OzTianlu commited on
Commit
0d8792e
·
verified ·
1 Parent(s): d890e58

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +372 -3
README.md CHANGED
@@ -1,3 +1,372 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From Reasoning Structure to the Ancient Problem of Primes
2
+
3
+ [![DOI](https://img.shields.io/badge/DOI-10.57967%2Fhf%2F7156-blue)](https://doi.org/10.57967/hf/7156)
4
+ [![Paper](https://img.shields.io/badge/Paper-PDF-red)](https://huggingface.co/datasets/OzTianlu/From_Reasoning_Structure_to_the_Ancient_Problem_of_Primes)
5
+ [![License](https://img.shields.io/badge/License-CC--BY--4.0-green)](LICENSE)
6
+
7
+ **Author:** Zixi Li (Oz Lee)
8
+ **Date:** 2025
9
+ **Publisher:** Hugging Face
10
+
11
+ ## Citation
12
+
13
+ ```bibtex
14
+ @misc{oz_lee_2025,
15
+ author = { Oz Lee },
16
+ title = { From_Reasoning_Structure_to_the_Ancient_Problem_of_Primes (Revision d9034a1) },
17
+ year = 2025,
18
+ url = { https://huggingface.co/datasets/OzTianlu/From_Reasoning_Structure_to_the_Ancient_Problem_of_Primes },
19
+ doi = { 10.57967/hf/7156 },
20
+ publisher = { Hugging Face }
21
+ }
22
+ ```
23
+
24
+ ---
25
+
26
+ ## Core Contributions
27
+
28
+ This work presents a **fundamental reconceptualization of number theory** grounded in semantic structure rather than algorithmic operations, establishing number theory as the **minimal interpretable reasoning system**.
29
+
30
+ ### 1. **Semantic Critique of Modular Arithmetic**
31
+
32
+ We prove that classical modular arithmetic, despite its computational success, exhibits **structural ambiguity**:
33
+
34
+ - **Path-agnostic collapse**: `7 mod 3 = 1` and `9 mod 4 = 1` yield identical residues but structurally distinct decompositions
35
+ - **External semantic dependence**: Mod operations require external definitions (division → multiplication → addition → Peano axioms)
36
+ - **Structural loss**: Chinese Remainder Theorem representations discard decomposition paths
37
+
38
+ **Key Result (Theorem 2.1):** Modular arithmetic is path-agnostic—it collapses distinct structural paths into identical equivalence classes, rendering it semantically opaque.
39
+
40
+ ### 2. **Euler Stack Framework**
41
+
42
+ Building on the [Euler Stack dynamics](https://doi.org/10.57967/hf/7110), we introduce a **dynamic semantic structure** for natural numbers:
43
+
44
+ - Each number `n` corresponds to a unique **Abstract Syntax Tree (AST)** via stack expansion (push/pop/overwrite)
45
+ - **Structural uniqueness**: Unlike mod's equivalence classes, stack-based ASTs preserve decomposition paths
46
+ - **Weak reversibility**: Stack operations enable backtracking, absent in irreversible neural updates
47
+
48
+ **Key Result (Theorem 3.2):** Stack-AST correspondence—any Euler Stack trajectory naturally generates a unique AST with semantic bias determined entirely by the operation sequence.
49
+
50
+ ### 3. **Primes as Semantic Irreducibility**
51
+
52
+ We redefine primality not as "divisible only by 1 and itself" (algorithmic test), but as a **dynamic semantic property**:
53
+
54
+ ```
55
+ Prime(p) ⟺ push(p) admits no legal pop path
56
+ ```
57
+
58
+ - **Push**: Introduce semantic layer (attempt factorization)
59
+ - **Pop**: Eliminate layer via simpler semantics (successful factorization)
60
+ - **Push-Pop Asymmetry**: Pop must exist (grounding mandatory), push need not (not all numbers require abstraction)
61
+
62
+ **Key Result (Theorem 4.1):** Primality-Stack Duality—primes are isomorphic to "push mandatory, pop forbidden" states; composites to "push → pop legal" states.
63
+
64
+ ### 4. **Number Theory as Minimal Explainable Reasoning**
65
+
66
+ We establish an isomorphism between number-theoretic structure and reasoning dynamics:
67
+
68
+ | Number Theory | Reasoning System |
69
+ |---------------|------------------|
70
+ | Prime irreducibility | Reasoning termination |
71
+ | Composite reducibility | Reasoning composition |
72
+ | Stack trajectory | Inference path |
73
+ | AST representation | Semantic carrier |
74
+
75
+ **Key Result (Theorem 5.1):** If interpretability succeeds in number theory (the simplest mathematical domain), it provides a foundation for reasoning in arbitrarily complex systems.
76
+
77
+ ---
78
+
79
+ ## Paper Structure (Roadmap)
80
+
81
+ ### **Chapter 1: Introduction—The Ancient Question Revisited**
82
+
83
+ - **The opacity of modular arithmetic**: How mod operations collapse structure
84
+ - **The paradox**: Modern formalism operates at symbolic level, not semantic level
85
+ - **Our approach**: Return to semantic foundations via Euler Stack dynamics
86
+
87
+ ### **Chapter 2: Related Work and Methodological Foundations**
88
+
89
+ - **Chinese Remainder Theorem**: CRT as congruence maximization
90
+ - **Chen's Theorem on Goldbach's Conjecture**: Analytic-congruence paradigm limitations
91
+ - **Paradigm comparison**: Congruence/sieve methods vs. semantic/dynamic methods
92
+
93
+ **Table 2.1:** Methodological comparison showing orthogonality—classical methods excel at asymptotic existence proofs, our framework excels at structural explanations.
94
+
95
+ ### **Chapter 3: Structural Weakness of Modular Arithmetic**
96
+
97
+ - **Path-agnostic operation** (Definition 3.1): Different decomposition paths → identical residues
98
+ - **External semantic dependence**: Mod lacks self-closure
99
+ - **What we need instead**: Structural preservation, intrinsic generation, AST correspondence
100
+
101
+ **Example 3.1:** `7 mod 3 = 9 mod 4 = 1` but decompositions `7 = 3×2+1` vs `9 = 4×2+1` are structurally distinct.
102
+
103
+ ### **Chapter 4: Euler Stack—The Minimal Dynamic Semantic System**
104
+
105
+ - **Formal definition** (Definition 4.1): Stack as semantic generation structure, not storage
106
+ - **Computational boundary** (Definition 4.2): Fixed bottom frame (prior anchor)
107
+ - **Operations**: Push (semantic introduction), Pop (semantic elimination), Overwrite (local modification)
108
+
109
+ **Theorem 4.1:** Weak reversibility—push/pop enable backtracking.
110
+ **Theorem 4.2:** Stack-AST correspondence—unique semantic bias per trajectory.
111
+
112
+ **Table 4.1:** Comparison showing Euler Stack surpasses mod in structural representation, path preservation, and interpretability.
113
+
114
+ ### **Chapter 5: Primes as Dynamic Semantic Endpoints**
115
+
116
+ - **Number-AST correspondence** (Definition 5.1): Each `n ↦ AST(n)`
117
+ - **Semantic irreducibility** (Definition 5.2): Prime = push mandatory, pop forbidden
118
+ - **Semantic reducibility** (Definition 5.3): Composite = push → pop legal
119
+
120
+ **Lemma chain (5.1–5.4):** Constructive derivation from Euler Stack axioms to primality test.
121
+
122
+ **Example 5.1:** Composite `12 = 3×4`: Push → decompose → pop (successful grounding).
123
+ **Example 5.2:** Prime `7`: Push → no factors exist → pop forbidden (semantic stasis).
124
+
125
+ ### **Chapter 6: Number Theory as Minimal Explainable Reasoning System**
126
+
127
+ - **Yonglin Formula for number theory** (Theorem 6.1): All reasoning converges to prior anchor
128
+ - **Incompleteness** (Corollary 6.1): Prior anchor cannot explain itself (boundary enables convergence)
129
+ - **Connection to classical results**: Goldbach (AST decomposition), Prime Number Theorem (logarithmic density), Fundamental Theorem (AST uniqueness)
130
+
131
+ ### **Chapter 7: Experimental Validation**
132
+
133
+ Five experiments with 100% classification accuracy:
134
+
135
+ 1. **Minimal Semantic Explanation Machine** (Algorithm 7.1): Prime/composite test via stack depth
136
+ 2. **Stack Trajectory Comparison** (Algorithm 7.2): Primes persist at `t=1`, composites return to `t=0`
137
+ 3. **Pop-Dominance Convergence** (Algorithm 7.3): `p_pop > 0.5` guarantees convergence to prior
138
+ 4. **Classification Statistics**: 25 primes (depth 1) + 74 composites (depth 0) in [2,100]
139
+ 5. **AST Depth Analysis** (Algorithm 7.4): All primes = leaf nodes (depth 0)
140
+
141
+ **Figures:**
142
+ - `fig1_stack_trajectories.png`: Visual proof of semantic irreducibility
143
+ - `fig2_mod_collapse.png`: Path-agnostic property of mod
144
+ - `fig3_classification.png`: 100% sensitivity/specificity
145
+ - `fig4_ast_depth.png`: Primes as structural endpoints
146
+ - `fig5_push_pop_asymmetry.png`: Pop-dominance phase transition
147
+
148
+ ### **Chapter 8: Discussion and Future Directions**
149
+
150
+ - Relationship to computational complexity (stack semantics → circuit complexity?)
151
+ - Extensions to algebraic number theory (Gaussian integers, class field theory)
152
+ - Implications for AI interpretability (neural networks lack AST structure)
153
+
154
+ ---
155
+
156
+ ## Key Theorems
157
+
158
+ | Theorem | Statement | Significance |
159
+ |---------|-----------|--------------|
160
+ | **2.1** Path-Agnosticity | Mod is path-agnostic: `a mod m = b mod n` ≠> structural equivalence | Exposes semantic opacity of classical approach |
161
+ | **3.2** Stack-AST Correspondence | Euler Stack trajectories ↔ unique ASTs | Enables semantic transparency |
162
+ | **4.1** Primality-Stack Duality | Prime ↔ push mandatory, pop forbidden | Primality as dynamic property, not static label |
163
+ | **5.1** Number Theory ≅ Reasoning | Number structure ↔ reasoning structure (isomorphism) | Foundation for interpretable AI |
164
+ | **6.1** Yonglin Formula (NT) | All reasoning converges to prior anchor | Incompleteness enables convergence |
165
+
166
+ ---
167
+
168
+ ## Experimental Results
169
+
170
+ ### Classification Performance (n ∈ [2, 100])
171
+
172
+ - **Primes (25):** All have final stack depth `t = 1` (semantic layer cannot be eliminated)
173
+ - **Composites (74):** All have final stack depth `t = 0` (successful grounding)
174
+ - **Accuracy:** 100% sensitivity, 100% specificity, F1 = 1.0
175
+
176
+ ### Pop-Dominance Phase Transition
177
+
178
+ - `p_pop ≤ 0.5`: Stack diverges (unbounded depth)
179
+ - `p_pop > 0.5`: Stack converges to prior anchor `t = 0`
180
+ - Critical threshold at `p_pop = 0.5` validates Lemma 6.1
181
+
182
+ ### AST Depth Distribution
183
+
184
+ - **All primes:** Depth = 0 (leaf nodes, no internal structure)
185
+ - **Composites:** Depth ∈ [1,5], mean ≈ 2.1
186
+ - **Highly composite (e.g., 64 = 2⁶):** Depth = 6 (deep semantic tree)
187
+
188
+ ---
189
+
190
+ ## Repository Structure
191
+
192
+ ```
193
+ Prime/
194
+ ├── interpretable_number_theory.tex # Main paper
195
+ ├── euler_stack.tex # Euler Stack framework (companion)
196
+ ├── draft.md # Conceptual development (Chinese)
197
+ ├── semantic_irreducibility.md # Push-pop asymmetry formalization
198
+ ├── experiments.py # Computational validation
199
+ ├── outputs/
200
+ │ ├── fig1_stack_trajectories.png # Prime vs composite dynamics
201
+ │ ├── fig2_mod_collapse.png # Modular path-agnosticism
202
+ │ ├── fig3_classification.png # 100% accuracy demonstration
203
+ │ ├── fig4_ast_depth.png # Primes as leaf nodes
204
+ │ ├── fig5_push_pop_asymmetry.png # Convergence phase transition
205
+ │ └── *.csv # Raw experimental data
206
+ └── README.md # This file
207
+ ```
208
+
209
+ ---
210
+
211
+ ## Building the Paper
212
+
213
+ ### Requirements
214
+
215
+ - LaTeX distribution (TeX Live, MiKTeX, or MacTeX)
216
+ - Required packages: `amsmath`, `amssymb`, `amsthm`, `tikz`, `hyperref`, `algorithm`, `booktabs`
217
+
218
+ ### Compilation
219
+
220
+ ```bash
221
+ # Compile main paper
222
+ pdflatex interpretable_number_theory.tex
223
+ pdflatex interpretable_number_theory.tex # Second pass for references
224
+
225
+ # Compile Euler Stack companion paper
226
+ pdflatex euler_stack.tex
227
+ pdflatex euler_stack.tex
228
+ ```
229
+
230
+ ### Running Experiments
231
+
232
+ ```bash
233
+ python3 experiments.py
234
+ ```
235
+
236
+ **Outputs:**
237
+ - CSV files in `outputs/` (classification results, mod structure, AST depth)
238
+ - PNG figures in `outputs/` (5 figures with seaborn visualizations)
239
+
240
+ ---
241
+
242
+ ## Conceptual Architecture
243
+
244
+ ### The Central Thesis
245
+
246
+ **Classical number theory:** "Prime = divisible only by 1 and itself" (decidable, not explanatory)
247
+
248
+ **Our framework:** "Prime = semantic endpoint where introduced layers cannot be eliminated" (structural, interpretable)
249
+
250
+ ### The Push-Pop Asymmetry (Observation 4.1)
251
+
252
+ This is the essence of primality:
253
+
254
+ - **Pop must exist**: All reasoning must ground (convergence mandatory)
255
+ - **Push need not exist**: Not all numbers require higher semantics (abstraction optional)
256
+ - **Primes**: Push mandatory (attempt factorization), pop forbidden (no factors exist)
257
+ - **Composites**: Push → pop legal (factorization succeeds, grounding achieved)
258
+
259
+ ### Why This Matters for AI
260
+
261
+ If numbers—the simplest reasoning objects—require semantic structure (ASTs) for interpretability, then:
262
+
263
+ 1. **Neural networks in ℝᵈ lack this structure**: Vector embeddings collapse semantics just as mod collapses decomposition paths
264
+ 2. **Stack-based architectures needed**: Discrete stack spaces with boundaries preserve semantic structure
265
+ 3. **Interpretability is structural**: Not a post-hoc explanation technique, but intrinsic consequence of correct operator categories
266
+
267
+ ---
268
+
269
+ ## Relationship to Prior Work
270
+
271
+ This paper synthesizes insights from two companion works:
272
+
273
+ 1. **[When Euler Meets Stack](https://doi.org/10.57967/hf/7110)** (Revision 31ac1ac):
274
+ - Proves sequential models (Transformers, RNNs) structurally fail at reasoning
275
+ - Introduces Euler-Stack correspondence: pointer dynamics ≅ honest discrete Euler iterations
276
+ - Establishes convergence via Lyapunov function V(t) = stack depth
277
+
278
+ 2. **[Computational Boundaries](https://doi.org/10.57967/hf/7067)**:
279
+ - Phase transitions in NP-hard problems
280
+ - Critical density `d_c(L)` marking solvable/unsolvable boundary
281
+
282
+ 3. **[Reasoning Incompleteness](https://doi.org/10.57967/hf/7060)**:
283
+ - Yonglin Formula: reasoning converges to prior anchors
284
+ - Incompleteness as dynamical system property, not defect
285
+
286
+ **This paper:** Applies Euler Stack framework to **number theory**, redefining primality as semantic irreducibility and establishing number theory as the minimal explainable reasoning system.
287
+
288
+ ---
289
+
290
+ ## Why This Framework is Different
291
+
292
+ ### Classical Congruence-Based Paradigm
293
+
294
+ | Property | Congruence/Sieve Methods |
295
+ |----------|-------------------------|
296
+ | Representation | Residue classes {n mod mᵢ} |
297
+ | Primality | Divisibility test (algorithmic) |
298
+ | Decomposition | External probing via moduli |
299
+ | Goldbach problem | Existence via density arguments (Chen's Theorem) |
300
+ | Interpretability | Opaque (residue distributions) |
301
+
302
+ ### Our Semantic-Dynamic Paradigm
303
+
304
+ | Property | Euler Stack Semantics |
305
+ |----------|----------------------|
306
+ | Representation | AST trajectories S(n) |
307
+ | Primality | Semantic irreducibility (structural) |
308
+ | Decomposition | Intrinsic push/pop dynamics |
309
+ | Goldbach problem | Semantic decomposition paths |
310
+ | Interpretability | Transparent (AST structure) |
311
+
312
+ **Both paradigms are essential:** Classical methods provide asymptotic guarantees; our framework provides structural explanations.
313
+
314
+ ---
315
+
316
+ ## Positioning Statement
317
+
318
+ > For Goldbach's Conjecture and prime distribution, I respect professional number theorists to advance those frontiers.
319
+ >
320
+ > What I aim to do is something different—
321
+ >
322
+ > **To make number theory itself interpretable.**
323
+ >
324
+ > To make "what primes are" not merely a one-line divisibility definition, but a complete semantic-dynamic structure that is **visualizable, operational, and traceable**.
325
+
326
+ ---
327
+
328
+ ## Future Directions
329
+
330
+ 1. **Computational complexity**: Do AST depth bounds provide alternative hardness measures?
331
+ 2. **Algebraic extensions**: How do prime ideals in ℤ[i] correspond to stack irreducibility?
332
+ 3. **AI interpretability**: Can stack-based architectures replace continuous latent spaces in LLMs?
333
+ 4. **Automated theorem proving**: Does semantic irreducibility suggest new proof strategies?
334
+
335
+ ---
336
+
337
+ ## License
338
+
339
+ This work is licensed under **Creative Commons Attribution 4.0 International (CC-BY-4.0)**.
340
+
341
+ You are free to:
342
+ - Share and adapt the material for any purpose
343
+ - Attribution required to Oz Lee with DOI: 10.57967/hf/7156
344
+
345
+ ---
346
+
347
+ ## Contact
348
+
349
+ **Oz Lee (Zixi Li)**
350
+ Independent Researcher
351
+ Email: lizx93@mail2.sysu.edu.cn
352
+ HuggingFace: [@OzTianlu](https://huggingface.co/OzTianlu)
353
+
354
+ ---
355
+
356
+ ## Acknowledgments
357
+
358
+ This work builds on foundational insights from:
359
+ - Gauss's *Disquisitiones Arithmeticae* (1801) - Congruence theory
360
+ - Chen Jingrun's work on Goldbach's Conjecture (1973, 1978)
361
+ - The Chinese Remainder Theorem (*Sunzi Suanjing*, 3rd-5th century)
362
+ - Modern computational complexity theory and dynamical systems
363
+
364
+ ---
365
+
366
+ **Final Statement:**
367
+
368
+ > Number theory is not arithmetic. It is **a mirror in which reasoning sees itself**.
369
+ >
370
+ > The Euler Stack reveals that the essence of reasoning—discrete states, dynamic operations, irreducible atoms, unique structural biases—already exists in natural numbers.
371
+ >
372
+ > If interpretability succeeds here, it provides the foundation for reasoning in arbitrarily complex systems. **Numbers are not inputs to reasoning; numbers ARE reasoning.**