File size: 12,060 Bytes
bc68240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from importlib import resources
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from .config import get_perspective2d_cfg_defaults
from .modeling.backbone import build_backbone
from .modeling.param_network import build_param_net
from .modeling.persformer_heads import build_persformer_heads
class ResizeTransform:
"""
Resize the image to a target size.
"""
def __init__(self, new_h, new_w, interp=None):
"""
Args:
h, w (int): original image size
new_h, new_w (int): new image size
interp: PIL interpolation methods, defaults to bilinear.
"""
if interp is None:
interp = Image.BILINEAR
self.new_h = new_h
self.new_w = new_w
self.interp = interp
def apply_image(self, img, interp=None):
assert len(img.shape) <= 4
interp_method = interp if interp is not None else self.interp
if img.dtype == np.uint8:
if len(img.shape) > 2 and img.shape[2] == 1:
pil_image = Image.fromarray(img[:, :, 0], mode="L")
else:
pil_image = Image.fromarray(img)
pil_image = pil_image.resize((self.new_w, self.new_h), interp_method)
ret = np.asarray(pil_image)
if len(img.shape) > 2 and img.shape[2] == 1:
ret = np.expand_dims(ret, -1)
else:
# PIL only supports uint8
if any(x < 0 for x in img.strides):
img = np.ascontiguousarray(img)
img = torch.from_numpy(img)
shape = list(img.shape)
shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:]
img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw
_PIL_RESIZE_TO_INTERPOLATE_MODE = {
Image.NEAREST: "nearest",
Image.BILINEAR: "bilinear",
Image.BICUBIC: "bicubic",
}
mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[interp_method]
align_corners = None if mode == "nearest" else False
img = F.interpolate(
img, (self.new_h, self.new_w), mode=mode, align_corners=align_corners
)
shape[:2] = (self.new_h, self.new_w)
ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c)
return ret
class LowLevelEncoder(nn.Module):
def __init__(self, feat_dim=64, in_channel=3):
super().__init__()
self.conv1 = nn.Conv2d(
3, feat_dim, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = nn.BatchNorm2d(feat_dim)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return x
model_zoo = {
"Paramnet-360Cities-edina-centered": {
"weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpf.pth",
"config_file": "paramnet_360cities_edina_rpf.yaml",
"param": True,
"description": "Trained on 360cities and EDINA dataset. Assumes centered principal point. Predicts roll, pitch and fov.",
},
"Paramnet-360Cities-edina-uncentered": {
"weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpfpp.pth",
"config_file": "paramnet_360cities_edina_rpfpp.yaml",
"param": True,
"description": "Trained on 360cities and EDINA dataset. Predicts roll, pitch, fov and principal point.",
},
"PersNet-360Cities": {
"weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/cvpr2023.pth",
"config_file": "cvpr2023.yaml",
"param": False,
"description": "Trained on 360cities. Predicts perspective fields.",
},
"PersNet_Paramnet-GSV-uncentered": {
"weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpfpp.pth",
"config_file": "paramnet_gsv_rpfpp.yaml",
"param": True,
"description": "Trained on GSV. Predicts roll, pitch, fov and principal point.",
},
# trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point
"PersNet_Paramnet-GSV-centered": {
"weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpf.pth",
"config_file": "paramnet_gsv_rpf.yaml",
"param": True,
"description": "Trained on GSV. Assumes centered principal point. Predicts roll, pitch and fov.",
},
}
class PerspectiveFields(nn.Module):
def __init__(self, version="Paramnet-360Cities-edina-centered"):
super().__init__()
default_conf = get_perspective2d_cfg_defaults()
# To get the path
with resources.path(
"perspective2d.config", model_zoo[version]["config_file"]
) as config_path:
default_conf.merge_from_file(str(config_path))
# default_conf.merge_from_file(model_zoo[version]['config_file'])
default_conf.freeze()
self.version = version
self.param_on = model_zoo[version]["param"]
self.cfg = cfg = default_conf
self.backbone = build_backbone(cfg)
self.ll_enc = LowLevelEncoder()
self.persformer_heads = build_persformer_heads(
cfg, self.backbone.output_shape()
)
self.param_net = (
build_param_net(cfg)
if cfg.MODEL.RECOVER_RPF or cfg.MODEL.RECOVER_PP
else None
)
self.register_buffer(
"pixel_mean", torch.tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1), False
)
self.register_buffer(
"pixel_std", torch.tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1), False
)
self.vis_period = cfg.VIS_PERIOD
self.freeze = cfg.MODEL.FREEZE
self.debug_on = cfg.DEBUG_ON
self.input_format = cfg.INPUT.FORMAT
self.aug = ResizeTransform(cfg.DATALOADER.RESIZE[0], cfg.DATALOADER.RESIZE[1])
for layers in self.freeze:
layer = layers.split(".")
final = self
for l in layer:
final = getattr(final, l)
for params in final.parameters():
params.requires_grad = False
self._init_weights()
@property
def device(self):
return self.pixel_mean.device
@staticmethod
def versions():
for key in model_zoo:
print(f"{key}")
print(f" - {model_zoo[key]['description']}")
def version(self):
return self.version
def _init_weights(self):
state_dict = None
# if self.version in model_zoo:
# state_dict = torch.hub.load_state_dict_from_url(
# model_zoo[self.version]["weights"],
# map_location=torch.device('cpu'),
# )
# self.load_state_dict(state_dict, strict=False)
# elif self.cfg.MODEL.WEIGHTS is not None:
# path = Path(__file__).parent
# path = path / "weights/{}.pth".format(self.cfg.MODEL.WEIGHTS)
# state_dict = torch.load(str(path), map_location="cpu")
# if state_dict:
# status = self.load_state_dict(state_dict["model"], strict=False)
if self.version in model_zoo:
# version 对应的本地权重路径,你自己维护一个映射
local_paths = {
# 根据你自己的版本名来填
"Paramnet-360Cities-edina-centered": "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields/paramnet_360cities_edina_rpf.pth",
# 其他 version 也可以在这里继续加
# "Paramnet-360Cities-edina-uncentered": "/path/to/xxx.pth",
}
ckpt_path = local_paths[self.version]
state_dict = torch.load(ckpt_path, map_location="cpu")
self.load_state_dict(state_dict, strict=False)
elif getattr(self, "cfg", None) is not None and getattr(self.cfg.MODEL, "WEIGHTS", None) is not None:
# 使用 cfg 中指定的本地权重
path = Path(__file__).parent / "weights" / f"{self.cfg.MODEL.WEIGHTS}.pth"
path = path.resolve()
assert path.exists(), f"Checkpoint not found: {path}"
state_dict = torch.load(str(path), map_location="cpu")
self.load_state_dict(state_dict, strict=False)
@torch.no_grad()
def inference(self, img_bgr):
original_image = img_bgr.copy()
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.aug.apply_image(original_image)
image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
predictions = self.forward([inputs])[0]
return predictions
@torch.no_grad()
def inference_batch(self, img_bgr_list):
input_list = []
for img_bgr in img_bgr_list:
original_image = img_bgr.copy()
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.aug.apply_image(original_image)
image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
input_list.append(inputs)
predictions = self.forward(input_list)
return predictions
def forward(self, batched_inputs) -> dict:
"""
Forward pass of the PerspectiveFields model.
Args:
batched_inputs (list): A list of dictionaries containing the input data.
Returns:
dict: A dictionary containing the computed losses or processed results.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = torch.stack(images)
hl_features = self.backbone(images)
ll_features = self.ll_enc(images)
features = {
"hl": hl_features, # features from backbone
"ll": ll_features, # low level features
}
targets_dict = {}
if "gt_gravity" in batched_inputs[0]:
targets = [x["gt_gravity"].to(self.device) for x in batched_inputs]
targets = torch.stack(targets)
targets_dict["gt_gravity"] = targets
if "gt_latitude" in batched_inputs[0]:
targets = [x["gt_latitude"].to(self.device) for x in batched_inputs]
targets = torch.stack(targets)
targets_dict["gt_latitude"] = targets
results = self.persformer_heads.inference(features)
processed_results = self.persformer_heads.postprocess(
results, batched_inputs, images
)
if self.param_net is not None:
param = self.param_net(results, batched_inputs)
if "pred_general_vfov" not in param.keys():
param["pred_general_vfov"] = param["pred_vfov"]
if "pred_rel_cx" not in param.keys():
param["pred_rel_cx"] = torch.zeros_like(param["pred_vfov"])
if "pred_rel_cy" not in param.keys():
param["pred_rel_cy"] = torch.zeros_like(param["pred_vfov"])
assert len(processed_results) == len(param["pred_general_vfov"])
for i in range(len(processed_results)):
param_tmp = {k: v[i] for k, v in param.items()}
processed_results[i].update(param_tmp)
return processed_results
|