Marek324 commited on
Commit
7ab7cc5
·
verified ·
1 Parent(s): c3d3b86

Delete scripts

Browse files
scripts/.env.example DELETED
@@ -1,3 +0,0 @@
1
- R2_ACCOUNT_ID=
2
- R2_ACCESS_KEY_ID=
3
- R2_SECRET_ACCESS_KEY=
 
 
 
 
scripts/noise.py DELETED
@@ -1,81 +0,0 @@
1
- import os
2
- import sys
3
- from pathlib import Path
4
-
5
- import boto3
6
- from datasets import Audio, Dataset, IterableDataset, load_from_disk
7
- from dotenv import load_dotenv
8
-
9
-
10
- def download():
11
- load_dotenv()
12
-
13
- ACCOUNT_ID = os.getenv("R2_ACCOUNT_ID")
14
- ACCESS_KEY_ID = os.getenv("R2_ACCESS_KEY_ID")
15
- SECRET_ACCESS_KEY = os.getenv("R2_SECRET_ACCESS_KEY")
16
-
17
- s3_client = boto3.client(
18
- "s3",
19
- endpoint_url=f"https://{ACCOUNT_ID}.r2.cloudflarestorage.com",
20
- aws_access_key_id=ACCESS_KEY_ID,
21
- aws_secret_access_key=SECRET_ACCESS_KEY,
22
- region_name="auto",
23
- )
24
-
25
- paginator = s3_client.get_paginator("list_objects_v2")
26
- pages = paginator.paginate(Bucket="musan-noise")
27
-
28
- file_count = 0
29
-
30
- os.makedirs("musan_noise", exist_ok=True)
31
- for page in pages:
32
- if "Contents" not in page:
33
- return
34
-
35
- for obj in page["Contents"]:
36
- key = obj["Key"]
37
-
38
- if key.endswith("/"):
39
- continue
40
-
41
- local_file_path = os.path.join("musan_noise", key)
42
-
43
- s3_client.download_file("musan-noise", key, local_file_path)
44
- file_count += 1
45
-
46
- print(f"File count: {file_count}")
47
-
48
-
49
- def create_dataset():
50
- files = []
51
- for wav in Path("musan_noise").glob("*.wav"):
52
- files.append(str(wav))
53
-
54
- dataset = Dataset.from_dict({"audio": files})
55
- dataset = dataset.cast_column("audio", Audio(sampling_rate=16000, num_channels=1))
56
-
57
- dataset.save_to_disk("musan_noise_dataset")
58
-
59
-
60
- def test():
61
- dataset = load_from_disk("musan_noise_dataset")
62
- assert isinstance(dataset, Dataset)
63
- dataset = dataset.to_iterable_dataset()
64
- assert isinstance(dataset, IterableDataset)
65
-
66
- count = 0
67
- for row in dataset:
68
- count += 1
69
-
70
- print(count)
71
-
72
-
73
- if __name__ == "__main__":
74
- arg = sys.argv[1]
75
- match arg:
76
- case "download":
77
- download()
78
- case "dataset":
79
- create_dataset()
80
- case "test":
81
- test()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/noizeus.py DELETED
@@ -1,84 +0,0 @@
1
- import os
2
- import shutil
3
- import sys
4
- import zipfile
5
- from itertools import product
6
- from pathlib import Path
7
-
8
- import requests
9
- from tqdm import tqdm
10
- from datasets import IterableDataset, Dataset, Audio, load_from_disk
11
-
12
-
13
- def download():
14
- os.makedirs("noizeus/zips", exist_ok=True)
15
- base = "https://ecs.utdallas.edu/loizou/speech/noizeus/"
16
- noises = [
17
- "train",
18
- "babble",
19
- "exhibition",
20
- "restaurant",
21
- "street",
22
- "airport",
23
- "station",
24
- ]
25
- snrs = ["_0dB", "_5dB", "_10dB"]
26
-
27
- for noise, snr in tqdm(product(noises, snrs)):
28
- name = f"{noise}{snr}"
29
- url = f"{base}{name}.zip"
30
- res = requests.get(url)
31
- with open(f"noizeus/zips/{name}.zip", "wb") as f:
32
- f.write(res.content)
33
-
34
- with zipfile.ZipFile(f"noizeus/zips/{name}.zip", "r") as zip_ref:
35
- zip_ref.extractall(f"noizeus/{name}")
36
-
37
- os.remove(f"noizeus/zips/{name}.zip")
38
-
39
- nested_dir = f"noizeus/{name}/{snr.replace('_', '')}"
40
- if os.path.exists(nested_dir):
41
- for filename in os.listdir(nested_dir):
42
- shutil.move(
43
- os.path.join(nested_dir, filename), f"noizeus/{name}/{filename}"
44
- )
45
- os.rmdir(nested_dir)
46
-
47
- os.rmdir("noizeus/zips")
48
-
49
-
50
- def create_dataset():
51
- files = []
52
- for dir in Path("noizeus").iterdir():
53
- if dir.is_dir():
54
- for wav in dir.glob("*.wav"):
55
- files.append(str(wav))
56
-
57
- dataset = Dataset.from_dict({"audio": files})
58
- dataset = dataset.cast_column("audio", Audio(sampling_rate=16000, num_channels=1))
59
-
60
- dataset.save_to_disk("noizeus_dataset")
61
-
62
-
63
- def test():
64
- dataset = load_from_disk("noizeus_dataset")
65
- assert isinstance(dataset, Dataset)
66
- dataset = dataset.to_iterable_dataset()
67
- assert isinstance(dataset, IterableDataset)
68
-
69
- count = 0
70
- for row in dataset:
71
- count += 1
72
-
73
- print(count)
74
-
75
-
76
- if __name__ == "__main__":
77
- arg = sys.argv[1]
78
- match arg:
79
- case "download":
80
- download()
81
- case "dataset":
82
- create_dataset()
83
- case "test":
84
- test()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/process.py DELETED
@@ -1,514 +0,0 @@
1
- import io
2
- import jsonlines
3
- import os
4
- import sys
5
- import time
6
-
7
- import soundfile as sf
8
- from datasets import Audio, Dataset, IterableDataset, load_dataset, load_from_disk
9
- from pydub import AudioSegment, silence
10
- from silero_vad import get_speech_timestamps, load_silero_vad
11
- from torchcodec.decoders import AudioDecoder
12
- from tqdm import tqdm
13
-
14
- RAND_SEED = 381
15
- DATA_DIR = "data"
16
-
17
- NAMES = [
18
- "clean",
19
- "noisy",
20
- "noisyenv",
21
- "noise",
22
- "jazz",
23
- "country",
24
- "folk",
25
- "pop",
26
- "rock",
27
- "electronic",
28
- "instrumental",
29
- "vocal1",
30
- "vocal2",
31
- "vocal3",
32
- ]
33
-
34
- sr = 16000
35
- fl = 20 * sr // 1000
36
- fh = 10 * sr // 1000
37
-
38
-
39
- class Silence:
40
- def __init__(self): ...
41
-
42
- def label(
43
- self, x: AudioDecoder | dict[str, str | bytes], _
44
- ) -> list[dict[str, dict[str, int]]]:
45
- if isinstance(x, AudioDecoder):
46
- siglen = int(x.get_all_samples().duration_seconds * 1000)
47
- else:
48
- if x["bytes"] is not None:
49
- seg = AudioSegment.from_file(io.BytesIO(x["bytes"]))
50
- else:
51
- seg = AudioSegment.from_file(x["path"])
52
-
53
- siglen = len(seg)
54
-
55
- return [{"inactive": {"start": 0, "end": siglen}}]
56
-
57
-
58
- class VAD:
59
- def __init__(self):
60
- self.model = load_silero_vad()
61
-
62
- def label(
63
- self, decoder: AudioDecoder | dict[str, str | bytes], _
64
- ) -> list[dict[str, dict[str, int]]]:
65
- def stoms(sample: int) -> int:
66
- # sample to ms
67
- global sr
68
- return int(sample * 1000 / sr)
69
-
70
- assert isinstance(decoder, AudioDecoder)
71
-
72
- x = decoder.get_all_samples()
73
-
74
- stamps: list[dict[str, int]] = get_speech_timestamps(x.data, self.model)
75
-
76
- if not stamps:
77
- return [{"inactive": {"start": 0, "end": len(x.data)}}]
78
-
79
- labels: list[dict[str, dict[str, int]]] = []
80
- prev_end = 0
81
-
82
- for stamp in stamps:
83
- if stamp["start"] > prev_end:
84
- labels.append(
85
- {
86
- "inactive": {
87
- "start": stoms(prev_end),
88
- "end": stoms(stamp["start"]),
89
- }
90
- }
91
- )
92
-
93
- labels.append(
94
- {"speech": {"start": stoms(stamp["start"]), "end": stoms(stamp["end"])}}
95
- )
96
- prev_end = stamp["end"]
97
-
98
- if prev_end < len(x.data):
99
- labels.append(
100
- {"inactive": {"start": stoms(prev_end), "end": stoms(len(x.data))}}
101
- )
102
-
103
- return labels
104
-
105
-
106
- class MusicSilenceDetector:
107
- def __init__(self): ...
108
-
109
- def label(
110
- self, x: AudioDecoder | dict[str, str | bytes], thr: int
111
- ) -> list[dict[str, dict[str, int]]]:
112
- assert isinstance(x, dict)
113
- labels: list[dict[str, dict[str, int]]] = []
114
-
115
- if x["bytes"] is not None:
116
- seg = AudioSegment.from_file(io.BytesIO(x["bytes"]))
117
- else:
118
- seg = AudioSegment.from_file(x["path"])
119
-
120
- sil_stamps: list[list[int]] = silence.detect_silence(
121
- seg, min_silence_len=260, silence_thresh=thr
122
- ) # min_silence_len is in ms
123
-
124
- if not sil_stamps:
125
- return [{"music": {"start": 0, "end": len(seg)}}]
126
-
127
- prev_end = 0
128
-
129
- for stamp in sil_stamps:
130
- if stamp[0] > prev_end:
131
- labels.append(
132
- {
133
- "music": {
134
- "start": prev_end,
135
- "end": stamp[0],
136
- }
137
- }
138
- )
139
-
140
- labels.append({"inactive": {"start": stamp[0], "end": stamp[1]}})
141
- prev_end = stamp[1]
142
-
143
- if prev_end < len(seg):
144
- labels.append({"music": {"start": prev_end, "end": len(seg)}})
145
-
146
- return labels
147
-
148
-
149
- def process_file(
150
- audio: AudioDecoder | dict[str, str | bytes],
151
- silence_detector: VAD | MusicSilenceDetector | Silence,
152
- split: str,
153
- idx: int,
154
- name: str,
155
- sil_thr: int = -16,
156
- ) -> tuple[bool, list[dict[str, dict[str, int]]]]:
157
- labels = silence_detector.label(audio, sil_thr)
158
-
159
- file_name = f"{DATA_DIR}/{split}/{name}_{idx:04d}.wav"
160
- if os.path.exists(file_name):
161
- return (False, labels)
162
-
163
- if isinstance(audio, AudioDecoder):
164
- audio_data = audio.get_all_samples().data
165
- if hasattr(audio_data, "cpu"):
166
- audio_data = audio_data.cpu()
167
- audio_data = audio_data.numpy().squeeze()
168
-
169
- sf.write(
170
- file_name,
171
- audio_data,
172
- samplerate=sr,
173
- )
174
- else:
175
- seg = AudioSegment.from_file(io.BytesIO(audio["bytes"]))
176
- seg.export(file_name, format="wav")
177
-
178
- return (True, labels)
179
-
180
-
181
- class Meta:
182
- def __init__(self, _name, _split: str):
183
- self.split = _split
184
- self.name = _name
185
- _dir = f"partial/{self.name}"
186
- os.makedirs(_dir, exist_ok=True)
187
- self.path = f"{_dir}/{self.split}.jsonl"
188
- self.file = jsonlines.open(self.path, mode="w")
189
- self.idx = 0
190
-
191
- def __del__(self):
192
- self.file.close()
193
-
194
- def write(
195
- self, _class: str, subclass: str, labels: list[dict[str, dict[str, int]]]
196
- ):
197
- self.file.write(
198
- {
199
- "file_name": f"{self.name}_{self.idx:04d}.wav",
200
- "class": _class,
201
- "subclass": subclass,
202
- "labels": labels,
203
- }
204
- )
205
- self.idx += 1
206
-
207
-
208
- def process_dataset(
209
- dataset: IterableDataset,
210
- silence_detector: VAD | MusicSilenceDetector | Silence,
211
- _class: str,
212
- subclass: str,
213
- dataset_len: int,
214
- name: str,
215
- sil_thr: int = -16,
216
- ):
217
- print(f"Start processing {name}...")
218
- train_end = int(0.8 * dataset_len)
219
- val_end = int(0.9 * dataset_len)
220
- splits = [
221
- (dataset.take(train_end), Meta(name, "train")),
222
- (dataset.skip(train_end).take(val_end - train_end), Meta(name, "val")),
223
- (dataset.skip(val_end), Meta(name, "test")),
224
- ]
225
-
226
- for split, meta in splits:
227
- for row in tqdm(split, desc=f"{name} - {meta.split}"):
228
- new, labels = process_file(
229
- row["audio"], silence_detector, meta.split, meta.idx, name, sil_thr
230
- )
231
- meta.write(_class, subclass, labels)
232
-
233
- print("Finished\n")
234
-
235
-
236
- def combine_metas():
237
- for split in ["train", "val", "test"]:
238
- with jsonlines.open(f"{DATA_DIR}/{split}/metadata.jsonl", mode="w") as meta:
239
- for name in NAMES:
240
- try:
241
- with jsonlines.open(f"partial/{name}/{split}.jsonl") as part:
242
- for line in part:
243
- meta.write(line)
244
- except FileNotFoundError:
245
- if split == "train":
246
- print(f"{name} not downloaded")
247
-
248
-
249
- def main():
250
- for dir in [
251
- f"{DATA_DIR}/train",
252
- f"{DATA_DIR}/val",
253
- f"{DATA_DIR}/test",
254
- ]:
255
- os.makedirs(dir, exist_ok=True)
256
-
257
- vad = VAD()
258
- msd = MusicSilenceDetector()
259
- sil = Silence()
260
-
261
- match sys.argv[1]:
262
- case "clean":
263
- print("Downloading clean")
264
- clean = load_dataset(
265
- "ammagra/english-arabic-speech-translation",
266
- split="test",
267
- streaming=True,
268
- )
269
- assert isinstance(clean, IterableDataset)
270
- clean = (
271
- clean.shuffle(seed=RAND_SEED)
272
- .select_columns("audio")
273
- .take(2000)
274
- .cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
275
- )
276
- process_dataset(clean, vad, "speech", "speech_clean", 2000, "clean")
277
- case "noisy":
278
- print("Downloading noisy")
279
- noisy = load_dataset(
280
- "Jzuluaga/atco2_corpus_1h", split="test", streaming=True
281
- )
282
- assert isinstance(noisy, IterableDataset)
283
- noisy = (
284
- noisy.shuffle(seed=RAND_SEED)
285
- .select_columns("audio")
286
- .cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
287
- )
288
- process_dataset(noisy, vad, "speech", "speech_noisy", 871, "noisy")
289
-
290
- case "noisyenv":
291
- print("Downloading noisyenv")
292
- noisy_env = load_from_disk("noizeus_dataset")
293
- assert isinstance(noisy_env, Dataset)
294
- noisy_env = noisy_env.to_iterable_dataset()
295
- assert isinstance(noisy_env, IterableDataset)
296
- noisy_env = (
297
- noisy_env.shuffle(seed=RAND_SEED)
298
- .select_columns("audio")
299
- .cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
300
- )
301
- process_dataset(
302
- noisy_env, vad, "speech", "speech_noisyenv", 630, "noisyenv"
303
- )
304
-
305
- case "jazz":
306
- print("Downloading jazz")
307
-
308
- jazz = load_dataset(
309
- "PlutoG99001/MusicGen-Jazz-Clean", split="train", streaming=True
310
- )
311
- assert isinstance(jazz, IterableDataset)
312
- jazz = (
313
- jazz.shuffle(seed=RAND_SEED)
314
- .select_columns("audio")
315
- .cast_column(
316
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
317
- )
318
- )
319
- process_dataset(
320
- jazz, msd, "music", "music_acoustic", 50, "jazz", sil_thr=-20
321
- )
322
-
323
- case "country":
324
- print("Downloading country")
325
-
326
- country = load_dataset(
327
- "ylacombe/music_genres_Country", split="train", streaming=True
328
- )
329
- assert isinstance(country, IterableDataset)
330
- country = (
331
- country.shuffle(seed=RAND_SEED)
332
- .select_columns("audio")
333
- .cast_column(
334
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
335
- )
336
- )
337
- process_dataset(
338
- country, msd, "music", "music_acoustic", 142, "country", sil_thr=-25
339
- )
340
-
341
- case "folk":
342
- print("Downloading folk")
343
- folk = load_dataset("lewtun/music_genres", split="train", streaming=True)
344
- assert isinstance(folk, IterableDataset)
345
- folk = (
346
- folk.shuffle(seed=RAND_SEED)
347
- .select_columns(["audio", "genre"])
348
- .filter(lambda row: row["genre"] == "Folk")
349
- .take(1000)
350
- .cast_column(
351
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
352
- )
353
- )
354
- process_dataset(
355
- folk, msd, "music", "music_acoustic", 1000, "folk", sil_thr=-33
356
- )
357
-
358
- case "pop":
359
- print("Downloading pop")
360
-
361
- pop = load_dataset(
362
- "memepottaboah/POPMUSIC1981", split="train", streaming=True
363
- )
364
- assert isinstance(pop, IterableDataset)
365
- pop = (
366
- pop.shuffle(seed=RAND_SEED)
367
- .select_columns("audio")
368
- .cast_column(
369
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
370
- )
371
- )
372
- process_dataset(
373
- pop, msd, "music", "music_mainstream", 268, "pop", sil_thr=-22
374
- )
375
-
376
- case "rock":
377
- print("Downloading rock")
378
- rock = load_dataset("lewtun/music_genres", split="train", streaming=True)
379
- assert isinstance(rock, IterableDataset)
380
- rock = (
381
- rock.shuffle(seed=RAND_SEED)
382
- .select_columns(["audio", "genre"])
383
- .filter(lambda row: row["genre"] == "Rock")
384
- .take(2000)
385
- .cast_column(
386
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
387
- )
388
- )
389
- process_dataset(
390
- rock, msd, "music", "music_mainstream", 2000, "rock", sil_thr=-30
391
- )
392
-
393
- case "electronic":
394
- print("Downloading electronic")
395
-
396
- electronic = load_dataset(
397
- "PlutoG99001/MusicGen-Electronic-Clean", split="train", streaming=True
398
- )
399
- assert isinstance(electronic, IterableDataset)
400
- electronic = (
401
- electronic.shuffle(seed=RAND_SEED)
402
- .select_columns("audio")
403
- .cast_column(
404
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
405
- )
406
- )
407
- process_dataset(
408
- electronic,
409
- msd,
410
- "music",
411
- "music_electronic",
412
- 52,
413
- "electronic",
414
- sil_thr=-25,
415
- )
416
-
417
- case "instrumental":
418
- print("Downloading instrumental")
419
- instrumental = load_dataset(
420
- "PlutoG99001/MusicGen-Classical", split="train", streaming=True
421
- )
422
- assert isinstance(instrumental, IterableDataset)
423
- instrumental = (
424
- instrumental.shuffle(seed=RAND_SEED)
425
- .select_columns("audio")
426
- .cast_column(
427
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
428
- )
429
- )
430
- process_dataset(
431
- instrumental,
432
- msd,
433
- "music",
434
- "music_instrumental",
435
- 495,
436
- "instrumental",
437
- sil_thr=-27,
438
- )
439
-
440
- case "vocal1":
441
- print("Downloading vocal1")
442
-
443
- vocal1 = load_dataset(
444
- "ccmusic-database/acapella", split="song1", streaming=True
445
- )
446
- assert isinstance(vocal1, IterableDataset)
447
- vocal1 = (
448
- vocal1.shuffle(seed=RAND_SEED)
449
- .select_columns("audio")
450
- .cast_column(
451
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
452
- )
453
- )
454
- process_dataset(
455
- vocal1, msd, "music", "music_vocal", 22, "vocal1", sil_thr=-48
456
- )
457
-
458
- case "vocal2":
459
- print("Downloading vocal2")
460
-
461
- vocal2 = load_dataset(
462
- "ccmusic-database/acapella", split="song2", streaming=True
463
- )
464
- assert isinstance(vocal2, IterableDataset)
465
- vocal2 = (
466
- vocal2.shuffle(seed=RAND_SEED)
467
- .select_columns("audio")
468
- .cast_column(
469
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
470
- )
471
- )
472
- process_dataset(
473
- vocal2, msd, "music", "music_vocal", 22, "vocal2", sil_thr=-48
474
- )
475
-
476
- case "vocal3":
477
- print("Downloading vocal3")
478
-
479
- vocal3 = load_dataset(
480
- "ccmusic-database/acapella", split="song3", streaming=True
481
- )
482
- assert isinstance(vocal3, IterableDataset)
483
- vocal3 = (
484
- vocal3.shuffle(seed=RAND_SEED)
485
- .select_columns("audio")
486
- .cast_column(
487
- "audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
488
- )
489
- )
490
- process_dataset(
491
- vocal3, msd, "music", "music_vocal", 22, "vocal3", sil_thr=-48
492
- )
493
-
494
- case "noise":
495
- print("Downloading noise")
496
-
497
- noise = load_from_disk("musan_noise_dataset")
498
- assert isinstance(noise, Dataset)
499
- noise = noise.to_iterable_dataset()
500
- assert isinstance(noise, IterableDataset)
501
- noise = (
502
- noise.shuffle(seed=RAND_SEED)
503
- .select_columns("audio")
504
- .cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
505
- )
506
- process_dataset(noise, sil, "noise", "noise", 169, "noise")
507
-
508
- case "combine":
509
- combine_metas()
510
-
511
-
512
- if __name__ == "__main__":
513
- main()
514
- time.sleep(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/pyproject.toml DELETED
@@ -1,23 +0,0 @@
1
- [project]
2
- name = "dataset"
3
- version = "0.1.0"
4
- description = "Add your description here"
5
- readme = "README.md"
6
- requires-python = ">=3.12"
7
- dependencies = [
8
- "boto3>=1.40.74",
9
- "datasets>=4.4.1",
10
- "dotenv>=0.9.9",
11
- "jsonlines>=4.0.0",
12
- "librosa>=0.11.0",
13
- "numpy>=2.3.4",
14
- "pyarrow>=22.0.0",
15
- "pydub>=0.25.1",
16
- "ruff>=0.14.4",
17
- "silero-vad>=6.2.0",
18
- "soundfile>=0.13.1",
19
- "torchaudio>=2.9.0",
20
- "tqdm>=4.67.1",
21
- "ty>=0.0.1a26",
22
- "webrtcvad>=2.0.10",
23
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/test.py DELETED
@@ -1,35 +0,0 @@
1
- import sys
2
- import os
3
- import jsonlines
4
- from pydub import AudioSegment, silence
5
-
6
- os.makedirs("test", exist_ok=True)
7
-
8
- split = sys.argv[1]
9
- subclass = sys.argv[2]
10
- idx = int(sys.argv[3])
11
- file = f"data/{split}/{subclass}_{idx:04d}.wav"
12
- meta = f"partial/{subclass}/{split}.jsonl"
13
-
14
- with jsonlines.open(meta) as r:
15
- for i, obj in enumerate(r):
16
- if i == idx:
17
- labels = obj["labels"]
18
- break
19
-
20
-
21
- orig = AudioSegment.from_file(file)
22
-
23
- segments = silence.split_on_silence(
24
- orig,
25
- min_silence_len=260,
26
- silence_thresh=int(sys.argv[4]),
27
- keep_silence=False,
28
- )
29
-
30
- nonsilent = AudioSegment.empty()
31
- for seg in segments:
32
- nonsilent += seg
33
-
34
- orig.export("test/orig.wav", format="wav")
35
- nonsilent.export("test/nonsilent.wav", format="wav")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/thrs.csv DELETED
@@ -1,11 +0,0 @@
1
- subclass,thr
2
- country,-25
3
- electronic,-25
4
- folk,-33
5
- instrumental,-27
6
- jazz,-20
7
- pop,-22
8
- rock,-30
9
- vocal1,-48
10
- vocal2,-48
11
- vocal3,-48
 
 
 
 
 
 
 
 
 
 
 
 
scripts/uv.lock DELETED
The diff for this file is too large to render. See raw diff