Datasets:
Tasks:
Graph Machine Learning
Modalities:
Time-series
Formats:
parquet
Size:
1K - 10K
ArXiv:
License:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,4 +1,11 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
dataset_info:
|
| 3 |
features:
|
| 4 |
- name: Base_2_2/Zone/CellData/activator
|
|
@@ -21,3 +28,103 @@ configs:
|
|
| 21 |
- split: train
|
| 22 |
path: data/train-*
|
| 23 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- graph-ml
|
| 5 |
+
pretty_name: PDEBench 2D Diffusion-Reaction
|
| 6 |
+
tags:
|
| 7 |
+
- physics learning
|
| 8 |
+
- geometry learning
|
| 9 |
dataset_info:
|
| 10 |
features:
|
| 11 |
- name: Base_2_2/Zone/CellData/activator
|
|
|
|
| 28 |
- split: train
|
| 29 |
path: data/train-*
|
| 30 |
---
|
| 31 |
+
```yaml
|
| 32 |
+
legal:
|
| 33 |
+
owner: Takamoto, M et al. (https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2986)
|
| 34 |
+
license: cc-by-4.0
|
| 35 |
+
data_production:
|
| 36 |
+
physics: 2D Diffusion-Reaction
|
| 37 |
+
type: simulation
|
| 38 |
+
script: Converted to PLAID format for standardized usage; no changes to data content.
|
| 39 |
+
num_samples:
|
| 40 |
+
train: 1000
|
| 41 |
+
storage_backend: hf_datasets
|
| 42 |
+
plaid:
|
| 43 |
+
version: 0.1.12
|
| 44 |
+
|
| 45 |
+
```
|
| 46 |
+
This dataset was generated with [`plaid`](https://plaid-lib.readthedocs.io/), we refer to this documentation for additional details on how to extract data from `plaid_sample` objects.
|
| 47 |
+
|
| 48 |
+
The simplest way to use this dataset is to first download it:
|
| 49 |
+
```python
|
| 50 |
+
from plaid.storage import download_from_hub
|
| 51 |
+
|
| 52 |
+
repo_id = "channel/dataset"
|
| 53 |
+
local_folder = "downloaded_dataset"
|
| 54 |
+
|
| 55 |
+
download_from_hub(repo_id, local_folder)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
Then, to iterate over the dataset and instantiate samples:
|
| 59 |
+
```python
|
| 60 |
+
from plaid.storage import init_from_disk
|
| 61 |
+
|
| 62 |
+
local_folder = "downloaded_dataset"
|
| 63 |
+
split_name = "train"
|
| 64 |
+
|
| 65 |
+
datasetdict, converterdict = init_from_disk(local_folder)
|
| 66 |
+
|
| 67 |
+
dataset = datasetdict[split]
|
| 68 |
+
converter = converterdict[split]
|
| 69 |
+
|
| 70 |
+
for i in range(len(dataset)):
|
| 71 |
+
plaid_sample = converter.to_plaid(dataset, i)
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
It is possible to stream the data directly:
|
| 75 |
+
```python
|
| 76 |
+
from plaid.storage import init_streaming_from_hub
|
| 77 |
+
|
| 78 |
+
repo_id = "channel/dataset"
|
| 79 |
+
|
| 80 |
+
datasetdict, converterdict = init_streaming_from_hub(repo_id)
|
| 81 |
+
|
| 82 |
+
dataset = datasetdict[split]
|
| 83 |
+
converter = converterdict[split]
|
| 84 |
+
|
| 85 |
+
for sample_raw in dataset:
|
| 86 |
+
plaid_sample = converter.sample_to_plaid(sample_raw)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Plaid samples' features can be retrieved like the following:
|
| 90 |
+
```python
|
| 91 |
+
from plaid.storage import load_problem_definitions_from_disk
|
| 92 |
+
local_folder = "downloaded_dataset"
|
| 93 |
+
pb_defs = load_problem_definitions_from_disk(local_folder)
|
| 94 |
+
|
| 95 |
+
# or
|
| 96 |
+
from plaid.storage import load_problem_definitions_from_hub
|
| 97 |
+
repo_id = "channel/dataset"
|
| 98 |
+
pb_defs = load_problem_definitions_from_hub(repo_id)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
pb_def = pb_defs[0]
|
| 102 |
+
|
| 103 |
+
plaid_sample = ... # use a method from above to instantiate a plaid sample
|
| 104 |
+
|
| 105 |
+
for t in plaid_sample.get_all_time_values():
|
| 106 |
+
for path in pb_def.get_in_features_identifiers():
|
| 107 |
+
plaid_sample.get_feature_by_path(path=path, time=t)
|
| 108 |
+
for path in pb_def.get_out_features_identifiers():
|
| 109 |
+
plaid_sample.get_feature_by_path(path=path, time=t)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
For those familiar with HF's `datasets` library, raw data can be retrieved without using the `plaid` library:
|
| 113 |
+
```python
|
| 114 |
+
from datasets import load_dataset
|
| 115 |
+
|
| 116 |
+
repo_id = "channel/dataset"
|
| 117 |
+
|
| 118 |
+
datasetdict = load_dataset(repo_id)
|
| 119 |
+
|
| 120 |
+
for split_name, dataset in datasetdict.items():
|
| 121 |
+
for raw_sample in dataset:
|
| 122 |
+
for feat_name in dataset.column_names:
|
| 123 |
+
feature = raw_sample[feat_name]
|
| 124 |
+
```
|
| 125 |
+
Notice that raw data refers to the variable features only, with a specific encoding for time variable features.
|
| 126 |
+
|
| 127 |
+
### Dataset Sources
|
| 128 |
+
|
| 129 |
+
- **Papers:**
|
| 130 |
+
- [arxiv](https://arxiv.org/pdf/2210.07182)
|