File size: 8,915 Bytes
7d9e4fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import cv2
import torch
import torchvision
from osdsynth.processor.wrappers.grounding_dino import get_grounding_dino_model
from osdsynth.processor.wrappers.ram import get_tagging_model, run_tagging_model
from osdsynth.processor.wrappers.sam import (
    convert_detections_to_dict,
    convert_detections_to_list,
    crop_detections_with_xyxy,
    filter_detections,
    get_sam_predictor,
    get_sam_segmentation_from_xyxy,
    mask_subtract_contained,
    post_process_mask,
    sort_detections_by_area,
)
from osdsynth.utils.logger import SkipImageException
from osdsynth.visualizer.som import draw_som_on_image
from PIL import Image
import numpy as np

class SegmentImage:
    """Class to segment the image."""

    def __init__(self, cfg, logger, device, init_gdino=True, init_tagging=True, init_sam=True):
        self.cfg = cfg
        self.logger = logger
        self.device = device

        if init_gdino:
            # Initialize the Grounding Dino Model
            self.grounding_dino_model = get_grounding_dino_model(cfg, device)
        else:
            self.grounding_dino_model = None

        if init_tagging:
            # Initialize the tagging Model
            self.tagging_transform, self.tagging_model = get_tagging_model(cfg, device)
        else:
            self.tagging_transform = self.tagging_model = None

        if init_sam:
            # Initialize the SAM Model
            self.sam_predictor = get_sam_predictor(cfg.sam_variant, device)
        else:
            self.sam_predictor = None

        pass

    def process(self, image_bgr, two_class ,plot_som=True):
        """Segment the image."""

        image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
        image_rgb_pil = Image.fromarray(image_rgb)
        
        # image_rgb_pil.save('tmp.png')

        img_tagging = image_rgb_pil.resize((384, 384))
        img_tagging = self.tagging_transform(img_tagging).unsqueeze(0).to(self.device)

        # Tag2Text
        if two_class is None:    
            classes = run_tagging_model(self.cfg, img_tagging, self.tagging_model)
        else:
            classes = two_class

        if len(classes) == 0:
            raise SkipImageException("No foreground objects detected by tagging model.")

        # Using GroundingDINO to detect and SAM to segment
        detections = self.grounding_dino_model.predict_with_classes(
            image=image_bgr,  # This function expects a BGR image...
            classes=classes,
            box_threshold=self.cfg.box_threshold,
            text_threshold=self.cfg.text_threshold,
        )


        if len(detections.class_id) < 1:
            raise SkipImageException("No object detected.")
        


        # Non-maximum suppression
        nms_idx = (
            torchvision.ops.nms(
                torch.from_numpy(detections.xyxy),
                torch.from_numpy(detections.confidence),
                self.cfg.nms_threshold,
            )
            .numpy()
            .tolist()
        )

        print(f"Before NMS: {len(detections.xyxy)} detections")
        detections.xyxy = detections.xyxy[nms_idx]
        detections.confidence = detections.confidence[nms_idx]
        detections.class_id = detections.class_id[nms_idx]
        print(f"After NMS: {len(detections.xyxy)} detections")

        # Somehow some detections will have class_id=-1, remove them
        valid_idx = detections.class_id != -1
        detections.xyxy = detections.xyxy[valid_idx]
        detections.confidence = detections.confidence[valid_idx]
        detections.class_id = detections.class_id[valid_idx]

        # Segment Anything
        detections.mask = get_sam_segmentation_from_xyxy(
            sam_predictor=self.sam_predictor, image=image_rgb, xyxy=detections.xyxy
        )

        # Convert the detection to a dict. Elements are np.ndarray
        detections_dict = convert_detections_to_dict(detections, classes)
        
        # Filter out the objects based on various criteria
        detections_dict = filter_detections(self.cfg, detections_dict, image_rgb)

        if len(detections_dict["xyxy"]) < 1:
            raise SkipImageException("No object detected after filtering.")

        # Subtract the mask of bounding boxes that are contained by it
        detections_dict["subtracted_mask"], mask_contained = mask_subtract_contained(
            detections_dict["xyxy"], detections_dict["mask"], th1=0.05, th2=0.05
        )

        # Sort the dets by area
        detections_dict = sort_detections_by_area(detections_dict)

        # Add RLE to dict
        detections_dict = post_process_mask(detections_dict)

        # Convert the detection to a list. Each element is a dict
        detections_list = convert_detections_to_list(detections_dict, classes)
        
        # Skip objects with confidence lower than 0.4
        # detections_list = skipbyconfidence(detections_list)

        detections_list = crop_detections_with_xyxy(self.cfg, image_rgb_pil, detections_list)

        detections_list = segmentImage(detections_list, image_rgb_pil)
        
        detections_list = add_index_to_class(detections_list)
        
        if two_class is not None:
            if len(two_class)==2 and len(detections_list) != 2:
                raise SkipImageException("Not all objects detected.")
            
            if len(two_class)==1 and len(detections_list) != 1:
                raise SkipImageException("Not all objects detected.")
            
            if len(two_class)==3 and len(detections_list) != 3:
                raise SkipImageException("Not all objects detected.")
            
            if len(two_class)==2:
                detections_two_class = [detections_list[0]['class_name'][:-1], detections_list[1]['class_name'][:-1]]
                if two_class[0] not in detections_two_class or two_class[1] not in detections_two_class:
                    raise SkipImageException("Not all objects detected.")
                
            if len(two_class)==3:
                detections_two_class = [detections_list[0]['class_name'][:-1], detections_list[1]['class_name'][:-1], detections_list[2]['class_name'][:-1]]
                if two_class[0] not in detections_two_class or two_class[1] not in detections_two_class or two_class[2] not in detections_two_class:
                    raise SkipImageException("Not all objects detected.")
            
        

        if plot_som:
            # Visualize with SoM
            vis_som = draw_som_on_image(
                detections_dict,
                image_rgb,
                label_mode="1",
                alpha=0.4,
                anno_mode=["Mask", "Mark", "Box"],
            )
        else:
            vis_som = None
        
        
            
        return vis_som, detections_list

#  Copy the object area from the original image to a transparent background
def segmentImage(detections_list, image_rgb_pil):
    
    for i in range(len(detections_list)):
        image_pil = detections_list[i]['image_crop']
        mask_pil = Image.fromarray(detections_list[i]['mask_crop'])
        
        image_rgba = image_pil.convert("RGBA")
        
        transparent_bg = Image.new("RGBA", image_rgba.size, (0, 0, 0, 0))

        # Copy the object area from the original image to a transparent background using a mask
        segmented_image = Image.composite(
            image_rgba,       
            transparent_bg,
            mask_pil          
        )
        
        detections_list[i]['image_segment'] = segmented_image
    
    return detections_list
    
def skipbyconfidence(detections_list):
    skip_index = []
    for i in range(len(detections_list)):
        if detections_list[i]['confidence'] < 0.3:
            skip_index.append(i)
    
    for i in skip_index[::-1]:
        del detections_list[i]
    
    return detections_list
    
def add_bbox_and_taggingtext_to_image(image, detections_list):
    for i in range(len(detections_list)):
        bbox = detections_list[i]['xyxy']
        label = detections_list[i]['class_name']
        confidence = detections_list[i]['confidence']
        
        cv2.rectangle(image, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 2)
        cv2.putText(image, f"{label} {confidence:.2f}", (int(bbox[0]), int((bbox[1]+bbox[3])/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    
    return image

def add_index_to_class(detections_list):
    # If a class appears for the first time, add 0 to the object's class_name, add 1 to the second appearance, and so on
    class_index = {}
    for detection in detections_list:
        class_name = detection['class_name']
        if class_name not in class_index:
            class_index[class_name] = 0
        else:
            class_index[class_name] += 1

        detection['class_name'] = f"{class_name}{class_index[class_name]}"
    return detections_list