# /// script # requires-python = ">=3.10" # dependencies = [ # "pandas", # "pyarrow", # "pydantic", # ] # /// import os import argparse from pathlib import Path import pandas as pd from pydantic import BaseModel, field_validator IMAGE_EXT = {".jpg", ".jpeg", ".png", ".webp"} VIDEO_EXT = {".mp4", ".webm", ".avi", ".mov"} def clean_name(name: str) -> str: return name.strip().replace(" ", "_") class MemeRecord(BaseModel): image_file_name: str = "" video_file_name: str = "" category: str caption: str = "" @field_validator("image_file_name", "video_file_name") @classmethod def normalize_path(cls, v: str) -> str: return v.replace("\\", "/") if v else "" @field_validator("category") @classmethod def normalize_category(cls, v: str) -> str: return clean_name(v) def main(root: Path): src = root / "meme" if not src.exists(): raise SystemExit(f"❌ Missing folder: {src}") records: list[MemeRecord] = [] for category_dir in src.iterdir(): if not category_dir.is_dir(): continue category = clean_name(category_dir.name) for root_dir, _, files in os.walk(category_dir): for file in files: path = Path(root_dir) / file ext = path.suffix.lower() rel = str(path.relative_to(root)) if ext in IMAGE_EXT: records.append( MemeRecord( image_file_name=rel, video_file_name="", category=category ) ) elif ext in VIDEO_EXT: records.append( MemeRecord( image_file_name="", video_file_name=rel, category=category ) ) if not records: raise SystemExit("❌ No media files found") df = pd.DataFrame([r.model_dump() for r in records]) df.to_csv(root / "metadata.csv", index=False) #df.to_parquet(root / "metadata.parquet", index=False) print(f"✔ Indexed {len(df)} files (HF streaming safe)") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--root", type=Path, default=Path.cwd()) args = parser.parse_args() main(args.root)