Commit
·
8b6caa7
0
Parent(s):
Init commit
Browse files- README.md +156 -0
- data/train-00000-of-00001.parquet +3 -0
- model_scores.png +3 -0
README.md
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
dataset_info:
|
| 4 |
+
features:
|
| 5 |
+
- name: task_id
|
| 6 |
+
dtype: string
|
| 7 |
+
- name: prompt
|
| 8 |
+
dtype: string
|
| 9 |
+
- name: entry_point
|
| 10 |
+
dtype: string
|
| 11 |
+
- name: test
|
| 12 |
+
dtype: string
|
| 13 |
+
- name: description
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: language
|
| 16 |
+
dtype: string
|
| 17 |
+
- name: canonical_solution
|
| 18 |
+
sequence: string
|
| 19 |
+
splits:
|
| 20 |
+
- name: train
|
| 21 |
+
num_bytes: 505355
|
| 22 |
+
num_examples: 161
|
| 23 |
+
download_size: 174830
|
| 24 |
+
dataset_size: 505355
|
| 25 |
+
configs:
|
| 26 |
+
- config_name: default
|
| 27 |
+
data_files:
|
| 28 |
+
- split: train
|
| 29 |
+
path: data/train-*
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
# Benchmark summary
|
| 33 |
+
|
| 34 |
+
We introduce HumanEval for Kotlin, created from scratch by human experts.
|
| 35 |
+
Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin.
|
| 36 |
+
The tests we implement are eqivalent to the original HumanEval tests for Python.
|
| 37 |
+
|
| 38 |
+
# How to use
|
| 39 |
+
|
| 40 |
+
The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.
|
| 41 |
+
|
| 42 |
+
When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures.
|
| 43 |
+
|
| 44 |
+
The code for running an example model on the benchmark using the early stopping and post-processing is available below.
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
import json
|
| 48 |
+
import re
|
| 49 |
+
|
| 50 |
+
from datasets import load_dataset
|
| 51 |
+
import jsonlines
|
| 52 |
+
import torch
|
| 53 |
+
from transformers import (
|
| 54 |
+
AutoTokenizer,
|
| 55 |
+
AutoModelForCausalLM,
|
| 56 |
+
StoppingCriteria,
|
| 57 |
+
StoppingCriteriaList,
|
| 58 |
+
)
|
| 59 |
+
from tqdm import tqdm
|
| 60 |
+
from mxeval.evaluation import evaluate_functional_correctness
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 64 |
+
def __init__(self, stops, tokenizer):
|
| 65 |
+
(StoppingCriteria.__init__(self),)
|
| 66 |
+
self.stops = rf"{stops}"
|
| 67 |
+
self.tokenizer = tokenizer
|
| 68 |
+
|
| 69 |
+
def __call__(
|
| 70 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
| 71 |
+
) -> bool:
|
| 72 |
+
last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
|
| 73 |
+
decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)
|
| 74 |
+
|
| 75 |
+
return bool(re.search(self.stops, decoded_last_three_tokens))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def generate(problem):
|
| 79 |
+
criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
|
| 80 |
+
stopping_criteria = StoppingCriteriaList([criterion])
|
| 81 |
+
|
| 82 |
+
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
|
| 83 |
+
sample = model.generate(
|
| 84 |
+
problem,
|
| 85 |
+
max_new_tokens=256,
|
| 86 |
+
min_new_tokens=128,
|
| 87 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 88 |
+
do_sample=False,
|
| 89 |
+
num_beams=1,
|
| 90 |
+
stopping_criteria=stopping_criteria,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
|
| 94 |
+
return answer
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def clean_asnwer(code):
|
| 98 |
+
# Clean comments
|
| 99 |
+
code_without_line_comments = re.sub(r"//.*", "", code)
|
| 100 |
+
code_without_all_comments = re.sub(
|
| 101 |
+
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
|
| 102 |
+
)
|
| 103 |
+
#Clean signatures
|
| 104 |
+
lines = code.split("\n")
|
| 105 |
+
for i, line in enumerate(lines):
|
| 106 |
+
if line.startswith("fun "):
|
| 107 |
+
return "\n".join(lines[i + 1:])
|
| 108 |
+
|
| 109 |
+
return code
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
model_name = "JetBrains/CodeLlama-7B-Kexer"
|
| 113 |
+
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
|
| 114 |
+
problem_dict = {problem['task_id']: problem for problem in dataset}
|
| 115 |
+
|
| 116 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 118 |
+
|
| 119 |
+
output = []
|
| 120 |
+
for key in tqdm(list(problem_dict.keys()), leave=False):
|
| 121 |
+
problem = problem_dict[key]["prompt"]
|
| 122 |
+
answer = generate(problem)
|
| 123 |
+
answer = clean_asnwer(answer)
|
| 124 |
+
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
|
| 125 |
+
|
| 126 |
+
output_file = f"answers"
|
| 127 |
+
with jsonlines.open(output_file, mode="w") as writer:
|
| 128 |
+
for line in output:
|
| 129 |
+
writer.write(line)
|
| 130 |
+
|
| 131 |
+
evaluate_functional_correctness(
|
| 132 |
+
sample_file=output_file,
|
| 133 |
+
k=[1],
|
| 134 |
+
n_workers=16,
|
| 135 |
+
timeout=15,
|
| 136 |
+
problem_file=problem_dict,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
with open(output_file + '_results.jsonl') as fp:
|
| 140 |
+
total = 0
|
| 141 |
+
correct = 0
|
| 142 |
+
for line in fp:
|
| 143 |
+
sample_res = json.loads(line)
|
| 144 |
+
print(sample_res)
|
| 145 |
+
total += 1
|
| 146 |
+
correct += sample_res['passed']
|
| 147 |
+
|
| 148 |
+
print(f'Pass rate: {correct/total}')
|
| 149 |
+
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Results
|
| 154 |
+
|
| 155 |
+
We evaluated multiple coding models using this benchmark, and the results are presented in the figure below:
|
| 156 |
+

|
data/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54c2765720acf0887c603f1eb1c08382cb7eba0c39a7a37be8e3b982aaddbc7b
|
| 3 |
+
size 174830
|
model_scores.png
ADDED
|
Git LFS Details
|