Datasets:
Delete scripts
Browse files- scripts/.env.example +0 -3
- scripts/noise.py +0 -81
- scripts/noizeus.py +0 -84
- scripts/process.py +0 -514
- scripts/pyproject.toml +0 -23
- scripts/test.py +0 -35
- scripts/thrs.csv +0 -11
- scripts/uv.lock +0 -0
scripts/.env.example
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
R2_ACCOUNT_ID=
|
| 2 |
-
R2_ACCESS_KEY_ID=
|
| 3 |
-
R2_SECRET_ACCESS_KEY=
|
|
|
|
|
|
|
|
|
|
|
|
scripts/noise.py
DELETED
|
@@ -1,81 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import sys
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
|
| 5 |
-
import boto3
|
| 6 |
-
from datasets import Audio, Dataset, IterableDataset, load_from_disk
|
| 7 |
-
from dotenv import load_dotenv
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def download():
|
| 11 |
-
load_dotenv()
|
| 12 |
-
|
| 13 |
-
ACCOUNT_ID = os.getenv("R2_ACCOUNT_ID")
|
| 14 |
-
ACCESS_KEY_ID = os.getenv("R2_ACCESS_KEY_ID")
|
| 15 |
-
SECRET_ACCESS_KEY = os.getenv("R2_SECRET_ACCESS_KEY")
|
| 16 |
-
|
| 17 |
-
s3_client = boto3.client(
|
| 18 |
-
"s3",
|
| 19 |
-
endpoint_url=f"https://{ACCOUNT_ID}.r2.cloudflarestorage.com",
|
| 20 |
-
aws_access_key_id=ACCESS_KEY_ID,
|
| 21 |
-
aws_secret_access_key=SECRET_ACCESS_KEY,
|
| 22 |
-
region_name="auto",
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
paginator = s3_client.get_paginator("list_objects_v2")
|
| 26 |
-
pages = paginator.paginate(Bucket="musan-noise")
|
| 27 |
-
|
| 28 |
-
file_count = 0
|
| 29 |
-
|
| 30 |
-
os.makedirs("musan_noise", exist_ok=True)
|
| 31 |
-
for page in pages:
|
| 32 |
-
if "Contents" not in page:
|
| 33 |
-
return
|
| 34 |
-
|
| 35 |
-
for obj in page["Contents"]:
|
| 36 |
-
key = obj["Key"]
|
| 37 |
-
|
| 38 |
-
if key.endswith("/"):
|
| 39 |
-
continue
|
| 40 |
-
|
| 41 |
-
local_file_path = os.path.join("musan_noise", key)
|
| 42 |
-
|
| 43 |
-
s3_client.download_file("musan-noise", key, local_file_path)
|
| 44 |
-
file_count += 1
|
| 45 |
-
|
| 46 |
-
print(f"File count: {file_count}")
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def create_dataset():
|
| 50 |
-
files = []
|
| 51 |
-
for wav in Path("musan_noise").glob("*.wav"):
|
| 52 |
-
files.append(str(wav))
|
| 53 |
-
|
| 54 |
-
dataset = Dataset.from_dict({"audio": files})
|
| 55 |
-
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000, num_channels=1))
|
| 56 |
-
|
| 57 |
-
dataset.save_to_disk("musan_noise_dataset")
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def test():
|
| 61 |
-
dataset = load_from_disk("musan_noise_dataset")
|
| 62 |
-
assert isinstance(dataset, Dataset)
|
| 63 |
-
dataset = dataset.to_iterable_dataset()
|
| 64 |
-
assert isinstance(dataset, IterableDataset)
|
| 65 |
-
|
| 66 |
-
count = 0
|
| 67 |
-
for row in dataset:
|
| 68 |
-
count += 1
|
| 69 |
-
|
| 70 |
-
print(count)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
if __name__ == "__main__":
|
| 74 |
-
arg = sys.argv[1]
|
| 75 |
-
match arg:
|
| 76 |
-
case "download":
|
| 77 |
-
download()
|
| 78 |
-
case "dataset":
|
| 79 |
-
create_dataset()
|
| 80 |
-
case "test":
|
| 81 |
-
test()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/noizeus.py
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
import sys
|
| 4 |
-
import zipfile
|
| 5 |
-
from itertools import product
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
|
| 8 |
-
import requests
|
| 9 |
-
from tqdm import tqdm
|
| 10 |
-
from datasets import IterableDataset, Dataset, Audio, load_from_disk
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def download():
|
| 14 |
-
os.makedirs("noizeus/zips", exist_ok=True)
|
| 15 |
-
base = "https://ecs.utdallas.edu/loizou/speech/noizeus/"
|
| 16 |
-
noises = [
|
| 17 |
-
"train",
|
| 18 |
-
"babble",
|
| 19 |
-
"exhibition",
|
| 20 |
-
"restaurant",
|
| 21 |
-
"street",
|
| 22 |
-
"airport",
|
| 23 |
-
"station",
|
| 24 |
-
]
|
| 25 |
-
snrs = ["_0dB", "_5dB", "_10dB"]
|
| 26 |
-
|
| 27 |
-
for noise, snr in tqdm(product(noises, snrs)):
|
| 28 |
-
name = f"{noise}{snr}"
|
| 29 |
-
url = f"{base}{name}.zip"
|
| 30 |
-
res = requests.get(url)
|
| 31 |
-
with open(f"noizeus/zips/{name}.zip", "wb") as f:
|
| 32 |
-
f.write(res.content)
|
| 33 |
-
|
| 34 |
-
with zipfile.ZipFile(f"noizeus/zips/{name}.zip", "r") as zip_ref:
|
| 35 |
-
zip_ref.extractall(f"noizeus/{name}")
|
| 36 |
-
|
| 37 |
-
os.remove(f"noizeus/zips/{name}.zip")
|
| 38 |
-
|
| 39 |
-
nested_dir = f"noizeus/{name}/{snr.replace('_', '')}"
|
| 40 |
-
if os.path.exists(nested_dir):
|
| 41 |
-
for filename in os.listdir(nested_dir):
|
| 42 |
-
shutil.move(
|
| 43 |
-
os.path.join(nested_dir, filename), f"noizeus/{name}/{filename}"
|
| 44 |
-
)
|
| 45 |
-
os.rmdir(nested_dir)
|
| 46 |
-
|
| 47 |
-
os.rmdir("noizeus/zips")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def create_dataset():
|
| 51 |
-
files = []
|
| 52 |
-
for dir in Path("noizeus").iterdir():
|
| 53 |
-
if dir.is_dir():
|
| 54 |
-
for wav in dir.glob("*.wav"):
|
| 55 |
-
files.append(str(wav))
|
| 56 |
-
|
| 57 |
-
dataset = Dataset.from_dict({"audio": files})
|
| 58 |
-
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000, num_channels=1))
|
| 59 |
-
|
| 60 |
-
dataset.save_to_disk("noizeus_dataset")
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def test():
|
| 64 |
-
dataset = load_from_disk("noizeus_dataset")
|
| 65 |
-
assert isinstance(dataset, Dataset)
|
| 66 |
-
dataset = dataset.to_iterable_dataset()
|
| 67 |
-
assert isinstance(dataset, IterableDataset)
|
| 68 |
-
|
| 69 |
-
count = 0
|
| 70 |
-
for row in dataset:
|
| 71 |
-
count += 1
|
| 72 |
-
|
| 73 |
-
print(count)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if __name__ == "__main__":
|
| 77 |
-
arg = sys.argv[1]
|
| 78 |
-
match arg:
|
| 79 |
-
case "download":
|
| 80 |
-
download()
|
| 81 |
-
case "dataset":
|
| 82 |
-
create_dataset()
|
| 83 |
-
case "test":
|
| 84 |
-
test()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/process.py
DELETED
|
@@ -1,514 +0,0 @@
|
|
| 1 |
-
import io
|
| 2 |
-
import jsonlines
|
| 3 |
-
import os
|
| 4 |
-
import sys
|
| 5 |
-
import time
|
| 6 |
-
|
| 7 |
-
import soundfile as sf
|
| 8 |
-
from datasets import Audio, Dataset, IterableDataset, load_dataset, load_from_disk
|
| 9 |
-
from pydub import AudioSegment, silence
|
| 10 |
-
from silero_vad import get_speech_timestamps, load_silero_vad
|
| 11 |
-
from torchcodec.decoders import AudioDecoder
|
| 12 |
-
from tqdm import tqdm
|
| 13 |
-
|
| 14 |
-
RAND_SEED = 381
|
| 15 |
-
DATA_DIR = "data"
|
| 16 |
-
|
| 17 |
-
NAMES = [
|
| 18 |
-
"clean",
|
| 19 |
-
"noisy",
|
| 20 |
-
"noisyenv",
|
| 21 |
-
"noise",
|
| 22 |
-
"jazz",
|
| 23 |
-
"country",
|
| 24 |
-
"folk",
|
| 25 |
-
"pop",
|
| 26 |
-
"rock",
|
| 27 |
-
"electronic",
|
| 28 |
-
"instrumental",
|
| 29 |
-
"vocal1",
|
| 30 |
-
"vocal2",
|
| 31 |
-
"vocal3",
|
| 32 |
-
]
|
| 33 |
-
|
| 34 |
-
sr = 16000
|
| 35 |
-
fl = 20 * sr // 1000
|
| 36 |
-
fh = 10 * sr // 1000
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
class Silence:
|
| 40 |
-
def __init__(self): ...
|
| 41 |
-
|
| 42 |
-
def label(
|
| 43 |
-
self, x: AudioDecoder | dict[str, str | bytes], _
|
| 44 |
-
) -> list[dict[str, dict[str, int]]]:
|
| 45 |
-
if isinstance(x, AudioDecoder):
|
| 46 |
-
siglen = int(x.get_all_samples().duration_seconds * 1000)
|
| 47 |
-
else:
|
| 48 |
-
if x["bytes"] is not None:
|
| 49 |
-
seg = AudioSegment.from_file(io.BytesIO(x["bytes"]))
|
| 50 |
-
else:
|
| 51 |
-
seg = AudioSegment.from_file(x["path"])
|
| 52 |
-
|
| 53 |
-
siglen = len(seg)
|
| 54 |
-
|
| 55 |
-
return [{"inactive": {"start": 0, "end": siglen}}]
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
class VAD:
|
| 59 |
-
def __init__(self):
|
| 60 |
-
self.model = load_silero_vad()
|
| 61 |
-
|
| 62 |
-
def label(
|
| 63 |
-
self, decoder: AudioDecoder | dict[str, str | bytes], _
|
| 64 |
-
) -> list[dict[str, dict[str, int]]]:
|
| 65 |
-
def stoms(sample: int) -> int:
|
| 66 |
-
# sample to ms
|
| 67 |
-
global sr
|
| 68 |
-
return int(sample * 1000 / sr)
|
| 69 |
-
|
| 70 |
-
assert isinstance(decoder, AudioDecoder)
|
| 71 |
-
|
| 72 |
-
x = decoder.get_all_samples()
|
| 73 |
-
|
| 74 |
-
stamps: list[dict[str, int]] = get_speech_timestamps(x.data, self.model)
|
| 75 |
-
|
| 76 |
-
if not stamps:
|
| 77 |
-
return [{"inactive": {"start": 0, "end": len(x.data)}}]
|
| 78 |
-
|
| 79 |
-
labels: list[dict[str, dict[str, int]]] = []
|
| 80 |
-
prev_end = 0
|
| 81 |
-
|
| 82 |
-
for stamp in stamps:
|
| 83 |
-
if stamp["start"] > prev_end:
|
| 84 |
-
labels.append(
|
| 85 |
-
{
|
| 86 |
-
"inactive": {
|
| 87 |
-
"start": stoms(prev_end),
|
| 88 |
-
"end": stoms(stamp["start"]),
|
| 89 |
-
}
|
| 90 |
-
}
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
labels.append(
|
| 94 |
-
{"speech": {"start": stoms(stamp["start"]), "end": stoms(stamp["end"])}}
|
| 95 |
-
)
|
| 96 |
-
prev_end = stamp["end"]
|
| 97 |
-
|
| 98 |
-
if prev_end < len(x.data):
|
| 99 |
-
labels.append(
|
| 100 |
-
{"inactive": {"start": stoms(prev_end), "end": stoms(len(x.data))}}
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
return labels
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class MusicSilenceDetector:
|
| 107 |
-
def __init__(self): ...
|
| 108 |
-
|
| 109 |
-
def label(
|
| 110 |
-
self, x: AudioDecoder | dict[str, str | bytes], thr: int
|
| 111 |
-
) -> list[dict[str, dict[str, int]]]:
|
| 112 |
-
assert isinstance(x, dict)
|
| 113 |
-
labels: list[dict[str, dict[str, int]]] = []
|
| 114 |
-
|
| 115 |
-
if x["bytes"] is not None:
|
| 116 |
-
seg = AudioSegment.from_file(io.BytesIO(x["bytes"]))
|
| 117 |
-
else:
|
| 118 |
-
seg = AudioSegment.from_file(x["path"])
|
| 119 |
-
|
| 120 |
-
sil_stamps: list[list[int]] = silence.detect_silence(
|
| 121 |
-
seg, min_silence_len=260, silence_thresh=thr
|
| 122 |
-
) # min_silence_len is in ms
|
| 123 |
-
|
| 124 |
-
if not sil_stamps:
|
| 125 |
-
return [{"music": {"start": 0, "end": len(seg)}}]
|
| 126 |
-
|
| 127 |
-
prev_end = 0
|
| 128 |
-
|
| 129 |
-
for stamp in sil_stamps:
|
| 130 |
-
if stamp[0] > prev_end:
|
| 131 |
-
labels.append(
|
| 132 |
-
{
|
| 133 |
-
"music": {
|
| 134 |
-
"start": prev_end,
|
| 135 |
-
"end": stamp[0],
|
| 136 |
-
}
|
| 137 |
-
}
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
labels.append({"inactive": {"start": stamp[0], "end": stamp[1]}})
|
| 141 |
-
prev_end = stamp[1]
|
| 142 |
-
|
| 143 |
-
if prev_end < len(seg):
|
| 144 |
-
labels.append({"music": {"start": prev_end, "end": len(seg)}})
|
| 145 |
-
|
| 146 |
-
return labels
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def process_file(
|
| 150 |
-
audio: AudioDecoder | dict[str, str | bytes],
|
| 151 |
-
silence_detector: VAD | MusicSilenceDetector | Silence,
|
| 152 |
-
split: str,
|
| 153 |
-
idx: int,
|
| 154 |
-
name: str,
|
| 155 |
-
sil_thr: int = -16,
|
| 156 |
-
) -> tuple[bool, list[dict[str, dict[str, int]]]]:
|
| 157 |
-
labels = silence_detector.label(audio, sil_thr)
|
| 158 |
-
|
| 159 |
-
file_name = f"{DATA_DIR}/{split}/{name}_{idx:04d}.wav"
|
| 160 |
-
if os.path.exists(file_name):
|
| 161 |
-
return (False, labels)
|
| 162 |
-
|
| 163 |
-
if isinstance(audio, AudioDecoder):
|
| 164 |
-
audio_data = audio.get_all_samples().data
|
| 165 |
-
if hasattr(audio_data, "cpu"):
|
| 166 |
-
audio_data = audio_data.cpu()
|
| 167 |
-
audio_data = audio_data.numpy().squeeze()
|
| 168 |
-
|
| 169 |
-
sf.write(
|
| 170 |
-
file_name,
|
| 171 |
-
audio_data,
|
| 172 |
-
samplerate=sr,
|
| 173 |
-
)
|
| 174 |
-
else:
|
| 175 |
-
seg = AudioSegment.from_file(io.BytesIO(audio["bytes"]))
|
| 176 |
-
seg.export(file_name, format="wav")
|
| 177 |
-
|
| 178 |
-
return (True, labels)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
class Meta:
|
| 182 |
-
def __init__(self, _name, _split: str):
|
| 183 |
-
self.split = _split
|
| 184 |
-
self.name = _name
|
| 185 |
-
_dir = f"partial/{self.name}"
|
| 186 |
-
os.makedirs(_dir, exist_ok=True)
|
| 187 |
-
self.path = f"{_dir}/{self.split}.jsonl"
|
| 188 |
-
self.file = jsonlines.open(self.path, mode="w")
|
| 189 |
-
self.idx = 0
|
| 190 |
-
|
| 191 |
-
def __del__(self):
|
| 192 |
-
self.file.close()
|
| 193 |
-
|
| 194 |
-
def write(
|
| 195 |
-
self, _class: str, subclass: str, labels: list[dict[str, dict[str, int]]]
|
| 196 |
-
):
|
| 197 |
-
self.file.write(
|
| 198 |
-
{
|
| 199 |
-
"file_name": f"{self.name}_{self.idx:04d}.wav",
|
| 200 |
-
"class": _class,
|
| 201 |
-
"subclass": subclass,
|
| 202 |
-
"labels": labels,
|
| 203 |
-
}
|
| 204 |
-
)
|
| 205 |
-
self.idx += 1
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
def process_dataset(
|
| 209 |
-
dataset: IterableDataset,
|
| 210 |
-
silence_detector: VAD | MusicSilenceDetector | Silence,
|
| 211 |
-
_class: str,
|
| 212 |
-
subclass: str,
|
| 213 |
-
dataset_len: int,
|
| 214 |
-
name: str,
|
| 215 |
-
sil_thr: int = -16,
|
| 216 |
-
):
|
| 217 |
-
print(f"Start processing {name}...")
|
| 218 |
-
train_end = int(0.8 * dataset_len)
|
| 219 |
-
val_end = int(0.9 * dataset_len)
|
| 220 |
-
splits = [
|
| 221 |
-
(dataset.take(train_end), Meta(name, "train")),
|
| 222 |
-
(dataset.skip(train_end).take(val_end - train_end), Meta(name, "val")),
|
| 223 |
-
(dataset.skip(val_end), Meta(name, "test")),
|
| 224 |
-
]
|
| 225 |
-
|
| 226 |
-
for split, meta in splits:
|
| 227 |
-
for row in tqdm(split, desc=f"{name} - {meta.split}"):
|
| 228 |
-
new, labels = process_file(
|
| 229 |
-
row["audio"], silence_detector, meta.split, meta.idx, name, sil_thr
|
| 230 |
-
)
|
| 231 |
-
meta.write(_class, subclass, labels)
|
| 232 |
-
|
| 233 |
-
print("Finished\n")
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def combine_metas():
|
| 237 |
-
for split in ["train", "val", "test"]:
|
| 238 |
-
with jsonlines.open(f"{DATA_DIR}/{split}/metadata.jsonl", mode="w") as meta:
|
| 239 |
-
for name in NAMES:
|
| 240 |
-
try:
|
| 241 |
-
with jsonlines.open(f"partial/{name}/{split}.jsonl") as part:
|
| 242 |
-
for line in part:
|
| 243 |
-
meta.write(line)
|
| 244 |
-
except FileNotFoundError:
|
| 245 |
-
if split == "train":
|
| 246 |
-
print(f"{name} not downloaded")
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
def main():
|
| 250 |
-
for dir in [
|
| 251 |
-
f"{DATA_DIR}/train",
|
| 252 |
-
f"{DATA_DIR}/val",
|
| 253 |
-
f"{DATA_DIR}/test",
|
| 254 |
-
]:
|
| 255 |
-
os.makedirs(dir, exist_ok=True)
|
| 256 |
-
|
| 257 |
-
vad = VAD()
|
| 258 |
-
msd = MusicSilenceDetector()
|
| 259 |
-
sil = Silence()
|
| 260 |
-
|
| 261 |
-
match sys.argv[1]:
|
| 262 |
-
case "clean":
|
| 263 |
-
print("Downloading clean")
|
| 264 |
-
clean = load_dataset(
|
| 265 |
-
"ammagra/english-arabic-speech-translation",
|
| 266 |
-
split="test",
|
| 267 |
-
streaming=True,
|
| 268 |
-
)
|
| 269 |
-
assert isinstance(clean, IterableDataset)
|
| 270 |
-
clean = (
|
| 271 |
-
clean.shuffle(seed=RAND_SEED)
|
| 272 |
-
.select_columns("audio")
|
| 273 |
-
.take(2000)
|
| 274 |
-
.cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
|
| 275 |
-
)
|
| 276 |
-
process_dataset(clean, vad, "speech", "speech_clean", 2000, "clean")
|
| 277 |
-
case "noisy":
|
| 278 |
-
print("Downloading noisy")
|
| 279 |
-
noisy = load_dataset(
|
| 280 |
-
"Jzuluaga/atco2_corpus_1h", split="test", streaming=True
|
| 281 |
-
)
|
| 282 |
-
assert isinstance(noisy, IterableDataset)
|
| 283 |
-
noisy = (
|
| 284 |
-
noisy.shuffle(seed=RAND_SEED)
|
| 285 |
-
.select_columns("audio")
|
| 286 |
-
.cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
|
| 287 |
-
)
|
| 288 |
-
process_dataset(noisy, vad, "speech", "speech_noisy", 871, "noisy")
|
| 289 |
-
|
| 290 |
-
case "noisyenv":
|
| 291 |
-
print("Downloading noisyenv")
|
| 292 |
-
noisy_env = load_from_disk("noizeus_dataset")
|
| 293 |
-
assert isinstance(noisy_env, Dataset)
|
| 294 |
-
noisy_env = noisy_env.to_iterable_dataset()
|
| 295 |
-
assert isinstance(noisy_env, IterableDataset)
|
| 296 |
-
noisy_env = (
|
| 297 |
-
noisy_env.shuffle(seed=RAND_SEED)
|
| 298 |
-
.select_columns("audio")
|
| 299 |
-
.cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
|
| 300 |
-
)
|
| 301 |
-
process_dataset(
|
| 302 |
-
noisy_env, vad, "speech", "speech_noisyenv", 630, "noisyenv"
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
case "jazz":
|
| 306 |
-
print("Downloading jazz")
|
| 307 |
-
|
| 308 |
-
jazz = load_dataset(
|
| 309 |
-
"PlutoG99001/MusicGen-Jazz-Clean", split="train", streaming=True
|
| 310 |
-
)
|
| 311 |
-
assert isinstance(jazz, IterableDataset)
|
| 312 |
-
jazz = (
|
| 313 |
-
jazz.shuffle(seed=RAND_SEED)
|
| 314 |
-
.select_columns("audio")
|
| 315 |
-
.cast_column(
|
| 316 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 317 |
-
)
|
| 318 |
-
)
|
| 319 |
-
process_dataset(
|
| 320 |
-
jazz, msd, "music", "music_acoustic", 50, "jazz", sil_thr=-20
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
case "country":
|
| 324 |
-
print("Downloading country")
|
| 325 |
-
|
| 326 |
-
country = load_dataset(
|
| 327 |
-
"ylacombe/music_genres_Country", split="train", streaming=True
|
| 328 |
-
)
|
| 329 |
-
assert isinstance(country, IterableDataset)
|
| 330 |
-
country = (
|
| 331 |
-
country.shuffle(seed=RAND_SEED)
|
| 332 |
-
.select_columns("audio")
|
| 333 |
-
.cast_column(
|
| 334 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 335 |
-
)
|
| 336 |
-
)
|
| 337 |
-
process_dataset(
|
| 338 |
-
country, msd, "music", "music_acoustic", 142, "country", sil_thr=-25
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
case "folk":
|
| 342 |
-
print("Downloading folk")
|
| 343 |
-
folk = load_dataset("lewtun/music_genres", split="train", streaming=True)
|
| 344 |
-
assert isinstance(folk, IterableDataset)
|
| 345 |
-
folk = (
|
| 346 |
-
folk.shuffle(seed=RAND_SEED)
|
| 347 |
-
.select_columns(["audio", "genre"])
|
| 348 |
-
.filter(lambda row: row["genre"] == "Folk")
|
| 349 |
-
.take(1000)
|
| 350 |
-
.cast_column(
|
| 351 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 352 |
-
)
|
| 353 |
-
)
|
| 354 |
-
process_dataset(
|
| 355 |
-
folk, msd, "music", "music_acoustic", 1000, "folk", sil_thr=-33
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
case "pop":
|
| 359 |
-
print("Downloading pop")
|
| 360 |
-
|
| 361 |
-
pop = load_dataset(
|
| 362 |
-
"memepottaboah/POPMUSIC1981", split="train", streaming=True
|
| 363 |
-
)
|
| 364 |
-
assert isinstance(pop, IterableDataset)
|
| 365 |
-
pop = (
|
| 366 |
-
pop.shuffle(seed=RAND_SEED)
|
| 367 |
-
.select_columns("audio")
|
| 368 |
-
.cast_column(
|
| 369 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 370 |
-
)
|
| 371 |
-
)
|
| 372 |
-
process_dataset(
|
| 373 |
-
pop, msd, "music", "music_mainstream", 268, "pop", sil_thr=-22
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
case "rock":
|
| 377 |
-
print("Downloading rock")
|
| 378 |
-
rock = load_dataset("lewtun/music_genres", split="train", streaming=True)
|
| 379 |
-
assert isinstance(rock, IterableDataset)
|
| 380 |
-
rock = (
|
| 381 |
-
rock.shuffle(seed=RAND_SEED)
|
| 382 |
-
.select_columns(["audio", "genre"])
|
| 383 |
-
.filter(lambda row: row["genre"] == "Rock")
|
| 384 |
-
.take(2000)
|
| 385 |
-
.cast_column(
|
| 386 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 387 |
-
)
|
| 388 |
-
)
|
| 389 |
-
process_dataset(
|
| 390 |
-
rock, msd, "music", "music_mainstream", 2000, "rock", sil_thr=-30
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
case "electronic":
|
| 394 |
-
print("Downloading electronic")
|
| 395 |
-
|
| 396 |
-
electronic = load_dataset(
|
| 397 |
-
"PlutoG99001/MusicGen-Electronic-Clean", split="train", streaming=True
|
| 398 |
-
)
|
| 399 |
-
assert isinstance(electronic, IterableDataset)
|
| 400 |
-
electronic = (
|
| 401 |
-
electronic.shuffle(seed=RAND_SEED)
|
| 402 |
-
.select_columns("audio")
|
| 403 |
-
.cast_column(
|
| 404 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 405 |
-
)
|
| 406 |
-
)
|
| 407 |
-
process_dataset(
|
| 408 |
-
electronic,
|
| 409 |
-
msd,
|
| 410 |
-
"music",
|
| 411 |
-
"music_electronic",
|
| 412 |
-
52,
|
| 413 |
-
"electronic",
|
| 414 |
-
sil_thr=-25,
|
| 415 |
-
)
|
| 416 |
-
|
| 417 |
-
case "instrumental":
|
| 418 |
-
print("Downloading instrumental")
|
| 419 |
-
instrumental = load_dataset(
|
| 420 |
-
"PlutoG99001/MusicGen-Classical", split="train", streaming=True
|
| 421 |
-
)
|
| 422 |
-
assert isinstance(instrumental, IterableDataset)
|
| 423 |
-
instrumental = (
|
| 424 |
-
instrumental.shuffle(seed=RAND_SEED)
|
| 425 |
-
.select_columns("audio")
|
| 426 |
-
.cast_column(
|
| 427 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 428 |
-
)
|
| 429 |
-
)
|
| 430 |
-
process_dataset(
|
| 431 |
-
instrumental,
|
| 432 |
-
msd,
|
| 433 |
-
"music",
|
| 434 |
-
"music_instrumental",
|
| 435 |
-
495,
|
| 436 |
-
"instrumental",
|
| 437 |
-
sil_thr=-27,
|
| 438 |
-
)
|
| 439 |
-
|
| 440 |
-
case "vocal1":
|
| 441 |
-
print("Downloading vocal1")
|
| 442 |
-
|
| 443 |
-
vocal1 = load_dataset(
|
| 444 |
-
"ccmusic-database/acapella", split="song1", streaming=True
|
| 445 |
-
)
|
| 446 |
-
assert isinstance(vocal1, IterableDataset)
|
| 447 |
-
vocal1 = (
|
| 448 |
-
vocal1.shuffle(seed=RAND_SEED)
|
| 449 |
-
.select_columns("audio")
|
| 450 |
-
.cast_column(
|
| 451 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 452 |
-
)
|
| 453 |
-
)
|
| 454 |
-
process_dataset(
|
| 455 |
-
vocal1, msd, "music", "music_vocal", 22, "vocal1", sil_thr=-48
|
| 456 |
-
)
|
| 457 |
-
|
| 458 |
-
case "vocal2":
|
| 459 |
-
print("Downloading vocal2")
|
| 460 |
-
|
| 461 |
-
vocal2 = load_dataset(
|
| 462 |
-
"ccmusic-database/acapella", split="song2", streaming=True
|
| 463 |
-
)
|
| 464 |
-
assert isinstance(vocal2, IterableDataset)
|
| 465 |
-
vocal2 = (
|
| 466 |
-
vocal2.shuffle(seed=RAND_SEED)
|
| 467 |
-
.select_columns("audio")
|
| 468 |
-
.cast_column(
|
| 469 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 470 |
-
)
|
| 471 |
-
)
|
| 472 |
-
process_dataset(
|
| 473 |
-
vocal2, msd, "music", "music_vocal", 22, "vocal2", sil_thr=-48
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
case "vocal3":
|
| 477 |
-
print("Downloading vocal3")
|
| 478 |
-
|
| 479 |
-
vocal3 = load_dataset(
|
| 480 |
-
"ccmusic-database/acapella", split="song3", streaming=True
|
| 481 |
-
)
|
| 482 |
-
assert isinstance(vocal3, IterableDataset)
|
| 483 |
-
vocal3 = (
|
| 484 |
-
vocal3.shuffle(seed=RAND_SEED)
|
| 485 |
-
.select_columns("audio")
|
| 486 |
-
.cast_column(
|
| 487 |
-
"audio", Audio(sampling_rate=sr, num_channels=1, decode=False)
|
| 488 |
-
)
|
| 489 |
-
)
|
| 490 |
-
process_dataset(
|
| 491 |
-
vocal3, msd, "music", "music_vocal", 22, "vocal3", sil_thr=-48
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
case "noise":
|
| 495 |
-
print("Downloading noise")
|
| 496 |
-
|
| 497 |
-
noise = load_from_disk("musan_noise_dataset")
|
| 498 |
-
assert isinstance(noise, Dataset)
|
| 499 |
-
noise = noise.to_iterable_dataset()
|
| 500 |
-
assert isinstance(noise, IterableDataset)
|
| 501 |
-
noise = (
|
| 502 |
-
noise.shuffle(seed=RAND_SEED)
|
| 503 |
-
.select_columns("audio")
|
| 504 |
-
.cast_column("audio", Audio(sampling_rate=sr, num_channels=1))
|
| 505 |
-
)
|
| 506 |
-
process_dataset(noise, sil, "noise", "noise", 169, "noise")
|
| 507 |
-
|
| 508 |
-
case "combine":
|
| 509 |
-
combine_metas()
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
if __name__ == "__main__":
|
| 513 |
-
main()
|
| 514 |
-
time.sleep(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/pyproject.toml
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
[project]
|
| 2 |
-
name = "dataset"
|
| 3 |
-
version = "0.1.0"
|
| 4 |
-
description = "Add your description here"
|
| 5 |
-
readme = "README.md"
|
| 6 |
-
requires-python = ">=3.12"
|
| 7 |
-
dependencies = [
|
| 8 |
-
"boto3>=1.40.74",
|
| 9 |
-
"datasets>=4.4.1",
|
| 10 |
-
"dotenv>=0.9.9",
|
| 11 |
-
"jsonlines>=4.0.0",
|
| 12 |
-
"librosa>=0.11.0",
|
| 13 |
-
"numpy>=2.3.4",
|
| 14 |
-
"pyarrow>=22.0.0",
|
| 15 |
-
"pydub>=0.25.1",
|
| 16 |
-
"ruff>=0.14.4",
|
| 17 |
-
"silero-vad>=6.2.0",
|
| 18 |
-
"soundfile>=0.13.1",
|
| 19 |
-
"torchaudio>=2.9.0",
|
| 20 |
-
"tqdm>=4.67.1",
|
| 21 |
-
"ty>=0.0.1a26",
|
| 22 |
-
"webrtcvad>=2.0.10",
|
| 23 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/test.py
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
import os
|
| 3 |
-
import jsonlines
|
| 4 |
-
from pydub import AudioSegment, silence
|
| 5 |
-
|
| 6 |
-
os.makedirs("test", exist_ok=True)
|
| 7 |
-
|
| 8 |
-
split = sys.argv[1]
|
| 9 |
-
subclass = sys.argv[2]
|
| 10 |
-
idx = int(sys.argv[3])
|
| 11 |
-
file = f"data/{split}/{subclass}_{idx:04d}.wav"
|
| 12 |
-
meta = f"partial/{subclass}/{split}.jsonl"
|
| 13 |
-
|
| 14 |
-
with jsonlines.open(meta) as r:
|
| 15 |
-
for i, obj in enumerate(r):
|
| 16 |
-
if i == idx:
|
| 17 |
-
labels = obj["labels"]
|
| 18 |
-
break
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
orig = AudioSegment.from_file(file)
|
| 22 |
-
|
| 23 |
-
segments = silence.split_on_silence(
|
| 24 |
-
orig,
|
| 25 |
-
min_silence_len=260,
|
| 26 |
-
silence_thresh=int(sys.argv[4]),
|
| 27 |
-
keep_silence=False,
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
nonsilent = AudioSegment.empty()
|
| 31 |
-
for seg in segments:
|
| 32 |
-
nonsilent += seg
|
| 33 |
-
|
| 34 |
-
orig.export("test/orig.wav", format="wav")
|
| 35 |
-
nonsilent.export("test/nonsilent.wav", format="wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/thrs.csv
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
subclass,thr
|
| 2 |
-
country,-25
|
| 3 |
-
electronic,-25
|
| 4 |
-
folk,-33
|
| 5 |
-
instrumental,-27
|
| 6 |
-
jazz,-20
|
| 7 |
-
pop,-22
|
| 8 |
-
rock,-30
|
| 9 |
-
vocal1,-48
|
| 10 |
-
vocal2,-48
|
| 11 |
-
vocal3,-48
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/uv.lock
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|