File size: 12,060 Bytes
bc68240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from importlib import resources
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn

from .config import get_perspective2d_cfg_defaults
from .modeling.backbone import build_backbone
from .modeling.param_network import build_param_net
from .modeling.persformer_heads import build_persformer_heads


class ResizeTransform:
    """
    Resize the image to a target size.
    """

    def __init__(self, new_h, new_w, interp=None):
        """
        Args:
            h, w (int): original image size
            new_h, new_w (int): new image size
            interp: PIL interpolation methods, defaults to bilinear.
        """
        if interp is None:
            interp = Image.BILINEAR
        self.new_h = new_h
        self.new_w = new_w
        self.interp = interp

    def apply_image(self, img, interp=None):
        assert len(img.shape) <= 4
        interp_method = interp if interp is not None else self.interp

        if img.dtype == np.uint8:
            if len(img.shape) > 2 and img.shape[2] == 1:
                pil_image = Image.fromarray(img[:, :, 0], mode="L")
            else:
                pil_image = Image.fromarray(img)
            pil_image = pil_image.resize((self.new_w, self.new_h), interp_method)
            ret = np.asarray(pil_image)
            if len(img.shape) > 2 and img.shape[2] == 1:
                ret = np.expand_dims(ret, -1)
        else:
            # PIL only supports uint8
            if any(x < 0 for x in img.strides):
                img = np.ascontiguousarray(img)
            img = torch.from_numpy(img)
            shape = list(img.shape)
            shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:]
            img = img.view(shape_4d).permute(2, 3, 0, 1)  # hw(c) -> nchw
            _PIL_RESIZE_TO_INTERPOLATE_MODE = {
                Image.NEAREST: "nearest",
                Image.BILINEAR: "bilinear",
                Image.BICUBIC: "bicubic",
            }
            mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[interp_method]
            align_corners = None if mode == "nearest" else False
            img = F.interpolate(
                img, (self.new_h, self.new_w), mode=mode, align_corners=align_corners
            )
            shape[:2] = (self.new_h, self.new_w)
            ret = img.permute(2, 3, 0, 1).view(shape).numpy()  # nchw -> hw(c)
        return ret


class LowLevelEncoder(nn.Module):
    def __init__(self, feat_dim=64, in_channel=3):
        super().__init__()
        self.conv1 = nn.Conv2d(
            3, feat_dim, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = nn.BatchNorm2d(feat_dim)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        return x


model_zoo = {
    "Paramnet-360Cities-edina-centered": {
        "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpf.pth",
        "config_file": "paramnet_360cities_edina_rpf.yaml",
        "param": True,
        "description": "Trained on 360cities and EDINA dataset. Assumes centered principal point. Predicts roll, pitch and fov.",
    },
    "Paramnet-360Cities-edina-uncentered": {
        "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpfpp.pth",
        "config_file": "paramnet_360cities_edina_rpfpp.yaml",
        "param": True,
        "description": "Trained on 360cities and EDINA dataset. Predicts roll, pitch, fov and principal point.",
    },
    "PersNet-360Cities": {
        "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/cvpr2023.pth",
        "config_file": "cvpr2023.yaml",
        "param": False,
        "description": "Trained on 360cities. Predicts perspective fields.",
    },
    "PersNet_Paramnet-GSV-uncentered": {
        "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpfpp.pth",
        "config_file": "paramnet_gsv_rpfpp.yaml",
        "param": True,
        "description": "Trained on GSV. Predicts roll, pitch, fov and principal point.",
    },
    # trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point
    "PersNet_Paramnet-GSV-centered": {
        "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpf.pth",
        "config_file": "paramnet_gsv_rpf.yaml",
        "param": True,
        "description": "Trained on GSV. Assumes centered principal point. Predicts roll, pitch and fov.",
    },
}


class PerspectiveFields(nn.Module):
    def __init__(self, version="Paramnet-360Cities-edina-centered"):
        super().__init__()
        default_conf = get_perspective2d_cfg_defaults()
        # To get the path
        with resources.path(
            "perspective2d.config", model_zoo[version]["config_file"]
        ) as config_path:
            default_conf.merge_from_file(str(config_path))
        # default_conf.merge_from_file(model_zoo[version]['config_file'])
        default_conf.freeze()
        self.version = version
        self.param_on = model_zoo[version]["param"]
        self.cfg = cfg = default_conf
        self.backbone = build_backbone(cfg)
        self.ll_enc = LowLevelEncoder()
        self.persformer_heads = build_persformer_heads(
            cfg, self.backbone.output_shape()
        )
        self.param_net = (
            build_param_net(cfg)
            if cfg.MODEL.RECOVER_RPF or cfg.MODEL.RECOVER_PP
            else None
        )
        self.register_buffer(
            "pixel_mean", torch.tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1), False
        )
        self.register_buffer(
            "pixel_std", torch.tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1), False
        )
        self.vis_period = cfg.VIS_PERIOD
        self.freeze = cfg.MODEL.FREEZE
        self.debug_on = cfg.DEBUG_ON
        self.input_format = cfg.INPUT.FORMAT
        self.aug = ResizeTransform(cfg.DATALOADER.RESIZE[0], cfg.DATALOADER.RESIZE[1])
        for layers in self.freeze:
            layer = layers.split(".")
            final = self
            for l in layer:
                final = getattr(final, l)
            for params in final.parameters():
                params.requires_grad = False
        self._init_weights()

    @property
    def device(self):
        return self.pixel_mean.device

    @staticmethod
    def versions():
        for key in model_zoo:
            print(f"{key}")
            print(f"   - {model_zoo[key]['description']}")

    def version(self):
        return self.version

    def _init_weights(self):
        state_dict = None
        # if self.version in model_zoo:
        #     state_dict = torch.hub.load_state_dict_from_url(
        #         model_zoo[self.version]["weights"], 
        #         map_location=torch.device('cpu'),
        #     )
        #     self.load_state_dict(state_dict, strict=False)
        # elif self.cfg.MODEL.WEIGHTS is not None:
        #     path = Path(__file__).parent
        #     path = path / "weights/{}.pth".format(self.cfg.MODEL.WEIGHTS)
        #     state_dict = torch.load(str(path), map_location="cpu")

        # if state_dict:
        #     status = self.load_state_dict(state_dict["model"], strict=False)
        if self.version in model_zoo:
            # version 对应的本地权重路径,你自己维护一个映射
            local_paths = {
                # 根据你自己的版本名来填
                "Paramnet-360Cities-edina-centered": "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields/paramnet_360cities_edina_rpf.pth",
                # 其他 version 也可以在这里继续加
                # "Paramnet-360Cities-edina-uncentered": "/path/to/xxx.pth",
            }
            ckpt_path = local_paths[self.version]
            state_dict = torch.load(ckpt_path, map_location="cpu")
            self.load_state_dict(state_dict, strict=False)

        elif getattr(self, "cfg", None) is not None and getattr(self.cfg.MODEL, "WEIGHTS", None) is not None:
            # 使用 cfg 中指定的本地权重
            path = Path(__file__).parent / "weights" / f"{self.cfg.MODEL.WEIGHTS}.pth"
            path = path.resolve()
            assert path.exists(), f"Checkpoint not found: {path}"

            state_dict = torch.load(str(path), map_location="cpu")
            self.load_state_dict(state_dict, strict=False)
            
    @torch.no_grad()
    def inference(self, img_bgr):
        original_image = img_bgr.copy()
        if self.input_format == "RGB":
            # whether the model expects BGR inputs or RGB
            original_image = original_image[:, :, ::-1]
        height, width = original_image.shape[:2]
        image = self.aug.apply_image(original_image)
        image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
        inputs = {"image": image, "height": height, "width": width}
        predictions = self.forward([inputs])[0]
        return predictions

    @torch.no_grad()
    def inference_batch(self, img_bgr_list):
        input_list = []
        for img_bgr in img_bgr_list:
            original_image = img_bgr.copy()
            if self.input_format == "RGB":
                # whether the model expects BGR inputs or RGB
                original_image = original_image[:, :, ::-1]
            height, width = original_image.shape[:2]
            image = self.aug.apply_image(original_image)
            image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
            inputs = {"image": image, "height": height, "width": width}
            input_list.append(inputs)
        predictions = self.forward(input_list)
        return predictions

    def forward(self, batched_inputs) -> dict:
        """
        Forward pass of the PerspectiveFields model.

        Args:
            batched_inputs (list): A list of dictionaries containing the input data.

        Returns:
            dict: A dictionary containing the computed losses or processed results.

        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = torch.stack(images)
        hl_features = self.backbone(images)
        ll_features = self.ll_enc(images)
        features = {
            "hl": hl_features,  # features from backbone
            "ll": ll_features,  # low level features
        }

        targets_dict = {}
        if "gt_gravity" in batched_inputs[0]:
            targets = [x["gt_gravity"].to(self.device) for x in batched_inputs]
            targets = torch.stack(targets)
            targets_dict["gt_gravity"] = targets

        if "gt_latitude" in batched_inputs[0]:
            targets = [x["gt_latitude"].to(self.device) for x in batched_inputs]
            targets = torch.stack(targets)
            targets_dict["gt_latitude"] = targets

        results = self.persformer_heads.inference(features)
        processed_results = self.persformer_heads.postprocess(
            results, batched_inputs, images
        )

        if self.param_net is not None:
            param = self.param_net(results, batched_inputs)
            if "pred_general_vfov" not in param.keys():
                param["pred_general_vfov"] = param["pred_vfov"]
            if "pred_rel_cx" not in param.keys():
                param["pred_rel_cx"] = torch.zeros_like(param["pred_vfov"])
            if "pred_rel_cy" not in param.keys():
                param["pred_rel_cy"] = torch.zeros_like(param["pred_vfov"])
            assert len(processed_results) == len(param["pred_general_vfov"])
            for i in range(len(processed_results)):
                param_tmp = {k: v[i] for k, v in param.items()}
                processed_results[i].update(param_tmp)
        return processed_results