|
|
|
|
|
import matplotlib.colors as mplc |
|
|
import matplotlib.figure as mplfigure |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
import torch |
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
|
|
|
|
|
|
|
class VisImage: |
|
|
def __init__(self, img, scale=1.0): |
|
|
""" |
|
|
Args: |
|
|
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. |
|
|
scale (float): scale the input image |
|
|
""" |
|
|
self.img = img |
|
|
self.scale = scale |
|
|
self.width, self.height = img.shape[1], img.shape[0] |
|
|
self._setup_figure(img) |
|
|
|
|
|
def _setup_figure(self, img): |
|
|
""" |
|
|
Args: |
|
|
Same as in :meth:`__init__()`. |
|
|
|
|
|
Returns: |
|
|
fig (matplotlib.pyplot.figure): top level container for all the image plot elements. |
|
|
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. |
|
|
""" |
|
|
fig = mplfigure.Figure(frameon=False) |
|
|
self.dpi = fig.get_dpi() |
|
|
|
|
|
|
|
|
fig.set_size_inches( |
|
|
(self.width * self.scale + 1e-2) / self.dpi, |
|
|
(self.height * self.scale + 1e-2) / self.dpi, |
|
|
) |
|
|
self.canvas = FigureCanvasAgg(fig) |
|
|
|
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) |
|
|
ax.axis("off") |
|
|
self.fig = fig |
|
|
self.ax = ax |
|
|
self.reset_image(img) |
|
|
|
|
|
def reset_image(self, img): |
|
|
""" |
|
|
Args: |
|
|
img: same as in __init__ |
|
|
""" |
|
|
img = img.astype("uint8") |
|
|
self.ax.imshow( |
|
|
img, extent=(0, self.width, self.height, 0), interpolation="nearest" |
|
|
) |
|
|
|
|
|
def save(self, filepath): |
|
|
""" |
|
|
Args: |
|
|
filepath (str): a string that contains the absolute path, including the file name, where |
|
|
the visualized image will be saved. |
|
|
""" |
|
|
self.fig.savefig(filepath) |
|
|
|
|
|
def get_image(self): |
|
|
""" |
|
|
Returns: |
|
|
ndarray: |
|
|
the visualized image of shape (H, W, 3) (RGB) in uint8 type. |
|
|
The shape is scaled w.r.t the input image using the given `scale` argument. |
|
|
""" |
|
|
canvas = self.canvas |
|
|
s, (width, height) = canvas.print_to_buffer() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buffer = np.frombuffer(s, dtype="uint8") |
|
|
|
|
|
img_rgba = buffer.reshape(height, width, 4) |
|
|
rgb, alpha = np.split(img_rgba, [3], axis=2) |
|
|
return rgb.astype("uint8") |
|
|
|
|
|
|
|
|
class Visualizer: |
|
|
""" |
|
|
Visualizer that draws data about detection/segmentation on images. |
|
|
|
|
|
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}` |
|
|
that draw primitive objects to images, as well as high-level wrappers like |
|
|
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}` |
|
|
that draw composite data in some pre-defined style. |
|
|
|
|
|
Note that the exact visualization style for the high-level wrappers are subject to change. |
|
|
Style such as color, opacity, label contents, visibility of labels, or even the visibility |
|
|
of objects themselves (e.g. when the object is too small) may change according |
|
|
to different heuristics, as long as the results still look visually reasonable. |
|
|
|
|
|
To obtain a consistent style, you can implement custom drawing functions with the |
|
|
abovementioned primitive methods instead. If you need more customized visualization |
|
|
styles, you can process the data yourself following their format documented in |
|
|
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not |
|
|
intend to satisfy everyone's preference on drawing styles. |
|
|
|
|
|
This visualizer focuses on high rendering quality rather than performance. It is not |
|
|
designed to be used for real-time applications. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, img_rgb, scale=1.0, font_size_scale=1.0): |
|
|
""" |
|
|
Args: |
|
|
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to |
|
|
the height and width of the image respectively. C is the number of |
|
|
color channels. The image is required to be in RGB format since that |
|
|
is a requirement of the Matplotlib library. The image is also expected |
|
|
to be in the range [0, 255]. |
|
|
font_size_scale: extra scaling of font size on top of default font size |
|
|
""" |
|
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) |
|
|
self.output = VisImage(self.img, scale=scale) |
|
|
self.cpu_device = torch.device("cpu") |
|
|
|
|
|
|
|
|
self._default_font_size = ( |
|
|
max(np.sqrt(self.output.height * self.output.width) // 90, 10 // scale) |
|
|
* font_size_scale |
|
|
) |
|
|
|
|
|
""" |
|
|
Primitive drawing functions: |
|
|
""" |
|
|
|
|
|
def draw_text( |
|
|
self, |
|
|
text, |
|
|
position, |
|
|
*, |
|
|
font_size=None, |
|
|
color="g", |
|
|
horizontal_alignment="center", |
|
|
rotation=0, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
text (str): class label |
|
|
position (tuple): a tuple of the x and y coordinates to place text on image. |
|
|
font_size (int, optional): font of the text. If not provided, a font size |
|
|
proportional to the image width is calculated and used. |
|
|
color: color of the text. Refer to `matplotlib.colors` for full list |
|
|
of formats that are accepted. |
|
|
horizontal_alignment (str): see `matplotlib.text.Text` |
|
|
rotation: rotation angle in degrees CCW |
|
|
|
|
|
Returns: |
|
|
output (VisImage): image object with text drawn. |
|
|
""" |
|
|
if not font_size: |
|
|
font_size = self._default_font_size |
|
|
|
|
|
|
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2) |
|
|
color[np.argmax(color)] = max(0.8, np.max(color)) |
|
|
|
|
|
x, y = position |
|
|
self.output.ax.text( |
|
|
x, |
|
|
y, |
|
|
text, |
|
|
size=font_size * self.output.scale, |
|
|
family="sans-serif", |
|
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, |
|
|
verticalalignment="top", |
|
|
horizontalalignment=horizontal_alignment, |
|
|
color=color, |
|
|
zorder=10, |
|
|
rotation=rotation, |
|
|
) |
|
|
return self.output |
|
|
|
|
|
def get_output(self): |
|
|
""" |
|
|
Returns: |
|
|
output (VisImage): the image output containing the visualizations added |
|
|
to the image. |
|
|
""" |
|
|
return self.output |
|
|
|
|
|
|
|
|
class VisualizerPerspective(Visualizer): |
|
|
def draw_arrow( |
|
|
self, |
|
|
x_pos, |
|
|
y_pos, |
|
|
x_direct, |
|
|
y_direct, |
|
|
color=None, |
|
|
linestyle="-", |
|
|
linewidth=None, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
x_data (list[int]): a list containing x values of all the points being drawn. |
|
|
Length of list should match the length of y_data. |
|
|
y_data (list[int]): a list containing y values of all the points being drawn. |
|
|
Length of list should match the length of x_data. |
|
|
color: color of the line. Refer to `matplotlib.colors` for a full list of |
|
|
formats that are accepted. |
|
|
linestyle: style of the line. Refer to `matplotlib.lines.Line2D` |
|
|
for a full list of formats that are accepted. |
|
|
linewidth (float or None): width of the line. When it's None, |
|
|
a default value will be computed and used. |
|
|
|
|
|
Returns: |
|
|
output (VisImage): image object with line drawn. |
|
|
""" |
|
|
if linewidth is None: |
|
|
linewidth = self._default_font_size / 3 |
|
|
linewidth = max(linewidth, 1) |
|
|
self.output.ax.quiver( |
|
|
x_pos, |
|
|
y_pos, |
|
|
x_direct, |
|
|
y_direct, |
|
|
color=color, |
|
|
scale_units="xy", |
|
|
scale=1, |
|
|
antialiased=True, |
|
|
headaxislength=3.5, |
|
|
linewidths=0.1, |
|
|
) |
|
|
return self.output |
|
|
|
|
|
def draw_lati( |
|
|
self, latimap, alpha_contourf=0.4, alpha_contour=0.9, contour_only=False |
|
|
): |
|
|
"""Blend latitude map""" |
|
|
height, width = latimap.shape |
|
|
y, x = np.mgrid[0:height, 0:width] |
|
|
cmap = plt.get_cmap("seismic") |
|
|
bands = 20 |
|
|
levels = np.linspace(-np.pi / 2, np.pi / 2, bands - 1) |
|
|
if not contour_only: |
|
|
pp = self.output.ax.contourf( |
|
|
x, |
|
|
y, |
|
|
latimap, |
|
|
levels=levels, |
|
|
cmap=cmap, |
|
|
alpha=alpha_contourf, |
|
|
antialiased=True, |
|
|
) |
|
|
pp2 = self.output.ax.contour( |
|
|
x, |
|
|
y, |
|
|
latimap, |
|
|
pp.levels, |
|
|
cmap=cmap, |
|
|
alpha=alpha_contour, |
|
|
antialiased=True, |
|
|
linewidths=5, |
|
|
) |
|
|
for c in pp2.collections: |
|
|
c.set_linestyle("solid") |
|
|
else: |
|
|
|
|
|
pp = self.output.ax.contour( |
|
|
x, |
|
|
y, |
|
|
latimap, |
|
|
levels=[0], |
|
|
cmap=cmap, |
|
|
alpha=alpha_contour, |
|
|
antialiased=True, |
|
|
linewidths=15, |
|
|
) |
|
|
return self.output |
|
|
|