nielsr HF Staff commited on
Commit
359aff9
·
verified ·
1 Parent(s): b5c32d5

Add task category and links to paper and code

Browse files

This PR updates the dataset card to improve documentation and discoverability:
- Added `task_categories: [other]` to the YAML metadata.
- Included links to the research paper and official GitHub repository at the top of the dataset card.
- Maintained existing metadata and structure.

Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -1,23 +1,26 @@
1
  ---
2
  language:
3
  - en
 
 
 
 
 
 
4
  tags:
5
  - recommender-systems
6
  - sequential-recommendation
7
  - amazon-reviews
8
  - side-information
9
- pretty_name: Amazon Reviews 2023 (10 Categories, Post-processed)
10
- license: mit
11
- size_categories:
12
- - 1M<n<10M
13
  ---
14
 
15
  # Amazon Reviews 2023 (10 Categories, Post-processed)
16
 
 
 
17
  ## Overview
18
  This dataset is a curated and post-processed subset of **Amazon Reviews 2023**. We select **10 product categories** and apply a standard preprocessing pipeline widely used in sequential recommendation research. The resulting dataset provides user interaction sequences along with structured item side information.
19
 
20
- - **Original source**: https://amazon-reviews-2023.github.io/
21
  - **Categories**: 10
22
  - **Content**: user interaction sequences + structured item features
23
  - **Splits**: `train`, `valid`, `test`
 
1
  ---
2
  language:
3
  - en
4
+ license: mit
5
+ size_categories:
6
+ - 1M<n<10M
7
+ task_categories:
8
+ - other
9
+ pretty_name: Amazon Reviews 2023 (10 Categories, Post-processed)
10
  tags:
11
  - recommender-systems
12
  - sequential-recommendation
13
  - amazon-reviews
14
  - side-information
 
 
 
 
15
  ---
16
 
17
  # Amazon Reviews 2023 (10 Categories, Post-processed)
18
 
19
+ [**Paper**](https://huggingface.co/papers/2602.02338) | [**Code**](https://github.com/FuCongResearchSquad/ReSID) | [**Original Source**](https://amazon-reviews-2023.github.io/)
20
+
21
  ## Overview
22
  This dataset is a curated and post-processed subset of **Amazon Reviews 2023**. We select **10 product categories** and apply a standard preprocessing pipeline widely used in sequential recommendation research. The resulting dataset provides user interaction sequences along with structured item side information.
23
 
 
24
  - **Categories**: 10
25
  - **Content**: user interaction sequences + structured item features
26
  - **Splits**: `train`, `valid`, `test`