|
|
import random |
|
|
from collections import Counter |
|
|
|
|
|
import cv2 |
|
|
import matplotlib |
|
|
import numpy as np |
|
|
import open3d as o3d |
|
|
import torch |
|
|
from osdsynth.processor.wrappers.metric3d_v2 import get_depth_model, inference_depth |
|
|
from osdsynth.processor.wrappers.perspective_fields import ( |
|
|
create_rotation_matrix, |
|
|
get_perspective_fields_model, |
|
|
run_perspective_fields_model, |
|
|
) |
|
|
from PIL import Image |
|
|
from scipy.spatial.transform import Rotation |
|
|
from wis3d import Wis3D |
|
|
|
|
|
|
|
|
class PointCloudReconstruction: |
|
|
"""Class to reconstruct point cloud from depth maps.""" |
|
|
|
|
|
def __init__(self, cfg, logger, device, init_models=True): |
|
|
"""Initialize the class.""" |
|
|
self.cfg = cfg |
|
|
self.logger = logger |
|
|
self.device = device |
|
|
self.vis = self.cfg.vis |
|
|
|
|
|
if init_models: |
|
|
|
|
|
self.perspective_fields_model = get_perspective_fields_model(cfg, device) |
|
|
|
|
|
|
|
|
self.wilde_camera_model = torch.hub.load("osdsynth/external/WildCamera", "WildCamera", pretrained=True,source='local').to(device) |
|
|
|
|
|
|
|
|
self.depth_model = get_depth_model(device) |
|
|
else: |
|
|
self.perspective_fields_model = self.wilde_camera_model = self.depth_model = None |
|
|
|
|
|
def process(self, filename, image_bgr, detections_list): |
|
|
"""Reconstruct point cloud from depth map.""" |
|
|
|
|
|
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) |
|
|
image_rgb_pil = Image.fromarray(image_rgb) |
|
|
|
|
|
|
|
|
( |
|
|
vis_perspective_fields, |
|
|
perspective_fields, |
|
|
) = run_perspective_fields_model(self.perspective_fields_model, image_bgr) |
|
|
|
|
|
|
|
|
perspective_R = create_rotation_matrix( |
|
|
roll=perspective_fields["roll"], |
|
|
pitch=perspective_fields["pitch"], |
|
|
yaw=0, |
|
|
degrees=True, |
|
|
) |
|
|
|
|
|
|
|
|
intrinsic, _ = self.wilde_camera_model.inference(image_rgb_pil, wtassumption=False) |
|
|
|
|
|
|
|
|
metric_depth = inference_depth(image_rgb, intrinsic, self.depth_model) |
|
|
|
|
|
|
|
|
pts3d = depth_to_points(metric_depth[None], intrinsic=intrinsic) |
|
|
cano_pts3d = depth_to_points(metric_depth[None], R=perspective_R.T, intrinsic=intrinsic) |
|
|
|
|
|
|
|
|
cano_pts3d_flattened = cano_pts3d.reshape(-1, 3) |
|
|
sorted_flattened_points = cano_pts3d_flattened[cano_pts3d_flattened[:, 2].argsort()] |
|
|
fifty_percent_index = int(sorted_flattened_points.shape[0] * 0.5) |
|
|
selected_nearest_points = sorted_flattened_points[:fifty_percent_index] |
|
|
min_y = np.min(selected_nearest_points[:, 1]) |
|
|
cano_pts3d[:, :, 1] -= min_y |
|
|
|
|
|
max_x = np.max(cano_pts3d[:, :, 0]) |
|
|
min_x = np.min(cano_pts3d[:, :, 0]) |
|
|
max_z = np.max(cano_pts3d[:, :, 2]) |
|
|
min_z = np.min(cano_pts3d[:, :, 2]) |
|
|
xz_max_min = [max_x, min_x, max_z, min_z] |
|
|
|
|
|
if self.vis: |
|
|
wis3d = Wis3D(self.cfg.wis3d_folder, filename) |
|
|
|
|
|
wis3d.add_point_cloud( |
|
|
vertices=cano_pts3d.reshape((-1, 3)), colors=image_rgb.reshape(-1, 3), name="cano_pts3d" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_objects = len(detections_list) |
|
|
|
|
|
for obj_idx in range(n_objects): |
|
|
if detections_list[obj_idx]["xyxy"][0] > cano_pts3d.shape[1]: |
|
|
detections_list[obj_idx]["xyxy"][0] = cano_pts3d.shape[1]-1 |
|
|
if detections_list[obj_idx]["xyxy"][1] > cano_pts3d.shape[0]: |
|
|
detections_list[obj_idx]["xyxy"][1] = cano_pts3d.shape[0]-1 |
|
|
if detections_list[obj_idx]["xyxy"][2] > cano_pts3d.shape[1]: |
|
|
detections_list[obj_idx]["xyxy"][2] = cano_pts3d.shape[1]-1 |
|
|
if detections_list[obj_idx]["xyxy"][3] > cano_pts3d.shape[0]: |
|
|
detections_list[obj_idx]["xyxy"][3] = cano_pts3d.shape[0]-1 |
|
|
|
|
|
bbox = detections_list[obj_idx]["xyxy"] |
|
|
|
|
|
detections_list[obj_idx]["left_edge"] = -cano_pts3d[int((int(bbox[1])+int(bbox[3]))/ 2)][0][0] |
|
|
detections_list[obj_idx]["right_edge"] = -cano_pts3d[int((int(bbox[1])+int(bbox[3]))/ 2)][-1][0] |
|
|
|
|
|
detections_list[obj_idx]["square"] = np.abs((int(bbox[1])-int(bbox[3]))*(int(bbox[0])-int(bbox[2]))) |
|
|
|
|
|
xc = int(intrinsic[0, 2]) |
|
|
yc = int(intrinsic[1, 2]) |
|
|
detections_list[obj_idx]["f"] = cano_pts3d[yc][xc] * 1000 |
|
|
|
|
|
mask = detections_list[obj_idx]["subtracted_mask"] |
|
|
class_name = detections_list[obj_idx]["class_name"] |
|
|
|
|
|
object_pcd = create_object_pcd(cano_pts3d, image_rgb, mask) |
|
|
|
|
|
|
|
|
if len(object_pcd.points) < max(self.cfg.min_points_threshold, 5): |
|
|
print("camera_object_pcd points less than threshold, skip this detection") |
|
|
continue |
|
|
|
|
|
object_pcd = process_pcd(self.cfg, object_pcd) |
|
|
|
|
|
if len(object_pcd.points) < self.cfg.min_points_threshold_after_denoise: |
|
|
print(f"{class_name} pcd_bbox too less points ({len(object_pcd.points)}), skip this detection") |
|
|
continue |
|
|
|
|
|
axis_aligned_bbox, oriented_bbox = get_bounding_box(self.cfg, object_pcd) |
|
|
|
|
|
if axis_aligned_bbox.volume() < 1e-6: |
|
|
print(f"{class_name} pcd_bbox got small volume, skip this detection") |
|
|
continue |
|
|
|
|
|
detections_list[obj_idx]["pcd"] = object_pcd |
|
|
detections_list[obj_idx]["axis_aligned_bbox"] = axis_aligned_bbox |
|
|
detections_list[obj_idx]["oriented_bbox"] = oriented_bbox |
|
|
|
|
|
|
|
|
filtered_detections = [det for det in detections_list if "pcd" in det] |
|
|
|
|
|
instance_colored_pcds = color_by_instance([det["pcd"] for det in filtered_detections]) |
|
|
axis_aligned_bbox = [det["axis_aligned_bbox"] for det in filtered_detections] |
|
|
oriented_bboxes = [det["oriented_bbox"] for det in filtered_detections] |
|
|
|
|
|
if self.vis: |
|
|
obj_id = 0 |
|
|
for obj_pcd, obj_aa_box, obj_or_box in zip(instance_colored_pcds, axis_aligned_bbox, oriented_bboxes): |
|
|
class_name = filtered_detections[obj_id]["class_name"] |
|
|
pcd_points = np.asarray(obj_pcd.points) |
|
|
pcd_colors = np.asarray(obj_pcd.colors) |
|
|
|
|
|
|
|
|
aa_center, aa_eulers, aa_extent = axis_aligned_bbox_to_center_euler_extent( |
|
|
obj_aa_box.get_min_bound(), obj_aa_box.get_max_bound() |
|
|
) |
|
|
or_center, or_eulers, or_extent = oriented_bbox_to_center_euler_extent( |
|
|
obj_or_box.center, obj_or_box.R, obj_or_box.extent |
|
|
) |
|
|
|
|
|
wis3d.add_point_cloud(vertices=pcd_points, colors=pcd_colors, name=f"{obj_id:02d}_{class_name}") |
|
|
wis3d.add_boxes( |
|
|
positions=aa_center, eulers=aa_eulers, extents=aa_extent, name=f"{obj_id:02d}_{class_name}_aa_bbox" |
|
|
) |
|
|
|
|
|
obj_id += 1 |
|
|
|
|
|
angles = [perspective_fields["roll"],perspective_fields["pitch"]] |
|
|
return filtered_detections, angles, xz_max_min |
|
|
|
|
|
|
|
|
def depth_to_points(depth, R=None, t=None, fov=None, intrinsic=None): |
|
|
K = intrinsic |
|
|
Kinv = np.linalg.inv(K) |
|
|
if R is None: |
|
|
R = np.eye(3) |
|
|
if t is None: |
|
|
t = np.zeros(3) |
|
|
|
|
|
|
|
|
M = np.eye(3) |
|
|
|
|
|
height, width = depth.shape[1:3] |
|
|
|
|
|
x = np.arange(width) |
|
|
y = np.arange(height) |
|
|
coord = np.stack(np.meshgrid(x, y), -1) |
|
|
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) |
|
|
coord = coord.astype(np.float32) |
|
|
coord = coord[None] |
|
|
|
|
|
D = depth[:, :, :, None, None] |
|
|
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None] |
|
|
|
|
|
pts3D_1 = M[None, None, None, ...] @ pts3D_1 |
|
|
|
|
|
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None] |
|
|
|
|
|
|
|
|
G = np.eye(3) |
|
|
G[0, 0] = -1.0 |
|
|
G[1, 1] = -1.0 |
|
|
|
|
|
return pts3D_2[:, :, :, :3, 0][0] @ G.T |
|
|
|
|
|
|
|
|
def create_object_pcd(image_points, image_rgb, mask): |
|
|
points = image_points[mask] |
|
|
colors = image_rgb[mask] / 255.0 |
|
|
|
|
|
|
|
|
points += np.random.normal(0, 4e-3, points.shape) |
|
|
|
|
|
|
|
|
pcd = o3d.geometry.PointCloud() |
|
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
|
return pcd |
|
|
|
|
|
|
|
|
def get_bounding_box(cfg, pcd): |
|
|
axis_aligned_bbox = pcd.get_axis_aligned_bounding_box() |
|
|
|
|
|
try: |
|
|
oriented_bbox = pcd.get_oriented_bounding_box(robust=True) |
|
|
except RuntimeError as e: |
|
|
print(f"Met {e}.") |
|
|
oriented_bbox = None |
|
|
|
|
|
return axis_aligned_bbox, oriented_bbox |
|
|
|
|
|
|
|
|
def points_to_pcd(points, colors=None): |
|
|
pcd = o3d.geometry.PointCloud() |
|
|
pcd.points = o3d.utility.Vector3dVector(points.reshape(-1, 3)) |
|
|
if colors is not None: |
|
|
pcd.colors = o3d.utility.Vector3dVector(colors.reshape(-1, 3)) |
|
|
return pcd |
|
|
|
|
|
|
|
|
def process_pcd(cfg, pcd, run_dbscan=True): |
|
|
scale = np.linalg.norm(np.asarray(pcd.points).std(axis=0)) * 3.0 + 1e-6 |
|
|
[pcd, _] = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2) |
|
|
pcd = pcd.voxel_down_sample(voxel_size=max(0.01, scale / 40)) |
|
|
|
|
|
if cfg.dbscan_remove_noise and run_dbscan: |
|
|
|
|
|
pcd = pcd_denoise_dbscan(pcd, eps=cfg.dbscan_eps, min_points=cfg.dbscan_min_points) |
|
|
|
|
|
|
|
|
return pcd |
|
|
|
|
|
|
|
|
def pcd_denoise_dbscan(pcd: o3d.geometry.PointCloud, eps=0.02, min_points=10) -> o3d.geometry.PointCloud: |
|
|
|
|
|
pcd_clusters = pcd.cluster_dbscan( |
|
|
eps=eps, |
|
|
min_points=min_points, |
|
|
) |
|
|
|
|
|
|
|
|
obj_points = np.asarray(pcd.points) |
|
|
obj_colors = np.asarray(pcd.colors) |
|
|
pcd_clusters = np.array(pcd_clusters) |
|
|
|
|
|
|
|
|
counter = Counter(pcd_clusters) |
|
|
|
|
|
|
|
|
if counter and (-1 in counter): |
|
|
del counter[-1] |
|
|
|
|
|
if counter: |
|
|
|
|
|
most_common_label, _ = counter.most_common(1)[0] |
|
|
|
|
|
|
|
|
largest_mask = pcd_clusters == most_common_label |
|
|
|
|
|
|
|
|
largest_cluster_points = obj_points[largest_mask] |
|
|
largest_cluster_colors = obj_colors[largest_mask] |
|
|
|
|
|
|
|
|
if len(largest_cluster_points) < 5: |
|
|
return pcd |
|
|
|
|
|
|
|
|
largest_cluster_pcd = o3d.geometry.PointCloud() |
|
|
largest_cluster_pcd.points = o3d.utility.Vector3dVector(largest_cluster_points) |
|
|
largest_cluster_pcd.colors = o3d.utility.Vector3dVector(largest_cluster_colors) |
|
|
|
|
|
pcd = largest_cluster_pcd |
|
|
|
|
|
return pcd |
|
|
|
|
|
|
|
|
def create_object_pcd(image_points, image_rgb, mask): |
|
|
points = image_points[mask] |
|
|
colors = image_rgb[mask] / 255.0 |
|
|
|
|
|
|
|
|
points += np.random.normal(0, 4e-3, points.shape) |
|
|
|
|
|
|
|
|
pcd = o3d.geometry.PointCloud() |
|
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
|
return pcd |
|
|
|
|
|
|
|
|
def color_by_instance(pcds): |
|
|
cmap = matplotlib.colormaps.get_cmap("turbo") |
|
|
instance_colors = cmap(np.linspace(0, 1, len(pcds))) |
|
|
for i in range(len(pcds)): |
|
|
pcd = pcds[i] |
|
|
pcd.colors = o3d.utility.Vector3dVector(np.tile(instance_colors[i, :3], (len(pcd.points), 1))) |
|
|
return pcds |
|
|
|
|
|
|
|
|
def oriented_bbox_to_center_euler_extent(bbox_center, box_R, bbox_extent): |
|
|
center = np.asarray(bbox_center) |
|
|
extent = np.asarray(bbox_extent) |
|
|
eulers = Rotation.from_matrix(box_R.copy()).as_euler("XYZ") |
|
|
return center, eulers, extent |
|
|
|
|
|
|
|
|
def axis_aligned_bbox_to_center_euler_extent(min_coords, max_coords): |
|
|
|
|
|
center = tuple((min_val + max_val) / 2.0 for min_val, max_val in zip(min_coords, max_coords)) |
|
|
|
|
|
|
|
|
eulers = (0, 0, 0) |
|
|
|
|
|
|
|
|
extent = tuple(max_val - min_val for min_val, max_val in zip(min_coords, max_coords)) |
|
|
|
|
|
return center, eulers, extent |
|
|
|
|
|
|
|
|
|
|
|
def human_like_distance(distance_meters): |
|
|
|
|
|
if distance_meters < 1: |
|
|
choices = [ |
|
|
( |
|
|
round(distance_meters * 100, 2), |
|
|
"centimeters", |
|
|
0.2, |
|
|
), |
|
|
( |
|
|
round(distance_meters * 39.3701, 2), |
|
|
"inches", |
|
|
0.8, |
|
|
), |
|
|
] |
|
|
elif distance_meters < 3: |
|
|
choices = [ |
|
|
(round(distance_meters, 2), "meters", 0.5), |
|
|
( |
|
|
round(distance_meters * 3.28084, 2), |
|
|
"feet", |
|
|
0.5, |
|
|
), |
|
|
] |
|
|
else: |
|
|
choices = [ |
|
|
( |
|
|
round(distance_meters, 2), |
|
|
"meters", |
|
|
0.7, |
|
|
), |
|
|
( |
|
|
round(distance_meters * 3.28084, 2), |
|
|
"feet", |
|
|
0.3, |
|
|
), |
|
|
] |
|
|
|
|
|
|
|
|
total_probability = sum(prob for _, _, prob in choices) |
|
|
cumulative_distribution = [] |
|
|
cumulative_sum = 0 |
|
|
for value, unit, probability in choices: |
|
|
cumulative_sum += probability / total_probability |
|
|
cumulative_distribution.append((cumulative_sum, value, unit)) |
|
|
|
|
|
|
|
|
r = random.random() |
|
|
for cumulative_prob, value, unit in cumulative_distribution: |
|
|
if r < cumulative_prob: |
|
|
return f"{value} {unit}" |
|
|
|
|
|
|
|
|
return f"{choices[-1][0]} {choices[-1][1]}" |
|
|
|
|
|
|
|
|
def calculate_distances_between_point_clouds(A, B): |
|
|
dist_pcd1_to_pcd2 = np.asarray(A.compute_point_cloud_distance(B)) |
|
|
dist_pcd2_to_pcd1 = np.asarray(B.compute_point_cloud_distance(A)) |
|
|
combined_distances = np.concatenate((dist_pcd1_to_pcd2, dist_pcd2_to_pcd1)) |
|
|
avg_dist = np.mean(combined_distances) |
|
|
return human_like_distance(avg_dist) |
|
|
|
|
|
|
|
|
def calculate_centroid(pcd): |
|
|
"""Calculate the centroid of a point cloud.""" |
|
|
points = np.asarray(pcd.points) |
|
|
centroid = np.mean(points, axis=0) |
|
|
return centroid |
|
|
|
|
|
|
|
|
def calculate_relative_positions(centroids): |
|
|
"""Calculate the relative positions between centroids of point clouds.""" |
|
|
num_centroids = len(centroids) |
|
|
relative_positions_info = [] |
|
|
|
|
|
for i in range(num_centroids): |
|
|
for j in range(i + 1, num_centroids): |
|
|
relative_vector = centroids[j] - centroids[i] |
|
|
|
|
|
distance = np.linalg.norm(relative_vector) |
|
|
relative_positions_info.append( |
|
|
{"pcd_pair": (i, j), "relative_vector": relative_vector, "distance": distance} |
|
|
) |
|
|
|
|
|
return relative_positions_info |
|
|
|
|
|
|
|
|
def get_bounding_box_height(pcd): |
|
|
""" |
|
|
Compute the height of the bounding box for a given point cloud. |
|
|
|
|
|
Parameters: |
|
|
pcd (open3d.geometry.PointCloud): The input point cloud. |
|
|
|
|
|
Returns: |
|
|
float: The height of the bounding box. |
|
|
""" |
|
|
aabb = pcd.get_axis_aligned_bounding_box() |
|
|
return aabb.get_extent()[1] |
|
|
|
|
|
|
|
|
def compare_bounding_box_height(pcd_i, pcd_j): |
|
|
""" |
|
|
Compare the bounding box heights of two point clouds. |
|
|
|
|
|
Parameters: |
|
|
pcd_i (open3d.geometry.PointCloud): The first point cloud. |
|
|
pcd_j (open3d.geometry.PointCloud): The second point cloud. |
|
|
|
|
|
Returns: |
|
|
bool: True if the bounding box of pcd_i is taller than that of pcd_j, False otherwise. |
|
|
""" |
|
|
height_i = get_bounding_box_height(pcd_i) |
|
|
height_j = get_bounding_box_height(pcd_j) |
|
|
|
|
|
return height_i > height_j |
|
|
|
|
|
def get_square(point_1, point_2): |
|
|
"""Calculate the square of the distance between two points.""" |
|
|
return (point_1[0]-point_2[0]) * (point_1[1]-point_2[1]) |
|
|
|
|
|
def get_focal_length(intrinsic, c_point): |
|
|
"""Calculate the focal length from the intrinsic matrix.""" |
|
|
xc = intrinsic[0, 2] |
|
|
yc = intrinsic[1, 2] |
|
|
|
|
|
|
|
|
return f |