Upload 2 files
Browse files- G2Retrieval_bce.py +27 -22
- test_pytrec_eval.py +1 -1
G2Retrieval_bce.py
CHANGED
|
@@ -51,7 +51,7 @@ else:
|
|
| 51 |
|
| 52 |
|
| 53 |
@torch.no_grad()
|
| 54 |
-
def getTopK(corpusEmbeds, qEmbeds, qid, k=
|
| 55 |
scores = qEmbeds @ corpusEmbeds
|
| 56 |
top_k_indices = torch.argsort(scores, descending=True)[:k]
|
| 57 |
scores = scores.cpu()
|
|
@@ -62,24 +62,29 @@ def getTopK(corpusEmbeds, qEmbeds, qid, k=10):
|
|
| 62 |
retn.append((qid, corpus['cid'][x], float(scores[x])))
|
| 63 |
return retn
|
| 64 |
|
| 65 |
-
|
| 66 |
-
with torch.no_grad():
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
results = pd.DataFrame(results, columns=['qid', 'cid', 'score'])
|
| 72 |
-
results['score'] = results['score'].astype(float)
|
| 73 |
-
tmp = ndcg_in_all(qrels, results)
|
| 74 |
-
ndcgs = torch.tensor([x for x in tmp.values()], device=device)
|
| 75 |
-
|
| 76 |
-
mean = torch.mean(ndcgs)
|
| 77 |
-
std = torch.std(ndcgs)
|
| 78 |
-
|
| 79 |
-
print(f'NDCG@
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
@torch.no_grad()
|
| 54 |
+
def getTopK(corpusEmbeds, qEmbeds, qid, k=200):
|
| 55 |
scores = qEmbeds @ corpusEmbeds
|
| 56 |
top_k_indices = torch.argsort(scores, descending=True)[:k]
|
| 57 |
scores = scores.cpu()
|
|
|
|
| 62 |
retn.append((qid, corpus['cid'][x], float(scores[x])))
|
| 63 |
return retn
|
| 64 |
|
| 65 |
+
def print_ndcgs(k):
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
results = []
|
| 68 |
+
for i in tqdm(range(len(queries)), desc="Converting"):
|
| 69 |
+
results.extend(getTopK(corpusEmbeds, queriesEmbeds[i], queries['qid'][i], k=k))
|
| 70 |
+
|
| 71 |
+
results = pd.DataFrame(results, columns=['qid', 'cid', 'score'])
|
| 72 |
+
results['score'] = results['score'].astype(float)
|
| 73 |
+
tmp = ndcg_in_all(qrels, results)
|
| 74 |
+
ndcgs = torch.tensor([x for x in tmp.values()], device=device)
|
| 75 |
+
|
| 76 |
+
mean = torch.mean(ndcgs)
|
| 77 |
+
std = torch.std(ndcgs)
|
| 78 |
+
|
| 79 |
+
print(f'NDCG@{k}: {mean*100:.2f}±{std*100:.2f}')
|
| 80 |
+
|
| 81 |
+
print_ndcgs(3)
|
| 82 |
+
print_ndcgs(10)
|
| 83 |
+
print_ndcgs(50)
|
| 84 |
+
print_ndcgs(100)
|
| 85 |
+
print_ndcgs(200)
|
| 86 |
+
# # 手动释放CUDA缓存内存
|
| 87 |
+
# del queriesEmbeds
|
| 88 |
+
# del corpusEmbeds
|
| 89 |
+
# del model
|
| 90 |
+
# torch.cuda.empty_cache()
|
test_pytrec_eval.py
CHANGED
|
@@ -39,7 +39,7 @@ def ndcg_in_all(qrels, results):
|
|
| 39 |
retn = {}
|
| 40 |
_qrels = {qid: group for qid, group in qrels.groupby('qid')}
|
| 41 |
_results = {qid: group for qid, group in results.groupby('qid')}
|
| 42 |
-
for qid in tqdm(
|
| 43 |
retn[qid] = ndcg(_qrels[qid], _results[qid])
|
| 44 |
return retn
|
| 45 |
|
|
|
|
| 39 |
retn = {}
|
| 40 |
_qrels = {qid: group for qid, group in qrels.groupby('qid')}
|
| 41 |
_results = {qid: group for qid, group in results.groupby('qid')}
|
| 42 |
+
for qid in tqdm(_results, desc="计算 ndcg 中..."):
|
| 43 |
retn[qid] = ndcg(_qrels[qid], _results[qid])
|
| 44 |
return retn
|
| 45 |
|