| using JuMP | |
| using PowerModels | |
| using PGLib | |
| using Ipopt | |
| ipopt = Ipopt.Optimizer | |
| network_formulation = ACPPowerModel # ACPPowerModel SOCWRConicPowerModel DCPPowerModel | |
| matpower_case_name = "pglib_opf_case5_pjm" | |
| network_data = make_basic_network(pglib(matpower_case_name)) | |
| # The problem to iterate over | |
| model = JuMP.Model() | |
| num_loads = length(network_data["load"]) | |
| (model, load_scaler[i = 1:num_loads] in MOI.Parameter.(1.0)) | |
| for (str_i, l) in network_data["load"] | |
| i = parse(Int, str_i) | |
| l["pd"] = load_scaler[i] * l["pd"] | |
| l["qd"] = load_scaler[i] * l["qd"] | |
| end | |
| pm = instantiate_model( | |
| network_data, | |
| network_formulation, | |
| PowerModels.build_opf; | |
| setting = Dict("output" => Dict("branch_flows" => true, "duals" => true)), | |
| jump_model = model, | |
| ) | |
| # Check it works | |
| JuMP.optimize!(model) | |
| JuMP.termination_status(model) | |
| JuMP.objective_value(model) | |
| # Save the model to a file | |
| write_to_file(model, "$(matpower_case_name)_$(network_formulation)_POI_load.mof.json") | |
| # Check if the file was written correctly | |
| model_test = read_from_file("$(matpower_case_name)_$(network_formulation)_POI_load.mof.json"; use_nlp_block = false) | |
| set_optimizer(model_test, optimizer_with_attributes(Ipopt.Optimizer, "print_level" => 0)) | |
| JuMP.optimize!(model_test) |