File size: 9,088 Bytes
d5ef0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc20fd
 
 
 
 
 
 
 
 
 
 
d5ef0b1
ebc20fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
dataset_info:
  features:
  - name: question
    dtype: string
  - name: subtest
    dtype: string
  splits:
  - name: train
    num_bytes: 1463
    num_examples: 20
  download_size: 2343
  dataset_size: 1463
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: mit
task_categories:
- text-generation
- text-classification
language:
- en
tags:
- aphasia
pretty_name: Text Aphasia Battery (TAB)
size_categories:
- n<1K
---

# Text Aphasia Battery (TAB)

The **Text Aphasia Battery (TAB)** is a modified subset of the [Quick Aphasia Battery (QAB)](https://aphasialab.org/qab/) designed to assess aphasic symptoms in environments where input and output modalities are restricted to text. TAB is especially useful for large-scale identification of aphasic features in applications such as corpus studies and evaluations of large language models (LLMs). **Note:** TAB is not a replacement for the QAB or other clinical diagnostic tools.

---

## Overview

TAB consists of **four subtests** that evaluate different aspects of language function:

1. **Connected Text**
2. **Word Comprehension**
3. **Sentence Comprehension**
4. **Repetition**

Each subtest comes with specific instructions and scoring criteria, aimed at detecting various aphasic markers.

---

## Subtests

### 1. Connected Text

- **Objective:**  
  Evaluate fluency, grammaticality, and coherence of speech.

- **Instructions:**  
  Respond to the following prompts in 3–5 full sentences:
  - "Tell me about the best trip you ever took."
  - "Describe a happy childhood memory."
  - "Tell me about your first job."
  - "What do you like about where you live?"
  - "Describe what is happening in the following scene: The boy is pushing the girl."

- **Scoring:**  
  Uses adapted non-motor APROCSA features (see **Notes on Evaluation**).

---

### 2. Word Comprehension

- **Objective:**  
  Evaluate lexical-semantic processing and selection among competing meanings.

- **Instructions:**  
  Elicit responses **verbatim** for the following:
  - "Which one is an animal: ‘lion’ or ‘drum’?"
  - "Which object is typically used to make music: ‘violin’ or ‘giraffe’?"
  - "Which item is usually worn on the feet: ‘boot’ or ‘boat’?"
  - "Which object is used for cutting: ‘knife’ or ‘kite’?"
  - "Which one is a large mammal with a long neck: ‘giraffe’ or ‘horse’?"

- **Scoring:**  
  Responses are scored in a binary fashion (correct/incorrect). Incorrect selections may indicate deficits in semantic processing.

---

### 3. Sentence Comprehension

- **Objective:**  
  Evaluate syntactic processing, comprehension of passive structures, and logical reasoning.

- **Instructions:**  
  Elicit responses **verbatim** for the following:
  - "Are babies watched by babysitters?" (Expected: **Yes**)
  - "Do you cut the grass with an axe?" (Expected: **No**)
  - "If you’re about to leave, have you left yet?" (Expected: **No**)
  - "Are witnesses questioned by police?" (Expected: **Yes**)
  - "If I was at the park when you arrived, did I get there first?" (Expected: **Yes**)

- **Scoring:**  
  Delayed or incorrect responses may indicate difficulties with syntactic processing, handling of negation, or confusion with passive constructions.

---

### 4. Repetition

- **Objective:**  
  Evaluate morphosyntactic integrity.

- **Instructions:**  
  Elicit responses **verbatim** for the following:
  - "Please repeat exactly: house."
  - "Please repeat exactly: breakfast."
  - "Please repeat exactly: catastrophe."
  - "Please repeat exactly: The sun rises in the East."
  - "Please repeat exactly: The ambitious journalist discovered where we’d be going."

- **Scoring:**  
  Check for exact reproduction. Errors (e.g., phonemic substitutions, deletions, or distortions) indicate issues with morphosyntactic processing.

---

## Notes on Evaluation

TAB scoring is based on **binary pass/fail** criteria according to predefined aphasic markers. The evaluation focuses on the following linguistic features:

- **Anomia:** Word-finding failures or circumlocutions.
- **Paraphasias:**  
  - *Semantic Paraphasias:* Substitution of one content word for another.  
  - *Phonemic Paraphasias:* Errors in sound production (substitution, insertion, deletion, or transposition).
- **Agrammatism:** Omission of function words or morphemes.
- **Paragrammatism:** Incorrect or inappropriate grammatical structures.
- **Empty Speech:** Overuse of vague, nonspecific words.
- **Repetition/Reading Errors:** Deletions, insertions, or distortions.

For **Connected Text**, each response should be evaluated for the presence (1) or absence (0) of the following APROCSA features:

- Anomia
- Abandoned utterances
- Empty speech
- Semantic paraphasias
- Phonemic paraphasias (evaluated at token-level in models)
- Neologisms
- Jargon
- Perseverations
- Stereotypies and automatisms
- Short and simplified utterances
- Omission of bound morphemes
- Omission of function words
- Paragrammatism
- Retracing
- False starts
- Conduite d’approche
- Meaning unclear
- Off-topic
- Overall communication impairment

---

## Automatic Identification Prompt

The TAB is built for automatic evaluation using in-context LLM prompting. The system processes a transcript and produces a JSON file with each linguistic feature as a key and its value set to **1** (feature present) or **0** (feature not present).

### Instructions

- **Input:**  
  A transcript passage.

- **Processing:**  
  Analyze the transcript according to the definitions and examples below.

- **Output:**  
  A JSON file that includes **every one** of the following features as keys:

  - Anomia
  - Abandoned utterances
  - Empty speech
  - Semantic paraphasias
  - Phonemic paraphasias
  - Neologisms
  - Jargon
  - Perseverations
  - Stereotypies and automatisms
  - Short and simplified utterances
  - Omission of bound morphemes
  - Omission of function words
  - Paragrammatism
  - False starts
  - Retracing
  - Conduite d’approche
  - Meaning unclear
  - Off-topic
  - Overall communication impairment

### Output Format

Your JSON output **must** include each feature as a key with its corresponding value (0 or 1). Do **not** include any additional keys or extraneous information.

---

### Examples

#### Example 1

**Hypothetical Passage:**

> "I was trying to tell you about my day but I just I mean I wanted to say something about the store I go store I wanted a pen I mean pencil The ball the ball the ball kept bouncing and I just stopped you know I keep saying dammit dammit dammit all the time"

**Associated JSON Output:**

```json
{
  "Anomia": 1,
  "Abandoned utterances": 1,
  "Empty speech": 0,
  "Semantic paraphasias": 0,
  "Phonemic paraphasias": 0,
  "Neologisms": 0,
  "Jargon": 0,
  "Perseverations": 1,
  "Stereotypies and automatisms": 1,
  "Short and simplified utterances": 1,
  "Omission of bound morphemes": 1,
  "Omission of function words": 1,
  "Paragrammatism": 0,
  "False starts": 0,
  "Retracing": 0,
  "Conduite d’approche": 0,
  "Meaning unclear": 0,
  "Off-topic": 0,
  "Overall communication impairment": 1
}
```

#### Example 2

**Hypothetical Passage:**

> "I want to go to the store to buy a blorf You know I keep trying to say it but I say I want to go to the st store I want a pa pen I mean pencil I dont know what im trying to say It all seems not right"

**Associated JSON Output:**

```json
{
  "Anomia": 1,
  "Abandoned utterances": 0,
  "Empty speech": 0,
  "Semantic paraphasias": 0,
  "Phonemic paraphasias": 0,
  "Neologisms": 1,
  "Jargon": 0,
  "Perseverations": 0,
  "Stereotypies and automatisms": 0,
  "Short and simplified utterances": 0,
  "Omission of bound morphemes": 0,
  "Omission of function words": 0,
  "Paragrammatism": 0,
  "False starts": 1,
  "Retracing": 0,
  "Conduite d’approche": 1,
  "Meaning unclear": 1,
  "Off-topic": 0,
  "Overall communication impairment": 1
}
```

> **Important:** Your analysis must strictly adhere to the definitions and examples provided. No additional keys or information should be included in the output JSON.

---

## Sources

1. **Wilson SM, Eriksson DK, Schneck SM, Lucanie JM.**  
   *A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function.*  
   **PLoS One** 2018; 13(2): e0192773.

2. **Casilio M, Rising K, Beeson PM, Bunton K, Wilson SM.**  
   *Auditory-perceptual rating of connected speech in aphasia.*  
   **Am J Speech Lang Pathol** 2019; 28: 550-68.

*Definitions and examples for the automatic identification prompt are adapted from Table 1 of Casilio et al. (2019).*

---

## Disclaimer

The TAB is intended **for research and evaluation purposes only**. It should not be used as a clinical diagnostic tool or a substitute for professional evaluation.

---

## Contributing

Contributions are welcome! If you wish to improve or extend TAB:
1. Fork the repository.
2. Create your feature branch.
3. Commit your changes.
4. Open a pull request.

---

## License

the TAB is released openly under the MIT license