--- license: cc-by-4.0 task_categories: - graph-ml pretty_name: PDEBench 2D Diffusion-Reaction tags: - physics learning - geometry learning dataset_info: features: - name: Base_2_2/Zone/CellData/activator list: float32 - name: Base_2_2/Zone/CellData/activator_ic list: float32 - name: Base_2_2/Zone/CellData/inhibitor list: float32 - name: Base_2_2/Zone/CellData/inhibitor_ic list: float32 splits: - name: train num_bytes: 26476560000 num_examples: 1000 download_size: 26606982307 dataset_size: 26476560000 configs: - config_name: default data_files: - split: train path: data/train-* --- ```yaml legal: owner: Takamoto, M et al. (https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2986) license: cc-by-4.0 data_production: physics: 2D Diffusion-Reaction type: simulation script: Converted to PLAID format for standardized usage; no changes to data content. num_samples: train: 1000 storage_backend: hf_datasets plaid: version: 0.1.12 ``` This dataset was generated with [`plaid`](https://plaid-lib.readthedocs.io/), we refer to this documentation for additional details on how to extract data from `plaid_sample` objects. The simplest way to use this dataset is to first download it: ```python from plaid.storage import download_from_hub repo_id = "channel/dataset" local_folder = "downloaded_dataset" download_from_hub(repo_id, local_folder) ``` Then, to iterate over the dataset and instantiate samples: ```python from plaid.storage import init_from_disk local_folder = "downloaded_dataset" split_name = "train" datasetdict, converterdict = init_from_disk(local_folder) dataset = datasetdict[split] converter = converterdict[split] for i in range(len(dataset)): plaid_sample = converter.to_plaid(dataset, i) ``` It is possible to stream the data directly: ```python from plaid.storage import init_streaming_from_hub repo_id = "channel/dataset" datasetdict, converterdict = init_streaming_from_hub(repo_id) dataset = datasetdict[split] converter = converterdict[split] for sample_raw in dataset: plaid_sample = converter.sample_to_plaid(sample_raw) ``` Plaid samples' features can be retrieved like the following: ```python from plaid.storage import load_problem_definitions_from_disk local_folder = "downloaded_dataset" pb_defs = load_problem_definitions_from_disk(local_folder) # or from plaid.storage import load_problem_definitions_from_hub repo_id = "channel/dataset" pb_defs = load_problem_definitions_from_hub(repo_id) pb_def = pb_defs[0] plaid_sample = ... # use a method from above to instantiate a plaid sample for t in plaid_sample.get_all_time_values(): for path in pb_def.get_in_features_identifiers(): plaid_sample.get_feature_by_path(path=path, time=t) for path in pb_def.get_out_features_identifiers(): plaid_sample.get_feature_by_path(path=path, time=t) ``` For those familiar with HF's `datasets` library, raw data can be retrieved without using the `plaid` library: ```python from datasets import load_dataset repo_id = "channel/dataset" datasetdict = load_dataset(repo_id) for split_name, dataset in datasetdict.items(): for raw_sample in dataset: for feat_name in dataset.column_names: feature = raw_sample[feat_name] ``` Notice that raw data refers to the variable features only, with a specific encoding for time variable features. ### Dataset Sources - **Papers:** - [arxiv](https://arxiv.org/pdf/2210.07182)