|
|
import cv2 |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
import scipy.optimize |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
|
|
|
|
from .panocam import PanoCam |
|
|
from .visualizer import VisualizerPerspective |
|
|
|
|
|
|
|
|
def general_vfov(d_cx, d_cy, h, focal, degree): |
|
|
""" |
|
|
Calculate the general vertical field of view (gvfov) given the camera intrinsic parameters. |
|
|
|
|
|
The general vertical field of view (gvfov) is a concept employed to define the field of view (FoV) for images that may be cropped or have an off-center principal point. |
|
|
|
|
|
The gfov is defined as follows: |
|
|
Consider the camera's pinhole as 'O'. Let 'M1' and 'M2' represent the midpoints of the top and bottom edges of the image, respectively. |
|
|
The gfov is defined as the angle subtended by the lines OM1 and OM2 at 'O'. |
|
|
|
|
|
This function can handle parameters given in two ways: |
|
|
1. Relative to the image height: In this case, h should be 1, and d_cx, d_cy, and focal should be normalized by the image height. |
|
|
2. Absolute pixel values: In this case, h should be the image height in pixels, and d_cx, d_cy, and focal should be provided in pixels. |
|
|
|
|
|
Args: |
|
|
d_cx (float): Horizontal offset of the principal point (cx) from the image center. |
|
|
d_cy (float): Vertical offset of the principal point (cy) from the image center. |
|
|
h (float): Image height, either relative (1) or in absolute pixel values. |
|
|
focal (float): Focal length of the camera, either relative to the image height or in absolute pixel values. |
|
|
degree (bool): Indicator for the FoV return unit. If True, FoV is returned in degrees. If False, it's returned in radians. |
|
|
|
|
|
Returns: |
|
|
float: General vertical field of view (FoV), computed based on the provided parameters and returned in either degrees or radians, depending on the 'degree' parameter. |
|
|
""" |
|
|
p_sqr = focal**2 + d_cx**2 + (d_cy + 0.5 * h) ** 2 |
|
|
q_sqr = focal**2 + d_cx**2 + (d_cy - 0.5 * h) ** 2 |
|
|
cos_FoV = (p_sqr + q_sqr - h**2) / 2 / np.sqrt(p_sqr) / np.sqrt(q_sqr) |
|
|
FoV_rad = np.arccos(cos_FoV) |
|
|
if degree: |
|
|
return np.degrees(FoV_rad) |
|
|
else: |
|
|
return FoV_rad |
|
|
|
|
|
|
|
|
def general_vfov_to_focal(rel_cx, rel_cy, h, gvfov, degree): |
|
|
""" |
|
|
Converts a given general vertical field of view (gvfov) to the equivalent focal length. |
|
|
|
|
|
The general vertical field of view (gvfov) is a concept employed to define the field of view (FoV) for images that may be cropped or have an off-center principal point. |
|
|
|
|
|
The gfov is defined as follows: |
|
|
Consider the camera's pinhole as 'O'. Let 'M1' and 'M2' represent the midpoints of the top and bottom edges of the image, respectively. |
|
|
The gfov is defined as the angle subtended by the lines OM1 and OM2 at 'O'. |
|
|
|
|
|
This function accepts parameters in either relative terms or absolute pixel values: |
|
|
1. Relative to the image height: In this case, h should be 1, and d_cx, d_cy should be normalized by the image height. |
|
|
2. Absolute pixel values: In this case, h should be the image height in pixels, and d_cx, d_cy should be provided in pixels. |
|
|
|
|
|
Args: |
|
|
rel_cx (float): Horizontal offset of the principal point (cx) from the image center. |
|
|
It's in absolute terms if h is set to image height, else it's relative (cx coordinate / image width - 0.5). |
|
|
rel_cy (float): Vertical offset of the principal point (cy) from the image center. |
|
|
It's in absolute terms if h is set to image height, else it's relative (cy coordinate / image height - 0.5). |
|
|
h (float): Image height, either in relative terms (set as 1) or as absolute pixel values. |
|
|
gvfov (float): General vertical field of view. It's in degrees if degree is set to True, else it's in radians. |
|
|
degree (bool): Indicator for the gvfov unit. If True, gvfov is assumed to be in degrees. If False, it's in radians. |
|
|
|
|
|
Returns: |
|
|
float: Focal length, derived from the input gvfov and the principal point offsets (rel_cx, rel_cy). |
|
|
It is relative to the image height if h is set to 1, else it's an absolute value (in pixels). |
|
|
""" |
|
|
|
|
|
def fun(focal, *args): |
|
|
h, d_cx, d_cy, target_cos_FoV = args |
|
|
|
|
|
p_sqr = (focal / h) ** 2 + d_cx**2 + (d_cy + 0.5) ** 2 |
|
|
q_sqr = (focal / h) ** 2 + d_cx**2 + (d_cy - 0.5) ** 2 |
|
|
cos_FoV = (p_sqr + q_sqr - 1) / 2 / np.sqrt(p_sqr) / np.sqrt(q_sqr) |
|
|
return cos_FoV - target_cos_FoV |
|
|
if degree: |
|
|
gvfov = np.radians(gvfov) |
|
|
if type(rel_cx) != np.ndarray: |
|
|
|
|
|
focal = scipy.optimize.fsolve(fun, 1.5, args=(h, rel_cx, rel_cy, np.cos(gvfov)))[0] |
|
|
else: |
|
|
|
|
|
focal = scipy.optimize.fsolve(fun, np.ones(len(rel_cx)) * 1.5, args=(h, rel_cx, rel_cy, np.cos(gvfov))) |
|
|
focal = np.abs(focal) |
|
|
return focal |
|
|
|
|
|
|
|
|
def encode_bin(vector_field, num_bin): |
|
|
"""encode vector field into classification bins |
|
|
|
|
|
Args: |
|
|
vector_field (np.ndarray): gravity field of shape (2, h, w), with channel 0 cos(theta) and 1 sin(theta) |
|
|
num_bin (int): number of classification bins |
|
|
|
|
|
Returns: |
|
|
np.ndarray: encoded bin indices of shape (1, h, w) |
|
|
""" |
|
|
angle = ( |
|
|
torch.atan2(vector_field[1, :, :], vector_field[0, :, :]) / np.pi * 180 + 180 |
|
|
) % 360 |
|
|
angle_bin = torch.round(torch.div(angle, (360 / (num_bin - 1)))).long() |
|
|
angle_bin[angle_bin == num_bin - 1] = 0 |
|
|
invalid = (vector_field == 0).sum(0) == vector_field.size(0) |
|
|
angle_bin[invalid] = num_bin - 1 |
|
|
return angle_bin.type(torch.LongTensor) |
|
|
|
|
|
|
|
|
def decode_bin(angle_bin, num_bin): |
|
|
"""decode classification bins into vector field |
|
|
|
|
|
Args: |
|
|
angle_bin (np.ndarray): bin indices of shape (1, h, 1) |
|
|
num_bin (int): number of classification bins |
|
|
|
|
|
Returns: |
|
|
np.ndarray: decoded vector field of shape (2, h, w) |
|
|
""" |
|
|
angle = (angle_bin * (360 / (num_bin - 1)) - 180) / 180 * np.pi |
|
|
cos = torch.cos(angle) |
|
|
sin = torch.sin(angle) |
|
|
vector_field = torch.stack((cos, sin), dim=0) |
|
|
invalid = angle_bin == num_bin - 1 |
|
|
vector_field[:, invalid] = 0 |
|
|
return vector_field |
|
|
|
|
|
|
|
|
def encode_bin_latitude(latimap, num_classes): |
|
|
"""encode latitude map into classification bins |
|
|
|
|
|
Args: |
|
|
latimap (np.ndarray): latitude map of shape (h, w) with values in [-90, 90] |
|
|
num_classes (int): number of classes |
|
|
|
|
|
Returns: |
|
|
np.ndarray: encoded latitude bin indices |
|
|
""" |
|
|
boundaries = torch.arange(-90, 90, 180 / num_classes)[1:] |
|
|
binmap = torch.bucketize(latimap, boundaries) |
|
|
return binmap.type(torch.LongTensor) |
|
|
|
|
|
|
|
|
def decode_bin_latitude(binmap, num_classes): |
|
|
"""decode classification bins to latitude map |
|
|
|
|
|
Args: |
|
|
binmap (np.ndarray): encoded classification bins |
|
|
num_classes (int): number of classes |
|
|
|
|
|
Returns: |
|
|
np.ndarray: latitude map of shape (h, w) |
|
|
""" |
|
|
bin_size = 180 / num_classes |
|
|
bin_centers = torch.arange(-90, 90, bin_size) + bin_size / 2 |
|
|
bin_centers = bin_centers.to(binmap.device) |
|
|
latimap = bin_centers[binmap] |
|
|
return latimap |
|
|
|
|
|
|
|
|
def draw_perspective_fields( |
|
|
img_rgb, up, latimap, color=None, density=10, arrow_inv_len=20, return_img=True |
|
|
): |
|
|
"""draw perspective field on top of input image |
|
|
|
|
|
Args: |
|
|
img_rgb (np.ndarray): input image |
|
|
up (np.ndarray): gravity field (h, w, 2) |
|
|
latimap (np.ndarray): latitude map (h, w) (radians) |
|
|
color ((float, float, float), optional): RGB color for up vectors. [0, 1] |
|
|
Defaults to None. |
|
|
density (int, optional): Value to control density of up vectors. |
|
|
Each row has (width // density) vectors. |
|
|
Each column has (height // density) vectors. |
|
|
Defaults to 10. |
|
|
arrow_inv_len (int, optional): Value to control vector length |
|
|
Vector length set to (image plane diagonal // arrow_inv_len). |
|
|
Defaults to 20. |
|
|
return_img (bool, optional): bool to control if to return np array or VisImage |
|
|
|
|
|
Returns: |
|
|
image blended with perspective fields. |
|
|
""" |
|
|
visualizer = VisualizerPerspective(img_rgb.copy()) |
|
|
vis_output = visualizer.draw_lati(latimap) |
|
|
if torch.is_tensor(up): |
|
|
up = up.numpy().transpose(1, 2, 0) |
|
|
im_h, im_w, _ = img_rgb.shape |
|
|
x, y = np.meshgrid( |
|
|
np.arange(0, im_w, im_w // density), np.arange(0, im_h, im_h // density) |
|
|
) |
|
|
x, y = x.ravel(), y.ravel() |
|
|
start = np.stack((x, y)) |
|
|
arrow_len = np.sqrt(im_w**2 + im_h**2) // arrow_inv_len |
|
|
end = up[y, x, :] * arrow_len |
|
|
if color is None: |
|
|
color = (0, 1, 0) |
|
|
vis_output = visualizer.draw_arrow(x, y, end[:, 0], -end[:, 1], color=color) |
|
|
if return_img: |
|
|
return vis_output.get_image() |
|
|
else: |
|
|
return vis_output |
|
|
|
|
|
|
|
|
def draw_up_field( |
|
|
img_rgb, vector_field, color=None, density=10, arrow_inv_len=20, return_img=True |
|
|
): |
|
|
"""draw vector field on top of rgb image |
|
|
|
|
|
Args: |
|
|
img_rgb (np.ndarray): input rgb image |
|
|
vector_field (np.ndarray): gravity field of shape (h, w, 2) |
|
|
color ((float, float, float), optional): RGB color for up vectors. [0, 1] |
|
|
Defaults to None. |
|
|
density (int, optional): Value to control density of up vectors. |
|
|
Each row has (width // density) vectors. |
|
|
Each column has (height // density) vectors. |
|
|
Defaults to 10. |
|
|
arrow_inv_len (int, optional): Value to control vector length |
|
|
Vector length set to (image plane diagonal // arrow_inv_len). |
|
|
Defaults to 20. |
|
|
return_img (bool, optional): bool to control if to return np array or VisImage |
|
|
|
|
|
Returns: |
|
|
image blended with up vectors |
|
|
""" |
|
|
if torch.is_tensor(vector_field): |
|
|
vector_field = vector_field.numpy().transpose(1, 2, 0) |
|
|
visualizer = VisualizerPerspective(img_rgb.copy()) |
|
|
im_h, im_w, _ = img_rgb.shape |
|
|
x, y = np.meshgrid( |
|
|
|
|
|
|
|
|
np.arange(0, im_w, im_w // density), |
|
|
np.arange(0, im_h, im_h // density), |
|
|
) |
|
|
x, y = x.ravel(), y.ravel() |
|
|
start = np.stack((x, y)) |
|
|
arrow_len = np.sqrt(im_w**2 + im_h**2) // arrow_inv_len |
|
|
end = vector_field[y, x, :] * arrow_len |
|
|
|
|
|
vis_output = visualizer.draw_arrow(x, y, end[:, 0], -end[:, 1], color=color) |
|
|
if return_img: |
|
|
return vis_output.get_image() |
|
|
else: |
|
|
return vis_output |
|
|
|
|
|
|
|
|
def draw_from_r_p_f( |
|
|
img, |
|
|
roll, |
|
|
pitch, |
|
|
vfov, |
|
|
mode, |
|
|
up_color=None, |
|
|
alpha_contourf=0.4, |
|
|
alpha_contour=0.9, |
|
|
draw_up=True, |
|
|
draw_lat=True, |
|
|
lati_alpha=0.5, |
|
|
): |
|
|
"""Draw latitude map and gravity field on top of input image. |
|
|
Generate latitude map and gravity field from camera parameters |
|
|
|
|
|
Args: |
|
|
img (np.ndarray): input rgb image |
|
|
roll (float): rotation of camera about the world frame z-axis |
|
|
pitch (float): rotation of camera about the world frame x-axis |
|
|
vfov (float): vertical field of view |
|
|
mode (str): specifies the mode of input parameters. "deg" or "rad" |
|
|
up_color ((float, float, float), optional): RGB value of up vectors. [0, 1]. Defaults to None. |
|
|
alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4. |
|
|
alpha_contour (float, optional): value to control transparency of contour lines. Defaults to 0.9. |
|
|
draw_up (bool, optional): bool to specify if up vectors should be drawn. Defaults to True. |
|
|
draw_lat (bool, optional): bool to specify if latitude map should be drawn. Defaults to True. |
|
|
|
|
|
Returns: |
|
|
np.ndarray: img with up vectors drawn on (if draw_up == True) |
|
|
and latitude map drawn on (if draw_lat == True) |
|
|
""" |
|
|
|
|
|
im_h, im_w, _ = img.shape |
|
|
if mode == "deg": |
|
|
roll = np.radians(roll) |
|
|
pitch = np.radians(pitch) |
|
|
vfov = np.radians(vfov) |
|
|
elif mode == "rad": |
|
|
pass |
|
|
else: |
|
|
raise "Bad argument" |
|
|
lati_deg = PanoCam.get_lat( |
|
|
vfov=vfov, |
|
|
im_w=im_w, |
|
|
im_h=im_h, |
|
|
elevation=pitch, |
|
|
roll=roll, |
|
|
) |
|
|
up = PanoCam.get_up( |
|
|
vfov=vfov, |
|
|
im_w=im_w, |
|
|
im_h=im_h, |
|
|
elevation=pitch, |
|
|
roll=roll, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if draw_lat: |
|
|
img = draw_latitude_field( |
|
|
img, |
|
|
np.radians(lati_deg), |
|
|
alpha_contourf=alpha_contourf, |
|
|
alpha_contour=alpha_contour, |
|
|
) |
|
|
if draw_up: |
|
|
img = draw_up_field(img, up, color=up_color) |
|
|
return img |
|
|
|
|
|
|
|
|
def draw_from_r_p_f_cx_cy( |
|
|
img, |
|
|
roll, |
|
|
pitch, |
|
|
vfov, |
|
|
rel_cx, |
|
|
rel_cy, |
|
|
mode, |
|
|
up_color=None, |
|
|
alpha_contourf=0.4, |
|
|
alpha_contour=0.9, |
|
|
draw_up=True, |
|
|
draw_lat=True, |
|
|
): |
|
|
"""Draw latitude map and gravity field on top of input image. |
|
|
Generate latitude map and gravity field from camera parameters |
|
|
|
|
|
Args: |
|
|
img (np.ndarray): input image (RGB) |
|
|
roll (float): rotation of camera about the world frame z-axis |
|
|
pitch (float): rotation of camera about the world frame x-axis |
|
|
vfov (float): vertical field of view |
|
|
rel_cx (float): relative cx location (pixel location / image width - 0.5) |
|
|
rel_cy (float): relative cy location (pixel location / image height - 0.5) |
|
|
mode (str): specifies the mode of input parameters. "deg" or "radians" |
|
|
up_color ((float, float, float), optional): RGB value of up vectors. [0, 1]. Defaults to None. |
|
|
alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4. |
|
|
alpha_contour (float, optional): value to control transparency of contour lines. Defaults to 0.9. |
|
|
draw_up (bool, optional): bool to specify if up vectors should be drawn. Defaults to True. |
|
|
draw_lat (bool, optional): bool to specify if latitude map should be drawn. Defaults to True. |
|
|
|
|
|
Returns: |
|
|
np.ndarray: rgb img with up vectors drawn on (if draw_up == True) |
|
|
and latitude map drawn on (if draw_lat == True) |
|
|
|
|
|
""" |
|
|
im_h, im_w, _ = img.shape |
|
|
if mode == "deg": |
|
|
roll = np.radians(roll) |
|
|
pitch = np.radians(pitch) |
|
|
vfov = np.radians(vfov) |
|
|
elif mode == "rad": |
|
|
pass |
|
|
else: |
|
|
raise "Bad argument" |
|
|
rel_focal = general_vfov_to_focal(rel_cx, rel_cy, 1, vfov, False) |
|
|
lati_deg = PanoCam.get_lat_general( |
|
|
focal_rel=rel_focal, |
|
|
im_w=im_w, |
|
|
im_h=im_h, |
|
|
elevation=pitch, |
|
|
roll=roll, |
|
|
cx_rel=rel_cx, |
|
|
cy_rel=rel_cy, |
|
|
) |
|
|
up = PanoCam.get_up_general( |
|
|
focal_rel=rel_focal, |
|
|
im_w=im_w, |
|
|
im_h=im_h, |
|
|
elevation=pitch, |
|
|
roll=roll, |
|
|
cx_rel=rel_cx, |
|
|
cy_rel=rel_cy, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if draw_lat: |
|
|
img = draw_latitude_field( |
|
|
img, |
|
|
np.radians(lati_deg), |
|
|
alpha_contourf=alpha_contourf, |
|
|
alpha_contour=alpha_contour, |
|
|
) |
|
|
if draw_up: |
|
|
img = draw_up_field(img, up, color=up_color) |
|
|
return img |
|
|
|
|
|
|
|
|
def draw_latitude_field( |
|
|
img_rgb, |
|
|
latimap=None, |
|
|
binmap=None, |
|
|
alpha_contourf=0.4, |
|
|
alpha_contour=0.9, |
|
|
return_img=True, |
|
|
): |
|
|
"""draw latitude field on top of rgb image |
|
|
|
|
|
Args: |
|
|
img_rgb (np.ndarray): input rgb image |
|
|
latimap (np.ndarray, optional): latitude map in radians. Defaults to None. |
|
|
binmap: deprecated. |
|
|
alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4. |
|
|
alpha_contour (float, optional): value to control transparenct of contour lines. Defaults to 0.9. |
|
|
return_img (bool, optional): bool to control if to return np array or VisImage |
|
|
|
|
|
Returns: |
|
|
np array or VisImage depending on return_img |
|
|
""" |
|
|
visualizer = VisualizerPerspective(img_rgb.copy()) |
|
|
vis_output = visualizer.draw_lati(latimap, alpha_contourf, alpha_contour) |
|
|
if return_img: |
|
|
return vis_output.get_image() |
|
|
else: |
|
|
return vis_output |
|
|
|
|
|
|
|
|
def draw_horizon_line(img, horizon, color, thickness=3): |
|
|
"""draw horizon line on image |
|
|
|
|
|
Args: |
|
|
img (np.ndarray): input image |
|
|
horizon (float, float): fraction of image left/right border intersection with respect to image height |
|
|
color (float, float, float): RGB color value for line. [0, 1] |
|
|
thickness (int, optional): line thickness in pixels. Defaults to 3. |
|
|
|
|
|
Returns: |
|
|
np.ndarray: image with horizon line drawn on it |
|
|
""" |
|
|
im_h, im_w, _ = img.shape |
|
|
output = img.copy() |
|
|
cv2.line( |
|
|
output, |
|
|
(0, int(horizon[0] * im_h)), |
|
|
(im_w, int(horizon[1] * im_h)), |
|
|
color, |
|
|
thickness, |
|
|
) |
|
|
return output |
|
|
|
|
|
|
|
|
def draw_prediction_distribution(pred, gt): |
|
|
"""create 2D histogram of ground truth camera parameters vs. ParamNet predictions |
|
|
|
|
|
Args: |
|
|
pred (np.ndarray): ParamNet predictions |
|
|
gt (np.ndarray): ground truth parameters |
|
|
|
|
|
Returns: |
|
|
np.ndarray: 2D histogram |
|
|
""" |
|
|
fig = plt.figure() |
|
|
plt.hexbin(gt, pred) |
|
|
plt.xlabel("gt") |
|
|
plt.ylabel("pred") |
|
|
plt.xlim(min(min(gt), min(pred)), max(max(gt), max(pred))) |
|
|
plt.ylim(min(min(gt), min(pred)), max(max(gt), max(pred))) |
|
|
plt.gca().set_aspect("equal", adjustable="box") |
|
|
canvas = FigureCanvasAgg(fig) |
|
|
|
|
|
s, (width, height) = canvas.print_to_buffer() |
|
|
buffer = np.frombuffer(s, dtype="uint8") |
|
|
|
|
|
img_rgba = buffer.reshape(height, width, 4) |
|
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
|
return rgb |
|
|
|
|
|
|
|
|
def pf_postprocess(result, img_size, output_height, output_width): |
|
|
""" |
|
|
Reference https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/postprocessing.py#L77C1-L100C18 |
|
|
Return semantic segmentation predictions in the original resolution. |
|
|
|
|
|
The input images are often resized when entering semantic segmentor. Moreover, in same |
|
|
cases, they also padded inside segmentor to be divisible by maximum network stride. |
|
|
As a result, we often need the predictions of the segmentor in a different |
|
|
resolution from its inputs. |
|
|
|
|
|
Args: |
|
|
result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), |
|
|
where C is the number of classes, and H, W are the height and width of the prediction. |
|
|
img_size (tuple): image size that segmentor is taking as input. |
|
|
output_height, output_width: the desired output resolution. |
|
|
|
|
|
Returns: |
|
|
semantic segmentation prediction (Tensor): A tensor of the shape |
|
|
(C, output_height, output_width) that contains per-pixel soft predictions. |
|
|
""" |
|
|
result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) |
|
|
result = F.interpolate( |
|
|
result, size=(output_height, output_width), mode="bilinear", align_corners=False |
|
|
)[0] |
|
|
return result |
|
|
|