MRiabov commited on
Commit
5e6838c
·
1 Parent(s): ded333d

Stars and source for filtering

Browse files
.gitignore CHANGED
@@ -2,6 +2,7 @@
2
  output/
3
  md-failed.txt
4
  github_links.txt
 
5
 
6
 
7
  # Byte-compiled / optimized / DLL files
 
2
  output/
3
  md-failed.txt
4
  github_links.txt
5
+ awesome-repos.txt
6
 
7
 
8
  # Byte-compiled / optimized / DLL files
README.md CHANGED
@@ -20,28 +20,29 @@ GoodDocs-v0 is a text dataset scraped from high-quality documentation sources in
20
  - Planning and tool-use grounded in docs
21
  - Long-context reasoning over multi-file documentation
22
 
23
-
24
  ## What's in this repository
25
 
26
  - `texts.parquet` — per-file Markdown documents and metadata extracted from documentation trees.
 
27
  - `data_collection_utils/` — utilities to regenerate the dataset:
28
  - `scrape_gh_docs.py` — main scraper/collector for documentation from GitHub repositories.
29
  - `parse_gh_docs_config.yaml` — reproducible configuration (inputs, outputs, filters, strategies).
30
  - `github_links.txt` — the seed list of GitHub repositories (e.g., top repositories by stars).
 
 
31
  - `top_1000_repos.py` — helper to refresh the top‑repositories list via the public site referenced in the code.
32
 
33
-
34
  ## Schema
35
 
36
  texts.parquet — one row per Markdown file (see `md_rows` assembly in `main()`):
37
- - `owner`, `repo`, `repo_dir`
38
- - `file_rel_repo` — path relative to the saved repo root
39
- - `file_rel_outdir` — path relative to `outdir`
40
- - `size` — file size in bytes
41
- - `mtime` — file modification time (epoch seconds)
42
- - `lang` — language prediction field (via `langid.py` when language filtering is enabled)
43
- - `content` — raw Markdown text
44
 
 
 
 
 
 
 
 
45
 
46
  ## Quickstart
47
 
@@ -60,7 +61,6 @@ Typical uses:
60
  - Supervision for instruction tuning grounded in docs
61
  - Long-context model evaluation with real project documentation
62
 
63
-
64
  ## Reproducing the dataset
65
 
66
  The scraper is configurable and designed to be reproducible via `data_collection_utils/parse_gh_docs_config.yaml`.
@@ -94,21 +94,56 @@ Configuration (YAML-driven; see `data_collection_utils/parse_gh_docs_config.yaml
94
 
95
  Output is written to `<outdir>/texts.parquet`.
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  ## Language filtering
99
 
100
  Language detection is performed with `langid.py` (see imports in `data_collection_utils/scrape_gh_docs.py`). The default configuration keeps English-only files (`lang_filter: en`). There is no probability/confidence threshold; we gate by the predicted language label and a minimum text length (`min_text_chars`).
101
 
102
-
103
  ## Licensing
104
 
105
  - Code and dataset scaffolding in this repository are under the MIT license (see frontmatter).
106
  - The original documentation content belongs to the respective upstream projects and remains governed by their licenses. Please consult each repository’s license before redistribution or commercial use.
107
 
108
-
109
  ## Acknowledgements
110
 
111
  This dataset draws from the open-source community’s documentation efforts. The seed list targets highly-starred repositories to bias toward quality, breadth, and maturity.
112
 
113
-
114
- Note to self: `size` distribution: 20th percentile - 363 symbols, 50p - 701, 95p - 17392
 
20
  - Planning and tool-use grounded in docs
21
  - Long-context reasoning over multi-file documentation
22
 
 
23
  ## What's in this repository
24
 
25
  - `texts.parquet` — per-file Markdown documents and metadata extracted from documentation trees.
26
+ - `awesome-repos.parquet` — structured links extracted from Awesome lists-of-lists (`name`, `link`, `description`, `source_repo`, optional `stars`).
27
  - `data_collection_utils/` — utilities to regenerate the dataset:
28
  - `scrape_gh_docs.py` — main scraper/collector for documentation from GitHub repositories.
29
  - `parse_gh_docs_config.yaml` — reproducible configuration (inputs, outputs, filters, strategies).
30
  - `github_links.txt` — the seed list of GitHub repositories (e.g., top repositories by stars).
31
+ - `awesome_final_repos.py` — extractor for non-"awesome" repositories referenced by Awesome lists.
32
+ - `awesome_scrap_config.yaml` — configuration for `awesome_final_repos.py` (root, depth, output, cache, workers, optional `fetch_stars`).
33
  - `top_1000_repos.py` — helper to refresh the top‑repositories list via the public site referenced in the code.
34
 
 
35
  ## Schema
36
 
37
  texts.parquet — one row per Markdown file (see `md_rows` assembly in `main()`):
 
 
 
 
 
 
 
38
 
39
+ - `owner`, `repo`, `repo_dir`
40
+ - `file_rel_repo` — path relative to the saved repo root
41
+ - `file_rel_outdir` — path relative to `outdir`
42
+ - `size` — file size in bytes
43
+ - `mtime` — file modification time (epoch seconds)
44
+ - `lang` — language prediction field (via `langid.py` when language filtering is enabled)
45
+ - `content` — raw Markdown text
46
 
47
  ## Quickstart
48
 
 
61
  - Supervision for instruction tuning grounded in docs
62
  - Long-context model evaluation with real project documentation
63
 
 
64
  ## Reproducing the dataset
65
 
66
  The scraper is configurable and designed to be reproducible via `data_collection_utils/parse_gh_docs_config.yaml`.
 
94
 
95
  Output is written to `<outdir>/texts.parquet`.
96
 
97
+ ## Awesome list extraction
98
+
99
+ `data_collection_utils/awesome_final_repos.py` crawls the Awesome list-of-lists and extracts final repositories (those whose repo names do not include "awesome"). For each bullet entry like:
100
+
101
+ ```
102
+ * [Fuse](https://github.com/owner/repo) - Mobile development tools.
103
+ ```
104
+
105
+ It records:
106
+
107
+ - `name`: the markdown link text (e.g., `Fuse`).
108
+ - `link`: canonical GitHub repository URL (e.g., `https://github.com/owner/repo`).
109
+ - `description`: text after the ` - ` dash, or the rest of the line (with the link and bullet removed) if no dash.
110
+ - `stars` (optional): repository stargazers count when enabled.
111
+
112
+ Configuration is YAML-first via `data_collection_utils/awesome_scrap_config.yaml`:
113
+
114
+ - `root`: root Awesome repository URL, e.g., `https://github.com/sindresorhus/awesome`.
115
+ - `depth`: recursion depth for nested Awesome lists (0 = only root).
116
+ - `output_dir`: directory for `awesome-repos.parquet`.
117
+ - `cache_dir`: directory for README fetch caches.
118
+ - `workers`: concurrency for network requests.
119
+ - `fetch_stars`: when `true`, also fetch stargazers for each parsed repo (makes extra API calls) and include a `stars` column.
120
+
121
+ Run:
122
+
123
+ ```bash
124
+ python3 data_collection_utils/awesome_final_repos.py
125
+ # or adjust via YAML first, then run without flags
126
+ ```
127
+
128
+ Schema of `awesome-repos.parquet`:
129
+
130
+ - `name` — link text from the Awesome entry.
131
+ - `link` — canonical GitHub URL (<https://github.com/owner/repo>).
132
+ - `description` — description text without the leading ` - ` and without repeating the name.
133
+ - `source_repo` — the Awesome list repository where the entry was found, formatted as `owner/repo`.
134
+ - `stars` — integer, optional; only present when `fetch_stars: true`.
135
 
136
  ## Language filtering
137
 
138
  Language detection is performed with `langid.py` (see imports in `data_collection_utils/scrape_gh_docs.py`). The default configuration keeps English-only files (`lang_filter: en`). There is no probability/confidence threshold; we gate by the predicted language label and a minimum text length (`min_text_chars`).
139
 
 
140
  ## Licensing
141
 
142
  - Code and dataset scaffolding in this repository are under the MIT license (see frontmatter).
143
  - The original documentation content belongs to the respective upstream projects and remains governed by their licenses. Please consult each repository’s license before redistribution or commercial use.
144
 
 
145
  ## Acknowledgements
146
 
147
  This dataset draws from the open-source community’s documentation efforts. The seed list targets highly-starred repositories to bias toward quality, breadth, and maturity.
148
 
149
+ Note to self: `size` distribution: 20th percentile - 363 symbols, 50p - 701, 95p - 17392
 
data_collection_utils/awesome_final_repos.py CHANGED
@@ -38,6 +38,7 @@ import yaml
38
  from dotenv import load_dotenv
39
  from github_api_utils import fetch_repo_readme_markdown
40
  import pandas as pd
 
41
 
42
  load_dotenv()
43
 
@@ -134,7 +135,9 @@ def extract_github_links_from_markdown(md: str) -> List[str]:
134
  return sorted(urls)
135
 
136
 
137
- def _extract_entries_from_markdown_lines(md: str, current_owner: str, current_repo: str) -> List[Dict[str, str]]:
 
 
138
  """
139
  Extract entries of the form: bullet + [name](url) optionally followed by " - description".
140
  If there's no " - ", use the entire line as description but remove the [name](url) part.
@@ -199,7 +202,7 @@ async def crawl_awesome_final_entries(
199
  visited_awesome.add(root_cu)
200
  queue.append((root_owner, root_repo, 0))
201
 
202
- # map canonical link -> {name, link, description}
203
  results: Dict[str, Dict[str, str]] = {}
204
 
205
  while queue:
@@ -224,7 +227,12 @@ async def crawl_awesome_final_entries(
224
  queue.append((o, r, depth + 1))
225
  else:
226
  if cu not in results:
227
- results[cu] = {"name": e["name"], "link": cu, "description": e["description"]}
 
 
 
 
 
228
  else:
229
  # Prefer keeping the first occurrence; if existing description is empty and new is not, update
230
  if not results[cu]["description"] and e["description"]:
@@ -233,6 +241,35 @@ async def crawl_awesome_final_entries(
233
  return list(results.values())
234
 
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  def main() -> None:
237
  cfg_dir = Path(__file__).resolve().parent
238
  cfg_path = cfg_dir / "awesome_scrap_config.yaml"
@@ -271,6 +308,8 @@ def main() -> None:
271
  default=cfg.get("cache_dir", "output/awesome_parse_cache"),
272
  help="Cache directory for README content",
273
  )
 
 
274
  args = ap.parse_args()
275
 
276
  # Resolve paths relative to cfg_dir
@@ -287,9 +326,28 @@ def main() -> None:
287
  rows = await crawl_awesome_final_entries(
288
  session, cache, cache_file, args.root, args.depth
289
  )
 
 
 
 
 
290
  out_parquet = output_dir / "awesome-repos.parquet"
291
  output_dir.mkdir(parents=True, exist_ok=True)
292
- df = pd.DataFrame(rows, columns=["name", "link", "description"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
  df.to_parquet(out_parquet, index=False)
294
  print(f"Collected {len(rows)} final repositories with descriptions")
295
  print(f"Wrote to {out_parquet}")
 
38
  from dotenv import load_dotenv
39
  from github_api_utils import fetch_repo_readme_markdown
40
  import pandas as pd
41
+ from github_api_utils import github_headers
42
 
43
  load_dotenv()
44
 
 
135
  return sorted(urls)
136
 
137
 
138
+ def _extract_entries_from_markdown_lines(
139
+ md: str, current_owner: str, current_repo: str
140
+ ) -> List[Dict[str, str]]:
141
  """
142
  Extract entries of the form: bullet + [name](url) optionally followed by " - description".
143
  If there's no " - ", use the entire line as description but remove the [name](url) part.
 
202
  visited_awesome.add(root_cu)
203
  queue.append((root_owner, root_repo, 0))
204
 
205
+ # map canonical link -> {name, link, description, source_repo}
206
  results: Dict[str, Dict[str, str]] = {}
207
 
208
  while queue:
 
227
  queue.append((o, r, depth + 1))
228
  else:
229
  if cu not in results:
230
+ results[cu] = {
231
+ "name": e["name"],
232
+ "link": cu,
233
+ "description": e["description"],
234
+ "source_repo": f"{owner}/{repo}",
235
+ }
236
  else:
237
  # Prefer keeping the first occurrence; if existing description is empty and new is not, update
238
  if not results[cu]["description"] and e["description"]:
 
241
  return list(results.values())
242
 
243
 
244
+ async def fetch_repo_stars(
245
+ session: aiohttp.ClientSession, owner: str, repo: str
246
+ ) -> Optional[int]:
247
+ url = f"https://api.github.com/repos/{owner}/{repo}"
248
+ try:
249
+ async with session.get(url, headers=github_headers()) as resp:
250
+ if resp.status == 200:
251
+ data = await resp.json()
252
+ if isinstance(data, dict) and "stargazers_count" in data:
253
+ return data["stargazers_count"]
254
+ except Exception:
255
+ return None
256
+ return None
257
+
258
+
259
+ async def enrich_with_stars(
260
+ session: aiohttp.ClientSession, rows: List[Dict[str, str]], concurrency: int
261
+ ) -> None:
262
+ sem = asyncio.Semaphore(concurrency if concurrency and concurrency > 0 else 10)
263
+
264
+ async def one(row: Dict[str, str]):
265
+ async with sem:
266
+ owner, repo = parse_owner_repo(row["link"]) # link is canonical
267
+ stars = await fetch_repo_stars(session, owner, repo)
268
+ row["stars"] = stars if stars is not None else None
269
+
270
+ await asyncio.gather(*(one(r) for r in rows))
271
+
272
+
273
  def main() -> None:
274
  cfg_dir = Path(__file__).resolve().parent
275
  cfg_path = cfg_dir / "awesome_scrap_config.yaml"
 
308
  default=cfg.get("cache_dir", "output/awesome_parse_cache"),
309
  help="Cache directory for README content",
310
  )
311
+ # YAML-configurable flag to fetch stars for each parsed repo
312
+ fetch_stars_value = bool(cfg.get("fetch_stars", False))
313
  args = ap.parse_args()
314
 
315
  # Resolve paths relative to cfg_dir
 
326
  rows = await crawl_awesome_final_entries(
327
  session, cache, cache_file, args.root, args.depth
328
  )
329
+ if fetch_stars_value and rows:
330
+ print(
331
+ f"Fetching stargazers_count for {len(rows)} repos (concurrency={args.workers})..."
332
+ )
333
+ await enrich_with_stars(session, rows, args.workers)
334
  out_parquet = output_dir / "awesome-repos.parquet"
335
  output_dir.mkdir(parents=True, exist_ok=True)
336
+ # include stars column if present
337
+ df = pd.DataFrame(rows)
338
+ # Ensure column order when possible
339
+ cols = [
340
+ c
341
+ for c in [
342
+ "name",
343
+ "link",
344
+ "description",
345
+ "source_repo",
346
+ "stars",
347
+ ]
348
+ if c in df.columns
349
+ ]
350
+ df = df[cols]
351
  df.to_parquet(out_parquet, index=False)
352
  print(f"Collected {len(rows)} final repositories with descriptions")
353
  print(f"Wrote to {out_parquet}")
data_collection_utils/awesome_scrap_config.yaml CHANGED
@@ -8,11 +8,15 @@ root: "https://github.com/sindresorhus/awesome"
8
  # Maximum recursion depth for Awesome sublists
9
  depth: 2
10
 
11
- # Output directory for github_links.txt (relative to script dir)
12
  output_dir: "."
13
 
14
  # Cache directory for README content (relative to script dir)
15
  cache_dir: "output/awesome_parse_cache"
16
 
17
  # Number of concurrent workers for fetching
18
- workers: 16
 
 
 
 
 
8
  # Maximum recursion depth for Awesome sublists
9
  depth: 2
10
 
11
+ # Output directory for awesome-repos.parquet (relative to script dir)
12
  output_dir: "."
13
 
14
  # Cache directory for README content (relative to script dir)
15
  cache_dir: "output/awesome_parse_cache"
16
 
17
  # Number of concurrent workers for fetching
18
+ workers: 16
19
+
20
+ # Optionally fetch stargazers_count for each parsed repo (extra API requests)
21
+ # Set to true to include a 'stars' column in awesome-repos.parquet
22
+ fetch_stars: false