the data, the NIA processor24locates the address of the desired data as the offset distance from the beginning of the above-identified section. The NIA processor24transfers the desired data to the host computer12, as depicted in step318. The NIA processor reads the desired data, and transfers the desired data to the host computer via the data transfer registers37, the PCI bus interface40, the PCI bus, and the host PCI interface20. Those of ordinary skill in the art should further appreciate that variations to and modifications of the above-described method and system may be made without departing from the inventive concept disclosed herein. Accordingly, the invention should be viewed as limited solely by the scope and spirit of the appended claims.
L'invention a pour objet un appareil de commande thermostatique pour le réglage de la température d'un espace en fonction d'autres grandeurs, par exemple la température exterieure, l'humidité1 l'heure de la Journée etc.. De tels appareils sont en soi connus. Ils comprennent deux ou plusieurs éléments sensibles dtun thermostat à liquide branchés sur le même dispositif dilatable qui actionne des contacts électriques et dans lequel au moins un des éléments sensibles est soumis à un chauffage auxiliaire produit par un courant engendré dans un dispositif de commande influencé par les grandeurs qui sont susceptibles de modifier la consigne de température de l'appareil de commande thermostatique. Pour éviter la surchauffe dans de tels appareils de commande thermostatiques; il est connu dtinterrom- pre le courant de chauffage auxiliaire en même temps que le courant de chauffage principal. L'invention a pour objet un appareil de commande thermostatique permettant de supprimer le chauffage principal aussi longtemps que certaines conditions sont maintenues. Suivant l'invention, ce résultat est obtenu gracie au fait que le chauffage auxiliaire est interrompu pour une température globale plus élevée que le courant de chauffage principal. L'invention est expliquée ci-dessous par rapport à un exemple d'une forme d'exécution représentée au dessin annexé. L'unique figure du dessin est un schéma électrique et hydraulique d'un appareil de commande thermo- statique suivant l'invention. Un bulbe thermosensible 1 est mis en contact avec une source de chaleur principale représentée par une résistance 2 alimentée par un réseau. La résistance 2 se trouve à l'intérieur d'une enceinte, non représentée, qui comprend une certaine inertie thermique relativement grande L'enclenchement de la résistance 2 se fait par l inter- médiaire d 'un contact contact 5 à actionnement instantané. Une autre bulbe f:ermosensible 4 est entouré d'une résistance de chauffage auxiliaire 5 dont igenclenche- ment est commandé par l'intermédiaire dzun contact 6 à actionnement instantané Le courant de chauffage pour la résistance auxiliaire 5 est fourni par un dispositif de commande 7 en fonction des grandeurs qui influencent la Xeonsigne de l'appareil de commande thermostatique. Les bulbes thermosensibles 1 et 4 sont raceordés à un mAeme dispositif dilatable 8 de telle manière que les dilatations du liquide provenant des deux bulbes 1 et 4 stadditionnent dans le dispositif 8 e dernieragit sur les contacts 7 et 6 par l'intermédiaire d'une plaquette mobile 9 maintenue en contact avec le dispositif 8 au moyen d'un ressort, non représenté Le dispositif dilatable 8 enregistre la dilatation globale qui peut Atre assimilée à une température globale de l'appareil ,constituée par la moyenne des températures mesurées par les deux bulbes 1 et 4. Le circuit de chauffage principal commandé par e contact 5 reste fermé aussi longtemps que cette température moyenne se trouve en dessous dnun certain seul inféreure. Par contre ie circuit de chauffage axile aire commande par le contact 6 s'ouvre seulement lorsque la température moyenne enregistrée par le dispositif dilatable 8 se trouve au dessus d!un certain seuil supérieur La différence entre ces seuil inférieur et seuil supérieur est choisie suffisamment grande pour tenir compte de l'inertie thermique de l'ensemble constitué par ce bulbe 4,sa résistance chauffante et son enveloppe éventuelle Lorsque l'appareil de commande thermostatique suivant l'invention est utilisé pour commander la température du noyau d'un poêle a accumulation, le bulbe 1 est inséré dans l'enceinte du noyau c'est-àdire la garniture de calorifuge, tandis- que le bulbe 4 est laissé en dehors de cette enceinte. REVENDICATIONS Appareil de commande thermostatique pour le réglage de la température d'un espace en fonction d'autres grandeurs, comprenant deux ou plusieurs éléments sensibles d'un thermostat à liquide branchés sur le eme dispositif dilatable qui actionne des contacts électriques et dans lequel au moins un des éléments sensibles est soumis à un chauffage auxiliaire produit par un courant engendré dans un dispositif de commande influencé par les grandeurs qui sont susceptibles de modifier la consigne de température de l'appareil de commande thermostatique, caractérisé en ce que le chauffage auxiliaire est interrompu pour une température globale enregistrée par le dispositif dilatable, plus élevée que la température pour laquelle est interrompue le chauffage principal.
Ear tag for recognizing livestock individual An ear tag for recognizing livestock individual is provided. The ear tag for recognizing livestock individual according to the present invention includes a cover unit including a first cover unit and a second cover unit, where the first cover unit faces a skin side of livestock, and the first cover unit and the second cover unit integrally coupled with each other, a wireless communication unit arranged between the first cover unit and the second cover unit and including at least one wireless communication chip, a male plug configured to penetrate through a part of a body of the livestock and a through hole formed on the first cover unit and including a distal end configured to be engaged with a space of a female unit formed on the second cover unit, and a folding portion including at least one first folding line formed in a groove with a predetermined length on an outer surface of the cover unit between a head area of the cover unit corresponding to the male plug and a body area of the cover unit corresponding to the wireless communication unit to allow a stress caused by an external force to be concentrated on the folding portion so that the cover unit is folded along the first folding line when the cover unit is bent. TECHNICAL FIELD The present disclosure relates to an ear tag, and more particularly, to an ear tag for recognizing livestock individual, which is capable of protecting a wireless communication chip by folding a specific portion of a cover, which is separated from the wireless communication chip, when the cover unit is bent by an external force generated in livestock industry environment not to cause a stress to be concentrated in an area corresponding to the wireless communication chip, preventing a damage on the wireless communication chip, and minimizing influence of the external force on the wireless communication chip. BACKGROUND In general, a farm that breeds livestock such as cattle and pigs facilitates management of the livestock by attaching an identification tag including information on livestock individual on an ear or the like of the livestock. In recent years, with development of various wireless communication technologies, the wireless communication technology has been grafted onto the identification tag for managing the livestock individual, which has led to a development of various types of identification tags in order to improve the efficiency in the management of the livestock individual. Among the technologies for managing the livestock individual onto which the wireless communication technology has been grafted, livestock individual management technology to which an RFID (Radio Frequency Identification) technology is applied is widely employed, because this technology has various advantages over other technologies. The RFID technology includes an RFID tag and an RFID reader, and recognizes information from a distance, in which the RFID tag records information in an integrated circuit and transmits the information to the reader via an antenna. When the reader receives the information, the received information is used to identify a subject to which the RFID tag is attached. That is, a difference between the RFID and a barcode system is that the RFID reads the information by using radio wave instead of using light. Therefore, unlike the barcode reader that works in a short distance, the RFID is capable of reading the information from a distance and even receiving the information through an intervening object between the RFID and the subject. The RFID can be classified depending on a type of power used. An RFID that reads information from a chip performs a communication based on a power of the reader is classified as a passive RFID. An RFID that includes a built-in battery to read information from a chip based on a power of the battery and performs a communication based on a power of the reader is classified as a semi-passive RFID. Lastly, an RFID that reads information from a chip and performs a communication based on a power of the tag is classified as an active RFID. The RFID can also be classified depending on a frequency of the radio wave used in the communication instead of the type of power used. An RFID using a low frequency is referred to as an “LF RFID (Low-Frequency Radio-Frequency Identification), which uses a radio wave of 120 kHz to 140 kHz. An HF RFID (High-Frequency Radio-Frequency Identification) uses a radio wave of 13.56 MHz, and a UHF RFID (Ultrahigh-Frequency) that uses an even higher frequency uses a radio wave of 868 MHz to 956 MHz. In a livestock individual management system employing the RFID technology, each livestock individual is provided with an RFID tag, i.e., an identification tag including an antenna and a chipset that is an integrated circuit for RFID communication. Normally, the identification tag for the livestock is attached through a hole perforated on an ear of the livestock individual, and hence it is also referred to as an “ear tag”. Korean Patent Application Laid-Open No. 10-2013-0019970 (2013 Feb. 27) describes an ear tag including a first cover unit facing a skin side of livestock individual, a second cover unit bonded with the first cover unit, and a wireless communication chipset between the first cover unit and the second cover unit. In such a conventional ear tag, a male plug that is coupled with a bonded structure of the first cover unit and the second cover unit is provided through a hole perforated on an ear of the livestock individual, which is a part of a body of the livestock individual, the first cover unit includes a through hole for passing the male plug, the second cover unit includes a female unit having a space for receiving the male plug, and an unplug preventing member that interferes with the male plug inserted through the through hole to prevent the male plug from being unplugged is provided in the space of the female unit. However, in such a conventional ear tag, the first and second cover units bonded together to include the wireless communication chip therebetween are made of soft material such as polyurethane, and hence the first and second cover units that are straight are easily bent in a U-shape by an external force. When the first and second cover units are bent, the bending stress is concentrated on the wireless communication chip that is arranged roughly at the center of the first and second cover units, and the concentrated stress may damage the wireless communication chip that is a core part of the ear tag, which causes degradation of the product reliability. In particular, a feedbox for storing feed for the livestock such as cattle and pigs is provided outside a cowshed with bars therebetween in the livestock industry environment, and hence an external impact is transferred to the wireless communication chip due to a bending by an external force when the ear tag attached on the ear of the cattle is bumped into the bars or folded with the ear while the cattle puts its head in and out of a space between the bars to take the feed. Further, when the livestock sleeps or moves while lying on the floor in the cowshed, the ear having the ear tag is folded to cause a bending of the cover unit, which transfers an impact on the wireless communication chip. Therefore, the wireless communication chip provided in the cover unit is damaged by the external impact transferred from a bending of the ear tag attached on the ear of the cattle due to such external environmental factors in the livestock industry environment. The repeated bending of the ear tag damages the chip and the bonding surface, which eventually disables the wireless communication function. DISCLOSURE Technical Problem The present disclosure has been made in view of the above aspects, and it is an object of the present invention to provide an ear tag for recognizing livestock individual, which is capable of protecting a wireless communication chip by folding a specific portion of a cover unit, which is separated from the wireless communication chip, when the cover unit is bent by an external force generated in livestock industry environment not to cause a stress to be concentrated in an area corresponding to the wireless communication chip, preventing a damage on the wireless communication chip, and minimizing influence of the external force on the wireless communication chip. The technical object of the present invention is not limited to the above-mentioned, but other objects, features, advantages and technical and industrial significance of this disclosure will be better understood by a person having ordinary skill in the pertinent art by reading the following detailed description of exemplary embodiments of the disclosure. SUMMARY In order to achieve the above-mentioned technical object, an ear tag for recognizing livestock individual according to some embodiments of the present invention includes a cover unit including a first cover unit and a second cover unit, where the first cover unit faces a skin side of livestock, and the first cover unit and the second cover unit integrally coupled with each other, a wireless communication unit arranged between the first cover unit and the second cover unit and including at least one wireless communication chip, a male plug configured to penetrate through a part of a body of the livestock and a through hole formed on the first cover unit and including a distal end configured to be engaged with a space of a female unit formed on the second cover unit, and a folding portion including at least one first folding line formed in a groove with a predetermined length on an outer surface of the cover unit between a head area of the cover unit corresponding to the male plug and a body area of the cover unit corresponding to the wireless communication unit to allow a stress caused by an external force to be concentrated on the folding portion so that the cover unit is folded along the first folding line when the cover unit is bent. It is in some embodiments that the first folding line be formed on outer surfaces of the cover unit on both sides or selectively formed on the outer surface of the cover unit on one side. It is in some embodiments that the first folding line be formed with both ends extended to respective outer edges of the cover unit. It is in some embodiments that the first folding line include a curved line or a straight line. Further, an ear tag for recognizing livestock individual according to some embodiments of the present invention includes a cover unit including a first cover unit and a second cover unit, where the first cover unit faces a skin side of livestock, and the first cover unit and the second cover unit integrally coupled with each other, a wireless communication unit arranged between the first cover unit and the second cover unit and including at least one wireless communication chip, a male plug configured to penetrate through a part of a body of the livestock and a through hole formed on the first cover unit and including a distal end configured to be engaged with a space of a female unit formed on the second cover unit, and a folding portion including at least one second folding line formed in a groove with a predetermined length on the cover unit in an area close to the wireless communication chip without being overlapped with the wireless communication chip and corresponding to the wireless communication unit to allow a stress caused by an external force to be concentrated on the folding portion so that the cover unit is folded along the second folding line when the cover unit is bent. It is in some embodiments that the second folding line include an oblique line having a predetermined angle with a virtual vertical line passing the wireless communication chip. It is in some embodiments that the second folding line include a plurality of oblique lines having predetermined angles in opposite directions with a virtual vertical line passing the wireless communication chip in a manner that the plurality of oblique lines intersect with each other around the wireless communication chip. It is in some embodiments that the second folding line include a vertical line parallel to a virtual vertical line passing the wireless communication chip. It is in some embodiments that the second folding line be formed on the cover unit on one side corresponding to the wireless communication chip included in the wireless communication unit. It is more in some embodiments that the second folding line be formed with both ends extended to respective outer edges of the cover unit. It is more in some embodiments that the ear tag for recognizing livestock individual further include an embossed portion convex by a predetermined height on the outer surface of the cover unit corresponding to the wireless communication chip. ADVANTAGEOUS EFFECTS As described above, the present invention has following effects. (1) Providing a first folding line that defines a boundary line from which a cover unit is folded when the cover unit is bent on an outer surface of the cover unit that includes therein a wireless communication unit including a wireless communication chip and board in a form of groove having a predetermined depth and a predetermined length between a head area of the cover unit coupled with a male plug and a body area of the cover unit in which the wireless communication unit is provided, the cover unit is folded along the first folding line that is distant from the head area of the wireless communication chip so that the stress is concentrated in the folded area, and hence the wireless communication chip and board are prevented from being damaged by the stress generated when the cover unit is bent and having a short-circuit of a circuit pattern, which increases the product liability. (2) Providing a second folding line that defines a boundary line from which the cover unit is folded when the cover unit is bent on an outer surface of the cover unit that includes therein a wireless communication unit including a wireless communication chip and board in a body area of the cover unit corresponding to the wireless communication unit in a form of groove of a single oblique line, intersecting oblique lines, or a vertical line, the cover unit is folded along the second folding line that is not overlapped with the wireless communication chip so that the stress is concentrated in the folded area, and hence the wireless communication chip and board are prevented from being damaged by the stress generated when the cover unit is bent, which increases the product liability. DETAILED DESCRIPTION Exemplary embodiments of the present invention are described in detail below with reference to the accompanying drawings. However, in a case where a detailed description of related known function or structure may unnecessarily cloud the gist of the present invention in describing the structural principle of the exemplary embodiments, the detailed description thereof is omitted. In the following description, like reference numerals designate like elements even when the elements are shown in different drawings. Additionally, in describing the components of the present invention, if a component is described as ‘connected’, ‘coupled’, or ‘linked’ to another component, one of ordinary skill in the art would understand the components are not necessarily directly ‘connected’, ‘coupled’, or ‘linked’ but also are indirectly ‘connected’, ‘coupled’, or ‘linked’ via a third component. In the entire specification, when a portion “comprises” or “includes” a constituent element, this does not mean to exclude another constituent element unless otherwise described particularly in view of the opposite aspect but means that another constituent element can be further included. As shown inFIGS. 1 and 2, an ear tag100for recognizing livestock individual according to a first embodiment of the present invention includes a cover unit110, a wireless communication unit120, a male plug130, and a folding portion140, so as to prevent a wireless communication chip from being damaged when the cover unit is bent due to an external force generated in a poor livestock industry environment. The cover unit110includes a first cover unit111and a second cover unit112. The first cover unit111is provided on a side facing a body of the livestock when the ear tag for recognizing livestock individual is attached on a part of the body of the livestock. The first cover unit111includes a plate member having a through hole113of a predetermined size through which the male plug130is passable, which is used to fix the ear tag on a part of body of the livestock by passing through the part of the body. The second cover unit112includes a female unit114having a predetermined space with which a distal end of the male plug130is engaged in an area corresponding to the through hole113of the first cover unit111. The female unit114is formed to be outwardly protruded. The second cover unit112is tightly bonded with one side of the first cover unit111in a mold (not shown), making a plate member to form an ear tag structure for recognizing livestock individual. It is in some embodiments that the first and second cover units111and112be formed of a material that does not affect the livestock when the ear tag is brought into contact with the body of the livestock and is elastically deformable by an external force. Such an unharmful and elastically restorable material includes rubber, polyurethane, and the like. The wireless communication unit120is a communication means including a film-type board on which a wireless communication chip121for recording information on livestock individual and performing a communication of the information with an external device is mounted and provided between the first cover unit111and the second cover unit112. The wireless communication chip121included in the wireless communication unit includes an RFID (Radio Frequency Identification) communication chipset, which is a chipset having an RFID communication tag function. The wireless communication unit120further includes an antenna (not shown) for performing a wireless communication. Such an antenna can be implemented in a form of a film antenna having a thin thickness. The film antenna includes an antenna having a radiation pattern printed on one side of a nonconductive film with a conductive material, and the radiation pattern and the wireless communication chip are electrically coupled with each other. The male plug130is a separate member that penetrates through an ear of the livestock, which is a part of the body of the livestock as a target subject for recognizing the individual and the through hole113formed on the first cover unit111. The distal end of the male plug130is engaged with the space of the female unit114formed on the second cover unit112, by which the male plug130is coupled with the cover unit110. The folding portion140includes a first folding line141on which a stress is concentrated when the cover unit110is bent by an external force for folding a specific portion of the cover unit110. The first folding line141includes a groove having a predetermined length and a predetermined depth formed continuously on an outer surface of the cover unit110corresponding to an area between a head area that is an upper portion of the cover unit110corresponding to the male plug130and a body area that is the rest of the cover unit110corresponding to the wireless communication unit120. The first folding line141formed in a groove on the outer surface of the cover unit110is selectively formed on one side of the cover unit110including the first cover unit111and the second cover unit112or on both sides of the cover unit110. That is, as shown inFIG. 3aandFIG. 3b, the first folding line141is selectively formed on an outer surface of the first cover unit111or an outer surface of the second cover unit112respectively corresponding to an outer surface of one side and outer surfaces of both sides of the cover unit110, or as shown inFIG. 3c, formed on both the outer surface of the first cover unit111and the outer surface of the second cover unit112. It is in some embodiments that the first folding line141be formed with both ends extended to respective outer edges of the cover unit110that is a subject to be bent to allow the stress to be concentrated on the folding portion so that the folding portion is easily folded along the folding line when the cover unit110is bent by an external force. The first folding line141formed in a groove on the outer surface of the cover unit110can be formed by a protruded portion (not shown) of a mold when injection molding the cover unit including the first and second cover units; however, the present invention is not limited to this scheme, but can be alternatively formed in post-process stage on the cover unit that is removed from the mold after being injection molded. Further, although the first folding line141is shown in a concave shape in the drawings, the present invention is not limited to this scheme, but can be alternatively formed in a straight shape. When the cover unit110that is attached on the ear of the livestock by the male plug130is bent by an external force caused by various external factors in the livestock industry environment, providing the first folding line141formed in a groove with a predetermined depth between the head area of the cover unit110where the male plug130is engaged and the body area of the cover unit110where the wireless communication unit120is arranged, the cover unit is folded along the first folding line141that is distant from the wireless communication chip toward the head area and the stress is concentrated on the folded portion, and hence the chip or board can be prevented from being damaged and a pattern circuit such as the radiation pattern printed on the board can be prevented from being short-circuited by avoiding the concentration of the stress generated when the cover unit is bent on the wireless communication chip121and a board122including the chip arranged in the wireless communication unit of the cover unit110. As shown inFIGS. 4 and 5, an ear tag100afor recognizing livestock individual according to a second embodiment of the present invention includes a cover unit110, a wireless communication unit120, a male plug130, and a folding portion140. The cover unit, the wireless communication unit, and the male plug have configurations and functions similar to those of the first embodiment, and hence each of the units are assigned with the same reference numeral as that of the first embodiment, and a detailed description thereof is omitted. The folding portion140included in the cover unit110according to the second embodiment includes a second folding line142on which a stress is concentrated when the cover unit110is bent by an external force for folding a specific portion of the cover unit110. The second folding line142includes a groove having a predetermined length and a predetermined depth formed continuously on an outer surface of the cover unit in an area close to the wireless communication chip121without being overlapped with the wireless communication chip121and corresponding to the wireless communication unit120. It is in some embodiments that the second folding line142formed in a groove on the outer surface of the cover unit110be formed on the outer surface of the first cover unit111on one side facing the wireless communication chip121mounted on the board of the wireless communication unit120. The second folding line142includes an oblique line having a predetermined angle with a virtual vertical line passing the wireless communication chip121. Although the second folding line142is shown to include a pair of parallel oblique lines formed in a groove with a predetermined length on the outer surface of the cover unit on one side in an area not corresponding to the wireless communication chip in the drawings, the present invention is not limited to this scheme, but can alternatively include a single oblique line. FIG. 6is a front view of the ear tag for recognizing livestock individual according to a third embodiment of the present invention. As shown inFIG. 6, an ear tag100bincludes a plurality of second folding lines142formed to have a predetermined angle on the cover unit110. The second folding lines142are obliquely formed to have predetermined angles in opposite directions with a virtual vertical line passing the wireless communication chip121in a manner that the second folding lines142intersect with each other around the wireless communication chip121. FIG. 7is a front view of the ear tag for recognizing livestock individual according to a fourth embodiment of the present invention. As shown inFIG. 7, an ear tag100cincludes a pair of second folding lines142formed on the cover unit110. The second folding lines142are formed in parallel to the virtual vertical line passing the wireless communication chip121. With these configurations, when the cover unit110attached to the ear of the livestock by the male plug130is bent by an external force caused by various external factors in the livestock industry environment, the second folding line142can be selectively provided from the oblique lines formed in a groove with a predetermined depth on the outer surface of the cover unit on one side corresponding to the wireless communication unit, intersecting oblique lines, or vertical lines. The stress is then concentrated on the folded portion along the second folding line142that is distant from the wireless communication chip121, and hence the chip that is a core part can be prevented from being damaged by avoiding the concentration of the stress generated when the cover unit110is bent on the wireless communication chip121arranged in the wireless communication unit of the cover unit110. FIG. 8is a front view of the ear tag for recognizing livestock individual according to a fourth embodiment of the present invention. An ear tag100dincludes an embossed portion150convex by a predetermined height on the outer surface of the first cover unit111, which is an outer surface of the cover unit110the cover unit110corresponding to the wireless communication chip121that is a core part included in the wireless communication unit120. Although the embossed portion150is shown to have a substantially circular convex shape with a predetermined height and an area larger than that of the wireless communication chip and applied to a cover unit including intersecting oblique lines inFIG. 8, the present invention is not limited to this scheme, but can be alternatively formed in various shapes such as an ellipse and a polygon, and can be alternatively applied to a cover unit including the first folding line141or the second folding line142of a single oblique line or a vertical line. Therefore, the embossed portion150enables a specific area of the first cover unit corresponding to the wireless communication chip to be formed with an increased thickness by the height of the convex, and hence, when the cover unit of the ear tag is bent by an external force, a site on which the stress is concentrated is moved to an area distant from the wireless communication chip by the folding line and the specific area of the cover unit is reinforced by the embossed portion, so that the wireless communication chip can be prevented from being damaged by the external force and being electrically disconnected from the antenna radiation pattern. Although exemplary embodiments of the present disclosure have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the idea and scope of the claimed disclosure. Accordingly, one of ordinary skill would understand the scope of the claimed disclosure is not to be limited by the explicitly described above embodiments but by the claims and equivalents thereof.
L'invention se rapporte aux dispositifs de chauffage à haute température utilisant des décharges de gaz ionisé dans des chambres pour la fusion, le raffinage et d'autres traitements de matériaux variés tels que les aciers et autres alliages Il est bien connu d'utiliser des canons électroniqties pour de telles applications de chauffage et dans des dispositifs de ce type, des électrons provenant d'un emetteur thermoionique sont accélérés et focalisée dans un champ électrique de façon à frapper et chauf- fer le matériau à travailler. Dans la pratique actuelle, des vides relativement durs, de l'ordre de f014 mm de Hg ou mieux, sont requis pour permettre les parcours libres moyens de la longueur nécessaire. Un tel équipement est motteux et fait ltobjet de limitations sévères du niveau de puissance. On a également proposé déjà la combinaison de faisceaux d'électrons avec des décharges dans un environnement gazeux et c'est à une combinaison de ce genre que fait appel la présente invention. Suivant l'invention, une cathode en matériau réfractaire tel que le tungstène est placée en relation dans un circuit avec la pièce à chauffer dans une chambre susceptible d'être vidée à des ni veaux de pression de l'ordre de 10 mm de Hg. Un générateur de plasma de puissance relativement faible est dispose dans un circuit séparé et l'on s'arrange pour que son effluent vienne frapper la Ca- thode du circuit de travail ; cette dernière -Yoit ainsi sa température s'élever à des niveaux oW il se produit une émission thermoio- nique d'électrons.En même temps, un courant de plasma électrique- ment neutre se prolongeant au-delà de la cathode sert à créer et à maintenir un parcours de faible résistance entre la cathode et la pièce. Une alimentation de puissance relativement importante, qui peut être en courant alternatif ou en courant continu comme on le verra ci-après, est couplée à ce parcours pour établir une décharge en arc. La pièce est ainsi effectivement chauffée par bombardement électronique et en outre par recombinaison de particules de gaz à partir de l'état de plasma. La chambre dans laquelle opère l'appareil selon l'invention est ensemencée d'une manière continue avec un gaz approprié mais à des débits de masse faibles simplement suffisants pour entretenir le processus. Des pompes à vide peuvent ainsi aisément maintenir la faible pression requise en comparaison des processus usuels à canons électroniques où des vides beaucoup plus durs sont nécessaires. Les caractéristiques et avantages de l'invention ressortiront de la description qui va suivre en référence aux dessins annexes dans lesquels la figure 1 est une vue er. élévation en coupe partielle et sous forme schématique d'un système de chauffage montrant la relation entre composants essentiels la figure 2 montre un agencement semblable à celui de la figure 1 avec une variante de réalisation de l'élément formant cathode ; les figures 3, 4, 5 et 6 sont des représentations schématiques de divers agencements possibles dans le cadre de l'invention. Suivant la forme de réalisation choisie et représentée à la figure 1, la référence 7 désigne l'ensemble d'une chambre à l'intérieur de laquelle peut s'effectuer le processus de chauffage et de raffinage. Au sommet de la chambre 7 est disposé un générateur de flamme de plasma du genre décrit dans le brevet Etats-Unis 3 027 447. Un tel générateur comporte essentiellement une cathode 8 disposée à une certaine distance d'une anode tubulaire 9 et électriquement isolée de celle-ci. Une source de puissance 10 établit un potentiel approprié entre cathode 8 et anode 9. Un gaz formant plasma est délivré à travers une vanne ou robinet Il vers la région annulaire entourant la cathode 8 et support une colonne d'arc entre les électrodes. Le courant résultant de plasma s'étend à l'intérieur de la chambre à vide 7 en une colonne uniforme. Il y a très peu de gaz dans la chambre et par conséquent la directvit6 et l'uniformité de la colonne se trouvent maintenues sur une distance de l'ordre du mètre. La flamme de plasma dans le générateur ainsi constituée se comporte selon le mode sans transfert ; c' est-à-dire que le circuit de l'arc se ferme par l'anode 9 du générateur lui-même et non pas par la pièce extérieure ou une autre électrode plus éloignée, le résultat est un courant de plasma libre dont ltensemble est désigné par la référence 12 ; ce courant est électriquement neutre et comporte des électrons, des atomes de gaz, des atomes de gaz dissociés et des ions. Les particule s du courant t2 possèdent un moment suffisant pour pénétrer dans un émetteur réfractaire conique t3 aus- pendu mécaniquement par des bras 14 de telle sorte que son axe se trouve aligné avec celui de l'anode 9. émetteur 13 8 connecté électriquement aux bornes d'une sour- ce de puissance 15 avec ma creuset 16 contenant un métal ou autre ma- tériau conducteur à faire fondre, à raffiner ou à traiter de toua autre /maniere. Un circuit d'arc est ainsi établi au travers de l'interval- le entre émetteur 13 et creuset 16. Le courant de plasma 12 remplit deux fonctions importantes : premièrement, il porte l'émetteur 13 à des températures élevées où a lieu une émission thermoionique d' électrons ; deuxièmement, le courant 12 se poursuit à travers et au-delà de l'émetteur 13 pour former un parcours conducteur disponible pour le passage de l'arc à haute énergie. Lorsqu'un haut degré de stabilité directionnelle n'est pas requis, par exemple dans le cas d'une pièce de grande surface qui doit être simplement chauffée, le générateur de plasma doit être arrêté 'une fois que l'arc principal indiqué en 17 est établi. Dans de tels cas, la condition d'entretien est assurée par le maintien de l'émet- teur 13 aux température d'émission par l'arc 17. Toutefois, il est en général désirable de maintenir en permanence le plasma pilote 12 de manière à assurer la stabilité directionnelle et à délivrer en continu un débit d'atomes de gaz en quantité suffisante pour le maintien de l'arc principal 17. On comprendra que la fusion, le raffinage et d'autres proces @us sont à effectuer à des pressions réduites (normalement 10-1 à 10-2 a de Hg) et uae pompe appropriée 18 est prévue pour maintenir la pression au niveau réduit ainsi fixé. les processus selon l'in- vention travaillent au mieux avec une colonne d'arc stable bien dirigée comme indiqué. Des intensités de courant élevées dans les conducteurs 20 peuvent établir des champs magnétiques selon des directiens perpendiculaires à l'axe de la colonne d'arc désirée et en affecter ainsi de manière adverse la directivité.Ces influences non désirée peuvent titre évitées par la disposition d'une plur,ali- té de conducteurs eymétriquement autour de l'émetteur 13 de façon à diviser le courant d'arc en composants égaux. Chacun de ces conduc tueurs peut provenir de sources 15 séparées fonctionnant en parallèle. Par réglage des niveaux de puissance des différentes sources, il est possible d'égaliser les courants ou de les faire varier pour diriger le courant d'arc exactement là où on le désire. Lorsqu'on ne désire aucun effet de flux de ce genre, on peut utiliser des écrans 21 de grande perméabilité pour confiner les flux de fuite et isoler à leur égard le courant d'électrons et de plasma. Dans ce cas, un seul conducteur 20 pourra suffire. La figure 2 montre un agencement semblable, mais utilisant un émetteur 13a on forme de simple tige avançant dans le courant de placé 12 à travers la paroi de la chambre 7 (chambre non représentée sur cette figure). Cette disposition offre l'avantage de simpli fier le montage de la cathode et de permettre la modification de sa position dans la chambre pour répondre aux besoins de divers travaux Le remplacement de la cathode à travers un manchon ménagé à cet ef fet dans la paroi de la chambre 7 est également facilité. Il y a diverses variantes de circuits comportant le générateur de plasma, l'émetteur 13 et le creuset de travail qui pourront présenter une utilité dans diverses applications particulières. On peut par exemple mettre à profit l'effet d'entretien d'arc d'un générateur de plasma à- fonctionnement continu, pour avantageu sement utiliser une source de puissance à courant alternatif; Aux instants de passage par zéro du potentiel (et l'on a utilisé avec succès des sources d'une fréquence de 60 cycles) l'arc, qui pourrait sans cela être complètement éteint, est facilement rétabli. Ceci montre qu'entre la désionisation et la réapplication du potentiel l'arc n'est pas perdu, le courant de plasma 12 continuant à assurer l'ensemencement de la région de la colonne d'arc 17 avec des parti cules ionisées. Ainsi la pièce est continuellement chauffée en 16 avec un courant continu pulsé, le système agissant à la manière d'un redresseur demi-onde.En outre, l'inertie thermique de l'émetteur 13 aide à maintenir les conditions de réaSparition de l'arc. Un agencement utilisant du courant alternatif polyphasé est fa cilement adaptable aussi système général considéré. Un tel circulez est représenté schématiquement à la figure 3 ; l'élément émetteur 13 est répété dans ce cas dans trois zones d'arc, chaque cathode formant l'une des branches d'une source triphasée 19 en étoile. Dans un tel circuit, on évite la nécessité d'alimentations redressées de puie; sance élevée qui sont relativement coûteuses. Les trois générateurs de plasma peuvent être montés en série en regard de la source 10.On notera que cette dernière est séparée électriquement de l'ensemble du système d'arcs principal et pourra être par conséquent d'un t1 destiné aux générateurs de plasma de puissance relativement faible Un autre agencement intéressant comporte l'exploitation du géné- rateur de plasma en polarité inverse rendant possible ainsi ltutili- sation d'une masse commune entre le circuit générateur de pla=s et le circuit d'arc principal. Ceci est montré à la figure 4 oW un g4- nérateur de plasma comporte une cathode tubulaire 20 montée dans L circuit, par l'intermédiaire de la colonne d'arc 21, avec une anode 22 en forme de puits.Du gaz est introduit tangentiellement à la baas du puits d'anode comme indiqué et également par un anneau 23 qui sert aussi dtiaolateur entre cathode et anode. Un tel anneau est dé- crit dans le brevet Etats-Unis n 3 027 446. La colonne d'arc 21 est établie au moyen d'une source appropriée 24 et elle est stabilisée en gaz à l'intérieur du générateur selon une technique maintenant courante. Dans cet agencement, la cathode 20 est choisie suffisamment grande pour jouer le rifle de 1' émetteur séparé 13 de la figure 1. En d'autres termes, la cathode 20 est maintenue à des températures d'émission et forme la borne négative d'une colonne d'arc principal 25 supportée par le courant de plasma et entretenue par une source principale 26. la borne positive se trouve ici encore au creuset 16.En outre, l'alimentation de la colonne d'arc principal peut s'effectuer ici aussi en courant alternatif. Le point commun de masse-27 rend possible l'utilisation dXune source d'énergie de plasma en liaison avec une, source d'énergie d'arc principal de puissance de plusieurs ordres de grandeurs supérieurs, sans que la source la plus petite soit surchargée, tout en conservant l'utilisation d'un émetteur commun, en loccurrence la cathode 20. Si le générateur de plasma de la figure 4 est exploité avec une polarité directe, l'absence d'un point de masse commune pour les sources 24, 26 rend nécessaire l'ouverture d'un contacteur 28 et l'exploitation de l'arc 25 en système auto-entretenu. Ceci peut s' effectuer avec un détecteur de courant dans la source de courant go pour arrêter le générateur de plasma lorcque l arc principal s'établit. Aux faibles niveaux de puissance (pour usage de laboratoire ou expérimental) les deux sources 24 et 26 peuvent être compatibles au point de permettre un fonctionnement continu simultané des deux arcs. Il est également possible d'exploiter un système tel qu'inaì- qué à la figure 5 où une seule source 30 de grande puissance est utilisée pour desservir le générateur de plasma d'une part et l'arc principal d'autre part. Cet agencement a les avantages additionnels d'un transfert temporaire de l'arc du générateur de plasma directement à l'émetteur principal en vue d' un chauffage initial rapiae de celui-ci aux niveaux de températures désirées; le générateur d'arc est ensuite commuté sur sa propre anode 9. Des résistances de limitation 29 permettent un écoulement continu d'une flamme de plasma de faible puissance pour contribuer à l'entretien de l'arc principal tel que décrit en référence à la figure 1. Le tableau ci-après de conditions va clarifier le fonctionnement des circuits de la figure 5. Opération Positions des contacts C1 C2 C3 C4 1. Démarrage (générateur pilote) fermé ouvert ouvert ouvert ouvert 2. Emetteur de chaleur; transfert de l'arc fermé ouvert ouvert fermé Exploitation ; arc du générateur non transféré ouvert fermé fermé ouvert Dane les conditions d'exploitation, l'anode 9 est le siège d'un courant faible et un courant important 'écoule Far la colonne d'arc de l'émetteur 13 à la pièce. L'agencement de la figure 6 utilise deux sources d'énergie, une pour le générateur de plasma et l'autre pour l'arc principal de gran- de puissance. L'émetteur 13 peut être placé initialement en circuit avec la cathode 8 par ouverture de C5 et fermeture de C6. Ainsi le générateur de plasma est dans le mode transféré pour amener rapidement l'émetteur 13 à la température d'émission. Après fermeture de C7 et ouverture de C5 et C6, le système fonctionne avec un générateur de plasma isolé électriquement, limité par une résistance appropriée R1 et assurant l'ensemencement d'un arc principal de puissance entre 1 a émetteur 13 et la pièce comme dans le cas de la figure 1.Dans le cas d'installations de grande puissance, il est avantageux d'envisager un fonctionnement temporaire du générateur de plasma dans le mode transféré avec sa colorie d'arc aboutissant di rectement à l'émetteur 13. Une fois que l'are est établi, le générateur de plasma est retourné au mode non transféré ou bien dans certains cas, il peut être completement arrêté. l'invention offre un certain nombre d-'avantages importants en regard des dispositions connues. En macro-métallurgie où l'on oit raffiner de grandes quantités de matériaux, il est difficile, sinon impraticables de maintenir les vides durs requis pour le fonction- nement des canons électroniques. Par ailleurs, les niveaux de puis- sance élevés requis pour un fonctionnement effectif sur une large échelle ne sont pas facilement réalisés avec des émetteurs usuels dans un circuit d'arc avec la pièce. Un grand élément réfractaire peut être utile en cas de chauffage direct avec un courant de plasma, ce courant assurant en outre une colonne d'arc bien définie pour le circuit de chauffage principal. On a expérimenté avec tels cès des installations suivant la présente invention à des niveaux de puissance inférieurs à 10 kW dans le générateur de plasma et pouvant atteindre 100 kW dans le circuit de chauffage à l'arc avec des arcs d'une longueur de l'ordre de 3 mètres. Il ne semble pas qu'il y ait de limites théoriques à l'agencement décrit, et dans la pratique de très grandes surfaces de pièces ont pu être chauffées, fondues ou soumises à d'autres traitements. A cet égard, il convient d'indiquer qu'alors qu'un creuset de fusion a été représenté à titre 'illustration, l'invention peut être également utilisée pour des traitements à chaud, nettoyages ou encore le dépôt de poudres d'alliages en vue de la réalisation de revêtements. La pièce peut être également vaporisée et les vapeurs métalliques résultantes condensées sur des surfaces d'objets placés dans la chambre dans ce but. Dans un processus de ce genre, il est possible de dévier l'arc principal pour le diriger à un endroit situé en dehors de 1' axe du système ; dans ce cas, les ions de vapeur métallique ont moins de chance de s'écouler en retour par la colonne d'arc vers l'émetteur. L'objet à revêtir est placé dans la chambre 7 et peut être placé au potentiel de la cathode pour faciliter cette action. L'invention s'étend ainsi à toutes modifications des dispositions décrites qui apparattront aisément à l'homme de l'art. R E V E N D I C Â m O N S 1) dispositif à haute température comportant des moyens formant une chambre à vide partiel et des moyens pour supporter une pièce à l'intérieur de cette chambre, le dispositif étant caractérisé par un émetteur réfractaire espacé de la pièce, un générateur de plasma pour chauffer le dit émetteur à des niveaux de températu- re d'émission électronique et fournir un courant de plasma s'étendant au-delà de l'émetteur vers la dite pièce et par une source d' énergie électrique adaptée à entretenir une colonne d'arc entre 1' émetteur et la pièce. 2) Dispositif selon 1) où l'émetteur sert également de cathode de à l'égard du générateur de plasma. 3) Dispositif selon 1) ou 2), où l'émetteur présente la forme d'un tronc de cône creux. 4) Dispositif selon 1), 2) ou 3), où la source d'énergie éle- trique est une source de courant alternatif branchée entre émetteur et pièce. 5) Dispositif selon 1), 2), 3) ou 4), comportant des moyens de commutation pour transférer sélectivement un arc du circuit du géné- rateur de plasma sur l'émetteur. 6) Dispositif à haute température selon l'une quelconque de revendications précédentes, caractérisé par une pluralité d'émetteurs réfractaires écartés de la pièce à traiter, un générateur de plasma pour chauffer chacun des dits émetteurs à des niveaux de teg pératures d'émission électronique et pourlldélivrer des colonnes de gaz au moins partiellement ionisé entre chacun des émetteurs et la pièce, et des moyens d'alimentation d'énergie pour établir et mair tenir un ensemble correspondant de colonnes d'arc entre les dits émetteurs et la. dite pièce. 7) Un dispositif selon 6), la source d'énergie en question eai; une source polyphasée avec un émetteur dans chacune de ses phases.