Datasets:
flac
audioduration (s) 1
20
| __key__
stringlengths 48
51
| __url__
stringclasses 1
value |
|---|---|---|
./Scaling_10/MSP-PODCAST_0841/MSP-PODCAST_0841_178
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_0841/MSP-PODCAST_0841_181
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_12
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_20
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_46
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_58
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_64
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_84
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_91
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_118
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_162
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_190
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_1246/MSP-PODCAST_1246_193
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_0
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_5
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_9
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_14
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_23
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_38
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_54
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_60
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_61
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_64
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_65
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_66
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_68
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_72
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_83
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_85
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_86
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_87
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_89
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_90
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_94
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_95
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_98
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_99
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_103
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_105
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_106
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_107
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_116
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_117
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_119
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_121
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_122
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_124
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_125
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_126
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_130
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_138
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_139
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_144
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_146
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_148
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_152
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_155
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_158
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_159
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_160
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_161
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_162
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_166
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_167
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_168
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_170
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_172
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_183
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_184
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_186
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_187
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_189
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_190
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_192
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_194
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_199
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_200
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_201
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_203
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_208
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_209
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_228
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_230
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_233
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_235
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_236
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_241
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_245
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_246
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_248
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_249
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_253
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_258
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_259
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_260
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_262
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_263
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_264
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_267
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
|
./Scaling_10/MSP-PODCAST_6583/MSP-PODCAST_6583_289
|
hf://datasets/JHU-SmileLab/NaturalVoices_VC_0.1@957eda2a2a87ff407b535adcd17917aec6a43059/NaturalVoices_VC_10%.tar.gz
|
NaturalVoices VC 10%
A large voice conversion (VC) dataset curated from spontaneous, in-the-wild podcast speech as part of the NaturalVoices project in collaboration with 🤗MSP Lab at CMU LTI. This release provides the 10% subset uniformly sampled from 870-hour VC dataset and subsets mainly intended for training and evaluating emotion-aware voice conversion systems but not limited to VC tasks.
- 📄 Paper: NaturalVoices: A Large-Scale, Spontaneous and Emotional Podcast Dataset for Voice Conversion — https://arxiv.org/abs/2511.00256 \
- 🧺 Dataset collection (related subsets, e.g., 10% of data & emotional VC): https://huggingface.co/collections/JHU-SmileLab/naturalvoices-voice-conversion-datasets \
-
The extensive (unfiltered) NaturalVoices dataset and the code for the data collection & curation pipeline: https://github.com/Lab-MSP/NaturalVoices
Dataset Summary
NaturalVoices VC compiles real-life, expressive podcast speech and provides automatic annotations designed for VC research (e.g., emotion attributes, speaker identity, speech quality, transcripts). The broader NaturalVoices corpus contains thousands of hours of podcast speech; this repository hosts the VC_01 subset.
What’s in this repo
~90 hours of podcast speech tailored and preprocessed for VC.
A wide range of speakers, both manually & automatically annotated.
Annotations archive with per-utterance annotations including:
- Emotion categorical labels & dimensional attributes (valence/arousal/dominance),
- Speech quality indicators,
- Text, Gender, and Duration.
Subsets
| Subset | Description | Link |
|---|---|---|
| NaturalVoices_VC_870h | 870h of speech data curated for VC | 🤗JHU-SmileLab/NaturalVoices_VC_870h |
| NaturalVoices_EVC | Emotion-balanced subset for Emotional Voice Conversion (EVC) | 🤗JHU-SmileLab/NaturalVoices_EVC |
| NaturalVoices_VC_01 (10%) | A smaller subset uniformly sampled from 870h (10%) | This repo |
How to use
You can directly download the dataset using the following command:
huggingface-cli download JHU-SmileLab/NaturalVoices_VC_0.1 --repo-type=dataset --local-dir=YOUR_LOCAL_DIR
Streaming support will be available
Cite & Contribute
If you use this dataset, please cite the paper:
@misc{du2025naturalvoiceslargescalespontaneousemotional,
title={NaturalVoices: A Large-Scale, Spontaneous and Emotional Podcast Dataset for Voice Conversion},
author={Zongyang Du and Shreeram Suresh Chandra and Ismail Rasim Ulgen and Aurosweta Mahapatra and Ali N. Salman and Carlos Busso and Berrak Sisman},
year={2025},
eprint={2511.00256},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2511.00256},
}
- Downloads last month
- 155