yxc97 commited on
Commit
a5cacb5
·
verified ·
1 Parent(s): 7cffc2b

Upload folder using huggingface_hub

Browse files
human_written_ref/3D Object Detection for Autonomous Driving: A Comprehensive Survey.json ADDED
@@ -0,0 +1,1262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1512.03385": {
3
+ "arxivId": "1512.03385",
4
+ "title": "Deep Residual Learning for Image Recognition"
5
+ },
6
+ "1706.03762": {
7
+ "arxivId": "1706.03762",
8
+ "title": "Attention is All you Need"
9
+ },
10
+ "1505.04597": {
11
+ "arxivId": "1505.04597",
12
+ "title": "U-Net: Convolutional Networks for Biomedical Image Segmentation"
13
+ },
14
+ "1506.01497": {
15
+ "arxivId": "1506.01497",
16
+ "title": "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"
17
+ },
18
+ "1405.0312": {
19
+ "arxivId": "1405.0312",
20
+ "title": "Microsoft COCO: Common Objects in Context"
21
+ },
22
+ "1605.06211": {
23
+ "arxivId": "1605.06211",
24
+ "title": "Fully convolutional networks for semantic segmentation"
25
+ },
26
+ "2010.11929": {
27
+ "arxivId": "2010.11929",
28
+ "title": "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
29
+ },
30
+ "1612.03144": {
31
+ "arxivId": "1612.03144",
32
+ "title": "Feature Pyramid Networks for Object Detection"
33
+ },
34
+ "2103.14030": {
35
+ "arxivId": "2103.14030",
36
+ "title": "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"
37
+ },
38
+ "1612.00593": {
39
+ "arxivId": "1612.00593",
40
+ "title": "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation"
41
+ },
42
+ "1911.05722": {
43
+ "arxivId": "1911.05722",
44
+ "title": "Momentum Contrast for Unsupervised Visual Representation Learning"
45
+ },
46
+ "2005.12872": {
47
+ "arxivId": "2005.12872",
48
+ "title": "End-to-End Object Detection with Transformers"
49
+ },
50
+ "1706.02413": {
51
+ "arxivId": "1706.02413",
52
+ "title": "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space"
53
+ },
54
+ "1703.10593": {
55
+ "arxivId": "1703.10593",
56
+ "title": "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks"
57
+ },
58
+ "1801.07829": {
59
+ "arxivId": "1801.07829",
60
+ "title": "Dynamic Graph CNN for Learning on Point Clouds"
61
+ },
62
+ "1903.11027": {
63
+ "arxivId": "1903.11027",
64
+ "title": "nuScenes: A Multimodal Dataset for Autonomous Driving"
65
+ },
66
+ "1904.01355": {
67
+ "arxivId": "1904.01355",
68
+ "title": "FCOS: Fully Convolutional One-Stage Object Detection"
69
+ },
70
+ "1711.03938": {
71
+ "arxivId": "1711.03938",
72
+ "title": "CARLA: An Open Urban Driving Simulator"
73
+ },
74
+ "1604.07316": {
75
+ "arxivId": "1604.07316",
76
+ "title": "End to End Learning for Self-Driving Cars"
77
+ },
78
+ "1702.04405": {
79
+ "arxivId": "1702.04405",
80
+ "title": "ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes"
81
+ },
82
+ "1711.06396": {
83
+ "arxivId": "1711.06396",
84
+ "title": "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection"
85
+ },
86
+ "1901.05103": {
87
+ "arxivId": "1901.05103",
88
+ "title": "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation"
89
+ },
90
+ "2003.04297": {
91
+ "arxivId": "2003.04297",
92
+ "title": "Improved Baselines with Momentum Contrastive Learning"
93
+ },
94
+ "1904.07850": {
95
+ "arxivId": "1904.07850",
96
+ "title": "Objects as Points"
97
+ },
98
+ "1812.05784": {
99
+ "arxivId": "1812.05784",
100
+ "title": "PointPillars: Fast Encoders for Object Detection From Point Clouds"
101
+ },
102
+ "1609.03677": {
103
+ "arxivId": "1609.03677",
104
+ "title": "Unsupervised Monocular Depth Estimation with Left-Right Consistency"
105
+ },
106
+ "1611.07759": {
107
+ "arxivId": "1611.07759",
108
+ "title": "Multi-view 3D Object Detection Network for Autonomous Driving"
109
+ },
110
+ "1512.02134": {
111
+ "arxivId": "1512.02134",
112
+ "title": "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation"
113
+ },
114
+ "1912.04838": {
115
+ "arxivId": "1912.04838",
116
+ "title": "Scalability in Perception for Autonomous Driving: Waymo Open Dataset"
117
+ },
118
+ "1812.04244": {
119
+ "arxivId": "1812.04244",
120
+ "title": "PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud"
121
+ },
122
+ "1711.08488": {
123
+ "arxivId": "1711.08488",
124
+ "title": "Frustum PointNets for 3D Object Detection from RGB-D Data"
125
+ },
126
+ "1705.05065": {
127
+ "arxivId": "1705.05065",
128
+ "title": "AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles"
129
+ },
130
+ "1806.02446": {
131
+ "arxivId": "1806.02446",
132
+ "title": "Deep Ordinal Regression Network for Monocular Depth Estimation"
133
+ },
134
+ "1912.13192": {
135
+ "arxivId": "1912.13192",
136
+ "title": "PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection"
137
+ },
138
+ "1912.12033": {
139
+ "arxivId": "1912.12033",
140
+ "title": "Deep Learning for 3D Point Clouds: A Survey"
141
+ },
142
+ "1711.10275": {
143
+ "arxivId": "1711.10275",
144
+ "title": "3D Semantic Segmentation with Submanifold Sparse Convolutional Networks"
145
+ },
146
+ "1803.08669": {
147
+ "arxivId": "1803.08669",
148
+ "title": "Pyramid Stereo Matching Network"
149
+ },
150
+ "1703.01780": {
151
+ "arxivId": "1703.01780",
152
+ "title": "Weight-averaged consistency targets improve semi-supervised deep learning results"
153
+ },
154
+ "2006.11275": {
155
+ "arxivId": "2006.11275",
156
+ "title": "Center-based 3D Object Detection and Tracking"
157
+ },
158
+ "1712.02294": {
159
+ "arxivId": "1712.02294",
160
+ "title": "Joint 3D Proposal Generation and Object Detection from View Aggregation"
161
+ },
162
+ "1707.06484": {
163
+ "arxivId": "1707.06484",
164
+ "title": "Deep Layer Aggregation"
165
+ },
166
+ "1911.02620": {
167
+ "arxivId": "1911.02620",
168
+ "title": "Argoverse: 3D Tracking and Forecasting With Rich Maps"
169
+ },
170
+ "1904.09664": {
171
+ "arxivId": "1904.09664",
172
+ "title": "Deep Hough Voting for 3D Object Detection in Point Clouds"
173
+ },
174
+ "1902.06326": {
175
+ "arxivId": "1902.06326",
176
+ "title": "PIXOR: Real-time 3D Object Detection from Point Clouds"
177
+ },
178
+ "1710.02410": {
179
+ "arxivId": "1710.02410",
180
+ "title": "End-to-End Driving Via Conditional Imitation Learning"
181
+ },
182
+ "2203.17270": {
183
+ "arxivId": "2203.17270",
184
+ "title": "BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers"
185
+ },
186
+ "1612.00496": {
187
+ "arxivId": "1612.00496",
188
+ "title": "3D Bounding Box Estimation Using Deep Learning and Geometry"
189
+ },
190
+ "1812.07179": {
191
+ "arxivId": "1812.07179",
192
+ "title": "Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving"
193
+ },
194
+ "2002.10187": {
195
+ "arxivId": "2002.10187",
196
+ "title": "3DSSD: Point-Based 3D Single Stage Object Detector"
197
+ },
198
+ "2008.05711": {
199
+ "arxivId": "2008.05711",
200
+ "title": "Lift, Splat, Shoot: Encoding Images From Arbitrary Camera Rigs by Implicitly Unprojecting to 3D"
201
+ },
202
+ "2012.10992": {
203
+ "arxivId": "2012.10992",
204
+ "title": "Deep Continuous Fusion for Multi-sensor 3D Object Detection"
205
+ },
206
+ "1907.03670": {
207
+ "arxivId": "1907.03670",
208
+ "title": "From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network"
209
+ },
210
+ "2012.15712": {
211
+ "arxivId": "2012.15712",
212
+ "title": "Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection"
213
+ },
214
+ "1907.10471": {
215
+ "arxivId": "1907.10471",
216
+ "title": "STD: Sparse-to-Dense 3D Object Detector for Point Cloud"
217
+ },
218
+ "1911.10150": {
219
+ "arxivId": "1911.10150",
220
+ "title": "PointPainting: Sequential Fusion for 3D Object Detection"
221
+ },
222
+ "2205.13542": {
223
+ "arxivId": "2205.13542",
224
+ "title": "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation"
225
+ },
226
+ "2003.01251": {
227
+ "arxivId": "2003.01251",
228
+ "title": "Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud"
229
+ },
230
+ "2012.12395": {
231
+ "arxivId": "2012.12395",
232
+ "title": "Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net"
233
+ },
234
+ "1711.10871": {
235
+ "arxivId": "1711.10871",
236
+ "title": "PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation"
237
+ },
238
+ "1907.03739": {
239
+ "arxivId": "1907.03739",
240
+ "title": "Point-Voxel CNN for Efficient 3D Deep Learning"
241
+ },
242
+ "1608.07916": {
243
+ "arxivId": "1608.07916",
244
+ "title": "Vehicle Detection from 3D Lidar Using Fully Convolutional Network"
245
+ },
246
+ "1807.00412": {
247
+ "arxivId": "1807.00412",
248
+ "title": "Learning to Drive in a Day"
249
+ },
250
+ "2012.12397": {
251
+ "arxivId": "2012.12397",
252
+ "title": "Multi-Task Multi-Sensor Fusion for 3D Object Detection"
253
+ },
254
+ "2007.10985": {
255
+ "arxivId": "2007.10985",
256
+ "title": "PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding"
257
+ },
258
+ "2007.16100": {
259
+ "arxivId": "2007.16100",
260
+ "title": "Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution"
261
+ },
262
+ "2110.06922": {
263
+ "arxivId": "2110.06922",
264
+ "title": "DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries"
265
+ },
266
+ "1803.06184": {
267
+ "arxivId": "1803.06184",
268
+ "title": "The ApolloScape Open Dataset for Autonomous Driving and Its Application"
269
+ },
270
+ "1609.06666": {
271
+ "arxivId": "1609.06666",
272
+ "title": "Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks"
273
+ },
274
+ "2112.11790": {
275
+ "arxivId": "2112.11790",
276
+ "title": "BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View"
277
+ },
278
+ "2104.10956": {
279
+ "arxivId": "2104.10956",
280
+ "title": "FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection"
281
+ },
282
+ "1902.09738": {
283
+ "arxivId": "1902.09738",
284
+ "title": "Stereo R-CNN Based 3D Object Detection for Autonomous Driving"
285
+ },
286
+ "1907.06826": {
287
+ "arxivId": "1907.06826",
288
+ "title": "Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving"
289
+ },
290
+ "2301.00493": {
291
+ "arxivId": "2301.00493",
292
+ "title": "Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting"
293
+ },
294
+ "2203.11496": {
295
+ "arxivId": "2203.11496",
296
+ "title": "TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers"
297
+ },
298
+ "2101.06742": {
299
+ "arxivId": "2101.06742",
300
+ "title": "Deep Parametric Continuous Convolutional Neural Networks"
301
+ },
302
+ "1611.08069": {
303
+ "arxivId": "1611.08069",
304
+ "title": "3D fully convolutional network for vehicle detection in point cloud"
305
+ },
306
+ "2206.10092": {
307
+ "arxivId": "2206.10092",
308
+ "title": "BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection"
309
+ },
310
+ "2109.13410": {
311
+ "arxivId": "2109.13410",
312
+ "title": "KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D"
313
+ },
314
+ "1908.09492": {
315
+ "arxivId": "1908.09492",
316
+ "title": "Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection"
317
+ },
318
+ "1907.06038": {
319
+ "arxivId": "1907.06038",
320
+ "title": "M3D-RPN: Monocular 3D Region Proposal Network for Object Detection"
321
+ },
322
+ "1903.01864": {
323
+ "arxivId": "1903.01864",
324
+ "title": "Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal"
325
+ },
326
+ "1703.07570": {
327
+ "arxivId": "1703.07570",
328
+ "title": "Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image"
329
+ },
330
+ "2109.08141": {
331
+ "arxivId": "2109.08141",
332
+ "title": "An End-to-End Transformer Model for 3D Object Detection"
333
+ },
334
+ "2203.05625": {
335
+ "arxivId": "2203.05625",
336
+ "title": "PETR: Position Embedding Transformation for Multi-View 3D Object Detection"
337
+ },
338
+ "1708.01566": {
339
+ "arxivId": "1708.01566",
340
+ "title": "Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes"
341
+ },
342
+ "2103.01100": {
343
+ "arxivId": "2103.01100",
344
+ "title": "Categorical Depth Distribution Network for Monocular 3D Object Detection"
345
+ },
346
+ "1811.02146": {
347
+ "arxivId": "1811.02146",
348
+ "title": "TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents"
349
+ },
350
+ "1906.06310": {
351
+ "arxivId": "1906.06310",
352
+ "title": "Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving"
353
+ },
354
+ "1608.07711": {
355
+ "arxivId": "1608.07711",
356
+ "title": "3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection"
357
+ },
358
+ "2109.02497": {
359
+ "arxivId": "2109.02497",
360
+ "title": "Voxel Transformer for 3D Object Detection"
361
+ },
362
+ "2101.07907": {
363
+ "arxivId": "2101.07907",
364
+ "title": "IntentNet: Learning to Predict Intention from Raw Sensor Data"
365
+ },
366
+ "1908.02990": {
367
+ "arxivId": "1908.02990",
368
+ "title": "Fast Point R-CNN"
369
+ },
370
+ "2004.12636": {
371
+ "arxivId": "2004.12636",
372
+ "title": "3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection"
373
+ },
374
+ "1811.08188": {
375
+ "arxivId": "1811.08188",
376
+ "title": "Orthographic Feature Transform for Monocular 3D Object Detection"
377
+ },
378
+ "1908.03851": {
379
+ "arxivId": "1908.03851",
380
+ "title": "IoU Loss for 2D/3D Object Detection"
381
+ },
382
+ "1904.01649": {
383
+ "arxivId": "1904.01649",
384
+ "title": "MVX-Net: Multimodal VoxelNet for 3D Object Detection"
385
+ },
386
+ "1903.08701": {
387
+ "arxivId": "1903.08701",
388
+ "title": "LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving"
389
+ },
390
+ "2102.00463": {
391
+ "arxivId": "2102.00463",
392
+ "title": "PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection"
393
+ },
394
+ "2012.11409": {
395
+ "arxivId": "2012.11409",
396
+ "title": "3D Object Detection with Pointformer"
397
+ },
398
+ "1912.05163": {
399
+ "arxivId": "1912.05163",
400
+ "title": "TANet: Robust 3D Object Detection from Point Clouds with Triple Attention"
401
+ },
402
+ "1903.10955": {
403
+ "arxivId": "1903.10955",
404
+ "title": "GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving"
405
+ },
406
+ "2012.11704": {
407
+ "arxivId": "2012.11704",
408
+ "title": "HDNET: Exploiting HD Maps for 3D Object Detection"
409
+ },
410
+ "2002.10111": {
411
+ "arxivId": "2002.10111",
412
+ "title": "SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation"
413
+ },
414
+ "2007.08856": {
415
+ "arxivId": "2007.08856",
416
+ "title": "EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection"
417
+ },
418
+ "1803.06199": {
419
+ "arxivId": "1803.06199",
420
+ "title": "Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object Detection on Point Clouds"
421
+ },
422
+ "2008.07519": {
423
+ "arxivId": "2008.07519",
424
+ "title": "V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction"
425
+ },
426
+ "2009.00784": {
427
+ "arxivId": "2009.00784",
428
+ "title": "CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection"
429
+ },
430
+ "1912.04799": {
431
+ "arxivId": "1912.04799",
432
+ "title": "Learning Depth-Guided Convolutions for Monocular 3D Object Detection"
433
+ },
434
+ "2001.03343": {
435
+ "arxivId": "2001.03343",
436
+ "title": "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving"
437
+ },
438
+ "1604.04693": {
439
+ "arxivId": "1604.04693",
440
+ "title": "Subcategory-Aware Convolutional Neural Networks for Object Proposals and Detection"
441
+ },
442
+ "2205.13790": {
443
+ "arxivId": "2205.13790",
444
+ "title": "BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework"
445
+ },
446
+ "2108.06417": {
447
+ "arxivId": "2108.06417",
448
+ "title": "Is Pseudo-Lidar needed for Monocular 3D Object detection?"
449
+ },
450
+ "2104.09804": {
451
+ "arxivId": "2104.09804",
452
+ "title": "SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud"
453
+ },
454
+ "1903.11444": {
455
+ "arxivId": "1903.11444",
456
+ "title": "Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving"
457
+ },
458
+ "2203.17054": {
459
+ "arxivId": "2203.17054",
460
+ "title": "BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection"
461
+ },
462
+ "2104.00678": {
463
+ "arxivId": "2104.00678",
464
+ "title": "Group-Free 3D Object Detection via Transformers"
465
+ },
466
+ "2203.08195": {
467
+ "arxivId": "2203.08195",
468
+ "title": "DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection"
469
+ },
470
+ "1812.02781": {
471
+ "arxivId": "1812.02781",
472
+ "title": "ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape"
473
+ },
474
+ "1909.06459": {
475
+ "arxivId": "1909.06459",
476
+ "title": "F-cooper: feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds"
477
+ },
478
+ "2012.03015": {
479
+ "arxivId": "2012.03015",
480
+ "title": "CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud"
481
+ },
482
+ "2106.10823": {
483
+ "arxivId": "2106.10823",
484
+ "title": "3D Object Detection for Autonomous Driving: A Survey"
485
+ },
486
+ "2101.02691": {
487
+ "arxivId": "2101.02691",
488
+ "title": "Self-Supervised Pretraining of 3D Features on any Point-Cloud"
489
+ },
490
+ "1903.09847": {
491
+ "arxivId": "1903.09847",
492
+ "title": "Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud"
493
+ },
494
+ "2107.14160": {
495
+ "arxivId": "2107.14160",
496
+ "title": "Probabilistic and Geometric Depth: Detecting Objects in Perspective"
497
+ },
498
+ "1904.01690": {
499
+ "arxivId": "1904.01690",
500
+ "title": "Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction"
501
+ },
502
+ "1805.01195": {
503
+ "arxivId": "1805.01195",
504
+ "title": "BirdNet: A 3D Object Detection Framework from LiDAR Information"
505
+ },
506
+ "2011.04841": {
507
+ "arxivId": "2011.04841",
508
+ "title": "CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection"
509
+ },
510
+ "1905.05265": {
511
+ "arxivId": "1905.05265",
512
+ "title": "Cooper: Cooperative Perception for Connected Autonomous Vehicles Based on 3D Point Clouds"
513
+ },
514
+ "1905.01489": {
515
+ "arxivId": "1905.01489",
516
+ "title": "WoodScape: A Multi-Task, Multi-Camera Fisheye Dataset for Autonomous Driving"
517
+ },
518
+ "1811.10247": {
519
+ "arxivId": "1811.10247",
520
+ "title": "MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Localization"
521
+ },
522
+ "2003.00504": {
523
+ "arxivId": "2003.00504",
524
+ "title": "MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships"
525
+ },
526
+ "2001.10692": {
527
+ "arxivId": "2001.10692",
528
+ "title": "ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes"
529
+ },
530
+ "2106.11037": {
531
+ "arxivId": "2106.11037",
532
+ "title": "One Million Scenes for Autonomous Driving: ONCE Dataset"
533
+ },
534
+ "2104.02323": {
535
+ "arxivId": "2104.02323",
536
+ "title": "Objects are Different: Flexible Monocular 3D Object Detection"
537
+ },
538
+ "2112.06375": {
539
+ "arxivId": "2112.06375",
540
+ "title": "Embracing Single Stride 3D Object Detector with Sparse Transformer"
541
+ },
542
+ "1908.04512": {
543
+ "arxivId": "1908.04512",
544
+ "title": "Interpolated Convolutional Networks for 3D Point Cloud Understanding"
545
+ },
546
+ "1903.01568": {
547
+ "arxivId": "1903.01568",
548
+ "title": "The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded Urban Scenes"
549
+ },
550
+ "2004.00543": {
551
+ "arxivId": "2004.00543",
552
+ "title": "Physically Realizable Adversarial Examples for LiDAR Object Detection"
553
+ },
554
+ "2006.16974": {
555
+ "arxivId": "2006.16974",
556
+ "title": "Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack and Countermeasures"
557
+ },
558
+ "2006.09348": {
559
+ "arxivId": "2006.09348",
560
+ "title": "LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World"
561
+ },
562
+ "1906.03199": {
563
+ "arxivId": "1906.03199",
564
+ "title": "Multimodal End-to-End Autonomous Driving"
565
+ },
566
+ "2101.06806": {
567
+ "arxivId": "2101.06806",
568
+ "title": "MP3: A Unified Model to Map, Perceive, Predict and Plan"
569
+ },
570
+ "1811.10742": {
571
+ "arxivId": "1811.10742",
572
+ "title": "Joint Monocular 3D Vehicle Detection and Tracking"
573
+ },
574
+ "2106.11810": {
575
+ "arxivId": "2106.11810",
576
+ "title": "nuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles"
577
+ },
578
+ "2206.00630": {
579
+ "arxivId": "2206.00630",
580
+ "title": "Unifying Voxel-based Representation with Transformer for 3D Object Detection"
581
+ },
582
+ "2108.10723": {
583
+ "arxivId": "2108.10723",
584
+ "title": "Improving 3D Object Detection with Channel-wise Transformer"
585
+ },
586
+ "2103.15297": {
587
+ "arxivId": "2103.15297",
588
+ "title": "LiDAR R-CNN: An Efficient and Universal 3D Object Detector"
589
+ },
590
+ "2111.06881": {
591
+ "arxivId": "2111.06881",
592
+ "title": "Multimodal Virtual Point 3D Detection"
593
+ },
594
+ "2007.10323": {
595
+ "arxivId": "2007.10323",
596
+ "title": "Pillar-based Object Detection for Autonomous Driving"
597
+ },
598
+ "2103.10039": {
599
+ "arxivId": "2103.10039",
600
+ "title": "RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection"
601
+ },
602
+ "2101.06557": {
603
+ "arxivId": "2101.06557",
604
+ "title": "TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors"
605
+ },
606
+ "2103.16237": {
607
+ "arxivId": "2103.16237",
608
+ "title": "Delving into Localization Errors for Monocular 3D Object Detection"
609
+ },
610
+ "1904.07537": {
611
+ "arxivId": "1904.07537",
612
+ "title": "Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds"
613
+ },
614
+ "2203.10642": {
615
+ "arxivId": "2203.10642",
616
+ "title": "FUTR3D: A Unified Sensor Fusion Framework for 3D Detection"
617
+ },
618
+ "2107.13774": {
619
+ "arxivId": "2107.13774",
620
+ "title": "Geometry Uncertainty Projection Network for Monocular 3D Object Detection"
621
+ },
622
+ "2106.09249": {
623
+ "arxivId": "2106.09249",
624
+ "title": "Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks"
625
+ },
626
+ "1904.08601": {
627
+ "arxivId": "1904.08601",
628
+ "title": "Deep Optics for Monocular Depth Estimation and 3D Object Detection"
629
+ },
630
+ "2111.00643": {
631
+ "arxivId": "2111.00643",
632
+ "title": "Learning Distilled Collaboration Graph for Multi-Agent Perception"
633
+ },
634
+ "2008.04582": {
635
+ "arxivId": "2008.04582",
636
+ "title": "Rethinking Pseudo-LiDAR Representation"
637
+ },
638
+ "2001.03398": {
639
+ "arxivId": "2001.03398",
640
+ "title": "DSGN: Deep Stereo Geometry Network for 3D Object Detection"
641
+ },
642
+ "1911.06084": {
643
+ "arxivId": "1911.06084",
644
+ "title": "PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module"
645
+ },
646
+ "1811.03818": {
647
+ "arxivId": "1811.03818",
648
+ "title": "RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement"
649
+ },
650
+ "2008.05930": {
651
+ "arxivId": "2008.05930",
652
+ "title": "Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations"
653
+ },
654
+ "2003.00186": {
655
+ "arxivId": "2003.00186",
656
+ "title": "HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection"
657
+ },
658
+ "2205.09743": {
659
+ "arxivId": "2205.09743",
660
+ "title": "BEVerse: Unified Perception and Prediction in Birds-Eye-View for Vision-Centric Autonomous Driving"
661
+ },
662
+ "2103.05346": {
663
+ "arxivId": "2103.05346",
664
+ "title": "ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection"
665
+ },
666
+ "1901.10951": {
667
+ "arxivId": "1901.10951",
668
+ "title": "Distant Vehicle Detection Using Radar and Vision"
669
+ },
670
+ "2204.12463": {
671
+ "arxivId": "2204.12463",
672
+ "title": "Focal Sparse Convolutional Networks for 3D Object Detection"
673
+ },
674
+ "2006.00176": {
675
+ "arxivId": "2006.00176",
676
+ "title": "When2com: Multi-Agent Perception via Communication Graph Grouping"
677
+ },
678
+ "1912.12791": {
679
+ "arxivId": "1912.12791",
680
+ "title": "Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots"
681
+ },
682
+ "2005.14711": {
683
+ "arxivId": "2005.14711",
684
+ "title": "PnPNet: End-to-End Perception and Prediction With Tracking in the Loop"
685
+ },
686
+ "2005.08139": {
687
+ "arxivId": "2005.08139",
688
+ "title": "Train in Germany, Test in the USA: Making 3D Object Detectors Generalize"
689
+ },
690
+ "2204.05088": {
691
+ "arxivId": "2204.05088",
692
+ "title": "M2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Birds-Eye View Representation"
693
+ },
694
+ "2007.09548": {
695
+ "arxivId": "2007.09548",
696
+ "title": "Kinematic 3D Object Detection in Monocular Video"
697
+ },
698
+ "1904.12681": {
699
+ "arxivId": "1904.12681",
700
+ "title": "Deep Fitting Degree Scoring Network for Monocular 3D Object Detection"
701
+ },
702
+ "2103.05073": {
703
+ "arxivId": "2103.05073",
704
+ "title": "Offboard 3D Object Detection from Point Cloud Sequences"
705
+ },
706
+ "1812.05276": {
707
+ "arxivId": "1812.05276",
708
+ "title": "IPOD: Intensive Point-based Object Detector for Point Cloud"
709
+ },
710
+ "2112.12610": {
711
+ "arxivId": "2112.12610",
712
+ "title": "PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving"
713
+ },
714
+ "2106.13365": {
715
+ "arxivId": "2106.13365",
716
+ "title": "RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection"
717
+ },
718
+ "1803.00387": {
719
+ "arxivId": "1803.00387",
720
+ "title": "A General Pipeline for 3D Detection of Vehicles"
721
+ },
722
+ "2106.01178": {
723
+ "arxivId": "2106.01178",
724
+ "title": "ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection"
725
+ },
726
+ "2003.06754": {
727
+ "arxivId": "2003.06754",
728
+ "title": "MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird\u2019s Eye View Maps"
729
+ },
730
+ "2101.06549": {
731
+ "arxivId": "2101.06549",
732
+ "title": "AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles"
733
+ },
734
+ "1808.02350": {
735
+ "arxivId": "1808.02350",
736
+ "title": "YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud"
737
+ },
738
+ "2109.02499": {
739
+ "arxivId": "2109.02499",
740
+ "title": "Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection"
741
+ },
742
+ "2108.06709": {
743
+ "arxivId": "2108.06709",
744
+ "title": "SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation"
745
+ },
746
+ "1905.00526": {
747
+ "arxivId": "1905.00526",
748
+ "title": "RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles"
749
+ },
750
+ "2210.02443": {
751
+ "arxivId": "2210.02443",
752
+ "title": "Time Will Tell: New Outlooks and A Baseline for Temporal Multi-View 3D Object Detection"
753
+ },
754
+ "2004.01389": {
755
+ "arxivId": "2004.01389",
756
+ "title": "LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention"
757
+ },
758
+ "1909.07541": {
759
+ "arxivId": "1909.07541",
760
+ "title": "A*3D Dataset: Towards Autonomous Driving in Challenging Environments"
761
+ },
762
+ "2003.09575": {
763
+ "arxivId": "2003.09575",
764
+ "title": "Who2com: Collaborative Perception via Learnable Handshake Communication"
765
+ },
766
+ "2106.12449": {
767
+ "arxivId": "2106.12449",
768
+ "title": "FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection"
769
+ },
770
+ "2108.05249": {
771
+ "arxivId": "2108.05249",
772
+ "title": "Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather"
773
+ },
774
+ "2203.05662": {
775
+ "arxivId": "2203.05662",
776
+ "title": "Point Density-Aware Voxels for LiDAR 3D Object Detection"
777
+ },
778
+ "1901.03446": {
779
+ "arxivId": "1901.03446",
780
+ "title": "Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors"
781
+ },
782
+ "2102.00690": {
783
+ "arxivId": "2102.00690",
784
+ "title": "Ground-Aware Monocular 3D Object Detection for Autonomous Driving"
785
+ },
786
+ "1904.11466": {
787
+ "arxivId": "1904.11466",
788
+ "title": "Sensor Fusion for Joint 3D Object Detection and Semantic Segmentation"
789
+ },
790
+ "2112.02205": {
791
+ "arxivId": "2112.02205",
792
+ "title": "Behind the Curtain: Learning Occluded Shapes for 3D Object Detection"
793
+ },
794
+ "2104.03775": {
795
+ "arxivId": "2104.03775",
796
+ "title": "Geometry-based Distance Decomposition for Monocular 3D Object Detection"
797
+ },
798
+ "2203.10981": {
799
+ "arxivId": "2203.10981",
800
+ "title": "MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer"
801
+ },
802
+ "2101.06547": {
803
+ "arxivId": "2101.06547",
804
+ "title": "LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving"
805
+ },
806
+ "2103.16470": {
807
+ "arxivId": "2103.16470",
808
+ "title": "Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection"
809
+ },
810
+ "2103.12605": {
811
+ "arxivId": "2103.12605",
812
+ "title": "MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation"
813
+ },
814
+ "1912.04986": {
815
+ "arxivId": "1912.04986",
816
+ "title": "What You See is What You Get: Exploiting Visibility for 3D Object Detection"
817
+ },
818
+ "1906.01193": {
819
+ "arxivId": "1906.01193",
820
+ "title": "Triangulation Learning Network: From Monocular to Stereo 3D Object Detection"
821
+ },
822
+ "2112.09205": {
823
+ "arxivId": "2112.09205",
824
+ "title": "AFDetV2: Rethinking the Necessity of the Second Stage for Object Detection from Point Clouds"
825
+ },
826
+ "2012.04355": {
827
+ "arxivId": "2012.04355",
828
+ "title": "3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection"
829
+ },
830
+ "1811.07112": {
831
+ "arxivId": "1811.07112",
832
+ "title": "Augmented LiDAR Simulator for Autonomous Driving"
833
+ },
834
+ "2104.00902": {
835
+ "arxivId": "2104.00902",
836
+ "title": "HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection"
837
+ },
838
+ "2005.09927": {
839
+ "arxivId": "2005.09927",
840
+ "title": "Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection"
841
+ },
842
+ "2004.02774": {
843
+ "arxivId": "2004.02774",
844
+ "title": "SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds"
845
+ },
846
+ "2008.05927": {
847
+ "arxivId": "2008.05927",
848
+ "title": "End-to-end Contextual Perception and Prediction with Interaction Transformer"
849
+ },
850
+ "2006.12671": {
851
+ "arxivId": "2006.12671",
852
+ "title": "AFDet: Anchor Free One Stage 3D Object Detection"
853
+ },
854
+ "2011.13628": {
855
+ "arxivId": "2011.13628",
856
+ "title": "Temporal-Channel Transformer for 3D Lidar-Based Video Object Detection for Autonomous Driving"
857
+ },
858
+ "1911.11288": {
859
+ "arxivId": "1911.11288",
860
+ "title": "Autolabeling 3D Objects With Differentiable Rendering of SDF Shape Priors"
861
+ },
862
+ "2104.11896": {
863
+ "arxivId": "2104.11896",
864
+ "title": "M3DETR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers"
865
+ },
866
+ "1908.11069": {
867
+ "arxivId": "1908.11069",
868
+ "title": "StarNet: Targeted Computation for Object Detection in Point Clouds"
869
+ },
870
+ "2007.14366": {
871
+ "arxivId": "2007.14366",
872
+ "title": "RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects"
873
+ },
874
+ "2209.10248": {
875
+ "arxivId": "2209.10248",
876
+ "title": "BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object Detection with Dynamic Temporal Stereo"
877
+ },
878
+ "2106.15796": {
879
+ "arxivId": "2106.15796",
880
+ "title": "Monocular 3D Object Detection: An Extrinsic Parameter Free Approach"
881
+ },
882
+ "2007.11901": {
883
+ "arxivId": "2007.11901",
884
+ "title": "Weakly Supervised 3D Object Detection from Lidar Point Cloud"
885
+ },
886
+ "2004.03572": {
887
+ "arxivId": "2004.03572",
888
+ "title": "Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation"
889
+ },
890
+ "2205.07403": {
891
+ "arxivId": "2205.07403",
892
+ "title": "PillarNet: Real-Time and High-Performance Pillar-based 3D Object Detection"
893
+ },
894
+ "2201.06493": {
895
+ "arxivId": "2201.06493",
896
+ "title": "AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection"
897
+ },
898
+ "2106.12735": {
899
+ "arxivId": "2106.12735",
900
+ "title": "Multi-Modal 3D Object Detection in Autonomous Driving: A Survey"
901
+ },
902
+ "2005.03844": {
903
+ "arxivId": "2005.03844",
904
+ "title": "SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving"
905
+ },
906
+ "2108.08258": {
907
+ "arxivId": "2108.08258",
908
+ "title": "LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector"
909
+ },
910
+ "2210.07372": {
911
+ "arxivId": "2210.07372",
912
+ "title": "SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds"
913
+ },
914
+ "2103.16054": {
915
+ "arxivId": "2103.16054",
916
+ "title": "3D-MAN: 3D Multi-frame Attention Network for Object Detection"
917
+ },
918
+ "2101.06543": {
919
+ "arxivId": "2101.06543",
920
+ "title": "GeoSim: Realistic Video Simulation via Geometry-Aware Composition for Self-Driving"
921
+ },
922
+ "1904.00923": {
923
+ "arxivId": "1904.00923",
924
+ "title": "Robustness of 3D Deep Learning in an Adversarial Setting"
925
+ },
926
+ "2110.06923": {
927
+ "arxivId": "2110.06923",
928
+ "title": "Object DGCNN: 3D Object Detection using Dynamic Graphs"
929
+ },
930
+ "2008.06041": {
931
+ "arxivId": "2008.06041",
932
+ "title": "DSDNet: Deep Structured self-Driving Network"
933
+ },
934
+ "2103.17202": {
935
+ "arxivId": "2103.17202",
936
+ "title": "GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection"
937
+ },
938
+ "2104.15060": {
939
+ "arxivId": "2104.15060",
940
+ "title": "DriveGAN: Towards a Controllable High-Quality Neural Simulation"
941
+ },
942
+ "1909.07566": {
943
+ "arxivId": "1909.07566",
944
+ "title": "Object-Centric Stereo Matching for 3D Object Detection"
945
+ },
946
+ "2006.04043": {
947
+ "arxivId": "2006.04043",
948
+ "title": "SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds"
949
+ },
950
+ "2002.01619": {
951
+ "arxivId": "2002.01619",
952
+ "title": "Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation"
953
+ },
954
+ "2006.04356": {
955
+ "arxivId": "2006.04356",
956
+ "title": "Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection"
957
+ },
958
+ "2107.11355": {
959
+ "arxivId": "2107.11355",
960
+ "title": "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"
961
+ },
962
+ "2101.06541": {
963
+ "arxivId": "2101.06541",
964
+ "title": "SceneGen: Learning to Generate Realistic Traffic Scenes"
965
+ },
966
+ "1906.08070": {
967
+ "arxivId": "1906.08070",
968
+ "title": "Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss"
969
+ },
970
+ "2007.12392": {
971
+ "arxivId": "2007.12392",
972
+ "title": "An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds"
973
+ },
974
+ "1905.09970": {
975
+ "arxivId": "1905.09970",
976
+ "title": "Shift R-CNN: Deep Monocular 3D Object Detection With Closed-Form Geometric Constraints"
977
+ },
978
+ "2108.05793": {
979
+ "arxivId": "2108.05793",
980
+ "title": "Progressive Coordinate Transforms for Monocular 3D Object Detection"
981
+ },
982
+ "2101.06784": {
983
+ "arxivId": "2101.06784",
984
+ "title": "Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving"
985
+ },
986
+ "1905.08955": {
987
+ "arxivId": "1905.08955",
988
+ "title": "Domain Adaptation for Vehicle Detection from Bird's Eye View LiDAR Point Cloud Data"
989
+ },
990
+ "2202.02980": {
991
+ "arxivId": "2202.02980",
992
+ "title": "3D Object Detection From Images for Autonomous Driving: A Survey"
993
+ },
994
+ "2103.13164": {
995
+ "arxivId": "2103.13164",
996
+ "title": "M3DSSD: Monocular 3D Single Stage Object Detector"
997
+ },
998
+ "2009.00206": {
999
+ "arxivId": "2009.00206",
1000
+ "title": "RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation"
1001
+ },
1002
+ "2107.14391": {
1003
+ "arxivId": "2107.14391",
1004
+ "title": "From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection"
1005
+ },
1006
+ "2007.08556": {
1007
+ "arxivId": "2007.08556",
1008
+ "title": "InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic Information Modeling"
1009
+ },
1010
+ "2007.03085": {
1011
+ "arxivId": "2007.03085",
1012
+ "title": "Wasserstein Distances for Stereo Disparity Estimation"
1013
+ },
1014
+ "2203.09704": {
1015
+ "arxivId": "2203.09704",
1016
+ "title": "VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention"
1017
+ },
1018
+ "2110.07600": {
1019
+ "arxivId": "2110.07600",
1020
+ "title": "PointAcc: Efficient Point Cloud Accelerator"
1021
+ },
1022
+ "2106.13381": {
1023
+ "arxivId": "2106.13381",
1024
+ "title": "To the Point: Efficient 3D Object Detection in the Range Image with Graph Convolution Kernels"
1025
+ },
1026
+ "2003.04188": {
1027
+ "arxivId": "2003.04188",
1028
+ "title": "BirdNet+: End-to-End 3D Object Detection in LiDAR Bird\u2019s Eye View"
1029
+ },
1030
+ "2004.08745": {
1031
+ "arxivId": "2004.08745",
1032
+ "title": "Learning to Evaluate Perception Models Using Planner-Centric Metrics"
1033
+ },
1034
+ "2205.15938": {
1035
+ "arxivId": "2205.15938",
1036
+ "title": "Voxel Field Fusion for 3D Object Detection"
1037
+ },
1038
+ "2003.00529": {
1039
+ "arxivId": "2003.00529",
1040
+ "title": "ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection"
1041
+ },
1042
+ "1912.00202": {
1043
+ "arxivId": "1912.00202",
1044
+ "title": "Relation Graph Network for 3D Object Detection in Point Clouds"
1045
+ },
1046
+ "2103.09422": {
1047
+ "arxivId": "2103.09422",
1048
+ "title": "YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection"
1049
+ },
1050
+ "1912.08035": {
1051
+ "arxivId": "1912.08035",
1052
+ "title": "Towards Generalization Across Depth for Monocular 3D Object Detection"
1053
+ },
1054
+ "2112.04680": {
1055
+ "arxivId": "2112.04680",
1056
+ "title": "SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations"
1057
+ },
1058
+ "2005.04255": {
1059
+ "arxivId": "2005.04255",
1060
+ "title": "STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction"
1061
+ },
1062
+ "2006.07864": {
1063
+ "arxivId": "2006.07864",
1064
+ "title": "Cityscapes 3D: Dataset and Benchmark for 9 DoF Vehicle Detection"
1065
+ },
1066
+ "2208.10145": {
1067
+ "arxivId": "2208.10145",
1068
+ "title": "STS: Surround-view Temporal Stereo for Multi-view 3D Detection"
1069
+ },
1070
+ "2007.13970": {
1071
+ "arxivId": "2007.13970",
1072
+ "title": "Weakly Supervised 3D Object Detection from Point Clouds"
1073
+ },
1074
+ "2002.05316": {
1075
+ "arxivId": "2002.05316",
1076
+ "title": "SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud"
1077
+ },
1078
+ "1911.12236": {
1079
+ "arxivId": "1911.12236",
1080
+ "title": "PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement"
1081
+ },
1082
+ "2204.00325": {
1083
+ "arxivId": "2204.00325",
1084
+ "title": "CAT-Det: Contrastively Augmented Transformer for Multimodal 3D Object Detection"
1085
+ },
1086
+ "1909.07701": {
1087
+ "arxivId": "1909.07701",
1088
+ "title": "Task-Aware Monocular Depth Estimation for 3D Object Detection"
1089
+ },
1090
+ "2011.05289": {
1091
+ "arxivId": "2011.05289",
1092
+ "title": "Learning to Communicate and Correct Pose Errors"
1093
+ },
1094
+ "2112.14023": {
1095
+ "arxivId": "2112.14023",
1096
+ "title": "The Devil is in the Task: Exploiting Reciprocal Appearance-Localization Features for Monocular 3D Object Detection"
1097
+ },
1098
+ "2109.01066": {
1099
+ "arxivId": "2109.01066",
1100
+ "title": "4D-Net for Learned Multi-Modal Alignment"
1101
+ },
1102
+ "1809.06065": {
1103
+ "arxivId": "1809.06065",
1104
+ "title": "Focal Loss in 3D Object Detection"
1105
+ },
1106
+ "2108.03648": {
1107
+ "arxivId": "2108.03648",
1108
+ "title": "From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to-Point Decoder"
1109
+ },
1110
+ "2004.01170": {
1111
+ "arxivId": "2004.01170",
1112
+ "title": "DOPS: Learning to Detect 3D Objects and Predict Their 3D Shapes"
1113
+ },
1114
+ "2101.06560": {
1115
+ "arxivId": "2101.06560",
1116
+ "title": "Adversarial Attacks On Multi-Agent Communication"
1117
+ },
1118
+ "2101.06586": {
1119
+ "arxivId": "2101.06586",
1120
+ "title": "Auto4D: Learning to Label 4D Objects from Sequential Point Clouds"
1121
+ },
1122
+ "2108.07142": {
1123
+ "arxivId": "2108.07142",
1124
+ "title": "PIT: Position-Invariant Transform for Cross-FoV Domain Adaptation"
1125
+ },
1126
+ "2103.15326": {
1127
+ "arxivId": "2103.15326",
1128
+ "title": "Fooling LiDAR Perception via Adversarial Trajectory Perturbation"
1129
+ },
1130
+ "2003.05505": {
1131
+ "arxivId": "2003.05505",
1132
+ "title": "Confidence Guided Stereo 3D Object Detection with Split Depth Estimation"
1133
+ },
1134
+ "2011.01153": {
1135
+ "arxivId": "2011.01153",
1136
+ "title": "Perceive, Attend, and Drive: Learning Spatial Attention for Safe Self-Driving"
1137
+ },
1138
+ "2103.02093": {
1139
+ "arxivId": "2103.02093",
1140
+ "title": "Pseudo-labeling for Scalable 3D Object Detection"
1141
+ },
1142
+ "2009.14524": {
1143
+ "arxivId": "2009.14524",
1144
+ "title": "Monocular Differentiable Rendering for Self-Supervised 3D Object Detection"
1145
+ },
1146
+ "2010.08243": {
1147
+ "arxivId": "2010.08243",
1148
+ "title": "SF-UDA3D: Source-Free Unsupervised Domain Adaptation for LiDAR-Based 3D Object Detection"
1149
+ },
1150
+ "2003.05982": {
1151
+ "arxivId": "2003.05982",
1152
+ "title": "LaserFlow: Efficient and Probabilistic Object Detection and Motion Forecasting"
1153
+ },
1154
+ "2101.06720": {
1155
+ "arxivId": "2101.06720",
1156
+ "title": "Deep Multi-Task Learning for Joint Localization, Perception, and Prediction"
1157
+ },
1158
+ "2105.07647": {
1159
+ "arxivId": "2105.07647",
1160
+ "title": "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"
1161
+ },
1162
+ "2112.01135": {
1163
+ "arxivId": "2112.01135",
1164
+ "title": "Open-set 3D Object Detection"
1165
+ },
1166
+ "2101.06594": {
1167
+ "arxivId": "2101.06594",
1168
+ "title": "PLUMENet: Efficient 3D Object Detection from Stereo Images"
1169
+ },
1170
+ "2008.10436": {
1171
+ "arxivId": "2008.10436",
1172
+ "title": "Cross-Modality 3D Object Detection"
1173
+ },
1174
+ "2208.11658": {
1175
+ "arxivId": "2208.11658",
1176
+ "title": "AGO-Net: Association-Guided 3D Point Cloud Object Detection Network"
1177
+ },
1178
+ "2108.03634": {
1179
+ "arxivId": "2108.03634",
1180
+ "title": "Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud"
1181
+ },
1182
+ "2004.02724": {
1183
+ "arxivId": "2004.02724",
1184
+ "title": "Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds"
1185
+ },
1186
+ "2005.01864": {
1187
+ "arxivId": "2005.01864",
1188
+ "title": "Streaming Object Detection for 3-D Point Clouds"
1189
+ },
1190
+ "2103.14198": {
1191
+ "arxivId": "2103.14198",
1192
+ "title": "Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object Detection in Self-Driving Cars"
1193
+ },
1194
+ "2112.07787": {
1195
+ "arxivId": "2112.07787",
1196
+ "title": "Revisiting 3D Object Detection From an Egocentric Perspective"
1197
+ },
1198
+ "2012.02938": {
1199
+ "arxivId": "2012.02938",
1200
+ "title": "Cirrus: A Long-range Bi-pattern LiDAR Dataset"
1201
+ },
1202
+ "2110.00464": {
1203
+ "arxivId": "2110.00464",
1204
+ "title": "MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation"
1205
+ },
1206
+ "2106.07545": {
1207
+ "arxivId": "2106.07545",
1208
+ "title": "PolarStream: Streaming Lidar Object Detection and Segmentation with Polar Pillars"
1209
+ },
1210
+ "2108.09663": {
1211
+ "arxivId": "2108.09663",
1212
+ "title": "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation"
1213
+ },
1214
+ "2102.11952": {
1215
+ "arxivId": "2102.11952",
1216
+ "title": "Learning to Drop Points for LiDAR Scan Synthesis"
1217
+ },
1218
+ "2012.03121": {
1219
+ "arxivId": "2012.03121",
1220
+ "title": "It\u2019s All Around You: Range-Guided Cylindrical Network for 3D Object Detection"
1221
+ },
1222
+ "2103.05929": {
1223
+ "arxivId": "2103.05929",
1224
+ "title": "MapFusion: A General Framework for 3D Object Detection with HDMaps"
1225
+ },
1226
+ "2301.07870": {
1227
+ "arxivId": "2301.07870",
1228
+ "title": "Fast-BEV: Towards Real-time On-vehicle Bird's-Eye View Perception"
1229
+ },
1230
+ "2212.02181": {
1231
+ "arxivId": "2212.02181",
1232
+ "title": "Perceive, Interact, Predict: Learning Dynamic and Static Clues for End-to-End Motion Prediction"
1233
+ },
1234
+ "2008.06020": {
1235
+ "arxivId": "2008.06020",
1236
+ "title": "Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction"
1237
+ },
1238
+ "2203.08332": {
1239
+ "arxivId": "2203.08332",
1240
+ "title": "WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection"
1241
+ },
1242
+ "2011.06425": {
1243
+ "arxivId": "2011.06425",
1244
+ "title": "StrObe: Streaming Object Detection from LiDAR Packets"
1245
+ },
1246
+ "2005.10863": {
1247
+ "arxivId": "2005.10863",
1248
+ "title": "RV-FuseNet: Range View Based Fusion of Time-Series LiDAR Data for Joint 3D Object Detection and Motion Forecasting"
1249
+ },
1250
+ "2203.13394": {
1251
+ "arxivId": "2203.13394",
1252
+ "title": "Point2Seq: Detecting 3D Objects as Sequences"
1253
+ },
1254
+ "2006.16007": {
1255
+ "arxivId": "2006.16007",
1256
+ "title": "MoNet3D: Towards Accurate Monocular 3D Object Localization in Real Time"
1257
+ },
1258
+ "2110.09355": {
1259
+ "arxivId": "2110.09355",
1260
+ "title": "FAST3D: Flow-Aware Self-Training for 3D Object Detectors"
1261
+ }
1262
+ }
human_written_ref/Graph neural networks: Taxonomy, advances, and trends.json ADDED
@@ -0,0 +1,1382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1512.03385": {
3
+ "arxivId": "1512.03385",
4
+ "title": "Deep Residual Learning for Image Recognition"
5
+ },
6
+ "1706.03762": {
7
+ "arxivId": "1706.03762",
8
+ "title": "Attention is All you Need"
9
+ },
10
+ "1810.04805": {
11
+ "arxivId": "1810.04805",
12
+ "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
13
+ },
14
+ "1505.04597": {
15
+ "arxivId": "1505.04597",
16
+ "title": "U-Net: Convolutional Networks for Biomedical Image Segmentation"
17
+ },
18
+ "1409.4842": {
19
+ "arxivId": "1409.4842",
20
+ "title": "Going deeper with convolutions"
21
+ },
22
+ "1912.01703": {
23
+ "arxivId": "1912.01703",
24
+ "title": "PyTorch: An Imperative Style, High-Performance Deep Learning Library"
25
+ },
26
+ "1608.06993": {
27
+ "arxivId": "1608.06993",
28
+ "title": "Densely Connected Convolutional Networks"
29
+ },
30
+ "1409.0473": {
31
+ "arxivId": "1409.0473",
32
+ "title": "Neural Machine Translation by Jointly Learning to Align and Translate"
33
+ },
34
+ "1609.02907": {
35
+ "arxivId": "1609.02907",
36
+ "title": "Semi-Supervised Classification with Graph Convolutional Networks"
37
+ },
38
+ "1406.1078": {
39
+ "arxivId": "1406.1078",
40
+ "title": "Learning Phrase Representations using RNN Encoder\u2013Decoder for Statistical Machine Translation"
41
+ },
42
+ "1710.10903": {
43
+ "arxivId": "1710.10903",
44
+ "title": "Graph Attention Networks"
45
+ },
46
+ "1706.02216": {
47
+ "arxivId": "1706.02216",
48
+ "title": "Inductive Representation Learning on Large Graphs"
49
+ },
50
+ "1607.00653": {
51
+ "arxivId": "1607.00653",
52
+ "title": "node2vec: Scalable Feature Learning for Networks"
53
+ },
54
+ "1403.6652": {
55
+ "arxivId": "1403.6652",
56
+ "title": "DeepWalk: online learning of social representations"
57
+ },
58
+ "1710.09412": {
59
+ "arxivId": "1710.09412",
60
+ "title": "mixup: Beyond Empirical Risk Minimization"
61
+ },
62
+ "1711.07971": {
63
+ "arxivId": "1711.07971",
64
+ "title": "Non-local Neural Networks"
65
+ },
66
+ "1511.07122": {
67
+ "arxivId": "1511.07122",
68
+ "title": "Multi-Scale Context Aggregation by Dilated Convolutions"
69
+ },
70
+ "1508.04025": {
71
+ "arxivId": "1508.04025",
72
+ "title": "Effective Approaches to Attention-based Neural Machine Translation"
73
+ },
74
+ "1901.00596": {
75
+ "arxivId": "1901.00596",
76
+ "title": "A Comprehensive Survey on Graph Neural Networks"
77
+ },
78
+ "1606.09375": {
79
+ "arxivId": "1606.09375",
80
+ "title": "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering"
81
+ },
82
+ "1704.01212": {
83
+ "arxivId": "1704.01212",
84
+ "title": "Neural Message Passing for Quantum Chemistry"
85
+ },
86
+ "1810.00826": {
87
+ "arxivId": "1810.00826",
88
+ "title": "How Powerful are Graph Neural Networks?"
89
+ },
90
+ "1801.07829": {
91
+ "arxivId": "1801.07829",
92
+ "title": "Dynamic Graph CNN for Learning on Point Clouds"
93
+ },
94
+ "1812.08434": {
95
+ "arxivId": "1812.08434",
96
+ "title": "Graph Neural Networks: A Review of Methods and Applications"
97
+ },
98
+ "1312.6203": {
99
+ "arxivId": "1312.6203",
100
+ "title": "Spectral Networks and Locally Connected Networks on Graphs"
101
+ },
102
+ "1601.00670": {
103
+ "arxivId": "1601.00670",
104
+ "title": "Variational Inference: A Review for Statisticians"
105
+ },
106
+ "1710.09829": {
107
+ "arxivId": "1710.09829",
108
+ "title": "Dynamic Routing Between Capsules"
109
+ },
110
+ "1703.06103": {
111
+ "arxivId": "1703.06103",
112
+ "title": "Modeling Relational Data with Graph Convolutional Networks"
113
+ },
114
+ "1211.0053": {
115
+ "arxivId": "1211.0053",
116
+ "title": "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains"
117
+ },
118
+ "1903.02428": {
119
+ "arxivId": "1903.02428",
120
+ "title": "Fast Graph Representation Learning with PyTorch Geometric"
121
+ },
122
+ "1801.07455": {
123
+ "arxivId": "1801.07455",
124
+ "title": "Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition"
125
+ },
126
+ "1406.6247": {
127
+ "arxivId": "1406.6247",
128
+ "title": "Recurrent Models of Visual Attention"
129
+ },
130
+ "1509.09292": {
131
+ "arxivId": "1509.09292",
132
+ "title": "Convolutional Networks on Graphs for Learning Molecular Fingerprints"
133
+ },
134
+ "1806.01973": {
135
+ "arxivId": "1806.01973",
136
+ "title": "Graph Convolutional Neural Networks for Web-Scale Recommender Systems"
137
+ },
138
+ "1611.07308": {
139
+ "arxivId": "1611.07308",
140
+ "title": "Variational Graph Auto-Encoders"
141
+ },
142
+ "1511.05493": {
143
+ "arxivId": "1511.05493",
144
+ "title": "Gated Graph Sequence Neural Networks"
145
+ },
146
+ "1709.04875": {
147
+ "arxivId": "1709.04875",
148
+ "title": "Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting"
149
+ },
150
+ "1503.00075": {
151
+ "arxivId": "1503.00075",
152
+ "title": "Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks"
153
+ },
154
+ "1611.08097": {
155
+ "arxivId": "1611.08097",
156
+ "title": "Geometric Deep Learning: Going beyond Euclidean data"
157
+ },
158
+ "1003.1141": {
159
+ "arxivId": "1003.1141",
160
+ "title": "From Frequency to Meaning: Vector Space Models of Semantics"
161
+ },
162
+ "1806.01261": {
163
+ "arxivId": "1806.01261",
164
+ "title": "Relational inductive biases, deep learning, and graph networks"
165
+ },
166
+ "1902.07153": {
167
+ "arxivId": "1902.07153",
168
+ "title": "Simplifying Graph Convolutional Networks"
169
+ },
170
+ "1801.07606": {
171
+ "arxivId": "1801.07606",
172
+ "title": "Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning"
173
+ },
174
+ "2005.00687": {
175
+ "arxivId": "2005.00687",
176
+ "title": "Open Graph Benchmark: Datasets for Machine Learning on Graphs"
177
+ },
178
+ "1406.2661": {
179
+ "arxivId": "1406.2661",
180
+ "title": "Generative Adversarial Nets"
181
+ },
182
+ "1809.10341": {
183
+ "arxivId": "1809.10341",
184
+ "title": "Deep Graph Infomax"
185
+ },
186
+ "1903.07293": {
187
+ "arxivId": "1903.07293",
188
+ "title": "Heterogeneous Graph Attention Network"
189
+ },
190
+ "1605.05273": {
191
+ "arxivId": "1605.05273",
192
+ "title": "Learning Convolutional Neural Networks for Graphs"
193
+ },
194
+ "0912.3848": {
195
+ "arxivId": "0912.3848",
196
+ "title": "Wavelets on Graphs via Spectral Graph Theory"
197
+ },
198
+ "1806.08804": {
199
+ "arxivId": "1806.08804",
200
+ "title": "Hierarchical Graph Representation Learning with Differentiable Pooling"
201
+ },
202
+ "1806.03536": {
203
+ "arxivId": "1806.03536",
204
+ "title": "Representation Learning on Graphs with Jumping Knowledge Networks"
205
+ },
206
+ "1611.08402": {
207
+ "arxivId": "1611.08402",
208
+ "title": "Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs"
209
+ },
210
+ "1505.00387": {
211
+ "arxivId": "1505.00387",
212
+ "title": "Highway Networks"
213
+ },
214
+ "1802.09691": {
215
+ "arxivId": "1802.09691",
216
+ "title": "Link Prediction Based on Graph Neural Networks"
217
+ },
218
+ "2010.13902": {
219
+ "arxivId": "2010.13902",
220
+ "title": "Graph Contrastive Learning with Augmentations"
221
+ },
222
+ "1809.05679": {
223
+ "arxivId": "1809.05679",
224
+ "title": "Graph Convolutional Networks for Text Classification"
225
+ },
226
+ "1902.07243": {
227
+ "arxivId": "1902.07243",
228
+ "title": "Graph Neural Networks for Social Recommendation"
229
+ },
230
+ "1905.07854": {
231
+ "arxivId": "1905.07854",
232
+ "title": "KGAT: Knowledge Graph Attention Network for Recommendation"
233
+ },
234
+ "1706.01427": {
235
+ "arxivId": "1706.01427",
236
+ "title": "A simple neural network module for relational reasoning"
237
+ },
238
+ "1506.05163": {
239
+ "arxivId": "1506.05163",
240
+ "title": "Deep Convolutional Networks on Graph-Structured Data"
241
+ },
242
+ "1810.05997": {
243
+ "arxivId": "1810.05997",
244
+ "title": "Predict then Propagate: Graph Neural Networks meet Personalized PageRank"
245
+ },
246
+ "1810.02244": {
247
+ "arxivId": "1810.02244",
248
+ "title": "Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks"
249
+ },
250
+ "1801.10247": {
251
+ "arxivId": "1801.10247",
252
+ "title": "FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling"
253
+ },
254
+ "1811.00855": {
255
+ "arxivId": "1811.00855",
256
+ "title": "Session-based Recommendation with Graph Neural Networks"
257
+ },
258
+ "1603.00856": {
259
+ "arxivId": "1603.00856",
260
+ "title": "Molecular graph convolutions: moving beyond fingerprints"
261
+ },
262
+ "1612.00222": {
263
+ "arxivId": "1612.00222",
264
+ "title": "Interaction Networks for Learning about Objects, Relations and Physics"
265
+ },
266
+ "1611.09940": {
267
+ "arxivId": "1611.09940",
268
+ "title": "Neural Combinatorial Optimization with Reinforcement Learning"
269
+ },
270
+ "1704.01665": {
271
+ "arxivId": "1704.01665",
272
+ "title": "Learning Combinatorial Optimization Algorithms over Graphs"
273
+ },
274
+ "2003.08271": {
275
+ "arxivId": "2003.08271",
276
+ "title": "Pre-trained models for natural language processing: A survey"
277
+ },
278
+ "1802.04364": {
279
+ "arxivId": "1802.04364",
280
+ "title": "Junction Tree Variational Autoencoder for Molecular Graph Generation"
281
+ },
282
+ "1812.04202": {
283
+ "arxivId": "1812.04202",
284
+ "title": "Deep Learning on Graphs: A Survey"
285
+ },
286
+ "1706.02263": {
287
+ "arxivId": "1706.02263",
288
+ "title": "Graph Convolutional Matrix Completion"
289
+ },
290
+ "1904.03751": {
291
+ "arxivId": "1904.03751",
292
+ "title": "DeepGCNs: Can GCNs Go As Deep As CNNs?"
293
+ },
294
+ "1905.12265": {
295
+ "arxivId": "1905.12265",
296
+ "title": "Strategies for Pre-training Graph Neural Networks"
297
+ },
298
+ "1511.02136": {
299
+ "arxivId": "1511.02136",
300
+ "title": "Diffusion-Convolutional Neural Networks"
301
+ },
302
+ "1907.10903": {
303
+ "arxivId": "1907.10903",
304
+ "title": "DropEdge: Towards Deep Graph Convolutional Networks on Node Classification"
305
+ },
306
+ "1711.04043": {
307
+ "arxivId": "1711.04043",
308
+ "title": "Few-Shot Learning with Graph Neural Networks"
309
+ },
310
+ "1704.02901": {
311
+ "arxivId": "1704.02901",
312
+ "title": "Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs"
313
+ },
314
+ "1711.09869": {
315
+ "arxivId": "1711.09869",
316
+ "title": "Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs"
317
+ },
318
+ "1811.05868": {
319
+ "arxivId": "1811.05868",
320
+ "title": "Pitfalls of Graph Neural Network Evaluation"
321
+ },
322
+ "1701.02426": {
323
+ "arxivId": "1701.02426",
324
+ "title": "Scene Graph Generation by Iterative Message Passing"
325
+ },
326
+ "1502.05698": {
327
+ "arxivId": "1502.05698",
328
+ "title": "Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks"
329
+ },
330
+ "1601.00770": {
331
+ "arxivId": "1601.00770",
332
+ "title": "End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures"
333
+ },
334
+ "1905.07953": {
335
+ "arxivId": "1905.07953",
336
+ "title": "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks"
337
+ },
338
+ "2006.05582": {
339
+ "arxivId": "2006.05582",
340
+ "title": "Contrastive Multi-View Representation Learning on Graphs"
341
+ },
342
+ "1911.08415": {
343
+ "arxivId": "1911.08415",
344
+ "title": "GMAN: A Graph Multi-Attention Network for Traffic Prediction"
345
+ },
346
+ "1903.03894": {
347
+ "arxivId": "1903.03894",
348
+ "title": "GNNExplainer: Generating Explanations for Graph Neural Networks"
349
+ },
350
+ "1809.09401": {
351
+ "arxivId": "1809.09401",
352
+ "title": "Hypergraph Neural Networks"
353
+ },
354
+ "1605.07736": {
355
+ "arxivId": "1605.07736",
356
+ "title": "Learning Multiagent Communication with Backpropagation"
357
+ },
358
+ "1511.05298": {
359
+ "arxivId": "1511.05298",
360
+ "title": "Structural-RNN: Deep Learning on Spatio-Temporal Graphs"
361
+ },
362
+ "1904.08082": {
363
+ "arxivId": "1904.08082",
364
+ "title": "Self-Attention Graph Pooling"
365
+ },
366
+ "0902.2206": {
367
+ "arxivId": "0902.2206",
368
+ "title": "Feature hashing for large scale multitask learning"
369
+ },
370
+ "2003.01332": {
371
+ "arxivId": "2003.01332",
372
+ "title": "Heterogeneous Graph Transformer"
373
+ },
374
+ "1802.00543": {
375
+ "arxivId": "1802.00543",
376
+ "title": "Modeling polypharmacy side effects with graph convolutional networks"
377
+ },
378
+ "1905.05178": {
379
+ "arxivId": "1905.05178",
380
+ "title": "Graph U-Nets"
381
+ },
382
+ "1805.07984": {
383
+ "arxivId": "1805.07984",
384
+ "title": "Adversarial Attacks on Neural Networks for Graph Data"
385
+ },
386
+ "1605.09673": {
387
+ "arxivId": "1605.09673",
388
+ "title": "Dynamic Filter Networks"
389
+ },
390
+ "2002.05287": {
391
+ "arxivId": "2002.05287",
392
+ "title": "Geom-GCN: Geometric Graph Convolutional Networks"
393
+ },
394
+ "1511.04854": {
395
+ "arxivId": "1511.04854",
396
+ "title": "A Survey of Heterogeneous Information Network Analysis"
397
+ },
398
+ "1904.03582": {
399
+ "arxivId": "1904.03582",
400
+ "title": "Multi-Label Image Recognition With Graph Convolutional Networks"
401
+ },
402
+ "2010.14945": {
403
+ "arxivId": "2010.14945",
404
+ "title": "Graph Contrastive Learning with Adaptive Augmentation"
405
+ },
406
+ "1805.11973": {
407
+ "arxivId": "1805.11973",
408
+ "title": "MolGAN: An implicit generative model for small molecular graphs"
409
+ },
410
+ "1806.02473": {
411
+ "arxivId": "1806.02473",
412
+ "title": "Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation"
413
+ },
414
+ "2006.09963": {
415
+ "arxivId": "2006.09963",
416
+ "title": "GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training"
417
+ },
418
+ "1703.04826": {
419
+ "arxivId": "1703.04826",
420
+ "title": "Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling"
421
+ },
422
+ "1911.06455": {
423
+ "arxivId": "1911.06455",
424
+ "title": "Graph Transformer Networks"
425
+ },
426
+ "2003.00982": {
427
+ "arxivId": "2003.00982",
428
+ "title": "Benchmarking Graph Neural Networks"
429
+ },
430
+ "1808.00191": {
431
+ "arxivId": "1808.00191",
432
+ "title": "Graph R-CNN for Scene Graph Generation"
433
+ },
434
+ "1804.01622": {
435
+ "arxivId": "1804.01622",
436
+ "title": "Image Generation from Scene Graphs"
437
+ },
438
+ "1905.00067": {
439
+ "arxivId": "1905.00067",
440
+ "title": "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing"
441
+ },
442
+ "1802.03480": {
443
+ "arxivId": "1802.03480",
444
+ "title": "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders"
445
+ },
446
+ "1908.01000": {
447
+ "arxivId": "1908.01000",
448
+ "title": "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization"
449
+ },
450
+ "1802.04687": {
451
+ "arxivId": "1802.04687",
452
+ "title": "Neural Relational Inference for Interacting Systems"
453
+ },
454
+ "1802.08773": {
455
+ "arxivId": "1802.08773",
456
+ "title": "GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models"
457
+ },
458
+ "1711.00740": {
459
+ "arxivId": "1711.00740",
460
+ "title": "Learning to Represent Programs with Graphs"
461
+ },
462
+ "1806.02371": {
463
+ "arxivId": "1806.02371",
464
+ "title": "Adversarial Attack on Graph Structured Data"
465
+ },
466
+ "1809.10185": {
467
+ "arxivId": "1809.10185",
468
+ "title": "Graph Convolution over Pruned Dependency Trees Improves Relation Extraction"
469
+ },
470
+ "1612.07659": {
471
+ "arxivId": "1612.07659",
472
+ "title": "Structured Sequence Modeling with Graph Convolutional Recurrent Networks"
473
+ },
474
+ "1909.01315": {
475
+ "arxivId": "1909.01315",
476
+ "title": "Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs"
477
+ },
478
+ "1801.03226": {
479
+ "arxivId": "1801.03226",
480
+ "title": "Adaptive Graph Convolutional Neural Networks"
481
+ },
482
+ "1802.07007": {
483
+ "arxivId": "1802.07007",
484
+ "title": "Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting"
485
+ },
486
+ "1902.09130": {
487
+ "arxivId": "1902.09130",
488
+ "title": "An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition"
489
+ },
490
+ "1805.10002": {
491
+ "arxivId": "1805.10002",
492
+ "title": "Learning to Propagate Labels: Transductive Propagation Network for Few-Shot Learning"
493
+ },
494
+ "1705.07664": {
495
+ "arxivId": "1705.07664",
496
+ "title": "CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters"
497
+ },
498
+ "1611.07012": {
499
+ "arxivId": "1611.07012",
500
+ "title": "GRAM: Graph-based Attention Model for Healthcare Representation Learning"
501
+ },
502
+ "1803.03324": {
503
+ "arxivId": "1803.03324",
504
+ "title": "Learning Deep Generative Models of Graphs"
505
+ },
506
+ "2006.05205": {
507
+ "arxivId": "2006.05205",
508
+ "title": "On the Bottleneck of Graph Neural Networks and its Practical Implications"
509
+ },
510
+ "1910.12933": {
511
+ "arxivId": "1910.12933",
512
+ "title": "Hyperbolic Graph Convolutional Neural Networks"
513
+ },
514
+ "1806.01242": {
515
+ "arxivId": "1806.01242",
516
+ "title": "Graph networks as learnable physics engines for inference and control"
517
+ },
518
+ "1803.08035": {
519
+ "arxivId": "1803.08035",
520
+ "title": "Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs"
521
+ },
522
+ "1808.03965": {
523
+ "arxivId": "1808.03965",
524
+ "title": "Large-Scale Learnable Graph Convolutional Networks"
525
+ },
526
+ "1803.07294": {
527
+ "arxivId": "1803.07294",
528
+ "title": "GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs"
529
+ },
530
+ "2007.09296": {
531
+ "arxivId": "2007.09296",
532
+ "title": "Towards Deeper Graph Neural Networks"
533
+ },
534
+ "1902.08412": {
535
+ "arxivId": "1902.08412",
536
+ "title": "Adversarial Attacks on Graph Neural Networks via Meta Learning"
537
+ },
538
+ "2012.15445": {
539
+ "arxivId": "2012.15445",
540
+ "title": "Explainability in Graph Neural Networks: A Taxonomic Survey"
541
+ },
542
+ "1704.06803": {
543
+ "arxivId": "1704.06803",
544
+ "title": "Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks"
545
+ },
546
+ "1905.04413": {
547
+ "arxivId": "1905.04413",
548
+ "title": "Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems"
549
+ },
550
+ "2002.01169": {
551
+ "arxivId": "2002.01169",
552
+ "title": "Graph Representation Learning via Graphical Mutual Information Maximization"
553
+ },
554
+ "1708.03743": {
555
+ "arxivId": "1708.03743",
556
+ "title": "Cross-Sentence N-ary Relation Extraction with Graph LSTMs"
557
+ },
558
+ "1807.05560": {
559
+ "arxivId": "1807.05560",
560
+ "title": "DeepInf: Social Influence Prediction with Deep Learning"
561
+ },
562
+ "1704.04675": {
563
+ "arxivId": "1704.04675",
564
+ "title": "Graph Convolutional Encoders for Syntax-aware Neural Machine Translation"
565
+ },
566
+ "2006.15437": {
567
+ "arxivId": "2006.15437",
568
+ "title": "GPT-GNN: Generative Pre-Training of Graph Neural Networks"
569
+ },
570
+ "1806.01738": {
571
+ "arxivId": "1806.01738",
572
+ "title": "Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer's disease"
573
+ },
574
+ "1908.11540": {
575
+ "arxivId": "1908.11540",
576
+ "title": "DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation"
577
+ },
578
+ "1809.05343": {
579
+ "arxivId": "1809.05343",
580
+ "title": "Adaptive Sampling Towards Fast Graph Representation Learning"
581
+ },
582
+ "1909.12223": {
583
+ "arxivId": "1909.12223",
584
+ "title": "PairNorm: Tackling Oversmoothing in GNNs"
585
+ },
586
+ "1812.09902": {
587
+ "arxivId": "1812.09902",
588
+ "title": "Invariant and Equivariant Graph Networks"
589
+ },
590
+ "1612.00606": {
591
+ "arxivId": "1612.00606",
592
+ "title": "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation"
593
+ },
594
+ "1906.04817": {
595
+ "arxivId": "1906.04817",
596
+ "title": "Position-aware Graph Neural Networks"
597
+ },
598
+ "1909.03252": {
599
+ "arxivId": "1909.03252",
600
+ "title": "Graph Convolutional Networks for Temporal Action Localization"
601
+ },
602
+ "2103.00111": {
603
+ "arxivId": "2103.00111",
604
+ "title": "Graph Self-Supervised Learning: A Survey"
605
+ },
606
+ "1810.10659": {
607
+ "arxivId": "1810.10659",
608
+ "title": "Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search"
609
+ },
610
+ "1909.02151": {
611
+ "arxivId": "1909.02151",
612
+ "title": "KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning"
613
+ },
614
+ "1612.00341": {
615
+ "arxivId": "1612.00341",
616
+ "title": "A Compositional Object-Based Approach to Learning Physical Dynamics"
617
+ },
618
+ "1805.09076": {
619
+ "arxivId": "1805.09076",
620
+ "title": "Constrained Graph Variational Autoencoders for Molecule Design"
621
+ },
622
+ "1905.01436": {
623
+ "arxivId": "1905.01436",
624
+ "title": "Edge-Labeling Graph Neural Network for Few-Shot Learning"
625
+ },
626
+ "1802.04407": {
627
+ "arxivId": "1802.04407",
628
+ "title": "Adversarially Regularized Graph Autoencoder"
629
+ },
630
+ "1711.07553": {
631
+ "arxivId": "1711.07553",
632
+ "title": "Residual Gated Graph ConvNets"
633
+ },
634
+ "1609.05600": {
635
+ "arxivId": "1609.05600",
636
+ "title": "Graph-Structured Representations for Visual Question Answering"
637
+ },
638
+ "1802.03685": {
639
+ "arxivId": "1802.03685",
640
+ "title": "Learning a SAT Solver from Single-Bit Supervision"
641
+ },
642
+ "1909.03477": {
643
+ "arxivId": "1909.03477",
644
+ "title": "Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks"
645
+ },
646
+ "1906.07510": {
647
+ "arxivId": "1906.07510",
648
+ "title": "Attention Guided Graph Convolutional Networks for Relation Extraction"
649
+ },
650
+ "1710.10321": {
651
+ "arxivId": "1710.10321",
652
+ "title": "Learning Structural Node Embeddings via Diffusion Wavelets"
653
+ },
654
+ "1903.07256": {
655
+ "arxivId": "1903.07256",
656
+ "title": "Graph Convolutional Label Noise Cleaner: Train a Plug-And-Play Action Classifier for Anomaly Detection"
657
+ },
658
+ "1603.07063": {
659
+ "arxivId": "1603.07063",
660
+ "title": "Semantic Object Parsing with Graph LSTM"
661
+ },
662
+ "1805.11273": {
663
+ "arxivId": "1805.11273",
664
+ "title": "DynGEM: Deep Embedding Method for Dynamic Graphs"
665
+ },
666
+ "1803.00816": {
667
+ "arxivId": "1803.00816",
668
+ "title": "NetGAN: Generating Graphs via Random Walks"
669
+ },
670
+ "1612.04844": {
671
+ "arxivId": "1612.04844",
672
+ "title": "The More You Know: Using Knowledge Graphs for Image Classification"
673
+ },
674
+ "1903.12314": {
675
+ "arxivId": "1903.12314",
676
+ "title": "Relation-Aware Graph Attention Network for Visual Question Answering"
677
+ },
678
+ "1809.09078": {
679
+ "arxivId": "1809.09078",
680
+ "title": "Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation"
681
+ },
682
+ "1803.03735": {
683
+ "arxivId": "1803.03735",
684
+ "title": "Attention-based Graph Neural Network for Semi-supervised Learning"
685
+ },
686
+ "1806.09835": {
687
+ "arxivId": "1806.09835",
688
+ "title": "Graph-to-Sequence Learning using Gated Graph Neural Networks"
689
+ },
690
+ "1904.13107": {
691
+ "arxivId": "1904.13107",
692
+ "title": "Graph Convolutional Networks with EigenPooling"
693
+ },
694
+ "1704.06199": {
695
+ "arxivId": "1704.06199",
696
+ "title": "Dynamic Graph Convolutional Networks"
697
+ },
698
+ "1904.02342": {
699
+ "arxivId": "1904.02342",
700
+ "title": "Text Generation from Knowledge Graphs with Graph Transformers"
701
+ },
702
+ "1706.05674": {
703
+ "arxivId": "1706.05674",
704
+ "title": "Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach"
705
+ },
706
+ "1904.07785": {
707
+ "arxivId": "1904.07785",
708
+ "title": "Graph Wavelet Neural Network"
709
+ },
710
+ "1806.02952": {
711
+ "arxivId": "1806.02952",
712
+ "title": "RGCNN: Regularized Graph CNN for Point Cloud Segmentation"
713
+ },
714
+ "1903.10433": {
715
+ "arxivId": "1903.10433",
716
+ "title": "Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems"
717
+ },
718
+ "2003.00392": {
719
+ "arxivId": "2003.00392",
720
+ "title": "Fine-Grained Video-Text Retrieval With Hierarchical Graph Reasoning"
721
+ },
722
+ "1803.10459": {
723
+ "arxivId": "1803.10459",
724
+ "title": "Graphite: Iterative Generative Modeling of Graphs"
725
+ },
726
+ "1802.00910": {
727
+ "arxivId": "1802.00910",
728
+ "title": "GeniePath: Graph Neural Networks with Adaptive Receptive Paths"
729
+ },
730
+ "1905.06214": {
731
+ "arxivId": "1905.06214",
732
+ "title": "GMNN: Graph Markov Neural Networks"
733
+ },
734
+ "2002.06157": {
735
+ "arxivId": "2002.06157",
736
+ "title": "Generalization and Representational Limits of Graph Neural Networks"
737
+ },
738
+ "1808.05689": {
739
+ "arxivId": "1808.05689",
740
+ "title": "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation"
741
+ },
742
+ "1907.03199": {
743
+ "arxivId": "1907.03199",
744
+ "title": "What graph neural networks cannot learn: depth vs width"
745
+ },
746
+ "2102.10757": {
747
+ "arxivId": "2102.10757",
748
+ "title": "Self-Supervised Learning of Graph Neural Networks: A Unified Review"
749
+ },
750
+ "1806.11538": {
751
+ "arxivId": "1806.11538",
752
+ "title": "Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation"
753
+ },
754
+ "1710.10370": {
755
+ "arxivId": "1710.10370",
756
+ "title": "Topology adaptive graph convolutional networks"
757
+ },
758
+ "1711.06526": {
759
+ "arxivId": "1711.06526",
760
+ "title": "Multi-label Zero-Shot Learning with Structured Knowledge Graphs"
761
+ },
762
+ "1706.01433": {
763
+ "arxivId": "1706.01433",
764
+ "title": "Visual Interaction Networks: Learning a Physics Simulator from Video"
765
+ },
766
+ "1905.04943": {
767
+ "arxivId": "1905.04943",
768
+ "title": "Universal Invariant and Equivariant Graph Neural Networks"
769
+ },
770
+ "1911.12247": {
771
+ "arxivId": "1911.12247",
772
+ "title": "Contrastive Learning of Structured World Models"
773
+ },
774
+ "1908.07325": {
775
+ "arxivId": "1908.07325",
776
+ "title": "Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition"
777
+ },
778
+ "1905.06292": {
779
+ "arxivId": "1905.06292",
780
+ "title": "3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions"
781
+ },
782
+ "1810.05749": {
783
+ "arxivId": "1810.05749",
784
+ "title": "Graph HyperNetworks for Neural Architecture Search"
785
+ },
786
+ "1912.12693": {
787
+ "arxivId": "1912.12693",
788
+ "title": "A Gentle Introduction to Deep Learning for Graphs"
789
+ },
790
+ "2001.05140": {
791
+ "arxivId": "2001.05140",
792
+ "title": "Graph-Bert: Only Attention is Needed for Learning Graph Representations"
793
+ },
794
+ "1911.07323": {
795
+ "arxivId": "1911.07323",
796
+ "title": "Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks"
797
+ },
798
+ "1805.02473": {
799
+ "arxivId": "1805.02473",
800
+ "title": "A Graph-to-Sequence Model for AMR-to-Text Generation"
801
+ },
802
+ "1905.13192": {
803
+ "arxivId": "1905.13192",
804
+ "title": "Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels"
805
+ },
806
+ "1811.01287": {
807
+ "arxivId": "1811.01287",
808
+ "title": "Towards Sparse Hierarchical Graph Classifiers"
809
+ },
810
+ "1802.08888": {
811
+ "arxivId": "1802.08888",
812
+ "title": "N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification"
813
+ },
814
+ "1905.13686": {
815
+ "arxivId": "1905.13686",
816
+ "title": "Explainability Techniques for Graph Convolutional Networks"
817
+ },
818
+ "1903.02541": {
819
+ "arxivId": "1903.02541",
820
+ "title": "Relational Pooling for Graph Representations"
821
+ },
822
+ "1812.10528": {
823
+ "arxivId": "1812.10528",
824
+ "title": "Adversarial Attack and Defense on Graph Data: A Survey"
825
+ },
826
+ "1909.02606": {
827
+ "arxivId": "1909.02606",
828
+ "title": "Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks"
829
+ },
830
+ "1905.13211": {
831
+ "arxivId": "1905.13211",
832
+ "title": "What Can Neural Networks Reason About?"
833
+ },
834
+ "1901.01484": {
835
+ "arxivId": "1901.01484",
836
+ "title": "LanczosNet: Multi-Scale Deep Graph Convolutional Networks"
837
+ },
838
+ "1706.06122": {
839
+ "arxivId": "1706.06122",
840
+ "title": "VAIN: Attentional Multi-agent Predictive Modeling"
841
+ },
842
+ "1808.09920": {
843
+ "arxivId": "1808.09920",
844
+ "title": "Question Answering by Reasoning Across Documents with Graph Convolutional Networks"
845
+ },
846
+ "1905.05460": {
847
+ "arxivId": "1905.05460",
848
+ "title": "Cognitive Graph for Multi-Hop Reading Comprehension at Scale"
849
+ },
850
+ "1810.10627": {
851
+ "arxivId": "1810.10627",
852
+ "title": "Streaming Graph Neural Networks"
853
+ },
854
+ "2106.07476": {
855
+ "arxivId": "2106.07476",
856
+ "title": "Training Graph Neural Networks with 1000 Layers"
857
+ },
858
+ "1904.00597": {
859
+ "arxivId": "1904.00597",
860
+ "title": "Learning Combinatorial Embedding Networks for Deep Graph Matching"
861
+ },
862
+ "1803.11189": {
863
+ "arxivId": "1803.11189",
864
+ "title": "Iterative Visual Reasoning Beyond Convolutions"
865
+ },
866
+ "2001.05313": {
867
+ "arxivId": "2001.05313",
868
+ "title": "Tensor Graph Convolutional Networks for Text Classification"
869
+ },
870
+ "1908.10679": {
871
+ "arxivId": "1908.10679",
872
+ "title": "Spam Review Detection with Graph Convolutional Networks"
873
+ },
874
+ "1908.02441": {
875
+ "arxivId": "1908.02441",
876
+ "title": "Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning"
877
+ },
878
+ "1805.09786": {
879
+ "arxivId": "1805.09786",
880
+ "title": "Hyperbolic Attention Networks"
881
+ },
882
+ "1805.02474": {
883
+ "arxivId": "1805.02474",
884
+ "title": "Sentence-State LSTM for Text Representation"
885
+ },
886
+ "2003.00387": {
887
+ "arxivId": "2003.00387",
888
+ "title": "Say As You Wish: Fine-Grained Control of Image Caption Generation With Abstract Scene Graphs"
889
+ },
890
+ "2003.05541": {
891
+ "arxivId": "2003.05541",
892
+ "title": "VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions"
893
+ },
894
+ "1905.06933": {
895
+ "arxivId": "1905.06933",
896
+ "title": "Dynamically Fused Graph Network for Multi-hop Reasoning"
897
+ },
898
+ "1903.01306": {
899
+ "arxivId": "1903.01306",
900
+ "title": "Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks"
901
+ },
902
+ "1703.02161": {
903
+ "arxivId": "1703.02161",
904
+ "title": "Distance Metric Learning Using Graph Convolutional Networks: Application to Functional Brain Networks"
905
+ },
906
+ "1804.08313": {
907
+ "arxivId": "1804.08313",
908
+ "title": "Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks"
909
+ },
910
+ "1711.10146": {
911
+ "arxivId": "1711.10146",
912
+ "title": "Structural Deep Embedding for Hyper-Networks"
913
+ },
914
+ "1906.02319": {
915
+ "arxivId": "1906.02319",
916
+ "title": "DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification"
917
+ },
918
+ "1905.07645": {
919
+ "arxivId": "1905.07645",
920
+ "title": "Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching"
921
+ },
922
+ "1904.01830": {
923
+ "arxivId": "1904.01830",
924
+ "title": "Learning Context Graph for Person Search"
925
+ },
926
+ "1908.01843": {
927
+ "arxivId": "1908.01843",
928
+ "title": "GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification"
929
+ },
930
+ "1903.11306": {
931
+ "arxivId": "1903.11306",
932
+ "title": "Linkage Based Face Clustering via Graph Convolution Network"
933
+ },
934
+ "2101.11859": {
935
+ "arxivId": "2101.11859",
936
+ "title": "Interpreting and Unifying Graph Neural Networks with An Optimization Framework"
937
+ },
938
+ "1904.11088": {
939
+ "arxivId": "1904.11088",
940
+ "title": "D-VAE: A Variational Autoencoder for Directed Acyclic Graphs"
941
+ },
942
+ "1711.05859": {
943
+ "arxivId": "1711.05859",
944
+ "title": "Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification"
945
+ },
946
+ "1809.02721": {
947
+ "arxivId": "1809.02721",
948
+ "title": "Learning to Solve NP-Complete Problems - A Graph Neural Network for the Decision TSP"
949
+ },
950
+ "1908.09710": {
951
+ "arxivId": "1908.09710",
952
+ "title": "Variational Graph Recurrent Neural Networks"
953
+ },
954
+ "2003.04078": {
955
+ "arxivId": "2003.04078",
956
+ "title": "A Survey on The Expressive Power of Graph Neural Networks"
957
+ },
958
+ "1804.00823": {
959
+ "arxivId": "1804.00823",
960
+ "title": "Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks"
961
+ },
962
+ "1807.07984": {
963
+ "arxivId": "1807.07984",
964
+ "title": "Attention Models in Graphs"
965
+ },
966
+ "1905.04405": {
967
+ "arxivId": "1905.04405",
968
+ "title": "Language-Conditioned Graph Networks for Relational Reasoning"
969
+ },
970
+ "1808.09101": {
971
+ "arxivId": "1808.09101",
972
+ "title": "N-ary Relation Extraction using Graph-State LSTM"
973
+ },
974
+ "1801.02144": {
975
+ "arxivId": "1801.02144",
976
+ "title": "Covariant Compositional Networks For Learning Graphs"
977
+ },
978
+ "1807.00504": {
979
+ "arxivId": "1807.00504",
980
+ "title": "Deep Reasoning with Knowledge Graph for Social Relationship Understanding"
981
+ },
982
+ "1912.07872": {
983
+ "arxivId": "1912.07872",
984
+ "title": "Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification"
985
+ },
986
+ "1909.03184": {
987
+ "arxivId": "1909.03184",
988
+ "title": "Auto-GNN: Neural architecture search of graph neural networks"
989
+ },
990
+ "1904.05811": {
991
+ "arxivId": "1904.05811",
992
+ "title": "Relational Graph Attention Networks"
993
+ },
994
+ "1906.12269": {
995
+ "arxivId": "1906.12269",
996
+ "title": "Certifiable Robustness and Robust Training for Graph Convolutional Networks"
997
+ },
998
+ "2009.10273": {
999
+ "arxivId": "2009.10273",
1000
+ "title": "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"
1001
+ },
1002
+ "1905.08865": {
1003
+ "arxivId": "1905.08865",
1004
+ "title": "Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks"
1005
+ },
1006
+ "1910.03053": {
1007
+ "arxivId": "1910.03053",
1008
+ "title": "Graph Few-shot Learning via Knowledge Transfer"
1009
+ },
1010
+ "1804.08049": {
1011
+ "arxivId": "1804.08049",
1012
+ "title": "Semi-supervised User Geolocation via Graph Convolutional Networks"
1013
+ },
1014
+ "1908.06648": {
1015
+ "arxivId": "1908.06648",
1016
+ "title": "Graph-Based Object Classification for Neuromorphic Vision Sensing"
1017
+ },
1018
+ "1910.07421": {
1019
+ "arxivId": "1910.07421",
1020
+ "title": "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case"
1021
+ },
1022
+ "1908.04942": {
1023
+ "arxivId": "1908.04942",
1024
+ "title": "Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation"
1025
+ },
1026
+ "1905.07374": {
1027
+ "arxivId": "1905.07374",
1028
+ "title": "Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs"
1029
+ },
1030
+ "1609.04508": {
1031
+ "arxivId": "1609.04508",
1032
+ "title": "Column Networks for Collective Classification"
1033
+ },
1034
+ "1703.00792": {
1035
+ "arxivId": "1703.00792",
1036
+ "title": "Robust Spatial Filtering With Graph Convolutional Neural Networks"
1037
+ },
1038
+ "1903.04233": {
1039
+ "arxivId": "1903.04233",
1040
+ "title": "InceptionGCN: Receptive Field Aware Graph Convolutional Network for Disease Prediction"
1041
+ },
1042
+ "1805.08090": {
1043
+ "arxivId": "1805.08090",
1044
+ "title": "Graph Capsule Convolutional Neural Networks"
1045
+ },
1046
+ "1907.05008": {
1047
+ "arxivId": "1907.05008",
1048
+ "title": "Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology"
1049
+ },
1050
+ "1903.11328": {
1051
+ "arxivId": "1903.11328",
1052
+ "title": "Rethinking the Evaluation of Video Summaries"
1053
+ },
1054
+ "1904.02749": {
1055
+ "arxivId": "1904.02749",
1056
+ "title": "Learning to Cluster Faces on an Affinity Graph"
1057
+ },
1058
+ "1802.04394": {
1059
+ "arxivId": "1802.04394",
1060
+ "title": "M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search"
1061
+ },
1062
+ "1905.10261": {
1063
+ "arxivId": "1905.10261",
1064
+ "title": "Approximation Ratios of Graph Neural Networks for Combinatorial Problems"
1065
+ },
1066
+ "1804.00099": {
1067
+ "arxivId": "1804.00099",
1068
+ "title": "Graph Convolutional Neural Networks via Scattering"
1069
+ },
1070
+ "1910.14356": {
1071
+ "arxivId": "1910.14356",
1072
+ "title": "Certifiable Robustness to Graph Perturbations"
1073
+ },
1074
+ "1902.00756": {
1075
+ "arxivId": "1902.00756",
1076
+ "title": "Graph Neural Networks with Generated Parameters for Relation Extraction"
1077
+ },
1078
+ "1706.07450": {
1079
+ "arxivId": "1706.07450",
1080
+ "title": "A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks"
1081
+ },
1082
+ "1806.01203": {
1083
+ "arxivId": "1806.01203",
1084
+ "title": "Relational inductive bias for physical construction in humans and machines"
1085
+ },
1086
+ "2010.11418": {
1087
+ "arxivId": "2010.11418",
1088
+ "title": "Rethinking pooling in graph neural networks"
1089
+ },
1090
+ "2005.02161": {
1091
+ "arxivId": "2005.02161",
1092
+ "title": "LambdaNet: Probabilistic Type Inference using Graph Neural Networks"
1093
+ },
1094
+ "1911.10699": {
1095
+ "arxivId": "1911.10699",
1096
+ "title": "Multi-Component Graph Convolutional Collaborative Filtering"
1097
+ },
1098
+ "1809.02040": {
1099
+ "arxivId": "1809.02040",
1100
+ "title": "Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks"
1101
+ },
1102
+ "2001.11850": {
1103
+ "arxivId": "2001.11850",
1104
+ "title": "Efficient Probabilistic Logic Reasoning with Graph Neural Networks"
1105
+ },
1106
+ "1903.01254": {
1107
+ "arxivId": "1903.01254",
1108
+ "title": "Graph Neural Networks for Modelling Traffic Participant Interaction"
1109
+ },
1110
+ "2003.05653": {
1111
+ "arxivId": "2003.05653",
1112
+ "title": "Towards High-Fidelity 3D Face Reconstruction From In-the-Wild Images Using Graph Convolutional Networks"
1113
+ },
1114
+ "1904.09981": {
1115
+ "arxivId": "1904.09981",
1116
+ "title": "GraphNAS: Graph Neural Architecture Search with Reinforcement Learning"
1117
+ },
1118
+ "1808.06099": {
1119
+ "arxivId": "1808.06099",
1120
+ "title": "Multi-dimensional Graph Convolutional Networks"
1121
+ },
1122
+ "1703.03055": {
1123
+ "arxivId": "1703.03055",
1124
+ "title": "Interpretable Structure-Evolving LSTM"
1125
+ },
1126
+ "2006.12278": {
1127
+ "arxivId": "2006.12278",
1128
+ "title": "HNHN: Hypergraph Networks with Hyperedge Neurons"
1129
+ },
1130
+ "1803.07710": {
1131
+ "arxivId": "1803.07710",
1132
+ "title": "Inference in Probabilistic Graphical Models by Graph Neural Networks"
1133
+ },
1134
+ "1902.03646": {
1135
+ "arxivId": "1902.03646",
1136
+ "title": "Context-Aware Visual Compatibility Prediction"
1137
+ },
1138
+ "1802.04944": {
1139
+ "arxivId": "1802.04944",
1140
+ "title": "Edge Attention-based Multi-Relational Graph Convolutional Networks"
1141
+ },
1142
+ "2006.12715": {
1143
+ "arxivId": "2006.12715",
1144
+ "title": "Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data"
1145
+ },
1146
+ "2011.03854": {
1147
+ "arxivId": "2011.03854",
1148
+ "title": "Graph Kernels: State-of-the-Art and Future Challenges"
1149
+ },
1150
+ "2002.09518": {
1151
+ "arxivId": "2002.09518",
1152
+ "title": "Memory-Based Graph Networks"
1153
+ },
1154
+ "1704.08165": {
1155
+ "arxivId": "1704.08165",
1156
+ "title": "A Generalization of Convolutional Neural Networks to Graph-Structured Data"
1157
+ },
1158
+ "1911.09042": {
1159
+ "arxivId": "1911.09042",
1160
+ "title": "Learning Cross-modal Context Graph for Visual Grounding"
1161
+ },
1162
+ "1901.01718": {
1163
+ "arxivId": "1901.01718",
1164
+ "title": "Deep Network Embedding for Graph Representation Learning in Signed Networks"
1165
+ },
1166
+ "1904.04969": {
1167
+ "arxivId": "1904.04969",
1168
+ "title": "BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering"
1169
+ },
1170
+ "1803.06272": {
1171
+ "arxivId": "1803.06272",
1172
+ "title": "Graph Partition Neural Networks for Semi-Supervised Classification"
1173
+ },
1174
+ "1704.02080": {
1175
+ "arxivId": "1704.02080",
1176
+ "title": "Conversation Modeling on Reddit Using a Graph-Structured LSTM"
1177
+ },
1178
+ "1904.04073": {
1179
+ "arxivId": "1904.04073",
1180
+ "title": "Abusive Language Detection with Graph Convolutional Networks"
1181
+ },
1182
+ "1903.04598": {
1183
+ "arxivId": "1903.04598",
1184
+ "title": "Graph Colouring Meets Deep Learning: Effective Graph Neural Network Models for Combinatorial Problems"
1185
+ },
1186
+ "1908.00059": {
1187
+ "arxivId": "1908.00059",
1188
+ "title": "GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension"
1189
+ },
1190
+ "1702.05068": {
1191
+ "arxivId": "1702.05068",
1192
+ "title": "Discovering objects and their relations from entangled scene representations"
1193
+ },
1194
+ "1909.11715": {
1195
+ "arxivId": "1909.11715",
1196
+ "title": "GraphMix: Regularized Training of Graph Neural Networks for Semi-Supervised Learning"
1197
+ },
1198
+ "1909.00352": {
1199
+ "arxivId": "1909.00352",
1200
+ "title": "Enhancing AMR-to-Text Generation with Dual Graph Representations"
1201
+ },
1202
+ "1902.09192": {
1203
+ "arxivId": "1902.09192",
1204
+ "title": "Batch Virtual Adversarial Training for Graph Convolutional Networks"
1205
+ },
1206
+ "2101.12457": {
1207
+ "arxivId": "2101.12457",
1208
+ "title": "RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation"
1209
+ },
1210
+ "1805.10988": {
1211
+ "arxivId": "1805.10988",
1212
+ "title": "Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network"
1213
+ },
1214
+ "1509.04537": {
1215
+ "arxivId": "1509.04537",
1216
+ "title": "Accelerated filtering on graphs using Lanczos method"
1217
+ },
1218
+ "2009.06946": {
1219
+ "arxivId": "2009.06946",
1220
+ "title": "Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning"
1221
+ },
1222
+ "1909.11334": {
1223
+ "arxivId": "1909.11334",
1224
+ "title": "Dynamically Pruned Message Passing Networks for Large-Scale Knowledge Graph Reasoning"
1225
+ },
1226
+ "1906.01231": {
1227
+ "arxivId": "1906.01231",
1228
+ "title": "Coherent Comments Generation for Chinese Articles with a Graph-to-Sequence Model"
1229
+ },
1230
+ "1902.00175": {
1231
+ "arxivId": "1902.00175",
1232
+ "title": "Dating Documents using Graph Convolution Networks"
1233
+ },
1234
+ "1808.06354": {
1235
+ "arxivId": "1808.06354",
1236
+ "title": "Signed Graph Convolutional Network"
1237
+ },
1238
+ "1905.13728": {
1239
+ "arxivId": "1905.13728",
1240
+ "title": "Pre-Training Graph Neural Networks for Generic Structural Feature Extraction"
1241
+ },
1242
+ "1903.04154": {
1243
+ "arxivId": "1903.04154",
1244
+ "title": "Fisher-Bures Adversary Graph Convolutional Networks"
1245
+ },
1246
+ "1805.09980": {
1247
+ "arxivId": "1805.09980",
1248
+ "title": "Deep Graph Translation"
1249
+ },
1250
+ "1912.12408": {
1251
+ "arxivId": "1912.12408",
1252
+ "title": "RoadTagger: Robust Road Attribute Inference with Graph Neural Networks"
1253
+ },
1254
+ "1903.01888": {
1255
+ "arxivId": "1903.01888",
1256
+ "title": "Gated Graph Convolutional Recurrent Neural Networks"
1257
+ },
1258
+ "2010.12609": {
1259
+ "arxivId": "2010.12609",
1260
+ "title": "Iterative Graph Self-Distillation"
1261
+ },
1262
+ "1910.13445": {
1263
+ "arxivId": "1910.13445",
1264
+ "title": "G2SAT: Learning to Generate SAT Formulas"
1265
+ },
1266
+ "1905.08636": {
1267
+ "arxivId": "1905.08636",
1268
+ "title": "Joint embedding of structure and features via graph convolutional networks"
1269
+ },
1270
+ "1903.02174": {
1271
+ "arxivId": "1903.02174",
1272
+ "title": "Graph Neural Networks for User Identity Linkage"
1273
+ },
1274
+ "1809.09925": {
1275
+ "arxivId": "1809.09925",
1276
+ "title": "Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning"
1277
+ },
1278
+ "2009.01674": {
1279
+ "arxivId": "2009.01674",
1280
+ "title": "CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph Representation Learning"
1281
+ },
1282
+ "1811.06930": {
1283
+ "arxivId": "1811.06930",
1284
+ "title": "Pre-training Graph Neural Networks with Kernels"
1285
+ },
1286
+ "2005.08008": {
1287
+ "arxivId": "2005.08008",
1288
+ "title": "Graph Partitioning and Graph Neural Network based Hierarchical Graph Matching for Graph Similarity Computation"
1289
+ },
1290
+ "1905.06515": {
1291
+ "arxivId": "1905.06515",
1292
+ "title": "ncRNA Classification with Graph Convolutional Networks"
1293
+ },
1294
+ "1902.08399": {
1295
+ "arxivId": "1902.08399",
1296
+ "title": "Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations"
1297
+ },
1298
+ "2001.07108": {
1299
+ "arxivId": "2001.07108",
1300
+ "title": "Spectral Pyramid Graph Attention Network for Hyperspectral Image Classification"
1301
+ },
1302
+ "1903.07518": {
1303
+ "arxivId": "1903.07518",
1304
+ "title": "Extrapolating paths with graph neural networks"
1305
+ },
1306
+ "2001.00293": {
1307
+ "arxivId": "2001.00293",
1308
+ "title": "Deep Learning for Learning Graph Representations"
1309
+ },
1310
+ "1810.08403": {
1311
+ "arxivId": "1810.08403",
1312
+ "title": "Towards Efficient Large-Scale Graph Neural Network Computing"
1313
+ },
1314
+ "1809.07695": {
1315
+ "arxivId": "1809.07695",
1316
+ "title": "Multitask Learning on Graph Neural Networks - Learning Multiple Graph Centrality Measures with a Unified Network"
1317
+ },
1318
+ "1807.02653": {
1319
+ "arxivId": "1807.02653",
1320
+ "title": "When Work Matters: Transforming Classical Network Structures to Graph CNN"
1321
+ },
1322
+ "1709.02314": {
1323
+ "arxivId": "1709.02314",
1324
+ "title": "Representation Learning for Visual-Relational Knowledge Graphs"
1325
+ },
1326
+ "1707.04677": {
1327
+ "arxivId": "1707.04677",
1328
+ "title": "Knowledge-guided recurrent neural network learning for task-oriented action prediction"
1329
+ },
1330
+ "1803.10071": {
1331
+ "arxivId": "1803.10071",
1332
+ "title": "Tensor graph convolutional neural network"
1333
+ },
1334
+ "2001.01290": {
1335
+ "arxivId": "2001.01290",
1336
+ "title": "General Partial Label Learning via Dual Bipartite Graph Autoencoder"
1337
+ },
1338
+ "1911.05469": {
1339
+ "arxivId": "1911.05469",
1340
+ "title": "Multi-MotifGAN (MMGAN): Motif-Targeted Graph Generation And Prediction"
1341
+ },
1342
+ "1905.03046": {
1343
+ "arxivId": "1905.03046",
1344
+ "title": "PiNet: A Permutation Invariant Graph Neural Network for Graph Classification"
1345
+ },
1346
+ "1901.02078": {
1347
+ "arxivId": "1901.02078",
1348
+ "title": "All Graphs Lead to Rome: Learning Geometric and Cycle-Consistent Representations with Graph Convolutional Networks"
1349
+ },
1350
+ "1811.00497": {
1351
+ "arxivId": "1811.00497",
1352
+ "title": "Modeling Attention Flow on Graphs"
1353
+ },
1354
+ "1811.00538": {
1355
+ "arxivId": "1811.00538",
1356
+ "title": "Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering"
1357
+ },
1358
+ "1805.07683": {
1359
+ "arxivId": "1805.07683",
1360
+ "title": "Learning Graph-Level Representations with Recurrent Neural Networks"
1361
+ },
1362
+ "1906.01852": {
1363
+ "arxivId": "1906.01852",
1364
+ "title": "Variational Spectral Graph Convolutional Networks"
1365
+ },
1366
+ "1902.06667": {
1367
+ "arxivId": "1902.06667",
1368
+ "title": "Semi-supervised Node Classification via Hierarchical Graph Convolutional Networks"
1369
+ },
1370
+ "1905.06707": {
1371
+ "arxivId": "1905.06707",
1372
+ "title": "Inferring Javascript types using Graph Neural Networks"
1373
+ },
1374
+ "1905.06259": {
1375
+ "arxivId": "1905.06259",
1376
+ "title": "Function Space Pooling For Graph Convolutional Networks"
1377
+ },
1378
+ "1808.07769": {
1379
+ "arxivId": "1808.07769",
1380
+ "title": "Topology and Prediction Focused Research on Graph Convolutional Neural Networks"
1381
+ }
1382
+ }
human_written_ref/Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models.json ADDED
@@ -0,0 +1,746 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1706.03762": {
3
+ "arxivId": "1706.03762",
4
+ "title": "Attention is All you Need"
5
+ },
6
+ "1810.04805": {
7
+ "arxivId": "1810.04805",
8
+ "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
9
+ },
10
+ "2005.14165": {
11
+ "arxivId": "2005.14165",
12
+ "title": "Language Models are Few-Shot Learners"
13
+ },
14
+ "1907.11692": {
15
+ "arxivId": "1907.11692",
16
+ "title": "RoBERTa: A Robustly Optimized BERT Pretraining Approach"
17
+ },
18
+ "1910.10683": {
19
+ "arxivId": "1910.10683",
20
+ "title": "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
21
+ },
22
+ "1707.06347": {
23
+ "arxivId": "1707.06347",
24
+ "title": "Proximal Policy Optimization Algorithms"
25
+ },
26
+ "1910.13461": {
27
+ "arxivId": "1910.13461",
28
+ "title": "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension"
29
+ },
30
+ "2203.02155": {
31
+ "arxivId": "2203.02155",
32
+ "title": "Training language models to follow instructions with human feedback"
33
+ },
34
+ "2302.13971": {
35
+ "arxivId": "2302.13971",
36
+ "title": "LLaMA: Open and Efficient Foundation Language Models"
37
+ },
38
+ "2303.08774": {
39
+ "arxivId": "2303.08774",
40
+ "title": "GPT-4 Technical Report"
41
+ },
42
+ "2307.09288": {
43
+ "arxivId": "2307.09288",
44
+ "title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
45
+ },
46
+ "1909.11942": {
47
+ "arxivId": "1909.11942",
48
+ "title": "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations"
49
+ },
50
+ "2201.11903": {
51
+ "arxivId": "2201.11903",
52
+ "title": "Chain of Thought Prompting Elicits Reasoning in Large Language Models"
53
+ },
54
+ "1706.04599": {
55
+ "arxivId": "1706.04599",
56
+ "title": "On Calibration of Modern Neural Networks"
57
+ },
58
+ "2204.02311": {
59
+ "arxivId": "2204.02311",
60
+ "title": "PaLM: Scaling Language Modeling with Pathways"
61
+ },
62
+ "1904.09675": {
63
+ "arxivId": "1904.09675",
64
+ "title": "BERTScore: Evaluating Text Generation with BERT"
65
+ },
66
+ "2005.11401": {
67
+ "arxivId": "2005.11401",
68
+ "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"
69
+ },
70
+ "2109.01652": {
71
+ "arxivId": "2109.01652",
72
+ "title": "Finetuned Language Models Are Zero-Shot Learners"
73
+ },
74
+ "1904.09751": {
75
+ "arxivId": "1904.09751",
76
+ "title": "The Curious Case of Neural Text Degeneration"
77
+ },
78
+ "2210.11416": {
79
+ "arxivId": "2210.11416",
80
+ "title": "Scaling Instruction-Finetuned Language Models"
81
+ },
82
+ "2304.08485": {
83
+ "arxivId": "2304.08485",
84
+ "title": "Visual Instruction Tuning"
85
+ },
86
+ "2203.11171": {
87
+ "arxivId": "2203.11171",
88
+ "title": "Self-Consistency Improves Chain of Thought Reasoning in Language Models"
89
+ },
90
+ "2211.05100": {
91
+ "arxivId": "2211.05100",
92
+ "title": "BLOOM: A 176B-Parameter Open-Access Multilingual Language Model"
93
+ },
94
+ "2303.18223": {
95
+ "arxivId": "2303.18223",
96
+ "title": "A Survey of Large Language Models"
97
+ },
98
+ "2204.05862": {
99
+ "arxivId": "2204.05862",
100
+ "title": "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback"
101
+ },
102
+ "2212.10560": {
103
+ "arxivId": "2212.10560",
104
+ "title": "Self-Instruct: Aligning Language Models with Self-Generated Instructions"
105
+ },
106
+ "2202.03629": {
107
+ "arxivId": "2202.03629",
108
+ "title": "Survey of Hallucination in Natural Language Generation"
109
+ },
110
+ "2210.03629": {
111
+ "arxivId": "2210.03629",
112
+ "title": "ReAct: Synergizing Reasoning and Acting in Language Models"
113
+ },
114
+ "2003.08271": {
115
+ "arxivId": "2003.08271",
116
+ "title": "Pre-trained models for natural language processing: A survey"
117
+ },
118
+ "2109.07958": {
119
+ "arxivId": "2109.07958",
120
+ "title": "TruthfulQA: Measuring How Models Mimic Human Falsehoods"
121
+ },
122
+ "1611.04230": {
123
+ "arxivId": "1611.04230",
124
+ "title": "SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documents"
125
+ },
126
+ "2304.03442": {
127
+ "arxivId": "2304.03442",
128
+ "title": "Generative Agents: Interactive Simulacra of Human Behavior"
129
+ },
130
+ "2302.04023": {
131
+ "arxivId": "2302.04023",
132
+ "title": "A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity"
133
+ },
134
+ "2210.02414": {
135
+ "arxivId": "2210.02414",
136
+ "title": "GLM-130B: An Open Bilingual Pre-trained Model"
137
+ },
138
+ "2112.09332": {
139
+ "arxivId": "2112.09332",
140
+ "title": "WebGPT: Browser-assisted question-answering with human feedback"
141
+ },
142
+ "2307.03172": {
143
+ "arxivId": "2307.03172",
144
+ "title": "Lost in the Middle: How Language Models Use Long Contexts"
145
+ },
146
+ "2202.05262": {
147
+ "arxivId": "2202.05262",
148
+ "title": "Locating and Editing Factual Associations in GPT"
149
+ },
150
+ "2005.00661": {
151
+ "arxivId": "2005.00661",
152
+ "title": "On Faithfulness and Factuality in Abstractive Summarization"
153
+ },
154
+ "2307.15043": {
155
+ "arxivId": "2307.15043",
156
+ "title": "Universal and Transferable Adversarial Attacks on Aligned Language Models"
157
+ },
158
+ "2112.04426": {
159
+ "arxivId": "2112.04426",
160
+ "title": "Improving language models by retrieving from trillions of tokens"
161
+ },
162
+ "2307.03109": {
163
+ "arxivId": "2307.03109",
164
+ "title": "A Survey on Evaluation of Large Language Models"
165
+ },
166
+ "2002.08910": {
167
+ "arxivId": "2002.08910",
168
+ "title": "How Much Knowledge Can You Pack into the Parameters of a Language Model?"
169
+ },
170
+ "2111.01243": {
171
+ "arxivId": "2111.01243",
172
+ "title": "Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey"
173
+ },
174
+ "2304.14178": {
175
+ "arxivId": "2304.14178",
176
+ "title": "mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality"
177
+ },
178
+ "1711.01731": {
179
+ "arxivId": "1711.01731",
180
+ "title": "A Survey on Dialogue Systems: Recent Advances and New Frontiers"
181
+ },
182
+ "1910.12840": {
183
+ "arxivId": "1910.12840",
184
+ "title": "Evaluating the Factual Consistency of Abstractive Text Summarization"
185
+ },
186
+ "1805.01954": {
187
+ "arxivId": "1805.01954",
188
+ "title": "Behavioral Cloning from Observation"
189
+ },
190
+ "2306.01116": {
191
+ "arxivId": "2306.01116",
192
+ "title": "The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only"
193
+ },
194
+ "2305.11206": {
195
+ "arxivId": "2305.11206",
196
+ "title": "LIMA: Less Is More for Alignment"
197
+ },
198
+ "2305.16291": {
199
+ "arxivId": "2305.16291",
200
+ "title": "Voyager: An Open-Ended Embodied Agent with Large Language Models"
201
+ },
202
+ "2307.02483": {
203
+ "arxivId": "2307.02483",
204
+ "title": "Jailbroken: How Does LLM Safety Training Fail?"
205
+ },
206
+ "2207.05221": {
207
+ "arxivId": "2207.05221",
208
+ "title": "Language Models (Mostly) Know What They Know"
209
+ },
210
+ "2304.03277": {
211
+ "arxivId": "2304.03277",
212
+ "title": "Instruction Tuning with GPT-4"
213
+ },
214
+ "2304.07327": {
215
+ "arxivId": "2304.07327",
216
+ "title": "OpenAssistant Conversations - Democratizing Large Language Model Alignment"
217
+ },
218
+ "2301.12652": {
219
+ "arxivId": "2301.12652",
220
+ "title": "REPLUG: Retrieval-Augmented Black-Box Language Models"
221
+ },
222
+ "2104.08164": {
223
+ "arxivId": "2104.08164",
224
+ "title": "Editing Factual Knowledge in Language Models"
225
+ },
226
+ "2305.10355": {
227
+ "arxivId": "2305.10355",
228
+ "title": "Evaluating Object Hallucination in Large Vision-Language Models"
229
+ },
230
+ "2305.14251": {
231
+ "arxivId": "2305.14251",
232
+ "title": "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation"
233
+ },
234
+ "2302.00093": {
235
+ "arxivId": "2302.00093",
236
+ "title": "Large Language Models Can Be Easily Distracted by Irrelevant Context"
237
+ },
238
+ "2305.20050": {
239
+ "arxivId": "2305.20050",
240
+ "title": "Let's Verify Step by Step"
241
+ },
242
+ "2210.07229": {
243
+ "arxivId": "2210.07229",
244
+ "title": "Mass-Editing Memory in a Transformer"
245
+ },
246
+ "2305.14325": {
247
+ "arxivId": "2305.14325",
248
+ "title": "Improving Factuality and Reasoning in Language Models through Multiagent Debate"
249
+ },
250
+ "2005.03754": {
251
+ "arxivId": "2005.03754",
252
+ "title": "FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization"
253
+ },
254
+ "2302.00083": {
255
+ "arxivId": "2302.00083",
256
+ "title": "In-Context Retrieval-Augmented Language Models"
257
+ },
258
+ "2112.07899": {
259
+ "arxivId": "2112.07899",
260
+ "title": "Large Dual Encoders Are Generalizable Retrievers"
261
+ },
262
+ "2212.10511": {
263
+ "arxivId": "2212.10511",
264
+ "title": "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"
265
+ },
266
+ "2308.10792": {
267
+ "arxivId": "2308.10792",
268
+ "title": "Instruction Tuning for Large Language Models: A Survey"
269
+ },
270
+ "2210.10760": {
271
+ "arxivId": "2210.10760",
272
+ "title": "Scaling Laws for Reward Model Overoptimization"
273
+ },
274
+ "2301.00234": {
275
+ "arxivId": "2301.00234",
276
+ "title": "A Survey for In-context Learning"
277
+ },
278
+ "2012.00955": {
279
+ "arxivId": "2012.00955",
280
+ "title": "How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering"
281
+ },
282
+ "2309.05463": {
283
+ "arxivId": "2309.05463",
284
+ "title": "Textbooks Are All You Need II: phi-1.5 technical report"
285
+ },
286
+ "2306.05424": {
287
+ "arxivId": "2306.05424",
288
+ "title": "Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models"
289
+ },
290
+ "2004.14373": {
291
+ "arxivId": "2004.14373",
292
+ "title": "ToTTo: A Controlled Table-To-Text Generation Dataset"
293
+ },
294
+ "2306.03341": {
295
+ "arxivId": "2306.03341",
296
+ "title": "Inference-Time Intervention: Eliciting Truthful Answers from a Language Model"
297
+ },
298
+ "2302.12813": {
299
+ "arxivId": "2302.12813",
300
+ "title": "Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback"
301
+ },
302
+ "2306.04751": {
303
+ "arxivId": "2306.04751",
304
+ "title": "How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources"
305
+ },
306
+ "2212.09251": {
307
+ "arxivId": "2212.09251",
308
+ "title": "Discovering Language Model Behaviors with Model-Written Evaluations"
309
+ },
310
+ "2104.05938": {
311
+ "arxivId": "2104.05938",
312
+ "title": "QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization"
313
+ },
314
+ "2303.08896": {
315
+ "arxivId": "2303.08896",
316
+ "title": "SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models"
317
+ },
318
+ "2206.06520": {
319
+ "arxivId": "2206.06520",
320
+ "title": "Memory-Based Model Editing at Scale"
321
+ },
322
+ "2305.11738": {
323
+ "arxivId": "2305.11738",
324
+ "title": "CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing"
325
+ },
326
+ "2210.09150": {
327
+ "arxivId": "2210.09150",
328
+ "title": "Prompting GPT-3 To Be Reliable"
329
+ },
330
+ "2201.03514": {
331
+ "arxivId": "2201.03514",
332
+ "title": "Black-Box Tuning for Language-Model-as-a-Service"
333
+ },
334
+ "2306.13063": {
335
+ "arxivId": "2306.13063",
336
+ "title": "Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs"
337
+ },
338
+ "2304.13734": {
339
+ "arxivId": "2304.13734",
340
+ "title": "The Internal State of an LLM Knows When its Lying"
341
+ },
342
+ "2305.16355": {
343
+ "arxivId": "2305.16355",
344
+ "title": "PandaGPT: One Model To Instruction-Follow Them All"
345
+ },
346
+ "2305.14627": {
347
+ "arxivId": "2305.14627",
348
+ "title": "Enabling Large Language Models to Generate Text with Citations"
349
+ },
350
+ "2210.08726": {
351
+ "arxivId": "2210.08726",
352
+ "title": "RARR: Researching and Revising What Language Models Say, Using Language Models"
353
+ },
354
+ "2304.05613": {
355
+ "arxivId": "2304.05613",
356
+ "title": "ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language Models in Multilingual Learning"
357
+ },
358
+ "2307.10169": {
359
+ "arxivId": "2307.10169",
360
+ "title": "Challenges and Applications of Large Language Models"
361
+ },
362
+ "2303.12528": {
363
+ "arxivId": "2303.12528",
364
+ "title": "MEGA: Multilingual Evaluation of Generative AI"
365
+ },
366
+ "2305.13534": {
367
+ "arxivId": "2305.13534",
368
+ "title": "How Language Model Hallucinations Can Snowball"
369
+ },
370
+ "1702.04066": {
371
+ "arxivId": "1702.04066",
372
+ "title": "JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction"
373
+ },
374
+ "2112.08542": {
375
+ "arxivId": "2112.08542",
376
+ "title": "QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization"
377
+ },
378
+ "2304.08354": {
379
+ "arxivId": "2304.08354",
380
+ "title": "Tool Learning with Foundation Models"
381
+ },
382
+ "2105.10311": {
383
+ "arxivId": "2105.10311",
384
+ "title": "Pretrained Language Models for Text Generation: A Survey"
385
+ },
386
+ "2306.14565": {
387
+ "arxivId": "2306.14565",
388
+ "title": "Aligning Large Multi-Modal Model with Robust Instruction Tuning"
389
+ },
390
+ "2204.07931": {
391
+ "arxivId": "2204.07931",
392
+ "title": "On the Origin of Hallucinations in Conversational Models: Is it the Datasets or the Models?"
393
+ },
394
+ "2206.04624": {
395
+ "arxivId": "2206.04624",
396
+ "title": "Factuality Enhanced Language Models for Open-Ended Text Generation"
397
+ },
398
+ "2305.11747": {
399
+ "arxivId": "2305.11747",
400
+ "title": "HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models"
401
+ },
402
+ "2005.03642": {
403
+ "arxivId": "2005.03642",
404
+ "title": "On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation"
405
+ },
406
+ "2004.00345": {
407
+ "arxivId": "2004.00345",
408
+ "title": "Editable Neural Networks"
409
+ },
410
+ "2307.08701": {
411
+ "arxivId": "2307.08701",
412
+ "title": "AlpaGasus: Training A Better Alpaca with Fewer Data"
413
+ },
414
+ "2010.08712": {
415
+ "arxivId": "2010.08712",
416
+ "title": "Factual Error Correction for Abstractive Summarization Models"
417
+ },
418
+ "2305.14552": {
419
+ "arxivId": "2305.14552",
420
+ "title": "Sources of Hallucination by Large Language Models on Inference Tasks"
421
+ },
422
+ "2103.15025": {
423
+ "arxivId": "2103.15025",
424
+ "title": "On Hallucination and Predictive Uncertainty in Conditional Language Generation"
425
+ },
426
+ "2202.01110": {
427
+ "arxivId": "2202.01110",
428
+ "title": "A Survey on Retrieval-Augmented Text Generation"
429
+ },
430
+ "2306.04528": {
431
+ "arxivId": "2306.04528",
432
+ "title": "PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts"
433
+ },
434
+ "2305.14795": {
435
+ "arxivId": "2305.14795",
436
+ "title": "MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions"
437
+ },
438
+ "2307.13528": {
439
+ "arxivId": "2307.13528",
440
+ "title": "FacTool: Factuality Detection in Generative AI - A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios"
441
+ },
442
+ "2305.14739": {
443
+ "arxivId": "2305.14739",
444
+ "title": "Trusting Your Evidence: Hallucinate Less with Context-aware Decoding"
445
+ },
446
+ "2305.12740": {
447
+ "arxivId": "2305.12740",
448
+ "title": "Can We Edit Factual Knowledge by In-Context Learning?"
449
+ },
450
+ "2301.09785": {
451
+ "arxivId": "2301.09785",
452
+ "title": "Transformer-Patcher: One Mistake worth One Neuron"
453
+ },
454
+ "2305.16739": {
455
+ "arxivId": "2305.16739",
456
+ "title": "AlignScore: Evaluating Factual Consistency with A Unified Alignment Function"
457
+ },
458
+ "2308.07317": {
459
+ "arxivId": "2308.07317",
460
+ "title": "Platypus: Quick, Cheap, and Powerful Refinement of LLMs"
461
+ },
462
+ "2307.04964": {
463
+ "arxivId": "2307.04964",
464
+ "title": "Secrets of RLHF in Large Language Models Part I: PPO"
465
+ },
466
+ "2104.08704": {
467
+ "arxivId": "2104.08704",
468
+ "title": "A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation"
469
+ },
470
+ "2305.03268": {
471
+ "arxivId": "2305.03268",
472
+ "title": "Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework"
473
+ },
474
+ "2307.13702": {
475
+ "arxivId": "2307.13702",
476
+ "title": "Measuring Faithfulness in Chain-of-Thought Reasoning"
477
+ },
478
+ "2307.03987": {
479
+ "arxivId": "2307.03987",
480
+ "title": "A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence Generation"
481
+ },
482
+ "2211.14876": {
483
+ "arxivId": "2211.14876",
484
+ "title": "Dense Text Retrieval Based on Pretrained Language Models: A Survey"
485
+ },
486
+ "2203.05115": {
487
+ "arxivId": "2203.05115",
488
+ "title": "Internet-augmented language models through few-shot prompting for open-domain question answering"
489
+ },
490
+ "2303.16104": {
491
+ "arxivId": "2303.16104",
492
+ "title": "Hallucinations in Large Multilingual Translation Models"
493
+ },
494
+ "2204.11454": {
495
+ "arxivId": "2204.11454",
496
+ "title": "Natural Language to Code Translation with Execution"
497
+ },
498
+ "2309.11495": {
499
+ "arxivId": "2309.11495",
500
+ "title": "Chain-of-Verification Reduces Hallucination in Large Language Models"
501
+ },
502
+ "2305.18153": {
503
+ "arxivId": "2305.18153",
504
+ "title": "Do Large Language Models Know What They Don't Know?"
505
+ },
506
+ "2305.13300": {
507
+ "arxivId": "2305.13300",
508
+ "title": "Adaptive Chameleon or Stubborn Sloth: Revealing the Behavior of Large Language Models in Knowledge Conflicts"
509
+ },
510
+ "2309.03883": {
511
+ "arxivId": "2309.03883",
512
+ "title": "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models"
513
+ },
514
+ "2308.06394": {
515
+ "arxivId": "2308.06394",
516
+ "title": "Detecting and Preventing Hallucinations in Large Vision Language Models"
517
+ },
518
+ "2307.01850": {
519
+ "arxivId": "2307.01850",
520
+ "title": "Self-Consuming Generative Models Go MAD"
521
+ },
522
+ "2105.11269": {
523
+ "arxivId": "2105.11269",
524
+ "title": "Neural Machine Translation with Monolingual Translation Memory"
525
+ },
526
+ "2307.11019": {
527
+ "arxivId": "2307.11019",
528
+ "title": "Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation"
529
+ },
530
+ "2308.10168": {
531
+ "arxivId": "2308.10168",
532
+ "title": "Head-to-Tail: How Knowledgeable are Large Language Models (LLMs)? A.K.A. Will LLMs Replace Knowledge Graphs?"
533
+ },
534
+ "2305.13281": {
535
+ "arxivId": "2305.13281",
536
+ "title": "LM vs LM: Detecting Factual Errors via Cross Examination"
537
+ },
538
+ "2307.03917": {
539
+ "arxivId": "2307.03917",
540
+ "title": "On Decoder-Only Architecture For Speech-to-Text and Large Language Model Integration"
541
+ },
542
+ "2305.15852": {
543
+ "arxivId": "2305.15852",
544
+ "title": "Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation"
545
+ },
546
+ "2307.16877": {
547
+ "arxivId": "2307.16877",
548
+ "title": "Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering"
549
+ },
550
+ "2305.19187": {
551
+ "arxivId": "2305.19187",
552
+ "title": "Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models"
553
+ },
554
+ "2205.11388": {
555
+ "arxivId": "2205.11388",
556
+ "title": "StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models"
557
+ },
558
+ "2111.07408": {
559
+ "arxivId": "2111.07408",
560
+ "title": "Time Waits for No One! Analysis and Challenges of Temporal Misalignment"
561
+ },
562
+ "2307.05300": {
563
+ "arxivId": "2307.05300",
564
+ "title": "Unleashing the Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration"
565
+ },
566
+ "2305.18248": {
567
+ "arxivId": "2305.18248",
568
+ "title": "Do Language Models Know When They\u2019re Hallucinating References?"
569
+ },
570
+ "2307.11768": {
571
+ "arxivId": "2307.11768",
572
+ "title": "Question Decomposition Improves the Faithfulness of Model-Generated Reasoning"
573
+ },
574
+ "2307.15337": {
575
+ "arxivId": "2307.15337",
576
+ "title": "Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding"
577
+ },
578
+ "2305.01651": {
579
+ "arxivId": "2305.01651",
580
+ "title": "Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge"
581
+ },
582
+ "2307.06908": {
583
+ "arxivId": "2307.06908",
584
+ "title": "Generating Benchmarks for Factuality Evaluation of Language Models"
585
+ },
586
+ "2305.14002": {
587
+ "arxivId": "2305.14002",
588
+ "title": "Improving Language Models via Plug-and-Play Retrieval Feedback"
589
+ },
590
+ "2212.08597": {
591
+ "arxivId": "2212.08597",
592
+ "title": "Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better"
593
+ },
594
+ "2102.02810": {
595
+ "arxivId": "2102.02810",
596
+ "title": "Controlling hallucinations at word level in data-to-text generation"
597
+ },
598
+ "2303.15621": {
599
+ "arxivId": "2303.15621",
600
+ "title": "ChatGPT as a Factual Inconsistency Evaluator for Abstractive Text Summarization"
601
+ },
602
+ "2203.03802": {
603
+ "arxivId": "2203.03802",
604
+ "title": "Understanding Iterative Revision from Human-Written Text"
605
+ },
606
+ "2308.03958": {
607
+ "arxivId": "2308.03958",
608
+ "title": "Simple synthetic data reduces sycophancy in large language models"
609
+ },
610
+ "2306.09296": {
611
+ "arxivId": "2306.09296",
612
+ "title": "KoLA: Carefully Benchmarking World Knowledge of Large Language Models"
613
+ },
614
+ "2305.13269": {
615
+ "arxivId": "2305.13269",
616
+ "title": "Chain of Knowledge: A Framework for Grounding Large Language Models with Structured Knowledge Bases"
617
+ },
618
+ "2304.10513": {
619
+ "arxivId": "2304.10513",
620
+ "title": "Why Does ChatGPT Fall Short in Providing Truthful Answers?"
621
+ },
622
+ "2306.05212": {
623
+ "arxivId": "2306.05212",
624
+ "title": "RETA-LLM: A Retrieval-Augmented Large Language Model Toolkit"
625
+ },
626
+ "2305.00955": {
627
+ "arxivId": "2305.00955",
628
+ "title": "Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural Language Generation"
629
+ },
630
+ "2001.03830": {
631
+ "arxivId": "2001.03830",
632
+ "title": "Revisiting Challenges in Data-to-Text Generation with Fact Grounding"
633
+ },
634
+ "2305.06311": {
635
+ "arxivId": "2305.06311",
636
+ "title": "Automatic Evaluation of Attribution by Large Language Models"
637
+ },
638
+ "2303.11315": {
639
+ "arxivId": "2303.11315",
640
+ "title": "Context-faithful Prompting for Large Language Models"
641
+ },
642
+ "2203.16747": {
643
+ "arxivId": "2203.16747",
644
+ "title": "How Pre-trained Language Models Capture Factual Knowledge? A Causal-Inspired Analysis"
645
+ },
646
+ "2307.10236": {
647
+ "arxivId": "2307.10236",
648
+ "title": "Look Before You Leap: An Exploratory Study of Uncertainty Measurement for Large Language Models"
649
+ },
650
+ "2208.05309": {
651
+ "arxivId": "2208.05309",
652
+ "title": "Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation"
653
+ },
654
+ "2211.03318": {
655
+ "arxivId": "2211.03318",
656
+ "title": "Fixing Model Bugs with Natural Language Patches"
657
+ },
658
+ "2305.14908": {
659
+ "arxivId": "2305.14908",
660
+ "title": "PURR: Efficiently Editing Language Model Hallucinations by Denoising Language Model Corruptions"
661
+ },
662
+ "2307.06290": {
663
+ "arxivId": "2307.06290",
664
+ "title": "Instruction Mining: High-Quality Instruction Data Selection for Large Language Models"
665
+ },
666
+ "2305.04757": {
667
+ "arxivId": "2305.04757",
668
+ "title": "Augmented Large Language Models with Parametric Knowledge Guiding"
669
+ },
670
+ "2305.13068": {
671
+ "arxivId": "2305.13068",
672
+ "title": "Making Language Models Better Tool Learners with Execution Feedback"
673
+ },
674
+ "2309.03118": {
675
+ "arxivId": "2309.03118",
676
+ "title": "Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from Knowledge Graphs"
677
+ },
678
+ "2305.13669": {
679
+ "arxivId": "2305.13669",
680
+ "title": "Mitigating Language Model Hallucination with Interactive Question-Knowledge Alignment"
681
+ },
682
+ "2309.09558": {
683
+ "arxivId": "2309.09558",
684
+ "title": "Summarization is (Almost) Dead"
685
+ },
686
+ "2205.11482": {
687
+ "arxivId": "2205.11482",
688
+ "title": "Tracing Knowledge in Language Models Back to the Training Data"
689
+ },
690
+ "2307.01379": {
691
+ "arxivId": "2307.01379",
692
+ "title": "Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models"
693
+ },
694
+ "2109.05487": {
695
+ "arxivId": "2109.05487",
696
+ "title": "Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in Dialogue Generation"
697
+ },
698
+ "2212.10711": {
699
+ "arxivId": "2212.10711",
700
+ "title": "Task Ambiguity in Humans and Language Models"
701
+ },
702
+ "2309.00240": {
703
+ "arxivId": "2309.00240",
704
+ "title": "FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking"
705
+ },
706
+ "2308.11764": {
707
+ "arxivId": "2308.11764",
708
+ "title": "Halo: Estimation and Reduction of Hallucinations in Open-Source Weak Large Language Models"
709
+ },
710
+ "2309.05936": {
711
+ "arxivId": "2309.05936",
712
+ "title": "Do PLMs Know and Understand Ontological Knowledge?"
713
+ },
714
+ "2305.14623": {
715
+ "arxivId": "2305.14623",
716
+ "title": "Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models"
717
+ },
718
+ "2211.06196": {
719
+ "arxivId": "2211.06196",
720
+ "title": "Improving Factual Consistency in Summarization with Compression-Based Post-Editing"
721
+ },
722
+ "2309.11064": {
723
+ "arxivId": "2309.11064",
724
+ "title": "Exploring the Relationship between LLM Hallucinations and Prompt Linguistic Nuances: Readability, Formality, and Concreteness"
725
+ },
726
+ "2309.02654": {
727
+ "arxivId": "2309.02654",
728
+ "title": "Zero-Resource Hallucination Prevention for Large Language Models"
729
+ },
730
+ "2306.16564": {
731
+ "arxivId": "2306.16564",
732
+ "title": "Automatic Calibration and Error Correction for Large Language Models via Pareto Optimal Self-Supervision"
733
+ },
734
+ "2307.00360": {
735
+ "arxivId": "2307.00360",
736
+ "title": "BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained Transformer"
737
+ },
738
+ "2309.08594": {
739
+ "arxivId": "2309.08594",
740
+ "title": "\"Merge Conflicts!\" Exploring the Impacts of External Distractors to Parametric Knowledge Graphs"
741
+ },
742
+ "2308.04215": {
743
+ "arxivId": "2308.04215",
744
+ "title": "Hybrid-RACA: Hybrid Retrieval-Augmented Composition Assistance for Real-time Text Prediction"
745
+ }
746
+ }