Add files using upload-large-folder tool
Browse files- Orient_Anything/__pycache__/Rotation.cpython-310.pyc +0 -0
- Orient_Anything/__pycache__/inference.cpython-310.pyc +0 -0
- Orient_Anything/__pycache__/paths.cpython-310.pyc +0 -0
- Orient_Anything/__pycache__/utils.cpython-310.pyc +0 -0
- Orient_Anything/__pycache__/vision_tower.cpython-310.pyc +0 -0
- Orient_Anything/assets/axis.obj +1664 -0
- Orient_Anything/render/canvas.py +49 -0
- Orient_Anything/render/model.py +31 -0
- Orient_Anything/render/speedup.py +101 -0
- processor/__pycache__/__init__.cpython-310.pyc +0 -0
- processor/__pycache__/captions.cpython-310.pyc +0 -0
- processor/__pycache__/pointcloud.cpython-310.pyc +0 -0
- processor/__pycache__/prompt.cpython-310.pyc +0 -0
- processor/__pycache__/prompt_CR.cpython-310.pyc +0 -0
- processor/__pycache__/prompt_ImageEditbench.cpython-310.pyc +0 -0
- processor/__pycache__/prompt_T2Ibench.cpython-310.pyc +0 -0
- processor/__pycache__/prompt_utils.cpython-310.pyc +0 -0
- processor/__pycache__/segment.cpython-310.pyc +0 -0
- processor/wrappers/__init__.py +0 -0
- processor/wrappers/__pycache__/__init__.cpython-310.pyc +0 -0
- processor/wrappers/__pycache__/grounding_dino.cpython-310.pyc +0 -0
- processor/wrappers/__pycache__/metric3d_v2.cpython-310.pyc +0 -0
- processor/wrappers/__pycache__/perspective_fields.cpython-310.pyc +0 -0
- processor/wrappers/__pycache__/ram.cpython-310.pyc +0 -0
- processor/wrappers/__pycache__/sam.cpython-310.pyc +0 -0
- processor/wrappers/grounding_dino.py +23 -0
- processor/wrappers/metric3d_v2.py +250 -0
- processor/wrappers/perspective_fields.py +135 -0
- processor/wrappers/ram.py +64 -0
- processor/wrappers/sam.py +324 -0
- utils/__pycache__/__init__.cpython-310.pyc +0 -0
- utils/__pycache__/logger.cpython-310.pyc +0 -0
Orient_Anything/__pycache__/Rotation.cpython-310.pyc
ADDED
|
Binary file (2.96 kB). View file
|
|
|
Orient_Anything/__pycache__/inference.cpython-310.pyc
ADDED
|
Binary file (1.81 kB). View file
|
|
|
Orient_Anything/__pycache__/paths.cpython-310.pyc
ADDED
|
Binary file (321 Bytes). View file
|
|
|
Orient_Anything/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (7.63 kB). View file
|
|
|
Orient_Anything/__pycache__/vision_tower.cpython-310.pyc
ADDED
|
Binary file (5.32 kB). View file
|
|
|
Orient_Anything/assets/axis.obj
ADDED
|
@@ -0,0 +1,1664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Blender 4.2.1 LTS
|
| 2 |
+
# www.blender.org
|
| 3 |
+
mtllib axis.mtl
|
| 4 |
+
o X
|
| 5 |
+
v 28.000000 0.000000 0.000000
|
| 6 |
+
v 22.000000 0.292636 -1.471178
|
| 7 |
+
v 22.000000 0.574025 -1.385819
|
| 8 |
+
v 22.000000 0.833355 -1.247204
|
| 9 |
+
v 22.000000 1.060660 -1.060660
|
| 10 |
+
v 22.000000 1.247205 -0.833355
|
| 11 |
+
v 22.000000 1.385819 -0.574025
|
| 12 |
+
v 22.000000 1.471178 -0.292636
|
| 13 |
+
v 22.000000 1.500000 -0.000000
|
| 14 |
+
v 22.000000 1.471178 0.292636
|
| 15 |
+
v 22.000000 1.385819 0.574025
|
| 16 |
+
v 22.000000 1.247205 0.833355
|
| 17 |
+
v 22.000000 1.060660 1.060660
|
| 18 |
+
v 22.000000 0.833355 1.247204
|
| 19 |
+
v 22.000000 0.574025 1.385819
|
| 20 |
+
v 22.000000 0.292636 1.471178
|
| 21 |
+
v 22.000000 0.000000 1.500000
|
| 22 |
+
v 22.000000 -0.292635 1.471178
|
| 23 |
+
v 22.000000 -0.574025 1.385819
|
| 24 |
+
v 22.000000 -0.833355 1.247204
|
| 25 |
+
v 22.000000 -1.060660 1.060660
|
| 26 |
+
v 22.000000 -1.247204 0.833355
|
| 27 |
+
v 22.000000 -1.385819 0.574025
|
| 28 |
+
v 22.000000 -1.471178 0.292636
|
| 29 |
+
v 22.000000 -1.500000 0.000000
|
| 30 |
+
v 22.000000 -1.471178 -0.292636
|
| 31 |
+
v 22.000000 -1.385819 -0.574025
|
| 32 |
+
v 22.000000 -1.247204 -0.833355
|
| 33 |
+
v 22.000000 -1.060660 -1.060660
|
| 34 |
+
v 22.000000 -0.833355 -1.247204
|
| 35 |
+
v 22.000000 -0.574025 -1.385819
|
| 36 |
+
v 22.000000 -0.292635 -1.471178
|
| 37 |
+
v 22.000000 -0.000000 -1.500000
|
| 38 |
+
vn -1.0000 -0.0000 -0.0000
|
| 39 |
+
vn -1.0000 0.0001 -0.0000
|
| 40 |
+
vn -1.0000 -0.0001 -0.0000
|
| 41 |
+
vn 0.2414 0.0951 -0.9657
|
| 42 |
+
vn 0.2414 0.2817 -0.9286
|
| 43 |
+
vn 0.2414 0.4575 -0.8558
|
| 44 |
+
vn 0.2414 0.6156 -0.7501
|
| 45 |
+
vn 0.2414 0.7501 -0.6156
|
| 46 |
+
vn 0.2414 0.8558 -0.4574
|
| 47 |
+
vn 0.2414 0.9286 -0.2817
|
| 48 |
+
vn 0.2414 0.9657 -0.0951
|
| 49 |
+
vn 0.2414 0.9657 0.0951
|
| 50 |
+
vn 0.2414 0.9286 0.2817
|
| 51 |
+
vn 0.2414 0.8558 0.4574
|
| 52 |
+
vn 0.2414 0.7501 0.6156
|
| 53 |
+
vn 0.2414 0.6156 0.7501
|
| 54 |
+
vn 0.2414 0.4575 0.8558
|
| 55 |
+
vn 0.2414 0.2817 0.9286
|
| 56 |
+
vn 0.2414 0.0951 0.9657
|
| 57 |
+
vn 0.2414 -0.0951 0.9657
|
| 58 |
+
vn 0.2414 -0.2817 0.9286
|
| 59 |
+
vn 0.2414 -0.4575 0.8558
|
| 60 |
+
vn 0.2414 -0.6156 0.7501
|
| 61 |
+
vn 0.2414 -0.7501 0.6156
|
| 62 |
+
vn 0.2414 -0.8558 0.4575
|
| 63 |
+
vn 0.2414 -0.9286 0.2817
|
| 64 |
+
vn 0.2414 -0.9657 0.0951
|
| 65 |
+
vn 0.2414 -0.9657 -0.0951
|
| 66 |
+
vn 0.2414 -0.9286 -0.2817
|
| 67 |
+
vn 0.2414 -0.8558 -0.4575
|
| 68 |
+
vn 0.2414 -0.7501 -0.6156
|
| 69 |
+
vn 0.2414 -0.6156 -0.7501
|
| 70 |
+
vn 0.2414 -0.4575 -0.8558
|
| 71 |
+
vn 0.2414 -0.2817 -0.9286
|
| 72 |
+
vn 0.2414 -0.0951 -0.9657
|
| 73 |
+
vt 0.597858 0.736041
|
| 74 |
+
vt 0.735114 0.644330
|
| 75 |
+
vt 0.643402 0.507074
|
| 76 |
+
vt 0.506147 0.598785
|
| 77 |
+
vt 0.523575 0.686407
|
| 78 |
+
vt 0.555780 0.524503
|
| 79 |
+
vt 0.717685 0.556707
|
| 80 |
+
vt 0.685480 0.718612
|
| 81 |
+
vt 0.555780 0.718612
|
| 82 |
+
vt 0.506147 0.644330
|
| 83 |
+
vt 0.523575 0.556707
|
| 84 |
+
vt 0.597858 0.507074
|
| 85 |
+
vt 0.685480 0.524503
|
| 86 |
+
vt 0.735114 0.598785
|
| 87 |
+
vt 0.717685 0.686407
|
| 88 |
+
vt 0.643402 0.736041
|
| 89 |
+
vt 0.575961 0.729399
|
| 90 |
+
vt 0.538092 0.704096
|
| 91 |
+
vt 0.512789 0.666227
|
| 92 |
+
vt 0.503903 0.621557
|
| 93 |
+
vt 0.512789 0.576888
|
| 94 |
+
vt 0.538092 0.539019
|
| 95 |
+
vt 0.575961 0.513716
|
| 96 |
+
vt 0.620630 0.504831
|
| 97 |
+
vt 0.665299 0.513716
|
| 98 |
+
vt 0.703168 0.539019
|
| 99 |
+
vt 0.728471 0.576888
|
| 100 |
+
vt 0.737357 0.621557
|
| 101 |
+
vt 0.728471 0.666227
|
| 102 |
+
vt 0.703168 0.704096
|
| 103 |
+
vt 0.665299 0.729399
|
| 104 |
+
vt 0.620630 0.738284
|
| 105 |
+
vt 0.354677 0.736041
|
| 106 |
+
vt 0.377450 0.621557
|
| 107 |
+
vt 0.377450 0.738284
|
| 108 |
+
vt 0.332780 0.729399
|
| 109 |
+
vt 0.312600 0.718612
|
| 110 |
+
vt 0.294911 0.704096
|
| 111 |
+
vt 0.280395 0.686407
|
| 112 |
+
vt 0.269608 0.666227
|
| 113 |
+
vt 0.262966 0.644330
|
| 114 |
+
vt 0.260723 0.621557
|
| 115 |
+
vt 0.262966 0.598785
|
| 116 |
+
vt 0.269608 0.576888
|
| 117 |
+
vt 0.280395 0.556707
|
| 118 |
+
vt 0.294911 0.539019
|
| 119 |
+
vt 0.312600 0.524503
|
| 120 |
+
vt 0.332780 0.513716
|
| 121 |
+
vt 0.354677 0.507074
|
| 122 |
+
vt 0.377450 0.504831
|
| 123 |
+
vt 0.400222 0.507074
|
| 124 |
+
vt 0.422119 0.513716
|
| 125 |
+
vt 0.442299 0.524503
|
| 126 |
+
vt 0.459988 0.539019
|
| 127 |
+
vt 0.474504 0.556707
|
| 128 |
+
vt 0.485291 0.576888
|
| 129 |
+
vt 0.491933 0.598785
|
| 130 |
+
vt 0.494176 0.621557
|
| 131 |
+
vt 0.491933 0.644330
|
| 132 |
+
vt 0.485291 0.666227
|
| 133 |
+
vt 0.474504 0.686407
|
| 134 |
+
vt 0.459988 0.704096
|
| 135 |
+
vt 0.442299 0.718612
|
| 136 |
+
vt 0.422119 0.729399
|
| 137 |
+
vt 0.400222 0.736041
|
| 138 |
+
s 0
|
| 139 |
+
usemtl MI_YamahaMSP3_MatteBlack.004
|
| 140 |
+
f 2/1/1 26/2/1 18/3/1
|
| 141 |
+
f 10/4/1 6/5/1 2/1/1
|
| 142 |
+
f 18/3/1 14/6/1 10/4/1
|
| 143 |
+
f 26/2/1 22/7/1 18/3/1
|
| 144 |
+
f 2/1/1 30/8/1 26/2/1
|
| 145 |
+
f 6/5/1 4/9/1 2/1/1
|
| 146 |
+
f 10/4/1 8/10/1 6/5/1
|
| 147 |
+
f 14/6/1 12/11/1 10/4/1
|
| 148 |
+
f 18/3/1 16/12/1 14/6/1
|
| 149 |
+
f 22/7/1 20/13/1 18/3/1
|
| 150 |
+
f 26/2/1 24/14/1 22/7/1
|
| 151 |
+
f 30/8/1 28/15/1 26/2/1
|
| 152 |
+
f 2/1/1 32/16/1 30/8/1
|
| 153 |
+
f 4/9/1 3/17/1 2/1/1
|
| 154 |
+
f 6/5/2 5/18/2 4/9/2
|
| 155 |
+
f 8/10/3 7/19/3 6/5/3
|
| 156 |
+
f 10/4/1 9/20/1 8/10/1
|
| 157 |
+
f 12/11/3 11/21/3 10/4/3
|
| 158 |
+
f 14/6/2 13/22/2 12/11/2
|
| 159 |
+
f 16/12/1 15/23/1 14/6/1
|
| 160 |
+
f 18/3/1 17/24/1 16/12/1
|
| 161 |
+
f 20/13/1 19/25/1 18/3/1
|
| 162 |
+
f 22/7/3 21/26/3 20/13/3
|
| 163 |
+
f 24/14/2 23/27/2 22/7/2
|
| 164 |
+
f 26/2/1 25/28/1 24/14/1
|
| 165 |
+
f 28/15/2 27/29/2 26/2/2
|
| 166 |
+
f 30/8/3 29/30/3 28/15/3
|
| 167 |
+
f 32/16/1 31/31/1 30/8/1
|
| 168 |
+
f 2/1/1 33/32/1 32/16/1
|
| 169 |
+
f 2/33/4 1/34/4 33/35/4
|
| 170 |
+
f 3/36/5 1/34/5 2/33/5
|
| 171 |
+
f 18/3/1 10/4/1 2/1/1
|
| 172 |
+
f 4/37/6 1/34/6 3/36/6
|
| 173 |
+
f 5/38/7 1/34/7 4/37/7
|
| 174 |
+
f 6/39/8 1/34/8 5/38/8
|
| 175 |
+
f 7/40/9 1/34/9 6/39/9
|
| 176 |
+
f 8/41/10 1/34/10 7/40/10
|
| 177 |
+
f 9/42/11 1/34/11 8/41/11
|
| 178 |
+
f 10/43/12 1/34/12 9/42/12
|
| 179 |
+
f 11/44/13 1/34/13 10/43/13
|
| 180 |
+
f 12/45/14 1/34/14 11/44/14
|
| 181 |
+
f 13/46/15 1/34/15 12/45/15
|
| 182 |
+
f 14/47/16 1/34/16 13/46/16
|
| 183 |
+
f 15/48/17 1/34/17 14/47/17
|
| 184 |
+
f 16/49/18 1/34/18 15/48/18
|
| 185 |
+
f 17/50/19 1/34/19 16/49/19
|
| 186 |
+
f 18/51/20 1/34/20 17/50/20
|
| 187 |
+
f 19/52/21 1/34/21 18/51/21
|
| 188 |
+
f 20/53/22 1/34/22 19/52/22
|
| 189 |
+
f 21/54/23 1/34/23 20/53/23
|
| 190 |
+
f 22/55/24 1/34/24 21/54/24
|
| 191 |
+
f 23/56/25 1/34/25 22/55/25
|
| 192 |
+
f 24/57/26 1/34/26 23/56/26
|
| 193 |
+
f 25/58/27 1/34/27 24/57/27
|
| 194 |
+
f 26/59/28 1/34/28 25/58/28
|
| 195 |
+
f 27/60/29 1/34/29 26/59/29
|
| 196 |
+
f 28/61/30 1/34/30 27/60/30
|
| 197 |
+
f 29/62/31 1/34/31 28/61/31
|
| 198 |
+
f 30/63/32 1/34/32 29/62/32
|
| 199 |
+
f 31/64/33 1/34/33 30/63/33
|
| 200 |
+
f 32/65/34 1/34/34 31/64/34
|
| 201 |
+
f 33/35/35 1/34/35 32/65/35
|
| 202 |
+
o Xzhu
|
| 203 |
+
v 24.000000 0.097545 -0.490393
|
| 204 |
+
v 0.000000 0.097546 -0.490393
|
| 205 |
+
v 24.000000 0.191341 -0.461940
|
| 206 |
+
v 0.000000 0.191342 -0.461940
|
| 207 |
+
v 24.000000 0.277785 -0.415735
|
| 208 |
+
v 0.000000 0.277786 -0.415735
|
| 209 |
+
v 24.000000 0.353553 -0.353553
|
| 210 |
+
v 0.000000 0.353554 -0.353553
|
| 211 |
+
v 24.000000 0.415734 -0.277785
|
| 212 |
+
v 0.000000 0.415735 -0.277785
|
| 213 |
+
v 24.000000 0.461939 -0.191342
|
| 214 |
+
v 0.000000 0.461940 -0.191342
|
| 215 |
+
v 24.000000 0.490392 -0.097545
|
| 216 |
+
v 0.000000 0.490393 -0.097545
|
| 217 |
+
v 24.000000 0.499999 -0.000000
|
| 218 |
+
v 0.000000 0.500001 -0.000000
|
| 219 |
+
v 24.000000 0.490392 0.097545
|
| 220 |
+
v 0.000000 0.490393 0.097545
|
| 221 |
+
v 24.000000 0.461939 0.191342
|
| 222 |
+
v 0.000000 0.461940 0.191342
|
| 223 |
+
v 24.000000 0.415734 0.277785
|
| 224 |
+
v 0.000000 0.415735 0.277785
|
| 225 |
+
v 24.000000 0.353553 0.353553
|
| 226 |
+
v 0.000000 0.353554 0.353553
|
| 227 |
+
v 24.000000 0.277785 0.415735
|
| 228 |
+
v 0.000000 0.277786 0.415735
|
| 229 |
+
v 24.000000 0.191341 0.461940
|
| 230 |
+
v 0.000000 0.191342 0.461940
|
| 231 |
+
v 24.000000 0.097545 0.490393
|
| 232 |
+
v 0.000000 0.097546 0.490393
|
| 233 |
+
v 24.000000 -0.000001 0.500000
|
| 234 |
+
v 0.000000 0.000001 0.500000
|
| 235 |
+
v 24.000000 -0.097546 0.490393
|
| 236 |
+
v 0.000000 -0.097545 0.490393
|
| 237 |
+
v 24.000000 -0.191342 0.461940
|
| 238 |
+
v 0.000000 -0.191341 0.461940
|
| 239 |
+
v 24.000000 -0.277786 0.415735
|
| 240 |
+
v 0.000000 -0.277785 0.415735
|
| 241 |
+
v 24.000000 -0.353554 0.353553
|
| 242 |
+
v 0.000000 -0.353553 0.353553
|
| 243 |
+
v 24.000000 -0.415735 0.277785
|
| 244 |
+
v 0.000000 -0.415734 0.277785
|
| 245 |
+
v 24.000000 -0.461940 0.191342
|
| 246 |
+
v 0.000000 -0.461939 0.191342
|
| 247 |
+
v 24.000000 -0.490393 0.097545
|
| 248 |
+
v 0.000000 -0.490392 0.097545
|
| 249 |
+
v 24.000000 -0.500001 0.000000
|
| 250 |
+
v 0.000000 -0.499999 0.000000
|
| 251 |
+
v 24.000000 -0.490393 -0.097545
|
| 252 |
+
v 0.000000 -0.490392 -0.097545
|
| 253 |
+
v 24.000000 -0.461940 -0.191342
|
| 254 |
+
v 0.000000 -0.461939 -0.191342
|
| 255 |
+
v 24.000000 -0.415735 -0.277785
|
| 256 |
+
v 0.000000 -0.415734 -0.277785
|
| 257 |
+
v 24.000000 -0.353554 -0.353553
|
| 258 |
+
v 0.000000 -0.353553 -0.353553
|
| 259 |
+
v 24.000000 -0.277786 -0.415735
|
| 260 |
+
v 0.000000 -0.277785 -0.415735
|
| 261 |
+
v 24.000000 -0.191342 -0.461940
|
| 262 |
+
v 0.000000 -0.191341 -0.461940
|
| 263 |
+
v 24.000000 -0.097546 -0.490393
|
| 264 |
+
v 0.000000 -0.097545 -0.490393
|
| 265 |
+
v 24.000000 -0.000001 -0.500000
|
| 266 |
+
v 0.000000 0.000001 -0.500000
|
| 267 |
+
vn -1.0000 -0.0000 -0.0000
|
| 268 |
+
vn -0.0000 0.0980 -0.9952
|
| 269 |
+
vn -0.0000 0.2903 -0.9569
|
| 270 |
+
vn 1.0000 -0.0000 -0.0000
|
| 271 |
+
vn -0.0000 0.4714 -0.8819
|
| 272 |
+
vn -0.0000 0.6344 -0.7730
|
| 273 |
+
vn -0.0000 0.7730 -0.6344
|
| 274 |
+
vn -0.0000 0.8819 -0.4714
|
| 275 |
+
vn -0.0000 0.9569 -0.2903
|
| 276 |
+
vn -0.0000 0.9952 -0.0980
|
| 277 |
+
vn -0.0000 0.9952 0.0980
|
| 278 |
+
vn -0.0000 0.9569 0.2903
|
| 279 |
+
vn -0.0000 0.8819 0.4714
|
| 280 |
+
vn -0.0000 0.7730 0.6344
|
| 281 |
+
vn -0.0000 0.6344 0.7730
|
| 282 |
+
vn -0.0000 0.4714 0.8819
|
| 283 |
+
vn -0.0000 0.2903 0.9569
|
| 284 |
+
vn -0.0000 0.0980 0.9952
|
| 285 |
+
vn -0.0000 -0.0980 0.9952
|
| 286 |
+
vn -0.0000 -0.2903 0.9569
|
| 287 |
+
vn -0.0000 -0.4714 0.8819
|
| 288 |
+
vn -0.0000 -0.6344 0.7730
|
| 289 |
+
vn -0.0000 -0.7730 0.6344
|
| 290 |
+
vn -0.0000 -0.8819 0.4714
|
| 291 |
+
vn -0.0000 -0.9569 0.2903
|
| 292 |
+
vn -0.0000 -0.9952 0.0980
|
| 293 |
+
vn -0.0000 -0.9952 -0.0980
|
| 294 |
+
vn -0.0000 -0.9569 -0.2903
|
| 295 |
+
vn -0.0000 -0.8819 -0.4714
|
| 296 |
+
vn -0.0000 -0.7730 -0.6344
|
| 297 |
+
vn -0.0000 -0.6344 -0.7730
|
| 298 |
+
vn -0.0000 -0.4714 -0.8819
|
| 299 |
+
vn -0.0000 -0.2903 -0.9569
|
| 300 |
+
vn -0.0000 -0.0980 -0.9952
|
| 301 |
+
vt 0.597858 0.736041
|
| 302 |
+
vt 0.735114 0.644330
|
| 303 |
+
vt 0.643402 0.507074
|
| 304 |
+
vt 0.506147 0.598785
|
| 305 |
+
vt 0.523575 0.686407
|
| 306 |
+
vt 0.555780 0.524503
|
| 307 |
+
vt 0.717685 0.556707
|
| 308 |
+
vt 0.685480 0.718612
|
| 309 |
+
vt 0.555780 0.718612
|
| 310 |
+
vt 0.506147 0.644330
|
| 311 |
+
vt 0.523575 0.556707
|
| 312 |
+
vt 0.597858 0.507074
|
| 313 |
+
vt 0.685480 0.524503
|
| 314 |
+
vt 0.735114 0.598785
|
| 315 |
+
vt 0.717685 0.686407
|
| 316 |
+
vt 0.643402 0.736041
|
| 317 |
+
vt 0.575961 0.729399
|
| 318 |
+
vt 0.538092 0.704096
|
| 319 |
+
vt 0.512789 0.666227
|
| 320 |
+
vt 0.503903 0.621557
|
| 321 |
+
vt 0.512789 0.576888
|
| 322 |
+
vt 0.538092 0.539019
|
| 323 |
+
vt 0.575961 0.513716
|
| 324 |
+
vt 0.620630 0.504831
|
| 325 |
+
vt 0.665299 0.513716
|
| 326 |
+
vt 0.703168 0.539019
|
| 327 |
+
vt 0.728471 0.576888
|
| 328 |
+
vt 0.737357 0.621557
|
| 329 |
+
vt 0.728471 0.666227
|
| 330 |
+
vt 0.703168 0.704096
|
| 331 |
+
vt 0.665299 0.729399
|
| 332 |
+
vt 0.620630 0.738284
|
| 333 |
+
vt 0.271058 0.986328
|
| 334 |
+
vt 0.255859 0.986328
|
| 335 |
+
vt 0.255859 0.743148
|
| 336 |
+
vt 0.286257 0.986328
|
| 337 |
+
vt 0.271058 0.743148
|
| 338 |
+
vt 0.422119 0.729399
|
| 339 |
+
vt 0.269608 0.666227
|
| 340 |
+
vt 0.332780 0.513716
|
| 341 |
+
vt 0.485291 0.576888
|
| 342 |
+
vt 0.485291 0.666227
|
| 343 |
+
vt 0.422119 0.513716
|
| 344 |
+
vt 0.269608 0.576888
|
| 345 |
+
vt 0.332780 0.729399
|
| 346 |
+
vt 0.459988 0.704096
|
| 347 |
+
vt 0.494176 0.621557
|
| 348 |
+
vt 0.459988 0.539019
|
| 349 |
+
vt 0.377450 0.504831
|
| 350 |
+
vt 0.294911 0.539019
|
| 351 |
+
vt 0.260723 0.621557
|
| 352 |
+
vt 0.294911 0.704096
|
| 353 |
+
vt 0.377450 0.738284
|
| 354 |
+
vt 0.442299 0.718612
|
| 355 |
+
vt 0.474504 0.686407
|
| 356 |
+
vt 0.491933 0.644330
|
| 357 |
+
vt 0.491933 0.598785
|
| 358 |
+
vt 0.474504 0.556707
|
| 359 |
+
vt 0.442299 0.524503
|
| 360 |
+
vt 0.400222 0.507074
|
| 361 |
+
vt 0.354677 0.507074
|
| 362 |
+
vt 0.312600 0.524503
|
| 363 |
+
vt 0.280395 0.556707
|
| 364 |
+
vt 0.262966 0.598785
|
| 365 |
+
vt 0.262966 0.644330
|
| 366 |
+
vt 0.280395 0.686407
|
| 367 |
+
vt 0.312600 0.718612
|
| 368 |
+
vt 0.354677 0.736041
|
| 369 |
+
vt 0.400222 0.736041
|
| 370 |
+
vt 0.301456 0.986328
|
| 371 |
+
vt 0.286257 0.743148
|
| 372 |
+
vt 0.316654 0.986328
|
| 373 |
+
vt 0.301456 0.743148
|
| 374 |
+
vt 0.331853 0.986328
|
| 375 |
+
vt 0.316654 0.743148
|
| 376 |
+
vt 0.347052 0.986328
|
| 377 |
+
vt 0.331853 0.743148
|
| 378 |
+
vt 0.362251 0.986328
|
| 379 |
+
vt 0.347052 0.743148
|
| 380 |
+
vt 0.377450 0.986328
|
| 381 |
+
vt 0.362251 0.743148
|
| 382 |
+
vt 0.392648 0.986328
|
| 383 |
+
vt 0.377450 0.743148
|
| 384 |
+
vt 0.407847 0.986328
|
| 385 |
+
vt 0.392648 0.743148
|
| 386 |
+
vt 0.423046 0.986328
|
| 387 |
+
vt 0.407847 0.743148
|
| 388 |
+
vt 0.438245 0.986328
|
| 389 |
+
vt 0.423046 0.743148
|
| 390 |
+
vt 0.453443 0.986328
|
| 391 |
+
vt 0.438245 0.743148
|
| 392 |
+
vt 0.468642 0.986328
|
| 393 |
+
vt 0.453443 0.743148
|
| 394 |
+
vt 0.483841 0.986328
|
| 395 |
+
vt 0.468642 0.743148
|
| 396 |
+
vt 0.499040 0.986328
|
| 397 |
+
vt 0.483841 0.743148
|
| 398 |
+
vt 0.514239 0.986328
|
| 399 |
+
vt 0.499040 0.743148
|
| 400 |
+
vt 0.529437 0.986328
|
| 401 |
+
vt 0.514239 0.743148
|
| 402 |
+
vt 0.544636 0.986328
|
| 403 |
+
vt 0.529437 0.743148
|
| 404 |
+
vt 0.559835 0.986328
|
| 405 |
+
vt 0.544636 0.743148
|
| 406 |
+
vt 0.575034 0.986328
|
| 407 |
+
vt 0.559835 0.743148
|
| 408 |
+
vt 0.590232 0.986328
|
| 409 |
+
vt 0.575034 0.743148
|
| 410 |
+
vt 0.605431 0.986328
|
| 411 |
+
vt 0.590232 0.743148
|
| 412 |
+
vt 0.620630 0.986328
|
| 413 |
+
vt 0.605431 0.743148
|
| 414 |
+
vt 0.635829 0.986328
|
| 415 |
+
vt 0.620630 0.743148
|
| 416 |
+
vt 0.651028 0.986328
|
| 417 |
+
vt 0.635829 0.743148
|
| 418 |
+
vt 0.666226 0.986328
|
| 419 |
+
vt 0.651028 0.743148
|
| 420 |
+
vt 0.681425 0.986328
|
| 421 |
+
vt 0.666226 0.743148
|
| 422 |
+
vt 0.696624 0.986328
|
| 423 |
+
vt 0.681425 0.743148
|
| 424 |
+
vt 0.711823 0.986328
|
| 425 |
+
vt 0.696624 0.743148
|
| 426 |
+
vt 0.727022 0.986328
|
| 427 |
+
vt 0.711823 0.743148
|
| 428 |
+
vt 0.742220 0.986328
|
| 429 |
+
vt 0.727022 0.743148
|
| 430 |
+
vt 0.742220 0.743148
|
| 431 |
+
s 0
|
| 432 |
+
usemtl MI_YamahaMSP3_MatteBlack.004
|
| 433 |
+
f 35/66/36 83/67/36 67/68/36
|
| 434 |
+
f 51/69/36 43/70/36 35/66/36
|
| 435 |
+
f 67/68/36 59/71/36 51/69/36
|
| 436 |
+
f 83/67/36 75/72/36 67/68/36
|
| 437 |
+
f 35/66/36 91/73/36 83/67/36
|
| 438 |
+
f 43/70/36 39/74/36 35/66/36
|
| 439 |
+
f 51/69/36 47/75/36 43/70/36
|
| 440 |
+
f 59/71/36 55/76/36 51/69/36
|
| 441 |
+
f 67/68/36 63/77/36 59/71/36
|
| 442 |
+
f 75/72/36 71/78/36 67/68/36
|
| 443 |
+
f 83/67/36 79/79/36 75/72/36
|
| 444 |
+
f 91/73/36 87/80/36 83/67/36
|
| 445 |
+
f 35/66/36 95/81/36 91/73/36
|
| 446 |
+
f 39/74/36 37/82/36 35/66/36
|
| 447 |
+
f 43/70/36 41/83/36 39/74/36
|
| 448 |
+
f 47/75/36 45/84/36 43/70/36
|
| 449 |
+
f 51/69/36 49/85/36 47/75/36
|
| 450 |
+
f 55/76/36 53/86/36 51/69/36
|
| 451 |
+
f 59/71/36 57/87/36 55/76/36
|
| 452 |
+
f 63/77/36 61/88/36 59/71/36
|
| 453 |
+
f 67/68/36 65/89/36 63/77/36
|
| 454 |
+
f 71/78/36 69/90/36 67/68/36
|
| 455 |
+
f 75/72/36 73/91/36 71/78/36
|
| 456 |
+
f 79/79/36 77/92/36 75/72/36
|
| 457 |
+
f 83/67/36 81/93/36 79/79/36
|
| 458 |
+
f 87/80/36 85/94/36 83/67/36
|
| 459 |
+
f 91/73/36 89/95/36 87/80/36
|
| 460 |
+
f 95/81/36 93/96/36 91/73/36
|
| 461 |
+
f 35/66/36 97/97/36 95/81/36
|
| 462 |
+
f 34/98/37 96/99/37 97/100/37
|
| 463 |
+
f 36/101/38 34/98/38 35/102/38
|
| 464 |
+
f 92/103/39 44/104/39 60/105/39
|
| 465 |
+
f 76/106/39 84/107/39 92/103/39
|
| 466 |
+
f 60/105/39 68/108/39 76/106/39
|
| 467 |
+
f 44/104/39 52/109/39 60/105/39
|
| 468 |
+
f 92/103/39 36/110/39 44/104/39
|
| 469 |
+
f 84/107/39 88/111/39 92/103/39
|
| 470 |
+
f 76/106/39 80/112/39 84/107/39
|
| 471 |
+
f 68/108/39 72/113/39 76/106/39
|
| 472 |
+
f 60/105/39 64/114/39 68/108/39
|
| 473 |
+
f 52/109/39 56/115/39 60/105/39
|
| 474 |
+
f 44/104/39 48/116/39 52/109/39
|
| 475 |
+
f 36/110/39 40/117/39 44/104/39
|
| 476 |
+
f 92/103/39 96/118/39 36/110/39
|
| 477 |
+
f 88/111/39 90/119/39 92/103/39
|
| 478 |
+
f 84/107/39 86/120/39 88/111/39
|
| 479 |
+
f 80/112/39 82/121/39 84/107/39
|
| 480 |
+
f 76/106/39 78/122/39 80/112/39
|
| 481 |
+
f 72/113/39 74/123/39 76/106/39
|
| 482 |
+
f 68/108/39 70/124/39 72/113/39
|
| 483 |
+
f 64/114/39 66/125/39 68/108/39
|
| 484 |
+
f 60/105/39 62/126/39 64/114/39
|
| 485 |
+
f 56/115/39 58/127/39 60/105/39
|
| 486 |
+
f 52/109/39 54/128/39 56/115/39
|
| 487 |
+
f 48/116/39 50/129/39 52/109/39
|
| 488 |
+
f 44/104/39 46/130/39 48/116/39
|
| 489 |
+
f 40/117/39 42/131/39 44/104/39
|
| 490 |
+
f 36/110/39 38/132/39 40/117/39
|
| 491 |
+
f 96/118/39 34/133/39 36/110/39
|
| 492 |
+
f 92/103/39 94/134/39 96/118/39
|
| 493 |
+
f 38/135/40 36/101/40 37/136/40
|
| 494 |
+
f 40/137/41 38/135/41 39/138/41
|
| 495 |
+
f 42/139/42 40/137/42 41/140/42
|
| 496 |
+
f 44/141/43 42/139/43 43/142/43
|
| 497 |
+
f 46/143/44 44/141/44 45/144/44
|
| 498 |
+
f 48/145/45 46/143/45 47/146/45
|
| 499 |
+
f 50/147/46 48/145/46 49/148/46
|
| 500 |
+
f 52/149/47 50/147/47 51/150/47
|
| 501 |
+
f 54/151/48 52/149/48 53/152/48
|
| 502 |
+
f 56/153/49 54/151/49 55/154/49
|
| 503 |
+
f 58/155/50 56/153/50 57/156/50
|
| 504 |
+
f 60/157/51 58/155/51 59/158/51
|
| 505 |
+
f 62/159/52 60/157/52 61/160/52
|
| 506 |
+
f 64/161/53 62/159/53 63/162/53
|
| 507 |
+
f 66/163/54 64/161/54 65/164/54
|
| 508 |
+
f 68/165/55 66/163/55 67/166/55
|
| 509 |
+
f 70/167/56 68/165/56 69/168/56
|
| 510 |
+
f 72/169/57 70/167/57 71/170/57
|
| 511 |
+
f 74/171/58 72/169/58 73/172/58
|
| 512 |
+
f 76/173/59 74/171/59 75/174/59
|
| 513 |
+
f 78/175/60 76/173/60 77/176/60
|
| 514 |
+
f 80/177/61 78/175/61 79/178/61
|
| 515 |
+
f 82/179/62 80/177/62 81/180/62
|
| 516 |
+
f 84/181/63 82/179/63 83/182/63
|
| 517 |
+
f 86/183/64 84/181/64 85/184/64
|
| 518 |
+
f 88/185/65 86/183/65 87/186/65
|
| 519 |
+
f 90/187/66 88/185/66 89/188/66
|
| 520 |
+
f 92/189/67 90/187/67 91/190/67
|
| 521 |
+
f 94/191/68 92/189/68 93/192/68
|
| 522 |
+
f 96/193/69 94/191/69 95/194/69
|
| 523 |
+
f 67/68/36 51/69/36 35/66/36
|
| 524 |
+
f 34/98/37 97/100/37 35/102/37
|
| 525 |
+
f 36/101/38 35/102/38 37/136/38
|
| 526 |
+
f 60/105/39 76/106/39 92/103/39
|
| 527 |
+
f 38/135/40 37/136/40 39/138/40
|
| 528 |
+
f 40/137/41 39/138/41 41/140/41
|
| 529 |
+
f 42/139/42 41/140/42 43/142/42
|
| 530 |
+
f 44/141/43 43/142/43 45/144/43
|
| 531 |
+
f 46/143/44 45/144/44 47/146/44
|
| 532 |
+
f 48/145/45 47/146/45 49/148/45
|
| 533 |
+
f 50/147/46 49/148/46 51/150/46
|
| 534 |
+
f 52/149/47 51/150/47 53/152/47
|
| 535 |
+
f 54/151/48 53/152/48 55/154/48
|
| 536 |
+
f 56/153/49 55/154/49 57/156/49
|
| 537 |
+
f 58/155/50 57/156/50 59/158/50
|
| 538 |
+
f 60/157/51 59/158/51 61/160/51
|
| 539 |
+
f 62/159/52 61/160/52 63/162/52
|
| 540 |
+
f 64/161/53 63/162/53 65/164/53
|
| 541 |
+
f 66/163/54 65/164/54 67/166/54
|
| 542 |
+
f 68/165/55 67/166/55 69/168/55
|
| 543 |
+
f 70/167/56 69/168/56 71/170/56
|
| 544 |
+
f 72/169/57 71/170/57 73/172/57
|
| 545 |
+
f 74/171/58 73/172/58 75/174/58
|
| 546 |
+
f 76/173/59 75/174/59 77/176/59
|
| 547 |
+
f 78/175/60 77/176/60 79/178/60
|
| 548 |
+
f 80/177/61 79/178/61 81/180/61
|
| 549 |
+
f 82/179/62 81/180/62 83/182/62
|
| 550 |
+
f 84/181/63 83/182/63 85/184/63
|
| 551 |
+
f 86/183/64 85/184/64 87/186/64
|
| 552 |
+
f 88/185/65 87/186/65 89/188/65
|
| 553 |
+
f 90/187/66 89/188/66 91/190/66
|
| 554 |
+
f 92/189/67 91/190/67 93/192/67
|
| 555 |
+
f 94/191/68 93/192/68 95/194/68
|
| 556 |
+
f 96/193/69 95/194/69 97/195/69
|
| 557 |
+
o Y
|
| 558 |
+
v 0.000000 -0.000002 -28.000000
|
| 559 |
+
v -0.292636 -1.471180 -22.000000
|
| 560 |
+
v -0.574025 -1.385821 -22.000000
|
| 561 |
+
v -0.833355 -1.247206 -22.000000
|
| 562 |
+
v -1.060660 -1.060662 -22.000000
|
| 563 |
+
v -1.247204 -0.833357 -22.000000
|
| 564 |
+
v -1.385819 -0.574027 -22.000000
|
| 565 |
+
v -1.471178 -0.292637 -22.000000
|
| 566 |
+
v -1.500000 -0.000002 -22.000000
|
| 567 |
+
v -1.471178 0.292634 -22.000000
|
| 568 |
+
v -1.385819 0.574023 -22.000000
|
| 569 |
+
v -1.247204 0.833353 -22.000000
|
| 570 |
+
v -1.060660 1.060658 -22.000000
|
| 571 |
+
v -0.833355 1.247203 -22.000000
|
| 572 |
+
v -0.574025 1.385817 -22.000000
|
| 573 |
+
v -0.292636 1.471176 -22.000000
|
| 574 |
+
v 0.000000 1.499998 -22.000000
|
| 575 |
+
v 0.292636 1.471176 -22.000000
|
| 576 |
+
v 0.574025 1.385817 -22.000000
|
| 577 |
+
v 0.833355 1.247203 -22.000000
|
| 578 |
+
v 1.060660 1.060658 -22.000000
|
| 579 |
+
v 1.247204 0.833353 -22.000000
|
| 580 |
+
v 1.385819 0.574023 -22.000000
|
| 581 |
+
v 1.471178 0.292634 -22.000000
|
| 582 |
+
v 1.500000 -0.000002 -22.000000
|
| 583 |
+
v 1.471178 -0.292637 -22.000000
|
| 584 |
+
v 1.385819 -0.574027 -22.000000
|
| 585 |
+
v 1.247204 -0.833357 -22.000000
|
| 586 |
+
v 1.060660 -1.060662 -22.000000
|
| 587 |
+
v 0.833355 -1.247206 -22.000000
|
| 588 |
+
v 0.574025 -1.385821 -22.000000
|
| 589 |
+
v 0.292636 -1.471180 -22.000000
|
| 590 |
+
v 0.000000 -1.500002 -22.000000
|
| 591 |
+
vn -0.0000 -0.0000 1.0000
|
| 592 |
+
vn -0.0001 -0.0000 1.0000
|
| 593 |
+
vn 0.0001 -0.0000 1.0000
|
| 594 |
+
vn -0.0951 -0.9657 -0.2414
|
| 595 |
+
vn -0.2817 -0.9286 -0.2414
|
| 596 |
+
vn -0.4575 -0.8558 -0.2414
|
| 597 |
+
vn -0.6156 -0.7501 -0.2414
|
| 598 |
+
vn -0.7501 -0.6156 -0.2414
|
| 599 |
+
vn -0.8558 -0.4575 -0.2414
|
| 600 |
+
vn -0.9286 -0.2817 -0.2414
|
| 601 |
+
vn -0.9657 -0.0951 -0.2414
|
| 602 |
+
vn -0.9657 0.0951 -0.2414
|
| 603 |
+
vn -0.9286 0.2817 -0.2414
|
| 604 |
+
vn -0.8558 0.4575 -0.2414
|
| 605 |
+
vn -0.7501 0.6156 -0.2414
|
| 606 |
+
vn -0.6156 0.7501 -0.2414
|
| 607 |
+
vn -0.4574 0.8558 -0.2414
|
| 608 |
+
vn -0.2817 0.9286 -0.2414
|
| 609 |
+
vn -0.0951 0.9657 -0.2414
|
| 610 |
+
vn 0.0951 0.9657 -0.2414
|
| 611 |
+
vn 0.2817 0.9286 -0.2414
|
| 612 |
+
vn 0.4574 0.8558 -0.2414
|
| 613 |
+
vn 0.6156 0.7501 -0.2414
|
| 614 |
+
vn 0.7501 0.6156 -0.2414
|
| 615 |
+
vn 0.8558 0.4575 -0.2414
|
| 616 |
+
vn 0.9286 0.2817 -0.2414
|
| 617 |
+
vn 0.9657 0.0951 -0.2414
|
| 618 |
+
vn 0.9657 -0.0951 -0.2414
|
| 619 |
+
vn 0.9286 -0.2817 -0.2414
|
| 620 |
+
vn 0.8558 -0.4575 -0.2414
|
| 621 |
+
vn 0.7501 -0.6156 -0.2414
|
| 622 |
+
vn 0.6156 -0.7501 -0.2414
|
| 623 |
+
vn 0.4575 -0.8558 -0.2414
|
| 624 |
+
vn 0.2817 -0.9286 -0.2414
|
| 625 |
+
vn 0.0951 -0.9657 -0.2414
|
| 626 |
+
vt 0.847703 0.234951
|
| 627 |
+
vt 0.974738 0.150069
|
| 628 |
+
vt 0.889856 0.023035
|
| 629 |
+
vt 0.762822 0.107916
|
| 630 |
+
vt 0.778953 0.189013
|
| 631 |
+
vt 0.808759 0.039165
|
| 632 |
+
vt 0.958607 0.068972
|
| 633 |
+
vt 0.928801 0.218820
|
| 634 |
+
vt 0.808759 0.218820
|
| 635 |
+
vt 0.762822 0.150069
|
| 636 |
+
vt 0.778953 0.068972
|
| 637 |
+
vt 0.847703 0.023035
|
| 638 |
+
vt 0.928801 0.039165
|
| 639 |
+
vt 0.974738 0.107916
|
| 640 |
+
vt 0.958607 0.189013
|
| 641 |
+
vt 0.889856 0.234951
|
| 642 |
+
vt 0.827437 0.228803
|
| 643 |
+
vt 0.792388 0.205385
|
| 644 |
+
vt 0.768969 0.170336
|
| 645 |
+
vt 0.760746 0.128993
|
| 646 |
+
vt 0.768969 0.087650
|
| 647 |
+
vt 0.792388 0.052601
|
| 648 |
+
vt 0.827437 0.029182
|
| 649 |
+
vt 0.868780 0.020959
|
| 650 |
+
vt 0.910123 0.029182
|
| 651 |
+
vt 0.945172 0.052601
|
| 652 |
+
vt 0.968590 0.087650
|
| 653 |
+
vt 0.976814 0.128993
|
| 654 |
+
vt 0.968590 0.170336
|
| 655 |
+
vt 0.945172 0.205385
|
| 656 |
+
vt 0.910123 0.228803
|
| 657 |
+
vt 0.868780 0.237027
|
| 658 |
+
vt 0.622632 0.234951
|
| 659 |
+
vt 0.643709 0.128993
|
| 660 |
+
vt 0.643709 0.237027
|
| 661 |
+
vt 0.602366 0.228803
|
| 662 |
+
vt 0.583688 0.218820
|
| 663 |
+
vt 0.567317 0.205385
|
| 664 |
+
vt 0.553881 0.189013
|
| 665 |
+
vt 0.543898 0.170336
|
| 666 |
+
vt 0.537751 0.150069
|
| 667 |
+
vt 0.535675 0.128993
|
| 668 |
+
vt 0.537751 0.107916
|
| 669 |
+
vt 0.543898 0.087650
|
| 670 |
+
vt 0.553881 0.068972
|
| 671 |
+
vt 0.567317 0.052601
|
| 672 |
+
vt 0.583688 0.039165
|
| 673 |
+
vt 0.602366 0.029182
|
| 674 |
+
vt 0.622632 0.023035
|
| 675 |
+
vt 0.643709 0.020959
|
| 676 |
+
vt 0.664785 0.023035
|
| 677 |
+
vt 0.685052 0.029182
|
| 678 |
+
vt 0.703729 0.039165
|
| 679 |
+
vt 0.720101 0.052601
|
| 680 |
+
vt 0.733536 0.068972
|
| 681 |
+
vt 0.743519 0.087650
|
| 682 |
+
vt 0.749667 0.107916
|
| 683 |
+
vt 0.751743 0.128993
|
| 684 |
+
vt 0.749667 0.150069
|
| 685 |
+
vt 0.743519 0.170336
|
| 686 |
+
vt 0.733536 0.189013
|
| 687 |
+
vt 0.720101 0.205385
|
| 688 |
+
vt 0.703729 0.218820
|
| 689 |
+
vt 0.685052 0.228803
|
| 690 |
+
vt 0.664785 0.234951
|
| 691 |
+
s 0
|
| 692 |
+
usemtl MI_YamahaMSP3_MatteBlack.003
|
| 693 |
+
f 99/196/70 123/197/70 115/198/70
|
| 694 |
+
f 107/199/70 103/200/70 99/196/70
|
| 695 |
+
f 115/198/70 111/201/70 107/199/70
|
| 696 |
+
f 123/197/70 119/202/70 115/198/70
|
| 697 |
+
f 99/196/70 127/203/70 123/197/70
|
| 698 |
+
f 103/200/70 101/204/70 99/196/70
|
| 699 |
+
f 107/199/70 105/205/70 103/200/70
|
| 700 |
+
f 111/201/70 109/206/70 107/199/70
|
| 701 |
+
f 115/198/70 113/207/70 111/201/70
|
| 702 |
+
f 119/202/70 117/208/70 115/198/70
|
| 703 |
+
f 123/197/70 121/209/70 119/202/70
|
| 704 |
+
f 127/203/70 125/210/70 123/197/70
|
| 705 |
+
f 99/196/70 129/211/70 127/203/70
|
| 706 |
+
f 101/204/70 100/212/70 99/196/70
|
| 707 |
+
f 103/200/71 102/213/71 101/204/71
|
| 708 |
+
f 105/205/71 104/214/71 103/200/71
|
| 709 |
+
f 107/199/72 106/215/72 105/205/72
|
| 710 |
+
f 109/206/72 108/216/72 107/199/72
|
| 711 |
+
f 111/201/71 110/217/71 109/206/71
|
| 712 |
+
f 113/207/70 112/218/70 111/201/70
|
| 713 |
+
f 115/198/70 114/219/70 113/207/70
|
| 714 |
+
f 117/208/70 116/220/70 115/198/70
|
| 715 |
+
f 119/202/72 118/221/72 117/208/72
|
| 716 |
+
f 121/209/71 120/222/71 119/202/71
|
| 717 |
+
f 123/197/71 122/223/71 121/209/71
|
| 718 |
+
f 125/210/72 124/224/72 123/197/72
|
| 719 |
+
f 127/203/72 126/225/72 125/210/72
|
| 720 |
+
f 129/211/70 128/226/70 127/203/70
|
| 721 |
+
f 99/196/70 130/227/70 129/211/70
|
| 722 |
+
f 99/228/73 98/229/73 130/230/73
|
| 723 |
+
f 100/231/74 98/229/74 99/228/74
|
| 724 |
+
f 115/198/70 107/199/70 99/196/70
|
| 725 |
+
f 101/232/75 98/229/75 100/231/75
|
| 726 |
+
f 102/233/76 98/229/76 101/232/76
|
| 727 |
+
f 103/234/77 98/229/77 102/233/77
|
| 728 |
+
f 104/235/78 98/229/78 103/234/78
|
| 729 |
+
f 105/236/79 98/229/79 104/235/79
|
| 730 |
+
f 106/237/80 98/229/80 105/236/80
|
| 731 |
+
f 107/238/81 98/229/81 106/237/81
|
| 732 |
+
f 108/239/82 98/229/82 107/238/82
|
| 733 |
+
f 109/240/83 98/229/83 108/239/83
|
| 734 |
+
f 110/241/84 98/229/84 109/240/84
|
| 735 |
+
f 111/242/85 98/229/85 110/241/85
|
| 736 |
+
f 112/243/86 98/229/86 111/242/86
|
| 737 |
+
f 113/244/87 98/229/87 112/243/87
|
| 738 |
+
f 114/245/88 98/229/88 113/244/88
|
| 739 |
+
f 115/246/89 98/229/89 114/245/89
|
| 740 |
+
f 116/247/90 98/229/90 115/246/90
|
| 741 |
+
f 117/248/91 98/229/91 116/247/91
|
| 742 |
+
f 118/249/92 98/229/92 117/248/92
|
| 743 |
+
f 119/250/93 98/229/93 118/249/93
|
| 744 |
+
f 120/251/94 98/229/94 119/250/94
|
| 745 |
+
f 121/252/95 98/229/95 120/251/95
|
| 746 |
+
f 122/253/96 98/229/96 121/252/96
|
| 747 |
+
f 123/254/97 98/229/97 122/253/97
|
| 748 |
+
f 124/255/98 98/229/98 123/254/98
|
| 749 |
+
f 125/256/99 98/229/99 124/255/99
|
| 750 |
+
f 126/257/100 98/229/100 125/256/100
|
| 751 |
+
f 127/258/101 98/229/101 126/257/101
|
| 752 |
+
f 128/259/102 98/229/102 127/258/102
|
| 753 |
+
f 129/260/103 98/229/103 128/259/103
|
| 754 |
+
f 130/230/104 98/229/104 129/260/104
|
| 755 |
+
o Yzhu
|
| 756 |
+
v -0.097545 0.490392 -0.000000
|
| 757 |
+
v -0.097545 0.490391 -24.000000
|
| 758 |
+
v -0.191342 0.461939 -0.000000
|
| 759 |
+
v -0.191342 0.461938 -24.000000
|
| 760 |
+
v -0.277785 0.415734 -0.000000
|
| 761 |
+
v -0.277785 0.415733 -24.000000
|
| 762 |
+
v -0.353553 0.353553 -0.000000
|
| 763 |
+
v -0.353553 0.353552 -24.000000
|
| 764 |
+
v -0.415735 0.277785 -0.000000
|
| 765 |
+
v -0.415735 0.277784 -24.000000
|
| 766 |
+
v -0.461940 0.191341 -0.000000
|
| 767 |
+
v -0.461940 0.191340 -24.000000
|
| 768 |
+
v -0.490393 0.097545 -0.000000
|
| 769 |
+
v -0.490393 0.097544 -24.000000
|
| 770 |
+
v -0.500000 -0.000001 0.000000
|
| 771 |
+
v -0.500000 -0.000001 -24.000000
|
| 772 |
+
v -0.490393 -0.097546 0.000000
|
| 773 |
+
v -0.490393 -0.097547 -24.000000
|
| 774 |
+
v -0.461940 -0.191342 0.000000
|
| 775 |
+
v -0.461940 -0.191343 -24.000000
|
| 776 |
+
v -0.415735 -0.277786 0.000000
|
| 777 |
+
v -0.415735 -0.277787 -24.000000
|
| 778 |
+
v -0.353553 -0.353554 0.000000
|
| 779 |
+
v -0.353553 -0.353555 -24.000000
|
| 780 |
+
v -0.277785 -0.415735 0.000000
|
| 781 |
+
v -0.277785 -0.415736 -24.000000
|
| 782 |
+
v -0.191342 -0.461940 0.000000
|
| 783 |
+
v -0.191342 -0.461941 -24.000000
|
| 784 |
+
v -0.097545 -0.490393 0.000000
|
| 785 |
+
v -0.097545 -0.490394 -24.000000
|
| 786 |
+
v 0.000000 -0.500001 0.000000
|
| 787 |
+
v 0.000000 -0.500001 -24.000000
|
| 788 |
+
v 0.097545 -0.490393 0.000000
|
| 789 |
+
v 0.097545 -0.490394 -24.000000
|
| 790 |
+
v 0.191342 -0.461940 0.000000
|
| 791 |
+
v 0.191342 -0.461941 -24.000000
|
| 792 |
+
v 0.277785 -0.415735 0.000000
|
| 793 |
+
v 0.277785 -0.415736 -24.000000
|
| 794 |
+
v 0.353553 -0.353554 0.000000
|
| 795 |
+
v 0.353553 -0.353555 -24.000000
|
| 796 |
+
v 0.415735 -0.277786 0.000000
|
| 797 |
+
v 0.415735 -0.277787 -24.000000
|
| 798 |
+
v 0.461940 -0.191342 0.000000
|
| 799 |
+
v 0.461940 -0.191343 -24.000000
|
| 800 |
+
v 0.490393 -0.097546 0.000000
|
| 801 |
+
v 0.490393 -0.097547 -24.000000
|
| 802 |
+
v 0.500000 -0.000001 0.000000
|
| 803 |
+
v 0.500000 -0.000001 -24.000000
|
| 804 |
+
v 0.490393 0.097545 -0.000000
|
| 805 |
+
v 0.490393 0.097544 -24.000000
|
| 806 |
+
v 0.461940 0.191341 -0.000000
|
| 807 |
+
v 0.461940 0.191340 -24.000000
|
| 808 |
+
v 0.415735 0.277785 -0.000000
|
| 809 |
+
v 0.415735 0.277784 -24.000000
|
| 810 |
+
v 0.353553 0.353553 -0.000000
|
| 811 |
+
v 0.353553 0.353552 -24.000000
|
| 812 |
+
v 0.277785 0.415734 -0.000000
|
| 813 |
+
v 0.277785 0.415733 -24.000000
|
| 814 |
+
v 0.191342 0.461939 -0.000000
|
| 815 |
+
v 0.191342 0.461938 -24.000000
|
| 816 |
+
v 0.097545 0.490392 -0.000000
|
| 817 |
+
v 0.097545 0.490391 -24.000000
|
| 818 |
+
v 0.000000 0.499999 -0.000000
|
| 819 |
+
v 0.000000 0.499999 -24.000000
|
| 820 |
+
vn -0.0000 -0.0000 -1.0000
|
| 821 |
+
vn -0.0001 -0.0000 -1.0000
|
| 822 |
+
vn 0.0001 -0.0000 -1.0000
|
| 823 |
+
vn -0.0980 0.9952 -0.0000
|
| 824 |
+
vn -0.2903 0.9569 -0.0000
|
| 825 |
+
vn -0.0000 -0.0000 1.0000
|
| 826 |
+
vn -0.4714 0.8819 -0.0000
|
| 827 |
+
vn -0.6344 0.7730 -0.0000
|
| 828 |
+
vn -0.7730 0.6344 -0.0000
|
| 829 |
+
vn -0.8819 0.4714 -0.0000
|
| 830 |
+
vn -0.9569 0.2903 -0.0000
|
| 831 |
+
vn -0.9952 0.0980 -0.0000
|
| 832 |
+
vn -0.9952 -0.0980 -0.0000
|
| 833 |
+
vn -0.9569 -0.2903 -0.0000
|
| 834 |
+
vn -0.8819 -0.4714 -0.0000
|
| 835 |
+
vn -0.7730 -0.6344 -0.0000
|
| 836 |
+
vn -0.6344 -0.7730 -0.0000
|
| 837 |
+
vn -0.4714 -0.8819 -0.0000
|
| 838 |
+
vn -0.2903 -0.9569 -0.0000
|
| 839 |
+
vn -0.0980 -0.9952 -0.0000
|
| 840 |
+
vn 0.0980 -0.9952 -0.0000
|
| 841 |
+
vn 0.2903 -0.9569 -0.0000
|
| 842 |
+
vn 0.4714 -0.8819 -0.0000
|
| 843 |
+
vn 0.6344 -0.7730 -0.0000
|
| 844 |
+
vn 0.7730 -0.6344 -0.0000
|
| 845 |
+
vn 0.8819 -0.4714 -0.0000
|
| 846 |
+
vn 0.9569 -0.2903 -0.0000
|
| 847 |
+
vn 0.9952 -0.0980 -0.0000
|
| 848 |
+
vn 0.9952 0.0980 -0.0000
|
| 849 |
+
vn 0.9569 0.2903 -0.0000
|
| 850 |
+
vn 0.8819 0.4714 -0.0000
|
| 851 |
+
vn 0.7730 0.6344 -0.0000
|
| 852 |
+
vn 0.6344 0.7730 -0.0000
|
| 853 |
+
vn 0.4714 0.8819 -0.0000
|
| 854 |
+
vn 0.2903 0.9569 -0.0000
|
| 855 |
+
vn 0.0980 0.9952 -0.0000
|
| 856 |
+
vt 0.847703 0.234951
|
| 857 |
+
vt 0.974738 0.150069
|
| 858 |
+
vt 0.889856 0.023035
|
| 859 |
+
vt 0.762822 0.107916
|
| 860 |
+
vt 0.778953 0.189013
|
| 861 |
+
vt 0.808759 0.039165
|
| 862 |
+
vt 0.958607 0.068972
|
| 863 |
+
vt 0.928801 0.218820
|
| 864 |
+
vt 0.808759 0.218820
|
| 865 |
+
vt 0.762822 0.150069
|
| 866 |
+
vt 0.778953 0.068972
|
| 867 |
+
vt 0.847703 0.023035
|
| 868 |
+
vt 0.928801 0.039165
|
| 869 |
+
vt 0.974738 0.107916
|
| 870 |
+
vt 0.958607 0.189013
|
| 871 |
+
vt 0.889856 0.234951
|
| 872 |
+
vt 0.827437 0.228803
|
| 873 |
+
vt 0.792388 0.205385
|
| 874 |
+
vt 0.768969 0.170336
|
| 875 |
+
vt 0.760746 0.128993
|
| 876 |
+
vt 0.768969 0.087650
|
| 877 |
+
vt 0.792388 0.052601
|
| 878 |
+
vt 0.827437 0.029182
|
| 879 |
+
vt 0.868780 0.020959
|
| 880 |
+
vt 0.910123 0.029182
|
| 881 |
+
vt 0.945172 0.052601
|
| 882 |
+
vt 0.968590 0.087650
|
| 883 |
+
vt 0.976814 0.128993
|
| 884 |
+
vt 0.968590 0.170336
|
| 885 |
+
vt 0.945172 0.205385
|
| 886 |
+
vt 0.910123 0.228803
|
| 887 |
+
vt 0.868780 0.237027
|
| 888 |
+
vt 0.545240 0.466600
|
| 889 |
+
vt 0.531173 0.466600
|
| 890 |
+
vt 0.531173 0.241528
|
| 891 |
+
vt 0.559307 0.466600
|
| 892 |
+
vt 0.545240 0.241528
|
| 893 |
+
vt 0.685052 0.228803
|
| 894 |
+
vt 0.543898 0.170336
|
| 895 |
+
vt 0.602366 0.029182
|
| 896 |
+
vt 0.743519 0.087650
|
| 897 |
+
vt 0.743519 0.170336
|
| 898 |
+
vt 0.685052 0.029182
|
| 899 |
+
vt 0.543898 0.087650
|
| 900 |
+
vt 0.602366 0.228803
|
| 901 |
+
vt 0.720101 0.205385
|
| 902 |
+
vt 0.751743 0.128993
|
| 903 |
+
vt 0.720101 0.052601
|
| 904 |
+
vt 0.643709 0.020959
|
| 905 |
+
vt 0.567317 0.052601
|
| 906 |
+
vt 0.535675 0.128993
|
| 907 |
+
vt 0.567317 0.205385
|
| 908 |
+
vt 0.643709 0.237027
|
| 909 |
+
vt 0.703729 0.218820
|
| 910 |
+
vt 0.733536 0.189013
|
| 911 |
+
vt 0.749667 0.150069
|
| 912 |
+
vt 0.749667 0.107916
|
| 913 |
+
vt 0.733536 0.068972
|
| 914 |
+
vt 0.703729 0.039165
|
| 915 |
+
vt 0.664785 0.023035
|
| 916 |
+
vt 0.622632 0.023035
|
| 917 |
+
vt 0.583688 0.039165
|
| 918 |
+
vt 0.553881 0.068972
|
| 919 |
+
vt 0.537751 0.107916
|
| 920 |
+
vt 0.537751 0.150069
|
| 921 |
+
vt 0.553881 0.189013
|
| 922 |
+
vt 0.583688 0.218820
|
| 923 |
+
vt 0.622632 0.234951
|
| 924 |
+
vt 0.664785 0.234951
|
| 925 |
+
vt 0.573374 0.466600
|
| 926 |
+
vt 0.559307 0.241528
|
| 927 |
+
vt 0.587441 0.466600
|
| 928 |
+
vt 0.573374 0.241528
|
| 929 |
+
vt 0.601508 0.466600
|
| 930 |
+
vt 0.587441 0.241528
|
| 931 |
+
vt 0.615575 0.466600
|
| 932 |
+
vt 0.601508 0.241528
|
| 933 |
+
vt 0.629642 0.466600
|
| 934 |
+
vt 0.615575 0.241528
|
| 935 |
+
vt 0.643709 0.466600
|
| 936 |
+
vt 0.629642 0.241528
|
| 937 |
+
vt 0.657776 0.466600
|
| 938 |
+
vt 0.643709 0.241528
|
| 939 |
+
vt 0.671843 0.466600
|
| 940 |
+
vt 0.657776 0.241528
|
| 941 |
+
vt 0.685910 0.466600
|
| 942 |
+
vt 0.671843 0.241528
|
| 943 |
+
vt 0.699977 0.466600
|
| 944 |
+
vt 0.685910 0.241528
|
| 945 |
+
vt 0.714043 0.466600
|
| 946 |
+
vt 0.699977 0.241528
|
| 947 |
+
vt 0.728110 0.466600
|
| 948 |
+
vt 0.714043 0.241528
|
| 949 |
+
vt 0.742177 0.466600
|
| 950 |
+
vt 0.728110 0.241528
|
| 951 |
+
vt 0.756244 0.466600
|
| 952 |
+
vt 0.742177 0.241528
|
| 953 |
+
vt 0.770311 0.466600
|
| 954 |
+
vt 0.756244 0.241528
|
| 955 |
+
vt 0.784378 0.466600
|
| 956 |
+
vt 0.770311 0.241528
|
| 957 |
+
vt 0.798445 0.466600
|
| 958 |
+
vt 0.784378 0.241528
|
| 959 |
+
vt 0.812512 0.466600
|
| 960 |
+
vt 0.798445 0.241528
|
| 961 |
+
vt 0.826579 0.466600
|
| 962 |
+
vt 0.812512 0.241528
|
| 963 |
+
vt 0.840646 0.466600
|
| 964 |
+
vt 0.826579 0.241528
|
| 965 |
+
vt 0.854713 0.466600
|
| 966 |
+
vt 0.840646 0.241528
|
| 967 |
+
vt 0.868780 0.466600
|
| 968 |
+
vt 0.854713 0.241528
|
| 969 |
+
vt 0.882847 0.466600
|
| 970 |
+
vt 0.868780 0.241528
|
| 971 |
+
vt 0.896914 0.466600
|
| 972 |
+
vt 0.882847 0.241528
|
| 973 |
+
vt 0.910981 0.466600
|
| 974 |
+
vt 0.896914 0.241528
|
| 975 |
+
vt 0.925048 0.466600
|
| 976 |
+
vt 0.910981 0.241528
|
| 977 |
+
vt 0.939115 0.466600
|
| 978 |
+
vt 0.925048 0.241528
|
| 979 |
+
vt 0.953182 0.466600
|
| 980 |
+
vt 0.939115 0.241528
|
| 981 |
+
vt 0.967249 0.466600
|
| 982 |
+
vt 0.953182 0.241528
|
| 983 |
+
vt 0.981316 0.466600
|
| 984 |
+
vt 0.967249 0.241528
|
| 985 |
+
vt 0.981316 0.241528
|
| 986 |
+
s 0
|
| 987 |
+
usemtl MI_YamahaMSP3_MatteBlack.003
|
| 988 |
+
f 132/261/105 180/262/105 164/263/105
|
| 989 |
+
f 148/264/105 140/265/105 132/261/105
|
| 990 |
+
f 164/263/105 156/266/105 148/264/105
|
| 991 |
+
f 180/262/105 172/267/105 164/263/105
|
| 992 |
+
f 132/261/105 188/268/105 180/262/105
|
| 993 |
+
f 140/265/105 136/269/105 132/261/105
|
| 994 |
+
f 148/264/106 144/270/106 140/265/106
|
| 995 |
+
f 156/266/105 152/271/105 148/264/105
|
| 996 |
+
f 164/263/105 160/272/105 156/266/105
|
| 997 |
+
f 172/267/105 168/273/105 164/263/105
|
| 998 |
+
f 180/262/107 176/274/107 172/267/107
|
| 999 |
+
f 188/268/105 184/275/105 180/262/105
|
| 1000 |
+
f 132/261/105 192/276/105 188/268/105
|
| 1001 |
+
f 136/269/105 134/277/105 132/261/105
|
| 1002 |
+
f 140/265/105 138/278/105 136/269/105
|
| 1003 |
+
f 144/270/107 142/279/107 140/265/107
|
| 1004 |
+
f 148/264/106 146/280/106 144/270/106
|
| 1005 |
+
f 152/271/105 150/281/105 148/264/105
|
| 1006 |
+
f 156/266/105 154/282/105 152/271/105
|
| 1007 |
+
f 160/272/105 158/283/105 156/266/105
|
| 1008 |
+
f 164/263/105 162/284/105 160/272/105
|
| 1009 |
+
f 168/273/105 166/285/105 164/263/105
|
| 1010 |
+
f 172/267/105 170/286/105 168/273/105
|
| 1011 |
+
f 176/274/105 174/287/105 172/267/105
|
| 1012 |
+
f 180/262/107 178/288/107 176/274/107
|
| 1013 |
+
f 184/275/106 182/289/106 180/262/106
|
| 1014 |
+
f 188/268/105 186/290/105 184/275/105
|
| 1015 |
+
f 192/276/105 190/291/105 188/268/105
|
| 1016 |
+
f 132/261/105 194/292/105 192/276/105
|
| 1017 |
+
f 131/293/108 193/294/108 194/295/108
|
| 1018 |
+
f 133/296/109 131/293/109 132/297/109
|
| 1019 |
+
f 189/298/110 141/299/110 157/300/110
|
| 1020 |
+
f 173/301/110 181/302/110 189/298/110
|
| 1021 |
+
f 157/300/110 165/303/110 173/301/110
|
| 1022 |
+
f 141/299/110 149/304/110 157/300/110
|
| 1023 |
+
f 189/298/110 133/305/110 141/299/110
|
| 1024 |
+
f 181/302/110 185/306/110 189/298/110
|
| 1025 |
+
f 173/301/110 177/307/110 181/302/110
|
| 1026 |
+
f 165/303/110 169/308/110 173/301/110
|
| 1027 |
+
f 157/300/110 161/309/110 165/303/110
|
| 1028 |
+
f 149/304/110 153/310/110 157/300/110
|
| 1029 |
+
f 141/299/110 145/311/110 149/304/110
|
| 1030 |
+
f 133/305/110 137/312/110 141/299/110
|
| 1031 |
+
f 189/298/110 193/313/110 133/305/110
|
| 1032 |
+
f 185/306/110 187/314/110 189/298/110
|
| 1033 |
+
f 181/302/110 183/315/110 185/306/110
|
| 1034 |
+
f 177/307/110 179/316/110 181/302/110
|
| 1035 |
+
f 173/301/110 175/317/110 177/307/110
|
| 1036 |
+
f 169/308/110 171/318/110 173/301/110
|
| 1037 |
+
f 165/303/110 167/319/110 169/308/110
|
| 1038 |
+
f 161/309/110 163/320/110 165/303/110
|
| 1039 |
+
f 157/300/110 159/321/110 161/309/110
|
| 1040 |
+
f 153/310/110 155/322/110 157/300/110
|
| 1041 |
+
f 149/304/110 151/323/110 153/310/110
|
| 1042 |
+
f 145/311/110 147/324/110 149/304/110
|
| 1043 |
+
f 141/299/110 143/325/110 145/311/110
|
| 1044 |
+
f 137/312/110 139/326/110 141/299/110
|
| 1045 |
+
f 133/305/110 135/327/110 137/312/110
|
| 1046 |
+
f 193/313/110 131/328/110 133/305/110
|
| 1047 |
+
f 189/298/110 191/329/110 193/313/110
|
| 1048 |
+
f 135/330/111 133/296/111 134/331/111
|
| 1049 |
+
f 137/332/112 135/330/112 136/333/112
|
| 1050 |
+
f 139/334/113 137/332/113 138/335/113
|
| 1051 |
+
f 141/336/114 139/334/114 140/337/114
|
| 1052 |
+
f 143/338/115 141/336/115 142/339/115
|
| 1053 |
+
f 145/340/116 143/338/116 144/341/116
|
| 1054 |
+
f 147/342/117 145/340/117 146/343/117
|
| 1055 |
+
f 149/344/118 147/342/118 148/345/118
|
| 1056 |
+
f 151/346/119 149/344/119 150/347/119
|
| 1057 |
+
f 153/348/120 151/346/120 152/349/120
|
| 1058 |
+
f 155/350/121 153/348/121 154/351/121
|
| 1059 |
+
f 157/352/122 155/350/122 156/353/122
|
| 1060 |
+
f 159/354/123 157/352/123 158/355/123
|
| 1061 |
+
f 161/356/124 159/354/124 160/357/124
|
| 1062 |
+
f 163/358/125 161/356/125 162/359/125
|
| 1063 |
+
f 165/360/126 163/358/126 164/361/126
|
| 1064 |
+
f 167/362/127 165/360/127 166/363/127
|
| 1065 |
+
f 169/364/128 167/362/128 168/365/128
|
| 1066 |
+
f 171/366/129 169/364/129 170/367/129
|
| 1067 |
+
f 173/368/130 171/366/130 172/369/130
|
| 1068 |
+
f 175/370/131 173/368/131 174/371/131
|
| 1069 |
+
f 177/372/132 175/370/132 176/373/132
|
| 1070 |
+
f 179/374/133 177/372/133 178/375/133
|
| 1071 |
+
f 181/376/134 179/374/134 180/377/134
|
| 1072 |
+
f 183/378/135 181/376/135 182/379/135
|
| 1073 |
+
f 185/380/136 183/378/136 184/381/136
|
| 1074 |
+
f 187/382/137 185/380/137 186/383/137
|
| 1075 |
+
f 189/384/138 187/382/138 188/385/138
|
| 1076 |
+
f 191/386/139 189/384/139 190/387/139
|
| 1077 |
+
f 193/388/140 191/386/140 192/389/140
|
| 1078 |
+
f 164/263/105 148/264/105 132/261/105
|
| 1079 |
+
f 131/293/108 194/295/108 132/297/108
|
| 1080 |
+
f 133/296/109 132/297/109 134/331/109
|
| 1081 |
+
f 157/300/110 173/301/110 189/298/110
|
| 1082 |
+
f 135/330/111 134/331/111 136/333/111
|
| 1083 |
+
f 137/332/112 136/333/112 138/335/112
|
| 1084 |
+
f 139/334/113 138/335/113 140/337/113
|
| 1085 |
+
f 141/336/114 140/337/114 142/339/114
|
| 1086 |
+
f 143/338/115 142/339/115 144/341/115
|
| 1087 |
+
f 145/340/116 144/341/116 146/343/116
|
| 1088 |
+
f 147/342/117 146/343/117 148/345/117
|
| 1089 |
+
f 149/344/118 148/345/118 150/347/118
|
| 1090 |
+
f 151/346/119 150/347/119 152/349/119
|
| 1091 |
+
f 153/348/120 152/349/120 154/351/120
|
| 1092 |
+
f 155/350/121 154/351/121 156/353/121
|
| 1093 |
+
f 157/352/122 156/353/122 158/355/122
|
| 1094 |
+
f 159/354/123 158/355/123 160/357/123
|
| 1095 |
+
f 161/356/124 160/357/124 162/359/124
|
| 1096 |
+
f 163/358/125 162/359/125 164/361/125
|
| 1097 |
+
f 165/360/126 164/361/126 166/363/126
|
| 1098 |
+
f 167/362/127 166/363/127 168/365/127
|
| 1099 |
+
f 169/364/128 168/365/128 170/367/128
|
| 1100 |
+
f 171/366/129 170/367/129 172/369/129
|
| 1101 |
+
f 173/368/130 172/369/130 174/371/130
|
| 1102 |
+
f 175/370/131 174/371/131 176/373/131
|
| 1103 |
+
f 177/372/132 176/373/132 178/375/132
|
| 1104 |
+
f 179/374/133 178/375/133 180/377/133
|
| 1105 |
+
f 181/376/134 180/377/134 182/379/134
|
| 1106 |
+
f 183/378/135 182/379/135 184/381/135
|
| 1107 |
+
f 185/380/136 184/381/136 186/383/136
|
| 1108 |
+
f 187/382/137 186/383/137 188/385/137
|
| 1109 |
+
f 189/384/138 188/385/138 190/387/138
|
| 1110 |
+
f 191/386/139 190/387/139 192/389/139
|
| 1111 |
+
f 193/388/140 192/389/140 194/390/140
|
| 1112 |
+
o Z
|
| 1113 |
+
v 0.000000 28.000000 -0.000002
|
| 1114 |
+
v -0.292636 22.000000 -1.471180
|
| 1115 |
+
v -0.574025 22.000000 -1.385821
|
| 1116 |
+
v -0.833355 22.000000 -1.247206
|
| 1117 |
+
v -1.060660 22.000000 -1.060662
|
| 1118 |
+
v -1.247204 22.000000 -0.833357
|
| 1119 |
+
v -1.385819 22.000000 -0.574027
|
| 1120 |
+
v -1.471178 22.000000 -0.292638
|
| 1121 |
+
v -1.500000 22.000000 -0.000002
|
| 1122 |
+
v -1.471178 22.000000 0.292634
|
| 1123 |
+
v -1.385819 22.000000 0.574023
|
| 1124 |
+
v -1.247204 22.000000 0.833353
|
| 1125 |
+
v -1.060660 22.000000 1.060658
|
| 1126 |
+
v -0.833355 22.000000 1.247202
|
| 1127 |
+
v -0.574025 22.000000 1.385817
|
| 1128 |
+
v -0.292636 22.000000 1.471176
|
| 1129 |
+
v 0.000000 22.000000 1.499998
|
| 1130 |
+
v 0.292636 22.000000 1.471176
|
| 1131 |
+
v 0.574025 22.000000 1.385817
|
| 1132 |
+
v 0.833355 22.000000 1.247202
|
| 1133 |
+
v 1.060660 22.000000 1.060658
|
| 1134 |
+
v 1.247204 22.000000 0.833353
|
| 1135 |
+
v 1.385819 22.000000 0.574023
|
| 1136 |
+
v 1.471178 22.000000 0.292634
|
| 1137 |
+
v 1.500000 22.000000 -0.000002
|
| 1138 |
+
v 1.471178 22.000000 -0.292638
|
| 1139 |
+
v 1.385819 22.000000 -0.574027
|
| 1140 |
+
v 1.247204 22.000000 -0.833357
|
| 1141 |
+
v 1.060660 22.000000 -1.060662
|
| 1142 |
+
v 0.833355 22.000000 -1.247206
|
| 1143 |
+
v 0.574025 22.000000 -1.385821
|
| 1144 |
+
v 0.292636 22.000000 -1.471180
|
| 1145 |
+
v 0.000000 22.000000 -1.500002
|
| 1146 |
+
vn -0.0000 -1.0000 -0.0000
|
| 1147 |
+
vn -0.0000 -1.0000 0.0001
|
| 1148 |
+
vn -0.0000 -1.0000 -0.0001
|
| 1149 |
+
vn -0.0951 0.2414 -0.9657
|
| 1150 |
+
vn -0.2817 0.2414 -0.9286
|
| 1151 |
+
vn -0.4575 0.2414 -0.8558
|
| 1152 |
+
vn -0.6156 0.2414 -0.7501
|
| 1153 |
+
vn -0.7501 0.2414 -0.6156
|
| 1154 |
+
vn -0.8558 0.2414 -0.4575
|
| 1155 |
+
vn -0.9286 0.2414 -0.2817
|
| 1156 |
+
vn -0.9657 0.2414 -0.0951
|
| 1157 |
+
vn -0.9657 0.2414 0.0951
|
| 1158 |
+
vn -0.9286 0.2414 0.2817
|
| 1159 |
+
vn -0.8558 0.2414 0.4575
|
| 1160 |
+
vn -0.7501 0.2414 0.6156
|
| 1161 |
+
vn -0.6156 0.2414 0.7501
|
| 1162 |
+
vn -0.4575 0.2414 0.8558
|
| 1163 |
+
vn -0.2817 0.2414 0.9286
|
| 1164 |
+
vn -0.0951 0.2414 0.9657
|
| 1165 |
+
vn 0.0951 0.2414 0.9657
|
| 1166 |
+
vn 0.2817 0.2414 0.9286
|
| 1167 |
+
vn 0.4575 0.2414 0.8558
|
| 1168 |
+
vn 0.6156 0.2414 0.7501
|
| 1169 |
+
vn 0.7501 0.2414 0.6156
|
| 1170 |
+
vn 0.8558 0.2414 0.4575
|
| 1171 |
+
vn 0.9286 0.2414 0.2817
|
| 1172 |
+
vn 0.9657 0.2414 0.0951
|
| 1173 |
+
vn 0.9657 0.2414 -0.0951
|
| 1174 |
+
vn 0.9286 0.2414 -0.2817
|
| 1175 |
+
vn 0.8558 0.2414 -0.4575
|
| 1176 |
+
vn 0.7501 0.2414 -0.6156
|
| 1177 |
+
vn 0.6156 0.2414 -0.7501
|
| 1178 |
+
vn 0.4575 0.2414 -0.8558
|
| 1179 |
+
vn 0.2817 0.2414 -0.9286
|
| 1180 |
+
vn 0.0951 0.2414 -0.9657
|
| 1181 |
+
vt 0.344619 0.232996
|
| 1182 |
+
vt 0.473521 0.146867
|
| 1183 |
+
vt 0.387392 0.017966
|
| 1184 |
+
vt 0.258490 0.104095
|
| 1185 |
+
vt 0.274858 0.186384
|
| 1186 |
+
vt 0.305103 0.034334
|
| 1187 |
+
vt 0.457153 0.064579
|
| 1188 |
+
vt 0.426908 0.216629
|
| 1189 |
+
vt 0.305103 0.216629
|
| 1190 |
+
vt 0.258490 0.146867
|
| 1191 |
+
vt 0.274858 0.064579
|
| 1192 |
+
vt 0.344619 0.017966
|
| 1193 |
+
vt 0.426908 0.034334
|
| 1194 |
+
vt 0.473521 0.104095
|
| 1195 |
+
vt 0.457153 0.186384
|
| 1196 |
+
vt 0.387392 0.232996
|
| 1197 |
+
vt 0.324055 0.226758
|
| 1198 |
+
vt 0.288491 0.202996
|
| 1199 |
+
vt 0.264728 0.167432
|
| 1200 |
+
vt 0.256384 0.125481
|
| 1201 |
+
vt 0.264728 0.083531
|
| 1202 |
+
vt 0.288491 0.047967
|
| 1203 |
+
vt 0.324055 0.024204
|
| 1204 |
+
vt 0.366006 0.015859
|
| 1205 |
+
vt 0.407956 0.024204
|
| 1206 |
+
vt 0.443520 0.047967
|
| 1207 |
+
vt 0.467283 0.083531
|
| 1208 |
+
vt 0.475627 0.125481
|
| 1209 |
+
vt 0.467283 0.167432
|
| 1210 |
+
vt 0.443520 0.202996
|
| 1211 |
+
vt 0.407956 0.226758
|
| 1212 |
+
vt 0.366006 0.235103
|
| 1213 |
+
vt 0.116241 0.232996
|
| 1214 |
+
vt 0.137627 0.125481
|
| 1215 |
+
vt 0.137627 0.235103
|
| 1216 |
+
vt 0.095676 0.226758
|
| 1217 |
+
vt 0.076724 0.216629
|
| 1218 |
+
vt 0.060112 0.202996
|
| 1219 |
+
vt 0.046480 0.186384
|
| 1220 |
+
vt 0.036350 0.167432
|
| 1221 |
+
vt 0.030112 0.146867
|
| 1222 |
+
vt 0.028005 0.125481
|
| 1223 |
+
vt 0.030112 0.104095
|
| 1224 |
+
vt 0.036350 0.083531
|
| 1225 |
+
vt 0.046480 0.064579
|
| 1226 |
+
vt 0.060112 0.047967
|
| 1227 |
+
vt 0.076724 0.034334
|
| 1228 |
+
vt 0.095676 0.024204
|
| 1229 |
+
vt 0.116241 0.017966
|
| 1230 |
+
vt 0.137627 0.015859
|
| 1231 |
+
vt 0.159013 0.017966
|
| 1232 |
+
vt 0.179577 0.024204
|
| 1233 |
+
vt 0.198530 0.034334
|
| 1234 |
+
vt 0.215141 0.047967
|
| 1235 |
+
vt 0.228774 0.064579
|
| 1236 |
+
vt 0.238904 0.083531
|
| 1237 |
+
vt 0.245142 0.104095
|
| 1238 |
+
vt 0.247249 0.125481
|
| 1239 |
+
vt 0.245142 0.146867
|
| 1240 |
+
vt 0.238904 0.167432
|
| 1241 |
+
vt 0.228774 0.186384
|
| 1242 |
+
vt 0.215141 0.202996
|
| 1243 |
+
vt 0.198530 0.216629
|
| 1244 |
+
vt 0.179577 0.226758
|
| 1245 |
+
vt 0.159013 0.232996
|
| 1246 |
+
s 0
|
| 1247 |
+
usemtl MI_YamahaMSP3_MatteBlack.010
|
| 1248 |
+
f 196/391/141 220/392/141 212/393/141
|
| 1249 |
+
f 204/394/141 200/395/141 196/391/141
|
| 1250 |
+
f 212/393/141 208/396/141 204/394/141
|
| 1251 |
+
f 220/392/141 216/397/141 212/393/141
|
| 1252 |
+
f 196/391/141 224/398/141 220/392/141
|
| 1253 |
+
f 200/395/141 198/399/141 196/391/141
|
| 1254 |
+
f 204/394/141 202/400/141 200/395/141
|
| 1255 |
+
f 208/396/141 206/401/141 204/394/141
|
| 1256 |
+
f 212/393/141 210/402/141 208/396/141
|
| 1257 |
+
f 216/397/141 214/403/141 212/393/141
|
| 1258 |
+
f 220/392/141 218/404/141 216/397/141
|
| 1259 |
+
f 224/398/141 222/405/141 220/392/141
|
| 1260 |
+
f 196/391/141 226/406/141 224/398/141
|
| 1261 |
+
f 198/399/142 197/407/142 196/391/142
|
| 1262 |
+
f 200/395/143 199/408/143 198/399/143
|
| 1263 |
+
f 202/400/141 201/409/141 200/395/141
|
| 1264 |
+
f 204/394/141 203/410/141 202/400/141
|
| 1265 |
+
f 206/401/141 205/411/141 204/394/141
|
| 1266 |
+
f 208/396/142 207/412/142 206/401/142
|
| 1267 |
+
f 210/402/143 209/413/143 208/396/143
|
| 1268 |
+
f 212/393/141 211/414/141 210/402/141
|
| 1269 |
+
f 214/403/143 213/415/143 212/393/143
|
| 1270 |
+
f 216/397/142 215/416/142 214/403/142
|
| 1271 |
+
f 218/404/141 217/417/141 216/397/141
|
| 1272 |
+
f 220/392/141 219/418/141 218/404/141
|
| 1273 |
+
f 222/405/141 221/419/141 220/392/141
|
| 1274 |
+
f 224/398/143 223/420/143 222/405/143
|
| 1275 |
+
f 226/406/142 225/421/142 224/398/142
|
| 1276 |
+
f 196/391/141 227/422/141 226/406/141
|
| 1277 |
+
f 196/423/144 195/424/144 227/425/144
|
| 1278 |
+
f 197/426/145 195/424/145 196/423/145
|
| 1279 |
+
f 212/393/141 204/394/141 196/391/141
|
| 1280 |
+
f 198/427/146 195/424/146 197/426/146
|
| 1281 |
+
f 199/428/147 195/424/147 198/427/147
|
| 1282 |
+
f 200/429/148 195/424/148 199/428/148
|
| 1283 |
+
f 201/430/149 195/424/149 200/429/149
|
| 1284 |
+
f 202/431/150 195/424/150 201/430/150
|
| 1285 |
+
f 203/432/151 195/424/151 202/431/151
|
| 1286 |
+
f 204/433/152 195/424/152 203/432/152
|
| 1287 |
+
f 205/434/153 195/424/153 204/433/153
|
| 1288 |
+
f 206/435/154 195/424/154 205/434/154
|
| 1289 |
+
f 207/436/155 195/424/155 206/435/155
|
| 1290 |
+
f 208/437/156 195/424/156 207/436/156
|
| 1291 |
+
f 209/438/157 195/424/157 208/437/157
|
| 1292 |
+
f 210/439/158 195/424/158 209/438/158
|
| 1293 |
+
f 211/440/159 195/424/159 210/439/159
|
| 1294 |
+
f 212/441/160 195/424/160 211/440/160
|
| 1295 |
+
f 213/442/161 195/424/161 212/441/161
|
| 1296 |
+
f 214/443/162 195/424/162 213/442/162
|
| 1297 |
+
f 215/444/163 195/424/163 214/443/163
|
| 1298 |
+
f 216/445/164 195/424/164 215/444/164
|
| 1299 |
+
f 217/446/165 195/424/165 216/445/165
|
| 1300 |
+
f 218/447/166 195/424/166 217/446/166
|
| 1301 |
+
f 219/448/167 195/424/167 218/447/167
|
| 1302 |
+
f 220/449/168 195/424/168 219/448/168
|
| 1303 |
+
f 221/450/169 195/424/169 220/449/169
|
| 1304 |
+
f 222/451/170 195/424/170 221/450/170
|
| 1305 |
+
f 223/452/171 195/424/171 222/451/171
|
| 1306 |
+
f 224/453/172 195/424/172 223/452/172
|
| 1307 |
+
f 225/454/173 195/424/173 224/453/173
|
| 1308 |
+
f 226/455/174 195/424/174 225/454/174
|
| 1309 |
+
f 227/425/175 195/424/175 226/455/175
|
| 1310 |
+
o Zzhu
|
| 1311 |
+
v -0.097545 24.000000 -0.490395
|
| 1312 |
+
v -0.097545 -0.000000 -0.490393
|
| 1313 |
+
v -0.191342 24.000000 -0.461942
|
| 1314 |
+
v -0.191342 -0.000000 -0.461940
|
| 1315 |
+
v -0.277785 24.000000 -0.415737
|
| 1316 |
+
v -0.277785 -0.000000 -0.415735
|
| 1317 |
+
v -0.353553 24.000000 -0.353555
|
| 1318 |
+
v -0.353553 -0.000000 -0.353553
|
| 1319 |
+
v -0.415735 24.000000 -0.277787
|
| 1320 |
+
v -0.415735 -0.000000 -0.277785
|
| 1321 |
+
v -0.461940 24.000000 -0.191344
|
| 1322 |
+
v -0.461940 -0.000000 -0.191342
|
| 1323 |
+
v -0.490393 24.000000 -0.097547
|
| 1324 |
+
v -0.490393 -0.000000 -0.097545
|
| 1325 |
+
v -0.500000 24.000000 -0.000002
|
| 1326 |
+
v -0.500000 0.000000 0.000000
|
| 1327 |
+
v -0.490393 24.000000 0.097543
|
| 1328 |
+
v -0.490393 0.000000 0.097545
|
| 1329 |
+
v -0.461940 24.000000 0.191340
|
| 1330 |
+
v -0.461940 0.000000 0.191342
|
| 1331 |
+
v -0.415735 24.000000 0.277783
|
| 1332 |
+
v -0.415735 0.000000 0.277785
|
| 1333 |
+
v -0.353553 24.000000 0.353551
|
| 1334 |
+
v -0.353553 0.000000 0.353553
|
| 1335 |
+
v -0.277785 24.000000 0.415733
|
| 1336 |
+
v -0.277785 0.000000 0.415735
|
| 1337 |
+
v -0.191342 24.000000 0.461938
|
| 1338 |
+
v -0.191342 0.000000 0.461940
|
| 1339 |
+
v -0.097545 24.000000 0.490391
|
| 1340 |
+
v -0.097545 0.000000 0.490393
|
| 1341 |
+
v 0.000000 24.000000 0.499998
|
| 1342 |
+
v 0.000000 0.000000 0.500000
|
| 1343 |
+
v 0.097545 24.000000 0.490391
|
| 1344 |
+
v 0.097545 0.000000 0.490393
|
| 1345 |
+
v 0.191342 24.000000 0.461938
|
| 1346 |
+
v 0.191342 0.000000 0.461940
|
| 1347 |
+
v 0.277785 24.000000 0.415733
|
| 1348 |
+
v 0.277785 0.000000 0.415735
|
| 1349 |
+
v 0.353553 24.000000 0.353551
|
| 1350 |
+
v 0.353553 0.000000 0.353553
|
| 1351 |
+
v 0.415735 24.000000 0.277783
|
| 1352 |
+
v 0.415735 0.000000 0.277785
|
| 1353 |
+
v 0.461940 24.000000 0.191340
|
| 1354 |
+
v 0.461940 0.000000 0.191342
|
| 1355 |
+
v 0.490393 24.000000 0.097543
|
| 1356 |
+
v 0.490393 0.000000 0.097545
|
| 1357 |
+
v 0.500000 24.000000 -0.000002
|
| 1358 |
+
v 0.500000 0.000000 0.000000
|
| 1359 |
+
v 0.490393 24.000000 -0.097547
|
| 1360 |
+
v 0.490393 -0.000000 -0.097545
|
| 1361 |
+
v 0.461940 24.000000 -0.191344
|
| 1362 |
+
v 0.461940 -0.000000 -0.191342
|
| 1363 |
+
v 0.415735 24.000000 -0.277787
|
| 1364 |
+
v 0.415735 -0.000000 -0.277785
|
| 1365 |
+
v 0.353553 24.000000 -0.353555
|
| 1366 |
+
v 0.353553 -0.000000 -0.353553
|
| 1367 |
+
v 0.277785 24.000000 -0.415737
|
| 1368 |
+
v 0.277785 -0.000000 -0.415735
|
| 1369 |
+
v 0.191342 24.000000 -0.461942
|
| 1370 |
+
v 0.191342 -0.000000 -0.461940
|
| 1371 |
+
v 0.097545 24.000000 -0.490395
|
| 1372 |
+
v 0.097545 -0.000000 -0.490393
|
| 1373 |
+
v 0.000000 24.000000 -0.500002
|
| 1374 |
+
v 0.000000 -0.000000 -0.500000
|
| 1375 |
+
vn -0.0000 -1.0000 -0.0000
|
| 1376 |
+
vn -0.0980 -0.0000 -0.9952
|
| 1377 |
+
vn -0.2903 -0.0000 -0.9569
|
| 1378 |
+
vn -0.0000 1.0000 -0.0000
|
| 1379 |
+
vn -0.4714 -0.0000 -0.8819
|
| 1380 |
+
vn -0.6344 -0.0000 -0.7730
|
| 1381 |
+
vn -0.7730 -0.0000 -0.6344
|
| 1382 |
+
vn -0.8819 -0.0000 -0.4714
|
| 1383 |
+
vn -0.9569 -0.0000 -0.2903
|
| 1384 |
+
vn -0.9952 -0.0000 -0.0980
|
| 1385 |
+
vn -0.9952 -0.0000 0.0980
|
| 1386 |
+
vn -0.9569 -0.0000 0.2903
|
| 1387 |
+
vn -0.8819 -0.0000 0.4714
|
| 1388 |
+
vn -0.7730 -0.0000 0.6344
|
| 1389 |
+
vn -0.6344 -0.0000 0.7730
|
| 1390 |
+
vn -0.4714 -0.0000 0.8819
|
| 1391 |
+
vn -0.2903 -0.0000 0.9569
|
| 1392 |
+
vn -0.0980 -0.0000 0.9952
|
| 1393 |
+
vn 0.0980 -0.0000 0.9952
|
| 1394 |
+
vn 0.2903 -0.0000 0.9569
|
| 1395 |
+
vn 0.4714 -0.0000 0.8819
|
| 1396 |
+
vn 0.6344 -0.0000 0.7730
|
| 1397 |
+
vn 0.7730 -0.0000 0.6344
|
| 1398 |
+
vn 0.8819 -0.0000 0.4714
|
| 1399 |
+
vn 0.9569 -0.0000 0.2903
|
| 1400 |
+
vn 0.9952 -0.0000 0.0980
|
| 1401 |
+
vn 0.9952 -0.0000 -0.0980
|
| 1402 |
+
vn 0.9569 -0.0000 -0.2903
|
| 1403 |
+
vn 0.8819 -0.0000 -0.4714
|
| 1404 |
+
vn 0.7730 -0.0000 -0.6344
|
| 1405 |
+
vn 0.6344 -0.0000 -0.7730
|
| 1406 |
+
vn 0.4714 -0.0000 -0.8819
|
| 1407 |
+
vn 0.2903 -0.0000 -0.9569
|
| 1408 |
+
vn 0.0980 -0.0000 -0.9952
|
| 1409 |
+
vt 0.344619 0.232996
|
| 1410 |
+
vt 0.473521 0.146867
|
| 1411 |
+
vt 0.387392 0.017966
|
| 1412 |
+
vt 0.258490 0.104095
|
| 1413 |
+
vt 0.274858 0.186384
|
| 1414 |
+
vt 0.305103 0.034334
|
| 1415 |
+
vt 0.457153 0.064579
|
| 1416 |
+
vt 0.426908 0.216629
|
| 1417 |
+
vt 0.305103 0.216629
|
| 1418 |
+
vt 0.258490 0.146867
|
| 1419 |
+
vt 0.274858 0.064579
|
| 1420 |
+
vt 0.344619 0.017966
|
| 1421 |
+
vt 0.426908 0.034334
|
| 1422 |
+
vt 0.473521 0.104095
|
| 1423 |
+
vt 0.457153 0.186384
|
| 1424 |
+
vt 0.387392 0.232996
|
| 1425 |
+
vt 0.324055 0.226758
|
| 1426 |
+
vt 0.288491 0.202996
|
| 1427 |
+
vt 0.264728 0.167432
|
| 1428 |
+
vt 0.256384 0.125481
|
| 1429 |
+
vt 0.264728 0.083531
|
| 1430 |
+
vt 0.288491 0.047967
|
| 1431 |
+
vt 0.324055 0.024204
|
| 1432 |
+
vt 0.366006 0.015859
|
| 1433 |
+
vt 0.407956 0.024204
|
| 1434 |
+
vt 0.443520 0.047967
|
| 1435 |
+
vt 0.467283 0.083531
|
| 1436 |
+
vt 0.475627 0.125481
|
| 1437 |
+
vt 0.467283 0.167432
|
| 1438 |
+
vt 0.443520 0.202996
|
| 1439 |
+
vt 0.407956 0.226758
|
| 1440 |
+
vt 0.366006 0.235103
|
| 1441 |
+
vt 0.037711 0.468049
|
| 1442 |
+
vt 0.023437 0.468049
|
| 1443 |
+
vt 0.023437 0.239671
|
| 1444 |
+
vt 0.051985 0.468049
|
| 1445 |
+
vt 0.037711 0.239671
|
| 1446 |
+
vt 0.179577 0.226758
|
| 1447 |
+
vt 0.036350 0.167432
|
| 1448 |
+
vt 0.095676 0.024204
|
| 1449 |
+
vt 0.238904 0.083531
|
| 1450 |
+
vt 0.238904 0.167432
|
| 1451 |
+
vt 0.179577 0.024204
|
| 1452 |
+
vt 0.036350 0.083531
|
| 1453 |
+
vt 0.095676 0.226758
|
| 1454 |
+
vt 0.215141 0.202996
|
| 1455 |
+
vt 0.247249 0.125481
|
| 1456 |
+
vt 0.215141 0.047967
|
| 1457 |
+
vt 0.137627 0.015859
|
| 1458 |
+
vt 0.060112 0.047967
|
| 1459 |
+
vt 0.028005 0.125481
|
| 1460 |
+
vt 0.060112 0.202996
|
| 1461 |
+
vt 0.137627 0.235103
|
| 1462 |
+
vt 0.198530 0.216629
|
| 1463 |
+
vt 0.228774 0.186384
|
| 1464 |
+
vt 0.245142 0.146867
|
| 1465 |
+
vt 0.245142 0.104095
|
| 1466 |
+
vt 0.228774 0.064579
|
| 1467 |
+
vt 0.198530 0.034334
|
| 1468 |
+
vt 0.159013 0.017966
|
| 1469 |
+
vt 0.116241 0.017966
|
| 1470 |
+
vt 0.076724 0.034334
|
| 1471 |
+
vt 0.046480 0.064579
|
| 1472 |
+
vt 0.030112 0.104095
|
| 1473 |
+
vt 0.030112 0.146867
|
| 1474 |
+
vt 0.046480 0.186384
|
| 1475 |
+
vt 0.076724 0.216629
|
| 1476 |
+
vt 0.116241 0.232996
|
| 1477 |
+
vt 0.159013 0.232996
|
| 1478 |
+
vt 0.066259 0.468049
|
| 1479 |
+
vt 0.051985 0.239671
|
| 1480 |
+
vt 0.080532 0.468049
|
| 1481 |
+
vt 0.066259 0.239671
|
| 1482 |
+
vt 0.094806 0.468049
|
| 1483 |
+
vt 0.080532 0.239671
|
| 1484 |
+
vt 0.109080 0.468049
|
| 1485 |
+
vt 0.094806 0.239671
|
| 1486 |
+
vt 0.123353 0.468049
|
| 1487 |
+
vt 0.109080 0.239671
|
| 1488 |
+
vt 0.137627 0.468049
|
| 1489 |
+
vt 0.123353 0.239671
|
| 1490 |
+
vt 0.151901 0.468049
|
| 1491 |
+
vt 0.137627 0.239671
|
| 1492 |
+
vt 0.166174 0.468049
|
| 1493 |
+
vt 0.151901 0.239671
|
| 1494 |
+
vt 0.180448 0.468049
|
| 1495 |
+
vt 0.166174 0.239671
|
| 1496 |
+
vt 0.194722 0.468049
|
| 1497 |
+
vt 0.180448 0.239671
|
| 1498 |
+
vt 0.208995 0.468049
|
| 1499 |
+
vt 0.194722 0.239671
|
| 1500 |
+
vt 0.223269 0.468049
|
| 1501 |
+
vt 0.208995 0.239671
|
| 1502 |
+
vt 0.237543 0.468049
|
| 1503 |
+
vt 0.223269 0.239671
|
| 1504 |
+
vt 0.251816 0.468049
|
| 1505 |
+
vt 0.237543 0.239671
|
| 1506 |
+
vt 0.266090 0.468049
|
| 1507 |
+
vt 0.251816 0.239671
|
| 1508 |
+
vt 0.280364 0.468049
|
| 1509 |
+
vt 0.266090 0.239671
|
| 1510 |
+
vt 0.294637 0.468049
|
| 1511 |
+
vt 0.280364 0.239671
|
| 1512 |
+
vt 0.308911 0.468049
|
| 1513 |
+
vt 0.294637 0.239671
|
| 1514 |
+
vt 0.323185 0.468049
|
| 1515 |
+
vt 0.308911 0.239671
|
| 1516 |
+
vt 0.337458 0.468049
|
| 1517 |
+
vt 0.323185 0.239671
|
| 1518 |
+
vt 0.351732 0.468049
|
| 1519 |
+
vt 0.337458 0.239671
|
| 1520 |
+
vt 0.366006 0.468049
|
| 1521 |
+
vt 0.351732 0.239671
|
| 1522 |
+
vt 0.380279 0.468049
|
| 1523 |
+
vt 0.366006 0.239671
|
| 1524 |
+
vt 0.394553 0.468049
|
| 1525 |
+
vt 0.380279 0.239671
|
| 1526 |
+
vt 0.408827 0.468049
|
| 1527 |
+
vt 0.394553 0.239671
|
| 1528 |
+
vt 0.423100 0.468049
|
| 1529 |
+
vt 0.408827 0.239671
|
| 1530 |
+
vt 0.437374 0.468049
|
| 1531 |
+
vt 0.423100 0.239671
|
| 1532 |
+
vt 0.451648 0.468049
|
| 1533 |
+
vt 0.437374 0.239671
|
| 1534 |
+
vt 0.465921 0.468049
|
| 1535 |
+
vt 0.451648 0.239671
|
| 1536 |
+
vt 0.480195 0.468049
|
| 1537 |
+
vt 0.465921 0.239671
|
| 1538 |
+
vt 0.480195 0.239671
|
| 1539 |
+
s 0
|
| 1540 |
+
usemtl MI_YamahaMSP3_MatteBlack.010
|
| 1541 |
+
f 229/456/176 277/457/176 261/458/176
|
| 1542 |
+
f 245/459/176 237/460/176 229/456/176
|
| 1543 |
+
f 261/458/176 253/461/176 245/459/176
|
| 1544 |
+
f 277/457/176 269/462/176 261/458/176
|
| 1545 |
+
f 229/456/176 285/463/176 277/457/176
|
| 1546 |
+
f 237/460/176 233/464/176 229/456/176
|
| 1547 |
+
f 245/459/176 241/465/176 237/460/176
|
| 1548 |
+
f 253/461/176 249/466/176 245/459/176
|
| 1549 |
+
f 261/458/176 257/467/176 253/461/176
|
| 1550 |
+
f 269/462/176 265/468/176 261/458/176
|
| 1551 |
+
f 277/457/176 273/469/176 269/462/176
|
| 1552 |
+
f 285/463/176 281/470/176 277/457/176
|
| 1553 |
+
f 229/456/176 289/471/176 285/463/176
|
| 1554 |
+
f 233/464/176 231/472/176 229/456/176
|
| 1555 |
+
f 237/460/176 235/473/176 233/464/176
|
| 1556 |
+
f 241/465/176 239/474/176 237/460/176
|
| 1557 |
+
f 245/459/176 243/475/176 241/465/176
|
| 1558 |
+
f 249/466/176 247/476/176 245/459/176
|
| 1559 |
+
f 253/461/176 251/477/176 249/466/176
|
| 1560 |
+
f 257/467/176 255/478/176 253/461/176
|
| 1561 |
+
f 261/458/176 259/479/176 257/467/176
|
| 1562 |
+
f 265/468/176 263/480/176 261/458/176
|
| 1563 |
+
f 269/462/176 267/481/176 265/468/176
|
| 1564 |
+
f 273/469/176 271/482/176 269/462/176
|
| 1565 |
+
f 277/457/176 275/483/176 273/469/176
|
| 1566 |
+
f 281/470/176 279/484/176 277/457/176
|
| 1567 |
+
f 285/463/176 283/485/176 281/470/176
|
| 1568 |
+
f 289/471/176 287/486/176 285/463/176
|
| 1569 |
+
f 229/456/176 291/487/176 289/471/176
|
| 1570 |
+
f 228/488/177 290/489/177 291/490/177
|
| 1571 |
+
f 230/491/178 228/488/178 229/492/178
|
| 1572 |
+
f 286/493/179 238/494/179 254/495/179
|
| 1573 |
+
f 270/496/179 278/497/179 286/493/179
|
| 1574 |
+
f 254/495/179 262/498/179 270/496/179
|
| 1575 |
+
f 238/494/179 246/499/179 254/495/179
|
| 1576 |
+
f 286/493/179 230/500/179 238/494/179
|
| 1577 |
+
f 278/497/179 282/501/179 286/493/179
|
| 1578 |
+
f 270/496/179 274/502/179 278/497/179
|
| 1579 |
+
f 262/498/179 266/503/179 270/496/179
|
| 1580 |
+
f 254/495/179 258/504/179 262/498/179
|
| 1581 |
+
f 246/499/179 250/505/179 254/495/179
|
| 1582 |
+
f 238/494/179 242/506/179 246/499/179
|
| 1583 |
+
f 230/500/179 234/507/179 238/494/179
|
| 1584 |
+
f 286/493/179 290/508/179 230/500/179
|
| 1585 |
+
f 282/501/179 284/509/179 286/493/179
|
| 1586 |
+
f 278/497/179 280/510/179 282/501/179
|
| 1587 |
+
f 274/502/179 276/511/179 278/497/179
|
| 1588 |
+
f 270/496/179 272/512/179 274/502/179
|
| 1589 |
+
f 266/503/179 268/513/179 270/496/179
|
| 1590 |
+
f 262/498/179 264/514/179 266/503/179
|
| 1591 |
+
f 258/504/179 260/515/179 262/498/179
|
| 1592 |
+
f 254/495/179 256/516/179 258/504/179
|
| 1593 |
+
f 250/505/179 252/517/179 254/495/179
|
| 1594 |
+
f 246/499/179 248/518/179 250/505/179
|
| 1595 |
+
f 242/506/179 244/519/179 246/499/179
|
| 1596 |
+
f 238/494/179 240/520/179 242/506/179
|
| 1597 |
+
f 234/507/179 236/521/179 238/494/179
|
| 1598 |
+
f 230/500/179 232/522/179 234/507/179
|
| 1599 |
+
f 290/508/179 228/523/179 230/500/179
|
| 1600 |
+
f 286/493/179 288/524/179 290/508/179
|
| 1601 |
+
f 232/525/180 230/491/180 231/526/180
|
| 1602 |
+
f 234/527/181 232/525/181 233/528/181
|
| 1603 |
+
f 236/529/182 234/527/182 235/530/182
|
| 1604 |
+
f 238/531/183 236/529/183 237/532/183
|
| 1605 |
+
f 240/533/184 238/531/184 239/534/184
|
| 1606 |
+
f 242/535/185 240/533/185 241/536/185
|
| 1607 |
+
f 244/537/186 242/535/186 243/538/186
|
| 1608 |
+
f 246/539/187 244/537/187 245/540/187
|
| 1609 |
+
f 248/541/188 246/539/188 247/542/188
|
| 1610 |
+
f 250/543/189 248/541/189 249/544/189
|
| 1611 |
+
f 252/545/190 250/543/190 251/546/190
|
| 1612 |
+
f 254/547/191 252/545/191 253/548/191
|
| 1613 |
+
f 256/549/192 254/547/192 255/550/192
|
| 1614 |
+
f 258/551/193 256/549/193 257/552/193
|
| 1615 |
+
f 260/553/194 258/551/194 259/554/194
|
| 1616 |
+
f 262/555/195 260/553/195 261/556/195
|
| 1617 |
+
f 264/557/196 262/555/196 263/558/196
|
| 1618 |
+
f 266/559/197 264/557/197 265/560/197
|
| 1619 |
+
f 268/561/198 266/559/198 267/562/198
|
| 1620 |
+
f 270/563/199 268/561/199 269/564/199
|
| 1621 |
+
f 272/565/200 270/563/200 271/566/200
|
| 1622 |
+
f 274/567/201 272/565/201 273/568/201
|
| 1623 |
+
f 276/569/202 274/567/202 275/570/202
|
| 1624 |
+
f 278/571/203 276/569/203 277/572/203
|
| 1625 |
+
f 280/573/204 278/571/204 279/574/204
|
| 1626 |
+
f 282/575/205 280/573/205 281/576/205
|
| 1627 |
+
f 284/577/206 282/575/206 283/578/206
|
| 1628 |
+
f 286/579/207 284/577/207 285/580/207
|
| 1629 |
+
f 288/581/208 286/579/208 287/582/208
|
| 1630 |
+
f 290/583/209 288/581/209 289/584/209
|
| 1631 |
+
f 261/458/176 245/459/176 229/456/176
|
| 1632 |
+
f 228/488/177 291/490/177 229/492/177
|
| 1633 |
+
f 230/491/178 229/492/178 231/526/178
|
| 1634 |
+
f 254/495/179 270/496/179 286/493/179
|
| 1635 |
+
f 232/525/180 231/526/180 233/528/180
|
| 1636 |
+
f 234/527/181 233/528/181 235/530/181
|
| 1637 |
+
f 236/529/182 235/530/182 237/532/182
|
| 1638 |
+
f 238/531/183 237/532/183 239/534/183
|
| 1639 |
+
f 240/533/184 239/534/184 241/536/184
|
| 1640 |
+
f 242/535/185 241/536/185 243/538/185
|
| 1641 |
+
f 244/537/186 243/538/186 245/540/186
|
| 1642 |
+
f 246/539/187 245/540/187 247/542/187
|
| 1643 |
+
f 248/541/188 247/542/188 249/544/188
|
| 1644 |
+
f 250/543/189 249/544/189 251/546/189
|
| 1645 |
+
f 252/545/190 251/546/190 253/548/190
|
| 1646 |
+
f 254/547/191 253/548/191 255/550/191
|
| 1647 |
+
f 256/549/192 255/550/192 257/552/192
|
| 1648 |
+
f 258/551/193 257/552/193 259/554/193
|
| 1649 |
+
f 260/553/194 259/554/194 261/556/194
|
| 1650 |
+
f 262/555/195 261/556/195 263/558/195
|
| 1651 |
+
f 264/557/196 263/558/196 265/560/196
|
| 1652 |
+
f 266/559/197 265/560/197 267/562/197
|
| 1653 |
+
f 268/561/198 267/562/198 269/564/198
|
| 1654 |
+
f 270/563/199 269/564/199 271/566/199
|
| 1655 |
+
f 272/565/200 271/566/200 273/568/200
|
| 1656 |
+
f 274/567/201 273/568/201 275/570/201
|
| 1657 |
+
f 276/569/202 275/570/202 277/572/202
|
| 1658 |
+
f 278/571/203 277/572/203 279/574/203
|
| 1659 |
+
f 280/573/204 279/574/204 281/576/204
|
| 1660 |
+
f 282/575/205 281/576/205 283/578/205
|
| 1661 |
+
f 284/577/206 283/578/206 285/580/206
|
| 1662 |
+
f 286/579/207 285/580/207 287/582/207
|
| 1663 |
+
f 288/581/208 287/582/208 289/584/208
|
| 1664 |
+
f 290/583/209 289/584/209 291/585/209
|
Orient_Anything/render/canvas.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as t
|
| 2 |
+
|
| 3 |
+
from PIL import Image, ImageColor, ImageOps, ImageChops, ImageFilter
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
class Canvas:
|
| 7 |
+
def __init__(self, filename=None, height=500, width=500):
|
| 8 |
+
self.filename = filename
|
| 9 |
+
self.height, self.width = height, width
|
| 10 |
+
self.img = Image.new("RGBA", (self.height, self.width), (0, 0, 0, 0))
|
| 11 |
+
|
| 12 |
+
def draw(self, dots, color: t.Union[tuple, str]):
|
| 13 |
+
if isinstance(color, str):
|
| 14 |
+
color = ImageColor.getrgb(color)
|
| 15 |
+
if isinstance(dots, tuple):
|
| 16 |
+
dots = [dots]
|
| 17 |
+
for dot in dots:
|
| 18 |
+
if dot[0]>=self.height or dot[1]>=self.width or dot[0]<0 or dot[1]<0:
|
| 19 |
+
# print(dot)
|
| 20 |
+
continue
|
| 21 |
+
self.img.putpixel(dot, color + (255,))
|
| 22 |
+
|
| 23 |
+
def add_white_border(self, border_size=5):
|
| 24 |
+
# 确保输入图像是 RGBA 模式
|
| 25 |
+
if self.img.mode != "RGBA":
|
| 26 |
+
self.img = self.img.convert("RGBA")
|
| 27 |
+
|
| 28 |
+
# 提取 alpha 通道
|
| 29 |
+
alpha = self.img.getchannel("A")
|
| 30 |
+
# print(alpha.size)
|
| 31 |
+
dilated_alpha = alpha.filter(ImageFilter.MaxFilter(size=5))
|
| 32 |
+
# # print(dilated_alpha.size)
|
| 33 |
+
white_area = Image.new("RGBA", self.img.size, (255, 255, 255, 255))
|
| 34 |
+
white_area.putalpha(dilated_alpha)
|
| 35 |
+
|
| 36 |
+
# 合并膨胀后的白色区域与原图像
|
| 37 |
+
result = Image.alpha_composite(white_area, self.img)
|
| 38 |
+
# expanded_alpha = ImageOps.expand(alpha, border=border_size, fill=255)
|
| 39 |
+
# white_border = Image.new("RGBA", image.size, (255, 255, 255, 255))
|
| 40 |
+
# white_border.putalpha(alpha)
|
| 41 |
+
return result
|
| 42 |
+
|
| 43 |
+
def __enter__(self):
|
| 44 |
+
return self
|
| 45 |
+
|
| 46 |
+
def __exit__(self, type, value, traceback):
|
| 47 |
+
# self.img = add_white_border(self.img)
|
| 48 |
+
self.img.save(self.filename)
|
| 49 |
+
pass
|
Orient_Anything/render/model.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from .core import Vec4d
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Model:
|
| 7 |
+
def __init__(self, filename, texture_filename):
|
| 8 |
+
"""
|
| 9 |
+
https://en.wikipedia.org/wiki/Wavefront_.obj_file#Vertex_normal_indices
|
| 10 |
+
"""
|
| 11 |
+
self.vertices = []
|
| 12 |
+
self.uv_vertices = []
|
| 13 |
+
self.uv_indices = []
|
| 14 |
+
self.indices = []
|
| 15 |
+
|
| 16 |
+
texture = Image.open(texture_filename)
|
| 17 |
+
self.texture_array = numpy.array(texture)
|
| 18 |
+
self.texture_width, self.texture_height = texture.size
|
| 19 |
+
|
| 20 |
+
with open(filename) as f:
|
| 21 |
+
for line in f:
|
| 22 |
+
if line.startswith("v "):
|
| 23 |
+
x, y, z = [float(d) for d in line.strip("v").strip().split(" ")]
|
| 24 |
+
self.vertices.append(Vec4d(x, y, z, 1))
|
| 25 |
+
elif line.startswith("vt "):
|
| 26 |
+
u, v = [float(d) for d in line.strip("vt").strip().split(" ")]
|
| 27 |
+
self.uv_vertices.append([u, v])
|
| 28 |
+
elif line.startswith("f "):
|
| 29 |
+
facet = [d.split("/") for d in line.strip("f").strip().split(" ")]
|
| 30 |
+
self.indices.append([int(d[0]) for d in facet])
|
| 31 |
+
self.uv_indices.append([int(d[1]) for d in facet])
|
Orient_Anything/render/speedup.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import cython
|
| 2 |
+
import numpy as np
|
| 3 |
+
from math import sqrt
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def normalize(x, y, z):
|
| 7 |
+
unit = sqrt(x * x + y * y + z * z)
|
| 8 |
+
if unit == 0:
|
| 9 |
+
return 0, 0, 0
|
| 10 |
+
return x / unit, y / unit, z / unit
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_min_max(a, b, c):
|
| 14 |
+
min = a
|
| 15 |
+
max = a
|
| 16 |
+
if min > b:
|
| 17 |
+
min = b
|
| 18 |
+
if min > c:
|
| 19 |
+
min = c
|
| 20 |
+
if max < b:
|
| 21 |
+
max = b
|
| 22 |
+
if max < c:
|
| 23 |
+
max = c
|
| 24 |
+
return int(min), int(max)
|
| 25 |
+
|
| 26 |
+
def dot_product(a0, a1, a2, b0, b1, b2):
|
| 27 |
+
r = a0 * b0 + a1 * b1 + a2 * b2
|
| 28 |
+
return r
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def cross_product(a0, a1, a2, b0, b1, b2):
|
| 32 |
+
x = a1 * b2 - a2 * b1
|
| 33 |
+
y = a2 * b0 - a0 * b2
|
| 34 |
+
z = a0 * b1 - a1 * b0
|
| 35 |
+
return x,y,z
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# @cython.boundscheck(False)
|
| 39 |
+
def generate_faces(triangles, width, height):
|
| 40 |
+
""" draw the triangle faces with z buffer
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
triangles: groups of vertices
|
| 44 |
+
|
| 45 |
+
FYI:
|
| 46 |
+
* zbuffer, https://github.com/ssloy/tinyrenderer/wiki/Lesson-3:-Hidden-faces-removal-(z-buffer)
|
| 47 |
+
* uv mapping and perspective correction
|
| 48 |
+
"""
|
| 49 |
+
i, j, k, length = 0, 0, 0, 0
|
| 50 |
+
bcy, bcz, x, y, z = 0.,0.,0.,0.,0.
|
| 51 |
+
a, b, c = [0.,0.,0.],[0.,0.,0.],[0.,0.,0.]
|
| 52 |
+
m, bc = [0.,0.,0.],[0.,0.,0.]
|
| 53 |
+
uva, uvb, uvc = [0.,0.],[0.,0.],[0.,0.]
|
| 54 |
+
minx, maxx, miny, maxy = 0,0,0,0
|
| 55 |
+
length = triangles.shape[0]
|
| 56 |
+
zbuffer = {}
|
| 57 |
+
faces = []
|
| 58 |
+
|
| 59 |
+
for i in range(length):
|
| 60 |
+
a = triangles[i, 0, 0], triangles[i, 0, 1], triangles[i, 0, 2]
|
| 61 |
+
b = triangles[i, 1, 0], triangles[i, 1, 1], triangles[i, 1, 2]
|
| 62 |
+
c = triangles[i, 2, 0], triangles[i, 2, 1], triangles[i, 2, 2]
|
| 63 |
+
uva = triangles[i, 0, 3], triangles[i, 0, 4]
|
| 64 |
+
uvb = triangles[i, 1, 3], triangles[i, 1, 4]
|
| 65 |
+
uvc = triangles[i, 2, 3], triangles[i, 2, 4]
|
| 66 |
+
minx, maxx = get_min_max(a[0], b[0], c[0])
|
| 67 |
+
miny, maxy = get_min_max(a[1], b[1], c[1])
|
| 68 |
+
pixels = []
|
| 69 |
+
for j in range(minx, maxx + 2):
|
| 70 |
+
for k in range(miny - 1, maxy + 2):
|
| 71 |
+
# 必须显式转换成 double 参与底下的运算,不然结果是错的
|
| 72 |
+
x = j
|
| 73 |
+
y = k
|
| 74 |
+
|
| 75 |
+
m[0], m[1], m[2] = cross_product(c[0] - a[0], b[0] - a[0], a[0] - x, c[1] - a[1], b[1] - a[1], a[1] - y)
|
| 76 |
+
if abs(m[2]) > 0:
|
| 77 |
+
bcy = m[1] / m[2]
|
| 78 |
+
bcz = m[0] / m[2]
|
| 79 |
+
bc = (1 - bcy - bcz, bcy, bcz)
|
| 80 |
+
else:
|
| 81 |
+
continue
|
| 82 |
+
|
| 83 |
+
# here, -0.00001 because of the precision lose
|
| 84 |
+
if bc[0] < -0.00001 or bc[1] < -0.00001 or bc[2] < -0.00001:
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
z = 1 / (bc[0] / a[2] + bc[1] / b[2] + bc[2] / c[2])
|
| 88 |
+
|
| 89 |
+
# Blender 导出来的 uv 数据,跟之前的顶点数据有一样的问题,Y轴是个反的,
|
| 90 |
+
# 所以这里的纹理图片要旋转一下才能 work
|
| 91 |
+
v = (uva[0] * bc[0] / a[2] + uvb[0] * bc[1] / b[2] + uvc[0] * bc[2] / c[2]) * z * width
|
| 92 |
+
u = height - (uva[1] * bc[0] / a[2] + uvb[1] * bc[1] / b[2] + uvc[1] * bc[2] / c[2]) * z * height
|
| 93 |
+
|
| 94 |
+
# https://en.wikipedia.org/wiki/Pairing_function
|
| 95 |
+
idx = ((x + y) * (x + y + 1) + y) / 2
|
| 96 |
+
if zbuffer.get(idx) is None or zbuffer[idx] < z:
|
| 97 |
+
zbuffer[idx] = z
|
| 98 |
+
pixels.append((i, j, k, int(u) - 1, int(v) - 1))
|
| 99 |
+
|
| 100 |
+
faces.append(pixels)
|
| 101 |
+
return faces
|
processor/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (152 Bytes). View file
|
|
|
processor/__pycache__/captions.cpython-310.pyc
ADDED
|
Binary file (4.26 kB). View file
|
|
|
processor/__pycache__/pointcloud.cpython-310.pyc
ADDED
|
Binary file (12.5 kB). View file
|
|
|
processor/__pycache__/prompt.cpython-310.pyc
ADDED
|
Binary file (6.79 kB). View file
|
|
|
processor/__pycache__/prompt_CR.cpython-310.pyc
ADDED
|
Binary file (6.53 kB). View file
|
|
|
processor/__pycache__/prompt_ImageEditbench.cpython-310.pyc
ADDED
|
Binary file (17.2 kB). View file
|
|
|
processor/__pycache__/prompt_T2Ibench.cpython-310.pyc
ADDED
|
Binary file (21.2 kB). View file
|
|
|
processor/__pycache__/prompt_utils.cpython-310.pyc
ADDED
|
Binary file (2.98 kB). View file
|
|
|
processor/__pycache__/segment.cpython-310.pyc
ADDED
|
Binary file (5.01 kB). View file
|
|
|
processor/wrappers/__init__.py
ADDED
|
File without changes
|
processor/wrappers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (161 Bytes). View file
|
|
|
processor/wrappers/__pycache__/grounding_dino.cpython-310.pyc
ADDED
|
Binary file (896 Bytes). View file
|
|
|
processor/wrappers/__pycache__/metric3d_v2.cpython-310.pyc
ADDED
|
Binary file (6.91 kB). View file
|
|
|
processor/wrappers/__pycache__/perspective_fields.cpython-310.pyc
ADDED
|
Binary file (3.03 kB). View file
|
|
|
processor/wrappers/__pycache__/ram.cpython-310.pyc
ADDED
|
Binary file (2.26 kB). View file
|
|
|
processor/wrappers/__pycache__/sam.cpython-310.pyc
ADDED
|
Binary file (9.01 kB). View file
|
|
|
processor/wrappers/grounding_dino.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
GSA_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything"
|
| 5 |
+
sys.path.append(GSA_PATH)
|
| 6 |
+
|
| 7 |
+
from GroundingDINO.groundingdino.util.inference import Model
|
| 8 |
+
|
| 9 |
+
# GroundingDINO config and checkpoint
|
| 10 |
+
GROUNDING_DINO_CONFIG_PATH = os.path.abspath(
|
| 11 |
+
os.path.join(GSA_PATH, "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py")
|
| 12 |
+
)
|
| 13 |
+
# GROUNDING_DINO_CHECKPOINT_PATH = os.path.abspath(os.path.join(GSA_PATH, "./groundingdino_swint_ogc.pth"))
|
| 14 |
+
GROUNDING_DINO_CHECKPOINT_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything/groundingdino_swint_ogc.pth"
|
| 15 |
+
|
| 16 |
+
def get_grounding_dino_model(cfg, device):
|
| 17 |
+
grounding_dino_model = Model(
|
| 18 |
+
model_config_path=GROUNDING_DINO_CONFIG_PATH,
|
| 19 |
+
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH,
|
| 20 |
+
device=device,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
return grounding_dino_model
|
processor/wrappers/metric3d_v2.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import matplotlib
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import trimesh
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_depth_model(device):
|
| 11 |
+
depth_model = torch.hub.load("osdsynth/external/Metric3D", "metric3d_vit_giant2", pretrain=True, source='local')
|
| 12 |
+
return depth_model.to(device)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def inference_depth(rgb_origin, intrinsic, depth_model):
|
| 16 |
+
# Code from # https://github.com/YvanYin/Metric3D/blob/main/hubconf.py, assume rgb_origin is in RGB
|
| 17 |
+
intrinsic = [intrinsic[0, 0], intrinsic[1, 1], intrinsic[0, 2], intrinsic[1, 2]]
|
| 18 |
+
|
| 19 |
+
#### ajust input size to fit pretrained model
|
| 20 |
+
# keep ratio resize
|
| 21 |
+
input_size = (616, 1064) # for vit model
|
| 22 |
+
# input_size = (544, 1216) # for convnext model
|
| 23 |
+
h, w = rgb_origin.shape[:2]
|
| 24 |
+
scale = min(input_size[0] / h, input_size[1] / w)
|
| 25 |
+
rgb = cv2.resize(rgb_origin, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_LINEAR)
|
| 26 |
+
# remember to scale intrinsic, hold depth
|
| 27 |
+
intrinsic = [intrinsic[0] * scale, intrinsic[1] * scale, intrinsic[2] * scale, intrinsic[3] * scale]
|
| 28 |
+
|
| 29 |
+
# padding to input_size
|
| 30 |
+
padding = [123.675, 116.28, 103.53]
|
| 31 |
+
h, w = rgb.shape[:2]
|
| 32 |
+
pad_h = input_size[0] - h
|
| 33 |
+
pad_w = input_size[1] - w
|
| 34 |
+
pad_h_half = pad_h // 2
|
| 35 |
+
pad_w_half = pad_w // 2
|
| 36 |
+
rgb = cv2.copyMakeBorder(
|
| 37 |
+
rgb, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=padding
|
| 38 |
+
)
|
| 39 |
+
pad_info = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
|
| 40 |
+
|
| 41 |
+
#### normalize
|
| 42 |
+
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None]
|
| 43 |
+
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None]
|
| 44 |
+
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float()
|
| 45 |
+
rgb = torch.div((rgb - mean), std)
|
| 46 |
+
rgb = rgb[None, :, :, :].cuda()
|
| 47 |
+
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
pred_depth, confidence, output_dict = depth_model.inference({"input": rgb})
|
| 50 |
+
|
| 51 |
+
# un pad
|
| 52 |
+
pred_depth = pred_depth.squeeze()
|
| 53 |
+
pred_depth = pred_depth[
|
| 54 |
+
pad_info[0] : pred_depth.shape[0] - pad_info[1], pad_info[2] : pred_depth.shape[1] - pad_info[3]
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
# upsample to original size
|
| 58 |
+
pred_depth = torch.nn.functional.interpolate(
|
| 59 |
+
pred_depth[None, None, :, :], rgb_origin.shape[:2], mode="bilinear"
|
| 60 |
+
).squeeze()
|
| 61 |
+
|
| 62 |
+
#### de-canonical transform
|
| 63 |
+
canonical_to_real_scale = intrinsic[0] / 1000.0 # 1000.0 is the focal length of canonical camera
|
| 64 |
+
pred_depth = pred_depth * canonical_to_real_scale # now the depth is metric
|
| 65 |
+
pred_depth = torch.clamp(pred_depth, 0, 300)
|
| 66 |
+
return pred_depth.detach().cpu().numpy()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def depth_to_mesh(points, depth, image_rgb):
|
| 70 |
+
triangles = create_triangles(image_rgb.shape[0], image_rgb.shape[1], mask=~depth_edges_mask(depth))
|
| 71 |
+
mesh = trimesh.Trimesh(
|
| 72 |
+
vertices=points.reshape(-1, 3),
|
| 73 |
+
faces=triangles,
|
| 74 |
+
vertex_colors=image_rgb.reshape(-1, 3),
|
| 75 |
+
)
|
| 76 |
+
# mesh_t.export(save_pcd_dir+f'/{filename}_t_mesh.obj')
|
| 77 |
+
return mesh
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def depth_edges_mask(depth):
|
| 81 |
+
"""Returns a mask of edges in the depth map.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
depth: 2D numpy array of shape (H, W) with dtype float32.
|
| 85 |
+
Returns:
|
| 86 |
+
mask: 2D numpy array of shape (H, W) with dtype bool.
|
| 87 |
+
"""
|
| 88 |
+
# Compute the x and y gradients of the depth map.
|
| 89 |
+
depth_dx, depth_dy = np.gradient(depth)
|
| 90 |
+
# Compute the gradient magnitude.
|
| 91 |
+
depth_grad = np.sqrt(depth_dx**2 + depth_dy**2)
|
| 92 |
+
# Compute the edge mask.
|
| 93 |
+
mask = depth_grad > 0.05
|
| 94 |
+
return mask
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def create_triangles(h, w, mask=None):
|
| 98 |
+
"""
|
| 99 |
+
Reference: https://github.com/google-research/google-research/blob/e96197de06613f1b027d20328e06d69829fa5a89/infinite_nature/render_utils.py#L68
|
| 100 |
+
Creates mesh triangle indices from a given pixel grid size.
|
| 101 |
+
This function is not and need not be differentiable as triangle indices are
|
| 102 |
+
fixed.
|
| 103 |
+
Args:
|
| 104 |
+
h: (int) denoting the height of the image.
|
| 105 |
+
w: (int) denoting the width of the image.
|
| 106 |
+
Returns:
|
| 107 |
+
triangles: 2D numpy array of indices (int) with shape (2(W-1)(H-1) x 3)
|
| 108 |
+
"""
|
| 109 |
+
x, y = np.meshgrid(range(w - 1), range(h - 1))
|
| 110 |
+
tl = y * w + x
|
| 111 |
+
tr = y * w + x + 1
|
| 112 |
+
bl = (y + 1) * w + x
|
| 113 |
+
br = (y + 1) * w + x + 1
|
| 114 |
+
triangles = np.array([tl, bl, tr, br, tr, bl])
|
| 115 |
+
triangles = np.transpose(triangles, (1, 2, 0)).reshape(((w - 1) * (h - 1) * 2, 3))
|
| 116 |
+
if mask is not None:
|
| 117 |
+
mask = mask.reshape(-1)
|
| 118 |
+
triangles = triangles[mask[triangles].all(1)]
|
| 119 |
+
return triangles
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def get_intrinsics(H, W, fov):
|
| 123 |
+
"""Intrinsics for a pinhole camera model.
|
| 124 |
+
|
| 125 |
+
Assume fov of 55 degrees and central principal point.
|
| 126 |
+
"""
|
| 127 |
+
# fy = 0.5 * H / np.tan(0.5 * fov * np.pi / 180.0)
|
| 128 |
+
# fx = 0.5 * W / np.tan(0.5 * fov * np.pi / 180.0)
|
| 129 |
+
|
| 130 |
+
focal = H / 2 / np.tan(np.radians(fov) / 2)
|
| 131 |
+
|
| 132 |
+
cx = 0.5 * W
|
| 133 |
+
cy = 0.5 * H
|
| 134 |
+
return np.array([[focal, 0, cx], [0, focal, cy], [0, 0, 1]])
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def depth_to_points(depth, R=None, t=None, fov=None, intrinsic=None):
|
| 138 |
+
if intrinsic is None:
|
| 139 |
+
K = get_intrinsics(depth.shape[1], depth.shape[2], fov)
|
| 140 |
+
else:
|
| 141 |
+
K = intrinsic
|
| 142 |
+
Kinv = np.linalg.inv(K)
|
| 143 |
+
if R is None:
|
| 144 |
+
R = np.eye(3)
|
| 145 |
+
if t is None:
|
| 146 |
+
t = np.zeros(3)
|
| 147 |
+
|
| 148 |
+
# M converts from your coordinate to PyTorch3D's coordinate system
|
| 149 |
+
M = np.eye(3)
|
| 150 |
+
# M[0, 0] = -1.0
|
| 151 |
+
# M[1, 1] = -1.0
|
| 152 |
+
|
| 153 |
+
height, width = depth.shape[1:3]
|
| 154 |
+
|
| 155 |
+
x = np.arange(width)
|
| 156 |
+
y = np.arange(height)
|
| 157 |
+
coord = np.stack(np.meshgrid(x, y), -1)
|
| 158 |
+
coord = np.concatenate((coord, np.ones_like(coord)[:, :, [0]]), -1) # z=1
|
| 159 |
+
coord = coord.astype(np.float32)
|
| 160 |
+
# coord = torch.as_tensor(coord, dtype=torch.float32, device=device)
|
| 161 |
+
coord = coord[None] # bs, h, w, 3
|
| 162 |
+
|
| 163 |
+
D = depth[:, :, :, None, None]
|
| 164 |
+
# print(D.shape, Kinv[None, None, None, ...].shape, coord[:, :, :, :, None].shape )
|
| 165 |
+
pts3D_1 = D * Kinv[None, None, None, ...] @ coord[:, :, :, :, None]
|
| 166 |
+
# pts3D_1 live in your coordinate system. Convert them to Py3D's
|
| 167 |
+
pts3D_1 = M[None, None, None, ...] @ pts3D_1
|
| 168 |
+
# from reference to targe tviewpoint
|
| 169 |
+
pts3D_2 = R[None, None, None, ...] @ pts3D_1 + t[None, None, None, :, None]
|
| 170 |
+
# pts3D_2 = pts3D_1
|
| 171 |
+
# depth_2 = pts3D_2[:, :, :, 2, :] # b,1,h,w
|
| 172 |
+
|
| 173 |
+
# G converts from your coordinate to PyTorch3D's coordinate system
|
| 174 |
+
G = np.eye(3)
|
| 175 |
+
G[0, 0] = -1.0
|
| 176 |
+
G[1, 1] = -1.0
|
| 177 |
+
|
| 178 |
+
return pts3D_2[:, :, :, :3, 0][0] @ G.T
|
| 179 |
+
|
| 180 |
+
# return (G[None, None, None, ...] @ pts3D_2)[:, :, :, :3, 0][0]
|
| 181 |
+
|
| 182 |
+
# return pts3D_2[:, :, :, :3, 0][0]
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def colorize_depth(
|
| 186 |
+
value,
|
| 187 |
+
vmin=None,
|
| 188 |
+
vmax=None,
|
| 189 |
+
cmap="inferno_r",
|
| 190 |
+
invalid_val=-99,
|
| 191 |
+
invalid_mask=None,
|
| 192 |
+
background_color=(128, 128, 128, 255),
|
| 193 |
+
gamma_corrected=False,
|
| 194 |
+
value_transform=None,
|
| 195 |
+
):
|
| 196 |
+
"""Converts a depth map to a color image.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
|
| 200 |
+
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
|
| 201 |
+
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
|
| 202 |
+
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
|
| 203 |
+
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
|
| 204 |
+
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
|
| 205 |
+
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
|
| 206 |
+
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
|
| 207 |
+
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
|
| 208 |
+
|
| 209 |
+
Returns:
|
| 210 |
+
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
|
| 211 |
+
"""
|
| 212 |
+
if isinstance(value, torch.Tensor):
|
| 213 |
+
value = value.detach().cpu().numpy()
|
| 214 |
+
|
| 215 |
+
value = value.squeeze()
|
| 216 |
+
if invalid_mask is None:
|
| 217 |
+
invalid_mask = value == invalid_val
|
| 218 |
+
mask = np.logical_not(invalid_mask)
|
| 219 |
+
|
| 220 |
+
# normalize
|
| 221 |
+
vmin = np.percentile(value[mask], 2) if vmin is None else vmin
|
| 222 |
+
vmax = np.percentile(value[mask], 85) if vmax is None else vmax
|
| 223 |
+
if vmin != vmax:
|
| 224 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
| 225 |
+
else:
|
| 226 |
+
# Avoid 0-division
|
| 227 |
+
value = value * 0.0
|
| 228 |
+
|
| 229 |
+
# squeeze last dim if it exists
|
| 230 |
+
# grey out the invalid values
|
| 231 |
+
|
| 232 |
+
value[invalid_mask] = np.nan
|
| 233 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
| 234 |
+
if value_transform:
|
| 235 |
+
value = value_transform(value)
|
| 236 |
+
# value = value / value.max()
|
| 237 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
| 238 |
+
|
| 239 |
+
# img = value[:, :, :]
|
| 240 |
+
img = value[...]
|
| 241 |
+
img[invalid_mask] = background_color
|
| 242 |
+
|
| 243 |
+
# return img.transpose((2, 0, 1))
|
| 244 |
+
if gamma_corrected:
|
| 245 |
+
# gamma correction
|
| 246 |
+
img = img / 255
|
| 247 |
+
img = np.power(img, 2.2)
|
| 248 |
+
img = img * 255
|
| 249 |
+
img = img.astype(np.uint8)
|
| 250 |
+
return img
|
processor/wrappers/perspective_fields.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
PPF_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields"
|
| 5 |
+
sys.path.append(PPF_PATH) # This is needed for the following imports in this file
|
| 6 |
+
|
| 7 |
+
PPF_PATH_ABS = os.path.abspath(PPF_PATH)
|
| 8 |
+
|
| 9 |
+
import copy
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
import cv2
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from perspective2d import PerspectiveFields
|
| 16 |
+
from perspective2d.utils import draw_from_r_p_f_cx_cy, draw_perspective_fields
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def create_rotation_matrix(
|
| 20 |
+
roll: float,
|
| 21 |
+
pitch: float,
|
| 22 |
+
yaw: float,
|
| 23 |
+
degrees: bool = False,
|
| 24 |
+
) -> np.ndarray:
|
| 25 |
+
r"""Create rotation matrix from extrinsic parameters
|
| 26 |
+
Args:
|
| 27 |
+
roll (float): camera rotation about camera frame z-axis
|
| 28 |
+
pitch (float): camera rotation about camera frame x-axis
|
| 29 |
+
yaw (float): camera rotation about camera frame y-axis
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
np.ndarray: rotation R_z @ R_x @ R_y
|
| 33 |
+
"""
|
| 34 |
+
if degrees:
|
| 35 |
+
roll = np.radians(roll)
|
| 36 |
+
pitch = np.radians(pitch)
|
| 37 |
+
yaw = np.radians(yaw)
|
| 38 |
+
# calculate rotation about the x-axis
|
| 39 |
+
R_x = np.array(
|
| 40 |
+
[
|
| 41 |
+
[1.0, 0.0, 0.0],
|
| 42 |
+
[0.0, np.cos(pitch), np.sin(pitch)],
|
| 43 |
+
[0.0, -np.sin(pitch), np.cos(pitch)],
|
| 44 |
+
]
|
| 45 |
+
)
|
| 46 |
+
# calculate rotation about the y-axis
|
| 47 |
+
R_y = np.array(
|
| 48 |
+
[
|
| 49 |
+
[np.cos(yaw), 0.0, -np.sin(yaw)],
|
| 50 |
+
[0.0, 1.0, 0.0],
|
| 51 |
+
[np.sin(yaw), 0.0, np.cos(yaw)],
|
| 52 |
+
]
|
| 53 |
+
)
|
| 54 |
+
# calculate rotation about the z-axis
|
| 55 |
+
R_z = np.array(
|
| 56 |
+
[
|
| 57 |
+
[np.cos(roll), np.sin(roll), 0.0],
|
| 58 |
+
[-np.sin(roll), np.cos(roll), 0.0],
|
| 59 |
+
[0.0, 0.0, 1.0],
|
| 60 |
+
]
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
return R_z @ R_x @ R_y
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None):
|
| 67 |
+
height = img.shape[0]
|
| 68 |
+
width = img.shape[1]
|
| 69 |
+
if target_height is None:
|
| 70 |
+
factor = target_width / width
|
| 71 |
+
elif target_width is None:
|
| 72 |
+
factor = target_height / height
|
| 73 |
+
else:
|
| 74 |
+
factor = max(target_width / width, target_height / height)
|
| 75 |
+
if factor == target_width / width:
|
| 76 |
+
target_height = int(height * factor)
|
| 77 |
+
else:
|
| 78 |
+
target_width = int(width * factor)
|
| 79 |
+
|
| 80 |
+
img = cv2.resize(img, (target_width, target_height))
|
| 81 |
+
for key in field:
|
| 82 |
+
if key not in ["up", "lati"]:
|
| 83 |
+
continue
|
| 84 |
+
tmp = field[key].numpy()
|
| 85 |
+
transpose = len(tmp.shape) == 3
|
| 86 |
+
if transpose:
|
| 87 |
+
tmp = tmp.transpose(1, 2, 0)
|
| 88 |
+
tmp = cv2.resize(tmp, (target_width, target_height))
|
| 89 |
+
if transpose:
|
| 90 |
+
tmp = tmp.transpose(2, 0, 1)
|
| 91 |
+
field[key] = torch.tensor(tmp)
|
| 92 |
+
return img, field
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def run_perspective_fields_model(model, image_bgr):
|
| 96 |
+
|
| 97 |
+
pred = model.inference(img_bgr=image_bgr)
|
| 98 |
+
field = {
|
| 99 |
+
"up": pred["pred_gravity_original"].cpu().detach(),
|
| 100 |
+
"lati": pred["pred_latitude_original"].cpu().detach(),
|
| 101 |
+
}
|
| 102 |
+
img, field = resize_fix_aspect_ratio(image_bgr[..., ::-1], field, 640)
|
| 103 |
+
|
| 104 |
+
# Draw perspective field from ParamNet predictions
|
| 105 |
+
param_vis = draw_from_r_p_f_cx_cy(
|
| 106 |
+
img,
|
| 107 |
+
pred["pred_roll"].item(),
|
| 108 |
+
pred["pred_pitch"].item(),
|
| 109 |
+
pred["pred_general_vfov"].item(),
|
| 110 |
+
pred["pred_rel_cx"].item(),
|
| 111 |
+
pred["pred_rel_cy"].item(),
|
| 112 |
+
"deg",
|
| 113 |
+
up_color=(0, 1, 0),
|
| 114 |
+
).astype(np.uint8)
|
| 115 |
+
param_vis = cv2.cvtColor(param_vis, cv2.COLOR_RGB2BGR)
|
| 116 |
+
|
| 117 |
+
param = {
|
| 118 |
+
"roll": pred["pred_roll"].cpu().item(),
|
| 119 |
+
"pitch": pred["pred_pitch"].cpu().item(),
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
return param_vis, param
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def get_perspective_fields_model(cfg, device):
|
| 126 |
+
MODEL_ID = "Paramnet-360Cities-edina-centered"
|
| 127 |
+
# MODEL_ID = 'Paramnet-360Cities-edina-uncentered'
|
| 128 |
+
# MODEL_ID = 'PersNet_Paramnet-GSV-centered'
|
| 129 |
+
# MODEL_ID = 'PersNet_Paramnet-GSV-uncentered'
|
| 130 |
+
# MODEL_ID = 'PersNet-360Cities'
|
| 131 |
+
# feel free to test with uncentered or centered depending on your data
|
| 132 |
+
|
| 133 |
+
PerspectiveFields.versions()
|
| 134 |
+
pf_model = PerspectiveFields(MODEL_ID).eval().cuda()
|
| 135 |
+
return pf_model
|
processor/wrappers/ram.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
sys.path.append("/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything/recognize-anything")
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import torchvision.transforms as TS
|
| 7 |
+
from ram import inference_ram
|
| 8 |
+
from ram.models import ram
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def run_tagging_model(cfg, raw_image, tagging_model):
|
| 12 |
+
res = inference_ram(raw_image, tagging_model)
|
| 13 |
+
caption = "NA"
|
| 14 |
+
tags = res[0].strip(" ").replace(" ", " ").replace(" |", ",")
|
| 15 |
+
print("Tags: ", tags)
|
| 16 |
+
|
| 17 |
+
# Currently ", " is better for detecting single tags
|
| 18 |
+
# while ". " is a little worse in some case
|
| 19 |
+
text_prompt = res[0].replace(" |", ",")
|
| 20 |
+
|
| 21 |
+
if cfg.rm_bg_classes:
|
| 22 |
+
cfg.remove_classes += cfg.bg_classes
|
| 23 |
+
|
| 24 |
+
classes = process_tag_classes(
|
| 25 |
+
text_prompt,
|
| 26 |
+
add_classes=cfg.add_classes,
|
| 27 |
+
remove_classes=cfg.remove_classes,
|
| 28 |
+
)
|
| 29 |
+
print("Tags (Final): ", classes)
|
| 30 |
+
return classes
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def process_tag_classes(text_prompt: str, add_classes: List[str] = [], remove_classes: List[str] = []) -> list[str]:
|
| 34 |
+
"""Convert a text prompt from Tag2Text to a list of classes."""
|
| 35 |
+
classes = text_prompt.split(",")
|
| 36 |
+
classes = [obj_class.strip() for obj_class in classes]
|
| 37 |
+
classes = [obj_class for obj_class in classes if obj_class != ""]
|
| 38 |
+
|
| 39 |
+
for c in add_classes:
|
| 40 |
+
if c not in classes:
|
| 41 |
+
classes.append(c)
|
| 42 |
+
|
| 43 |
+
for c in remove_classes:
|
| 44 |
+
classes = [obj_class for obj_class in classes if c not in obj_class.lower()]
|
| 45 |
+
|
| 46 |
+
return classes
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_tagging_model(cfg, device):
|
| 50 |
+
RAM_CHECKPOINT_PATH = os.path.abspath(
|
| 51 |
+
"osdsynth/external/Grounded-Segment-Anything/recognize-anything/ram_swin_large_14m.pth"
|
| 52 |
+
)
|
| 53 |
+
tagging_model = ram(pretrained=RAM_CHECKPOINT_PATH, image_size=384, vit="swin_l")
|
| 54 |
+
|
| 55 |
+
tagging_model = tagging_model.eval().to(device)
|
| 56 |
+
tagging_transform = TS.Compose(
|
| 57 |
+
[
|
| 58 |
+
TS.Resize((384, 384)),
|
| 59 |
+
TS.ToTensor(),
|
| 60 |
+
TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 61 |
+
]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return tagging_transform, tagging_model
|
processor/wrappers/sam.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
| 4 |
+
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
GSA_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything"
|
| 11 |
+
sys.path.append(GSA_PATH)
|
| 12 |
+
|
| 13 |
+
from segment_anything.segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_hq_model_registry, sam_model_registry
|
| 14 |
+
|
| 15 |
+
# Segment-Anything checkpoint
|
| 16 |
+
SAM_ENCODER_VERSION = "vit_h"
|
| 17 |
+
SAM_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_vit_h_4b8939.pth")
|
| 18 |
+
|
| 19 |
+
# Segment-Anything checkpoint
|
| 20 |
+
SAM_HQ_ENCODER_VERSION = "vit_h"
|
| 21 |
+
SAM_HQ_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_hq_vit_h.pth")
|
| 22 |
+
|
| 23 |
+
# Prompting SAM with detected boxes
|
| 24 |
+
def get_sam_segmentation_from_xyxy(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
|
| 25 |
+
sam_predictor.set_image(image)
|
| 26 |
+
result_masks = []
|
| 27 |
+
for box in xyxy:
|
| 28 |
+
masks, scores, logits = sam_predictor.predict(box=box, multimask_output=True)
|
| 29 |
+
index = np.argmax(scores)
|
| 30 |
+
result_masks.append(masks[index])
|
| 31 |
+
return np.array(result_masks)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_sam_predictor(variant: str, device: str | int) -> SamPredictor:
|
| 35 |
+
if variant == "sam":
|
| 36 |
+
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
|
| 37 |
+
sam.to(device)
|
| 38 |
+
sam_predictor = SamPredictor(sam)
|
| 39 |
+
return sam_predictor
|
| 40 |
+
|
| 41 |
+
if variant == "sam-hq":
|
| 42 |
+
print("Using SAM-HQ")
|
| 43 |
+
sam = sam_hq_model_registry[SAM_HQ_ENCODER_VERSION](checkpoint=SAM_HQ_CHECKPOINT_PATH)
|
| 44 |
+
sam.to(device)
|
| 45 |
+
sam_predictor = SamPredictor(sam)
|
| 46 |
+
return sam_predictor
|
| 47 |
+
|
| 48 |
+
else:
|
| 49 |
+
raise NotImplementedError
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_sam_mask_generator(variant: str, device: str | int) -> SamAutomaticMaskGenerator:
|
| 53 |
+
if variant == "sam":
|
| 54 |
+
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
|
| 55 |
+
sam.to(device)
|
| 56 |
+
mask_generator = SamAutomaticMaskGenerator(
|
| 57 |
+
model=sam,
|
| 58 |
+
points_per_side=12,
|
| 59 |
+
points_per_batch=144,
|
| 60 |
+
pred_iou_thresh=0.88,
|
| 61 |
+
stability_score_thresh=0.95,
|
| 62 |
+
crop_n_layers=0,
|
| 63 |
+
min_mask_region_area=100,
|
| 64 |
+
)
|
| 65 |
+
return mask_generator
|
| 66 |
+
elif variant == "fastsam":
|
| 67 |
+
raise NotImplementedError
|
| 68 |
+
else:
|
| 69 |
+
raise NotImplementedError
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def convert_detections_to_list(detections_dict, classes):
|
| 73 |
+
detection_list = []
|
| 74 |
+
for i in range(len(detections_dict["xyxy"])):
|
| 75 |
+
detection = {
|
| 76 |
+
"class_name": classes[detections_dict["class_id"][i]], # Lookup class name using class_id
|
| 77 |
+
"xyxy": detections_dict["xyxy"][i], # Assuming detections.xyxy is a numpy array
|
| 78 |
+
"confidence": detections_dict["confidence"][i].item(), # Convert numpy scalar to Python scalar
|
| 79 |
+
"class_id": detections_dict["class_id"][i].item(),
|
| 80 |
+
"box_area": detections_dict["box_area"][i].item(),
|
| 81 |
+
"mask": detections_dict["mask"][i],
|
| 82 |
+
"subtracted_mask": detections_dict["subtracted_mask"][i],
|
| 83 |
+
"rle": detections_dict["rle"][i],
|
| 84 |
+
"area": detections_dict["area"][i],
|
| 85 |
+
}
|
| 86 |
+
detection_list.append(detection)
|
| 87 |
+
return detection_list
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def convert_detections_to_dict(detections, classes, image_crops=None, image_feats=None, text_feats=None):
|
| 91 |
+
# Convert the detections to a dict. The elements are in np.array
|
| 92 |
+
results = {
|
| 93 |
+
"xyxy": detections.xyxy,
|
| 94 |
+
"confidence": detections.confidence,
|
| 95 |
+
"class_id": detections.class_id,
|
| 96 |
+
"box_area": detections.box_area,
|
| 97 |
+
"mask": detections.mask,
|
| 98 |
+
"area": detections.area,
|
| 99 |
+
"classes": classes,
|
| 100 |
+
}
|
| 101 |
+
return results
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def mask_subtract_contained(xyxy: np.ndarray, mask: np.ndarray, th1=0.8, th2=0.7):
|
| 105 |
+
"""Compute the containing relationship between all pair of bounding boxes. For each mask, subtract the mask of
|
| 106 |
+
bounding boxes that are contained by it.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
xyxy: (N, 4), in (x1, y1, x2, y2) format
|
| 110 |
+
mask: (N, H, W), binary mask
|
| 111 |
+
th1: float, threshold for computing intersection over box1
|
| 112 |
+
th2: float, threshold for computing intersection over box2
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
mask_sub: (N, H, W), binary mask
|
| 116 |
+
"""
|
| 117 |
+
N = xyxy.shape[0] # number of boxes
|
| 118 |
+
|
| 119 |
+
# Get areas of each xyxy
|
| 120 |
+
areas = (xyxy[:, 2] - xyxy[:, 0]) * (xyxy[:, 3] - xyxy[:, 1]) # (N,)
|
| 121 |
+
|
| 122 |
+
# Compute intersection boxes
|
| 123 |
+
lt = np.maximum(xyxy[:, None, :2], xyxy[None, :, :2]) # left-top points (N, N, 2)
|
| 124 |
+
rb = np.minimum(xyxy[:, None, 2:], xyxy[None, :, 2:]) # right-bottom points (N, N, 2)
|
| 125 |
+
|
| 126 |
+
inter = (rb - lt).clip(min=0) # intersection sizes (dx, dy), if no overlap, clamp to zero (N, N, 2)
|
| 127 |
+
|
| 128 |
+
# Compute areas of intersection boxes
|
| 129 |
+
inter_areas = inter[:, :, 0] * inter[:, :, 1] # (N, N)
|
| 130 |
+
|
| 131 |
+
inter_over_box1 = inter_areas / areas[:, None] # (N, N)
|
| 132 |
+
# inter_over_box2 = inter_areas / areas[None, :] # (N, N)
|
| 133 |
+
inter_over_box2 = inter_over_box1.T # (N, N)
|
| 134 |
+
|
| 135 |
+
# if the intersection area is smaller than th2 of the area of box1,
|
| 136 |
+
# and the intersection area is larger than th1 of the area of box2,
|
| 137 |
+
# then box2 is considered contained by box1
|
| 138 |
+
contained = (inter_over_box1 < th2) & (inter_over_box2 > th1) # (N, N)
|
| 139 |
+
contained_idx = contained.nonzero() # (num_contained, 2)
|
| 140 |
+
|
| 141 |
+
mask_sub = mask.copy() # (N, H, W)
|
| 142 |
+
# mask_sub[contained_idx[0]] = mask_sub[contained_idx[0]] & (~mask_sub[contained_idx[1]])
|
| 143 |
+
for i in range(len(contained_idx[0])):
|
| 144 |
+
mask_sub[contained_idx[0][i]] = mask_sub[contained_idx[0][i]] & (~mask_sub[contained_idx[1][i]])
|
| 145 |
+
|
| 146 |
+
return mask_sub, contained
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def filter_detections(cfg, detections_dict: dict, image: np.ndarray):
|
| 150 |
+
# If no detection at all
|
| 151 |
+
if len(detections_dict["xyxy"]) == 0:
|
| 152 |
+
return detections_dict
|
| 153 |
+
|
| 154 |
+
# Filter out the objects based on various criteria
|
| 155 |
+
idx_to_keep = []
|
| 156 |
+
for obj_idx in range(len(detections_dict["xyxy"])):
|
| 157 |
+
class_name = detections_dict["classes"][detections_dict["class_id"][obj_idx]]
|
| 158 |
+
|
| 159 |
+
# Skip masks that are too small
|
| 160 |
+
if detections_dict["mask"][obj_idx].sum() < max(cfg.mask_area_threshold, 10):
|
| 161 |
+
print(f"Skipping {class_name} mask with too few points")
|
| 162 |
+
continue
|
| 163 |
+
|
| 164 |
+
# Skip the BG classes
|
| 165 |
+
if cfg.skip_bg and class_name in cfg.bg_classes:
|
| 166 |
+
print(f"Skipping {class_name} as it is a background class")
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
# Skip the non-background boxes that are too large
|
| 170 |
+
if class_name not in cfg.bg_classes:
|
| 171 |
+
x1, y1, x2, y2 = detections_dict["xyxy"][obj_idx]
|
| 172 |
+
bbox_area = (x2 - x1) * (y2 - y1)
|
| 173 |
+
image_area = image.shape[0] * image.shape[1]
|
| 174 |
+
if bbox_area > cfg.max_bbox_area_ratio * image_area:
|
| 175 |
+
print(f"Skipping {class_name} with area {bbox_area} > {cfg.max_bbox_area_ratio} * {image_area}")
|
| 176 |
+
continue
|
| 177 |
+
|
| 178 |
+
# Skip masks with low confidence
|
| 179 |
+
if detections_dict["confidence"][obj_idx] < cfg.mask_conf_threshold:
|
| 180 |
+
print(
|
| 181 |
+
f"Skipping {class_name} with confidence {detections_dict['confidence'][obj_idx]} < {cfg.mask_conf_threshold}"
|
| 182 |
+
)
|
| 183 |
+
continue
|
| 184 |
+
|
| 185 |
+
idx_to_keep.append(obj_idx)
|
| 186 |
+
|
| 187 |
+
for k in detections_dict.keys():
|
| 188 |
+
if isinstance(detections_dict[k], str) or k == "classes": # Captions
|
| 189 |
+
continue
|
| 190 |
+
elif isinstance(detections_dict[k], list):
|
| 191 |
+
detections_dict[k] = [detections_dict[k][i] for i in idx_to_keep]
|
| 192 |
+
elif isinstance(detections_dict[k], np.ndarray):
|
| 193 |
+
detections_dict[k] = detections_dict[k][idx_to_keep]
|
| 194 |
+
else:
|
| 195 |
+
raise NotImplementedError(f"Unhandled type {type(detections_dict[k])}")
|
| 196 |
+
|
| 197 |
+
return detections_dict
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def sort_detections_by_area(detections_dict):
|
| 201 |
+
# Sort the detections by area, use negative to sort from large to small
|
| 202 |
+
sorted_indices = np.argsort(-detections_dict["area"])
|
| 203 |
+
for key in detections_dict.keys():
|
| 204 |
+
if isinstance(detections_dict[key], np.ndarray): # Check to ensure it's an array
|
| 205 |
+
detections_dict[key] = detections_dict[key][sorted_indices]
|
| 206 |
+
return detections_dict
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def post_process_mask(detections_dict):
|
| 210 |
+
sam_masks = torch.tensor(detections_dict["subtracted_mask"])
|
| 211 |
+
uncompressed_mask_rles = mask_to_rle_pytorch(sam_masks)
|
| 212 |
+
rle_masks_list = [coco_encode_rle(uncompressed_mask_rles[i]) for i in range(len(uncompressed_mask_rles))]
|
| 213 |
+
detections_dict["rle"] = rle_masks_list
|
| 214 |
+
return detections_dict
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def crop_image_and_mask(image: Image, mask: np.ndarray, x1: int, y1: int, x2: int, y2: int, padding: int = 0):
|
| 218 |
+
"""Crop the image and mask with some padding.
|
| 219 |
+
|
| 220 |
+
I made a single function that crops both the image and the mask at the same time because I was getting shape
|
| 221 |
+
mismatches when I cropped them separately.This way I can check that they are the same shape.
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
image = np.array(image)
|
| 225 |
+
# Verify initial dimensions
|
| 226 |
+
if image.shape[:2] != mask.shape:
|
| 227 |
+
print(f"Initial shape mismatch: Image shape {image.shape} != Mask shape {mask.shape}")
|
| 228 |
+
return None, None
|
| 229 |
+
|
| 230 |
+
# Define the cropping coordinates
|
| 231 |
+
x1 = max(0, x1 - padding)
|
| 232 |
+
y1 = max(0, y1 - padding)
|
| 233 |
+
x2 = min(image.shape[1], x2 + padding)
|
| 234 |
+
y2 = min(image.shape[0], y2 + padding)
|
| 235 |
+
# round the coordinates to integers
|
| 236 |
+
x1, y1, x2, y2 = round(x1), round(y1), round(x2), round(y2)
|
| 237 |
+
|
| 238 |
+
# Crop the image and the mask
|
| 239 |
+
image_crop = image[y1:y2, x1:x2]
|
| 240 |
+
mask_crop = mask[y1:y2, x1:x2]
|
| 241 |
+
|
| 242 |
+
# Verify cropped dimensions
|
| 243 |
+
if image_crop.shape[:2] != mask_crop.shape:
|
| 244 |
+
print(
|
| 245 |
+
"Cropped shape mismatch: Image crop shape {} != Mask crop shape {}".format(
|
| 246 |
+
image_crop.shape, mask_crop.shape
|
| 247 |
+
)
|
| 248 |
+
)
|
| 249 |
+
return None, None
|
| 250 |
+
|
| 251 |
+
# convert the image back to a pil image
|
| 252 |
+
image_crop = Image.fromarray(image_crop)
|
| 253 |
+
|
| 254 |
+
return image_crop, mask_crop
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def crop_detections_with_xyxy(cfg, image, detections_list):
|
| 258 |
+
for idx, detection in enumerate(detections_list):
|
| 259 |
+
x1, y1, x2, y2 = detection["xyxy"]
|
| 260 |
+
image_crop, mask_crop = crop_image_and_mask(image, detection["mask"], x1, y1, x2, y2, padding=10)
|
| 261 |
+
if cfg.masking_option == "blackout":
|
| 262 |
+
image_crop_modified = blackout_nonmasked_area(image_crop, mask_crop)
|
| 263 |
+
elif cfg.masking_option == "red_outline":
|
| 264 |
+
image_crop_modified = draw_red_outline(image_crop, mask_crop)
|
| 265 |
+
else:
|
| 266 |
+
image_crop_modified = image_crop # No modification
|
| 267 |
+
detections_list[idx]["image_crop"] = image_crop
|
| 268 |
+
detections_list[idx]["mask_crop"] = mask_crop
|
| 269 |
+
detections_list[idx]["image_crop_modified"] = image_crop_modified
|
| 270 |
+
return detections_list
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
| 274 |
+
"""
|
| 275 |
+
Encodes masks to an uncompressed RLE, in the format expected by
|
| 276 |
+
pycoco tools.
|
| 277 |
+
"""
|
| 278 |
+
# Put in fortran order and flatten h,w
|
| 279 |
+
b, h, w = tensor.shape
|
| 280 |
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
| 281 |
+
|
| 282 |
+
# Compute change indices
|
| 283 |
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
| 284 |
+
change_indices = diff.nonzero()
|
| 285 |
+
|
| 286 |
+
# Encode run length
|
| 287 |
+
out = []
|
| 288 |
+
for i in range(b):
|
| 289 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
| 290 |
+
cur_idxs = torch.cat(
|
| 291 |
+
[
|
| 292 |
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
| 293 |
+
cur_idxs + 1,
|
| 294 |
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
| 298 |
+
counts = [] if tensor[i, 0] == 0 else [0]
|
| 299 |
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
| 300 |
+
out.append({"size": [h, w], "counts": counts})
|
| 301 |
+
return out
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
| 305 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
| 306 |
+
h, w = rle["size"]
|
| 307 |
+
mask = np.empty(h * w, dtype=bool)
|
| 308 |
+
idx = 0
|
| 309 |
+
parity = False
|
| 310 |
+
for count in rle["counts"]:
|
| 311 |
+
mask[idx : idx + count] = parity
|
| 312 |
+
idx += count
|
| 313 |
+
parity ^= True
|
| 314 |
+
mask = mask.reshape(w, h)
|
| 315 |
+
return mask.transpose() # Put in C order
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
| 319 |
+
from pycocotools import mask as mask_utils # type: ignore
|
| 320 |
+
|
| 321 |
+
h, w = uncompressed_rle["size"]
|
| 322 |
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
| 323 |
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
| 324 |
+
return rle
|
utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (148 Bytes). View file
|
|
|
utils/__pycache__/logger.cpython-310.pyc
ADDED
|
Binary file (5.3 kB). View file
|
|
|