Dataset Viewer
Auto-converted to Parquet Duplicate
is_correct
bool
1 class
model_version
stringclasses
1 value
predicted_label
stringclasses
2 values
sha256
stringlengths
64
64
split
stringclasses
1 value
true_label
stringclasses
2 values
true
aura_o1
safe
0086af37de29a4b76a1c46651452a571a6b11b6d85120f7a0073c91ae29e808f
mini
safe
true
aura_o1
safe
601c22b80a6888737f15aba18ce8bed50bda7b03ea131bc423251ad7687b45ca
mini
safe
true
aura_o1
safe
4620bca232c6ff196684d61d67dbedd7dba5158960ebbc7b4ce490e7eaef5064
mini
safe
true
aura_o1
safe
8317f5adb2a167b98ef7f40b1b3ce147ba2f1c527ee7cd2f6bb8babef78bc95c
mini
safe
true
aura_o1
safe
f3602d1b18891b611919b04de1b00b96ee064ed62210698264476fb5ade26dc5
mini
safe
true
aura_o1
safe
769262adffe38538df0f29cf62d63c5450efe83e79b03642d6fa88aa9a353b51
mini
safe
true
aura_o1
safe
5c2bc204b54f82ce81baea8f5aba60dfbb5c6411eaba8ae10f077ff783e90a05
mini
safe
true
aura_o1
safe
5e29a9bdb75648080f2cc563164c60a0ac1c76df1c3ffbd475066a89b6f92ccc
mini
safe
true
aura_o1
safe
a8d4f8d5a7b182fde7a93e09044c713401fcd87e666d1cb06e6df6edf27a30e1
mini
safe
true
aura_o1
safe
459f4e22cfb117c718889d3305052c7d058c359f036d5fc3673736fa22d7d949
mini
safe
true
aura_o1
safe
b822053e5ef5f664db413e9069a62371b6aad99e30336e4f5ea7abb555166a71
mini
safe
true
aura_o1
safe
347942071c8ea93fb80d2fe840ef0f32bdd271111990bf72bbc2465a08e5a04a
mini
safe
true
aura_o1
safe
ed369187681a62247e38d930320f1cd771756d0b7b67072d8ec655ef99e14aeb
mini
safe
true
aura_o1
safe
0272d61905453fe448f16067beeace9ca7a3b899a765d8eeb689c2cf0f35565b
mini
safe
true
aura_o1
safe
d49ecd6dc80af230dde8577ac5d32dea7c7f98a4c9ae7a57178333f2f8f316c4
mini
safe
true
aura_o1
safe
1c87b418c4c29f566f5fb0641bd054616c8d48c1b11aade30d48a68a5c8667d2
mini
safe
true
aura_o1
safe
cf4c0202f72c844a65e82d7613dd18595c299568c48cccd0c3fe207bc163d906
mini
safe
true
aura_o1
safe
44aa86f944023103fb698c75cc3d17c6042460b7920663efc41d1cd0e11ea8a6
mini
safe
true
aura_o1
safe
77a436dc8242e140a08cef58959563f28bdf62797d4d6168904faee0b894aad8
mini
safe
true
aura_o1
safe
98f042151a74e7f1c74afddf3a2c2a8339542eb8df4c9d488f8efdba31c7cc50
mini
safe
true
aura_o1
safe
42ac0e4423fb31a3526aa4fc4cce8f71a58150df217e131e714a019bfd2fc965
mini
safe
true
aura_o1
safe
4fff1974fadd6912238b1ca72691466026321e2ba51c61522483fe637c714485
mini
safe
true
aura_o1
safe
6f393e209c5d2ce57282888d516638f21280df94de7faa625572c04e305fc407
mini
safe
true
aura_o1
safe
3974ccc64faa92230554d21d1292fa8587dbc55f9d4a2ef2b8ee16f552aaa812
mini
safe
true
aura_o1
safe
cf3c4b42c8924f23a70c3e94e2d6189ce2da95674aff5d29e3ffdc8ab0c1255a
mini
safe
true
aura_o1
safe
96e3de6aaa20ef237d276ca50c43114913d452a1db06b944af9c9ed410a9df5a
mini
safe
true
aura_o1
safe
8b387394e0fffe585b4d0b0256cc694b9c0e475dd6fce2455e3f0986bf3a71d0
mini
safe
true
aura_o1
safe
1642706722025e89459fdb72d54ffc4e7b38406b30b6af9547b96466ffdcf04b
mini
safe
true
aura_o1
safe
efbe4605b1908244a0405152b808ba7a0dc070e8e2a2cdedc43918e745e32ba8
mini
safe
true
aura_o1
safe
0c9e67d88d322bb67540435a19c782cb0abf2061028749262cdfdb177370efac
mini
safe
true
aura_o1
safe
0a725e413fd9f178b6dbe2efb98fc920cc7bc11e31b7b0b198d6bb3c3c9b1817
mini
safe
true
aura_o1
safe
4b17fa5fa88f67b4106bddb58b4bf79fc1fc8c9d030d633115ef97071e01e2e2
mini
safe
true
aura_o1
malicious
0aa7ccbe2f88f72fa2ed4d7599eb6bfaa87cd264bf3dc446bf55c08ce42b0385
mini
malicious
true
aura_o1
malicious
3f129fa0acb200fa9578a6051845fa2375a67235fb9111371e3021fb047ebc86
mini
malicious
true
aura_o1
malicious
d174f197f3a42dd438f1bee26904db13f6c8a99379c86b4e53ce6377d912305b
mini
malicious
true
aura_o1
malicious
15bfced8d8b7851bc99742bff6251a05b0f3c1f3f1182147c688889ddd58d4dd
mini
malicious
true
aura_o1
malicious
e36fd75619157e92cf5e282f24fcc333bd46da5e156f1f3b1256a2fecd952550
mini
malicious
true
aura_o1
malicious
13def55a86d5b091d3247981e02098f132471ade9948cf4bbc1833c390935a7c
mini
malicious
true
aura_o1
malicious
3283fd367136f0128e178a3a31f3227f1134855971b735d77f6c829ce6815e77
mini
malicious
true
aura_o1
malicious
1d31df139be19eefde8ea634da42a5d543413708c047d1fcb4ccb329052a2f78
mini
malicious
true
aura_o1
malicious
27e75c347a9076a29117059601e3bfa22f4be18ce3e6fc04955781a8ec4a88c4
mini
malicious
true
aura_o1
malicious
1cbb422f23bf3ba97193baec4328b3bbc678d064aed4e64ce4b84baa52a8139f
mini
malicious
true
aura_o1
malicious
1ea8070aecd06015136ee728325e43fbf7fd2561bfbd7fa04069a8707f59ce7d
mini
malicious
true
aura_o1
malicious
095c7ec74bd70b5228f933446e47fc50b2e737a14d1e31d419a8476d6e1878db
mini
malicious
true
aura_o1
malicious
79d21c9978368484b8c9a2232bdd0d93f69b22d8079d99458050eb19b540227e
mini
malicious
true
aura_o1
malicious
2a5da10fe35fc54845b8aeb571929c8b6809d2aa099c8cf48d9560aaa77d2309
mini
malicious
true
aura_o1
malicious
1e98906d07d9913e06f4a1f37085cadcec08e55b9d7f5e1932ee53549e647aee
mini
malicious
true
aura_o1
malicious
149aad9e60a6deee78d0fc184fe3b12ff3ec1cf5bda3e2f39e057aa14af383e8
mini
malicious
true
aura_o1
malicious
058259886a94004bf7677425716339f5b667318b7e2d950bb1364a99997874b7
mini
malicious
true
aura_o1
malicious
0f880e4044ed226a2e402033865dff9fb1338438cf79aefa9a8e85d5bc6a4013
mini
malicious
true
aura_o1
malicious
224b7b146c885b04c1e8d2aa76a543e3a15e68d24b4b58ce73d6ac311f034415
mini
malicious
true
aura_o1
malicious
1fdb3f4f4c355b75fb79da4eeb6d8ef388e5f5d379ca2d7c4158d4034c2f9142
mini
malicious
true
aura_o1
malicious
0b92e7138c31d2a911ade43283482d8ae8a81185205d9574eb799db58d5cdf9e
mini
malicious
true
aura_o1
malicious
10a585a8a5006932aa396ec74454672241aff13e005f17b5d2b703c4d398ea98
mini
malicious
true
aura_o1
malicious
121df881139694bdb227faf2350cac37f650392c3ae207d8b8b3a2cce6a3ec81
mini
malicious
true
aura_o1
malicious
0d13f7c01b3b2ff7a4c897a9f4b70351b42b4f68a1e423a50b1cc25691099c7e
mini
malicious

Traceix Mini Evaluation Dataset (Windows PE)

Traceix is a malware analysis platform that uses a neural network named AURA to classify files as safe or malicious. You can use Traceix at https://traceix.com.

This repository contains a mini evaluation dataset so that anyone can peer review AURA’s file-level classifications and recompute the basic metrics (accuracy, precision, recall, FPR, FNR) used in the Traceix model-quality page.

Each row includes:

  • sha256
  • true_label
  • predicted_label
  • is_correct
  • model_version
  • split

You can try it yourself with:

from datasets import load_dataset
from sklearn.metrics import confusion_matrix

ds = load_dataset("perkinsfund/aura-windows-pe-eval-v01", split="train")

true = ds["true_label"]
pred = ds["predicted_label"]

label_to_int = {"safe": 0, "malicious": 1}
y_true = [label_to_int[x] for x in true]
y_pred = [label_to_int[x] for x in pred]

tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels=[0, 1]).ravel()

total = tn + fp + fn + tp

accuracy = (tn + tp) / total
precision = tp / (tp + fp) if (tp + fp) else 0.0
recall = tp / (tp + fn) if (tp + fn) else 0.0
fpr = fp / (fp + tn) if (fp + tn) else 0.0
fnr = fn / (fn + tp) if (fn + tp) else 0.0

print("TN, FP, FN, TP:", tn, fp, fn, tp)
print("Accuracy:        {:.4f}".format(accuracy))
print("Precision (mal): {:.4f}".format(precision))
print("Recall (mal):    {:.4f}".format(recall))
print("FPR:             {:.4f}".format(fpr))
print("FNR:             {:.4f}".format(fnr))
Downloads last month
12