elizabeth-data / repository /scripts /training_manager.py
ADAPT-Chase's picture
Elizabeth data update 2025-08-23 17:33
a7ae6b9 verified
#!/usr/bin/env python3
"""
Elizabeth Training Manager
Advanced training management with multiple training modes and robust monitoring
"""
import os
import sys
import time
import subprocess
import signal
import logging
import json
from datetime import datetime
from pathlib import Path
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('/workspace/elizabeth_logs/training_manager.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
class TrainingManager:
"""Advanced training management for Elizabeth"""
def __init__(self):
self.script_path = "/workspace/elizabeth-repo/src/elizabeth_main.py"
self.max_restarts = 20
self.restart_delay = 30
self.process = None
self.restart_count = 0
self.training_mode = "interactive" # interactive, autonomous, learning, conversation
# Training configurations
self.training_configs = {
"interactive": {
"args": ["--interactive", "--version", "v0.0.2"],
"description": "Interactive session with human guidance"
},
"autonomous": {
"args": ["--interactive", "--version", "v0.0.2"],
"description": "Fully autonomous learning mode"
},
"learning": {
"args": ["--version", "v0.0.2"],
"input_file": "/workspace/training_data/learning_prompts.txt",
"description": "Focused learning from training data"
}
}
# Ensure directories exist
os.makedirs("/workspace/elizabeth_logs", exist_ok=True)
os.makedirs("/workspace/training_data", exist_ok=True)
# Set environment
self.set_environment()
def set_environment(self):
"""Set training environment variables"""
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN", "")
os.environ["HUGGINGFACE_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["PYTHONUNBUFFERED"] = "1"
def start_training(self, mode="interactive"):
"""Start training session with specified mode"""
try:
config = self.training_configs.get(mode, self.training_configs["interactive"])
logger.info(f"Starting {mode} training session...")
logger.info(f"Description: {config['description']}")
# Build command
cmd = [sys.executable, self.script_path] + config["args"]
# Handle input file if specified
stdin = None
if "input_file" in config and os.path.exists(config["input_file"]):
stdin = open(config["input_file"], "r")
self.process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True,
stdin=stdin
)
logger.info(f"Training process started with PID: {self.process.pid}")
logger.info(f"Command: {' '.join(cmd)}")
return True
except Exception as e:
logger.error(f"Failed to start {mode} training: {e}")
return False
def monitor_training(self, timeout=3600):
"""Monitor training process with timeout"""
start_time = time.time()
try:
while True:
# Check timeout
if time.time() - start_time > timeout:
logger.warning(f"Training timeout after {timeout} seconds")
return "timeout"
# Check process status
return_code = self.process.poll()
if return_code is not None:
logger.info(f"Training process completed with code: {return_code}")
return "completed"
# Read output
if self.process.stdout:
output = self.process.stdout.readline()
if output:
logger.info(f"TRAINING_OUT: {output.strip()}")
if self.process.stderr:
error = self.process.stderr.readline()
if error:
logger.error(f"TRAINING_ERR: {error.strip()}")
# Check for stalls (no output for 5 minutes)
if time.time() - start_time > 300:
# Check if process is still responsive
try:
os.kill(self.process.pid, 0) # Check if process exists
except OSError:
logger.warning("Process appears to be unresponsive")
return "stalled"
time.sleep(1)
except Exception as e:
logger.error(f"Monitoring error: {e}")
return "error"
def graceful_shutdown(self):
"""Gracefully shutdown training"""
if self.process:
try:
logger.info("Initiating graceful shutdown...")
# Try gentle termination first
self.process.terminate()
# Wait for clean shutdown
for i in range(10):
if self.process.poll() is not None:
break
time.sleep(1)
# Force kill if necessary
if self.process.poll() is None:
logger.warning("Process not terminating, forcing kill...")
self.process.kill()
logger.info("Training shutdown complete")
except Exception as e:
logger.error(f"Shutdown error: {e}")
def run_continuous_training(self):
"""Main continuous training loop"""
logger.info("🚀 Starting Elizabeth Continuous Training Manager")
logger.info(f"Mode: {self.training_mode}")
logger.info(f"Max restarts: {self.max_restarts}")
training_sessions = []
while self.restart_count <= self.max_restarts:
session_start = datetime.now()
try:
# Start training session
if not self.start_training(self.training_mode):
logger.error("Failed to start training session")
break
# Monitor session
result = self.monitor_training()
session_end = datetime.now()
duration = (session_end - session_start).total_seconds()
# Record session
session_info = {
"start": session_start.isoformat(),
"end": session_end.isoformat(),
"duration": duration,
"result": result,
"restart_count": self.restart_count,
"pid": self.process.pid if self.process else None
}
training_sessions.append(session_info)
logger.info(f"Session completed: {result}, Duration: {duration:.1f}s")
# Handle session result
if result == "completed":
logger.info("Training session completed successfully")
break
elif self.restart_count < self.max_restarts:
self.restart_count += 1
logger.warning(f"Restarting training ({self.restart_count}/{self.max_restarts})...")
logger.info(f"Waiting {self.restart_delay} seconds before restart...")
# Save session history
self.save_session_history(training_sessions)
time.sleep(self.restart_delay)
else:
logger.error("Max restart attempts reached")
break
except KeyboardInterrupt:
logger.info("Received interrupt signal")
break
except Exception as e:
logger.error(f"Unexpected error: {e}")
self.restart_count += 1
if self.restart_count <= self.max_restarts:
logger.info(f"Restarting after error... ({self.restart_count}/{self.max_restarts})")
time.sleep(self.restart_delay)
else:
break
# Final cleanup and reporting
self.graceful_shutdown()
self.save_session_history(training_sessions)
logger.info("Training manager shutting down")
logger.info(f"Total sessions: {len(training_sessions)}")
logger.info(f"Total restarts: {self.restart_count}")
def save_session_history(self, sessions):
"""Save training session history"""
try:
history_file = "/workspace/elizabeth_logs/training_history.json"
with open(history_file, 'w') as f:
json.dump({
"sessions": sessions,
"total_sessions": len(sessions),
"total_restarts": self.restart_count,
"last_update": datetime.now().isoformat()
}, f, indent=2)
except Exception as e:
logger.error(f"Failed to save session history: {e}")
def get_status(self):
"""Get current status"""
return {
"training_mode": self.training_mode,
"restart_count": self.restart_count,
"max_restarts": self.max_restarts,
"process_active": self.process and self.process.poll() is None,
"process_pid": self.process.pid if self.process else None,
"timestamp": datetime.now().isoformat()
}
def main():
"""Command line interface"""
import argparse
parser = argparse.ArgumentParser(description="Elizabeth Training Manager")
parser.add_argument("--start", action="store_true", help="Start continuous training")
parser.add_argument("--mode", choices=['interactive', 'autonomous', 'learning'],
default='interactive', help="Training mode")
parser.add_argument("--status", action="store_true", help="Show status")
parser.add_argument("--stop", action="store_true", help="Stop training")
parser.add_argument("--max-restarts", type=int, default=20, help="Max restart attempts")
parser.add_argument("--restart-delay", type=int, default=30, help="Restart delay in seconds")
args = parser.parse_args()
manager = TrainingManager()
manager.max_restarts = args.max_restarts
manager.restart_delay = args.restart_delay
manager.training_mode = args.mode
if args.start:
manager.run_continuous_training()
elif args.status:
status = manager.get_status()
print("Training Manager Status:")
for key, value in status.items():
print(f" {key}: {value}")
elif args.stop:
manager.graceful_shutdown()
print("Shutdown signal sent")
else:
print("No action specified. Use --help for options.")
if __name__ == "__main__":
main()