Datasets:
File size: 7,057 Bytes
ffd22fe 301970c ffd22fe 301970c ffd22fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
title: DCASE 5-Class 3-Source Separation 32k
license: mit
tags:
- audio
- dcase
- audio-source-separation
- 32k
- dcase-derived
language:
- en
task_categories:
- audio-to-audio
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path:
- metadata/train_metadata.jsonl
- mixtures/train/*
- noise/train/*
- sound_event/train/*
- split: valid
path:
- metadata/valid_metadata.jsonl
- mixtures/valid/*
- noise/valid/*
- sound_event/valid/*
- split: test
path:
- metadata/test_metadata.jsonl
- mixtures/test/*
- noise/test/*
- sound_event/test/*
---
# DCASE 5-Class 3-Source Separation 32k
## Dataset Description
This dataset is a collection of 10,000 synthetic audio mixtures designed for the task of **audio source separation**.
Each audio file is a 10-second, **32kHz** mixture containing **3 distinct audio sources** from a pool of **5 selected classes**. The mixtures were generated with a random Signal-to-Noise Ratio (SNR) between 5 and 20 dB.
This dataset is ideal for training and evaluating models that aim to separate a mixed audio signal into its constituent sources.
The 5 selected source classes are:
* Speech
* FootSteps
* Doorbell
* Dishes
* AlarmClock
## Dataset Generation
The dataset was generated using the following Python configuration. This provides a 100% reproducible recipe for the data.
```python
SELECTED_CLASSES = [
"Speech",
"FootSteps",
"Doorbell",
"Dishes",
"AlarmClock"
]
N_MIXTURES = 10_000
N_SOURCES = 3
DURATION = 10.0
SR = 32000
SNR_RANGE = [5, 20]
TARGET_PEAK = 0.95
MIN_GAIN = 3.0
SPLIT_DATA = {
'train': {
'source_event_dir': 'test/oracle_target',
'source_noise_dir': 'noise/train',
'split_noise': False,
'portion': 0.70
},
'valid': {
'source_event_dir': 'sound_event/train',
'source_noise_dir': 'noise/valid',
'split_noise': True,
'noise_portion': 0.50,
'portion': 0.15
},
'test': {
'source_event_dirs': ['test/oracle_target', 'sound_event/valid'],
'source_noise_dir': 'noise/valid',
'split_noise': True,
'noise_portion': 0.50,
'portion': 0.15
}
}
```
## Data Splits
The dataset is split into `train`, `valid`, and `test` sets as defined in the generation config.
| Split | Portion | Number of Mixtures |
| :--- | :--- | :--- |
| `train` | 70% | 7,000 |
| `valid` | 15% | 1,500 |
| `test` | 15% | 1,500 |
| **Total** | **100%** | **10,000** |
## Data Fields
This dataset is built on a central metadata file (metadata/mixtures_metadata.json) which contains an entry for each generated mixture.
A single entry in the metadata has the following structure:
```json
{
"mixture_id": "mixture_000001",
"mixture_path": "mixtures/train/mixture_000001.wav",
"split": "train",
"config": {
"duration": 10.0,
"sr": 32000,
"max_event_overlap": 3,
"ref_channel": 0
},
"fg_events": [
{
"label": "Speech",
"source_file": "dcase_source_files/speech_001.wav",
"source_time": 0.0,
"event_time": 1.234567,
"event_duration": 2.500000,
"snr": 15.678901,
"role": "foreground"
},
{
"label": "Doorbell",
"source_file": "dcase_source_files/doorbell_002.wav",
"source_time": 0.0,
"event_time": 4.500000,
"event_duration": 1.800000,
"snr": 10.123456,
"role": "foreground"
}
],
"bg_events": [
{
"label": null,
"source_file": "dcase_noise_files/ambient_noise_001.wav",
"source_time": 0.0,
"event_time": 0.0,
"event_duration": 10.0,
"snr": 0.0,
"role": "background"
}
],
"int_events": [],
"normalization_gain": 0.85,
"original_peak": 1.123
}
```
### Field Descriptions
* **`mixture_id`**: A unique identifier for the mixture.
* **`mixture_path`**: The relative path to the generated mixture `.wav` file.
* **`split`**: The data split this mixture belongs to (`train`, `valid`, or `test`).
* **`config`**: An object containing the main generation parameters for this file.
* **`fg_events`**: A list of "foreground" sound event objects. Each object contains:
* **`label`**: The class of the event (e.g., "Speech", "Doorbell").
* **`source_file`**: The relative path to the original clean audio file used.
* **`event_time`**: The onset time (in seconds) of the event in the mixture.
* **`event_duration`**: The duration (in seconds) of the event.
* **`snr`**: The target Signal-to-Noise Ratio (in dB) of this event against the background.
* **`role`**: Always "foreground".
* **`bg_events`**: A list of "background" noise objects (usually one). It has the same structure as `fg_events`, but the `label` is `null` and `snr` is `0.0`.
* **`int_events`**: A list for "interfering" events (unused in this config, so it's `[]`).
* **`normalization_gain`**: The gain (e.g., `0.85`) applied to the final mixture to reach the `TARGET_PEAK`.
* **`original_peak`**: The peak amplitude of the mixture *before* normalization.
## Intended Use
This dataset is primarily intended for training and evaluating audio source separation models, particularly those that can handle:
* 3-source separation
* 32kHz sampling rate
* SNRs in the 5-20 dB range
## Generate Your Own Dataset
You can run the same script in Google Colab to create your own custom version with different configurations.
* Change the number of mixtures
* Select different classes
* Change the number of active events per mixture
Click the badge below to open the generator notebook directly in Google Colab:
[](https://colab.research.google.com/drive/1ZkbnWI45Bk6je5BKfky033nT7IU9A33M?usp=sharing)
## Citation
### Citing the Original DCASE Data
```bibtex
@dataset{yasuda_masahiro_2025_15117227,
author = {Yasuda, Masahiro and
Nguyen, Binh Thien and
Harada, Noboru and
Takeuchi, Daiki},
title = {{DCASE2025Task4Dataset: The Dataset for Spatial
Semantic Segmentation of Sound Scenes}},
month = apr,
year = 2025,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.15117227},
url = {https://doi.org/10.5281/zenodo.15117227}
}
```
### Citing this Dataset
If you use this specific dataset generation recipe, please cite it as:
```bibtex
@misc/Kiuyha2025dcase5class3source,
title = {DCASE 3-Source Separation 32k Dataset},
author = {[Kiuyha]},
year = {2025},
url = {https://huggingface.co/datasets/Kiuyha/dcase-5class-3source-mixtures-32k},
howpublished = {Hugging Face Datasets}
}
```
## License
The original DCASE source data has its own license. Please refer to the official DCASE website for details.
This derived dataset (the mixture 'recipe' and generated files) is made available under the [MIT LICENCE](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md). |