|
|
import rembg |
|
|
import random |
|
|
import torch |
|
|
import numpy as np |
|
|
from PIL import Image, ImageOps |
|
|
import PIL |
|
|
from typing import Any |
|
|
import matplotlib.pyplot as plt |
|
|
import io |
|
|
|
|
|
def resize_foreground( |
|
|
image: Image, |
|
|
ratio: float, |
|
|
) -> Image: |
|
|
image = np.array(image) |
|
|
assert image.shape[-1] == 4 |
|
|
alpha = np.where(image[..., 3] > 0) |
|
|
y1, y2, x1, x2 = ( |
|
|
alpha[0].min(), |
|
|
alpha[0].max(), |
|
|
alpha[1].min(), |
|
|
alpha[1].max(), |
|
|
) |
|
|
|
|
|
fg = image[y1:y2, x1:x2] |
|
|
|
|
|
size = max(fg.shape[0], fg.shape[1]) |
|
|
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 |
|
|
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 |
|
|
new_image = np.pad( |
|
|
fg, |
|
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
|
mode="constant", |
|
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
|
) |
|
|
|
|
|
|
|
|
new_size = int(new_image.shape[0] / ratio) |
|
|
|
|
|
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 |
|
|
ph1, pw1 = new_size - size - ph0, new_size - size - pw0 |
|
|
new_image = np.pad( |
|
|
new_image, |
|
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
|
mode="constant", |
|
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
|
) |
|
|
new_image = Image.fromarray(new_image) |
|
|
return new_image |
|
|
|
|
|
def remove_background(image: Image, |
|
|
rembg_session: Any = None, |
|
|
force: bool = False, |
|
|
**rembg_kwargs, |
|
|
) -> Image: |
|
|
do_remove = True |
|
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
|
do_remove = False |
|
|
do_remove = do_remove or force |
|
|
if do_remove: |
|
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
|
return image |
|
|
|
|
|
def random_crop(image, crop_scale=(0.8, 0.95)): |
|
|
""" |
|
|
随机裁切图片 |
|
|
image (numpy.ndarray): (H, W, C)。 |
|
|
crop_scale (tuple): (min_scale, max_scale)。 |
|
|
""" |
|
|
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image" |
|
|
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1 |
|
|
|
|
|
width, height = image.size |
|
|
|
|
|
|
|
|
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1])) |
|
|
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1])) |
|
|
|
|
|
|
|
|
left = random.randint(0, width - crop_width) |
|
|
top = random.randint(0, height - crop_height) |
|
|
|
|
|
|
|
|
cropped_image = image.crop((left, top, left + crop_width, top + crop_height)) |
|
|
|
|
|
return cropped_image |
|
|
|
|
|
def get_crop_images(img, num=3): |
|
|
cropped_images = [] |
|
|
for i in range(num): |
|
|
cropped_images.append(random_crop(img)) |
|
|
return cropped_images |
|
|
|
|
|
def background_preprocess(input_image, do_remove_background): |
|
|
|
|
|
rembg_session = rembg.new_session() if do_remove_background else None |
|
|
|
|
|
if do_remove_background: |
|
|
input_image = remove_background(input_image, rembg_session) |
|
|
input_image = resize_foreground(input_image, 0.85) |
|
|
|
|
|
return input_image |
|
|
|
|
|
def remove_outliers_and_average(tensor, threshold=1.5): |
|
|
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1" |
|
|
|
|
|
q1 = torch.quantile(tensor, 0.25) |
|
|
q3 = torch.quantile(tensor, 0.75) |
|
|
iqr = q3 - q1 |
|
|
|
|
|
lower_bound = q1 - threshold * iqr |
|
|
upper_bound = q3 + threshold * iqr |
|
|
|
|
|
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)] |
|
|
|
|
|
if len(non_outliers) == 0: |
|
|
return tensor.mean().item() |
|
|
|
|
|
return non_outliers.mean().item() |
|
|
|
|
|
|
|
|
def remove_outliers_and_average_circular(tensor, threshold=1.5): |
|
|
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1" |
|
|
|
|
|
|
|
|
radians = tensor * torch.pi / 180.0 |
|
|
x_coords = torch.cos(radians) |
|
|
y_coords = torch.sin(radians) |
|
|
|
|
|
|
|
|
mean_x = torch.mean(x_coords) |
|
|
mean_y = torch.mean(y_coords) |
|
|
|
|
|
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y)) |
|
|
|
|
|
|
|
|
q1 = torch.quantile(differences, 0.25) |
|
|
q3 = torch.quantile(differences, 0.75) |
|
|
iqr = q3 - q1 |
|
|
|
|
|
|
|
|
lower_bound = q1 - threshold * iqr |
|
|
upper_bound = q3 + threshold * iqr |
|
|
|
|
|
|
|
|
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)] |
|
|
|
|
|
if len(non_outliers) == 0: |
|
|
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi |
|
|
mean_angle = (mean_angle + 360) % 360 |
|
|
return mean_angle |
|
|
|
|
|
|
|
|
radians = non_outliers * torch.pi / 180.0 |
|
|
x_coords = torch.cos(radians) |
|
|
y_coords = torch.sin(radians) |
|
|
|
|
|
mean_x = torch.mean(x_coords) |
|
|
mean_y = torch.mean(y_coords) |
|
|
|
|
|
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi |
|
|
mean_angle = (mean_angle + 360) % 360 |
|
|
|
|
|
return mean_angle |
|
|
|
|
|
def scale(x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x*3 |
|
|
|
|
|
def get_proj2D_XYZ(phi, theta, gamma): |
|
|
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)]) |
|
|
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)]) |
|
|
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)]) |
|
|
x = scale(x) |
|
|
y = scale(y) |
|
|
z = scale(z) |
|
|
return x, y, z |
|
|
|
|
|
|
|
|
def draw_axis(ax, origin, vector, color, label=None): |
|
|
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color) |
|
|
if label!=None: |
|
|
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12) |
|
|
|
|
|
def matplotlib_2D_arrow(angles, rm_bkg_img): |
|
|
fig, ax = plt.subplots(figsize=(8, 8)) |
|
|
|
|
|
|
|
|
phi = np.radians(angles[0]) |
|
|
theta = np.radians(angles[1]) |
|
|
gamma = np.radians(-1*angles[2]) |
|
|
|
|
|
w, h = rm_bkg_img.size |
|
|
if h>w: |
|
|
extent = [-5*w/h, 5*w/h, -5, 5] |
|
|
else: |
|
|
extent = [-5, 5, -5*h/w, 5*h/w] |
|
|
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') |
|
|
|
|
|
origin = np.array([0, 0]) |
|
|
|
|
|
|
|
|
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma) |
|
|
|
|
|
|
|
|
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'}, |
|
|
{'point':rot_y, 'color':'g', 'label':'right'}, |
|
|
{'point':rot_z, 'color':'b', 'label':'top'}] |
|
|
|
|
|
if phi> 45 and phi<=225: |
|
|
order = [0,1,2] |
|
|
elif phi > 225 and phi < 315: |
|
|
order = [2,0,1] |
|
|
else: |
|
|
order = [2,1,0] |
|
|
|
|
|
for i in range(3): |
|
|
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ax.set_axis_off() |
|
|
ax.grid(False) |
|
|
|
|
|
|
|
|
ax.set_xlim(-5, 5) |
|
|
ax.set_ylim(-5, 5) |
|
|
|
|
|
def figure_to_img(fig): |
|
|
with io.BytesIO() as buf: |
|
|
fig.savefig(buf, format='JPG', bbox_inches='tight') |
|
|
buf.seek(0) |
|
|
image = Image.open(buf).copy() |
|
|
return image |
|
|
|
|
|
from render import render, Model |
|
|
import math |
|
|
axis_model = Model("/mnt/prev_nas/qhy_1/GenSpace/osdsynth/Orient_Anything/assets/axis.obj", texture_filename="/mnt/prev_nas/qhy_1/GenSpace/osdsynth/Orient_Anything/assets/axis.png") |
|
|
def render_3D_axis(phi, theta, gamma): |
|
|
radius = 240 |
|
|
|
|
|
|
|
|
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)] |
|
|
img = render( |
|
|
|
|
|
axis_model, |
|
|
height=512, |
|
|
width=512, |
|
|
filename="tmp_render.png", |
|
|
cam_loc = camera_location |
|
|
) |
|
|
img = img.rotate(gamma) |
|
|
return img |
|
|
|
|
|
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)): |
|
|
""" |
|
|
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加 |
|
|
:param center_image: 前景图像 |
|
|
:param background_image: 背景图像 |
|
|
:param target_size: 前景图像的目标大小,默认 (512, 512) |
|
|
:return: 叠加后的图像 |
|
|
""" |
|
|
|
|
|
if center_image.mode != "RGBA": |
|
|
center_image = center_image.convert("RGBA") |
|
|
if background_image.mode != "RGBA": |
|
|
background_image = background_image.convert("RGBA") |
|
|
|
|
|
|
|
|
center_image = center_image.resize(target_size) |
|
|
|
|
|
|
|
|
bg_width, bg_height = background_image.size |
|
|
|
|
|
|
|
|
scale = target_size[0] / max(bg_width, bg_height) |
|
|
new_width = int(bg_width * scale) |
|
|
new_height = int(bg_height * scale) |
|
|
resized_background = background_image.resize((new_width, new_height)) |
|
|
|
|
|
pad_width = target_size[0] - new_width |
|
|
pad_height = target_size[0] - new_height |
|
|
|
|
|
|
|
|
left = pad_width // 2 |
|
|
right = pad_width - left |
|
|
top = pad_height // 2 |
|
|
bottom = pad_height - top |
|
|
|
|
|
|
|
|
resized_background = ImageOps.expand(resized_background, border=(left, top, right, bottom), fill=(255,255,255,255)) |
|
|
|
|
|
|
|
|
result = resized_background.copy() |
|
|
result.paste(center_image, (0, 0), mask=center_image) |
|
|
|
|
|
return result |
|
|
|