diff --git a/external/Grounded-Segment-Anything/.gitignore b/external/Grounded-Segment-Anything/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..b029c3b31ebd4001cadfb44e6b12a8f26597f72f
--- /dev/null
+++ b/external/Grounded-Segment-Anything/.gitignore
@@ -0,0 +1,135 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# checkpoint
+*.pth
+outputs/
+
+.idea/
diff --git a/external/Grounded-Segment-Anything/automatic_label_demo.py b/external/Grounded-Segment-Anything/automatic_label_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..676cbbf1aa9afec3d7482115c76fc7f882a6eb78
--- /dev/null
+++ b/external/Grounded-Segment-Anything/automatic_label_demo.py
@@ -0,0 +1,323 @@
+import argparse
+import os
+import copy
+
+import numpy as np
+import json
+import torch
+import torchvision
+from PIL import Image, ImageDraw, ImageFont
+import nltk
+import litellm
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util import box_ops
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+# BLIP
+from transformers import BlipProcessor, BlipForConditionalGeneration
+
+# ChatGPT
+import openai
+
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def generate_caption(raw_image, device):
+ # unconditional image captioning
+ if device == "cuda":
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
+ else:
+ inputs = processor(raw_image, return_tensors="pt")
+ out = blip_model.generate(**inputs)
+ caption = processor.decode(out[0], skip_special_tokens=True)
+ return caption
+
+
+def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
+ lemma = nltk.wordnet.WordNetLemmatizer()
+ if openai_key:
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
+ f'List the nouns in singular form. Split them by "{split} ". ' + \
+ f'Caption: {caption}.'
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "noun: xxx, xxx, xxx"
+ tags = reply.split(':')[-1].strip()
+ else:
+ nltk.download(['punkt', 'averaged_perceptron_tagger', 'wordnet'])
+ tags_list = [word for (word, pos) in nltk.pos_tag(nltk.word_tokenize(caption)) if pos[0] == 'N']
+ tags_lemma = [lemma.lemmatize(w) for w in tags_list]
+ tags = ', '.join(map(str, tags_lemma))
+ return tags
+
+
+def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
+ object_list = [obj.split('(')[0] for obj in pred_phrases]
+ object_num = []
+ for obj in set(object_list):
+ object_num.append(f'{object_list.count(obj)} {obj}')
+ object_num = ', '.join(object_num)
+ print(f"Correct object number: {object_num}")
+
+ if openai_key:
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Revise the number in the caption if it is wrong. ' + \
+ f'Caption: {caption}. ' + \
+ f'True object number: {object_num}. ' + \
+ 'Only give the revised caption: '
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "Caption: xxx, xxx, xxx"
+ caption = reply.split(':')[-1].strip()
+ return caption
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ scores = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ scores.append(logit.max().item())
+
+ return boxes_filt, torch.Tensor(scores), pred_phrases
+
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
+ value = 0 # 0 for background
+
+ mask_img = torch.zeros(mask_list.shape[-2:])
+ for idx, mask in enumerate(mask_list):
+ mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
+ plt.figure(figsize=(10, 10))
+ plt.imshow(mask_img.numpy())
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
+
+ json_data = {
+ 'caption': caption,
+ 'mask':[{
+ 'value': value,
+ 'label': 'background'
+ }]
+ }
+ for label, box in zip(label_list, box_list):
+ value += 1
+ name, logit = label.split('(')
+ logit = logit[:-1] # the last is ')'
+ json_data['mask'].append({
+ 'value': value,
+ 'label': name,
+ 'logit': float(logit),
+ 'box': box.numpy().tolist(),
+ })
+ with open(os.path.join(output_dir, 'label.json'), 'w') as f:
+ json.dump(json_data, f)
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument("--split", default=",", type=str, help="split for text prompt")
+ parser.add_argument("--openai_key", type=str, help="key for chatgpt")
+ parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+
+ parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
+ parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
+
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ image_path = args.input_image
+ split = args.split
+ openai_key = args.openai_key
+ openai_proxy = args.openai_proxy
+ output_dir = args.output_dir
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ iou_threshold = args.iou_threshold
+ device = args.device
+
+ openai.api_key = openai_key
+ if openai_proxy:
+ openai.proxy = {"http": openai_proxy, "https": openai_proxy}
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # generate caption and tags
+ # use Tag2Text can generate better captions
+ # https://huggingface.co/spaces/xinyu1205/Tag2Text
+ # but there are some bugs...
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
+ if device == "cuda":
+ blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
+ else:
+ blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
+ caption = generate_caption(image_pil, device=device)
+ # Currently ", " is better for detecting single tags
+ # while ". " is a little worse in some case
+ text_prompt = generate_tags(caption, split=split)
+ print(f"Caption: {caption}")
+ print(f"Tags: {text_prompt}")
+
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ model, image, text_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ caption = check_caption(caption, pred_phrases)
+ print(f"Revise caption with number: {caption}")
+
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(device),
+ multimask_output = False,
+ )
+
+ # draw output image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+
+ plt.title(caption)
+ plt.axis('off')
+ plt.savefig(
+ os.path.join(output_dir, "automatic_label_output.jpg"),
+ bbox_inches="tight", dpi=300, pad_inches=0.0
+ )
+
+ save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)
diff --git a/external/Grounded-Segment-Anything/automatic_label_ram_demo.py b/external/Grounded-Segment-Anything/automatic_label_ram_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..49ea6179387a886a9597c91c257bcd6b663bd2ad
--- /dev/null
+++ b/external/Grounded-Segment-Anything/automatic_label_ram_demo.py
@@ -0,0 +1,324 @@
+import argparse
+import os
+
+import numpy as np
+import json
+import torch
+import torchvision
+from PIL import Image
+import litellm
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import (
+ build_sam,
+ build_sam_hq,
+ SamPredictor
+)
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Recognize Anything Model & Tag2Text
+from ram.models import ram
+from ram import inference_ram
+import torchvision.transforms as TS
+
+# ChatGPT or nltk is required when using tags_chineses
+# import openai
+# import nltk
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def check_tags_chinese(tags_chinese, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
+ object_list = [obj.split('(')[0] for obj in pred_phrases]
+ object_num = []
+ for obj in set(object_list):
+ object_num.append(f'{object_list.count(obj)} {obj}')
+ object_num = ', '.join(object_num)
+ print(f"Correct object number: {object_num}")
+
+ if openai_key:
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Revise the number in the tags_chinese if it is wrong. ' + \
+ f'tags_chinese: {tags_chinese}. ' + \
+ f'True object number: {object_num}. ' + \
+ 'Only give the revised tags_chinese: '
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "tags_chinese: xxx, xxx, xxx"
+ tags_chinese = reply.split(':')[-1].strip()
+ return tags_chinese
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ scores = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ scores.append(logit.max().item())
+
+ return boxes_filt, torch.Tensor(scores), pred_phrases
+
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def save_mask_data(output_dir, tags_chinese, mask_list, box_list, label_list):
+ value = 0 # 0 for background
+
+ mask_img = torch.zeros(mask_list.shape[-2:])
+ for idx, mask in enumerate(mask_list):
+ mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
+ plt.figure(figsize=(10, 10))
+ plt.imshow(mask_img.numpy())
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
+
+ json_data = {
+ 'tags_chinese': tags_chinese,
+ 'mask':[{
+ 'value': value,
+ 'label': 'background'
+ }]
+ }
+ for label, box in zip(label_list, box_list):
+ value += 1
+ name, logit = label.split('(')
+ logit = logit[:-1] # the last is ')'
+ json_data['mask'].append({
+ 'value': value,
+ 'label': name,
+ 'logit': float(logit),
+ 'box': box.numpy().tolist(),
+ })
+ with open(os.path.join(output_dir, 'label.json'), 'w') as f:
+ json.dump(json_data, f)
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--ram_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file"
+ )
+ parser.add_argument(
+ "--use_sam_hq", action="store_true", help="using sam-hq for prediction"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument("--split", default=",", type=str, help="split for text prompt")
+ parser.add_argument("--openai_key", type=str, help="key for chatgpt")
+ parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+
+ parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
+ parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
+
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ ram_checkpoint = args.ram_checkpoint # change the path of the model
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ sam_hq_checkpoint = args.sam_hq_checkpoint
+ use_sam_hq = args.use_sam_hq
+ image_path = args.input_image
+ split = args.split
+ openai_key = args.openai_key
+ openai_proxy = args.openai_proxy
+ output_dir = args.output_dir
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ iou_threshold = args.iou_threshold
+ device = args.device
+
+ # ChatGPT or nltk is required when using tags_chineses
+ # openai.api_key = openai_key
+ # if openai_proxy:
+ # openai.proxy = {"http": openai_proxy, "https": openai_proxy}
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # initialize Recognize Anything Model
+ normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
+ std=[0.229, 0.224, 0.225])
+ transform = TS.Compose([
+ TS.Resize((384, 384)),
+ TS.ToTensor(), normalize
+ ])
+
+ # load model
+ ram_model = ram(pretrained=ram_checkpoint,
+ image_size=384,
+ vit='swin_l')
+ # threshold for tagging
+ # we reduce the threshold to obtain more tags
+ ram_model.eval()
+
+ ram_model = ram_model.to(device)
+ raw_image = image_pil.resize(
+ (384, 384))
+ raw_image = transform(raw_image).unsqueeze(0).to(device)
+
+ res = inference_ram(raw_image , ram_model)
+
+ # Currently ", " is better for detecting single tags
+ # while ". " is a little worse in some case
+ tags=res[0].replace(' |', ',')
+ tags_chinese=res[1].replace(' |', ',')
+
+ print("Image Tags: ", res[0])
+ print("图像标签: ", res[1])
+
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ model, image, tags, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ if use_sam_hq:
+ print("Initialize SAM-HQ Predictor")
+ predictor = SamPredictor(build_sam_hq(checkpoint=sam_hq_checkpoint).to(device))
+ else:
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ tags_chinese = check_tags_chinese(tags_chinese, pred_phrases)
+ print(f"Revise tags_chinese with number: {tags_chinese}")
+
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(device),
+ multimask_output = False,
+ )
+
+ # draw output image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+
+ # plt.title('RAM-tags' + tags + '\n' + 'RAM-tags_chineseing: ' + tags_chinese + '\n')
+ plt.axis('off')
+ plt.savefig(
+ os.path.join(output_dir, "automatic_label_output.jpg"),
+ bbox_inches="tight", dpi=300, pad_inches=0.0
+ )
+
+ save_mask_data(output_dir, tags_chinese, masks, boxes_filt, pred_phrases)
diff --git a/external/Grounded-Segment-Anything/automatic_label_tag2text_demo.py b/external/Grounded-Segment-Anything/automatic_label_tag2text_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..df4e8d0e9e4d02fc3d3845a82edd37d25217d1a0
--- /dev/null
+++ b/external/Grounded-Segment-Anything/automatic_label_tag2text_demo.py
@@ -0,0 +1,352 @@
+import argparse
+import os
+import copy
+
+import numpy as np
+import json
+import torch
+import torchvision
+from PIL import Image, ImageDraw, ImageFont
+import litellm
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util import box_ops
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+# Tag2Text
+from ram.models import tag2text
+from ram import inference_tag2text
+import torchvision.transforms as TS
+
+# ChatGPT or nltk is required when using captions
+# import openai
+# import nltk
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def generate_caption(raw_image, device):
+ # unconditional image captioning
+ if device == "cuda":
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
+ else:
+ inputs = processor(raw_image, return_tensors="pt")
+ out = blip_model.generate(**inputs)
+ caption = processor.decode(out[0], skip_special_tokens=True)
+ return caption
+
+
+def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
+ lemma = nltk.wordnet.WordNetLemmatizer()
+ if openai_key:
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
+ f'List the nouns in singular form. Split them by "{split} ". ' + \
+ f'Caption: {caption}.'
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "noun: xxx, xxx, xxx"
+ tags = reply.split(':')[-1].strip()
+ else:
+ nltk.download(['punkt', 'averaged_perceptron_tagger', 'wordnet'])
+ tags_list = [word for (word, pos) in nltk.pos_tag(nltk.word_tokenize(caption)) if pos[0] == 'N']
+ tags_lemma = [lemma.lemmatize(w) for w in tags_list]
+ tags = ', '.join(map(str, tags_lemma))
+ return tags
+
+
+def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
+ object_list = [obj.split('(')[0] for obj in pred_phrases]
+ object_num = []
+ for obj in set(object_list):
+ object_num.append(f'{object_list.count(obj)} {obj}')
+ object_num = ', '.join(object_num)
+ print(f"Correct object number: {object_num}")
+
+ if openai_key:
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Revise the number in the caption if it is wrong. ' + \
+ f'Caption: {caption}. ' + \
+ f'True object number: {object_num}. ' + \
+ 'Only give the revised caption: '
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "Caption: xxx, xxx, xxx"
+ caption = reply.split(':')[-1].strip()
+ return caption
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ scores = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ scores.append(logit.max().item())
+
+ return boxes_filt, torch.Tensor(scores), pred_phrases
+
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
+ value = 0 # 0 for background
+
+ mask_img = torch.zeros(mask_list.shape[-2:])
+ for idx, mask in enumerate(mask_list):
+ mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
+ plt.figure(figsize=(10, 10))
+ plt.imshow(mask_img.numpy())
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
+
+ json_data = {
+ 'caption': caption,
+ 'mask':[{
+ 'value': value,
+ 'label': 'background'
+ }]
+ }
+ for label, box in zip(label_list, box_list):
+ value += 1
+ name, logit = label.split('(')
+ logit = logit[:-1] # the last is ')'
+ json_data['mask'].append({
+ 'value': value,
+ 'label': name,
+ 'logit': float(logit),
+ 'box': box.numpy().tolist(),
+ })
+ with open(os.path.join(output_dir, 'label.json'), 'w') as f:
+ json.dump(json_data, f)
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--tag2text_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument("--split", default=",", type=str, help="split for text prompt")
+ parser.add_argument("--openai_key", type=str, help="key for chatgpt")
+ parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+
+ parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
+ parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
+
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ tag2text_checkpoint = args.tag2text_checkpoint # change the path of the model
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ image_path = args.input_image
+ split = args.split
+ openai_key = args.openai_key
+ openai_proxy = args.openai_proxy
+ output_dir = args.output_dir
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ iou_threshold = args.iou_threshold
+ device = args.device
+
+ # ChatGPT or nltk is required when using captions
+ # openai.api_key = openai_key
+ # if openai_proxy:
+ # openai.proxy = {"http": openai_proxy, "https": openai_proxy}
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # initialize Tag2Text
+ normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
+ std=[0.229, 0.224, 0.225])
+ transform = TS.Compose([
+ TS.Resize((384, 384)),
+ TS.ToTensor(), normalize
+ ])
+
+ # filter out attributes and action categories which are difficult to grounding
+ delete_tag_index = []
+ for i in range(3012, 3429):
+ delete_tag_index.append(i)
+
+ specified_tags='None'
+ # load model
+ tag2text_model = tag2text(pretrained=tag2text_checkpoint,
+ image_size=384,
+ vit='swin_b',
+ delete_tag_index=delete_tag_index)
+ # threshold for tagging
+ # we reduce the threshold to obtain more tags
+ tag2text_model.threshold = 0.64
+ tag2text_model.eval()
+
+ tag2text_model = tag2text_model.to(device)
+ raw_image = image_pil.resize(
+ (384, 384))
+ raw_image = transform(raw_image).unsqueeze(0).to(device)
+
+ res = inference_tag2text(raw_image , tag2text_model, specified_tags)
+
+ # Currently ", " is better for detecting single tags
+ # while ". " is a little worse in some case
+ text_prompt=res[0].replace(' |', ',')
+ caption=res[2]
+
+ print(f"Caption: {caption}")
+ print(f"Tags: {text_prompt}")
+
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ model, image, text_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ caption = check_caption(caption, pred_phrases)
+ print(f"Revise caption with number: {caption}")
+
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(device),
+ multimask_output = False,
+ )
+
+ # draw output image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+
+ plt.title('Tag2Text-Captioning: ' + caption + '\n' + 'Tag2Text-Tagging' + text_prompt + '\n')
+ plt.axis('off')
+ plt.savefig(
+ os.path.join(output_dir, "automatic_label_output.jpg"),
+ bbox_inches="tight", dpi=300, pad_inches=0.0
+ )
+
+ save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)
diff --git a/external/Grounded-Segment-Anything/chatbot.py b/external/Grounded-Segment-Anything/chatbot.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb1e2937e4b00c20038d90b9090142795de5be52
--- /dev/null
+++ b/external/Grounded-Segment-Anything/chatbot.py
@@ -0,0 +1,1460 @@
+# coding: utf-8
+import os
+import gradio as gr
+import random
+import torch
+import cv2
+import re
+import uuid
+from PIL import Image, ImageDraw, ImageOps
+import math
+import numpy as np
+import argparse
+import inspect
+
+import shutil
+import torchvision
+import whisper
+import matplotlib.pyplot as plt
+from automatic_label_demo import load_model, load_image, get_grounding_output, show_box, show_mask, generate_tags, check_caption
+from grounding_dino_demo import plot_boxes_to_image
+from segment_anything import build_sam, SamAutomaticMaskGenerator, SamPredictor
+from segment_anything.utils.amg import remove_small_regions
+
+from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
+from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
+from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
+
+from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
+from diffusers import EulerAncestralDiscreteScheduler
+from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
+from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
+
+from langchain.agents.initialize import initialize_agent
+from langchain.agents.tools import Tool
+from langchain.chains.conversation.memory import ConversationBufferMemory
+from langchain.llms.openai import OpenAI
+
+VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
+
+Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.
+
+Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.
+
+Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics.
+
+
+TOOLS:
+------
+
+Visual ChatGPT has access to the following tools:"""
+
+VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
+
+```
+Thought: Do I need to use a tool? Yes
+Action: the action to take, should be one of [{tool_names}]
+Action Input: the input to the action
+Observation: the result of the action
+```
+
+When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
+
+```
+Thought: Do I need to use a tool? No
+{ai_prefix}: [your response here]
+```
+"""
+
+VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
+You will remember to provide the image file name loyally if it's provided in the last tool observation.
+
+Begin!
+
+Previous conversation history:
+{chat_history}
+
+New input: {input}
+Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
+The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
+Thought: Do I need to use a tool? {agent_scratchpad} Let's think step by step.
+"""
+
+VISUAL_CHATGPT_PREFIX_CN = """Visual ChatGPT 旨在能够协助完成范围广泛的文本和视觉相关任务,从回答简单的问题到提供对广泛主题的深入解释和讨论。 Visual ChatGPT 能够根据收到的输入生成类似人类的文本,使其能够进行听起来自然的对话,并提供连贯且与手头主题相关的响应。
+
+Visual ChatGPT 能够处理和理解大量文本和图像。作为一种语言模型,Visual ChatGPT 不能直接读取图像,但它有一系列工具来完成不同的视觉任务。每张图片都会有一个文件名,格式为“image/xxx.png”,Visual ChatGPT可以调用不同的工具来间接理解图片。在谈论图片时,Visual ChatGPT 对文件名的要求非常严格,绝不会伪造不存在的文件。在使用工具生成新的图像文件时,Visual ChatGPT也知道图像可能与用户需求不一样,会使用其他视觉问答工具或描述工具来观察真实图像。 Visual ChatGPT 能够按顺序使用工具,并且忠于工具观察输出,而不是伪造图像内容和图像文件名。如果生成新图像,它将记得提供上次工具观察的文件名。
+
+Human 可能会向 Visual ChatGPT 提供带有描述的新图形。描述帮助 Visual ChatGPT 理解这个图像,但 Visual ChatGPT 应该使用工具来完成以下任务,而不是直接从描述中想象。有些工具将会返回英文描述,但你对用户的聊天应当采用中文。
+
+总的来说,Visual ChatGPT 是一个强大的可视化对话辅助工具,可以帮助处理范围广泛的任务,并提供关于范围广泛的主题的有价值的见解和信息。
+
+工具列表:
+------
+
+Visual ChatGPT 可以使用这些工具:"""
+
+VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN = """用户使用中文和你进行聊天,但是工具的参数应当使用英文。如果要调用工具,你必须遵循如下格式:
+
+```
+Thought: Do I need to use a tool? Yes
+Action: the action to take, should be one of [{tool_names}]
+Action Input: the input to the action
+Observation: the result of the action
+```
+
+当你不再需要继续调用工具,而是对观察结果进行总结回复时,你必须使用如下格式:
+
+
+```
+Thought: Do I need to use a tool? No
+{ai_prefix}: [your response here]
+```
+"""
+
+VISUAL_CHATGPT_SUFFIX_CN = """你对文件名的正确性非常严格,而且永远不会伪造不存在的文件。
+
+开始!
+
+因为Visual ChatGPT是一个文本语言模型,必须使用工具去观察图片而不是依靠想象。
+推理想法和观察结果只对Visual ChatGPT可见,需要记得在最终回复时把重要的信息重复给用户,你只能给用户返回中文句子。我们一步一步思考。在你使用工具时,工具的参数只能是英文。
+
+聊天历史:
+{chat_history}
+
+新输入: {input}
+Thought: Do I need to use a tool? {agent_scratchpad}
+"""
+
+os.makedirs('image', exist_ok=True)
+
+
+def seed_everything(seed):
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+ return seed
+
+
+def prompts(name, description):
+ def decorator(func):
+ func.name = name
+ func.description = description
+ return func
+
+ return decorator
+
+
+def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
+ new_size = new_image.size
+ old_size = old_image.size
+ easy_img = np.array(new_image)
+ gt_img_array = np.array(old_image)
+ pos_w = (new_size[0] - old_size[0]) // 2
+ pos_h = (new_size[1] - old_size[1]) // 2
+
+ kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
+ kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
+ kernel = np.multiply(kernel_h, np.transpose(kernel_w))
+
+ kernel[steps:-steps, steps:-steps] = 1
+ kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
+ kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
+ kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
+ kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
+ kernel = np.expand_dims(kernel, 2)
+ kernel = np.repeat(kernel, 3, 2)
+
+ weight = np.linspace(0, 1, steps)
+ top = np.expand_dims(weight, 1)
+ top = np.repeat(top, old_size[0] - 2 * steps, 1)
+ top = np.expand_dims(top, 2)
+ top = np.repeat(top, 3, 2)
+
+ weight = np.linspace(1, 0, steps)
+ down = np.expand_dims(weight, 1)
+ down = np.repeat(down, old_size[0] - 2 * steps, 1)
+ down = np.expand_dims(down, 2)
+ down = np.repeat(down, 3, 2)
+
+ weight = np.linspace(0, 1, steps)
+ left = np.expand_dims(weight, 0)
+ left = np.repeat(left, old_size[1] - 2 * steps, 0)
+ left = np.expand_dims(left, 2)
+ left = np.repeat(left, 3, 2)
+
+ weight = np.linspace(1, 0, steps)
+ right = np.expand_dims(weight, 0)
+ right = np.repeat(right, old_size[1] - 2 * steps, 0)
+ right = np.expand_dims(right, 2)
+ right = np.repeat(right, 3, 2)
+
+ kernel[:steps, steps:-steps] = top
+ kernel[-steps:, steps:-steps] = down
+ kernel[steps:-steps, :steps] = left
+ kernel[steps:-steps, -steps:] = right
+
+ pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
+ gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
+ gaussian_gt_img = gaussian_gt_img.astype(np.int64)
+ easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
+ gaussian_img = Image.fromarray(easy_img)
+ return gaussian_img
+
+
+def cut_dialogue_history(history_memory, keep_last_n_words=500):
+ if history_memory is None or len(history_memory) == 0:
+ return history_memory
+ tokens = history_memory.split()
+ n_tokens = len(tokens)
+ print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
+ if n_tokens < keep_last_n_words:
+ return history_memory
+ paragraphs = history_memory.split('\n')
+ last_n_tokens = n_tokens
+ while last_n_tokens >= keep_last_n_words:
+ last_n_tokens -= len(paragraphs[0].split(' '))
+ paragraphs = paragraphs[1:]
+ return '\n' + '\n'.join(paragraphs)
+
+
+def get_new_image_name(org_img_name, func_name="update"):
+ head_tail = os.path.split(org_img_name)
+ head = head_tail[0]
+ tail = head_tail[1]
+ name_split = tail.split('.')[0].split('_')
+ this_new_uuid = str(uuid.uuid4())[:4]
+ if len(name_split) == 1:
+ most_org_file_name = name_split[0]
+ else:
+ assert len(name_split) == 4
+ most_org_file_name = name_split[3]
+ recent_prev_file_name = name_split[0]
+ new_file_name = f'{this_new_uuid}_{func_name}_{recent_prev_file_name}_{most_org_file_name}.png'
+ return os.path.join(head, new_file_name)
+
+
+
+class MaskFormer:
+ def __init__(self, device):
+ print(f"Initializing MaskFormer to {device}")
+ self.device = device
+ self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
+ self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
+
+ def inference(self, image_path, text):
+ threshold = 0.5
+ min_area = 0.02
+ padding = 20
+ original_image = Image.open(image_path)
+ image = original_image.resize((512, 512))
+ inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
+ with torch.no_grad():
+ outputs = self.model(**inputs)
+ mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
+ area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
+ if area_ratio < min_area:
+ return None
+ true_indices = np.argwhere(mask)
+ mask_array = np.zeros_like(mask, dtype=bool)
+ for idx in true_indices:
+ padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
+ mask_array[padded_slice] = True
+ visual_mask = (mask_array * 255).astype(np.uint8)
+ image_mask = Image.fromarray(visual_mask)
+ return image_mask.resize(original_image.size)
+
+
+class ImageEditing:
+ def __init__(self, device):
+ print(f"Initializing ImageEditing to {device}")
+ self.device = device
+ self.mask_former = MaskFormer(device=self.device)
+ self.revision = 'fp16' if 'cuda' in device else None
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
+ "runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
+
+ @prompts(name="Replace Something From The Photo",
+ description="useful when you want to replace an object from the object description or "
+ "location with another object from its description. "
+ "The input to this tool should be a comma separated string of three, "
+ "representing the image_path, the object to be replaced, the object to be replaced with ")
+ def inference_replace(self, inputs):
+ image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
+ original_image = Image.open(image_path)
+ original_size = original_image.size
+ mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
+ updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
+ mask_image=mask_image.resize((512, 512))).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="replace-something")
+ updated_image = updated_image.resize(original_size)
+ updated_image.save(updated_image_path)
+ print(
+ f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class InstructPix2Pix:
+ def __init__(self, device):
+ print(f"Initializing InstructPix2Pix to {device}")
+ self.device = device
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
+ safety_checker=None,
+ torch_dtype=self.torch_dtype).to(device)
+ self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
+
+ @prompts(name="Instruct Image Using Text",
+ description="useful when you want to the style of the image to be like the text. "
+ "like: make it look like a painting. or make it like a robot. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the text. ")
+ def inference(self, inputs):
+ """Change style of image."""
+ print("===>Starting InstructPix2Pix Inference")
+ image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ original_image = Image.open(image_path)
+ image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
+ image.save(updated_image_path)
+ print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Text2Image:
+ def __init__(self, device):
+ print(f"Initializing Text2Image to {device}")
+ self.device = device
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
+ torch_dtype=self.torch_dtype)
+ self.pipe.to(device)
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image From User Input Text",
+ description="useful when you want to generate an image from a user input text and save it to a file. "
+ "like: generate an image of an object or something, or generate an image that includes some objects. "
+ "The input to this tool should be a string, representing the text used to generate image. ")
+ def inference(self, text):
+ image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
+ prompt = text + ', ' + self.a_prompt
+ image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
+ image.save(image_filename)
+ print(
+ f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
+ return image_filename
+
+
+class ImageCaptioning:
+ def __init__(self, device):
+ print(f"Initializing ImageCaptioning to {device}")
+ self.device = device
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
+ self.model = BlipForConditionalGeneration.from_pretrained(
+ "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
+
+ @prompts(name="Get Photo Description",
+ description="useful when you want to know what is inside the photo. receives image_path as input. "
+ "The input to this tool should be a string, representing the image_path. ")
+ def inference(self, image_path):
+ inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
+ out = self.model.generate(**inputs)
+ captions = self.processor.decode(out[0], skip_special_tokens=True)
+ print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
+ return captions
+
+
+class Image2Canny:
+ def __init__(self, device):
+ print("Initializing Image2Canny")
+ self.low_threshold = 100
+ self.high_threshold = 200
+
+ @prompts(name="Edge Detection On Image",
+ description="useful when you want to detect the edge of the image. "
+ "like: detect the edges of this image, or canny detection on image, "
+ "or perform edge detection on this image, or detect the canny image of this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ image = np.array(image)
+ canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
+ canny = canny[:, :, None]
+ canny = np.concatenate([canny, canny, canny], axis=2)
+ canny = Image.fromarray(canny)
+ updated_image_path = get_new_image_name(inputs, func_name="edge")
+ canny.save(updated_image_path)
+ print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
+ return updated_image_path
+
+
+class CannyText2Image:
+ def __init__(self, device):
+ print(f"Initializing CannyText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype)
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Canny Image",
+ description="useful when you want to generate a new real image from both the user description and a canny image."
+ " like: generate a real image of a object or something from this canny image,"
+ " or generate a new real image of a object or something from this edge image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description. ")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="canny2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
+ f"Output Text: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Line:
+ def __init__(self, device):
+ print("Initializing Image2Line")
+ self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
+
+ @prompts(name="Line Detection On Image",
+ description="useful when you want to detect the straight line of the image. "
+ "like: detect the straight lines of this image, or straight line detection on image, "
+ "or perform straight line detection on this image, or detect the straight line image of this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ mlsd = self.detector(image)
+ updated_image_path = get_new_image_name(inputs, func_name="line-of")
+ mlsd.save(updated_image_path)
+ print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
+ return updated_image_path
+
+
+class LineText2Image:
+ def __init__(self, device):
+ print(f"Initializing LineText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype
+ )
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Line Image",
+ description="useful when you want to generate a new real image from both the user description "
+ "and a straight line image. "
+ "like: generate a real image of a object or something from this straight line image, "
+ "or generate a new real image of a object or something from this straight lines. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description. ")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="line2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
+ f"Output Text: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Hed:
+ def __init__(self, device):
+ print("Initializing Image2Hed")
+ self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
+
+ @prompts(name="Hed Detection On Image",
+ description="useful when you want to detect the soft hed boundary of the image. "
+ "like: detect the soft hed boundary of this image, or hed boundary detection on image, "
+ "or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ hed = self.detector(image)
+ updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
+ hed.save(updated_image_path)
+ print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
+ return updated_image_path
+
+
+class HedText2Image:
+ def __init__(self, device):
+ print(f"Initializing HedText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype
+ )
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Soft Hed Boundary Image",
+ description="useful when you want to generate a new real image from both the user description "
+ "and a soft hed boundary image. "
+ "like: generate a real image of a object or something from this soft hed boundary image, "
+ "or generate a new real image of a object or something from this hed boundary. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="hed2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Scribble:
+ def __init__(self, device):
+ print("Initializing Image2Scribble")
+ self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
+
+ @prompts(name="Sketch Detection On Image",
+ description="useful when you want to generate a scribble of the image. "
+ "like: generate a scribble of this image, or generate a sketch from this image, "
+ "detect the sketch from this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ scribble = self.detector(image, scribble=True)
+ updated_image_path = get_new_image_name(inputs, func_name="scribble")
+ scribble.save(updated_image_path)
+ print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
+ return updated_image_path
+
+
+class ScribbleText2Image:
+ def __init__(self, device):
+ print(f"Initializing ScribbleText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype
+ )
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Sketch Image",
+ description="useful when you want to generate a new real image from both the user description and "
+ "a scribble image or a sketch image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Pose:
+ def __init__(self, device):
+ print("Initializing Image2Pose")
+ self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
+
+ @prompts(name="Pose Detection On Image",
+ description="useful when you want to detect the human pose of the image. "
+ "like: generate human poses of this image, or generate a pose image from this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ pose = self.detector(image)
+ updated_image_path = get_new_image_name(inputs, func_name="human-pose")
+ pose.save(updated_image_path)
+ print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
+ return updated_image_path
+
+
+class PoseText2Image:
+ def __init__(self, device):
+ print(f"Initializing PoseText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype)
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.num_inference_steps = 20
+ self.seed = -1
+ self.unconditional_guidance_scale = 9.0
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
+ ' fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Pose Image",
+ description="useful when you want to generate a new real image from both the user description "
+ "and a human pose image. "
+ "like: generate a real image of a human from this human pose image, "
+ "or generate a new real image of a human from this pose. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="pose2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Seg:
+ def __init__(self, device):
+ print("Initializing Image2Seg")
+ self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
+ self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
+ self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
+ [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
+ [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
+ [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
+ [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
+ [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
+ [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
+ [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
+ [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
+ [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
+ [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
+ [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
+ [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
+ [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
+ [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
+ [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
+ [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
+ [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
+ [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
+ [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
+ [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
+ [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
+ [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
+ [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
+ [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
+ [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
+ [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
+ [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
+ [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
+ [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
+ [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
+ [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
+ [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
+ [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
+ [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
+ [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
+ [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
+ [102, 255, 0], [92, 0, 255]]
+
+ @prompts(name="Segmentation On Image",
+ description="useful when you want to detect segmentations of the image. "
+ "like: segment this image, or generate segmentations on this image, "
+ "or perform segmentation on this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
+ with torch.no_grad():
+ outputs = self.image_segmentor(pixel_values)
+ seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
+ palette = np.array(self.ade_palette)
+ for label, color in enumerate(palette):
+ color_seg[seg == label, :] = color
+ color_seg = color_seg.astype(np.uint8)
+ segmentation = Image.fromarray(color_seg)
+ updated_image_path = get_new_image_name(inputs, func_name="segmentation")
+ segmentation.save(updated_image_path)
+ print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}")
+ return updated_image_path
+
+
+class SegText2Image:
+ def __init__(self, device):
+ print(f"Initializing SegText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
+ torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype)
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
+ ' fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Segmentations",
+ description="useful when you want to generate a new real image from both the user description and segmentations. "
+ "like: generate a real image of a object or something from this segmentation image, "
+ "or generate a new real image of a object or something from these segmentations. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="segment2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Depth:
+ def __init__(self, device):
+ print("Initializing Image2Depth")
+ self.depth_estimator = pipeline('depth-estimation')
+
+ @prompts(name="Predict Depth On Image",
+ description="useful when you want to detect depth of the image. like: generate the depth from this image, "
+ "or detect the depth map on this image, or predict the depth for this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ depth = self.depth_estimator(image)['depth']
+ depth = np.array(depth)
+ depth = depth[:, :, None]
+ depth = np.concatenate([depth, depth, depth], axis=2)
+ depth = Image.fromarray(depth)
+ updated_image_path = get_new_image_name(inputs, func_name="depth")
+ depth.save(updated_image_path)
+ print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
+ return updated_image_path
+
+
+class DepthText2Image:
+ def __init__(self, device):
+ print(f"Initializing DepthText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained(
+ "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype)
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
+ ' fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Depth",
+ description="useful when you want to generate a new real image from both the user description and depth image. "
+ "like: generate a real image of a object or something from this depth image, "
+ "or generate a new real image of a object or something from the depth map. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="depth2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class Image2Normal:
+ def __init__(self, device):
+ print("Initializing Image2Normal")
+ self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
+ self.bg_threhold = 0.4
+
+ @prompts(name="Predict Normal Map On Image",
+ description="useful when you want to detect norm map of the image. "
+ "like: generate normal map from this image, or predict normal map of this image. "
+ "The input to this tool should be a string, representing the image_path")
+ def inference(self, inputs):
+ image = Image.open(inputs)
+ original_size = image.size
+ image = self.depth_estimator(image)['predicted_depth'][0]
+ image = image.numpy()
+ image_depth = image.copy()
+ image_depth -= np.min(image_depth)
+ image_depth /= np.max(image_depth)
+ x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
+ x[image_depth < self.bg_threhold] = 0
+ y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
+ y[image_depth < self.bg_threhold] = 0
+ z = np.ones_like(x) * np.pi * 2.0
+ image = np.stack([x, y, z], axis=2)
+ image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
+ image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
+ image = Image.fromarray(image)
+ image = image.resize(original_size)
+ updated_image_path = get_new_image_name(inputs, func_name="normal-map")
+ image.save(updated_image_path)
+ print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
+ return updated_image_path
+
+
+class NormalText2Image:
+ def __init__(self, device):
+ print(f"Initializing NormalText2Image to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.controlnet = ControlNetModel.from_pretrained(
+ "fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
+ torch_dtype=self.torch_dtype)
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
+ self.pipe.to(device)
+ self.seed = -1
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
+ ' fewer digits, cropped, worst quality, low quality'
+
+ @prompts(name="Generate Image Condition On Normal Map",
+ description="useful when you want to generate a new real image from both the user description and normal map. "
+ "like: generate a real image of a object or something from this normal map, "
+ "or generate a new real image of a object or something from the normal map. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the user description")
+ def inference(self, inputs):
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ image = Image.open(image_path)
+ self.seed = random.randint(0, 65535)
+ seed_everything(self.seed)
+ prompt = f'{instruct_text}, {self.a_prompt}'
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
+ guidance_scale=9.0).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name="normal2image")
+ image.save(updated_image_path)
+ print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+
+class VisualQuestionAnswering:
+ def __init__(self, device):
+ print(f"Initializing VisualQuestionAnswering to {device}")
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.device = device
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
+ self.model = BlipForQuestionAnswering.from_pretrained(
+ "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
+
+ @prompts(name="Answer Question About The Image",
+ description="useful when you need an answer for a question based on an image. "
+ "like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
+ "The input to this tool should be a comma separated string of two, representing the image_path and the question")
+ def inference(self, inputs):
+ image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
+ raw_image = Image.open(image_path).convert('RGB')
+ inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
+ out = self.model.generate(**inputs)
+ answer = self.processor.decode(out[0], skip_special_tokens=True)
+ print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
+ f"Output Answer: {answer}")
+ return answer
+
+
+class InfinityOutPainting:
+ template_model = True # Add this line to show this is a template model.
+ def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
+ self.llm = OpenAI(temperature=0)
+ self.ImageCaption = ImageCaptioning
+ self.ImageEditing = ImageEditing
+ self.ImageVQA = VisualQuestionAnswering
+ self.a_prompt = 'best quality, extremely detailed'
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
+ 'fewer digits, cropped, worst quality, low quality'
+
+ def get_BLIP_vqa(self, image, question):
+ inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
+ self.ImageVQA.torch_dtype)
+ out = self.ImageVQA.model.generate(**inputs)
+ answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
+ print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
+ return answer
+
+ def get_BLIP_caption(self, image):
+ inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
+ self.ImageCaption.torch_dtype)
+ out = self.ImageCaption.model.generate(**inputs)
+ BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
+ return BLIP_caption
+
+ def check_prompt(self, prompt):
+ check = f"Here is a paragraph with adjectives. " \
+ f"{prompt} " \
+ f"Please change all plural forms in the adjectives to singular forms. "
+ return self.llm(check)
+
+ def get_imagine_caption(self, image, imagine):
+ BLIP_caption = self.get_BLIP_caption(image)
+ background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
+ style = self.get_BLIP_vqa(image, 'what is the style of this image')
+ imagine_prompt = f"let's pretend you are an excellent painter and now " \
+ f"there is an incomplete painting with {BLIP_caption} in the center, " \
+ f"please imagine the complete painting and describe it" \
+ f"you should consider the background color is {background_color}, the style is {style}" \
+ f"You should make the painting as vivid and realistic as possible" \
+ f"You can not use words like painting or picture" \
+ f"and you should use no more than 50 words to describe it"
+ caption = self.llm(imagine_prompt) if imagine else BLIP_caption
+ caption = self.check_prompt(caption)
+ print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
+ f'Prompt: {caption}')
+ return caption
+
+ def resize_image(self, image, max_size=1000000, multiple=8):
+ aspect_ratio = image.size[0] / image.size[1]
+ new_width = int(math.sqrt(max_size * aspect_ratio))
+ new_height = int(new_width / aspect_ratio)
+ new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
+ return image.resize((new_width, new_height))
+
+ def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
+ old_img = original_img
+ while (old_img.size != tosize):
+ prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
+ crop_w = 15 if old_img.size[0] != tosize[0] else 0
+ crop_h = 15 if old_img.size[1] != tosize[1] else 0
+ old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
+ temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
+ expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
+ 1])
+ temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
+ color="white")
+ x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
+ temp_canvas.paste(old_img, (x, y))
+ temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
+ resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
+ image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
+ height=resized_temp_canvas.height, width=resized_temp_canvas.width,
+ num_inference_steps=50).images[0].resize(
+ (temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
+ image = blend_gt2pt(old_img, image)
+ old_img = image
+ return old_img
+
+ @prompts(name="Extend An Image",
+ description="useful when you need to extend an image into a larger image."
+ "like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
+ "The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
+ def inference(self, inputs):
+ image_path, resolution = inputs.split(',')
+ width, height = resolution.split('x')
+ tosize = (int(width), int(height))
+ image = Image.open(image_path)
+ image = ImageOps.crop(image, (10, 10, 10, 10))
+ out_painted_image = self.dowhile(image, tosize, 4, True, False)
+ updated_image_path = get_new_image_name(image_path, func_name="outpainting")
+ out_painted_image.save(updated_image_path)
+ print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
+ f"Output Image: {updated_image_path}")
+ return updated_image_path
+
+#############################################New Tool#############################################
+class Grounded_dino_sam_inpainting:
+ def __init__(self, device):
+ print(f"Initializing BLIP")
+ self.device = device
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
+ self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
+ self.blip_model = BlipForConditionalGeneration.from_pretrained(
+ "Salesforce/blip-image-captioning-large", torch_dtype=self.torch_dtype
+ ).to(self.device)
+ print(f"Initializing GroundingDINO")
+ self.dino_model = load_model(
+ model_config_path="GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
+ model_checkpoint_path="groundingdino_swint_ogc.pth",
+ device=self.device
+ )
+ print(f"Initializing Segment Anthing")
+ self.sam_model = build_sam(checkpoint="sam_vit_h_4b8939.pth").to(self.device)
+ print(f"Initializing Stable Diffusion")
+ self.sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
+ "runwayml/stable-diffusion-inpainting", torch_dtype=self.torch_dtype
+ ).to(self.device)
+
+ @prompts(name="Get Photo Description",
+ description="useful when you want to know what is inside the photo. receives image_path as input. "
+ "The input to this tool should be a string, representing the image_path. ")
+ def inference_caption(self, image_path):
+ inputs = self.blip_processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
+ out = self.blip_model.generate(**inputs)
+ captions = self.blip_processor.decode(out[0], skip_special_tokens=True)
+ print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
+ return captions
+
+ def _detect_object(self, image_path, text_prompt, func_name):
+ image_pil, image = load_image(image_path)
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ self.dino_model, image, text_prompt, 0.3, 0.25, device=self.device
+ )
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.5).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ size = image_pil.size
+ pred_dict = {
+ "boxes": boxes_filt,
+ "size": [size[1], size[0]], # H,W
+ "labels": pred_phrases,
+ }
+ image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
+ updated_image_path = get_new_image_name(image_path, func_name)
+ image_with_box.save(updated_image_path)
+ return updated_image_path
+
+ @prompts(name="Detect One Object In Image",
+ description="useful when you want to detect the specific object in the image. "
+ "like: detect the black dog in the image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the description of specific object.")
+ def inference_detect_one_object(self, inputs):
+ image_path, text_prompt = inputs.split(',')
+ print(f"\nInput Text Prompt: {text_prompt}")
+ updated_image_path = self._detect_object(image_path, text_prompt, func_name="det-object")
+ print(f"Processed DetectOneObject, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ @prompts(name="Detect Multiple Objects In Image",
+ description="useful when you want to detect two or more specific objects in the image. "
+ "like: detect the black dog and white cat in the image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the description of multiple specific objects. "
+ "Different description should be separated by symbol '&', "
+ "like 'black dog & white cat'. ")
+ def inference_detect_multi_object(self, inputs):
+ image_path, text_prompt = inputs.split(',')
+ processed_text_prompt = text_prompt.replace(' &', ',')
+ print(f"\nOriginal Text Prompt: {text_prompt}, Input Text Prompt: {processed_text_prompt}")
+ updated_image_path = self._detect_object(image_path, text_prompt, func_name="det-objects")
+ print(f"Processed DetectMultiObject, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ # modified from https://github.com/Cheems-Seminar/segment-anything-and-name-it/blob/58408f1e4e340f565c5ef6b0c71920cdcd30b213/chatbot.py#L1046
+ @prompts(name="Segment Anything in Image",
+ description="useful when you want to segment anything in the image. "
+ "like: segment anything in the image. "
+ "The input to this tool should be a string, representing the image_path. ")
+ def inference_segment_anything(self, image_path):
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ mask_generator = SamAutomaticMaskGenerator(self.sam_model)
+ anns = mask_generator.generate(image)
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
+ ax = plt.gca()
+ ax.set_autoscale_on(False)
+ for ann in sorted_anns:
+ m = ann['segmentation']
+ img = np.ones((m.shape[0], m.shape[1], 3))
+ color_mask = np.random.random((1, 3)).tolist()[0]
+ for i in range(3):
+ img[:,:,i] = color_mask[i]
+ ax.imshow(np.dstack((img, m*0.35)))
+ plt.axis('off')
+ updated_image_path = get_new_image_name(image_path, func_name="seg-any")
+ plt.savefig(updated_image_path, bbox_inches='tight', dpi=300, pad_inches=0.0)
+ print(f"\nProcessed SegmentAnything, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ def _segment_object(self, image_path, text_prompt, func_name):
+ image_pil, image = load_image(image_path)
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ self.dino_model, image, text_prompt, 0.25, 0.2, device=self.device
+ )
+ # initialize SAM
+ predictor = SamPredictor(self.sam_model)
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+ boxes_filt = boxes_filt.cpu()
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.5).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ # generate mask
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(self.device),
+ multimask_output = False,
+ )
+ # remove the mask when area < area_thresh (in pixels)
+ new_masks = []
+ for mask in masks:
+ # reshape to be used in remove_small_regions()
+ mask = mask.cpu().numpy().squeeze()
+ mask, _ = remove_small_regions(mask, 100, mode="holes")
+ mask, _ = remove_small_regions(mask, 100, mode="islands")
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
+ masks = torch.stack(new_masks, dim=0)
+ # add box and mask in the image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+ plt.axis('off')
+ updated_image_path = get_new_image_name(image_path, func_name)
+ plt.savefig(updated_image_path, bbox_inches='tight', dpi=300, pad_inches=0.0)
+ return updated_image_path, pred_phrases
+
+ @prompts(name="Segment One Object In Image",
+ description="useful when you want to segment the specific object in the image. "
+ "like: segment the black dog in the image, or mask the black dog in the image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the description of specific object.")
+ def inference_segment_one_object(self, inputs):
+ image_path, text_prompt = inputs.split(',')
+ print(f"\nInput Text Prompt: {text_prompt}")
+ updated_image_path, _ = self._segment_object(image_path, text_prompt, func_name="seg-object")
+ print(f"Processed SegmentOneObject, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ @prompts(name="Segment Multiple Object In Image",
+ description="useful when you want to segment two or more specific objects in the image. "
+ "like: segment the black dog and white cat in the image. "
+ "The input to this tool should be a comma separated string of two, "
+ "representing the image_path and the description of multiple specific objects. "
+ "Different description should be separated by symbol '&', "
+ "like 'black dog & white cat'. ")
+ def inference_segment_multi_object(self, inputs):
+ image_path, text_prompt = inputs.split(',')
+ processed_text_prompt = text_prompt.replace(' &', ',')
+ print("\nOriginal Text Prompt: {text_prompt}, Input Text Prompt: {processed_text_prompt}, ")
+ updated_image_path, _ = self._segment_object(image_path, text_prompt, func_name="seg-objects")
+ print(f"Processed SegmentMultiObject, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ @prompts(name="Auto Label the Image",
+ description="useful when you want to label the image automatically. "
+ "like: help me label the image. "
+ "The input to this tool should be a string, representing the image_path. ")
+ def inference_auto_segment_object(self, image_path):
+ inputs = self.blip_processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
+ out = self.blip_model.generate(**inputs)
+ caption = self.blip_processor.decode(out[0], skip_special_tokens=True)
+ text_prompt = generate_tags(caption, split=",")
+ print(f"\nCaption: {caption}")
+ print(f"Tags: {text_prompt}")
+ updated_image_path, pred_phrases = self._segment_object(image_path, text_prompt, func_name="auto-label")
+ caption = check_caption(caption, pred_phrases)
+ print(f"Revise caption with number: {caption}")
+ print(f"Processed SegmentMultiObject, Input Image: {image_path}, Caption: {caption}, "
+ f"Text Prompt: {text_prompt}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+ def _inpainting(self, image_path, to_be_replaced_txt, replace_with_txt, func_name):
+ image_pil, image = load_image(image_path)
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ self.dino_model, image, to_be_replaced_txt, 0.3, 0.25, device=self.device
+ )
+ # initialize SAM
+ predictor = SamPredictor(self.sam_model)
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+ boxes_filt = boxes_filt.cpu()
+ # generate mask
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(self.device),
+ multimask_output = False,
+ )
+ # inpainting pipeline
+ mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
+ mask_pil = Image.fromarray(mask).resize((512, 512))
+ image_pil = Image.fromarray(image).resize((512, 512))
+ image = self.sd_pipe(prompt=replace_with_txt, image=image_pil, mask_image=mask_pil).images[0]
+ updated_image_path = get_new_image_name(image_path, func_name)
+ image.save(updated_image_path)
+ return updated_image_path
+
+ @prompts(name="Replace Something From The Photo",
+ description="useful when you want to replace an object from the object description or "
+ "location with another object from its description. "
+ "The input to this tool should be a comma separated string of three, "
+ "representing the image_path, the object to be replaced, the object to be replaced with ")
+ def inference_replace(self, inputs):
+ image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
+ print(f"\nReplace {to_be_replaced_txt} to {replace_with_txt}")
+ updated_image_path = self._inpainting(image_path, to_be_replaced_txt, replace_with_txt, 'replace-something')
+ print(f"Processed ImageEditing, Input Image: {image_path}, Output Image: {updated_image_path}")
+ return updated_image_path
+
+#############################################New Tool#############################################
+
+
+class ConversationBot:
+ def __init__(self, load_dict):
+ # load_dict = {'VisualQuestionAnswering':'cuda:0', 'ImageCaptioning':'cuda:1',...}
+ print(f"Initializing VisualChatGPT, load_dict={load_dict}")
+ if 'ImageCaptioning' not in load_dict and 'Grounded_dino_sam_inpainting' not in load_dict:
+ raise ValueError("You have to load ImageCaptioning or Grounded_dino_sam_inpainting as a basic function for VisualChatGPT")
+
+ self.models = {}
+ # Load Basic Foundation Models
+ for class_name, device in load_dict.items():
+ self.models[class_name] = globals()[class_name](device=device)
+
+ # Load Template Foundation Models
+ for class_name, module in globals().items():
+ if getattr(module, 'template_model', False):
+ template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if k!='self'}
+ loaded_names = set([type(e).__name__ for e in self.models.values()])
+ if template_required_names.issubset(loaded_names):
+ self.models[class_name] = globals()[class_name](
+ **{name: self.models[name] for name in template_required_names})
+ self.tools = []
+ for instance in self.models.values():
+ for e in dir(instance):
+ if e.startswith('inference'):
+ func = getattr(instance, e)
+ self.tools.append(Tool(name=func.name, description=func.description, func=func))
+ self.llm = OpenAI(temperature=0)
+ self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
+
+ def run_text(self, text, state):
+ self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
+ res = self.agent({"input": text.strip()})
+ res['output'] = res['output'].replace("\\", "/")
+ response = re.sub('(image/[-\w]*.png)', lambda m: f'})*{m.group(0)}*', res['output'])
+ state = state + [(text, response)]
+ print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
+ f"Current Memory: {self.agent.memory.buffer}")
+ return state, state
+
+ def run_image(self, image, state, txt, lang):
+ # image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
+ # print("======>Auto Resize Image...")
+ # img = Image.open(image.name)
+ # width, height = img.size
+ # ratio = min(512 / width, 512 / height)
+ # width_new, height_new = (round(width * ratio), round(height * ratio))
+ # width_new = int(np.round(width_new / 64.0)) * 64
+ # height_new = int(np.round(height_new / 64.0)) * 64
+ # img = img.resize((width_new, height_new))
+ # img = img.convert('RGB')
+ # img.save(image_filename)
+ # img.save(image_filename, "PNG")
+ # print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
+ ## Directly use original image for better results
+ suffix = image.name.split('.')[-1]
+ image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.{suffix}")
+ shutil.copy(image.name, image_filename)
+ if 'Grounded_dino_sam_inpainting' in self.models:
+ description = self.models['Grounded_dino_sam_inpainting'].inference_caption(image_filename)
+ else:
+ description = self.models['ImageCaptioning'].inference(image_filename)
+ if lang == 'Chinese':
+ Human_prompt = f'\nHuman: 提供一张名为 {image_filename}的图片。它的描述是: {description}。 这些信息帮助你理解这个图像,但是你应该使用工具来完成下面的任务,而不是直接从我的描述中想象。 如果你明白了, 说 \"收到\". \n'
+ AI_prompt = "收到。 "
+ else:
+ Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
+ AI_prompt = "Received. "
+ self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
+ state = state + [(f"*{image_filename}*", AI_prompt)]
+ print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
+ f"Current Memory: {self.agent.memory.buffer}")
+ return state, state, f'{txt} {image_filename} '
+
+ def init_agent(self, openai_api_key, lang):
+ self.memory.clear() #clear previous history
+ if lang=='English':
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, VISUAL_CHATGPT_SUFFIX
+ place = "Enter text and press enter, or upload an image"
+ label_clear = "Clear"
+ else:
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX_CN, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN, VISUAL_CHATGPT_SUFFIX_CN
+ place = "输入文字并回车,或者上传图片"
+ label_clear = "清除"
+ self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
+ self.agent = initialize_agent(
+ self.tools,
+ self.llm,
+ agent="conversational-react-description",
+ verbose=True,
+ memory=self.memory,
+ return_intermediate_steps=True,
+ agent_kwargs={'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, 'suffix': SUFFIX}, )
+ return gr.update(visible = True), gr.update(visible = True)
+
+
+whisper_model = whisper.load_model("base").to('cuda:0')
+def speech_recognition(speech_file):
+ # whisper
+ # load audio and pad/trim it to fit 30 seconds
+ audio = whisper.load_audio(speech_file)
+ audio = whisper.pad_or_trim(audio)
+
+ # make log-Mel spectrogram and move to the same device as the model
+ mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
+
+ # detect the spoken language
+ _, probs = whisper_model.detect_language(mel)
+ speech_language = max(probs, key=probs.get)
+ print(f'\nDetect Language: {speech_language}')
+
+ # decode the audio
+ options = whisper.DecodingOptions(fp16 = False)
+ result = whisper.decode(whisper_model, mel, options)
+ print(result.text)
+
+ return result.text
+
+
+if __name__ == '__main__':
+ load_dict = {'Grounded_dino_sam_inpainting': 'cuda:0'}
+ # load_dict = {'ImageCaptioning': 'cuda:0'}
+
+ bot = ConversationBot(load_dict)
+
+ with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
+ gr.Markdown("
ChatBot
")
+ gr.Markdown(
+ """This is a demo to the work [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything).
+ """
+ )
+
+ with gr.Row():
+ lang = gr.Radio(choices=['Chinese', 'English'], value='English', label='Language')
+ openai_api_key_textbox = gr.Textbox(
+ placeholder="Paste your OpenAI API key here to start ChatBot(sk-...) and press Enter ↵️",
+ show_label=False,
+ lines=1,
+ type="password",
+ )
+
+ chatbot = gr.Chatbot(elem_id="chatbot", label="ChatBot")
+ state = gr.State([])
+
+ with gr.Row(visible=False) as input_raws:
+ with gr.Column(scale=0.7):
+ txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
+ with gr.Column(scale=0.10, min_width=0):
+ run = gr.Button("🏃♂️Run")
+ with gr.Column(scale=0.10, min_width=0):
+ clear = gr.Button("🔄Clear️")
+ with gr.Column(scale=0.10, min_width=0):
+ btn = gr.UploadButton("🖼️Upload", file_types=["image"])
+ with gr.Row(visible=False, equal_height=True) as audio_raw:
+ with gr.Column(scale=0.85):
+ audio = gr.Audio(source="microphone", type="filepath", label="Just say it!")
+ with gr.Column(scale=0.15):
+ transcribe = gr.Button("Transcribe")
+
+ gr.Examples(
+ examples=[
+ "Describe this image",
+ "Detect the dog",
+ "Detect the dog and the cat",
+ "Segment anything",
+ "Segment the dog",
+ "Help me label the image",
+ "Replace the dog with a cat",
+ ],
+ inputs=txt
+ )
+
+ openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox, lang], [input_raws, audio_raw])
+ transcribe.click(speech_recognition, inputs=[audio], outputs=[txt])
+ txt.submit(bot.run_text, [txt, state], [chatbot, state])
+ txt.submit(lambda: "", None, txt)
+ run.click(bot.run_text, [txt, state], [chatbot, state])
+ run.click(lambda: "", None, txt)
+ btn.upload(bot.run_image, [btn, state, txt, lang], [chatbot, state, txt])
+ clear.click(bot.memory.clear)
+ clear.click(lambda: [], None, chatbot)
+ clear.click(lambda: [], None, state)
+
+ demo.launch(server_name="0.0.0.0", server_port=10010)
+
diff --git a/external/Grounded-Segment-Anything/cog.yaml b/external/Grounded-Segment-Anything/cog.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8b3c26fc02fbda7e76c48e27a8ec94cda0b341be
--- /dev/null
+++ b/external/Grounded-Segment-Anything/cog.yaml
@@ -0,0 +1,27 @@
+# Configuration for Cog ⚙️
+# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md
+
+build:
+ gpu: true
+ cuda: "11.7"
+ system_packages:
+ - "libgl1-mesa-glx"
+ - "libglib2.0-0"
+ python_version: "3.10"
+ python_packages:
+ - "timm==0.9.2"
+ - "transformers==4.30.2"
+ - "fairscale==0.4.13"
+ - "pycocoevalcap==1.2"
+ - "torch==1.13.0"
+ - "torchvision==0.14.0"
+ - "Pillow==9.5.0"
+ - "scipy==1.10.1"
+ - "opencv-python==4.7.0.72"
+ - "addict==2.4.0"
+ - "yapf==0.40.0"
+ - "supervision==0.10.0"
+ - git+https://github.com/openai/CLIP.git
+ - ipython
+
+predict: "predict.py:Predictor"
diff --git a/external/Grounded-Segment-Anything/gradio_app.py b/external/Grounded-Segment-Anything/gradio_app.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea24b3241d9b5faaa1f291119363c216ef06813c
--- /dev/null
+++ b/external/Grounded-Segment-Anything/gradio_app.py
@@ -0,0 +1,400 @@
+import os
+import random
+import cv2
+from scipy import ndimage
+
+import gradio as gr
+import argparse
+import litellm
+
+import numpy as np
+import torch
+import torchvision
+from PIL import Image, ImageDraw, ImageFont
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
+import numpy as np
+
+# diffusers
+import torch
+from diffusers import StableDiffusionInpaintPipeline
+
+# BLIP
+from transformers import BlipProcessor, BlipForConditionalGeneration
+
+import openai
+
+def show_anns(anns):
+ if len(anns) == 0:
+ return
+ sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
+ full_img = None
+
+ # for ann in sorted_anns:
+ for i in range(len(sorted_anns)):
+ ann = anns[i]
+ m = ann['segmentation']
+ if full_img is None:
+ full_img = np.zeros((m.shape[0], m.shape[1], 3))
+ map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
+ map[m != 0] = i + 1
+ color_mask = np.random.random((1, 3)).tolist()[0]
+ full_img[m != 0] = color_mask
+ full_img = full_img*255
+ # anno encoding from https://github.com/LUSSeg/ImageNet-S
+ res = np.zeros((map.shape[0], map.shape[1], 3))
+ res[:, :, 0] = map % 256
+ res[:, :, 1] = map // 256
+ res.astype(np.float32)
+ full_img = Image.fromarray(np.uint8(full_img))
+ return full_img, res
+
+def generate_caption(processor, blip_model, raw_image):
+ # unconditional image captioning
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
+ out = blip_model.generate(**inputs)
+ caption = processor.decode(out[0], skip_special_tokens=True)
+ return caption
+
+def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_api_key=''):
+ openai.api_key = openai_api_key
+ openai.api_base = 'https://closeai.deno.dev/v1'
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
+ f'List the nouns in singular form. Split them by "{split} ". ' + \
+ f'Caption: {caption}.'
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ # sometimes return with "noun: xxx, xxx, xxx"
+ tags = reply.split(':')[-1].strip()
+ return tags
+
+def transform_image(image_pil):
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ scores = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ if with_logits:
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ else:
+ pred_phrases.append(pred_phrase)
+ scores.append(logit.max().item())
+
+ return boxes_filt, torch.Tensor(scores), pred_phrases
+
+def draw_mask(mask, draw, random_color=False):
+ if random_color:
+ color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
+ else:
+ color = (30, 144, 255, 153)
+
+ nonzero_coords = np.transpose(np.nonzero(mask))
+
+ for coord in nonzero_coords:
+ draw.point(coord[::-1], fill=color)
+
+def draw_box(box, draw, label):
+ # random color
+ color = tuple(np.random.randint(0, 255, size=3).tolist())
+
+ draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
+
+ if label:
+ font = ImageFont.load_default()
+ if hasattr(font, "getbbox"):
+ bbox = draw.textbbox((box[0], box[1]), str(label), font)
+ else:
+ w, h = draw.textsize(str(label), font)
+ bbox = (box[0], box[1], w + box[0], box[1] + h)
+ draw.rectangle(bbox, fill=color)
+ draw.text((box[0], box[1]), str(label), fill="white")
+
+ draw.text((box[0], box[1]), label)
+
+
+
+config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
+ckpt_repo_id = "ShilongLiu/GroundingDINO"
+ckpt_filenmae = "groundingdino_swint_ogc.pth"
+sam_checkpoint='sam_vit_h_4b8939.pth'
+output_dir="outputs"
+device="cuda"
+
+
+blip_processor = None
+blip_model = None
+groundingdino_model = None
+sam_predictor = None
+sam_automask_generator = None
+inpaint_pipeline = None
+
+def run_grounded_sam(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key):
+
+ global blip_processor, blip_model, groundingdino_model, sam_predictor, sam_automask_generator, inpaint_pipeline
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image = input_image["image"]
+ scribble = input_image["mask"]
+ size = image.size # w, h
+
+ if sam_predictor is None:
+ # initialize SAM
+ assert sam_checkpoint, 'sam_checkpoint is not found!'
+ sam = build_sam(checkpoint=sam_checkpoint)
+ sam.to(device=device)
+ sam_predictor = SamPredictor(sam)
+ sam_automask_generator = SamAutomaticMaskGenerator(sam)
+
+ if groundingdino_model is None:
+ groundingdino_model = load_model(config_file, ckpt_filenmae, device=device)
+
+ image_pil = image.convert("RGB")
+ image = np.array(image_pil)
+
+ if task_type == 'scribble':
+ sam_predictor.set_image(image)
+ scribble = scribble.convert("RGB")
+ scribble = np.array(scribble)
+ scribble = scribble.transpose(2, 1, 0)[0]
+
+ # 将连通域进行标记
+ labeled_array, num_features = ndimage.label(scribble >= 255)
+
+ # 计算每个连通域的质心
+ centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
+ centers = np.array(centers)
+
+ point_coords = torch.from_numpy(centers)
+ point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2])
+ point_coords = point_coords.unsqueeze(0).to(device)
+ point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
+ if scribble_mode == 'split':
+ point_coords = point_coords.permute(1, 0, 2)
+ point_labels = point_labels.permute(1, 0)
+ masks, _, _ = sam_predictor.predict_torch(
+ point_coords=point_coords if len(point_coords) > 0 else None,
+ point_labels=point_labels if len(point_coords) > 0 else None,
+ mask_input = None,
+ boxes = None,
+ multimask_output = False,
+ )
+ elif task_type == 'automask':
+ masks = sam_automask_generator.generate(image)
+ else:
+ transformed_image = transform_image(image_pil)
+
+ if task_type == 'automatic':
+ # generate caption and tags
+ # use Tag2Text can generate better captions
+ # https://huggingface.co/spaces/xinyu1205/Tag2Text
+ # but there are some bugs...
+ blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
+ blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
+ text_prompt = generate_caption(blip_processor, blip_model, image_pil)
+ if len(openai_api_key) > 0:
+ text_prompt = generate_tags(text_prompt, split=",", openai_api_key=openai_api_key)
+ print(f"Caption: {text_prompt}")
+
+ # run grounding dino model
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
+ )
+
+ # process boxes
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+
+
+ if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
+ sam_predictor.set_image(image)
+
+ if task_type == 'automatic':
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+ print(f"Revise caption with number: {text_prompt}")
+
+ transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = sam_predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes,
+ multimask_output = False,
+ )
+
+ if task_type == 'det':
+ image_draw = ImageDraw.Draw(image_pil)
+ for box, label in zip(boxes_filt, pred_phrases):
+ draw_box(box, image_draw, label)
+
+ return [image_pil]
+ elif task_type == 'automask':
+ full_img, res = show_anns(masks)
+ return [full_img]
+ elif task_type == 'scribble':
+ mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
+
+ mask_draw = ImageDraw.Draw(mask_image)
+
+ for mask in masks:
+ draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
+
+ image_pil = image_pil.convert('RGBA')
+ image_pil.alpha_composite(mask_image)
+ return [image_pil, mask_image]
+ elif task_type == 'seg' or task_type == 'automatic':
+
+ mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
+
+ mask_draw = ImageDraw.Draw(mask_image)
+ for mask in masks:
+ draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
+
+ image_draw = ImageDraw.Draw(image_pil)
+
+ for box, label in zip(boxes_filt, pred_phrases):
+ draw_box(box, image_draw, label)
+
+ if task_type == 'automatic':
+ image_draw.text((10, 10), text_prompt, fill='black')
+
+ image_pil = image_pil.convert('RGBA')
+ image_pil.alpha_composite(mask_image)
+ return [image_pil, mask_image]
+ elif task_type == 'inpainting':
+ assert inpaint_prompt, 'inpaint_prompt is not found!'
+ # inpainting pipeline
+ if inpaint_mode == 'merge':
+ masks = torch.sum(masks, dim=0).unsqueeze(0)
+ masks = torch.where(masks > 0, True, False)
+ mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
+ mask_pil = Image.fromarray(mask)
+
+ if inpaint_pipeline is None:
+ inpaint_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
+ "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
+ )
+ inpaint_pipeline = inpaint_pipeline.to("cuda")
+
+ image = inpaint_pipeline(prompt=inpaint_prompt, image=image_pil.resize((512, 512)), mask_image=mask_pil.resize((512, 512))).images[0]
+ image = image.resize(size)
+
+ return [image, mask_pil]
+ else:
+ print("task_type:{} error!".format(task_type))
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
+ parser.add_argument("--debug", action="store_true", help="using debug mode")
+ parser.add_argument("--share", action="store_true", help="share the app")
+ parser.add_argument('--port', type=int, default=7589, help='port to run the server')
+ parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
+ args = parser.parse_args()
+
+ print(args)
+
+ block = gr.Blocks()
+ if not args.no_gradio_queue:
+ block = block.queue()
+
+ with block:
+ with gr.Row():
+ with gr.Column():
+ input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg", tool="sketch")
+ task_type = gr.Dropdown(["scribble", "automask", "det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
+ text_prompt = gr.Textbox(label="Text Prompt")
+ inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
+ run_button = gr.Button(label="Run")
+ with gr.Accordion("Advanced options", open=False):
+ box_threshold = gr.Slider(
+ label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.05
+ )
+ text_threshold = gr.Slider(
+ label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
+ )
+ iou_threshold = gr.Slider(
+ label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
+ )
+ inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
+ scribble_mode = gr.Dropdown(["merge", "split"], value="split", label="scribble_mode")
+ openai_api_key= gr.Textbox(label="(Optional)OpenAI key, enable chatgpt")
+
+ with gr.Column():
+ gallery = gr.Gallery(
+ label="Generated images", show_label=False, elem_id="gallery"
+ ).style(preview=True, grid=2, object_fit="scale-down")
+
+ run_button.click(fn=run_grounded_sam, inputs=[
+ input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key], outputs=gallery)
+
+ block.queue(concurrency_count=100)
+ block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
\ No newline at end of file
diff --git a/external/Grounded-Segment-Anything/grounded_sam.ipynb b/external/Grounded-Segment-Anything/grounded_sam.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0ae9c7614b63bfaf6db9a93c155ff9dea7c97e6e
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam.ipynb
@@ -0,0 +1,617 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Grounded Segement Anything\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Why this project?**\n",
+ "- [Segment Anything](https://github.com/facebookresearch/segment-anything) is a strong segmentation model. But it need prompts (like boxes/points) to generate masks. \n",
+ "- [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) is a strong zero-shot detector which enable to generate high quality boxes and labels with free-form text. \n",
+ "- The combination of the two models enable to **detect and segment everything** with text inputs!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Prepare Environments"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Obtaining file:///home/liushilong/code/GroundingFolder/Grounded-Segment-Anything/segment_anything\n",
+ " Preparing metadata (setup.py) ... \u001b[?25ldone\n",
+ "\u001b[?25hInstalling collected packages: segment-anything\n",
+ " Running setup.py develop for segment-anything\n",
+ "Successfully installed segment-anything-1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "! python -m pip install -e segment_anything\n",
+ "! python -m pip install -e GroundingDINO\n",
+ "! pip install diffusers transformers accelerate scipy safetensors"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os, sys\n",
+ "\n",
+ "sys.path.append(os.path.join(os.getcwd(), \"GroundingDINO\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# If you have multiple GPUs, you can set the GPU to use here.\n",
+ "# The default is to use the first GPU, which is usually GPU 0.\n",
+ "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import argparse\n",
+ "import os\n",
+ "import copy\n",
+ "\n",
+ "import numpy as np\n",
+ "import torch\n",
+ "from PIL import Image, ImageDraw, ImageFont\n",
+ "from torchvision.ops import box_convert\n",
+ "\n",
+ "# Grounding DINO\n",
+ "import GroundingDINO.groundingdino.datasets.transforms as T\n",
+ "from GroundingDINO.groundingdino.models import build_model\n",
+ "from GroundingDINO.groundingdino.util import box_ops\n",
+ "from GroundingDINO.groundingdino.util.slconfig import SLConfig\n",
+ "from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap\n",
+ "from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict\n",
+ "\n",
+ "import supervision as sv\n",
+ "\n",
+ "# segment anything\n",
+ "from segment_anything import build_sam, SamPredictor \n",
+ "import cv2\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "\n",
+ "# diffusers\n",
+ "import PIL\n",
+ "import requests\n",
+ "import torch\n",
+ "from io import BytesIO\n",
+ "from diffusers import StableDiffusionInpaintPipeline\n",
+ "\n",
+ "\n",
+ "from huggingface_hub import hf_hub_download"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load Grounding DINO model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):\n",
+ " cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)\n",
+ "\n",
+ " args = SLConfig.fromfile(cache_config_file) \n",
+ " model = build_model(args)\n",
+ " args.device = device\n",
+ "\n",
+ " cache_file = hf_hub_download(repo_id=repo_id, filename=filename)\n",
+ " checkpoint = torch.load(cache_file, map_location='cpu')\n",
+ " log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)\n",
+ " print(\"Model loaded from {} \\n => {}\".format(cache_file, log))\n",
+ " _ = model.eval()\n",
+ " return model "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Use this command for evaluate the Grounding DINO model\n",
+ "# Or you can download the model by yourself\n",
+ "ckpt_repo_id = \"ShilongLiu/GroundingDINO\"\n",
+ "ckpt_filenmae = \"groundingdino_swinb_cogcoor.pth\"\n",
+ "ckpt_config_filename = \"GroundingDINO_SwinB.cfg.py\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/liushilong/anaconda3/envs/ideadet2/lib/python3.7/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "final text_encoder_type: bert-base-uncased\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']\n",
+ "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
+ "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Model loaded from /home/liushilong/.cache/huggingface/hub/models--ShilongLiu--GroundingDINO/snapshots/6fb3434d67548d71747b1ab3a32051d27a30c71f/groundingdino_swinb_cogcoor.pth \n",
+ " => _IncompatibleKeys(missing_keys=[], unexpected_keys=['label_enc.weight'])\n"
+ ]
+ }
+ ],
+ "source": [
+ "groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load SAM model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 189,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n",
+ "\n",
+ "sam_checkpoint = 'sam_vit_h_4b8939.pth'\n",
+ "sam = build_sam(checkpoint=sam_checkpoint)\n",
+ "sam.to(device=DEVICE)\n",
+ "sam_predictor = SamPredictor(sam)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load stable diffusion inpainting models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/liushilong/anaconda3/envs/ideadet2/lib/python3.7/site-packages/transformers/models/clip/feature_extraction_clip.py:31: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use CLIPImageProcessor instead.\n",
+ " FutureWarning,\n"
+ ]
+ }
+ ],
+ "source": [
+ "from diffusers import StableDiffusionInpaintPipeline\n",
+ "\n",
+ "if DEVICE.type == 'cpu':\n",
+ " float_type = torch.float32\n",
+ "else:\n",
+ " float_type = torch.float16\n",
+ "\n",
+ "pipe = StableDiffusionInpaintPipeline.from_pretrained(\n",
+ " \"stabilityai/stable-diffusion-2-inpainting\",\n",
+ " torch_dtype=float_type,\n",
+ ")\n",
+ "\n",
+ "if DEVICE.type != 'cpu':\n",
+ " pipe = pipe.to(\"cuda\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load demo image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import io\n",
+ "\n",
+ "\n",
+ "def download_image(url, image_file_path):\n",
+ " r = requests.get(url, timeout=4.0)\n",
+ " if r.status_code != requests.codes.ok:\n",
+ " assert False, 'Status code error: {}.'.format(r.status_code)\n",
+ "\n",
+ " with Image.open(io.BytesIO(r.content)) as im:\n",
+ " im.save(image_file_path)\n",
+ "\n",
+ " print('Image downloaded from url: {} and saved to: {}.'.format(url, image_file_path))\n",
+ "\n",
+ "# download_image(image_url, local_image_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 164,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "local_image_path = 'assets/inpaint_demo.jpg'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Run Grounding DINO for detection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 168,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "TEXT_PROMPT = \"bench\"\n",
+ "BOX_TRESHOLD = 0.3\n",
+ "TEXT_TRESHOLD = 0.25\n",
+ "\n",
+ "image_source, image = load_image(local_image_path)\n",
+ "\n",
+ "boxes, logits, phrases = predict(\n",
+ " model=groundingdino_model, \n",
+ " image=image, \n",
+ " caption=TEXT_PROMPT, \n",
+ " box_threshold=BOX_TRESHOLD, \n",
+ " text_threshold=TEXT_TRESHOLD,\n",
+ " device=DEVICE\n",
+ ")\n",
+ "\n",
+ "annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)\n",
+ "annotated_frame = annotated_frame[...,::-1] # BGR to RGB"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 169,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4nOz925YbuZItiE4zA5wRUtau7tNjnP9/6I/o1/M1vcfo6l1VmSkp6IDZPA8GOJ0MkooIhZTKXEKtUgZJdzgcF7tMu8n/+X/9/x4Pj//7//i3j4cHp6/ej31VGIl1dUQs1UIiyAiCWJZSa1XRQ6latNZCjwChSnd3Euy9g7Bia1uXpR7qoqoAllKLqIiEQIiiChGSIKiEwkRBikheD0BERASvaSRfdf2v9qv9aj9ne8NZPt1C/X5P+UnaxchfQiovbikiUFURFRGBBIPk6qtQw0NVgwGBh7fWTVR0UHOCIuIRQqppAEEGGBEeQZIOAOHBOgZHkgKQAQrhTPIPkggahEKAAtlG+Vrq/6v9ar/arwYAEi/nAf+yrRQ1ExWC2eYP3XuQBhWVEEa4e1er9EBFCumqSoaqEmBERLiTDJIRIQIRsVIEICkQACAhoqJB7+FqxgiSCmEIJCm+gJh/f739fRn4r/ar/Wp3WlKAVx3wHdHgIDz/3HYxP/uJ2hNPks9paX6jqoUR3ntEUOacCayYmmnRUgsjeu/u3rx17+6OIdFjsgEGiWQbKf6T7rGNLyICJwZD0oPOCIbn/0AHO8M9fPTGrWH/4Re5/7b2l8/gX/38X+1fpAkEkPirh/HXtAuucPXQkSwppJsqSY8gU3I3FS2KWqsqCHp47x2TEJuqqYqKmZqoMwACEhGqOiV4aMI+pKqlkpEqQJBkAMJgMgwAUIAIwCgCSaaVqgPxi2S8uuW64wJGmxwYAuCfLBz9ar/aaL+woGtYelLdYia11lIKgEh8RgsJhdZaFGjeRaSU0ntYKckbFiu1lqJKgoCptg4yVIQRgKhYMTEVkAJV0QhXGRh/RAQJhgAgIoIABAwaBGaggsI0EoPgpUbz42buO7T7pptvf7vRISVJ/LP+ctYde7ZK+8aHvqbJGJLw6yDfSZLRl97yq/2z2nZA3nA0RGQqvTf3zbf0/zO0W+PPj/eB9FJrLWamSiGDIIuZQI1WzBiOSJzHVFVFzayWUmqppSgkSbmImmpvqSIEkBfqeLwAgKoKEBjmAo8A0gmIHqGAAtkVg5Q0FJ8Gfwve+sb2kjn63j38RU13DOCvGXweztfe9PpbfrVf7Ve73oooBOjuMBEREy1WDaaiSymke4u2DtBfVUWkmJla0nVVdffh3QOQCFIFIEVUQFVNIMhUoQgGpsEZGKqApwaQh1vgCA1Jl1BMAfZdKOwtDv/tnP9beng/sUOSNvIlBH3qBy9pF0zuvXjetUm71uelWLN7Oom/H+v91X5ce0eh/sLi+hNiEldt5vfHViRoIkGCEJVqRU2FUNVSDDDpK0mCqmrFipmZaTrriIQgPLr3NdlAOvIAoprzIyokyFAVAOEhIt29R6gowiPontqAqAjBSLdQEYGmT9F+rt9Md36SRbrSLh0VvpmifacXvadGv63Dl3R3fs35GFJA+BuqX7/a37WNrfZP2XJFIKLqEQwXEVENhkJNBcLu3cPdPTwA6BT/8/1FJW24w/VnzklqCYAQ0/sTIDDDyaS7B0NNkvqTsd3MoUSMvxncaf0yuAo2zYAZK/bD5us7tO81+BuxFHy9RjVBeMnVvGAvzxjr33w9frV/YHtH4PDa7haRn1e+vNsKYA42D6JXKz0CEYuaCslo7p6WAdBUzFQEgQjSARIepDN6kOEezTvJtP6qKaBOURUx6cwgM5DD6EsOyAgQU9VJCwmG0FM+pIgICIEYhBCBEL57BU5T57cvgOxl0s2L5vqlF/vg3Nsszdtff95tLfKWZfgNntG3PMDuDOlSi5zCuu7cqq93mxGCz0Co92MKY422+Uifsp+Q6bxhpf527eo7fr8Xf0Ok67yFZ56EN/DPb9lFd+79YXvgDQ8qqtK7997VGBEzCMvCw4PdfcR3RWiptVQxDaCHiwiBNOd299QVIoJBGiHI+AAwVAwi7o1BAO49gmYWwaSwqirn65EUJwFtzSdN3Z+kyDWnrve2Doq8CJ0fkDQE8urH31mw72euuNo2X9vr/b/yXPAtk/Gr/WrfrfGX78D1ViDDJBsRDKGIhHqgO0LCR3TvkMQFCNDDVbUzxINp1ZWM9kpqPswDIsIIIVQk+chkAEFSVUmXremQGrbkP2lRyKZIW3W6CQl20rbIFiXwfI1P2NGOsN0mZndF/strLy0tL0S0f1wbnrUY0rLchS3vRFpw+AfnRelCeselbnDOTPd0S134CQX279Te3cf3J2xXV/PnQkXeEwK6iCy7ePfzx3B6Quan7zwh93Wvq78WUCThHnejMgLMhD7eEWvv3hgOs1Ksilh4UAkgugNwRg8H8uRDRS0dRjObG4f3Z1oRTjFfQESojowSskv5pmcMYFpcsi8IBRDKBak9fXx+2Lbe3jCf36U95xTKl/6Kub82es2BSQoAIWQX4bX1s91yMtKkypLf356anRPuZCeplMnN0zR/n/95kUPSr/arfd/2PSnvT0NZ3tRKJoCbHyfIAnR6CNy7OxWmVopWEY1woGJmeujh3r213iNImKqpjcxyGBKouwMMcjiMiqgpIKSKqGCH54hAhEOOHJRsUpN0EBq8XDlgl1svdhEJ/Y5t6+4lpG3TTbYmONszFETS14kiPdctuHFvmZfOS6YhHKmcZecyGeZ+vHu+cktj2o8Ke7VgYwRyRfrnadecc54dD7inNHxr+6Xd/2pfaa9XR953w/Iv36W3dO6SUrlHU9VwAVmKiVnzTgkIxUSlaoZwITEc72oR6e8vpBASznC3xVKIB5CQUPOuqh6eaX/SRJwdqaZ9N1TUgwBLKVBNNiAiA7UgehLGsSbC6fpnL6Dv+5W8s6r3F5yTFQUQGFEPiqu2CAAgORIrAQLoLpKZ53gLubdI7d4lhgIUO1o8fODBvTa3ba6J0Ax+cMMLaHujkxn15W2z8d7sOQ02uxY67AH7798TEcrp+4lsDv8S+NZ+B/4tYK5XmKYHyPMeb3HCi1I80peO4VueeXf/XcxD6b3DkrLQvZOstUZ4a01LZvIBw11YtTBIhPdQDQHIIXXKjjxHuIhGhELcnQDp7tG7u1NVBBqBmSWIACIC4IYFjZGSUEHGBUxCy/kOBCX/7y4BIxBg0t/YuEf+wntQxvOmz8A+Aj6/j4uekmpPSTxOYz//a3R0jRpef60hR3wl1uP88/eLVebzvTy/Gvtsfv0vQBK39j21nZ+mna38P+2Nv5O0/jPOUfl8/FIPhyCihRpqrQBaa9170qGIcI9lMSBaD5JSzSJUjEzUGRFBRilVRNwjjQrOTAuECEaw9yBpVkQ0PChhpTBDAER0hhkPqXaT/uXkjXnBu2JyVAAba7h4vZRzQzb4Gi7z8jNIhPtvZOI0l6bRmS11wBrJ8CYvGV1dHIwdYHX+9c2262F79Xdo7yl33PF4w2axGX+mwea+gH51bK/iWBcd/IUy+P0nP3+pn1NeflXjPR+Cd3rEOwkxO7nkpVlCX7kP70zEoAI/g8K0jaEEo/VOQkXo8fBYkBkaPAQwM2cPQiSvdIWysPdQQTEF6D4ShapIlgQTGMnoHpCdhM4k7CS7NzMD0HonmOlIZV47PIhEeCOZ90ZOOR1cNsB/94YnfDz3J5NQX5OveUmgryxJnH8dwMab5DkB4okUApd23TstUSO9eJl/RPu+IOjFFP91iNBrpeGfy1vmp2zfYX7+kgn/KTWAL8djDZZSABVRhcQo5yIpzjMGCfWI7n2xBYS7U2iqTmYQgIgSiEjZfWgAieKkQrBVeRzxYCJrW0VgqhPyl3RJGoIjuTGAzdx7icLM43aNZMvpgsEDkmC/ce2fqxg7PnSlybVbXv6sn3GzvKmdIUHX5uqmVebN4V3/mLn71b5P+4uY7o0n3iEi37+V43EFdCm1WlG1NAmvrZkZAr11OFSltx7imhbazBxUEBHNfW0ryVIsMZ9SVDJaUwt7BCEIiFgxJ7snIiCtdytmYqAoVMXSJXTTTlK2jzlFsrk3bgd8S312be62kII9Tv0tlEHufrx8+lufJH8H8vU6fZynHc7NLjLtMdnbM/vKmx4EzIv/Sp36W+79pQpctKu2rltT/arZ23fyji4JXzE1X1NMTwjJNaqx82L/LnujmFk+w2qJiKfjkw1SbO49IkRmpviAmKUzDwCEmFpaCEwFgt4aQlTLDAIgGVltWFVbb+ERTgFVRVWK2ibkpwEAwzVoD8fsUJ1Xvtu3H6c3EKCLW76fAfbH9P/tLS3tMiPJJtqWBp6BlUXWbvpF/X61Xw3AmREr7Z8XYu67nfdSSjU1KxYRrTf3ONQMDw6SpVQVIygCQ/EICmEiKh7eXSLCw4uVTANqVk0NAKjATPIsGhG9OzE8+SfQM8LGaik6iwxDTjalUyDY7n3PPIVe365y+/us4g2M5CteOvfv3f39wvf8diPqG9pL5KY0pKfOx6kE5M0ABOnFNVCidxkuyXvhIe/a8r3es8PXZNF51cWvHcNF+/GqyZ0n/phXfpcOXzHUEQF168eL4/EaenVeDU30zHevHJbHWtTUWmvH3hg0hcoo7lhKURFSVcVJ96aWzvvo7nQGHISomilUFTWLRULUoJn8OZkEg06CMsvLpB+NmurIQZ3A3IQF9jjdlvzn3ZfqZ1O6eb62m0H4b902pG5QfQjBAAzcfITedV1/1Jr+xIrX+zaZibF+zMz+bKfyH9zKUosmeqNU0x7ePUxVlLUUKwJq1UJAwikmAifJAAmFih4Oy2E5qKoGFGpFVZUAkcmBggyP7ozeXSBqdUZ6oRSrpZ7A+mGmHbDGpbA/fUPf3HjXXe151y/fhs8iCt6NNLxmDD9dO7OTbz5Ru5g+7Kj/m23mN5/6ndvbzdR328tMlJty/KPsmTvT3K/2wvaXWHcut8S16P2tlUMt7r1FF9Pu3rqblrTJFisiCtFSKxitsSo8PLZYUEEtRYuYqcBMxUStGoHo7r2vvZuIiPfo7iQpKiNxXFDLyVrg7sN/fLKBpP6bbUBETrSCL/XhvWg8mSRvzN25v8rLbbky7nh/cvA14fj7QIOvaXeI4K0fTrwg47oBHQEDNy0B9wObr178Qur8ZiK+36tv6+FWe73d+we170HRXj6Hb/Cgf8Pk3NppV817L2z3h7GXJN5lYp897hKt3Z5SPj48rtEb/cvTcW0NIeFOM12KiAKa4L5Ah+e+dyQmQwpQSrGiAFTNZGR1DncP93DvToUqk/qbmVkx03zhiIiIzhFMyy3u6Xw6XruEd+fv7jJcfHzNY3nuv/OaEON/3ca56CIvDsv51X6OdseL5g1d/S0wnwtC9I42mH3P920w7274KctSW/MgjscW3lWkNSnLo1khRVVrsaoWCArW4xoRpRQhRBUipkVASXVhGH4ZJEmPcHcRg6iHk1l1eNB0NVOR1nsxa4KTUpEuSTo0zgsUaGBEr5F0zyfr+sRtjzjL6HDLleuGtfP849k1ev77/Yu/HWj9wU5B3yoFC2bY3jv1L9/kuPXy9jM7X/3I9gbB/H4PLxSHvypWf/WWb/ee+PZ3f8NT3rHD4mDrvfVM25NAfJSSvqFSSj0s1SDNOcs3EhARXZbhQiqCUqqKBlnUQoIRvffW1tZXYCGkB9O5FABJFSUjIAoF4DFCw2RcIwT3maLxnf0df7AA8itH8kV7ZwfQX/VofrXbTOXyyx+QyOInbtqiN8/Kv33UfhloO0y1mhW1IIPee/fw3rt7F4XoKOBeSqnVpmc3s0ZY837sfe29h/fudOp0/RTTILqHZyXgSwWQIpRdm0Dr/HlnKP5q+06U/bXd8vx/Au7+95Um9/7H09/Jsb+3WDoTaewBr1d7Xe4NVLtkIfKME+zMP18dGOf733OnuzeovwMKMZ0gtqG+j+F8m+GvYhEv+fU77cBv6fbee93WF69Oy6uedf+aIdp+DZZ43uHzc/ESbne1FQ9mVXYRKANQUSEgqqXYUkpE9GjB6L4+HVfSHx4eKOjuphbiIoVZDowSgdZibX5s7g5CAkRn8pJqJbKKfHp/i4qIu2/GXhElQvVk+x3vM//YU/9b5oHvfZLfEhZw/vHcs5PPC+ju/3qJOUEmXvbagb2qXTxFcBrpq3jA2PX7g0fgLvX/6obOo/SN779f2Z8Q3pnzn59e5HX2or16PsMpct2Z9ju/vjtU/dpVOBGK8emSRJz2cHpsjH9vGhrPpwWyuwXP1uBVA95PEW+M86tc9oIH7GGSF1pWSkR49yzVosXSUdLMaq1mBaoSXVWbtwAjulnJumAyazF2J4DwSJeO1tvaVnePcEYIZDkstZRaiymQ0WBBkhoRM/RXRMxUdUYhTwYwdtu1efj5jujN6b4z0Gv3/JWi6Et56tvM3LLLqr17zjdjNn8H4f0naC+ky98o+/9gXeo6trP991oWMcGpckZ2MX85jfzKln92i7z1ZS/inK5e8gbF7g0ksXgPb95bExEtBoqZLaU8LodqBQKqMpwiAYqZSHEPVVUVUyXYmpPCcFU9tvZ0fGq9tdZ77yJSrRyWRUVUxExESvOewf8mmsJ+LcOckN3ml1em5GuCyWtf/m1Nrm0XecNynW58haXruS/aV4WXF5lPZt2u66DCvHlmdJjJfICtKsM2/5toT15WazhVhpGhBGBijnde+frb6QUS+G4wyLu3q2Txx4gvN4HvH/7Q5+076weJtm666f1nXTUFz98ux3keWHtOx2+91HPlcvMhzhYRk6cMbWOM/64q8HJefuvK0lpnhIlaESBgcjgsh1oXK8UsAA+0LPrYIwKCYMCKZrRwAOgMhxrDY13XdW1fno5PxyNEPj58XGrdo/keDtBMa1mWuqQV2MzUTCFqKu8dFfrd2vvzm/0y31qw+2CfnPDvl6IZMmpwZr6PScR3F+xIrOjUm11AwAgBApd7dA5CFFdCKybZz58EeHsk8Augoa8cgLe1F+rXwLczpl/tK+25DPS+u+JZb/tDinOlgbdE+4sQ14vvt972j/p2Pn3VSLCH6UiWhMnqUq2qR1e1pRxMioqaGSOyllf3IEUgRW2pleCxN5MCIHrr5nUp7n58Wlt46731vtRlKQWkAsVUNEVCmJqqLbVUMxFK5qEeFoGXwl7Pp/gN83WaCzwXQ/GcxMuN7/Oni4V/Fzlr34XwDOTerejOHnuqCf8cn93U1tN3mBZ/hUJOGsDF9G7yfl6zxW0IISNNB09j5Enzfj6Q/OZCYbol35xJby+zM3xVH3pbe77rXg1Pv5vcfZMefWu/ZzDc14/D6Ycbxpf5ynyu/+DGhNwN9+P5GGS7Us7SxlyherfaS8bwjNTs98BEijLbPIkhy19q7ac20YIZDc+RCJGUdKjPw3MJC3zlVV5uj7mYn5KPz++qLcuyLHUB1ERNtUeQAaGoFQWUS60m+tSPa29FAZXovbXWvbrHsR+7t+7Nin348LAsS7FiqqWYKEgFLUhTrapFIKIQUVEMx//hDnrvXd9Pmjvtm+tPlJeDPBeGl/fl3mcDei6QzGxqIjiTIc7F6iyiuRm+ppUMu7+wQfF78r0BPtyASUJ36vXpn+2rGwDmK0nmTo94/d3fo/00Zqd3HIbcoOzvqDDlidiOrZzo5vPR3Jvhi6FSdjW5RbZf34Ke3xnD+Hhy1nkG5RExqf+Ozu8Gms71ZEQEmccsLxquL8Pwjnwj2TWOtPa4QxhvAX173eiWzloAqAqA3nuttdRSzFRklHV0Tyd9RghQa6m1ktF7681DCEU0B+Dk2tYe3voK4MPj48PhYKalWCmlFguQBMkCMTVRoYqMQmCa1P80ZYMxzk2z2XK+ucnZU156Jf4K8iMiwYGSyLSEjy1/QupP/78BKWPV5Uww2wwog0RfWl03ASE/7cSE+atsH2X/0+7mi2/P+3ltewO1/WkI9N+jpcj/HuLUK3oQkckDbiHvX4HXrhrhLjfwu9sEN2PCc1xgqzP+jPonRp76QQRbJj8AGQQIUsVUk/wJQRWqqigEoXLmDHlB0F805BdcXGJQeQ9EJntIe+/Tuppp6y0YTmQq/1rMTLp7RKxtTYkyupda1tVba6nEPDw8fHx4PNSlmJqKZoaIAICs+aImolATVSEZcKWcoVQX0Rkxyoq9BHt9OeHe0bIXbbiXSPfvRYOyH92WH1Oilwm/bIDOLTfScxIv52+6o+bX9Nzze/W2Fnn2xF3bOPf5t3enTl90ZF8yw/dV+79L2ynvZ5rohWX97h7/aooNfvuGvejhhearl3z5Ncv5VSFmKLlDCno/meAWgs9z6k9y0H0k5nH60sObe2ekH6QAIt3MFEM1T09IAFlwV0idAbF7ZvBcw3j+ps9J5R4L2i4uHuEe3h0GEWmtqRYViSev1Qh4eDBERFXUlAyyk7GuzXvPcusUOBiMovbhw+HD42PVsiyLmVWxwe0FAmTSODPLqLBtpnDB375Bjft+QuD3k0l3O5c41/U2NEYmuR9fb5fJdu/bx/Be11y7eCdmigr0hgv1V3v8Vi3wlvXo6mU/qn39aRfK8Q/URS8m6qXPvUWnbl32mmvud/gXpE7PVIZ7/CcSMmEwgBT188tkAL31CHfv7iJIU6tOAKuUYmYQKZpJ+FVErJSiighVTYh8U0M2av5y/eDimqIiaqK1qEmQrTdVPZTaIgIUYThVRMyYXn0qdAlK9/60HhcrZkZyKbU+1odDfTgcVNREFytiAiAYCA64R6CmSemyw02uvxS0n204kWGmuiFHDv/Dl5CJu7amy2te1URk4FdJ8a71cVnAHAmpJ9dLbXDD4k/XnD8Fg+afWMA5IPM+lojLlm/3Eup9ocvv+YHIFUX6zhNf8BPnScBX6dQ1mvJi8nq5u57fu+1h7ECJ594BvE/Lno3wzb++vt2c8VcrVTf0MLx5zK/d0C+//sxXTYA7esxezSDAQJzJ/hFJ8OAT8Xf3xHLdu/feI9a1de+qorMOLklVKe6mamZUo5kaTRXoYiZqMc/OpnnIaTSjnoqekF/ufr154EoES6lUXVtbj2txq1rcOwl3NwUZZakQ7THygCanDcAZInJ4fHw4HGqtjw8PD4dStAikqIoKZbDDHBAy1Q8ZcMzTlOxrv1ppV7mwYGB7ld322akzEyt/mZzyLQLvZhQ6/3b/515mv+zk+UJIIvtECADonJlrV3K3VXe/X2h/uHpab7WXS3Z59SsEcRGZLiLnw35BD9dtcTevvU+4x5n++lNv3Huj95ub4OKmZ8PbFLYXDun+fL0nD5gxsl996Jvby0b7A/WwtwQhbqtHEkPM3yy9DDjRI3MsRG/dk5pF9IjMphPu4SBpZiqaoJV7LEsVoAdBaijN0nRKo/EUHrv9q5mLeXhRyiYHXYx16pF5Hk94QTkej1Dx8KcvT+4NS/XloTUH2Hs/LLVWFVEIzKyoibC7d/ellohq1WrRZamPD4eHZXlcFrNSzBCxer7FaFnxMXNBj1ElQTlv04wy3vDGwZ49TOxEcL/swZvbaaZOHqoEMLyWNggwzsniCbG51uO+bcoOkW48F1fyGZR/ksFfKOBcQB/PPr6kj7e3l9Pe59DBVZPPcxD26z3nxS+59PJZF1/cl9zfOaf11YW7HND7GzZ+JAJ2YwTfn/q/OfJ8U99JcgZsMehD9g+SHgwiyO7eW8tECyKQGCpCMAC4OwARSSciESmlgEyLbARLMYIECSMRCpM0miIBJhHREFGqsIiJyGXs5flLA5i1WXPnSAHQWuvubV2FrI/mHr01NXUPMzscDlBEUE1rqWs/AqzVVhces25weVjqUspS7FBLLTUYTqZxXOZyqupWgB6TuO8bptGcU8cZoxbJV91ulb3/PhIIGQ5UbzAeyEZ3d0u7LfccAITQS9+YkxHV5PIgbnv4vjy+qTZ6Bg3dxPPxYhn8vgT9KuYxxvRCansNar943H1z+pkJ5I2Gh6//euN1LpQJ3iHr9x/37Qj4S6689evZ09/Pie6FT78yhpfd8i0Pvb+pznr42kbeRv78FU4I0Jl1l1nxSqYNIAIEGeHePbPhT8+71BQADEx/dpXeQN3dQgQSQgBJS2swVF3DRBHsDEeIQAWiaqJmZSOz04VSrprBL+SJQlJUihiAWu2wHIJc11aXmiXakzyOQr4iIlJKNXoecxN9fHh4PDzUUh8Oh1KyIvxOSRERQFWLZb6H8fhRAv58WLzr50OkxfmZSDjUCMoITH1Fm+FPp6V9PmVjZhOpv+Xpf+5zGVPDub8ZT7TyFRL9bezpTafr5XLlG2jxTSD1nUS8vRlg9y9eIgV8yxjePM/vIrDLCywxP0CI/tnau7/yHmnZf4OJ/XAj9xP9nxRNyJjiPt29R4iITTE2Lb3eE1SX7EdEIlTgUBGoCnrvGmIkNCYCIQo4sDnmiKCY4SRxMgGb5FEbPH4xS9uLlBY9BfOHh0OtRoG7w1hhAXla27LUUooAtUgRExw8HI1q9vj44ePDb4+Hh1rKw1IeaqXk27qHR4zHDQZQNPM863B8PRvHUKXkjBNsKyqA7BZjixIYU7LBW9c43s3VBTQDmmYfRAZ0zA/b0zfUet//XSlCz4GPFwlxb9m9c4SvF+e/4coNBpGvsrnr/dymgufXb2x0f8HlH1e7vD385N931o5yXv/8zWTl6o03lZ7bI9oki1NF7BFL9KwTDKeUW93ej8p4bgh97Qgvb3l3JsSbI0ko9ezpb2K18/zPj1nXfP6UH/cwRgTDE8KhM5wUIKumwMkIJPUDekTP5PmlRIRAOoBkHiMF8hTcOaLrg0FquK+tgYMkiYqHC6hqYqWYClWFpkGRoEJcVU0MM0ThtG8A7CgnMg5ASZLptZlpfwq1mDqFIIMqWkwfahVIcwepKkstZuXjw+OhjgAyMnq4B3tEd2dQVAGqaik1w80m3DOx/mfc9Rr+M/GW+cM59c/+Xmz+3Tp+RrqEUJlcBIPPnP18msSXPeXlmenl6p+XAi0vf39F+w4i4VuFWbkeCXpjhM8J8Tlgt/WJl5gaMuHRbf5w6uwa+X4NPX1Fuwf4za19J2n42Zci76FnXOQd+UnanRFdCrrf0PaEKM7JVLiPzTcg6yHnp6zv7ukRJCcijlHjilQRZE5MFaqCVCkE1t6FoUinz8HKVBUiAQajH3vvHZI4caL/bipFqxYKi0PNzF0wTa0QSKjqSMwyedqVGSoqYlmR21QAVCOZ3vpgjpOmCe6X1jsQojDTRRaBHmo1zUxubN4aMw80IjEvUEVLKUs11UlB54RuiP9p6iPRkE0sP0evdoTjRPV3isL46cqSnrq6DDbS/TVjkmSLlgVfSDlvSnZfv/XeA06H+QZN+g42wK+2Od4JQ7wjuPHVB9/ElMaIXkQHfjrKdj7qy6V+bti6KiPsf78AKv81il69YxU47lqCPBjyfqQOMC4CCeHMlcAYTFMwKBOQsa5KZEFcMREVU5OISN/6OmuizMVipk2LCEf08GzzlKG1VVRqLTBViIm4aO8dQJhohBUzQCVICUwUX65r6uWgVUTMtB6WiOjeIVKXUqspRuiBkEVtrxmZmGhR0UOp1UwEnZGFxVL2h1g+UFWLiU7daqP+PG/5/slJh0y/J4s7+W7M66ZL4HQGBlh/dR+cZOmYa3Runp2C//if7L49b98Bv377ZS8yeX0nOHiIpndhqBuk523Dvm59ObsFV5bsMifST8EBvi61bO082d8zeIsn/rAT28+Pz9SP53fvzK0vGdTfvG1GwcEAyOm0ExGtR05uDMKlKhAS09+5mAmQ1bGAHckSUUDVTKVoCQkfVN7zJ5uAdqbdDdDdu/fULaZtmb03LZap4xZVd1Ii1DsQoWJa82nuxhF7lToIrp2dUm2pVZeHhUD3BtHqRQURoSVjkEVVixoxQpgFoqIqVq0eai3FCOneIjyytgwIhGKqNCMwAlTBLuxrjwIl3d8+3sFPRaTMvBGXsA9vQkHcqQ73V/+ONL4dn/sX/iTtZzADvo3MnFSMH9gu9JjrszfGNaHICw31pqPt6ePb/HHGbt8R+rMxnQsx+2u+Wm4Q784M/v6Nl9JpZL0sd2+9Nz+ZARhUEVNNM+yQUMevsq17BvTSIyEgFVURsyKku0tv1XRbhFy3EUe2pZTIjAzO1hvACBRERHgPapBgICSC1MQtcuAqmWg/ItJczGeO9aUsuiy1FGveAZHQAhW6qqgZICCFCCIiekSgMyghYmKGZdFStDNAemTkAyhUQSJFAFu4MnROyqTyZ1swpsk4J03TYr4pU/kvsWXE2L/GSQ0gKdeB91vE8Gw65rC+ZgJ9RXuD3fUqC7xPmF7O3m63vfOUnEfVf8VqeufXZ6Za3GWcN6juVWng5XC8nI3jdKOcRFc5vcQMyrjTTkt1aYg4Q24uZfxzU9ztji9X8zIU5Px+OftGoWf0/AWWW5GJMV2+DG5+Pmca50N4jzb55Ngvd3nUaTXktCIv4Wr766/8OuV/j+hBkuuonT4wag5vAikFEFOqgJsBWASqKFDIOFqiY6pTFC6qoMOliNHoEeEOIEjPBDtZZTdzAUUIlGwiIMWgBgXEwzu9wwFJR6Gk/R6swTCrUMKL6cg89MyJsSSL8HCSZiYh9NBitRTIqN8XEb33QLj33rvDCYhTaxHRtISAwoB7gGFZ5KsWHXRk53gx1yWexU/LbKZasiakjn8BKHfC00nkke18TO3/G3biOApfuejrffxFUtX7ifzfa/CTp99yM/1BUMKeEPMWOb02B89zeFy/9wUX3xve/XXcCOPpsr0Qc7erRF83nnf20yusvrzgke+9X7ZwptO7jh++emfS5nvmoq+3KUCPhxMgMmda755uQakQAEgXSqFbCvtFAUTE9KEf8PvA0iHBGDxAxCAhYqYUgwgjfJTSdROYZsocBAPzdaoViKjZhJ0G8fQcTdZWMVPV8Fgq0iV0Yien0KvtXQsCTu+9iahqFZFDqWXJtF0CCALuvTVdY/18/Ny89aDAHkt9qFWtpJWiRwikFiNFRZZSxWyUGp4V3ze1KFcqS8ZnuqQclooUVTMbCZJEplIwchbqkOf4DuT++kn7JgJ0KfS9iSLfxbiv//QepP/iTL9zUOuuvVGZeHOT58Tu/Nf9318R/V8zuq3yZbYJAGH3+fTgW8DQhH4u4CPZ/r4kcxe+ateI+q3XvOfoibOZOmVAPo3y4urXtDPd4lqH36fJc062G4+InGCJHBgZEb1HYinePWlrRGRuGwYJmCkJdxdkop/MlenJk8IjQDUvNstciIpyc3NnhHtoKcEARFW9d3qQNCuZSWFgShMvD5LuEQFCVaT3UgoquouZJmcQ2BZ2tYHwyKLwa1u7d9NaYSRNVQURLprSfaytd/en9uXT+nl1J3HQ5WM5APDekwupiC0VYHiUBJ7ADPVK0j5NHCKZDigCAg0JU1ACQqCaVVVTSy8oAAPGnCkuJthz5bx8lQg+x7++pd3v6oUPegNA9J3aDSejb27PitLM03V/MK+flteDdpfceg8NPQPi7ouT9wectDLTPeWlvEAevgYKXbCp/e5/DhVuS0k+yyMynd5kxxpeIik/p5P3xJQb319/kJzjZl8dyv7WZ/rWPlGWnnPbvcfadouM3JrPBsYcmmxSqI7ChQNJzwAvgaZ/TkZehXsnjZZknxyhSZucHhEImopHePdiMoR4H+ECAHxmTwvCTBEZZBBmtiyVJMENTk9ROTZTdYRSi9kAVsjusb2PUYsJwJiJRUWk/PHnH/VhJCJQqSqanhtBsvfWgx70IOLL+vmP9VMPFlg9FFC6OxEAJGv6AoRYMTXdgH4ZLq0wNRnKiARdNrQsNwGRNciK2vSG3aK9Rqad6Vf7fJNsUo/c2UVvpqF/IarzD2tfFbFf0dXrV/MezZrD2kb4Lspc9iibHI9JWb5+20007P69N0xEeD7xm6f/Bnz+7K6idwtH70n/Fb3+NfKNTKw8J1NVzRA0I2shRPsokKt7EDv7T1+dJK8kFNKDgcwLwR5RRAC03i0rIXLmEt35HqnZxniCNLMgDsuiKrtKAxTRWutz26Fo+t8oicT2xxPMRMT0bJOU//79Pz/Eh3owFAqKiVmRHt7cnWyrw5sXDfTfv/z5uR1F5IM9lkcD3aMxASdBekqpiJmpSkQWqEq/V62aFQAgIgGKGgDGKdTTVIpaVgqTncEsQT0dKNDlEs5v5M6BeUO7eoq+RQb/3vL7G9rLY9S+3tWFQXD/ss8Vtd3fFzz1pkieF2Ov+Mklwn5x8fkQdFMdrzRCz4aMWVeZTBr50rW7jq3fvvzKd4NOMdGCCd3qHAPv3XvR+1k05fRvuEBuTtOUwtVWnOOZNXWzyvJWAeC7Ly5bHOvzX3A+pNudfK3du/dCE72xUhP3H/I/h6QcY37o0eECM/GAmiIGsc6oVyIiKIIenvzDVMjw7qNiyiZ7R7hZg8R084dmqlAvpSRkAhETqXXpvdtittRkLZvtwaxs6otMa0QGgk2AyN0ZSlHRqX/K+Y4uT+sXO1pZHiJIDYj1CGfv3nvH8dh8bWYIiS9Pn5+OxyJF/+1RwB7dqJkQT52a8nsWNADUGGBmu7YMCCZEp5mcczAzXC4v21B/TLxo2qbG1ty7M5/TizdL97nwb7v752/XAM73TQz2LSf2NXxxg1Be8thd9o7nQsPVu0/E8SR7jJKJLx8jviaIbAj38ySvwGajvdzerxZunmure6zs9OsJ2j8nz3uKPL7dIWTX8ZL7A/oxqP6r2+VEjc8kiRmmKqKqBBBhpVSiiwgZIBmcAb84JfpMukuoYlkq0omGAQAeFMnUEd46jd57T8uys7WVZK1LQk06xGFhhJaSgbqtd6gyWK2qCrNWosgWZjw3bUbkSskcoQJVKao6yev2xiXgx3V96IsiqAz0ID3cPVrrfe3eVg92b8enJ1/boVaD9Gg9tIRFZ0YJWFFTNVUVJZiFjtMCniEPEhvnlbT8iowUmpZaxHY6RIgYMJduIOgODH1B4fiXtJNF+kaF0r9bO4exr9lU31kVSUD7jG6+80m/qfbdWq+d9DqLKkw/sRsGg9O359+TzPwl+feWtPukq+8NrrI9b7cK102a3HOmIeUAwPY4br2/zTYjN1IW7vrMxyQ2fqFezB/niyZvHJDRSGh5NqoLQezC7CDn/gQ/Q4aJi5oalDnjghMWk0Rh8+kUNSulQEQk0ziPfD+IyKQ9BMDIUChPG6eZqijJcGeK9QDIJNAChAcBD2/e3btCInhYzNQoMLVEhKyYFaMHzUJESxYOZspFpZT9sUgwBiKmVtSKaTUrqtOr6GwBiop6b21tiz0goqNHoPfV6X2N3nuw0fnp8+d1Xavax8fl8FDMpMzczkKYiEEWLUIwQkw5yE/MnNnptSSip3xvORiVWeUgdw9PpsITqiXXj+z11X1v35u/vLfb7dmhHU8/DeRdHnODjkx2flm+7DU935IfX6OoyJ54j7HE7sPZ+G+szJVR7HWF3Q7dM4yZe+1kqh0scZzGZ4bHXednKNVOunl+wVvgzZfswDHI7S32eNd83+3NTm6i42zOKd8lTzvxxj1gKz+vcWHjlDPt/oTLgfM/kDZgVc3kaWYGUCmFEsLWmyMg6qpId/4IAK21YiWfRRIiQYpwyLXOrOZyJNfWSh0MwkQ1rwQIlJI59kmiWnH4kIxFyTAVUwGRfQap0Ew3UUsxK7VoLRv1p0AnRRURlMPhsa1NoMuy9N4RPYjj+gSyrX58atBYfX1aVwGXpT58WMQAQS3VtIigqC51OdQ6kpDO7KbDsCEjA8Q4MJGVEUQhmcxaRBCgTI8skZtE4Ve70v6CqboE69/MZq5iNDevPWdrF/ed2SEuCp1fCBDvNmMyI1Dk3Ot8p1nu/zjJ9acO3tV29YJ28ayJ/AxOMLH6ZF0D/zqdyxP+PwzHgpEAYQiC20Mu/V2fyW8/1QFPG+zW0g8HwZhmmPGmaRYWEU2rkiiRmThJEyoFwegcpmARrOvKwvRfSXAmSGGomJrBT+VPCEbQTIuZigohCTGBpRRVEYql+SATQZeSJgpVRTAtu5rGVdMsEiCqpZhNCU2EEyXakHaU5XAoUh4PH0zN0c3KUzu21sPx5fPnta0q2qKxt6XUjx8/2rIIdLGa3pwGqVYsLeU5VTOlD0e+hzF5uS3yEAgparo5ewo4c/+KpEFdXnIwfoygfcOzgl+95juMganf7R73XSCXnX/WNen17vG9quPrtXFyJzzyWbcyCyVPFOZMxpcTspC+GvdGdG+4r2u3IDWegNW7GsY1VvSS4b3PKzzT5M5/3dHqa6x5z1Y5VARutF9wMkhucAS3fqe2QKVuehImWXyDFe6C6SZmtftSLjwBxnN2nv3pQL/zvkmyFe4x87uNrSaiqoO+mYqHJAcUQARiUtXgHhFV5QnhAAXeu1hZoAZBiKuoDilAEJlrk+HuXRCLlawCmc5FSP9QuKgA4XTTUmDN3dTEdNTaDcDDRMVGrNWA02dTIASiKCImaloUgtRACBCllkopGTkmImLKFd55fFrXL8fuzRbzvvq6Lg8PDw8PVutS6uPhsUo1lVItXZFGeTOIFdsef0FHBJBdVui5q/KnkbRuu/6O4vyPwOv37UIqvPXrmLkfMKBveYruBNtBD24slwLYk81n4ukOg8FG+OfFz6TKk5bwdkjqX6pdrjL5arzmTNAfR1721rwdVgTsrDK7BbxQCJ5R9pcPZW+CkT2tuCJDbDkj5ZQIhGR4eHgmZph5QLVYMZ2pCihCAQUjdfHQlZZS1tYSrm/D/Z4knVG0qErGRZFQk6ImArMiIa2vy7KYM4vGDD5KdgZCTG3taylW0pEmWK0EMp44OYaZZVWwTN9jKpJJHAYf0GmdVRuy/27WSi2lsbu7SxdF7348ttbWvq50NxDhxy+fTWRZqpkKtJaqokWl1mqLAcNpKQF8jxCRYiURqTjpAVQTVcsFSYvLphqfsMZnGvT+3/0W+a6kcONPt+jIfgzfxpD2e3b8d0fCuDsdX3/K/Zoe8ym7U3sNuLhyy25we8z3ou0WZUfWdwft4nLg0hmVG+8g9iJ1GkqZgrZcRU4upOlf1P9qu9hC5zttGi62X6/AbM+2+k6N4yS7Yy0SaNaLpyrO6pnNv/ZOBDcOOKeiOMnuMxVlk9hPB2d6csn5hUJyq447TTwbBJSumd09IgTaI+pwc1EGFelff/J/EEBVaykgl1LdY+3sKkBvIZrYPwBIrSXz3MBDVSlUVTFVhWa4r2aaB5Ls4R2eDvVVh1cySCAEVBWV9BTKpKRqppkxLY+JJTJjmrZokZFsZc+Si0cP0nsnNAydfT0+tdbWfnw6fqq1eGNr68PjRys1IAopamZSqmm1AMAAhxNPcrC0cJio2qCPyTohjIkj7pOcX5D408eNnDwjOT+E+uM+HbkY8Ps99ILiv7TzN/hQf3XkV8yT8oyM3OxNMqsLQb3Cjp59I9T59YX//ba3bkiNf+N26Zz/Q9sV2eKOdCUbDHQeZHCtw+2jXBFFZEiLsrl5YwOJ7pypIavfllOuvc5+MENMPckX3F0vgIp4chgyMv1nJkkLI0vGPAEaDAk46Ah6AFJURdXMuveq5lY9wor1fmxOg1QUBcJDqpiZDKd4grBiagaC3iksZoiR7nhdVyqXh9ozDyfphGa+TVUzAxERJqOYzPD/ARKz0hPIDsEpmyzj9PoFChHN31S1PfX1+OS9ff785+fPnw4PS/Mooo8fPooVd1ehmVopoUBsZQoYEUNOFKFuyqBkIWEyHxvpBHRaQw4T8ZY04uLff3DbwIx3Q7Tejype4bhbHc5b1H/bUzuxaMZU3VrKHTh8/sy8jfOqf+pe2PDPnwrV/IouCEy3jgnJ4g4Lu/rDCQIagM+L1ve+tjo3y7QBnCvxu2FcJP1IfQCQkfleTdVDBS4i4dHDQ0NIWiylSHr4SCZ+CKbTp5UkfbVUVHiwwzObQuuNtogKIyI8Q8GUSClfTR/sIX1s0/psZoEuqgXCcAq8N6uLZ3JoUaYBVyWz7Cf1Hy+SvkEzC7TIpKvYqK4wAruKfKWWEh6mWmoNCe/9uK6fPv3xv/7f/xCDFmlre3h4HOk5iWJqxaAnN6lZbSBlf4jAhJbsZyRvzhGIQElkWrwNCsQA/GX76yV74X3bjYfyNQT1nhXymmSEbV++5JVlqueXWu+ecIjsR3EpjZ+LR9cjabeAT2AP3maJuXG3CLCd/z1Ww9Nrzcec8nvuvty98hnAlYjB/uXOZMPvJiZfxcTuI9H3ob837OFbY3j+8YXtzFX3O1jNziDZcxZ/a/y3Rrp/rcFLdpNx/tDr318Z3tkFX9GkRSkEAqJQiqrWYiTDcTCARxIOKumkIlKYVRrW3tk8q6RowuOq1Q5SsVJdvK8d4QyXoJBEz3opATBEuZQaGZFN0gBR0+HG3xpVEBB3arG1uRClQggxIZhdmpmZqG6pk3UT/tOVJoEfCBwEfZuPJLWFQWSdy+CxPbW2fn769F///d/Hdnwsh6enJ6Mc0swbLoCoZtzE5hybepUg692ojaCDLdfdCQXCKJD2PNPklBN30Mv7xqt+//YcXb3zK3Cak9e0ZzL+GeF404SJzIJxe1ay/TPW5vxIZ5je+AYXNOa58nDj769+/BnbhS3qez/izU85v2vKDz9Ez/iWaRHhft+95Bx949MnpyckBDQVqClEChTSVUXZvJ/LTwJk5RN6JngD1r6qwGwRQFWXWgNcbHGlQM0MguPaPMJ7DxKIh2UppXRGgEqJUtLGUIoxlNFqPYQyPXZ6WzXDv3T4OctICKE2xW2ZGfQhkvIbZ5r9aeUZMpbM4jAlnOHs3hr4tD49rU+fPv3+6fPvpgqqt/748LAsCyT99kGRWQtNRMRGfZt8MERGTrttq21X7mb8nrD8gzWA93vcLWFw/BevF+VevZXPh3CfH8gWTX2hEOPs4zyPmzg5wPnnMtVOqL9oPL/qclgbgPA2Uffb27mwfPblDxjMfVXjhT1sf9/v6iXv8u5M4upDX/CUH8SrmCUOs9Y5KBJmEChQJAt4qVjvHp6+LuTI+0aEKMRJBhQevVNL1KRuZraw8vCo0O4uUDUFmjCzNLgtBaqiWiE9QoDMAuRwMwuwFKMdiFCVvvYiNlL/B6KxqI28+RvYsnl/AjLNK4Jh2552F061WxIsKiImCO+tSfS+/vnn73/8/ntf228PHyvKh4eHf/v4YKa2FDFNQD9hHVM7lFrLKW9zEMOJ9RvOzPd273mvdovantPBC1FuRlxeoziX/X+TGDVBkwuc5xU9nAM4k/rf6OqO9vMV9X+TE/Y3zm8vLI1/xa74zs/ccPD8+Abi++5nZbfxEgh85/4vnvKXGz9O4DMZQ96hZLStFBU1MZOyeouI9GkYAVoEQKEigkAIPSIYk0CilgLvstTumYZTSykKtPVIkaLLlOKLynCOyRvVFISZCQRSwBhhBh4MiSBAg0gpA3Ep5YS4qBogUEx30nGW3CfRcQBzkFoE6L31p88h5Y/Pf/yv//qP49PTQz0cloeDHT7+9uHDx6U+LloLBHU51FKLWS3lUOqhVhHO0ynBeB6C+Xch6O/drqquZ8L2G2TM+34+l9ABZsrfF9jYrmIx5x2+7aA+A632PX798MvQELi9/A/dTd8fh3wHNv/d2i2V7p/TJoGaHzmdlkRFQwFApYiIEgzxwR8YAFUlQsxKJvcHFEZ3h1BFsgxvqbX1VqsJNJghutLWNUunpNnZVE2tt8ZMmK9iotBQTTqtrXUiWmseYQajIWu2iyT1NzUAwRi6wCQv2WIrJ48B+KqKzqTQJcLX9cvTlz8+r/pfn//Xf//+v9Tst9/+/WAPplgWqw8Lizr5oT58ePiw1OWhHj4sD6UUAKInPCfHMQGn097eeMDeKPQ2FfvlF3Mama+q9js5/Y2lr64CLBNik2fdzmQYUwvbhiEiWQ7zop9gln04S1Uvz9Ignz/jpV8CgJw99Ma8vhFPuKDsmwVocxy4uHU6bpzSD5AER6bYcU1G4pzU2YvBZGTJ5lI5rRWvpLDfj6q+pOdvf/r9Ht6kYbxiSN/Y/ytvfw4nngjLWUr53a9f6RFQiA8+AAgphNGEi2jviEAgABUJQWRyBxMEGU4JgUcIA3C6YGRjAKmq0YJED+8aKrQkwiqmBihUlGxokmEAPQKZ4EF6RDBCootDxCACtVJKqdWKYWQQTEswiGBI2iiCQJZqjyxFmfmMAFWoQk20fPr85+fPfzw9ffp8/PzUvrDz4+PHWg+1LB8eFltUTClqWg51OdTy+HA4HJYZcHzut5On/MV0Yf/lK7f+S2xB1y/eVM+XPGbPsW4O5dJvRC4dGwbuM6DuC/7HaVB5DnPwBdMi18b2NSpwuuZC339hew0bHphXTMp+9zIMiBIZNhNn1oPpLCgJpalc9MCtl39p1fNee8l+/qna3QFf3043Fv2F5x2c0QLTPJDO+lSTAnN3hmTWZxGNaO4O0EzVTGagokeQYEQgrAj6BN+FQTcTNYEO4imaErn26L1DVEl2D5JqFhEkmvcefQiQYDGttZZMGrQLIwkSwkwp6uFpM+jhPbKCjVQzEzs9VrT8z//5f7fPn47Hz58//1lq/e3x48eH35ZSzVAOxao6tOhyKIcPh8dDXWopxYqoiPLk5ZlS/4zceu4X/NU999z97lw+vbj9R9ipLn59/gp7Io6TnHtGdwZ9nyTtRKeev++WrXV+c8L1pmvmyD8yd76M3XpJxPeW5/33F98+/+nWu7+q7TncUHaIUTmOmsXnppS+m9NxmZz8i/Pu2ZXKzGYuVFH6mYTH3X8ztiSr8l0d/49hDP+C7OfqK7+c39yasdsz+RUL0wufu38UwLOkNAM8IQA1gSgbnQ4wGBQEOz2gYqUWm4GvER7BCIqLVZB0rseV7FYVI030eDURUbHQSA99EFmPJWvEr6213p6OT6JQK6pWrCxWqxYVYwhVN/MuQAR6jEwW4/8YGZKgZkkbFCNyTCHl//2//2c1PfpxbetDfXz48G+H+nCoBSaO7o5azLQ+LB8+HB4OtVZRIYURFHBU+iV55rh5Y+ZfuBXunpxvJf2XrERfdEovaP34Mwaj2+q0pTo0/z2RwuBZi21LyfCYSiRIZtuDZhk5n12mCQobNj320OnlLkb94ln5Li1fPDDeH1BliJyI8mYSn3yRBGJM69lm4aivNHwdqJg+bYPcUzIzS4psoskcZWBy9xXTX+1XmxtwiBAiIoHhQDOqNoZsTpZZ4yW8uwexthUiVisWNVGhABJsx+4hvaoJsa7uLWwxMwtEUTU1KyaDD4B0d8/UOc2j9+7uWSumt+buxaxYPSyHQ62HeqiljNrpkHnACEcmsTjRmS0xs4oha8sN+qRQVS2f//jvxw8fjv0YjsPy+LA8qqiVIgWfnz6hmtWDiBxqrTVTi4qHJ3gVCN00gD0WdJrVK5+/ehQ3UfpbTGQvaue08xa9vIXhMAiciDtyHjTxvBMDyFU4WxKPjKsNPZkKRuDGlOhly/F9Xi9hN/Z3n5zLOfjGR3AzQA3qHrO2nogKTgbewSRCMhPjIP4xJm2QdRUtpRQrpsrMKLPZeciAnzQHQGGKUWoiRaxb2sC/YJNvdjz9R7bcPRmllBZTFQkVpQ7UdPc95nH26Am1tNaWWg9LUVGNPP6xRla+Mu+j2pfVkiqsidlMlTNhWTDYWuu9H9vq3UWEROtNBCb2UJfH5bCUkjBMKUUoQQYjAafu3tJjNSVdEhCng2liiJiClQCZSKj8+fmPxtabf/z4Pw6HD7VU905h8/b7l0+P8lt4mKBUg4mngAYF00AyCsxvsv9eUj77ewcK7dHnnTB4SqyWQjBuWiYv2+sO9vm1W/qo5z/t32Jfi/kkr4ZnKSBHzIALNQU1BKKjLCd3VeLGp/x7ShMiogBVHdAhfWQZOqVBIdQR4a0DBbrrWvMN7dTnt5P+8e4chfK6k8wUIZknZFrhT1pCxKhhmjHvXDkzMgIKOZQ6jmiomXF47mUVJxLu6ehGQkTVDaZKU1UM5erb3+ui/X05yjdiNW971s/DdS5Y4Gm7ghylSUYzURcWtUBmaaYqSykkPUIhEd7ZBHDvvXlTfzhYsQKRcKcEpERE6yuqikk6dyqojBSCRCgIEYhoBN376sen9Wl96svhwcODvS7L4+OHh8OymGaFr1qLmUWEkkFERPP+tK4J9yukiChmPJhspjEkJVEbddlL7916F6kPDx8eHj4IhBY0fv7y+cvxs6g+Hj5AJIOPg/SIrVwBTpNI7PKZXPxx+peApHg8Kf6llD9G+v2F/9l0CNfP20b9p9tvcPsPGYGInmBfp0cwY7CLIg1CVAkfKtiI4HAf+AYjIjJiOvsXQQREfAIXYmbj6QpOHpCzoy+Drf66JgAjGIHMldI9gx+pIlmuKPUcAhERYLo5ZBbGiOi9R8QTvHsgwiDFCurIsItSMBAgiXl4e7TeO6ftxNRYQtVgBZYOdSfx4i+dnO/btqP3z37N79Q2sWV+HlRriLCzbf6XuraM3bVSiHBvZBWRYkbAvSRStLb12I+1LJkms1j6/2QNdxPV4VM4Vea2tqfjl7UHFb03LSi1lFKqWS1lqXWp1czSVh1UAENWSofUEbGr3BGxzA9hZqWalZGiTQTl05c/tdi//fZvv338d1B7tLpYi/afv//XcV1/+yBLrbVWRebA4DYFabve0Amcs/dNZD6b2ZxGHTgUOJICTcrGyaOm2fPcf/Rd2p2uZELSSZzy06i7MMs9by1ThkdE671HD8DUTAMGpLElJCZFywkJ9+4xmSWA2LO5jDDMi0UkIpLDl1JgNpTO95qF10zLG1qWyuAoDDT4X+8uiXQNaF5mFe1wD2ewe5L+xDGP9IgwiNYqoskYUt3UIdxM/Cdi7W1tLTxEYVpMI8JKISAQQkaqwS1Mff++G2/4HlPxg9tmF+FbnOu+S/thgv+rXna/6LIlpOMgwpuWPcnAOKmcLnQQqNmy1NUXKytUskgkB7dINFglRIKtr65xqAqhqSxWQQ4gx1QEQ7aMUSs9HK17D/cn79EXLB85DGDFkhGYqgWpqowYmjYpwGAuoiCcxIwxzmazju/UvVE+Hz99/PjbstRaKxkCIvjp86en4yqCw+Hw28ePD8tSsprAOfCadP0WpPhc2jozFZCY/GOuxy4i40ft26tu8pNZpS/tAHASt8kLIqK5Y4AbvUdvwaJuYlLSt0VFJM04nIpDkjYAqiV5QP5vbD8BOS7YRpELNhrlb2LMzEoPzIpLDIa7e7j3eX5gajk/6S7RGa33aD1tAAK4B70rYLWa6FbKLs+nu0fSdDDA7u49okdESAjUpUgPhYdIV6miAUB1hKlfncG/w8ReaVf5lgiuUt2fhyv8PE2mz4VwuvAMNSCS+EsM7zMAWRMYZAZwpVFK1UIi05957x5BhiA3uSokSAcDkXnzixqyqooqiIhACDJDHJQpAkK8u/tKkcfHD6XUapa4f/rvDIh5aM7BoBHpJwRoipIEIVKKljIytImIQEFJP1URKR4pk6L31s2WWtZ2/PT5iwCFZdHDoSxZ8wuYpDHIiAwotpONdDIGjAtxzgM2C6dstbRnzohJ/U/25GS4X92pg5c9W9H57WTX+49b4ylWVoa9ZFzBjR9P6t97D3fON5po0DxmhDJTYTDcKeKj/tzQHiavHLeoDmI0Z2mbtJw3gSCCIhHUlKBVNCQUinfDx/Z9vLOMtpuYDQLqvXvaqzj1gLw4dYDe1vVp1eGyk3uMWc1CNKtkjzYmJEV5iDOSNydulruMJIKOMNHQyPRZp436j6OAN70vrr3sPx4He3nbqD8zWbEIRUNiSNUp4GbI7qyvJQShyIrwxR7qcqzLGi1IraYmzKArETVdWL+srXvn9BYRUd2y9e9CI4dWIbLUelQVkd5X9354eHx4ONRSzYYIPwKwQCAzTG+Vy5LlDFtCpmhWUSunFKEybcPhVAEFpYgOO2Swt27CBj/60Xt8OByq1izWy1EczXTYFkb6IWy0PkN9dorSc/Efg84y0Q+R/FenyVc2Jf1yna4RqGQReE4NeXbJ849JQPfp/SgnuA9AIDZl0GfrveflKb8jYthVIEVMNCJGUk2P0BAk7DM8scbTR2TJtMycs0khkchZovzplIANmErhlfJCErbN/4V+Nr/f9/BuVuUN6CMZwm0OW1unGVwIcF2XsqhZhsNs1qpgJHsFUIqZWSm21LJpQgmRqRESjJjODiQpKio6yw0JSQ0hJYIOyuS425nHsy36d2wXr3Cx1s+x2f1lt3bIe7UfA/7cf4sX4nsiAqiAKlKy9npMTB4uEJsUT0XSz0+0uAqc5MdPx6dOd8VDVWQYr6RtT919XY9JUiRG5EspZhmoAkbWKYYKoIoCU1GPHuyl1lIXUy2qRatpASCZDzTQmzfvW4ARkhhldTEETtmhN9x1kJXkQwnSlsVKLYuphSMsGmP1NTwE8vHDh8fHx3qoIgjEIImUAJURhFBNx4zGoGxzQi8AH5y+n1j/2e+3SP/9JX9bk2cf06FzBKLOBmAD8fMPkmZlf3iYVRayHhp9AkcxpwPnDIDAKOeQ+tdOUkM6cqUk8jxhKk/mnPdq72Zovzhjp+4n64oEgBIN48wci/QGlZAIdlCsWAQ6e2qKtdZaq82khzhf92Flzkp4GSwhp8QkoirTnI7dmnL6rf2SgrfGHQV53v7us3TJEZ+95vYNJ0iY4L2qkoAEnZl7Z9KFdNcWVTO1osVKgcqX4zEJoJi2tgInIte7uzLFF/dAPcV4DnIBAd2jJ8QkkGL28eNH07osh2opACEiQBMgyN579z6RjZONOkuAZYbQPGkAsiDkyQdv+m0SLEs5VKsmQngIn7qv3sxsseXffvvtw+NjXeqUhsOjQyBdtGaVS/cIwagBGVvmZzKZzs7msM12GocHg8DYYUPFv7WKr9qFV/N07nyhNuRoSOMxwSuefM/PWgzHxHH5LH02NBYRJT1v9wiNoGTu7M1fKGauB5HpG7oxmPFNhgVMCzDO5bYEl3BhGnkxlHF79l7NT164EPt5G7ZyMiJ9nEb2q1SCzdQdDZAERAF0BrlorbUuy5Iez5njXFWGJ7NHFvVWiEJhFALTG1nSXBLDQgzqFl9M8qL81t+dwH1L2yfifi4jb9rSxZd3Oryh9H9fPeAOTb81sOeXcRapUlEKRVXyHM+DPpjkhGvSVUVU1ELN8ri2cAcbuxCZfMGKZQ62DX5JYTwNoCQxyy4Fs66AhDuIw3I42MGdtRwO5SDMJKADi4n0JxQJskf06D0aKFUKAJFRl2VS4/TinGFsMnL4BCOCBare2dYV+B2uDV5qqfXw2+HDv//27w8Ph4y7ARDk2r0EUaAqgdhsTSpiKrGT7DXrQSYyZYax2wb6ggnezIn8judQn8UnJwolg+Lz5OuVDCB44fDDGbsrA5rPl9pZLLbLg0nTHZOyn6j9iQFshJ4TPSMpOhK9bntyI1qbPgVsTIDvJsC/oL1hdeaeCTKACPYJ9Q1FOr1BAYogE41nni0BBFJKqaXU4fOgmFHTkOA8rrnRRaSgUkYwJHdPn9OXKzjXS0X2VbH/lRtP9oA9M7i4aq+qXqXmPw8TvarNyLXEUBdXDoFs7qB51k5KJMjMn4DY8UJmQK0clkOAn9fjyk5vhRrk2lgieutA4vLp7D/pflo6Ocbm4d0bRNOF4lAfZIF3LnaoViSDBYAAm/dM8+bha2/dvXkjQ5CpmeVk703DdZLazWtTphWWJFkeHh4fHh5LKbboyt66WymPy/Lx8XFZqtUSJCK6+/F4tOhSF4U8MYYjaeoyxCiiICO/3Ub+ZDOwYHj5zJV4Nx38TpJkOQP7J/40Q74JhmzhcXuBfdDojaqPaDuZMM7JeQki4oCHu0/LAQgHpsVkw7i2gxSkMJiV1UycHplq/BQCvbMwT11px8fkex+6d+g9V5+qqmbFtJBdzTKgASIjHiDLElXtIe5EhKkWsWrLUpZalmKWAFvSbYL0YX3RWe80s1plrb0EVWXHP4MI0tJINZ2Mr3CAsSu/9b3/dm1yyUtqeBI4zqjniwT6v4QlbKLWuT/KGM/+pa5S/00U5PSnFMA5Y55AEh5QhGI6KwBJlYvqoS69e2vdySyyqCq9dfcQtayjlOG4jhlxpip0AAJlSESScCVZS9EsC2MlAR4ByOg9wpF2stZ78+7uDmeEUqyKSJUd35o84ORDgSGWjekaNrZSy+Hh4P2phD6UDx8PHz4+fBSzzEgk7giPiAVVQEgYioeoqoQBANHIdE8SFRpUEKqZcTgQpkpk7eUhdMh0zR4rdA23OV3w7NdTkuRb23EGm15sxRE5Kti8eKbgfqL42zaa8qQAGfUcGZArcrLEknRy9Y4AKO6RlZHHio85p6kBVNWINI6ODB4i7PTuXYAiWoqRkdWHTroAty29x7CevfF72PTeIuzP4zHIyHBJgFJUzLQW47IQq4qOiDYgRQchGZksA+lkYMVURZd6WOqh1npKiAcSPupPZyp1yYj0Qc3nyCPNA8mAQEu7VS7ZYOBTNMHcjQCGlo/d5vu7tZes+1VZnrs2PoIb1cBgAQJgOyV545g4Ds1uP6t4Kxu49Rb3ezuNfBzs4dwo5+2i87NXnm26fybQL0pNes1M4pLiSIgOm2oedFapD7W33p56uNK9K6U3//Ll6XhsKhoR7s0jUvxIK6CYGYMceR1NLYJUmFixCjAfIlAJttae2BWmKr23Y2s+M8m7h6mpmOxo/ViX7Zv5ytvrACimhZC1tXgCCmqth/L477/9bx8fH6oZAlC01sPFrLiHx+rEYUk2E6pptAQJOEWoZiRVxNSzdGxmINpe5vrSvoZk7Yn+NSQkqcIGNO1/uQgBH3t9ovx70sAdbjMHubMBYGY146YfEAg63LRM7ejk7Dic0FMl2qHkIJ3hHiC16Ey0EUo950f55tff++Js/Ej568oRipMHrQgyfyGm0Vt1ODuRQVGC3r1FZ1AgZalmptCUgFRPskwgZmRZhs4rhzOVCMYSbpEHMypYVDTzoDgdgIXC/q70/aK9ishua4QpIG8baL/JMghjuBXqnnoy3R022fEki4jIjvqTL9Xs77Cr5z+9vOdEcbcR7p1LLmjFxdY9++MkgJoVyIzgYQZcwR1imWhENKFIkrUuS29r72tzMpp7eByPT18+famy+LJ4nPT6fFSmK/Ee4CCP3bvaiJXldI8kufbu7MEwLcFo7RiRCT7hHgItZTGrM3XYwDBs6tw6aWycn9QCChh9XV286EFhD/Xw8fHjv/+P37RaOZQWYaq1lMOyEHCyd1f0rEMPIjNtYZLCQopIlOgR4hktIMFQGVtkx4326319bccufytkO4n4+GMEeXOIrBP9OR0AnjUAQm4OOUPnI+kRhKhJBN3DM9NNUKgANGu/TcBtuvxDVOiOkVIqBQp3kCKDCUgJHUEamyRFEgiMtN/EKXThPdubhbXkoONgDKbGWYKIJExUymJmZs195M8DHKAoMjVGdDJgWsy0VDNYKVZsEh6BmkQgGD06nSlPmVmGkhBwhnujIF0V1t7SmyLAWgoCptV0gLmbheDNL/6d2h2a+O23XCF22y+Rbn4TBh0Gu1H/OU0EOjvJC6ZXuwzisstlm50+F7evDubi++2ua/cKcDOO7/RqcxdON20qzDTB9eGAeOUuyCnYH4RIpDs/yZk/Z8uymWNzqsGKjMJN+bBiSyn92Fv36COy3TNp3MaSUgCykUgZAhGKmS1YmrdjXxubQgsKgNznzliPaxKbNCd4eDEz5AHRWqtZQarJHllNymxk/+R8cY+RNi5tyBApVYsCAkbv9Lo8lIcHKzaidGU6E9ViJSPyQSEk4yCgjOg9RlgCQ4TNMdSaIHWQBgFo14DXix3xsgN5BgFd+V02158dZnJm4xq23gyjjth+OD8kQ4eYTDXmr8NhUzkqsW1uWAl5WLq32MkOc2K5QKa9yYGmQX9z+8/xBp1DAskdmyk4kg0odtT/LyRe+4mKqULNuAfkP2PyEq2nqEiT7oGAKzyCo24GIKOYFwRqs/D0liiJhLuk31v3TlJnOhGDBAPOzu6M3nvrrfWWaYUUWpfq7tWqFiCmJPF2hOylk3OBL72hh5PYMtvNrnjPH+xMrtmCEp9BQMEzZ0fkoswNLBNR3ehfMm4OtxnhcDnXuwMdA9oMDs+p/PZ07H7d0AtM35Grd81XTHqbFBdz/OQWfrgDb0/HEhIhEWCAmV08hssZVE5TMkEAD0Jd06dYNTO7xZAvocWiNxLHfvRwkuEjBXwOL+dAmP6aVeiZErG3WNt6XI8PyyEflONf19aiN1/Xtharnik4xSLcVEsZcfU87QQxU0BJ9PA0IaQTxoQ7hrpWHh4Odami+mV9YvPlQzFVqdrYY2WVUaOSHqgJr7JYlhMzEXhOdxYcyCRzohgF0yaekalvrm3T3Q6YC3WNpjNT9G162TkEhJ0Bb7uXw6aKiTvJlCAm7JN7ZfP7xEn02HYhT+FtmVMSQ6wNMsJIiDhDRBUqJkWLWVE1Talj2jnI6N0x0GsSnKFmdFLCZbj/E8DwI5VttmR7U2ImVD69/fvwgFeRqtOqjT0dW6xcRrWkr6+KyaAUAGBqJBgZUJ2h6j2IPE2ghjsLAYQjxLuvGShAwL23vq69de9CgVgPEpI59wAGvLV2XNfPT5+Pbe0R0Xpdlg98PFSaGiTm+cXGATYGPVjtaab3n0bQxvMZuDpj2y56w8SeTe814njnHkl/v2c/bNbwTcA9SbJyOjgYEionfjIwzo0BRNrOx+nJ8wIAkUqyQojgyEw2CfW1+dlOWL7RFKr2126CVhaBU3KkHZuTuu/5jJMh+VJ4kJm1XjWVAVXhoJuCDEeU0+PItAQiD/dGJZjLn7MlqKW4B9kJjx4NvgoUUsoIiMqy6IVq0D50UARdWVLc8e4DLhaIAQJT9R7M8pOA0z3cybU1di+l9N6P7oF4Wp/CPTj8JyJ8KWWpRVUREQIhwrsPOpPK8WDWuYgQwKO7UyGijCitrbSgcu1NVs2zu/aeCrl7N1p6IHn3NGSncYRAS4VCmBiIiAhKVZvIeE4bgYu4JvK5JrerwXNrG1/X/3Yi3WQMnLLzvodTFqOYsH1WTZu9yNg/c4jzyCBtlQx6eAumu47OTEEe4YJM0iBTOtmR73T4FVW4B8CsAROkCKFgZ0Q30WpmRUWEnlWbxd1TiZscKnvfz8B7agAbUbtPs/akjUSmcuvdvfe19dXXYNqj1AQlnZGB8Ey3YmCE0z167509CPGdrAf05nnAu4mIggpHsK+trW0NDxGLXOlAgrCqEuxPx+Ofnz59WY/Hdnx6Ogrw24ffFi0m2q2VahTjbokxNsrYQJMvDNoD7DbkOR2/Rdw30n+VW7x8CTjAAnl+5+RX+4VP5V4m0cT5kE49R0KXZPeZpXaGJWLmI5OpBADY7FjjnaCiSgSGtrA700GqBJihQJqRRkgjzc6MthPwuUu0hckABmneJUhwjMQ4mvIldoi+4Lk7L1MfpYyEnnmMnSGhFFPjcEWkEKfAWCAYvjkPgKcyRjt2PnIwZBRVMII+0iSwt6Yiajbsu8EidoSIGlRCGPR03+/hHOgUA2lRlrGEEBK5Oq1H68dFrbf+1FaH9FjDG6DRXQsEeij28HCotSCEQZs8yOnu4QiNIZNjHm0RoUfrPXPVGKR8+vy7RYFK815qFSWA1pqIlMcSZN0ioAXFigy7jzhAUkWKFXDENJnp5G2acQhpSTo/E98ZuNigwjMPodx229E9QRbznpFcJi/bnEFPDIAMZ9qYEo+PzGdJUqEqCMioWiVbKK+OSLFU5dIFOD1aUoRiIEgWFS3Dgq8js6DMoDkIpt+8bAfq0o7yXu1CgL1zGbmFTQxVxt1b641doWalFAS4qBHaI+ghqgS7t+Px2Pr61FeBFrGsiZqhK713ELVadwdD1ATS3Xv33hygqqY61SlQpViY9t6/fPlyPB5bb+tx7eu61AOdvQ1jVa21adfMqUhNWXUUcb5GMS9e9haiffHlndl74XpN8Zinsex6O1HS0zfbFxP2vJB8JhXLQzrVtUDGF8rYq7mxYgKjwEhCzlmgbVLLEAzjCgf/gEDgERGqgkxGFkOB4CgBemKZu3cMkomQyPZyVBnsKpBJWZLUDwFOSJgqNPWyy5eV6Vk/CXtKHlPDY0gm4RdCKEMyJqjJOXxL/L6TYOdIOQ+g5LzNiXWBpCApDJmZetJFLYl7673Dn44HFVtK9VlIBJwZbQEVM7gQdArgzb2HFV176+Gu8Ogi6s6IfjgcHpbHx4eHWkopZdDYBJiDPYIzyFRVq9Wc+iQaEX7sq09X19L68fhl7e4Afnv4ra+t9VZiEQbpaunBKqXUYiVDCYbWvwMjhtnTbClFRZZMXW3FbMYkJ2E7F5duHYn7EijOISDgzCSAneiNs3QLQ9CbKYq5b7n5JjA48xrluscWsycq5uiRSkDqVvNhESwygp8T+phqyEC592+X6SVEtIW3cLib2gLxdNDK5dxcHUVMrVjdghLvzMz7tm3qdg/d0IKxcQkRaMYCZoZEtGgePRVGy/Q+BrJ776sH/bge/3z6/OXpc/OuYiZWrRa1pS5wuvdSFxK9ByAFRgFDwAwzkQgnQwKh4UAo4NF6X9fu7vRQymI1w2c82HuY9XVdVdWaKlSgIsrpk3baby9mfpjzcvH9rXu/ump7YTO2qpggpyUWm6/c7hm5USb4ww1HfdYzNm+HLTobGB7uIsP/LQ9qgtQAnBSJzCEmkEAgkspwiyQSkUxiE6Iq48iYgqIQ1+kqKWfjGf/zxI7zcTNvh2gGcU+fAuxc8gIwGiIgaQLCudcpB2Ik4ykgh80swGRJTPNS/jbVKSL6tnIxrRu5yZMXBhHBk58wKUBRje5rH0mCCYiGZeF1NSpNNA907721pgYGfnv82NyD4QgjSU3NLMjM0ykQFV2PK6iNvbcVqlCUYjmBh0P5+OHD4/KwLEstpWRJ+ZGIlGSEIyKyVjCNQp/FqQBwbe24HqFqZl1YvDey9N5rqfTwta/9ePAl3CK8pB3YtJQiuQd1yNaWwBwAILO11FozwP+w1FqqmRXLlKjfl3Lt+cG5anz2YTsADGZ+nzQCECHQncJ90h7zH3cXkXT/zE0qM43EeKiIcIRf68jxNCq2kwyP1HdzeClQRECV3SOCRRVgD9cgoIZ8hpiZmurkswrd84A9rbmDOTzHKPYzdylBXW+cLzR42Ux0tEGLkgXQSimECuoRTx7hPY6xqkKgAgnG03p8Oh6f1i+fv3z589MfX9YnFf3w8OFQDyb2sMQDa9ZBO/YoQCl12K8gZrXQe1979wCUmpRMVKDSeusepAhgKqa1WJG0DwjCfW0tQwxm4HnyEm52wf0UXaXjz5WA5x+3KQKStGzJUZ5P9HXVYezLIHcdyg5T5wRL56eTu2aCEzzpK7IRrAFnDqeHhHuYRsL94GMmv8qPCaBvuSSHXJkOJJv4F5HJBQi4h2aIjQYgIaGhIaN8yPbaQ6hOFMXzgGwny6GyReMnso30sxxyPwzYpZLnPFUYO3JKLcPONCnf0PxEdACIY5EI0GMCoIgIQnKeMtjLOSq8qyoEydwAMUG12j1abxFBgZWiSo+oVsO9llJL7dZrqevT8fj09Hj4rbu7e3NXVzOTzBo5oEkSFDMEgy5g6ysjailU0VJye3/4cHhYDsuyHJalmBW1rGolIuIZVNydTE06sxqVrKFEuvuX43Ftq5WSp6UkM6xmHz98/PDwQa14i756N7fWS3ca88zYePFEDCMilCx1yR1uqhnCUyzlflGF7FyJ9wdp23Ny2thjd2zLepVdcFDes35OJ2r7YrMGTCvOZg0h2Jmma/aZtk0AG5tGh9wf8DQUxJDJneFBgZiIFvE0xwCQ1IkhQDFLS64OE9mUFwSJSzrFgRhCjdBDQSvFg+KxZOiwZbJxMyumljHce8WGE9E7Ix9jP1/S9DHJvEaCnvFInCwhUzjKY7G7eByxsQ5ZAVtFmKl8CgNQNe093Lv31uAAMh3c2vqff37+44/fn9Yvra2fvzyFR/+tPz5+LLKoWFlM1TzCRMRMVFM01GLF5dj02KN7F1VTKENFAQkP9xChKBAqVlTNbNnmxAENb93NXNVNacpQjjxMKTkPaO7qRI2ZvJD9n6sCg2APvY+yWb9kZ+Sae/Ri8rN/H6HLCJ+y8SC3SeJ1Jhsezx3S90QwlXtGtWXWSCopAXVGEM4c0akk0W53nfhQxhmJSlGjGVL9iki4eXN0PglDwwGMHrkvcmOoyWmLCif06SOqwLM4oqhkYrSQzZk/69mm4OUaxZQwkmakZu7vk60TBAMCJX26poTPqFt3Ql1VbCj7OjkAJ/cYZpf0WsRMPctp6pNUkoDc8Tn9Sz0wcOxHghQGxLvrUqBmVg8LmreHDw9P/mS1WJFgyv8c8zCz0QN0htMlncLpIDxQSrGlimaqxBDTQ1myMEAxy5oykkq5GlmCruoK+Cixh5VMhEZEWmutd4+sHMYiUlrrIpKZputSD4eHpS5C6c1L7fQI97CSNQgyyD7IHiFkEN77w8MDkAoHstSxqmSKjCEabrt1R3K2M7PxgGEIunr2diDPidY9Q4pkb9rf3zz2xvBOH3UHnc2dCB012fIcnVRUEoRSwtPbnyBhoqlSEkJI4p4iMoBGkRhJCxIr5MxaL4B4sDN68NhDIjIBoJpSFCBEFQZw+JFudF9GEo88w8lSNkPH6fSe6PN1YBpnUyNTWT5pPbu7dnHWJ7Bn6w5TusRGEYd8R7LABBKqGu7aXaKvx3U9Ho/H9Xg8rl++fPnjzz8/f/4MyapqXNemuupyEBVO42dRm7KFQKBi6T4UYAtHRDENsGo1JCiEmUdVFabQYku4S5CEB6N3sVbMTINlUNhhD5wCypl/1V0gKHZp+y6uJ0/RJqrYdSNXr8+FHBFCHJvKk/q6R7paDno7gwnnKIbgL4GUtjiwmG1fTCUWoxDdwBQT2SdHpJ5OeOCk6kVEpho2M6WCdPfhUZMCn2X/s5ftpUTEh/Nixsyrkmqqw18enAD78BoOcsbCApk/bJPcg87Y9INw01pJFlCkRGS+hlnIhdzk+Em2Gd1HjCEpIUznxWRJ2C5GyrUpr+arDfIy+WA6jBAYprohLkS0HiJSlpqY+zD4Ok0MbGSoyuHwYJ+r2ixulKsAnWFhw2+1R09l4unp6enpi4iVUmqtLlG1ZsT7UstSlqWO+jBmZiYqyqBmriJpEcNo4QkuuUdrOB4z1ejTcYVAQbhTrZDULHIAkFBTydjNUtSMYKo/EQzxRHPonjrdJExInFBkWiqndJAkbH9U9uT5GQ+4mdfhTraffbtG/oc0lg7n3CSLrCEVnto/dfhXkkQw64dkBnmhCugZXKwjoVl6mc1tx1HcMwstyziaYxNREHB4ED7tb/SI7imBiaaTm45UShiRBJmvOz3kKVvOWIjnjHIgCxslf9n8bH+SOvf/xjoEG2WXDQe72dnUGE6wg6haQLJ4qGgWoggRdzZx+uo9IphAmburaKl6OByKWS1WrDAId62LTKfyPFeUSN0ZhIoE4S0iCAPqJIoiWop5CEwhS6mdoiZLrY2Nwea+ercozbuoiBaJZLwDngjILfF/m7WrH88pu2x5CDYM+9rtOwgiSX9wgvXIKh/O6O4ENVQljBrJArYulEKhjHyoFNAGe97WlRMf4fBuwRRj5yHdzzMFGBVM0x0lY4poliUvAJRSMpv8fCMhR17I9GDO6ZDpThYRNBptzyemrhNJ+4Y9GjMKmSNUMhkASUFyHxsuKAJxgY54pvGao2i5b8ylp9OleyZscBAuUFSlQTYz6QmH2EIZdoKpqpmSYIrUHSKcFIkg2XrPsBUSmtV2STXJWtRLPXx8wB/1s5qUcjArKQlHhIYkGNB693Dv3npf1/Xp6SnIUjamH2QEUKw8LIdSykikeEIGNZ13SKh4MQuz7pEBqCEIsLeeK9JbS5dYFZSqJfeFqaUSQDIYzftUMiyrD5MRoUnfRvpTUmRk+kxiPy0BZjvdcJD2u+20p+8F+n2tycAsZJbNShoVG4HbxJ6x7SLFeAo9GKQkyp/+imM4Q94RASVymhP/GCmO5+hVpZZSrM6SO2NTOkFnDxcRjynNBBCEiokNwGUyVCumxRx0dwJFRYhgCDWznE2fjZNGwI0f8AxmOJVGOSFRsiP4wDbQs0m88+t2zcbeMCcAGykByICkgAoopKgeapXHD8NrE1LMPn/+vK6tlvJweEjMS4tlZLCppHS5jab13taGzK9H0RCI1Fqq1QyJVDNHOLtpQchiS8YJl8QlYwQLtN5NW7FqpuoCSUmNY6KmRrShKLmFp5i7k3NzIs6/IaeLF4gY4gx3KuteCZgM9qzLxCmTnyVi34NEqHDQlySGhExHWIFM63giWsKBXWOatU6rOIPSc4dzy1S4X3dVddccR/OuTCk7/VTyXNv0l4CIppl0in1nGyVZzkbYVaaGLwiye58Gac4Cg5Kx9EH2UU3bk1eopBUiTkLeMOWEnEAUeiYZEQlknmRP57ThnBn0CJi5RUl5VSS5GbO+7gwLlQnxDSKmqmAp4h7OLpHEfYg/7AyPJIIjS60AQCnFoixSNOTD4SONptWkzMkJsIhI9+gxwsRIHttKwcPjYzhUNILFiojWUg510QGwnxgwySzWMq33IwbXN4+vQATUCgDvXVQDCKcWU9UydUwdNQfcW+tp0OjetRexGM7WeU2m4yLTIzYTuwMoZqUUK2LFTrbK+R/eQqG/Q9tLSOOLoU6e8NmxY/N8jJ9c09okACW28rxDs5GOPNSMFHjM4L6dsGplKbVuieKE3YMBD4/w1joEHt69eyRPDtVChEeX7lqWhMtKLQG0tUMkAmFSICJGUEFRUcSmZQ0nPAooVG4ZTMZrD6lqL+CfXKcvhdmrU7k3j+4neNB9nFxV8sPmxaSpJBGEQUzMNJY6ZDQRURuS7DCcw2qpdVkk4qGWpVSxcRoz28mw90ruN83Q8+VwqFrWtZVSAq7U5lCmbzVFxKqVUiKacRiuemNTy+LyBKpYUsnhAcMtW9GJMJ/vW+7njZOmT/I5lTNmCH7s+WkWiUrRPMc3buFYMuZ3yaZFkdnhx+YMD3fRUopCwxP8GXcGgcgKFJLVms4Y+Y4HSGbV1qQsjsHekpTkbkLMMBl39wgKmO6dOOkKqltFI9khQJebZBOQNkF77EcBye7efILMWSsCEDECTjbvHg7QPRBQVWmSorjs2igolxtyVm3q4Q46wmfQQ0RXSJECSDgC0c0UVJWedhZSlaoU1ZL5xzchQEUpoWoCVbMQd2dEwhsUmFnrfV2bisiyIH0WJGsJh2mpVg51CYNaScsFMAyriUZ0Twruvbfe+8PDw8Ph8fjURWBaTE0hxcosCjySSETOmtGZBcjQ6R6RvDMdp0eeMQADKSWICHfSRBgokqGYYO9tXVtdmgPg4rUeW4OpWWF4ahfQAccnDqYqWfFl+q9jfErcfwSZbADOPdF+aFUTBbpIyHgBAQ2T69anxNx15wLs0K9P1D+l9iGYxTjYEVmKAekbm7I4SWeMU5YPSQuBKj3AELKYZn6LYraUWmstZqmUkpEJ7p0I0pmLzNa6u6/t2NZWhT2cTitFESIdEBSls3sXkRR3VBL1EQx5n8rc+FDl9DQBKJIw0T5+6JlGleTsiq3k4mPSlg1d2vV5knbHFI/5DSYSv2lcAaEKTFAyRyBgclBCM+5BpdYlnZ1AMYUBomqlhsCQtCeFR08DgHs0psdemC6lVBM9HEQE0RvoKhxlNdzNZpE60Y4e7lmlIuNkBqLtGsKhMQ6df8Iaw9V3TMFQAlQmNc1pTAPFoPwbJqaC0G3mh7B8gtWGyWYnp5yb7iXjPlTgyQG8DZklSCnKZABZEkdEDDNOs0AsyxoOT/d8HOeqJ1dOxT0Ym9FjUFNKxj9FZMINGSQRGeWb+NJIjo7kNypIAHkcMUCQmLvM7Ku5XXLCE9xJM3OP6L1Hj9YbY8ja6ZmRYGmmK/DeBVlaSmlFGRquHaYWeRJyt6XYy2C4d6eTId4ZRIrAWbSkpJ8rNaclnBzh/aGkkkXUkj2TOoTdQrAwkFeGmkbvPSJEwEwfEYGI1d3pjw8PkJECWaghUpb6UMvRu0JVDRhuI4EQak+ncGVErKuDVsuDaS3CUqxoDVKKaTErVUU8nIEQIT0UHio2wqRT5k/8ax7MEdkGILp37xE8tlVVo1j3XiTF/1ndt63NPeBel1L6IqtW6zGz2EVQEJnmxgRq6XQA3TzWB/HXof0nKZErFOZC5twOx4vg7J20O9A/ALzQP8cP3GZipHHYRDqCdMa+rqakdLrXHebVKmnUVcgwvhGhRRVazerw2RzBeL1jUEWSpHusrZHsrbV1fVrX7o6C1jqpVdTURaCm2jvSnU4VJgkF9CAklVYRUShtC1vjnDWeQ78Yc74x1G2+rhpUrltZTnxkU7Lzqy2AUzZ3vYhYw8FRfyunFEJRyQhndy1kGiuP3bQm6igiSpfDsghgZgS6d4jBw3Qhxb0Hg5HA9Ch+tCylqCGzXm1BJgGP7muIaY0QkeY9JHr0xAFKqUN72cyMnpCeUMfscVpDiMldx8vOTbXxwpHpNv8+CQuyvytdbQbTlZMJd8cNhs/BFnsUkVbbZB3h7AwhRVTp1OmSCEFWO/MIDRaKSohDYVROmzYBZjoDwSxDIWqqtKGXBzNqN0czfI1NCyoRQ7CjithQmEEnbcvtTgIjBgkA0rn2ZN7L+IABR5DsMXSa3ntrPWPCI7NPj7wgBNi7T8vvtHUrvPdV8q0PxdxK3UDImAbPwQeywpbnsigRJxeBobZzlzmZnKGsEd6dEdNcPrPbRO5rHduiF+/e3V0EQTWWAjjYez+242M9hLuIAeqQZbHHD4/9y2cdOLli21NBDw+6QjNC3rQojM5aigDeXKqWMvzLs7wMSYgUt8TwRjS8SKZjab231pr33lqKKcl1k2ZNSh6tr4dDLRBJ5/2t7GpSMZLeeqO0usQO9FRRpZimt49GRoGl3mST/k8EKAd6lcrcT7r+NasvN/D7Vnd7+j99oEdsSe7L1Phjl7sYgKgYjLF5BI0bZDI0IQ1CVQG7h0KG05MkIaKIOiPt791b88xLFVlTPiLW3o7tCKI7mnehmaqrZvFDDJPaTK0lSJew1KgSbssce6cX3b/1DqqWvfTPE6F6W9vfx6E5TRLqGdIZ3rtHRu+P+qA6MwyLiUIZrLUSHgq4lmLuLWOyMq/usiwyYhrRU48Hes/kuq15T+TaZJinQDLPLU3FyNZaX4/NJUAUM5hBemfrrZuWUitUIjO0BD0oo9rehozNLCqbEsRBZmVQuxMKJGf77nJmuRMj5uVnKwWcjM6TAQTT6WTkHx7CSxoEoOjoFsIgS6oeIyWPAJqeGkrMgJU4+X9CRjowywCsiPSAjtQREoAAoGZDtaeKxOCsJ5gr5dakuJG8K7JeqQ2T7zQQbVaBRPC2t85ENQRIpzf3AQAF4MIZnZthN2Ykh2Er84o5we4Qtwgi3GUOjREZVpM2BXDGKyZ9HA5fgCgRZiJ28k+RE1Ogu4MxSH+mdmCGmmxirFBgtBqle+/eoAJ0J8W7iEaPMHbvLtG7i5CqmRAihRunObuHalggvJMBB1vrw1IiYmIwsjtEqpWipiLRe1KrTkKku+aYVTLfqUZEb7333t27R3eKiImoGYfyJwKUYkmOVK1ooqGkDjFKTKTUQonPn//88PCxre349HSoVdWGjK9SbCRtFEGq89MBVLclCSa/3MIsz47HWfRWZr6ezFzu+APtO5L935tMnxV1EvHmdmT3sb/A9BxIvT7FgRQ8UqebmatPkmyq9kmdIQpRGwjqkD0lZFrqwNCR1i28r2M1ps9b+uCSkDbY1PBGSD0OBDBi6NIXdFrzgkPzOSESp+iAS9VpSqCb1W0ktTodTZyQbtk8x3fg2m66U7M/GZPHlIZn1sShBLh3j9ZWjx7BcJ8F0cQkQ7AIQbFC1B5O0MrSmq+rK0vEkCTMLCIPoQFDw2jN1+49mqOLiGqppaqKQqkqKsEQPSauqqrh4b0zQkmoP7VjOB8Wiwjv0SRMT2VoBglOtpMzGaRMCwpl7i9hpnEZytaU3c88c2SK9EM1Q4Zlze2a0xvbXt8meaBoQxzpvbt77yPLXvqA6ZhzFYDdxSiqYPpCagTcQ1JK3TL54LQ/uOF1p10/GBymaDSzQFAAgzgy2bEg1Ye8MFyGOcyK6uDWQXAopnKyKZ5aRIsIQJK3kBZK0yqiQAeRyLUmtM5MAqI2rNYZUaFTV0Iwunsxk6EMDbZMwhk9mCiaSVZSYUYkB5FstSSwPhdOKSYZIcEJKE8O51J05CDaSbUI5L5LwUUVSqTBL0wtN4C3RmeHK+RpPa7reliWdV0ZoR+1GKU5BywcDn5ZW2bVDKfTBcws+hD0cK7BoAQAoYrD13VkSJG0jZkBTP3FI1prEKlqMUiKSkBM0YMc+dYJllpG6W0kKBbeG61IHKmqPMS2QTGgHl1qtZJBYRm8nCrjKePbtvu52QgxlePtoFzwA9mHfnH3/R3BdWrc2yY/yW2ywf3n+z4VAnJmxlDA52CyOAuji5qR6f6U/FFFFGKpyocLACtqkkjfFqyL9KKb+ieGf++AmDKiWLZA9kApJRy5fjZqO/jwp5oVBZJ0y9RX8zkRMcQ6mVJMEvrLQNCT3L8zmpxJ83MOr2tkMgHrbRYHapAh1Octt+PqbT2uPqWzWmu1sthSS0mFCVITkeneU3Vcn3pZUgEaOmikMXamlXx6Oh7XlSWcLhQskjGQsnlrTNBBVAVqWTRvCKiIzkR9evOm3dS6m6paSlyEUxKGzilhAvmEKGxnAEl5P0XgbXfm9pap655Uie2+TNW5rcvMNJkjx8wNNfTUk746jFURsXpHhJmpmjCEoqYqzIzNCb/IGYECRcus5s2dLgtgSww8OBkFKnCcjsfYUmY6MoIqRaBOF0H67IyIRwY9OLamCFA27XUnC46zlgQ3hgi2lCW6kKICCYGgd4DYopbSFZ2zGEsGoiY73rxcgpGm+xQUPOiEM7GuACEQU4mI3Aveu5gWDAF/nG4CZGdkhUUKQpDel5oJgkQFM5558AwGqRQzKaqa+axU19YALGYz0pk9Vu+9ra33/vR0jOBhWcysWBWV1lprzRnH3r8cj2trIoLeGsU07VDR4OailKKmUNUSES3aejyu7RgM05r+92bmmUsUyCA+HwGlpmpQEWrrvfW2LIfce0VVq9hiVUyd0b2v7lRfUPXw4O6CKEUOi1kRUVhRtQw6n0pfIv5xSpyadEZ5EihT+hkEKbnsnuIIbtAf3CD9874rd3GiP7nZkNHmw7t4QD0j5VWeaYWm14oi8zOJ+NBst6K+qqLIeC1EWr5GYkEzMR08PyPbs0znkItBCqmgqYRIENUqFzeRTlgtLj1TXenInidFS6ZdSuDYRkTFACOAma1zSOYje+KcqzHHwzA/vpJTvcOc7qQbY2kIZKYdnhjBCbxgGhJk5P/CzpOKp8yqDADGESXYez+uawq/7o7lYFLqKJIsSjMzjQYJgLUUFtjwnlMREyECmSdDrPToRz8+rU/Jq1UsuUSARijSKRQynEkz31zYmD9mpwI1Sspp6SuYezXTopGRhayTa4iKZHBGCGUUg57vnfOeQRsz0penrU3kr9N/B0inzem0MzjWkLsx9anZcvY5glI8c2+G9xbdYCVMYQJRsGhRFQp67yJisIhwR8CAgIrrfOiEmEgBdPjKO9LKmuVAUg1Ml3+PKAFKIKUQUKBpMvXwzJbjBJWLmpOSUnAGtYzoxZN/fW5XMxs5+iX95UURtap7yRAcI8RUDMXqUspiJTdfgMUqNneG4VoiGLn1KcgIhrkXg4M4pwQ9lkbSYJuPhgAKNambvwpEGeLaes9w1+0kJeVIw1ahiWYZItFNmdIi1TCCb92DLshcVIh+XNWBzh7sx+Pn3hpEy7E92ZMsD721tjYHjq19+vzpy+fPEBVZVWWpRaEkxFUbTMzUihawHf345fj09OXP3nvvvdZabTEt5bAcSvXwlDta703lcHgQ1eh9eHKqNpEATVRHAmKIpAkCLrG6d9VYFpPEJzxDaEEPqlGYXFfG0g639El7weFWJtvXk0yNrZ3yyUuDu97SZMinHCL4LrsJN1FrQH6ZWUxETRQ2JNwt/wyGP1iCgHlW0xZeIRDN99D0YAOIdLzN4DmSNFWUohlTXtGPzazYw4MKjz0oUouJJBKHUoqQtSylloSjRjag0f+ZL+2EIDaQ7Yw3yDl/PZ/tM+UgvxENPGsbLjd8YvLL8zaJ3tSrJu+P1gMspSSuMeQmVXCryxaptIVzqfVgFZBxUCGk9O4i5uGrrx6dYFtXQB4fl1qriQIyshNulCEzMIlkZB/p0VBNADEdJq7kl+mVgjQ7U1Q1NIanrEBiiqs6nfZkmHg5Zi+ZNWXzuZ+45TYrm8FY5Hyvb4ZLbIapk3WK6ScTQ1YmdhbOCAqLAZSiGsH0FCNH/V5GtBS8LF1xOWNDtqXOQC1i+CqNXC3IKMiR+E0ya7SYSkIHACC9RQ4lJyJjr1OoUzWDApG+gTJDzDbxP7eK06fek+ya6W9BTIqrVFNTO2h19d7dhVCoAlkoj7GpE+OYj9iz3NUD+RxZJMiEZabn5ajEh9T1mQEDKJm3AKpJB0TS5pQz3/uoBCkuNiDKmtnXNlmJMzdcUROKZGCXoIoEovvaWl9be1qPjw8Pyvjyx6doLhj5Ybz3J2+fnr58/vLp6filNSchKkutpmV4mqoeliWxcqE2X5/Wp8+f/zwenwSopT4eHotVEnYQEbh3RhD0kFIdUXKDDTkm2FrLaOKS7yEAg62vFCM6F229aave3L0fj8cvX76kD40C7l5qLVZ0JiEa6RAwzt84juNAY4AzJyFUQCX9GtTzLi3J/BB79m4qY29EpKw+pdfJybNWC4OESREgc4vIdsBFZvWwAFNBHqLkONGxoSLjuTPF8WpUFkggPIpWLRJrW1svZqXUWmrR8rBUAUxLKZY8M5EN7gg6t3Q/86E7oX1jszgroINnxP2S+54IxPk3U4XARue3+b3Cv2ViWaVYesRmYYAhZpGDVE1HAfchA7fWHkudsAG8050MitG9u3vr4dEBmJValkw6q5IZ2EXoGCJh9NZb74hMZUyPUUSbnAQCcPfujkmYIlTVJc380w3GTBPPIAaSzoltTmV27DWZOS/PduBpiU6b8tlFMw3CbkZPjsozLxxTtexZZMeLVpLee+oe7im+WGQ2hbwtFS8MmGZDSvMRKpmGQHTgoINOJ2nldNt3H344ufdVoVBTiFpq0en7ndRbMeLKtoSFwNZx+h5RRXRYecdxK2b5MPcWETO7gKUGZnkKMok4psCZi37uo8ENY05Qyp3B6DyuR1FdgDSQpiEwAaOTAINtEiyZFQwRMuA4956hxYSqVFMzH7bTkdWBJDIsYKm19f75yxenH72vqgg6+59//P7nl09/PP15XNf/49//P1jXT2szM0QgeGzHox+/PH3544//+uP3//ryee0eIrIshyJFVLSUWsqh1rostVSzsq7rp89/fv705/Hpi6oeloN0qpXuEb2pmEdXtZxAdnY43SVDbqCqpfU1PMKjiAgFwQyWo7uXIiLy+XgMlLp4X1vvva+t1tK7Cpi55VREtaioZVKmSTy4pxkCzoxUu92vk4KNfSCznAW+jRNMOzJmss4T0jrtlnHiBFvGwemuHN65jV1i5P2GyFZRIVNBUBMHUs1QdEzf6M3DIoZvb75tGouEi1ks1lqrxcSiMZxxKMvDw8NSl8NyWDKserhTWYrKuwnhIPEDc55tTv3pzAGzAgMTgRA55SeYisLJBjmxufO5PKkJCRhF2ubmMp1Ozrx8MIClHFTURJ/WJ6jWWmupO0sdMdFwzuDM9FDuvZdq3Vtr7Xh0b36w0qMd27p6z0jspS5LqYYssVB2U5D55qK7jwzqJfdesWVxdm/MSFIpI8pvkN0IiNhwgVCAOflbXKhmTuSJ7OcOmfLtkATTTho7cr/XcFMoUowEMvlrTNFhA9RG98OoNphh/lDMmsMjAE2NarjVAx5dTDhi0ath5EwYu3iTwE7LOhPZBwn0CNsg++1IDuYUKuagECNcIxMcKyLCmHqDQKyYFRGCtgsFPttPQ+K3ERojcMYuiakaNRUyzaKqakBauiKXY6yUjiIzQ2gdb7gDNydLdw8Ptt5zDksp4Z7pEMQ0cfKwtGzLlgUqbZyWJItkhBDRo/XuCIGsKukwmYJdGaZuQ4yYiwIrasfj+rQeGRTy89OnP//47//nP/7j96c/6sHa8cv/97f/o6/xn8Gnj4/B/uX4ZW2fP33683/9x//zx+//3Y5dVc3KUg9FFzJnmbXUj7/9VpfavR+f1uOXp+P6pfcmwIfH3/qhLcsh6wAstgTh2tWKlkKAvbu7kGKW2THUrHc/rq0wwsPhXUA4C0x1ae4xFEVTLdMfA946hoBgYwva2MMxvFPSLS1JEM+xiPE9Tnss80ukyw3eoTGFrowMHI/b5Jt8XF63yZ5Mk/kwu2WsSuZcjN57mt2m8KcKFWHMMIf9zpsC38gykWwjEAyOMGoyTUdpT4aqFinditlhqWZlqZk7GyJiMs2FU5Y8cddB0MentFVeUG/ZrthMk6cp4jlTeVFLL61U9RDgjPFJcWxOwMYz8tAtatLJYrXWWkuxAdFk7Gf6d7bjsQlFqb23py9Qkwy4X4+N7iVKj/V4PJpZb0exstSHpS6qqmLZAzJRa3pAt574gx9bwIOxLAcT/fK0GrStq2AAn95773DzPGxhqkrTUZC5Vt0UrCxrOrXbbbUplM1xTnBCWubcjoySY0HmXkyFMvXMvYKwrUgqIumZl3p7wu6lFGTa4bFrpyiDEEhHNzGdJWRDIFkxYVD1/SPyXhDwgTRhgwHygDArZGVlR0c6ciGrG6mGOGJkxiqQAEytiMRZ3qPn3mSTqHLY6CLtbdNPZCrZyYuUEg6Q039ToJao18Zwd6joFPHGXA/sN3Uhab0PF4XWRdUx+HpRC83cSRPxiakUTNw0/3D3Y1tHAUFBKbWUksV4i5lpyUShpjbcoHv0p/XYGuFfPv3x6Y/fv3z69PTl05+f2h+ffn/6t0///vC/8dPT5z8/OdqnL3/88ed//td//efv//2f7elJqKXUw+Hg9eGwPIpoa8cAllq/fP5EyTDG6N2PT5/b+iSQT4+fP374Hx8/foRZMatWRMXhPVb07l1phRESzrAINl/NjIjj8al4eGtD/yq1dgQ7TPzw8LgUOyx1qUtmf+1t7Sb/f9r+rMmWJEkPxHQxcz8n4m6ZVZW1o7AU0GgM0BgSLxSBUIYUPoD815R54gNFOBTOYOshBGh0V1VW3iVunMXdzVT144OanxM3s1EDcoRHcokbEfcs7mZqqp9++n2FKzuLSriiDHWNHAgYJXQGrR02jpQQGkODuEWKFwX1FzHqe9jCnw5V+P4W4j0PBhITJh5SlciTZodraOD0HukEZGY9PIrWxBZzGWacQuz1b85vk4cwKDJQ5+pkImHxMGRPbGzRBBAZxAQdQidEJJwWccjTZtjmZMttoAlxW9R3QHlvo+ywD8s4bUeSl3lmypXSTYt75IC3ioBG4SVfBp0/9cjXztqHOKXuBqgiTDwm58MGeslBoqWKqHpGWC2DNSwEWIR5tzAAvfUwVC1eFERbbw1wi27GhGbturYwnudKFhw6SZlLrZVZYniTICL61rZ16733gDMTq1i4stSqQXADsYMA52jBnUupyqpqpcycQkEROQsGocxcboccpZDkOJOZmAWsIqLZBM5btKN1yF3AkcL1t6XJwkjr3FsbJ7F+7IDJvhFAQayqFSDArZqFkAgXKkP8jZ2QcuQ6oHgBubtm93VPrsctGrjgzpVmSaXonK570WPKD8OUrl8EhzlISRHpfFscY9oru4CqKkSqI5eWXQxK7qJZfNuqA4BhAlgo0aPBHInwCJPs2yOgoLgdOdlxJSICkxOGAQoiSFP7aIQVcASBRbSEpXigExG7d2Y4BCBH8/B68/ZgItL94ASRR1gMJXgnhJlHAGFmW29t27pbAlUsXKfpkLCMSBFVUfJo1phJ3JfPz5e+ufXrejVftuvnZbmKFJyafe2H+YgrzNvz6dPT54+fP3+6nM5uJszTfDhMR5u2rS55IwI4R84vMyWy1LtZd3Mwegtr3vrWvF2Wh9cPj9M8ieq6ralQqSIsPM9TROne13UFcZmqPzyU3nuEi3Cq72bXjiMn9TVtaALobohgKIQ1pEYdS/vLQJwZhL7QKmImjFnI3Ck38ZMbXPG3oMn/vz145BPja05xpmRuiSiEiNyRGRITbCRUFGBPmWgPVR1D4FRLKRhiUkVUeA++aeVL7gPZuA3d877Ud0UVoiFPhUHNzvd2q35IRQisqrXUm2/DuKj5756V5P9GczLTzWASUkkNBdmjPfaFzQO/ffH44bW+HSd/4oEXHTZmViGGBOcEQ1YkGjE44PlPURkTdkT1PtOQEowUFNu2uVvA162ZqDDVOvlKkPBuffUiGhzb2kCcFTGDVXSeZpXRYmUmhzdrW2utt55TkC2UVYTd0cfkMBFTRLTezDoRTXWuWue5IqL3LsKigoAWVdK9s0v7MiYGUiSWMlKOAY3vX85buckjHxljWlkU5UwH/y1Q562mu7Pm8oqVNLP0bIEwiRRhBptbdqIEzCIenv0+4YFf3Ug4L2R4dluo8MxJRHQnzUSAUyk5fLTtI8LCiFjghTGVmmuaBaONS8T7/D8zdGRetxzDOVWB7zLbPKAg3sumtELq7m50S+n3THy/EuPq3AqX4EhJXClZtey1WsA9fEjhRIqQB1BUIwCPbHGHsITn2owId1fVHOQEU1LrU07BzZLBueV4lZtH9K1ZngruIJJa5sN8nA611qkUJkpmTmvNrF+fn7Zte35+evr03eenT96tlhpr87W/evVWVa/X8/Pp4+n0+Xq5bMsSEbUWMoiR9PDiyXYmELw37wAclB91X20Uvl3N1uV8vZ4Oh8Pp4bFMdZ4OygXu83zQqU6HqfeDqqzL9XS6REDn6dWbV6WbAVxrTbWN1PMstdRSiTglLyK895RBIBVzVVd/UWPdZCC/H254oAFEHLjnoLfE8160/a9/jLh5Q/EzEcu7ykIcyNyYjdO9BCwJ3AJKHKRB5t4jrGjJ9ZYnfQRBCKDg2OvVXDo2TTWLgD2b4NvJ9zJq71teVEnYAaTZ6RD0Fk7zzCRb5SF2Y9rvLcHxX4/gFxGZSZnH5P1+8e+X94fX9j56+qW85Z8+A24bmwbcIaokkOAISvkHIuGUiRVilYgxAAX3GFKOxDxElhAe67atbfUIEe6tLYRuLtak0rYuvtE8zWB4+lJZVM3xc82xr94tg1zztmzruq556C7XxTvVUqAaQeu6Zg9cpZh1awl5M4G5kqoQNREpRZkQyuQoRV7gh2PwjvfLmZ35Fwv+i04v7Ws+VwNymoH37HpfoLyvC/reluEdB9mVCVhEVedaAWfumQEk4CCSdSZEAsGc5IHhxTRC/j32J/qUwL2Mw8A8p0ojgoJlFysiFiKHR3Q3YspB7cgBvWwdZRr0Ze+b95VPY56MRfiHK0vGIAURE9zzLakWGTw0ZuZ9HhqQwXLO+QiEZNfV8yjovUdOdg+5icyrrPfWe3JvzLwUpUh3aOEUgRUqm651euzHduiDz8KMCHPfrA/kzYIAM9u2rbu1rW1jmQHu8Gitba2xyjTPZSrz4TiV4u7reu29w8y26+cPH07Pz5fTqV+XMEcxdEfzdllrnbZtuV6e+7bF1qMbkngmAQ+X9ODJixwYgvLh4TSEPynvMWhjYelKbrYu6+WqpRwOD29fvSFHWxYuykW1FiC8pebbrK313goBqqWUms2YUuZS6uF4OByOpcwIeOteNFR0Eic2MS8F91P3BuLvZ/UNWLjjgCP7f4GK0q2ZRvynAhDww3Tpf/nBIhmVmASM23YlpnQU2t85m90ZO7nV3ZwGzQPdmIWVUwvcsDeZPCxlPlWl1rp/atyGibKFgNF1yGxGA5E7yy2gOVg3JCTyHcaupLZzFIa2ST5hmhK92G0sIoWZcmLySyneL27Ei0B/61u8RM8Sgb2dzRgzxt8/y/dLRLrjGMxCCKQ8EhEJXBWM1Kkb7yFNwu5jnHdGlptbM4ISi3uAupCnRoy3MG/go3JVreGJ5xRR6a3lxPHhMG3e197W1i7L2n3r3rxb2wIeepjDoptzyQjia1tJUDR7WiqpERAoU0EAXMp9znrHVWjXttrbVjREK0Yv5odkKAwi3PfW7S0PIIBSq+YGXt/rtZf3a8dxlKWIFBEq1cP3+5/mhXmwsIgULfdwL7yLBt9XQp4BRONlI0u2zDMEHBE3UUXikYUPhJ08vLsTCExaeK+FKIO9jAIYHOmixcx54bJ3OAixtFOWsxJS4QiA8jDTkdhkCpUSivtzpYXGwPBGdhUgqLGLqVYtJbk9HpFiOG1bva99W9ZtTeApq6+8OyA4fJ6Prb2at8NQNRCJiGa9t5Yf2czgAffeu7n3rV3O58v1ysK1lFHmeazr2nqHihSdJhVl76311rc11u1yOl/P176ssHSz7hRMIXDqpbmbm990GmjPHd3di3kUduOgCLPePdzdsPtX5k3kVI8IDo5wlyZWm9YKhAof6tys9Wv3CFUBIo00jg+PUgtfNUX/yzTNpUxaailTrVPRuZS5aC1SFYTuhAyo3jrVJHeP6PaFQ8XL8HOrdl8E3/zhvXQG3Qu9/5WPfMXBkkz6DnEwKWvs/AwQSeBWHcfQsPKcxgbczVtrakozVy7ZW2QVZ2cjKO+VZg8CkWT9eAupI675mATLzqSqDrw1CO6tNVEaGHYqUHOG73FdkgdONCTXglJlwW8TxaPuLmXf2PeLgNFMu0f/H1yi26998cX+5c0f/DblN2IH9ox+VOW4MeDE94FdYYESBPkDGkli8o8y5fTYl7sw11oJej0tOeS5ressRxK427Y1C9cqh0nHricWFetGBISF8bq0rV0368vWW2+tb8t6bmv3zlMtRaRbT1jQEdbQbJPCYZFemybKjTh84phkIjIpRUeoppehO5P2BDB3zJP2TtaXCNvoFu8J/p7qg8aZyffT/Tb0+4Va8u2aZyM0bmIDwpz0dKEi6uy0A6uZBt5ea+Tmt6x/f9PMe4TN/2BvlxERDSHvvZ91r6fzHMr33KwTEZE6Uj8habLkETk0tHO94osnIWDMNIxURriky0r2XW+5AovQl6dgwg8eQQENQqDDOzzImVlFnItI11qFmTy6+9a2dVuX67Iup/PlcjqdmHcKcjK73M0tKGqZj69ezYejalXRxABTQy21e90N5t67uYVH25q1zbqbW2BQYgUQJjfvl9Zb69iYKKxvfXNrcA+Dde+t92bJ7CZyps4sqe5BL+rNWxghAgUis1FCAlt5FTPtyFQRfC8G8mlEpPYepXnv6/VaSim1gGDWaXRbUEqNCKmaWQNJEdFS62Guh7nOtdRaJiYdLGVmSwNNEHWfWDiY7rZtTLsAiPKwAdaBgiLTk9HKxJeZfBbG++3+0yjEn/jpl98fcy57FkdCoIjU7c13osQgSZkCBEVwpHGcdYS5G4HDGZE/hbupFoeThUCI4eGbbQiupSLgffhfq1aAfSCAm++UUGbJ9qiqWu/WNhRVLk5MSpw2ynszIf/j4L2L7BZh1vNQuQVliCThj0cQyC40qd6JKTS+/f3Lddvbd45s5kaE2zcpaHSj8SL672JS2e4fVxhKIfdARgJGgrWcU4LYrTOYOSKh59RQVlGqWtQmTmbOml3BgFu4GxNJsxU7WJxlf7Rgooju3be2Rdo3R4hTXC2ai5RapPu2ta3WSiAngpkwkUWAZBJ4d1NV1bAI8QgIK6MwIRyjFIvkwjGCeXBCgoypYFeovF0wShGpwfaMMTU9dkhu7EyYyeEelgTz7k4EZVW8lGIcBSgLJd4uhdmV2Cn7oizCQgVC2mFgKiPhuVUP4xASvg0JDrRqz+wD8KEVl9NsQSGJmo7TK30mSDiCJMaGd4+c5xJRcIAqE4lWkGLPHog4IIIcL6cUjPKgff0q5e2HSiKvLCW0xxgPuw3TMHN0BJl5s2YEgcNgRu5ogDO4cK06aynJyI2wvi3rer2cztfT+XQ5XS+XrGJSdBqebCAjZlWp86zTNM9HlZJG3A4k9J+i/whPxC6850BXVvkp0BSR44M7emDmbW3bZmbJMMk6L9L1bJcRAjhGRe+jAsximlKYhpjTVzJnU27cxcxrB8VRiAf5PHCjq2fcMw8PaJCIucrGTCAPc3cLZ9U6VW2LqIpqISLlMrSEkJCjgvKscCOyUpg4zD1MRIoOhkvGI+xo4D4WIcpyaxC96JLlJxm//OL7/397jFTtVo3QSMA4ACMKGiQ5IkpxT+TGEFHmMt6qaN4tInIP6mm8Gma9W4CgRcnzE5VUIjfz3q21lnYaES5iycoJRO9btx7ei8ysQiDZlYHuJxkPyCkdnFNJdPgjJeNiZEuDMPfia+bkmHJm8QMB+Fsvz8gfxqzBEIO8FQROoMhIJKOU+/4ZnPE85b2EZLAL9xFKikirJiEKt0Gd3TUyhkoGM4tw0VJ1mmcVKVLk2hqcihStKqLuJuzC5EFbW0kclt14B2C95xiHd7fW0/pWmYVwvlyWzV5VYVK3IMJcC8KGag6RyBAHSLEU2udg7+H6BT4jO4KSZT8zp33ey1oKwaDIfZ6SMvTCPTgREoDMu3nv3j3C4RGoUqpWGhk0D0fRoSSBxH/HNUt0hDgYKkzM1InHdG5Iub2TbCDwUMEY7/CF124iky+cdkR5jPkOPuUNNeIkLsPDIv2MAEo4dI4CFUldYhAGep/sKRktv5H/p71xAJpCXUwMj9iPJCACxGTjInqEwQ3efettbWvzHk7s6Fu/XM5P27qqHI/zw2F+mOcDqRCzW9uW83Zd1mU5nZ6X67Vt27atboZU7SfOdD4cKqK1soqUyqKqhUWHliQorEf4aExHRGQdAPJhYQ9CeDaTw+CDmOQjtCOGZ8APt14EggdA8HJP3fpJSALJuDX3JlMuzUDcd+CeXbws+nNH5Hmb+zo72ukwSkS+brxPf2TXSFWUc4XADSLBCo0wJ3RrwZ4vczgc3Iu7uSdmsicLewy6fZpx73cU6IutMoQgQISbhPoPiun/qsefKBryJW4J715254Sg996td0//HHMPC5hZYwLJ0DBO6pCIIMIB7ykUBSIEhXmIyOQTC2tRIph1c+u9bduyrkum7O6eylZMIiHdeusbmHWuqoXp1jUeHycIsbPaPeL2dQzLVhBRHcT67CCX8fx3hJfkT16Z22OQlBC31sXtHjFxSKT6qWQb5H5j73X9ODRpwPtE5DlhsQc+J8/Yl52MwdIZUpepCKc8yhcpotM8OfW29VpIqDC0qiilEQla75DeFpO9rMxAFoG+bK1tIKq1BKJZv1631mI+WClCEVqqqqTQdqmzlAQcoCrTNJVahXnSUlhrlVJrUmzzEmUGcYPFiJjSzjXuFy0Pi0RRRgh4AXqMyxsgcLferDW3pBsiggor110HaYgcBPbRtsxGMWKlI8Dw8OR3ItJWBBRBPrjwA5mk+y19uQtil58YHdu9PZG3DJGCSKDUbso0gMeUXMBb27pvzGAOYo1QFa5SiYggQIwpIsA9mCCDXToGuAY3DBREPpYLUsKesqoJEIkhmvfN27qel+WyXde+WnNvtjx//nD+9LG1dnj86vXrd/PheDgciBnwvq3rcrHW3Wxdl/W6bOvSt61tWx5cTCSpagUICy3MIqxFVIvWQYTltAD2QDBIGBFODDfL+Yhb0HtxPYdpT/apR4LsfmuRZjTP66ADSQ5mH1208YQ5/7FzBDl+eH7cMYD93LztWfqy85e/7MBtZjqFigQIjjDKcbadhqIMJqkc4g52c4eVpof5sGqgRQBFRZhKqe5u1oA5i4CICAhlfSl8U0y8nQGgW/6SgppjoAb7/FemNn/b6Mj9g/1XfvO/8NeHZxlTABQOM29bb8kWaJt7X9fFrYkw8yQCETWDmU+T0shuo/fevRHlFJC6eW8dQhHJIIh1W6/r9bou27qaWe/dHfM8l6LMQkatb+YtAG4vNPpuYMlI3xDpk7qP++AFTJx3LKN/US0jayFi7NUAv6wnvpe5vwgESSy4hVHhO/w9xI/zq9w3/KLfsD8J5Xv2uKvfmbu73YIORkc0b6303rdtW5d1Wa7btiGCIO6UpqZAsNDhcOzdCVFoqpouMRzq69Yl3K09n545DVhlvzWOrfXe+vE4b60Fx2W9LMuK4OhbBIqWwzSxpCB+mY5zrVJKnaZ6mMrrh4cyzwTMdVbReVZV5dRWo5E1Jx8sN16q8TBz+jQMGBf7PzQm3XZx5z2a0kBiem9r782tWU+FwRDcxoj3/ZzHD+fIT7r7UYr1hoMVHuYuw2F8/DXzrj5awTnMCIwu9v7kNGRqQeaRKRAR3w6eiH35eQSBB+N+iH56xNq2pV1avxK7R4/gohMzi0pQmDERbdYNYWal6F6CM/OQ8Ey53ByjA2jY9oY137x7YZUQEHWztW3X7XK+fr48P52fz7aaB1pbPj99WE5nOC+Xvlyu03ystYhwmIX3tq7WjYLcbduW3pt3s25BY7KXiRMapsjEjFWKaIF0Yk4tpXEm5lSCDL/GcAeS/HmHMCJhAwAEJ2R7+WXEjwHl+r0W3HPRgDH4ZUZPxLdi/raDvqwS7n2CcP/eHh/YQCKTL3b8i4MqsrocGD5RoZRGMaMIDytR2JV2D49uHdcIoBR9OB5UtU5zxBHp3RO+n1EZw8eUKDEFs9xYzbcrFhFCqbNI/9Xh+7/0wJ9sG9yuNfMQKOIxFisEjqAImHnrvfdmvW3bygwzaGGFuntBWHdmE6G9FxWtNaIUs3AJ6WwQ6q0T3N0v18uyXdfWsrzIh5nePn2Cv80sRI6HYxEdiSjCPSds71Oet2Qt72uG/eR76HiMhSK7XulNz+Bl5Xi7XF+mgZQxZxBNca8wRriPxCIkGSKpiUq3nYHRzAzkSeWt9QQ0ejf39C2ioCCW3AAi4t2vl+v5clnb2lpjAqME2N2sCxL1Jq3TBO8HmYUrMaYqTu1qqzO13q7LFRbEMs8zM5v1cGqrsRAY1/UilR0bKB6Oh9/8+pcPx4cgF65ra9vmKtPx8VBVpsN8PB7nKm9evxYtrbUqRVSnQ6FkuhMjB/YG2eFOkmGScEeyQ4GBuY+ubuzdn5G8Z7c8Bo+ae98265tZTp4rcXhEiVuhIPfNP54n3aQjYGYDKdk6JyFHxcMp1cudi5ntssAYzXzVUcCNCYTcrWkQ6+aUg1XgBJxi6Ch4lsEeSIskzxvt0Xpf2rqup+t16a8xTw9KohNj93/f+tbdvFi+cLyoKz2CGRKgYGUhohbu8IBtfWttEy5VKhyttda283p6enr//Onjel18c7O+btflcrEe5Nx6vy5LmaaUaRvsiUBy57LZm3X5DjpCMgF1ZKxKVD2UEMMEjESYFTmiDHA6IISPC3KjYe2ZTe4EAmJ3Q93j+/517DIDHsBwL8gEIrPe4YfMiTUMIP12BrwMZS+T/VuicDuLdmSYsYNF468AnOdQdq4SlUlwj3Y1FetNS0EqYrcBD3Vm81xnJbyoqOq2taW1aZrKZmWimQZfi0OTNneTZsRNYYNZOJXpEvYRSg/zF82ALHzu2+u/8vG98udP/GIgnKyHdTOPEAYLBuKSZhTuwlFUgRBh1cJgmIUwF6UUOQ4HuPeelZZJkkMNPgym1m1pW/PezXtCZAwhS2dgT5QJEk6hHhypd89BaGa37t2eqLmTBwPCIkWZS6qssRRVZSmsSiKkw7CbdxzoNnL3/QvFL77gOyI8Bs32oaVUmFQCcUT2PKAx7KX2BGS0jnO77edVxjuYWetrsx6JQDIx07q03g0g731brtf12qNz2plEEYZ0EhXzcA6LrgySEFZi0kLRWaKCsPVubVsvq8ikyhEIZwmBk4iY9VevjsdD8aj8emotpBx//ovffP31a+FY1+3z5+vpdJ6m8urx4euvvm5mReXdmzfm3msR0TppMFn3vXoR4eID0SGWNPkJ4WAGQShp2rvAaLb1zDK5tpfY3VBWYJj3/AWCSa2gYh2uMDUChDWY9on/lBY3s9b7FqCw5KaEG0SI2XqEqDpIVbUWISEI6sAetRRQUC6iXFs56AV3uMOJIgzZbmam8IAPsfQels0gdqLO+wFA1r21fr0sTV0wxQMdShWQkJYi7n1Zl80tcCpFldXSyi1ISiY7TB4cwqwRaPCgDrTr5bpcNyGdp1lIzdq2Xj+fPn5++ng5ndqyeXfr0Vsz69leFghHa2sTkUY5a3mnNoyTMyKzPQzjGk9mGt9gnEDAWZBkPSJnAlFBRCZS6fcrKTe9A+y077EMQc68YxyZCtCt7sNeRCaQnGYMzBwQCcl6MemIGPsvQz+/RGW/hwXtVTvdT5L74/txMDDot7cQGUjbehWRcns6dmciMwuQFi2linBESC15fvXWfKq2P8gz1bm9uZ0iCLq10nhvSFIipyDgphj6Beq/45CjDrqXWP/Vj9uRyPcbNAqtzFzSKsG8m7X8HtHgU7sNp+XkYOz9SQq4GRG7R7Z2LQ0cmFkVrbdaVLWYmcPcfV2WZV3Dh0JGNkgB4iAmTvla6x2FQTAfQ5iJSyWbJ4TASFPJBE2VOaUUBt6vmgJ8qjKsPIXSSuD2qb93Fr7MR2Kferg1Y7PjJ7lG7s8xQjxFCI1eUzZsbpBDPluOzqexn0WYeTPbrJ1O526mWs02AqyjN+/eFOhbO12enQ1MoDKXh+Aw69NceWInuLdEAlhYWVRpWT01JRO2W9e1FOqtmgdDJYYmQ+/+53/+j37z619UDnf/w3cfPn1e/p//w//rlz//+X/zT377468fX79+/fz5Ya7l3du3qnJZ1qlMUylVdS5FREDRrFcVFhU25mE+ZWbmQUy9W/pfRU22xBCjB/IqpMdT39Ye8AjvvecidISoIgVKRcnC3KtUFvJuTRsL4JHzUDtgG7213lozW1tLUJrB1j0sVNmcg4IYJReJzzIJs6Qpb1YkRVVKJUaQO26+yrZum3k399asuh8iqkgYwr2bNWtbrCwjnYPBuptTs621bV2Wy+VapHEUOE+lElhJmMKjL83O23W1xWECar016wTSoqCoJBw866RlAtipma3L5fz86XlbrJTDdDiokrmt6+X09PH5+fN2Wdwc6fFLBECYmMXdE0UP33kyN6FWZkqKzMtQOHCZ2LNrMEbCTHAQUYpRkOeARwb8F35PlFSOmwdHptEvQb6XOM/e6bylTaOsJ6KUUBkT4nvHNw+AyJZ+Su5/2ZnLp7qBS/dv5qzK/nhZ6H9RN+xhNX87v1XMeo6de3iJkpglBVM4kWgpEYCCeYyWDIHxHBUZRKDRyxzdvPHFPSTdclN6kZv+IMAzpQ3p/5ePl1fneyfH+PS3HNVHIpBR2Hpvbdu2zVrHIPBlWpu33j0IFL31dUNE9G4vzFoJCBFqndnEehctREgr5hyCVRVmLVKVlQgsGiQdhrC90mR6AQjmJQJgQCQDD1KEq5Y6TZwM31qLKOUN06G0/EJ6/U+VQTtGTb6XtDdckoiLVNXs8mEf/7kB16m2zAMzyki8nynZRh/JFqKHr71t23a5XLdmtdZlObtZOE9azfuytW1bL9sp2IMAKjgIFwoWiGMBmDxcSE27Uhet3bBtfXgtOMx825pIbb0TVEXAIcSPD4/E8enjx3evX//i5794++bhl7/69Xffffz22w/H+VCLkPuk+rNvfqIsBGfQ6+MDi3DK0afkPA/BACKRWkTZI2qol9LNttZ5OP+l0DeY9/wO8B7mlnbnrW0eHcC6ruOnCFVFkHnM00wW3r1RnyZyMpZgjr4T6kbjl9B6X9etWbssF3MTESUlYwR5BBn1CJIoykXLtN+0ilTKs2maeJ7ZLRnZZuER3b0nXbEvyXi0MBCcNXq4e7O+tPXcPgebSpnlWKJEdw/ufV2Xy7Zcl/PFmq2H5u+iaoFTVSU0s35ZttN6eTp/ejp92tal95Z0WlVB2MN8fJgfHo6Ph/kQQcv2fPr8ab0s6ICLlrlMEzOar9fr+XK+rNer9S4kjLSc4Rt5L+Nsso4y6oBiZLp74pypDN2SauZEqjOIZVsnB9M8wKkYRs4c2YonQmQitrfMCfeBzbHhXiRY90j0ErTZefCjXHBnVuj+V36Y6yYWl3IBg9w7dvjLA+bl3+AvH/jeW/oy5u7jGiBCMXPmHsGlltTKVq2yW3G6exDYWedhfj7+8oDUXvAiRkrP94j0AozY/5BGwSlc/kXI3tVXlMaww/8yxH/7eHvA2j/i4C6OgJcza6kYtbMU7y07ZrBILVMRIYogQ573nJk5egI/gWEXByS2K4nbexfVZLOIyPBmYvYIZipFq9apzhQR7BbEKgIVUUF6eRARBTkwhIWQGi3gyoVFShEV0aJ5UVV1KLzJF5pffzr6367S6PClZ7177z0PM5G0maJh0HGbes0KiYjvczxERIj93CJC1k9JC/ZUUO/bulrvsbkFW+/WWhgFdRG1Hst1Wdt2tTMxPRzfem/d2VhAxQmpyi4Ekg1cIqAevRn4VoCzu/XeD3Fkllqnw1SOVX78zU+++vrtw+EYgfcfPh6m6WGu33z91Tc/+hpIpiv2DOYmKZwiIXEjbKgWYUrHLMluWkYKFcQw6dh67x1IZyy+N/ncyL073BMEa7211nsjIhYGhZESyHpIEIGsW0QQR8A2l82qqghrlRKO1nvWncu6XLbr2patr6WIokiUqhPIzPtmHmFl4sN8fHCgMgLNJLsCHWbsmlZpLDDq7ua22Ha+Xq7Lc9IdVcvjw+PEEzkhopldtuvT+eN5eT4cDq8ObysmleIW13U5n54+P79v53Nr1i+NzJmjeX99nMPWdV1O5+XpdHp6/vjp88fr+RwWlg1j77Xom9evXr96fZlnldJ6P58/t20tXIS1cJHaexMAy/VyXc6tWVIxR4wf1WcmTveuQ4b5Efhuk//jO5HlwL0W4Nt8KgcF308I0Pg1vtvYM5KEthe/uWLuqf0P8/HcGbx3ZSPdW0e6n+KYQinnY566Jt87ORIrYdpV+rNzuZ9aL1/ivvl/QAGiFwdSqtbfnz8vjgiAcrsmvK9lFmWw8kAZREstRUWnUuc67bShbNnxrkDGzKKcZpGD9XF7X3tOuafkQ5Pqh6wfEKV0z35u/S9Mh92uxf2ijKud+fR+LuCFdzndRV6JiVT0MBfraTfiNgD4cHfIAGLSX4JAGTSRE8Pe3Y03YWESgdE0TWk2WWrRUoYZp0gtGpHyKBBRKaVwIZKwiNSpRSS3OyWjM7IXLVOtpZYxdCtM6bU9+NX79PB+of/0YZkXaUd9IlLvMMLc8xnMOxhKY7TgvnryniAGp2UcA3fxDyCHlYEg9wgzBhUpVYpTTLV4VN96+lGERdt6BITZmrW+CU2P86vRDwMnWMRCwhS9B69wTCVnYdnCmVlEs7h2J1Fi5l/+4uf/zT/+uw8Pj1q0qjJRW9tclSOdLoEYuCICxE7CQDCxkLjbreVOeZ55eGrgiECECG4mInOdVQUU3f1y3dbVxgjCOErDLQIOeGvbtq3rtm3btq3buHHKKoVZ29oZrEUi0L2TWLBv1w6glnI8HKdpYuJt3bZl3Vq7LJfLdlm2y6enD721d2++Pk6vitbet3W7FpncOxd89e7rQ5kbpG1NlUhYRNXrbJuyiHARFRRzX9q22XpdLufr0/l87s2PDw/Lcp7kULUySXc7X0/vv/vDHz9+y8w//ckv5/LQm3Hwul4/PX3btqttLQBmR0Sz7bI8L68fvC2Xy2VZ+uW6PJ2ez6fnvrbWzD2BRGKNi59jszOLpp+BmYc7fEQRVQBm7q2bt9j1iXLjZrxJAkJuctyg/L2SphfZ8f5FVq5EexOLb24N2PPH3bYkYhgV7FkTsH9Jo99LLPxSoeslUPODIuD+Nd8cIHYGs7NLyI0SmZjSiJH7qZSRMh1qX36ol/k+7dKB453se/UWFfNryT75/obySUpqK0naZIQHwcgQoMolqQVF6nzQWutc58M8H+Zaq1YphVlpFyABDzuFezr64hKMNx8Z0gN3UC2BshdOYuMMGF/G/Sr8LTEOkYTe4FGQ7B+Vebg4BSGF/SxskAGSjcuczrBCEqBaijMHeiHJzmi3Vrnm+IRZp2CH9963be29ZX9uXZZapzQ8ARTC8+EA9oTm8y2KCjFiH95mKrOm5W8pXERk8Isz0iZwRNAitZZah4+KjJ4JM9PubLj7OWX/9r/MoL1vhnGNKGcyw30UTQESBKXuAHNSLNMDByS5xbNtsM+j7RiXMg9LjWFWzkRBGlK0ljqJoJZCfOhby5l2jzDz8JhqLVyciILCjQqpTqWUIhTdmeHh3klKBHuAVYQkrPfNNgAqlVm1aK3l8XiYRN6///SLnx8fjw/pO398c8xBin0t7TrOTMQIQDmd2sZFkF1L1cPAwQoiCliYqCoHmDBPSkQRzFrKK53qum7NPUAI5s2iN+vetr4sy3Vbt62tvbW+mhuIYprLYX5gLu6BdS1FOtzJLr0v62Vr63Jdu/nr168fHh9UhEP61tfzclnPp+3p4/s/fv588h7fvf7u9Zu3FJQaMlV1qsUQ67qx6PHwWlOMWcSZcY1prrUUN1ettcwg2vq69MvHT99+990fPn14ouCH168P8/Htq68eDg/MtG3r56enTx+//fjxj+fr5W/+6nc//8WvH6ZjX7f1el4uJ7dmbhSkMm16uW7Pl8v7T0xtXT3QzJdtu17WdWlmwDCPUiURCAy+uSiFjEwr6TGZRIKMdjEV2jORGC3MASjwl6Hw9vUtlPwQU6GR8Q0UBTuInSp/t8CCoZV1B/QT4RFJtj6lGcJoBH8Zl3go3d5fnzmV0wfR8ybAzkMdJYY49k7FuAH0NFSNBzqCwC4kf6fL306dl8dAvvQt2X1ZtQ+wicfnyvlTEAohEBzu4CAIDzXBce2ZiViEudZpdCKlpHicahHigSO/hHRuXJEfhKVdmuSO/nx5f34Ytm6X8nt3E3vfZXxgj/tnBmfEzJH2/QDYJ498NwjOtxoIIlYtqR4MofwV9yAacbmUYs16bzm8l31gRDQggoRLzQujZZ5mVjL3Lw6tvIisTC6snM5NeaGJiWDm4+BkJkFi/VMt6bUyxqqzEkwV3xzPlFtv9nYFv7fyeVQ8ewZAueKxN2uImTj23Gd/qaHfKyKj0AUFUbfdtcss2WwpPMmk2RW7LfsIEtJUf2MwEZc6A+xbN+uBIGYRrfWoGvN8KFKEddI6T1UrBXViOIw5/WfGYCUizKM3iwCLKJfDPD0+PP79v/frv/PLnzPR48MxaS5gsjGFH8ycpolEJDr2v7s1j1pr+jtl0R0e5kYUoqIq7uh9y0la7CEJQO89NeenUmFOolHqp9Np25be4nQ9XZbzer2u1yVgEd7W3psxQZQeX3WVFPkPQhiFh13X8+n06XI6tbVbRKk6TROrPh4eWXRbtt63588f3n/3x23rLOXy+fKxvp/rNNVJuQBOQmUqy7Y286/e/ehQppy1aeFOLQWUzDCVQz3MLGLRPz199923f/Pxu/fb0pj48fH1w6vHD/P7h4cHYmrbtl2vbbteni/X8ynoevrw/Pj6oZQSrW/Lxa1zUC2TlgZmnMDkM6c7EW/dL2uLvFFDS5THhNOQfhsxa4cyiDmnFjxBxdtP967h97jwNEDlF5n+yJRv8NCXZLhb3n2LmDts8LcEFqKMvvwiAOVS5ptL9i24fe+4efk+R5WcBM90jLnNbdwRi4iUTrqF+4Fj5CcYzeQIv8HvP3y8jP75xS0YMrObU26lHSnJaJG1e3ELETgohbuZWMclTokQTKWm5Hcpk7CmQTqBEaNezgM1IbQchKNbwCJ6GZV4dGKGRMHLizioqeOqvbghGX7uwywvjwIAg3yLvZXuQ3iMBy5I96HqfQ+Puy4sWpR8MAhS0AAEiGLMReWbgvtg7ybEz5zT5F5LJSRPZ4hCi6hqQkzk4aMdwQyw+WgrK6vsN8nduw1qmqooZ2lQcxI1cbpEBEedNdZlwpVMu8TmaHrlXRsLN9c733bHrRmjIggJUVYQ0qSV78BdUkop1ZtTuAQAO1GPaGbdOiKUpWjosAzXrNUCxMKlKixEVKWG50Q6iaizDU28CIRO0wzEXKdSqoqqVpWqGiJeqgZX86hFYeIeLATOHi0haJoPrx5eP8zzV68ffvOrn/3smx8XKb5z5BPF6b2XUhAws1qnHI9IdjnCiZWZ5qkQUes9hk6NlCq72AaIphRrybvv5t1G1yStLg/TRMzn6/W6XK7Lebm20/m0rNfr+bJdV7D3vrqF9wA8yNd1Ox6OzGLWu3UQurXz+fP1dOpra92JeSNciLTIRT+TiIf3rS+XMzZoFMrZbYM1UI1SNIEt22S5rut5vXx1fnh8OB4OAHf3zS5t2yJEuBaZWTWA5Xo+ff64Xk/rulKAiNc4R7OLnD4SlSJEBPfW27ps4YyIdb1eT8/CqsQRVlSKKmPookV4LVJqJRGHb6tFD9q9lAfjOnVihtfCF2X9LVRlFnxLqF9msEC2cMC8kw1fhrMXz3N/hhewM9+g0pch+/b/F1JXe1i57abRcU7EnHYt9h8G+hv8QLTvRxpMGNwRm5zRGfkW7+MjtxMOO25z+2Nu3d2r5z4GnC+0jxl7Nmhpb0m/vCbJ38tB0kxlxgtxAFzcOrKdSEqcwxERPoyqipaqOs2HaT4UnURK0ZqCujkdPt7nzrQZZoZ7hjmu4p21Ou7CHYDj/abl53yB6dN+kcZhdTtB6AWUlnptgx4SmSx2d74DQveny0wyTyARLaUggobbeGT5VkpFNwgXFWZ1D0eIgALM1PoWHuk7a70LCwqYeShCk+zNDorB4guhhsDWu1unCCWuqpQqIqWC0N2ah1CIyVz5cNDRRaFb4QMWGfPCo3WRV2EvhTFkWCgYJPdrS7y3XsY6ZdzXpYhGQDgg98c+SizCetMUIkBYlNUFxBZBcAIjwkvQ4MIIO9w8nODk3XsAGX8pElUiYg5Y+GbWtVApNeBjBL1onaZpqpCtVCmlQJQ5VEpzh9PhUEQhIAGKKBX88pe/+Kd//g9UAXfrJoVGe4NARNnfzuVSSgl4W1ceg+DR1mU6HFXF3Ic7EO/ObMrp/MHCpRQtir35Zt16NyKISJHdwZbleJjfvn68Xq9P6/XTx/duvS/bcr5e2sVsu/F73WO7LP7qtbC0vvWw8FjXZVuu3pv1EEpDiKDsC4tFuFlPe5IiZdJi4dgFdN2cEMM+F4D51pcP7dvTw2Ga5iCER+9bWDwcH2ulFFno7tu2IohIimia1oV5w1qKErG3bJi7WYeBkdkrF1Q4CCQ0ssAxyMQQEeWS0AEc9x4b79hlpKnknrrT95P3PfFGZP6HkdIlrrLHRwDOpAO3z/o14qWGAO7LfS8efpCk3143UnrwRfS/Rd77s+10xoHgp5TnfjK9oHV+r2F5L8dH8r0P898kHYnoFotv4T4i9OaxegfxMxX9Wz7C+BCSud4PIPIM92O+J3NcjkjiaZ6+VMKMVIxANHHGCEWSTFS11ppeJbWUUqqI0sjieaA5dyP0EUOJSET3jkfcbm/soT75lrwnsnmvMtCQ/PATEtGeoH7/4+25/xhKHuCNuRGIAd/V+L68JZniEVEQIsxk9wdP3xLqABCOWpWVyaG1tm0DiIK2bUv2j/XORGkZlsoMqdMdwSkFnccRFJCw3s17VU2GScCtB5Fs1pnJHUW0TKVogY+5hUT98DKJ+OEVGP/hsVj3M3T87q0FxTsWNLIiTqbSnpJkoNzBny8WEqdANGUOQaxatARx9sEiRQ9FWYItrPce5M3bsq7rtlmjeaoMUVHsp/ZuwRzEUkqtteSrSSEt7CAVVSmkpSpX4RbGobVOzkZBDK5F3755/XisX717/aOv3vVmTNxaz6CRapmqmktDRAPh1hGx9Q6g6Aj3afdU6vR4fABKRDBLGi5p0Vx5EdHNsfcJai0RfgOFyCCqReQn776uXD++/zgX+XxerfvldD63k1vrW2MWFSbiUmrbNiIy62C23t2MAzT8piXDf2CHS4LS/1G1KCkNY6NkOgQxkfBNTotJKMiXbW1t5dGl56mKFOtexK1HmksUYd/zcCnqFmN4NoKztUPkzbx3DhZIurIwIQE5AmtOpdQ0BGcGVS0qysw+WrV3AcvMK5Q5mUi0Hwyxq1kOnsyd+5FrF5Gjc1/iP3iR+Ay9pX1nj0iJ+x64RaQRK/dfuOWH+xbKl9zPJx54Aw+GRxYcu8Q84+aFcEv1Xyaat7Nk33wZJ5HiHPRFQjxisehABV6Ew5efGrdT//ZaCQm4B+0A1djj+IKSlE+XVywTdmfZQRNmRjHvDFEKJohUBnmJWklZqmgRnqaqtSIpoCwR5tbDC6CeLNFgD3QPcIBEASCINFkd2XqMMYGUNzmIlV6wcbM1LZR6yyOO8X5LiNL7UMZBNiqA8f+cwE4mXx4A0S0CRDBzEDxQJHVPs9UMGXYZc7KxSLi1pqREyDlD80AoQaZJVWhrZoNuLEmfyajo7mZ9a0trjaeZmcytas3Qb70TUYR5EMjTf8nMYGweYQgCLVy8qkhNXZ9SVDU1+4Qr5WkJDtmPgv3QHMuahuD1rey66YTfAjiAvYscweEUERR+B7UBioCOPJISn3GO5P6PTTJEvzkPiR6dwUWViFvvEsFE5i0oOuy8rOvWemu+MQWDnYQ9+rUtm/XWwwyVSIsGyTBYKVxm0SrhqoEqhUtlhKQli2qpamaqlUgOh/mnP/nqn/7ZbwtJ35K81YdzrIiqulu3rbUNoFoK7Xu5atnaQlp1qiySUipFNROx7PiJStUp91Lv/fn0lL5vIoVZp6kS4OEjRiD5viwib18//t1f/ew3v/rpv/u3//6v/upvgsK2ZrZadw+EQ1WmOqYEMHioDGIETcPRh1mEwO6ZH0mK7pt7EFwt36REUOoHMcCie1jJcKRS9yoxA5YyUU5xphweEbe2wdMlrSLVxyNzFpcEYiwbe0xEEEgq10ewoDIzsYrUku4JRTyYfKoqqkzEMSaS8nwhYrkpTzILs6ZoCYUwEk3bdbB4kGBGpiKgYYAx0r9bE3OPj6A7WLPHzRGs89rm74ydQJKkTewkHPqSPS572M4RAGEWZSIIC7AnTwwSFqZUxhjB6b9AA71XHgN1HySZW23KL1mke5+AiHIU/+WzETmYVSmz/Xzy++ti//wDoqLbk2MABszMkyoTQsQs9YwigkrvjVQqF2YWsKjoUBEZ6sLZigQSWhWC5pyrmRMb81aUmclT7KIESsmzTplZOJn3mfTFbmmVJio3FaTI+0aM+6GQWAbfjsHvX9O9iBtl0N4Evs39gkYvPNUTAUmf2L1+EYZQhYcFUevd4aWoWx/1JqfTBcao84uX7b3nkUZBZra17Xw5RXhRde/EdMtsiNnMLHyzzVvr1lOLoncrMrXegzDjeJwPItl5yeONCaN1ycNqazyEB9NhD++8L8G8ILFD/yMc5LMhN1rAyD1Nxnw0xvdFHMzZsWBmtl2ldqyhzD9yZ9xmFyKcRwXnzcxtsxZC5v1yXsKDRTx6N9JKrW3n62ldFuuxro0i3DT1fExRAEMYQKphlMlFFZm0Wk/VSZhZ2zYGHefD1+8e/t5vfvXTb76ptV6Xa0qx6e6DaGa9N4QXLbnv3VM/mUZ6y0SkedRN06yqoz8UjkDvLYfswl1E27aab0SHaTowU+85KjF2mIoycao1iOjPvvlpkFNYbysTPn34Lumh4Qi4RLGshHOW8Kb9yMqk2XhQLZRoHjGTsHIyUJ2QM7kRAU8WOhDhdNdaQzaKRFju75Aph/7Zw9wgrBHovUegaHUB3HLzBdjgvKPmTMSiNMzchIhDSYI180lhUS11YlLREGitUlTcwRIsKKqBG+9l5HJgRkrFB2uhCBYKMMWu7UqA7zjwbWnekmsQZGTgLzNo5DA235ig+QPhfbToiz4BvXjgBuXkH3nApkPcT5hIRzhmlnTFSezk1r24kW1ePu2XCP49ajGl7O4tfOf+ck/x9djfHkQ07gNfL585i6fv6wLd6hgZWtajeKXb2cnjmggJc08CUt6a0tqG9HQkLiUP7rtpERGFhxZYbxuzMJmyuEgq8gJMrOm5zFxrBSaP0EzEdi4R8W1dAYCQIFWV7sE9iG7WFfvdftFpwX7Fv3cGjHv4Qg47T62ddzXqPTeX1FIrJZOEwgpAImqZA1RKtWZJVWitE0nRuk9FDTLpTZS/ta7CTOIevXdeFiKF91prKVWUkarI7kTs7ha+ta1t69aWtW2tW3hM0yE8DofjHNh13SQXBIfGsAkaihT3jyyjCEgi0OgFvLjlMfQ9913wQoqWiXp4t2aWZhYED8CFqVAJhAgCTEwSoSy5nobfxPD42iVk7owrCIh458ITlnW5nM8iomAP8+hkcV3Ol+3kzdvm7k7hQoBFSKjMLCw5Jm0RTDmnJgaUlKGOrW0otm7rdbmG2avXr3/9618nnKqiQbGrpI0kQFWnw7HWOtrsvY3TDhAphLSX4VqrlmLmvbXMeHyo+ZgE994ImCbxJUeQTQYcUXhXZgXALLVW652Ip+kY6D//+c/d8fT0fw+P1PznnDuIYCfmMY+XDgoQ0dG7Syo3R6RX9Yhf4xYSAE2upBQdemcjIcihlzzbhibA2DicnRxJgkV6HBKEiYoUkAgcI1MeSGC+FKtmdsyQjLksHKS7vUywsGgRUWEpIiKYiqrIBiMOURDdh/r5Zqu5T/HySC1DhHuQ765YcQe+7wj4CJ0pK/1lp5Rwm4zNn7yQVN11FHgctMOy5WUAyfgMukXzW2ExgCYQ5dtGCgHlZkhHRjCGasIXof8ekF+mqi8OA3oRCceezZUJEZEIqA49x3G7ZScsUfZm+W95ueTX75/p9qljl5LMt+9uLMl6y3kJJqKyrqvWSkQqUqTSjepYem4qOKw7HDBnt9auZavHfpzmearz3MzDp3kW1ZTaSZn6WsqL1qLQPiA2PnpESganjXiMk4RA++gljXLv9nm+uPE7XMj7UpLUPGT2SMnWiAhhjhwLBKroVEpCbclNBJC4rooXUQo2s8zQCMQl2wIw7xHuZtEN5uxAN2dGMgIjzCNAwu4xT+F0BheBExxZTFj4erlerufet9a7I4iCDTE9hBkCxBJAnjcRoHCBZA8gAhahIj7mVNP/N6M77bhhbtuIwE7Tv12cyB5DiqhY2Nrbuq2tG2HMxKrQXAOcChPOPBJJEIqWHA5JgwHHGAr27hZOu1KiMFl0uK/rel0uvfcIF0RbjJnN+tqWta3s6D0DNIkKFwVKYU1eSJVKIims3deVUAAStoBtW2tEvV8Os7x+9+o3v/754/HRd6Av059aa57Q0zRN08ysKaQnInXWcFfz3nvomPtP5yO3SA5urTWf5MBHg5GbMF3OJ/fm7qqFAC1FVG77VkSENRDsQ2StlJqpSO/+n//qd8pFWetUW2u5a3MrZleTAuDUpgyk8+NNxtk8gDsxkHdU+GUQIQLvIxsyJCRZNOHNzByH4TSyfAdRWiFnp0EARxr2acrjUmHJoJaNmlS5G/+KApByo+hkuNCihRGqlB65VogtRJgpRAbMktOFeZwBcKBkbs7MAhKmdMhC4hX3cHn7vGPqSl4kNwPD4Zco/55Dfj/+5u/wcKhnvuNC46y5oURyewFEEFgS6727iO+sivsT4Msz4P6sX+Tpd5rQywft/hmygzmyizRgsGOZx1Qy79SPcRi8fOm9Q7qHwv2N7RXDkOz1IBkWLDcQgYqNalTDwtXZLE1Pqmpr07Y2lcaBdLFsbUkb9LZu8+FwmI99st77/HAsU0nYrKpOpU51qkO9WEWLlmSs7a+8t9ESa4uc9QCRMo0IPW5kfrTYqcEjH9o5vti7BbQzD4SllJrju0Tg0IIgoJRSSxXJrk2yEYFAeC4jEEXvnl1oD99aL4pSxN27dbPWrWXXLrdHC0sAqrsBIPKDWdNtnk1rJYiKpAZyIHrrtjbrLcIDTkxdWkRHhBBHd9TgvWkbZs6c+y/vlY+8SaZSuGZnVoboc6JzGDaDvafzNBFR2aHYIVIZsOibbZf1ui4bgpVV0pt7MtGCnQxzO4NrrSMlpLurhMVwTd1tip2Z3byv27a13tu6Lh69r8tyXlRLINbl6uFCHBBzg0dvq4TOh4eqE2zjiW1zZimqAbZuLD3gonZZrs+na2n0s29e/5M/+7Of/uTHj4dHsoFZj7vIrJBap8PhIKrW3ftWSkmkhBMeUq5EHpmCR2YJBJ6mqahiyOQh5SyEZZqOccSHj9+Gm2o1Lcz9YX6koeUyBpKJ2KzfKiJiiwiVUrTM81GLMuf0eAI4GGSWpKvujX6AiJJ7OuDpHZnOij5u/93z07ExbjUxc6o9SBHdh8RpjM0GIqBgZc52LhEL5TiGEpkTQ4KIlAOAEMKZmMbxARBLSjfTaCtkSwoqUlUIXAqXUgASh4qqMqWNUp5DL4HcvcWdXBIRUUGkr06AiLEXsi+jZG79W8i7XZLMyPPw29tdN73lvQpmztM64gZy7uPFGTFSJgAQFt+Z+0QUgAaQaqH39gK9DP23EPwCsbknrOMLvrOebiBP7EZGOyEij4dgrjtsAZG9pNvnYfNv0j5RfD9veOQRsntBjZEFYmYKOAd7mDHqJMKswulqw0wlhZJp6JciJRGoUyslvTHNunI4YAQQVGTSEr2HhXfH0c3W63aiIsEB4bnOx8Pjw/w410MRLarzNGsJ1KIqjBRdGvJYMGcWgDwCgqkykv9OzKIQGp0oROy3llN5dSQBERHhuaDSX4VccDvgVMdxnenKUMT1FNwJULTdFabb5r4FYN3Mxbk5edTqhGVdzbbNt7Uvl8ulbRvg5pEcDBJesVhv/mAq2ru/evUmR7iEKdyJSVQifFu3IDM4sYpE7w0ImKMZTW6taf6dbOSmID/RPgJ2s9IECmVRmrU1Ah7WfWvurbXWeziEdSqlSCHiCPcw7968L748PT89fzoXLQ/zUakUIXTRosGFRJmp954LLhEzZhZWZopwQpi5de/WemsWGwFC2i2s29bWdVndeuvXz5+elvPlBnQysRZlLRQcgVplejgyynptFP1Qw9WKTkXFzNsagUUnIeqfP38+nZavp1e/+uUvf/WLX1HgerkSyMMCSF9G1gJO2w6CW3gQIjsZqsrEAgomsAiXzMEJxCyllFrrAJ+JnQLmbm0zF9UyTY+Pr8+Xk0eIO3O7XPjh+KBSwqO7pWLEnn4RcxGtIjofpl/88pttu1bnH/34nSr/8Y8fVXLmLh1RnJQDjEApArA7tCAhYaT6NBFzJuceAx3Zww0idekFNyHAgazQnidlOslCTq4sfGfMMAgiyc2XEAYFkRITmSNi5xGM02g8Y84I7ST+XIe5C0VlqqUWbQYmEnGViGBOZ9kAUfY0xvlGtDMzVAWh7J5WjUmCGvPqkZafe8QfaPiguGB05mLnkES6uhLSeiHPR7yAwiMioVQeba0RwZkTNR9nlO/D8LxvPKFs6Y1R/ozSRPzivd2/uD3nF9EZwC69nn9K0uItoyLAk4zNZReFzo+gt4m5ZNDsH/8WFYn3SaPkZdGeM+6dwP3qEQHkQeZRJISAcGKO4BIB0XGwJaOS0h+Uort123gTamxpFYCgwHGa+uFY6lWn6XSYmeAchra2dZqnN2/fPr569/D4o1mPxzodDsfH2R/mg4Kh4HGrOOA+RPN30R5WCkAYWRaUUgY8QIHIVEYgRDwAOMpZqsjECqNtMD5J5s+ikisuTUv3Kir54mAmD1u3ZVnO6+XivplZMwporQgpHkYcrS3Xy+V8Pp1Op+2yZutzCMMREZOodlUKTNME5yLTkG0e0+HU+rYuy7atLHBGkBWdzaK13lqfi5tZby2JB2kGQMIYkjt764cZ4VQnJKVMNJWXAFj0tW9r39Z1W9bN1j7V6Xg4FplEkpZqW29b31a7fv786fnz5VCOMaOqViHywkUMBJZwbG0zc1Wd5wkYwx4AEFFULRWfvUc4c6bhHI512y6Xy/W6ghDo1vr1chUSVUZgqJGxk1NORc3HwjZt54XBCi4MIXfzbV2vlz670xbet229KNNPfvTVT3/807nW6+l0OZ+0cC5foJQy1zpnfmTmvW8EUh5ZQF6rnYTCvafyK2vRqU6a9VkfRs5uPoo8QFUwzQ8PD8zkgeRAA7GuS51q7723DuoRIVqqVtUJMnL2V6+O/+Jf/MU/+2f/oHe7nK9mdjn3dbkSUYQxD/B+gC3uxMRGpdym2Cw86bigYQwYQaM3ycQpbZ54VOJgcgeAobrj2sLMnDkQhlF9jEDJQzBRwEm+5uHwLNj9QWlnQwwpqoFHe8b/2CWziCAyZZq7nz5CBHfwHca6p8z5/guEsEcuiQg3+C0ufy/FvoVs3tuneyRExop7o3M/nW5f7tk0R9yjc+JNkXaJcqdy3l5UhCTHYvdO8u2piG44UE6VxP1n/8WRgvHTnfOz9/P3kd38YwwlcMoICWCvGRK1JL71eO9V1c3cZRyxQfHygkcKtNzh9xQ+0GGfAxTs+LG7NQMFQ7p5J4RKHqgZhLD1vvUmQZhq9E1KISl1OkRY9366ntbtWid9fPv49t2P3319efvmR/Tm7TTXNODqZuyszCEUiO6t9ebm2FuZc5mIwEU8gkEe4UUTsc104LaNaZcTjfss8v3eINKaY/C0WCVJsm5Oe4ndrYN86+valutyPj0/Xc+fyRwhzTlQugYLiXKQPz9/ul4u1+V8ej5FR1EFobfORKnwbtRFWSmqKqmt17OUUrSIMiI8fGtr6y3CmeDRm5ke1XrblqXPDz4fKDzCeic2gCHpNMI6PmWilkLdNOAGn0oFA6Ii7OHN13VbzuvldLms1zUMj8cHBol0GTrA7bQty3a9rM/fffcH26AHLdAQdglBhbJFOGjZ+uVyZWA+HNZab7XmUCElNus7k8VAEdFz3Ldtbd22dd3czaO1baUAjckdWOu9tdS0AOP5M3GdXx1qmapyAZF5Y2dis9Z721hobVfv7cdfv3n18OrH794ep7m3vhs80Xw4aNUIKqoq6rlchUVLmN3HHYcqmhDRYNkiaLd0b9ZtqHy7WwBQoeDU8QdRTNM8zQ9MLFpksH4IQJ0qCKfnZ2aeWFwC1okYYBF99+7rn/zkmyJ0uV4/fvzw7bfvv/32w/l81rvEe+JPqaIFVsrhEqJxYSNy/l1pt+5LCj9wTz44lWZ2Dkwmz9nKHi+SIgx0C4/xZdsyEe+7bImwQLBTRF6MI94nMRMPTIyG0uQmHW53tJL2+iP3WeK7X2TDEQgWMxuq/gRldiZlNsQtjo8dvR8amQu/wIYIQHaPaVcMISa9ky3zPUta9AxyRHaSAffwoRM8rJ5vL0qUF2qAYDvUdkddhgEYkKjLfmhQrivatctG5KZb75mxS/TcjqYbbWHcwSRt7Redx3GqEcHKEhS7HdkOU9EtxRyqMnGngY5n3g2QcyFFMISG4DlAxCUBdQ/v1hwcTAESFoRNIjVPCiZz21prvTOLdzWbdCrMWtYajmXdTtdz7ytJPD99ujw/u60qfZriMGupEkKTBwNMKFXFaO3b2lYzzxpOSehwDFgoe4SS1mIjcyMmhruLcClFRGnv3SdiSJFbIk2ryIbPuxORRIjpuAmSALC5RbNmvp2vl/cf3z8/fVpPz325SPh8eOWYIgJhorxttrbt+fOnbb1el/P1dFEpxmUUqQBbNgCoKG0UAuBo8+Tqk8wTBS3rAopl3dq2uW1B0W0LNy/V2+Zb68t6VWaOBzp0T8YtGCxcRAqIsmcQFMEhWnr4bNbKfChTUSUi977a8rycPn3+8Onp07Jsx+mBA956KVWkEGFZrx9Pnz8/P338/O3T5w8HPcpbFHkndXaL5+dzj2YIjzift+W6TbXWedJSHNHNGDTVSUsNC+smJLVW907sRGFm67ot1y2nDFpfW1/atvbWKeAlB6TJ3MI8x03xsRthefCH6c1c5n5qtS1HfzAsf/z43XruIrRuy6HW/+5f/osff/XVtm21iJuplFev3gBQUTCLgJivy9ksVLWUWoqSCMxBlESIhPZHjJNkN3FEdNt672YWA8yJooVVjg+vRLj33ruZh6oQiTtCCeaqWrSqcKmz9dbaxsLhbtFbX6d6nOqBONblUrTM8+HHP/rxn/3jf/iX//4/PD9NzRYREGwAIQRCgAMS4eQGZtgwZESPUClMklliz0KBmfiOJ2SCmI0/kSEJubcocuoqSe2pqOTuLojMu/NHMajDie/f4RGRW85IO5KQUL0Lg0cFwCEE0r1zTJHdPKKXEfVlZg2AiYKpNRPhWqogZJ8xIdrF2/cXpp2YFC901hL/fRm186ubCv1AmwgITwc0GtBR0ujDPRuB2exQvPyoN9BptMQG2HJ7uZdEuwzrOZ+wM7AH/kb7gbmP3PE+iSW3z3V7SEq3crmF/T2hH88GH+r0t7dxe7BIEWUQh6fqM25aO/lZIiJ8T/MpmIOE9p8WSo85CiLX0CAKgmqhyCPWzCSAxCjMurCsnaxtWkqOwmf5v7XmEQGLS1xPl8vz+fPHTz//xa/81795F3aY3xzKrE5EMc0KwmLrsm1927KqnUpFdGrqRHAULik9nSOHIA93JipTVdHYC8D8IkmmgeGn2dx671lGEKjKpEUYnB7i3RJ3Wdbt+un06W9+/9dP7z9w7+peq7IqyJsThfKGra1rX59PT21dzpdTWAibSOHBAhx+bsKIQJCZ99btcLBpni1mQizLNcLXdVuXlcjzoKWwWpe2LVu7XBch6RZtaXOdpszsqpSpHESrD3zaVlucvMyHzeww9ePkmKKoINC8Xfv54/P7v/6bv/rD3/yBoG9evb0ezo/Hh+PjQ5mqmz19+vTdp++ePn14//GPy+X0eHjoy7WtX796fC0Uvi2IvrZtbf1yNUC1VFEh5nRBYOY6zSpFIEVKlZrsOC1M8L5tW+vb0jyA8N7Wbq1vq20WCHfNjZ3LtffmHluPZtbfYJuXh+OraZriGh+e4rqcPn34GB2i0jf/5kdfv3v31Vdff6XMZTowWLV4elEDvTdVaW29XK4gKqXKUYJZi5Iy3Hs33GI/CAgWAYKZtm29XK5t3RDdvBHzVKdSK4uq1vnwME+PjC07/InCZQ9/A0Rkmqdpml6/efv06dO6rDmMPh0mqlPrK8iZaGlb7zrN9TAf/uE/+u3f/O7b8KSPBXOKzjqIQtxDGCAO1nSJQABhnq2wnCOITNjG/Gc60uCWp+9xck8886igCORAEe8GQEakuxiXMCFHZjIdzMIif5/2Hhth535GsBJT7Pqq8CAzqLi7E8RsJ0riRXYbfh9X2g+ARKxyHKHuyieIoOyK7PM9+U728uKeamfb/AdEnME15zF9ACREnLd/D+6p5IQ9Wo9qZ7RGaFxmlhcpONNOyNmHYO6B+wXIMwApvqlT3JRwdlQqCTk3Svw9gu+4majcoj9uf3mH5+nFX4l9/DALDFWpqrsq515xUOYKQ6c5P2va1BKFEoIpgEIMDyehAJfsiY/6xMO9tUbsiVcyQUAAQsgc7p2ZU6LL3RDpDGIBwOj5w8k2s7aZtcu1Pb76+s3j24cyqdDWY+vbaT0/fX7q6zqJlqLzVA6vHlyLOReZHup0mA5TrVoriTp12xoH6jwTSy7UVP5KtkJKpuWUyhZYt809hKWIztWql7RUTPWV63q5XJ8/PX98//GPv/ubv2rXpYAmlsOhAhak1w6QcNC2LdftvK1Luyy9dRaBKCRkKA0M/wijII9AgRNicbN10+ygull4uJv1Nvh8FkLkzdb1fDqr2dLb43SYWQuJEvFxmh8OBz90aHULJt58e16fLtu51unVq3evHt++enizzcciyoRu22l7/sMf/+Y//M///vzpcpxe2aX1x+tyPE6nmZXN+uenT58+vr+czsvzc/RtWZpfl8uHD1r04VBr5opu14a1UxCxFGbuZlvbzK3UMh8eitYiddZpLjMJaSFVCmth5siZKUPAe9+2tW1bjriIF0ZqmCVBkAIBj9P7p/W6Hh4fjoeHaZrNo1u7nM7rda11quVQlOeJ33/3/psf/wTE3qlWib09atYdwcB6vSpT65vBo07drZsg4N2s94CxYCjBdSqlELG7LdfL5fQsCBGgsFC5fr6A4vD4qkwPHvDDw1QnC3N3KNhHrM0ZujUCgVKrh6/XMxOVUvvapjrPh+oerW0qfF2u5tPbd2/fvnv1+s1jRGO2bgNOYeIhTsrMQhxinNsp3JKNHCTptIMxihcmLAlyAqyiLHt44YjQu3QH76U1jwqgJ21NIt2eiJwCOdo33hBu2A72rDdzKwIoBxqUA0IsUsDwXWrXLFgc4jmF6XFPpfcIfQua5Wa8BzZzrpSfTCVf3vd5q1uQ5D3a3pN07O0C5n1kduiaE0WIChEUgBBsV1+4fSDiDJXZxA6Q3iAvIBn+gQCcQpGaiJTMV4UZv+B3JgVl/yMGaM+3cE/5ty2wQz23U2wcHnJ/ZDRlpjFKvcNRqWw2Zkuz1iBKBixlj00FpRC59PAAZFz5pI8kG4jA5MwOCkA1fZGCWIoI202ZJxWihxo0E8jdhzL8+JR5MuRIG+03mNzSvXro9kKYLNbr9vT+UwQu5+31ux99/aNvXj28KgL39nw+vf/u95fn5yo6TxMzOzUuAtFSDm9ef/V4fHh4fJgOBzC3HKryKKK1zMFiMbaPiJScfyEg3FonIA1Uibikg800Hea5llpEArG17Xz6/P79H//47e/e//Hbp/ffCfOkepgmRPFtdZLVzSxg6L15eG9b2xqBJIWoRqp1G4cihIOCEQ4WgsEtxPrQjWDi3lpEJNqozARys+169W7LVE9FtdZpPojWWqd+eIiHx7411pq998+n06fTh+fzZ1Z599WPfvT1N29eXx8Pr1SVKbZ2/fT8/i//8t98+9d/PWvlA0RYGK1vIhKwdV3Oz5+vz6e+ruSmRIW4RNDWYNz6xkVJAg7vcCPPbjCitd67BaIz+2bz8Rh1dunWN9LMPxy9CchJ1nXzCDc3t9623jqQA4I9KzMGwunGxgPi+nldr6frdGDR3i0Aaz08MB9fff3wy1/95F/9q//Tz3/6M2UGiijf6mWzHMHeoigQWzezPkk9X07MHITo3XsPOO8C57nfjFlUW1vX5WLt5OsaRHo4iIit63Y+nT/W45uvD6/eegQeX9dptrYhkJyi7AOHBwk3ploKEMt6naepcj0+HDIolFKZhSlUtNn28DD/nb/zy//2n//F//Q//uvff/ufaWw1jj1gRLgQO4Wy5gyYCPWe89spYhhEFAnRDKp4JN7L4IhBARKJF2gKEYFLMAuIfVAOg0iG2HAeESl5TxnOxjj0foAgwm/xF4BHpHu8DBSbwmO0GmXwaHED3LG34jBKgnHsBOWbYk4BItpnq1PWffzi+G3c+qJEOxf5y3rCJc8AHgcJIX9zYB55gO3jW0Q5GX5/BDNxKffThYgoUgIvEIXGAUuAMJdSvGd7iXbiKXbqTlKjfK8KhNLYCKnPg0E/G22wLCzuj5cnQTLnMx5jENxBqf60HyMyznhWHWwQSV2RoJH88wskbo9agRzSHyMiDJS8zQEWDH3DWqqqpsogAAp4gHm3VM6utwTTYCXn3SC35BmkH4EyR/d+2a781Jb29Onpw/vvjsejhLn18/X8+cOHQvx4fChFiXC5XltrBjscD6/evD0cHx8ejjrVZr5sTZgPdT4e5nk+grU5zDxl3VSliCLgZm6dmZnUEcRS8zHVaZqyiO2w03o9ffz49N0fz09P1+czzLQWYnLfrAWLWsTSmiXT3JwJ7j6YYQCHg5K6S+7uFkQgBktS+BrC1FO8S3HjfqWnGO3dqcxXzCwcvVkpWkpbmmqd5ol6Z+/W1gAv1s7rcjqdn0+f17ZKKb65N6yXdpifa1EiP18+f/f+9x9/93u/Ll69E11hvh6EJX3J27a2dY1ucBOCqtS0Ki7Mmnbwzu4CStIoB4EpzNGNPbMCOC0NgakXKaFKRKKsDA4XFnO0dW3dhixrWtpGjLabMCfOjVt6BREWgi3dl8aq7rAIIipaSyk/+/kv/tu/+Kd//+/+g7dv3qzrlgoOzDl2bltbP3/6SMxv3r5xIgTevHnLUvLKnq9n75v1tfcNRLVOU61ZsKdVp3tPtYaAPT99fji+mh6PWng+Tp+++3C9nF5/9aNtvZj95M3rt1qKpR6De8r4uLs3V6be++tXrz99+OOnTx9fv34jpbx5cyylEqioMiM0tJStrU9Pz5fL89Pnp7b147EykZPLaAw6M2cczrRKRRwQITMnSuOA0VtMnU4ao0wcCNkd7nhIf2fFn83hECo8sJGRer5A+XPQPQZgAoBiDL4zE4JBMnRN9vQ5MGTSiUUk3JhGqphEixw4TdgtAaBbMr8H3RCRgNP9Vzg4bUCZOZggtBc8e8i+daGB22k0Ch0iAkUSVJlvn9N5ZMDETDt6HjdqzQ1L2RsNxCmoxWBEztgLwLs038uao+i9XNpHEfAi0u40nwjWm74L0op7Pyd2fgrzrZcrQyop5zkohbDy9BDmokKEDvckOgYRUxFhQhU61KKqbp2TLryXHzoqn0EtHSdzSN4FoQigqKiOxnSosGqtmgKgOYkaSeQaSyfpCxQ7zMj30z0cCQ8imOBujHCO9Wy4dn+6SHn/MM+VicI9unWXMjVaN8Dc29YRcNj5elqeF9FSiopKN+8WUsrDPB+mOh8nUr1ssa5bjjrO01y10ID7a62lqlApATALMZeiqhKwbV2u23JdLtfTydaN3WDBrPCAgEScwJr33SjAAFMIoYp4ru/caMEIJ8IuCAVOEYkkhjITItDDk2PGLJrwX4KfPrKAXAlEFICFIcyM1941fAtbr1oMuGzL5bJcr1trjYipUOflhA/R2jwfVKRt6/X6dHr+5JcrWwSaI6JtIQuLgMmtu3Vyp4AALFSVq1LZlxdTil0HD9nnCAo43JwS96PkYZlvQb2FFt6VKKpyVQFzd1hvOZ2bRTFFIIxAICdVkqBUXb1h1gQhLsRBIDfyOEwpq1p+9s1Xrx4mFVXR6/UKYuLIZenRl3X5+PHjtlzm45EIgXj95k3RuvU+TdO6Xscse1t7X4pOMk1BI4nuZrDu1oNQS3l4/RXA23XRVuXhOD28fnxjwrC2Xv/4h3VtFPT69WtgSE24GxDMvC1XBrQeqvLPvvnZf7ycKeBm5/P59ZuplsnMPVpGhXl+/Ed/9o+fnp7+7b/99207Phzrslx5bxtGdGaVFFHMGUgWJlJhzyiWPLid/j1mkpLvnIILkXdDgiBUaH9iD1iH8P4UIw0c4S+zY84XBAiQrNiIaO+4MmK4Wwy1hmDSMapCIYN9GLUwM3eKiA4zir0QyH8G/SgIeyR27HKf6J0mVlauKq7i7iAQQwBnWEYaEAARCOfcXx5LRFwGH3K8y+CkBBEQPqqCLKOAiASRXqD2+2NYAhGxkOccRDixEhPCSeJlG5uJBEYMFeQ8fMIt+yExjosApcU8q2S3kF80mUfU38mdowMgQxJKhIoKg1SYCJrUhWS786ivlFjImWgSLcq16tZ6ainx0LXL2ZGbUF0uo/AIDRUBE5SplCrElZmqlqJFk68t9+CeRDEiYh6SAMBdoVWGGGHIPrnKLEkFAKJ7+MIG62AQ+mF+mGemyJ6VU+sc8DBzjyFkFqBozuRpkkIg6x0sWFuv0tfKTNeG87LlgOKWCjwkKjrpbFW9FhK1PPDguUzN+7ot1rr1zVqjUfkSC4iCghFMbMwM0sIMDmJOP2gi0hRMYQHBg5JGRpSFEY3RQ0Ka1xClRdZO1UrayehB3UG8UZlln0AUoNRHYY6wlYgCtLR2Xdq6dgKlMk9nIri1q4gKMXnvffV1YfeRBSHg5NFHDYhgH3tSiKqWKlKFq8rwkEBOAYE4hd4TE0beJpWMD9lZynhr2XwBpTqYErP1sL6N/Z7MdALz6BmNhCQ7nUwgZKJDFD2JGCTM9Jvf/Or/8H/87+Z5+urrnxwOD9/85KeliHl4BIuqFnPbtuV8Opl1Zu5tjQjVWkq9LOfD4VXRCvB6uaznp9au67KEY54Ph4fHWgoXneaps2idXx0P5t62Vh4e3W1bVid6fP3m4asfRd/W04UQ2+V0ff5YSxEpJDSc4ImmqTLT8+dPh8fXDD0+PP7057/49OEjgFLKul5pZlGB9exzzvPh3dt3/+TP//w//M//77/6T346PwuFqniQk490jAemXEbtTyxSigaCibNzORbsbhI9cAi+/YSYdptoIg9wEOvOQExqY9ZBYGYSkkz5h159am0TmFOdF1mSCMaUVOaSRCpEJe8oJ2EBRYgBhTEcsFFkDKFe5DNJKjKCKAIy6KiIMN+mcoCk50XKkiFxPKR5MwJImmPk8XUL6nkujq53umGMOUrcQBq9he27CUECMGCmWiSdDZR3nAksd1OlQO6DF/wrH0dh0HDZ9dE7YGKRCA+mFIQnOIko0jn19uazm0PYJRyUpYjKfg4QIU+NBJ0oBXiFx8CCDU3jTDNVSJNjkR6T2UPZZRAzMiOPfeSlz4IlgUZi5lIKMyuBaplLKaUosajeuUx5xUWy9QoVyvI9L8ou8J1QZqJUyb3zPAwCcO/hBEInmIpyEngivCMKg8IDkRN240YRkTvxGGhM4WUwSRFWCuoRbXUHiUaTrkVYVEpMjXDgECmzA25GYQ4D0lnDIjxS1SuJ4UKiLCxFuIjMypOKgbSoMgGkXJIuHDlxLhwBC3SW8aYJWbolCZ1FsnBmYVDsok7Iai4CchPDIjCCKd0+2c2CoCwIaeRkCQ5QN/fmgiAWSdUv77FZb5JXMZeUIIoyiJJPxjtrOuGKrFdyoRehqpnBR0lXykwpg0REJaqKBdJ60sxHs4WZki03Nl/i1DxwfWYKRzgDug9pgDEm7nMAtyiRMEYjhEEiWWVJgKuW+fjw/rvn3//u+S/+4i9+/rNfP74+svfr5RLgUmthbtvmbuu69r6qEAkfjgcienz1pm9b6/3Vo376+P53f/Uf+nZW8t5bu16X6/V3z+d1s7fv3n3146/evH17fPXm9Zu31rbL6ZSMD5YihQAi0Todjbn3p9P5+Q+///brH//0H/75X8wPb1hlqnVZVhaptT6+enW9npfrhQ4Ppc5aZ1JZ1oW1vHr1pvVtoilbxEUFEZfz6e3b17/97W/+03/4y8os88SppM1iAWUSihjdPzBQhxAxhxOpmMduty3YodcICiA53TkFzULKBLgFqnJRFiHNYxtEcAJk4AO8T5oP9EN53+vIAi1IQaAgSAYtJ0+cgKWOmBRphieZeMIYRnDarbqzoUuZ2TARUxKeUvYlk0sCWtuIiggXISra7lkyD5WGPWXilIDOwpRzISKPPRUVUCJRvJ8STFF0RD/dm9sZr4RYhWotDJRxoFGASGRMOHPIkI4I5VTqIqe8JtlIJyGwisc4hjKJ3QN9zhx5Cn8nDiPEirCBzCBAIsNMR3XoWQwBVUQWFUJUhooxgFCAA8nqZKYsatLqFPDMz8AUOWpIWYiPVmUKjQUY7swqQgCVQjpNJUBTLSMiiCaANBSciEQ4Q6LvdkVZCiSkrbUAiJvqwhhmkUCwUHhWEHslEuM0J0IEzCxXZJato9CIJMYOa0kVHXYV6XJExBxKkW50DIY7RCFemE14kiqR09NO4Tlj5W6SnHoKHakvC0FYisqkUotMhQ5T7eYOLlEiXIWZNSI8QDH0ez2wmbGRMIyGSWTN2i0Vu5OWdEMhCZQUrwSLWERIiERSK52xd6WIiYXg5NgbXu6AK2c4kCKc0n5jQkUouQHCNNVy04TKcjj1AzgVHVlSd2sIBhMpk44+UCAH9pkKy6SIUAdUWJnDg5hluEcmPVkiAhTCqCqFJQLCVIUdEghRYpKQ8aHS7bIUJpBSWmYmjoBAFBYQPT6+2tYtQP+3//7/+j/+D/+Pf/V/+T//oz/77atXj61bKVMR+fj+u8PDo6h470WVqBaVWudSplLK+fNTdH/6+N133/6OaTtMuq1t265tu4Rba8uHDx9Avds1bNuWy+XTh+v1Cua3797xNM2Pr2DeIqb5SMxcpnVdPn98//G7P3z37e8/P3365//if8d1ev32K1FelisQ796+e/36TWsrE8+HClBbtsPbw7ouKuVwfNi2dZpnkUmFCWTeAvbb3/797fov/83/9G/M1vPpFG68gxRMpAyCC2mt6qneiqDKwhLOmhouyNFd9nAf9nYjqY1sMmWRwlDJ1cI3LTVKfH9gTFl0JAQOYc6eBe5HPCGIC3vGQBVnYkCURCGKmjkrM1PknAUL0Silkw/syR8K5FRt7gNSSeCKhztRzmpEiKiIKEWFgFhC3IOEsn028njlncYD3CdmQ0A66tgR38ecM4mZqzI8WPMSJfgaLDTVOlUVzkQzmMizeNjJkvnNEfNZmamUwhwE8QhLDSMmHXDeSOvvDQEMEIB5VBWBAAcTUkeRZIBXUBblWiSjstCuGZVeMZJcT9ZINBmQHDtLwpGbdUF4Cn7lXAKFUA4Wx2hsp8Dsrc9NEEYQlVpLKRVDmIlEGBzCTAgZzm8Z6VGUlTUg5p4BelArmIR1D2HgNONy97CABwsRZ9lUlIWhKgBYkhSb7S3VIhRBw4o+r14gSFQlxqQ7ExChqsGkhamBOTUtSYgYBJg7x0hw3L1z4phhhZDCu/kashPoWGgqpQjVKodJamFWtaBKQiFCw8cnB9YSArIgERLmxkO8NKVOk2o68jQZ2e/OCCMW2VE8FCItKd5FwgyW7iY7cqIMZVFhj5iUiQQx5htFsKNzvqc5acFecl3nhk5fnJT9BSgsT2tioioyKesQFmVVcQvy9AKNUpRZEN5BEqzCpAUsOwQ6ytAUh1ZhZRRhEgbBXTQLTYqs/JhyNRMLq5KQZDtr4J5EEVFFap20qNLEJCz4l//7v/jf/vPf1vrQel/P57fv3n16/wcz00kKinm7LtdpqtNhFtbD8TGA0+mztUWL1lm1PFjbYrl6YDNflrUU/Xt/99eqejgcqvL56UM4pOrrd18x08PDI0DXfnn95i0zmdnl9Pzhu++2dREEC7793X/+y+Px7/z2H4nIPE/MtCzLw8Pj46s31+W6LpfjcSLg+fPn4/E4HQ/dmjRmSFbfza0U8fDD4eHnP//Vv/vXf7lcrtZXeK9KGgxNpRc4BYGVVZlUhBUMGeqeQKmqkkUYEzMCPeHyvS8ans4HkUpXTChKTCEsjoBbZGOTiSkNXdNMcUB/ueTohoXT0MxzD4BENJSbg5mmIlW5lkzJk1tk+aaUnMnTR2Pn5QcDKtnGJKLsTI3Yz7hNFbiyTKoheRByELuzB5kMCiRGQ5Xv51OmLyMyWMqNZNNNs0slLEwWwhK+O2wMrD5QCx0nZQrVMQDtTswwZg+oQLN+IiIGM0oWzMJFqFsX5xj7m3M0NZSt+0AKgrMbzEwqLCwByiNROHUw0niRiEIomIJgRCTCOthDRIzk4qgyBxUhFwYxsZIM45yUjDO3CBuBFs6kROmtECzMoHBwtm1G9gtlJqcipZQy9GOVU7l5pAeMqKUk01ayKFAGsfoA1mUgGtkJyK7CmEDsrZmbu3X3IKsAC9dSinIRApHHmEWmGMgjCQVTQsYkJEyqVJRElTpHRM7h16LkKCxTKYVFdcDKxJE0YHhnpSIQMmCMR+exX1QSCFXlPFmVZaqlSEyFp0lrUfUQCyaRYY9AyfMchDnAPA38WIWLcjcHU9FhSVJr5d0HAZSAODtBlbADqpU5hVJLHnjKYhwDGMn6AcKsLCKVzEZSB4hQymwDDIIQJG8ay6CqUTCxC4eM/DA8DCCglKyyparsbX5hIS2F2Ym1cGQpDZA4Aux5d4cQY7b+08OIkB4sQC1MzE5eY4iaMYuqpkZLstBz3F6EVaXsgz/CFBAPLXXatjZP0/F4/NGPv/6Lv/jnYDbgupwPB12uz+v1GeHwdxA+nU9CPNUJTPPhQbWcL5cIr7WCQ0UYpdnSWutb05wgj3h8+4aAh4eH8Lhcrq9ev3r39ddlfnh8+5WW6fx8KqWE+/PziQkf/vB7a6swv/3q3efPnxX47g+/Ozwcv/mlirw5Ho+9Y9va8eFhmvR6OZltl8v5cJg/Pz9/PU114lz163Ym0FQnQilaSp2Wy/Nhrt988/WHP/5eiD3EHMQcgnCMAVs4AyrKIkWrCMow5pvGLWPx8GyNUJpmAYk5925g8fBuQRRTYQaEYdm0zUnRbN/BGFqEmUcZKkzjj7zPvxIwhJqhWsNLcw34VGRO6FyEiHoPwDOOi3IRuIcgDbGz/IVK7PhoytfRToEZbaGp6KQ6ZXVQmEk8UuBWunEAlgz3TKYRAIcAJH5LcBMRZdXCZWgXMREri8DF2IejS2B025gZpVAVZWYiDXeoareNWINVpCipMKWYrLAIl1oqsbs307W325BboujmJqJmMGaBAHCEChXlMY1OrM7OXIpwBO2orFAkMV+ZRLgkEpAFhZBIUn/3+inH30EBn+ZpKkWFI80gmXhgfLlZc/R9cK9FyCKA1JQkTcn3OpUqhZg8goVVC+coAnPRUmtlFtrV9gEQMUp2KkrSv9JlKWVKaym1CBFtKlvbemci7jqsWqtKraoqwJAnJAJFDlskJgkQjVgqIqpVE5yEmYuglsIstejDPAuEmVSFhMMRo3RyIWU4A5Iy+DwG4ZhZREIFCGGppVQVIaqFq5apyFSlVnUPZR9NedHRrsguCwVAGpBuzMHK0klzjWgCLTzXwns8TlIFCIoU7qMIqEgVzbOQCaoCpybDF5N3WQ+iYJHClEqO4wBgKtmgGIAZRtLG2XMGIMl2iDSvy7XJFUApIipFeKpFVWVoxzNAZkyMkh204ApiQZAkykCUJqKD8otgd0aECgmNqtGdowgAKsrEqnvvMFkTImnJlUUus4x3SwSwRxzmCpK2rW/ffTUdXmmZwDJPdV3XLGWeT6c3bRMp0e3VmzfT4UCkqjXcbVtG41QqA+v1+fL06cN3f/z9X//15+dzLfX4eHx8/fpwOHTHm1dviOTN27fTNEuZ2rJu2yf03t0hUqSI8tc/+Ylt67d/+OvHh+PT08ePT6evSE5Pn7RMj68emeVwnN3cWgfR4fjg7ufzWUphovPnJ9Wvjo/HbVkD0VrT16+LsgW7eZH6D377D/7y3/1rZhym2d1W6o4QYq2iQR4gcklehyrSBEKkKD8c51pVRRN/aNYtAFB3swh3ygsFkgCpUAQmHRSZUXMZd02XKBGRoqwCHeOnEKHKY6JGmPLbREgpJ2ZFcAV7pJWD1Nz17gjpbhFgllrIC3uw74hvzVpQSMsAdauWwU0QKSI54V+rHqdSVWQHiz2QLOuq4gSP6GZ5ACabyMwhCpCZxy73xgJhqAxoNwOKEluBDc0nTh6X6ODeMrMwSIbyD5MG3FWmWncry0HKUpFayqQlIiY3VfGdJ5N1iZtId0kGV4S5UwTvqVwhYiMqErvCv5CwyFRrKTIVLaq1lBwe4MHohDKJShFxggvVqjFSOwDlOE3HqVYVbl2Ji6SHUvYdiBmFYAGW7LoMp+mMDJIsoEOttRaAzG3PZAfofzwc914BhmVVhsCMNNmpppDhxicE1CJzLUCIOKHsQ2isHgCqylRLKjXGjnxn+0VYzCMoUnIykx1RnUphQtXoQkxcipaSwmtcjgnmaKTkfYAZmqggnAlF2CNk4IEsI6/Jo5eq8FyVEEV4nkpVnlSKsEKmWWgorAqlbVsEk0TAPWqQMnNx6SyMKXTAM6LMVGsyuMA5NUqcMh5psRIAC8+lVtWqQ6orHKVIOAzIW85ERCrMhkQV9/M8sVpmwjDtorvrW8K9Ye4a5BmCAYCUFRF5ANSieQDkXlIVILqKUJ7AsFRKduTgbuY4MqjlWWVwMKeoK1N20TlKSWQvqQvJWxMRwughEVEgktorxEgvLCJKi1SwHh6FRKSw6FzrsplqPcxcSjl9forAhz9++6u/8/cPh0OOMFadIuDW27aa98eHBw8+ffz4u//4H3/313/1V//pP/3ub7778HQioZ/99EeX0/Wf/W/+2Xw4iDDBT8+fibhoiQgmLMtF6+HHP/1ZrVMOW30+X56enpdaejMiTJPCt/Pz+8+ff1QPx1mnOtVkpxwOx+zqsfDjw/Hzhw/XQz2+OoT34+Ex3NfruSqrlnVdjvN0PB5/9O7d6cMfhWEdDhcefBllZYYKlSK1FE0AUjXnNg6THqZJVZPMURoZEOBi0s1c2MVl6LQpM9yjFFYWZUbR6tyFe+rn09AdALkK3dw0VYZ0q0qi1lkMCDMXLYiYSS0ik7ZSRJW8J0FaQRwIVkZlDwlSQACk/0zCyEktmVKUfbSaJUk0+RnnqkI5H5XNtuiOLHcAcq/Ye6QB6h7ZY/YyDBQTuyrKRaWIpB4vOIike5hyEsqyNhUhgc5VVQadKQ/LqioiQVRrzXJch6OsVBVVmYoQ2JxVOWigZJnx9BYiW1HykGauwuYJBHHON0wlwSIBRAFhZdFpKtNUKnOtWopERKILEWDWrI1USEBSNa09srkDornq46EWUTc/1DpkBpKZki1PAQdFsHGQD3lXUIiUUvT/w9V/NWuSZVli2BbH/VNXh47UmZVZ1V3d6BGYAYcvJAGYURj5xgfCYHyk8ffRaEYzPIAkCDEQA8xM13R16axUoePKT7qfvTcf1j5+oxGdVZ0VEfcT7se3WHuttcm9zLtOSup6gnleShFWlU5L33eldNC88kT4ifQDRB1BjEljOlP0nRZkFyYm6ruyPQyl+CxyidKsdKrJaoX3uWLdhPBYDXzdotphTTYqVeVafcCCaeEiPO+LioyjReBjU8VergiSEHIUoU4Co21N7g2B0mhBLNQJFRUVVZGiokqzvnQiAE8QIt2dRVxBEpVwcm8QUBVhUbhtMN5QkKLabIRCwwiSlxDFxDaYuStdX6QvRQSEKKrVXEOTDBVETbrqnrag8Jlsk1s0dEnnmPzHmSIXyzlq9zRkEY6QGQJ/4T63tVEuoQxiwySsRLgYpoxhIR2Lh5tH7v9se/JcmvYUwT3Cg0oIWlpQPPGIJ4m2KD5MjqBZRDS7CThhepw/fPj0+UePnj8/Olqt17fMnarqbL7f77mU0nXb27W7d4sZIOlaD7VaX8p2t2UR6crt26s//N3fvX35/bt3b7//4ac///jm3e366dNH/c3tbrf77MuPHzw8Hw67169enJ9diMgYVEopXScspch+t6217na79fruu2//9Pb1qwi9ur4Zzbf7eHt5+/Nf/MX+sN/vN+u79Xy+PDo6EZFSilX3iK50EbE6Ojrs9rvNdr/bbzfbJ0+fvH/7+tB1q35hYfvD3upIgIQ6ZYriprnJwJXECMMkVeW+K2C1q8is076UvqgUjSDQMdVQyxVhMmErKiDNRnANVeq70rEW0SDSUTstRlQtuaMJkFDgMRYFpKn4Iy0K8zdVJQrsdqoBY7UIr+gQKkVhF6H9WJWwck+r7Vu7CIMFZuYwUyXV0vbOSkLnGC2JdJ32XRHMPaQQMUzxqlk1Nwq3ZD0Rk5vX6kYcFFY9l5x6iHDflaIsTEWlFGEuxDJWxyanWisimXIwUxHGWUVdAqJGP44eUbTgpHobHZROu6J911GQmc2iVHcLA0Xb3A9RmWelaK1WitdaR6tWnSlEOZfqoMvHRh5VFumKzDvtUTlKdl9CEu6AzftOmcgEbkmggWXVN+/LrIiIdL30VeHsCfVlqwY8zcOljgwXfFLBDJKDpEjhWacRJEEe0anOO+270ql0XRHVIDYHmMh4gC0CzROaJqyiR6/UlQ58xDwx48jCY/Ugxs3rtKgy7hZu230CKNWqBakKz0onyhjVKrNpSCMKlSL9rEgRlhFBhpkLs8HiX0mE50VFhDWIgoNFRBWur2EenN2cKFNfSldKURL2TqXLc4+sgWlYjqSZJYLHWkVcpTAbCxdljOIouRIwr9M2w6dqBmVOFlOBKr70fekUZo3hTlV1HKuZRaDRQh/H7FzanImCimo6ZDt22iSeGq2X8oA5FwQzYUYQkzDRrO+6Iij+cQSLCrWCMTyKcARbEHfMFhrELE7qARPdNHRj4pT4olONdGVCMpgk7egG0Jlg7VMESAzExF3puq7fHw5aeo+wakdHq1/+o3/vwcMnu806RpNeawgzufB8sTx/8GC/293d3cxXKyJRKYfx0Pf9drOu47BYLsZh+O4Pf/+7X/8bq+PLd9e///PLytotjofo/tE/+xeFD7vDfr/fnZ0++PSzr95fvivEXVekm4VwP1/03Wy73VJsah3qsP/6my/fvX/zh99/d3W7u93uu29/Ojs5en+9/9+cXhwdnWzXu/JAd7vNcrUqpYRXq5WYB/K+77qBNrd3qrrdbK1aKeVwOCzMF0fLqHZ+fvHRxx/v1jf7w7ZZIRAFB7myjCEUMSvSdTLvC+KFsnRFu9IoAxJBUkjgJcEiREL5HFGt5EFFxa32XelVu65jkv0weLgRj9WniIxqG2wOzN4K4jpHXwqnJTKjFxeVGZfkRLtGmDJ54apeSogoWIcqHDTrDboWEpE2plaUAllzp8/lfQLoi8z7Ai0LBEAU6kHDaB5RLSx9j4Uo8veJ3KOqV6+eGtkoOQNg7XTWFWH2oF7DOq5Wa4XvJiCuoIiuK2DO5Fcn7jqhoMQNmInVzQvWvCGwEHOoh4/ubjWCRMTNNUiEtVIVHquBIuHqZl5UAJh0InumThWDBcTMed91RTFMBdISwWFeihTVUiQ8PCB0B+sE4wGZdd1M2SNUaT4rpbRQ0Fh2EWEu1UwqCTM2xpYinXJhUpUy78qs74iohkbErHTzvuu70iWnRTxIPYtaVSXQAFPcg+4JbH1l5tJprxIUFiHSjypadBgde8ULcxEVZQ83C/MCsjNq2dG0agVHsC/pjdeV5iUpVM2DqFMFhoGBJEeIiqsGRq4czDTvVIuqhWoJzBiIIgx4CJGLSF9UNXd5FGVhE5GiSqIp4EX+TzAz2uSKiI2ZLNjImLkrMglngBpp0Um5aV0Bh0FFEm8lZpW+gBbhzDFWl0aGcHdKng+BQJmlFBGzYE26Th0NmJlEzXux9WPEQezEqk3JSdR32nUqzF0yUpt7cLiyk+cqkAgKp65oBEFc6k7JRINkMpLwzMIwACZjFqHggslCEWjWgMDiUoK6zExCpNqB13x6dn724GHfdbd368fPPjp98JClmIVXNx/Ksszni7Oz8/XdzW67efzRs7vNbr/Znp09MPOi2nVlGAZR7bru7vr229/9xobd+9vdf/U//Gqzq6cnq/1gN9fb/9d/9l/83/9v/+lffPOp2Sh9f/748fHZ+c3t7TCMi9WxKh92OxI5PTsbx/Gw281nc5L4p//8nxvN//P/4l8al+FgcbP91//671an5w/PH/zuN7/55V+XbtbDorxtJdPRxghni2G7o6KL1dLdj46PDvtDECnpbthz4b/5x//4wcXJH3//m1c//RgcnlKtEOYuzN1mHQ4nA99T0a5oV1SUSUOYOVhKp2xEPJoxIYeTq5gq0rG7dZ3OivZ9T0GLeT+audNQU55itXoES1p9NRAxJ4c91slnicGqUroCcBn2bw5FGUlIHGpM/JMiIqLVQUGBVArFgEdgGi5EpqqqCrcF5IB53806UANZQbtncaK+MwyKDPhpOLNE0GGsOSguNlRyC1SSzNGh0Sy66HshiuCaqmRxL7iqSGpEIcqeMgvHxNF9or0FERlJRAiHFmlLbllC3L2Yw28VbAtlZR115NFEmIrCxh3DYU7gqysiXN1RPnZd12mZdaUrJdreAG6uoT2WXagA4ci6ClYTQlK0Y+mULXxmhUmqOXOOVdBjeER1McOnrjVdbUJV+q4EcZnPyqzvmLAZjkspfVdmRUvRHFSwwOVJglSYlTXUcnwyrXsIEVKRTgknioi0FCFR1a4Lz5pREAcN5IwPXAPbySPI+VSLqgpT1xeKcDcRHS3lrEUU5XQ1QYz0AsSSKII5inDXl97joLUOnjShaGZSTMLcadGipQBuIuhmgOYHeTqICZxhGxmIIgpF6mAdXCZ3wBlJsVdlVRaSCMxw1MM9pHARZU0mm6hQp8JAmUoZxqrCrkiFEhEwY+Lmtyp4CJUKEQapxEzh2IxgwenbkiJbDg4ldtQSRMLcq3Sq1Khg1NpIDi5cXKBUZEmxjEQ0nkchkTSfgnEAnm0PSxILE7ZQdYLhMvQQeWtRQULy4wHSYRZhXOSjz794/OyTcRyOjk+K9PvdNuq43W+62XzZzxaLVURYjX6+PAz19Pj0+vp2GGvHfd93sFntuo6JX//04rDbudO//Xe/fXt1d3JyyqrzmXZK65u7//q//u++/vLLo9XRZnO3vl13pT85OdtstsQ8Xx5JNxOmxWz27tWb/fZwfHLSz/qPPpp9/uXm6W+/v9vst5vNann89s27/89//l89Ob+ww91Px0enDy6GYfBgkc7MZ7100q2vr9VjvV73q+WsL/18piLj4D4Mw3739sWPJ0dz1fLJ5z9z8v1mQ8zDaMIcZExiIeHSFZ51WkRzppKHSkW5zbNYJJCTwe/tUlsbFaZnEUReuq4v0nedT0KA4LEaHK0MrvhERFTrGDQtAXYVLqVDoyyYpGY5r8IUhq0hwuTk5oVmEnCyICru0Wkd3duywmR7uLubl6LaSUTtSmvvgzyC3IuWrhSVbEpyripcOiXKRQXYkYexXFekeozVxqpFxZIrLUSuwkVECve9qkgEK9xJIoKDnISjCBeFzt9V1CgovCugrQW3sWKEG4kF/r7IFBeIibSLLL0SSpUwCRFWM2YaxwHDu+KlKTaATnO1qkVUtZTSqcxKKdoRY5AaHJD4RGmVbtPO5J7ftEFW6lWKSK3Wd0bMXRQiDldKt9GI8LG6ReGhinCtHBFFuQcpkLgsFvO+oCJjZLeuSKdSIDkg8uCRiDxNREVCUutJ3LhEzGD4qeLmNcJjVzS8VPNqxm2jr6pGlGrmzTyUsiWkziUSI1PscFdlZR4qcdsUj/Rdioh2xVNmgtkAs4S7cpQi3OxxD4yRO0UAdM6whuqmF0YCKFjB2bZKYKGjyPSMyaRyIGKiion6aGSM1cDEgtQlzBkugZi4T6ZAgiQTTIIducB5iEWc3VRYqGCyJMQqbX0m5gAiXRvZ4YySSnrKI56H4UtBiZ2sCyKmKJLfTQRbxialOFgQMPIiZlIWIocLPjOrML5XyfuHhEIg1AmXyHgjIBoVRnKW5Bow1pQwh0TzQtRkhgiLrtfbT5ZHx/1MWPbbu/3d7Xq9roMtjxZd6Vl0u17v9vuTk+Pb66ur7ZWUTkoRkQjeH/Z1rP28G8fx7ZtX+932bnPXd+Xjp492h7rbjqKyXC2++Oz54/OTP/7u92cnq8V81i/mVIpo9+DxE1DDT1ZHTLRd32lXzs6OD1CMWe1ElovVn7972XV8eXO73u+J/b/5//2/f/7VJ2+Wi+effXb6UA+HQ1HxalbrcrU8iFy+e7M77OduT54+qebEpXTzWu2w3xXym3dvScvR2dkX3/zF7fv3+8NBtUo4jrW7EoUqqVCvhTmH8HBoAYpAlCStLJ6FQ7sQR4XSw6IDaaNoUSldQSQQkSAxd1j21eoQz7j7WMXhYp88bFYVFSAe1DKAiJAy7BrgM1YjNCLMg8aamD5R6YpHcwBhtrb/dhyrqnadRGgpUkqR5iuK7KRSNFmMMMTHtFOImvVuk6S4e1WulYqKFquGvVUsxETOQqVwUSlaiFlYemdvG8SYAP0jjgdTqAi6lKIa7lqUmMaxwssULtqpMRAuWSYyNwMNd2ZRs2D24JnIICPDRszbQhhUkNlCdWquqtp1RUWKaNdpkUKJblmOW2FJIOIe2uUgPag5a7j3HeIJMZF5J9MOe9cIx4uoyGhWzVS0DOy9hruolgTBuCxms15L0fxWIqwdK6dBUjBFMIvVinfHvBGXjCEM6rQwB8TMWaIwN5RPgqhE1NGcHGJnFSUmHqISSTAXbvNLanAHU9IfBHJ2FhqrMxncXbXQrNcINg/zEBLgQihz0sRN2JyzXIARB4s7K+dWDcRWZeSYVMlOkDpG1s06KhJ8lHAJJaVgp+pEhnlttPSeQ04QZmCwGomScZKdVBk03tSITR14hBAINsHtvwH2ODMzKZMIicKQEU8sEdy6oUBvRFJmVpa0IwqC4qxFfIxn2x5BapV6BBMn9AlLwdSOMhOlvCNHWMzEDoYtp5EM0mFWXrDnVRJUKcIt5SVZFUw+UV0sVjbadrNV1rHWOuwP+93u9u7Nm/ffffvD3/wv/oP56hhfbRzGcRyvb26Wq6PV8Wm1wYz3+321kQ5+2O9urt8xx4OLs3/6jxav3t2+v97UkQe35588/d/+7/7DX/7FNwgiRXW2WPWLBVxxVbtxOPR9GYeh9P3R6elusy7B8/lidbwaq53+q7/9619+c3e7ffPm1YPz1dMHq4vz+dXlm8HqR599Nlssh+NVdJ15HQ4xX3TjcDg9Ozny1fL4RET6fkbMy6PVfrvtOl2sVqps7vv94Xhx8c1f/aNhtMu3r4fdmh17WtzDgkNVey1MDLsxmOQBtjaLAAUD0FMEppiZ6iP7S+A22sgUhI2PTNWsK6V6uvabWTVjIasVfsuw5gRDrGjBUlgGBS2B8iymIsSjupl6PrYoOSoW0UaSBq2OkoBGThOCpKj2iH6ijZ2fDnQyuQAwEeaZKhFkluAVEZl5lToqqYlUgRgiM5DXotL1KswwemFWYQ3Mr5nDoxO6fwfyZAJ5ekh0RcNJRbD7YfSIdmmYqUAXBUwnwkmoYyJyDRE38+g6FTCdssFCEvLJfyxJNKRFi0jfdUkdDHRgsJZzIQbD3swMoVWk7XtRpug7hXWEqpPQYGilKKqloEhYmcVYKjPn/A1GHC3/UZl3pcvhhlJgxwRhYTNuG7R6jC0KLcqgEoncchbCjJaqfWOMOoGyMQigtRouuKqGRxToLzLmh1cSTaksMzESuDKHpllfFqpB0SkXYSLtlCF/L83Gws0cFobMKiFMUjm8QVWiqOJhgZR3J4iZvC1SAPiHti6AyKMdhQaWgcpwYqMCWV/jVCAVgKYDsTaJMlk4B3bIeJBwBLpaEbE0NowGMqXzI6cPR2BCl40hSQQ5OTfyJ0W7JW1Q3NhQhDFQ/oE7XnHyhm3LR1t10kS8h+qg1Dq55Eq2rDKE2POxdnJPSQpFShIh+8qBORMlBzhzOlGSkdEuBZu5lvLRRx/XWt9fvu9LrxRMUsdhOKznyxWlMVmIaLV62O3Izc322w1LDV/CqwABAABJREFUZ25u9bDfUVeu3r158/JHr+PpydHZg4ePnz3d78dhpPV2/OXf/NVffPOL9e3m6OTk+Oyon81ECxFHYXcjkW62UJVqUWZz1U77vu972NU++/jT//T/+n/+4++//c2/+8OTi+VyyceLrgjVcRzH4eUP359dXJw9OBflvu9sGC7fvt9sN5989Hw4DNfX19Xi6Pj0+PRsHA7DMMwWR1X4wdNnt3e3h2Hg9Wa+PDo+Obu7vPSuA/LLFB4j5zBQVEQDPbHk4IdYlbGlg5oKXbmBqDjLzMSkoCQInhBUPELMXSlmWDsZ1awVKypMkv4j+N+SVGygstyU7ezMIsrwsYDfgHF0RFAtMEspdG+PEx5SslhuUw1mKSql0047FiVIZLH3oBmNCWGulJgBORXNIy8iVusoouZUQ5SrOUZa4U6kIlxSqyQKsh5rBFmad7KEg2ZOFPnNktDgzFxEw52luIZVuHhyTAWqoKVlYhLikhViRJCKRERfeagsHEW51vSMa6+QpvAiEuTC3BfFpLe1663uypsGPEpKnoKc6AFm6EreteJOFDpW2EOYqUPUxSJMxbWoFQXAhVviuMhBUWZ9J0KqokWAAuCzSHP8lEDQSY8lwTod0M8DdrKkzAWCN6Jac3WGcJCblALvoJwrUkA4RZyoIQgtLphBkqbMKcMGOJWqxCQw2AdYVJQLHpDgRMwlKZ4WIVK4GaG6Gbz+IpwprQyFMEdnJw4ObMzMRygNCD0aRyIYTlsMDmx622afk5812S14CSaCcZUnTyPc8AdmlTOcMsjO1XysEADE5J1OWX+nlxyoNwjfSUprSejDGN7aUuc2sIbZP1Pup3MHwgkICM6LLXC4WLbyXqsHEYkKuSpRUWVPFxEmc4fJJ+Z+mRtRugS5uxZJvkF42msxt6UfqD8igrquj6DXb14fPaDz8/OLiwfjcNjtdvOj45//8kJKN5vPIny5XJLVzXbTqe6D7m5ubq/vzi4ehrgyH7abKrS+ei9epe+Wxyer1dHR8THrzIl3+2GxXL168Wo2W5xd9CKF8mQqMZmzW4AEZu5aShF2MIudtIhbHF+cHR2d+DjeXR2drpZ12N7eXR6G0UPfvnn52frLsFrrqEU6mv3xT388Wi1m8/mfv/3z+fmDzfpufXdLRMdHx/v9brFaDmNs9+PJ6cV+t2Ov8NuWUrqYUa78DSFyM8jrWFkhrqbWnSE24M5BbAi2AIx4KEozHxehIpyrUJUpfZK1VQQi7QjhzMnU2AVAwTxCaP0k+8NwFhzQ7JUNsYoJdAkUXsyqRMkYF0vbmnwjVBLacSmliBIrMQv2iJlDjAICoDK0vwI31vuKDVQzVR6H4Kgeqk5BTBIilFqKNGVRUch0sTIWjJ0GGOOxCBCVUECJCtZdiZRqRhQcEsRAjzPqy73hTwFulgp8CgorKiNGrgr0WzgZKzCIERF0ViwEvYJiHk1BzG55S5ESpic+prckFgUMrkWYSdSMoiiLgQkjAvBKhCdgQxW731yZHc0WzLgSuGGlkBREBCXcGDn8YZ9Gf0ALolV1+VQDKE5oGVg8il0i8sBbSvMtBQIDKyv4PAGezi4W3jGYw0RwsMJNU5L0wmgOCsiW6EQkORPurCKhQljfFRFAzEF9wxANHiUOYx+mdK72CJgd4kNGEEtmbxXVouw5FQ+A9IELqm3dBK527kPDaXWoY4IKTLpCPNyN4PnEEW4pUMSVhZ0TUFFceEC+1Kqzhk4REbXWHsV3sEUQexic1nWC7PFT0gbh+fOJJaNTYRbjMAvz2B3qMI5uQaJd3xct1GmokKcvqoUrpTCA269ssEAVdQxIIHpwPDHB9xP4MMK+pOrOKhcPLh49etJJORyG0nXzxXwYhq7MsSXtsN3f3txeX70lH+t+9/vf/Ha2PBrG/azvF4v5bnO7Xd8eNnez5QzRZzZfzFeni6PTruu7ftbP5qV0rBKBGq0wMbzp09lFuJTS933Xde52OAzh0fXdONaxWtevvvrmL1erk29/95vD7Q2xnQ6nN9dXN7cblVk3m1s1llqHsdMyU/Fx/Lf/+ld/9+u//0/+k/+LdFJm/WgjM5HHuN/9+Mc/Pri4+Orn35DQbLnouq4sZ/1qXgbdb7bKLgzXfE9iRLKBneAOmZhCStNRSQCGgBMagA200MqM1dUCZIRJiFii4pULRzUQLkREpeBgtA4csRb3kILFERmEFJ6SEHGSBzfugDCFBBMrwfmDCIonIMXSF8UbEIUw5SqnopiueZM/wg8sBS4CZ1vRlq48ECDI8YZUSATLcKcTyBwqrEXyi2g29hqlXVZ0TYyIRRwITKjhRChI4GNdSBEOI1vkaOB/+ugxs2ZPocwkbhTi7BzCpHBJ6EwjvfAMmLkKI+gqE6to494STaIi5sSnmEjIYPrLkY9s6rQ7dHgsIUosnFrnCGJ1x+hFmUOCiLSIN1tilH0RXt2KCMZ6WR62zE+iOcQEdBVZiuL+cRaWHxSgkR0pZ3oE1EEUWEBHzCkaSrgaCDIzJ3xCFO2QARKJjInAwigoSFMmXZJBC7YrTiBYOYTzH81bWoVLp1YjUphEkoaCQhRuhmyGk26UDDNssmNmFlbBruFMpBygnhKBPNzetqEwQmG4Ve138g8jU2eMAU5AsEhkUKXIrXJ5kfM4UCv98t9zPpFH/UPwJ/80KOBhS22eklCRRyg7pQcDkj/RZL7HIUzObOaHsW72++3h4E5Hi8Vy1in1Cf1lBqEarm2I0SqANhwmbo85pfoBbo0wMQ4KpghSltL1D58+++rrn58/eebOo1Vh6kvZDMP+MByfP16tTsj53ZvXL3/49uR0NVuevfrx5c3V+8fLfjHvZoslubnbsNsd9tvj4xMiVu1Kmc1Xxw+ePu+6nli6rnQljfegHLVqzFxrLaWI5p6vxiqOOo5CtFvv19ttP1tI6Wr1R0+fcfhv/vbf7veb0/NHq6PjxeXV3d1uqKMHjYeRKdabu+PT4/12+/e//juWbn600iLEYkEsenJyKurzTn79q799+PgRdTKMcXJ6/hd/9Y/7Ut6/fjUcBqoDVlEJqFhowpv5c0v/QYQlkajVBHoA7D3Wptak5CogCsNCMWlcgGEiQlS4gaUsEpZbntrPtiIhsozCLDZjCqfQhHIXQXiTiQCGZpKItjZWGlyJKg6jMoUhHatIOFpw2FrdNx/YGVFEC6PJEZSuFBQCvy5SCAKccOaymW2DCpb0Z8SjqvfNerrPYGoguSsMABeir5KDyipAS93TQwEhlLMgzr4EFSozC5OlAD5E2JwCbqbM6dIQzgGSIbOwNsMxhASWaFuOkfglEjVN6gcwMXRz0oQ3HqEFg38KZTOoj2UK1JxTw2CODkRhigjpHHhoazOoacxkOggTsvDhjFE5HCM+jph+hD1C8p7nuUPjyin6iNzLkOgMio2sN2B2RO3TOnMri9NRpwkz2joMUH+EiNibxJuTbuzAyCBXK8pM6t4Iq/iobWqEFJV1sRMHW3itWNMB0RScO4LIVdXD434vXeR0AF8aabr9HxDwNlUgD7LwCBcmbdXbZNbt9yvucLOZBdqcUG27OfONUCl4VtjCwiAFhXAayACuS1SqpVKCATVJEnCb3Azv2LGGmJaiqqPVu/3WRlPmcBeiMK8VS8oxHmfP+XhexoS9GqNj6mmIKERgOY0HJIKCNUSc5fTB4wdPPxqq7/d7odjttubmzI+eP3/6/OMgvb29urt9d3K8XM4Wv/31b9+8ffXxl59/8fXPHz//ZKy+ublEBKmjjdXNvVZ6f3P70Vc/Pz49NTMzG616eE89EfezWVAMh32EiVK1caa9WTUO1eLkZiOTR/h2s14uF0cnJ8SFRcdxOD6/WJycvbu8efjwyI0ePHoq5eaw3zPzbrsdhtp1fTefXb5/d3x8JP1se9h2tV8sl33Xscr8aLW5fX9yenJyfHRzffno2dPDYX+33qyWJ59//Zfb7fbu+qrWClIKsaC9zOjT/CspIBRv87fwoBQGoElAvZhcXSR+NybKHSklDxYaWGERZofdumeP3LD+Vm/eFy8xHTz2tLjPffItq7sZI5qTga6E3tpwBDIceZbO+UnT35ciLMBPkKmSZGbFX8swQQUzRY9wKkJOQsF94drKJxDiiBjQNDOEoVLJE2AAo5K4DUEzEAWHB7bMNuiD2IOYQ9rKE2qG9yihE83MqR1zrnMoRF4KrpsXCyPPBVhZOguFgdRF8EZsbAuaLn7LQoSXRmnJuaYYxScDYW/O8Mrswu5wN+BaKWoVoIVMwey5Xyyns2B/EVNpD2ryQ8IDW0yAGno1bDpEvMoMFJFNHj6ZTvyZxPga4DjV1m3invs2IR+h7Ebgko8DLK3YYTEzvFqI5EtkV+S45B4uwYw1PbVyg05wUjEFd3fG1t72R2AiMWGSwdVrRv9cZeQeWDpA5lVy3xkBwmv/0uzhskXG7clbhdESSwZBQHuTmqxtsoj8LpkdphDdOn+G6QWwzjynjW4sYW1HUb4vnJpotAq2EecVYGYxqEIaXDZVExaezAb8vlApokXNbH+Y7Yehcl3MZsLsbhZRLfbjSE6qvJh3gCep/eJWWbWkQpkfc3uGUKsxAngo6enDR88+/pSo+LjfbzZm4/bu2qo9ePL84ZNnxDoe9sJ+cny0J3/35t31+1fPnj/98i//+uzBE9a+DPt3L35c395e31y/v7weay2lm83Kcb9YHp8ysypUpWhMbBzGCOu7TtK4kCPMaiVIosxYuI5VmbfbnVmdz2ZWx2pDP1ssFovVcvH1X/zl9dWt9ouTxfzm5nqxOl4sl7vt7u5uTRRHq6Pf/+bXY61f/Oyr+WLZFT3s933pVkfHqqqljNV2u+3x8Yo8DrtDt5Bh3MlBlsdn548eX715bYfBPYVUGAM5ueb0xBBOhaGrilZOtU566sUIPDICUkQUueIXnNFc8dview5nnB31W2T9lqcL1ZE1KgcSkHPD93Ks62kwMCV+TsYLe0YZjggzgwN4pNwHUSdYm68ABVZO4q1xthXbftEVNIZF1j0YJ4AkkDHMEC1zPKkZlPAYZhnJhGEKt0TRngubPJHgdeFkIkAMFKSdVkLC6bqVzJSjBQRlJlIVsxARDXIzEiFg4KJwjwcoJyxBJKKCfV5tk03r2oJbxmLg20GRQmgKzvKrRZBsxbi5wkjz38YUpLqnwogIpHV0kB5Raq0ohTUXKmCpYY5MRYRqDTMmUmaboj4lrw/yzoR9GOUhBAOt8G2ji3bzWi3IwmRZ/idzMG303RJlDyLz6JJomHEfvgLOEE1I08BS/kgQpxpBJoAqr09Dt7Iwhjt3i634nNU8ExellwZayOkrME3T5QkXabmFWZhTM0uGdh7UXHY2Mo60lgg8KhnAhXPnNzELaJOq0GSwqiINEOS3+Eyc2Vcb3YwIOxi1WqB3iIjWTUvrHpK4Jpi6xcSDRiMWzKEsJ8uFBC37xVDrvJ+paK02emz2+/VuH05Hy/l8VqTItOMnCxawqCK8/UE7HtyGlhQeoSSii9Xq4tGT0s2sWh0HcvdxEObj8wdnFw9FZ06yXM32u41q727Vdk8/ffr5N788OnvSz1Zu8ebt+++//S7GenxyslwdDYdaa+1n82cffXJydjZfLsnJvQbWAQ2DEnfC5JY+/RHuYfXATKrYYedd6Yh5HMfjk2MVubq8mi2WIurks3721Tdfu9mP3/15tpgdRZz3XT+be3jXdSJlu92IdN/85c+efvwxBQ37bV9kfXfTzfp+PlsdHb38cYygvuvqWDfr7Uk3KwosTp599Omb7/98WK+zz5oKqKnlh7Os+3QUMUwhajZQwgnQYOULwWLCGxPLWMRNkA7S8wb3XZgsK46YBGMQivOHfWdE6+U5yAkkcDZHgcg4msRsYVAFEq6zR2hIcGC1UHsc2/+HZb4TtWWWMRU2+c05VY/BLCA04PQHR3NMg3UVCRaNREQ4a64VyY8eWPdFSc1D0ksq6D1Xu5VVyHL5vROTb4S6hnRF1pVZ/zsgO+JAHsHDBoMEyPKZWUhxg4RCFPJ/LG1WcjJcYqKE+jkaAoe1nWAZtlKK6X6kB2yGhO5358C/hVUYzQ9QjGnjZntCqUwjQfcc3lgEjFJJmnsZM1tonpcQbtdLyIPye2QyzRCXhIXWyjGYrQJhXg5+MdcVosJSpFnNMOMiYWs9E1uQJkcumJ2NCWN5a1siANtDHteAxRxMtV85RU+UIqOSU0TzSfVwIdL8q5ikJRwpDUnMoogpiJwjCEpbImYKU2JlKtAoT+V87gEOZk67lAhC+5glV7ASmwQFSq3CEMkyXJu70uVbRxBTCuiQL6HWwx0MyiMS0RISMXGowOg7Mb0gj3COkvUG42oxUyhFuHZydLTo+n6sZkFjuA00DvZ+vbvbbcLDwo8Xs1npcJqmdhXPUTUSEiN0b613aVAZqFQqVDqVoqL9cNjtN7c2DiR8dH4xmy1KPxuGwc1GkfdvXm9vLq8uL22szz79anl83s/monLY3r57+UP4ePbwQR3Gy3eXzHp2cXL28OHHn355cnwhfTcOBzEm0gilftZ3nVkd6+hO1a2OQ5jZOKJ/QiLvjrphv++KMsX79++YZdxv725vHjx64tKt77Zffv21e13f3Dz56Kyfr0rXzeYzEQ4PYf7FL/9GtKtuu83t7fXd5esXj5482e+3i8NqPl/OZ4sX293JYlbtsOrPa9Sby/fHp+d1GBbL1aOPP727fj9sBzOfiIkIk+02RbbBMB2B2ytGPOzZ3CGqCnMwrNBhyEHkymReI0c1QaJBoZzMkHxNQQSBWkpU08mSct6Ua2IQ28ndIZalYGZztxxZcavPJMLNnVlcyIkU5kJEKfMFap1n25lDOaNjy3otVEHbI8g+QdmEtylkkJBEbmfJHZZ0341G0D1/Pcl+yajypLFHw2uB8DTMlyI0OMTTeydwiaXxPlBjUWaRCGyBj3CGxV4UEmfi8LT21FyLLYRtME01ha+IGNUiJ9AlID4Z1wg3lFlb5U3ZCUqzZMlimIlKNnIJ52UubEUkgmIEFcSgCHIH6iPY6I5xxzT7DWyTSDVp9krRwBbUlxTMoARMnUFOzbnViRNaEoyReuCSkBZVUvPKxFyUnJi8klt4DSoh0hIXSsxgxj4Fgc9Mfm+ZPp4qTrAEmdUE/b3VUOzBxpFlNRdlZ8xV2BpJthncJQIIcyIPZxU3x9dE2qCmh8ipUhvjT+nHzIpwBaaI38ZfDS9F3cwoVXXKBDW8ihTVoqkBIrqvBVw9n3YEbgjegoTZE/lFWZR5T1wyUDB7kKSqEpEgmFlZUH+0R1+0+Oh8ONTRIjyG/Xi72W2HgZnmh2GsJjIjCkvqd+Ynz5W/2e1REKZ6ROTEWaYysejRyckXP/vFbL64uXxnVodxXB4fL1fHqt3hMKzvbsl9e3dz+fpl2GA23G62+v5G++Pl0ZnX8e7uhotcPH5kZpc376nrHz45/+SzT4/PzmeLYyrqdQwbyb3Ww2G/PRz2y8VydXTEMBWo42G78WEcDgczw4k5OjqyYQgzH4d92Djsz0/PLt+9G2t97/bo6XPtZ7eb+uU3P3/xww9Drf1ytVwuZ7MZE+/32/1ut9m+D6fddvu7v//V00cPnj9/dnJ62i2Xh8Ow2+8fPX363bd/HMznMz06PS397DAcdtv9cin73e7TL766fvPTiz/d5XiOm6FKDvFYpDDUrIggGUaE+X7UihonPgzbPnW0rlqDSVgBlSMayz3dIMdV+BeGi2IG0JaPsOEx7iE+hBInv9+2mOWxJb0OvL+MynmwsWI3GUqZxCCaDWwhJIIcDHhzlt4T4Iqg5G4RZE5m0VwCItOgIKHzhPyiDvEGTpIzuzh6Uwng+EJoZDIEN3QaLX9kJETbbNQCGk/0fcq+YooGKPhwN0lFWzGM5hlMDVyA1NEhMqQCCeE/I0X7o5ydZkxnxPsIwUAmLKJ60tcR/dt3uod22r0jIpJqXvj+EhNwQ2fyYMe62tatTQcykTPGwDYE7U57Owps/0hHBUjYmvyvmXmTuBkRNS4sI2qqMrl6uqtEisFRPmcsYffMwpHDxqAWTwmDmUZPVGz8Eg9XLtgQHBOmL0IUpCRBysxmzGwKI/9qRKGiLe5LridgJSbGMEmUgtxT2hYAYCjCPViAeiKdUuQUN1m0hPI/GjmXidlJU/bFhG1wRFRESkktZ8JQQUGhEU7hZsICdi4aNcfIhJEGcQQyxDfyA7OIR/OIblQwbg+Ku6cU1czCDuN4u95t96OImtluGMx9VkpRzd4iK85sAhqK1gDkPKTtnSkZKnlFy0zLbHfYEXPpumGzPhIVLqLlsN/N5v3t9dXV25eH3d3t1eVhPFSLf/lf/jf/4n/1v3789Gmto3nt5ouIuL19383mDx89+ejjj+eLhWiR0kU4WfVxDK/jbnPYrW083G43NhxKP7NhPGw2d1fXu+0GHYCFn56ejbOetmFmRcVr7YS/+9Mf3rx89ez5x8vV8W63OZ7Nrdah2oPHj3e7PWsJYqtRCmvprW6369s//P53m7ub5azstzfrXt6/exNcnn/2uXucnJ3+4q//vXcvfry6vLq+vnn4+OnJybk7Lnbt++Xp+aMf6VtIEdDtSWqOMtMzk+WmlamvTiY7T/0CoeHyYPFW1qFIJArQNIk4qRVgzoA9gRAET5t8TRzbHFBKw9On6N8q9AyQ0682J0VBJpZzzJxWQOeLuKFZseEEiuSAOR9oybFom4MSTzYkLQmhrAO2nL+V3xcQPyrfZiwRSbIF5lGZRYIlmkadPNNResdgvB0cIRFMCV2HRYQRBTJwPj2t7MNjJxwsIc6hYuYsXFgMZhX4+plrJatkYm+Z9f4y4hLe4/2RX4ASS57+mkWlTIrprEPE7u3ZJGn/noxDfNygcIrClKErIgjUeWKncGMo9/CylNBIyxTsTKKqRJjH4G5xKKtqkwjlDYeisH05BiDFEYoKhrioFOj+GJc/hQfKRCpB6XnJzFickrAkUUSA29euvrSmMDBagMGJYqVm7jTEhRVm5xxIVWYOUihdCmmaMjdIMPdncc5W0RAJJmDt7GH5KnM4kQSXD9BOJsD/ITLFQxbVYAL0ICXBIcHKOyZiUmIkHi05BOL0+YlwilLyVkS4WTCc/3K+0iKxEz5VtBzOrMTuqRNh5jBcLifLUg9F5DjU9XZ3u767We/co+u78OiLLLqymM1gDIlm2T44rFmEBmY5ExOVplODv1vHw+3lu7cvfjp9+IjCN5sNhHdjrZSEMVLVkwcPjk9Wv/3N37346YeTk7M/f/vT8vT4sy8/VxUiKkU3w7i+vev6vp/15q7alX6uROGV2Q+H3X5zO+52dTx0nc5n8/12HZu1R9xe37z46adhvxPyYRz72Zwp3K2bzVaLRfV6OOzG4XD9/g35+P7t6xp07FFmi9l8UYcKZakwRfhut4mIviuro+XhsB6Hw83793K6urt652E2WN/P2Uwo7u7uun6mpVutVpvb24h49PT5fLkiPlCEB588eHJ8erq7uzTEZUlzFZjXJgiefLaYvAlyhMktPGO5DLCCRmdA5ggSYq/hooGGMCNplm+Zt2WC39GkUiJAxErQnHG4wcNUMD5Dn5cThCRlB2E6mh+xvRxx4v5BjL2q3OBLkRA2WD4EETnTh1GOpsccvUc0vDu/SDYuHGTh3mVMT9R6klYC70JvREzuTdZLIRSkzOAiNfl/GA50iyxuKvDgSkACAgwYtAgzS5gBT2NidgtWMm85BQIIxHMODBjQLphziDR3AG9fEtU/u3nO/yLSK7slwsgPi/gWkZ3X9LgJIDML9GiOngW5JJgKygvgWRnuWYXIwsVaCxZtypBgDr50Bkdi2GgEJ1UgmnswEVoEkUmNFYk2Ik1GsEpaPmExRTgzmJYMPyIWdA5gRqooPJ2AJLXMlKVB1gmNgAREC60ipzwlLVUjctd2hBOLp4G/hwcVYQ/mlMJT6wOYOchFOdp8XN2IyZKLid75vhC770xSQpnEBm602UBPnPIHJpHC0iS+EIwUFSLJLgnhwCxY+cOG21GVUK3OlDYjnNOYSP8H3AkCYZRFREF8CkHziA+St69Wq9XqWIdhOBz2+2Eoh7KazUX75axbznoVBQkEKzjogz4gWqSXRAg/qBlyoMIctr29/s2v/qev//qfzOdz8lDWq6vri9KVUphlGIau9HJ8evl68/Fnnx2drN69f79YlD/89u9//7vffv7FF2bWd92w2/kwPHr2fD7r54v5bL4g5lKU2YfhwEJdUWMyM2JWNaa4u7m5Xa/v7jY3V5dMZtXcfayjh4+1np6dhVcOr+Nwe3s97vd1HFh4u7mZH63WV1f72b6fLfbDWMdhtZz389ls1m03m8u7m66UUronT57+9O2fXr/aPHh4/vzTz96/fies/XyuXXcYhsNh9+LFy9PV6tGji90wbDdrKV3XlWHYd8TSzfvZfHvXYgVTYypiDdykPo2U06LznHwgmKEYym44Ee3EkzGRpaRg5wxv+lnJUg9w7KTpzNFNwuOATzGIACXfJ9OeDB2Ub5GACeeDz+3UZ57KeI36iROGwjBOgowCfKcPGg5qjzlyXFPMG/YiB4UEfMuCMdtgCvG8EEKTcDqmX7Ch5NwZiIEDKI5tGUDC23nZhQhkjSCadO1EJFDBUnAjO0ISR4EtUoQtO9XDMtE2kpJEclXxOvAai6kOS9OuqdSlHAwEfxDd23kIZgr3IEcCaGmSmJs4wzyISjMSzitIUcDc9+y0OIgtjFmFeJo1otLMu5haFW46Y2Jm55Q+Jb+AqGhhogpTEb43GvEPqkJmwgIDciAxuBoVKI0KVwrNWQ4iZgSHqAbo0Rgih+OjgMkPZ5SAgqzgPuX4lKFNl2SjwWO5iHLJqYiHG2M0JQwPzJTTErlLKbCvIHISsgC9EXDg1IMHUz5GaMUaPwrSCnTNefGICVv0kLU0nWZB1cpfuMhKOahtz2o+5ihmjMXJLIRBPWL28AJGUbRwERNpjgjmLpXcnTQoyA0mqfDEQBEpVs2qDcO43x9YDuQ+74qK9CoSFb6VRA4iVkMAW9PDAEdzsMaJKRuzegT2dB9u3w7bq9XJZ+6+vr6cH52G1836RrULit1uu716P+yGbnb05Pni0y++fPTwo//vf/Ffvvjhz2cXZ4ANDvtdKTwMO3PTUvaH7ayfW8UX4LAIJynaLyAS9mEYh+qX725fv3y5Hw7zWREKlbK+O1xebVTfXzx4sDqaz/qiRVS6i8dPtOh+u7++vhyGw9e/PK22311v+342HHbDdu1ER8dHx6cnwX717v12vXn79m1/tPro+dPHjx55lM+/+cV+tw/WCFJRLkFOV1dXp+dn88XSxmHc7+az08Mw3N68qJs7q5WDSsKrEeSsMP7MgoGFOZQw1oRKoF1ej0gZUnDOXKiJXdtTlyRy7HkTSvE9PAiFOAK2J8CcG3YcraAJCgkiF5KgjoRFDYxiYtAskUKCqClUGt+IichV4MClH8St8Gb5qWEWXkTIuSJ5ZXOQSKY3jgwxMbddYlgETE6pactoRVNAz0V8AQom57MazDlFIHbC8+XuIaHttaQ5MaJzwWOq5MZZViW3gbE9M0W2jSsqwYXFSrJPQa0iUbQjRaIIQQWNK6zMRBYU1pB/T+THmDkTUHsH91D9UGVkoGWVEI82FWi0kYgUfjmF5RtBCUFMVEARznqNiUnczZt5GNT8SMUMyBiatuxPMyrpdKOYJQgmRJE+lJLBJb1B8t57WKbQe6Fgy2iAQJOZNlW6WTKoysSHA4MSyHJoqs5aTerop7I2aVUV+iq0I5TjNWCQLEHM6oEKILMzw8qNWSk0PWQIzCdmrsZskGXed+GU16s1nYmzt2/FSM+GfS8iLJDPS2OP0Qd6SEkTAGlFHl4HhZVQhJC4jBqWVifh5Jyym+zr0eUkcZojl/rhxVMBzk4eWHCaIwIs2xgPw+5wOKiKlTLry9Fi1hcOsmre7lpKw6b6NE9FBLpc8sQE8PmTesFUhOezPogOh52yC9vN9bvFfDnQzqzeXV56Hd++eb3frIN8uVqdnJ7OF/P9drNd34moEHOR+WLRz+YnJ2dKvNvtulKQP4ZhLKo6nzFZreNhv9tbPVT/7vuXL358Veu42+4OO6mH/bzvI4KkeIk/f/vT/Gj+zc+/OlkuO6Gh2t1uSxYnJ0fDaC9++P7ZJ58Wld1uO47Dcj6/vb759ne/OT49ffLRM+2kxvjxl5999Ytvwmx9c/Pjt99tH23OLi7Mxv1+K6U/OT1ZnRz9+Oc/X19fPXjcF+X9blvK7Pzo/Md3v/nzb/+ubi8LWcBNk1K2nXp/VOtt0bkEGap8YnSREoQuszH8p5Fd/pUWdJPrgrqQgQomKpBGsK2bbiTp7FUZuIgwzOpZRTncEIo5SikRhLWpEdEqqGSjT/UiGer/yJPTBnfIE5zGMPCgSBOre2pjtB01E9GA76eAWYBHw1HvK80stFs9mEW25/Vw2CviuzkpBqwUAtEyc8EnQwFWoGYmwlWIHDOgtWULZ+wdIEhlJaL5W6hMZgXUkjalqDireAWag4aFiaB2IhirTXP6SMFEBgP38OxYUESLqELc55kt030lJawtSHJ4FBZqBwd4C3kuMwFFLP/2JJ1tsThjC7DyVmHfKxTSmRuGA8xBRhMOzExGU2jmNOhvHjcQ5kXrtvIAA95LoxFHLsnUg4E73IdAY8kpVJiZVUaHE4lZTLTX7DnzfAQGBkKapMWUdjmzZN+VMHdir0aW3W6TulDEpC2cmvJMW1kWBQWmcC0RiDBomOnayKIZ5qU9sJM2jiLLujQLT6Jz9p5CbWEjtfEdKnSiDL451+KYDkZ+1Ezw2ZhTRHh1q+5DrdVMlFeL+dnJ8fnJ6uRoruLmhALfc4W94AJRI3IwlplQRCRFccpHaNyUI3zc77dlPKzvbjR8Tt51/Wy+qHUch4MKbba7YdgTm2j57KufDePw5OkTt7q9uyulaOlOTs88/Pjs4vHjx9v1tmgpXSciZlaU62Hcb+5ur68Oh+1+u1WdDSF/+vb71Xzx9OEZ2UUn7LXOuk5LMaPbze7Fu3cvXr5bHZ+sZs/3ddf1i77rhroXKRTjq++/U1Xp5lq63X47HuYXDx+Yj3/63e/chm4x22w2y/nSu/H9u8t//a/+p8VM/9l/8M+OVstBZdH19XBYh719/fqH77579vTx4bCdLc9ns+Vhd3d3+XpY3427Gxu32KKexHHBDhYRIm3ICgk5TBHbGB9D0kRX2pPSzqEwBSn2PAtPiEN7ELPvntA61A5EBIozUQt07UcoBLMewEQhEhM1PjMLoEThdDNORnaWW6AxhNVMMyLkNj3nFE3yllnCWzmFL5hTzcxQoBESt2oZHNNEz1p0ybjojKAEoQ+wgAkJyU3rVIOE4VrPrE7GePx5SiltYqHMUNhkF9ESVUZHymKdMGEWKqEGGKolLIrE6Tgn3cDoso1qtXRwk34TDFc4H+jWaSB/EGHCg5EytxSIeB7QAgsQ5/vgA70YE+UgpjE5AQq1+g4fj6DlFC4oiqkh7MjHTg1pnGDfwN2dBscc7sTBTGZVBOMsa0kFbjhZoTOHCJnnnUBpghDFRJ2wseTPkgTnzFlErOEPFG7VCU5w5LmcBELGxnmYgmdOwJL1GTACohxptljrEerEQRxamtG/EXwII4TNs5lIOB3pFEqfLGBawM23i1yzLOk6p1i2wSWFCK2VJTSxlXPDRmM9R0K7QPMlMxq2sLbGuV389si3cQOTEnvChSRMziEUKuTCqlyEZoWX8/74aKFSzo6W58cnx6tFV4Tc4GvBAjU/+NlMHFijTA0txTuL0H3pwADASJU57ObyXb86szrUWpdE5xcPwvmwP4THzdXNm5c/scpHX321XB33i9WLP7xws7GOu93dfLZg4dXx6c3t3aMnT4n1br0+Pj8jJmW6vb66ub7qRV788GchJ/bLq2vtli9evRfSz55+tJAYtzuv1vXzsQ6buzsiXvXzp+fnJPrH3/3x2eMzqod59cNhX8e63ez6vsxns/Gwt8MoXSGO95fr283ts6dPvvrmq/Xd+ur1m5ubm9evX3n1m+u7w273L/5P/4evfv51rTYM1cY6bLe101/+1V/cXb179+bV0emq1tPV8Wy+6P7++9/cvnqpMQq7UzoGcNsNkdNSdsIwA+RpSk87DyGHcgvwrzgyejA1ZaUwPDfT1YTaH0uGCGYKdgqKtE4Lz3U+4IMA3W/kNXJnCaJotm+cRqaoGg1nLktaERZRZqHGrnZnPIhOwSSV0v8RDxdyTZbq5iy5IQonJ+tRRLDwIrAmpVCQdBJ2nKJWNhCR+U1EEuzOXjjHJBYREZa5NAqjMc8HOXJMnjMLydmEEJMBh0uUDIA0eJSJnaXXJGEmEJqMRoo2X8HFxqdEuAgPx/JaEacQneZ5WUG29zEwZcNxmz31KEJEDLMALLqB/Rw5NUV1EDkch1S5wKQT1SgxEpxizIL8PBULkh7WAJGmkeaHxW1jFRM3FVlIjiOA6VHT/xJzwHIUNiTpsMMBupBIzuLBgg52UMoE1FahGjxZFyLCTrBJpuIA0O8QppDlYCQZkFkwSbS0TS3HgzEUAMtYMmdkPZ6OKUSkRYkR6Iq4pYsgHl1JcEybb4TACz/aXiPKT8AcTI6knVQfIo7sBBm6TTRjlkmc0rSb7xtpxHFiYUmmc+vwpxxORJT2Mi17R+hUalEoByuTRRRecC8UZAsVPl4uiPhoMZ9hbzWqSkqlBGc/EpEbSag1NmAN4/xx6+0IIQnrN5jp5t3r49OHnerr95dnTz/a7/abu81uu95tbtd3t1Lk6cefPH72yc3Vze///jdvXr0YDoc//OEPpxdnY60norZwVj06Od1sNmU267qu68qr775/89MPFxdnP3z77eb26tHDixqxXC23O7989/7Zo4/oMNyubzc3dxQxuFl4V7rCEr33fblYrW5urr77/seff/2l+HhzeXl7e7daHYnEfjhIPz978GQ3DME2n/WvX7y6e//+4ZNHb9+9ffXji8VqfrdZv3vz9svPP7++Dl30IQJzPBvr1ft3R2fHq+PV3/zTv3n35q1bDMOw2W5OTk5+9ou/ens0f/HHYXd74IZQI5Ql3xdYPhRSpDjZKJxaZp9AR2bgQ5RoHKWQgMCXbE9oPtT5T6AN11RzMMZ6TU1CU/0CojN/AJ9qBLdGkznY2xQAVSOjYkEQkyw8OdsFUJeDSxBrRtKmdUNJLEEM7wJuzzglUsECmwy2iEabYiYO9/ShwVvlBALlLUJloj/SoHwAoxEhGtjWGx7sgvcD/UPifmEUpTLfM2BHphhpjxNcJkHHpmj3qeEBSL/R+BKJIoWn/g9sGvIJNW1NIa751PaheEX7lX0AE6UzWCtqEeYYpVnWZ83Hi5mJCs4BVs4hdopIkHGSU5LcwkmeAUyo2RPyVPijNwomQ2ZPPVo0/Vlw9mMRIjiLsDVXQk/G0XRIUGRxEv7zxZUjVegoAYw8mpWzREikTrzVQBEeHBwEl2MjeDK3uhn9C+V4I/VUresJlFgcmI8RiYToBz0XDkIIh7owVSXxMA9XYYHTAidhShiDtdTZJ/BFQcEihC1wyoDj86sRB0jbbYQTWbIEVwrJho0/mJPll8IRdOZwcqPEfXN0R5ibUc5lo11cmPtzalbaAgaez0RluZjvDqNZhYDX3FBQ4BjC0ppRzbBEEIelgS8QNEonM2ZpfC3qQjRJzG7bu8sfv+2PziP87csXi+VR36uZHsbuk69/vjhaFpLb6+v3b17eXb9fLRZ3683f/ru/f/Dw4UcffxzONXg+X3qtu/2uWi1dufzpxz/9+lcnp8ff/u7vb969vTg/vr6+uttsZDZ37iX49Xc//nC3YTftymrZm/lhHGezed0Pu/EwesisD/bLd5fx9Reb9Xq73XWz2X7YL4+Xq9l8OOx323UNDuFS4vT8+PLd+7vb7u2rl7d3N/vD9t2b92a2WPQRR4X1+v1lx3p9c/flN4+OjpY2jKWbXzz5+Pz86cFG0W59dWmHnTJtbrb7/QEPlIIjQOiSqZorhYhzGBEM7lvNEuB4Y6iWZ4A4G2FLNBUMRYAE4LQgooWwKIKrJswPfF48JFJBBCACTaWHRbgRk/O0oJgZg1LJOmmCIBkLSbLvxUggz03yVZjJLYJrhJoi3MJQPMvnrLwFOKUKRWqMhMjZmLmoiEUNB3TRTPTy57jRHhIyzaoetE5tsEJoBHjxmAw6LqZ7cXcz0lQ35hfJ8p3g2JcX3z25h07AcCwqGbMJCXuzFE1LBiERJTKCvCALNgkJBuuUHR6vTKGgmEpUhxCXLJydhDUIodXa48/MXEhq/k4g4TmxypQNOPsjJ1UlpkLkokWKZikQocFcCoIjCoaUpkQEhF0sRGRmzFFKNlOtvsaZ4wYBOxYIN8pmM4nL4t6YSZqumj+g6MOFKILBWG/QdJBGNEPEpBRBawgtIpObM9b+hJMj/rjVbGiIcqKLnyMSUO2mpIrE3krZJIGhTeCM/sjEktaAREWpRoWahpMwSpiTM7E5BwWexclxKIsv+uCfgKlvlmw+kaXahU83U0HUT0jV86JNKaAxfAHHt0RPFmBjpE0MNUAmh4GJNakIkZOHEAtz6fr5vJ8Pw35/qBajk3ulCBVhFVUCjTbdVTgbbU7+LhFJWnJH5E0kViyayE40RGJ7+y7cHp4d02zW9725DaM//+jz5epoGIfXP73YbTbr9d3J2cm7N5c//vhiHO23v/ndbDYbhvrm7fuf/8Uv1+v1MIxd4brb/Om3f6c03Fy/MT+cna82m9t3l9c6m5/Oli9+ePXqp9f769vrm5vX17f9fPHVZ8/nhYfdvpvN31zdvHr7dqZycXL27NOPZC4//fTTuLl78/L1ycnxJ59+cnZ+MVseSZGXL990s+Xq7IRUgmgYD1dXl25WStkNw91m+/zp4wh/9uRJHfa3NzcqUvr+5uZqeXq2X2+G/bg8XvC8P6zvFovZ8enRiz/+7v0P3243tz5uijiqLeLCXEgKRdRxrGMNpa4knRozrhxV0hTg0vghzwPn+Wx4bxIH2m+i0mJOXpkomEU+uUpwnnkghBRAp9qRpAgKUEERW4LYA5k/wVko23OiENQUHln2NxwkKCqiGDZRTS+IiiTw0LUeNhvYYGFsxBQJpC9UvfnlJuSHXO4rV27PLxMLMK/pT9MmyZ2dgO/euz0KmDAhmSUpN5XkQzdNFlGlN9YRUBrWaFUScWJlApJlBteGYeQ9jBw7CJMjiWavjTYK65UJhgVt+iKtTOYWiqldACwGVGJRQcsRKc2QcBLBakWwUHPhMksoc3iQKicXGNCWGQmrqiQNNsxAUco9Bi26IYR5A7qJKMBCxbSSMcpI4GhqqqSBM8LMqqUBRyloRHYBzpWeeC35Wngw5HVhbtpmsQ0/ooioBnbP/TIjaTr4pm7JSJqZMpJohseHMZgDeVTuOyx8bBwpStENAxzTHLuQClNyJafZNV40W+mkF2OTU8N1otX9FM2rDleSCc1UzkWEKMXsuE34TxiIySk3b013k25mFw6AOR1hiND0s1CQM5sTcXSlWKlBkKZwuEvpglxhSAKgCv1Lo1dIXhliFqdGdcCbEzU2RSvvyPeb69Pl6uzho2EcDsP46Onz1er43Zv3y0Xfd+XqsD85O92u7/7Hf/0/hXvX9UR8d3vHLFJmTLTdbmezvi/l6t3b7ea2V1os5sLx6scf3CqLEvOPr16+fH39p+9/nDG/vbn+9fc/Dlbf3V7+k7/4msPeXb3/l3/7dzeb9RePnzw8v7i+vjmZ89X19UL5s88+3mzubq4uF8t5dXvw5NF80f/pj3/85IsvFifHdayzrn/z5s04DuZ+u16PZg8fPTw9Ob25vmF98dXPfnZ2ccGsQuLu5r5fr8fhUObzu7ub26u3x6dnF2dnr/5wR8Od5nnTHKzkuYvwGj5UZ6UiGumji4DuTs2UmZnx2N3H6JYdoulviKkhpRMUdF+RYFNGiDRbT8oO9L7EAHlAiNiNpJC7TeEW1buypikKms4Go+PRAAzQRoMAnCLrBHZF8TtBRfnxQChDVmi0luxNglmMwGd1ZoIjJxqN7CKCkhpCLWAj/4lEs8GH30skhh2pBQswmnIXrjA7R7s0YN0HtiDAHZimx7FxTiLCyDiEkiQJ/U/BDRDmfHq5eTwQpUiDJDwakSlY7ku8KeyZV2JlghUNqFmcY1c87Gl6lEM5zslkU5MkohdFi4rkVnQiZtEEEpAAmJmo1kpYFRmcxgZMjl3SmQO43eAWQDP2J/hQzVWAGTgRK7NF26SSKSsQj1MZR0kPJkq70nypDICBuZQZWIs1QktRs+rmpIqg5xwiBLNah2SEnBlBGl/2fobOrACmsh9rsGM7OjQF/fjwwcLpUXG3fKHE9DPS5nVJxD9zwz/4lUV43tu45+Q4JP3UzmkEhbkSeVuxkRXaxJ9qxLSg8ETImNmZoBSDARbeztO4CBckIb5EOd1ygVsSC1Up0yc2jnVMBN4hs7g7caJbrXYLLOwJIneLKcRI5PanJD5wkFG4qm7urvXqbbc8O3/0eD5fvH79ajwc6j726zsmmy0W3/7p2/eX749PT97fbU6Oj7pS9rvdx58+2azXblVkZl6v3r1livlydXtz9/qn74+Oj1YnJ+a62R3mXVnv+f1mfdgO76/eW1jf99v97nK9EYp319ebw561e3e7/c2PPz18dP7k609+8Ze/XPRa95v9+nbY78OHUrrLt28fP3ywPxxKkfXt3fZuraJd323u1ofDYbcbtttDsHz59Vf/6r//Vy9evBgPw2dfffn8s89E5Oj4eL5cXb17G3Uo0Z0eL17/+cWrP/26K0w0QrqfD2JE+Cgc7KQUomRE7MEexJjbS4YKqPnsPoFPyKy1p4+CQrzl3CYtY06KLnFz5yUlBvqZdrOT80+q6FEfopcF7l6JiFvNnk9KUlAkSxYP1oQdsryV1FEywBLy4IAdcERQJOY6xZPpuZuGWoiwPAFNhYPCXVAXTY9SSyF4xpwoWoGMQ0qUPUliI1kfJj7NnnxWsghNdTXMvILvtWg5QM54FDE2Ra0ZNDWUPnjCIcBtnFlRPwHBMCIRqnhxTr4nR4UpWcvRWQ1gvNMAicSdMp0EUa64JW6pMkAsohAFC6qBBJbwVwHoIMLpR5A/zoAEWEiCqRQzo7zuU6yK1pDdB33EtBYhw91asZsD2GZvIk2K1uJeK0sQRiXbSlJVd4e6ul1qmv61WfO7mbmjYYlaKykmN1FYW9R2MycK1eTActYg6BiZibAnIcF1cmEBrhTu1Mz68FKRQF8LbYjzKRq7f/Cy3YucsX1Y+d7nc/x8kmJxcFvJhQPo9x52EbB5S4wIWh4wr/GA5U/mjA2AZ3MsSdncB4ScqfxrT29+PiKWYBJlcQ6pmQs9rDp7GIgG9/Eeo3g0FgCFInFSzs52Kl4CWYHaKI9Y3KvtN7dvfnr02XHf9ev1OqLOCv/+N78Os9PzkzqOy8XRJ598fHN71/dlGA5Hq+V6t6eIN2/enJyddn1nw2Z9c7lczM1sOOyfPHl08egRlW4/+oNu9evf/GGz3Z+cn/759sej87PTB6ed6mJWXr1/Z+ZdXz55/nw/OjnvKc6ePn748NH11c3i+ZPNYXjx06uZCguVWVkuT3bbzenZUdevuv345uVLcr98936/29+tt5u7dbiP4ziaPXz88O9//bsvP/v0+urdw2ePZ8ezw2DnTx5Vou3tnZZeOI7Oz3a3r8bNnbulSJu0PQKOzpqJlUOKUG01WxhY/pj+0fRYtGODmE/toUvIGsH0XsE6xVLmxptGdVITB2AKN6t4AUegYwEgbxRCZJ7OlC1GxVTItLgbEWHNvngKEfBVCQp2ySMeQSwWLpQc1ulVp48arVJKpwBKpnaiKq2y/bDMp0bApohIo+zpm0ceeIFEHpUzM7yuW6nn4ZoO00h+8AWSTLvELTU4wUoryMzQRwAFT2gGj0YOMDBHxBNJRCyiTYsbkWw+pIEMGAT6O1aLNxC7gX+hKR51y1udRX+0AiBHIrmZAEhQ/tXSaZMpwg0ziAWe843jmQlZiYLdcowhYsBJQtvtma5aFqEfHAPg10qpQOPGMmb3dPwAwMCo8c2TlQDjWMXUKDxcgiyyRJAW1rERzIMK0mLeWOzhucegRzNNnCsj5dT8MRO31gknwtNXaXqCguHlTUKEfZvSrnIQQ82gyEY57EJmJg5iFUrT9FyUAGoBJNB4qLF301nSZI3Cw6fyguDEkoAYlK652KYhYfi0GC15CKf5KDMFcXP6zTY866M2PyBu+TdcSNF1Y3OEWOg9bMe1GjmFZhnlZMQEzw5qxQYHTaa8nObEaETI3ViZQyn3DmW1G2Ljbs1emUiLXpw9/OlPv7+5ebecH1++v5ovFm7++MmT3X5/fLS6vlsT02rZh9vrl2/Xdzf//D/49+thS+Kr09Pdet119PjJ06vr9dXNq+cff/rD99//9NMPJ8enf/XLr63WH1+8Pl6u6jgw626/dzKdlVK6OVOt49Hx/OHF6dNHD67ev/nVyx/3++3m7vaw335Bnw7VD8d2cX5qh+HN29vT8zMt8uLHVzYaEQ/jcH1zO593Evbqx5/EYz6bzZb9MO5f/Pm7Tz7VfjHqVf/w4dObbk7hpdfLF9+N+6GZ0GIeFSoM6lTe16wBOTgMgZddIke6BCdosBtwuZ1wFyRAAAWNnZAvYA6iXAjtI6qoaB4yTCTBkb05PkF1m3J4Sl5Egsk4hLlkK8doWeV+80+2wIGTSjiznthHnl1yTkM6VI7B4uTCJISuIaKRNROZpADBRInYcxMmO3KfYxgNKSyeR7TXDNmmT7xnBbG1fUJiFhYXKu4mJEzIdomtmuVSW/j+EFYQhtXpElqQs1l24MkyRIvjORngbDPgjhsUjpVVCIARpkJjUOUQJpEQC2mIKSlnv0fw36AIR941fKj8IiykkXsPOCe3wt7ol6pYBcrk5MmN5wLKEViliJyU25RaUx/Bjob+3p0DVwJyFISSKfRP+Tqa5yVRzj8jyM08nQkR1SPSmjYyY8LsudYQ5RKg4ajwaEFE6dwheZCmd/UINnORcG/7LZjZq2El3j0eOnUwrfzXVptIJOaXg2FrxBVUWbAwjKxhweacKmZSVTNrMAjA/8zvsDhCgQQ0toHwBM4dsaMpzv5GiIiw0TAoCGbika4SbqFOApMgnwYGYZjTRWRtRYyuolIoEUdwA2bzMotz6wejXUaeZuAf/GJmSYYvu7u5zUrBCfeMMh+Ud5LvG5TTNA4EDZRK4GtldTOxB8nJY7y9envx/NPF0dnt5dV33/3pZ1/8/L/+L/9ljfEXf/mN2f7k5FS1zGbz9y9fvn795vHjh7vt5u3bV999t/vZz75cLbrlcrGYzV7/9FPfda9fvf322x+ePH3y6qcX++3hn/zjf/RvfvXvjpb91z/7ZLPbvXz5utZBRVWKk99uNmZetD85Pf7Fz7/uVG5vr09Ojj56+vDf/pt/M47jbj/88Y8/PHq4PzvfM8dsOfvxx+/+8O2fhGgY9nWsTuQe+8P+/PwkwvaH3bg/1LGO+8P7d2/uurujxfLi2fNhf9jtdrO+32zWzPzw4tHdi9V+M6A6iwZ3NJCSW9T1IGcK82AOwQpzYmrarsRvIpzsvj1vNyZaORFEhIQtLo51VFPF2cwB2+1OXjEJZpycJHoyEPoaMcQhv5ep1MxaAhVQJE0Veqc8qUTEQqkhCZsU6lmqpCGiUOSaX2KyCIlcJ9NiDjPmzjihbeQtAlFYnugJgc1QQRGBJotbKMC4k4TBh0doZp/meRk9qGm6UqPszfuCgs2TduPRyHkRylNew7PILEqikln6vgPPgJH1Gz54m1rc/8Mp9GpT0/aUfdh0tZ8hssiFzFnUTsvOULMyesigiBLUCE5xr2CKCGzUw+UtRd2NSDy9lxjBxtybyiNyNQTdAyNTMGvFQFAwdBLJuc+g0wCTCbwgJ4MiDo7lRGERAELzNGC0K5SDSybymEZgAMVRYeahmT4VNWwR1yty7EYMYM+DFUoDBisOMx+ZJE7M9yMeyqPuAStQGF5M/df07znwaa7iiYwgTicBOTMLvHUoqG2ddAebPsy44bwsDB+AaLhNJHCVRKyIPK24oNCZKLVGud3B1t4gl0O0IRM81NRwzYQiQGIL89CJ5Jp7nNDPxD0mlB4wExYU2QoH830HGtmhRxBbUKxv3rqPxPL29SsiG8f9Znvdz2Z1HN3t6PgYT9xuu3vx8tWjhw+ur66G3Xa1Wl1fXRU+nq36Vy9fff/nP3/2yfMff3xxfX21WM5ev3n981/89asXLy/fvnvw4DzMPvn4+d1mc3Nz7e77wz4i5r2qynzRf/TRk+W8n3d6d3MtvqC6n8/7u7sgiuvrmz/96bsvv/pirOPHnz3fbXc/vXx3cX5ycrwch/Hl6zfXN7eLxWLW9/v9npmGcTiMe2c6OTnd73ZXV++WZ+fLY7+7u3WzRa+7y3evvv2t1720Orc1+wQF6RR8PDwit+wC/Ih00UWHwBMCwjwN9Kd7i1uH09rIGhyOqos4KMxtgummJB7p+SXq4ikgAAEV9aU29xjlXGiHZtubt1suomzhDPqyjCiYBibNPU3fOGHgcBJuY0FwGQhbsJqnZExta7C1ok5bEcqNT08tobZYRK3YwL6ECY+CgDTaKwU7UaUQaqYSKh6h+ArElAOBDLyeTzFFW4qer5RLbKmlIGiEKCvmiYmHVi57BhSJ2OmdPUNyqoVhwNqKUcVT1Grv6bXuiUqZGRFjW7fX8ktQUwyU9jCCtJTyp/bBiabryjm+tEjpmlnUWpmk67rJM48SSGif1ZFwM8YDbHR3BQDUch3dx4RobWOwRa6LIeYgYaruRAGwP6mZnLkkwsItcmyd+4QjSBiUpVatU/ZikyYubyrd66qYuIi4tRfPSD9RF6jl+Lyg0lzPmLEMqH3VTL74LzDi05+Qmnarvef9q1Fz7nJLEgKxe0R1pyhTmUThEhISEayiDgFmtAyaZRa1Xa3ZEU7+gkxQ7ITjNDA1yNglDe/u67XmfkFIVsM4xrxXLaoKmAc1F2R6uIwoTnCMPIfjWR1mPwwRKa4UbLqJ7LAfD/th3O136+Vssd6uP/vik88//9ndejuOl3UYlvMZhXddubu5ef3q9WKxWC7nEfGv/od/9c///X+vxMmLH3/c3N29ff3mu+9fqMjV5WURHYf9eNg+OD09bDZCtN9tHz04e3Rxut8fXrx8PY710aOL1XJOQT4M4/4wFinCHPT69at37y9vbu6qWZnNl0fH795fbtbb3WH48ccXRN1yuVguF2MnEX59dW1O+uzxbr+/ubk7Xi0///TjN69e/uyrn3nw6G5my+WiOpV5/+7FD5ff/872d1F3khP6xjfLIBmJzxF7uJtTsAo7aByRa7NwaFhCgsLv5dcQ5wWwklYDZ3HVOAXCMumCme8d14UoQDYVKaIujg5PWdKzhdiIEngmkTz290xrbjMt9AlIA+7E8OeMtmaVWVljDGp9uUjmiQ/k+T5Fe9ThiYtEvnqwg/6XV80p3KtXQEDSDIBRk1E+kR/G3xa0pl6J87FxgijMBUkONdXEb7WMpUEcou6Ue8fguc/sFMoSqYRtdyF733ycWLDWKsOLRPJbgBW3flqDBc+vJ7bRFLEUTubB5R7YSL0udjq2hgxgc/A91T5DjYgUzyCF7IX+xHEpsfMPAuGWDiIr7YiIMHNVIyoTkIAAFS2s4hq1Iz0R1GkaoDJltkirBopwowaVc9N6Ua5Y83bjJ/eihFVUZazV3VgUoqRWUHuu3WmUzxb+86NOuTKxOqLwMEsYEzb9kEYy358ZbiV+XsfsJLLWx3A6s1oGxHxl9ALeUnFDiXAxYZc0jZrzl3tU9+rBaqjZlEhEgakSkbtbRDXDcza9Qs7EI9K7K6d2re/BlfVGIZKpYrQs51uHhgOH6ovqaG7MyeiHrIAUUOaHSZY+uLK4RFNrIUQp54/pgeSIcPIqTEV4fXfdicwXy7OzcazezeZv370bDqv5fO51PD897lTubu8iYhiG9Xo7jvU3v/3dg3/+j1+8+NGH4U/ffverX//u4cXFer0hcgtaHR/vd3f7/WG/HWad9GdHZr7rys3NLKKfdWVWhIJ9rOPhsGMfDvvL3eb65vL1q3eX17ebzebo5KSbzVbz2fX1zW9/+/vZcnVze1fKx+M4LBaLvuvMIkiGYexPj6+vbhZ9//DBxYsfX/7xj99+/sVXRTuiqON4fHYRFA8fXFz9aR91n9ic/YP5GVj4rY8mijDDIrCirQacava0gILONaXqWcRHQxiYUZxEIqy58jCIiSNZm3mzmUtusaVgisKjeaYDZCfRIHarGbaglfHWPuSnbhVf+w65oi7nhUREmW+M4N2UYbpxQdDRAkxKAjiFRBRlvR9kA8CZ5I4trCKOgJRAMjVHDY9qvya4CmXIVIICLcCiC2F2KREc7EzuYRxKhFVZEmRgFuY9IzzaNrHcs/a6J/41WVwwbB48j36mh7z71BrsdNHwdsenAMRTr9ae7ft5Mk4IvNgi2iz2Pp60n86PVgweFK2sdXdVzTQUQfeM/gQryKfwRBiuSgNugN3cI8sBOllHQUmdyupWJHcoUy6wCecEdSJVqfjYGtGw7HAD6d49qgcxnIzDBcmAVJRzR1jDIlrqo2iz3QCHEqpnptzukkU+Iinq43RoQHAXpuBJb9Ea26D8suYx9WsonyWTWYI6zjnbjSQYMNKAp08TObVd1XmLsoukiIz+DoGzu7JUA+wS7AT3kqCwGlmDRFBEKQXHKoLYvLTJRiIK6CLaM48LgLMCaU9g6ZEwOeEh5yIlwuEpI1yUiT0BxZjMSiXb7Gm3hFJEUwwQon96B0E/EIpcLU4Udbh8+8qpF+KzR48u370tXV+68vbVq++//+HhxdlydcxCi8X84fl51yl2vpOb2/jq9bu3b6+Gw259u3nx+upuu1suD/thXPY8m8+G0b7/7k/L1fFidapdGcb64uWrYF4tZu7hNnplr9WNNuuZWD8M++1m8/LF++3+8Pr9Za0+mu2qySfP3OP1m/d/+VeP79bb/e7QnyytmrCY2TActut1/+zxbNYfxkpa/ubf/6f7zf745MiDF4vlOI4WZOM4DkO/XA67ayYn1vY4t3pC4G6f+ZudIqhGaJCQINY5ZrHMFCGsIdg+y1jsiTSPJKsJtHmQgRniFMzhtaLgTxonM6qs6TO4NwM1FlIKFhGVTPbOEczKReAF5WHCJcyyDGCi1OkHcEMWiYp+BaTUABqDmH2vGG7OAbnBDGwnI2JxD2MjjD0T3dGIEJUgEhYDcxrQlqUszqfVJO2XuwtjAUKCKDn+tMYQbUbrYU46TVOLS7Zd+BmqHITxZUxlr5PFvTKLaeIWRRMgk2NZDHnzSRSxhl6nrQraF+J0fU35VHAu+5FW+zJQVdwd8mgPIwWpU+6Qiay4kec+EAMKEXvhNovAE0vgnlHCUPhSE3YUKB09zN2CnLgiaEYWJXyfTmlykEKQBaWyiHhAFpAlYTROb6OgJfjALQ5SBLGoqDVWDBE7pW5WWDwyWbaFGFBc5y6aDEkwEsEqZhFVIWbgJtkRA170MOjByUVydgMxAdiirTzPx2S6MszkHqrE99Y3QZSLB5pJD1GENLuTJG8kqpfK+1ZJoZpoNwb3oK1cYjNmKnHf3JlHNTdzzoUwRK3xB+CTaEBG+ojWxU0j30TaoDLlrA+jNacq3KkyUXCnwqrCGaTukV4i+L6xTz01Y/VCcyltn6hNGjLPZ+NLHO43b98sjx+uTo/H/f7d29dm9XS/XV9fnR0ficjbN2/6vn/w4GK32e73Oy16cnpM5LqTN6/e/upXf1c49sN4u97sxvjx1ftw+/jZo8PrK4qrevD5LHab3WZ/OFQz83fvr3b7gwov5h2Nw2q1Gsfx+uZ2v9XtsF8tltfXN5vhUInvtvu+73b74Xa9Zffd4fDu8ubB48fv3r/vCnUnRx7uZsIRZtvtZrGYHYbx1at3y+XJxYOH/WzWzXoW7CW17ebu9v27ze2NMnv6Pt/f6LxWOcmf7qN4I3FRexbbEcsHOOL+NaZSMUE+ZkrhRaAUy7lsULh/YKGGF2t5HFwwYZhEEdHkMQ574PbfkaUoc1AzLKR7Hmp7ZPJBczd2Bj+AmavbVO9NIQhfJtEw6F0Rjyyw0wqYTPa1qGqZKNjtA1Ftut7wtE6c7jNtUHJuP7j0+fUdCFAriEdzVtGJiu1MnWp4Dc9pQz7DreCOaLSqcLB7PUxFzV2YGIMUPC88rXMA+h9C4EsQsiB0EkjYlMNCSErl/htN7NssIPHocVYBnCwC8sm2OKaeg4gguLX2P3UC5aeDlO5PyTsmc6/mh9HG6sNofSlYptLSPreAmNqiKVa6G1FYw3Yk79oHX4SZyS3aGQpyGAel13Y0FCaPLkAE1eJeEeIZ9k4qrRu+j4PKTJRrLFVFpODSZMJvSiv3cBrhUq4qmqedHOzJKCzTkeEP2nZqrXlLfkQUDHd9M5tk35RFObWfiaAQJgtPgSdxOq/gQXT7h9Uh7qNGUIUPJGHZm7jbWCtO9FRZEJGqAlDjaRjYEsAUL7IxDGreX8gHKG4IUaBo7mcDDolblP4zPKH+oTkDzIRq5LDJa8092CFIc+2S4bIJM/H+9vru6u3yeLW/2zDTrO+++/O3q9Xqn/yjv/7Dn/78xz9+O5vPv/zi8z/+4Y8317tHZ+fv3r2vdZzPFtdXV7//gz179qB63NxtdvtxqGMhf389v9u8mc/648VitLu3l9/rbH57t/aIy8srJ1bV/f7QqbDOrq7v6nj50dPH379403c6n82kL3fr7W6/DzouqmY0HPaj+Q8vXv786OTs7Gy73Z6eHhPRrO8Xi9nDhxfMfHt7u1qd3Fy/efvm3X/4H/9Hj549HcZRWbvSnZwcD5vr3e2lDXtp2ol2F1pER6C9D1ve8APhJsZNxkn7qXbYKYjSL61Zjzi4EvfpIJodS8po8rFq+/4io+5EcWBpK14jiIWV2WDjn5GCM2NFfFBxcUMjPmw08zXMTbw9SslsEZ4Enuh8nErhwAwp2pA0LSBTmauU+n0EULCGvP3C85lbVieExYOwhoVSoZtxv6XX4PuHBeJtcSfRCBhWkhPVas2G5h8ALC1kcgR75FYHvINQsyL2Vn2jVyMOeA95C2m5AYWdwtzcLViYlNOTP2NDhtn2cCX3E7XutGUevT5jJ8FUjdP/PAEQsXuAJYq/IDn7jAYNEWVnwB5h7kOt+8HMfDTvPVTFJ88xnmIKfmoCZKSCbyBpMvpBz4vlMzhsUd0VzRIOQpSm92i9pYenxBfGUfcAer6ENBf9/Kk0p0TwolzDCQfLBIvMDOxg+J6IEkdENRT1YAqhgLq/2e3bcm5STY/AVghk1eNuHKKAOHFtMNL64PAQhbWv6GETY4uSmTXFAvYg8xAJybojAhfCrI41glRFmEb3UgrqhUbaoVaXZP0/0SpaJiOi5jURmUOYYMWKJddRQAcGx/aDsjWzLNQkEZmLhbBtBgUqtzHAdAyn746LqF3n9fDq+28//8VfdRcXT8dPCvMw2Hazub65OT5erVZLd3/08OFht99v9+8vL9++ffPpp5/UsS7m3X7Y74bx+upWSzcO1068WM1Wy9ndbtiu9+NuNL+5vLkjUXdzInM2D9ye6Mrrt5fb3ShMb99eaacivZYuwpeLeWGZd8Wt1urzxXJ/t3779noYfv1//N//xxy11no4HFjk9PT4o2dPnj5/+qc//nl/GM7PTolofXtbmEPLfn8os5GIwuru7prCsdo0Eo2dYkVW4ZkO/kF1TOmGgpteXbRQPgfc2tMAAsmc6HljYqd1VoNaMh9Mbi4qGtPDi5KU6/1qupZA2rOTPGtMHHH/2wMW3JB8HL8UhqTRNYUIERsnNOvg+MNgmhqAIeEeZum9zPkulAlAKMiVhYQ9cu7Fbd0pkxCZebBQPiUfnFJvVzsbhSy5sg5nkZDgytw26ljFhMtF2A0yKcSIRIXdfHqLbLAR94iYJJrzALAJEWPiVCUTObuyuKegO4khyAOZo8MgQyUqpI0tJu4xEfBoqsOIhQCeIQHxtOcb6RCemNNHJWaJTAARQWYmUoi5ejq9UEY3nYKap/48aq3D6LXWXmUxn00ociKHNB2XjMl4v6S0M2PElFOSDOhBHzSMmfQR4cw4MBcIVXULiyxOhdWi4gpmiaFYUZM3Hu0VkpxMB5kzMYiw2z1xE8TLhCSIyMFskVzJClPC9DWDmR990JVPcFm0fJkYi7k3SRsq65Z1Ws3njaYqnBufLAErJ6bcv8Gtz6TwIHN3wkwNj0B+djMPD1FSYU9F4tSAt4zeKLOtluBojLwkg2KlMycMxWk0bQ2UcA+L0KnhI0Ilgm5GRIRJKHfHokya6vwGThGaCwJFIJibatxnQuvrq6Mnz07OHw6bdSn92zd/vr29/ezzTx9cXFxdX4nIxfn5xx8///7H77748rOLi7NxGIPiz9//WC20m3Wz2fFiVmYzCat1PDs+Gnhn1faH3WK+GmoFVCVMg1mnXJiLSjgdL5bKIRHLfjbvOzfbHXa96snF6XzRb3bbzXrdXZztdweVbjwMf/u3f/u//Bf/rI7DOI6Lxez89GSxXH7x+VfL5fF/99/997Oiz54+efHj9yp08fDRxaMnzHx3e9t3ZRgOEW6gKbu3uoQaBawJR8JzlygQAQmYSk1PTs7wW7OPkQzatFbOtoFimyuhZmz/ZC+IgJhavnabWlPRSv2pXUM50ozZsofO8jqIQgX1dp42zr/glKpZcvD08O9CLM2ikSM8WZEJ+0TDS6MR8MPZpRShYAOG6pAppcS1pTs8jSTBkfDtfSaI/LQTVxUXRtKoDtPBAIxM1NjV4Hm6eVFmTqbH/+w187iTY0MHGPjhXs3NKaICfM4ui9lhhpmT5ICPHkKWw5MULmrTWCJIssYKGPdWq9nMADZjZJOcOjCxuWEtNmYd7lPhRSFaiBjls7hoijc9cgaaih4A0BTk5tQ2RLj5MFbrOzPXpCWjOEXYJm/HVNNmHEE1JJqkhRn3zYIpQrGLjTJCUTiLgghZqUEP4FMyEYHMzInYUZ5ZUSi22P1+w3KLoJB8e5tZM2qdKevksTDHZokQcaLRvNf7tfVmSUyLhqeCKE/Bkx14VrXTBMPDwjV9mlIOhTM3dRKjefaFGqSwTsXoKIRFhcMNxDMkRXjbCUUBmmowhwiMxXCxI/IKNxgOtabgeqMbCnckbcm5bBCxc1QKctZke5OwetR20sncA/rK7Eaz/8REu0UeZhZ1JrIJYcRFzp6AsVfHHbuR4bOnTKqzxXKxWFnl9frNzeXlvJ9fjtfff/d9EH380cdayvLkqP7oR6uTiwfnm93dyfHxfnc4OTr+4fsXs+Vie9hbRPGqpTejRScff/Lp+zdXZCCxQCwXNWK928+6gtOrorMyU4r5sj9azu62d+9vN4dhPDpanpyuLq/vKsnRvN8fxr7rjpfLhw/OTo6W+/3u9OSUSY6Xi9Xy6Pj4PLg8/+Tjf2L11Q8/7YdDJ3r55o1VJyoPn83rOMxnXZnNt9srxRpeknB4gjOwWml0KhAsWk7gCLJ0F/dW76cgsWH3AntbdAvMpI0GEx5M4m0aSMSRHBLC3TdzEieiYNUcOKJnFSIjbohlY+JJ8toDiYoaEs4EwAFzh/gHpQcCg4YAvrJmMISyK5iYsyoJdtbW4k5ublgrSNWdKz4hMZMF1J8Cm/rAE+cR7KLS1pUi7SWGgQvSlvMFeapmsvhue2NUuT2jTcxMQeQZ5aa6Ktv9VO6gZsQfKheGlZJ7kFtomayXKJjZGo4X4R4GARr03AboPq+I10j+SKSPABnsimgq3Tg4lMjBoqeMIcRMytWILYTYckwSRMYUxWzK9Jp1JlJog5liKhMo4SZgymO11v2wt9MR0QJri20e4KRmmZB1TvLCxNKngSltxdidzEJbfMS1Mq+4Zlo4mEhyIxoAliki45gkxNmSaFbVRJM4JZwjESt8R6cMktmCmFskuYwknI1YOjDt0ATUWvNcMFOwKBZgTi9yj7XhknKCrckiMPJpYUCif4BmWMhc0sQcQBxhtecHw/TwgP6OYAVJ/A8ELxFOHF1RVg0K96gVRb2QYzAFM5XU2FFbq8CNts0uqffDDMkQBcQ4iwGcualUbNhCwyWz8FTKO8KcBWAeDYuA8YhJpANstoTE3eLi+afPv/wmuHv102urdnxydvn+qpv1j54++PTTz1bHp6Xr+1n//vK6dN16c/f+/dVqcTSfz548eXQ41Jev3l5eX2uR4jRXUaGjxXLVzepiNS8zc9euC2Gr1SPuZtvZrFfhcGfWZb8oIqvV7PR09bsfv13M5stF7xxXl9fX15vZYh7hTNZ1enp69M0vfnZxcTafz0rXdaXnZWGR2XxxdHJyGIZvfvHLTz7/4n/4b/9bGu3x46fLo2M3u7660r7f1+2s72/bldSGImZs5tRLmTvuiMNrICix3iBmcbOgCHZloMCTJgbwIZwOtDHnI7twMyjMGk4dQkSevCBSY1h4oJhiWAqysmBP/FSvTLEPHxu3OFq/D6q4cPYQWcmiz2CEbGMsjOJUwUnOERKaIEqU0p3v3xOpUVg8LKVGLKJ4IsCuERYnNiweNjMWVsBpJYvfRm9EyJVkdjjq3CQsNKiScxjgEdZCF4U7EKom4sf31unpyz0tHqV0zII2HiE0rFIUzt15rRjKLsSnUAu8ArAATG6IQik3d5EqubOQsJgnxJGi0ezugijjagJihrkF9ptMRYCHezEzaqKSppCTsAAuH0R2D+q3M0YZfKFdqObB7ZEOZ4eOthWHyCntY/o0awV8B7AyuTd52w0QT3IjnIEkEu6WUmtUIwIT6erknubO0S5rNKuJWq1k94MCnWs1IkrDuLRyTQgIXxLp1AypVKlaUS2iEGFEVDMD9xN2CCWzTmtAiYTBWUoWEEWwIVJzEDPq0JQwExK5uZMIBlSwOsW6HqKpicaxC0O7gHYNvYRgkYvRhMASk7PhcQ5sfkdn2nIl5+JYnG60VZFS5OwSBVtems0QrFfJwyvQoNY5EdG9xuSDEJHHiSfvxKkPcAomdsaIzyPEgrsym61OFmcPTk4fHPZ1uVwpRz+fn1yc1XE8Oj39+pufv3jx6vZubc7n5+fDbn+3XhPpdrOfz/vz81M3evv2cjFbjFF3h9qXsQgrycli1Z+V0WI0l66QkFWrdVzOZsvlkonNnYmLlFL0aN4/urj4/u2L0a8fnB3fbm6VCoYlp6cnh6FaHU9Pjz/95LmHr1arCJnN58dd6Ts9DIdgXZ2cd1355pd/dXL64D/7f/w/399sHn3y+dmjByGdW/3xj39Yv3/HzNVrkDjAVrfEYZjNI5g9srKzYBj05ugrcm7ISQ3BA+GBzVlATrEpEFG8QfsoWHCeslinMA9hFmNSdgMjyFmbqACINjOLBLU9HERBYe6JaLK6mTDDi6ehNo4g1CrCqa0Hqghd6/1ZQRwz8wwcKOk8pin5FCsFqYuDggS0nwhK6UQEOUDzIHLnsXpit4HFR27usHWzBGqnymoqBJv3YqIE6Y8y8Wfcg4Fk4dn8gJCDS4UnRRQOLJQVDmFVVniECIP9nJlbGviV9dNkrJuOEV4twkNCRQmj4PSqJ/Mg5QjBBNOdinIQIg8+UHhQNa/mY3WV1KYVYbOo5oWIxtFERMSJrE3xMc6Bpw36l+nmR5IJnNxjGMa9ynzekbKwgBIK6gcOGsB4TwE0u0PVwg0HI2JtB40aMB0eFOYALiVKoMtjD1gNt8gVOWXFaEEjoyS13892pvV8Hk7TGaMg1WlGFIZSPDEyzvKGUzJfB2PSUrAATxx9cbskljt5sgqjYCeLRrUkMNU8wgJWJxr3Ugn0+CDzmzk5wEegWEHknOr+1uMQU7AZxnHkFsLgb4equmMSE9DaCWlQODY3iDS6clCWGGjF0Ogk6yMiah51rtVw96FFGMeKOdJYDeziaLBecrSwhJnv+z98S54YgTRdbxccBg9yISndfF5mR8cPnj568kk3WxWxz7/62TCM83m/vr2+vb2uZruDHQ7jqxc/qbCWKCrz2WzW9dv15vHjT66urpj9aNlbHa/uBh/9UMZ+tjg5efDRg8dXfHvw2NeKpZQ+DkS0mM3ms7lXM/dSCpGo6OnR0dni+POnn/7qD98uj+ZHy6MaNtvqWH21OLq7e/3sydNvvv7Zarkwp/ls9dNPL09Oj4+PF8J0fLxar++WpEfHpxbls8++/uyLr1enp7/4m3/a951q2axvl8vFOjCO48jgouypN1RmS9F74ht1NJR1ATkJpy30ZPzOJDmanDq31h/nUDnysc3an9jCnQwjYiK2IPEgAeQcFThG7kvB1DXjnbsxk5sn5kjGQW5WtLSnOEI4whVovicl3yZXfhNWIQ84T2JQwG0+x3j4Hc/LBHtCkSrJWpRg4/Q+z7dMw8eINNFyC3cmJVMKc/cA+xIHOIKqg7oNT0f2CDdr2uoM5Sh7UY7hPx5BzZgTn5YlVAW+9OYeXkW0lCJUwpkU1tlujk9hbKwiDlv3LLMkwViiCBci7SAt5oDZpQdFDs1l+mAeHu5EPlpEYgZOIJejvmLA+5FyMxlrrRwiVETMnDkGsxKUGH+tNu2TFCUYLQc1gk17mM0q/sTDa7X9gWZdKVWFwzWxBSaqNUuHYGYzblYKoHliVCHQmyAQQtxFuUUKbQ8mMqONROTmKqSi0zQLfeV9msUqU2vVbtzfvKY7RX8RROQmRk0sHRmpmCduGyX8hqpYyFiomjsMNChSyiCE2ZXm6AdXj4I9jNB6Ad5oFrbaADtOkhwgJI6ElMgoaHTs22vtYD5qhBSTI0EyGP2Ts4I4TBh+wGcwKHkOeICqG7mICATDaSxDbpHoUhUpQBscRAK0JibMEW61juNYzcyNg6yamzEH2BHkEcJRsUrWMDx2sSTDTXicJ35BQcRiTNUpLIhCS3fy4Nnpk4+efPzF2fljJpXCy9WpdodxHLSb9/NVT7S+vTnst8N2/f7tm+efftTN+rvbWw4yGzeb7fn5xd3t+snjByJ8fbs+DOPFo4ubu22t9WS52t3u2UNKYVUictWiUlS6UkgxdVdhoWCVokZfPf3k9Oj46mb98dOHdT8Ssbmt12sVfvbs6bPnz4l1Np+508uXL2sdHz8+P1qtHjy8EJGu64bRao2o/uDp85998835xeN6GJ3s9PRi+/jZzeuffG0SlaKpaPIBcxdKOCIwc0qvWxFRvactBrEhfUcoQzoP9z2EerCC4K2fLhHUUn1OD5zMXES4UANlk3nnIRpM2exz/gN/AHANPmBcwpvC2fEkWUS0vRSwPzFu+9YJzWxIRlbBi+CBQ1wT0TA0EvhQyBxCLOxehNGHOzE55eOXfzHMycPNWtAkIXQVpCyoiCx5HoGcCFhSPDxhVrek2zI8flokyTA4sfektQ3MabeRl93MmRXSn2BGbQguuBscpB2jZkpMOWAiSRRw/1XhakYZryiIR8vZsCr1Ku5YOMxAZKuZOTsTU2hDAFnEPSIMTzQOTV6UYKUIpuo+jlbGajVMXBRZTYiEFF0MVaRnQtNnbmZkBPhmqOMw1hBaOM2CjIKhCSMEAEAKLpziB9QjllvkkifuTu4e1cfqQaxtwA1Th1rNCHA/R0RHotWZmhUS6ouGNIy1hqgo12oihHxs7uGeWTpvBcKiBTmW3CQIQRiU4ebjQ1CQswcrVXHjymylWeU4Ubh32rUYm9slsg+9x1qyenOCdS/aVxMmJi1diTCxBkFiaBMG5ylVPCDIZMDK0IC6E4eRUM6W0WaGEXM4uVsBAhNUMQJDP6kiDkF1pmma5H7uZO1fUEUaEqfgacInJHf4jVk1U6FqVgIU55SGGTuFEQeFm3PAtcKjVkMLDBG2Uzgz5M0REdKZzGfHF0enFyolwsdah+EwDLv9bmc2dl03jONYx8PhoKK7zfbNqzcfffbZ42fPln0/jIfLy6uj45NPPv10GA611hev391ttpfXa2XrF0XnfREhVQ4PZWU5hJeumxEVYTGvDg1t9Jj/eywX3dnx0Z9e3e6Hw3I2u+Z9hFWrv/zLXzx5/EBEDoMxx936drtZL+ZzG6yczo5PLo7OLki75XKpwrf73cdffPHk2cdevev77XZ9fXdd+qOzx59I3x/W1/vNjeQKkMQZWBjUPyKqtdZaPczCe5GIqX+9Z6BgVMrhQTAVApkaEY44S6AIzxnm5EaJB8c9qsW0qVqbMxsJh3ikyWhEKymp9W0+eZVbJWJrywqZldICgC378DCPjAfhysHs6YuZ+CsqBAsPLeFuGLkiSFcDM41F2MlYFGElKOieFBseNFq9j7aYCnjz/CLCJIWSdJeiTib39tii+5d2fdvvSTSW3TT3ynkvEfZw+b2ciCjYjDyql4B1Df5+m+Qg10Wtxol/puiaGlOWo4woLiM8opoP5m4uTIVIKqsowWy9ujmF+TC6cRQVViZXEYXFdK1u2VAFWhY0MS7c+iEq1by6qZBJDF7ZhZWIS7XWlgWFkxmN5mYOgbJFjNXGWrUrwClGM04PKFSXWb4Kc5iFAlQLiyBzJhOBIpGIyNzNHW3shMV7rYasDkots0tYREltCA11rFZtrMEaQW52qM4dsYbCs9u9mnOb1FOSGPDy1Ik2rhbKlsiMGTkLigiPUGXU8kxOIhiuuYeKVDMLxwqlYIrJjjxfJHIeA2IbHhYLSO89gCkB1WRRZQ+v2adHSoSVhQxJqwFokNB5m56C5qVpv5EjB/ORmZUE7NgGAVtoTMko6QE5sk7NJwi1FBTs8BqKCGSA1qEzC1ukG0c2EBbErswOVWdQkBOJYcipkRqYTIrmjkMGoFtCun5xdHrx8Pz8QVe6TL6GI8Gq4s6q7Ptax8Gs9rO+zPqbm9un5p9+/nmYHYY9Md3e3Zydnp2enXjE48ur7W7fFT4/PeNerw/ro6Pl3XZftNTGtetKgVs4elpi6kRnpaxEuyIvr99wIau22x2ePTzl0v3xzy9+9uUXjx6cz2c9s6/v7m6ubw6HvZayWCy7fkZSWMpsvqweIrrf75fLxaNHj/u+YxFS6eezcpjdXr0/fvB4dXayfv/q8jXt91uKwHyeI0qoJ1weiWZAuBt5fBuHJlnEDnMPhH5iEkUMbuzPHHL5fUXS4Lj8X3ge2hkJFM4J5QZI+nkeYQIQ5lbhOJGg0ORQh9LYcJYaqM0TKo+2HoCoKjehQuKxZk5MPtYAJ5yCWbIwg7saaTIWIprBLzSTER7VHLM9b7+msE6ExtNbmR54onBJm19AY3hL064zNyAhsVz8bCnw4442JcNfl+lwc9TCxc2cIrVBeSs98pmdoOZkc6WwJrtlY9Zq1krkhNYskk/XFWIKgXlSQEPmtRpFEdZqLqLhziyqZHVET3//fSj3ieCzlIr771HdgxxjRVToVA2mc9XM3Ed38xCiwbxW9wgRnfd9gRoNTn/MzOmIlD0tBYfAQYyJPMgdzlZUNAWECZ8x1m4lscQjqkVtL6Qiink6sTmNdRzNxrHWsari1LJ7VA+pRqpuMXqYR2ECMhgkVpN/nCGmjW8idXrZhyNV4kO2Z4YI9QzDIygP+mGsFMoqTTKTlLXp4bl/zgKzr8T3icTCzALEvQzuzfZLhBzCMRGfUlaCQAlAUc4JvFJEYJGIm5nVaJ4QKiKiUgrKk8DWB0AIyT6IVh5SgNSFzytteOutH8KhcDdVNqLRLFhqVlOSY0GKMJeIQJvSDI6yKPMsPjDEwzpvC9HZcnn64NHzj09OzyZnaWJUOkXni74r+8OOmWaz2XK1Wi4XHvH+zdtwPz05Dbfdrgj5u3fv9vv92dk5s3z0/MnV1U0lMRuvb69fL1afrB4saleH2pfusN+TRx2qmxHLOI7MKkW7on2R5ay72a//x9/8ahwP1WwYnYgvzo/fX65E4uz8tOs6LYWZN+v13d3t2enZw0cPT09PHzx+pn0/jHW+WLiHCPV97+61GouRctfPzi8edqpcD69/+v5wMJRGoNVCkAGoATXnBCrew9KY/Hta7gQo25CCh0GJlcldJurtNAXLWCZt/3bSeHIklizPNtFURNZJhAhiT6S8tB3pe/AjpjeCvCYyzLkHe4pVgihUmZiBe6BkpZznkbtBUOLm4D63aO/UNO3EHA51i0eE5BAh2nArg3VGZU0Lh2ZRMyWAHEa1C6LMNF2ZHP9xG4G02qUpPRvTPX88QHNvF6RNxTLbgekqaJjwysgxIpJUQ9yXCG/gWDVjxIrpU+YziMsVyindJQLUMY2vozIXj7Z+sAUWSgiBmMwNzHsPcoriTSbh5uFGRbpQMxexEGES9qjVq9eKs+k8DDZUI5bZrMy7XjiNQYDJ5MyJBJW6OyapxCLmqYGrEWr+wfEhoITwyfF2qM0IyEEpAkESsYTTaD7+/7n6r2ZLkuRMEFRmTg65/AZNVplViSqgGw002+kZWZndFtn9y/syDyMzMjM7u2g0OFAkK2nwiMsOc3czVd0HNT+RvQFBAsFu3HOOm5rqpx9RHyedRnU3B2cUACzmngs4ekIEVPViRkxWZ+fgy0fpjH21qQXpDmudDU+6sFeed/shPgmumSIQicTgCZi1MCLNLlKhao+XUHd2PguM3dVqLGVwmVTNkhESBF/fazOtamRoZG5OVJNAtBgRY810q9WaRI674jgnpj+v4yWlBB9/YKU3IAYD5OPhD8OQ499zj7WSWVwkrgaluBYLkNPUsxoyqtanFgAhHMFMiQNwpfkCQHcrJRblrqZEdcCF1An364vHq9PzfrFibprUmgFilkREacq2Hw6lTGaGgKntP//yKwAHYiS6evLk8uLy7cuXpi7SXF5cvX37ehyGx48eTYfh9eubH16+bhNPh8P9uFmm9KhZT8VylctZmaZiJYKkiIERG+G+abKV377+7m7aaclEkFVVYdWmy/P1fr/t+u7y8nKcStt2XXdAWLddJyIizWK5dMNpmhBRRJh5GAaz4fSEWcSm7EhAfH75+OHDq4fb28Nhp6olZ0kpT8XdkeLYVwpHAC8z53b2bACYadVQV0M46yrNHYwoPCIBvWZa/bwdjiYD5x9zVYoqHyvASr5wtCDXzQYgcFSgWU0qq93R3N3HN40IZB/ng4psBGvAXIsiOwAgMRxVig6GBKiICo5YAFCtcmG8io6jTAKDVgzdiVBLuFJgUA1myKUCOFFT5vugpo6bRZJ5tb2JcSHugFolwd0hyqv78VAcz5Ef2/afFf3YtqMfX1Do+GrbXXv/+Ofio/tZvEF8eXRwBWB3BDqSBOrkXSFvd1dXNGLEmpysqlAbOQq732MhBUAiJvZJS7ADwyatqBGiqqu6IHIwj6ONAAVDAnXAIswA5qqqVswqrlbKWEouGssuYipqaibCwkFSYPfZHi78RRwdjkYW4deGxc1LrZZeh0ysYUNmlf7uFbs0c+H6LqhbVh3HcjiMWkk/SGQRqlKKhndBNOPuGKnklYmIYbuJc73E2J9R7cGrIMCiha1mXDFiV+mQAhIWYCD0UjICjjkrlHDUClPe+NQJMASxBK4GCHUWjn8dITqRkHeGXqPqeN1AQd3QGalEKjKohqUozQ4j7uZZFTGwVNe4UczcvZgREjHBkRobIxJibXNqpNy8h5oZFDPuNW8QADwCj0qZsuapBKUgI5asQpXe7yHENgV353h1gFBJfEbzPm9eYyCCOWlBEFycna0vnzz95IvVyQki5VJMq+3rlIfdbrvf7RBCIOEpNev18u7uzgDOr6+fPfvk/bt3D9sNE07TtN1uwfnNm3fDYbh+dP3sye233/+0PwzjNL588QKux4vrftWlu2ECN0efSsl5QoOWm6hsiMiEr+7f/fDhVbGyPxwIoW2EiAHw02dP1hfngChNgyyqttlg17dN08WSY7vbt4sVuJeixFJyZua+7wGQEIUFANTscNhvdvvUNW3b2dgQWs7Tsbj8N9OeR5cWH1zUP0NADqfI2aUxHtvafqvNliJQlzkVuq/c6CP+E3TDmDiPhQyr9yUylChbzEwUpdMBqyotCn3wBmq7A44Q5LSKq/+8KT5+D3EjxbqAzJyD9mPmxypWD4eaI0pU7doeWTSSM14L7o5BXpwLswehqIqI0dX0aGRQIbNKPazQ2M9mBWPmYGGbV5bEseq7u1kU3Bju67VXCTwf32Sod2elPISrUx205xt3hhhMmYkIS1F3YBFz9EDCEUOLJEwIzkyoXuqSGxyRIxzCPu61zRxAY+FXawUFX6mqwQ0BEBjBiRxUDYuZOwghoddLlWEO90L0YqF0APepaCmVipDVipUIK6RaxRTAkTAJ28wO9IBakOpFCjC/TWSmYFaQvFo6G9QuMopVfVXzTRCfGGJ4XqMXs3HKh+FQimns0IFTA4jOhKqe1Ytl5sgdJbVK9sWfPQJUZZDoAbjUN6wyseqN7bHzqQtncy8Bx9ZoGGNCM1CzMUANj+baCEUYiUE8vJOUBaCm9VbTCkAAJ3ebgyc9hJUx8gbZBkDcwb3UR1BDMe1cpyxw92IuBOFW+BHmJbJ4Go8d3DxoMkarY2ElFyTfGWKof+zI74wKnrOVotNU8kx3HRz6pm1mS12bv2+IAkRWyU7gIlLvCPC6eyCsjHJJrt4uVo8/++Lq8VMHGvME4KahbzSz7K5NI0RUcgEiRjzshw/v31vW9Wr9cHf3+uVLYTLNueTb27vtZkeUNrt9v+hWi+70ZH27edgcxu3d/WLR3V8Mq9JAKQTuhMN+MNUkydHblIopqO7G3XcfXmz2Wy2GnLqmffb0ulu0THyyXH726afLxfL1y9dn5+d3tx92u10SaVL79PlzSS2JjNMkTds0jaQmtQ1LSqkR4UAPiAgZxmEsGhY5KE07DDs3CyPxijXMrX3QIQGAInU5uG/uVG0Wa9setgSVaQYUyCIKAyljDUC0audZoYGKhM4/osLGxRFwbDB5ojtOKUUnV8U01RGOZ6zO654YuIJIswPP8VKZf0rhxYtICqZz+pD/rHeeKdzHlhtn33IoVsyNK/YdxKb6thwtraLFjCLo6ISUizLPvCOoSgh08LrMs3pzuLmz1bed1BF/do3Nw1IdyOL2DL7Q7AAfo8Lcq9crsn5CiMjMaoYEaEcz5xgL4o2t3K8IFYupxDXyz1WI1FzBHVAh7m7DyAFyrx00orm6U4BPwemt8ZrgFPTCAJ/VzH0qakEZxyrV+wjqHS9GLVpKCcpvKVqKTUVVtRSLC2PGuA2r+8fP/notRUeGb+0oEbkascV9HUoLR0EUQg6FYowjHqsIQIJ43BBBi+ai4zjmrBaAhNlUih6fGgv7FDIDq6gDmM5Uhp+Nc16rkquq17Yprpz52q+cVJybgPlAxA+NPbdFac45T9M0jWPJJedpnPI0lWmaspbo02Z2iR0FDDoftWhdiHDGWOMNtPhmVMv8D5qrxZ07R8VF5HcN/IzkFkdgoghdsnp3zlYhDhBYKs4rQjNzqy0jHm/qI5AcGK4ZoHm0+GBuY8nDOCh4mfnh8a06zsv/eCoQZ3/52k/V2QgREYVT0y9OL6+vHz3h1BQN9Q2ie7EyTVPJOQqMmqmbMIvwZrNx1eVqKSmllNq2ffX69ctXrxf98uLiEgFU9fnzT4h5fbb6kz/5Cs1ubzdGfHO7+dvf/cvLD++8FARokBdNR0DIgkyNpI7Ep/zNyx++ff/q/rCf1Kbi69XyF599+vjR9Xq9Wq3XRHx6co7ADkgkp6enfd+vTtapay8fP8qlEPI4jFR13uQA6jDmHO9SuL/1/eL6+vrp80/6xSpGPqgiz7lo1kc08lOjqBwbUjxWGMTjhr9mXcQbrZU24FXdWYV89Y8d7wCYn+35InGfgafY2cD8yWoIJ2vzWxkE+PGZqd9Gnfjqpx1fNtg7FBXw+KBi5XXWVwwfX0gtxseKW33nIv3KrJRcStQgnakWtfOJN2R2sTR3B8OSdRpyHnLOWsyLOhz5bx9fOCBSSHlhFkgfn+H6Qua3ou7jah+JAKiqR0IU4MfMkCjy5JXsTkRMxBzUXPeweGEmJI571ewj4DOzssyqFTIxiQjOTtE+84vq++aGQbq1WbQZl+lx9orObN7C1wfD1N3F55/PnYUf17de5yOKzi8IPKoeBngV5ACMmsK1BlXuGfzsX2LmugCk6IMYQgjqhgASTEwzAnQkm6+0oxcQM4gQ1524j9OUc6DRqgYGUMzNnYEQIwHSAEJZH/GeZk4hvq2Y6Yx0I2KQfGIRgogzGlMvs9m4Puj3x+GteAVdK9mOkIrmUhyxissqXcOdEQVRFXgO56vNBgp+HEkIUYUJCcxLJWxBAE81Zvh4bqvg2d0dI5Exnvc4YGoZ5pmlft9RisJ3xz0SMuuhinMbk3V9U+rjPu90K8PaK+JgiQkIiupUipkzBZViBhYAINrM2NjEiBvAXXWdrE9g/J/F+mx5coYsJSs6haU+ECRgcs+qFiZW0Wgxb+7vN/f3VsrDw/3Z1QURnZ6djePBTK+uH52dXfb94sWPPzx58iS16btvfv+FNLvt/p/+5Xfuevved/1eD+VfP//lolu6+3jQ/XZzllJLDbu2STb7h9++/PHV9k6YuPH9dvf0y89Wi3a9WuZS+n5hgAZwcnF+9ejRan0y7LfD/uDMTd91/QL9Q5mG1HS77fbysm9FALDkUVKT88TUAkAphRlZ0pDtMBU16PvFuN/X41J5B/HhRWmL/RHN+LXO9TbKFh4BzmPXUi29vSbdIlK4nh1vjnkJXFuHuZn7b0APC/y0crrc1FgiuAZjP+duXLX08cdC6DPPoVCH1OhTEF1VmRi8OoxVQVr9c/7xNopGdcaaaH6BhKh1AVtRdJwvCai2GbUszlUroGtz95IVC4rUzgdnoAHmWoBYTSpnPr5V+c78TNe2qH4DfhwL3D2XjID1F83nASFEy/Cx30FEQrdAaWZNddClKo5Uf8RnULndDnOsevxzR7gLZqQmyhbh7PCB7lYUhYnIVSFEUBWGmj1QZ+DL1CRoVhUCIoKZe2RmFRKpTH0zU5gdMyrUZQ7gKQlH7+luBsw4S73UgY6PVExMMwAXdxPGRU2JYnrTAC603j+MLiIAIMzEhFhDyes6pPJb3Qlyjq16tCdR6INIi26gZsUUw7hj7vwRwMw4ZEGxqjbXeb927LbiMTveVbVbB2CqY4oDGAITO9vHGorgoBDhcRicqNo3zeh69esH9zDzIUKhGlZplVCj9X6aDW8BgZhmrrYZhYWY0dzXO2Q4vq6QS1Rj1Hr+qTqzOmPwsSsh4TjmxEcVHX29h91UnRAIndGlaXSKJrE03Nis1zd3i+u8XgDw82ZThFXJvcR0AQClKCK2XQcOxCSEw1gOwz4+HlUtZdBSiFlEVHW/227u78fhELCmSBNn7fz8YhyHpusAp5Oz89SKJLk4v7q9fRiHH7/84nnR6e7+LgHdbLf3u6Gn5k+efU4oeX/YbbaL1KyYSWgzbH/77vv348bM25bJ9dmzq8TUtq00DSVpFn1Rvb974KYBoqbvkckAl6v16ekFAK367ubd68XqBN3vENuub7t+sVwzglnJhWC+yVjk4upad5++Krv9ZpQkWsy9QFCjZ5wa0c3KDL8IU1VTRqmKrFb38EM+RoHGug3NYo3p7hrbAiL52DMC0rHu1H+rqsBgRlRo/oK1eNUGkYgcwFWtlDIHiNWvycxeM2Hq1wGcoyEiONLrUFirZG2Aqq30XILBvead1SNNSMhukKMtLVYB3rrENpzV5maqWrcX5qDmuWT3OBG06FqOt80BGHzmF81DV4nPp1rJu/vHE1FBqmOZPt494FBUI+Usbiz8CDTHAY9TGEEuFRHhWK/ObTcimhoHwgMQlDmYsYHo/7w6NgYZxoMTFRbF7FB1alDRn1JyxcdCzIOIiBH+OF8gGCCElFys1BbAZlXbzEiN0RKNtDrqY0gXo/H3mSiDAEeCI9TNTHV7Iwj/Oa9qNCKK3j2WFJUwqtYwuCMBJIKMwaABQkiMGNE9oTMM41KiutqMOdtxzIWEiQDBY2BEohJEsejUDaqhFjoAFDcCBNWIp5p9zL0mq/qMgFQICxDIowJCcDMcZzFhTN9NYoCisYKDmP9rWGZYRlWeBgAxeQ29iZ4lunpyV2YSJnXPM2qERKgVFDo2/xF37WF+NUe0IABRcNvLjAZ4ncbD3zCUo0yzm0V98HF+Jo6TLXidgRGj7YyNlItI2yQmzqQOfpwFj42bu3kFWWvjw0TE8TBgVVNUSQOqw5RzycVtNiUCC505EbOwGqemjZPMIovlKud8d38jCDqNN2/fPf3kU2fq0mqxWD1s7nOehsNut9kgoAAlplJszNPZ+dnZ1dWrn16Nd/fm/o8vvr29v3t6cc0OGceb3V1B3d1Ov3vx3UAZGE9X/SfPHgsTACWi09NTSQJIjoTcjDn7NO2/+Xa1Wvar1fLkrG0aU7vf3H14f3NxeXX1+NF2u9vc3+U8MdMw0JSnfrEKBZwiEkKTmtXqNF8/3j68n8Z9HkfTUpuBWCNVctfxrAKzMEscqFprqJ4mrOFsUKWjsWBypXATCpgOgRirM2iskefmt5r+Vvdjqtc+1F6qYt8/GyCgip+89lvgdepziHMyA6dO8eBZgVleG48GIJgazrkFSMdFH4hwdAaV/IRQpfIGqRHIYKaVOwQ+N+9zigc7InBYYlW8W3OprYyh5qKEyMjMeGymicIf2NzDFjfsWuAo0AMHAnI0nKNO8eN9EFriKguI7g2DnVPHpSPU5sQgQM7RI6qjYy23UXHigyWr5BAAADVzgjYlNyciAYt8BwrYAJCJHOwYW+kARqEJJK0VGIgALZrXGQ0MqMbBAaWUgvNCCWvhUsQqvwobmoC9mBkBQQuGdrKaXDMWVS3EnIS6GD0c5o1ijAL+sbDUfwct1G5EWh2uADyGJg9vOnQnBCEgIkbU6P2RmNhRiTDE5/HoqLs6pgqMB47GSFZKmffgDHOGOtStV+0d4kMQAmF0x1LtUaNex0MIiPVyjpun+rAhguBMlYPEbOrm4VGICaFudgzALNLFsIasVEfYI+w59wUohEZECYvOuQrz1OZmIKECq4WbQu0evX/AslS/bzebu0TyMJyaIxM00GGYsb64GecTXpWNbhGA5Fo3KAZOBIQkQIJQ3HMxk9lmwx0RBTlmwSj9iZjqlqxe2w6pbdrYfmJatP1imnKeMgC4FQBiZkUXYeYkKeWc3bRpG7OSVYlwu72/f/fWtey3GzNdrlZCpGO+v3/48bs/NiLMtNvt3r15c3F1/uUvv/zd77758cXrdzc3Dw+79XLVCu2H4ZvN+x93N13TGoLkzXTz081206w6VEuIT548PT9dT+Mg0n7xxaeL1fL+YWuOKTW/+MVnq/Xai75+9fqHH38katquTUk+ef58vTpdrk5OLi5BZH16kg8HIsjjXq203cpUhcjM8zgNRaEDILDUPv3il0Lw/e8fAAzmePP5wVBEZBYAJBQmIRKmGop+7ByJnLB4BeMhbtNAM9GOcjCY8c/gzoffOZgVrCZdHj17jM8RAVY3ZTOGzDN4CHX0rw93iFri3sKwWKxl3hGBQhPqBkDMqGpqpaKtUIV+AeIQRMdUm8jaUiC6maADAQMRyTTFqfXj9fixhpozAgW6UxEkCjQYZv4Iq0XsRn34LUzlK2Uzjg5BnGivDu/zuvioniGCep3PaujjQTVEB59XHXgcFIgCHWIXmHKOtsznzWscf5+3blgtHD+i6YiQiAzjwEcPGubfzuiMELE1PysXNi9QENAZQSlyt5GIoNq4AiIIM1vJc/X3eBDh4/jBEQ3DToQQNslhtqQFpikDeCPEhC1h+HRw7fjia+ARiJx1a4ZzWx1hnwxmFqYl8YQRi4sSuDWJRYSJALCUEptSZnKX5AZAWMmpdXgUScKBcgMgklaWY4yidNyaYWX8AkIpJdIOoe7IHKu/0BHoI5r9QOaFSjQOcaUhVptSCMTbtEY4h5lqrJ8RwNWYiIUh4KOfXYbxRRGAiJMk8FIcwDV8q9UDbDNyskhwnS9somgBvJ79YBgRmZq7oRoRmHkKP8T/FuStzWYAguCJBH+G48cDWaEBAoagEaK7OiAxe7ZcikF87MSz1wtVdIIE4/qJr0B1B+Bu5o0kB3bjYhhPqYdmnMjMmZiJjwDuOA7jeDjst8M4tU0S4nGatvs9szzc3S5PT5umefPhQ9d1q+Xqpx9/UM2r1QoAzk7Pb29vNw8Pi0X31elnRf3u7p4Rmn1qpLndbbfTIXEjbJMO6/N13zeec9e2TdOY+Xq9fnT9+Pzi8vufXpxfXF6dX56dXy5Xq2maGOk3f/anzaL7m7/6m3Ecm649PVkD4HJ1am5WtO/6hng87EqeWklWsuZcVNumdfeUkqrmcTpstm+++8P2wwtQdfjIN0NkB7OZ2wKOwgmREYhIwqerKgUgIlGtSqhif2hmbgxUi36sigAADFHoGCs5twqIXntwqNMuzFBhqHmgosbH598rOoLupvVmn4tdQIBHRprPz1iFp6owCGKlBwH5Btxarx+cT58jVI6Bz6R7cxSRoxn7sfgGY0IQa141aCwjRbhNklWxRmjVXRTXxrQyPuopMBURDwzOjztBhxkmjRFHOHYhgIjERE4QrfrPIaOo2hSDGlXabiAoMxQQOMPxAqulAIGIjygxzAr/OWMn7Hrixq1vLSFEyZ1x3PoZxmcVOzomEnIjBSQKYB4YzRFcmsSjlRlvqE4OH7E/hMQkzCOqZa2Xv6Op5Vxij0PA3AgSCmPEELor1jLlULnnMbiAm9cl0PECrMbMCIiMBIxkJsIInFKTmIlJzRxBhNyjqLi7mDkRZ9UCVnN+RRohJqgiGCZWKmp1+VMvxNr7IoDN5Gmv3fnHijx/a/UeBwCrwuFax+Y322uoESKBN0nUc5BAKiFBQa0miCZArhjJsT/4CMkFONk04BbLJrcQx88PejEjJzJHOi7B5liB2BiqmnlxqxnxPk1qy7bpUkeEDuEtHvlTeNx2wMe3BgMBMMTQfEBtZzimsUolQmBGzF5Mi2riFDcnQOhW5u3cTJML4C8gAyJAK+7CbevSNcvVcn3a972ZOaLN1DJJwo6HcZimYb/bbh/uyzTknFOTEJ0QmiZNU95tN/vD4fT8vFv0J6er4bBtW2Gi2/v7cZp+evHy5uZ9KfnJ4+uzi7OfXrx58+bNctl3q/5mu2WkJvGY86R+ulqfnp48bB8uLi+HcdweDu4mSSYrD7vt6elp03SL5er07KxpW0L6w+9+dxiGTz755Jvf/gHdz8/P+r7f73fcto9Wj/q23e93eRzzMHBKi75DbovmkkuSmFFBkgzD1vKIOuXDxmyMQsjESFEgCAzd1WJwq49uxLI7eE05iV8103ggw8ZqBtwqrFmblblhPp67Y/WvLecM59OMTsZSzee/8vOWJY7Ncbg4npr5v1Qt1X8GpB/Z1R95nfNvRIsVG1SqTMfae8ylo8Kn4E4ExBWnmm3U5ppX+USR0hH2eYyIuZSipqaEVBfX8+0RBTpEPPUkBFGFmei4jDvWgrp9QaQ6YAMRoLL7NB03CXNzRoQkKel8XcW3GJvawF98fqX1nQ84hFDrbfLzZjWuVUPkCvWbgzszAxC5MuMxinHu9MJEr1o6h1EQgB/veiMiVElEhdnrKnIGaua9PDMJIZKA427SUrSU0FG6meWcmQEStUn6VhrhKhJEZCJldDcmjl2Omoc8cv6HgqZWjaKj4XTwplLHWYhTZBMhCWMLUNSYuISBmBmmCAhFtbr5dHeYKY8VhsJ50nL42TNXL4Bo02dX3fiuDGeDhJlyAMQMUOk9c8men/iZtBqtlSByCTbTvO4Gz2qmyoiB75M7ojBzBWTNwQ2oRg04GTM7oYOX0DeihtbY3VWVESKiEurMUWU4kRUyTSVPehh1nMZDHonI1uu+kbZpgzwRo2s8pkwEhAgcfCA4Lh7cnVDVXDVsEpnIYq6sfZMFMyTSLrES2hCKIQEyVFiX+djj1CNqBJIwddeffHb57MvTy8fnl0+Em1LyWIpX/0stuTiQ5ilPg+bRpsOweTgc9qVo0zeJCVyT0Ob+vjg0Xbdar0Xk6tGTD4iumoaxmAP6YtGP4zgexm//+O27D/fF3ICYuG8XfdImyWEYluvFk+urh7vN2empAZ5dnOVxODs7vbi8ODlZd2378qefVqtTzeXFjz8tlqvHTx6fnZzuttsnT560TbvFzeXV5dn52fn5pYInpofbm+Gwb5uWWUQaD5SOJF5agPgOkPru5Ox0/75/axkowAoXRgwQAdDQFWdoh3w2YVMmnF10DIDMa0JszMkIwMzB4nZDZjEgICCImx/myl55IIhhajI3nLEinYVB9SIBcPdSShRHZj7OC+4/A1x+1snWpgKCUVMX1VQLrx07aJyhyzr+OBzb/zg7R2ff440F8+M7R8rM8Cl9lBRgSOYJAUCEU5KiXlTBVI6TByIzx7uBhIiMNYMMkBlr3gbMnmzzBg+AOPycCZFMS8SmJBE1taIwF3REbNqGUIJjT2FsMb9wP85EUUDm2yWqEBOWOZNgJpZEuCTNzWjcKACx3CF3MpyvjEqzqDXNENAxpj8G14KBJLkiMJMkxhFBPdq9SJCLLtkAkJGFmUmCSZy1qGopxSyWfC6EKXHbsjDGErVhQOTCaGalxGYJqhCVIAkDgJODlVn4VC9grLgJtylwFU4icZXVG6UogDEAIyqRQ9xE860bRquKhIyzNAXRieI0ABlgZENA0EbnpzToUVoXUsJYICwiKscowPDAJTzuN4rOq14I8WkQoLkLc8mKXOXNc5M0nxaPCbeCq6aKBI5RAWIbTchGFsRhtho+h2oQ1q6ACKRN5V+G6KE+ECEYnsayOwwPu+32sBemPjHCmsCJUYBhJmXMRxsZjZASs81vn1qpVgDV9K2+XI81GMaYYEqo5g0gAjEJAhiDYwVAuXZu/rEmADiCuY9T2Y3lN88+X65PA8eMewzchHkYSy4FEYdpOOx2036bp0G69vrsfLvfHvbbKWeWNA3jfjgsz86vrx9NOf/d3/+j5enDuzfDsHf3tm+bpl0n3m62BxgetnskQUQRPuwGYUqLbprG60fXF+enJ8vF+dnpWMrmYdd13Y+3d6tFdb9erBaX15cnJ+c3t/dv373/7NPPF4tFv+hPFisWRvCuaVar1Xa7bdv+5Pw8VE55msC0XSyBYBgPgHmxTIE3AkDXdaAOCpv7h91+n1KrnqOFT1SRGwQ0tWwawx5UdK7UKq7qZoGVoSNKU7Q4AXFlJ6i6GRSHhohCSOw1ozlWrFHKgrUZOud5/xxrg6gjdftVz5iaB0kbkAhFKLSJZh4XvX+kJwVwxLNSPE6X1YWyz/y3j+0qANY8vWrI4sZUr7G53f54MRw7GABX1SDyxdPl4CzEzhzlJuo5MjO0mGrfakoQBtrgDhRMB4prdgab6mabzYx59st2AHQERmRh1MrTdAqaImIxcFN1N3XpG+KkRVkSxl9Hm62BKuRbr0CI2lUvU4eo9Rg/i/7wyLdhQkIsoPGdA4RDfuwIA243Bo52a0a+EdEITdEobKRdkbBBBldhJogdHUpc2mEg7oAcLA5CQmeCJDwQFi15ymaGhG3DbZK+SV2TgqSWmFuRub9wqcRGmFVzGCJCRLdcSYHBNw637ngWhcgZjkCYqorU3fl8DVcRiJYSpv6qamq5FCJkQrCiboYUxkfonk0ZkIk1aDXuxBwqaJz/NzD04NrVe9Cr91OwbVCwqDoABz+GI9IY4tmLekcIIoxggqwAEEkU89Xts2fscYbwyjsy1PnTIkBz9GNb5yV8iwJ/UReJCcaK5ojIiMsu6N6AoFqGcRinkZoWg93BxA4iKedyHGNjKg9FwvyL6K5QUwyizYttPImImWsJ0pIQYjYfi7ZhHwqBv4KZQsSTQZDDo32Ll+/MjM6AkpoeUAAYgUzNzJhYwVikdTewUqYyjWUa8uFgDk8//Wy3H6XkBcE0TUTMklar5vmnn/bL5fbNu8Nut7m7ffHihWp+9Oh60S8e7u8uztfrk/Xdw6ZfLvGQzcrTp09++vHVMI7LxaLvukeXF4+uH71+9fLk/ARMD9N4d39/dnbGSZBpt993u/3nv/jlix9fDmPJxd+9f19Mf/HVl8+vLt++e5u1fPLp80ePrrvlsqh/eP/h8ZOnj58+Wyz7929eF9W+EcsTSl25i8iUc9HSpJZZuq5LTXd6en7YlDxOVDeiNgMjQPTRwjKqqIE7MAIwUgiMo36ZRu8fXmZ1A6qOFhQBmHv1+qWCxu3V0TPYCkF1czdQACKuZJCQkSKAU2X6zfzgoJlKNB8fcY8qbBKeeZZqhYL3Uqs/H9v/2tfP/X4diAEQ8CgeMge3WaP7M7qKA4CTanEAYa7PNBOCEyM5V2wKEABjN4iAprmUEhbz4dYZBen4fQSwzzw3anFVVsIVIoVzWoUWmMnRdDZ/rxXYXRoOhTASw4ymhDQAZ7c9qt0nHHGXGMjIXWuQMXL982jRJpsRxQRWZVzMHL7abqykleFCx7cXAeZZCN3IVC34TSIVCxfVHJ+YgyEoIRFzWFkTImPMGCjASbhtmsN+cDA3bVrpkjTCIe1NLBigGyECsrGIHqVnH9EXMxQGiF1H1RZAbTRisP3oQx2+oW4wTTm6b/UCgKqllClrKUU1xOtqRUrjVEoRRoaqoosPNubMWLJHAaYZ8gt8DTCiMgMA9WADx1OJwSBAjp08BemBiNBnbm+QFiBcO4qqCKMrgsWtCVpT35g4lLrqLnEr1qULHh+RefT1ebqAsP/W6vdZkVvwkAuGWLSqGeJtE6aubc7Wq75p+rZZdB1GsiUxIDcNBZWWmdyxHPkjc5eu6kQE6oSFwBKTuwsLERq5WVFwDPpWtqmUSKYmMKGESCUEk/GRE4pIBHfGY0AoqTtZXT59+umXi/WJSAumURqYkKUx0yQ8jMP2MORhZ3kAxtXyhKWZpvu+a8eDrlarB7Wm6YacU0q3d7dm+uj6cre5Pxz265M1iyQRYlbz5Wq1Pjnltnt4eEksSHR1fXl2etIvFm52sl5xgtW6B/Tr6+vHjx/94Xd/vL25W69PDoe8edg3bf/N4Q9t27dtk/NUSjk/P7+6uj4cDh/evv/qV79cpObm7buLx3j95KkbgvtYcmq76yfPbm9vD7tD17qgMNa+VZgRUE0BXbVM41jGiVGcDdCCbRhoL1WnsNgwRRMNXqMiA8uurHBEB/TQ2ODPKJ7urm6M4gDAEe0ZG12d+SUez9wM1FnAILOSptqFRrUN3N/cIOckQUj18FADAI6tf+zC0EPhCgBFFYo72QyFB3MJ58JK85RYQ1Wrg0zdMoTALSzX667ruGcNwAKRzNzJCYkYhclNiVjYZ2SMEPgI3iNYhOBCVHFACgqIQ329FRCuZxGPtH6PJU31xZuPDKs7MUdJjHcttqlxKuNKDmBn3o4BzmB7RaErbbJ6UAMiH02FERCBmeurRjTDeeD5ua6bEJWoWsAdV3pxqVk8CLFrQXefCywCIgqiC6MaOELDnJLwvDCMnUkocZC876GoBQBA6F2bhCkJhUsrVdJ3faFJWBQzACFZDSQKSKT22dULDaxoYSBCDDWxu7OIg6m6ubpFZkWZ33QgQlQABCYyrgv6I8TPHEhK3c7XYWsOyoknq8pGIHZKFM1EEGzIqtCFkJwB3JFjn4Pg5l4HKmZGNEZiYo4wPYQI4E1co28AnJmAwIBcnYmTyEwsdlVLwjSjY5EAjogwZ1bHTM0cS1QvRooa77ODRZY40+wwM18VSRw6JMJlK1lLm9J60ROjmgmFnqjuAGZahYXApJ4UcFVgCvLhcQ/FzI2DgRoKeTaIZDTQoiHpiOc4snRIi+WSwUFYyCElBgI1R0qpWcni9OL551dPnhOLqUarb1ocnAjNNOc8jmNK0pyc3pU8qS7WJ1MuTdOMu+1+ty+qqenyMBz2+2kYUGS/fdhvN4iwXC5Xq/XDZvvq9evVcvmweTg7Pd3shtu72+VyuVqfXFxc4iWOh2GactMk1yIij58+6xbLl69eHnZbIuoWi/vNFtyvr66IJGedxu2PL16uT08/ef7sxU8/vXn9+uL8vO/6y/Pzlz/+VHLJpuMwXl5eNd3i4X4ax/H6+mq11sPmYb/ddo4lT0HwMCuIqKUQBbxjGi6VoPXER50NX0BwBBQhxsqciXKJEa5nxsQOs2y1xmTEwrBGVkWYQOz9FJRmKlyVFjq5F0Ik5tl9Z5Yc/uwhqZdDNXclMytFm4bnGwgcmCXhbO6AAMS1BrlnYFMtgDPZu26a5uMJH+upzyQCmFFNmIXuM43GP57jGTgHh6opBojaIEjO1QlHRBA4WlEiAmCaRVVm4QBz/GpAFLvo8Djw4wtHBCJRK27HX4affScBHSERlWqQ8/OmHt0NycNPXjWMjx3mmyQqdRDT5z9f/3VCAq7ly63CVjOfguryb7425oskNsPxlY/rE3SIaCzAqifnONiCCEmIHQE4JWlSEgIg0nApIyKhWUfsVRvhJkJCJELEOI9f8WcpbD4YSJizTuZuFhe7Exm4tdIQQ+jQEMPDAIi4aZskrZYizPG0lJJL1gq9IUVJZSZWYmZXQLSI8OLaEVG9DmEen6NdnT+wwFd8fkznNVdY2cBc9EDCRxOqxN7BHTQCCUIzhojChIikNX+xpgAEhPrRir1WRnESZI4/Vu27olcItZ59PGez8Uj8BGfVW9Ok+alxEU7CgEqMTDK7LACRJkFCSYQAEv45XdMwkblGnzcfSw9+BSM5AUtIMioQLEKADsE3QEQgZnE3x4JaCQwY8ugaf2PHjbcWncYxMiMZse86XPbSprC1MKQnX3zxm3/zl227nMZhGMaSs1pRK+DGIgRYVJsmIabx4O3yBFPTLRY5GwLuttvxMKxOTrvV4sdvvhmHw4f3byWl77/97ocfvp+miZlT27x4/frN6/fMdHV9/rAb/uqv//bR1eWvf/31OGrX9WZ58zAuFsuubRE0NY05/vTTqxcvXp6frQOBXa2WIkIiDphzGYfx9PRksVp+/tln6+Xi5etXeTiQ2T/94z+cnp5cP3u0Pjnd3m/Gw/7y+tHq5Hx9si5m3Agx5ZxbcDXNOSdpauEWAaTsfnpxfWhge/saM7i5qlFIt9yFWZjMnJlFIu4N0QAZwL0a81QRRzWInT+vip8AeFGAXGPn1YDr2BkaTONolaKBdLBZW1yr8/wQV8B9xt2rStwgfPCRGJFDXFad0dwdMRjPgsldcZaDVKjEDAEr530+tcFrjS51Fuh+vIHmoxr/CUp53HvB8YhFHQbQEyi8z2rncD0BQmE2g5Kz6pFEy1ABFoxMD7NibjDrqGPCjt04Inu4FBxhqBiXEKxOSxSqdXdAJHcwKz5HPAXBhDkKfZkrxP8fBDTHEdYdx1y1uMIEobWM6cpNI497rjPhmarxUcUIQ+BIVF2e6mAFsdxkxpREImPdANyJiZgoNdWbPihQrj6Bhag6F3UAC0sAwdQICSFTNmVjdjMIp2R3N4z8uZAYz0ETdcXhDkRmUXFIhFJqmtSnlKYYe1EQM4AT1059nqAAABKLkhkas9i8PgkBXuhgQsD60R9rBtzrDXAUASLGOiF4muToHMwukLDnJqpr5ioEhQrmzA8VC5O5qoNZtXFAQHRiJq++2zMmWh8Omx+fIBowRXjorOOoHRD+vD9CJHZrmMOVpxURFkSBn/lJRDtBAMRYHN2B8eh+EhW/csRjjlY3AAYGqO76yIAORiGcA8YwsaiDqRMxuxMoEKgqOYJHvEK9IsM8SHM+HA4Ph904jgR8eXqWmpSatuuWQ0Fs+8+++KqVxTTmw7Q/7Pcl5yCILJd916/NLOfRXXPJxWwcRzcdx2mxOh2GQ7tcp65fLrqcs7kx87u3bwnx/bu3D/eb6KO6w6EUfffuw3LZfvWrLzYPu/1+2o95exj/7m//4acX12fnayEeBxXBi/MzMpuKIuPzT58fdvvzq+v3f/jmMOTLi7PV6mR1cvL1r37ZCH//3Q8PD9vlavnJZ59c/nB5f3e3WixWp2en56f96oSkefzUTUtRR2Yh8lzyNHJKF0+eAJFbpf7HNJlEiOnk7BrdU0Ok0+1hazaBO4iwY82pQGRGJmJEpyNHeV5PQZhd1S422uAIOI3GQtWL5jFXgxVh7lnqFyNwdQ62PCExAhhW4mDtTI/IiAO6OoI5UmiwMGbWDNF3HTESAyAWjwh04Lmzj1eQ54a01FQzAwAnEnCed07kVqrVGM5wf50l5s6DfsZy99r6xs4WiA1cmMkcIZAOcgMiZsJABMiRmefGDsyN6rvnoY7HOaoMAMkjYTXKoQNo1d7XKym0L9H7cwiv1LAiPDGA1eMGhNQ2TVEqRefFO9QEhbo+xLChw7qArLduhSqQPUyqHS0M5qAiE3MGfH0viikUi8WOOxgYzfgRIWTLbiUuNhEJF06aVXAQVBwHQIoIMkDk8N0rqoexHIbxcBjNrO+aJMSEjQiTAGEVMokIABEURyFKxGrOQRvxgD5UTRllhh4JEQg5pY4kATGnZhoGJghev6qqFpjnxLgmhYWppNQ4KqDGHV67FsJ42whJQd08djxUYXNEjN36x22JV4/+avMXjRUj+XwXI2LEEB876JgDAMMgAFyNZii/Kq6ilwZ3x8SiYEQY7t5ZlaJHj70pE0EEloF7mAQTUbVBg3kNgQBMKESAkERiMVCPbLB6HBAJQGFWMyBWXMY8YsMmxAbms3P8Vqm+mIA+jTn0xYoKVTXkHH1jEilJs4IVpZlNVC9XAyfXkqdxetju397fbg9Dg4m5WZ+c9MCcui+++Hx59bhdnimAA+SxmENqGlVtUur7pbtP45DLCODCAimt1ysrBTkBgAGenl+Aa5nGab87f/x4cbK+efP25vbm088/a7vF7d1dSun9zYfDMKxWq08+fbxY9NuH/dOnz7/97gcHPj29/HDz8Ps/fHN9efHpZ89OT9aAjJTevXunaof9/v37D+/e3+z346JfPHn0GAz++v/7N9/+4Zv/4b//754/f9r3d9Q095vt2dVVv1zevH+/2+12+/2jZ/Lk2fnNu9cpMaduGicvmiQBoDRdu1gSUR4mEe77ruTCJLGoTalR8/evX033N36Uds6dis76bGYSZOf6KFYWSXiaVEczhyD5IAFCUZ0BTjOz/X7aDhOQnS6XTSC8tSmaCTAIMYiCUTaNSbYKHeeyYgBZFQhpjq5D95xzmaDpo0izokWDiuAGrqbCXNmnVbVkWL0w4Vg9w9wAgMI7M0wDaNYkYt2BzXxBjzHHgmeMBhXARYhyC8gk7EUTIxiYOQUoXLm1dU/tAKqqobIjj14qLgMgRw8dUXUoQaxpInGg5nHkOBgBAjIJIrhjCZUvgIexmYcfAwqJMMcKR8TdKc6kzV/ZK9ET4uYOLcesNo2ZCRAYAorGeXFKBGiRNzJzZBCg2m7ElG/+s/rmHxnu7qCqQjWMZ94amdOs4zVzcx3VVDUXHyedphKy4b5t+65p2yYlEUmcWFiYhZGwclycEISJ0DySxXNkxAZQEu8a1RGKiIRTk1Q14Dz1Egq3wB6D8gx1Z8uIwCxkhYiYQR3AlI5twsc1UYwF9ZOLN5QQghnrXoPTDIwMZ+ivtt5ahVDHqcPnrQvOQ3R9RJlYq0Yc65LNnASEGQFyLsRMJHSM60P20MUTEwsFn9VmuezsQBofB4VX0UeZNCSRlBIzqRWa+xFXdYg9GIMfde0QmZARGhc/RIQ54NR6rmKCQMCwyuDK3qHiRoaIpICIxMLkoCBZuUyZiJqmKXXa5aCUqOowTrvD+OFmc/ewWXXLs9VZVjSSYZzevXl7+uhTIDpMhzJNBLRensS0Q4RTzuPhsD9sp2lkJpEGEUvW/X6/WCyL7tumaZs0Doc3L16MeTi7upz2++3Dval++tlnROnm5vbi8vKTzz/727/7+zzqxcVFkubVq9elTKnhFz/+CA4Xl5ePHz9mhru7u8NhNwzDkydP3rx+Pw7DJ58+PznJu+1+2S83m03Rcb1+hH7etcm1fPftt+uzi7Ztx3FMqVkuV1p0t9uOw3TY78NXYRrKul0QpxAedYuV5gLm3aIvxcAxSYeQj5CFm03TsN9tfBqqkSRAiHc80oEqL6Wq2KuVvVmYXVU+AAd7m4jIVRFJkAA8/P4JseS82W5Sz31JmkcUFOE4dep1bI3DYRE5OBsmH4GFOATm4qVg9ZM/LpndhoFFEgJhYhaakUBDczNQA9PIP5+xjtqbQMWv64xBGDHwcQYJ0a2U4JXEmaqNUPW4x1i8MbKbVo0JEbEwkScENwPzj+nTxMw/9723yl5Cd4qCFb6Lse0ljEA+PkpF3Q2JHGJ/HiYQsTdBxso/ckMmtbqrOQI7yCyMHBRzcHQNcx3yMPmfuzGuNgcBgYTZ2FwWzLB6rwJ4BN0AItsRfY3m1dzdwy0kPsIo9QBg85WLhO5objkXB5SY6MxdHcCMzXJ2BAfiUspsy88ewcDugNgk6drUt6nrmmAdEAtzqgQwdwSXsI5UG02hptUjzIwriMnNSc3DSjqAQkAN1AyiPwYHCISavNogSTRILEwaiQ3AZNWwYo49cvA5iMYR/bjhjDLNWBmfPDckiChEhBRE3uNDejwGdf0L84IZK3eUYlJJyYNag6zVudODJRY/O7q2mWIxMysUb5Eft3bu7lzDJYJ2hjrHUiJiEGERgAM4EgKT2Er7nGFNhGSx8OOKIc4QoruWrIWUKPQvGlBXGFXEdc8Yc2QMscaM5mSIoVNgQgfuEBwWZqAFW0mYlSglaRAtwr7dYSqWi+fJi7gquIKZWZmm8cPf/J//x5Mv3n3xJ396cnKaFn2QW8NqthSdyjgMh7ZtpikT6cX5+ThNahb1NKVGS3735pV7WS0X03Z32DyUPO63u/dv3j1+8vSHH356+/rtv/33//7i7OLVy9dd1+es4zidnC7+3X/4v4PT999/f3/3INI8bB/6fgGYHrb7w3c/PTxsAdxMf/mrr9rEy8U6q56eLadxfPzo+snj6/v7O1W/vn4yDgOAv3v7tpRyfXF5fX11//DQ9f3hcHD3cRilOaxO2rZtp5zPlsvt/WY8jIvlEhCJabffuEHf9+7GTIvl8vHjp9Pd21d/vEOfSQsVdjVTxYrDxDrm44weDW0A2WFA4oQUZCCzwDgRjQkZJEiNQpgIhCjF9AmmlXIe7kJO8WwZuMJxAXo8BVhHkQgh09oTISCgqhYt5iZRVTnaeyMi14IACErgVFGqkIcBIYarpKM7WBjp49z44LHDrcaZoKCEZB+PALqBItbTDQDgxIzIgEyoqgWrIYQFzFCF8qrzia7b2ijkCA5EQrFdcMCg+WuUAIRIe3dw4nlh6x4uaegSiWkESGwMrtEPmQETEyNzEmZCNkDwbMm1upYCUeTpzrditTRm1dBQwHyLuEdGQ+VxGbizhHNpXQXHArzuDRyAkBGD8hciBqqtq3pltJgDCTOYgcUyh5FFgjkeJCo3F2Q1t1IggtrMRDiJdG0jxMJMSVBSTI5Yo5vjfjVwY0Qk5CSIrnVeBZjpj8IcNFJTzeOBmCqBEiVivJiIkE1zsJ/A2Q2AHMMnq0wAkJgB0d1qt4zHhyfo+lGOMaJ7EfBYGgM0CYjHZ3ctNdVSwtNCZ8cVc2OP5jruJkKrWCwzqenHBQWAmoEpiSCRO8eUGFPnpDrmbKaMbcNkZTJgZEIAZip+vPyAZ707zGQHIsDA7MAZCRhMZ+oI1t0YkoLXsZiQYWZnQ1hhm09TYQ5WXOxiwoyHCM3NYyyDMItxIiarcgQSIgdiTs6Ng4xD0WINWUqNiBB7Kbky59xNAVGii1e3cRrdjCBxM56dri7OLx15GodxHEopwUQCcCa6uDh389WKRdJmu1PTxXJ52O3yeNiPw363a1Na9efff/ut5vzm9cvzq/N+dfrHP/7wy9Q9ur7+48PmH/727y4vz7/++lf7wwGB3Hy5WDIlRP7qqy9ev/zpu+9fvXn7fvOw/ZOvv1b1b//4zbOnTy4uzr/65Zer1fLy7OTFDz/99OrD9eXZH/74h7+/2/zn//x/W63602W76JK7qZZE9F/++q+/+OIXX3z5BRK3XQf4MQpYVblvye3u/m5zc2dqq9O1mZaSx3GMOto0bSmlaRtK3eWTTx8+vNnfvERinE3qTS0kTuEyIsLgoK7zIgzd3YurKjIwMTMaU82fxlB4GQAQUtc1q9K3DZ103aJftF3nqmblGN0T5J3KiaQAW+AIFVglicUWEv0jX+UY/4KmOk5D1LACQEg8F/MAXKF6RB/5DXVOD/4eVNiCad7Nzk2P8JHhFsffEMAJIPYYRWd7UfDgoACQ1+R0IAgVshqA5poOBREyMR//ir0YEGMEBAqThzMJYfSMDl5lEaoIAAREpKbx7pkbGrE0iB9z0I5zLcx7dGImYDckdnErJTNhTB1UT+i8yfg5tKMhsosdnsIcqaKqDu5KfsTAEMOhTdXIZ3FcvMBo/82YORARd4vNjZlLCm8GY4N6m4Zaeso53nwFDJcOn3E0ACAKSxYhaUhaJHIvMf0BhluJIQCQEzgTA5KDYTEHF6I0O6lFV1vjO0sJvi+xqFr9XBHBnIhYQtELpm4apQqZoyLHDY9MxJWV6u5e4Z+wzEVkkrimvVqgOBH43GJ4dUEBBDLHEgt2PPophhwgBCRe5+W6zA2v5fpkIzqzC0kYYzqIuQOQG7qDFj0MQym5TylFFEHsq+u0g4EpwUcRCoUBZJhiEYAToHDdShkQARDGP89ECuIVHQiYEqsk2hERi+mYsyRpErsbBR82JkioT3swdGtrhQyoEfuOiMRkzi2hJsklNzgVyo5m4ILExETVMjcJokB8DmAFdFK1An6y6C8eP1KAaRit5HEapmFnmsPht+8WkrrDYTMe9tPhoAAX5xfvXv6keULw4TB8+PButVxJ4u3Dw5sXPwLDF7/891nhYf9f//qv/j+PHj/+9Z/++sXLF6/evF60/ft37/eHPTGVYn/zX//u/YfbT54/ffL44vHj69dvP5jZ/f3DX/7ln/93/+k/NEJtm9ar07uH20dPnr169faT509/86dfJ6H/+X/+34vq13/y9Yf377bbhyRN3/enJ2enJ2f7/T4P42j66Omzrm0Wq9Pl6Xq9Wo/TeH97c3jYnlxcXT96/PDwcDgcUtOUaVD1tu3MNefJTJs2Nf1CSS4eP5/295b3RoZQhbzuLsTgzgH9AkD4HhCAH9F4MwPWaEm4GhsDhLGuORTwtpHTRQeC3fJEmhZRILEXD5DaAvEI3J6IgK1W+kAEKqxcF5txtAN/AoDZ0gAR3XwaJnRqWgYmnysBmIEZAxmKclH/SHVNEXEVAFTgL9l9xpwqjsFzTt5MZ8SASgjdXQxKdKXuKBKpCI5kTm5khkFaRPfiCm4EpOalFKvJ2ICIVgyCThHLaHCiWHrXtpFd0I0BIeZcK8TzPBFwXuAeVgi4SndN3cGMEWPXWlkaNKvTiJilwY8XMNbz7RTlmggIIeQPcYlixCLUkAM1cHFydxEkYDeramt3c2UEQbZKEqh3OVBdDxqSmgsG50AIDdG8AKOjMBOCmRISkFWhKoGI0JgJUZIEGZSJRAQkMQsgqppZMUAnJ0ZCBreiBuSMDI4SUbbmjUgsRwjnJtfcwebpJnZbDlUO5w7ARFxVWAgOpgYAQihMZiX2lgiCEOzMOVEeFIEYIpeKKtPA6ryGFBKw2m7Mnb5Hsrq5k5twRV7jqudocVXVNSZzptn6c2ZeizBiVelgtShRdHR0AhcCsBJNMoEBkIPRHJsTOE8pRZiO0z9AWJO7Qc0Hq1ug6FFmFU80NMKUiwEBOVFMwpHTDV7dSc3GaRLuklTufwR5WxUox6A+p1ZG5A7EQkmTxM2EMfhPOTtaVsg5J26hTltxhIDYo2GzYkFmz2pF9XA49HkCtZJHcDOdNI+KnFKbp8Pm7v1h95CHg5tdPX3+9uVPD3c3i67f77cAuD45MfDDfgB1c3j29JOLq0e3m/0vv/768ZPHkprPf/H5r//8zz68f//y+5/uHx66RbfbHVR9KqqGf/+Pv3/79rxfdMyp6xam9vvf/2G1Xj769Bkj/+M//rMj3N0+jNN0cbaepsPXX//y1Ys34PZwf7foF7e3N8+ff8qSJDVf/fKXqUlPn31yt3kwVXToFst+eYIkq1VThqnsRnXo1+vTi4u37942qXEtU57MlZhNTEuZcpua1C+WD0AOokUlAQCahgUCBJOFiRjIwJhI/5v9Fpp66HVCRQWR960WQeGqGMYvSdgYuWmBBLlBcGJH1zmpwys4QBhBLDVXsDa0gTUpVusIc6/KLJo3ohCSVfOcC1LGGY+dG20IWhw5BjkzRk4O40hzprCxq314pBjH5WfgYWVbO+sQ4ZMjWkDqbgAoddaIEMCPFo9B9kGL8QJQVX8ehozHzgfATYs7J1ZzClVdPWBx5B0Q1d3cCgA7e8z0ZghQioo4cdJc3BXB3U2LgiABzds3JQqK58fIqQC4ZlMmqFp/IoAMH9N14ncs6PJBvNaw/HMjJC0eJgDh9xzLg1gZkWLgQlU0YFH/yczMUQ0QKvTNqhZGMSGT83k1AcEsRGREIWqb5pBHYUFAYgZkiepvOk053CAcNEYYRZSUyKP0Ic/rFSQyMNPYC1Vveq9pm0HlrP9DREfbWJ9rHLEzspYCSEIISViYKAknAtBYIRi5KTg4mKoxY31QAWJZivOPj0qK2sHHk4FmXrsSd66aTJ83SOBVSFNXWjOmBMdFMYW7MXFYf5Wi6E5gTeLT1eKQJ0mkVkgSARzpd8TowdVGJyKNlEfV6lwEyNUP3oN1jLOihzDcXoyFHFDjIfPqK40/ky+6WSl65BdjQMeRCFDTJFzBdV6XIWIojeKMxBWuOua83+8PjtAJTTn1XRtqgMTcJhFhYU6MSYSZWdjBi9pw2O+327OLnKecp6GUqeQCSE3TosN294B5tMPBtXQnJ81ied4067P1dNgf8nB+fb0+OXn58mXXdqdnZ9y1U8nDkC8vr8s4LfrFVMq333y3OxwQYLPZLBaLw+0HBLi5vRmLmdOU9e5hO+XStW3fNV/96qtf/OLzt29eQhnPzy4S06vXb+jRxSefPPv0+bOuS27+9de/2u+3eRrfvHx9dn7StImF9of9o2dPrq4etX2/vrh4/eLFuB+XZxciCRF3+0G6/vmXX+2nSVJyACYpUwZ0kUSEYaVHzGUqQszSKBAwm6MXj/ofTzugx7sX3A8kgqq6qI+be2TYqQRSgQScLBRHFg9BPPJhzgGIHPlRRMwkGSYDU1UEguqIeQQtYO7GfObae/BGcskUNTu0n5Hz4hE0j+ZhuQwpnjrAesgR2UjtCCEELU6ALKBUqhXX4wUSVVFkxWqOzbKZRwIHkRGEK4q7F3VTUzIwZ1Q3V1VVY0mIIfclt8zsADYVrbaRMdzMN0HJxQkTE6KHlg0qh31uBNUUMIfXEgATM6K7TVNOqULKauZuakDGRl5yoUjBcig2pzvNdaNWIZ/3tGY4c0OJUICPH6O5EdBswFyvkJyLkjcs1UUWAOadAEKVEUHNbIA6HAI6oJq5KSEKcuVBEmJ8ijx7SYRlkhqCxrVdW8O5+mGShCRFSynFzJ3JgIQQwJhZxHM8r5XRGIwoVtVAYNw0nLKF2NxUCxGYu1XdL1aTuNiGIyNBOAmGTQohYhIoICxtu+j7JYLt95tcJmS2ArNHRzDNEIIFP5vlxiLl2FwcP5JYCqlazA5wrPtqPvtjgYGBKsbmNvQjplXBFPYiVNWEiAnZGRw0oaApdEkSC+EcAo0Ue9gAvxxRYvIyRA1gKqZNdCCs+JZCnbvrpwGIQojmjizoxREghJtmNeDCHVg49jBFNTnPcpt63NUqgBALHKxcVGI+Mq89aNqMRct+HA5A1Epb1BCBhXQCRE9Ci74dVZum6Rdt0wohxF4sDAOiOqnmaRglNQ6QUrvfPBBSUQCibnF68ejZcnWyubs77Ibt/f1qsVyu1v/4d/+wvX/46le/Wp6e/Ga9vru5efPqzUW2k/V6YF4CvHn58ttv/tD3fckll7zb70Qk57I/HH79Z795++btzfv34zj9yW9+9X/9H/7T48fX65OTz54/fvvq1W6zOTtZXpz/ql8urq4unz15+v79m+12s1z2XSvf/OGPwzB1XdptNov1CXOzWK0BaVJnhw9v3262u3/97/5D0TLuD4fh8OTpUxFxwt1m8/DwgIgmLJK6RSvScMjrmcFxmkpqurOr6/3dm2Fz625x1CtPE2qg61EYBccWBBywJs4pEkUMK6MAucfHXuaWxwGAODweqj2YmSMYE4F/bG6odmLgP2traklxP/ZIFP4AFRLCY5cWDcORyBBAuh+1u4DC6GZDKWrWYAPojiaMRBg+CnOaXHS9EBRGCJvr2r+EuVx0TEDoRkeDtdisKsVOLpp9BzfnRIAMDkTsx/hXdaNYsRAT1m0wAJqDxIsKjyxyh2KVaw9QLcjQnRCTpLiL1b2UDI7gBlUsBmpOkag1jQDepGRhsBuzPAT9r/IGnWL5oli1n/FWB5BllQtWt4keLPA64xCaV7I/AhoYAqoZozkKVlZZ+OzakVCmWhzR0UQrv8WD3YUOYASVgRR1Hksg9cxqZgHAz3YhpuERXSL1HhAhhHwV2NNKv48lgKFqyblAtY12AEOOW662G8GocgsyVSw/CQzDTQEJnbBojopD7sQNSVou16vVaZ72qpNaQQBki719PDZB3Te38OUixJkoNc+D1YzoyETwo6VNdfGN0ReryV6AofGgm1kppRLagBDDt98JQkAAjOQkaAYKQTLzqjE0QKrKc6zHjDEisCvag8yIrGq5lKLaRBYOzJMLcaU2cV0hotZvHsGYKcziIay7agEB1boknM8UzCJ1qNshmDOZAAFCT2/xZBAYQWGqzlESgC+6MLlg00jXtctFb0S99Mtl37SspubYNF3XLZqmbdve3acR1ycnLFwsKNA7NlfmZtk3/artFsPhsN3cv3/75ubdm9P1erM79N3iz//1n49appzB3Uq+v/2AAJK4XfYpNdePr1fr1d3d7e9++7u729vPPvt0+7AnTqnrl6v1h3fv7+8e/uTrX/5f/uN//NM//c2bNy/c7Mmz53/3N39/d3v///h//o/qenl5mSedpvJwv+va9vT8NOfp/mH7b/7NXyCV3W4LSB9u77/86mvA1EjSaVz27bs3r7eb+27RPdzcNinlcXj18r2OIyFKSov1KjVtzbtyJJKojQIQQt/16VmzWFJKoNlMI6ZEzc0dmXBm5Xi1lQE3UNdomIsBOQIw1ZQri0NHwObVU+BIpoyOFtzQCroyIiJ7WD/O3W44vVpEQs4aKTjuijEMP+YmFGKF5oYgIlCJzojgGuIYBDCNWcCjILoepilraVKTUjKjRqR6luLxsqjNJs3dldeLQRAUKlG/QsVhmIYOZpbzFOQ711KpL3NcO1Ho3pRCsVxK0WLoQgm4auMdHYmLGgAxAbPU+QO81CR3hJo34EIsxAGsOKBV6qnhvEJ3zwjIDIg0TQ7VGy4+STczNQ0OjEP8rdrNmXv4T0baT8gq3C0y2dwIGILWYWhY6Y4wz/OV+17MkGyG3LAhLlgB3VAvuKOaiRoZQU0gBgREjVXsXB4RgLDGr2d3R+cA+QDV1FyL6pRzk7ooS2agkRdoBoBBgHdwNyjupRR10/AjdEDiaMLdIpiL3AwhRkLyOpNiEFXNgRGYnBUVDNA5xGyyWCzWnFiVqlOfgwMRiWoGd2REQgcDCurb0ZikavE8WA1VG4wz5SbmbgyInBAN5tE8uJiRCBTDqRuHCxRJlYsQIDEQmjkrOZkCIggDuhVFAiczLxgp4E4/69YQPbLfFRSrSU7UaURnDDYeCYC7OiKRUFWGgSeMOyn83OFopBpQcvwmIkZEMLIDFK9EHAUndyMHIAgxOIVLmRkSqrsQihNIWrXt1KtwaljMXLNzmA2QLPv+dCpdavpusewb4fArxdR2/fqkbXsgatplkxIQaCmkVkpObZvBG+wQuqbrY4HBkq4eP95vHw7TePHs04vLKxdBQy/Dzbt3d3e3zz99xtLe3Xxgln/6238QQgD/4YcfPry/OT079WLDsLt+dH1zt//9P/1+cbq6vn60Plmfnqx3u93F+dVus708O3v65PF+tx3H6ZNPP91tNprLdsynqzUnvuyvfvjhh199/ctPPn+2eXjIOTep1VHb1BILE2LTrs7ODL47bLd+cX7z7u352endG/32X3677LvFapkWfdN1J2ePppJdCwlFK0lALELMgKDK4Z6FVtSgmKmDGyjVLiuoXnVes4rQRQUOThfME3MEQjNDnVcd1JVFEiYCACjgTq7FFcAJHRnNKiUfDBFMwfxnm7jglyIBMbBRQYIqLlUiqpoBq6OA+5HqHeYIoGDujhZ2FAbgbtl1zFbctejUNQ24tk2DVX8iVhmqQXQoZhSvFVkgNMQYen8Do0BWKySDFmh4RFUEZ8LBiRDJEbTO3EjI6ISgBm6AaurB6olaj4buLnKU5Bx37BG2V02zA+iO8m9gEMl/oAjoVonmkf6UElYRkzkgE2KBKXpq1fAsinhkCnQ5ym6ALsKERgISWjBHDOEUV9iKMBKbwIO9J8xOVV0Qk5yBEXFKLaBNY469BVVQvJJ3A9ZQAg4xYuXeqsZC1R3DqdvdCXDZdX3bIIKZlSAeIVHlYAbgAlqq8UXc01YF0wGVFA9mm9V0quApYqjYub76QCZiZxOGbmbuaOgg1XIkxMJN060xyZCnaRq3+x3jUbAHzF5KwdkZ3KHm19ViO7viRJwJIgIQHaOrwU1DVQ/uVd5GRIRMkhyUEBNzcDYoHMiRiCjCuwP1Co8gSlDlAQAEwO5aShxacyiRHeCO8ahXj/JgKTl6BYXrmBAZyQ6OH817hQTiMJrFfl4RvWaxRWBAlfxwnGWmkFiH4/mxY4mtW9yLVB/DKpUIHY57eELosuvG7Foc3b3YuBu80DiOWowRT9crAGzbdrFoEVHNgVCatlmskAUR2yZNo01l1KJu5oBd36eUSp7UjFiIBRzGYQTH06vrk9Xq8smzknOe8mazGXYPkuSTTz6ZzF+8evnJ82f5cGgEdttt13cn69U3hwGJdrtdcXj/4eU33/707OpR13UI/nB/t3nY/OpXv1qtlgTv7m5vr68vd9vNw93dcH397t07IUySFovFcrns+/7k5HS57FSLSNO0HRK/+/Du4f7+q2fPdsMhtd367PzP/+Ivm24lTbM+XU+qC+Inz542KZlZzvpwe9/1JyfnZ5v7O4RI0ISUUhh1EPHp2cXL1DiSGmT1rOZ1AnMHV1VE0rojdCumxWYABqk6oDiDzmNb4DHxywgISAyA4G5e3MxcAzfBWeAC7j8biGNqtsqrxrqRqv8lQgUHD8uA8KESktDHaBTCyOV1cMBSzMHIwmsGwKFhGhHNvEwTJlEmYZopqR4KVjSHSBk1wOrMjO5BNvN6tqtLQvz/jhA4ElolsyECmcfIBASGgOSOZhgPfFiCVZuHyufBwD2IkdAcdAZ4aRYTwezBhDNKU4mDCKbKyMBUSjG1iBeJsIsY24jIkOxnDlpV4qqaqKqhq9bPI4EPzFyEGhEDN6o+vkeVcnwLNK/ywDUCtCxkc0QWe2ZiInGvOAERMhMVjF2FxIUjkqz69sydeGCI8U7W29gIsOXUt6ltEgJosWLzthAMqrDZAK0SKKM3CZafQ62/GQwMGTgsOmZ97dF/VYTNw3o+BiMI6XzQJWsHzolYkJq+XzfdchqnMQ/3NzdkwQQiB4wmZf76c5uDFZ6vMut5FIhPFzy2uFT3HPO+HmaxJRFTUDznDTS6uVsusXcPrQASSV2+ISKBhdcQoBkCGbHT/L7NCyIFcAoSAHKlscbCLDojhNCtmBMCOaIBajT6pO4cm/849AAgIqgGEdvN4frlRAxEZiCS3DVMAQlh1kRCxYARU+yfXVUdKgwVl6WH0puOH5P5lEfQIhOVnCNwfNG1qW2EE7EUMyRpu8Xp5aPlyTmRJJZK7IucAgQvypzirdZpIhZHKiU7OEtzdvW47/uc8/3tTb9cMkMeDy++/3bYHxz50dNnbPbDy5fX19eEeHZxYQCLZXd2fiqSfnrxumn6//Dv/t3+7m4ah2dPH3eN3N3e56mYwcXl5e9/+8+Lvvvkk0/evHn94d27r7768pvf//77777/zW9+3fXtN998k5KUIqo+jtNi2TdNc3F58Xd/+1/PLs7aZX+/uSc3ESKGfrV6+umnNze3BenxJ58jQx4nLQVQ8jiCe56mrW0urjpwKKWAOzGXoqnh86vrV39kJzbPUaBia2tHPB28wjM2G3NiWBbicdEFNVCibsisRlAhzrxNU1U0dvA5Frg+YKpuoF50NveHet8DAEQ7EwUyjlIMnm6etQAANxwaQmHMGuQdi55Qgz4fR8DCNIUXTVtCe8Qc/4qWEgiUmrqVKIfuGvtOq3YLwbcks7AkpKDO185JXU2t8hNnk6DwSZqjW0y9xnG4Y6S6CuHPwu7jRqyXK6AFIyhu2Xr2ObRBUQtqi20OAGH2ji6ZzL3Mhg3Vt9WpKo48AqnM1D2WlERhG6cEjszupuqqExE3bTd3ewURGLhCEXVnGYt9J4ieONy8HQwNNL4DU+cqnAZC5CSshFqVP/GRBbnVapDtrLyI4j1DHjXMCNGFpUkiQogY6ZCIyITgZlpo5gorhhwQyGt+BCEwARMmIQBoG5ktY7EuKBgAgRGFRR20jGqB42OdRUyCdZDDx5WYU5/aJTpqyZvNg5aSUkPEgETo5K5aJNUbIxYXFORaVPdQl1Bw8YNKM3vd0/HnVD0YKO5FJqGaP5waSY2QWVEz9RyLIqs+InC0Sg/G1BxN7xr0JDIwR2AkaZvWNWsejTBxMzfgWC0GY+0GSAY5+5SdgpcXywkwYQAP9Cbe55o/44bCYSJGAObkxCH7YCFWmKBMXkwkFdDInqe6fCMhIuZ40II/ZXVMif6vdl5F/TBOuUw7cGQbhrFN3cly1XTYSHKo7lYI1C1Pnn3x1dWzz5puGZUIiBlBKLmbw+BBWbUS09h+u3GHq0ePTbVoIaJSRndvRNq0HB7SdnO32Tz8m3/7H3Px3//2t9ePHv30w48vX756+vyTi8urP//zf/XNH7+9v79Ljdx9uAfAXtLi7PRktVy2TRL+/vvvf7P4ddFy/egRgV1fXGrJf/+3f391ef6v/9WfXp6frU/W0zT+4fe/e/LkyaPrX+Vxevf23bPnzy8u17/59a//9//lf/1//6//y6efPUdAQlezfn1+/fQZS2r75Wq9ZiQgUt8ZEZOktgXHJjX7w2E87NUMIHVdx2ZEpIrctJSaPBwA2YEdjCrtG2ZOx5HzU0kx8eR6WEKFc7oIzGrNEBLXBdy8i6qb1OrzGBdAUAk+pnHY8deh+juHeWNFAqp6q/4A8wLFLdWGGB28xFURTUydcXMRrFxoD7CUKbtVLx6r5l0EQKAOM7wBBICm6kABCWgFcesPdpw9f2fPQjUgDkpbXR/G7xpo1SS4zfnJJIjMxGzqM427zv3uqGRk7BSXQjTlhMizg1u9M3z28SckNfP5d6OXihJSM73cKexSzeIIVLTH0VEj5ffoAGbmSLHJZnInCid5tfg2KnJtOHtBhqtEJX+CqaohYZBrsrmjpOQYG0FIInkqho5AApWGGeAzVewD4q3FaPmiK/dhmntoNFNAUos/SQGah0LVK9LnijHIIs56tUSoQXBHEsLUNMfP0gEDLUzSxLLGIZeidQ0ce5KYOt2csGk6afrULgylWJ60FNNmsSCPkseuGotoC27jDM0TKOJxNwLEFDTciKmEqhFTMwNCJjSL+8CDIR/75EoMo5gzHDxOnBEHqd8iez2EDegwcxzEafZ4sYhJJREhEmGZHMZxBC8ckCuiBt8AAYiKWs52v9nHbr6oFgcEWLZpuUimYMbh6jR3cNWvikI1A1gciASpIU5M7Gp5HLIaV6oGVIpVuH2ZR+xZLMHdsKgBAnmAh+pgueTNbtyNk5YsiG3P28Nht50IUt+3RRWQzRUAUdJuPwwlp25BLIREgiUyH4JwhTSWcb952B+2i7731BrSycWlm+c8imnOEwAi4YcP79H1h+++ZaBHT59fP3v+9vX73/3zb28/fPhw8+H07DyJqOrbtx++++7HlNoff/hxUnj39sPjk5NnX39u03B9fSUpbR7u3394m1JzdXG+u7+7ublNKXVN8y//9M+PH19Ph+H1y5co/Ke/+c1yuUDE/W5/sj7pF4tipl5+82e/cVN0m8bp5ubdMEyffplyyU3q2tb6fhkZmegwDHsHYOFcCiGenZ2Ge7NIUtVSctf1gBgflGrNWqhFpQIOSBiej+FPXhtUD2mPATKDAwCZunvRUnzOjMU4mhW4ZBFhBNcSXpFqwe4/suDiL83tcKDTBk4VJUEI93IHAA4lTXDQVbFmSVJMI9Ham0X+FAGQmZtDeOJE3Y+cu4qjBOMTkJAD2om9cWzdyMLgKi4gJ6/c/GjqmMgBmMy1wuxhXhiNaYy07m6OwXIzQw/FOzGyNG2LwKWUnLNV7klkJnuBDODMMQohEjMDWnXCMDdGcncWRpSiigA4k+ijr635WFAxjPgQo1JHdiQiqRWcUeYZTUFC9qCPYxbECAUAcEY2NMKaaxuEsIAM4lNk5pSSmk+qU86AyMRq5rF2dAtAiokUENzlSCpGCt4lBXkKEQEhqzELuSdm4bARh7HolJUMCjIiJ6RElCictQ3BHc2roSkoYo0niKDJSO4hAsSgDYRupZYeRwsPaweczQEJgUiAoVksVuszabqc9eLJ58vTK8TIQvY8TSVPM0lVAaDkbObECA5FlQi4cm+U0dGVIFQw5DOrRs2YSM3GcYxdNYSkxtTBhVlIrDJqpElt2zbMqJp9v/OlInLXddFKMBGTxO0Qe/xgX5VSGlU160oxs5TSYrkI2iggHA57tyJciRbgscBAIO6c+qy02u+GsFWABrFvZNW1bZImEUPI4TmoaoTs7jlPkTbubo7E0oi0IVs3Gw67Dbm1jSCCajCDjBGJOTElTpGg2k4ZZgNFLwqmyKjFeu9WPOB+VFPQkpjWKwbD1HbSLKVbBHzrRpz6ZrESTo1ITKmqGhplNTMr47Db3N/n/TZv7l69ebG6vH722S/zlMFBpJnGfc55yiMh/PjHP9y+e9u3qWnk6vpx267bdveLX3yRy3R2fvbp5583fXdxcXG6Xv7lX/z5t9/90DTNslvYYXL3frFYnq0++/Lz66ur/X7/z//4T3/xF3/BLP1qDWDDsP3ii8+ffvKEid6/eve//W//x6eff/L02WNKNJZycn62Wi7U/OH2tu2a06urtuun4SAEzvDTt9/t7m9f//jTs08+IwpOCDUsfeclZzUDd0KbyjRpTk1qUms6DeMgKSVrxKVpWuSmGJRiozqAInFxRGcCZnBzUrCj7awFN6aokzCwAhAaOWIIXiH4ioaUAAiQgSIqm4q5OROSoU2ao8aWiAVEUPA6txkAocXiYMYSEULgGowEBndzJ4Riqm4SFJJSVA3NgB0RtBTVQuglqL+uhCQpBUOpWqqxQrRLZhDmCkhWIfm6pQsSZ9hGQSzSiGKI96r+NffgkLtgckQFI2Q3VyjumK1eIRozknvDqesWkpIWBXAg1VJInZvoYSNXYJTYSwIlSQqQPXnAR3U/Xzez6BXuQcTUJDV0ACZnqXTKgMAcUK24OZK4TwAeXnIOBqazRw5Y2FGie3ZIggiC4OhICAUYAAUte1Ejwmwk4YMaEluAxJzDVtscHRSgWAYkdkQzdBfGwmTuMmuCoO6NKKyA0MzUsBjGwMdESVLsbMcxTw03HQF4OBpz5b5HqkMk6wIiKsAse5idFQhJKLjE8zKdiGr4HEQ/CFQsoBQKvPnk4uL6yZeL7gwAJ9XbzcO37w6rcmCicRgqNs+cJCGiNI0gFpyGaRIRQhqHIQK5WCToE8JkbizSpnTE+oNZqabr6qKHca9ozuM4AToTNW2Lszdnv1jENrVRi6V6XAA558pBnsfAmBFI+BjQycRqamopSeyyicndjhLiKU8ll/iuWLhbLCq9KudY7TILE7ppxUFNg3EWbIHoI3KeSskQS0Jm98pLAMTUcmS2WAz+6qWoahEREUFCtzCzMzU1t7brmejm/bvd5iHnPB32F2ftpyenTdNNY3794sXD/d0wHFhwsVik5ZIXfWq6bNB2i0Tp7Pzk8tEXiClPo88QKhqMw2E47Pe7zbC5n3YPm9v3b96/+3yxZMYyTAD+cHv/cHvjVpou7be7kvP5xcXVo6up5NXZFTGblour87Ory6LWL5ZN2958uGmbZpwmYTw9WZK0i/XJTy/eMNCia+9u3p6drS4fnf/3l//pZLHM00TC0PcsaT9uP/3iy9ub9zf3//LFF58+3D18ePfh8vr68uqsa7s3b169e/f+s8++aPvlSb8kTsNu55Yvrh+Xooj09sUPd+8/dOvTr3/zZ8RtMINpNm8horCNy9Nk6oSTgws3rtk09cuz51//+fWnv3Q3B63BfIHUhC5Fra6xEFnEQ+Jo1eLRVLXkkidC02k67PdJvekX3WLlDl3Xp7ZpkhARI5VSpjy4WdGcUuLIKQMwjXURH4asppIq+A8AqsXdmLgaIMQuAly1zBuI0AYHqc+qHx3UvZLUHZIFhwE55IqgqpGeR7PeYRYbA8z5izlPM8kRzbQSEgAQQQiJxQHNrBStTo6zQD8Ic+5KVCmPsQswdy2GBH23lJRCDhTRhLkY63D//oVNObyriSCDWpCzua5ItSjUFXI05hStt1aSPzLHaoETR3YW1L1s5RkBISVJBoZmke4CcZl8XD1WmZipjzYpQdsIAoSMyStj3t0sG0BK6CjVkC4WNMhI6NnC1hgs8hwCzzEPwiuQo8RbG/XCwRkRmUyhuBW1UlRoNlRzZ0ZzzKZTKUmTJA7fH6iGqFQ9dhBpXoFqvR8JvMxE09iyhLl3WM5hLG7MLZeQIWDAMUDY9IvnX/zp6fkn2832xYvvH7bbn958ePOwa5YnBJjHnJI4ADGulqs4ZuvlahgOd3f3WUssYhDczBbLRWQADeOkal3XdW27Xq8Q6XA45DLud3s1JcS27cz95sMHLYWAch4BcbFa9V2XUiKinKe+X6SUVB0Ak1C/6JhEtZRSmIg47XdbdxCRYnm1WkWPzUzhNQXgTdPmnMGNWSLsTERUXUsZx/Hh4YFZiNmsdH232x/ylJOkpmniE2NmYXYHtUII6jqO43K5ZGFw6Jq+FM15bNvW1IY8HobRiuZx0JK5SU1q3GHMJRdF1zxNItz1fdv25jAOA7gP02RaALzv+iT85tXLt+/eainr1eL87OzZ86fEzX/9u3+4u7kB9+1223bp/PQspa5t27ZbgaTlcvn08fW/ff7k9PJci5WiSGBWwuPzSG0PiacCLNanT549Z+JpPGzub8bddthtx2F0gKZNl9ePUiP9YtkCLU9Ocp4e7m5Ny/39Xdt0E9KHN+8Ou91XX33VdO1Xv/zqv/yXv/7jt9+dn67/8Ps//vX/+Vf/+X/89y+/f99KSiKr9erD+3eCdNjvc86paa+fPDs5v94chj/7y78gtf/p//U/odPF2fn2YfPbF/9yf3f75Zdftn13mHK3SqenF6BoJT/5ZLU4Of3w5g2a7w67xcmJCOc8pJRMVVUl8Tjl/X7HzMvl0t2nKSNAKWWaRi1GKCxNWpxvimx3W/eEWdw17DdL0aImQm2TuraLY3Y4DKomIkDQtElz/vDh3dvXd6rj+3fv9/uRU/f42WI1WN/163Sy5MWI3DYtABiV3bTdHfaIvbg0TbNY9Agw5YmIxqnsYSia192iaVt0SE3DiDmPh5y5qxFSeThY0JOKsnASHIfMxIvFgoVLnsw8ooOJWZIsFj0hTtOUS4lei4hzKVosiVDlnmDOIwAwsblFY1O0xHbbVMNsMlyvo5KGvCA1KTJKqy8QAgJmKwFDzcfEtttdLtr1HZinlJq2OzK8OUFRNaV8uNnsD6D3juA2uioSErLGcBHPqnvRgsDE4m7EEWsDSMQijBYOyMLSpJC6hslxJeNFHLoAGjRVBBrCNJtTIYE9bFSCnapFCMGcI/I+KEM+xxcjlpJJUi5gaCyhCFFBFKKpRAIlmntRV69ryWoCAiTxFmAoimYj6SCcqoE5qprUzB1jwkJQ1IrazD8oVhA7jpIfC3P06kpsNVk+8CSqRlBYN8uVghCY9YxdmIWVeeVdqkPT9oTp5ubDjz/9+O7thxev379+++b8+qnth6ze9j0D5ZK1wEN+AICU9g9yP43TlCd1J6I2NaWUUnIeCzFP45SLSpLdw7ZN7cPNwzRNpeSc82G3m0o8x0sDff/+7bAfGKFtU7tYqcJ+s2/aJu6J1XJFxEkaIhqn4fTs9PzsbL8/mOlysXTL4ziJpNQmQk7c9a3c39/lotOUVUvTNOgcy4MMo7k3KaVkecxTnsZxOhxGosIi7nZ/tylZx2ls2nYch3EcASCMFgJYTMIGoOYnJ+sga4pwzlm1MDMLafZxnMx9Gkct2b0kkWGYJi2A4dyLTZPCz4Bis6mWSwnUKw+DlXwYtmOeri6vrs7OV6vl5u7+zbt3P3zz+zxNxKxqZg2an6xPS54AeH3SDbtDzrpYLobD3tW1lJwnQKuC61IcsV2surbtVyfry8dN318+fnbYT9NwmPY7K9P10yfDOG1v70moXSzMgCQlJi3Th3fvX7748fNPn+Ws99vbtutT0z579nyYhru7mzINX//qy1Xf3d/eX12e2LR3zcu2++Pvf391ddkweylGYmabzfbq+vqzL77cbner1cl6uXzx3fdTzn/9V//lu+++e3jYNI3827/8i+VieXtzf/3s05PTM7Xy4eYtGJxcnD/7/MuuW27v706Qzq8ej9MgqQ0EL09TahbL5WK323n0wmHCR2jm282u7RZ9jyK0Wi1//8fvv//pdeCRu+2u63pT3R8GImrb5uryYtn3TdeY6X532O0Pqtq3TWIihIeH25cvfvzDH//w8vUr4u7588/HokmatuslpZSk77u263fbLRFpyZFwGmB50DGalMx9GCcE2O33bZdSahBQJDHzOB7uHzZt06aUSin3D3emzsTEslz2TZvGcWKW5WJZSo4I+KKac+6ajhN3XVdKkZTMNE8ZAJBI1bRMTdOs1ycpiYi4eyk5ompVbbffq340UJAmmeqi65HgcBhjDE7Ei9XCNZJbnBAJ6TActvttksYBNrsdIlxeXDxsHiqdNMmi75rUqJmqllIA/GH7YMVPl+3Z4nGiU/BsZa9lr3lvbhHEaSW7KbojetHCjk7oRQEEQvQFzijF1N0JWSgxgzmCg86rWiJhZECStrOSzZTQCxQA1WIsghhEVopDUswRPIdOFV0YgoLvYWeARMgOYBWCAqGADpGZ6++4m0FRJWRVBYxXQIAkpoZ05LrUTr8Kgz5W6hllsLAZCYkdEoGBIgpSTBmxQGEwnX1tY8FAOPtXHGk/dX9dV0pBXowNZGBGQXEGJAKkFy9e3j7sP9zc39xufv/NHybV5fosFVXknZYYsZs2OZKqMg1VnIXogJJksOCSFBam1BYdzNQV1U2EpwK7/ZaIpjzsh+0wDG3Ttq2oaZ5yKdkJe+6apmGilJIVNTORVErpOpFGTJVZwGAcpv1uz8wHPKiqiACAmo/TOH4Yo0+p+TRICFhKGccxRFwAIL2o6lSymqmWXMrp6aJtu2E49N0ZOGy326D1JpG2aYeci2rTtFYKkyCYWQ7Bt6pOU84lI2LZD/2iOz85bVOz2e2Wy4UBaJ7cfcGpUc0lg6VxHAOvZqK4CRSKpGRuuZRWZBoPu2EjSfq+32wefnzx08NmczgctpsHRkopEfGyW/b9QiQBgGnRUi6ursbpcH9398vPv/Bie9VcJvcSIqauW7CII5ScOa8IvGmaw2HYbjZ37z883H5Yn67Prx8P6mBQVBer02GaypSnYbvdPAz7IUnq+kVD0ha7fvyoXa7GYdj8+P1PP/707PnTp08edan5Dr77T//p3719+3a/3T598vRuu3m4vbu6uLSUmq4nSciy6Pu3r1+9fP3661//OomUUn7zp3+Sx2m7293d3q0Wpw/39y9+ev2rP/vX52eXDw8PQnB5cf7dtz8szs66fgX4IbWLru/vbm/zNLWLfpz8/OzU3MZh7BZ0cnIyTZO7D8MQouj1SbM/7EvxacpN23QNX5yuhsPlmEspIzsBogciF8bpAAlx2u9UjRFaxuyQEHcPD22b1osFqB62u6vzq88++/JXv/x6tewPY44NoqOLSB5LSwkA+q5JIurgYH3Xg1vTtO8/3A3jcHZ2ZmbgVPK4O+wWi6WaKpornK5OmIVJRhja1Bpb07SIbOqbh904DIi03+5NLSKsD/vDOI1takMnFvcBIqTUEMAwjnmauq5r2mbzsGubRt3a1E5TFgl2bHLT3X6vRUWYONZaed92ajpOU6xO2yZ1XasayDO1TZNz3u12u/2WSXKuc8OHd7cAsFgskahp0sPdZprGALKIuIzl3Ye37v7p42d5AZAPoMWm/cXZmsU974jQgyAF7lWTF+JhcgC3WOwLgls2Yo7YTgdHZKHkDkVzBEQiIyWpXffR6BXV3ZE5fJfDiELQiikgqnkpZggUKHoFjCqhSJqmQmShXUVnmNUNBBXkVS/FwvSi+uUBgYGEexHG/jCWOkgYQRFgWlSDTxurH3dGCYVxeHEAIKCZqgIJcdj6RZGv7M+fGR2HqB2ro0J4GIZaL7bmDI5uqtXMzpJgMRpHu9/dvn2/vd9s3n24ub27bRe9uoE5QAFnJVctPgIxqSowmilWZwUyotiuEydAAlMRRoSmbUvO0zi0XZfaFtzLPpecuyadrheJ4Ha7AfKpTJLI3MYpS1JEZJaUGgdgSWqW80TExDjlqWyKu6PjYThMU04pEdNYpjxNwzCY+dXVVdM2OU+IeBgOzDwMIzGJSFi5jtM0TmPTtFPOeRrzNI3jpFbCEWiaclzVzIJESSS8u9VMEoFqalgSB39XVRd9j4h7AEIep4yMzGTgbdNA0wACmKtZFKY2ZwRw07Zri6ogcYpQBKVMbSO8hzM/Y6Tbu9vbmw/3Dw+xelEzSozCIg0xdX0rSdqmb5qu77vPPnn69a8+//Wf/QrApjyN4yHng1ppm7btFszJtMzaT9/ttreH3ZTHYbffbm60ZAB62OxOzy+n84v9ft+vVjgc3m7u8sO9uy+Xi8fPnvUnF23fS9M1bXM47A+73fZhu9/tTtcn6+XJ2cnuyy+/HIbp8vKChdXs13/y62effGJEIOny0ZOuW6hNeTi8/O6H5WJ5fnGV2kbatmk700Lu43AorquT09Xl1aNnT+/vb1YnJ1232BZ9/Mnzx08fD/v9w929CKemsXz77sUtEF49ez5NDQvutpvYeex3u75f9F1PJIDIKS34ZLfdlyBtKzx78riovX53Yy6AUEomZiTK0wRgH24/kEAep2nK4zTmKavpA8D792/f392crFfvXr6+vnryb/7yL68ur4hwu91tN5umaZumERFwQyiLRTOOY1GddCrFHKDre0faHva7YTeNI25AzYbDwQwiEspqgKWo6Wq1hhR6QCFyVct5yFMuYZcCWhNIwKZxynnSkm3Kfb9ITSpaipVpnEQmJpqmaRxHIJCG9/t9zkWERSSoT0WzDkoIwzCAO3MXmy1mnkp2cEAoRQGgKBd1d8hTJqK27ZAFkBA5PHy0FKQA9MlM2yRMNBkkaTab7WEYVsuFm3Vtx5J2h4ff/ctvV00jbuxld3FxftH0jSdAYiIrQlQich7RwVyD4qTkDC7g4DpC3V7nGvN41GgyIBAyI3BKjc1CisrJdQNkRRdO5sjo80o40JJYp1rOzmE+4erkHO4FhIjoqkCMwIYlW1zcFtqdygOvEZdYzByVWcRm+UPsG4uGCU1ICrEUBTBE8bp+dCFKLG2SEP3OiVQeYmAEZOawpj4GRlT+JAARC4OXEjbfddcRBCmE2qoQqFronoJ7PAzT3fZw/3C432w3m/v9YSdtg0hqmlKK77/tOgQopsSh4YKccymFWSQ1KaXKxLJqwRoHsut7BGdmKjYc9oyIbpuHzfs3r0vJ3aJ/8uzTcRiJoe8Wy/WJpJRSSiJd1005u3vTtF5DV8Rn65IgAol4koSEpoZIImkYhu12K4NE1oeIEEHbtrvdbhonEQHzaZqmMg3D6OZ5GrebjapP09C0jRq4R0coh8OhlCIiFb4jKiULkbq6+ZTzMI5mdpqaYO+P03Q4HJh5HMdYjANA7KubpgGAnDMimpmInJyc3D88AGC4YU3T9HB3u14v27Y9HOTDu3eb3UMsyZsmxaBzcrJu2365XC2Wi/VqnYuB48nJWdM3bd88efr81cv3i647Wa1YOKXUcZdSF1MCAKrmYdhP05iHwc2JZXVy2i16dpiK3tzcuHvb9yjJDDTryWK5UwWEpmtXFxfLxQqYcs6bu52N04tvv/1w8+Fkvf7dP//Ll19+JW17tVynpjMtJeegvbWLJaV0dXHRNOnu9ma7vWfC1cn68fNPuUnFvOn6R8+e39/evP7xx2effZGt/OLrPzG3+9ubxXI1HLYl62q9Eknf/cs/73a71frk7PKCmDhJ1tK3/fbhPpd8fnqeaSTG7W7btI25IlApkzuoGREzQdskJIzDeHt7++rVa2JpmkYQAQKuBXcgltvbDSFm1f1+WK9W45TRNDXdfj+g869/86/6vm+6fjeOTWqMSJroVCoTBQgPw6gGfd/nXCRRPBspJU7p8vKilGKm4zhpSim1ZhbQzeFw4JT6tEgppaaJ5qaP9mK/z00pJYuIO7BwYF9urlqKGhHv93tnRCJh8WQw6ytFpGmanDMzpuRt2zIxN8QszDxNk6qmlNq2XSwW2+0W1IJOY8FRQXCHnHPIqgMCGcZhHEc1bdoWEJloGIZSSkop5xy5PYjY9+005VKymuacmYiY27a9+/DqX377u8cX58smLbsW4fYwyefPT5xdhBwwZweIQ4cAkNU1Z0nELLEgp7iwEdwdJ2ibxmYDSnAi5qZpzQCRSICUVafwsgjNR2UTQQh3hVXVnTwyw6sdFMQNAMDMsVdL1Y8P3TwXcy/18qvpN0ETBfj/UfUfX5IlWZondomQ956qGjcn4UEzszKLN5me7gMyK2CLJfC3YocZAHMOcKZ7zkxXdxUqs7IyI8I9nBlT9ojIJViIWmRNLOKEe7ibqak+Ebly7/f9vpMi1n4ewQbi6GDtuqImBqdK/CQwQFyWiuCNCAkGwJAi910MzNUUTmi609Wobdzm0Bx35tDSzZvLrJ0DJ33ss/EKTioWAHA40YbVABozS8UnGR+fdk/baZrnpcxVa4whhrAU/Zlh38IJ2BQQCZgIaw1tr+/6Vd/3zDzPc9PbiIipxpRSTE2ztSzLPB4f7+/e/vj9siwAHiOv1qsXt7eto3J5ebPenAFijLF9DMQ8jiMzM7OItHkXM5tpOwb6vm+StZMCpOv6fogxtB0zpZRzTim5e845d13zqCxlOY6jiEzjsdTFTVxhrqXW2szlucsidZxGWhABU84pJVFRVUZU067rzGyZZ3O/f7hvbaj2so/HY9viRaSUombtJKsibVaWUqyl3H2+y12XUwIAqbJ9enx4+Pzu7Q8xtreUUoqlFAAfhr6Uen5+8ebNm3meh2G9Xq+vrm9z7n766QPH2PVr8/if/tPfnV+u//av/gKxIRstpY45mkmVUmp1UyLocooA8zKmNAQKpRYrpT+Lu/3+/dsf+2F9cXW9VEHC1XpNBGVZVBQZ97stBQIgNy8iZ1dXb779+vvf//6nt29//4d//vVf/uUX33ynCtNhZ27zPKP7vJQOSWv93e9+//H9u67vzy/OLy4u7h8eYtcD0jzPat71qz/7879Y5um4TNz18+NjnZcR4Ljfvf3+x5Dj5fk5mJ9dXPDFuZsfpwMAnN46leth2D89IpFIJfdlHFU1567rV4huUili27lqrc1k2/frhrZOKbVPrZTKLW0VITC7WVVjjsRxve4YEYm/mEvXdV+8+WqRqg7oxDF3HAG4lFqqcoCccy1lWSoh5tQj1sN4jLElemJK0cLp4TwcDs07VmsVVSbOOTd7/DiOvbtIdYcTmQDA3Uopp0eIooq2X8YYpRQmllpLKU0nU6XGGIjYXZsdvYmUdVQRaUPyWisHbsuzEfNb3FVrDpu7ioq027ATspkdj0dVTSlN4yQiIjL0PRIdp6kpc1qhJiLurqYppgZaR4ClzF3upmlU1bKUZSmfH3Z4cdbSLlO+rPonI7S3zgrhibDb/DqqTIbN/xzYC5iag5XFSs6B4sk5bMaREQmbgAq8AXbMmgbPzD0lbvKiNqONIYo0Hpw3D3ajTFBjxD7v6areQkhOuxPxKaIVWoeleUlOAVzMZA6uAObBgAmaE9S8WS4MzLxJgNqouYo0YLGaRaS+yzkxM1VTNSVrp1SNjhgbWqApP0ENHFARDQ0BxNGcAiO2kFNEQHRxMG/AGkSEhkw93UvcAee5HA7HaapF6lKqqro5ICy1VLfN+Rm1n1ssxlBFkZGJrWXIPffZ3Ww+BfLxyUlP1LSY43SQUt/+8Mff/fYfcgoxBnfdbNZv3nyxWq1uX9x2XT8Mm3adCSHM81xrNbdhGLqua7VMO59VW/CcxRhTSs1dUmoBgL7rc87PC8ZVxGJsr6cf+hTT4XCwqo3/t0xzLaXJ+Vdnw3I3TtOSuh6BAhAhZuJhNSylxBBWfTcjdN0mcDiMx/Pz86enXYyRmM2s6YJiDKUx4MyWZWljYStSy6Iq87yoionEGHOK8zyleL1M9Xg8ztP08f27/f6plHJ9fZNSqlLG6VhL7foud6nvh+vrm1prFTk7O7u4uATEaS7DejOOU8j909P2my9f/ebPfrnqu3macspudZ7Gdh4jeiAmpnmelmWaDocq8vKLS+YIRIt5N6zV4bg9fHr/vi5L7vuco5odt1vVykzLoYja+vyy79fc59XZxYv4JYDnmF+/fP3HH76/uLpZrc+PxzHnTrV2fZc4HI/HWpf5sH/3wx8+/fT+l7/+s8icukHmaZnHeSqr1Sr1veWcAN/+8P3qbDPuD/f3Dyn3F5eXYFKmg2maA56dnQ3rgYjH8VhKAfecUlFZrfplPD7e3a82awUPIddlQcSc26QNQs4hJGpDPPda6/F42B+OgJRzFpFWr3AgKK05S62YMDMRGcex9RjnKhcXVxeXl0UNKSJAVdsdRxWd5+nUplOVZT4cx6UUJqbtloCOxxGxpcK4iIgszOHNmzdNgdZ227b1tw29XW1rrU2LPI7HEEIppZb6TLn34/EIzagoguDTMsc+xBDa8lmW5XA8IEGdCzPnlA+HQ9/3DuLOZrbbPYkI8Sk8vMu9u4/H4+PjIyLGEE8vA2FellbTppz1aGVZmGhxEKmEpCIi1dxFaisoEVBV2iFhpsf9Ts0OxyMAqOmyLKpSChKCqCxLETMyWESnUquoY3BobSAGqA0f0ywAKQSF1itGAhIRcxdTJIxMqkoQGmKfOBAFB1RTVVeX56Ot7WonqjwTE7bgWw/MgelZ2g1I5A2/xoTPHqZmRSXGE5LOqRmPApEzqSoSPUuGAKzx0AzQiEKANid2NTMOZOYqjRgFp7kKs7uIudppg0sxdDm5SrvauHkVTdHcrRSFFN1dGhYV6AQQcAcwx9D26uY5UFc1kfYAgrKjO2itJrVhZ80cIJRSpqWKaq2qojFEJpKqQz9I85UgIQAR9v0wLcs4Lbv5KXeJibt+YObD4dgUxE0m37qN4/HQdT2Af/78YbPaPNzfrYbh1e2tupnrzc21I759964bBjYd5/lnfT0AVBEzDwHmeW4xQ3DC44SUUkrJwadpFqnzPLcGi6kdj0dEbP2o1rifpqnrupTSEY7v37//9PHjajXklAEwpVRl6ruYAjw+3on41e0LRzYRAxj6/uLs3MDnZXGDy4urEMIw9GcXZ13XD8Nqt1uXUlopJFXcvOs6VS2l4Inh5e25q7V2OYGH4+Ewj0eTILV++vCTqh72h+PxuN9tx3Gfuy5GjjGoVjPt+nx+ftZ1/Revv2CK87Lc3Nw2XyIBVpEQwtXF5fpi/dd//avf/Orb1aq3oo2DPU3TUua2/hFJrMzzPM8zoTPzanM2rFbLUsfDbhynfj0Mq/XL11+sz4Z5mg7bJ95sDrun7dOdmq6GLjAT8NnlVUhduzVeXF2Ox32putsfzq+uL69viMhU53lm9GVZCvN6PYjEMs9EuNoMAL462/SbFQaajvv7+6dh9W1Kvaq+/f77Kjrk/unpiUM8u7rs16vD7lGkmilfnilYqWUgTH2Xhm7aH8SsLlNZFkqQu9Rm/rnvr29uSymlVgNkDkRcajV1Zs4xmfvT05aISq21KTKXpXkyqhRV50bJcKhSWzejSX4RUd37vhPVpSylVADvuv5E8K2ldflQ0B1EbJxHBOxz32p2cGgVumgl0qenp91uv91umUMrI3JKalZLac92U7u3fGMiEpEGpcCTmQjghP/A8Tg+bbdoeH15LaBiyqHJgaogppSAoLUxGdnMpmlalqnt0e2wUTEAbP1MQhKu0O4ZXTd0XSllKcs8SruOnEL/ADabTRe6UktbmCJSRbRIo+mJVARQlRCjSFUzIlqW2dQIBWqlk5aEGpF3nKaigpiICBSZInGLVKIYgjsoAJzS5n+GpLiDRw4tldqwPfluDum5/K9VHa3WYiJg9qf4cTMRYcY+JSQU0ZZoe3IVnd7g1lE/QbCJmmfM/ISHQUJApxDIT+nihnoCNDS7bkMmpcjBANxArF3OS3MYiIghqBqYB0IxdHMAJyI+YXDJkQHI1Q3AQJACshKAizRZq5shwWmk8JyyjK6G4FAR0ImWWp9BQSd8hroD+om6CqgKc5FxWuZSWz3CI3NIHOLQD+bGxA4WY0SiWpa+S1eXV//4T3//9sefvvv2F2gGbJvVytwRoUn4EXFZlsfHx1qLmrx68dpUY863L243Q09In+4/Pz7tbXcYVutzRAeu0Rtdq/EbVBXAzbh10pdlqbV2XdcOs34YTHW7fWr9zaaHA8Ra627/tFqtutSHEKpUdCjT3K+61Wo99BnAd7un1TBs1ufjPM7jXuftdvtk7sihSxmxMXDJwedakRCImg+TzI7jWGo5HI7DsOq6TlXGcTF1kTrkVc7dSWNH2KVIRK7GgRfmYRhcHRYpCFWUgMuymNtms9nttrvDvtbl+va2y526MfNmc355cQWAq2GlCl2OVxdXQ7+SWqeldH3ucjcvy8X5+Te/+Oq7b77IOZZlkWKqMs8zIMYQ3L0Z9JoOuk/JwGstKXfgeNg9fv704eLyap5mBw8Ru2E47Pe1FAQXk5DSmxdf7Pe7Tx/f59U6Dz1SnOclhlSm5f7je5GiKquzsxjzeBy3jw/olofOzO7fv7eby27ol3li9KFPq2Eopc1f6nI4Tvvt08NdzvnTT2//6bf/8Od/9dcYo7lf3lxf3VxJrSJ6++rlw93nUsvt2euuX4lIVHGkELMsC6pJKWm94ZiYYsw5xAjEZxdXIrosc+uKop+AyhQDAVxfX85FVvt+u6vjOCJizrnrOlV3MwXnlBAohli4IFLf92WZpS4pBW8Xy1oaZKbSacCGRGYeYwjMbTdk7PuuO+HSADOTzDofjwIgcsr+SDEBYmA+DXZVW3d7nue+7829lLIe1jHGaZkIwc2Px0NKiYhlWeZletxtu5RNZVoWYrJ5msvSVnqO6XxzZuB1KZvVejwe1YWYzR2Ack6tTqrPo6wcgxmqqgGa67Isiyz9ag2IKlWWCYHcsbq14d7I2PV9y9ettSzLDObipdkhMQZum9fJj2mgzsRtozQgJJyPo1RDVxUz0LkaAKFzi6JkDA4OTsyhVbJAwMQYIiCZIwdDhWbxbbFpbk5EZmAm6ApWTUtVNRE4tbUcWuwVkoNxSIjh1Fg4DQB+5jE3baYTIjvWZzhqO39U1RBCYI7B1QIERFeVBnEws+aNaE14AgxLKYinqp+xgQZJQRvWyOGUKdDuCxxis8MhYbN/OYCCW1WxycC7EEVBXdQ9cASgpnNnBGpyUoeTldDdAcROkScnBI2fbFtuVpcKiHO1eZplHtEBidu5E3PKOYtqlepeiQGZE3FVg1pvrvI3X3173B92T/fMFGI+O79C4pASMTaryDRNXdeP01Glnt2sP/z0/vryKqbYhF4hdqqamLrU5ZhSbOp4WEptS8jM3A3RmLmW0j5deHYI/9znQYBW77NqYx0T4NANqnY4HIZhYKIu5S9ffbFar87Xm/PVZpwmBOhy9/2Ph3c/fH+2zhjg9cuXKQ+XF+e73TROC4XYyKBSZZyOHIK7ByQFE1cw3O9HJKxlmecpxhhCmqZpmud2iUQmRwgpd4DuXqoupeqyTMv4/v1Pw2qVUwaEi/OLNp+oteQcX7283WzOnrZPqcvXq+txnKZpOhzGmNJqvb65lrQ/OkApMhbph6GKwOF4e5wI2NTH44gG5uiOMUQIsVEITwyiQq6GVp+ejl23irkcj8fL6+urq9vdfv/w+XNA79crIk5dhkD9avXq629vrm/ffv+HcRpnqfO05ER1GiHqH969A5AXL16Caew6da9Sz8/PpEWxd/n86mLc75fD4fvv/yiqDjROUxqnMh4RfFlGJpc6jfunn97+cHN9jlbrLDc3l4HDp5/ei1RXu7i6XK1WP717Bz/++OIL+Oqbq77rH3e7QGHoh8fPn/aHw/nmYn1xCRwACRzKUtyx6/rAsUqJEVLK1vThqjnli4uLH9++V5XWrOv7vj0/OaW2dAOH1vAsHPq+zymDaYpnqg4OgUOfMnfsP8fbdb0DLKU02XEDxXQ5D8Mwz7O7qZo0EidSDJxSYuY2nRIpKgpupsaE1ezp6el4PL548VJNWidQvS7TuN9txbQspcudG8zTOE5HdT9/82V3eYmc3Cq4kIs2kXGIQ9er2zJOtVQ1q8vS9YM/Z1cRkT2/J+BWpklURdXBCQHBFYmQ+tU6pjQej3jKFzFgJsBlnNCh71eEUOa5oZOIWZqtqgqHSDFWqeDec3JTRBTXllLghOOy3G+fNpsuJ5ZlOU5z1SEwxBOH39vwD04h5A4OTBEpVHWiEEIuoo2r2CrOVrm3lAuAdpo7ngJ7/BQ608hrBu1TaKu1iT5qec53gyZbbd5aZPIYMFAIxE1OSo6OVkppEQs/a1IQnRkRg7uBewrkyCFwUNVT3ot7kzMatNRSaDkB2OLh/Tm4qf08cIK0aYNCq6ATFmJEpgjAMQSiIOamxU4etj9xplogTqOOtKsJkgGckh/aBcobvhWoFFl3XVGdqoAJIpj7OI3M0cDbeAwaHQFRat3tt1K071ZPT59fvbz55qsvRX1a6nQ4zjzP09JeAwDUUsoyf3j/IYRwe3szzXOXe3AvTWWgggDgmEIIKZRSwNVMpdbWxWJmU1nmubnz2+qiZ5R033Vt+trmTsxUyrLf7V+8eLEa1gc6MHPkAIiftw93uyczW8oMjGg4LsvjdncYj7c3m4uL86vLy1q1jMdEEHqKMXR9RvKixLTiwCpiVea6OKJUQSI3NxepVaSmZO6mZillgAZwFoelWVVDCI9PT1bnHGLXD/OycKC2UsZxOhyPpho5R+ZAuBkGjunu/mm327fBBpO5OgHVKksR5lCXEmMCh/E4/uGPP3R99+aL1znF1TCAed8NDkmloqOCllIIMYQ4ldGq9CmnnNws5ZxSSDkPojum3cN913eX11dVKoKxxM355f3TDpivb27vHu7BzbUcnh4Q8P1P73/zF3/edR0zt0vPaui11kNd1BSQhvNNYDw+Pd1cXb/86ktz//j+43a7ZabN+QpQl+WYwu3j/WeQcn5x/cM//3OI8eLi4ulp97Tb/u1f/8393V1Vu3n96jiOdVl+/OMfc7968ep1nzsRRUJ3e/j0qYvpVqVbb4gjAnN04jhPM58kcH6CoACiOQGcna1vb67ff7w7Ho/TNLlDSqlBtttYiJlTSqUu2+22lKXW0u7lZvD4uCVCldpq5zbqDxyLyHa77Yd+6AZzfXp6ZA4Nd1hKAbMDtXGu5xiRUFWkotTawuJDjIDgpbahdIxRpIbAMYZpGsfpWJbpeNgBISEf93s8kYMxpbjqB3R///nzfvcwHnbvP3/68ssvX7/6Msd03O8NIFBoubClOIL3fQfYx5QC0XEcEVFKIfBpHJkZ3FR1rktZChJ209xga8OwWpbZVdEMHUWWeVnG4/7q+qY9jQAgqkyOTOZuopWoiLupihQxUHH3Yqpg5KKijU/HxH3fi+pSahVNhBj8GcTCz94pIobgqE1gYw0DLESnPRmfM0isip/kPadLFXijrYBWaT0lAG/0VjgdGCQqRIyoxMFM2zjXHMi89U3aPaPRUpvUiJAMTFSfE21brDsSkbkFor7PcCoIQnADefY1VFVq1AtqfG9TEQ2hAT3raVIBqmZiekpHdAVDQNNT3KUDIgeiNuw2IveAzUbXhl12Sh904BMbtcmI2h3nORkAsRGDLC5FHMAcahV3JgyPjw9MXc4dMlET3jB1ObfztqqKekidY8TQifM4z1WaWlXbQOykjiLiGIAwd928jDF3HKKJrDcbBxgPBwAax1FbmgpSrUtjf9daETDEQISiUmtNuVO1aZqa30dqbfO6nPPZ5gzRh75HgMeHh8jc5XzSriGWsvz0YTTVnLOaDV0fiLfb3dPukHK/CN3tlo+PPwSO5+uL87NN33frYWjXcCS25qEzJ4DH/WER0UBuxiGWWmd3Iro4P4sxPT49ppRp6A/HiYjneRrHYwyhlsoILSLu4vJ6f9iaaan1/v5hWZZ5mojD5vyqGzZTkfcfPrtZqWJqjYQRY+xzJsDVejPXOs+LiMzj1B6AcZzef/i4LPMXr1+dnZ91MRPatIzSDAFSXUVVHbwuZTwelnnaXFzGlAFhWSoR5S6fXZwHMhEp+32/Xh12e0Z4uPu42+76ED/+9BMQBsaP7959+uldv8qrIYYYttvHsiyJyU0daZnG8XAAcE8xUhouzss073b76nB184JDevf9958/fhiGr5ZptiqH/e7pYS/Vl0UMqFttVptzTvnm1UtEuru7f/HmVbdaX11fdxwfd/t5nkspqQvrs83T/Z245RTG4/7p4W5jChyI0ub8At3cfC7V0ZlZRJE4crN5eQrh4uIshtCEJaqy2+2YuJZyOBzaVH+zHpqkTVVDYCJStZSymR0OY6lL7rqGNay15pjNfJwmRJQqfZ/LspjPuUtENC8zmkVyNa1FxRQRf6YypBBNbBynEAKHFipiKaUGgJunWVRW6/V02Adk4NClbNFCCEz4sH0CosM0lmXZ7vcxUFmW9bAioPFw8E5FZC5Ll5JUq1pjCG1kBcT90DdESgihzlOpoiru6giqYqZlmarqbrcbx8N6dcbMakWlMrKaL8tyHMd5Wcbj8fz8ot23Sl2qVObQ5CLTXA0wpahu4zRqrTFEJAghnK1WIURXH/qeiVRURMtSzVy0bUTm7qaKp6mHEQUgFGl01VMkcgzcYt7hZ/wNokpt0E5pyDwk5gANHYyOCMSBiVuF7e7uhoghhHZCwMlU7AoekBBb78QcgUJAQhUx0IZSaGWoNwpSC9cxY6LV0CGiaNOMYjjlPT3/SA7OASMFdVJWEZmXQkQIINLyv1QM1KFdcKAhKogNIHAAJDFIgbHtzehs7mB0kjE1lLSfYkcBvf0Mz9NVB1czYgwcHYE5aeUishuPFKIhV5WqPoTILXkECQFT1zFzTImQGuWVCXLvr7/4EokftodSSggRufUfg5gxk6qJCtEKAZ7221LmnLOJllKcaL1eXd/cmqqDhxi7rnP3UjIHdrO2oq6uLkOIu+2uSh2Gdav9Qwht1tp4olJrnztmJKKry8tvv/k6BJ7mCdDNdBhWl5eXcy0qoqrLsriamMcQbq5vVzk1+X+pJcVoFnaz7qXcH0uK+xRjC6bBllADWGttnD/ggACBMcWYUooxrFertmWUpRKiqZhqKUsK68A09P2CCOpVhDmMx4kAl2UJzF3OFxcXL25fbXfHT58+NmFoKUtzCKeUhmEAxHEaKYSqJrV0XR/i6absZjfX13/5F7/ucuhSiIGncZmnMQSyxZ4e7sGEiFbrFZOHwPFsk7uMzCkGN1RVMQ0hiCiBXd7eVtNA7FKfPv9kAnfTJMuEMe3324e7j/vdQ63p6+9+sX24e3x4ZGzxCN6IeF3f1bJ4FWCeRd6+fw/qgFwNUu66YVAptcr9/cNxt//97/9IGF69+Wq4uI6bi/Ory/Oz808f369Ww8On+9z119e3yJBzf//xI4WYmN2cY8x9n/v+9Zsvp/V6vz+klHPOQNGgdbsUzEUrMddamENoSAazWisxDkOPCEzcd52DH49HAEgprc7WUuV4PBzHMTDFGEMI4zgiYYjJljnnjEyk7KcwanL3aZwcPMZAdCIDElFkNtVaSplnQjiYTOOEROZARP1qBYhNmwHmgalWmZfFTEMI7kbEz5ofAMcu98UBiLRoi2hFoD7nqcyfP38EhJzSqh/WN7d6wlWr1sohtAkqEUWMRORAgFhFp3ECc1cbpyk8G2uqVHc311oLnrZXZAQ3AT4Nf1vgIDPnnNyNEAIzITbUXTNMAUBIqePgxIAgKoGCaoMIWYophUANQicSBEIgEVEDUVVCfo5FMpMG0WgRKqKnuaxDC7aooNq0+uqmriec2gmuqiJyAiQ83wkaXr61+KBRgMBatlRrNzGRgVcpbtpixNX0FLcLgMRN3AmEpg4tUqzJLE+fljJR13UhRHfsAs1LcfdQqlLLFgQAUydHikTkjoEDkapIFQHAYi1HFJBIDU/5Yc/hBAEYERUhNI8wAgc2MTcz0cBI3BRUDetaxZzRmTHG4IDVsM19xTQgpBQQOeZhrMtUiqgH8ibgrap9N6yG3gBTSrnLq/VZS0wlZACfp6mRjSgEpGAq4Ca1hMCIKLXGnELk43jQKkZxqfPD0/1h9/Tq5sXrL94cl7gUQeR+GJDAzXNKucvgTUQMZVkCsqFHDkTs5kyhXY8BoJTSZjVlWabxOI7H9x9+AoeU0mo1TNN0f3+PTMjU5269Xg19//LFSxF9eHzk0z2OiXC9GnKKiLQsszu4QTUltaHvEel0zIiklKxU1aUuyzyPIUYmjl2uVaqWZak8zVPRT3eP8zKlGNu9JOVESH0e3ACccop97kpZQiUAM9GUopRm7XF1Xa1WD4+PqupugND3Q4gxxdQkHNM41ShLKe6eUlYNh92k7sOwYeaHx8dFlqEL6LjMyzSNImIKTJxirIu0ZDED5Ji6oeeYmia11GW7FTc9PD4+fvy4uTrfbrdSq8syz+N0PAyrDTNxDEut82439LFuBmbePT3d3z3e3z9+8eY1oJd5DLlflmmaji1xevvxoe/7y+vrYXW2PjuPxLMpIH7x9VcPnz/9+MMP6NR3q69/8YvrV19c3L7Ifdel/OnDx6fH/fXVzWo1xTdf5L6f9vtpWiCmi4uLx48fc9evLy9FNOWBmExkLjUEDiHmfoPM5l7KzMSAAA4IbqritQupdatq0Yi8GQYXr1Vak9pEwazWIqqmukxHc0N1TpGZY0ybEEuZwa1Ms6mSw7JMgFSrSCkiwsy6TKVWdwCHlGKZ5nmeRXRYdSq2lMIUW6NSS13cp3k2x83Q5xgccZmmLgQkLNWmeRaVWgUI6zIjtycuN21F63jkmCOHGiSmeNKHths8GnMEDI1ro+qMekrA01pUHCjnLLWAG7m7SAhBQowpm5lbDcQSUkvTNFMiMC21lFordk1f66thRUSAWLTWsbYt9RTuAYCIkUMVUfdSSmQ2dPVK0JLiIXfZTs1JaXiF/VwmsY4JGu4fvVmYRAWrh9jkjtSADarqqrUuDh67YGhAiECBWWLQWlvmrIgbSfNDNVxCy+MCQFURt+ieUnAgd+iHFQJILWBaTdvJYdC0/hhTCiEgcmCKXABqg8QWEX6u7wEpp0hEgMzM9bklEtSkpTxQiyA6pcd5IMJIDml+Ng2ZW4yxb18GT+hWxNauadFFiI5VjRun0FVlNhM3dSKHYEAEgAQcYqkz6Mkz1aISGv8BT3kPlGKXu46P2txVpbja6QNuet4qWmpRrbXqarM5vzjvci8i69UaHMCt1hJC2h0PbRjTxrBVileogiqKTF3X9UOuy4QqKefcD6Eb9vtDjK1AYzVDxHlZAGBZZgJsyQ8hxMPh2OUcwskgnHNGxBADODBzjjEF2pxt5mUejyMRjtM0jVOIYVqmcqxzGPe7x9evX2+34fzi6uHxYbs7rFdrdM9dzrlbSpVaVSqfemUGCPM8hxCXstBJjIQ5JWZEwFKrGYQY3JE5IlFdxExjDLVUcnA1raIArgbMOeYm6BbFLmcA7FIvnTTUSUppnud+NaSUc8xd7mo/tBXe9CFd1z3DjhQVzTRwcLdlmZ6enhywFLm6un3//uN//I//8//xP/z7FLpaqzU8r6m798OQQhCTpZS+GxAEAfbbbRv9yVKOT0+Hp4fPn94/PT2+8u9uODOAlmX7+JD61ersfJ7GcZpevn5RS9nvdss0HQ7HUsqylMNxSl04uzib9rvdu7e7x0cmXMpMRLXq7x8e/9V/82+vX90ixzLPnz5+vLm+Po6H3/3un9fri+vbF7evX3/xzTddN7RH9PHu/u7DRwVTczVPOXNIsevS0H3x1Zfo8OPbd/nhfn15qaIucjzs5mlGxKfHJw6pVuMUc9dzCI0+hkjgCQEhoNQCDjnnGGMt5eb66vJ8ff9QtFZGFlBZZqk1RM59VzRM02Qu1vzkSPM4IdPxeKzzUkvJOYnUZjVAACZCcBUBs3bD1rmaanukzQu3zrgZOWr1NoRrtMRCWJdZRKdlocAI0MLN0RwA0olfgoS0LEvTL7p7rSxSl2XJOSPgMPRMZGql1uM4ihy6OGPgqjWFaByA0MEJSVQppSI1hdj0ytAABKre4sel1NMEDgHcTNq1+3g8tksendI4WE+2KkwxQwBzC0iRmRxFdZRJilDgiITmrp5CjBy1VjDPKZtZ++uqikjLUqWa54AYKRiptKx6anlnalWlKjhQE8u7CbqriikRhYaAfw7lBRN3gyqVCTFEhJaeC0QMgKpWS3UwZnRnJIwhEqCbxRBVxMwNWn/6pYEAAQAASURBVGqmq2pb6f6cmhlC4w6Jqqk3B5wBeozxBJtAVJVlmVWViIM/hxczEzVgfGN/mgViymkqspRapDLRkFOXEzEBAhC6QjPIWYt9dwAxcUVwBM2RtRZrkSZI3owF1CIpAIBULQTz1sQ2oRZbQcSIIaTcdYjo1iIllCKdHl/VaRqb4TvlblRJYoC4Wq8WmGOM5phTmueRmZZlllq5XaOQKGUznee5Sh2Ph67vY8oENHSrq/MLZNofj+C4LPOyNFi5mVmTUQO6aDUxkdoa3Kt+NcYgtQKgqHVdl3M+EaIQUgjDsHIwB10NN13uWtny+Pi432+Z+fz8/MXtzZ//5s/uPn7imK7+23//X/7+H+8f7mJqbURPKZmqAqhq8xPEFEV1qbU5n0OIMabVejNO4zjPjQ8fc1dKbaMOB1C14+EQmGOI7i1iDA0JACG1p0FrNVUxt8ABiYlDCjB0+epqlVK+u3sk4L5fjdPYIaYQHHG1WqWcYoxI2DISRKQ1O5tKiphF6vFwdISzv/jVarW25pYgnJeitTaabxE5jsdhs05d7zAtx0Op9eziUkT7fpBpevf999vtw8uvXn/x5ZfMscyjgV1cXV3cvDCDstuO8/SLq6v37959/8M7LXNgaiP811+8yl0SKff3nz9//HB7fYWA47Fc3NwC4Lsf3/6X//x3f5O6YVi9++H7y7Pzjx8+/M//83968er11998++r1F6nvgHie5/E43n/+PHT9ZrPJq2G1HnYPd9vtfnN5BYS3r14xsqt+8823gLAcj0wM4A93n7XU2xcvdvv9Yb/vRQ1pfabr84uu79xARFzNAawWc4jRm/Yxxvj61cuPn+/meWzhjhDCvAgFav2E1qavqip1nqclzESc+g7MpVZ3HeexliXlLFXNPITgpgCwLItoBQdiAveyLG4ObghgZswhUgQEgIQITABu8zKZqqqJKlpAwIDYBnhVxFoB526ixHz63E95GNJMA7VWUem6DoH6fqgqZlNM0RzMlTAREadAxEwEhIrUio+Geg6AAMDMgMi1KkNKqXWFRKSU+eT277pauY30QggpJkMHwBBSP6zVtEphohxTQJ6ltD4EELZlkphjClYUA66GLqds1qST3LZLUXMgpISU0AUBzKqoB0I3EJNSpahxiA7QUmuQMMeuyTHc3VvH2ogIPVgpxVRNT8zOk9gGyQ1M3U+DfQUAphBih26mTUB/spH6KV6FiMjUnJ6D0JixChi4g4gCt3EuAgJzMPNlnrWRNMwAMERmM6eTLsFa5nlT96OpA3UpzbkUqQGo77rURQrYXqM7iVRHcofATMSqVk0IlCBETKdgYAoAbA4q5qFpnxiIG1eUAawpbM3UgAKnmHIeAH2ex8Nx18oZFdEWUenOHAIHi9D3w7IsMQQ3Oez2KrLZbBw8nV/udk/NL9YSF1OKtbZ3DUMIgVnmmZG1CBDn3HEOAF6KoFkgVlAyjzHUWlMIzeOSKA5nvYpcX10vdVmWmTnMczHTQuIn6re3NVDmeQ5zqctxPAzDWlSbdwbAQ4jE7ICi+vbtu2Ho1fTu7g6s1mWs1b/+6pvVaoNAomcPDw/jOK7XazNrVJOGN5JaU9LW69xtt9M4AiLHsCwzIJm7igBg5LB9ejJTBzD31bBCBIpMFBoXJeVs2gaABIgh5b7vI5lrDYFKmfuhn+dabUk5NeNY45iGEChTCNFMG54aEVLK+BwMElK3WW/69arr+pQimJHRcZRaatNcA2Luh24Yct/XKvv9bto9iohKVTMEq8uoKK/evL69faV1GY+HSMwpX1/fHg9HDqHL3X63rbXcvvnqVyKyjK7y+PjQ5e788mpappS7UupX33wTQ9zudv3ZxdXLV/ef7371y18d54U5uNkff//734t+/PDhzVdf/uVf/c3Z1XVV2e2OdZpLrTHGMs1ffvnlarN20/32aZpG1frHP/yTOX751Zci9fHu7vzs7DjuP314/8vzs6Jay0JEIeUXrzdPj/cqJaRsqof93neHnLuu7zBQrQIAgYiZHXyaphTTejNcXW3+8AeotUpdTtZfNzMNJGZKLb6Pw8npCsXJAUBqjcztUq0qqoKOdRFzZyZmTGkFJy0wpphLXVLqWrLQvEwUWNVKrXbSjCUCctdai4gF85yzQ8vXo8SBmFUVn/koTbxoZiI1xnB2dhZCGI/jOB9Lrat+3XVdqZJTyilXFaju1cVMRQAkcgAmDhGR5mleliXHBDGqCIVATCEGrdyYGU2rGmJERHNLqTN3UWHm3GVCanR7DrFf9eM0mUDgADECUiZy9wUrBo4pJseyLEgE7JEDx5hyOjXlm8O0JTUxIwengC3f18wQqwEReLsEVFHzwAHAkZyRYoqIDE2+TwjIgQzITJEIObRk2eYQPuHx3cEbL/qU7WTuQMzQqHfa3i1phSkApBSehzccOIhqi4NTV3MvWpFiInb3Fi9qakVqrRWeXWtNCSoO2JSYgZgpiGmzJiCfAh0RgBAiExMTBgdTrc33FBiJyBREBYkCYQuvrlKbo0Sazxiw6VUCEVEz5bqaPyc4I5ITYWCOMTGz1qmUaZrGdkVVN+IEajHGi7Pzfhg6wFbzimufBwqY80pVYoofP77/4/e/f3l7M/Tr8XAkppwSIBaR5rfrUs59J6Kxee0DOUGV2uZErRNl7mWepIpIFdUUEgCJqYoihyoLEgb34zy2D6qZJGOMhLTIDO5EmHOmwKt+vVqt9vvDdvt0dXUVLuJSFjP7+On+w6fPuUvo8PnuDglT35mUWus0TbXWvl+ZKbjd3tzGEI/jOI4jPg9zpnna73bH/T6GMI8jMXfcOwEzxRTPz84Ch3k6llK0FkIy8xwiQAMJajM3pJxEhJwRoeuyitZSPt09qizzPC5z3ZydE2EtNQRWqaUUQnp6fFpv1s0oICrSphHupSzr9ZmqOeAwrMX06vrixe1Vw5WLKDj0/YoJl2VyIw5IgUuth/1uGg/zPKbAiEaMdS7LPPZDv9vvkMjhblitbq9vKYTtw+M8HYZ+9fH9u/Gw/+Mffv+LX//Vt999Z1LvPn0cx/nF61cPD4+r9YpDiAbMwQHF4M3X31IIFNOLN2+Oh7ELcb/bXV1d7ra78/OzVy9fgvnj/QMx5a7rhoFKyTlx4JjT3f3dH3732/V6Vefl/PwMmfrVxsyWpaw35yFFmg8mdb976larlJK6UwxdP8jdpzqO3eDrzVlI0YFiDA3RS4Qx58ChdTa441KKmr58+eL65urhcZe6nlpCCBoiBmYzMTNGAjoNyYGwy52oNgxiYI7DupSFYiLiUhZGiuHUzGxbTGo42AlyzrnrAWypBYm0SiTUegISuJmKtqmnqopU4hYTBtgSs8Xa+FHNCDGlqGYA1hQKfNphs7tzIFUNHEJMZ5tNNaHDbj7OCNAEyxDNBJJBzjnmnDicWjrMhoDExORmpNbGsCHGkJAQc0pNdkEihMgQmEMMqWoF5DYIjSEGDhRCTpnMaxVgpsANyFXKUkqpSGBWqqSYWnXCgduoVk8hkq2pRo1X1gBvizqgz3MpUpmDR2ViJgpMMTBibFhmMnP0plFx1tYiVpVmhGla3qaPDzG6m+pCCMzcMNSEqCa1LOZioCLq7sTMHBCZKIiqQz2hqhHMfS7VHUUNHbouQ2NUNP29/wyJowAIBmji4sboTB4BEJqYCIMjgaE6ugeGEDBSRAzq0rB0SEgAzSfizAjgjiJawAJhjIkA0UxbRwwaqILAlRAAyQBEPTI0VSoSRU4xRiAHNxAxcAdgpsgsYlVqiHx2tg4pzqVSoKJlgKGxL9Rku31iot1u7653D5/PziTFoYo4QGhw5nm+u7s7Pz9floWIxmUMIVIld8Umo0UQbSnKpm7mXlVUa+aIgZwRnfbTIcfYxY5iyJ0ejyOHtFptYowxRDcjwK7rxHWa5i6m3HchRiQMMeauUzEESjFSpq7r3GG/37188UZNVWuXc7sVxtSZ2mq1+vjxp75Lt9cvUkjxvAPw3Perfnjc3u92j7XU9TDEQIigS8GUgd1U3IwjMYcu5WJ+cXkpqg2l64QtWUxV52kGd46hiU+ejtt5msoyLfM8zdM8TofDoR96V+tyvjw7i8yHcULChpkAxBCo6UxSiiGyWi2lTPNyeXX55ddfv3nz6svXrxDRFBAxpaRWW/akmdey6DJVqTIfQQq6iyoSxZhrrYDhsD1ExjJPS5WuS3OZDneHw+GQEr/959+1Fbl9enj4+BaAdrvDH37/z69fvUCi3MV+6JZpBncnDl16/eZNHoZpnC+ubpgp5O7x/v4//cf/+K//7d9+98tf/D//+//h4/uf+tUqdsN6vQ6BOMRu3U3jFFIYp/3x6eHdD9/n1P3mN78WrWhkWrfb8eL8uuu6cR6rOQUed7syzyqKgR0x5Nx1A4oy83Q89kip6x2szBUJY87Y7HilLEtpjFgmVtHN2Wq92ZRaXaVFquecAwczEZMmDGmNQSRKOZc2KxLNMaaUJw6tvxdjdIA2pD1BZJlDjKd2eeCQ2Ixy3+eUiGjoe16tx3FsQbhd12fsp6UAEDWrowOCKXpgghjMPaTADipiYDEGapRKswAYQogWPz/cbXc7Qnpx85JDUDdCDhBijA2yTzEigYmCeVlKJmrxG+qGgdu1Q1WBms4dzbTIQhyIEcEbmSZwJsQG9QSA5J2ChRBySuebM6JQl4WJzQUC5dzTzyh1DhiBDJpVM4cQGIHI3F3U0FfUA3LDnRbRIlW9ihhAa+BAFV2WiihusX2CTqSqKSYgUlUFZSLnhsHnwBEAtNlGEUQlcmhdIGSWZWEK7i1M2t2tqLRmWtUC7moKBsyx9dU5sLpLmQjBmpfNwR3B0AGNseqJn/oc4dmkR1SrBDA3hyYVRVeGGOnncHpvPGoOhA4EEImY0U4AZDJrbDxgIgik3losjfaKxC1uDM2xCfnNFRFbbBiTt/6hak0hMYMjumPgyBhNF7N60k2pMkA4KbkcwDmEoe9z7rZPT5v1Zr0+O7+4PL+4LGWZppmJb2+HcewdvO9Wm815rTXlBIi73S5SfHX7qsk6RU+bfNEqUlNMMaacs5vXKtjM0AzMRB6gXQbF3Iw4xpiqCKgwh9Vq3ei47S4cYzeshpbso/YwTdMJyIfw4uWLvutK1dZza+OWRuVk5nmZQXCeFmbKOeducPeckxlsd/vLq9tZ6lKXwKFKrdM0LqOax5gdEImH1bpWUVVbPISk7ofxOE9TUfHATuiOKefVahVicMAYYmOyI0DKuRF9TTRyoK6fpqkN/6dx3O62arpM4+31zS9+8YvWdb24uChLEVVkoufcUCLOMWtnDm5Wv3j98rtvv61VTmA/JACoVUIgU621VCm1LnWeyzSW8Tgej4aUV5uLzQWZynG3GvrAdBiPT49bFTnbbOb5yAhS5f7+4cXti198913qO0QQVQC/vDq/uL5Ags1mA65EoOK73WFwvFqfAVBKScsCjuvzjTO+/uqNAQ6rzauXr1U098PFzSUBIViZD9unbY6p6/unu4fdwyOD/fGffnt1vrm6uTiO436/Pb+4Atenpwdzu375+uLy+vHhfhqnvu+G9Zmqm/vlze2HeQoh7HfbWmvqOk45pr7r+xbpERhzzq291s6Ai/OzQARmstQYOeXcMk05cKQQVIWkwbKsdURjophy7qUsbsYxdNipmpk/C2aAmVpf/mcfE3MIMbi7gCJS4DgM3OVMz0nRTc6gbkE1hkSIjX3bcsZjCDFmUQ0ckECpnV4kyCfkIhBRCBzO15sQ01JkO+7iHGrpU879MCDS8XioIu4K4GJKFNAZyzJNY46xMXdaGwQRIrMiuDvH0DYoV63m7p677nlfw5RiTAmRj8uErU1O3PdDCaQiyCFHFBEwK8tiITATqKkWkRpCREJufRHPgdndwalWkaoYyVRFZJ4XBIghtoZMu8DBM37Z2Z9tr0uMkcDVrKqjUo4JEZtcgjkDNBceAyAhOdLP7GhEqrU6MhCL1FKWJp9TcfA2t3cVD4xVxEzRzdABXET0NGZFAzf1WUvzrbmht6wsIARUtQAAria1qimYZnRIwa35gEG8VnGVdrsMrcGE5OSnPb4prQMzMy4iDoQIRgnAzCEgubsbGLTZKJiZN+06tTm+t7wAxJYnGWPMDlaWqZb5BPAzRbcUslZtsQgimmIKIa+6VdUaUry4uNicbWrtpmk6Pzsj5MenBwAfhhUAiKS2vYYQckzPREDzxZiQOcSub0jeyJyYPUZUVyTDE20vMDtAKSXGOPRDeJ41iQrAifLXxUTxdG+ttbpIjDGl6Gaist3vVuvVxcVFrVLadV21GTuJkDCYWYoJAWotalpFHraPrsYIL1/e7vb7w/FYanWCWoph5Q7ALIWIgK3NOJfF3JuKuT1YZlK0tCzO7X7HzBwCTEde2AGefctSSjVXVRnHY62l77pAQ4yHYbXyzi8uLlMK4zh+/vxxLktD2plKU9e1DUJU3AFqYWJN5o5dN+Tc7/fb8bjP8Sy2+L4QzBOglWV+fHrUUrTOZZ6klN3DZ3Md1ptutelylmV+erz/9OnjOI7Hw75fDb/4xS+WWn77299eXlxu1usiVd3/89/952++++72xe3Nbe773OW82azMJCBvd48iNeVuGDarVaaWdglUqy7TLCaisloN//a/+bfLsnz6+OmHH37MXb++u1ttVsfdzt0+f/pUS+lyv96sDXTVp4uz9U8Ev/3tP3xdvooxpdz/4Z/+ab/bn11c3Ly46Yb17uExpnz78mWKabvdb7dbCmGzXr356uvt40PKmQiXeR5CxGcoYgghxvyzObG5hHLOpZZaSwgcc6ylEqC6z8sE5hyCmmg1IjxJJ8DRjJHSMIjU1pNsgjQRjTGUUkVEVUQ1MA/Dqg0lGanac4o1YcumlipM5GCRg5m5tVGTM1GIDGgIRI4hsIoSoZqYarPJAzhRaJ36552Gc+pCCrnL7z982M7L0PU555yzmdVapmksZVF3NytdafYed4/cVC0xcCAmd/CUWigKOjGxqgQOMQYRbfzUNoVW1ejAgVvSOBKWUkIMuctSqEkhCFxNI6ObjuMREaWBAeY5xoRIrf+OiEwoaiqmpmx0UoaoIkB1aDeA5vP6WQdlp1hDRwLCU4+krcZIgZ5Hso0jd4p7aTPYfwGdbkYzkdpw/ngySkGb1hJRG/MSCYgitnQEY8LTraFB/+Hk2XI3brPg52/XNt/gTWSuJlLcxe2Uq+Bup+mTtZBCbURyMwHm9skyIwClQDFGFckxAJC3A8JUVZQZANVF1FSVwikGkpA4YM65wT0MnEIC55B7jkHqVJZFliWkBEDELKhF2yFlKuXx4TMgrYZ1RC51WW/W036Hpjnn7756k3I29RzpOB5TTA6uTIBYCgxdSjEAgJs/bZ+6GHPOZalMAADjPFLu0tAzZROZyUEhOBJSCKRmJjYMPbnUIi4cABAgprQa1jlGDuwIRFRqVYFEBCLnwwr6oajs9rvzzfmQ+4Mc1qtu6LOW2riJbj4vs9eqqibCCC0HmL2ZBCHHGAObCbiyeghBVEudUggvrq9aEXeSvZ2QYFqnaR4PtRRR4fa4IKoLaJ2XiYgoJi1LM3aZqpYZAEwVVEzqsizD0Hddujg7H1art+/ejuN4c3O72WyaCmsg2h0P7i5VQiPM9DnFtNqsz84v+m51d/ewzEpAt9eXq37dRnntGW7bExGrSDkczKUss6rE1OV+3fXDPM316Wk87p4e79+/fVtK+erbb69vX+72u1YFjfNIHF68fLHU8v7jeyeIgc8vr8yh1BJCmOfp6ekJAC44LMvCITLz6Rl2Y3JT/fDj9/v98exsE1L8+OFT33fO2K9X4/Hw9HRfl+W43YaQdtNiJlULmX2+/zxsVhcXF8N6CBxc7ft//v39w8O/+/f/fprGz58+7Z+2l1fXHFJMw+Vt5u32uH8ErSmmfnPWrddWZZonYoopVlkCZDdnDq0v3zRUiBApvH71+uPHbS2Su7afIrg3SZw7IHatjDIANcsxMVGtsixz5KyqHiMRTT4hODOtVj0AzDME4xijSFlUI5MZAHjfZ2aMKYQQwL0WrbWY65CzO6np0Hd97sC9qKgbgsWYEKGU2dyJT7redqXOMZs36hcRUcNvkKO7nQ3DCKBa99vp4zQS0asXL1dXV/cPD7v93kxd1RFSTOa2uIcQu653DuBAxF4l9blfbS7OzqfjcZ6ORGimQ5/dtMV+NNALIjBjzknM5qm0uSSwY6NjCjBzw9SXsszTSIRSxbzdqawxMdvqwGZuJjCXUq3WqmqtwG/OJAQ0O9X+DdPThFIiYgABOVCzrZGhqSqeOELeyuUm+MHnaMkGRPqZiGNmTgBqrtLycJijWWvDgLu1lM32WpgQmNCBW2DAMzr0+d9OgMSnw6N5gYOIiGmRUkVC82+qIkAjthGSaTUzb1G2CG27RkTidpJhCifmRUB2p5CSuc7TBK61iiOKipg26pG5OVAz8aWIiAZmzIFCdEwpZzVTKSIFkQCQQ2QKzmpNiIV03B3/+Mfvv//xXZc6bubblPq+zzkh0Wq1TjEyhXmeSq0NnNlipgGh1sp0Yti6ewyh5fBIlSZ+iDENfY/Ex+PxMB7Mm7zC2wweAXPKMQRDeBZihq7vU0wxBGISEVEttUbmFmeMiKZKkc3s84e37r6UkroMDilEFVURYizLoua1FA7cprWqQk3OrLXUQsyPjw/gzgBiqirgyMwhxK7LTSfn5gje5c7UapUitTUNCPHZXN5M2Mbtas6hkWbLsjh4DM2zY7LkaRql1nE8Pt59evXy1WG3f3p8EpXtds+MKQZwGA+HYRgisxLOk4FvCH37tASG2+vrd2/Hea7MEGMoZSZi1aqiSynN/5liqugGlroeCCMBUiDC8XiYxxHNmrS/6/qU8mZz9vjw9P7jh29+8fVhv394eDw72+Sc//LP/3y/Pzzc3//07n2pagAPD/dff/UlmPddl3IKIS7LPJZyG2LfwzJP4ILotSzjYe+qy3xUS7WW3/z5r8+vL0MMx+O+7zMTrPoXb394F1Pu+/7x/eNht0PmX/36z26ur7o+l1n+6//6n4+H/f54POx+DS7TOA1dBwD3d/cU9kOf+5zI9PD05EDD2abrun61mqZxnsZutRr6QRSaFLvF+LTQPQdTs+ubSyJdlqMKqAohVhFo1SVAjLGKnCyebkycYljmZbvb9X3X6sllKdM8c+BlKYFpWK0bU1jED4fDNI5dzk3YwyHUKtunhxQTMx8PB28GAjNwKFJjjKNoWcpUZmJuSwLdVdTBU0qEYE2RUauEwuGUwXeyOSGW2ULgLiVTPY5jTMFHm+flsN9vzs/OztYh0OF4rKWoWnFv9HU1B8AZPBCHkNilWillmY9HJpJaYkqth75arUSXKnCq+YoejnsHICYVcYMKQGBMWOYC7qI+zfOyLEwU+CSWB/AYQlnQHEpd3Fct2Zc4noDYMTVcT6AA2OYR0FgmrcWCeNoaAU6OXwdv1LOTJwPhpMH0NuOlWusp1d1EGzni5GFquxc2dFrT4ZAiMrmRuam6mKA7M4G7qUHAJtFH96YGU1NEMlUzBUZHZAiRg7mBk7uHKtKM0K2hE5gQoIgUMzCJHMwADRmpDawbZgLb7J+4CyEiiNdGbUupJyIwD4GkKMAJF6r2nF2JaA7qiMCAkgITAYfW2+wUSUuRpTIToM+1jktBhBSDSEs8tvk4Pz0dcw4NHmcmbRTTcNMNPtqamMRMiKonhwgRmQO4IToiB46E7mAt6ObE62g3MkJRLVUQ0c3MlE53NHym9AEhESIRNPs7NSjrz4dtCy0FbOQmB2sJcv48PmHAxpFV0xO0D09BvkTtY2/kvOdOATxLEE6mQaDG9QRvOu4mIWAOKSVvtTwYPt+4murU1BolBqAB+E6vR6V6Q8PjySfp4LXUlknyh9//DgAP47GqAkBOkenZfI/orUVLSMxd7szk4uL8L/7yb//59z9Krde3w1/9zZ+vuzU4ai16uuGiiiMihTCcXeSu4+P+8Xhcxi0cIeU+d10t0nj3kuTHtz+9mOe63CP6NE4vXrxEw5/e/ahgm9X600+fpmn64ss3MSYONHXd7mnbpYSOy7jslv3Nixcvv3yjYuNhB27g6iKEcHV1WZaSh84ARe72+717MTAw3263MaXDdnc47F68/qIbhr/867/9/PlzmaeyLP/4D/+43qzevX3//qefbm5uhvVKa7n/9Onq5qZbnXHMzNHN5+Px+Lg0iicxz8cDAnZd72bLPNXVhijEPKQYCbFBxEJokRtkYoh6f/f2f/1Pf6daGyarzVUUTmt7XApDU7KflkADCIWWVoVgYtWlpU0RU+DQokPaqMasQeug1socmINb4z/4c0eIfq4fEVEN2nOFiA6Op4Xg7i3tsa2en4XafEopIXIkc2PmUz3k3iK9aq2q+vRwb45dn/o+z3MZx6VKbaA0B0C3VtRjA5+FwITs5IBAwIHb2mhtT24FMHEbLhJyCNyqaFFFwsABAEUlIIF7KeUkNEJXV6ni7jGGw+5wHMcupfbTEbEjtzQUpQpgzw0ZeI4za+8rMGMMoRnKljo7OVMPSBAiorM3TYmLalVzgEwBvJmzyFxFpUrDMYO7gWGT+DyzM1ttYIQeyau5EUROIWetUsriqoGDKzgaMdIza8fUrG2eAByQ4NQ0RA7uEIpoS2RB98AhhWDuS6nFjAAJmZmJmZQQ8fkYii3VOsbQcBxqWkoxbUP1dqNBNWNyAIzEHAMREEKLvwnBT5Ifgi4HCpRiNghjkWWZa1mInBCLyFLKUoVaixkBiavIeDggrv/sV78mjrUubj7Nc9d14D7Pi5qYWYxxmqZlWUJIzRbYknpMxUwbcdpdHU+Z9U2F28bfSOgIbm6i0IBDgC3zot21EIGgMYzaI0Kn0Pv2tQChoTXwOeDzdLCcmEfuRuAIaEDPd0mgU5ybIp3O2ZMqCahNPrwNS9wJ0J8Pm9Z8BAdsRvfn79Wez5//C5HsmVndfoPwlKf5rAz0n/+uu7chjzswtck7qpuqns6JFjAELfLhBCppI2AEv7u7//jxfhorc9ru9iEEZkZAqSaq4fQaXKUSp9XmDBp3DymnjEzAIa8GynppV7Us24fHv/6bv4kpIMZXF2dLmT6+/xBDODs7CyktS8lDf31zQwyBMcR4fXVlamUuDc46Hse7u88K2uWOCUudp+Pkag8PD2dnZxcXF7XUx+3+4/t3D/cff/nLb4loHucQuMzLcbefpvHh4T7m7urFzcs3L20u/6///n/8+OnDr371zdmmf/mv//Z4OIYQYuTjeFiWZVhj33cc8/FwXMocmSJzSimEyN3AMQPganMG5vvHh6XU61c9J1bROi05pxijg0nVFhL49PD4j//427JMIoudUFrUus/uYKdcQG0xHyewzCkX8NQ8dDNCQmiFAD5zAZ7LlIYB1uegbAQ7PQunP/Xcx0dE1MaR+FOdZD8/anh6jE5ftj2QrfMM4Ah8KtFaf6HdYuyUDKyO2PofDAzB/kU0SiuGn78FtgaLgwJRACIwR3SEJm9tDzXA6cbh0OjC7Vs1KJs3DcLp9bvb6aWetvNWRRFRLWUppY1RT+sVTg7Z1gkJMRC5SBGtqm4GS1VEII6IlAIZBaTUKJNMHAK7mZi4I3iDqp1iRdpHpqYiWkRLbaNzBHM1YYxArUdkjWNPBAgIISagjgOFaE6zWBsLgKO5EwAjBXJkrkJFirrA6ehHD+AE4ECMmWLLJzN3IOLTfu6nNGAAsufPsL13olrFuo5jjIAYmFyruY3zvCxL4rDMY+jX6K5VG46DOSRkNwc8MfCIQETAfRhyjiElDoH73I1FVOo0jwzQEJXtuWjoU0AC8GZxal3LX/7ql+DkbuAwTtNms3GHWsu8TIj4+vXrd+/eHQ4HZq61TvOkoq1BL7W6w273+Hj/GduODej23CxDcAVEXPdxNay3u8M0l+b6hhOuurXvGMD7oWOmw2GEBgdpxXkbq8AJgH36ndPf/Pmf9iepfcPnxQl/2r9P6+15IbT/xlPKJyISUrNqPP/J5+9yuqch0L88AuB/85JOX7QdPw0DdZIttOPNsIW4nQzs/pz1xMzLXNwc2nbv7ZA7HUV06trR09MBML356tsq9vjwmK4TEalKA7y66TyPx+N+vTnP/bqWxZFCiOVYxsM4nJ2ZOYfY92up9sWbrw/Hcbvd//W/+ldg+vYffny8v7s4P09dXq83HGdiur64QrDd4SB+mMcpxXR5fq5mpZQXL1+O07h72sEGpC673SMSErKDidbtbmsOIvXLL187+N3d3dAPBLhera5v1inE/JC3293j3R0zWq33n+/+69//1xcvbi8vLs7P10+Pu+/v/nh2djbuD9Nx3OJjTv04LqvNGXNYSqmmjDgdj7XKzavX1y/PxCCkHGJsKHz7UziGNU2nmohVdQGwh4fHT58euj5N0zJN0/ND4Ahg6gZtgGSnm/XpqYL2vJ0euOfnEZ4/sD/lb7flBc+53O4n8d4pivWZY9yGmYiO/3JfRmy75p+qjdPTcpIPgrf+hbujE/58avyMpnl+yQJI7ugqKiHktrp+/sOA//IWQqLV3ShEAgzgLRL353PJAQiZKBAhNTIaQDsAWrv8dDgBmLd7sz+/Yc9tdwAza6V033WtIAuEbtrOlRhTTBEBynx0EwAw86VKlZY3FVq+Qk7c5ZUCckgp5vYRN+ZBK51EFdROaeoA5l5VS7UqBkhtlCduMXDm+Ex1dgQHA+YQOD6fdsGRIHuti7qr24kphNDl2H4+iywqLXXAzMU0GMGJMxqD2899YSakQHTyemjra7RnAZudQUUK1hg1BGACJlSHpdalttBSB7d5mZtRgpgBiJBCDCdCHoCblVJiBHQwVc4xp5RzZkJYrNbi5uoCZtjEp4B+KgUciayla4ExM3MDRjox9kPHoU0mcqNfmXqOHayQA9Vac861VmJqidXgIDpHuvzu62/mZQYA91NQjrmBAzFfna9fvrj94e3bh8dHDgEAGMncTovWjInWZ6sYwsPDU8umb5vwqUAyUNOTCg0JvB3q1tonjkiBXdyk4s90eGQgpCbeMG0+VbSThJQ5OmgVIcIcEyER07LUUhYHN3U75fIhEXVdx0ymujSlpoOZhhBrrbWWtg2YGqA3ZXdjPZ0Wnp/ypAnR3E5kQYDA/Ob1m/vHx4f9NnDA54ZAW6ntbSHCFMOf/fKXHz49fPntq9vbS0SsUkPLF6RA6Nv98enpMQbYnJ/V2joGJFKnpaQ8nF9cxa5POT8V+eLrb0MI97s/fPXdLyjnx8+f+pxsvQ7MAJS7DpkQ6eL6evfw+PHj/T/+9nfztLx+/frf/Lu/2azXuFDo4yZvRITMD9NUi9zcXhNR3/fvf/qJiN58+eV0PAQGEb//eH/sDn3f7Xa7qxc3MYT1er3b7/f7HSE8fPp4d//w9ddfvHpxu8zjD09Pv/vtP202Z6vV2e9//wczK5f19Zuv+9WKAp+dn5trmY6Pd5/32627V7PV2Xm3Wk/H5TAec+5S39UqZa6uQEyidZwOqmqmyzwFsm++fPXLX7754e33IUGHse2MrQd72v5/3nqftzY4ZTo9H9hIYAbPbeS28Z0q81by+M/lxen/6GkACQ6G+ryJAwL+iyLmT5XM6ZT535QpDQrW7r7tF891R9uG4OdtBQHA1W3V9S+vzn+6v1f1P5VZiPB8d0EHd7m6OhtS/nj/WBzluQ/TruwAqKabs4ubm9twSrYJLZRbTYd+iCHu9/uu62KM4zS2/k/rxxKhuRLSvMzv3r4zNYoUU2pbTy1FaglEMcQhdRiIkchU6oJ26ueoOhKouZpxzDEGAIghY8gcGIlLXdAZrIgqhxCAl7lUQUGFZ6La6TBoWo7TsQRmxuAI0BSXRJRSVCdt3l0kBwJ1MLBGPUVENYoUIgEw4CmJE56LSzGvaolPoaShFqnW5tfETCFFIk4xiP0JugQnP5QVUSSpUpAxYwQHU2lNCkE3N6tqBojUYqd+vjM+zyHteQMFDzpYCMwpxRiDiJiKLBOAiWggIkLXVuK2ey60SDNTO3XgHYjZ/ESUa/tsjKldrOZlpkDBOOVkZsy8Xq8dYbfbRotu+td//uscMaU8zwu6MVPrsddaqwmHwMiPT9uzs2G9SUhIFFKISBiwdUWMkJqz4cvXLxx8NQwGPo8TMlsDupoxcXvl5K5uYs4hIQRDRCbX5ipAJjbR5+4amWqODCrLUpCit5OfqJFN8bmSSpGfk3WAmMGhSst25kCsaoEZkdzc1Io+K0lUkRwAUK3LOQRWrSb2vDYRThLSxqsEAzNwBIoxEvGbNy+QToYgawESdHpFOaYYmCL1w/Dn8zeXVy/+9V/9pu/T6dNhNhNRMTdCaqQwkdrcZN1q3a3OVmebYbUKIY3jsZrdfPE6cry4vpnmaTzswPX29sVmvX58ehrH8f7+/ub29uLi+nA4fv/9j3/84w93dw9ff/X1v/tv/91604uUrutqLaqKZu8/fBrHY87du3c/XV9eAcJhv++6brd9+v6H769vbpgDBdofD8hYVY9v55e3L8x8XBYVCYymOvT51euXQ9eNx/Hh4eni4uLs/Oz65vLm5vowzkQ0zvPF7QtDetrviTnE2A/D1eUlMRfVp6fHC+LAfHZ+ZYjD+swdSlkQCAwRvSzLvEwpBFnmpY7rPv3rv/71X/7ma3QB1TYCUG2TrBbiAUigZqqnulrdTQ2fxzyEaI7EDGYq1YDEzKwSABpUFXCzWkRUALu+I+Iqcqq0pLRqmRjBoVYxdRFxbFtP0wQ6IJxghXJiPTmfZN3NkVTF1BopDQBAT3qQPzUfq9YvX7387usv/6f//He7Y/l5eiYibe9wMwCY5+kXv/jy199++//+H/+/+9YrgedI9CZWLLZZD69efxFOAzquz7EcIYTIoekCYozzvJ7mCdzVrO975uaStXE8vqf3LfeUidQkMIF5w1gF4hBCk8qCSVOYtuwPd2QkVUPmEGLTgVLElBISIrFXrCpmCgaIRoAhcFlmQMQ21DmNc7yJpvyk2CdVYorMZGIUQuSABKYgxcwNrDKSgSICNfIzoJA3/lxzMXPgDK4Kaq1hgLUaQgD0EDgAcpXFzSMTnfQAzY1ibggGduoLgipUdRKJtTg6mJBnJEwhBgpKauCROUYGRDU38MAphOhq5grQrGgKAGLGHJt8mBBFyrKU42FPYGZSpTpDioGIpAqCR6a5qohoqW0U0EwnzTTRiFeEbGYphRgCEecu11LiMCDhNE0AsFqtHHGcl4DVVW+vr7fbx/2iIjwd9loXjoE5ArAgsnNkUmAQBEerol6W+el+++BFCQEJAzEyMxGgM6EjGljiEIkMARRDYGamkBTQazFX7oaYBsTOAzoCAjGgyxwDRSbgKEWlVEQIgco81bpUadnWLRJlrvNs7ooGRoEIAdSsBcsiGDhmDu3SH1MiJjdn5HalAFB4Lu0MgIwCBUOoKugYmJGarTQygRV1AKCTIDpxDCGKqbk1CvrPV2pGcPATHhxD7vPLVy/n/fjwaffh/af/y//t//of/v3/YR4XNVeZp3lExGG1aor4usy1LGrWrdb9sAEwqXLY7e8+feIQ0Onzp88Pd58uzjYIskzTfikO3rIvfv+73717+/a7736Ru251sf7Fr37xV3/71998+81mvf7hj3+YpvHlyxcxRHQ47MYP7z90Od/evJjnqUo9vzi7uDxfSgkxEcaffvp0fXO5OT9bmfd9V6u0Bub79++7frhYrwDh4fHei5+fn5VSAPCbb74x0/14WMpyc/tic/Vis7ngFLbb3cXlhYJtnx4ZvJYK7mfnFznEYb3JMW3H3erskpgQqC11IBARJgRXN5GqT48ff/sPf/8P//D343EGd9OF3NS9SAUzpmDNHGtmjQysZm4NG8Ati4laB9AR2b3tQsAUAFVQAyAH6lI2U2MEB04pDz0SAaEDhJjUKqox0jwd0c3VQ+45RmY67nbk6HiaNAAAh0AtdoqBY0COCBgYEWgspWplgI45xlhVpBYiyjnNpVh1N3Ny8fKv/83fiHhr+ugzVhkRc+7cpN2iqpe//Ve/GedSxRAM1FuEVNF6fr4ZR4eYI1OIPC0LEbVce6l1nKfc577rq9QQQ/YsIg1IDIBEbOqI8KybwKbkaH3QWotqdXAFi8RiAqeBhDu0jFtv8nlHNLOU4iz1uEzdZpM4iSi0EBiTxElVTZ0QTWs9gZOdmWKI7erlgAqkWhp3WNQCMTiFmNrHqi5LFUc2FwQDKSILOBCSqlWxGCMjq9RAxH0sU5msNlIEGABREePARWoQU1FtQcONKySiRBw5FFVEMhPVP3Wn2/3QVLVJMIkAMaXkYFprSiGlBEhVpYo2CQ0AmjW+uTy34VpMgHJgMxOT43hs4PtalzaeaWOJxqAnJijSmlXtmtmcp6aqpuBopbRhYwgBkHLXrVar4/GYUgJ35jDPc7OtRkKPUQh/98Mf0e36+otSCoeOmlxVl5vrF7HfOEQm5EDsoHUuy769GDHf3n0IiCFEkVrL3BCA4BCYFK1gvb24YvSQQkwhdyl2A/EApg5mgIf9weTYd6sQkwO5OVAE9j4nNaSQNMaqJubDKoPbMh4YMXA0N/N69/H9u5/eIVoMeTY00xih73PkoKKHaUnd6vxsDYBEGAK5u0pTbUHgqGJL0VpdzJ+mw2GZA3EfkgGoSFU1t5TzV1+9XHVJRICQIVaRLlEI5E7WBtxILQsJARkxJlbwcdGPD4/Ht+++/+P3IcXbi5fjPC7zCOAU2MGrFGuLh1lNl7JIrdM4lnkh9EBhWZayzKWUoevPbm5jSqk7DH0vtdS6DP0w9P08jnWaCOzm6pKIDvvtPI9dn//i9a9z7sdpevvuR0Lsum4cjwAQmOYyrVY9IHZdevnyhaptd08p56vrmxS71WozLRWRr66uVQ3Ax+PDUpbvv/8hpfjtt99IKaUsOeXtdvf0tM05n52d11KmcT6OE2HouuPZ5XD96vUw9H/8wz893d8Nq2HV5/3jk5TlsN8fDsehX5szQpP9Yd/3h/2RQ2yA6SqFUqpaSykEftjv3/34dtrvl2l21ZzYCA9z+f7HH0yVQ3IAbeKWE2cSHP3q9uZ8vQJVRDSXFtE+jUdysBCPk6nMKsWkuGqpZX+c5lrJKTBzpPP1cHF+sVmvmMlqmaVO40SOtS4RkcAfP34ezs8vztZzqUypxbMwITkErmrQTFiiYk4hMrqYm0hrO5SyLI6OcFL1xBjBwU0bxI1CJApd36+6HBjV1B2kqgPEEE2ViFOMh+OEgOv1YLWCmqk1i8Am9K9e3374dDgK5L5jDupea40xNe4IIuaUY4xmhgGJqJSip2CvZv1VZqZ/MXWIKTWhTym16UimaQy8YebqzXTznLr7zO1hwuadIiJUW+Yp9KHBERDc1BSUkFWrASpgERGwVe6Imq0qIAVArKq16mn8a4KBgBgoALG7qlYHXUpVM0YgEzMFIIUTtaksRVMCYiaeRRpElhHEDADNTUWp+rofgqhK1ZbgRO1ORwQAMaYqS61a1UqVZxHCaTKLAMSnPMI2d2dssUgUAoeUM8Iyl1qBADHwUq2Kup0UBYjITDmlEKKILGVZlpmY0S2lrCIE4ADNy46EIsrMpq0rBY09AO5ICAo/z8AQkUOIOXIMFDjmzCFgK0+IisiyLOAWOIrZH/74w9cvr9cRTEPIZ4Ri5mXad7SQmIrFFEEIgephNx23aqCIL866//O/+t/fXqyZ0RFL0Zh7pFDBNsMQOP3Xf/7hn959SLGPGA085kQhAaeAiGgtG1mP2+SFzWNKBlRCFINaUbREdDVQETctUmUe0WsKkTSaVTM/W29u//I3v/r69flqcKAUcBhoPQxDWoXY/0//8I+//+Mfb87OXIUIc+4A4Hgca62GwIxl0SJWVXeH8bur9Tdfvnh1czXkZIjH43w4zAA0lfru84c+RILMRLXM1oWbq3NvA0qxpUpzrDR/ZhPREngK/h/+5td/8fWbWsvf/fZ322199fJ23fdmFmKcp2MtC7ZywX0cjwgw9IOpjMdDjhGYOUVSOeuHzXp9mKb9fhcRU+D9dnf/8LDfby8vL2Qph8N+GsfHp22M8dXLl1X10+fPXTcQcUzp8ury1asvUuR5mT+8/+m43+cunV9e1lrff/zw/Q8/Dv1gphy4Fnn74x9+/PHdF2++HFar9WrtiCHyOI6fPn86X29ev3ndNmUAKEs5Ho+rYXV5ednk6ua2Wq3Gcdxt99cvvsx9369X/bBaDnurtdbKRBcXV4fjcVivU84hxsPhAODLMg/rVc6pqjk4EqVWjKvllME15cyIN+ebOXib81Zw8frf/Yd/85tvvvaqtdE+1XKOiJ671fcfPnx43F2cXaMTIrlbykldD/unHAKnbntYiKELoYxjGY/zNO5l/ubNq3VO+8P4+x9/rIvkELRIHvqzYVVkHt2lKKU4DN1+3OVlPj49gtnZ5qJPSU0Db4YukzkxGlDKnbuVeRJRAFCZpnl297mUTw9zDinn2Io4EUHVyFxb1K9CxwMAMwZwZAqELCqEzsxgXqsEsmUSxMgcWJ0BIVAtRdUdRGf/3X/8XxbJv/rlX1DAEEL23Ax0zKmUQkTNagcAKaVlWRCp66I9i45OzAhqo3ByNzWlJtRmOk3+RJYyN0Gtu7fJMBMTYYwhhACAjiCmTRxnZlUqAkqppubgZSk5d4ikVczdHWsVidpxiswxsDotVQwAMZ7C2s2NLKaESGrPmgGzWqq5OUJAJ2Jz0GfnhAKIWdOMVZWTexgMHBrYLsbm0bPg5maOkWNqYBAAx0Z8JWJHa49aGz0RQEsOwJaJTNBsKSoSm/OaMYYYQnQEDQ4AgYKYwemk5Od3Gfr+xEJxh2kapWgIyVy7LpiZ1QpuCE0k0+ZARM9jLnQMISJRK3YQsM12zAwRKUQxA8R+tWqUj77vf+4nolOK8dSW1KplBM9xWOccGdBX3WH7ga0mqTJbqWpuUq3OIq7GYdV3X9yev745X2SJMYbYcexi7nNOhq6LXFxcSAzvPh8XIQVQ7AgiqAUE0ZICxRSnp1rmKUeGoXMkxIgYzCyC1bHUJm0ygbpk8hga6odA3EsJkf/sl9/+q199U5eJQlj1MSaLHIZ89jSahnB1+zohIGhMbKqOyJqUkZFEarEySV3q/N1X1//ub/7yxdWZmTkQgLe2vwOKWP9P8b/87h8vVqvgdHa2evX6tktxHo/TcRH1cS7mWEWrWFEtattpXMr8zZtX/+bX3315exX71KX4f/9//H9SCkwAiGp6OOwOu20/DEyUuw4AS63Ovlqv7u4+dX2/3myenh4pcMppv9/ff3qPzAwoZdk+Pj083L24vbm+uJzGcZ6n3f7Qd12I8eP9/d3dAwHGuBLRFy+urq9vHfFxu18Nw2q1qVUvLi/PL86l1mmex8NxNfTLMvd9n3NOj09D38cUL87P53m+ur4Ghi/evAH3j+8/7Pe79dl6aXwV0/u7p2WWzWYTQuj7YZ6WGOP19ZWpq6loXZY5pbid5mWeVxdnN9c3jw8Pm3R5dfNinMbcD8t0lCJa6jQdQ4guOk+FYx76jXphirlPpc6x7zeXNz99vCsUCUwdDuNxs17/d//uX7+6WI/TKGpVRNRW6yEEBuTjfHjYH0qtOXVIhIDjNIlMiG5e9/fbFLqm9Rw2Xd/hmaSXRL/85ss/+/rLiPb5afsf/+s/vX33+XhcpmkudTlfd33Osy1SZSnl7Oz8//S/+w/77fZ/+E//y3b7ub++7mOIbANrTCHkvJ+XGCFwHlJzlkAKPQDNtW4P+4uzs3/zF3+xzuxg+2ka56nLOYdIAErh//f7Hw+zUogpEqKBmruXSl1oEyZPkGJghFSUjCN57ZmXMitRJKzqYP60G2eRE67GARFbVyDFFALP89K8S+7eYDDr1Xqap3mZW0+Zif15ut0EbvM8h5OShf05AFGtqlZ6tnHFlklOHLllKLQdFOy5aWJaTaFxOMwUDAEghDCXusxyknK5U/NXIk+lmTByEQ3koU3xEcBNtbnZoA30A5GaIzghtyPqNIxGUIDStE9AZialaWtbj9EBPcWYQkCAoKYAGJjSM4lQUFWVQyIkMDQDVUN4lsI2XStHQlZxBVepzyICaxikBppSNqnFTKsIOLbAGkSMKSDCqu/73DnCXKooYIhAmLqcgKqIEluZxU7+PAAEasMeb3eCFEIgnrVU1ZxSOxqIw1JrWWqXO1UnCl3OWitxwMCEFDgQeEiRSyGEgEyU3AOEJM8+lzovaQh+mqGRSHOtESgY0nHWd58eb242gOBO5hgoEJBUK67o0Of45ur8xw+fiLrgCLpQw+eC94G1HpfDVqW2WAmXBTmIViaMhFX8OB4O87Tqz88urxnXXW7GuhIRzSEiFJ2K1KkKA4hUM3L1ivhP7z//L7/9Yb9Y362rmeiCFU0REbg75+zkhrX0sav7/ZfffPV//m/+IrBNpRBGAnYAQEFXR2D2X3/75f3T/f6wv7683KwHJF/muRY9Tos5mVMVmecyV3VkATxO43dfvfyLP//lNM+7wxjKfHV58atf/HKsZbXZxJjqcTLVaZqWacx9tzm7aG3rcR43qw2HlPuh3eqatv3+7uMyj6I15vRw9/Dx/tMXr7+4uLg4HvZ///f/sD8cbl7c/s1f/dUPP7796e1bQn/96vX55ZWIf/HV191qLVqH1SoxA3iI6fz8gpm7vOp6ubi4+t0//iORX93chBjefP0NADtaZH77w4/jePz666/rPH/88PFwOLx8dfPx/Xs3GPpeVfu+2263Hz5+evXqZe67+VNdX1x8/fXX796++/Du7dnl5WqziSlfXF6+/fEHcbv/9Gkaj9/96s8NYV4WRHbDvuvnac+JU+rmUkLKMaQuZ40cI5tKimm1vvjqF7/66fPTfB9DTl2E6e6nX/36l5fnZ8syFTVRFRFDWKoghsf97v5pGzDYcqy6OLKZgRtYDTEeD4fDdne7uQjGJAWIGjagivyXf/jd3d3jX/3mOyDQUk3dHc1tHEeVQkC1qrj5svzb7758fXP15cuLF6+v/u7vf/f7tx9S1511w7EekDDOCQiLSwV2rcs8l2InLiSxGmw2ZxiIAiJQjKHDPsaYUupjXKr1OSB6Smwqp/hfc1IR9V1Znh6fUk5XlxerGMkkpxOixsy6LhKF41xMNBIuDkQUMHAI7HqiqzIDYk6eQmiuHVW7ublNKb3/6SdwjDGGyCKVsZl72hXK3UHUmqhUDaEVsBgJrUyju7bKOsfQcrlTiCmymy0CKVLzHph4EakN0GQQYzqZ9pGACM0RqSk8m5eNCMkAmRw4EUZibdY5M7dWEwMCRg6qBQAR+KQDAW4KESaMxISkDqra1FLozTcCyJRiTDExQgwx1CpEmELMKcUQkNiRkYIDmsH/n6n/+tE0yfI0sSPM7BWfdBnhITIidVaW6Kquru7eafbM7sxyQfBiAYJ/J0HwmkvMYpcY2dNb3aUrZehw7Z94lZmdc3hhng3mRSKRQCI/dw9/X7Nzfr/nETVVAzU1TUlSym3w93McoywiksWEAAEFTJVNy9d2X0qyKU8x5gIFNCaD0lb1s9kMEBRgiAmdI0PnfBVqVYNxQAAwv4tTSbTdfwRDNTIAgiJFyqUlAQB934cgJX/tnPNFl1oFRDRRJGbvCYGFGZGdM0CRjETAHBAw7nPsk2pFuW2qKSUGRdX7gaBaWXahaop2dduNQ5y1FZHz3rNjJDRTVGNyCPj4+Pj44GKzic75YlpTUVPhAIwWTebzOWiqAgfnAYk1g+qU0rbrqjb827/7+6u74eXlbUUVM65mwSnEoevGuB0K2NXGmBeVA41q0Gc6P7/+7tW7fjfMK98QRTUH2o9xmCYAC3VN7ITdME4o08lqdryY9WOctx6BAQiIuLg6BYidGtQ1/PjTz/7w/bdHD44t5xSjTNkExGBKEYGmGEUtK4w59lP/7Ozkr778rM+pExxibpDZuV/8/Ke//tNX3TgBIig4du1sNux2w9A3s4VzbFlcqKZpauomVPU4TfP5fLvZmAETDEN3cfnu8eOnJ6dHH3/yEbPfbTbn2x0YMLu/+Zt/dXN7PY7T0dHxer0+OjmepmQI7WLpqzrvt9MwZDBTc6Garw8kppQykPX7frFY3t3ejDEu66aZhYPjwzevXr1/+w6Rbq6u0GS/73bbzTgOOcf1ahWnvNvtcs7r9QqQ6rZl7533Rycnn37+xfvXr7//7ruzxx/cXl0yO1cFJTg9Pdnv9y+++aZtm77bsQ8EEKcRASfJm+2dISyXB5JluToMrgKAEPxkOcVMiCgy7m+G7cWwuYlVE03AqJ/yzW5/Mquq4iN0ThGD84R4d3s3dB1MQmYqUxKYxlg55MC9xH7fr5q5sbn6B/lwUjNkJs/u7buLrOId3t5u+2FQoHZWV55VshWymcHZgwcfPn5kYJPmk/Xqf/jVL54/ef+Pv/vD1d115RsQDVWqPDdNbaApRs2l+CRmkkVDVXV99/2rVx8+PTtcLRskGGMxIAK6fbdJSYL3BAb3PUdUk5zzMEWR/LPPP7+4vnz7/m3t65Oj45qQmGMy7wOCpVQkHcLMSTIyO++BzHs3jCCiwZNKrptmtVymmJLkFHOc4m67MyuBwvtdo3OuQFzK7req6iwZANh5Ys/smAiNTDPep2oNkMCECUPwnh2Xy3QWQSVkSSJkSTIgeleZKLEn9mpiVpSuyuDUIKcsXohdqLxZzpoZiwyS1FRSKlEokQgAYEVRIEQEhsQsZqiIpATiirAQuYBC0KAI4hFBmQpBBomcdwDksphjcj5UdcsuiKoZAfIUcz9MKUtJVdJ9P9WyaIyZ2atkMS1NODETy86Bv28xgAC6Kug0ppyQyECJCZCR0TG3zayAaMZpTFlcCM6w9g27UEpMXZeyaXkfW8EjKTByKZ0Dc5EEcQRDLIK0Eu42xCwym82IqBAdkioxV1WT06SqVVUxFamnphxvr89DNdOcNPYGsI3Tfur7MT46Pqqdl6wpSRQrMrIMhkR3XX+56dcHKwLk+6YMFPhHEgOE4hDfQFJwpmZ5INPAbCk5tMqRKY5THLoYQvAhTJNsxi6m/qOnZ//mX/31Zx998uZi8/Z/+f/kNAYLk+xHySoSY85JxphjShdXt82TU6CwTfD26vLm6torHM8qRCONCIBgWUYDmXKOu5jUhLBiOGjrpvZTvzm/DrPZE+/IjJDIUMgREhMQI2XT+bx99uRMc8ZQgTiAzIzkuOsHBXRViNlSN8p++9mHj//qJ1/GoRu6EVkvbjdHq3betpXDH3/+mSd89+7NcrauqgYJQXWc+rquALi77uo67Hab+XxhZre3dwfLmSmIiXfeER8fHYPZ+7fn33/74vDoAETKnXK+mLtQbe62pw8eqohzrpm1L1++vrq++TGAD75t2900XlxezWazetYKwHx9MIwjM86Wi/XBweJyQcyO/TgOy/UqBPf999+/fvWO0Aota71exdSM4+ScDv14c3MzX8yRKCYhdKvV4TBOJ6enWXI39s65qq7LoNU5Nyrc3t2dnJw+e/5ht99ut9ujk4c5k2ZBtWS2Xq/7vk9R5usDwn9hVWHOWbKAo27s3717CyKHy+WQpn63PTo46rb7P303VZ9+sAxeRdUDSAnITe/OL2JSLiTzHEWKMMBV3t3e3V3d3i0fPQ7eK4CkVLam97UPRES+vLhDRF/VR0eUJde+dsTDsBfG4OuK8MdffHq4WrEmRIqSRdNnz88+fvLgH3/3p//8m69ShsOwQueJvWeqgleFaYoKSkAxSRJBcne7/R+/ffH4wYP1cgUUiNCjY3YxpWkag4XgvRnEmGLMOcqYYjfFz54/+7/9n//dbtr90x9/97s//PnVm5dVMz84XAfn2KzyDrOWHWAJhlCZTgOoQXCB2RFRuQQQe/aAQEwcpxhjLAuAKU6laFym1FAyfs4574hpGPr9fq9qxPxDC1SRkKwIko0I78vexCL5vjejYGRiBiKSBZDIkeWckrnCXLsn0BiAmFIhiRIXTruzbKqlPo0yRhUBs5STGTCzoRlCqGrnXM4ZFUAK/pMQEQhcqBCBCdFxzlquB0X6jj4wsnfeeadiTlXZOyZ2zknJ8hFlkSmmMUX5gfHPjsvVKYl4VVExtJw0xVxMDg6NGEQzmBpRFeqUU1H4IppjhoJhc1SH0NSViKSchmFw3ucUiQM7cgzsnFphyaICqt73UkpaVjUDZBewaYKnatQJsYgWqK7rEMIUU/Gzm9mUopohcUE1mRgjE6GoxpjAgInbtk0Z932fp/0wjkkkaa6qEFVn3qlMREQq2SSJKCIr9DF22ZCcZxIDMCvdcyDOgJuu/+a7l29fvUnK64M2i+Q05jy5ugrBkZnzJFmRCIiz6Ha72/TD0WL288+//MVPPz06WnVjf/bw9PmTJ7///R84V4lQCsTCUM3QICc5v75r5zN0/uLqYtrfBMLK19kwKQA0wKS2T6qG4KtgwDZMlKeaA2adhjTmLHpzenq6qKvSLRewol0CI2S32d5dX18iKqsNKQKiA5MpgVgI1X6M+zFlMSX88Ref/82PPhuG7QRKCFMatyrz2tXBo/J6eXT57r1R9fDHZxf73TTFlFLKOaa0Ws5zzt1+Us3OsQGM4xBr3zT1OPaEqJI3t7e73f43v/mjqP7Fz758+uQJE68PDh+cPTbE+frAM68Wi2EYhn5Yr9bn5xevX7349IvPibGdtX4b0Lt2Ps8iwzQt5vOccwJT55arFRLknPu+ny8aZm7v9aJUOCLr9boUXkWKey/M2tnN3T7nfHF5aQCPnjxqZ7OU0uHhUY7JOTebtUPfcQhN29ZNm83mq5WCPn7yxFdhvB27zSZO0/GDs0dPnl5dXFxcXFezeYzJO/LeZ4nTOEnOTTtDTXfXN6IQkSFUJwcHJ8t2Snnb2Z9fvfvs6dm8bSUOCJkZ7q63m10H4LM5V/kqNOQikmPnJplOVkcnq/X59YXoLDivpqBWAEQZdJyiSMnsg/NusVgCyuZmm4HUIIqqyMnh8vHJ0X0npEwqkFVttmj+zV//5WKx/F//86/vbm+r6oEPAUXUlH0IYIggYmrQ1JWYZgHJ+u23LxaLxfHJycFigZ5jjH3fm9k4jpqziAz9kLOakRmZ6tMPHlEwJ/qzLz5+cnLw+69f/fMfv33x4uVyuVrUVXW4ZnZ1TUCRAEUk5jSz4INndinmpmlCCEikYCVzWCoIVV2VgHh5dzhPouocV5W/h0Yg5JTLEz+lIl5jkQggJslUShySHXtmKPQtYkCU4ntCRTUgKQtMMBQBIi+qiGQF0mz3NCEzB1D6HJnIoQkhEDtTE5UouYBgUlYASDmr6myxDFWTsyBGydlyVgMAZEZf0ueljw3mCKXcNhCCc+RcgScRoqK5e/Ul4TSlct4WywaqoEiIVtgAReHCAJDEUhaXMzLFlEtxsLA2JGfnSNFSzog5phRCiDHmlCrHLjgkRoSmCgwaJXb9XpI4BEbyoQiMilxzCqEK5Hbbnd4XFIXZZTUDOT1e/t//p7/3s8P3mykheipN97JmBh98wNDOWlOTTksrmMmJlLUJO+eSFCEyzOaLarbY3Gw2/W5ewY8+f/r88eP1fNHM5//x17+5ub5bLOactTLMYkmyA6xCcDVHQFEBRkRSg2maEOhiu3l7dfPy5bvz99dpnDLaFCj4Bi1j8M6HUHmJNpsvUpqIHHRjN/RE+Ksff/6zLz49WjWKMqY8D1ST/9mXP/721cvgHGapQwAzybmPyYwRaLcfv3nxLk6jTN3xvAKCbRowtApMxFlVkqkPojZMo6aRFGp0li2yMpiKdFO8vr2dP3wAAIDK/9LkR7zbba8vrzSlUJESajbNSS1O05SEgIKY78ehH8Z21lRtndFMMhgQmJqYFSQvKeD2dhNWdHh06OuqbWbj0DE7x0HUYkpgFsdBTfqhOzp6sFwsVDN7l+J0c3N9fX11e3u93fUpxmEc37x9k1NSwEePnx6fnCLxweFRjtGHuuuH/W5//v7dwWrZ7+6uzt9VoQbJjjHFiQnrUG3uNnEYZrM2xnh3dzv1+7Zth66/ubvpu4oB+10XXDg9PZnGcb/rRPTo6LCdNYSkAqYwn8+7fnr69MnDR2dnjx6enByPU9zvu6aqlqul954QxxR3u92D45PZYuFclaapadqh74cpzeeLuO/u9jfjchynlEV8CLP5HAoGI8aYxn2398yoanH0KGxxu90OWZ6fPVZXGTARXdz2Y3zz2YdPF847zwp4fnWFRF50HHbTxN6xaU6GlnlK+S8+evbBycG3b17/5s/f7LpuMZs5ZjVjYlKrnBMyNVQlSdLvx6PTYzwKF+/f930EZgT56OmTCjWqmGZPSEbsQ6gcGGaVTz/6YNeP//Tbr96fn++67vTwAMxsikQUnLvPjaMwABXgq4fNZr/Z7o4O188eP1JN+26fs6iK5Ryq4CsvORX0YzubPXxwiiYpx36/R4MvP/nw6dmjP3797R+//n4iyqo555wEAb1ziEnBEAHUVBQAmqYJoRpTAjQRde7+QnC/wvXeOVa9R0bWdXVwcPDu/TUhIkCMscBXEDDGLKIlRogW0VSsxNb4XkcoMspgCCZSFpfMnv//mTpmpb4aU8ySC4Wz8CsMsADZRKSwmxgRmQrzC8sK0QipjO+y96Ftl8TBeRuGfU6ZmCBbSbXWVeAy1BVNqqClq2EMUHlXeAHeUWmlOUNTMBHNKsM0SpYQ2LNTB5IBTYmACKvKV8EREiKkLDQl51lVchZL6j2LqWYNoiUqCGyBXSRyzknOiBTIIaP3LjinWeKU4hhdYRkyq+WcU4H9oTEjoMMQ6nt2PBaiIiDBzz5//u/+5hd/eLd/ef3OEZQ4FNZVRlWzyleFjkuOWmlSyuM4ARY7vaEZIZlmyRkQqroGRYB8vG7/h7/++acfPnVsqMBV00+f/vv/8I8jOnCG7Br2NI2IxKEGR9e9nW/ixyczMOnjtN12m/303atXl1c3cRAybOrQ9d1wd02zpZmS9wIa1YNpqLwxjYGG2+F4Nf/bv/zZB48eRInD1DNzRYHQGeTHDw8/ePrw1fevKiQgxwiOMThWzSKa4zT0lMYdW+56JKIoApyd80BdzFnFpqzZ1Cx7tVDkeUQ+cO1w0XiatVd324PlatU2RdUDRhnx9m5zfv7ecmrqGbCbRDKxcVIldbQfukliN0pbzw4OH4S6Ut9eTdMC75HgCFDSEDFLu2genD5xi9XB+khSJoeLg3UYQh1j5atuvyOiup31/W672S6Xh82szkPXbbZvXrwY++3Bet31+3yzWcxnhPjh8+feh7vdfn18sjg8FNFZ28J8PnXdq+++6/r+7u7GVBhP379+YUAPTh8Q4DRNUz8Suaaur66ucpqWizkTZslXVxfr9fpgvY4pBucff/BkuV6Jym632V/dvn717uT0dDFfjNNQVR5xhsTHp0dd15vKYja7fH9+t+/WhwfEWNcNGLx79+7o5NREpmmqqiqmDGAEcHH+/uzx01fffffw4WNft+1ibma7fadAdd1W9QyARITZV6ExyUYUs8WMXHmHcFiHWSCVSABxHNBwJ8Ofv3t1drR+dnby/vLq229fSwYmIs0i2cAzCIANo33w4MHjB8dm8dnZ6azxv/7tH+82d+uDY1BlTEQsYoQoZmgCACnm25vNbN6cPHiw2+yubu+Oj9aPzk4lR2VUUAas2DnvkNgBJYBh6rPkg4O168eb29vd3X6+aJfzdtG0moVDCOhzit57hXs+KKLFFN++e7fdbNfr5TDFcmBFAEJwxMAZDaLmD588OT1YxpRUTAyygaapDvzLv/jxg+Oj79+8zVMchimL+hC8c0TgyuCYHUOu6qqwxhBBJKecQaVYYkrEHhGdCynnLODZMXHbBmQwAFQLzuXC3gOMkqeYNKWsiUkRDJAdu5KdSz8Qm8tsDUQBsCGPCGJFBwZATEQOUS2nlKZpLFrdwm4DgJzVLAFAGd8HrpjRgEidIqABM2VVJFwslnU9A6pE4r7blfZZSimJlCqyc8EkwT39FVQLYw7MjJmBMOYY2BOBkx9gQAWIz0gVVSBCoME5Ac3eqWoVXOUclMEXISBKVs0iIkiUcgbLvkgOTEBLOhO88965QpstpvKmrWOKU0rjMBKWK4UogpOJBEQIkQHIQKV858FUFRWIqfiOD1czYIwKTAxJFCh4Xzc1B2eIoQop55KsYmYz9MGcc9MIUXIgFDW9j0LpNOx74sD08ZNnT88equRsSuRU5PT4+PhwfbXdrecLUSFIjDrl3MdpyLLv53+07Imq2r27uTt/d9nv+zil2lVcSwgVoKmqqMShk2xEkJhGdkTcE045avCnDx7+dz/54snpeohTTImpvLYZgdSsqvDDxw9ffvfCVxUoMFpdBYTEiFkhZmVUqqr9ZpI8FTSiWAIRAE0G0fD67lZBP//kk3nTIKAL3rlAJt4REfcpTQkuNuO8rhnUwCaz87vN9dVVBYihjkZjP+36idgxU1KXiLDxOgye+9WqbefzUf2Y3N1e6qZ2bgpMZo0vCTGVKGn14PCDz770YRFjyikBIJKras4x9t0eAJmdd06G4er9667fTbtdGsccp+BdTqnbd8vVogrVzfXtcr44OT1d7rvDowNV/f6br88ePTp+eLbbbK6vLrth2GxuD9cHbdPEYezG4eHD0ywJTMehC00jIjnnpqlBRVN2TFfbuzSNi+VyGIawCrc3t8MweO8MoZ3NDFERiMlUQhWGYQKAg8P1fD7/85+/zilXwa+OTo6PT6/O36+W6/2+++pPX/mqOXv6ATGnQSTnnFOcpoPVOk1TP/TtfM5N3bS19w6JSimsqcmIHHEIFRNNY68K20Eu9xoz1i6sax93twAlki5JwID3m+356/PLi5u+7++2Y8HzURlaDdl5Ro/eu2ePH1QOc0JAeHh8+Pd//cv/9rs/vXx/ebBce98wY+NqBWAVBsoiOUOWKQ55sVzOmsN6Xj159JAYx5xM0FA9O3YBFc1MQA0gjilFcc4fLOvlfHF7u7nZ3u6H7mR9OGtqp7msJGNMWcRUCR0COXJittltKx8QeLFoJSUwVZUcEyEqKAf+6OkjbzKlSXP5b9GIp5R1yqvl4qhfXVzcmqGILULV1AFQC13MVxVRnWIkQuf9bNYGkRDqcb9T05wFAVJKRb4GUJjPAojlmGtmBOC50EMpiYxxmuJIWQBKzwuYPRF7JiUbUxQ1ZFTJksuDS9RLiZCIQRZBBXSFJwxmlsuZ39QAmAgQs2QzNDCm4lhyjKigzldobDkJZ9NI7Jz3xI59SMP0L/FIkSyq7ELRBUdJBRSoBiompmimZowkRSMD6JCc/PBXjNE5Zueg5GRSMjByFMwlyaDiHSGXdJDlrGomokhYzDQOieA+rlSoy8zEzDElYiqRr6qtiCn1ad9tC4VcRAoQKg6mosTM7BXAxAgg5WRqTASGOScRIIQqBOfCNE1ZBTWrQfAe8R7LkPM9+iPGiIjOc8zEzMSEjgTNsHjpEUwtxTjsBFFzHofBgOaNJ4KYJnb87Onjm9/+lix7NBHJpjlLP2Vk58mGKL/77h0w7rveqYVQ1VUjcj8ylpxmbd0PAyIAquTyQsgFrBAVWLU6CAYyDHu5FykXRXBB7EMap+P1ej6fbfbD0tdmGssfLDUTLTCiqgqpqiWmrDaJMmJKOSMlSVMcP3ry4OHDB++ubxI2i3ZmwAkYmUcDzZiE0bnrwVZdPpr77TC8vry53HaQ87qu1HiaoqqkKTMDMuSUxpi6PhLyol0i4hhHJdSJr82a4OdMgSkpIznynpx/9frlTbc7fPDg6KRVEV/VMnamOcY4DJ3kPI5j5RwZxL67u3i/29wF79jxweHBZnOz2e+W6/Vquby8vFouV9vdXgBOz84c0vs3b/+3//Xf/+3f/u3h8VFdN4v1wZQSIoUQ7u7umqYJ3nW7nQ9ht+uZuZnNq7p6+vgMQP/0pz/s7zYxjs7zfrt78fLlfLls6ubq+vrli1fPnj2tau8cnz08OT9/v5xV7JymHGPsx+H777+fzRZDP05TOjo8Pjw4dM5/9/3Lv/jZwfNPPtl1wxSzqlVNnTRxpDTyXdcz+cWqfvrs+TDsh2FUWYBR27bEPueccqyalhCZidmp6jCmb79/uR/T7fV1yHubVarmvfe+LGmMGPKUY7Y/f/N6tZw/ePD4/fv3+/3WcyDnC+0vm/z8i2fLWaUmiODYGdiybf713/zlH7598aevX1x1sJ7Vs8oxokeqvMtlxQ5OFaZ+METHPMXUT7kNTvPoHBFSEvHsPVBMKate322mKc3a+TRFInj44PjR2YObm5vru5td5xazWRUqQiwS1GmKCKRqqlk0hxDQoUxxGAQR6sp78gAI3TTEqV00x8sFSjKTktDPRT0pJgrdMMYk+R6Ur2ZaeUJDQXLegSlTSIiVC865cZyapg3eJ6acc0xJctExgqoSMjNmQjCrfXCMhfWi9xRmMLOh7yULYQlGakCfxQwUfhCjlryUFrOMCCKKQRIpOFZEA1RVLfJBFVG5RyMTMSAys6nknEWESEIAU6PADhypmbExEAmiNm0V6joEr6DT1EuKVsZHqjkl0EqLF0KhmF5ErQhfRKE41rNkK1AmAieqYCqazbzq/eiKTAFBVAgJTZnQMSJaQRapWlHXlFYxgnrnHFrRxRdkW84pK00pAbNDh+yc91WohrEfhqHreuc8EVlhZKpmMzUj553HlEVVKudNhYkYCYhTzADkmOq6EoWYxMox20DUVERzdsxlfQ8AZcmMQIViL6LwAw9XVUwjmNXtop23XdchmkA2Y0KvmkXAAB89ePjVt9+Nw+iAppR2MWGYrQ6PFvN63pClaew6NSOTitABphRBwbLsu33OKmZN24iBWFLJhbcvIsWjYKb7/e5uv13O1ozeEbMjRVQV1STKMfazEH7yxef/4T//gzqRH0BgQECGIoqazRw5Pw5jUVMgYBLdTkNw9nd/+eXf/fKnvmr+l//0X6+3u6CVWmJ2jN4AsgFTRpCpTy/fD+9Zx5TGMVtWZtpPUdGZIiALUE7SD3FIaRSo28P5Yo3skmjKiYGD9wZ8OyL5OrCgatS0G2LXbW+3+/2o/+0//cMv/ro6On6YVPddZqbJJMU4jSMiNLN26PdFLr2YL8ax89W8ns1iyifsmXAY+qadzdpZSun3f/hj1TRtPf/266/OTo6mbhOHrpk1Z4+fvHn9iolmbdv1+8Vi3rTN+7dvj45PwGy/3zXz2aw93e+2b968SnFqm6pufAjh8vyyClXT1De3N33XOxcQqKqqnPuqqcDg6urmyZNHNzd3796+e/jo0Wq1On9/kUTn83kza+fLJQIEdm/evDl++PCnv/h5v++3t7dVcHUTMthF13VdF7McnD44Pj3+9k9/+t1vfvujv/iF85WKLVeLEplmoioEVS0daVP91S9/hjp1d+vNzfXlxTsCMYJiVfYeCEliTKqgdntz07bNw4fHtzd4d7szQSCybOtF+/mHzypmKf1NR4CGAA75l198fnJ48h/++TebvgfCmp03ixILWNAQc5JpMiAShGu5A4EHJ0fLmfPMxX5CRGoYs91su3cXN/t+JMwpilguavNAvFyvL69vhpTXq5XHUhN1zt0DBVQJLDRt40Ndt/OcchHUIKMLoVKo0U5PTpezRjRnSWJG7BAlFTOsWExpiBMze49mQGhkYpJVMjlHCACWcxqmKff9ZnMnWQlYDWNKWYSJS3TQOUfMGqMhImMVKia6x1oTUsmdF1mTqqPCVOeUzfmCVFQCYmJj1JzvoQQEBiQKWbTI0YhKxgIds6oy3QuifkC2OMdsCKqiWvBEaqBMBOggltec3Zu7HLOv2Ps0TapZcko53wulobDkUMSIGIDUBMD0Hq1akJEoogpWymvunhBX+MbMRExICCYiSXJgZ6bBETtyXCyNRg7VIGczNGIupTtCQCzaKUspi02ikkUBMVSV98H5kEX7ftjvu5gysS91AjAq6mQDKM84JALUokL8gYp/Pw1ihFlTixYDBhXWqJqqSJxiTCkge8SCyTI1NRnH0RF7dqJS+4qBjXS5bJ4+f0Z1i74hL0UsV5gWmgttjNbL2emDkz/87k+BAni3XB/N1uvQNIyUxykLqjEgeTSDhEyeaByGmKNzTiSX7O04TQbgmO1el6GiRgaIuOuGVxfXx+v5ovblMMLIpppl6gbRPHquTg+Ojw6Ouym6plEBzeq8QwXMoioYqsbrMKUcRwPpVcc0PTyc/ernX/zypz9CkDhNv/rJz/7h978fh771AQEgT5omUFAxkzyqjr5WsKnvi53N2BOgQSbyqrlC3HbD+c3merudr48+e/DUMRlkJPSVJ1CHAgjDMO7EnTSzGnbbPl7ebvoIg4QY/dcv3n/ys34pU7cf0jR5R/5+BQeL5cIIXN0+fPKsu1uev38tEx2cnrqqPfLtfnO722+nKT88e/T9d98/e/7ss88+Ozo8co41Z8+429x+991XX/zkF2ePHy2XS+eoqio1aZqm23d9P/DtXdvO2LHm+P7tm4vz90zYNHXwPnjfdV0Wcc6p6jQM4xinMU5TDJN3zhHQ23fvu3k9a9uhH5n9FNNqMT85PumGYbVeuuBdFRiRkfIUr6+ujs8eHp8cjd1ue3MlKnVde+cODg8PTk7nBwfG/O7925ub67qufQjTMDFxYXeX2ysAFAnabhv/9IffVSwfffqs363+UNl3L19VwRsROB/qZooZ2yrUBikTQsyTgD589IBcuL2+A/JM8tmHZ2enhykmyZkQCoo7Z8tJJcezw/W//dUv/uGPfz4/v1jP5otmNqYcCk5AMjID3VNYnPPbbrjbvTw+WD59eBQWDYID4GGKUfT6brPZDeOUVKJkyKJmltVijoz2408+9QTfvn6zS7JeLJuqrn3lHRYmflXVIfhpHA2g8h6ANWcDwhAc0LKpHp888I5FU1mWOiNQkqwpiwJGkTFGct6pqAozuVA9ODxwdC+rIEcKsN1v2YembWMqbxFGJsmJCj8TiYjUTMCAKZu0VSDnkgoxsedJppJCBwNVNQRiJnDFWoYMAOA8a0YGEi3Q95KnoJTFEO/Bv8RA/+IVLPKy4jGE+6W0YxMjQbk/hZdacSEdOVTLkkSFvffFoOI8xnivCrh3HiARp5SRiBwjgKrLkkUUkLDQipCIvDPIpoAMyA703nDGhN6xc8U/BWogWQQIwIiMABDRExlRQUKCKQHSfZMCAc3I1FAUJ8mo94kQQHTIRJQkxWHqhrEfJyQyFdNMRIzExKYZEADZueC9U8txHHKS4sBGg3tOOKHnkBUBqGLOVUhZmajMQLOKs7LwgGKhSylLSoRoKqxWczBRQDg5XP78s6ffvL7KSuwrZrQ8ITgEdg4zmAI4hx8/ff79i7fA/uj0yHPIObNERhbVnCFlIzYkcN5nMPBehALXoBk57qfp/eV1N3Tztl03C8gGWsgeoGSEKDFdnN++W6+Xz5pypEIERBlzsikBwsVu94ev33ZST8QZqxIoswSSxbsKGL2vQku833V9N8XBSP7qJ5//zc9+PF81krMYEIfDg/aDx4/++U9fV20gNSBUCTmLoRGDaQIKhm7ob9kbedfFMcXsPBqC5Jyz3Q7TGPOPnj+LgPu78wcHa8egaGTgGQ0hZjRXxYlvVD0BGEhMTL4iYRs/+fTZ2aMn+31PAFVV5RwBoApBJTofQtXsd9uYkjERudX6aHlwaIBdTvPV6nazaWfz9erg8Hjrg3/69EMkcJ5/+tOf/ObX/zDF6eW338UxPnr05Gc//fH19eXm7m6xXLDjaRydc+uD9dHJ6Xa7vTm/7PteVRbz+fZuU8huKSUzMbPgfJc6Ajg6PBCRw4PDb775RsTaWdP1/cX1zfPnH/78l7801e3d3fXV9cnpcV1VbdOQo5jyycMH+802DYPGGAHYMZjdXd+A0bOPPhymcXVwkOMEEk3VuaAqRdsLhJLS5u4aTHOc6npmZrv9Pub85vVrmHaNHTSe/vJHn3jGr16f+2ZWU0jiJgwW2KFSmAJxZTNAcW396PmsmTfvzq/b0HzywSMyLYz0EAI7AlJHpmhCFqf9sq0//eDpsNtfX9/t6un49BRcKJUlMgtkqpBFjVwocKTrjUiWx6eP6yZLzqrdMN7e7SRlh5zBxPR+s2qgSnXFj49Xy1lzcrj+w7ffvXl/Hqr6cL0G9SGUBSyIZpWU4lgquyK5pDT7fuxj/HrMIOOTsxPvWSWaqME9GcAIYs5pVLBJRFV1jNrM5l9+vKocI6LzoQ5hx3sRaEJDCLfbTUoTGbgQnCoyYUElEDLxEEdDQ2LHnghEtMwXsuSio3QF2UzIRGqARFOOjB4BPVLwLkKskEUhmiYBNctFCaKZGZwDMjAiQEUwBEYABGBy3jkfnGMSEzDQrIJS7H6aUwacplEUiIwYnPPM3ruGjCsXHHsiRspZJeWEaL7kaLC0rpxnbwJAaITMRTGJpqY5O2IVdUSICJ5LTMTAdJoiE/ngq1QxoYCKlmeoScGWgxU/YjGWFIWQgqGBmkJKDIBokgXZlYcvgI7DNE5T1w1giIQlBItU+Bxk6NUMgKvQVMGNU8fMQ4z/IocolCVEZGJRzNkICZGyZMdU0MdFJXrvHFJDQjUtVl4XfHDOMyuhUz+v+Gw1e/n2nEBCVXnnTDPkZCLoPDJZBkU4PDj4+Pnzu66HKQ3DNSNk4ilrTCVog4SYLE8EBDQBAXEdwjR1t9td1/enh0c//uKzm81Nt+2JGEEZAc0QDEGZ0LJcXN99/PRBU9EklrKhY0ehi/H9zeWL1+/GXhgQUgKm2lVlsUykRX6DOmq2+bK9uzFf4a9+/rNffP55zS6nMjpzHAISPnr48JtXb7eT1r6SHBFrqNjAJskjqhozYD1bknS1d5WjGEjAGN0mjzf9hgj/9V/95IuPnn3//up337zYxzBr5+hCGTU3DpzBmCfjsB/RQ65UYt9PWUGxWS2fPzm7vrwidMtFK5pSjPdwJ0NRcM5hwVgTNbN5uaKmGDeb3bxtjg4PwfQ3//zr5XoRqjq4um6r3/z2twz2+MmT77///vXLV+/fvH3z4OXhwUGhNRDh8dFxnNLd3R0S7rodIKQsWXLbNlXbzBZzIry5ubUYH549UhFEiG3b1E3fT2paVc3hwcl333/n2M1mc+8rZN51++3trZkenh7NmnnVtqEK/XZvCE+efXD5/nzf7avr6+X6sJ7NmbCZza8ub9C5gE3X9f1+5x22zezzzz/z3u22u7adO+9VNcap67aLxRqxeH015/zLv/zFzetvLO8B2CP+xeefNLPFr3//x4H7dnEI5jwDa6odMmlK0bOXFIltdbA0wCcPjk4OFpOkouFsyzfZRFQQwMQEqRPt+v3Dk5N5u3pz/v7Fi5fLg6P1+rD13kQgQBSEbEIuoQOvjiGqfPvi1X6/++DRw6aZDeNdyjkE7wgGS1mMrBD6BcHm86aufZK4Xjb/+q/+4vzy9vfffHtxc9VW1eFq6R2rqOUMauVKoEkAAFWmKVoWzHJxfnlzdffd6eGjs+Pjw1VwDomcI7Y8TanvelCYYiw0sGGaal/NKkeeS2Yaq4qQHEPwIabRTGKKi3bmnbMqmIKKoGGCHAJVziMSgTEbE4oUtAwzsZQJCiGAEd93U9VsjJHVvPdmEAIDBYnRLBcsf5lPpCwAGohQybC44+/zSIjkmMtLqHjicym0MpchPoCp5ChqpT+mxuyrqiIgch4AGcm5wgcFAyRmdliFoKYASOywgHtYAVEASuCiECiYCNHu8XX31l8iJMqSnZU8CtdVpTknVURCYiZHRGhgqmBWxBR4LzY0NbViPVZhU0QnqmjinUNTkDxO474bpun+B2b3K2ksN6DitAJg70LlvWmc4jhOUQpI7t6ZCGbF1KspSUxipqVAUfrD3vlisywnkTJoUFUkNDBi/kH14AIbonhImsVVaw6NKqom1ExUmdjQj+9v7t6/v7i5uhyGCbOQijLHnBUwpWT33LRCLVcDNSQiHNLUp2E1a/7ul7/8yx//eIjj777787fyymNwRm3gEgJISRRRwXa73eWmr51HA2IfM17eXr58/e72+oZVasJhGqGfpj20h4eaEmUxMKeuRIYVDMk9eXjy5SePn589tJyyQ0BSBeICL+Hj9cEvf/rTf/9f/g9Az0pGDMyoGnxAzilJEwKHg9gjeyRUizDs+m6crjfbk6PVv/rLnz19cCSSHh2tru6Wry7Oq4dcBXOsKBGzoqmMWdC7UJtqUjFQtDwM4rx//f3LD9vDw4NZimPX7ZlZcx6n0VdV07ZZxTk/m80QrJ3Ph74fh7EEwLrd7uhw/et//Meu2x8erh2HlKbKqhT1N7/79cOTwyml+WI+m83qpu66rus6Zn739v1ivjw8XOeUxnEygNvbu+12B6Drw4OqrmNMm7vt3Xb32aefEtE49peXl8fHJze3d+O4cd7lrA8fnl1dXm93+4P14vjo+PjoeLvZNu18tmirELp9v6qrbui63dDM57PTdn14mCVvtvt2vj46Od3sNmrp6NFpN40Hi+UwDCmlfte/+P57H+pnn3xiqnfbzdJg1jYqOaccYzSzqqoODg+vLqaTw4N02077sQkVEjuAn3745KBx//s//NPF+xcnx6ckHjXFMRcPSQbKqoVF5kI4WK6BnUjKIlYgwCbO3cPuTQ1dte2nzWRczVu2Z83q7bt3NzfXKY6PTo5LT8ejQzMQFkUTVaJh15vmP13fbO52D05PY4rFFI9E5BzEAq0xRSS2B0crBlOwlDMzfPj45Ozk8M8vXv/p++9ev393enLaNjOJAiZV0yDiOI4IkFSGOIESI9XOZ7HLi9vr6+1i1R4eHZweHNR1YNVh2I9jZucqhJzFzJioCm4+nw9Qns+aUirJemau69rvHSL6EOqqSinlnDy7+w+sSkiOzEToB+ykFUcmgkkJhQKTK71PkRxTjjGTABKLqag5ZnBclsOI2Tnn2KnYlCISoRE6VtMpSpaUVYpBsLSLy4pSRAyAmeV+tB85sOasOTGigDmmpgrZUCEDk1MM7ICpqitC8kGQoGma+WzmXVDNSEiOHLClYtkBVUHDEqfMkhqaOQCjfzmGqxWriJmFECrnJeVkOeeoZc9Syu5IRhAtiiAhIgEipBTVsiMwsGzKTkugxTNWlU85TtPU9SPcWzHLQPy+ZuycyyKOC1IBCcA5Hqcxi6mV8Aya2Q9CeVfUNllyzlHU2FBU70sKBpX3cZqKKAgRnfOEgIjeOWLOKjklaFwURXaogKiO2PvKiK+7dHd5cbcfL65u9/t9mkYUYxVGpCrElHNOiFS4e0X0GJMokKHrpmGM+9P18svPvvjiw2dPzx55YkR3dnR4dbfdR0DwybFzqDkmyEQsmpXp/aY7PjyofLjd9lebzeXFu9iPQS1rFIDATiiNXXd3dVlkFUSU7z31aEBC+eR49fjkBFWUivbPDCyrkEjwnhmOV7OAab8fVvMFeQCwiqHGnNMY2Swnx+jbGVpKcdp18WYz3g27j589/rtf/PRgMYtijn0d4PnD06vr683N1ePjQ7aECDlZiuIQ2KL145RhiLJYzJyxameI5NzjJ4/22912c4tEx8enNzc3s8VyvVxmQ1WBSve7zW67ETUwcVg0YXG9Wrx5+/qPf/z9J59+vFjO27aeJrq4OD89Pfnqj+y8A8Lgg5ru97tZ0xYFoKm9ePni0ZNH1azZbXa77Tbl/OTp04cPT0Xk+vrq7vZus9n+6Ec/qptmu91eXV+LGTD34xizlIPSYrms29YQV+uDppltd93B8bH3AUz6fv/+3fmrV6/rpjk8OF6v1+yd7HPO+ezR4ynGUFdyp1OcTh8+vHj3frfbLxbzs0eP764vP/38i4PjE3ahbefsgpheXV4iWjtbEtE0TeV3AUxvrq/QwDE7JnacVcehO17O//Vf/eL//Z/+4fb66uzoWCVpikqURQGdiBUAnAj84esXU85PHhxkTXSvYFRRIyJjRAZRvb29UwXGezfko0ePHj08vby+fHV+sWyqhqitXRuqaRpSyuwqxkCACuQ5XF5cbbbb2WzW90OesirEJOUsawBAUHl+cLz0DqMCAUjWDsfgw5cfP3369MGfvn11e7fPZs5XgBANJOuYVUXHGEWRANlx21ZJoqgB8jjmN2+vrq83x0er1Wqh5hyHSaac70udCBBCVdd1PygzF/JzOQVWVeUcBl/+jRBg5cLYD4RUAvhQuIpiCKamREXfVyKaYAbFCKsGBqZYJDAKAFkk5pzVWLUoVcoe0TGVwbihMVNMEZEMjQxVRKTozIDLGKo4+AqKt1yOi2aP8Ad0MgJC29bOV0zg2IMkrtg5Y4ImVFaa3zl775u68o4QVDUBSJH3ERuVAJBkUZmmhFQSheqQ7lnRRU5WPr6rgnPkkeIUd6kHzeUSQQCEyuWfmbLeO3tzlpQzgZSjugGBYlU1VV1XVUiSum6/7+MUc+UdmpXQmwFoFuHyC4imBqZg2QynOPXDEHPS8g4vrmIDxxxCFVNKhRoogoSA90i4nDM5KoBxQlRRFeGilDNwzjE7ctzt92OWbnSd1a5qFHCf+Gqv4113dbvbDUmURdRj5b2jYAZKgBxcAKiTxGl0KauZpJRFo8kU024YF7Pwl1/+6Jdffna8XmSRmPbiKkA4Wa8eHR39/s0VVGE3RZxAARE8K5XfmKvd7tXtHtG/eHc1DlMQ50ODaqZeTUKhjZr1Y2JmtUxWcqyA6Ewsk1zvunc3+2dnx8WiiWCKBiYlqS05ebZf/fzn//E3fwQO4ANmFZVOVTIZUMoTCnkf0jD0m/3tdt/F8W//4stf/uwzUx2n6NgjEjhaLxYfP/7gn7/+albVjcPAOkWZogTGUAVEUMlZZdcPqRvNtF00X/zkyyz59vY2DfvlwdGURAzXB8dE5FUd1+ebzW67q301xtERd7ttN/Srw7Wq3F7ffPDs6dB3293mg+cfquJ2u1HTnPO7d+8PDg8Qoa6b9WKhOccpiojzrmnazXZ7fHzMiLfXt4eHh6v16vbubt/tTI2YP/rwQ5H83XffMvPV1fXJyYmIjMMEACIZyIjJeV74edO23dA/OT1eHx7nnPebu6/+9M3rl6/Wq9V6uf7gg2dCVCj/b169/pu/fzSJ7LY7EHVIEqPmfH17R0TOMzr/wUcfH58+uLy+jTlXzs/a2cW7tw7N+8qvDwu/JJbouuO9puLgdEhqkhCnODat/9XPf/7//Yd/Pr++PV4vfTUjBElRjYiJwFTVOU5x+vPX300xnh2vgrs/5BEpGgsCBbx+/WZ/d1sD2dirCIhmpaSwrGdjP3z78s16Pnt4crjygZkDIBA5BPY8TqJqKta0japOw4Tm9H4Jyc6TgIHY2dnJat4SSEwZIVdVG6rWe58lH3j6i88//erl+W4Y0HlwYbffxzEbekDjOlSOSY3Iau9Xbg4gvqoBeJqkj+Nu309jLMUjvSfN4A8PcQUDx56QwDCE4L0TuedCO6QsklJGwKqqQggqggTelWuvpZwYMYuUFhEgFoWyD1V5XBaYjnOMRE6yyznfZ5OIkBDVOQbHaiZqjl3T1mlKFEFTVMjEnpEIgBFiFkS8p+v/IMwtGRxFYDDvKx+qENiAAUgkV5Wvm9bQGTJqlHvMDTTBTVkCe++8Yw7MqKl4OQW0+JeQEERyFhQxvL8papIpJ0cKmiWpVKZQ7gyABlaFGtVEJzSqXGiqJgSfRdSKM049Y0opAxIxoTEhqhKjoZaXi3fsmVvnU85JdN8NJiBk5JmYmB0SZ1XOpqIuMInmHFPqEH0aRzAoQzJ1XuDeherIPGPKWXImMPaekBRATVWUAB2zqTGTmRXmzDCNTFj+oBChKJmpZnm/GUblYB6TvrvpLy82mgbJWqBRoKCOkCAnQSL2DsyFENibkWevCHnou+3tNqq4in/89Nnf/exHT86OVbLIFPOkVmrexGAPV4v3Vze3cV+x9/d+NUi5Q9Pa15Vzlzd306QyxcYRMTlEUKkpTCn2w2A5AWrTVoA+Dp3lJObYEYGIgSQc9tPri9vTk6PWezFhQgIUwJxS4uSrdrPZvbjYJHVxyg3nNMU4TGjgfADEaUJiaLwfxb+93ja1+7/867/9/KNnKQ2DJDElYzCHRt7Tk0cP3l5dXWw2Dw5XbBA8270zFJx3nKxCRiJhSjFPY9xuNgKcc0qiU0zx5qZtZ4QwTYN3PE0x5bRaH1hOBtJtt9vN5vDwIHf919/8oa3bJ0+efP31V3e3d3GKfbdrm2q33X76yYdjt1cAZFqtVpLFe19XzVdffb1YLA4PDsY0dV3vmBcH65TSxfk770IdakSUmF+9eBFCOD45cc6/Se9KEZcYVfNytZ7P51kiMQBQVYeDw/VyMZu67fX17asX303D7vT0cH10/PT587vdtq7ryPTu9aup79+/fX14dHp9eeU9hSrsd/v5bDHux+1229ZV7Idc1W/fvQt145yrqlDX1fHJyds3rxYqqgX1pTmN+90dI3jHpOIcMTCYoAGaRYNo+OD04Xa3O7/ZHB0eH66PcrdPMQVfmRqBVoEIMoJe39ykFJ89elQTOTbiYBnQkSS5u9ulIQlCOUEbkUgep7gbxuPV/Gef/+q333z96uJiikdtCAQqGrMPzJhSGoexrmsmHvadZiHiEsbLKQuYqIVAZ8cHjOBcCERqGuqmDnNiDxTBkkzDMA5qlg0hiSQBIkAUVSYwTYTIQHmaPAVkkKkHQ0lqKQ1RNrk47a0OPjBqzlltirLbdqfrtUJOaprSrJ058mDFz21GqFkUVBlRwTuXDcreBX94h0wxNh6Z0QxDCK7AoUFUfqAbu+B9IMzeifOJFNtQMRE77xwwAiOqWlJzzrVVA77Z9ftUpmIAtXegmgVEculem6l3RKiIUKqgBmCEtfdt8N55hCyqjokpIBBzGa0bGKoampjkeyMomHf0Q8o2iUQrEAgzAgiOi0BZDQG1TF9yis4zu/sNtwEaERKSqSXJeUpTSgDgXairJtR+nAbLBqbOsSlWgVKOJkkQGPQeew8KhZON2FZ1Fao0pDglUyNEyRkRGIBLpwWKxEwlFxF5jnHC+0yqL3C7H8K4WBzNiNSPk5ahG0CxxJQvFQFVVcAcOQUR05gTOwIDNWtCcM6lYRS1foy7bYf1IQEAcsra73vOAyMwWhZh54d9yimTmRGxD6KgYCF4Vc1JhjSlmDTrfNHWdXj+6MGTB8dZUs4GWBzTYGLe14Q4b8Oj41X35pIBHYqaxZzqwAfrQ8+cpmHa75igIeMM45SMOGeNZvuuH6akhllyzGMUWa8WJmqCpmgOxEDENKf351fnD48+fHTCSMBIgBJBEYXcq4ubf/7tb2/vBo/UD13UsW3bxswZMMuUYnCaRHOXHOPZ2fHPP//0J59/sNtuDcCxS3nKpg4ADbzj1bz98ecf/uc/fNVTWB4dM4KNExoaWMriWvVMAJjzXZzSu7cX/8//x//r//o//8/L1UHTNKJQ1/Vs1opklRQ1D31f1TUBmGdmvDw/Xx8c5Jzfv3u7mC+qqq7qZrFYmdm333zX9/sq+Pl8Ng6dafOnP39ze7d98vTx47OHDx48ePH9SwBeLJfEfLQ83u/3ZkXwm66vryNHN7mc8/u377r9/rPPP1uuViFUddMQUvlUR4eHxyenTPj+3ftut3v48Ozx40dI+Orly7Ef+q5bLRfHh6vrm1uVPKWpCo3meP7+tttt5+3s7vLqcH2kmtk1TVu/fvlqvlg9fPQwW566DtTGYVifnJ6cPhynKU5T8OH49HSapn3Xt33HzjvmnNKL7769e/fdPOBqVqMCOjA0InI+jELbflvV7aPFcrvfnp9f7oZxtpgDUyxoF+eMWQwJNDh/tdntu28/fHz60dMTBlPPuz6+ePV6HCfJ0idJxVNiRszEnjl+9vyD549PHpyuf/fHP3/94m3brmd1AMk2RjUrUsDQtMnADHzwUiRVoGaqiJOk5Xoxa+pQNyEESyllcb4OVUscLLmk6aa/2/ajIQXPFVPlCcjFGImxqj1Mo1MRicwkmTRJ5bCpaiZgFxATYRbDLJYlW06e2Xk35UmSVMHJlAFATJMph5BjHHNiohBCip3k5J3TJGAgIiWffd/gAhMVK0dZs5QyFRYxGJFzzjnvfaiIK2TzWSpNhDxrW3a+ruvgGUEsSwk0MXPlXXAVEKLjlKJ3XIfgHU1xMoQoOabJuxA8B+8RzTM7HwApiwTPjh3e44acGjA7pNITUkJISXPM4zj2/TDFNMVoYOwWwd2Xq0SiqpQhIhEBc85F0mtokZCyiEl29wZpRu8dlDoioarsu44Ik6aUU920TdOEyhNC7LucFMwcB8flAwEzERQpsgECEYbgK+9D5ZGAmUzVczFyFbI/I+D9prs8Lq3smSjHhAZiCgY5a0pZJDpiQpQsxGD3WwG+zzJ6T1BsM1ymcoaYfygkmxmoZREiJGbRXFQFSCxpt1x71fLaY+LKeWYET4iaYxyZEJlNJabcjwkJDfBut1cgBfbN/ODhejGrCUxVesWbmJfB5dzHqZecTQ0dAGci8mwPDlav317uuq15h8DL1aJta1Iduj5PEyEoiGvqAs8SkWGapimNMU3RVKkbh+2wV5Oqrip2GjOaEDomLrX8NI7fvnrz4OR4Pa/FxAyZQYnfvX/31Z+/3m9386oaxz5OfYrdfNkGAlZLsXcWJ4lpyhqVqvD00YMPnz3ux74EOlQUAMWySCqXYkJ4+OD0wwm+e3t5O0rVtJkDxJxTzgkcMpo1bdseBlfN2+X6Rz/5i6qeV6HxVZVibNt2moau6+I0FS/rwcGBqqQJM8vxgwdx6Le3HSKePDhLUWZte3b2WCTd3Nx9//33JyfHp6cnVag0S93MaDteX908OD252+7fvHv/+Mnjdja/vL5+4DiEUOBfZtY0jaoGH7a3d91+37ZtaGpyPFvO1wercRwenp3O5+3d3Xa724bgLi8vlstl29YvX764vLq6u7n13v/kpz+RmM7fv1+sluvD47pq1qv19fXFNE7Oubqu4tB3+93xwzNXufdv3qDZfDbv+2mxmt9d3wzdfn18HIKfptg0jRmkLD5Uq/UBAAxD37SL4H1d1XXVDmNqyKkqEAgUKQYY+5vbbT8lAx6mtFqtZk376s27q4vLk+NjIkA0JtV7iL+YKANsNpvfbLcp548/eOSr8P78zdXlzf02DwABq7pOIt0wpjyenR48fHiSZZoF/OWPP1utlv/0h2/6cTg5PK4dxCmjc207C7NFBHUzR6oEqJKnlNWgTxNm//TJk6Pj41ndmsGMZKCJfQDCmIVdtd1tL8/fY07BhwrNUpQ4iVpWTSJXN9egeTVvK8e1gUpS1YgBwWUQ9CGgcJUFZJpkGu7zJIqGBHXtq+CZ1LMzMCJkxzJlNWVET4wGOSbnARG890PfDzkR833pVwpEwDOxK3tg0NJRillNwYfK+cr51gB8imbZO1fXoaoaZucICCkbMBMxGCqgOUdtU2WNBCWnD8F7x6Sm+x4MjBgLgjQwMxI7NqQpARqqgoGlnFPWnBM7cWbkvBVjLMA4jP0wDeO067txGolYJUvThMo7R6UinTR615T9LheBpefKOWaKKYuBm8/ns7YqC+4qVM45BMhJ1JTJFRQSglXBeWbwXhybKQIDeRJzFgwNSQkMFQAUUZnZe/bufppkqnUISKyiqpoklyBk8dBnyZTQAYkKIYoqEkkx0RsBYBnLGoCBeee99xkpS86SiTDlzMRcgHEGpRdesCneOQthFCVUIkKmLJrBLKfTk1XbuhFQmcc4UQh1u5ThDi2LCKOhmXfEngmrISacUp9kiikatPPlYnVUV633ZBbJBwRQ39x0scJqikPfd2UO3xKhKQA4RiLwweftbrmYr1br2azNKdo0NcFnVJOM5lQxAU3o2TmPPuPIQBLH3bSrG/77n/48+PDd6/eGzjlxSEAYQggKWcTAhiHf7vrj1ZJzNHY9wdvz89evX6vKvK1Tip5sUYdd399eXS4bhykjIBE0lTdHypoUNrebq83meNWU4hohutKUUZMCzwph18Xby6u8vb3bb+eHK8/UcgA2I4spxpgnyIvZYrl6+Nf/6v/06Mlz70PbzgvHqt/vYrpPvIhIO5vVzSxOQ5oiADWzucSYczaw2XwxDNOU4s3tzXIxe/DwwatXL8Zx7LrOOT44PPhRNfv4E1mt5tvt3Tdff/vw7MHzDz/IKc9gLiLX19cxxqdPn3rvV6sVAlxfXt3d3tZVxUxxHMph6uzRo1cvX5rZ4dHh69dvN7e3bVuHKhDgt19/k7LUbbtcLlV1MZu/3bzddv3h6cODo+P5cnV9e4voqrqZzxdNO+/HiRxXbWMiEtOsnS9W64Pj2nm3vd3sN5u+7zNi6GM7n+23uyT60cef1HWty2UxnWYVdu6DDz9qHOX91dTdZFQHxQqMU5zO35/H0ZgrUxkHYeLnTx6/efPm4t3b5Wq1ms8dmqmgAjvKeUKzOvhhGH/9mz+/O785e3jUjSOTyzmKGCOgZ3Z+ypLVFODjZ09nTZWiWs4G8PnzJwfL5a//8M3lzcV6OZ/PV6FqXaiAvSMNhDmmAmF23omq9FPtXRynzXZo6mXdNBIjqaWsVUWoljVdXF9fXd/kKUuKcRhizFOMMWdFVFNjyjm9Pj9v6+qgmR8eLF3w3aQ7UJG8mM2QGQm9r1zDBjvWYDmOMVaVD56ZoCR4QJUMQGXse8m6mM/LmpCZwaAELp33aRhyzkRYuEClGFzIPKWzBZbTlJA9EjtXhdCSDyoCRAX+fJ9lARAxKHKQUvpHE0liUkJHAKhmZcTORlUIwQfnExEUiJ13Dn+ouxKCqMac/iX5IgbBe3LOzHLOOU5oMMbYDUM/DsM49cNYuFVoFqILgbFwEgwAEjEhUNEdhLoq8/AQakVybTs/PFy1bSUpOu+cCyIZIEtKgaitKgABNDB1hBj8lLyImFpKmdihFoe8gAigEiLSPWe1qgIRqYmahiogqUrOqqwMAAJW2o+IrACiykgF1V1sLQZoaqaFIWiEVGQIzG6IWUSIqRx1Cl4j5xzHER1P01TAiKFyem+iJzXLORthFmGExazZS97uU8WIFDIwUy2iud+qZCL7ocVGqjZm2XbD9X7vvHv+7Pnx0cmsnevUV2wqSWOH5PIuXWJewqoUEMBADRRMQQhADdFXH376WTW/cKCEMOz3DtQTlpu7Z6cmU86j2JgMMJnhrps2+13O8cuPn/53v/zpbNZeX9/tx+nl1baZLVJCRADnVFVQnXda1eddOh71qFncjuNX785vrm9RPDsyzc5xBeCQ69n8enM3kgUkMPXEwfkW4+AsTtLv9998+/3yJ587cmbiHCLhOGYBSQrNrL7abP/41df7zbaRvN8Nu9QdLBuumpxyylnVQCzu6fLu7vT5s0dPnzw8e+zY1VW13e/HaW+ay8zRTJl5Pl8S8zCOWaRuW8lxqoLzvm5qH+pxyl23ub6+urm+/OSTz+q6JqLdbnt6cro8ODp90uz2+4vLq82+//TTzx49Ps0Sm6Yi5Ovr69vb28ViwczlJnh9df3uzRsRaUKFgLvtrtvtELGqwtOnT2Kc2rb94IOn38bomObt/Ory0oDqthn64fr66uzh2fXl1Z+/+vb5hx8dnzyYzZdJNIkuF/OU0mK1duxnoTo4ORWDqR/nzQwIb7d3h8eni3l7eHz07Vd/rPa7Zw9Ox0m2m00cBnL+7vaakHxwhhglaaLg6ODwYLg7f3u+1WlEqtCQkYDwzds3026L2Y25A8SseRgmIjY0kfTu7at0crxeHZBRsScBMBGBTIwgat98892+2zbtrNt3IALAYpSSjPvdmHVM+ex09eh4RaBIHFzICGz45PTk5PDw+7fv/o/f/2lz3p89/mDhFzGLQx3Lc85gPyXnnQga+co3wyjfvT3fTfnjTz5p2sabdN3O7K5u2inG8/fnoNBWDTnshkEBnAtRiiue/uanX56uV/u+//bNqxdv3+3yeLRck5ulpI5ApbeUVZNGh1SZlSlQDiGQFaAKIWQVQcSUYk5ZVbuh887VzpVgCNF9hoed894XT3ox4+I9fL48h5XKKJvI+VA0gqXNW2LphjBJ5pyRkxYFsUEpwOac2VMhUqOoY2cwGYAY5CyMCFZS91BqWAiGYIgkqmI6xUkUphQdOwCYUjIiUSCzwrATSSaaswCCATpyYChqYxTmqKaAHgkQgMipWRZhKkQIUFUiR0i+CoDkqqapm2XbNDTTadgzAhAXpDM3dQllIvGUMzM5Js8cQc0ImUqPzrGTrEaOAFEzgjFg5akKHgBVFRCRuApOhUnylBIWKw87ZnKAqqaWyxQODLOaqIpZzJEQER0SMlbMI6iNU+oGAaZsCknY+RL2V1UxBcWimotZ1KYhJslJzPqhrxcrMzIDdMSOBBDYaTE+i42i6CsBIDBGl8puJdt2GMZpXC7nf//Zh7uhTy7M29pB9MFAJYEZIoF5sqnv3t/Yw4OFZ2+ouYzEVNF5bpbgudu+zvu7FMVITRQNY44KYAKImPJkSCo4pjylPMapj9Pxavl3v/j5X/3sJ1Wgu25PDh6frK62WzCt6qos3g3VnE7Tfkjj+VutGW7Xq5evXg59JENHCpqYgADTNIoqGLQujEPqdMxxql3FxMGzqKpkULi6vH799uLTZx/k1AMpGhIZMPq6fXe7/earr/vdrScyhyF4zeLASRZNotm0iDLE0iTvX737L//pP/zb/3E5n6/E+Xm7QE3TNBZqFTMtlisRubu5ncbeOe8cI1VVM5+v1qap39559ip5sZh3XW8ATVObiKQ8jZOZXF6c//a3f3TsHp2dztr2u2+/u7m9Pj4+RsDbu03fD+vFEkRTTv3QX1ycL1aLaRzTFIk4hDCNY9d1q4ODpm4vry4uLy/quj59cOyIpylmETO9OL+83exyEnbXZ4/PfvTlZ4dHRwYmOathVVXNbNYNwypUd1eXYbZs2hbMJsl9383ms4p5HMY72FRt+8Hzj5r5rGnmWbtpFGanIreXV+zccr0iZgWNNL29uvjqD7+7OX91VFPNmFMmZGI+f3/17vWlCqeY+mlSQDHop5wlisTPPzp7fLz43VcvL68uTg+PTEUmcByQNKXknIOUFou2adu+60QyA6LllFLKmBQUYVbRj56dOYdqRoTmXEOEyCo2b+q/+6tffvHJR//7f/r1LguopjyMw+ir2rkqG0TwU3YK5prWVRU4L0jvr24Fv3306OGqCpWvpjgCT5eXd7vtUIXKUVnfmSMwcgEqGYfVcnawnK1XzbMnD370ybMXr9/809dfvXx/FfP1rJ2t10tEz4GGXsZhFNkTEKoCYpyiqDG1jsgsi4mK6oBjnIIPAcmHKqsagJUZNROkkkVkUQEAQkZS570BIaFYTjkH78tsOaUY41iy+YAIaqaWs4mpacwKzNl7L0hcTnuAJqYKZeaMjqtQ99NoBDmLMaY8gQoZFjpAloLqKf5FjTEroPMOkUVkSgkNIdRqmZhUNGdRyZKVkRwT102KKak4diIUwZDMERACIyJgFk1qCObAbDTnnAsVIBM7pzlXTR3qppCrU5pSiqZqZn3fq2nKCqjDlIILRAgG3oesklN2VeXY5RiJEIByTg6AmZ0v43SIOcWUCtkCkYmUQyW2VzPvg2N27BwRqE0JJEVEyFmSgoiNyWLMAOSrWiSqZFVxzuWcRMkADYrtGIhKe6PsawmRsMzyHFOccrKcE5oxUTaUJCYGQAYEZlknhgBGSIzVsmqnBcec4vZ22MZRVZbt7N/93V99/smzEPjtxc3/9o+/vdntA/vALMpZgZgRceaD5LhLcIyuYog4BXYOUDF0WN3e7V9fbjd318FXJeLDJmmcMCECksNxTAqsosOU7sapH4am8j/65NkvfvT56eGBSBwjhOCa2h+tlo8OD19db5q2ZRPHAiJpmuLUhaqpoNndXNy8fxXHiVUBYfrhdDNOU04iKathzBItHx6uK+JAxITM5IDYUz9G1fzizZvjk+PDWWUSs4ijCuv5u9v9y1evHOrJ8TGoTDFVtW33+/04WfCSJoeMAI6cqXrm3d3+3/8v/2vfp3/37/6nJ08+ILQ4JWYX6pBjFMnTNF1fXXbbzfpgneJY1RUahFCXvntKIlF8CGdnj7b7Ts2efPDBxft3lxeXXf+qbsP788t+393d3O3u7ppZRcRHB4dtO0MEJFqvl2dnZwg4TmPXdXVdhRCaptnc3O66/fHpife+aVtEvLy8GPo+5bTv957YiIlou9uLaN00dV1NlM7OHjnvEO3Fixer5eE0pdXh4Ww+91WzPDiQccpiHiCn7BynNPV9N/S7rLo8Poljz0gHR8cKNozjNE6L+Wycxsv35/P5DAnu7m6cC9550/inf/6HP/zmD5eX58+fnDx/dNogZMp9P7x7956QU9KUBADNUFWRWEUOlrOffPLhyap9dHz2n3/7uzeX7w7mi5YKuZJVZN/3U4xnZw8doUkq1fri+lMAJNQUHz89fXB8kHJkVxFR6fkDULakql3fna7X/93f/Oo//tMfcs6Ezpwjlf3tpZELzXzKoGlyPnkFipNTNNHtu2H3/k07X5yePlwsZ2p2dXUFhfxnqgpMrh+GKNGQgsMPn5w1TcXeq6n37qOnT54+fvj64vr3X3/75+9fvk8TwFFbBe9DjpJTzGZMZABTjKaWq0pFtBx04V7A4r0PvmJiIK7qWiQTcznslwiQGYCZ90FyZOckKyGBqZTJgWYDyzmnWLg0GckVO25OqmieKWdTFSKHBAXJXdoDWUVUHLAZELGZTdNE7HPWmJJZCbBYTCk4JynnnFUzlGjW/WtKRCRO2QyqKbU1pSnlKZXZDgIyUuWDMjZ141RMwbFHgpTUGBnNNHlFZUuSwTQwe6JQBUN0vjJAZyDj0M/aFoANOamO46CqU4xTAhExRDUSATGacsnysEp27BmpNHVVZOh7R1DX3jny3gNiyikmk6wFJUrIykQIdd2KSvDBO0YAIjbSQJUg5DylFA0Z0GXN2czXNYCMQzK0rIldKBWnnIWRDA2ZCk/iPr0LUAK2TMSIaAAAku+zvTlJcYTt++H8+srVR6poqEDkCYnr7JvX15f73SZ498WHTz599uHDh6dHB0ty2I394XL2+bMnv/v+dbM4yEmdr0RFUkKw3jKZbWXarurTtnE517PFmOH7m+7N9c2QVIWHgYNzZsCQK6a2dau2KWCOHZMy7/spJUgYP3n25C9/9MmqZe+w6/dMs4Yr0Oy9czR+8ODkcrsf+m7dNg5ZzBRwtTxYrJaICilVgJWvRhEzQ2IUAUBmRfJj7LddF3Okyg8pPzxYs6Sq4mI1BiR0IyCJwYs3r9effYwKFGpXL1+/fffu3UXNDJUnJDFT1WmaHHNJM4eq0RTRIGdBovVq/bOPvgjrg03XvX93/ujscT92fd+Fqlq1M1OTnPv9fnN7GxxKit1+X9UNAI3DoGpNO0ME8mH/vlstl4cnDzfbu6byTLjZbMzszZur//pf/xGIPv7ww8ePHxno4dFBHargPTkqfMDtZtsPHSB67w8ePRKR/X5fogHTOE311Pf9Zr/3zofKi6lMU7to727vFovlwdFh1/WLxTybxjQh2YvvXxyfHIPhOE1r53yoQ9049vNm/vbqxvvQ1PV2u53P21JqHcdpu90083lVz4goplzPmrqZlUnm6enJfrsZx+Fg1mbVnIQMb29v3ry92O66JPD1q/d9il88ezLz/vW7d0M/UuG+mwGgiGhR9YF98fyDg3mbFVbL2b/51S//2+//9NX338F8VhN6ct67aRzatokpjX2XUk6iBKSAAAQgarkJ+NlHH1S1N9PiDyciZJd/YCqOMbKvbvd7ci4mFCVAbzKmaQQX2jloGgnTvKoclQKWgpmopRjvtv3F1d2jx4/axex2P3T9yKqllWkKRj7nKGl68vDo0emhI3SOy5EOHZPYs0cPnj06/ennn/6Xf/r9FNOYcpxGIoeOLYuYEZH3rggMs+SyL0Gi4L2aJplExDkIwY/ei2Ym0nz/3SsFWBEhA1MCMzFFgNKzERWxwqh3hcKiqjElUJUsRGTFeFlYlmYlQQPMpR+laqoqogqAiMH7aRrHNJrBmKKooBkCSZY4ZYU8pahy76txISCSAESRVJT3Qyea2CjFKJKJSNWQjInKgtoTSFYzcM6pZrVMQIisQCnJlJKZJsyeMauIgRo4X7s0jeO4n6Z5CFXMEmOSnFRVTVPKY4zBB+8tq41TCsHFrCklcg7QlcoymHVdZyqOHXvHDp0rg6eUkiI6BC5U0lKYIOfMyHvviJnZVFM2Jp91AkNmb4iFtW1mzjk1AENTsQKWQM45mRghC+T7rh4gIalaGSfFnFQ1pyQ5gxqUHzZxuXQwOASonLUeJxVCI0mSclUFH8LbQZbt7N/89V98/MFjR0zeiaQpSkq5CuHjx4/+/M030+6qdV4TakwqJilFdoDMHt+xVk+fEIY3l93Ly003qGIw9JJUMCQ1Jmaqx9RPElcNW44p5S7lvhvQVYcPz56v15+fHR7VtN3eGmBV+yJldkaqVlcVoX1wevCbP30dZFHXAR0vD5ZotNtuJMUCBdRsGYC4kBfRskwxKeh+2C9Xs7/96//+YHnwH/7Lf+nHaV0FFEuafXClUi9qaHp9ef16tXz04GFUePHixc2bV40PU8xqOk1dzllFJQsxe+eiWGDOik1dO+Qhy+zwZH364Pmnn7fzZVVXBjCOfdHr5Syl/zjFeHh4CJpijMMwbO9uq7pJKQbvbreDr+r1bD5fLGNK68MZIHTbuxDCer1+//78n37z1R+/fvHs+eNf/s1fomLhnV1fXe72igAxjn3fxzghQokAXV5eTtO02+4k5+OTk6qqNnd3/Thm1TjF5WoZ49Q2bQkm5ZzPzs5iTCnFbuif/+wnXdcFXx8dnGx2W0Saz5fL1VpBwWzqxzTF2WK2WMwdY05Rc0aEdj431SqE5XpF5G9vr5Ewxunq8qqqgpo1zXw2o3GaELmu6+DdlPM+5lEJq3lS/eZd18d3Hz073e47zZqTZFNAMpGS64jTdHZ0+Onzp0RmzJMZI/7qyy/ryv/x22/GSR1GMK3qup3PFMyAfMHJmMUYJ1VHHCV/9vFHR6uFmgCiliUqkCeHKkgcx9HA3w3p8nangilnRpI03W3vjEM7X2cBdK5uZurDPqtIdlQilIYelGVUefF+uxilPXjQD7G7vd3teiAjAlUsbc2HD04r7xwhmDETEmg2Igdgpvns4fGHt48uzu9UZS+SDKYpqpjz3gCdqySl8uYBQCaKUyx8gzFlNMQapeRdERFQRXLOiFj+Xh6mzIxUZLkEUEy3mkXcvWodUkwxRAYqRGoiQnRlqq5ERMTsCICI2LmYJr1nnZHJfda0wGxSzinnLGqmopBzjpTGKP00MEJVVYgISUPlVXUcc87364F+GMEgS7Ista8MLaWUypZVEgA57xDRFBHIANTusZjl/5dzcgTgXTG/mhpxdCoJTaa+M7FpHOM0IgIiOOcEgEQATFRFNataTFkyIGN5e5uB2TD0ZuYcI6KaOfbO+yK4UVUqnJ9y4wMkRCJXBJflByD38E4wQCJHaNkE1ArHYxoTsTGzkjp2dd1UoSEyzQMhAXHZ5/zAfxNPpD8of5332lkVQsqp4aau66GPoMZms8q3DNRftQrTPsaUVGXPqC48ffLorz9//MHpYUx5sKmiGjKiGpMndMuWP372wZ++/jq0My3ookCZEBgBPSL1Xfrq9WWX8a6XJOidZzYsXz8hkSNCQDVwSXUYp2kc7zZDnKb5rDk7WruqAdYseUhk3jkffKiRghozoiPvXDBLnzx9dH55frfZL5cPfFVJyv12L2mC4p9TiymrKDkSsZRVFCaJMe7PTo/+x7//uw8fPUNyP/r8y//yz/8tBFdldQw5TmaAajlmZCemry5uaHF0dXG1uXg7Y7Q0cml8laIHs8ak2RRxs+uapl3MWt/Mnj59Xq+PP/nRTw4fPFwslt5XPoSck5TzUE59vysnxKZpCOH68txUm9ks5dhSU1Xu7eXN9fXVw0dP1EBUkVlUJaUU0/n799vtLqU8n1UnR4enD05OTo7fvH5X1fV2s/v9H/44n7UH6wMAdcyuriRLnGLbtp4YADa2cc4hYdu2s3bm9rsk8ur29fHJ8WIxv7q6Sjn5ECRL1/WI5L2fzeYhhO++ffHxR58wcV01KSsyKcCUEhPt+66etQA6DMN8tTCDEII/OFDNonJ9+X7XdbPF2gcPgN65g4N1jGm73XX7/bPnz8dh2Oz2oaoaz/PG29S3zhR0TNrFtO83b99lG2JwXrOpZYUfkiamzruffPnpfF7FqYdsCjSNwgw/fvZk4enX37wYk1a+cs3ct4spRVE2NYdYVUFo8CzB+0y0PDis6nYa9yUfgoWMgkQOSe9r9O+uru42e1OsGEnilLo6eK0WAjyOAyBUwCIEzhs5QM4ymikh+NCUHILG6D2cHB8eLJc3Vzf90JuJBzPT05OTw4MDA+CSQpTk0JEjA1BFI991w37Xa0nlA3oz9tUmD93QI9HRwWEdqmxiWmQkuRjbTTSnhEgq2bmqMIL+5XEhImaQcyYusBgkIipdJjNmB2ZEqKrkXAH5Ss5a5rYIjhHJI7qUZJpS8FVKGQFUlJBMNaecUwIfAH7I75NDQ4Asaimle55EVmaNKQ9TdIhIzrNXhpQyYUF4kpqNYybElLNoJlPvAwKIasqiomoZlBCxqiozmlRKFklVEVAkx2lSFStlcXPMREio6hyzpNT3O5GU4mhqiGWIAowQGJl98I4A1BSNirAQAIAAAOIwqQoCmoIxqELlqvIKjVNWRcAkyaTUow0DU1EiOHaQo2k2gBgVjQA55ZRErGidkQgIbJKYELBkcyvvqqpGigLGAKW3hogheAVDgJodIwKSqYJaVqmcB0LW0hZQAAPPpslEhaoKEUh9xWaKhL5u5us6I2/2ewWtQp3jhOycq5AcOzLKz5+cffX9y9Gs9j74qmI3qo5Z0LN3GMd+yjJgA5kCmlNTQzFARM1iiGJQMQZMIMPVdtvt957xaDU/XM4ryHm4G3d6abL44Gnt2DvnfePYqRkCWxE6VyG48OVnX7x49caxS+M0jQMhIFMWERVEYsQMCBnK2H+IUTX96NPnf/2Ln56dHA6xQ6yePX704s3Lt+dvHxweokOHBGCQ1WNWFd/UXFVvXr/NY5y384osjoNZlpTLhXecYowyZe26m8XBGnxlYdYcHD//4kef/Phns9XhbLEM7GOMwzjEOCFyUT4AuOIlUhPJOdRVmqa5qwQsiw59n3PyztfB356/vb28OHrwIKf8/t2baervNne3tzddN8yq6unjU03Tdt/5Kmzvbl58/+rd6/fzRbteL46OjjTL0PfDMJjIfDYrCeMyW9jv9+M4rtcHppBT3m53b16/PTo67PaDNHZ0eOScx/3OQNFs3jSb221TtWDKwTtTXzMCTF1nCH3K4zQ2TdM0zeb6ene7aWczripkkjT219d1Ncv9EImJFmba7zZo1LSzYfz/MfVfTZYsWXoluImqGjnMSbgHj8uTJwpVXQVgMEQwIiMjMj94nuelezBdLQCqUZlVyS8P4vwwM1PVTfrBPBITL1euyCUSJ46bqu39fWvlrl/UKm3Xl6qmqoxWK9ccrRQd83bfp/Ti/KVLFUAkZca+SfuiKM5IVeGTZ+efPj8Dq6rzpAFUVUQL2nLZ/psv37y7295PGjcnh6xTRoB2mMbUtJxJpUWyOo4h4PXtFXo5Xy+WfadiFEMICUNjTiqHmLpR7fpuqyI61Zg4ReKuzxAHj+6yfbg+DsdV351sTlPTI0aKMfrUt6RVVKEJhDbqeNgfPHCIzE+erEWWx+OwP+yc/Pxs06Qg5o96dLEKlVPDGAggO94d78ZpMq0OwJHrmMFt06VpoquHh+3D9tnFZdsvEAm1qikCaq3zthRrEZUAaSYhz7dhR1eVOYcynwizL2uO+DiQAoAoIjhiiJGIU2yY4gznDESRmRGr+rFKEXG3Rd+mkFSE1MhRRaXkGlJKvRBwSAAAZqAyt19r1RBRnaq4mJlBdeMiQtDNIQHHmSohZlUN5p8aE5i7cA5iXmqdwUUBCZFUnNiIwJwRHjPxiKiqouaMgOZVY7BISqaBiNSMTY7DodQSA813vPmOFpj7NrVNigRoigiIDEjE6Go5Z9MaQ6jz/dshhkgcRBQA3HEWTFap4liqYMuIj6tac0NwJs4ll1IjN4CuDvLRS4OkPpc8EACRAyNgjDGEME/u0Pzx0GbmwFMpAclUa8miSkBiMyi8lFJSjFU0lykyxNAoRAjrDM1k7v0qhCC1xACBnUMq2BbzAFMpY8LYxqZNKVAA8mwQQjjZnFw9bJt2VQsIqmDwEGt1ERMxBm9brYcHEAkpOgUnepQTzKqawKPWh+0dI5xs1mfrRRe4SwHRbcoBcDoej7k8OztrQ2ja5G4iRUCrVAMOTXO/O+4n4dTVMqE7I6qruCiAzUQrRzFRhWMp03BcLdr/8O//7m9//TP0Mk5H5AbZzfyzNy/eX73dj0MDHAM/FjuRuV8sFj2UCjbGednoaESloEFo23Q0VxcxGKby05989e//7m++e3f9m6/febO8Pw7iQBzqVBVlRnkDQIwx8Fokm5iKcuBFuzLTPB2P7iZWSnGAGGOKKYdw/7C9v7vdH3ab8yfMXGvd7faqCoDDcbi6uasKVcr/8r/8z//p//p/+bDdXl1dl1LGwe9u72aE1n6348CBw/39/Xa7HYYhxsjMp6cn05RrLX3fV6mL5WIcpxgjMX14/4GQV6vVer1x0OPhMIz77394f3JychiOCv7k4rJpW50pNESi0nVdjLFpmpOTzW67NbPUNkSUFquHm7txml6+eTbm6bg/mPm034cQXp2eb06fHA57DhGJm7YdhzEQ7Pf727u7w24/TaOqnG1OXUyrEJErEBGiMYAxZTDV8tWbZw37MFZRzTmrqrszAoDlPPVN+8ufPnu7Pd7tsosyRXVo2gUz15wBSB1qHteL4MP4w3b3NsaXr16+evnM5yVwjGiEIaTF8rtvv5mOuwDECZmcwKrUipy6bru9/vzlixcXF7/907++//B93y6Xy03XL9Fh2k1tiyQFZCi1TmVCCpGrJ04pMeLJZtl1SV1PTjbuqmalVkbP4AFiCAiBAblqvb65UzVTzbWqmgOqqhYBTE1qbz68j013xsEdZnNWIHb3GOPcD61VsBYkUrOp5Fqrqagpc+i6TlRqKTMkweHRakDMi67ZHXez7YSJmQMhEhNjYPBHaoD5zC8AKwBibQeiogJAWQRzIc4IzETz/o8CVqmIR0ASK1ohRSXmXGoVna3qAFCqAFUEUNUQo9YaZg2CG5HPa3xCdMf5Kss8lxLAzf0RcAeI2DTBzLEKEeP/MDlSrsLMkTjM+5q5R9tQVClmhkiqM56CFl0TZouPmzsGjoQzollTINePj3sABCSkXMXAELBrH9VdVazMMA4A9dmHZYaUQiyl5FLFnIPXWkrJ83+GOHwcxsE8G6ql1iohBEQM8wEAs+/eRaXUqiqANL+mqc22nkec3iwfF9WqyhTArVTNWSw2ikRI1d2QzBDASOBmlHW39DoFBOYQiAJR17SGPuRxGI4vLp4ciu8qmSNgBOJIDMHM1cIcr0qc9LB7i8IUAiFmVRGrImp6zOVYMgC8fnZ5uuoZITCYllkIB4aS8+39/fPLF33bApuaGECt1UPwEL/78OGHdzdZADAA94jC3JAqSmUmqcXMRM1GPw5FwT55+ew//Yf/6fWrZ+CeK5ojORpYreVk0b969vx3f/rzs5PTMg2I0DTN+vQMQ5Rh8JrdhRgs+7FoFhuruTogZNUx1/1x+PzzT//jv/+HhsPTpy+WTz9r+gWmdirGHCMHYnaAWov7fJFRRHZ34tD3Sw5hPB5UZRyHaRhibGJs5rZK1y1Ciqq22WyenJ8fjoeHh91qta5FmqYzh/vd4e7+2LXpD//6JxILMTLjl199nlLIeby9vW2bxlT7vjez/X6/PxymcWzb9unTy7Zt5ikKMXV9+/rFi4ftrmvbs5OTPOWH7fb+/v6LL74ghGGc9schV5lKOYthu91yiBwDAJdaQ+D5XlJyWSz6puuaUqXWlgIAEsfl+oSQUttiSovlevvwoFMmIhVdrdZEPP+gErPUWkoOMZycnd7f3jv4s6dP1qtuPO7HcXzsqvpsFTLgeDxsf/bFm5fPL2Z42Uext7kbMEYEQgoh9n1P9zurQ2QycQdom2CaY9QQ03a/7yN0AQJps+qk2o9vf5xqfv382ebkFBzAJEa+vT3cXt1gkVIN3IsKEQzjpAwxljbwz3/6+ZNl9/xi+f7u9vfffPvD1e3S0+n6TKa9DCOYAKA6IDDPuHZgUxXVWg9AuFiuOEZgBkJDo0AGZmBVaqQATNv73W63m/tWs9N8vvmJ8sM4DmWkyMhRZjjlfE6aq2pqIn/E64tKiMHAVWaFzCN6c06C/tUtWD/uElar9aoPu+OOkGIIRBgipRg4hFozus33a0ZAMNNazQ8qqtLHiIRarRblqKI11zFwSim5k6rOXhkzEHMELyJILGoiBgRVlUNywClnIopMzNiHVqqKijmr2Jx1dCQHnaclcwoGZr60/5XO5YAQQ6hBiWarpaupI5FYrUYphPnflCqLvm8S5zId9gcVnQnMZlZymcFtyOgA6pLCnPNDd2hSIhIAULXUpMBYpChAE5oQGtOiornWXK1purmNNb8HeQjAXmoxd3Astc62T2YGJEAWzXPjDH2287iIMoX5e+Duf418ufs4TeBuRCJKrLVWSqSmiJhiCjHMkj/mKCIIdDjuj+MxUYshmtrjKwXgpF73WWk8XS6fcBMTUWgcQ+AWKFQtuagCbs5Onwl/8/Yam84gAaAgtilMOQt6YJo8NMtN9Nyg+mxRFkW1abe72W6bJv7688+fPb344epDdk0cHUB0DjDP/WifDoe7h/vNyxcM5u7iDiEej8e//OnP2+0hpgaq5lJNDd3czB0MIMUIwPthnKSoY9P1z1+/+g+//sVpG+93R0AChyYldHJ5NDF89ur119/9sM3lydkpup2s14hYhr1VMakOjoEkS6k2iU3FTc1A99M0TuPf/Ztf/8Pf/Bt04H795RefvP70y83JSVV1hSamEAKgu3vTplzGcTrOXEaa54+Eu919Hof9YXt7e7NaLNbrtZhzCOvTs/by4urqvak8u3xuUnZ3t6VMpbBqHYbDYtk/OX+SJz3ZrE/WJ9uHw8np6uR0TUzPnj4VkTEPgZh7GsfxcDiYWd91832qlJIzL5eL/f5wfXXt7k/On2zWm+OwZ4RPXr/58d07qbbdbkOYm53IgU/Pz589e9ot+mmctttd1/WbzdnZ2XmMQc1SQym1qtqvVirSdr0jNl03lXdnJ2eHYeyWfdN1l10PUqVURxCpTZNEpFYpOYNDrfX9hw9iGmJYLNPJ6Uq1ai21SAWEGdWOCIxV6+l69asvP58pKPSxBzMPuAOFwBgb7Jbr3Tg9HPYqBYwYIxKDjg05MRyHB5yGk/UqRnIi5BhDY9Vu78uQrywsn1+cEyIgffhwUyctWXJVEQUVdKtSqeXh7v3nr55dnJ3kcuyWzd+//vXf/fpvfvPHb/7X3/zh2x+/XS1WbewbxhSUao5EgcyJq2PJQoxAkdyPh+Hr47erZdd07cWT0/WqDQQhhsABwIvK1e11zWWuYIUYzdHUtCo4llrePLt4dvHLP3//znHOB0p0jxxUVeXRDhsQmFi1BmKB+RYMMcbHPfCMVicyc5nxmYjjcETj+Q6qqm6KAACmUtEd0efJEZoyOs2rYNPArMRIEBipS4TzDMNEixaIsTFVNXMgMVAFRnCDWh93wjbvMFQTBwAAc4ofEWs+p/6DiszC4sARQIgZEdyNMMB8IzZXMQB39Ln49uiDZFNzVZuKIHFgQ9KAiK4eInepQbAmJOu6/eE4f59MJUttAJjZkJgoMc0wZ0Qkiso4vy44YtskJPxoLidHDCGVOszWlCrCpc7LK59nwIwzwJ2IDGZ9AAAhhYhI5jCOk0olRlWbWd7MwRyqyOMR507M+vHrz0Q6Q4AAiAnBidHUGJnnz8t9Bvlf77eT+aLtpcqMZSXEWVFpTvvjeHsoTy5WSAUwIEWnMEwDMEPouvPFzWG6G++LYBcY0Q0dIEgREyMOhKQOzqFbnaDUqdZJc656c3Mttb588eLXn78+2awV8VDy7XaHXTD3pu3YvIqAVgcYdvd/+eZPm3W7TmEurL19f/X2h++H/b6JLYomNyeQmZwBuB9GDuyI4zR9uN02y5Mn509SwJOzlcXw48PDmHNMXRvi0nzRJgrJiZhpvex+/fOf/rd//R0Fvjy/kFzKOETGEBtVnl/AlDVW95IdZBxtd5yGPP7i5z/5m1/9jAgxdecvXz3/9Iv1+pwIGwqceG7TmCq6A3jXtYeD1FoBgAwDh+PxqFpm5d7Z2UVAMoDUNNvtLgTCEKdxLDm/f/8OCVaLzbOnl7vDFhFD4M16k4s2KfaLzlSGoyJB2zbr1SrGdHJyejzujofj7mF7d3/X933XdQBQSokphRCGYUSkm5ubUupqtZzyuOiXRMgx3T/sD4ehbdrvv/sxprBYLksupnZ/exsDptQwx+VqvV6dMHEIgSggWmzjNGZKabE6IcRFv7jfbpnjxcXlYX9o+8VwHBzu+24RQhyPg4rOSXhVEa3z0FWqLPv+4eGhaD1fnQNxLTXERWpTtcdJbgVNKR6OU7daQ9OmfqFlQjVimsHpDtCmBEhtt1Dib75/NxYqFdENGKpaBFet1W0cx9C2EhvAEJGq0MMk7rzoesny3//4l9v94fmTJ/cP9zfboXqsBJW4ksSY6jgBumhdLhefv3oW3JVC0zZN04fQ/p//7n/64s2b//W3v/0v//tvHiRdnl8iASGIq7gxhMiJee6pAlhlIlXZH4ab++3V9d3D5e7504unzy+6RV9HOez3+91xRgXNCuU5UmKAh1qI8G9//pO+766P+3ESEREVM8UQ58QsIs6kQQIEoq5phiJTrR/X3YhEjFRrnQdo8wsZAOz2+xiWc7toXhfPzmyb650mDjOUVAkhRlaBUkotoiEye4zzHDuYypQnjtEF5suuqFWzx4mTu5nPZl9RQ6Z5mm6qCGhotThjoo/MCXCYM6lmUF0fI5CPDAl/lGY9ToBATUUciMGBiAkNycHAbL5rulQNc9RhRhRxiLlg0yEgH3E7jaMblmJTrhAShxA5BiYiYzBTDNwIIiK7GzM2kWuVau6gGg0RCIAJGSESoT8uvmcnsiq44Wx7cACdgRfOgWIkNgAAVNNcK9Dc9RVwjwHFZJhGqYXc1JyRTBQAEGHe/gM6gqcY1QzUuCUSokdYuqsDm8aUGoswr/jnjTEaEqWAjNEA9sO0t1WfCMyRQnHX1B+K/PHD9v3dfrsr+33x0B1rQYQ5cFbNkMhdQcGKUMseWy1Sitw/HETzy+dPv3j1/HSxQPCqLlovT07udruxyKZJ4uYcCJETo4B7no6Hd1cf/Pzydrf95ur68HBIGC2d3ZdcRBkiUKxSGQkRNJKRT5InlYtXb9rulNuWrZDi+/dXIYX7h4cYj11KuFoxbSIqIoEjx/D61TOOPBzHcjyOxwOaYUAlrKUMWZAITKcKh1pKtfvDwRH+5pe//NVXXwQkRV4uFovlaRN6rTLXK4GUHN3dVUSEQmKOMTbMgQhrLWM5qhoHXq02bdvv9w/H7cN+Gp89fToOOyYKm03OhThIVTe9na5jw2gQQ1os1h8+XDex+erLZ/2ik1IP+/1Mi9rtdje3NyY6v/Qx06effBpjmPJ0e3s/g+fW6yUi3N9v8zQh0PxDOE7DOOYx75qm++yLT/e743Z/uL+67w7TVKYiqg7rzVlqYt8vL58+DdzE1ABhlWoiIYSqcrY4dcRpGJdr3mxObm6vu8VSDAJRbFKtxWMiDu1qk2sZhyGmhIhIISQUyQF9yfTVF5//8ZtvldPDiFOO6g7eQggzADh2YZwmIKfQ/e7tnXp4vm7RhAOGiEipliouBDFwend3tx/ykEGUwQyAHZB9ooAP22F/2F88WRqQeS3FsmO1iAhVxkA+Zvnj4fv3H26QMBth7N2yszmYMkBLXjNGfHlxueoa8RwQV6t1anuCcBym1cny//Wf/uMnTy/+3/+f/6w2POxzZGqbhOpWxh6gbxcAnLU6agSi0KBDS03Ow9ffv3t7dff0+vbzTz49Pzm5fdge9wcGmKS6GjGhmwNUgCz6/OnF04vNMOWmaXM+VrPHEAgTMS8Xq3EapCIhM2AkLu5qoqbuNuPwVKS6iRkiuImCM5ODAaKqM0ZEQ0acZ0doM3sR1BBdTU1BqqiIAQKSu1apACGmkGJcLk5E5Zj3YtXc1MkccxGptaq4G2OkGMTmkKi7o4obGwAggZoFjkQ4pyKzVHcUA2aWGf7gOGvq1bTO9zVABzKfhTBCSHN0ydTNHR9tie7ADuTogYiI0ExyGRPEpgnJQ+SI4KauMjmiAzkgE7VNG5gI1aQyuQFxYBNooIvoYCpmpRYO4ZH2Bs5MIfJ8PQHAuYcFwA4QmIDwI0wJ3XGWMiMgz5Q3DszhfxzCAIjkZmrm7rWKI0hWapuZtTSP8EIIIlJKmU/qeQLoc/EOISCIVAAiZp/LxEyIYOYMFig0IY4lT/vd+1uOF6vnJxvoTu6m6Yf3b9/++Pbh7l6KOmCHwYmKiqmriJLFGAkIAN2UEdAtxSQpfXj7fQL5f/7H//CTzz/dj7u31x8sCzgSc+RwdnJyc3e9bCIYAkAVSzE0kQIAuV1f3727Oby7uq8QxQlBQ6Aq7BBsBk9D4yoEroY6jYH55PxN6paObG5MDOC3t7enpycEPBzHRYqBgEiJmQgoEIS4nVQtlAqqjqFDwqxKjhYSBxKpUx4ySja6un9oE//tL39yfno5o7ylSBIjjhyYaTaQmrupgrurioMTYhEhosWiq7XOrj4imO2duRRTI8LVaoXwCMUV87Pz85qn42Hfd92Yp3GqSOHrr//48LAn5rOzs2cvLjebtamUKedpymVCdAQfS52myQF+9rOfLlfL7fahHqq7LRYLIsq5uLuIxpgIiZkPh6ObIzMSxRiePXv22WeLzebkN7/9l5RirjnnfHt7++HD1Weffdov+jyVQfLL168Xq9XD/T2nGJqU+q5pm2nKDv7w8NC33XKxqFK6ris5xxhXi9Xd7Z2pnj95Umrd77aLZZ9Ss2jTNJUaoki9urnebJb9sr+63aXUPUIFwGMgk2Kupdhu+3DaNico+ert727fXZ+evn75tE1tyQUIiclqjYvF3Viu73aqIqKBOaVUzQksIOaaay7n6810eECfuq4BM+AUEkmVhJCI1Kz6VA6FAzcI3DbAvU+SAOf7tUQmyM8vTyM62kyMmUELc0kfwOwnX37+44e7d3e7w3HcPTyUIn0XU9MWC3UEYDSMZpiYAwURcYTQtyaqka8ehv3wp6fPL4/D1l3RIXAsWms1VS/VxlKI4Geff9q3TVaLITo4EceQiHieknMIzDyNUyklBEZGcJ+hb4+zaIBaJQQiIjOdV6dMPBuAmR63v7MxUUUrVAWdnxmmau7HcaoigIQOMca5TplLCW1ctd1isVIzRZumIwDlUocxj2MuVc2MGEMggPmRpmYGAeZZtJlyCARoZlJF1cTQjMRMRd0Z0Okj1W4egxcRUg3E6gimDoroKuYA6lhFESmE4I+/caxVIscw93gVPRdDMkBv20UMrZuXXA/HQYpEkWTz4zmkQCLqABSiOzoSRWyZQWT6uFwnBp6ZcIw8n9kuqp5rjSHO71kx8FTqPIMzd0RywDmjzYSGNk2ZY1qtgusMLnVEiIHdvJQCszMghnn9EEOYmR4isydIxuFoiPLxl6oGjuZmCKL2/t1bXVy0KwLwRy2zg5Tq7jmLqLDbdjucbdbb6l9//fV3330r+x2LLMCdfMxFHYgIquRqq9WmljEYMwefS2c4X4EnBHj+9OLvfvrZ5y9fulWpAg6qFjhQ4BTTq6dP7+5u7re7zXIJIJEIaq5zyAFwf3tXgc1D5FjEikkwJw7gAAyBCdxNZBqPh9326ZPT09OLyWJWCBFmflWxGmI7DcPm5Gx7/9DGpm2Sg5FbbPrJ/E/fvvv+h2skPgyuDiGkGEKKwdRLzo5OlDwlwyx5fPLs5aevzp+draepiHYGTKlZnz9r+wUihhiY5vCVu6nPSjYxkQGJY4w5l2kaRSSlpKrzl9LdkXCzWZvUv/z+667rYmCZctcvX3/y6e//9bdqtlqtj8NxtVwjB3OvpXz97Tf32/tPP31zcf7ETZGpSc3heBwO05Rr6prXr1+dnp9///33w3DUWmOIzOFks1mfrHPOteowTgTQdl3OuV+uTk9PVfXdu3d//OMfNpvT9Wrzd3/3t1dXV1OeloAPD9u37965++Uwtk337Nnzk9MTZl6v1qZ6PBz7RZ9zCSFsNptpGLe7XWpS0zTb+/smNYf9PnXdxdOLm+sbJF6vuqsP7w577XptkgUOy75/cClS7u7vxt39aReXHddarRohiI7MVN3f3e06gCf9IughgKHy7fX1brd98fLZyerEj1tDiIvFoPDnH99vt7tATECgClAjBnOs4DmXX375+ZevX/3lx2/+8PW3Inq6WQenUpUQwNW0RkYrEojIFJEJ6iJRcnvY7vI0FDGO4atPLjeLxlxUsFssrIrFKiaEMxY+TCqxX8VBV9z2/WI8Hg67h8OUY1o2TUvuzKSKk3lQM0QidiRnNwT1ehynq9tbAmHE4sox9rHJJcuYq1Yxu7w4fbpZzytfdwipDakBLKKiqohgpswsIin9VV0c5kf/vDjBOVcdo87zblUmmBsAMYUmRREBeDSW1Focqkhtu3Y25c1r1SLiwCFEMxO3qdaSx2bRdH3HHDhwKmMuxSuUWmqVnHMu+fHJ4+5uM6l07pMxMyAQopur6qTWxFjVhykjkQMQzrZhVVEzRfK5+jDnU52BkGYeaeAIpj53GnDuRaiZi7i5NiHZbNKVKq7AGKUWImQOTEnUYjtiCGaG4EgYIhOCyJzVcQAGQDcHxNloPNV6HIsh9BzbpmWaYdo4L91trrCbEXHO5TBIVQkc53cAJprLkKaiaI4eQ0ipY4dxkFmjTMRt0zIxuIvOY59HDUCIUT4uwcx0Rj5VKaJSCpkbM8F8LwFQ065rLIUAJvRomnd1wuCGoWm6tksk0evVD9+9/8vRSm1FDKV4RUepyurgnqcxxJC16niIXnSsFNLcQiNwYsIQBOmzzz9Zr5b7YZ9SQreGQ4ZCxBQ4MC+75VevP/3nP/xLjMxqbYwAPomIuRhMRSyk1J+6Q8PISKo6Z0EIFdRqybvtfR0Pn79+Fdo45VHAKDUuWh3VHT13CQNgFbu8vCTJIhYSx0V3uz387usf7reDKLQtP4oDkfJUhY1DNOJaBrdaREWp3zx7cvnk/GxZywNQNkNuVy8++/Llm8/7xTKGgIhVqs1N+Rk8JBWBQmxCCOM45jya2yzp3m63KTXMITCL+4e3777/+g+mvj45u3xOq5PzYZhKldOz8zyNbdeN48BIX33+xeXFxdt3725v7qVqqdb1i8161fWtqX799dfX13fXVzepCS9fvPjtb//l/v6uX/QpxqmUGN0Zkfk4TA+7XYpRVaYyhZRCZGJS083JpquLtunmt9K+7549ffruww3ifr3cbNYnq+X6/Pz84uLCzLd3d67GyKo1EwHwk8uLWoqaNU0zIw0Oh2N73nZdd/3+/cXTpxeXF7WqqoUQj8PR3FWNKORhNx13THDz4XoRUyAkmRJYNUFwl+yhybnW4/Hi/LRL6G5MAQ3Jfb/f/+4P+ZPXL5+fb6SOBegP37+73x0jcWAqVcxmPzwKUTZ7fvHkkzcvifTzT14ul+vf/PHPP15dnWzOOaYZri6mLUVgruoyFQ6hRTStXWzi2fJhD0MuTQpvnl60gcWViJiJEKSUIkYxIpgavL25v99PqujAbbtIHBeLfru9G4YRKayajhzNFdwRnd0RjKgRc3EFVAYn5DJOeRJAJEapVkSLiAGkJr1+dtEkcIRA0R1EbYYRl1olBKS5n0shxnmEEOOjqKqU+tEjOc/KbR7l+eODxR+5DoFmkXLR2dKeid3cwNwRRWzM2QCatlMDBOQQc6lTntxdTAzmdisSkanlLKWU2Uc/bw4Q2R3mwNJ8LM0NNUQ0AK11mCZ3H5nn6GtMiegxtgP+kXvBEJinXOa1qJE5ACPMSLTIAR3UAcnBTSTPkRGY4TwcgpmbSUjRzRDCLFMMsWkA6fDAgdFw1k2So6uI5jwNzIwc3BkhMuFY8zCN41SPQ+n6jjgSBXoUraGbmbqax5QQeA4s76eh1Hp6ctKlxtRC5BgjIoCpmxIHYgbEnCeptZb6qBIjmnIude6aP/4ys1KKqjRta6rTNCFQrbXUAoDTNDlCiknVZ1pTk3jz/GJbKAUo2U0FAVMMTQzrRdtEJis6HUFGOU5k0nDk4FLEzRURYgzkXoubglFAOB72J6veWR3gcQAHAdUZHNj3+132p6yepDaRlst+LDIfXSFwAP/i5Yt3d9c39w/LkIZhP9dVZhODqkmpSME5tY5NDBZ9yhnACHQ77O7v7roUfvLlm59++sUPN9fvH46xbQISzJURQqag4FX17uFhuXzVpUCMnPq/vPvw529+nAqkEBkLWGWyGFJgrm5TrTlnDihlLLXE7vzs7AlHOubpUBYvTp8eb973y/Xrz756+cVPlss1E82TuhDYAbNWMwHwpmliaky9lFxrbppmGMbYBHNn5sVilaeJALXKcDh23XK5WgIGc8q5ACEzxyY1TZqmPI1Zcr27ux+Gw2q5qFUP40CE4zjWkpGBCZerxS9//YtxGAlhsViO48jEdze36806hAAA11c3b9++a1Jzfn5OAOAWUtzu9+/evbu+uWEOfdevVsu2W6TY7A/H/X779u27Dzd3IaTlcv3J558/vbxMsSGk7f29uROikptqrbVb4jQMN7e3TLRarUup62756vWrw24fGK2WDx/ev3z9CSGK1NCknpCJq1o+bPe3P97cfPj6m+8Oh6GLMZfC6MQYYhiPo2MYq+52+02X2ohVK4gTo6KPtapaHsuf//SXkl89f3b544erq7sDQUyR0J1RzRTQXLUOJaTm5599sV4upYyg5ZPnT56cLf/pX/7wx2/fzWKDPCUkqlI5UC2qCl0MY5EGXLxQSCcnJycBN+v+9OQkoWudEF1ESslKj36lENMwTrfX11oOoMoYyB3A+tT0Z+fHrn64v/3m/vvTzXnbLhFQdfaJ0ewKRER1YE5jNVESagksMGnNhnPFJHdtf3l2ggwOnkJMTeKxzDVWMzU3l5mcrPOl0Exz/sjwcQOY60PBzcAdAcs8XaJHu4aZAbiqAIa+7+futwO0bTvTFQHQzBWM3Pt+CU4IGKKM4NNUt7vDcTgu4nIaSy1FRHMutRQpuZYsUpsUkMgdSqkf98wz61aYGcTVfchZRAMHRExNNIfIHMKjxatmAHStAoEB5zsBzwwL4pBioEcqWjCdQcsAgKUWNQ8Atda+iSGXzIhIiSm4g1RRMweMIUZOTdOpSIxt1y7aFM0E3VxrLjnECBSJueGmIFTR3fHIj8l9VPNqmhBn9nZWByAVA7citVQxgGW3OOuX69WylixuITaqBV1dAUISJE7RJTsiMwVmcYgBs6oag9ePHp/HZc68RVFRUwshKGItJXAUMw7sjlWqqoBjijFGBHUAZiCOgQK3KbQpNqiYt1YHlgJQuzaikJtVU3UTteoQY0QyIogxTDmLuJpNtUZAM1EFUQgITlDM3ODDh9uTs9Mvnz8HgHmP0vZVc20pICCm0HbtT7766faf/lndYpvQAcy5aWdGVXB298DWAjRoCo4g2/Fwt30otXzx6sWXb14h4Hb/0MaQ2IEEQNwJmYsUV68VB3OK8OFQ3zw93eXxN//6zfXdroojx1Itj2VeRmZRBHMHERQxG0b3st6crk5fmnuZ9lXKLoZ1z4vN+er87Mmz5+vVJnCY1Q7EAO4l51onYkqhn0mKIlpKASBE7ro+BDoe90RICMyMzEB8dv50c3pGzCklNQPw9XLxsM3IzCGu2v44Dnc3N+M0/vDDj32/qGrffPPd/d3dJ2/eXF5c9F1qUjo92WxWy4vzMxG5u787HvdX7z/0fb/s+5iSqD087JZ9//LlM3d/+/atlBqaeByHacrbhx0AL5eLzWZ1PE6iioyHw7Db7WupgNStutPzs9VmDea1CAE1bSSmaZyImQDKOIzbnYJ161VKcV/ydrc/PdnkaRqOx3EcG2QTM1Op0vZ9Sm3TtMB88+5tHqc/ff3DDx/ukEIp0kYG4qHWYOaETvyw3dUqp8uVu+exqji2JF7GUQgjo6vmH3/84TAVQUxMx8OBSmQGkzrlqYB3kavZV8+fn6+WLvPhxWqw7Jb/t3/4+89fvv/Hf/7tjz98c3r+bL088XmxFZrQBIS5W8XoKLWUYQIEzOP7GD958bwNZFJNS85KVDk0kaoSvb++frh9zzq1BICMBtFdxjqOw5hrOT4w1Jv33xGHi4vnq9VmbsiiVIiIHBCihzBOaJ4ghBDYEJnGLjVKQzK7OF23DSEgKSBWJkaDUpXQTOqjR/eR9TbPXQNhnM8DJjZzBAKAuThF6Gbzb5lkdhOYt20zjKMBdCkRgRhQ5LmWNHOiFBSZu6btuz7GpNWm4Tg6igIK7B72LTVIWCWruaGZqlaptTqAOTHCYzVUVVXBEYkUXM3csZrmUrJKi5SIwZGBEkcmdp+5KuKu850ZAZmZkMgR0ZvAKSYEcsKq7uQU2FVmQEVVIXLzBEih1hKbFpEoBAeb+X9VJDB3XbdarcC9a7oZ46WzRpJZRMdxSg2GYAgWeXbnCIWAAOZQVUQfi9dVbCoFjNq2KaWqA1LYNN2T1Xq9XFAkQAsO7iCqblAJzCxX6dqeIo/DYT7RibBJsTqIWy4FAGKK+Fj2Iq/1cT0AML8lERIzAVNq0lz3sKpsgDT7g8XRKIQ+NjGAyaBVuGXQYuAhRnREh1LFzIrMxwVJrkMeSzVXLKpFRUSPw/E4jq9evWR3UkuOjzJmcEISs/cfrl8+uehiSkRdCKuuOypw0/SLRexX91P57mZ3KJiYnpycqLqrIwWvj0kqI0yLpgzD8XiMzHe7/f3DfWri3/3kF1++fG5a74+H7Tj0XX+2WVztxyruFbntDbBWcaToCO4P9w9THnb74343qFjghFqzVxU3V88ZAea6Y9ZJaiWt5+vletG6PpAig6W2De631+/54omFKOo0A1QQzLVWk1pFChKFkNSk1jJjr1Q9cASHGKOZiAgT5iqAlJpmc3o2xZRr7rou5wlE3P3m5moch77vVA0cTk9Pp2Fo2261XgfmcbdnZje4vbllJt+sHmq9vr5q26Rq84d/f3d/dn568eQJBwbE3W7//v3709OT5WqxfdiK1N1uaw7E1Pedr1eHwzh3YAnj9v6hiKQmXT65iHE31dqlBh0Ch6lMwzCkmAyUmUIgqVJN1HU6TpvTk/mH+uTkVESGMYemW4XGHR0x51yl1lpj06jpOGrbdJuTk7/8Sb778ceap7YJ8yhgyrUYCLAaSS1AjbMda3GM6I5oh2poyEghEWoopU5Tlg/v28Vi1Xcu5fbDlYOhIxjEFG/H6XSz/uKzT0xFVarOtX9EJObwky++ePPy1T/+t3/6x9/+65SHZ6fnQOiuCITugWlGtjEBmprascjvd/u7m7vXb15s+s6rkpqgMAKmZtjt371/V6aJzWNoDGiOlJc6FitDPr56dvbv/s2v7m5vf/v11x9uP2zvb8/OL2NaAAVEVqmRTXNGbh6j3o8LZqpVmZiY3EGFqtgA01gVxAjBXAIzzbNMxDl2OM/6/zpjmWMwImpmc5wdZoWmmqoazalKlKryKPhlVxXwkkvoe4T5IymlFCRcdItFv+q7JRF5AJGKiAYoarv9MXKzWi1ntYipFpUqknMNKYD/taoFpjr35fFxI6wcoqnVKqKqrBhSCCmlxEzmqlLN9DHias6MkUhEER6jLjg3xR5joyxaPkJzANDn5ZypmNUwt8joUW/2+JufY6dEGAMTwLLvKaU6f4JmgB/hEiUzxfmDdtVF2yETAtZap0JMlhhLrTOxyE2DNsgR3SPzcrO+ePby9Ow0pAaJhuP+7vZmEsnTsWupVs5Vx6GSjDVnREICZuzbdqxYpFZTQgzugWleBiCiwyNvT1VzzrWWGGbCrSO6m1WpQBRRy3gks2Wou/yQLIZiw/EB0AlXPoe7KKBbUcm55lyKqJg9Bn8R1bGoj7kM06GJ8YtP3zjgpNb0Sy2g5hRDDOxuBBgpKNP1IZ+sVkwCYIkDbDapWwinb364+vrb7x8edohJVQ+TAgcTUxEAjik5aFWJQM3mZHs47t6/R9LPPn354snTVdeY26x9LkWaUF5cXGS52U0VYlIrMVAARrNA1CQkG2XMAagnp2DM9TEJh6pENvdIXYvIzc2HSPj588tl1N4GBDQ1cQRlP0JFjk+fPXv1pl+tgWjeG86bKNUKYIj8mHHXCgDgxhyIIwWag1nzvUy1mJlqzWWCgKebJ6o6TFPTdVJrniYVOe73qlZKNbcmNf1y0S+WUmvbdm9ev3lyftZ3Tde1i66ptarKNI0559Skvus+//yz+cpTcqmqwzCWUk5OTqtaatuzxVm/WPz4448impr29ORM1VbrVSl1Gq/7RU+5EEHfLdq2v9tuay1Sy3AcPnp0BU3bvg3E0zSllEKMMWlIkTmM4zBrZ6acEaBfLZBohlBO09T3vYiUUmMME2QCR9cEsG4CQwnM5nUSrUOdkIpp18R/+OVPgfxf/vzHd/f3m67viBwkYGJCkWxO7gaGWutxv+dSl30fnl3eXF+XsaTYpKZFD1998XnXxJLzrDMh5HlZysy55Cby//3/9O+Q6R//6b9/mMZ2sWqW6+CGzFkqmmFI6ADUuGmVgszXd9uHw/HsdP30ycnFZgNqUFSi7IfjzfW15ozuzK6AKSU1HfMIhE3iX3712ckirheXTy7Pvv7u/b/86c/v3n0fmsXF+bN+sSL0FEPJY4BJzNxokmpqATGPg5iXKb8bR8ny5vXl2cnSgQkfZV04+6eYH/luSIA4B80RHxtFROReVXUmC8xPs5luC4FpviEiAWAIUUqRYCEFDiFycvRSi6q4G0DomkXf9oQ0nx+ICEyiZo5FrNQ6jtkdwbiMdfoYAAJzIJoT/Y8hSCQiMp9hDh5jqFUCBweCWSXJgZhmRvJszNV5OwuACE1quWc1m0ohwBk2h0RTLrHtRETV/vqcREYEkFqmaQozkR+ZxKxJITDNzLwqOk2jaW1SO1+yNTIAk868IQohqJmIVpuO01ByZeLYJAcQ1TGXxEiGaiaqJuoYplxTikTh1etXf/sP/zHErmsbU324uRWBpy9XT55/9u2f/tXyNTI3bb/fHWquMSQAg5JjiIGQwBHRAXiuhKjSYw16NpjDnAWCuantXmoBhLEZx2kEBI5BZLRxbAJ3UEcfSQZkCoSittvtAdQMtFRTReLjNB2nYj5/k6iaiWopZar5fLP++1//4sXl2SrFodT/7Q9/ziKpWZZq5oDGAKSA6MRKb2+3qza9PlsSU7NeocP7q6tvv/5uvz8w2AlTrrVImR72q5MTIhCat3xi7uyVDhXapm2CrfrPXz4/XXSqVqTOvTxE7NsGAE+75fKz1f/vt/9aCZvUzr5W4uguVTSgBcQ2MLetjw+rhpDMHapBdRIHd/9wd3t1c9sv+kRhHIeInY5jG7yLjZlrFRNrVucvnr25fPJ8vdrQPEp/ZONgAHIDouBupUx5PDJHpJiagCEQAjF5lfmQDkz7w36/fVBVJOAQQ4iLRf9wf98EPj0/H4bjfr8LMS7Xm1qKtF3O+d279w5wenKyENls1udnJ5vNxk2maTLTWhfjON7f7zRZzjkQHY+DqZVaSymr5TqEtFguz05PRepuv5/f8Gop62fPDofj9fV1nuo0jV2f+lVDwG5wdX0LaBw457Lb7debTWgSe9N2TUzJVBfrTZMSgLt4yWXZtjGmcRhEJKbU90t3WKxTnY4lT4vFsmk7JgKgpm3doZSJgCxXHTNHqF4NPVetVdVt1PyLrz578+y06PTk9N/+yx+++dO33zXrdUByU+Rg1dVrjIEZ1V1N6zhozYt+8erF691+f3d/d3N3/eUXnz99cqbzzdbN0CULOqoDhTj70IeSYwyvX7zMpdw/POyOw+bsjPouIgLiVIohOwU1yNUXITZta5Kvr+62293x8uLi7GzJbZ7KDz/+OOwPPHN13KvolCmGFFN7fX/z6fMXz87OFIoBMPqb55cXT87fXt/8/o9ff/fNnzbnF5988okhATcOGhPVUgkU3KrYVKsDp3YJ5vdDzd+9X94vz07W/bLHw05VEVnVHcBEzIwDw5zwAWAOIQbK8xP+ceM618pqrf74YEEkAoQYOaVYaiVic8gi6kAc3WdNgIYYKLazKKaIGRoBcWwXyzNOS0JMgUMXs0oMQVSr1CmXacxiFgiZI1OsII+4GgSmQISqwm2IMaWkMQRDiYFjDMTERGqzI9jcwcGZCAC6rt2sVow8TGMuGYgdqZj6rIsbjkw4t3dD4L7vWk+BedG1zVz/mjd481/nnW2eRtE6jIdpGhKFmQmBiDN9rW27UqqIhUDqejgcD8NgYk3TmZgT4ON5aEbk7q4GBlnqaCXEkNr24vJZSt2Pbz+U6ah1knEsU64O7eo0K4JobELbNX1vRadS2JF8VpaYq9lHYQTOEs/5aTKf53Pz+3EbiRACQzaYbQ4qkYMruFpMDQZEh9VqvWx4KHVmkxtpE7iMY2ABdwNAowhJ1bKUqnIcpsD06sXT108vX10+eXK+etheSzn2bfvq+fnvvvvAS+qIwV2LcgjI7A5YcbvN3yVarhdtDPvd4Yfvv7+5eqvDGIlmaQQrgtTd/iGP+za1ZsYc0REc1GRCNKL+dPOrn/28R3cTQZ8/BnOPjOtFI4oM4cnZ6aunl//7X75eUyBHUMQASO4mgBYxZC3cxVKo1tK1cS7C5fEwTOPDdrfdb7/6/NO//flP31/d/usf/7A+PVHkytC1vVYQwc3J6sXnnz5/9UnbLhgJzBRcVZkZ0UpVQlSpw/Gw3d2BStP0oYG2WzCzqpRa/5rD293fP9zdMUIKkQJP0xSjdW1y0+MwzYv9tmlzKe7QL/pMWEphon69mqZpu3sIAZfLbr/fuWqt9Tgcbu9utw875nhx8dXd3c00Dpv1CSMN0xQCx5AA4JNPPkHEqw8fjsehaZoY4zCMNzc3RPxwv3dHM8hTjm04jsN+PxyOo3xMr/X9EhkX/TKmxsFyziklDpFDcFMRmQ3VWqXvulJrycX9mFJCInfPpZycnQVOqtp2AZEdEWouUmKKg5mJMnERzVXEfKrl+eXZly9fiIi6NSn+3c9+2sb2N3/5EwE8Wa1gbrQCEAETkmEMWIswmIxHit3m5LRb9A8Pd88un6gpmtZSci0zNJCZq4oDtKlpQ3p7e3u73/frkyVS06S3767vPnwoy8Vq2ScO7iEDYkBzpNA6J3NE5Bi4Fv3+x6v3H27Oz84W6/XN9S3jI0xGVd0sVxt0hMDq/unrl4xozCDOTLEBRPn06eWT5eq//u6Pg6Ka1SJAQUOLjsaVArCr58mLh9iv1ieEiORlGgd1PBTECRECs5iD28wb+FjuxVk2Pr8dzBN3emz/GACoKDgwsZO7+3w4cKAYGMFjSu5kCtVgJl0q+JxJLerquj3uqxqnsN8dTzZP1+sna6R+0T88bDmkiyen07S7eXgoKkVFTJGIOXCISMjMADa/rzAzEIJzoDlCGGIMQNimJoboDlUquNVaZlkKABAxgC/6frNcppia3AEHAVDVWuowjI5AgICUGk4eU4xmrq5MuGib2clISNDEEBMLGDO76pR3pdbtbi+1dtzGNrNbjIk4BgKyHKJFmWUIICY5Z1N1hBBSCgkRS9VcNDJVUQdUd1Ed8uQTrMB3h8Nvf/PPu+1uHAYi7PrOqm3v78PucH397sUpEoWmWRAdYoDVqj8OVcwj6SOXQ23OnLi7mM1Qjv9xpIM5WBUjojyNKkIxmZmbqlQx75k4kpOrViu5AosFNTMTw5CFjBuKiZlUtAtdqGU47B/KWGr56Refvnl2+fLpRd8l9enq4b2Kni03bbv41ersYT/e7rbr1JpUL6LElFJsWlPtl0sHe3vzwco0HYrkfNIvoG1mhheCuVlXUmC4O+6UgitIzoRMCAZQwdyl3N6fbTbL002eSmTmELgJMQSOvACrVcdy9K1fbJZPV/1u3LfdOqs4WArQMKxizLVk8QDYrE/zw61NBUN0tcN4uLq9Z4T/9O/+/hefv1HXiOf3h2fXN9dvnr1Ek5In8+AWU7969flXz1+/7treH92Ej03sPI1Sq6mWPNY8QsnILFoj9RSYkYCDmweGrsNac53GfrGYfwgxkNdqokxhdlI1sb0/3hEzIe33WyIy1anklAKCH4bj9fXNMIw3t3eB2VSa1IQUY0wvX73p2nR3d39zc59SLCKb1UbAp1yenF9++eWX6LDdPez2237RLZdLNUf0EAKAp7aZxtx0zfE4TNthmKbjMAGSO+x3x/Am9IsFM4vqtNvFxAgQmH2eFQgW85O2Y4AP79++ePVJ27XHYbScmyZOw545hJiOh2OMOYZIHB1s7ktw06XFQm+45GmxpEBBxlpNQxP+7a9/sVn2x+kAhuOQwaeff/XJk8uz//xP/+2769sn69M2UKC5zQ6EBAQcANyISeswlSn2iy++/PLs/GzMI6iCzt9NRvT5bldLDSHstVzdPaTUq2IRWa7Xb4CmcTyU8sPV1Wa1WS3WYIaWAcQdS9UqEiMFphAol5qr2O64GzOIAnhVRQBmwrkij/j+9vqLF8+enZ8iGyE7WkjJsiK71YIBf/aTn+4qbIfiCBiShQRG4goohOLMoY0hNYIREFIIadkRiFmpeYduFAKpAKiaupmZzsh4w5klY+bqPs+JwHz+WzN3/7gIqAqu5IjA1KTAjO4QAqWm8cBzHoc1eSFUd9NhmCAqMdXt8X/+//635y8++eTV60XXG8LucHD1++2T05POzESquRpa4hhnacoj5cwCh0A8Y3z4sQpAAJBiAi+EZKqIAA6qojpb4eZWLEXGvkvLZd/1J6nULLo/Tq4WOIUg4zRSiDNcMxBiiiIGRMzYxJhCDMxMs67XjJgQafYNj9M4HI7uPjUjDTGkjjn0XZswavFahTm4ObqmEFMIo6moAkiMiYld5TjmnItoETVHDezrvkcmIry/uXZMh8Ox5hxiPOz26iYi9Xi4u7l+dfoUESNBYs8IgQOzAjiHgETDVIZhENEmpvmVhQg/Qj9g/kLDx73KOE3zLaCUMgwjgbmBgyKamKKblrEI1GpWBRGzeRFRcwDoFr2I7MfpOI1M4emz588vL16dbxKAux/HY6kDYlivN127WC2W7vizTz7/x3/+bTFJzG0fq2pqm27Zp7ZZtK3nMny4Aq3qgGZI6KbTOBWxlCIzUwxd1z4JlNXAsAwZ/CPMaT7eivzw/dvT1fJkvRYpxCHFtOgatAYBx+lws9teHfeb8yc/++kv/vn3fzSA0Ha1ask6EO9HA0duulqRU+TVOh8PJH7zcPfh5ubV5cU//PoXr589MVMyXLbdLz7/4r/8679e3VydL7t6rESpX5xenG1WyzUzMyGAzcVJdywlzzFn+OtQM/CMZQohzjRdBERgYK3KpubR1IGZYwylVsQxxTTlLGYM2C0XYjZOIwcOTTcc99OUEbFWAYBxnNxcq0pQDkyBY4z9YlFqmcbxsNu9e/dusVicn58xh8Vq+eTZ5VxB//rrbwDN3Ijw5cvXwzDkUme04Gq5/Pb794fjcNGcxsDosVmnNjX745GZl6vF+eVFt+g5sFZJTRMiI2KIKYQwV9OfnJ+nFEUKEw/HY9M17rZcrYdh2O+2p6dns+9pypM7BEcKcW7InJ1dXrx8NRyH4YHmlRUhK+gvPvvk0xfPTUt8/GR8ebJumv6L5fn5yZP//F/+6x+//e5ktXqy7EMgcEdiQAw0Q6Mpu+ZSDttSS2bGs/Wi1r9SEJwogCMCc0ix6XbHw8P+CB4eU4Vi62XfMG141e27766u315dvTh7crJcxEAZEE3EzT14cAhAgQNHZBqOO8+51iqqANhSY6rZ6lGsT+nXv/hJ20YwVbM5Cx0jiogDueP67HTcDn7IDhRCwhClVCZwQAKyeYSIUK0SU4XIiKaGOjtAZ5Muq2nJxUTjNM1BoL8SAZBmOZP9df6TS0GYhYPzcahmCuC11MCBiRzYXafxiI6xSeOQwZkZRWoudaySAPrQ/u7P3/7l2x8xbs7Pnz3srkXqNI2i9v729vJs3YYsVdGRiVPTxtQEDrVM8w6GHiPzbm7g6G4wV68+jjQUFOlRdotI4ioqRKQAbZNijCcnpyF0x/IQYmwaezxLMIBi1hxC/3GuFQKDA3IgJqS5VgDgPrsyHOZi12MwSQQAai0lF6Dg7iHEiAhSzFwVZtuXG/R9j8zHcZx1MWYOgMOUTc2tYqCUYhexbxcUYxEZ9genOA55msZHSrI7Ejrg3d2D2dMicn/zoQx7cFf1x1TPPIybc1SOxMTM81YbPwJRHR7HQTb72IhVhJik1lprIFBViIghMi8qNQNWIayQMQSgQO5NUnc39cMwHMcJQ3t69qJfrpar/ux8lWV0BIocmBts2m7RNstV13VNrFKfXZwvuubusI+LFTK3ffP08jKmmHO1PLEpIGAgqNVd9bGLDiEENR+msc4mI4Ah565fAHPJmZiB8PEFR3HYD99+/+PFr3+xWvRFJcUYQmxiNDF1jwuAmLLjh+sbk2LgEMlEQKoQc0pd0wWGYZzqJIuuG4fx3Y8/iE5/9/Ov/v5Xv9h0TalVHd0dQbvAX37y5je//8NuolXTgdPy9OT1559/9unni26B7sRsbvOr9Fy35jkFYKKqtdYYU5MaEa21xtC5KRMA85iLWkXEvu8RPOfpuN9Nw5CaZrFcn52d7x7u3Wy5Xi9PNnO6FxFur2++//6H7f1933e11NPT08VysVwsn1ycE5FpndPQoHZ/d392dn56erpaL9arBbjk8eiAV1c3P/747tmzZ13ff/rZp276sN2enZ1MU2YKiHQ4HO8eHhDg/PRkDlOEEJFDrpJSenh4QObTk5N21SPOXHafu6Y5567vGTDnCQBDDA93N2rSL9chhKPoX6ueqjoDCcxgkZp5Btt3fey71dMLSNHKUPbbIef1evmzLz8HVQAQM0dObdumddusXOuq7/7j3/+tI/z2d7+L8flJu2LRRxcEIgG5gamiOTuWcfzLn76+OdmcrjfrRdO2jKbqFFNCQiAS0+vraxV1dWQPAQSAiGJgR9osFm8u4H6//eHDj2M+O1uviRmAmWboIlZxREht6wDVIzAiRqoFzHI1AHKO+93tv/3yy+eXTwgdnHR+a58RLuaq3vQLYzgeHlwKAKHM2cXJtAKYu5YiDoRGQGgOMwAGFNiDKKrZOGXGMFN1YH7Bcc85i8hsBoXHcfFj/mceqM+PEfsIg5unKzNLhpnNKDDUksHn5dbkDuVRK/OInB+n/Mevv8vVSpbb7d6kmslciC9TKePx2WXvDilEIo5hhlTDIxj04+UVAESUmcx0DhACADHNzLd5fpWa6OZQsc7/CzDmpmuaR4Y+B1E9HA4iBg4qCkimUkqJgRHQ1AnJ3BwQEEU1zCw5NUELDkSEs3Nu5laDz+mOCjmXnAEAkVVNzBVgyjWLAXIKATlwSmWSjx8iGEKRCm5tjG2kLjWr5WqqkqWWkovW7e6w327HYcy5cOTFoncOb6+vdtOnF+dPmjg1q67UeL/bE5qKarTD8XgcBqQ5HgnzY3H2lz3GS5Dmn7F50MxcS63TOCFHVQFDd0UMiCxOOeteIyqgeQocAwMYBcw5T1IkrlbLy7bpurZjRCn5bnd4erZJjG0MzNiERZs6DskdDL16MctPz0/346Ff9Yu+j4F1OpZdAffIwQnQseRay+TuZqAOk1SkAMDqXLTuj/tcS4xNEqMYQAR53nTMr9LsRLvd/ser61999UWs1cxU3SKFrl0tV4f7u4cPH8b9Tsdy1rfHqd4/fDg/O0kAhMKB0AtZDVTZmrI7VK3dsvuHn//NL754PcfUZuyGukxaRHzTLV8/e/Xt+7frk4u2aZ68fv3mq580bTvz01XFXBHxEfvjNmNYALGKxBhTakTEfer7NTioVGZU0VprrSWGoCLjOBwP2+Gwb1JDiDlPfbdYn5wetg+l1q7vkQgAu65/9uz5MAx/+cMftg/3ueTlcnV2enZ2dhpT5JQuz8+attne395cXfeLrl/0hJRSBMRpKuM43t9v7++3JydnROHNJ5+cnz+5/vDh8vLyOByOx+Mnbz67v394cv5EzR62W3NbLRda7HA4VLHUdNOY7+/v15sTEVEbQ0ht36aUAGD3cG9mp2dnkkspGd1Tinkcx+GwWK27pqt9BVdmjjEOwzCOYwgBQPrlam78caDt3e3xePQm9YvOEOM4/fLLz5ZNmsqkJlW0WyxD07VNT4BZ1K2k5C+fXfzw/Q8/vrvaT9Pl6WkDBm4hNmMRVUNkJIgIam5m27vtYXdYLdo3L56drFa5FDMjDjHF66vru6sbFUMjFUALYFhcq9kwjQ74ky/eLGL6+vsf/vz2x+8+vO+6xXJJIcYEQJSMAhIumsUwDNUThpYQFLNqQafQpgj6ZrH4yVdfcGBQFXVxBzcyR3ADjU2Ifff1+yvJlcDda817rUMdR5WsKtM43Y1ludps1mdas7nzAt2dEEKIITRoUks1BqkW+yAuMcYZ9yQiiGRmDgYO89pzLpDOpV9wB0RVjTGCw/zPhBCaJolQmyCwg0MuM9NtDlEKR3aitmn/5fd/end1v+gXaPWwe+iWyyoABlXq/pgnsPPTNnCoWhiJkMBBVEqppupuKUZCEhFTAaR5N6DqxMTOakZMHLmJIRCYqBsXJKlZEciVEWfAzOyVzFIfRfLqU6nmTqwiyoHHnCOzuY9latrkoh+pbYhqajrzGuiRL4qgoqZaSzGgUvKMVKvmuao5TCLHqQbkZdcxxJiaEh5BzY4QOHg0MCcMxJjaRsG2x11RA/dh0h9++P6wOzRNs+gX0zQdcTxkud3u7w6HL09OLyaSccy5TqUWOUxlPOnbccylijuAm4ggzJXneRNss6ZyXg8AAMwtO7NSCgeYHbmBQ9s0jrnWKVLyaV+KxIDHUXMtaiIm7WLZL86X/UkISaUaQEIBKzJqrRa7vm1iIG4eT3JVgO1uqlpi037xxef9Zn3Y7xlch0FzTkSAc0reapaSZZRcVat6KWrmTlTVh2nMNfddevPyxcvnL6+ubu4OY39ySu6Pe3rAx5oW4vXu8DAOZ4tFnjI3TViux5zf/vj2+uoqH4eZzYHIbdMuzE2l69MiYSkVAVQkkXsdymF0oC8/+eTTN6/nMJEReq0y5WxVVByRgM7Wqw836e37q1/96pdvPv0MKdZcYxcIUfRRd10l1zKJCodAzONwzOPgbsOQKTSXz192fWdgzBHcVCoi9t2CQzzsd7UWYj47u2iamEutZuM0lmmcA9o1ZwMUVREpIpeXl8N+d9jvU0rgNozHbmpjE1OM19fXu+3WrIL5XDm+295eXevp6WlqmlIk50rEbdt98sknT86fDMNxtVrfP9wej8fdfnd3f8shnJ+fnZysD4fj7nAYcz4cj8NxIAocUi21adv1elVFEL3vl23TmuntzfWjCk5qTMmBgHzZr01FHUspuUxENN/2zL3vF+AuaoA8vxOMw7EJYd10H3Y7A9i5A8GvfvXLz1+9mMaRGKXm1C365aZpegQr+UgkIYb77f7u4f7V8xfHXK7u7r57d3Vxerrsl1kxGxFxiATRiABUySy4q8Fxql9//+HJuTw5XwUmZiw1v//wPg9ZTOfxgwMSIwJU8/1YTjfLZd8g+JefvXrx7OJP333/9Q/vrsfp5OSE+85IY7/qVz2hgld0JTBQQ3LGZBSgbTwPbnr3cH+y6bsYbZ4yWDV1c5rN9cec97tJLbhrVUV0MABuiEjyUKssEtXjw9Vhu1huQkwaiZCJWWtBEClZGwYkMAeAmBIxmeoMY3C3+d49TzvmioCKINFHg6HP7QFRRSQzVzMAdDDm2IZFICpSiIgZOUaigCKLJm4Ph//+r38oYss+1DKWMuDE17cP7pbzmLOsu05EU0PBQ3WbyWP+UV01kyhnOdCcRGKeszkWmWutxBhjbEJsU4xMFlRlRJ9jHWimuVQRBZumcRiHodYq80+LWK1l1qKVWmlec5gictY6TCO6B4LH9x1EoBDHKQcM5pZrmdcNImKeyWGa+pIF1MYqYykETMAAMlVJjXYpgWoIYOY5T6KzghgUXE0pxJSii6mpqSP4/cPDw8OulDqVehwGQmxpud0dpyK3D/vULRZrqxwCj13XHKbJTQKCg6t6KRUcGQlDcgdRMTcAZw7zWwEiuoOqowkSErGpBEImMjCOFEMzoZniNBxkHEYVB1ttls+eXQL6h+2+axtwAbVIyK4M2kaNAagOTD0GBsM8t2zRRCTENnWbw3D8cPvu9vomH/dxnowYFCJTBUdmKqXkqllUzKuBKJYiWfJUptDwl599+sWrF5cna2Za9Wn8+u1QHRwpdE3sAKlqVdUUU1X89sN9fNMsFj00i+9udt/++ON03HHJ8dGUACBTQO4YD8djwooaAyihVzMVL7UCYjLY3d992G6Xz59GF9UZLugxtoHdTMxhjc1PPn3z9durIu7I4J7mup+ZuxGSqpQ8qZbAMaXmsNsO+y26AVBVXW+WsV3SR5Gdqbl7Si0zlVrAQUpZrlcxtNN46JerY87odthtzT3G5Oapbdida5lilDxRCE2bzHQuKhLz8Tjud3u3R+xlyeV4GO/vHw6HvZoxh6YZ3THG0LbN6dm665vb2+umSbvjcb/fDccRzB8e7jcnJ4tFczhICiEFzgXbpgVHVSPiqZTlctkvFuOYY4xMiO53N9eSp0Xfb4+Hh7v7i2fPVptN0zRSKxy2DbeuNo5DjG1qOkQijlqKO4SY+n4JAKXkKgURP/n007/88Q+Hu2t3EHc23Z6ervtuv33AYKu+77o1IufpQXSKAUej7672kwULsOrXcXny/dt3310/rDd+sj4FAjCpguaYmoSBTaubOmIMoZp9uLmtOj29OF+1cfvwcDwe5dEl4u4OBMiMzlOWUurZZo0g4GiOy2X3qy8/e3Fx/vtvv3979aHk9cnpZcfQtYFMuzaO7ioSmRqmsWiI6Jo9D+z2p6+//nD14dPXry4uzgwxF6nqhNSkBLF9/+5HEVDzY85qCo6zAXae0Pdd/NWXn4rKd2/fvb25mqqlbrlerk9Xa8QqebJaqiQgBgRzA7NxHABApJqpmxuazi3bWSg280eZ/8eGAMnc1cHBp3GYbWtSx8H1cnMWQxD3LlIHDROVkgOQuf/z7/7w7nabUkcEuVamcH11fXP3gEwhcKl1ZEIKqnX2NpsbIaC5mYgpMzo+gppn8CgToyMiEiAjOkEK3KUmxcCERhiY3ARcnXASGYsM4wDMUjO7T8exihCFWivhvOwNSG7uIfBHgQCpGAAEDklUA1MIwQwBUN2klHnbTMhV1BTIIKRxt9+1MZRcVMyRkEPg5KbTmF01xmhq8+an5FJFY6B5+Q4OiVPbpn3OU6nHY95tt2pQa1UxYjxZrxBwv9+bw+12PxVLTd+H5mYa3WR+xwkxqtpHevDc7/DHK/+jy/5xezEnOhBBRDnQfLwDwozvCEgEPlV16kYDGYc3z5/8/Gc/efn0YrZH/uNvfnM3bhf9mkEjQB8DB4Cq7FaG3f2NpqfPgzspNl0r5iq2H2+3D/eH7X46jli14eDzAkS15hltgOAgZlW8zkNP86GU3fHYpvDl558+f/H06enJpm8jk6ls+v6z55d//P6dcAAHckLwJgaPYd5cXd9sV8vF6Xl6/+7th6s7ycYemkSSdw6G3DhUdmsZoet2+0FibtjayKWIOquBugPgbnf43e/+tG67Z2drkb2pUGiAopMn8pSiQ4AwXB3s5uGQS12vFjHGvyaDAaBqVfMZNitSh3Gcc+7H49g0sWu7rm1jTKVWqRXMkJAMSp4UILVN03YOGAJffXjfLVdPnj2bhkHNd7uHzWYT+37uHCFR3y/ArGmaUsXBm64FRFdLbcQQEKxK3W130zRJFQAPISya1LZNCIzIM4q8a5th2DOHWvPhcMxTHodxsVyY2d3tbUzR3Y/DUUSWy2XX9SGE29v7/f54cXF5eno2jFMMKaWGQyhVwPHk5MxNgXgYxpxL17Zd193cXBPHxWo1xwqZqV/0xGFGGWIp80tqjHGapnnEe/H06dmT88NhG4jEbX/Y/cu//PaLzz7brNapiYgRgKSWUkewCtD/cHXz4f0tGFQ1UEipe/P6k/1he3394T6PFydrdkEnQEoODmQATgjm5IJgdao3b/f77f3TF88Oh6MDEQOHhA064kzRyVoOw/HZ5eWTs9NACo+PKXK289PNP6wXP7798N//+M3d/d355UXOSu5uBBAV3A0YAIkD0X7/ENz6rmFqqtQ//OXr99fXF+dny2UPblU0NP3t/fb65kEMAYObM6KZoWUrXiWjy+nJJqXQUfybn//056o/vv/wL3/+5ofvr+8Wq8uzs4a51hpzSdzkcZKuGs6NqhhmGS/TnAKak4SBuSIyzotDmP8sRIQQYyAEH8dJVZZda0VmkVwplTkERqYFutUyYsTf/u7Pv/n9X8yoTcldxzLlmg/Doda8aFYnJ+vdbhcCIQE4imgx7WIkgnnuYqqmoNFmegAzxxRnbVGROu8wiEOMIaUUiMwVDRANyAAQMZbipdTd4RBTGsdxdnNlUXdh5hRTk2KTAgKI1NknM28bzDyXKRBxngoTujsxAIUZduEG7uCIYmBopJqnabfb02oBiDE0qgZA4HM+MYPLNE2IPLP3iMlrnabSdu0jrF8tLZpFv0CeTFxVaF5pM8bIxHycxlKKO1zdPuwPx8uzy+P9Xa2FEIjQzBB5LDJO1dz5r3uTOTOI6I879McwaEoJgdTmTQbMAJD5JECkInWYJHao5peXm//Hf/r3fRNzmcYpU4gvnz15+NO3ifsIlggDCiqoey4CWKecOTTLvuuaph6Pt7e32+12PB5SJALvIivicSyIEFMyKCHGWkUFqqgBOKI5jipjLSWXZ08vfvLZZyfrFaG5a1Vxn4ttdtqndcMPuaTo5JkcyckBq0nbNOuu2T48/Pju6jiVFFsyKHVCBYSo5oQBkLuEnrOKMPJYp6ZpHSA1TRVQ9S5EIsap5qn85vd/6v7mlzSXvCkQETr1iwW37dc/vv3dtz9OEj77yU/OL14kbt1dRAGdEEWKmTBTFat5mjlaXb8chyMicuCma2OKKmZi4C6m7qoqxHOFGNq+B0Q3G4fj6mQzg74pcCl1HEdwX6w3oiaixBxSSqkBQgXY7na73e7i/Mk0jsMwIME0jm4yU76QcX2yWW9WMZCJlirjkNfrVZXaens8Hj58uNrt9ky8Xq122525dV0PACmlJ0+eHI7DVGtMvOj7pmnu7u/VikgNHJaLRWpaAJ+msV8sur7b3d/HFPu+nwEgc5I1NV3TtvOmBMGZKMbkSOywXLGKIpJUJaKU2uGwNfPzJ09urt6LlETUdZEQvv72L6cn51988WWMbc6l5qORBub94fjdN99gngKRW8WsOgECbWJcPX9xfXv1p6//cnZ+dnG6AROpRhwceKb1M6KbIHmt0oR+Pw6HcQBidwSix3BFbEot+4f7Rd9/+ekniS3FGV0JgOBIDtDF8Ouffb46Pf3u6r7WLFkChcCBOJCZqSI4M7pVEG2bGJkDY2RW8/12Px3H1Xp1utmsNmsBeDjsOQaZipu3kUyrgljJzMG1ouuia6sYBGoIzper89PNy2fPfnj/4U/ffv/Nd99cPrlYNUnrDCtTUZl1T/MjQnUuJmmepseUoPvMjJlPiHkrM00ThzADE9R8Gsum6xNHZU5tV+qM4keiYDYB07c//PBff/uH+/0YuWXCXAoijdMUmPq+XXQdIzYprhc9Aqq5qFatrVsIRA7uVkXAvMQS5pbCHKpDmEnRAKBm/HGsbeBmRvCYGUJmQmZuhjEDYorNMOYiyhRCCODAgWOaxUikKogYAgcODsAi4M7EwcwNYRjHRdchRbRZ3swzgAUAzWcDPSF4yVPpWyIITZKxzuBpVTGVYZjcsWm7kNKcczB3YKqmgXEqeT8eYwoORggvnl68u3542P1ltVq6m9RStL6/vxMTKbp9OLz99pvL1eaw34FZ03RyfygiTiTmk0gpBQECh/nPMvCcHIdHLo3hPANRFUIChMe1tumcoxKH7WF0DGbQNenzN0/7FsfjgzmI1przIjXLtq0lV8DBsQncp6BGahoI3O1wOBxyOewP07AnsMjUhOju1dTdwIECuYqJtDHWqsVd1UotVaGIiaq5nm2Wq75/enmxWnagYgSlAkBmwiZEZmhieHFxvv3mG/BHlCASnJ6dLVfLru+ZaBwHVj9vgshkoCmaVRWpuda5s1dMc85DKcNwzDri82dni44cYC5Po5dcJOcidjgOXdv94stXTIwcODWpW00if/79725ubgOHTYzPL06ePn3CPBPVnYkBXaQ4KCFO4yhlRCSKCQgP4+gqsW2YY60aAMBh3sqWYrO+rdaaYkptT4QP19cxhOVi4eaq1i9W5+fVzIZx4qbdnJzUqrUWKSU1ab3evPvwDgTWy2XTNHe3t7v94wjoycWZmTn6ctkFjgA2jKOp5qm6OyJPU15v1iJ6PI73d9u2bea022K57PuuaRozr+U4i2sOezG1ECIRidSUYogcYgCY536Bm0ZFzX21Wi/W69Q0xLGqtm0XYoqxM6vDcJzfWU1tuTop6uZIiZmimQ3DUbRWlfvtdpimqmZqDEDAiCBu764+HI7DV1/+5PmzlyE6AADyn7/982G3b0OsNdcqKgUQq4KoVpPUpC++/HK3Pby/252sFz2hqDrSLJx2QEc3t9i3q9XycNhPw2SKJjZn55qua7ruOE3Hafzpp1/0TQIoGBANDeadvyH4nBv86vPPus35n394p0aErqbu6BghsFl2rdM0JWYmMiIzczMknI/G2/v72/uHi8vLzekpEzEYW3UHBCwyeC5S61FcEc5PN33biCoTOaCoB8CLk83T09NfffnVb373x9vdgRBqrQSExFUVDWKc2zIBfBSp86x7fhQCoAOYWQiBmcdxnCnFpZRSChBVhevb+/PVKoYAqrMKVKpJIJVctT4c9v/bP/3L26t78LDomxixVieEPI0pxBQiuI77w1TGFMjMApAjMHEMIXKY808qaga1FouBgM2NmABwTkg9KlQJzUHNHcxU0aGKgz/2K4ixiOphJCpjqUV9RpHP68m+75rUmJlO+rgvJXL7q5jXg5gNw9gENvdScozNfFOeByaISIQc5mpyYkJwSLEpUM2L1FpKLWUaj3sCS6mJ0pQpT6WIqJqmGOY9xpiLmxGTui269mS9evni2Z+/+cZdQgipXT5sdyJKSK46DuV3v/v9Zy9eaS3VYbnelB/eiygATtNjGElm7KfNmrDHpfV8zseP+G8glFrbrrU5FQpIRCrChEAERoGwa1pTK1NmjiYSOdSca819137//nq5OWWORimrMmAgCughsOTp7n4/jqVPlFIA0ykXIkB3cGea2aUuVk11mMYskKvn6rkWkbro2vPF+nSzCTGslr27lioIUAAKU2oiAvah2ayaftnfH7dff/MWKizadHJxsjzZxBgRuVa1WruUIlNBnIqiQyRHL24lFwEPY84Px0MWOzs5WcX19e1DywFFQ4xZdL7ut13P6jHg7e399en6+cUpcUiLk+v94Xe//9242y77fhUThbhqGV1ynhCRmUVl3r3naXADM52vUX1KeRym4yE1jTmqiGmtDmZOgUWyqsxD15jC7IwopRyPxxBizaXt123bEhK63d3eptSoWM41xiiC7tA03Wq9HvMYmdeLxZx5Timm1KcYkYgQ+0W/2WwAYL/fu9t2P4hoSikmvn94uLm9VfVxnEJMTdP2fdd1fWySmT88bHMufdcvl4vy8FCr7naHtu0Iw+Xli7brCWmaJnebN3Wz/qzru5ks7eYYABBjalFqSBGdximOU44hAM12DRCVYTguF+sYYwjJ3ZaLRYgx54kIHbzmOlRh5hBDqfVmvNk97D/77O7LL1+3Tfr+hx8/XF0zYJWqBu4Ec87HvZrv94cvv3j9d3/zb2S0//7HP/7w/seSQp9ak8IpxJTctEwFwJfLPpei1Rh47paqKpjpOA2l7Ha7l0+fvnnxHMGAcH7XV/dAHOZcAwA33WR4dbtFaAMzUlAHVauqbhIiRuREISAWc6sSCZvA6ooAFLhfLEspt3d3Ap5Cs2wjSx2HsdYKUlCqqecpc0irtlcRJ2ibhIhmXkFjRCLuu+6zTz+FH98+3N8xs4OKic7b3o8XxLl8OwfhPzrJbdaKDMdj23Xw//fr4xDBjuPoTBwppOhg0zil86XULFYPZfzN7/74/bs7M+66uFo0iGYALZPUgkgiZf5fTHlaLToENzBEatrYpBgC1VzNrIqiuyubqaMDADoykYjkIqJKxHO3o6pqrkTz0NWIA7jPfeZSCnGoMqmhI8fIy0Xfd62bMYUsdVYwiWRCAIBpyuNYa1UkDMdpqFUDUxU1q+7Qtp2ZAbGDOxhSZIpMIYZIRKBGQAgE6GPOwzQdD8c6TTFwkxBMp0mz6DRlIkjMKQRwOI5luz8wh5PVsosNgjeRwSXnPI7ETSOqJ8v1fn+MkUXh6+/f7Xa7k/XyUCZD3O73oMbuKhVmdDizu4sKIsqjwIGBQFVCaD6OegAIQghzSn1uUjhCm+ji9OT+6sCzv20qBCGGYD4yMwJM1U6X/TvC/X57en4phtmgiw07GXk1FAMFBmQVg/iImZshSzN+BxFKkf1xKmJqlqtVBzBrU+w3fdcv2ralwOJ+OBxX/VKgPoZzFdycQ+z7Zd8lQP301YuH7f7/IOq/nm1JsvNOcAkXIfbeR1yZqrKyClUsCAJoNGk0Nmfa+nFs/uYem+m2bnI4DQIECFUolMxKdcURW0SEuy8xD35uMh9v2s08Z0ds9yW+7/ellG+urlpr9+/fgUGOCQBVtREhsQOpu6mQmdRmBgbhvJT780Mc07/50z/9k5/8tKr+b//x/3j3eLoaMoASkpqrowKoo4kMo3/53XeY4ovnL3/zzftf/+53uirT7rFC9jCnIeQdQ+yJGABPJENpIlLdeg5zAEBtUre1rqeYEsd8d/ceAIc8EZGplFLcHcA5EBK1Vk/39/O8m3e7bT2pqImklFuVPscTEXCvW1FVadLUUho+/fQzJny8ey+1brU6+scfv3727Pn9/f3XX3+9bev1zdW6rk8azeP5clnn3bxs6y3d7Ha7N2/ff/vdG2lyfX3dmtTaEOvd46OKhhBDDGspz549P53Pd3dvQ4jM4eb2+ThPKY0hpFpLjLGjyBPljhq4XE4xz/M+SSsxxBBjrVvZViKc5znnqdatK6prLeIi2pb1sueDm4eQ3PFwuM55yDEYxkYoolWFA2cOom4q//hPf//2/Xc/+OFn3379LZjlGETVFMBJrbkjIFax25ubj1+9iAHnw/zv/+zPf/v61d/94udv7++nPMxhlNbMfFO/fXbNw3w6XYBGix4SYlKW5m6cYlV79vzFT3/0oxjJTBMTIahK76dDiGqNA3sefvHLr98/rMwJyMQaUGjuBh4Mzf1xvUwOlBIAbFutgYpQD/MAsZxHZ1azt3cLwhIIKab5KprYuiy+LWDFAK/mmQEu6zIO2cyedIv9MOPQHO9PR2bKKTRRA+NAzKRiIoKIIYZeyLo7EceYVJTIu3NFVHvt30UN7uru6BAZz8sSpnFgktJuDte1lYfj+XairZa//cd/+qu/++e1WM55mlOO4bIs0gSYpNV1q+tW3J0CN/GPAiE4M2fIMfE0ZkIw1dqaqEbEQOzWZeFo6tJE0LdaDSBw91yyqJRWsY+DAIhCT3AyBXVlQBFD4hjCbrefhiFHtiatSqAg1MCUEACs1PWybdtW11KZIWhrAC5NKj8pNPr8p38izDGElPMYQjB3AG/atlpEtbVWS5PW3J4Ae0QI6Kp2uZxFZcw5UJjHKQRZ1rqs9Xw8z8NQVWzdVE1El7XUIlUfxnmappkYU4xF5d3Dw9/+49//L//Tvz3M0zfvHr/77jsEJ3QAbyKt1v4NfMLvgZt5R9I/gf3MzIw59DGRGyBiYHZ3AiJgZuhokBjjfjf0mz+FpA7jOA4jMW+vbk+//fbNtlxScqCwiKM4oTJzZ6HkMbz/9qvTo0QGM3BAN3+KmiNooqXaVuV8uQy78Wo3PttNUx44MsUYxj1xAKsu1U1Sytu24ZMEmDgECiENIzO8euk/Werj8aFsy8PdUZqhQ+XWmX/ak0kBenqFqjZQEaulIeFHn3z8wy8+/+LTz2+vbgzl3/zpn/6nv/y/GmJCJHQOsTYTaaZ+2drjZTlLS7vr9wt89VjEMnIAETVbG17P1/P+Sh1ElCNxeApqbqrMqayn5fhQtxU47EJal0urhcAjcx53MeQYEyKKtJySubbmok1rbaWqyuV85JBCjBxDD99DBDVLKXVbvLmTGyGmGOmwDxHffPdN2bZNbS1bHoaPP/7E3c+XS6tt27a7uy5P0m7QffHiReddqerhcPjhOO93h3fv3qcYgVAB8zge13Wrzddy++xZbXJ3f5/HCZDVnBgPV/OLF7fjOPSisqPTmDmkgGrlVGUty3JGxhjjti3jOA3DYAYiVaUi9m84bFtprXDkwMGfcC7UAcLz/ur585fffvk7EXW3FIgcAlMgpu5cRTezb776+nw6MxAiu/ekJXVHdaxNSOTHn/1oN46lrJDIBT99+Wo3jT//xS/+5Xe/WVvZ7a8VYL66jvPVaVkVWHp6NxISKnuINO7n5e4BwZZWxikjupkSOSEQAJGnFMFjHuff3T/eny/MbGA91DEwK4LW6ujr6fjmze/J7eb65np/QKJSRA2IIiEbOJUSMDlFYiLyIi2yM+G4n9Pxq40qAAEAAElEQVRuHks5SJOvvs5jFBOXFphNHRwJgIHAwM0u63I6PW6lmlkMMYRgVkx7BEUXgmut9fuTodf4ZkofUox6Slc/BJ4Cx92IcVvX3/32y//bv/t3x4cHYnpx9QJJFln+6r/943/5658/PpYYh8g0xNTbDSQUh1rqWkTMTQ3EwCGkaO7syIyMmDigufSwGgdkoCd+mojqVstWKhB2GxpTd52ymoJDbbVPZ/pywx1EhBgBsElLifKQ5nEac1YTDMGbNhFRy5EjDQ62lrXU7VKKuo7DFNCdiNREWrcaoYjUJrVWAyciptivTfdmZqVVNdtKK1VUFAFTjAoeAkWO4NBa7SZX7cRtosgcOTCFJnq+LDFFxPrw8Ghmj6eLGwAhhyAqw5CGPLy7f9yq/O0//fzli5vPf/Cj3/z2y/cPD8wYAwG4diFth9P1PcmHTJiu5H2a/wD0uS34E/KJmFprvb3ywB2kxyEQPwVyOrgZhpQ55tHD1dXN9dJUWk5lSIyIGPvWu4lBlcrMOYfLcRkjm0IV7RAJUd0Mai3btiJ4CHSbdp+9ejYFNPOizQXatqVhSkTTNKrBOIzuINK6eLsj3kLMp8vxV7/57XffvQURqYIOPXbYAdWhfbC3mLt0hqvpuZRay/Pr2z//458+f/nMgCJH4hRD+OSjj37605/+4l/+eTfu1KEKGTEOyCb7ia5uDnGajgWsthAyo4qVOCRwmac8Rv3yt7/Y7ecffPrFOOY+cHtiPkvdlkvZtmVdb5+/ZOKyFVCXUqS1ac/jMHDgD+BbAIBW27Kdh5xTjIXosizjBFP3fCHWWsq2ASExt9ZCCh3n7eBqUsrWWn3Klmit1vLi5cuU0j/8wz+8e/fu+vp6mqfe84LD+XImaojY3bbLZdm2bTfv9/v9MI51KzHny3K5ffZsPOzfv3v//t2793fvQwj1/fvxw2QgxTTP82VZ1nVJKQcOMcYQYggBCNFh29bW2o5wuZyneUak1ioAEnGK8e58BHMOMeXUZcrgXboGZhZTRCJzmeY55LEqFIW6lYgO4GXbNISYohqkFIchb9sKgKoGLmJPovLuJy2t/ODjV6+eXRN5DxYXB9nKGNPPfvTjeRp/8/Xv7+7f7Q43u2kvWyUTpoBmQIRoog1B0eH4+LAt57S/+urb707H0+vnz28OO/SqVpg6moVTTIvY119/Z7WZgAKIAlAwc3AJstVWA9T/8Kd//PbNd1+/e/fV+Xi4uR1SRmQHFCMxT8xKT3rECICAtQm4Yc8RB4g5/fjHXww5X07HsrS11sOTxQfdXABo4PvjsdRqpoEYiVLsn9zTzVprKaW01pj5Q2nY/aNAhMz84UbnJz4E9I+u7zDhl7/8zR/+9GeffPTR+fjw4tULJP///O//61/+7T+/fX/hmKcxX0/Z3HrCFYdgALXVKooUgUgN0DSHgO611RCYOZIDgEsHSqPTU6BGF+m7qm2tukMTZeKUYgiJmaH6h+NOW5PwFObYiMgBnxilABw4MCMROi6lnJaLqDBBCJHBpRUw65EDRBSZQkCmCDGkcYiBmTm60baVXlwTEtJ/V9yIiqsUL+tWmoB2GCAxxRi7csUcHN1RRBlMTUutBqDgHCK4b7Wd19UcluUCwGrg5j0+VU3zEKe8u6zb8bJ+/fbxf/tPf/3xr7755W+/9E6MCZyH3CGDHV+VUscBQed990f+ZARD+BAR/DTyq+imaqCi1Ts/HR0Iz5dLk+aBgRBDTvubVezrx7v3F4Owr3IUgLWIAxHYlGKMIXL0dcUA+8OhbQ1NHHrIgon7Uupp2xjhxbOrH3z8ajdPb969A6KtaSfjO8d+dQM5AdSytWrX17fH431vYjgkjum3X331y1/+y7t37wNRYjaFrnLqGvyOCBc1NQWiFMJxW97d3015/POf/eEPP/1otxtLq4Ch1lZED8OQp/bZZ6+/ffvtu/N6mPfiVBUJMGV++eJqnPbHcxElShxA3VpAIRcCs1Xuvr1IPf3ZX/wP+6udlFprB2OLmZloX1rtr2+vbp/XojGmh1YeHh7mm1eEEBIzhVJL77xqtdpqpwOt5UJM+8MeCEXqVop6b+nETYl5LducIhPVsi3L5Xw+n48P0koKMcW41Bpj2u92//Iv//LVV1+N43h7e/vmzZttWS+ns5vFFIeUXQ0dc07McFmXN8sbMYghBg7zYbc/vDqfz+Nud3N7U7bSoUZv374dhoGYpcnd3d30zZ7jeD6fhqENw+wOKmYuKYcmom4UQsoZmaW1EJP3dFmXwKCtjsM0zjtzzHlIKR7Pj9oscFqWJcaYiBF5GHeffP7jV19+/fWXv5vng6yn8+XRHAyM2JnzOE3bttXSCFCablopUBOvzdSx1O3q5vCzP/lpcnDXadq7EaIauIm66e1h//r5n3z53Zvi1KP9YgimnggA1E2YzMBKqZfzMs/7OU/u9f50XteyvLh9dnM15llV1DRxrgZ/96tfrUuLSGIrOjIQOER0IjC183b68Scf/ezzH/yrzz8+rcuvvvrmF7/98v1dm8f91eFZiAHMiYl78YsIgE8EBIStCLiaCoBdHw5xnF/e3Jbz5Xy8U/emzuyOznkSo8fTBYjIXKyBOZgxEjM7WOCgqqKChK01Ikop1VoB2N17BYmIPSeytSfZJQAggoOZ0nLZ/tvf/d0wxUj4Dz//+999+bu/+Yeff/32LAo3c/z05e3r57e/++abu4eFmag3Qt1BZhWRTfH2an9z2Depa605hnkcvE+azPoKDSn2vbopMAcOARBqbT2OGBy4C7MCB+UmffjhDkDEpdYeexUjAqKpmMpTOLOWy3ZZ6qJqOQTTDo1MKQYi4sA5pRxTyEMConmaDrs5hahmD49HA1D3p0QtMAdUN1dH8CZNDEqVD8HCSIwU0tPsjEPrRaFJQm7SWv+i1MbYuaRUtqZmxGzuiGzQkKlUCYlzimoSQ0yhXS6X33z5zXdvH1SNY3BUerJIsJqR6fdEJyLqRL+n/u7J6YCtNTdXUrOnCZubupWlttNyiXEOKWbc59SUMxJdDI6rrHdf390fj6cLYFDKAtPDIkwoADHki2HOySuID8EQ8zDccDsfMyiEelwul/MSiH788vqLzz+9vb0BcAArrX799t1hnIN7SiBbEwMOAdxWAmRW3cZpN85zLRsT3z3c//JX/3L/7p32RFDgrYgBmqM07b5nQXPw1qSoYEARa+Y/+MHnn7969enL50R4PC/qRmzEp3ma91Mac97l4cef/uC//O3f3cv765sXUOzqarq9mQJjWc62VALUctm2Fd2Y0bUxMWFoAPvDbsy5rnVZLgDOjKYKrlLLUksYxtQV/THEPBLFzk7MeXBHVSFEZGxNay0IMIxj2UqtdRwHadpaWZfLOM4A3SmWQozbsjKziTAHIIwx5TxIHir6u8fHkFISIcL7+7vj+TQMwyeffCIqy7I4ADoihxDTbrcbhpxSaq3VJoerm1LbZVlV1Ky+efvm+fNngcO7t29KKaVs5/OFiBDpcroM0zgOQ61tmvd/9Ef/2txqrdNMKWcCcrBu6BmmGRBNdch5uayX5e7V648iRxE5HY+Xy3nIwziNDw+Pbn64uhqqrLqEEHop10SIMIb8xRc/vbp+/nD/7s1Xv/1P/9v/CstpHJJIa6ppIAdrtbqbqIlbaQJC5liblapDon/9h39wezUv5wtACCFZQwdM0VeRrdVlXVOcfvbTH//qqzf3pwXA0Z0BW2sIzoSgBoCltEDhMO2ZojtyTgD+7dt3D/f3z29ub2+uc04Y4u+/+vb9+5M2T0/DQBnGiZlFllKr1O12N/3w9StCG+b88vWLP/njP7s/Lb/49a/++u//7vff/XZ/9fx6/wzMHDAMAxoggqmiEwCquJsjMoV8XFqx424/7cfxJr5M5GkYCIkp5Hn6+s2353WNHBEYAUqpv39zVyxOiN8zk1NMCOjurVUze9L7E8UYa6kdB/QhO+xJL4oATAHBHfy3v/+ytHWahvfv7r578/b94ybq05CuD7ucUx6HZzfXW9nUjGLQtREpAYoZIqj4Z5++Gqe4racmAmiAFpjEDQgdkAkJsKkBIAeiGFKMOeatyFYKAKWgtQkgMlLgMMTcWgshiHo/P/tFYi6ESMTgUFsLIaxb2Zatbs3MInUsozuomwfmIcZ5GnfzHPIYkOJ+d9jvDmPO58sJ8bS2VptczXOIwdyaVuSMgNLUAGpTMY9MfaoOCqLVHInBpKmq90xlU3frvFxwN9cYE4eo5mZ99hLcAQlFFVUJQoqpNqEQhiGbKxE5MjExRwWFQIEjB/4+grwPeWOMvTNiog70eMqH6VNJYtWOe3QzRef/71/9fUj843/1J2K4u7q5vt4dRZbj+f3p/Hi+gNoQh5EgD+4GK8bLWhFkymOTRhTNRNSIA0EAtPGw31o9nu7LeiGCzz99/fmL56+f7eZpvJS2qiGnzz76yAwfHo8BgUoBoP78GCk8KT3Efv/Vx598VEp7vPvq/vjQpCVmZhb1p9cLuYdSWE/uVAAydawOsmwpx08+/vizH3x2GJLUAsYKXltDUeK4rUvb70LAcZie3dz80U9+8lf/+Pfo9tnHLxDacroHgVp6/FlT8/49MDcR7ervq93V/sXNw93j1a6aekwE4JfLeVsvhHi4eaEq4LauizuknPa7Qw/RiTGZuFoz7wObrZbKTN0V3Nd0IkKAQ8wAYOb0BL8DNwtOJgrJiDjm4RACuZ/O3n1hkXm9XLZtJaSXr18Q07u7u5ByjBnMh2nEwGA2ThMRrdt2uSwPpzOFOKTEEQ3ADL777i2HEEM8Hh/f392v6xpDzDmDOyHmmA83tz/5Vz8zt9PpPO/20zTHFLd17dPFEFPndoXU5f8DmzEHAHOzYRinaXc8ncfdPoRwPJ5CSOMwEzISxWjuTh9wT8MwvHz+Mif+6//ynx8vZZoO7E1Bh3EaxnFbN1VnJGRsYg6kAiqtqRniH//Jzz7/6FUrJYTQ59yBQrHqriK11Hop6z4e7s7nt+/fc9w5OYITkoKKNEKMMYtbczjsdohQWwO0yIiEnHJT+/27u3fH0w8++SiqPS7rPO6OchYHh14pulsry3lZVmb6yec/vJ6HEHHe7ffXz6bh+tXzT3/2oz/4d3/xF3/13/7rf/ovf/Xu3e/2+6vEQwDHNDhgb7JFzAEBKBCbIjOawPH+eHl4QPAY+fowPbu5TTndPb5/9/6NSgM0tp6l7X/3i1/vnn1yc/38KanUrFtEibkfF13736cFHDhSLKXU2vqJ8YSW6UHx0NOf2q9//aWBl1prMRVPga728zjlS9keL+fD9dVlW969v4txEGw9bAYA3HWe52e3V60VQIwxjENOMaYQyJ60xU9IbkCgTlONY84xRAesTWu9uDkHbtIIwF17sGNPvmqt9XmBAUoVRKCogFRV1H1dSxMXUQcAJAWoIuiKhPM4xpRTinkYwzyNwBljiOMIRBiCIjw8HgNxJCZAR1TRhi0xEwcEdRdwj4Fziq52kbI0UcdlazmGLqPq+YIdwYFIAK7qwxTNDIGaahF5/fLld2/endcK5Ak6IBaIQkpJ1cZx6re0qgLoE0nY0RH6U+wdXN/3PqmAunsQsa+DDJ8aAndXM0Zyx63K12/ev/7opSNfLhcXQXOQAtZaFTYehzykUNbGDrW23ZDd+Xw+JxZfL1ZCiCkzS+U8pLJdlBCtnpfHP/7JH7x+djWgBTNkd/KUMwg6IkT88Wdf/M35H6tubIBggBS45ydbrUUNjo/HWjYCL3VDxCFGAlB1VXB/shEaaJPiSGpgTtJ0a+IAz58/f/7sWc7p4f4hPL+93e2301GkiSoHEGm11Vorc4wxjtP4xY9+6Kzbug5Bl/Pa1goA2hqBDzmU2gBIRKRJrc3MMITjtr15/7iWmnIIkc3bui6qLaZh3u0Y4fj4YK08PLw39/04IsHDw72n/OzFx/sdEUFHlNTWujR73RZAmOc5pewGy+W8buVwlftKZhqmdb2AWojBzPRDtoIZwW7nLsM41nFzUyAkwokTGhyPRzHHwBHJzCiG58+fa60hcGfEjsNQRN6+v5uG4fr6KhCrWc7Ttq73p4fT6eTuu/3eTAMz4jAMw263u729aa0+PDwcDlc3t9dEVEtV1RhTDDHntF4WAKylmcE0jjEl0xZSAEICPhyuS9XWbMjD1VVwhz5l6idRH1r2d7i7Ulupn37y2ds393dvvzo+nuZpTOO0lrpsm5SWYwwcEHrCqylAM49j8hg8j0Sk5yUPGRzUtI8jWmtVCgUGCt9+86YZqgoAmyG6q6AIUWCMuayX3X4/50wOxugGhmBm5IhAFMJS2u++/naaxhhSyh5raD07D0GVgBiAONDHr56/uLlRlTQO43SIYZjmHQGZ2+31zf/8P/6bj5/d/q//6T/f3V8WW3w55d0+5x0BKVID72Epzd1UEkbu1X3dciQCfn9cz+evA6GqgNoYk1Rx8HVrRNxaLaVwYHPrp3w/93OMhNiJ5d8bxL4fEffxdQdbISISigqSq4gZlNL/igfmwBwD7eepbtu2nedp2F8dHJFioMCKLq692JZWf/L5Dw7TCLoF5EA8hCFxYmQ1jxQI2Z9+AFB1IkwxhziIeil9DytmKqbTMDBhYOxZjU36cBvcwcwNvKkxoqrXJjE0JXNEDjyMAxKnnFPOYM3NQogK5OocgjuE3TgZ5zzuKCZ3A6S7h4cmknNiZkQqtXYZBqeUczKnGI055BSGGJVsqVzNjqflatwRExgA6TCkIeUQQuDQA9q6ZDUQE3GR2qTe3uz+4s/++P/3N3+LxCkFN2ulCqCYEVPEQMQ559bathb1Bo5NtJTaZzrwxPzxPv3vcI/vHyoz98i073fCHBjVRao6ESdV01ZX8zsPTEjuImzA26ZJHCxKdZOI4gBj1c0vFzJpIOAeOFVsfllzhFbrLoW/+NlP/u//9n+MoO/v3j6eT9IqAkzjNGDqicKc+PWrl19/93VInPOIyMSMAARYmjTRDoACE3bbjaO7MoIDikKnB7sjkruKA53W7f35JE7D/rDbHfaHK+HQmrspner19S2nqsuG3peUZi6mlSl6ivub6/Na5uvbc3nz9rgyjp4mQA0R3I2ZuDZtNaStU46XdXs4Xl7vb/79//QfPv/hD7ursDVprYeAZnd7OB6XyykFMtfAsba6rMtlXW8C9yO+SSGiGCIMMOQM7rWjKImaNGI+nY7jNBNxn+QRAyCt2xqIKQQivJxPiDQMQ1/rAUBttZSCRBzIxJd1cWZmBncXV9X7+/sx5Y9fv97atq1bCKHWmlJ6/uKF1FqqTLtEzp3R/+Xvf8/M8zzHFAGAiQlRRJZluTpc7ff7ad5d31yDQyklhDCOEyGqeW19htlU2rTfiZxn3ANCW1pno4YYxmkG5FIKESE6EfUIge+Hzh9GzxgC3zx/8ef/5t998ZM/+uef/91//N//X251LdVUkCjm7IDCkcchcHOpwS1vdZfT/Zs3v5nC65ev0jgyU6lNmqsb9uBfwmcvnn373dvzZYsxGwAa9MBkNxcVAjchkJaHIYCjKaCDQyvSRBkgxIDMIK2t8rAuRiHmMSd2FfU+YUdtrWzrNOWreSST0nQMOyAmCoDesyDWpkrOKc27K7fZVYrK6Xi8+HEYxnHeM3ZQs4t7IDbAtSqCMwYzl2YMfq4LuMaYA3HkPO6nZVm2evIuFTAnZPdqZjnnPhJARHziPWgfASGiuddS+hHRcdDWj1XoRPSOFGsxEgBzIHQU9RgZ0VMMw3C7rttlWcy98+OAAodkdja1Tz9+/ZMvPnUrbsrMIURGVjPtSwIH917PgogSYrcFmHaztUuTWkovb1trMXDfsyKxmEvrgQqEgGKqbhxDCOF78ME0jv3tYuYcUyBSQwAkJjQn9/7rh5wi5x3n0QCktffv71x9TDlycIdePphjCJYCAwIRj0N29yH1tE3nwO6+m/bTOCFr5hjjfkg550x9Yd+dp0Ax0DSMRLzUjRkzwWefvHzYfvzVV9+oNOJoBsu2iCEC9S8P0tMewtRa0602R4gfNKn916OnPAVk5u/nQt59bjH0zE9idLPOoXNzQoxEDTDGNKSkqkWNEQZyMV+3kmIIMVDwmHITRwptfSAwB4SYBCliQFOINCRF1zjukPL1HIF9c60XQgiEHFM2NQU7r8vN4bCup8u2UUrmGPLQS6eUUjToy3uRguRNhcAwEBGmQLU2IEOkSGFRf3+8P57P17vr5y+f53kPGAKyiDYQdW2rf/fmzfPDLoQgrUUOOaXEjIgh5yby1Zu7X//+m7fvHkzQMak5uIMTuDESopsiWMA4Y7I4TIEv13H8X/7n//DF55+C+2VZVPs77GqGrZZtW7d1nCYH2O0gh3D37m2pdZrGm+ubJxIL0pBHVe2JEmY6TiNXqnVtrQWK0zi9/viTu7v3tVymeR/TtK5Lb+pr2UCIAOq2ubq5N9XWGjGHGMwUwKyrhEARoJWG7kXlsq0Pp+OQMwfqs6ac093jqYoe9gczO58uIcaeJrTb7xG6zM63rYzDkFN6uH+Yhmmapx5d8IRuR4gxMvXaCLrijwJKs900l1ZVmqjlPEhrVcVcYsjz/jbnvG1rVclp6G6bTip+ki14J0GyAziF5zHF8Edq7S//8i9Pj/eEETEgeRWtmwcOTqExq5QQnQNJrd998/bu/vHV89vXz17UVtet5TioirpN87Ssy+X4EDxWWQ0scgYzMJUmwXW71PdvT4yINzc4TwguxUKIDmhq6tC8MXsMsYc9bLXSVtKQ9oedi58fH7dtU9VWyu72aoypthbGXcqDqYpWaRul7ICuIu5fvXvnQPN+NLM901Wd7u/vtu28qnAaAmBn8zfEriQENyBUByjFrHHAMIym5mbM5GDIsFVRaY6o7qpibgTUpwjuXlsd8jAMg8g7NcXuGxXp14O7d6Dk9w/CzYAZEfOQENxMYyB0qs2JyQHSOMYQpDapwsgqljIlxJ/8wR/UUlTlo5e3ma215kiuZCZEcNn6aApaq91nS8zdo9CkkVQ15Zi6X1dF3QAM3M1S0oCBA6FLv69UOybdDQP4OAxDSkNKOec+y0oxmmrgyEhPWxBp4P5ER3VHhOBoKWUFbk1VfK0SYgoUcx6am1S9rFsTGfKQQhhzDDFgYEAIzLWUpdVadUrjkAcOtNvv8xCHOOSYzXTdVhNbtzKM+bIVBIhM6haYOqoBTfbzHELcli1HbqK9pDKFGDO7SxM3QAyOrbRaSjV7Crf/72blDzz63gf0JuBDJgyqioO584ecAnHUxL6LOoWYIjGuBvXZGAIqm6hbKcUcwGkrjXQIjtLqZT0D8O5w0JDdyZ045LNIQB5zfCz6qzfvnv3hj64TXbZykiNxQoodh1KWtbWCgLv9/u54VDju9wdG4YAASAhm1LVtEDiHw3Y+uhs7qBkgBEZwvCzrm/P25v4ByA+73e3V1e1hX0XIJTI69EWKkbf6uL3fTofdgQCYCNwxEGT+8rs3//zr33715mGrbmYcM1JQqYRg4LWsTOwI5p5SBhfTklJ+9fnzl9fXwzRsy6WWAhBUnAOaCQCAE3G4Olwj4bat4zCW9bIsl1bb89cfP3v+qjNLUh5VZCtbq6W7ckqtpkqERKFsGwcy99rkeFpiGpEKEw/THGPsGRdMTCEuy2W/3+/3h/fv303jFABP7lXFTF3MxcTUxFIIjJRiDJFL3bx4iklFY077/f54Orvrbjd/byUhonEa3r19ryqnY2ut6byTISMxx7gs67ZtquIe+1eWCEWauwXiy7ZN0xjT0MQNgImQcDuviLTbzQ/398ty5lAopDyMRFSrH0/n29vEIXSIYS+fe4wadoOKO1FgjqfTZam2WSCwQKQiaiGlrA7NTc0CQN4dOIbm6sWKlLJ+++7dw/Nnz/e7g6ztdDy6e2ntu2/fuLnpRn3M7QLu5AJaayllXb94/bI0ef9wd3c8Xl/dJCJBM0Dr+RmmsVeRHgCChVbNtGqmfHV1yPPYatmW8/kRbw57RG/WiDGG5MZL2YYhBHJ1VJP74/3Dwz3ZRoBGyMQhGV/P6xLOSzk9nKq9G3bXKU/E5EhNdUg5MnIA8IKmedw7M3pxEzF3sW2t27aFmAMFLdXcw5OGkjvHPlJIKTVpIuKm3rffCETo/rT+9S7PBQcEVROEjqRlslaNKAQK1eS0rs1smIfz8eFqf123YqoApI5E4eZq/+Lmk21dtu3cpIl6MyU0BARgIosMRGFrta+7egnbF6KiZm5DoHEYQ4whSSdocQeFhpBSAkRwgp53RZxTmgOrCiASM7gTdG6mg0GtDTM7oKg11SpGbkjhg/IVQuDQpHJKYNZq6QJzJHZEUVm37XS+mDs4lVR1yiFyh0hUNUO8bE0M9/MhJ05j2u+n/TzfXr0Y0rC15bItZSnH42mV5qUCUAyhla3v2RGIkahHNvRL0I0QPnr57P394+PpNOYxBAwxsQTbtLVWapUmKtIv8L4/DCECeGc9fj/y+17m9eGqBDP8XgVMaCQrO7EW1zVCC4WLaDcHqoE5iPl5ax3dc9wuTRWRkD7LuxuwQAxFKgCIuTmEYL/5/defvLj59Ha/y0ObRJp3eFSVdjpfpAkTTSl+9PLFw/lSttWDqDhx4JR7N+dOzSHFMF/dtm0BF3RQqaJ6XrY37+7XUv7g88/+9Cc/HafxP/3Xv/7NV1/eXN8wUiNjAARMkdxEm59LcfOXL18SUkixqvzXv/mvb9+/N2AWzArmFhHMmlubp7m1GrExmSBB4JSwbS1lnncjoCPWy/nxu68h5en1J5+HMKkpEiXOKeaBBpG2ratKO6+Xuzffnh/uwWneHfr2FRFarWtZWikc2P2J2Lqsy/v3b6bdPI3T+fy4rstut+9Ew9Pxcb87cAiqSsS7/eF8OnUvcBPJKe92h1NraFplkroxNDdR81qFABFxyDnmOOdBVdeyMbOYXo6njk/phuR5nqd5MtVaGzN3asiG4AAdM7Lb78dxMvBxGmMMrdVlWQhxZ/tuJCyi0zgBACI9e/6CmS6XMyHP8w6IADCGyCGp6lYWIiIKOQ/u67ou07iTJqLSG9kQAgA0EQflQGVry1ZqqdoqurmpAwFFRmQQc3X14HqznyjkIl5F3S1CMOaH4+V82T777LPbw4FW0oZv37xZzgsAMwdiBCJV77g0EVkv6ycfv/7Tn/1BoPD+4f7vf/GL92/fDMN4c3vTQ1aZY2Z2qSLOIXnHgiLGkAn5eFlUy37O+3x1e7U/TFMra4x5N885ZDcsZZPGCr5WO9f117/93en4qK2IuYMrkRSVptu6iShY8dqOb89AYd4fpvnAcXA3MO5q42EYhzyutar2PTYSRfeGgKU0EwPsJlZmDt16Xbby7Pp2OV/WuomIiPZpwTgOzHS5XFRFtX1fUBIjErpDjDFGBjNzrEWkrYj08vnNxy9fAMN9K+fLuptzaXXczYC8Nc05MQGRIaE2NcVamwMiAFPKKWylONRam4i5o7sDIhM7EiBxwMAfLgBtzjYN4zSMMaVhHA/zrGaXy9LquUmbx5xjGnJsKlutrbVClFNINICDARYRgy2EQOitta0UBs8Z+3TLzYOZWyliqOq1LOCybqWKcKlOXksTtabivo45me96fqaoO9GyrCJuACGmaR5zCofhcNjdXB1uU4jZR16TDZbT9LgslyLjPMecE7j5QyCMhIAQOZCjuTm4tMrgP/z4NTF9++ZtYHKPHY+ACA5oCABPa/0PtX/P+XVEVLPvLwYOwZ7s3W69T3RTNTEDt4jgauIOCAODVV1auzudW1N1WErjOJj5ZdvOy8rsX3zxwy8++/R0PP3m6zcGkeMEGsSkmTKzuKfm61b/yz/9Kv3rnx6G3VjtZMuyrOq+bFtVG4YxhlBLmYbRzWuttWxaJcQEWtUdgMBx01Y5EjgjRCYVXUu9e3x4eHi4ubr+6U+/+NEnn7ycDxzCH/74x3/zj39flss8zeSuZoGDiWnTLgPY7to47169fPn23bu7h7u6rpGZAwG5UAOHQEXMhsgENQVNe9JalqZ1sXa2/Txe7/bmZVnKpR3xMrnJL39hteqrjz8LKQECes/g8adgr8uxbauZ7eadNLt/f/fw8DAOO1UttdZSHTyEeLmcVWWeZ03RTBk5xbxe1mFYd/vDzc1Nzvl0Olm3KKqKtHGc+r4fEE/HRxEdUrqEgBo4htDIkaqbmHWUoQdConkYAaC/BGLW/b1iyszTNFp1cUslRuJuARqGkQg48Pw0tMR5nl88f/Xq1UcxhMvlst8fUhrcTUT6uDnnnMehbFvOOcZwOj6ItP1+RuJxmi+XU611mqZlXcu2MYWu/ZimDBDWdSXiXp2EEDrFCNGbqIqkDhsKzK4JirlaK1WREMhcxMAwxdDUYtCYQhWoptqcVULA0uqvfv2r94fDzfXV3elyXoqKM2rKuXZSJjICKeJWyvXh8NlHH5mLm3/68tlHz29+9fuv/u5ffvntN19f7Q9TjpEtUnZ0ilFMVIGcDdFVxymq6fFS7pYlZT7kpGohDIfD9TzumcJ52YTbslWrsIr97uuvvvzq6yaGSA4KBq1WbVKr9JHMmPOPf/BpSrGpni7b+XJc15OM++H6NgQSRYqxI1s4Jn9y9mLIeZqmh+NFTaHnB8ZARMty3sqGAOu2iFmrRaR2lWBfw/Qp3Ietops5dZsYUkwBEQhhEz1vbVnKp69f/ts/+6OffvGDHPj/+C9/9cbwvKyHq10wFUN1S5GncQiRccOuDVPTLqUD8Nawp251yhszmmEP1+5xvyHGEGNKOQ96fbXnQIl4N8+qNuRpnqchZ1E9L2vnHAempzWnWVMprYpKCEQUmsL5clmWlZjULHGodXXQwIhNpmkyB1UN21aatWZrillaa9LPQAciNzGzVsWpp1aaW48z1Srq5mrOITBSn9MRYl+gmAOnSCZZBwMF5PlweHc8IeE4DiGGq21ppRKBmqbAKcaTdtkoEllADSkAgn8Qkoo0M7w7XmKeRLVf1E+Oyq5G//A4ibl7gInIpEs/1N2J2MzNzd07T0MMtlYsJsIMCMYlDBkDOGC15eF4XKo2k5vD+IdffP7Fp58e9gd7+cop/P79Y86BIZIRuaWcQM1E1PGbt8d//vLNv/rkVcgjV2m+bE2AI3M6r5sa1irSmpogIIeU8ySifVonompuCiqbmYFZDOGylnd37/fz9Bd/+ifPrncxxtrK6iWavbi6+vyjj3771Vd127qPcEhDH/UVkXUrSLHWX7/59g0gFmlIMaVxrS3H6EyqWsWaOoYAiujqrt0632pL7Ls4Y9seH47LVgKHY0oP5/LFF+Pd2zdxCM9ffCSqjCBSpIlZOx0fzqfHyNyZUdt6XtY150zM3epJhABU6ypSc87uWmrNwziM47bVaT4QYU9sPT4+DuOoIqU+2R/73rWUgoi73f58PiJhyqnWDenJ4t9EirQck5txDIFCrdWcwDwwl1KXZdnWdXfYp5z7qPdyPp/UhpxDDOZOhN3aRsSMNO9387B7fDy+e/du3u+vrq5TTGvZuvozxjjPc86574rLtsUYYgimkZg4dBsEEdPlsnRAYwzBTB+Pj/O8m+Y9AJv2Ww1ERFQCB0TqedwU4jDkHmBeNkOC0hogY4zV3MAphDjOtRasbRgjh4hI5Oo955ZYVR5Pp0spxGE83MRcQBUQCFO3InacU8zp5asXAcFFJXgxv57nv/jDn/zoh5//7c9/8Ytf/uZ4oevdfpoChxAhOioHsicyuS9rGYeMFFVcBRdv6/ltDIECv3z1kkJctqNnXKsJ27vHh1/95ktpwJTAhQlVFJylKRCFRInC8+ur63kacry6vt6Nu+P58s+//fJffv91WR9urq72u7GprGVlZmJSsS4cSENG6vMzFO24AFfVdV1rqWMeiEhb/WC/+u8oARVBRGZyp/4svl/OE1LPFClVLmsNgf/sj3/2sy8+241MgAQuautWVI0+bJhNZUjM1FPI+p3efxJjZg6RiAPHnnPuAK21D0pG5ZiYmZDykCeDm2sPIRJAYHbUkNIwDCmm5Xy6bMvWCgKupaSYkIKIbFstrSDiuhUirgLnZbmUkpjcvPZ7zuWwn5kjA6lJlRbWZSsG1SglYQQFE1UHDCGYQooppSgqgSlwd1wpAJTasXGDqyFyYAZTQKy6NWsCtupWpYg2cprHcZ6nUmvkuJvmy3rejdM6XBwdiGqtkcN+ms2wWjNXCggASEHVXY2JRWlZ289/+Zuvv313uHnJ9MRRAey8B3ky9cETIAM/oB3gaUr9FBUZOARicDCkpdlScGl2It9P0zzM89DMABHGg6bpGHMMhFe74bPXL5DD0hoHf/HimSAjpN5wxDQSoKkoJAZIkZfL+c1d3OXsyBiCVn08ns+XpUqLMe3G+Wp/JardRgvg2pSIKFJrTY3jMIE3U3MARKJYCfDHP/jo808/Ol+O7kjI6mBSxf3m9qYZHI9nZkwpBY5uqirQhOJERIywLksehhSCoqsqUzQjMzMkJYLAHBgBrIlxDoluhz27mrWYEoDv9jdxUERQ9yp6/3A3jUPdbhLHQEG1lXW7nE8I1srGADHGc9l02x5Pxx+8+ni326modX4fkrSttcoE0krZdN3WZ89fxJTr1p49f3FZjqqy2+2Ox+NyWcZxDMydMtVEWpMYY06pbCXFzMSttdLqw8ODNEEkYpayDZk67WO3G0Vw0+ru2mxZ123bdldX4ziiu4hQz2YBmKdZTcWUiB/uH9zs5uZWVQl4WVZCerh/+OQzPVxdPQ0/a40xDsOQczbV4+V8OZ+1tnHMDtCaEHEIsdYWmMM0D8MIhARdeYHMvJU1psSciADJaxVTizGKS5eEmno1GdI4z7uch0Rs1g7gyBRCRHDXxowcEkzDlAgAQsg9v1tNwCWnYI4IICKOPMwzT5O05uDutDUNGJgBxuTzMAxhWY7m4zTkIQCRpyF8vLt6eXv72ctX/+///Jd3a003rwyjQ+REff2DzmnI4OZIcdgh1pg5R9RtEW13jw+/+NUvn18fgULgJKqB4Otvvl2LxjRLq0MaiOx4PgUKw3SorTW1ye3F85vszggiAmbP97vrP/nZp6+f/fxXv/nNl7/+4z/84/08rZczYHAicHJHNS+t1lJ7UVhbXdeVCIaB+qhlGlFFLpclpsgcOj8LCToM7nsokJn1M6Tj+M0dwXvfiQjPrg/PdlnbInECZGRmpt77MiGF9Ac/+tF6fNjtZrRmu5kYzazU1cyIcByHeX8Yxxxi5JAcEVYgxm1ZQw8hcGDmPpvKKTsAEWlt0qqYFZO1VkB6vJzP21pVwT1IWMvmmkprtbQqWsUcvImcL9uybk0VzKTKU3IueVEfAAFQRMtWQinboqjOCEQpJR5Cyg5i4Mw05HQ47LZahxhzYgAwQHNHIgJkpDwMhpBjEKnBkIhb3bb1aBartlbbxNm7AU6dAQhpGKZpKNM0bFWcgosh+m43IcU3b9/eXg27/b59/b7rwfUJ3OHa9VO+7g5K+KT26WtuM+vD4r5V7y8B9uESMSKHQIQMCMx90eCuzd1jGlNkdAkhqFmMERG2dWOym8OYhpGIzfS33905cUqJEbfaXLSnJCC4bAUBTRXBHKAWfyi0PLwlCICuprWJqCFSYmZ0LetaNyREQJPaRcda1ZQIwaQ+UUjMiIiA5xzm57eltC9//y0FNncH+PrtWyJMw0iIQ0rp2Q0hMDEwmYOIZDUEekoZtU7FgD5bAHDsUZ4AIQUOEdy0NU6xCyACEigQsTTlECIzsAOiuinC4/HRzPbPbiigVZfag+ABHaQJMeVhKKWVy6oO4zQFTsQkWnsYBhEPw7RuF1NtrWzLOaWUcga0mNIhXJ+Oj+fH4+5wVVnv3r/Nw9C7tzyMAO7mOQ/btl4u5/uHOwcIIfalrJkDYYrRzYZpKq0dLxcA2GpRsw4TDSEgwOV0RsBpHnNKTBRiAsJaN0Ja1rUPD/f7/el0PJ/O21bn3e6H14dPPvk4BO7VDxGllFPOqlq2ZV3XcZx4z2by3TffxJTNrLaqIiEEAGyt5JxiiufzhRCHPG6lrGuJsYMX27KcxzzExBwiU1BFM6+1hIiffPz6m2dXWFcE7QeKA5pZCmPn5S2iHIiA9oFKEwnBjZqAuiMQEyOhgZsKxzikiUNQsRGecmhz2qOZq1itlDKGtFSVhzOHDfBkamnI//qPfrY0TcOBOKhZayIaiAgxUAiurqaBggdgopjDNGVy382TSPvyzds85rSlVto0rFq3KQcOicaYA+sHmsiQB6QRiYiA3K0JUhC3Tao611pf3Nzs/nh6+fK5A9Z1q6WZdQMcUQzNrZaaYwoc341pPdZe4wNaa63Vum3b6r6uC+AUQui3LDioKjN3qWjXJQMAI4eQOp8HPpgJmGk/DUNOTGxmFFGtrdtaRWqVV8+epZQO+3k3RHHcjVPgwIit1jMuHANjGPKYwjAMOyRw1zGGgFBbQXcOjEhNKm3Y2lxqjSGnkBuLsq1LW8raTANg79Gl2fc6bGY2d1UDYkBtoq1qClZrLa26Y2ki0oAgEu/GUatJgg20iRZpobaOpEYlNTJ0SiEqADONKcXGgJByHhOPmYl5K6WK5ZSJaMwDY6gmao0YiMjEXFVqkVrERFXTAGZ6fHhMMcRApgLozJTG6VQv//zzX37z9XfN4Xg6XV0dXj+/+R//+Ecckzv29rA1XbdNpCJ4p2t1A0y/FZpIf5zf2wJSSqVWeyLFMofAKuCYUlJpyByYUdvD3d1h3AERpgjg26m5agihK8O6NiPGs5g2VX8SZgBz6HIBIiKEpyh6MzMjejLAEQJSt1gS9axKwq7jcncC6oGlBITobhACuzsAAjg4GFjfF6krOgEBdGGvGyGriSP2jB8EUhP8oB9HQEfvSduEhF1TZOjgXWHyZIUj6CWGixIRMSGgqYUIfZbSjwwEUHVHVHuyZYqoqFHglFKa589/9BPXji3iENjEQmDRZmaBaN024LC/ehbToCofli89AaOhQ2DaNrUnsbk/Pt6nlHa7AxEfHx9zTg50OR2RPKUBwUUaMxcpnYWwrBczHYdh29aU82ZWtkVEzAwDmlmI8YNLPMm6rsvKzOMwEhEhpZRSSgCY85hyqq2GEFWVEK+uDimkN2++Yw79D4dpfPXRawAvZSulufs4juM4mrlIp3HTtJtrq8t564HJ7k6IgUlExmG8e//ucj69+uhjRAwxbetm5inlbluptZZticylboDEGNRM3dSsrvXu/u7N2ze6rarNrHV8qKoiYLfIldYTVLiJdN9jF/moKRIyhy6WIyYKgT5Yz55GHIE7jAfAEfBx3dxNVUwaIjCxebfZITgUKSEENW/i9uRJJdj6+4oOXqtIJVDubc7WGhG76dKaqf1evg0EKZCbm7ScQlFQkxgIn6Rq4uqlWGc7Wq3t4WEYB2Ry85TSum6tyvF8Xk4LACLzmAZCbHUFZnSMmRMggqEbIZlJn/iL1FJDHsZ5t+uLQ5GGTwvwBoCAKCLuT0zJ792jIRAimfdsZRtynHfzPM2qzc0iwuV4lKbPXrz4wWcf/fPPf/F//p//8ZOPXt9P05/90b+ap8jE27blca2mBJRzzCkGDsAYYzoMecjp4fGuMoI7ECh6reV8uXBIllnFzLy2VkTUNbhwoCadDGKtaa11QRpistRDUbqOjER1XbfaivcMB/cqzdE8RLOhNVH1RUptW601gKOZI4EDbq2JWWAa4jilNA1ZtMU1nZcNwXMamIOYxcjEMUVOkbfaHBxMMQYRzQnMrJRiZqWs6Aa1NPHz4yOqEpjIVkQBMKT09v3vvvnuzeHq+vHxlPOwnE8/+cHrj14+++bhlFIyA1dtra4LSBP4QFAyt95LA0AfCvdnhgAUgoiYWkpR1SLHwNyo226CmRr47c3+X//hT3/529+ezr9AE3hyHj2NlJ6avq5yQOrHew/S66tm//C/dgd/Mnz7kyoVHBwYQ0+k936QA/a2qU+o8Imjb4hE+NSpwFOJDk/2E8SnVGtHh6fLof9/3LxneXW7igMQormD9zHX0w/ZNyR9eo7Y90uA4Ni9PR8YWA7oYOCAPVMHn1rfHpaEAAaOBN7HUUjmwIF38/xwKWl3+A//7t8PKZZSzpeLi8QYDfT0+FCWDZA//+Hnrz/+VNS0CSCqGAC2VpfLGRGvr66mceciAFhqJcScEvMTBHtdNxWJgdF8u5xbrXkY8rwLzIJGhM+fPbt/9+7L3/0qxCBN+kSeiGqt67oG5mGaupQ7T1NOWWqfIOVhGELox80TLXJZLt1RUmsNIaj6N+++XdclxnR9dTPP+1rky99+dX11e7i6UtVxHKdpQsJSSgjEzOiO7jkm2h3KurUmrRYx/UB2ibv9/v7+rrUGjoQ8T9NWKgBM06QiRNQJryq6+QYJAHtYlR9Pl3f3p//rv/387du32OOO+lPvb2RfULqBGSGJeWemAjoiPUEDHQABARkRkQyhX/DgjkQ9VoqJvY8+4ek/j47ugAEJ0NSfXj9UAGQkBHIHI+cn/03PjnU3YGRCAEJDjxx7cUNIKaeyFdU2DNnVwC3GCGA9Q8bduukHwGOIACCtpZS2bVvXNaZ0fXXNgU/Hk6OLWlmLmdamRByZiCjF5ER9e4sxH64nAyXKtQkA1yrm6zTthmnqZFBV09rR0J5S/PAVxicZYWsqipE5BABvVaSJq87DmDq8AVhE/uCLH17O9e5cAuNf/83fnE/neXfdqn75/psXV9c/+sFHRMTMQ4wwZeY4jiEPHBNRCClSCAwWEZEJRN1ETd0YS5NLKeqUYhJTNyWCHHgexxRDKc1MW6vruribsDxpFj+kd5lZbV0hbOGJ3x2aUFN1s2aKIkWEXNZSRDR4p7kxqauKgVMg2k3TYZ5yjqWsTS0ptLqutZGaAwJSSpRCaK3VVovUIXA0VlMz653U5XJRqW6KgKJ+Pp2llVLWZYUi7sAMfLU7fPzxx3XbAsH11TWQXZbLVrdxyPM8I2LnZHepDzJlDoFZRHIec879XB/GsZYqIh0OauBxHFIeVJVDNCLgyDFxTNaklHXa5R//5Ke/e/Pw7u4+MTqqd93v09UPAIhMT1WSgjl22/3THhz79wGRoW/5n05h6zY7bOZERIH7qe5uIvp0O3eYZ/9jADAneILA4FOMTM8s0z6o7VgSMwOCp5UHkxsSITL1f+XmDgb49KUlIuQnD8T3YFtCRCR36Wf903XpbvB0mfXfCT+ANIjI/OnO6WZdIAJHdyelam353dfP/uvf/cWf/8Wzq+vz6fTw8EBuIYbWyrosZS03z1//6Cc/jSn2hSoCDsPorjmncRhLLSHmHkcz5bGW0qSJtHW7jMPw6qOPz8ej1DNxIA6l1Lu79/vDFccEMQD4tizL+Xw+n9+9u0s5EmFXAHdpM6I83D/krb569SqE0Fobh7DfH9Z1HccxxrRtSx/ixxjLVh5Pjxw4hNB9wm/fvNvWLaUAgI/HE8AlpPSzP/zDYRhVdTfvUkruXrYSUwpMpVyW5axiz1++DCHEmJoVN2OAbb2InPMwpjz0vIdpmvpR6+ClFGZWsyYt5/Q9tEBV05CJKRB/9c3XX33z7ubFDzDfLOfjVjbHzhB0cjTve1wIiKqanuDCH8RESMwcQ+qlAAKEEAG99621NextQT/4QiCiJprzwBz6S0KRmBnMVcVM13WTVs0scEhpjCkyMxK2WkMMMUZpEmOaxxkQFMTNCQnckLpmlDiwSusdg0hrtboDIYbAIq3P6AhhWS9rWbfGTknD4E6bTkMar1++mKZpLQUBU0yllcv5/P7dWw5h2h2ub2+nceaAQ0qq5kBDHtzt2e3zZVlTjOM0DsPQWj2fL9u2bdt2Pp+3bVMt8zxN01xru7raTdO0LYuYrZezmyM9oRqIaRoyA9RaxHxZV0b89//2z//ly9//5V//w3539emnN3WtoDZOczPbWpVacopXu2FSRgxPpGbGfiAhoIG31rbaTCHETIh5GJGp1oJOgSMhIEKKPA1pHqcAoEiByU1Nu/78yfdqT1UaqmppoOLgkEKI1J+yi4mKmVtp7Xw+M4ObT9MUYh7YHDk7wFarqATiyDyOQwg4jtdF4bRVDGmVFpHcFIGHAaQ1M1GrZmJAT/I7cFF99+795XJGhNZayqmU9ng8EeO2rSF6NRJhxADA37199/D46Oqt3s+7+aPnn6g0UIocdvv9+f4Ejj2BNnewRAhqtq6ru6eUpmm6vrpCCpfLGRB2826cpjxMNze3TMEBRGRZLu7AxOtyUa3zkA67q//n/+P1w+MxMMccmVhUWq3gQBgAn/IJEB3USy0AyMQ98yvGgEghhBRTYIZOZiZea2vSuqMQ3A+7w+FwpWbg3lo7LefAIcUgTUvZDKzW1mrtvIGUUreENJFSNjeX7hCOqe8DAMAQCCmPQ3+JQoxuzkyAaKLcb/7aEKGU8v7+3bZtatZlAw6ec8Ye2CpSa9XWStku69K3T7UUN0XEJ988UWnFzA+HK3SadzsO3FEK4zARkph89Or52+/ezXnsnYw0UdVlO6Pjy48+PVw/O53Pt7ct5EkV3CDGZCamGoaBGcu2lLKGQHkYai11W1sIp+N9HsZh3I3z6K4h545XG4apSlOT9bwcHx63ZamtqikAmLqZurkTjMOch7wt6/l0Op2XL7/8/SeffNLbAiIEMHdtbUOEGFOMKaW4bYWIe7HZ1QRmllIWqcOA0zgdT+cf/uhHP/3pT5nJzNS11IKIHVS1bpu2VmubxtBapRCub67LspZaYk7H03HIcx9D3dzciLR1XUNgIjYT4vQ0dHZAIg6cUnJAAgTodbo/f/7yo48+m+fnJlrLWurGIZZSzHQ/782tSUOAgCSdzaESUxLRGOL+cMUUatlCZA6hqYYYxpj6rHCrJafkDk3EzUutKWcOYZ53OcfQozIoAIKBqWvd6raUx9PD+XLO43h1uB6HkQkBfFkvCDSME4CHwEMack61NjcPgRGgqdRaUxqYuLat1IpETFy2WktprcYYCeF0OZWtMNNyWdSslK2UUretlI2Q3B2UtPk4zARwfXUVc47MX3/91cPDQ22tbFVqdUStbdrNwzzHEEPkaZpyHmKMSBA4dCDVtm3Lsqzruq5ra62UMg5jre3h4bE1mcfh9atXX/5udTemICqqEkJIOZnraVnFWVRb2/a70Vq5ub16/vL1b375q8vjcnN7re6X9XZbl0iWIzNm9yDOYhyYu7/XmBR8LbVIj1AG4hCQdtPcB6YeodVKgGOKQw5EOA9joIBY53HaH2b1VrYWY6BO5AQABGnNiAI6ElIIjNQntCkFVdvWTcyb2aVskXAc0piGkPJgZj3NkBDPuiKzioDrmCdzPxwOS9P7h/scg5u1Zt0H7944BjZLDjnEFGJOmSlc1vW4Luu6Rn4SISxbq2qZg4G32rYGW0MA/tVvf3t3d3+1PyzrpiIPj8e7u7m212aUQ9yN0+Xh3L/ggDCOIyKp6uV8/l5N8f7d+7dv38YUd/Pu+vpmnqaYhv1ul1O8LEsplQjEa9mqtJZyHqcdIZzXS87p5vkNIjIRM6/bOo4DAMQ0gJs9WQe4NanSiDmnJKsggaES+TDPKQ5MARHEFABy5GSptupdJWXtuJ66mhMAgcBAYxrTmOWsESCmUBqLSE6ZkMh9v9sty3rZLsOYR8oA0ENy1LSWyswhMKIhWJcyKZoTpBQbChAwMpGqqlTlyNECiwyR590QY9rvDhTj+XJGgrqVbV1Fpufh1f3jw36aTeTxfOxqB1A1s5v5lonHYdjt9zGmXmXHGFuTVuvAmRT+/u//6f7h7rNPPxqnyXLWVkM4TNN8dfO8tMZEfezmrrUVUkKEPl8+nx6k1dNl2e0PbhpC2F9d7Xf79m7dljO6h5SbSIw8jjkgmD5/eHxYTktKKVBYt7Juq5vnlIgo57SuPaSX9rsdIcYYc853D/ffvfnuxfMXWymimoeRQ3KzPGRCDCGae49SOewOpi7NCHkYBiY+naS1lm/iJ1efvP7o9TjmfvG7mJKHEFKK7kZWL5fzbrfbH+ZaSwKYd7v3798vl/MwRFSNTIwO6PO8K2V7+/Y7RLq9fTZOkxO10nrlW7ZtHEaOERzUpVnLMTtgHlKz9t13X0UKrRVESDk9Hh/GaRQtpZa1bOgQAwPR1qqpxEABIQQU3daiqkaCyNRERIWh8x5DXz8YABO3Wou0EGNO+f70npkQUER68Ma2bcwIAAFDZ9it5bKup74eQAQkNLEYIqdAhCoaw5NfWkyICNRarRxDV9xvZTP3nBIiShM1H/Oo2omFJSCJ6tJKqaWupa5rd2ltZTNRjjGmmFL8KoYQ4vX+6ub2RlTevHnz5s2jSCutoQOHkHOexikEjiHNu3m/36sqgK/ruq3bZbn0MTUAttZEJcaYUjqfz601011OARwAOIZQalHznIjAtrI2laZOSCkOSHx1vV9/9ft/+Lt/qFsNlADg+Hj8l1/++uX1NETIKaTAjKGoW/FairImIhVFpioNgEIYqgoQjXnKOXmpPbK9R/6aUo4xxgAAooroc0o34x6blyQcQ8qpjw2elqTIfT8UmYmZKQJgwoARCaiIoFtrJaSQc573c5imXSlFVfpmiYmbOgCYCoLHwInsxc1tjpG0tVIuLDllJhiHuYnuKDCRu4YQwb2UrdXWb6QUQooBkWtCxLVnMav6Vtp5aYCYM3/x+adTGpatqsP7x+NlWdSBiMZh2M/7O35v7grGzPO8Ywqn87FWcce+vnf3po0JL+dTrdV7MV4W+Va3WlyUiWJKbl6lms+qYqqEGDh2s4d0brV0WlNoptu29TC2DrLHwGq6lK1qQ4cu18NtwXXrqmN1K7WqylMGIXiMMTA9Hh/WZSFiN+tRznccHKFI69pgEVHTrvyNHE6XYxOp1rbjsi1LYAYiN+tzjL6V6qZw4oBMMUWHp8iIGGPXQWoX9zYpZa2ltFZ6XNz9w3vkYO7gVmpRkSmPMcXWxsAcUjT00/k8DkPKuZUaKHRNlKq01vqEvbX28HDvALc3t+u6PZyOFODV82cpEDFrgxBiq3I6HsU0xrSs6z5EUam1dJsrETYptawxptevPwKkWjbV2rWVSOxWmXAc8rJs33777bNnN4GjqY15AICUwrNnN/NufH93Z02Ox0dTiyGtsNVWZ5xrq+ZW6oYIOQ+iejydt3VxwJvbmx4waWadk9VUA8fD/mqa5vP5YuTDMADAVmpIeSvlsq3Xz17s9jtza60OeSRie/KUmGmrZX14eHj+6jURbdsG6LRRYJ6G4e7tm23d5vnQpL59++7Zs5chUAhBpF0uyzBNZs4cjAyRReTx+LBu6ziODohE4JhSHlL6+NXLX//Lrx5OJ1cVacTc55Hreim1XtYlcmwVFUzcAtK2bg5QTbGUphJD6qGtTIQOlQAAYnI3a01MhLvUBaF5a027DFFEWmspRFNdl5XQU4oxxFZrrdXcahqqypBy5BBD0I6svCwhRQAo1IjY3cEgMIO5SIOyObiqu0NXzuQQSy39WgUHNymlFDUO0QxCSJSRAQCetDplXbdaS9kQe8tEUpu5PX/+HBGXZRGRWmutddu2VsrlydkF67ohYowJAdzc/L/zP2IMKaVuh97tdmb2hBvQBoQhps4uCiHmEKkrOZAclIlyHkLIbng6XW6vbuINahNFOByuAFlEPEaDJ72/liZqbq7BiTkgqYiqBA4hMrQaQwoxuFtOAaqhAzObKxKu6yqamEM3MjHTYZrBoUgjfhJySGuuyggIFjkOKXU7iDoOKYMaEo3DCHUL4Hk/jznOwzDkGHIeLst5WVYzJ+raCYgxo0OrJaZhSDlEnofxcnw8qydzRux8MRXh0BeM7O7bVhCxbFsMIYzjGGPOEQC3BgFpGscYUgzRoFWRmOKr16+X3/72919/hRTTON3e3rTLPWOgGA/74aMXL959+2atBYAB7Pr6OsbkYJcLdJhrPxZbbYJP7oR1WdTs+u6GmERkGIYYQuDYg8O0VK/WRCiGnBDFHUHcOPRqNVKXHgMwsZtv69allD38r7/cfWhOSNJaZ1ICQrcw9vOXmTAiOhGwiAWm+CH2AJ3cfEijPukNKPYYS0YR3Y6bujHztpRWmpL03bKLEaGqqwghKrr11HfJ7tBaDTHiMAMABDK1nDPmrK2ty3oqF1F7/hyHcaRmblZqKaWkFNDdRYeYxdQRpzyOccxDBgBJbSulFx3u3fOPfVE+z7uUEwBupQEjU+KYQqBaKyADQIjx7du3TSUPEwBwiE0tpYSIrVUzX5fNeqVCuK2LSG2tmcjluLXWeu8v3k8cPp/PV4frNOTLupxO9+HE4zgCOLi21rqMr9Z6OBzOF1bx8+lCxIhBVLatllLAadvWGEMKcZ5nZi6lcAj9r9dWnz1/FlMahuHheBzHcRznrcg87QCobO3du3cvX71srU7TVFtNMU67OYQIrirt8eHx+vr6+vqm25XR47KcQqDjuyMz7vZ7ZHp4uLss5xiimtW6MQciAqBuow4h5eQ2tWU5r+ulljoMQxqHrVZCMrMcojW5nC+maqoUurYMh5ynYQoc+5je3dWNkJ5cMEidW0yIAbB1rQuAWyfIBEd3R1PoWwBH0L7CQnJHwjAOUWoDIERCBxEIKVBEduwZETHGlGI32QUOGFOtJYZkZsgdAo9IoNIQULVLAoUpxJB6yq2rERCo11Zyzt4TXomJY+grN05DyjHlWrYY45By3FZR2battVqK1dYul8vpdGLmlNJ+v+sV/fF4vFwuANCpD7WU0+l8uDrkjjKn2ke4alJr63Nz+B4h7N7te+q+1jUP05AzczzMY86ZOXTm2DBOKaVpnFzssJtffvR8W5aH9w/rVovoH/zoxxwix4wEHNnBg3IEKU0QyR1U9WlPG0OM2YFj4MAYA4sYE4rJsl3cLARuKutZDJD6CBp8qQURpzwAADOLSwhcRQJBTrHnSNcny3EhxBiiuw4pjXmPjCmFFDjHIK0FBFy37XQ6qTpycKBhyIEpJo4xlLLm6SpTEmnTbqxtU1dzi0y9GjWAWksIcb0siMgckChy4pDGFPryMsc45JxjnMcJkUTPDcya/P6bN99+975udd1OyKfD1eEnn3+cYraAt/urb799O+RgbqUV6rpL6NPbCMAhMAA0kVqKiLgr4WbmqiZN8jgws6nmnGO0VlsIHC0jEJhL2WqshMRE5hAs9ACbWkuXG/ZucRxnItu2rSNkayscQ/zefW7m7k8OfmaPsZdOfV3cpPUhNRKupRCBiOSYSq3AXVmH4MBEZqpVy7rVWilwDLGz2MgdwLqtoZf/qtLMECmniID0pPkBEy3bSsSgSD11NMamEtcwz5O795XJk/gfgAhV7Xy5pJS6+klE0KFzF7oMpK83EPsCBnoGT1+Su/lWVnRkCqW18OGajyGslzN9CBC9vb1NKfVH426matpKrQ7GiLWsTWTbipkOQ97tD5flXEpNcRDV5XjaH67GYSzrioBpzLPsxmkgsPuH+6+//rqV2j/qWmsYwziO5n46nVptXRxpYttWjucTh6Riw8App5xz76j6xv58OVcVjuFyuXRbiZrmlAISEh52OzfrEAszba2I+G4/94aRmNfzedvKMM79I0L0u/fvHGk374dpN8+jIy7LcnVz/frVyxSGx+Nj953GlMZhqtpM3ByIKaUs0gJHAFR7ylOqtW5lK7WM8yxv3/GTxsNFGthlXbc6CREDYw4xxxTwA6k0ZwDcSu0RScRRATGQmsWOB+8oAgdFJ0IwF+vqUUNkInLsIlE09abVzbRYSHEeR+jnlpmoIhAhAom0FlX7N673i12YLCoASOCIBK4xRGmytQWYKGUCYABx7zwGBECiEHLgYM0xcI5RW3PEjrc0s1brtq3btq7rVsqmpiLy9u1bROxb/XGadvN8e3ubc75cLk3kyU4kuixLX1LmnHvdtixLCG5q/UXq3NBWKzF3fQcg7OYZVQH52e3tNE5IRI6Habef9yGEyPjRy9tpyr/96vfrWi/HZUixiX375u0PXt/kFHKatGtzI7MCNDFTEQUDdwHE7iiMeTKVGCAwS1NCaq2UYn2i4AD9PhVtiBgDS5Na6jxOOSVmltrcjRA5xCGnRNRU+lJQHYpvzDSNY+JA6BQwDykA9UDvUGrpC/GmlvKY0+CmRDgMGcAcfN2WcQyqoipqzV0jJ1Mdp9S01VJLbetWS20xJ1RvTRx8P4whBNO2XJbLpTqAmxF2p5JelmVIuZQtxfD8+vXxdHk4r6fz2dVELKRYy3J8uAtMTO6uAOFyuZjBtq2qiggiPo5jSmlIeSul233V3KxLico4TUPOpRRRU9Gc88SMTCINzAkBQgBjRnYz/6CM7guiD6AJGoah515N0wQAZSvbuvUbov86y7J0D3qX/cOHfAl3K6VQ4K4taSpb2dS01FJVp2HqLbkjqWnTFkMIxOoWY4pDJHBtVVtV9yLiZiFG5EDkhNCD4FutQF3h2Q8WZWd33y6XaZ5ur69uDrO0+vh4dPd1uTj0n9BTSo6u7mhqTQFBTCMHRASovQ4S7Yko+L0tvt8HMcYUEgeSqoEQ3HPKw5hjCCpay3Z/f4+IV1dXpZTWhKhKK7Vsps201daYoG7rd999++zly2HciVCMaavFDPa7Q0zhq29+P00zEYbAq/u2beM873a7rZSH9+/XtYHTsmxlK8yMRCGGPAyAeDwdSy1N2raVy3l5f38XcxZRM7u6uhqGoZTCxH3ZW2tdtjWnfHd356qmOu3mcRxraWstpZbD/jDs5mmeb66vEOH+/v76+pYDPT48TOM8pKjanj17nvLQmgxDyik9vHu321/N834Ypg77fXF1CwC1boFsf9gDQim1bDVEMbeuY17W85OUjHAYh04yTDG6w2Vbv/ru22XbxmEybdiD0sC7gRwAzXHbasE2Dx5iSCkDoTmEEPhJlNcbXELo5hCotfZ+jpmBSM3QnJ+ujhACd1eAijBHYJ+meV2WWupyPgXCzrNCJAYE8+aq7toaIbjxum2qspv2McRiWqQhd7MzqDR3MzFmsl6xARIRAMcYKbCKUU9xQcwxOgAj0TAIQE8bIyKt0lprrW7btq5Lk9I+/FNLqbUuy3J8fNztdjnn3W4XU2qlqXa/hXShUQgREHshz8zI1BFj0hqHEFN6Sr9higFTDD6NYjDNUx7HkFLGsN/tc87gYNKYUMROx61sdR4nIjyeHy7npRTVCVz77wGIFjjkPJQqZl6luoujzvMeAIZhZAICAQBiWrdtXda1VTOrTfI0mFhOo6iWskqtDp6HnDQGI3UVNbcuXsFIFFIqtTjAmLN5t2hUQqCUppxDjKbmhO5QWgtVS2SMMVStao4cQojTEN2qApq6ait4VrPLcqq1MfKQIxO6OoE7uqi0JjEkct+2bd0qpzQNJOJqeq7l/nIyQwn8/vEMxJ1ad7Xb/+iHn53Oy3IutbRh0ONxi5EVkcSKrKfzWUTM3Q3Eu08PECnGpGpmtixLCCHGOA4DMwPCMAyn07G1Ss7o7gAcIgMDI4UASO4QmBE9cgBHpN40qwO6YYwxpORmtVVwQCYzZaZxmoZh4BBbk9qambTWatliCKUUdYkxpphFpLXaWoVuBGiiJnVbO22WkMwdEbuytTWJHJgICIwwhOiiBJ5j6hQXNXBg0QaIOQ2R2WIotUrr4L/ab6kn/TLx9wtt4uAmNzc30zx+9+0DWcc+drBxNIMcs5mLCXPs2xRC1j4mRlIzB5DWCFHsiasalHuZ1nWKPVMJkVTURFzCtm1VmhNzjOu6YOH3798/f/YqhABAZm6OxHEMCUEf3r8VlefPXzPHu/t3iXlTMfDzcn4+3rx4+UrUAXDaX1PMl/NJHh9EGzjtdvvAAcyl6boWBJrGYb/f9+ovhuhm67YhkgMShavdwU3neXr5+qMqTVobUiIOpbR13Vx8XdfSakphiHlbtmmcgdgcT+elVr25veEQ379///Dw4nK59A+7o0yrYBxmDlRrvb0+iMhyvjDiOO3mw5VKffftV2Urrs0QxnEW1e2ync+XEJKZmhYzYA4OerlcYgwAvQom1dpUACjHAZzMYF2XdT350ziG+rkuTWKMTOzuSlxqeUoUIwrg3YRobsfz6SlzDbzbRGJOiMiq3SESiL1PlkNADr3PRqKOSTbzedqZWit1uVya6qvnz81sa23Ou0ShaTV3dReDRDjksaoUkd65EpKbuxkSEwZEt+DqSiGknAnRwc1AzBExx4SO6uZEPalta5VTQKbubSQMRp4ypxSHcYgptlo7BnhdV1GRVkUVHM6n87Zt8zQfDod4kx4fH7dtIwzLsszzHGPo4jpmbq0GRoT45PZCzDm7GiEwhu6dAXJC3Go1RGbcjfOQh8Bx2y7SVjfZ1m1d6jTmw2GvzVK4HHYjMalqaRW1q6hB1PojqFKkVQJwsGmwlBOi5ZS10/DNl207b5fzsjCHJgZEDKQoZiACW21bLUNrCbnrAJdt29aCCIc8R445JAAQqUiYkNwdiQITcTDkWgTIjaWVWlsL+2mywz6FuBRRQ3efUs4cTKypNrGQxm1bsOvT3Q2eHLBiEkKIYq4amHNMtTUR7QE2a9n2w16bbbVV0dQjhdValW0rMcQc08sXL97e3f+37/55qy2n+OMffPLFDz4CREW6bMu2lVKLiKq7P7WWuQ8xYnyK0OtLGzcjZmZurV1f30zT7O4pddtAjBgAIeaUYqytGjiCr3UT6cGtHpgxsKrEmBEJHMY4OMDj5QgcKHDKUUQdCRCY0A2YqVPA5pk7cS4MoZSipn0GQ8g4+LqeL5fLmIZOoeuQ+hiftPjIpOBdu87EEKmv8Z2ROUZEN/dWsZZAFJgNsOKTsSuGKE+fSfedUt9qklskqOfT/emRkVqt45Dn3e7xeDKvh/0hhNARAVOazK1IyTnFEEurBBhCIA4cqHUiTQdmmYk5EYlqW9f+ofUi+geff9KbdxGV1mKM43hbv6sA/vr162EcEDGEOE1zrVtrVVVPDw+nx8uY59aUOMQYzazVNs3z5Xj69puvr25vu0su5YyIb9+8cRU3fXx8fPbs2bybzZuDhpSw1sTjME0hxnVZaq2i2moLMU3TNI5DDAEJv/jRj2JKj8fjPA7EfLmcz+dLa7IuS+duLOtKyCJyd393e/t8GAYVPW5HabJcFkT6/AefX1/fxJiIeBynnAdzH8ZU66aq93d3wzTupt3leOKYOYTL+biuGxOVUqrIMMyHq8M4zXmYVE3UmEPOcV3XngZTSo0xAOiyLiKKiK028nDY7/6HP/+z3bz7xT/9093d/eV8Nlc3a7W2Jtu2uHmICYmKhVLWVBMSpZRbYGKWWkrZUooxJnMXE0DIKSOAqAQkDAH8SaVGPYjGoVvrAdxcOQRwmPcHM3t4/7bVUmthhraWDSjFQwjMKT4ROziEEMjEzRGQQ+BuRjFPIXbNa4pctYo2U405q8q2bpSiqtZ1Yw596Rozu9myLDPNgRiQAjG60/+fqT/7lWzJ0vywNZnZ3tvdzxDTHXLOqqyq7qrqQd0A0WRTJNHSiwDpXxUIENKDKJASSJCE2CJVzR6qsjIrM+8Y4znHh71tWmvpwfzc7gggcIcIPx7HbZstW+v7fl9KMQghDk12b3UUKNOcALDVtm0bE9fe1FTVzpd1v8O7u7vT+dRa66332uiZ8zPk88xC5AAInoejkCOimTCZ91LHMIwv2+Xx6enHr27mOCFirvnpfGplBcDPX7989/60pImQMNDPfvLjVy9vAdRdS6vDRCch0BgDEpdawNzQ3W3btmlaogQioBj7trkbMdFIiwcMRAw4pRiC9K6tE4/xDgsglJIB0FwlCQDEKU7zlEIIgc1jiBKYS+utdVPV3i6tmVrp+eawQzVVFQY4LMsU5kPXdStrKcsURQKgkgMTohuOW971ZoruXlszo91uTt3mmNSd4Op/dYDeWy0b+BJEmAIipxinmMaIxn1YVmCIakblEiT+4z//s8/ubt6fLufank4rEJXWuipebY84nF/Dy/6D92coFmAAdRFDCPvdflhqSdiRwjyBea2l1UpEXRshDVTsNTMSoLfWei+5xDQJc61KRKenp1PXOE33L14yca5lxNyPweMcU2/96fiERPM8a+8/WGqJ8HYXlxjPF9wn6d2qBm81xgiOJKxmNCMTDYXDcOgCoKkCQmuNmeOUYghmnrdtPZ/clJDmadeo1FzANYY04tJ4PHlBzEEBRFh7H0zDNKVu/fHpQUK63e3naR7VcW9Ne/ORT6HWrAKBXdNRoJSirakqMrn7qBNHpraZmdcRixhCOJ1O7z9++MmXXwQh4YTEgLRb9jgiDwGIOYZQm0NDIg5BwsvXu3nvoOO+X2u9HI/7m0MMgRkfH467m5s0Lcenx1T7stvd7HYPDw/Lsvvw4ePf/u1v9vv9w8NDzlndDAEcS2tq9v3b9+fziiRpXpgIiUotxHR7e7i7u3k8nph5tyyXdc05q9r5dFYzQpqm6ZJXczP34/F0e3u3PywppQERW9ftcr501dvb2xcvXszLrvcuIQw0aWs6TQsxu8LrV28en56EeTiT7+5fCctasiQwg23LMcZlZB/ler5sNze82+1G9TrSvZnD6XRkJpEYJQkzC80pHg77mFLOeXiVh+t8bAdjmEFBBvqGqptZr3XMUM1sSpGYa6tXxzlSr+rgpm4IeAWUjAmTSog/YNH8qvKkEMM8L8LUyno6Pj09fdotSxRay2WaIjJ6B5LIzI7QtLfeRu1vzbQrIE4ShjMdEbt2U+u1l1w32USktqa1CND4i5EjiZBIQFzSFICFButG3QwIKSVXMzVAIh7FlBExIvjkKaXWu2eYedbeR6USY7y9uam1bdu25W2EBj3jXoKqgoMIEy+DIUoECMCBerVam0yx915LK62wsKkD6Hlbm/XhzP7f/eWfhzB9/e1bd7tcts9ev9ovs6mZQ8vDEy5uxiyARHAFtror4tiE25QOSKgKXTsRCYkQ3+wOhAwGIcg0T0TcVXsvCHFOskxpP03TNJn7VjJgaL0HYQkUhATIgFIIjOTgZmqKtffW2kgg7rUSIABK61XNpjQtc+j62FyZkJgdUFsHgNYqEQbiab8vTbfWWu+MfrUgIczztG65WwO0GENKERnJ1HpzgNa7mQdmR2+tNe2ltS2Xx+NRQvjw6fGyrqoGnnez7Pf7D1stl3K+XNZta10d0B1GXk8umRupJgAYwsSxWH9A6CFhzrnWFkIAgFmW0SCvrSGQBEa8TtJFhELsZqaKgEAszLXW3LJ0MvfWW611kqC9a1dguGyruRJTb63Wqrm6e4ppnucBToghns5PEgQAjqf23eNjqW13c4M0mpnz4XBjqqXW4WgzVSRi1dEaijGCuanmLffatfUuDZnClG5j7K2ul7M2GzQIBkwpTTi7X6V7AMASDRAJ4k6SBHNDV7W6buvd3UsAgmtuAorEMa7AUfUxa6+9tSklYgYkkRDThITruvXeDXTc/czd1FIM+8N+ignAv/r6qzmFQKi9x3liDiEmdX06Pr1+8zkz51Kst5RmmrC0zbxKROY07Xfn03kI8ga293C4OR2fpmmSGD99/MT89OLFy91uWbdL1/bllz86Ho9v376ttZXabDQ0JAxgwMPTo7kzUTcrtRJRyWWZ59ev3pxO5w8fPnz55ZettW1d3b3UgkwxcMk1xLDMMwDEKSGTmQWRZVlqrSHEGNPlcvnd7353f397c3OotagaArRazSwEjiHGFLdte//h3TSlaUq9lRhCdYhpdmYRYWYz72PDNp+mBIDreYsp7XeHy2XTbrUWN6erWEcHxvCyXr5/9/arr7768OHD6XS0a5Q5Pl/CHQC6mddKYERk4KM+vO5ukZHYzIBIWAiQJbCImVWvQkG1gvuQxl6nVkTjX5EQ0U07MyM4C796/VqQPj58EIJeagyJmM2tdxVQjhxCMPCR1z2mR1eccqvo1lp1G4YlMANXMPDSKzE21W07p8H1I0HXan0kA9e69U7XlLcYa1MmArPaa+9NKDxzLnhQ/pdlOa/ndVvfvHrjP1xh3RF5QN/Wdc05u7mwDCrUyIAys8A8tIW9K0Af3+HW9GK5NdWmCOxAjkRIgUmJO1JtbUr8p3/8k+PxVJojFu2dAAixdyutmxlG7l3R0aB3VXBX1dbK9bLlTuDuUGoxtZHSNaUJEAeCGQFSEmJutduc5sQhyM2y200JCbdctPfWHR1d3XqvgGqWUmCWwExBANEtl1q2vDW1w34WliBSzhd5fPg0pYXRVduwH5Raco0OkEuNYQyFQASHZmatgyjrvXcVCpEVbIJYmxrCPsZ5ns1tCbIEWbc8zYnOWxBmpuO2dtVSynm9mFmYptobEbEDgDIjh8lQwOHjw8PD8QiD7jEoPWZRIjOzyDD7jEdrKASCiAN8+vTpdDoty3J/f+/u5hZDiMRAGkMc4DO/Ri8gkICrBHEzRDAHVeva4zy3Wkupu93usCw5l8fHx7u7Owc382WZG7G7TyEykprVWkcINSKKiBBvaz61Ui+bqipuu/1BGAHwcllVu6kNpMSgv7q7myt47J0cvGvTTkSAoODeWiklxhhCOBwOw5hDMESZoNoYJaU0BEicIhAD+G6e9/NuW/NlPcYhpKs9TAsHJpLWOrgjYSDqJQsxIVG7GtXdXCQIYoix9zbPADC7dkQ01dparfV4PHbthPRw/Ph0fH9/e3h5e5svq7S62+1jTJftYgbbtulA5zOnEIh43S7Hx4eWzyGG3c1tiun+/q6X2k1LyYz0xZc/ckBzfPPZ599+84fHxw8xxlK2nPOy7Jbd9OLFrbua9VKdgGOMl8v56enYWgspEmCrbQCZVR2Al93uq6+/nqZJtX/9zTdTSkDoCMMbVbVD42WZ3S3nvNvta6sfP3wYM1KREGMC8G3N0zQD4OPDQwgR3MejiwTM5Gbm1no1M3QjwNIKOAJhmlJvteQ6Lzvtigi1ZCY67Hcpzut64SS3N7du7uaXy8ldRSgXBaLbw32u9ePHT8fzCZj2tzeX84WECbBWbbV6EOaARODupTtTj6N571faJSC6ARuAiwg7DKDsWKhIiIaAOMD6CDTIu1fyAcC41DKCaQf3GNPt7c1lO9dawe10Ot3evdwtewIKHEWomboq+qA0NlNjQEaqNWsM2nXI+RFpbGojLXxwJgBjbXUA87VrrybMqAamXXvtnQDUujoQmKs27bXVKSRAJMJxKUckEnHH3bIff69xwx4jq3HR2cqmpsu8+0Hi/OxQuaopxvmnCsRi5uuaCT3nMTkHkcgp9lYjUQMyg65gqgTAHGBIzwODq3bN7t0QEd1Q3cCag6upmZp2dxuRAbt5Hkkqo42RcyGiFKM7yiggCKcoIbBNsJtCtxaIpxBTkFozg8cQSqtucFmzagshOVDtDRFlWYQlSK9ce29XYiDiskwppGYmJZcQZjUsrV3qWmshwNAbOSBA7cosI/qntP543kqpHJiEh7zdHRh8CTJoN8LzYX+bAu6mKIiAT/OaD0u82QVA3DJtudauuZbAxIRTSiISEqIrEh1LAQMHWjcttRPR6JPM8+7+/mWMKUgYLSAWBofx4Q17STcFh5ub28PhsCz70ovBaI5biGFgT4DYidUNAWjQcoUJ8Xg6AUCcJuodJYjDQSKYOcBoixNiDAFiJCIJ8RDiej6zQC4Z3W8ON4YAiCKp1XY8nwORpCkQhhC1t2m5iTGqaS1AkUekFF7XKLqBqlozdQfwbsoA4yo9Ljo/LOIYQkxzYDGzbtrb0JSTE0qKEqJIYOYpptPlstVMTOdccs4pThQc6Bp5aqrmkDgx87CqAZNgBAD1hkhOaKba1Xq7KkFFWCQRpZSA4Onxsfa6fdzW9fLy/uVf/NmfBkaw1nudlwNLZE7utJsPqmZWt+2SUnLTUoor7OKSt6zd5mn37cdPzFDzFiSkaX789CnNu3mZ5zSVLectE0ma5q2U1urT6Wimu/2hPJ6YhSmAI5gHTkjAjGFOTtS7GbTj+fx4Oh1uD8zy/v371nW3j7lkRNSutfbeVNi1GyIGie7w7TffPz0dWcQBgDzEaGbEoqo5b8wSY3Q3sw5ACIzE5haYlamct/P5OO8PIabeqvUeQijaYMCkhJv22goiM4euLZettWLuap0Eu3VtrSsgMjq6mXUF9bpurrbf7VE952yIIQQ3M3WAPkzabsYiQULz1npFxIE3i8RiMQA0qh0ZenvWDhABt96BcACqiHC0Q92daBCrwMw+PT0MRE/Ltea8mxdC2O2mb79/+/2773/5y18J85pX6WLugODWXQ26kWkF627ae9HuqgQItbIEJu5mTXuS0LR37cSk4O5OauY2qg0yR2QDQ8fmbrUzQcmKCFtrbq7s5upgNKTYZmDGgDeHw3BoktPzSOPa4by9udm2vG3r2FiGg3LUmETYu6mqmaY0zzVfLqdzLmDOjoAWJEQJ0B0NcrM111yquyvEUrNqrbV2NTXr6mpGWplHDx+doJtpb+bdnkNpxkBvEMOYGQHdkZhROyGOXgKihxhTSikKk+QSWi8IQIC1d3Vq6muuBs4BgyR1q7kighrPczJ3RuKRrQLAROo6hTjHWSREyQJAgGTgW6uXddst883NTUixlcJMaoYOptrRH0+n7z89GcBhWW73u6ZaWguCU4xEHIFIEJxrq3c3d/tlb9qmpQLgHONhTgb4tDaEMlzfvOzU7HI+996nNIMBAllX6L3UNnSZZrZfduNbtSwz87XLP6TuP+TAANF4Su/u7yWEw/4mhLS2zcFZEgojEYswMyCa+WgcIQCoDtk+M8U4dkMasYUEWOp2vqzLstvPi7kt8+6HYcPlfFbTwIGEx9l9teQRlVqW3W4MAGNMY0w/WlJBAgIys/uAbsJ43tx8iGoQARHUeq01pugDU/ccGz2W6XA1AyCLPBMfvdWepgkBwb21XoYLNAavzRzStExxAoDa2giIGGR8M3O1rgYAMlwR6H3sHO6jYYF4dYG1NnygjZnAfZ5mQCAkCXw+r4+Px2kOe5jSDIg4L/OXX/7o/v6emXtrW/beLUZM0/TmzRdIGEJwQBJH4rv7V6VccilpmoXDlOaUkqoTB7Myz/P+cJNrvayXUquZg1NKk8NpZMD1bjFO5tVMiQSgjf3N3Uupf/PXf/Pll1/sdjsAPNzcbLnknFWVRaKPZ8+HBlxVzUopVc14ZLsjj567quace+/znBCJCFprRDTvgmk9Pjz01l+++izFOO8OHNLp9ATeg6QfxlcOICGSiISo3bupA+S8nU6n3nUQIMwUkcBckgBRd9tKWbdt2e1qbefzmZiXZcklD2DRuKyPbbq1FhFLKee8drfdvEzTROP7YFZLCRLSFHKpZg7gLOwg2vuASpWchQWZ3WFcqRFgrLpa6zhgWi251rplN43zNM+7r96++/Tp44v7u6enB3AIIRqY1SpIAERCOpbWKLkQo4SmfWjVGEGmiIhcjYRZBJFKLkkgoCg6AXatas2ZJSYEJ3etxQA48jRNDOzupg0BATGItFYBfMDMzaxrYyR3u8aWuqsqMQF4yZu5C8uI9hwiMkQC0DFsmNKUS5xS2ra8rWWSkQwM2mrtfc3r4/GYcwZCACy1baWW2roaXX3UHdGYHZBFBBDNcWTLtN6vmn1iYh5Si7FNpzijtxFPvYT4nIQCZuNQZGJJ00QVt7w2tVJy6yNxxFkEAeY019p6z6UUM1G11pupDzQTqKeY9klev3ixWxYJspZNkEJpvVk+bxdEvju8+OzV50ZwPh17Lahde0cER2iqx+1SqyUOlmwDzbUQ+Ivbw5Rm4hSAAF29r7neHyZH7IylV0cgxBCiiLAEgDH/pIF7QiRGtkE47kaEDjhN8zIvhHg4HE6nE1yJ8NJaHW0TIjLTqwxyMLYRkUlEXr56M03Lw/FTroWRgUdaAAGQdlXtIQR37+6mKoiImNJ0zemtlZljiFGCuVbV3eEQQoChWUYMIo+Pj+BwONy6+34f0SFveReTgRHRUCWez+fWNc5p2Ez4meFsNqIUZHQemQgBjUxtZAyQuRFfDwwH760Pf8oQIJoDGDATAIYY3J2JAaHVVmr12hystNpVSZiQiioYoFDvSgxNm5oRk7mT41DmIyATcQiGaGAAYG6gPpyoajpoU6NZH2OIMeYtNxyhuG7m58v2u6++3i3Tm9ev4rxvrYaYRghza733HqNM03QdP3Borbo7MZspuO92u1zW28MdMqvp/Yv7Usvp9HR792K/vx02w31IMYYo3Gu/eF5z7U1jkMv5knMuOat5ECEUhNHF7oj49PR0OtE0zZfLRkQInNdc6sgIafv9Pobo7oNbsOVyOh7Pl3NMaYzrg4SUoqoFCTEGM885m9k8T/M8IyB0u5zP6+US0pyWva/26dPDm8+/YOaWa+89pmme5st59QlrrSklIm51BZcgcnd3V2s9nz+aOpEjAAlP0zTPMzJr18Ph8Itf/IJELueLqrbeRmX+g5B/BF+PFTJIdoOXHiXMIVpXQOoO5B7imHb6cFCONWDu27oS06hEtFUJUuu1HG69D2XpeNlm2t1K77WW9ZvvXtze3R5uHx8+mtXWeopzCJGYKiB1JWIFAIfIQb2rmwSREHoxZB5PbQgBCNXUzVUdAMd9C8EH5l2IgahrdzNJkVBMtbRS1zJNU8QQWUKIQ1PU8RqnlXMetSMxtdYIyR1iTABotp0vl/HbLsfTcIb7c/T0mMOFELb1UmoZRpMhjDUzxOBu62UtrW5lO19WIgocTMHBa1VVJ5aYEviQwnjr3ZyCBDcnIW3ezVrvCI4S8Kpr4dIqd5EYCditDY8nErdarzWfe0YUCaM2qyPaUbW0VmorrZti5MAsjBwDdNcx/Mi5BGYRPZ/Pl/VCBNOUbm5v7m9v5hi6qbkKCrfaDbq5hRBv9nf3Ny9PZQ2pgdlWyihUtXceXGAHV1zX3KweL2chXKZEFFASoJhVR1dVBySW3HppnRGRubl199Yas8Q4jbAkBxjf9MtlXbdMEps2CSFKuNkfkHDUqswhxinEiIhD5Twusq01RGQXJGCWIDLvdynGURePZwMHUBOfI+LNgJyY3HXcM4iJgEiIlAgHiQW2bUWi+7v7ZV5UzQ1M1bQ3991uNzbBgfNf1xWJiFgoxJRMlVmWnc/zxCzbtj2TimnMLWKMvSkOG+WgMgMMJY+q9taJYTzPY28i5JGAZoYxxuE4EwnTlMaFQES69uPxuKmNQygyta41FzAb2FhARo8IyEhmToBjSMWAw2PdVQnACRxcu6JakEgsCm6g4x49OsvjO5ZSAoRudnM4/OVf/IPLej4+PX797fevX392uWzzcmASRCYkF+itDVqUyNRbMeuIBAiq3q3lbbPee+/Tfi+Mnx4/MeLdzY1zOj0dY4yqmttqveV1a7XV3nMuiLCt28dPn1qrbpbSjISD2oiIXbXUmrcyz/PpdHl6OsYY7u/vW9fe9XQ6D+zXfr9HxKvn0ux8PudaliGcN48xMguADin9tm0pTYfDzbgViUhdt3XNL159dnN3j+zb+fjp48Pt/Yv7+1cPnz4dj0dACjEsu4VJbITaqSKimRJSCOHNmzePj081X5ghSJyWeZqmaVpCCGZej5fj8fjx48etllHcjBmwmzk6XVcrXtdA74iwCDOzqzIxRzptufR2c3PYypa3Yt1ub26QGQBDGOzlXmsRZus+/CJbqVcikKmZPcOlcSikEZkkqNtW6u3hpru9/f79YX+4vZkRSUK03v3ZdyISxtMaKBGTj1sdoQ4bGkDJWUKIIbZa3IFYvGvT1lTBLS67EIOVrM/nEAaZAlnJhgOeEFqvag5IAIOqa8zB3ec5KHiQCO4jAFKfS7Facs553GjHEHGgSkZHqGtHwPV86aoxxt28REm9VWYqvT4cH3Mta84ENM9LTHNv/Xy+mA55PKY4edtUR8I2mjVz79oD4YhbN4fAPExIbgYO5tB6v6wrQmi9+zXKSQn9euQjXlrFwUGI4dq5AoCUWIJvWy5q4CzkAIPCTcRMaGrrZVXXrqqmMYSY4pKm0US55K3UKnZtfqmpTdOyn3duCmitl6fj4wD6t1aXKQaRKSY0ra052NPpsakuKdbaQ1Dt2TFKcGYMIbXW1MvluPam05SYpXVd85Z7c4RnniIQUu99HPiPx1NxNzBGEZb9fsciQnw5nuI0zfNoWkVAUL3m/Y7SWFVNHQGJeQoxxbBt2U0ZKTC7OQEKkqpGIkMUIpZgLrU3eB7GjrEYIMJoeanu5zlIqKUOvMGQcDBjCKH1PmK2DGAcS+OWEEPspEy08LJulx90e0P8as8cgtGlNVdG6toJruwTdx//UEvNJY+CUUTGpflZn2dMSHi1HLdaa7tu4hzEXcd1F117q6jaa2VmCgRuQ31sZsZmqvQs1DD37sqAaDAMoRwYAUDBDbe17FIaVdt1au3OQQ63N8t+90c/+/nf+5M//e3v/24r5f72Zne4Oez3P/3Jz2/v7q+0yF4QgJlExA2c2T3ogAQwOYo5IMtwve92Bybe1rWrsqAjntdLiLH3XvK6bpfT6bjmWnKrtZ6Ox7xttdWhBRosrSF029b18eERgJDoeDw+M798nudtywDkjk+PT6Xked4B+JYzuMcYcy2EPE/LmL2Pv+/9ixfu/vDw8Ktf/cmU0tAC1bpul9PNi5c39y9LPq9Pn95+983Ni9cxRuJ4uHtZazmfzze3tzGmGCMA1FbMbJqmWtuWc97Kze3Nmzev/+2/+cBsL1/OYxVtOTdVd/j4+PDNt99+/c3X5/PlGVODLEwYBvcQmdwMHc0MBIip9S4SzPTxfIox3N+/YBHV3nLVWslJa3caga+M4OQAZrnUFKOO/KmcASDGqGOlEA8s6FAH7PZsbrlV6+Zm8zx/9tmXKURALyUjQ+/NwRSA1M0p1xolCDI4dlMgNARDn2MEACUem+/YPgnRAFRtmpKEIEgssuOl995UibHVtp/nyHLeNp7FEJsaCE0xoWMMcb1czFwkIImgO3LvHW1c8vroIb//8B6R9vv96AT8UGWPZ7PkYqoxhGn/wnrpa4kSCjgyqunj+agGudb9fFh2h3maC+U1b906EjCQmQ3Qnps6gjgM+3HvXXVESwEAPbeyhZi7ds9+ahemCACtZ2IivAZW99679tpVzXe7PRKquxAKE4YwTzzF+Om0nrdNhBhwTHpVlUlqawiy5rWbokOMiVkG0cCEH4+nrVTR6sCDY4CR+bKdIOhl2959923JmUW0VwYLQoxy2O0ccqltLVtTdwdz7+bdLLet6jmluJt3KU5N21ou520VFiFxJEefUopzlU0SGBIhUzN1V3NThXOpnc4pJoDIQsieYhqhNg7eWhcRQDcz7X3Mx0WktY40anESIiZSU7U+kopM21CqsZCZm5lqi2Gn2pp5NwUzBlL3zTcSVlUEGNDgbkrOQ/g/pSlwGDvg8EBdKVqqKcbRKnH32sboAltrrbZROI3rWGuNEK3rcD4MoFAfnVb2Uopq6727Q8SAAEw8Mo3hGXsXRFpvDiphUe/r6RJDzLm5GzEMjy7h1Rs8wMsBOYboYFdqEPi4BGhrZipMZm7QzUEJ1XokAcIG5hQYUbUnkrjcIGHrfZzW6k4x3d7ffv7mxV/82Z/+4uc/AbCbw5+9uD0cbm9evbqXQDIFhCtcCICIZHRle2s2YusBUoyt1tLalNKcJrXeyrqenmKMMYavv/7q5v7VsszuBwBiCTkXjlNTK7n0brXU60W7FFcFxNDDoOH33mttIoJIzNh7M9Npmt2NOYgwIux2u3VdL5etNQPE0f0jQkIm4nmeETGlhAjMLEG2rbx5/eWyHID49v6Fu5eSGWFZkvUCbt1wvnn18vWPYpzMLcTw8tXr4/EYYxQR887EwgGQmMM8JTMwPR2Pp91uur8/fPjwvveGI+QLgAAcKEi4u3/x8tWrXnutdfA+R3YQAAjiMs9uaEN6aeYIZhsizvMyrht5W/e3t7e7m7JuS0xm4ADjRVwt9wJmNW+nLccQ9rsDgIcQrvl0fh0DjLupk09haq2cTqfAPE0zKqBTbxnA5ribdwtTsDgsBy4spRRsIFFijIM66g4szERBgrYaCKy1UhsQulpKifEq19CuDQyDIJEDCA8EgH58egwh9G5bzjTIjMAA1E3P66qlMl8xD8Te0T6dHwIyE/VeaytdbdkdppRub29bu6bQjAv6AAW21oB4ignFzm3lgGBkKRJ4r7oV761zDJLS3e3tft5/fPwIACOAE9Rdu7p3N0J4zumDa5qhqhkwxSDCTGFE4BEBQOl9y5WwB5GaKw+JmSNLcIJcW62NpBARuMUQnZwB0hzRkQwOywSgblY0b2UrtYsIhJFfa8QSR5IukRMa+po3RFxz2bYmubb9LqF7DEwI5/NTrqfHxwewDmi55pozg8/zbooxSDTPpVVwEBJAn1Iaiq7eW661my3zHpAM7LKu59PFzWtrXf32cNONABi6r9s2pVhHiCuiA5TWau8HnKeQniow4zV1Ea/+2CH2arUhEg6IB6KI2Gjw0Ij7ZXA8nc/j3mdm9WpN9q6dSEotAK5m3dwQdRBxJY4gYHY30xijP98DxtQ3hDAinABgXF3DeCTcr/rLEZvq/gO3efy9nhXW144kEWvvetUAIBGOCWRKabSGgkhXHWtxXEp6N0AjIkIspWzbKpGZhwup+TzU4FZrNzNGCiFga6Vks07ETAIA5jpOR3L0ayil47C7gIcgQFzGmAgBDLQ3h44h9lbRIcUETN68m8d53h12//Af/vlPf/wjIScECcgADPQnf/QziSHXmtIyx2lUW0gQOThw76332lWHBxOJtpy9q11jwV21XS7n49P57vZuJDQNAl2Mk7uPLK3W+uefffG77Q/renR35hBDKlxabUjQatszjzpORFJKpVQeBlezy+Wcpjh1TSnNc+td3f181lIKDQtIHtDgMH4dL0JEIny5XH7xi5/e39+pqgQejaYQpBXOuadJYlr2NzwtbdDqu5prJ3IROp+PMcYYE6dZApMzAJp5iHJ7e7Pl9eHh49PTY8nlfDoj4O5wCDENs/iU0jxPN4eb7XB5enzsQ4zbbaQ8DiwQEZRSgzAJIyPifE0z7t3BiEmtf3p8sK5jADMuGYAYJXawVkuQgLbxEMW7TdMEDrmVHwQXADAoAMzcGiIiOPTelzilKK4BhUc6NwstsgO31ioAxBDHvmN2HU8AgBkiQC45rytc5/YgHDu5mhKgBN4ul9qaSPQCY1IKV3nSDx15MFUSGdv3DxBGjjKSWZEoBGl1Wy/bYXcYoTsxTENRI8LyfJcdTtLn8x6HLz3G2HoLKcQUtbpYcOvblsucem9zivOym+ddnCYJAoDgYGa19sEjcXNkZJYRXOju2ltXdQMMDIjEgsQhxGuN2FVVm7Yx5iulBGEmgd6HlbL1rr0PJcI0TZFJBLtijIFDCGpCpG4KMLYbdwNXFnawZUqDB95Vz8cjgc/TrK2ta25dJZccIsYQphjBNee1PG4iFBjNeNtKziWm2NQOYajqGYBC5CkmYQxCwsJIgweg0GvrTbs7nI4n6KrNm/tW2y2HV7d3tdn5spn6NKXtdOq9l1omYkNAwP28S9Py1It2RUA3b9a69puYpmli5hCSqZrp2F6ZOQjUPgJOwXEMkJcppdzeufow3plprVXERmwZIrha69pVg4ghOGHkOMJvB7qpt2bovZThNljXtbU2sNLDBQrwQ9NmtDtlREyMq/rYPuAZ5InP9c9IbTQ3RGBhkQDDjms2TdNYjuNIYGZmGl3DkdDt7gN1+ewdhVILM6n2gaEG8F4H7zm7KdJQH4o5AdA4l4ZsfEx6URHMTQ0dIrHSlSoRWdy9a6u9TmmubtulsOA//Ud//vf+7FeHm91nb14HZNPerDsYGjmYcDiv2zTtvvzsxylOAGBXRZzjldc9riaWpmkItLtbWcsIrihlZYn3L18CYDN/+fqNGugwStbGxFOa9/vDtubD4TAIdyFIGU+Xas1lnhciHuP0eZ5P50trbXx8Q8pyOV/cfKSHAuA4dLec/wM6fBhb3hh3j8Y3M8/zvFsWFqz1+m7dsdbGIS67Q4gR3ImV3UKQvK1dVSR01aEtmdJMzMMAaA6InNI0jhZAB3ix3x+OT8dWa8mZmVRNg4WQ1m2ttex3u4cQ3Ny6Ag12IQQJ46gbeXlm5mBBYpqmKc3gWCCrNgZKEiNLq622dskXbjwu/FOMI7eagO4ONykk7QoE2vsYclwNOICqHQkFhYhSiiJ3p/P5eDoxUVvbdtnuX77c7RYicdOYQinXK7ID1NZGoUZEzOjX2GkHAIlBOyaJ7lBVkch8xD+BuWvvCMh+7dKMWoqRbm9ua62UCBBGIXg9GBDdvLu5mzAzEaL0qofdYQoTPA94Day1OjqotdYBkrlC4J8D/tS0q1Zr8zLWALCwNWtdS2tIQCz7/SGlSR3UkTgQy1jeQ8PKI8kj8tgx3K2rulluNVGaQmAWRG7aI7A7urqwOPnzboBd1Q0pIhggYopxy9cAknVdV/cUJQRRQEKKIby6e1FaXbfMRD4ZgAuPD4uDiAzDf2+ltW3Lw4rkDq11UdXWOyMyUZpiaa2bi/sUBA2OuoaYLmU71BpIYggDMz6laT8vKUlgDFdXh5sakSNQb7322lsNIl17TNHAztt22N0S42k7l1KRYZAGxuEBDszXx9J0660PbmWp2dxTSvM0D5tkKQURUowSAiLW2lFCTAkcALG5u0OaZpaAgGjO7q3XkfY79DNujg4EOIVITBKCu8PwF3W4prW7swjjdVmMw2ZIiYfFxp8BmWOjHyX/EIkO8dywvdDzD1VtZgOPpW4iUnsrrY5WTwhhqBdijKP1DAAiYZqWUtp4wsFBOCBDbW10ad2996Zq7gZg1yOzFnSTa6k0dG/AzDzuUogsor0R0vBQugMCCgUKYM8pWYaAiBIihfDFF1+EeSLU//x//8/evDwgujkN3kucFncvpZCAqr148fqLz380TbO7m/VWc9Nqpu4wTYmZWm2mrWYzNx72VGIz672o2n63kxBLabWWWruECOAhcO91jKNqzU/Hx7EdlGLjExlqpdbbi2mqtQJe5+3+HE89z3POtbZup4s7phR/6PnyuGnC1VAiIgMk+cNnN77Pu93CTKXkeTkcbm5bq2Y2TXOKEQlrzaYmQlPajR1ZhLVXBF/mGZx6720IWBGYAxG6q5kPmp6qvXr95vHxYZxSvbd51x3W3tSQHx4fv/n6W282TYsBArhMYcRNqzoRI0GYhIkAcVi1gQgUggRhIiImVCNhDiGIJkKyrm6m6qrqTUebq6vWpihsZITYhhzSjOg6vgKA1ptpN7NWK4EJ++PxoTfb1wMHCQKIpK3ReC6eQ4TGYX8dWY/EaTNEXJb5dDp2sxAiG/wAuWNCIIwpIfJIQRn3rd5VohCx4/Xjg/EDgYmv1wI3dQsozNJ7c7X9soy0kjHgE2Jzpue3RIM30/sPs7reOyGZ6rauMS5TSs21q3V3IOrmKYYY42j8OuJlze4473ZIxELE3FtXcCZkkauJ1R0BdOBRhceco1tDwhhkHBLsQCLoYNrYyVSZEYGQCLQDOALWWq+tA6S65hiCA00pcqTAcZqmm/1BW1fT5/SH7uBEzIDau7bmbiJRRKx1AJ+mJDEIulmvFGMKTAQKTjDCZfRmv3v/9KhqIoFZiNhNCTFGub89pBQBrJXcVUstquqgvbXL+dx7BgARhtpZGBmd0MC76Vrzum4AUFXHxGZEhc3ThIFLa66OALVU30OMyRHMbQR7jRzg2moMMU1Ta1XdjWhwLselVUJQVXPjIN7NW4shIkHvDQjdEQECS2BUN0AUFmEmwOPlNETEXRUZnwVzfDUNII6qgYgGnSNv27jqjvJ8nAf4HBozCv8fBqemxtfCBEur/Ky96a1bV3CgUfqpPg973d1EhgXMe+9528w1TvGH6dDVPGJGhGbWVK33IStCAABwU2QyMDS9jmHBiBBEvDdwN/MQAwzIpemwRAAFV2UWCfjq5euf/fRnf/7nf+ZWTZuaMYIQNuiOQOD6HCQQY/z8sy+maQZwJNDaWi+9l9babtmB6bfffZPz9urlPUfQ1op2psDESOFwmLft8uHDu2VZmIMInc8r966m2tXdzufz0+On3pq7matq790QzQG7mZkv04xEMcRuWmsdQ9fRlLu7u2OiXhslKqUK8/iQlmVR1dqamaWUhhsjxigS/Ll7Oz6Lb7755sWLw83+8PLlq207X4exjEGw1d57TynFwI7kZr23UUIAYGtlNChyriEmhKg2tn5062o28uOGWxsAtPfLekFmJPnd7786nbdc2/F4YucQQkoA5iGGEIN2HcWFIzVtCNhVicm0IyKSD+zoSEQBIhRGpEmCsLRae20IkAIboqM3tUFHkBhiiKZGpub2gwdwXA0BAIgdzHubcNZS5hj3L24RuecKYiKxqf6H9tppmkyt/8BeHkGnrTs4Iql5nGTeLTvhbV3dgUMAMycOIbTar3mH4y5F6sOlTKRqMHJOzACRiTp0B+cQvDc1dXB3I4RAzCGYGY7i3ry37m4l55xzKWVdV1X9ISxofHCqWmvpVQJxx06ExASAqsbMN/v9FGJv7Xg+11KPx5MTjSyHrqraDYxxILqG0l8HXGeEkW05a1NDmKZkZqrdwUVkhPiYEiJ0bEigrqRORIQeg9Q2whZ95A+W2nrXvp9uaZnTRE4APsWIQubWtQNEQK+9a2+IjoxsSFf/k4Ob9iZzlBiIGAwtl5pCnGNEU/Oe5njKZ3df4mRqx3y+bJcxNmHCEGQKsWm9qJXSaq3WGwHVVk4XZ4TenSnEiFOcE0+BWHtvXV0NyUW4dXODrgBEIsOvhUWVEU11nH7MYuC1b6Vtbug4ktI818IiXbX3xhJMdUjBmHnN2/FyqrWGGAEMaVjtgFlYJLfqwuLYmjqCX++8gCwIQOC9V+0K7obAEgTJEMbckogYSUgQUa7S/mu7H23AzWF0ten5GRAOY+UHERpJQ6oJU0qptUa9GysYGBiTWFNwALABbSei4eoaX6L2QkS9K5jD+GnuZkmimglRbe18Pi/LQkR98NyJ3CFy9CHlberoOqw4gcEAVEc6FZBBN3RUABGZUiqqn33+5j/75//JT3/0xZwCMzL66IA3aw7mpqV27dpac+T94SbFCdyALOetlNxaK3llptbqu7cfHj5++uzLn6RlX7Zt2y6onXcHIAf0rsoSlmVPhLVnAFyW/bZt23pJKRJyye3777457A7uVltVG2NzPV/Wp9Np5L4RIBJul22aptbaGB3lXMDh9rBvpRgAgOdSvMDt7a0DsMhuWUqtKcbxeA9Z96C1kDAHUbOPHx7fv/v48sWr3rtaJyZVd4NLbznn3f7A105Uy3WzDtO0IMLQ5HdtZhDiNIwR5kDoZuPKTczAzJ9/9nmv9de//huksUJ6Xrda+/Hp3LuiYWkVCRFIIiOhCI9gA2EBQqiIiKNXUsFjCILUzbSqxNTNCYCZrSshgGtk4YhjDVcNhhAJVXWgDJkFAgQHRNSuw+HPRJEEwRF9zevateQszLd3t4jEIkAsLMhoakw8SiIWZhciG9o2JAwSaEQOAAL44eZWWEgECeM0gTu3pqCQBBFwSNcc3V3VYkyqg1VekXyINcYLIRICqbcRdmZmtTdBknkGgpFMhgQDOTUu8SMHZYitkTCm9NynEhsUERICM4fa2jzN2hWIQwy3tzev7u8Z8JK379+9+3h8+v79eyLOpTQDMUZHIglJgggjFW3jMh270rq2XM7qJB3cSajXtro6YBSiK3YHReJ1yuPu5oGZI3sIyzSre9XerQXhEJKZucG2VYEtxkiITkg+dsJrC3qaWBsVg46qbrXURh2QkFiYRUIgBgDrvTdkCTIl6cVE4nmt25YByczV7LKu27aZ2jLPhJxLUbPSalXdcqm1m/loSefiQihEIlLdB5/A0NeaSy2BJe0Odzc3IZb3Hz+6KwIh0sdPn168PIxUBzdLMaZparVrM3cAgyBhYPwMfNhSR8+ERlIGArhHllLq0O3UVtEhkBCNqychQmtVmyKJDnuYs5lZ1y1X7YZXgwyg45ZLnNAAEUHNRcR6cxwMUamlmXqQSEQIOMjD40o64rRGVG8MUwgydCZI2GobVcD5fB4Gv2VZRkSwSDD1GAMRX1mniIgowa5mcQlXzhSLm6uqEwUSCaKql8sZB5BVbZomIiaWgQ0jYgdHoKstOYZSa60bACBSiPF8Pm/bGoIMxnVXc7Nf/NEv/8W/+M9//pMvBd2gCzPYuI4omIJrb7XUFkJUs9EVHTLEmvO2XhAM3CJzydv7h8en46fP3nzx4sXd2/dvl3kqdSvr5eCu1hGpdUPCFGYWQYRPD4/LNMcYS5FtK0GCCKQ0mVtKqdaHUspomGzb2lrLOes0x2XqOY+JfW+NYMDu/enxcb/bHW5vcymqqmaHw4GI1nV1AAkBEB1wEHCvxgmA1vs4ulvVy/nYuzOH8+kcEs9xCYHOx2PN683NLYK1snUkZGHAeU7C0FrtqjFOgtNoCg3vJ9iIsVxFmCWMJliI8dWbzx4eH0/Hp+tIX/10upgZuNNgTEnoXRFJe9tWCyECoIKxU2B2BwpsZuoeJDCytcooRIyugIiOgeUqxAEQCYNFIyhOGFMa22KvDRxiTEjYdXAGyR2CCHZrtbRWe61uMNBAqgqA07Q4XSO9IAxnch04WBiyH2YDp9EgJpJwDWeutdfaQ0hgEEPC8T7JzAwQp93svRPROAMIMKSp95bC3GpDGIkd1lojppQCVm+1zdNkpsN1bzWHIATQbHC4rfY6cK3Xbg9RSmm326U0tTa4wg6ISBjjNITjcVB3WpMody/v7g+HWYKZPjw9HdfL77/+6ulpjTHV1pnFfdQPMKWUQhzWzsCCgGMevpUs7tRVREy79tYHD3kiNU0pDV7juLWYjm41j3wyQkJCLFmYiBjRER0Am+lxWymvzDRUZ6NpcaWlEccoDOKA26mVWoRZJBJxnGbZShHGGHiYp2rXNKcpRDO1SwWkXFYA7Kq51NZ0SmlUwed1A9y6Wy6lbNm6pZQGUEFV3VxSFOEY4zxPUeiSt5xryVsgnOO0m6b3nz7VXokE3dX84emISCxsZsIMIExY1Kxpr9pqS3FurSHTMs8jJZKZd7s9Al62LaZAiC9f3G5bMXcA//jxk7vv5+U5WNHc/HZ/Q8wImHvLtbJ7iIEQXXsMFELc7feX83lMbeZllhD3h/3lsl7Wy7Qs0zRFCaWUKJxERiQvISFBbx0JTa1umZkkBEJkdDclZkKoo5Z3C4S5dmGa5x0zK/iQaaUUgwgxCRPQNfRROA0VEyKYSmIBgBSlmwUWMGfmU1lrWVWVCM201uLuPvRFzKXmLW9C4fbmFhFjCG76+HDuvU3zvNvNKYX1YmZKhPM8SUg/+elP/vE//gdffvbSewYhHtpJZnDXlrVmM6slq+put0hIMS3TNI9ETgecpkRgvWyfTo/rurrjYX+Ypunjd9+8/e4Pbz7/0f3d/RH50/t3l9On2/t7RL6s53l3Oy0HEbFeevM53oQY3717h+hq9ubNm3dv31228+W8rpcVEGq9zkJqrRxDqR3BW6tpfEZbdtUlTZfLpfUmIZpZiEEkDNpz732EQ8UY3a+96VE09W7EyExmlnNRtd1+19rYdEIpRST03mNMRKi9lVaFOaTZTIHx9HT89OnT/vY+SDDDvK0GluKS0kTMKc2Xy3nbyqhLpmlRdVV7/eazVtvT4+PT6SnEtCxT63o5X6Y5AZIwhyhE1BogIgGkGCQE750MKQgJo/DUoyCBQ5yklqa9qyMSBRECVNMpTaM1X2sVYUZyxCRsRGbqw2Qu0QlNaymVAYjJrZkpQCd0AAf3+/v7AcKb0hSYe+/EkoKMEdmYq3mtZBYlObiwODgNDYIZmCO4gPPA7Y/qyTwxAWFthgTo5mAIEIQQgdCjQEDOeQNtI2syCgNBy2s1a72aWh13gml2t94KOLfWWqljx79czqXU3vvQno8mlap++vQRHHLJfg0+apfLBgvPN3u13LSD+5Tiyxf3L24OBH46Hc/reatlXct5zbhVZiQ0V1XrgLDMyxynblbPTUTUhgZo4Fp8CASep/duQGruYLnWq3TQbNjlCEnNwCGGMAYVpsFQJAR0dHdAMLDS6pD6NLMoMqXkiOrmBtLxegIRp5QGDgeQDCmXIjnnFIMwBhYQaWYOEqdJe5UYa2vDDLzmPCVEoiQhBTHzpr313lrrZu7YzWaWOaUQ4mU9ozATMUAKcTdNKVD1/rg9ti1PIvOU3H09X8Bxyxsic0i5NnXb7ZYQz8zgQAamqtp1W9ePnz5uORNRjKGUzQFSTG788OnD8XTu2u/u7qJwZFy33HtHwm1dQwinc62tCfO4JKiqhCDMpbU158Acami1rpeLmk3TlLe9qY10Ie3LPM+u9XQ6bTmHGI6PHkXM1EYMi9mQAGnvtVUcnE64TqjG7GQUgMu8lFp766q9tTqaofl8ar0BIYsAAMKgORKAl1qtK+AAiZEIi4RWy3o6H24O06AFIOY1t9a3bV2389Dp73a7y7kRMxG6NQLcSn58epqneZkjIORyFhYmKL2tZ3PVly9f7Ze51HI8Pu72+/sXt3/x93/1p3/88ykxIyAND5q2suX1dHp8WLeL9j5N87I7aO+1tRcvP5MQWy2EOMXYan/7zdef3n1XW/v8yx+b+eH2pnb7/u370/ES4+O25iGv+O7bd2/ffvjpz3/+/t37V68AHA0Q3N6/+36ejxIma/3Dh3cOXmrPW/70cHx8fEIiduZJxv0/PQuoSs4xhv2yPDw8drdmOu3mdurH00kkEMu8LIh0PD6ZeYwxBHb/AZEttQ4UMNRa0zQB4FB/melwMAxBEYukmHa7xd1Kbb1V7XWZJyJoTZ8+vc/bagZdNa/r7e39PE0iETkAQClNAuz3h6E61a6tFSJJMeYgcYqOvq6Xb37966ag5jmXMd1xtWGBvKyXwBJDCCEiUi3ZXGOaYHgJ0U0V1FlYVWtprXcciiMHAJ/ShISDRIIOozXOLGO4MqQBxAyApq2Uep0lmQ8qu5t31d77+fzYWxuBATEE9z5GYF2VmBlFzUzVwa/KyLGwEd26WR+eVTMdZigEdHe1QR2HazCyD2YujPIIgIXJVFurbgqA3czNB1pRzVQdr1NhdHAgpGE/se4GZmBjdnT9cTVdMpE928GG85lI3PV82T57/eKwzKXWaZoYUNxvp3mKMZfydDmtJbfaSm2XLRPJbklDOtW7hhDmlKYQT6U2tVxbIO7ddssswq11NTDVkR3SzJBJ1dU8IA2ddG1dTVMYKixFcAdDQiYOMThASlOKEyK2Vtcyou3aNCUAcoPeDK+YSL+0HiUQjqayxEjMoua9KzjKVcsIwESE2N0vW90t+zgJ4mkg+hCgt44zT3NgEgYgsEvZ1m0TFEYCpqrKwlNKHEKL0aybqjoSCwGkELWW9XQmByLq2rCNyIDWakuTjHMpSLi5uXncX96ajnm3qmnrl8vl66+/RkRmGgJecBhD167azZk5RgnMcP1/6HCNJVK9huVd5yduTAzm/arNJwQ005wLIZLwADZo6+7KTCwCgMOihYij7SjMzKxmo3tDz/lZY/ENB4MbDDHomPeO1T+m03adGF/vJYhAJPjMyAU3cGi99d5HfssPipSurbUaQ+BBmDJAx2eHuQ6X4VjHPBChLEO4pKYs9PDwftzPkLCVXnIZMsdvv/762hCIYb/f/cf/7D/6kz/+ZQpMCEiChOB6evywXZ5aWVutkampM0IrZTtf4nKIMeZtM7MYQ63bw8cPD58+Hh8+pWnS3u9evFpLcaCf/PJXb8pPlnn+9Ondx/dvX969+vN/9E+3nA+H26rYtfTW1NFM87o+fPzw8uVn+92St/3D4wMTxZhyzk9Pj8t8iCldc1RERi5SFL69uZ1SWteVmNKUADCl6ePHj9u2zTMmlpLziJgbUisiVnNiBnBHJA6quZTi7jGlq9nCfJ6np+Pj+fximmYiONzc1NasKzH5IBAw5pzzdrm7fdUlfVo/vX712eHm7vu33z58/ODot3cvX332k/3uIBIcgIiX5SbnNSaqNas3lrDbLYjw27/7zb/8l//fT58e1q0AoJqVWobdY4jERywwEyOx6fCU2FAfuI8xmf/w08zNHIkGXwBwEIjJ3RDA7T+QLjg4Gl7b80NANxyLIzIC3MDMnzH/NJSUiKNZTYgwXgquVter3HO0bhDQR2b9eKln8y1cZwHjzwL42LnHfjw02Vc1w1DxDA/L9T+4KQw9HjgMkj3CIGpe1VBI4/WeX8PMwUeiFV5hnDDe0Xhqnp8fBwArtV8u25hdiEQXF5DEcdu2rWzqqmZde20tlzYl4avtEcx9mWcmJuTaOxLV1o3dwW+WXQppzdvpsgKgEAKCmSMABnR3lsBEtQxBjQ/mhGrv2pEO04QkDO5mEEMKITJziskBL5cVgdAxhTTq/VJztkqIwJ5bZR9lQAgBgsRuVnJt2GR8o4SQBAMH63pc12lK98u+dTNGMpgSCxMAxZCEJdcM7r01BwCnECT33HsrOQNCEJqC1NoJqWrPucaYAKxshZDNe20t977MnGuptVU1Vifqc4r7ZZlidO2GUExvOBqM0U2ptV9XFgzn77//5MYHTKMRM1YyXrWeyDTanmOh4qCVX0U9Y+Ff5fwjQ4OJtutaHL4CGEy+YS5xAASnEfyFigjuI9lsrCl4LkDA/PoY0fUdPrM/8WoNGG8H3ByGMxxHRsEAfqIPSK+DgyOMffy6QPHZBjTCLccvZoMIcH1G8BrQBoBX9y8wsl+OZwR0MEAfSTvjaCQEcESOu8PuT6fw0x+9SRO7qwOPm/l2OZ4+fb9ezsRhv7s5n59O5+PD8fH1Zz8J03JzdzfU4syhtXa+HInw1evX54/vt/UcI5HIPk7bujHzze3N6fi07Hc532StL16+OnTvXX/2i189fHz/3TdfTcu87HbTvNfWnh4/xLTMu/npfEwxfv/2qw8fP3bVWktroDZc4cMsE8d6eDodQwyHw+FyWYOEDx8+ltK7QutG1LsaIcWUYpyIpDUlYkbuNrI7FBlLaxKig+e8tdZinIXD99+/u7+//+lP9rvdbpn3l8slxIlFynomt8u6hpgAgiHHaf/6zZfv3n77/t33LNLVdvvDerp8U35ze/ditzuEOKVpFpmI8Hw5qjYzT2lGwHlKv//dH/7ud9+UvLU6cHtqDgg4WtOAOEb/Y6mMdWrg+O/3MgMgBwRUdAQzJyDAURApICMRkrrh9TeP4uRZ9X99psbqBwJwe37GhrIQnB0dQJ8fi/EkjvcGgOgIAIZOY7Ej6vPqR0QEs/F2x77v/uw3GMfTODQAnp+2fn1uaHzB4XMaZwteTY3k9nxoAbqbE5grAoLCUOX7dVNHdPxhK2huYysYEvBrzXj9Bx3vtLWMACKDNEAd/Jw3tKbavGtkWeYZwRFZWCKzAXbtLDLHiRGrWdUeQyillVZ3S4oiSabaterjlFIUQkLtNsYByIyAgowhrdtm4KqWWxVmR1QzVwD21po59NaEOHBwN+udwIGhaq+1hiSISMTqttbs5FMIIU6mhkQi5K6BJTt0N+nNVNRchtq39XZa10C4C8kdatNumsIUgxDhPKWhrd62bWBsOXA3PZ4vpVd3f9VaTDHGwASEmHvfWnn38eOWl8fTuV0p9r0DLgtLmKo9qiOMuVAQIGit9aJEQoyBg3Z1H8M5d4Sh5h0TlbErAwI6IngfSx3Q0OgqxAQy++HJGCBfBxuLx65nAAwg+Ei8GldLuIo4xxo1fD5XxsNBAOOBAhg7+r8vG344j57PgvFaMCibY+nBINFcUeDXkCRE8jHqup4MV0r7eFu9dXMbIaHgo2KF8QcAwF1HYURA1/fj4wsZ+MgpgIH4tOfHGq+H4rNRHQCRQ5TP37z5v/yf/0+/+PlPwZVQhBDBSt7Ojx8eHz4h0f3d6y1vx8fHj58+LofD/ub26ZwZRVURrPTSWkXrYO3p00dXfXr89Pbt1xyTo2jXrls7tlqzdpvn3ccP787Hpxcv7kOYDOPtq1fN9Hw6l9anaV5Pjx/ff5A4P53OT8djCNP/9r/9m1KVSGquw8bVWnNVJColt9oI8e7+fr/bnU5POZenx0di7mpmXmsbT/o0TbsYRGSIQF6+fOkArl1bLTUToXYrpRJTrTlFQbfT6fj6zf393ctl2ceUzH233yNirTmlUNZWq8YUbu5fLsvStXGMv7y5+/j2uxDDluvh5kYkbHl9/PTp4eMnErm9u3/1+nMENFXtFsNEGIDNCR/P6+m8aq2jNnB0f+YCX0tc8Oea5nnLez4A3J0cYTTSwNDRn1foWGoGIHQ1eRGgX6teGmal60aJ//7V8Lqun++m4DhSZJ6fvR/UzzCW1bDQuxs6jR0W0ZHNgRDcHJ9fHJ7V0lfB+ujlAQIqAAEYgAESXk8Guu7R4+AYZuJrVTYORwdHJ7qWUOM0ugo/6Pk+MXTLo6oy4fG/EGkUi+PFUN1GUAQiqToACUc3mKfJzE6XUwAH70R8sz84wEiBW+ZJRJp2d1qWg4SgNpA0GllMfN2akMDzQPfmsL/dTS/v7mrvJXQU6q7YXVXTvLjDWvL5clJ3NVXt0zTFkGJMtbfTeQWw2uo8zTFegoRcMwlHgBgCE9aWVU1dzY0Q3alsveYziyCjdCYkEQeCeZ5EEcZFuHYFqyWXbduO7udlZw65NZnSsswiHIIEDspaWj1dzghAIrmVWmtpPdcK5uu6xRiWxNOcam3d7PF4FJIt59Zqra201k1z8940xTgyakwjeMxbIZZ52ZtBa2iK2vx0vFjvNicJ4mojIAUIxhVpjNHGdosIrn4tQQY3eWzw5j9E2evzBjuutddLMuhzYT2qgdGu8ZGdZD/UGley+9AIuTOOuuW5evrhFn79bdeNHeD6bMDzaQU+3sAgRY8vOO7A4446TiV7PoccXJiTRO29mzugmRGCmhMigl3rNcCxXcB4mIdfZDx3YPjDYYLs9sPtB0cVRIAIHgV//KNXn3/2ArEhUG8ZFFurl/Pp7R/+bsvbFz/5GTHnXC6X0+l02h1uS85MyEjr5Vzrat6FpWyX8+NjXdfHp4f/4X/4H//27377z//Tdri9q7VxCGma13V9fHz68vMft638t//tf/3nf/H3/v5f/kPd4P3H999/++1h2QujAJZab+7uTqftcr7UXN+9fwISB89bQYTeu19rQgAzd3XXFy9f7/f7j58+ffvtd+fTGfCq0zcHNUA1d9i2stupBS+lXTVX2nPOI69tmpdmxu6XdWu9hiDH45FZlmX35s1n8zKXUri0/c0BABJiXs9rad35zZc/JSYAO5/OH969/+zNZ6fz8dOnh8+++EK1z8sCsCBQLjWIPDx8AoD97gbchWVKU85btVpamaZ4d7drVdzUzZEYAPVqImMhBgJgGB8iAIEZPnc4B9ELkQy6ag2cEAMQCbObhRglBtdm1kvdtDVC4RBjiKMWweFnhNGLd2bmIRA0UFO8dljG8gZmUbVxJLTeDT0MvC1iSomFpxjMbTA4Cchcwd2vN9lrP3bY8u0aKM/CYQz8VdWtDcUzIYHj8E8MbXjgsMxJmEzblktrikRBAg8GJmKMYZ6neZqmlAYnqauqWi0tl3LZ1l7rfr8PEszMAWqpjOAAZtC1/7u/+8Pbj09uuK31fMrguG5tnhiqvvt43CdGsP3hZkpzfzpVJQlTNzznLgKlWetQ1fW8EgkhDsCUGdTSksSuLYV4e7t7cbvbp5RbM6DSrfUx53FEksDzPNVank4nIGradywpRiSqrT2t51Zzimk352fTKEqQw7Jjgt41l62U7A40AsMpGXnpZW0XYpzSPMdp0C8AXAxIwkRkrTVzKzWr9lLq8XjqDu7kroEoTVGmGQkd/ZLX03ZZYgKH1tVdW63kmOKkrq03iByYTRwAzTz3Vmt3sJyzms673S+++Nnrzz6f/+73knZP58tatrvbV7/4+c9fff5Hkqaf/FHD3X0z3+1vm8vdq1d3h/nl/QtXTSEK8+hejsxPEXY3EZqmFDgCQK992y5dqyA1bbnpaPf12pt1wmuUvA1lp+mAgQzD4TIvIYah/di2rAocGEbKSq3ajYVHIqOCitBuWXbzLMyltsu65pK7KhIlGbkQjQDMPdcGDiHIOAnGTdfcmGVO05SSCAMYoscQphQAsLT+8Pg0JmPLNL+4v++tD6EOE4QgXXtvjRERvPVemrZuZl5a8zGYAF9iiiJV62jluNNWKhC6Q++qXUfaDDiYI5B//tlrYbLWa1lzKSXnWsvl+PT+m2/3NzcSZ+3AHG5fvnn15svvv3/76eMnA9gt+65WyjrPk3I/Pj3V9fLt13/4q7/6q08Pp8ulvv3+//r555+FlOZ5/tWvfkXC3vrx6dPHT59Smv/ut7//4osfhSm+//67f/NXf/Unf/onNzc3xvzh4yeS8PLFy6+//W7dyrdv36p67Z2Y0KGrQ21uvm4rMrnbYbdXgz989fXHTw+Pj8dRM5ZcB8ySSEMQIlLE4/nSzRCJQthy2fJ2GRtJ64DF3M0HbE4/fPyEwIf9DgDm3ZxSrDXHGGrJ8zwjUGutlHz/4p4EHz6+69pLrq9fvyIwBP/Nb34dY1zmhQmL6cPjw5df/hiIX+92uWzH01kEWQKAbvl82S4B+b/4T/7jv/zFj7fTp1o2gJEAPeViRvDixf1h3hE6PqcDmUEpZc1bb52Ybm9ua661FsMmDHPaOQiFMKVJe3vx8tUcYsv54+PH9x/fn8+nGOJAGow7ZStl2zYzHYszzVOKaehta60RkVhMjYi7miHAoJCCb7V064tEFkKhVy9fvtjvg3DrdQTuDuKsWwf3XHsuteTCwkMq6ogxpZhi5GAGrfbWay7ruuY2TFIUzL21NtRQu3mZQkDC0ttlyyVXJA7CbsrMLBRjXObpsFt4+HK1125N7XzJW6nTthLRMi8M5Oa5NzUVIgcEInVfp5vDqfZmSPjyy88SYwqy3x+YaUmSIt3e7mNI83KY7n8sdz8PcQLEKYUPb7/6+P23b15/9qM3L8r5cd3K0/lJtY/Fdt42Y9yF5bM3b2LAu/3E4MCCkubuj6fz03q+JRYRd2PieZ7Xks/bFmMMMUwxAcB5u6xlA3WAZuahlilNh8NhTmk/T4SYcynlMrgAQ4h/HZK7llIJCY2teQohpZhikCnFEAJib3WrvQGgMEeRreS19lpKbbn7/ibGaYroYF0vlwsTm4G6Sgx5bQi+TNPNfichgCkiiMiaMwPO01Rat6aqzsJznP7F/+H/+NOf/+rt2/dM+NMf/yjtDx+OT28+++nPfvrH7v10WX/1D/7Rr/4StGsu/S//8h+GQARg41Jj7man0xGJdssyTTMz1VYBLMWY4iQirs+Rm+Durt2neRqXXDMYKsDe+2XdgggzlgFMJuq9hxDsmQ8FSL1fDxoAcMTaOvP1wmFm27qq9sNuF0O4bOeu3QHUjFkiy+l4UtMoYg5GBO7DLuBm5o2Jh5WREJLQbrcLUba8CUFkdoOt1k+Px1qrmQtzCiHFab+frddSSxDu2keLtmsrpbSuToIULufzyJ0gt8QcYwAwB0cOLHHbMrG03td1DSK7/W5MF3tvzdqPf/I5YLqsveR2Pm85r9q1Fnz55S9evHxlNNfaKe72aT+n6cPD+vS0qRvQt3krpv327mbbLlGItW3bejqt5zX/4evv37x+VXJ7Oq2tl3/3b//6j/74j3704y8v68WA1Olf/a//6v7Fy3mJnx5Ptbavv/r6T/7en1zWy++//vbjx8cf/fjHHz8dReLpUnKuIcQUAwIQEJI4aJx2iCQSQorH01obhrS7uReRmHOe9w7gpjoKJWIKQWKKImFe5lE2xghNAYAhOiIGIncSCa15a7rspm4gIZj3UrTkbb/fmVrO3ksp59O7b75urYTAXXuKu9vXLx36h3ffzfPy85/+YmD6Hx4eSs2/+c2vu+qf/f2/UGtmOs/z6fi0bh9vb+9LySW3y7nud7fyxc/yzYucL1NKyMGMurkizsu8nxZwm5eESKVUN8+tXvIYv8d5mqx5KcWhLUsiEEcwdO0mzGmZCQU4vL57cf+TP6q1uds8zSO+eNwaHRyfMa5DIcEsWynrug3HxoijAKDrVZrQVE+nMyAkkcNuSfME6CkImNpVAM2qNs+zai/blqsiUS4F3JkFEGNKgINNjkESESPCZT27QXcbPu2UUi5F3RE8hRhDEJbaqwP2fk0XcPDBqhmoGHNf1/U5SXC0cKmrOUBMUZhA3cyaGRO6mjsM6aQBttpUMQSOV54GLssOibz31ts8RyYGFEcQZiJsXYPw8en9v/urf3mzm0nb+ni4XMqfv/6H/+7f/Zu/+fWv1SHnDCK3+7spppt9Im9rrao2T/tOesILMQF6mqZaywiJ3O/2gDQt0zLPRLTmLZdsPr4oT9MswiwcQ7i52S8h1ZyHuIoJA4cYAgDmNuC5FQyIyf2ajpm3PE1JUgxzktYdkYMAcowxBYBu/ng85vXSrOfehGEX2YC3jyshIxMi7VJCxOwWYphT3E/zEsIcKUWqrTpAJJokbqWp6TJNbu0Xv/z5j7780bdff/39u3fn87G0Pt3fAcX7+xefHj6QsLuLBIkSUgjTMH/7AKeI8Pi3+bAfXLMgIU1pj55zNnUMwQk5sGAa480hrRmFhroOi/Sn9USIEOnFZ6/fvn33h+++GRCYEOIsEmMkpquac5fGjDbGOGxow1sBALX1y2UtJQ8D4W6O5rpMCzGPruLN64aIzLzMMzO0WokZzM/nEwve3t2V3GptpZUwiLtmIaYQgrsJy04h3L1xt/1uJuKBKY0xrZe11AIDm54iM7fWRm+RSIiktSpEy7xsZUO6+jmHh4SJRQaN0h6PT3MK9y/uSm29eustBFbVb96d18tpsAx2+xsU/PLHL9f1cmpaLsYkLKkDvD9u84sf9dYS4nkt798/rOen4//2QGj/9B/9w6+/+eZ//P/8L1999f2aNwxxOdx88flr4of5cPPV199g+OZwd7/m/K//9V9/9fuvt8vlf/qf/ufXn73cHw5q/nQ8/S//8n/9/vt3371/LKV/eqp3L14k5B99+QsiuvL4gkicAvE173tc3ltT60S0LPM8JSIquXa1knMupdXatAPicCSNEeokMQYBxhBjKbmWOj5iVVPtYyhk5rnkj58e3r397sX9/fH4BAjLblk3Y4Cnh4e333139+oVIM7zXiioKYu8+fzH3331+5/87I9q33731d8RyN3d3fm0/vZvf/vjH//4dDmeTk8vX37h3c5PT+tlnaalK7tE3N1O6XZ56aW1mBIxoaNwUPAr/gwR3UMIMxIz2bNUoKviFVpFQsBMdu1DKxHHKZ3O53laCHnZLW42auqhfRhy8mlagoi7jiuyejeF0X6JMaiO2J7OTEjUWwcAJAQH7cbEABqEg7ADHI/Hp6cnZwcAVZcYN2SKs6TD1C1N04sQxr4pLDEEZjbXGGIIobU6AC3uPqAa18u629i8ADHIEI8OyLiO8FoHGFmegKDu25oxppjS8GnbWBuD6NUVEZS8tGaq1X0YAoZXXyS01rdtOCU9JgoixG7acy9BWEIY8LBaahmpCcwew6s3n/3Rr/70t//u/9fXc8utVfhid/cf/bN//vVXv3v/6dTVtapqJwYzfzydq9YgUXonJBaapyREWyvECIS73U4k7KYF0FMItbXLthFJZA4SUkhTmGKQeZ6EBQCLNRdwAY4hYgyETOzm3ZyUAcBAkYQIgnAUIcS8ZTksMzN3bRJoJwE5uqN37dumvc8x3cXldp4iAeHILfUhBp7nZU6p9SqMTY2Y1RQRlt1iquAE7shortrqFOI8JZbpZz//ecn16eFhW8+mKiKPT6cYZ3cMKdVa1st2c3c/pYlGn8S8ljKMGClFIu69pTQNFFqtNYh092XZXy6X9ZKnJQ0PbYoxxDiysx291no+n0dcZ0pRWJj5w6eH0tqLV68HVEeChBTVLKSkZmq22+1kOKrB0SEIu0MIgogkHGMwOwzUfu+tt5ZiHDZCRBhoCwBnhvFkIiIyLvNSe3l4eNrWbfRsWYKiqRkh1VrN3QKa+ZBUl66qBQAV8NPj04DAAAASrdsGAHVQmBxab0R0f3eX9geKKM5+pY45IpEgMji5CE1hLlpAtdSy5ZxzcwCFKBw4TLcv5hhJtccQd7uduT0cz5fz5gAizExXcPTQmzIzc5puPnx8+N1vv1XN779//91333/9zdvI+Od//0+/ffvxt3/3B9QaUjoc9n/yJ7/85S9/FlP8n//lX/03/+1/fzgcUpTff/31OV8Q2Z3fvf94vqy73e3u7v7+s5spJAnRHff7/eh4jlg1IzG1mGY1G2WCakeEaZ7QndyYGRCCOTGwYE8yzmZFQCI0AEJG9G4cQkppd7gtJfda/Cp8QXWNElrt67Z+/c13/+V/+X/7L/6z/+T1q5clb/vdcjqd9su0Xk5vXr9utaJ777n0LcZ02L9Us7Qcdnti8vfvvpuXkGJ4cX8rEi7rpebyzR++XqaD9cbk23p5/+F4e/9mWpZlf/vvtWLgrTftJhLNnYVGCGfXHqY0RqkBUZjcwNwJGRlab+r9fL64eYyJReKUYgycOYYQY+q1/uDyHVkgYzpkYKVltQ7mXdXBejN3iCEMKBAhutu2ltY7PGepmxoSIqH2HphYeJritJuAqNZWa5cIEgIxBZEQ4kD9WTUWRqKuNUaJSZgTIvTehuRiJCgMCQ8zrutZVXHECSOa9oF6fcZBa611jLiFGBGAkBnneVJVVUOk4QMgEgAstV1P05j4WecX0jRoQaiKCDFGM12WZUphLPXuFph670/HEyKOeaQQu8MIlFLVV6/fPLx98e3DJwRPM/3+q9/+0Z/86tXr19+9fY8opdect8u6lrL1VtbSiLsZTSEB0pSmZVkIoJQizAK4v79vteW8XfJWetOmKcReawwxxjhNKcW42y0O1nurVcelar87EEIgcvdt24bLQZhTiPtlN08TAbhDrbX2KkuM5iO7maYUkWKuPU5p6zVMYc/0o9cvXt/MUbi3rC7uICJIPKQ+3ZUAEGHNawyMsJSSd1MaAruudS3Z3GIIRDQv87Ts3r59dz6dLufTmgtIuNnd/tEv/3he9oebw3fff6927q1+/+7i5vycmkiEalpqG81ZcCTm0cgrtanbMs+7ZelRWy+PT2cz2+/3nDmlydVLbb13pkgx7PcjRqZ1VW99mWaNab/bzcsiwrmUAWlI0xRT/A9E0Fdhsog0rUyMDkQgwtqx98ZEIU3TNJmbmiE6pQQ4EtpwFKq9dzAPIcSQzH2ZFwCsrbl1ZpFnwYYpEJIw7Jf9UDGbhmFR2e8P4D545RKD9ta1hRTBryedOwy4/5YzEYYQVJWZAEHNmzZm7mqt2bauhylF5uXuvjU1wBCD9q6mAIAE40RERFD4/MsfXc7b09OTA6QY0HzLufcWJDhiijPu4P7m1eef/eQ3v/mbf/XVr1X15ub+l1/eM+Ff/+1vE4dpt//D11/9q7/5zZ/96a+ejk+5tt/85pvzVqfFLevTabusTizMASm9+uzlbn+Y9/vAIUpgGt9IL6WMsEwouQO7gyAR0wid3i0zC5vayGZyADPt2oc/fhggbDgAAuN12o5oEEO6rOvgDPo0lVL8GjVhjECYHUy1/uEP3/9X/9X//Z/8k3+UUrycjofD/us/fPfxw7vTef30N3+z3+/O2wWQ7m7u5zmCAbPNc/rw7u1vf/Pbv/zzvzdH/sf/4O//7W9++/vf/LqrPX56eHj4WHL+7rvvLlmddz/l5ZbFcmUSESZmJooSKQyTlA0zcNdWmoH1HxIBVGFMxVXLOKGJpZIcT+fTedvtd7nU29ubIPL23bv9ft+1a1cJYV4mZlKFVqual1yJcZ4TAJh673Y8XYgkpUjoY3W5jyQyXqY5xPjvKbm9gXuthZmnOZJQCFNrOhR0xOgGAC4iNqWQi5mxsJr1Omoyd9cRufzMUbfhgBsY0VLyum4DzR1CGCmYqlbKOgg0iEQirSvwVX4XY2Ams0EhHTj0q/R0v1uAEAlFAoxMYDPVDsDmg7WFvdVlmfb7HTNc1suW85AJjfqgtX4+H/f7fZQwsNLMxEKtZyWphvvA+zl+PG3vv3v7xZc/+je//puBKys1Px0fd0sC91zrINirubvPKQVmRjqdjlOKKGEE8SLg+XIyhMQxsmhMPqJkEWSEJbAPDQ4RiXBKszCiQ60VWAAbEwfxOc1znKaYQLW07gCtdwEGbVpKcS84pxhIwiwiHfyua17z3eHm9avbLZ/PpXa3ALybFtMGCNprYoqRL826KSC2VoUmZjYFROpuj5cz2lUTnKYpl/rhw4fT42Mp9bJmpfIX/+RnP/vZz373d7/75puvTqfzF19+uSzLVjZ0H8aKGFJMUdVijOBQWiFiVQtBANBdmWRZ0m63s645l66H0/H09PAoIoeDDraJ9mFA63nbCHHLecDfW1Nzr7WEIMenbd02U5UQQpCOOFIsRGSaprFex3e8925qCGh61f/QlXDlqr3Uqu5mVkuFgW4nmqbUWuutmZmEUFtFpFwqMUXh3nquhZiExbt3bVd4CCIOFQfisC+1WpGACFz1KhMaxSJCkDh0pIgDCnT9DeOO7D6SxEdUjp7X9fXLFyhihCiEpqrNwFurzGLd3Uy7EZGDM3OK4fbmZtzK3TWkQVhCACAkQXzz2WcxBgpy+/bl+Xza8qVz+vbbj2G62+9mBWnGufFf/evf995u7m5V5Sc//+MUZE4xxBTCNE0pxAkJYxwzN1Qz4dR7Q8IUwmg6I6K5NfMpRiGWEMxtTtPh5tBaHeb0kmveNuEw7naNOjPnUhx8mucpTeC+tcJEYaQg7JcQAiMxcwpCzDCmNtqFUQJPKe2n3fH48F//P/97Yf/i81f/6T//Z8fHD3/7619/+92HZvajn/w0RNktO6ttTtJrri0/qf13/93/+P/6f/8PD4+nf/Dnv+qtrTnvD3dbaR8+Pf32//Hf/PKXv/zbv/3KMP70F7eObADbtqY0kSRTE4rCLEJDghxDZABzWuY02G0svObc1UxBzWqrphRDyL2fL2szLaW1rgCet3x7u//Nb38bQvz8888/ffzkAE2bmbaBXg9pt8zW27Zebu/ubm/valM1f/ni1TTFy+VCjIgoIaWUCElYWEY4ApupBWytM08iAdFLrgAQIxMyIIQgz9By0NKFyAmZKQhjSn7ltBsLkjERmSkAsMhgShNREJ5GQwzRbAR7gLsSwWhzuQNqERYzdHDtfb20Mb0bSxSelbOq2noDQCIc074Yo8P1eRns7lrrtm0jy9O055IBsXXNOWvrIyazlDJP8zA4MLG7rduqWj++f9fz5fVu9pup5Hr5/u2bz169fPFyyzUGmedECEKoam7e0UptSZoQozuC994Bfd0uro5UiGjdVgcjIEYiRHe/5G2aJtkyAkTrFAARhTjGNOoGAKht9D2vV7cgIYWwm+ZpSq23rdaq3QZYsPe+1YLemJDQY0xRInEginlX5mXe7ZaUpD+tD+d8WHa1ac7WtS/7ZUkhzNOg6hH4GJlo0yiihgP2REC5VQqUpvTx08Nl3bZaujog55xPj09/95u//vjhExAFgo/v3r5TDUFiEDXbLbvT+XgVJoPvlh0yld7TNLF766rWjWhzXS/Hx8fHIHGel+PpSbUx81//9b8l9J/99GfTvLRawa3mbGbzPPdWHo4Py243zwsxPB0f8rYxsQghXA+VGAahAQcPdkSvxMjFGhCHwWsbNi4EAjI36XDYz0NOum1bqYWZ52mSkS5ANOqalAIA3ux3EuPlcqn/f6b+5FmSLEvvxM5079XBzN7gQ0yZlZUggGYL2ZBGN8kNKfyfe0muuIAIKQDZgKAxVaGmzMrMiPBwf4MNqnqHcw4XV58nQmLhmeLxnpnqHc7wnd9XyjgM67ZW1ZrzMAynuyOTLMvt/Yd34ziC+21Z3EySHOdBRGopVaEjt/dOlKqqB2F3dyMHN9V9uEbdAYQDCzOhGZ7meZ4nEVa1ahASIVKrBsERydBv280BxnEiBCJnCikwAqobElAfKeXduVTvrOTDdBzn0/HLL0/Lum5lXZbbePruw/ebaWG2x3e/Ho6FmMdhHqeUS3HAMUUiLKUcDof3797FOKi21iqxMDMimbspENMQJaUooYMHABl6K9hMQ0zM7GZVaLmqug8pijCi9ws7xLjPd3pHI4eay4kOKaZSsnpzh2FIqobu8f7Yr1Qi1NYcoZRCQNq0NPvy9Pn56dMvn7/8P/6f/695Tk9fnp/Pt89fXu7+3X/4F/+Hf15z0Tr8w3bZ1nXbluenl//vv/l3X55u/+pf/evf/+7vHh4fAPl8We/v36vj3/7t37+e8w8//Pb7X/368f3D8TDN4/BwOooEA3XzThV8M5PXYhUM+u0FZg5et0pmiam5stBhOPTMuENT9ioiUYqCAGOKd8fj5Xoz1WEaTI0qO/gQ/PHx4Xg8JLHldi358Mc//vFv/uo/T4c7ALCaf/XrH/J2OZ6OKUUHEHZCE9EtL6bWFR/unnMhImY3Q2Za16XU0g99ByQkEZ7n2a2CqoNtWXfpKlG+WW21E7lzKSUXInSAeZ7HcXx+ena3w+H4+vqa36RKaRhyyT1RQ4BSa801xSjCz8/PzJRL6ebvZoaArVaWrjySbV1braraamuqImwAKUYHuC23ZVlEwmGaSq2q2pHvhFxqJebI3OHnqlpKyaX0yWi1ZqqB6On8cjwd5buPXhYjqoR3pf7lr/7ifD67++kwDUIImh0AUVvjRADOgszSVM2UiVtr13WBTuYAZwpBhAHVTB3UYd02MGhahyFN0wDoGEh1nwtkJnWszfsYVW9bIpIBbKXWWh0JgIIECcQ3bc2B1a0pBjVr4EJ9xh0MGYnlOIwNx2zn27IJU6mFGUOM33z7PTg2pF+ePo8hMGGuTYKQ8FbzsmzoQIgKluvWmqp6rW2tbVnrL1+ez9fLz//L/8LEy1pEAvGuWzIHJm7auj87kHfR8TB0lFX5c9OGqDd5amtmNozjYTpcbwsR1lJzySL07/7X/3Wapq5rxu5r8TaBG0Iax0lNX85n1XaYD7v3EHOaYoxBmA/D1EdKurFnSsndCanV6maIGFN0QDcbhgERUwhdDtTtvXLOEkJP14OImi3rknPuRzMgAVLOpZZMBCkla/bu/fsf/wi/fP683K7ffvMxpWEYUmf399tmnqd13S7XK0sgItgtw/aZtdpqkNhhsynGPpAJ4DENPb7Ztg29sW/CaAYhxDXnWveD5uPH9+M4DFIZtS4LS5Aoz0/npy9fEHEYU5CgqiEIMXZz8J7RA4Bwff9+nKf3Zvrl6flyuS7Llktx9+l0/WrlhojbtgFACIGJmTBImJIAqFpRLbmsQWQYxjGGeZpU7bZtW1ZuOcppnkYUaKUut1sMIQVvVpflWmodUophQAZw0NbGcRSJ19uOMRcRQKyqQUKKqTuWmYJqKwWY2d3UcJpGIrrdbkBOAPM0ulspXrwdT/M4/vD4+O623J6fv5SGEqcQ8qdPL5+/OzMhwvGlrP/lv/zdy/l1W7bbUlNKpznerity+vnz8+t5+eF7Haf52+9+OBxPju18+bLml/Cp+xWmGIJpI+IQuJPfQwh3dydTfX55NTWW0H2AATEIdxMxQmDm2uq2ba1Z3qqqSwrjPJpqXpdhGP7wuz9Utbxevavv3UXYmm6Xz+fL69Pzp1arGTw/vy639ePH7yWEn3784//n/90c3miWRPM8EbEIldK0VXOPEtBBzcA9pojEQLiuax8afdM9A7inmNwU3mqq6MDE3dKntNp6+RGxbxwETEMionVd0XxIw5JLLqW1Cm8jC9Cp8UTm1poRkXWPje653Vo/HDpJfx89I0J3BiKm7s2A+2AkGABJZ7H5LVwMvOQuC3ZHcLN5mDSymd4u1lHSpaqqGfY6u6TAaUivL7f6Xmkamvr1dlvX8v7x4f4wmwGhC7V1W1uuYUgJ0hhjDEHNqb9sJBEppT1fXoHwbjqkEGlgJIws67ZVrblUYR6CO0CtmnMlQkLdtjP3dkTPkxy6Aqo/LnPfauk9/1wKAESJEkJoTVvtTTJGpKZ1Nbhu+XxbUkpbtsuah+lwOk1b9SVnc2XeA8D3778LHDTFopWKrqUZlcMwV9Uvl/Pr7YqIx3EcJbDQtuUlP21buV6Xl9frz59+WdaVQ0Ckddu638sOw+u0kzdHdX6rNmy3jd4aAwtcA0v/+021/00k+szsAL3DzCKXWrp/b5+h7ff22w8BEQb3Lt4nohC6ZYd1AZEwB+I+VqvgampqIYQuR8U3koRIMDc3D0GEBRH6gmNm7S2yLiWSgEil5KadogHa8fOO3gX+zL0wZe655NoaIv7Vf/lr303vSITArZ/1ptZBRk273asYuvWQCjuEwk1NiNwt14bg4zg1bbVUMx3G9O//7b8FAJHQKXLuqKpmejjMMRAi9tKquSvgelvXZQP3EKWPI6SUaqtfxzLTkEIIqg3cpmlmplKbubeqLy8vOecQEyKVUt8OBWTGXRrrsG1rvxsAYMtFJITQUclhWW6qu5klM8/TnFKqdWWix8cHCRyDHKbD6+vlH//wB+LQmqopAohwCDGEsJXcpW99RL5fk4hYWy1VOwf4zb5RgnD/GB0ARUT97NCmpRZCHFJsrZWSTbunCxwOxy+fv/zrf/Pv7u9P7979zw/vP/7DH/7VtmxJpNSSRjndzQbw+z/8qMbDMG6500y3y+38408/9lOpV9jdPYSIAG/GNYCAzDikRMQ55+7a1vt2MUbo5eA3zjNCt8vxzgZ3BHUbxxEJcq23y5JiCkGASFsDYmH69OmXy+W1Ve3u2QAYJDLTtlQkLKWUWjrmgd68xZk6AlH2sRYEswYAnYBLSKZtr8R/BQ69YX46IaVPA/eqLMDuNmNmhkBM3YL4v/XaI8AebBl4aRX3uUv4+ne6OhUAW6mw4+ScEEv/Ur7PQu9rgLkRsHFneXWzNqIOiujqQWit7IAAN/Ld1auUzXTvfnegXuvJWueMmQmnqm253QCtmeVq65qvt+X9wxiDiAihtbYZwewU1YMwAYBpa9ZKJrc0DFMaSmnOO2gpxCDuSBhYirYo8XTgMaVxGNwVAdyNua/JoqohxBhDj4xZujKwAlCpzQGDiDaNMRqAmwkglqa5lIMMbt6ark3d23XLz+fLlOpxSk8vr2kYD/MpRRFyAEsp9pJ0U//+2++KwPPTp89//BM6cDMiWbb1y/lyXm9jGB/v7mIkJQ9Jzuf1fL5u29bMx2HaaiXilEYzzzm3Vq23tPYbHvtJrWbwJqT5ivXBjsV1cAcmcnBzF8JuqgJMwFRbdTVGMjckak0dXELAN8KIq63Lkmtx82EcYIZeNjF3I4JmQNbvTAPvNLcOu4Yde4WAjrn4Do3AEAK4t7Y3BzqLrYda+/4BbFrVjAjd3NwVIArHIG6Yt+12W3s3jLvJ3tvUz77C1bp2CMy+oli6IKHzMnbCHSIC1Nq0NmLqPbXlsnXvMETUZq4gwqbe6k5hNIPW6h/qn7qBKiJ2km2phYjR0d16iRaRHKDV5q4ShJhMtVtamGnvXnQF/ldfKomRkN9Evbv4RFufSAQmZpFaizsIB+L89frv4ykpRlUF91/0s5kxUkrp08+f1RoixhDMsdZWqvbn7G4hSC9wd3xHq1VNY0h9PlG1KXgIodZaayUiERlTAnNkBreeNIQYaim7LsgauocgtVZtlTjU1kouHcf386fPP3369M//+W//5u/+5g8//pzCcPrm7h9//vJyuab4T5Dp9byO08mq16pErbXNkYIEZgYDs87HVJZqbxIDIgb31ioxEpGpE7Kb9ilo7ppjfxPCv7njttaERSTUWrYtL9dNwZu2um0ppmFIiMRE4zy1otfzxR1rbU11HMdhGPBNMZzzlteteV/MxKR97RmxmffaCFL3HnFCrFY64xB3/MI+POzwZ0xWv0l2yiRTHxUWeqO+mTX3N3rbLlHdcUPQfZmQHHS3vUNFhS5j1Q5VJEIEcGRSN3AX6XbB4Gaqyjt52veDpFf53BHJOvuuQb9hCZCI/C1YcTV3F6Kv902fEHIzQlRwM3XX2jiXklJAtOuyIo8xjbd1vTuG05RCZHQHr2MahAYABLdaNjMEt1zq6g1FxhgO07xpM7NxGFNM1NnOCGkYjo7ullIaU8ol11rcrU/24u5Q6621voUJUYRjTLlUrBWxQ0IghcBEpVa53NbLesu1ug/mXrbcQNa8XnIxR1VrZtdt/fTli1mHj5kwdZTpkKJiI+H3h9NPx+MnxlxrisOy5uu6brXVZh/v5vcPDyCWrY7j+Mvn8+VyQ6QdUmmmVrq4e3/ZHS34xlVG3JsziPC1gAA9FkAENiRUMyJSMEDos779zXX+vqMjYO/lxhR6vcIBegdrW7dmho7CvK0bEo/j0NdWM63W+jrYF3oIZNy7NPtxDNBjiq6mAIDaGgMyY1N9CygMEPQrsYfZkAwcgBwNiQSsO1nu0yp9aBe9aQMEAelHpGpjFhJ2s27546bURyy9mgIAUIdA93CMA5EDQ+dKIIBDUwNAZJZ+jtfSEMi8H9PWatvy1gWrtRQJodVmoM0qAlHnDyE2a+jYMwYAaKrdQr2bijgAEyH2mkCPktGBtIHS3gnsxtvdRrT3rIIECeIOwgyu7Ehs7mYADtZUqe1Ijg4BReZcWu3JH3jgCjuOgxy0url6U1VV2nkcaO61NG+AyE1bNVUzCa0b+XVlAZgTADGbaqk1xphz6aFxv1gJSRVqbarmrQJ6U1NzJEZEAPrf/sN//sff/+58rUxW8h+3qiFNf/zxswRJ48jCiOwmrXW4FZhBt/gFAq2tpwGmToSq/UxnNQvOPcYQtt4jJeJu4NyV6HuuzIxE5lpUgd1QDVrN2XaxIzSzLqEDgFLW1/Nl2W61NZFd0jNNE4Bra9u25FyafyU3WG26y37c8S0DdutUaUQR984yQN2rJjuFCokIcLfhBUBVA1A3a28Wjw7SM3437+ULgP4199MWgIncjZiot2d6nYD3hYcITIiIzgAAIrHTOnf9DzowIe/0oTd2r7/VhbCf5gjQzByg6e6bB290F3dvrXZ9br+HehADf6aAISA0awA+DZEZEXirtVYstTSrIsNhmgLzjTBv1SKjQ20FvLXmHkTdz7eLOkUZTocjMS95YySUvdCRtRLT8XQcYpqnUWtdN7ptbuYxhP7Q+pZMKaXuLk7ULX2aeSQ0RyEchkGYAzMSyfmybLl1IFq/6HPebltpTiGEEEMMMYhclxXh+TTPcxq2IVczRnZr7lVtiyKHwzGNs1eLMTqhxIQOcxqnYUgpKDaSsK7l6fnigLnUUot7PR3mz88vLy/PwtLzX3fowy493u89oq+OjADQayEsfSDGugS+c3t8J1d1Yo+JSJCh1lxr7UBtN+iBpH91sh3Swe38eq7WzI2F8I2cDYqtVgocRADQ0fvW6rNUAGCupn3I1wEhBqmltlpRmJBUuz3vruTpVdSmis0dADvFE6HP7CE4WAN0M2jqTqBVO2TREIj47XQzJukIIURnYQd6w9j2MAvdcceHEZh2ht4O82pqiMjCe3aiRkR95qkHzUg4pNRl3e7gaK0jdDuhixAdm9bWWgf8lqZMGFD2c7ZnSGaKuMsubc+f3KHkzEGAUFW3bbvdbqVUBz8ejmlIudbmNo4TADqjk5uDWkeYoTnkUvoJ3PECKVqI0dTqbuQYmPq93+rWug2Vtqat9faj90RE+xpXNTX3bshq5l0q7r0YiN0pE5op2Z6jIKKqcXdfdm+tJ2BqbuC4HwcoavYPf//HvDWm5O5rMeEUWAjBHSXEbhlk2PmASIxqzQCBEAyau7uj7iUdAkTE5tYH/7tXAeCOqGUmIgI34H6j9zkpZwImAYCai/drGLp8BJXc0XPNImKq5Zpfz+c+39taG9Mwj+OQ4vV6WZfFHdWt7yM3MG89an5zPO6aSEeEfTi+ozoB1LDniAY7OM60AbGDm5u/YeC8/+s9JwQ16Bcs7DC3vTTfzTOlyw1wr3CqKQt7L+G+RYcGwLt7mFdtBmAA/Zeiu2t743PhWxjiTPsQgL1pDoMIEUXm3QNhz0Wgqao5mXutPeYT4RjFHVprpbY+QY1A1/V2OswikdxqseaYc45p+O7DN0zQVDdiZE2S3NRAU4oilDMsueRaj6d0Ot3dzccQg770gJvNbCs5t8bE8zDM88SM2poBpJSYqFObHKCU4mb9WwCgA9ai5k7EBkgAIjJPUw8II4BspY7pkEIIQVRBIscAoRGCuPswDodpmobhmtfn89maDhxO01zBSmvoEBGtZSKZ58Pj/YNvdZoHR4SKQ0grbqXVauZghrBmXdcGYKUVZo5BttJqbWOKwmxutbbWams1hNB7rQDeA//dDg3RzIi7XTAjOht781wy0F76AHRkYqNhSEGEEFJMzUyiuHkIAQBqr2m0VmtNQzrhad3Wbv1xW65DGkII7grkHDiNg6ruJH2EUkp/8apg+x7A7sS7XK6E0D859pfxFge5We5dCnBBcoS9GwYG3X/DFHZPR4d+/7n3aKmvQyJyNVCD/Uh1JkIiM3N/Y753RpgD9F0H7m6qjZh7zyqE0KPy3gLcdXLo7sBM7uS09+s6AWOXwzP3nL5Pve2yBzcgByIHbzs5gLrW3t88ErS1/mmZmQitNYqhf+CS87ps3QLHHUIIzMEBO4mm4xv7ntyDq75vXR1hdxZk7iZohDylVFtrpYkIM/hOWt0PGVWttf75lkKgELy1Pt8UgnTpEYD3/sle9HNX057s71pbAndEot68QUThULQQgQMTszuYM3JkUADo3hI9iHEzIgYHdW3W0IOZ9jgaHcm7q7DugQ7CPniyG9PbHjWYlZrRoYvtWvMekn8V+xIROEgQAKvVtRkBAPXgibAqAFyu1563dSVMf/ghhHmeQwzn6/lyubTaenDd/wFycngzJiLf3VYQoEMHsX/sPS120P3K3J9SP0T7knCAt5wMGMnQhIR6Z4ap7X2avc9nOx8i9HcNhgBQWvW3S6LWikTaWr9v1NyaoQOwqe28OSICd2v4NfUHdAkMaog7Y5fdcR9q20sRSNRFqNDZMK0yc4zJtL6t516FI0RpqqqOiKVsWy7EATnqdmXAbFoytArzfBSC2kptjWJyh7xZ50ASEbMg4pCSMA8pMnFrmlux1lxNzS7rspZ6mObDYOBem5LI4XjA3dQbW2trzjGmHgDWprk0Zi619RFRFhmGFGOaphkBmzZgFInhGEOrOEbuXZpxGMKY1upbziLh7nQKEpXpui7XZQ0HuptGdb1s6zSNkUOrOo4xsnx491huawxyvl5aa6rWXM/b7cv5JYlgkKen25YLgqsBIBNxCNi5vojEewbg/b1qb8wiMSExo2Cr1R34TYkfQohREJGYHu4ftpybm7CAuwgL7Y3qXtMkQolxWZdaK7ydecMwnE6nng8uy/Ll6UnVpmmMMcYYzCzn8uc08K0rNY5jzx+7qqTbhuScwb3UaqrbtoGDuXXcYJcoOECXmQMAoXdRRQfk9qjk7aABQuAOK90vjA5f5H749ptvP/TfDur+8RAxvJEqbK+bve2l/+afXil2cyAD6AVbM9tbLH0dIxKA7hnuV/lEr+wjmjt9PZcB7O0qwg6j7LuCuiKZEGGv84p4D8rcoRuWipj77XZDxLu7O0RstSKiNqW3bUvEX5vGveQKO/CAiVn7CCxAc1N3Qzd0R+jPqtMTmioSOgIQqgMhmCr1odL+rLr33tv51RdhT1/66/uaWfd3Wk2bK5j3xQaIX73JkZBgf8u9pd+9gxxATZG4aevH8dd75eufVbW1Rjvw/M9vysy+ati/nrbm+8HRm1IxRgAwc5G9oEF7PKQd7UDERGTZWq19zew/GXEc0zhOw5D6viPAIOGty7AvIVN1QNrfKfcP039IN2gioq6O798d6l4a/YqqhreOztdF+Of1SUiEOx0rUIdxvV257o5o+obutZ7TEHXZgg/D8Cb2973+TxREHIDdqC9LBFNDh56eOgE6kvdiwr5B+h9a24mBve0guy+3E3mthIhMwNR7Y33ezHsIkmJgIgPnBq1k1dbfDlphIHdYt83AOhpPOCLF/v3VtLXKiK3pOMRhisfDKURetuv5er3ebmp69RWBztdz1YZop8M480wsYEYgjKjatm2rrQURRMzFtpwdsPueOhMSBWNiRugySw/C2tyayTAM6IrihL6VTZgQIYmkcVy2rZXV3Q+HqYDN07ycz1VVEMYUkOU4z+OQzLTWGghDEA/SM8Gt5MvtmksG9uty1TAEny63zcyEe79FzayUcrteW9fzurs5EUoIwzB8XX9mVmvZtq3HU331iEhKKQQ+zDMCMXNcllwLIuHuxh4APMZoXXBGVHJupZh75/mUUty8lFJyRsS8bSVnZk4xSggioeT8touQmXs4cLlchyHFGLqaRXfKGDCzsBBQa9X24iOKsBogIrkgaC9PERF4YyYHUO/uxz1ELSEEkUDkxBCC7HYBfYYFAIB67R4BmXbFNSCWWoMIC9fa+O0UoxAQsXdf3+Cjb3sK9lx7N4/eG7P75uxYXgQsBfoNt1Ooe2RK6NbJ7j0e3E9AFu7luv2G2xFMof9aehN0EVJH8zLz/f19yb+sOR8Oh/v7+5TS110NAGDwtrH7wUH9wCJmUN1PaQRi7v1SB5AYoPYOnvebsif6KSX1njlZP/JCCP0rxxh7oEp/vq66AZN+LT/2s6A7CALspzMhkRDsJzgKSU9MwdwZpb8qYd6nGbDrS5DQgEFhxxYLfy1K7Jdrv4rfqPH9YkD3PnhVve07Yu9hYkixlgpvzdL+kHvOUWsxaztWwRzA3JG7jR0RE/UBKDM7nU7H4zHn3K3Q1LqWQQAopYSIIYR1XVT3zfg10d57Vb3IY6aojPx2d+rXKxMAOk8FAfol4W9H/NfLwIlIeqqx/3g3I6Kusgdob8oHEOJGfYoXqYsUVOGtXMzM1UpfYEIcQujxUWeIdSENUHfFwb2u8NZy6Oe4BOlceERAJLNu3Ejc7bu6oY13+0kkphQFEFvbeiUJwMxUgtTaUNVNS27NdVu3bVvJVSSO47iVisjm1mqLIkwYo6QhEkuMw7LdzufL0/ll2Rbq9AswDhiGcDymx/d37x7fmXvebmBQc11yrq25OaiaeW3adG8LiwTtmlfEVtqlvPbCeWF2t1aLHKbhulyHFEvZDHwrJTEOYUxBmjIY1bohwjwkOJ6wtq0WBDbicZ6mYQaCZlU3bbW2knPdhNDcb9u6lizMU4gRZUhjVn15eVHzECILb1s11VJKqfUwTcM42hvjuQdfXc3KzP2I6dr5HlaEGAGg1gpgpdbE8svT51IK726RllLSFgEg56XWhkQOXmt1wJgmAC+lDMPgap9+/KnUGlMah+Hh7v6yXJd1PYXQSxl7Grv/LhzHcRhS37PMAtDMrNYqb6EuETJRCEGUEIFFeoxGQLXWLnczN9VOuQLsZkyA8c30kZCyVvA9rRMRIPyaGCEyeJer7wJWc2dVbbqfIr3A6m+Z71uQ6O67K3I3Bn2b4EfErjb5qqMzs75dRXYtLDH3qWMgRKfwlov4W2UqhNBnKbsAxXeXMeypSd9LAKgdIEMgIiGEIaWSa/3ypQ/3v21C+ppt0FubvV9UXzVge9c9BiISERZF3MtBIL25bYjdkdq1VBYBbQjq5Obe/e2/esP2A6vHFp2cgSj+phdE7NbwILJnSExMiAwoIgiQcwZzIe69x+alp6TVTELY3wKiqYY35WI16/q8XlH8+nK7TQ++jYD3I0nViRh9r8W11kiEfTdwBfM+Wtgxbb282c9Wsz150qaAVKsC7NL13mdmCTEGYhqnEQnNd2XL14UR4xCC9JiBmXuTKYQQghCi4B6q01tDgFmY6WuiGUJQNVeHNyknIDrsX4e539P7d+9a5C4S6rXWPunbQ9pOQhbiN7cM6FkX8q4M7pEB93KMiKn1C7fWhghIFESE0bx3WwgJ1dRas26LRAQAaXcx70dQYyYRAhBwz6XtDAzEYRCAPnzjAA7me94GuFe+AFRd1eq6vb5ebxtKCsu6NC0REUABKcaIxDGFwzS3klvNMcj9w71wVLOX84tC4wgnHiOFcRhZxKEFwfeP798/fpymOye4XPB2W9amTX0tBR3Fdp2hEGPA7tklvdjComZV9fX6um3XFFMKobQiCB6FreYoTBAYnRmFEU3RNAgNw0jIUxKv6qe7L+fnrDANQ0wpRGnaWqmtWS1tyzXXJnFglO52Mki4O5zuT3cxpu22rlt2x67DIcQwpCUXBEAGEWQeHIBZlmVRbf11IhIHRsRWlYE4CCBEZlDNrZQN1uul1z0I4fxyRsQgZE1bLD1ec/e9v9eaI97WzVSHIYlQyeV4PDIzMcUYJYRTvm+ttKaIOE0T4/4TgggiuDciYOIhRQdP6a7W1mpjQnOvtWHCYRwJu322EZMII2CtFfCtom0eQuxyzP2Mfov13LuLUre+AHdIITJLfZsqYAmI7GZVa0zCJKqWhgFgrxILd+mMuRkxRhJiqrUBQGu1mxFzN3k3NcRxHHuY073xeqEAmcGdRXamFoG9iUh8T8sIdrvVXooFB6Pu1EndOISIsLam2ogYu7krUm+kD8MgxExyd3+/5o1o56sgMjP3nyss3aL2a3geWJzM3BuzhDAMY5/GJOeeFRFxiuQ9KwdkYTdvAACYhqmpbuuGbjHGXhoOIazr+vLyAoAPD/dfi+l9trvW2lrrWcDbm9r9n4l2S8IgyR1aHxxxZRaIgG7kiK3R/jQJETEwvhXThFiICbDrgHotmYnVFBCZpCeFhNQTrZ5O9ZJJr7QA9RHCN9sh6GcoE6FI6F001TaOEbHf+n3dWak1hChEhiaB5+lAxATUSgsUUEhViWEYJ0SMIbxdgSzSY+GuD2V0YKKO5EKiXmwJIXC/7cy6nDcEAEiMfebgTezL5G5N6eudx8TdmKavQ0AIe2sX1dRVAwczRdrNnWIQEjIDROis0z16YAAHkt7HMkTflYbVVKuBvRXOEByI9jaG9zkg957A2VsiZTs22fo8hpll6zXYfaChh6rurtb/bGZWm+ZSwdVMOcbrui2LDTguy+qGIKwGDNaTQyTSWtCIMKSUQkwpjX2xIdjd4SAs3G3LkKZxGIZ0Oh7H8U5CalrPBuA+pKSm7lZbs65gfmsKokAzT8y7NJZwiAOClVp6XUvNBFC91kFkGuO6QowcU4xpMMPAVBvGkAAAHVKKVevpeNpyjjGlGB18W7dlKyW3qvp6vnizgcbu6iBEIYQUExH3PmFVBQVTc9cYQsm9DdVaa9ayt4LIzaGsq4Ej7CNghGkreVsWJGpWCDvXmljY3RX3Wi8RxxRrbaXW1rRW6SvMXLHzY5FKq1uupq2W7XY5z9MhxdSVhK1mQGCWFEIgWG6rti3GwNz7QxBYBBFUiQndUqB5jC9lcy25NNiNT/uEljv6myC3IiK6BcKeKhOioxPuRq2E6ObdNr4v+hAYAcENAad51tYIdo2aWzO0w3wolXJeh2FkkdoqMQ9D7AVs7CC3LkqrDRBqqYQQhJiotmaqNRckjDE1rW+5gsMu2UYkN1XYBYYdZYpEjAR9V1AIXVnbHMFNiBg6b6u7SmlIQZjMac/99/IGGJI5vvVaLQS+f7jrN0drjUCCIACCOyMaEiD0VD8QC1FT36N+IgRDN0HQ7m5Mnb0KjF27rarWb75xHKdhuN0Wj6LuYfcCdHdPEqxpUxuHKcaEgMMgiNBxwcxvLSghByBkB+h0kK0UcGJqLOTqzATOxApBtFUHs8CAJCy0fwtycDPfu0csJCgc1AyQ3azbvIwx9LYKi+wvBInAgzAAoZMDxBQcXJtyL+IZ2O4WirUpeIuREXhda86bqpk6uVet5q5aUwhDEhFOaUgpusO6bu6KQJHAiZVA0LSpa4V96gvIFbwyMUFnPIPW0tWUQGQOhu7KwtxxDjum2/1NQWAA5K5gQMK9KO9vAksAZOKOWgEnImi1mlsXKHeaxX5Kd2eOLo6wLhDbEw7fx2J2jxqAt/yzKyLA3JG6WbwjeB8N6b29/f817G+oix3cncz6R9x/qYEPKYUYt20tuVgXXBDgW45uaq05kDBRLbm2TCzjyKUUMEEIgM7MWiuCM6M5gTdENWsiKYYU0oBmp3kmUARMw6CtqRkxD8MQRMycAim4gqYhNa0EDXAMwtfltm2buTEjO1cz70JBpxCjtjK+3dArwjSNj8f7tWyybYu7hhAQPARJMczjHNJsGE3IFyN2IFPzqgXRGHCMKYZAxK35lutt2Vz9utxez5daW1Vb120rdUjpMA5g9bq8hjR9fnraliWFCEiqbW3N3ErO2239edt+eRsx7G8T3DuMZY84ub91JsCOsO1KtK+lT0J3dAJEpj6zRx1VDmg9akMiwlLLLpcmJpTr66uD9cILILgrYq/k7Noyd0fohVpCdOY390eAEJiCrOvWVMGMiP0tnxfcvd1JOioH+2f5GjEzo9nepuu1CHgr3xDRPhAKjg6ExCH0UoyZgxsiPX3+ZKY9JjLrztdAyD1Q9LfebE/M3b3bRfVHAADatLZGhMOQvtafwQwAe7OadgEG9Guph1fCggRmbl/LDn1ibp84JyRstamZO6QQulJ7757vRWqwbo78Vc/HpLoXaV298I1Yev33q7Lyawu7vxRVra0BeBDuc1L+pgDujxQRtamjvbk2d4oHaK8C9z6871rE7mZq5q0uRAQORMiIqtpU3R0BWN7yC+oj0ExIW94QEBkIqdUGvS8Auh8YvbJh/f2x7fc3vg159AIXmLmp9aOICcxBTbs5bY+yDTraDyQGBHK3zmqFLpwEF2JAMti7xKaO6N1dca9iwVeFNIhIy8vz7byNYwjCxH1OomvVesu5F766RhZ3F99deGrWfVXhLVyw7gjm+1axfcO9HbfgX9+97/FIV2L3YbD+30EfWe9/VxGAUPphi/vsF5jvjq/ue3i+FxVt/w19vyNg//uIby0z3GWmiH0uev88PU01eLPf7mnI2ycF7pJTaNpqbWa2CwoQACBvKqEAohqauojEQN1FmYjcvFarTXPezLr6FERoq3vdbVluaRgIvJba8kISGKlsNwdwEncDMAdloe4zCEgeYp9S7iXxbVtv19dpOmrNAC0EFuZow21bONLJjq0ZoOctmzmzIFJttbWKyGkQdwPiwPEwH+6OR1pAzMC1mSkAIYvEFEICpOkwKeoQWYRE+Ha93W4XUy21dXLD3TC1prl1ICa4Q2u6lrw8lZJLqeU0jUMMAKpGEen8et22jdBV8a3CTkjYL15gMQfPFRGbNlAFgz9LCHoWyohmrns62buPX/PxN2XBLlChrzO0tKswu3R91+AjuvZ1hO7Wx+a7n+oucu4ZNhjshr2wH6n9I+3Lu9vR97P77byBt3MXnNDhTQKxH/BAfTHvOwTA/U3WuR8P/vU6IKQ/N4AROlEVEd/4Wg62w3+wpxd9uGxfbID41mnALurfTxMEMu+ybHybYsE9VNoLDfhn/fM+nfe2q/o2ensa1C82c4A+DURvZda++bB7TeLecEO33k31vu3/HIJRV+/29i3R/piIiHlvtZoa9Mgd3HHvQu6ZhZl+rT33ist/8zGRsOcmvksS8e0x7gKq3jDGPdqGP2uroHuTu1Mf2fC9pQnYZy/QwQiRvBfB3gyWezBhBvt76svJux6l3+7793VwANuj4D+3RPti6WQC2xu4tHeRqQ+0gTXtDRokIH57Pd6XDX7tLff4pgMbCNEcAeByu709+rc987ZO3x4iAHaCL+7/0wDBielt5TuhYx8y7M7zvu8L2qume/Lg+/HtbmBuxB3i58hvBzp1wBoTI7j11qhp3X81WAiBmIERAU291AqmwigSmAJxHyGXzvxpWlQbAIF1VHI/5Y0IuuohiPS5hdZKF4r2GEICCwkCPF/Of/jTj61ZVbM+LYyE+ygcdGWgiPQtbaalat9lPfASjsTYNF8uF2YuZXPP67YxcxrCckNtzay5aqsVicZh3GN8SkioqrRzyomISRgAiRjQEbC10nsfrRYCJ8IYg0hS9XGeas09DTLT3Ao4BQohhFy263IrLQPv/q8nOX68e0hM51sT4QjBY4j7ewixObhZdHh3/6Atg5urulmSsJmaNUBqxatpHIeJpBlorTHFeZrM7PlyLrmMYZzHAwes+SYSUxpabXlbCbS7KhZtHENz60eBBFJVNQcHBnSitxwNcI8TkEDfv7t//3hvRMMwxJjc0d2stR6qEAUAdGullvP1crleDYx5R9eaGTqg9UBepzGN40QozBxTUG3EIZe6rkvXKgQJQYJaM2sIoKqqe6Oy56Rqu8s89pgZsGf3jITQIRCtbwAHNzVV12YOaKBv+xPQTZg6rI2QHKGp44706SIQeoucUIQ6Ikm1hSAUqA8ulpJd3a3/fBBhkcCM5taaxhgIGR1DEFMDRHCsNXfF4Y5h8RqCpJgISVvL1piIkaypuRUzJp6mMUqgXeCvtdZ1WwGAhHsJm4kdHAiChCgRgExrKXldlp7IM2EMkSTUZg/378b7+5hGCVJyBoAt30Ic5+lYSl6uL3m9Xl9faq0ixEzH43FdV1MT5i9fvvRGbq2VmFOMy21R1S4KvC2LIZraWxXCu6mWo9dShZmZOv0ihgjeqR/c47h+PQAgkcQYA6eU4jAMh9Px8f5xmI8hDUh8PN7V1tzaz3/8x9vra86LExzu3//2L39b8xaYtNXX89Pry4ubmRoT9WBcWABBWEIY0pDMbVlveVvBvffbx2E4zAcW2R24am2q03ycp4kltFpu+bblXHJlkmmc3U295bzlLSMSUWDG1urXhNJUkWjsLulpYOYoTIi3280QShdWEIH7GAcRqa3m0gk6Po5Tz1bNdF2XVmsplZlTikGEidW8mXaZb5dUCbO1FmOIMTbVUgq4q2quJZeCTCNHQlK30tqat8Nhfv/4fj6c5vmAQK2Vy+X1eru21ogoBOkP5HA8uPllWZ6evmy3mzAe5vk4znFId3d30zgi4rJst9vr9XpRA3eMQ0IicMhlBdMUwjRN8zSj43W93fJSSzVzIk4xioTAIiz/+t/+mx//9IetqZmzMEc22Ccr6b/B0vS0w9xb2WVX7gBu4GU+TkSw5as7blsGoG3dxnGeptmsgNl6WzWXUtae7Kqpmku01gwZTB2A1Q1NAzDvelM01VaKQZMYhJE4IsOai7Ac5pmZ3FpfbKVmNU1pYInuvqzX0/1s7s26+zEHSRNHbcXZZB5G8BCGGGIa0sBMW95qrnGsYwoxRK8VSSx5V0+7g7Y6T9FbjcdHYQKjz0+f1No8jHnLZNiajsd0moeGdas4DtOQplzrsm4AhohmgORJyMAk0l4aAURmNwck7jEtAvYw21lJif1f/O//8v/0L/+FSHp4fPfu7gGBiurt9uKuJdckKaZQzc6vr08vz19eXziEh/nu3cPdMAxrzrXVT798+unnn13rd+/vP75/fzreK9gwxMfjUQ2vJf/8+UvTOsY4yDCmAa0hgbvXVmtttTVEIJFez3XAnpsjkZq76zgMKUYGa6XVpuDetDWwWqsB5Fy2LVd3JhFiM9faCDu5TEJIjm7oBH1MFwEw5zbEILJLIIYYVUFVSSimGEMA95JLKdtt2W7bCkTCYRrG0/GUhrG3BAlBWHqLSc1ueTu/nudx7KWQ2gpauxuH4+EoMVyWxRFGkcCSc91qziXPw/ju8THFRIStta2Ul8vry/lVW0tDChJrqSFFA/fmd/cP83jQ5lvdzpeXP/7xj6WWpp5iOB2OaZhyqX/xl3/57Q+/Yg7mtqwrEG/lNk2Hx8f3VfV2vebl9vNPf/rpx38s62VIw7t3j1veSt4I8Pe//30K6Xy93NZ1jGkahk9fvixbebi7m6fhH//wp8uyqmqu2prmWonCMKTSWkFLQ2CSZd3MPAXqZmmBpfexo7AEac0QcUhpPhw/fvz4m1/98Jtf//rdhw/z3aMhrVs+Ho7TfDRtf/Uf//1//av/dLueHx7u/+X/+f92/3DSbSPHnK+ffvnDzz/+DOrgRkhdShtj7G4zMUyHaQLwdbuu2y1vq7kzyWE+jeMsLLVm1+ZganZ3/3A6PQBQzuuy3dZt02YxDkCoarXkdbut6zZMExoamIFFCR0C3syShPlwnA/zMIx7Zxr9tl6W24JOpbQQgrCYulpbtzXnjRAQ/XA8xZSauanerufPz095y0NK0zjGEBGgtJZra6rEdJimFKI7oFsIzCzbut7WtYfRWytL3gxhoEju1/WqFmoL4zj8+tfv747v7o73bv76+vlnu56mEyMjMImkIdyd7h7u3pnBmm8vp+n19cmsgts0Ukr0eJemaWy1ucO6FZZKhimMwyDcOdXN3DVyIAbAYgYheHAIMbAEEbHmiIDQhIGoSQwThlKKuU3jHIVLbblUJgLwyuTg0HwnCgMTCAIAeoxDjDSHcH09W0kSojfNbasF5unIElIYatnM7OX8UsrGwqUWZnEmLlsqmyMwkrv2EUUxQ3NA7D4iuTUHB9QxCSIKyzSwGxBAYEGmVjYFF0KRMA7jMM6qLQZCdFMw01oLoIsEcspoY0pyf3dqrSH64XgXODBhqWqeS8lbYLQWWUytmivAVouZxSCRwUtppYzjiQ/z+caXcyYjgF26fnd3+v7Du0U3R0hh6MHu9ba5AaCj2TDFGIJjOx3nvJa2h2tO/EaIdUWCKY3o5NY+vH/4p7/99bcPp+X2+uHdt4eUQqBci3oLEa63m7oRU2u5qgnVuzlO8wd1/+7hm28+vAdwc3h6fXGrOa+g9f3d3ZzCfBiz1mW7zok+vvtw0OE4j+fLZVtv6NWKCsGYRgoBYUTCUltrVd3MsaNqCLl/69oqUSQi9dpaXtdszUKQcRokDcyMTLXWZVlq08ChlLwt2SzetldryoiHQyAWBAQgM8tlU9V0iCmGLjwWxmmIudSt+VZWQz0dxnkYXT2X5dPTl7Vc4yDTkI7jfDyMIY2qUiqha4hJQiLE6uX25TwMfDxOiLDmVb3FQKfjfDxMSuiCAnAaoyBtpV4zr1nmcUpRCM3M1JpBA1YZsS4NORhkBCvF1YERBbHVXFWX7bZsN3d115xLKVtr9TC3Nee/+93fXG7P6ABgwzxTiFXb7fpyvT5//Oa7d+8fmb45HI/zHD/9+Ie70x0zSeCfr6/r9dZqjRKQoDtYlLKAK6KZtRTDw91xWdfmX9uuFiMxIxYjBN7xmb2s6zEKEQuAIwWmMcW9UN+DEEaJMh3maU4S2UERrJbb80s21/vTPUe+LBcR/Oab94FtuT4JkBtpK2rFQRHJzYtmVROW0gCIciu5Vm1FAlfNAC4hrHlb83IrFV5eHA1Mj+MgIkQIlyd1B6Smddu2UioTq9XWzbxqVq0cKAQJLI7GISRJzHi5XqrpYZqnOPQGIHEgYvUqKSVreavjOMJuyeKlKaJGQeuO7W7gPsRYSxGmkIKDp5hCDEzoDt37iIRTil06tUMFrbnlLee1rEFiCAGZ4zAgYiS+3i6Oql5F2M1K3vBotRTVtuU112yOYxJyZMTDYWJGQOIgI7lrI4LWcikbsxBzaZVLVbXaMoCJcG3Wu0fEBIjo1cFyLRFT9wpNNDighJC6Hz1SrVvdMiKWVh3weJzd/Xq9IkAUadYAIcbQtJGbA6j3KmsXve0wFmSYhiRMz6/n81WO86mWvG651uHd44NrM22djaimWym6tRpyjIliDDFveQkIkaW1vG5b6DNP5n02JZd8WW4iAVG2XJipaVPTHvuXYq6tlK2VrK7TfOwOMx3dBuZEvdvJ2iq4kVCU+P7unRwOB0BWa0gcYmq1dBKgObyeX71VAI9pYglba0vOtebAk5oSttvlyzRERh1TFJHtmnOtSyvDkOYYHw6nOz6iA6A83N/9T//Df3++Xl7Ol9vtimi51NeXc/eZU/feCkLso1sWhEMYzT2G6N7+d7/5i3/+F7+JIqXmp9vKfD6MR2e4lRsDBsDIYWul1upu59uCACnFQIDIaRqWuiLAdbkRUQz8eH+yVtMwkASWIET5+vp6Wx7u2vEwH6fpNA6fX+Lr85dqGoYZQzB3RI4cIwhzBPAK7kDuYKb7SAX04oyWWnLetmVDxOptvjvO87En2kGG0/F+ToMIL+v1y9PT8/lSPTYoaYjjEMDJDB3RwRV83daHw3EcxlbrbV3BHYCmaY5mIS85121bD+M0TkMaeMnLlodhGO/muyGNw5gMvdbWqxyOEFO6O53UKwQ6P92Oh1NrhQUJdEpxnqdxnJWApGJVJlLTEINonXiYplFV11wc3Ik4xMd3H076ztTN2np7vdbLutXLWgJzCilEueXt5Xretq15IyYRyrmspTkurbasLW9ZSxvH4ZvvQppDl2a6+fPTE0sYx+N4mB8/fFTT7775zrS8vjxfLpeSq7tv69pxSUxsWruQtNR8vV6RKKZYm72JgLGfbg59smFvayMA0a4xB/fuOTNKKrVgIBIBZkAchjGEgCQhDsxEzIFDKXW5Xg+Hw/F4CBLHFErO//gPf3X/eEoyHNOd1o7XNGumqrUVNIOEWt0BmhngdrteQwyANsSYwlgMSj4XvTl4CuE4jsOUGKXUfF6ua1UiAYReUGata16rKZqTmxNI4CjCFEAgDeNxPLibI5ZaRCSmBEgiUSRAJ3iSpBDXuJWtAnit6qburaezaNZa61TaoM1U+0zWENM0DMM4AEDechCxWoWDG6JwqXVdllJz16mqNmT6KuYbYxIkIQoMpYZWWycJeWvbetWmCJhLdUDVtvs3xOBu67aEcA0hurlIOB7vai3aCoCptpJLd9cC8yGOgQNxEBYkqt3g3lrVMqRxGmdCEmYETuPYddWA5GgaOAMhtN4E6oBY3CcBDdwJPYTgYK1Zl8D1qj8xIu+9NGt6vd6+++b9D6f5Tz///PTyxUBM8Te/+v63f/nDcnvdtnPZcsmZOc4TL/laTcvtJrWFOIhESYlIaqsvr8/jOBm4doGJ6cv5fFsXIqqlmiExqTsLobnqKkzudl0ut9sF+z0vodas1vVUO8yu1uxqzCItsgSRQYZhBOJStlrbst7A1M16S+B6vdSymhuvNQ7d5QoBiTk0Q9UNaqun2yCRzcC0tpprBffTNE3TUFqJHKaY1lq8lf/xn//l4yl9enr9+fPzf/m7f/j506d1XbW7WiB413+BY5d5dvOsZlVbLcs3H9796lffPb1eFq2vL5fzZSnavq3v1WpAfjg9MoWclwpm1kqpQ0pbKfM4zvOBGWrLt+W23tZxHIcUHu4OaHaYxpSG4+l+qYXOz7m2p/MFmU/zPI+Dmrm1dcvDfAoxlVJuy/WatyDCRDHGUSIQg8Oy3uoOTAcAiDGpetM1V+3zuj2zUdUkIaaIO4JcD/NU85q3LYdBHKc0CrKBr3lzxKaa84bo4zSkFEMMW6tLyeV6mYcpxTiGFEOaxmFIkRDBkRHGGBLRKDEgWzfKMwMzJgyBY4gpTmmIJHGgMwIsixrAPMTj3DEhcW3V3Uqty7blnB0ICMdx2LayLLct59oKEqc4HY938+EhhqHqNqaEgEVffK1Z28v1Nabwervctq1umYkRUMEMgQg7cLuV8lKrmyLTy8vrt/PhMJ/cPaYU0lBydTurVkQ4HA73D+/yeitbHsfJ7/T16eV6uVRtvTFtar2Pnbd8Nbe9f46Eb1CEt7Zwny3p7U+RPqjLbo4MEmWMKbEgoYJT4JgGZOn88OZGErpnwLt3H37++dPz63MY0jhNIci2bi/PryQG1N49fKha121blvV6W7Q6ILZW+l3kvlMrYhKoZm4SaVkXc4wxvXt4p65u7TQdHk7HMY21tNfl+rpcL7fVDIhQXVNMFIKD1VanEMmwegNAV2tazHAc5xQHINxabqZ9nBuZW6tEDIAsMgxzU2GJK93KVqvrbV2u1wuiE6Cq11aEeRiG1Fqp5botgChMw5hiDO7QahMRAyBiBGIkRlBr1/VCzOh94NahQWCOMfamSwwyDAIwugNhqKXWmktZc85Esm1bVwyp1cPhgRNfl1dhvtwwpREByUGCSBhdg9bclEvZcBdWcYyjm0kI/b7PJTtA1k1dH6fH4+GE7sR9yBKrKQJKIELWfudVfZPhY9ciYqdoMJl5yQUIBAkQiZp6F6oBEag5ETLhlus/+c1f/F//p//hb//0D+rw/uG79w8fHh/ezSnn5fW23pZl1WoANAxJXd215K3WMsQYowA4MeVtvV1vrbYugoscWutWlVmbadVSjWUnUoQUIARtgAjrumzb5o7EF0AihC3f1JyREdDcaslNLexjNCOTyLoVEc5106ZaKoKCYRojIAbm6qCqTTc1CFEkxBiicGqgSy1grSzLfApjCgjmoLW2xJwkNLdzWcv5KeecrbVS7qbj3TwI2cNh/vx6/tPPP4uTMKq5geJ/I+kUwSDSFSMiHGJ8d3/3F9/9EMJnQtJmt7b99PyFCE7TZAFLbVvZalMEK2VzMGQ8zcd3pzswS1OqxmtejofpdrlJkCnFcUhCNE6nw3zPrcyH13y5bNV+fn69rcvxMDPB6XB4ePwQ0myOdLutZbtdzkw8jiMSR0YBMTetbbne3C2EoOpElNIwmYORtgoApbXOtkOkPuSsFMDULQvx3Xxs5tBiZBHwWym3vOWcu6z+7ng8jON8mJElDcMvz89bLmrqoMyMhMSCSEHCVjYA1ZYNcck3KFsfpHRCBjjO03i8S8NhHg8ikFPw05TXFUfJKDGEIfKYEouIA0FWK5flerttEoZxnBzotq7ny620er1d120NIb17fLjfbtN4YEY3ndJoDxaGtCxZiHLODBSQKCURLrUqaLWGrVWw7s0XY2DEaRgQfFuWYZzGaXIHbS3D2orVvK3rrZbi2sb5kPM2TbOW8vj4uK7rWnIzRfAuclLF2orW5oDNzN6Yr/0qcLcu/mHGWp0IhamDGpyAhHvfkhHYkTmEGKZhdGZzDzG64/Pr68PDAwKP0/zNd99f/uavr9fLu8e7x3fvfvnxJ2sWhCNHgdCK1aru+7i0uhuwt7zlqu6lthBFhMc0nk7HNAZmbObH8TilkcFzXol5SINwaEREgUSYXVs1gpSmu9M9AyLYwY8CXrYlbxUcSq6lVWV8fP/heP9QSoHLs4Nfrlc0CDFJ3JhlHOYIUwhJONZqUZIJirgjKHhZcy+fbLkej8kA3KEPfCm60y5FAjcmGtLgsKl52KXZRuhDTEQYOSKAu43TOI2jE+Rac92izJ21xcSq2GJbN1BrpZo5EiEzEYfj4XA8TKWsAxMxBLSA1tv07tpnyU241iLcRYKhmbXdSSaYtbVsua6lttw2DuwAgQO9KZuIKbggYRe3InMlJiG15uZORkhE3plRA0/X22ZuYH16rXu7OhIi72I9Iuha2OPpEMh+86uPD6eHD3cfxzStNS+X51bbsuZl2QAYrMaU5vmY67bmnGI8HQ+HhweSmCRseW21kOHGNwFMk2DnfqvVWsBhuRZAPN4d0zC0pjJTjDHnTQ2Q2BzPt6WqudbL9Vm1jcNhnk7uqE0R3K0ggKmHkGTbFgUjN3S3VpblSiIhJfQeTmd1BwRkJWdmJkAitGY1V3R/uVwO84GBUghN1ZsGFhHOpd2WZVtvy3JzsMPh8Hy9pjQIUwg8HkYKAbRLx5orEgtA6cT3zhHr6O8+Fvh4Or0/3eVSSilDik2VAB6OxyCsAJfruWljonXb1FQEhfn7Dx9OY8olr6168/cPj2QowNe8SRrjMLiX3JZlvTqHMUzZt9YQGZ+vy8v19f5wfDjdx/EgcSrVHAwXkTR4bVrKbctXWlgCIHz6/On8egkS5mlKMSIyMiHJOM21ZEQf4tgnB9ft1poBUGCLQiVXq5upzVEgShAOSI74uizX22KAY2B2A621lMNpimGMcWg7yVhxryRQVSOsqtVat9louSyluYOnNE5pSikgOALM4xCFkGogqIw0xEAQyQPjkBJy3LVnMeCGtVRAH6Z0dzrW2i7rpoREUTgZbJflKoLq9bp86UfEEGIUeX8/1aktZXs5X8A8hSgxdhMidCRc3SnFIYYowtMwDVFy3rTpy9PrsuXTw8PxeH8YxiCBwNe2Xl5ea17+9q//44fvvhWSIY0LXx4fHp9fnq/rrTatOTOxGbmqmefWFdjQzDsT5s1JHBBBRAi5XwwiFIIQs7lK5BgCIZgbMgcJwh1uQdM4TuPh7nj/crv8aSsPD+9PDzHG+PG772vNZj6PwzKn7i6Ts67blsStloA8xmSyjwXUwmaurkDkgKo6vzu8f//x4e6BGG7r1UoD91LbspUlLzEmQlF11YpqCCCB5+l4mI/DODFzLaW2qnnJTd3RVbPmnDOdhrv374ZheHr5jAz3D4+vz09/+tOfWMI0jEJxGcrxXk0diay3xICReJ7vamvmas1yqWkaj4dThyjkvA0pFW3CUmoFA2ImJmJ0Cw5IgRGABDnQjAN3FAcCEBznwzhOuebr7aKtgtcDHEKMIY7BsdWCrrf1xuzbskYZAosEGeNQakkh3s2TtsIiIYoBEQuJdLcirxKiNEvU2W6q7hnAu0CvWUE0IhOmGNM4DiGwmxlUcEAP7gAOqhXBTT0Jo2LrtHYk8wbuzRQlHAKdJRBRUwVi0wpgxAIAQG7g/WF41SGEMYVslZDEKOf89PxUrAaSIGOUcaNtq2uIA8d4Op3Mcmtbq2Xdrke4fzjdm7X7u/vzy2tebtfzErANMSKJkBCitXbe8m0pAJhrubs/DWPKhakjrYBUoapN04REr5fb6/kK4K2BcBzTgEQIwEwMXLbN1ARZ2Jvlpq3msi3byszTeGzVnp+fl9sFmfvgrSOuNQuRJFqWLS8ZEJ/xMo0HMKtNb9tq7t1FIOd8WZfLcsnbdhqnWq20rVUbhzEMIXAgJOI+LwXMQiwNm7u7OTKyhFbdQQHQDarakrdm1lRvt4WFhhgATDiWZenQxZfr5Q+fPkXh7969Y6T1diVdOcqWi1b/8nRDxIe7+w8fv0EWcifU8+38cv4iYb6eX2/rYugnnIhYrX368uROP8x3hJ4iA0335TFQup5fr8v59Xy5bVuffsi53JY1xqFUncZhUO0jOUMMx8PMQuZ2Xs5EvC2LO4iECjUTtLzVbam1qLnEOM/TNI/vpwMS563++OWJIbnbWrbibkTH4+Pp7r5fx3m7aqtbqV2it6yrttznDFwdBfc0f5ynYRoClbbqcpvH1VIwLXnbaimmBu4hhMhILEjigGY79jFICGlIKYF7NwAAwBjEx1HJ13VtzdfrurAquxmMkg7TdBxxmqaQYi41l9KaWVUkFuZ5nMyBKZ3mU0rDVnIuOY5padas3N+fDvfvH95/c/fwOM+zsCBojOHy+kQIavrXf/Wf7o/3tbZt2w7D8N//d//dtuV1/aUUMzcWVmtqpuqmZuC1A9x513HvE2G0S+4RXYS5e5sQBGFCcnUSQkdVj4nN4TBNjw+PFGQ+nZxhPNx98/H7NI5N9eM3357PL7fXL+AmgR182VZ/8nXb5mGKLEHiYTog7fzFplZqLa2WWpEAEebjPM/zNB2aZjf/6emX6+2WJBGJoi6Xi5CYNnQDpBDjIR3v5tN8OHKMpZTzeX19fa556VNCIlS1lVYO4Xg3H8G8WEljfH/3ITL8+OPvvzxdbtN4TKfHYbjcXi+vFwSSiKYa48gUiGQcDqqtUpaQ5nmaxwkQS8vdCkpVS6mupmJRAiEg2JhSiomFibC1aQrxdrspYJAIBOOYDvMBSXLOrebaMkAl8mEctoy780cImKXmouZby8JiVddCgJ7izDGZm7oHJHYkJOEgJCzkIraBGBOz1tZc3dX3cTxFhCEliYGqjNM8T1MIoZZSWyFEb+CABFTLZt4QcZQxBlazDht/m+cBCXw8pBhFHRwwt/L9uwc0//0vLzu3zhVJiMjJmRjAHD1JVPfPT19++vxTTOH9w4cUR+YkLF59nKfH9+9Px3m7PQ9DuNbiKNN4ChJq0Wmc3j+8u4LW7ZJvLyUOcb5jkRAi0nq9XX55ee0t7pBYrWAfVXHrrfthmsZhAjJZLiEOQ0yn4yFJDBI4cYdnCEvV9bbe5Hh3561sdLvd2lK2JW8AGOO1qj1dXvOySEgcAnLhqkvZEKAVvS3LshVirGbx6SUFOV+W27LmWuZhiMgoxMyAVN2dJFBCRjV/vd1GcwEGc0BAQhZBYDDoTI/WbEwJdo6gmbmjfX5+/fJ6WbZMgCFICCxRrnl11xgDCxOTeVMtMsyPx7sphW291OLXraThOKTpui3Pl9dcyz+bZvQ2Dcmaas3Xy3achQmybk+fXpf59O50QvDm9Pp6Q/zp/vFhGiYBvJunQxqF4Mv585fr6/n1UnNzBFNF5mK9P0ISIiKgG1OY59Hdvrx8add6nE5DmGop+bZutdRWGLH3ZUptw+ghTU5RotzfnR6uly+vLxICcABkdVu2hVhO8jBNd+gmqMui4xDcSZi1Wd60k63csVVbcx0TR04pJQnuEh2g1u1286b5tq6lWGtNEAQtjLF/+FpqqTW3Ckjz4WTgbp63zcGHIXJBM787Hu/vTsu6rsttWW9rzas3JjGBXOtW6r3CFIcpjS90vZZb83WwlCQYKQ3xNJ0+nN7HlJ5vr77gfHf/4YffnO7fffj43cPD3TAOjuRuYFa2tWwS0uBmP/zq1/Cn3/3888+ttXVdjvP4T//iL1ott3+zPNdrK9Wgqu0zdIBgb3O82KUg0NkvfRwNe9UnhMDMZh6II0ufiSKWkltKMaYQU/r+u+/ePT5ellu2No4HIULq2iIdU+L7+9cvn0prQ0ophHVdm7bXyznnfHc4TuMYY+peY332panWVvvkBAnd3d/HEGrdtrJdl9vaCkQJMU5pBoG2bW3rPFqJaRiHWdLQmi3rDcu2LLfb7XVZX2urkQOCI3Jt9VZWLuvtdpsePnz7zbe1rsfpGCB//PD46fn32/n8/T/5+PHd6ZeXXwBYzW+vK3Mwc+GESMJxHA7ubupjSoSgYGte3a21BnvxuzGQNTVtTJRiiiEkHpCQDELXcBPEIIfjKUQZhrRtOQS+O06lIrjPU3Sv4GzakCKwSIqeV46M6OYNEIqiGG4tYKVt24SFO/G6ZGrKzCKMAKptb+yDl7ptZQE0ACeiFCMy1abzdDwc7u9P77BZrZWAwUy9NVUvfbxPWci0+8tp55t2IoCazWP4za+//f0f/mSO7uig//f/y788vzz//vO/QQj0JLOdwgABAABJREFUNl5JgAowTfNvf/Pbb98dkoR1y59++WVZltrS+wfoPae7u4fjw31Mo7V6Ob+Ql8NhDjKdjh9Smlurr68vy3JjxmkcsmV3LetVEY3jMIy1Nn65OJghlZrPl9eDTcyMjEysqkh8OB5TGMzr4Xg3pilJZMQoHY2Dhsgi0A3S8ybzlISnS2AUat6qNlUrJd/ydlluWlowi4RbzsRy25ZcSh1KDLG25tWI2wufU4i1tZxzLaW1ZloJZJJQOSrXQGKIjNy0LCWX1hAghNDJycBEyFas5yaqlWmfHSQmgwaqz6/nP/z0YwgyRhEa39093D3cbXU1VZFgZqb64f6eDIQlxYhgtaznUm7Fvh0fUkyuXmt9uZx/+vLpfPnyeJwPU3g9vwLMpWyB+W6er1t+ulxMbYjSar1KvuT8dHn95t2Hw+EO0AnhcBjfPd6/nl+2NQqHdV379CN3uA+AuzEzk5jqcrs1a9u2RRE0KHlDw1br6/m1lBJExmGIacjlerldx3nWXsNjOh2nH777eDjc3U0HZi+tsogwumrd1hjFrLpXrRrTnGJywXVhJHIHNWstl9LA6Xw5C7twFA4OTOglL6VVbftoSTVFAXc2NYDWtG3bWloBh5RS1ZZzJuQQZErJki3bRu6HYTwOwzZP52V8ur143r7auJ6XWy768f5RRB7uH6bjodZCSMd5RoRmFjEOQWLkIbMc58fH+29++M233/0qhKEL5EJgRFS3yCSMTPD6+jKNYwrp7nja8nq9vP788881X0trd/en25ZVTU3ddrI/szgAmTv411O+Xwx9yNbdWTiEwEzeyVwkbsZMvb8yDsM0z8fT8XCcD/O0lPrl6enX336ft+12u5yObGrmLcV0d3c/TtPmTRBjiFvZlnW9rUtgGYehY/q3vOVcAfo0Lw/DEEOPxoQAwZwQjtMhDMkBpjgGDMBYt6VuGbyBtW69U7acVdVBJHRyHBLUVrUpgROGWgsR5bo93z5/fP/+m4f3a1kCpzE+/tPf/jPDoZXym2+/W9dzYvr4zffP1/P681JKQUQLhi5ErKoilHUzLYbeWmNXdzsOU/PdgwIda61VKxvEITSr1/WCCLnkZb1tJXMIJBSjhBgQMQSJMUw+TWMkxhgG4cQUiJg4qoNCPPhklhCgaXuDWkMpC7EXK8TsAFnrsm651BhCEE4Sg3CMwYzcDRkdvWntBqvCRCzTGNIwj8NxitOmi5oRiVnd8mLaQXYqgcw0t9Ws1trcocsKENHUTofjw+lOmGv1WsrHh/v/4z/7zX/96y0xdcK276OgQEjH+XR/vB+kY69xHIZ5nFqzVmqrpSkN41Dd8rYqlSGFeUj3pw/tgMM45ZLX5ayqMQ611ApgjFraptugSc2bQQhhPszHWsBhnmZ3W3NuZrXVaZrV7P7uMYQQU1TFeT7wzENI1pqbNW3WJ0tZuvgCwEVbRYcYQgvh/ngcRWqrrSoz6N1dq62Uqqq1ZGY1VWQMKYiEkGS53kDb69mHFM39eDzm+nzJq5xxigMShUB309hLq3nNa86rV9w0Z93FGAjEZG+uWYSo/QyVwGo9XDKDUsttXe74kCQSGRCNKR2nQVWB6Xq7XZZliMNf/PDr27JcyjJEzHm5Lq25jMN8Nz88nF4N/O50alpzzWoD8zQN85p5zRsjvDs9EMrlttZa8y1rbcVBVgpk5/Plm/ff3N/fCzGof7h75L/Af+Q/vZ4vgUnVADDGYRqGKOza1prBQJjMm5OP0/Q436u1dV1M7bouW83aWlehHU+nlNLr9VJKLjWXSt7alMJvf/XDNN6TI5Dnsjn4lIaYuLVtXWzLl1azA1tTSkSSYhjVXohAQkBHbFqsbGVdNhoiAhAJ1LoiWi6OPDGZ6lLzymMwE3EteWvNW81mltKYmKAhAEQWCYEcqtfIcr3dHDCN4+l0f7q7P16PX16elpwJgajzHiMyJUmn012I0RxqLZEFGW/bej0vWy6X662UbSkLp3D3/sPr+QncU5of3n1IIbRWCf18/vL5px/Pz0/L9VzL4zTNbsDExLLmspbBnE73D7fb5s2XnN1bN10RkaYNESUEZoIdq7CDYvoMdkxRAns35OqVCAmE4N5SDEEoCqfIEuU0z6cD//Hzl9fDbR7i+eWZWWIaTVtefZoPwzi2skBt5ETIKSVt1prebgsAtNa2bS0l59r68E5to5CkYWitDQmEBZliSGzi4FHSNB8QYSVwgNul3NbFzISCOyBHR3InJhERIs61uPr7u7uPH947MCB6qKdEwhaGkZNoU7Lpm/e/iiG6qqD819efJA5DHEU2AGqttNaGsaYwEyAzbCW711KuULiU2rRMw4QcAzN1LKv5VjYbQmASkbhbV3hMhJgUmro3LWtZgbFbUscUEUckF5YQksgATsydGaVEKuxNa0fnOrgQC5K5umdAJ3ICb1ZLzbVVJjCtAI4Ug1NrYKrNVKIMkrDDodQBMYY0hmmMo5vmvG51Y7BS1pfza+AUpVsAhFK3UkrebsuyAdAb0QWY6Xxd/upv/x6YtZRm+vHhcUjCETswX4Sbupt5b42T//zLTxeq5mZA27auOXe8TS65uYZ4Z9Y7seoWCcd5Stfb9ceffkrjcJindw8fAYxFzGomVWFAAvZWS86GiPM8fkNSck0hOrp6K7XYRYlpGKYYY0oxCBPBAMkVuomItupaFZSCkAjaDqiXXz79kubRzMCcOIbkxJKCBibUlmtdcsilNtXW7DhPwHSc74ZhjOPwGuO65KZ1yeuUpvvjsdXyy8vTbbkehukwTSEIgJNrq9ndI3MtLasVrQQYQzQ3NGq5dbgMAiJQXvUwY4iybRsLI8I8jw/3pzGICF2v27L9xAKPD/eH6aCtBQYD39ZVggMLmBKFYXwgKSkkLQXEf/jVD3fL6Tgf//jTP6YgHx/ev7t/vJvznz49/fj5iThEGe6nk5Asy5Jb3QDZdFlXAKtV81qu58vx7mEcJjB5vH8gpj/+6aen19cQUpIoLGYqQrW11+trzoWQWPhwnO/CMM6H8/KctbghBQkxMPEwj+Px+Pj+G3Dlzz/fbhdrmzesmnOrh2lOxEBUWhGhnLM2JUcCf72+lJoDMbFU09rqlIZxPI7TddsWEZrCSDw4uDCZtnW9MbFXcKiIgjwEhty2XLObNuVawdxyLlvJWgsSM4GBqwFLpCBb3qxs7lqbK9itbWhhZBKKQ2rzlA2gqR7mw5gGAiKE0pqv6zAexjQ6IIOr1cuany/n5bat68qMtZZzWd99+/2H+4/TNA/zTK7n89Ws/P53f/uf//2/f/3ylGIw85eX5+PxmIZRVxvHuazlw4fvvvn48dMvvwwh/ZfyN1sriASA1pFIToEDEDY1AaIdz7dj6YhwjDFRqKUwYsDAJMhE7mrOIgCoqjlvy+X1y9Onw/G+5fXzLz8df/PbnMvTl1+meTZXIkH3mjd0r96aKhJFDNWbur5cX5+vr4G4aiulNGtMHIm3uplbSsPxcDcMOQRhYQLS0qrXw2QhhDgMrfn1stTWmllrdanZ1JoaSYohzuOYS922sm3l/jD/8N2HX33/wzAcm6nW2zAGBkMn4YjYQEGCEUGKI4AgqyGYY3fBBAACJMMUMAghBDUpUAns9fK6rpu7EfgwMoCHYRDiwBKjmFdCDJKYiQlCiMxUSxsPt6UU6qYFhMKBEF1bAQrdOIgjc2JiM62tIRFY972BLs8VkhQGYc5lrZoDq0MzrwSQhmEMozBTECRMMaBr1VpNAXwaDoGjmp5vr6/LZZDh4BDSyOtqoEu+ac0cuJSt5s3YzBVx8FvrHEdDyK0h+leclDBfrreqMTcrtaLBfDhMY5pSDETm0ombaB4Qm6MQ3M5fIHEIg2LNWubD9P7+w7t3D9t2nYJ8+81HUztfz6XUaZqdSVVfnp7+5h/+/lc//DrFyYACcwrjw+ljCanVKyFmtfP1dWtddoopCryhycig1Opi67KOw5Gojw+jGrizgxXrTNVi4CnNIUQkBG/ldt5akcs1VyRVHWIigNLcm7n7dd1uOWuvqnZtPhExHU+nh9PDOM73ejrNx9uyvry+XK+XNAz3aUgpriW/XK63snUWnVlTaBJjSkmChJSuebvcXnoa61pczbX7RtFhnp+fz7nWkksI3XQUhen9w+mbd/da6+Vy/uXpadm2rdY4jKfjg6m+Xs61lVyyuw7DeBznwzRttfz4+SfzOkQp63mej9P9OxGeh5ivcL1dwM1Na71er08NJIYkIoY+pChMCDQBDCHmXav/dMvltJS7u4cxhSB+mg/64WMpao4xpeM8g8Oy3MyzmRVTtTJSPMzzcZp4CAlGOJ+FZZ6ndw+PKQ0xhbv7x7vTO22boxK6udWazdq6roxBQLLmrS4pDu6ylQa4NG3NsVR3woG5Nf309OX93UOK8f50ty6vVnIM4f00I1OrW2ullKq6SBQgEh4jQSfdf/vttyHI6/PL83UVaohUSi0lD/PheH9KcVKnjs/66cff/XL+LIwhDCOmarXVbKZOVrVd1/VyuznA8Xi6u7uruWzb6gBF7Zenp+l4uL97GNJYSlZVAG9a3Fsp5qC/+vDrBNFaJSF3vV6vW97+83/49//pf/v/lbUwCgKOw/DLL5/N/TAfYhweHh7X2/Lp559iIES9uz+cTtP1djWxpjtHvtOZetWOd6b/1wYABpFhGMCBETqhSIQocCBWE2YSxhh5HAYifn5+eb0st2Ubx2m5LSzcSn3OX9QqMdZt05rdfRgGDZpzLrm21hBxq3lZ1yTxDbfm3H10zc291bpt2c2KMCIMgctWVRzJtLbj6Z6Ymum2FWsWJWrZqtnPL19qbd9//Jjrmmu73JbHu7vv3j3OQxToEsxIAzfN23JjuaVxjnHUpnm7OUJII3OaT6fauBukERMihBCmYRxTCiESqvs4hABNa6zLlgGoNXNtJEwEMcYYJHoA7COQpmbMIcQhhmEcJY7bkm95ywjASGqWWy21LGWrRinEmGZ33HJpNQNhd8NUbebqYIQcQ4gxmhp1tq6gExRQNWuqx3gYhwEYiYncaqlr2ZqbMCOzIS1l+/HzL+frZZBwX7JwhAEcrGklAFNz9DgMgoGYa1MFZ0J3UnXfeegdErybA+eiWy6ltiCROKRpDsNgOwbSEZAQmCnXGgPOY+i2nsLh7v7x/eO79/fvzJrZ+vB493B/V0oz03ifxmG6LufPn375/R//8bYu18t5ns93p5MSltLicHAzQBiSxKbZHLfqALVkwMbBtlwZiREJMMaYa62tdl5NrVW1a6EbETatqjVKmEIUToa+rVtTdXIBZGuQ0jyOI4A78u315Xy9fn5+fj2/muphnIgZiIyotJq33MbC0zSO02GY120LTCmGNIzff/v9+2VBkp8/fcqlAGF2Rfdcqud8R3S6O3nZqGzCJExNWzfu7oPURDgfDrdl27aSc2mNOlIfALE1q+V8uV2u221rpcLttj09v9zNhyByW8vf/cPfhxDe39+LGwlr227L7XK9nm8vr3dnFihlQeLHx8f746lu69Pr63/93T/cH+YYBUnr1r48f0lpWPLK5ojUAIRDYNHaBOVWs24bhXX7XINQinxIcUjD48O7Ly8v5rhuWxRJKam1wzhNaXTyOMi7x9M4RHL/cPeI1ZblNoT07t37+8cHEQRgYiAKH96/P87j7Xyu2+puqmXLS2Su3iRwiANBMtPz7ZxrBhA1LK1upSLj8/V8W5YfPnwTQ5jHaXVzV+5xuDAib1s1g247W20DlOkQH073p8OxqT0/v5yvVyFKaVC38Tg9vnt3d3d/mE+GhBQEe//etnU5DhM4vt5utdZaMoAbqLmv29paG2KIjId5Ot0fx+kYZHw+v7wsL7yg8P3tttam6hoi1epTGn/zF7+a57u//pu/+vn8y//4L/7nAxx+/vTj7/7+7/76P/xHMp+HqTXTprVVDvL88uqw97Lmw+H5+XP9XYlBlmUNIiFwq0SEjsjM4zAoeG3VcPf7VVWk3ebxMM/CbK32XmKILIHjkE7zYRpijPL58+dfff/dMM+AlIY5xPSbv7y7u393vZzVWopJS625lHwt20oAYxznabqsz61Bs64/QnMY0hgk1ta81XFIhCwsCM4AMcYpjcTk3rRW94AOCPTyem7bs/zyy7uHxyDh1uz1cpMQ0DznElKUwOjeXem/+fDx8TgPDJfrNaV0n9JpniTw5Wq1lsv1M0lM4wxQnTi3hnm9P52+++6fXa5XMI07BJ6DoDAQku0OtwlhrLVtRdOoOWcFB4QUQhRJMXT+Zhdc3vRatW5NqTKwpBiHcQpRVllvy7Js2dFzyctyXfIyj8kUkDfpbi1WEPdZenDbYenCplpKbq2VvDmYM0Qe0H3NJTcduThGkcCItdStltxqU83m5tianZfL0+tTXjJNx7zVWpsnUNNaKwOoajMfhukYD2p2XTdJyZpW65aDzszdtbyjpa+XGwUBICEZwrBtzYzXrdam5i2E5K7dDNtMx+PIc3SzkMZpPHz8+PHd/UPNeVmvp9PxMM2dnJxSmucDGDx9+vn3v/v7l6cvQ5pM9Xp5vrxOYPp6uSgSaEvigCgip8PD8SRq9XY7b2VbckHiw3xi4LItS1mra/Hq2tb1UlrtfXsi8lYdoVibx2lu2lyv221bLzlvy7JKDDxN8zQfpmkCcInBDF7WVUlyVSFyJwBC4tp0Weu25T52PQ2HIJEImOl0OszT4TjPD6f7w3z808O7l9fX1+vl5XJWaIZWVde8ldYc0dSEqbUKACxszWnn18Ju98FNVd8MwZ0Iamuv58vT+XK5rtd1m9MYQ3x5fvkD4jzP43QcpuPzy9MYhyTxtp5LpevtNoSI0+lyvrwcXsq6IJiQ3z9+r9U/Pz29LuvD8W4e59Nc1vW8LMtai0T+5sOHl/P509OXMQ6CfNu2ZkaATGitKrbn10vJ2xjD+3cfDvPdNP//qfqPpsmybD0TW2tteaTLT4RMUQK4ggDa2khjDzjrf0zjmFMa2c3GbTSAe29VZVVmZEbEJ1wcufXeHHgAZvQ/4OZn4Pvstd73eRriLMdonEMAxrgUSjFe11JWDHOalqktpdUaCAczMcYQEmFIKSLcHO5FS1lJJjizq1qXwZ1eATzb8Fp3SjeM8ZzAOrtYb+y8afeyrlzwyzJjRil5KnGcrn3XcMGFvHknbpJ23h93XIgUM+dIjPmYhayqupGCWW/P18vlei6QuBRCia5q27a+Oz5orWNyPiWt6pxB6urHH/4wjoN3gTEWORvOV2IMETnRpm1zCs4ZSQjJBQ91rZumrupN03dbu12XaZqGFEFXWkpBUPbb7ePxsdL6P//5X/7pL3/+H5r/EQs6Z4fzq5vnN2/eLMs8DddSimQiQ64rjcBSTKRVSamqGmtd8GG36RjXw2g4F4wHxgj+u92X0WohhHDzTSLeUkAoheCMlVsLlDFGTAhOjJRSx7tjq5VSwhhTN837jz98/vK1aZqm6/eHOy6rEL1ZlxtC1a5mnIYcYkmlrXUqDL85vqPxjgt5q3pJoRdnWrkBzNb7kFKJqVK6rhqtq5TialaEYnz0Piyzs84F47kQzvn9ZsM58zGNdmWAldLf371nkt9ICcQ4J2QISivOsSCEYOd1kLoVooHghvkiVK/r5hv0GCiVpHR9X/VV/RrMmkqY1zl6LxgJzhijXEopGQqEnAuxqukSIZOC5f+mUCjgQmD5ZugkQOBCZEi5JB/MzQsmhSTk4abnLHld19Us4zL5HHJOhByMEwxyvjkK/e3/RXDBOUeEeJtXZHe7oGTI0Ue7Dk21DSEat9aEgmNKMqdvbwiQyzIvLiVpbQH0ySFhpRQnLhiXQqWcV2uMs5QLQI4pSqliKiFFhqiEcuCDM4tzzidEukWJboztxRqJugAQcSIWopdVZVxiTGHmjERMmb4lzNhusz/uj8Swa7Zd3W03G8Fw8kYKXgBCiOuy3HAU1rvn19Pz6XS+Dj6Eu0OrpcjRnV6+aqWXcRjWRSvd1Bq+UdL44e5esBpK0bqufIwFD/v7kmAYTtyMNvhaacTivVnNyoiHGEouOUafIvDCGJ7HU0rkk4/eEGVkt+bZzUYjRS5ZF82PwpU0zEtdtZqLuqqklDGXmOLFX4dlSjk6Z+uqk1zG6DKUrmu7tgIC0nIr91Lp0+Vcv75izjGHVKnZWSWrVEqIkThTWnPOow+c8ZDizWBSCn5zlt4k03BjmxNAsiGu1l+HaTF2WddaqJzzdRoWN98dj23d7w7HxdlxWaWUPpeH4+6odylzwPL55dfXywlLYQB13W02vq3qvm0XM226dtv3XEqlm8Vmk7KoVNc1hPh0eg3WJEbDMoZctNYyi5qrEH1M0YXAOA7zKLja9r2xFiuZRLTLCgUygMtRF9bqalhmklq39Wazdck7b2qmnbNfv84huu1mv91VnHMoCIV2203st9bdUdVTKrXShLBMU0xBcCW4FiQY8Fo3d8c7F+x1loxQMh5zhpgQUNdVyC6FJCTTQgspNvuNVBqItKyV0hkgIwBA9GFd11pV7x4eAItSSuuWGONcVFXHBBWfSzQxIycRo8UMfbeBLc9EvK5TAVZAMcagKE6NFt5bjFFIRhyUYG1T9Zsd5yKm/bwM1pgQMhS4321DMA/H+0rUX18+Zwp3+8Ob/RvGcVmutaQfPrwBLv/Tn/9lOT81Qh3u91KKEDznGgE55ySl1nVdN6eXJ+v8ZrsbrqOUwjnGOceb8ZLRTZGTCBlRgYLfxDAohUgphJi1VIyRkJIzScg3m83bt+8wp5JjXdersbv9fUjZOgMIxppGyLptQoqAmEoe52la15xyySUi1iWXlFOGWHKmkjEzYIoLIrw7Ht8ejq/X5/npq/OeCsp0gwrfiP7oU1yDTzHNbvEhYC7BhpJLSanWTaVVWC0T4u7Nw/322LWNi9Z567xLbj1s+rbtOEMsya8LIIKoBBMx3qiM2bs1ZQTAumpvwIyUXIxe63q/hVJyjmFdppJSgeKDSzkAoZIVA8Ya6LrWmDVYk1Iy1i/GExe6qm4jjgKJOKtl7V0oUErJwRsohSFJpWooCXKIIc7JheBTkMhWtCmRFKXklHKwbkkpKaH3/ZYzVSAnF4wzSMQFx4Ip0zibeTFaRy4YsZKLN8sIyIBYhpRT5kS1UAW8QKakjBmzqwoDyEiI3roSwOWQUnIxSMEBMZZ0Hc4xhVpVwnvv/GLMsE4muFy+Gb7KNxNFull/M6YYPZcsQfr6+pK/2Wyw/Lf9EgA+3r15++b9apau7gTjJTjrQkmhrqob16bkLLRazfr1y2ezmEY1237P+YpYvLMUESAjFMF4pysb0vkyGCkQU921knNG0DZNTIXQVW2ndSO54BLkzK0xVVUjgWQ8JR584ITW+5QhxLjvW0blOp+mceWS910HBYQUPDjLmXRSqEo566GUXb8PPr00TwIBEyBDZEwJxgKrleY8A8Bq3WxjTDnF0DWqalSE7JMTSUgh+77F26AZQTBKOY3zlBMIJt2aRFE7qhjRTQv1343eOYP3MaUEkFOmb2VCSCmn2bhpMYTEOfVtlSG+DmcXnawqqru6JsnUYbe/DKfZrQfZ1lV72O1ma2Zr3t4/OmundbHG2BAWMyOgkrJWGhkVxqqqeacqxrXJzAQ3z9eXyyvmLBgoJTI0qw+xQM559VZVYse7436XSrHGFg5AmREwxtu6lUIt65wpsFIKSy/j67yYzfa+kjUxpqWqpSrBfXl5mszS6ZqAJYC22QqhrvNrpavj7v1m393ff1zn4eXrL58+//z88pwTHLaH4+GQcyIqKVnGsa8PVdsLzgTTMfl1va7WYBIupqt5XaNpulZImUuJKTIQGTJxYpwXoMVamzwS1brSgjEqqqnreleISsmqqjkXWrciNAhFEAeAcRqyd22/75vdpt1pqdZljNYi5RKyQsU5yZsDWZSq1U3VccYAgDO52x1pV7wNxi59o6iUSlUxhl3f/p//7h9mj/fvf4DkNebN3V1b9SQrVdddpSoSu7b1ya/B5lKUqBhJQp5yxpIZ4uvLl5zibrfTgnsussgFgHEg+m8OWyQi4oiJZ4xRCs4ZC97dfDLEhKol56SU3G22Xb8pBbxZpFYh+pLLw5v3v/z6843dFJwlRMkFEBo3EeamalOKxq6xhJh5jMWEEEuJGUosUmIhzBz2+8394Sg12mR+++0l+MRqprRQjGYbBrMIIbumYyS4l+M0ZpMh55S8C7LS+Hj38FB2XIp6s6nrVkjRMl2i83YSvGvqXqi+lDhPr8RIMEmFhRQ8lG330NbbXErwJgTPmQYo63yNOTlvVC21qg7bvQvWO+NSwJIRQHJJREIqziRjLKUsuZ5xmsxkzBqcJxIxp5tptWkbrTTnnDB5b3MuMScIvnDBGK+kynVKKawrD1FYjwx5ijnEWLLLMYZghnU0wW43myrWGrqUIZUiOFNKlUI+hXlap8GswRUSLdciBUyYIMWMxKVQUgiChG0re97lWDKklBHCdrKLsdZ5ty5zU2VkWAr44BEx+eTAXtfVuXXfZsGk8d4FZ4KLJTPiMZWbUgpLIWQlf1PFuRSatjbLdBnmBICYiTFZuGAFCyCD3eHQ1i3kQJCppJwSQFG1ZlxK1DEGYsKHcDq/XF6fEVit61pr7711bjWWcfbm8U1G5FJIXYXxYl2YgnfOHICsXYUkIQVlzLl0lRaciMGmbRRnTtuSs/O+lCA5o4IpZyXF6m3fN5u+t36xbmYMtRScUyi5Uh2f5zGXwjmOJU5m8TEh50yQqmR0BnLOJfuUMCMB1ErWxBPElNG4HEISjDiSFtJb560vIe22O6WqqFRVqZzaTdsjQj2cU06SqXRB7z1lJqVYnc05p5xu6q4bge/WwbtBu277PCg3cW7uu/aoDynFcV3GaamrumnbislGN33bAiTGsKuULEAFFZdFZrsYpmrJ5abbBmNKTNfh2rU9F7Kumn6z3fTbxVjnDAlxbHfI2NcXmpfhnrWYc1s1b6VenFlt6Jqub/vNblspLXi1BOOCZ5w7a8fL1du4q+vD8fh6fpnncyW5rqR1i6y7w/6esTKv42oXHyxBRsbatj/2OymkCz4Mp/3u0Lad98nYFRgJEoxDzHE267DOKWVd19quVS02staaxWiJC6kkY0JXLRNCmEqsEwHbbI510xJBv93XVV1yzLkQIpYMJZUEBUgwCggZs6ooBCDkjAkgZAxDTBkCAEMgxrggpnhNxDjnq1mhAAJwwbu+q2v1jcZofYyJCy4ZA4yjPeUEIXrmV2JS1TVSKbkARuumEGxfbZEY47Gq9dv6uyyazDgDT6xWQrVNC8TfHPYS/kAxY04xhUxZcCqFxcwzChdTjFFI6YK5Xs+MRFVXxriUc4bCueBMBO8ZYzchKBYgRMG5EpIQ+c2tTqSUZJwzzpSUQgiptJQ6KFWfXxazTvP45v2Hvt+E4HNOMYZbvJuYyDlzzu62W+/NZSoZsK1aI4jc0gjqgDEgwVhd6+PdcbvZMMk2tH3Y34+XxaJjirlgnbGXZRy91bkQCsmRCNuuanZdrRqffFN3u81eS+mscdGKut4d79qq4iUGuzgBgiGXtY+xlNRt7nMJABS8N9FyKaWU3vmCxbnVey9lTVhS9DFluGVzeSVUlQl124VcUshKqVsJqpRizMqIp5RTjqUARx5zWaPjvIBZnLeMM2KsqRrFdaJYSvHOBh8yKzecS0EQUnRtS+VOaxVzqVVzulxjAcwpBLeYdVyWfHvhRnDexxJTioITR3Qhn4fJrKbgt01rJWVxfhxGHzNXlW5yqzohGAMSggNBCMXGNYXEtWIp8ALIOBCY4HMqa/Auxewh+lzV7WGrCXfbfkPE0FnVSutXSBlvEqGbww4AicrtLwggldL0G5/TZVpiyooxwCIER4gpReJMiGTdwHnmrChOnAkmBCADJCHkuszDcDHLuswTFMwAs1kWsxbE1dlxGqVUq7VCyaZqurqNOXhrvbUlw2psjLFtOgACKJuu5YTGzgUycUEEnGFG5AyMDyUD40IyxTkTFRNKmbBOy8g5dl3fNB0j9NlzqTlCmZfJO1cQFu9cjj7Fx/sHRsX6lQNHYgGS94GXIokzwqZuVhvmdUXERtd9VzNgOSTnvF0tFmzbOK/Lambj/HYrGSEJgRn6urmahSN6m+U31S0TAu3qbkuA2+CnlMwYfbMgIjLGtVKH/U5LCQQhBALUTAnONpt2v9vXWhLHrq3rSlZKjtfTaMzpL39x1h2PR6Wb4oNAeD1f/vLpZyHFm/s3XdMkACLa74+1S6udGWNKVqpqtFKbund2BUiVbhhiTMGFQExqXTHGEFCreq93XMl0wzC8fTdcBudCv+m3u/46bBott31/y/4DQKW1d6ntN0qrksK+QCVVI0RMcfYOqbCSatUlxYxZfVi1rHMu/fbwx3+jD3d3y7q8e/i4afsMPmVXILtkzGzbdlNXfUqeCa6qmjiWDG3bb7e7AomRQMxmGWP0QlbEIHiHRAVICiXafl3nEBLXFeeVFBUgpJxLKSmECCynONsrlFLLLudYCrR1K1WrVIMMkQGUQgTBrSEEROKcU4F5vVASVdUwht4vUkFOHAqmEHPyTbMJXvoQCqCSnKsKRGsTUYmKMUaaC+mDM+t5ncdol1xypXXXtAAZMwKykNFlACTkrNts6qb+5//0v43XS9911rgYEyAgUUkJETi/aeKREBIhECpGAqFwhkSCkxRMcMaZUFrVdV03tZCVrtR2f5x//WWahrv42DTNNCXvPSIFwIIkuKyq3swLp9J0bVOrebVaNltRNxVfzEJAmle3sObH9x+0rlaz+pyPxzeI4tcvv03rtHrbNr2sVSvYptv2Ta8lT6UtyQumiGTbPfb9TnAkYoR3iISS2s2mr5vkzTpcGFHOIeVsw4wodN05FwUXUqqwRoHchWD9lXPunLXW5oxKyAKZC4EJYkyCAWOy0ZJJkQou15GIxZSiDyGalLMxBhEY4ze7PREjxgXjWMA6Rx6byt2IXjffp/ehFC+kJC4gpdtgXHC53RylrLkSu/64GS6ffv2kEGXXfvrqOZNABTIRkPHGRwclxpRjytO0rqshQkbMLbZNVQw+ODuvSyLK0R0qLpuGcoKcCxUpK10L5rCsOfq4adq+YbWuCSnm7HIgYpvNvqsbLSuptEImOZYCMca+6ZSk6fJKgIUIv2mxCyEKwYCzGFNBBGLv79+8f3zbtS2HmW5uz2/2SuTEwLvivNaVEpXikqQg4rlAySVnuFzOf/3rX1II282uqusY0+lyyYhCSMH9ZrPp+77S+vYkg0pQQDCGkgOhVpUSkiGsy2R92u13pcRUwuKW4JPk6gY8YYIwYMpJa660JqwQ8+pcyLjbHDDDpttqqQrkkDyR4Ei0Tqsln6EMy6ybxq0L5tjV9dq2BByJJbtACFJJKsAYERYoKYRgY26rQsRWa3Iu47jkUoZp3m631prLMKSMWldtU692TdF3dQcAxtjgb4rTm6Py/0/TmuLNzP7tmZYCgstN1226NqY0m8UH32/bD/1htStnwCURKyl4zqhr2ujDYu1lnj6/vpSM/5f+UGmWrFmcGWYzG8u9V/ICOT/s98651ZqmOSzWpOBDARJ82+9r1cRgE2QplWA851gAC9GtKGudIUWVUkyIDIUTQ8S21nY1QlS6qjebukDWquKMT9N4OT/HmKq67ZRyzl5en5bhklWgulJCSCwZgADn6aJ0U0lxE89Kqbr+cISiOv316dem39zdP8bsjZlP1+dhGogxqSrOPXERvCHOK6lzyikmYCSYuhln66YLMiCiD5EgCSUBcowgdNO2W+91iB6A33yWjHHBJRIxUohYIJl1xYRISMSlqqXSQgokZFwCYE7BuTWmIIW6KXeFlG3ZStFgKsu63MTPt9Ui5lTJRhCf/IuzPgQVcxaVyhkgmSiFbGpEHOdxHi6UkTMCIAI0xnhrkIsb1hiQEwnOWNM0fdfP18uf5qVIaJomxBR9DCnmnAlJcF4KMESGxIglTDc1423syDknzjgXSspN27VtWwCQMcbYdrt/ev46ToPznjEOACEEIiQmiZNUqm03y3QxzgpWccS+raVQBdNp9M/nV63092/3tdKIaVyGYR6NN23Vb9qNZChYiQVFVQcbrDO11ofNgUvJGUFJwfucUwLY7Y5V1czz2dq5rmTbdiCIc1GAAUlVt0TgzJpy7JUGZDkjcV21GyzZmIlIcCYy5FKyc877KHgOmEJ2leZEPBRPgld1TZy0rtfFBuOx5Fs9NwMGZ0LyMYaqqpVSMQVCVExiLD56k0LJUWmV4W41U8GYSw7RpwxMSCglx4icQylASEBaaC65rur3VcMZJWtzjMM0xpwLlK5qJeMhRRNM8IYz5Cwi53ePR6n4Zbq879/2defWWde1auvzOGTCze7QtV32lnEBBIprJAKMCEkC5ZSVaCvZEuc+RSJikqlKa66IWEoBfCrJu+gYFC2k4AQpM2IRMd/iiQClFCVlSPEW7ZVK3m97Sq6plWCMGEeE4B2WpKQWpHb7Xcl5WY0P2QknokRkXEjOpffOWltKAiicsapqL5eTNZaEaOtacB5T2m63Uqplnp+GIUI5bDaVlin6X379bV3n8/l1XSl4D6Qq23BOWlWAtKQ5BV8IhRBE2DVNKdA0rRCilBScR8Vv6lolNGCRQjKCAlUuwNtuE2Iy3rkQBGeasUYqDKmSmhFLMdvFpugboRqtASAmv5hlNX5Z12GxnIBR1oqnVKbFAJALcXWuQAk+YC7j9SXHNjrPJCLLIdpxGmOmfNNVQ4kpMca+ya/zt+fOvjVsMxErkCTnpaR5nSazgsBjV3388buS0zyezTxfhlPJWapbmkMqqdfV1qp5PDy+v3u7muXzl6+fX59TjL9//Nj3Tds0kovNpi8Yx+tY1fs1+OfPPytOXDUPDx8552YddK2llExwSJAyaKURgAAFE5WuuRDEGeQspYScC2bV1KrqGOMxQsSCRZREWlZ9v8kpCimlahgX1szjfFnCahdXETVKc64i4Gm6wHjZd0cpNUAELokxH7y3hmEpJazLlCEClabtpK4ZcC50ZjxBIQCGxFkVkrV2TMmB7pSshJTEWh+8ta5Ey+Ut+BwAC0EWQtdcphR9cD6G6KySteAVZIgl+GCCT1JWld4g45wLLmXKcTUjI+JcEZM5R8ZISimEhAKYi2CyEjWhSsXnXLz3CBBSyCkxBO9djIEhU0oZZ4dprDNjCFic0ocMuUBJOZWSINOymhRjqxskDAkgeSg5pyJ0paouQiypMC7evv94vZy//PapUip37ThNycYCNzs5cV4YEhGCByGEkJIRFijEuZCSiRuWWTd1I6QgQqV0Tkkq3fe9c2Zdl7ppvgVoM0PKt5pY3fRCKuSEnHMqVVUz5K/jKeaoK3nc7u73uxTjaThba6TQGWPOaVpGKGG7afe7+6Y95pQXO3nvWEYAEEpwJllHKUefQtP0gkvH+BLXZUk5JabFZnOMMS5mjusU/ZpjQChEignho5WVYkLZdSqQAbIP9r8rrPu+16pNOVmXnQ+V0pJrVembiBwL7vudFsIZ46zlUsSYhstZC+a80bLWdZshVlGlXMZlvg6TC65tdYEMlG1YuGJcS+Y4Zaa15kQxphRThuyikSQwQ/J+tbNWbdu2U47GrJuuB6IMuVFaS8GBXJZNJTZdq2S12dz13XZaxu14PR4euqqbl1e3TMM0Nu22aprH+3etrj0BSQ3IKl3lnBA8K6nm8rpcpORN06qqYZwzQK4FYxwSAICPfvJXnzKSCBBCsDXJ4EPJBQrc7OQ5ZSFE1zbn4ZJi4FzXdRuK+fT6K0oKJTaivvlipRAxpqZVx8OdlJAylJyIeEohRidyJiGg5F3Xszdvx2HQXDZSj8i0rrgQSirJxev59PL8stvvb68dRFQpmQmW2W+7+jovf/35r4fD/u2b9/12L6X01lHhXa211M6aFIKUEqDEGIQQlVRE4H0IOSIKLVQhlFrn5EP0NnguCBnnd8ddCHY+rTkHLaRklEMahkvIMYU8jusyL5wDKOkROWfLYlZrrvN6GQZj3StGSEFrDQAhZSxMMnlDajNgMXtr15K8kqrXPS8IKfoYSqLb3SnGVPJtwoYIOQSXUkkps//mUUFEwhJi8CFAKUpLUct+s6m0nuaLjyuALzliYXDrVnPRdU1I6fcff9dUtXPmOl6vi7lcl+h9W1WP97uubbQQkMtoTYrIXp+0lIzk6+XChStI/WbLGBGTxHgGTAVjCsmsOUcEFFxiuYV9OGci+sW7JbglppJLVlXjnLXebLfvENDHKHkd0QlGknPOedNvHhiWhKudXl4++eg23cFnC4Xdkv4doiYevZ/LJUbHoey7XSVZyCbnJITaNHdSKEIIOeSClayRKKVYEDORCRaSF0xzrnII9O1AhZKwACJjHBkjhshiCpAAoCAUzuAbtUxIQMzRWjMas9RVz5goRICMMWXcMAyvHEkqrVQPWEouSracyQIpeZ9ywsIFV4RcCouIy2qts1BiiK5rN6wgIRSC1Zp1XUJwOQUhJBOSMaibfVX355fP4+vL4lZMQH3Y7e+qurfrjAhSiUIMGSrSGYELvrt788f/E6vazV//8ue6sQzxyZ1i9EILRELgBQowYIRMMCaQc1YoC8aEZEJwpWTdaM4xp5gLcMFTTjmH3e5wuV7MPNWVTikhcSSWc0KAFGPTddvDHUW3bRrrDCQIKWQALWVXVYduw1JZ1qkRXd/vmOCllBhvPm7GOHLOBWMoJLISlYwhOGvsMnLGpW4yIjC6+aagAKAIyfv5C1jBuew7iSVbv3q75hCMX6WqN/1RVg1nLKfIuJK6izFijoSYYybGhJJSKUSUihGym7si54yEgBScYRw2fWeUqFMvuFyngUGyhqVYC1lLXQvBtRq5nFN0pShjYb/fvb1/t6m71RcULIZcNx1HTjlfx4G44CRctEtYaqFa1WTExRufQ4qJCb69O+YYetOVAkppIVjB2PsKkRrddu1us33IkD6//DIuY9cd2gqB8yU5k/1ud9x1d63uQ7KzWzHYutoxEoS5pEhAJJBxjpwppaXQSLe+QbLO5lSkVES3hppXXHNQERKSCCkXIARCoAIl5rJv2+/fP56GEyL6GH93d/8PP/6h7/HD/b/+f/CvRIxK4oQE4EIQkmvOlVTWGx98jgWghOC17jSvQuHUoRAyeOf9+vV1/pdfPlkbN93W2dBWlfMp5di5QEwSZGfc6fV1Wce+bQ+bXUZ6Ol2qZv/m4QNi8cmFYACkkLLSDQLZMpccOGPImRASiMUSCVkOOaSl0w2XEjkPkGLOLrjVOSDiqqrqvqpCVUOrhUJAILyMQ0zpMgzzYkvO1rjFmOt1ypCc86s1k3XzYpUUJaZxWVxOinEqxDnzzvHbhwixhOhLzgA4XId5nKdxhgKMmBSCMV5yAoBSvlkZvmVAy62PB1AAEWOMp3HY9p2WUnG23Wzv2h0VXK0zLmouuk4zFEyw4P20msv1/HK61rwiYr98/XK6XJfFAqDSSmnV1q0SKsXovP3ly5dtf7is5nB39/Hj79PPf/be1XXXb/a3bANjImdkTCDiukzLOlRac5JmcYigdMOF9HZc12k1q/exrk1VNaXkwUyq3rRVH3JWqmKBheCBVmSsrdtKd1DY19dP12U1diWurfdYoG9bTpwAOacYvbMrF7xptoiFMUbEY4o5Y8ohROCcx+QIOSKmFKw3klDLqqk2Zhm+sTABCEkKlYiZUpCIc4XAClDKIaaABVIMzs0uWgAkwUpkJRc7D9N0DdnZwhYamFKcayEVY9x7N68j51XbpbrpiTgjAVC8t3Y21/mkVCX1FguElDgR58IO1xwDsuJ9koIbu6KzMXrBxbpML69f6rqJKT7Ah6Z5kLyydv365YsPgXMevE8FDse3mcB7n6zNSA2UttkSYzctc7PZff/HfygkT0+fUkqny1iKI8ZvNU7Agoyauk4pcE7EmERUXFS6YkJorbfbLTJy3kUfsBTnbAixrhprnbM2Bh9DvMXbrbdYCkEO3r55+M6ZsXibSyAiDpQRRrMEa71dHQlKpelarSrGGJYSMOSUvPeQS8S0+gAFrJkJct/2guWYXYSESQGTMQTLDEcuZb3ruXPWBUuSx2CsuTJibbODehuDDacvRLx8K51RDJGAUNchBiAGUFLKdMNOCSkEW03y3ocYv/H6oSCymyYRctlud4yp4DMBcp4Y5ZyLkI1SlVayb9s393m5f5jH6XQZhVaH7Z4xrlSNnHECxhQWcMu82rXptk3b8sB5Fo2sO90LXUVMOQUippSAUuy6praTXCqpOCOAONrzMC8Jyho8dw5ySJDGdaDTrzZNhJiYaHbHHGk2i1IVECvAYoiBpRRTKSnFUjIQMkGq5AKYU/aQgXOZE+QCxs0hWik0YL71aKUUzvjz5fT08hJSpEK3GnBKsWmbd28e/1//8f+bMqRc/vDDx7f3RyHS/X5fa8UIS85SCgJADIwRAKScffDeBygIKZvgpK7n5cY0ZTEFxvk8j79+efqXv/60+LJtNx/u72bjnoZRS77LJXpngn8+vzz0HTFQdZ0h1Vr/8OH7N4+P5+vT5y+fpJB9vxNcBe+Z4CkVxgQBCikhZyJ+25sDAgGN41UxJpREpirdNLqFlIbJDNPAj3fvmn53/97eLKhmNa+nL4VBJ+SwrK/XYTWrYCzFYhZj7ZpKzrnYFAFpu9l+//hQoEzWLHaFUhqitm2lko2UjLHrFFJMPsZhmGOMXAjOhQs+JR9jgoK3mD8R5lyIaLvdXC8TQGnbzlqzzCvGmHOx1p+HWWtJBLKqCJgJlgnxePdGEcbsU8zWmZRdTPH1Ogzr/DpelxSneVmNk5y9uz9oIbZ9dx3X03XMKUkpXUgupLQueKL3x4+Pj28i5A/vftfUdYwpBF8yAABjHG+ZpJyDXTO4aRpLzm27adrWmmW4XGfjQvDLuvRNh0gBwCxLLevpevF8VVXjUhgu4zhcmqq+v3tTVf1xf/z44QdM6bi5O1/Pbhkx5RsgHhnF4AGKEFIpVXJKMRXEnNGYKc+eMdE1WyY5Eqbih/E8m7HtDtgxXbUAkFII0VHGHBPTdOPuIRIB57JCYqUkwJxzWpbBjKuLplINJEglxBCsty75VJIkMG7FGJROxLiQYrs5OqFLBsk5lYyZUgwuGu8MFiwpTvNY6S2UNC/XEktVNyGEkpLmEpCFlF8vl3VdleL7/YOU6svX375+fZKy2u1DjDGlkHNGYk3bXMfrefq6hiBUratmGKdxGlOBzdbWP+7rqnYxF0Slm6bdbXeHp093//v/+r/89effpNaM8xAjMURCxhgyFgNwxoUQjKip68c3b6ZlVlo/vnlrncm5xOCGy9lZi0CCKykVIqZUCJkUmjMhRFZC5mivyxm295yLZZ7qblNJNVzOjElGArhf5iEbF0sc7SLGi5CCACSTSmoksLMZRw/IORfer5fLKyRodF1XVd/ttGZ13bvkcomrG7xzJWEMDkrmxCD5sA6q6mrdEpPGTdscGHHFK8g5+piSN2ZdjJNCMWLIRaVrYsxHH1MQkpdS1nUVgrdtD5Ct81pWUnJnbUkplaIr3dSNEEwqFFKbdfHOpURV3bXtvuTQVd0LvV6d56IipUAwSpohU1oQCSglBw8FsEBb11WRkxlrVTVNJ6uGeMkFOOcAeZlHKMA4U5Xu6gZzXpYxB6xEnVKy60RMbNvdm/07SgyRGq6bdseFXM06XU/BrSHavt9z8fD88gTfRKtFiCqEIIXqmY7FA0MiyDmmXKRsFEnFKOWQYhREAYpASJCcXxlkH0OMiVO+AaEJ0Vrz9PyspHI+Sq3vj1uARFS0FlKwgjlDYoxxopv/LTgHFYOUa13XurbWJkwxucvFIKJWtY+l6XdMyKredN3xX37+lAGJ8HIZcsrAcDF2WU0IPkL87dVuNxu2GEWkpNp0jVvHn3/72+V6aVRb6z6nYOIiU8VIcMFTzCVjjInlqIQqkDMiIvPWPb88CcWF0A93HxgxzIUKmHXldVt33XYPuUChjNM0ClFijAWQcZUBXs4nTmIezfk8LsaGGIRUBZngfFmXZV3f3D/0m43NIfooCi9YgnehlABorHXW++CtcT4GocRxuyfGxnm67dmRvp0B/x3TSIyxzG4UdWLf5E2QARCv84wM0tNXVVdVV2kpd+0mB+9CrFRlvHUpcs7aphVV8x/+8d+nmH/65ReMWTFqK70s829fvg7LEnLcbzZv7h/2u30tq2E6IeA4DIzztu2320PKITl/CyAREWMsZSBihMwZQ4AppZIzceZTWH3wGTkTpeRlnksqdbPxpbycXoSQs5mndDnyN7pqU07R29HNhPG4f9c2zd/97u/9amrdtm1/fvlSCVU1m4I0m9lH33fbSlUxhRtkG9kNNtkQ1VrXXbsRQgXvY7Q5BckUIYXgEbCq65yS9zaFICWLKaQSco7sdjEWPOUYvSuYY4rGrT75FJOnmDM0uuEt3+wO1j1YbwRXklTMgYgY44Ss0r2WnbOLc7PzRsmaMf56+rws4/3hXb/ZrdaO4zkGO41D8qkU7NqOAAqUnBJi+eW33z79+uv93TEXcdjvNptNKcCZTD5cz1+tNz7ky7xi8VyIktE6+3J63W9xXtbn15NSqmq6jFiQISOt677vAXAeQt/3QMiFqIjd4IKMc86JEQnGUpJIpGu17TcPjw/3d/c/f/oFkPXdhjibpokRW+dpXuambuG2KJYypnT7lphiSiWn4N26rsNleGmrtpIKPQghVFU3vtOi/vTy9dUZRYxL/ebh/VY3qWSltVZV8nGepmkeiOCwOxKKgkFz/Tqdv74+KSa2m939w/oGsOt2yClFRyiw0JTMuowJC4gKWOKcs7plnCig1rXkUjARvVuX0Zl5mGYTQqUbQbxqO95tGBOphAIJoGitb51eIUTwBiATJ2PWdR4FE+s81yH23Y4RKdVzkhz5WM7GTkLVglfWWRtdQXh8eNxu7o/7HZa42tU5y4kBkTXmfL48PT/lQu/u35SSQ/CerAsrCGpkq5UCKMYsAHATMkshAHFc5mkaXLIxFyzUNG3Xb5Sq2wIlE0BGxLbqkbF1Xrq2zYEHt3irAUFyqYTIMQBQ02wY44J4iOtkzggZco7eZiiEyIjDjSgUQ/AmOMMySBL7pq0rqZlUjN+eD2eMcWaseTlfVd00yemq+9unX758/fF4aKZpCiEAIQCGmIhjzoUYCzl+fXlZzLTd7pRuGGfJhdfXJ8bk4XBf1e12W5WS5nnYb8u7h/fff/z+er2eL+cTXIXFWolpHJ/O5/cPj8jktK7Xee6bJjGa1rXpGpapqVoAyYlprZBy9sGsUcmacxaCT7GsZiakh7q53Ti1lF2307KKyeaSn1+/LqvVgiMlysBfXj43dRdKTinkEKyzUKBvOi7Vfnf38Pj4cjl5n3/9+cuy2NWuuUQAxoXIOU3L8l//9pev59fj8Xi33x+3W63qYR5/+fr5b/N8aDeQS0gRkVV1E9dlse6tUH2H12liQsI3k8Jt2AOIuMxzjDHnXLA0XcuF9CF4P38bKcVYciylnIYzLuVxf1SFYg4x5bpWdw/vUMjhfLE5CaG6tudcWOc6WZ1OL59enl7Ol+s0R5+k4ilkLPTweF/zikgp3WXO6q5SVZtycc4UiIzznGNJVCCH4IL33rp5Gq01zpq228SYXfIkq7cf7iH60+lZVZWQmpEQLDNG3llEvKG/allL5KmfvFsYUUoph8gBkNi6jgWh6TeCaSZrY83iPBAAE8A45sSEFEoTsRQji8AYr6tG8ioEu6xnayZA2G8fhVLBe0IkoFq3UdferjnlmFOhgowxzgpmYyfvzTIPMUckmtfpy/Nv58ulrXfv3woXQFdSC8kQOXHJeK20TzLFUPLt4MuE7BZhxlyci967v/z0X9Z1pswOx4dGteM45JS7bp9jYowYEidazFpyJs6V0jHjeZjwl7/adZRS3N/d1VWNOTszeucq3dfdJru8327osDNuuY6XlBkTKiJs+/7Nu/dC6lywbbu6aYlwnUezTM/PT88vz0jEiUPJOUcpuRQcC1RaAwAQvnv//v7uXgnunSei7fagq2axa85FcgkILy9L2/QFSoYilYopEWNcqWgzAMTgCMG7+OX5V83obn9s+j0U6tr2sL9PmM/L6TpEXrX3h8f3b77bt9uYYoTMkV/N9evpNM2Dc+4y2Ldv3pYMmrd//O7ogrVmAQRr7ZenXxYzbncPWikAhihUtbHBSKnbZhvDupo5pqzqrmCWUgqSBACQrV28D8QEK6VgASyIEEMgZAho1imFpJTCUlKMmQmiG6gz335UDEFwQYTX8ZUTE6SxFGKCc1nKzUkLjAlZVw91q1QjRJ0hAbBOKmmn6+UacykhXYbLy/kkVH0erqtdxmXcdhEQSUnOlSARkseCgrFECJlhhhgyIWNcUc5KkCDSTKD3mQyDrKSwwfngS3LBR8WBUxWgnC4v3qW+23AEzDEn1LpWqrmR7k1Mr+MphVMleilEzOE6D4JJBiyEEKKP0aXsEQgQMpbrcD1fx4IEBaWUh+0WAFKKX18ul3nkQN6559fXp+eXks31OngfpJZElFMADgisbZpcsncOgFbr1Lw0leCMO+ebqsqxmHWRQqechVRIGGPcMpICrR0nzUICY5bFeink/eFwmS+V0gzAuUA1jev8yD7sD4+M+O5GzoHEmVpcnsYrY9embTljQothGqZx5kJXtQ7WJSgFYLu9E4JOp6c/f/rb5y9P7x7f3B92td7w8+lr8q4Qt2YuyQPjkusUo26art/tDvf7/dmHJKUcxhPj5el84cSEFBlTDEEgFqJxno1b26X++z/+8e/f/u5wOP75l5+9MZRRCYEAxDhX6nS9xBLf3x8nY79cPwNjiLlAAWQAmTM67jfXYbU+KCWOuw6Iv7xcXszgQ4jeciStm05VEGIoCVJarPHRd7VWXFa6q7T9tH5+HS+/e/s9IxzsGKJ1yV6N/dvT6XK9SCX6vpPAxtlEeI1YzuO47bd11bZtt9sfgGhcTnYd27ovUAAwpmCnMecbI6Us4/R6eRFcdLs9CLbtdoxrQprtwKuu6Q+aY/BriEFyEexi1zV5c86RCtR1x4UCKm21kUxEb0IwnGsC5qNru52S2pjFpoU4l0JQKQxQ6gaxfKP2iuBMdMGsc0y3zmn2QgoiDYjOLcP1Aoh13SaVta6rujPWpBwF04UX4ryUtMxT8AYKMt5qraVsvpy/BsS62Va8HpdxnCwnIgZQspatrboCGXJBwoJIjGtZA2JVbwXAsi6/fv3l02+fIKe395e+2yCxCKVqNp1Qq50JMPnwfHr65etPfdV+fPzhH37/9/fbwzCdCRkB2dUBlqbqAIATgRCCsX/8wx9vXMNxurLIei37TbXpju1203ebdw/fRy6EqttuAwDOWR/Cusxfvv52Pl1yKsRACJ4SZ4xLIZXkWmvv4/3D+3/4h3+ntDTrfD5fD8c3x7sDE0wp7VNcvN9tdwkwQcICOQPnAgBDjjF5JUWJjAAY512tH7b75Cym2Ajd6yZn4MQP3ebvfvdvSLC7zUMtmuCMsyvnouYqRY+YqkqGqBlxF+3L6xNnpJTaqP3h8OC8M251zr6eny7zSdWqqt7GsI7jVx+cdx6QeWkhlWCdmcc0vehmc9jcE/JSonGrS0VWO45YYS45l+R9dNxZxliJAXNxbikprXZOJUqhVNUAAKZAJVkzJZJvj+9SCZ++/BfNm7vdg+A6AmbA6JMtM+fyBhOu6xYB5vlUgOqmz9EnH4N3xqyYgRAf7x+bqvIpNO2mqmoiYFw1TccFj1AAWaNUApeyex2vo13aekMxPJ9eZutqziQhIFRabbd3qRR/o3TmPI4XBuhiKCWxnCDDOA8FiuZ8WGfv/abbaF3NzuqmkcjDmha/VPs+Jfr6+tWY5bh92+rWBZehuBCCc4J1UnHvl5fr85fTa4yFM3zz8PD7H77zzn95+uKvg5K6FJCcNBMFmZYNgigpQ0nEGBa6JVkaqZWQkHVdNUiQoYTMiBouXdv0yYVlHu06kuBtu21078BCyoVhQrLW55yFqpNJ++1WV7pNVXIOuVC64ojTuiRAIXW33c3TlQA4YyWDC3aYhmmZ+35zfzgSYQr+9XSpmtPvvvu+ktXX85fT+XI4PHDVILFts11qUwr4hE1V89WYu90bQLQpU4G+7VS1scY5axi7+SGiwKw5vH97PG7713HyISghNpuuVjJam2O+aTAzZk5Uafl3v//dh7dvn19eTuezseZ8HSa7tk2rq2ow63fdh+8+fvzzLy+cGGOEIYUcCEtMaV4W50MuZZ7mfdeSQCIkwNktVyehIGdNw7dtXQ9pui7jBin4QATHnDmynIoLsauafdfnFL0xUkhkNC7zaq3Q+sPjg+bsPExURN9uIOPr60kKSQSAkRATlGWZU4ilAvz21hNjCIScEy5uPS+Tqpo3b94dHt423aaumpiScyb60NYNAlizQEo5p0zJhRi9j84PziNpLlS32SIAITN2DdGE6LUsBeAyvlwGdnd4BIQYAmTEAsF5A5BizNlrrRnKEMM8X6fxKoRo244zBYwJUQmmYvDWm5QLERq7OL/6uN3ujm3XOxeIMYCYYwwpemtT8kr3IFQsoHX/w/u/65ptIzf9ZiecYaXhDL23zpuckjOLtQsBNE3NuYCcAhERCU6YC2es0vXd8SF6u6xmNS4CGbNw4rv9USnlnXW4gKBxcZfLqEXz7vHd/X5XV8xZP07zal1MUVZW197nlHIKzgXntNabXV/V0tqm3JKCvNT9UVdbICGkquoGkVJKjAhymsbx9eV1XU2MmQvBmcy55JwZEROChHi8f/f3//gf7h7fpOzrrm23e+/WVELMsWrapuuv47jZbBnjIUWGBAW4EJzLTD6lxL4p1zIUaqqaIZUQtNaVrkPwi19z8iGZfX/c9YdScnB2NUsIjocwBj/MZ5bhzW5/6Lbjslyns7Vz17aMQQg2xVrrSmlt7ZpLBlZKSlCi4KyUZM3ooz1PL3/66z83sn3cP0jNjZ2+rXOwBG9zLLv+TtUdY4ILmVKYx9NqZ6lETO7p9avgXKkmR+O8u9XlblG8lEqKKfhUbWql9NPzy08//eub+w8Px/dCKp8sMk5c5VJiSoViQQjezONpnq5CNTklsy4vp+foXAhRCvX4+O7tu+8QsW667W6fUvQx1E2vdR2iQ8aVECWby3z5z//6z77gu8eP03j6+vnT0+W86w9nt4Tkttt93bQppdUY4lxLPSzrdRkIELmQQnKk4NbT66u1C0f2t19/+evnX9/cP7y/e1Ratbv9sd1jQcllydnY1axeilrXbUHGCpeMhegFV0ppQCilOBONCVCKYHR32B12W2895zjMc4oxF8q8PL0+v47n7Vb6aBlHKVghZJwzxjJYpVVbV1qyumoZx5RTAcyYQ0nDPNVS5hCGdTbBbLfLcRcRaXVmMZaQbbbbxRhBPJakG6WqKufw/Pwcra+rZnvYVaqa19U6h4Vr3ThvQs4SoKvaCzsXQO+j8yHEIaWipA4xRihMcCkqwZdhvBQEl2Kl1Lu3bwqUYG1A5NGlp9MTEHpjIBfkqt3cI4nnp8/D9ZQhuxA4l6udOIeHh/13330XcoJSaikJIQZ/k4ZniIAolQwldAK2baX5/aarTXTd6fJ6vrZ1i4Kdrq/DurRtH0MggJvF9Rb8QaKccwgh5LwT7U2jKjjPJVvvZ7vmnATRsM6s5rrSz+fT8/lMnG2r5rg5KK1C9CmnWldK8nm+Xs4XzsV+t7s/7hY7Vbo+bPrVrF3X/G53vN8djVtXt755fKMrbd1q7BpSdNbWqorBL5PJt3cNJnKO43C6XE9cyx8//O54fFB1yxiP0VtnfbApJ8FlSRkyaFUXzDEVgiSZyBgzlBDiulrGZFPXsaRlXMbpwhibnY3RTvOVMV4wa10DotZSSs0YA86XZbheX+u6PuzvOReq7q3zKTpnbJFMVgKAQkzOryFGIp5ztHZ1fpVqWu2k65qQE3GADAVSTi65G8OEBDPBxqJq1RE8n69XJupWVQKUFJwxToDW2eRcTs6HQDkorZEEhMAZv/F1Qyp9s+l/9w+p5FwKMuF8QMqAqeRYKe3meTi9dkr9T//wP56nCxKuds7FX5Z5tUvfNG8ejiSEDTkj5Jy8d0io2qZt2q5pUwpmmWP0McfLemXFC93YsLZtr1QFAKWkGJ0z6zgOjIm27b58fdIAkrMYYwiYC3CpHt9/92//8T8c794s60JEXOqcSsnc29W5LGW72x+fnp6NWbWuvA+10kiMiLX9pqwmOMuIuqamFLwPUohKKmcNEQ8hrPa6epMhIi9Nac28rG6c5yn4AABYwJo1JSO4NN5K3ezErqnVsq6IN5chK4xSycuy2OC0bgTlGO00XypVE5WYvVIKkCBgrSuhKyDgQkjBWQYG2WWf0M3GtMCatp2WE0OGiLVuK906t0qpARgXGlJmTAglb/bHklMKPqQshJZMOrsE7xiRNavzrqq6m2m5qpp5mY0xFRXO2PU6/PLrT8s0cq6+f/tjhHydL3Gxu80+IRrn9puaGGMIOfiQIzFRVS0UKDlzjt6uZrp8+vzpdbju94+VlD9//vnPn375/u337x/f/fz5r8bbvt1JVo3z7JwjormMBNiqlhjTVVVSXKarXU2O+fnL07KYl8tlPE/nyziMy9/98COx6eviuYCCZV4mxes3x7dSq0pXzlgf7DJa533XN/N8HYdhXZZPv326jHMsSUhGDF5OzzGkqtKVkjmnmLLz/uFh1zeN5gJKSTEBUkoRb2VtAiS8acGUlEQIBDElwsIRCVHqinPhruE6jOfLeD4Nqm6aptlstp1ursN0mcdDv4mlLNY3fT/bxZf08+cvV2PePdy/f3gjORuur5xKpbRkajXG8wzItpsd4zLlzLlc1hWBPd4/Nm2HpeRUumrD78VsTSo5lhxy2m43McaSMiHyZTH//Oc/kaS//8PfY6Gff/l1dvbHH/4IiGZeqroiwBJz17SKsxSL0LzVnZIKII/Xq8+pb9qYYiwBc8kpnS+vybkCFGMgYiWHHz68+/sff88Yu5j15fycfXwd1lRyKoWwINxEGTcDeWaMAWO3jT5TkgvOObs77B/utyWj4nyJxp59VfMCOaXsY6CuA4LVLjnFtqq7WnMGLtiubUIqqzXEsWp0peR1GUMMu2ZTKJti3n54ezjetU0DgMgwxWjMDJDbuk3BGzMFb7VuuGDD8PrTrz8Ro812w5UQQmDx3hoiDim6Zc1IJVOKEQFDKlwIn6xxTpDgneJMcCFC8N47JaTLjgtxPLzhjIfkg7fHzZExzhhPJUFBpWopNDIBhPpBH/YPpWRCBjlXHJJuY5CcOACm7HkhIapSdAGfUvDeEYmuuUNOORezrEIoKYsQSkoNgJyJ63A+DZe2a4EopeCjDbkowZ1dWlWZ4C/ja0mJEwkEF3zOKXj/ZbgWxJyLklKriphARowrKZTWTUG67YpXs2BmWMCsU85lWi9/+/Wvyfnv3v5wv90XLPM8rW5ulPYleIiZipRUK8lFK4W01kglu6ZhxG90WKWqSulYMtCQACFD3XZ10zLGYgzeG7tOl/MrAd4d7z9/+nxzJRUonPOu67a7/R/+/h8//vj7ze7IhYQyL9PUVk0BWO1yOj9VuttQLYXWWpvVtE3z9fm50TUi+pikquoCS4qMEQMqBVK49ULLcH1hrCamxuVsgpWcbzddXJa5WBfd169fpnFmTAghtJKNroWSvpTk3Lbb9m13PEABSDkhYspxNS6nxIjFGICXZT4v1t5tHjjSbrOrdGutK22p6waQpxIlk7Wsc3Im5GmZ//b552E1f/zwjz6YYX7VqqLCSso+ZKCiq7rSG86F9wY4CVUxLlLyIbiSo1S6AMTkVzPnXL778Meu2RTMPlhGhISl3LSawawOChjrgPgvn7/O61Q3/bbdahJQ0aZrAbkLMcRAOeYciQFw0XcbIViKgREFOy/zeL2eltU93D22dY8AueD33/343f1Hxqjrd3eHx03bP5+fUgiMM+cclnJ/PDKkEGMO0dtlmmbrYVncOE0hl2W2xZaX8TwZv+93v6t7W5xGEUocplfJqr7eCqEgRsrOztfL9bo5PADi8/NvIcQSgROFGIlE2zTI6Hw5l/xNIcQF51x0unpzd3w4HDZNU2lNjFJOiIUhQi5EJAWPORYojFOKCQljDJjzbX9wyZcUckrZ+mSME7KVVb2pur5tpzIwvn54++7h7j4jPT8/IfHj3XG1y/N1SFAKsu22AyxmHsd1YMgZSa1UKXmeR0EohYo5K1X5EK0NlVRaCe9sjPEWsu+7ba1bIvr5fJVSd10vGCsp8z/98vM0r21blYSSq/N4eRq+MiG6up+eViTqqhYAM4HudoBgYyDknHPkJPaHsFpEjDEAypTS8+n5cn1dxsnFNCyTqlTMedttv3v80GB1aOtd95019jz9uQCkkkvKnHEtKUQvlXq82//627ONoW0bqbWPEYkYZ9tN/ccfvq9kx7C8vj4vwWolXoZLxdRds900G5ficH71Lt4f77ddg9Ebu94f7rrt3dfn59fLuW2arumen54etocPb98O65wgHvab94+PxEUukDIglpwCJ1ZygpIRS1XV281DKejj15jzu/v7bdsTJLuO9E0yiBkIc5GctNar91+fzsHbQ7/NWKCgFJo4l0orJUpJgqEPppS8bXda1s651+HJRVc3u0b3CWII681T+82/nSNB0boON+MFROPNYteckhQlWH95Oiul9vsHIimkzDkAARJv231VV+s6ZyhC8JySdZMtIzLBGGt140oMPiEkD8n4ZRqXVmgEm9tU1c20nJL3omqgpBzDYmzKEYgB49MwfH3+uu23la5dSpvN7nisiRExaZb1ej0prSrdELB1ncbxau2acv78/DWX8vH9x77vAyTGeCNqwUSAtIZgo991Wy25EJIK5JvfHVPO0drFrouUkhFnJBivhd42/Z2UKqfsrPHODNfLPE9CiJsBQyqJCIRU1dW/+eMff/zxj8d3H0TVEOPe2VshKKaEgg3L9PXp6d2DgBY4ia5t7WKqumaMDcNYNbV1LuXEGJNCMMLo7HwdVzMrJXKKKXvGVM7BOTuboW/6dVwGf0GuciyX67AsloC1TZNSnlezaZq+brXSVVU1usoIJWfrrPcuR684021jnc9FJxZLAiUUF0yKhjwFH7nSvCYtGyVqZJhKyN6v8+BjMMZWvG0OOyg5hNw2GyiQQkjZz9Or9T6k+PatkPpQ8ZbnyLm8HQDzOuUcu6areJdTCN4yJh7vv5NcrvYavGEMsWRnV4ZYSnFm9d7Uuvl4eCzfuetyFUSCMcHkeTqV4bTp+812z3kNUIAAEJqq51zO8xVKkoxP4+tqlnFeiNSu7TmXIaS73bHSEksqJW/6vlbtMJ5/+vzTx8NbiMUtU6X1+fXZxVS1HZR+Gseffv7589dXEuxuu71O099++61kNs7255eXH95+/PHjD0KSD3Gx6zgPOQ92m/6w3wHkdR2dM0KITdueLidnVqnq/XYbg4NcBAktFMQYnJdcSyaE4MF5KbiS8vHuvtl0g7tGiEQoOOFNWZAzAQhGztmc07zMjAlIJQMoLtZ1uVxGqdTj3UPV1RniNK+Ci2EYNk1vnfn08gUQf3fYi6ojIRqzRufe3T+0WpeMMea6qRNmOy/e2r/+9vm35+fDbv9vf/xdJvjrp0+t1oxY1TQpw7iszy+vx8NBKh5TKKVYZ7jQnW4ISHFZVQ3jvK5rhhi85z89Pf2b7374eP+gpSbOm6YdlzRcTl3VK1FN1zH6mHOMOW13h67rIKdvlX2fGSEK5pxz3uaSXHA/ff7185cvf/fD73/3/vthnp7OzwIpGPfr599u8pDd/oAIMQdGDAoAspRihgIInZbfv323LOY6zdu2A8AQAmRBAES5b9Sm35WcU7BVkPvjHRPq05dfOIM2bp9fX5z3u377cHdsdTMN45eXJ1HLd+9/r1R3Hl8kJ6UrQfDucP/+7ZuY4rTMDEpJsSDY4Ky1q50glU27PV+evbMhub7fI1DIYTRzravj5lCosAxmXaZlCdFNZg4Zd91e6crHqFTTNu3LOv/8+dfgTaXVcXusRRuji8n54BVnyIkYFyRGPxgzP738dhlOc3/35uG9UiqkSCgKIBIqzl0I1pkpjPM6IaS+2VZVI4SKIZScUnQhhYLogpvWU9ds+nYrEIfhYqN7YG901bkcVz9H467Dy99++YkDcqnv797c3b/RVW3tklPuZb828zxdpunKib17/Hjc3M3zlQCMsT4GJMYYr3UtdaNk+4v1q02leClVCnm4XnUblNSSmA9udsN39Y9Y0CxTDk4x/rvvvt92G0YMCL1z1hnnvGR1Qco5jvN0vZ4/yy/7w/7dw3d11Szz2a2FIw8xGLuuy+qcZ3V9/+Z3x8fv627LhSgFnTfer3adxuEKJIDlZR1XM0KJgotcSl93795+/PDdD6gr6wMhJSgxJ8FljElXCpBKQobyBpsUvLIsZITNdnu5XLK1vG6stazkFFxhklBEyKOd2ZqplNXOdZcP24dO62m9llQsBMYFEV2Xy5fn19Xaw2a/EyKlNC7j9Xrab/Yf3n+HSCHHG0695JiTNWYuBV+HVyXrTb/notroo5bCmmVe1tmbpt3cbx/FNx4pL6lASCEm592yzDHBpt1Zb0/nr1JpKSXkpJgsCZz3Zl2ts2Pzut0cdN2bYHKM3tqYog8uxdA3vRRVAmadKQgMaFnOw3wWW6m4cuv69PKLll3f7kvBXIqLgTh99/7d9/iBi0pwxgmI4+Lmwcx1u1GMVU3rg/HBAYBbV8AkBC85TfPFGRNtrFRDXCqpXAqt7qJb53lYnQUuq6ZHxt+/+dgI9fT1s/e2QGYkdF3VQk/X+f/9f/xvP//tyxrj2/fv//3D289P/zGmUgkutNoJlKy4dUJLTaXv+s2u6Z+vAyIIBG9mY9aC/LjfzePp6elXQmIiphxO18mFnCHGHMJtsh3cZbhKoSqppJC6Fl8+P//lp9/6XfTZl4IMqRBhyYikBF6ur19+exIcV+cO+2NXdUxwLEVypYTYd/tN2/dtpbX48vrq15AARzPN8zov6/3dMeeSMjS669p+hSsS7g773/34QwqlbutxmoyP3jtEFiPMk0kJ13X1Kf36+lpyPu72hCy5WEldCizrqqWstNKqyqUYMwnJOSMpRFXXpZRpGi/Dmf+7v/8fNIP3j48Z4DJctk3f1U2O+Xq5cCHPw+vsbIg+Rk+cLeuYcuJcaV1HH0MIxFgIcbUrIkglY8bFh2GcxmVmjDVVe52vu3bjYnodrtmHYTW60tNqcskIQISYCQgQSkzp89PXxRom+a0QHHwg4gBIBbxdh/S83e4fjvc+xYTwsD2Mp9dxXnbtqqSiUhqtlVJMClVVUqthHqblisA5wrvHe06ik2K76bm4Gejj+fJcN5Xg7Dpcvrx+uVyvD/t3HNgwXUtJx909I/U6nb6+PH1+PfWVSDkHnwQQFFpCWJdlmRddNTkDKxR9QFjuD7uuqf/25dPL8yJKJs6UUosxl8t5Mutuv9VacUSIZVwXVnIyngA50U1aNKzXRtd1DGMMhFwIzohJLpSQyVsoBRA44wQYQkzJt7rjWimttNScSa0apWvJxLouZpklq6RQ43SFQsiE9ckuq49n4+JqTVW3bVMhgGJS8KI4scIhWDudddfqqnd2Ac5Z0chiulmJEOu60XU9D7OSuu03grFlGo01+/2+1tWbw/Eyni/nkxQ8O5NibNtNvznc3b3POUfvxuFSChGxAqXWdS5qWs1lWqZ55l9/Gwbzh+++X80QQsqlhJycddfrEGP67vf3h7v3m92RcYGE3ltrlhjCPM8pRa3V029fv3z5vCwLZ0wIEWNSWszreDq/3L19iyWnGBkTkssQS0y5ZNxuDr+xX8Zl2d1TQWSCcyEZE0pT25dpmXMCyMQ4h7LkFJp623/oqrb59W8/DcP519NT27SC6+2mzXRXMruV7YjolqruuubuuGOCvAuEjDjpSuccf/nlJ8a51pXgrK618y7kSMCuy3RUuqpqUdVKyXWZhnHixLb9cbu5V1KXZHNO63QZr5dlHnNKBTgTom5aLrjxtqRo15lBLYXIOa/OxRhzKeM8la9f++7uwBW73V4RhVC77dGtJvhE6AgwpVwKCC6GyRuz5m1mStXdhi7V1SyL91rK4+GhJEjephwYw+ijdciZfHP/dvWmACIwwaVS2vn15hOXUhQgRjw4M0+rXdebnABKRsqQ0jhOZp5Sjrqqdrv7pmoYZEB3enqydlWVlqrab49I+Px6+eXXr//7P//F+cyk+vD4Xil1nce7u/2h6X6Uom3qh8NmHF+HZXq8e3y4e9x2m35zLFiiN/MyzsZUdV/p9v/40z//9de/Varq29Ys5nS5hJRuffsQY8rZeo+ME0OppJbKWvvzp1/E/0r/1//pxxs1ugCUnEvOJJhUahjH6zQpQU/Xc8qZDtQ2LWFumq7rtpxwWoe6UjdU+O7xcGPh5ARNvdFKXq9XUdVtXxOjmBKxQlzstseckpSCS22dT94LLj68eXvcH3yK62A+vPlQSj5dT9dhKAC1VLc2zLquMbh1nZuqLZhLyVRicEkJXkpezXKdrp8+/8b/5//b//z/+H/+3//T3/70/u5+nEYXQrfpUo55HiWXsYCSqt/s5mlYpgUJCqO+04SsqlWcptmswUdijAmuuPxw97isq43+z19+kciauj2vy6bb7tp+Wk1EmpZ58W6ZZ0gJoUBBIsoxAaJP+eVyylCElM47gAJQbrWAxZjPT7+tqzscHt7cv3+8f3Mdh+v5Gn3+cj6nUO4Px22/DT5MwzDEV630w/1DiM65FQEgRsHosOn2fU9CSc50hcjV56ff/vWn/1oyfP782ziNqqpatRnV6GLw3u43xVo7rKNW+vs33zOWAYX1fnITK3C5XhQTD4eHfrvjXFLBkOOyTkjwcHy77XfXhw8hOskUYzyvxnjvrOWF5nH4cvpy6LbzNFtjSPHD/rjZHpGJcZ1eTicn51Mun16fKq7uD4eu6ZTW0zI4s0JO0jm48WOJoVIJwbqQCubbiWkNI6Y5T4xP09lZXzWb6+lVa93p/sd3v88pJcgIJUJczVpJUUq6hvNpeIVc6rqazLSs8+7+4d2bP+h6M16fT8tTDK6q6gJUCgohNtutIM4ZX42BnIbhOszT/ry/uztu+r5Rzdfz2a5LrbAU8LFU7V7XOllbCENJErgkej29VLopiNGnx+ObSgxfzk//8Z//828vX477/r4/yqbftn3JkPmzrnW72ycsSAwZT/mWeXfBrs4aKWVw9uuXL9M4hHAz/fJSImJBLMP15KLfHR6w1Iw4EiNGnCiX0rXbx7cfsQATApAAkRjjQkCBru9jycGHlDJKDogphgLJeXc+n1djkav9/pC8+/r0OcQNEAlA72MIodLVYbf9mN4O6zzYcUvttu31du+8xVKWabLOEMOUu0prH80wXgEyEffRX8frvrur220McZlmKig4E4wL5NN0jn5ihV2Gl9enL9M4q6p6ePxuv78HgFzKbrOVVNZlmcZrSJFAtV2vVGXmtcSSQ7qcn4lQaBlj1LpuqoZxZMC8tTF6hjznyIUihimG6OMwj1xVum4fHz7M8xhTEEKpaseQrLkO19fr88tqlr7d3B/ftnVbNW3J2ftww01G7wCKt2uIJGUtK+HJVrqlwnJOpSQpOUJe5mE1VnDSsqnbtq4ayXmSXHGx7bdt0+ScpNRS8J9//eUyLXXbfvfhu19+++3u7v7f//HfTtPr/cOx7qwWctP0gnEf3LTOwzLV7XYTs0QgzEpwu0yny+l1nHZc1znXu/3y05/duqQIkgsXYvCxaZtSinMuhlCQGCObA+OMc2atLSk9P52n4R0jGXP2JSnGMaOQkgkptKyabtPqOtjr5aKFavvOONdt9/1md70+/em3P5+uQ1dVhZOu66ZqAEBdh8Wuwbvg7fVyYoyQSGhd6waIE7EUAwAyIfb7jSSIJQnG7+8enk7P3qbD9rDtu23TfOFPBSFiMcG1dSO48M4aYwSTQrJ5mhhxKIkLDTlzJvqmv7975Mf97h//8If/8i//9LcvZlN19/sdclFYut/dQYJpHqgULXRQ4ctvv1a13m63wbhIAnlkmA6bngvFGHPen07Pw3SuFMsxlRiavuVadl1nU7jaZTbTru1WY60zDCHHgPQtBFEAEagAzWZFLojQOc+I5VJC8KUU49zi/LiY5/Ofv75c/l0EH+1k5qZuxCj/9vq1CGqaxjt7PadcQqUqoSWxYuzovSUqCaJL7v7wTukOoIQQYoRhMf/1p392PqUQWynrtospfX15KQTruoYMHz9+p0SthDDcMOJdd1RV8OtwOT0v02gAnXM+57Zt2rrTdevmcLq8QsGu7WO0zhmqMZecU2SEZll+/eVnVStj5iQVyzEEOy9eqzamwgtWQhGyv359WtfFOX/XbUY5ZYCyLF+efr2cTveHu4e7RymlkLJvWmJMKUkQnDGTXVLJD0euuTDrchkuv3791Fb7jx/lOl+XMe63d3VdMeQZS4G0hKVrtp3UwzQAQVv31qzr6qx3SohhvNT16377sDs8rGYZrjEDlZJ8MLkkLEkIwlJSsKVAKuU8XJ1z4zy0Xf/hw8c3Dx/MMpxOP0MpXdOlYFPg63IJdv7y8uXl68u6mNMybJteS8UY2262d9tD228Xb4HFqm7227uq6ZiQTbvb7x8uwzkDcKmJ8ZxSCM44E5y1y5JTJsYup9Pl8mLWJedEjCGRUjqEkFJSUo6XE+NS6ZYLiYQhR0RCYEJW7z989M4xLgAoxiA458QKS5yoa1rnvHWrrhRXVUppmq/D+fV0OsVUYirehkYJYvDb02ci9rh7U1UVIlrnpBS7zXbxK5e03+38Gp+H1+Ddvt/eHe9SCsN8JkTvfcyJSyEEI2BKy8V6mwPkErxXUirBx+mEyJxYPn3+kyA8bA7LMrh1JeQx58v4avx6OyNSit6sp8v5l8+/uBAeH74DJoK1grHdbi+lyMmPwykPJaS4O9xDKeNwJoRa1cQ45Oj8Ms7XGKJzRvPaGTeOQ9/1jERJiTOUUpVSkLF2cyyAKWUpK60kF4yQgnPerUiE2K7z4O2ECM5ORJx6SkKWnNq24QDX8VI1bV01wa9CsKPeOm/P83Xyc11tKs6Kz0pryXmI3nkHBV3wi3eqVt89fLdpq0azH374sW/Fdfb7fZsgA3CfU0ESSh+b7v7+jVaCcTHb8XJ96XVPGebVv16HzOSHx4//5sc/Zm+H18GF2LSdECeAgoAhxpw8ASklY0ou+gzZe2+MIcRpWv7pn/7igkPJcwEpVQafMwARY7Jq2sNhdzo9TfMolbBmFVy1XVtKadt93x/++c//+vb45v3bNym6ELUQnAShL6nEpm0R0LnABAnGta6H+eq85yQY8RhdW+u7zWbTt7cr7zAB1DIEb6Kf7aqV0lrHlKq6qqpaKjHPUwZ0MY7rvBrjXKjrartVnLHqVpmrGx7jKgU/th1CCiV1Xd/Vzb9++tccXKWal+vr5TSsxjEupnVkCB8f3zBGXdMKTlDSh7ffbdqWC6mluFyxJM9zsiUyEHWl277btq1x7ul8WlfTaR1K0JWO/oYqu/maCClDLoSkpAqlEDJEDDEa43KmlPM4T+OskXjK8OXl5eHutGlrH8K2bv7xhz+mkndt3zbtOs+W0WG3U3Udc/LBu3FiJLbbx0yFIboYizeYy7jMl+sAmQUHX0+nWsmH7a6pW6H0OC6vl1NdVc+vz0Lpt48fJ2teLp87VStkIScIXki1a1oEeL5cTtfzYbO5v3+8f9Nt98fLpRjvyzwBAiG4ZWGMS876tnXbzXW4+sk/dIe+bhdkSjd8GmNywc4Qfcby5njX6M6sK0EWUoqqqVSzLtO0Bq4bYGqYVsYdQBmmkTirdX3odjmh8auSmiGVkudp+suf//Tl9el331UlZu+8NaNArJsNV3VKMaYARJVqOeeIY8lFMcUUN95wrjhnKbqn579N06XvdkJVwIdpnVYzxRBu63HMBQsxzkLIxNjD8Y4RMQLvrFnX4+Zh31YpXT//+mnX7CAGs1yG4Wm4XJ5fX2Zjal19335wwa3OMmJiWaHBw+Hu+7ZN2Vi3eO8LH8JUXi9nXdecs3r72LbbknMuKXhrrEnWmHUqOS92fX76ss5rjPkm/i0JpBYxpMvluj/clVKcMd4ZcYv4IWYojAEQ9pttCNH7lFJCRCkV5yKlJIRkXCDO1hnrayEV5JxjqKqGkH/+8gkI21Yg0E2Kp6Ta77ab7T6lOE+LMdam+PbxsW87zXTioa8VMap1o6QKiaRUMUVE3rSbqpLLepmXWTPVtT1xitGyFFPOr+fnLy9fHh/RruHzl9/uD0d5VLGkL6czZom8+JcvIcdKN6VQKWnX7RhyrWtkSVWtdYER6aoOIdgQYF05F4Csrfu26qJ3zi0EkLyTupGcdfVOy0SkShEp+5IzMcICjEjUwjubcgp+YQiCV7WuS793onLOzMuSEyKWGF0hmsarnWfOiw9uHCcuRUkZckjROztbv1a6OhzuKtkyzoSUxizjPBIiUEkQiXOpqxyTjd7lELEIrrt+82PdWrN0qm1qudlpJaWPa6YktXh8vMu+SK60qqXgVaVPlxcsuUA6Xy/jOK6jEShTgVSKD97Ztaqqx7sHJaoQ0vuHu19/fUJEyNk5F7zTUgmhQgreB06UYwwhSCFnY/78168FS8lQEuRUEElKlZFlYErX3XaXSqz7ZlrG3778+v33f+CV/PL6pcSiZf1w/3i3e9BC23UuABRYSLHfbHO6LGatSn2nmwjex2istW4lQkZKCs05mRScc3eHA1EBLCXfffrty3m8jMv4/PzVhbDbbNumUUIxxlIuMeZxmoOPKUXGmZQVWT8sU0tQoCjOjTXcmmla7c9fnz/u93cPR8HleZy+vp7W5brtNterfb0sl2EsUO6Ou2W6/ulvP1dKP+wPjVbGrpqrTLmteyH0fne3jAvRs72+5hIZgGDMRgs5P2z373bHTDj++lNyVqvqRu7DknPBCIUxxIKNbidjBGdAOM7LOC51rVPO1ocC6d3hkd9Vl9UWKE3dvXtkIYZOqFZXnAmhFZbMS7zb7arNLgNaY1IMSuqq6lLw1+H1dH1uZF0K+9OvP1/Ol123fXP/ZrAzFchIKbISS993i183umacm3n6L//ln3Rd8wLBuz+9/vPT6xdIhTERvDnudkprty7rYsZxrJrXZrNtmh0Dxhk5u1SqNevyfHqSXAPCpu0+vHl3Hi8FctNtmfSAaFO5jpe//vVPq1tFVe1298ft/V3XRUi62TTtIdiVl3jYbdd1bhstmY4xAeTgQ19VjW5DyNOyJGcVr6Mxa3Q5xr7tY/rGNngd5+vrVwYlZJAxFSg+2nqzaavOuHEYLmZZeFX37TamCICrCzGa3baGnIyZum5L/OF8Pr2evzrvSkFvV0KAXLiQQlaVrhtdlZgAS9s0jVTT8JLIG+9DodNwlbquum724dPltO33D3u5LGun+zVamsZON5Wuh3X6+fOn7abnvIRoX9PzGlwturrpcJbH47vHfg8IGVLO2XufvI9uMeuEyIbXl/F6sdYSYxhzihmpMM5SLMtsr/8/nv6jWZokS9PElBPjbs4u+WiQJJXdheohmB5ggA1kBPjZ2ACQBqQx3VWVnRmREfGxS/w6M26mXLG4WRDxta/cj6qec97nafpIUMmY91bpCWGaJIXWOgSPEQSAEYKdUyEECDGlhDFufcSEMRQhADZ4AFwMxHoX1NT3zcvlPGiDQ0g4OS/j8vKyytPi1cwOordaUJiJOk9l72YMyDhNFIZVnr3uRo9TQzD3ISxu2azvN/XemeWqD5e5+bD//ra+b/vurJ5IAD/99tOX58f7u3c0EjUPCZeUUgzwsW3/8vjlTf32Lt+0x+7heISIQQCSLCE0ebvfFsUGQJKkWYieMDb07TB1/bzsN1tEKIS0KGqCiHETI1zpZZ5afXnCiFbZulytJ6uv/cgJWjGp1bSMLUVA8FeKQ8AQRedGc1VqWuYpOE8oDQh0yygxJYxFhJRS49x6Y5qum7UtyoIQAoG3RkMEy7zClEOAXLAYUUKRd3FT3xEcT+PzuHRZUkqSQIm4SIXXixpwxHler9jdNDR6mVDkGShCNMZbH5xghOFErhJKCAAYIGy9TZN8W61smN2yeA3HZUxkIoWoyooQFgBIpFS6CBEmNCkFtc4iTCAAizLTtMzESiEBDDEAwcSgB4QxwkRrbY2BBIcQMII+hOB9RnnwoFzV79+8X5XZpqr68fL562eMKQSQAnK6PH/7+nVX7W5W2/v9PmJgNQLBtd2ln/RufZfyZJ76xUYEUSKyfriOUxd9oFhgCCAKgsi2PT29PN3t78tUIhDytPzhh6oZxr5r0zxfLpdxnCFGiFDqGMbIGAMhlEJghF/zaH7xmHFFTN8PjFClFLkOfZlXPsLD9Qo5hQA2/ZiwxHunjf/u/u1NZSyE1kdg3aODPz18yZOEYOZBnOb509PzdRzu7+5WxQYxHiHU2kKIiiLLs5QibBCKIChjXHBZlq+rCkeoHMWEYkwwhtbBv9sA/N9tMBAhH+IwTtMyI4oAQpSwMqu21boq1/WiAIoYxXVVcS6WWZ8uh+P1paqqm2orqEAYS5FFgNS8DOOgqVqUggE4a5ZpwQmnjI7j1A3D3c3b331XIUya9rpo93Q5IYQ29VoQ5p07t621Ts0Lw/h+s+m8PzRX53yWZNp0zdS5CPabXVlwCABiEkQcjGOMKr0YC+ZlEpQZ7y5NsyrroszVopTWTAgAIqV8NtY5x5gkcP76cr4Ml7vtPpN5P18zuc95hREfhtM8diyiu/X6BRil5sAQIThY76zurIMed/N0vRwzzjvXtMNFaVUU9XrzxhE2Gu0Rvrt7QyBYb26qeh0hHufBAxOtnab+y/Onz99+ZZSiqQsR+WAJwdoop9wqR4LyEL21S5lvBM8wgm3XjONIMAjGMEJSmYokEyKLzk3jdGmaxRqZlVUlpnG2zm/WO+9stwyr1e2b/bvJTDeru4QV5/accuGcBQhOs+qbC0QwQHDoLhmnCSGH4+U8DPvK3RIWAeJpJaTECIEAXjle0bllGuexRxD3bTvNc4yRYqq8eeXWUUpAjMaYaRqzqszSFESglGIcZllOCJ7nyTtPUIivqdjXeDOlhGDKMAQxRk8Ycdobo6hkFCMLQ99fDy+PmEjJUqPssEz93FNKp1G9vByarqUEJzIxPtrggw8hGOftuIzXprE2ME6F4JkspnkKOAghgPdNez1e27LYvrv5iCPu+y8Pz1/O1/7lfF7X9d3+DSNsmtq2vQAUNtmGQPzDm3dvtu+6rjkcTpemQ5hSTADAL6cLo7yuNlkqCcHauOPxqJZZW+Ni5FwiSAkl3ut+mAlmUhYQoQjC+foyztOZNlV3fbmcT5f2brO2y9iN/aE9J1L8+x//mCSJcz5yGEA0drZWQQgQwowKD2KMVsqUCoYw7cbu0LZTPyRCrqo1gmBetHHQOV2XWyGLce6X/mKtstqWWZmkBUJxnNqn54eI0DKPRbrKs02RrwX0CJNp6JWZU0QIgh5DpR2EmPPMGs2YwESkLAMhKLWkacq4nOexlFIydmoardSyGIhJgIBzvl5VPgTJOQRASu7sMk99384Ph6cQYgRQaR1DdD6EEJxHGGMIgbWWEgZAjK979d7HGAklGBPgIybUesso8WH+/PWRM+KcsdY4Z6dx0Gl2t9nPXTNMlzSVEYYsr1GeX66Px9O17WbB0tvVtsyKY3ecl2mbbjAI3qimaZwPnPMsLbarDXDOGAsRCQAO08gIX1frMluZ7Y0y5uHxoe0aG1SnWupFzhPGeFmuJGGUEO2NDsFbl+UFIdhoCwGSSUqQRwRCRhmGcZqWeXkgmOZJZoA/X04Sd+/2d5jSrCjnWYXgP70cjHWLMa65LlYjhDAE58uZMcliSKQkhDBCKcbOW7d4Tlm123X98JfPP1+by/3udrvafvp2FJzpBWKMacQoRghijMDHABECABhjtTYxAmMtQhETWuXrslqJhAeCCKW5yLx3CIYqTxeVP10fPIhJsRKEGOu74UoIm5flt0+fh7EvyupmvUUwLPPMsQwh7lbrUqZ5kjEub8c9juDh+DIqdbcFWuvnwwsO0XnvrbfGACkmtTBO16u1ddGDMC/joPTiAmHCGeMxdCE455ZlHtt5UhP02AefJEmZZdvtLvrQdC0EcFazdmZTVZRgH+N1GLS1GLN2UpMJaV6UeQFhdFYPDhyvvx6aZ8nTd7v7cRmHua/ybZpkEQAVQde2x/PXNDtzTgkEVKYQoEVNNsZuHD98fLN//+7admmS/2m7vd/cWDNhRBFGIbhh6ugy57IinNabm0Sk49D347iua8kFjNfL0J6vTzLBjLFp6J31CNP1alcVtTZ6nK6PX744Y4SUCAI9j4mQnDMppPF2nCcupHMxhLiq6mt3+fr8DXnCE0IpYIKvqrWFZpmGc9c8HJ+N8QyTqihklk5mRhDiCFHEznhO+WuDnkkWvA/ev663O+usVePQO6VcCH3fWmMQxC4GAACllBDCKIshWmOsdYwxAGAIASAUQwAxUsowVlZbayzE5NVJByHECEPwmlCPMZgQozFLP15QHXHwMbr727umvb4cj5t1jhBMZ36z3tjoxnmhmBWEOR/HqXURFmVZFxttVJmX45g1bScThilSyzItSyK4R0GpZRiGp6fPXIh9tZuGSen56fz8+fGpTFd/+PHHRLCuP7ftyQfjfZyMD4i+uX0DXDTz/HI8zMtsjIpAYZkmggnB52nmeEhlEoP76y8/nU6X/XpTlOnd/m5Tbxij1tvT+cU5t9u+LfOSMkYIGvOim8aIYNt112vTtP0wqzJNVmXpPHo5t+/3fQjOeJ+lRSoyhGDwMfrFBGOMciB4CALy3huCaZlXN3dv4R4UMrdOD0MHECaUsURgTq7tWdsJI9gO/Tj0hJKIkbamac7RkzStMU5ChNqqYRqp4EKUIJLggXe2H66X5qXpxlW9XYut8QZhSTBNZWH0NPnFu2ChDcGr4K212hiC8KZaKWsCggBBRlk3XH7+27/IJE3SPJUZFXFRfT9NzoUAgA8RAIQgyvICoDjME4Q4hIgwgPDvliqMMXAAQsQInrTW2kAI1DL+8ttfrVkIwQiBfhy8B23f7HZ3H9/9gRDy//4v/49+7ozVHGEIcT+Nalm01m17pRFgBPuxH8Y+T2XbXOdp/vz5yzQtaZput1trrXUKYyKYpBgvajlNl25cqrrO01Lmpcjytj1/e/506c9Ouzop0iSllDBCMITQwIQSCHCapcsyQxhD9GrSBHo/9l1wPkAQfezVeLvbpUVhKMaMqW58urwAGHn7sirWm7r4w/v3k1qKIl30HJxO0+Tt3VsT7DA2cO4SnlR5uapXGWNGaRc8EmmkLBGirqrD8XK6NASxcZmscwAA732Ir7D9GAGAAL4KYZxxwQMYQXQ+kkgxLbOVELIdWm1dVZSck3FWT4eXhOepED98932db9/s3gTgvTMQMxAhF3K7u8WEQQhAcMfzMdil5GRZgJ3VPM1Ga0a5WaYyydAtVWrJuJyn2RhNI4QQrqvKxdhNw3Ga9mK932+9c13fz0akNsnLoqgrbuzj6Tidj7NWEEbrdJXmeZp7GDHCCKDb3U3fN9+eL5lI06x0o1FqJgBKwe/v7i5NA4T7I//xeD054x8PjwgBq+yk1eI0hjRPamX8dWhtBILJTbnyMQBYFWnqQ5ymmTJWpAkBGGA8LAvjLMlLF31VrNO8XsbRWgMwiAj6YJXWL+eH5/NDXe5WaizydFOuUporp9u2zdI0z4qGoWFojNchRIyED0s/XCiR2mjv3WazSeT91M2Pzw+PxzOhZFmmKinKvOKCq0kP80Aonad+WDqnAYTRWfvt5XOaSCgwxCTiqP107o6zNpyzukyqvAogUkoFQ0N/1TDstzeQ0+D8NOvg/Lcvn9blBhMSQ7DOOmettWqelVLWOrMo71+dQgAhFGN8PQOMMa/YREao1gpAkmQ5QtBaDSF4/VhnCEIIQOfcq5LIWOO8xwg5Z0IIEHqrh7FDDKFz91Jlq//wp3887l+UMQAhL0UA4XA95kX5/s33/dyfTqcYUVYWdbbOhPzUNwSh/f5+Xe+MNjY4UITovbIjYSTPKjXPWZJECJvL5cU8IQhA9HVdv9+9lQK/XJ8u15bzZLfe323eaRwFSxzIZjOrUUUYi6LCXFpnNtXmd9//Pi9zPS/R+8v1cj1ffnv4KrgYxi4rk6IoEAbaLErpSU2MMghDBAECiCLglO13+5Tny6h6Puo0GmedczACEqCkTC2zUr3MU+Mm4zghlFKGYOSMx+DH4dpPo9UjijFLCswoCG5VbYu00kYxmTD6amhYlrlp+zOlDFBeFbuq2OVZSjCTCa7KLaEE0wxG5INazBigwyRjTCBEnfUpS7rx8suXL798fviHP/6HdfXGB/j18QkF9OHmHiLofdTGQoQRpoxyToj2qihLRmU7dB5Aa8y1bbupfz49GRNvbt/84fs/cCoApsZFhHAM3vuAXhkPKIqE9/MQI0QIQQgxgfDvHQsIIgzee2sgBAgjpWdjJkH47WZrnRmnnlNd1jUl3AVPIBOM7zb7hMll6g5HmGUZilgIfrxe//rr3651XWQZpamQ/HB+/Pb80LXj6XhhmOYSQIB8BNOyPB6esqzalsUyq6eXI2bj75NUJoECUBRVIiWXWL7QoIPkAkBQpBKiuMyz0TOOHCA6X9SyTBQTAKE2mvzt68+bevO79x+enp8pFjyGqljd3769jWBZhvZ4HJrm6Xo6XE+JSAuRVrnYb6sIwGgYpJBSXFXlpW8eXp5icEVSqUVjynZv1igBw9Abq7rBt9N8vFytD/00t/3fxiUQShHEAEZMMHbwFTYJIAAx+BCcCwhCH0EMAEbAGc+KlYLw15cHq9z74BklxgbrwOBVO3VJIfIspwTNZg4xckSrfM35RDC7396cLwe19MG7uqrLql48bJfjc9uD2BWpQAgCCKdx8s4PXd/P02z0Ks2jD7M1WV5IGBHGJoBL30tOVusqybPb7b4oC+1chGhd16frZVBLniYowrkfl0lRyaqystZYs0zzhAEcxsF6t8zz4zSuivL+zdu6XL+cTr98+3Vfbxnjn7495JLutyuwxQLKnK5kUnrr52VACN9u7hAk/TJSQiECiODtdpeXBr2CSpwTnK63N5yLN3dvmRBaL4texqEDMAIYhUxiiMO0GOUkT/b1nlM66VmDBQNECBMcvxwf2muqzaidlZwvZnHOvW4lO79cm7M1C2OE84xl+Zu3H0/nUz/1MQYPYSQ4hHAd+hXGQopLe2y7rut6TnmEwODwtr6tVitGmBqaYJZVkb/Z5d4Fgql1fnE6+jB00zSNUqSr1Toy4C24dmPTNR+/pwjhGEII3nsfXwFASimlnI8hAu/C69UshPD/F+FighFEmGAIgVoWiIhMUowJQnBZZu+MdxoADAH0PoQQEIYYw1cpDSEMAAhApBAwjGB0MNJmas7n88f9d3W96acRA48SeW7OWSbe3d1VVXUdrhARBHDbti/s2Al+ul5yIVfpAgge5qntmyxLsqwgtCjSvMpKjXDfyEvf6qASIRKeBGfFinJO+6W/DA0IsSYMREAw5ZJSgmlgWVaQSAGCZbnhSQpApAjX1dqBMFpDMLlcLofTsSyyD7fvkiTd7NdFlszz1I+ttm5VbrI0HcbzNLWS8nG4WrPkSeKtD8EnicCMEoIWPS+qR9BJybTTIWqg4On0YnKbSumMdtaE+BoVnqwzAGaccoDiOHURRKUGEGGaFRlnBFMYorcKhrioqRu7VK7227dCcIIgpSxC4KyBECEIIALRg4TnIs0pTQihDmtjjPWGMLZe7yeNkrTkIg/dpWmG6CBDEsMoJWOUQQgFE6nMCARXiAc927FHEBLElmmGaVZkK+DhvGhgoh5VWidSpt5HDLFzPkaPCHYuGmv3We2CuzYdiCDGACICEUQIEMaYIAgBITgCgBCI0ZdZdr+75wy7YOapBx5wJBglVs/j3Cg1rtMSQHS6ntXpsN/foQhTmULglV4CCItZ3m3vo/dfn748nw/DdYw+siQRkiecSUIBl7mQ59NREnI4Ng/PL/d37ziVnIt5noyaGWPrso5OL+OiZ9f2PQIOgajm2ceQr9dKG4pllldVWVKMnTHkz3/56U+/D5tyPS4KQyBpKmQqhIwh9M31cjlOSkWEAaLP7aWj477ebrO195FwhkG8dNfD6YEyHiHMsrLvx9PporV7fjllaYoQyCQp8myap2vXIoCqtOyUVrMjiGLMbNARIsYY0LONUTsbgo8+Bh9iDAhBjDDGkRACQgQARoitdafLVWkVI0pFvt+sL1PHCAEwajd6r2OIygQX0hj8NPbT0F/aFynZu3fvORWIZ+u0dJDNyixqMmZWdpmW5XLtGRWZlLOZ+2ngiJR50Q+jjX5d17c3N6u8csYoM3EpcomstRZ45yyEqErTlBNvImNcYeSsvfQNmOKiRkYIpxxjulntLv2lX+aMppNqevWSlquy3m5221+fvr5czmma7m9uP+xvBAODGj/e/y6n+Xm8Hq7Pp8upm4Z3t/dvbmpOBaFkWAZldF4We54gAKy1mLEiL7jMYgwUIB992x6v15O1RooMExZQMM6EEHab20Unpcij0+PUTuP8HA8IIAj9w+mAPeUMnbsrAuCleUmFvNvdl0mp9KLMzAgjhCMIndUFT/j+phl4ma2qomJCGueqzS5hMhH85fxEMTEhNENflWWalWWxSXh2ePncDefZac4ZI1TQBCOECMQBBG3ZakUZzWUCADhNZ+eRcfbDu+/f3H0ghHjvnHPOWe9c9MEH75yzIYYIwd8J6SCE8MrBhwhBDBAmCNN5mXkEMs19CD54HDGMQKt5Goc0rxCCWjtrDaXEGKWNdt5jgp13CFJnTbBexUXk6R8//rvj4fHx/ESwKNJkMbNVM8FxU5fGm2Pz7LGRklEq05gsy/Ryem7G1hQ5RYiLDERU5DmAUSbpXbUmIbaXl8Px8Xy5BBQRRpRK4+AwzpjieZmmZUIIEYQEIk4vDTilqPRozUVelZsBNAFiisV2veOCab1QIox3lCACYSpTKuhqVd+s9iZYDP35+ggimvVgPRCM62l6uT7GCMui+vbw+XR6XtfrVbVa1Tdplp67C8GMS+a03lZVMw+T0xh5ai3g0Trd9gsG0VurjUYYSS4Q4VlWZ1I6bxgVjJJ27Kz1UibKaWsNCgAAr+bp0p36ZfrTD5siT70z3kNj53lur6cDwLRYbSiTglLGpNUqehAJgT4kSWKdma3dbHfv3/4hEzlnSMokkVnTjL8+PBo9f/fujjG6Wq+TNB/H7uX41E+dsZYQCCNcltlHjzEqs4IgNM4PY9+9NC8iFSEE6y3Br4A8EKMPEOd5+cO7d7dG/af/73+l5O8WZYxf3VURYcgZRRBh9LrQGAhhDsSoVTdc5nmWPPfAn5tG6FmZGUGDCYYArdb16XJpm0uR1ttq22yOiOB1WSzWEBhOp0PbDYsyVbVapZWxziP0cjlOy8AJ50ToZf76+PTb01M3D+lwVWqBEFwuT835aGAsyooh4hZ9OV8mZca567quLtf39zsIIgJwU69FkrjgGKYwAJIJ0TbNPM7aqDc39yZEiJCxxqrlb7/8/K9//fOmXv/uw/c3692pa9qhE0JgxuZpOjfXLJXTRX/69rgq68XqVVpuq20/zKfu9HhqGcWbOt9vVto4KuT99rZrr+1wBRQhggGAMYYQAiIQU2o0DCFGGyllAEDnPcb41REGAUAYznMPgayzvPMoT9IqzwEknCaEsDov8jxlmHTtMNuFUzLOy6IspXxSw+eXz017/eHuDUP03Lanz7+WeVGt6h+//7AYdTg/n5vLYK2nWOYp4nRy1kYPIajLKs9yG/yqqiTnw9RYs1itHl8GG2JRrIwLykxJIjC+k5JGAtuuO51eVmUuJXPWGLNEyyjk3tsIwWpV2/MVY3S32+sYIaIvL88EgT98/OC1W9ebVb2WhHfD6adPf7lcXzbvKqHINAx93zngT9ezYHK33umgr81VUJLlZZomFOMQgnUueE8QUWq4NpcQ/LVt27ZJs4wg5qzRAAzTxCnLklSr6fn8aK3u9eg9AIiDGAMEhLI0SZWZMQSjGs5PL0VSxgCXbBIsWRe1lIlzPpdsm5XX63mKBlNMJSWCU8opZVmWUUSmoS9kiSrgUVTLDGIkEHVjHyA8D93Pn34BCNxsNgQxLxEjlDICEURcbPOkLuq2ux77BiFMCLq9uf3++x/WZQUAMMbE1x9NeG3TYu99iCDGCBFEAL0eAK9Tu9enAKUUQKiUgZglCL76eV6/wVirjErBay8oxAiM0ZehNdZQSiPItF4kyxKR6AUuy7hgVhZVmubPxxcflpQz691laMo0Szm/zpdpHJRWu+qWiSyTtTeu6S8uaBuFsr5IGSEEoJCmWZ6X0eq2b59fHpq2r+sbE9XhcoJoZAhF6Idp0sbkWV4XlTEKeugsWMw02KVYrdflZlNvgHcRIE5SSumyzNZqSlnCRcJZCCHPi7RKUpYQhoexMUZDglfFzgMAITF66btz0N4F8DwfX47nrusQJkVejGMruWAEDWpZtPJGIyEZxYWUEMWECc4EjHExyujFaA1iSGVeFivmAxfCx9hPLYPYGjrPC+ewac7GGeMUJ8RZ8/Xp0+fDF0KZtUt7fZ6WZVY2RnQ9H501nJKnx0OE5O27t7vNbpzaEAHBxMdY1hvJi6pYz7qH2DKGfFCU0pvdneRD2zUTi+f2mqXy7v4+WDNPI+NSBiUwTdL8+Xo4NGeG2X53u6o3iLF0nIqtQJR4AJUxSrsIYQDgVVMBAyiL8s3bNxjCf/1vP4tEz+MSQSAEAwgQhhQzCJE2GgAYnEuEmNXy7fBQZYn1nhKxXd8GGEbdH5uDD25fr0Y/SZ6WIktYMsyTDXbQqpsGG02/DIvxf/32OXpg9Jynxe8//rhKK+d98L5pztro3i7H80UwMS2WM3Kf3TBClR6Px6+//O2v3obLcCUcv92/z2TaLePx1Kzy6uau2u02VS7O5yPEnDMavTN6jlwsaiYQgySVhPI/f/k1TfI//vhHTNnQDdfr8el4PjRtlRYvL0cHYZ6mOIcBhFnPBobr2EYCXER/+/qU8MajcGmaj/dvbjebjKfP1857WxaJkJIR6qypi1Um0sP1iBkF1hl3wQgBD/5OPYsx+EAJxghba1+f869LQQCAaN2s51nPIYZSZFWarPOyrLZCVn3XtZdLdFZu5LLoh5fn/XYbIvzy7QsmLOG8LArGuJBFM8y/fv26qAFEv1vvtqs1onCzLhelFmPPbSswq5OcpaJ4yW7yui5XNgTMSF1XwLmnw9HqOc+ySS2Uy+3urizW5/MTZ+S7D380Xo39qK01TjW9pYwYo6KPeVpTLrtlOJxOv3/3w229O59fiiKv6h1h9OX5G4NeK4UgTZN0XW+CB93UeOdOl8M6KwllaZpkkxCc5zLV0/BtGa137dRjjK/dtSwqmcjgA4gxLzYiqZ2Px+vJWRdccM7O4xR8GIfOQ6Ct4YzLQc7LYJ2+dudBz2+293frnchWmPN56dwyN0PcFu8Ws7Rzt1nd5rLsp4byhGIumfARGqu1dw/taTbqZr3V3jsIUsGCDyEG512EcV1vUiltsM7Yx+eHZZ5sYZ+Pj4+nx4jAtlzf1vd5mhOEX+v10HfTMk+EOwimeeFcyjzrJ1XVu83uRkipjAkhRBBDCABCEOPrsDb+W+s/xPD3KC+hr56A4AN6ZYw7L2KECFHGIEQQwgBi8AECiBD23sXoCcFd116bM0Iwk5leFsopIZhiiCH2Rs9TIzBmACSCuuilJD6g2apoUM6rCucIAWFEWeWEsLwonDVllU92hJjtbu5LLqa5p5SkMnFKTXMXAYZYFitWrzfaKJakDHG7zMip4My8TIQQypgyzlq/rooqyXW0TdciABAmWbUOgJlFIQwYwyHAEAIVCFLiXVjUoswkObuOs3NuU64RpIJlGEsI4TIMw98jMvU8L+uiTijb7W8zkT5dnqzXnCcEp01zuXbXXb2uy4IgGGOw2gY3CyGjdV+/fVNapVmivcecwQiZGqF3y9IrSAgQEPN+mRGmCEWlZ7XErruemotx0Tjz+HRQnWrHAUIsSPJyvjTzpMf5cu3SND/10z/9gTCJjZ6jMy/NCQj+T3/8n+rVZlvstJqdXzBmRV58eP+huXTbuobEmWUk0J0On7UxDqD95m2epA+Hh66ftvlesGpWo8fBO13J5N/9+EcmcohZKsnffh2sDTGGEAOEKITIuNjutoRioxQT1EeXSuG8HaY5kRwA6EOI0QMIvXXLvMhUGGefTs/GZhiiLC3TPKWEYhG/Hb4yBmOMizZpUkYABBcBhG4YmqHVIUYAm+YKIX+eroLxTIgYQz+2DGHK+aRHmUgf/Mvx2M9jkRVpltEZOmelSFPOP3359Mu3hyqtIEBD20/JWBc1ISyR8ofvftzf7bWe5+kSX6f2y4Qxjs6bMC96Jp8ev3rs/tf/5f+qIT0fDrMaN2L/2LfPh0cpRZmXjPNJ6799+/Lh9j4ikKR0XEA7jlkm73c7DAlDzCoz2+XYXIG37/Y3725v3715c+17bRQAUSkTYZznabVaV1WtrZ7ab8H//a9LMIEYxxidd3bRaZK+NmT/rfiDGMG4qOfTUbIkEVJb5c2spnHSJi/1tWkenx9hCPOgynoDMBkmtVmvn16ehkXdrHdSiFVWL+M8jD0h8O3b++/ffff+7nsX/aU9QADqrBJJ+vEuaqWDtX9iv/vDh+9KnipjLl2rrF7UjGP0xi2zSmTy3fvvbvdv1vUN5/J+s1VqziSPkJEA1DJu1zUE0QUDIhKJ2Kw263Ktvfp26s+XUyHLXo2R4xtKpUxVUTEQZeq0DyHGbug5T1JZCJ4/Pj9C/1OWZpKxH96+QwH083QZG05pKtPdattN8/HSPx6vlLG6qvbrDWGMcz6Ozbm5euMF54sx3TCRYfReAwx9cN4Z4C0E4c32blVWf/7809Pp6CP+x+2bHz7+4Xx9/Pr11yovcykpJc3QUCJu9/cR3DkLF7UopSP0kxoYTd/cf3w4fKuLzdv7D8oq63QmC0Zp350XM+U8JTh2Y2+879TCg5vH0UdHEX6zuyllsSwaBJjKZNFDP3UBhlVW4ICuY4coKcuiKMptgFjkSZZHiEL8ezX/e6snRvDqkHAeE0wYdTog8grVxhCCGGMEr9cIACGEGEGIGRMBRACRlOnQNT5ETIj3fpqGJMkADAhHQTmBCMVICdNqdMFTxGBEwVsYjcR8X66fm8P58qytddaMs7uM4u3+jeAVRsA7G1BkglFMfvjwu3fvvtNWC0q0VdfxjBFJRB6MCd5FAKTgjBCG4HVqrXdCoNeEPGd8VGpUI+G8LreUi8VZ7d2iNYRwV9acc0JYLop5aqZ5ABGsViVGQpnRaFuttgCDUV+HeQiQvrl5Z602xlLvnXPLNOh5HKfFhQljXhaF1vOxOd0jiiNWk2rHRgorqIHe52kqGculRDG0fZclJcHcWN20wzguXPKEpwii8/mFE+rUFINtl64qtlW9dhGm0SUimZYRYhqBtzHkSXHtun6ax8Lq6TrNkxDpxYyYsB/e3X96/PLpeFHj1Hz6dLO/vyP10+E4zW03diRJHzcP7dhkiazyNYxBWxegn6cmBnuz3a6KrO1P/9s//3+u14uQsl7vdlsgk2q99ss8E0g/7O6sUwF4nifjNLVdj+aBMxFj1lwu0QcYAYweIQyiJ4QEGH/9/BtC4P729vOXw6TUNI9v3ty8/3D3y6evs4IIIYygVcZGiwjECFd5jaNjlNbVOpEykQJi26eZtaYd26rMBacwBILIa1gLQ5TKCkWkpg5EhEEkMEbvrUfTMlZpMfcqeCsZDzFkaSKSdL/ZRQy+nD4/HA6b+u7H737HuEzKVSIzEPVs1LXvqmJal5uyqETKjV6Wudd6OV5OTa9HpW922+D8OI3WB4IwppjwCP/jP/6H07uLV/bnr5//+uWvxOo329th7IWQ21V9ai/aGUTht8v1drMxTrtg6yJf5WX4+HHopr99+eXl/HTpehiA8S7NKgKYteHaN/MyQwg5p4lI6mpTZcW3rI0gBGcheEUfAx/8qko3dU4o//p4DJN6XdIAEYQQxkX13WSpVzJc2itHYLdaRSKPTT/MU/SARPTt+UCEWJeldf58PZ+ac5EWqyxthmswvm27prnu95v7+7siTZdl7JaubS8EcyeCNTbLs816PQzjZBZorfcGYXRzc8s41Vot88ST69PpAAja7m7rVQWRadrLPM0ehF69GOuX2bZ91419DD547ZyRKykYH8ZuGnoKISaQcrLZbwnh89xbpzBBEOCUZq8ap1ePeV3vfvj+j6dL83A8ZDKVXNZFzjFqp76fh1Va5DLlItmU28joqOZpmuuqur25W9R0PH3r+x4EIITknBvnnQ3aLpzRPC+NVtYrxknwzjizyss/ffz9OM8eEUDAokfnQ1aseEhwjISQ7Vpaq4I3giR5mRdF6bW6Nsemb1cSV5l0232WFsHacbpOaqjLOmVp01z6vrNs0WYZlul4bXo1ljiPwaVc3G33TXc9X8+Eccq4svbL48Pj6Rky8uHmzbvtfltvESGCcxBjKhJRVBhTHwJCr+vYBgAAAQgxAAQxIcFayijV1BoTIRKcE0xiBCGE4EMMMYAYIfQuAAAJwT4C70MMXqSpB9H76Nz8WoakzNThm9G2d+Ptzc3c94vqS5kUSWGN7vrj0/lYJCtMOIigm8du7q1VH27fb9d7DFmWFATDdrhQgijENEmNxgL4EISeZ2VVDP7QnGeltuWWY9w0h2EcKRFZnjZ9s8xzA07DMknGCWaQkFPXjMtYfp8xypV3EEHBOeeCEkYQNlobrZZl7NqLMWZT73bbyrrZO805IQSKgSHENqs9cODzw5emv66yFWPy5fB8PhwXrev1JpXZpOZ//su/mGA2xQssqr7tD6fLpqaWeQj8qkwpAlPXXPurA7jI6klNf/vyteun3bbeVKtCJC6YCAFFSGu1qMFFxwm3RoUIymrlg/NWc0R9gJtqY5L8dG2n0Z7PV4qIi3C2Yz/0ZVn/6Q83t7vNu/v7tutfmmsiGUSIMIajkAi8e/t9kRazGhFGVbkD3k/z0aj5cn1u+tnYBcG99ZHI4qX9xieLcfZ4eFyt1nVRxaKaFhW8BxBwkaZJiQFlkLTX6/Hw+LDoP//0yzJr8HrPgNCDGBDcVPV+Ldv++rGsIsI///orE+/+4//wT5tV3nXNtZkBJDEGiBChCCEYQcxkiqPd1JvNaptKNk/t8+OTj2Gc5yzNdjK3yhDCMYSECUIF1ipGmPB86gfoLSeoKjJMCCJIcg5AnJcBIyQ4S1LJBTfO22BCABhAQXiVZBQhAuP9bvvh7qPRXb3aIEC4TAjBIbp26PSCtZ2/PX9brIsQ9tOQzBxYZ22w0ZN///3vBWWfn79sd9uMS5pWPz8+/vPPf7srs7f7N3W9mucpScS7N7ePpwNQIHivlU4S0St3Ga4YIM5ZVmaUUUooxlQHP5oZ+4RDnEg5aWW92213lKAsy1dF4Z1HEGOMHPAUY4SwhxBjtKr4//l//qfgyOn6/+y6CcIIIYggIggoott673x4vjTDOEHgMaY+Qo+Qsu79za0g5Mvp6dSc/uHD9xGCw+XsfZinYZq6T9++LJOhmKdClFnFELte2kv3+dJdOKJluVbCEtT3y7gL0DpngxvV/HA8UCK2mw0ACQIwS/Lfffx98CECG5x/ODymgs/T2HetRyFNBCV86pZhaIssY5Q23RkghBGzehnUAkm8Wa8zKVd5XqE8EuKDH6fBW79Z35TFGiNgrPEhwBict5lIq7IY5x5iMhs1H0cMwqR0nqSMsXZqZTCrciOTZL2qMcYhehjBte1O15/zJNvvbjhn8zwjAErJr8MVAVymZUyzX77+ovRCIRzn+R6/vd3cEylsBJxSY+Y8KdK0mOZBq8Fota9vQrRD38xxshACCGHwIQZt1NUer5NfYpBEQuDVMvdj+3R4yHA6zmocJ0jA7W67Lot+bBNBGCecUeDtOI3KmnGcKDZKB8HEok2IQPXzr+7TvHTvbt7d376TnLfjFRCWYRoBCK+SBAhfdz0hgiEGAFGEIIJIKGGULgAiCDnjCKIQo7fWOw8AgBhBRAhmnPEYA0YkeG+snpdFJhkXcroMr8hMxlPtolHT/e7ee3t6eQYghswyzAAEvVpccAiLnEvOOIpI63mOXhCxSdeEcoiIta5tewTgJr0fzDCMnTW6zAuEsVd+U9xQxtuxH5als/ann/9qTIwQGacAiHmalUUKMeXJarPZNv3l2+UEQDi2Lw6jVbGFEXnvAADd0FOMrdbWaW0NwkwKxkWCKEIMEQDGsYshZCKDEPfdRc1WTePD09ev8YEiMfTT1I82uP3NfVHknx6/eBBu6r2L8dfnL4e2QTzZbncJp2psl2mag3Nmfmqu6+1bLtKf//Kvn749RIAhCNgDnWoIfSIYJYQLMZsl+hgjvDbPDniA4rD0Sqkiq/KisFZfu+7H7/+0Kk5qWQSX2loCYJ3niIvFTqu8+sN3H6/tdZVn8zJ0c18mUsiVSPO3dx9WWTGPk/ZWLYN3ASBknYcQX/vm+fAy3nfv7t+9v/vO2ng8PGpttLExBsa54CJGqNTUdhfhi4xnMMKxHV6enq/nU9f1X5+Py2K44BAgCKMPIUnEx5vdesVXRdLP4//xv/+H/8v/8t/PRsOIqjTd1cUvn14wIV4ZhDAEgGISvW+GcyJ5wEQ7255O//rTf9UK3r+5pzjJ5QoG7D3CnGEqnFKpKGajn88/KWGO52vCSZLLVVVwSgOEWbJyKB4uB2vcrq4ZYbNatLUBw5Ql3715/3Z7t8pLZfpj+4wwQzRmNF/Vd9G7fhy4ECgAAhen58PxHAB5f//memlWVQmDl0IaGK6qJ5wQ591/+pf/crterdKM5AWMdlOsVZyP4ylNRMQuQJdIHj3o2o4lNARPEEqF7IdunGZC6XbzxkHAmPh49+Y8nXkq/vF3fwCRPR9esizlnK7L1WVoD5cXyRjDZBqHGAImxIVgnX3NAgQItbM5zxAjEYAYQQgRAo8wgBASTChFKWfb8t4FH527tn3ACBJybVsYQzv08zzCAO7WtV2W6OPfHh9+/fYYIyyznDJYrUqI8WhsgPDaT79+fSpkghBjnBHCpmH4l+OLC956v6t32/rGOrdo1XbtOPXzMm3ztTLm2JwIZPF6IRynaUIIIRjEAAQR1d0GHUkzNFImafohhiAwlUxAjEdHIAxcSh9j9B44gzCSjCHB8rwEMGqjQIwhOKsDtMZrlSdpmhb7/Y1Sc99ex6n3ERTlqs7LYextNK3qEGdpUWCKm/bSdd21G9phCi4WaaGXqWlPDLOc8VymmPBXZo5zFiGU5DkiDBLqQBQYp1zMRrvFzWFu53ZdbOpyPYxtjF6pcZ57RjlF/Do249BG52Dwo+m6eWCcN4CpmREEgwnTYta7e0T9dZgEgKs0vymKvhHWSR+DUnOVZAnlMUaacAjoebyezKkuynWRSS6JZFLwVVVxRpWeEi6FSBFAEEAEISTkFQ37+mQMISKEXyM5nApDDITQOUcphRA45yBEr6tBCEJGKWMUAQhCfPWFQYCdDUvQVbFmPAGwDyHGYLfb3TgOykyHl1NzbW73dwCSl8u5GS6fn76mWXq3fUs4W65GIrrJVofjy7/8+c9tO93fvsGEpKLY1vfPx8ffHn5bVdvggjHu07fPIATtxk2+TlPpEw9B6OcBYuKjRhAhRId5srbLs/Tu9l1V1OMyXprLzWrlrbu2Xb3ZC0rGcWrngWKKEMYEOaMBDEW22q4YgBAi2I7XEAOOAkbMqQAoLsv0fP5KUVJlqzzLtHbReE5jud8AAKsihSDc3+7TTEoqIQKn4cIT+acf/nRbb501T2YxQ39/c9ON7b98ffj9H26kSFOZvdndAQCUmh6fD2WV54VEBNlpocoSJLOyplQACCKCWunn5+eiXGV5Lbho2mMqi/f3u/16Pw5NCCG4MKmJy6Sq1otetDfRhQjR3f0bH4OPLhcCISCTjHjQtFdj5ktzPV8vd/u725s3ji2MsHVeTURbb5uh50mx29wB7wEG1jvjXABwWbQNVqlJL2OapmPbtc31rz//9do08zhaY8Zl9iDGCCCAGCFog2R8Ws6ME8azPGFVUSgHUszXdSkxrMoSQwi8iyFghINzzjoAogW6m7XourysFmOEWL2/va2Lytgly8tJjRbYAEkA2PuQ5nnvdZrXRVo9vjzPLkiMIgic4iwty3zdDKcQw/HcMioTGQgkm6ogjG5XdQxxUVpI9vzyCANiAr1cvuxWd1Umn8/f+qm7lW8wgZ7jcfZ5Xr4rq77rAUCU0XboHYvOhX4eyOl83q5363z19fHpRTKAYJaV//6Hj4+nzw8v3yiSWSZsWCDwRSqic8fuSgjJZFJlWUL5NCmCxTTPjLKyrNM0NcRUZSmomBZ97a4Y4zf5LWcExPhyPQtMdquNMjrGiCBCCASIMMYOQCnkbr0BjgKEIogAAIwxhDDGwBhVZnHBV4W822wgQMZYpRRixMNIID5dzn0/Jox/fXxWw4wwhgHvqi0EsK7Kssqb9uqAizB03VDVm3//D/+UZuXL4zcMIoUAeoO9OZ8ebXBSZNcI10XNOb/2nbHGen9pO6fc4Xr+/PQwjfNmXW03q41IiiTxwccYi2qDCC+dtSg6ECWhgnAQvA42LXPqkkUNZVlJkik19MN1WpSPsaq2zlnnRqsUpTiEoJ2fQoA+xOiu3VlwerfeC0KKVSG4XJfrKi+mKb80J+vsNA2ECkhgP7Yuuu1qRQA01lhrz9fLb59/hQjnSbZoJUmSiKQZ28VMb3Y3ZVkzmaRp4byd5hFTrJ1jEAxz9/D0m13U/f4uRr+o6dO3T9FbjgWZp+vYNM21zEoMadePh+u5ykq4BBAMwwRxdnf35vc//GmYRgs0NItfJkNJtE5Nsw2gcYhBxAnlVPA6SdL8t+Pn5+fHXMp8vdqs1gACJmUqMr0s7dKlIsPMI+cYRBjjGKN/xdW/5vFjjCAi9Mp+phhjhJD3nnP+OiqglHgXXh1hhBIA4OtYOASntOKc396+WZYZQJhm+TD23gcIfd9ffvr5rwwREDyCJE2LLKuWpZ8XHQKmmCmlIQAAkTSpL8fj80ujlH05TT/9+nW32/zpx393t78TLPn5l7+U1cvN+jYErxY1LkOvmra9YopnZ4q0WGebf/j9PzgbYowhxNP15JyWCVtcjxVUyqyKwhl8Pl0hJHrScAVB9CAGzgREwDhnvI3BT9PIKQEg+BjLel9nVfQmxNC1l3noPAiD7mBUldxsNxtJJdDu3J1iwGoxD8fPJox1vf7u/ds6Wb1cnxB6iyDdbW8kTwhCRKLVdgVd/PnTb7c3775//wMA8e7+7e3Oa7UMy4wRwRQcr8ff/ttPGLOP7z68vXmTJDJGTAjPihJGeupOXDAAkLWxKDYIQu+Cs9ZoTSnllPFUruq1ZPIyNEY77+N6s6/rHYDRmnnqO2WWRc9W2VkphOJvv/326evX6buFUYJBQCTe3t4E5Q+nx18eP1Wr/dvt/sPd/6C9+3Z4XKx+OD3erDYQhH7sJj1fvvwKNLZKAwBu7+6/Pj0lMKKHYwwxQOgRpADBCIVgs5nOD2eMuXPBIwxR8r/+n/5v0fZtczFKxxC9c6+pgFfAuPcuRB89KrMyFenQokymjNFJTS76uW0RgMp4Z1uZyACjYFjI5J9+96c6rxLOKIHKDRC5AD2APvi5aQ5d3y7KSplt6wqBmImEECKYcB5IWSyqDxC+v/uO8Ph8egzBWje1w9Vaezg8iCTNUlkVBcWriOCXxweWysvQPr0cbrf3jLDoPdnU1cc3bxGhPwnx7flrlufbqkwo0Tp/1OZ4bsaJXC8NADCh8uPbd5PRSptl1pwyzAgjYp71rFSWpiRLRr3Uab3NN8b5y/U0TANAyH5TWt3AAL0PT9cTQIhwQQidxgFiFFGIAGCKyyxZryplACYQQoAhghDEECGE3gcPwbRM+7dv9/Xq2rfeA8FeswRQa80FWuVZzjPBhJBZ8B5CVOX5m91tlqU8YVJyTGiE+NQcPAD7j7sf333PCWqb08v5yCmy3gzTKJjYlWtEWTtd0IKEzCCiWZETIdv2yiRdVRXCqBDiw+3bdb3xxnZTTxnL0lKKnFFZFuUyD6MaOOXOaWddluYB+GXu+2tDCzT2/aW5uhgJwdFbqxdrx+i9jwRBEkOYl5lBPM2jDub5dCiFyLPULLNdJpCV4zQarfSsfIQEm2tzdsETgjjjHDMIwzwPpwj6eZ7tqwKF+QgcANO8XLoOoBgDCADNSjEiAIyX4XrqLxhzWKGEiQ/79wQL6511LiASADieLyEAG3zEIE1SG/A4z/OsAGTz4qzu84Qqbf0883LtnMvKbLOt1fVinLsM02JjMwwI4lqWzdiNRtdFTblQerJ6LrN0U5fJq3o7xnlZjAoAgJfmBED7/l1ys2YYYwig8857/zrbDTEAACBAEKJXdiyCECFECIEQvp4QCEEIoXUWIoQxASD6EGzwQjDrEKMiSRNMSHCeIJxnRfCuuZ6ev35LSXJ3c4+iX5YpOkcRlHkBb+5v97siz2NA1+biA0jyFcK8rnZGWYz58dT0an53/0EtC4yQMPrt8FueZjlPMPAciypbg7g8n591BFmSpVlSZjtBOQRgVgoQtCrXiIRfvv48jE9VWn24effw/Nk4T0FoLk1VnFxYhEjztHDOzMscokfAWWsRQpKLVVFlWeWd01r99POfz6dDlvCIoopTVgos4IqWqcxSipvl5fl0NTpou1innl4e3t6/Hcp6MiqlFGI6O5UXpcTUg7xIkt++fCrr1f/+d/+4LdeX/uyiSyl1FkUIq/UaAPfLt0/HtkGIrnd7wuk4Dd7oNJV5uU7T6vburXdhGsdEphSRSc1a6cXqAEE/joIxScXQtQscxnnolpkxVlZVBM4Y1XRXgrADAFiLCUYx9m3/dDiemn756Zfj+ZynnGX8/f27AN3ilY2REhChHeZm1qqbrtooRPC+qhBEeZ6d2sO16b+//z7nkmImk+Tjx++cMf/tp88IYxABiiAi6KNPpExYqU1/Ol+7bp4m+z/+T/8HicGXb4/zNKlFeRcgRJTjYH29WjNGnXN9O9zu96lkeppwBBiBcR60XrwPVb5ZrbdS8GFohmWACK2qddNdYAAYwj/94R9wCItpj90zBsjY8Dydzk1jbNjebNbrcr/ZLnru+naYhlQW+82bMq9itEWWSykRjlVWYYS+Pn7lJKvWbBhnE71MUpJgiMDL9SWtklJW09DtNzuCCUH4br8nQiSUscnqRSkaUVyMAIRghBHihAsmQ4guEmfs2LXzbDhmNvgQwOl0Pp+vHqB+nhAO5Y8/7Df7r58/y5yhED9/+02pBSC4WW9ShNtLMyzL2I89iudLO0yIIEApDhDbCFAEAISEUaOm07nT8xQD8CBECAEEEQBtXT9MzlvnrIeBcIq5jC6eLy96Uu3YBB8xZmkmOGWLVyHC2SiAo8gSyQQAcbPepiJbtNHw8bm5vL0bvfFJkiVJGpxHKDwfHmRS7uodY2kkIOMVALEuK0zIYqyQIpFstyo/7G99CPv1elPuECat6rV1ZbUJARijEQwoBooxCLEfrouaAIRvbt+3U3s4v/TNkPCEEmyUyvNcllVwYZ6bbriM3Wy02W1vN+ubGM1zezq2F++jjq4ZW+Pmx8tTxjIA8aw1xXiapmBDTbD1vXfhZnfHIO37hhJU5OXpcpnmRVKRr7I3+32EEEcSQSSSgBiSNLPeB+C9VxiRc9O2c3e736dJAglPk5TzdDHLME11vr6/fdt2rZ7MttpgQe/2d4zKp6ev2pqq3tzfvI3WPTdfog8IcGWXpm8KtOJcGsYCIgHT9eZ2OytlZ57IAGAh+WazhtafTk+Hw1NVVsZbYCJCJAToAsiLnGLy+fTl5XK+uf1dmhQQAWPM31mBMcbgo/cx+Aji62oQRAgSDBECEL6+Gq2zGGFM6WsnEb26Jbz13r0ukkYQQASJTIahf3UGDN38cnhJWHpzd1vkBULeWauMej49JozCECRn0UVtlHPGWYco+eH7P7xcT7/+7VcpMkTg4samPW/KMjgDvFn8fLo8G57G6N/s7lXQXw+/zGaEEKeM1XklGIcIM0owxYC+ESzHCH64jZfmqcyyMsvN9vbh+eX5+TgMy2THNOd32/fRqUtzHJ0mmHlrKMECSqP90HbeBkSQMwoBDDyGgRg7muDWH/abam/0LAlr+uNi9Wq13lQ3Wk/z3Cu9DFOLIBiU7jGpqnUeQd9fLSPWW29jnlerzSbjEuOQJmnXXoxVEAORiLLIh6l//+Ydpthbd3+zdmEZxlarJaKCTQ1l8n73UWvV9Rfr5mm2QgjBJYxAMK65fj49qMuhrraM0ePp8NJcAMYvzXW73gpOT/3R+4gge7d7I6i0WsPgV2W5W+05E789fx70TEcAvOWCi4xSB+qMR6cGuzyeHptpQADCCM/nA8YkBAcDyrjcr1YEosXYSassSx+/XSalMCTglRaNA0JQL/Pz8wsi4HQdD88XQdP+2v7083/7z//1PyOIzk3/SrEhlNmgkjzPpRimBgHcnNt/nf/5fn+7LrM6zR9fju04EEKMdaMeIAhaL5exLcoyT3IEQLkqMEWU0Bgt9DgRRXDgculCMM7Ddb3+8cMPaSKZTLbbG2vt+XqGiNXrbSIYghXjUkixWFMVO4Thdexv650k/GZPzl0TAaKJsM4kaf7Dqlq6FllunTlfGkbZ9nZFpCi7SX09Pv3nP//ZzGq7rj1AeZlqa4Fzb252COJL0xirmr5v+l5QiinRxmqlhmUGAC9OUY4fn49KxafHgxqmm/2OILBKck7Scz/gNNPG/fb8eG6umBBlXXTsNU/nQwQYvZI35mV+eDpcuxGEiBACrzNgGH2I86L6YeQCna5njGMikkQWPOWFzQ/XJQCEMXYeXIbufrtdr2ohi/1mr5aJIjJM07eXBxv9uzfvZZL9D3/676ZpGoYeAuCdqfIiy8oYg9KqjLGsa8kZQCi4aK1CkXgPvLN1lmeMT32rEUzTrMgrKdmlb87dua42UuTeB+sHrZa2u1prtVP9cLJKZcVqmse+7xmXWQG6thdc1GW1qTdltYkgnJrHl5fD9dwba0yERX3L0ry/PDTLCCEWVCzOLsN07Dol0eJOyipJmDcuumCARRhIJrWavTUh6ITzssh9UIIiADPl1KgGTpPVqlZOFVpSTCjnhFGtl0v3koiCUSG4kVTmPE04G5fF2ckCE0GAIIIAZqO1tjsmMIveGoDYoJbT2JQoy1dZLWsgtWAyF/tD94QQYohkSUEg0rOhhHLGDaan9nmxFgaUUQkBMNbNarbeKmsNCAQTZQGA2HkzaSV5MhoHMNvu32IiZj3ACAEAIYbgg3fWe/t6EgAIMf77rR+i13cARAg75yCECJPXNTIIAADAeeO9c9YhBJWarTWUMu99BABCOC/TNC3W+a+P36JziWSrYh2hn/WkOeEQUMupTJ0PRhsC4TR2V5KIJDsNrTA6yamE2TC1f/vtr2VR1HXV+CagwDiJEU5Te2jPL+fLtR2iC5fiojdzus68M+3U++AhId5TEGkmhGY8EXzSs7Xhw9vvVsV6michxK7clkI0l8OpPbIsW+U1BLDrmq4bJePDuDTjtUizVV6+f/tWadW2l2Hq01W5Xb9ZZ+tlvgZvA0JZsb1dv9tkddcdta0DgD4skop1SRCmRZJjgq/teYJB5rlI0hXn09hPUwNRZFhusmJSo57GuqhymQrBUsk4hwQjgnHfN1yIzXYHgB+mFiB0S98jBJUa5nkBADJM8zRjiHpvU24jjBDjMsmdMyHGl77rp6kow6LmEAiMURuTSC6EjBAqqz0wgYRqVb7Z7LOShxiGqY3Rh+idd/04fgMh49I6OwwdQXBZFgTw0+mQJOk8qcOlm9UMw0/rqhRCEiHjFMdhUNr+HUQG4qvjV6nl8XwY5+HYNMukY8rHef7nv/7ln3/6VXB+7Ubj3WJ0BBhD6EOUiRyn6+U4oAj8BtV5/rL0D+ejNmFdbwXnyzL9fPzWtr1MswABwOSv809vtrcZIZwCKSiAaJgcR2x2mnMRAQktqus6F4n1rl/a7XpdpEWeli4CiKPWC8SsKBKKMYA6UjHMF2vtomaWMeBctPY6TuPEQIxpmlGMDmN/ujZqccq6c9sMeiKTWa5j++3xQSkLAJ50/PRwlBe6328oFsGFGINZNGdJkcFxnpS2KISn8xFBMKnF+BBikIAdTofrpbGL4ZSIftwU5TSrRqvfDs8vnK9l4X3EiMYYF61wgCiS16hXiNEFjxA6t/1ff/tmrXsNfGKEEUIu2Bii83bs+0VBDAAKsCrcPCnOCKP0bnv3Hft47trD+cIIUcpobcpSlEXpjDLGvnTNLw8PCRfbev/rw8P9fv+7D98P4xBjDAFeh+urkWxSOk0T45w2i8AMIjTOg1pmynnbN0B7QljbDyCYRLi5b5vm2PYd43K/2Zd5YZyGiDjrrPFt22o/xuAFE4zicegQAG/3txQRrZS1LiuKRCYYCYjBuKTrcstxYY3erraccMzI7Xr/28Nv1i55XgZnX/qLtn6OmiIRXGymnmCcJmmIQDLGhVBGQ+QoI4tZ2uk6Lr0PMWXJqEySrm/qW2XUz1/+Zo3++Pad4IRTtig3qgkguq03pU8Fl7NamuaqtN6v7zgXc+yfTk/KqlPTqslgAniGLqcjIXI0erNaaTNf2heKIpe4rla78j4tMhyjVpNSU5amVb7xzgshIaOzHRPO96vd+XLq+i6T6c3tbRSgHadT39Np2Zf7Ks/spJ23nIs3t99pSLJqtZjFGCOoCDEE75131lnv/OthAADABP9bzwchjCFEhBClVARACuGci/82M/DOG2MxNgBG58yyLEII5yyCMAafyuTN3d3nL79dmsYa17Sh7cYkTYaxRTCuijyEMBt/bXqtlu+/e1+kozWH7eb23//pT3/56V/nCTFBlmUC3jFOZMI2xSoXmRCCELxMcyLkf/j9f7c/HI7N0dr4cj3rEKVIlNZKTQG4ACjnqTEzhsEY3euZUv7u7t2RPb207nb/bleun16+/frl86peb/Pt/WYHQUwpTmWxqjbPh29fHn/lJA4w9PM8mMng+Pbtd+/ffZSEazV772J0Oc+/u5WCZdooSrhMKghR2x0OxxdOGMIUuJAmgmIEAIoOUEhn3Z1Oh3mZGTuuV/tFL/3c71a3q7qOOCaQztYiEFGMal4SmSSZlILqJUIAT9dnDDAnbJoW78M0jX0/7ndWytRaY4wqs9XrGIQi9ubmA5Xppbls6vUyN16PqyTflVJQDp11NCa5bIbjeTgjglPJ8kxAELJk/fX48PxwgAib4MZpWWVZdC5PpOQpWctr14VArEEE8iLNX6vWZRwyEDOEQzDjOGnrIfx7azFE5GOoqkpK0U9NmdX7OqEUv7m5A8F9ePsegDAMihAMAaAExwAYT0SahhdwbMb3N/u6LBetD9311+dvSVZkeVEXOYb2y8t86foayQ/3d5uyfDo/D+O4DFch6G57J3jitQ7eYwy54M7B/eYmkcmymMlNCfJt1zDURx8iBBADzlKZFs67prmY4CWjWikMMIJYeauHeZnmr0+Ps563df3dmw/BYm0j4ck64dmsxjQ5N1cym/l6OY3d9X5dr6s1pfzS9f3Yd4MKMR7Pz1ZrQtiqqou00NrNzmujrTIQgF4r63yeJnmSpJx7G0UuCSedGpXThJBhmNU4R+duq/XdeiMxBRRSxrQiajJVtboOkwcYQYwxZZhRxCOEDBIY49/Jji5AADBG69WqXwalTExQ188A9EXK69U6SwvJknaYOWG7uqYIQAQ555xzwSkGMBUiSxKj1DJN0zSeLyTjwjgnpNjVO7Uozhmh7Mcf/oAgHpbx4dunZeggBg+nI4L0w90b5dTnLw/WegdskYlhGc1imr7LmLy9vX0+PI59Z70TImWMcy4Z42oYpcyTJPMghACzJPXWIwA4YwjjRMgiy5fZOWsTkeSyJphZq2WaZmmqzUIJMca1Q/9+vU9lepn6d3db7PCu3C56+fnhEwHhd7e3t+stxRhATFgCMO668+XyFKIvswojnDKhgB7GsS7tpAZrlkTICLwPLpGFsIlFsa5qQYSbtVb6+Xg+vDxLLu/3HyCMi9JtP/RLn8jk/fbdrJrHw4GTNEtzQuiPbz9qq4Zpatg1Ij2ObUb6jIp2OF3b4zyN67Le3bxJhAQAZjK7295QhNflBgH05J2yOoJQr2vIKcS8adpv81cUImOUUMw5e3P7nuUripBaFowxehVzgBhB8N5ZZ8K/jXQRBACCGCPGiDH696EwoTEGKaVW6jVn/npIWGs5DxC/CgMoBGBZJmN1ykUILpVJmaWcYJEW0zx2fTcts3GOUQKxEAKbOIeIIiLLYsdevXm3WWf5x5v76/GbUloKua1XRSI5FZhRQKplVJfZlmWFESrLepXsElpuNtvD8ThOilJFiEAQUyIBCAEjAKJzBiAfY0yzdJrmc3PMkqwoKwLR1LUvz8dxXN7cFcCFw8u3UXfe6e36NmIQMSqr1awHpbUNsMhX63pXpEUiMzXNCIZhaOZ54lzmRfHy8qy1QZSYrkWIhqg+HR6v10Zr9/377//H/90/IYwP5+e2HTblhlISEbLOWTth2F3GRlm9qXbn64uLoeCyG/thGFEAlEmL3W9ffpOMr8sd4QIDEnzwIFTlihJurFnmWTCRp0UIfp7HGINalnmeU5mtsuIPH37XlKdh6jV0nliGScEzjJH3wUaDYIjex+itna1dhmVGMSCM1DK2TesCqeqyEIUkIkAHLZJpfnPzNku6bw+Pox7WZYWRk5LmaXYd226Z17nhED0cDovSEUAYI0Aohogg2K9X61UekM7lmkDKOf/xw0dK8HpVj0t3vVwRiAwzSolV3oVIhSAEp2X68eO7lBEuGCb4tAzHa4MRBEgfLs/XsVsV6ce7/cf7m2EeBOHRhlmrw/VgIni7vTdaq2U2Eb5c2zzN8qyQXHjry2xVZaWe9bm7LmbWTss0rat9VSJCeTfPzdjt69U0LTAgDjCFGFI2hRBCGJUqQpiUKrNqU+/7eY7WSkb3ydY4TR6en501nAmKMCHYRntzt8nn/OnlNC2m642zDmGv3VVwGhGkjHtrOSYgBAIA4yJjnCKY5ylGFAWQJYkNQFlbZeXv7n/8dHj4/PKVEHCzWRFGJruU5epwUo/jizHGeU+YABC7CBghwFnJWCoSCMdXRnQIrzJavy6rvCzmaSKYDWpa1OKCtzF+eX7pxlk7s1+tU8HSTJR5va1rznl7PfddA2NYSWkYfbmceIwFF9emicF3bSxkuSpW1s0UgyIvAcSU4gPEX58PhOB50e1wji5OTnkfJGUeuHVZUMwf2vPDy/F39+8ZT87Xc9tfUpkZ4zabmyKvpmnKsyqRGRfpYmchM++csx5x+tJcIUaUUGddIosIIkRgVVZSpOfLQS+jc/bQHod5EJyXaRFCDCEmVDJE39zfcMzRjBin1mitJmNzpQIjbFWsKJdquOSCrVa7PF8btUAUEMVNNzy9PMTg7usNJoRgXBS5TGTqM4BBkSZ2MefmeLO+v6+3KYiICQhB9IEhttvsK58Hp2tRf7ugX0+PGIQqlYxSQWmaZ2hsN2kFsHUu+ODaafnPf/4vzfWUJ0lwnotMpo5gChAWXHJInQ3a+2bsAojj0GeFWFd1lq8klw+fv56bZ0q5NCVnaaBJXnOj5xAcE2mI0Png/SsM1Dtn/y0p/vfKjhEmhDIWIIAYYSGFcw4hzIV4NQG8QtEBAABAjAlnbJpGAEAE0RiVCrFbb7Scz9dHyNHHdx+Cd1ab4OzT02cA4Lv7HwCM1/aCIDg3F8LQfn/rvPvp538dxz74GEN0xkMABSVSyCQtwuBUVN7Fr1+ftnWxrzdCSA+0nRZCoUhkkiacMgAhAhBiCCnxAYxjDxAlSFLECHHN3DwenwXjMcTD87HtZ8YpBEAQcbh8uYwvZZ4eL4/duKxXt5vVpu+AtyHjifHRGHfq+2FRZZppMy/DqLUWmX26vFwuL4nIEASA4CpfuWABxtrHftG90jrEvm9/+fxlGNrz6bkoV5v1epXmhPAsqwCFs55B9H/7+pvgEq3vIuGcpXrSQ6+bS//l/HW7qoOGXHCWJNEHAI1zyqg5SytZVxAiiCKCKMQQnYMQMsExBcty8ZZh4Darkgl3bo6v2yDGO4o5htCoxVuLMWaMEwhJRN08nNtzNy/9vCAsU5bUSemdM8YFSLSnDlDOUmftqW8vXXMdnngi+2kYxnHUC4Xk7XanrTXWE8Q8sABgACNmKM8FE7CiecFzHGiRl1KQ9vrCoE0ZkoIgCEGEFFEHrQ/AA8AF++G7N9ttVeelsyoVqJvLiMCu2nDO0rxI0xJHpPXw109/XbRelMOb+1xyM9iu71OazvM89P3kvbJe+kAQYZgjBgmnGFOrtEgKwHh7fh6bqzIuALJe3ZTVarJKWfNweO5HPc12v95gihFlP3z/4x8pT7NEzTMkuMhLgIhzNpVcL8sff/w9uXZdcNEbBwHotW36vqqK3WbHhejHBQCQytQ5uywzxMl2u8kFP52e26FZr+oy99Z7xggn2AcjU5HgrE6rpMj7eaIIp0X6htxfhvM0j0ktWcq76yAYstZqrb01mDAiEuetj4FgpIzRw6Stec37OOdDAAiCEKNxOhKMGXEgBAgChJd+uA4dgohSvlmt3799c3t3w7gkhEx6WPRo9OK80c5a6613q7KUUkSEIcbzYBLGgbcAuBhscEGN1joPIrqt19+y8nA91XVFBEUEViJLqKhXpXVKcGGdNzZ4A9p+fHh+BAxQQrN0tVqtAwzt1Ck9I0SPbUfw3Kvh/S2OMTDMBM8m89gNLYbQhrBdu1ykRtmv8yeMiVITgjAArIxJRf6PP/zD2HcgvHoWE62V9wYxxjlJJO+c+enLl8fzkSJc5ytnrRS87U82mHbsIBVqngUjZVqUxU03tQ/fPjvrRAKjNUPXOG1C9DjEx4cvBBEKAQ6+zJNoBcTM6U5Isatr60Ov7OSWQ/M0m4kC6L25XI4U474b61V1e3NDCY4RLcvwOD9iTLthmlXgJEDC+3F8Ob1kUmZZgQi10Rs9QoA5y8d5kDKHCGMo1ahIBOuypAgvxjAXpmlMagmjDRESSiMAMfoQXIx/lwFEF7wxMQYI0Cu0GWGEMaKMeu8AAoSQAAKEgQsa/04KhQhhhNArzZ1SJoS01jIqFjTHCAilxWb7MX4/K73f7Pv+fBhPRuvNdgMBkAmSTPqwALh99/b27uYeQ/rffvnL6fCSJ0mW5VSwNMlBAIfjsa5hvbqp0k3Gi9OlWbRL05RjXFf5pK96me63W+XcX3/5c5plggnJkyRJo0URwjTJMIbXaUocsC4cL83xdFxlBUYYEZanyAWnlfaJBiG219GYUOawzEi06nC9NE0jWVJv0u1mq40nY6/naRgniFEkgiFeV1sbNWMMOOvt4gKA0Rm1SErXRVUV+brKrteTd4bzxBkbgrNWNW2jKEdgnq3tlqnIihDhte3Wa8wFT1gOAYx+RNgvAexWd3maESrnZe7mAcRQFNm1OXsPvnuXpiLXVjdDa6yFMWQiYyAFMPb9y/PzZ4CAZFmeVBEGgTPn7DC2BAsiBMAEICpYmvOUYgoZIYiPl+VwHZQNDmAEjDHGGocRXrS/DmeLSFpUWmtEmBB80iNmWAoupLjP8//60788H182MpsmFWOAMHofMY4BAkppRLEqqzWjbWeq1Wa/rbVbns7f1KR89AHEiCGkOGIYQkAgDP1ACb3d7rIsy/NcjX5ZvLbu7e7m/f17EKJk2bTM354ex36MGNrgrTESMwYqEvHpcpGQZ5LDIjd9t1tVUiTGWE5DnmSABO0VwoRTDhz57v33So2SJU7rZRwgRpLT4/Vw6q5aQRBPytlVubq5vYEQ4YgEI31vEpkjAlMvsrRmlEVtj5dH8uHde2/dy/G4LBpCAiJqmnGezbVprA/nawshyoSoqrxMkg/7m3WRRbM4a+7W+9no2VlGUYyGQkAhyGUGADpdr1ywoswBApyQ/Xp3ac5kGIuyFDdsHJT3nhBitOJZYmOMwPtgx3G6vd0JnjyeOgABhCCEiABCAFBMEsHysnLBIwiZIptq7b07NsdNWX7/9vtVvUkFFpwkMp/Ncrqc7KLo684jgHmeA4QAgMusuCBFuXp6OahpoJRggkhk3rhp6bpxQAhTzH734TuIwKSGIpOZTAhEVVFlMhnGeG4up663IVKM52We7UIwwgQOQye4sDB8fvwStf3uze+Uh0rNTPBNvY8gDmM7T621y+l8TLhc726asZvHHiLYTF3bNnVZltmKUcoFL9PaOX1B4enw1E/9br2+udlOytjoGYNVLjnBDNJL3x+Hdhh017Z3t1vBibFOuw5zQSHGmEJMAuJlVh2ZODaHGiNt1HQ8vL1562MkDAsuvQvzrD+NX/fbldZLyhPg7DAhziUipG3PwzxgRCHwRSL7fjp77VxImLKLUsuyu7t/d/ORs/Lnr5+dHdMklYTebLdFWSUkBcEfjs/64UuSrsqiXq3KPC/+VPzjvCwAREqoc/rw/CWJeLt/Hwj9fHx8fHlmBBe7/TJPACAhc0pAiP4VGOi8c846Z4N3EcRXspv3/lUAQCh2wQIIKOMBhhACIRTiv9/94ytZKnoAmfceI2QBQJBIkUAMF7VEZ6xdEITzND69PPTT9c3u/b66vQ7HeRmd1e14ZYzfbPZlmhlj6rqqi1WRZu10fbmcUp46PR+vI2Jp37eY03W9pVzsdjcouoDwqJVyjsukHfrn01E7Paq2rmrvzWxMRNhFC32cx5lIJtOKEvHdxz9u1/dD1/V9l6UpSqC2JkSwGEOYgJBe20Ww6unhAWAICD53FxxIN02bZQ4xIMIwQpyK9Wrjg0EQlnkJIThR/PzwqR06hKh1lnHGEaUYFpnc1UUm5PU61eVqXVTA6VW9cjEapbthfPj2KRKc5vmwjIRi4N21vSQyjcHv9jvJk+ji+XohnNb1elnG4+XbqTlQcZekWZIUgvPoQyaSZVkIJxHEXo0wgmDtMFxm1fsALAMoMsb5NCgqWFnkuawCgD5GmRbVyt0pgyj2CF+6XlnHkjQlPJXi88u3U98GDzarDUSMUCcYXcaOCfHh7du/fbOYgt/t3kcIq/z2D9/9Yb3d/PLz3yCIizYxRggBQn9fPccAXtrmpVlVRXV7e//xzTu9jA9PT9d+4IQmaQIihABChABGEQCrVfSRYA4CXKb56p0a+69Pz79+/na/u9mudiHEVVFzJkBA9J48HZ4uY7/N13VZUcoymSac1vU6EezaXzFB0RtKMudDAIEwSghQy0gRA9FxivOscFkFrD9OL5fmTAg7d4d+viYJS7m429zKVOZFCWNclpkRPLz042zud+9HM2CCpqkdAeKAPp+fSZHJ4IMPq6GfrQ6MMOc9wgRiDCGJhF6bpsiy3WYrKDLL/LRM3bzc3dwnaTYbfbuut5t1P1x9NFW5ymRx6Ybj5azUzH784/339843ylgf8DjOBOKb/VbNlgrhQwzhdfzjQwwBwSQReSIgZEwKiIbXXA+AMAKAECKYxBi8s0WWb8sKI44JoRTc7ve/++GPLphluj6/vCRJDwG9nq7TNGqlKWd5mu1lIgjJkjIUsJ8770Ii0iJPkiyFEGBMsKAuAO4D45wQRkUiJW/6Uz/3q6KCCDPGy6wSnF+7PgTgYoQMN9NILmSzLylVAJrr5aU3+svDAwawrjb1amdc1s9n5w2n8vH46Jc+OA8wGdTyMS1DcA+HrxCCVKTramf0vIxDnhdUSgi9EIxSXlYrIhnFJJWJkGnfts67VVbUGZZMJEW1fP5abzYMxYAQZUmIOBBICK3K0mv39fkZM1lnGU8EobTpxsnMHoY/pAVL0tPhuSoKT9C0vNho1mBV5qVZ9Ow1g1zrtu1bLmWd1RHEp3OnjW66LkuS1XpNobxO+tw/NdMSLK7KimGgJlVXJSckhjhPc1ZkMaJrP0zL8iFfp2kCISaMUyryckMwwS7880//2//9//WfBBb/8X/+jx/evD0v4/PL46wmPU4QUCYSAOC/pXeBD94566z13voQgn8t8a8TYIwQRgBj5EMIlCISafCREEYJjQB4ECkAIUTvPXYuUhqiU2okmCdJqvUIMByn4fH5W4Dw8/zl+fD4w3c/3O/fdmPz9fLgZjeNw6Lnd2/ejXp2wRNC1qtNwlOKEE84ojxaT6pVu8zt0B+bQ15lGAMueIaE1xYL4a2rZaooe7w2t7ubREiEYAyRUAowQYhcuiFGgAly1tkQbvb3FNOwM0/PDzLLqzxrjhfVWeNiJCx6nYt8lYub9b7tHh9engGiIETkaftiH47nPJOcs029Wd2+IwQTxOap//W3Qzf0Sk3Xy/m3lwNn+P52u9vs7+8+bLe66Q9pktzfvE1E3o1XiAJHlfchE2yKCI4zQMR6b71xcUkSIQjrh27QU5bkN/Uq4dIoy2SCKCYQb1ZrIcJffjn3U7PKtyBEo8YQ47WzwaP19hZRbKKlWLAIEbRZVnKWeBeMdT4ELgsQgtWBFsxaRylllBzPJ4JZ8PFyGcpqu1rvumUkiMAQlNNGu3Jd7zd7b3ylFQweRH+7rl1wBOHd7u27+7fnphO8LPPqHz7+kQe09P2iNfi7jPzf7p0YAhgPhyNC5Pvvs6enr5fzyXktk2wc+2EZummIAATvjZowisZ4mZQeht8+fdrXVb0thqVHlGAElV6+fPuKEUmkBDFKxqTgH97dbZZVzvNEiJ8//Q0T8N3tD7dvvuunq7T6lvNxmRnHdlIxGhidXuw8TWVOYgBaGU4TRFgAflLL4uY3t2+EElnMMEAwYIA89E5PnTF4vaqRd+Oki6JCENhgkA96Uf08JyK5zjMxeqGEUUK8s8MwBe8Eofv1Zrde9+OcJRl6++Z+u11V5ePzw+PpRXD27u7tbrU6tWdEEIE44ckyT+fjBQdCozydTv3QIQgen5/e372tV9X97R1nzfV6XrS6NM3hfFbGvw7urHUBEgBhQtmP339Y18XLufXQQwRfz4fXq5s25npt1hjLlFOGGWcxQsqxzESSygjcOLcQehf9569fOEm4ELv1NsSovSOUMCGi9017MiAqq9bFJpUJBGHsB+c1pVwmhUxyzjlCEFEW0sAZgdRHEkUiQUScCY5pVWfeOc6TCBEVcln0tTlwzqy1TdsjDy0mCFKlVdMdb3a3d7fvf/s6vxy/YEh//fRb8H5XrwGA3tvoDcI4QlJVa8mShPGffvnzy+FzmRY3d+8ISSRh1Wqf5RsIArDamRmisF6t5klj6pM0984XkP/hR1EXWSGFd0aQ1Gfu6fL0cjo67wSThPFu7KK31tl6VWjtbRcAAjbESiaztX/+/KmuNm/v342qvXSNYmQZlQMwzzPvzbSMKYDCQ23UNC8BgizPBWH7aoMQ+/8x9R/NsiTpmSao1Dhxzg69LEhGJAFQQFU1ZLqX3etezV+dkZGRbqmWaqAAZCYyg116qHN340S5zuIEROYH+M5cTe373vd5fjx84kLmvM1ZNx/PFqPJYjwTViBMgbUY2afj9qf3v1CMbm9ury9u0zgljh9GCcLIGA0teDyt/8fPPzjx+M3lqyBMAte7mM4V7zTnmnPtSaMtJRQAYCyAFlltlJTGaGuMNRoAo40yhhirf90EYIwQVEoFPkKOq7UxBhBKX5TTLxToX5cISgjRN3Xpe3EYh1LhF7sM1MghJEoioFHip53sj1V2zquBN5hPLn3XmYwmnudKLRpWIei8PKbK6CRNfOqVVZmmw7o6t6Kn0qVcQqkQ4LPhFGHSd+Vm/fS0eVpdXLy9fdd1fVYWTPKOdVo148EUG3vM8iiMZuPJajweRqFRSkF8fbUc1gGUgldAGcehmEDoYCcKE4yglYx1nZHGWBXFwdX8qipZWZa+Qy0yFhoATctaAFVRVfvT8WH9JJUiGPt+GIWO53gY4IvFdRD4m2Mc+kkSj+bzi322/vDpJ2nteDgpq/zTw0OajiCgAXEiLwLEJskAKNt0HXa8y9XtZDTp2sYAFYSe47iiZ0150pyFQSA4h6HVktWKG22OdePF44njuBQDYEXfB0E8Gc6E0sDinjEDONB6NVlpxeqqyrNT27V+4AVhBJCJ0rCqamO1Q93L6cIAU9aNNdbHVFsY+oGPHOBb2oKizA0IXMftmz7yfQqJ5jL2Qkjs4bSuy8xa3XDe9uLlU/IleKK09j3v7as3r1aLm8tLIXlRnihCg2BorPlQ1l3fh0EAgYXWaCU914EIOZ6vbMtlIyRvmxpCC6EZjQajdMB6XvEqr6Dve4PIt8DxXMcqkYnscNTbU/79998tlq+H42nZZoTSaTLnip/LgwUKQZWfj1xKgCBApda273hRVulgPExTSqlGJgqjMLo+5icMUF0UWlrfIUJxAFFTnaw0PnEcjLuukKwr8yzw4jieWKBrzggCJPYiDIiHnVHUlV1Xtm3LmjCKwsCTSr66vBiEYdt1CEJC3d989dXtxe35dKy68qubV0KZuumkAkXZ1XVbtfxcNVIp6uCyqT59+XR9eTlKk/l4/tOHX5qmPJzPWVkAHVqpX/6uBkAAIUYwSSLogCgNxsN0+5xrY/7jox1AgCGAksvlfDZIE+IGdV3VXRmF0Xg4M1oJ3kdhkMYzznDgepSQwPOGw1HFGmnlYDAGGpyLY13myNokihln6+22qWuC4HS2nEyvB4NJ2xV1nRljXeoaz0ttHEchIV7PRd/zqms3uw0XLPDc1ep6MpwAoD5+/kmYHiNS10ILRakX+JGSOjs32/BOG+khx1LkEH8+nO+zE4R4FA2Hw7HkvGgLbME0GTmu50C6WlxbaRyItVBWaAkEJK5DvKLMqyxTmuV17rrOcrG6mi9dx1dS1Q8fleh4D900tZgi4FLHbbq2auqub2ez1eXyipy3bc9cSijxbeJMphMtRceapvWiOPDDwKehQ0kvyqwuOoo85GLqWmSFMJPZMnADn/qM81b11PUmt1MrARd9XefayOFo/M1XX82moyD0RuGkKcvN44/T4Wo0GB0Om//xpz//+ceff/f1N7//7Xg0nDu+x1h/Om0hshAij3pSqX/43T+M49QlQHOWnfaSMR+7GW+3x12i4GBEo1gRCPV/HNvWGGuNNhIAYK15WesarY2xFtgXF5gxGiIDITTGvrCPXoSuLxUwY4xSUiskOCvK3BoYRiEGUDDRVI1Lg+FgvJxen4rzz59/+PD0YT6+fHP9G8FY4DqR57K+dygJfL9nTV1nqus8Nzie98cim03m0JrpMB0PwqzKhsP5anr74ctPZX123SD0Q4BwyRjxIoK9f//5B2iB6wdM8c1+iyBxaUAx8Ty/6zl1PC1lmR+UERhhgBG2UnZl12cGWeo4EGgh+PN+lxe5Q0jXVYDgQZL2rO/a8nI6mw1jjdGuzI/FERE8HIwRQr4XrJaroql2p8N0NP1+Ngx8t21aY6BDHYd6vpekycRYYICJ4iROB9h6w+Gs7fooTI2FAKJhPLAKz6cLqPjz7llyOUomgyA0QgEDEMLGKMWMQ/F2vznnWc+s0dbEhrpUSMGFsAT5YUgR1lIK0XZNpVnBJT8UGYKu73kAmSiIEcK9MVXXgrbZH3fUgePxyPWcui8qVud5NYxGgqtTcWj7bjlbXkyvetHvD/tM8ovVxevV5c6lBWOMtV1bS8FqpQCQCFimRF+lxtqqOZdVzvoeWAiAhRBCZC2w6XAwm01W89VsMj/mzw6GCDuEuKEfvLrWp3xbVRpDiBAgmCAEMUY9554Lecs+Pt3HnnOxnHHBLmbjJIzzsnI9DBFJgjBwcF4WVWOVghjTQZrevn67XK2oQ7VoXWL3bdZJsZovbGkBNEryyXDg+pEGNs92CJIoSh83d43k1KGdaKURXFSe7zjYSeOR7qUwPXFox2qg9NNhk1f95eJCmhMmSEqRlcX1xauL8bTu6iAKSVOJwNFWqXGS3qwuGO+Lpt2cTseyABhBB0ggz3WVeuEgSsuubPt6n+0+3n/WVt9c3RqM2qZBkLy5fHMsjr1QYeBzxaWSCIKur592T9T1Qi8aJpFgbVlXhHiSWQR+ndtigKxWEFgADcZumoZhFFgCLLdGKwgRwkhbCwnqRbs9H5CD51ESB0mZlxADa81m/9S0FdTj2Xg5Gc8dx63Lui4LiJHnOx5ykjCSyuKqYlw2dWGUKJqSCT4dTIAmbc/rtkziKI5iZSTrur6rrJFNWWqrkzidDWdoROuyyI5HC+ByfjEajl0X3T88CcmFVFz0TSMFV6ppmr4HFnBrPj08N70I3LAX3GpY1y0AJvSd15OV4/pS9p8/fY6jqB1NkR0iam8vbsbB4On5YX84OI6/WK4wpkpZBJHQpqi6omKTic+YLMpSijMEQAtDgdvUzR7vxvHQQvX0vOEtW44WcTKcTy6AAZEfQou6RiLqWAhfCHQKWmShESqKAoxh3zUQaN8hfde7oeu6ZD5ehMGQi9YY5bthEKc1a4zR726/cmlUFoePd3+9WI4mw+tpOpmnw040XVcqw12IFetPp9PHu8e+Vz23f/149/r6zXK2ZJLlxZEAaIE10A7DdBYPha/7tjoUWdu0AKNhOhwPFlzCw+kMcTSZrqSQGGEArDZaGw0AANZAa9GvuHAAILDA9qyTUmLsYYwtMEorz/OMVkqJX/PEwBprrDEvzAgAAMaEIIoQUkqxnvG2hZYaBb/c3zGmksEoSZN6fa7rYrFc+tOx6vqi3Nd147puFITY0r5mjWyVPUotrbLr/fpqceF7zpf1U8vElHXHfMu7PnE8oLjgUPTd9fJ2MJp0TQOR5/l+GPpFmfNeMCGyspiOp6tZwoSS0m63G2s1N/zFP+UAsIyGcRTf75/KovScwqG+7/p4QhFACJGyq+q2dQwumx7YnBv5+vrV0vFOxTlvirJvrlZXy+FESbGaTwdRlKQxsCL0wsgbFDXDNMiboqxqgh3laQ0CoVoDVNXkCOIkGo0n4ng6K6V/eP8xDsN/jKK2Kaummw5myMDj6WAR4IIP4zkk5Fhsm67+8Pl9UTZpMpwNRhi7EHvYAK5ba6EWfVXtHYQwMMfj4anpRukAGOPHnu97XV9ywXrWGgNXF6+NVVXXctk8H5+b8qwtvr58MwlGYRhKYdLhoBR5yTNkqWvpOJ2sT9sf3v+SuCFAADn0cffUdS2CII5Cl1ArtI9x5IZVnWMtJG8YlwAirV/umxACHMdRz1ineM2q/X7/5eFRWzIZTK4ursbjhes5n78crAUWQYixUtoB1nMwFKJpO2NMFLhxkozdMcFUC+E7xALNFM9r1SPcM+b5AXbozerVdDrikpXlUSlxdDBFkPc97ztsFDLAo8F6v1cWXq0cgonjuMYAgrDrBn4QY+LsT4djeRqk4ykaGmCLJj/m+7pu/bpRqvdd1HccQGIAfllq1k0llanafqpE09UO8si///wTBnAyGb57ddMzZqwMA+/mch7HPvV83w1d6n/8ctc3Z2kU1/z5sHve7Y/Z+Zuvv6VRKK0aeTPpyygc9EYrqyww2EALvflwOgzDhjECoTKaEuI4bs8ERgGA1oJf72iIIKstsJZgvJwuCQ3/6d9/UcAQC4y1GFhjrJaKIJhEPhe861sALAKQ9bKsM4JgVhUQWCW0MsYPQkpcY4Cw+pRndVs6HiWASm1P+bHnbckrdqqKIl/OVlerK6kgE+J83ipejkdThByt5dNm2zZNVZz7vhmP0tsbnSQDY7U20nGdMPAoBlVTS4CiwQwB8unzl7ouwyDAGDIheC+8eLCcT6PAf3x6OuXlYJASgn1F2qI8a4yp17Ku6xXriiTcpEnvuM5kNK1Ze795cgjGjkudAGNqdOcROpvMfS+8uXrjePCc7apDl5fVcrZ4c/Naa/35/ucyr7qi7/qmrEvqeLEz8ElkFETU8o4Nw3QYplqJnjfQWGMAJrgTfeBHFLrGaEzgxFsl4bhjLYBWiE5KSan3+PTFWn19FQVuEARp27dF248HkRDSKBF5ziAKKEF103RdgwA02jgorIomq3ZF1XIubpZXRVP98P5nJrtv3r2dDQesY1lVnpvcddzxYFrXNZdiOV8EYVLWdVP3lDi+G4WeoJjAl7PbvvQFNQDmV9kvRAgijJBGCEGMEDbGQASttYQQ13GFkI7jGqO1ltaaF470r4VhCKlDtVEI4fFojCDSQp1PGYCaWIyRG3lBU+dB4L9eXfIqL5tmu3lazuax6xEDi7xAar3Z7BrWUkSqsmGSLeZLxwGYwovJ6nhePz0/52VbZGUcRuNotJrM+rbrWSeFtgAZe/Y8fzZd7Hbb4+GAMGobgTB9++5bZEDHeDIaUYyA1VVTsoYJLaXikeNhgVmvHehqajEhYRgPx2PJmRLyyaiiKgElF5PVKBmdqqq37NSUX1+8XY2mJauZYLHvV3VtlAyDYDacCa3P9Rlij7Vt2xRVeQh9d5IOXUIdhB3iY2yABc/bB6DF29vfXoa3xPXv1//6sNkNBvFffvrpfDo7juOSVLiqYLVQfVPXcXieTxd5mW1O6/2pSL34arSI49B1AqVJNFjmrNlvNodj8QWoNA6EFJ8+3U+Hk8mATNJkNLugxFnvGLAAAO17vu+HANjffve79frul7sfGJeEIGTMZDDD1JuOpgYxJkuX0lOWEZJyoeuqhhBbjCBARVVvTt3N9c1iMBOsIxA5LulU36u27muAbMd6KTWC6GWKCAEEEBglszzf+M7T4xfWd0xqpQwEiFBqMWESIEwJptBCrbWHsVYCKMGbRhkdxaEfRZA44/HcoS7ragAJbBpqZFaVnuuMw8lsMpOIvr39hhCbFdlwOFas//z8ZRBFr6+u7+7vH+4e31y/atquKhkhZeASA0zX9VVTW4tGo+XFaEqhHSdx0zaBE6VuKoRlWiCXIOGmYagh3R22w2g4j1LPCyejQV4dDwRu9hljGkDqekHkpyTP6zwrvzw9O45/s1pssyO0Uku5mM/e3lxTEiIDHEye1+tttpNGtw3DiN5e3vzXv/vPyEGH8jAbzQraEc9Z6hVCcHtYA6X80FNGN0JybaFUgzSyAKCucX2/7YwCUBkLEUYYQ4yVtJBA1/ccQsuidIlLMbVQIAgBBMZarVQUBnEYuBr51BNMsE4eTyepOUXOzfxqd9xpbZu6K+u265mSBmNsje5ZNxgPjucCQmC4YG3lIhT4vuv4i/GSIscNfM+zjNXHw7Euy0E6Bogs5is9tcd9rETv+S6hXtexpm2gtUVdHN//OQhiDFFV154X+E7gBeHS90ZRWjdtVbSMi+3pOB2mMAy2WXY6F/sse3115SCPC7U+nAEg5zyrutbF5MOnh+W8S+LId7xhnPzm7TuAyXSygBBXVZMX59Pp4DgOoSQIfYRNHMSreDgbs0GUOhhJK5IwPnL5sN7vT4fRcOhD8OHu3kLiuI7n4vls5CBCkGOt6ZsuCmJr4eFw2men64vb8Wh6zveYONPhnCtVVqeiOPNOF6AdD8F8dsk5hxYbbgbRyKE+BNQY1BsIaewgw6WwRh/2x/lkCiGtm+5pd95udhBhZXXg+W8uL/q+61UrpTwddl1d7U+ZkhIBcBZZdiqNBW3b9j1fzOenc4YhBsaut7sojsM4UkpKKQnBv5Z5jQXWwpcONwQIoRcOBEYIQEgxhRAyxjzXtS92eAuABdYCrTXBhCACIXq55QEDtDZCsLZrx5MlwKSoyq5tY8dJfe943iveE4Tu7p/qvpdaC9bxtq2qumUcWBcCGAYBIQ6X2hjMpXZdbzaa5Xnx5e4eGUez/rjNRapH4bRuGQTQGPuwWedV/WIcq2Vb5OXpnGOMIUar+XwUJK7nSK0Ya+q21UL4nq+1gRYvhhdN3fx890gQDDxvu98Qp3/z5jfEdT7ef1SaU88ZpgkFKEQessiFaD5ZQmQ/fPqJs74VLBkOHAijcOAH3n7/gAzCNHp98/0oSX7+5S+b3ZZxDqwljnt1dR1aInQlJZ+mV/Rrv6rytqnHkwmcTL776ivOedWU77/cK64ABFyoP3z/LYZqvX/Kizr26yiKkmTQqj4vm9Fg8rTf4DOazlaT2UUaD74861Oeyc4SZNdHqaQ2ACloj0WuEZji154bYOS2XXfOT9TzIqUgMF3TKK48HKbTkVD97rAJSbRaDaXsDtk2P2dJEImepyPai7bqssgbLIZThMjQjC0GfhiHyUBpleXnuizKpnQCJyvz8SipWSe1gsgBv8JngIVGWZmXmbUKSu25tO1Fz0VYZdd69bh+6PvO9TwIAYKQIKy01qzv6oq3zPE9AilFXhCkcTRARinqxPFgMb0wWtwdnqAFCJAwjEgQ+76PgJmPJoSgXMnRME1TLy/yzeFUFczxoqwqJrMbiMTPHz+GUZhGQdPWnTTD8cICwbkcpMm5KB+eHgiElDrTYBo4sdQydeGXxy9NK5MYV02urR6jIUI0jSZtZzGGbVOd81PfK9JxRV0/SgLOZFE2VdFAoOMg1Arc3z9AiBfj8cVotBqPf36K3t+9Fz3rWee5E4oBU6yqzkM3NcoIJYLQS6KYy/aU85cqr+dHycDhQoV+jFys9+u3b98xBv/1j+8JJubF5gqB1UppmRXVbCLC0E3CEGMkXxAtEAILtLWIkLbrypohiCF0BDfPuwOC9iP8/ObmRjAleDsbXozn83/6t3/7+OGT53lcdJSStGi9wLlYzNN4IKRqWX86NYfD8TRq217NZ/OeqaI4I6NBQp82+6Zt59PparWkq6nR2vdCYEHTNNgJvHjEqgxi6NEQWDsbBS6lRV5KxgCAFWCHY7bdnajrOhQSTALXW04mVmsLwevbNwSiT3cfiqqhmJZNjzFdzFbP23VAq8gJ7u+fojCazyeH8+l4OsTxoKzqsqqzrMLIYgLOp30Quq7jOI7PGTv1HCPT8+54ynaHU88lIc4oGSZJ0nHRC2UUeNxtN+vNzfWF5/pC8ONxP0gGSTzoWhY4gRLilG+Pxz2hUAvVM4mQdYjjkpDgAFg6n14x3mfZuWpY2VRK69vL2yiILlevHOxw3oXBABh7Pp1Y141GU6FMEPkAGQfBy+m07zkAMo1832BgNVfMKIrdsO2KrmuzonJc1/ddbXV5f/e8fuqVQhb5jncuipoxNwxGk8YLY8+6L+mdXxnQ2r68DjDG1gJgAUQQI0QpNdZ0XUcpDYJACGGBhQi9cKRfQKHohUCllTUWAKCUbJs6SYaDJNa8c7Q5HJ6eu0YJ6VIvDKLACfuWHzf7OqsEl4EXSGkfnrcQgDAIKSaMsyDwEaSr5TUi6J//9C+7zVMUxNPBjBCSJBE0UEmLiXMqy92hvH96GiTpaDj8/PDYNK1UmguplDod8+KQJUnoBG6SJpwLI/VsPAnCqBNCFzXBpDNG1B3MLCLuYnFpLGzbfrm8nY5GP/zlz4djwVj/tN8ng9533ID6XPadVuv96eH5+XJ1QV47mlvB2t1+d7n0ryYXSRhCYyhx/TDhElR1qaw95fW3b7/2fd9xnCh0lRu0sNsfd1WTAwjn89FX7Oan9+9d6q9eL7q+k0oy3o0nSTxMNMTf3f721fVrpVnf5N+9eu1R70vXtYJ9fvhc9y2GzMX4enF9PhVR6FukszxXSvphmKRDJpiQnBJMMB2NphTjtusogU3TVGXBOua78fXldc3yh8c7hOnz5rnumg93n+I4jl8NomDoYVproQw/V+ftKbhaXV/Pr42xXAmpWNM1AKEoHaTjmZDKAC8MnJ4rbYxLsDESAGi0wRA5Dun7hhLkEbdquqppey1XFAWBrxlL/HCvjsAqLaUmVAvtuaTv2qqqYQ3Gr0dvX70m0NT1qWf93eOD7yfXq2sjROjHjPV92wsuiG+F6qgFxohzdu57drG41rpvkPqb3/zd5nCA0MRg9Iff/01erv90emjaFkJAHSd2Ud/XdeewnltglZKSib7nFhLDektsGoXNeb/bHy4urvu+PZcnp6qQ4/huQEm0mFJjYFM1o8FURpZcrpZt18ZRACDIqyqJ0jAIjDEAUM0lItZYiyiN4nQp51K1m926d2AY0NPh6WG/+7RbZ7N6Nb183m+z8nQxmRioIYZV2wQeAEAnaVRVbd9XoQ2m8WA1nee1+uc//vzC0DYIAmuBNRiiuu1+ufu8mk5W8zHFRL7sZCCEFiqp27qdjNM4dJAlopeMaQhwGicIOv/8578eqzwMAtdPW6l3pzNTljUsL0prtevkcehFbgQNLVtVd8JzvDSa7rbnsmxe3dRdz0+nw2Q40oA0Xae0kubQCy61wBinyQgC2HWttYBJiLA/jILRaPr58Yvk7GK+cqlflUcD4F32vDufN7v9MElHg/inj5/3hz2BcBiFcez5DgzDNAyjthNJHEsAXOr8/vvfc6XbvveC5HG7+evPHxbTkee5SgLONZcKUyqVOGTnMPQJgnkJESafv6y5YMMkCXy37/rtehfG6dVq9eH+fV5kgzh+c3sjlGZMjobTh6fHH365cwP3arF0vXi3PxoJRuORlKqu67v1o1IcAfPv5fu+k6M0fnN1FUWDMIoxQk3dWmAZY03fciGsBVKKvDxTiHjPmJbLJGE9BxZ9vL+nmy1GNPDIajIqszw77xsupNQ3VzeYoP1hV5WnMEquF7e1FLvTwWKsBeCS51WppNRKccEvl6toGd3evlJSaWUQIgQTCJHWUmltjQXWaKNfqKAvcmBt9IsOBUCIAEIYv2yMX74AXsLESGlLDXi53gHw4iEBwBhrpGSCdaxjVivF+91+fzzlvhOGvmJcGQu1BPvjru5ZFA8vJrju615wayzB5EXa59bObDpHEDZ1PRiOBBNt01IPDtMJRGB3OMZhogz8/PzMmfCC6FgUvdRKIWuJtYCxzgKQN6JTx7Tu4iTiTzuPkFeXN1yBANE49gbJIPBC3yFayvvHNTcqjFKMSBjGSZpgCy5mF/vtYdOsHcebj6dV3f7xx/eIgt+8/eq7b+Zta5Qm+11W5mXVNu/vPzvuMI6zojpKocqqenV5PR3Met6vj0chJWM9Z12SxIrXeV7UDYsHCSautWaQjObjnn7rvL5+E/nO8bSv6lYDqQF6c/kbcoVc4oaeR5B/DuNznrOev766tRjldcmVEpyvhstxsnigT5SgNBl2k7ZjdZqMJsOpBhoA1TT5YDBM0xnr2yQddYx9+PyhqhrfDafjkeMSFziry5s4SZqqKuvmkNVlL6/mV5fzedXmj+v1ZLxAyBlNhskwJhRbAwjFwCgehC/+JqGMS73IDyDSEDjGAvgfObEXvr/neGkaGW3qpva86Luvv0/SMAzd03H//stnpWxddxASzmSYOAgSrZRSqun5Zr1pu75qKoz1xcUMWH0usuXCqbouCcJVMqjaCgxMRL2qPOXnTexGvh9UfU0d0nWt7wZvX/1GVJWUzf5wenXzLnJpadQgTfKy2e/zOPIpBU155l0VBsM0GczHk8RPjJRcqsD3e5lneX4+ZwZQn7gFO2dlCyFr+59uVovFZDUeTuIk5YwRxxVKk3/43XfSKAAt75gDiUFgvhhppbI8dxx3Mh5G0UADCyCYDcZNne9Oz45LOOOf7j53yrg4UNpss13WVkKbqmkX0zEABkIbUAIUY3XhYffLl88I4LevXwnWfrp70MZAADG0CBFAiNJ6MYz/8e/+8z4/F8VZcIQwNi9LPggBAFIZrkAYDYVsCKXAwnOeX84X89lEayMh6bgeD0aY0OP5/NXrt4tJ8/D0zIVumqZjMgmCxXB2LKpP949AqTQeBF4AAdzujsbgpu++3H2JwnA4HMVRdH150Z3y5+2+7zpCaZKmgotBnKSx73h+mo6L7PS8P9Zlybn8dLfGxGmq5pzlRVUt5xfDZPq8W9ddvz2c/QAnkRcHvuRx4EZ1UwvJEDId6zEljPPdcf+H3/+uruokScKykkI9fnmKk5BC6juOltJgkBXnY5bBEiZhEHmR0sIYgzFoG5GdSmRhVXSOE10sLtanrbX6eM4d3x8NB07gjtMRtGazRwDj2ewyjaOmLrPsXLU9Yxw7ruclge85BD1v/1yWLUHO58ftIO2HXFZt1zW1VtJaDSEABkBKT1nWNFXge4zx9x8//PLT+zQdnE/nH375xLXGhE6GydVs4TnR/fNT1dXpMP64ubcAjIK079rn7f1ffvgkpUCUTKdza01W1VVZaG0IJJ5LJe/6Nr9ZzZJoUPMeGu07LsboP2SQFlkAjIZAW6t+zfNIbazRQlCMAQAORtbormsRgA7GBBNgLYTGAgsAxJhCiK21xpqu77hQTJiq6fLs3FYF67qy6E9Z4zvKDuAxy8u2danrEp/17bnaFmUjBEMYG6UxQH4QYAx93/nl06eyrpIo1FwpAwFxAj8ej6Yda4oi6xjD2Ald79ViOZ2MP9zd7U4ZJTgZJE3XB+kgiePlZDIYpr7nfvXmq6LM94dnB1Pfc9u+o5q6tCvLsqgLimE6Ssq6oZgowQvOmRKG9ZK1gUvGg0ESpoGfSk2cuheKF2WzXKz+p//yX9e73d3d3TgJTmUBoR/4g83zdr1/ZkI4bvDqkoyHi3NdUUqGSVJWxWa/8dwAIxT4YRjECCCPeAgTZMjt4vpmuoriiLFOGwusTcK47+TVdBKFwd36c/vYBK6vLfa8WAs5ns3iKEnyvKxyl4RSgqrOu6aGCClpCHaMAEBZiugoGnNZH84Hz8a0doXhg9FcKMm0ff3mb4aD4HB6zJoijMPwJW0E9Gp1gYhPMY79ABrTtW0SjVarSy5ZyztptOd4EECuhOTKGFvXlTUWYkwxnYwmng8RJBgQAJCFACGgjbaIXs7mr65m291+vpotF7OO9UkcV1X5f//zP//xrx+ktK7jKmUQ0VEQcdYLrRzPj+JYK/v5brvZndLYT4Lhu9uF70fY8UfpME3CLDuwvvEcFxNsG3XIj+7caYsaEW8RT7q+MW7EOO9Ezfq27rqFFpKVbVMzrqQFAJC6EGkczy+Gz/vNm+vv3MDred/0zaHYjWcLzWtiRNP3XdtrpbenQ9l243gSR8EvX36kyPiu53gRxtj3A0yIlg35t7/+8Ntv3/zNt7/58Pjw4e6hbduuLQGFbhBKAzlXRZ4rqNu2ngzHo3QYBsnplH953niu81//099Ph7NzWVrivLn2D7utVE0QhNQlievzvqXQVKeT0sih7uN2x7n2PHo4ZMQYCF7C3MZxIAQWQjNOUiYEq0sBLILo5fgHECCIhFDr3XE2ngKIi7pRUp2K/Ga5nIzHPWMY4zfXV67rIoIgRqPhqIpqB5OLBe/aXmohNeu1hBQ3TUsRLsu6bVlRN9rCc16UVVM3XBsMYFPXTeA4w3RUFg2ESEjxsH7f9/1v3r0jcGIsZD3Pymaz3xFEyrJ+WK/rpsMQKSmlVsPBdDQY1H2ttZYSUE38cJimaVbmj+s/hZE3X8yn0xnjEnBJESmKEhFECc5Ox0+fPhzO565t/NrFviOs1EYzwTEEcRjkdXPOa5viruu10aHvAgANxOvtdrffV0Z9I74Pk+Gf/vQnxST5y49JEqZB4HsBRmgwSBarZRpHfuClgySM4yIrosimg8F8sTifz6zr/pf/Eu7P2SnPTudz0TbYcRxKN5vdC2Wh73sIQJIOfD86F9Xj06ap63OWYYzA07ptOyG1MlYo8eH+8e7+aTVdDYZDKMTz9mAxcAlVicYYCwGFhEpDZGxTddrasqq0VlEcUoyAgb2Q691OcJnEA4OAHw1uMQLWYowJofLFDvofSB9grdFaa/VyfXtRfltjALAIAgQgIhgi8KstDEKEMcEEoZfVgBFCCKEQJJIJ1nbbzU4wLjUMgwhBeDhn2hhEsLEAYpIkaXs+b/cHYMHL/4dgW2dFGAa9VDX7nNXVajpru44x/s1X39xcXHRdWzXS8TzWMQhU6LvGyuNp1/PWC5xvL175fhCEcRwnQRBx3jsE96xZTgeXi4kQ9c+/fFBKLeYz3dq2Y4MkLutWGx36oTbglJ2rNkcYJ2xklNiuH+/W2yhKDCJV07mexxgrmmo6ngdeOEzS7Hi6nM08x8mrOo0Gh/0RKNWUTccF9m3S1M//8k95WSwm09D12q4pW+b5adV1VdPNJmMk4Xb3XHX9fLlMAr8uSq5lFARZmbddP9eT4WAopM7LNnJTQkGWZZxJgvEgTcPYRxhR4ggueyKkgW3fn/MCIqfrzWp20XT5x8e/jibb29XVOA07yR/Px1nUxFEIMdJKf/3u3XJ003d5OgghhFIJxpnsut1hnybT1Xyymk2h1l3XHE5ni7BVuqubmndd2hujqEvbpu47ZgAGyEvSBFPCWB84TttXRVVhhF80QwABawx16WQwRNpCbQZR0FbFv/7lL4Lruu2f1gfOgZRKKWCtNcYorT3PtUr6oS8YdShpirbvW8H5Kav/8O3XCiHiukHgfXn4cjztxvEAG5jJoqoqHzvI4r7tWlZOk2kUpo4TBmGoVSeNKdrmy8Pn0279vNuGcYAsOGdlUTV//4e/mSajrKz8KKYUDZNhdi58H/C+eyqPrO+URYN0hCjN6zocphM/9hA2V7ee73lOIKV8fHpyqDMZj1nfks3+MBknr+bFMBq6eP90WgvGfd91vX6QDDB282L//u7TbDT85s2b8XgUkjiT1fFYTMfDru73Yt9zfnF1e3v1duyHRbkXWgdeuC03m33mUjqI0q6XGtvBcGCUzbJaSaOlhBAaiFyHWqW0Ngjh0/lQ5JlHqCKKYAiAAcAaA16wX2XVPm92EFHfd8/nc8v7tzfXWolhmsZR4Hle23Z1UwOM6qbmXHAlKMXL+ZhxdqjPHx4+x144DMOeCUIIsDZNEgyBi0niBePBIIlihBETLXVo2/dV3VJMlFaci0E6mI7H2pjPXz4Hvq8NkNL0qg/i2PPDsu57JlyM0yR9XD+5jjseD60ylDqz+XiYBgF1P90/3T08hoErLDKAIoAk5+PhaJCkd48PWsub5WUYxkX9wJXGAWy46jb7tuvaurbG+I7vel5eVz3bDZJBFMej8WA6njEm87KdTC2A9nG9TtJBXbOqbDzP258La7VSejYe/v3f/M5YzfouDFxg9WgwYD2HFiZxgiD2PZ91PbSQMYYpHY/HgUM9DJExk/G4qhrX81omy7okjisFIy5luX7a7vqejUajJIpdL8JuezxnwKjJcBK4fuwnoR8jiJjU5yo3Hn0+5VLJV9evv//2u/Xm6XQ6VGWljKEIaWmKLIcYjgYTYBET5niqml5PFhM/jDChXDIIoOM6UjhK9IQQQojRRiNCMJE9x5RQQpRSAAKIkOM4CEIIMaYEAGu0RMAh+OUd8JLyePkigNZaAO3msL2/e/j0+TNjvef5oyjFECFqr68u39y++vj5w+Pzs1DaGlA1vbbWWB1JNUhSz/Nmk4kfeC5Fvu9qbYA1oe+GPvV8vN4dT8VRKpkVeRTEF8vLjvXHMq84Gw/H0+mcUOJ5XhC4wAqEjLXWWLU/bpq63Ww2Zd2GURD4ieM4eZE9Pm4oJYEXKKUxoXlRCtVBiEZJP0jjlovBYJyEg8M5bzs+TgdGGMGVMgYQ/Ndffv50f6eVxgBkWVV3XX4uo9D3CEIAh34gpZRCDJL0nOVHoWbz2XQydx3XGIkhFbIXnQSAcKE+fPrkUQIROOXF1XR2uVxJcdznZ+g4EwuBgQj7GMMkBieeVW3DtTyXZ4xdJWBZ14A4AXSkMKPhCGDHSNwwOV1etcocz4U1YJR852EXaFF1OZfd5+0DF3Y6GYnuvec5Wmvf8yByNId5eX46HPZ5fbW65LKDSuXn4pe7LxphLs3lYjHxIt4xqcQx3395eFwurseTpeM4nud0PcPI4YL3HedcGWsw0BBCYJHVAAOwP+z3e5YXedt0UplfPj21HRdcKou6XjDOXMchxFHGMCGQS7WxfddBCLXVCMHxZEqps94df/z0JY69xdS9+/ChaKq+M7UVJiBSNFapc1lUlUziqCrLos53p9r141evvnGc6M3r73pBvtzdFQRbBC1A2OCLxcW5/Plh8zQf+j71j8fjxWwsOYfEf3W1bKrTtqkaZsIwHCSjYTT0nBOHmvo0wM5Ej5uq2T1t4xHjSkKA+76WnJPQo13T//DxEyWuaMW5aH65v/u77759ff0qr+vN8SylNsAByMvK/nD6sjsc6rIh0Cuq7t9++NGh9O3N7fPDfZkXTddutk9JGP7+u9/ayaxtW85kVnVcipb3Uei/unz1vD3qjrt+UJYFcqjjOooxpRVEhDqO1CZwPSSY6zmEYqXlf8hfLbAAYdw0LcGIEscDVikhpBg6DjDw891d07Ta2LptPd/P8txa++b2FkGz2W+y4gyN4Z4feZ4UsusaCHAQeBaYXkjqOKkfuBS3bd33bedQCOnj+kkwnkYxdghOovX6mQm+3q19xx3GqdJGGp0m0cVi3nf9c7UDjjMJxsoYqVV+PkdBZK09nfdJuEyHaRpEg3gQRSE0uMzK6Xw2TxPW96fs3HRd13QUOIN0/Prm9SHPhGTHYxYHUc8Ul0AqmxXny+VikMR100RRZK1RQrnUAQC9fX1b5nlWnXfnXSy7V1eXfK5fXd00bfX5ad0xFsaBgYgrvQxjh3hcMqk6LpkU+lwWdV0TjJWSdw/3eVW9ev16Mpm6CBkjn56ehpPJfLl4enqWUhKKmeCH05FZ03Wd47gUOy7xlLIAoDhJwySFwAau982br5bzxeF0/OHHH95cvXqNXsVR5PtB3VTjQTqdpFI2DgFxGNRNUzeN4yQWQt8Pb66umroGFtxe3/asV1BR19PWKKkIIQQTSqnEFGOCCaEvDwaAgnOEset5TdNYawmlruMACxChhBKEgNESWItfumDWWgsQggQhBC0AVnB2Ou2BsavFqu86oWUrhUOJpdiNw2+++y4IvWN25HWLMZpNpxAihKDrkPls/ofvvg08t8hO08loNpkQZKsi7xhrqtNP1dECKxVv+14ZNZoMb65upJRvESzKMo6i2WSOHUpdRxu932+LvIh8v6qrMPSklEqo0PehBVopGoY/vP95fzjcXF/Nx+PA8z0/yPMqSZKL5bVDyeG8CaP4u8tXXz4/NEx6YeoG4Wp1iQ9uW1Z//eEvQpmWi9MxGw8HTOmyaU+inM3Hked41EUAIGM9Qou8wIQMx8OubVnOA4cy3joObbsuiQfv3nxVFCVUhjrQd914tRgGkWP0IPCJN2i7/r//8X+sVpdXq8ueS20RdgPD+DmrATBxgAaDEVes60XowyiM6rY5Z7uLxc3qchWFvkudHz9+OFbFLjsNfIy1PZY75NBzVmInurm4RMYYJesy58RB2AGAAACR4/tBFKaJ4v1ms2a9xK6/2x0cclguLlzsEgd3ff+8XveMvYiIpezrRlqD4yhByFGiV9IiiF7AwwghC6C1enfcOwQZ4xyyrsirqhFCas4FE6rtRZrESRR2XQ+tpQRpLY01FmLqBIQ6V6vhV69vNbBc8P050zqYpwMCkObGGPS8P1VtlQbBOBl8uH8CiPz2u9+F8eB8LhlvkoF+ergbpMMkSv7u+799e/mqYdV//9P/eNxsLqar19evvTC4e77/v/78JyPMcl6Y/tZiWLT6YnUhuzLwwslkFYUR0JZ6RAH945cPmnNvulTKtk3vOo5k0g2CKEmTKC7zjLxerpjgZVkKAB+ed1ld+X7Q9X3bt4RQA8DFbPr9N19N0lHbNuvNJvE44MhBaFsd65alIX4+HJuu7XoGjK3rKk1iaNEgjkMn6Op8d8q5FNAaZPDnT/eH/NwDRwgplfIDCgAUopdClGWz3my1BQ/P27JlQor/4HdBCICxRms1GY1e3aasZ03ZbE7bosiMEodz9uXxsev6OE4sxIzx6nHLpVgu5j2TUlTnc85a5rnOuj4pbRCiddsZawlEPWfGWt/3qYMD302iCGNclGXP9Ckv27ZtWhYFPuPsHPoY4eOhNFrXw9aLvMlkAoC1WgVBEMdh2/dVVfquz5Us6kpq47jePmu6pjKvtYOA5xDXdXvOkyiajkYYA4+gU1Z4rkeQW/ddz/nr66tBmhyPhyjwXhpP0+EIYHK/fr7fbKPQj8OAQhxGyWQyopjUdQ2gjochcrWDMGf9eBiEYfr1zU0Sx39b1Vyqpi3jyHM91w/cuquLoiSOK4TJy+p0zvqeAQi6phaSB0FQFyUFiGF8zjOMia2b8nlz2B/Gg8E4HhZN9bw7tl3nUDqbTAI/GKUj6rr3z4/aAkoIRuBqdbGcT5quqLp8upxOx+Mo9Muq9MPw94uvqzxrmzyOvOHgpiqbw+EM4N4PXA2s67mDNJ6MR8aA4XCkzsfsXHRtb40hhEAAzK/KFwQgghBjbBHRDnQd1wfAeBgzxjjnvu+7jqu0oY5PXQqMfNkeQAgRAsYaLThGiBBCCVaCK8l8h7opfXv1Kg4DDe3D+ok6znQ8cUKfEvKbr78p8vP7T1/6VAVBqJVq2sZ1iEtpUeVtj7Xirk8htYJziyzCiHfiXORKSSY1cbwocp43O8nN9eV16AdKiOPpAKCdzxeUeFhZ0TNMiQFAWbPdbYuibriQUhqjHjb32Y/1OS89z/eIF0ap1arIi6KqLURRUGmtnnbr6Xj4b3/+05fN+ne//Yc//Pb3P/zljz/+8APFDsamuWsQJgiAyWiYFdX+dIIATYbj0WBkkfL8oO7blnVVU3mujymt+q7vWBKnQJun9YYLoTWYTCQmLiTE9XxKCUWk7poaICVV3jW0obPxjDPWNnlV+kIK4riL5XI2nR122zzP4zjVhhGi42hogT2csv0hY7o1UEGrKARvbl6NhuPNYa2lYNz0nQ5czyXk0DFtoOjYOEmenu/avplPFqEftj13qfM//+d/tFopJUjgGSGssnEZesQZDScWGOjApquBVVVdty3bbZ+BFn3XEOIOJ9OyOZzP+8+f787ZyQL74h5/OXJc6vquD4AdpGknuJACloAJLoTkQhNKfw2nAIAhAEp0nEFIseM7yB0ORybWO2YAAQAASURBVN+8en05HUVJlJWFARwCAbHx3ABkgCJErMXaWqmhAbPBOMuzu7tPk+kEJTEAKj+XabBwXfrzp79gSBeDaVlz6tIBTgdpiij+/W++W8xH/6//9n/Wee8E7c9397PBxB9MesaEVIg4+9NBa5UmaS8ZRmgcJg+bdVl1GGPXIaPZhFKX+P5oPEIIjuCIJIPB08f3uABvXr25XMyD0B0MEt8lrWhd6lHo5NnZ8ykaD9JBjODVIEqfHp92280kGVxcXjiO9+nxvmXddDQuskxKcHXxmkn0892TFrIo21OeAwAi1y0NO8pGaEZ8lxKHOAQ7DnW8Fz5v3/e703E2u/CDWBnsEgyshRAigAw0xhqmuNJS9uJ5s/EpDYjTdfJ+c7c+nIzSjuMWDU/iFCF0PGejNB2nw+ftTml997Tt6ipwXeI5TdtyroTWUmtjgNFGS+V5JAjcKAoQhKxjx6w85ZUQCkFU1V3PRcAZKgqECGcCQuBJiSRpqtqnnoHW8+i3795ywQXnSirfD1jP6raLIQ7cAAJnezjHcbBcjlZXr5iQBIN0EO32h6fndcd6LuTV4mI8XG2Ou7LLEQIQwabvMcXaGAQhITQN49DxLQQAWeq4s8nE87yq7fqeYQcrbcIwVkyGoUMwdhy3YbUf0OV8QJD7uBYAC991T6e1UqZr+YA4t5dXy+nkPBrvT9lmvyuq2ho7SBxogRbcD/3YD8eTxSnPfvr5Q9cxa6zjusCivGirqrpczobpII7C8XCACNFgyQR3qZeEEYL6w5cfMcFpEK8mU0hw1uSlKL2Rf2oOrO9c4iqtyqZhnC3nU0JgVhdSSSAsodhxnM1+5/juxWrlepRAY5TCCCmjwQvWGSGAESAYIGi1RshgSqAFECHq9F3XE0QwcZSVECGXetbSF2kwghgCrLXVRkoLE+ohRFjXBY6XrK5Yz4uyLJvTuzdff/f262N28ilxMWqLU23NIImvF3PX9RzX35+PYzBwHfd8PkrFXRJEYQwAhAhrRLdlRTF1/ViXVRDFQ5eei8x3gihI8qax6+fLxdxa+9Pnz/T+Po7DMA6vFtdP6ydkwWp5kSajJE4dJ6vvnwHEbuACpd5cXS+ni7brLi9Xy/mirHKEkAXgcD4/rteBH0Zh+PlhXTVdPByulrO+r9a7TdP1TXPyXAdj+PB8N5lM01fj/flcVc18PHU892m9nS4nw8BX0ECMVWtPZT6ZTB1Mp+MJpc7T+nGzz85FiQnZZ0UjxP/jP/9Pceg+rh8eNse8qtI4Gg8Gvh88HfedMh6h2Jjt5qFh/WR2MZlMCUHJIAbIRL7X9SZNx/PR6HmzrqpyNBgx6azX28Pm9PrV61evXk0Gg0kyqLoyz/bXy2sEdX7O55PL1oiybiRjpyLrhQz8bhCm4ygFQ7q4uKrKXPDeGkOXbhzFWZ7dXnb36yfG+btXb/fn3anYIYIgwsf8xAWvitpzw7KohO257Db7fV0zYOELdAwCYIHxPXc6mnge9oOgaErXAUpJjHBVdxYpIVjdVsooDDB1EICQM4Yp7jsOA9f1PW76rC+YkRgBo2VV1//815+ulxdVXgBNEIAjL0DGNlkpOkmJ6xCCCSma/Hw8IxL97e9nvO//6Z/+tWOKEHexmK0mKyHkIB0RSgCC14urf/xP/5AXZZqOqyrfZoep5z/thWRdxwTCXhilvkOrlknBR2nciQnXkGkxmUyYFRhTC9TD42ejjWKSfLi7P1c1MNLZeRDTq+vL0Pe+3H8GSMd+MIgn57xa748//Px+OhlNR9OyqgyFyXi4Wi1Gw0ESJ1EU/PL+vQfxYjLzo+j7736jlX3+7zvRdWkca2MY567rAgR9ShajC67c4y7DGFprEEaEYmANRA7n5rA/hGlKqdBKCykQRC+UPmgRF6pte9nrsm4fq0ZKEYXh7fXtbLwyWjuuJ6Rsu45x5vtumsbA2PV263rBuWyyPPcw8VwnCiJjlNGW9UJKAwAEwAAOpeqqsqvrnvWs7oQGCAFIkAIEEWB913UIMkaPJkNtrVKSMe4gcjqfeyEthEapxPd6DOuqQRCMhsOmqSlGSRz7HgUu9cIopvDrV7fjxeLDpw+O48bxwHXzKBkcDwdotBUCaBOHUexHk9HslOd110spmTJ9eyrKPI3T8WRaVMW5LLTRxmqISN/1XHCA4bfffLuYDbSWgvOqriBXqbaybgTLD+d91R7Gw2FdcYxcBzuyZ+V5rwy7vr516agpsovp1EI4HgwIJfn5xPq2U2ZzzBkXdd22LbtTm7ys4yjqmeRMrXf7ummmk6GBglLHAsNZSyEKPW+3XZ+OGcKwRMV0Ok+Ho8V4HgXh8Xh+Pm6TMJ6l0+ycV03jEZo4jksgwci3zmI8mY2neVlqLYXkjHV1XRVVLhVX2kAICaHAWoIwJVRhYv9jaIsxBcbCF6wIRgTjF3oUwehlD4AwhggBBAGE1liMMKUOJsRxPD+KurKyCriuY6xWWp+yY+D7jLVNX/m+ezwf1ptN1/eL6RwTdL1avLq6pL5vlPn0+UNeFZKzXZnndfmt8+3rm9fE9V1CXepGcfrm+kbp/v/9f/5/tGJRMu4Za9v6/ql7ffXu5vJaG8UYe3hY10W/O2wGYYwRcgM/jqLZfBHF4w8fP5zO5+vVMvQD6vDhaOR4BCE4HI6jMGyarqibU5YjAC8XcwRAEg5+9/3vluPxl4cvFKOry2V2LrliGMHBcOD7ntLGDwIhhDLmcM4gRqN06FCHSSG0lNr0TBRFiSAej4ZlU5dNZwCijue6DkawZ1xbnSRR/4UfTlkvZZykvVAWcKFs3QnjI0fatq+7rr26fIUhMla3rE2TeDIaN11b1OXj8/PhsNPaaK3jKM3yNSHmcbdZH7fz2XQ+m1MEMQSnotyfTsqAq9X1MnRZz5QGbSd3+0NZtKesvLm8XqyuAPKart/vnz3HnY5nPVfG4vF4+v7zZymL/f74sHuuWXGxvF7OUmJAVTf3d0/7w0fXoVEc3F5fKqYFl5R4AAKE4K9lYIwQJdoopZRPqEAk9Lz5aJAEAVOacVG1Tdv2CIEXOIkfhIwrDI1k/dXqYjj0DvtdBqr5aLicTIAGp7r58rg97XcY0ulgDJRoimo0n7fGDtPJV1+/jsLRend/t30/HsK8PP71L386Z23TiZafiBsEfkxcF1KnZ8IAMEmHX795dz7uXBqZ8aTjMggTTGBZ5C7pp7PlbDJGhh+zU991fui/vr0B0BFCeJ7b9TX1vNAPd6cT0Jp1HbEQKKPSKHIc6vuBT7HjeczYtqqrqq47Nhsuu14d9lnbdAAgDJHWyvVdx3f9NCp51yqxvLnJ88oj6KvlUKrq/vGZ8WY6HgeuN59NPJcaJXoj664Moniz7bViGAHOeFlVrGuVFATHcZy2bb/ZHYhDMMUIIaBfctxSa8h62bYdDJEGQAM8mswvl7Nv376ryuJh88xYs1guHWf51x/+EgZunIQGaGXNwA2+uXrzp7qlDiGU9IILoSilUUDKutbaQkSVgUxIo03D8yQMZ9N5XTdCcIfQOA7jyMcIAozTgCahDxEiFLu+0/b94XjMyyaKk+vViitTt32UDrqWCW0mk7HvOsaoyWjwzTffDNPRZrc+ng6u717OFk1duY4bh9Epy8qy6vv+VJRV00hjXIRvr67fvb5p2q5t+81uDYB2PYexripLpfTT6bQh+zAKI88niNRtVzUNsOhvfvfbIAhoSIM4yvJzVtWUUMl5ko4U1FLBJJo9P20pVevtue9ax0cGItayw349my8nk7HWer3ZMCGEkBVjQZBYAAEiL3F6bWzbsigMrTbnMjudz1lx7lgTBkHbda7jBhdBURaH85kxBRHKeWOpu7i87nv24eMXwZXnBnXFsuMnaBFGKEoGwyQ6nbd1U0FM9+cz1yoIoyAMi7osynK/27phUJSFMdb13ABhawFECGOMEbLaQgOBtQQTA40BGhOMMTZGC84RJRAiCAHEL68FAn7lt0MIgEMpxshC8P7zl76sRulgOp3E8QCC6nQ6FWXeMa6tcTwPWdj3LAxDZSwTsmw7xvo4SXzfBwQoKTvGqR9YhJqGr3fbpq2BNp7jzScTzrvDaev7vujFfvuMCYUOkcaEYfDb6XiX7QW3COCqKK2xhzxTACxWS0ho3bA4Sr7/7vt/+9MftdJBFAxn02E6eHi+3x12gyTxHG+xXChr0zR99+rmeDz2HSGUrjePbZUJJRbTkWRiGEcvJM7lZCq19hz3arlYTseU0NP5TCgVgh8OLXEohsjBlBAvLxqphLCq7/u+kwjj5XxujOnbjnXscNghzSkkUZQmFM/ny7IqNICLyWw2noyHA0Jw3YRFkcWuRyE6F1lTVlrwU3ZABGME+76zCFHPUdpWDbt99a5nsmf9fHmJKJYaamPyqgXEa7nWBhRNjXk3Go5chxRl19RCKXR7nU6mS8cNzsXxebs9HQ4EkSyruVCr1epwPJ4OZyb04+OT0nJ1Odut92qgXQzv7h/X280xK5TSURS5xNkfcm0t/bUEgF6a4wgA1vdt3wCTE2CU0kBrD6PrV1dMiKrtHzcGKCWVscBIISkmFBstmLIqSpLL5UUShogQ3jXnoup6yVoJjRoP5nXfVG3rOZ7xg3A2enu5HKfJw9N9VXZQ25vJwlr7L//3Pz0fjgrQdBQNMeaC3z+vIcJSg9e3N1qrTgotWFY2g8RPB2k4wHGc5HnOpZrMlkmSxmmqZBck6XAyxwgeswN1AMaAMTaIBll+hAZeLa+gtXVVEcb6YRBHvu85zmw8IRR3TfP2+vXnL1+K7JiGME1iSnRdVloBKfR8NW3qxljDpNjsdtPx5Jt3XwVeZLR9erorq8O///WHuu5fX1+ng+FiurBa9U1dV1lZ9VXVQOR2bdu1FWt74HtaG2AhtIhgNJlMvvvu8mm3ftw8QQip42ihtLYGAICR1CaMoul41LD++6++vrm8dH36488///T+PVOmb/uHzfb1za010Bgd+f4gSd/c3GRZwTQLQjcOAwwhdZysLAdx4jhu2gRdz4VQmGAppbGWYngxnw/TgVCCUgQhTgYpdbBUoq7b6WDU17UBOkqjwTCmVV3VfTpwPM9HCDY988M4HQyvbgb7U1bkGbcaQ0Adj3MVROF4dfkvf/yXfZ7PhuOedRDg3eF4f39PCBZKF1VjDMAIb/Ldsa5e1ZVHqYPpIImCwPW9/njI2q47nE5d1/mRS303TlOPUgMBQEhwvlk/BX4QeB7CNs9P7uoycAMpOMH+IF5VeYF9TyhzKs6H8wERPB1PtvtCcX7K8rzpPt0/aCmzMseEDtPBbDQFmPQdV8pggoExRmuAsTaSumQ0GDd1gSE97rO9OUZh4Awcxlheli1rh+kg8EOhZRRH2836YfN8rkqPeKHyEAaxH7mu67rUo7ThXRCFl8RJBqO+7SwAi+lse9j1QmpttbWM87ZtIcQIYeABY40x5oXnY5Sy1qBfh7FWK2WtAQD0fe95wKX0ZeULIbQQWAgtQC8/BNZaC14CfEZDxw0AobvjSSslOOecA0SlZuei2h0+L8aTi9UqitMojLXRp6Ko6mpmoRdEdc/ysjbGvnr91qVUK/30/IigKYpyOpl5gcMhNhA5nmsVAIA3Tev7zvJyEccB0HqUxKPBfD4dludyczzuzycEUN/KVzdz33P3uy3EKB2mSBsh2Ggy0pJNxgO6mDVVlefHCZ2PR+lXb19Do60x1AnKpq76ervbGK0ms7FLHeIQpaRD6Wg4POYZooQ6qOdCGOFF7jk7f9k8WIhfX99Ox2MpLUYEIcL65nA4WwBno9kwipSS5yJ3PSdNI2Ns13SH7Z4zOY7GrOsAhDdX10EYWKMBtBbYdDSouurnTx+KpnVc0vXtKTtooMPA96kziFPqeVzr4WDmusFwMmnbuizrq4tb3w+ANYK1HvGt4oarc55RgoQUrCoFsIHjRXF6uVouJwstTFGcP3z+ualYHMYEYasBwbiqqv1hgykJiEMQxoRCjZ4fN7+8v3vePBsJXC90aESIcRxnfzht9iepgftroAAAABDCgzgGxrY9K7JiNkg8z+27bjGbzWfjzW63nI0QMLEfPG33FhiCsWCcEFJVJSWoIQgg4AYuZ72FBjiYG1X3DBMn8P0AWaV1OpnPPAcQWZVZ5KDn9WNTq5vlDGBRlbzrGFfg9vpV5DuO67gUHY+nx82+Ho0iP5Kaaa08LxwNp5T4EKKqzoCVgnOEUTpIXerUdYWQCaM4CiJsbd1UPed326fJaDYdjDfHM6Fe6DgYkSAdkaKs55MpY+ygzq4fDEZJEDnTyeX+eDpnJ88LIMBac2mEVvacZ++/fKKIfP/db2ajcVlmz9uHzeaZIOIHgbWAdboqmbVolAzDKBxPRrvt7vPTuumaMA5e37zVFv7y/rmtayWVFznWAoKptQAjoJX0XM8YUJe1UhphDDCQUiIEMUAUw9lo+OpipQUfBm6WH+5+fOo6Pp5Mp6NZUZSb3fZ4OhttFrMVxdQldDJMoLV5VS4X08lgyDmDCE1Gozc3N0kcvf/8sapbDJHrOUIJzpkFaDqYSs4YZ/FoRAj+5tur8WSQpmlZNkRT1vKW9Vzxp/VjWVdRkiziEWcsTaLpeBLGcRiGs/niH4eT/WH3+PgFAjUZjq0FbVPPJqvfvPvten3/5fG5qmshlNWg51o2TBnVMzZI0jhOJtNlmiZxmBBgAt8DwDLGm7oDBihtqqZFEExG0+V8gTGmDh0NhrPJcjRMeVP9/OnDajZ9u1p+9+ptK5TijCDQ1CUAGAL4vH8WmgeR77Wu0jrwPALRdDbve/GXn9+v9weCiNKKUMKYFsoopRwnWMxmXVe7lKRJ6rpOlp+k0dZCiAGXIstrBICDcEvqz23NjHADTwMzwcj1A8Y4Z51U7PXV5Wpx+e9/+Yto2ddvvvICzwLrOlgyfnl5PZstz3n5+eGOEIoB8ojbQ6Gs8jxPa6uUoYRAgOz/n9tdKSUEM0oZYLWWFlittTUWE2yk0kZrrSGACCNMyMt4VxujtaWEAAgsgEorSshvvv52/fxct5WWirHec93xdLJer/OyLqvW8YJkNEHUFVIDTPq+lxqtLm4uFkvB2OmUdYIPo9iBVrNufzwEQQAJQgD2fXc8HufjBe9EdiowoIhQqdoBpgGlwCoItGJ9U2XIivEgdlw3Cj3BRDochYTk51NRF/1hzzi7vbzo2zrPTrzriYMvb677FpTFibHO9X3FuiiK57PZ61eDsqo47zjnD08PSRp7Ds3z4ljXVmvfDS4vLqMg/Hz3CWHUdB0hOIoiz43rnkV+8ubmbd+x3X6XRBGGSCqVJMnlcvnq6vLzl49FlRuK67Z62m7c1SWTou2ar9LXAFhkUZoknu93rLdaekHQ9CV16PF45g9iPBw6FGOLPN8FABgF3CCGxobA+kEwmUy55MfTrmtZmg69wFOSCd5hpB/Wj5++fKDUsVZzIbTfQQhub1597Xj78+HD3YfJaEQp7Rs+SgeDJH2BRDVtleUniNF4PoEGAQmCIFwf1nXbFlUPoReGzmQyWs5mknPB+7apei4gAAgA/R/PFoJQSPm4fq767np5+ft3bz/ffYIQWgg/ff7ix/Hvf/v9H//4J0rdwznvtXEJBVhqbYwGThQYDHfHHWMNtMCnZDFbruaLi1U7mi7jOCqrbLPfVmX926++6drsw4ePSBprEEEoSfxtxiVEb16/k4r7YUggDHy3KrM8Kyim+fG0fXoKY79n7ZurWzpIm6pHBmghyuLIpa7bZnt4BsZaCCzQGhi3LgLiQOjcXFwSz5cQnfr+3ZvfX85Hp2Lfs873YuJ6QdN3RmkD9TE7brLd1fWVBdu6ydM0eXh6Zh0fxkNKcMfZ/pBlRfHm5gJZw3tOqZ9lxSk7U0zm48liOg/9aBwPPd/dbXc0o1pbgF0vTCGlw5i+u7rIKuGFcZz2mHMJITBaa6WNzYvyrz/+eDifD1lRZBWBxGhjjYXWvPCCpNLb/b6ta2Ps58e/QISrpn59e/tf/9PfD9O04d1PP/+smJxO5pQGHz59OBV5y7sgCt6+uimKAiIYegEF+HKxSiLP9Zww9B+3WwDREMVh4GkjXc8bTxJCJuxB7Y/n+XySRANK/PefPoeeZ7nuOyG1ZUJYgK9Wr8IgMEYzIYxRBBOpRNPqkUxZV0ArR0kotWiqwo+j3fF4zisuZZYVddNgRBzseKHv+35VVZAg0QupVC3Y//N//d8R0J8ePvaMd6xrWdn3vK650gACG0VRHEfLxeLV1ZXjACHZfDiLgwGA+OHpqajatuvGcez6ruhZVVVxEiVR9OXh+e7pmQnmO95//sPfSSFPRSaV+vL4WBRFXjRVwyAgXBhrLBdMqmPR1q7jrKaLySDZyl4D6wfOxWKeBC7CmAvWC9F0HcYojiKl1ON6O0ljL/aMVtTFk/H0m3ffKM3+7Yc/O8odpun15WVd11VdYgK1FEJwYNxjke3O59nscrZcAOLkxflc5oRSo012zqIwUEoK0adxgjC20EILAUIWwf8gg1rGmZTccz1CMCHED4K+75XVAQIYQ4wJAthCBAAyRiulXNcDAGqt26bu28Z3yNXF0oJ5VZYfPn2E0LZtTykdj9LVcjEYjIQFv/vN9xfzuRLsnGfGmvycPT2xOI6m41Hf1ISgXz5+6LoOWWSUGk6S+XwOAUWQPG4eD8cjZ+Z6MbbAasXrpurK5P7Ll/3pIKXUGliEfD/wAx8a27Ss7lmeZ3XfLS9u0hDWzdkaFfrBbn/45dMnx3N+/vzJxQRBrHR3Oh0xwW9u31RFMZny2XzGGSmKfDZMLQTn47FtO4KIG4aYYIjgKTvmRZFXpVTSdd1hPCSEOk07GQ0gsl1Xuw5ezMd57gip5tPJ7fWFNgpAOIgGSutTcdRCrA9bLwxiCwAybdPNptOPnz9zKf/2t98Hkde0VXY8OK4LLCirOgkTlzhRFCOCuJCI+lwZgFASR1LJ/WkTuH7qh6Jnn+9/zsr9ZDD2qbM97//15x9YJyZDtz1nQnIWhb3g348WgvOn58dBOuz7ruHm9e2NEHx3WDcdwxhPRkkYRkVdnLNcaRu7obLGQnh5cfHtNwmCZHfYEg/P5kl9LpF1NooppRFCv47/wa80CABM13MKKcXw4/2n434PjDnsdtyo7+aLu6f7z+vntuk7IRCiEFk3cIuiUkpSLwwCd5yMzkqlgzQJYt/1CEHz+eVosgiDqGqKy/lCy14plnX9OB1YY3zqDuJ0MhqW3Xw4vI5cb33Y7Y+HcZLOR+N//+nHvCrHycSDqM2OTw+VxrYtq9D3fS84V9mxPBGsKSBpPNls1oi4aRzts/10uvAQUZiEaThfLtNhWnTV/dM9RNYC4RNqkOibjJzPmes4fugzoL5sd1JZYDCZmUWctFz0nJ+bqu0YQDAIQqDtZJAOk2Q2mY4m0/V6m3oJGRNCaOR5bdses+P+sA/9sK07IdhwMnr95kow0TWwLo73SgjkAYyVQVJbAwGwxlqAMe56+dcfPny5f1ysLghEvO2gtRa+lHWsNbZn+vPD2nWpUgYCM5tOry6vXc/79OXTIPEc17G667umbrDUGFHguq6GVhsdRv5sNhaS52U+ShIvoGVbskM3isN//E9/2/XC9RyEoLQaIjBLBthxesWKPBKS//uPP3ess1bP0lHguI7rPW+2z7tdz9m3776ZTadCCq51UzWMcS4EpbgomySJEcJJ6FHq//mHD1qIJIohwm3X+UF0PueEkvFgaK0hCE1HI+JgoI3QquXMap5OJ90H+fnzF4dCiJXk2qHhdDYEGC1Ws6vZ9NXFarGYbo+biinG667tup5PJrP/5R//8Xw4YOo974+97BbjGUL44XmjLBiOptn5CAFom/Zitfp4f9c1XV5Wh1NGCHWIYwFQRllrXcdJ4hgBEwSBgbbqauyQ0Pc5Zz9/+AVDwlgPrBomw3EYf/3qtR+Fn+/uhkH06mJxrvLN8UBiNE6HhOC7512e1xSTKq/yc/b12zeH4y7LMqG01sZRrku9+93zH3/4y1dff/365nbjOD+8/2l3OAouZ9O51loKbY3VVlMEMMIKAK2NMQZB+BIJxRhLASCEjuNKKTEhECEpBET4BSKirX3JjUIArTUAWIQQY/3j00NbV1oagkng+aztgAWCC+o488l0sZwFXjAZjzFFVxfzsq4/fv50OJ60saPB0HXJ+umJQvT17TtjdN01Stu+ZRZYiDC00PXdXXYySg2TgUtc3jMDQd/L7f70tDsLqTElUnLP9WfT2ZS4vGlHSXp5MVHGYkpczt9c3/q+/+e//ltWlRTAvMiYElXVP+23gygeJ0NjFbAaWPvzp184F9f1dddXUBvOmOA9hHiYpqzrKCUOJUk6sNZWReX5bgrjvCgIpqPRWHJmoUXU/vTxB665Avr+6d5oSAkVvN3vtkprTGgYhdCCJPKjJGGiY0y8ev3aArA/nTgTxuooib/cfY5D73w+Vj2bTueYeI6PpVIWANf397v9bLGaTObQaC57a4UFMs8K6Q9Dx0vDUNelhwlUel9uD8fjbDKLgiFnrGizu4fNHMDZZC4NHEbh5XK5O5zjyHNdYoF63j1nZUGpAzXmNoGKDXy/gAhiQB1nvd0gj/pReKyyMAxJ4OZlfjgdNdOM9V3bMyHRr7MfACE0ACCEuNZVx6IweFivq6rGCBqtPOoQTBiTnx+eyrpHABkLoDFScoQgAsYYURUZBolPLm6Wb4bj8WQ04pKtnx/LZmcR9VzaN3nsuxLr//ZP/9I0feCFAMGL1VUUBVXHSgamHv3rh58BdN+9ese7Rhh9vVw4BkCjh+kwy8/3m20YJYfNaT5fxFHClVhdLLXm949PcTQKCXIi93p5kURh2/dS6dXFIvBo25T73cYSezyuJWNFflxOl5TSzfaJ7PMy8rxAy2gU/P3f/O1isjrtdj6lYRwjh751cFlUTdmOJsMgCIzSTVMQRHanQ1Y1h/1Ja2WBrerS8zw3dM75qW2asmsoocrIj18+caEH8YgQ53Ru2ponk4nR0vVdCYGEMKBUGQ9B7PteMhgQDK3SDsUUQwisAS/UL6OhNkZLpRbL1fp57RAshC7rpmVdQcmffykd4jR1W5SlGzyMh6MgCAAEXddHQTBMo+++/ub5+bnvm6vVcjG7+Pj57pzdGcMvLsZpAqRRhNLQ96M4ZV27O24Cl8JBzIR/PB3LpgzcwPSg6zoLUVmWjucu5ksIrJQCQMi4wMjpeR1GEUboab1zj1ng0dvby6vL2+0xC7ADAev63lo7GIxDP+hZ33dd17ZCqdB308iP/CCK4lU4U6KDRr++uMm3RyEbrq0QikCBoLIIBb4Pofnlyy9fnj/3TCRp2FZNFKfDySQKvPBmdbmapeFgu999efxcdVwZ87DbxUG8mi4dhE5Z9t/+9V/iNNXK3j8/SwMo9R2CMbSe58znE2gBNIbxHiAoGO8RuVgtp5OJ4DwvitMpAxBYq7AxSgjPdRGCu+PBdZ1vbm8Xk2F0PhEvEkyu1491W3Wcp9Fwf9hprTfHwxRIpSXxaN9K1/MwoZhjjMmHuy+t5KrnQsg0TLyVVzet74d5XV0ulpKJ9+/ff//b743VRhutXuCqCEJojMEYY4KFlJ4XQIisNZ7rU0IggtpogKCFwAILLMAIQWAFZ4RSrdVhvz/tD3EUOa7rOURqwXlnLSCcjtIojAICEWurrq8+f/hxfTxXZcd6kaQDCCEwpipqn7o4wI7rEsGIS6Hgq8lKA3WqKtx0RV1GXrApqqKqfOp4ruc7QRqPNsdjGESLyTyMAt9zZ+PRxWLWNDVCyPHd8/nskXg1WUKAeN9/9eYdAODh7suXu3sjgeTKoz4w4GmzTuJ4OhlXZbn58qiNbTpVVt1sNEbIdn1vLYQYVU07Gzuhi43oB8kgur39vL5Tms/GkzQexmF8FuJ0PhmrkiSG49H5nKXpgGLquR6BYL1+drxgOpkFfuB7jlLKcRwpvMVyiSDxPHc+W/71x792TS2V6PvGc52u79PhqKo7hPDFYtrU1cP6MQlTrtSL1FdJE7hOmZ3O+dkaHKKYhKTPmEtcZOHpsD/mu+PpdMpqCIs//O5vFpdT1jPeCojcd+9+0/eH5ksHPForrrRs6sbzg9AY1nWDINBtzQVHyMOuM0ujAAeC9YeysB3rWZfXpRTaWqOYAhpS6nNeS6ExwvDXBYC11iIEx4NRGPqeS12K15sD63mveFU3X7+5OdVd3rDV8ppA8Lw7IUKUVMBaQqjrugCYPD/9/Bkai9+9fkUwKpv6nBU9464bOBicTjtr0Xq7++GXzw5xfb/HLp1Pl3GSpngURCPfp/Hf/YPjpY4VX+4bjUEUxrvDXzen0013/V/+8IdRr855GQXh6ZgrDf04xNhVUkNE86LomkJXdVWyq+U8O59aoS9Wl9KKoiiUkvcPX7RQr1avMECq75mSx3NB5tN55LuOg17dXHz3+hZaMIpvPt0/PN1tbq+Wt6vbV9e3z49PjHUOgW4UXK+GhHqbzem4O202Gy74aDgYp8NkEDHBQTwa+BHGmEvJuBTM7HfHJBo/rbfnqgemlbtMEwKMJIS8urycRe5ffvwJEbhajV+9umG9EB3Lq0JqYwC06NcSDwDAGFNXzXG3dx1qDFhv9ukwbdvqarUcRcOu4wDQ6XQxHg/TMDmeTkkSuYhyKR6fN8fjGUJYtOXz82acTKaT6f3T47HMw0EUx2nXM933vus7xMt5+fS8m04mhEKfuqEMmq7GgBjk7rJd19aU0MgCzUS0iBzq1G3NuvZieemFnuO4eZb1fd82TeNiBZQfDd69ev3TTz9JJY0xvu9rJdM4HqUJREhp/fHuy/4orldz3nPskhmeGat73i2Xi4vVbHtUyOBRPAjdACG8PWdd1SClHvbrIq8W03lahavZLHBDzdXpdO5Fix2CMUni5Puvf3e3fiibPE3SyI+qqvqyXldtI6UsHqrpcNw2vbWWEEwwdCi5XF5wrbbb3TCOhmlU9gxYyyXnrJ+PhhqAT1/uTlnuEjoZp4L30mgn8Kuu67puOhxjivfZURkYhDGOQBCEVVVZa1eT8XiYSC1Gw4EWoqmbIAznNwvP8bqmPR2PVhnWddvtehLFQumyLEM3SJMoq6q2bwTvrZaM9S81Tm00IUSIFykM0lq/XNwY4y+gf63VS13MGiOlNNZgBF9QIhhCa01R5hChvmMPd48Ywbev3yBggdVAqzgIrQGLxTIMPCY6N4h3u13N2q5ju2PFO5lGacvFv//0E0UEW+C7wWoxA1ZxLQyGg0EymUyej9u2aVbT2cqdCSYO1bHu2unVxCrrE/f3y9V4sEUQD6J0PJ9qxRnrNpt1UZZZVRZdmxXF33//h4WyVVcOIs/1/CorrNZxlLa1eHf7xvcdIcTzdkswbqpeaxj5keM4dVXfMV4UhZKyqmupFBfcoW7dta7rlEUVx/FivuRSEkiiOIII7Q/7Y5YjQvzAt1prqRfT+WQ45FxOJ5PjbtNxxpSp2vbycnlxudiuN5Lby4vlarna704OofPrWRB528NWC/lw//D0vLm4uPDcgEuOEeJdp7UJ/Gg0GsdpfDpn6/VTGkfAsO1hnxfVKJ3UfcsOnZTSDyKjVM963TIP0K/evHM95/ZyJljxu6/eSA3zttO6wwhNZ/MJcAKfHg/PP3x8H8WD66urOsuy0/7T8fib3/xhOp7j01ppXnel51BiYUw86sJDdmy7ngvhUzcJEoeinTLWWESx/Y8aMAAWQuR5eJT6w2SIEbQGuF5QVCUFyAuDXz5/bFk/xdh3CMZYGyukjoJACOF5PsBESVC1PYR4Ohs/rR+YVC/QciHE3ecvVVUqY4uqWs0vF8vluTgJqQ7nY17n3371Runu8bF89frbm4tVU+xnk5FDXGrgcLoQbrC6eTeZXyZx8tcPH3zixK5LfV8AXdXVOTs5jp+mkyAIWy7PRVYX54enNQ3C+/GnIHCE0Nqo4zHnQrooMIIz1tacb04Z+d//t/8tCKnVZn86fPxy1/M+CkIh7GJ25VGn75k2DefCo45PaFOWyLh9f64qRh2apKmU4vb6epjGBpgvd1/6rhkOhkEQb0/n+WyBAez7dr3bnYtydzp4ro+wi7Tu6hYHIeDlYjH/BTILZJq6i+XwdCpaq9tDL7WGGAMLAUTQWASw1LqqO2MBdnCaDIhLq6r2fRdakEQhV9q0xnMdjxLXo45L6rYtypJzvlrOm66r69rznNXqykJUN1USRYz1u+0h9sJBOsDU6bl6//FDGAVRPGgbLo3cFaee9dPhcBCM/GjUNN2mZw5xoiiKwpBgctzvLQIEAWtF6HtFUQrORoPU94Km7/Ky/b/++z/95s1Xm+HweDwRhFzX3R8OURgJbTljcRy/e/1ms98ZS6J0uD5s2q4H1pyKAlroePjtu7dCCJ9in7jDdOR+vPvyeC84d6DTNfxZ7qokuLy4bNqu3tcGWqnkfDbd6914NG7a1igVe/656XKePzyts7IEyhJKMXY6rYeT8Xw01ILldcGkapk45pnFuOi6NE48xwXQMqOeD1v1R4EIKds2StLJYDCfjuq28n0fU+oQEo9m89ksir3dcWshpJRoKSQXXd9TSrQWkvG2b43SFCMp9LnPz4ez63ovHY/xcOy5Ltf8cDgMkxQolbPzAI1Cl9adlbyXgt/e3rgOlVL4nm+BFYJq8DKzBVJKrbWUwhijtVZKAgAcShFEEBmrrbLScX2EEIDQWlsU+WazZR3Xyhhgnx8f3cDL8pwiIo3temZ2O6sUE8xaKKW+ef36N9/csH/6vzvaIYQO+20Y+ggg3/VCP9DKUEpmw+EL8I4pIYVczear6byqyvvnZy5lGg+UtllVeq4XiQAT1LFO5EwC4Qde2zey0j3jddvttifqeEKBzf7guqgNnWOeH/dHjzpGg+EgWcwm28PGWjgbz8qmycq8KCvfJbDrLbBBELRtu90dCKFBGEVxpJVm3CKMnTAWBj5stg7BoyT1HI9xHgb+1WLleITxJivyKAyjIAYWfvX110qKvou/ev2aUh9A6Hk0CYPlb78/nTMh2L//9d+Z1PPFcjQcDJKY8+54OCTJIIqHo9EAWBN4bhD4LsKe0kmUONRp6loKaV1jtGmbxlg8nV46mAjJ67olhFBMoDbAGuo57xar0XDUtHmXbTeng9CWQNdw8bx+wMicztkwnrux++HLw9P2+Dff/8EliT/x87wZzON//J//1/KweX76dL958sMQWQwxch1HKY0BibyI9SdLrFCsKJuiKI15AUP9OgayFhBCILFlX1VN13X9w2YdR9FyPL1YXdSs+7vf/+7Tw2PHGgd5lBClsdZGGc2FUEYbayLffXtzMUoGqmvLqnA9VwjVNs36+Un0XdcLLwyTwYBSNJmMnQDnWS6BgQieznleF8+HA7O25nXoOL4bKa0Xl5f/lVBt4GA0jAOvqeHN69vd7ripihklHe+O5fl5v//7v/kvV9fvXA+1dfX8+OX9+/fI4JD6TVefC8E5+Oabr96+Rfm5LKrGJdgaz8XOdOCQ28tlVp38OJ7NZ0+PT7FvR4PhcnUJIP4//o//7/awH8/GTdkJwVaXk2OWP+604BJINBlPrm+u+r4lvj1Vx7yoq5Y9Pm7IZn99dUNoQIl7/3hXd00neNtWwzjJspx4xvdDQimhTl2c4VU0Hg5+etwfsnya7wHCZVUiAwnGVilggTXa/prNxRqaxXLmOK5SPEmGBOO+7ZTWP3z8JLRaDEcEw2N2Yqw7ZgXChGCcDAdJ4LqEhJ53Op3Kqvzq7Zsoij3qzUfTsip6wRXvB6Ox7zlairpuPdd/2D+UZTUcp1+9e9U0XS/VxTD59qvXk3GSFwU0Oo3iU3Eqyv8fS/+1LFuWZmdiU6y5tHTtvvXeR4bMjMisQgFNiG5DN42X7JckeUszNtFAVwOoKiArM0RGxImjz1au3ZfWc60peBF8iHHx2z/G9+Wz8aSp27/8+MPp7DyJUyYFxnjsWgLxum2yrLxbrWzLStJ8MBg4lpklSVYUpm15fhAErmOa1xeXVVkNAg9g0PU97eRq89h1zenp7MRzB66X52XZsQHCWEGb/SFJC8655KKlPSybT4+PKsRlXXVMpHl2t1wOHPtksUizoq6a32Y+WVEUVRVYLme8bJrr6+vrswso+XK3SWm7izOiaIS0tmlNpiNd0+fjWZ7H+yi68IPJaNh2bVVWlhlUdTnw7Mvz067vqqo+xlHW9b7t7g67uRzH+3QTHnsIzqbzfRKHeaZiJc5z07IwQo/bDZbIcZ2macqyoqxru14IYRBNI6RjnbAAIboAqcRyfdgKAfMiz6J0F8WXl5WhabplKpAoCkFYkRAKCX+rBv12IHZtK6UEEHDGJVakAoXgfddBrKiahrECEOZ9n2VpGoe845xRQpSqqZqe2qY99AMF40MU3j0siUIsyzpEoWk515dXoyD45qsvkJR1UQ49x3YsKYVKFF3R266jXYMVBBDiAJi6fnV2JoW8fbgvqqrnXDUN3/E0oqu46mn9sK2EEApSiKknRZoWsBMdVpT5dMqlABAZmhEnyWQ6vbl6ZhgaUB4BR5vdltLu6eVlkae0bnshatojhM5OFjeXV3ESZ1mq67oUQNO16yfXZdVkWcUlCzzPte2WNqznKtGbvlUgyou8bpqu68/O5rqFiYIlV3SF1C3t+3Z6ejGdTGhd0aoEACymcynlw2p5OB6rugzDuO04AMg0DF2Pf6GlRojoWF03AIGR71u6bhpGSxsFQd1wHIIlkF3X103btE3d1HXjJEno+oGqaj1tR8MJ9AdVnXPOOGO056rpc8l/+PmHKMkm4xEVTAqiqzIYDhWi5VmSpnmWNcfY9KzR/Ksbz/f24d6zjOlk8fzzL7o+e/32r0VRA0kUCQFAF5fXx+N+vT3Ylq6rynw4EIDXtFYJ+sQ3TEKIARDgt8UIkzIY+i+eXmV5vFnHRdMGg6lrGkVVb46HFy+eEZUIiDraZGkkpAQQY0WHSOFCcgkY7Roh8jTfLLeaqZumlacHwXmWl+vd9uLicuAFEoNe8jzPNVuTQHSMKURTsZpkJZNsODSzMs5+zc/mJ47lXZxfACRsXyvy/LC/TxQEgIIhsh0XERKXuW3b5/O5hBgTJWlqG+AoDte7CCD15MTbhYfbFSPYeHLzhe8ZUZhPh5Or06s0TznjAsiyrJRd+Nh0zAkCzdBni8Vut3tYPRAdu46v66oGSBTmCClJVtiOdjpbVC0ry3a/CR9Wa7vMbFPfhTHruaGacZxkeY2wQMrac/zdfrvZbl3XyTUtyTLIQZYVSschUpuOqYgJ3j4+rhFQMMDRsfj55w+mabFGhkmaVwVUdQwlA4BLCQACEjHOVA1MJp6CcZ7lpmH4pmZoumXqCsJD3z9mMWccCLmYzXfHQ5rlZDy8W63SNL+4uHjy9Ga73/3zX/58sjijPS2q3Bt4ZdPdfvgY//X1xdnp8ydPGONREhFdhRUKgiDwfaJqSZYixJ89ubq+vvrhl582m1XSlgghfzDMqqajfd+I+8dHommWZWEJ2qoGUg4Hg/ns1PdczrvLi1PXcYCUGiEQgsl4PPAHZZ1hpBCiso62TRMMrLwopQBNU1MCVVWHCDVNG8YJ42K3PWzDeHWI+o4ZujodjUbBCGB5e/8w8vyqqpmEUsrl4wYs5kxsi6Ksqto0TFXVyqrNshI6EEgBABsN3cnY2+33ZVkCRfnyxRdSIkYb29SJqti2CQHnUigYawR/8fJZ0zZV1ei69erN6zQ5Yowwg45hXf7u8nG5/PThowTi9v6hoUxicHoy+7f/w//w5v27Vx8/ua6vqKSnnT3wJfRExwlGznAMJQZ1QZtOAiCk2O8Pg9Gw6boPD7cASs9z8rJOkhwiJa+L5Wb/sFwvN5uLi/OT+dl8sRBCQEXhEHIIESaCC4RwJyjrmaqqQoieMQSAoqCuo4alQoiEFBohjPPwmGRZJTlfrje6oSEANF2zTLOj7dXV1XQxNRwLA2Touj/wdMMcD+wo3R+zfXg4aohYpna2mHWMxmkaJgcogWVblmEihI5RtN5sdUPHAOiauhiNwWSCFGxqOu+Y7Nq2bTvOhoPBzfX1p/uH1x/fCwnbrhGCSwGLqnFdD0GQ5ZmQ3CBQ1zTDMl/ePDmbL/KqzPO0573tWKvdPi3KZ1c3Z4t5J4Vt6v3IhxBBSGaLOWfdw3LJ+11Du7KualooBKmq1jHadV1U111PWdcZuq7pOExiTVUtg2gq5kwqirKYTU2i5U1UVpVpWpZj//zql93hcP/4WDaUcxl4A0s3TNV+eFgek8Pf/uFvmqIKo9iyHNb1xHW3x0NdVvPZhLFsMBy0tDN0S6O6hJAohLO+74RkvMhSx7Z1XTFNo27yssqHg2FDKcLKPgw/3j32EgKsm5rievZoPJ3PZ48Pd03dPr95RptOQnB2cuK7waf7BwnEIco8z9vHd8sfH0TDbcsP06oom9Fo8vL5i8B3qpJ2XasQPB4OmGQ6VdfNuuMdwhBjwgUDUEIAfvPHdTUduf7NydM0qynlj+ulrpKr6+ue8zzKby4uJ6PBL6/++ufvfgVSYAVDhKUAUCLXscPD/oHDs/MTz7U9391uWZzFxziLsiYo+quLkQCMAT6dDLu+lUyeThdt1z88PGCMe9ZUbdW2YDwc/9dPf5ouTkazKQJ9UWWHKNpvj7Px5MvPv2Q91eOj4y3iOBsPpxohlm4ApAjed5R/+nR3e7ecLgbYAkav9j0dDiYD36B1sdsfS0fenF8QgiCSHz599LxA2R+Ppm66ptnUTde2g8BfrVevXv86Ho40omCMetaquq7isanoOtSpqAauPwmm//Snf9p+2BCF6IYqBDiG90VWuLajqcZ6tVuJne0448EwcGzdMNq67mk/Ho96iKumq5pOwk5AUNRUIQhDDoTKKFoetoE3GA4HJW0EQoCL37TAQEgAIG37NC36nhmGnqXZTuzGfnBxdu7aVlzkb1d3AIDrkzMAsZBoPJrQnq92uyRNiaJs9jvd1DFRf3rz7i8//Wxbtue6NaVYUU3DIYrOu14Cblg6CuUffv+1bdt3jw/r45YQYjlmyxqIZV3ktq5enZ/4gf/VZ597trc6hP/43//7yWTm+w5AUEipEoUz3tLOcb3xeMIY46xrmqIo8sFgMBmNl8uHJNo5liYYlQoTPYvCoxRCSGBbNoZ4FHhhwos89x03L4soSwhWdVXXVWMYjA7HECsqQCjJEqwoWVmOgpHtescwUonquoO8pHG2gQixvo+TrOt6hRAp5D5KBOeea79++66nrWfbJ+PJOgr/5nff7A7x3//XvzcMnXHW0NY0DKKT08UiLfIffvqJs24+makKno6HqoIqWju2MXQDjMhoOCyKMsuKY5y4rvPy+fUfv/2aYCVN48nAn0xPLJ2oGGVJkmSp67iXlxd396u7x0cmmKHpBOHxaGxpRlmWR0pbShWVhGHaUYoQwRjqiiZUoSJy9/Hu4fHxf/2//69FkUsoMEKKquGuB7KTAkKJAMSMd5x2hCgI49+eRgBACQAXHELZNjVjYjKeh4cIqFi3HUrbyXCoaUQIVtMmzCJiaIqhBLbbNe3NzYVtWGES745HIFHZsA/rJULwzaf3QgpV0wyizUZDLvqyKmjX27Z7Mj/Jivx43HdtMx34NaUaUUbDYL/b6TqRUIoeYo28evdGAnBzc1VX9Wq7QVhTiHJzc3M+O+3b+vbu0/Zw+MtfD4J3T64vXzx76jrWcBD86fvt3cO957ijIBgGg7qu4jyxPY+YWlElOtGf3VybhrFaPfi2qV+eVU3TtdS2zKotIVaqqsUI6rbLWNf3vUYUBSsvn7yAGL19/7asi6qpDas0dANLeIwjhZB/8exlnCYcQAWTrm9NlXiex7g8Htd9HwAEwkP8/Xc/PXty/cUXX0KoFHn28f6h6eiTqxvPd7a7jaIRhai6plPDqJu649yyrN//7ndFkURRTIgeRdFyVbZdiyHc7rZFWbc951xOJvOeccu0hoG3PmzSuhlNpq7n1nWpEWU+mgAEBRQqRn/77e/W2+Vu/1iUaUWzuq7mwRxwhA+wE0Bg1HP+/Nnnp+dP379/fdyvkQJ1rHuBHYaHrus0TJAEXAL4mzOIS103rq+fqgTomuU4HRcwGAV5WagEdx01TVPXCcbAMHVFwV0PAAISCgCA4FxBuhTy8urSC/S2plDKgWNPh8PJZHKW1afzk9OTOSEYIHA4HjjlgRdoWD2GkeO5tKkZg4buO46lQFlWjZoVy9Vq5Dvz4bkO3Kk/5awNw02SRLqh0wo5hmFqqmWpfWsRzSC6hrBycnrie4HAVJL+7OIM9spsMhOSdbSxbW80HKZ51PeMdtSwdEVVlMM+Pp8r2+VqPjsxB0aaZV8++/z+4W7zuDMNXTVI27bb7c6xXFu3VqtjmodIwZ4bDALvm29+pwiYFmlRU43Y6ETaltE2VFMN3w+Iik+nE9vQDln87OYSSnhI0yirEEZZlgoABFYBUgDvFSil5AgqnIMkjU3ThAgLIcFvTVEgAeQYYwBkR9l04gku0qwGQrIeesHYsoyS9VDRec86DrAi1+u1PxhrqtHUB8e2PS8AQm42BykllMR3TU1V0ySXTCKMIRS+a1kaCcPw+smNbVu86yd+EIUh0VTWM9Gx5JhAAbI4nQxGs9mkqIr379/6XjBfnPzxy8+glJ7nMc7zslB1raOdphod6wmWaRxDAFraqZrmOG4YR03Xh3GS19R1bF3XLcvhAB6OEVbwMBj6gev7/iE6trTd7o9hGjeU+gZiuDN05fri1NSIY5m6rnecR1mWFfV+f3RdtyoraAPNMOqm7Trm2iaQsAXMsk3bsuIk6/pmMho6tmFZRkt7IQopkOd5u+P+/PJmcX8eHcO256qmv3j5WVrk42BiWtbjw/3pYqpgJHlXFXlRNRyJ7WEn2W3fs8ALbNupGvrFF58tphNa5X/55z9BBS8Ws9nsRApANHy2mL9682uUJlXV/OW7H45JXtZN31F9bNGuf1xvgBC6pkMERddHcQ4AIETFiLd5CSRAWDmEkaoSW7FZ3x+PO9MyNUUFEkKAuq5nQkBMEKJYUXrWE0AgRBhjhAnGihSyqmrBQVpkxzDKknI6GbuuKQBP8/x0cZLGkYDAMaw8zfq4m8wXRFMPu11RVWg82xx2um58+fzFyezkP//DP378dKupimGoA384H89oX2dVBeuaqOrMd04W8/JDuT+GEonVcatA8i/++De9kMTQR0QFCL358CEpMsZ4S+l4MLBt6/RsbluGrhpMSlUB85OZYJQoZBOGpqFDCX998861nfFkSog6HI45A33PTUOnjBFN7Zr2GMcIQgkhVKBp65bnRkWeFJnnuqahIwAMeyQ4m3hDCQFR9V7w9WaXZyntRFaXtOuivCBICexxVZeb1dowLQgVy/QeV48Kws9vnvw5+S6vSgBl1VSKqlueTQx1v9nlZU1IWldNmmUX51eOYw/Gw7wsBsGQ921VN6OxHgRueDzkeYkVpGqqruuGaTDRX3qBrpv746HpeZqXTVmqRJ1M54Qy2vGh52sE1nWtE/VsdoJVlSjQdX2I0e2nT21LT09OpJDLzdJzas92VkvZ9Xw8DhQbs74VEuqGLju16/mv717bpgUBUgA8nS36poUIzkbD75pOCkgU5beiiZACSigA6Ht+jBKMOk0lZ5c3jAGOZde3ou81omiG7vmu61iaTpACBZOs61SsQgQhVnoB/IErcfPT27eni+uJjrOowKwhtjY1DcvErM+Joh+2h6wsgkHw/ObpfrubTsa2bZVlmhdF0XZIUeqyurm5nM9nfVNuskQ7vzJVXKTJw+qh7QREmmNZ11c2xDBJwsO+OYahadtQUQBQri4uyirfRbuiyne7+Ob8mjPBoGz63rDNyWQSHw+MS90wAcI9E0pgOQRhDGFRFj0TURw2baWbmqKq++NeY3jgeoHj6bpuWObt3XJzCMdj33ZMw76UXEzmE8e36qY9O11QSuu6jKN4Mh6enp40daWpCiHYgbZJVBUpiOAoySUACkZSSom1hnETSUIIE+I3imxTFU3bAYKhEFIAzoXg8jc5mGEanueOx0ODWLbhbfa7qqq2h0gAHqXJfDh++uTZard5XD1OBuMXL17SX16B5ZLRXjKhqmqWF23b6JoioUm7xrYdTAijrOO0zNPLs7PZdNbRVkqpmlraFL3oy6Igijobz3ds/+rVO8lFEudRlh2iUCXQsZPfOunb474HzLGcqqnatkESHneHvCqwggXjRCES4a6jRVG0tOOc1S1t+75qivlsCjGEEP3GJViuHlePjxLA8WR6PIZRlFRt63u+YeiHcF/VTV6Utm2eTSa/5RYCSFS15wwCYOi6pqmmqeuaTuvaswypYHK2cG1bCDlvGhUrKsSGoXU9VYjSS9EJHljObDp5+fRmvX1c6pqmqdPpWNPIOZpczk6zsoB8bqhqVVW3tx/uH/dVxzRLPx5CKYWQcjoc66pKOU3zOE1j23TSNOy6WrcO15dPyro2DIIRuHt4PIaxZdgIKWVZl3XjOvbJ4sQytCRPhZBX5xev3r62NH1ge6PJBECwWq+JgpI0VSBAGBJNdR373du3RFUAgE+ubgaBVzXNerOdTMaGaTBGKaUQQCEkZxyh3yRgkHb0EEZZXiRZQimdjGdAMsl7VUFni9nxsE2z3DBNFkWaqfWiLx8eN+uda5pFcRz7o9loUjXVu/fvMFZe3FyeTCe6rgvJy7qO86RtatdzbMdmnO/D/cPqYeAPnz57sQ1368366nSuEj2MEqIqjuMcDgdNVW3H7hnjnBdVAyEwbEMhSt3Wk8mZbVllmUOkmLatN7luGp47CLOMSiyx6vsjTbW4hE1XFUU+G09kx8MkDfyAYKQZalEWr9+90hT9bH42nS76vi/K0jPNsip6iGaz+c+//mIQneg67SjCas/k9hDXLbWdgWOYukKqpnnY7gzTGPpjywH3q+W/+pu/LctSAEEMLQ4TKeV8Zg/dgHZdQ1tdM4fD8XA4Mk3DtgzHNHrGkkwnqn48ZrbjDQejj7eve8pevvgcSJAVmWmaddM2LXdda3NYL5cr2osszzGCAAJCLEjAxXTx5PKiSg7H6JgUBe6BZRp/+e7PRLPms2la1EQ147yAQCx3+44jIcVkdDIcTtJ027ZFXlfLzQ7rlm8Hfd893j2UZX11fTPwvSQ+5lGs6VpNq2OUtl1vGmrPpARAUZTxaOy53uXNtefYQtRFVe6PWwGQa3lnp4ssTZq2pl0ThXvB3L7rhOBAoirPu1ZhTPS8J1wZ+a6pg89ffn1+ehnHu20cE41cXVxNhhNEWZPnvOv7jgaBm2Tp+08ffzMd2bZhGQQChHBbNvXpfGZoNoC8zgrW0TjaZHl59/hAaec43mDgmYap6ZYfePf3j9v1RkhR0a7nXNPty4vLlvYKUmfDMyBEHB4OHI4nM9ewJYcI4cl0FsVhWVWeHyhEUyzbEJArmuy62rR8x3ejdTzwfVezOKeWaaiq+v7urqUNUUnLhOk4hKiGpZum1XfycXVo2jIIPExUi7icsZP5bDodL+YzCOA+PORFYWC9qSrd923D0ohathVEEhBEOYtbgTXEhZxMJoyxHmHVHaRF0fedpqm0F4qqYwUoCEkIXVc/Pz29OD25vb3TVMUPhlGW3z0u+471rO9a7nhBXbV11eGRksTHyXg4HA7rMlcw5EBoujYeut1vo1suQVXt9kfWsfFo3DHuOK6m29vjri4zqMCsKhGAGjEUhJabXRTFju2oBBMFnJ8tHN9dbzZ1y45ZhhGqaBfHcdN2EKtZmldllaZpVmQSAcf2OGNNTw3DQEU58IOT2UzwjjYNk91utzYNfeAPx8Hgcb2Ks7zr+4HvL7wBHKIjPLqOaerW/Wa13R8c0zJ0M6+q9493QkANa55p6kSxDGMyHJiGqmrks+cvJef39/e0qRVL1XTiuYaqagAEWRyrmHDOi7xQNXU0GymqKoQwdPWH7/+cp4lpaEHgaCYoq1RV7be3H8LwCKRgjEkB9ruwrhui6llYdB0f+F5NaV7XHaOuZ1uGudnuTKM0TKMDpM4q+fBYlOXAd8uijtOSMVAWpWZplLWWZf7uqy+eP31CaV21xWaza5tKJ0qYZaaqSsmyoqiqUvBesPr04tp07MPxwNri4e5OIjQeDLqTk7ZR/vrqJ6IoX372Oe06qum06yHECCDJAVY0RTPqjhZVGWfx43pdZqVpGKmyLwH8+LFsevr05rKmVV7nWCOHOPJdqxNcUXQC8fv4gxe4j5v1dDiI4/QYJy+fPbWGA8Z5Rdu8LADSJWADf1aW1XK1uby+UDGuBTUsZzpzsabShjumt93uHM/WDWNzDF+//6gpynQ2i9N4Op0gAMqyNBTVNtxSlI5lmJb2Yfvp9nG7ORx8P5iMR7Pp/NvZ32mqJnhfFXmeJ4J1YRTVtjmfzRtKOwEgBKapAwgUjE3TxgBAwMYDv6ZUUfHJZPrbhgNh9PT6iaFrSZLC2SQvKkKI57gXZx6lXRSFuzjUbXfh+6v1Vte7xWKmxWizW6VpPh6NVWIQaPZ9CxGaTmeubSMVOvvw8uL89Gze0+a4fchUXFU1F2g+OyuLoqGNqULWda7jQckEAADwrqOU9QohmkYUpFycXXeC/+WH7xSivXjy8ubs7JjEl2cnlBYP20cg8DGMNE2dzqcAIABxWdajIFAUHGdp25a2ZSRFnBe5qevHPDydTDVkcQwtO+g6hgG4urlpmiar6tl0zrr2KBi2VT8YmrZl2PbF9ZmpWbTpHNv1POvidOZbVsNpI8o0TR9X+ysAvvzsZXTcN3XXNt0hPJZ1ExXJwLeP+6PgEkoJIYIAScH6pgYaaXrkuMNgNKzLbOwOv3758piEz66fCC7LLlUVfRQMmo5qmAyswX57fHJ9KSWzDGt/2BqW8/lnX374+BFjGAwmXdsc2xYoynq7V5AyHS0URT05O4mSA8aqANj2AssvzjRHCmbqWk3rT+u7u9X9wHUtWy2qjNZ917Se7TVVVmTUNGwhOk3THMvQDU0gVNWNopuKAKyukpdPX3Ycly178ew6jpLVehNnSZInGKuWZnMmFF1/tjgdOsNff/n5ux9+dANnFIyypDrsD1kymEyDL7/+sp2MTQUZllaUuQS4ars0TTeb/XwykUjhgvuD0T4phIRSyp5xilHEaC/4Yj41dXOz3zcN9QOvbBshBHLB86fPaNvuD0eM8WLmPblaQNTpBimyVtOIbVkZ63XbcD337PxUMHY6n08n07quP91+evbsxfXlxXa7nAyGVduqhBAM7x7StmMXV+dZnNV1q2l6Xbe6ZX7365u6+dFzbQyAlLzr+uEwsGzLdtyedrPxEAFG26qnnWNqqgomoxcYqgpRpOAGgfswW+7ivuuTKKFNIyC0HF1ViGVZREHDYRAEw7KqEYQKAOPZSRanYRwKzg67GEt0dXojgWzq5mwx931XVU3DtOI0E4waujbwhwAS2ra6giht+46bljPw3PFkst6sB56rKEgCJqXCuPB9D2nYdfy2L4nKTUsFUkmzDCBYt23X9zWte9nbjZkfjx3r86xQIFIJ6TmloFs/bHxviKB4//ZD19PpZOr5g8fHRwGhG/hFUTqu7Q/9qixMQz87O1MUGKfRar/r214AnFel5VgIq13Pu77jXBZF9cWLz+uaJlmMFWmapuu489kwL7L/8Pd/H0fR0+snEEDaUoBgVlciwW3HOJMAKQARLkXPW6IhDMlyvS+rshqPxuNBuMP3t3fj0Wi73ylE5RK4rs/6vqMdxhgpRNP0u8f7oiyruhVMfPvlV4+bVRbFT84vP9w+PKy3XS8gkJzxrqOaRlpKTdvsah5lRdNx3RBV29RtCQBzbDPLkrYilLGKUk3XFEQwQEVRmboZxeluvZ9Pp5Lz8HgEkkMggsCLkoQxasQqZbzvxcnJ6WIygYBPhpOOdUVRCAjyqnLcQDe01ep++fjYNPXhGEsJEAKGrgnRC9FZptP3zNB91tdAEIUoeZ7rqjKbTObjcUdpGB09x/WCYDAaqAg2VdXTlkB0fXHBGWOcP3vx/MOHD47nGIbR0DbJ07xMTdtWGlDWcd+JhvYAyC+fP5lNF1xAhEDgaI6LN8u1pqo3p+fvP3xs67ZrYce7XrQC4Iv5cDrwx+Pp/rAVfW/pmuSYto3j+j1t6iLP6/Lt2zfb3WEDj7f3txCh09NTSzd73nHGIOcIINfzsIoW44mhO9Oxn5bHqsqWDx8gBD3tMFQd0xwEfpOXgvWBYzm23TR5XhWC86pMPc+ibZPE+XA4AgCkRRmlRVXXT548O+73GlFdy7J08uT6om7q7S4MPLcT1unpCRT915+9+N1XBpCwLiqAlF50OsEda5u2We/qQxiqyKzy9tXP7x7W9/vdQYEqhEAzrF70QtBDnDEBGO+JgoMgOBz2nPVt0wyHI8cbfv/dd5pCnpxfKFiejsdpnGDVgIoSVXuoI03XCUJZkZR1SQj+dPvJMi1VI4apU0GHk4GQwht6ELgccl3VdU27v/tEKc3r8gTjYDRuqQjGM973pqZNRvM8j4fDYHfc8WVfNfnFbPzx9v5hs5pPTj5//mK92SdZblumbdt1XRwPxyiKJrPZ2fmFQgoFE8Uy7IYWbz69N1Rb19TD4VBWdLXeNX3nOGZ82D69fjL1Z/tjOPYCAqSmYGMwzevsY3QLMdQdPD0ZYYwglk9vTm/fvaOs+enNayYkhsh3reEooJw/rtcnJxeu70OkAAkRxADKhoFeQKLrTFCAtPl0FHgBRshyLVVVj8cjhAgrgUCtAvB0NKzK+n59P/CHF6cn633omvrZ/AWX0g/86+vrt69+VTDO8pxoWpLmuq5blnlyOh95Xl7WlqaHYdi2bH8MiapNx1MuIORSRVjFBEBQV/V+cwASzOfTxXRyebaYz8bz+TyNY0qb+8dPYRh+8/U3GOFfXv9VAm4Qe3F6mmZx31efP3lSt3x/jAxFBQBu4wOCwndMyyCDgf/04qqsqoeHbTAcIULSolBNk6e4aftdlBVNy6VGGa0ZRRg4psYlGAyHw/Ew3G80gr/9w7dF0/7lL9/FSfT85g8YqqvNxveds9PFJAgE7ytanp7OIEQ9o7++/rWmnWwl591oMNZ0K4py2ou728coTBjrVE2bTqebXRglCVQUyqCmqF1Lm761a302ng28MQTg/OKiKIq27cKHdZqVnEuiG95giBHGUALTsC0ncJysLKbj02EwKYtc0/UyLwLfr+p24PnT8XB3OOS01VRdSsihjI/RbDJL4vQ/fvz7hrLleue59vEQGYbxm8S3KSuMsePZ88mVqmrHODxEh06yQxQjoTYdkxBbrvfzL68W4xnBREq53G6kkLqmeq7b0dbUDVXTmr6buY5lWnGcXV/e2JpaFLmhEqCb2/DoWDYhxjHMBq6tEmO52QshbNvM8tKxfAmAbbmL0cw1rfvVhgnw7ObZ6/fvy7x48eRpWTcA4rPFyfEQbncH3wtcN+gZq8rWcV1Ku/1uZ1uWrqrIAlnWd5QTldimPhr611cXeRofo6NtuReXz5ECf339c5hGmoIXkwvDdpeb5c2Tz+P4+Lh5CAJ/Mpp0XbdaPRqmbplWnOS240ymcwmhqhDWd6PB4BiGnucFnscYM3XVtkwM4e3tvZAyL8vrq2vDMAAA4/FYVZSGUcroZDTEAFZNgxVS19VwOG4pHYwCoklK66urG6TIcL9+9epXKNHp2XlWJtvDOm+7LMk833v9+lckuaHpX3/1ta4qo8B/WD7uwoOCUM8YW+8Wk7mhqWHcvf3wMa3K6XiWF7nj2LZpIyklxHme04YKyb22JLoyGXimZi1v31ctnc1PHh8fszQ9WSxsjxQN+OnVL2mSjmezx/W973jL3SZOC10lgWf2DZuP5lnSRFGmqSQnmWlbmCjR4aggVFTl3f2dYRJIIIBSUZEJTdD2n27vuqYKo4QLOPQDKfjNzXMAxPu3v5q2cX42PSSxCnUCyfv3j5vtVtWNnna+hU/PTtq+NVWd96AsGs4EQUhVSVEUXU+l4KzrhGx//OmHdx8+aMRYrrfBwPUcfzI9Ob+8uFveLXfHmnGMxNB10yIvi2K73fqex3rme17e0O16bVquaZuC8ziOVtvNxfnVbDicUgoR6nopseJ7vm5Yuq7UeZiEe94z2zYe7+8o71WEsyR+03b3y4esrjuKu4qfnl0Qw2R9lxdl01ZCoKJp1aLyy0pBirI9JEJBvu/GReWp/OZ8nqaxNxyfX53d3a8M1TAM+uv7N3/82z+cLubr1Xr78Mg5e/LiOUJYhdVgaJsOubo5V4j9f/z9fx64FpIQ68an+9XZyRlRgBT866+//nT3+LhellWRZbkUjGAohcAIMwigZiidzvu+7+l8trg8Pe87egz3GLA8jxrauIGv60gwkCRJXdVZ1dbVtgn6qm0dz5rNxgJA2nVJEqsqKatye9hNpzNDN/7pv/8TwoT1zUo+aKY9Ggx12/GH05bDtGhtmwGsB+PBxWK+XN16xNQx+e7HnxRMptOxbWpYgVVdp1kWJQnn7BAm2+3h979H98tl3fIwTcp8s89LRVGWy7uuFQCRzfY4HE38YNCBxjV1z7IRwkQl//zXH6qqhgg5Xd+UdV5u5uPJb2TKzz//YjocCy7ef3pj6nrb1GVd3S23EitnJ+d910VJ2TLmef5kMuz77mxxouua7Rrb7bprq7PpdH/cf7jfVnVFKeUSqKoxHU8hRN7AL7I0jkpK+XZ/eFjtWdcrGFVN0XHp2LZl223bxVFmm1ZdV8PhYOC4s9FoMpm9efOuaRrLdhoaF2Vlmfbp6VnXd2VROLYjRd+LTtfVui5Vgv/4zVfr9eN63bVta+oKhNJzbdZRxoACQTCeEI00tMcQSQB//vVtWdZNSxFSWsp9gAe+jxBQNB0rZHxznaQh0ZBmK3maC8kGQRAlSeAOfcu7v19VjI2G47vH+ze3n55eX2VFulothRB107C+NzT9/PRMQlDU1fpxNZ1OIETLx9VsPLp9+IQgqDvKpFAt4+VnT8uyMnWDEFVKrGqahNzWTA5gmG1QVxvWzd1ytVxvf//Nt/PZ6Z9++llAxXXdilY965IsqWkLFajqJElTwzBN01Iw5pj3Pe269vnzp1VW3D/Kuq49x7U9Z3/YNmWBMCiKQrfcJ88/1wz1ux+aMDz4tn1z/vT8bMb67LDfNXWtKerD7R2tmvOzS52oVVMrSL24vGyaxjQtz3U/ffqk6zpUUE1rx7W4YHVTlSULQ4gg6hjfHg9RnBwOe9/zTMcWjNmWLYDQFWJqRlU3BW0nwcRaGELwsiktXaGcGrDfHJa0q5uqalpp6RrG+N37D4RoA1cLLJtL6Xtu2zSaoWZlsTvuq7rqpYiSLM+KLC1a1v/uM/7kdOE5NlawAOxkPDavrpMsPux3VVnohrU4PVMU+Li6XR0KhRBVUT/cfszSfDyZ7qNXdVvpRMurWoJO08226wWAq80mSePAcR3HP52cWLa5Wt0eq5oo5uXZ+eF4nAwHfuCu1tu2aaXkm/22bZljWk+fXd39+APj/fnp+cAbtl3W1rRnHGCMEfY893A4fP/X7yfjge5oZVfmy3gazHVF6Rh/+fLz6+tnaRpbpnpxNn/95nXT5oewGQ0Gs/HkV3kvIW4pZVxgpLQN1TQ9iWLH0M5On1DKBOuyolVNiSD65acfJOLf/O53UMpPt+/vsjSNM4jUuqFCYgUrYZQYll22zf6Q1LRRVdWyzF6IKEuRgmbzad/3RV7quipkG4cxRPj1q1/W6+1XX/1+4Dvb7W44nviut1otFaB43oAySHt5t99ToLx4+ezh7uPIH2ZZK4Qo6lqvaymkqhPl4+1yMAzagjqOrwzdH27faSoOw71pODc3l3cfHw9REgSOrenzy5NfXr0TUBmM/P1xW5bV73/3jWHqDPT7MAagPFlc2KaRZOm7D5+yqLRIYtuaY5pXl1eqaaVFut1u2k4I1gPBCUKMcQ4B5AAhNAwGo9HY8dx3nz4ACHaHOE7iqsrGI5+JbuAPqrJdrdcIobJuLEPf030wCEzHqsuMciEBqOtCI2qaJefnJ57lY0U5hPumabGqZ1lWtOl2d5xNJuOBr+tqWRZffP7ij3/8F8PB5D/9H//73cMSQda0neO55ycnz6+vxoFTd+1yvaKvXhFFYX0fJonlDfbH+C8//AyxFmdNT/uf/vrr6enZfHq5PuScixfPnk8nI42Q7W4lAfyN8t8y7vsjVWvX283Dw2rgB2VVb8Thq6++mANACD6ZzOM4gVLYti642IXZMc0UVefrlUr0pm4et/tvvv769PRyPJy9/fVnRcUcyN1ue/v+3SgIAERhkqy3O9vxVMMc6e7DcpVl6Ww+NTT13/7b//H+cf3m/fvxZCKkVDAEEECIxsNAJSqlFHLpO35m6NPxRCXop19fL7LE8zys4vl84XoeRMD3/cl4+vHDe9PUzi9OIAQPy3uClKauT84Xv77+abVcCQGIonW0pV0fDAZc8OFgIHh/3O9a3ldVOx4ERCMMSKxqM3/Q0rYDDCogGLqn81mSpoc4u7u/JybJ2vIQxV3X26YZeD7reoyxjsFsPOBgYFuWY9tHGid50bRt09RVWVV1S9s2CIKipFz0GMPUdKIwJrr24dPd3cO9ZWq96F3bMyHkknu6MR8PoURJmgW+Vzc1UvDp6dyxvcXpXHDGOWupuLi4HHk+luJ3X7wUHJi6FnhemMRZkQ5G/mDg9U13MhvP5wvf9Ta79WQyqspis13RpmWMsl5AKDWDUFojiKq2oU2NILIcmMTroqrapjI0E0hZlYflXQUYtXRCiKtg5FhmGh7mk9FkMt9tl5D1s8Wsp+V6+VCVhWUYbddkaVxV5X63ok0znc7rurp7WHZMcC4OYdRzXpfNcDQ0TQtCgDE+JEfPsj578kxTVUPTmqaSknHBG0qTMkVE6Rop5SFOo6E/OF3MaVtvdyva0uiYTKdjzdZ/evXqfkOuzi9Qx/7y/V9pzwzbMU3N0DRjYjnO4OTkvMyzMCuDwbClDeNAM7TByKlodjgeJGcmtk3T2GxXWVFphkFUo20b3bA8L/Bccx/nJ2dneVI2dXeyuDBUFB2j6WASZ3GepbtDdHp2EwSj0XR0CDeO45a0bouEqIqq4k+fPu334Xw2T4o8zHPBlPHkZH9MOtpAgsq67lq62WyuLm9c11ptVgpUDVW5uTzvucQKloCvdhskCcFwPLWI4dxcPZsMJu/f/BqG++Nho2nK56fPX7/7qKqkrisAJJcAYuLYepFlEGFNNwzNujo/tX174Hm79XJ7OFZV7TmOYZD7zd3+uPQ8r4Pd435rEIcAVDVNXvaWaUnA8raumzIrmrKupEBXV084BFmV3j/effXyC9+xIRCEwF9//bWntO342/efuk789Ordi6cX6+2eScU0lMlktI3CyXj27776fXRIqroqSiqF1HQtSrOOgvl0cL99HI9G+/0OYax4jhNY5nA4GI1H59eXv7yt54PRbhdR1vS8qWknANI0Lc8LBFf/8o9f3Q6Hu8MGS+x51pMnV5t9iCW0NMdU9d89G/eMbXbh8mFj2RaHsKy6qum3211d5k8vL968+RhFBySFEIxACTVCpbQIzuuubJtmszbSVDAxHk/HI9L1EklsG7aQXUd7zkBDWZrnWIEAaawvGJBWS6uaOp6v6pqh6VLIKEv9kd8xun689z3ndDI6RLFre7Tv0yYtipL1fdf3nucwTv/xH/+j6/n/+R//IQxD2zVvri+no3nbto+r5f1SPKxWjuNKIHvGmrrSdG2yOPv5zYeWw9loWrY9kOD68uXVxRlRVCZA3/fPb56u95tPu1sFKmXRIkxGw0FdFz1vbdNZjAbDYBQEQ932iqaaTkYmUd9/+vCn5T8LJg7HiHadqhKiaY7jAAD3m4PtuOdn54wPBBev3/ysaXqU55hoCCIgFQhJDyClPeNIJ6aumpbpFlnR9Ww6O7m9/Rh4TlkVtq2fnp7oht72bdOWhmkgSLBEnDGIJGu7rIhNx3EdAyLU9YJ2PGKRqRtEQQgJw9Sapo7io66ppm1CJKSUCMK2awbjIE6zNMkkR6Zp6kSzxyPd0iFESZqulsuqrAhRBZctbRjwEFIcy6xANZsPFUXxQsN1zYZXYXLI0iJNyo4JV1Pmi5O2afM0cSyHYMW1bEVRiqJIs/Dq6sp2TE1TLxeLMIkfN2vXtoUAtmnZpqUQ0rSNqqoQoLJpk7xQVYIxqKqqaRrHcaqy4X2nYGyoJu94T2tTV6um9RwHInh1fWFaBt6CsqgoZWenJ2kW77aPSHSGpoZZuCoyIaSuqtPx+BjtAZcno8XF2fnucNjsVlVTjyZDTdcn4wmlNedCM4hCtCSJZpPZbDj+cPtJQdg2LUfXeUuPmz0QEAheFe27dx8gBEEwUBT1Yb3VdQMI3rH27btfl6ulkIL1dd81KtE3221aFpJxBKSl2azjm80OCMgYlkImedN0fRTFs9nUsawsy4SEuqZBCPdh3DJoI5K37T6KAYJN21RNmZVF0zIJ4Hg0eLu+tS3T0JS6bIyBvg+Pd48r3nPP8aIi8zH6/dd/fPP2fZwmp/O5qhlIlfP53DWNMD6atmHZ6nRs+5amEExU9X656nu5ifdvHt4FbsCZ6GhnmfZsNMmy1LY8yzSKuuCCQQSO4VFR5xeLxXgwbINOcM4ZXe+2xzgdjcaj4RhABSJ8fXXdsa5p8sVivrx/bFnPgXQN8/FhdXf/AAEoyhIS7Fu+awcj36ub3PYDIHiXl8ckglDhff/27bt9FCdJNhr4nj/6m2/+sHq8j5LEc4e2rmXZruwqGmeikx/Bu912F8ZZz8A3v/8siw+uYXHWty2FEEgpsEKIaaGqwFjRDZMQIiG4X94Wmatrqj+wA0A61kOIA2fMgZCSmRYxTO1sejkIXJOA+7tHzoVEcL3eCslGw4D2dZY26/XadBQgQZbG//AP/3069DBEw9lsvU8568dD72QxgUCfTufj6Rgp2nx26tlaUewbmh/CralbKtbOT882x0McRSrR3n14+/uv/ub8JKjbTArI+pZ3Unnx5BoiqGvQJGJ1/7FIi5E9AgI1Zc0lu7iceoVblsluv6tq2zQNw8KqpiKpXF9e0I5qOhkOF23P0ij89f2vZVlqRJ9NXM0ApydnQ39KVIRVI6+SH77/kdGu6zrGuRCCdlQqUEA4Ho54m42GQwihpmrT4cSx3R/++uMocEPeSYAk1H56c2satmEFmuZw1iEVmY6qaArWFFtRptNZFMddx0ajka4Z9/cPlmExwZM0PF2MSY6O4ZH2gvX9brdzXNs0TSlFGkdFlr1//x5K8Ydvf+86pm/bGBiv3t8ew8OTq4unzz+zTSuKoziOJueTz19+JiGMk+QPf/j2YnFxvxxt1ytNxaal50XpOP7idF40zU+/vtntd77vzoazxXR8cnFSNe1Pv3y32ewIIjdPn59dXhGMq9LAEHy4fW86ztywN5vVZDofBIEUPEzjlnYKVjjjaRpfnZ8omvLq9aukyJuGmbp5fTUfDIb7nbderzohLNsMxtOuqX3Xm0yn4eHoj56Mx5PVarnc7r//4fvzs7Ob64u8qObutGly13Us3ek6HifJ7e2t4Hw8HhFNCQZOnKTDwHVNQ9PUpm4e7h8s2zo9WZRl5bqeGARpmh6P4cnJqWVaeSEYl0mcWLqh2hbtOyqpgVUmWFU19Ldk+r7reFGScCGlBK5tu64XHg8qQUL0V2cnSEFvbj9sAW6bLk6L66vrgeeXeZ7m2cDz66ru69axrfFgqKuaqmkDPyjSbOQHrO8fV4+OZWIE/eFACOB6XlEUbdsihPa7Q98zIYRpGo5rm4bx//fJQAggmkynddMAKRWMy7Ku6vpkvhgOgygKoxgwxhAAaRzrmiG4iOIUKyQv87ZpBv6QcT4ZjzFSmrrdh0fWM8mF7TiapuZFFccpAMIwNYjEarcrykbTdU0z2vVGxQfT0Ou2blhPw+hh+dgxDhCqmzaO4rPTsySOSyp6JlabzXQ0FpyleapqupTrs7NZR6s8q4JgoqkahpByzgGIsuzt+w+j8aTI8ofN3nNc1w5sAAzD1g3NtLTzq1PBeE+7OEmxgr+8fjmdDCltoKofo7RtDioEpqZ5ti0QPkaRbfmXV5evfv0ZI9RLvg8jLiUTQiBgmlbHujCOuOQAYMPST08Xu8NhPh45tt3xPs0i29JVzKUKO84l6yzbDAYe74RrjnWiE1dL4qhq6o+fPt7ePbq+CwHIsrzt2s1qx5nAir563ASe5fh2Q2kaxz1DCGvnl9f77SYIvG+/+Xr5uHRt2/Wc43aNMT4bjeu2qasyy0oGkKqSuqkDyx94PpYiCddt2zymORIAI8iEcIPBj3/9FWKUVJVhOsSwirZN8uwYR2XdZVV7MvNt1+sLvN2v8uQWCBin+Wg4GY3dN+8/NW09H88sS9vuIimRlABChBUFQMAFF0LkRdn3o75j6/1BNTTOKscOOJRplJzMTodjPzyuDssjFsR2jG20Ez3dH0KM1dl0Mh0vThaz9+/f6Ip1oPndw51lW7pJmrLzbIN2crVc/3F0cXHx9O7TO98fKIqqEms2m40Hg999+VXdVo8P9xBqnuEn8fru/u7q4tp1LdU8efv+A0ToydMnjqVt94cozjkXL1+8tFxbwRop8/L1+0cFoziOFyez08nUNNTlsoySUNUMXdMsXTUM82F92O6j08VcN+w8S7f7fUPrJM+Gw8F+t/706d3ZYjHwh9/99GPPuaYqbVvfPtwaJinrajKanZyebtY7XWKA9eP+0EPAORcQhmHIhegZxwgqhECEHlcP6/3Wsl3LMXRVcVzPcYPrq+v7u/ssS/Mis2xLNbXNbqMg4ppWlsb/8u/+9u72E22qyWTU0cZzvLpruaBZnkTxASvINUzRC93QsQI9z+tp11bVbDxeb3daoPmWaenacrX6u3/1P/5L07QNrSpjhWCd6E+uzsPjwffdy4szVSEXCz+Ow9nEOhyQaZA8z47RoWdCIHhyfrrZ7hRdh0SFAO3DaBeukQq+/urbv/8v/5CktYLh8Xg4XczDsoBC9n13iA4+728ur0HfLCbDNM+LvNRVA2Nl4AXnZ5d/+fHHf/zzd8MgUBAaDU8dx+27xlCV+WS0OLmwXT/Po2HgFFWRib5u67LMT05nUCHb7RohPJvOh35gaprt2NPJiPUs5v3Y8abj2f4YH3Zb37YHg4Fu6GWV52XWdo3n2hqGrKkd3ciLHEq9a9skOixXDwgprusEno8l6LqOqAoTzDB0jWhREuZloaiKQnCSZUVZMcaISjBW4jgRUvSMKUi5ODunXWeoRALBeW9pZtuzqup6pClAHQbDrqHR9uAFzslkwSWoSgohStLycAxn08lgMCiKUsFKnpeqpi1mJ5vtlrZthzrP9ymlURSbhs6Z0DRD1yFjrG1bVyKiEEUljLH9fu+5bl7WXd+lSaqqqmVaXc+jJGrbqqpLhDAhKoJQCIkx6pmknXhcb49RNB2OWtodwrBq2rqq8qzSFGO13X94eByPJ57rEZUcDyFEkKhK13cIaKyvKW3GI7vvBW1L1zQVrNRNE3h+03V5WhZF6fv+cDjWVX02myEE0zTnnG8P+6xIsyIfTSbPnz49RHEcxppmQVISWJ5MFwpWaN/tj4e0yK+e3miGetjvDVNte6oZ5unFYrl8VDGRQvS8N12L8r7Iq8nIr/K0KMvZaHRz+aTr6nfv35dNedgsr66vxqPB+dm5pqpPri9N2/n06aNpms+fv1hvNlEYWcB0HFvF+mw2YaLXdc1QVYUgoqDFbKwo8sMtZaK/fVxNhtMyLxnrdVUP/KDr6OF46GmlEjXNK00vpqOBZiAu+7KiEIGWNj3vIVQO+/35yaKsy114AFgVTAjBP/vspm2q9erRMM0//+Wf97v98xefPT4+SgkEAI+rpZSSS1FUhWNpnudy4RqaCqV8XC0lZ3XbHQ+JqRlcMi7kgILhaGBbuqoZF5eXtCtv7+///JfvPdezbKulLecAcBIfC8mgG1iaRpCinMwWl5cn2+1eSDGaOBJ2h+goJUeIKKqKMVawAqSsq5ILcXV5vWDTY7TfRcflPrLKLm36J5c3lHX77e67H38YjOZIUaGCr69v+qYFksRhaGrqdDw6O53XRUTb3jLNOCtNy/3s5cv/9t/+0Xf9k/liNl+cXZ6cnCzyJGnbXlWNi/Or8XjUd82PP/9c1dVisehaSlT/s2fTqq4261VRJk/Pbj6/ebYJw6apgeizvNQM07YchNWmpspnL5+2Leskevfu/fn5pWXgJN261ujq7BpCBat4NPJW6w3CCla0qqoflzvbsean87qtB0oQhuHt7YcsK8uiAEICAU5OzzFRTFVXFYwQ4aJXMH79+mcA+JdffPbDL6+zNEdISoh6IRWIadsCAAgmEELGxS9vfq2qajKaBsGgo2Xft13bDjw3cE06H6V5BAFyLN/zPcSxaeimoREFmbpyfXmWp+l44rOeE0z++uqVaWptTXXdQFgdj6ZtQweBZxhanufEcQLff1xvyqYZjAcSSQ7kyfmpH9hJFhHCueyiQ+rZrm3ZuqYgKMomRwjuDqs4jqI0KasOYhQEQd8zohkt7T59/IRVdTIYtHUtBRgMXM8zAQBxHEmgGMT46uUzy9Bfv/1VJaqlm21HA9vTEXn39rWhGwAi3/Xm0/lytTxExzRLhEws23765JllaITg05Mr1/V++uX7vimqOhtNrf/lf/63Hz+8aevi5GT240+/Flnac5Hm+ftPt5pmjIdDKbjrOBjjPCsgBmmW9x0Fkj0+PBDFwBB4gavp6jE8RGlkGvpwOHZMM49iwVnf9WmaxmmCEKZNW5ZVS/uyrMNDRBSl472ma7qpx1ke7W77nkICPd9tWxrHsZRQCNm2lBli4PpNWUkgLy7ODUv3h77j2Q8P93XT2qYjaT+w/d8szePxmDZtXReWaSgQ0pYKJhrWaxrRbZtBsNnvXcc5PTv75dWrw/E4Ho3PTk5VVeVSeK77sFpalqmrquBCUbW+78uyMkyjaRtdI7Rt0yzVNN22nbKo4izRND3NiyTNLMOI06Rp9LaiLe16zrqeep6na4RoBm1p3TRt3zmmzaUIkwRCTJCiKGqS5JR3iqYek4Rx4RoGUpQ4SSEECOPRcGpZXkM7jFCeZVmRCC7aqk7yzLCt+WzhuwGWSlO3ioKTrEiLZDoZT2ez5e6wDyMB4HAysxw7zwvO5Gx6fjhGxzBBSHRMYAVJICzbOrmYPa7vDU3vGT1GoWnrx3ArRG/bpuD97cc71dAGAz8IAs9xw/jY9axpGlHWmkbmo+H56b/bRYd3nz7EeeI7bt3kKrJUDMss6+pm6AeWQqa+b6tq1VYDxzRV09RtjoAEcjwYPa5XVVkd9rsoPvJedIyXRampdlkXQkjcsfVh5zpW21bjySjLM8vRDUNLkijL42Aw0TSdRUxyoRJl4A0Xk4llqLttBpmQgg993w9sKLr9bk0Izopsud1AAB9Xm6ooOO+zPF+uVoZrQwkGjss6ut/v8rpGAOmqnhWV6xhIVaGqpnVDO4oIdgEgKmrrEhIdQRSFia7ZT2+eCd5tN+vBcPDs5rqpq3ef+vCYmKo+mwamZV1dX5VV3nSdoojl5pMQfd/T33AjjAuiaggi3ndNXRFFXW9WhqMs5tMsSy5OriRGYRyF8dGcqkmWlg0/NdwXnz1TdSXab/M8//brL+oil1zWtL399FFTMQTcoOrN1YXjOJNx8IdvvupprxuaaqFXb340HfLtH77a7ZamYSoKTNO454xDjIm5XK4D37m5edrWXZkmom/X4eYft8eBN3r+/Lllqoz1i9m8l1xyAaV0XU/5r//4309O5qYG/9U3Xw0G3j9/99/Wm/Ly4rljD66vbwCSAsrzC821/cFwLLi4f7gHiOd51NbNcrkCQEbWIRiMJuNZUbdF06pYtYjmO46UgPYd47wXICvrPEubuusoq2vKuIRCIoAQhBpR66owdV3XjY5zCPF4Ovvd518ej4eHh6NmGBAppqkfwiNnbDwYnZ+YHe1821iMn+iqnuWp6zuH7SoKY8u2e9Z7XkCb7vzshLatrhLL9j7d3oORnIwHSZKEESWapmN4zJKqaU/PT4mCNFW5PD+1LDvab6CgomO+4ZZ5XVQN53IxnwvOwl1YNU3elGXRItGphhHGSds0lqE/ezqdzhcaUb/7649IyieXF/tjBKQY+oOmbv/5L39+crE4HI9xkQrEKW2TLDdU/frmZjoe04Z2ZZmE0Xa9nIxHz549s20zjAGCEAGkK+hsNsrSKMuKk9OZQlxCFELcJEtt10mTHRQ9Z3Q0Hn/24sWb168xwnXTXVxc1nVLaQehjNNsH8ZV0+iapmnG23cfiYId01RVBauKF/jbaJfmeV01GCsI4yhKto8rTFTP97eH6BCFge+7puVYvmHIuqop53GSQwj8AYmzqMhLJsBwNNFNzTR1wYVt2gpR86LAGOmqatnmdDrZH/Y6wbqGqibDWDEMTQIephEC+Obq0tQ0QjBR1b5rbNfqWUtpixB5cnWuqZqEom6bqqmrtlYU/P2Pf11vtk3bQggtw3A9p2mbosikFBgrLe0Y545tU0o5713XCoKgbTpKW4Qwl4IxpulagAKEUNd1lDGsYFU1CVHjuERYURWCFVI3NM0LzjghKkBgMBi0tBMQmJbFhOiFOB6Sqm1d19YUgrECJCgqquk67WhRZLquq1hRiKZrqm1ZUsowSVf78Hw2l0hJ8my92nz28uVsMl0uV0VZKBgRhNbL5X67m01m11fPdRW3tAJADP1AMJZmeZpGqqrZnv364wfT0EaT4H77AJECAPJMLw4z13Z8rKuOFkVJXha873kPTMuklNZVDYXs2ubl519ydxjH4U8//1TW9cAPnj1/ZpsWBzwrS+WI0jgJj5Fh2IiQtMh+06jRvkvTdK2AwAs0rambRjc0DGDfdaZpPG7WRV6kedWz/urivK6b/e7Yc4YVYtk2VohumC2tfd+GEm02yyxJBUREsfxT/+x09uub2HNt1zUQEq/fvk+yrGk6omsC8pYWDe0QwlDCuu3itFQQZt3y8fEBYzAZDQeBb3vuwA/asq6aehSM2+0+iTNVs5/c3ADAPtx9dHxDCs4lwVip6+px2Xi2MRwaPaUq0bq+NQySRElTNSE/7lxV1bFhEi7k7eO2B/zZkyfv370/hAfP8U5PRmUr3r57e9hlUiIIIWeccy6E6HvetlRo8nG9n58Ex8MGA7gYjhrWEgxEz+5vbxFgi8mcd+z+w6dg5N/f323Wh+V6Nx2NFrMZF3Uapqynlmn6XjCZzmjXFGkkeJ/nRylcAXBX13cf3ga+hxH++OH2+YsvTd0cjsd5UQDJ/+N/+OFkvgBCqqo2GA/bvuq7Ji7yIotYV2mGsQ+PKiGWZWlES9MUQaCs94f1bnNzfq7o+vd//bnuUJr1aLU7OyUOkAhD0zIni1PORVFWu+2e1g1WcXTcjQdDSzO6jtK2PYbHYDhSEDkcw0N2vDk7NzVSNm2SJrTrbdu/vrwqi6IoMgghhgSATgIopBRSCozapjseD7PFbDyZPbm5aWmbVYVqks8/e7nb7gPfU1X99nFZlqVrmr6jBxfnrKVxtG2wqlnaMYwk68uqvl9tnz276Tq22+8Z6ybTCesZ5/Ds/Dqvi7ZvTV1/8ez5ITxCAgbeCEpS1mnTtpyR5WplWCYX0DCM7SHcH466qo7HQ8e227bOixxysd3vl7sdxmjk+4dj9LCOaE+vzmbL1QPnvWU6qqoWVaU17fObq4fHx93hIAHse8H6TEoOJMnz6hiGtO9ePpmPgsn2cOw5//bbv/t//L/+n8cowUR5XK172oleZGWV5UVL6dniJM+Lqqk/ffqIFc11/OXjve/ZBJGPHz4tl49Jlsz2h9lkqqqYMub7g9V6NRkPCCESANO0KO0s27l/eDw/cxSIDWJoqrE57GhPbxCifR/GqQpJ03SPDytVwbrrcCYoZQAqjuvPZ/OLy4vH5To8Rr/76mtVJWmeQwggghApRVE8Pj4AIcq8QggBKAEHRZkWTWmqqmNoeRr3baspODzuP96+9YeBZTpt20gJuo75rqNrOpRCU7UwiSSDpqHrrpsWWZaXWlVy0Usgwyi0DOtitugoVW1tJQ6EaAhiTJSizDRCjklYVI3oIeeiY1xw2dIWQzgIfNM2i7wSXE4n855RVVPbluqayntu6gYAoG26QTDeHw9tT08nJ2maplHeM8a4AAAMhxbGUlMJlEBIqWp6Xdc84oRohgZpQ5MoUQixbQciBLJcsF4luuP4ddvysrRNEzvWYj7ebndNR+OiIAA+ubjmQKx3GymlYzmmZQEg5tNJR/skr23TnAztnjMAsaYZpq4qyMzKYjobzydT1jMoUds1cZjVPSOqgrgo+hoCrBPCu67q6CGMOtZbhh2XUVoV88n09OQ0S1KElO1mKzD+4++/EVz85cdfEOk+PNxrGsYQ0pYeacyZ2G32NxdXmq5jFfectS2N4ph2fRQXhyifTWYKVh62G8alZRhVXUKIdMOJ7pe6Ybz/dCclNA2H16Vp2ZqmZWlBFCiBQtui73iaFEJA3TDiMOqaBiiyZxIpKMwSohodB2XbHw6JHwzWm3dFmTuONRz4hqYaqpEkMYRyXfdxVgrIozSfT0e2ZZqqui92TdNAKMeeM/Q8hDGAfBiMlpt1FMdEVSljvufattXU5f6YSUkkUgAEQTBsu7ZnXdf1nIOH9aHtKl0xpqPBISmiqPm1u8UIvXz+tKMV7XrIkWsGe15KCQAEtKNd1wohAUScyQZ0X3z51cli+L/9b//v/SE0jd1wEKgaQToM9yHgIk0KqGumpU+n49FoMvD7lrZZETNZA9BDCOu2tWzr7GLe1TSPwqKqVut1nhfz6el0PPvs5sXt410axc+uX1iWLwCDWGDYv/r5e8Nwzk/Oj8docXq62e98zxtNx3WT//Tmref5hzA6mZ8iiFraCs6PbVfWzXK7U/79//R/SZNks97d746HrMKqGgSTgeeaChY9Lcpuf4y69qMQvK7qpmk0zYQSYkRa2mMIupZmeQGVdhCMHNvICByPB1F6ELAFkECIyqKwTJuoajAYcCjxIQFAIogQgBwAKURTN5xzIEGaJvvD/u/+xd9qKoySKknjoeOxnpVFlZW7oqqHg+F4NJS8n04HOrEb2uyTpG/ozeniuN8Fwejt+1vLNP7Nv/7Xge9lWea5Xts2qqbocSL27BiG+lR99vRyMPLW+6Xran3rgL79uN5cXN90UtncL3VVHY3GZVUDiJmUbdcdHx4xwlghWRJrmk6bXkGIGdxUjc9fPj1EyXYf7Y5J1wvWM8NyLq8vCcYQSU0jo2AwmYzTODuE0Xy+6Pu+aZpSLz1/cHZ5STQtTrKOtsfdJvAcz7rWFLxZ7QzLoh1P0ixKMts0Hu7vDNOajmemblRFFQR+245VgjbbraFbRdntj9l2n9xcU00jk9GEqJqCFdOymrrSNe3m6qwqyzRN+eksjSPPtQ3dKMsizwqkKklWKFAZu0NdVTVdZ6wDQAgpOJC0bzGBYzuYTkeWbSCEORe7wwYh0LStaRnDwYCz3jJV09AlkwAAzntV02pKNd3sOe/7Li/rnjHGIsmZpqkCyV0U27bjOX5Pe0MzwsMxSbP5fDYeDTa7Y0/Z3/3t37RtoauaPtY455TS3fHYNC2z5Xg0UHW9ygqiI1d1VBV1fUu7TnAOIIIALebT8Wi43W64BFBRCMKM881mPxmNuAS06yGEdV1LAaCmEYKw0l+cn0MBGOeOYweBr6mq5AIBTIimqCSMosB3IQJSSIRxGB6bpvVc1xyYRFEeNxvOme97mqrTli7mc99zEQRlXe32hyzNuWA315ebzarru2Bgn1ozXTMZY1mWSckVBUsBAJAQQsdyyjJFCA4CV/A2To6DwdB3bMlFU1ZJnmOijCejosh4z59eXSZZHsd7iwvGpeWYtKVZ03a0F4bWNg0C4IuXn+12+9P5iRSCEBRFYc+ZYP3+9oNm2ifTKaXt+cniybNnP/z1z21fRXGMIDGJ3lFmW57nDaoqbdpO13QAUS9E0ZQccAxxnMTjwdBxnChJNputQhRD16u6tlzbMh1KKW07NwgwUQAUWMGqqjHWR0nG+h4KACBsW3p19QRh0DRVXVHP8xBBXdf1jGIFG5rxu9990TN2e0sB6tK8bZpQJYRgjDHiUqZlg1UDCe77QwnVu+VOQqISPYpjCTiCOcCYqPpqvfUc3/eC+4etYSmmaUGMbMc5Oz+vq5qxPk0yTdMmY92znSpNRqOR4wbDobPebWjVvnzx2d96vue6+/0qLzJCul4w13fmw2tTM477bA2PQgIIIVEUhGAveFl248VcKtX+WM1mJ5pqxnFcRnVPqWESzsXtwxYDUPe1F7gt6wzL8Afeel0omtF0tRQNAAAruGqSn3/5AUu1yIrbx3VeNhhpXKSMo4K2tjPwbfXj/f23f/yb+/XbD4/pyHLWy60/EG1bFFUVhomh611HN+ucMXh19nw4GpuWnpUVIppmOQpETOKh6TiOo7x7/5Hx/hBGnjfSDatpuq7vw+jhFX83Ho40onOAkjTVFRTYJpZMil7XTNPSsyzbH4+2aTb7EGKFIBKZpGhTAHCZlUjBTds7jst5DyHP86jvGEaENg2ETEIuASCKAuRvHFBYVpRJCbGMozhN05PTs6bMu65b7veTyYRL4dq2oihVU2+Xj7qmTBYXP75+9e03v//qs2+++/6f7x9Xfd9Np0MpxP/3P/x/vvnmGwDFp7sP3377h7/+/HOaRI4VBJdXELK37969vbtLy+jl1ZO+7rmkL18+nS/OirIUfftbZ1EwQQgJPIf1Hev60Ww0m84fH+7SND2dL0xdF6y3PHu923z9xWdpVL798CEtO6IoA8Pq6+by6RVWyfZ43ISH1X5TFLXv+EyIzWZzenKqaQZGUEFgvVpCwafj4fG4KbLYdezxaCwkQApREREDpusG5yzJ08fN5tP9/fOnT+umCePoZHHKmHzz7u3Z4vzi7BxCZDv2aOATVemYWC5XWMG0bQlWuq79/vvv67JEGFEuP326VTAuy2o8GgVBQAzNsd2+bjFCkkve9WF01DSimzqlvaVboGkhQmmShlHY9fD07KyqUgyB7LgkPA7jrCzzNHVMAyp4PJzEyVEFwh0N8rJWiX7MKilbz7WHI68qy76nk/EgTZPxcGJoZlgf4zw7RnFdNUTXHNcejgbb3eH1+zdQstPFYrPdCyFHk0nXC0y0MMvWu93LF89syxwFHlHJwPfbjpZ1LSX0PNvzfNd2GGvHk6DtuUE5UdQ8ywECEoPwEIZR5A0Gs/FEgZCxbj6d7g7HIs8NzWiaFigQY8R66rjmZDLOi6JuW9c1EYJd1/YAqKqmqfpkPFEUslqt2rZlTCgKJkQdj0ZtS3VVFZxned72NE0TQnDgDJIsRxIul8sO9PPp5Pr8wnNsIbTVco0Qmowmu82uapqLk5OyqvzBAADRts2bd4+E6LZttlWlKIphW70Q4/FoOhhWRX4M957rBVeXj8s1UrCmqH1b6brScX4IM6ISgjTPCW4/3euq9uT6Kk4i2tGuo1meCg7yuvl0e5cmWV4X8L2UvTCQiVhR19QMrOl4hDDM8rhoCilRmjddxzzPNg2y3R5Ny2JQHNNIcIEx7hnDLdrvDy1tHddlosMI+r7btnVVF4PAL+tyNhzrjsVpO5jMoISb3dYfjDBRR+MhRDJPE0IgIijPS0tTBeWDIBhNBj/8+P18NtINfbs7uJ5/eXZ2POyjODVNczYxdU1TMR5PhkVV065tm05yKSFuKTNMnffCsfTz05Mff30365ip24aqXV+eIoR1Q7cts21oWee+69qGQZv2w/s7TSOapu62S9O+HASDVb2p2+JkMfY9VVFG7V1c0rRjXVlqq76nnBFNkVJCIDGQjFKMIIQSAFFm6T/9lz8NA0tXNVNTNk2z3ue+Y189u9yHkek7nm0dw31VN0ZHG9rEUYwwenhYWbZbFMkgCDCC291BgXgxWdRNn+bVZh9qxFosLn73h9/dPXzyPAdDfve4/Ff/6t+gTtRxJRRXwapham1X6IZ9e3tn6KQXbDgYzGfzy6tnWMFJmpVVpWqGY7mS9XVRGaY5cB3l+uL6n7/78WJxen5yApG22oVxmoZh1Ped5wZpli23m/lsKvoGQWkbapiXu0OkGXpe5HXVMsbOTk8lhEmWOP6ZhgafPn1yDEvTzbuH91GSWaa53e2jMDpZzJM4/C2QGGOMsURICk4wgYZx+/D42RfPVV358PFTFMaS88++eBnHWf/2w4ePnyxDmw8nt9vb3XGrSjkdeZrpqarz6eMH3lR/+tOP6/W2bsv5ZLSYnb599xAn9dnpXFFQz0BdSVP3rq/PPn36xITY7I46sTRcV0VVVk1FW9TUFe2bph4OB6Zu5UXRc1ZUddc1BOO8yNMsjZMQQ1yWBW27KDyYtj27vBpLtSjKb//wuT+0i7IBCLqGdXF2dozjn399DRHCCkqTREHaY77uuk7XdYFgmudni9l2v99sNpqqxnEIodIzECcZY4ILCWlHiKppuj8crFe7lva0k7quXZxeMsHv8tVjt+Kir8ru5ze/Ms58b0A63LRkMJi1LTs7WQAgd9tV2zSMi7qpq7puu240mmqq2fedlGh/jAJ/wBsKHeB5flmWaZKqBLuW7fmO57n7faipel2WCEII0eX51eEQ044SjMs8E1ww1iIFQwgNovZVi7CEjmppquAgT5I4L23bGw4CBAGltN7vsyzDCjQt3dSNuqqrqk2LgvIeYui4dts1m/3WMvSmLrIsUQluGlpULYSg7Vng+Q1tNE0Djrt+WAe+P/AHnexHk8l2uyNYsy1bt9S+6bIiz8vctexDGAGoQAE93+3rThNE0wzDsDraHw9HKCWEEkFgWrYAEAgIMRRC1HWNMciK1NDrqqqrpnFdF2NomialNDwcsaJIKauq6voeACSAVHVtNB7XbYMRFlIWZZlXRdU0dduIitGuJ1j1veDFy8/e3b17WK3iJB66HgBQQGTrRlIUt8ulqmnnQGyPocCEdz2EAiva4ZB9vF0CKUbDoVo0ZdMoxCBI7dpWQhnf3Q0Cdxh4+0OY1Xnbtbqj2baNkW7qBmf9fnfoun48He7j/Wq1btt2OpkoSKmbpmp6IRFASpxkBGkDb5CX2Ww6NU0DCdB1nWFYWZ4d4qSnvWM7L54/OV1MPn16Px6MFFXrWWd7TpZmiKiDgZ8nWV1SCfHxkIzHA991R34gofz9ly8GhnV3f1tQSltKMJEcmoaJFfLh46cXL9TpbMpYNxqO2zZfrtd10y1eviRI71hHaXd1/sR1BlVTPzwsm6a5upyPx+b7jw9tTS9OpwjJKE7ef3hnmLahGavNDmE4HAWC9W3TaZrVNt1w4D+7vFFU9WKxIBAqBBumjhT0+PBY1d3T588sU8+SJM4SxrjruqxvqqZ+9/6joZtpntd1TYhyt+wppVXTEE0ZDLw0SWqF2o47Hg2hFABi1veMdYJzCKGi4KYoVo9AN87LuiKItF3bI6G6apIf67byXUPVlPFkOBp5/shzTCuLUwnkw8PKdcbjyTjLmK4RTQsYY1nVFk2DiWq7dlU0r9+9MT0lCLy+7/O6rNvuf//P/+WbL54nSRNnJRd8s3qEgDx58iSOD8cwNmxbN9yybqP4VtNUVdUYpfPp1NCU++U9RMgwlDg5KCez+fVlpipgvdtcXD5Z71aM0ec351laFGXx/Nn1eDp7+/496xoFmIam1B2jPWtZ3Xd8Pp3oClYUtW5pWmSD2Qhp8OLqss2bt68/rndHibBlmYaqX15eLXfH9WbLBYISciZkxwQQhBAhhZSCA5nnhS3Moii26/1yufnTd99//vJF4HuaSoYDv2so6zvey0OS/vn7vz4p6iorN/fx9//8o6YZgknOZF42cHeYTeZV23z/yxvb1F88f/btV8/+9Oc//+nPf2JdPxxP/aF3fnqeZKFhmH/5/ifBgOvan3/+xX/9h3+gq93V5flkOKR1QxDSNH253qRpDiE8hqkCUdtSJmRdl7//5mvPMc8WizSN/vrT9wAomqZjorS0PKbRIYrqusGYEIxOxvO27VZ5YdmmkGJ3ODa0f/fpIc9+rstqMZ81TWM6PlZwmWdhmFxcXqqaBgGMDmEfRk+ePOF9z6W0bctxzc12r2pqzxntqBt4xzjhAjIO0qy0bSc8xpR2RNUkEFzwOI5VTdc0M87q7SGeTRaX5+c9403T7vd7x3Fn0ynBWAgBEZ6fnLC+62gdhVGR567j+r4XhkcIpBAyzYooDieTUVHkn+6Wp6cLFYE0ybiQQIAoChHkm/0WSMQ5AAohmqarXeA5tuvd3z9Mp+MXL5+lWSoFq8qKCcGZrNraMvSz+Xy730sI67bN0sQwjMvreZ4XZVYZpp0mCQAV50zVFMt2MFb3xzBbbZ4+fQIRuL17KIu6pzxj5f5YPb252R4PjIH7hw3nQjeM4WDQ9X2RlwjA6Wg0Hg6Xyw1jDCtY07W24xK1URyfzk+JooRZYtm2puC2bcu67DjXdF0latd1URi2lCoYIwU2Td22FCFFUTXLUWezMcJIhWQ8GiOI7h/CMDr2nDWUeo47Go7TNPn48Onv/vg3lycnbz+2YVLwHmmqoqp44Pu/Xeuz+Xy53kRxqhDr/Owkinaaqn37h2/fvf+wWi2zomwiOh6NdM0QHNKOVW11eX5aF3nPett0HFP1Ri5QOFZU2vKiKJqmrqoCYdk1pec6E99tW901rAaAMisn41FZFF3fsU4AKMs2b3nVc6YJSLAaxSGL4tFwdHlyGvieFMzS0Yf3rze7w8XpFRcyLejFyalcnOyjGCI8nUw72kkoFWSfX5wGvl/EKSHKmzev27rt+m4wnnAGDMfvGG/zAmL1ydXN6XxW19Vuv43DCEGeFIVg0HdHlmFuN2uiasPReH/c2rb5xec3WZ5WZUwwPj+d9ZR7jnN3f9cLxKSi687J4myzWVdNblvmaBDkWbY/JBfn54vJcOgHHCGIYBqFQkKIcFGVTIgvv/oaQliVNUDK4RhnWe661sB3AcBQKh1llPZCgPcfbztGVU0zDKMrqrwoT6YTS9O7pknjGACAMMIQ9i3lnEsJpIRYwYvFWHKeppUUMi+arKyNXE/zpG07UzOwij3f9QNnvXnEgHStRAiPB5PRePH85bPddl0WtWWbdd3QHozGM80yRzU9HCJNNz98fDg7O7VuvIuzKwL1ME02DxvBGNa1KE0flpvTkws33L16/Yuuu1+cXWVFwVhn205XVsOBYmiK6NrtJt/uNz1nHx4/dn2v/If/9J9O5nON6NKye0oHvr9ercoy9UeBYpCmLqee7fz+i/v7JW3bu3UEERISIIwCz5sF3nAYPOyPmqn/uz/8G2/o/5//5b9E+ziKUwUpRDeggH0vXr64Wa5XP//yehAMMBJSACYk5pKoBCOEFFh1/WTsff70ORPsu8MBYmUwmITh/p/+6Z8d3yaaKkFH267jPUYIacbbjw+bQ8IF1LFiWZap63XVYETajt29efXy+fPz0ykVsKnat2/enJ4sPtyvoiR+enE2HAzjLP3p11dPri/+7u/+Hf71rk5ST4r9fmcbbpbled6UJX316q3lGM+vrwa+1zYUI+QHJ6znddPWtFE1lWBlt928+uUXYqjr3dY2Pc8FuMdlWURZ3DRNXXdnZ1OioPB4CKM48FxDIxVtD8dDmhW+47VNV1XNdrtzPA8r8PJ83tMJZ0xVUNs2luVM5/NjGHVdd7KY057d3t4uHx6JpgoJur6DCEopLs8uOtpNx0PPsauq6PsuSTKkYIRR07ad4FhIzMQXL1+enZ2yviWa4nreer2dTCYnJzOC8cPDUtPJbD5Xic65eP/h3W4X5XkmBBuPp65jt3m53h6FlEIwRVUQItPpzLFdxza5lJv9QTIOAIizWtM0S9Us2y7bBnOhEoIVghD+/OVLAFlR5AjA1ebYdX1d17qh25atamqSxLPpTDfMzW7vDF3TVMsqr+qCccZLNhwMOecKxnmeJ2nhDoKbp9eOaSMuGaPjk9O6ajVdT7Ps+x9/Wu8OjmPttrd5VmGsYAULzmhLW8r7KFMw9D1vMhrWtAFI9qwHWAIkup4ahja/OAvy+HGzVqQ6mU7SMlOFpHWfFdlkNOacNZRihOo6x5jcXD3BmEgphyNvMZ8irLRtnSSJqhkAgpZ2fuApCoZIHg4bVTOIrnLGfMfRFNWZ+FVZaprBWLfd7iEmvudKxkzHPVV1KEGcJXFeqEhdbx5t23zy5PoQHSzXvr487/u66GnPWUPr5eZRU0nZlKPBzDAtwySj4Wz9uNpttm3fKRi7rg2lfHx81BTFMjWEcF0VtO+DgWdZmkpkXXUQgN1+JyFzXHs8GO12+7PZ/ObJk55D33FMFaRptNzsmqaXApRNPQnawTB48/EdEL+8ePrU0E1F1XhHnz29zvJ0MR0x3m7Wy7zoNU0ra9p2YjpdeI5n6KpEIMvyKu8Hvj/w7eN+8/b2VtfNnlLe91BRri8uoywfTebXN0+BlEzI2WxeV03d0mDoRxFHkAwNa73dFW3DhAw858WLp1JKXbdvrv/F8bgHUPi21dNWSpFmqWsrPadxXOmG2bEeK3rVtFleOn4AsbrdbhGGrmOfLM50LWSc9kxwLtu2Bghw3rVtBZFUFZW21PM8ouAwPNZ5Y2g6xjJOEgAghAAAKVjHOGdMSgkQhk1ZVjHFmIyGg4Hp0rEIRsOWVbd3900nzsYTxuXdp0PZ9K5rRFFMMBkNRr/76gvH06s8ckwj8AdhHLVUXF6cHeI9bfn11Q2lbXiM/6///t+vt8tdtA+zw3a7/vCx1nXryy8+//arr9eb0HI83bAZ0zUjGA5nlGamrgveFWWyO6z7tl9t1gAARSFxkldVnZeFUrVFmOIXV9e+bT6udkIKy7S7vmO8aarCMMzH/aqtm/lsBqAaDKfhYQuBGE1nZ4t5U6bL7bYX/OnpCUFye79GPamLXkik6nbN+tHA+5//9b/eHw9RmD25ftK0dduUkgMppISCCW4ZlqmhKlE62qx3j5v1tq5pWVUEI42QYDblgO8Pu+36KBjTVFXBwDZ0azarmraHEqtKmucf7u5VVRcAqB0yDev9pwdbUy8vL79fbt++//X/9j/9m99/9fnr9+9Vw/0P/+c/GrqGMW4py6LI0jWiEMEBRqoEaDIdXZyfbXex68+iNLpf7lzX03RdVxXPswTHwwEUkj+ulh9u7z58ZK5lG47pu4GhWgpEnDHXcaQUjm3Pp4vBYLTerN6/f88FyIqy67S6bZfrfZYW+jUZT6dF02ZVi4iqEszZlHFumGZZFU3bqpo+CAaubRdlsd/vVU3XNA0QgpC8nM2ruiIEMc6BQMDQXEMTjFZVJiWwHSsIgjAOsWJJCcNj3KLeGwampSOgDwbD8WhkO3aeZ0RFHWVMiDxMmJCGpl6cX3z2/BkGwLHs9Xa33h5Ny5YSFGWlQKypSrgPry4vAt9p6ipL0+PhCAFwPY/SliNoWdZkMLAMcxeGYRTWrQkUqCjw+ur01evXu91BU3QElcHIJ0VOiEIU3LNecJkXBcaKpRt+4La0Xi1XRFUX0zmQ0nV9Svv9/tB1/BCFlHaYA8cwoiw2NC3LsiLPFUVpaLc4OY3j2La8uqYQAV3TGeNFWRFCdF1XNZVBudpus7yCEGIF27bdg75ru8V0kieRa6if3VwFjv64XMdJ1vftbDoTPjzsd8PAcSw9LyoAYEYUAKCq4slklKSJoStCsLzMur5TNIQQuLw8Z4x2PSWqkpd5lZejIR54vm1ZEAjXcRBW5pPx8Xgsa0owloAaumqZph8Ebd/qqlo3ra5atmVXdTUcDNM8rZv68mIMEVjvNq7tAAiPSbg9MCkkEEA3t/8/kv5rV5cuO7DEVkSsWOH95+32+/hzfpOemWSSzGKxVNVsNKSbhqA76X0EXUjQnQShUYU2UHeL7DIsssi0vz3ebL8/b8J7H0sX+RQTmHPMMT5//pTC/IflvCwqkRfsuVtV5aA/oEkaYFRUGJVEWWaOa3I8x3FsVdWyRMqKXGMiTmKM6ywpzcpTFX08Hrt+4PkuBPUqcF3XcbwozWpFksuKuLi5ecw84FixauDXL99Bmv75z3+exWG3o0cf3d12qahKFMRVQ4+6/QOOb3ADiSbOEkE3bm9u4jDiEM8wxOXN1d70wjCXBc32XZIizg4OZFmOd7uyjMPASuJ8cnCYh5WutaqqtB0TMTJJIoamXPdS4PnRpE+QuMwjTmBn808bmhcEyTC0KEn2lhtGSV6sAVGziAYEQWCAGwAIQFPo5OScZSReUPKiZFnKsfdB5D16cBJH/s6y8qJ2HBchCuCGpEiWYWgaAdAAgIMwSJMUMITEU7IsBn5eVRUgIUWRgiBmaQFARZIErvFytp2MO4LEbbYbo2VwAjced+IsQjQpyy1REvICq5KyN/dxFLKIpylKUWQAqjSN6rpeLjeABEke8byEQcOxsqExHUOHFCzyjEPE2dHherWOAq/bM5gAYQKZrjnu9rqtlq6ooqT/m3/zNwRRlmWkq1Iah2TdEGWdxdnediRZ01TDsiyCoIMg5XkJNlQtCKws8aAmDkbDuMa3xDxJbI4mzj9/4kfl3//69sHRkWEYYVr8yS9+9rtf/3PH0PR2+252f3x6oup6mhdFUbx5d7VYrBDDKCqv0dLh6MBotwf9ju85fugOev29aW23W1kSAMYEQfyx2ZcXWZGVJEXOFtu97XIMm2VVVVV1WR4cTqaHo1a7dXl19/HdxySLIUt3DI1laUiRVdFYXsDxzCzaVgQBSZIgCBKSw3YXN/Dyfn2z3EGS+fKzH3pBxNBRSxP+9Oc/Vd8q11d3gih8uLiK/aA/GlEE5ljGtK0wifZWzNJQ1bRf/cXPV+vNYn6fFWW322u3VXO3HU0OOJabz2aiILh+yDEsRULfDXUSYrI2XQcTANI0QpCiSLIpne0yDb3pqM+xvOM6VVHlRUU2oNMyAIFphuYF9njyANFEQ2LTcRvcSJrqrH2OZWgEkyQkMcEh6AYeiMijo8O6qub3NxA2LUNJkripS0WRRY7P8yyKkyLL6gbXDcC4sS1La2maJldNxbGiado0hE+enem6dnd3V1WV6zqO49EUU5e4Kqv7uzlJgvlyBSkyLzJNVc/ls5vbO45hRJHneb5Ic8u2trstzyFFVZI0c5w/fl1gxwsxAALLjYddyMDdfs9L4kSZMgglSVJj4eXL19u9qSgKhxBOqiC0McaIZkmCcCzH0Nvm1qyLGiF0fzc3DE1VWkkaMQzdbrfiKCFJ7HtenleyqJMA+n6oqvr7Dxc0TTM06nY6VVUBAsiyoh0dDgaj3Xbv+V6r1crLjOe4OElESTh7eBpG7od3H/0g1lSdBCRNMWVRUhRVZE2nbViuF76NkjRMs4pFzLDXaZomDGOWRaa9gxSKkoimkCiKPMeOx6Pdbh+GbpyH0fUnnuVURYWQ0lSmacr+oJem6Xq9isKYgpAiKNd219Lu8GB8cDC5vLgQWeZwevDp+jqJY1GS4qwI5kvLcfMia+nyeHJAUVQYBr1eu9PpeB/cYXfQa3WbumYRa9suxjgKU4bhirwkSUoR5dAPEsdeLOa8KE0nJ9PxNE7iKIqzNGVZgYZQlXjXdfLctV1TlqT+oIcYzLAUQ1OsLImymOVpmWcUpHabjR34cZEneRQFcV01np/4YVoVtaZIWRFHvjsdDmeLVVYUBi/6frBe3t/cXUCK9F1vvQvqmuAluN8uirL2gnA8GjAc+nT5KYljnuXqpnJdb7HcIobv91q4KXielxSJIqnru1uB433X8QLH8eI0rzVNo0iKoVGVV8+ePK8rvDU3/V4f0pAkge1YQex1e21Z0Xw3tc0lzzA0jVRN53i5qeuyros4oSiCplG312tAY5m2va8nU7HfURWBIkAT2FvbsbIspiHO87LbHeiakmQJpKmqLIsy9zyvKivX8fr9brvdggTVYFBWTZrlGICmwQRJURTEAABAEiRRlLXA8QSkS4xrkkyqCjT1crPOi+zg4ABBkoKU0VIMVbfMle85o8kIQsrznJt5DnBDI77dH2AIBUWKw+ibb799/PjzXre3nN2PBr2ySNM4kGVFFPlBvwcIw7Tc7d7xXI+o8Hg6lkUWg+r05HC1uPr9b3/fbnVbmm46dpKlABN1SQ/7h0cHE9uxtvs9IGG304YMy2V5sbPtltHW2y3z5kZXBVmlJRGxAty53tnJ4clkygr8kcARdfTwwbSjqySkt1soiQKiqbws4zAuy8b1QkgTWRkXZdzpqpqm//6rrzzfPD09v/e2DVEXRVGWNAkoiqJpSBEUQZMUAE1W1Kos/eSHn80Xq/u1KQt8FAWu511cXt7d3bEsP530dc2wLSfNoiCNBv0+i2QrTIqq4gSRL2sa0hRFIYYoqszQWzXQdFV+dv6IguR//If/JIucLEmvvv3tk2dPjibjf/zn3zphyvOxf33FsBAimgJwPByQBDns9dabVRjF98v7g4OpafvLzcrzbdzU0cWHTq+32m2qsj4c95I0oUjKi/zdbhtziaRKGIAGNwRFNgBc3c/G3WGUZFmRgwbv9rsqr+oGyIoAMI6jkKXpp+eniiKleWrZbp4Vo1FP4tHRZAIIUFd1gxuEaFHgdV3bmeZmtVJlieM407QEQVqtlrKkBNFa4HmORghCjuEuri5JCKfT6YOH5zf3N3GYGK0uBkDX1X67tVzMv//u28VipestgAGJSU4Eisr3ewYG0HY90zKzOi+rMkv3g35vPB6EodfttDBB3t3dYUzUDfnp8laUhNFo0O50kqK8vLpFiDmYTMzd1ja9vCnyIqsbLMpSVZdlU/mhT5MsgkyWZHmWQQTjKKcoatTX4iDqtAa2bdcNjpK0jqIkjuMozooCgzpNMhoyaWqTJDkej4ui4Vhmb5kkhFfX17gmIIdkSWFoRhUlP/BNc2sYLZ6nptNhdpGY1h7SFCRBv99tADGbzWiGaAhAUhTLIgAakiJxWUdxXNLM1tx5gT8ZDdM09YPwy88+77a7tmPhJqEoVFUFwA3DcgjSdV2JEl8WmcCz4sHRZr9mEJvECYIMhCiN11mWQkTLiixLiuCEFcZhkEZx8urN+9Vm/fDBSa/TTuKUoshBr79eryENSQQlQYy8JInDlMsdexdGUZoUHCvEcSgILIKUbVkURUoCzyHke2GFBAJQnMTnWVqXlbkziyIjIFfW0LSdVtsoqiIrckARFKB8PxA4RCGEGG6gtfr9XhyHQehRsFEUqSqq169fK4qsynJV5SLHipJURlQSJQBQtuP6QVo2DU1TuCnzIrdNO0syUOUspKs8C10XABBGEcNCo6U7ToJJstVuZ3GyuL/xwsT1o7YmSRKvaZrruDSF9uY+ywqOY7948fj65l5RNY7nfd+L8pQkaU3U0iQOPVPmNWe3d0lSVhSeZ7///utut0cCotc2yrpumqqUBF6mkiStCEIUxMPJpKkSloXPXzzebbcMg4IoLrPStM0kz3SKbuqcF/iqJDbrZVOniCKTKM6TSBIETuDzIk7z3HFcnuNURcmyjIAgCgND06oKY4A9L6BIUhHFsin3s3vXizEgMCAwJhDDkBSFQYMBQdPsH3sYdM1ggva8mEU8Q9GsgFazteNasiYLssKcn2d51B8O4zitmzoMY8Qyvb4uyQpC3GqzMQyVwOXyPl2v5r67O5weYhIUZbXbW5brarpKQ8ixrCbrDM35rldUNSOKZZklMd7vVwAQk/FRmScEwL3+wGi3GRqRADR1TeGya6gdQ6ubZm+Z0JCV5XrDsZzRat3O769urmVZirMkEhEj8rPN3Y9efE4R9O+++kYUOENV8jT6+N4naabbHSKI9qad5VnTNCQGJEkUddk0BAkJggJhnFzdrUFTFPmF7fndbn8yHjuOTUGMaJqmaUUS4qygIESQpBryYNDr97rFNy/zLINQ5XkFQca1LY4v2h0jShNZ16JNTCNab7UtN9T6XZqgplNxsVkmRUZRxB85pX67M+y2szTZWtvlcokIsiyKMIo+hvHdYnN+cvzs0QkrKuvVamftKlxlRVkWedtoNXUZJTHN8A3AjCAud+u6aADGtucbmsohfrvcQwpF/l6ADa4rgkZFVUdhmHJ5WmTtbpehoSKKJA05hmnp+tra+oGPEd9pdXemnUaxIitZmjAQjQYjGsHFai2rKqQ5npM9L2JoW5GVOIqaphkMekVZIJZlWY4CVEOA9Wbve16a5y9ePNf1tu8FDcahH754+tTzvLKqRVlJ0nRvWZChaZKGBGpKXNaFqsibze7i+irLC0Pv1Q1mWZas66osswxUdUVQtKaJPEf7YeDYLkJ0nMZBGEsCT0JomlaFscAJ69W6wQ0ninWDk6yYLZaCKHEM8l0nSlNzYQuC0G7rWVqWpdPrdlmGTbKs31JIjIMoZnj25PCkyj96nvfu7Yduu40BCKKoLGvIcFXTuF4ImkDV9MPDKSTq2+vr27uZKMvnp+dVWZdlwbAQg0aWxbZhFHUh8SLN0Jv9jqYRTbPb7TaIfFlUVU0uy6qsCkAAxCAMyOVq0eCqKRuaojzXFSUxjmPLMhuMm6rmeX7QG2RpURY1w7BXt7dllTd1FefJqDfe7bYkSfA0AwCGIlM31cXlJWgww3EkSVRpRmIyCuM0syRR6Pd6iiLf3t8auvFXf/kX88Vys94gBhVF2e/1HMvGAHcHQ9t2lsuV3tYZkYmzGCFS5EUC40FHczw7itPV0mzp3Zaullm68NYkpCCEq+UyihJVVsaDXhgnVd0QgJUksa4KmkaIYZsSYAyCMCrKipMEAmCJZ9F0KPJCnpdVBdIsFXmaJjnLsyzPmk6m19f3phtaXjTo1oaukBStikLb6DOIubm/FQWJQVs/DESJB1XOImS7vhfErMDledgy9P1+F0SB6zksB9EYHh+PiwJHQVBX1aOzc4Zl4zQJPff2dg7RlgBYkqS8rDRNPZpO9hvT90JGELbWTpEVnudlSWQ5zjDaX8g6Ccj57P7m7l4QZUHkLdvsdnbHB5MwTrIsFSXe0FRN4Vfr3cvvP4mybhiyF/iL1bof+aom0iRWeI5WlSSPMIAQMqLAI0iTBGQY5uLiE8cxIs8zLKtA4vGTp4vZnGrWAABFFUfD4W6zK6uSpkhF1fampSiSaZlpmu8tfzTqQ4py7bhpME0SmABVVVMkBUCBG0yRZAPqXr+v67quq1fX10EYlrgVOkHox5KsFWVDJsVu79JIIEnAsGQcJ5io4yi5uYwMQ5scHAi8lCRFVdfDaU+VZdf2aISKorpfbARR5AXOvrkrsqQBsN9pm7vdfu9+9oMXThCEXkJgOssKioRGqw0hxnXZbmlVniECKKp4fz8z7RwAoqmBwPGH4yFEBKZIYrXe8Ax9N1ubjgtosmW0yzJ59eZdkZQ3V/M4TyganB1O8zxzXW+2cuIkLsqarJt9EDueSwBclzWBikmv32l3Z5sbTmQiP/zlz3/88vXrxXIlS0oShSxCCDF1VVAkUTeNyKEkywmyoSFpm/GH69vhaKgrckJTj754BDARpwnL0nVTV1VTFEWWpBLPG4bYbykvnj0iafbtuw8cy3ESfTu/YxgaV2Wv1eEQH0TRbu8mWUHTMCmrIsxlCauSnCX1ty8/MAz5+PGjfkeXFd52XU3T/CBeLpeQoopmByElieyw11ptt2RDMTTj+H4UheeHh/1Ou6iryHNIEvIc7YaxrrcIQCiKqIgyx7GSKEz7vb1r7rariw8fakCqqq5yQhBHnMANBsM4DEkC5GXpRT5JEaqidls9RdPWq1VZFRQF/cAvyoqhqTCK/DAK41ASBIEVQEOQJF1XQBbkqigUWeR5lKU5xiBKYtf3LduRFE1SdcRAAhCT4ZQYwTdvX7MC4kVOktWyIfIsDaIg8Ny6KZM4Drw4jEKagbIsddqtwA8t16VpGtc1SVEMwzII2Y6NcY1oxrRMQAKO4SgIKRLmZUkRFANhlqRZllMMUnVDYBlZEgfDXpKGVVVTgKIIShJEmRP3rh2Z0el0Oh12KRJAhACuAUn0UNfa2hLPR3FAkYTRUo5PDhCD6jzLwiSKE0DRpr0/Pz7OyjrOojzPZJUvyhLVlKaIe8tuMKYhkjRlPk/LomkwaDAIw9gwtLahuo6TFbnAcSQgi7gqiAoxTNM0YRiKoogxSNMkzTKpkTRNo2ma5Zj1erVcrWRFyrLcc904idI8FRDP8Fxo+5Cii6TEoKqbqgYYsYzACbIiJUkiiPzRdLrb7RENCQA8z4JkQ9PEYX/sOC5Nkb3+9Orm+m4277Q6nCCkZbVbunEQCIw46g90TRB47sOl44UxzSKage/evYnClILIsmwGIZFXm4rMy9p0HEPX9qYJIZOmGSSByPOu51EQFjUsq0rV5NvZHYQglbjt3nz68MmgN2p32vf3S2vnHR8d2F6AeLEqQb83JGnWcaxxvx+EXn88/GMflCLJm1nFi6jfUQyF35sWSRAUBXeBV1SVlPAI0W4QOn6cFwXPsXGU396tIRTOT059jvl4eRnFMWLQYrnEmKoBCrzk0fmxbdsEQfV7vQZjiuWePX1+c38rCiIBCKIGe9OGJCzyJIojCFEYZQ0B56s1x3O6JpOQnK3XCLKBH8wWS01Vm2EPUtyTJ08wIO7u78y947uRZTndfisM4ulkpGoSwLVjOWVWQopCiEqSGFeYppEqy2VRpHneG/S+/eYrkoLtVsv33SiOVquFKouS1JnNF1EUNw1mEGIQ8vygqUnP9mWZazAgSBIA0NSYwCRDo5wsAEk0de2FEcuxnusheHJ22P/utbnfmJqmGQf6i8cPGJGxbHuxWBENjpIIMVhVhV63XxTAD0M/yNO0bOlqkmUkbNLSmS3mHMNzouCYe0VVaZbBNQjdOA291c5lnlP7nRUnTU9Tzf1G040vv/xSErnZ/a2i8u1Wq24q1/Nu7+ej4fQ333zLcuJwOFqvlhTALuHNlnMYxWGSBDwr39zN71frdkc/OBoCkry7XRJVPewMIWQO+923H9/ezO5v7udelEOSfvLgUQ2r2/3c0NsDqe87XhC4DAUCa1+VOcsyum7wfHN5cYcY9Od/8UuaYt++eSUrkuX6dUMATBCAkgQxyfIoiQBNNwSBGI5GSJLlJE3v53fT6YEX+HfzuaIqLV3SNbnX6eC6hgh4oV8vcVHUPUPHBGG75uGoxyMGE0QQhBRNff75DyXpGiGU5InjuTdXd0We0QwDGWK13bOs8u7DZbfb64/aqsLhOh/2OmeHx4Hvu6EPAAagNvcmIuHkaGpZzv1yjhB9t147UWTorZqggqT84WfPWI6frVZ7jum09QcnJ04cXd/fX9+lYRjc3M85jvnsxXPH8ZamWZVlS2shlp3NZ+1WO7Ks+9l8OOqrKlGU6d29I0lST+sKgrDbbi3L5CS5aXBVVHGUNnWTp5kkicfHE07gHMf9eH0NKWI4GvR7ne1q7fu1okj9XpdC9Ha7S9O0LvIyr/O8gpDmGf7+7q4sG5JAURw5rqPpehgEedFgQEmSVuFqu3WCMBEEMUpygixZCOsqz7KyaRrXdTXNgBQFGoxomkHMfrenKZgkSRRHgCTKoiIoGAfhYNDptA0CVERTpElxfXv/6Owhh9gsyTzH4xBHC3B+v6jqOs8zggSCwEZpTCN6NOnxiMWgOD+bSBKdV1ZaUiwUvCCqGxAEgWkxcRg9f/JEYNi6KuMotmxL01t7x6mbRtc0x3IZjp2OR61W2/U8kRP73X6DS12VMWiibagqusALh0dHSZou5os0yyiKGo36rmdLEgcA1TQNw6DJZOx6tmEomqZzLHt7M3d9jxM4xEACU0VZBFECMCFwoiiKBNFUTZ1maV6kSRbJklzn+ffffUuSNEXTYZyYltU0mOEE03J2u50oiovVqqhrURTKspRF8fD4eLPZWJZT5gXLs5oqJ3FUV7goapJABAE/XdxleSXLEoQwzXKCJQiSzIsySoIsyx6dn3MIJnllO06DGwqRksTJsoEr4IcBDWlVlUia0jQchPFkQKqy9OKzZ71Op9du9ceDGjSgLkHTkFR9fNiPgjCMwPffv+z3+oamA4AFUVitNkkUEZgsiirN86yo0hKToMmLBAMkYpEgCJZjCEjEQRZGIIo/mHt7ejApi8bybFWVZcWIwvhwciBJQlVmuKqKPOcYRhSFJIkQ0h5ORkmRUjSbxunF3X1ZNYiTItM1nR1N04ooMgg1ABdluVrv0qRQFTmOUpKkej3BD5P11jk/nu6369BLsqxqMGm7SYM93w/CMJNlQRA5UeQ1TdjvXMcpsizxA59luTTPIUkmWXF+dmZoehinZdVQNHN3N+d5ylAlgkCdbp8ki6Iq7mf3VVMXZcnQXIVxEKVFWdcYAEBQJCHJYlmmeVGWZVXj3NBbNE1HWf7x4+XRpPPg6KBIMSfQWouvcn9vRXGciCxtukFdNRVJ7nyv3eKGg4Oq2Z4/OmkbirNdu9vtzrcAQN32QFHEzWat6y3NaBVl5jvO3raX87kuaXeX147t8oLw+ttvrCjijerj5fc0AbIky/PKtfatVksReE0S6qogSSgpmmy0jZb+9tV3v/vmm6JpYAOxqqlto2/bHkUjPw4/XV5lWdXUhcZLLd2ocVWU5eMnzy6vLoxe9/PuZD67e/LgaBsHtmednQ5oWgzdaLNa5WXaYLCxLFiBcbvHiXLohTxLTSaTOMicfi9LY0gQADEMTVEkMGShAVWcRmVVlnXtOI6iyiRBGroeJtFstYyj+PHD816vu3dWkKglEeGyNjp6lGRN2cgCbyia43u4rASaHva6BEkvmqWq8VURPjg72pu7Xq+vyDxHszTN2I7V0jUCEBAxqq4TkFxv9wKPIGSvb68hjQadHkUQlu2oqiSLMs+yHKKaKvvyxXPLcXFD7DZbsgK9VuuLLz5L03C1XiKW7g27vmU5tkmxHKRgECeQQqqs51VuW26eVWlayJIgi7ysKY7dokiypWmgqRoC22HgR5G9d3rdru/5mqY3uEaIqnHlWF4YJlXVzJc7gig6ba3Auaoarg/Mvd1ptx0r8JwAITS/vNVUuds2jJb+Rz8hJ/BBED54cE6QB29evyUx9F2HplEYRxzHcwzHd3nX8ZgOi3Fj2U5R1GVZFEVJQZSmGU3RFA2bBoRhpGkqIKggiIuy4nkeQkRR9Hy1zfN80O8lSZ5mCc+xkiTohjgadz99ugyirD+cqK3uuNfxLLsoKhoxbVnhWYbj2OVibdsujeDR0aRrtLO8TJN0tV6SNE3TnGm6luvQiB8OUF7WnU7ftW2eEyGEUZpygmC5blrkiqILPA8wEAXRNm2j3RJ4tigK33OLLNc0PS2KNC3ysjH0PkRCVWUCx/c6bT8Msizz/YBlmaLIRZFXVT2OsjhKEGLCMFotVyRBRcEaYJxlhSRLiAQNhSFkCIrgBKGucL9t8BwbhUFZF6vtpqqB50ZF2jA8KtJUliSepjVNazCxXK/Logr8UFU01/EJApCQms0WPMdzLJrPbrvdHouY1Wq5Ws0dh5ckfjodc6bLIA5g3G13XS8ui5wEQJKlXqe7Xq9URa3rhoakqqn73ZqEyDD0piqamvC8JI7KKq+2uz0rcnlWDHq9vt5HiCYA7nQNSZbSONrvF+12ezafb2377PS0z3QBQQR+sNnaaZq02kMnyA6mo0G/jyuwI8zd1ozStKWpUZbCsjJUVRIZ3w+rpu52OzUu4yRFDFvkVeBHNosIksjSXBJFRVYoSDc1Bk0ZuOZuv4vCWJHVsqju7m4piqjKkoNovlmVVcVRdJmn+/1aEKVev4vJhoLk8WR0fX0/X+4BAY+PjmucRYFPEGTd4CCK91ncNNTrtx+LLFfUDs9hhDhZkfI0JQnS9eMsr6qt2Wqpo/FIkvL93qnqsm4IL0g5PiuyRBTFvbWfTCbbrZ0kYXfQyqq4ykvXjXf7he2EnW6rKPKqqv0gDJOsKkOWRpPxEABAESRJkpgAEJGAaAgSUBDihsqzLEtzkoSu63AMoxuiwLDvP3zgJNHQjQaTtmlyHKu1e8fHo8XyThQERZVwk//ki2d5XYSBz3ECi3ieFnlBUUW1yBM7TEejA0TDyIwPD4/v72YbCGtcr01/bZrdXssOWcePnCyLPEvkRVFUXM8vy11DUHkUJpHT1E0aBcssmYw7BIGrImt3eoykQZFmk6ZKslQQRZJAz5885Hhhv/Hev33Te9Dfe+7tbDbot87ODn/2oy8C3zF4ERf6bHFLcszjo+O3by88z394ckYRoNPurXbbpMhUXvju6z9wkmzudiTV7LdLUNOSKIKqYmm6xABCzKGmKaI8TQiCIjAAGGy3e0kUs7LmOIbEBIHBdDzutPUoCpI8rZO4p+mSIKVRkmWJ6wetdvfD9Udc1cfjQ9+3LHPb0lpH47Eg8kmW8yw1GPSyLAMY5ElcEOkPP/vi8voKE4Suqlkadrq6wPB1Vbq7fY2p/dayNuZwPC7KyjQdluPX6zVo6jhOjg5PE65gIP3gcJKlkawpsiJe3F71uv0Pny7zMjcE4X69qTEhympdEWVR9PotkqDysgYUeX54BCG5223Ipjo9mO5MazwanJ5ML29vtsutobUApm5u77udDsfycRI3BN7ulwzLuEG8XK55kR2O2xBSd3f3kuzimuh1O22jDSlCUSTHD3lBMS1HEfjdZr3buwRBdbvdGgDL2vt+mKYpDRHHIlkWR6OeaVlVmTMMMxx2BEFM4sQw1Nl8lSQJrnEUpyzDsAwtK0KelVmW4gYsFuswChGisz8e8RGq81ISREhSAEGMUZblNKTqpvp4ecnwQktVz06m99vl/eL6dHJsWS4mm6YpfT9ByEAMwXEsQRFhGAkcTwEMSWI6HEZJunc9iqIQKwNMViVWVZmheZaGHINkVbY8uyjLwWgQ+KEsy92WMVsu8ixjWbbCTZpnLMdSkCIqcjwdh77fNBVDMweHR0VVbzar68urzXrVarcZROuGznHcfHaHMTZ06o8YlecHgGgkQdrvrLosWy1NYAWGogdtPfDczX5PUKQoCAfj4cl0UhV5qYk1rjkabU0/wKEkcXGWGrpRVuVyvc6LkkZMURRpmkuixAl8mqQcy1zd3GRZEYUZQZOCG6y3piRLvCg2IV5v961K5VgWQmI06sZJkCQxxpWqCKqipnmiSHzvxfPlekmSxG5rfbq40nV1u7MYxNIUuTfdoigFngMYiJJs+16epb7jczz/5PEDlmFtx07iuKmr2XzW7fbG4ymv6izLnR4fff3Nd5Cif/KTHziOpShCUVbDUdfZb1iOPjo6MAwDEwSoql5HQTwrijLLshRt52mOWBinpSJrqqjGScqyiGhqnmVlUQr9MAo8zTAgRUJIhH5se2EU56reycsSYxJCerPbmnZwevbAcez7nVlVjSRj23XrCgMSn54deZ7n+9752TGE9LA/dEPPdz1IkZho5rMlQcIffPHk17/9mueV54fDzRoUTYUYSAJwMD5drc0srwDBAUBefLrIskLVRECVcUq7TipKopOlBEX/5rdf9zqtXr+X5kkwd5um7na7+51DgHCz2m93O0WV8ywviibLq7Io25oRBAGBAQEaigAUAaLAr6sS1zWCHK4qx/H6/T4NGUnkOYn9+uW789OzTn9gOv7Wjc7PzvuDfhJFDCcNBt3l6i7Py/1u57qXnu80TXP+4EFeV1VDCJwYJQEkiT/O77rIL+9uiypnEP2jH35Rg+rT+2sSoi9/9MMo9L0oS4tSZFlJMIy2kWWZYbTTNFmuli5iOm39m2/fqq0WQZMf3r03dA3SzJefvTg+PYVEAzptTZKUh+cPf/bljxiOJCBJnjMyQkFi9zs6RdKALLeb7auXbzheaEDlWtna9HRNuL3aNyT585//giQaTacURf10O/f9hKG4jzcLhpV2plWkwZNHD2nI0DSVlwXH0E2WcYgWqLrMs6yq0ywnAEGRVFU1UZzUGJd5Iclyb9Bfr5aea42nw8+ePl3M5wixnVbr5fu3dphUNa4xIwsCRMSw1wN1sbeSKEmYChOAyso8ijNMUL3BqMD0emNSuIoDu9NpKS1tcXvnu3ZLEWx3n+bps8fPeE7kBXlnmePJQZblQRhc3sxNJ+BYWtEMxDA//+mPLce5ub5iGcTw4tZyHj96Yps2DaGmqFRT+2EehHFW1pPxJI0jnqEQ4qOssCwnS9IaF3XTvH792jAMThLz1E+THGHqaDjO8qJE6Hx49uD81LR2ksIFUcCLTF3jdlt9dHZUN2WeRrIsNFXjOS7ZEKen54Aird2mKJMoinWJfXj83Nmb89WKohleYK+vr23Hy7KCQWxVV4hFUZzYgTvotvM8phGX5nlZlTzPTid9mmZt22maQhalg4NRVdZxHBkdY7ez1mkGEZIUwCtsU4GqauqmLLJMlUWEIEWBpgSIpo+PjwgCAFxzAlc3eLlaN3UTJvHeNPt6P0mzBhBeEH7+7DHLIMeyx6M+pOksr3/79XdPHz+ECIVJjBg0mQwJoimrIk4KggKKrERBTBBNXRYsJHqdQRhEFEmdPX/O8ez93Wy/NQkSVmX16PEjc79frzaSLLCIu764jGNPkeRurz2fXUZJdnBwKHAPd7s9gevjwynNsLvN5mA6SZKUYVkawqoohsNRnCQvX74kAPjjDsT1bMerNYVL08xxPEmSYyIqyvR+flflmaGoGGOJFxaVBRGltWQqoBRV5jnRDy9sP6aohGMYURTrGidJNhwM371/z7Icx3CW5Z4cnE9HPdtzMcCPTs98z6UoUlYkx3WGw6EsCzRTE0TH8bLRoFvkKSaahqg0QyxrzXUDSZJEUXj88NHr+h3LcGkUF1mOASiruq6qqsEsw7KIFQV+NBo+fHCe53GcxIIgmqbruMnJWSsvgWOZAQ2qIqmbTFE4TDUtik+ioNvtrpf3N7d3aVYs5jf9fv/ocLJcLWWNEyS+rkDg+0UetzoaABmkMA0pSRKfPnv88eNH341YjiEoiuVRmqWb7aauAewaaZZxDCsKKgXpNCt4UUA03O52RVmZe5NlEAb40cMHpmPzgsjQEFIQEawX+IrarooKUTjwN2/fXTKIZ1gWMTQA9IMH53nidwwVMULguZLIrcztcuP94PNnk35ndj9vtwwviBaztWaoRZF0ekRLl6o677blLA3rusnTdDIeyjJPwUagufnMqurKtUOeFcbTkW25SZoQJOR4mqYbjgeAIDXN2O9WNSAwAAhCjqEFlkn9BgIMSQIwdI35IEogTCVBWC43FORsP6SQ0gAMCZqBqKVzucgACnm+NT0YW46VpAUgac+PNUOommSx3EECHRwc3M7ualyGcWLuHc/z+8MhAZqtueZYBvGsYqgcK/S7ffXk2PXt71996LQ7rhvmRS1IDMvQBJnEkXcx2z14cHJwNBJEkeGYnWlTiBZknoLZzfX38G62H467fuHcfnp7OD4O7QwTzaDTe3A69iMlj7OmLMMsifJos9mDpjk+nf71v/oXy51j7VcKq3iuI3PiYrP88ssfhmFAkGjYHyuiGAVpkmQdQ2OgXlVViXGSpF7gMhwNCCzyHEcTFNG0VLEtirPbuxAh1w9Z3q2biufEyWTkurbnBQejQaelApyfHh/JvHJ9dUsz0tPREQmItt5SFZmC0Pe9+8UqzvIachyuSJgZrTZJ05brxnEImtq2HJFHRVVc3c8ommkAMV+sWYYlEAxTIiuB424BaaqaaplmnmXjUXfa+4HlPQAUrKsc4FqWULd33gDMMPThZLLebhCiGA5iXBVZFkdxU5e8IBI0UlV10G7lWYwJoqirJ49OsjjamdZsYbOiuHMsNo39wHNsv6rwcDxQdFEoq35H85z97P6G4Viaht127/5+HngWyKKqxrosOTvLNu08K3RZSuLQDgJIUY4f6ara0uVXr15vVjuCII/PTliWaxosS0qDQ4KEHIP6gz4J6Zubq6oqB4P+fLGBFF1i6AchoqnT47PhaEhusS4rZENAiT49PaxALQoiw7CapsgKt7dNXOA8bzwvSAiUZkldlyRJlHXD8WJZ1aqqAIAt12ZZhmfFuiIenz/N0zdhmB4fn7STBDFIZOiXL78TeCHJcgxwp6PxyheGql99uvLD0PU8gecG/W67pXd1lGfZemeTJMVx/HQyElg69D1N1dO0mM1nBIF1VVckOSvKg8mUgwg3gGVZgReOD4/v7+4sy61qjCkijpPxaJgnbpHljutwDHt8dIhJUhSQ55m8wJZl2ukaIscBQEVR2O/1kiQFJBnFGYvYrMz/8O3rjtHiJcXyfa5govdXvbZBNPV+56iy7CZpjTFiGJKkkcCqmqxKytHhpGqAwDFFlmdlIYvKH1nG1XbtOG4cxIhmem390YOT//CP/0DRaG9u6rLs9FpJnp49PGdoJorcpAiH07Zu1PudLSvKQJPjxL+5v86zXFNbgqi0Wi3Hd9I0jcOYRcxgOLq4vB1PDrI0ydMU0ayqaZohyyKfJtFqs7qZLVRJLvNa11qBH9Vl88Vnn9/df/zw6V2URKqk2LaXZqkstifT6R++/vbo8PTZswOWe58lUbfTgYjM8sC2bVyRcVRyPIebKkpTRdYVRXR9j6QGn33+4jf/9NvFcpumGcOi4WDU67cJkpgeTzv9blORFMVpqrzbrW7urrfbbVXWo9H4aDpFEFIQXt3cvHjxRJbYzWrFMbyiaTVRd3khcHyORUkSCwJLEpTIiyRFHx2eUnT55mY9HQ8t0/aDQNPEwE8Ign/8+Et7N8cElmQhiBOOF6sSUxTr2JG5t1uGgRjK3HtlgQWRT9PYj+w0zzrtAUlx/bZKgIZjWNyUqiIkaSbrEsdB303qkgijqNvtjke9l2/ehFFYV7gsAM/LJGlXddqUOccIgqRJBt9UWVPUHMdiwmMYxHKSJGvddutw2p/dX9cYC4q0vJtruqFosqyToqgpohDF1u9+98++G5OAiqMTjpc7XWOxnCMGLdbrrKgePTguqyyO02ePn6ty6+Ly4qtvv/2bf/3XVOT++Mc/zvJou9szPIsp0k88TaVQTGcl+Prlu+Pjg7queI4TZWmx2EiiBJHQFDkU1Q7LaJ5nbgrHNMMGExjgT+zVo4fnPV5brs1ux6BjNl5nnMQbqhS4zpvXXxutzrDbgpg+OR5xCGmKWhRFXWNN1jfblSJKv/jZz2c390kU3M/vwiyqSTJ0fZFn8qwEJFE1GCJWEFm6BlQFTZ5neI5tUJaknMAZmpKk/ng8ef74MaTIKLWzPJyOR3lG2GHIUOj+8vKzz562Na5pyiQMNuvlwWRIM5ymGev1muW5vMyKNCxxMb++lVm51+0giNwgfPz0qeuGy+VqfHAYZgVDUCdH544b51kmqUrT4Hartd7ul2uTgaQkSsNht8HN3truzVWfIlWJK8uirLKqyhEl6qL4+OyMoOjVap3nSYWbwXAoCWzk+4AkoyjyXVvkaM+1bdsJgpggMMdzDUGpRtuPMsRDjHGeJKIo7k2zLOrNxmUYWtWEwI39wBcl1JD1erXfrDcAYy9KukaLYZjtdkdDpqQABakXz57OZovN3lXbXY5hiqJUVTVJElmWB5OhyIskrgfDPg0ZkYFR6FZlpSoyJAmSpPMqJwlYYRwnkS6p4+GwzNKyqdpdbefsum1p1O9udvskjjgWVWTV7XZ5TqgaTIAyL3KMm8APW4YuSCJNw/Fo1G53AW4OxuP1ctXUzfnpKS+wmi5xAk2SxHq1oVmm22t7ftjgBnENzTGuuT05nMZxvliuMAkIgiQBOBwP67KUGJZhOd3Q4yiIk4SiaIQYTFDOysvzrK5qXdf2tk2SYG/t+sMepAgG0aLIDUd9DBqe5wmS8sOwk+VVXlp7x/NCfsDvrJ1l+0mU+X4gKU2SxxzLy5KcxunJ0bjdVsM4MfdWq6VzLLffmRRJIpbRZINkobm3CZrzkoBnmDirljubQqjV7cmKCElAU7BpcBzHisTTCCmisFzt3n26/Itf/pIA+Orm+tGjR67tcqzIMFwU7NI0+Ktf/TzKYnuzb2qyAk1mha5j8ayoadresZdru6caRwfTuEg8z0nTytCMPI+zLEuSrNXSHcepiqpuMMuRPMf/q3/11y1DvvjwHmM1DKPDo2kDqs1qQUOi3elc3dy7ftjSuwRJ+o476PX29sr3LUiRNIXWi3XbMFwvrnL3/dtPlpMeHZIXlx8EAW1WjioJkR/WuCoLMklKWVQ0VSnKpK7z1dYcTY6m0+l//I//qdcd/MnPfjabzR3Xoyjqiy8+w7jabMyWpqmHXRrSaVrPZ3OKKGmKKqumwSQABI3QfrfuteQnJ+O8jj9evqFp2XJ2WVP7XrDbbA8OJookzmYhpGjTtOMwRAwriGxZJwQG5t5J80yiqTTNBJ5r9dt56ZZVcnw83e/dMqsOJ9MGVGEYVXUdJ42iKFVd8TybEQXL0HleRGGGWAY3eNDryKKQhj6LyLzCZV0QZNky5LwIFBlBihuM1MnkyPecZ83Jk0en5i4GJMXy3NnDR+vNfjqZ5Fm+2q5cy6yqClT1eNwfMgMMiJahG7pmWrtP1++S0OcEEcSFrIq9XgfSFCbwlXtHEiwkQRgkR4dDy3Ivb2btVkeQJIpmHz8Zy/LKc+P7uztVU1iOW85nFAF/8dM/WW/2uiwysFdWdVECjj78dD2PykiWuJubpWUGQZLmZfXq7eXZ2UkdF3npSqLeOZxgIuNYDn75g5+61gLR1Ha1J3ARp4miKbP12nY8XddrAo/aExqTIsOybEvRpIwXqrLab3cEASmSZnla4rknj47THBeQnh4crXe7nem8fvNuPluEgS8KrKq33DCyHdeQ5aYGRVnrrMqLIicI+/nScxNCUJEYFqGXlcXQ6PUGhsgiAYFRX8UYIKdyQGbud7udJ3L0uN1pQEfgONu2eU7cmebW2miKtpndnpycDUf92/myKPI4ifOm9D2/5iuGpVt6e7Nf0TR5PB2msd9uqXlWCKL0/NnT2Wx+f3drm1aVxYFtPXzwuKwBgUiBo0Pft2z73ce3B0ej0PeSMDg+Pl6tVoiGWZTM7+5lRR6O+tvd7O13ryRJ6bY75n6rSLIbRUa7hXFze7+AECVpGYSJKPJZUZdZrhdxq2c4jlM1dc/oJUni+iFBwqYBddmUWanKim25y/Wu39FxUwMAWI59NBp3223XcxAPW0bLC6PD4ykN6d3O6vb6LMsjSOmaAgCeTkaTyeTq9hpSBIHJ0DXbnR6DKKeuwzgtyopj6L5u+FG02W0ZlhU5LvYDnmGklp4UWVWXdZppPQMQkBc5VkBZEi+d7cFIevHi+as3r0SexxgTBFFU5dHBEYHB3f3MsXadVmexWm73VLtr8DxX1MVms5VTPo7j77//frPe0gzTVBUBAYv4N68veVE4HE55lk6zWNcFRVEhpOIwuLq53W93uqbhyDfdnW4YvCRwgHQ81w+Cfn/oB0Ho+Qxij8bTJEvrumrq8umzF37gLperpgYUCXq9TlWXmaLVFfDjcr7aW25AIkR7ROiHmqJpmirJkljxcRx/+vSpKPJ+r0dCiuFIiq6TNEjzKMsigiAwAVaLFUGSuq4BqkEcn2QlTXP9cZvlWIwx0WCGYytMZFne0HWSZTzGdlGFcQpp+ubmRhKFMk/W89sXz58JAn97f2/owmq94AS0t2xc1dNxL0jj0bCdp0ATtaPDAwJQ9/M5RTJBEAVRmGe1prR0TQsDz3UDCGGe5xiDwaCTpfnl9f14PNJ1/vuX39zfzXhewhi8+/Dx5PhwPJ7a7r4zMP70z358fXN3dHDY6fSs/Zakmp3pSLJGUsxmc0OSDAWRbfuDfo+iiE5HJyC2tpblhJ4TCrzSbrVfv3snCMLR4aTdavW7rc1ue319v16v3r+9/t/9q3/xox/8LInCNIkliTdaOgGIfq/74cP7JE1N23n//r5umiTJiyyVROmPbu04SQRE7TYrioGyxrMwDwKLxKXnWqLcogiKwE2rpXMcd3M3K/MySco4ziGEFC4bUNuWB2nOD6MwCnemzfIMw7Fh4v/7//wfzo+OWB4pmpSk+cHhiOOY+XyTFVGFxbJqfC9K0xLRTBSndVVNJ2NBYhkGApzd3s7rotJbHVZiaJ4my2K7WwgCRFDgeTQY9JPcm63uDoYnmiLhp5TneuZ+L8raX/3qT/Ms/fDpwrJM2wkOpqNOVwGgAYAWRTnwvaosiiIvqSZOiyT1GJ7Ky9wPHIZGoiSGnqmwBC7jsi4/XS/63XFfECCEWV61Wsani09pUhKANu2gqBtJzMqyqCsw6PeePDr9+uvf85LQ4CKMAtwAjhO1VisMndHglEXewRQGYSjLsijwgsh5nj/sT5M0JKk6SSKoq6K5LiVZ6HefzWa3GtWikORE2d1yvti6LE/HYXEwmDw4PPTLEFAEJKgySZ89frJc74Ikury5WN7fDfq9dnfQ7vYR3U+ihwgSSZKcnx7dz+4VSeiPRvbL16IgQcSWaUGTgGcZCjHbvekHQQUw4gmeg111IAn8aNQ7PBwWRc6QpO3Y795/JJuG4bkrZ0bTHK7wFu8G40GYZq4dQDrebNeqpo7Hk6rGPMfqhhpnie/4iKIKACBBcxTNsEzbUJPIr9K0JponDw4d1xuODperdRwHB4eHeVHu9zsaCra1vbu/kWXlYDrNq7wGwHZDjlMpSjBdr2rqOE2Hw1FRVqBpJElOomS1XN3e3JdVIwii7/ksomVBJEGznN9BCHlRWG92DMt2+l3fc1VFL6qKJFBepnldkkV6cXWZRCmNUKelT4ft0HF5SBwO24iiP93e1VltKBrDsEkWTyZD2/Mbiu4arQ8XH3v9btvQ0jxRFMnyHALU3U5PEDiAS1wX2/U88NyyrOuyKMvMdgMKUookU4j/dHEtsqyulCSksrAEGE8GffXBA1VRduauIcBitRYY/vrufjyZHh0eEhjcXF8PR/3RsCuJHMsiTZGCMCrKsqqrOPbLsogzn8BEmgWyxCdRJLAIIcL3XZFji7yx3HixtmgMBV7cbs28ShRZrCq8Xu+avNYUNU5T13M3m62uazSCnCCUDbb9sKwLSMO0aKq85gRGVeVOux1GkR/GgiTXRRVEcZRGiKGn48l+vycpIs9ymqYlRZwv5pIiSYr86fKmaXB/2O9yvG2Ziiwhhjs6OTD3+/3e5hCNSEgjxAmCH4SYbIq68AOvaTDAhCrrYZja/nLYHwgs124bfuD3Bz0AgChINIQ3N9e+7+d5phtaWVRlWR6dntzeL6uqlkR5Mhg8fXgqsvx2b4Zh5nv+Ul9udmteEkFZRknUamllUVqWTdGA4RlEYgrSq+3648WndqdzejgpizwtsGG0EEXbtvXq5WtRkltGt67L1Wq5Xu1YxAZRWOGGFfn/4X/8HxVJbhndsmwIEppOOBzksiwMx4Obu0tVVU6Px6vlTBD4ycF0vd7ubbera74X8bxU1c3vv/tY5k2v29M1SUjCPPZ915/PtpKsa0Zrubzrdvue50kilyb+bB4BQDw4P5+MDrM8a+pqNBi8ffN6E0UUhLKCDUO7vvrou06/05Y4uM4qhmEFTTBty/EClpUG/W5/0F8uVuv9UtEl09tHrvPgYIxoluHqNPNoWDZ1alvxcrHd7fZHx8fjycAw9CxLJFls6W2Z58MgJPut3d607VCUREVlHd8lScraO74fCbxIkMS79+9PTqbHRwO1pbx5+9b3o6PD4/V6WxbY9x1N4/tD1XHdMiI5nqY5yItskAQ5iXo9A0EK0hRiUFVgjkOfLi7TNM9q6vzJD0NnvV2tbdOlSMZxg5/8pPfVH35NI/L580fbranpKiBzlhWHwzHP8zdXt0mcr9drmqYhBCSgPD/OmvSAE5oqLwsQR9lsthQ4lqaRKMoCIz149JCCJMtxiAVff/2bLMNZVks82pqrnQU3q/3Zydn3r9+oqqC32w2gV5ub+XxVV/jpo2fdbjdVBFBViqBcXlyQVWPtrZvAe/DwrN8dh1Fk2ybH0ZeXN8T/9G//nx+vrilE3N3fKYJwdv7g0eMv//Z/+9uXL7/2wsjoaeN+T+EEogE1TTiBdTQYxkHy4Oxsud7N5ouOoQ26fZZly7LiOLbbGWz2lmnZSRrGSUw0hCwKmCLfXl6Ahmoq4PvhqD+SRKEmSlClQRDkoGEZSdGU8+m00+oGsUcBYrlZ8xwTBRHLcVmS7ff7R08fJHHx8cMVSdYczxlGWxKUoq7D0M/yyFAVmqIEQSyqyg8iQ1YkWbYil+WEJCiX61W/1cJ1XeNys1kxPMtz7KPzR2mRB2HS6w9CP8yzamvu9vvVydEBxzJJmlVNpcpqGhUESamGliSRbuiKojAQ7ve7JAkpgl6t97/7w1fr3epgMpBkOUlLXdVYlg3CKPJ9XFeSrsVpOuz1IWIvr6/LuphMD1nI/MN/+ce8KgWeJ2qc+IEsiwxNQwoahmFZq+NRlxH1i5u5KAphHKdZ/kfgPUwiApC9TjsIvafPngVhlKSZ5wRRFPuuOxz2O52W5zsEwATGXpC4QUgRGOC61++zvEDRzOXVbafdETka41qVledPn7RbxmyxoBmaIinbticHh9++fBVFcUdVGoIABFmkqdEysjIejwdl0Wy21vXVDctxaZbKsnBwcHhze+f57qA/kHm+KuumxhzH0YiMk1BT9QZTd4v1xaeLIkmSNMUAsBxqmipL8zBJFUka9dt1U3telBVVlmWGrqmaUuRFXWOKInmBTaOU53hB4hRFzPMiTXOO4yFBddothuOqpvJ8P00K3dBW6wWoQJrlXugACvT7/aKoRF7RZAnghmVZURCLNBZlkWXpsiwJgr28vIrioG4wJknT3PMC6wee7ThZVmBMdNuDw8MTy7HXq1mv3WYZpqkbRKOizA8PJpquJXG63W62+z2g6CgMH50/aHVar969gxTLc8hQ1cBz1qs1IClOENM0URVBVRTH8V3XpSggiKyqKQxiojiiEdkArMpKkTav3ly0DCPNkqquFUViGcizQp4XeUHohoZBFQTh3f1st3cbTFRl/uz50zCOsySCJHVyfCyIYp7njx897LR0z7d9f88ylO+HoqTf3KzWm/2f/dnPB+MhAM2//9u/y7O8wURVlRzDNQ0BSDweDULPTbOkaZoP1+uD48PTw2FepGEQa4qa5XFTNwii7WYzGPSPj04Xq81suZhOD25vbz9++KRp+tHRhACN74eIRiSBSZIkSGI46KZJ4nqh7XqqosmSdHw81TuDv//P/8CxgOMZGvH23s6y1PYCAhBFkdVVk6UZotmDw7HRkrfbzWQ0UkS1aXCvN3j77vW3375UNc1oadPxEBJ1jSvLDt69vx4Muoqqv377ATe43TJabVEUOUGUREGcLxeAoKoSlGWFENY0gaaqogEkJRqSeDe7dl2vrMnBpM2LTJnWDEsJvAIJJHBM08CipCRFOZwcBJ65WMybGvd6fdt2eI537O39Zj2ZjhgEBZ5nEPfNN9+fPzrleJpl+MBNHcuDkOq21fdvP9h+cnR2bKjcam9Cku/32sv53XTQv55fHhwcdtTWzvYFWe+2lSAO33+8ssx9UZTDfo9h4d3txnfDYb9bV/nR4UjTlChtOAG9e/MhyYrhsI9YCiIQ+1ldNO/efuI4SdIkURHCMH38+GFZJrc3syRNT48PoB9li9WuqitJVmvQ3MyuV4u5a/uqqrd6fZonEUKtbme3Nu2dl9W560f7tfnh48XT5589OH+scvx6uyirWlW1qqzC4LLCRFaVlu9lWSTQLM8Zn26umgY/OD1iKNoPwmePHiuynGQxrvOsKPaBdzg6CkKvp2okZKKCrArAMRIJMITUT3/8g/v7eZwFva42u1smcdjt9drddl1VqiLsHQcAXDb44vpekaXpkHG8YL3ddj/vbjY707Na7bbtxA1BQo7hGUZSRNEwIISea3/1/cvJZKyrxh9+++uz81Mnjt9dvxMZ5vb6hkWM5bjdXrfJa1XXB6MBS6OqkmiGcT1vMb8PfbtpMMuJFBIcP9RbHZph9rZDELTrLjDR0DQa9QcCw3ihT5AgSoLI2p6eHtAI8QJfZvmPv/z8frHkOcFQlMX9LcsiCBFk2F67b7v+zcpEbDLo9RtcxXV8NJ0qcmc5W572+zSkyrI8PTvhOHG7dcMw/XR5pWk6L8kv332QBZHjGEngOoYu8LLjx37gP3n4gOPZIExVTTw9Olot50eTU00RYj+KvX2ZR2mWf/vqe1mSCYANozXqjVfrzeMHT8I4yOuyLPMkShDF3N/OyqLM0koUJY7nEaKjKLi5uu90Rzyr3N5cF1maZ+nnn39O16W98xbLxV//1b9cLtZXlxdRFMdBjEEjSnyeV2mSYoAhhcIo3VuOLPEIIQxISNFZXvpBgBtAktBxPDaEiiRTNKzKarPeY0yIolyVWNR4iOhvX71yvaBlGIosR1HKsTKu6ywvGJbv9ltnx8ehH1ZVDWkIMBGF4f38Hldl3VS8wLcNrcBA0MQwidbrNQbk5KBX15WuGkWOqzJI05KiSNfdVkV1ejIlMM6LiiRBU9eiKG42a5LEkiQTRD0a9TZ7W9e089OjvbnrtQxRUqIwsG2LhrSkan4QmXurbsowtHnu9GA6bnDte34cFVUZIpRBCEADqrpiNIaky+loaDm+7YZ5UVIUgoBoIA6CsKqaosziNLEtO4yzuiHSouq2O9vN3va8Ua+t6Xqrrf/sJz96+ep7x16dHw5Aw0NSZWi0Wjmet2U4odvrcTz7+9/+5tmjx//iL/7yP//nfzL3tq5LuioHccqIvOXsA8+naeaHn714/tmXaZk2dS5papLGuq7tdzliWQKA4WhCEHi9W11f39zP16enZ19+8YXvZU2Ni7zu9joM4osyRxR9dXsLEW1ZFk1RrMCzLGJYOq+Kdx8/HOexoYlJnKmy0e61W209jiLN9AmCxrixbRtC2DbamiYrCs9zPIIEborRYCjL3MFkbJoeICFFw+vb2+3WIkmaZuggzqEVpHlJI0RDFMYpRJAAdBqbrXP9s+df3s1mcRxCkpBlpioTAXG2Z4ehwx0cg4pCFMvxTORF5tbtdvt5hss8YiHH03yaljRCRFV8fPO1ZTurzR5R1KePHxHD8Jw8nQ4fn4lFWTIIAQBGg3HxtCZpLIlCFOZRmLRbGglhFEdffvEFy0uqJvveDtCUKLU6uhwG+1634wZO4PgyLXIQNXX2h999DKL8L3/1p2/ffPXmzfUOIJahJV4+nBzmWUgRgqEZe8vOAX1wdPwBfzo9Pjad7Zv39w+fncqavLzbs5IoS+Jg1F7t1wBSW2slMHQQ+Yqsb9Y74v/9//q/52nc1vSizOfr+c61YIVH/QMr9J3EQzSWBFFXDYGRrm7v3rx9TRMkQsyTJw8m0zEiGQqTHy/eJ0lydHyM67xt6CUG7y9uwjgsq6JIC1zhOE8lTet1Wr7nQpLsqOrZ6TFBkn7gZllOM3RX79zdzxmaHk4nb96/aTApsIokCgBUnutUVVnjWhToPC+//+4TIND0aJwkUa/diZLifr48f/hgMJxut0tV4oukzIqi1W41VbWY3fMcLSlyWYM8TzEGmMTtbi8JE1URory8vb5+cHh8cXFxcHRsRdm//Xf/vcxyJGh4jmMF7vTkCFKkqmuI4z3LSVI/L4soShCkkzCK4nhvWr/61V8DAC+uLqLUi9PIUA1EMYLIFxhzEHEMk6ZJlMSKKndaraauBZ7Ni+zDpxuMCaPdAgSQOK6uS4oApu3atvfkwSOBF99ffzRklajKMPZZme8NeklaxkFM07CtymfnD95fXkZRKnDc7c2d6fgkiSzbjWNflfjD0bCuS1HkKZrNiopBVFvXEIPCMCnrOq+KvbWtmkRiObIhKRIKknR69vjN2/cUgfuDdrvdoUiuKAuMS0WSsiy9urt99+6y3e2OJ8O6LLM031t7XpQVWdputrgGLz770vXDf/vv/l1TN6LI9br65589tUzn1ZsP//qv/zIMg//y669My2NZgWEgw9GWadV13R8M0jThOaEqCkgTVVWRBEFRNGJolqHTNKcICAjMc6ym6QCQi/kiL/IXz59ODyZhFEKKNjRtudlBxB4dTC1nG8ep4ziyyNV1ASlEEjgOAxKiKEtr0DQloCm6bhqKhFfXt92W1utpK3tNkPBofOx5yauX70gKyCJ3fHREUlSaZpvdjgAkSZHb7W407oGmMi0vz8qyLEfjUbdt+L7j+U6/3wnCyHWjp4+faAr3j//l1weHpxyH1ps9Q7PL5bLdbvth7LgehEgQmLpKBV6QREVV5SxP0zRpGuw5PgZYVtThoMuxKIxT0/RNy97tbZZjBBYpkqgaxt3d/c5ya0wcHkzyvHS9sCiLlqballkTpCoK/WHnv/7XfzXsaCRNr3cmTRIfP30cDHp5lodRvt3tvTDodjuyJO33dkdTHz06Wy73WVr2+prrOYKkQoSaunnz9r1mdE4nI0CUWssoivLNx+85jqUJdnG3bnd6kCHKotru9r4XhUE2X8w7He3seCpLGuJY1/MITAwH7bdvP6zXO0GSSAomYdBqGQ0o8zKrCowByTJMVZUczx8cHgS+zzD802dnosje3s0cyzs8PGqaCiF4dzfjGE7TVE3TwsC3LJPETRwHkqTVGMZJen17G8URw3CIZgdDo6lwjcH9bMZC7nY+p2hakYQyz6aTDgGJfn/6s5/99O/+7n++u109eHDY6gg8C2mKvb/bma7fbrVZGrM8lWSF5xWIRsenJ0Ve/sPf//OzZ8+Lonrw4Hy7XZj73X5vNTW5tyzP9xGDDg8OHj86zxP/fr4RZfXgaHp6ciTxdFamRrvz4f2174btls5wHEPDpiwUWUqi2HHMwcGUZSVI1G/fvnn35iPNMDTN6KpO0ZiiqPefbl+8eHZ21P304bVl5w8fP3NdFxPkaDrUVDFNU0MzNltTlDWOI15/95KgwMvXb6qaNLpKEPmGNkQUDZoiSQpelMo6pSClq0pRxFEU+24Krf1dnlWawN5ef2QFVlUllVeH/RHYkQohm7uVrmpxEkuC+qMf/VBV5Sqv1uvNH03OR6fHgRtIsiJJCssx5t46OBwijn//6aLOS07gB/3Jer7gJfZP/vQn+73lh25eVjTLzxc7hqW35joKE1UWrcWuIak717KjQOZ5DKi8rpI85Rh2u7PqqtRbRhyXFIFPzw4JAqmK8W6zu7QueqPeX/3qT3v9wzSvPMe6u739+c9/rshG0dREUy9md28v3v/sJz+7vbz2o0DVdIZns3pzPJ4Gnl2RQJCly9t7y/VEy6oA/NUv/3y32WLQuJ7rBvHvv3354vGTx08OCJraW67lhuZ+3zT48OBwb21Iojk8mGap/+XnP+y11X/6/a/LMgFV3m23SYbGJNVtdxH8Y4Evrat6PJ76ruO5Fi9IgmhkWRYnuSgyi/VC06ThoM+riiAFl3c3mi4hmmIgZTpWUqbH58eSrCThnqLQbD6HuL+Y3Qm8wCJmMhgErjuZTGzH1VWJhJSuKI5lJkVOV5hHhOvZkijwLN3tHYmKdnN7Y9n7NM/8ONgWDgXoTquLyfLy0zVNwzgMzJ0Z+kHdEEEYVE0lifJitiqqUteNKIy3m50o8J12G4Nmb9pffvn5qD+wbYsk86+//kMQxhRkUtNL05gkiTBIsrz8X//u33/+4umjhw+W622/N0jSZL/fqYqCMSYB+OmPf3xyfPzP//TPrmdRJIkbLPBcnmcEDVVZZhEzHA3KstjtTAyI/qBvGHpVlS9fvtY0tdft5mXWbqtN09j25ttvX1IU7A96nu9KPNvSpNv7+zhKBEXJynJt73DRqKKC64ZjOIEX6wosl1u5pSZ5fr+4l2XlybOHV5/u8xy7rq+qEkVhnoVRnAdR0esPDUOjCJBnDSlDmmEYBvU63eVyfXu/29shYlCe5GmaZVkkKCoBadfzdnsz9OO6KuMkRSwHaZQm2fHxse/aZV4IgtRut1brRRR7PMcJIgMwuTPNuqnGw36e5Uma7HZ7GrFZVv7RMlDUWBRFXhAfPnwoy+JisfT9CCJENLUssH6SEQ0mAEjSqChFCgBVVt68e2t5QVXXk34/J7Mw8HRD43k2TbPpwQQSxPev34qievbgbL2ef/x0p2raT376o16vW1bVcDRhIeG72zR0MIZnB0d3i1WS5o8fP8WglhVxv98wTCvvGKYV1qB0neB3v3/J82x/0GNZ9o9vFmEYTqfjomr8IKIR8jwPEMC0rDTNeV5UFQUDsNlZVd1Uef4nv/jZbDZrtdTRcLhd7y4vL2WFS7IQN7isCgISgsC+efe2KGtDUc2dPV+ZD84fciw6PjxcrDZRFJ2fT3mRTJKEQVCWDm0rTquOIomAqMtaIiFyAzev787t08n48P5u67g+K5Isq1EUm+UlDekwjLuHwyA0GSR12gxuKmvvNE0DIb3e7FRNL4o0TfOioh4+fkES+OOnC0DRHIdc319tdqvVnIacIOIqSwWWdl3zfn5fAzAYjh89OQWYrPI0TxNF1cqqQAhKshaFCQmgG4aIESVVBQT5/sPNoydK7oQUic8enR6dTJsi51lV4EOWIY8PDxqCyMrIcXLH9RmW22/XVZHGCARREMShrqnjydQLHJbm9ZaOKKTJ/GazOzg6SVMvKzKB5wIvGw8GSQbgfufwspRXVBBhy911J8MKUFvXNFpKEESdVk+TNJbmdUXDdT3sddI47w/6fmhRJAlw01RFXRVxnJRVzLDkx6uPNEJNXZ0dHftxMOj3Tg8Of/+HX3988+bw8OzZ48/evftgGINvvvlGl3hB5vept1x8+stf/CnDiffr9ez7lw8ODhAnIEHOsuT2dlYWuapK49GEpmBdZTd3t6PJkEXsixfPGYjcyC6LmCQKROYKy77bO7//zX958uRJfzT5z//p79+//1jB5t2HDzRGkCIJgMeDAUkBhgG27Sdl/ujRA4jRP//2HyWVJxryyeOzIIySKGqqimiIJE0mkwli0Xq/y5PQtf3d1pJkMQwjy7QZBmV5fHA4yvIAIXx0eFjk3TKJPd9p9boizxqahAFh2iYnCDzHbbZriiRVQweAmE56URTvTQtSsNvupXF09el6OJ3+6Z/8+Ovvvnf9IIqCJs8Ri04nwzRO06wYj6ccJwGKkmUeQhrSSFHlLEseP3tydXWNEPno4aEoqYqs3d3fFkXOQtp0fEltnRweCByz3pm8IDII9Tv9ME4mk6MsLYMgqspMUvhHD0//1//tH26uZyQg6roQRIFh0OMHD5abfUXAn//JT0RZ+Od/+l0UhJPRoCgK23K3m93333335eefvXu7/vDhE0nSht5xfJeCJITcmzfXsswLklDV9R++eSMJgqLIo0GHgvD8/DiJ4yiKRFECTVnn4V/++Y9cz1mvzd3epUga42Y6Hdd1zSGIGJhmoN0x6hprmooYJgpjkqR0w7B9xw8J1w8OD45819/v/cGgS1HkaDhu6vrdp9uiKifjSRS4LUlmaJYi4KDXr0FNk+R8sS7LJo5C20wgQxEk3u32ZycPfvqzL1arFUmRluv1+32pJgARclwtSTKuq7wsFInT1NbOtvMs8Wwzz/M0qQAo+ZrgGTZNojAKfT8oy7Ktt9K0iJK0ZbTiJKpxTtNQ00WCzM/ODzaLTRA4JNm4rm/tfZ7PFIWraipJMpsICEwgxOR5aRitNM3CJO60O4eTYV1XrZYu8ZwkCa7rELgIQ1cUxY6haopQNKSuaYghkyR7+eaDJCkEqF3H73aGhqo4nrPd7iRJYRBDkkzg2xi7nbaRpE1Z+g2ue/0Ryyvr9XJvbtMs0VUNArxcr/I4xHXl+T4t04innz17Ued5GHivXr9erzadTtuybI5jO22BQVRTaX4QrTf2wcGwaprZfNkf9k+ODhbLbRSnTQl6nXZW1g2gAj9I0xwiGhDlQaenqYrMS3HkXl1dl+UkCEIAiCRJ95YZp15/0N3tNqLoiRx/dXMHCLql9375q3/5P/1//5eybob9ru24g+EBQZBxZjqe7bqhJHGeE1Ek8+Lp0/lyBlA16bQ7au/txSXD8Z8+vFdk8Zd/9ieOZ5dFut34iEglWTMIwHJ8mhW+l4VJ/PTZ0/n8fjHffv75i0ePHn+6uGUFWWS5w8lQUQIIYZFnB4ejME7Oz0+Xy6Vtu0laW9ZMlETP8xbz1XazNC2zxODl959+/oufj8fD777+Jk6LX/7ZL1WZj8KIF2XLsX3fr8ucADTL8oCifvDjH263++dPz5umsG3r9uqy125TjFDWcRglmt7iWXa59jHBVDkp8EqD0Wy+7fZUyw77va7WYXwvEAVWU1lAkCcnB0UeOR7x8eNbCOnxqM0iquHk0EsaiCBETMuQB9O+qGuz+U1R5AejcZhEiKYRSRydnEZ+sjG3eZx2u+1+t5clJc+TacqGSYkBSVCkpmuKJu2tfR5XAIPZ/fUPv/js0cNHl9d3pwcHlukcHp7SEHBIUDjhh198ae62SeLTJM7L/IdffvH+w3s/inAUM6zEcpkb5VSBO6zomE671725vTzUdY7li6LMSiyp3aoAG9/q9vqgxjqCkCKuL98t5+vru02YlreL5eXNbbfXZSFHAkhWDSBoyPFZHGSm1Wvpmi5eXXw8mR6RCKZZqBvdusnIpmIZoczCyaj31XeLMIienD9OFiHLwQ+fPuwtd7dz4iAlSURRKM1zCkFWlHe7FcNK1zezKE1GwyFNdS3Lvrj5CrI8DdH79x95nsdNdX9zzfMcgxgIOZqlJRlB2CzXyywrN9u9xAu9jh6Xybs37/MkG42G09Hk+voq8F1FkVhB0IxW11B5lqmbZtA1puMhAcr1Zj+fmw1FSIbR6XSqPGc4WFex7+ftjiyKksgJeVGUdaXKynKx4LkeDSkCV3lZtDutIAhbIt95dHp3P3N8+2//7j98vFy6TiwKQrvT8QMfplVelyTRaIpg7tfzeZplMaTZ3/3+q+PDcb/bqsoy8vzXr75vmjKKc00zqqpUVG6/2zcNIUkKLzC4xiIvlUUVBQkAoKzi0WiKMbndVCxNnZwcVnX51VdfCaKAEFtjMB2PWI6P0qjb1+uy2u52QVwxHF+WBS/wmi47jts0pdGSVZUncJlkReynddHkZf35Z882u12eJj5Rz2ZrDvEY4Ivra892zk+O+m2jrpsoMBHHGC3jcNJ23ej4cJImyeXNNcBQ4LjA9wmKoGhc5FUUJstqpWr69ODANk2SAPvtPs0yBrGWfd0f9Eka3izXy42VlxVPEAeTyXo1f/X2g8ALgGh812Mh5wfx2dnpaGQs5suqwhDRGNc0TVr2/m52axgthqGbujGMbt3Uq60ji+pPvvzy4voOE4woyoIodru9PM8cxzk8PMKAuLi6oBHy4rQmoa536gaPJuM4iFeLlajIk+mQIqi6LBiazgjM8NB3Y57np9NJt9P53e9+LWoyIECSFgLP1ZqYJnkcxrou+0FAENTlxRUj0CwDyyxDqibwwpt3r3f7HaRIkgK62iZqwnbNchzFfvbx4/Xt7TJKCkkGYZx/urjhOJ5GjKGpBIEhw8iSwkNy1O9Yrv2Hb74XRO0Xv/jT+/vbq6tLWVYUUZYFsdszMMY3t9eIppLEO5iO37/7lGXlbusEwT1CNM/xDEIQad9+/0lT2zTErh93Wn2WZfM83qyXmqqlWREEHgnqg3EXIrjclN1uXxCULMviOIVkE/hRnJWdnkqDnCTJ6WjgJQlJ0+vNTpOVtqxRsEWQ9N7c/ejzJ/5u54ZxS++bjpuklmOtV8ulrrU+vPt0cvZoOp10ex0/9C6vrgfDnuuZnhtSEEKSXC9XFEGOJj3E0iQFy6L+dHlrOgGJqyRLNV2nKfbT+5uqqEkIAWzCLFF1zg3SQVefjsVPF58wIAWBvr2fI0b+P/9f/tvrm7f38wUJ6H6nbdvO928+nD84+8Wf/cn1zbVp7RlI0SQhiozAtnxrc3A0LfL09uaqPxh2esrlxevlZn9wPFVlokyS+/vLvIyTrIa02G4ZSeGEqeeYQZrHvcEQPnhwvl7fza/fKAI/6YgUbFMEFhlms9na5r6I8/n92g8DSeEpoqrKguP43/z6WwDw2cPHkARZXquqars7giB0rXc/W3phUjcA16TAi65rB4FPUUScxslyJgiK5Zi73brV0lhWkCWRF8XOcHxxeZ2EycmDZ2ndiJLi+O5qPRt2ewfj8Wa7pEh6bzplXYRx4PuJLkutXrs3GLx7+zH0Y5IgXr19wyFmOJm0u20E4cXH93ma0zzLMux4OtLa+t5yep3OwXDMsyhMQ1XrXl1f98cDhmM327UfeaLIx2n58g+/HXQHQZJmefX24+Ww31usd0mS0JCiaPD5l080Vbu8vg3DSOBESZID37NNp6pKy3dYBnY7A0U1ut1REKRluWtphrndyrJwOB0yCCqyGATxZHq422/n23W71c7SnGgcEoAkzmhGEClmb4c1Xhqq/OWXn+925v3d7dMnzxRV3izvzcDa2jZJ0jRDrNfWartXFOPLH/yQJChzvb6/uzUtRxIFRRFXy3sC1w/PHpquKSly0JR3t1eIZlrtdhAn682mKqp+f7Tb2xeXszDOL2+umxq0u512a0CSzedffJam+e9+97v1xhwP+rblbDa74XBEs0JRNQyv3t6tFYnJipKEtHd/R1Kwwvj9h3eeH0BIEwRBQXx8dIhBFcdxFMZ1WTEMVZTlfutdXt2fnZ+dn5zSNFnmCYSw1x9gDFqtdpykLVVdbzcNKKLUVUTZdtyqBgNWoCgKQjJMEs+PyryO4xxSLIW4nt4+mEwI0NjuVhT4dks2NOXbb14yDH801T5dXgmyZlvexfX9crsdjYa8ILx7dxX4L0VRGE8GZbNXBKGlq6vtnqIhpEgGwi9/+Ozb794GXgghXZXlZrs6PjzSVfUf/mEnihLLcXVZJnFkOa7tBqPxeHpAXV5cbHb7rGjCMC0LTNGUwPGAYkRR3G7XDFPqmpKXtWm5aZJ6btQ0WFNbAJPr9b6uK0GQFU1t9zs//OzFycFg8n5geXEQBm1DUyR+OjnDuFquNpYT/Pkvf4FYZO4sTVLzNPZDO80jWZF3e369cQVJMTQhz6I8JdotpciTwPfTrPz662/+5m/+Zr+30jxVDFnitSCIrm9vSUArsrIzd3GSVRV+8vTJxdWn9XpjqPp2s0uS1PPCIAo0XVE0MY6jKi/COI38JE2y+Xwx6PYaiuY4JEbSo8fPX79+d3g4fvrs8dvX38t6i6SI2+VaUVSGkTmGGA8HP/rhk88/P/2Hf+D3W5OmoCjygKiur+5cN0AsN56M5/NdktQPzh/tdqZtRQyCARGnZdYbGhzNIZI+Pz5umrLT7vIsqyjC9dXN/H7R6XQtyzV3m7xoBuNe3TQQV7a94nie58k0iiUJPTk/EGUpy7KO0SuqfOfs/CBs653ZzU3ix+PxmEGwrqvvvn8d+2GSVZLsa1JL5JW7m9s4qsJg4zhBfzyZHgyKPImyPCtS1wvu7xea2mYhQwBMEth1HY6lT477J8fDKq/nszoMAoQgy4i26YkiVxVxXsRaSyBCAlDNu4+fBFZiBW61XLQ63c1uu3f8X/7Fv0zzeDG/XMzmdUOfnz9QJeHly3dRUnDcLE/C2WJzcnx2Mb+URU6UhOvL69ls+d/+n/6PnZYYaSIrd1x/b+99SPFp0Sgk/fjpI9s0izLf7VZnJ49H49b9zPYcN00LyJAfP72BTVVc383yKKLqGkDEKYogSO1uP8urxWJHATbOioaA8+U2r+q6vnvx9HEQVb/9/Vffv/7wqz//s9HocLkxSYpqGYPrqzteos/ORu1OK4xCjkc1ruI0fPXmpapJpyfnV1d32+0uiYN+r/PgwWPP9TabTZImveHgYDQejKb/9IfocDCKP0YConGTUySeTiZqp5PFlUgrmm68cT9c39yEgR26TtPU50dDTVFODnTLtIMo3i7vdM0QWU7u9KaTg21/K8kcx/OTyahpqiLPJEEiKCpMYr3bAxCWRcXT7KjfJymy3Wm3vB7FsF1OIjDRAKBr2nq1oWm2KKJeuyXxHKKIUb+dG/Kj82MMiMmw1eu24jjNy9rz07zYeK6XZel2szU0iSUokWc6LZWk4c39nKwbXVfwcCByfLttGHp3t90djvoMjeq6VAxd0dtpVrjuniYbXJUH4/7J8Vg31OVitVqvcVPSDAIE+erVq8Vy8/T5Z0+fPaFhY+7MTq+dFVm1qo6OTl3H40V9NJrYvv9ffvPt2ckRx7DzxS4vKmGxtb1A0/TRaBoneZrX3f5Yq3BW1yxCvU67LEuSInab2fPnLyLvPM8yjpNWm4/Tg/GPf/Sjd+/fsxz9xedf/N/+r/+P1SrBBEiyRBKkqq4kSep0ejQUHM8tiqKqmzdv3/E8relaEIYMzbACX1TN2/fXosDsNlsO0RBSs/t7SeBIinj+4rOqqhfzmaHKw0EfWuTt9XW30zk6GkMSuW4gChLHckUBDL1DAMyxtGGokqaFQUAR8PvvXjWA7PdGvv/u++9eJ3H27PnzxWq+s/zt+ztR4FRJ2pvBaDoeTcYMp+CGIglAM8DQ5LqoHT85OT+vyapMfE0V6zLVNGkyGd7d3XMcDwg+S5KUZiRRSfKcpKhut+1YNsfmhkZzCBxMR4jC253FMJwoNXEcF3HZbrcECeVFEYdJWVSSJDYYp2nGIo4iYVmkCCGe57K8BIDIi1LATZ4mprnLUlfT2klRlJhptbvWfhsGEUIUpKCuqmkcIijLAsJNgslC05WaIIq8HI0HmlYcTcdhaG13+8vrW1EQDKNlWa7juJBhXn7/SlNbpbPPs6arc+N+33ddP0z9KDKtUBLkzXrz5Q9esAwdhGnThJa5L7K82++3eB6AioJEXqcMJ8RWcHs/T+NYlTVZVkbTMUHUWRp0+10IsRuk3UGHoZ9fXt+yfOt+uW4PDn/02ee2uby7v/rNr/+Roog8Dff7fRBGQegJvNA0pKyqkiT0ul2CoI6OTixz0+22z07OLj5dfvp0zXAUx6FuR29Kcr9dqbr66PEjFtFvX7/utHuOH6/Wu25bwyTz+u2nnWWJEtfptGaL+1ZH43nh09uL05ODp08ex1k2aLUenD64vLhcLJPF7F5RVVYQCYIM8+LJk7Mktq7uNrygPj2dfPXVN0W5f/75iz//1cP/z3/33yVRPp5O48SfLxJIQMe1Ma5xUwu8hHFdFElRZGVVpXlxe78gSZIRyCSMkzicTMfL1QI35YvPnj9+dPLx4/v5/AaQuNXq1nmxuF/1B8Pff/UtRVGtlnF68nC9WvEcHI8H716++vzRjyiO8gOvyFMakgQA27U9v5sLskQh8sXnX7x+9SrOKkXvyUH1P/z3f/vgZAxANTygh72he3h2eTsXGVnmle1qd/HpqtPt9jqjosj+l//5/ydJCkGWAif2+t3ReAhX9zND1pKsyXJAISJ2FgLLB3Hl+UFR4QpgqSXPZ8tuv29Z5tmDh28/3MRZ+eKzn1r7lesGq83XbuBBmjo/ffDk6eOXb77Liuibl283G5PlmGG3v1yu8qpWVMN0vL3j3s42ZZ6enT0I02w2X/z4B59BEntBsNvcE6DIMn+7x0WWBlbC8zSGF77vYlB//vxHs9s7QOCDgylCFIKMZUUf377+hsTtlr62rDhKEcuHSXZwMO12W5gEvMhNuFGahLIomqYdJaGiSCRFxHGoq2qNq7LIKIJgEctBZrfdnp1pT87PIc1Grl/XdavdohEtcnTgh3XTRFFgGIZhtF69fRPvgjBPSZJ4/ORckqTf/eabMIg9N/K8a0OXjw4PPn/+pKnr9Wo5Gg/rprAtNy9wS9ZlSd3tzKzILT8gANQ1Jc/zMAwPJiNO4h3fNG1XkSWJlyRRmM/vMVnR/KPv379d3N3JPJpOxjsn+Pqb7/705z+XWfbD918lYXxweErKallkuqQGvtc05bDXQzT99u37QW8o81LT1EcHR5ud7UcRQhwkqXZLS1drlkGT8Wg6PfjhD168ffOKJHEUZUkSjfq964vLi48fTo/P+r2Oqkgsy83ms/niVhBZjItWW42WeV01VYmzvKRpkgSYAE2/3+p0NJKCYRinaazpcpHnnXaHodmyrE/ODxgGtmTh5vLT9999R1IUzbC6rqdRuFqs9pYVBEGehTzH7ze70E82m0/j8aAq6iIvjo4Ph6OOJIpRmFh7M4m8O99sdwaDfhsD+uTsfDDsI0jF8fTudvvll08ODw8bEpU1M55SNCSKOD46PDw5HUJEcCy7WqyjwG/xHUWRaMiTJCmJDOS5V99/d315j2uq12uJojibze7ubp+/eDTo9fO8HE8H94uFHwTLxbLbbmmqCqP0jzw+y3ENrrOsDKO0qhpD1RGkF/ezpqklWSZAFUUJTdNV1diR/ejRQ4To3Watqsr5+dn7j594gfPccG9ZsqTyPLq62Smqdnczy+NSYOnReDSf3yqq0mp172ezqszyIkvzAoNGEEVJkGzPa+qAJEhRRB8+bWrAsDyTFpXlZJYT//THP/l48fHDxw8PH55vrc3F5VKTlftlGsSBqLSfv3hWN6QoioAob68/6arykx9/+frt2yxPaQoWeZ4V+XjaL6sgL4sKUBQi/NjPooRoqKLKHGdT14Wk8Jionjx58N2rDwyi06QIoqg76P31X/yZ7bhXt28ZhuqPxvPZ+u7udjganZ2fb7abZtHs9g6DuG6/I/DC1eXV48ePHj08/UQUv/n1b/7m3/xXkvR0MOySEM9Xd4vltqV3lps9ScOvvvn9D3/wg7NH574b/Kz3k//4H/+xqvLRYLAzXcTwdQ3+8R9/q+laFKd5lcdeVF6UtufrqnE4Bf/p7u/6/Z7Isb/65S9v7+8aiWA4ftTvapqCASAIstXtH50efry6fP/h5m//t3//X/83/9X//v/w3/z9f/h7jkMcxxq6UaRlGEWfLj9CyBEkvL2bP3gwzcvcdT1NV7rd9mg4ysrMd1JEc0mYckikWYphScvaB16wXlicIE36si5onz39fLXbfvxw9ezZU9u0SIxffPbw1at3r169OT0Yxon78e3HimhYRpittywjCAIj0EIUp9998/Lp06eff/kjnkNZnh+dns1mG4iB55pfff16ejBtGR2J80FJFFFWFVlTNlWBNb21WM5ODk8hJMsqYxk6DuKD4yEsCV5WpP9/CXe1JUmCIIjVmNHN3M3ZPTyYMhIqq7KyqGFment2JR3t0ZOk/9If6EGve7S76p6epqrqoqSIDGZnN2YGPex/3HO7nU5RwBUMWu5CEZWr6xuaJL58/WmWRoZtHe5tszS5s9EHUTzPUiILnx680A0tjx2GotdGG7+8+VlbzoQtRq7LQCWXWTUa0ARJtlsdUZQ1S8MwPC+ATrc7GHRRCCRR0nO97e0tbaUWVWEbjp+EMAip2irLY4JEt3p7k9V0Mp8d7h6kUXZ9cUriaJKme/sHvbVeWZaeG8yXq+nDIy0QGSC4UYIVRb3R4gVprlkHew2SZWbjCU0REASNRiPT0oqqZHheTFLD0CEQAMscBMo8yUmSrUvN0AvysqBpUBSYJE10bUFRVFmCKAKCWV4TiE67juIMjuMogmV5xjHc/f3EMDSWETvdDk0Rurr87NMXQFlkaXH98BClye3D/XDQR3E6jFZ0V8FI/OTjZRRHnCBSRAKCkGaaDM0SFJMXOcPQ3U5/uVyOJzOe4R4fp1EW1hqtwPVZmrX1VVOSO83Gk6N9EChcywUK2FSdOL66nSwmk3lXaeEkNp/PGrU6RpBxFIdVkUTB+tpQM6ylrh09PUJg1NI0x3ZBEOY4BgAy01rlRfLy5RPHdW9vHgWBBUHo5uY9RpC7B9tx6g6HrTSHTi7PWIFPovy//te/9fvdTrv1/vgMBKAkdRt1yfMj1wvLqkRQmOOYhiLlGcFxjO+FMAiP+r3N7c28Kl3XOzk+uxtrQRAmWSwrNY6igLJ49+4DjCAkRf7ww5sgSFw/JGg6yaDJeFnkOUWRJEFcXl7QBIYg2HyxSrIUJ8mvvt5bTG8tx2k2ewRSHp+e0wT9P/8vv2c4hkARWZF3tgdJUmRxqi9XrW7T9x0/dP/HlXh3NwFux5+/Lv/pN7+OIueXn39pdbtxGO8fHJ2fn69jxGi0vrW1C0F4XhRe4BuGNZ7M5ks1TSuapCAIkqRalqlhmJq6Jjfqv//nXydJMplpru96jj0eT1AUK8syrxKeoyEQ9rwoz8F2py2IbBjGPF9znADGCJqhoyj1g7jd6jA0nZUpThKu5RAIBQLVYNi/uLwsqxIIc8PyA99TGrK6MhaqyglsUeRREHU7bY4m75aLH382rm8eUYxoNVtPDp/r+ur5swMSAx8IdKmaD/dTCKJ6rV6j0TZMo9Nb77Q7s+l8Y2OzKjNdfbR1FUFwRqST1CdwmEBpGIGRAg39tDfooSgcer5IEwUILMIAQguSAQog8IN4pdk4RXC0v7s9wpAqzaJ2pwVDwMnJW7muxGn54cOHr15/s7m+0e20DcMEqnQ07BQ5UJY4CJWuG2AI2en2KgC5ubvh2No3X/7ade2r68vR2gZJQGXZSROYEWgcJWzLzdLk7v5e17RnT5+VZao0pZogFlW2sTna2dk8Pj7WDTuKCgzDCBIf9tdN07y+Xjx/VjdN53E8m840FENtz6cwNEiSQb+ztd7Xl8u10YbtJL2u0myy7R7XHryO/BAEs7og1WuCZrjKk/35bObYjlDj2u2+qussxwRRsJibJElneSXKJCuizTb17T/O+8NNCsc/fjgOgpgsqCJFfDd9+uQFRSs3d7Om0tO0BQghQFH+p//0r/W6dPz+l/n0HgKz25s7WVZ4kXNsVZZEzTUhGN7fP0RQtCjCOEhwkicwLAxjCIb8wCNJQqgxENYGi0qJ5LioOJbRVguSpHw3kEWOIDCSxGWJxwm02ZDLMsuSLE/yOC+yHBjfacgnn34SBv5quZRliWCIdu/g5+/fUiR+dLi/XI1zMC3yzPKDUf9oNp9GviXwhKY6gW+enp4c7A0VpacaXlXASVZ6viOyXFlWcFUUWS5IshO4SqsOYBWF4TRFEwQ1ntxsb49cO8pSiKXpu7vLx6nmmH5/s+2FkWuHFEM2Rbom8QUE4gTIECDNt65urjmO4gU2juwwCBarZZFXvEBjG6N+r/eEF2w34PkaL3CWrbfz6HB/3zKNOAwYiozjIM0Cw3Xbra5umRiGFkUWhTEEVFVZwmQpyLWiLO/vJ2KjZjpOFscQDCVR3O7MksfBAAA110lEQVR2YRjpt/unpycIUQoCq2keyZFcIt2c30wWquf7NE0M+mtFWYZBWAGlqi5Yirq7n4wXyxrHshRlWO54PKdp8vzqWqrV+ZokAFCn0zZNneXYJM9XqxVHYzCC+0EUiGFZFAxJAVU+GvQkmRcZ5rOnz+arhUpCpmWgNFlmWR4nQRSCZdkbjla6pdTastT3Pd2yjYfHKUPxne4ABC6ubx5Ega03OiWAbGxuKg3F1K1eb8Cx9BbPZFlEkyjNMHePj5f3twIrKA2ZZ9hvv/8xyYv1rfWszOazaZHHslTnuF6RVZezB5oRdNPZ3th48fQoycu7uwc/iCgSd12vJon9Qf/tm7d5UQIVAABIEudSjTRt4y9/nWMYJNeEuswl62tpWiVZINc5EkOSOCkKIEoi2w/yHICqiiBoudbgef77H35EoeLwYCcMk7s7lSTAXkfRNaOCka8/fdnoNP/t3/+NZ1kSx5bT2VqvO18syzJBIcLQlp4XWqblhfHaYNBuN/6/P/6JYjCcRA3ddb1kc2NXrvE4Si3mc9O2byZzw09ZhlBNbbA2hGA4ipN2p7G5NXJdczFfVhVMUuzeltxuN0WB+3hyYlkWhCAwjFAE2ZBlxzVVVS8LAEXgIIwQBAMRlKAp3wlN04dhWJIEUaCbjXoQR1WZv/r0OYwhIAC26vWr69u9vZ3BWpulieMPx7pmBW7U6TQljjo/PTUcB8XJ//y//uckDGAQ0NVV6EVghUR+omp6nlcNublaTFAMCxxXEHiBE4MoOD3/8Pqzlx1Fvry6wlCMwPEKBI6e7OdxiMHAzuaG47r399dra6N+r50l0Wr+mGcgQbEURcsNvipBjqptb667vl8CAEOzEFjOJ4v5SqtJQq/XA0HANAxD0zvDVmfQGt/PaJL56ae3rusrDaWBQALPq6phux7LcGCF6oa5XKobm6MSyIoircvNLz5vOY47W07CMH39+gucgEEIRFCERJiU48ezMYZTq9WqUedBEOB5xjBNmuFgECEYJApjVXNWmuH7dl7kjue5jvPFF58SBCKJQqfVOf54vb658emnLy8vjr98/Wngud1edz5fKnIzL1OcQG/v7trd9qDfVZez0F0BFZjnMEVSjr76+9/uUQwZDXvz2YTmUBgp5IbE8FyRhQJHl2lq6Ha7uea4ZlGGDE2Pp6oocqIgeq5rGDoKpHmajB9u65LM8dzDeA47iSjNTHOF4dhwff2zV4c0BZ+cPDCMiGBYnPgS363XRNu0Ld1GACCO7NOLJY5CGIY0OEkSG1CXTJKcYMiVuirLwjRMdTWvKwICVY/j2wqElktj2G/TJCVQDM+TBNoEqirPM8d2m81Go64EgR/FwPXl7fsPl41WS6rxLMtgKIaRCKLOxiRFtJQ6jAAIVMBA5YfO1sbg5PTj8fGbL7/8bHdn5/7uNs0iQRRnl6eP49nTJweMwGRlEURxr98nGEvk6R9++s7zvZrYPj07rcpC4Pi0AkAUW8zmUR6zddp1HY7h8rT86cefqgr48vU3UZDiDPni8xee7s7UKQyjuxvbgkR15cZioUtK5+H+JkShl59sHtEv3r59k+Y5TlI4gUMAINUbiR9Po5llmySDEVhZFO54PO90m0p9NH68q4lCWeVB6FEUrhrW43zVqLdvri5HrY7E8mS9adu25ThRnB6fnct8jSaZ6WwJAZWhagSOr60Nl0vj7Oz4X//1dwAMfji5gjE6CtKr+4vd7cMPURwXcaMpDft9yzQZiux1WleRv9I0Zn3jdjxt1OtQVQZhmuQhx7KO5+EYbdteva4M+gPXcRiKTMLo7OQ0yzMcAVhGqIm1NIqnD48AXLECV+aladvPX8h+lL85Pq+JTJqAmJ1CFRX6lSCStrG0dGPv6AAnoKIoMwQo06Ah8aHvzRYzAIba3WanVU/zeLS+BsEQQ8DDpzue49IkmZVFjZd9zzJ1PQxinhdoAr8eT3RN63RbGEk4rl3jOUsnbmfTIq1kqba+PmIZ4uZ2nFdgmETPn+7bri3yZBTGrueSBB7HMUNSO1vbWZ7t7W/wHMdz4snxuWGFOIpYfhRnkGOZkR+2u61Rs5PnmWUGvuuiOApAMEOyhwebWexpujVfqEAejUYDFAYcx3Fdj2VpnsV6/bbAiysj2Fg7yGOg3V6TJP6X98cMzd5O52AFgAh0f38XRaFt2EpdAUrIS7KH2QrHad2wWu0WRaH7B32axE1N86EiDJPACw/3Dv7yt++++uqLu/vrg92tRo1//+anVrsVEDgIoxfnN4Io/tM/fZOGIQSW4/G02azP1RXPYBzV8ZwARJHFo45jtGZrt3djnuNEkYNQuARKEgstw+I4lqbJKEom04ko1aIoevf+ndKu1+WaUCPqCjsYNIs8+uWXj6pqZmnF8/JCdaZzFYLA9eEaiIAcx1lp9NOPP2AokRWVXJPFGteQ6q7jGZppOjZFEyzPr1bWqL8OQmB/rUtz1Nn1dV5kXuCJjVoJFghW5jmQ5dn9/c3+wZO8KHAcni8e2s3mP/3zb9WlFiZxvcFrxgO/IaMV3us2aZ7/4aefG40mAJYIhlO82u93dHUeRhHHCqEbh2HIscXh/kAzvVZbHo2GSqNhmrplGo1Gw7Hdfr8HQrDr+ZujEYahrWbj5vZ6Mp8WaUVSWLMlmVZ0dXPx6rNnNzeX+/sHUFUyDE2zm0kczibTJIsxnKRIot97lsbpyccTACx9n8QxAkJAUZDv7hdsU2x32DRNgyAAAeBgf0dWWvsH+zdXH/0gmUwWNZH7xw9vhJrcavKO7Rdp9dlnr8I0VLUVWFZXp4tur9sd9kabGyWQ5yUDw4U6m4IlSFCk5mqbO8MfvvvFdRyl0Rht9POiyAtgMNyZTMaj4Yau2yxLsSz95t2Pll18++1HimRAELg4vyEIDifEw6PtMPIbirzSFg+zm36//vfvv3ec6PNXwyh0Lce4frzSPa0zaPiWyTAYQVMn17cgAqEAhkM4WE5++7vf8jXm5vqmJjcsyw1DT66LZ2cfbVMnCHo8XdIki8CA61ocIx4c7Id+4Pv2YDDMUh7DEdt2OIFL0oBlmc8//0KsSxQF6SsDQSBdXyBQCUk8ByFIUeVFkXmW0aoL7Yb087dvEz/HUUw3Db7GG5buulFVQZzA+1E4m80oBmd5crV8DOI8DDyKRGAwHw7bQeA6rn9weLRaarPFPLCsOI9tw0vT2HMDQzcxAvQ8683P/+A4Oa2qqkzkulhBgKqtTNvsdOsghEMoASHQcLiOVMB4OvGCCGdxpdtwAy9Stc3RRpYVWVMJw5DneRJnlrNbSRJBoHi8u8NhAEFKACw3djaLPAvCeLzScYLEMHxnay8NwiiKTNe4f3zIs6wCSttyvvrim9v7h+ubx9Fw2OqNxo+P706uDg+f7O0/O/140e50QICYTg1RkilGfHy8OTgYxWmOInCWxDACOZ5Xr8tNRTZMHUGgZ0+fUBRdltU/fvhptDYEqjItSgSBXE0ty0LTl4Hv7+3sXF/fQiCk6VZelhsDJM8yHKIInCUYzPF93w9EqZbkVVFkiiwP+l3HcnEMOdzbTQuIF+QVw03HD+/enkoNWVHkNAsNYxVHBQKjpqGyDJpkoOtbSqNhW4Ysy2mcnBy/wxCoITcgBJMkPs9wnufDOOUlPgtjVdN7/WEUhRzDiByNo4ggCmKtadp+Bcfh5f3d/R1JkS8/+/z92zcXZx/6/Z7A0UVZUCVB0YSqatPZ+PXnX/zhD39cLdTxwwPH0hQptBo9hqFKABEl8ePHY9Owsjy/u5mUOYiReGfQnk6nuwe7T4+ePz7eTx81ud7MC7AqSyJPXNe17VisCQSO1OqtvCTm6oIV5F5/ELpWv9e5vDxHYMy2velq1Wk2mg3l9OxMkGSQoMYL9fDJk5fPnz88jtWV/fz5y8lkvLszGo46f/hvf8RgWBAF07QAEIRgaGNzfXN7w/HMf/z8ZrlcoShuWVc8z6MY9vTZHggVD/fnoZuapv04Ga+trYk8i2DgarUIwxwP4heffBYGEUnS/wNZ1hsSAMGWYWMQKnBMt9M2dL3d2bAsazKdghVQ68nTiUrgTJKUTw6fNRR5Mr4bjbbz/IFmuWZTEQUGBmHP8WCg9ONgPpvZphpEiRvkQAVGliXW+OGwHwX+QtWVTtswtG63a5khAIMbW6N2V4Fg6MPJR45hG0orTLOyyrud7n/7tz81m816s3n88XgwGOIoWOTI9PFRFIR+r7/StNlk9ni3RGEKRzHDtv73/+P/fP78hSjwlqn1W1v7O1uWoUY29Hi37PWHh0f7jmvJNRYGwb/8+cfdvSc4ilVFEfmBKIo3t/eCUPN9ZzAYLleaVJdsy/jb37/rdruO4wduItfFEoQlSamJwvXlA01ypyeXnucqisKxvFQTLMMUazWaoWq12vhxLIrc568/OTm+WMxNUWYdT213lE+/eMYS9Ls375it9SDw+oMBThIHRxRYAWC+MRpsCjxLEEi92fZ9P80TmmV/+uHDRl4VZb6zuedYqutf+UEUhtHV1fXa+sCydcvVbdurC43kcY6TeFroz48O7u4X9/eTIIxpGqlJnOdqcRBQJLa73dV11XW19fXhyfFVrYYlSVpVZbc/zDLwm69eV4D/j+9v+70mVEI8yf343VsUpj578WmRZVman7w/vXnAOz0l8UMYq1I31sZ6kRUQAJQQwHJ8keY///DjfLn81W++OT195zhpkZeu91CTeBhGHccHKkjTjTiLcAyNosr/6ef728fPX7+cL6cYRkJhnqRhmpGddhuqQNdLaAbrdhWOpZIoLHIeqcmsbWlhkhi2sVzO9/eepFkym02VllJC5eXV7XDQj8IQR+GWUm+2Gme3NzTNX1w+UCxuuw5FMBVIgyAWJwkIA7o2J1BQ7DXD0BEErswzcb13cnEWBwkCoSiC1hv1JAldx7u8euAFpz9cR0EsCAICgESSQrt9IMs9137+7FkQuNpqCUKo5VjnVzcMR0dZtBgv9rb2wQpM46Sl1JMkwglcEvl6nVnMl4lb3tzeh0EoK9L940IUagyD347vS6D8p9/81vP80/OzUb9XQRVGYgzLRFFUAUW7pei66rrO7s6WyHEsw2AoVJPqIFjVhKamUjiOfvX1a9txtra378YP6lLf3xSqLMZJEkexIAyDwE/TRJIlzVga6qKrdOe6WYHQp599KgrCx9NTCEJ9L0ji4vzsOkljHMeLApzPF0FUIBiF4rjSUnzfe/rs6Ozs+vjiwvPdek0+7A39IABBCENxnuXypIwiryxSimZBsOClWgWWpmnppuGHoTpfzRf6fKlRJKk0xJpYMwxTadZxFMcxQpLkPC/u3rwLQ0fkua3t7Wa3niRRnmVFFt9cLhqSvLe3zYu1u7v7miwammrZFkHgNEutj9Z4UXAsT5YaFVgZuhr4gcyzpuXdT5cVALAMEccpx7EwDDue01BaZ6cP27sjjKAoivSjaGnZrz5/zZBoqyOLNX4x18sKpARClIQCKII4raDs/fH3y5nxZO8AJ/DtrfU8S8PAPz2/Go9nnusPBl0Cg4u8YGnu1YtngaPFWVmCKMNKOe5LMlKClWnoj+NJU1EwnDjcOfCD4PL2Jvy7vz5c++1vvl5p2vbmpshxv/z4JklSRhQQFFqspp1OB3S80XqfpvF+v6tpapDnoeOBFTBXjSKLFKWhaXqchi+fv3xy9FS3zOVqwZBkjRMpnKUoPAzCxXzW7/cUeQ8ESxzDaJq8vrurgGow6DWbiu+7CAK0u3KSxDCI0QzZbNYVUBI5YbFcGLoKwcVyueJ4+ZOXz7a2Nu7ub3R1pYiyJLJXd3eaoXlB0Ot2ajU5K6qnR0/qspgmqaatSJra3t4gGda2TQzDcJzGcGw2e/BsB0XQXrvDMszD4xhE0M3NEYVjVQWCEDKeTO9ubkRR4igyTzOa4t++PVktDZbnWq0OTQu+G6NwlRfl7d1ds6nYlvnjP35IkvjXv/4VWBaGZlAEg2M4SRECP4j8KM3y509fMlzNdT2Rp5vN1s3dA45SvhuO78ftrvfNb77WjQUt4DVFuri+k2s1QZZWukYn9HKpvX71Gc/ycRwiCBZEeRRlGBqPx9PTi6sXR8/39/azMk2L7G/f/219fbCxOdjd2cYJsAJjN46H6wMozdYHHYrEBKGT55m6Urc2Ny4uzsIgHa2vQ2AJgpllrCzLhiCEZrmnnzxzPZcmqc2twdmJJdakKC3+7c/f3tzc72i2WGP73c0keiRIGkeg+7sZimAMk3W6zaOnTx4ex77vqKouinKr3VmtFrEfaLphWP7Rs6NuZ302Wx4ebgg1zvb0Tqc56nKPD9bu7sbV1bXv5Sgai3y92ZQtR0cReL5abG6uD9c7796/SZNEpLnQSxiSI1kmiEOaYMCiKovKMOL+cNO0HNdNDN3mBC5O4sUyzpICACAEg1iUyrMiz6o8BW+u7wiCms5WKAbu7x8QJIwTGILimmbSNPPwMEVxMk4y2/HSOPIdH0lSF0LQ1XRu2GYQpG/fHiutJgRjX379+vr29s2bn4I4BkCoKiptoYr1GkqhAFjs7e+cnZ96OJLJ0MnpewJG5iuDoDHX9dMoHw7WkKoKXKMuKe/evptri83h2mh9OynSPE+SBI/CzA2qs7vbvKpqHJvkeRw6ZZXXa5KtzyoUWc1u06S0NasE8qRMW00pjoskzJuyvN5XZLmWpKmmawSKghUwflwIHElg8O7OerPTeny8lupyfyCGQTybPRRlHgfe5PpMdwIQAkma9JPIcdw8y4Io9Dz3i1efz+fLuiTHvovXOAwGYKCcPtwZjiXXJLkmYBjiWO7Hi3OBx9Z6bRTDdMvJyxJMYgbHGQIb7u3WpNp0NQdh+HG+UA2/QtAsT7969UrTzAICR5tDCATPzi8ZikmSBMfRLM8EUSgBGEZhnmN4TiBw8t//+pfDg6f/2/7+1dU5CiNija+qNMaQqkgRqNzd28yLzDRVGkhbNTqlSbBKUAIpwcJ17V6va7oxTMQ5XIE4YQex60dDgh6trxdZ7nm27Tg0S4NApShtEIbfvnkbh5GhWTTLIgQMI+j6SPn5zRscp2zXP7u8WRsMIRRqt5ocQxnGvCZKLMs+3E9Wy8V8qdm2x3Jsu9XSVXU51/I8Zzn26ZMn7z+8WRttQACwNuiQJEGRZKfTIjCsKBPb0uGilHiBIbjJdJJmSRhnK80EICyIYwplWs1hmpehbVMsTZCo66Q0RdakWhQlSVwYpg9DUbfdmE+uCHjAieyzg4HEwQAAfjj++ORwv9nu/v3bv0tyYzqd/KS/3RytgyXQanVFSYiiIInt4bAP5NX62ojnZc+xT04vQQi4vLr+j//xd0ABLMePJAwr9cZssSqLAoFQCAA9L+l12K2t5v3kGidR29azNFUNC4ZQR4gHw67AM5IoeIE9mdz3290iSwsQbDaGs9kKwyEUQzmepWl8sZhdX17HQfLkyS7HMa5jTRZqXQ5t28IZdjy78Fy328VEgdfV2ePdQ5pXun7V7fVJmpUAgGZIEEAHvWFRZQyFOIbK8WK/27FsYzqd1cAKgSpNX/KcLNdEBgdvbu48P4jSFISgMIxJGs6y/Ob6lkbJBi9PneBg9wBH8KqsQAghSUZRWvPFoppNW7/+6nB/e/y42tkYOq5lrpa+66dZnmTQZKqNx/P1tW4BoHmRB56XpGmv064rCo5jD48Tz/MEkf/w4azVVD795KXrBbd3N6LAepFnu0vf04sC+PWXX52wFyBYeI49GrSSLH8cz09OLz559uzs48lnr14meUazNMuyhumkOWh56XSht9r1bmfgOUFelGKNb9RqMFg6tvPsYLvEc8+wJLGGYTiKwnmet5RWXZIXDE/SQAVVVVk93E/fffiIEkSr2ZQVVhB4GAQ4jnj75rskSo+O9soSRgmcoXgEQR0rKBvV7sb2Sp8QNM3XGc/JwiRLTbPfH4JVGSdlrztiWOrt23eyLPm2k2Tgp6++2tlb39nZuDg5vb0d15X6FtU0reV8MVYNI83BerfXwygSInCSQHCUwXEIqeiIRlHAnEwBP9F1a55oFQBzPPfk2V6ahkWcmbqNoOjO2o7tmjW+hqwjGHxXQUCcIPO5SlP0V19/eXl1AQKlutRBAE3imKKYKM4cN/rmV5+bprY8XwwHXYFkxg/TGsf1un1RlgxrZTraF69eTe4fEVW34zS3XF8QxU6nzVE8AgBpnk7Hd4okyrJcb4rt+uCvf/lHozMoyxLMCkMzahsSR3DLqXN4KG+u557jtfLs4XHWH3RoRvSCgC6LNMrHjxOKojvtvqx0prMJQeOtVtd1o0Ydarabxl+0AshJBtUWdgGma4OuZbm+7+UE/fg4GQ5G9Wbz+v6KoDDVUPfWd3iG141VFAaubQq1WgXDqe8rDbkoIdu2EAwWRNp1DIGjp9Ppy2et+8f7X96/T/JkYzR6WNir5Wq0uWZapmUYMIblWfYwmQg8ZRsmipJZljYbSuhHlukAAMSxDEETq9VKqcvLhb538KRtu7/8fCKIHAYBbpbs7mwXRcoylKsbDIVmcbhcaPfjSZKk33z5jeHaVQpMlxNDMw53R2EUuq7faNVREJnO/TIpLcupifxar5nEGYJDgsCcnY7LLDfURZG5nQa7sbGlalYQ5N1uz/MCkmCyNCuqMs8q3bB9N9R0G6UIGEcQHLEdd5UYNVnY3d+cTKfzxYqiiMP9g9efvaBp/OTDyWitB5RglZWjQQ8nsPl00us04iBsd3srVe3ITYZhxpMxAkNyTSAJpsZxMAI1W60oiquqkmqNOE2m8/nxx8ssBxhGUFererPBcuzl5TUEI0WSEBiqrmZgVQBF3mrJVzdX+3sH49mjH1imYY7HE5YRK7BSmkqr2cYI1Pbd//D7/3B9fXX3eF+kwObW8GDv4MPJmetFlpNxHJVkYLvZ7XfWvDCCcbzdW7+/vVypKlBlkiz/9MsvN3e3GI512v1Op42jwP3N6a+//iRNCo7hwzjst5VOg5/M5me2ZpiO6zowUBZpIspSpyWUDX4bGiVRXMGVri71ha7qLgQjDVnGuriqmZ7riSLX6jS6bVFUKAhTwCz7eHHjhUkUlzCURll5/PGy0agfHu6JAu86wMn1B1oQEADzPPfocH9lWiyFsjh0O5tVVRaEVRj6lG/N5xMIQlpNBUUggBVqLI9BeFNRDg7XXduaPDx++uJFCeZ382scAmlSPNaWjuPvbm5VZRanQAVAcVpa40dJlm6u78/Or0AY3t/fzdJSDVVDXc1nc0lS/MBUNb33clC0K9N2YAiznIhAULAssjRZWxsoilIBpWPbqqaGYeT70frmpuP5vMBuErhju6qqbW0JAAjgFLQ+7HuOZ7nuw2S2ubmjrky5xrMCjyIwTmA0w7SbXcvxAQClORmCsbubO9M2UQJsdmTUR7774cfdtS1HN2Mvaym166uLrEwvricC1/jnf/5nBIFQAuNrku36QFHGQXgxn718+RTHmcFwvd1tV2U57I8GvdbP797INYnA8TTLZKUTRoE2XRZ52e11RUm2XZtj2CiM3r1/J/I8jqMrVfWDsNvvCZLsuB6KwPf3tyxFSTWuKsqzs+ssB7rtrNPqvPzkeRyGjm39+a/fXl9fHz09CIMcAEIcpkC2AEE49OPVUhV4rqiKJI6fPj2MQv/y8r7VbguN9t7+qN3idX3CsKzAC8NBb7GcLqf24eFeS9m6vZ+SDKc0JHOpUgwrNySgTC4vzp7uH6iafnY/tgzTsFwIQmAI3t1VfMtkGJJXlKqsFouV76k4jASuk8W+LLFxXEh8Y9jr69YqDK3nTw8njzMS49SVyrF4UVZFCXXa9SQMLs/vaJo2NNcL09393eV4GkZhpQP9jRYvkBeXp8PeGvL++Ixl2UG/m1UJhuN+EM/GiwKqNjc3kqwkcGI8mRhLg6JRhMR03TN1I0nj45MbBIJfvfqsqsCG3GZoB0QAmuE4jonjxPLiOMmbjbZjOPPZRG4qJVDCOCrV5UarDaNWu918mNwEUXj/+PDs6BAEQdOyUQDWVgaGo6Zj0RT37u0bhEBZgeJ58uzKEyVutViCIARAeJyUgT1nBS5wKsMwCRK3HddxLU1f1Gs1FAJxGPnx55/vHibb69vnt1dhlKAkvre/e3ZxTlLY+nDjv//pDyzB8BwXpS4jEAxdc/xIWy5YmkQQZLZYCjydlxUvCHmZ9wZdhsEEjlK1EiOJEsogEOAZBkQA17MxHFusFu1WUxSYTqtJUixD0UkSMQ1J1TSaoubLKU7QYAXgMCoI4nS1kgS5tdMsq5gkYN8NLdf57vt/8Cw3HHRwHIcg2LZt0zCACnRdV6xJ+4eHOAI/jsdlVXpBXFQVVRdRLHBs++rukuO4ly+OOu21n378OQhcuVZbLo3+YPQ//f5fcLSYT6cMQRZpQZHwq5eHKATMlovPXj63bfvtu1MviFAUJUjC86PJdBlGgWW562sDpS7O57MyY+Qa77veZLYQJWnQ64Vu5AUJAEJ6Q97aXl+t1GarNZ5MGI4rKuCHH9+xLMMLTqvTgSDk5uaGZYgbXQcBjOebVVUCEBgllWpYMIb/7ve/v398IAlEYMjlQr2+ujFWSwRFeY47fLJvagZDYFmSAFXFy4wTeJubClS52gIssixJ892DZ9/+47gCQ8cpqgpstsoiL/74h38Xa/yTwyd//eu3y8lDWQC246MYDkKgbQUun4Fl9vj+I4LhZZU3G1KZJa1Wq4ozisC/+PKLdx/Pg8g/OFhPst6Ht1cNhWn369OJ9uZPJySCymzie5HrRa7jK3U5iVMYxucLNS/yXq/d67btxJ1O5xzFF3lKExTPcmWenJ59NG1XlGSKpO/uHla6pdQV3ws9J3r16vl8NjYttdNub673bu8vEJRerNQkTxqt5s3d/MXB0XyhljlwuL9nGKppmRTNVBWIISiK4vf3E6nRWs8BhqEroBqO+mVVaMsVzfJxllI0edQ+qNVEmmGq8dgPA4IkNcOU6/V6o/Hw8BDHMQRDHMfxNaEES5Imt/d2MBS8uj6HYeTs8lppNU7OT8RavaGIJE198vLpYqmOH5evX79qNpvL+aIoEk4QkzSZz2dbu5skQZMM02g0/vHt32W5DqHQ3cNdr88f7ew7mvnT23cIhCEgtLM9qjeVMC6zglQazX6/54dOGqcbW1tB4BuqMxwOfW8ZeNHvf/fbx+k0iX0Ehli2Zlnu0cF+EkVlnlMENZ0voyhJkuyrrz73A+uXNz/WlT6KZPPZvChyGAqtRz1OYgiBL68vKYrKkthL8uVqpQJQVgyoID08ePYwntw/zmo1OfAsECjFGvHF66eGaXv2qsOTiqJ8vHlYqTqKIIO1YVFFEFwhEMRQjKWbSkOuiSKEoizPV1m8nM4BGF/f2MmL4uHxkaGZvd2dVr1eE0We5UsAxHFM5NgsT4PQmk0Xy6VH4q4fJKOtfVNXo9MLAMQ8x30Yz0kSaivKzfV4c3Oj0YCiKNT0xWi4BkNAXapfnN9KQ4UT60HkJnEq8KzD0CAAMRt9scZNlwtTd+Mo0nW93+9xHA2AWQ7ki9W4AvJGQ14uF9PH0jKdvADADoJ8+smnvmuZhhalsec/7O8cHn1yRHMMw7Cz2bLZ38in1fh+TJM8VqWL6fjJ4dMg8gkSv7y8UFpNgRfyLDs7PYNRcHt758PxL4cH+zeXD5YdwqCWBhHHsjzHsBT65Oiz4/Or5du3HM/s7qy7lz4via5tvj89QxHUc9zFWNU088Une2GS+IHZbCrXd9fAonIdGyXIdx+PoyDYXFsXJMly/fl8vMPvtju9j6fHmqrjKKmZhrqarQ/7JIkRBKka9v7uDoFgtuNmeaquZikrGpbnz11NtyugAuEy8j0IA47PjjcGm7wsHX3yZDVRP7w/Pr+6lSXZtoy9g13bsCHo7vDJPssxcRZf3F/RFN1tNyGwQhAExbCqgss0s2yDY6hWQ263+wInFHmUlQWO4ziOswRBkUSGFziOExT9u2++lGp8Ehd/++5bBAGVercm4jAEMwzNcZQsixfnV5ahQSBUVTDLMHmalGWVAVUcB3meNWSeFfjLj2e2qjqhDxRFYEeT+0cEABezsWmYDMv/9uvXrVbru7//GUXgp0fPui+HHz++8wIHBYsiy8qy+vc//91y3POL6wqAO522btoYii8Wq+FogCDId//4edBpJ3Fi2z6GIAzHfDj9KMlyp9XZ2FizbFcQJNMwJ7PpsNdTGo3hWtdyzDRNZaXOUIy2UiEA2t3aOXn/rqmIAFDGUcUwtKbN1kajRrN5e3fT6XQoDLq5uanX+K3ROlwhl1f3T58cja9uXd/SNJUkkDjJm0prPl+gGN7t92f3N+ObG6ACcZw8Of7ICPw3v/nm/YcPnuPfPUzzsqorkuMkf/3bHweDjfXRxof3p8uF1mo3RJGL43SwPtzc2b69+Fir15vtrq7qRV76rh959zWR7nb7HI1LDHV8/IBgQHegfP76xc8//VymiW4HOEyKPAsi2GKhwihJkVRWFCQKkyQBRpWmajRD5kW6GBtRWBWxVxXQMjIZhmy1GiCEMAzHsyyJIpujNU2zRIHfGPWOnj5ZrdQsTyugomkqSbLLy2mr3YQR9OPZXfrh+vf/+h/y0Etd/4tPnsVFUAFVTWpESbpYLhv1usDLgiiTFD4a9B4fHpbaCoaB2XSqqSpNs2map1l29/CYZtnWxujrr1+dXpyjJPLFV69oigp8v9Wq+74ny3UABKIoqNclyzTS0LV8P4vy7lo/3y6SIinyBISRKAKb/fbZxXkQ+BxDzef3OEmsbQ7Pz89ny0WWFpPpjCDIzz99yRcJAmY8R1qWqig1GIaVRsMwVkqjjWHUdDypK604zmqywkS5yIkkTUZRIApC4AetZtu2zSzPa/WaH4e2G1IM/vTpk+MPHwWBWmlzEEJYRigLQF2ukmwl1xvdrpDnhWXrEIx88vKb+WJmGEZvMIjjuFGXO73e+cVFFEXXV9cIgjSk2mq1SqoCJYi3J6eDbgeGyprA5kXm+TbP0avlcjabMiwfJ9HCNKswzuJsNZuFUaa02m9+eYuiCM9zmxujXrcLQWgVV7IkAFDVqEtx7J+efuz3R2lkF1kMFAUEliSBLlezD+/e0izfardpgasqrywLDIHqkoQjlFgTF6omicDB/vbOzrprO5Px4urqTuB6o9E2jo2jMIYRpFPvxFmB4ARH48NeBwawCgJWq9XaYAsAwdl0bqkqhuFpmd/dmDlc9YatrtK+vblvKrWaxB6fvONrfJ6AcIXMZwuKIM8/Xm6sbWZl/te//g2p8VwaB+tro4fJJI7SPA0f769gGGh3ult7L354+7Gs8LXRYHNj68fv3vWbTSB3fvurV6Zld9v1w93dvASjwKVIVtVm1SCzLGu5mKeJh0FglkS8wGMYXlWVH3hFEbYUocx5jqPuLy4JnJQbtThO7h7GNY6hcJqkGIbJHC+4vR//7je/qkAIBGHbsrKygjLk7PxB5BgMJUzTWOnWeD7rDzplgcAoKtW47c0NN4z+9CcPglDPjVwnoDCMxmEEhZ8c7EVxqK4W17cPIATBENJqNzMgAqrc9g1REvv9QZxlxsO151qe7nMc0261SILa2dmgKBwCqrxITMuwJmMYQ2kMIwk8jMLr66ud/e2iKGiGAasyD6MkSfvdvizXCRyHkeFS1yiSDp2wKou48AejNU3VJuO7jfUNx7Z0zRZ5bu9gV2Ckx8l0Y2PdMIwoDsaT+ePjWGlIAi8EfpTEsbpaQDCaxJHne2EcrfS8U/VcP3yYLpVWu1PrZElSVuXZ+U2QVEK9UxaFbTuT8dh0A4YhfvvPQpnncVpcXj90221ttdJNJ4hTEEEAmIjC+GE8pxkaRWIIBVfqKs8K03DnCxNDwGZLzpJUlus4SkEAmMcRzvKthliC1WjULsu4XhdBIJek2psPJ6qm1QRxYzRSNYmiGQAASAq3TDtJim6nD4BAvX6QlYVmWCwv3dyOTc1FYCzPytvrexynvvrqS1FklVbj3fvT//e//217a9hptX/+5e1g0BsMO4a+MjUDAgBBEBGCtAPyu29//vVvfotiuO+vlIYyGqzBeLW21k7i8Ltv/06S2HA0nC9Ux/VohpmvtBKCvvn69dsf7FanJYo8VEGL2bTX74kcuVJXv7z50G136iz3+3/5Ks5jS7fxGvblZ5/cPzwuVI+juTiKP32+7bn+zx/O86Lg+JpuqJ1OuybVHu7c+7txoyEBRdVWmvWGNJtNozihOXa6UA1VlSVJX6piTR4MhgRBUgxtOfo/fvju9mpab8jDURcl8T/89acgqJgwzXNA4FpPX+zzLP7+4hRFsPuHS8PVWV4QBAUG0HazhSEQgQIcS7iOdTeey43mgMSW8xlUVRsbI92wp5MFSbAoVN1c3TuGWVdqIAZnQLE+7NdrtdkkYRmaQCEErHiBzxnq5uZ6sVqCQAkDKI6TYRziFDa/nY+GAwBChsMhAJQYWb3Y2sMg+E9//FOcFi8+Tbe2t9Mk99wwjgocxz3Xu7+/QWGIoijb9dKbmKZZhsJxAm0r0vb62lsIuri63d7Z3dnaxFFoMZ9XAASUuchz6mIxTTKOZ9Y3hpZhd9qtJE6mk8ne3vazw20ILiaLSZ6XYFUxBEl0O5P5zDJ1y9AhCANhkGLITm9AsWtNrx4GgSAw8/k8z0uCoBAY//rrX19d3dquJUp1kiV1x6k32iSKfTg553h2e3sLhcHJdOq7QVUhIIjLEm+olhsVc8sPkmRjfU1qSHWZxTBM4MQSgB4fH2S53lAkksJX6jJPwyRObTtgGKMokywtRusD1zNnsxUEA6zAa7oZZ+lquVK1le8HkixRJK7rGgCV3bbCMvjD/YUfhPpKZxn+6GhfFGsQBMZpAkOg47hh7CIoUG+IkRd8//0PSqOxf7BfXuUL1Rz0Bzla/feTf4/Tst9rdzpKEAe6roVeUCR5BZS+F1GkWGSgZbu+ExRJJTcbw/UNx3Evbh7294/A/+f//r/u76bjx2uKxkmChoFKM631rXWaJiVZ4WVl8jg9O3+zu7VVpRgGVWHk3d49FGW5s7vL8TQvytrKCHw/ySPLsgkSX6lLDEPCIMZQWhJqy+VyZaiCyDZb9bIEYQhBEbAhyXfzxdXkPk8rGKgGbWU2mSEQynGCYa/iJHv16eHjdD6erEgSRWiIwdhGvaXUGzLLwiCSldW3v3wv8cyos56AcFWkgWXfjGdyXTra3YrjzNQNgWMXi+XC0rrdjiTXr6/uwygBscrz7F/96pv/8v/9FyAvLM+nKeRgfacEsKIC0RLIomx9tJHmRRxFhm36vr+ztQkA5eXlRVwVoiwTNDaZPGZRuTUaETQOIqjIir5tUyhq2S6IgEmSkAQJQVCz1QzD2POjIPDzPCNIsi4KFYaFQdCuNzGUcAMHR6EkyhiWT7PINA0Mw5dLzTTN9dEwCoPZZEHTTFqUEIKGYSBKouv7mm59+frr2WRMMlir2T7+cDqfzzc32rxQV1VjY7T59t37LI+HgzU/CFiGeXi4qwksiROLlQYCgG2acZ4DEDaZzeMkD/wAx+FPXjx1bNu0vDCMDg8PSJz8tz//ZX29227VlvNVHGYQinAcdbS/I3CsIIqaYQiccHf3iKIYxxEUzYxn+nS65Fmu1ZIYnjZtlyBoVVWLLB0OujRNA2CVpslsPmcFwY+Sve09a6XPl0sULAkMW+lqoy4JPKlqhqo7y6UehhFJYQRFoChsWRZNEIOWUuQxJwoVSFzejqsSiMJUbsggCJA43GrweZGPx/MwyKoKyPIszguSJOuS5Dru3ePjaK37xatP7m5u4ixPspKh+OVy8fRoLw4DmhX/9OdvN0eD7a21IA6iNIYhhGPoLM0UpXl1fW8bTlwWGJTFUfHL8UWS5ZzABJH39PBJlhZ//ct3oiCsrw93tkee4wZReHN7m2dVoyG3O+3zi2sURSGgev7iKYWCIFgKivzTmzdQhg4HmyBcIjhIU5wgilHsqEuVpviGLANFfHFxuVrpGMswFLVYLPcO9ve2dxazeeC5AFjWauJiuRRFyXLcCqiyNI3jRJYlBMcUpX16cq5rJklQUl2mKOzm9kxqNZwoePX0CChKUzc9J4AAuN6Q64362cXFfLGAYbjZkHhGwAg6iL2yTGEEX800gmTanVYY2ieXp0eHTz68/QBWEC/UaJYROLbX74m8MJvNbcsReG6lqRzDW45TAUgQ+ILI4BgaJn4QeBRJaStDFOqswMiSYK6W/V5vPJ0apnv09KhRr6+WK9M05XodqEAAKO9uL1iGIQlE4FhN06cLdanb+/v7NEW/f3s8X+mCID1/uh/FwXg6RXFUEIXPX30RhaGh6xAIBUEQxvGgPyzLsqrKq9v7KApbivTx/CwH4G++/pVjavPFvChyhsCSMKhKqKm0PM8tynJrc2OxXAVB5DrOw8MkK4vtvS0YAkLfU+QmhuHtbrMo8sViRVLU4+NjEsTrm5uSIs5m976dbG5tBoFrWxaGo27g+m7c6bSjOJo8zAzDiZKUoqmaIAqilGRxGofDQV+UyD/88c80ziVJDCHE0bOjIosuL276g46uGSt9KcliVVRlBm1vbKzUWRLHa2treQnhBFXkwT9++oUVGmkS8wJj2Hac5p1ma9hvCwI3HU8dN2w2myiKTCez2IsRAtneWVPnS5igZbmBnJzddgbry7fHu5Kc50AYuRvDHgjgb95fdhQ1y98VZUUSrG65L56+uLuZWEFm+1GR5cenF3VZ/Px1S5TrS325UqciLyVZ6gTOprLOi9jd3fL69uRguxumrBck+dzmKHJt0NFNQzWssoRgAKorwmI6mc7mvhtHkVWWBcuzgO+eX1/ppkMzdAFmumPmeIojmCAQk5kPgpDtaABQGH4gh35VVHrkCgQd50W707q4emBovK3IOAL6MePmUZyFlqnjKOK5nuc5QRwahpHmVZrEUZoSOJglYUNiYASHS9RFo/lyyQrSeLmqyzUUw4oiN0xNadRt3/vk6cHZ3QVJYFvtTlaWeV5yOEZCAMZTcRwP+p2Lu8ckzVqdrrlcJUGIIYgiMhZcClLddt2GUsdwTHeIyWpOY3SZF2YSSkpdWy0X85Xv+52OIolskoaqoa5UwzI8yglHo3UIgzXDkSAYQ1CCpBp1qdeWzi5O09jf3d0aDtssy1mu9/LFM22pdlp13TZNx2xI8mefvUYIASgzSaTjsrq9fvRjkGXoLMvKshB4CkOBssjv7m+bzebB7iYvUBSD/OZXvwUg4Pb6YjKdMRTT63RmS70qQFU3YQyFvHC5NCMvIwgKI6gsjX65/Li9tdVtNdb6A9sPNcfe3toiCfToYP/s/IRl4Q8f3uI4nmZ5oyHgWBWneY2D7VWwOeoQMOjZZr22dnx6Pp8WgR8brsNzfBoH48cpzQhpkSdx/NmnT68nMwyGZADwvCQIYpZmuy2u32vfPk5nc3U8npI4QRG450UYitZEIYhDkiGBMl+sVnmeqcvV9999y5IERZN5meWx32s2B73uDz/9wovCr7/63LEtjEQftQBBkI7AmLYXhjGOov/yzevvv/+RrklnV3e1BvX6M/qHn98naYFiRFWVvV67P2iRBDuezICqoEgShuGaIBV56dgOgSNNpTGdr6Qan6ZhVxZPr25Pr66zHDA03XXjXre5e7AjK/JoKL97p22u9T3b8Y3Fm3fHPCsdPdkCYej0fMqzPALk52fvUZSo1cWLy1vXTyRZSrKCq1FQkRcVFQRhVRQYgVMM+y//8k+L2UJuKEHo/vDTj0vDTOGyJvE319e+6zeU+u39VOBEjucXq4Uf+gQFZ0kVR1Gv0w3DxLVsEAExrEJRAifofq/lmXi/N8jzbMzW3SAcra/XOObq8vI6DLM8I3B8NBrRFI0gMI4SG6OBH6VZWUBgFQZ+tAghEKuJchYUBI4EoRcEbhSkSTmvS4rrFXc391laKM3Gn/7yd44Xv379/Pr6/v5hCoEgAJYQUKVpjhBEBUFzbSULUqPRHqyPoiQbbvQuL8+ms0kFQs+E5w8P45ZSpwg88CIcQ+M0Mox5U5Fn89VkOul0W0FkBbHfaCp57EJwiRJoV2ygQPbXfz/FKVYUxTiN8jIzzWW/UwdA+P3xmVCvoyjW7XSnk3EQpDfRvNtSEE31fcfQna2t7U6ztVJNCIbSxPdD3/Ej1/Vsywr8EKwAy/ejyMvz3HNdqIKCIKpJUpTmXlx+srtjqFNdXTq+WVd6h0/2BU4WGPqnt+8JHHbCLE6iu7t7DCVvrsaWZiMQ7LqBvlySFOGFYZZXMIDgJMXVidFoc3N7Mwrc+4fZztZ2kqZhkC6WBk1Ta/2+ppmKooRxunewZep+WuRhEN3cr2py3bbD/x/I1B79p9MjHwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 169,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(image_source)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 170,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4nOz925YbuZItiE4zA5wRUtau7tNjnP9/6I/o1/M1vcfo6l1VmSkp6IDZPA8GOJ0MkooIhZTKXEKtUgZJdzgcF7tMu8n/+X/9/x4Pj//7//i3j4cHp6/ej31VGIl1dUQs1UIiyAiCWJZSa1XRQ6latNZCjwChSnd3Euy9g7Bia1uXpR7qoqoAllKLqIiEQIiiChGSIKiEwkRBikheD0BERASvaSRfdf2v9qv9aj9ne8NZPt1C/X5P+UnaxchfQiovbikiUFURFRGBBIPk6qtQw0NVgwGBh7fWTVR0UHOCIuIRQqppAEEGGBEeQZIOAOHBOgZHkgKQAQrhTPIPkggahEKAAtlG+Vrq/6v9ar/arwYAEi/nAf+yrRQ1ExWC2eYP3XuQBhWVEEa4e1er9EBFCumqSoaqEmBERLiTDJIRIQIRsVIEICkQACAhoqJB7+FqxgiSCmEIJCm+gJh/f739fRn4r/ar/Wp3WlKAVx3wHdHgIDz/3HYxP/uJ2hNPks9paX6jqoUR3ntEUOacCayYmmnRUgsjeu/u3rx17+6OIdFjsgEGiWQbKf6T7rGNLyICJwZD0oPOCIbn/0AHO8M9fPTGrWH/4Re5/7b2l8/gX/38X+1fpAkEkPirh/HXtAuucPXQkSwppJsqSY8gU3I3FS2KWqsqCHp47x2TEJuqqYqKmZqoMwACEhGqOiV4aMI+pKqlkpEqQJBkAMJgMgwAUIAIwCgCSaaVqgPxi2S8uuW64wJGmxwYAuCfLBz9ar/aaL+woGtYelLdYia11lIKgEh8RgsJhdZaFGjeRaSU0ntYKckbFiu1lqJKgoCptg4yVIQRgKhYMTEVkAJV0QhXGRh/RAQJhgAgIoIABAwaBGaggsI0EoPgpUbz42buO7T7pptvf7vRISVJ/LP+ctYde7ZK+8aHvqbJGJLw6yDfSZLRl97yq/2z2nZA3nA0RGQqvTf3zbf0/zO0W+PPj/eB9FJrLWamSiGDIIuZQI1WzBiOSJzHVFVFzayWUmqppSgkSbmImmpvqSIEkBfqeLwAgKoKEBjmAo8A0gmIHqGAAtkVg5Q0FJ8Gfwve+sb2kjn63j38RU13DOCvGXweztfe9PpbfrVf7Ve73oooBOjuMBEREy1WDaaiSymke4u2DtBfVUWkmJla0nVVdffh3QOQCFIFIEVUQFVNIMhUoQgGpsEZGKqApwaQh1vgCA1Jl1BMAfZdKOwtDv/tnP9beng/sUOSNvIlBH3qBy9pF0zuvXjetUm71uelWLN7Oom/H+v91X5ce0eh/sLi+hNiEldt5vfHViRoIkGCEJVqRU2FUNVSDDDpK0mCqmrFipmZaTrriIQgPLr3NdlAOvIAoprzIyokyFAVAOEhIt29R6gowiPontqAqAjBSLdQEYGmT9F+rt9Md36SRbrSLh0VvpmifacXvadGv63Dl3R3fs35GFJA+BuqX7/a37WNrfZP2XJFIKLqEQwXEVENhkJNBcLu3cPdPTwA6BT/8/1FJW24w/VnzklqCYAQ0/sTIDDDyaS7B0NNkvqTsd3MoUSMvxncaf0yuAo2zYAZK/bD5us7tO81+BuxFHy9RjVBeMnVvGAvzxjr33w9frV/YHtH4PDa7haRn1e+vNsKYA42D6JXKz0CEYuaCslo7p6WAdBUzFQEgQjSARIepDN6kOEezTvJtP6qKaBOURUx6cwgM5DD6EsOyAgQU9VJCwmG0FM+pIgICIEYhBCBEL57BU5T57cvgOxl0s2L5vqlF/vg3Nsszdtff95tLfKWZfgNntG3PMDuDOlSi5zCuu7cqq93mxGCz0Co92MKY422+Uifsp+Q6bxhpf527eo7fr8Xf0Ok67yFZ56EN/DPb9lFd+79YXvgDQ8qqtK7997VGBEzCMvCw4PdfcR3RWiptVQxDaCHiwiBNOd299QVIoJBGiHI+AAwVAwi7o1BAO49gmYWwaSwqirn65EUJwFtzSdN3Z+kyDWnrve2Doq8CJ0fkDQE8urH31mw72euuNo2X9vr/b/yXPAtk/Gr/WrfrfGX78D1ViDDJBsRDKGIhHqgO0LCR3TvkMQFCNDDVbUzxINp1ZWM9kpqPswDIsIIIVQk+chkAEFSVUmXremQGrbkP2lRyKZIW3W6CQl20rbIFiXwfI1P2NGOsN0mZndF/strLy0tL0S0f1wbnrUY0rLchS3vRFpw+AfnRelCeselbnDOTPd0S134CQX279Te3cf3J2xXV/PnQkXeEwK6iCy7ePfzx3B6Quan7zwh93Wvq78WUCThHnejMgLMhD7eEWvv3hgOs1Ksilh4UAkgugNwRg8H8uRDRS0dRjObG4f3Z1oRTjFfQESojowSskv5pmcMYFpcsi8IBRDKBak9fXx+2Lbe3jCf36U95xTKl/6Kub82es2BSQoAIWQX4bX1s91yMtKkypLf356anRPuZCeplMnN0zR/n/95kUPSr/arfd/2PSnvT0NZ3tRKJoCbHyfIAnR6CNy7OxWmVopWEY1woGJmeujh3r213iNImKqpjcxyGBKouwMMcjiMiqgpIKSKqGCH54hAhEOOHJRsUpN0EBq8XDlgl1svdhEJ/Y5t6+4lpG3TTbYmONszFETS14kiPdctuHFvmZfOS6YhHKmcZecyGeZ+vHu+cktj2o8Ke7VgYwRyRfrnadecc54dD7inNHxr+6Xd/2pfaa9XR953w/Iv36W3dO6SUrlHU9VwAVmKiVnzTgkIxUSlaoZwITEc72oR6e8vpBASznC3xVKIB5CQUPOuqh6eaX/SRJwdqaZ9N1TUgwBLKVBNNiAiA7UgehLGsSbC6fpnL6Dv+5W8s6r3F5yTFQUQGFEPiqu2CAAgORIrAQLoLpKZ53gLubdI7d4lhgIUO1o8fODBvTa3ba6J0Ax+cMMLaHujkxn15W2z8d7sOQ02uxY67AH7798TEcrp+4lsDv8S+NZ+B/4tYK5XmKYHyPMeb3HCi1I80peO4VueeXf/XcxD6b3DkrLQvZOstUZ4a01LZvIBw11YtTBIhPdQDQHIIXXKjjxHuIhGhELcnQDp7tG7u1NVBBqBmSWIACIC4IYFjZGSUEHGBUxCy/kOBCX/7y4BIxBg0t/YuEf+wntQxvOmz8A+Aj6/j4uekmpPSTxOYz//a3R0jRpef60hR3wl1uP88/eLVebzvTy/Gvtsfv0vQBK39j21nZ+mna38P+2Nv5O0/jPOUfl8/FIPhyCihRpqrQBaa9170qGIcI9lMSBaD5JSzSJUjEzUGRFBRilVRNwjjQrOTAuECEaw9yBpVkQ0PChhpTBDAER0hhkPqXaT/uXkjXnBu2JyVAAba7h4vZRzQzb4Gi7z8jNIhPtvZOI0l6bRmS11wBrJ8CYvGV1dHIwdYHX+9c2262F79Xdo7yl33PF4w2axGX+mwea+gH51bK/iWBcd/IUy+P0nP3+pn1NeflXjPR+Cd3rEOwkxO7nkpVlCX7kP70zEoAI/g8K0jaEEo/VOQkXo8fBYkBkaPAQwM2cPQiSvdIWysPdQQTEF6D4ShapIlgQTGMnoHpCdhM4k7CS7NzMD0HonmOlIZV47PIhEeCOZ90ZOOR1cNsB/94YnfDz3J5NQX5OveUmgryxJnH8dwMab5DkB4okUApd23TstUSO9eJl/RPu+IOjFFP91iNBrpeGfy1vmp2zfYX7+kgn/KTWAL8djDZZSABVRhcQo5yIpzjMGCfWI7n2xBYS7U2iqTmYQgIgSiEjZfWgAieKkQrBVeRzxYCJrW0VgqhPyl3RJGoIjuTGAzdx7icLM43aNZMvpgsEDkmC/ce2fqxg7PnSlybVbXv6sn3GzvKmdIUHX5uqmVebN4V3/mLn71b5P+4uY7o0n3iEi37+V43EFdCm1WlG1NAmvrZkZAr11OFSltx7imhbazBxUEBHNfW0ryVIsMZ9SVDJaUwt7BCEIiFgxJ7snIiCtdytmYqAoVMXSJXTTTlK2jzlFsrk3bgd8S312be62kII9Tv0tlEHufrx8+lufJH8H8vU6fZynHc7NLjLtMdnbM/vKmx4EzIv/Sp36W+79pQpctKu2rltT/arZ23fyji4JXzE1X1NMTwjJNaqx82L/LnujmFk+w2qJiKfjkw1SbO49IkRmpviAmKUzDwCEmFpaCEwFgt4aQlTLDAIgGVltWFVbb+ERTgFVRVWK2ibkpwEAwzVoD8fsUJ1Xvtu3H6c3EKCLW76fAfbH9P/tLS3tMiPJJtqWBp6BlUXWbvpF/X61Xw3AmREr7Z8XYu67nfdSSjU1KxYRrTf3ONQMDw6SpVQVIygCQ/EICmEiKh7eXSLCw4uVTANqVk0NAKjATPIsGhG9OzE8+SfQM8LGaik6iwxDTjalUyDY7n3PPIVe365y+/us4g2M5CteOvfv3f39wvf8diPqG9pL5KY0pKfOx6kE5M0ABOnFNVCidxkuyXvhIe/a8r3es8PXZNF51cWvHcNF+/GqyZ0n/phXfpcOXzHUEQF168eL4/EaenVeDU30zHevHJbHWtTUWmvH3hg0hcoo7lhKURFSVcVJ96aWzvvo7nQGHISomilUFTWLRULUoJn8OZkEg06CMsvLpB+NmurIQZ3A3IQF9jjdlvzn3ZfqZ1O6eb62m0H4b902pG5QfQjBAAzcfITedV1/1Jr+xIrX+zaZibF+zMz+bKfyH9zKUosmeqNU0x7ePUxVlLUUKwJq1UJAwikmAifJAAmFih4Oy2E5qKoGFGpFVZUAkcmBggyP7ozeXSBqdUZ6oRSrpZ7A+mGmHbDGpbA/fUPf3HjXXe151y/fhs8iCt6NNLxmDD9dO7OTbz5Ru5g+7Kj/m23mN5/6ndvbzdR328tMlJty/KPsmTvT3K/2wvaXWHcut8S16P2tlUMt7r1FF9Pu3rqblrTJFisiCtFSKxitsSo8PLZYUEEtRYuYqcBMxUStGoHo7r2vvZuIiPfo7iQpKiNxXFDLyVrg7sN/fLKBpP6bbUBETrSCL/XhvWg8mSRvzN25v8rLbbky7nh/cvA14fj7QIOvaXeI4K0fTrwg47oBHQEDNy0B9wObr178Qur8ZiK+36tv6+FWe73d+we170HRXj6Hb/Cgf8Pk3NppV817L2z3h7GXJN5lYp897hKt3Z5SPj48rtEb/cvTcW0NIeFOM12KiAKa4L5Ah+e+dyQmQwpQSrGiAFTNZGR1DncP93DvToUqk/qbmVkx03zhiIiIzhFMyy3u6Xw6XruEd+fv7jJcfHzNY3nuv/OaEON/3ca56CIvDsv51X6OdseL5g1d/S0wnwtC9I42mH3P920w7274KctSW/MgjscW3lWkNSnLo1khRVVrsaoWCArW4xoRpRQhRBUipkVASXVhGH4ZJEmPcHcRg6iHk1l1eNB0NVOR1nsxa4KTUpEuSTo0zgsUaGBEr5F0zyfr+sRtjzjL6HDLleuGtfP849k1ev77/Yu/HWj9wU5B3yoFC2bY3jv1L9/kuPXy9jM7X/3I9gbB/H4PLxSHvypWf/WWb/ee+PZ3f8NT3rHD4mDrvfVM25NAfJSSvqFSSj0s1SDNOcs3EhARXZbhQiqCUqqKBlnUQoIRvffW1tZXYCGkB9O5FABJFSUjIAoF4DFCw2RcIwT3maLxnf0df7AA8itH8kV7ZwfQX/VofrXbTOXyyx+QyOInbtqiN8/Kv33UfhloO0y1mhW1IIPee/fw3rt7F4XoKOBeSqnVpmc3s0ZY837sfe29h/fudOp0/RTTILqHZyXgSwWQIpRdm0Dr/HlnKP5q+06U/bXd8vx/Au7+95Um9/7H09/Jsb+3WDoTaewBr1d7Xe4NVLtkIfKME+zMP18dGOf733OnuzeovwMKMZ0gtqG+j+F8m+GvYhEv+fU77cBv6fbee93WF69Oy6uedf+aIdp+DZZ43uHzc/ESbne1FQ9mVXYRKANQUSEgqqXYUkpE9GjB6L4+HVfSHx4eKOjuphbiIoVZDowSgdZibX5s7g5CAkRn8pJqJbKKfHp/i4qIu2/GXhElQvVk+x3vM//YU/9b5oHvfZLfEhZw/vHcs5PPC+ju/3qJOUEmXvbagb2qXTxFcBrpq3jA2PX7g0fgLvX/6obOo/SN779f2Z8Q3pnzn59e5HX2or16PsMpct2Z9ju/vjtU/dpVOBGK8emSRJz2cHpsjH9vGhrPpwWyuwXP1uBVA95PEW+M86tc9oIH7GGSF1pWSkR49yzVosXSUdLMaq1mBaoSXVWbtwAjulnJumAyazF2J4DwSJeO1tvaVnePcEYIZDkstZRaiymQ0WBBkhoRM/RXRMxUdUYhTwYwdtu1efj5jujN6b4z0Gv3/JWi6Et56tvM3LLLqr17zjdjNn8H4f0naC+ky98o+/9gXeo6trP991oWMcGpckZ2MX85jfzKln92i7z1ZS/inK5e8gbF7g0ksXgPb95bExEtBoqZLaU8LodqBQKqMpwiAYqZSHEPVVUVUyXYmpPCcFU9tvZ0fGq9tdZ77yJSrRyWRUVUxExESvOewf8mmsJ+LcOckN3ml1em5GuCyWtf/m1Nrm0XecNynW58haXruS/aV4WXF5lPZt2u66DCvHlmdJjJfICtKsM2/5toT15WazhVhpGhBGBijnde+frb6QUS+G4wyLu3q2Txx4gvN4HvH/7Q5+076weJtm666f1nXTUFz98ux3keWHtOx2+91HPlcvMhzhYRk6cMbWOM/64q8HJefuvK0lpnhIlaESBgcjgsh1oXK8UsAA+0LPrYIwKCYMCKZrRwAOgMhxrDY13XdW1fno5PxyNEPj58XGrdo/keDtBMa1mWuqQV2MzUTCFqKu8dFfrd2vvzm/0y31qw+2CfnPDvl6IZMmpwZr6PScR3F+xIrOjUm11AwAgBApd7dA5CFFdCKybZz58EeHsk8Augoa8cgLe1F+rXwLczpl/tK+25DPS+u+JZb/tDinOlgbdE+4sQ14vvt972j/p2Pn3VSLCH6UiWhMnqUq2qR1e1pRxMioqaGSOyllf3IEUgRW2pleCxN5MCIHrr5nUp7n58Wlt46731vtRlKQWkAsVUNEVCmJqqLbVUMxFK5qEeFoGXwl7Pp/gN83WaCzwXQ/GcxMuN7/Oni4V/Fzlr34XwDOTerejOHnuqCf8cn93U1tN3mBZ/hUJOGsDF9G7yfl6zxW0IISNNB09j5Enzfj6Q/OZCYbol35xJby+zM3xVH3pbe77rXg1Pv5vcfZMefWu/ZzDc14/D6Ycbxpf5ynyu/+DGhNwN9+P5GGS7Us7SxlyherfaS8bwjNTs98BEijLbPIkhy19q7ac20YIZDc+RCJGUdKjPw3MJC3zlVV5uj7mYn5KPz++qLcuyLHUB1ERNtUeQAaGoFQWUS60m+tSPa29FAZXovbXWvbrHsR+7t+7Nin348LAsS7FiqqWYKEgFLUhTrapFIKIQUVEMx//hDnrvXd9Pmjvtm+tPlJeDPBeGl/fl3mcDei6QzGxqIjiTIc7F6iyiuRm+ppUMu7+wQfF78r0BPtyASUJ36vXpn+2rGwDmK0nmTo94/d3fo/00Zqd3HIbcoOzvqDDlidiOrZzo5vPR3Jvhi6FSdjW5RbZf34Ke3xnD+Hhy1nkG5RExqf+Ozu8Gms71ZEQEmccsLxquL8Pwjnwj2TWOtPa4QxhvAX173eiWzloAqAqA3nuttdRSzFRklHV0Tyd9RghQa6m1ktF7681DCEU0B+Dk2tYe3voK4MPj48PhYKalWCmlFguQBMkCMTVRoYqMQmCa1P80ZYMxzk2z2XK+ucnZU156Jf4K8iMiwYGSyLSEjy1/QupP/78BKWPV5Uww2wwog0RfWl03ASE/7cSE+atsH2X/0+7mi2/P+3ltewO1/WkI9N+jpcj/HuLUK3oQkckDbiHvX4HXrhrhLjfwu9sEN2PCc1xgqzP+jPonRp76QQRbJj8AGQQIUsVUk/wJQRWqqigEoXLmDHlB0F805BdcXGJQeQ9EJntIe+/Tuppp6y0YTmQq/1rMTLp7RKxtTYkyupda1tVba6nEPDw8fHx4PNSlmJqKZoaIAICs+aImolATVSEZcKWcoVQX0Rkxyoq9BHt9OeHe0bIXbbiXSPfvRYOyH92WH1Oilwm/bIDOLTfScxIv52+6o+bX9Nzze/W2Fnn2xF3bOPf5t3enTl90ZF8yw/dV+79L2ynvZ5rohWX97h7/aooNfvuGvejhhearl3z5Ncv5VSFmKLlDCno/meAWgs9z6k9y0H0k5nH60sObe2ekH6QAIt3MFEM1T09IAFlwV0idAbF7ZvBcw3j+ps9J5R4L2i4uHuEe3h0GEWmtqRYViSev1Qh4eDBERFXUlAyyk7GuzXvPcusUOBiMovbhw+HD42PVsiyLmVWxwe0FAmTSODPLqLBtpnDB375Bjft+QuD3k0l3O5c41/U2NEYmuR9fb5fJdu/bx/Be11y7eCdmigr0hgv1V3v8Vi3wlvXo6mU/qn39aRfK8Q/URS8m6qXPvUWnbl32mmvud/gXpE7PVIZ7/CcSMmEwgBT188tkAL31CHfv7iJIU6tOAKuUYmYQKZpJ+FVErJSiighVTYh8U0M2av5y/eDimqIiaqK1qEmQrTdVPZTaIgIUYThVRMyYXn0qdAlK9/60HhcrZkZyKbU+1odDfTgcVNREFytiAiAYCA64R6CmSemyw02uvxS0n204kWGmuiFHDv/Dl5CJu7amy2te1URk4FdJ8a71cVnAHAmpJ9dLbXDD4k/XnD8Fg+afWMA5IPM+lojLlm/3Eup9ocvv+YHIFUX6zhNf8BPnScBX6dQ1mvJi8nq5u57fu+1h7ECJ594BvE/Lno3wzb++vt2c8VcrVTf0MLx5zK/d0C+//sxXTYA7esxezSDAQJzJ/hFJ8OAT8Xf3xHLdu/feI9a1de+qorMOLklVKe6mamZUo5kaTRXoYiZqMc/OpnnIaTSjnoqekF/ufr154EoES6lUXVtbj2txq1rcOwl3NwUZZakQ7THygCanDcAZInJ4fHw4HGqtjw8PD4dStAikqIoKZbDDHBAy1Q8ZcMzTlOxrv1ppV7mwYGB7ld322akzEyt/mZzyLQLvZhQ6/3b/515mv+zk+UJIIvtECADonJlrV3K3VXe/X2h/uHpab7WXS3Z59SsEcRGZLiLnw35BD9dtcTevvU+4x5n++lNv3Huj95ub4OKmZ8PbFLYXDun+fL0nD5gxsl996Jvby0b7A/WwtwQhbqtHEkPM3yy9DDjRI3MsRG/dk5pF9IjMphPu4SBpZiqaoJV7LEsVoAdBaijN0nRKo/EUHrv9q5mLeXhRyiYHXYx16pF5Hk94QTkej1Dx8KcvT+4NS/XloTUH2Hs/LLVWFVEIzKyoibC7d/ellohq1WrRZamPD4eHZXlcFrNSzBCxer7FaFnxMXNBj1ElQTlv04wy3vDGwZ49TOxEcL/swZvbaaZOHqoEMLyWNggwzsniCbG51uO+bcoOkW48F1fyGZR/ksFfKOBcQB/PPr6kj7e3l9Pe59DBVZPPcxD26z3nxS+59PJZF1/cl9zfOaf11YW7HND7GzZ+JAJ2YwTfn/q/OfJ8U99JcgZsMehD9g+SHgwiyO7eW8tECyKQGCpCMAC4OwARSSciESmlgEyLbARLMYIECSMRCpM0miIBJhHREFGqsIiJyGXs5flLA5i1WXPnSAHQWuvubV2FrI/mHr01NXUPMzscDlBEUE1rqWs/AqzVVhces25weVjqUspS7FBLLTUYTqZxXOZyqupWgB6TuO8bptGcU8cZoxbJV91ulb3/PhIIGQ5UbzAeyEZ3d0u7LfccAITQS9+YkxHV5PIgbnv4vjy+qTZ6Bg3dxPPxYhn8vgT9KuYxxvRCansNar943H1z+pkJ5I2Gh6//euN1LpQJ3iHr9x/37Qj4S6689evZ09/Pie6FT78yhpfd8i0Pvb+pznr42kbeRv78FU4I0Jl1l1nxSqYNIAIEGeHePbPhT8+71BQADEx/dpXeQN3dQgQSQgBJS2swVF3DRBHsDEeIQAWiaqJmZSOz04VSrprBL+SJQlJUihiAWu2wHIJc11aXmiXakzyOQr4iIlJKNXoecxN9fHh4PDzUUh8Oh1KyIvxOSRERQFWLZb6H8fhRAv58WLzr50OkxfmZSDjUCMoITH1Fm+FPp6V9PmVjZhOpv+Xpf+5zGVPDub8ZT7TyFRL9bezpTafr5XLlG2jxTSD1nUS8vRlg9y9eIgV8yxjePM/vIrDLCywxP0CI/tnau7/yHmnZf4OJ/XAj9xP9nxRNyJjiPt29R4iITTE2Lb3eE1SX7EdEIlTgUBGoCnrvGmIkNCYCIQo4sDnmiKCY4SRxMgGb5FEbPH4xS9uLlBY9BfOHh0OtRoG7w1hhAXla27LUUooAtUgRExw8HI1q9vj44ePDb4+Hh1rKw1IeaqXk27qHR4zHDQZQNPM863B8PRvHUKXkjBNsKyqA7BZjixIYU7LBW9c43s3VBTQDmmYfRAZ0zA/b0zfUet//XSlCz4GPFwlxb9m9c4SvF+e/4coNBpGvsrnr/dymgufXb2x0f8HlH1e7vD385N931o5yXv/8zWTl6o03lZ7bI9oki1NF7BFL9KwTDKeUW93ej8p4bgh97Qgvb3l3JsSbI0ko9ezpb2K18/zPj1nXfP6UH/cwRgTDE8KhM5wUIKumwMkIJPUDekTP5PmlRIRAOoBkHiMF8hTcOaLrg0FquK+tgYMkiYqHC6hqYqWYClWFpkGRoEJcVU0MM0ThtG8A7CgnMg5ASZLptZlpfwq1mDqFIIMqWkwfahVIcwepKkstZuXjw+OhjgAyMnq4B3tEd2dQVAGqaik1w80m3DOx/mfc9Rr+M/GW+cM59c/+Xmz+3Tp+RrqEUJlcBIPPnP18msSXPeXlmenl6p+XAi0vf39F+w4i4VuFWbkeCXpjhM8J8Tlgt/WJl5gaMuHRbf5w6uwa+X4NPX1Fuwf4za19J2n42Zci76FnXOQd+UnanRFdCrrf0PaEKM7JVLiPzTcg6yHnp6zv7ukRJCcijlHjilQRZE5MFaqCVCkE1t6FoUinz8HKVBUiAQajH3vvHZI4caL/bipFqxYKi0PNzF0wTa0QSKjqSMwyedqVGSoqYlmR21QAVCOZ3vpgjpOmCe6X1jsQojDTRRaBHmo1zUxubN4aMw80IjEvUEVLKUs11UlB54RuiP9p6iPRkE0sP0evdoTjRPV3isL46cqSnrq6DDbS/TVjkmSLlgVfSDlvSnZfv/XeA06H+QZN+g42wK+2Od4JQ7wjuPHVB9/ElMaIXkQHfjrKdj7qy6V+bti6KiPsf78AKv81il69YxU47lqCPBjyfqQOMC4CCeHMlcAYTFMwKBOQsa5KZEFcMREVU5OISN/6OmuizMVipk2LCEf08GzzlKG1VVRqLTBViIm4aO8dQJhohBUzQCVICUwUX65r6uWgVUTMtB6WiOjeIVKXUqspRuiBkEVtrxmZmGhR0UOp1UwEnZGFxVL2h1g+UFWLiU7daqP+PG/5/slJh0y/J4s7+W7M66ZL4HQGBlh/dR+cZOmYa3Runp2C//if7L49b98Bv377ZS8yeX0nOHiIpndhqBuk523Dvm59ObsFV5bsMifST8EBvi61bO082d8zeIsn/rAT28+Pz9SP53fvzK0vGdTfvG1GwcEAyOm0ExGtR05uDMKlKhAS09+5mAmQ1bGAHckSUUDVTKVoCQkfVN7zJ5uAdqbdDdDdu/fULaZtmb03LZap4xZVd1Ii1DsQoWJa82nuxhF7lToIrp2dUm2pVZeHhUD3BtHqRQURoSVjkEVVixoxQpgFoqIqVq0eai3FCOneIjyytgwIhGKqNCMwAlTBLuxrjwIl3d8+3sFPRaTMvBGXsA9vQkHcqQ73V/+ONL4dn/sX/iTtZzADvo3MnFSMH9gu9JjrszfGNaHICw31pqPt6ePb/HHGbt8R+rMxnQsx+2u+Wm4Q784M/v6Nl9JpZL0sd2+9Nz+ZARhUEVNNM+yQUMevsq17BvTSIyEgFVURsyKku0tv1XRbhFy3EUe2pZTIjAzO1hvACBRERHgPapBgICSC1MQtcuAqmWg/ItJczGeO9aUsuiy1FGveAZHQAhW6qqgZICCFCCIiekSgMyghYmKGZdFStDNAemTkAyhUQSJFAFu4MnROyqTyZ1swpsk4J03TYr4pU/kvsWXE2L/GSQ0gKdeB91vE8Gw65rC+ZgJ9RXuD3fUqC7xPmF7O3m63vfOUnEfVf8VqeufXZ6Za3GWcN6juVWng5XC8nI3jdKOcRFc5vcQMyrjTTkt1aYg4Q24uZfxzU9ztji9X8zIU5Px+OftGoWf0/AWWW5GJMV2+DG5+Pmca50N4jzb55Ngvd3nUaTXktCIv4Wr766/8OuV/j+hBkuuonT4wag5vAikFEFOqgJsBWASqKFDIOFqiY6pTFC6qoMOliNHoEeEOIEjPBDtZZTdzAUUIlGwiIMWgBgXEwzu9wwFJR6Gk/R6swTCrUMKL6cg89MyJsSSL8HCSZiYh9NBitRTIqN8XEb33QLj33rvDCYhTaxHRtISAwoB7gGFZ5KsWHXRk53gx1yWexU/LbKZasiakjn8BKHfC00nkke18TO3/G3biOApfuejrffxFUtX7ifzfa/CTp99yM/1BUMKeEPMWOb02B89zeFy/9wUX3xve/XXcCOPpsr0Qc7erRF83nnf20yusvrzgke+9X7ZwptO7jh++emfS5nvmoq+3KUCPhxMgMmda755uQakQAEgXSqFbCvtFAUTE9KEf8PvA0iHBGDxAxCAhYqYUgwgjfJTSdROYZsocBAPzdaoViKjZhJ0G8fQcTdZWMVPV8Fgq0iV0Yien0KvtXQsCTu+9iahqFZFDqWXJtF0CCALuvTVdY/18/Ny89aDAHkt9qFWtpJWiRwikFiNFRZZSxWyUGp4V3ze1KFcqS8ZnuqQclooUVTMbCZJEplIwchbqkOf4DuT++kn7JgJ0KfS9iSLfxbiv//QepP/iTL9zUOuuvVGZeHOT58Tu/Nf9318R/V8zuq3yZbYJAGH3+fTgW8DQhH4u4CPZ/r4kcxe+ateI+q3XvOfoibOZOmVAPo3y4urXtDPd4lqH36fJc062G4+InGCJHBgZEb1HYinePWlrRGRuGwYJmCkJdxdkop/MlenJk8IjQDUvNstciIpyc3NnhHtoKcEARFW9d3qQNCuZSWFgShMvD5LuEQFCVaT3UgoquouZJmcQ2BZ2tYHwyKLwa1u7d9NaYSRNVQURLprSfaytd/en9uXT+nl1J3HQ5WM5APDekwupiC0VYHiUBJ7ADPVK0j5NHCKZDigCAg0JU1ACQqCaVVVTSy8oAAPGnCkuJthz5bx8lQg+x7++pd3v6oUPegNA9J3aDSejb27PitLM03V/MK+flteDdpfceg8NPQPi7ouT9wectDLTPeWlvEAevgYKXbCp/e5/DhVuS0k+yyMynd5kxxpeIik/p5P3xJQb319/kJzjZl8dyv7WZ/rWPlGWnnPbvcfadouM3JrPBsYcmmxSqI7ChQNJzwAvgaZ/TkZehXsnjZZknxyhSZucHhEImopHePdiMoR4H+ECAHxmTwvCTBEZZBBmtiyVJMENTk9ROTZTdYRSi9kAVsjusb2PUYsJwJiJRUWk/PHnH/VhJCJQqSqanhtBsvfWgx70IOLL+vmP9VMPFlg9FFC6OxEAJGv6AoRYMTXdgH4ZLq0wNRnKiARdNrQsNwGRNciK2vSG3aK9Rqad6Vf7fJNsUo/c2UVvpqF/IarzD2tfFbFf0dXrV/MezZrD2kb4Lspc9iibHI9JWb5+20007P69N0xEeD7xm6f/Bnz+7K6idwtH70n/Fb3+NfKNTKw8J1NVzRA0I2shRPsokKt7EDv7T1+dJK8kFNKDgcwLwR5RRAC03i0rIXLmEt35HqnZxniCNLMgDsuiKrtKAxTRWutz26Fo+t8oicT2xxPMRMT0bJOU//79Pz/Eh3owFAqKiVmRHt7cnWyrw5sXDfTfv/z5uR1F5IM9lkcD3aMxASdBekqpiJmpSkQWqEq/V62aFQAgIgGKGgDGKdTTVIpaVgqTncEsQT0dKNDlEs5v5M6BeUO7eoq+RQb/3vL7G9rLY9S+3tWFQXD/ss8Vtd3fFzz1pkieF2Ov+Mklwn5x8fkQdFMdrzRCz4aMWVeZTBr50rW7jq3fvvzKd4NOMdGCCd3qHAPv3XvR+1k05fRvuEBuTtOUwtVWnOOZNXWzyvJWAeC7Ly5bHOvzX3A+pNudfK3du/dCE72xUhP3H/I/h6QcY37o0eECM/GAmiIGsc6oVyIiKIIenvzDVMjw7qNiyiZ7R7hZg8R084dmqlAvpSRkAhETqXXpvdtittRkLZvtwaxs6otMa0QGgk2AyN0ZSlHRqX/K+Y4uT+sXO1pZHiJIDYj1CGfv3nvH8dh8bWYIiS9Pn5+OxyJF/+1RwB7dqJkQT52a8nsWNADUGGBmu7YMCCZEp5mcczAzXC4v21B/TLxo2qbG1ty7M5/TizdL97nwb7v752/XAM73TQz2LSf2NXxxg1Be8thd9o7nQsPVu0/E8SR7jJKJLx8jviaIbAj38ySvwGajvdzerxZunmure6zs9OsJ2j8nz3uKPL7dIWTX8ZL7A/oxqP6r2+VEjc8kiRmmKqKqBBBhpVSiiwgZIBmcAb84JfpMukuoYlkq0omGAQAeFMnUEd46jd57T8uys7WVZK1LQk06xGFhhJaSgbqtd6gyWK2qCrNWosgWZjw3bUbkSskcoQJVKao6yev2xiXgx3V96IsiqAz0ID3cPVrrfe3eVg92b8enJ1/boVaD9Gg9tIRFZ0YJWFFTNVUVJZiFjtMCniEPEhvnlbT8iowUmpZaxHY6RIgYMJduIOgODH1B4fiXtJNF+kaF0r9bO4exr9lU31kVSUD7jG6+80m/qfbdWq+d9DqLKkw/sRsGg9O359+TzPwl+feWtPukq+8NrrI9b7cK102a3HOmIeUAwPY4br2/zTYjN1IW7vrMxyQ2fqFezB/niyZvHJDRSGh5NqoLQezC7CDn/gQ/Q4aJi5oalDnjghMWk0Rh8+kUNSulQEQk0ziPfD+IyKQ9BMDIUChPG6eZqijJcGeK9QDIJNAChAcBD2/e3btCInhYzNQoMLVEhKyYFaMHzUJESxYOZspFpZT9sUgwBiKmVtSKaTUrqtOr6GwBiop6b21tiz0goqNHoPfV6X2N3nuw0fnp8+d1Xavax8fl8FDMpMzczkKYiEEWLUIwQkw5yE/MnNnptSSip3xvORiVWeUgdw9PpsITqiXXj+z11X1v35u/vLfb7dmhHU8/DeRdHnODjkx2flm+7DU935IfX6OoyJ54j7HE7sPZ+G+szJVR7HWF3Q7dM4yZe+1kqh0scZzGZ4bHXednKNVOunl+wVvgzZfswDHI7S32eNd83+3NTm6i42zOKd8lTzvxxj1gKz+vcWHjlDPt/oTLgfM/kDZgVc3kaWYGUCmFEsLWmyMg6qpId/4IAK21YiWfRRIiQYpwyLXOrOZyJNfWSh0MwkQ1rwQIlJI59kmiWnH4kIxFyTAVUwGRfQap0Ew3UUsxK7VoLRv1p0AnRRURlMPhsa1NoMuy9N4RPYjj+gSyrX58atBYfX1aVwGXpT58WMQAQS3VtIigqC51OdQ6kpDO7KbDsCEjA8Q4MJGVEUQhmcxaRBCgTI8skZtE4Ve70v6CqboE69/MZq5iNDevPWdrF/ed2SEuCp1fCBDvNmMyI1Dk3Ot8p1nu/zjJ9acO3tV29YJ28ayJ/AxOMLH6ZF0D/zqdyxP+PwzHgpEAYQiC20Mu/V2fyW8/1QFPG+zW0g8HwZhmmPGmaRYWEU2rkiiRmThJEyoFwegcpmARrOvKwvRfSXAmSGGomJrBT+VPCEbQTIuZigohCTGBpRRVEYql+SATQZeSJgpVRTAtu5rGVdMsEiCqpZhNCU2EEyXakHaU5XAoUh4PH0zN0c3KUzu21sPx5fPnta0q2qKxt6XUjx8/2rIIdLGa3pwGqVYsLeU5VTOlD0e+hzF5uS3yEAgparo5ewo4c/+KpEFdXnIwfoygfcOzgl+95juMganf7R73XSCXnX/WNen17vG9quPrtXFyJzzyWbcyCyVPFOZMxpcTspC+GvdGdG+4r2u3IDWegNW7GsY1VvSS4b3PKzzT5M5/3dHqa6x5z1Y5VARutF9wMkhucAS3fqe2QKVuehImWXyDFe6C6SZmtftSLjwBxnN2nv3pQL/zvkmyFe4x87uNrSaiqoO+mYqHJAcUQARiUtXgHhFV5QnhAAXeu1hZoAZBiKuoDilAEJlrk+HuXRCLlawCmc5FSP9QuKgA4XTTUmDN3dTEdNTaDcDDRMVGrNWA02dTIASiKCImaloUgtRACBCllkopGTkmImLKFd55fFrXL8fuzRbzvvq6Lg8PDw8PVutS6uPhsUo1lVItXZFGeTOIFdsef0FHBJBdVui5q/KnkbRuu/6O4vyPwOv37UIqvPXrmLkfMKBveYruBNtBD24slwLYk81n4ukOg8FG+OfFz6TKk5bwdkjqX6pdrjL5arzmTNAfR1721rwdVgTsrDK7BbxQCJ5R9pcPZW+CkT2tuCJDbDkj5ZQIhGR4eHgmZph5QLVYMZ2pCihCAQUjdfHQlZZS1tYSrm/D/Z4knVG0qErGRZFQk6ImArMiIa2vy7KYM4vGDD5KdgZCTG3taylW0pEmWK0EMp44OYaZZVWwTN9jKpJJHAYf0GmdVRuy/27WSi2lsbu7SxdF7348ttbWvq50NxDhxy+fTWRZqpkKtJaqokWl1mqLAcNpKQF8jxCRYiURqTjpAVQTVcsFSYvLphqfsMZnGvT+3/0W+a6kcONPt+jIfgzfxpD2e3b8d0fCuDsdX3/K/Zoe8ym7U3sNuLhyy25we8z3ou0WZUfWdwft4nLg0hmVG+8g9iJ1GkqZgrZcRU4upOlf1P9qu9hC5zttGi62X6/AbM+2+k6N4yS7Yy0SaNaLpyrO6pnNv/ZOBDcOOKeiOMnuMxVlk9hPB2d6csn5hUJyq447TTwbBJSumd09IgTaI+pwc1EGFelff/J/EEBVaykgl1LdY+3sKkBvIZrYPwBIrSXz3MBDVSlUVTFVhWa4r2aaB5Ls4R2eDvVVh1cySCAEVBWV9BTKpKRqppkxLY+JJTJjmrZokZFsZc+Si0cP0nsnNAydfT0+tdbWfnw6fqq1eGNr68PjRys1IAopamZSqmm1AMAAhxNPcrC0cJio2qCPyTohjIkj7pOcX5D408eNnDwjOT+E+uM+HbkY8Ps99ILiv7TzN/hQf3XkV8yT8oyM3OxNMqsLQb3Cjp59I9T59YX//ba3bkiNf+N26Zz/Q9sV2eKOdCUbDHQeZHCtw+2jXBFFZEiLsrl5YwOJ7pypIavfllOuvc5+MENMPckX3F0vgIp4chgyMv1nJkkLI0vGPAEaDAk46Ah6AFJURdXMuveq5lY9wor1fmxOg1QUBcJDqpiZDKd4grBiagaC3iksZoiR7nhdVyqXh9ozDyfphGa+TVUzAxERJqOYzPD/ARKz0hPIDsEpmyzj9PoFChHN31S1PfX1+OS9ff785+fPnw4PS/Mooo8fPooVd1ehmVopoUBsZQoYEUNOFKFuyqBkIWEyHxvpBHRaQw4T8ZY04uLff3DbwIx3Q7Tejype4bhbHc5b1H/bUzuxaMZU3VrKHTh8/sy8jfOqf+pe2PDPnwrV/IouCEy3jgnJ4g4Lu/rDCQIagM+L1ve+tjo3y7QBnCvxu2FcJP1IfQCQkfleTdVDBS4i4dHDQ0NIWiylSHr4SCZ+CKbTp5UkfbVUVHiwwzObQuuNtogKIyI8Q8GUSClfTR/sIX1s0/psZoEuqgXCcAq8N6uLZ3JoUaYBVyWz7Cf1Hy+SvkEzC7TIpKvYqK4wAruKfKWWEh6mWmoNCe/9uK6fPv3xv/7f/xCDFmlre3h4HOk5iWJqxaAnN6lZbSBlf4jAhJbsZyRvzhGIQElkWrwNCsQA/GX76yV74X3bjYfyNQT1nhXymmSEbV++5JVlqueXWu+ecIjsR3EpjZ+LR9cjabeAT2AP3maJuXG3CLCd/z1Ww9Nrzcec8nvuvty98hnAlYjB/uXOZMPvJiZfxcTuI9H3ob837OFbY3j+8YXtzFX3O1jNziDZcxZ/a/y3Rrp/rcFLdpNx/tDr318Z3tkFX9GkRSkEAqJQiqrWYiTDcTCARxIOKumkIlKYVRrW3tk8q6RowuOq1Q5SsVJdvK8d4QyXoJBEz3opATBEuZQaGZFN0gBR0+HG3xpVEBB3arG1uRClQggxIZhdmpmZqG6pk3UT/tOVJoEfCBwEfZuPJLWFQWSdy+CxPbW2fn769F///d/Hdnwsh6enJ6Mc0swbLoCoZtzE5hybepUg692ojaCDLdfdCQXCKJD2PNPklBN30Mv7xqt+//YcXb3zK3Cak9e0ZzL+GeF404SJzIJxe1ay/TPW5vxIZ5je+AYXNOa58nDj769+/BnbhS3qez/izU85v2vKDz9Ez/iWaRHhft+95Bx949MnpyckBDQVqClEChTSVUXZvJ/LTwJk5RN6JngD1r6qwGwRQFWXWgNcbHGlQM0MguPaPMJ7DxKIh2UppXRGgEqJUtLGUIoxlNFqPYQyPXZ6WzXDv3T4OctICKE2xW2ZGfQhkvIbZ5r9aeUZMpbM4jAlnOHs3hr4tD49rU+fPv3+6fPvpgqqt/748LAsCyT99kGRWQtNRMRGfZt8MERGTrttq21X7mb8nrD8gzWA93vcLWFw/BevF+VevZXPh3CfH8gWTX2hEOPs4zyPmzg5wPnnMtVOqL9oPL/qclgbgPA2Uffb27mwfPblDxjMfVXjhT1sf9/v6iXv8u5M4upDX/CUH8SrmCUOs9Y5KBJmEChQJAt4qVjvHp6+LuTI+0aEKMRJBhQevVNL1KRuZraw8vCo0O4uUDUFmjCzNLgtBaqiWiE9QoDMAuRwMwuwFKMdiFCVvvYiNlL/B6KxqI28+RvYsnl/AjLNK4Jh2552F061WxIsKiImCO+tSfS+/vnn73/8/ntf228PHyvKh4eHf/v4YKa2FDFNQD9hHVM7lFrLKW9zEMOJ9RvOzPd273mvdovantPBC1FuRlxeoziX/X+TGDVBkwuc5xU9nAM4k/rf6OqO9vMV9X+TE/Y3zm8vLI1/xa74zs/ccPD8+Abi++5nZbfxEgh85/4vnvKXGz9O4DMZQ96hZLStFBU1MZOyeouI9GkYAVoEQKEigkAIPSIYk0CilgLvstTumYZTSykKtPVIkaLLlOKLynCOyRvVFISZCQRSwBhhBh4MiSBAg0gpA3Ep5YS4qBogUEx30nGW3CfRcQBzkFoE6L31p88h5Y/Pf/yv//qP49PTQz0cloeDHT7+9uHDx6U+LloLBHU51FKLWS3lUOqhVhHO0ynBeB6C+Xch6O/drqquZ8L2G2TM+34+l9ABZsrfF9jYrmIx5x2+7aA+A632PX798MvQELi9/A/dTd8fh3wHNv/d2i2V7p/TJoGaHzmdlkRFQwFApYiIEgzxwR8YAFUlQsxKJvcHFEZ3h1BFsgxvqbX1VqsJNJghutLWNUunpNnZVE2tt8ZMmK9iotBQTTqtrXUiWmseYQajIWu2iyT1NzUAwRi6wCQv2WIrJ48B+KqKzqTQJcLX9cvTlz8+r/pfn//Xf//+v9Tst9/+/WAPplgWqw8Lizr5oT58ePiw1OWhHj4sD6UUAKInPCfHMQGn097eeMDeKPQ2FfvlF3Mama+q9js5/Y2lr64CLBNik2fdzmQYUwvbhiEiWQ7zop9gln04S1Uvz9Ignz/jpV8CgJw99Ma8vhFPuKDsmwVocxy4uHU6bpzSD5AER6bYcU1G4pzU2YvBZGTJ5lI5rRWvpLDfj6q+pOdvf/r9Ht6kYbxiSN/Y/ytvfw4nngjLWUr53a9f6RFQiA8+AAgphNGEi2jviEAgABUJQWRyBxMEGU4JgUcIA3C6YGRjAKmq0YJED+8aKrQkwiqmBihUlGxokmEAPQKZ4EF6RDBCootDxCACtVJKqdWKYWQQTEswiGBI2iiCQJZqjyxFmfmMAFWoQk20fPr85+fPfzw9ffp8/PzUvrDz4+PHWg+1LB8eFltUTClqWg51OdTy+HA4HJYZcHzut5On/MV0Yf/lK7f+S2xB1y/eVM+XPGbPsW4O5dJvRC4dGwbuM6DuC/7HaVB5DnPwBdMi18b2NSpwuuZC339hew0bHphXTMp+9zIMiBIZNhNn1oPpLCgJpalc9MCtl39p1fNee8l+/qna3QFf3043Fv2F5x2c0QLTPJDO+lSTAnN3hmTWZxGNaO4O0EzVTGagokeQYEQgrAj6BN+FQTcTNYEO4imaErn26L1DVEl2D5JqFhEkmvcefQiQYDGttZZMGrQLIwkSwkwp6uFpM+jhPbKCjVQzEzs9VrT8z//5f7fPn47Hz58//1lq/e3x48eH35ZSzVAOxao6tOhyKIcPh8dDXWopxYqoiPLk5ZlS/4zceu4X/NU999z97lw+vbj9R9ipLn59/gp7Io6TnHtGdwZ9nyTtRKeev++WrXV+c8L1pmvmyD8yd76M3XpJxPeW5/33F98+/+nWu7+q7TncUHaIUTmOmsXnppS+m9NxmZz8i/Pu2ZXKzGYuVFH6mYTH3X8ztiSr8l0d/49hDP+C7OfqK7+c39yasdsz+RUL0wufu38UwLOkNAM8IQA1gSgbnQ4wGBQEOz2gYqUWm4GvER7BCIqLVZB0rseV7FYVI030eDURUbHQSA99EFmPJWvEr6213p6OT6JQK6pWrCxWqxYVYwhVN/MuQAR6jEwW4/8YGZKgZkkbFCNyTCHl//2//2c1PfpxbetDfXz48G+H+nCoBSaO7o5azLQ+LB8+HB4OtVZRIYURFHBU+iV55rh5Y+ZfuBXunpxvJf2XrERfdEovaP34Mwaj2+q0pTo0/z2RwuBZi21LyfCYSiRIZtuDZhk5n12mCQobNj320OnlLkb94ln5Li1fPDDeH1BliJyI8mYSn3yRBGJM69lm4aivNHwdqJg+bYPcUzIzS4psoskcZWBy9xXTX+1XmxtwiBAiIoHhQDOqNoZsTpZZ4yW8uwexthUiVisWNVGhABJsx+4hvaoJsa7uLWwxMwtEUTU1KyaDD4B0d8/UOc2j9+7uWSumt+buxaxYPSyHQ62HeqiljNrpkHnACEcmsTjRmS0xs4oha8sN+qRQVS2f//jvxw8fjv0YjsPy+LA8qqiVIgWfnz6hmtWDiBxqrTVTi4qHJ3gVCN00gD0WdJrVK5+/ehQ3UfpbTGQvaue08xa9vIXhMAiciDtyHjTxvBMDyFU4WxKPjKsNPZkKRuDGlOhly/F9Xi9hN/Z3n5zLOfjGR3AzQA3qHrO2nogKTgbewSRCMhPjIP4xJm2QdRUtpRQrpsrMKLPZeciAnzQHQGGKUWoiRaxb2sC/YJNvdjz9R7bcPRmllBZTFQkVpQ7UdPc95nH26Am1tNaWWg9LUVGNPP6xRla+Mu+j2pfVkiqsidlMlTNhWTDYWuu9H9vq3UWEROtNBCb2UJfH5bCUkjBMKUUoQQYjAafu3tJjNSVdEhCng2liiJiClQCZSKj8+fmPxtabf/z4Pw6HD7VU905h8/b7l0+P8lt4mKBUg4mngAYF00AyCsxvsv9eUj77ewcK7dHnnTB4SqyWQjBuWiYv2+sO9vm1W/qo5z/t32Jfi/kkr4ZnKSBHzIALNQU1BKKjLCd3VeLGp/x7ShMiogBVHdAhfWQZOqVBIdQR4a0DBbrrWvMN7dTnt5P+8e4chfK6k8wUIZknZFrhT1pCxKhhmjHvXDkzMgIKOZQ6jmiomXF47mUVJxLu6ehGQkTVDaZKU1UM5erb3+ui/X05yjdiNW971s/DdS5Y4Gm7ghylSUYzURcWtUBmaaYqSykkPUIhEd7ZBHDvvXlTfzhYsQKRcKcEpERE6yuqikk6dyqojBSCRCgIEYhoBN376sen9Wl96svhwcODvS7L4+OHh8OymGaFr1qLmUWEkkFERPP+tK4J9yukiChmPJhspjEkJVEbddlL7916F6kPDx8eHj4IhBY0fv7y+cvxs6g+Hj5AJIOPg/SIrVwBTpNI7PKZXPxx+peApHg8Kf6llD9G+v2F/9l0CNfP20b9p9tvcPsPGYGInmBfp0cwY7CLIg1CVAkfKtiI4HAf+AYjIjJiOvsXQQREfAIXYmbj6QpOHpCzoy+Drf66JgAjGIHMldI9gx+pIlmuKPUcAhERYLo5ZBbGiOi9R8QTvHsgwiDFCurIsItSMBAgiXl4e7TeO6ftxNRYQtVgBZYOdSfx4i+dnO/btqP3z37N79Q2sWV+HlRriLCzbf6XuraM3bVSiHBvZBWRYkbAvSRStLb12I+1LJkms1j6/2QNdxPV4VM4Vea2tqfjl7UHFb03LSi1lFKqWS1lqXWp1czSVh1UAENWSofUEbGr3BGxzA9hZqWalZGiTQTl05c/tdi//fZvv338d1B7tLpYi/afv//XcV1/+yBLrbVWRebA4DYFabve0Amcs/dNZD6b2ZxGHTgUOJICTcrGyaOm2fPcf/Rd2p2uZELSSZzy06i7MMs9by1ThkdE671HD8DUTAMGpLElJCZFywkJ9+4xmSWA2LO5jDDMi0UkIpLDl1JgNpTO95qF10zLG1qWyuAoDDT4X+8uiXQNaF5mFe1wD2ewe5L+xDGP9IgwiNYqoskYUt3UIdxM/Cdi7W1tLTxEYVpMI8JKISAQQkaqwS1Mff++G2/4HlPxg9tmF+FbnOu+S/thgv+rXna/6LIlpOMgwpuWPcnAOKmcLnQQqNmy1NUXKytUskgkB7dINFglRIKtr65xqAqhqSxWQQ4gx1QEQ7aMUSs9HK17D/cn79EXLB85DGDFkhGYqgWpqowYmjYpwGAuoiCcxIwxzmazju/UvVE+Hz99/PjbstRaKxkCIvjp86en4yqCw+Hw28ePD8tSsprAOfCadP0WpPhc2jozFZCY/GOuxy4i40ft26tu8pNZpS/tAHASt8kLIqK5Y4AbvUdvwaJuYlLSt0VFJM04nIpDkjYAqiV5QP5vbD8BOS7YRpELNhrlb2LMzEoPzIpLDIa7e7j3eX5gajk/6S7RGa33aD1tAAK4B70rYLWa6FbKLs+nu0fSdDDA7u49okdESAjUpUgPhYdIV6miAUB1hKlfncG/w8ReaVf5lgiuUt2fhyv8PE2mz4VwuvAMNSCS+EsM7zMAWRMYZAZwpVFK1UIi05957x5BhiA3uSokSAcDkXnzixqyqooqiIhACDJDHJQpAkK8u/tKkcfHD6XUapa4f/rvDIh5aM7BoBHpJwRoipIEIVKKljIytImIQEFJP1URKR4pk6L31s2WWtZ2/PT5iwCFZdHDoSxZ8wuYpDHIiAwotpONdDIGjAtxzgM2C6dstbRnzohJ/U/25GS4X92pg5c9W9H57WTX+49b4ylWVoa9ZFzBjR9P6t97D3fON5po0DxmhDJTYTDcKeKj/tzQHiavHLeoDmI0Z2mbtJw3gSCCIhHUlKBVNCQUinfDx/Z9vLOMtpuYDQLqvXvaqzj1gLw4dYDe1vVp1eGyk3uMWc1CNKtkjzYmJEV5iDOSNydulruMJIKOMNHQyPRZp436j6OAN70vrr3sPx4He3nbqD8zWbEIRUNiSNUp4GbI7qyvJQShyIrwxR7qcqzLGi1IraYmzKArETVdWL+srXvn9BYRUd2y9e9CI4dWIbLUelQVkd5X9354eHx4ONRSzYYIPwKwQCAzTG+Vy5LlDFtCpmhWUSunFKEybcPhVAEFpYgOO2Swt27CBj/60Xt8OByq1izWy1EczXTYFkb6IWy0PkN9dorSc/Efg84y0Q+R/FenyVc2Jf1yna4RqGQReE4NeXbJ849JQPfp/SgnuA9AIDZl0GfrveflKb8jYthVIEVMNCJGUk2P0BAk7DM8scbTR2TJtMycs0khkchZovzplIANmErhlfJCErbN/4V+Nr/f9/BuVuUN6CMZwm0OW1unGVwIcF2XsqhZhsNs1qpgJHsFUIqZWSm21LJpQgmRqRESjJjODiQpKio6yw0JSQ0hJYIOyuS425nHsy36d2wXr3Cx1s+x2f1lt3bIe7UfA/7cf4sX4nsiAqiAKlKy9npMTB4uEJsUT0XSz0+0uAqc5MdPx6dOd8VDVWQYr6RtT919XY9JUiRG5EspZhmoAkbWKYYKoIoCU1GPHuyl1lIXUy2qRatpASCZDzTQmzfvW4ARkhhldTEETtmhN9x1kJXkQwnSlsVKLYuphSMsGmP1NTwE8vHDh8fHx3qoIgjEIImUAJURhFBNx4zGoGxzQi8AH5y+n1j/2e+3SP/9JX9bk2cf06FzBKLOBmAD8fMPkmZlf3iYVRayHhp9AkcxpwPnDIDAKOeQ+tdOUkM6cqUk8jxhKk/mnPdq72Zovzhjp+4n64oEgBIN48wci/QGlZAIdlCsWAQ6e2qKtdZaq82khzhf92Flzkp4GSwhp8QkoirTnI7dmnL6rf2SgrfGHQV53v7us3TJEZ+95vYNJ0iY4L2qkoAEnZl7Z9KFdNcWVTO1osVKgcqX4zEJoJi2tgInIte7uzLFF/dAPcV4DnIBAd2jJ8QkkGL28eNH07osh2opACEiQBMgyN579z6RjZONOkuAZYbQPGkAsiDkyQdv+m0SLEs5VKsmQngIn7qv3sxsseXffvvtw+NjXeqUhsOjQyBdtGaVS/cIwagBGVvmZzKZzs7msM12GocHg8DYYUPFv7WKr9qFV/N07nyhNuRoSOMxwSuefM/PWgzHxHH5LH02NBYRJT1v9wiNoGTu7M1fKGauB5HpG7oxmPFNhgVMCzDO5bYEl3BhGnkxlHF79l7NT164EPt5G7ZyMiJ9nEb2q1SCzdQdDZAERAF0BrlorbUuy5Iez5njXFWGJ7NHFvVWiEJhFALTG1nSXBLDQgzqFl9M8qL81t+dwH1L2yfifi4jb9rSxZd3Oryh9H9fPeAOTb81sOeXcRapUlEKRVXyHM+DPpjkhGvSVUVU1ELN8ri2cAcbuxCZfMGKZQ62DX5JYTwNoCQxyy4Fs66AhDuIw3I42MGdtRwO5SDMJKADi4n0JxQJskf06D0aKFUKAJFRl2VS4/TinGFsMnL4BCOCBare2dYV+B2uDV5qqfXw2+HDv//27w8Ph4y7ARDk2r0EUaAqgdhsTSpiKrGT7DXrQSYyZYax2wb6ggnezIn8judQn8UnJwolg+Lz5OuVDCB44fDDGbsrA5rPl9pZLLbLg0nTHZOyn6j9iQFshJ4TPSMpOhK9bntyI1qbPgVsTIDvJsC/oL1hdeaeCTKACPYJ9Q1FOr1BAYogE41nni0BBFJKqaXU4fOgmFHTkOA8rrnRRaSgUkYwJHdPn9OXKzjXS0X2VbH/lRtP9oA9M7i4aq+qXqXmPw8TvarNyLXEUBdXDoFs7qB51k5KJMjMn4DY8UJmQK0clkOAn9fjyk5vhRrk2lgieutA4vLp7D/pflo6Ocbm4d0bRNOF4lAfZIF3LnaoViSDBYAAm/dM8+bha2/dvXkjQ5CpmeVk703DdZLazWtTphWWJFkeHh4fHh5LKbboyt66WymPy/Lx8XFZqtUSJCK6+/F4tOhSF4U8MYYjaeoyxCiiICO/3Ub+ZDOwYHj5zJV4Nx38TpJkOQP7J/40Q74JhmzhcXuBfdDojaqPaDuZMM7JeQki4oCHu0/LAQgHpsVkw7i2gxSkMJiV1UycHplq/BQCvbMwT11px8fkex+6d+g9V5+qqmbFtJBdzTKgASIjHiDLElXtIe5EhKkWsWrLUpZalmKWAFvSbYL0YX3RWe80s1plrb0EVWXHP4MI0tJINZ2Mr3CAsSu/9b3/dm1yyUtqeBI4zqjniwT6v4QlbKLWuT/KGM/+pa5S/00U5PSnFMA5Y55AEh5QhGI6KwBJlYvqoS69e2vdySyyqCq9dfcQtayjlOG4jhlxpip0AAJlSESScCVZS9EsC2MlAR4ByOg9wpF2stZ78+7uDmeEUqyKSJUd35o84ORDgSGWjekaNrZSy+Hh4P2phD6UDx8PHz4+fBSzzEgk7giPiAVVQEgYioeoqoQBANHIdE8SFRpUEKqZcTgQpkpk7eUhdMh0zR4rdA23OV3w7NdTkuRb23EGm15sxRE5Kti8eKbgfqL42zaa8qQAGfUcGZArcrLEknRy9Y4AKO6RlZHHio85p6kBVNWINI6ODB4i7PTuXYAiWoqRkdWHTroAty29x7CevfF72PTeIuzP4zHIyHBJgFJUzLQW47IQq4qOiDYgRQchGZksA+lkYMVURZd6WOqh1npKiAcSPupPZyp1yYj0Qc3nyCPNA8mAQEu7VS7ZYOBTNMHcjQCGlo/d5vu7tZes+1VZnrs2PoIb1cBgAQJgOyV545g4Ds1uP6t4Kxu49Rb3ezuNfBzs4dwo5+2i87NXnm26fybQL0pNes1M4pLiSIgOm2oedFapD7W33p56uNK9K6U3//Ll6XhsKhoR7s0jUvxIK6CYGYMceR1NLYJUmFixCjAfIlAJttae2BWmKr23Y2s+M8m7h6mpmOxo/ViX7Zv5ytvrACimhZC1tXgCCmqth/L477/9bx8fH6oZAlC01sPFrLiHx+rEYUk2E6pptAQJOEWoZiRVxNSzdGxmINpe5vrSvoZk7Yn+NSQkqcIGNO1/uQgBH3t9ovx70sAdbjMHubMBYGY146YfEAg63LRM7ejk7Dic0FMl2qHkIJ3hHiC16Ey0EUo950f55tff++Js/Ej568oRipMHrQgyfyGm0Vt1ODuRQVGC3r1FZ1AgZalmptCUgFRPskwgZmRZhs4rhzOVCMYSbpEHMypYVDTzoDgdgIXC/q70/aK9ishua4QpIG8baL/JMghjuBXqnnoy3R022fEki4jIjvqTL9Xs77Cr5z+9vOdEcbcR7p1LLmjFxdY9++MkgJoVyIzgYQZcwR1imWhENKFIkrUuS29r72tzMpp7eByPT18+famy+LJ4nPT6fFSmK/Ee4CCP3bvaiJXldI8kufbu7MEwLcFo7RiRCT7hHgItZTGrM3XYwDBs6tw6aWycn9QCChh9XV286EFhD/Xw8fHjv/+P37RaOZQWYaq1lMOyEHCyd1f0rEMPIjNtYZLCQopIlOgR4hktIMFQGVtkx4326319bccufytkO4n4+GMEeXOIrBP9OR0AnjUAQm4OOUPnI+kRhKhJBN3DM9NNUKgANGu/TcBtuvxDVOiOkVIqBQp3kCKDCUgJHUEamyRFEgiMtN/EKXThPdubhbXkoONgDKbGWYKIJExUymJmZs195M8DHKAoMjVGdDJgWsy0VDNYKVZsEh6BmkQgGD06nSlPmVmGkhBwhnujIF0V1t7SmyLAWgoCptV0gLmbheDNL/6d2h2a+O23XCF22y+Rbn4TBh0Gu1H/OU0EOjvJC6ZXuwzisstlm50+F7evDubi++2ua/cKcDOO7/RqcxdON20qzDTB9eGAeOUuyCnYH4RIpDs/yZk/Z8uymWNzqsGKjMJN+bBiSyn92Fv36COy3TNp3MaSUgCykUgZAhGKmS1YmrdjXxubQgsKgNznzliPaxKbNCd4eDEz5AHRWqtZQarJHllNymxk/+R8cY+RNi5tyBApVYsCAkbv9Lo8lIcHKzaidGU6E9ViJSPyQSEk4yCgjOg9RlgCQ4TNMdSaIHWQBgFo14DXix3xsgN5BgFd+V02158dZnJm4xq23gyjjth+OD8kQ4eYTDXmr8NhUzkqsW1uWAl5WLq32MkOc2K5QKa9yYGmQX9z+8/xBp1DAskdmyk4kg0odtT/LyRe+4mKqULNuAfkP2PyEq2nqEiT7oGAKzyCo24GIKOYFwRqs/D0liiJhLuk31v3TlJnOhGDBAPOzu6M3nvrrfWWaYUUWpfq7tWqFiCmJPF2hOylk3OBL72hh5PYMtvNrnjPH+xMrtmCEp9BQMEzZ0fkoswNLBNR3ehfMm4OtxnhcDnXuwMdA9oMDs+p/PZ07H7d0AtM35Grd81XTHqbFBdz/OQWfrgDb0/HEhIhEWCAmV08hssZVE5TMkEAD0Jd06dYNTO7xZAvocWiNxLHfvRwkuEjBXwOL+dAmP6aVeiZErG3WNt6XI8PyyEflONf19aiN1/Xtharnik4xSLcVEsZcfU87QQxU0BJ9PA0IaQTxoQ7hrpWHh4Odami+mV9YvPlQzFVqdrYY2WVUaOSHqgJr7JYlhMzEXhOdxYcyCRzohgF0yaekalvrm3T3Q6YC3WNpjNT9G162TkEhJ0Bb7uXw6aKiTvJlCAm7JN7ZfP7xEn02HYhT+FtmVMSQ6wNMsJIiDhDRBUqJkWLWVE1Talj2jnI6N0x0GsSnKFmdFLCZbj/E8DwI5VttmR7U2ImVD69/fvwgFeRqtOqjT0dW6xcRrWkr6+KyaAUAGBqJBgZUJ2h6j2IPE2ghjsLAYQjxLuvGShAwL23vq69de9CgVgPEpI59wAGvLV2XNfPT5+Pbe0R0Xpdlg98PFSaGiTm+cXGATYGPVjtaab3n0bQxvMZuDpj2y56w8SeTe814njnHkl/v2c/bNbwTcA9SbJyOjgYEionfjIwzo0BRNrOx+nJ8wIAkUqyQojgyEw2CfW1+dlOWL7RFKr2126CVhaBU3KkHZuTuu/5jJMh+VJ4kJm1XjWVAVXhoJuCDEeU0+PItAQiD/dGJZjLn7MlqKW4B9kJjx4NvgoUUsoIiMqy6IVq0D50UARdWVLc8e4DLhaIAQJT9R7M8pOA0z3cybU1di+l9N6P7oF4Wp/CPTj8JyJ8KWWpRVUREQIhwrsPOpPK8WDWuYgQwKO7UyGijCitrbSgcu1NVs2zu/aeCrl7N1p6IHn3NGSncYRAS4VCmBiIiAhKVZvIeE4bgYu4JvK5JrerwXNrG1/X/3Yi3WQMnLLzvodTFqOYsH1WTZu9yNg/c4jzyCBtlQx6eAumu47OTEEe4YJM0iBTOtmR73T4FVW4B8CsAROkCKFgZ0Q30WpmRUWEnlWbxd1TiZscKnvfz8B7agAbUbtPs/akjUSmcuvdvfe19dXXYNqj1AQlnZGB8Ey3YmCE0z167509CPGdrAf05nnAu4mIggpHsK+trW0NDxGLXOlAgrCqEuxPx+Ofnz59WY/Hdnx6Ogrw24ffFi0m2q2VahTjbokxNsrYQJMvDNoD7DbkOR2/Rdw30n+VW7x8CTjAAnl+5+RX+4VP5V4m0cT5kE49R0KXZPeZpXaGJWLmI5OpBADY7FjjnaCiSgSGtrA700GqBJihQJqRRkgjzc6MthPwuUu0hckABmneJUhwjMQ4mvIldoi+4Lk7L1MfpYyEnnmMnSGhFFPjcEWkEKfAWCAYvjkPgKcyRjt2PnIwZBRVMII+0iSwt6Yiajbsu8EidoSIGlRCGPR03+/hHOgUA2lRlrGEEBK5Oq1H68dFrbf+1FaH9FjDG6DRXQsEeij28HCotSCEQZs8yOnu4QiNIZNjHm0RoUfrPXPVGKR8+vy7RYFK815qFSWA1pqIlMcSZN0ioAXFigy7jzhAUkWKFXDENJnp5G2acQhpSTo/E98ZuNigwjMPodx229E9QRbznpFcJi/bnEFPDIAMZ9qYEo+PzGdJUqEqCMioWiVbKK+OSLFU5dIFOD1aUoRiIEgWFS3Dgq8js6DMoDkIpt+8bAfq0o7yXu1CgL1zGbmFTQxVxt1b641doWalFAS4qBHaI+ghqgS7t+Px2Pr61FeBFrGsiZqhK713ELVadwdD1ATS3Xv33hygqqY61SlQpViY9t6/fPlyPB5bb+tx7eu61AOdvQ1jVa21adfMqUhNWXUUcb5GMS9e9haiffHlndl74XpN8Zinsex6O1HS0zfbFxP2vJB8JhXLQzrVtUDGF8rYq7mxYgKjwEhCzlmgbVLLEAzjCgf/gEDgERGqgkxGFkOB4CgBemKZu3cMkomQyPZyVBnsKpBJWZLUDwFOSJgqNPWyy5eV6Vk/CXtKHlPDY0gm4RdCKEMyJqjJOXxL/L6TYOdIOQ+g5LzNiXWBpCApDJmZetJFLYl7673Dn44HFVtK9VlIBJwZbQEVM7gQdArgzb2HFV176+Gu8Ogi6s6IfjgcHpbHx4eHWkopZdDYBJiDPYIzyFRVq9Wc+iQaEX7sq09X19L68fhl7e4Afnv4ra+t9VZiEQbpaunBKqXUYiVDCYbWvwMjhtnTbClFRZZMXW3FbMYkJ2E7F5duHYn7EijOISDgzCSAneiNs3QLQ9CbKYq5b7n5JjA48xrluscWsycq5uiRSkDqVvNhESwygp8T+phqyEC592+X6SVEtIW3cLib2gLxdNDK5dxcHUVMrVjdghLvzMz7tm3qdg/d0IKxcQkRaMYCZoZEtGgePRVGy/Q+BrJ776sH/bge/3z6/OXpc/OuYiZWrRa1pS5wuvdSFxK9ByAFRgFDwAwzkQgnQwKh4UAo4NF6X9fu7vRQymI1w2c82HuY9XVdVdWaKlSgIsrpk3baby9mfpjzcvH9rXu/ump7YTO2qpggpyUWm6/c7hm5USb4ww1HfdYzNm+HLTobGB7uIsP/LQ9qgtQAnBSJzCEmkEAgkspwiyQSkUxiE6Iq48iYgqIQ1+kqKWfjGf/zxI7zcTNvh2gGcU+fAuxc8gIwGiIgaQLCudcpB2Ik4ykgh80swGRJTPNS/jbVKSL6tnIxrRu5yZMXBhHBk58wKUBRje5rH0mCCYiGZeF1NSpNNA907721pgYGfnv82NyD4QgjSU3NLMjM0ykQFV2PK6iNvbcVqlCUYjmBh0P5+OHD4/KwLEstpWRJ+ZGIlGSEIyKyVjCNQp/FqQBwbe24HqFqZl1YvDey9N5rqfTwta/9ePAl3CK8pB3YtJQiuQd1yNaWwBwAILO11FozwP+w1FqqmRXLlKjfl3Lt+cG5anz2YTsADGZ+nzQCECHQncJ90h7zH3cXkXT/zE0qM43EeKiIcIRf68jxNCq2kwyP1HdzeClQRECV3SOCRRVgD9cgoIZ8hpiZmurkswrd84A9rbmDOTzHKPYzdylBXW+cLzR42Ux0tEGLkgXQSimECuoRTx7hPY6xqkKgAgnG03p8Oh6f1i+fv3z589MfX9YnFf3w8OFQDyb2sMQDa9ZBO/YoQCl12K8gZrXQe1979wCUmpRMVKDSeusepAhgKqa1WJG0DwjCfW0tQwxm4HnyEm52wf0UXaXjz5WA5x+3KQKStGzJUZ5P9HXVYezLIHcdyg5T5wRL56eTu2aCEzzpK7IRrAFnDqeHhHuYRsL94GMmv8qPCaBvuSSHXJkOJJv4F5HJBQi4h2aIjQYgIaGhIaN8yPbaQ6hOFMXzgGwny6GyReMnso30sxxyPwzYpZLnPFUYO3JKLcPONCnf0PxEdACIY5EI0GMCoIgIQnKeMtjLOSq8qyoEydwAMUG12j1abxFBgZWiSo+oVsO9llJL7dZrqevT8fj09Hj4rbu7e3NXVzOTzBo5oEkSFDMEgy5g6ysjailU0VJye3/4cHhYDsuyHJalmBW1rGolIuIZVNydTE06sxqVrKFEuvuX43Ftq5WSp6UkM6xmHz98/PDwQa14i756N7fWS3ca88zYePFEDCMilCx1yR1uqhnCUyzlflGF7FyJ9wdp23Ny2thjd2zLepVdcFDes35OJ2r7YrMGTCvOZg0h2Jmma/aZtk0AG5tGh9wf8DQUxJDJneFBgZiIFvE0xwCQ1IkhQDFLS64OE9mUFwSJSzrFgRhCjdBDQSvFg+KxZOiwZbJxMyumljHce8WGE9E7Ix9jP1/S9DHJvEaCnvFInCwhUzjKY7G7eByxsQ5ZAVtFmKl8CgNQNe093Lv31uAAMh3c2vqff37+44/fn9Yvra2fvzyFR/+tPz5+LLKoWFlM1TzCRMRMVFM01GLF5dj02KN7F1VTKENFAQkP9xChKBAqVlTNbNnmxAENb93NXNVNacpQjjxMKTkPaO7qRI2ZvJD9n6sCg2APvY+yWb9kZ+Sae/Ri8rN/H6HLCJ+y8SC3SeJ1Jhsezx3S90QwlXtGtWXWSCopAXVGEM4c0akk0W53nfhQxhmJSlGjGVL9iki4eXN0PglDwwGMHrkvcmOoyWmLCif06SOqwLM4oqhkYrSQzZk/69mm4OUaxZQwkmakZu7vk60TBAMCJX26poTPqFt3Ql1VbCj7OjkAJ/cYZpf0WsRMPctp6pNUkoDc8Tn9Sz0wcOxHghQGxLvrUqBmVg8LmreHDw9P/mS1WJFgyv8c8zCz0QN0htMlncLpIDxQSrGlimaqxBDTQ1myMEAxy5oykkq5GlmCruoK+Cixh5VMhEZEWmutd4+sHMYiUlrrIpKZputSD4eHpS5C6c1L7fQI97CSNQgyyD7IHiFkEN77w8MDkAoHstSxqmSKjCEabrt1R3K2M7PxgGEIunr2diDPidY9Q4pkb9rf3zz2xvBOH3UHnc2dCB012fIcnVRUEoRSwtPbnyBhoqlSEkJI4p4iMoBGkRhJCxIr5MxaL4B4sDN68NhDIjIBoJpSFCBEFQZw+JFudF9GEo88w8lSNkPH6fSe6PN1YBpnUyNTWT5pPbu7dnHWJ7Bn6w5TusRGEYd8R7LABBKqGu7aXaKvx3U9Ho/H9Xg8rl++fPnjzz8/f/4MyapqXNemuupyEBVO42dRm7KFQKBi6T4UYAtHRDENsGo1JCiEmUdVFabQYku4S5CEB6N3sVbMTINlUNhhD5wCypl/1V0gKHZp+y6uJ0/RJqrYdSNXr8+FHBFCHJvKk/q6R7paDno7gwnnKIbgL4GUtjiwmG1fTCUWoxDdwBQT2SdHpJ5OeOCk6kVEpho2M6WCdPfhUZMCn2X/s5ftpUTEh/Nixsyrkmqqw18enAD78BoOcsbCApk/bJPcg87Y9INw01pJFlCkRGS+hlnIhdzk+Em2Gd1HjCEpIUznxWRJ2C5GyrUpr+arDfIy+WA6jBAYprohLkS0HiJSlpqY+zD4Ok0MbGSoyuHwYJ+r2ixulKsAnWFhw2+1R09l4unp6enpi4iVUmqtLlG1ZsT7UstSlqWO+jBmZiYqyqBmriJpEcNo4QkuuUdrOB4z1ejTcYVAQbhTrZDULHIAkFBTydjNUtSMYKo/EQzxRHPonjrdJExInFBkWiqndJAkbH9U9uT5GQ+4mdfhTraffbtG/oc0lg7n3CSLrCEVnto/dfhXkkQw64dkBnmhCugZXKwjoVl6mc1tx1HcMwstyziaYxNREHB4ED7tb/SI7imBiaaTm45UShiRBJmvOz3kKVvOWIjnjHIgCxslf9n8bH+SOvf/xjoEG2WXDQe72dnUGE6wg6haQLJ4qGgWoggRdzZx+uo9IphAmburaKl6OByKWS1WrDAId62LTKfyPFeUSN0ZhIoE4S0iCAPqJIoiWop5CEwhS6mdoiZLrY2Nwea+ercozbuoiBaJZLwDngjILfF/m7WrH88pu2x5CDYM+9rtOwgiSX9wgvXIKh/O6O4ENVQljBrJArYulEKhjHyoFNAGe97WlRMf4fBuwRRj5yHdzzMFGBVM0x0lY4poliUvAJRSMpv8fCMhR17I9GDO6ZDpThYRNBptzyemrhNJ+4Y9GjMKmSNUMhkASUFyHxsuKAJxgY54pvGao2i5b8ylp9OleyZscBAuUFSlQTYz6QmH2EIZdoKpqpmSYIrUHSKcFIkg2XrPsBUSmtV2STXJWtRLPXx8wB/1s5qUcjArKQlHhIYkGNB693Dv3npf1/Xp6SnIUjamH2QEUKw8LIdSykikeEIGNZ13SKh4MQuz7pEBqCEIsLeeK9JbS5dYFZSqJfeFqaUSQDIYzftUMiyrD5MRoUnfRvpTUmRk+kxiPy0BZjvdcJD2u+20p+8F+n2tycAsZJbNShoVG4HbxJ6x7SLFeAo9GKQkyp/+imM4Q94RASVymhP/GCmO5+hVpZZSrM6SO2NTOkFnDxcRjynNBBCEiokNwGUyVCumxRx0dwJFRYhgCDWznE2fjZNGwI0f8AxmOJVGOSFRsiP4wDbQs0m88+t2zcbeMCcAGykByICkgAoopKgeapXHD8NrE1LMPn/+vK6tlvJweEjMS4tlZLCppHS5jab13taGzK9H0RCI1Fqq1QyJVDNHOLtpQchiS8YJl8QlYwQLtN5NW7FqpuoCSUmNY6KmRrShKLmFp5i7k3NzIs6/IaeLF4gY4gx3KuteCZgM9qzLxCmTnyVi34NEqHDQlySGhExHWIFM63giWsKBXWOatU6rOIPSc4dzy1S4X3dVddccR/OuTCk7/VTyXNv0l4CIppl0in1nGyVZzkbYVaaGLwiye58Gac4Cg5Kx9EH2UU3bk1eopBUiTkLeMOWEnEAUeiYZEQlknmRP57ThnBn0CJi5RUl5VSS5GbO+7gwLlQnxDSKmqmAp4h7OLpHEfYg/7AyPJIIjS60AQCnFoixSNOTD4SONptWkzMkJsIhI9+gxwsRIHttKwcPjYzhUNILFiojWUg510QGwnxgwySzWMq33IwbXN4+vQATUCgDvXVQDCKcWU9UydUwdNQfcW+tp0OjetRexGM7WeU2m4yLTIzYTuwMoZqUUK2LFTrbK+R/eQqG/Q9tLSOOLoU6e8NmxY/N8jJ9c09okACW28rxDs5GOPNSMFHjM4L6dsGplKbVuieKE3YMBD4/w1joEHt69eyRPDtVChEeX7lqWhMtKLQG0tUMkAmFSICJGUEFRUcSmZQ0nPAooVG4ZTMZrD6lqL+CfXKcvhdmrU7k3j+4neNB9nFxV8sPmxaSpJBGEQUzMNJY6ZDQRURuS7DCcw2qpdVkk4qGWpVSxcRoz28mw90ruN83Q8+VwqFrWtZVSAq7U5lCmbzVFxKqVUiKacRiuemNTy+LyBKpYUsnhAcMtW9GJMJ/vW+7njZOmT/I5lTNmCH7s+WkWiUrRPMc3buFYMuZ3yaZFkdnhx+YMD3fRUopCwxP8GXcGgcgKFJLVms4Y+Y4HSGbV1qQsjsHekpTkbkLMMBl39wgKmO6dOOkKqltFI9khQJebZBOQNkF77EcBye7efILMWSsCEDECTjbvHg7QPRBQVWmSorjs2igolxtyVm3q4Q46wmfQQ0RXSJECSDgC0c0UVJWedhZSlaoU1ZL5xzchQEUpoWoCVbMQd2dEwhsUmFnrfV2bisiyIH0WJGsJh2mpVg51CYNaScsFMAyriUZ0Twruvbfe+8PDw8Ph8fjURWBaTE0hxcosCjySSETOmtGZBcjQ6R6RvDMdp0eeMQADKSWICHfSRBgokqGYYO9tXVtdmgPg4rUeW4OpWWF4ahfQAccnDqYqWfFl+q9jfErcfwSZbADOPdF+aFUTBbpIyHgBAQ2T69anxNx15wLs0K9P1D+l9iGYxTjYEVmKAekbm7I4SWeMU5YPSQuBKj3AELKYZn6LYraUWmstZqmUkpEJ7p0I0pmLzNa6u6/t2NZWhT2cTitFESIdEBSls3sXkRR3VBL1EQx5n8rc+FDl9DQBKJIw0T5+6JlGleTsiq3k4mPSlg1d2vV5knbHFI/5DSYSv2lcAaEKTFAyRyBgclBCM+5BpdYlnZ1AMYUBomqlhsCQtCeFR08DgHs0psdemC6lVBM9HEQE0RvoKhxlNdzNZpE60Y4e7lmlIuNkBqLtGsKhMQ6df8Iaw9V3TMFQAlQmNc1pTAPFoPwbJqaC0G3mh7B8gtWGyWYnp5yb7iXjPlTgyQG8DZklSCnKZABZEkdEDDNOs0AsyxoOT/d8HOeqJ1dOxT0Ym9FjUFNKxj9FZMINGSQRGeWb+NJIjo7kNypIAHkcMUCQmLvM7Ku5XXLCE9xJM3OP6L1Hj9YbY8ja6ZmRYGmmK/DeBVlaSmlFGRquHaYWeRJyt6XYy2C4d6eTId4ZRIrAWbSkpJ8rNaclnBzh/aGkkkXUkj2TOoTdQrAwkFeGmkbvPSJEwEwfEYGI1d3pjw8PkJECWaghUpb6UMvRu0JVDRhuI4EQak+ncGVErKuDVsuDaS3CUqxoDVKKaTErVUU8nIEQIT0UHio2wqRT5k/8ax7MEdkGILp37xE8tlVVo1j3XiTF/1ndt63NPeBel1L6IqtW6zGz2EVQEJnmxgRq6XQA3TzWB/HXof0nKZErFOZC5twOx4vg7J20O9A/ALzQP8cP3GZipHHYRDqCdMa+rqakdLrXHebVKmnUVcgwvhGhRRVazerw2RzBeL1jUEWSpHusrZHsrbV1fVrX7o6C1jqpVdTURaCm2jvSnU4VJgkF9CAklVYRUShtC1vjnDWeQ78Yc74x1G2+rhpUrltZTnxkU7Lzqy2AUzZ3vYhYw8FRfyunFEJRyQhndy1kGiuP3bQm6igiSpfDsghgZgS6d4jBw3Qhxb0Hg5HA9Ch+tCylqCGzXm1BJgGP7muIaY0QkeY9JHr0xAFKqUN72cyMnpCeUMfscVpDiMldx8vOTbXxwpHpNv8+CQuyvytdbQbTlZMJd8cNhs/BFnsUkVbbZB3h7AwhRVTp1OmSCEFWO/MIDRaKSohDYVROmzYBZjoDwSxDIWqqtKGXBzNqN0czfI1NCyoRQ7CjithQmEEnbcvtTgIjBgkA0rn2ZN7L+IABR5DsMXSa3ntrPWPCI7NPj7wgBNi7T8vvtHUrvPdV8q0PxdxK3UDImAbPwQeywpbnsigRJxeBobZzlzmZnKGsEd6dEdNcPrPbRO5rHduiF+/e3V0EQTWWAjjYez+242M9hLuIAeqQZbHHD4/9y2cdOLli21NBDw+6QjNC3rQojM5aigDeXKqWMvzLs7wMSYgUt8TwRjS8SKZjab231pr33lqKKcl1k2ZNSh6tr4dDLRBJ5/2t7GpSMZLeeqO0usQO9FRRpZimt49GRoGl3mST/k8EKAd6lcrcT7r+NasvN/D7Vnd7+j99oEdsSe7L1Phjl7sYgKgYjLF5BI0bZDI0IQ1CVQG7h0KG05MkIaKIOiPt791b88xLFVlTPiLW3o7tCKI7mnehmaqrZvFDDJPaTK0lSJew1KgSbssce6cX3b/1DqqWvfTPE6F6W9vfx6E5TRLqGdIZ3rtHRu+P+qA6MwyLiUIZrLUSHgq4lmLuLWOyMq/usiwyYhrRU48Hes/kuq15T+TaZJinQDLPLU3FyNZaX4/NJUAUM5hBemfrrZuWUitUIjO0BD0oo9rehozNLCqbEsRBZmVQuxMKJGf77nJmuRMj5uVnKwWcjM6TAQTT6WTkHx7CSxoEoOjoFsIgS6oeIyWPAJqeGkrMgJU4+X9CRjowywCsiPSAjtQREoAAoGZDtaeKxOCsJ5gr5dakuJG8K7JeqQ2T7zQQbVaBRPC2t85ENQRIpzf3AQAF4MIZnZthN2Ykh2Er84o5we4Qtwgi3GUOjREZVpM2BXDGKyZ9HA5fgCgRZiJ28k+RE1Ogu4MxSH+mdmCGmmxirFBgtBqle+/eoAJ0J8W7iEaPMHbvLtG7i5CqmRAihRunObuHalggvJMBB1vrw1IiYmIwsjtEqpWipiLRe1KrTkKku+aYVTLfqUZEb7333t27R3eKiImoGYfyJwKUYkmOVK1ooqGkDjFKTKTUQonPn//88PCxre349HSoVdWGjK9SbCRtFEGq89MBVLclCSa/3MIsz47HWfRWZr6ezFzu+APtO5L935tMnxV1EvHmdmT3sb/A9BxIvT7FgRQ8UqebmatPkmyq9kmdIQpRGwjqkD0lZFrqwNCR1i28r2M1ps9b+uCSkDbY1PBGSD0OBDBi6NIXdFrzgkPzOSESp+iAS9VpSqCb1W0ktTodTZyQbtk8x3fg2m66U7M/GZPHlIZn1sShBLh3j9ZWjx7BcJ8F0cQkQ7AIQbFC1B5O0MrSmq+rK0vEkCTMLCIPoQFDw2jN1+49mqOLiGqppaqKQqkqKsEQPSauqqrh4b0zQkmoP7VjOB8Wiwjv0SRMT2VoBglOtpMzGaRMCwpl7i9hpnEZytaU3c88c2SK9EM1Q4Zlze2a0xvbXt8meaBoQxzpvbt77yPLXvqA6ZhzFYDdxSiqYPpCagTcQ1JK3TL54LQ/uOF1p10/GBymaDSzQFAAgzgy2bEg1Ye8MFyGOcyK6uDWQXAopnKyKZ5aRIsIQJK3kBZK0yqiQAeRyLUmtM5MAqI2rNYZUaFTV0Iwunsxk6EMDbZMwhk9mCiaSVZSYUYkB5FstSSwPhdOKSYZIcEJKE8O51J05CDaSbUI5L5LwUUVSqTBL0wtN4C3RmeHK+RpPa7reliWdV0ZoR+1GKU5BywcDn5ZW2bVDKfTBcws+hD0cK7BoAQAoYrD13VkSJG0jZkBTP3FI1prEKlqMUiKSkBM0YMc+dYJllpG6W0kKBbeG61IHKmqPMS2QTGgHl1qtZJBYRm8nCrjKePbtvu52QgxlePtoFzwA9mHfnH3/R3BdWrc2yY/yW2ywf3n+z4VAnJmxlDA52CyOAuji5qR6f6U/FFFFGKpyocLACtqkkjfFqyL9KKb+ieGf++AmDKiWLZA9kApJRy5fjZqO/jwp5oVBZJ0y9RX8zkRMcQ6mVJMEvrLQNCT3L8zmpxJ83MOr2tkMgHrbRYHapAh1Octt+PqbT2uPqWzWmu1sthSS0mFCVITkeneU3Vcn3pZUgEaOmikMXamlXx6Oh7XlSWcLhQskjGQsnlrTNBBVAVqWTRvCKiIzkR9evOm3dS6m6paSlyEUxKGzilhAvmEKGxnAEl5P0XgbXfm9pap655Uie2+TNW5rcvMNJkjx8wNNfTUk746jFURsXpHhJmpmjCEoqYqzIzNCb/IGYECRcus5s2dLgtgSww8OBkFKnCcjsfYUmY6MoIqRaBOF0H67IyIRwY9OLamCFA27XUnC46zlgQ3hgi2lCW6kKICCYGgd4DYopbSFZ2zGEsGoiY73rxcgpGm+xQUPOiEM7GuACEQU4mI3Aveu5gWDAF/nG4CZGdkhUUKQpDel5oJgkQFM5558AwGqRQzKaqa+axU19YALGYz0pk9Vu+9ra33/vR0jOBhWcysWBWV1lprzRnH3r8cj2trIoLeGsU07VDR4OailKKmUNUSES3aejyu7RgM05r+92bmmUsUyCA+HwGlpmpQEWrrvfW2LIfce0VVq9hiVUyd0b2v7lRfUPXw4O6CKEUOi1kRUVhRtQw6n0pfIv5xSpyadEZ5EihT+hkEKbnsnuIIbtAf3CD9874rd3GiP7nZkNHmw7t4QD0j5VWeaYWm14oi8zOJ+NBst6K+qqLIeC1EWr5GYkEzMR08PyPbs0znkItBCqmgqYRIENUqFzeRTlgtLj1TXenInidFS6ZdSuDYRkTFACOAma1zSOYje+KcqzHHwzA/vpJTvcOc7qQbY2kIZKYdnhjBCbxgGhJk5P/CzpOKp8yqDADGESXYez+uawq/7o7lYFLqKJIsSjMzjQYJgLUUFtjwnlMREyECmSdDrPToRz8+rU/Jq1UsuUSARijSKRQynEkz31zYmD9mpwI1Sspp6SuYezXTopGRhayTa4iKZHBGCGUUg57vnfOeQRsz0penrU3kr9N/B0inzem0MzjWkLsx9anZcvY5glI8c2+G9xbdYCVMYQJRsGhRFQp67yJisIhwR8CAgIrrfOiEmEgBdPjKO9LKmuVAUg1Ml3+PKAFKIKUQUKBpMvXwzJbjBJWLmpOSUnAGtYzoxZN/fW5XMxs5+iX95UURtap7yRAcI8RUDMXqUspiJTdfgMUqNneG4VoiGLn1KcgIhrkXg4M4pwQ9lkbSYJuPhgAKNambvwpEGeLaes9w1+0kJeVIw1ahiWYZItFNmdIi1TCCb92DLshcVIh+XNWBzh7sx+Pn3hpEy7E92ZMsD721tjYHjq19+vzpy+fPEBVZVWWpRaEkxFUbTMzUihawHf345fj09OXP3nvvvdZabTEt5bAcSvXwlDta703lcHgQ1eh9eHKqNpEATVRHAmKIpAkCLrG6d9VYFpPEJzxDaEEPqlGYXFfG0g639El7weFWJtvXk0yNrZ3yyUuDu97SZMinHCL4LrsJN1FrQH6ZWUxETRQ2JNwt/wyGP1iCgHlW0xZeIRDN99D0YAOIdLzN4DmSNFWUohlTXtGPzazYw4MKjz0oUouJJBKHUoqQtSylloSjRjag0f+ZL+2EIDaQ7Yw3yDl/PZ/tM+UgvxENPGsbLjd8YvLL8zaJ3tSrJu+P1gMspSSuMeQmVXCryxaptIVzqfVgFZBxUCGk9O4i5uGrrx6dYFtXQB4fl1qriQIyshNulCEzMIlkZB/p0VBNADEdJq7kl+mVgjQ7U1Q1NIanrEBiiqs6nfZkmHg5Zi+ZNWXzuZ+45TYrm8FY5Hyvb4ZLbIapk3WK6ScTQ1YmdhbOCAqLAZSiGsH0FCNH/V5GtBS8LF1xOWNDtqXOQC1i+CqNXC3IKMiR+E0ya7SYSkIHACC9RQ4lJyJjr1OoUzWDApG+gTJDzDbxP7eK06fek+ya6W9BTIqrVFNTO2h19d7dhVCoAlkoj7GpE+OYj9iz3NUD+RxZJMiEZabn5ajEh9T1mQEDKJm3AKpJB0TS5pQz3/uoBCkuNiDKmtnXNlmJMzdcUROKZGCXoIoEovvaWl9be1qPjw8Pyvjyx6doLhj5Ybz3J2+fnr58/vLp6filNSchKkutpmV4mqoeliWxcqE2X5/Wp8+f/zwenwSopT4eHotVEnYQEbh3RhD0kFIdUXKDDTkm2FrLaOKS7yEAg62vFCM6F229aave3L0fj8cvX76kD40C7l5qLVZ0JiEa6RAwzt84juNAY4AzJyFUQCX9GtTzLi3J/BB79m4qY29EpKw+pdfJybNWC4OESREgc4vIdsBFZvWwAFNBHqLkONGxoSLjuTPF8WpUFkggPIpWLRJrW1svZqXUWmrR8rBUAUxLKZY8M5EN7gg6t3Q/86E7oX1jszgroINnxP2S+54IxPk3U4XARue3+b3Cv2ViWaVYesRmYYAhZpGDVE1HAfchA7fWHkudsAG8050MitG9u3vr4dEBmJValkw6q5IZ2EXoGCJh9NZb74hMZUyPUUSbnAQCcPfujkmYIlTVJc380w3GTBPPIAaSzoltTmV27DWZOS/PduBpiU6b8tlFMw3CbkZPjsozLxxTtexZZMeLVpLee+oe7im+WGQ2hbwtFS8MmGZDSvMRKpmGQHTgoINOJ2nldNt3H344ufdVoVBTiFpq0en7ndRbMeLKtoSFwNZx+h5RRXRYecdxK2b5MPcWETO7gKUGZnkKMok4psCZi37uo8ENY05Qyp3B6DyuR1FdgDSQpiEwAaOTAINtEiyZFQwRMuA4956hxYSqVFMzH7bTkdWBJDIsYKm19f75yxenH72vqgg6+59//P7nl09/PP15XNf/49//P1jXT2szM0QgeGzHox+/PH3544//+uP3//ryee0eIrIshyJFVLSUWsqh1rostVSzsq7rp89/fv705/Hpi6oeloN0qpXuEb2pmEdXtZxAdnY43SVDbqCqpfU1PMKjiAgFwQyWo7uXIiLy+XgMlLp4X1vvva+t1tK7Cpi55VREtaioZVKmSTy4pxkCzoxUu92vk4KNfSCznAW+jRNMOzJmss4T0jrtlnHiBFvGwemuHN65jV1i5P2GyFZRIVNBUBMHUs1QdEzf6M3DIoZvb75tGouEi1ks1lqrxcSiMZxxKMvDw8NSl8NyWDKserhTWYrKuwnhIPEDc55tTv3pzAGzAgMTgRA55SeYisLJBjmxufO5PKkJCRhF2ubmMp1Ozrx8MIClHFTURJ/WJ6jWWmupO0sdMdFwzuDM9FDuvZdq3Vtr7Xh0b36w0qMd27p6z0jspS5LqYYssVB2U5D55qK7jwzqJfdesWVxdm/MSFIpI8pvkN0IiNhwgVCAOflbXKhmTuSJ7OcOmfLtkATTTho7cr/XcFMoUowEMvlrTNFhA9RG98OoNphh/lDMmsMjAE2NarjVAx5dTDhi0ath5EwYu3iTwE7LOhPZBwn0CNsg++1IDuYUKuagECNcIxMcKyLCmHqDQKyYFRGCtgsFPttPQ+K3ERojcMYuiakaNRUyzaKqakBauiKXY6yUjiIzQ2gdb7gDNydLdw8Ptt5zDksp4Z7pEMQ0cfKwtGzLlgUqbZyWJItkhBDRo/XuCIGsKukwmYJdGaZuQ4yYiwIrasfj+rQeGRTy89OnP//47//nP/7j96c/6sHa8cv/97f/o6/xn8Gnj4/B/uX4ZW2fP33683/9x//zx+//3Y5dVc3KUg9FFzJnmbXUj7/9VpfavR+f1uOXp+P6pfcmwIfH3/qhLcsh6wAstgTh2tWKlkKAvbu7kGKW2THUrHc/rq0wwsPhXUA4C0x1ae4xFEVTLdMfA946hoBgYwva2MMxvFPSLS1JEM+xiPE9Tnss80ukyw3eoTGFrowMHI/b5Jt8XF63yZ5Mk/kwu2WsSuZcjN57mt2m8KcKFWHMMIf9zpsC38gykWwjEAyOMGoyTUdpT4aqFinditlhqWZlqZk7GyJiMs2FU5Y8cddB0MentFVeUG/ZrthMk6cp4jlTeVFLL61U9RDgjPFJcWxOwMYz8tAtatLJYrXWWkuxAdFk7Gf6d7bjsQlFqb23py9Qkwy4X4+N7iVKj/V4PJpZb0exstSHpS6qqmLZAzJRa3pAt574gx9bwIOxLAcT/fK0GrStq2AAn95773DzPGxhqkrTUZC5Vt0UrCxrOrXbbbUplM1xTnBCWubcjoySY0HmXkyFMvXMvYKwrUgqIumZl3p7wu6lFGTa4bFrpyiDEEhHNzGdJWRDIFkxYVD1/SPyXhDwgTRhgwHygDArZGVlR0c6ciGrG6mGOGJkxiqQAEytiMRZ3qPn3mSTqHLY6CLtbdNPZCrZyYuUEg6Q039ToJao18Zwd6joFPHGXA/sN3Uhab0PF4XWRdUx+HpRC83cSRPxiakUTNw0/3D3Y1tHAUFBKbWUksV4i5lpyUShpjbcoHv0p/XYGuFfPv3x6Y/fv3z69PTl05+f2h+ffn/6t0///vC/8dPT5z8/OdqnL3/88ed//td//efv//2f7elJqKXUw+Hg9eGwPIpoa8cAllq/fP5EyTDG6N2PT5/b+iSQT4+fP374Hx8/foRZMatWRMXhPVb07l1phRESzrAINl/NjIjj8al4eGtD/yq1dgQ7TPzw8LgUOyx1qUtmf+1t7Sb/f9r+rMmWJEkPxHQxcz8n4m6ZVZW1o7AU0GgM0BgSLxSBUIYUPoD815R54gNFOBTOYOshBGh0V1VW3iVunMXdzVT144OanxM3s1EDcoRHcokbEfcs7mZqqp9++n2FKzuLSriiDHWNHAgYJXQGrR02jpQQGkODuEWKFwX1FzHqe9jCnw5V+P4W4j0PBhITJh5SlciTZodraOD0HukEZGY9PIrWxBZzGWacQuz1b85vk4cwKDJQ5+pkImHxMGRPbGzRBBAZxAQdQidEJJwWccjTZtjmZMttoAlxW9R3QHlvo+ywD8s4bUeSl3lmypXSTYt75IC3ioBG4SVfBp0/9cjXztqHOKXuBqgiTDwm58MGeslBoqWKqHpGWC2DNSwEWIR5tzAAvfUwVC1eFERbbw1wi27GhGbturYwnudKFhw6SZlLrZVZYniTICL61rZ16733gDMTq1i4stSqQXADsYMA52jBnUupyqpqpcycQkEROQsGocxcboccpZDkOJOZmAWsIqLZBM5btKN1yF3AkcL1t6XJwkjr3FsbJ7F+7IDJvhFAQayqFSDArZqFkAgXKkP8jZ2QcuQ6oHgBubtm93VPrsctGrjgzpVmSaXonK570WPKD8OUrl8EhzlISRHpfFscY9oru4CqKkSqI5eWXQxK7qJZfNuqA4BhAlgo0aPBHInwCJPs2yOgoLgdOdlxJSICkxOGAQoiSFP7aIQVcASBRbSEpXigExG7d2Y4BCBH8/B68/ZgItL94ASRR1gMJXgnhJlHAGFmW29t27pbAlUsXKfpkLCMSBFVUfJo1phJ3JfPz5e+ufXrejVftuvnZbmKFJyafe2H+YgrzNvz6dPT54+fP3+6nM5uJszTfDhMR5u2rS55IwI4R84vMyWy1LtZd3Mwegtr3vrWvF2Wh9cPj9M8ieq6ralQqSIsPM9TROne13UFcZmqPzyU3nuEi3Cq72bXjiMn9TVtaALobohgKIQ1pEYdS/vLQJwZhL7QKmImjFnI3Ck38ZMbXPG3oMn/vz145BPja05xpmRuiSiEiNyRGRITbCRUFGBPmWgPVR1D4FRLKRhiUkVUeA++aeVL7gPZuA3d877Ud0UVoiFPhUHNzvd2q35IRQisqrXUm2/DuKj5756V5P9GczLTzWASUkkNBdmjPfaFzQO/ffH44bW+HSd/4oEXHTZmViGGBOcEQ1YkGjE44PlPURkTdkT1PtOQEowUFNu2uVvA162ZqDDVOvlKkPBuffUiGhzb2kCcFTGDVXSeZpXRYmUmhzdrW2utt55TkC2UVYTd0cfkMBFTRLTezDoRTXWuWue5IqL3LsKigoAWVdK9s0v7MiYGUiSWMlKOAY3vX85buckjHxljWlkU5UwH/y1Q562mu7Pm8oqVNLP0bIEwiRRhBptbdqIEzCIenv0+4YFf3Ug4L2R4dluo8MxJRHQnzUSAUyk5fLTtI8LCiFjghTGVmmuaBaONS8T7/D8zdGRetxzDOVWB7zLbPKAg3sumtELq7m50S+n3THy/EuPq3AqX4EhJXClZtey1WsA9fEjhRIqQB1BUIwCPbHGHsITn2owId1fVHOQEU1LrU07BzZLBueV4lZtH9K1ZngruIJJa5sN8nA611qkUJkpmTmvNrF+fn7Zte35+evr03eenT96tlhpr87W/evVWVa/X8/Pp4+n0+Xq5bMsSEbUWMoiR9PDiyXYmELw37wAclB91X20Uvl3N1uV8vZ4Oh8Pp4bFMdZ4OygXu83zQqU6HqfeDqqzL9XS6REDn6dWbV6WbAVxrTbWN1PMstdRSiTglLyK895RBIBVzVVd/UWPdZCC/H254oAFEHLjnoLfE8160/a9/jLh5Q/EzEcu7ykIcyNyYjdO9BCwJ3AJKHKRB5t4jrGjJ9ZYnfQRBCKDg2OvVXDo2TTWLgD2b4NvJ9zJq71teVEnYAaTZ6RD0Fk7zzCRb5SF2Y9rvLcHxX4/gFxGZSZnH5P1+8e+X94fX9j56+qW85Z8+A24bmwbcIaokkOAISvkHIuGUiRVilYgxAAX3GFKOxDxElhAe67atbfUIEe6tLYRuLtak0rYuvtE8zWB4+lJZVM3xc82xr94tg1zztmzruq556C7XxTvVUqAaQeu6Zg9cpZh1awl5M4G5kqoQNREpRZkQyuQoRV7gh2PwjvfLmZ35Fwv+i04v7Ws+VwNymoH37HpfoLyvC/reluEdB9mVCVhEVedaAWfumQEk4CCSdSZEAsGc5IHhxTRC/j32J/qUwL2Mw8A8p0ojgoJlFysiFiKHR3Q3YspB7cgBvWwdZRr0Ze+b95VPY56MRfiHK0vGIAURE9zzLakWGTw0ZuZ9HhqQwXLO+QiEZNfV8yjovUdOdg+5icyrrPfWe3JvzLwUpUh3aOEUgRUqm651euzHduiDz8KMCHPfrA/kzYIAM9u2rbu1rW1jmQHu8Gitba2xyjTPZSrz4TiV4u7reu29w8y26+cPH07Pz5fTqV+XMEcxdEfzdllrnbZtuV6e+7bF1qMbkngmAQ+X9ODJixwYgvLh4TSEPynvMWhjYelKbrYu6+WqpRwOD29fvSFHWxYuykW1FiC8pebbrK313goBqqWUms2YUuZS6uF4OByOpcwIeOteNFR0Eic2MS8F91P3BuLvZ/UNWLjjgCP7f4GK0q2ZRvynAhDww3Tpf/nBIhmVmASM23YlpnQU2t85m90ZO7nV3ZwGzQPdmIWVUwvcsDeZPCxlPlWl1rp/atyGibKFgNF1yGxGA5E7yy2gOVg3JCTyHcaupLZzFIa2ST5hmhK92G0sIoWZcmLySyneL27Ei0B/61u8RM8Sgb2dzRgzxt8/y/dLRLrjGMxCCKQ8EhEJXBWM1Kkb7yFNwu5jnHdGlptbM4ISi3uAupCnRoy3MG/go3JVreGJ5xRR6a3lxPHhMG3e197W1i7L2n3r3rxb2wIeepjDoptzyQjia1tJUDR7WiqpERAoU0EAXMp9znrHVWjXttrbVjREK0Yv5odkKAwi3PfW7S0PIIBSq+YGXt/rtZf3a8dxlKWIFBEq1cP3+5/mhXmwsIgULfdwL7yLBt9XQp4BRONlI0u2zDMEHBE3UUXikYUPhJ08vLsTCExaeK+FKIO9jAIYHOmixcx54bJ3OAixtFOWsxJS4QiA8jDTkdhkCpUSivtzpYXGwPBGdhUgqLGLqVYtJbk9HpFiOG1bva99W9ZtTeApq6+8OyA4fJ6Prb2at8NQNRCJiGa9t5Yf2czgAffeu7n3rV3O58v1ysK1lFHmeazr2nqHihSdJhVl76311rc11u1yOl/P176ssHSz7hRMIXDqpbmbm990GmjPHd3di3kUduOgCLPePdzdsPtX5k3kVI8IDo5wlyZWm9YKhAof6tys9Wv3CFUBIo00jg+PUgtfNUX/yzTNpUxaailTrVPRuZS5aC1SFYTuhAyo3jrVJHeP6PaFQ8XL8HOrdl8E3/zhvXQG3Qu9/5WPfMXBkkz6DnEwKWvs/AwQSeBWHcfQsPKcxgbczVtrakozVy7ZW2QVZ2cjKO+VZg8CkWT9eAupI675mATLzqSqDrw1CO6tNVEaGHYqUHOG73FdkgdONCTXglJlwW8TxaPuLmXf2PeLgNFMu0f/H1yi26998cX+5c0f/DblN2IH9ox+VOW4MeDE94FdYYESBPkDGkli8o8y5fTYl7sw11oJej0tOeS5ressRxK427Y1C9cqh0nHricWFetGBISF8bq0rV0368vWW2+tb8t6bmv3zlMtRaRbT1jQEdbQbJPCYZFemybKjTh84phkIjIpRUeoppehO5P2BDB3zJP2TtaXCNvoFu8J/p7qg8aZyffT/Tb0+4Va8u2aZyM0bmIDwpz0dKEi6uy0A6uZBt5ea+Tmt6x/f9PMe4TN/2BvlxERDSHvvZ91r6fzHMr33KwTEZE6Uj8habLkETk0tHO94osnIWDMNIxURriky0r2XW+5AovQl6dgwg8eQQENQqDDOzzImVlFnItI11qFmTy6+9a2dVuX67Iup/PlcjqdmHcKcjK73M0tKGqZj69ezYejalXRxABTQy21e90N5t67uYVH25q1zbqbW2BQYgUQJjfvl9Zb69iYKKxvfXNrcA+Dde+t92bJ7CZyps4sqe5BL+rNWxghAgUis1FCAlt5FTPtyFQRfC8G8mlEpPYepXnv6/VaSim1gGDWaXRbUEqNCKmaWQNJEdFS62Guh7nOtdRaJiYdLGVmSwNNEHWfWDiY7rZtTLsAiPKwAdaBgiLTk9HKxJeZfBbG++3+0yjEn/jpl98fcy57FkdCoIjU7c13osQgSZkCBEVwpHGcdYS5G4HDGZE/hbupFoeThUCI4eGbbQiupSLgffhfq1aAfSCAm++UUGbJ9qiqWu/WNhRVLk5MSpw2ynszIf/j4L2L7BZh1vNQuQVliCThj0cQyC40qd6JKTS+/f3Lddvbd45s5kaE2zcpaHSj8SL672JS2e4fVxhKIfdARgJGgrWcU4LYrTOYOSKh59RQVlGqWtQmTmbOml3BgFu4GxNJsxU7WJxlf7Rgooju3be2Rdo3R4hTXC2ai5RapPu2ta3WSiAngpkwkUWAZBJ4d1NV1bAI8QgIK6MwIRyjFIvkwjGCeXBCgoypYFeovF0wShGpwfaMMTU9dkhu7EyYyeEelgTz7k4EZVW8lGIcBSgLJd4uhdmV2Cn7oizCQgVC2mFgKiPhuVUP4xASvg0JDrRqz+wD8KEVl9NsQSGJmo7TK30mSDiCJMaGd4+c5xJRcIAqE4lWkGLPHog4IIIcL6cUjPKgff0q5e2HSiKvLCW0xxgPuw3TMHN0BJl5s2YEgcNgRu5ogDO4cK06aynJyI2wvi3rer2cztfT+XQ5XS+XrGJSdBqebCAjZlWp86zTNM9HlZJG3A4k9J+i/whPxC6850BXVvkp0BSR44M7emDmbW3bZmbJMMk6L9L1bJcRAjhGRe+jAsximlKYhpjTVzJnU27cxcxrB8VRiAf5PHCjq2fcMw8PaJCIucrGTCAPc3cLZ9U6VW2LqIpqISLlMrSEkJCjgvKscCOyUpg4zD1MRIoOhkvGI+xo4D4WIcpyaxC96JLlJxm//OL7/397jFTtVo3QSMA4ACMKGiQ5IkpxT+TGEFHmMt6qaN4tInIP6mm8Gma9W4CgRcnzE5VUIjfz3q21lnYaES5iycoJRO9btx7ei8ysQiDZlYHuJxkPyCkdnFNJdPgjJeNiZEuDMPfia+bkmHJm8QMB+Fsvz8gfxqzBEIO8FQROoMhIJKOU+/4ZnPE85b2EZLAL9xFKikirJiEKt0Gd3TUyhkoGM4tw0VJ1mmcVKVLk2hqcihStKqLuJuzC5EFbW0kclt14B2C95xiHd7fW0/pWmYVwvlyWzV5VYVK3IMJcC8KGag6RyBAHSLEU2udg7+H6BT4jO4KSZT8zp33ey1oKwaDIfZ6SMvTCPTgREoDMu3nv3j3C4RGoUqpWGhk0D0fRoSSBxH/HNUt0hDgYKkzM1InHdG5Iub2TbCDwUMEY7/CF124iky+cdkR5jPkOPuUNNeIkLsPDIv2MAEo4dI4CFUldYhAGep/sKRktv5H/p71xAJpCXUwMj9iPJCACxGTjInqEwQ3efettbWvzHk7s6Fu/XM5P27qqHI/zw2F+mOcDqRCzW9uW83Zd1mU5nZ6X67Vt27atboZU7SfOdD4cKqK1soqUyqKqhUWHliQorEf4aExHRGQdAPJhYQ9CeDaTw+CDmOQjtCOGZ8APt14EggdA8HJP3fpJSALJuDX3JlMuzUDcd+CeXbws+nNH5Hmb+zo72ukwSkS+brxPf2TXSFWUc4XADSLBCo0wJ3RrwZ4vczgc3Iu7uSdmsicLewy6fZpx73cU6IutMoQgQISbhPoPiun/qsefKBryJW4J715254Sg996td0//HHMPC5hZYwLJ0DBO6pCIIMIB7ykUBSIEhXmIyOQTC2tRIph1c+u9bduyrkum7O6eylZMIiHdeusbmHWuqoXp1jUeHycIsbPaPeL2dQzLVhBRHcT67CCX8fx3hJfkT16Z22OQlBC31sXtHjFxSKT6qWQb5H5j73X9ODRpwPtE5DlhsQc+J8/Yl52MwdIZUpepCKc8yhcpotM8OfW29VpIqDC0qiilEQla75DeFpO9rMxAFoG+bK1tIKq1BKJZv1631mI+WClCEVqqqqTQdqmzlAQcoCrTNJVahXnSUlhrlVJrUmzzEmUGcYPFiJjSzjXuFy0Pi0RRRgh4AXqMyxsgcLferDW3pBsiggor110HaYgcBPbRtsxGMWKlI8Dw8OR3ItJWBBRBPrjwA5mk+y19uQtil58YHdu9PZG3DJGCSKDUbso0gMeUXMBb27pvzGAOYo1QFa5SiYggQIwpIsA9mCCDXToGuAY3DBREPpYLUsKesqoJEIkhmvfN27qel+WyXde+WnNvtjx//nD+9LG1dnj86vXrd/PheDgciBnwvq3rcrHW3Wxdl/W6bOvSt61tWx5cTCSpagUICy3MIqxFVIvWQYTltAD2QDBIGBFODDfL+Yhb0HtxPYdpT/apR4LsfmuRZjTP66ADSQ5mH1208YQ5/7FzBDl+eH7cMYD93LztWfqy85e/7MBtZjqFigQIjjDKcbadhqIMJqkc4g52c4eVpof5sGqgRQBFRZhKqe5u1oA5i4CICAhlfSl8U0y8nQGgW/6SgppjoAb7/FemNn/b6Mj9g/1XfvO/8NeHZxlTABQOM29bb8kWaJt7X9fFrYkw8yQCETWDmU+T0shuo/fevRHlFJC6eW8dQhHJIIh1W6/r9bou27qaWe/dHfM8l6LMQkatb+YtAG4vNPpuYMlI3xDpk7qP++AFTJx3LKN/US0jayFi7NUAv6wnvpe5vwgESSy4hVHhO/w9xI/zq9w3/KLfsD8J5Xv2uKvfmbu73YIORkc0b6303rdtW5d1Wa7btiGCIO6UpqZAsNDhcOzdCVFoqpouMRzq69Yl3K09n545DVhlvzWOrfXe+vE4b60Fx2W9LMuK4OhbBIqWwzSxpCB+mY5zrVJKnaZ6mMrrh4cyzwTMdVbReVZV5dRWo5E1Jx8sN16q8TBz+jQMGBf7PzQm3XZx5z2a0kBiem9r782tWU+FwRDcxoj3/ZzHD+fIT7r7UYr1hoMVHuYuw2F8/DXzrj5awTnMCIwu9v7kNGRqQeaRKRAR3w6eiH35eQSBB+N+iH56xNq2pV1avxK7R4/gohMzi0pQmDERbdYNYWal6F6CM/OQ8Ey53ByjA2jY9oY137x7YZUQEHWztW3X7XK+fr48P52fz7aaB1pbPj99WE5nOC+Xvlyu03ystYhwmIX3tq7WjYLcbduW3pt3s25BY7KXiRMapsjEjFWKaIF0Yk4tpXEm5lSCDL/GcAeS/HmHMCJhAwAEJ2R7+WXEjwHl+r0W3HPRgDH4ZUZPxLdi/raDvqwS7n2CcP/eHh/YQCKTL3b8i4MqsrocGD5RoZRGMaMIDytR2JV2D49uHdcIoBR9OB5UtU5zxBHp3RO+n1EZw8eUKDEFs9xYzbcrFhFCqbNI/9Xh+7/0wJ9sG9yuNfMQKOIxFisEjqAImHnrvfdmvW3bygwzaGGFuntBWHdmE6G9FxWtNaIUs3AJ6WwQ6q0T3N0v18uyXdfWsrzIh5nePn2Cv80sRI6HYxEdiSjCPSds71Oet2Qt72uG/eR76HiMhSK7XulNz+Bl5Xi7XF+mgZQxZxBNca8wRriPxCIkGSKpiUq3nYHRzAzkSeWt9QQ0ejf39C2ioCCW3AAi4t2vl+v5clnb2lpjAqME2N2sCxL1Jq3TBO8HmYUrMaYqTu1qqzO13q7LFRbEMs8zM5v1cGqrsRAY1/UilR0bKB6Oh9/8+pcPx4cgF65ra9vmKtPx8VBVpsN8PB7nKm9evxYtrbUqRVSnQ6FkuhMjB/YG2eFOkmGScEeyQ4GBuY+ubuzdn5G8Z7c8Bo+ae98265tZTp4rcXhEiVuhIPfNP54n3aQjYGYDKdk6JyFHxcMp1cudi5ntssAYzXzVUcCNCYTcrWkQ6+aUg1XgBJxi6Ch4lsEeSIskzxvt0Xpf2rqup+t16a8xTw9KohNj93/f+tbdvFi+cLyoKz2CGRKgYGUhohbu8IBtfWttEy5VKhyttda283p6enr//Onjel18c7O+btflcrEe5Nx6vy5LmaaUaRvsiUBy57LZm3X5DjpCMgF1ZKxKVD2UEMMEjESYFTmiDHA6IISPC3KjYe2ZTe4EAmJ3Q93j+/517DIDHsBwL8gEIrPe4YfMiTUMIP12BrwMZS+T/VuicDuLdmSYsYNF468AnOdQdq4SlUlwj3Y1FetNS0EqYrcBD3Vm81xnJbyoqOq2taW1aZrKZmWimQZfi0OTNneTZsRNYYNZOJXpEvYRSg/zF82ALHzu2+u/8vG98udP/GIgnKyHdTOPEAYLBuKSZhTuwlFUgRBh1cJgmIUwF6UUOQ4HuPeelZZJkkMNPgym1m1pW/PezXtCZAwhS2dgT5QJEk6hHhypd89BaGa37t2eqLmTBwPCIkWZS6qssRRVZSmsSiKkw7CbdxzoNnL3/QvFL77gOyI8Bs32oaVUmFQCcUT2PKAx7KX2BGS0jnO77edVxjuYWetrsx6JQDIx07q03g0g731brtf12qNz2plEEYZ0EhXzcA6LrgySEFZi0kLRWaKCsPVubVsvq8ikyhEIZwmBk4iY9VevjsdD8aj8emotpBx//ovffP31a+FY1+3z5+vpdJ6m8urx4euvvm5mReXdmzfm3msR0TppMFn3vXoR4eID0SGWNPkJ4WAGQShp2rvAaLb1zDK5tpfY3VBWYJj3/AWCSa2gYh2uMDUChDWY9on/lBY3s9b7FqCw5KaEG0SI2XqEqDpIVbUWISEI6sAetRRQUC6iXFs56AV3uMOJIgzZbmam8IAPsfQels0gdqLO+wFA1r21fr0sTV0wxQMdShWQkJYi7n1Zl80tcCpFldXSyi1ISiY7TB4cwqwRaPCgDrTr5bpcNyGdp1lIzdq2Xj+fPn5++ng5ndqyeXfr0Vsz69leFghHa2sTkUY5a3mnNoyTMyKzPQzjGk9mGt9gnEDAWZBkPSJnAlFBRCZS6fcrKTe9A+y077EMQc68YxyZCtCt7sNeRCaQnGYMzBwQCcl6MemIGPsvQz+/RGW/hwXtVTvdT5L74/txMDDot7cQGUjbehWRcns6dmciMwuQFi2linBESC15fvXWfKq2P8gz1bm9uZ0iCLq10nhvSFIipyDgphj6Beq/45CjDrqXWP/Vj9uRyPcbNAqtzFzSKsG8m7X8HtHgU7sNp+XkYOz9SQq4GRG7R7Z2LQ0cmFkVrbdaVLWYmcPcfV2WZV3Dh0JGNkgB4iAmTvla6x2FQTAfQ5iJSyWbJ4TASFPJBE2VOaUUBt6vmgJ8qjKsPIXSSuD2qb93Fr7MR2Kferg1Y7PjJ7lG7s8xQjxFCI1eUzZsbpBDPluOzqexn0WYeTPbrJ1O526mWs02AqyjN+/eFOhbO12enQ1MoDKXh+Aw69NceWInuLdEAlhYWVRpWT01JRO2W9e1FOqtmgdDJYYmQ+/+53/+j37z619UDnf/w3cfPn1e/p//w//rlz//+X/zT377468fX79+/fz5Ya7l3du3qnJZ1qlMUylVdS5FREDRrFcVFhU25mE+ZWbmQUy9W/pfRU22xBCjB/IqpMdT39Ye8AjvvecidISoIgVKRcnC3KtUFvJuTRsL4JHzUDtgG7213lozW1tLUJrB1j0sVNmcg4IYJReJzzIJs6Qpb1YkRVVKJUaQO26+yrZum3k399asuh8iqkgYwr2bNWtbrCwjnYPBuptTs621bV2Wy+VapHEUOE+lElhJmMKjL83O23W1xWECar016wTSoqCoJBw866RlAtipma3L5fz86XlbrJTDdDiokrmt6+X09PH5+fN2Wdwc6fFLBECYmMXdE0UP33kyN6FWZkqKzMtQOHCZ2LNrMEbCTHAQUYpRkOeARwb8F35PlFSOmwdHptEvQb6XOM/e6bylTaOsJ6KUUBkT4nvHNw+AyJZ+Su5/2ZnLp7qBS/dv5qzK/nhZ6H9RN+xhNX87v1XMeo6de3iJkpglBVM4kWgpEYCCeYyWDIHxHBUZRKDRyxzdvPHFPSTdclN6kZv+IMAzpQ3p/5ePl1fneyfH+PS3HNVHIpBR2Hpvbdu2zVrHIPBlWpu33j0IFL31dUNE9G4vzFoJCBFqndnEehctREgr5hyCVRVmLVKVlQgsGiQdhrC90mR6AQjmJQJgQCQDD1KEq5Y6TZwM31qLKOUN06G0/EJ6/U+VQTtGTb6XtDdckoiLVNXs8mEf/7kB16m2zAMzyki8nynZRh/JFqKHr71t23a5XLdmtdZlObtZOE9azfuytW1bL9sp2IMAKjgIFwoWiGMBmDxcSE27Uhet3bBtfXgtOMx825pIbb0TVEXAIcSPD4/E8enjx3evX//i5794++bhl7/69Xffffz22w/H+VCLkPuk+rNvfqIsBGfQ6+MDi3DK0afkPA/BACKRWkTZI2qol9LNttZ5OP+l0DeY9/wO8B7mlnbnrW0eHcC6ruOnCFVFkHnM00wW3r1RnyZyMpZgjr4T6kbjl9B6X9etWbssF3MTESUlYwR5BBn1CJIoykXLtN+0ilTKs2maeJ7ZLRnZZuER3b0nXbEvyXi0MBCcNXq4e7O+tPXcPgebSpnlWKJEdw/ufV2Xy7Zcl/PFmq2H5u+iaoFTVSU0s35ZttN6eTp/ejp92tal95Z0WlVB2MN8fJgfHo6Ph/kQQcv2fPr8ab0s6ICLlrlMEzOar9fr+XK+rNer9S4kjLSc4Rt5L+Nsso4y6oBiZLp74pypDN2SauZEqjOIZVsnB9M8wKkYRs4c2YonQmQitrfMCfeBzbHhXiRY90j0ErTZefCjXHBnVuj+V36Y6yYWl3IBg9w7dvjLA+bl3+AvH/jeW/oy5u7jGiBCMXPmHsGlltTKVq2yW3G6exDYWedhfj7+8oDUXvAiRkrP94j0AozY/5BGwSlc/kXI3tVXlMaww/8yxH/7eHvA2j/i4C6OgJcza6kYtbMU7y07ZrBILVMRIYogQ573nJk5egI/gWEXByS2K4nbexfVZLOIyPBmYvYIZipFq9apzhQR7BbEKgIVUUF6eRARBTkwhIWQGi3gyoVFShEV0aJ5UVV1KLzJF5pffzr6367S6PClZ7177z0PM5G0maJh0HGbes0KiYjvczxERIj93CJC1k9JC/ZUUO/bulrvsbkFW+/WWhgFdRG1Hst1Wdt2tTMxPRzfem/d2VhAxQmpyi4Ekg1cIqAevRn4VoCzu/XeD3Fkllqnw1SOVX78zU+++vrtw+EYgfcfPh6m6WGu33z91Tc/+hpIpiv2DOYmKZwiIXEjbKgWYUrHLMluWkYKFcQw6dh67x1IZyy+N/ncyL073BMEa7211nsjIhYGhZESyHpIEIGsW0QQR8A2l82qqghrlRKO1nvWncu6XLbr2patr6WIokiUqhPIzPtmHmFl4sN8fHCgMgLNJLsCHWbsmlZpLDDq7ua22Ha+Xq7Lc9IdVcvjw+PEEzkhopldtuvT+eN5eT4cDq8ObysmleIW13U5n54+P79v53Nr1i+NzJmjeX99nMPWdV1O5+XpdHp6/vjp88fr+RwWlg1j77Xom9evXr96fZlnldJ6P58/t20tXIS1cJHaexMAy/VyXc6tWVIxR4wf1WcmTveuQ4b5Efhuk//jO5HlwL0W4Nt8KgcF308I0Pg1vtvYM5KEthe/uWLuqf0P8/HcGbx3ZSPdW0e6n+KYQinnY566Jt87ORIrYdpV+rNzuZ9aL1/ivvl/QAGiFwdSqtbfnz8vjgiAcrsmvK9lFmWw8kAZREstRUWnUuc67bShbNnxrkDGzKKcZpGD9XF7X3tOuafkQ5Pqh6wfEKV0z35u/S9Mh92uxf2ijKud+fR+LuCFdzndRV6JiVT0MBfraTfiNgD4cHfIAGLSX4JAGTSRE8Pe3Y03YWESgdE0TWk2WWrRUoYZp0gtGpHyKBBRKaVwIZKwiNSpRSS3OyWjM7IXLVOtpZYxdCtM6bU9+NX79PB+of/0YZkXaUd9IlLvMMLc8xnMOxhKY7TgvnryniAGp2UcA3fxDyCHlYEg9wgzBhUpVYpTTLV4VN96+lGERdt6BITZmrW+CU2P86vRDwMnWMRCwhS9B69wTCVnYdnCmVlEs7h2J1Fi5l/+4uf/zT/+uw8Pj1q0qjJRW9tclSOdLoEYuCICxE7CQDCxkLjbreVOeZ55eGrgiECECG4mInOdVQUU3f1y3dbVxgjCOErDLQIOeGvbtq3rtm3btq3buHHKKoVZ29oZrEUi0L2TWLBv1w6glnI8HKdpYuJt3bZl3Vq7LJfLdlm2y6enD721d2++Pk6vitbet3W7FpncOxd89e7rQ5kbpG1NlUhYRNXrbJuyiHARFRRzX9q22XpdLufr0/l87s2PDw/Lcp7kULUySXc7X0/vv/vDHz9+y8w//ckv5/LQm3Hwul4/PX3btqttLQBmR0Sz7bI8L68fvC2Xy2VZ+uW6PJ2ez6fnvrbWzD2BRGKNi59jszOLpp+BmYc7fEQRVQBm7q2bt9j1iXLjZrxJAkJuctyg/L2SphfZ8f5FVq5EexOLb24N2PPH3bYkYhgV7FkTsH9Jo99LLPxSoeslUPODIuD+Nd8cIHYGs7NLyI0SmZjSiJH7qZSRMh1qX36ol/k+7dKB453se/UWFfNryT75/obySUpqK0naZIQHwcgQoMolqQVF6nzQWutc58M8H+Zaq1YphVlpFyABDzuFezr64hKMNx8Z0gN3UC2BshdOYuMMGF/G/Sr8LTEOkYTe4FGQ7B+Vebg4BSGF/SxskAGSjcuczrBCEqBaijMHeiHJzmi3Vrnm+IRZp2CH9963be29ZX9uXZZapzQ8ARTC8+EA9oTm8y2KCjFiH95mKrOm5W8pXERk8Isz0iZwRNAitZZah4+KjJ4JM9PubLj7OWX/9r/MoL1vhnGNKGcyw30UTQESBKXuAHNSLNMDByS5xbNtsM+j7RiXMg9LjWFWzkRBGlK0ljqJoJZCfOhby5l2jzDz8JhqLVyciILCjQqpTqWUIhTdmeHh3klKBHuAVYQkrPfNNgAqlVm1aK3l8XiYRN6///SLnx8fjw/pO398c8xBin0t7TrOTMQIQDmd2sZFkF1L1cPAwQoiCliYqCoHmDBPSkQRzFrKK53qum7NPUAI5s2iN+vetr4sy3Vbt62tvbW+mhuIYprLYX5gLu6BdS1FOtzJLr0v62Vr63Jdu/nr168fHh9UhEP61tfzclnPp+3p4/s/fv588h7fvf7u9Zu3FJQaMlV1qsUQ67qx6PHwWlOMWcSZcY1prrUUN1ettcwg2vq69MvHT99+990fPn14ouCH168P8/Htq68eDg/MtG3r56enTx+//fjxj+fr5W/+6nc//8WvH6ZjX7f1el4uJ7dmbhSkMm16uW7Pl8v7T0xtXT3QzJdtu17WdWlmwDCPUiURCAy+uSiFjEwr6TGZRIKMdjEV2jORGC3MASjwl6Hw9vUtlPwQU6GR8Q0UBTuInSp/t8CCoZV1B/QT4RFJtj6lGcJoBH8Zl3go3d5fnzmV0wfR8ybAzkMdJYY49k7FuAH0NFSNBzqCwC4kf6fL306dl8dAvvQt2X1ZtQ+wicfnyvlTEAohEBzu4CAIDzXBce2ZiViEudZpdCKlpHicahHigSO/hHRuXJEfhKVdmuSO/nx5f34Ytm6X8nt3E3vfZXxgj/tnBmfEzJH2/QDYJ498NwjOtxoIIlYtqR4MofwV9yAacbmUYs16bzm8l31gRDQggoRLzQujZZ5mVjL3Lw6tvIisTC6snM5NeaGJiWDm4+BkJkFi/VMt6bUyxqqzEkwV3xzPlFtv9nYFv7fyeVQ8ewZAueKxN2uImTj23Gd/qaHfKyKj0AUFUbfdtcss2WwpPMmk2RW7LfsIEtJUf2MwEZc6A+xbN+uBIGYRrfWoGvN8KFKEddI6T1UrBXViOIw5/WfGYCUizKM3iwCLKJfDPD0+PP79v/frv/PLnzPR48MxaS5gsjGFH8ycpolEJDr2v7s1j1pr+jtl0R0e5kYUoqIq7uh9y0la7CEJQO89NeenUmFOolHqp9Np25be4nQ9XZbzer2u1yVgEd7W3psxQZQeX3WVFPkPQhiFh13X8+n06XI6tbVbRKk6TROrPh4eWXRbtt63588f3n/3x23rLOXy+fKxvp/rNNVJuQBOQmUqy7Y286/e/ehQppy1aeFOLQWUzDCVQz3MLGLRPz199923f/Pxu/fb0pj48fH1w6vHD/P7h4cHYmrbtl2vbbteni/X8ynoevrw/Pj6oZQSrW/Lxa1zUC2TlgZmnMDkM6c7EW/dL2uLvFFDS5THhNOQfhsxa4cyiDmnFjxBxdtP967h97jwNEDlF5n+yJRv8NCXZLhb3n2LmDts8LcEFqKMvvwiAOVS5ptL9i24fe+4efk+R5WcBM90jLnNbdwRi4iUTrqF+4Fj5CcYzeQIv8HvP3y8jP75xS0YMrObU26lHSnJaJG1e3ELETgohbuZWMclTokQTKWm5Hcpk7CmQTqBEaNezgM1IbQchKNbwCJ6GZV4dGKGRMHLizioqeOqvbghGX7uwywvjwIAg3yLvZXuQ3iMBy5I96HqfQ+Puy4sWpR8MAhS0AAEiGLMReWbgvtg7ybEz5zT5F5LJSRPZ4hCi6hqQkzk4aMdwQyw+WgrK6vsN8nduw1qmqooZ2lQcxI1cbpEBEedNdZlwpVMu8TmaHrlXRsLN9c733bHrRmjIggJUVYQ0qSV78BdUkop1ZtTuAQAO1GPaGbdOiKUpWjosAzXrNUCxMKlKixEVKWG50Q6iaizDU28CIRO0wzEXKdSqoqqVpWqGiJeqgZX86hFYeIeLATOHi0haJoPrx5eP8zzV68ffvOrn/3smx8XKb5z5BPF6b2XUhAws1qnHI9IdjnCiZWZ5qkQUes9hk6NlCq72AaIphRrybvv5t1G1yStLg/TRMzn6/W6XK7Lebm20/m0rNfr+bJdV7D3vrqF9wA8yNd1Ox6OzGLWu3UQurXz+fP1dOpra92JeSNciLTIRT+TiIf3rS+XMzZoFMrZbYM1UI1SNIEt22S5rut5vXx1fnh8OB4OAHf3zS5t2yJEuBaZWTWA5Xo+ff64Xk/rulKAiNc4R7OLnD4SlSJEBPfW27ps4YyIdb1eT8/CqsQRVlSKKmPookV4LVJqJRGHb6tFD9q9lAfjOnVihtfCF2X9LVRlFnxLqF9msEC2cMC8kw1fhrMXz3N/hhewM9+g0pch+/b/F1JXe1i57abRcU7EnHYt9h8G+hv8QLTvRxpMGNwRm5zRGfkW7+MjtxMOO25z+2Nu3d2r5z4GnC+0jxl7Nmhpb0m/vCbJ38tB0kxlxgtxAFzcOrKdSEqcwxERPoyqipaqOs2HaT4UnURK0ZqCujkdPt7nzrQZZoZ7hjmu4p21Ou7CHYDj/abl53yB6dN+kcZhdTtB6AWUlnptgx4SmSx2d74DQveny0wyTyARLaUggobbeGT5VkpFNwgXFWZ1D0eIgALM1PoWHuk7a70LCwqYeShCk+zNDorB4guhhsDWu1unCCWuqpQqIqWC0N2ah1CIyVz5cNDRRaFb4QMWGfPCo3WRV2EvhTFkWCgYJPdrS7y3XsY6ZdzXpYhGQDgg98c+SizCetMUIkBYlNUFxBZBcAIjwkvQ4MIIO9w8nODk3XsAGX8pElUiYg5Y+GbWtVApNeBjBL1onaZpqpCtVCmlQJQ5VEpzh9PhUEQhIAGKKBX88pe/+Kd//g9UAXfrJoVGe4NARNnfzuVSSgl4W1ceg+DR1mU6HFXF3Ic7EO/ObMrp/MHCpRQtir35Zt16NyKISJHdwZbleJjfvn68Xq9P6/XTx/duvS/bcr5e2sVsu/F73WO7LP7qtbC0vvWw8FjXZVuu3pv1EEpDiKDsC4tFuFlPe5IiZdJi4dgFdN2cEMM+F4D51pcP7dvTw2Ga5iCER+9bWDwcH2ulFFno7tu2IohIimia1oV5w1qKErG3bJi7WYeBkdkrF1Q4CCQ0ssAxyMQQEeWS0AEc9x4b79hlpKnknrrT95P3PfFGZP6HkdIlrrLHRwDOpAO3z/o14qWGAO7LfS8efpCk3143UnrwRfS/Rd77s+10xoHgp5TnfjK9oHV+r2F5L8dH8r0P898kHYnoFotv4T4i9OaxegfxMxX9Wz7C+BCSud4PIPIM92O+J3NcjkjiaZ6+VMKMVIxANHHGCEWSTFS11ppeJbWUUqqI0sjieaA5dyP0EUOJSET3jkfcbm/soT75lrwnsnmvMtCQ/PATEtGeoH7/4+25/xhKHuCNuRGIAd/V+L68JZniEVEQIsxk9wdP3xLqABCOWpWVyaG1tm0DiIK2bUv2j/XORGkZlsoMqdMdwSkFnccRFJCw3s17VU2GScCtB5Fs1pnJHUW0TKVogY+5hUT98DKJ+OEVGP/hsVj3M3T87q0FxTsWNLIiTqbSnpJkoNzBny8WEqdANGUOQaxatARx9sEiRQ9FWYItrPce5M3bsq7rtlmjeaoMUVHsp/ZuwRzEUkqtteSrSSEt7CAVVSmkpSpX4RbGobVOzkZBDK5F3755/XisX717/aOv3vVmTNxaz6CRapmqmktDRAPh1hGx9Q6g6Aj3afdU6vR4fABKRDBLGi5p0Vx5EdHNsfcJai0RfgOFyCCqReQn776uXD++/zgX+XxerfvldD63k1vrW2MWFSbiUmrbNiIy62C23t2MAzT8piXDf2CHS4LS/1G1KCkNY6NkOgQxkfBNTotJKMiXbW1t5dGl56mKFOtexK1HmksUYd/zcCnqFmN4NoKztUPkzbx3DhZIurIwIQE5AmtOpdQ0BGcGVS0qysw+WrV3AcvMK5Q5mUi0Hwyxq1kOnsyd+5FrF5Gjc1/iP3iR+Ay9pX1nj0iJ+x64RaQRK/dfuOWH+xbKl9zPJx54Aw+GRxYcu8Q84+aFcEv1Xyaat7Nk33wZJ5HiHPRFQjxisehABV6Ew5efGrdT//ZaCQm4B+0A1djj+IKSlE+XVywTdmfZQRNmRjHvDFEKJohUBnmJWklZqmgRnqaqtSIpoCwR5tbDC6CeLNFgD3QPcIBEASCINFkd2XqMMYGUNzmIlV6wcbM1LZR6yyOO8X5LiNL7UMZBNiqA8f+cwE4mXx4A0S0CRDBzEDxQJHVPs9UMGXYZc7KxSLi1pqREyDlD80AoQaZJVWhrZoNuLEmfyajo7mZ9a0trjaeZmcytas3Qb70TUYR5EMjTf8nMYGweYQgCLVy8qkhNXZ9SVDU1+4Qr5WkJDtmPgv3QHMuahuD1rey66YTfAjiAvYscweEUERR+B7UBioCOPJISn3GO5P6PTTJEvzkPiR6dwUWViFvvEsFE5i0oOuy8rOvWemu+MQWDnYQ9+rUtm/XWwwyVSIsGyTBYKVxm0SrhqoEqhUtlhKQli2qpamaqlUgOh/mnP/nqn/7ZbwtJ35K81YdzrIiqulu3rbUNoFoK7Xu5atnaQlp1qiySUipFNROx7PiJStUp91Lv/fn0lL5vIoVZp6kS4OEjRiD5viwib18//t1f/ew3v/rpv/u3//6v/upvgsK2ZrZadw+EQ1WmOqYEMHioDGIETcPRh1mEwO6ZH0mK7pt7EFwt36REUOoHMcCie1jJcKRS9yoxA5YyUU5xphweEbe2wdMlrSLVxyNzFpcEYiwbe0xEEEgq10ewoDIzsYrUku4JRTyYfKoqqkzEMSaS8nwhYrkpTzILs6ZoCYUwEk3bdbB4kGBGpiKgYYAx0r9bE3OPj6A7WLPHzRGs89rm74ydQJKkTewkHPqSPS572M4RAGEWZSIIC7AnTwwSFqZUxhjB6b9AA71XHgN1HySZW23KL1mke5+AiHIU/+WzETmYVSmz/Xzy++ti//wDoqLbk2MABszMkyoTQsQs9YwigkrvjVQqF2YWsKjoUBEZ6sLZigQSWhWC5pyrmRMb81aUmclT7KIESsmzTplZOJn3mfTFbmmVJio3FaTI+0aM+6GQWAbfjsHvX9O9iBtl0N4Evs39gkYvPNUTAUmf2L1+EYZQhYcFUevd4aWoWx/1JqfTBcao84uX7b3nkUZBZra17Xw5RXhRde/EdMtsiNnMLHyzzVvr1lOLoncrMrXegzDjeJwPItl5yeONCaN1ycNqazyEB9NhD++8L8G8ILFD/yMc5LMhN1rAyD1Nxnw0xvdFHMzZsWBmtl2ldqyhzD9yZ9xmFyKcRwXnzcxtsxZC5v1yXsKDRTx6N9JKrW3n62ldFuuxro0i3DT1fExRAEMYQKphlMlFFZm0Wk/VSZhZ2zYGHefD1+8e/t5vfvXTb76ptV6Xa0qx6e6DaGa9N4QXLbnv3VM/mUZ6y0SkedRN06yqoz8UjkDvLYfswl1E27aab0SHaTowU+85KjF2mIoycao1iOjPvvlpkFNYbysTPn34Lumh4Qi4RLGshHOW8Kb9yMqk2XhQLZRoHjGTsHIyUJ2QM7kRAU8WOhDhdNdaQzaKRFju75Aph/7Zw9wgrBHovUegaHUB3HLzBdjgvKPmTMSiNMzchIhDSYI180lhUS11YlLREGitUlTcwRIsKKqBG+9l5HJgRkrFB2uhCBYKMMWu7UqA7zjwbWnekmsQZGTgLzNo5DA235ig+QPhfbToiz4BvXjgBuXkH3nApkPcT5hIRzhmlnTFSezk1r24kW1ePu2XCP49ajGl7O4tfOf+ck/x9djfHkQ07gNfL585i6fv6wLd6hgZWtajeKXb2cnjmggJc08CUt6a0tqG9HQkLiUP7rtpERGFhxZYbxuzMJmyuEgq8gJMrOm5zFxrBSaP0EzEdi4R8W1dAYCQIFWV7sE9iG7WFfvdftFpwX7Fv3cGjHv4Qg47T62ddzXqPTeX1FIrJZOEwgpAImqZA1RKtWZJVWitE0nRuk9FDTLpTZS/ta7CTOIevXdeFiKF91prKVWUkarI7kTs7ha+ta1t69aWtW2tW3hM0yE8DofjHNh13SQXBIfGsAkaihT3jyyjCEgi0OgFvLjlMfQ9913wQoqWiXp4t2aWZhYED8CFqVAJhAgCTEwSoSy5nobfxPD42iVk7owrCIh458ITlnW5nM8iomAP8+hkcV3Ol+3kzdvm7k7hQoBFSKjMLCw5Jm0RTDmnJgaUlKGOrW0otm7rdbmG2avXr3/9618nnKqiQbGrpI0kQFWnw7HWOtrsvY3TDhAphLSX4VqrlmLmvbXMeHyo+ZgE994ImCbxJUeQTQYcUXhXZgXALLVW652Ip+kY6D//+c/d8fT0fw+P1PznnDuIYCfmMY+XDgoQ0dG7Syo3R6RX9Yhf4xYSAE2upBQdemcjIcihlzzbhibA2DicnRxJgkV6HBKEiYoUkAgcI1MeSGC+FKtmdsyQjLksHKS7vUywsGgRUWEpIiKYiqrIBiMOURDdh/r5Zqu5T/HySC1DhHuQ765YcQe+7wj4CJ0pK/1lp5Rwm4zNn7yQVN11FHgctMOy5WUAyfgMukXzW2ExgCYQ5dtGCgHlZkhHRjCGasIXof8ekF+mqi8OA3oRCceezZUJEZEIqA49x3G7ZScsUfZm+W95ueTX75/p9qljl5LMt+9uLMl6y3kJJqKyrqvWSkQqUqTSjepYem4qOKw7HDBnt9auZavHfpzmearz3MzDp3kW1ZTaSZn6WsqL1qLQPiA2PnpESganjXiMk4RA++gljXLv9nm+uPE7XMj7UpLUPGT2SMnWiAhhjhwLBKroVEpCbclNBJC4rooXUQo2s8zQCMQl2wIw7xHuZtEN5uxAN2dGMgIjzCNAwu4xT+F0BheBExxZTFj4erlerufet9a7I4iCDTE9hBkCxBJAnjcRoHCBZA8gAhahIj7mVNP/N6M77bhhbtuIwE7Tv12cyB5DiqhY2Nrbuq2tG2HMxKrQXAOcChPOPBJJEIqWHA5JgwHHGAr27hZOu1KiMFl0uK/rel0uvfcIF0RbjJnN+tqWta3s6D0DNIkKFwVKYU1eSJVKIims3deVUAAStoBtW2tEvV8Os7x+9+o3v/754/HRd6Av059aa57Q0zRN08ysKaQnInXWcFfz3nvomPtP5yO3SA5urTWf5MBHg5GbMF3OJ/fm7qqFAC1FVG77VkSENRDsQ2StlJqpSO/+n//qd8pFWetUW2u5a3MrZleTAuDUpgyk8+NNxtk8gDsxkHdU+GUQIQLvIxsyJCRZNOHNzByH4TSyfAdRWiFnp0EARxr2acrjUmHJoJaNmlS5G/+KApByo+hkuNCihRGqlB65VogtRJgpRAbMktOFeZwBcKBkbs7MAhKmdMhC4hX3cHn7vGPqSl4kNwPD4Zco/55Dfj/+5u/wcKhnvuNC46y5oURyewFEEFgS6727iO+sivsT4Msz4P6sX+Tpd5rQywft/hmygzmyizRgsGOZx1Qy79SPcRi8fOm9Q7qHwv2N7RXDkOz1IBkWLDcQgYqNalTDwtXZLE1Pqmpr07Y2lcaBdLFsbUkb9LZu8+FwmI99st77/HAsU0nYrKpOpU51qkO9WEWLlmSs7a+8t9ESa4uc9QCRMo0IPW5kfrTYqcEjH9o5vti7BbQzD4SllJrju0Tg0IIgoJRSSxXJrk2yEYFAeC4jEEXvnl1oD99aL4pSxN27dbPWrWXXLrdHC0sAqrsBIPKDWdNtnk1rJYiKpAZyIHrrtjbrLcIDTkxdWkRHhBBHd9TgvWkbZs6c+y/vlY+8SaZSuGZnVoboc6JzGDaDvafzNBFR2aHYIVIZsOibbZf1ui4bgpVV0pt7MtGCnQxzO4NrrSMlpLurhMVwTd1tip2Z3byv27a13tu6Lh69r8tyXlRLINbl6uFCHBBzg0dvq4TOh4eqE2zjiW1zZimqAbZuLD3gonZZrs+na2n0s29e/5M/+7Of/uTHj4dHsoFZj7vIrJBap8PhIKrW3ftWSkmkhBMeUq5EHpmCR2YJBJ6mqahiyOQh5SyEZZqOccSHj9+Gm2o1Lcz9YX6koeUyBpKJ2KzfKiJiiwiVUrTM81GLMuf0eAI4GGSWpKvujX6AiJJ7OuDpHZnOij5u/93z07ExbjUxc6o9SBHdh8RpjM0GIqBgZc52LhEL5TiGEpkTQ4KIlAOAEMKZmMbxARBLSjfTaCtkSwoqUlUIXAqXUgASh4qqMqWNUp5DL4HcvcWdXBIRUUGkr06AiLEXsi+jZG79W8i7XZLMyPPw29tdN73lvQpmztM64gZy7uPFGTFSJgAQFt+Z+0QUgAaQaqH39gK9DP23EPwCsbknrOMLvrOebiBP7EZGOyEij4dgrjtsAZG9pNvnYfNv0j5RfD9veOQRsntBjZEFYmYKOAd7mDHqJMKswulqw0wlhZJp6JciJRGoUyslvTHNunI4YAQQVGTSEr2HhXfH0c3W63aiIsEB4bnOx8Pjw/w410MRLarzNGsJ1KIqjBRdGvJYMGcWgDwCgqkykv9OzKIQGp0oROy3llN5dSQBERHhuaDSX4VccDvgVMdxnenKUMT1FNwJULTdFabb5r4FYN3Mxbk5edTqhGVdzbbNt7Uvl8ulbRvg5pEcDBJesVhv/mAq2ru/evUmR7iEKdyJSVQifFu3IDM4sYpE7w0ImKMZTW6taf6dbOSmID/RPgJ2s9IECmVRmrU1Ah7WfWvurbXWeziEdSqlSCHiCPcw7968L748PT89fzoXLQ/zUakUIXTRosGFRJmp954LLhEzZhZWZopwQpi5de/WemsWGwFC2i2s29bWdVndeuvXz5+elvPlBnQysRZlLRQcgVplejgyynptFP1Qw9WKTkXFzNsagUUnIeqfP38+nZavp1e/+uUvf/WLX1HgerkSyMMCSF9G1gJO2w6CW3gQIjsZqsrEAgomsAiXzMEJxCyllFrrAJ+JnQLmbm0zF9UyTY+Pr8+Xk0eIO3O7XPjh+KBSwqO7pWLEnn4RcxGtIjofpl/88pttu1bnH/34nSr/8Y8fVXLmLh1RnJQDjEApArA7tCAhYaT6NBFzJuceAx3Zww0idekFNyHAgazQnidlOslCTq4sfGfMMAgiyc2XEAYFkRITmSNi5xGM02g8Y84I7ST+XIe5C0VlqqUWbQYmEnGViGBOZ9kAUfY0xvlGtDMzVAWh7J5WjUmCGvPqkZafe8QfaPiguGB05mLnkES6uhLSeiHPR7yAwiMioVQeba0RwZkTNR9nlO/D8LxvPKFs6Y1R/ozSRPzivd2/uD3nF9EZwC69nn9K0uItoyLAk4zNZReFzo+gt4m5ZNDsH/8WFYn3SaPkZdGeM+6dwP3qEQHkQeZRJISAcGKO4BIB0XGwJaOS0h+Uort123gTamxpFYCgwHGa+uFY6lWn6XSYmeAchra2dZqnN2/fPr569/D4o1mPxzodDsfH2R/mg4Kh4HGrOOA+RPN30R5WCkAYWRaUUgY8QIHIVEYgRDwAOMpZqsjECqNtMD5J5s+ikisuTUv3Kir54mAmD1u3ZVnO6+XivplZMwporQgpHkYcrS3Xy+V8Pp1Op+2yZutzCMMREZOodlUKTNME5yLTkG0e0+HU+rYuy7atLHBGkBWdzaK13lqfi5tZby2JB2kGQMIYkjt764cZ4VQnJKVMNJWXAFj0tW9r39Z1W9bN1j7V6Xg4FplEkpZqW29b31a7fv786fnz5VCOMaOqViHywkUMBJZwbG0zc1Wd5wkYwx4AEFFULRWfvUc4c6bhHI512y6Xy/W6ghDo1vr1chUSVUZgqJGxk1NORc3HwjZt54XBCi4MIXfzbV2vlz670xbet229KNNPfvTVT3/807nW6+l0OZ+0cC5foJQy1zpnfmTmvW8EUh5ZQF6rnYTCvafyK2vRqU6a9VkfRs5uPoo8QFUwzQ8PD8zkgeRAA7GuS51q7723DuoRIVqqVtUJMnL2V6+O/+Jf/MU/+2f/oHe7nK9mdjn3dbkSUYQxD/B+gC3uxMRGpdym2Cw86bigYQwYQaM3ycQpbZ54VOJgcgeAobrj2sLMnDkQhlF9jEDJQzBRwEm+5uHwLNj9QWlnQwwpqoFHe8b/2CWziCAyZZq7nz5CBHfwHca6p8z5/guEsEcuiQg3+C0ufy/FvoVs3tuneyRExop7o3M/nW5f7tk0R9yjc+JNkXaJcqdy3l5UhCTHYvdO8u2piG44UE6VxP1n/8WRgvHTnfOz9/P3kd38YwwlcMoICWCvGRK1JL71eO9V1c3cZRyxQfHygkcKtNzh9xQ+0GGfAxTs+LG7NQMFQ7p5J4RKHqgZhLD1vvUmQZhq9E1KISl1OkRY9366ntbtWid9fPv49t2P3319efvmR/Tm7TTXNODqZuyszCEUiO6t9ebm2FuZc5mIwEU8gkEe4UUTsc104LaNaZcTjfss8v3eINKaY/C0WCVJsm5Oe4ndrYN86+valutyPj0/Xc+fyRwhzTlQugYLiXKQPz9/ul4u1+V8ej5FR1EFobfORKnwbtRFWSmqKqmt17OUUrSIMiI8fGtr6y3CmeDRm5ke1XrblqXPDz4fKDzCeic2gCHpNMI6PmWilkLdNOAGn0oFA6Ii7OHN13VbzuvldLms1zUMj8cHBol0GTrA7bQty3a9rM/fffcH26AHLdAQdglBhbJFOGjZ+uVyZWA+HNZab7XmUCElNus7k8VAEdFz3Ldtbd22dd3czaO1baUAjckdWOu9tdS0AOP5M3GdXx1qmapyAZF5Y2dis9Z721hobVfv7cdfv3n18OrH794ep7m3vhs80Xw4aNUIKqoq6rlchUVLmN3HHYcqmhDRYNkiaLd0b9ZtqHy7WwBQoeDU8QdRTNM8zQ9MLFpksH4IQJ0qCKfnZ2aeWFwC1okYYBF99+7rn/zkmyJ0uV4/fvzw7bfvv/32w/l81rvEe+JPqaIFVsrhEqJxYSNy/l1pt+5LCj9wTz44lWZ2Dkwmz9nKHi+SIgx0C4/xZdsyEe+7bImwQLBTRF6MI94nMRMPTIyG0uQmHW53tJL2+iP3WeK7X2TDEQgWMxuq/gRldiZlNsQtjo8dvR8amQu/wIYIQHaPaVcMISa9ky3zPUta9AxyRHaSAffwoRM8rJ5vL0qUF2qAYDvUdkddhgEYkKjLfmhQrivatctG5KZb75mxS/TcjqYbbWHcwSRt7Redx3GqEcHKEhS7HdkOU9EtxRyqMnGngY5n3g2QcyFFMISG4DlAxCUBdQ/v1hwcTAESFoRNIjVPCiZz21prvTOLdzWbdCrMWtYajmXdTtdz7ytJPD99ujw/u60qfZriMGupEkKTBwNMKFXFaO3b2lYzzxpOSehwDFgoe4SS1mIjcyMmhruLcClFRGnv3SdiSJFbIk2ryIbPuxORRIjpuAmSALC5RbNmvp2vl/cf3z8/fVpPz325SPh8eOWYIgJhorxttrbt+fOnbb1el/P1dFEpxmUUqQBbNgCoKG0UAuBo8+Tqk8wTBS3rAopl3dq2uW1B0W0LNy/V2+Zb68t6VWaOBzp0T8YtGCxcRAqIsmcQFMEhWnr4bNbKfChTUSUi977a8rycPn3+8Onp07Jsx+mBA956KVWkEGFZrx9Pnz8/P338/O3T5w8HPcpbFHkndXaL5+dzj2YIjzift+W6TbXWedJSHNHNGDTVSUsNC+smJLVW907sRGFm67ot1y2nDFpfW1/atvbWKeAlB6TJ3MI8x03xsRthefCH6c1c5n5qtS1HfzAsf/z43XruIrRuy6HW/+5f/osff/XVtm21iJuplFev3gBQUTCLgJivy9ksVLWUWoqSCMxBlESIhPZHjJNkN3FEdNt672YWA8yJooVVjg+vRLj33ruZh6oQiTtCCeaqWrSqcKmz9dbaxsLhbtFbX6d6nOqBONblUrTM8+HHP/rxn/3jf/iX//4/PD9NzRYREGwAIQRCgAMS4eQGZtgwZESPUClMklliz0KBmfiOJ2SCmI0/kSEJubcocuoqSe2pqOTuLojMu/NHMajDie/f4RGRW85IO5KQUL0Lg0cFwCEE0r1zTJHdPKKXEfVlZg2AiYKpNRPhWqogZJ8xIdrF2/cXpp2YFC901hL/fRm186ubCv1AmwgITwc0GtBR0ujDPRuB2exQvPyoN9BptMQG2HJ7uZdEuwzrOZ+wM7AH/kb7gbmP3PE+iSW3z3V7SEq3crmF/T2hH88GH+r0t7dxe7BIEWUQh6fqM25aO/lZIiJ8T/MpmIOE9p8WSo85CiLX0CAKgmqhyCPWzCSAxCjMurCsnaxtWkqOwmf5v7XmEQGLS1xPl8vz+fPHTz//xa/81795F3aY3xzKrE5EMc0KwmLrsm1927KqnUpFdGrqRHAULik9nSOHIA93JipTVdHYC8D8IkmmgeGn2dx671lGEKjKpEUYnB7i3RJ3Wdbt+un06W9+/9dP7z9w7+peq7IqyJsThfKGra1rX59PT21dzpdTWAibSOHBAhx+bsKIQJCZ99btcLBpni1mQizLNcLXdVuXlcjzoKWwWpe2LVu7XBch6RZtaXOdpszsqpSpHESrD3zaVlucvMyHzeww9ePkmKKoINC8Xfv54/P7v/6bv/rD3/yBoG9evb0ezo/Hh+PjQ5mqmz19+vTdp++ePn14//GPy+X0eHjoy7WtX796fC0Uvi2IvrZtbf1yNUC1VFEh5nRBYOY6zSpFIEVKlZrsOC1M8L5tW+vb0jyA8N7Wbq1vq20WCHfNjZ3LtffmHluPZtbfYJuXh+OraZriGh+e4rqcPn34GB2i0jf/5kdfv3v31Vdff6XMZTowWLV4elEDvTdVaW29XK4gKqXKUYJZi5Iy3Hs33GI/CAgWAYKZtm29XK5t3RDdvBHzVKdSK4uq1vnwME+PjC07/InCZQ9/A0Rkmqdpml6/efv06dO6rDmMPh0mqlPrK8iZaGlb7zrN9TAf/uE/+u3f/O7b8KSPBXOKzjqIQtxDGCAO1nSJQABhnq2wnCOITNjG/Gc60uCWp+9xck8886igCORAEe8GQEakuxiXMCFHZjIdzMIif5/2Hhth535GsBJT7Pqq8CAzqLi7E8RsJ0riRXYbfh9X2g+ARKxyHKHuyieIoOyK7PM9+U728uKeamfb/AdEnME15zF9ACREnLd/D+6p5IQ9Wo9qZ7RGaFxmlhcpONNOyNmHYO6B+wXIMwApvqlT3JRwdlQqCTk3Svw9gu+4majcoj9uf3mH5+nFX4l9/DALDFWpqrsq515xUOYKQ6c5P2va1BKFEoIpgEIMDyehAJfsiY/6xMO9tUbsiVcyQUAAQsgc7p2ZU6LL3RDpDGIBwOj5w8k2s7aZtcu1Pb76+s3j24cyqdDWY+vbaT0/fX7q6zqJlqLzVA6vHlyLOReZHup0mA5TrVoriTp12xoH6jwTSy7UVP5KtkJKpuWUyhZYt809hKWIztWql7RUTPWV63q5XJ8/PX98//GPv/ubv2rXpYAmlsOhAhak1w6QcNC2LdftvK1Luyy9dRaBKCRkKA0M/wijII9AgRNicbN10+ygull4uJv1Nvh8FkLkzdb1fDqr2dLb43SYWQuJEvFxmh8OBz90aHULJt58e16fLtu51unVq3evHt++enizzcciyoRu22l7/sMf/+Y//M///vzpcpxe2aX1x+tyPE6nmZXN+uenT58+vr+czsvzc/RtWZpfl8uHD1r04VBr5opu14a1UxCxFGbuZlvbzK3UMh8eitYiddZpLjMJaSFVCmth5siZKUPAe9+2tW1bjriIF0ZqmCVBkAIBj9P7p/W6Hh4fjoeHaZrNo1u7nM7rda11quVQlOeJ33/3/psf/wTE3qlWib09atYdwcB6vSpT65vBo07drZsg4N2s94CxYCjBdSqlELG7LdfL5fQsCBGgsFC5fr6A4vD4qkwPHvDDw1QnC3N3KNhHrM0ZujUCgVKrh6/XMxOVUvvapjrPh+oerW0qfF2u5tPbd2/fvnv1+s1jRGO2bgNOYeIhTsrMQhxinNsp3JKNHCTptIMxihcmLAlyAqyiLHt44YjQu3QH76U1jwqgJ21NIt2eiJwCOdo33hBu2A72rDdzKwIoBxqUA0IsUsDwXWrXLFgc4jmF6XFPpfcIfQua5Wa8BzZzrpSfTCVf3vd5q1uQ5D3a3pN07O0C5n1kduiaE0WIChEUgBBsV1+4fSDiDJXZxA6Q3iAvIBn+gQCcQpGaiJTMV4UZv+B3JgVl/yMGaM+3cE/5ty2wQz23U2wcHnJ/ZDRlpjFKvcNRqWw2Zkuz1iBKBixlj00FpRC59PAAZFz5pI8kG4jA5MwOCkA1fZGCWIoI202ZJxWihxo0E8jdhzL8+JR5MuRIG+03mNzSvXro9kKYLNbr9vT+UwQu5+31ux99/aNvXj28KgL39nw+vf/u95fn5yo6TxMzOzUuAtFSDm9ef/V4fHh4fJgOBzC3HKryKKK1zMFiMbaPiJScfyEg3FonIA1Uibikg800Hea5llpEArG17Xz6/P79H//47e/e//Hbp/ffCfOkepgmRPFtdZLVzSxg6L15eG9b2xqBJIWoRqp1G4cihIOCEQ4WgsEtxPrQjWDi3lpEJNqozARys+169W7LVE9FtdZpPojWWqd+eIiHx7411pq998+n06fTh+fzZ1Z599WPfvT1N29eXx8Pr1SVKbZ2/fT8/i//8t98+9d/PWvlA0RYGK1vIhKwdV3Oz5+vz6e+ruSmRIW4RNDWYNz6xkVJAg7vcCPPbjCitd67BaIz+2bz8Rh1dunWN9LMPxy9CchJ1nXzCDc3t9623jqQA4I9KzMGwunGxgPi+nldr6frdGDR3i0Aaz08MB9fff3wy1/95F/9q//Tz3/6M2UGiijf6mWzHMHeoigQWzezPkk9X07MHITo3XsPOO8C57nfjFlUW1vX5WLt5OsaRHo4iIit63Y+nT/W45uvD6/eegQeX9dptrYhkJyi7AOHBwk3ploKEMt6naepcj0+HDIolFKZhSlUtNn28DD/nb/zy//2n//F//Q//uvff/ufaWw1jj1gRLgQO4Wy5gyYCPWe89spYhhEFAnRDKp4JN7L4IhBARKJF2gKEYFLMAuIfVAOg0iG2HAeESl5TxnOxjj0foAgwm/xF4BHpHu8DBSbwmO0GmXwaHED3LG34jBKgnHsBOWbYk4BItpnq1PWffzi+G3c+qJEOxf5y3rCJc8AHgcJIX9zYB55gO3jW0Q5GX5/BDNxKffThYgoUgIvEIXGAUuAMJdSvGd7iXbiKXbqTlKjfK8KhNLYCKnPg0E/G22wLCzuj5cnQTLnMx5jENxBqf60HyMyznhWHWwQSV2RoJH88wskbo9agRzSHyMiDJS8zQEWDH3DWqqqpsogAAp4gHm3VM6utwTTYCXn3SC35BmkH4EyR/d+2a781Jb29Onpw/vvjsejhLn18/X8+cOHQvx4fChFiXC5XltrBjscD6/evD0cHx8ejjrVZr5sTZgPdT4e5nk+grU5zDxl3VSliCLgZm6dmZnUEcRS8zHVaZqyiO2w03o9ffz49N0fz09P1+czzLQWYnLfrAWLWsTSmiXT3JwJ7j6YYQCHg5K6S+7uFkQgBktS+BrC1FO8S3HjfqWnGO3dqcxXzCwcvVkpWkpbmmqd5ol6Z+/W1gAv1s7rcjqdn0+f17ZKKb65N6yXdpifa1EiP18+f/f+9x9/93u/Ll69E11hvh6EJX3J27a2dY1ucBOCqtS0Ki7Mmnbwzu4CStIoB4EpzNGNPbMCOC0NgakXKaFKRKKsDA4XFnO0dW3dhixrWtpGjLabMCfOjVt6BREWgi3dl8aq7rAIIipaSyk/+/kv/tu/+Kd//+/+g7dv3qzrlgoOzDl2bltbP3/6SMxv3r5xIgTevHnLUvLKnq9n75v1tfcNRLVOU61ZsKdVp3tPtYaAPT99fji+mh6PWng+Tp+++3C9nF5/9aNtvZj95M3rt1qKpR6De8r4uLs3V6be++tXrz99+OOnTx9fv34jpbx5cyylEqioMiM0tJStrU9Pz5fL89Pnp7b147EykZPLaAw6M2cczrRKRRwQITMnSuOA0VtMnU4ao0wcCNkd7nhIf2fFn83hECo8sJGRer5A+XPQPQZgAoBiDL4zE4JBMnRN9vQ5MGTSiUUk3JhGqphEixw4TdgtAaBbMr8H3RCRgNP9Vzg4bUCZOZggtBc8e8i+daGB22k0Ch0iAkUSVJlvn9N5ZMDETDt6HjdqzQ1L2RsNxCmoxWBEztgLwLs038uao+i9XNpHEfAi0u40nwjWm74L0op7Pyd2fgrzrZcrQyop5zkohbDy9BDmokKEDvckOgYRUxFhQhU61KKqbp2TLryXHzoqn0EtHSdzSN4FoQigqKiOxnSosGqtmgKgOYkaSeQaSyfpCxQ7zMj30z0cCQ8imOBujHCO9Wy4dn+6SHn/MM+VicI9unWXMjVaN8Dc29YRcNj5elqeF9FSiopKN+8WUsrDPB+mOh8nUr1ssa5bjjrO01y10ID7a62lqlApATALMZeiqhKwbV2u23JdLtfTydaN3WDBrPCAgEScwJr33SjAAFMIoYp4ru/caMEIJ8IuCAVOEYkkhjITItDDk2PGLJrwX4KfPrKAXAlEFICFIcyM1941fAtbr1oMuGzL5bJcr1trjYipUOflhA/R2jwfVKRt6/X6dHr+5JcrWwSaI6JtIQuLgMmtu3Vyp4AALFSVq1LZlxdTil0HD9nnCAo43JwS96PkYZlvQb2FFt6VKKpyVQFzd1hvOZ2bRTFFIIxAICdVkqBUXb1h1gQhLsRBIDfyOEwpq1p+9s1Xrx4mFVXR6/UKYuLIZenRl3X5+PHjtlzm45EIgXj95k3RuvU+TdO6Xscse1t7X4pOMk1BI4nuZrDu1oNQS3l4/RXA23XRVuXhOD28fnxjwrC2Xv/4h3VtFPT69WtgSE24GxDMvC1XBrQeqvLPvvnZf7ycKeBm5/P59ZuplsnMPVpGhXl+/Ed/9o+fnp7+7b/99207Phzrslx5bxtGdGaVFFHMGUgWJlJhzyiWPLid/j1mkpLvnIILkXdDgiBUaH9iD1iH8P4UIw0c4S+zY84XBAiQrNiIaO+4MmK4Wwy1hmDSMapCIYN9GLUwM3eKiA4zir0QyH8G/SgIeyR27HKf6J0mVlauKq7i7iAQQwBnWEYaEAARCOfcXx5LRFwGH3K8y+CkBBEQPqqCLKOAiASRXqD2+2NYAhGxkOccRDixEhPCSeJlG5uJBEYMFeQ8fMIt+yExjosApcU8q2S3kF80mUfU38mdowMgQxJKhIoKg1SYCJrUhWS786ivlFjImWgSLcq16tZ6ainx0LXL2ZGbUF0uo/AIDRUBE5SplCrElZmqlqJFk68t9+CeRDEiYh6SAMBdoVWGGGHIPrnKLEkFAKJ7+MIG62AQ+mF+mGemyJ6VU+sc8DBzjyFkFqBozuRpkkIg6x0sWFuv0tfKTNeG87LlgOKWCjwkKjrpbFW9FhK1PPDguUzN+7ot1rr1zVqjUfkSC4iCghFMbMwM0sIMDmJOP2gi0hRMYQHBg5JGRpSFEY3RQ0Ka1xClRdZO1UrayehB3UG8UZlln0AUoNRHYY6wlYgCtLR2Xdq6dgKlMk9nIri1q4gKMXnvffV1YfeRBSHg5NFHDYhgH3tSiKqWKlKFq8rwkEBOAYE4hd4TE0beJpWMD9lZynhr2XwBpTqYErP1sL6N/Z7MdALz6BmNhCQ7nUwgZKJDFD2JGCTM9Jvf/Or/8H/87+Z5+urrnxwOD9/85KeliHl4BIuqFnPbtuV8Opl1Zu5tjQjVWkq9LOfD4VXRCvB6uaznp9au67KEY54Ph4fHWgoXneaps2idXx0P5t62Vh4e3W1bVid6fP3m4asfRd/W04UQ2+V0ff5YSxEpJDSc4ImmqTLT8+dPh8fXDD0+PP7057/49OEjgFLKul5pZlGB9exzzvPh3dt3/+TP//w//M//77/6T346PwuFqniQk490jAemXEbtTyxSigaCibNzORbsbhI9cAi+/YSYdptoIg9wEOvOQExqY9ZBYGYSkkz5h159am0TmFOdF1mSCMaUVOaSRCpEJe8oJ2EBRYgBhTEcsFFkDKFe5DNJKjKCKAIy6KiIMN+mcoCk50XKkiFxPKR5MwJImmPk8XUL6nkujq53umGMOUrcQBq9he27CUECMGCmWiSdDZR3nAksd1OlQO6DF/wrH0dh0HDZ9dE7YGKRCA+mFIQnOIko0jn19uazm0PYJRyUpYjKfg4QIU+NBJ0oBXiFx8CCDU3jTDNVSJNjkR6T2UPZZRAzMiOPfeSlz4IlgUZi5lIKMyuBaplLKaUosajeuUx5xUWy9QoVyvI9L8ou8J1QZqJUyb3zPAwCcO/hBEInmIpyEngivCMKg8IDkRN240YRkTvxGGhM4WUwSRFWCuoRbXUHiUaTrkVYVEpMjXDgECmzA25GYQ4D0lnDIjxS1SuJ4UKiLCxFuIjMypOKgbSoMgGkXJIuHDlxLhwBC3SW8aYJWbolCZ1FsnBmYVDsok7Iai4CchPDIjCCKd0+2c2CoCwIaeRkCQ5QN/fmgiAWSdUv77FZb5JXMZeUIIoyiJJPxjtrOuGKrFdyoRehqpnBR0lXykwpg0REJaqKBdJ60sxHs4WZki03Nl/i1DxwfWYKRzgDug9pgDEm7nMAtyiRMEYjhEEiWWVJgKuW+fjw/rvn3//u+S/+4i9+/rNfP74+svfr5RLgUmthbtvmbuu69r6qEAkfjgcienz1pm9b6/3Vo376+P53f/Uf+nZW8t5bu16X6/V3z+d1s7fv3n3146/evH17fPXm9Zu31rbL6ZSMD5YihQAi0Todjbn3p9P5+Q+///brH//0H/75X8wPb1hlqnVZVhaptT6+enW9npfrhQ4Ppc5aZ1JZ1oW1vHr1pvVtoilbxEUFEZfz6e3b17/97W/+03/4y8os88SppM1iAWUSihjdPzBQhxAxhxOpmMduty3YodcICiA53TkFzULKBLgFqnJRFiHNYxtEcAJk4AO8T5oP9EN53+vIAi1IQaAgSAYtJ0+cgKWOmBRphieZeMIYRnDarbqzoUuZ2TARUxKeUvYlk0sCWtuIiggXISra7lkyD5WGPWXilIDOwpRzISKPPRUVUCJRvJ8STFF0RD/dm9sZr4RYhWotDJRxoFGASGRMOHPIkI4I5VTqIqe8JtlIJyGwisc4hjKJ3QN9zhx5Cn8nDiPEirCBzCBAIsNMR3XoWQwBVUQWFUJUhooxgFCAA8nqZKYsatLqFPDMz8AUOWpIWYiPVmUKjQUY7swqQgCVQjpNJUBTLSMiiCaANBSciEQ4Q6LvdkVZCiSkrbUAiJvqwhhmkUCwUHhWEHslEuM0J0IEzCxXZJato9CIJMYOa0kVHXYV6XJExBxKkW50DIY7RCFemE14kiqR09NO4Tlj5W6SnHoKHakvC0FYisqkUotMhQ5T7eYOLlEiXIWZNSI8QDH0ez2wmbGRMIyGSWTN2i0Vu5OWdEMhCZQUrwSLWERIiERSK52xd6WIiYXg5NgbXu6AK2c4kCKc0n5jQkUouQHCNNVy04TKcjj1AzgVHVlSd2sIBhMpk44+UCAH9pkKy6SIUAdUWJnDg5hluEcmPVkiAhTCqCqFJQLCVIUdEghRYpKQ8aHS7bIUJpBSWmYmjoBAFBYQPT6+2tYtQP+3//7/+j/+D/+Pf/V/+T//oz/77atXj61bKVMR+fj+u8PDo6h470WVqBaVWudSplLK+fNTdH/6+N133/6OaTtMuq1t265tu4Rba8uHDx9Avds1bNuWy+XTh+v1Cua3797xNM2Pr2DeIqb5SMxcpnVdPn98//G7P3z37e8/P3365//if8d1ev32K1FelisQ796+e/36TWsrE8+HClBbtsPbw7ouKuVwfNi2dZpnkUmFCWTeAvbb3/797fov/83/9G/M1vPpFG68gxRMpAyCC2mt6qneiqDKwhLOmhouyNFd9nAf9nYjqY1sMmWRwlDJ1cI3LTVKfH9gTFl0JAQOYc6eBe5HPCGIC3vGQBVnYkCURCGKmjkrM1PknAUL0Silkw/syR8K5FRt7gNSSeCKhztRzmpEiKiIKEWFgFhC3IOEsn028njlncYD3CdmQ0A66tgR38ecM4mZqzI8WPMSJfgaLDTVOlUVzkQzmMizeNjJkvnNEfNZmamUwhwE8QhLDSMmHXDeSOvvDQEMEIB5VBWBAAcTUkeRZIBXUBblWiSjstCuGZVeMZJcT9ZINBmQHDtLwpGbdUF4Cn7lXAKFUA4Wx2hsp8Dsrc9NEEYQlVpLKRVDmIlEGBzCTAgZzm8Z6VGUlTUg5p4BelArmIR1D2HgNONy97CABwsRZ9lUlIWhKgBYkhSb7S3VIhRBw4o+r14gSFQlxqQ7ExChqsGkhamBOTUtSYgYBJg7x0hw3L1z4phhhZDCu/kashPoWGgqpQjVKodJamFWtaBKQiFCw8cnB9YSArIgERLmxkO8NKVOk2o68jQZ2e/OCCMW2VE8FCItKd5FwgyW7iY7cqIMZVFhj5iUiQQx5htFsKNzvqc5acFecl3nhk5fnJT9BSgsT2tioioyKesQFmVVcQvy9AKNUpRZEN5BEqzCpAUsOwQ6ytAUh1ZhZRRhEgbBXTQLTYqs/JhyNRMLq5KQZDtr4J5EEVFFap20qNLEJCz4l//7v/jf/vPf1vrQel/P57fv3n16/wcz00kKinm7LtdpqtNhFtbD8TGA0+mztUWL1lm1PFjbYrl6YDNflrUU/Xt/99eqejgcqvL56UM4pOrrd18x08PDI0DXfnn95i0zmdnl9Pzhu++2dREEC7793X/+y+Px7/z2H4nIPE/MtCzLw8Pj46s31+W6LpfjcSLg+fPn4/E4HQ/dmjRmSFbfza0U8fDD4eHnP//Vv/vXf7lcrtZXeK9KGgxNpRc4BYGVVZlUhBUMGeqeQKmqkkUYEzMCPeHyvS8ans4HkUpXTChKTCEsjoBbZGOTiSkNXdNMcUB/ueTohoXT0MxzD4BENJSbg5mmIlW5lkzJk1tk+aaUnMnTR2Pn5QcDKtnGJKLsTI3Yz7hNFbiyTKoheRByELuzB5kMCiRGQ5Xv51OmLyMyWMqNZNNNs0slLEwWwhK+O2wMrD5QCx0nZQrVMQDtTswwZg+oQLN+IiIGM0oWzMJFqFsX5xj7m3M0NZSt+0AKgrMbzEwqLCwByiNROHUw0niRiEIomIJgRCTCOthDRIzk4qgyBxUhFwYxsZIM45yUjDO3CBuBFs6kROmtECzMoHBwtm1G9gtlJqcipZQy9GOVU7l5pAeMqKUk01ayKFAGsfoA1mUgGtkJyK7CmEDsrZmbu3X3IKsAC9dSinIRApHHmEWmGMgjCQVTQsYkJEyqVJRElTpHRM7h16LkKCxTKYVFdcDKxJE0YHhnpSIQMmCMR+exX1QSCFXlPFmVZaqlSEyFp0lrUfUQCyaRYY9AyfMchDnAPA38WIWLcjcHU9FhSVJr5d0HAZSAODtBlbADqpU5hVJLHnjKYhwDGMn6AcKsLCKVzEZSB4hQymwDDIIQJG8ay6CqUTCxC4eM/DA8DCCglKyyparsbX5hIS2F2Ym1cGQpDZA4Aux5d4cQY7b+08OIkB4sQC1MzE5eY4iaMYuqpkZLstBz3F6EVaXsgz/CFBAPLXXatjZP0/F4/NGPv/6Lv/jnYDbgupwPB12uz+v1GeHwdxA+nU9CPNUJTPPhQbWcL5cIr7WCQ0UYpdnSWutb05wgj3h8+4aAh4eH8Lhcrq9ev3r39ddlfnh8+5WW6fx8KqWE+/PziQkf/vB7a6swv/3q3efPnxX47g+/Ozwcv/mlirw5Ho+9Y9va8eFhmvR6OZltl8v5cJg/Pz9/PU114lz163Ym0FQnQilaSp2Wy/Nhrt988/WHP/5eiD3EHMQcgnCMAVs4AyrKIkWrCMow5pvGLWPx8GyNUJpmAYk5925g8fBuQRRTYQaEYdm0zUnRbN/BGFqEmUcZKkzjj7zPvxIwhJqhWsNLcw34VGRO6FyEiHoPwDOOi3IRuIcgDbGz/IVK7PhoytfRToEZbaGp6KQ6ZXVQmEk8UuBWunEAlgz3TKYRAIcAJH5LcBMRZdXCZWgXMREri8DF2IejS2B025gZpVAVZWYiDXeoareNWINVpCipMKWYrLAIl1oqsbs307W325BboujmJqJmMGaBAHCEChXlMY1OrM7OXIpwBO2orFAkMV+ZRLgkEpAFhZBIUn/3+inH30EBn+ZpKkWFI80gmXhgfLlZc/R9cK9FyCKA1JQkTcn3OpUqhZg8goVVC+coAnPRUmtlFtrV9gEQMUp2KkrSv9JlKWVKaym1CBFtKlvbemci7jqsWqtKraoqwJAnJAJFDlskJgkQjVgqIqpVE5yEmYuglsIstejDPAuEmVSFhMMRo3RyIWU4A5Iy+DwG4ZhZREIFCGGppVQVIaqFq5apyFSlVnUPZR9NedHRrsguCwVAGpBuzMHK0klzjWgCLTzXwns8TlIFCIoU7qMIqEgVzbOQCaoCpybDF5N3WQ+iYJHClEqO4wBgKtmgGIAZRtLG2XMGIMl2iDSvy7XJFUApIipFeKpFVWVoxzNAZkyMkh204ApiQZAkykCUJqKD8otgd0aECgmNqtGdowgAKsrEqnvvMFkTImnJlUUus4x3SwSwRxzmCpK2rW/ffTUdXmmZwDJPdV3XLGWeT6c3bRMp0e3VmzfT4UCkqjXcbVtG41QqA+v1+fL06cN3f/z9X//15+dzLfX4eHx8/fpwOHTHm1dviOTN27fTNEuZ2rJu2yf03t0hUqSI8tc/+Ylt67d/+OvHh+PT08ePT6evSE5Pn7RMj68emeVwnN3cWgfR4fjg7ufzWUphovPnJ9Wvjo/HbVkD0VrT16+LsgW7eZH6D377D/7y3/1rZhym2d1W6o4QYq2iQR4gcklehyrSBEKkKD8c51pVRRN/aNYtAFB3swh3ygsFkgCpUAQmHRSZUXMZd02XKBGRoqwCHeOnEKHKY6JGmPLbREgpJ2ZFcAV7pJWD1Nz17gjpbhFgllrIC3uw74hvzVpQSMsAdauWwU0QKSI54V+rHqdSVWQHiz2QLOuq4gSP6GZ5ACabyMwhCpCZxy73xgJhqAxoNwOKEluBDc0nTh6X6ODeMrMwSIbyD5MG3FWmWncry0HKUpFayqQlIiY3VfGdJ5N1iZtId0kGV4S5UwTvqVwhYiMqErvCv5CwyFRrKTIVLaq1lBwe4MHohDKJShFxggvVqjFSOwDlOE3HqVYVbl2Ji6SHUvYdiBmFYAGW7LoMp+mMDJIsoEOttRaAzG3PZAfofzwc914BhmVVhsCMNNmpppDhxicE1CJzLUCIOKHsQ2isHgCqylRLKjXGjnxn+0VYzCMoUnIykx1RnUphQtXoQkxcipaSwmtcjgnmaKTkfYAZmqggnAlF2CNk4IEsI6/Jo5eq8FyVEEV4nkpVnlSKsEKmWWgorAqlbVsEk0TAPWqQMnNx6SyMKXTAM6LMVGsyuMA5NUqcMh5psRIAC8+lVtWqQ6orHKVIOAzIW85ERCrMhkQV9/M8sVpmwjDtorvrW8K9Ye4a5BmCAYCUFRF5ANSieQDkXlIVILqKUJ7AsFRKduTgbuY4MqjlWWVwMKeoK1N20TlKSWQvqQvJWxMRwughEVEgktorxEgvLCJKi1SwHh6FRKSw6FzrsplqPcxcSjl9forAhz9++6u/8/cPh0OOMFadIuDW27aa98eHBw8+ffz4u//4H3/313/1V//pP/3ub7778HQioZ/99EeX0/Wf/W/+2Xw4iDDBT8+fibhoiQgmLMtF6+HHP/1ZrVMOW30+X56enpdaejMiTJPCt/Pz+8+ff1QPx1mnOtVkpxwOx+zqsfDjw/Hzhw/XQz2+OoT34+Ex3NfruSqrlnVdjvN0PB5/9O7d6cMfhWEdDhcefBllZYYKlSK1FE0AUjXnNg6THqZJVZPMURoZEOBi0s1c2MVl6LQpM9yjFFYWZUbR6tyFe+rn09AdALkK3dw0VYZ0q0qi1lkMCDMXLYiYSS0ik7ZSRJW8J0FaQRwIVkZlDwlSQACk/0zCyEktmVKUfbSaJUk0+RnnqkI5H5XNtuiOLHcAcq/Ye6QB6h7ZY/YyDBQTuyrKRaWIpB4vOIike5hyEsqyNhUhgc5VVQadKQ/LqioiQVRrzXJch6OsVBVVmYoQ2JxVOWigZJnx9BYiW1HykGauwuYJBHHON0wlwSIBRAFhZdFpKtNUKnOtWopERKILEWDWrI1USEBSNa09srkDornq46EWUTc/1DpkBpKZki1PAQdFsHGQD3lXUIiUUvT/w95/NOuWJdmBmIt9zvn0d8XT8UJnRGZWVqEUBMEJye42ozByxgHb2npEo/GHccYZjWY060GTBNFoNBrVKKASlRUpQr944ur7ySO2u3Pgvs991RwSQ1xkJSLjvfuJc/ZxsXyt5aCaJlVFKXQ9hjhJKREyU8WprquUKte84kj4sfAD9DoC0CeN4UxRV5w8uyAgQF2lQ9enpI3FEqUmVczBanXvc/Z1E4RDFufrJubK12R7pcqYs/a+YJowEU7qxETDIGb+sSH7Xi4zICNQL0IVyI22Obg34JRGMUCCiiAxMTETJSZmaOpUETl44iFSVZFI2UmiZAqqBQLKREjsbhvob0ieospsBIxNwCUvRuwTW0PEKlV1ojolIidEQc6ibBxkKAMo0lXVsAV1n8kyufWGLugco/84gsViOfXaPQxZCM2o8cCfsI5tbRBLKA1QfBKWzJTEp4wmRhWSmopa7P8se/KUivbUg7uZGiQjb2md4umPeJBoE/uHiRE0EhFHN+FOmGqnjx49e/HB4xcvFov5brdBrJiZm0nbtphSqqrDZqeq1bRxSDrnLmepUzocD0hEVdpc3v7hb//28s0PV1eXP/z403evLq42u2fPHtf3m+Px+PFnL88fnfbd8d3b16cnZ0Q0GKSUUlURUkrUHg855+PxuNttv//2m8t3b8349u5+ED20dnmz+fkvftl2bdvud9vdZDJbLFZElFKSrGpWpcrM5otFd2yP+0N7bA/7w9NnT68v33VVNa+nYtJ2reQBHBKqGMGSCscmA2UgAR8mMTPWVXJWOxM1Fdcp1YkpsRk4HZPFa7lECEIoiclJs2aYjRnqKlXIidgAeOCKkwBkCe5oACRg/hgTO6TJ/kec2M3fmBnAfLdTNjdWM9PsHUIGS6hE0A6ZwVfucZa2tItusICIaCLMwJzK3lkK6NxHS0RVxXWVyOcelADQTfGySBYVMJVgPQGCiuasAmhgkjWWnKoRYV2lxEgIiSklQkyANGT1TU45Z49kjIYIidDPqtclTtSoh0HNEic/qVpGB6niKnFdVWAgIo2lrComTtEW1c4yYpMS5ywpac55kCxZEYwYY6mOd/m+kYcZiapEk4prrxwpui8CMlWHzeuKEUDI3ZKcBhZV36ROTSIiqmqqM7uzp6svSzWgYR5OeUB3wQcmn0GiASVK2FRsBmSgZhXzpOK6ShVTVSViNkBRBxPRH2Ax8+bJmyZfRe+9UpUq5yPGiRkGJByyGqDfvIoTM/rd8tv2kABSliwGzIRNqojRR7WMKGxUiEIpUd0kSoQ0eJBBxIQobvHPQISTxESEbACGhkTE7K6vJmoY3RwxQp1SlVJiINSKqYpz71nDp2ExkkYkMxxyJlKmhChImBh9FAfBlXDzOi4zfMgirsyJYsq8ik91nSp2s0ZThcw8DFlEzLzR8j4OUTGVORMYJOZwyFbfaRN4qpVeSs3NuVwwYyLgYhIEaOqqSuTFvx/BxASlYDS1RGiGYoAVohgbIJICq7mJbhi6IWBIfL1TtXBl8mQwStq9G/DOxNc+mTmJARCwSlVV1W3XcarVTLIsFvNf/dk/OH/09Ljf2SBUczZCBCWcTGen5+ft8bjd3k/mcwBiSt3Q1XV92O/y0E9n06Hvv//D3/3uN/9W8vDm6u73373JyNV02Vv1Z//onybsjl3btseT9flHH39+fXOVAKsqUdUYYT2Z1lVzOBzA9jn3uW+/+PKzq+uLP/z++9vNcXNoq29/Olktru/a/8X6bLFYHXbHdM7H4342n6eUTLPkDIg9aF1XVQ/7zZaZD/uDZEkpdV03FZ0uZpbl9PTsg5cvj7v7tjsUKwQAQwNlpMEIzJpEVUWTOnm8YKQqcZUKZYDMgBKQe0kgEQBBPEeQM6hBYlLJdZVq5qqqEKjtezUVwCHrGJG92nY2h8/eksd1tDolDEtk9F6cmBpMwYlWNhNG0ISZNSUjYmcdMqFBU4vrWoCIypiavRSImjt8Lh8SQJ1oUifXsrgACIzVoB9EzbKYhO8xAVj8ewBVy6xZs4ZG1lLMAJArbqpEiGpQs0mFWXLO7rvpEJeBWVUlZ87EVwesKgKDwA0QAVlFk69588ACiMZqOqiqZDMgIhVlAyLkDJlwyOIUCWUV0cTkgElF1CJUzD5Y8Jg5qasqsQ9THWkxQxNNiRJzSmRqai50d9aJjweoqaqGUc2YYdKklEooKCw7MxOlLEIZCNE3xqZEFWNCYKY0qVJTVwCQjc2sSdWkruoqVcFpITVgjaKWmcFpgCHu8e7J2fqMiKnimsnAxIyoHpg4cT+o7xVPiImYGNVUxESTk529lh2EM2fnCNYpvPGqVLwkCbKoAVTMjmH4QBLNiEmZzUeuaIgwqZgTsxhzMp8xAJiJ4yEASkR1YubY5ZEYCYWIEjMQh4DX83+AmVYmVwAoiCCGAoKIVaJROOOoEScelZtSJecwMFHgrYDIVCenRSiiDVmpkCFUFYLnA06gjFIKAJF8TTqPHY0zMwGK92LpxwANUAGZi5IToK64qpgQq2CkFvdgU0YFjVUgZmAKVWIzcHGpKgQTzSWTFoRnJHQDYBBEIjBMPllI5Jo1R2D9Ujp1GREIgLlyXvP65PTk/FFdVZvt7snzD9bnj5CSiGlW0T7N0mQyPTk53W3vj4f9kw+eb/fHdn84OTkX0cRcVanve2Kuqmp7t/n2d19Jf7zeHP+bf/3r/TGvV/O2l/u7w//jv/pn/+f/03/xyy8/Ehmork+fPFmenN5vNn0/TOdLZuyORyBan5wMw9Adj5NmAmR/+Y//scDkv/5n/1Iw9Z3Y/eGv//pv5+vTR6fnv/vqq1/9Saqa2i3Ky1YyHmQwUxTrD0dIPJ3PVHWxXHRtZwAMfOxbTPinf/7n52err3//1dufXhmahlTLCLEyUZWm8sOJju8xcZW4SkyMwEaIaEipYhQAHEQQPIeDMgmzp2NVqSpuEtd1DQbTST2IqEKfQ54iOasZUlh9FRAxJoe1r5OPEgOZKVXJwWW3f1NXlAEZWZdt5J8kIiLO6hQUl0p5MaBmPg0nAGFmZna3Bc8Bk7pqKqcGIjvtHkkB6kp8UCSOn5oikhl0Q45BcZI+g4p5JYlolTeaiad1TQBmmEOVTKrJr6onNQAjRg2ZhfrEUXWkvRkACJCZERonKktukYxUNYm636qzLRgZeeABByFCSOw27j4cxgC+qkSEWdXLx6qqKk5NlaqUrOwNwOIaWvuyCyZHOKKucqsJAkpcIVWMYtpIQqAsihhjFe8x1CwrifinzjlcbYyZ6ioZYJo0qakrBN8MhymlukpN4pQ4BhVI7vJEBkyIjGwsMT4Z1z0YETBRxeAnCgA4JQJi5qoyjZqRPA6KkzPecw0sJw9czsecmJkQqjqBmaoQ8SAhZ03EXk5nIY+RmhyxBDBDtERY1alW6zjnXoMmZMVMCoEQK06cOCWHm8B1M47mG2g4iJE7wxYyEJglsNDBqnOZVB3OCIo9MzIjAZn5DIfVVI0SJmLkYLIRE1RM6ChTSv2QmVDZUyGZmZsxYfFbJX8IGRKAD1IBEUx9M4IYhm9LiGzR0BhQvZYAIMSaqWKGQgWD0kaiYcKk5EpFpBDLkFnheSQgCvMpNw7wZ1tNgsSC4FuoKvLhsush4tZ6BemSHzUnHUYRhok++OTTJ88/HIZ+sVwlqtvjwfJwaPdVM5nVzXQ6NzPJVk9mXZ/Xy/Xd3aYfcoV1XVdus1pVFQK+++l1dzyqwr/797+9vN2uVmtknjRcMezut//iX/yrLz77bDFf7Pfb3WZXpXq1OtnvD4A4mS2oaghh2jRXby/aQ7dcreqm/uCD5pPP9s9++8N23x72+/lseXlx9f/6r/+bp6dn0m1/Wi7W52d936shUSWiTU0VVbu7O1bb7Xb1fNbUqZ40TDT0qn3ft8fL169Wiwlz+vCTnylou98DYj8IIRoIAomRKVUJm4oTccxU4lAxMZZ5FhKZ52Tn91ahrbXspmdmAJqqqk5UV5WOQgDDIYs7Wom74gMAQM6DwbgEWJkwpcobZfJJapTzTAgmvjWEEBRUNEFD5k4WAEnVKs6DallWGGwPVVXRlJgrMstVKu29gZqBauJUpcQUTUnMVQlTxQCxqMB35PlYrkqU1YYsQ+bEJMGVJgBlwkRECeuamcgM2d1JzAwNFAgtESZ2nb8ysYCBaZWctmZYxopmKkBi/veJxrgACMCVRekVUCqZkBEhiyDCMPQ+vEuaimLD0WnMkjkRM6eUKqYmpcQVoA9SDc0lPpZKpVu0M7HnN2yQGWqmRJSz1JUAYmUJAE0Zwm3UzHTIKpawz0SYM5pZYqydFAiYptNJnbwiQ89uVaKKKbnkAEANBwDQMBElMgqtJ2DhEiE6w4/Zb14hPFaJTVMWzSJYNvoys1nKIlrMQyFaQqiULDAy9h3uzMiIfQYsm+I9fadExFXSkJn4bACRTJXRUiIs9rgd+sgdzBx0jrDm1U1N6Akg+QrOslXCFzoSjc8YjSoHAATIPlEfBAR9NTAgeeoixAiXjpiojqZA5EnGEMh35DrOA0ikqMKEBMknSwTIVNZn+hyAqCojOz+jwBSe8h7PTfxLuRI7WBcACJYovhuRbxkbleLOgnAjL0AERgJQd8FHRCb075Xi/nlCASfUESaLeENONEroyZmCa4C+pgTRyIoXIgczhJB4tzt8OFss64aQ2sO23W52u13uZbaYVqlG4sNud2zb1Wq5ubu9PdxSqiglIjLDtmvzkOtJNQzD5cXb9njY7rd1lV4+e3zs8vEwENNsPv304xdPTldf/+73J6v5dNLU0wmkRFydP3nq1PDVfIEAh92Wq3RysuxcMSa5IppN5999/6aq8OZ+s2tbQP1v/z//z59//uHFbPri44/Xj7jrusSkWSTn2XzWEd1cXRy7dqLy9NnTLAqYUjXJWbr2mEDvry6B0+Lk5NMvf7m5vm67jjmTqR9rVQYwZmCCmhNiDOHdocVRBIAgaUXxTGhcGalXKLVbdHjaSJyYUpU8EhCRAYmqW/blrC6eUdUhk7qLffCwkZmYHPGAkgGICBjdrsF9xrIZm5mowZAD0wdIVVIrDiCIUvbfDkNm5qoiM06JUkpUfEU9OzElDhajG+L7tJMAivVukaSoambMGRITJ8nie6uQAAEUCVLCxJQ4ASIh1YpaNoghOPTvcdwQjIm8S0nMpsqJAWEYsnuZuot2aAwIU5SJiMVAQxWRWMQQ1bAh6mlAtxHTshDGK8hooSoWZWauqsREibiqOFGCQLckxq1uSUCkalzFIN2gOGuo1pXHE0AA0YrGHfbKZuovwkSDSBZh4tSj1myqxJwCBMM0bZqaU+L4VkTIFTKGQZIhmCGS5Ozv7vNGv2TowqCKE6K5mDlKFMSC8pEBJLM8iIK62JmJAQF7ywBkiAnL/BIK3IEQ9AdyOTsSDFkRxN1dOUFTsxmKmqgRkONCXuaEiRuhKEa54EYcSKrIGFs1PLYyeo4JlewIqfvIulhHWYCPZErGwGCokBVAfF5rJb3HkNMJM26waoGSYZCdmNFpvKERGztwMwIn2BiW/3awRxERgRGIgNgNGf2JBXC3blegFyIpIjJS2BEZuOKsRHwfz5Y9glAqdTMEDOjTLQVDO4oIEPKOGGEhAqozbDGMZDwdRuXl9rwM5FUKYUl5QVZ1Jh8xT6dzGeSwPzDykHPu2649Hjfbi4vr77/98U//J/9kMl/6Vxv6YRiGu/v72XwxX66z9CLYtm2WATrt2uP93RWinZ+d/OWfTd9eba7v9nnAXuXFh8/+l/+r/+RXv/zSg0hibqbzejp1V1zmaui7uk5D36e6XqzXx/0uGU4m0/lyPmRZ/9Xf/MmvvtxuDhcXb89P58/O52enk9ubi17yBx9/3Exn/XJuVSWa+84m02rou/XJaqHz2XJFRHXdAOJsMW8Ph6ri6XzOjKLatt1yevblH/9ZP8jN5bv+uEP1PS2qJobGzDUnBHS7MTfJc9haxMwpGA49mfkUM1K9RX/puA0XMgX4xkeELFKllDVc+0UkiyCB5Ox+y27N6QyxxMmXwqJT0AIoj2LKjNSyirDGY+slR/ZFtBakQckDBaAR0wQDSsy1Rz/iws4PBzoaXQAQwOeZTGYgEuAVAIhopjwwsBBlcjFEZCDNiamqmRDd6AWRCdl8fo1oahXBwzuABhNIw0OiSmwKTOS7HwY1K5cGEZLrohzTMVMgqBAAlI1IRdSqismZTtFgeRLS0X8sSDTAiRNRXVVBHTTvwNxaTgnQGfYiIh5aicq+F0awumK3jmBWIOjFWymwLCEoImREEqSMiDF/cyOOkv8gTapUxXCDwXzHBPjCZr9trtVD36JQooxXIhZbzowQvaUq39hHnY6yoRNAcxa/4MxsapZcfxEx3zQDcUhlEQE9gTOicZj1RaFqYBVjIgTgitHl76nYWKiIuoUhIpMRAmU0LVAVsVfxboEUd8cAEbQsUnDwz9s6c0Te21HXwKKjMhjYKLmsr3AqPBU4TcfF2kCMIKZovkNGDQjNvKslIgljQysgUzg/YvhwmE/oojEEMgMFxUL+BCu3pAyKCxsKfAwUf6Dqrzh6w5blo6U6KSLeLqtTahWUYiVbVBkEqPFYK6iGJAUsJIku+4qBOQIEBzhyOkCQkb1dMhRRTumDD17mnK9vrutUMxgC5aHvu91kNocwJjMiOcxIDQABAABJREFUzpK74xFUVKQ97JEqUVHJXXuEKt1eXVy8eaV5WK8WJ+ePnjx/1rZDP8DuMPzqT//4l1/+YrfZL1ar5cmibhriBICWUFWAqGqmzJTFUjNhrriu67p2u9rnLz/6L/7L//3Xv//2q3//h6dns9kMl9MqEeRhGIb+zY8/nJydnZyfEmNdV9L3N5fX+8P+ww9e9F1/d3eXxRbL9XJ9MvRd3/fNdJEJz58932w3Xd/jbj+ZLZark+3NjVaVI78IpjZgDAOJidi8J6YY/AAyo2/pgKJCZywgqp9lREBgpySQPyFe8RAgVimJ+NpJyyKlWGFCoPAf8f9NQcV2VBaLsh0VkYjRfSzcb0DQKgBXLSBSSvBgj2NqlKJYLlMNREpMqeKKKyQGl8j63oNiNEbgc6XADEAhcRx5IpKcByIWhWzEmEV9pGWqAEyEKbRKxE7WQzYDCfNOJFOnmQNYfLMgNCgiJmJTRUrKJtldPNHGApW8pUVAIMAUFaKZAROZWZ2xz0hoiTHn8IwrrxCm8ERkoIRYJ/ZJb2nXS90VN83xKEpxCmKi5zBDleKuJVUA4yG7PYQIq4u6kAghKSeWxA5w+S1Rv8gGlpq6IgJm4kSOAvhnoeL4SeZBJzyWyNfpOP3c3E4WGDG54A0g51idQWigQim5d1DMFcFcOAUYqKETWpR8BgkcMqcIG86pZAYEcoN9B4sSY/IHxDAQcwqKp5gRJSxGqCriXn9mihBWhgQ+R0cFNDTfmBmPUBgQqhWOhKE7baFzYMPbNvqc+KzBbvGXQAA3rtLgaZiK/4FIxgin6GTnLDpkFwDY6J0OUX+Hl5xTbzx8BymtJKH3Y3hpSxXLwNrN/hFiP52qI5wOAbnzYgkcShKtvOasBgDEBMoMkJhRw0UEQVTd5NPnfpEbvXQxUFVOFHwD07DXQixLP7z+MDOoqtoM3l28W5zD6enp2dn50HfH43GyWP78V2eUqmbSmOlsNgPJ+8O+Ym4Ntvf3m7vtydkjI2XE7rDPBLvba9JMdTVbrubzxWK5RG4U8Nj209n87eu3TTM9OauJEsTJZEAQRRVzEpiockqJUJ1ZrMCJVGx5drJYrHQYtreL9XyW+8Nme9P1gxpfXrz5ePeZSc554EQVNF9/8/ViPm0mk+++/e709Hy/2+62GwBYLpZte5zOZ/1gh3ZYrc/a4xE1u982pVRZA7Hy1whARVxeh4zs4moo3ZnHBr9zLjZ0toAb8YClYj5OBIkwVqEyQvgkc6kIiMoR8jNHY2NnDgrGEfLWj6I/NEXyAxq9snisQnC6hBdeiMwAwRgnCduaeCOvJLjClFIiBmRAJN8jJupiFCcAMrr2l9yN9aFic6oZMw69oWU1ZgUDBDIiCC1FmLIwsct0fWWsM3YKYOyPhTlRyQsoYvJ1V0QpiwAYGhmgo8cR9enB8Cc5bhYKfDAwSUyDj1zZ0W/CYKy4QQwReWeFBK5XYJ9HgwGiStxSTwnjE2/jWwISOwzOiRCBWAQsMZI4E4bIwSsiHIENZt/9poyo3my5GVcAN8hgFIIIg4AbLYY/qOPoz9ECK1VdPNUOFAe07Fi8F7sAoOZvScW31BEYt7JynyeHp6OLde8Yn8OYoSG7myYF6QW9OUhOtvROhIIzoYpMZEzg67vMzBFzp775EM09StSNfRDCuVrN3OzQP6QZIEX2ZmJOjBpTcXOQ3vyCclk34Vc79qH5aVVXxxgkN+kyUlMVcM8nNFMJgaJfWbdzclTUL7xDvlCqs4JOAQCU1t6Lb0MxA1QTd1rnEbL336IyCI/fDyzZOxVEEjQRE7Vjl/thUDEgruo6cYKKjQk0fFHFlCGEAVh+osFyqqj6gMRFD+pPjOHDBN4EfF9SVkWms/Ozx4+fVpS6rk9VNZlO+r6v0sS3pHWHdnO/ubu9BB1ye/z9V79tZot+aJu6nk4nx/3msNt0+20zazz6NJPpZL6eLtZVVVd1UzeTlCpkMvMaLSGge9OHswthSqmu66qqVKXrelOr6moY8pClqueff/lH8/nq29991W3uAWXdr+/vbu83e6amaiaSBSnnfqg4NUw6DP/ur3/9t7/5u//8P/8/UEWpqQcZEAHUhvb46uuvz8/OPv/5l0DQzKZVVaVZU88nqed2f2BUQnfN1yBGBBtYwd0hA1MIabpXEg5DuBOaAxveQjOir64mR0YQCADJsr9yQsvihAsiYkp+MEoH7rHW7yEYknpkIGD3lHQRJ6hh4Q4QgpEhIIM7fwC44smRYqoT+xsAGCHEKqfEPl3TIn90P7AQuJA72xKXdKXmAQLU3xASEPky3PEEIhoTcqL4IhyNPVsql9W7JvSIBWgemLyGIwIDch/rBOzh0KJFtgL+h48eInL0FIwIpAJGiopGCOwuCZWwhReeOGbOhB50GQGZuHBvAUZREWLgUwhAIG76ixaPbOi0K+/wkIwYkDC0zmaArOqjF0Y0MgDgRFpsib3sM9Oskoh8rBflYcn8QBxDTIeuLEpRv38YheV7BahFR4qRHh3qADBfQAeIIRoKuNoRZEQM+ATAyiFzSMQiJjoWBgYGHDLpFAxaZ7v6CXRWDvj5t+ItzYSpYslmIUwCCkNBAjAV8WzmJ10gGGa+yQ4RkZDJdw1HIkVz6imAk4fL2xYUhsDEb1X5N/GHFqnTBnNOgCGRRVAFi61ycZHjOEAp/eKfYz4RR/198Cf+1MDcwxbKPCWgIjVjVAgPBk/+AKP5HhohKKKIdkPet+2h61RhMZ3OmoqhDugvMghkUy5DjFIBlOEwYHnMIdQP7tboJsYGhmAGjJSq+tGz559/8fPTp89VcZBMCHVK+75vu355+mQ+X4Hi1cW7Nz9+u1rPm9nJ21dv7m+vn8zq6aRqpjNQUZX+eOzaw3K5AkDmKqVmMl+eP3tRVTUgVVWqUhjvuXJUsiBizjmlRBx7vgqr2PIwEMBx1+4Oh7qZUqpy1sfPnqPpV3/z79p2vz59PF8spze32+2xz4MaDN2AYLv9drletofD3/3mb5GqyWLOiQBJDJB4tVoT66Si3/z6bx49eQwV9YOt1qe//OM/r1O6fve273rIva+iIqdieRNezJ9L+jcAXxLptRq5HsD3HnNRa0JwFTwKu4Vi0LgchjEzYsICliKRSWx5Kr9bigSLMspnsRFTMIQmELsITItMxGFoBDIra2OpwJVexfmojN2QDpnI1Ftwt7V6aD58Z0QiTuhNDnnpCgZG7tcF7IIABT9z0cyWQQVS+DP6o8oPzXq4z/jUgGJXmANcHn0Z1Kms5GipangoeAjFKIijL/EKFREJQUIAb0QoCuZupojh0mCK5iRDREIuhmMeEpCsbDn2xE8WqGlQPxwT826OivBGzTj54B+MUcTVxzQGaoypoSFa5URhMDOq1PHQ0mZA0ZjReBBGZOH9GSOjqY/40Gz8FVQzinse584bVwzRh8VehkBnvNiIesPNjqB8WkUsZXE46hRhRlmH4dQfAgDUIvHGoBurY2QuV0uMCKxaCKv+UcvUyFNU1MUKaCimOfuaDhdNuXOHASgzq6k97KWzmA74l/Y0Xf6fI+BlqgBqIKZmSghcqrfRrFsfVtz5zUYk1+YYc9nNGW/klYJGhU1I6KQgIwwDGYfrApUqqRTcgBooCLhFbubvWCEbCafEzIPkbXuQQRjRVAnARHP2JeU+HkeN+XhcxoC9CqNj7GkAwIjcctofEDMwZCNSpPX5k/NnH/RZ27YlsOPxICqK+PjFi2cvXhrwZnO73VytlrNZM/3tb357cfn25WeffPrFz5+8+HDIur+/8QiSBxmyimrOcH2/+eDzny/XaxERkUGymtZQA2DdNAbWd62ZEEOWoeFaJAsac1JQkQFBzfSw381m08VqBZiQeBj65enZdHVydXP/6NFCBc4fP6N037UtIh4Ph77PVVVXk+bm+mq5XFDdHLpDlevpbFZXFTJNFvP95nq1Xq2Wi/u7m8fPn3Vdu93t57PVJ1/80eFw2N7d5pydlAJI3l5G9Cn+lWAuFC/zN1ODEAZ4k+D1YnB1PfGrIEDsSElxsLyBJSRCVLdb1+iRC9Zf6s2H4sXGg4caFvexT75kdRVBj+YgTlfy3lr8CEQ40iid45OGvy+YiTk/gcZKEhHZ/1qECUg+U1QzhUSgQGBYJ8ylfHJCHAA6NI3owlDKoAEwOKMSsAxBIxAZmppvmS3QB6AaIBqVlSdQDO+9hA40M6Z2iLHOIQFoSn7dNIkJaCzAitKZwMRJXeDeiIVtAePFL1kI/KW9tMRYU+zFJzrCXpzhGVEJVd3dAHMGy5kcLUQwRI39YjGddfYXIKTyoAY/xNR8i4mjhprFNx16vIoMZBZNnn8yHvkzgfEVwHGsrcvEPfZtunwEohtxl3w/wFSKHSQR8VczoniJ6IrUL7makiH6mp6csUAnflJ9Cq6q6Ft7yx85EwnBJxmYNUf0j1VGquZLB0A0U+w7A4fwyj8Ue7hokf32xK3y0RJSBEGH9kY1WdlkYfFdIjuMIbp0/uimF451xjktdGMyKTuK4n3dqQkGyc42wrgCiEjiqpACl43VhJgGs8H/PUFKxIlFpO2atu8z5mnTEKKqiFkWa4cBFJhxOqkcnoTyg6WyKkkFIj/G9gyCUmOY46HA60ePn7/8CCDp0Lb7vchw2N5JlvOnLx49fQ7IQ9cS6mq5aEGvLq7urt8+f/Hssz/6k5Pzp8h16tur1692m83d/d31zd2Qc0pV06RlPZ0t14jI7KpSb0xk6AczqauKwrgQzURyBpdEiSBhHjIjHg5HkTxpGslDlr5uptPpdD6bfvHLP7q73XA9XU0n9/d30/lyOpsdD8ftdgdgi/ni91/9Zsj50599PpnOqsRd29apmi+WzMwpDVmOx8NyOQe17thVU+qHI3U0W56cPn5ye/FOul41hFQ+BlJQjumJeDgldF2VlXKqdNJjLwbOIwNHigAsVvw6ZzRW/Jb4HsMZRfX6zaJ+i9Pl1ZEUKocnIMWC78VYV8NgYEz8GIwX1IgyaGYi4g7gFnIfjzqGXHwFwHzlpL+1n232bb/eFRSGRdQ9Pk5wkkDEMPFoGeNJjqDkj2GUkQg+TMGSKMpzIaMnkntdKAiRIwbspJ1SQrrTdSmZIUYLHpQRgJlEjIjYQEWACBwDJ3b3eAflCMkAiJh8n1fZZFO6NsOSsdDxbQMLITQYRvlVIki0YlhcYaj4b/sUJKuGwgjASeveQapZyjl7KcyxUMGXGsbIlIggZxNBAEaUMepD8Ppc3hmwD3p56IKBUviW0UW5eaUWREKQKP+DORg2+iqBshuAqFVBNIy4774Cii6aoKKBhfgVAww1Ao0AVVyfgm5FYezu3CW2+ufMopG4ILw0vIUcvwLCOF0ecZGSWxAJMTSzIN7OOzUXFQUELawlzB+VCOCEsfMbEMlpk8yuyUBm9jQALr/1z4SRfbnQzQB8ByNnMe8dzKx001S6hyCukU/dbORBeyNmiMZIq9mUDGb1tM95UjdMnLMMavu23R1bU1jMJpMmUaJxx08ULM6iMtPyB+V4YBlagqkZAxFP5/Ozx09T1UiWPPSgqkNPiMvT85OzR8SNAs3mTXvcM9eqkuX47KNnn3z5q8XJ07qZq9jF5fUP335vQ16uVrP5ou9yzrluJs8/+HB1cjKZzUBBNZuvA+p7BqwIQSV8+s1UTXKHCMy+w06rVAHiMAzL1ZKJbm9um+mMiBW0qZvPv/xCRV59/10zbRZmp3VVNxM1raqKKB0Oe6Lqyz/62bOXL8Ggbw91ot32vmrqetLMF4s3rwYzqKsqD3m/O6yqJrFjcfT8g48ufviu2+2izxoLqLHld2dZ1fEo+jAFoNhAEQZA4ytfwC0mtDCxBIlUyNNBeN74fScEiYrDRsGYC8Xx/b7TrPTyaKDgJHAU9QIR/WgCopi4KhD8OqsZGxmarxYqj2P5/90yXwHKMksbC5v45hiqR0MkJzT46Te04pjm1lVAvmjEzEyRY61IfHTzdV8Q1DxPekEFfeBql7LKs1x878DkC6GuIF0WdWXU/+qQHaB5HvGHzQ0SXJaPiATsN4jAiF3+70ubGRTELzFAQP1oBYHztZ3OMiylFMLDSM+xGSB42J3j/i3IhN78OIoxbtwsTyikcSSoGsMbMXOjVKDiXoaIYhznxQjL9SJQg/gekUwjxAVhobRy6MxWcmFeDH59rksACSlRsZpB9IvkW+sRUAw4OHKGqCgIPpaXsiXCYXuXxxVgMQZT5Sem6IFSRFRSMCs+qWpKABx/1SdpAUdSQRKjKEIwAEUzcKUtACKYMCAjJNcoj+V87AE2RAy7FDPw9jFKLkMGFDIwL7USukgW3bW5SlW8tRkghIDO86Wr9fwOGsQRMSsJCRDQmNzoOzA9AzVTtBT1BvrVQgRjMFOuaLGYVnU9ZBGDwVR6GHq53h23x72piely2jSp8tM0tqv+HGUBAhLw7q30LgUqcyoVE6SKKTFx3XfHdr+RoQfCxelZ00xT3fR9ryID0fXFu8P9ze3NjQz5+Uefz5andTMhpu6wuXrzo+lw8ug898PN1Q0in5ytTh49evnRZ6vlGdXV0HckCMBmDHVTV5VIHvKgClklD72JyDB4/+SJvFpUfdtWiRHs+voKkYb2sN3cnz9+qlTttofPvvhCNe/u759+cFJP5qmqmklDhKZGiL/41Z8SV1nluN9s7rY3714/fvq0bQ/Tbj6ZzCbN9PXhuJo2Wbp5fZot399cL9enue+ns/njlx9t7677Qy+iIzHRw2S5TRZtsJuOuNurj3hQo7nzqEqIhm6F7oYcAMoIotliVGNAbGCMwQyJ1ySPIK6WIuZwsoSYN8WaGI/toKoulgVDRFGVGFlhqc/ITEUVkZRAAdjNhQBC5uuodZxtRTTGiI4l65VQ5doe8uxjEE14mUIaEJDFdpbYYQkP3agZPPDXg+wXjCoNGrsVvNYRnoL5ghkbGml475hfYiq8D6+xILKImW+BN1N0iz1LQIqApmHtybEWm8C3wRTVlH9Fj1Elcjq65IhPxDXwG4rIpfKG6ASpWLJEMYwAKRq5gPMiF5Yi0oOiGSSPQWag6qgP+UZ3H3eMs1/zbRKhJo1eyQrY4vUlGKJTAsbOIKbmWOrEES0x9JG6+SUBTszAohkBMTEoIGgGFdNskIyoJC4vMQ3R9ymQ+8zE96bx4zH7CSYDkRygv5YaCtVQ0KKsxsSo6HMVlEKSLQZ3gQC6OZGaIpOK+tf0tAFFDxFTpTLGH9OPiCTC7Jii/2v/q6YpsYoIhKqOEVwNz0SJOXFogAAeagFljafdA7cL3gwIUQP59bIo8h4pRaBAVAMKVaVHAkNERvL6ozz6xEkHxa7Lg5ip9e2w2R8PfY8Ik64fshA1ACZB/Y78pLHyN7o9MPCpHgAoYJSpCEi8WK0+/dkvmsn0/uZKJPfDMFsuZ/Mlc9V1/W67AdXD9v7m3RuTXqTf7A98fc/1crY40Txst/eY6OzJYxG5ub+Gqn709PTDjz9anpw20yUk1jyYDKCac9e1h65rZ9PZfLFANxXIQ3fYaz/0XScifmIWi4X0vYno0LcmQ9+erk9urq6GnK9VHj97wXWz2efPvvz56x9/7HOuZ/PZbNY0DQK27aE9HveHa1M4Hg6/+7tfP3t8/uLF89V6Xc1mXdcf2/bxs2fff/t1LzppeLFep7rp+u54aGczao/Hjz79/O7ip9ffbGM8h8VQJYZ4SJTQ1aweQSKMEOLDqNVrHHs/bOvY0SpzNgRCdqjcozE90A1iXOX/gO6iGAG05CPf8GgPEJ+HEgV92LYY5bEEvc55fxGV42D7it1gKEUSc9Gs+RZCAJeDOd4cpfcIuHpQUhUzEAURKy4BFmmQPKHjiPx6HaIFnARFVFLvTckcxyfwRiZCcEGnveW3iITeNguUgIYjfR+irxijgRd8fjeBiUsx7M2zMzX8AoSOziNDKJA8/EekKH8Us9OI6ejx3ox8IGNiljXo6x79y3d6gHbKvQMAoCya8OESg+OGiqCG6utqS7c2HshAztAHtkbe7pS3A/PtH+Go4BK2Iv8rZt5AKgIAhQuLHjWZEZQ13FUsxOBePkcsQdXIwhbDRoMST8EHM4WeyL7xi9SUMfmGYBsxfSIAAwYyYEQUQURhN/LPAmBMXOI+xXoCZEBAHyYRg4FqSNvMARgwUzUkRz09nYLFFDdYtODlvxVyLgKiAofsC8G3wQFAIkoptJwBQxkYGJspmIoQkrNzvVFTH5mgp0E/AhHiC/kBkUiteEQXKhiWB0VVQ4oqIibdMGx2x0M7ELGIHPteVJuUEnP0FlFxRhNQULQCIMchLe8MwVCJK5oaTs2xOwJiqqp+v1sQEybi1LXHZlJv7m5vL990x+3m9qYbuiz2L//5f/tP/2f/8yfPnuU8iOZqMjWzzea6aiaPHj/94OXLyXRKnChVZgqSdRhM83Dcd8edDN3msJe+S3Uj/dDt99vbu+Nh7x2AmK7XJ0NTw8FEJDFpzhXh99/84eLN2+cvXs7my+Nxv2wmknOf5fzJk+OxRU4GKNlSQk615MNht/nD73+3397PmtQe7nc1XV9dGKYXH3+iaquT9S/+5B9cvX51e3N7d3f/6Mmz1epU1S92ruvZ+vTxK/jWpQje7VFojiLTI4LEppWxrw4mO479AnjDpYakpazzIhHAnKYJgEGtcOaMsyc8BLmnTbymH9sYUFLB08foXyr0CJDjT5mTekFGEnPMmFa4ztfjBkfF5ieQKAbM8UBTjEXLHBRwtCEpScjLOseW41/F93WI3yvfYixhQbJ1zCMjEhmSFY06aKSj8I7x8bahGZkhBHRtYmYCYJ6B4+kpZZ8/doSGZKRoTCKKhAlJ3KzCv37kWooqGVBLZn24jH4JH/B+iy8AgSWPf00sQyTFcNYBQNXybAKVfw7GoX9cA1OwhBChy8zAqfOACqaCrtzzl4WARkqmQEUgZgbweYzfLTRGZi4SobjhrigsXw4dkEIz9goGMDEl1/2hX/4QHjACMBmE5yUi+uKUgCUBzMy5feXqU2kKzUcLbnDCvlIzdhr6hSVExRhIZUQ0YFe6JOAwZS6QYOzPwpitekNEPgErZ8+XryKaApBheg/tRHD434jGeIjEbAgOPVAKcIh85R0CIDCgJx5OMQTC8PkxU7CU4laYqYihO//FfKVEYgX/VFZyOCIDqoZOBBFN/HIpSJR6XkQOfd4djpvd9n53VLWqrkytTjSt0rRp3BjSm2V577BGEWo+yxmZqDCeGv+7eeg2N1eXr39aP3oMpvv93oV3Q84QhDFg5tX5+XI1/+1Xf/v6px9Xq5Pvvv1ptl5+/NknzAQAKfG+H3abbVXXdVOLKnOV6gkDmGZE7bpju98Mx2MeuqriSTNpDzvb79Rsc3f/+qef+vZIoP0w1M0EwVSlapr5dJo1d91x6Lu76wvQ4fryXTZYqqVm2kymuc+uLCUEMz0e92ZWV2m+mHXdbui7++trWs+3t1dqIr3U9QRFCGy73VZ1w6maz+f7zcbMHj97MZnNATswU8PV+dPlen3c3ojHZQpzFTevDRA8+Gw2ehPECBNLePblMo4VFDqDZw4DAtRsSmzeEEYkjfIt8jaN8Ls3qRAIECCDa87QVNzDlHx85n1eTBCClG3g09H4iOXlAAP3N0Dfq4oFviQyQnHLBwMARXg/ysH4mHvvYQXvji8SjQsaiKlWEdMDtR6llY53eW8ECKpF1gtGYMCIzkUq8n8TP9AlsqgwuQdXABIuwHCDFkJEMhHH0xAQVQwZREtOcQGEx3M0HzB4uyCKRlTcAbR8Sa/+UUVj/mcWXtklEVp8WI9vZtF5jY8bOWQm5j2aes/iucQQkpcXjmdFuEcmADElKS2YlSlDgDn+pSM4ArqNhmFQBay4BwN4i0A0qrEs0EZPk2bIFJZPvpjCFNGZluh+REjeOTgzkond08mRpJKZojSIOqEQkBzR8lYRQ54SlqpmsWvbTAFJw8BfTQ0SoRpiSOGh9AGIaKDEaGU+ziqAIMHF9N75oRB76ExCQhnEBiy0WfOeOOQPCEQJqUh8XTCSmAAouiQPByKGjO833OpVCeSsCGEzgjGNsfB/8DsBThhFImInPhl58+gfJG5fzpKz5CH3fd91bdv3qUvzZkJcz5pq1tRM7CQQX8EB7/UBViI9BUL4Xs0QAxVEk8Pm7qtf/5sv/uQvJpMJqDHy7e3dWapSSojU932Valqub97tX3788WI1v7q+nk7TH377d7//3W8/+fRTEamrqj8ete8fP38xaerJdNJMpoCYEiNq33dIUCUWBBEBRGZBsO39/Wa3227397c3CCJZVHXIg5oOOa9PTkwzmuah32zuhrbNQ4+Eh/39ZDHf3d62TVs307Yf8tDPZ5N60jRNddjvb7b3VUopVU+fPvvp22/evd2fPzp98dHH1++uCLmeTLiqur7vuuPr12/W8/njx2fHvj/sd5Sqqkp931aAVE3qZnLYlliBUJiKvgZuVJ9ayGm98xx9IBBdMRTdcCDagSf7RBaCgh0zvPF3KUo9h2NHTWeMbgIed/jUBxFOydfRtCdCB8RbBGCC8eBjOfWRpyJee/2EAUP5MI4MBMz5Tu81HFAec89xRTEvvhfZwMjct8zQZxsIRhoXgmAUTtv44zaUGDsDfeDgFMeyDCDg7bjsBOBkDQMYde0AQK6CBcNCdnRJHJhvkQLfspPVJBJtISmRBVfVX8e9xmysw8K0ayx1IQYDhu9F93IeDBFM1UA9AZQ0CYhFnCFqAKkYCccVBEvO3NfotNAAxQSRCXCcNXqlGXcxtCpYdMaAiIohfQp+AUDihADZTUXwwWhE36sKEcEXGIA6EuNXIztKw4QZjGOW4xHTDI2YzenRPkQ29Y/iTH53RjFXkCW/TzE+RdemU7DR3GM5EWOKqYiaCvpoitA9MENOC6BKKbl9BYACgZjTGx0OHHtwQ4jHyFuxwo9yaYV3zXHxAMG36HnW4nCadapW/PhFZohBbXlW4zH3YkaQFESM0KlHiGqanFFkJVzYSJoDcHOXDKoKbGCg4iap7onhRSRJFsnS90PbdkgdqE6qxEQ1E1l230oAdSJWQQBL04MOjsZgDQNTFkRWM9/T3W0u+8PtfPWxqu7ubiaLtWne7+6ZKwM7Hg+H2+v+2FfN4umL6Ueffvb40Qf/73/2z1//+N3J2YnDBl17TAn7/igqnFLbHZp6Itm/AJqYKVDieuoiYe37oc96c7V59+ZN23eTJhEYU9ptu5vbPfP12fn5fDFp6sSJmKqzJ085cXto7+5u+r774lfrLO3x7lDXTd8d+8NOARbLxXK9MtTbq+vDbn95eVkv5h+8ePbk8WO19MmXv2iPrSGbARNjMlC4vb1dn55MpjMZ+qE9Tpp11/eb+9d5v5Wc0SAFvGoGiuzGn1EwICEag481XSVQLq+ahQzJMGYuUMSu5akLErnveSMI8b17EBKgmdueOOZcsGMrBY2BkQEoARlUQEgszigGdJqlpxADKAqVwjdCAFAmd+Di9+KWabH8ZBMxTUSgmD15RXMQSKYWjgwgIJZdYr4IGBRC0xbRCsaAHov4zCmYGM+qIcYUAVDBny9VNTIur0XFidE7F39MGVQwyqrgNqBvzwyRbeGKkmFCkhTsU6dWAbG3I4ksEbgK2q8wIwKIgUlB/jWQH0HESEDlHVSN+X2VkTgtKxmplalAoY2YhfBLwSTeyJUQgADJKcJRryEgkKpoMQ9zNb+nYnTI2DVt0Z9GVOLxRiGSgZsQWfhQUgSX8AaJe68mkUIfhIIlozkEGsy0sdKNkoGZRj6cMygdWTYO1VmpSdX7qahNSlXlfZW3IxDjNccgkQwQWc0rgMjO6FZuiAzG4SEDznxCxCyI4rLMhy4c4nqVpjNw9vKt0NOz+L4XIiSXz1Nhj8F7ekgKEwAqRZ6/jhdWBGYEpDSwSVidmIJiyG6ir/cuJ4jTaLHUz188FOCooOYLTmNE4Ms2hq4/dl3HTJJSU6fFtKkTGkgWLXctpGFjfRqnwsy7XNDABPzzB/UCIRFOmtoAuu7IqIRyf3c1ncx6OIrk7c2N5uHy4l273xnobD5frdeT6aQ97A+7LRETICaaTKd1M1mtThjweDxWKXn+6PshMfOkQZCch649tpK7rN//8Ob1q7c5D8fDsTtS7tpJXZsZUNJk333702Qx+fLnn69ms4qgz7I9HkBstVr0g7z+8YfnH36UmI7HwzD0s8lkc3f/7e++Wq7XTz94zhVlG15+9vHnv/jSRHb396++/f7weH9ydiYytO2BUr1ar+arxavvvru7uz1/UifG9nhIqTldnL66+uq73/5tPtwkEHM3TQjZduj9vVovi87JQLzKB/Qukgy8yywM/3FkF3+lBN3gunhdiI4KBioQRrClmy4k6ehV0XERQjerRyZGU/FQjJZSMgNfm2pmpYIKNvpYL4J4/W9xcsrgzvMEhjGMe1CEidUDtdHKjpqRaIAPU8AowK3gqA+VZhTapR6MIlvjeqjbK/p3U2AfsIKRi5YRk38yL8CSq5kB/CpYjBm8tUUxRd87AC6VJbPib8E0mhVASdoQouKo4tnRHG9YEMDVTuDGauOc3kIwEcFA1TQ6Fi+iiZhd3KeRLcN9JSSsJUiiqSUkKAfH8RbQWGbiFLH426N0tsTiiC2OlZcK+0GhEM7cbjiAaCAw4sCIIDCGZgyD/uJx48I8K91WHGCH98JoRD2XROrxgbu7DzmNJaZQJiKS0TscC8xipL1Gzxnnw3xgQMBBWgxplyJS9F0Bcwf2KiDR7RapC5iN2sKxKY+0FWWRgfkUriQCInQaZrg2InGEeSoP7KiNA4uyLszCg+gcvSdBWdgIZXznFTpABN+Ya6GNByM+aiT4aMzBzDSrZNU+5yxCjPPp5GS1PF3NV4sJk4qCF/gaK+zJLxAUIgf6MhMws6AojvnIGzdGMx3a9pCGbre9Z9MJaFXVzWSa8zD0HRPsD8e+bwGFOH38+c/6oX/67KlKPmy3KSVO1Wp9oqbLk7MnT54cdofEKVUVEYlIYszd0O63m7vbrju0hwNz0xt98+0P88n02aMTkLOKUHNuqopTEoHN/vj66ur1m6v5cjVvXrT5WNXTuqr63BIlsOHtD98zM1UTTtWxPQzd5OzRuejwze9+p9JX02a/388mM62G66ubv/6rfzNt+B/9k3+0mM96pmlV567bmVy+e/fj998/f/ak6w7N7LRpZt1xu7151++2w/FehoNvUQ/iOPkOFiIALsgKEKibIpYxvg9JA10pT0o5h4RgwL7nmXBEHMqDGH33iNZ57QAATnEGKIGu/AoY+azHYSIjspEaH5nFoUTCcDMORnaUW05jMMmRZohAZXzOwYrkLbKElnLKv2BMNSNDOY0QsFTLzjEN9KxEl4iLih6UXOjjWMCIhMSmdcgGhO5aj8gKgv7445hSysSCEV1hE11ESVQRHSGKdfAJM0EyFoehSsICC5wOY9LtGF20UaWWNizSb3DDFYwHunQanj8AfMLjI2UsKdDjubkWmBxxfgg+rhdDgBjEFCang0KlvvOPB67lJExeFENB2D0fKxSkcYR9ze/uODhGUwU0RBDJRD7OkpJU3A0nKnREIwLRuBNemniIQoCKUJDid4EMY+ZMRFLwBzCVrOBOcKCxnMSFjIXzMAbPmIAF69PcCAhipFlirZqxAhqgcSpG/wLuQ2hGKBrNRMDpnk5d6RMFTAm48XYWa5YpXOfYl21gCiFCaWXBm9iMsWGjsJ4toF1H8ykymm9hLY1zufjlkS/jBgQG1IALgRAUjcCYQAmZMRE0CWeTermYMqWTxex0uVrOp1UiUHFfCyRX8zs/GwHN1yhDQUv9nYngoXRAB8CAGdHk/uaqnp9I7nPOM4DTs3NT7NrO1O5v7y/e/IRMH3z++Wy+rKfz1394rSJDHo7H7aSZIuF8ub7fbB8/fQbI291ueXoCCIywubu9v7utiV7/+B2BAurN7R1Xs9dvrwn442cfTMmGw1GzVPVkyP1+uwXAeT15dnoKxF//7uvnT04gd5OsXdfmIR/2x7pOk6YZula6gaoEaNc3u81+8/zZ08+//Hy33d2+u7i/v3/37q1mvb/bdsfjP/3f/W8+//kXOUvfZxlyfzjkin/1x7/c3l5dXbxdrOc5r+fLZjKt/u6HrzZv37ANhKoQjgFYdkPEtBQVfJjh5GkITzs1AnXllsO/pJ7RDaEoKwndczNcTaD8MUWIQARDBQML6zTTWOfjfBBH9wt5DVSRDMCK7RuGkalXjeJnLkpaIiRiRILCrlZFfxAVDIEyhP+jP1yea6JUF0WKDVF+cqIe9QhmmsitScHYSToBO45RKxoIi/xGRAF2Ry8cYxIxMzOJXGoJvTGPB9liTB4zC4rZBAGCOA4XKJkD0s6jDOwsvCbBZwLGwWgEK/MVv9j+KT1cmJr68loiBSMe53lRQZb3EWfKmvpt1tCjEACgmwX4ohu3nwOFoqg2AHXHIWZMbtLp1SigJzj2MYvn57FYoPCwdhBpHGm+X9wWVjFgUZEZxTjCMT0o+l9ANLccdRuScNhBc7oQUczinQVtqE4pI6e2EmTD0brQI+wIm0QqNgf61YUpIDEYCQZkFExkJW1DyfHOGDIHy5AiZ0Q9Ho4pAMCJAT3QJVIJF0F/dCnAMS6+EeRe+Fb2GkF8AkRDUE/aQfUBQItOEF236c2YRBKHMO3Gh0ba4zggIQXTuXT4Yw4HAAh7mZK9zXgstcAYDRlBzBJOsSYwkCkTLmdTAFxMJ43vrfaqEkIpgdGPmMVGEiiNjbOG/fxh6e3AQ5Kv30CE+6t3y/Wjivnd9c3Jsw/aY7vf7o+H3XG/2W03lOjZyw+fPP/w/vb+93/31cXb133X/eEPf1ifnQw5r4hlqsi8WK33+31qmqqqqiq9/f6Hi59+PDs7+fHbb/eb28ePzrLZbD47HPXm6vr54w+g6ze7zf5+C2a9iphWqUpIVmtdp7P5/P7+9vsfXv38i89Ih/ubm81mO58viKztO6onJ+dPj31vKJOmfvf67fb6+tHTx5dXl29fvZ7OJ9v97uri8rNPPrm7M57WRuTmeDLk2+urxclyvpz/6V/+6dXFpYr1fb8/7Fer1c9+8ceXi8nrr/vjpsOCUHsoC76vY/mukAL2k+2FU8nsI+iI6PgQBBoHISQA50uWJzQe6viPeRvOoeZAH+sVNQmM9YsTnfE9+JTNsDSaiIZapgBeNaJXLB7EKApPjHbBqcuGyQA5ImnRunlJTAbo3gVYnnEIpALJbTJQzAptChHQVMOHxt8qJhBe3nqoDPSHCpTvwKiZEZtv6zU1VPL3c/oH2cPCKAhlvkbAtkgxVB4nd5l0OjZYuU8FD/D0a4UvESiSaej/nE0DOqKmpSn0az62fV68evsVfQAChDNYKWo9zKGXZlGfFR8vRARIfg585ZzHTiIyEAxySpBbMMgzDhNy9IQ4Fv7eGxmCeGYPPZoV/Zlh9GNmRH4W3dacwXsytKJDckUWBuE/XpzRQoXuJYCAWrFyJjOy0ImXGshMDQ0N3OVYwD2ZS93s/QvEeCP0VKXrMS+x0Hw+BkBkxO/1XH4QjNBYCSEzkJqoKROSOy1gEKYIfbAWOvsAvsDAkAh8Cxyjw/Hx1QDNSdtlhGNRshhmMIqGDd+bk8WX8iOoiKagAoH7xugOfG4GMZe1cnHd3B9Ds1IWMOCkIabZdHLsBpHsAl5R8YLCj6FbWqNXM0hmgCZh4OsIGoSTGSIVvhZURhwkZpXD9ubVt/Xi1Ewv37yezhZ1zSLcDdWHX/x8upgloM3d3fXFm+3d9Xw63e72f/Pv/+780aMPXr40xWw4mcw052N7zJJTlW5+evXNb369Wi+//d3f3V9dnp0u7+5ut/s9NRPFmgzfff/qx+0eVbhK81ktot0wNM0kt/1x6AY1ampDvbm6sS8+3e92h8Oxapq2b2fL2byZ9F17POyyoRGmZOvT5c3V9XZTXb59s9net93h6uJaRKbT2myRkO+ubyrku/vtZ18+Xixm0g+pmpw9fXl6+qyTgbja3d5Id2SE/f2hbTt/oNg5AuBdMmRRBiNSNAFwg/tSs5hzvH2oFmcAMBphCTTVGYoOEjinxSOaERJ7cOWA+R2fJzWyUBA5EOFNpZqYqQCC4rigGNEHpRR10ghBoi8kib7XRwJxboKvgggqZpjNWNjDrRuKR/kclTc5TskEFhojAlAURExMJJZNHbooJnrxe1hoDwGZRlXvtE4usIKxmfPifTKofjFVk6qKAIe6Mb5IlO/gjn1x8VWDe6jgGI5YBkEUAkItlqJhyUBAxAACLi+Igo2MDJ11iuoerwjGTjEly+pCXBBTVCBkAw+tUh5/RMQElOPfmCc8BWQaswFGf6TAzICQAJQ4UeIoBczYEFPy4OgFQ0hTzMyFXUgAICKIllI0U6W+9jOHBQJWXyBcKJvFJC6Ke0EEKrpqfI+i7y5EZuiM9QJNG7BZMUQMSpFrDV2LiKCi6Gt/TEE9/qjkaGgAYqLrvwdATrUbk6on9lLKBgnM2wSM6O+ZmMIaECAxZMuupsEgjILPyRFQFA3Mn8XRcSiKL3jvP+amvlGy6UiWKhc+3EzJo35AqhoXbUwBheHrcHxJ9CDmbIywiYECyMQwMLAmJgJQUCNAQkxVPZnUk75v2y6LDQqqGcyYCJmYwWm04a6C0Whj8HcBgMKS2yxuIiD7oonoRI3IDpsrU3l0soSmqetaVPpBX3zwyWy+6If+3U+vj/v9brddnayuLm5evXo9DPLbr37XNE3f54vL65//8le73a7vhyphPu6/+e3fMvT3dxei3cnpfL/fXN3ccTNZN7PXP759+9O79m5zd3//7m5TT6aff/xikrA/tlUzubi9f3t52TCdrU6ef/QBTeinn34a9tuLN+9Wq+WHH314cnrWzBaU6M2bi6qZzU9WwGQA/dDd3t6oSErp2Pfb/eHFsydm+vzp09y3m/t7Jkp1fX9/O1uftLt93w6z5RQndbfbTqfNcr14/fXvrn/89rDf6LBPpF5tASbEBJTALA9DHrIxVCno1D7jilEljAEujB/iPGCcz4L3BnGg/EuvtBCDV0bszCIdXSUwzrwjhGCOTpUjCWZgTgX12GKAap75A5x1ZXtMFAyKwiPK/oKDGFj2KOabqMYX9IrE/KErPWw0sIaEvhGTyDx9edUbX25EfkDpoXLF8vwiIDnmNf5p2CSpooLjuw9uj+RMGKPIkhCbSuKhGyeLXqUX1pGjNMhWqiTAwMrISZYRXAuGEffQYuxACOpJNHptb6N8vTK4YUGZvlApk7GEYigXwBcDMiAxecthIc0gUyDy1YrOQo2Fy0jGiKYGzBhcYIe2RICQmSlosCbiFKXYY1Cim4cwLUA3AJizUH1aiT7KCOBobKqogDOEiMypAEchaPTs4jhXeOKV5Cumhi6vM1HhMost+BGYWRZn9zwsM6Kigy/qloikkSktiGb++KAP5pw8Sg8dln9sP1IQoht0cIxj7AJMCMGVHGfX/qLRSge92Dc5FVzHSt0PVrzq/EoieDMVcxECCDG73yb/PxMnJofcvDTdRboZXbgDzOEIA+BNPxIYKKIoAFqVkqRs4NIUNFVKlYGyG5I4UOX9S6FXUFwZQCSFQnXwNwcobIpS3oG2+7v1bH7y6HE/9F0/PH72Yj5fXl1cz6Z1XaXbrl2drA+77f/w1//GVKuqBsDtZotIlBoEOBwOTVPXKd1eXR72m5phOp0Q2ttXP6pkJAbEV2/fvHl3980PrxrEy/u73/zwqpd8tbn5i19+gSZXt9f/8m/+9n6/+/TJ00enZ3d396sJ3t7dTRk//vjlfr+9v72ZziZZ5fzp48m0/ubrrz/89NPpapmH3FT1xcXFMPSiutntBpFHjx+tV+v7u3vk15//7GcnZ2eITECqKqrtbjf0XZpMttv7ze3lcn1ydnLy9g9b6Lcc541jsBLnzkyzaZ8VGRKxhY+uB3RVKKbMiOiP3UOMLtnBiv4GEApSOkJBDxWJb8owomLrCdGBPpQYTh4gAFQBSqAqY7j16p2RwxTFm84Co/uj4TBAGQ064GRRJ6CyF78jVBQfzwllnhUKrSV6E0MkAeezKiK4I6c3GtFFGAQ1BErA9vxHZMUG3/1eLDBsCy2YOaMpduESoqKVS+Ose/MtCO4ODOPjWDgnZiYgaARBknT9T/IbQIjx9GLxeAAIkQaQqRUikyE9lHhj2BPNgIzgVjROzcIYu/rDHqZHMZTDmEwWNUkgepY4MVFsRQdAJA4gwRMAIgLknMFXRRqGsQGC+i7pyAFYbnAJoBH7A3zIokyOGSgAMqJY2aQSKcs8HocyDoIeDBB2pfFSEQDN51IizlrMZpwSi2QVBWYPeopGBG5Wqy4ZAUX0IO1f9mGGjsgOTEU/VmDHcnRgDPr2/oPlp4dJVeKFAtOPSBvXJRD/yA1/7yeK8Li39sDJUZf0QzmnZmCiDKBlxUZUaCN/qhDTDEwDIUNERXClmBtg+dtpGBf5BQmIL1BOlVjgFsRCZoj06RvHKgRw3iEiqSpgoFuldjNf2GMAqmJjiCGL7U9BfEADAVNm3m/v+Paymp2cPn4ymUzfvXs7dF1urd1tEaSZTr/95tvrm+vlenW93a+Wiyql9nh8+dHT/W6nkoka0Xx7dYlgk9l8c79999MPi+VivlqJ8v7YTaq0a/F6v+sO/fXttZjUdX1ojze7PYFd3d3tuxa5utocvnr106PHp0+/+PAXf/Srac253be7Td+2pn1K1c3l5ZNH523XpUS7zfaw3TFxVVf77a7ruuOxPxw6Q/rsi8//6r//q9evXw9d//Hnn734+GMiWiyXk9n89urScp+sWi+n7757/fab31QJAQaX7seDaGY6EBoqMBgxCACqoRqgz+0pQoWr+eQhgY/IrJSnDwyMtOTcIi1DDIouYHHnBQZ09DPsZkfnn1DRe33ovazj7hkAsNTs8aQEBYWiZFFDDtghylsKHSU6WAJqaG4HbGZggbmO8WR87sahlkdYHIGmhAamSl4XjY9SSSH+jCmAlQLZDylA9CSBjUR9GPg0avBZQcw41NVu5mX4oEWLAXLEI7OhKGpFXFMD4YNHaOS4jSKy10+OYAgAEWR/cQy+J1p2U7KSo6Ma8PFOASQCd4p0YgCx4hawpEpzYhEYsbOgCkggAX8lBx2IMPwI4tfRIQEkIENISUQgrvsYq6w0ZA9B32NaiZCmKqXYjQFssTehIkUrca+UJR5GKdpKYGZVdXV1udQw/mOx5lcRUfWGxXLOwD65sYRcoraKKIAxBwcWowbxjhERwPckBLgOSkiOK5kqFLM+fykLoK+ENo/zIRp7ePCi3bOYsb1f+T7kc//9IMX6wS0llx9AffCwM3Obt8CIXMvjzGt/wOI3Y8bmgGdxLAnZ3HuEnLH8K09vfD4AJEMgRlI0ypEL1SQrqokTDR7ivY/ivbFwUMgCJ8XobMfixTwrQBnlAZJqlna/ufjp8cfLuqp3u51ZbhL+/qvfmMj6dJWHYTZdfPjhy/vNtq5T33eL+Wx3bMHs4uJidbKu6kr6/e7+ZjadiEjftU+fPj57/BhS1Q56Xs1/89Uf9od2dbr+bvNqcXqyPl9XzNMmvb2+EtGqTh++eNEOCoot2MmzJ48ePb67vZ++eLrv+tc/vW2YkCA1aTZbHQ/79cmiqudVO1y8eQOqN1fX7bHd7g777c5Uh2EYRB49efR3v/ndZx9/dHd79ej5k2bZdL2cPn2cAQ6bLaea0BanJ8fN22G/VZUQaQOXR0C9s0ZARqNEkEvNZuIsf5/+wfhYlGPjMR/KQxeQtQfTBwXrGEsRC2/aq5McOACCqUj2F1APdEgOyAsYAYiGM2WJUTYWMiXumplJsS8eQ4T7qhgYKsURNwMkMSUIDuv4quNHtVIphVMABFM7UJVS2b5f5kMhYIOZhVH2+M0tDjy5RN4rZ0T3ui6lnppyOEx78nNfIIq0C1hSg4JbaRmIiPcRjoIHNOOPRgwwfI7oTyQAIBEXLa5ZsPk8DUTAAKe/+2rxAmIX8M84xKMqcauj6LdSAMRIJDYTOBIUfzVVXGSK7oZpgOSe84XjGQmZAQxVYoxBJI6TGJfbM161KELfOwaOXzOEAg0LyxhVw/HDAQb0Gl80WAluHMs+NTI1JQOxKBGohHXfCKYGydNi3Fjfw/OAQQ8iHDhXRMqx+UMELK2TnwgNX6XxCTJ0L28gAN+3SeUqG6CrGdizUQy7PDMDGiAThGl6LEpwaoFLoP2h9r2bihQma2BqOpYX4E4sAYi50jUW2xQkzD+tj5bUCMN8FBEMsDj9Rhse9VGZHwCW/GtKwN51++YIEuMH2A5zFlAwjjJKQQDBPTugFBtoMJryYpgTeyMCqoKMaAyxdyiqXSMZjjvUjACc+Ozk0U/f/P7+/mo2Wd5c306mUxV98vTpsW2Xi/nddgcI81ltKu/eXO629//4n/zD3B2AdL5eH3e7qoInT5/d3u1u79++ePnRjz/88NNPP66W6z/+1ReS86vX75azeR56RD62rYJwk1KqJgg5D4vl5NHZ+tnj89vri1+/edW2h/1207WHT+GjPmu3lLPTtXT9xeVmfXrCiV6/eiuDAGA/9Hf3m8mkIpO3r34itUnTNLO6H9rX333/4UdcTwe+rR89enZfTcA01Xzz+vuh7YsJrc+jjAmdOhX3NWpANDTxwItKFiNdcCdoZzf45Vbwu0DmBFCnsYPnCzcHYUzg7aNXUVY8ZBCADC16c/8EWWXM4SF5ITIEQSPEFK0cestKD5t/ogU2P6ngZ1YD+4izC4phSOeVoyEpKCEQeNdgVsiagUyCOcGEAVBjEyaq5z71YbRLYf159PYaXbapI++ZndhaPiEgEpISJFUhIATPdoGtisRSW/f9AV9BaJLHSygGiiLRgQfL0FscjckARpvh7rgGpr6yygOgmTDBYJDRCIHISIwKYgqM0e+B+2+AmXreFf9Q8UWQgC32HmBMbgm10C+ZfRUogoIGNx6TU46cVeqRE2KbUmnqzVC9oX9w5/Ar4XIUDyVj6B/ztRXPS4CYf5qBimg4E3pUNwtrWouM6WbPORsxJnMaDhMOYgAQzh0UB2l8VzVDESUy1bLfAhE1i6/Ee8BDxw6mlP9cahOywPxiMCyFuOJVllsYWtSwzuYcK2ZgZhEpMIiD/5Hf3eLICyRHYwsID865A1RviqO/IQAA32hoYOBm4hauEirGCuQmQToODEx8TmcWtRWgdxUZjAHQDAswG5eZFEs/aOUy4jgDf+8HESkYvqiqotKk5CdcI8q8V95RvK9BTNPQPGh4qeR8rahuRvYgKKgNm9vLsxcfTRcnm5vb77//5mef/vxf/PN/mW34xR99KdKuVmvm1DST6zdv3r27ePLk0fGwv7x8+/33x5/97LP5tJrNptOmeffTT3VVvXt7+e23Pz599vTtT6/bQ/cXf/5n//bX/34xq7/42Yf74/HNm3c590zMlBR0s9+LaOJ6tV7+4udfVEybzd1qtfjg2aN/92//7TAMx7b/+usfHz9qT05bRGtmzatX3//h228IoO/bPGQFULW2a09PV2bSdseh7fKQh7a7vrrYVtvFdHb2/EXfdsfjsanr/X6HiI/OHm9fz9t979WZFbijgJRYoq4aKIKJGqKRrzAHhKLtCvzGTEEe2vNyY6yUEwYAnrBJSX0d1VhxFnPAcruDVwzkM04MEj2IE/oKMURdfk9jqRm1hFdAFjRV1zvFSQUAJAgNicmoUI9SJQwRCSzW/AKCmJHFOpkScxB97uwntIy8iVwUFid6RGAjVICZeZOFJRT4uBMInQ/voRl1nOdF9ICi6QqNshbvCzAUDdqNWiHnmTGOec2fRURiIKbI0g8deASMqN/8g5epxcN/MIReZWpanrL3m67yOwBisZA5itpx2ZnXrOg9pIFZMigEJ3tQMJmZb9Tzy5sSqwoAaXgvoQcbUS0qD4vVEPAAjIzBrBQDBoaukwjOfQSdApiM4AUoiCvi3LEcwMTMgdA4DT7aJYjBJQKojSMwB8W9woxDM34qKNiiXy+LsRugA3tqyK40QGfF+cyHRokT4sOIB+Koq7kVqBtejP3X+M8x8Cmu4oGMeJwOAnJkFvfWAYOydVLV2fQmggXnRUL3AbCC21gAV0HEMovT6hfUdSYMpVEud7C0N57LXbRBIzxU1HDFhMKcxGaixiPJNfY4eT9jD5hQeMCMWJBFK2yIDx2oRYduBigGtru/VB0A6fLdWwAZhnZ/uKubJg+DqiyWS3/ijofj6zdvHz86v7u97Y+H+Xx+d3ubcNnM67dv3v7w3Xcff/ji1avXd3e301nz7uLdz3/xJ29fv7m5vDo/PzWRD1++2O739/d3qtp2rZlNamamybT+4IOns0k9qXh7f0c6hdxOJvV2awB2d3f/zTfff/b5p0MeXn784ng4/vTm6ux0tVrOhn548+7i7n4znU6bum7bFhH6oe+GVhFWq3V7PN7eXs1OTmdL3W43KjKt+Xhz9fbb32puqdS5pdkHV5COwUdNzWLLroMfFi663iHgiIAgjgP98d76rfPTWsgaaOpVF6CBicoI041J3MLzi1hJQ0DgBFSvL7m4xzDGQjtvtrV4u8UiyhLOXF8WEcWngUFzD9M3DBjYFAjLWNC5DOBbsIqnpI1tq6GUoo5LEYqFTw8loZZYBKXY8H0JIx7lAlIrr2SoABmMoJhKMKkZ+1cAhBgIRODVeIrBylL0eKVYYgslBblGCKJiHpl43spFz+BFou/0jp4hONWEbsBailH2p6jU3uNrPRCVIjN6jC3dXskvBkUxkMrD6KSlkD+VDw4wXleM8aVYSNdELOeMQFVVjZ55EEBC+azqCTdivIONqsoOAJVcBw8xwUrbaCgW62IA0YAQsiqAOdgf1EyMXGImpmIxto59wmZA6JSlUq1D9GKjJi5uKjzoqhAwEamUF49IP1IXoOT4uKBUXM8QfRlQ+aqRfP2/nBEf/oRQtFvlPR9eDYpzl0qQEABVzbIqWBrLJDAlIyMzQyZWF2BayaBRZkHZ1Rod4egviOCKHVM/DQgFMlYKw7uHeq24X4Anq34YbFIzJ2Z2mMdrLpfp+WX04sSPkcZwPKrD6IddROpXym26AaRrh67th2N73M2a6e6w+/jTDz/55Gfb3WEYbnLfzyYNmFZV2t7fv3v7bjqdzmYTM/urf/1X//gf/oNkq9evXu2328t3F9//8JqJbm9uEvHQt0N3OF+vu/2eANrj4fH5yeOzddt2r9+8G4b8+PHZfDYBA+37oe2GRIkQDd69e3t1fXN/v80iqZnMFsur65v97nDs+levXgNUs9l0NpsOFZnp3e2dKPDzJ8e2vb/fLuezTz56efH2zc8+/5kaDqoiMptNs0Ka1Fevf7z54XfSbi0fKSb0hW8WQdICnwNUUxUFQyZUp3FYrM3yQ4NkZGD6IL92cZ45VlJq4CiuCqeAkEZdMOKD4zoBmJNNiRKxknqHx0jh2QIoAAE8A1Ec+wemNZaZlvcJngZUAd2f08qaVURGtsGg9OVEkSfek+frGO29Dg9cxOLVDdXpf3HVFEw1a3YIiIoBsNdkEE/k+/G3BK2xV8J4bBRcFKbkSc5rqpHfKhFLDdCIVSH2jrnnPqKCMZKFErbcheh943FC8rVWEV7Igt/iWHHpp9mQ/PnVwDaKIhZMQdQwPQAbodf1nY6lIXOw2fCBah+hhoiSRpDy7OX9ifql9J1/LhAu6cCi0jYzMxFlFoA0AgkeoKyEVb9G5UiPBHUYB6gIkS3CqgHMVKBA5Vi0XhAr1rTc+NG9KGAVZhpyVhUkdlFSKag11u4UymcJ//FRx1wZWB2AqYkEjOk2/S6NRHw4M1hK/LiO0UlEre/D6chqERDjlb0X0JKKC0rkF9PtksZRc/yoWlbNasjiNRsDELFjqgCgqmKWRfw5G18hZuJm4d0VU7vS9/iV1UIhorFilCjnS4fmB86rL8iDqCAGo99lBcAOZb6fZOG9K+uXaGwtCCDk/DY+kGhmCpoJIRHutncV0WQ6OzkZhqxVM7m8uuq7+WQy0TycrpcV03azNbO+73e7wzDkr377u/N//OevX7/Svv/m2+9//ZvfPTo72+32ACoG8+WyPW7btmsPfVNRfbIQ0WOV7u8bs7qpUpMIDHXIQ9cdUfuuvTnu7+5v3r29urnb7Pf7xWpVNc180tzd3f/2t79vZvP7zTall8PQT6fTuqpEzID6fqjXy7vb+2ldPzo/e/3qzddff/vJp58nrgAsD8Py5MzAHp2f3X7TWm4Dm5O/Nz9zFn7powHMRHwRWOJSA441e1hAuc41pOpRxFtBGBC9OLFAWGPloQECWrA242YjpthiC4ZgCQfRSAeenYgNUCVH2HKtjJb2IT51qfjKd4gVdTEvBACIfCPg3k0RpgsXxDtaB5OCAA5GZomRHwbZDuCMcscSVj2OOCkBaGyOCh5Vfka4ysuQsQR1tMAXXRCiUjJDQ0VQNUFjAF+VRQbizMK4Z+CPtows96i9Hoh/RRZn6DYPGkc/0kPcfSgNdrhoaLnjYwDCsVcrz/bDPNlPiHuxmZVZ7EM8Kb8dHy2Je1CUslZVmTnSkBk8MPoDrAAdwxP4cJUKcOPYzQOybE4nq8AgqFNR3RLFDmWIBTamGKCOhSrVPzabFSzbVJx0r2pZDdCdjE3JkwEwMcaOsIJFlNQHVma75hxKVz0jxHaXKPI9knp9HA4NHtwJwXDUW5TG1iC+rKiN/ZqXzxTJLEAdxZjtWhAM0NOAhk8TKJRd1XGLoosEs4j+6gJnVUbK4rCLoYK7lxiYZIsaxAzMUkp+rMwARVOZbASi4F1Eeeb9AvhZcWmP+dIjQlDwhxwTJTN1TxnCxAioASjaaFZK0WaPuyUYzIpiADz6h3eQ6weMPVeTAljuby7fKtQEePL48c3VZarqVKXLt29/+OHHR2cns/kSCabTyaPT06pi3/kOKirD23dXl5e3fXfcbfav391uD8fZrGv7YVZjM2n6QX74/pvZfDmdr7lK/ZBfv3lriPNpo2oqg2bUnFVgv2tI6r5vD/v9m9fXh7Z7d32Tsw4ixyz04XNVe3dx/Ud//GS7O7THrl7NJAshiUjfd4fdrn7+pGnqbsjA6U//4V+2+3a5WqjhdDobhkEMZBiGvq9ns/54h6CAXB7nUk+Qu9tH/kYFM8hmbEBAHuvUZ7GIYEbIRr59Fn2xp6d5T7IcQJsaiDNDFAzRNGcv+IPGiehV1vgZVIuBGhIwGBIRUyR7RTNExkTuBaUmhMlEogxAgNDpm+OGSGTZ+xUnpZqjMR6zHxTDxTkgNpg520kAkFRNUMDHnoHusJkRkwEQkjhz2qEtCVmcjqtJyo+qEvoChABRYvwphSFajNZNFHicpialaLv8dyCjgY8vbSx7FcQelFkII7fIigAZ1JfFgBafRCIp6HXYqnj7AhiuryGfMoxlP1RqX3RU1e8OqJWHEQxYIXbIWFTcnufeEwMSAGrCMovwJxacewYBQ/mXGrEj89JRTVTFQAGzB02LogQf0imMDlIeZJ1SmYjUXBYQJaEVTm+hoAX4gCUOghkgMbEUVgwAKoRulpDUIlmWhRiuuI5dNBGS3EjEVzETMRMgOm4SHbHDi2rienBQopjduJjA2aKlPI/HZLwyiKBqzIAP1jcGEIsHikkPgBkVu5MgbwSqF8r7Ukl5NVFujN+DsnIJRRAh2UNzJ2pZVEQxFsIAlMbfAZ9AAyLSm5Uubhz5BtLmKlOM+tBKc8qEFTMCGFZMyEwYQeoB6QVw3zfUsadGX71QXErLJyqThsjz0fgCmur95cVs+Wi+Xg5te3X5TiSv28Pu7vZkuSCiy4uLuq7Pz8+O+0PbHjnxar0EUD7SxdvLX//6bxNa2w+b3f442Ku316by8vnj7t0t2G3udNLYcX/ct12XRUSvrm+PbceE00kFQz+fz4dhuLvftAc+9O18Oru7u9/3XQbcHtq6ro5tv9kdUPXYdVc39+dPnlxdX1cJqtVCTVWE0EzkcNhPp03XD2/fXs1mq7PzR3XTVE2N5HtJ5bDfbq6v9pt7RtTwfX640XGtYpI/3kfSQuKC8iyWIxYPsNnDa4ylYoB8iBDCC/NSLOayBqb6noWav1jJ484FI3STKAAYPcbdHrj8t0UpimhQDAvhgYdaHpl40FQFFZ0fgIhZZaz3xhDkXybQMNe7ejwS851WjslEX+tVLQIYqrwnqg3XGxzXicNDpjUIzu17lz6+vjoCVAriQRSZeKRiK0LFbJpNY9oQz3ApuM0KrcrU2b1qwsSiSgjogxR/XnBc5+DovxE4XwI8C7pOwhM2xLDQJaX08I1G9m0UkP7oYVQBGCwC0NG22MaeAwBccCvlf/IIyo8HKdyfgncMoppFu0GGrP0gdUq+TKWkfSwBMbRFY6xUFQCTgu1Q3LX3vggigoqVM2SgbhwUXttWUJg4ug4iMCfV7CEe3d6JqXTDD3GQEQFijSUzESW/NJHwi9JK1RQGdylnJo7TDursSUtI45HB99p2KK15SX4AYOju+iIyyr4hinIov2MGRghiGgJPwHBe8QdR5e9Xh34f2Qyy+0CCL3sjVRly9hM9VhYAwMwOqOE4DCwJYIwX0RgaFO8vzwde3IBHgcSxn81xSL9F4T+DI+pvHDPASKgC6jZ5pbl3doinuXLJ/LIRImC7udveXs6W83a7R4Smrr7/7tv5fP4Xf/Ynf/jmu6+//raZTD779JOv//D1/d3x8cnp1dV1zsOkmd7d3v7+D/L8+XlWu9/uj+3Q5yGBXt9NtvuLSVMvp9NBtpc3P3Az2Wx3anZzc6uAzNy2XcWE3NzebfNw88GzJz+8vqgrnjQN1Wm7Oxzb1mCZmEWg79pB9MfXb36+WJ2cnBwOh/V6CQBNXU+nzaNHZ4i42Wzm89X93cXlxdV/8p/9p4+fP+uHgZGrVK1Wy35/d9zcSN9S0U6Uu1Aiugfah7ClBT8gLGLcYJyU3yqHHQwg/NKK9Yg6V+IhHVixYwkZTTxWZd+fRdQdKQ5IZcWrGSAhI4rb+EekwMhYZu9VXFjQiPcbzXgNUSEtj1IwWwhHgad3PgopofkMycqQNCwgQ5nLEPp9D6DOGtLy489nbFkdERY18DUsEArdiPslvRo+PCwu3iZVIDZzw0pQgJyl2ND8PYClhEw0Q7XY6uDvQFCsiLVU396rAZp7D2kJabEBBRVMVFTFkBAYw5M/YkOE2fJwBffTa91xy7z3+ug7CcZqHP7HCQAAVc1Zov4XKGafVqAhgOgMUM1Etc+57UVEB9FajZl09BzDMab4b42ADGXnG1CYjL7X8/ryGT9sllXZmyU/CJaK3qP0lmoaEl83jnoA0OMlqLjox2+FOaUHL4g1nO5gGWCRiDg72H1PiAHNLIsX9c4U8gLq4WaXb4uxSTU8AkshEFWPqqARO8Tp18ZHWu8dHgCT8hXVZGRsQTCzxliAaiBqREZRd5j5hRDJQzYDZiKEQTWl5PVCIe1AqUui/h9pFSWTAUDxmrDIIQhuxepLri05Hdg5tu+VrZFlXU1iFrmYwLfNeIGKZQwwHsPxu/tF5KrS3L394dtPfvHH1dnZs+HDhNj3ctjv7+7vl8v5fD5T1cePHnXHtj201zc3l5cXH330YR7ydFK1fXvsh7vbDadq6O8UcDpv5rNme+wPu3Y4DqL3N/dbIFYVBRBFUfPbY1V6d3lzOA6EcHl5yxUT1ZwqM51NJwlpUiWVnLNOprN2u7u8vOv73/xv/9f/GVrOOXddh0Tr9fKD50+fvXj2zdfftV1/erIGgN1mkxCNU9t2qRkAwCQft3dg6qtNLdDYMVZEFR7p4O9VxxBuKH7TsxIniOcAS3tqjkAiBnpemNhhnVWglsgHo5sLE9v48HpJivlhNV1JIOXZCZ61Txz9/pcHzLAg+X78QhgSRtdgRAAoGNCsOsffDaahABhkqiYS3ssY7wKRAAgMlJGAUC3mXljWnSIQgIgaEsRT8t4p1XK1o1GIkivqcCQyMsyIZaOOZJ9wKRGquEzKY0Sgwio6vkU02B73ABDIivOAYxNEgoChSgZQVEZSDUF3EEM8D0SONnEZKkACLmwxUrWRgAdjHQZI4OCZJyAc93x7OnRPzPGjAiJZJAAzAxEhSoCYNZxeIKIbj0FNQ39uOed+0JxzzTSdNCOKHMghjMclYrK/X1DaEX3EFFOSCOgG7zWMkfQ9womg+VzAmFnFxKI4JWSx7FcwSgz2FTVx47298iRH40HGSAxEqPJA3HTiZUASAKDObKFYyeqmhOFr5mZ+8F5XPsJlVvJlYCyiWiRtXlmXrFNqPi00VcLY+CQBWCkgxP4NLH0mmBqIqoLP1PwRiM8uoqZGDEyooUgcG/CS0QtlttQSaIWRF2RQX+mMAUNhGE1LASVUTcx4bPgAvBLxboaICIEgdsd6mTTW+QWcAm8uwCkChlhU49oQ7O5uF0+fr04f9ftdSvXlxXebzebjTz46Pzu7vbslorPT05cvX/zw6vtPP/v47Oxk6AcD++6HV1mMq6ZqmuW0SU1DJjkPJ8tFj0fJ0nbH6WTe5+xQFSH0IhVjQkxMprCczhiNzGZ1M6krFTl2x5p5dbaeTOv98bDf7aqzk/bYMVVD1//N3/zN//Sf/qM89MMwTKfN6Xo1nc0+/eTz2Wz5r/7Vf98kfv7s6etXPzDB2aPHZ4+fIuJ2s6mr1PedmYrTlFVLXQKFAlaEI6axS9QRATI3lRqfnJjhl2bfRzLeppVytgwUy1zJa8byn+gFPSCGlq/cptJUlFJ/bNe8HCnGbNFDR3ltAMbk9XacNoy/oBCqWVDn6fk/EyAVi0Y002BFBuxjBS+1QsA3RaWUCAzFMVR1mVJIXEu686cRyNACvn3IBBafduSq+oWhMKrz6aA5jAxQ2NXO81TRxIgYTI//0WvGcQf1DR3OwDfVLCoKZtnB5+iyENXNMGOSbO6j5yFL3ZPUXdTGsYQBRY1lbtybJUcz47AZejaJqQMCioqvxfZZh+pYeIERJwD08pmUOMSbajEDDUWPA9BgoKJQNkSoaD9kqSsR5aAle3HqYRu0HFMOm3EPqkZWJC2Ift/EEMzYd7FBRCgwRWInQmYo0IPzKREAnMyMgdhBnFliV2yh6sOG5RJBXfKtZWaNXuuMWSeOhahvljAiBRhEa35YWy8SxDQreKoT5cFwtAOPqnacYKiJKYdPU8ih/MyNncQgGn0hG7Bbp/royAiJCU3FiWeeFN3bjsCSo6ni5hDmYzG/2GZxhQsM57Um+fX2bshUPWlTzGUNABUtg4EiB9sbCFktl5MOomqur4xuNPpPn2iXyIOIxIoAMiKMfpGjJ0Dfq6Pqu5HdZ48RmJvpbDqdS8bd7uL+5mZST26Gux++/8EAXn7wklOarRb5lS7mq7Pz0/1xu1ou22O3Wix//OF1M5seulbMkmZOtQhMK3r54UfXF7cgTmJxsZxls92xbarkp5eJm9Qw2GRWL2bN9rC93uy7flgsZqv1/OZum4EWk7rthrqqlrPZo/OT1WLWtsf1ao1Ay9l0Plssl6eG6cWHL/9C8tsff2r7riK+ubiQrADp0fNJHvpJU6Vmcjjcsq/hBTJ1T3B0rJYKncoJFiUnoBlIuItrqfdDkFiwe3J7W+8WEIELDcbUEEjLNBAALTgk4HdfRIEUAAyZY+DoPSsBCGBBLAsTj4LXbp6ooCDhCA44+NzB/l7p4YGBjRy+kmIw5GWXISBGVWKoyKXFHd3cfK0gZFXM/gkBEcRc/UluU2/+xKkZKjGVdaWe9gLD8AtSlvMZaKhmovgue2OYsTyjRcwMBqAR5ca6Ktr9UO54zeh/yJjQrZRUDVSM02i9BIaIUnA8M1UTF6C5nlscuo8rotmCP2LhIwDidkUwlm5oaAygzqKHiCGACIxZAMUIUGJMYgCCYElkzPQcdaan0AIz2VgmQMBNjikPWUr3g1pOh1kJrCW2qTknNcqEqHOCF0YSPg0IYSuGqiBiXOKjXyvR7NeMExoCUGxEc4BljMh+TALiLEk0qmqAUZxiihaIlX9HhQiS0YKIigW5DMgUBZAqZ9p5E5BzjnOBCIbEvgBzfJEHrM0vKQbYGiwCAR0XBgT659AMEohSmJg7EAe+2vO9Ybqpuf4O3AoS8O8JXswU0KrEyGxgqpazF/UE6oMpN1MJjR2UtQpYaNuoFHo/nyGJRwESjGLAz9xYKhZsoeCSUXgyxB1BjAIwjoaYufGIkIUDbLSEgNX07MVHLz770rB6+9M7ybJcndxc31ZN/fjZ+UcffTxfrlNV1019fXOXqmq3315f386ni8mkefr0cdflN28vb+7uOFFSmDAxwWI6m1dNns4nqRFVriojlJzVbNscmqZmQlNF5Fk9TUTzebNez3/36ttpM5lNa0W7vbm7u9s304mZIkhV8Xq9+PIXPzs7O5lMmlRVVapxlpComUwXq1XX91/+4lcffvLpv/7v/jsY5MmTZ7PFUkXubm+5rtt8aOp6U64kFxQxYjOGXkpU/Y6oew0YBNZrgEgqYmCGyugo8KiJcfjQnQ64MOctunARV5gVnNoIADR4QcCCbuHhxRS6pSAyku+JH+uVMfb5x/ZbbKXfd6o4YfQQUcl6n4EesgV9YRSGCo5ijhDQBECglKr48J6eGglJTUJqhETsT4SzawhJAcUXD4sIErLDaSmK30Jv9JBLwexQr3ODsFCgSoxhgJpJCV1gqo5QFRG/f28en77Y06KWUoVI3sZ7CDXJYAljd14phqIL0THUOl7hsICb3AAYQ2zuAmZQRQJCEg2II0Sj0d0ZQMTVAMTE5xa+32QsAtRUk4hAEZUUhRyZmOPyBiAPoH45YxDB17ULWdSwPNKmqK6jLcWh55TyMXWctTp852BlcG/itotDPMGNUHQkEfxuMZRG1cx8Ip0VVMPc2cpltWI1kbOk6H68QMecBQDCMC6sXAMC8i/p6VTEUylDlsSciF2EYZZFxLmfboeQIuuUBhSA0DlLwQICMxSP1GiA6HVoSJjBE7moApEPqNzq1Nf1AIxNtB87E28XvF3zXoJ8kYvAiMACgqL442y++d0705IrMRbH+un2tspCihxdIvmWl2Iz5NaroKbZ0aDSOQHAg8bkvRARxwlH78SxD1AwBFT0EZ+akRhWqWnmq+nJ+Wp93rV5NpszWj2ZrM5O8jAs1usvvvz569dvN9udKJ6envbHdrvbAfBh304m9enpWgUuL2+mzXSwfOxynYZEyECr6bw+SYPYIEpVAgLJkvMwa5rZbIaAooqAiVJKvJjUj8/Ofrh8Pejd+clys98wJB+WrNerrs+Sh/V6+dGHL9R0Pp+bUTOZLKtUV9z1nSHPV6dVlb781R+v1uf/1f/t/359v3/84Scnj8+NKpX86us/7K6vEDFrNiB1sFUlcBhEUTNEtajsxNANemP0ZTE3xKCG+AOh5puzHDn1TYEexQu07wWLn6co1sFEjRBJEBhVnBGkyEVU4Ig2IhIZlD0cAAYmqoFoIqsIIboXT0Ft1INQqQjHtt5RRde1PpwVj2MiGoHDSzq1cUo+xkry1IUGBuS0HzMI6YQZqIPmBqCKQ9bAbs0XH6mouq2bBFA7VlZjIVi8FwMlCH+UkT+jauhIlj+b7xFy/FL5k0LsDiwQFQ74qixTMyJ09nNkbirgV9RPo7FuOEZoFjM1MiYGHwWHVz2IGjCakU8wVSExGnjk8Q9kapBFs+iQlSm0aYlQxLJoAoBhECIiUgApU3wf57injfcv4823IBMoqFrfDy3TZFIBIyE5JdSpH37QHIzXEECjqqtasOBgAMjloEEBpk0NTNSBS7Jk3uWhmlsNl8hlMWX10QJbREko/z7amdLzqSmMZwwMmMcZkYmX4oGRYZQ3GJL53AsCp+QL8Ei9Ly6XRGInT1RhYKggVqiW4Ew1NRNzqxO2B6mE9/hO5hdRUAcfHcUyAMVQ95ceBxAMRXwcBypG6PxtY2ZVn8SYa+0I2MDUNzcQFbqyQZQY3op5oxOsDzPLcdQxZ/G771qEYcg+RxqyOLvYCqwXHC1fwowP/Z9/SxwZgTBebyU/DGqgBJSqySQ1i+X5s8dPP6yaeSL55POf9f0wmdS7zd1mc5dFjp103fD29U9MyMkS06Rpmqo+7PZPnnx4e3uLqItZLXm43fY6aJeGupmuVucfnD+5xU2n1ubsSyl16AFg2jSTZqJZRDWlBEBMvF4sTqbLT5599Os/fDtbTBazRTZpDjxknU8X2+2750+fffnFz+azqShMmvlPP71ZrZfL5ZQQlsv5bredAS+Wa7H08cdffPzpF/P1+hd/+pd1XTGn/W4zm0135uM4tAgujBp6Q0aUEL0HvpEH8bLOXE6CYQs9Gr8jUIwmx86t9McxVLZ4bKP2BxRTBfERMQCKAakBOeRs2XGM2JfiU9eId6qCCCoamCMIGqhI4lSeYjNCM2VH8zUo+TK68gshE6i586QPCrDM59AffvXnZYQ9XZFKwVokQ8HwPo+3DMNHszDRUjFVBAZhMFFVc/alH2AzyOrUbfd0RDVTkaKtjlDuZa+XY/5/agbFmNM/LZIxk/vSi6ppJuKUEkEyRWC3zlZR/xSCgkykbuseZRYFGAtgpgTAlUuL0dzsUg0shuY0fjA1NVUAHcQsMAMFJ5d7fYUO71vIzWjIOaMRQSISUUTrRZJBYPw5y7hPkhjcaNmgEGzKwyyS/U/UNGdpO2iqlDITmnJgCwiQc5QOhogiWKwUnObpowpyvYkHQhd3QWyR8rbHJzKDDACgokzAxOM0y/vKhzTrq0ylVLv2cPOK7tT7CwMAFRIoYmmLSIU4ctsg4DevigkECbKouoEGWEgZCHx2xTH68asHhmoC3no5vFEsbLkAdhgkOYeQ0AJSAgGDQX3fXmkH41EDTzExEgRxo39QZCcOgw8/3GfQIHgO/gBlFVAiIhcMh7EMqFigS5koOdqgTiTw1kQI0Uwl52EYsoiooIFkURFEc3YEqBmhZV8lKz48VpIgw414nAZ+AQaAJAhZwcQAjFO1On++fvrB05efnpw+QWBKOJuvueqGoedqUk/mNcBuc9+1h/6wu768ePHRB1VTbzcbNBAZ9vvD6enZdrN7+uScCO82u64fzh6f3W8POefVbH7ctKhGKSEzAChzYkpMVUrAPnVnQgJDpsQCnz/7cL1Y3t7vXj57lNsBAEVlt9sx4fPnz56/eAHIzaRRhTdv3uQ8PHlyupjPzx+dEVFVVf0gOZtlPX/24mdffnl69iR3g4Ks12eHJ8/v3/2kOyHLYEVFEw+YKkHAEeYzp/C6JSLmB9qiAYqnbzNGl867+56HemcFubd+uERASfUxPVAQUSLCBAWUDeadGrEhRLOP8R/3B3CuwXuMS/emUFR/ksTMyl4Ktz8RLPvWwZtZo4is5C/iD5zHNSI28UbCP5RnDgIkVE2E3ocrICjE4xd/0URBTUVK0AQC7yqAkbwikuB5mOdEhyVJTQNmVQm6LbrHT4kkEQZH9h6VtgEx7DbisosoIrv0xxC9NnQuuIo7SKuPmiEwZXMTSQBz918mzCIQ8QoMcJCYDTNDzaTqC4fREdksIoqKgGBcEEAkUjUz8SfaD01cFEMGM4SsOgyShizZhJTYsxoBELB3MZA9PYM3faIiAgIO3/R56IdsBFOFxkDA0DVh4AHAIQUlxP/y/3IN//HnP9DP//X/+NxJTyZAELNlbzNNANEUVCU5AmOQfQTm/SQTqQuqI03DKPdTBSn/4FWkeOIkf5ocJAVV9xuTLMIEWSSZU5xDGiaoYAJoYCqK5q4VajmLt8AuwlYwRXR5s5kZVUKTZnm2WJ8xJTMdcu77ru+P7fEoMlRV1Q/DkIeu65j4uD9cvL344OOPnzx/Pqvrfuhubm4Xy9WHH33U913O+fW7q+3+cHO3Y5R6mnhSJyJgRlNjZKTONFVVA5AISTSra2it9vm/2mxanSwX37zdtH03a5o7bM0kS/7VH/3i6ZNzIup6QbTtbnPY76aTifSS1s1ydbY4OQOuZrMZE27a48tPP336/KVmrer6cNjdbe9SvTh58iHVdbe7a/f3FCtAAmdAQqf+AUDOOeesJmJaE5mN/esDA8VHpWhq4KZCTqb2CAcYJZCZxgxzdKN05ETVsti4qZqLMxsQGqmFyahZKSmh9G06epVLBkApywoRGcICACX6cBO1iAemjIao4YsZ+KtXCGJqnExVfOTqQTqLM9OQCBUEiT2sGBg8kGJNDQbJD9HWpwJaPL8AfJICQboLUSeCaoHjAUA13McKCAoAZIVlN869Yt4L4Hu49EFOBGAoAmpZk7l1jf/9MskBAFC0nAUD/wzRNRSmLFoavLg0U7Ms2ouqKCEkAMrIxOBm61lFwUT7QQUtMSEjKBOxW0znrBINlXnL4k2MEpZ+CFIWzSpMIGS9ZlRCBsCUpbRlBqYgAoOoiLpAWcyGLEPOXCXHKQYRDA8ory6jfB0p6P/x5z/ITzGejemp07w47Ddi5CA6ICIDOTu2QMBiHMOv6CNHNqaF5tMJtWBgqO41ZGaeAUqHjkgoFm4c0UCIASojqqs6zWkMJD7kZAsNTAwCRNUPmQPdZFTV08X67NHp6XmVqsDrREUVEJlJFZlR25yHXiTXTZ2a+v5+80z0o08+MZGubwFhs70/WZ+sT1Zq9uTm9nBsq4Sn6xOs+a7bLRaz7aFNnHLh2lUpuVu497SAUBE3Kc2Jq0Rv7i4wgWQ5Hrvnj9aYqq+/e/2zzz59fH46aWpE3W2393f3XddyStPprKoboISUmsksqxFx27az2fTx4yd1XSERMNWTJnXN5vZ6ef5kfrLaXb+9eQdtewAzn8+jWTLWgMst0AwX7lrh4ASHJljE6uYeHvoBgdhjcGF/xpCrTGFKX/7wv7yoL2fEvHAOKNecpA9x7xA8mkt2xwkACAiLysuRT5SIRlAbR1Te23oHRJmxCBUCjxVRQNAhm3PCwRB9+4VLWBWAg7FgVgx+XTNpppZFfban5QdKCAfwxlNLmW6qEmTvooaBkeFNRbuOWICEwHL9d1NyP24rUzL/6zQebrScMKmIgoU2KG6lWjyzI9QcbK4Q1kS3LIicRXzspGHADGLBp6sSIBi5eZK5hkxzFrBEyFmUiE0VkZhB8uA9/cP3gdgn4p8lZb//alnVQH2siM4oy+Kmc1lEVAdVUSOAXjRnVTMintR1cjWaO/0hIoYjEgDEIOk//vyH+/GzmGWcE2gG885RTUVEshVPCCYiYkrJyxPzrQ8OIQT7wEp5COakLn+QqQxvFYM254dCVZhRAAYRQ8pRTVGMBcFMlMzMUB2CLh26g6QWbqMYVjbAYsTNbLY+f/zi5Wp9MjpLA3qlk3gyravUdkdEaJpmNp/PZlM1u764NNX1am0qx2Mi0Kurq7ZtT05OEemDF09vb+8zkMhwt7l7N51/OD+f5ir3uU5V17aglvusIoA0DAMiU+IqcZ1o1lT37e5/+OrXw9BlkX5QADw7XV7fzIns5HRdVRWnhIj73W673ZysTx49frRer8+fPOe67oc8mU5VjQjqulbVnAVJgLGqm9OzRxUz5u7dTz90nYgYoxP+0AUZDjV4zTmCig+wtE/+NSx3zCnbLgU3cSVWJHcaqbfjFCxiGZX920HjiZFYsDxLwcYeWUcRohN7LOSlgbwDwBhVxzdyeY0VqogaaohVDMCYERAd9/CSFWKeB6righIVde5zifYKRdMOiKaublEzoxgiWBluRbCOqMxh4VAsasYEEMOockEYEcYrE+M/LCOQUrsUpWdhusevm9PcywUpU7HIds50JW+Y/JU9xxBRUA39vphpAceyCCLK+58ynkG/XMYY0l0AUJUx26laRkxqZf2gIz8OV8XcVVScea8GCpa0yCRU1FQgUWUsokRiRAiEajlr1pz9bCr2vfRZAKlp0qSqCcMYBMBX9nr3SU4K+P/ZL/Iff/7/+/HHSETNKKVxVuzPicr7cTxXVfXeb2LQGxCdAfLw8LthyPh7Zj5WUvVEYqKQs0lWBzlVbBBFRpE4tQAI7gimQuyAK5UEgGaas7cuJipE0eBCNUk8XZ49XaxPp7MFc11XjSogDqkioqof9NAec+5VFQGrZvrxZ58DGBAj0aNnz87Pzi9ev1axlOrzs0cXF2+7tn365El/bN++vfnh9dum4v54vO+286p6Ui/7rEPI5TT3fdbsi6SIgRHrxNO6HjT/9u13d/1e8kAEg4gILJrq/HR5OOwm08n5+XnX56aZTCZHhGUzmaSUUqpn87kp9n2PiCklZm7bVrVdr5hT0n4wJCA+PX+6uX6zub09HvcikochVdXQZzND8sc+KBwOvBTObfFsACi0aojREBZdpZqBErlHJKDFTqv3y2GzUP/6T4lKHuV9BBjkC0N1cl0xAIFRgaaxqSw6ilLd+4dGBNKH/iCQDWcNqEkWZGchMIwqRQNFAhREAUPMACgaXBj7/7L357Habll+GLSGvZ/hnc78jXeqO9Wtoau7ekq3BzyAQ0DwV0DEAiKDiGwpxBAIjhLjOAbhMXIs2yBlBKEQCYSUOIoVEhviJNjBQ1dXd1d1jbfu9M3DGd7pGfZea/HH2s/5vq7q7irsVoTgbrW6+57zfu95h+dZe+3f+g1FdOxlEhikYOhGhJLdlQKdajBBLgXAcR+MaT8oqeOqnmRebG/8uOB7QKmSYGbg5dXs+qa4vo/sum2HF0Xfp+1o12/IdXyl7S69v/85/+peijfwp0cDEwA2Q6BrkkA5efv/NjMTE1RixJKcLCJQGjlyu199YTiGRExso2RnB7pNWhYlRBETsYDIzjwuhpMCigRigDkwA6iJiGhWLbhazkPOKYsPu4gpi4pqCBzYSQpsNtnDfYoA/Vav0kSYmVoSQXQs1QQcq1Ezy6qERExwTY0Fd2HG0uaUSLlpDjUxKMrz2jRBADAPPMp5TJLG7JSChJiTBCr0fnMhtgqYGaMWXX0h8SlN87xC+fVrlCQjBJwdHi5Pbt1+5Y3FaoVIKWeVYvs6pn632+53OwQXSFiM1XI5v7y8VICjs7M7d1559vTperthwnEct9stGD9+/LTv+rMbZ3duXXzw0b191w/j8OD+fTgbjs/aRRMv+xFMDW3MOaURFWquvLIhIhM+vHr68fOHWfO+6wihrgIRA+Crd24tj48AMVQVchDRzQabtq6qxocc292+ni3ALGchDjklZm7bFgAJMXAAAFHtuv1mt49NVdeNDhWhpjROX2+Zspb/MO/S/Ivz+qcIyO4UObk0enkv7bfoZCkCZZhToPvCjb7Gf5xu6EbTMBUyLN6XyJC9bDEzkZdOAyyqNACvy2GqoWVI4ARlx9VfboqvX4PvSD4uIFVjp/2o2nUVKzuFqCEGr9ruZuMpNoDyUsuPTl4sr8hnFYhFRIwmKtdGBgUymwixBcd/cVZQZnYWtlphSVxXfTNXTNoEmYL/P4XA8+JDhrJ3FsqDuzqVg/a048KEvAkzEWHOYgYcghqaqp/dXIsUmBCMmVAslyE3GCJ7OIS+mGurGoD4wE9kUvEieUUmT2RFYAQjMhBRzKpmEAgJrWyqDFO4F6JldaUDmI1Zci5UhCSaNXtYIUEB1AAMCWPga3agudQbyTfST9dv1RI1LqcsMLOsFgjcrfAFzEs0WYZdmxSVgyajtzrqVnJO8p0ghvKwa36nV/CUNGcZx5wmumtv0FZ1NVnqKkwTMy9ApIXsBBZCeCm7XH3LKYzyEE2sni1uvvbG6c3bBjSkEcBUXN+oqslMqioQUU4ZiBix2/fPnz3TJMvFcn15+ejBg8CkklJOFxeX282OKG52+3bWLGbNwWp5sVlvumF7eTWbNVfH/SJXkDOBGWG/71UkhmhodYxZBUR2w+7D5/c3+61kRY5NVd+5fdbMaiZezeevvfrqfDZ/9ODR4dHR5cXz3W4XQ6hiffvu3RBrCmEYx1DVVVWFWMW64hBjrEJgRw+ICBmGfsjiFjkYqrrvd6bqRuIFawAoRQrUoXby1GXnvplRsVksbbvbEhSmGZCJiBEGBhLGEoCoxc6zQAPFiWFaXmF943A2ozN5vDuOMXonV8Q0xRGOJ6zOypwYuIBIkwPP9aYy/Se5Fy8iCahM6UP2Uu88UbivW26cfMsha1ZTLti3E5vKx3JtaVUGAmYu4iGklIV54h1BUUKgE/An495p42EtHzuJIb60jU2HpXIg893T+UKTA7wfFaZeHQAACjkaABGZWVSRAPXazNmPBf7BFu6Xh4r5qcTE888lEImagBmggO/dip4D5HMgcyarmJGDT87pLfGaYOT0QpcriarZmKVQxrFI9V6Aetcbo2TJOTvlN2fJWccsIpKz+oYxDX8Ui/vHS/+8lCLDT48Av7XLfGMmd6r265gmZy4n+zORhy6pj79wsgoxAMdSp5GuOcMH4cWoGK5LgTdzDpmimrf4oKZDTv3QC1ie+OGqrnabhv9+VfgkCQBe0vIgFoexwLFqZwcnZ2c3bnGssrj6BtEsax7HMafkBUZUxTQwh8CbzcZE5ot5iDHGWNf1w0ePHjx8NGvnx8cnCCAid+++QszLw8VnP/sWql5cbJT4/GLzS9/+5oPnTy1nBKiQZ1VDQMgBmaoQGwo2pvcffPzBs4dX3X4UHbMtF/PPvPbqzRtny+VisVwS8cHqCIENkCgcHBy0bbtYLWNTn9y8kXIm5KEfqOi8yWd3Q0r+Kbn7W9vOzs7Obt99pZ0txGWyReQJANdotjlkp0Voet2Q4vUNhXg94S9ZF/5BOyXdW3IrfPHCaXTY4RpKun7agntMwJPPbGD6ZsWFk6X5vTb4ur5mysvQ63nf9EYQnb1DXgGvL1QsvM7yjuHFGynF+LriFt85T79SzTnl7DVIihip8Iy8TMPkYqlmBoo5ydin1KeUJKtlMbjmv7144y7m4uk9TrNps2mOXXy5y70w/TX/HxG5JkS5Yt7vUi/yZIXsTkRMxOzUXDO3eGEmJPZ9VfUF4DOxslSLFTIxhRBwcoq2iV9UPjdTdNKtTqJNADB9UX69M5um8OXCUDGzYNN/T52FXY9vp/MReecnZiAqYm6A54ET/m27xTIWp6lpx5+e+f/zIvfp+g0XU6nmZuiJjH69+w0mmvzW9AcbFpNfct8dM0/ILDeV37d+si5nhHK5TzPdwrC2gjhoZAKCLDLmrGpMTqW41nkBeJvpFnJ+xEUEgMl1slyB/n9my8P56hA55CRo5Jb6QBCBySyJqJtYeaPFvLm62lxdac7r9dXh6TERHRweDkOnKqdnNw4PT9p2dv+Tj2/duhXr+OH733kjVLvt/le/+W0zuXhmu3YvXf6xu2/PmrmZDZ3st5vDGGuq2KSOYbNff+vBJw+3l4GJK9tvd7fffG0xq5eLecq5bWcKqACr46PTGzcWy1W/3/b7zpirtmnaGdrzPPaxanbb7clJW4cAgDkNIVYpjUw1AOScmZFD7JN2YxaFtp0N+71/LEUmUWarXtp8FEwTfi1TvS0aVAOffE5gBWix9LaSdOtZAi+q9RT24uVvQoGuJ73leVTdgh/MnB+vHLhoEFynacpFS+8Pc6HPdA6Fckj1PgXRRISJwYrDWBGklceVLhsctAKgCWui6Q0SopQBbEHRJ0TFoNhmlLI4VS2HrtXMchLMGELpfAoqOkl+bDIjmPoVZx3BdJf5pwoT2vYivtv/esoJAcsP1aYDgouW4UW/g4iEpo7STJpqp0sVHKks/w4Kt9tgilUvdNIXhaAgNb6PEk4OH2imWTAwEZkIuAiqwFCTB+oEfKlocJpVgYCIYOIeqWrRqoGqWlZVFZgcMwrUpQZgMQb23tNMFZhxknqJAdmnG8Bv6SKmiautSm4hpjT19QYJAFSVmZ0RCMUYtdz/VJxZjdH52IWQ4LWhfFluhlE8fkxNRYwQCI3RQlXJ6E1irrjSSa+vZgoQvMd0Q8WXms0QWITMsp8uACBnQcS6acCAmAJhP+Su3/vdJiI595IzMYcQRGS/226uroa+c1gzhMrvtaOj42Hoq6YBHFeHR7EOIYbjo9OLi/XQf/LmG3ezjJdXlxHofLu92vUtVZ+98zphSPtut9nOYrVgpkCbfvutpx89GzaqVtdMJnfunEamuq5DVVEM1azNIleXa64qIKraFpkUcL5YHhwcA9Cibc6fPpotVmh2iVg3bd20s/mSEVRzygTTTsYhHJ+eye7Vh3m33wwhBslqlgHBiq+hf2emmif4JTAVNaWXKs9q9SEvTjluAAboxBsfY5qZ+LSAKLzoGQHpuu6Uv1VUYDAhKjQ9YSlepUEkIgMwEc05TwFi5TmZecqEKc8DOEVDeHCklUNhqZKlly620tdHRrOSd+ayeCQkZFNI3pZmZaaJB2WqipPaXFVEyvRCDUQt5WTmdwTNmpr9YzMABpv4RdOhK/v3U6zkJ2QHAK45V9dl+nrvAYMs4ilnAIXEBt4XF8c4vws9yKVMAtjHq1PbjYgqyo7wADhlzmd3ZhMfqTg2AnqSHnOxPQaXbbkxQUF/ck4FH3MxDyIievjjVEjQTEU15JQ1lxZAJ1XbxEj1oyUqSXHUR5cuYqF8wTXPDF3qXYx2ibS4vf1aG9ZP1z/4MvO4a3PzqymiBQGInNueJzTAyofv/oauHGWa3CzKhf/C4OXFkKycgT2mA9QnUhZCqKvIxInEwK7PgjA1bmZqBWQtjQ8TEdMkIxCRyawGUQzGlHLKrhECUAN1nTkRc2BRjlXtdzKHMJsvUkqXV+cBQcbh/MnT26+8akxNXMxmi/XmKqWx73a7zQYBA1BkylmHNB4eHR6enj6893C4vFKzr9//4OLq8vbxGRskHM53lxlldzF++/6HPSVgPFi0r9y5GZgAKBIdHByEGADJkJCrISUbx/37HywW83axmK8O66pS0avN5fNn58cnp6c3b2y3u83VZUojM/U9jWlsZwtXwAkiIVSxWiwO0tnN7frZOOzTMKhk/0K80ZvIXb7QDJgDc/AbqtQa8htNsISzQZGOuqWuCbmbUEkNBmIszqA+Rp6a32L6W9yPqWz74FBPoU6+gGgAoIifrMBBYOXUZwAIVAwo0dt2IlDNMMlr/dIABBXFKbcAS2Q2IEII7J1BIT8hFKm8QqwCJFCVwh0Cm5r3KcWDDRHYLbEK3i0pl1ZGUVIWQmRkZrxuponcH1jN3BbX7VrgWqAHBgRkqDhFneKL/aBYHPrRg/wXzs4px6VrqM2IIQAZe5cvhoal3Drq5V8sOc7kt5WoGkEdo6kRUXADtmJuTQjIRAZ6HVtpAEquCSQpFRiIABVCUZbptNH62Q5DzhmngRIWKpggQlG3qcGUJsPMCAiS0bWTxeSaMYtIJuYYqPGjh8E0UXz5uvn/x5VBp/yb35plkwjF7fIIwEU1rtQsWdBQov6IPGrD/O7zq1YcHYYJ64NipV7KiisbTT0AyQRUzA1JiYCQAlBAyGYpq4bJZsMMEQOynwW99EdiKlMyAe8rIdZV7dNPjLO6nY1jSmMCANMMQMwsaCEwcwwxppRMpaor1ZxEiHC7vbp6+sQk77cbVZkvFoFIhnR1tf7kw+9VITDTbrd7+vjx8enRm2+/+e1vv//J/UdPz8/X691yvqgD7fv+/c2zT3bnTVUrQkib8fze+XZTLRoUjYi3bt0+OliOQx9C/cYbr84W86v1Vg1jrD7zmdcWy6VlefTw0ceffEJU1U0dY3jl7t3l4mC+WK2OTyCE5cEqdR0RpGEvmutmoSKBSNXSMPZZoAEg0FjffuPtQPDRd9bu23ZdBx02Q0TmAICEgSkQBaYSin7dORIZYbaJheK7KXnvp9dyMP+ybeLOu985qGYsJl3mPTsiml8DBfSwa0CfJ/AQytG/gANEODW+im6xCF7mixdlCTsBYkYRFc2OV7iJO7OTGZXA3a9LE1laCkRTDWhAwEBEYRy94/9+YMERGEYgR3cKgkQAxV7VPGlK1GM3ysWvbipfKJt+6xA4dWJyeJ/GxdfqGSIo2/mkhn5xbyIa2DTqeAFSETk6xBZgTAmgDPThxWwMbZq6YbFwfIGmI0IkUvQbvvCDiQjQGI0RPLZmehW+n00JKGiMIOS520hEUGxcARECM2tOU/U3vxDhxfGDPRqGjQjBbZLdbEkyjGMCsCoQE9aE7tPBpePz58AfBQHaa/5b6fzn4vGCwo9YB/9B1t/3nxtB/5/Ds3+vf6Rm//X29u+uTxv4DWv7Q+3/9d0Hn+QOAF7l9g/MXn81zPxXPeifXn/zY9lfn8h+T332+2ev/Sj7hBfuCcD1FsA7d5ezIhKpqJmiKBGoWnQ/xF8L8pZm0wFBsEhhAgQArmkPUE4PXGiEaCYGSMyWNOWs4F878bVNfEEnKKBvP/4MVGYAZqpWhWjAppwV/So114wTqRoTM/E1gDsM/TB03X7bD2NdxUA8jON2v2cO68uL+cFBVVWPnz9vmmYxX9z75GORtFgsAODw4Oji4mKzXs9mzVsHr2Wxy8srRqj2sQrVxW67HbvIVWAdpV8eLdu2spSauq6qStWWy+WNs5tHxycf3bt/dHxyenRyeHQyXyzGcWSkz33h89Ws+erf++owDFVTH6yWADhfHKipZmmbtiIeul1OYx2i5iQpZZG6qs0sxigiaRi7zfbxh9/dPr8PIlb6Sv/s2dzflswMwTBwRGQEIgru0zWZPXokqhYJlc8PVdWUgUrR91ERAIAiBrqOlZxaBUQrPbifLdC/R0e16dqzTCf/zqnkmaGZStnZp2LnEOA1I82unejMps4EEMBtKcG5aj4yKNuPj7XMfBal5S8Wsa5hCOHajP26+LpxWUAsedUgPowMgesYkgiWCK0yi2I/GzkPZhoIq0oIwUpKTAHXbSK2lL4WIbDPQgARiYmMwFv1lyEjr9rkBzUqtF1HUGCKwnJwZ1qlAiMQsU0bGEwK/yljx+16fMctHy0heMmdcNzyHfp35TM6JgpkSgJI5MA8MKohWKgiD5oB0E+UUMCdCftDiEyBeUDR5G4SBoYqmlL2OQ4BcxWQMDB6DKGZuEv5973J32g91OF/t33/lYP2PVr+CDXwH3T9ff+5P3r19f9sePbj1SEa/AtXX/vZ6vgvHH4p/Hp7wAPtf//zvz3D8E5YGNh/Pp7/R8Pjf+voZ18PMwD4Xt7+tf7JndA00xlw/DXhQr/ZMjWk6yHYFCvgE0MRVcumJSPexlF0XldNbIjQwL3FPX8K5VpN5M/jT0dkaoromg8o7QyjC3+wnFWZEZNllSwSOTq7BMB1K9N0bqLJOd7skAERoGazwHVtoanmi/nyoG1bF1/qRC0LMbBhN/Tj2O932+36Ko99SilWEdEIoariOKbddrPvuoOjo2bWrg4Wfbet68BEF1dXwzjeu//g/PxZzunWzbPD48N79x8/fvx4Pm+bRXu+3TJSFXlIaRQ7WCwPDlbr7fr45KQfhm3XmWmIYdS83m0PDg6qqpnNFweHh1VdE9J3v/3tru9feeWV97/1XTQ7Ojps23a/33Fd31jcaOt6v9+lYUh9zzHO2ga5zpJyyjFEh3FDDH2/1TSgjKnbqA5eCJkYyQsEgaKZqB/cpgyRKYWlpJz4T1XFu29yV8sCuCFgQYaIrsXEcN2TXlf/0nJOx1THMSbEv5CQXsa+S6vo3Bj0Iwu+hHX4dFqvBahQmE1FUPuC1zn9Av31qR9qnelYeg8/YUy9KYAZERAXnGqyUZtqXuETeUqH2+cxIqacs6ioEFIZXANcvwbnzk2ATamBxEwEBV4qRyGYAB5CpHLABiJAYbNxvJ4kTM0ZEVKIUabtyl+iT2rLbH16p+WTJxJTIpSym5TP1T80l/0jcoH61cCMmQGITJjxOopx6vTcRK9YOrtREIBd7/VKRCghEmVmM4MXmu/ruRAyUyBECmC4GyVnydl1lKaqKSVmgEh1DG0dqsBFJIjIRMJopkz8Q4va1vL7ebfV/EMf+Vuy/v7+3L+y++D/Pjz9Px7/9HthBQDfyOs/cP73/o3dh39w/uYPPvhPrr/5Gs/+0uGP+yGjB/0nL776pzff+t8efZkAvpbWPci/dPil29T448OPDBOZO+Ogk6/Ie3wD86yQccxplG6QYRy6NBCRLpdtFeqqdvKEH139MmUiIERg5wOViVwJUEIRNRG3SWQi9XNl6ZvUmSGedomF0IaQFQmQocC6zNfbf7lFlSBEjM3ZK6+d3Hnz4OTm0cmtwFXOacjZiv+l5JQNSNKYxl7SoGPXb9Zdt89ZqraKTGASA22urrJB1TSL5TKEcHrj1nNEE4n9kNUAbTZrh2EYuuGD733w9PlVVlMgJm7rWRuliqHr+/lyduvsdH25OTw4UMDD48M09IeHB8cnx6vVsqnrB/fuLRYHkvL9T+7N5oubt24erg522+2tW7fqqt7i5uT05PDo8OjoRMAi0/rivO/2dVUzhxAqc5SOgr81B/ENILbN6vBg/6x9ognIwQoLjOggAqCiCU7QDtlkwiZMOLnoKACplYRYIgDMCMDMzuI2ReagQEBAHvaMMFX2wgNBdPeeqeH0EekkDMKJ5mdmOWcvjsx8fV4wewlwmb7osqic+Jw+qiVHynHzl2g8WBruMk2Y2n8A50HCdRteYInp8p0iZaaxKr2QFCAjgdtmQAgcY8hiWQRUwvXJA5GZC5JGiMhYMsgAmbHkbcDkyWbTFgTE7udMiKSSPTYlhiAqmuUFARKxqivC4Bx7cmOL6Y1fI0dmjseW3cWHIkyYp0yCQqoyD5csnDqfD00DWGIyI8Vpyyg0C99cXdeNfvpjMMnoSJIJAjOFyDggiHm75wly7nqqAMjIgZkpOJM4SRaRnLOqD/ksEMbIdc2BEcEIoWJA5MyoqjnryxfHD11fTVcbS5+lxY3QfN+vznX8Wl6vKH4xLH+w6f5N/uFX8+Va5D2e/7rP+fW0XnL4Ylj9uo389VpD/qv9w/9We+eLYeU/+bGw+kebO3+1f/T756+t4PuhJJ/ENRT8aRdADDCCb8rwTIYGeK35Yb5sid+hefUjjwlGUSCpCv/SM2PLBeEGv+OQd12/3m233T4wtZERlgRGjAEYJlLGdGsjoxJSZHb2NxKK5mIFUEzf/DSs5mMw9GOCCqGoVYAIxBQQQBkMCwDKpXOzFzUBwBDUbBjzbsifu/P6fHngOKbvY2AamPshp5wRsR/7brcb99s09qGpzw6Ptvttt9+OKXGIYz/s+25+eHR2dmNM6Zd/5euaxudPH/f93szqtq6qehl5u9l20K+3e6SAiCFwt+sDU5w14zic3Tg7PjpYzWdHhwdDzpv1rmmaTy4uF7Pifj1bzE7OTlaro/OLqydPn7326uuz2aydtavZggMjWFNVi8Viu93Wdbs6OnKVUxpHUKlncyDohw4wzeYREHLOANA0DYiBwOZqvdvvY6zFkrfwkQpyg4AqmlT8sAcFnculiouYqmNlaIihypKNgBjBFbBiqpANKiJyIbGVjGYfsQIAgBuZuT/rC5FwMYtCrxtOrTGzIvEr2AZhCGSmIm6GU5panABAN5+dlOIGbghdCh/QS1c7TmWspLi4MsWUqWxjU7v9YmOAlzAlEWFmgNJdGxgHYmMG5zWBo9jMUGMsfasKgRtogxmQMx3It9kJbCqTbVZV5skv2wDQEBiRA6MUnqYRQGAmxKxgKmKmYqGtiKNk4RCx2G3rZA0EYOWzRUQrmStlMzXwWo/+X2qujivlngkJMYP4Kwdwh3znbZiBGSgDe7tFBBMLVQlVUMltpE2QsEIGk8BM4DM6DL5pu4G4AbKzOAgJjQli4J4wS05jUlUkrCuuY2ir2FTRSWqRuQ5h6i8sBMIJgPyh61/dffCL6bJCioB//uDHf7I6vP7Vr4xX/9P1LyWzzvLvrm/8mYMf8yvo/9LdG0y/lTf/Yf+4QZpD+OdX7/2X6lP/Vwrwx9df/7/1jyvAiPznD7708nO+n3f/7NWvDKAG9rPx5M8cfrH6jfeATvND6V7j2cs/fC3M/p3+fqd59QOzhH9m8dn/7sXf+SfOf+ENmgXC9/PuW3n7bx//Q/64j6TbW/4D5393gcFxvj978KWfeem1/SYriYXgcKJmSR6R4ShqCblGEMn90A/jQFWNzu5gYoMQYkr5+hjrp3LGcI3/IKKZQEkx8DbP0IyQQgiqJtkQiTAQYlIbstRuHwqOv4KqgMeTgZPDC63Z6z8zozFgiFULGAAYgVRUVZlYQDmE2kxBcx7zOOSxT12nBrdffW23H0JOM4JxHImYQ1wsqruvvtrO59vHT7vdbnN5cf/+fZF048bZrJ2try6Pj5bL1fJyvWnnc+ySar59+9a9Tx72wzCfzdqmuXFyfOPsxqOHD1ZHK1DpxuHy6urw8JBjQKbdft/s9q9/5u37nzzoh5yyPX32LKt85q03756ePHn6JEl+5dW7N26cNfN5Fnv+7PnNW7dv3r4zm7fPHj/KIm0VNI0Yysg9hDCmlCVXsWYOTdPEqjk4OOo2OQ0jlYmoTsAIEL2wsPQqqmAGjACM5AJjr18q3vu7l1mZgIqhOkUApl69PJXTuK04eiJQwSbIzBQEgIgLGcRlpM7pkUk36/sAMwEEbz5e4B5F2BR44lmKZnLeS6n+Jdpw2odsGjeXVwcACMjM1x4HppNG9yW6igGAkUg2gMBcrmkmBCNGMi7YFCAAxsDE/kGlnLMnyrpbJ2E5T5e7CItiC6bgKHhBuEIkd05z6p0xk6G6zeeLCmwWKnaFMBLDhKa4NAAntz2HSOF6rn49cTOTEmSMXB6PaubTHSI/gRUZFzO7r7YpC4lPhiaFj7d401kITUlF1PlNIZRsgyCS/BszUAQhJGJ2K2tCZPQzBgbgGLiuqm7fG6ipVHVoYqgCMyIhRg7ooBshArJyCPISle2HrJ3lj2T/Fw9/fEnV3xnP/9DlV/6lgy95Kf9Ph2f/i6tf/ifmb/5cfbRT+VObb/6Rq1/5swc/RgB/vX/yt8fzFYW/cPjjB1T9W7sP//TmWz9bHzdAI+g/dfHVh9r/5aMvz5F+Ybz6n1/90r9+9NNvhTkAZNA/uv7aH16+83vr04cy/gtXX/tPhqe/r775G728JzquqPpc/DUzgy9WqxXGhzrcpO8/W3wmzP7Y8nP/9NVX/1N7BmYNhT978KW3piFwRHw9zP/A4jNvcjuY/rX+8f/48it/bnq/P2RZaXUcuHTFRmmCEBEhMDV1dbhctFXV1tWsadCTLYkBuarIRZ7MZIb5mj8ydekiRkQgRpgJNDKZWeBAhEqmmgUMiYBIko45ezI1gQaKiJRdMOl3D2EIwYM7AQAACUNsVouT27dffXO2XIVQg4qXBibkUKlKDNwP/bbrU7/T1APjYr7iUI3jVdvUQyeLxWItWlVNn1KM8eLyQlVunJ3sNlddt1+ulhxCDIGYRW2+WCxXB1w36/UD4oBEp2cnhwerdjYz1dVywREWyxbQzs7Obt688d1vf+/i/HK5XHVd2qz3Vd2+3323rtu6rlIac85HR0enp2dd1z1/8uytd96exer8ydPjm3h267YpgtmQU6ybs1t3Li4uul3X1BYw8DQ+DcwIKCqAJpLHYcjDyBiMFVCdbehoLxWnMCXvVl3YVaIiHcsurHA3Q/MIVXyJ4mlmYsoYDAAYSyQegE/yocz5yuQGAADUYRCcUJ3JF7OEfJiZmkJKMTgh1dxDDQDYp/7ovGRzhSsAZBHIZqQTFO7MpfL3CqZhAMVnAouDTJkyuMDNFO2FbHgChBywQCRVMzJCIsbAZCpEHNgmZIwQ+Bq8R1APwQWv4oDEfD1iULUXMWvXtKjCsfAhDU06Fr9lWMyI2Uuif2o+TfW70rfkwna9HvROYLsfAibaZPGgBkTGUskdH2Pm8q4RVXE68Lys6yZEISoWcNcjPd/U1C8En7WgmU1G/wiIGBAtMIqCIVTMMQaeBoY+M3ElDpK1LWRRBwAIraljYIqB3KWVCum7vNEYOAimwsT6IevvjOcB6U+svvBz1REAfDEst5b++PpX/08nPwsAf3T99f9Kc/NnqiMxaJD/sdmrf3H73V/Ilz8TDr+R1i3yf3D2OxYQAOC/0776t9MvfyOvvxwO//L2/W/l7f/55OduUgUAXwwH/0hz49/tHh7R3fvSbTX/+cMf/0fbuwDw+QB/pTr6K93D/3J98zd6raPqaMV2/3pF4ATWq/zg4//m8OxfXH/9H5+9/tuqY0P8m8PzP7n+1ROKv6M6UYB/cfUFgBew0c/EowUFf793fmAv+b5Fnv2EjAgeLX2NDDJxDAYNEuG8DklyHeNy1hKjqAZyPVGZAUy0CnWBSblTwESAycmH13MoZq4MFEQxkCUFT0YDySIiQmU45kFKJFlTTmAQOJBBjAwEooYUY7UIs4Pju6+f3rpLHFTEW32VbGBEqCoppWEYYgzV6uAyp1FktlyNKVdVNey2+90+i8SqSX3f7fdj32MI++16v90gwnw+XyyW68324aNHi/l8vVkfHhxsdv3F5cV8Pl8sV8fHJ3iCQ9ePY6qqaJJDCDdv32lm8wcPH3S7LRE1s9nVZgtmZ6enRCElGYftJ/cfLA8OXrl75/69e48fPTo+Omqb9uTo6MEn93LKSWXoh5OT06qZra/GYRjOzk4XS+k26/122xjmNDrBQzUjouRM5PCOirtUgpQ73uusyGTggCEQY2HOeLlED9dTZWKDSbZa8kV8YFgiqzxMwOd+AkJlxFt8YdHILBMiMU/uOy7ipJcvEl+FYwakqjlLVfG0A4EBc4g4mTsgAHGpQWYJWEUyFCXR9aSpPLPBi3pqE4kAJlQTJqH7RKO5Nm/A67Gs4602kWMEICAZFyecEAICeytKRAB8LapS1RKp8WIT8lm0exzY9RtHBKIgmu0lSPulV+LQERJRLgY5Lzf1aKZIBmJaJLcuuHvB+gIotjrT48tfJyRgdBzHtMBWE5+CyvBv2jamjcQnw/7M1+MTNFBzM6KiJ2e/sQMixEBsCMAxhirGQABEIlpm5IEmHbEVbYRpCBSIQiBinI5f/lhymw8GCsxJxhfehr/x+tnquIZfA6P8znj67+KDx9oz0IWOf6V7+O93D8v3AXBC1Q2sFeCzcTmYXkM3jHgho7/wj6X7XFyeUHX9nDep+YPzzwDAbW4PqXp9wnMIYDTtQTLob4QCHVIgwIs8voz2P5UeAV7+E76+l7f//Prr//T83X9s/or/5PdUZ2+H+f/y6uv/2tFPvhMWP/g3rt/vD98AGELgGBhQiJEpTC4LQCQxIGGIhADB/XOaqmIiNfE+b7ot3QYdGckIOHCJkzS/ZwjQwPkGiAjEHMzUMKMUAgMiesyL26VDodOZZBmHwTMjGbFtGpy3oY5qgkCKdOuNNz7341+u6/k49H0/5JREs2gGUw6BALNIVUXEOHRWz1cYq2Y2S0kRcLfdDl2/WB00i9kn778/9N3zZ09CjB998OHHH380jiMzx7q6/+jR40fPmOn07Gi96//eV37pxunJe++9OwzSNK1q2qyH2Wze1DWCxKpSw3v3Ht6//+DocOkI7GIxDyFQCAaYUh764eBgNVvMX3/tteV89uDRw9R3pPqrX//awcHq7M6N5epge7UZuv3J2Y3F6mi5WmZVrgIxpZRqMFFJKcVQlcIdAiAls4Pjs66C7cUjTGBqIkou3TILzIFJ1Zg5BI97Q1RABjArxjxFxKFl6Fe+r4KfAFgWgFRi50XBkXGfF6spIxRvNkQx0ElbXKrzNUZT5pAFdy8qcQX3wUdiRHZxWXFGMzNEDgwAAaOZTKZphTbvVgKF8+5MNkTntXqXOgl0X+xA1xNp9N63sJCwEB2B1AwNHehxFN4mtbO7ngBhYFaFnJLINYmWoQAsSECIqJrVFCYdtZ+wfTaOyAbin8f1fQSIhqDltESuWjfz6TqoZjP1aTiAIvrJ2wDydOr6PggIrwm0ZSLtG7K3AICutfTTlal4Hje8dJIwlSKRczUcGBIVl6dysAJnYzNjjCF4xroCmBETMVGsyElKToEysRHURdUpiwGoWwIEjFWgQMiUVFiZTRWAwec1ip4/Zz/qDODXlDlCM8hmhHZI1R+af+a98AJ+ucHNa9z+4L96mY5w7XD36zz5D/xE4Td6bFln1CjYV/LF74Gz6x/+QrpQsB/Ef+5pjwBfrH8NXvQT8dDA7uXunbD4dV7S9H5/sxcBAACBqQ4hcEAMANM8zUpiHwEQYzY0A8Zr9xOv+IUj7p+TmAIwMEBx10cGNFBypwVgJDfUBW9KiJjNCAQIRIQMwUymlA8wzx41SanrunW3G4aBgE8ODmMVY1U3zbzPiHX72htv1WE2Dqkb991+n1Nygsh83jbtUlVTGswk5ZRVh2EwlWEYZ4uDvu/q+TI27XzWpJTUlJmfPnlCiM+ePllfbbyParouZ3n69Pl8Xr/1zhub9W6/H/dD2nbDL//S1+7dPzs8WgbioZcQ8PjokFTHLMh499W73W5/dHr27Lvvd306OT5cLFaL1erdd96uAn/04cfr9Xa+mL/y2isnH59cXV4uZrPFweHB0UG7WFGobt42lZzFkDkQWcppHDjG41u3gMi0UP/90B5DIKbV4RmaxYpIxotuqzqCGYTAhipuK4PMyESMaHQt1XSahgGYFbs/J5F6kiOYubs9iliWNCTxgU5gbjmUJyMwMXa2PCExAigW4mDpTK+REQM0MQQ1JC2mmCCqmMCRqGuMRAGIg3kEOvDU2fs7SFNDmkuqmQKAEQUwnmZOZJqL1djkzj/hGVPnQS+x3K20vj6zBWIFC8ykhuBIB5kCETOhx1aQITPbZHWgpoSTFoEUAHCKKgNAMk9Y9XJoAFK09/7Hi/bFe3924ZUoFoTHD2DldgNCqqsqC+Us0+AdSoICFIDIbeicQW1lXl6E+oZsblJtqG4w5xAQ4pQBXz6LrAJZfbBjBgo6OaEiISRNptk3thACGAYfBpbNHsspA8kjyACR3Xcvi3RD7vqh6wZVbZsqBmLCKgSmAITuL84hBAAiyIaBKBLLjzAG+Gq6Gq+VLQAA8P/ongDAK9gCQAR8KsN/b/YaTJ/ZfzY8/Tjvfsdvipi/GZb/TnfvuQ43qfafPNX+P+yf/DeaWz/09fzgWlB4j5ffSJsMes0X+lbevhMWzQ8QeFYUDWD/a6GhHgQA5hweaP/nN9/+n8zfvtaFfd/7/c1XFUMMwXNByy3rrB5z2oOU66l0DoSEah4bNiJWMN07AGBFq0nljjcDU2bXFwsKFNWQsfeNMYQcJQloFprYRGW+pWBkktM4jOvt/snVxbbrK4zM1XK1aoE5Nm+88fr89GY9PxQAA0hDVoNYVSJSxdi2czMbhz7lAcACB4hxuVxozsgRABTw4OgYTPI4jPvd0c2bs9Xy/PGT84vzV19/rW5mF5eXMcZn58+7vl8sFq+8enM2a7fr/e3bdz/48GMDPjg4eX6+/s533z87OX71tTsHqyUgI8WnT5+KaLffP3v2/Omz8/1+mLWzWzdugsJX/u5XP/ju+7/9t/3c3bu32/aSqupqsz08PW3n8/Nnz3a73W6/v3En3LpzdP70UYzMsRmH0bLEEAEwVE09mxNR6scQuG2bnDJT8EFtjJWoPXv0cLw6t2tp5wQLyKTPZqaAbFwaz8Ii8TCV4mhm4CQfJEDIIqVqmKrqfj9u+xFID+bzyhHeAhBMBBgER25BKan4rLhYP09lRQGSCBASFFIQmqWU8ghV60WaBdUbVARTMFEJzIV9WlRLisULE66rp5sbAJB7Z3qw2GRZ4cAXw4T9e8sNoMUBRd0tzt+PiSogU2DLEhlBQdWInZGA5dxK5Lo1ERFX2ZF5L+WbAZCheTpLcShBd08vu9G1hcb1wQgQkCk4hzO7yhfAzEPk3Y8BA4XA7COcEMyM/J68duWzQvQE37ldy0FTLIFzuBEY0F2/yxgEiQDVRGHq7ct44IXNF2qhgU02fT5a8YhpkUAljGeaGqnRpONVNTUZREUkZRtGGcfssuG2rtumqusqxhBC5MiBA3NgJHTnWTRCCEyEP1zi9KV4MJr+ifWv/omDzy8w/O108W/vP/nfHHzxdmgA4J9bvvfH1l874PjbqpMe5E+tv/1eWPyx1Xu/+XP+jxavf2U8/ycvfvGfW743p/B3x/N/Y/fBv3r0U4dUfSTdD31J37cI4H91+IX/5rO/+Ucuv/bfn71GhP/m9sNfGC/+/dPfXgFd6vi/3334t9LFz8ej/+H8jS+G5U9XR39q863/wez1d+ISAD6Q3b+2/eDL8fAn4oG3K3/46pf8tyPoX+0e/JXu4f96Vd7vb76aWMUYmUk009SPmIiBz8EY7FrXDp4J6aFxvkIIzA6nlvvKTxAICKgIfokZEmVTUkQkAUQkDkwGAiEJ5zERUVVVuZx22SklItIP464bnp9vLtebRTM/XBwmQaXQD+PTx08ObrwKRN3Y5XEkoOV85VQFIhxTGrpu323HcWCmECpEzEn2+/1sNs+yr6uqruLQd4/v3x9Sf3h6Mu732/WVirz62mtE8fz84vjk5JXXX/ulX/6VNMjx8XEM1cOHj3IeY8X3P/kEDI5PTm7evMkMl5eXXbfr+/7WrVuPHz0b+v6VV++uVmm33c/b+WazyTIslzfQjpo6muQPP/hgeXhc1/UwDDFW8/lCsux226Efu/3efRXGPi/rGXF04VEzW0jKoNbM2pwVDGNoENI1ZGGq49jvdxsb+2Ik6dcaut5eJ16KS5uK/s+R3Gs9KbKzt4mITASRAhKAud8/IeaUNttNbLnNUdKAAUNgQDQkcSP3kltC6pGDk2EyTMCC9xJqwXLG4id/PWQ27XsOISIQRuZAExKoqKYKoqDi+ecT1oHTmMFbTPAzBqHHwPsWSIimOTuvBABMJ4uM4nGPBmQIjGwqRWNCRByYyCKCqYLai/RpYuaXfe+1sJfQjLxgMYKHGPrWqKbm0HgBZBSJDHx+7iYQPjdBxsI/MkUm0TKruQZ2kDkwMiIF5+mKm+uQucn/1I0xoQNEZuqHAB+WiAiqYvFeBTAPugFE1mv01REjNTPzUaV/hV7qAUCnLRfJLa81pWyAwU90aiYGoMqqKRmCAXHOWcu+yebBwGaAWMXQ1LGtY9NUzjogDsyxEMDMECy4daTo8OvNSL9v3eL6v92+srb8hy6+UgER4r9y9JPXlM1/uLlxi3/qD1/+0r+5+7A3+R3V6R9ffd677t9Tn432oiW/wfV/rbl1ixsAWED4Pxz/zB+5+uU/ePmVGokM/sLhj78bFt/3MPj1nufXXbep+UuHP/HH17/6P1v/shoEhL9w+OOu5FKADgzAOlAFCEB/7uBL/+zV1/7E5htLDAqwV/ldzemfO/iS/4Hv+y0C/KXDL/9sdfRDPygACMSEwIFAg5pBEZhMY1j1gR8XDHGCEM0kJ8kkRK5/ERcxmicMARgoo58j/RCrzKhGigiGQMCEBtwgGMxUQTLWIWISohhDhage9m0GY9aULY2Wg4mACaiq5nEcnn/1b//nt954+sZnP79aHcRZa+bUlOxzxTEPfd/VdTWOiUiOj46GcRRVr6cxVpLT08cPzfJiPhu3u26zzmnYb3fPHj+9eev2xx/fe/LoyU/+9E8fHx4/fPCoadqUZBjG1cHsp37m94DRRx99dHW5DqFab9dtOwOM6+2++/Deer0FMFV5+5236sjz2TKJHBzOx2G4eePs1s2zq6tLETs7uzX0PYA9ffIk53x2fHJ2dnq1Xjdt23WdmQ39EKpusarruh5TOpzPt1eboRtm87mzC3f7jSm0beteyrP5/ObN2+Plk4ffu0Rv4QGgwK6qIlhwGB/HvDije0PrQLZbbhshORlI1Z18EJUJGYKTGgNhJAhE0SdEoFIo5+4uZIQAjKRgAtcD0Al0mrgA5CFkUhg5CAgoIlmymgavquztvRKRSUYABCGwkk1X5GFAiO4qaWgG6kb6pWQW/4gXDATwCTaSmvnL9KGooIOTBQYlZkQGZEIRyVgMIdTVzUUoLwJl0FqmtV7IEQyIAvl0wVMozEC8jCJ42ruBEU8DWzN3SUMLnphGgMTKYGKFAQtMTIzMMTATsgKCJY0mxbXUY72L9emE4ysAi7iGolwQAGae0VB4XApmHNy5tIyCfQBe5gYGQMiITvlzEUOxaQHxcE43Dg3MoArqwxxGDsGZ406iMrWALGqaM3hQm2oIHENo6ioQB2aKAUP0kyOW6GbfXxVK9OAPWbep+ZMHXwSAX8yXV5I+z8tbv7YX/lI8+L+e/NyvjFdzDj8ZD67r9O+fvQYvYfr+PNf/6fz6X0wXa8ufoxfP+X0P+8Hn+Y3Wz1cn/97pb/9GXmezL/ByNs2tj6n6I8t3AtA1QEQAf+bgix/nN+9phwB3qX0tzF5+Yde/rZFefqofugIhgTESMKhM1JFpNoYkYOVYTMgwsbMB0AW845iZnRWH7veChZinpoaAzixSADQiJi3uLhSIDIg5GlcGYeizZK1IY6xCCMSWcyrMOTMVQAzexYvpMA6mShC5Gg4PFsdHJ4Y8Dv0w9DlnZyIBGBMdHx+Z2mLBIcTNdicqs/m82+3S0O2Hfr/b1TEu2qOPPvhAUnr86MHR6VG7OPje9z5+OzY3zs6+t9587Zd++eTk6N1339l3HQKZ2nw2Z4qI/NZbbzx6cO/Djx4+fvJss95+9t13ReyD771/5/at4+Ojt95+c7GYnxyu7n98797D52cnh9/93nd/5XLze3/v714s2oN5PWuimYrkSPQLX/nKG2985o0330DiumkAX0QBiwi3NZleXl1uzi9VdHGwVJWc0zAMXkerqs45V3VFsTm59er6+eP9+QMkxsmkXkVd4uReviEwGIhJoRI6oz+biCADEzOjMpmomQK6wksBgJCaplrktq5o1TSzdlY3jYmo5uvonuIoD9N01bHACSrQQhLzKSTaC77KdfwLqsgw9l7DMgAh8VTMEQ2m+Se+KAVe0jzcC6DAFkzyAi3wD5OvGW7MAACKAEYAPsfIMtmLgjkHBYCsJKcDgauQRQEkaZE7e8jExJwp2IsCMXqSdWAydyahws5xNxTyLGUAICAiUbGSfKWoxKFCfJGDdn2uhWmOTswEbIrEFkxzTuzy48k+y90zvQi9gHbERXY+wxP3twAAETEwE7JrDAzRHdpElExe4oWX7DGnpSKRf7E+uVG1EJkBDZUVym7qaukxJf/wBdBdOmzC0QCAyC1ZAoWKQo1EZtlPf4WY5c4UZPSjKYG9OP5UOPwBUW1Zp1T9nubs+374gyWbfuA/fyr+Op31Dz7sR1wN0JfD4Q/+3Ov+y2cIAngjzN6A2Q8++If+9jdZRoCBy1RKgQiA0E9ZTCQQJrcphymxpPUZImJWGVIKMVSRzZTcRr1w88rVjkg2cQQJGVA89h0RiUmNa0KJIeVU4ZgpGaqCBSQmJiqWuTEgBvDAYdAMMopoBlvN2uObNwRg7AfNaRj7sd+pJHf4bZtZiE3XbYZuP3adABwfHT99cE/SiGB91z9//nQxX4TI2/X68f1PgOGNt386Caz3v/iVv/d3bty8+d7n37v/4P7Dx49mdfvs6bN9tyemnPWrv/jLz55fvHL39q2bxzdvnj168lxVr67WX/7yl37u53+mClTXcbk4uFxf3Lh15+HDJ6/cvf25z78bA/2Nv/G3ssi7n333+bOn2+06hqpt24PV4cHqcL/fp34YVG7cvtPU1WxxMD9YLhfLYRyuLs679XZ1fHp24+Z6ve66LlZVHnsRq+tGTVIaVaWqY9XOhMLxzbvj/krTXkkRipDXzAIxmLFDvwDgvgcEYNdovKoCC0zGgFMclLm7P2SwugoHswYCNvNVqGrEAJEtm4PUCiXaCUyBiIC1VHpHBAqsXAabhXMJhdgxWRogoqmN/YhGVc3AZFMl8FR4BlIMwlnsBdU1esSVA1COvyT3kkd0NwcAZEJCJxmUP+lQCaGZBYXsXakZhuCpCIakRqak6t5yhmbZBEwJSNRyzlqSsQERNSs4ncKH0WBEPvR2lwliC2jKgODnXM3E03nC4TzHPTQTcJHuqpiBKiP6rLWwNGhSpxExhwpfbMBY7m0jL9dEQAguf/BNFD0WoYQciIIFIzMLAQnYVIva2kxNGCEgayEJlL0cqIwHFUnUAjrnIBAqoloGRsPATAiqQkhAWuTVBCEEGhIhhhicDMpEIQQIkTkAooiqZgU0MmIkZDDNokA/0gbw6foRlwGWKVBxW4GJRg2IGJhSViAgI/KTsOd0ezCEgagO4xi4iaFw/z3I2+kKE52kOJCogbeUCuASLYCSvSEiY0qGmgRSSpFr52dguYWA2Lxh06xOZk+iWaTrujaNIJrTAKYqo6RBkGOs09htLp91u3XqO1M9vX33yYN768vzWdPu91sAXK5WCtbtexBTgzu3Xzk+vXGx2b/97rs3b90MsXr9M6+/96UvPH/27MFH967W62bW7HadiI1ZRPFXvv6dJ0+O2lnDHJtmpqLf+c53F8v5jVfvMPLXv/4NQ7i8WA/jeHy4HMfu3Xfffnj/MZiury5n7ezi4vzu3Vc5xBCrt95+O1bx9p1XLjdrFUGDZjZv5yuksFhUuR/zbhCDdrk8OD5+8vRJFSuTPKZRTYhZg0rOY6pjFdvZfA1kECRLiACAKm6BAM5kYSIGUlAmkhcyKERCFXO9jquowPO+RT0oXATd+CUGVkauaqCAXCEYsaEJih8ZrIADhB7EUnIFS0PrWJNgsY5Qs6LMomkiCi5ZVUspIyXEIj6G0mgD+izW0MmZfuRkN45UY3Ibu9KHe4qxb34K5la2/occEyMyRHVI3RQAQzlrmPtlvsDtVQ0cECMmQBF5OQy5EB+89qpkM44sauSqunKDoQGAGCCKmZpmADY2BCtJZJCzhGDEUVI2E3QhRxYISEDT9E2InOKp0yzEHOCaTJkcwXeBZ4IX6Tr+G2VmRJ/LqrjlnykhSTY3AXC/Zx8e+MiIBB0XKqIB9fpPqqqGooCAgYiQWETdKMZlcjaNJsCZhYiMGIjqqurSEDggIDEDcvDqrzKOyd0gDMSPMIIYYqQfgdr46frRl9OTnXWMk6Kn+IORciADFL/IzHI2cOHudBg11Zzlml+MDh17IkBJkzABk2lchoiuNPJ7BBBNTWRIab/fd4bQBBpTbJva1QCRuY4hBA7MkTGGwMwc2MCyaN/t99vt4XFKY0pjn/OYUwakqqrRYLtbYxq060xys1pVs/lRVS0Pl2O371J/dHa2XK0ePHjQ1M3B4SE39ZhT36eTk7M8jLN2Nub8wfsf7roOATabzWw26y6eI8D5xfmQVY3GJJfr7ZhyU9dtU731zluf+czrTx4/gDwcHR5HpoePHtON41deufPq3TtNE03t3Xff2e+3aRweP3h0eLSq6siB9t3+xp1bp6c36rZdHh8/un9/2A/zw+MQIiLu9n1o2rtvvrUfxxCjATCFPCZACyG6js/AiDmPORBzqAQImNXQsnn9N0c20PzTc+4HEkFRXYD/3sxEFVGCIxVIwFFdcaR+Efhp0M05AJE9P4qImUKCUUFFBMFDK7A8L5S7v9SBwrU3542knMhrtms/PefFPGge1dxyGaJfdYBWHN+QlUSvIQTykAMgdVorlYpr/gaJ0CMMC1Zz3SyrmnpOLimBu6KYWRZTUSEFNUYxNRERUQ4R0eW+ZJqYDUDHLFb0cYjTkQQQcspGGJkQzbVs4Aar0wjeRAUwudcSABMzopmOY4oRCw9P1UxFgZSVLKdMRKoiBlnFhTMT8+clPcEE1ODEDSXCAHz9NaopAU0GzGULSSkLWcWhuMiCM8IKGciZmVAyG6AcDgENUFRNhRADMtrkOOvfIk9eEm6ZJIogUPJHodgQOhAZQ0QKWXLOWdWMSYECIYAycwiWXlyvn67fmuUiGIFy7i7fBiAGQlQz5ICWDQFcuKlaAi7MgAObAABkkWg8yW3Ab3fRAiD4AAeJVMSl8hPz2pymzZgl74e+A6I61FkUETiQjIBoMdCsrQeRqqraWV3VgRB8LuaGAV6dRNLYDyFWBhBjvd+sCSkLAFEzOzi+cWe+WG0uL7tdv726Wszm88Xy67/8te3V+q133pkfrD63XF6enz9++Pg46Wq57JnnAI8fPPjg/e+2bZtTTjnt9rsQQkp533XvfeFzTx4/OX/2bBjGz37und/523/+5s2z5Wr12t2bTx4+3G02h6v58dE77Xx2enpy59btZ88eb7eb+bxt6vD+d7/X92PTxN1mM1uumKvZYglIoxgbPH/yZLPd/dhP/UyWPOy7ru9u3b4dQjDC3WazXq8RUQOHEJtZHULFLq9nBsNxzLFqDk/P9peP+82FmfqtXniaUAJdr4VR5dsqCAs5n1KQyGNYGQOQmX/t2QqwZwBA7B4PxR5M1RCUicDKPNNc5mml+b+uSuAlxewawCf3ByiQELr7zzXpwF05odifTRUcAAEDo6n2OYtqhZUHsAdGInQfhSlNzrtez8UFcJvr0r+4uVwxVSQ0pWuDNZ+sCjGJCnizb2BqHAmQwYCIfTbrFtpKPmIhJizTYABUg+Bvyj2yyAyyFq69c2slZzQjxBgiAPjhIOcEhmAKRSwGokaeqDUOAFbFqG6wq4BACGQg5ZtVM/Lhi6Br+8tH7UCWFi4YOAXJnAVezjiEaoXsj4AKioCiyqiGAQurzH129ZpQJpIN0VCDWMkPcnYXGoASFAaS13nMrrpjFlVVsckexABU3CM6e+o9IIIL+QqwJz/aCODT9SMvKml2pT8nP24jcxkhophNrQQzuVk8+NGhFBAQKUNCKPcUTCJ1KNOh6wBpQADX06tfGQRKkJmKc1RwwBctMFnAqgpNU89nrRK1oZ3P26pmUVHDqmqaZlZVdV23ZjYOuFytOHBWp0DvWE2Yq3lbtYu6mfVdt91cPXvy+Pzp44PlcrPr2mb2pR/70iB5TAnMNKeri+cIECLX8zbG6uzm2WK5uLy8+Pa3vn15cfHaa69u13viGJt2vlg+f/rs6nL92Xff/od+9mc///nPPX5831Rv3bn7y1/9lcuLq9/3D/8uMTk5OUmjjGNeX+2auj44OkhpvFpvf/zHfwIp73ZbQHp+cfXmW+8CxipEGYd5Wz99/Gi7uWpmzfr8oooxDf3DB89kGAgxxDhbLmJVl7wrQ6LgtTEAuNB3eXBYzeYUI0hSFY8pETU1QyacWDlWbGXAFMTEG+asQOZ0eR+3qd90BHztYnxNpvSOFkxRM5owIiKbWz9O3a47vapHQk4aKbieFaMbfkxNKDhLxxQhhACA1/VbxK3CAVT8LGBeEE26cUySq1jFGFWpCqF4luL1ZlGaTR8IlI4EETEgCBSivs+kwQ3T0EBVUxrRmElNcqG+THHtRK57E3LFcs5ZsqIFisBFG29oSJxFAYgJmEM5f4DlkuRejBnALBAH4uJyCqiFeqo4jdDNEgIyAyKNoxv8uf6rTNdFhf1oAv6vSjenZgTu0OGSEXU7Vc9kMyVgcFqHoqKrgidUEA190ptVkXSC3LAizlgAXVcvmKGoBlFSgpJADAiI4tZL04aPAIR+PLFkZmjsIB+gqKhJFhlTqmLjZUkVxPMCVQEw/OgD1k/Xj7DQGJ2NRwHATAyRKFBRhoFFBMccvWsLoajzHUr2XyKiRwQjG0C2QsQRMDJTMgACF4OTu5SpIqGYBcJgBCEu6npsJXCsOKiaJGM3G6Awb9uDMTexapvZvK0Cu18pxrppl6u6boGoqudVjEAgOZNozinWdQKrsEFoqqb1AQaHeHrz5n677sbh+M6rxyenFgIqWu7Pnz69vLy4++odDvXl+XPm8Ku/9LVACGAff/zx82fnB4cHlrXvd2c3zs4v99/51e/MDhZnZzeWq+XBarnb7Y6PTneb7cnh4e1bN/e77TCMr7z66m6zkZS3QzpYLDnySXv68ccfv/Pu26+8fmezXqeUqljLIHWsiQMTYlUvDg8VPuy2Wzs+On/65Ojw4PKxfPDNb83bZraYx1lbNc3q8MaYk0mmQN5KEhCHQMyAIMLunoWaRSGrioEpCJUuy6le5bymBaHzCuycLj8xEIEHQjODqHmqoJhwCBEjAQBkMCOTbAJghIaMqoWSD4oIKqBl5url1YsKATGwUkaCIi4VIiqaAS1HATOEYq7p5gggoGaG6nYUHiqRTIak2UyyjE1VgUldVVj0J0ELQ9WJDlmV/L0iB3ANMWqJtVZCMwItkAyqo+EeVQFGflhy61sEUSwjWGQ0QhAFU0BRMWf1eK1HRTMLocA+YNczdg/bK6bZDnR7+VdQUJ+NCwKaolsnASEAxoges2BqgEyIGUbvqUXcs8jjkcmg2GAUvi9aYEKlAMG1YJ7Lh5OlFyChJzaBOXsvMBsVdYGf5BSUiGOsAXUcks8tfG5tUMi7AIigQsAuRizcWxFE91RAd+o2MwKcN01bV4igqtmJR8UJEKBI+0ByMb74L75E/v/2MqDyheML895AAfxmVPX5vCB6eIsfJ72CIyD7vcwkIiLZHc+vOxafugEAaDEWhEm76TocM/eEkHnTDMkkG5pZ1mHXW6ZhGCQrIx4sFwBY1/VsViOiqAFhqOpqtkAOiFhXcRx0zINkMVUDbNo2xpjTKKrEgTiAwdAPYHhwerZaLE5u3ckppTFtNpt+tw4xvPLKK6Pa/YcPXrl7J3VdFWC33TZts1ou3u96JNrtdtng2fMH739w787pjaZpEGx9dblZb955553FYk7w9PLi4uzsZLfdrC8v+7Ozp0+fBsIY4mw2m8/nbduuVgfzeSOSQ6iqukHip8+frq+u3rpzZ9d3sW6Wh0df+okvV80iVNXyYDmKzIhv3bldxaiqKcn64qppV6ujw83VJYInaEKM0Y06iPjg8PhBrAxJFJJYErVyAjMDExFEkjIjNM0qWScABl3XqmYMMh3bHI/xHyMgIDEAgplaNlU1cdwE0T1bvcl/wdEEcFRCi01PyXjw7BRCAfOg9ilhMVBwVyHxQui5vAYGmLMaKKl7zQAYVEwDoqrlccQYhCkwTZRUcwUrqoGnjCpgcWZGMyebmY+eJ5eEwlpFcBwJtZDZEIHU/MgEBIqAZIaq6Be8h+0Um4fC55m41IyEaiBmXNyE8Dpzx++Va0fTIqVGUBFGBqacs4qKM7DBbTcMwYhIkfQlBy1VUFUQiVTU0EXrZ57AB6oWAlUhKJhS8fG9Vin7S7i2AwUTZkRzLylAIi3xMkwUzApOQITMRBl9VoF/8Y/94wAQQpw0yRRiIKSURhHxKKgx23Y/bHbderfP43B6sDg9WsUYkSvn1xpgXVUxRERDU0aNqETo+uX/6r/88X9h9fHT9en6dH26/r92/bV/5j1RS+OQVSQVX8+AZCbEFCKbOVPJiLiqm7qKKJLTAK6vUx0lZQUVc/ciIoyEgdksYzHlgiyi6IQ94kAhREAyBTHY9/tuGPshSRYAIXcL84RYopKZCd77TVllMIUZIVrgUMUQAiFiljLEYEIwVckmnuhpAiaqYvpp9f90fbo+XZ8uX7/vX/qmj09UpMznzAzEnXeKQRGgp/o4kUnNiAJx9CHri4wtm8JlSsUtMmmY/qEBiOmYckq5HK9MzSCGwH6wQwqAfqRwqgAVXR0YEoKiaXElDIGtH2HiIKsKIIn6I90LGlyhagXpMylhZ5+uT9en69P16ZqW03VEXJErmp20PdFtHf9nM8hZEFNA9FAAAGNkRSU09wx3QhgyXqO4zBxjFLVRZEwJEJlYVC0LEpipA1JMJIBgFq5JxUiuQSAnTzn5NIkyBzKLzIHdRhyGLGMSUsjIiByRIlEkd9ZWBDNUK4amL971f/RP3R3ExiSaFYk4cNu2AOi6FSlUQpy3VSBUhe1+7McMgITk3mXNbLZYHoaqSUmOb70+PzhF9CxkS+OY0ziRVAUAckqqRoxgkEWIgItEXhgNTQhcBUM2sWpElYlEdRiGnMVUwCU1KgYWmAMFLYyaUMW6ritmFEn7/a5PgshN07hHJhMxBfdV9Dm+s69y9qGJuhwxxjibz9yXHxC6bm+aAxeiBZjlnBERiMVoTHKx2e/6wUomNLZVWDR1HUMViYscnp2qRshmltLoaeNmakgcqhBql62r9t1uQ6Z1FRDBX5WqMiIxR6bI0RNU+zHBZKBoWUAFGSXr+Xp3tet3+0FUQHJkGoY9KC7ny9OTo8Vq5vCtKXFsq8Xy7S/+xFuf/SJiAPMORZIkMFXNfbfbXF2l3Wa/udx3u8XJ2Z3X3lZDMODA47Dvu/2YOum797/5jYunT9o6iqTTu6995p0vPnn06Hvf/HrK477vXn39jZt37uz33Vd/4Su7rv/gw4+//Z3vxWam3QhmP/t7f+e8ovfee+/s9HS/33/j67/6Ez/xE4dHh2kcuu3VsyePx368/cotJnr28Ol//Df+41dff+XLP/UTsaqJYwzVYj4Ttb4f6qbKYnXTjn0XCO5/8tG9Dz48u3nntc9+4c4rr42i8+UBcaw4SBo2mytRreqqaZrN+goQYxWrWBPGfuhDjLPZsq7r9cXjX/l//SdXTx7kNA55AMhV4MgUA9eRGU1ExTSl7LCzw8dmZhSYrx0FnH4zkGo/jKMIhhqBQqyapqnrKoboQAKBqeow9t7uZY8FJKceoZrbzCK6ESYoGKgqAnlVUlNiBtNhGIgghoiIgSMg5pxFFJkDB0SQnEVGQreVECIkpBCjGibVLEoUibkKxb3TXx4WMNzFxqCi4HE6lovFBQCTE3XYAEVtGLNIMa6oYwxMgBoDm4ib1CQtpj9ZVCSrSVW1bTMLMUqWccxJxjSO0bCqggJQcD68hsLdIQDqc9qPI5jWBEWQDMAUiELOWVWyaD/mUU0UDSCQxYCRkRH/kb983yuhaDY1pGA2Aph7yRkoqAAVTyQFMc/VSwYxIELwvGdCyMAAGFCTZVEiTErBfVAD+jkgMie31VZDAwHImgCJDVEVzQJjZlKzMGmCoMyNnGVoqKqimLWELzBRDNFJXsOQxoqrhgAMCdk9JtA9gMAJ6K4KfdkHTt3qmpACOZd4GqYTUQmfA3P2GGVVmwz/gHB1fHx2681ZcwiAo8jFZv3B026ROyYa+t4lrcxcLsSqCogZx34cQwiENPQ9E8cQOASnTwQmNeUQ6hiv2WfOrBSVZXHRQ99XJKVhGAGNiaq6xsmFv53NfJpaifpQ3TeAlFLhIENR3xmYqVLg64BOJhYVFY0xEFEIgZjcBdCnOmMac8r+qjhwM5sVelVKfpUzByY0lTLvV3HGmbMFvI9Iacw5+YfPzI4JOtc61uyZLWqmKiqWs4jkEEIIAQlNzQPtREVN66ZlovNnT3ebdUpp7PbHh/Wrq4OqasYhPbp/f3112fcdB5zNZnE+51kbqyYp1M0sUjw8Wp3ceAMxpnGwyb0SFYa+67v9frfpN1fjbr25ePb42dPXZ3NmzP0IYOuLq/XFuWmumrjf7nJKR8fHpzdOx5wWh6fErJKPT48OT0+yaDubV3V9/vy8rqphHAPjwWpOoZ4tV/fuP2agWVNfnj85PFyc3Dj6bSc/v5rN0zhSYGhbDnE/bF99482L82fnV998441X15fr50+fn5ydnZweNnXz+PHDp0+fvfbaG3U7X7Vz4tjvdqbp+OxmzoJIT+5/fPnsebM8ePdzXyCuc86IcG3eQkRuG5fGUcUIRwMLXJkkldjOD++++6WzV982UwMpwXxO+zQ1ExEtBpqIHIKZYwjF4lFFJKecRkKVcez2+yhWtbNmtjCDpmljXVUxEBEj5ZzH1JtqlhRjZM8pA1BRYkbgrk+iEmLw2S8AiGQzZeJigKAl9FskFzq6ujaYzcBAix8dlEl2YEYPxjIgImSXK4KIqILLlVzvMImNAab8xZTGieSIqlIICQCIEAiJgwG6maBHsoPbUwIgGju2ToXy6DHuaiZZkaBt5iFGx2AMNEtOWVn6q2f3dUzuXU0ECUQRGM3h8sAsWaCMkL0xJ2+9pZD8kZmQCYAje3YWwMtyKANCiiEqKKrSxJRxOvZUjopMTMUGHYWgrgICgF5LNMy31aQAMaJhKIZ0zgxERkJLKv6H1fMcHM9Rc8IrkGHwj9brhYExIjKpQDbNojlLcE8jRDNjRjVMKmPOUWKI7L4/UAxRPc3HCNFphL/WCc4momkh15oZoFvOIbu+2zRllyGg0xSAsGpnd9/4/MHRK9vN9v79j9bb7b3Hzx+vd9V8RYBpSDEGAyDGxXzht9lyvuj77vLyKkl2pSCCqepsPvMMoH4YRbRpmqaul8sFInVdl/Kw3+1FhRDrulGz8+fPJWcCSmkAxNli0TZNjJGIUhrbdhZjFDEAjIHaWcMURHLOmYmI4363dbeNrGmxWHiPzUzuNQVgVVWnlMCUOTATsycKmeQ8DMN6vWYOxKyam7bZ7bs0phhiVVX+jTFzYDYD0UwIYjIMw3w+58Bg0FRtzpLSUNe1ivZp6PpBs6Shl5y4ilWszGBIOWVBkzSOIXDTtnXdqsHQ92DWj6NKBrC2aWPgxw8fPHn6RHJeLmZHh4d37t4mrn7xl792eX4OZtvttm7i0cFhjE1d13WzgBDn8/ntm2c/effWwcmRZM1ZkEA1u8fnNbXdJZ4CMFse3Lpzl4nHodtcnQ+7bb/bDv1gAFUdT85uxCq0s3kNNF+tUhrXlxcq+erqsq6aEen546fdbvfWW29VTf3W22/9wi985XsffHh0sPzud773lb/9937v7/rpBx89q0OMISyWi+fPngakbr9PKcWqPrt1Z3V0tun6L3z5J0j0r/8Hfx2Njg+PtuvNt+5/8+ry4s0336zbphtTs4gHB8cgqDndemUxWx08f/wY1XbdbrZahcAp9TFGFRGREHkY036/Y+b5fG5m45gQIOc8joNkJQwcqjg72uSw3W3NIqZgJm6/mbNk0RCormJTN36bdV0voiEEIKjqKCk9f/70yaNLkeHZ02f7/cCxuXlntui1bdplXM15NiDXVQ0ASnk3bnfdHrENFqqqms1aBBjTSETDmPfQZ0nLZlbVNRrEqmLElIYuJW5KhFTqO3V6UhYOHAMOfWLi2WzGgXMaVc2jg4k5xDCbtYQ4jmPK2XstIk45S9YYAiH6JpHSAABMrKbe2GTJrl5TETebdNdrF4u5vCBW0TNKiy8QAgImza6hm24T3W53KUvTNqAWY6zqxk1QCJEjZBEVSt35Zt+BXBmC6WAiSEjIYu4WYcVcSDICEwczJfZYG0AiDoFRVYCQA4cqMhPgi1hsAAAiNtMAqFCR7yQuTNMpFRLY3EbF2amSAyGosUfeO2XIpvhixJwThZgyKCoHV4RIQAxEY/YESlSzLCaOybvZuCkABf8IiqJoMpJ2wqkoqKGIhpK5o0yYCbJoFi2blGXNiA17yXdaGlpxJdaXMCDnRF2f7KaNp2iaYcIuVN3K3OcHKAZV3RLG8/Pnn9z75OmT5/cfPXv05PHR2W3d90msblsGSjlJhnVaA0CM+3W4GodxTKOYEVEdq5xzzikNmZjHYUxZQgy79baO9fp8PY5jziml1O12Y/breK4gz5496fc9I9R1rGcLEdhv9lVd+T6xmC+IOIaKiIaxPzg8ODo83O87VZnP5qZpGMYQYqwjIUdu2jpcXV2mLOOYRHJVVWisqiKaYFCzKsYYNQ1pTOMwjF03EGUOwUyvLjc5yTAOVV0PQz8MAwC40YJ5ukhgBRC11WrpZM0QOKUkkpmZA0myYRjVbBwGycksxxD6fhwlA7pzL1ZVdD8DIjRRFU05O+qV+l5z6vrtkMbTk9PTw6PFYr65vHr89OnH738njSMxi6hqhWqr5UFOIwAvV02/61KS2XzWd3sTk5xTGgH9QC6SsyHWs0VT1+1itTy5WbXtyc073X4c+27c7zSPZ7dv9cO4vbiiQPVspgoUYmSSPD5/+uzB/U9ef/VOSnK1vaibNlb1nTt3+7G/vDzPY//uO28u2ubq4ur0ZKXj3iTN6+Z73/nO6elJxWw5KwVV3Wy2p2dnr73x5na7WyxWy/n8/ocfjSl95e/9wocffrheb6oq/OSXf2I+m1+cX53deXV1cCian58/AYXV8dGd199smvn26nKFdHR6cxj7EGtH8NI4xmo2n892u515L+wmfISqtt3s6mbWthgCLRbz73zvo4/uPXI8crfdNU2rIvuuJ6K6rk5PjudtWzWVqux33W7fiUhbV5GJENbriwf3P/nu97774NFD4ubu3deHLDFUddOGGGMMbdvUTbvbbolIciJiBWe4u9U8VjGqWT+MCLDb7+smxlghYAiRmYehu1pv6qqOMeacr9aXKsbExGE+b6s6DsPIHOazec7JI+CzSEqpqRqO3DRNzjnEqCppTACARCIqeayqarlcxRhCCGaWc/KoWhHd7fciLwwUQhVVZNa0SNB1gx+DI/FsMTPx5BYjRELq+m6738ZQGcBmt0OEk+Pj9WZd6KQxzNqmipWoikjOGcDW27VmO5jXh7ObkQ7Akua95L2kvZp6EKfmZCpohmhZMhsaoWUBCOCiLzDGkFXMjJADRWZwMPNFJSRkZEAKdaM5qQqhZcgAIlk5BOf6I5LfJFkNwZKqgyiBwSn45nbuSIRsAOr5yQqBDNHTBbj8xkwVsgghiwg4QcgIkIKKIpXsTT99+AnP/GxWKvWEMqjbjLjEDolAQRADkp8yXHLBoIIvveGy7+ELnbcTin0v8j1CJxquTsE1Dg0hESDdv//gYr1/fn51frH5zvvfHUXmy8OYRZB3kv2IXdXRkESEqb9O8DHAEEOvKpIlZw5Msc7Sq4oJimkIPGbY7bdENKZ+32/7vq+ruq6DqKQx5ZyMsOWmqiomijFqFlUNIeacmyaEKqgIcwCFoR/3uz0zd9iJSAgBAERtGIfh+eB9CpScO0LAnPMwDC7iAoDQBhEZcxJVkZxyPjiY1XXT913bHILBdrt1Wm8Moa7qPqUsUlW15swUEFQ1+TRFRMYxpZwQMe/7dtYcrQ7qWG12u/l8pgCSRjObcaxEUk6gcRiGlEQVmMh3AoEcYlTTlHMdwjh0u34TYmjbdrNZf3L/3nqz6bpuu1kzUoyRiOfNvG1nIUQAUMmS8/Hp6TB2V5eXb7/+hmXdi6Q8mmUXMTXNjEMwhJwSpwWBVVXVdf12s7l89nx98Xx5sDw6u9mLgUIWmS0O+nHMYxr77Xaz7vd9DLFpZxWFOuvZzRv1fDH0/eaTj+59cu/O3du3b91oYvUhfPjzP/9TT5482W+3t2/dvtxu1heXp8cnGmPVtBQicpi17ZNHDx88evTue+/FEHLOn/v8Z9Mwbne7y4vLxexgfXV1/96jd77wY0eHJ+v1OhCcHB99+MHHs8PDpl0APo/1rGnby4uLNI71rB1GOzo8UNOhH5oZrVarcRzNrO97F0UvV9W+2+ds45iqumoqPj5Y9N3JkHLOAxsBojkiBxiYGSAijvudiDJCzZgMIuJuva7ruJzNQKTb7k6PTl977c133n53MW+7IfkE0dBCCGnINUUAaJsqhiAGBto2LZhWVf3s+WU/9IeHh6oKRjkNu243m81FRVBN4GCxYg5MYYC+jrWyVlWNyCq2We+Gvkek/XavolUV1azbd8M41LF2nZjvB4gQY0UA/TCkcWyapqqrzXpXV5WY1rEexxQC5yyxiqay2+8lSwhM7GOttK8bURnG0UendRWbphZx5Jnqqkop7Xa73X7LFFIq54bnTy8AYDabI1FVxfXlZhwHB7KIOA/56fMnZvbqzTtpBpA6kKzj/vhwycEs7YjQtMQQW9HkuXiYDMBUESGEgGCalJg9ttPAEDlQfHkaaoAUQ+m6r41eUcwMmd132Y0oAmpWAURRy1kVgRxFL4CRuSVRqKoCkRm4MJlhUjcQFJBXLGd104vilwcECsHdixDLwcR8B/WgCFDJIi4tdgMXM8bgCmP34gBAQFURAQrEbuvnRd6+PwyyWFOhKZpLLshH29euBmBoKlLM7DQGzErDoFe7iyfPtlebzdPn5xeXF/WsFVNQA8hgLGQi2QYgJhEBRlVxq1pEUiKfrhNHQAKVEBgRqrrOKY1DXzdNrGswy/uUU2qqeLCcRYKL7QbIxjyGSGo6jClEQUTmEGNlAByiqKY0EjExjmnMm2xmaNj13TimGCMxDXlM49j3vaqdnp5WdZXSiIhd3zFz3w/EFEJwK9dhHIdxqKp6TCmNQxrHYRhFMyGK6Dgm36qZAxLFENy7W1RDJBCJFYfIzt8VkVnbIuIegJCHMSEjMylYXVVQVYAAaqLqhalOCQFMpW7qLBKQOAa3PqdEdRV4D4d2yEgXlxcX58+v1msfvYgqRcbAIVTE1LR1iKGu2qpq2rZ57ZXb777z+ntfeAdAxzQOQ5dSJ5rrqq6bGXNUyZP203a77UW3G9PQ7/bbzbnkBEDrze7g6GQ8Ot7v9+1igX33ZHOZ1ldmNp/Pbt65066O67YNVVPVVdftu91uu97ud7uD5Wo5Xx2udm+++WbfjycnxxxYVN/77Ht3XnlFiSDEkxu3mmYmOqa+e/Dhx/PZ/Oj4NNZVqOuqblQymQ19l00Wq4PFyemNO7evrs4Xq1XTzLZZbr5y9+btm/1+v768CoFjVWm6eHr/AghP79wdx4oD7rYbn3nsd7u2nbVNSxQAkWOc8Wq33WfJbsJ359bNLPro6blaAIScEzEjURpHAH1+8ZwCpGEcxzSMQxqTqKwBnj178uzyfLVcPH3w6Oz01o9/+cunJ6dEuN3utptNVdVVVYUQwBQhz2bVMAxZZJQxZzWApm0Nadvtd/1uHAbcgKj2XacKHgmlJcAyiMpisYToesBAZCKaUp/GlEWIyPmHAKCg4zCmNEpOOqa2ncUqZslZ8ziMIYxMNI7jMAxAECre7/cp5RA4hOBaqyxJeiGEvu/BjLlxNJmZx5wMDBByFgDIwlnMDNKYiKiuG+QASIjsHj6Ss2ckuilbHQMTjQoxVJvNtuv7xXxmqk3dcIi7bv3tb35rUVXBlC3vjo+Pjqu2sghITKQ5EGWPnEc0UBMAUjUhY7AABiYD+PTaUol5fClkzaFbBI6xUrUkPuczBEBTQBa0wFENGW0aCTta4nI1TcnYzSdMjIwJEYrfg4kAMQIr5qS+cav6AUSNjLhEXGJWNRTmENxnqGxQBlkE0MAtIgFzFgBFDFbGjxaIIoc6huJNUhKpzMXACMjMbk2t8Gs2AEf9AoPl7DbfZdahTiaF0qoQiCi5s56amvX9eLntrtbd1Wa72Vztu12oK0QSlRijv/66aRAgqxCT+2mklHLOzCHEKsYIAKrqIxRm9huyaVsEY2bK2nd7RkTTzXrz7PGjnFMza2/deXXoB2Jom9l8uQoxxhhjCE3TjCmZWVXVRT5HwSbrEicChWAxRCRUUUQKIfZ9v91uQx886yOEQAR1Xe92u3EYQwigNo7jmMe+H0wtjcN2sxGxceyruhIFM+8IQ9d1OecQgk4CjpxTIBITUxtT6odBVQ9i5cLQYRy7rmPmYRh8MA4APq+uqgoAUkqIqKohhNVqdbVeA6C7YY3juL68WC7ndV13XXj+9Olmt/YheVVFP+isVsu6bufzxWw+Wy6WKSsYrlaHVVvVbXXr9t2HD57Nmma1WHDgGGPDTYyNnxIAUCT1/X4ch9T3pkYcFquDZtaywZjl/PzczOq2xRBVQZKsZvOdCCBUTb04Pp7PFsCUUtpc7nQY73/wwfPz56vl8tvf+Oabb74V6vp0voxVo5JzSj6Mq2dzivH0+Liq4uXF+XZ7xYSL1fLm3Ve5ilmtatobd+5eXZw/+uSTO6+9kTR/5t3PqunVxflsvui7bU6yWC5CiB9+8xu73W6xXB2eHBMTx5Akt3W7XV+lnI4OjhINxLjdbau6UhMEynk0A1ElYiaoq4iEfjNeXFw8fPiIOFRVFRABHK4FMyAOFxcbQkwi+32/XCyGMaFKrJr9vkfj9z73xbZtq6bdDUMVKyUKlXcqwY29gLDrB1Fo2zalHCL5tRFj5BhPTo6dyjIMo8QYY62qDt10XccxtnEWY4xV5c1N6+3Ffp+qnHMKIbjhoGNfpiaSsygR7/d7Y0SiwMGiFq65WQihqqqUEjPGaHVdMzFXxByYeRxHEYkx1nU9m8222y2IosfbOkcFwQxSSi6rdgikH/phGESlqmtAZKK+73POMcaUkuf2IGLb1uOYck6iklJiImKu6/ry+cNvfuvbN4+P5lWcNzXCRTeG1++ujC0EMsCUDMBvOgSAJCYphUjMwQfk5Bu2h9qPUFeVW/deV8KqqlUBkSgACYuM7mUxOa8CTi0xc2ARMSMTm84cYAa+AwAws8/VYvHjQ1NLWc1y2fxK+g1MRoIF4LkewQbiaKBY7OuyQunEC8EAcRgSgrkjJCgAQxW5bWJgTipQrOnK0cgLtxqAKsCvOQOUwbC5fyBPY5wiO5icSt1tWBTAPbMkW5f3F5fry6uu6/th7JOkGEMMYRjl2sPewwlYBRAJmAhTCl7rm3beti0z933vfJucs4rEqqpihYixisMw9PvdxfNn9z75aBgGAIuR54v5jbMzR1SOjk4XyxUgxhj9ayDm/X7PzMycc/Z5FzOrim8Dbds6Za0wQJqmbWcxBq+YVVXVdV1VlZnVdV03jVt9D+Ow2+9zzt1+N6bBNJtAn8aUkovL66bOOe27PQ2IgFVdV1WVJYsII4pK0zSqOvS9mj0/f+4wlL/s3W7nJT7nPI6jqPpOlnL2WVlVxTSOz54+q5umrioAyClfXV6cnz+9f+/jGP0jpaqK4zgC2GzWjmM6ODi8e/du3/ez2WKxWByfnNV18+DBI46xaRdq8Rd+4VcOjhZf+sLnEN2yUauqYY6qOeVxTMlUiKCpqwjQD/uqmgUKYxp1HNtVXG82D+990s4Wh8cnQ8pIOF8siGAcBsmCjJv1FQUCIFMbc14dH99947WP3n//wb1773/wvXc///k7r39GBLrtWk37vkezfhgbJEnpO995//HD+03bHhweHB4ePj8/j00LSH3fi1rTzt9573ND3+2Gjpu2v7hI/bAH2G3W9z76JNTx6OAA1FaHh3x4YGq7bgsA5aOTfDKbbS4vkCjnRGbDfi8idd007RzRNCeK6JUrpUREiNS2C7e2rqrKv7VxTOxpqwiB2VSTKHMkjotFw4hIfKcfm6a5c/fVIScxQCOOdcMRgMcxjUk4QF3XaRyHIRFiXbWIabvfxeiJnlhVUUO5OLfbLQAScUopizBxXddEpKr7/b41yzmZQXEmADDTcRzLJUTOqhyd5ZzHkYlzSuM4Ok8m5RRjIGIzMVeLmqmh7CXn7EPylBIH9tvTHfM97srBYTWTLDn7adgIWVV3u52IVFXV7bucc8551rZItOs6Z+Z4o5ZzNjNRqWLlGbcIMIx9UzddtxeRcRiHYXx6vsbDladdVvVREnSImojMkRXC4rCL6IMEJkVTJKLANoKKGug46FjXgaIf3K8rITqBCswNdlSdg6dqVlXs9CKf0cYQc3Y/OM9iKy4T5B6xU00XMSZEKq52RFwiWsERFnNLJ3OxGJMamACoBQUmAFGPkyEFQwVVcwqQj5pTzlbc3zQitU1dV8xMSUVUSH2XStEQI7tznP+llyLeIItkQzUKjOghp4iAaNlAzQ1r0I1sPaPEQRzAvh+3213XpTGnYUwiYmqAMKQxmS4PVuTvO2uMIWVBRiZWz5CbcHZT7UsgH/sFgUTOxdx32zymex9/+J1vf6OuQozBTJbLxd27d+bz+dmNs6ZpZ7Ol72UhhL7vU0pqOpvNmqaBYpUD5iJuMwCNMVZVlbO714wA0DZtXdfTDWOSs8bor6edtVWsttutJnH/v6Hr0zg6nX++mg3P9l03VE2LQAGIEGvi2Xw2jGMMYd42PULTLAOH7X53cHBwebmOMRKzqjovKMYwugec6jAMPhbWMadxEMl9P4hkzTnGWFex77sqngxd2u12fdc9fnh/s7kcx/Hk5LSqqpTHfbdLY2rapm6qtp2dnJymlFLOq9Xq8PAIELt+nC2W+30X6vby8ur1V2599p235m3Td11d1aap7/a+HyNaICamvu+Goeu225TzzTtHzBGIBrVmthCD3dX2ycOHaRjqtq3rKKq7qyuRxEzDdsyii4Ojtl1wW89XhzfiKwBWx/r2zdsffvzR4fHpfHGw2+3ruhFJTdtUHHa7XUpDv93c//iDJw8evvXuO5G5ama574Z+33fjfD6v2lbrugK89/FH89Vyv9k+f35e1e3h0RFoHrutStUHXK1Ws8WMiPf73TiOYFZX1Sh5Pm+H/e7i2fP5ciFgIdRpGBCxrn3SBqGuQ6jIh3hmKaXdbrvZ7gCpruucs/crHAhGB2fJmwlVzTnv93vHGPuUDw+PD4+ORlGkiABJdL3bS5a+7wpMJ5KHfrvbD+PIxHR1RUC73R7RU2Es55zzwBzu3r3rDDSvtl76vaD70Tal5Fzk/X4XQhjHMY1pcrm33W4HiFkk54xg3dDHNsQQ/PYZhmG72yJB6kdmrqt6u922bWuQzVhV1+vLnDOxO8pBU7dmtt/tLi4uEDGGWF4GQj8M3tNWdS07HYeBiQaDnBMhSc45JzXLOXlDiYAi2TcJVdlt1qK63e0AQFSGYRDJ44iEkCUPw5hVSWHI0o0pZTEMBg4DMUBym2r3U6pCEHCsGAko56xmWQUJI5OIEPiU9BoLQVERMbE8bW1e1VDLXsKEAOQjXw5ME7UbkMjcfo0JJw2TGZgpuZQCDI1ceBSIjElEkGiiDAEoEJFTdYlCAJ8Tm6gqB1I1ye4YBWWuwmyWs5poKXBVDE1dmWQ/2phaylJFNdNxFKiimWW3RX0pItE/RK/VrjkQE9Gc/QIEYUMzkJQ0J7edVTWAMI5jN6QskpJIlhgiE+Uks3aWTQgpILk1UtvOumHYd8O6v6ybiombdsbM2+3OGcROk3e0cb/bNk0LYE+fPlrOl+fPn81ns1tnZ2KqJqenJ4Z47/79ZjZjlX3fX/PrASDlrGohQN/3rmkCAPIY3KqqqsrAuq7POfV97wCLiu52O0R0PMqB+67rmqapqmoHu4cPHz55/Hg+n9VVDYBVVaXctU2sAlxcPMvZjs9uGLLmrACztj1cHShYPwymcHR4HEKYzdrV4app2tlsvl4vxnH0ViinbGpN04jIOI5YPLzMr7uUUlNXYGG33fb7neaQU3ry6IGIbDfb3W63WV/t95u6aWLkGINIUpWmrQ8OVk3T3rl9hyn2w3B6eua6RAJMOYcQjg+PFoeLL37x7c++/cZ83uoohGSmXdcNY+/3PyJlHfu+7/ue0Jh5vlzN5vNhSPvter/v2sVsNl/cvH1nsZr1Xbe9uuTlcru+vLp8JirzWROYCXh1dByqxk+Nh8dH+91mTLLebA+OT45OTolIRfq+Z7RhGEbmxWKWcxz7ngjnyxmAzVfLdjnHQN1u8/z55Wz+RlW1InLvo49SllndXl5ecoir46N2Md+uL3JOqsJHKwEd0zgjrNqmmjXdZptV09CNw0AV1E3lM/+6bU9Oz8ZxHFNSQOZAxGNKKsbMdazU7PLyiojGlJIzMofBNRkpjyLGzJ4Bl3JyNMMpv4goZm3bZJFhHMYxAVjTtMXBN42O8mFGM8hZ9/0eAdu69Z4dDLxDz5KI5PLycr3eXF1dMQdvI+qqEtU0jn5tO9vd842JKOcMBFN0lZ/kzeGm/W5/eXWFiidHJxkkq3BwOlDKiFVVAYHDmIysql3XDUPnNdo3G8kKgI5nElLmBH7OaJpZ04zjOIxDv89+HHGFDQAsl8smNGMa/cbMOaecZczuppdzQgCRHGLMOYkqEQ1Dr6KEGVKiwiUhJgKwfdeNkhErIgJBpkjskUoUQzADAYCSNl9Qby9wkYOnUisKvbQDePufkhhqSqPmDKoy2bP77s6MbVUhYc6iKhMPR6cP2AzARRqqSuSaMfXPgTyczygEMgRmMlWUYtDgcl23jKwiBwUwhax+OB9dYZBzVgQRBbVAmBVN3Z+IuNjgkiEDkIkpgEJGCshCAJaz01pN9eV9L7kY1kQRDBICGtGQkhqUJAhPtzADtOK6CigC/Zj33dCPyfsR3jOHikOctTM1ZWIDjTEiURqHtqmOj46/9d1fvffJg8+88SaqAutyPlczRHAKPyIOw3BxcZHSKJpv3bitIrGuz26cLWctIT15/vTicqPr7Wy+OEA04BSN3JdcFYstn6kyAPiNmlJqmsY3s3Y2U5Grq0vHN50PB4gppfXmcj6fN1UbQkg5ocHY9e28mc8Xs7YGsPX6cj6bLRcH+37f7zfSX11dXXrOS1PViO6BSwbWp4SEQJRVxJRUd/v9mMbtdjebzZumEcn7/aBiOadZPa/rpnDsCJsqEpGJcuCBeTabmRgMeURIWQh4HAY1XS6X6/XVertJaTg5O2vqRkyZebk8ODo8BsD5bC4CTR2PD49n7Tyn1A1j09ZN3fTDcHhw8Pqbr37m9Tt1HcdhyKOK5L7vATGGYGYu0HMedFtVCpbSWNUNGG7XF0+fPDo8Ou673sBCxGY22242aRwRLGsOVXX3xp3NZv3k8cN6vqhnLVLs+yGGauyG548f5jyK5PlqFWO93+2vLs7RtJ41qvr84UM9PWpm7dB3jDZrq/lsNo4+f0nDdtdtri7Pn9V1/eTBve9++xvvfeGLGKOaHZ2eHJ8e55RylrNbN8+fPR3TeLa63bTznHOUbEgh1nkYUDSP/2+q/uvJsuzM8sQ+scU5V7j2EBmREhoooERXVxl72DbGmSHf+ECjkX8rH0hjD8kxsm2q26qrugoNoACkiMhQrq46Yu9P8GFfT2TFQ1oikZHh7vecLda31m+VtFpzTEwx5hxiBOKTswsRnecJ2xTMj/NBioEALi/PpyLLXb/Z1mEYEDHn3HWdqrdScE4JgWKIhQsi9X1f5knqnFJoHDCpxVTNrNJxwIZEZh5jCMxtNWTs+647skQBM5NMOh0OAiBy7P5IMQFiYD4OdlWbuj1NU9/35l5KWS1WMcZxHgnBzQ+HfUqJiGWep3m83266lE1lnGdismmcytze9BzT6frEwOtc1svVcDioCzGbOwDlnNo5qT6OsnIMZqiqBmiu8zzPMvfLFSCqVJlHBHLH6taGewNj1/etX7fWMs8TmIuXFofEGLgtXsc8poE6E7eF0oCQcDoMUg1dVcxAp2oAhM6tipIxOLRWt9BOskDAxBgiIJkjB0OFFvFttWnfV8NNClg1LVXVROAoa/nRIIrkYBwSYjgKC8cBwHc85ubNdEJkx/oIR237j6oaQgjMMbhagIDoqtIgDmbWshFNhCfAMJeCeDz1M7a+HFJQ89a0c+wUaPcFDvFIjyNs8S8HUHCrKjYaeBeiKKiLugeO369bb0BhdzhGCd0dQMzNkbkZQNs/Q3d0szpXQJyqTeMk04AOSNz2nZhTzllUq1T3SgzInIirGtR6dZE//fizw26/fbhlphDzyekFEoeUiLFFRcZx7Lp+GA8q9eRq9fbbN5fnFzHFZvQKsVPVxNSlLseUYnPHw1xqe4WskVTRmLmW4nb00X5f6WsiWDvvs2pjHRPgoluo2n6/XywWTNSl/PLZR8vV8nS1Pl2uh3FEgC53X32zf/31VyerjAGeP32a8uL87HS7HYdxphARyR2lyjAeOAR3D0gKJq5guNsNSFjLPE1jjDGENI7jOE1HBZLJEULKHaC7l6pzqTrP4zy8efPtYrnMKQPC2elZm0/UWnKOz55er9cnD5uH1OXL5eUwjOM47vdDTGm5Wl1dStodHKAUGYr0i0UVgf3h+jASsKkPhwENzNEdY4gQIuMxLQpuUMjV0OrDw6HrljGXw+Fwfnl5cXG93e3uPnwI6P1qScSpyxCoXy6fffLZ1eX1q6/+OIzDJHUa55yojgNE/ePr1wDy5MlTMI1dp+5V6unpibQq9i6fXpwNu92833/11Zei6kDDOKZhLMMBwed5YHKp47B7+PbV11eXp2i1TnJ1dR44vP/2jUh1tbOL8+Vy+e3r1/DNN08+go8/vei7/n67DRQW/eL+w/vdfn+6PludnQMHQAKHMhd37Lo+cKxSYoSUcsPpqmpO+ezs7JtXb1SliXV937fnJ6fUXt3AoQmehUPf9zllME3xRNXBIXDoU+aO/bHSy7veAeZSmu24gWK6nBeLxTRN7qZqIoKAiBQDp5SYuU2nRIqKgpupMWE1e3h4OBwOT548VZOmBKrXeRx2242Ylrl0uXODaRyG8aDupy9edufnyMmtggu5aDMZh7joenWbh7GWqmZ1nrt+4Y/dVURkjz8TcCvjKKqi6uCEgOCKREj9chVTGg4HdMNmimcmwHkY0aHvl4RQpqnVoRKztFhVFQ6RYqxSwb3n5KaIKK6tpcAJh3m+3Tys111OLPN8GKeqi8AQjxx+b8M/AAx8LFVlikihqhOFEHIRbej2duL07/lA290RWoUxPDpgsCGxEQzap9De1mb6qOWx3w2abRURkQCZPAYMFAJxs5OSo6OVUlrFwneeFERnRsTQ8HMpkCOHwEFVj30v7s3OaNBaS6H1BGCrh/fH4iY6lkMiAhEqgIqJCjphIUZkigAcQyAK8r19Dx/9TADQCnEc0Nzb1QTJAI7ND+0C5QCmDkClyKrriupYBUxaY84wDszRwNt4DBodAVFq3e42UrTvlg8PH549vfr045eiPs513B8mnqZx/m4iX0sp8/T2zdsQwvX11ThNXe7BvTSXgQoCgGMKIaRQSmmEU6m1qVjMbCrzNLV0fnu7mkSLiH3XAUBLzbg7M5Uy77a7J0+eLBerPe2ZOXIAxA+bu5vtQ2OzACMaDvN8v9nuh8P11frs7PTi/LxWLcMhEYSeYgxdn5G8KDEtObCKWJWpzo4oVZDIzc1FahWpKZm7qVlKGcDVvFRxmFtUNYRw//Bgdcohdv1immcO1N6UYRj3h4OpRs6RORCuFwuO6eb2YbvdAUDf9Uzm6gRUq8xFmEOdS4wJHIbD8Mcvv+767sVHz3OKy8UCzPtu4ZBUKjoqaCmFEEOIYxmsSp9yysnNUs4phZTzQnTLtL277fru/PKiSkUwlrg+Pb992ALz5dX1zd0tuLmW/cMdAr759s1PfvbTruuYuV16lotea93XWU0BaXG6DoyHh4eri8unH78093dv3m02G2Zany4BdZ4PKVzf334AKadnl1//4Q8hxrOzs4eH7cN286s/++XtzU1Vu3r+7DAMdZ6/+fLL3C+fPHve505EkdDd7t6/72K6VulWa+KIwBydOE7jxEcLnB8hKIBoTgAnJ6vrq8s3724Oh8M4ju6QUpJaCamNhZg5pVTqvNlsSplrLe1ebgb39xsiVKnt7NxG/YFjEdlsNv2iX3QLc314uGcOZmpmpRQw21Mb53qOEQlVRSpKra0sPsQICF5qG0rHGEVqCBxjGMdhGA9lHg/7LRAS8mG3wyM5GFOKy36B7m8+fNht74b99s2H9y9fvnz+7GWO6bDbGUCg4KbMVIojeN93gH1MKRAdhgERpRQCH4eBmcFNVac6l7kgYTdORMxIi8VynidXRTN0FJmneR4Ou4vLq/Y0AoCoMjkymbuJVqIi7qYqUsRAxd2LqYKRi4oCIDgycd/3ojqXWkUTIQZ/BLHwY3aKiCE4NuSQGbR1iOi4JjdyzPcNkW0UoargjbYCWqVpSgDeypvbeIOIRIWIEZU4mGkb55oDmTfdpN0zAOk7cjMhGZiocsP4eKt1RyIyt0DU9xmOB4IQ3EAecw1VlRr1ghAcEUxFNARAdKB6nFSAqpmYHiuHXcEQ0PRYd+mAyIGIEemx4LjdTo6EMju2DzowH39k3I7M5matibn9NIiYLc5FHMAcahV3Jgz393dMXc4dMlEz3jB1Obf9tqqKekidY8TQifMwTVWaW1XbQOzojiLiGIAwd900DzF3HKKJrNZrBxj2ewAahkFbmwpSrXPjsNVaETDEQISiUmtNuVO1cRxb3kdqbfO6nPPJ+gTRF32PAPd3d5G5y/noXUMsZf727WCqOWc1W3R9IN5stg/bfcr9LHSznd/dfx04nq7OTk/Wfd+tFot2DUdiaxk6cwK43+1nEQ3kZhxiqXVyJ6Kz05MY0/3DfUqZFv3+MBLxNI3DcIgh1FIZjxVxZ+eXu/3GTEutt7d38zxP40gc1qcX3WI9Fnnz9oOblSqm1kgYMcY+ZwJcrtZTrdM0i8g0jO0BGIbxzdt38zx99PzZyelJFzOhjfMgLRAg1VVU1cHrXIbDfp7G9dl5TBkQ5rkSUe7yydlpIBORstv1q+V+u2OEu5t32822D/Hdt98CYWB89/r1+29f98u8XMQQw2ZzX+Y5MbmpI83jMOz3AO4pRkqLs9MyTtvtrjpcXD3hkF5/9dWHd28Xi4/ncbIq+9324W4n1edZDKhbrpfrU0756tlTRLq5uX3y4lm3XF1cXnYc77e7aZpKKakLq5P1w+2NuOUUhsPu4e5mbQociNL69Azd3Hwq1dGZWUSROHKLeXkK4ezsJIbQjCWqst1umbiWst/v21R/vVo0S5uqhsBEpGopZTPb74dS59x1DWtYa80xm/kwjogoVfo+l3k2n3KXiGiaJzSL5Gpai4opIn5HZUghmtgwjCEEDq1UxFJK5k4I0ziJynK1Gve7gAwcupQtWgiBCe82D0C0H4cyz5vdLgYq87xaLAlo2O+9UxGZytylJNWq1hhCG1kBcb/oGyIlhFCnsVRRFXd1BFUx0zKPVXW73Q7DfrU8YWa1olIZWc3neT4MwzTPw+FwenrW7lulzlUqc2h2kXGqBphSVLdhHLTWGCIShBBOlssQoqsv+p6JVFREy1zNXLQtRObuporHqYcRBSAUcTVFOFYix8Ct5h0e8Td/EsNrOSLzkJgDmBsC4hHez8TthO3u7oaIIYS2Q8AxVOwKHpAQm3ZijkAhIKGKGGhDKbRjqDcKUivXMWOi5aJDRNHmGcVw7Ht6/JYcnANGCuqkrCIyzYWIEECk9X+pGKhDu+BAQ1QQG0DgAEhikAJjW5v/dSC4XUlaIY5pK7rDY+f4cZNwNSPGwNERmJNWLiLb4UAhGnJVqeqLEJmQsLWQYeo6Zo4pERJTK7yC3Pvzj14i8d1mX0oJISI3/TGIGTOpmqgQLRHgYbcpZco5m2gpxYlWq+Xl1bWpOniIses6dy8lc2A3a2/UxcV5CHG72Vapi8Wqnf1DCG3W2niiUmufO2Ykoovz888+/SQEHqcR0M10sVien59PtaiIqs7z7GpiHkO4urxe5tTs/6WWFKNZ2E66k3J7KCnuUoyBuWWqAzMB1lob5w84IEBgTDGmlGIMq+WyLRllroRoKqZaypzCKjAt+n5GBPUqwhyGw0iA8zwH5i7ns7OzJ9fPNtvD+/fvAECqlDK3hHBKabFYAOIwDhRCVZNauq4P8XhTdrOry8uf/+zHXQ5dCjHwOMzTOIRANtvD3S2YENFytWTyEDierHOXkTnF4IaqKqYhBBElsPPr62oaiF3qw4dvTeBmHGUeMabdbnN38263vas1ffL5F5u7m/u7+yMksxV2A3R9V8vsVYB5Enn15g2oA3I1SLnrFguVUqvc3t4dtrvf//5LwvDsxceLs8u4Pju9OD89OX3/7s1yubh7f5u7/vLyGhly7m/fvaMQE7Obc4y573PfP3/xclytdrt9SjnnDBQNmtqlYC5aibnWwhxCQzKY1VqJcbHoEYGJ+65z8MPhAAAppeXJSqocDvvDMASmGGMIYRgGJAwx2TzlnJGJlN2djgWNPg6jg8cYiI5kQCKKzKZaSynTRAh7k3EYkcgciKhfLgGxeTPAPDDVKtM8m2kIwd2I+NHzA+DY5b44AJEW5RAawKvPeSzThw/vACGntOwXq6trNW3zMK2VQ2gTVCKKGInIgQCxio7DCOauNoxjeAzWVKnubq61Fjwur8gIbgJ8HP4SHck/OSd3I4TATIgNddcCUwAQUuo4ODEgiEqgoNogQpZiSiFQg9CJBIEQSERaxYoScgMlmJtJg2ggEVFbTx2AWoObaAXV5tVXN3X90xoHcIRPtKKxo+UfWqdmk/igUYDA0L31OTMzExl4leKmBASIagqER8QacTN3AqGpQ6sUazbL46elTNR1XQjRHbtA01zcPZSq1LoFAcDUyZEiEblj4ECkKlJFALBY6xEFJHrsm/nTKT8AI6IihJYRRuDAJn+6ATA3B1XDulYxZ3RmjDE4YDVsc18xDQgpBUSOeTHUeSxF1AN5M/BW1b5bLBe9AaaUcpeXq5PWmErIAD6NYyMbUQhIwVTATWppLQhSa8wpRD4Me61iFOc63T3c7rcPz66ePP/oxWGOcxFE7hcLJHDznFLuMngzEUOZ54Bs6JEDEbs5U2jXYwAopbRZTZnncTgMw+HN22/BIaW0XC7Gcby9vUUmZOpzt1otF33/9MlTEb27v+fjPY6JcLVc5BQRaZ4nd3CDakpqi75HpOM2I5JSslJV5zrP0zSEGJk4drlWqVrmufI4jUXf39xP85hibPeSlBMh9XnhBuCUU+xzV8ocKgGYiaYUpbRoj6vrcrm8u79XVXcDhL5fhBhTTM3CMQ5jjTKX4u4pZdWw347qvlismfnu/n6WedEFdJyneRwHETEFJk4x1llCYHM3QI6pW/QcU/OkljpvNuKm+/v7+3fv1henm81GanWZp2kYD/vFcs1MHMNc67TdLvpY1wtm3j483N7c397ef/TiOaCXaQi5n+dxHA9uhuCbd3d9359fXi6WJ6uT00g8mQLiR598fPfh/Tdff41Ofbf85IsvLp99dHb9JPddl/L7t+8e7neXF1fL5RhffJT7ftztxnGGmM7Ozu7fvctdvzo/F9GUF8RkIlOpIXAIMfdrZDb3UiYmbjXvCG6q4rULqalVtWhEXi8WLl6rNJHaRMGs1iKqpjqPB3NDdU6RmWNM6xBLmcCtjJOpksM8j4BUq0gpIsLMOo+lVncAh5RiGadpmkR0sexUbC6FKTahUkud3cdpMsf1os8xOOI8jl0ISFiqjdMkKrUKENZ5Qm5PXG7eiqZ45Jgjhxokpnj0h7YbPBpzBAyNa6PqjNpw9q61qDhQzllqATdyd5EQgoQYUzYztxqIJaTWpmmmRGBaaim1Vuyav9aXiyURAWLRWofallTkI6wYESOHKqLupZTIbOjqlaA1xUPush3FSWl4hd1URrGOCYDA3dFbhElUsHqI4EAO1IANquqqtc4OHrtgaECI8H0XEACgiBtJy0MR4bF5mAgAVUXcontKwYHcoV8sEUBqAdNq2nYOg+b1x5hSCAGRA1PkAlAbJLaI8OP5HpByikQEyMxcHyWRoCaMiOAN1X2MZoEHIozkkKbH0JC5xRj79p/BI7oVsck16MccF1Y1bpxCV5XpexJQo6sCEnCIpU6gx8wU+BGm0co3HR2AUuxy1/FBW7qqFFc7fsBNRKuipRbVWqsu1+vTs9Mu9yKyWq7AAdxqLSGk7WHfhjFtDFuleIUqqKLI1HVdv8h1HlEl5Zz7RegWu90+xnZA49aVNs0zAMzzRICiigAhxP3+0OUcwjEgnHNGxBADODBzjjEFWp+sp3kaDgMRDuM4DmOIYZzHcqhTGHbb++fPn2824fTs4u7+brPdr5YrdM9dzrmbS5VaVSoftTIDhGmaQohzmeloRsKcEjMiYKnVDEIM7sgckajOYqYxhloqObiaVlEAVwPmHHMzdItilzMAdqmXThrqJKU0TVO/XKSUc8xd7mq/aG9484d0XfcIO1JUNNPAwd3meXx4eHDAUuTi4vrNm3d/93f/+X/7t3+TQldrtYbnNXX3frFIIYjJXErfLRAEAXabTRv9yVwODw/7h7sP7988PNw/88+vODOAlnlzf5f65fLkdBqHYRyfPn9SS9ltt/M47veHUso8l/1hTF04OTsZd9vt61fb+3smnMtERLXq7+/u//zf/NXls2vkWKbp/bt3V5eXh2H/u9/9YbU6u7x+cv38+Uefftp1i/aI3t/c3rx9p2BqruYpZw4pdl1adB99/BIdvnn1Ot/drs7PVdRFDvvtNE6I+HD/wCHVapxi7noOoR0AEQk8ISAElFrAIeccY6ylXF1enJ+ubu+K1srIAirzJLWGyLnvioZxHM3FWp4caRpGZDocDnWaayk5J5HaogYIwEQIriJg1m7YOlVTbY+0eeGmjJuRo1ZvQ7hGSyyEdZ5EdJxnCowArdwczQEgHfklSEjzPDf/orvXyiJ1nuecMwIuFj0TmVqp9TAMIvsuThi4ak0hGgcgdHBCElVKqUhNITa/MjQAgaq3+nEp9TiBQwA3k3btPhwO7ZJHxzYO1mOsClPMEMDcAlJkJkdRHWSUIhQ4IqG5q6cQI0etFcxzymbWfruqItI8V6nmOSBGCkYqraueAM1B1KpKVXCgZpZ3E3RXFVMiCvhdh9fxF7lBlcqEGCKCE2IrPABAVaulOhgzujMSxhAJ0M1iiCpi5gbSiKCq2t509+/ysNEdRKUVSAA2YJzHGI+wCURVmedJVYk4+GN5MTNRA8Y39qdZIKacxiJzqUUqEy1y6nIiJkAAQldoAbnWGUEOICauCI6gObLW8qcNoAULiMSaJ4pULQTzJmKbEHIjzDFiCCl3HSK6qYiqKEU6Pr6q4zi0wHfK3aCSxABxuVrOMMUYzTGnNE0DM83zJLVyu0YhUcpmOk1TlToc9l3fx5QJaNEtL07PkGl3OIDjPE/z3GDlZmbNRg3ootXERGoTuJf9cohBagVAUeu6Lud8JEQhpBAWi6WDOehycdXlrh1b7u/vd7sNM5+enj65vvrpT3508+49x3Txb//mv/7zb27vbmJqMqKnlExVAVS15QliiqI619qSzyHEGNNytR7GYZimxoePuSultlGHA6jaYb8PzDFEd1MRRDQkAITUngattVVkWOCAxMQhBVh0+eJimVK+ubkn4L5fDuPQIaYQHHG5XKacYoxI2DoSRKSJnc0lRcwi9bA/OMLJz364XK6spSUIp7lorY3mW0QOw2GxXqWudxjnw77UenJ2LqJ9v5BxfP3VV5vN3dOPn3/08iVzLNNgYGcXF2dXT8ygbDfDNH5xcfHm9euvvn6tZQpMbYT//KNnuUsi5fb2w4d3b68vLxBwOJSzq2sAfP3Nq//6D//4y9QtFsvXX391fnL67u3b//yf/9OTZ88/+fSzZ88/Sn0HxNM0DYfh9sOHRdev1+u8XCxXi+3dzWazW59fAOH1s2eM7KqffvoZIMyHAxMD+N3NBy31+smT7W633+16UUNanejq9KzrOzcQEVdzAKvFHGL05n2MMT5/9vTdh5tpGkzNzSCEaRYK1PSEJtNXVZU6TeMcJiJOfQfmUqu7DtNQy5xylqpmHkJwUwCY51m0ggMxgXuZZzcHNwQwM+YQKQICQEIEJgC3aR5NVdVEFS0gYEBsA7wqYu0A526ixHz83I99GNJCA7VWUem6DoH6flFVzMaYojmYK2EiIk6BiJkICBWpHT4a6jkANvEAELlWZUgpNVVIREqZjmn/rquV20gvhJBiMnQADCH1i5WaVilMlGMKyJOUpkMAYXtNEnNMwYpiwOWiyymbNeskt+VS1BwIKSEldEEAsyrqgdANxKRUKWocogO01hokzLFrdgx39+854lt6zlRNj8zOo9kGyY9lv22wrwDAFELs0FtnFvhjjNSP9SpERKbm5MBtIs1YBQzcQURbWy8iAgJzMPN5mrSRNMwAMERmM6ejL8GIiQI3dz+aOlCX0pRLkRqA+q5LXaSA7Wt0J5HqSO4QmIlY1aoJgRKEiOmRMQQAYI4q5qF5nxiIG1eUAaw5bM3UgAKnmHJeAPo0DfvDth1nVERbRaU7cwgcLELfL+Z5jiG4yX67U5H1eu3g6fR8u31oebFAFAKnFFsxZhuqBGaZJkbWIkCcc8c5AHgpgmaBWEHJPMZQa00htIxLorg46VXk8uJyrvM8T8xhmoqZFhJ3NZPmY6u1lmmawlTqfBj2i8VKVFt2BsBDiMTsgKL66tXrxaJX05ubG7Ba56FW/+TjT5fLNQKJntzd3Q3DsFqtzKxRTRreSGpNSZvWud1sxmEARI5hnidAMncVAcDIYfPwYKYOYO7LxRIRKDJRaFyUlLNpGwASIIaU+76PZK41BCpl6hf9NNVqc8qpBccaxzSEQJlCiGba8NSIkFLGx2KQkLr1at2vll3XpxTBjIwOg9RSm+caEHO/6BaL3Pe1ym63Hbf3IqJS1QzB6jwoyrMXz6+vn2mdh8M+EnPKl5fXh/2BQ+hyt9tuai3XLz7+oYjMg6vc3991uTs9vxjnMeWulPrxp5/GEDfbbX9ydvH02e2Hmx/+4IeHaWYObvbl73//e9F3b9+++Pjlz3/xy5OLy6qy3R7qOJVaY4xlnF6+fLlcr9x0t3kYx0G1fvnHfzHHlx+/FKn3NzenJyeHYff+7ZsfnJ4U1VpmIgopP3m+fri/VSkhZVPd73a+3efcdX2HgWoVAAhEzOzg4zimmFbrxcXF+o9/hFqr1PkY/XUz00BiptTq+zgck65QnBwApNbI3C7VqqIq6FhnMXdmYsaUlo/TOEwxlzqn1LVmoWkeKbCqlVrt6BlLBOSutRYRC+Y5Z4fWr0eJAzGrKj7yUZp50cxEaozh5OQkhDAchmE6lFqX/arrulIlp5RTripQ3auLmYoASOQATBwiIk3jNM9zjgliVBEKgZhCDFq5MTOaVzXEiIjmllJn7qLCzLnLhNTo9hxiv+yHcTSBwAFiBKRM5O4zVgwcU0yOZZ6RCNgjB44x5XQU5VvCtDU1MSMHp4AG7uBmhlgNiMDbJaCKmgcOAI7kjBRTRGRo9v3v3QEaRoIDuRseMZhHPL47uDtReOx2MncgZmjUO20/LWkHUwBIKTwObzhwEFUCAgB1NfeiFSkmYndHOHarFam11qMoA9CcoOKAzYkZiJmCmLZoAjLyY0MAIUQmJiYMDqZaW+4pMBKRKYgKEgVCdzXDKhW+N/qQ4yjaAxFRC+W6WsM6ACIiOREG5hgTM2sdSxnHcWhXVHUjTqAWYzw7Oe0Xiw6wnXnFtc8LCpjzUlViiu/evfnyq98/vb5a9KthfyCmnBIgFjkOJbqUc9+JaGxZ+0BOUKW2OVFTosy9TKNUEamimkICIDFVUeRQZUbC4H6YhvZBtZBkjJGQZpnAnQhzzhR42a+Wy+Vut99sHi4uLsJZnMtsZu/e3759/yF3CR0+3NwgYeo7k1JrHcex1tr3SzMFt+ur6xjiYRiGYcDHYc44jbvt9rDbxRCmYSDmjnsnYKaY4unJSeAwjYdSitZCSGaeQwRoIEFt4YaUk4iQMyJ0XVbRWsr7m3uVeZqGearrk1MirKWGwCq1lEJID/cPq/WqBQVERdo0wr2UebU6UTUHXCxWYnpxefbk+qLhykUUHPp+yYTzPLoRB6TApdb9bjsO+2kaUmBEI8Y6lXka+kW/3W2RyOFmsVxeX15TCJu7+2ncL/rluzevh/3uyz/+/osf/+Kzzz83qTfv3w3D9OT5s7u7++VqySFEA+bggGLw4pPPKASK6cmLF4f90IW4224vLs63m+3p6cmzp0/B/P72jphy13WLBZWSc+LAMaeb25s//u63q9WyTvPp6Qky9cu1mc1zWa1PQ4o07U3qbvvQLZcpJXWnGLp+ITfv6zB0C1+tT0KKDhRjaIheIow5Bw5N2eCOSylq+vTpk8uri7v7bep6AkBgR0PEwGwmZsZIQMchORB2uRPVhkEMzHGxKmWmmIi4lJmRYjiKmW2JSQ0HO0LOOXc9gM21IJFWiYRaj0ACN1PRY52jqkglDkfoIyETmlgbP6oZIaYU1QzAmkOBjytsdncOpKqBQ4jpZL2uJrTfTocJAZphGaKZQDLIOcecE4ejpMNsCEhMTG5Gam0MG2IMCQkxp9RsFyRCiAyBOcSQqlZAboPQGGLgQCHklMm8VgFmCtyAXKXMpZSKBGalSoqpnU44tBJ2bKV4frTiU+OVNcDbrA7o01SKVObgUZmYiQJTDIwYG5aZ7E/T0MChScSq0oIwzcsLAO37cjfVmbDNTbGVHKhJLbO5GKiIujsxMwdEJgqi6lCPqGoEc59KdUdRQ4euy9AYFc1/799B4igAggGauLgxOpNHAIRmJsLgSGCoju6BIQSMFBGDujQsHRISQMuJODMCuKOIFrBAGGP60wYg1aCBKghcCQGQDEDUI0NzpSJR5BRjBHJwAxEDdwBmiswiVqWGyCcnq5DiVCoFKloWsGjsCzXZbB6YaLvduevN3YeTE0lxUUUcIDQ48zTd3Nycnp7O80xEwzyEEKmSu2Kz0SKIthZlUzdzryqqNXPEQM6ITrtxn2PsYkcx5E4Ph4FDWi7XMcYYopsRYNd14jqOUxdT7rsQIxKGGHPXqRgCpRgpU9d17rDbbZ8+eaGmqrXLud0KY+pMbblcvnv3bd+l68snKaR42gF47vtlv7jf3G6397XU1WIRAyGCzgVTBnZTcTOOxBy6lIv52fm5qDaUrhO2ZjFVncYJ3DmGZj55OGymcSzzOE/TOI3TMO73+37Ru1qX8/nJSWTeDyMSNswEIIZAzWeSUgyR1WopZZzm84vzl5988uLFs5fPnyGiKSBiSkmttu5JM69l1nmsUmU6gBR0F1UkijHXWgHDfrOPjGUa5ypdl6Yy7m/2+/0+JX71h9+1N3LzcHf37hUAbbf7P/7+D8+fPUGi3MV+0c3jBO5OHLr0/MWLvFiMw3R2ccVMIXf3t7f/6e/+7i/+6lef/+CL/9d/+J/fvfm2Xy5jt1itViEQh9itunEYQwrDuDs83L3++qucup/85MeiFY1M62YznJ1edl03TEM1p8DDdlumSUUxsCOGnLtugaLMPB4OPVLqegcrU0XCmDO2OF4p81waI5aJVXR9slyt16VWVyEzN885Bw5mIibNGNKEQSRKOZc2KxLNMaaURw5N34sxOkAb0h4hsswhxqNcHjgkNqPc9zklIlr0PS9XwzC0Ityu6zP241wAiFrU0QHBFD0wQQzmHlJgBxUxsBgDNUqlWQAMIUSLH+5uNtstIT25esohqBshBwgxxgbZpxiRwETBvMwlE7X6DXXDwO3aoapAzeeOZlpkJg7EiOCNTBM4E2KDegJA8k7BQgg5pdP1CVGo88zE5gKBcu7pO5Q6B4xABi2qmUMIjEBk7i5q6EvqAbnhTotokapeRQygCThQRee5IopbbJ+gE6lqigmIVFXhT/W4RBw4AoA2WQhBVCKHpgIhs8wzU3BXs6MZtKg0Ma1qAXc1BQPm2HR1DqzuUkZCsJZlc3BHMHRAY6x65Kc+Vng26xHVKgHMzaFZRdGVIUb6rpzeG4+aA6EDAUQiZrQjAJnMGhsPmAgCqTeJpdFekTh8//gWdhQAAQAASURBVAbQVD9EbLVhTN70Q9WaQmIGR3THwJExms5m9Vimq8oA4ejkcgDnEBZ9n3O3eXhYr9ar1cnp2fnp2Xkp8zhOTHx9vRiG3sH7brlen9ZaU06AuN1uI8Vn18+arVP0uMgXrSI1xRRjyjm7ea2CLQzNwEzkAdplUMzNiGOMqYqACnNYLleNjtvuwjF2i+WiNfuo3Y3jeATyITx5+qTvulK1aW5t3NKonMw8zRMITuPMTDnn3C3cPedkBpvt7vziepI61zlwqFLrOA7zoOYxZgdE4sVyVauoqs0eQlL3/XCYxrGoeGAndMeU83K5DDE4YAyxMdkRIOXciL4mGjlQ14/j2Ib/4zBsths1ncfh+vLqiy++aKrr2dlZmYuoIhM99oYScY5ZO3Nws/rR86eff/ZZrXIE+yEBQK0SAplqraVKqXWu01TGoQyH4XAwpLxcn63PyFQO2+WiD0z74fBwv1GRk/V6mg6MIFVub++eXD/54vPPU98hgqgC+PnF6dnlGRKs12twJQIV3273C8eL1QkApZS0zOC4Ol074/OPXxjgYrl+9vS5iuZ+cXZ1TkAIVqb95mGTY+r6/uHmbnt3z2Bf/stvL07XF1dnh2HY7TanZxfg+vBwZ26XT5+fnV/e392Ow9j33WJ1ourmfn51/XYaQwi77abWmrqOU46p7/q+VXoExpxzk9faHnB2ehKIwEzmGiOnnFunKQeOFIKqkDRYljVFNCaKKedeyuxmHEOHnaqZ+aNhBpip6fLf5ZiYQ4jB3QUUkQLHxYK7nOmxKbrZGdQtqMaQCLGxb1vPeAwhxiyqgQMSKLXdiwT5iFwEIgqBw+lqHWKai2yGbZxCLX3KuV8sEOlw2FcRdwVwMSUK6IxlHschx9iYO00GQYTIrAjuzjG0BcpVq7m75657XNcwpRhTQuTDPGKTyYn7flECqQhyyBFFBMzKPFsIzARqqkWkhhCRkJsu4jkwuzs41SpSFSOZqohM04wAMcQmyLQLHDzil539MfY6xxgJXL93A0DEZpdgzgAthccASEiO9MiObsGj6shALFJLmZt9TsXB29zeVTwwVhEzRTdDB3AR0eOYFQ3c1CctLbfmhn4szSQEVLUAAK4mtaopmGZ0SMGt5YBBvFZxlXa7DE1gQnLy4xrfnNaBmRlnEQdCBKMEYOb/CoLXignMzJt3ndoc3wGhpc4ckSjGmB2szGMt0xHgZ4puKWSt2moRRDTFFEJedsuqNaR4dna2PlnX2o3jeHpyQsj3D3cAvlgsAUAkteU1hJBjeiQCms/GhMwhdn1D8kbmxOwxoroiGR5pe4HZAUopMcZFvwiPsyZRAUAkDkRdTBSP99Zaq4vEGFOKbiYqm912uVqenZ3VKqVd11VbsJMICYOZpZgQoNaiplXkbnPvaozw9On1drfbHw6lVieopRhW7gDMUogI2GTGqczm3lzM7cEyk6IFCNBxs9syM4cA44FndoDH3LKUUs1VVYbhUGvpuy7QIsb9Yrn0zs/OzlMKwzB8+PBuKnND2plKc9e1BUJU3AFqYWJN5o5dt8i53+02w2GX40ls9X0hmCdAK/N0/3CvpWidyjRKKdu7D+a6WK275brLWebp4f72/ft3wzAc9rt+ufjiiy/mWn7729+en52vV6siVd3/4R//4dPPP79+cn11nfs+dzmv10szCcib7b1ITblbLNbLZabWdglUq87jJCaislwu/urf/NU8z+/fvf/6629y169ubpbr5WG7dbcP79/XUrrcr9YrA1326exk9S3Bb3/760/KxzGmlPs//su/7La7k7OzqydX3WK1vbuPKV8/fZpi2mx2m82GQlivli8+/mRzf5dyJsJ5mhYh4iMUMYQQY/4unOjuIpJzLrXUWkLgmGMtlQDVfZpHMOcQ1ESrEeHROgGOZoyUFguR2jTJZkgT0RhDKVVEVEVUA/NisSQkQmOkao8t1oStm1qqMJGDRQ5m5tZGTc5EITKgIRA5hsAqSoRqYqotJg/gRKEp9Y8rDefUhRRyl9+8fbuZ5kXX55xzzmZWaxnHoZRZ3d2sdKXFe9w9cnO1xMCBmNzBU2qlKOjExKoSOMQYRLTxU9sUWlWjAwduTeNIWEoJMeQuS6FmhSBwNY2MbjoMB0SUBgaYphgTIjX9HRGZUNRUTE3Z6OgMUUWA6tBuAIjY6B3NB2XHWkNHAsKjRgLf/4VNltTHHeGYFbPvQadb0EykNoROM2eCQ5vWElEb8xIJiCK2dgRjwuOtoUH/4ZjZcjdus+DHP64tvsGbyVxNpLiL27FXwd2O0ydrJYXaiORmAsztk2VGAEqBYowqkmMAIG8bhKmq6JFocVyPKBxrIAmJA+acG9zDwCkkcA655xikjmWeZZ5DSgBEzIJatG1SplLu7z4A0nKxisilzqv1atxt0TTn/PnHL1LOpp4jHYZDisnBlQkQS4FFl1IMAODmD5uHLsacc5krEwDAMA2Uu7TombKJTOSgEBwJKQRSMxNbLHpyqUVcjhecmNJyscoxcmBHaDRHFUhEIHK6WEK/KCrb3fZ0fbrI/V72q2W36LOW2riJbj7Nk9eqqibCCK0HmL2FBCHHGAObCbiyeghBVEsdUwhPLi/aIe5oezsiwbSO4zTsaymiwu1xQVQX0DrNIxFRTFpmAJAqpqplAgBTBRWTOs/zYtF3XTo7OV0sl69evxqG4erqer1eNxfWgmh72Lu7VAmNMNPnFNNyvTo5Peu75c3N3TwpAV1fni/7VRvltWe4LU9ErCJlvzeXMk+qElOX+1XXL6Zxqg8Pw2H7cH/75tWrUsrHn312ef10u9u2U9AwDcThydMncy1v3r1xghj49PzCHEotIYRpGh8eHgDgjMM8zxwiMx+fYTcmN9W333y12x1OTtYhxXdv3/d954z9ajkc9g8Pt3WeD5tNCGk7zmZStZDZh9sPi/Xy7OxssVoEDq721R9+f3t399d/8zfjOHx4/373sDm/uOSQYlqcX2febA67e9CaYurXJ91qZVXGaSSmmGKVOUB2c+bQdPnmoUKESOH5s+fv3m1qkdy19RTBvVni3AGxa8coA1CzHBMT1SrzPEXOquoxEtHoI4Iz03LZA8A0QTCOMYqUWTVyk6a97zMzxhRCCOBei9ZazHWRszup6aLv+tyBe1FRNwSLMSFCKZO5Ex99ve1KnWM2b9QvIqKG3yBHdztZLAYA1brbjO/GgYiePXm6vLi4vbvb7nZm6qqOkGIyt9k9hNh1vXMAByL2KqnP/XJ9dnI6Hg7TeCBCM1302U1b7Qceq2eBGXNOYjaNpc0lgR0bHVOAmRXR0EqZp3EgQqli3u5U1piY7e3AFm4mMJdSrdaqau2A35JJCGh2PPs3TE8zSomIAQTkQPx9LcTdW/C7HZeb4QcfqyUbEOk7Io6ZOQGouUrrw2GOZk2GAXdrLZvta2FCYEIHboUBj+jQx786ARIfN4+WBQ4iIqZFShUJLb+pigCN2EZIptXMvFXZIrTlGhGJm3sVUzgyLwKyO4WUzHUaR3BtJofjtw0GjubmQC3ElyIiGpgxBwrRMaWc1UyliBREAkAOkSk4qzUjFtJhe/jyy6+++uZ1lzpu4duU+r7POSHRcrlKMTKFaRpLrQ2c2WqmAaHWynRk2Lp7DKH18EiVZn6IMS36HokPh8N+2Js3e4UDgKgiYE45hmAIj0bM0PV9iimGQEwiIqql1sjc6owR0VQpspl9ePvK3edSUpfBIYWooipCjGWe1byWwoHbtFZVqNmZtZZaiPn+/g7cGUBMVQUcmTmE2HW5+eTcHMG73JlarVKkNtGAEB/D5S2Ebdyu5hwaabbMs4PH0DI7JnMex0FqHYbD/c37Z0+f7be7h/sHUdlsdsyYYgCHYb9fLBaRWQmn0cDXhL55mAPD9eXl61fDNFVmiDGUMhGxalXRuZSW/0wxVXQDS10PhJEAKRDhcNhPw4BmzdrfdX1Keb0+ub97ePPu7adffLLf7e7u7k9O1jnnn//0p7vd/u729tvXb0pVA7i7u/3k45dg3nddyimEOM/TUMp1iH0P8zSCC6LXMg/7navO00Et1Vp+8tMfn16ehxgOh13fZyZY9k9eff06ptz3/f2b+/12i8w//PGPri4vuj6XSf7pv/zDYb/bHQ777Y/BZRzGRdcBwO3NLYXdos99TmS6f3hwoMXJuuu6frkcx2Eah265XPQLUWhW7Fbj00r3HEzNLq/OiXSeDyqgKoRYRaCdLgFijFXkGPF0Y+IUwzzNm+2277t2npznMk4TB57nEpgWy1VjCov4fr8fh6HLuRl7OIRaZfNwl2Ji5sN+7y1AYAYORWqMcRAtcxnLRMztlUB3FXXwlBIhWHNk1CqhcDh28B1jTohlshC4S8lUD8MQU/DBpmne73br05OTk1UItD8caimqVtwbfV3NAXACD8QhJHapVkqZp8OBiaSWmFLT0JfLpehcBY5nvqL7w84BiElF3KACEBgTlqmAu6iP0zTPMxMFPprlATyGUGY0h1Jn92Vr9iWORyB2TA3XEygAtnkENJZJk1gQj0sjgKupSGt9Afw+DbR5ML3NeKnWemx1N9FGjjhmmNrqhQ2d1nw4pIhMbmRuqi4m6M5M4G5qELBZ9NG9ucHUFJFM1UyB0REZQuRgbuDk7qGKtCB0E3QCEwIUkWIGJpGDGaAhI7WBdcNMYJv9E3chRATx2qhtKfVEBOYhkBT9/r4Hj8qWOagjAgNKCkwEHJq22SmSliJzZSZAn2od5oIIKQaR1nhs02F6eDjkHBo8zkzaKAaREMHMVK2JmMRMiKrHhAgRmQO4IToiB46E7mCt6Ka9M80EhISiWqogopuZKR3vaPhI6QNCIkQiaPF3alDW7zbbVloK2MhNDtYa5PxxfMKAjSOrpkdoHx6LfInax95+Yo9KATxaEI6hQaDG9QRvPm4AMHPmkFLydpaHI44bgZrr1NQaJaadQ5COX49K9YaGx2NO0sFrqa2T5I+//x0A7odDVQWAnCLTY/ge0ZtES0jMXe7M5Ozs9Gc//9Uffv+N1Hp5vfjFL3+66lbgqLXo8YaLKo6IFMLi5Cx3HR9294fDPGzgACn3uetqkca7lyTfvPr2yTTV+RbRx2F88uQpGn77+hsFWy9X7799P47jRy9fxJg40Nh124dNlxI6zsO8nXdXT548fflCxYb9FtzA1UUI4eLivMwlLzoDFLnZ7XbuxcDAfLPZxJT2m+1+v33y/KNusfj5n/3qw4cPZRrLPP/m179ZrZevX7158+23V1dXi9VSa7l9//7i6qpbnnDMzNHNp8PhcD83iicxT4c9AnZd72bzNNblmijEvEgxEmKDiIXQKjfIxBD19ubVf/lP/6haGyarzVUUju/2MBeG5mQ/vgINIBSazRDBxKpLa5sipsChVYe0UY1Zg9ZBrZU5MAe3xn/wR0WIvjs/IqIatOcKER0cjy+Cu7e2x/b2fGfU5mNLCZEjmRszH89D7q3Sq9aqqg93t+bY9anv8zSVYZir1AZKcwB0a4f6FqXiEJiQnRwQCDhwezea7MntAEzchouEHAK3U7SoImHgAICiEpDAvZQWCCBHV1ep4u4xhv12fxiGLqX23RGxI7c2FKUKYI+CDDzWmbWfKzBjDKEFyuY6OTlTD0gQIn4PitOKKB0gUwBv4SwyV1Gp0nDM4G5g2Cw+j+zMdjYwQo/k1dwIIqeQs1YpZXbVwMEVHI0Y6ZG1Y2rWFk8ADkhwFA2RgzuEItoaWdA9cEghmPtcajEjQEJmZmImJUR83IZia7WOMTQch5qWUkzbUL3daFDN+HsUvBQTIbT6mxD8aPkh6HKgQClmgzAUmeeplpnICbGIzKXMVahJzAhIXEWG/R5x9aMf/pg41jq7+ThNXdeB+zTNamJmMcZxHOd5DiG1WGBr6jEVM23EaXf1lkdqq7u39nhAQkdwcxOFBhwCbJ0X7a6FCASNYdQekbbtNkdXG2pY20qOBZ/43Q7YXhojcAQ0oMe7JNCxzk2Rjvvs0ZUE1CYf3oYl7gToj5tNEx/BAVvQ3b+/535/7kT2yKxu/4Dw2Kf56Az0736vu7chjzswtck7qpuqHveJVjAErfLhCCppI2AEv7m5fffudhwqc9psdyEEZkZAqSaq4fg1uEolTsv1CTTuHlJOGZmAQ14uKOu5XdQyb+7u/+yXv4wpIMZnZydzGd+9eRtDODk5CSnNc8mL/vLqihgCY4jx8uLC1MpUGpx1OAw3Nx8UtMsdE5Y6jYfR1e7u7k5OTs7Ozmqp95vduzev727f/eAHnxHRNEwhcJnmw3Y3jsPd3W3M3cWTq6cvntpU/t//4X959/7tD3/46cm6f/oXvzrsDyGEGPkw7Od5Xqyw7zuO+bA/zGWKTJE5pRRC5G7BMQPgcn0C5rv7u7nUy2c9J1bROs45pxijg0nVVhL4cHf/m9/8tsyjyNyu/O001z4aO/YCaqv5OIJljr2AR/HQzQjpyCFAfOQCPB5TGgZYH4uyEez4LBz/rUcdHxFRG0fiT+ck++5Rw+NjdPzPtgeyKc8AjsDHI1rTF9otxo7NwOqITf9gYAj2vWqUdhj+3ukRiNhBgSgAEZgjOkKzt7aHGuB443BodOH2RzUomzcPwvHrd7fjl3pcztspiohqKXMp3yP4u8MxIduUkBADkYsU0arqZjBXRQTiiEgpkFFASo0yycQhsH/vmxIx0WOtSPvI1FREi2ipbXSOYK4mjBGoaUTWOPZEgIAQYgLqOFCI5jSJtbEAOJo7ATBSIEfmKlSkqAsct370AE4ADsSYKQYH1BY3ID6u535sAwYge/wM289OVKtY13GMERADk2s1t2Ga5nlOHOZpCP0K3bVqw3F8923HEBoDjwhEBNwXi5xjSIlD4D53QxGVOk4DAzREZXsuGvoUkAC8RZyaavmDH/4AnNwNHIZxXK/X7lBrmeYREZ8/f/769ev9fs/MtdZxGlW0CfRSqztst/f3tx+wrdiAbo9iGYIrIOKqj8vFarPdj1NpqW844qqbfMcA3i86ZtrvB2hwEHgsPfBWQte2AzwGpuFP2+Hjv0ntD3x8OeFP6/fxfXt8Edrf47HlExEJqUU1Hv/Nxz/leE9DoO9vAfCvvqTjf7RtPw0DdbQttO3N0I8hPgdE9MeuJ2aep+Lm0JZ7b5vccSuio2pHDw97wPTi48+q2P3dfbpMRKQqDfDqptM0HA671fo096taZkcKIZZDGfbD4uTEzDnEvl9JtY9efLI/DJvN7s/+/M/B9NWvv7m/vTk7PU1dXq3WHCdiujy7QLDtfi++n4YxxXR+eqpmpZQnT58O47B92MIapM7b7T0SErKDidbNdmMOIvXly+cOfnNzs+gXBLhaLi+vVinEfJc3m+39zQ0zWq23H27+6Z//6cmT6/Ozs9PT1cP99qubL09OTobdfjwMG7zPqR+Gebk+YQ5zKdWUEcfDoVa5evb88umJGISUQ4wNhW9/Ksew5ulUE7GqLgB2d3f//v1d16dxnMdxfHwIHAFM3aANkOx4sz4+VdCet+MD9/g8wuMH9qf+7fZ6wWMvt/vRvHesYn3kGLdhJqLj99dlxLZqfk/Zbn852gfBm37h7uiE3+0a36FpHr9kASR3dBWVEHJ7u777lwG/fwsh0epuFCIBBvBWifvdvuQAhEwUiJAaGQ2gbQBNLj9uTgDm7d7sjz+wR9m9eVVUA4e+69qBLBC6adtXYkwxRQQo08FNAMDM5ypVWt9UaP0KOXGXlwrIIaWY/ThV+NMvUQW1Y5s6gLlX1VKtigFSG+WJWwycOT5SnR3BwYA5BI6Pu11wJMhe66zu6nZkCiF0ObbvzyKLSmsdMHMxDUZw5IzG4PadLsyEFIiOWQ9tukZ7FrDFGVSkYI1RQwAmYEJ1mGudaystdXCb5qkFJYgZ/hUCCQHAzUopMQI6mCrnmFPKOTMhzFZrcXN1ATNs5lNodycEdySy1q4FxszMDRjpxNgvOg5tMpEb/crUc+xgiRyo1ppzrrUSU2usBgfRKdL55598Os0TALgfi3LMDRyI+eJ09fTJ9devXt3d33MIAMBI5nZ8ac2YaHWyjCHc3T20bvq2CB8PSAZqenShIYG3Td2afOKIFNjFTSp+R4dHBkJq5g3TllNFO1pImaODVhEizDEREjHNcy1ldnBTt2MvHxJR13XMZKpzc2o6mGkIsdZaa2nLgKkBenN2N9bT8cXzY580IZobPMYYA/OL5y9u7+/vdpvAAR8Fgfbxth8LEaYYfvSDH7x9f/fys2fX1+eIWKWG1i9IgdA3u8PDw30MsD49qbUpBiRSx7mkvDg9u4hdn3J+KPLRJ5+FEG63f/z48y8o5/sP7/ucbLUKzACUuw6ZEOns8nJ7d//u3e1vfvu7aZyfP3/+l3/9y/VqhTOFPq7zWkTIfD+OtcjV9SUR9X3/5ttviejFy5fjYR8YRPz23e2h2/d9t91uL55cxRBWq9V2t9vttoRw9/7dze3dJ5989OzJ9TwNXz88/O63/7JenyyXJ7///R/NrJzX5y8+6ZdLCnxyemquZTzc33zYbTbuXs2WJ6fdcjUe5v1wyLlLfVerlKm6AjGJ1mHcq6qZztMYyD59+ewHP3jx9auvQoIOY1sZmwZ7XP6/W3oflzY4djo9bthIYAaPMnJb+I4n83bk8e+OF8f/R48DSHAw1MdFHBDwe4eYP61mx13mu79/PDQco6fH//F47mjLEHy3rCAAuLotu/7pxem3t7eq/qdjFiI83l3QwV0uLk4WKb+7vS+O8qjDtCs7AKrp+uTs6uo6HJttQivlVtNFv4gh7na7rutijMM4NP2n6bFEaK6ENM3T61evTY0ixZTa0lNLkVoCUQxxkToMxEhkKnVGc1GtaqqOBGquZhxzjAEAYsgYMgdG4lLn735kHCgAz1OpgoIKj0S142bQvBzHbQnMjMERoDkuiSilqE7asrtIDgTqYGCNeoqIahQpRAJgwGMTJzweLsW8qiU+lpKGWqRam18TM4UUiTjFIPYn6BIc81BWRJGkSkHGjBEcTKWJFIJublbVDBCp1U79qyelFVgeF1DwoAsLgTmlGGMQEVOReQQwEQ1EROjajrjtngut0szUjgq8AzGbH4lybZ2NMbWL1TRPFCgYp5zMjJlXq5UjbLebaNFN/+ynP84RU8rTNKMbMzWNvdZaTTgERr5/2JycLFbrhIREIYWIhAGbKmKE1JINL58/cfDlYmHg0zAiszWgqxkTt6+c3NVNzDkkhGCIyOTaUgXIxCb6qK6RqebIoDLPBSl62/mJGtkUH09SKfJjsw4QMzhUad3OHIhVLTAjkpubWtFHJ4kqkgMAqnU5h8Cq1cQe302Eo4W08SrBwAwcgWKMRPzixROkYyDIWoHE0eLmOaYYmCL1i8VPp0/PL578xS9+0vfp+Okwm4momBshNVKYSG1psm656pYny5P1YrkMIQ3DoZpdffQ8cjy7vBqncdhvwfX6+sl6tbp/eBiG4fb29ur6+uzscr8/fPXVN19++fXNzd0nH3/y1//2r1frXqR0XVdrUVU0e/P2/TAccu5ev/728vwCEPa7Xdd1283DV19/dXl1xRwo0O6wR8aqeng1Pb1+YubDPKtIYDTVRZ+fPX+66LrhMNzdPZydnZ2cnlxenV9dXe6HiYiGaTq7fmJID7sdMYcY+8Xi4vycmIvqw8P9GXFgPjm9MMTF6sQdSpkRCAwRvczzNI8pBJmnuQ6rPv3Fn/345z/5BF1AtY0AVNskq5V4ABKomerxXK3upoaPYx5CNEdiBjOVakBiZlYJAA2qCrhZLSIqgF3fEXEVOZ60pLTTMjGCQ61i6iLi2Jae5gl0QDjCCuXIenI+2rpbIqmKqTVSGgCAmrYt6DvxsWp9+ezp55+8/F//4R+3h/Ld9ExEmvrf9JNpGr/44uWPP/vs//O//Mdd00rgsRK9mRWLrVeLZ88/CscBHdfHWo4QQuTQfAExxmlajdMI7mrW9z1zS8naMBze0JvWe8pEahKYwLxhrAJxCKFZZcGkOUxb94c7MpKqIXMIsflAKWJKCQmR2Ov3XUBGgCFwmSdAxDbUOY5zvJmm/OjYJ1ViisxkYhRC5IAEpiDFzA2sMpKBIgI18jOgkDf+XEsxc+AMrgpqTTDAWg0hAHoIHAC5yuzmkYmOfoCWRjE3BAM76oKgClWdRGItjg4m5BkJU4iBgpIaeGSOkQFRzQ088J+SwAAtiqYAIGbMsdmHCVGkzHM57HcEZiZVqjOkGIhIqiB4ZJqqioiW2kYBLXTSQhONeEXIZpZSiCEQce5yLSUuFkg4jiMALJdLRxymOWB11evLy83mfjerCI/7ndaZY2COACyI7ByZFBgEwdGqqJd5erjd3HlRQkDCQIzMTAToTOiIBpY4RCJDAMUQmJkpJAX0WsyVu0VMC8TOAzoCAjGgyxQDRSbgKEWlVEQIgco01jpXad3WrRJlqtNk7ooGRoEIAdSsFcsiGDhmDu3SH1MiJjdn5HalAFB4PNoZABkFCoZQVdAxMCO1WGlkAivqAEBHQ3TiGEIUU3NrFPTvrtSM4OBHPDiG3Oenz55Ou+Hu/fbtm/f/x//r/+Vv/+a/m4ZZzVWmcRoQcbFcNkd8nadaZjXrlqt+sQYwqbLf7m7ev+cQ0OnD+w93N+/PTtYIMo/jbi4O3rovfv+7371+9erzz7/IXbc8W33xwy9+8as/+/SzT9er1ddf/nEch6dPn8QQ0WG/Hd6+edvlfH31ZJrGKvX07OTs/HQuJcREGL/99v3l1fn69GRp3vddrdIEzDdv3nT94my1BIS7+1svfnp6UkoBwE8//dRMd8N+LvPV9ZP1xZP1+oxT2Gy2Z+dnCrZ5uGfwWiq4n5ye5RAXq3WOaTNslyfnxIRA7VUHAhFhQnB1E6n6cP/ut7/+51//+p+HwwTupjO5qXuRCmZMwVo41swaGVjN3Bo2gFsXEzUF0BHZva1CwBQAVVADIAfqUjZTYwQHTikveiQCQgcIMalVVGOkaTygm6uH3HOMzHTYbsnR8ThpAAAOgVrtFAPHgBwRMDAi0FBK1coAHXOMsapILUSUc5pKsepu5uTi5S/+8pci3kQffcQqI2LOnZu0W1T18qs//8kwlSqGYKDeKqSK1tPT9TA4xByZQuRxnomo9dpLrcM05j73XV+lhhiyZxFpQGIAJGJTR4RH3wQ2J0dTbmotqtXBFSwSiwkcBxLu0DpuvdnnHdHMUoqT1MM8dut14iTSqJnHX6pq6oRoWusRnOzMFENsVy8HVCDV0rjDohaIwSnE1D5WdZmrOLK5IBhIEZnBgZBUrYrFGBlZpQYi7mMZy2i1kSLAAIiKGAcuUoOYimorGm5cIREl4sihqCKSmaj+SZ1u90NT1WbBJALElJKDaa0phZQSIFWVKvr90UetUo8QuzadMlHlwGYmJofh0MD3tc5tPNPGEo1BT0xQpIlV7VbRkqemqqbgaKW0YWMIAZBy1y2Xy8PhkFICd+YwTVOLrUZCj1EIf/f1l+h2eflRKYVDR4iiIjpfXT6J/dohMiEHYgetU5l37YsR883N24AYQhSptUwNAQgOgUnRCtbrswtGDynEFHKXYrcgXoCpgxngfrc3OfTdMsTkQG4OFIG9z0kNKSSNsaqJ+WKZwW0e9owYOJqbeb159+b1t68RLYY8GZppjND3OXJQ0f04p255erICQCIMgdxdpbm2IHBUsblorS7mD+N+P0+BuA/JAFSkqppbyvnjj58uuyQiQMgQq0iXKARyJ2sDbqTWhYSAjBgTK/gw67u7+8Or1199+VVI8frs6TAN8zQAOAV28CrF2svDrKZzmaXWcRjKNBN6oDDPc5mnUsqi60+urmNKqdsv+l5qqXVe9ItF30/DUMeRwK4uzolov9tM09D1+WfPf5xzP4zjq9ffEGLXdcNwAIDANJVxuewBsevS06dPVG2zfUg5X1xepdgtl+txroh8cXGpagA+HO7mMn/11dcpxc8++1RKKWXOKW8224eHTc755OS0ljIO02EYCUPXHU7OF5fPni8W/Zd//JeH25vFcrHs8+7+Qcq83+32+8OiX5kzQrP9Yd/3+92BQ2yA6SqFUqpaSykEvt/tXn/zatzt5nFy1ZzYCPdT+eqbr02VQ3IAbeYWb81I4OgX11enqyWoIqK5tIr2cTiQg4V4GE1lUikmxVVLLbvDONVKToGZI52uFmenZ+vVkpmslknqOIzkWOscEQn8/t2Hxenp2clqKpUptXoWJiSHwFUNWghLVMwpREYXcxNpskMp8+zoCEdXT4wRHNy0QdwoRKLQ9f2yy4FRTd1BqjpADNFUiTjFuD+MCLhaLaxWUDO1FhFYh/7Z8+u37/cHgdx3zEHda60xpsYdQcSccozRzDAgEZVS9Fjs1aK/ysz0valDTKkZfUqpzUcyjkPgNTNXb6Gbx9bdR24PE7bsFBGh2jyNoQ+PcIQ/qSGq1QAVsIgI2DJ3RC1WFZACIFbVWvU4/jXBQEAMFIDYXVWrg86lqhkjkImZApDCkdpU5qIpATETTyINIssIYgaA5qaiVH3VL4KoStXW4ETtTkcEADGmKnOtWtVKlUcTwnEyiwDExz7CNndnbLVIFAKHlDPCPJUjda5tAKJuR0cBIjJTTimEKCJzmed5ImZ0SymrCAE4QMuyI6GIMrNpU6WgsQfAHQlB4bsZGCJyCDFHjoECx5w5BGzHE6IiMs8zuAWOYvbHL7/+5OnlKoJpCPmEUMy8jLuOZhJTsZgiCCFQ3W/Hw0YNFPHJSfc//fm/uz5bMaMjlqIx90ihgq0Xi8Dpn/7w9b+8fptiHzEaeMyJQgJOARHRmAkB9bBJXtg8pmRAJUQxqBVFS0RXAxVx0yJVpgG9phBJo1k185PV+vrnP/nhJ89PlwsHSgEXC1otFou0DLH/X3/9m99/+eXVyYmrEGHOHQAcDkOt1RCYscxaxKrqdj98frH69OWTZ1cXi5wM8XCY9vsJgMZSX39424dIkJmolsm6cHVx6m1AKTZXaYmVls9sJloCT8H/9pc//tknL2ot//jb32029dnT61Xfm1mIcRoPtczYjgvuw3BAgEW/MJXhsM8xAjOnSCon/WK9Wu3HcbfbRsQUeLfZ3t7d7Xab8/Mzmct+vxuH4f5hE2N89vRpVX3/4UPXLYg4pnR+cf7s2Ucp8jRPb998e9jtcpdOz89rrW/evf3q628W/cJMOXAt8uqbP37zzeuPXrxcLJer5coRQ+RhGN5/eH+6Wj9/8bwtygBQ5nI4HJaL5fn5ebOrm9tyuRyGYbvZXT55mfu+Xy37xXLe76zWWisTnZ1d7A+HxWqVcg4x7vd7AJ/nabFa5pyqmoMjUWqHcbWcMrimnBnx6nQ9BW9z3gouXv/93/7lTz79xKvWRvtUyzkieu6WX719+/Z+e3ZyiU6I5G4pJ3Xd7x5yCJy6zX4mhi6EMgxlOEzjsJPp0xfPVjnt9sPvv/mmzpJD0CJ50Z8slkWmwV2KUoqLRbcbtnmeDg/3YHayPutTUtPA60WXyZwYDSjlzt3KNIooAKiM4zS5+1TK+7sph5RzbIc4EUHVyFxb1a9CxwsAZgzgyBQIWVQInZnBvFYJZPMoiJE5sDoDQqBaiqo7iE7+u7/7+1nyD3/wMwoYQsieW4COOZVSiKhF7QAgpTTPMyJ1XbTHQ+qRGUFtFE7upqbUjNpMx8mfyFymZqh19zYZZmIijDGEEADQEcS0mePMrEpFQCl/Wgrbb9Qq5u6OtYpE7ThF5hhYneYqBoAYj2Xt5kYWU0IktUfPgFkt1dwcIaATsTnoY3JCAcSsecaqyjE9DAYODWwXY8voWXBzM8fIMTUwCIBjI74SsaO1R62NngigNQdg60QmaLEUFYktec0YQwwhOoKGfzX4bu7jx58y9P2RheIO4zhI0RCSuXZdMDOrFdwQmkmm/XaixzEXOoYQkagddhCwzXbMDBEpRDEDxH65bJSPvu+/0xPRKcV4lCW1ahnAc1ysco4M6Mtuv3nLVpNUmaxUNTepVicRV+Ow7LuPrk+fX53OMscYQ+w4djH3OSdD11nOzs4khtcfDrOQAih2BBHUAoJoSYFiiuNDLdOYI8OicyTEiBjMLILVodRmbTKBOmfyGBrqh0DcSwmRf/SDz/78h5/WeaQQln2MySKHRT55GExDuLh+nhAQNCY2VUdkTcrISCK1WBmlznX6/OPLv/7lz59cnJiZAwF4k/0dUMT6f4n/9Xe/OVsug9PJyfLZ8+suxWk4jIdZ1IepmGMVrWJFtahtxmEu06cvnv3ljz9/eX0R+9Sl+H/7f/7/UgpMAIhqut9v99tNv1gwUe46ACy1Ovtytby5ed/1/Wq9fni4p8App91ud/v+DTIzoJR5c/9wd3fz5Prq8ux8HIZpGre7fd91IcZ3t7c3N3cEGONSRJ88ubi8vHbE+81uuVgsl+ta9ez8/PTsVGodp2nYH5aLfp6nvu9zzun+YdH3McWz09Npmi4uL4HhoxcvwP3dm7e73XZ1spobX8X09uZhnmS9XocQ+n4xjXOM8fLywtTVVLTO85RS3IzTPE3Ls5Ory6v7u7t1Or+4ejKMQ+4X83iQIlrqOB5CiC46jYVjXvRr9cIUc59KnWLfr8+vvn13UygSmDrsh8N6tfr3f/0Xz85WwziIWhURteVqEQID8mHa3+32pdacOiRCwGEcRUZEN6+7200KXfN6LtZd3+GJpKdEP/j05Y8+eRnRPjxs/u6f/uXV6w+HwzyOU6nz6arrc55slipzKScnp//j/+Zvd5vN//yf/n6z+dBfXvYxRLYFa0wh5Lyb5hghcF6kliyBFHoAmmrd7HdnJyd/+bOfrTI72G4ch2nscs4hEoBS+G+//2Y/KYWYIiEaqLl7qdSFNmHyBCkGRkhFyTiS1555LpMSRcKqDuYP22ESOeJqHBCxqQIpphB4muaWXXL3BoNZLVfjNE7z1DRlJvbHmWUzuE3T1OwGrcy8LSBqVbXSY4wrtk5y4sitQ6GtoGCPoolpNQUR+f5iGEKYSp0nOVq53KnlK5HH0kIYuYgG8tCm+AjgptrSbNAG+oFIzRGckNsWdRxGIyhAad4nIDOT0ry1TWN0QE8xphAQIKgpAAam9EgiFFRV5ZAICQzNQNUQHq2wzdfKkZBVXMFV6qOJwBoGqYGmlE2+VwjTCmsQMaaACMu+73PnCFOpooAhAmHqcgKqIkpsZRI75vMAEKgNe7zdCVIIgXjSUlVzSm1rIA5zrWWuXe5UnSh0OWutxAEDE1LgQOAhRS6FEAIyUXIPEJI85lzqNKdFaM4KQhJpqTUCBUM6TPr6/f3V1RoQ3MkcAwUCkmrFFR36HF9cnH7z9j1RFxxBZ2r4XPA+sNbDvN+o1FYr4TIjB9HKhJGwih+G/X4al/3pyfkl46rLLVhXIqI5RISiY5E6VuEGWDVy9Yr4L28+/P1vv97N1neraiY6Y0VTRATuTjk7uWEtfezqbvfy04//p3/zs8A2lkIYCdgBAAVdHYHZf/zZy9uH291+d3l+vl4tkHyeplr0MM7mZE5VZJrKVNWRBfAwDp9//PRnP/3BOE3b/RDKdHF+9sMvfjDUslyvY0z1MJrqOI7zOOS+W5+cNdl6mIb1cs0h5X7RbnXN2357826eBtEac7q7uXt3+/6j5x+dnZ0d9rt//udf7/b7qyfXv/zFL77+5tW3r14R+vNnz0/PL0T8o48/6ZYr0bpYLhMzgIeYTk/PmLnLy66Xs7OL3/3mN0R+cXUVYnjxyacA7GiR+dXX3wzD4ZNPPqnT9O7tu/1+//TZ1bs3b9xg0feq2vfdZrN5++79s2dPc99N7+vq7OyTTz55/er129evTs7Pl+t1TPns/PzVN1+L2+379+Nw+PyHPzWEaZ4R2Q37rp/GHSdOqZtKCSnHkLqcNXKMbCoppuXq7OMvfvjth4fpNoacugjjzbc//PEPzk9P5nksaqIqIoYwV0EM97vt7cMmYLD5UHV2ZDMDN7AaYjzs9/vN9np9FoxJChA1bEAV+a+//t3Nzf0vfvI5EGippu6O5jYMg0ohoFpV3Hye/+rzl8+vLl4+PXvy/OIf//l3v3/1NnXdSbc41D0SxikBYXGpwK51nqZS7Ch9EKvBen2CgSggAsUYOuxjjCmlPsa5Wp8DoqfEpnKs/zUnFVHflvnh/iHldHF+toyRTHI6ImrMrOsiUThMxUQj4exARAEDh8CuR7oqMyDm5CmEltpRtaur65TSm2+/BccYY4gsUhlbuKddodwdRK2ZStUQ2gEWI6GVcXDXdrLOMbRe7hRiiuxms0CK1LIHJl5EqnxPDGmhfSQgQnNEag7PlmUjQjJAJgdOhJFYW3TOzK2diQEBIwfVAoAIfPSBADeHCBNGYkJSB1Vtbin0lhsBZEoxppgYIYYYahUiTCHmlGIISOzISMEBzUDNzRzMza1WrVUWKR51HCdRVRV1JUBABTdjt/a9HUNJf7oEBA7O5NDSqnG5XAKCAYylYgjkGELMqTNzmEYEAI+7MjdH2/FLcDQnByBopUjSUhIAMAxDStr81yGE2OpSc0JEV0NijpEQWJkROQQHVBUkAuaEgGUvZahmmWTR57lWBkOzoyBo3oZdaFaL39wfprEsF5koxBg5MBK6G5ozBQR8cXV1df5+sykhxNa0ZmpuygkYvbiuViuwmhOnEAGJTcBsrnV7OORF+h/+u39/8zB+/eE+U2bG02UKBmU8HKayHRvY1aci6xzAijkMQu/e3f7xmzfDblzl2BMV8wA2TGWcZwBPXUcclMM4zajz9enyar0cprJaRAQGICDi1tWpQBzMoevgFz/68a+//MPl0ysXqaXoLK6gDnMtCDSXouZiMEkZ5uHT59d//fMfD1IPimORHplD+Mu/+OXf/+Z3h2kGRDAIHBbL5bjbjePQL9chsIuGlOd57rs+5W6a59Vqtd1s3IEJxvHw/sObFy8+vn5y+YMffsEcd5vNu+0OHJjD3/7tv7u7v52m+fLy6uzs7PL6ap6rIyzWJzF3st/O4yjgbh5SXp2da6m1CpAP+2G9Pnm4v5tKOen6fpnOry5ef/PN22/fINLdzQ267veH3XYzTaNIOTs9LbPsdjsROTs7BaRuseAYQ4yX19c/+slP37569eUf//j8xSf3Nx+YQ8jJCJ48ud7v91/9/veLRT8cdhwTAZR5QsBZZbN9cISTk3MVPTm9SCEDQEpxdqlFCBFVp/3duH0/bu5K7osrOA2z3O3218ucWx9hCIaYQiTEh/uH8XCAWcnddK4K81RyQE48aBn2w2m/cvbQPZYPV3NHZoocvn3zXkxjwPv77TCOBrRYdjmyqXgjmzk8f/r08xcfOfhscn12+r/7t3/52cu3//mffn3zcJtjD2op1xy57zsHq6WYmImJq7uKWsr5MBy+/Oabzz9+fnF60iPBVFoDImDYHza1aoqRwOGYc0RzFZFxLqryq5/85P3th2/fftvF7vryqiMk5lI9xoTgtbaSDmXmqoLMIUYgjzGME6haimQqXd+fnpzUUqtKLVLmstvu3Juh8DhrDCE0iEsb2ebciQoAcIjEkTkwETq5CR5dtQ5I4MqEKcXIgdtlWlTRCFmrKnk9cv+Pv4ijubq3SldjCOYgVTQqcUg5uouYMLYySDI3rbXNU1ULAIC3igIlInAkZnVHQyQj0NAKC5EbKAQdWkE8IhhTI8ggUYgBgIKoB6YQU+4WHJKauRMgz0WGca6izVVJx3yqi1opwhxNRd1aEk7d1SUEiMcUAyhgyMnm6XvfNgEyMgbmRb9sIJppnqpoSCk4drHnkFqI6XCo4tb2Y294JANGbqFzYG4lQVzAEVtBWjN3O6KoLpdLImpEh2pGzDn3UmczyzkztVJPq1Lub9+lvDSpVgYH2JZ5Pw/DVD66uuxCVLFatai3MjIBR6KHw/BhM5ydnxIgH5My0OAfVR0QWof4BqpBcHOXkdwSs9ca0HMgN5zmMh5KSimmNM+6mQ6lDl98/Py//3d/8+Mvfvj6/ebb//v/Q+qUPM26n1RMtRSRqlORUuv7m/v+5ROgtK3w7c2Hu5vbaHC1zIhOVhAAwUUnB51Fyq5UcyXMDOeLru/iPGze3abl8mUM5E5I5KgUCIkJiJHEbbVafPryuYlgyqABQJiRAh+G0QBDTkW8Hibdb3/8+Yu//rOfl/EwHiZke3+/uTxdrBaLHPAXP/lxJHzz5vXJ8iznHgnBbJqHrssAfLg9dF3a7Tar1drd7+8fzk+WbqCuMcRAfHV5Be5vv3335R++urg8B1WpxUxX61VIefOwffL0mamGEPrl4uuvX93c3v0CIKa4WCx28/T+w81yueyWCwVYnZ2P08SMy5P12fn5+sOamAPHaRpPzk5TCl9++eWrb94QeqNlnZ2dltpP0xyCjcN0d3e3Wq+QqFQlDKenF+M0Xz95IiqHaQgh5K5rQmsIYTK4f3i4vn7y6WefH/bb7XZ7ef1MhEwUzav72dnZMAy16OrsnPA7VhWKiIpCoMM0vHnzLahenJyMdR5228vzy8N2/5s/zvlHn5ykaGoWAbQZ5OY3796XatxI5lJUW2FAyDHcPzzc3D+cfPQixWgAWmubmh5jH4iI/OH9AyLG3F1ekqh0sQvE47hXxhS7TPiLn/7o4vSUrSJSUVGrP/7s+Q9ePv3P//Sb//iPv6sCF+kUQySOkSmnaAbzXAyMgErVqooUHnb7//aHr148fXp2cgqUiDBiYA6l1nmekqcUozuUUksRKTrVcpjLjz/79P/0v/8fd/Puv/y3f/qnX//2m9df5351fnGWQmD3HAOKtRlgM4ZQU6cBzCGFxByIqF0CiCNHQCAmLnMppbQBwFzmFjRuKjU0j18IIQZiGsdhv9+bOTE/pkANCclbQbIT4THsTawqx9yMgZOrO6iqKHyfi+wNptQINA6gbtRIosSN0x5c3KzFp1GnYqrgXqW6AzM7uiOk3IUQRAQNQBv+kxARCELKiMCEGFjE2vWglb5jTIwcQwwxmHowM46BiUMI2rx8RKI6lzrVoo+Mfw7crk5VNZqpqaNLtVqkNTkEdGJQE3Bzopy6KvX7qW5uGLZAXUp9l1W1Sh3HMcQotRAnDhQYOATzxpJFAzQ75lKaW9ZMACQk7PsUKU82IzKRM1LXdSmludTWz+7ucy3mjsQN1eTqjEyEalZKBQcmXiwWVXA/DDLvx2mqqtUk51TMljGYzkREpuJaVQ2RDYZSDuJIITKpA7i37DkQC+DmMPz+j19/+83ranx2vhBVqZPIHLqcUiD3EEnFkAiIRW273W2G8XK9/Iuf/Pwvf/mjy8vTwzQ8f/bks5cv//mff82SK6E2iIWjuaODVH13+7BYLTHE9zfv5/1dIsyxE8dqANADk/m+mjlCzMmBfZxJ5o4Tis1jnUTU7p48ebLucsuWK3irXQIn5LDZPtzefkA0Nh9rAcQArnMF9ZTyfir7qYq6Ef7ipz/525/9eBy3MxghzHXamq660KWIxmcnlx/evHXKz37x/P1+N8+l1lpFSq2nJysROexnMwmBHWCaxtLFvu+maSBEU9nc3+92+3/8x/+mZn/+q59//PIlE5+dXzx9/sIRV2fnkfl0vR7HcRzGs9Ozd+/ev/rmqx/99CfEuFgu4jZhDIvVSlTHeV6vViJSwS2Ek9NTJBCRYRhW656ZF8d6UWockbOzsxZ4VW3de2m5WN497EXk/YcPDvDRy48Wy2Wt9eLiUkoNISyXi3E4cEr9YtH1C3FfnZ4a2IuXL2NO0/102GzKPF89ff7Ry49v3r9///42L1el1Bgoxiha5mlWkX6xRKsPt3dqUJAh5evz8+uTxVxle/DffvPmxx8/Xy0WWkYEYYaH2+1mdwCI4iHkmFNPoSAFDmHW+fr08vr07N3te7VlCtHcwLwBiARsmotq8+xDiGG9PgHUzd1WgMyhqJnq9cXJi+vLYyakKRXIZr5c9//93/zVen3yH/7j3z/c3+f8NKaEqubGMSVwRFB1c+i7rG6ioGJ/+MNX6/X66vr6fL3GyKWUYRjcfZomE1HVcRhFzJ3cyc0+/uQjSh7UfvXTH7y8Pv/nf/nmH/7bH7766uuTk9N1l/PFGXPoOgIqBKiqRerSU0yROdQifd+nlJDIwJvnsEUQcpebQbztHSGSmoXAOccjNAJBqrQVv9ZWvMaqBUBdq5s2OyQHjszQ6FvEgKit7wkNzYG0aT6Po8zjONMbpNmPNCH3ANDyHEIU0JUQiIObq2lRaSCYKgYAVcTMluuTlHsRRSwq4iLmAIDMGJv7vOWxwQOhttsGQgqBQmjwJEI09HCsviSc59rO2+riYAaGhOiNDdAqXBgAqnoVDSLIVKq04GBjbahICGToVQRRSq3HOnVo96mAxIjQ58RgRcth2GvVgMBIMbUCo1auOaeUE4XddmfHgKIyBzF30CdXJ//n/8O/j8uLt5u5IkY6WmybRymmmDAtlgs314O1VDBTUG1jEw4hVG2FyLBcrfNyvbnbbIbdKsPPfvLxZy9enK3W/Wr1//37f7y7fVivVyyWHUW9qgTAnFLouACqKTAikjnM84xA77ebb2/uvv76zbu3t3WaBX1OlGKPLphiiCnlqMWXq3WtM1GAw3QYByL8t7/4ya9++qPL095QpyqrRB3FX/38F3/45usUwv+fqf9q0ixJ0jNBJWZ2yEedhnvw5MVpV3cDPcBgBiMrK3sx/3RlZa93RDAyBAM0GpjurqoukjQyqIfTjxxiRFX34nhWlV+kpKRkZLpHuB+zo/q+z4NF6hDATErpUzZjBNrtxy9fvE1xlNgdzysg2OYBQ6vARFxUJZv6IGpDHDWPpFCjs2KJlcFUpIvp+vZ2fvYAAACV/9TkR7zbba8vrzTnUJESajEtWS3FGLMQUBDz/Tj0w9jOmqqtC5pJAQMCUxOzCclLCri93YQVHR4d+rpqm9k4dMzOcRC1lDOYpXFQk37ojo4eLBcL1cLe5RRvbq6vr69ub6+3uz6nNIzj6zevS84K+PDRk+OTUyQ+ODwqKflQd/2w3+0v3r09WC373d3Vxdsq1CDFMeYUmbAO1eZuk4ZhNmtTSnd3t7Hft207dP3N3U3fVQzY77rgwunpSRzH/a4T0aOjw3bWEJIKmMJ8Pu/6+OTJ47OH5+cPz05OjseY9vuuqarlaum9J8Qxp91u9+D4ZLZYOFflGJumHfp+iHk+X6R9d7e/GZfjGHMR8SHM5nOYMBgppTzuu71nRlVLo0dhS9vtdijy/PyRusqAiej9bT+m159+8GThvPOsgBdXV0jkRcdhFyN7x6YlG1rhmMtPP3z29OTgq9evfv3HL3ddt5jNHLOaMTGpVc4JmRqqkmTp9+PR6TEehffv3vV9AmYE+fDJ4wo1qZgWT0hG7EOoHBgWlU8+fLrrx3/6zefvLi52XXd6eABmFhMRBefuc+MoDEAT8NXDZrPfbHdHh+tnjx6q5n23L0VUxUoJVfCVl5In9GM7m509OEWTXFK/36PBDz7+4Mn5w99/8dXvv/gmEhXVUkrJgoDeOcSsYIgAaioKAE3ThFCNOQOaiDp3/0Jwv8L13jlWvUdG1nV1cHDw9t01ISJASmmCryBgSkVEpxghWkJTsSm2xvc6QpFRBkMwkWn0zez5L5g6f/pIORUpE4Vz4lcY4ARkE5GJ3cSIyDQxv3BaIRohTeO74n1o2yVxcN6GYV9yISYoNqVa6yrwNNQVzaqgU1fDGKDybuIFeEeqAgrO0BRMRIvKEEcpEgJ7dupACqApERBhVfkqOEJChFyEYnaeVaUUsazes5hq0SA6RQWBLbBLf6aPQSCHjN674JwWSTGnMbmJZcisVkrJE+wPjRkBHYZQ37PjcSIqAhL85LPn//5vfv67t/tvr986gikOhXVVUNWs8tVExyVHrTQ5l3GMgDilqdCMkEyLlAIIVV2DIkA5Xrf/w1//7JMPnjg2VOCq6eMn/+E//rcRHThDdg17iiMicajB0XVvF5v00ckMTPoUt9tus49fv3x5eXWTBiHDpg5d3w131zRbmil5L6BJPZiGyhvTGGi4HY5X87/9xU+ePnyQJA2xZ+aKAqEzKI/ODp8+OXv5zcsKCcgxgmMMjlWLiJYUh57yuGMrXY9ElESAi3MeqEulqFgsWkzNilcLkzyPyAeuHS4aT7P26m57sFyt2mZS9YBRQby921xcvLOSm3oG7KJIITbOqqSO9kMXJXWjtPXs4PBBqCv17VWMC7xHgiPAlIZIRdpF8+D0sVusDtZHkgs5XByswxDqlCpfdfsdEdXtrO932812uTxsZnUZum6zff3ixdhvD9brrt+Xm81iPiPED54/9z7c7fbr45PF4aGIztoW5vPYdS+//rrr+7u7G1NhPH336oUBPTh9QIAxxtiPRK6p66urq5LjcjFnwiLl6ur9er0+WK9TTsH5R08fL9crUdntNvur21cv356cni7mizEOVeURZ0h8fHrUdb2pLGazy3cXd/tufXhAjHXdgMHbt2+PTk5NJMZYVVXKBcAI4P3Fu/NHT15+/fXZ2SNft+1ibma7fadAdd1W9QyARITZV6ExKUaUiqWCXHmHcFiHWSCVRABpHNBwJ8Mfv355frR+dn7y7vLqq69eSQEmIi0ixcAzCIANoz198ODRg2Oz9Oz8dNb4f/zN7+82d+uDY1BlzEQsYoQoZmgCADmV25vNbN6cPHiw2+yubu+Oj9YPz0+lJGVUUAas2DnvkNgBZYAh9kXKwcHa9ePN7e3ubj9ftMt5u2haLcIhBPQlJ++9wj0fFNFSTm/evt1utuv1cohpurAiACE4YuCCBknLB48fnx4sU84qJgbFQHOsA//ypz98cHz0zes3JaZhiEXUh+CdIwI3DY7ZMZSqribWGCKIlFwKqEyWmClij4jOhVxKEfDsmLhtAzIYAKoF58rE3gNMUmLKmnPRzKQIBsiO3ZSdy98Rm6fZGogCYEMeEcRMVPOfjZCgpjnnGMdJqzux2wCgFDXLADCN7wNXzGhApE4R0ICZiioSLhbLup4BVSJp3+2m9lnOOYtMVWTngkmGe/orqE6MObBJRUCYSgrsicDJdzCgCYjPSBVVIEKgwTkBLd6pahVc5RxMgy9CQJSiWkREkCiXAlb8JDkwAZ3SmeCd/8sRkA++aeuUU8x5HEbC6ZVCFMFJJAERQmQAMlCZfufBVBUViGnyHR+uZsCYFJgYsihQ8L5uag7OEEMVcilTsoqZzdAHc87FEZKUQChqeh+F0jjse+LA9NHjZ0/Oz1RKMSVyKnJ6fHx8uL7a7tbzhagQZEaNpfQpDkX2/fz3VjxRVbu3N3cXby/7fZ9irl3FtYRQAZqqikoaOilGBJlpZEfEPWEsSYM/fXD2r370vcen6yHFlDPTdGwzAqlZVeEHj86+/fqFrypQYLS6CgiZEYtCKsqoVFX7TZQSJzSiWAYRAM0GyfD67lZBP/v443nTIKAL3rlAJt4REfc5xwzvN+O8rhnUwKLZxd3m+uqqAsRQJ6Oxj7s+EjtmyuoyETZeh8Fzv1q17Xw+qh+zu9tL3dTOxcBk1vgpIaaSJK8eHD799Ac+LFLKJWcARHJVzSWlvtsDILPzzskwXL171fW7uNvlcSwpBu9Kzt2+W64WVahurm+X88XJ6ely3x0eHajqN19+cf7w4fHZ+W6zub667IZhs7k9XB+0TZOGsRuHs7PTIhlMx6ELTSMipZSmqUFFc3FMV9u7HMfFcjkMQ1iF25vbYRi8d4bQzmaGqAjEZCqhCsMQAeDgcD2fz//4xy9KLlXwq6OT4+PTq4t3q+V6v+8+/8PnvmrOnzwl5jyIlFJKTjEerNY5xn7o2/mcm7ppa+8dEk2lsKYmI3LEIVRMFMdeFbaDXO41FaxdWNc+7W4Bpki6ZAED3m+2F68uLt/f9H1/tx0nPB9NQ6uhOM/o0Xv37NGDymHJCAhnx4f/5q9/+V9/+4dv310eLNfeN8zYuFoBWIWBikgpUCSmoSyWy1lzWM+rxw/PiHEs2QQN1bNjF1DRzATUANKYcxLn/MGyXs4Xt7ebm+3tfuhO1oezpnZappVkSrmImCqhQyBHTsw2u23lAwIvFq3kDKaqUlImRAXlwB8+eehNYo5apl+LRhxz0VhWy8VRv3r//tYMRWwRqqYOgDrRxXxVEdU5JSJ03s9mbRAJoR73OzUtRRAg5zzJ1wAm5rMA4nTNNTMC8DzRQymLjCnGNFIRgKnnBcyeiD2Tko05iRoyqhQp04NL1MsUIRGbfKXfjYAMzKxMd35TA2AiQCxSzNDAmCbHkmNEBXW+QmMrWbiYJmLnvCd27EMe4p/ikSJFVNmFSRecJE+gQDVQMTFFMzVjJJk0MoAOycl3Hykl55idgyknk7OBkaNgLksBFe8IeUoHWSmqZiKKhJOZxiER3MeVJuoyM/FfGMFCCFVbEVPu877bThRyEZmAUGkwFSVmZq8AJkYAuWRTYyIwLCWLACFUITgXYoxFBbWoQfAe8R7LUMo9+iOlhIjOcyrEzMSEjgTNcPLSI5haTmnYCaKWMg6DAc0bTwQpR3b87Mmjm9/8hqx4NBEppqVIHwuy82RDkt9+/RYY913v1EKo6qoRuR8ZS8mztu6HAREAVcp0IJQJrJAUWLU6CAYyDHu5FylPiuAJsQ95jMfr9Xw+2+yHpa/NNE3fWGomOsGIqirkqpaUi1oUZcScS0HKkmMaP3z84Ozswdvrm4zNop0ZcAZG5tFAC2ZhdO56sFVXjuZ+OwyvLm8utx2Usq4rNY4xqUqOhRmQoeQ8ptz1iZAX7RIRxzQqoUa+NmuCnzMFpqyM5Mh7cv7lq29vut3hgwdHJ62K+KqWsTMtKaVh6KSUcRwr58gg9d3d+3e7zV3wjh0fHB5sNjeb/W65Xq+Wy8vLq+Vytd3tBeD0/NwhvXv95n/7X//D3/7t3x4eH9V1s1gfxJwRKYRwd3fXNE3wrtvtfAi7Xc/MzWxe1dWTR+cA+oc//G5/t0lpdJ73292Lb7+dL5dN3VxdX3/74uWzZ0+q2jvH52cnFxfvlrOKndNcUkr9OHzzzTez2WLoxxjz0eHx4cGhc/7rb7796U8Onn/88a4bYiqqVjV11syJ8sh3Xc/kF6v6ybPnw7AfhlFlAUZt2xL7UkouqWpaQmQmZqeqw5i/+ubb/Zhvr69D2dusUjXvvffTksaIocSSiv3xy1er5fzBg0fv3r3b77eeAzk/0f6Kyc++92w5q9QEERw7A1u2zb/9m1/87qsXf/jixVUH61k9qxwjeqTKuzKt2MGpQuwHQ3TMMeU+ljY4LaNzREhZxLP3QCnnonp9t4kxz9p5jIkIzh4cPzx/cHNzc313s+vcYjarQkWIkwQ1xoRAqqZaREsIAR1KTMMgiFBX3pMHQOjikGK7aI6XC5RsJlNCv0zqSTFR6IYxZSn3oHw108oTGgqS8w5MmUJGrFxwzo1jbJo2eJ+ZSikpZyn3T2RVJWRmLIRgVvvgGCfWi95TmMHMhr6XIoRTMFID+iJmoPCdGHXKS+lklhFBRDHIIhOO9S99ANPCQOUejUzEgMjMplJKEREiCQFMjQI7cKRmxsZAJIjatFWo6xC8gsbYS042jY9US86glU5eCIXJ9CJqk/BFFCbHepFiE5SJwIkqmIoWM696P7oiU0AQFUJCUyZ0jIg2IYtUbVLXTK1iBPXOObRJFz8h20rJRSn+RRXYeV+Fahj7YRi6rnfOE5FNjEzVYqZm5LzzmIuoSuW8qTARIwFxTgWAHFNdV6KQsth0zTYQNRXRUhzztL4HgGnJjEATxV5E4TserqqYJjCr20U7b7uuQzSBYsaEXrWIgAE+fHD2+Vdfj8PogGLOu5QxzFaHR4t5PW/Ichy7Ts3IpCJ0gDknULAi+25fiopZ0zZiIJZVysTbF5HJo2Cm+/3ubr9dztaM3hGzI0VUFdUsyin1sxB+9L3P/uN//gd1It+BwICADEUUtZg5cn4cxklNgYBZdBuH4OzvfvGDv/vlj33V/C//6b9cb3dBK7XM7Bi9ARQDpoIgsc/fvhvesY45j2Oxosy0j0nRmSIgC1DJ0g9pyHkUqNvD+WKN7LJoLpmBg/cGfDsi+TqwoGrSvBtS121vt/v9qP/1P/3Dz/+6Ojo+y6r7rjBTNMkpxXFEhGbWDv1+kksv5otx7Hw1r2ezlMsJeyYchr5pZ7N2lnP+l9/9vmqatp5/9cXn5ydHsdukoWtmzfmjx69fvWSiWdt2/X6xmDdt8+7Nm6PjEzDb73fNfDZrT/e77evXL3OKbVPVjQ8hXF5cVqFqmvrm9qbveucCAlVVVUpfNRUYXF3dPH788Obm7u2bt2cPH65Wq4t377PofD5vZu18uUSAwO7169fHZ2c//vnP+n2/vb2tgqubUMDed13XdanIwemD49Pjr/7wh9/++jff/+nPna9UbLlaTJFpJqpCUNWpI22qv/rlT1Bjd7fe3Fxfvn9LIEYwWZW9B0KSlLIqqN3e3LRtc3Z2fHuDd7c7EwQiK7ZetJ998Kxilqm/6QjQEMAh//J7n50cnvzHf/71pu+BsGbnzZKkCSxoiCVLjAZEgnAtdyDw4ORoOXOeebKfEJEapmI32+7t+5t9PxKWnESsTGrzQLxcry+vb4Zc1quVx6km6py7BwqoElho2saHum7nJZdJUIOMLoRKoUY7PTldzhrRUiSLGbFDlDyZYcVSzkOKzOw9mgGhkYlJUSnkHCEAWCl5iLH0/WZzJ0UJWA1TzkWEiafooHOOmDUlQ0TGKlRMdI+1JqQpdz7JmlQdTUx1zsWcn5CKSkBMbIxayj2UgMCARKGITnI0+gsn8LSinQRR3yFbnGM2BFVRnfBEaqBMBOggTcec3Zu7HLOv2Psco2qRknMp90JpmFhyKGJEDEBqAmB6j1adkJEoogo2ldfcPSFu4hszEzEhIZiIZCmBnZkGR+zI8WRpNHKoBqWYoRHzVLojBMRJO2U5F7EoKt+dE9MBEIpo3w/7fZdyIfZTnQCMJnWyAUzPOCQC1EmF+B0V/34axAizphadDBg0IWXVVEVSTCnngOwRJ0yWqanJOI6O2LMTldpXDGyky2Xz5Pkzqlv0DXmZxHIT00LLRBuj9XJ2+uDkd7/9Q6AA3i3XR7P1OjQNI5UxFkE1BiSPZpCRyRONw5BKcs6JlCl7O8ZoAI7Z7nUZKmpkgIi7bnj5/vp4PV/U94MyRjbVIrEbRMvouTo9OD46OO5ick2jAlrUeYcKWERVMFSN1yHmkkYD6VXHHM8OZ7/62fd++ePvI0iK8Vc/+sk//Mu/jEPf+oAAUKLmCAoqZlJG1dHXChb7frKzGXsCNChEXrVUiNtuuLjZXG+38/XRpw+eOCaDgoS+8gTqUABhGMaduJNmVsNu26fL202fYJCQkv/ixbuPf9IvJXb7IcfoHfn7FRwslgsjcHV79vhZd7e8ePdKIh2cnrqqPfLtfnO7229jLGfnD7/5+ptnz599+umnR4dHzrGW4hl3m9uvv/78ez/6+fmjh8vl0jmqqkpNmqbp9l3fD3x717YzdqwlvXvz+v3FOyZsmjp4H7zvuq6IOOdUNQ7DOKY4phhTiN45R0Bv3r7r5vWsbYd+ZPYx5dVifnJ80g3Dar10wbsqMCIjlZiur66Oz8+OT47Gbre9uRKVuq69cweHhwcnp/ODA2N+++7Nzc11Xdc+hDhEJp7Y3dPbKwBMErTdNv3hd7+tWD785Fm/W/2usq+/fVkFb0TgfKibmAq2VagNciGEVKKAnj18QC7cXt8BeSb59IPz89PDnLKUQggTirsUK1mlpPPD9f/4q5//w+//eHHxfj2bL5rZmEuYcAJSkBnonsLinN92w93u2+OD5ZOzo7BoEBwADzEl0eu7zWY3jDGrJClQRM2sqKWSGO2HH3/iCb569XqXZb1YNlVd+8o7nHRCVVWH4OM4GkDlPQBrKQaEITigZVM9OnngHYvmaVnqjEBJiuYiCphExpTIeaeiKszkQvXg8MDRvayCHCnAdr9lH5q2TXk6RRiZpGSa+JlIRKRmAgZMxaStAjmXVYiJPUeJUwodDFTVEIiZwE3WMuTpycZakIFEJ+j7lKegXMQQ78G/9OdZCN7LyyaPIdwvpR2bGAnK/S18qhVPpCOHakWyqLD3fjKoOI8p3asC7p0HSMQ5FyQixwig6ooUEQUknGhFSETeGRRTQAZkB3pvOGNC79i5yT8FaiBFBAjAiIwAENETGdGEhARTAqT7JgUCmpGpoShGKaj3iZA/fdlZchpiN4z9GJHIVEwLETESE5sWQABk54L3Tq2kcShZJgc2Gtxzwgk9h6IIQBVzqUIuykTTDLSoOJsWHjBZ6HIukjMhmgqr1RxMFBBODpc/+/TJl6+uihL7ihmtRASHwM5hAVMA5/CjJ8+/efEG2B+dHnkOpRSWxMiiWgrkYsSGBM77Agbei1DgGrQgp32M7y6vu6Gbt+26WUAx0InsAUpGiJLy+4vbt+v18lkzXakQAVHGki1mQHi/2/3uized1JG4YDUFyiyDFPGuAkbvq9AS73dd38U0GMlf/eizv/nJD+erRkoRA+JweNA+ffTwn//wRdUGUgNClVCKGBoxmGagYOiG/pa9kXddGnMqzqMhSCml2O0Qx1S+//xZAtzfXTw4WDsGRSMDz2gIqaC5KkW+UfUEYCApM/mKhG38+JNn5w8f7/c9AVRVVUoCgCoEleR8CFWz321TzsZE5Fbro+XBoQF2Jc9Xq9vNpp3N16uDw+OtD/7Jkw+QwHn+8Y9/9Ot//IeY4rdffZ3G9PDh45/8+IfX15ebu7vFcsGO4zg659YH66OT0+12e3Nx2fe9qizm8+3dZiK75ZzNxMyC813uCODo8EBEDg8Ov/zySxFrZ03X9++vb54//+Bnv/ylqW7v7q6vrk9Oj+uqapuGHKVcTs4e7DfbPAyaUgJgx2B2d30DRs8+/GCI4+rgoKQIkkzVuaAqk7YXCCXnzd01mJYU63pmZrv9PpXy+tUriLvGDhpPv/j+x57x81cXvpnVFLK4iMECO1QKMRBXNgMU19YPn8+aefP24roNzcdPH5LpxEgPIbAjIHVkiiZkKe6Xbf3J0yfDbn99fber4/HpKbgwVZbILJCpQhE1cmGCI11vRIo8On1UN0VKUe2G8fZuJ7k45AImpvebVQNVqit+dLxazpqTw/Xvvvr69buLUNWH6zWoD2FawIJoUck5jVNlV6RMKc2+H/uUvhgLyPj4/MR7VkkmanBPBjCCVEoeFSyKqKqOSZvZ/AcfrSrHiOh8qEPY8V4EmtAQwu12k3MkAxeCU0UmnFAJhEw8pNHQkNixJwIRneYLRcqko3QTspmQidQAiWJJjB4BPVLwLkGqkEUhmWYBNSuTEkQLMzj35/kPgiEwAiAAk/PO+eAck5iAgRYVlMnupyUXwBhHUSAyYnDOM3vvGjKuXHDsiRipFJVcMqL5KUeDU+vKefYmAIRGyDwpJtHUtBRHrKKOCBHB8xQTMTCNMTGRD77KFRMKqOj0DDWZsOVgkx9xMpZMCiEFQwM1hZwZANGkCPKfv+5xGMYYu24AQyScQrBIE5+DDL2aAXAVmiq4MXbMPKT0JznERFlCRCYWxVKMkBCpSHFME/p4UoneO4fUkFBNJyuvCz4455mV0KmfV3y+mn375oJAQlV550wLlGwi6DwyWQFFODw4+Oj587uuh5iH4ZoRCnEsmvIUtEFCzFYiAQFFICCuQ4ixu93uur4/PTz64fc+vdncdNueiBGUEdAMwRCUCa3I++u7j548aCqKYrkYOnYUupTe3Vy+ePV27IUBIWdgql01LZaJdJLfoI5abL5s727MV/irn/3k5599VrMreRqdOQ4BCR+enX358s02au0rKQmxhooNLEoZUdWYAevZkqSrvascpUACxug2ZbzpN0T4b//qR9/78Nk3765+++WLfQqzdo4uTKPmxoEzGEs0DvsRPZRKJfV9LAqKzWr5/PH59eUVoVsuWtGcU7qHOxmKgnMOJ4w1UTObT6+oOaXNZjdvm6PDQzD99T//43K9CFUdXF231a9/8xsGe/T48TfffPPq25fvXr95/eDbw4ODidZAhMdHxynmu7s7JNx1O0DIRYqUtm2qtpkt5kR4c3NrKZ2dP1QRREht29RN30c1rarm8ODk62++duxms7n3FTLvuv329tZMD0+PZs28attQhX67N4THz55evrvYd/vq+nq5PqxncyZsZvOryxt0LmDTdX2/33mHbTP77LNPvXe77a5t5857VU0pdt12sVgjTl5fLaX88hc/v3n1pZU9AHvEn372cTNb/OO//H7gvl0cgjnPwJprh0yac/LsJSdiWx0sDfDxg6OTg0WUPGk42+k32URUEMDEBKkT7fr92cnJvF29vnj34sW3y4Oj9fqw9d5EIEAShGJCLqMDr44hqXz14uV+v3v68KxpZsN4l0sJwTuCwXIRI5sI/YJg83lT1z5LWi+bf/tXP724vP2XL796f3PVVtXhaukdq6iVAmrTK8EUlEGVGJMVwSLvLy5vru6+Pj18eH58fLgKziGRc8RWYsx914NCTGmigQ0x1r6aVY48T5lprCpCcgzBh5RHM0k5LdqZd86qYAoqgoYZSghUOY9IBMZsTDitbKfloUwTFEIAI77vpqrZmBKree/NIAQGCpKSWZmw/NN8IhcB0ECE+uc8ZC4ll4JIjnk6hCZPfJkKrczTEB/AVEoSNSslZ1Nj9lVVERA5D4CM5NzEBwUDJGZ2WIWgpgBI7HAC97ACogBMgYuJQMFEiHaPr7u3/hIhUZHibMqjcF1VWkpWRSQkZnJEhAamCmaTmALvxYampmZTpEjYFNGJ6pQtuz8A4rjvhhjv/8DsfiWN0xvQ5LQCYO9C5b1pimkcYxLVSUaEk5nGJlOv5iwpi5kCgKhO/WHv/GSznG4i06BBVZHQwIj5O9WDC2yI4iFrEVetOTSqqJpRC1FlYkM/vru5e/fu/c3V5TBELEIqypxKUcCcs91z0yZquRqoIRHhkGOfh9Ws+btf/vIXP/zhkMbffv3Hr+Slx+CM2sBTCCBnUUQF2+12l5u+dh4NiH0qeHl7+e2rt7fXN6xSEw5xhD7GPbSHh5ozFTEwp26KDCsYknt8dvKDjx89Pz+zkotDQFIF4glewsfrg1/++Mf/4e//b0DPSkYMzKgafEAuOUsTAoeD1CN7JFRLMOz6bozXm+3J0epf/+InTx4cieSHR6uru+XL9xfVGVfBHCtKwqJoKmMR9C7UpppVDBStDIM471998+0H7eHhwSynsev2zKyljHH0VdW0bVFxzs9mMwRr5/Oh78dhnAJg3W53dLj+x//237puf3i4dhxyjpVVOemvf/uPZyeHMef5Yj6bzeqm7rqu6zpmfvvm3WK+PDxcl5zHMRrA7e3ddrsD0PXhQVXXKeXN3fZuu/v0k0+IaBz7y8vL4+OTm9u7cdw470rRs7Pzq8vr7W5/sF4cHx0fHx1vN9umnc8WbRVCt+9XddUNXbcbmvl8dtquDw+LlM12387XRyenm91GLR89PO3ieLBYDsOQc+53/YtvvvGhfvbxx6Z6t90sDWZto1JKLiklM6uq6uDw8Op9PDk8yLdt3I9NqJDYAfz4g8cHjfvf/+Gf3r97cXJ8SuJRcxrL5CEpQEV1YpG5EA6Wa2AnkouITRBgE+fu66imhq7a9nETjat5y/asWb15+/bm5jqn8eHJ8dTT8ejQDIRF0USVaNj1puUP1zebu92D09OU02SKRyJyDtIErTFFJLYHRysGU7BcCjN88Ojk/OTwjy9e/eGbr1+9e3t6cto2M0kCJlXTIOI4jgiQVYYUQYmRaueL2OX72+vr7WLVHh4dnB4c1HVg1WHYj2Nh5yqEUsTMmKgKbj6fDzA9nzXnPCXrmbmua793iOhDqKsq51xK9uzuP2FVQnJkJkLfYSdtcmQimEyhUGByU+9TpKRcUiokgMRiKmqOGRxPy2HE4pxz7FQs5oREaH8+AMYUi8pkEJzaxdOKUkQMgJnlfrSfOLCWoiUzooA5pqYKxVChAJNTDOyAqaorQvJBkKBpmvls5l1QLUhIjhyw5cmyA6qChlOcskhuaOYAjP50DVebrCJmFkKonJdcspVSkk57lqnsjmQEyZIIEiISIELOSa04AgMrpuwU/iQOBQCAGGPXj2BGaN9p7O5rxs65IuJ4QiogATjHYxyLmNoUnkEz+04o7ya1TZFSShI1NhTV+5KCQeV9inESBSGic54QENE7R8xFpeQMjUuiyA4VENURe18Z8XWX7y7f3+3H91e3+/0+xxHFWIURqQopl1IyIk3cvUn0mLIokKHr4jCm/el6+YNPv/e9D549OX/oiRHd+dHh1d12nwDBZ8fOoZaUoRCxaFGmd5vu+PCg8uF2219tNpfv36Z+DGpFkwAEdkJ57Lq7q8tJVkFE5d5TjwYkVE6OV49OTlBFadL+mYEVFRIJ3jPD8WoWMO/3w2q+IA8AVjHUWEoeE5uV7Bh9O0PLOcVdl242492w++jZo7/7+Y8PFrMk5tjXAZ6fnV5dX29urh4dH7JlRCjZchKHwJasH2OBIcliMXPGqp0hknOPHj/cb3fbzS0SHR+f3tzczBbL9XJZDFUFKt3vNrvtRtTAxOGkCUvr1eL1m1e///2/fPzJR4vlvG3rGOn9+4vT05PPf8/OOyAMPqjpfr+bNe2kADS1F9++ePj4YTVrdpvdbrvNpTx+8uTs7FRErq+v7m7vNpvt97///bppttvt1fW1mAFzP46pyHRRWiyXddsa4mp90DSz7a47OD72PoBJ3+/fvb14+fJV3TSHB8fr9Zq9k30ppZw/fBRTCnUldxpTPD07e//23W63Xyzm5w8f3V1ffvLZ9w6OT9iFtp2zC2J6dXmJaO1sSUQxxulnAUxvrq/QwDE7JnZcVMehO17O/+1f/fz/95/+4fb66vzoWCVrTkpURAGdiE0AOBH43RcvYimPHxwUzXSvYFRRIyJjRAZRvb29UwXGezfkw4cPH56dXl5fvrx4v2yqhqitXRuqGIecC7uKMRCgAnkOl++vNtvtbDbr+6HEogopy3SXNQAgqDw/OF56h0mBAKRoh2Pw4QcfPXny5MEfvnp5e7cvZs5XgJAMpOhYVEXHlESRANlx21ZZkqgB8jiW12+urq83x0er1Wqh5hyHKLGU+1InAoRQ1XXdD8rME/l5ugVWVeUcBj/9EyHAyoWxHwiJvyM0lJJVDMHUlGjS900RTTCDyQirBgamOElgFACKSCqlqLHqpFSZ9oiOaRqMGxozpZzwL1AQOU86M+BpDDU5+CYU7/RyPGn2CL9DJyMgtG3tfMUEjj1I5oqdMyZoQmVT87sU731TV94RgqpmAJnkfcRGUwBIiqjEmJGmRKE6pHtW9CQnmz59VwXnyCOlmHa5By3TSwQBECpPf89U9J73VorkUghkuqobEChWVVPV9Z++7H0/xFQq79BsCr0ZgBYRnn4A0dTAFKyYYUyxH4ZUsk5n+OQqNnDMIVQp5zxRA0WQEPAeCVdKIUcTYJwQVVRFeFLKGTjnmB057vb7sUg3us5qVzUKuM98tdfxrru63e2GLMoi6rHy3lEwAyVADi4A1FlSHF0uaiY5F9FkElPeDeNiFn7xg+//8gefHq8XRSTlvbgKEE7Wq4dHR//y+gqqsIsJIygggmel6Sfmard7ebtH9C/eXo1DDOJ8aFDN1KtJmGijZv2YmVmtkE05VkB0JlZIrnfd25v9s/PjyaKJYIoGJlNSW0r2bL/62c/+r1//HjiAD1hUVDpVKWRAuUQU8j7kYeg3+9vtvkvj3/70B7/8yaemOsbk2CMSOFovFh89evrPX3w+q+rGYWCNSWKSwBiqgAgqpajs+iF3o5m2i+Z7P/pBkXJ7e5uH/fLgKGYRw/XBMRF5Vcf1xWaz2+5qX41pdMTdbtsN/epwrSq31zdPnz0Z+m672zx9/oEqbrcbNS2lvH377uDwABHqulkvFlpKiklEnHdN02622+PjY0a8vb49PDxcrVe3d3f7bmdqxPzhBx+IlK+//oqZr66uT05ORGQcIgCIFCAjJud54edN23ZD//j0eH14XErZb+4+/8OXr759uV6t1sv106fPhGii/L9++epv/s3DKLLb7kDUIUlKWsr17R0ROc/o/NMPPzo+fXB5fZtKqZyftbP3b984NO8rvz6c+CVpiq473mueHJwOSU0yYkxj0/pf/exn/8c//PPF9e3xeumrGSFITmpETASmqs5xTvGPX3wdUzo/XgV3f8kjUjQWBAp4/er1/u62BrKxVxEQLUpZYVnPxn746tvX6/ns7ORw5QMzB0AgcgjseYyiairWtI2qxiGiOb1fQrLzJGAgdn5+spq3BJJyQShV1Yaq9d4XKQeefvrZJ59/e7EbBnQeXNjt92kshh7QuA6VY1Ijstr7lZsDiK9qAI5R+jTu9n0c01Q8mkYl+B1nrRQFA8eekMAwhOC9E7nnQjukIpJzQcCqqkIIKoIE3k2vvZZLZsQiMrWIAHFSKPtQTY/LCabjHCORk+JKKffZJCIkRHWOwbGaiZpj17R1jpkSaE4Kf8ZBB+dTEUS8p+tPTnC0KYOjCAzmfeVDFQIbMACJlKryddMaOkNGTXKPuYEmuFgksPfOO+bAjJonL6eATv4lJASRUgRFDO/fFDVLLNmRghbJKpUpTO8MgAZWhRrVRCMaVS40VROCLyJqkzNOPWPOuQASMaExIaoSo6FOh4v/jpJxfwB0gwkIGXkmJmaHxEWVi6moC0yipaScO0SfxxEMpiGZOi9w70J1ZJ4xlyKlEBh7T0gKoKYqSoCO2dSYycwm5swQRyacvlGIUJTMVIu82wyjcjCPWd/e9JfvN5oHKTpBo0BBHSFByYJE7B2YCyGwNyPPXhHK0Hfb221ScRX/8Mmzv/vJ9x+fH6sUkZhKVJtq3sRgZ6vFu6ub27Sv2Pt7vxrk0qFp7evKucubuxhVYmocEZNDBJWaQsypHwYrGVCbtgL0aeisZDHHjghEDCTjsI+v3t+enhy13osJExKgAJacM2dftZvN7sX7TVaXYmm45JjSENHA+QCIMSIxNN6P4t9cb5va/T//7d9+9uGznIdBspiSMZhDI+/p8cMHb66u3m82Dw5XbBA8270zFJx3nK1CRiJhyqnEMW03GwEuJWfRmHK6uWnbGSHEOHjHMaZc8mp9YCUbSLfdbjebw8OD0vVffPm7tm4fP378xRef393epZj6btc21W67/eTjD8ZurwDItFqtpIj3vq6azz//YrFYHB4cjDl2Xe+YFwfrnPP7i7fehTrUiCipvHzxIoRwfHLinH+d305FXGJULcvVej6fF0nEAEBVHQ4O18vFLHbb6+vbly++jsPu9PRwfXT85Pnzu922ruvE9PbVy9j37968Ojw6vb688p5CFfa7/Xy2GPfjdrtt6yr1Q6nqN2/fhrpxzlVVqOvq+OTkzeuXCxXVCfWlJY/73R0jeMek4hwxMJigAZolg2T44PRsu9td3GyODo8P10el2+eUg69MjUCrQAQFQa9vbnJOzx4+rIkcG3GwAuhIstzd7fKQBWG6QRuRSBlj2g3j8Wr+k89+9Zsvv3j5/n1MR20IBCqaig/MmHMeh7GuayYe9p0WIeIpjFdyETBRC4HOjw8YwbkQiNQ01E0d5sQeKIFlicMwDmpWDCGLZAEiQBRVJjDNhMhAJUZPARkk9mAoWS3nIcmm2DTmqYMPjFpKUYtJdtvudL1WKFlNc561M0cebPJzmxFqEQVVRlTwzhWDae+C350hMaXGIzOaYQjBTXBoEJXv6MYueB8Ii3fifCbFNlRMxM47B4zAiKqW1ZxzbdWAb3b9Pk8o5j8fACxSpu61mXpHhIoIUxXUAIyw9r4N3juPUETVMTEFBGKeRusGhqqGJibl3ggK5h19l7LNIskmCIQZAQTHk0BZDQF1mr6UnJxndvcbbgM0IiQkU8tSSsxTkN+7UFdNqP0YBysGps6xKVaBckkmWRAY9B57DwoTJxuxrf78BmBqhCilIAID8NRpgUliplImEXlJKeJ9JtVPcLvvwrg4OZoRqR+jTkM3gMkSM32pCKiqAubIKYiYppLZERioWROCcy4Po6j1Y9ptO6wPCQCQc9F+33MZGIHRigg7P+xzyYXMjIh9EAUFC8Grasky5JhT1qLzRVvX4fnDB48fHBfJpRjg5JgGE/O+JsR5Gx4er7rXlwzoUNQslVwHPlgfeuYch7jfMUFDxgXGmI24FE1m+64fYlbDIiWVMYmsVwsTNUFTNAdiIGJa8ruLq4uzow8enjASMBKgJFBEIffy/c0//+Y3t3eDR+qHLunYtm1j5gyYJeYUnGbR0mXHeH5+/LPPPvnRZ093260BOHa5xGLqANDAO17N2x9+9sF//t3nPYXl0TEj2BjR0MByEdeqZwLAUu5SzG/fvP///L//v/+v//l/Xq4OmqYRhbquZ7NWpKjkpGXo+6quCcA8M+PlxcX64KCU8u7tm8V8UVV1VTeLxcrMvvry677fV8HP57Nx6EybP/zxy9u77eMnjx6dnz148ODFN98C8GK5JOaj5fF+vzebBL/5+vo6cXLRlVLevXnb7feffvbpcrUKoaqbhpCmz+ro8PD45JQJ37191+12Z2fnjx49RMKX33479kPfdavl4vhwdX1zq1JijlVotKSLd7fdbjtvZ3eXV4frI9XCrmna+tW3L+eL1dnDs2Ildh2ojcOwPjk9OT0bY0wxBh+OT09jjPuub/uOnXfMJecXX3919/brecDVrEYFdGBoROR8GIW2/baq24eL5Xa/vbi43A3jbDEHpjShXZwzZjEk0OD81Wa377764NHph09OGEw97/r04uWrcYxSpM+Si0hRNSNmYs+cPn3+9Pmjkwen69/+/o9fvHjTtutZHUCKjUnNJilgaNpsYAY+eJkkVaBmqohR8nK9mDV1qJsQguWcizhfh6olDpZd1nzT32370ZCC54qp8gTkUkrEWNUe4uhURBIzSSHNUjlsqpoJ2AXETFjEsIgVKVayZ3bexRIlSxWcxAIAYppNOYSS0lgyE4UQcuqkZO+cZgEDEZny2fcNLjBRsekqa5ZzoYlFDEbknHPOex8q4grZfJFKMyHP2padr+s6eEYQKzIFmpi58i64CgjRcf4LM0rbVIaQpKQcvQvBc/Ae0Tyz8wGQikjw7NjhPW7IqQGzQ5p6QkoIOWtJZRzHvh9iyjElA2O3CO6+XCWSVGUaIhIRMJdSxFTV0BIhFRGT4u4N0ozeO5jqiISqsu86Isyac8l10zZNEypPCKnvSlYwcxwcT58QMBPBJEU2QCDCEHzlfaj+jILwPBm5JrI/I+D9pnt6XNq0Z6KSMhqIKRiUojkXkeSICVGKEIPdbwX4PsvoPQEi4MSqKyKGWL4rJJsZqBURIiRm0TKpCpBY8m659qrTscfElfPMCJ4QtaQ0MiEym0rKpR8zEhrg3W6vQArsm/nB2XoxqwlMVXrFm1SWwZXSp9hLKaaGDoALEXm2BwerV28ud93WvEPg5WrRtjWpDl1fYiQEBXFNPcGzRGSIMcY8phyTqVI3DtthryZVXVXsNBU0IXRMPNXy8zh+9fL1g5Pj9bwWEzNkBiV+++7t53/8Yr/dzatqHPsU+5y6+bINBKyWU+8sRUk5Fk1KVXjy8MEHzx71Yz8FOlQUAMWKSJ5eignh7MHpBxG+fnN5O0rVtIUDpFJyKRkcMpo1bdseBlfN2+X6+z/6aVXPq9D4qsoptW0b49B1XYpx8rIeHByoSo5YWI4fPEhDv73tEPHkwXlOMmvb8/NHIvnm5u6bb745OTk+PT2pQqVF6mZG2/H66ubB6cnddv/67btHjx+1s/nl9fUDxyGECf5lZk3TqGrwYXt71+33bduGpibHs+V8fbAax+Hs/HQ+b+/uttvdNgR3efl+uVy2bf3tty8ur67ubm699z/68Y8k5Yt37xar5frwuK6a9Wp9ff0+jtE5V9dVGvpuvzs+O3eVe/f6NZrNZ/O+j4vV/O76Zuj26+PjEHyMqWkaM8hFfKhW6wMAGIa+aRfB+7qq66odxtyQU1UgEJikGGDsb263fcwGPMS8Wq1mTfvy9dur95cnx8dEgGhMqvcQfzFRBthsNr/ebnMpHz196Kvw7uL11eXN/TYPAAGrus4i3TDmMp6fHpydnRSJs4C//OGnq9Xyn373ZT8OJ4fHtYMUCzrXtrMwWyRQN3OkSoAqJeaiBn2OWPyTx4+Pjo9ndWsGM5KBIvsAhKkIu2q7215evMOSgw8VmuUkKYpaUc0iVzfXoGU1byvHtYFKVtWEAcEVEPQhoHBVBCRGicN9nkTRkKCufRU8k3p2BkaE7FhiUVNG9MRoUFJ2HhDBez/0/VAyMd+XfmWCCHgmdtMeGHTqKKWipuBD5XzlfGsAPiez4p2r61BVDbNzBIRUDJiJGAwV0JyjtqmKJoI/N6JmTaOm+x4MjBgnBGlgZiR2bEgxAxqqgoHlUnLRUjI7cWbkvE3GWIBxGPshDmPc9d0YRyJWKdI0ofLO0VSRzpq8a6b9Lk8CS8+Vc8yUchEDN5/PZ201LbirUDnnEKBkUVMmN6GQEKwKzjOD9+LYTBEYyJOYs2BoSEpgqACgiMrM3rN3blpA3Z97baOiqpqlTEHIyUNfpFBGByQqhCiqSCSTid4IAKexrAEYmHfee1+QipQihQhzKUzMEzDOYOqFT9gU75yFMIoSKhEhUxEtYFby6cmqbd0IqMxjihRC3S5luEMrIsJoaOYdsWfCakgZY+6zxJSTQTtfLlZHddV6T2aJfEAA9c1NlyqsYhr6vpvm8C0RmgKAYyQCH3zZ7paL+Wq1ns3akpPF2ARfUE0KmlPFDBTRs3MefcGRgSSNu7irG/43P/5Z8OHrV+8MnXPikIAwhBAUioiBDUO53fXHqyWXZOx6gjcXF69evVKVeVvnnDzZog67vr+9ulw2DnNBQCJoKm+OlDUrbG43V5vN8aqZimuE6KamjJpM8KwQdl26vbwq29u7/XZ+uPJMLQdgM7KUU0olQlnMFsvV2V//6//u4ePn3oe2nU8cq36/S/k+8SIi7WxWN7MUhxwTADWzuaRUSjGw2XwxDDHmdHN7s1zMHpw9ePnyxTiOXdc5xweHB9+vZh99LKvVfLu9+/KLr87OHzz/4GnJZQZzEbm+vk4pPXnyxHu/Wq0Q4Pry6u72tq4qZkrjMF2mzh8+fPntt2Z2eHT46tWbze1t29ahCgT41Rdf5iJ12y6XS1VdzOZvNm+2XX94enZwdDxfrq5vbxFdVTfz+aJp5/0YyXHVNiYiKc/a+WK1PjiunXfb281+s+n7viCGPrXz2X67y6IffvRxXde6XE6m06LCzj394MPGUdlfxe6moDqYrMAYU7x4d5FGY65MZRyEiZ8/fvT69ev3b98sV6vVfO7QTAUV2FEpEc3q4Idh/Mdf//Htxc352VE3jkyulCRijICe2flYpKgpwEfPnsyaKie1Ugzgs+ePD5bLf/zdl5c379fL+Xy+ClXrQgXsHWkgLClPEGbnnahKH2vv0hg326Gpl3XTSEqklotWFaFa0fz++vrq+qbEIjmlYUipxJRSKYqopsZUSn51cdHW1UEzPzxYuuC7qDtQkbKYzZAZCb2vXMMGO9ZgJY0pVZUPnplgSvCAKhmAytj3UnQxn09rQmYGgylw6bzPw1BKIcKJCzQVgycyz6RKACs5ZmSPxM5VIbTkg4oA0QR/vs+yAIgYTHKQqfSPJpLFZAodwV88Cb33VQjBB+czEUwQO+8cfld3JQRRTSX/KfkiBsF7cs7MSiklRTQYU+qGoR+HYYz9ME7cKjQLyYXAOHESDAAyMSHQpDsIdTXNw0OoFcm17fzwcNW2leTkvHMuiBSAIjkHoraqAATQwNQRYvAxexExtZwLsUOdHPICIoBKiEj3nNWqCvQXNNA6VCqlqLIyAAjY1H5EZAUQVUaaUN2TrcUATc10YggaIU0yBGY3pCIixDRddZimFVBJ44iOY4wTGDFUTu9N9KRmpRQjLCKMsJg1eynbfa4YkUIBZqpFtPRblUJk9y02JFUbi2y74Xq/d949f/b8+Ohk1s419hWbStbUIbmyy5dYlrCaCghgoAYKpiAEoIboqw8++bSav3eghDDs9w7UE05v7p6dmsRSRrExG2A2w10XN/tdKekHHz35V7/88WzWXl/f7cf47dW2mS1yRkQA51RVUJ13WtUXXT4e9ahZ3I7j528vbq5vUTw7Mi3OcQXgkOvZ/HpzN5IFJDD1xMH5FtPgLEXp9/svv/pm+aPPHDkzcQ6RcByLgGSFZlZfbba///yL/WbbSNnvhl3uDpYNV03JJZeiaiCW9nR5d3f6/NnDJ4/Pzh85dnVVbff7Me5NyzRzNFNmns+XxDyMYxGp21ZKilVw3tdN7UM9xtJ1m+vrq5vry48//rSuayLa7banJ6fLg6PTx81uv39/ebXZ95988unDR6dFUtNUhHx9fX17e7tYLJh5ehO8vrp++/q1iDShQsDddtftdohYVeHJk8cpxbZtnz598lVKjmnezq8uLw2obpuhH66vr87Pzq8vr/74+VfPP/jw+OTBbL7Moll0uZjnnBertWM/C9XByakYxH6cNzMgvN3eHR6fLubt4fHRV5//vtrvnj04HaNsN5s0DOT83e01IfngDDFJ1kzB0cHhwXB38eZiq3FEqtCQkYDw9ZvXcbfF4sbSAWLRMgyRiA1NJL998zKfHK9XB2Q02ZMAmIhAIiOI2pdffr3vtk076/YdiACwGOUs4343Fh1zOT9dPTxeESgSBxcKAhs+Pj05OTz85s3b//tf/rC56M8fPV34RSriUMfpOWewj9l5J4JGvvLNMMrXby52sXz08cdN23iTrtuZ3dVNG1O6eHcBCm3VkMNuGBTAuZBkcsXT3/z4B6fr1b7vv3r98sWbt7syHi3X5GY5qyNQ6S0X1azJIVVm0xSohBDIJqAKIRQVQcScU8lFVbuh887Vzk3BEKL7DA87572fPOmTGRfv4fPTc1hpGmUTOR8mjSBMYnK0KeEYpXApyFknBbHBVIAtpbCniUiNoo6dQfzTk1AnEAPhBFqeBucIhkiiKqYxRVGIOTl2ABBzNiJRILOJYSeSTbQUAQQDdOTAUNTGJMxJTQE9EiAAkVOzIsI0ESFAVYkcIfkqAJKrmqZulm3T0EzjsGcEIJ6QztzUUygTiWMpzOSYPHMCNSNkmnp0jp0UNXIEiFoQjAErT1Xwf3nuVSGoMEmJOeNk5WHHTA5Q1dTKNIUDw6ImqmKWSiJERIeEjBXzCGpjzN0gwFRMIQs7P4X9VVVMQXFSzaUianFIWUoWs37o68XKjMwAHbEjAQR2OhmfxUZR9JUAEBijy9Nupdh2GMY4Lpfzf/PpB7uhzy7M29pB8sFAJYMZIoF5sth3727s7GDh2RtqmUZiqug8N0vw3G1flf1dTmKkJoqGqSQFMAFEzCUakgqOucRcxhT7FI9Xy7/7+c/+6ic/qgLddXty8OhkdbXdgmlVV9Pi3VDNaYz7IY8Xb7RmuF2vvn357dAnMnSkoJkJCDDHUVTBoHVhHHKnY0mxdhUTB8+iqlJA4ery+tWb9588e1pyD6RoSGTA6Ov27e32y8+/6He3nsgchuC1iAMnRTSLFtNJlCGWo7x7+fbv/9N//B//p+V8vhLn5+0CNcc4TtQqZlosVyJyd3Mbx9457xwjVVUzn6/Wprnf3nn2KmWxmHddbwBNU5uI5BLHaCaX7y9+85vfO3YPz09nbfv1V1/f3F4fHx8j4O3dpu+H9WIJornkfujfv79YrBZxHHNMRBxCiOPYdd3q4KCp28ur95eX7+u6Pn1w7IhjTEXETN9fXN5udiULu+vzR+ff/8Gnh0dHBialqGFVVc1s1g3DKlR3V5dhtmzaFsyilL7vZvNZxTwO4x1sqrZ9+vzDZj5rmnnRLo7C7FTk9vKKnVuuV8SsoInim6v3n//utzcXL49qqhlLLoRMzBfvrt6+ulThnHIfowKKQR9LkSSSPvvw/NHx4reff3t59f708MhUJILjgKQ5Z+cc5LxYtE3b9l0nUhgQreScc8GsoAizir7/7Nw5VDMiNOcaIkRWsXlT/91f/fJ7H3/4v/+nf9wVAdVchnEYfVU7VxWDBD4Wp2CuaV1VgfOC9O7qVvCrhw/PVlWofBXTCBwvL+9226EKlaNpfWeOwMgFqGQcVsvZwXK2XjXPHj/4/sfPXrx6/U9ffP7tu6tUrmftbL1eInoONPQyDqPInoBQFRBTTKLG1DoisyImKqoDjikGHwKSD1VRNQCbZtRMkKcsIosKABAykjrvDQgJxUouJXg/zZZzTimNUzYfEEHN1EoxMTVNRYG5eO8FiafbHqCJqcI0c0bHVfjzNrSo5BJBhQwnOkCRCdUz+Rc1paKAzjtEFpGYMxpCqNUKMaloKaJSpCgjOSaum5xyVnHsRCiBIZkjIARGRMAimtUQzIHZaM45FypAJnZOS6maOtTNRK7OOeacTNXM+r5X01wUUIeYgwtECAbeh6JScnFV5diVlIgQgErJDoCZnZ/G6ZD+QoXMLhAph0psr2beB8fs2DkiUIsZJCdEKEWygoiN2VIqAOSrWiSpFFVxzpWSRckAbbLsTBlQRKJpX0uIhNMszzGlWLKVktGMiYqhZDExADIgMCsaGQIYITFWy6qNC04lp+3tsE2jqizb2b//u7/67ONnIfCb9zf/23/7zc1uH9gHZlEuCsSMiDMfpKRdhmN0FUPCGNg5QMXQYXV7t391ud3cXQdfTREfNsljxIwISA7HMSuwig4x342xH4am8t//+NnPv//Z6eGBSBoThOCa2h+tlg8PD19eb5q2ZRPHAiI5xhS7UDUVNLub9zfvXqYxsiogxO9uN2OMJYvkooapSLJyeLiuiAMREzKTA2JP/ZhUy4vXr49Pjg9nlUkqIo4qrOdvb/ffvnzpUE+Oj0ElplzVtt3v92O04CVHh4wAjpypeubd3f4//C//a9/nf//v/x+PHz8ltBQzswt1KCmJlBjj9dVlt92sD9Y5jVVdoUEI9dR3z1kkiQ/h/Pzhdt+p2eOnT9+/e3v5/rLrX9ZteHdx2e+7u5u73d1dM6uI+OjgsG1niIBE6/Xy/PwcAcc4dl1X11UIoWmazc3trtsfn55475u2RcTLy/dD3+eS9/3eExsxEW13exGtm6auq0j5/Pyh8w7RXrx4sVoexphXh4ez+dxXzfLgQMZYxDxAycU5zjn2fTf0u6K6PD5JY89IB0fHCjaMYxzjYj4b43j57mI+nyHB3d2Nc8E7b5r+8M//8Ltf/+7y8uL545PnD08bhEKl74e3b98Rcs6aswCgGaoqEqvIwXL2o48/OFm1D4/P//Nvfvv68u3BfNHSRK5kFdn3fUzp/PzMEZrkqVo/uf4UAAk1p0dPTh8cH+SS2FVENPX8AahYVtWu707X63/1N7/6v/7pd6UUQmfOkcr+9tLIhWYeC2iOzmevQCk6RRPdvh12716388Xp6dliOVOzq6srmMh/pqrA5PphSJIMKTj84PF501TsvZp67z588vjJo7NX76//5Yuv/vjNt+9yBDhqq+B9KElKTsWMiQwgpmRqpapURO1evmJmSOS9D75iYiCu6lqkEPN02Z8iQGYAZt4HKYmdk6KEBKYyTQ60GFgpJaeJS1OQ3GTHLVkVzTOVYqpC5JBgQnLD9C+oiIoDNoO/ZAHFGFPOZlOAxVLOwTnJpZSiWmCKZt0fUyIiKRYzqGJua8oxl5in2Q4CMlLlgzI2deNUTMGxR4Kc1RgZzTR7RWXLUsA0MHuiUAVDdL4yQGcg49DP2haADTmrjuOgqjGlmEFEDFGNRECMYpmyPKxSHHtGmpq6KjL0vSOoa+8cee8BMZec8p9ZQISsTIRQ162oBB+8YwQgYiMNVAlCKTHnZMiArmgpZr6uAWQcsqEVzezCVHEqRRjJ0JBp4kncp3cBpoAtEzHeQ1il3Gd7S5bJEbbvh4vrK1cfqaKhApEnJK6Lb15dX+53m+Dd9z54/MmzD87OTo8OluSwG/vD5eyzZ49/+82rZnFQsjpfiYrkjGC9FTLbStyu6tO2caXUs8VY4Jub7vX1zZBVhYeBg3NmwFAqprZ1q7aZwBw7JmXe9zFnyJg+fvb4F9//eNWyd9j1e6ZZwxVo8d45Gp8+OLnc7oe+W7eNQxYzBVwtDxarJaJCzhVg5atRxMyQGEUAkFmR/Jj6bdelkqjyQy5nB2uWXFU8WY0BCd0ISGLw4vWr9acfoQKF2tXLV2/evn37vmaGyhOSmKlqjNExT2nmUDWaExqUIki0Xq1/8uH3wvpg03Xv3l48PH/Uj13fd6GqVu3M1KSUfr/f3N4Gh5JTt99XdQNA4zCoWtPOEIF82L/rVsvl4cnZZnvXVJ4JN5uNmb1+ffVf/st/A6KPPvjg0aOHBnp4dFCHKnhPjiY+4Haz7YcOEL33Bw8fish+v5+iAXGMsY5932/2e+98qLyYSoztor27vVsslgdHh13XLxbzYppyRLIX37w4PjkGwzHGtXM+1KFuHPt5M39zdeN9aOp6u93O5+1Uah3HuN1umvm8qmdElHKpZ03dzKZJ5unpyX67GcfhYNYW1ZKFDG9vb16/eb/ddVngi5fv+py+9+zxzPtXb98O/UgT990MAEVEJ1Uf2PeePz2Yt0VhtZz997/65X/9lz98/s3XMJ/VhJ6c9y6OQ9s2Keex73IuWZSAFBCAAEStNAE//fBpVXsznfzhRITsyndMxTEl9tXtfk/OpYyiBOhNxhxHcKGdg+aRMM+rytFUwFIwE7Wc0t22f3919/DRw3Yxu90PXT+y6tTKNAUjX0qSHB+fHT08PXSEzvF0pUPHJPbs4YNnD09//Nknf/9P/xJTHnNJcSRy6NiKiBkRee8mgWGRMu1LkCh4r6ZZoog4ByH40XvRwkRa7n/3pgKsiJCBKYGZmCLA1LMRFbGJUe8mCouqppxBVYoQkU3Gy4llaTYlaIB56kepmqqKqN4zQu8/hiGNOYkKmiGQFEmxKJSYk8q9r8aFgEgCkETypLwfOtHMRjklkUJEqoZkTDQtqD2BFDUD55xqUSsEhMgKlLPEnM00Y/GMRUUM1MD52uU4juM+xnkIVSqSUpaSVVVNcy5jSsEH762ojTGH4FLRnDM5B+imyjKYdV1nKo4de8cOnZsGTznnP+++1WwqTJBzZuS9d8TMbKq5GJMvGsGQ2RvixNo2M+ecGoChqZiJdw6RS8kmRsgC5b6rB0hIqjaNk1LJqlpyllJADaY/bOLppYPBIUDlrPUYVQiNJEsuVRV8CG8GWbaz//6vf/rR00eOmLwTyTFJzqUK4aNHD//45Zdxd9U6rxk1ZRWTnBM7QGaPb1mrJ48Jw+vL7tvLTTeoYjD0klUwZDUmZqrH3EdJq4atpJxLl0vfDeiqw7Pz5+v1Z+eHRzVtt7cGWNV+kjI7I1Wrq4rQnp4e/PoPXwRZ1HVAx8uDJRrtthvJaYICarECQDyRF9GKxJQVdD/sl6vZ3/71vztYHvzHv//7fozrKqBY1uKDmyr1ooam15fXr1bLhw/OksKLFy9uXr9sfIipqGmMXSlFRaUIMXvnklhgLopNXTvkocjs8GR9+uD5J5+182VVVwYwjv2k1ytFpv5jTOnw8BA0p5SGYdje3VZ1k3MK3t1uB1/V69l8vlimnNeHM0DotnchhPV6/e7dxT/9+vPff/Hi2fNHv/ybX6DixDu7vrrc7RUBUhr7vk8pIsIUAbq8vIwx7rY7KeX45KSqqs3dXT+ORTXFtFwtU4pt007BpFLK+fl5Sjnn1A3985/8qOu64Oujg5PNbotI8/lyuVorKJjFfswxzRazxWLuGEtOWgoitPO5qVYhLNcrIn97e42EKcWry6uqCmrWNPPZjMYYEbmu6+BdLGWfyqiE1Tyrfvm269PbD5+dbvedFi1ZiikgmciU60gxnh8dfvL8CZEZczRjxF/94Ad15X//1ZdjVIcJTKu6buczBTMgP+FkzFJKUdURJymffvTh0WqhJoCo0xIVyJNDFSRO42jg74Z8ebtTwVwKI0mOd9s749DO10UAnaubmfqwLypSHE0RSkMPyjKqvHi3XYzSHjzoh9Td3u52PZARgSpObc2zB6eVd44QzJgJCbQYkQMw03J+dvzB7cP3F3eqshfJBjEmFXPeG6BzleQ8nTwAyEQppolvMOaChlijTHlXRARUkVIKIk5/nR6mzIw0yXIJYDLdahFx96p1yCmnkBhoIlITEaKbpupKRETMjgCIiJ1LOeo964xMpj3x/UcuOZdSRM1UFEopifKYpI8DI1RVhYiQNVReVcexlHK/HuiHEQyKZCtS+8rQcs5ZTdRUMgA57xDRFBHIANTusZgll1KklOwIwLvJ/GpqxMmpZDSJfWdicRxTHBEBEZxzAkAiACaqolpULeUiBZBxOr3NwGwYejNzjhFRzRx75/0kuNG/kMIXEQYkRCI3CS6nPwC5h3eCARI5QismoDZxPOKYiY2ZldSxq+umCg2RaRkICYin/8V3/DfxRPqd8td5r51VIeSSG27quh76BGpsNqt8y0D9VasQ9ynlrCp7RnXhyeOHf/3Zo6enhymXwWJFNRRENSZP6JYtf/Ts6R+++CK0M53QRYEKITACekTqu/z5q8uu4F0vWdA7z2yopqpASOSIEFANXFYdxhjH8W4zpBjns+b8aO2qBliLlCGTeed88KFGCmrMiI68c8Esf/zk4cXlxd1mv1w+8FUlufTbveQIk39OLeWiouRIxHJRUYiSUtqfnx79T//m7z54+AzJff+zH/z9P//XEFxV1DGUFM0A1UoqyE5MX76/ocXR1furzfs3M0bLI8P9d/I0I9CUtZgibnZd07SLWeub2ZMnz+v18cff/9Hhg7PFYul95UMoJct0Hyq573fTDbFpGkK4vrww1WY2yyW11FSVe3N5c319dfbwsRqIKjKLquScU75492673eVc5rPq5Ojw9MHJycnx61dvq7rebnb/8rvfz2ftwfoAQB2zqyspkmJq29YTA8DGNs45JGzbdtbO3H6XRV7evjo+OV4s5ldXV7lkH4IU6boekbz3s9k8hPD1Vy8++vBjJq6rJhdFJgWIOTPRvu/qWQugwzDMVwszCCH4gwPVIirXl+92XTdbrH3wAOidOzhYp5S321233z97/nwchs1uH6qq8TxvvMW+daagY9Yu5X2/efO22JCC81pMrSh8lzQxdd796AefzOdVij0UU6A4CjP88Nnjhad//PLFmLXylWvmvl3EnETZ1BxiVQWhwbME7wvR8uCwqts47qd8CE5kFCRySHpfo397dXW32ZtixUiSYu7q4LVaCPA4DoBQAYsQOG/kALnIaKaE4EMz5RA0Je/h5PjwYLm8ubrph95MPJiZnp6cHB4cGABPKUTJDh05MgBVNPJdN+x3vU6pfEBvxr7alKEbeiQ6OjisQ1VMTCcZSZmM7SZackYkleJcNTGC/vS4EBEzKKUQT7AYJCKaukxmzA7MiFBVybkJ5Cul6DS3RXCMSB7R5Swx5uCrnAsCqCghmWrJpeQMPgCg6l84IQFELed8z5MoyqwplyEmh4jkPHtlyLkQTghPUrNxLISYSxEtZOp9QABRzUVUVK2AEiJWVWVGUWXKIqkqAoqUFKOq2FQWN8dMhISqzjFLzn2/E8k5jaaGOA1RgBECI7MP3hGAmqLRJCwEACAAgDREVUFAUzAGVahcNR2hKZZ7HTEAACQVZxiYHLOqOnZQkmkxgJQUjQA5l5xFbNI6IxEQWJSUEXDK5lbeVVWNlASMAabeGiKG4BUMAWp2jAhIpgpqRaVyHghZp7aAAhh4Ns0mKlRViEDqKzZTJPR1M1/XBXmz3ytoFeqSIrJzrkJy7MioPH98/vk3345mtffBVxW7UXUsgp69wzT2sciADRQKaE5NDcUAEbWIIYpBxRgwgwxX222333vGo9X8cDmvoJThbtzppcni6ZPasXfO+8axUzMEtknoXIXgwg8+/d6Ll68duzzGOA6EgExFRFQQiRELIBSYxv5DSqr5+588/+uf//j85HBIHWL17NHDF6+/fXPx5sHhITp0SAAGRT0WVfFNzVX1+tWbMqZ5O6/I0jiYFclleuEdY0pJYtGuu1kcrMFXFmbNwfHz733/4x/+ZLY6nC2WgX1KaRiHlCIiT8oHADd5idRESgl1lWOcu0rAiujQ96Vk73wd/O3Fm9vL90cPHpRc3r19HWN/t7m7vb3pumFWVU8enWqO233nq7C9u3nxzcu3r97NF+16vTg6OtIiQ98Pw2Ai89lsShhPs4X9fj+O43p9YAoll+129/rVm6Ojw24/SGNHh0fOedzvDBTN5k2zud02VQumHLwz9TUjQOw6Q+hzGePYNE3TNJvr693tpp3NuKqQSfLYX1/X1az0QyImWphpv9ugUdPOhjE27SznUjdtyqIiwqg5c45eU5IhbnZtCA+PHlnJBRBJmLGtwi4JFmOkLPDs7Oj5+SFoFpkmDSAipUhCnc/rn3z89O3N5nYUv1rvo4wRAep+HEJVcyQpNZLmYXAOL6/fo6Wj5WzeNlKUvHMuoKvUSMreh2YQvbzZSCkyZh84eOKmjeB782Zlc3fZ9d2ibdarg1C1iJ689za2NUkuIlA5Qh1k2O/25th55uPjZSnzrut3+62RHR2uquCK2r0evWiGzKFidAQQDW+6m2EcVbIBsOc8RDBdNWEc6f3d3eZuc3ZyWrczRELJooKAkvO0LcWcihQHYSIhT7dhQxMpUw5lOhEmX9YU8TEgAYAiiGCIznsiDr5i8hOc0xF5ZkbMYl0uqRQznbV1cEFKIVEylCIlxexCCG2hv3j8s5varzmL8yhGuVhRVYVsyqkUgmYKCRhOVImimkVh+qnRAlMXzqCopZwncJFDQiQpRqxEoMYI95l4RBSRImqMgGpZvFNPQiqOiESVtXT9PuXkHU13vOmO5pjbOtRV8ASoggiIDEjEaKIxRpXsncvT/dvAO0/sShEAMEP+Cwx2jAlrRrxf1aopgjFxTDGl7LkCNDEo33lpkMSmkgcCILJjBPTeO+emyR2q3R/azOx4TMkhqUhOsYgQUNEJFJ5SSsH7XCSm0TN4Vwl4cMsI1ahm7cI5V3LyDhwbu5CwTmoOxpSGgL72VR2CIwdkUcE5t16t399tqnqRExSUgs6cz9lK0VKUwepa8v4OSnHBGzkjupcTTKoax4Pku80NI6xXy8PlrHHcBIdoOkYHOHZdF9PZ4WHtXFUHMy0lFZBcsgK7qrrddruxcGhyGtGMEcWkWBEAnYhWhkWLCHQpjX23mNV/+ze/+PmPv4eWhrFDrpBN1T54+vDd+ze7oa+AveP7Yicyt7PZrIWUQQc/LRsNlSglVHB1HTo1sVIU+jF99uknf/OLn3779vI3X7+1an7b9cWA2OUxC5YJ5Q0A3nvHy1KiFpUi7HhWL1Qljl1npkVTSgbgvQ8+ROdu7za3N9e7/XZ1dMzMOeftdiciANh3/furmyyQS/o//8//49/9m//uYrN5//4ypTT0dnN9MyG0dtstO3bsbm9vN5tN3/fee2Y+OFiPY8w5tW2bS57NZ8Mweu+J6eLdBSEvFovlcmUg3X7fD7uXr96t1+t93wnY8clpVdcyUWiIipSmabz3VVWt16vtZqOqoa6IKMwWd1c3wzg+eno2xLHb7VVt3O2cc48PjlYHx/v9jp1H4qquh35wBLvd7vrmZr/djeMgUg5XB1ZUciEiEyAiRGUAZYqgIumTp2cVWz/kIhJjFBEzYwQAjXFsq/qHn5292XQ322hFmLwYVPWMmXOMACQGOQ7LmbN+eLXZvvH+0eNHjx+d2bQE9h6V0Lkwm3/74pux2zogDshkBJpLzsihaTabyw8fPXx4cvLbL3737uJlW8/n81XTztFg3I51jVQSlD7lPKYRyXnOFjiEwIjr1bxpgpis1yszEdWUM6NFMAfeOQTHgJwlX17diKiKxJxF1ABFRFIBDFWory7e+ao5ZGcGkznLEZuZ937qh+ZcMCckEtUxxZyzShEVZtc0TZGSU5ogCQb3VgNinjXVtttOthMmZnaESEyMjsHuqQFqE78ANAEUrRsoUqQAUCwFYyKOeN+Uvf/woULsAKlokgzBCzHHlHORyaoOACkXoIwAIuK8l5wdwIRdJrJpjU+IZjhdZZmnUgKY2p/Ao4hYVU7VMBcixj+bHCnmwsye2E37mqlHW5GXklQVkUQmPAXNmspNFh9TM3TsCSdEswRHJt897gEQkJBiLgqKgE1dy1+MgFQVAcQmH5YqUnA+pRRTLmrsLOeUUpz+M8Tuu2EcTLOhnHLOxTmHiG46AGDy3VuRknIWKYA0vaaJTraee5zeJB8vIlmEyYFpyhJjUV8JEiFlM0VSRQClAldDWTZzy6NDYHaOyBE1Va1ofRz6vnt4crxPts2khoAeiD0xOFUTdVO8KnCQ/fYNFibnCDGKlKK5FFHpYupSBIAnZ6cHi5YRHINKmoRwoFhivL69PT992NY1sIoWBcg5m3Pm/LcXF6/eXsUCgA64RSzMFYlgycxUclLVIqqDdX0S0GePzv7d3/7yyeMzMIsZ1ZAMFTTntJ61j8/Of//Fl2frgzT2iFBV1fLgEJ0vfW85mhVi0Ghdklh0yGpigBBFhph3Xf/hh8//9d/8qmL34MHD+YMPqnaGoR6TMnvPjpgNIOdkNl1kBJHNjNi17ZydG7q9SBmGfux77yvvq6mt0jQzF7yIrlar46Ojfbe/u9suFsucSlU1anC73d/cdk0d/vi7L6io854ZP/7kwxBcjMP19XVdVSrStq2q7na73X4/DkNd1w8enNZ1NU1RiKlp6ycPH95ttk1dH67XcYx3m83t7e1HH31ECP0w7ro+5jKmdOjdZrNh59k7AE45O8fTvSTFNJu1VdNUKZeca3IASOznyzUhhbrGEGbz5ebuTsZIRFJksVj+KRlCzCXnlKLzbn14cHt9a2BnD46Xi2bodsMw3HdVbbIKKbDv9pvvffT00fnJBC/7TuytZgqMHoGQnPNt29LtVnPvmbSYAdSVU4nei/Nhs9u1HhoHjqRaNCXr6zevxxyfnJ+t1gdgAFq85+vr/fX7K0wlZQWzJIUI+mEUBu9T7fj7n314PG/OT+bvbq7/8M2LV++v5xYOlodl3JV+AC0AKAYIzBOuHVhFikjOeyCczRfsPTADoaKSIwVV0FyyJwdMm9vtdrud5uiT03y6+RXhu2Ho00CekX2Z4JTTOakmIqHy/B1ev0hx3imYlEkhcz+Un5Kgf3IL5u92CYvFctG6bbclJO8cETpPwTt2LueIptP9mhEQVCVntb0UkdJ6j4SSNSdhL0VyzIPj8Kcn4eSVUYWihmCpFCQuoqUoEGQRdsEAxxiJyDMxY+vqkqVIUWMpOmUdDclApmnJlIKBiS9tf6JzGSB457IToslqaaJiSFQ0Z6Xg3PQrSy6ztq0CxzTud3spMhGYVTXFNIHbkNEAxEpwU84PzaAKgagAgIiGKjjGVJIAVK5yrlL5MwEDvmtjTaeBOQdsKSc1A8OU82T7ZGZAAuQicWqcoU12HitFmNz0fWBmf4p8mdkwjmCmRKUIseScKZCoIGLwwXk3Sf6YfSkFgfbdrhu6QDU6r6L3rxSAo1jeRaHhYD4/5soHIlcZOsc1kMuSYhIBXB0enBX+5s0lVo1CAMCCWAc3xljQHNNorpqvvMUKxSaLchEUHbfbq82mqvyPP/zw7MHJq/cX0SSwN4AiU4B56kfbuN/f3N2uHj1kUDMrZuB813VfffHlZrP3oYIsMWUVRVNTNQMFCN4D8K4fxpLEsGra8yeP//bHPzio/e22AyQwqEJAIyv3JoYPHj/5+ttXm5iODw/QdL1cImLqd5qLlmxg6KjEkrKORcdkKqogu3EcxuEXP/nxr376EzTgdvnxR8+ePP94tV5nEROofHDOAZqZVXWIaRjGbuIy0jR/JNxub+PQ7/ab6+urxWy2XC6LGju3PDisT0/ev3+nUs5Oz7Wk7c11SmNKLJL7fj+bt8dHx3GU9Wq5Xq43d/v1wWJ9sCSmswcPSilD7B0xtzQMw36/V9W2aab7VEopRp7PZ7vd/vL9pZkdHx2vlquu3zHCsydPX799W7JuNhvnpmYnsuODo6OzswfNrB2HcbPZNk27Wh0eHh5570Q1VBRCLSLtYiGl1E1riFXTjOnt4fpw3w/NvK2a5rRpoeSSsiGUkqsqlFJyLilGMMg5v7u4KCrOu9k8rA8WIllyyqlkQJhQ7YjAmCUfLBc/+vjDiYJC3/VgpgG3I+cYfYXNfLkdxrv9TkoCJUaPxCBDRUYMXX+HY79eLrwnI0L23lWa9fo29fG9uvn5yREhAtLFxVUeJcUSs5QiIAVNc8lUc3/z7sPHZyeH65i6Zl791ZMf/+LHP/3N59/859/88cXrF4vZovZtxRicUI6eyJEacTZMsRAjkCezbt9/3b1YzJuqqU+OD5aL2hE47xw7AEtS3l9f5pimCpbzXg1VVLKAYcrp6dnJ2ckPv3z51nDKBxZv5tmJiJR7O6xDYGKR7IjLd1QG7/39HnhCqxOpWpnwmYhD36HydAcVEVNBAACVktEM0abJEaowGk2rYBXHLMRI4BipCYTTDEPLXzwJRdWAioIIMIIp5Hy/E9ZphyESJpWWGvnvEGs2pf6dlDIJix17gELMiGCmhA6mG7GaFAUwQ5uKb/c+SFZRE9ExFSR2rEjiENHEnOcmVAhauaBNs9t30/eTSoklVwDMrEhMFJgmmDMiEnlhnF4XDLGuAhJ+Zy4nQ3Tuz+deLoVTnpZXNs2AGf//XP3njyZJlq+JHWFmLl4VIiN1ZcmuljNzZzizy70kiEuAIMA/mN8IkEss9pJ394qdaV3VXTJV6Fe5u5kdwQ8e2d1gfqkqoIBEvBHh5nbO7/c8M8CdiAw+6AMIKUREModxnFQqMarazPJmDuZQRR6OOHdi1g8//kykMwQIgJgQnBhNjZF5/rzcZ5D/1X47mS/aXqrMWFZCnBWV5rQ/jjeH8uhihVQAA1J0CsM0ADOErjtfXB+m2/GuCHaBEd3QAYIUMTHiQEjq4By61QlKnWqdNOeq19dXUuuL58//7rOPTjZrRTyUfLPdYRfMvWk7Nq8ioNUBht3dn7/9erNu1ynMhbU37y7f/PjDsN83sUXR5OYEMpMzAPfDyIEdcZym9zfbZnny6PxRCnhytrIYXt/fjznH1LUhLs0XbaKQnIiZ1svu737+0//6u99T4MfnF5JLGYfIGGKjyvMFTFljdS/ZQcbRdsdpyOMvfv7lP/zqZ0SIqTt/8fLZJ5+v1+dE2FDgxHObxlTRHcC7rj0cpNYKAGQYOByPR9UyK/fOzi4CkgGkptludyEQhjiNY8n53bu3SLBabJ4+ebw7bBExBN6sN7lok2K/6ExlOCoStG2zXq1iTCcnp8fj7ng47u63t3e3fd93XQcApZSYUghhGEZEur6+LqWuVsspj4t+SYQc0939/nAY2qb94fvXMYXFcllyMbW7m5sYMKWGOS5X6/XqhIlDCEQB0WIbpzFTSovVCSEu+sXddsscLy4eH/aHtl8Mx8Hhru8WIcTxOKjonIRXFdE6D12lyrLv7+/vi9bz1TkQ11JDXKQ2VXuY5FbQlOLhOHWrNTRt6hdaJlQjphmc7gBtSoDUdgsl/vaHt2OhUhHdgKGqRXDVWt3GcQxtK7EBDBGpCt1P4s6Lrpcs//rVn2/2h2ePHt3d311vh+qxElTiShJjquME6KJ1uVx89vJpcFcKTds0TR9C+3/4p//d569e/X9/85v//L/9+l7S4/PHSEAI4ipuDCFyYp57qgBWmUhV9ofh+m57eXV7/3j37MnFk2cX3aKvoxz2+/3uOKOCZoWy2+x9xUMtRPiPP/+y77ur436cRERExUwxxDkxi4gzaZAAgahrmqHIVOuHdTciESPVWucB2nwhA4Ddfh/Dcm4Xzevi2Zltc73TxGGGkiohxMgqUEqpRTREZo9xnmMHU5nyxPGvVDRRq2YPEyd3M5/NvqKGTPM03VQR0NBqccZEH5gT4DBnUs2g+jxphw/KdH+QZv31pFERB2JwIGJCQ3IwMJvfNV2qhjnqkGIMTBxiLth0CMhH3E7j6Ial2JQrhMQhRI6BicgYzBQDN4KIyO7GjE3kWqWaO6hGQ4S/3XygPyy+ZyeyKrjhbHtwAJ2BF86BYiQ2AABU01wr0Nz1FXCPAcVkmEaphdzUnJFMFAAQYd7+AzqCpxjVDNS4JRKiB1i6qwObxpQaizCv+OeNMRoSpYCM0QD2w7S3VZ8IzJFCcdfUH4p89X777na/3ZX9vnjojrUgwhw4q2ZI5K6gYEWoZY+tFilF7u4PovnFsyefv3x2ulggeFUXrY9PTm53u7HIpkni5hwIkROjgHuejoe3l+/9/PHNbvvt5dXh/pAwWjq7K7mIMkSgWKUyEiJoJCOfJE8qFy9ftd0pty1bIcV37y5DCnf39zEeu5RwtWLaRFREAkeO4aOXTznycBzL8TgeD2iGAZWwljJkQSIwnSocainV7g4HR/iHX/7yVz/5PCAp8nKxWCxPm9BrlbleCaTk6O6uIiIUEnOMsWEORFhrGctR1TjwarVp236/vz9u7/fT+PTJk3HYMVHYbHIuxEGquunNdBUbRoMY0mKxfv/+qonNT7542i86KfWw38+0qN1ud31zbaLzpY+ZPvn4kxjDlKebm7sZPLdeLxHh7m6bpwmB5l/CcRrGMY951zTdp59/st8dt/vD3eVdd5imMhVRdVhvzlIT+375+MmTwE1MDRBWqSYSQqgqZ4tTR5yGcbnmzebk+uaqWyzFIBDFJtVaPCbi0K42uZZxGGJKiIgUQkKRHNCXTD/5/LOvvv1OOd2POOWo7uAthDADgGMXxmkCcgrd79/cqodn6xZNOGCIiJRqqeJCEAOnt7e3+yEPGUQZzADYAdknCni/HfaH/cWjpQGZ11IsO1aLiFBlDORjlq8OP7x7f42E2Qhj75adzcGUAVrymjHii4vHq64RzwFxtVqnticIx2FanSz/b//h33/85OL//v/8j2rD/T5HprZJqG5l7AH6dgHAWaujRiAKDTq01OQ8fPPD2zeXt0+ubj77+JPzk5Ob++1xf2CASaqrERO6OUAFyKLPnlw8udgMU26aNudjNXsIgTAR83KxGqdBKhIyA0bi4q4maupuczZfRaqbmCGCmyg4MzkYIKo6Y0Q0ZMR5doQ2sxdBDdHV1BSkiooYICC5a5UKEGIKKcbl4kRUjnkv9tdKbC4itVYVd2OMFIOYm80uW1RxYwMAJFCzwJEI51RkluqOYsDMMsMfHGdNvZrW+X0N0IHMZyGMENIcXTJ1c8cHW6I7sAM5eiAiIjSTXMYEsWlC8hA5Iripq0yO6EAOyERt0wYmQjWpTG5AHNgEGugiOpiKWamFQ3igvcFfTiMwVQCce1gA7ACBCQg/wJTQHWcpMwLyTHnjwBz+eggDIJKbqZm71yqOIFmpbQBwzmnNxXcRKaXMJ/U8AfS5eIcQEEQqABGzz2ViJkQwcwYLFJoQx5Kn/e7dDceL1bOTDXQnt9P047s3b16/ub+9k6IO2GFwoqJi6iqiZDFGAgJAN2UEdEsxSUrv3/yQQP6v//5//+Vnn+zH3Zur95YFHIk5cjg7Obm+vVo2EQwBoIqlGJpIAYDcrq5u314f3l7eVYjihKAhUBV2CDaDp6FxFQJXQ53GwHxy/ip1S0c2NyYG8Jubm9PTEwIejuMixUBApMRMBBQIQtxOqhZKBVXH0CFhViVHC4kDidQpDxklG13e3beJ//GXX56fPp5R3lIkiRFHDsw0G0jN3VTB3VXFwQmxiBDRYtHVWmdXHxHM9s5ciqkR4Wq1QniA4or52fl5zdPxsO+7bszTOFWk8M03X93f74n57Ozs6fPHm83aVMqU8zTlMiE6go+lTtPkAD/72U+Xq+V2e18P1d0WiwUR5VzcXURjTITEzIfD0c2RGYliDE+fPv3008Vmc/Lr3/w2pZhrzjnf3Ny8f3/56aef9Is+T2WQ/OKjjxar1f3dHacYmpT6rmmbacoOfn9/37fdcrGoUrquKznHGFeL1e3NrameP3pUat3vtotln1KzaNM0lRqiSL28vtpslv2yv7zZpdQ9QAXAYyCTYq6l2G57f9o2Jyj58s3vb95enZ5+9OJJm9qSCxASk9UaF4vbsVzd7lRFRANzSqmaE1hAzDXXXM7Xm+lwjz51XQNmwCkkkioJIRGpWfWpHAoHbhC4bYB7nyQBzu/XEpkgP3t8GtHRZmLMDFqYS/oAZl9+8dnr97dvb3eH47i7vy9F+i6mpi0W6gjAaBjNMDEHCiLiCKFvTVQjX94P++HrJ88eH4etu6JD4Fi01mqqXqqNpRDBzz77pG+brBZDdHAijiER8Twl5xCYeRqnUkoIjIzgPkPfHmbRALVKCEREH5KayMSzAZjpYfs7GxNVtEJV0PmZYarmfhynKgJI6BBjnOuUuZTQxlXbLRYrNVO0aTr+5Ul4HKZS1cyIMQQCmB9pamYQYJ5FmymHQIBmJlVUTQzNSMxU1J0BnT5Q7eYxeBEh1UCsjmDqoIiuYg6gjlUUkUII/vCFY60SOYa5x6vouRiSAXrbLmJo3bzkejgOUiSKJJsfzyEFElEHoBDd0ZEoYssMItOH5Tox8MyE47/GQFUl1xpDnO9ZMfBU6jyDM3dEcsA5o82EhjZNmWNarYLrDC51RIiB3byUArMzIIZ5/RBDmJkeIrMnSMbhaIjy4Y+qBo7mZgii9u7tG11ctCsC8Acts4OU6u45i6iw23Y7nG3W2+rffPPN999/J/sdiyzAnXzMRR2ICKrkaqvVppYxGDMHn0tnOL8CTwjw7MnFP/30089evHCrUgUcVC1woMApppdPntzeXt9td5vlEkAiEdRc55AD4P7mtgKbh8ixiBWTYE4cwAEYAhO4m8g0Hg+77ZNHp6enF5PFrBAizPyqYjXEdhqGzcnZ9u6+jU3bJAcjt9j0k/nX37394ccrJD4Mrg4hpBhCisHUS86OTpQ8JcMseXz09MUnL8+fnq2nqYh2BkypWZ8/bfsFIoYYmObwlbupz0o2MZEBiWOMOZdpGkUkpaSq8w+luyPhZrM2qX/+wzdd18XAMuWuX3708Sd/+N1v1Gy1Wh+H42q5Rg7mXkv55rtv77Z3n3zy6uL8kZsiU5Oaw/E4HKYp19Q1H3308vT8/IcffhiGo9YaQ2QOJ5vN+mSdc65Vh3EigLbrcs79cnV6eqqqb9++/eqrP242p+vV5p/+6R8vLy+nPC0B7++3b96+dffHw9g23dOnz05OT5h5vVqb6vFw7Bd9ziWEsNlspmHc7napSU3TbO/umtQc9vvUdRdPLq6vrpF4veou37897LXrtUkWOCz7/t6lSLm9ux13d6ddXHZca7VqhCA6MlN1f3u76wAe9YughwCGyjdXV7vd9vmLpyerEz9uDSEuFoPCn16/2253gZiAQBWgRgzmWMFzLr/84rMvPnr559ff/vGb70T0dLMOTqUqIYCraY2MViQQkSkiE9RFouR2v93laShiHMNPPn68WTTmooLdYmFVLFYxIZyx8GFSif0qDrritu8X4/Fw2N0fphzTsmlacmcmVZzMg5ohErEjObshqNfjOF3e3BAIIxZXjrGPTS5Zxly1itnji9Mnm/W88nWHkNqQGsAiKqqKCGbKzCKS0l/UxWF+9M+LE5xz1THqPO9WZYK5ARBTaFIUEYAHY0mtxaGK1LZrZ1PevFYtIg4cQjQzcZtqLXlsFk3Xd8yBA6cy5vLXHUDOOZf88ORxd7cZmjn3yZgZEAjRzVV1UmtirOrDlJHIAQhn27CqqJki+Vx9mPOpzkBIM480cARTnzsNOPci1MxF3FybkGw26UoVV2CMUgsRMgemJGqxHTEEM0NwJAyRCUFkzuo4AAOgmwPibDSeaj2OxRB6jm3TMtHfaHDmWtqcxeacy2GQqhI4zncAJprLkKaiaI4eQ0ipY4dxENEqpkTcNi0Tg7voPPZ50ACEGOXDEsxMZ+RTlSIqpZC5MRPM7yUAatp1jaUQwIQeTPOuThjcMDRN13aJJHq9/PH7d38+WqmtiKEUr+goVVkd3PM0hhiyVh0P0YuOlUKaW2gETkwYgiB9+tnH69VyP+xTSujWcMhQiJgCB+Zlt/zJR5/82x9/GyOzWhsjgE8iYi4GUxELKfWn7tAwMpKqzlkQQgW1WvJue1fHw2cfvQxtnPIoYJQaF62O6o6eu4QBsIo9fvyYJItYSBwX3c328PtvfrzbDqLQtvwgDkTKUxU2DtGIaxncahEVpX7z9NHjR+dny1rugbIZcrt6/ukXL1591i+WMQRErFJtbsrP4CGpCBRiE0IYxzHn0dxmSfd2u02pYQ6BWdzfv3n7wzd/NPX1ydnjZ7Q6OR+GqVQ5PTvP09h23TgOjPSTzz5/fHHx5u3bm+s7qVqqdf1is151fWuq33zzzdXV7dXldWrCi+fPf/Ob397d3faLPsU4lRKjOyMyH4fpfrdLMarKVKaQUohMTGq6Odl0ddE23Xwr7fvu6ZMnb99fI+7Xy81mfbJars/Pzy8uLsx8e3vraoysWjMRAD96fFFLUbOmaWakweFwbM/bruuu3r27ePLk4vFFrapqIcTjcDR3VSMKedhNxx0TXL+/WsQUCEmmBFZNENwle2hyrvV4vDg/7RK6G1NAQ3Lf7/e//2P++KMXz843UscC9Mcf3t7tjpE4MJUqZrMfHoUomz27ePTxqxdE+tnHL5bL9a+/+tPry8uTzTnHNMPVxbSlCMxVXabCIbSIprWLTTxb3u9hyKVJ4dWTizawuBIRMxGClFLEKEYEU4M313d3+0kVHbhtF4njYtFvt7fDMCKFVdORo7mCO6KzO4IRNWIuroDK4IRcxilPAojEKNWKaBExgNSkj55eNAkcIVB0B1GbYcSlVgkBae7nUohxHiHE+CCqKqX+DZphrlNVE/GHB4s/cB0CzSLlorOlPRO7uYG5I4rYmLMBNG2nBgjIIeZSpzy5u5gYzO1WJCLTv6nESp03B4jsDnNgaT6W5oYaIhqA1jpMk7uPzHP0NaZE9BDbAf/AvWAIzFMu81rUyByAEWYkWuSADuqA5OAmkufICCAiIXMIZm4mIUU3QwizTDHEpgGkwz0HRsNZN0mOriKa8zQwM3JwZ4TIhGPNwzSOUz0Opes74kgU6G/5FwBqHlNC4DmwvJ+GUuvpyUmXGlMLkWOMiACmbkociBkQc56k1lrqg0qMaMq51Llr/vDHzEopqtK0ralO04RAtdZSCwBO0+QIKSZVn2lNTeLNs4ttoRSgZDcVBEwxNDGsF20TmazodAQZ5TiRScORg0sRN1dEiDGQey1uCkYB4XjYn6x6Z3WAhwEcBFRncGDf73fZn7B6ktpEWi77sch8dIXAAfzzF8/f3l5d390vQxqG/VxXmU0MqialIgXn1Do2MVj0KWcAI9DtsLu7ve1S+PKLVz/95PMfr6/e3R9j2wQkmCsjhExBwavq7f39cvmyS4EYOfV/fvv+T9++ngqkEBkLWGWyGFJgrm5TrTlnDihlLLXE7vzs7BFHOubpUBbPT58cr9/1y/VHn/7kxedfLpdrJpondSGwA2atZgLgTdPE1Jh6KbnW3DTNMIyxCebOzIvFKk8TAWqV4XDsuuVytQQM5pRzAUJmjk1qmjRNeRqz5Hp7ezcMh9VyUasexoEIx3GsJSMDEy5Xi1/+3S/GYSSExWI5jiMT317frDfrEAIAXF1ev3nztknN+fk5AYBbSHG73799+/bq+po59F2/Wi3bbpFisz8c9/vtmzdv31/fhpCWy/XHn3325PHjFBtC2t7dmTshKrmp1lq7JU7DcH1zw0Sr1bqUuu6WLz96edjtA6PV8v79uxcffUyIIjU0qSdk4qqWD9v9zevr6/fffPv94TB0MeZSGJ0YQwzjcXQMY9Xdbr/pUhuxagVxYlT0sVZVy2P509d/Lvnls6ePX7+/vLw9EMQUCd0Z1UwBzVXrUEJqfv7p5+vlUsoIWj5+9ujR2fK//faPX333dhYb5CkhUZXKgWpRVehiGIs04OKFQjo5OTkJuFn3pycnCV3rhOgiUkpWevArhZiGcbq5utJyAFXGQO4A1qemPzs/dvX93c23dz+cbs7bdomAqrNPjGZXICKqA3Maq4mSUEtggUlrNpwrJrlr+8dnJ8jg4CnE1CQey1xjNVNzc5nJyTq/FJppzh8YPm4Ac30ouBm4I2CZp0v0YNcwMwBXFcDQ9/3c/XaAtm1nuiIAmrmCkXvfL8EJAUOUEXya6nZ3OA7HRVxOY6mlzFn5h6FTySK1SQGJ3KGU+mHPPLNuhZlBXN2HnEU0cEDE1ERziMwhPFi8agZA1yoQGHB+J+CZYUEcUgz0QEULpjNoGQCw1KLmAaDW2jcx5JIZESkxBXeQKmrmgDHEyKlpOhWJse3aRZuimaCba80lhxiBIjE33BSEKro7HvkhuY9qXk3T3xwB7qRi4FaklioGsOwWZ/1yvVrWksUtxEa1oKsrQEiCxCm6ZEdkpsAsDjFgVlVj8PrB4/OwzJm3KCpqaiEERaylBI5ixoHdsUpVFXBMMcaIoA7ADMQxUOA2hTbFBhXz1urAUgBq10YUcrNqqm6iVh1ijEhGBDGGKWcRV7Op1ghoJqogCgHBCYqZG7x/f3NydvrFs2cAMO9R2r5qri0FBMQU2q798ic/3f63f1O32CZ0AHNu2plRFZzdPbC1AA2agiPIdjzcbu9LLZ+/fP7Fq5cIuN3ftzEkdiABEHdC5iLF1WvFwZwivD/UV09Od3n89e++vbrdVXHkWKrlsczLyCyKYO4ggiJmw+he1pvT1ekLcy/TvkrZxbDuebE5X52fPXr6bL3aBA6z2oEYwL3kXOtETCn0M0lRREspAITIXdeHQMfjnggJgZmRGYjPzp9sTs+IOaWkZgC+Xi7utxmZOcRV2x/H4fb6epzGH3983feLqvbtt9/f3d5+/OrV44uLvktNSqcnm81qeXF+JiK3d7fH4/7y3fu+75d9H1MStfv73bLvX7x46u5v3ryRUkMTj+MwTXl7vwPg5XKx2ayOx0lUkfFwGHa7fS0VkLpVd3p+ttqswbwWIaCmjcQ0jRMxE0AZh3G7U7BuvUop7kve7vanJ5s8TcPxOI5jg2xiZipV2r5PqW2aFpiv377J4/T1Nz/++P4WKZQibWQgHmoNZk7oxPfbXa1yuly5ex6rimNL4mUchTAyump+/frHw1QEMTEdDwcqkRlM6pSnAt5FrmY/efbsfLV0mQ8vVoNlt/w//cs/f/bi3X/6t9+8/vHb0/On6+WJz4ut0IQmIMzdKkZHqaUMEyBgHt/F+PHzZ20gk2paclaiyqGJVJXo3dXV/c071qklAGQ0iO4y1nEcxlzL8Z6hXr/7njhcXDxbrTZmoGIoFSIiB4ToIYwTmicIIQQ2RKaxS43SkMwuTtdtQwhICoiVidGgVCU0k/rg0X1gvc1z10AY5/OAic18DqnMxSlCN5u/ZJLZTWDets0wjgbQpUQEYkCR51rSzIlSUGTumrbv+hiTVpuG4+goCiiwu9+31CBhlaz2121ordUBzIkRHqqhqqoKjkik4GrmjtU0l5JVWqREDI4MlDgysfvMVRF3nd+ZEZCZCYkcEb0JnGJCICes6k5OgV1lBlRUFSI3T4AUai2xaRGJQnCwmf9XRQJz13Wr1Qrcu6abMV46aySZRXQcp9RgCIZgkWd3jlAICGAOVUUU/W++7GkqbduUUtUBKWya7tFqvV4uKBKgBQd3EFU3qARmlqt0bU+Rx+Ewn+hE2KRYHcRtnqnFFPGh7EVe68N6AGC+JRESMwFTatJc97CqbIA0+4PF0SiEPjYxgMmgVbhl0GLgIUZ0RIdSxcyKzMcFSa5DHks1VyyqRUVEj8PxOI4vX75gd1JLjg8yZnBCErN3769ePLroYkpEXQirrjsqcNP0i0XsV3dT+f56dyiYmB6dnKi6qyMFrw9JKiNMi6YMw/F4jMy3u/3d/V1q4j99+YsvXjwzrXfHw3Yc+q4/2ywu92MV94rc9gZYqzhSdAT3+7v7KQ+7/XG/G1QscEKt2auKm6vnjABz3THrJLWS1vP1cr1oXe9JkcFS2wb3m6t3fPHIQhR1mgEqCOZaq0mtIgWJQkhqUmuZsVeqHjiCQ4zRTESECXMVQEpNszk9m2LKNXddl/MEIu5+fX05jkPfd6oGDqenp9MwtG23Wq8D87jbM7Mb3FzfMJNvVve1Xl1dtm1StfnDv7u9Ozs/vXj0iAMD4m63f/fu3enpyXK12N5vReputzUHYur7zterw2GcO7CEcXt3X0RSkx4/uohxN9XapQYdAoepTMMwpJgMlJlCIKlSTdR1Ok6b05P5l/rk5FREhjGHpluFxh0dMedcpdZaY9Oo6Thq23Sbk5M/fy3fv35d89Q2YR4FTLkWAwFWI6kFqHG2Yy2OEd0R7VANDRkpJEINpdRpyvL+XbtYrPrOpdy8v3QwdASDmOLNOJ1u1p9/+rGpqErVufaPiMQcvvz881cvXv6n//rf/tNvfjfl4enpORC6KwKhe2CakW1MgKamdizyh93+9vr2o1fPN33nVUlNUBgBUzPs9m/fvS3TxOYxNAY0R8pLHYuVIR9fPj377/7+V7c3N7/55pv3N++3dzdn549jWgAFRFapkU1zRm4eot4PC2aqVZmYmNxBharYANNYFcQIwVwCM82zTMQ5djjP+v8yY5ljMCJqZnOcHWaFppqqGsH8di9V5UHwy64q4CWX0PcI80dSSilIuOgWi37Vd0si8gAiFRENUNR2+2PkZrVazmqRv9kB1JAC+F+qWnNABmaQtJupKYdoarWKqCorhhRCSikxk7mqVDN9iLiaM2MkElGEh6gLzk2xh9goi5YP0BwA9Hk5ZypmNcwtMnrQmz188XPslAhjYAJY9j2lVOdP0AzwA1yiZKY4f9Cuumg7ZELAWutUiMnS3yyBi9SgDXJE98i83Kwvnr44PTsNqUGi4bi/vbmeRPJ07FqqlXPVcagkY80ZkZCAGfu2HSsWqdWUEIN7YJqXAYjo4ODwQJHLudYSw0y4dUR3syoViCJqGY9ktgx1l++TxVBsON4DOuHK53AXBXQrKjnXnEsRFbOH4C+iOhb1MZdhOjQxfv7JKwec1Jp+qQXUnGKIgd2NACMFZbo65JPVikkALHGAzSZ1C+H07Y+X33z3w/39DjGp6mFS4GBiKgLAMSUHrSoRqNmcbA/H3bt3SPrpJy+eP3qy6hpzm7XPpUgTyvOLiyzXu6lCTGolBgrAaBaImoRko4w5APXkFIy5PiThUJXI5h6paxG5vn4fCT979ngZtbcBAU1NHEHZj1CR45OnT1++6ldrIJr3hvMmSrUCGCI/ZNy1AgC4MQfiSIHmYNb8XqZazEy15jJBwNPNI1UdpqnpOqk1T5OKHPd7VSulmluTmn656BdLqbVtu1cfvXp0ftZ3Tde1i66ptarKNI0559Skvus+++zT+ZWn5FJVh2EspZycnFa11LZni7N+sXj9+rWIpqY9PTlTtdV6VUqdxqt+0VMuRNB3i7btb7fbWovUMhyHDx5dQdO2bwPxNE0ppRBjTBpSZA7jOMzamSlnBOhXCySaIZTTNPV9LyKl1BjDBJnA0TUBrJvAUAKzeZ1E61AnpGLaNfFffvlTIP/tn756e3e36fqOyEECJiYUyebkbmCotR73ey512ffh6ePrq6sylhSb1LTo4Seff9Y1seQ860wIeV6WMnMuuYn8f/4f/jtk+k//7V/fT2O7WDXLdXBD5iwVzTAkdABq3LRKQear2+394Xh2un7y6ORiswE1KCpR9sPx+upKc0Z3ZlfAlJKajnkEwibxL3/y6ckirhePHz0+++b7d7/9+k9v3/4QmsXF+dN+sSL0FEPJY4BJzNxokmpqATGPg5iXKb8dR8ny6qPHZydLByZ8kHUhzEcaP/DdkABxDpojPjSKiMi9qupMFpifZjPdFgLT/IaIBIAhRClFgoUUOITIydFLLaribgChaxZ92xPSfH4gIjCJmjkWsVLrOGZ3BPurD0DNwByI5kT/QwgSiYjMZ5iDxxhqlcDBgcCRZhIZ08xIno25Om9nARChSS33rGZTKQQ4w+aQaMoltp2IqNpfnpPIiABSyzRNYSbyI5OYNSkEppmZV0WnaTStTWrnl2yNDMCkM2+IQghqJqLVpuM0lFyZODbJAUR1zCUx0t/A4MxxyjWlSBRefvTyH//l34fYdW1jqvfXNyLw5MXq0bNPv/v6d5avkLlp+/3uUHONIQEYlBxDDIQEjogOwHMlRJUeatDwl02LiMDc1HYvtQDC2IzjNAICxyAy2jg2gTuoo48kAzIFQlHb7fbzN0hLNVUkPk7TcSrm808SVTNRLaVMNZ9v1v/8d794/vhsleJQ6v/yxz9lkdQsSzVzQGMAUkB0YqU3N9tVmz46WxJTs16hw7vLy++++X6/PzDYCVOutUiZ7verkxMiEJq3fGLu7JUOFdqmbYKt+s9ePDtddKpWpM69PETs2wYAT7vl8tPV/+c3v6uETWpnXytxdJcqGtACYhuY29bH+1VDSOYO1aA6iYO7v7+9uby+6Rd9ojCOQ8ROx7EN3sXGzLWKiTWr8+dPXz1+9Gy92tA8Sn9g42AAcgOi4G6lTHk8MkekmJqAIRACMXmV+ZAOTPvDfr+9V1Uk4BBDiItFf3931wQ+PT8fhuN+vwsxLtebWoq0Xc757dt3DnB6crIQ2WzW52cnm83GTaZpMtNaF+M43t3tNFnOORAdj4OplVpLKavlOoS0WC7PTk9F6m6/n294tZT106eHw/Hq6ipPdZrGrk/9qiFgN7i8ugE0Dpxz2e32680mNIm9absmpmSqi/WmSQnAXbzksmzbGNM4DCISU+r7pTss1qlOx5KnxWLZtB0TAVDTtu5QykRAlquOmSNUr4aeq9aq6jZq/sVPPn319LTo9Oj03/32j99+/d33zXodkNwUOVh19RpjYEZ1V9M6Dlrzol+8fP7Rbr+/vbu9vr364vPPnjw60/nN1s3QJQs6qgOFOPvQh5JjDB89f5FLubu/3x2HzdkZ9V1EBMSpFEN2CmqQqy9CbNrWJF9d3m63u+Pji4uzsyW3eSo/vn497A88c3Xcq+iUKYYUU3t1d/3Js+dPz84UigEw+qtnjy8enb+5uv7DV998/+3Xm/OLjz/+2JCAGweNiWqpBApuVWyq1YFTuwTzu6Hm798t75ZnJ+t+2eNhp6qIrOoOYCJmxoFhTvgAMIcQA+X5Cf+wcZ1rZbVWf3iwIBIBQoycUiy1ErE5ZBF1II7usyZAQwwU21kUU8QMjYA4tovlGaclIabAoYtZJYYwh1Yenk5mgZA5MsUK8oCrQWAKRKgq3IYYU0oaQzCUGDjGQExMpDY7gs0dHHxGDHVdu1mtGHmYxlwyEDtSMfVZFzccmXBu74bAfd+1ngLzomubuf41b/Dmf84igzyNonUYD9M0JAozEwIRZ/pa23alVBELgdT1cDgehsHEmqYzMSfAh/PQ7G8QSDnX0UqIIbXtxeOnKXWv37wv01HrJONYplwd2tVpVgTR2IS2a/reik6lsCP5rCwxV7MPwgicJZ7z02Q+z+fm98M2EiEEhmww2xxUIgdXcLWYGgyIDqvVetnwUOrMJjfSJnAZx8AC7gaARhGSqmUpVeU4TIHp5fMnHz15/PLxo0fnq/vtlZRj37Yvn53//vv3vKSOGNy1KIeAzO6AFbfb/H2i5XrRxrDfHX784Yfryzc6jJFolkawIkjd7e/zuG9Ta2bMER3BQU0mRCPqTze/+tnPe3Q3EfT5YzD3yLheNKLIEB6dnb588vh/+/M3awrkCIoYAMndBNAihqyFu1gK1Vq6Ns5FuDwehmm83+62++1PPvvkH3/+03eXN7/76o/r0xNFrgxd22sFEdycrJ5/9smzlx+37YKRwEzBVZWZEa1UJUSVOhwP290tqDRNHxpouwUzq0qp9S85vN3d3f3tLSOkECnwNE0xWtcmNz0O07zYb5s2l+IO/aLPhKUUJurXq2matrv7EHC57Pb7navWWo/D4eb2Znu/Y44XFz+5vb2exmGzPmGkYZpC4BgSAHz88ceIePn+/fE4NE0TYxyG8fr6mojv7/buaAZ5yrENx3HY74fDcZQP6bW+XyLjol/G1DhYzjmlxCFyCG4qIrOhWqv0XVdqLbm4H1NKSOTuuZSTs7PASVXbLiCyI0LNRUpMcTAzUSYuormKmE+1PHt89sWL5yKibk2K//Szn7ax/fWfvyaAR6sVzI1WACJgQjKMAWsRBpPxSLHbnJx2i/7+/vbp40dqiqa1lFzLDA1k5qriAG1q2pDe3Nzc7Pf9+mSJ1DTpzdur2/fvy3KxWvaJg3vIgBjQHCm0zskcETkGrkV/eH357v31+dnZYr2+vrphfIDJqKqb5WqDjhBY3T/56AUjGjOIM1NsAFE+efL40XL1X37/1aCoZrUIUNDQoqNxpQDs6nny4iH2q/UJISJ5mcZBHQ8FcUKEwCzm4DbzBj6Ue3GWjc+3g3niTg/tHwMAFQUHJnZyd58PBw4UAyN4TMmdTKEazKRLBZ8zqUVdXbfHfVXjFPa748nmyXr9aI3UL/r7+y2HdPHodJp21/f3f3kSzvEbDhEJmRnA5vsKMwMhOAeaI4QhxgCEbWpiiO5QpYJbrWWWpQDMojFf9P1muUwxNbkDDgKgqrXUYRgdgQABKTWcPKYYzVxdmXDRNrOTkZCgiSEmFjBmdtUp70qt291eau24jW1mtxgTcQwEZDlEizLLEEBMcs6m6gghpBQSIpaquWjkvx4AojrkySdYge8Oh9/8+t922904DETY9Z1V297dhd3h6urt81MkCk2zIDrEAKtVfxyqmEdSmLkcanPmxN3FbIZy/PVIB3OwKkZEeRpVhGIyMzdVqWLeM3EkJ1etVnIFFgtqZiaGIQsZNxQTM6loF7pQy3DY35ex1PLTzz959fTxiycXfZfUp8v7dyp6tty07eJXq7P7/Xiz265Ta1K9iBJTSrFpTbVfLh3szfV7K9N0KJLzSb+AtpkZXgjmZl1JgeH2uFMKriA5EzIhGEAFc5dyc3e22SxPN3kqkZlD4CbEEDjyAqxWHcvRt36xWT5Z9btx33brrOJgKUDDsIox15LFA2CzPs33NzYVDNHVDuPh8uaOEf7Df/fPv/jslbpGPL87PL26vnr19AWalDyZB7eY+tXLz37y7KOPurb3BzfhQxM7T6PUaqoljzWPUDIyi9ZIPQVmJODg5oGh67DWXKexXyzmX0IM5LWaKFOYnVRNbO+Ot8RMSPv9lohMdSo5pYDgh+F4dXU9DOP1zW1gNpUmNSHFGNOLl6+6Nt3e3l1f36UUi8hmtRHwKZdH54+/+OILdNju7nf7bb/olsulmiN6CAHAU9tMY2665ngcpu0wTNNxmADJHfa7Y3gV+sWCmUV12u1iYgQIzD7PCgSL+UnbMcD7d2+ev/y47drjMFrOTROnYc8cQkzHwzHGHEMkjg429yW46dJioddc8rRYUqAgY62moQn/7u9+sVn2x+kAhuOQwaef/+TjR4/P/uN/+6/fX908Wp+2gQLNbXYgJCDgAOBGTFqHqUyxX3z+xRdn52djHkEVdP7ZZESf3+1qqSGEvZbL2/uUelUsIsv1+hXQNI6HUn68vNysNqvFGszQMoC4Y6laRWKkwBQC5VJzFdsdd2MGUQCvqgjATDhX5BHf3Vx9/vzp0/NTZCNkRwspWVZkt1ow4M++/OmuwnYojoAhWUhgJK6AQijOHNoYUiMYASGFkJYdgZiVmnfoRiGQCoCqqZuZ6YyMN5xZMmau7vOcCMzn/zRz9w+LgKrgSo4ITE0KzOgOIVBqGg8853FYkxdCdTcdhgmiElPdHv+n//m/Pnv+8ccvP1p0vSHsDgdXv9s+Oj3p/taMEpjjLE15oJxZ4BCIZ4wPP1QBCABSTOCFkEwVEcBBVVRnK9zciqXI2Hdpuey7/iSVmkX3x8nVAqcQZJxGCnGGawZCTFHEgIgZmxhTiIGZCZEfCKiESLNveJzG4XB096kZaYghdcyh79qEUYvXKszBzdE1hZhCGE1FFUBiTEzsKscx51z+5sv2dd8jExHeXV85psPhWHMOMR52e3UTkXo83F5fvTx9goiRILFnhMCBWQGcQ0CiYSrDMIhoE9N8ZSHCD9APmH+g4cNeZZym+S2glDIMI4G5gYMimpiim5axCNRqVgURs3kRmVf23aIXkf04HaeRKTx5+uzZ44uX55sE4O7H8VjqgBjW603XLlaLpTv+7OPP/tO//aaYJOa2j1U1tU237FPbLNrWcxneX4JWdUAzJHTTaZyKWEqRmSmGrmsfBcpqYFiGDP4B5jQfb0V+/OHN6Wp5sl6LFOKQYlp0DVqDgON0uN5tL4/7zfmjn/30F//2h68MILRdrVqyDsT70cCRm65W5BR5tc7HA4lf39++v75++fjiX/7uFx89fWSmZLhsu1989vl//t3vLq8vz5ddPVai1C9OL842q+WamZkQwObipDuWkksptVb4y1Az8IxlCiHONF0ERGBgrcqm5tHUgZljDKVWxDHFNOUsZgzYLRdiNk4jBw5NNxz305QRsVYBgHGc3FyrSlAOTIFjjP1iUWqZxvGw2719+3axWJyfnzGHxWr56OnjuYL+zTffApq5EeGLFx8Nw5BLndGCq+Xyux/eHY7DRXMaA6PHZp3a1OyPR2Zerhbnjy+6Rc+BtUpqmhAZEUNMIYS5mv7o/DylKFKYeDgem65xt+VqPQzDfrc9PT2bfU9TntwhOFKIZuYOZ2ePL168HI7DcE/zyoqQFfQXn378yfNnpiU+fDK+PFk3Tf/58vz85NF//M//5avvvj9ZrR4t+xAI3JEYEAPN0GjKrrmUw7bUkpnxbL2o9S8UBCcK4IjAHFJsut3xcL8/goeHVKHYetk3TBtedfvu+8urN5eXz88enSwXMVAGRBNxcw8eHAJQ4MARmYbjznOutYoqALbUmGq2ehTrU/q7X3zZthFM1WzOQseIIuJA7rg+Ox23gx+yA4WQMEQplQkckIBsHiEiVKvEVCEyoqmhzg7Q2aTLalpyMdE4TXMQ6C9EAKRZzmR/mf/kUhBm4eB8HKqZAngtNXBgIgd212k8omNs0jhkcGZGkZpLHaskgD60v//Td3/+7jXGzfn50/vdlUidplHU3t3cPD5btyH/5UmYmjamJnCoZZp3MPQQmXdzA0d3g7l69WGkoaBID7JbRBJXUSEiBWibFGM8OTkNoTuW+xBj09jDWYIBFLPmEPoPc60QGByQAzEhzbUCAPfZleEwF7segkkiAFBrKbkABXcPIUZEkGLmqkDMDu4Gfd8j83EcZ12MmQPgMOW/rT+suqZvFxRjERn2B6c4DnmaxgdKsjsSOuDt7b3ZkyJyd/2+DHtwV/WHVM88jKtSa3VHYmLmeauNH4CoDg/jIJt9bMQqQkxSa601EKgqRMQQmReVmgGrEFbIGAJQIPcmqbub+mEYjuOEoT09e94vV8tVf3a+yjI6AkUOzA02bbdom+Wq67omVqlPL84XXXN72MfFCpnbvnny+HFMMedqeWJTQMBAUKu7/iUXEEJQ82Ea62wyAhhy7voFMJeciRkIHy44isN++O6H1xd/94vVoi8qKcYQYhOjial7XADElB3fX12bFAOHSCYCUoWYU+qaLjAM41QnWXTdOIxvX/8oOv3Tz3/yz7/6xaZrSq3q6O4I2gX+4uNXv/7DH3cTrZoOnJanJx999tmnn3y26BboTszmNl+l57o1zykAE1WttcaYmtSIaK01hs5NmQCYx1zUKiL2fY/gOU/H/W4ahtQ0i+X67Ox8d3/nZsv1enmymdO9iHBzdf3DDz9u7+76vqulnp6eLpaL5WL56OKciEzrnIYGtbvbu7Oz89PT09V6sV4twCWPRwe8vLx+/frt06dPu77/5NNP3PR+uz07O5mmzBQQ6XA43t7fI8D56ckcpgghIodcJaV0f3+PzKcnJ+2qR5y57D53TXPOXd8zYM4TAIYY7m+v1aRfrkMIR5nT6PP2W2cggRksUjPPYPuuj323enIBKVoZyn475LxeL3/2xWegOg+OHTm1bZvWbbNyrau++/f//I+O8Jvf/z7GZyftikUfXBCIBOQGporm7FjG8c9ff3N9sjldb9aLpm0ZTdUppoSEQCSmV1dXKurqyB4CCAARxcCOtFksXl3A3X774/vXYz47W6+JGYCZZugiVnFESG3rANUjMCJGqgXMcjUAco773c2/++KLZ48fETo46XxrnxEu5qre9AtjOB7uXQoAoczZxcm0Api7liIOhEZAaA4zAAYU2IMoqtk4ZcYwU3VgvuC455xFZDaDwsO4+CH/Mw/U58eIfYDBzdOVmSXDzGYUGGrJ4PNya3KH8qCVeUDOj1P+6pvvc7WS5Wa7N6lmMhfiy1TKeHz6uP/LkzCGGVINqmqzCvFDXF5EmclM5wAhABDTzHyb51epiW4OFev8V4AxN13TPDD0OYjq4XAQMXBQUUAylVJKDIyApk5I5uaAgCiqYWbJqQlacCAinJ1zqoqA4HO6o0LOJWcAQGRVE3MFmHLNYoCcQkAOnFKZ5MOHCIZQ5K8IpPVytVqupipZaim5aN3uDvvtdhzGnAtHXix65/Dm6nI3fXJx/qiJU7PqSo13uz2hqahGOxyPx2FAegDNzY/F2V/2EC9Bmn/H5kEzcy21TuOEHFUFDN0VMSCyOOWse42ogOYpcAwMYBQw5zxJkbhaLR+3Tde1HSNKybe7w5OzTWJsY2DGJiza1HFI7mDo1YtZfnJ+uh8P/apf9H0MrNOx7Aq4Rw5OgI4l11omdzcDdZikIgUAVueidX/c51pibJIYxQAiyPOmY75KsxPtdvvXl1e/+snnsVYzU3WLFLp2tVwd7m7v378f9zsdy1nfHqd6d//+/OwkARAKB0IvZDVQZWvK7lC1dsvuX37+D7/4/CNTLSozdkNdJi0ivumWHz19+d27N+uTi7ZpHn300auffNm07cxPVxVzRcQH7I/bjGEBxCoSY0ypERH3qe/X4KBSmVFFa621lhiCiozjcDxsh8O+SQ0h5jz13WJ9cnrY3pdau75HIgDsuv7p02fDMPz5j3/c3t/lkpfL1dnp2dnZaUyRU3p8fta0zfbu5vryql90/aInpJQiIE5TGcfx7m57d7c9OTkjCq8+/vj8/NHV+/ePHz8+Dofj8fjxq0/v7u4fnT9Ss/vt1txWy4UWOxwOVSw13TTmu7u79eZERNTGEFLbtyklANjd35nZ6dmZ5FJKRveUYh7HcTgsVuuu6WpfwZWZY4zDMIzjGEIAkH65mht/HGh7e3M8Hr1J/aIzxDhOv/zi02WTpjKpSRXtFsvQdG3TE2AWdSsp+YunFz/+8OPrt5f7aXp8etqAgVuIzVhE1RAZCSKCmpvZ9nZ72B1Wi/bV86cnq1UuxcyIQ0zx6vLq9vJaxdBIBdACGBbXajZMowN++fmrRUzf/PDjn968/v79u65bLJcUYkwARMkoIOGiWQzDUD1haAlBMasWdAptiqCvFosvf/I5BwZVURd3cCNzBDfQ2ITYd9+8u5RcCdy91rzXOtRxVMmqMo3T7ViWq81mfaY1mzsv0N0JIYQYQoMmtVRjkGqxD+ISY5xxTyKCSGbmYOAwrz3nAulc+gV3QFTVGCM4zP9PCKFpkgi1CQI7OORS7QFyomLCkZ2obdrf/uHrt5d3i36BVg+7+265rAJgUKXuj3kCOz9t//IkJCRwEJVSqqm6W4qRkETEVABp3g2oOjGxs5oRE0duYggEJurGBUlqVgRyZcQZMDN7JbPUB5G8+lSquROriHLgMefIbO5jmZo2uegHahuimpra7Fd/4IsiqKip1lIMqJQ8I9Wqea5qDpPIcaoBedl1DDGmpoQHULMjBA4eDeDh7pPaRsG2x11RA/dh0h9//OGwOzRNs+gX0zQdcTxkudnubw+HL05OLyaSccy5TqUWOUxlPOnbccylijuAm4ggzJXneRNss6ZyXg8AAMwtO7NSCgeYHbmBQ9s0jrnWKVLyaV+KxIDHUXMtaiIm7WLZL86X/UkISaUaQEIBKzJqrRa7vm1iIG4eTnJVgO1uqlpi037++Wf9Zn3Y7xlch0FzTkSAc0reapaSZZRcVat6KWrmTlTVh2nMNfddevXi+YtnLy4vr28PY39ySu4Pe3rAh5oW4tXucD8OZ4tFnjI3TViux5zfvH5zdXmZj8PM5kDktmkX5qbS9WmRsJSKACqSyL0O5TA60Bcff/zJq4/mMJEReq0y5WxVVByRgM7Wq/fX6c27y1/96pevPvkUKdZcYxcIUVTna3OVXMskKhwCMY/DMY+Duw1DptA8fvai6zsDY47gplIRse8WHOJhv6u1EPPZ2UXTxFxqNRunsUzjHNCuORugqIpIEXn8+PGw3x32+5QSuA3jsZva2MQU49XV1W67NatgPleOb7c3l1d6enqamqYUybkScdt2H3/88aPzR8NwXK3Wd/c3x+Nxt9/d3t1wCOfnZycn68PhuDscxpwPx+NwHIgCh1RLbdp2vV5VEUTv+2XbtGZ6c331oIKTGlNyICBf9mtTUcdSSi4TEc1ve+be9wtwFzVAnu8E43BsQlg33fvdzgB27kDwq1/98rOXz6dxJEapOXWLfrlpmh7BSj4SSYjhbru/vb97+ez5MZfL29vv315enJ4u+2VWzEZEHCJBNCIAVTIL7mpwnOo3P7x/dC6PzleBiRlLze/ev8tDFtN5/OCAxIgA1Xw/ltPNctk3CP7Fpy+fP734+vsfvvnx7dU4nZyccN8ZaexX/aonVPCKrgQGakjOmIwCtI3nwU1v7+9ONn0Xo81TBqumbk6zuf6Y8343qQV3raqIDgbADRFJHmqVRaJ6vL88bBfLTYhJIxEyMWstCCIla8OABOYAEFMiJlOdYQzuNr93z9OOuSKgIkj0wWDoc3tAVBHJzNUMAB2MObZhEYiKFCJiRo6RKKDIoonbw+Fff/fHIrbsQy1jKQNOfHVz7245jznLuuv+tgk8k8f8g7pqJlHOcqA5icQ8Z3MsMtdaiTHG2ITYphiZLKjKiD7HOtBMc6kiCjZN4zAOQ61V5t8WsVrLrEUrtdK85jBF5Kx1mEZ0DwQP9x1EoBDHKQcM5pZrmdcNImKeyWGa+pIF1MYqYykETMAAMlVJjXYpgWoIYOY5T6Kzgvivf1KKLqampo7gd/f39/e7UupU6nEYCLGl5XZ3nIrc3O9Tt1isrXIIPHZdc5gmNwkIDq7qpVRwZCQMyR1ExdwAnDnMtwJEdAdVRxMkJGJTCYRMZGAcKYZmQjPFaTjIOIwqDrbaLJ8+fQzo77f7rm3ABdQiIbsyaBs1BqA6MPUYGAzz3LJFE5EQ29RtDsPx/c3bm6vrfNzHeTJiUIhMFRyZqZSSq2ZRMa8GoliKZMlTmULDX3z6yecvnz8+WTPTqk/jN2+G6uBIoWtiB0hVq6qmmKrid+/v4qtmseihWXx/vfvu9evpuOOS44MpAUCmgNwxHo7HhBU1BlBCr2YqXmoFxGSwu7t9v90unz2JLqozXNBjbAO7mZjDGpsvP3n1zZvLIu7I4J7mup+ZuxGSqpQ8qZbAMaXmsNsO+y26AVBVXW+WsV3SB5Gdqbl7Si0zlVrAQUpZrlcxtNN46JerY87odthtzT3G5Oapbdida5lilDxRCE2bzHQuKhLz8Tjud3u3B+xlyeV4GO/u7g+HvZoxh6YZ3THG0LbN6dm665ubm6umSbvjcb/fDccRzO/v7zYnJ4tFczhICiEFzgXbpgVHVSPiqZTlctkvFuOYY4xMiO6311eSp0Xfb4+H+9u7i6dPV5tN0zRSKxy2DbeuNo5DjG1qOkQijlqKO4SY+n4JAKXkKgURP/7kkz9/9cfD7ZU7iDubbk9P1323395jsFXfd90akfN0LzrFgKPR95f7yYIFWPXruDz54c3b76/u1xs/WZ8CAZhUQXNMTcLAptVNHTGGUM3eX99UnZ5cnK/auL2/Px6P8uAScXcHAmRG5ylLKfVss0YQcDTH5bL71RefPr84/8N3P7y5fF/y+uT0ccfQtYFMuzaO7ioSmRqmsWiI6Jo9D+z29TffvL98/8lHLy8uzgwxF6nqhNSkBLF99/a1CKj5MWc1BcfZADtP6Psu/uqLT0Tl+zdv31xfTtVSt1wv16erNWKVPFktVRIQA4K5gdk4DgAgUs3UzQ1N55btLBSb+aPMf90QIJm7Ojj4NA6zbU3qOLg+3pzFEMS9i9RBw0Sl5ABk7v/2+z++vdmm1BFBrpUpXF1eXd/eI1MIXGodmZACwMNC1NwIAc3NREyZ0fEB1DyDR5kYHRGRABnRCVLgLjUpBiY0wsDkJuDqhJPIWGQYB2CWmtl9Oo5VhCjUWgnnZW9AcnMPgT8IBEjFACBwSKIamEIIZgiA6ialzNtmQq6ipkAGIY27/a6NoeSiYo6EHAInN53G7KoxRlObNz8llyoaw1+PgMSpbdM+56nU4zHvtls1qLWqGDGerFcIuN/vzeFmu5+KpabvQ3M9jW4y33FCjKr2gR489zv84ZX/wWX/sL2YEx2IIKIcaD7eAWHGdwQkAp+qOnWjgYzDq2ePfv6zL188uZjtkf/p17++HbeLfs2gEaCPgQNAVXYrw+7uWtOTZ8GdFJuuFXMV24832/u7w3Y/HUes2nBwU3OrqjXPaAMEBzGr4nUeepoPpeyOxzaFLz775NnzJ09OTzZ9G5lMZdP3nz57/NUPb4UDOJATgjcxeAzz5urqertaLk7P07u3b95f3ko29tAkkrxzMOTGobJbywhdt9sPEnPD1kYuRdRZDdQdAHe7w+9///W67Z6erUX2pkKhAYpOnshTig4BwnB5sOv7Qy51vVrEGP+SDAaAqlXNZ9isSB3Gcc65H49j08Su7bq2jTGVWqVWMENCMih5UoDUNk3bOWAIfPn+XbdcPXr6dBoGNd/t7jebTez7uXOERH2/ALOmaUoVB2+6FhBdLbURQ0CwKnW33U3TJFUAPISwaFLbNiEwIs8o8q5thmHPHGrNh8MxT3kcxsVyYWa3NzcxRXc/DkcRWS6XXdeHEG5u7vb748XF49PTs2GcYkgpNRxCqQKOJydnbgrEwzDmXLq27bru+vqKOC5WqzlWyEz9oicOM8oQS5kvqTHGaZrmEe/Fkydnj84Ph20gErf9Yffb3/7m808/3azWqYmIEYCkllJHsArQ/3h5/f7dDRhUNVBIqXv10cf7w/bq6v1dHi9O1uyCToCUHBzIAJwQzMkFwepUr9/s99u7J8+fHg5HByIGDgkbdMSZopO1HIbj08ePH52dBlJ4eEyRs52fbv5lvXj95v2/fvXt7d3t+eOLnJXc3QggKrgbMAASB6L9/j649V3D1FSpf/zzN++uri7Oz5bLHtyqaGj6m7vt1fW9GAIGN2dEM0PLVrxKRpfTk01KoaP4Dz//6c9VX797/9s/ffvjD1e3i9Xjs7OGudYac0nc5HGSrhrOjaoYQpj1n3MKCGbRLnNFZJwXhzB/L0SEEGMgBB/HSVWWXWtFZpFcKZU5BEamBbrVMmLE3/z+T7/+w5/NqE3JXccy5ZoPw6HWvGhWJyfr3W4Xwv8/FpMI5rmLqZqCRpvpAcwcU5y1RUXqvMMgDjGGlFIgMlc0QDQgA0DEWIqXUneHQ0xpHMfZzZVF3YWZU0xNik0KCCBSZ5/MvG0w81ymQMR5Kkzo7sQAFGbYhRu4gyOKgaGRap6m3W5PqwUgxtCoGgCBz/nEDC7TNCHyzN4jJq91mv6aAjK1tGgW/QJ5MnFVoXmlzRgjE/NxGksp7nB5c78/HB+fPT7e3dZaCIEIzQyRxyLjVM2d/4Y0h4iE6A879IcwaEoJgdTmTQYAwMwNdXdEKlKHSWKHav748eb/8h/++76JuUzjlCnEF08f3X/9XeI+giXCgIIK6p6LANYpZw7Nsu+6pqnH483NzXa7HY+HFInAu8iKeBwLIsSUDEqIsVZRgSpqAI5ojqPKWEvJ5emTiy8//fRkvSI0d60q7nOxzU77tG74PpcUnTyTIzk5YDVpm2bdNdv7+9dvL49TSbElg1InVECIak4YALlL6DmrCCOPdWqa1gFS01QBVe9CJGKcap7Kr//wdfcPv6S55E2BiNCpXyy4bb95/eb3372eJHz65ZfnF88Tt+4uooBOiCLFTJipitU8zRytrl+OwxEROXDTtTFFFTMxcBdTd1UV4rlCDG3fA6KbjcNxdbKZQd8UuJQ6jiO4L9YbURNRYg4ppdQAoQJsd7vdbndx/mgax2EYkGAaRzeZKV/IuD7ZrDerGMhES5VxyOv1qkptvT0eD+/fX+52eyZer1a77c7cuq4HgJTSo0ePDsdhqjUmXvR90zS3d3dqRaQGDsvFIjUtgE/T2C8WXd/t7u5iin3fA4A7zEnW1HRN286bEgRnohiTI7HDcsUqikhSlYhSaofD1szPHz26vnwnUhJR10VC+Oa7P5+enH/++RcxtjmXmo9GGpj3h+P3336LeQpEbhWz6gQItIlx9ez51c3l19/8+ez87OJ0AyZSjTg48EzrZ0Q3QfJapQn9fhwO4wDE7ghED+GK2JRa9vd3i77/4pOPE1uKM7oSAMGRHKCL4e9+9tnq9PT7y7tas2QJFAIH4kBmporgzOhWQbRtYmQOjJFZzffb/XQcV+vV6Waz2qwF4P6w5xhkKm7eRjKtCmIlMwfXiq6Lrq1iEKghOF+uzk83L54+/fHd+6+/++Hb7799/Ohi1SStM6xMRWXWPc2PCNW5mKR5mh5Sgu4wP3BjnFG1IYRpmjiEGZig5tNYNl2fOCpzartSZxQ/EgWzCZi++/HH//KbP97tx8gtE+ZSEGmcpsDU9+2i6xixSXG96Oc13sMIyC0EIgd3qyJgXmIJc0thDtUhzKRoAFAz/jDWNnAzI3jIDCEzITM3w5gBMcVmGHMRZQohBHDgwDHNYiRSFUQMgQMHB2ARcGfiYOaGMIzjouuQItosb+YZwAKA5rOBnhC85Kn0LRGEJslYZ/C0qpjKMEzu2LRdSGnOOZg7MAE8DL/24zGm4GCE8PzJxdur+/vdn1erpbtJLUXru7tbMZGi2/vDm+++fbzaHPY7MGuaTu4ORcSJxHwSKaUgQOAwfy8Dz8lxeODSGM4zEFUhJEB4WGubzjkqcdgeRsdgBl2TPnv1pG9xPN6bg2itOS9Ss2zbWnIFHBybwH0KaqSmgcDdDofDIZfD/jANewKLTE2I7l5N3Q0cKJCrmEgbY61a3FWt1FIVipiomuvZZrnq+yePL1bLDlSMoFQAyEzYhMgMTQzPL863334LrjmXWgoSnJ6dLVfLru+ZaBwHVj9vgshkoCmaVRWpuda5s1dMc85DKcNwzDris6dni44cYC5Po5dcJOcidjgOXdv94ouXTIwcODWpW00if/rD76+vbwKHTYzPLk6ePHnEPBPVnYkBXaQ4KCFO4yhlRCSKCQgP4+gqsW2YY60aAMBh3sqWYrO+rdaaYkptT4T3V1cxhOVi4eaq1i9W5+fVzIZx4qbdnJzUqrUWKSU1ab3evH3/FgTWy2XTNLc3N7v9wwjo0cWZmTn6ctkFjgA2jKOp5qm6OyJPU15v1iJ6PI53t9u2bea022K57PuuaRozr+U4i2sOezG1ECIRidSUYogcYgCY536Bm0ZFzX21Wi/W69Q0xLGqtm0XYoqxM6vDcJzvrKa2XJ0UdXOkxEzRzIbhKFqryt12O0xTVTM1BiBgRBC3t5fvD8fhJ198+ezpixAdAAD5T9/96bDbtyHWmmsVlQKIVUFUq0lq0udffLHbHt7d7k7Wi55QVB1pFk47oKObW+zb1Wp5OOynYTJFE5uzc03XNV13nKbjNP70k8/7JgEUDIiGBvPO3xB8zg3+5LNPu835n358q0aErqbu6BghsFl2rdM0JWYmMiIzczMknI/Gm7u7m7v7i8ePN6enTMRgbNUdELDI4LlIrUdxRTg/3fRtI6pM5ICiHgAvTjZPTk9/9cVPfv37r252B0KotRIQEldVNIhxbssE8FGkzrPu+VEIgA5gZiEEZh7HcaYUl1JKKUBUFa5u7s5XqxgCqM4qUKkmgVRy1Xp/2P8v/+23by7vwMOib2LEWp0Q8jSmEFOI4DruD1MZU6C/7QHEECKHOf+komZQa7EYCNjciAkA54TUg0KV0BzU3MFMFR2qOPhDv4IYi6geRqIyllrUZxT5vJ7s+65JjZnppA/7UiK3v4h5PYjZMIxNYHMvJcfYzG/K88AEEYmQw1xNTkwIDik2Bap5kVpLqaVM43FPYCk1UZoy5akUEVXTFMNfDoDb7ZaY1G3RtSfr1YvnT//07bfuEkJI7fJ+uxNRQnLVcSi///0fPn3+UmupDsv1pvz4TkQBcJoewkgyYz9t1oQ9LK3ncz5+wH8DodTadq3NqVBAIlIRJgQiMAqEXdOaWpkyczSRyKHmXGvuu/aHd1fLzSlzNEpZlQEDUUAPgSVPt3f7cSx9opQCmE65EAG6gzvTzC51sWqqwzRmgVw9V8+1iNRF154v1qebTYhhtezdtVRBgAJQmFITEbAPzWbV9Mv+7rj95ts3UGHRppOLk+XJJsaIyLWq1dqlFJkK4lQUHSI5enEruQh4GHO+Px6y2NnJySqur27uWw4oGmLMovPrftv1rB4D3tzcXZ2un12cEoe0OLnaH37/h9+Pu+2y71cxUYirltEl5wkRmVlU5t17ngY3MNP5NapPKY/DdDykpjFHFTGt1cHMKbBIVpV56BpTIEICKqUcj8cQYs2l7ddt2xISut3e3KTUqFjONcYogu7QNN1qvR7zGJnXi8WceU4pptSnGJGIEPtFv9lsAGC/37vbdj+IaEopJr67v7++uVH1cZxCTE3T9n3XdX1skpnf329zLn3XL5eLcn9fq+52h7btCMPjx8/briekaZrcbd7Uzfqzru9msrSbYwBAjKlFqSFFdBqnOE45hgA02zVAVIbhuFysY4whJHdbLhYhxpwnInTwmutQhZlDDKXW6/F6d7//9NPbL774qG3SDz++fn95xYBVqhq4E8w5H/dqvt8fvvj8o3/6h7+X0f71q69+fPe6pNCn1qRwCjElNy1TAfDlss+laDUGnrulqgpmOk5DKbvd7sWTJ6+eP0MwIJzv+uoeiMOcawDgppsML2+2CG1gRgrqoGpV1U1CxIicKATEYm5VImETWF0RgAL3i2Up5eb2VsBTaJZtZKnjMNZaQQpKNfU8ZQ5p1fYq4gRtkxDRzCtojEjEfdd9+skn8PrN/d0tMzuomOi87f3wgohEzGEOwn9wktusFRmOx7br/mZZ+Zchgh3H0Zk4UkjRwaZxSudLqVmsHsr4699/9cPbWzPuurhaNIhmAC2T1IJIImX+K6Y8rRbd37oRmxRDoJqrmVVRdHdlM3V0AEBHJhKRXERUiXjudlRVzZVoHroacQD3uc9cSiEOVSY1dOQYebno+651M6aQpc4KJpFMCAAwTXkca62KhOE4DbVqYKqiZtUd2rYzMyB2cAdDikyRKcQQiQjUCAiBAH3MeZim4+FYpykGbhKC6TRpFp2mTASJGeAhCbrdH5jDyWrZxQbBm8jgknMeR+KmEdWT5Xq/P8bIovDND293u93JenkokyFu93tQY3eVCjM6nNndRQUR5UHgwECgKiE0H0Y9AAQhhDmlPjcpHKFNdHF6cnd54NnfNhWCEEMwH5kZAaZqp8v+LeF+vz09fyyG2aCLDTsZeTUUAwUGZBWD+ICZmyFLM34HEUqR/XEqYmqWq1UHMGtT7Dd91y/atqXA4n44HFf9UqA+hHMV3JxD7Ptl3yVA/eTl8/vtPqXmdLOptd7dXINBExMAqmolQmIHUndTITMp1QwMwmHId4f72KV//vu//9VPviyq/+P//D9db/ebtgFQQlJzdVQAdTSRtvMf3r/HFC8ePf727c0333+vozIttwUaD4vUhmbJEGcjBsADyVCqiBS32cMcAFCrlGks4z6mxLG5vb0BwLbpichUcs4zBZEDIVGtZX93t1gsF8vlNO5V1ERSamqReY4nIuBepqyqUqWqpdS+fPkRE25vb6SUqRRHf/786fn5o7u7uzdv3kzTeHK6GcfxIaO5OxyP42K5GKbxjE6Xy+Xl1c2795dS5eTkpFYppSKW2+1WRUOIIYYx5/PzR/vD4fb2KoTIHE7PHnWLPqUuhFRKjjHOKPJEzYwaOB73sVksVklqjiGGGEuZ8jQS4WKxaJq+lGlOVJeSxUW0DuNxxWs3DyG543p90jRtE4NhrIQiWlQ4cMNB1E3ld7//zdXN+1effPTuzTswa2IQVVMAJ7XqjoBYxM5OT58/uYgBF+vF//AP/+67p09+/dUfru7u+qZdhE5qNfNJ/ez8hNvFfn8E6ix6SIhJWaq7cYpF7fzRxZeffRYjmWliIgRVme/TIUS1yoG9ab/605ub+5E5AZlYBQrV3cCDoblvx2PvQCkBwDSVEigLzTIPEGuazpnV7Op2QBgCIcW02EQTG4fBpwEsG+BmsWCA4zh0bWNmD7nF+WHGoTre7XfM1KRQRQ2MAzGTiokIIoYY5hdZdyfiGJOKEvncXBHV+d1/DjW4q7ujQ2Q8DEPou5ZJcj1dn5Sa73eHs56mkv/1d7//L7/+45itaZp+kZoYjsMgVYBJahmnMk7Z3SlwFX8W6G8PgL5rCMFUS62iGhEDsdscC0dTlyqCPpViAIHnziWLSq4F53EQAFGYDU6moK4MKGJIHENYLld92zaRrUotEigIVTAlBADLZTxO0zSVMRdmCForgEuVwg8JjXn+M38izDGE1DRdCMHcAbxqnUoW1VpryVVqdXsA7BEhoKva8XgQla5pAoW/fNkqetgdFm1bVGycVE1EhzGXLEXvu0Xf9wtiTDFmlev7+3/93W/+w7//l/Wif3u9ff/+PYITOoBXkVrK/Bv4gN8DN/MZSf8A9jMzM+Ywj4ncABEDs7sTEAEzw4wGiTGulg8R3RSSOnRd13bEPD0523/37nIajik5UBjEUZxQmXlmoTRduHn3er+VyGAGDujmD6o5giqai01FDsdju+w2y+582fdNy5EpxtCtiANYcSluklIzTRM+RICJQ6AQUtsxw5PH/pOhbHf3eRrub3dSDR0K15n5p7OZFGC2V6hqBRWxkisSPnvx/JNPP/705cdnm1ND+ee///v/+L/+LxUxIRI6h1iqiVRTP051exwOUtPy5GaA19ss1iAHEFGzseLJ4mSx2qiDiHIkDg+i5qrKnPK4H3b3ZRqBwzKkcTjWkgk8MjfdMoYmxoSIIrVJyVxrddGqpdRcVOV42HFIIUaOYZbvIYKapZTmWry5kxshphhpvQoRL9+/zdM0qY15atr2+fMX7n44Hmup0zTd3s7xJJ0LuhcXFzPvSlXX6/Un3WK1XF9f36QYgVABm67bjeNUqo/57Py8VLm9u2u6HpDVnBjXm8XFxVnXtfNL5YxOY+aQAqrlfZExD8MBGWOM0zR0Xd+2rRmIFJWCOP+GwzTlWjNHDhz8AedCM0B4sdo8evT43Q/fi6i7pUDkEJgCMc3NVXQze/v6zWF/YCBEdjd1NVd3VMdShUQ+/+izZdflPEIiF3z5+Mmy7/7w1Vdff//tWPNydaIAi81JXGz2w6jAMtu7kZBQ2UOkbrUYbu8RbKi56xtEN1MiJwQCIPKUInhsusX3d9u7w5GZDWyWOgZmRdBSHH3c7y4vfyS305PTk9UaiXIWNSCKhGzglHPA5BSJiciz1MjOhN1qkZaLLue1VHn9pumimLjUwGzq4EgADAQGbnYch/1+O+ViZjHEEIJZNp0VFHMQXEspf3kyzO/4ZkofLEa1VvnQWHoQjrsR4zSO33/3w//xv//vd/f3xHSxuUCSQYb/8m+/+8//9Q/bbY6xjUxtTPN1AwnFoeQyZhFzUwMxcAgpziuHh+cMBzSXWVbjgAz0wE8TUZ1KnnIBwrmGxjS3TllNwaHUMk9n7GGdACJCjABYpaZETZsWXd81jZpgCF61iohaEzlS62BjHnOZjjmra9f2Ad2JSE2kzlUjFJFSpZRi4ETEFOdj072aWa5FzaZccxEVRcAUo4KHQJEjONRa5pKriv7t5IspVNHDcYgpIpb7+62ZbfdHNwBCDkFU2ja1TXt9t52K/Ovv//D44vTjV599+90PN/f3zBgDAbi6zcO7uX8EAPrBCTMneR/mPwDz3Bb8AflETLXW+XrlgWeQHodA/CDkdHAzDKnh2HQeNpvTk6Gq1CblNjEiYpy33lUMihRmbppw3A1dZFMoojNEQlQng1LyNI0IHgKdpeVHT877gGaetbpAnabU9omo7zs16NrOHUTqHN6eEW8hNvvj7s/ffvf+/RWISBF0mLXDDqgO9UO9xdxlZriaHnIuJT86Oft3v/zy0eNzA4ociVMM4cWzZ19++eVXX/9x2S3VoQgZMbbIJqueNqfr2Pe7DFZqCA2jiuXYJnBZ9E0X9YfvvlquFq9eftp1zTxwe2A+S5mGY56mYRzPHj1m4jxlUJecpdZ+xV3bcuAP4FsAgFrqMB3apkkxZqLjMHQ99HPnC7GUnKcJCIm51hpSmHHeDq4mOU+1fnBL1FpKvnj8OKX029/+9vr6+uTkpF/0850XHA7HA1FFxLltOxyHaZqWi9VqtWq7rkw5Ns1xOJ6dn3fr1c31zc319c3tTQih3Nx0HyYDKabFYnEchnEcUmoChxhjCDGEAIToME1jrXVJOBwP/WKBSLUWACTiFOPtYQfmHGJq0hxTBp+ja2BmMUUkMpd+sQhNVxSyQplyRAfwPE0aQkxRDVKKbdtM0wiAqgYuYjaHyuc+aa751fMnT85PiHwWi4uDTLmL6Weffb7ou2/f/Hh7d71cny77lUyFTJgCmgERoolWBEWH3fZ+Gg5ptXn97v1+t3/66NHpeole1DLTjGbhFNMg9ubNeyvVBBRAFICCmYNLkKnUEqD8H/7+l1eX799cX78+7NanZ21qENkBxUjME7PSQx4xAiBgqQJuSEzoDhCb9Pnnn7ZNc9zv8lDHUtYPFR90cwGglu92u1yKmQZiJEpx/uQeTtZScs651srMH14N5/4oECEzfzjR+YEPAfNHN+8w4U9/+vbnX/7sxbNnh939xZMLJP9//b//H//rv/7x6ubIsem75qRvzG02XHEIBlBqKaJIEYjUAE2bEPBvDgByAHCZgdLo9CDUmEP6rmpTLe5QRZk4pRhCYmYo/uFxp7VKeJA5ViJywAdGKQAHDsxIhI5DzvvhKCpMEEJkcKkZzGblABFFphCQKUIMqWtjYGaObjRNeX65JiSkvyZuRMVVsudxylVAZxggMcUY5+SKOTi6o4gy2CxqfzgAQgT3qdTDOJrDMBwBWA3cfNanqmnTxr5ZHsdpdxzfXG3/x//4X5//+e2fvvvBZ2JM4KZtZsjgjK9KacYBwcz7nr/lD0UwhA+K4IeRX0E3VQMVLT7z09GB8HA8VqkeGAgxNGl1Ooq92d7eHA3CqshOAMYsDkRgfYoxhsjRxxEDrNbrOlU0cZglCybuQy77aWKEi/PNq+dPlov+8voaiKaqMxnfOc5HN5ATQMlTLXZycrbb3c2XGA6JY/ru9es//enr6+ubQJSYTWFOOc0Z/BkRLmpqCkQphN00XN/d9k337372809ePlsuu1wLYCilZtF12zZ9/eijp++u3l0fxvViJU5FkQBTw48vNl2/2h2yKFHiAOpWAwq5EJiNcvvuKGX/D//0j6vNUnIpZQZji5mZ6PzzvTo525w9KlljTPc139/fL06fEEJIzBRyyfPNqxQrtcx0oDEfiWm1XgGhSJlyVp+vdOKmxDzmaZEiE5U8DcPxcDgcdvdScwoxxTiUEmNaLZdff/3169evu647Ozu7vLychvG4P7hZTLFNjauhY9MkZjiOw+VwKQYxxMBhsV6u1k8Oh0O3XJ6eneYpz1Cjq6urtm2JWarc3t72b1ccu8Nh37a1bRfuoGLmkppQRdSNQkhNg8xSa4jJZ7usS2DQWrq27xZLc2yaNqW4O2y1WuA0DEOMMREjctstX3z8+ZMf3rz54fvFYi3j/nDcmoOBETtz0/X9NE0lVwKUqpMWClTFSzV1zGXanK5/9qsvk4O79v3KjRDVwE3UTc/Wq6ePfvXD+8vsNKv9YgimnggA1E2YzMByLsfDsFisFk3vXu72h3HMw8XZ+emmaxaqoqaJm2Lw6z//eRxqRBIb0ZGBwCGiE4GpHab95y+e/ezjVz/9+Pl+HP78+u1X3/1wc1sX3WqzPg8xgDkx8fzyiwiADwQEhCkLuJoKgJ2s17FbPD49y4fjYXer7lWd2R2dm16MtvsjEJG5WAVzMGMkZnawwEFVRQUJa61ElFIqpQCwu89vkIg4eyJrfYhdAgAiOJgpDcfp337967aPkfC3f/jN9z98/7/99g9vrg6icLqILx+fPX109v3bt7f3AzPRfBGaG2RWENkUzzar0/WqSgGIDzuGedJkNv8rUpz36qbAHDgEQCilzjpicOA5mBU4KFeZhx/uAEScS5m1VzEiIJqKqTzImTUfp+NQBlVrQjCdoZEpxUBEHLhJqYkpNG0CokXfr5eLFKKa3W93BqDuD0YtMAdUN1dH8CpVDHKRD2JhJEYK6WF2xqHOL4UmCbn+DQpiJhogUZ6q/v+Y+q9n2ZIsvRNbwsUWEXHOuTpVZYmu6moFYBoDg4FjHOMjjX/z0GikcQYECdVAN4BWJTpFZV5xRIi9t7svwQePm1XnLW/aFRGxw32J7/t9ZsRs7ohs0JCpVAmJc4pqEkNMoV0ul9989bvv3z2qGsfgqHS1SLCakekPRCci6kS/a393dTpga83NldTsOmFzU7ey1HZaLjHOIcWM+5yackaii8FxlfX+2/uH4/F0AQxKWWB6XIQJBSCGfDHMOXkF8SEYYh6GO27nYwaFUI/L5XJeAtHPXt3+5MvPnz27676/0uq3794fxjm4pwSyNTHgEMBtJUBm1W2cduM817Ix8f3jwz/+6h8e3r/XnggKvBUxQHOUpt33LGgO3poUFQwoYs38Rz/68svXrz9/9YIIj+dF3YiN+DRP835KY867PPzs8x/9h//y1w/y4fbuJRS7uZme3U2BsSxnWyoBarls24puzOjamJgwNID9YTfmXNe6LBcAZ0ZTBVepZaklDGPqiv4YYh6JYmcn5jy4o6oQIjK2prUWBBjGsWyl1jqOgzRtrazLZRxngO4USyHGbVmZ2USYAxDGmHIeJA8V/f3TU0gpiRDhw8P98XwahuGzzz4TlWVZHAAdkUOIabfbDUNOKbXWapPDzV2p7bKsKmpW3757++LF88Dh/bu3pZRStvP5QkSIdDldhmkch6HWNs37P/3TvzC3Wus0U8qZgBysG3qGaQZEUx1yXi7rZbl//eaTyFFETsfj5XIe8jBO4+Pjk5sfbm6GKqsuIYReyjURIowh/+Qnv7i5ffH48P7tN7/9t//P/w2W0zgkkdZU00AO1mp1N1ETt9IEhMyxNitVh0R/8Sd/9OxmXs4XgBBCsoYOmKKvIlury7qmOP3yFz/71TdvH04LgKM7A7bWEJwJQQ0AS2mBwmHaM0V35JwA/Lt37x8fHl7cPXt2d5tzwhC//ua7Dx9O2jxdh4EyjBMziyylVqnbs9304zevCW2Y86s3L//8z/75w2n5+1//6j/9zV9//f1v9zcvbvfPwcwBwzCgASKYKjoBoIq7OSJTyMelFTvu9tN+HO/iq0SehoGQmEKep2/ffnde18gRgRGglPr12/ticUL8gZmcYkJAd2+tmtlV708UY6yldhzQx+ywq14UAZgCgjv4b7/+qrR1moYP7++/f/vuw9Mm6tOQbg+7nFMeh+d3t1vZ1Ixi0LURKQGKGSKo+Befvx6nuK2nHy6AwCRuQOiATEiATQ0AORDFkGLMMW9FtlIAKAWtTQCRkQKHIebWWghB1Pv52S8ScyFEIgaH2loIYd3Ktmx1a2YWqWMZ3UHdPDAPMc7TuJvnkMeAFPe7w353GHM+X06Ip7W12uRmnkMM5ta0ImcElKYGUJuKeWTqU3VQEK3mSAwmTVW9Zyp3TeTHHzONMXGIam7WZy/BHZBQVFGVIKSYahMKYRiyuRKRIxMTc1RQCBQ4cuAfIsj7kDfG2DsjJupAj2s+TJ9KEqt23KObKTr/f/7j34TEP/vjPxfD3c3d7e3uKLIczx9O56fzBdSGOIwEeXA3WDFe1oogUx6bNKJoJqJGHAgCoI2H/dbq8fRQ1gsRfPn5my9fvnjzfDdP46W0VQ05ffHJJ2b4+HQMCFQKAPXPj5HCVekh9vU3n372SSnt6f6bh+Njk5aYmVnUr48Xcg+lsJ7cqQBk6lgdZNlSjp99+ukXP/riMCSpBYwVvLaGosRxW5e234WA4zA9v7v705///D/+979Bty8+fYnQltMDCNTS48+amvfvgbmJaFd/3+xu9i/vHu+fbnbV1GMiAL9cztt6IcTD3UtVAbd1Xdwh5bTfHXqITozJxNWaeR/YbLVUZuqu4L6mExECHGIGADOnK/wO3Cw4mSgkI+KYh0MI5H46e/eFReb1ctm2lZBevXlJTO/v70PKMWYwH6YRA4PZOE1EtG7b5bI8ns4U4pASRzQAM/j++3ccQgzxeHz6cP+wrmsMMecM7oSYYz7cPfv5H//S3E6n87zbT9McU9zWtU8XQ0zd5xNSl/8PbMYcAMzNhmGcpt3xdB53+xDC8XgKIY3DTMhIFKO5O33EPQ3D8OrFq5z4P/2Hf/d0KdN0YG8KOozTMI7buqk6IyFjE3MgFVBpTc0Q/+zPf/nlJ69bKSGEPucOFIpVdxWppdZLWffxcH8+v/vwgePOyRGckBRUpBFijFncmsNht0OE2hqgRUYk5JSb2tfv798fTz/67JOo9rSs87g7ylkcHHql6G6tLOdlWZnp51/++HYeQsR5t9/fPp+G29cvPv/lT//oX//lX/7H//qf/+1/+I/v3//Tfn+TeAjgmAYH7E22iDkgAAViU2RGEzg+HC+PjwgeI98epud3z1JO908f3n94q9IAja1naftf//2vd88/u7t9cU0qNesWUWLux0XX/vdpAQeOFEsptbZ+YlxmlF0fAAEAAElEQVTRMj0oHnr6U/v1r78y8FJrLabiKdDNfh6nfCnb0+V8uL25bMv7D/cxDoKth80AgLvO8/z82U1r5WPeYt81BrKrtviK5AYE6jTVOOYcQ3TA2rTWi5tz4CaNANy1Bzt2yGZrrc8LDFCqIAJFBaSqou7rWpq4iDoAIClAFUFXJJzHMaacUszDGOZpBM4YQxxHIMIQFOHx6RiIIzEBOqKKNmyJmTggqLuAewycU3S1i5SliTouW8sxdBlVzxckoo/rClC1YYpmhkBNtYi8efXq+7fvz2sF8gQdEAtEIaWkauM49VtaVQH0ShJ2dIT+KfYOru97ryqg7h5E7Osgw2tD4O5qxkjuuFX59u2HN5+8cuTL5eIiaA5SwFqrwsbjkIcUytrYoda2G7I7n8/nxOLrxUoIMWVmqZyHVLaLEqLV8/L0Zz//ozfPbwa0YIbsTp5yBkFHhIg/++Inf3X+71U3NkAwQArc85Ot1qIGx6djLRuBl7oh4hAjAai6KrgDOIqogTYpjqQG5iRNtyYO8OLFixfPn+ecHh8ew4tnz3b77XQUaaLKAURabbXWyhxjjOM0/uSnP3bWbV2HoMt5bWsFAG2NwIccSm0AJCLSpNZmZhjCcdvefnhaS005hMjmbV0X1RbTMO92jHB8erRWHh8/mPt+HJHg8fHBU37+8tP9joigI0pqa12avW4LIMzznFJ2g+VyXrdyuMl9JTMN07peQC3EYGb6MVvBjGC3c5dhHOu4uSkQEuHECQ2Ox6OYY+CIZGYUw4sXL7TWELgzYsdhKCLvPtxPw3B7exOI1SznaVvXh9Pj6XRy991+b6aBGXEYhmG32z17dtdafXx8PBxu7p7dElEtVVVjTDHEnNN6WQCwlmYG0zjGlExbSAEICfhwuC1VW7MhDzc3wR36lKmfRH1o2Z/h7kptpX7+2Rfv3j7cv/vm+HSapzGN01rqsm1SWo4xcEDoCa+mAM08jslj8DwSkZ6XPGRwUNM+jmitVSkUGCh897u3zVBVANgM0V0FRYgCY8xlvez2+zlncjBGNzAEMyNHBKIQltL+6dvvpmmMIaXssYbWs/MQVAmIAYgDffr6xcu7O1VJ4zBOhxiGad4RkLk9u737X//l//zp82f/27/9d/cPl8UWX055t895R0CK1MB7WEpzN5WEkXt1X7cciYA/HNfz+dtAqCqgNsYkVRx83RoRt1ZLKRzY3Pop38/9HCMhdmL5H+4mP77zcB0o9AuDUFSQXEXMoJT+WzwwB+YYaD9Pddu27TxPw/7m4IgUAwVWdHHtxba0+vMvf3SYRtAt4O8jIRlZzSMFQvbrPwBUnQhTzCEOol5K38OKmYrpNAxMGBh7VmOTPtwGdzBzA29qjKjqtUkMTckckQMP44DEKeeUM1hzsxCiArk6h+AOYTdOxjmPO4rJ3QDp/vGxieScmBmRSq1dhsEp5ZzMKUZjDjmFIUYlWypXs+NpuRl3xAQGQDoMaUg5hN8TMPoqIRATcZHapD672/3lP/+z/+9f/RckTim4WStVAMWMmCIGIs45t9a2tag3cGyipdQ+04Er88f79L/DPX74UJm5R6b9sBPmwKguUtWJOKmatrqa33tgQnIXYQPeNk3iYFGqm0QUBxirbn65kEkDAffAqWLzy5ojtFp3KfzlL3/+f/5X/zKCfrh/93Q+SasIMI3TgKknCnPiN69fffv9tyFxziMiEzMCEGBp0kQ7AApM2G03ju7KCA4oCp0e7I5I7ioOdFq3D+eTOA37w2532B9uhENr7qZ0qre3zzhVXTb0vqQ0czGtTNFT3N/dntcy3z47l7fvjivj6GkC1BDB3ZiJa9NWQ9o65XhZt8fj5c3+7t/8n/6XL3/84+4qbE1a6yGg2d0ej8flckqBzDVwrK0u63JZ17vA/YhvUogohggDDDmDe+0oSqImjZhPp+M4zUTcJ3nEAEjrtgZiCoEIL+cTIg3D0Nd6AFBbLaUgEQcy8WVdnJmZwd3FVfXh4WFM+dM3b7a2besWQqi1ppRevHwptZYq0y6Rc2f0f/X118w8z3NMEQCYmBBFZFmWm8PNfr+f5t3t3S04lFJCCOM4EaKa19ZnmE2lTfudyHnGPSC0pXU2aohhnGZALqUQEaITUY8Q+GHo/HH0jCHw3YuX/+J//tc/+fmf/t3f/vX/8f/6v7vVtVRTQaKYswMKRx6HwM2lBre81V1OD2/f/mYKb169TuPITKU2aa5u2IN/CZ+/fP7d9+/Oly3GbABo0AOT3VxUCNyEQFoehgCOpoAODq1IE2WAEAMyg7S2yuO6GIWYx5zYVdT7hB21tbKt05Rv5pFMStMx7ICYKAB6z4JYmyo5pzTvbtxmVykqp+Px4sdhGMd5z9hBzS7ugdgA16oIzhjMXJox+Lku4BpjDsSR87iflmXZ6sm7VMCckN2rmeWc+0gAEfHKe9A+AkJEc6+l9COi46CtH6vQiegdKdZiJADmQOgo6jEyoqcYhuHZum6XZTH3zo8DChyS2dnUPv/0zc9/8rlbcevE6euP9iWBg3uvZ0FECbHbAky72dqlSS2ll7ettRi471mRWMyl9UAFQkAxVTeOIYTwA/hgGsf+dDFzjikQqSEAEhOak3t/+SGnyHnHeTQAae3Dh3tXH1OOHNyhlw/mGIKlwIBAxOOQ3X1IPW3TObC776b9NE7ImjnGuB9SzjkTwA8XADPHQNMwEvFSN2bMBF989upx+9k33/xOpRFHM1i2RQwRqH95kK57CFNrTbfaHCF+1KT2l0fXPAVk5h/mQt59bjH0zE9idLPOoXNzQoxEDTDGNKSkqkWNEQZyMV+3kmIIMVDwmHITRwptfSQwB4SYBCliQFOINCRF1zjukPLtHIF9c60XQgiEHFM2NQU7r8vd4bCup8u2UUrmGPLQS6eUUjToy3uRguRNhcAwEBGmQLU2IEOkSGFR/3B8OJ7Pt7vbF69e5HkPGAKyiDYQdW2rf//27YvDLoQgrUUOOaXEjIgh5ybyzdv7X3/9u3fvH03QMak5uIMTuDESopsiWMA4Y7I4TIEvt3H8v/yv/8tPvvwc3C/LotqfYVczbLVs27qt4zQ5wG4HOYT79+9KrdM03t3eXUksSEMeVbUnSpjpOI1cqda1tRYoTuP05tPP7u8/1HKZ5n1M07ouvamvZQMhAqjb5urm3lRba8QcYjBTALOuEgJFgFYauheVy7Y+no5Dzhyoz5pyTvdPpyp62B/M7Hy6hBh7mtBuv0foMjvftjIOQ07p8eFxGqZpnnp0wRXdjhBjZOq1EXTFHwWUZrtpLq2qNFHLeZDWqoq5xJDn/bOc87atVSWnobttOqn4KlvwToJkB3AKL2KK4U/V2r//9//+9PRAGBEDklfRunng4BQas0oJ0TmQ1Pr9797dPzy9fvHszfOXtdV1azkOqqJu0zwt63I5PgaPVVYDi5zBDEylSXDdLvXDuxMj4t0dzhOCS7EQogOamjo0b8weQ+xhD1uttJU0pP1h5+Lnp6dt21S1lbJ7djPGVFsL4y7lwVRFq7SNUnZAVxH3b96/d6B5P5rZnummTg8P99t2XlU4DQGws/kbopkxEbgBoTpAKWaNA4ZhNDU3YyYHQ4atikpzRHVXFXMjoD5FcPfa6pCHYRhE3qspdt+oSL8e3L0DJX/4INwMmBExDwnBzTQGQqfanJgcII1jDEFqkyqMrGIpU0L8+R/9US1FVT559SyztdYcyfX3MKCn5YwArdXusyXm7lFo0kiqmnJM3a+rom4ABu5mKWnAwIHQpd9Xqh2T7oYBfByGIaUhpZxzn2WlGE01cGSk6xZEGrhf6ajuiBAcLaWswK2piq9VQkyBYs5Dc5Oql3VrIkMeUghjjiEGDAwIgbmWsrRaq05pHPLAgXb7fR7iEIccs5mu2wpwvlblaAgQmdQtMHVUA5rs5zmEuC1bjtxEe0llCjFmdpcmboAYHFtptZRqdg23/71Z+SOPvvcBHydOPRMGVcXB3PljToE4amLfRZ1CTJEYV4P6fAwBlU3UrZRiDuC0lUY6BEdp9bKeAXh3OGjI7uROHPJZJCCPOT4V/dXb98//5Ke3iS5bOcmROCHFjkMpy9paQcDdfn9/PCoc9/sDo3BAACQEM4JO4Q2cw2E7H92NHdQMEAIjOF6W9e15e/vwCOSH3e7Zzc2zw76KkEtkdOiLFCNv9Wn7sJ0OuwMBMBG4YyDI/NX3b//u17/95u3jVt3MOGakoFIJwcBrWZnYEcw9pQwupiWl/PrLF69ub4dp2JZLLQUgqDgHNBMAACficHO4RcJtW8dhLOtlWS6tthdvPn3+4nVnlqQ8qshWtlZLd+WUWk2VCIlC2TYOZO61yfG0xDQiFSYepjnG2DMumJhCXJbLfr/f7w8fPryfxikAntyripm6mIuJqYmlEBgpxRgil7p58RSTisac9vv98XR2191u/sFKQkTjNLx/90FVTsfWWtN5J0NGYo5xWdZt21TFPfavLBGKNHcLxJdtm6YxpqGJGwATIeF2XhFpt5sfHx6W5cyhUEh5GImoVj+ezs+eJQ6hQwx7+dxj1LAbVNyJAnM8nS5Ltc0CgQUiFVELKWV1aG5qFgDy7sAxNFcvVqSU9bv37x9fPH+x3x1kbafj0d1La99/99bNTTfqY24XcCcX0FpLKev6kzevSpMPj/f3x+PtzV0iEjQDtJ6fYRp7FekBIFho1UyrZso3N4c8j62WbTmfn/DusEf0Zo0YY0huvJRtGEIgV0c1eTg+PD4+kG0EaIRMHJLx7bwu4byU0+Op2vthd5vyREyO1FSHlCMjBwAvaJrHvTOjFzcRcxfb1rptW4g5UNBSzT1cNZTcOfaRQkqpSRMRN/W+/UYgQvfr+te7PBccEFRNEDqSlslaNaIQKFST07o2s2EezsfHm/1t3YqpApA6EoW7m/3Lu8+2ddm2c5Mm6s2U0ACufqOtLERha7Wvu3oJ2xeiomZuQ6BxGEOMIUknaHEHhYaQUgJEcIKed0WcU5oDqwogEjO4E3RupoNBrQ0zO6CoNdUqRm5IAa7KVwiBQ5PKKYFZq6ULzJHYEUVl3bbT+WLu4FRS1SmHyB0iUdUM8bI1MdzPh5w4jWm/n/bz/Ozm5ZCGrS2XbQH4+ip+QgSgGEIrW9+zIxAjUY9s6JegGyF88ur5h4enp9NpzGMIGGJiCbZpa63UKk1UpF/gfX8YQgTwznr8YeT3g8zr41UJZviDCpjQSFZ2Yi2ua4QWChfRbg5UA3MQ8/PWOrrnuF2aKiIhfZF3d2CBGIpUABBzcwjBfvP1t5+9vPv82X6XhzaJNO/wqCrtdL5IEyaaUvzk1cvH86VsqwdRceLAKfduzp2aQ4phvnnWtgVc0EGliup52d6+f1hL+aMvv/hnP//FOI3/9j//p99889Xd7R0jNTIGQMAUyU20+bkUN3/16hUhhRSryn/+q//87sMHA2bBrGBuEcGsubV5mlurERuTCRIETgnb1lLmeTcCOmK9nJ++/xZSnt589mUIk5oiUeKcYh5oEGnbuqq083q5f/vd+fEBnObdoW9fEaHVupallcKB3a/E1mVdPnx4O+3maZzO56d1XXa7fScano5P+92BQ1BVIt7tD+fTqXuBm0hOebc7nFpD0yqT1I2huYma1yoEiIhDzjHHOQ+qupaNmcX0cjx1fEo3JM/zPM2TqdbamLlTQzYEB+iYkd1+P46TgY/TGGNorS7LQog723cjYRGdxgkAEOn5i5fMdLmcCXmed0AEgDFEDklVt7IQEVHIeXBf13WZxp00EZXeyIYQAKCJOCgHKltbtlJL1VbRzU0dCCgyIoOYq6sH17v9RCEX8SrqbhGCMT8eL+fL9sUXXzw7HGglbfju7dvlvAAwcyBGIFL1jksTkfWyfvbpm3/2yz8KFD48PvzN3//9h3dvh2G8e3bXQ1aZY2Z2qSLOIXnHgiLGkAn5eFlUy37O+3zz7GZ/mKZW1hjzbp5zyG5YyiaNFXytdq7rr3/7T6fjk7Yi5g6uRFJUmm7rJqJgxWs7vjsDhXl/mOYDx8HdwLirjYdhHPK41qra99hIFN0bApbSTAywm1iZOXTrddnK89tny/my1k1ERLRPC8ZxYKbL5aIqqu2HgpIYkdAdYowxMpiZYy0ibUWkVy/uPn31EhgeWjlf1t2cS6vjbgbkrWnOiQmIDAm1qSnW2hwQ4PDxAigOtdYmYu7o7oDIxI4ESBww8McLQJuzTcM4DWNMaRjHwzyr2eWytHpu0uYx55iGHJvKVmtrrRDlFBIN4GCARcRgCyEQemttK4XBc8Y+3XLzYOZWihiqei0LuKxbqSJcqpPX0kStqbivY07mu56fKepOtCyriBtAiGmax5zCYTgcdnc3h2cpxOwjr+n3u+9hHOc55pzAzR8DYSQEhMiBHM3NwaVVBv/xp2+I6bu37wKTe+x4BERwQEMAuK71P9b+PefXEVHNfrgYOAS72rvdep/opmpiBm4RwdXEHRAGBqu6tHZ/Orem6rCUxnEw88u2nZeV2X/ykx//5IvPT8fTb759axA5TqBBTJopM4t7ar5u9T/8j1+lv/jFYdiN1U62LMuq7su2VbVhGGMItZRpGN281lrLplVCTKBV3QEIHDdtlSOBM0JkUtG11Punx8fHx7ub21/84ic//eyzV/OBQ/iTn/3sr/7735TlMk8zuatZ4GBi2rTLALb7Ns67169evXv//v7xvq5rZOZAQC7UwCFQEbMhMkFNQdOetJalaV2snW0/j7e7vXlZlnJpR7xMbvKPf2+16utPvwgpAQJ6z+Dxa7DX5di21cx2806aPXy4f3x8HIedqpZaa6kOHkK8XM6qMs+zpmimjJxiXi/rMKy7/eHu7i7nfDqdrFsUVUXaOE593w+Ip+OTiA4pXUJADRxDaORI1U3MOsrQAyHRPIwA0B8CMev+XjFl5mkarbq4pRIjcbcADcNIBBx47rg8wHmeX754/fr1JzGEy+Wy3x9SGtxNRPq4Oeecx6FsW845xnA6Poq0/X5G4nGaL5dTrXWapmVdy7Yxha79mKYMENZ1JeJenYQQOsUI0ZuoiqQOGwrMrgmKuVorVZEQyFzEwDDF0NRi0JhCFaim2pxVQsDS6q9+/asPh8Pd7c396XJeioozasq5dlImMgIp4lbK7eHwxSefmIubf/7q+Scv7n719Td//Q//+N3vvr3ZH6YcI1uk7OgUo5ioAjkboquOU1TT46XcL0vKfMhJ1UIYDofbedwzhfOyCbdlq1ZhFfunb7/56ptvmxgiOSgYtFq1Sa3SRzJjzj/70ecpxaZ6umzny3FdTzLuh9tnIZAoUowd2cIx+dXZiyHnaZoejxc1hZ4fGAMRLct5KxsCrNsiZq0WkdpVgn0N06dwH7eKbubUbWJIMQVEIIRN9Ly1ZSmfv3n1r/75n/7iJz/Kgf/f/+E/vjU8L+vhZhdMxVDdUuRpHEJk3LBrw9S0S+l+v3b2K+WNGc2wh2v3uN8QY4gxpZwHvb3Zc6BEvJtnVRvyNM/TkLOonpe1c44D03XNadZUSquiEgIRhaZwvlyWZSUmNUscal0dNDBik2mazEFVw7aVZq3ZmmKW1pr0M9CByE3MrFVx6qmV5tbjTLWKurmacwiM1Od0hNgXKObAKZJJ1t8HoXWv+TgOIYabbWmlEoGapsApxpN22SgSWUANKQCCm7obXiMd8P54iXkS1X5RAwA4UFejf/w4iRkA+izIpEs/1N2J2MzNzd07T0MMtlYsJsIMCMYlDBkDOGC15fF4XKo2k7vD+Cc/+fInn39+2B/s1Wun8PWHp5wDQyQjcks5gZqJqOPv3h3/7qu3f/zZ65BHrtJ82ZoAR+Z0Xjc1rFWkNTVBQA4p50lE+7RORNXcFFQ2MwOzGMJlLe/vP+zn6S//2Z8/v93FGGsrq5do9vLm5stPPvntN9/Ubes+wiENfdRXRNatIMVaf/32u7eAWKQhxZTGtbYcozOpahVr6hgCKKKruwJAra3Vlth3cca2PT0el60EDseUHs/lJz8Z79+9jUN48fITUWUEkSJNzNrp+Hg+PUXmzoza1vOyrjlnYu5WTyIEoFpXkZpzdtdSax7GYRy3rU7zgQh7Yuvx6WkYRxUp9Wp/7HvXUgoi7nb78/mIhCmnWjekq8W/iRRpOSY34xgChVqrOYF5YC6lLsuyrevusE8591Hv5Xw+qQ05hxjMnQi7tY2IGWne7+Zh9/R0fP/+/bzf39zcppjWsnX1Z4xxnuecc98Vl22LMcQQTCMxceg2CCKmy2XpgMYYgpk+HZ/meTfNewA27bcaiIioBA6I1PO4KcRhyD3AvGyGBKU1QMYYq7mBUwhxnGstWNswRg4RkcjVe84tsao8nU6XUojDeLiLuYAqIBCmbkXsOKeY06vXLwOCi0rwYn47z3/5Jz//6Y+//C9/+/d//4+/OV7odrefpsAhRIiOyoHsSib3ZS3jkJGiiqvg4m09v4shUOBXr19RiMt29IxrNWF7//T4q998JQ2YErgwoYqCszQFopAoUXhxe3M7T0OON7e3u3F3PF/+7rdf/cPX35b18e7mZr8bm8paVmYmJhXrwoE0ZKQ+P0PRjgtwVV3XtZY65oGItNWP9qvfowRUBBGZyZ36Z/HDcp6QeqZIqXJZawj8z//sl7/8yRe7kQmQwEVt3Yqq0ccNs6kMiZl6Clm/0/u/5Pe6o8Cx55w7QGvto5JROSZmJqQ85Mng7tZDiAQQmB01pDQMQ4ppOZ8u27K1goBrKSkmpCAi21ZLK4i4boWIq8B5WS6lJCY3r/2ecznsZ+bIQGpSpYV12YpBNUpJGEHBRNUBQwimkGJKKYpKYArcHVcKAKV2bNzgaogcmMEUEKtuzZqArbpVKaK/N4KVWiPH3TRf1vNunNbh4uhAVGuNHPbTbIbVmrlSQABACqruakwsSsva/vYff/Ptd+8Pd6+YrhwVwM57kKup7zpsunpl/Qpg8r4YIKLAIRCDgyEtzZaCS7MT+X6a5mGeh2YGiDAeNE3HmGMgvNkNX7x5iRyW1jj4y5fPBRkh9YYjppEATUUhMUCKvFzOb+/jLmdHxhC06tPxfL4sVVqMaTfON/sbUe02WgDXpkREkVprahyHCbyZmgMgEsVKgD/70Sdffv7J+XJ0R0JWB5Mq7nfP7prB8XhmxpRS4OimqgJNKE5ExAjrsuRhSCEouqoyRTMyM0NSIgjMgRHAmhjnkOjZsGdXsxZTAvDd/i4OigjqXkUfHu+ncajbXeIYKKi2sm6X8wnBWtkYIMZ4Lptu29Pp+KPXn+52OxW1zu9Dkra1VplAWimbrtv6/MXLmHLd2vMXLy/LUVV2u93xeFwuyziOgblTpppIaxJjzCmVraSYmbi1Vlp9fHyUJohEzFK2IVOnfex2owhuWt1dmy3rum3b7uZmHEd0FxHq2SwA8zSrqZgS8ePDo5vd3T1TVQJelpWQHh8eP/tCDzc31+FnrTHGYRhyzqZ6vJwv57PWNo7ZAVoTIg4h1toCc5jmYRiBkKArL5CZt7LGlJgTESB5rWJqMUZx6ZJQU68mQxrneZfzkIjN2gEcmUKICO7amJFDgmmYEgFACLnnd6sJuOQUzBEBRMSRh3nmaZLWHNydtqYBAzPAmHwehiEsy9F8nIY8BCDyNIRPdzevnj374tXr/8e/+/f3a013rw2jQ+REff2DzmnI4OZIcdgh1pg5R9RtEW33T49//6t/fHF7BAqBk6gGgm9/991aNKZZWh3SQGTH8ylQGKZDba2pTW4vX9xld0YQETB7sd/d/vkvP3/z/G9/9ZvffPXrP/uTP9vP03o5AwYnAid3VPPSai21F4W11XVdiWAYqI9aphFV5HJZYorMofOzkKDD4H6AAplZP0M6jt/cEbz3nYjw/PbwfJe1LRInQEZmZuq9LxNSSH/005+ux8fdbkZrtpuJ0cxKXc2sUzyvF0BMHJIjwgrEuC1r6CEEDszcZ1M5ZQcgIq1NWhWzYrLWCkhPl/N5W6squAcJa9lcU2mtllZFq5iDN5HzZVvWramCmVS5JueSF/UBEABFtGwllLItiuqMQJRS4iGk7CAGzkxDTofDbqt1iDEnBgADNHckIkBGysNgCDkGkRoMibjVbVuPZrFqa/X3F4CpMwAhDcM0DWWahq2KU3AxRN/tJqT49t27ZzfDbr9v337oenC9gjtc1UzNfd0dlPCq9ulrbjPrw+K+Ve8PAfbhEjEih0CEDAjMfdHgrs3dYxpTZHQJIahZjBERtnVjsrvDmIaRiM30t9/fO3FKiRG32ly0pyQguGwFAU0VwRygFn8stDy+IwiArqa1iaghUmJmdC3rWjckRECT2kXHWtWUCMGkXikkZkREwHMO84tnpbSvvv6OApu7A3z77h0RpmEkxCGl9PyOEJgYmMxBRLIaAl1TRq1TMaDPFgAce5QnQEiBQwQ3bY1T7AKIgAQKRCxNOYTIDOyAqG6K8HR8MrP98zsKaNWl9iB4QAdpQkx5GEpp5bKqwzhNgRMxiVZzUe2RvNO6XUy1tbIt55RSyhnQYkqHcHs6Pp2fjrvDTWW9//AuD0Pv3vIwArib5zxs23q5nB8e7x0ghNiXsmYOhClGNxumqbR2vFwAYKtFzTpMNISAAJfTGQGnecwpMVGICQhr3QhpWdc+PNzv96fT8Xw6b1udd7sf3x4+++zTELhXP0SUUk45q2rZlnVdx3HiPZvJ97/7XUzZzGqrKhJCAMDWSs4ppng+XwhxyONWyrqWGDt4sS3LecxDTMwhMgVVNPNaS4j42advfvf8BuuKoP1AcUAzS2HsvLxFlAMR0D5QaSIhuFETUHcEYmIkNHBT4RiHNHEIKjbCNYc2pz2auYrVSiljSEtVeTxz2ABPppaG/Bd/+sulaRoOxEHNWhPRQESIgUJwdTUNFDwAE8UcpimT+26eRNpXb9/lMacttdKmYdW6TTlwSDTGHFg/0kSGPCCNSEQE5G5NkIK4bVLVudb68u5u92fTq1cvHLCuWy3NrBvgiGJobrXUHFPg+H5M67H2Gh/QWmut1m3bVvd1XQCnEEK/ZcFBVZm5S0W7LhkAGDmE1Pk88NFMwEz7aRhyYmIzo4hqbd3WKlKrvH7+PKV02M+7IYrjbpwCB0ZstZ5x4RgYf4/FpDC46xhDQKitoDsHRqQmlTZsbS61xpBTyI1F2dalLWVtpgGw9+jS7AcdNjObu6oBMaA20VY1Bau1llbdsTQRaUAQiXfjqNUkwQbaRIu0UFtHUqOSGhk6pRAVgJnGlGJjQEg5j4nHzMS8lVLFcspENOaBMVQTtUYMRGRiriq1SC1i0ueb1x1ADDGQqQA6M6VxOtXL3/3tP/7u2++bw/F0urk5vHlx9y//7Kcckzv29rA1XbdNpCJ4p2t1A0y/FZpI/zh/sAWklEqtdiXFMofAKuCYUlJpyByYUdvj/f1h3AERpgjg26m5agihK8O6NiPGs5g2Vb8KM4A5dLkAERHCNYrezMyIrgY4QkDqFkuinlVJ2HVc7k5APbCUgBDdDUJgdwdAAAcHA3NABFBXdAIC6MJeN0JWE0fsGT8IpCb4UT+OgI7ek7YJCbumyNDBu8LkaoUj6CWGixIRMSGgqYUIfZbSjwwEUHVHVLvaMkVU1ChwSinN85c//blrxxZxCGxiIbBoM7NAtG4bcNjfPI9pUJWPy5eegNHQITBtm9pVbO5PTw8ppd3uQMTHp6eckwNdTkckT2lAcJHGzEVKZyEs68VMx2HYtjXlvJmVbRERM8OAZhZi/OgST7Ku67Iy8ziMRERIKaWUEgDmPKacaqshRFUlxJubQwrp7dvvmUP/xWEaX3/yBsBL2Upp7j6O4ziOZi7Sadw07eba6nLeemCyuxNiYBKRcRjvP7y/nE+vP/kUEUNM27qZeUq521ZqrWVbInOpGyAxBjVTNzWra71/uH/77q1uq2ozax0fqqoI2C1ypfUEFW4i3ffYRT5qioTMoYvliIlCoI/Ws+uII3CH8QA4Aj6tm7upiklDBCY27zY7BIciJYSg5k3crp5Ugq0/r+jgtYpUAuXe5mytEbGbLq2Z2tfyXSBIgdzcpOUUioKaxEB4laqJq5dine1otbbHx2EckMnNU0rrurUqx/N5OS0AiMxjGgix1RWY0TFmToAIhm6EZCZ94i9SSw15GOfdri8ORRpeF+ANAAFRRNyvTEn46B4NgRDJvGcr25DjvJvnaVZtbhYRLsejNH3+8uWPvvjk7/727//3//3/+OyTNw/T9M//9I/nKTLxtm15XKtp/yb3Hw4xxnQY8pDT49N9ZQR3IFD0Wsv5cuGQLLOKmXltrYioa3DhQE06GcRa01rrgjTEZKmHonQdGYnqum61Fe8ZDu5VmqN5iGZDa6Lqi5TatlprAEczRwIH3FoTs8A0xHFKaRqyaItrOi8bguc0MAcxi5GJY4qcIm+1OTiYYgwimhOYWSnFzEpZ8Q9QEKhKYCJbEQXAkNK7D//0u+/fHm5un55OOQ/L+fTzH7355NXz3z2eUkpm4Kqt1XUBaQIfCUrm1ntpAOhD4eufD0AhiIippRRVLXIMzI267SaYqYE/u9v/xZ/84h9/+9vT+e/RBK7Oo+tI6dr0dZUDUj/ee5BeXzX7x7/aHfxq+ParKhUcHBhDT6T3fpAD9rapT6jwytE3RCK8dipwLdHhaj9BvKZaOzpcL4f+97h5z/LqdhUHIERzB+9jrus/sm9I+vQcse+XAMGxe3s+MrAc0MHAAXumDl5b3x6WhAAGjgTex1FI5sCBd/P8eClpd/hf/vW/GVIspZwvFxeJMRro6emxLBsgf/njL998+rmoaRNAVDEAbK0ulzMi3t7cTOPORQCw1EqIOSXmKwR7XTcViYHRfLucW615GPK8C8yCRoQvnj9/eP/+q3/6VYhBmvSJPBHVWtd1DczDNHUpd56mnLLUPkHKwzCE0I+bKy1yWS7dUVJrDSGo+u/ef7euS4zp9uZunve1yFe//eb25tnh5kZVx3GcpgkJSykhEDOjO7rnmGh3KOvWmrRaxPQj2SXu9vuHh/vWGjgS8jxNW6kAME2TihBRJ7yq6OYbJADsYVV+PF3eP5z+f//1b9+9e4c97qh/6v2J7AtKNzAjJDHvzFRAR6QrNNABEBCQERHJEPoFD+5I1GOlmNj76BOufzw6ugMGJEBTvz5+qADISAjkDkbOV/9Nz451N2BkQgBCQ48ce3FDSCmnshXVNgzZ1cAtxghgPUPG3brpB8BjiAAgraWUtm1b1zWmdHtzy4FPx5Oji1pZi5nWpkQcmYgoxeREfXuLMR9uJwMlyrUJANcq5us07YZp6mRQVdPaWcWeUvz4FcarjLA1FcXIHAKAtyrSxFXnYUwd3gAsIn/0kx9fzvX+XALjf/qrvzqfzvPutlX96sPvXt7c/vRHnxARMw8xwpSZ4w8nYc4xRQqBwSIiMoGom6ipG2NpcilFnVJMYuqmRJADz+OYYiilmWlrdV0XdxOWq2bxY3qXmdXWFcIWrvzu0ISaqps1UxQpIuSyliKiwTvNjUldVQycAtFumg7zlHMsZW1qSaHVda2N1BwQkFKiFEJrrbZapA6Bo7GamlnvpC6Xi0r1P6CBSiulrMsKRdyBGfhmd/j000/rtgWC25tbILssl61u45DneUbEzsnuUh9kyhwCs4jkPOac+7k+jGMtVUQ6HNTA4zikPKgqh2hEwJFj4pisSSnrtMs/+/kv/unt4/v7h8ToqN51v9erHwAQma5VkoI5dtv9dQ+O/fuAyNC3/NdT2LrNDps5EVHgfqq7m4heb+cO8+y/DADmBFcIDF5jZHpmmfZBbceSmBkQXFceTG5IhMjU/5ebOxjg9UtLRMhXD8QPYFtCRCR36Wf99bp0N7heZv014UeQBhGZX++cbtYFInB0d1Kq1pZ/+vb5f/7rv/wXf/n85vZ8Oj0+PpJbiKG1si5LWcvdizc//fkvYop9oYqAwzC6a85pHMZSS4i5x9FMeaylNGkibd0u4zC8/uTT8/Eo9UwciEMp9f7+w/5wwzFBDAC+LctyPp/P5/fv71OORNgVwABAxIjy+PCYt/r69esQQmttHMJ+f1jXdRzHGNO2LX2IH2MsW3k6PXHgEEL3Cb97+35bt5QCAD4dTwCXkNIv/+RPhmFU1d28Sym5e9lKTCkwlXJZlrOKvXj1KoQQY2pW3IwBtvUics7DmPLQ8x6maepHrYOXUphZzZq0nNMP0AJVTUMmpkD8ze++/eZ37+9e/gjz3XI+bmVz7AxBJ0fzvseFgKiq6QoX/igmQmLmGFIvBRAghAjovW+trWFvC/rBFwIRNdGcB+bQHxKKxMxgripmuq6btGpmgUNKY0yRmZGw1RpiiDFKkxjTPM6AoCBuTkjghtQ1o8SBVVrvGERaq9UdCDEEFml9RkcIy3pZy7o1dkoaBnfadBrSePvq5TRNaykImGIqrVzO5w/v33EI0+5w++zZNM4ccEhJ1RxoyIO7PX/2YlnWFOM4jcMwtFbP58u2bdu2nc/nbdtUyzxP0zTX2m5udtM0bcsiZuvl7OZIV1QDMU1DZoBai5gv68qI/+Zf/Yt/+Orrf/+f/tt+d/P553d1raA2TnMz21qVWnKKN7thUsY/GAGFyDExAhp4a22rzRRCzISYhxGZai3oFDgSAiKkyNOQ5nEKAIoUmNzUtOvPr75Xu1ZpqKqlgYqDQwohUv+UXUxUzNxKa+fzmRncfJqmEPPA5sjZAbZaRSUQR+ZxHELAcbwtCqetYkirtIjkpgg8DCCtmYlaNRMDusrvwEX1/fsPl8sZseOKrj9NZNvWEL0aifR3hL9/9/7x6cnVW32Yd/MnLz5TaaAUOez2+/PDCRx7Am1OuX9L1WxdV3dPKU3TdHtzgxQulzMg7ObdOE15mO7unjEFBxCRZbm4AxOvy0W1zkM67G7+b//XN49Px8Acc2RiUWm1ggNhALzmEyA6qJdaAJCJe+ZXjAGRQggppsAMncxMvNbWpHVHIbgfdofD4UbNwL21dlrOgUOKQZqWshlYra3V2nkDKaVuCWkipWxuLt0hHFPfBwCAIRBSHodOYw8xujkzAaKJcr/5a0OEUsqHh/fbtqlZlw04eM4Ze2CrSK1VWytlu6xL3z7VUtwUEa++eaLSipkfDjfoNO92HLijFMZhIiQx+eT1i3ffv5/z2DsZaaKqy3ZGx1effH64fX46n589ayFPquAGMSYzMdUwDMxYtqWUNQTKw1BrqdvaQjgdH/IwDuNunEd3DTl3vNowTFWamqzn5fj4tC1LbbWTxk3dTN3cCcZhzkPelvV8Op3Oy1dfff3ZZ5/1toAIAcxdW9sQIcYUY0opblsh4l5sdjWBmaWUReow4DROx9P5xz/96S9+8QtmMjN1LbUgYgdVrdumrdXapjG0VimE27vbsqyllpjT8XQc8tzHUHd3dyJtXdcQmIjNhDhdh84OSMSBU0oOSIAAvU73Fy9effLJF/P8wkRrWUvdOMRSipnu5725NWkIEJCkszlUYkoiGkPcH26YQi1biMwhNNUQwxhTnxVuteSU3KGJuHmpNeXMIczzLucYelQGBUAwMHWtW92W8nR6PF/OeRxvDrfjMDIhgC/rBYGGcQLwEHhIQ86p1ubmITACNJVaa0oDE9e2lVqRiInLVmsprdUYIyGcLqeyFWZaLoualbKVUuq2lbIRkruDkjYfh5kAbm9uYs6R+dtvv3l8fKytla1KrY6otU27eZjnGGKIPE1TzkOMEQkChw6k2rZtWZZ1Xdd1ba2VUsZhrLU9Pj61JvM4vHn9+qt/Wt2NKYiKqoQQUk7melpWcRbV1rb9brRW7p7dvHj15jf/+KvL03L37FbdL+uzbV0iWY7MmN2DOP/ARFBRY1LwtdQiPUIZiENA2k1zH5h6hFYrAY4pDjkQ4TyMgQJincdpf5jVW9lajIE6kRMAEKQ1IwroSEghMFKf0KYUVG1bNzFvZpeyRcJxSGMaQsqDmfU0Q0I864rMKgKuY57M/XA4LE0fHh9yDG7WmnUfvHvjGNgsOeQQU4g5ZaZwWdfjuqzrGvkPCHgA3m+82rYGW0MA/tVvf3t//3CzPyzrpiKPT8f7+7m2N2aUQ9yN0+Xx3L/ggDCOIyKp6uV8/kFN8eH9h3fv3sUUd/Pu9vZunqaYhv1ul1O8LEsplQjEa9mqtJZyHqcdIZzXS87p7sUdIjIRM6/bOo4DAMQ0gJtdrQPcmlRpxJxTklWQwFCJfJjnFAemgAhiCgA5crJU27XpKdaO66mrOQEQCAw0pjGNWc4aAWIKpbGI5JQJidz3u92yrJftMox5pAwAPSRHTWupzBwCIxqCdSmTojlBSrGhAAEjE6mqSlWOHC2wyBB53g0xpv3uQDGeL2ckqFvZ1lVkehFePzw97qfZRJ7Ox652AFUzu5ufMfE4DLv9PsbUq+wYY2vSah04k8Lf/M3/eHi8/+LzT8Zpspy11RAO0zTf3L0orTFRH7u5a22FlBChz5fPp0dp9XRZdvuDm4YQ9jc3+92+vV+35YzuIeUmEiOPYw4Ipi8enx6X05JSChTWrazb6uY5JSLKOa1rD+ml/W5HiDHGnPP948P3b79/+eLlVoqo5mHkkNwsD5kQQ4jm3qNUDruDqUszQh6GgYlPJ2mt5bv42c1nbz55M465X/wupuQhhJSiu5HVy+W82+32h7nWkgDm3e7Dhw/L5TwMEVUjE6MD+jzvStnevfsekZ49ez5OkxO10nrlW7ZtHEaOERzUpVnLMTtgHlKz9v3330QKrRVESDk9HR/HaRQtpZa1bOgQAwPR1qqpxEABIQQU3daiqkaCyNRERIWh8x5DXz8YABO3Wou0EGNO+eH0gZkQUER68Ma2bcwIAAFDZ9it5bKup74eQAQkNLEYIqdAhCoaw9UvLSZEBGqtVo6hK+63spl7TgkRpYmaj3lU7cTCEpBEdWml1FLXUte1u7S2spkoxxhTTCl+E0MI8XZ/c/fsTlTevn379u2TSCutoQOHkHOexikEjiHNu3m/36sqgK/ruq3bZbn0MTUAttZEJcaYUjqfz601011OARwAOIZQalHznIjAtrI2laZOSCkOSHxzu19/9fV/++v/VrcaKAHA8en4D//461e30xAhp5ACM4aivzcCdLghMlVpABTCUFWAaMxTzslL7ZHtPfLXlHKMMQYAEFVEn1O6G/fYvCThGFJOfWxwXZIi9/1QZCZmpgiACQNGJKAigm6tlZBCznnez2GadqUUVembJSZu6gBgKggeAyeyl3fPcoykrZVyYckpM8E4zE10R4GJ3DWECO6lbK22fiOlEFIMAJfrBeDm7qq+lXZeGiDmzD/58vMpDctW1eHD0/GyLOpAROMw7Of9PX8wdwVj5nneMYXT+ViruGNf37t708aEl/Op1uq9GC+LfKdbLS7KRDElN69SzWdVMVVCDBy72UM6t1q0WzGb6bZtPYytg+wxsJouZava0KHL9XBbcN266ljdSq2qcs0gBI8xBqan4+O6LETsH0Vg9xwcoUjr2mARUdOu/I0cTpdjE6nWtuOyLUtgBiI363OMvpXqpnDigEwxRYdrZESMsesgtYt7m5Sy1lJaKz0u7uHxA3Iwd3ArtajIlMeYYmtjYA4pGvrpfB6HIeXcSg0UuiZKVVprfcLeWnt8fHCAZ3fP1nV7PB0pwOsXz1MgYtYGIcRW5XQ8immMaVnXfYiiUmvpNlcibFJqWWNMb958Aki1bKq1ayuR2K0y4TjkZdm+++6758/vAkdTG/MAACmF58/v5t344f7emhyPT6YWQ1phq63OONdWza3UDRFyHkT1eDpv6+KAd8/uesCkmXVOVlMNHA/7m2maz+eLkQ/DAABbqSHlrZTLtt4+f7nb78yttTrkkYjt6ikx01bL+vj4+OL1GyLatg3QaaPAPA3D/bu327rN86FJfffu/fPnr0KgEIJIu1yWYZrMnDkYGSKLyNPxcd3WcRwdEInAMaU8pPTp61e//odfPZ5OrirSiLnPI9f1Umq9rEvk2CoqmLgFpG3dHKCaYilNJYbUQ1uZCB0qAQDE5G7WmpgId6kLQvPWmnYZooi01lKIprouK6GnFGOIrdZaq7nVNFSVIeXIIYagHVl5WUKKAFCoEbG7g0FgBnORBmVzcFV3h66cySGWWvq1Cg5uUkopahyiGYSQKF8Rmv3LXtZ1q7WUDbG3TCS1mduLFy8QcVkWEam11lq3bWulXK7OLljXDRFjTAjg5ua/53/EGFJK3Q692+3M7Iob0AaEIabOLgoh5hCpKzmQHJSJch5CyG54Ol2e3dzFO9QminA43ACyiHiMBle9v5bfz0Kk1YCkIqoSOITI0GoMKcTgbjkFqIYOzGyuSLiuq2hiDt3IxEyHaQaHIo34KuSQ1lyVERAschxS6nYQdRxSBjUkGocR6hbA834ec5yHYcgx5DxclvOyrGZO1LUTEGNGh1ZLTMOQcog8D+Pl+HRWT+aM2PliKsKhLxjZ3betIGLZthhCGMcxxpzjDxfANE4xpBiiQasiMcXXb94sv/3t199+gxTTOD17dtcuD4yBYjzsh09evnz/3du1FgAGsNvb2xiTg10u0GGu/VhstQle3QnrsqjZ7f0dMYnIMAwxhMCxB4dpqV6tiVAMOSGKO4K4cejVaqQuPQZgYjff1q1LKXv4X3+4+9CckKS1zqQEhG5h7OcvM2FEdCJgEQtM8WPsATq5+ZBGveoNKPYYS0YR3Y6bujHztpRWmpL03bKLEaGqqwghKrr11HfJ7tBaDTHiMAMABDK1nDPmrK2ty3oqF1F78QKHcaRmblZqKaWkFNDdRYeYxdQRpzyOccxDBgBJbSulFx3u3fOPfVE+z7uUEwBupQEjU+KYQqBaKyADQIjx3bt3TSUPEwBwiE0tpYSIrVUzX5fNeqVCuK2LSG2tmcjluLXWeu8v3k8cPp/PN4fbNOTLupxOD+HE4zgCOLi21rqMr9Z6OBzOF1bx8+lCxIhBVLatllLAadvWGEMKcZ5nZi6lcAj9t9dWn794HlMahuHxeBzHcRznrcg87QCobO39+/evXr9qrU7TVFtNMU67OYQIrirt6fHp9vb29vau25XR47KcQqDj+yMz7vZ7ZHp8vL8s5xiimtW6MQciAqBuow4h5eQ2tWU5r+ulljoMQxqHrVZCMrMcojW5nC+maqoUurYMh5ynYQoc+5je3dWNkK4uGKTOLSbEANi61gXArRNkgqO7oyn0LYAjaF9hIbkjYRiHKLUBECKhgwiEFCgiO/aMiBhjSrGb7AIHjKnWEkMyM2TqihokUGkIqNolgcIUYkg95dbVCAjUays5Z+8Jr8TEMfSVG6ch5ZhyLVuMcUg5bquobNvWWi3FamuXy+V0OjFzSmm/3/WK/ng8Xi4XAOjUh1rK6XQ+3BxyR5lT7SNcNam19bk5/IAQdu/2PXVf65qHaciZOR7mMefMHDpzbBinlNI0Ti522M2vPnmxLcvjh8d1q0X0j376Mw6RY0YCjuzgQRmgfCyFQVWve9oYYswOHAMHxhhYxJhQTJbt4mYhcFNZz2KA1EfQ4EstiDjlAQCYWVxC4CoSCHKKPUe6mpp7a4UQY4juOqQ05j0yphRS4ByDtBYQcN220+mk6sjBgYYhB6aYOMZQypqnm0xJpE27sbZNXc0tMvVq1ABqLSHE9bIgInNAosiJQxpTIPh945NjnMcJkUTPDcyafP27t999/6Fudd1OyKfDzeHnX36aYraAz/Y33333bsjB3Eor1HWX0Ke3EYBD4L5XqKWIiLsSbmauatIkjwMzm2rOOUZrtYXA0TICgbmUrcZKSExkDsFCD7CptXS5Ye8Wx3Emsm3bOkK2tsIxxB/c52bufnXwM3uMvXTq6+ImrQ+pkXAthQhEJMdUagXuyjoEByYyU61a1q3WSoFjiJ3FRu4A1m0NvfxXlWaGSDlFBKSr5gdMtGwrEYMihdAp800lrmGeJ3fvK5Or+B+ACFXtfLmklLr6SUTQoXMXugykrzcQ+wIGegZPH+S5+VZWdGQKpbVwveYxhrBezvQxQPTZs2cppf7RuJupmrZSq4MxYi1rE9m2YqbDkHf7w2U5l1JTHER1OZ72h5txGMu6ImAa8yy7cRoI7OHx4dtvv22l9re61hrGMI6juZ9Op1ZbF0ea2LaV4/nEIanYMHDKKefcO6q+sT9fzlWFY7hcLt1WoqY5pYCEhIfdzs06xMJMWysivtvPvWEk5vV83rYyjHN/ixD9/sN7R9rN+2HazfPoiMuy3Nzdvnn9KoXh6fjUfacxpXGYqjYTNwdiSimLtMARANWueUq11q1spZZxnuXde75qPFykgV3WdauTEDEw5hBzTAE/kkpzBsCt1B6RRBwVEAOpWex48I4icFB0IgRzsa4eNUQmIscuEkVTb1rdTIuFFOdxhH5umYkqAhEikEhrUbV/43q/2IXJogKABI5I4BpDlCZbW4CJUiYABhD3zmNAACQKIQcO1hwD5xi1NUfseEsza7Vu27pt67pupWxqKiLv3r1DxL7VH6dpN8/Pnj3LOV8ulyZytROJLsvSl5Q55163LcsSgptaf5A6N7TVSsxd3wEIu3lGVUB+/uzZNE5IRI6Habef9yGEyPjJq2fTlH/7zdfrWi/HZUixiX339t2P3tzlFHKaFADcKf4eBy2iYOAugNgdhTFPphIDBGZpSkitlVKsTxQcoN+nog0RY2BpUkudxymnxMxSm7sRIoc45JSImkpfCqpD8Y2ZpnFMHAidAuYhBaAe6B1KLX0h3tRSHnMa3JQIhyEDmIOv2zKOQVVURa25a+RkquOUmrZaaqlt3WqpLeaE6q2Jg++HMYRgf+AEdjPC7lTSy7IMKZeypRhe3L45ni6P5/V0PruaiIUUa1mOj/eBicndFSBcLhcz2LZVVRFBxMdxTCkNKW+ldLuvmpt1KVEZp2nIuZQiaiqac56YkUmkgTkhQAhgzMhu5h+V0X1B9BE0QcMw9NyraZoAoGxlW7d+Q/SXsyxL96B32T98zJdwt1IKBe7akqaylU1NSy1VdRqm3pI7kpo2bTGEQKxuMaY4RALXVrVVdS8ibhZiRA5ETgg9CL7VCtQVnv1gUXZ29+1ymebp2e3N3WGWVp+eju6+LheH/i/0lJKjqzuaWlNAENPIAREBaq+DRHsiCv5gi+/3QYwxhcSBpGogBPec8jDmGIKK1rI9PDwg4s3NTSmlNSGq0kotm2kzbbU1Jqjb+v333z1/9WoYdyIUY9pqMYP97hBT+OZ3X0/TTIQh8Oq+bds4z7vdbivl8cOHdW3gtCxb2QozI1GIIQ8DIB5Px1JLk7Zt5XJePjzcx5xF1Mxubm6GYSilMHFf9tZal23NKd/f37uqqU67eRzHWtpaS6nlsD8Mu3ma57vbG0R4eHi4vX3GgZ4eH6dxHlJUbc+fv0h5aE2GIeWUHt+/3+1v5nk/DFOH/b68eQYAtW6BbH/YA0IptWw1RDE3ACilLOv5KiUjHMahkwxTjO5w2dZvvv9u2bZxmEwb9qA08G4gB0Bz3LZasM2DhxhSykBoDiEEvoryeoNLCN0cArXW3s8xMxCpGZrz9eoIIXB3BagIcwT2aZrXZamlLudTIOw8K0RiQDBvruqurRGCG6/bpiq7aR9DLKZFGnI3O4NKczcTYybrFRsgEQFwjJECqxj1FBfEHKMDMBINgwD0tDEi0iqttdbqtm3rujQp7eNPLaXWuizL8elpt9vlnHe7XUyplaba/RbShUYhREDshTwzI1NHjElrHEJM6Zp+wxQDphh8GsVgmqc8jiGljGG/2+ecwcGkMaGInY5b2eo8TkR4PD9ezkspqhO49tcBiH8YQeNVqrs46jzvAWAYRiYgEAAgpnXb1mVdWzWz2iRPg4nlNIpqKavU6uB5yEljMFJXUXPr4hWMRCGlUosDjDmbd4tGJQRKaco5xGhqTugOpbVQtUTGGEPVqubIIYQ4DdGtKqCpq7aCZzW7LKdaGyMPOTKhqxO4o4tKaxJDIvdt29atckrTQCL+h6HwIvbh6QzEnVp3s9v/9MdfnM7Lci61tGHQ43GLkRWRxIqsp/NZRMzdDcS7Tw8QKcakama2LEsIIcY4DgMzA8IwDKfTsbVKzujuABwiAwMjhQBI7hCYET1yAEek3jSrA7phjDGk5Ga1VXBAJjNlpnGahmHgEFuT2pqZtNZq2WIIpRR1iTGmmEWktdpahW4EaKImdVs7bZaQzB0Ru7K1NYkcmAgIjDCE6KIEnmPqFBc1cGDRBog5DZHZYii1Suvgv9pvqat+mfiHhTZxcJO7u7tpHr//7pGsYx872DiaQY7ZzMWEOfZtCiFrHxMjqZkDSGuEKHblqgblXqZ1nWLPVEIkFTURl7BtW5XmxBzjui5Y+MOHDy+evw4hAJCZmyNxHENC0McP70TlxYs3zPH+4X1i3lQM/LycX4x3L1+9FnUAnPa3FPPlfJKnR9EGTrvdPnAAc2m6rgWBpnHY7/e9+oshutm6bYjkgEThZndw03meXr35pEqT1oaUiEMpbV03F1/XtbSaUhhi3pZtGmcgNsfTealV757dcYgfPnx4fHx5uVz6m91RplUwDjMHqrU+uz2IyHK+MOI47ebDjUp9/903ZSuuzRDGcRbV7bKdz5cQkpmaFjNgDg56uVxiDAC9CibV2lQAKMcBnMxgXZd1Pfl1HEP9XJcmMUYmdnclLrVcE8WIAng3IZrb8Xy6Zq6Bd5tIzAkRWbU7RAKx98lyCMih99lI1DHJZj5PO1NrpS6XS1N9/eKFmW2tzXmXKDSt5q7uYpAIhzxWlSLSO1dCcnM3Q2LCgOgWXF0phJQzITq4GYg5IuaY0FHdnKgntW2tcgrI1L2NhMHIU+aU4jAOMcVWa8cAr+sqKtKqqILD+XTetm2e5sPhEO/S09PTtm2EYVmWeZ5jDF1cx8yt1cCIEK9uL8Scs6sRAmPo3hkgJ8StVkNkxt04D3kIHLftIm11k23d1qVOYz4c9toshcthNxKTqpZWUbuK+oeDEKoUaZUAHGwaLOWEaDll7TR882XbztvlvCzMoYkBEQMpihmIwFbbVsvQWkLuOsBl27a1IMIhz5FjDgkARCoSJiR3R6LARBwMuRYBcmNppdbWwn6a7LBPIS5F1NDdp5QzBxNrqk0spHHbFuz6dHeDqwNWTEIIUcxVA3OOqbYmoj3AZi3bfthr+wMjWGdSV9m2EkPMMb16+fLd/cN//f7vttpyij/70Wc/+dEngKhIl23ZtlJqEVF192trmfsfFeM1Qq8vbdyMmJm5tXZ7ezdNs7un1G0DMWIAhJhTirG2auAIvtZNpAe3emDGwKoSY0YkcBjj4ABPlyNwoMApRxF1JEBgQjdgpk4Bm2fuxLkwhFKKmvYZDCHj4Ot6vlwuYxo6ha5D6mO8avGRScG7dp2JIVJf4zsjc4yIbu6tYi2BKDAbYMWrsSuGKNf3pPtOqW81yS0S1PPp4fTESK3Wccjzbvd0PJnXw/4QQuiIgClN5lak5JxiiKVVAgwhEAcO1DqRpgOzzMSciES1rWt/03oR/aMvP+vNu4hKazHGcXxWv68A/ubNm2EcEDGEOE1zrVtrVVVPj4+np8uY59aUOMQYzazVNs3z5Xj67nff3jx71l1yKWdEfPf2rau46dPT0/Pnz+fdbN4cNKSEtSYeh2kKMa7LUmsV1VZbiGmapnEcYghI+JOf/jSm9HQ8zuNAzJfL+Xy+tCbrsnTuxrKuhCwi9w/3z569GIZBRY/bUZoslwWRvvzRl7e3dzEmIh7HKefB3Icx1bqp6sP9/TCNu2l3OZ44Zg7hcj6u68ZEpZQqMgzz4eYwTnMeJlUTNeaQc1zXtafBlFJjDAC6rIuIImKrjTwc9rv/6V/88928+/v/8T/u7x8u57O5ulmrtTXZtsXNQ0xIVCyUsqaakCil3AITs9RSypZSjDGZu5gAQk4ZAUQlIGEI4FeVGvUgGodurQdwc+UQwGHeH8zs8cO7VkuthRnaWjagFA8hMKd4JXZwCCGQiZsjIIfA3YxinkLsmtcUuWoVbaYac1aVbd0oRVWt68Yc+tI1ZnazZVlmmgMxIAVidKecUwyE2DXZ0movUIYxA2CrbV1XJq7S1FTVzpdlN+Pt7e3pfGqtSROpjT5yfrp8njkQOQCCb91RyAnRLDCZS6l9GcaX9fL49PT5i8OYBkTc6vZ0PrWyAOCbl8/fvjtNeSAkjPTlF5+/eH4DoO5aWgUAdwzx90aw1gTMDd3d1nUdhimFSASUkqyruxET9bR4wEjEgENOMQYRbULc1zscAKGUDQDNNeQAAGlIwzjkGGNk8xRTiMylSWtiqirt0pqpFdkO+xnVVDUwwH6ahjjuRZe1LKVMQwohAio5MCG6Ye/yrp0punttzYzmecxiY8rqTnD1vzqASKtlBZ9i+L39YUi5r2jcu2UFuqimVy4xpP/pz375+vbw7nQ51/Z0WoCotCaqeLU9Ynd+dS/7D96frliADtRFjDHu5l231FJgR4rjAOa1llYrEYk2Quqo2GtmJIC01kTKVlIeAnOtSkSnp6eTaBqGu2fPmXirpcfc98XjmLI0eTo+IdE4jiryg6WWCG/mNKV0vuAuBxGrGr3VlBI4UmA1oxGZCABUtTt0AdBUAaG1xsxpyClGM9/WdTmf3JSQxmFuVOpWwDXF3OPSuH/zYjAHBQiBVaQzDfOQxeTx6SHEfDPvxmHs1bG0ptIcgIlMrVkFArumo0ApRVtTVWRy914n9kxtMzOvPRYxxng6nd59eP/Fp5/EQIEzEgPSPO2wRx4CEHOKsTaHhkQcY4jPX87jzkF7v19rvRyPu8M+xciMjw/H+XDIw3R8esxVpnk+zPPDw8M0ze/ff/iHf/jH3W738PCwbZu6GQI4ltbU7Lvv353PC1LI48RESFRqIaabm/3t7eHxeGLmeZouy7Jtm6qdT2c1I6RhGC7bYm7mfjyebm5ud/sp59whYsuyXs4XUb25uXn27Nk4zSISYuxo0tZ0GCZidoWXL149Pj0F5u5Mvr17ETgsZQsZzGBdt5TS1LOPtnq+rIcDz/Pcq9ee7s0cT6cjM4WQUsiBmQONOe33u5Tztm3dq9xd5/046MsMiqGjb6i6mUmtfYdqZkNOxFxbvTrOkaSqg5u6IeAVUNI3TBpi+gGL5leVJ8UUx3EKTK0sp+PT09P9PE0p0FIuw5CQ0QUoJGZ2hKbSpPXa35qpKCAOIXZnOiKKiqlJlbLVNawhhNqa1hKA+gsjRwqBQoiIUx4icKDOulE3A0LK2dVMDZCIezFlRIwIPnjOuYn4BiOPKtIrlZTSzeFQa1vXdd3WHhr0EfcSVRUcQmDiqTNEiQABOJJUq7WFIYlILa20woFNHUDP69JMujP7L//iz2Icvv72e3e7XNbXL1/sptHUzKFt3RMe/A9SiDuw1V0R+yHchrxHQlUQFSIKFALxYd4TMhjEGIZxIGJRFSkIacxhGvJuGIZhMPe1bICxicTAIVIMFIAMKMfISA5upqZYRVprPYFYaiVAAAxNqpoNeZjGKPrYXJmQmB1QmwBAa5UII/Gw25Wma2tNhNGvFiSEcRyWdRNrgJZSzDkhI5matD/oe8DRW2tNpbS2buXxeAwxvr9/vCyLqoFv8xh2u937tZZLOV8uy7o2UQd0h57Xs5WNG6lmAOjCxP6w/oDQQ8Jt22ptMUYAGMPUB+S1NQQKkRGvm/QQAsUkZqaKgEAcmGutW9uCkLk3abXWIUQVUVFguKyLuRKTtFZr1a26e055HMcOTkgxnc5PIQYAOJ7a7x4fS23z4YDUh5njfn8w1VJrd7SZKhKxah8NpZTA3FS3dZMq2kRCQ6Y45JuUpNXlctZmnQbBgDnnAUf3q3QPADgkA0SCNIccormhq1pd1uX29jkAwTU3AUNIfV2BvepjVqnS2pAzMQNSCDHlAQmXZRURA+29n7mbWk5xt98NKQP4V19/NeYYCVUkjQNzjCmr69Px6eWrN8y8lWLSch5pwNJW8xoSMudhN59P5y7I69je/f5wOj4NwxBSuv9wz/z07NnzeZ6W9SLaPv30s+Px+P3339faSm3WBxohdmDAw9OjuTORmJVaiahsZRrHly9enU7n9+/ff/rpp621dVncvdSCTCly2WpMcRpHAEhDRiYziyFM01RrjTGllC+Xy29+85u7u5vDYV9rUTUEaLWaWYycYko5rev67v3bYcjDkKWVFGN1SHl05hACM5u59APbfBgyAC7nNeW8m/eXy6pitRY3p6tYRzvG8LJcvnv7/VdfffX+/fvT6WjXQwQ/NuEOAGLmtRIYERl4rw+vp1tiJDYzIAocCJBD5BDMrHoNFFUruHdp7HVrRdT/EwkR3VSYGcE58IuXLwPSh4f3gUBKTTETs7mJaADlxDFGA+953X17dMUpt4purVW3KxXfDFzBwItUYmyq63rOnetHAV2rSU8GrnUVoWvKW0q1KROBWZUq0gLFj5wL7pT/aZrOy3lZl1cvXvkPLaw7Info27Is27a5eeDQqVA9A8rMIjMAtNZEFED6O9yaXmxrTbUpAjuQIxFSZFJiQaqtDZn/+I++OB5PpTliURECIEQRK03MDBOL6B8cha6qrZVrs+VO4O5QajG1ntI15AEQO4IZAXIOxNyq2JjHzDGGwzTPQ0bCdSsq0sTR0dVNpAKqWc6ROURmigEQ3bZSy7qtTW2/GwOHGEI5X8Ljw/2QJ0ZXbd1+UGrZanKArdQU+1IIQsCumVlqJ8q6iGigmFjBBki1qSHsUhrH0dymGKYYlnX74VUz03FdRLWUcl4uZhaHoUojInYAUGbkOBgGcPjw8PBwPEKne3RKj1kKiZk5hG726V+trhCIITjA/f396XSapunu7s7dzS3FmIiBNMXUwWd+jV5AoACuIQY3QwRzUDVRSePYai2lzvO8n6ZtK4+Pj7e3tw5u5tM0NmJ3H2JiJDWrtfYQakQMIQTiddlOrdTLqqqK67zbB0YAvFwWVTG1jpTo9Fd3d3MFTyLk4KJNhYgAQcG9tVJKSinGuN/vuzGHoIsyQbUxhpxzFyBxTkAM4PM47sZ5XbbLckxdSFclDhNHJgqtCbgjYSSSsgViQqLG3WPs5iHEgBhTEmnjCACjqyCiqdbWaq3H41FUCOnh+OHp+O7uZv/85ma7LKHVed6llC/rxQzWddWOzmfOMRLxsl6Ojw9tO8cU58NNTvnu7lZKFdNSNkb65NPPHNAcX71+8+03//T4+D6lVMq6bds0zdM8PHt2465mUqoTcErpcjk/PR1bazEnAmy1dSCzqgPwNM9fff31MAyq8vU33ww5A6EjdG9UVYHG0zS627Zt87yrrX54/77vSEOIKWUAX5dtGEYAfHx4iDGBe//qIgEzuZm5Nalmhm4EWFoBRyDMQ5ZWy1bHaVZRRKhlY6L9bs5pXJYL53BzuHFzN79cTu4aAm1Fgehmf7fV+uHD/fF8AqbdzeFyvlBgAqxVW60eA3NEInD3Is4kqQ/v/Uq7BEQ3YAPwEAI7dKBsf1CREA0BsYP1EaiTd6/kA4De1DKCqYB7Svnm5nBZz7VWcDudTje3z+dpR0CRUwjUTF0VvVMam6kxICPVummKKtrl/IjEVziyI0DnTACm2iozh0gqKtUCM6qBqahUEQJQE3UgMFdtKrXVIWZAJMLelCMSheCO87Trr6t32H1l1RudtaxqOo0zfJQ4f3SoXNUU/f5TBeJg5suyEfq29c05hJA4J2k1ETUgMxAFUyUA5ghdeh4ZXFV0cxdDRHRD9T9cAoupuFuPDJjHsSep9DHGthUiyim5Y+gFBOGQQoxsA8xDFGuReIgpx1DrxuApxtKqG1yWTbXFmB2oSkPEME2BQwxSuYq0KzEQcZqGHHMzC2UrMY5qWFq71KXWQoBRGjkgQBVlDj36pzR5PK+lVI5Mgbu83R0YfIqh024Cj/vdTY44DykgAj798LLnzOtG61ar6FZLZGLCIecQQsyIrkh0LAUMHGhZtVQhoj4nGcf57u55SjmG2EdAHBgc+ofX7SViCg6Hw81+v5+mXZFi0IfjFlPs2BMgdmJ1QwDqtNzAhHg8nQAgDQOJYIjBYR8SmDlAH4sTYooRUiKiENM+puV85gBb2dD9sD8YAiCGkFttx/M5EoU8RMIYk0obpkNKSU1rAUrcI6Xw+oyiG6iqNVN3ABdTBuitdG90fniIU4wpj5GD9YeodU05OWHIKcQUQmTmIeXT5bLWjZjOW9m2LaeBogNdI09N1RwyZ2buVjVgCpgAQL0hkhOaqYqatKsSNAQOIRPlnIHg6fGxSl0/rMtyeX73/M9/+ceREayJ1HHac0jM2Z3mca9qZnVdLzlnNy2luMKcpm3dVGwc5m8/3DND3dYYYh7Gx/v7PM7jNI55KOu2rRtRyMO4ltJafTodzXTe7cvjiTkwRXAE88gZCZgxjtmJRMygHc/nx9Npf7NnDu/evWui8y5tZUNEFa1VpGlgVzFEjCG5w7fffPf0dOQQHADIY0pmRhxUddtW5pBScjczASAERmJzi8zKVM7r+Xwcd/uYsrRqIjHGog06TCpwU6mtIDJzFG1bWVsr5q4mFFBMtDVRQGR0dDMTBfW6rK62m3eovm2bIcYY3czUAaSbtN2MQ4ghNm9NKiJ2vFkiDpYiQKMqyCDto3aACLiJAGEHVBFhH4e6O1EnVoGZ3T89dERP22rdtnmcCGGeh2+/+/67t9/99Kc/D8zLtgQJ5g4IbuJqIEamFUzcVKSouCoBQq0cIhOLWVPJITYVUSEmBXd3UjO3Xm2QOSIbGDo2d6vCBGVTRFhbc3NlN1cHoy7FNgMzBjzs992hSU4fVxrXCefN4bCu27ou/WDpDspeYxKhiKmqmeY8jnW7XE7nrYA5OwJaDDGFCOJosDVbtrqV6u4KqdRNtdZaRU3NRF3NSCtzn+Gj/x4GCir1WtcidsGIuzEzArojMaMKIfZZAqLHlPL/n6k//ZUtybL7wD2Z2TnH3e/0pphzqswasiaCBASKVEsC1V8a6P5XBQJCN7pbDbEbJZASWWR1VbFYlVk5xovhDXfy4Zxjw95bH8zvi3yRCEQiXvjz627HbNvea/1WSikKk6w51JYRgABLa+pU1ee1GDgHDJLUrawFEdR4HJO5MxL3bBUAJlLXIcQxjiIhyioABEgGvtRympfNNF5cXIQUa87MpGboYKoN/eFw+Pbu0QB203S53VTVXGsQHGIk4ghEguBcarm6uNpOW9M6TOW7A2BIj3NFyN31zdNGzU7HY2ttSCMYIJA1hdZyqV2XaWbbadM/qmkamc9d/i51/5ADA0T9Kb26vpYQdtuLENJcFwdnSSiMRCzCzIBo5r1xhACg2mX7zBRj3w2pxxYSYC7L8TRP02Y7TuY2jZsPw4bT8aimgQMJ97P7bMkjyiVPm00fAMaY+pi+t6SCBARkZvcO3YT+vLl5F9UgAiKotVJKTNE7pu4pNrov0+5qBkAWeSI+ei0tDQMCgnutLXcXaAxeqjmkYRriAACl1h4Q0cn4ZuZqTQ0ApLsi0FvfOdx7wwLx7AKrtftAKzOB+ziMgEBIEvh4nB8e9sMYtjCkERBxnMZPPvn0+vqamVuty+qtWYyYhuHly4+RMITggCSOxFfXz3M+rTmnYRQOQxpTSqpOHMzyOI7b3cVaymk+5VLMHJxSGhwOPQOuNYtxMC9mSiQAte9v7p5z+dk//OyTTz7ebDYAuLu4WNa8rquqskj0/ux514CrqlnOuagZ92x35N5zV9V1XVtr45gQiQhqrUQ0boJp2d/ft9qePX+VYhw3Ow7pcHgEb0HSh/GVA0iIJCIhavNm6gDruhwOh9a0EyDMFJHAXJIAUXNbcp6XZdpsSqnH45GYp2la89qBRf2y3rfpWmtEzDkf17m5bcZpGAbqn4NZyTlISENYczFzAGdhB9HWOlQqr6uwILM79Cs1AvRVV0rpB0wteS2lLKubxnEYx82Xb97e3d3eXF89Pt6DQwjRwKwUQQIgEuoxWF3fjIhRQtXWtWqMIENERC5GwiyCSHnNSSCgKDoBNi1q1ZklJgQndy3ZADjyMAwM7O6mFQEBMYjUWgC8w8zNrGllJHc7x5a6qyoxAXheF3MXlh7t2UVkiASgfdgwpGHNcUhpWdZlzoP0ZGDQWkpr8zo/7PfrugIhAOZSl1xyqU2Nzj7qhmjMDsgiAoj2lFbVx5aEyMTE3KUWfZtOcUSvPZ56CvEpCQXM+qHIxJKGgQou61zVcl5r64kjziIIMKaxlNramnM2E1WrrZp6RzOBeoppm+TFzc1mmiTInBdBCrm2autxOSHy1e7m1fOPjOB42LeSUZu2hgiOUFX3y6kUSxws2QK6lkzgN5e7IY3EKQABunqb13K9Gxyx8Xc/dopRRFgCQJ9/Usc9IRIjWyccNyNCBxyGcRonQtztdofDAc5EeKm19LYJEZnpWQYpLNAp5CQiz56/HIbpfn+3lszIwD0tgABIm6q2EIK7N3dTFURETGk45/SWwswxxCjBXIvqZrcLIUDXLCMGkYeHB3DY7S7dfbuN6LAu6yYmAyOirko8Ho+1aRxTt5nwE8PZrEcpSO88MhECGplazxggcyM+HxgO3mrr/pQuQDQHMGAmAAwxuDsTA0ItNZfipTpYrqWpkjAhZVUwQKHWlBiqVjUjJnMnx67MR0Am4hAM0cAAwNxAvTtR1bTTpnqzPsYQY1yXtWIPxXUzP56WX3/5ejMNL188j+O21hJi6iHMtbbWWowyDMN5/MCh1uLuxGym4L7ZbNY8X+6ukFlNr2+uc8mHw+Pl1c12e9lthtuQYgxRuJV28nVeS6sag5yOp3Vd87qqeRAhFITexW6I+Pj4eDjQMIyn00JECLzOay49I6Rut9sYort3bsGy5sN+fzwdY0p9XB8kpBRVLUiIMZj5uq5mNo7DOI4ICM1Ox+N8OoU0pmnrs93d3b/86GNmrmtprcU0jMN4Os4+YCklpUTEtczgEkSurq5KKcfjrakTOQKQ8DAM4zgiszbd7XY/+MEPSOR0PKlqbbVX5h+E/D34uq+QTrLrvPQoYQzRmgJScyD3EPu007uDsq8Bc1/mmZh6JaK1SJBSzuVwba0rS/vLVtPmllsrJc9ffXNzeXW5u3y4vzUrtbYUxxAiMRVAakrECgAOkYN6UzcJIiG0bMjcn9oQAhCqqZurOgD2+xaCd8y7EANR0+ZmkiKhmGquucx5GIaIIbKEELumqOE5Tmtd1147ElOtlZDcIcYEgGbL8XTqv+20P3RnuD9FT/c5XAhhmU+55G406cJYM0MM7jaf5lzLkpfjaSaiwMEUHLwUVXViiSmBdymM19bMKUhwc5LvrgCqihLwrGvhXAs3kRgJ2K12jycS11LONZ/7iigSem1WerSjaq41l5prM8XIgVkYOQZorn34sa45MIvo8Xg8zSciGIZ0cXlxfXkxxtBMzVVQuJZm0MwthHixvbq+eHbIc0gVzJace6GqrXHnAju44jyv1cr+dBTCaUhEASUBillxdFV1QGJZa/vwY1e35l5rZZYYhx6W5AD9Qz+d5nlZSWLVKiFECRfbHRL2WpU5xDiEGBGxq5z7RbbWiojsggTMEkTG7SbF2Ovi/mxgB2riU0S8GZATk7v2ewYxERAJkRJhJ7HAssxIdH11PY2TqrmBqZq26r7ZbPom2HH+8zwjERELhZiSqTLLtPFxHJhlWZYnUjH1uUWMsVXFbqPsVGaAruRR1VYbMfTnue9NhNwT0MwwxtgdZyJhGFK/EIhI07bf7xe1fghFptq0rLlzp8wNkNEjAjKSmRNgH1IxYPdYN1UCcAIH16aoFiQSi4IbaL9H985y/8RSSoDQzC52uz/54z89zcf948Prr7998eLV6bSM045JEJmQXKDV2mlRIkOr2awhEiCoerO6Lou11lobtlthvHu4Y8SriwvndHjcxxhVda2ztbrOSy21tLauGRGWebm9u6u1uFlKIxJ2aiMiNtVcyrrkcRwPh9Pj4z7GcH19XZu2pofDsWO/ttstIp49l2bH43EteerCefMYI7MAaJfSL8uS0rDbXfRbkYiUeZnn9eb5q4ura2Rfjvu72/vL65vr6+f3d3f7/R6QQgzTZmIS66F2qohopoQUQnj58uXDw2NZT8wQJA7TOAzDMEwhBDMv+9N+v7+9vV1K7sVNnwG7maPTebXieQ20hgiTMDO7KhNzpMOy5lYvLnZLXtYlW7PLiwtkBsAQOnu5lZKF2Zp3v8iSy5kIZGpmT3Bp7AppRCYJ6rbkcrm7aG5vvn232+4uL0ZEkhCtNX/ynYiE/rQGSsTk/VZHqN2GBpDXVUKIIdaS3YFYvGnVWlXBLU6bEIPlVZ/OIQwyBLK8GnZ4QqitqDkgAXSqrjEHdx/HoOBBIrj3AEh9KsVKXtd17TfaPkTsqJLeEWraEHA+nppqjHEzTlFSq4WZciv3+4e15HldCWgcp5jGVtvxeDLt8nhMcfC6qPaEbTSr5t60hd+JhCTibkJyM3Awh9raaZ4RQm3Nz1FOSujnIx/xVAt2DkIM584VAKTEEnxZ1qwGzkIO0CncRMyEpjafZnVtqmoaQ4gpTmnoTZTTuuRSxM7NLzW1YZi248ZNAa22/Lh/cFMErLVMQwwiQ0xoWmp1sMfDQ1WdUiylhaDaVscowZkxhFRrVc+n/fw7ow+Y12Vt1RGeeIpASK21fuA/7A/Z3cAYRVi22w2LCPFpf4jDMI69aRUBQfWc99tLY1U1dQQk5iHEFMOyrG7KSIHZzQlQkFQ1EhmiELEEcymtwtMwto/FABF6y0t1O45BQsml4w26hIMZQwi1tR6zZQD9WOq3hBhiI2Wiiad5OX3Q7XXxqz1xCHqX1lwZqWkjOLNP3L3/Q8llzWsvGEWkX5qf9HnGhIRny3EtpdTzJs5B3LVfd9G11YKqrRRmpkDg1tXHZmZspkpPQg1zb67c7YoIQYQDIwAouOEy501KvWo7T63dOcju8mLabn70ve//4U9+/5e/+dWS8/XlxWZ3sdtuv/j8+5dX12daZMsIwEwi4gbO7B60QwKYHMUckKW73jebHRMv89xUWdARj/MpxNhay+s8L6fDYT+vJa+1lHLY79dlKbV0LVBnaXWh2zLPD/cPAIRE+/3+ifnl4zguywpA7vj48JjzOo4bAF/WFdxjjGvJhDwOU5+995/3+ubG3e/v73/8458MKXUtUCnzcjpc3Dy7uH6W1+P8ePfmm68ubl7EGInj7upZKfl4PF5cXsaYYowAUGo2s2EYSqnLuq5Lvri8ePnyxX/5u/fM9uzZ2FfRsq5V1R1uH+6/+vrr11+9Ph5PT5gaZGHC0LmHyORm6GhmIEBMtTWRYKYPx0OM4fr6hkVUW12LlkJOWppTD3xlBCcHMFtzSTFqz59aVwCIMWpfKcQdC9rVAZstm9taizVzs3EcX736JIUI6DmvyNBadTAFIHVzWkuJEgQZHJspEBqCoY8xAoAS9823b5+EaACqNgxJQhAkFtnw1FqrqsRYS92OY2Q5LguPYohVDYSGmNAxhjifTmYuEpBE0B25tYbWL3mt95DfvX+HSNvttncCPlTZ/dnMazbVGMKwvbGW25yjhAyOjGr6cNyrwVrKdtxNm904jJnWeV2aNSRgIDProD03dQRx6PbjPkj7cAQ8tbKFmJs2X/1QT0wRAGpbiYnwHFjdWmvaSlM132y2SKjuQihMGMI48BDj3WE+LosIMWCf9Koqk5RaEWRe52aKDjEmZgGAvGYTftgfllxEiwN3jgFG5tNygKCnZXn7zdd5XVlEW2GwIMQou83GYc2lznmp6u5g7s28ma11KXpMKW7GTYpD1Trn03H57gBwpCGlOBZZJIEhETJVU3c1N1U45tLomGICiCyE7CmmHmrj4LU2EQF0M9PW+nxcRGptSL0WJyFiIjVVaz2pyLR2pRoLmbmZqdYYNqq1mjdTMGMgdV98IWFVRYAODW6m5NyF/0MaAoe+A3YP1JmipZpi7K0Sdy+1jy6w1lpL7YVTv47VWgnRmnbnQ9cFt95pZc85q9bWmjtEDAjAxD3TGJ6wd0GktuqgEib1Nh9OMcR1re5GDN2jS3j2BnfwckCOITrYmRoE3i8BWquZCpOZGzRzUEK1FkmAsII5BUZUbYkkThdIWFvrp7W6U0yX15cfvbz54z/4/R98/3MAu9j9wc3lbnd58fz5tQSSISCc4UIARCS9K9tqtR5bD5BirKXkWoeUxjSotZrn+fAYY4wxvH795cX182ka3XcAxBLWNXMcqlpec2tWcjlftHN2VUAMLXQafmutlCoiiMSMrVUzHYbR3ZiDCCPCZrOZ5/l0Wmo1QOzdPyIkZCIexxERU0qIwMwSZFnyyxefTNMOiC+vb9w955URpilZy+DWDMeL589efBrjYG4hhmfPX+z3+xijiJg3JhYOgMQcxiGZgelhvz9sNsP19e79+3etVewhXwAE4EBBwtX1zbPnz1tppZTO++zZQQAgiNM4uqF16aWZI5gtiDiOU79urMu8vby83FzkeZliMgMH6C/iamvLYFbW5bCsMYTtZgfgIYRzPp2fxwD9burkQxhqzYfDITAPw4gK6NTqCmBj3IybiSlY7JYDF5acM1aQKDHGTh11BxZmoiBBawkEVmsuFQhdLaXEeJZraNMKhkGQyAGEOwJAbx8fQgit2bKu1MmMwADUTI/zrLkwnzEPxN7Q7o73AZmJWiul5qY2bXZDSpeXl7WeU2j6Bb2DAmutQDzEhGLHOnNAMLIUCbwVXbK32jgGSenq8nI7bm8fbgGgB3CCumtT9+ZGCE85fWcS8oedMEhkptAj8IgAILe2rIWwBZGyFu4SM0eW4ARrqaVUkkxE4BZDdHIGSGNERzLYTQOAulnWdclLLk1EIPT8WiOW2JN0iZzQ0Od1QcR5zctSZS11u0noHgMTwvH4uJbDw8M9WAO0taxlXRl8HDdDjEGi+ZprAQchAfQhpa7oaq2upTSzadwCkoGd5vl4OH34sS93F80IgKH5vCxDiqWHuCI6QK61tLbDcQjpsQAznlMX8eyP7WKvWioiYYd4IIqI9QYP9bhfBsfD8djvfWZWztZkb9qIJJcM4GrWzA1ROxFXYg8CZnczjTH60z2gT31DCD3CCQD61TX0R8L9rL/ssanuH7jN/ed6UlifO5JErK2pWc9oIsI+gUwp9dZQEGmqfS32S0lrBmhERIg552WZJTJzdyFVH7sa3EppZsZIIQSsNefVrBExkwCAufbTkRz9HErp2O0u4CEIEOc+JkIAA23VoWGIrRZ0SDEBk1dv5nEcN7vNn/3ZT7/47FMhJwQJyAAM9JMffU9iWEtJaRrj0KstJIgcHLi12lppqt2DiUTLunpTO8eCu2o9nY77x+PV5VVPaOoEuhgHd+9ZWrW2j159/Ovlt/O8d3fmEEPKnGupSFBL3TL3Ok5EUko5F+4GV7PT6ZiGODRNKY1jbU3d/XjUnDN1C8jaocGh/72/CBGJ8Ol0+sEPvri+vlJVCdwbTSFIzbyuLQ0S07S94GGqnVbf1FwbkYvQ8biPMcaYOI0SmJwB0MxDlMvLi2Wd7+9vHx8f8pqPhyMCbna7EFM3iw8pjeNwsbtYdqfHh4fWxbjNesojAIADEeRcgjAJIyPieE4zbs3BiEmt3T3cW9M+gOmXDECMEhtYLTlIQFu4i+LdhmEAh7XmD4ILAOgUAGauFRERHFprUxxSFNeAwj2dm4Um2YBbrQUAYoh93zE7jycAwAwRYM3rOs9wntuDcGzkakqAEng5nUqtItEz9EkpnOVJHzryYKok0rfvDxBGjgLQtw0KQWpZ5tOy2+x66E4MQ1fUiLA83WW7k/TpvMfuS48x1lZDCjFFLS4W3NqyrHlMrdUxxXHajOMmDoMEAUBwMLNSWueRuDkyMksPLnR3bRXgyRWLSCxIHEI814hNVbVq7WO+nHMQZhJorVspa2vaWlciDMMQmUSwKcYYOISgJkTqpgB9u3E3cGVhB5uG1HngTfW43xP4OIxa6zyvtamseQ0RYwhDjOC6rnN+WEQoMJrxsuR1zTHFqrYLXVXPABQiDzEJYxASFkbqPACFVmqr2tzhsD/A79gfhMPzy6tS7XhaTH0Y0nI4tNZyyQOxISDgdtykYXpsWZsioJtXq03bRUzDMDBzCMlUzbRvr8wcBErrAafg2AfI05DSWt+6OhGQq5mWUkSsx5YhgqvVpk01iBiCE0aOPfy2o5tarYbecu5ug3mea60dK91doAAfmja93Sk9YqJf1fv2AU8gT3yqf3pqo7khAguLBOh2XLNhGPpy7EcCMzNTrarmPaHb3Tvq8sk7CrlkZlJtHUMN4K103vPqpkhdfSjmBED9XOqy8T7pRUUwNzV0iMRKZ6pEZHH3prW0MqSxuC2nzIL/7M9/+od/8OPdxebVyxcB2bRVaw6GRg4mHI7zMgybT159luIAAHZWxDmeed39amJpGPoorLnlOffgipxnlnj97BkAVvNnL16qgXajZKlMPKRxu90t87rb7TrhLgTJ/elSLWsex4mI+zh9HMfD8VRr7V9fl7Kcjic37+mhANgP3WVdf4cOH/qW18fdvfHNzOM4bqaJBUs5v1t3LKVyiNNmF2IEd2JltxBkXeamKhKaateWDGkk5m4ANAdETmnoRwugA9xst7v9476WkteVmVRNg4WQ5mUuJW83m/sQ3NyaAnV2IQQJ/ajreXlm5mBBYhqGIY3gmGFVrQyUJEaWWmqp9bSeuHK/8A8x9txqArraXaSQtCkQaGt9yHE24ACqNiQUFCJKKYpcHY7H/eHARHWuy2m5fvZss5mIxE1jCjmfr8gOUGrthRoRMaOfY6cdACQGbZgkukNRRSLzHv8E5q6tISD7uUvTaylGury4LKVQIkDoheD5YEB08+bmbsLMRIjSiu42uyEM8DTgNbBaS++gllI6SOYMgX8K+FPTplqsjlNfA8DCVq02zbUiAbFst7uUBnVQR+JALH15dw0r9ySPyH3HcLem+uEAcEBmQeSqLQK7o6sLi5M/7QbYVN2QIoIBIqYYl/UcQDLP8+yeooQgCkhIMYTnVze5lnlZmcgHA3Dh/mVxEJFu+G8117osa7ciuUOtTVS1tsaITJSGmGtt5uI+BEGDvc4hplNedqUEkhhCx4wPadiOU0oSGM/zDXdTI3IEarWVVlotv4uCOC7LbnNJjIflmHNBhk4a6IcHODCfH0vTpdXWuZW5rOaeUhqHsdskc86IkGKUEBCxlIYSYkrgAIjV3R3SMLIEBERzdq+tQA/4YQJAN0cHAhxCJCYJwd2h+4sanNPa3VmE8bws+mHTpcTdYuNPgMy+0feSH+CMUimldNsLPf1S1WrW8VjqJiKl1VxLb/WEELp6IcbYW88AIBKGYcq59iccHIQDMpRae5fW3VurquZuAHY+MktGNzmXSl33BszM/S6FyCLaKiF1D6U7IKBQoAD2lJJlCIgoIVIIH3/8cRgHQv3v/k///OWzHaKbU+e9xGFy95wzCajazc2Ljz/6dBhGdzdrtaxVi5m6wzAkZqqlmtaymrlxt6cSm1lrWdW2m42EmHMtJZfSJEQAD4FbK30cVcr6uH/o20HO1r+Rrlaqrd4MQykF8Dxv96d46nEc17WU2uxwcseU4oeeL/ebJpwNJSLSQZIfvrv+OW82EzPlvI7TbndxWWsxs2EYU4xIWMpqaiI0pE3fkUVYW0HwaRzBqbVWu4AVgTkQobuaeafpqdrzFy8fHu77KdVaHTfNYW5VDfn+4eGr1197tWGYDBDAZQg9blrViRgJwiBMBIjdqg1EoBAkCBMRMaEaCXMIQTQRkjV1M1VXVa/a21xNtVRFYSMjxNrlkGZE5/EVANRWTZuZ1VIITNgf9vet2rbsOEgQQCStlfpz8RQi1A/788i6J06bIeI0jYfDvpmFENngA+SOCYEwpoTIPQWl37daU4lCxI7nr++poAYmPl8L3NQtoDBLa9XVttPU00r6gE+IzZme3hJ13kxrH2Z1rTVCMtVlnmOchpSqa1Nr7kDUzFMMMcbe+HXE07y647jZIBELEXOrTcGZkEXOJlb/HREoQJ9zNKtIGIP0Q4IdSAQdTCs7mSozIhASgTYAR8BSyrl1gFTmNYbgQEOKHClwHIbhYrvT2tT0Kf2hOTgRM6C2prW6m0gUEasNwIchSQyCbtYKxZgCE4GCE/RwGb3Ybt49PqiaSGAWInZTQoxRri93KUUAq3ltqrlkVXXQVuvpeGxtBYCuOTufe4QG3kznss7zAgBFtU9selTYOAwYONfq6ghQcvEtxJgcwdx6sFfPAS61xBDTMNRa1N2IOueyX1olBFU1Nw7izbzWGCIStFaB0B0RILAERnUDRGERZgLcnw5dRNxUkfFJMMdn0wBirxqIqNM51mXpV91envfzAJ9CY3rh/2Fwamp8Lkww18JP2ptWmzUFB+qln+rTsNfdTaRbwLy1ti6LucYhfpgOnc0jZkRoZlXVWuuyor7g3BSZDAxNz2NYMCIEEW8V3M08xAAdcmnaLRFAwVWZRQI+f/bie19876c//QO3YlrVjBGEsEJzBALXpyCBGONHrz4ehhHAkUBLrS23lmutm2kDpl9/89W6Ls+fXXMErTVrYwpMjBR2u3FZTu/fv52miTmI0PE4c2tqqk3d7Xg8Pj7ctVrdzVxVW2uGaA7YzMx8GkYkiiE201JKH7r2ptzV1RUTtVIpUc5FmPuXNE2TqpZazSyl1N0YMUaR4E/d2/5dfPXVVzc3u4vt7tmz58tyPA9jGYNgLa21llKKgR3JzVqrvYQAwFpzb1CsawkxIUS1vvWjW1Oznh/X3doAoK2d5hMyI8mvf/Pl4bispe73B3YOIaQEYB5iCDFo015cOFLVioBNlZhMGyIieceO9kQUIEJhRBokCEstpZWKACmwITp6Vet0BIkhhmhqZGpuHzyA/WoIAEDsYN7qgKPmPMa4vblE5LYWEBOJVfV37bXDMJha+8Be7kGntTk4Iql5HGTcTBvhZZ7dgUMAMycOIdTSznmH/S5F6t2lTKRq0HNOzACRiRo0B+cQvFU1dXB3I4RAzCGYGfbi3rzV5m55Xdd1zTnP86yqH8KC+henqqXkViQQN2xESEwAqGrMfLHdDiG2WvfHY8llvz84Uc9yaKqqzcAYO6KrK/2V+LudcFlXrWoIw5DMTLU5uIj0EB9TQoSGFQnUldSJiNBjkFJ72KL3/MFcamvatsMlTWMayAnAhxhRyNyaNoAI6KU1bRXRkZENO4Csk1i1VRmjxEDEYGhrLinEMUY0NW9pjIf16O5THExtvx5Py6mPTZgwBBlCrFpOajnXUoq1SkCl5sPJGaE1Z/qOgReItbXa1NWQXIRrMzdoCkAk0v1amFUZ0VT76ccsBl7akuviho49Kc3XklmkqbZWWYKpdikYM8/rsj8dSikhRgBD6lY7YBYWWWtxYXGsVR3Bz3deQBYEIPDWijYFd0NgCYJkCH1uSUSMJCSIKGdp/7ndj9bh5tC72vT0DAiHvvKDCPWkIdWEKaVUa6XWjBUMDIxJrCo4AFiHthNRd3X1P6K0TEStKZhD/8vczZJENROiUuvxeJymiYha57kTuUPk6F3KW9XRtVtxAvdSpKdTARk0Q0cFEJEhpaz66qOX/+2//BdffPrxmAIzMnrvgFerDuamuTRtWmt15O3uIsUB3IBsXZec11prXmdmqrW8ffP+/vbu1Sefp2mbl2VZTqiNNzsgB/SmyhKmaUuEpa0AOE3bZVmW+ZRSJOS81m+/+Wq32blbqUWtj831eJofD4ee+0aASLiclmEYaq19dLSuGRwud9uaswEA+JqzZ7i8vHQAFtlMUy4lxdgf7y7r7rQWEuYganb7/uHd29tnN89ba2qNmFTdDU6truu62e743Imqa1mswTBMiNA1+U2rGYQ4dGOEORC6Wb9yEzMw80evPmql/PznP0PqK6St81JK2z8eW1M0zLUgIQJJZCQU4R5sICxACAURsfdKCngMQZCamRaVmJo5ATCzNSUEcI0sHLGv4aLBECKhqnaUIbNAgOCAiNq0O/yZKJIgOKLP6zw3zesqzJdXl4jEIkAsLMhoakzcSyIWZhci69o2JAwSqEcOAAL47uJSWEgECeMwgDvXqqCQBBGwS9cc3V3VYkyqnVVekLyLNfoLIRICqdcedmZmpVVBknEEgp5MhgQdOdUv8T0HpYutkTCm9NSnEusUERICM4dS6ziM2hSIQwyXlxfPr68Z8LQu3759e7t//PbdOyJec64GYoyORBKSBBFGylr7ZRrAPvRCSBq4k1ArdXZ1wChEZ+wOisTzlMfdzQMzR/YQpmFU96KtWQ3CISQzc4NlKQJLjJEQnZC874TnFvQwsFbKBg1V3UoulRogIbEwi4RADADWWqvIEmRI0rKJxONclmUFJDNXs9M8L8tiatM4EvKas5rlWorqsuZSmpn3lvSaXQjlaRM8X3zQ57LmkgNL2uyuLi5CzO9ub90VgRDp9u7u5tmupzq4WYoxDUMtTau5AxgECR3jZ+Ddltp7JtSTMhDAPbLkXLpup9SCDoGEqF89CRFqLVoVSbTbw5zNzJoua9FmeDbIADoua44DGiAiqLmIWKuOnSEqJVdTDxKJCAE7efhp2sG91Rd6vEuQrjNBwlpqjyQ9Ho/d4DdNU48IFgmmHmMg4jPrFBERJdjZLC7hzJlicXNVdaJAIkFU9XQ6Ygeyqg3DQMTE0rFhROzgCHS2JceQSyllAQBECjEej8dlmUOQzrhuam72gx/98F/9q//u+59/IugGTZjB+nVEwRRcWy251BCimvWuaJchlnVd5hOCgVtkzuvy7v7hcX/36uXHNzdXb969mcYhlyXPp527WkOk2gwJUxhZBBHu7h+mYYwx5izLkoMEEUhpMLeUUin3OefeMFmWuda6rqsOY5yGtq59Yt9qJeiwe398eNhuNrvLyzVnVVWz3W5HRPM8O4CEAIgO2Am4Z+MEQG2tH9216Om4b82Zw/FwDInHOIVAx/2+rPPFxSWC1bw0JGRhwHFMwlBraaoxDoJDbwp17ydYj7GcRZgl9CZYiPH5y1f3Dw+H/eN5pK9+OJzMDNypM6YktKaIpK0us4UQAVDB2CkwuwMFNjN1DxIY2WphFCJGV0BEx8ByFuIAiITOohEUJ4wp9W2xlQoOMSYkbNo5g+QOQQSb1ZJrLa0UN+hoIFUFwGGYnM6RXhC6M7l0HCx02Q+zgVNvEBNJOIczl9JKaSEkMIghYX+fZGYGiMNm9NaIqJ8BBBjS0FpNYaylIvTEDqu1ElNKAYvXUsdhMNPuureyhiAEUK1zuK200nGt524PUUpps9mkNNTaucIOiEgY49CF47FTd2qVKFfPrq53u1GCmd4/Pu7n029ef/n4OMeYSm3M4t7rBxhSSiF2a2dgOQ/tAQBgLZmaiohp01Zb5yEPpKYppc5r7LcW096t5p5PRkhIiHkVJiJGdEQHwGq6X2ZaZ2bqqrPetDjT0ohjFAZxwOVQc8nCLBKJOA6jLDkLYwzczVOlaRrTEKKZ2qkA0ppnAGyqay616pBSr4KP8wK4NLc157ys1iyl1IEKqurmkuLvtoDmdVnXktclEI5x2AzDu7u70gqRoLua3z/uEYmFzUyYAYQJs5pVbUVrqSmOtVZkmsaxp0Qy82azRcDTssQUCPHZzeWyZHMH8NvbO3ffjtNTsKK5+eX2gpgRcG11LYXdQwyE6NpioBDiZrs9HY/WVN3GaZQQt7vt6TSf5tMwTcMwRAk55yicRHokLyEhQasNCU2tLCszSQiEyOhuSsyEUHot7xYI19KEaRw3zKzgXaaVUgwixCRMQOfQR+HUVUyIYCqJBQBSlGYWWMCcmQ95LnlWVSI001Kyu3vXFzHnsi7rIhQuLy4RMYbgpg/3x9bqMI6bzZhSmE9mpkQ4joOE9PkXn/+Tf/Knn7x65m0FIe7aSWZw17pqWc2s5FVVN5tJQoppGoaxJ3I64DAkAmt5uTs8zPPsjrvtbhiG22++evPNb19+9On11fUe+e7d29Ph7vL6GpFP83HcXA7TTkSs5VZ9jBchxrdv3yK6mr18+fLtm7en5Xg6zvNpBoRSzrOQUgrHkEtD8FpL6t/RsrrqlIbT6VRblRDNLMQgEjrtubXWw6FijO7n3nQvmlozYmQmM1vXrGqb7abWvumEnLNIaK3FmIhQW821CHNIo5kC4+Fxf3d3t728DhLMcF1mA0txSmkg5pTG0+m4LLnXJcMwqbqqvXj5qpb6+PDweHgMMU3TUJuejqdhTIAkzCEKEdUKiEgAKQYJwVsjQwpCwig8tChI4BAHKblqa+qIREGEANV0SENvzZdSRJiRHDEJG5GZejeZS3RC05JzYQBicqtmCtAIHcDB/fr6uoPwhjQE5tYasaQgfUTW52peCplFSQ4uLA5OXYNgBuYILuDccfu9ejJPTEBYqiEBujkYAgQhRCD0KBCQ13UBrT1rMgoDQV3nYlZbMbXS7wTD6G6tZnCutdZc+o5/Oh1zLq21rj3vTSpVvbu7BYc1r34OPqqn0wITjxdbtbVqA/chxWc31zcXOwI/HPbH+biUPM/5OK+4FGYkNFdVa4AwjdMYh2ZWjlVEfjcay927QOBpeu8GpOYOtpZylg6adbscIakZOMQQ+qDCNBiKhICO7g4IBpZr6VKfahZFhpQcUd3cQBr2E4iIU0odhwNIhrTmLOu6phiEMbCASDVzkDgM2orEWGrtZuB5XYeESJQkpCBmXrXV1mqtzcwdm9nIMqYUQjzNRxTmLmL/0AISeVge6rIOIuOQ3H0+nsBxWRdE5pDWUtVts5lCPDKDAxmYqmrTZZ5v726XdSWiGEPOiwOkmNz4/u79/nBs2q6urqJwZJyXtbWGhMs8hxAOx1JqFeZ+SVBVCUGYc63zugbmUEItZT6d1GwYhnXZmlpPF9I2jePoWg6Hw7KuIYb9g0cRM7Uew2LWJUDaWqkFO6cTzhOqPjvpBeA0TrmUVptqq7X0Zuh6PNRWgZBFAACh0xwJwHMp1hSwg8RIhEVCLXk+HHcXu6HTAhDXea21Lcs8L8eu099sNqdjJWYidKsEuOT14fFxHMZpjICw5qOwMEFudT6aqz579nw7jbnk/f5hs91e31z+8R/9+Pd/7/tDYkZA6h40rXlZ58Ph4X5eTtraMIzTZqetlVpvnr2SEGvJhDjEWEt789Xru7fflFo/+uQzM99dXpRm3755d9ifYnxY5rXLK775+u2bN++/+P7337199/w5gKMBgtu7t9+O417CYLW9f//WwXNp67Le3e8fHh6RiJ15kH7/T08CqryuMYbtNN3fPzS3ajpsxnpo+8NBJBDLOE2ItN8/mnmMMQR2/4DIllI6ChhKKWkYALCrv8y0Oxi6oIhFUkybzeRuudRWi7YyjQMR1KqPd+/WZTaDprrO8+Xl9TgMIhE5AEDOVQJst7uuOtWmtWYiSTGuQeIQHX2eT1/9/OdVQc3XNffpjqt1C+RpPgWWGEIIEZFKXs01pgG6lxDdVEGdhVW15Fpbw644cgDwIQ1I2Ekk6NBb48zShytdGkDMAGhacy7nWZJ5p7K7eVNtrR2PD63WHhgQQ3BvfQTWVImZUdTMVB38rIzsCxvRrZm17lk1026GQkB3V+vUcTgHI3tn5kIvjwBYmEy11uKmANjM3LyjFdVM9TxrxW7vJKRuP7HmBmZgfXZ0/nU2XTKRPdnBuvOZSNz1eFpevbjZTWMuZRgGBhT3y2EcYlxzfjwd5rzWUnOpp2Ulks2UunSqNQ0hjCkNIR5yqWprqYH4gwooSFADU+3ZIdUMmVRdzQNS10mX2tQ0BegDCQR3MCRk4hCDA6Q0pDggYq1lzj3arg5DAiA3aNXwjIn0U21RAmFvKkuMxCxq3pqCo5y1jABMRIjN/bSUzbSNgyAeOqIPAVptOPIwBiZhAAI75WVeFkFhJGAqqiw8pMQh1BjNmumHbwQAQEueD0dyIKKmFWuPDKi11DRIP5eChIuLi4ft6Y1pn3ermtZ2Op1ev36NiMzUBbw9Yq0vuGbOzDFKYIbzv0OHcyyR6jks7zw/cWNiMG9nbT4hoJmuayZEEu7ABq3NXZmJRQCwW7QQsbcdhZmZ1ax3b+gpP6svvu5gcIMuBu3z3r76+3TazhPj870EEYgEnxi54AYOtdXWWs9v+aBIaVprLTEE7oQpA3RsXSsKik9eEzPjjghl6cIlNWWh+/t3/X6GhDW3vOYuc/z69etzQyCG7XbzX//z/+onv/fDFJgQkAQJwfXw8H45PdY811IiU1VnhJrzcjzFaRdjXJfFzGIMpSz3t+/v727393dpGLS1q5vnc84O9PkPf/wyfz6N493d29t3b55dPf/pn/+zZV13u8ui2DS3WtXRTNd5vr99/+zZq+1mWpft/cM9E8WY1nV9fHyYxl1M6ZyjItJzkaLw5cXlkNI8z8SUhgSAKQ23t7fLsowjJpa8rj1irkutiFjNiRnAHZE4qK45Z3ePKZ3NFubjODzuH47Hm2EYiWB3cVFqtabE5J1AwLiu67qcri6fN0l3892L5692F1ffvvn6/va9o19ePXv+6vPtZicSHICIp+liXeeYqJRVvbKEzWZChF/+6hd/+Zf/8e7ufl4yAKpZLrnbPbpI3AEAnImR2LR7SqyrD9z7mMw//GXmZo5EnS8A2AnE5G4I4PY70gUHR8Nze74L6LpjsUdGgBuY+RPmn7qSErE3qwkR+kv193f21Lv31g0Ces+s7y/1ZL6F8yyg/7cA3nfuvh93TTY+Fc3Un6ynD8DdTaHr8cChk+wROlHzrIZC6q/39BpmDt4TrfAM44T+jvpT8/T8OABYLu10WvrsQiS6uIAkjsuyLHlRVzVr2kqta65DEj7bHsHcp3FkYkIurSFRqc3YPxwA4zAcTjMACiEgmDkCYEB3ZwlMVHIX1HhnTqi2pg1pNwxIwuBuBjGkECIzp5gc8HSaEQgdU0i93s9lXa0QIrCvtbD3MiCEAEFiM8trqVilf1BCSIKBgzXdz/MwpOtpW5sZIxkMiYUJgGJIwrKWFdxbrQ4ATiHI2tbWal5XQAhCQ5BSGiEV/c4AnZdMyOat1Lq2No28llxKLWqsTtTGFLfTNMTo2gwhm15wNOijm1xKO68s6M7f7765/gVTb8T0lYxnrScy9bZnX6jYaeVnUU9f+Gc5f8/QYKLlvBa7rwA6k6+bSxwAwakHf6EigntPNutrCp4KEDA/P0ZnBBQ+sT/xbA3obwfcHLozHHtGQQd+ondIr4ODI/R9/LxA8ckG1MMt+9/MOhHg/IzgOaANAM/uX2BkP+2PCOhggN6TdvrRSAjgiBw3u83vD+GLT1+mgd3VgfvNfDntD3ffzqcjcdhuLo7Hx8Nxf79/ePHq8zBMF1dXXS3OHGqtx9OeCJ+/eHG8fbfMxxiJRLZxWOaFmS8uLw77x2m7WdeLVcvNs+e75q3p937w4/vbd9989eUwjdNmM4xbrfXx4X1M07gZH4/7FOO3b758f3vbVEvJtYJad4V3s0zs6+HxsA8x7Ha702kOEt6/v825NYXajKg1NUKKKcU4EEmtSsSM3Kxndygy5lolRAdf16XWGuMoHL799u319fUXn283m800bk+nU4gDi+T5SG6neQ4xAQRDjsP2xctP3r75+t3bb1mkqW22u/lw+ir/4vLqZrPZhTikYRQZiPB42qtWM09pRMBxSL/59W9/9euv8rrU0nF7ag4I2FvTgNhH/32p9HVq4PjdXmYA5ICAio5g5gQE2AsiBWQkQlI3PP/mXpw8qf7Pz1Rf/UAATxx7PCsLwdnRAfTpsehPYn9vAIiOAGDo1Bc7oj6tfkREMOtvt+/77k9+g3489UMD4Olpa+fnhvof2H1O/WzBs6mR3J4OLUB3cwJzRUBQ6Kp8P2/qiI4ftoLq1reCLgE/14znf9D+TmtdEUCkkwaogR/XBa2qVm8aWaZxRHBEFpbIbIBNG4uMcWDEYla0xRByrrkWgKF/lCKx6MOQUhRCQm3WxwHIjICCjCHNy2LgqrbWIsyOqGauAOy1VnNotQpx4OBu1hqBA0PRVkoJSRCRiNVtLquTDyGEOJgaEomQuwaW1aG5SaumoubS1b611cM8B8JNSO5QqjbTFIYYhAjHIXVt9bIsHWPLgZvp/njKrbj781pjijEGJiDE9XcIGA+HYz1T7FsDnCaWMBR7UEfoc6EgQFBrbVmJhBgDB23q3odz7ghdzYuAPVEa+j7riOCtL3VAQ6OzEBPI7MOT0UG+DtYXj53PAOhA8J541a+WcBZx9jVq+HSu9IeDAPoDBdB39O/Khg/n0dNZ0F8LOmWzLz3oJJozCvxsEUck76Ou88lwprT3t9VqM7ceEgreK1bo/wEAuGsvjAjo/H68/0EG3nMKoCM+7emxxvOh+GRUB0DkEOWjly//b//X/8sPvv8FuBKKECJYXpfjw/uH+zskur56sazL/uHh9u522u22F5ePx5VRVBXBcsu1FrQGVh/vbl318eHuzZvXHJOjaNOmS93XUlZtNo6b2/dvj/vHm5vrEAbDePn8eTU9Ho65tmEY58PD7bv3EsfHw/Fxvw9h+Nu//btclEjKWrqNq9bqqkiU81pLJcSr6+vtZnM4PK5rfnx4IOamZual1P6kD8OwiUFEugjk2bNnDuDatJZcViLUZjkXYiplTVHQ7XDYv3h5fX31bJq2MSVz32y3iFjKmlLIcy1FYwoX18+maWpaOcYfXlzdvvkmxLCsZXdxIRKWdX64u7u/vSORy6vr5y8+QkBT1WYxDIQB2Jzw4TgfjrOW0msDR/cnLvC5xAV/qmmetrynA8DdyRF6Iw0MHf1phfalZgBCZ5MXAfq56qVuVjpvlPjdq+F5XT/dTcGxp8g8PXsf1M/Ql1W30LsbOvUdFtGRzYEQ3ByfXhye1NJnwXrv5QECKgABGIABEp5PBjrv0f3g6Gbic1XWD0cHRyc6l1D9NDoLP+jpPtF1y72qMuH+rxCpF4v9xVDdelAEIqk6AAlHNxiHwcwOp0MAB29EfLHdOUBPgZvGQUSqNneapp2EoNaRNBpZTHxeKvzOr4vd9nIzPLu6Kq3l0FCouWJzVU3j5A5zXo+ng7qrqWobhiGGFGMqrR6OM4CVWsZhjPEUJKxlJeEIEENgwlJXVVNXcyNEd8pLK+uRRZBRGhOSiAPBOA6iCP0iXJqClbzmZVn27sdpYw5rrTKkaRpFOAQJHJQ113I4HRGARNaaSym5trUUMJ/nJcYwJR7GVEptv5OEeVpyKTXX2kzX6q1qirFn1JhG8LgumVjGaWsGtaIpavXD/mSt2ZgkiKv1gBQg6FekPkbr2y0iuPq5BOnc5L7Bm3+IstenDbZfa8+XZNCnwrpXA71d4z07yT7UGmeye9cIuTP2uuWpevpwCz//tvPGDnB+NuDptALvb6CTovsf2O/A/Y7aTyV7OoccXJiTRG2tmTugmRGCmhMigp3rNcC+XUB/mLtfpD93YPjhMEF2+3D7wV4FESCCR8HPPn3+0asbxIpAra6gWGs5HQ9vfvurZV0+/vx7xLyu+XQ6HA6Hze4yrysTMtJ8OpYymzdhycvp+PBQ5vnh8f7f/tt/94+/+uW//G/q7vKqlMohpGGc5/nh4fGTjz6rS/43/+Z//ukf/+Ef/cmf6QLvbt99+/XXu2krjAKYS7m4ujocltPxVNby9t0jkDj4umREaK35uSYEMHNXd7159mK73d7e3X399TfHwxHwrNM3BzVANXdYlrzZqAXPuZ41V9rWde15bcM4VTN2P81LbSUE2e/3zDJNm5cvX43TmHPmXLcXOwBIiOt8nHNtzi8/+YKYAOx4OL5/++7Vy1eH4/7u7v7Vxx+rtnGaACYEWnMJIvf3dwCw3VyAu7AMaVjXpVjJNQ9DvLra1CJu6uZIDIB6NpGxEAMBMPQvEYDADJ86nJ3ohUgGTbUETogBiITZzUKMEoNrNWu5LForoXCIMcRei2D3M0LvxTszcxcIGqgpnjssfXkDs6haPxJqa4YeOt4WMaXEwkMM5tYZnARkruDu55vsuR/bbfl2DpRn4dAH/qrqVrvimZDAsfsnujY8cJjGJEymdVlzrYpEQQJ3BiZijGEch3EYhpQ6J6mpqlrJdc35tMytlO12GySYmQOUXBjBAcygafv7X/32ze2jGy5zOR5WcJyXOg4MRd/e7reJEWy7uxjS2B4PRUnC0AyPaxOBXK02KOp6nImEEDtg6nc2QkghXl5ubi4325TWWg0oN6utz3kckSTwOA6l5MfDAYiqtg1LihGJSq2P87GWNcW0Gdcn0yhKkN20YYLWdM1Lzqs7UA8Mp2TkueW5nohxSOMYh06/AHAxIAkDkdVazS2XVbXlXPb7Q3NwJ3cNRGmIMoxI6OindT4spykmcKhN3bWWQo4pDupaW4XIgdnEnwxJAACnnsVhOm42P/j4ey9efTT+6jeSNo/H05yXq8vnP/j+959/9CNJw+c/qri5ruab7WV1uXr+/Go3Pru+cdUUojD37mXP/BRhdxOhYUiBIwC00pbl1LQIUtW6Vu3tvlZatUZ4jpK3ruw07TCQbjicxinE0LUfy7KqAgeGnrJSijZj4Z7IqKAitJmmzTgKcy71NM9rXpsqEiXpuRCVAMx9LRUcQpB+EvSbrrkxy5iGISURBjBEjyEMKQBgru3+4bFPxqZhvLm+brV1oQ4ThCBNW6uVERG8tpar1mZmnmv1PpgAn2KKIkVLb+W405ILELpDa6pNe9oMOJgjkH/06oUwWW0lz2vOeV1Lyaf947uvvt5eXEgctQFzuHz28vnLT7799s3d7Z0BbKZtU8t5HsdBue0fH8t8+vr1b//6r//67v5wOpU33/6PH330KqQ0juOPf/xjEvba9o93t3d3KY2/+uVvPv740zDEd99+83d//dc/+f2fXFxcGPP72zuS8Ozm2euvv5mX/PWbN6peWiMmdGjqUKqbz8uMTO6222zV4Ldfvr69u3942PeaMa+lwyyJNAQhIkXcH0/NDJEohGXNy7qc+kZSG2A2d/MOm9P3t3cIvNtuAGDcjCnFUtYYQ8nrOI4IVGvNeb2+uSbB+9u3TVtey4sXzwkMwX/xi5/HGKdxYsJsev9w/8knnwHxi81mzcv+cBRBlgCgy3o8LaeA/N//i//6T37w2XK4K3kB6AnQw5rNCG5urnfjhtDxKR3IDHLO87q02ojp8uKyrKWUbFiFYUwbB6EQhjRoqzfPno8h1nW9fbh9d/vueDzEEDvSoN8pa87LsphpX5xpHFJMXW9bSomIxGJqRNzUDAE6hRR8KblZmySyEAo9f/bsZrsNwrWVHrjbibNuDdzX0tZc8ppZuEtFHTGmFFOMHMygllZbWfM8z2vtJikK5l5r7WqozTgNISBhbvW0rHktSByE3ZSZWSjGOI3DbjNx9+VqK82q2vG0LrkMy0xE0zgxkJuvraqpEDkgEKn7PFzsDqVVQ8Jnn7xKjCnIdrtjpilJinR5uY0hjdNuuP5Mrr4f4gCIQwrv33x5++3XL1+8+vTlTT4+zEt+PD6qtr7YPuyEr16+jAGvtgODAwtKGps/HI6P8/GSWETcjYnHcZzzelyWGGOIYYgJAI7Lac4LqANUMw8lD2nY7XZjSttxIMR1zTmfOhegC/HPQ3LXnAshobFVTyGkFFMMMqQYQkBstSylVQAU5iiy5HUureRc6tp8exHjMER0sKan04mJzUBdJYZ1rgg+DcPFdiMhgCkiiMi8rvw7B4Cqs/AYh3/1P/yfv/j+j9+8eceEX3z2adru3u8fX7764ntf/J57O5zmH//pn//4T0Cbrrn9yZ/8WQhEANYvNeZudjjskWgzTcMwMlOpBcBSjCkOIuKq58hNcHfX5sM49EuuGXQVYGvtNC9BhBlzByYTtdZCCPbEhwKk1s4HDQA4YqmN+XzhMLNlnlXbbrOJIZyWY9PmAGrGLJHlsD+oaRQxByMC924XcDPzysTdykgISWiz2YQoy7oIQWR2g6WUu4d9KcXMhTmFkOKw3Y7WSi45CDdtvUXbtOaca1MnQQqn47GZ1dbILTHHGADMwZEDS1yWlVhqa/M8B5HNdtOni63VavWzzz8CTKe55bUej8u6ztq0ZHz2yQ9unj03GktpFDfbtB3T8P5+fnxc1A3o63XJpu3y6mJZTlGItS7LfDjMx3n97etvX754ntf6eJhry3//X/7hR7/3o08/++Q0nwxInf7mr/7m+ubZOMW7h0Mp9fWXr3/yhz85zaffvP769vbh088+u73bi8TDKa9rCSGmGBCAgJDEQeOwQSSREFLcH+ZSMaTNxbWIxHVdx60DuKn2QomYQpCYokgYp7GXjTFCVQBgiI6IgcidREKtXqtOm6EZSAjmLWfN67LdbkxtXb3lnI+Ht1+9rjWHwE1bipvLF88c2vu334zj9P0vftAx/ff397msv/jFz5vqH/zRH6tVMx3H8bB/nJfby8vrnNe81tOxbDeX8vH31oubdT0NKSEHM2rmijhO43aYwG2cEiLlXNx8reW09vF7HIfBquecHeo0JQJxBEPXZsKcppFQgMOLq5vrz39USnW3cRh7fHG/NTo4PmFcu0KCWZac53npjo0eRwFA56s0oakeDkdASCK7zZTGAdBTEDC1swCaVW0cR9WWl2UtikRrzuDOLIAYUwLsbHIMkogYEU7z0Q2aW/dpp5TWnNUdwVOIMQRhKa04YGvndAEH76yajoox93men5IEewuXmpoDxBSFCdTNrJoxoau5Q5dOGmAtVRVD4HjmaeA0bZDIW6utjmNkYkBxBGEmwto0CO8f3/39X//lxWYkrfPD7nTKP33xZ3//93/3s5//XL/rEMMQ08U2kde5FFUbh20jPeCJmAA9DUMpuYdEbjdbQBqmYRpHIprXZc2ref9DeRhGEWbhGMLFxXYKqaxrF1cxYeAQQwDAtXZ4bgEDYnI/p2OuyzoMSVIMY5LaHJGDAHKMMQWAZv6w36/zqVpbWxWGTWQDXm5nQkYmRNqkhIirW4hhTHE7jFMIY6QUqdTiAJG+O/emYXCrP/jh9z/95NOvX7/+9u3b43Gfaxuur4Di9fXN3f17EnZ3kSBRQgph6OZv7+AUEe7/b9xtO9csSEhD2qKv62rqGIITcmDB1MebXVrTCw117Rbpu/lAiBDp5tWLN2/e/vabrzoEJoQ4isQYiems5twkAKBOkpJgat1bAQClttNpznntBsLNGM11GiZi7l3FixcVEZl5GkdmqKUQM5gfjwcWvLy6ymstpeaaQyfumoWYQgjuJiwbhXD10t22m5GIO6Y0xjSf5lwydGx6isxca+0kCSIhklqLEE3jtOQF6ezn7B4SJhbpNEp72D+OKVzfXOVSW/Haagisql+9Pc6nQ2cZbLYXKPjJZ8/m+XSomk/GJCypAbzbL+PNp63WhHic87t39/Pxcf+394T2z/78z15/9dW/+/f/6csvv53XBUOcdhcff/SC+H7cXXz5+isMX+2urud1/c//+R++/M3r5XT63/63//Di1bPtbqfmj/vDf/rLv/r227ffvHvIud09lqubm4T86Sc/IKIzjy+IxCEQn/O+++W9VrVGRNM0jkMioryWppbXdc25llK1AWJ3JPUR6iAxBgHGEGPOa8mlf8Wqptr6UMjM17ze3t2/ffPNzfX1fv8ICNNmmhdjgMf7+zfffHP1/DkgjuNWKKgpi7z86LNvvvzN59/7UWnLr7/8FYFcXV0dD/Mv//GXn3322eG0Pxwenz372JsdHx/n0zwMU1N2ibi5HNLl9MxzrTElYkJH4aDgZ/wZIrqHEEYkZrInqUBTxTO0ioSAmezch1YijkM6HI/jMBHytJncrNfUXfvQ5eTDMAURd+1XZPVmCr39EmNQ7bE9jZmQqNUGAEgIDtqMiQE0CAdhB9jv94+Pj87eKz+JcUGmOEraDc3SMNyE0PdNYYkhMLO5xhBDCLWWDmhx9w7VOF/W3frmBYhBuni0Q8a1h9c6QM/yBAR1X+YVY4opdZ+29bXRiV5NEUHJc62mWty7IaB79UVCrW1ZulPSY6IgQuymbW05CEsIHR5Wcsk9NYHZY3j+8tWPfvz7v/z7/3+bj3WttcDHm6v/6p//y9df/vrd3eHDTkgMZv5wOBYtQaK0RkgsNA5JiJaaiREIN5uNSNgME6CnEEqtp2UhksgcJKSQhjDEIOM4CAsAZqsu4AIcQ8QYCJnYzZs5KQOAgSIJEQThKEKI67LKbhqZuWmVQBsJyNEdvWlbFm1tjOkqTpfjEAkIe26pdzHwOE5jSrUVYaxqxKymiDBtJlMFJ3DH34mEHIfEMnzv+9/Pa3m8v1/mo6mKyMPjIcbRHUNKpeT5tFxcXQ9poN4nMS85dyNGSpGIW6spDR2FVkoJIs19mran02k+rcOUuoc2xRhi7NnZjl5KOR6PPa4zpSgszPz+7j7XevP8RYfqSJCQopqFlNRMzTabjXRHNTg6BGF3CEEQkYRjDGa7jtpvrbZaU4zdRogIHW0B4MzQn0xERMZpnErL9/ePy7z0ni1LUDQ1I6RSirlbQDPvkurcVDUDoALePTx2CAwAING8LABQOoXJobZKRNdXV2m7o4ji7GfqmCMSCSKDk4vQEMasGVRzycu6rmt1AIUoHDgMlzdjjKTaYoibzcbc7vfH03FxABFmpjM4uutNmZk5DRfvb+9//cuvVdd337775ptvX3/1JjL+9I9+/+s3t7/81W9RS0hpt9v+5Cc//OEPvxdT/A9/+df/y7/5X3e7XYrym9evj+sJkd357bvb42nebC43V9fXry6GkCREd9xut73j2WPVjMTUYhrVrJcJqg0RhnFAd3JjZkAI5sTAgi1JP5sVAYnQAAgZ0ZtxCCmlze4y57WV7GfhC6prlFBLm5f59Vff/Ot//X//7//bf/Hi+bO8LtvNdDgcttMwnw4vX7yopaB7a2tuS4xpt32mZmnabbbE5O/efjNOIcVwc30pEk7zqaz5q9++noadtcrky3x6935/ef1ymKZpe/mdVgy8tqrNRKK5s1AP4WzawpD6YxUQhckNzJ2QkaG2qt6Ox5Obx5hYJA4pxsArxxBiTK2UDy7fngXSp0MGluuq1sC8qTpYq+YOMYQOBSJEd1vmXFuDpyx1U0NCJNTWAhMLD0McNgMQlVJLaRJBQiCmIBJC7Kg/K8bCSNS0xCgxCXNChNZql1z0BIUu4WHGeT6qKvY4YUTT1lGvTzhoLaX0EbcQIwIQMuM4DqqqaojUfQBEAoC51PNpGhM/6fxCGjotCFURIcZoptM0DSn0pd7cAlNr7XF/QMQ+jxRid+iBUqr6/MXL+zc3X9/fIXga6Tdf/vJHP/nx8xcvvnnz7rtm+DznvLSa51yJmxkNIQHSkIZpmggg5yzMAri9vq6lrutyWpfcqlZNIbZSYogxxmFIKcbNZnKw1mop2i9V282OEAKRuy/L0l0OwpxC3E6bcRgIwB1KKaUVmWI079nNNKSIFNfS4pCWVsIQtkyfvrh5cTFG4VZXdXEHEUHiLvVprgSACPM6x8AIU87rZkhdYNf0u1B4IhqncZg2b968PR4Op+NhXjNIuNhc/uiHvzdO293F7ptvv1U7tlq+fXtyc35KTSRCNc2l9uYsOBJzb+TlUtVtGsfNNLWoteWHx6OZbbdbXjmlwdVzqa01pkgxbLc9RqY2Va9tGkaNabvZjNMkwmvOHdKQhiGm+Dsi6LMwWUSqFiZGByIQYW3YWmWikIZhGMxNzRCdUgLsCW3YC9XWGpiHEGJI5j6NEwCWWt0as8iTYMMUCEkYttO2q5hNQ7eobLc7cO+8colBW21aQ4rg55POHTrcf1lXIgwhqCozAYKaV63M3NRqtWWed0OKzNPVda1qgCEGba1bFpGgn4iICAofffLp6bg8Pj46QIoBzZd1ba0GCY6Y4ogbuL54/tGrz3/xi5/9zZc/V9WLi+sffnLNhP/wj79MHIbN9revv/ybn/3iD37/x4/7x7XUX/ziq+NShslt1cfDcpqdWJgDUnr+6tlmuxu328AhSmDqH6TnnHtYJuS1AbuDIBGTIxDiZhpZ2NR6NpMDmGnT1v3x3QBh3QEQGM/TdkSDGNJpnjtn0Ich5+znqAljBMLVwVTLb3/77f/0P/0//uk//fOU4umw3+22r3/7ze37t4fjfPezn223m+NyAqSri+txjGDAbOOY3r9988tf/PJPfvqHY+R/8qd/9I+/+OVvfvHzpvZwd39/f5vX9Ztvvjmt6rz5gqdLFlsLk4gwMTNRlEihm6Ssm4Gb1lwNrMFZmkOq0Kfiqrmf0MRSSPaH4+G4bLabNZfLy4sg8ubt2+1227RpUwlhnAZmUoVaiprntRDjOCYAMPXWbH84EUlKkdD76nLvSWQ8DWOI8TtKbqvgXkpm5mGMJBTCUKv23jcxugGAi4gNKazZzFhYzVrpNZm7a49cfuKoW3fAdYxozus8Lx3NHULoKZiqlvPcCTSIRCK1KXT3KUKMgZnMOoW049DP0tPtZgJCJBQJ0DOBzVQbAJt31ha2WqZp2G43zHCaT8u6dplQrw9qbcfjfrvdRgkdK81MLFTbqiTFcBt4O8bbw/Lumzcff/Lp3/38Zx92wsf9w2ZK4L6W0gn2au7uY0qBmZEOh/2QIkroQbwIeDwdDCFxjCwak/coWQTpYQnsXYNDRCKc0iiM6FBKARbAysRBfEzjGIchJlDNtTlAbU2AQavmnN0zjikGkjCKSAO/arrO69Xu4sXzy2U9HnNpbgF4M0ymFRC0lcQUI5+qNVNArLUIDcxsCojU/HeG3+BpGNZc3r9/f3h4yLmc5lUp//E//d73vve9X//q11999eXhcPz4k0+maVrygu7dWBFDiimqWowRHHLNRKxqIQgAuiuTTFPabDbWdF1z091hf3i8fxCR3U4720RbN6C1dVkIcVnXDn+vVc29lByC7B+XeVlMVUIIQRpiT7EQkWEY+nrtn3hrzdQQ0PSs/6Ez4cpVWy5F3c2s5AId3U40DKnW2mo1Mwmh1IJIay7EFIVbbWvJxCQs3rxp7VLX3sXqQuBuX6qlIAERuCqcC0XvV/ggsetIETsU6Pwb+h3ZvSeJ96gcPc7zi2c3KGKEKISmqtXAay3MYs3dTJsRkYMzc4rh8uKi38rdNaROWEIAICRBfPnqVYyBgly+eXY8Hpb11Dh9/fVtGK62m1FBqvFa+a//829aqxdXl6ry+fd/LwUZUwwxhTAMQwpxQMIY+8wN1Uw4tVaRMIXQm86IaG7VfIhRiCUEcxvTsLvY1Vq6OT2vZV0W4dDvdpUaM685O/gwjkMawH2pmYlCT0HYTiEERmLmFISYoU9ttAmjBB5S2g6b/f7+f/7//K/C/vFHz/+bf/nP9w/v//HnP//6m/fV7NPPvwhRNtPGSh2TtLKWuj6q/cVf/Lv/7//v394/HP70pz9utc7rut1dLbm+v3v85f/7f/nhD3/4j//4pWH84geXjmwAyzKnNJAkUxOKwixCXYIcQ2QAc5rG1NltLDyva1MzBTUrtZhSDGFt7Xiaq2nOtTYF8HVZLy+3v/jlL0OIH3300d3tnQNUrWZaO3o9pM00WqvLfLq8urq8vCpV1fzZzfNhiKfTiRgRUUJKKRGSsLD0cAQ2UwtYa2MeRAKi57UAQIxMyIAQgjxBy0FzEyInZKYgjCn5mdNuLEjGRGSmAMAinSlNREF46A0xRLMe7AHuSgS9zeUOqFlYzNDBtbX5VO1JfENI8KScVdXaKgASYZ/2xRgdzs9LZ3eXUpZl6Vmepm3NKyDWpuu6am09JjPnPA5jNzgwsbvNy6xabt+9bevpxWb0iyGv5fTtm5evnj+7eQa/eiqFEYRQ1dy8oeVSk1QhRncEb60B+rycXB0pE9G8zA5GQIxEiO5+WpdhGGRZESBaowCIKMQxpl43AECpve95vroFCSmEzTAOQ6qtLqUUbdbBgq21pWT0yoSEHmOKEokDUVw3eZzGzWZKSdrjfH9cd9OmVF1Xa9qm7TSlEMahU/UIvI9MtGoUUcOzewsAAJpqGtLt3f1pXpaSmzogr+t6eHj81S/+4fb9HRAFgtu3b96qhiAxiJptps3huD8Lk8E30waZcmtpGNi9NlVrRrS4zqf9w8NDkDiO0/7wqFqZ+R/+4b8Q+ve++N4wTrUUcCvrambjOLaa7/f302YzjhMxPO7v12VhYhFCOB8qMXRCA3YebI9eiZGzVSAOndfWbVwIBGRu0mC3HbucdFmWXDIzj8MgPV2AqNc1KQUAvNhuJMbT6VRKGYdhWZeqWnMehuHicsck83x6/uLZOI7gfppnN5Mku80gIrWUqtCR2+dJlKqqB2F3dyMHN9WzuUbdAYQDCzOhGV5sNpvNJMKqVg1CIkRq1SA4Ihn6aT05wDhOhEDkTCEFRkB1QwLqllI+J5fqpZW8nXbj5mJ3++5uXpa1LPN8Gi8+fvHJalqY7ebZ58OuEPM4bMYp5VIccEyRCEsp2+32+bNnMQ6qrbVKLMyMSOZuCsQ0REkpSujgAUCGPgo20xATM7tZFZqPqu5DiiKM6P3ADjGe/Z3e0cih5nJB2xRTKVm9ucMwJFVD93i160cqEWprjlBKISBtWprd3r2/v3v77v3t//P/9W82m3R3e3+/P72/fbj8q7/905/+pOaidfj1eliXZV3n+7uH//Dv/+r27vQXf/G///Y3v7y+uQbk/WG5unqujr/4xa8e9/nTT3/wyWef3zy/3m2nzThcX+xEgoG6eacKPoXJa7EKBv30AjMHr2sls8TUXFloO2z7zbhDU85dRKIUBQHGFC93u8PxZKrDNJgaVXbwIfjNzfVut01i8+lY8varr776x3/4L9P2EgCs5s8+/zSvh93FLqXoAMJOaCK65tnUuuLD3XMuRMTsZshMyzKXWvqm74CEJMKbzcatgqqDrVnP0lWifLLaaidy51JKLkToAJvNZhzH+7t7d9tud4+Pj/lJqpSGIZfcL2oIUGqtuaYYRfj+/p6Zcik9/N3MELDVytKVR7IuS6tVVVttTVWEDSDF6ACn+TTPs0jYTlOpVVU78p2QS63EHJk7/FxVSym5lO6MVmumGoju9g+7i518/NLLbESV8LLU73/2BfzluQt0c3WFoNkBELU1TgTgLMgsTdVMmbi1dlxm6GQOcKYQRBhQzdRBHZZ1BYOmdRjSNA2AjoFUz75AZlLH2rzbqPrYEpEMYC211upIABQkSCA+aWsOrG5NMahZAxfqHncwZCSW3TA2HLPtT/MqTKUWZgwxvvroE3BsSO/u3o8hMGGuTYKQ8FrzPK8fDoBc19ZU1WttS23zUt/d3u+Phzf/+l8z8bwUkUB81i2ZAxM3bT2fHci76HgYOsqqfDe0IepDntqamQ3juJ22x9NMhLXUXLII/dV//I/TNHVdM/ZciycHbghpHCc1fdjvVdt2sz1nDzGnKcYYhHk7TN1SYu6qmlJyd0JqtboZIsYUHdDNhmFAxBRClwP1eK+cs4TQr+tBRM3mZc45960ZkAAp51JLJoKUkjV79vz5N1/Bu/fv59Pxo1cvUxqGIXV2fz9tNptpWdbD8cgSiAjOkWFntVltNUjssNkUYzdkAnhMQ69v1nVFb+yrMJpBCHHJudbzRvPy5fNxHAapjFrnmSVIlPu7/d3tLSIOYwoSVDUEIcYeDt5v9AAgXJ8/HzfTczO9vbs/HI7zvOZS3H26OH6IckPEdV0BIITAxEwYJExJAFStqJZcliAyDOMYw2aaVO20rmtWbjnKxWYaUaCVOp9OMYQUvFmd52OpdUgphgEZwEFbG8dRJB5PZ4y5iABiVQ0SUkw9scwUVFspwMzupobTNBLR6XQCcgLYTKO7leLF2+5iM46f3tw8O82n+/vb0lDiFEJ++/bh/cd7JkTYPZTl7//+lw/7x3VeT3NNKV1s4um4IKc37+8f9/Onn+g4bT76+NPt7sKx7Q+3S34Ib3teYYohmDYiDoE7+T2EcHl5Yar3D4+mxhJ6DjAgBuEeIkYIzFxbXde1NctrVXVJYdyMppqXeRiG1795XdXycvSuvncXYWu6Ht7vD493929brWZwf/84n5aXLz+REL795qt/92+bQ7+QEhFtNhMRi1ApTVs19ygBHdQM3GOKSAyEy7J00yicdc8A7ikmN4Wnnio6MHGP9Cmttt5+ROwPDgKmIRHRsixoPqRhziWX0lqFJ8sCdGo8kbm1ZkRkPWOjZ2631jeHTtI/W8+I0J2BiKlnM+DZGAkGQNJZbH4KBwMvucuC3RHcbDNMGtlMTwfrKOlSVdUMe59dUuA0pMeHU32uNA1N/Xg6LUt5fnMNcD4AdttxWZeWaxhSgjTGGENQc+pfNpKIlNLuD49AeDltU4g0MBJGlmVdq9ZcqjAPwR2gVs25EiGhruue+zii35McugKqf1zmvtbSZ/65FACIEiWE0Jq22odkjEhN62JwXPP+NKeU1myHJQ/T9uJiWqvPOZsr87kAfP7848BBUyxaqehSmlHZDpuqenvYP56OAOdIgChhXfOc79a1HI/zw+Pxzdt387JwCIi0rGvPeznD8Drt5ClRnZ+6DetppafBwAzHwNJ/f1PtvxOJ3jM7QJ8ws8ihlp7f2z20/dx+ehEQYXDv4n0iCqFHdlgXEAlzIO62WgVXU1MLIXQ5Kj6RJESCubl5CCIsiNAXHDNrH5F1KZEERColN+0UDdCOn3f0LvBn7o0pc88l19YQ8R/+/md+Dr0jEQK3vtebWgcZNe1xr2Lo1ksq7BAKNzUhcrdcG4KP49S01VLNdBjTX/+n/wQAIqFT5NxRVc10u93EQIjYW6vmroDLaVnmFdxDlG5HSCnVVj/YMtOQQgiqDdymacNMpTZzb1UfHh5yziEmRCqlPm0KyIxnaazDui79bACANReREEJHJYd5PqmewyyZeTNtUkq1Lkx0c3MtgWOQ7bR9fDx8+fo1cWhN1RQBRDiEGEJYS+7St26R78ckItZWS9XOAX6Kb5Qg3N9GB0ARUd87tGmphRCHFFtrpWTTnukC2+3u9v3t//7v/+rq6uLZs396/fzlr1//xTqvSaTUkka5uNwYwG9ff6PGwzCuudNM18Np/8233/RdqXfY3T2EiABPwTWAgMw4pETEOeee2tbndjFG6O3gJ84zQo/L8c4GdwR1G8cRCXKtp8OcYgpBgEhbA2Jhevv23eHw2Kr29GwA7Knl61yRsJRSaumYB3rKFmfqCEQ521oQzBoAdAIuIdmZAfM7wKEnzE8npODTXLBpAzinzZiZIRBTjyD+3aw9AuzFloGXVvHsu4QPv6erUwGwlQpnnJwTYuk/lJ+90Oc1wNwI2LizvHpYG1EHRXT1ILRWzoAAN/Jzqlcpq+l5+t2Beq1f1jpnzEw4VW3z6QRozSxXW5Z8PM3Pr8cPpfCwGY1g4xTVgzABgGlr1komtzQMUxpKac5n0FKIQdyRMLAUbVHixZbHlMZhcFcEcDfmviaLqoYQYwy9MmbpysAKQKU2Bwwi2jTGaABuJoBYmuZStjK4eWu6NHVvxzXf7w9Tqrsp3T08pmHcbi5SFCEHsJRib0k39U8++rgI3N+9ff/V1+jAzYhkXpfb/WG/nACu+o89Tikk2e+X/f64rmszH4dprZWIUxrNPOfcWrU+0jqf8Nh3ajWDJyHNB6wPdiyugzswkYObuxD2UBVgAqbaqqsxkrkhUWvq4BICPhFGXG2Z51yLmw/jABvobRNzNyJoBmT9zDTwTnPrsGs4Y68Q0DEXP0MjMIQA7q2dhwOdxdZLrfPzA9i0qhkRurm5K0AUjkHcMK/r6bT0aRj3kL0n1895hat17RCYfUCxdEFC52WcCXeICFBr09qIqc/U5sPas8MQUZu5ggibeqtnCqMZtFZf1697gCoidpJtqYWI0dHdeosWkRyg1eauEoSYTLVHWphpn150Bf6HXCqJkZCfRL1n8Ym27kgEJmaRWos7CAfi/OH47/aUFKOqgvs7fW9mjJRSevvmvVpDxBiCOdbaStX+ObtbCNIb3B3f0WpV0xgSAJq5alPwEEKttdZKRCIypgTmyAxu/dIQYqilaxlQraF7CFJr1VaJQ22t5NJxfG/evv/27duf/OQH//jLf3z9zZsUhotXl1++uX04HFP8ITI97pdxurDqtSpRa211pCCBmcHArPMxlaXak8SAiMG9tUqMRGTqhOx2lpVz1xz7kxD+KR23tSYsIqHWsq55Pq4K3rTVdU0xDUNCJCYaN1Mretwf3LHW1lTHcRyGAZ8UwzmveVmb98VMTNrXnhGbee+NIPXsESfEaqUzDvGMXzibhz84QrH/j+hMmWTqVmGhJ+qbWXsKUPQnh/MZNwQ9lwnJQc+xd6io0GWs2qGKRIgAjkzqBu4iPS4Y3ExV+Uye9vNG0rt87ohknX3XoJ+wBEhE/lSsuJq7C9GH86Y7hNyMEBXcTN21Ns6lpBQQ7TgvyGNM42lZLnffRWMJ85gGoQEAwa2W1QzBLZe6eEORMYbttFm1mdk4jCkm6mxnhDQMO0d3SymNKeWSay3u1p29eE6o9dZaf4QJUYRjTLlUrBWxQ0IghcBEpVY5nJbDcsq1ug/mXtbcQJa8HHIxR1VrZsd1eXt7a9bhYyZMHWU6pKjYSPj59uLb3e4tY641xWFe8nFZ1tpq+24IPG3GcRzfvd8fDidEOkMqzdRKF3efv+yOFnziKiOehzOI8KGBAL0WQAQ2JFQzIlIwQOhe3/7Ndf6+oyNgn+XGFHq/wgH6BGtd1maGjsK8LisSj+PQ11Yzrdb6Ojgv9BDIuE9p6Mni0GuKrqYAgNoaAzJjU30qKAwQ9AOxh9mQDByAHA2JBKwnWZ7dKt20i960AYKA9C1StTELCbtZj/xxU+oWS6+dN04dAt3LMQ5EDgydK4EADk0NAJFZ+j5eS0Mg875NW6ttzWsXrNZSJIRWm4E2qwhEnT+E2KyhY78xAEBT7RHqPVTEAZgIsfcEepWMDqQNlM6TwB683WNE+8wqSJAg7iDM4MqOxOZuBuBgTZXaGcnRIaDInEur/fIHHrjCGcdBDlrdXL2pqiqdeRxo7rU0b4DITVs1VTMJrQf5dWUBmBMAMZtqqTXGmHPppXE/WAlJFWptquatAnpTU3MkRkQA+pu//S9f/vY3+2NlspK/WquGNH31zXsJksaRhRHZTVrrcCswgx7xCwRaW78GmDoRqvY9ndUsOPcaQ9j6jJSIe4BzV6Kf78rMSGSuRRXYDdWg1ZztLHaEZtYldABQyvK4P8zrqbYmcpb0TNME4Nraus45l+YfyA1Wm55lP+74dAN261RpRBH3zjJAPXdNzhQqJCLAcwwvAKoagLpZe4p4dJB+43fz3r4A6D/mebcFYCJ3Iybq45neJ+DzwkMEJkREZwAAkdhpnWf9DzowdVV6dw90D/NTXwj7bo4AzcwBmp5z8+CJ7uLurdWuz+3nUC9i4DsKGAJCswbg0xCZEYHXWmvFUkuz71hA22mT12qR0aG2At5acw+i7vvTQZ2iDBfbHTHPeWUklHOjI2slpt3FbohpM41a67LSaXUzjyH0D60/kiml1NPFiXqkTzOPhOYohMMwCHNgRiLZH+Y1tw5E6wd9zutpLc0phBBiiCEGkeO8INxfbDabNKxDrmaM7Nbcq9oaRbbbXRo3Xi3G6IQSEzps0ncXn3GalqXc3R8cMJdaanGvF9vN+/uHh4d7Yen3X3foZpde7/cZ0YdERgDovRCWboixLoHv3B4/k6s6scdEJMhQa661dqC2G/RC0j8k2Q5p67Z/3Fdr5sZC+ETOBsVWKwUOIgDo6P3R6l4qADBX027ydUCIQWqprVYUJiTVHs97VvL0LmpTxeYOgJ3iidA9ewgO1gDdDJq6E2jVDlk0hB6sgIjYkyMR0QHRWdiBnjC2vcxCdzzjwwhMO0PvDPNqaojIwufbiRoRdc9TL5qRcEipy7rdwdFaR+h2QhchOjatrbUO+C1NmTCgnPfZfkMyU8Sz7NLO9yd3KDlzECBU1XVdT6dTKdXBd9tdGlKutbmN4wSAzujk5qDWEWZoDrmUvgN3vECKFmI0tXoOcgxM/dxvdf0/mPrPJ0u2JD8Qc3FEiKtSVD3VYhrEAISRC1vscvmFNP7/RhiNRuwCuzMY2TPzVFVl5hURcZS788O5WW/S+sPrtteZ90Yc4e4/1XoMlbQmrXX40XojIn2Ni6ioWQ9kVbVOFbc+DMSelAlNhfTeoyCiiHJPXzZrrTdgoqZgeD8O0InqP/z9v+TUmKKZbUUdR8+OEMzQ+dAjgxS7PyASo2hTQCAEhWZmZij3kQ4BImIz7cL/nlUAeLeoZSYiAlPgfqN3nZQxAZMDgJqL9WsYOn0EhczQcs3OORUpt3y+XLq+t7U2xmEexyGG2+26rasZimnfR6ag1nrV/J543DmRhgh3cXy36gQQxd4jKtyN41QaEBuYmtq7DZz1/1jvCUEU+gULdzO3+2i+h2e6TjfA+4RTVNix2T11vFeHCsD39DCr0hRAAfofRTOT9u7Phe9liDHdRQD6zjn0zhFRYL5nINx7EWgiokZqVmuv+ZzjEJwZtNZKbV1BjUC3bTnsZucCmdaizTDnHOLw9SRkYmSJLpqKgsQYnKOcYc0l17o/xMPheJz3Pnh56wU3q2oqObfGxPMwzPPEjNKaAsQYmai7NhlAKcVU+7cAQAOsRdSMiBWQAJxz8zT1gjAAuFTqGHfRe++dCLjAwYNvhODMbBiH3TRNw3DL2+vlok0G9odprqClNTQIiNoykZvn3ePpwVKd5sEQoeLg44a/gcAiumXZtgagpRVmDt6l0mptYwyOWU1rba3V1qr3vmOtANYL/3scGqKqEve4YEY0VrZmuWSg++gD0JCJlYYheucIIYbYVF1wpua9B4DaZxqt1VrjEA942NLWoz+W9TbEwXtvJkDGnuM4iMjdSR+hlNJfvAjofQ9gT+JdrzdC6J8c+8t4r4NMNXeUAswhGcIdDQOFnr+hAvdMR4N+/5n1aqmvQyIyURCF+5FqTIREqmr27vnePcIMoO86MDMVacTcMSvvfa/KOwR458mhmQEzmZHRHa/rDhh3Ojxz7+m76u1OezAFMiAysHZ3DqDOtbf3jARprX9aZiZCbY2C7x+45LytqUfgmIH3ntkbYHei6faNfU/ei6u+b00M4Z4syNxD0Ah5irG21kpzzjGD3Z1W74eMiNRaf7ulEMh7a63rm7x3nXoEYB0/uQ/9zESlN/t3ri2BGSJRB28Q0bEvUojAgInZDNQYOTAIAPRsiV7EmCoRg4GYNG1oXlV6HY2GZD1VWO6FDsJdeHIPptd71aBaakaDTrZrzXpJ/pXsS0Rg4LwD0FpNmhIAUC+eCKsAwPV2631bZ8L0h++9n+fZB3+5Xa7Xa6utF9f9B8jI4D2YiOyetoIA3XQQ+8e+t8UGcr8y70+pH6J9SRjAe08GjKSojhx1ZIap3XGaO86nd38I3981KAJAadXeL4laKxJJa/2+ETVtigbAKnr3myMiMNOGX1t/QHOeQRTx7rHLZngXtd1HEUjUSajQvWFaZeYQokp9X8/Qr2FE10REDBFLSSkXYo8cJN0YMKuUDO1fmYGO80whmkFO2n0giYjZIeIQo2MeYmDi1iS3oq2ZqKhet3UrdTfNu0HBrDYh53b7Hd5DvbG1tuUcQuwFYG2SS2PmUluXiLJzwxBDiNM0I2CTBozOBb8PvlUcA3eUZhwGP8atWsrZOX88HLwLwnTb1tu6+R0dp1FMrmmbpjGwb1XGMQR2H54ey7IF7y63a2tNRJv9FoSWtvLysqRcEEwUAJmIvcfu64tIfO8ArL9X6cAsEhMSMzpstZoBvzPxvfchOEQkpofTQ8q5mTp2YOYcO7oD1X2mSYQuhHVba+2vAs1sGIbD4dD7wXVdv7y8iOg0jSGEELyq5lx+awPfUalxHHv/2FklPTYk5wxmpVYVSSmBgZp2u8FOUTCATjMHAELrpIpukNurkveDBgiBu1np/cLo5ovcD99+890P/feDun88RPTvThV6n5u976V/9dMnxaYGpAB9YKuqd4ilr2NEApB7h/uVPtEn+4hqRl/PZQB9v4qwm1H2XUGdkUyIcJ/zOme9KDODHljqnJoty4KIx+MREVutiChN6H3bEvFX0LiPXOFueMDELF0CC9BMxUzRFM0Q+rPq7glNBAkNAQjFgBBUhLqotD+rnr33fn71Rdjbl/76vnbW/Z1WlWYCan2xAeLXbHIkJLi/5Q7p9+wgAxAVJG7S+nH89V75+s8i0lqju+H5b29KVb9y2L+etmr3g6ODUiEEAFA15+4DDbrXQ9KtHYiYiDRrq7WvmftvRhzHOI7TMMS+7wjQO/+OMtyXkIoYIN3fKfcP039JD2gios6O798d6n00+tWqGt4Rna+L8Lf1SUiEd3csT92M6/3KNTNElXfrXu09DVGnLdgwDO9kf7vP/4m8cwbAptSXJYKKokFvT40ADcn6MOG+Qfo/tHZ3DOywg7vnchuR1UqIyARMHRvrejPrJUgMnokUjBu0kkVafzuohYGsszbffxwHpNC/v6i0VhmxNRmHMExhvzv4wGu6XW6327KIys02BLrcLlUaoh5248wzsQNVAseIIi2lVFvzziFiLppyNsCee2pMSOSViRmh0yzNO5Zm2tQNw4Am6IzQUkmOCRGic3Ec15Ra2cxst5sK6DzN6+VSRRzCGD2y28/zOERVqbV6Qu+dedc7wVTydbnlkgGm/rVL0euSVNVxx1tEVUspy+3WOp/XzNSI0Hk/DMPX9aeqtZaUUq+n+upxzsUYvefdPCMQM4d1zbUgEt7T2D2AhRC0E86ISs6tFDXrfj6lFFMrpZScETGnVHJm5hiC8945X3J+30XIzL0cuF5vwxBD8J3NIneXMWBmx46AWqt6Hz6icywKiEjmEAQA6B5K0JjJAMR6+nEvUYv33jlPZMTgvbvHBXQNCwAA9dk9AjLdGdeAWGr1zrHjWhu/n2LkPSJ29PXdfPR9T8G9176HR9+B2fvm7La8CFgK9Bvu7kLdK1NC0+7s3uvB+wnIjvu47n7D3S2YfP+z9E7oIqRuzcvMp9Op5E9bzrvd7nQ6xRi/7moAAIX3jd0PDuoHFjGDyP2URiDmjpcagAseakfwrN+UvdGPMYr1zkn7kee97185hNALVfrtuuoBTPJ1/NjPgp4gCHA/nQmJHMH9BEdHrjemoGaMrr8qx3xXM2DnlyChAoPA3bbY8dehxP1y7Vfxewx4vxjQrAuvqrX7jrhjmOhjqKXCO1jaH3LvOWotqu1uq6AGoGbIPcaOiIm6AEpVD4fDfr/POfcoNNHOZXAAFGNERO/9tq0i9834tdG+Y1V9yKMqKIz8fnfK1ysTALqfCvbpB/V5+vuL7u+SiFxvNe6/3lSJqLPsAdo78wEccaOu4kXqJAUReB8XM3PV0heYI/be9/qoe4h1Ig1QT8XB+1zhHXLo57jzrvvCIwIiqfbgRuIe39UDbazHTyIxxeAAsbXUJ0kAqirOu1obiphKya2ZpO23C2Acx1QqIqtpqy04x4QhuDgEYhfCsKblcrm+XN7WtFJ3vwBlj37w+318fD4+PT6pWU4LKNRc15xra6YGIqpWmzS5w8LOeemcV8RW2rWc++C8MJtpq8XtpuG23oYYSkkKlkqJjIMfo3dNGJRqTYgwDxH2B6wt1YLASjzO0zTMQNC0SpJWays51+QI1WxJ21ZyV7L0nyby9vYmat4HdpxSVZFSSql1N03DOOq7x3MvvjqblZn7EdO5872s8CEAQK0VQEutkd2nl8+lFL6nRWqMUVoAgJzXWhsSGVit1QBDnACslDIMg4n++tPPpdYQ4zgMD8fTdb2t23bwvo8y7m3s/W/hOI7DEPueZXYATVVrre691CVCJvLeOyFEYOd6jUZAtdZOd1NTke5yBdjDmADDe+gjIWWpYPe2zjkHhF8bI0QG63T1O4FVzVhEmtxPkT5gtffO971INLN7KnIPBn1X8CNiZ5t85dGpat+uzt25sMTcVcdAiEb+vRex98mU975rKTsBxe4pY9hbk76XAFC6gQyBc857P8RYcq1fvnRx//smpK/dBr3D7P2i+soBu6PuwRORc46dIN7HQeA6uK2IPZHapFR2DqQhiJGpWc+3/5oN2w+sXlt05wxEZ+98QcQeDQ/O3TskJiZEBnTOIUDOGdQccccem5XeklZV5/39LSCqiH9nLlbVzs/rE8WvL7fH9OC7BLwfSSJGxGj3WVxrjZxjuwe4glqXFnabtj7e7Ger6r15kiaAVKsA3KnrHWdm50PwxDROIxKq3ZktXxdGCIP3rtcMzNxBJu+9944QHd5LdXoHBJgd82/mj957ETUxeKdyAqLB/esw93v6/t07F7mThPqstSt9e0nbnZAd8XtaBvSuC/nODO6VAfdxjHMq2i/cWhsiIJF3zjGqdbSFkFBUtDXtsUhEABDvKeb9CGrM5BwBODDLpd09MBCHwQF08Y0BGKjd+zbA++QLQMREtG7pfL4tCV3067Z+fTKAFkJA4hD9bppbya3m4N3p4eQ4iOrb5U2gcYADj4H8OIzsnEHzDp8fn58fP07T0QiuV1yWdWvSxLZS0NDpnWfoiNFjz+xyfdjCTlSryPl2TukWQ4zel1YcggXHWnNwTOAZjRkdI6qginc0DCMhT9FZFTscv1xes8A0DCFGH1yT1kptTWtpKddcmwsDo+tpJ4P7jfxkQFvKZth5OIToh7jmggDI4BwyDwbA7NZ1FWn9dSISe0bEVoWB2DtACMwgklspCbbbtc89COHydkFE70ibtFB6vWZmd3yvNUNctqQiwxCdo5LLfr9nZmIKITjvD/nUWmlNEHGaJsb7b/DOIYJZIwImHmIwsBiPtbZWGxOqWa0NIw7jSNjjs5WYnGMErLUCvk+01bwPnY55P6Pfaz2znqLUoy/ADKIPzK6+qwrYeUQ21So1RMfkRDQOA8B9Suy4U2fUVIkxkCOmWhsAtFZ7GDH3kHcVRRzHsZc5PRuvDwqQGczYubunFoG+k0js3pYR3ONW+ygWDJR6Uif14BAiwtqaSCNi7OGuSB1IH4bBETO54+m05UR091dBZGbuv9ex6xG1X8tzz85I1awxO++HYexqTDLuXRERx0DWu3JAdmxqDQAA4zA1kbQlNA0h9NGw937btre3NwB8eDh9HaZ3bXettbXWu4D3N3XPfya6RxJ6F82gdeGICbODAGhKhtga3Z8mISJ6xvdhmiN2xATYeUB9lszEogKITK43hYTUG63eTvWRSZ+0AHUJ4XvsEPQzlInQOd9RNJE2jgGx3/p93Wmp1fvgiBTVeZ6nHRETUCvNk0dHIkIMwzghYvD+/Qpk53ot3PmhjAZM1C25kKgPW7z33G871U7n9R4AImPXHLyTfZnMtAl9vfOYuAfT9HUICP4O7aKomIhnrypI93Cn4B05UgVE6F6n9+qBAQzIdRxLEe3ONKwqUhX0fXCGYEB0hzGs64DMegOn742U3m2TtesxVDVrn8HeBQ29VDUz0f7Pqqq1SS4VTFSFQ7htaV11wHFdt98uANXeHCKR1IJKhD7G6EOMceyLDUGPu51jxz22DGkah2GIh/1+HI/Oxyb1ogBmQ4yiYqa1Ne0M5ndQEB00tch8p8YSDmFA0FJLn2uJqgMUq3VwbhrDtkEIHGIIcVBFz1QbBh8BAA1iDFXqYX9IOYcQYwgGlra0plJyqyLny9WaDjT2VAdH1EuSrx1AFQEBFTWT4H3JHYZqrTVt2VpB5GZQtk3BEO4SMMKYSk7rikRNC2H3tSZ2bGaC91kvEYcYam2l1takVtdXmJpg949FKq2mXFVaLWm5XuZpF0PsTMJWMyAwu+i9J1iXTVoKwTN3fAg8O4cIIsSEptHTPIa3kkxKLg3uwaddoWWG9k7IrYiIpp6wt8qEaGiE96BWQjS1HhvfF733jIBgioDTPEtrBHeOmmlT1N28K5Vy3oZhZOdqq8Q8DKEPsLEbuXVSWm2AUEslBO+IiWprKlJzQcIQYpP63isY3CnbiGQqAneCYbcyRSJGgr4ryPvOrG2GYOqIGLrfVk+VEh+9Y1Kje+9/H2+AIqnhO9aq3vPp4dhvjtYagfMOARDMGFGRAKG3+p7YETWxe9VPhKBo6hCkpxtT914Fxs7dFhHtN984jtMwLMtqwYmZv2cBmplF57VJEx2HKYSIgMPgEKHbBTO/Q1CODICQDaC7g6RSwIipsSMTYyYwJhbwTlo1UPUMSI4d3b8FGZiq3dEjduTQsRdVQDbVHvMyBt9hFXbu/kKQCMw7BiA0MoAQvYFJE+5DPAW9p4VibQLWQmAE3raacxJRFSOzKlXNRGr0fojOOY5xiDGYwbYlM0GgQGDEQuBQpYlJhbvqC8gErDIxQfd4BqmlsymBSA0UzYQdc7dzuNt0m70zCBSAzAQUyHEfyr8HWxoAMnG3WgEjImi1qmknKHc3i/sp3ZM5OjlCO0Hsvb68y2LuGTUA7/1nZ0SAmiH1sHhDsC4N6dje/X9V7G+okx3MjFT7R7z/UQUbYvQhpLSVXLQTLgjwvUdX0dYMyDFRLbm2TOzGkUspoO7rSSitIhgzqhFYQxTV5lwMPvo4oOphngkEAeMwSGuiSszDMHjnVI08CZiAxCE2qQQNcPSOb+uSUlJTZmTjqmqdKGjkQ5BWxvcbekOYpvFxf9pKcimtZuK9RzDvXQx+HmcfZ8WgjmxVYgNSUatSEJUBxxCD90TcmqVclzWZ2G1dzpdrra2KbltKpQ4x7sYB4I5/f355SesafQAkkba1pqYl57Rsv6T06V1ieO8WzLoZy73i5P7WmQC7hW1non0dfRKaoREgMnXNHnWrckDtVRsSEZZa7nRpYkJ3O58NtA9eAMFMEPsk584tMzOEPqglRGN+T38E8J7Ju21LTQRUidje+3mH92x3ct0qB/tn+VoxM6PqHabrswh4H98Q0V0QCoYGhMTe91GMqoEpIr18/lVVek2k2pOvgZB7oWjv2GxvzM2sx0X1RwAA0qS2RoTDEL/On0EVADtYTXcCBvRrqZdXjh0SqJp+HTt0xdxdcU5I2GoTVTOI3nem9h09vw+pQXs48lc+H5PIfUhrYoUXYtfnv1+ZlV8h7P5SRKS2BmDecddJ2TsDuD9SRJQmhvqe2txdPED6FLjj8HbnIvY0U1VrdSUiMCBCRhSRJmJmCMDuvb+gLoFmQko5ISAyEFKrDTouAHI/MPpkQ/v7Y73f3/gu8ugDLlA1Fe1HEROogaj0cNpeZSt0az9wwSOQmXavVujESTBHDEgKd5RYxRCtpyvep1jwlSENzrmW19flksbRe8fEXSfRuWodcu6Dr86RxXuK7514qtpzVeG9XNCeCGb3raL3Dfd+3IJ9ffd2r0c6E7uLwfr/D7pkvf+7ggCErh+2eNd+gdo98dXsXp7fh4p6/wt9vyNg//cR3yEzvNNMEbsu+v55epuq8B6/3duQ908K3Cmn0KTV2lT1TihAAICcxPkCiKKoYs654KmnKBORqdWqtUnOSbWzT8E5SvUr3tFbsVZLbXkl5xmppMUAjJyZAqiBsKOeMwhI5kNXKfeReErbcjtP015qBmjes2MOOixp5UAH3bemgJZTVjVmh0i11dYqIsfBmSkQew67eXfc72kFpwomTVUACNm5EL2PgDTtJkEZAjtHzvFyW5blqiKltu7ccBym1iS3bogJZtCabCWvL6XkUmo5TOMQ/NcL4HK+pZQITQTfJ+yEhP3iBXZqYLkiYpMGIqDwG4Wgd6GMqGpybyc7+vi1H39nFtwJKvRVQ0t3Fmanrt85+IgmfR2hmXbZfM9TvZOce4cNCvfAXrgfqf0j3Zd3j6PvZ/f7eQPv5y4YocE7BeJ+wAP1xXzfIQBm77TO+/FgX68DQvoNAEboNvGI+O6vZfAeNYe9vejisvuQFxDfkQbspP77aYJAap2Wje8qFryXSvdBA/7Gf76r8953Vd9G70+D+sWmBtDVQPQ+Zu2bD3vWJN4BNzTtaKrBe0LevQSjzt7t8C3R/TEREfMdalVR6JU7mOEdhbx3FqrydfbcJy7/6mMiYe9N7E5JxPfHeCdQdcAY79U2/Matgp5NbkZdsmF3SBOway/QQAmRrA/B3gOWezGhCvf31JeTdT5Kv93v39fAAPReBf8GifbF0p0J9A7g0h1Fpi5oA23SARokIH5/PdaXDX7Flnt90w0bCFENAeC6LO+P/n3PvK/T94cIgNT1Dff/qoBgxPS+8o3QsIsMe/K83fcF3aem9+bB7se3mYKaEncTP0N+P9CpG6wxMYJph0ZV6v1Pg3rviRkYEVDFSq2g4hid80yeuEvIXff8aVJEGgCBdqvkfsorEXTWg3eu6xZaK50o2msI59mRQ4DX6+Wff/ypNa2i2tXCSHiXwkFnBjrn+pZWlVKl77JeeDkOxNgkX69XZi4lmeUtJf7XaGjJJtJqRaJxGO81PkUkFBG6+5QTEZNjACRiQEPA1krHPlotBEaEIXjnooiN81Rr7m2QquRWwMiT997nkm7rUloGvue/Htz+4/EhMl2W5hwH8BZ8uL8HH5qBqQaDp9ODtAymJmKq0fmkotoAqRWrKmEcJnJNQWoNMczTpKqv10vJZfTjPO7Y/7asWm05bQTSUxWLNA6+mfajwHkSEVEDAwY0ovceDfBeJyCBPD+dnh9PSjQMQwjRDM1UW+ulCpEHQNNWarncrtfbTUGZ79a1qooGqL2Ql2mM4zgROmYO0Ys0Yp9L3ba1cxW889550abaEEBERO5AZe9JRe8p89hrZsDe3TMSQjeBaH0DGJiKipg0NUAFed+fgKaOqZu1EZIhNDG8W/p0Egi9V07oHHWLJJHmvSNPXbhYSjYx0/77wTl2zjOjmrYmIXhCRkPvnYoCIhjWmjvj8G7DYtV7F0MkJGkta2MiRtImalpUmXiaxuA83Qn+Umvd0gYA5LiPsJnYwIDAOx9cACCVWkre1rU38kwYfCDna9OH09N4OoU4Ou9KzgCQ8uLDOE/7UvJ6e8vb7XZ+q7U6R8y03++3bVNRx/zly5cO5NZaiTmGsC6riHRS4LKuiqii71MI66FahlZLdczM1N0vgg9g3fWDex3XrwcAJHIhBM8xxjAMw+6wfzw9DvPexwGJ9/tjbc20/fIv/7SczzmvRrA7Pf/pL/5Uc/JM0ur58nJ+ezNVFWWiXow7doDg2Hk/xCGq6botOW1g1vH2cRh2846duydw1dpEpnk/TxM732pZ8pJyLrkyuWmczVSs5ZxyyohE5Jmxtfq1oVQRJBp7SnocmDk4JsRlWRShdGIFEZiNYXDO1VZz6Q46No5T71ZVZdvWVmsplZljDN45Jha1ptJpvp1S5Zi1tRB8CKGJlFLATERyLbkUZBo5EJKYlta2nHa7+fnxed4d5nmHQK2V6/V8W26tNSLy3vUHstvvTO26ri8vX9KyOMbdPO/HOQzxeDxO44iI65qW5Xy7XUXBDMMQkQgMctlAJXo/TdM8zWh425Ylr7VUVSPiGIJz3rNz7P7f/9///NOP/5yaqBo75sAKd2Ul/Stbmt52qFkrd9qVGYApWJn3ExGkfDPDlDIApS2N4wxw7idhqVVyKWXrza6oiJoL2poig4oBsJiiigfmO98UVaSVotBc8I6ROCDDlotjt5tnZjJtfbGVmkUlxoFdMLN1ux1Os5o17enH7F2cOEgrxurmYQTzfgg+xCEOzJRyqrmGsY7RBx+sViSn0Tp72gyk1XkK1mrYPzomUPr88qtom4cxp0yKrcm4j4d5aPib/iHXum4JQBFRFZAsOlJQF+g+GgFEZlMDJO41LQL2MttYSIjtP/6f/+L/9p/+o3Px4fHp6fiAQEVkWd7MpOQaXQzRV9XL+fzy9vrl/MbeP8zHp4fjMAxbzrXVXz/9+vMvv5jU755PH5+fD/uTgA5DeNzvRfFW8i+fvzSpYwiDG8Y4oDYkMLPaaq2ttoYI5Fyf5xpg782RSNTMZByGGAKDttJqEzBr0hporVUBci4p5WrG5ByxqklthN25zHkfDU3RCLpMFwEw5zYE79ydAjGEIAIiQo5CDMF7MCu5lJKWNS1pAyLHfhrGw/4Qh7FDgoTg2HWISVSXnC7nyzyOfRRSW0Ftx3HY7/Yu+Ou6GsLonGeXc00155LnYXx6fIwhEmFrLZXydj2/Xc7SWhyid6GW6mNQMGt2PD3M406apZou17d/+Zd/KbU0sRj8YbePw5RL/cNf/MW3P/yO2avpum1AnMoyTbvHx+cqstxueV1++fnHn3/6p7Jdhzg8PT2mnEpOBPjnP/85+ni5XZdtG0OchuHXL1/WVB6Ox3ka/umff7yum4jkKq1JrpXID0MsrRXUOHgmt25J1aKnHpbm2XUcOzh23rWmiDjEOO/2Hz9+/OPvfvjj73//9OHDfHxUpC3l/W4/zXuV9lf/9b/897/6b8vt8vBw+k//y//z9HCQlMgw59uvn/75l59+ATEwJaROpQ0h9LSZ4KfdNAHYlm5bWnLa1IzJ7ebDOM6OXa3ZpBmoqB5PD4fDAwDlvK1p2VKSpiEMQCiiteQtLduWhmlCRQVV0OB8NwFvqtH5ebefd/MwjHdkGm3ZruuyolEpzXvv2KmYaNvSlnMiBETb7Q8hxqamIsvt8vn1Jac8xDiNY/ABAUprubYmQky7aYo+mAGaes/MLm3bsm29jE6trDkpwkCBzG7bTdTX5sdx+P3vn4/7p+P+ZGrn8+df9HaYDoyMwORcHPzxcHw4PqnClpe3w3Q+v6hWMJ1GipEej3GaxlabGWypsKukGP04DI67T3VTMwnsiQGwqIL35g188Oy8c06bIQJCcwxEzQU/oS+lqOk0zsFxqS2XykQAVpkMDJrdHYWBCRxC5/YMIdDs/e180RKdD9Ykt1QLzNP+60moqm+Xt1ISOy61MDtj4pJiSYbASGbSJYpOFdUAseeI5NYMDFDG6BDRsZsGNgUC8OyQqZUkYI7QOT8O4zDOIi14QjQVUJVaC6A558koo44xutPx0FpDtN3+6NkzYamilkvJyTNqC+xUtKoJQKpFVYN3gcFKaaWM44F382Xh6yWTEsCdun48Hr7/8LRKAnj92ljelmQKgIaqwxSC94btsJ/zVtq9XDPid4dYEySY4ohGpu3D88O//dPvv304rMv5w9O3uxi9p1yLWPMBbssipsTUWq6ijupxDtP8Qcy+e/jmmw/PAKYGL+c305rzBlKfj8c5+nk3Zqlrus2RPj592Mmwn8fL9Zq2Ba1qEUcwxpG8RxiRsNTWWhVTNexWNYTcv3VtlSgQkVhtLW9b1qbeu3EaXByYGZlqreu61iaefSk5rVk1LOmsTRhxt/PEDgEBSFVzSSISdyEG34nHjnEaQi41NUtlU5TDbpyH0cRyWX99+bKVWxjcNMT9OO93o4+jiCuV0MSH6HwkxGpl+XIZBt7vJ0TY8ibWgqfDft7vJiE0hw7gMAaHlEq9Zd6ym8cpBkeoqiraFBqwuBHr2pC9QkbQUkwMGNEhtpqryJqWNS1mYiY5l1JSa3U3ty3nv/vHv7kur2gAoMM8kw9V2nJ7u91eP37z3dPzI9M3u/1+nsOvP/3z8XBkJuf5l9t5uy2t1uA8EvQEi1JWMEFU1RaDfzju121r9hV21RCIGbEoIfDdPrOPdS0ER8QOwJA80xjDfVDfixBGF9y0m6c5usAGgqC1LK9vWU1OhxMHvq5X5/Cbb54963p7cUCmJK2IFgNBJFMrkkXUsSsNgCi3kmuVVpznKhnAnPdbTltel1Lh7c1QQWU/Ds45IoTri5gBUpOaUiqlMrFobT3Mq2aRyp68d56dobL30UVmvN6uVWU3zVMYOgBI7IlYrLoYo7ac6jiOcI9ksdIEUYJD7YntpmA2hFBLcUw+egOLIfrgmdAMevYROY4xdOrU3VRQm2lOOW9l8y5475E5DAMiBuLbcjUUseocm2rJCfdaSxFpKW+5ZjUcoyNDRtztJmYEJPZuJDNpRNBaLiUxO2IurXKpIlpbBlDnuDbt6BExASJaNdBcS8DYs0IjDQbovI89jx6p1lRTRsTSqgHu97OZ3W43BAjONW2AEIJv0sjUAMT6lLWT3u5mLMgwDdExvZ4vl5vbz4da8pZyrcPT48Nvs5DWRCWVIqlVn0OIFIIPOeXVIwR2reUtJd81T2pdm5JLvq6Lcx7RpVyYqUkTlV77l6ImrZTUShaTad73hJlu3QZqRB3tZGkVTMlRcOH5+OR2ux0gizYk9iG2WroToBqcL2drFcBCnNj51Nqac63Z8yQqhG25fpmGwChjDM65dMu51rWVYYhzCA+7w5H38B6E8z/9D//hcru+Xa7LckPUXOr57dJz5sSsQ0GIXbql3rH3o5oFH8za/+mPf/h3f/hjcK7U/LJszJfduDeGpSwM6AED+9RKrdVML8uKADEGT4DIcRrWuiHAbV2IKHh+PB201TgM5Dw774jy7Xxe1odj2+/m/TQdxuHzWzi/fqkqfpjRezVD5MAhgGMOAFbBDMgMVOUuqYA+nJFSS84prQkRq7X5uJ/nfW+0vRsO+9McB+d43W5fXl5eL9dqoUGJQxgHD0aqaIgGJmBb2h52+3EYW63LtoEZAE3THFR9XnOuKW27cRqnIQ685jXlYRjG43wc4jiMUdFqbX3KYQghxuPhIFbB0+Vl2e8OrRV2SCBTDPM8jeMsBOQqVmEiUfHBO6kTD9M0isiWi4EZEfvw+PThIE8qptq25Xyr1y3V61Y8c/TRB7fk9Ha7pJSaNWJyjnIuW2mGa6stS8spS2njOHzznY+z79RMU3t9eWHnx3E/7ubHDx9F5btvvlMp57fX6/VacjWztG3dLomJVWonkpaab7cbEoUYatN3EjD2082gKxvusDYCEN055mDWM2dGF0st6ImcA2ZAHIbRe4/kfBiYiZg9+1Lqervtdrv9fuddGKMvOf/TP/zV6fEQ3bCPR6ndXlO1qYjUVlAVIko1A2iqgGm53XzwgDqEEP1YFEq+FFkMLHq/H8dhioyu1HxZb1sVIgcIfaDMUre8VRVUI1MjcJ6Dc0weHMRh3I87MzXEUotzLsQISM4F5zx0B09y0YctpJIqgNUqpmLWejuLqq217krrpalI12QNIU7DMIwDAOSUvXNaq2Nviui41Lqta6m581RFGjJ9JfONITokR+QZSvWttu4kZK2l7SZNEDCXaoAi7Z7fELyZbmn1/uZ9MDXn/H5/rLVIKwAq0kouPV0L1IYwevbE3rFDotoD7rVVKUMcp3EmJMeMwHEcO68akAxVPGcghNZBoG4Qi3cloIIZoXnvDbQ17RS4PvUnRuQ7lqZNbrflu2+efzjMP/7yy8vbFwWngn/83fd/+osfvl4AJWfmME+85ltVKcviavNhcC64GIlcbfXt/DqOk4JJJ5iovF0uy7YSUS1VFYlJzNgRqolsjslMb+t1Wa7Y73nna82inU91N7OrNZsos3MtsPPODW4YRiAuJdXa1m0BFVPtkMDtdq1lU1Peahh6yhUCErNviiIJaquHZXCBVUGltpprBbPDNE3TUFoJ/BsN9H/8d3/xeIi/vpx/+fz6f/zdP/zy66/btklPtUCwzv8Cw07z7OFZTau0WtZvPjz97nffvZyvq9Tz2/VyXYu0b+uzaPXID4dHJp/zWkFVWyl1iDGVMo/jPO+Yoba8rMu2bOM4DtE/HHeoupvGGIf94bTWQpfXXNvL5YrMh3mex0FUTduW8jAffIillGW93XLyzjFRCGF0AYjBYN2WejdMBwAIIYpYky1X6Xrd3tmISHQ+xIB3C3LZzVPNW04p+8EZTnF0yAq25WSITSTnhGjjNMQYfPCp1bXkcrvOwxRDGH0MPk7jMMRAiGDICGPwkWh0wSNrD8pTBVUm9J6DDzFMcQjkwkAXBFhXUYB5CPu524SErVUzLbWuKeWcDQgIx3FIqazrknKurSBxDNN+f5x3D8EPVdIYIwIWebOtZmlvt3OI/rxcl5RqykyMgAKqCETYDbdbKW+1mgoyvb2dv513u/lgZiFGH4eSq+lFpCLCbrc7PTzlbSkpj+NkRzm/vN2u1yqtA9Mq2nHsnPJNTe/4ORK+myK8w8JdW9LhT+e6UJdNDRlccGOIkR0SChh5DnFAdt0/vJmS8z0z4Onpwy+//Pp6fvVDHKfJe5e29PZ6JqdA7enhQ5W6pbSu221ZpRogtlb6XWR2d60I0UFVNXWB1m1VwxDi08OTmJi2w7R7OOzHONbSzuvtvN6uy6YKRCgmMUTy3kBrq5MPpFitAaCJNimqOI5zDAMQppabSpdzI3NrlYgBkJ0bhrmJYxc2Wkqq1WTZ1tvtimgEKGK1Fcc8DENsrdRySysgOqZhjCF4M2i1OecUgIgRiJEYQbTdtisxo3XBrUEDzxxC6KBL8G4YHMBoBoS+llprLmXLORO5lFJnDInW3e6BI9/Ws2O+LhjjiIBk4LxzfjTxUnMTLiXhnVjFIYym6rzv930u2QCyJDF5nB73uwOaEXeRJVYVBHSeCFn6nVflnYaPnYuI3UWDSdVKLkDgkACRqIl1ohoQgagRIROmXP/NH//w//if/oe//fEfxOD54bvnhw+PD09zzL8Nw0sBoGGIYmImJadayxBCCA7AiCmnbbktrbZOggvsW+tRlVmaSpVSld3dkcJHD95LA0TYtjWlZIbEV0AihJQXUWNkBFTTWnIT9XcZzcjk3JaKc5xrkiZSKoKAYhwDIHrmaiAiTZIo+OCcD8EHx7GBrLWAtrKu88GP0SOogdTaInN0vpleylYuL1+/drpdj/PgSB928+fz5cdffnFGjlHUFAT/FaXTOfTOdcaIc+xDeDod//DdD95/JiRpurT08+sXIjhMk3ostaWSahMELSUZKDIe5v3T4QiqcYpVecvrfjct18V5N8UwDtERjdNhN5+4lXl3ztdrqvrL63nZ1v1uZoLDbvfw+MHHWQ1pWbaSluuFicdxROLA6MCpqdS23hYz9d6LGBHFOExqoCStAkBprXvbIVIXOQt5UDHNjvg475satBDYObCllCWnnHOn1R/3+904zrsZ2cVh+PT6mnIRFQNhZiQkdojknU8lAYi0rIhrXqCkLqQ0QgbYz9O4P8ZhN4875yBHb4cpbxuOLqML3g+BxxjZOWdAkEXLdb0tS3J+GMfJgJZtu1yX0uptuW1p8z4+PT6c0jKNO2Y0lSmO+qB+iOuaHVHOmYE8EsXoHJdaBaRqw9YqaM/mC8Ez4jQMCJbWdRincZrMQFrLsLWiNadtW2opJm2cdzmnaZqllMfHx23btpKbCoJ1kpMI1lakNgNsqvru+dqvAjPt5B9mrNWI0DF1owYjIMcdt2QENmT2PvhpGI1ZzXwIZvh6Pj88PCDwOM3ffPf99W/++na7Pj0eH5+ePv30szb1jgMHB74VrVXM7nJpMVNgaznlKmalNh+cczzG8XDYx9EzY1Pbj/spjgyW80bMQxwc+0ZE5Mk5ZpNWlSDG6Xg4MSCC7mzvwEpac6pgUHItrQrj4/OH/emhlALXVwO73m6o4EN0ITG7cZgDTN5Hx6FWDS6qQ+fMEASsbLmPT1Ku+31UADPogi9BM7pTkcCUiYY4GCRR83dqthLaECIRBg4IYKbjNE7jaAS51lxTcHP32mJiEWyhbQlEW6mqhkTITMR+v9vtd1Mp28BEDB7Vo3aY3ky6llwd11ocd5Kgb6rtniTjVdtWUq5bqS23xJ4NwLOnd2YTMXlzSNjJrchcicmRaDM1IyUkIuueUQNPtyWpKWhXr/VsV0NC5DtZjwg6F3Z/2HnSP/7u48Ph4cPx4xinreb1+vrbBVAFtIYY53mfa9pyjiEc9rvdwwO5EJ1PeWu1kGLixQHGyWH3/RattYDBeiuAuD/u4zC0Jm6mEELOSRSQWA0vy1pFTer19irSxmE3TwczlCYIZloQQMW8jy6lVUDJFM20lXW9kXM+RrReTmcxAwRkIWNmJkAi1KY1VzR7u153846BovdNxJp4ds5xLm1Z17QtX7/2P/z6U4yDY/Kex91I3oN06lgzQWIHULrje/cR69bfXRb4eDg8H465lFLKEEMTIYCH/d47FoDr7dKkMdGWkqg4h475+w8fDmPMJW+tWrPnh0dSdMC3nFwcwzCYldzWdbsZ+9FP2VJriIyvt/Xtdj7t9g+HUxh3LkylqoHi6lwcrDYpZUn5Ris7Dwi/fv71cr565+dpiiEgMjIhuXGaa8mINoSxKwe3tLSmAORZg6OSq9akonNwEJx37JEM8byut2VVwNEzm4LUWsruMAU/hjC0u5Ox4H2SQFWUsIpUbT1mo+WylmYGFuM4xSlGj2AIMI9DcIRUPUFlpCF4gkDmGYcYkcOdexY8JqylAtowxeNhX2u7bkkIiYLjqJCu6805FKu39Us/IgYfgnPPp6lObS3p7XIFteiDC6GHEKEh4WZGMQzBB+d4GqYhuJyTNHl7Oa8pHx4e9vvTbhi98wS2te36dq55/du//q8fvvvWkRviuPL18eHx9e31ti21Sc2ZiVXJRFQtt87AhqbWPWHek8QBEZxzhNwvBufIe0fMauICB+8JQU2R2TvvuJtb0DSO07g77k9vy/XHVB4eng8PIYTw8bvva82qNo/DOseeLpOzbClFZ1qLRx5DVHeXBdTCqiYmQGSAIjI/7Z6fPz4cH4hh2W5aGpiV2tZU1ryGEAmdiIlUFEUA53me9rt5P4wTM9dSaquS19zEDE0kS84502E4Pj8Nw/Dy9hkZTg+P59eXH3/8kZ2fhtFRWIeyP4mKIZF2SAwYief5WFtTE22aS43TuN8duolCzmmIsUhz7EqtoEDMxESMpt4AyTMCkEP2NOPA3YoDAQj2824cp1zzbblKq2B1Bzsfgg+jN2y1oMmyLcyW1i24wbNz3o1hKLVEH47zJK2wcz44BSJ25FxPK7LqfHBNI3VvNxGzDGCdoNe0ICqROqYQ4jgO3rOpKlQwQPNmAAYiFcFULDpGwdbd2pHUGpg1FXR+5+niPBE1ESBWqQBK7AAAyBSsPwyrMng/Rp+1EpJTyjm/vL4UrZ5+E4IV2XwYOITD4aCaW0utli3d9nB6OJxU2+l4uryd87rcLqvHNoSA5Bw5QtTWLikvawHAXMvxdBjGmAtTt7QCEoEqOk0TEp2vy/lyA7DWwHEY44BECMBMDFxSUlGH7Nia5iat5pLWtDHzNO5b1dfX13W5InMX3hriVrMjcpHWNeU1A+IrXqdxB6q1yZI2NespAjnn67Ze1+s7nxfWlFrVcRj94D17QiLueilgdsSuYTMzU0NGdr5VMxAANIUquubUVJvIsqzsaAgeQB2Hsq7ddPHtdv3nX38Njr97emKkbbmRbBxcykWqfXlZEPHhePrw8RtkR2aEclkub5cvzs+3y3nZVkU74ETEou3XLy9m9MN8JLQYGGg6lUdP8XY539bL+XJdUurqh5zLsm4hDKXKNA6DSJfkDMHvdzM7UtPLeiHitK5m4JyvUDNBy6mmtdYiai6EeZ6meXyedkicU/3pywtDNNOtpGKmRPv94+F46tdxTjdpNZXaKXrrtknLXWdgYujw3uaP8zRMg6fSNlmXedw0epWSU6qlqCiYee8DI7FDcgaoerd99M77OMQYwawHAABg8M7GUci2bWvNttu2sgibKowu7qZpP+I0TT6GXGoupTXVKkjsmOdxUgOmeJgPMQ6p5FxyGOPatGk5nQ670/PD8zfHh8d5nh07BAnBX88vhCAqf/1X/+20P9XaUkq7YfgP//7fp5S37VMpqqbsWLSJqoipqILVbuDOdx73XRFGd8o9ojnH3LNNCLxjQjIxcoSGIhYiq8Fumh4fHsm7+XAwhnF3/Obj93Ecm8jHb769XN6W8xcwdZ4NbE2bvdiW0jxMgZ13YTftkO7+i0201FpaLbUiASLM+3me52naNcmm9vPLp9uyRBeJnKCs16sjp9LQFJB8CLu4P86HebfnEEopl8t2Pr/WvHaVkHNUpZVWdn5/nPegVrTEMTwfPwSGn37685eX6zKN+3h4HIbrcr6erwjkAqpICCOTJ3LjsBNplbLzcZ6neZwAsbTco6BEpJRqouI0OE8ICDrGGENkx0TY2jT5sCyLAHoXgGAc427eIbmcc6u5tgxQiWwYh5TxnvzhPWZXcxG11LJjp1W2QoAWw8whqqmYeSQ2JCTH3pFjR+acJnDKxCy1NRMzsbscTxBhiNEFT9WN0zxPk/e+llJbIURrYIAEVEtSa4g4ujF4FtVuNg7Q9TzgPO93MQQnBgaYW/n+6QHV/vzp7e5bZ4LkiMjImBhADS26IGafX778/PnnEP3zw4evF4CBjfP0+Px82M9peR0Gf6vF0E3jwTtfi0zj9PzwdAOp6ZqXtxKGMB/ZOe8D0nZbrp/ezh3i9pFFC3apimmH7odpGocJSN169WEYQjzsd9EF7zxH7uYZjl2VbdkWtz8erZVEy7K0taQ1JwAM4VZFX67nvK7OR/YeuXCVtSQEaEWWdV1TIcaqGl7eoneX67qsW65lHoaAjI6YuSfT9q8d3Shq52UZ1RwwqAECErJzCAwK3dOjNR1jhLuPoKqaoX5+PX85X9eUCdB75z274G55M5MQPDsmJrUmUtwwP+6PU/Rpu9Zit1TisB/idEvr6/Wca/nLaUZr0xC1idR8u6b97JggS3r59bzOh6fDAcGa0fm8IP58enyYhskBHudpF0dH8OXy+cvtfDlfa26GoCLIXLTjI+R8QAQ0ZfLzPJrpl7cv7Vb302HwUy0lL1uqpbbCiB2XKbUNo/k4GQUX3Ol4eLhdv5zfnPfAHpDFdE0rsTu4h2k6oqlDWVcZB29Gjlma5iTd2coMW9Ut1zFy4BhjdN7MBQOoNS2LNcnLtpWirTWH4FD9GPqHr6WWWnOrgDTvDgpmajklAxuGwAVV7bjfn46Hddu2dVm3Zat5s8bk1EGuNZV6EpjCMMXxjW63sjTbBo3ReSWhIRymw4fDc4jxdTnbivPx9OGHPx5OTx8+fvfwcBzGwZDMFFRL2kpyPg6m+sPvfg8//uMvv/zSWtu2dT+P//YPf2i1LP95fa23VqpCFb1r6ABB33W82Kkg0L1fuhwN+9THe8/MquaJA7uuiSJ2JbcYQ4g+xPj9d989PT5e1yVrG8edI0Lq3CIZY+TT6fzl19LaEGP0ftu2Ju18veScj7v9NI4hxJ411rUvTaS2CgDkmBwdT6fgfa0plXRbl60VCM6HMMUZHLSUWup+tC7EYRxmF4fWdN0WLGldl2U5r9u5thrYIxgi11aXsnHZlmWZHj58+823tW77ae8hf/zw+Ovrn9Pl8v2/+fjx6fDp7RMAi9py3pi9qjmOiOQ4jMPOzFRsjJEQBHTLm5m21uA+/G4MpE1UGhPFEIP3kQckJAXfOdwEwbvd/uCDG4aYUvaej/upVASzeQpmFYxVGlIAdi4GyxsHRjS1BghF0Cmm5rFSSsmx4+54XTI1YWbnGAFE2h3YBys1pbICKoARUQwBmWqTedrvdqfT4Qmb1loJGFTFWhOx0uV9wo5Uer6cdH/T7gggqvPo//j7b//8zz+qoRkayP/r//6fLm+vf/78nxE8vcsrCVAApmn+0x//9O3TLjq/pfzrp0/rutYWn38jAcH33/0+xFFbvV7eyMpuN3s3HfYfYpxbq+fz27ouzDiNQ9ZsJmW7CaJyGIax1sZvVwNVpFLz5Xre6cTMyMjEIoLEu/0++kGt7vbHMU7RBUYMrlvjoCKyc9AD0nNy8xQdT1fP6KhZq9JEtJS85HRdFynNqwbClDOxW9KaS6lDCT7U1qwqcXvjS/ShtpZzrqW01lQqgZucrxwA3tEP5CZlLbm0hgDe++6cDEyErEV7byJSme7aQWJSaCDyer78888/ee/G4ByNT8eH48Mx1U1FnPOqqiIfTidScOxiCAhay3YpZSn67fgQQzSxWuvb9fLzl18v1y+P+3k3+fPlDDCXkjzzcZ5vKb9cryo6BNdqvbl8zfnlev7m6cNudwQ0QtjtxqfH0/nylrbg2G/b1tWP3M19AMyUmZmciqzL0rSllIJzqFByQsVW6/lyLqV458ZhCHHI5XZdbuM8S5/hMR320w/ffdztjsdpx2ylVXbOMZpITVsITrWaVakS4hxDNIfbykhkBqLaWi6lgdHlenFsjoNjb8CEVvJaWpUGXVpSVdCBGasoQGvSUtpKK2AQY6zScs6E7L2bYtSoa0pkthvG/TCkebqs48vyZjl9jXG9rEsu8vH06Jx7OD1M+12thZD284wITTVgGLwLgYfMbj8/Pp6++eGP3373O+8HldaaeM+IKKaByTEywfn8No1j9PG4P6S83a7nX375peZbae14Oiwpi6iomN6d/ZmdAZCagX095fvF0EW2ZsaOvffMZKCOmcmZKjN1fGUchmme94f9bj/v5mkt9cvLy++//T6ntCzXw55VVK3FEI/H0zhNyZpDDD6kktZtW7bVsxuHodv0p5xyrgBdzcvDMATfqzFHgKBGCPtp54doAFMYPXpgrGmtKYM10Najd0rKWUQMnPPdOQ4JaqvShMAIfa2FiHJNr8vnj8/P3zw8b2X1HMfw+G//9JeKQyvlj99+t22XyPTxm+9fb5ftl7WUgojqFc0RsYg4R1mSSlG01hqbmOl+mJrdMyjQsNZapbJCGHzTetuuiJBLXrcllczek6MQnA8eEb13IfjJpmkMxBj84DgyeSImDmIgEHY2qUYEaNLeTa2hlJXYihZiNoAsdd1SLjV47x1HF7zjELwqmSkyGlqT2gNWHROxm0Yfh3kc9lOYkqyiSuRUa8qrSjeyE+dJVXLbVGutzQw6rQARVfSw2z8cjo65VqulfHw4/V//8o///a9TZOoO23aXggIh7efDaX8aXLe9xnEY5nFqTXtUff/xIea0CZUh+nmIp8OHtsNhnHLJ23oRkRCGWmoFUEYpLUkaJIpaU/Dez7t5XwsYzNNsplvOTbW2Ok2zqJ6Oj977EIMIzvOOZx581NZMtUnTrixl18kXAOakVTQI3jfvT/v96FxttVVhBjkeW22lVBGpJTOLiiCjj94576NbbwtIO19siEHN9vt9rq/XvLkLTmFAIu9/s4ddt3XLebOKSXKWOxkDgZj0PTWLEKWfoc6zaC+XVKHUsmzrkXfRBSIFojHG/TSICDDdluW6rkMY/vDD75d1vZZ1CJjzeltbMzcO83F+eDicFex4ODSpuWbRgXmahnnLvOXECE+HB0J3XbZaa16y1FYM3Eae9HK5fvP8zel0csQg9uH4yH/Af+Ifz5erZxJRAAxhmIYhODZpW82g4JjUmpGN0/Q4n0Tbtq0qetvWVLO01llo+8Mhxni+XUvJpeZSyVqbov/T736YxhMZAlkuycCmOITIraVt1ZSvrWYD1iYUiVwMfhR9IwLnPRpik6IllW1NNAQEIHJQ64aouRjyxKQia80bj17VOZOSU2vWalbVGMfIBA0BILBz3pNBtRrY3ZbFAOM4Hg6nw/G0v+2/vL2sORMCUfd7DMgUXTwcjj4ENai1BHbIuKTtdllTLtfbUkpay8rRH58/nC8vYBbj/PD0IXrfWiW0y+XL559/ury+rLdLLY/TNJsCExO7LZetDGp0OD0sS7Jma85mrYeuOOeaNER03jMT3G0V7kYxAICIIQbn2XogV59EOE8IZi0G7x0FxzGwC+4wz4cd/8vnL+fdMg/h8vbK7EIcVVrebJp3wzi2skJtZETIMUZp2posywoArbWUtlJyrq2Ld2obHbk4DK21IYJjh0zBR1ZnYMHFad4hwkZgAMu1LNuqqo68GSAHQzIjJuecI+Jci4k9H48fPzwbMCCar4dIjtUPI0cnTUinb55/F3wwEYfuv59/dmEYwuhcAqDWSmttGGv0MwEyQyrZrJZyg8Kl1CZlGibk4Jmp27KqpZJ08J7JORfu0RUWIiFGgSZmTcpWNmDskdQhBsQRyRw776NzAxgxd88oIRLH1qR261wDc8QOSU3MMqARGYE1raXm2ioTqFQAQwreqDVQkabightcxG4OJQaIwcfRT2MYTSXnLdXEoKVsb5ez5xhcjwDwpaZSSk7LuiYAend0AWa63Na/+tu/B2Yppal8fHgcouOA3TDfOW5ipmodGif75dPPV6pqqkApbVvOd3ub9x+VjsSKaSAc5ynelttPP/8cx2E3T08PHwGUnVOtmUQcAxKwtVpyVkSc5/EbciXX6IOhibVSi16FmIZhCiHEGLxjIhggmkAPEZFWTaqAkHfkHOrdoN59+vVTnEdVBTXi4KMRu+jFM6G0XOuafS61ibSm+3kCpv18HIYxjMM5hG3NTeqatylOp/2+1fLp7WVZb7th2k2T979BH2YSmGtpWbRIJcDgg5qiUsutz8YQEIHyJrsZfXApJXaMCPM8PpwOo3fO0e2W1vQzO3h8OO2mnbTmGRQsbZvzBuxAhcgP4wO5En2UUsDZD7/74bge9vP+X37+p+jdx4fnp9Pjcc4//vry0+cXYh/ccJoOjty6rrnVBMgq67YBaK2St3K7XPfHh3GYQN3j6YGY/uXHn1/OZ+9jdMGxUxXnqLZ2vp1zLoTEjnf7+eiHcd5d1tcsxRTJOx88Ew/zOO73j8/fgAl//mVZrtqSNaySc6u7aY7EQFRacY5yztKEDAnsfHsrNXtiYldVaqtTHMZxP063lFbnaPIj8WBgjkmlbdvCxFbBoCI65MEz5JZyzabShGsFNc25pJKlFiRmAgUTBXaBvEs5aUlmUpsJ6NISqh+ZHIUhtnnKCtBEdvNujAMBEUJpzbZtGHdjHA2QwUTrdcuv18u6pG3bmLHWcinb07fffzh9nKZ5mGcyuVxuquXP//i3//t/+S/nLy8xeFV7e3vd7/dxGGXTcZzLVj58+O6bjx9//fRp8PH/KH+TWkEkANRuiWTk2QNhE3VAdLfnu9vSEeEYQiRfS2FEj57JIROZiRo7B4AiknNar+cvL7/u9qeWt8+fft7/8U85l5cvn6Z5VhMih2Y1JzSr1poIEgX01ZqYvN3Or7ezJ67SSilNGxMH4lSTmsY47HfHYcjeO3ZMQFJatbqb1HsfhqE1u13X2lpTba2uNatoEyUXgw/zOOZSUyopldNu/uG7D7/7/odh2DcVqcswegZFI8cBsYGA80oEMYwADlkUQQ17CiYAECApRo/eEYIXdQUqgZ6v521LZkpgw8gA5ofBEXt2ITi1SojeRWZiAu8DM9XSxt2ylkI9tIDQsSdEk1aAfA8O4sAcmVhVamtIBNpzb6DTcx256AfHnMtWJXsWg6ZWCSAOw+hHx0zeIWEMHk2q1KoCYNOw8xxE5bKcz+t1cMPOwMeRt01B1rxIzey5lFRzUlY1QRxsad3HURFya4j21U7KMV9vS5WQm5ZaUWHe7aYxTjF4IjXXHTdRzSM2Q0ewXL5AZO8HwZqlzLvp+fTh6ekB4O/uI6CP31xul1LqNM3GJCJvLy9/8w9//7sffh/DpECeOfrx4fCx+NjqjRCz6OV2Tq3TTjEGB+/WZKRQajWn27qNw56oy4dRFMzYQIt2T9WiYDHO3gckBGtluaRW3PWWK5KIDCESQGlmTc3stqUlZ+lT1c7NJyKm/eHwcHgYx/kkh8O8X9bt7fx2u13jMJziEGPYSn673paSuhfdb42P8847H+Mtp+vy1ttYk2KiJj03inbz/Pp6ybWWXLzvoaPomJ4fDt88naTW6/Xy6eVlTSnVGobxsH9QkfP1UlvJJZvJMIz7cd5NU6rlp88/q9UhuLJd5nk/nZ6c43kI+Qa35QqmplLr7XZ7aeCCj845RRticEwINAEMPuQ7V/9lyeWwluPxYYzeOzvMO/nwsRRRwxDjfp7BYF0XtayqRUW0jBR287yfJh58hBEuF8dunqenh8cYhxD98fR4PDxJS4ZCaGpaa1Zt27YxegcuS051jWEwc6k0wLVJa4almhEOzK3Jry9fno8PMYTT4bitZy05eP88zcjUamqtlFJFVhccEDkeA0F3uv/222+9d+fXt9fb5qghUim1lDzMu/3pEMMkRt0+6+ef/vHT5bNj9H4YMVatrWZVMdIq7bZt12UxgP3+cDweay4pbQZQRD+9vEz73en4MMSxlCwiANakmLVS1EB+9+H3EYK2So7M5Ha7pZz+9//tv/y3//X/U7bC6BBwHIZPnz6r2W7ehTA8PDxuy/rrLz8HT4hyPO0Oh+m23NRpk7uPfHdn6lM7vnv6fwUA0Ds3DAMYMEJ3KHKOyLMnFnXM5BhD4HEYiPj19e18XZc1jeO0Lis7bqW+5i+ilRhrSlKzmQ3DIF5yziXX1hoipprXbYsuvNutGfccXTU1a7WmlE21OEaEwXNJVZwhqdS2P5yIqamkVLRpcEFKqqq/vH2ptX3/8WOuW67tuqyPx+N3T4/zEBx0CmaggZvktC7sljjOIYzSJKfFEHwcmeN8ONTGPSCNmBDBez8N4xij94FQzMbBe2hSQ11TBqDW1KSRYyIIIQTvgnnALoFUUWX2PgzBD+PowpjWvOSUEYCRRDW3WmpZS6pK0YcQZzNMubSagbCnYYo0NTFQQg7ehxBUlLq3rkMjKCCi2kT2YTcOAzASE5nWUreSmqljRmZFWkv66fOny+06OH8q2XGAAQy0SSUAFTW0MAwOPTHXJgLGhGYkYnb3Q+8mwfdw4Fwk5VJq8y4Q+zjNfhj0bgNpCEgIzJRrDR7n0fdYT8f+eHp8fnx6Pj2p/tYB7Pd7VQmnOA7Tbb18/vXTn//ln5ZtvV0v83w5Hg5CWEoLw85UAWGILjTJapiqAdSSARt7TbkyEiMSYAgh11pb7X41tVaRzoVuRNikitTg/OSD46hoaUtNxMgcIGuDGOdxHAHMkJfz2+V2+/z6er6cVWQ3TsQMREpUWs0pt7HwNI3jtBvmLSXPFIOPw/j9t98/ryuS++XXX3MpQJhNvrKAcq2H48FKopIck2Nq0npwd4eJiXDe7ZY1pVRyLq1Rt9QHQGxNa7lcl+stLamVCsuSXl7fjvPOO7ds5e/+4e+998+nkzMlx9LSsi7X2+2yvJ2PF3ZQyorEj4+Pp/2hpu3lfP7v//gPp90cgkOSmtqX1y8xDmveWA2RGoBj79lJbQ7dUrOkRH5Ln6t3FAPvYhji8Pjw9OXtTQ23lIJzMUbRthunKY5GFgb39HgYh0BmH46PWHVdl8HHp6fn0+ODcwjAxEDkPzw/7+dxuVxq2sxUpKS8BuZqzXn2YSCIqnJZLrlmACeKpdVUKjK+3i7Luv7w4Zvg/TxOm6mZcK/DHSNySlUVqrldMQABAABJREFUeuxs1QTopl14OJwOu30TfX19u9xujijGQUzH/fT49HQ8nnbzQZGQvEPsao20rfthAsPzstRaa8kApiBqtqWttTYEHxh383Q47cdp7934enl7W994RcenZdlqEzHxgWq1KY5//MPv5vn413/zV79cPv2P//F/3sHul19/+se//7u//t/+K6nNw9SaSpPaKnv3+nY2uGNZ8273+vq5/mMJ3q3r5p3znlslIjREZh6HQcBqq4r3vF8RQbrHPO7m2TFrqx1L9IGd5zDEw7ybhhCC+/z58+++/26YZ0CKw+xD/ONfHI+np9v1ItpiiFJqzaXkW0kbAYxhnKfpur22Bk07/wjVYIijd6G2Zq2OQyRkxw7BGCCEMMWRmMya1Grm0QCB3s6Xll7dp09PD4/e+aXp+bo471Et5+JjcJ7RrKfSf/Ph4+N+Hhiut1uM8RTjYZ6c5+tNay3X22dyIY4zQDXi3Brm7XQ4fPfdX15vN1AJdxN49g4dAyHpPeE2Ioy1tlQkjpJzFjBAiN4H52Lw3X+zEy4XuVWpqQlVBnYxhGGcfHCb25Z1XVM2tFzyut7WvM5jVAHk5HpaixbEu5YeTO9m6Y5VpJTcWis5GagxBB7QbMslNxm5GAbnPCPWUlMtudUmktXUsDW9rNeX80teM037nGqtzSKISq2VAUSkqQ3DtA87Ub1tycWoTar2yEFj5p5a3q2lb9eFvAMgR27wQ0pNlbdUaxO15n00kx6GrSrjfuQ5mKqP4zTuPn78+HR6qDmv2+03FNgsxjjPO1B4+fWXP//j37+9fBnipCK36+v1PIHK+XoVJJAWnQGic+6we9gfnGhdlksqac0FiXfzgYFLWteyVZNi1aRt27W02nF7IrJWDaFom8dpbtJMbmlJ2zXntK6bC56naZ7m3TRNAOaCV4W3bRNyuYojMiMAQuLaZN1qSrnLrqdh510gAmY6HHbztNvP88PhtJv3Pz48vZ3P59v17XoBuOfCbzmV1gxRRR1TaxUA2LE2o7t/LdzjPriJyHsguBFBbe18ub5crtfbdtvSHMfgw9vr2z8jzvM8Tvth2r++vYxhiC4s26VUui3L4ANOh+vl+rZ7K9uKoI7s9Pi9VPv88nJet4f9cR7nw1y27bKu61aLC/zNhw9vl8uvL1/GMDjkJaWmSoBMqK0KttfzteQ0Bv/89GE3H6d5Jsfa2pYzAjC74GNkN00hjIwq1+W6M9sNAxCetyszIwhhFWkIPcPdhhDGwN5xWuO6nPOXzwCFj24a9nGYmZ0KpJyWVLZ0O+4ewzTmWpblhoohOLF2ub4d9rPzzgcPaMw9pN0dnh+c99LUOSTm0tSHcZzm4DmV9PL2+vr2YiAueB/9ftztdtOH52+GYWiSi8gQJ1UIw/hv/vSXl8u55MrMzfH55Y2YEdERHXc7lZrzFghBci0wTcM8T+N0nA/7Uzqty/V6PUuDYRxC8AT2eDp9+/ztOAz/9W/+6v/3t3/zn+b/GQ1zTueXz/l2++6775bldj2/mVlgr6DTOCCwNKEhmsg4zinlWurDcc9uOF825zy7ykzwNd2XaU1Qa+15k4idBYTBe8dsXQXKzMTeO2KKMT5/eN4NMUa/bds0z7/7w59+/OnneZ7n/eHx6YMLY21lW5duoZrW7XI9a20mtpsGMcZ7xnfbSnY+dKlX8MOSt104AmoqpYpYkzEO0zgPwyjS1m1FsK20UupyyynnuhXnfc7l8Xh0jkuTS1oZcIzDX3z4HQfXnRKInSNkhDhE59AQak239RyGnfcz1Hy+vfp4GKb5bnoMJCZxmD6Oh3H6XLdVrN7WWyvFM3nHzKRmZgoGVdWIx3kvhBw863uEgkGulbUndBIgOO8VRE1K3XouWPCB0NUez2m6ruu6LZflWrSqCqGDLXsG1Z5RWPr54p13ziFC6/MKzb1BUdBWWlrP83iqtW15nQi9Q5Ggcq8QQG25LVkkpGSARTISjjE6cp5d8FFU17RtOZEagDZpIcQmVqUxYvQxQ6l5W3LORRCpU4m6x/aStoCDARA5Iq6thHHcsjBHVMfkmyjdGWb8cHx8fnwmxv182k/70/HoGa9lC/9qGK4ijjmV/OvnL79++fLydi61fnjaDcFry18+/TzEYbmcz+syxGGeBri7pLmnDx89T2A2DNNYWjN8evxoAufzF7ddUi1THBCtlG3dViZXWzU1ba1IA2fM+HL5IkJFSisbkSJ35VlPowleTQcb3LPPJufbMo27wflpHEMITa1Jey1v5+Uq2nJO07gPLrSWFWy/3+13IxDQEE7hMcThy+vL9Pkzqn41QY3DKGa1NXIch8E510p17Kq0nmBihvfM0h4yDd3bnAAk1bam8na+Llta1nXyUVXfrucl3z48P++mw8PT85LTZVlDCEXtm+eH5+FB1AHaj5/++fPrFzRjgGnaH49lN06H3W7Zrsf97nQ4uBDiMC9JN1E/xv1+JsRfvnyuaROm83KpasMwBPWTi7WVJi3Xyg7Pt4t38XQ4bCnhGMS3tKxgoABZ22C8G8bzcqMwDLvpeDxlKblsEw85p59/vtWWT8fH08PonANDMHo4HdvhlPIHGg8kNsWBEJbrtUn1Lno3ePIMbhrmD88fck1vt8CEgV1ThSYIOExj1SxVfODBDz744+MxxAGIhjDFOCiAIgBAK3Vd1ymOP3zzDaDFGIdhR8zO+XHcsycram1rio58awkVDvsjnJwSuWkSAzaIzAwWHc2DLyVhaz4wOYied/N4OD4455s83pZz2rZaFQw+Ppxq3b55/jj66edPPyrVD49P3z1+xw6X5W0K9Kfffwcu/K9/81fLyy+zj08fH0PwtRbnBgR0zlEIwzBN0/zl0y8pl+Pp4fx2CcHnzM457ImXTD0iRwiZyMDwHgyDwXuRWpsOITKTD8FxIHTH4/H7739AFdM2TdO6pYfHj1U05Q0QtrTNPky7uUoDRDG93K7XdVVRU2uIk6mJikIzVTJFZeDoPBF+eH7+/un589uvt19+zqWQYZBuKtwd/bFIW2uRJre8lFpRraZqaiYyDfM4xLom9v7Dd998PD3vd3NuKZeUS5a8Ph0Pu93eMaJJWRdABD969q11V0YteRVFAJzGXTfMEMmtlWGYHk9gptrqulxNxMBKzaIVCGMYGZhn2O9327bWtInIlsqyFXJ+GMc+4jAQcjyFqeRqYGZaywZmjBRinMAEtLbabpJrLVID8opJhII3UxGtKS8iEv3weDg5jgYquW55QyLnHRqK0uW23ZZtGJrzTGxqZVsugAzECqKijmjy0aB45BhCU9Q8GgMoEmJJ2SpkrSKSWw3eAWIzeTu/NKlTHH0pJZdl287rdatZ7Z7wZfckCumpv4rSWnGBBeTnz5/0nmaD9o4vAeC3H777/rvfrduyn/aendWccjWp0zj+Ngz3ft3Wn3/6cVu2Oc6nw6NzK6KVnKghgCKYZ7cfxlTl5fW8BY8o034XnGOC3Tw3McI87vbDMAfnXYBwc2nbxnFCgsBOxNVSHWEqRRRqa4+HHZO93b5cL6sL7rDfg4EP3tWcHIccfBxjTgXMHg6Ptcin+RePgALIiMzRM1ee4uCcAsCa8i21Jiqt7uc4zrGBFslefPDhcNhhHzQjfL0APp4ePIe8irf4QCMT9Vior4neqlBKExEAFaW7mBBEVG5bvi4bITlHh92o0D6fX3LLYRxp2k8TBY5PD4+v5y+3vD6F3TTunh4ebmm7pe37j9/mlK7rkrYt1bpsNwSMIUxxQCZjHsf5hziyGzblrebb7e3T62dU9QwxeoV5LbUZqOpaUhz9g9s/Pz6IWdqSOQBSJmB2u2kXfFzWm1JlM2P5dPl8W7bj6eMYJmIeQpxCtJp/+vTLdVv2w0TAArCbT97Ht9vncRifH353fNx//PiH9Xb+9POf/+nHf/z1068q8HR6en56UhUiE0ns8DA9jbuDd+x5aFLW9W1NG4rPTd62z2vb5v3Oh6BmTRqDV1ByxM4Z0JJSkoJE0zAOnpksztM0PRiRmcZxcs4Pw87XGcG6iPFyPWvJu8PjYX447h6GENfl0lJCUqsaMTpHoWcgext3wzzuHTMAOA4PD8/0YCXVLS2HOZLZGMfW6sNh97/8h//LreDH3/0JpAyoxw8fduOBwhinaT/GkfzDblekrDWpWfQjUyB0ooqmjPj5008q7eHhYfCuOK9eDYAdEL1n2CIRkUMUp9ha8M4x15J7ngyxj1NwjmIMD8fT/nA0g7ItYYi1FVP75rvf/fmf/7F7N9WcCDE4D4RbvhLqPO5E2pbWZrWpa822WptZU7BmIaARqoPHx+PHp+cwYJLtX/7lUy3CE8fBR6Zbqudt8T7s5z2TdyVcrhfdFFRFSq5hHPDbD998Yw8u+Ol4nKadD37Hg7Vc0tW7/TwdfDyYtdv1MzF5DmRcpRaw0/6b3XRSs1q2WovjAcDW21tTyWWLUxji+HR6zDWVvGWpaIoAwQUi8iE6DswsosENN7xet+u2rTUXIt9UetLqvJuHODjnCKWUpGpNBWox55ndGKJOIlLX1dXmU0FGJ01ra6ZZW6t1O6+XrabT8Ti2aYC9KIiZdxxjNKMi9XZdr+dtrdnI79zgpaKggDRFcsHH4D2B4G4XDm6vzRREFKGermnZUsolr8ttHhUZzaDUgohSJEN6W9ec18edeg5bKbnmreZmyuSaWI+UQjNCNr1HxWWp827aluvr+SYAiErMwZxnQwNkeHh62k070EqgZKIiABangV34egGUWr+8fHr9/CsCT8M0DUMpJeW8bokdf/ftd4rogg/DWC+vKddrLTlvT0AprT6QD54UVW0/Dt4RMRx3c3Sch2SquRSzGhyToajG4NeSDof5eDiksqR8Y8YheOeomo5x7263i5o5hxdr120pTdA59hTH0PIGqmpaRFCRAKYYJnICTRS3rLWKZ3JIgw8l5ZKKVXk4PcQ4thjHMarsvn7tbz4+BY7yiqUUUg7Brzmpqqj06K7uwNc1eN20q+N5YD04Vw/73fPwJNIu63K5LtM4zbvdyGEe5sNuByDMuB9jMCDD6IIFTcvGcQouHPenum3W5O38tt8dnA/TOB+Op+PhtGwp5428f949IPPPn+i2nD/yDlV34/x9GJa8ranu5/1hdzg+nMY4eDcudcu1sHM5pcvrW0ntYZqenp8/v3y63V7G4IYxpLyEaf/0+JHZbutlTUupiUCRebc7PB8egg+5lnr+8vjwtNvtS5EtrcDkybODpu22ref1JqLDNA1pHSd/DNMwcGuJnA8xMPth3LH3fhv9eiXg4/F5mndEcDg9TuNk2lSNENEUTEzAgDxTRVDUOFKtQOiYPRAyY22iUAEYgZidJ45uImLn3LqtYIAAzrv9YT9N8e7GmEpr4rwLzIDtkr6oQG2Fy0oc4jQhmakBtpSvtabDeEJidm2chu+nP6qflR1DIZ6ij7t5B+S+e3oM8JfUFFWaVCX1jsy4qVP0uUlrzYeQ6/b29sLkx2nctiyqCuacd+xrKczcA0HRgBC9c9EHQnQ9W50oxsDOseMYgvc+xCGEocY4vXxatvV6u3z3u98fDsdai6q0Vju9m9irqnP84XQqZXu9mgLuxt3mifIye9oDM5Bnnqbh+cPz6XjkwEc6ffP48fK6JMwcOdeUt/S6XC4lDWqEPjgkwt1+nB/2U5yLlHnaPxwfhxBy2nJLfpoenj/sxtFZq2nJHjyjC1NpzUz2x49qFYBqKVtLLoQQQsnF0HJeSykhTIQmrTRR6NxcN/o4KuGw21c1qRpj7CIoM9u2lcmJqGgzA4euqa0tO2ewLbkkdkzM8zhHNwg1Mys51VKVrdu5GIIPfr/bkX0YhtjUpjh/eX1rBqhSa1629bIs2gtuhFxKsybSvCOHmKu+nK/buhnekdYxBMvlcr6Upi6Ow6y7uPeeGch7BwS1WmqrVHFDZKnOANkBwVaLiq21ZGlaoBUdp93TaSB8OB2ORIw5xV1IZQVR7CFCPcMOAImsH0EAYjYfjkXl9bo00cgMaN47hCbSyLH3kvLZOXVs0ZFjz94DMvwrOszPP/243K5gqAC3bVm21RDXnC7XSwhxTcnHMI/zfto1rSWlkpIprFtqre3mPQAB2HG/c4RbuhkoOU8EjlERHcNWqimw84Gjc+xH9jFudb0uF+dwvz/M854JixYXBodgt+VacjaEpeSsrUj79uM3TJbK6sAhcQUppTqzQI4J52leU72tKyLOw3TYTwysVXIuaU1ouNu127qs223L5evXdp4P0/y2LQ6xJA33qFv2HtOaOwjQBz9mykz3FEREZjfE+PT4MIQABLVWAhw4esfH4+7x4XEaAjnc76ZpDGMMl7cvl2378rd/m1N+fn6Ow2yleoTPL69/+0//6IP/7uN3+3kWACJ6fHyesqzpxswxjHGchxiP0yGnFUDGYWbEJjXXShyGYWRmBBzi9Dg8uBik2zB8/8P59ZxzPRwPp4fD2/k4D+F0OHTuPwCMw1Cy7A7HOEST+mgwhjh736TdSkYyNpniXiJv21rqOoRJ1Q6np3/374enDx+Wdfnhmz8cdweFIpoNNMu23dJud5zGg0hh7+I4kUNT2O0Op9ODgTB5RN2WS2vFh5EYaslIZEDBR787rOutVnHD6NwY/AgIompmUmsDVmm39AZmU9irNjPYTbsQdzHOyIgMYEYENa+1VkRyzpHBbX0l8eM4M2MpS4ig4sBQalMp83ysJZRaDTAG5+IIfpeE6P9P1X/0WrNkaZrYWqZd+xZHffKKiEhZokGQYAPkrP8xwSk5JZpsdlVXV1ZmRsQVnzpqK5emzTjYtyKSG2d+YD4wc7f1vs+Tg6SUEsW4cN7q9bTOYzBLyqlQqqlqgIQJAalPaBMAEmS06bqyKv/5v/yv4+XcNo3RNoQICEhIjhERGLtq4pEgRIJAUFLCETKjSAhnRHDKGWWUSyXLsiyrkotCFbLf7ucvn6ZpuAn3VVVNU3TOIRIPmJFwJoqi1fPCSK6auirlvBolqp6XVcEWvRAgihXXsOaHd++VKla9upT2+wdE/uXx67ROqzN11YpS1px2Td9WrRIs5jpHx6kkRNTNfdtuOENCKMEbRIKC1F3XllV0eh3OlJCUfEzJ+BmRq7KxNnDGhZB+DRyZ9d64C2PMWmOMSQklFxkS4xwjhBA5BUpFpQQVPGZcLiMhNMQYnPdBx5S01ohAKbva7QmhhDJOGWYw1hKHVWGvRK+r79M5n7PjQhDGIcbrxThnou/2QpRM8k2774bz5y+fJaJo6s9PjlEBJEMiBIh22gULOYSYQkzTtK6rJgQpoXYxdSyCd96aeV0iISnYXcFEVZEUIaVMshCFKjm1mNcUXOiquq1oqUqCJKRkkyeEdt22KSslCiGVRCoY5gwhhLZqpCDT+UAAMyH4mxY7E0TOKTAaQsyIQOi724d392+aumYwk6vb87ecCzJCwdlsnVKF5IVkgghOCEu/aVN/+/366ee+2xRlGUI8ns8JkXPBmeu6rm3bQqnrk/QyQgZOKQoGBJUsJBcUYV0m4+Jmu8k5xOwXu3gXBZNX4AnlBD3GFJViUimCBWJarfUJN90OE3RNr4TMkHx0hHCGhKzTaohLkIdlVlVl1wVTaMpyrWsCDAmNZgHvhRQkA6WEYIYcvfcmpLrIhNDV6JTyOC4p52Ga+743Rp+HIaa/KiHndWnKBgC0Nt5dFadXR+X/n6Y1hquZ/bdnmjNwJrqm6Zo6xDjrxXnX9vX7drealVFgghCao3eMkqaqg/OLMed5+nZ4zQn/T+2uUDQavVg9zHrWhjknxRlSutturbWr0VW1W4yO3vkMhLO+3ZayCt5ESEJITllKIQNmQq5FWWM1kaSQknKeIDNCEbEulVk154Uqyq4rMyQlC0bZNI3n00sIsSjrRkprzfnwvAznJD0pC8m5wJwACOA8naWqCsGv4lkhZNPu9pBlo56ev1Rtd3N7H5LTej5eXoZpIJQKWTDmCOPeacJYIVSKKYYIlHAqr8bZsmq88IjofCAQuRQAKQTgqqrr3jnlgwNgV58lpYwzgYRQIhExQ9TrihGRICFMyFJIxQVHgpQJAEzRW7uG6AWXV+UuF6LOveAVxrysy1X8fB0tYoqFqDhhk3u1xnkvQ0q8kCkBRB0EF1WJiOM8zsOZJGSUABACqLV2RiPjV6wxICOEM0qrqmqbdr6c/zgvWUBVVT7E4IKPIaVEkHDGcgaKSJFQQiPGq5rxeu3IGCOMMsalEF3d1HWdAZBSSmnfb59fnsZpsM5RygDAe08IEioII0LKuu6W6ayt4bRgiG1dCi4zxuPoXk4HJdV3b7alVIhxXIZhHrXTddF2dScocppDRl6U3nhjdanUrtsxIRglkKN3LqUYATabfVFU83wyZi4LUdcNcMIYz0CBCFnWhIDVa0yhlQqQpoSEqaLuMCetJ0I4ozxByjlZa50LnCWP0SdbKEYI89kRzoqyJIwoVa6L8dphTtd6bgL0VvvoQvBFUUopQ/QEUVKBIbvgdPQ5BalkgptVTxlDyskHFxNQLiDnFAIyBjkDQQJEccUEU0X5rqgYJdGYFMIwjSGlDLkpakGZj0F77Z1mFBkNyNjN/V5Idp7O79o3bdnYdVZlKevyNA6JYLfZNXWTnKGMAwHJFBICGBCiAJJikrwuRE0YczEQQqigslCKSUJojB5czNHZYClkxQVnBGKihAbEdI0nAuScpRA+hmu0V0hx27ck2qqUnFJCGSJ4ZzFHKRQncrPd5JSWVTufLLc8CETKuGD/5goIIDNKi6I+n49GG8J5XZacsRBj3/dCyGWen4chQN51XaFEDO7Tl6/rOp9Oh3Ul3jkgsjAVY0TJApAscY7eZYKcc0KwqaqcoapqznnO0VuHkl3VtZIrwCy4oAQyFCkDq5vOh6idtd5zRhWllZDoYyEUJTSGZBYTg6u4rJQCgBDdopdVu2Vdh8UwApQkJVmMeVo0ALE+rNZmyN55/DfnHqGINPlgxmkMiaSrrhpyiJFS+pv8Ov323OlvDdtECM0QBWM5x3mdJr0Cx31TfPjhY05xHk96ns/DMack5DXNIaRQ62pKWd3v7t/dvFn18u3x6dvhJYbwu/sPbVvVVSUY77o2YxgvY1FuV+9evv0qGWGyurv7wBjT66BKJYSgnEGEmEBJhQAEkFNeqJJxThiFlIQQkFLGJKtSFg2lLAQImDHzHIkSRdt2KQYuhJAVZdzoeZzPi1/NYgtCKqkYkwHwOJ1hPG+bvRAKIAAThFLnnTOaYs7Zr8uUIADJVd0IVVJgjKtEWYRMACgSRgsfjTFjjBZUI0XBhSC0dt4ZY3MwTFyDzx4wE0icq5KJGIPz1gUfrJGi5KyABCF757V3UYiiUB1SxhhnQsQUVj1SQhiThIqUAqVECMG5gAyYMqei4CVBGbNLKTvnEMBHn2KkCM7ZEDxFKqXU1gzTWCZKETBbqXYJUoYcU8w5QiLLqmMItaqQoI8A0UFOKWauClk0AUKOmTL+5t2Hy/n0+PVzIWVq6nGaogkZrnZywlimSAhBcMA550JQghkyYYwLQfkVy6yqsuKCE4JSqhSjkKptW2v1ui5lVf0WoE0USbrWxMqq5UIiI8gYI7koSorsMB5DCqoQ+35zu93EEI7DyRgtuEoYUorTMkL2fVdvN7dVvU8xLWZyztKEAMAlZ1TQhsQUXPRV1XImLGVLWJclphip4l23DyEseg7rFNyagkfIhEjKuQtGFJJyadYpQwJIzhv47wrrtm2VrGOKxibrfCGVYEoW6ioix4zbdqM4t1pbY5jgIcThfFKcWqeVKFVZJwhFkDHlcZkvw2S9rWuVIQFJxi9MUqYEtYwkqpRihIQQY4gJkg1aEI4JonOrmZWs67qeUtB67ZoWCEmQKqmU4AyITaIqeNfUUhRdd9M2/bSM/XjZ7+6aopmXg12mYRqrui+q6v72ba1KR4AIBUgLVaQUERzNsWTispyFYFVVy6KijFFApjil7BpLdMFN7uJiQsI9eO9NSYR3PqcMGa528hQT57ypq9NwjsEzpsqy9ll/PnxBQXwOFS+vvljBeQixquV+dyMExAQ5RUJYjD4Ey1Mi/K9mlE3bKiYqoUakShWMcymkYPxwOr6+vG622+trByGkkCIRWGbXN+VlXn7+9efdbvvm4V3bb4UQzliSWVMqJZQ1OnovhADIIXjOeSEkIeCc9ykgcsVlJiiUStH54Ix3jBOkjN3sN96b+bim5BUXgpLk4zCcfQrRp3Fcl3lhDEAKh8gYXRa9Gn2Z1/MwaGMPGCB6pRQA+JgwU0HFFalNgYb01yugVpUsI8Tggs+RXL+dQog5XW/YECF5b2PMMSb63z0qiEgw++Cd95CzVIKXou26QqlpPruwAricAmYK1241401T+Rh/9+HHqiit1Zfxcln0+bIE5+qiuL/dNHWlOIeUR6NjQHp4VkJQIg7nM+M2I2m7nlJCqCCUJcCYMUQf9ZpSQEDOBOZr2IcxyoNbnF28XULMKSdZVNYa43Tfv0VAF4JgZUDLKRGMMcaqtrujmCOuZnp9/eyC7ZqdSwYyvSb9G0RFWHBuzucQLIO8bTaFoD7plCLnsqtuBJcEwSefMhaiREJiDBkxEaK9geg4VYzJ5D357UCFHDEDIqUMKSUUkYboIQJARsiMwm/UMi4AMQVj9Kj1UhYtpTwTAkgpldoOw3BgSIRUUraAOacsRc2oyBCjczFFzIwzSZAJbhBxWY2xBnLwwTZ1RzMShExgNXpdF+9tip5zQbmgFMpqW5Tt6fXbeHhd7IoRSOs325uibM06I4KQPBOKFCVRCYFxtrl5+MO/o0Xd/fznP5WVoYjP9hiC44ojEgSWIQMFSpBySjkyRjNJnFIuKOdMSlFWijFMMaQMjLOYYkp+s9mdL2c9T2WhYoxIGBKaUkSAGELVNP3uhgTbV5WxGiL46BOAEqIpil3T0ZiXdap407YbylnOOYSrj5tShowxTilygTQHKYL31mizjIwyoaqECJRcfVOQAZD76Nz8CIYzJtpGYE7Grc6syXvtViHLrt2LomKUphgok0I1IQRMgSCmkAilXAohJSIKSQnSq7sipYQEAYm3mjLo2kZLXsaWM7FOA4VoNI2h5KIUquScKTkyMcdgc5bawHa7eXP7tiub1WXkNPhUVg1DRlK6jANhnBFug1n8UnJZyyohLk675GOIlLP+Zp+Cb3WTM0ipOKcZQ+sKRFKpuqk3XX+XIH57/TQuY9Ps6gKBsSVandxms980N7VqfTSzXdGbsthQwgmmHAMBQjhSxpBRKZXgCsm1bxCNNSlmISQh14aak0wxkAEiEu5jykAQCALJkEPK27r+7t39cTgiogvhx5vbf/jh922L72//9f+NPxNCSY6MIAGw3nPBFGNSSOO08y6FDJC9d0o1iv01BVQUyrn16TD/y6fPxoSu6a3xdVFYF2MKjfWECgLJans8HJZ1bOt6120Skufjuai2D3fvEbOL1nsNILgQhaoQiMlzTp5RioxyLoDQkANBmnzycWlUxYRAxjzEkJL1drUWCGGyKMq2KHxRQq24REAgeB6HEON5GObF5JSMtovWl8uUIFrrVqMnY+fFSMFziOOy2BQlZSQTxqizll1/5Do4+e03XIZ5nKdxhgyUUME5pSynCAA5/2Zl+C0Dmq99PIAMiBhCOI5D3zZKCMlo3/U39YZkXI3VNijGm0ZR5JRT79y06vPl9Hq8lKwghH56ejyeL8tiAFAqKZWsy1pyGUOwznx6fOzb3XnVu5ubDx9+F3/9k3O2LJu2216zDZTylJBSjojrMi3rUCjFiNCLRQSpKsaFM+O6TqtenQtlqYuiyjkNepJlVxetT0nKgnrqvQOyIqV1WReqgUyfDp8vy6rNSpgyzmGGtq4ZYQSQMRKCs2ZlnFVVj5gppYSwEENKGJP3ARhjIVqCDBFj9MZpQVCJoio6vQy/sTABCBLBZSRU54yEMCYRaAYSkw/RY4YYvLWzDQYACac50JyymYdpuvhkTaYLGaiUjCkuJKXMOTuvI2NF3cSyaglhlHCA7Jwxs77MRykLoXrM4GNkhDDGzXBJwSPNzkXBmTYrWhOC44yvy/R6eCzLKsRwB++r6k6wwpj16fHRec8Y887FDLv9m0TAOReNSUgqyHXVE0qvWuaq23z3h3/IRByfP8cYj+cxZ0sou9Y4ATNSUpVljJ4xQigViJLxQhWUc6VU3/dIiXU2OI85W2u8D2VRGWOtMcG74MM13m6cwZwJJO/Mw91Hq8fsTMqeEMKAJIRRL94YZ1ZLOIm5amolC0op5uzRpxidc5BywLg6DxmMngmktm45TSHZABGjBCqC94ZqhkyIctMya431hggWvDb6Qgmtqw2UffDGHx8JYfm30hkJPhAgqEofPBAKkGNM5Iqd4oJzuuronPMh/Mbrh4xIr5pESLnvN5RK7xIBZCxSklLKXFRSFkqKtq4fbtNyezeP0/E8ciV3/ZZSJmWJjDIClErMYJd5NWvV9FVdM89Y4pUoG9VyVQSMKXpCqJQccjbrGutGMCGFZJQAhNGchnmJkFfvmLWQfIQ4rgM5fjFxIoiR8mqzT4HMepGyAEIz0OCDpzGGmHOMIecEBCknMqcMmGJykIAxkSKkDNrOPhjBFWC69miF4Fa70/n4/PrqYyCZAABBjDFUdfX24f7/9Z/+vzFBTPn33394c7vnPN5ut6WSlGBOSQhOABA9pQQAYkrOO+c8ZISYtLdClfPy1yEwZWyexy+Pz//y80+Ly33dvb+9mbV9HkYl2Cbl4Kz27uX0etc2hIIsywSxVOr799893N+fLs/fHj8LLtp2w5n0zlHOYsyUcgLIhYCUCGHXuTkgECDjeJGUcimQykJVlaohxmHSwzSw/c3bqt3cvjNXC6pe9eH4mCk0XAzLergMq145pTFkvWhj1phTStnEAEj6rv/u/i5DnoxezAo5V4TUdS2kqISglF6mvzLwfv70hXHOGLfexehCiJDxGvMnBFPKhJC+7y7nCSDXdWOMXuYVQ0gpG+NOw6yUIAREURCg2hvK+f3NgyQYkoshGatjsiGGw2UY1vkwXpYYpnlZtRWMvr3dKc77trmM6/EyphiFENZH62NcFzySd/sP9/cPAdL7tz9WZRlC9N7lBABAKcNrJiklb9YEdprGnFJdd1VdG70M58usrfduWZe2ahCJB9DLUopyupwdW2VR2eiH8zgO56oob28eiqLdb/cf3n+PMe67m9PlZJcRY7oC4pGS4B1A5lxIKXOKMcSMmBJqPaXZUcqbqqeCIcGY3TCeZj3WzQ4bqooaAGL0PliSMIVIFbly9xAJAcZEgYTmHAFTSnFZBj2uNuhCVhAhZh+8N87Y6GKOgoC2KwYvVSSUccH7bm+5ygkEYyQnTCQGb4N2VmPGHMM0j4XqIcd5ueSQi7Ly3ucYFROA1Md0OJ/XdZWSbbd3QsjHp69PT89CFJutDyHE6FNKSGhVV5fxcpqeVu+5LFVRDeM0TmPM0PWm/GFbFqUNKSNKVVX1pt/snj/f/G//y//n51+/CqUoYz4EQhEJUkqR0uCBUcY5p4RUZXn/8DAts1Tq/uGNsTqlHLwdzidrDALhTAohETHGTJAKrhjlnCfJRQrmspygv2WML/NUNl0h5HA+USoo4cDcMg9J25DDaBY+nrngBEBQIYVCAmbW4+gAGWPcufV8PkCESpVlUbTNRilalq2NNuWw2sFZmyMGbyEnRihE59dBFk2pakKFtlOfPCVMsgJSCi7E6LReF20Fl5RQZLxQJaHUBRei54LlnNd15ZzVdQuQjHVKFEIwa0yOMeasClWVFedUSORC6XVx1sZIirKp621OvimaV3K4WMd4QaQETklUFKlUnBAOOSfvIANmqMuyyGLSYymLqmpEURGWUwbGGEBa5hEyUEZloZqywpSWZUweC17GGM06Ecr7evOwfUsiRSQVU1W9YVysep0uR29XH0zbbhm/e3l9ht9Eq5nzwnsvuGypCtkBRUIgpRBTFqKSREhKYvIxBE6Ih8wRIkTrVgrJBR9CZCRdgdAE0Rj9/PIihbQuCKVu9z1AJCQrxQWnGVOCSCllhFz9b95aKCjEVKqyVKUxJmIM0Z7P+i87YdVuKBdF2TXN/l9+/ZwACcHzeUgxAcVFm2XV3rsA4evB9F1HFy0JkUJ2TWXX8devv5wv50rWpWpT9DosIhaUcMZZDCknDCHSFCSXGVJCRKTO2JfXZy4Z5+ru5j0lFFMmGfS6srIum6bfQsqQScJpGjnPIYQMSJlMAK+nIyN8HvXpNC7a+OC5kBkpZ2xZl2VdH27v2q4zyQcXeGYZs3fW5+wBtTF/WfZlmrnk+35LKB3n6TpnR/LbGfAXTCOhlCZ6pagT+pu8CRIA4mWekUJ8fpJlUTSFEmJTd8k760MhC+2MjYExWlc1L6r/+I//IYb006dPGJKkpC7UssxfH5+GZfEpbLvu4fZuu9mWohimIwKOw0AZq+u273cx+WjdNYBECKGUxgSEUILUak0AY4w5JcKoi3513iVklOeclnnOMZdV53J+Pb5yLmY9T/G8Zw+qqGOKwZnRzgTDfvu2rqq/+/Hv3apLVdd1e3p9LLgsqi4jmfXsgmubvpBFiP4K2UZ6hU1WhJRKlU3dcS69cyGYFL2gkiDx3iFgUZYpRudM9F4IGqKP2acU6PXDmLOYQnA2YwoxaLu66GKIjoSUoFIVq1m32Rl7Z5zmTAoiQ/KEEEoZQVqoVonGmsXa2TotRUkpOxy/Lct4u3vbdpvVmHE8BW+mcYgu5oxN3RCADDnFiJg/ff36+cuX25t9yny33XRdlzMwKqLzl9OTcdr5dJ5XzI5xnhMaa16Ph22P87K+HI5SyqJqEmJGipQoVbZtC4Dz4Nu2BYKM84LQK1yQMsYYoYRwSmMUSIgqZd92d/d3tze3v37+BEjbpiOMTtNECV3naV7mqqzhOigWIsR4/S8hhhhzit7ZdV2H8/BaF3UhJDrgnMuirFyjePn59elgtSSUCfVw965XVcxJKqVkEV2Yp2maB0Jgt9kT5Bm9YuownZ4Oz5Lyvtvc3q0PgE2zQUZisAQ5ZjJFvS5jxAy8ABoZY7SsKSPEo1KlYIJTHpxdl9HqeZhm7X2hKk5YUTes6SjlMfsMESArpa6dXs65dxogEUa0Xtd55JSv81z60DYbSoiULSOCIRvzSZuJy5Kzwlhjgs0I93f3fXe7324wh9Ws1hpGKBBitD6dzs8vzymTt7cPOSfvnSPG+hU4qUStpATIWi8AcBUyC84BcVzmaRpsNCFlzKSq6qbtpCzrDDkRgISIddEipeu8NHWdPPN2cUYBgmBCcp6CByBV1VHKOGE+rJM+ISRIKTiTIBNEShhciULBe6e91TSBIHxb1WUhFBWSsuvzYZRSRrXRr6eLLKsqWlU0v3z+9Pj0w35XTdPkvQeCAOhDJAxTyoRSn8LT6+uip77fSFVRRqP1h8MzpX8dAu9v3s7zsO3z27t333347nK5nM6nI1y4wVLyaRyfT6d3d/dIxbSul3luqypSMq1r1VQ0kaqoAQQjVCmJJCXn9RqkKBmj3rsY8qpnguSurK5fnEqIptkoUYRoUk4vh6dlNYozJJEkYK+v36qy8TnF6JP3xhrI0FYNE3K7ubm7v389H51LX359XBazmjXlAEAZ5ynFaVn+2y9/fjod9vv9zXa773sly2EePz19+2Wed3UH/3YIzPhi7Bsu2wYv00S5gN9MCtfLHkDEZZ5DCCmljLlqasaF8965+bcrpRByCjnn43DCJd9v9zKTkHyIqSzlzd1b5GI4nU2KnMumbhnjxtpGFMfj6+fX59fT+TLNwUUhWfQJM7m7vy1ZQYiUqkmMlk0hizqmbK3OEChjKYUcSYbkvfXOOWPnaTRGW6Prpgsh2eiIKN68v4XgjscXWRRcKEo4p4lS4qxBxCv6qxSlQBbbydmFEhJjTD4wACR0XceMULUdp4qKUhu9WAcEgHKgDFOkXHCpCKExBBqAUlYWlWCF92ZZT0ZPgLDt77mU3jmCSICUqg6qdGZNMYUUM8lIKWU0Y9Jmck4v8xBSQELmdXp8+Xo6n+ty8+4Ntx5UIRQXFJERJigrpXJRxOBzuh58iSC9RpgxZWuDc/bPP/3Tus4k0d3+rpL1OA4ppqbZphApJRQJI2TRa06JMCalCglPw4SffjbrKAS/vbkpixJTsnp01haqLZsu2bTtO7LbaLtcxnNMlHIZEPq2fXj7jguVMtZ1U1Y1IbjOo16ml5fnl9cXJIQRBjmlFIRggjPMUCgFAEDw7bt3tze3kjNnHSGk73eqqBazppQFE4Dw+rrUVZshJ8hCyhAjoZRJGUwCgOAtQXA2PL58UZTcbPdVu4VMmrrebW8jptNyvAyBFfXt7v7dw8dt3YcYAiSG7KIvT8fjNA/W2vNg3jy8yQkUq//wcW+9MXoBBGPM4/OnRY/95k5JCUARuSw647UQqq764NdVzyEmWTYZkxCCE0EAAJIxi3OeUE5zzpgBMyIE7wlSBNTrFH2UUmLOMYREOSFXUGe6Lip4zxknBC/jgRHKicKcCeWMiZyvTlqglIuyuCtrKSvOywQRgDZCCjNdzpeQcvbxPJxfT0cuy9NwWc0yLmPfBEAkUjAmOeE+OszIKY0EIVFMEHwiSCmTJCXJCSdEUY7OJaIpJCm48dZ5l6P1LkgGjBQe8vH86mxsm44hYAopolKllNWVdK9DPIzH6I8FbwXnIfnLPHAqKFDvvQ8uBBuTQyCAkDBfhsvpMmYkkFEIset7AIgxPL2ez/PIgDhrXw6H55fXnPTlMjjnhRKEkBQ9MECgdVWlnJy1AGQ1Vs5LVXBGmbWu+jdN4JgSFxIJhhB6SgRHY8ZJUR9B62UxTnBxu9ud53MhFQWw1pOSjOt8T99vd/eUsM1v22pkVC42TeOF0ktV14xSrvgwDdM4M66KUnljI+QM0Pc3nJPj8flPn3/59vj89v7hdrcpVcdOx6fobCbM6DlHB5QJpmIIqqqadrPZ3W63J+ejEGIYj5Tl59OZEcoFTxiD9xwxEzLOs7ZrvZR//4c//P2bH3e7/Z8+/eq0Jv8mBrrZbI+Xc8jh3e1+0ubx8g0oRUwZMiAFSIyS/ba7DKtxXkq+3zRA2Ovr+VUPzvvgDEOiVNXIAnzwOUKMi9EuuKZUkolCNYUyn9dvh/H845vvKMHBjD4YG81Fm1+ej+fLWUjeto0AOs46wCFgPo1j3/ZlUdd1s9nugJBxOZp1rMs2QwbAEL2ZxpSujJS8jNPh/MoZbzZb4LRvNpQpgmQ2Ayuaqt0pht6tPnjBuDeLWdfo9CkFkqEsG8YlkFwXnaA8OO29ZkwRoC7YutlIobReTFwIY4JzkjMFFKpCzL9Re7m3Oliv1znEa+c0OS44IQoQrV2GyxkQy7KOMilVFmWjjY4pcKoyy4SxnOMyT95pyEhZrZQSono8PXnEsuoLVo7LOE6GEUIoQE5K1KZoMiRIGQlmREKZEiUgFmXPAZZ1+fL06fPXz5Dim9tz23RIaIBcVF3D5WpmAhidfzk+f3r6qS3qD/ff/8Pv/v623w3TiSAlQMxqAXNVNADACAHOOaX/+Ps/XLmG43ShgbZKtF3RNfu679qme3v3XWCcy7JuOgCw1jjv12V+fPp6Op5TzIQC5yxGRikTXEjBlFLOhdu7d//wD/9eKqHX+XS67PYP+5sd5VRK5WJYnNv0mwgYIWKGlIAxDoA+hRCdFDwHSgAoY02p7vpttAZjqLhqVZUSMMJ2Tfd3P/4N4fSmuyt55a22ZmWMl0zG4BBjUQgfFCXMBvN6eGaUSCk7ud3t7qyz2q7WmsPp+TwfZSmL4k3w6zg+OW+ddYDUCQMxe2P1PMbpVVXdrrslyHIO2q42ZlFsGGKBKaeUo3PBMmsopTl4TNnaJce4mjnmILiURQUAGD3J0egpEvFm/zZm//nxnxSrbjZ3nKkAmACDiybPjIkrTLgsawSY52MGUlZtCi664J3VesUEBPH+9r4qChd9VXdFURIClMmqahhnATIgraSMYGOyh/EymqUuOxL8y/F1NrZkVBAEhELJvr+JObsrpTOlcTxTQBt8zpGmCAnGeciQFWPDOjvnuqZTqpitUVUlkPk1Lm4ptm2M5OnwpPWy79/UqrbeJsjWe28tp42QzLnl9fLyeDyEkBnFh7u7333/0Vn3+PzoLoMUKmcQjCjKM1IlKgSeY4IcCaWYyTXJUgkluYCkyqJCAgmyT5SQiglbV+1fdsLT6bGu+0q1FgzElClGJMa4lBKXZdRx2/eqUHUsorXIuFQFQ5zWJQJyoZp+M08XAsAozQmsN8M0TMvctt3tbk8IRu8Ox3NRHX/8+F0hiqfT4/F03u3umKyQ0L7ql1LnDC5iVZRs1fpm8wCIJiaSoa0bWXRGW2s0pVc/ROCYFIN3b/b7vj2Mk/Nect51TSlFMCaFdNVgJkyMkEKJv/vdj+/fvHl5fT2eTgCX67K5kqooBr1+bN5//PDhT59eGaGUEvTRJ08whxjnZbHOp5znad42NeFICBLA2S4XKyAjo1XF+roshzhdlrFD4p0nBPYpMaQpZutDU1Tbpk0xOK0FF0jJuMyrMVyp9/d3itHTMJHM27qDhIfDUXBBCAAGghghL8scfcgF4G9vPSF4T5AxgotdT8ski+rh4e3u7k3VdGVRhRit1cH5uqwQwOgFYkwpJhKtD8G5YN1gHRLFuGy6HgEIUm1WH7QPTomcAc7j63mgN7t7QAjeQ0LM4K3TADGElJxSiqLwwc/zZRovnPO6bhiVQCnnBacyeGecjikTgtos1q0u9P1mXzettZ5QChBSCD4GZ0yMTqoWuAwZlGq/f/d3TdVXomu7Dbea5opRdM5Yp1OMVi/GLASgqkrGOKToCSGEcEYwZUZpocqb/V1wZln1qm0AovXCCNts91JKZ43FBTgZF3s+j4pXb+/f3m43ZUGtceM0r8aGGERhVOlcijFFb623VinVbdqiFMZU+ZoUZLls96rogXAuZFFWiCTGSAmBFKdxPLwe1lWHkBjnjIqUckqJEkI5J5zf3779+3/8jzf3DzG5sqnrfuvsGrMPKRRVXTXtZRy7rqeU+RgoEsjAOGdMJOJijPQ35VqCTKqipEiy90qpQpXeu8WtKTof9bbdb9pdzslbs+rFe8u8H70b5hNN8LDZ7pp+XJbLdDJmbuqaUvDexFAqVUiljFlTTkBzjhFy4IzmHI0eXTCn6fWPP/9zJer77Z1QTJvpt3EOZu9MCnnT3siyoZQzLmL083hczSwkD9E+H544Y1JWKWjr7LUud43ixZhjiN7FoiulVM8vrz/99K8Pt+/v9u+4kC4apIwwmXIOMWYSMoJ3eh6P83Thskox6nV5Pb4Ea70Pgsv7+7dv3n5ExLJq+s02xuCCL6tWqdIHi5RJznPS5/n8X//1n13Gt/cfpvH49O3z8/m0aXcnu/ho+35bVnWMcdWaMKaEGpb1sgwEEBkXXDAk3q7Hw8GYhSH95cunn799ebi9e3dzL5WsN9t9vcWMgomckjarXp3gpSrrjJRmJij1wXEmpVSAkHO2OmjtIWdOyc1us9v0zjjGcJjnGELKJLH8fHg5jKe+Fy4YylBwmglSxiilCYxUsi4LJWhZ1JRhTDEDJkw+x2Ge/nIAfPv6a98v+01AJKvVizYEadf3i9acsJCjqqQsipT8y8tLMK4sqn63KWQxr6uxFjNTqrJO+5QEQFPUZ3rKgM4F67wPQ4xZCuVDCJApZ4IXnC3DeM4INoZCyrdvHjJkb4xHZMHG5+MzEHRaQ8rIZN3dIuEvz9+GyzFBst4zJlYzMQZ3d9uPHz/6FCHnUgiCELy7SsMTBEAUUvjsGw59XSh22zUlwD9dl31zs0dOj5fDsC513QbvCcDV4noN/iAhKSXvvU9pw+urRpUzlnIyzs1mTSlyQoZ1piVThXo5HV9OJ8JoX1T7bieV9MHFFEtVSMHm+XI+nRnj283mdr9ZzFSocte1q16bpvpxs7/d7LVdV7s+3D+oQhm7arP6GKwxpSyCd8uk0/Vdg/KUwjgcz5cjU+KH9z/u93eyrCllIThjjfMmpsiZyDFBAiXLjCnETCAKyhOGBNn7sK6GUlGVZchxGZdxOlNKZ2tCMNN8oZRlTEqVgKiUEEJRSoGxZRkul0NZlrvtLWNclq2xLgZrtcmCioIDEB+idasPgRCWUjBmtW4VclrNpMqSICOEASTIEFO00V4ZJoRT7U3IspQNgZfT5UJ5WcuCgxScUcoIoLEmWpuidd6T5KVSSDh4zyi78nV9zG3VtT/+Q8wp5YyUW+eRJMCYUyiksvM8HA+NlP/jP/wfTtMZCa5mTtmdl3k1S1tVD3d7wrnxKSGkFJ2zSFDWVV3VTVXH6PUyh+BCCuf1QrPjqjJ+retWygIAco4hWKvXcRwo5XXdPD49KwDBaAjBe0wZmJD37z7+7T/+x/3Nw7IuhBAmVIo5J+bMam0Sot5s98/PL1qvShXO+VIqJJQQWrddXrW3hhLSVCWJ3jkvOC+EtEYTwrz3q7msTicIyHKVaz0vqx3nefLOAwBmMHqNUXMmtDNCVRu+qUq5rCvi1WVIMyUxp2VZjLdKVZykEMw0nwtZEpJDclJKQAIeS1VwVQABxrngjCagkGxyEe2sdQ20qutpOVKkiFiqulC1tasQCoAyriAmSjmX4mp/zClG73xMnCtBhTWLd5YSYvRqnS2K5mpaLopqXmatdUEyo/RyGT59+WmZRsbkd29+CJAu8zksZtNtI6K2dtuVhFKKkLzzKRDKi6KGDDklxtCZVU/nz98+H4bLdntfCPHrt1//9PnTd2++e3f/9tdvP2tn2nojaDHOs7WWEDLnkQDWsiaUqqLIMSzTxaw6hfTy+Lws+vV8Hk/T6TwO4/J33/9A6PS0OMYhY56XSbLyYf9GKFmowmrjvFlGY51r2mqeL+MwrMvy+evn8ziHHLmghMLr8SX4WBSqkCKlGGKyzt3dbdqqUoxDzjFEQBJjwGtZmwASvGrBpBCEIBAIMRLM7Ddl5H+fhg7j6TyejoMsq6qquq5vVHUZpvM87tou5LwYV7XtbBaX46/fHi9av727fXf3IBgdLgdGciGVoHLV2rEESPtuQ5mIKTEmlnVFoPe391XdYM4p5qbo2C2fjY45hZx8in3fhRByTASRLYv+5z/9kQjy97//e8zk109fZmt++P4PgKjnpSgLAphDaqpaMhpD5orVqpFCAqTxcnEptlUdYgjZY8opxtP5EK3NQELwhNC/LPv/+O/+4azX19NLcuEwrDGnmDPBjHAVZVwN5IlSCpReJ/pUCsYZY/Rmt7277XNCydgStDm5omQZUozJBU+aBgisZkkx1EXZlIpRsN40deVjXo0mDItKFVJcltEHv6m6TJLO+s37N7v9TV1VAIgUYwhazwCpLuvondaTd0apinE6DIefvvxEKOn6jknOOcfsnNGEMIjBLmtCkhOJISCgj5lx7qLR1nLCWSMZ5Yxz751zVnJhk2Wc73cPjDIfnXdm3+0pZZSymCNklLIUXCHlQFDdqd32LudEkEJKBYOo6uAFIwwAY3IsE86LnFUGF6N3zhLCm+oGGUkp62XlXAqROZdCKABklF+G03E4100NhMToXTA+ZcmZNUstC+3deTzkGBkhHMF6l1L0zj0Ol4yYUpZCKFkQypESyqTgUqkqI7nOile9YKKYQa9TSnlaz798+Tla9/HN97f9NmOe52m1cyWVy95BSCQLQUopGK8FF8ZoIUVTVZSwKx1WyqKQKuQEZIiAkKCsm7KqKaUheOe0Wafz6UAAb/a33z5/u7qSMmTGWNM0/Wb7+7//xw8//K7b7BkXkOdlmuqiygCrWY6n50I1HSkFV0opveq6qp5eXipVIqILUciizLDEQCmhQHKG6K+90DxcXiktCZXjctLeCMb6rgnLMmdjg316epzGmVLOOVdSVKrkUrico7V907d1s99BBogpImJMYdU2xUgJDcEDy8t8Woy56e4Ykk23KVRtjM11LssKkMUcBBWlKFO02qdpmX/59uuw6j+8/0fn9TAflCxIpjkm5xOQrIqyUB1j3DkNjHBZUMZjdN7bnIKQKgOE6FY9p5Q/vv9DU3UZk/OGEoIEc75qNb1eLWTQxgJhn749zetUVm1f94pwKEjX1IDM+uCDJymkFAgFYLxtOs5pDJ4S4s28zOPlclxWe3dzX5ctAqSM33384ePtB0pJ025udvdd3b6cnqP3lFFrLeZ8u99TJD6E5IMzyzTNxsGy2HGafMrLbLLJr+Np0m7bbn4sW5OtQu5zGKaDoEVb9pxLCIEka+bL+XLpdneA+PLy1fuQAzBCfAiE8LqqkJLT+ZTTbwohxhljvFHFw83+brfrqqpQilASU0TMFBFSJoQIzkIKGTJlJIaIBEPwmNJ1fvCXndC4qLXlohZF2RVNW9dTHihb3795e3dzm5C8vDwjYfub/WqWl8sQIWekfd8AZj2P4zpQZJQIJWXOaZ5HTlBwGVKSsnA+GOMLIZXkzpoQwjVk3zZ9qWpCyK+nixCqaVpOaY6J/fHTr9O81nWRIwomT+P5eXiinDdlOz2vSEhT1ACYCKhmAwgmeIKMMYaM8O3OrwYRQ/CAIsb4cnw5Xw7LONkQh2WShfy//GXdKezqctN8NNqcpj9lgJhTjolRpgTxwQkp72+2X76+mODruhJKuRCQEMpo35V/+P67QjQU8+HwsnijJH8dzgWVN1XfVZ2NYTgdnA23+9u+qTA4bdbb3U3T3zy9vBzOp7qqmqp5eX6+63fv37wZ1jlC2G27d/f3hPGUISZAzCl6RmhOEXJCzEVR9t1dzujCU0jp7e1tX7cEollH8ptkEBMQTFkwopRanXt6Pnlndm2fMENGwRVhTEglJc85corO65xTX2+UKK21h+HZBltWm0q1EYL369VT+5t/OwUCWanSX40XELTTi1lTjIJnb9z5+SSl3G7vCBFciJQ8EEDC6npblMW6zgky5yzFaOxk8oiUU0prVdkcvIsI0UHUbpnGpeYKwaQ6FmU1LcfoHC8qyDEFv2gTUwBCgbJpGJ5envq2L1RpY+y6zX5fEkoIFXpZL5ejVLJQFQG6rtM4XoxZY0rfXp5Szh/efWjb1kOklFW85JR7iKv3JrhN0yvBOBckQ7r63TGmFIxZzLoIIShhlHDKSq76qr0RQqaYrNHO6uFynueJc341YAgpEIEgKcrib/7whx9++MP+7XteVIQyZ821EBRiRE6HZXp6fn57x6EGRnhT12bRRVlSSodhLKrSWBtTpJQKzinBYM18GVc9S8lTDDE5SmVK3loz66Gt2nVcBndGJlPI58uwLIYArasqxjSvuquqtqyVVEVRVKpICDklY41zNgUnGVV1ZaxLWUUacgTJJeNU8Io44l1gUrGSKFFJXiLFmH1ybp0HF7zWpmB1tdtATt6nuuogQ/Q+JjdPB+Ocj+HNGy7UrmA1S4ExcT0A5nVKKTRVU7AmRe+doZTf334UTKzm4p2mFDEna1aKmHO2enVOl6r6sLvPH+1luXBCOKWcitN0zMOxa9uu3zJWAmQgAAhV0TIm5vkCOQrKpvGw6mWcF0Lkpm4ZE97Hm82+UAJzzDl1bVvKehhPP3376cPuDYRsl6lQ6nR4sSEWdQO5ncbxp19//fZ0IJze9P1lmn75+jUnOs7m19fX7998+OHD91wQ58Ni1nEeUhpMH3+/3QCkdR2t1Zzzrq6P56PVq5Dltu+Dt5AyJ1xxCSF46wRTgnLOmbdOcCaFuL+5rbpmsJcAgRDkjOBVWZASAeCUWGtSivMyU8oh5gQgGV/X5Xwe/7IR3t3eTvPKGR+GoataY/Xn10dA/HG35UVDOK/0Gqx9e3tXK5UThpDKqoyYzLw4Y37++u3ry8tus/3bH35MBH7+/LlWihJaVFVMMC7ry+thv9sJyUL0OWdjNeOqURUBIpkoiooyVpYlRfTOsZ+en//m4/cfbu+UUISxqqrHJQ7nY1O0khfTZQwupBRCiv1m1zQNpPhbZd8lShA5tdZaZ1KO1tufvn359vj4d9//7sd33w3z9Hx6+cuy//XXPzNCNtsdIoTkKaGQAZDGGBJkQGiU+O7N22XRl2nu6wYAvfeQOAEgJLWV7NpNTil6U3ix3d9QLj8/fmIU6tC/HF6tc5u2v7vZ16qahvHx9ZmX4u2730nZnMZXwYhUBSfwdnf77s1DiGFaZgo5x5ARjLfGmNVMEHNX96fzi7PGR9u2WwTikx/1XKpi3+0yyTSBXpdpWXywk559wk2zlapwIUhZ1VX9us6/fvvinS6U3Pf7ktch2BCt804yiowQyjjhoxu0np9fv56H49zePNy9k1L6GAjyDIgEJWPWe2P15Md5nRBiW/VFUXEug/c5xRisjz4jWm+n9dhUXVv3HHEYzibYO/qgisamsLo5aHsZXn/59BMDZELd3jzc3D6oojRmSTG1ol2reZ7O03RhhL69/7Dvbub5QgC0Ni54JJRSVqpSqEqK+pNxq4k5OyFk9Gm4XFTtpVCCUOftbIeP5Q+YUS9T8lZS9uPH7/qmo4QCQWetsdpaJ2iZkaQUxnm6XE7fxON2t31797EsqmU+2TUzZD54bdZ1Wa11tCxvH37c339XNj3jPGe0Tju3mnUahwsQDjQt67jqEXLgjKec27J5++bD+4/foyqM8wRJhBxS5EyEEFUhAUmOSFFcYZOcFYb6hND1/fl8TsawsjLG0Jyit5kKgjxAGs1M10RyXs1cNmnX3zVKTeslx2zAU8YJIZfl/PhyWI3ZddsN5zHGcRkvl+O2275/9xGR+BSuOPWcQopG6zlnPAwHKcqu3TJedGqvBDd6mZd1drqqu9v+nv/GI2U5ZvDRh2idXZY5ROjqjXHmeHoSUgkhIEVJRY5gndPraqwZq0Pf7VTZaq9TCM6YEIPzNgbfVq3gRQRqrM4IFMiynIb5xHshmbTr+vz6SYmmrbc5Y8rZBk8Y+fju7Xf4nvGCM8oIEIaLnQc9l3UnKS2q2nntvAUAu66AkXOWU5zms9U6mFDIijAhhbTR16oJdp3nYbUGmCiqFil79/Ch4vL56ZtzJkOihKuyKLmaLvP//L//r7/+8riG8Obdu/9w9+bb838KMReccSU3HAXNdp3QkKpQN223qdqXy4AIHMHpWes1I9tvN/N4fH7+QpBQHmLyx8tkfUoQQvL+erPt7Xm4CC4LIQUXquSP317+/NPXdhNccjkjRZIJwZwQieR4vhwevz5zhqu1u+2+KRrKGeYsmJT/BgXx7v7+8XBwq4+Ao57meZ2X9fZmn1KOCSrVNHW7wgUJbnbbH3/4Pvpc1uU4TdoF5ywiDQHmSceI67q6GL8cDjml/WZLkEYbCqFyhmVdlRCFkkoWKWetJy4Yo0RwXpRlznmaxvNwYv/+7/8HReHd/X0COA/nvmqbskohXc5nxsVpOMzW+OBCcITRZR1jioxJpcrggveeUOp9WM2KCEKKkHBxfhincZkppVXxVxz04/GYnB9WrQo1rTrlhACEICYCBBByiPHb89NiNBXsWgj2zhPCAJBkcGYd4kvfb+/2ty6GiHDX78bjYZyXTb1KIUnOlVJSSiq4LAqh5DAP03JBYAzh7f0tI7wRvO9axgEgA4bT+aWsCs7oZTg/Hh7Pl8vd9i0DOkyXnON+c0uJPEzHp9fnb4djW/CYkneRA4FMFu/XZVnmRRVVSkAzCc4jLLe7TVOVvzx+fn1ZeE6EUSnlovX5fJr0utn2SkmGCCGP60JzitoRQEbIVVo0rJdKlWXwY/AEGeeMEioYl1xEZyBnQGCUEUDvQ4yuVg1TUiqphGJUKFlJVQrK13XRyyxoIbgcpwtkgpQbF82yunDSNqxGF2VdVwUCSCo4y5IRmhl4Y6aTampVtNYswBjNCmmIVysRYllWqiznYZZC1W3HKV2mURu93W5LVTzs9ufxdD4dBWfJ6hhCXXdtt7u5eZdSCs6OwzlnQgjNkEtVpiynVZ+nZZpn9vR1GPTvP3636sH7mHL2KVpjL5chhPjxd7e7m3fdZk8ZR4LOGaOX4P08zzEGpeTz16fHx2/LsjBKOechRKn4vI7H0+vNmzeYUwyBUi6Y8CGHmHLCvtt9pZ/GZdnckoxIOWNcUMqlInWbp2VOESARyhjkJUVflX37vinq6ssvPw3D6cvxua5qzlTf1Ync5ESvZTtCyDVV3TTVzX5DOXHWE6SEEVWolMKnTz9RxpQqOKNlqayzPgUC9LJMe6mKouRFKaVYl2kYJ0Zo3+777lYKlaNJKa7Tebycl3lMMWZglPOyqhln2pkcg1lnCqXgPKW0WhtCSDmP85SfntrmZsckvX69InIuN/3ertq7SNASwBhTzsAZHyan9Zr6RKUsm46ci4teFueUEPvdXY4QnYnJU4rBBWORUfFw+2Z1OgMiUM6ElMq69eoTF4JnIJQwb/U8rWZdr3ICyAlJghjHcdLzFFNQRbHZ3FZFRSEB2uPzszGrLJSQxbbfI8GXw/nTl6f/7Z//bF2iQr6/fyelvMzjzc12VzU/CF5X5d2uG8fDsEz3N/d3N/d907XdPmMOTs/LOGtdlG2h6v/9j//885dfClm0da0XfTyffYzXvr0PIaZknEPKCEUhhRLSGPPr50/8fyH/5//xhys1OgPklHJKhFMh5TCOl2mSnDxfTjElsiN1VRNMVdU0TQ/w83UnvKLCN/e7KwsnRajKTklxuVx4UdZtSSgJMRKaCeObfp9iFIIzoYx10TnO+PuHN/vtzsWwDvr9w/uc0/FyvAxDBiiFvLZh1nUN3q7rXBV1xpRzIjl4GyVnOadVL5fp8vnbV/Y//V//p//7//P/9l9++eO7m9txGq33TdfEFNI8CiZCBilk223maVimBQlkStpGEaRFKcM0zXr1LhBKKWeSifc398u6muD+9PhJIK3Kvx4AksuAZFrmxdllniFGhAwZCSEpREB0Mb2ejwkyF8I6C5AB8rUWsGj97fnrutrd7u7h9t397cNlHC6nS3Dp8XSKPt/u9n3be+enYRjCQUl1d3vng7V2RQAIgVOy65pt2xIuBaOqQGTy2/PXf/3pv+UE3759HadRFkUtu1GONnjnzLbLxphhHZVU3z18R2kC5Ma5yU40w/lylpTf7e7afsOYIBl9Css6IYG7/Zu+3Vzu3vtgBZWUsrRq7Zw1hmUyj8Pj8XHX9PM0G62JZLvtvuv3SPm4Tq/HoxXzMeXPh+eCydvdrqkaqdS0DFavkKKwFq78WEJRyohgrI8Z0/XENJoSqhiLlE3TyRpXVN3leFBKNar94e3vUowREkIOEFa9FoLnHC/+dBwOkHJZFpOelnXe3N69ffi9Krvx8nJcnoO3RVFmIDkj57zre04Yo2zVGlIchsswT9vT9uZm37VtJaun08msSykxZ3AhF/VWlSoakwn6HAUwQcjh+FqoKiMGF+/3DwUfHk/P/+mf/+vX18f9tr1t96Jq+7rNCRJ7UaWqN9uIGQlFymK6Zt6tN6s1WgjhrXl6fJzGwfur6ZflHBAzYh4uRxvcZneHuaSEIaGEEkZIyrmp+/s3HzAD5RyQACKhlHEOGZq2DTl552NMKBggxuAzROvs6XRatUEmt9tddPbp+ZsPHRDCAZ0L3vtCFbtN/yG+GdZ5MGNP6r5uVb+1zmDOyzQZqwnFmJpCKRf0MF4AEiHMBXcZL9vmpqz74MMyzSQjZ5RTxpFN0ym4iWZ6Hl4Pz4/TOMuiuLv/uN3eAkDKedP1guR1Wabx4mMgIOumlbLQ85pDTj6eTy+EIFcihKBUWRUVZUiBOmNCcBRZSoFxSSjG4IMLwzwyWaiyvr97P89jiJ5zKYsNRWL0ZbgcLi+vq17aurvdv6nLuqjqnJJz/oqbDM4CZGdWH4gQpSi4I6ZQNck0pZhzFIIhpGUeVm04I0pUZV2XRSUYi4JJxvu2r6sqpSiEEpz9+uXTeVrKuv74/uOnr19vbm7/wx/+dpoOt3f7sjGKi65qOWXO22mdh2Uq674LSSAQTJIzs0zH8/EwThumypTKzXb56U92XWIAwbj1wbtQ1VXO2VobvM9IKCUmecooY9QYk2N8eT5Nw1tKREjJ5Sgpw4RcCMoFV6Komq5WpTeX81lxWbeNtrbpt223+ctO+PR6yIyosqyKCgDkZVjM6p31zlzOR0oJEsKVKlUFhBFCY/AASDnfbjtBIOTIKbu9uXs+vjgTd/2ub5u+qh7Zc0YImLW3dVlxxp01WmtOBRd0niZKGOTIuIKUGOVt1d7e3LP9dvOPv//9P/3Lf/7lUXdFc7vdIOOZxtvNDUSY5oHkrLjy0j9+/VKUqu97r20gHFmgGHddy7iklFrnjseXYToVkqYQc/BVWzP11/7brKdN3azaGKspQgoeyW8hiAyIQDKQWa/IOCForaOEppy9dzlnbe1i3bjol9Ofnl7P/z6AC2bSc1VWfBS/HJ4yJ1VVOWsup5iyL2TBlSA0azM6ZwjJEYKN9nb3VqoGIHvvQ4Bh0f/tp3+2LkYfaiHKugkxPr2+ZgLruvoEHz58lLyUnGumKWFNs5eFd+twPr4s06gBrbUupbqu6rJRZW1nfzwfIGNTtyEYazUpMeWUYqAE9bJ8+fSrLKXWcxSSpuC9mRenZB1iZhkLLgnSn5+e13Wx1t003SimBJCX5fH5y/l4vN3d3N3cCyG4EG1VE0qlFAS81XoyS8zpbs8U43pdzsP5y9Pnuth++CDW+bKMYdvflGVBkSXMGeLil6bqG6GGaQACddkava6rNc5KzofxXJaHbX+32d2tehkuIQHJOTqvU46YI+cEc47e5Awx59NwsdaO81A37fv3Hx7u3utlOB5/hZybqoneRM/W5ezN/Pj6+Pr0ui76uAx91SohKaV919/0u7rtF2eAhqKstv1NUTWUi6rebLd35+GUAJhQhLIUo/dWW+2tMcuSYiKUno/H8/lVr0tKkVCKhEipvPcxRinEeD5SJqSqGRdI0KeASBAoF8W79x+ctZRxABKC54wxQjONjJCmqq11xq6qkEwWMcZpvgynw/F4DDGHmJ3xleSEwtfnb4TQ+81DURSIaKwVgm+6fnErE2S72bg1vAwH7+y27W/2NzH6YT4RROdcSJEJzjklQKUSi3EmeUjZOyeFkJyN0xGRWr58/vZHTnDX7ZZlsOtKkIWUzuNBu/V6RsQYnF6P59Onb5+s9/d3H4FybwyndLPZCsFTdONwTEP2MWx2t5DzOJwIQilLQhmkYN0yzpfgg7VasdJqO45D27SU8BwjoyiEzDkjpXW3z4AxJiEKJQXjlCDx1jq7IiGI9ToPzkyIYM1ECCMtiVzkFOu6YgCX8VxUdVlU3q2c073qrTOn+TK5uSy6gtHsklRKMOaDs85CRuvd4qws5ce7j11dVIp+//0Pbc0vs9tu6wgJgLkUMxIu1b5qbm8flOSU8dmM58trq1qSYF7d4TIkKt7ff/ibH/6QnBkOg/WhqhvOjwAZAX0IKToCREoRYrTBJUjOOa01QZym5T//5z9bb1GwlEEImcClBEAIpaKo6t1uczw+T/MoJDd65UzWTZ3zXyuxz5fh3ZuHGKwPinNGOEGXYw5VXSOgtZ5ywilTqhzmi3WOEU4JC8HWpbrpuq6tr5+8wwRQCu+dDm42q5JSKRViLMqiKEoh+TxPCdCGMK7zqrW1viyLvpeM0uJamSsrFsIqONvXDUL0OTZN25TVv37+1+RtIavXy+F8HFZtKePTOlKED/cPlJKmqjkjkOP7Nx+7umZcKMHPF8zRsRRNDhR4Wai6bf6y7HXVjVI+e1Wo4K6osquviSBJkDJBIoX0OROkiOhD0NqmRGJK4zyNs0LCYoLH19e7m2NXl877vqz+8fs/xJw2dVtX9TrPhpLdZiPLMqTovLPjRAnv+/tEMkW0IWSnMeVxmc+XARL1Fp6Ox1KKu35TlTWXahyXw/lYFsXL4YVL9eb+w2T06/lbI0uJ1KcI3nEhN1WNAC/n8/Fy2nXd7e397UPTb/fnc9bO5XkCBIJgl4VSJhht69r23WW4uMndNbu2rBekUlVsGkO03swQXML8sL+pVKPXlUDiQvCiKmS1LtO0eqYqoHKYVsosQB6mkTBaqnLXbFJE7VYpFEWSc5qn6c9/+uPj4fnHj0UOyVln9MgRy6pjsowxhOiBkELWjDHEMacsqaSSaacZk4zRGOzzyy/TdG6bDZcFsGFap1VPwfvreBxTxkwoo94nQund/oYSQgk4a/S67ru7bV3EePn25fOm2kDwejkPw/NwPr8cXmetS1V8V7+33q7WUEL5skKFu93Nd3UdkzZ2cc5lNvgpH84nVZaM0bK/r+s+p5Ry9M5oo6PRep1ySotZX54f13kNIV3FvzmCUDz4eD5ftrubnLPV2lnNrxE/xASZUgCCbdd7H5yLMUZEFEIyxmOMnAvKOOJsrDau5EJCSin4oqgIsm+Pn4FgXXMEcpXiSSG3m77rtzGGeVq0NiaGN/f3bd0oqiLzbSkJJaWqpJA+EiFkiAGRVXVXFGJZz/MyKyqbuiWMhGBoDDGlw+nl8fXx/h7N6r89fr3d7cVehhwfjydMAll2r48+hUJVOZOc46bZUGRKlUijLGpjPSVEFaX33ngP68oYB6R12dZFE5y1diEA0VmhKsFoU26UiITInHlMLqdEKMEMlBBecmdNTNG7hSJwVpSqzO3W8sJaPS9LioiYQ7CZkGm8mHlmLDtvx3FigueYIPkYnDWzcWuhit3uphA1ZZQLofUyziNBBJIjBMKYUEUK0QRnkw+YOVNN2/1Q1kYvjayrUnQbJYVwYU0kCsXv72+Sy4JJJUvBWVGo4/kVc8oQT5fzOI7rqDmKmCHm7LyzZi2K4v7mTvLC+/ju7ubLl2dEhJSstd5ZJSTn0kfvnGeEpBC894KLWes//fyUMecEOUKKGZEIIRPSBFSqsuk3MYeyraZl/Pr45bvvfs8K8Xh4/N1/3wlvdneKK7POGYB46mNouz7F86LXIpc3qgrgXAjaGGNXQpASKbhijOjorbU3ux0hGTDndPP56+NpPI/L+PLyZL3fdH1dVZJLSmlMOYQ0TrN3IcZAGRWiIMYNy1QTyJAlY9poZvQ0rebXp5cP2+3N3Z4zcRqnp8NxXS59010u5nBezsOYId/sN8t0+eMvvxZS3W13lZLarIrJRFJdtpyr7eZmGRdCXszlkHKgAJz+NQb673//t4ng+OWnaI2SxZXchzmljAEypYgZK1VPWnNGgeA4L+O4lKWKKRnnM8S3u3t2U5xXkyFXZfP2nvrgGy5rVTDKuZKYE8vhZrMpuk0CNFrH4KVQRdFE7y7D4Xh5qUSZM/3jl1/Pp/Om6R9uHwYzkwwJSQw0h9y2zeLWTpWUMT1P//RP/1mVJcvgnf3j4Z+fD48QM6XcO73fbKRSdl3WRY/jWFSHquurakOBMkqsWQpZ63V5OT4LpgChq5v3D29P4zlDqpqeCgeIJubLeP755z+uduVFsdnc7vvbm6YJEFXVVfXOm5XlsNv06zrXlRJUhRABkne+LYpK1d6naVmiNZKVQes12BRCW7ch/sY2OIzz5fBEIfsEIsQM2QVTdl1dNNqOw3DWy8KKsq37EAMArtaHoDd9CSlqPTVNT9jd6XQ8nJ6sszmjMytBgJQZF1wUhSorVeQQAXNdVZWQ0/AaidPO+UyOw0Wosmia2fnP52Pfbu+2YlnWRrVrMGQaG1UVqhzW6ddvn/uuZSz7YA7xZfW25E1ZNTiL/f7tfbsFhAQxpeSci84Fu+h1QqTD4XW8nI0xhFIMKYaEJFNGY8jLbC7nMTPSCRGjN3YhlJdla61NKVKCAIIxGoJJKSFSzpkQ0sdMmRAkI4BPESDkxHwMySzjeH4+HibraEqlZAc96+fnTVO1VzM75Oit4lirbVMVY1gpsHlZOKZNU1+z0fNyZlTGlHTQ+93b/fYuOH2yT8f1/N3djw/bt5dxOJhvLMG//PQvvz5+ffvmA8/MrFMpC845Bfpyufy3r7++275/0+wvL8OXlxckAgHKumS8fH9307Z7QFZWdcqRCTGNl2kZxlXf7W8I44i8bbeMMBcWwaSxel0u9viNEt7Xu26zW7w9jbNkZCMKaxY9XzgBJa8Uh0SR5BBmdzJm0euSQmScJwKDngvKmRCZEGPMvF6ic+dhWK1vu5YxhhC9s0iwa3rKJQIJyVPCGScx5P32DaP5dX6c9VCXXcFKLIhUlYpWm4lm2jTbjXizTGerF5JlDW3KzkUfU1CCCVoWm5IzBkCBUB99VTY3/canNWgdLc56LouyUKrvesZEAiiLwtg2ZSx52SnugyeUIYA2bln0ynyhCsCUEyihJjsRSgll1lrvHDKaUqIEY0opxprLFKHbbD+++7jp6n3fj/Pxl0+/UMoRkAN7PT7+ZSd8e3eXKXhLIIXLcBwXe7t7U8lyXUbtM0FSqnqcTvMy5Jg4VRQBSVKsuFxevz1/e3P3tqsKAqmput/9rj9P8zhcqqbRx+M8r0gJYZwHQSlxziFioRQl9NpHizpSIQ1z4zgJxo0x7DSNXdPHjE+nE0qOgOdxLkUZY7Au/vD2/X3vPKKPGXz4GvBfvvzalCWjIkJe1vXnb4+neXr75s2m3RMhM6K1HpG0bd3UFf83PYCzHuq62fU9zWgCp4xTyihFH/A3G0D8zQaDhMSUp3lZ9Eo4AUI4E13d3/S7vttttQGSKcm7vpdS6dW+Hp9eTs9939/3N4orQmmh6gzErHqaJ8uNNgYTBO/0omkpueDzvAzT9Ob+/R9+6All58tJ2/Dt+EoI2W93iokYwuFy8T6YVQtK3+73Q4xP51MIsS5r64bzMoQMd/vbrpUIQEQBmSYXhODGaudh1YviwsVwPJ833bbtGqONsVYoBZA5l6vzIQQhCobrp+fDcTq+ubmri2ZcT3Vx18ieEjlNr+s8iEze7HbP4IxZkyCM0eRj8HbwASMd1uV0fKmlHML5Mh2NNW273e3fBSZmZyOhb968Ywi7/X2/3WWk8zpFcNn7ZRl/ffz5l89/FpyTZUiZxOQZo9aZYMKmIYrLlKP3umv2StaU4GU4z/PMKCTnBGNVUamyVqrOISzzcjyftXdF3fW9WubVh7jf3cbgBz1tNg/v7j4sbrnfvClFe7gcKqlC8EBwWc14PiLBhPA0HGvJS8aeXo6HabrrwwMTGYiselUUlBBIcOV45RD0Mq/zSJCOl8uyrjlnTrmJ7sqt45xBzs65ZZnrvqurCjIYY4TEum4Yo+u6xBAZSfnair3WmzlnjHJBEXLOkQkWbHTO8EJwSjymcTw9PX+lrChE5Yyf9DKuI+d8mc3z89N5uHBGy6J0MfsUU0wpuRD9rOfT+ex9EpIrJeuiXdYl0aSUghjPl9PL6dK1Nx/uv6eZjuOvXx5/PZzG58Nht92+uXsnmFiWy+VyBJL29Z4h/d27D+9uPgzD+enp9XgeCOWcMgD6/HoUXG77fV0VjFHrwsvLi9Gr9S7kLGVBkDPOYrTjtDIqiqJFQjKkw+l5XpcDP/fD6fl4eD1e3ux3Xs/DPD5dDmWh/t3v/64syxBilpggO796bxCBECq4ipBz9kVRcSUI5cM8PF0uyziVqtj0O4KwausChmC33Y0q2nkd9Xj03njru7orq5aQPC+Xb49fMiF6ndtq09T7ttkpjISyZRqNWyvCGMFI0diASKWsvbNCKMpUJWpIyRhdVZWQxbrOXVEUQryez9YYrR1SlhCklLtNH1MqpESAopDB63UZx8v65elbSjkDGmtzyiGmlFKIhFKKCN57zgRAztdcfYw5Z8YZpQxipoz76AVnMa2/fPoqBQvBee9C8Ms82ap+s78D+K/XnTBjqpstaZrj6evL6+kyrEpUD5ubrm5fhpdVLzfVnkKKzpzP5xCTlLKu2pvNHkJwziNhCXBaZsHkrt919cbd3Bvnvnz9chnOPpnBXHhUjSyFkF23KZjgjNnobErRh7ppGaPOegRSlBUjkTBEwQXFvCx61V8Y5U1ZO4iH42tBhw93byjnddutq0kp/vz85HzQzoXzSXtLCKEIh+NBiELkVBYFY0wwzikN0Qcd/3oAXI6n8/Ht7cPN5ubnzy9KCquRUsozJTkj5Jwh5oSEAIBz3lqXMzjvCcmU8b7Zdf1GlTIxwjhvVB1jIJj6ptKm+Xb6EiGX7UYx5nwcphNjYtX6p59/meax7fr73Q3BpNdV0iKlfLvZdUXVlLWQxcN8RzN8eXmejXlzA9bax6dnmnKIMfronYNCLUYLyXebnQ85Qlr1PBmrQ2JCBecixZBSCEHrdb6si1kw0phiWZZdXd/c3OaYzsMFAVez2uD2fc8ZjTmfpsl6T6m4LGZxqWrarmkRc/B2CvBy+vPT+bGQ1Yfbt7Oep3Xsm5uqrDOAyTBcLi+HT1V9kJIzBF5UCESbxec8zPN337+7+/jhdBmqsvmHm5u3+3vvFko4oSSlMC0D12tT9Ezy7f6+VNU8jeM877bbQirMp+N0OZy+FSUVQizTGHwklO82t327tc7Oy+nrr78G51RREAS7zqUqpBSFKlz087pIVYSQU8qbfnsajp8eP5PIZMk4B6Hkpt95dHqZDsP5y8ujc1FQ1rdtUVeLWwkizUgyDS5KLq8X9KIQKcYU4zXeHnzw3szTGIwJKY3jxTtHkIacAIBzzhgTXOSUvXPeByEEAKaUgJCcEuTMuaDUeOu980jZ1UmHiJRQhGtDPefkUs7O6XE+km2mKeYc3j68OV9Ozy8v+11DCFarvN/tfQ7zqjkVLRMh5nm5hIxt123bvXWma7p5rs+XoSgF5cRovWhdKhlJMkZP0/Tt2y9Sqbv+dpkWY9dvh8dfvn7rqs3f/v73pRLDeLhcXmNyMebFxUT4u4d3ELJb1+eXp1WvzpkMhhZVqYRScl1WSaeqKHMK//ynf3l9Pd7t9m1Xvbl7s9/uheA++tfDcwjh9uZ913RcCMbI3LTDMmeCl2E4nc7nyzitpqvKTdeFSJ4Pl493Y0rBxVhXbaVqQjDFnKN2yTlnAqSIkEiM0THKu6a/f/Me76AtGh/sNA1AKONClIpKdrocrF8owcs0ztPIOMuUWO/O50OOrKq2lJYpo/VmWmaupFIdZJYixODH6XQ8P5+HebO92akbFx2hBaO8KlpnlyXqGJJHn1I0KXrvrXOM0H2/Md4lgkBQcDFMx3/9438pyqqsmqqoucrajOOyhJASQEwZgBAkddMCydO6INKUMqGA+JulilIKARCJYHSx1lqHCEbPf/rpn73TjFFCYJynGOEynm9v33z/4W8B/h/XndB5KwlFpOMyG62ttZfLiWegBMd5nOaxqYrL+bQu6y+//Losuqqqm5sb770PhlKmRMEp1Ua/Lsdh1v1221Rd0XSqbi6Xw+fHn4/jIdiwLduqrDhngjGKiA5LzhBoVVdar4g55WgWyzDGeRxSiAkhxzya+eH2tmpbxykVwgzzt+MzYJaX502722/bv/34cTG6bStt1xRsVZXv37x3yU/zGdehlGXfdJvtphbCGRvSXw+Abd8/vRxfj2dGxKwXHwIAxBhTvsL2cwZAwKsQJriQImCGHGJmmVPe1Rulist0sT70bSclm1fz7em5lE2l1O9++HHb3Ly7fZcgxuCQCsgoVXFz+0CZQARI4eXwkrzuJNMa/GrWZXXWCi6dXrqyJg/cGF3LYl1W5yzPiIi7vg85D8v0six3and3dxNDGMZxdaryZdO17baXzn99fVkOL6s1iNkH21dNUzURMyWUAHm4vR/H8+fHY62qqu7C7IxZGWCh5Ns3b47nM6jwd/L3L6fX4OLXp6+EgDd+sUYHS5E35da4eJouPoMSxb7bxJwA+7aqYsrLsnIh2qpkQIHSSWshRdl0Ice+3VXNVs+z9w4oZIIxeWPt8+HL4+HLtrvdmLltqn23qXhjgr1cLnVVNXV7FmSazi7alDIlKiY9TkfOCutsjGG/35fF22VYvz5++fpyYJxpvfRl2zW9VNIsdlonxvm6jJMeggXEHLz//PxLVRaoKFKWabZxOQwvq3VSim1X9k2fIHPOlSDTeLKY7m7uUfIU4rLaFOLnX3/edXvKWE7JBx+C996bdTXGeB+cNjFenUJACMk5X88A59x19CYYt9YAsrJuCEHvLSJc/3xwjBACGEK4KomcdyFGSkgILqWEGL2d5oEIQg7Dc19v/od/+Pcvd8/GOSAkFipBejq9NG338d2P4zq+vr7mTOqu3da7WhU/j2dGyN3d29321lnnU4A25RiNn5lgTd2bda3LMiOej8dn940gQI7b7fbj7ftC0efTt+PpImV5u7t7s/9gaVaiDFCvbjWzyZjbtqey8MHt+/0ffvybpmvsqnOMx9PxdDj+9OWTkmqah7or27YlFKzTxtjFLIILxJQhISDJILm4u72rZKNnM8rZVtkFH0LADCxhwYXRqzFj0VQuLC5IxjjngmCWQuYU5+k0LrO3M8m5LlsqOKSw6W/aqrfOiKIU/Gpo0Ho9X8YD5wK47Nvbvr1t6opRUZS0724YZ5TXmElMRrs5YaCsFkIRwoOPlSiH+finX3/90y9f/v7v/odd/y4m/PT1G0nku/u3SDDGbJ1HQgnlgkvJmI2m7TrBi8s0REDv3OlyGZbx8fWbc/n+4d3f/vi3kiug3IVMCM0pxpjIlfFAsirluE45IyEEESlD/O3GAiFjijF6hwiEEmNX5xbF5MP+xgc3L6PktttuOZMhRYZ/jcPoZXh6wbquSaZKyZfT6Z///MfTdtvWNeeVKuTT4evnxy/DZX59OQrKmwIQSMywaP316Vtd9zddq1fz7fmFivlvyqooEwdo274sClnQ4pknmwqpAKGtCiRZr6uzK80SCF+PRuuFUwaI1ln2x0//ut/u//Dxu2+Pj5wqmVPfbt4+vH/IoPV0eXmZzudvp9en02upqlZVfaPubvoMMDuBHDmnfd8dx/OX5285hbbsjbaUi9t3O1LCNP21//ZyPPmYxmW9jH+cdWKcE6SAmTJKA15hk4AAOcWUQkgEMWbICTCDFLJuNwbxz89fvAkfUxScOZ98gCmayzKUrWrqhjOyujXlLAnvm52UC6Pi7c394fhk9Jhi2Pbbrt/qiBf98ngZIQ9tpQhBQFzmJYY4DeO4Lquzm6rJMa3e1U1bYCaUugTHcSwk2+z6sqkfbu7arrUhZCS77fb1dJyMbqqSZFzHWS+GF6Lveu+dd3pZFwo4zZOPQa/r12XetN3bd++33e759fVPn/98t70RQv78+UtT8LubDdxQhUXDN0XZRR9XPRFCH/ZvCLJRz5xxJEAYvbm5bTpHrqCSEJTku5t7KdW7N++FUtZqbfU8DYAZMKuizClPi3YmFLK8295Jzhe7WtAUCGNCSfr88uVyqqybbfCFlNrpEMI1lRyiPp0P3mkhmJS1qJt3779/PbyOy5hzioiZ0ZTSaRo3lKpCHS8vl2EYhlFymREcTe+3D/1mI5gw0zk5vWmbd7dNDIlR7kPUweaYpmFZlrlQ1WazywKih9Mwn4fz9z9yQmhOKaUYY8xXAJAxxpgQc8oQQ7q+mqWU4L+LcCmjBAllFBGM1khYUVaUMkJQ6zUGF4MFoAgYY0opEYqU4lVKw5gAQIDMEQQlmANmfl7Oh8Ph+7sfttv9uMwUIimLw/lQ1+rDmzd935+mExJGgF4ul2fxMij5ejo2qthUGhid1uUynuu6rOuW8batmr7uLKHjuTiOF5tMqVQpyxS82nAp+ajH43SGlLdMQAZGuSw4Z5QnUdctyxwIdt1elhVA5oRu+12ANHvHKDsej0+vL11bf/fwoSyr/d2urct1Xcb5Yn3YdPu6qqb5sCyXgst5Onmnm7KMPqYUy1JRwRkj2q7ajARDUQgbbMoWDL6+PrvGV0URnA3epXytCi8+OMBacgkkz8uQIRszQcaqbmspGOWYcvQGU9ZmGeahKjZ3N++Vkowg5yIjBO8Q/39M/deyLUuWpoe5dg8dM6Zaaq8tjsjMyqpCAQ3RIEDe0GDkA/MBeEUSAJvdVZXqqK2Wmjp0hGvnxTqZiReYZm42Ywz3Mf7/+xGCACIQHIh5JpKM0pgQarHSWhunCWPL5XZUKE4KLjLfnuu6DxYyFGEYoogxyiCEgokkSgkEF4h7NZmhQxASxOZxgkmapwvg4DQroIMaZFLFUZQ4FzDE1roQHCLY2qCN2aaV9fZStyCAEDwICAQQIEAYY4IgBITgAABCIARXpOnt5pYzbL2exg44wJFglBg1DVO9+WslPF5O8rjbbm9QgEmUQOCkmj3ws57v17fBua/PX15Ou/4yBBdYHIuIx5xFhAIeZSI6HQ8RIbtD/fiyv7255zTiXEzTqOXEGFsWVbBqHmY12abrELAIBDlNLvhsuZRKUxylWVkWBcXYak3++Ocffv8bvyqWwywxBBFNRJQIEQXvu/pyPh9GKQPCANGX5tzSYVut1+nSuUA4wyCc28vu+EgZDxCmadF1w/F4Vsq+7I9pkqC/56CBS9sggMqkaKWSkyWIYsyMVwEixhhQkwlBWeO9Cy5450PwCEGMMMaBEAJ8AAAGiI2xx/NFKhkCSkS2XS3PY8sIATAoOzingg9Se+uT4N04dGPfnZt9FLH7+7ecCsTTZVJYyCapZzlqPUkzj/N8vnSMijSKJj11Y88RKbK86wcT3LKqrq+uFllptZZ65JHIImSMMcBZayBEZZIknDgdGOMSI2vMuavBGGY5MEI45RjT1WJz7s7dPKU0GWXdyX1SLIpqvdqsf3n+uj+fkiTZXl2/214JBno5vL/9PqPZabjsLi/H87Ed+/vr27urilNBKOnnXmqVFfmWxwgAYwxmLM9yHqUheAqQC65pDpfL0RgdiRQT5pHXVnvvN6vrWcWFyIJVw9iMw/QSdgggCN3jcYcd5Qyd2gsCYF/vExHdbG6LuJBqlnpihBHCEYTWqJzHfHtV97xIF2VeMhFpa8vVJmZRLPj+9Ewx0d7XfVcWRZIWRb6Kebrbf27702QV54wRKmiMEUIEYg+8MmyxoIxmUQwAOI4n65C25t39N3c37wghzllrrbXGWRucd95Za40PPkDwV5Wd9/6Vgw8RghggTBCm0zzxAKIkc94773DAMAAlp3Hok6xECCpljdGUEq2l0so6hwm2ziJIrdHeOBlmkSW/e/+Ph93T0+mZYJEn8awnIyeCw6oqtNOH+sVhHUWM0igJ8TyP++NLPTQ6zyhCXKQgoDzLAAxRnNyUS+JDc97vDk+n89mjgDCiNNIW9sOEKZ7mcZxHhBBBSCBi1VyDY4IKh5ZcZGWx6kHtIaZYrJcbLphSMyVCO0sJIhAmUUIFXSyqq8VWe4OhO12eQECT6o0DgnE1jvvLUwiwyMuHx8/H48uyWi7KxaK6StLk1J4JZjxiVql1WdZTP1qFkaPGAB6MVU03YxCcMUorhFHEBSI8Tas0iqzTjApGSTO0xrgoiqVVxmjkAQBOTuO5PXbz+PtvV3mWOKudg9pM09RcjjuAab5YURYJShmLjJLBgUAIdD6OY2P1ZMxqvXn75repyDhDURTHUVrXwy+PT1pNH+5vGKOL5TJOsmFo94fnbmy1MYRAGOA8Ty44jFGR5gShYXocunZf70UivPfGGYJfAXkgBOchzrLi2/v7ay3/1//fv1Lya4oyxq/ZVQFhyBlFEGH0Kmj0hDALQlCy7c/TNEU8c8Cd6lqoSerpw18r4WJZHc/npj7nSbUu1/XqgAheFvlsNIH+eNw1bT9LXZaLRVJqYx1C+/NhnHtOOCdCzdPXp+ePz8/t1Cf9RcoZQnA+P9eng4YhL0qGiJ3V+XQepR6mtm3bqlje3m4gCAjAVbUUcWy9ZZhCD0gqRFPX0zApLe+ubrUPECFttJHzTz//+Ie//HFVLb9/983VcnNs66ZvhRCYsWkcT/UlTaLxrD49PC2KajZqkRTrct3107E9Ph0bRvGq+rsM9HZ93TaXpr8AihDBAMAQvPceEYgp1Qp6H4IJlDIAoHUOYwwAeB0PIQynqYMgqtKsdSiLkzLLACScxoSwKsuzLGGYtE0/mZlTMkzzLA2lfJT95/3nurl8e3PHED01zfHzL0WWl4vqu2/ezVruTi+n+twb4yiOsgRxOlpjgoMQVEWZpZnxblGWEef9WBs9GyWf9r3xIc8X2nqpxzgWGN9EEQ0ENm17PO4XRRZFzBqt9RwMo5A7ZwIEi0VlTheM0c1mq0KAiO73LwSB375/55RdVqtFtYwIb/vjD5/+fL7sV/elkGTs+65rLXDHy0mwaLPcKK8u9UVQkmZFksQUY++9sdY7RxCRsr/UZ+/dpWmapk7SlCBmjVYA9OPIKUvjRMnx5fRkjOrU4BwAiIMQPASEsiROpJ4wBIPsT8/7PC6Ch3M6ChYv8yqKYmtdFrF1WlwupzFoTDGNKBGcUk4pS9OUIjL2XR4VqAQOBTlPIAQCUTt0HsJT3/746WeAwNVqRRBzEWKEUkYggoiLdRZXedW0l0NXI4QJQddX19988+2yKAEAWuvw+qfxr2Na7JzzAYQQIIIIoNcG8Lq1e30KUEoBhFJqiFmM4Gs+z+svaGOklgl4nQX5EIDW6tw32mhKaQCpUnPE0ljEaobzPMyYFXmZJNnLYe/8nHBmnD33dZGkCeeX6TwOvVRyU14zkaZR5bStu7P1ygQhjcsTRggByCdJmmVFMKrpmpf9Y910VXWlg9ydjxANDKEAXT+OSusszaq81FpCB60Bsx57M+eL5bJYraoVcDYAxElCKZ3nyRhFKYu5iDnz3mdZnpRxwmLCcD/UWitI8CLfOAAgJFrNXXvyylkPXqbD/nBq2xZhkmf5MDQRF4ygXs6zkk4rJCJGcR5FEIWYCc4EDGHWUqtZKwWCT6KsyBfMeS6EC6EbGwax0XSaZs5hXZ+01dpKTog1+uvzp8+7L4QyY+bm8jLO8yRNCOhyOlijOSXPT7sAyZv7N5vVZhgbHwDBxIVQVKuI52W+nFQHsWEMOS8ppVebm4j3TVuPLJyaS5pEN7e33uhpHBiPIi8FpnGSvVx2u/rEMNturhfVCjGWDGO+FogSB6DUWiobIPQAvMZUQA+KvLh7c4ch/MOffhSxmoY5AE8IBhAgDClmECKlFQDQWxsLMcn5YfdYprFxjhKxXl576AfVHeqd8/ZvlbBIipjF/TQab3ol27E3QXdzP2v3l4fPwQGtpizJf/P+u0VSWue8c3V9Ulp1Zj6czoKJcTackdv0ihEq1XA4fP35p78448/9hXD8Zvs2jZJ2Hg7HepGVVzflZrMqM3E6HSDmnNHgrFZT4GKWE4EYxElEKP/jl1+SOPvdd7/DlPVtf7kcng+nXd2USb7fHyyEWZLgDHrgJzVp6C9DEwiwAf309TnmtUP+XNfvb++uV6uUJy+X1jlT5DEAv06BqnyRimR3OWBGgbHanjFCwIFfqWcheOcpwRhhY8zrc/5v7olg7KSmSU0++EKkZRIvs6Io1yIqu7ZtzudgTbSK5lk97l+267UP8MvDF0xYzHmR54xxEeV1P/3y9essexDcZrlZL5aIwtWymKWctTk1jcCsijOWiHyfXmVVVSyM95iRqiqBtc+7g1FTlqajnCmP1pubIl+eTs+ckQ/vfqedHLpBGaOtrDtDGdFaBheypKI8aud+dzz+5v7b62pzOu3zPCurDWF0//LAoFNSIkiTOFlWK+9AO9bO2uN5t0wLQlmSxOkoBOdZlKixf5gH42wzdhjjS3sp8jKKI+88CCHLVyKurAuHy9Ea66231kzD6J0f+tZBoIzmjEd9NM29serSnno13a1vb5YbkS4w59Pc2nmq+7DO72c9N1O7WlxnUdGNNeUxxTxiwgWojVLOPjbHScur5Vo5ZyFIBPPO++CtswGGZbVKosh4Y7V5enmcp9Hk5uXw9HR8Cgisi+V1dZslGUH4tV73XTvO00i4hWCcZs6jKEu7UZbVZrW5ElEktfbeBxC89wBCEMLrsjb8dfTvg//Vykvoa06Adx69MsatEyFAhChjECIIoQfBOw8BRAg7Z0NwhOC2bS71CSGYRqmaZ8opIZhiiCF2Wk1jLTBmAMSC2uCiiDiPJiODRhkvS5whBIQWRZkRwrI8t0YXZTaaAWK2ubotuBinjlKSRLGVcpzaADDEUb5g1XKltGRxwhA384Ss9FZP80gIoYxJbY1xyzIv40wFU7cNAgBhkpZLD5ieJcKAMew99N5TgSAlzvpZzlKPEWeXYbLWroolglSwFOMIQjj3ff+rRaaapnmZVzFlm+11KpLn87NxivOY4KSuz5f2sqmWVZETBEPwRhlvJyGiYOzXhwepZJLGyjnMGQyQyQE6O8+dhIQAATHv5glhilCQapJzaNvLsT5rG7TVT8872cpm6CHEgsT707meRjVM50ubJNmxG//lt4RFWKspWL2vj0Dwf/nd/1AtVut8o+Rk3Ywxy7P83dt39bldVxUkVs8Dgfa4+6y0tgBtV2+yOHncPbbduM62gpWTHBz2zqoyiv/xu98xkUHMkoj89EtvjA/B++AhRN4HxsV6syYUaymZoC7YJBLWmX6c4ogDAJ33ITgAoTN2nuYoEdqa5+OLNimGKE2KJEsooViEh91Xxv6Ogw4ACC488G3f132jfAgA1vUFQv4yXgTjqRAh+G5oGMKU81ENURw57/aHQzcNeZonaUonaK2JRJJw/unLp58fHsukhAD1TTfGQ5VXhLA4ir798N32ZqvUNI3n8Lq1n0eMcbBO+2lWE/n09NVh+7/8z/83Belpt5vksBLbp6552T1FkSiygnE+KvXTw5d317cBgTihwwyaYUjT6HazwZAwxIzUk5kP9QU4c7+9ur++vr+7u3Sd0vJvDWCaxsViWZaVMmpsHrz79dMlmECMQwjWWTOrJE5eB7J/s86FAIZZvhwPEYtjESkjnZ7kOIxKZ4W61PXTyxP0fuplUa0AJv0oV8vl8/65n+XVchMJsUireZj6oSMEvnlz+839h7c339jgzs0OAlClpYiT9zdBSeWN+T37/rfvPhQ8kVqf20YaNcsJh+C0nScZR/GHtx+ut3fL6orz6Ha1lnJKIx4gIx7IeVgvKwiC9RoEJGKxWqyWxVI5+XDsTudjHhWdHALHV5RGUSLzkoEQJVY570No+47zOIlywbOnlyfofkiTNGLs2zf3yINuGs9DzSlNomSzWLfjdDh3T4cLZawqy+1yRRjjnA9DfaovTjvB+ax124+kH5xTAEPnrbMaOAOBv1vfLIryj59/eD4eXMD/vL779v1vT5enr19/KbMiiyJKSd3XlIjr7W0AN9bAWc5SqgDdKHtGk7vb94+7hypfvbl9J400VqVRzijt2tOsx4wnBId26LRzrZy5t9MwuGApwnebqyLK51kBD5MonlXfja2HfpHm2KPL0CJKiiLP82LtIRZZnGYBIh9+rea/jnpCAK8ZEtZhggmjVnlEXqHaGEIQQgjg9RoBIIQQIwgxY8KDACCKoqRva+cDJsQ5N459HKcAeoSDoJxAhEKghCk5WO8oYjAg7wwMOsJ8Wyxf6t3p/KKMsUYPkz0P4s32TvASI+Cs8SgwwSgm3777/v7+gzJKUKKMvAwnjEgsMq+1dzYAEAnOCGEIXsbGOCsEenXIc8YHKQc5EM6rYk25mK1Rzs5KQQg3RcU5J4RlIp/Gepx6EMBiUWAkpB60MuViDTAY1KWfeg/p3dW9MUprQ52z1s5jr6ZhGGfrR4x5kedKTYf6eIsoDliOshnqSBhBNXQuS5KIsSyKUPBN16ZxQTDXRtVNPwwzj3jMEwTR6bTnhFo5Bm+auS3zdVktbYBJsLGIx3mAmAbgTPBZnF/athunITdqvIzTKERy1gMm7Nv7209PXz4dznIY60+frra3N6R63h3GqWmHlsTJ0+qxGeo0jspsCYNXxnroprEO3lyt14s8bbrjf/63//1yOYsoqpabzRpEcblcunmaCKTvNjfGSg8cz+JhHJu2Q1PPmQghrc/n4DwMAAaHEAbBEUI8DL98/ogQuL2+/vxlN0o5TsPd3dXbdzc/f/o6SYgQwggaqU0wiECMcJlVOFhGaVUu4yiKIwGx6ZLUGP23BgCBJ4i8mrUwRElUooDk2IKAMAgEhuCccWichzLJp056ZyLGffBpEos42a42AYMvx8+Pu92quvnuw/eMR3GxiKMUBDVpeenaMh+XxarIS5FwreZ56pSaD+dj3alBqqvN2ls3jINxniCMKSY8wP/4z//18f7spPnx6+e/fPkLMepufd0PnRDRelEdm7OyGlH4cL5cr1baKutNlWeLrPDv3/ft+NOXn/en53PbQQ+0s0laEsCM8X879tNuF4u4Kldlmj+kTQDeWwPBK/oYOO8WZbKqMkL516eDH+WrSAME4L0fZtm1o6FORv7cXDgCm8UikOhQd/00BgdIQA8vOyLEsiiMdafL6Vif8iRfpEndX7x2TdPW9WW7Xd3e3uRJMs9DO7dNcyaYW+GNNmmWrpbLvh9GPUNjnNMIo6ura8apUnKeRh5fno87QNB6c10tSoh03ZyncXLAd3KvjZsn03RtO3TBO++UtTpaRILxfmjHvqMQYgIpJ6vtmhA+TZ2xEhMEAU5o+hrj9JpjXlWbb7/53fFcPx52aZREPKryjGPUjF039Yskz6KEi3hVrAOjg5zGcarK8vrqZpbj4fjQdR3wQIiIc66ts8YrM3NGs6zQShonGSfeWW31Iit+//43wzQ5RAABsxqs82m+4D7GIRBC1svIGOmdFiTOiizPC6fkpT7UXbOIcJlGdr1Nk9wbM4yXUfZVUSUsqetz17WGzUrP/TweLnUnhwJnwduEi5v1tm4vp8uJME4Zl8Z8eXp8Or5ARt5d3d2vt+tqjQgRnIMQEhGLvMSYOu8RepVjawAABMAHDxDEhHhjKKNUUaN1gEhwTjAJAXjvvfPBBw9CgNBZDwAkBLsAnPPBO5EkDgTngrXTaxmKolTuHrQynR2ur66mrptlV0RxHudGq7Y7PJ8OebzAhIMA2mlop84Y+e767Xq5xZClcU4wbPozJYhCTONEKyyA816oaZJGBu929WmScl2sOcZ1veuHgRKRZknd1fM01eDYz2PEOMEMEnJs62Eeim9SRrl0FiIoOOdcUMIIwlopreQ8D21z1lqvqs1mXRo7Oas4J4RA0TOE2GqxBRZ8fvxSd5dFumAs2u9eTrvDrFS1XCVROsrp3/7879rrVb6Hedk13e54XlXUMAeBWxQJRWBs60t3sQDnaTXK8acvX9tu3KyrVbnIRWy9DhBQhJSSs+xtsJxwo6UPoCgXzltnFEfUebgqVzrOjpdmHMzpdKGI2AAnM3R9VxTV7397db1Z3d/eNm23ry9xxCBChDEcRITA/Ztv8iSf5IAwKosNcG6cDlpO58tL3U3azAhujQskyvfNAx8NxunT7mmxWFZ5GfJynKV3DkDARZLEBQaUQdJcLofd0+Os/vjDz/OkwOs9A0IHgkdwVVbbZdR0l/dFGRD+8ZdfmLj/j//tv6wWWdvWl3oCkITgIUKEIoRgACGNEhzMqlqtFuskYtPYvDw9u+CHafpbJUQeYAgJE4QKrGQIMObZ2PXQGU5QmaeYEERQxDkAYZp7jJDgLE4iLri2znjtPcAACsLLOKUIERhuN+t3N++1aqvFCgHCo5gQ7INt+lbNWJnp4eVhNjZA2I19PHFgrDHeBEf+6ZvfCMo+v3xZb9Ypj2hS/vj09G8//nRTpG+2d1W1mKYxjsX93fXTcQck8M4pqeJYdNKe+wsGiHOWFilllBKKMVXeDXrCLuYQx/+HKOSr7VWaZos8d9YhiDFGFjiKMULYQYgxWpT8//I//ou35Hj5f7XtCGGAEAQQEAQU0XW1tc6/nOt+GCFwGFMXoENIGvv26loQ8uX4fKyP//DumwDB7nxyzk9jP47tp4cv86gp5okQRVoyxC7n5tx+PrdnjmhRLKUwBHXdPGw8NNYabwc5PR52lIj1agVAjABM4+z797/xzgdgvHWPu6dE8GkcurZxyCexoISP7dz3TZ6mjNK6PQGEMGJGzb2cIQlXy2UaRYssK1EWCHHeDWPvjFstr4p8iRHQRjvvYfDWmVQkZZEPUwcxmbScDgMGfpQqixPGWDM2kdeLYhXF8XJRYYx9cDCAS9MeLz9mcbrdXHHOpmlCABQRv/QXBHCRFCFJf/76s1QzhXCYplv85np1SyJhAuCUaj1lcZ4k+Tj1SvZayW115YPpu3oKo4EQQAi988ErLS/mcBndHHxEIgicnKduaJ53jylOhkkOwwgJuN6sl0XeDU0sCOOEMwqcGcZBGj0MI8VaKi+YmJX2Achu+sV+mub2/ur+9vo+4rwZLoCwFNMAgH8NSYDwVesJEfTBA4gCBAEEQgmjdAYQQcgZRxD5EJwxzjoAAMQIIkIw44yH4DEi3jlt1DTPUZxyEY3n/hWZyXiibNByvN3cOmeO+xcAgk8NwwxA0MnZeouwyHjEGUcBKTVNwQkiVsmSUA4RMcY2TYcAXCW3ve77oTVaFVmOMHbSrfIryngzdP08t8b88ONftA4BIm0lACFL0iJPIKY8XqxW67o7P5yPAPhDs7cYLfI1DMg5CwBo+45ibJQyVimjEWaRYFzEiCLEEAFgGNrgfSpSCHHXnuVk5Dg8Pn/9Gh4pEn03jt1gvN1e3eZ59unpiwP+qtraEH55+bJrasTj9XoTcyqHZh7HyVurp+f6sly/4SL58c9/+PTwGACGwGMHVKIgdLFglBAuxKTn4EII8FK/WOAACv3cSSnztMzy3Bh1advvvvn9Ij/KeRY8UsYQAKssQ1zMZlxk5W8/vL80l0WWTnPfTl0RRyJaiCR7c/NukebTMCpn5Nw76wFCxjoI8aWrX3b74ba9v71/e/PBmHDYPSmllTYheMa54CIEKOXYtGfh8pSnMMCh6ffPL5fTsW27ry+HedZccAgQhMF5H8fi/dVmueCLPO6m4X/6D//wf/2f/8OkFQyoTJJNlf/8aY8JcVIjhCEAFJPgXN2f4oh7TJQ1zfH4hx/+VUl4e3dLcfy3Sogxw1RYKRORT1q9nH6QQh9Ol5iTOIsWZc4p9RCm8cKisDvvjLabqmKETXJWxngMExZ/uHv7Zn2zyAqpu0PzgjBDNKQ0W1Q3wdlu6LkQyAMCZ6um3eHkAXl7e3c514uygN5FItLQX2RHOCHW2f/13//L9XKxSFKS5TCYVb6UYToMxyQWAVsPbRzx4EDbtCym3juCUCKirm+HcSKUrld3FgLGxPubu9N44on45+9/CwJ72e3/duzrzXZ33keMMUzGoQ/eY0Ks98aaVy+Ah1BZk/EUMRIACAF4HyBwCAMIIcGEUpRwti5urXfB2kvTeYwgIZemgcE3fTdNA/TgZlmZeQ4u/PT0+MvDUwiwSDPKYLkoIMaDNh7CSzf+8vU5j2KEGOOMEDb2/b8f9tY749ym2qyrK2PtrGTTNsPYTfO4zpZS60N9JJCFy5lwnCQxIYRgEDwQRJQ3K3QgdV9HUZwk74L3AtOICYjxYAmEnkeRCyE4B6xGGEWMIcGyrAAwKC1BCN5bozw02imZxUmS5NvtlZRT11yGsXMB5MWiyop+6EzQjWwRZ0meY4rr5ty27aXtm370NuRJruaxbo4Ms4zxLEow4a/MHGsNQijOMkQYJNSCIDBOuJi0srOd/NRMzTJfVcWyH5oQnJTDNHWMcor4ZaiHvgnWQu8G3bZTzzivAZMTIwh67cdZLze3iLpLPwoAF0l2leddLYyNXPBSTmWcxpSHEGjMIaCn4XLUxyovlnka8YhELBJ8UZacUanGmEdCJAggCCCCEBLyioZ9fTJ6HxDCr5YcToUmGkJoraWUQgistRCiV2kQgpBRyhhFAAIfXvPCIMDW+NmrMl8yHgPYeR+CN+v1Zhh6qcfd/lhf6uvtDYBkfz7V/fnz89ckTW7Wbwhn80VHiK7Sxe6w//c//rFpxtvrO0xIIvJ1dftyePr4+HFRrr31WttPD5+B98oOq2yZJJGLHQS+m3qIiQsKQYQQ7afRmDZLk5vr+zKvhnk41+erxcIZe2naarUVlAzD2Ew9xRQhjAmyWgHo83SxXjAAIUSwGS4+eBwEDJhTAVCY5/Hl9JWiuEwXWZoqZYN2nIZiuwIAlnkCgb+93iZpFNEIInDszzyOfv/t76+rtTX6Wc+6726vrtqh+fevj7/57VUkkiRK7zY3AAApx6eXXVFmWR4hgsw4U2kIitKiolQACAKCSqqXl5e8WKRZJbiom0MS5W9vN9vlduhr7723fpQjj+KyXM5qVk4H6wNEN7d3LngXbCYEQiCKU+JA3Vy0ns715XQ532xvrq/uLJsZYcusHIkyztR9x+N8s7oBzgEMjLPaWg/gPCvjjZSjmockSYamberLX378y6Wup2EwWg/z5EAIAUAAMULQ+IjxcT4xThhPs5iVeS4tSDBfVkWEYVkUGELgbPAeI+yttcYCEAxQ7aRE22ZFOWstxOLt9XWVl9rMf3MCe0g8wM75JMs6p5KsypPyaf8yWR9hFIDnFKdJUWTLuj/64A+nhtEojjyBZFXmhNH1ogo+zFKJiL3sn6BHTKD9+ctmcVOm0cvpoRvb6+gOE+g4HiaXZcV9UXZtBwCijDZ9Z1mw1ndTT46n03q5WWaLr0/P+4gBBNO0+Kdv3z8dPz/uHyiK0lQYP0Pg8kQEaw/thRCSRnGZpjHl4ygJFuM0McqKokqSRBNdFoWgYpzVpb38XQcawv5yEphsFiupVQgBQYQQ8BBhjC2AkYg2yxWwFCAUQAAAYIwhhCF4xqjUs/WuzKOb1QoCpLWRUiJGHAwE4uP51HVDzPjXpxfZTwhj6PGmXEMAq7IoyqxuLhbYAH3b9mW1+qd/+JckLfZPDxgECgF0Gjt9Oj4ZbyORXgJc5hXn/NK12mjj3LlprbS7y+nz8+M4TKtluV4tViLO49h5F0LIyxUivLDGoGBBiAgVhAPvlDdJkVEbz7IvijIiqZR911/GWboQynJtrbF2MFJSir33yrrRe+h8CPbSngSnN8utICRf5IJHy2JZZvk4Zuf6aKwZx55QAQnshsYGu14sCIDaaGPM6XL++PkXiHAWp7OSEYljEddDM+vxbnNVFBWL4iTJrTPjNGCKlbUMgn5qH58/mlnebm9CcLMcPz18Cs5wLMg0Xoa6ri9FWmBI227YXU5lWsDZA68ZJoizm5u733z7+34cDFBQz24eNSXBWDlOxoPaIgYRJ5RTwas4TrKPh88vL09ZFGXLxWqxBBCwKEpEqua5mdtEpJg5ZC2DCGMcQnCvuPpXP34IAQSEXtnPFGOMEHLOcc5fVwWUEmf9a0YYoQQA+LoW9t5KJTnn19d38zwBCJM064fOOQ+h67rzDz/+hSECvEOQJEmepuU8d9OsvMcUMykVBAAgksTV+XB42ddSmv1x/OGXr5vN6vff/ePN9kaw+Mef/1yU+6vltfdOznKY+07WTXPBFE9W50m+TFf/8Jt/sMaHELwPx8vRWhXFbLYdllBKvchzq/HpeIGQqFHBBQTBgeA5ExABba12Jng3jgOnBADvQiiqbZWWwWkffNucp751wPeqhUGW0Wq9WkU0Asqe2mPwWM768fBZ+6Gqlh/evqnixf7yjNAbBOlmfRXxmCBEIrRYL6ANP376eH11/83bbwEIN7dvrjdOybmfJ4wIpuBwOXz80w8Ys/f3795c3cVxFAImhKd5AQM9tkcuGADImJDnKwShs94ao5WilHLKeBItqmXEonNfa2WdC8vVtqo2AAajp7FrpZ5nNRlpJikRCh8/fvz09ev4YWaUYOARCdfXV1663fHp56dP5WL7Zr19d/PfKmcfdk+zUY/Hp6vFCgLfDe2opvOXX4DCRioAwPXN7dfn5xgG9HgIPngIHYIUIBigEGzS4+nxhDG31juEIYr/l//z/z2YrqnPWqrgg7P21RXwChh3zvrggkNFWiQi6RuURgljdJSjDX+3xJ6bJoojD4NgWETxv3z/+yorY84ogdL2EFkPHYDOu6mud23XzNJEUbquSgRCKmJCiGDCOhBF+Sw7D+Hbmw+Eh5fjk/fG2LHpL8aY3e5RxEmaRGWeU7wICH55emRJdO6b5/3uen3LCAvOkVVVvr97gwj9QYiHl69plq3LIqZEqexJ6cOpHkZyOdcAwJhG79/cj1pJpedJccowI4yIaVKTlGmSkDQe1Fwl1TpbaevOl2M/9n9vAMY5558vR4AQ4YIQOg49xCggHwDAFBdpvFyUUgNMIIQAQwQhCD5ACJ3zDoJxHrdv3myrxaVrnAOCvXoJoFKKC7TI0oynggkRpd45CFGZZXeb6zRNeMyiiGNCA8THeucA2L7ffHf/DSeoqY/704FTZJzux0EwsSmWiLJmPKMZiSiFiKZ5RkTUNBcW0UVZIoxyId5dv1lWK6dNO3aUsTQpIpExGhV5MU/9IHtOubXKGpsmmQdunrruUtMcDV13ri82BEJwcMao2ZghOOcCQZAE76d5YhCP06C8fjnuCiGyNNHzZOYRpMUwDlpJNUkXIMH6Up+sd4QgzjjHDEI/Tf0xgG6aJvMagcJcABaAcZrPbQtQCB54gCYpGREAhnN/OXZnjDksUczEu+1bgoVx1ljrEfEAHE5n74HxLmCQxInxeJimaZIAsmm2RnVZTKUybpp4sbTWpkW6WlfyctbWnvtxNqHuewRxFRX10A5aVXlFuZBqNGoq0mRVFfFr9HYI0zxr6QEA+/oIQPP2Pr5aMowxBNA665x73e364AEAECAI0Ss7FkGIECKEQAhfOwRCEEJorIEIYUwACM57450QzFjEqIiTGBPirSMIZ2nuna0vx5evDwmJb65uUXDzPAZrKYJRlsOr2+vtJs+y4NGlPjsP4myBMK/KjZYGY3441p2c7m/fyXmGARJGH3YfsyTNeIyB41iU6RKE+eX0ogJI4zRJ4yLdCMohAJOUgKBFsUTE//z1x354LpPy3dX948tnbR0Fvj7XZX60fhYiyZLcWj3Nkw8OAWuMQQhFXCzyMk1LZ61S8ocf/3g67tKYBxRkGNNCYAEXtEiiNKG4nvcvx4tWXpnZWPm8f3xz+6YvqlHLhFKI6WRllhcRpg5keRx//PKpqBb//ff/vC6W5+5kg00otQYFCMvlEgD788OnQ1MjRJebLeF0GHunVZJEWbFMkvL65o2zfhyGOEooIqOclFSzUR6CbhgEYxEVfdvMsB+mvp0nxlhRlgFYrWXdXgjCFgBgDCYYhdA13fPucKy7+YefD6dTlnCW8re39x7a2UkTAiUgQNNP9aRkO16UlojgbVkiiLIsPTa7S919c/tNxiOKWRTH799/sFr/6YfPCGMQAAogIOiCi6MoZoXS3fF0adtpHM1/9z/8nyIMvjw8TeMoZ+mshxBRjr1x1WLJGLXWdk1/vd0mEVPjiAPACAxTr9Ts3N+3oQijfu4hQotyWbdn6AGG8Pe//Qfs/aybQ/uCAdLGv4zHU11r49dXq+Wy2K7Ws5rarunHPony7equyMoQTJ5mURQhHMq0xAh9ffrKSVouWT9MOrgoTkiMIQL7yz4p4yIqx77drjYEE4LwzXZLhIgpY6NRs5Q0oDBrAQjBCCPECRcs8j7YQKw2Q9tMk+aYGe+8B8fj6XS6OIC6aUTYF999u11tv37+HGUM+fD54aOUM0B/Fz99fX4auqFD4XRu+hERBCjFHmITAAoAAB8zquV4PLVqGoMHDvgAIYAgAKCM7frROmOtcdATTjGPgg2n816Nshlq7wLGLEkFp2x20gc4aQlwEGkcMQFAWC3XiUhnpRV8eqnPb24Gp10cp3GceOsQ8i+7xyguNtWGsSQQkPISgFAVJSZk1kZEIo7YZlG8214777fL5arYIEwa2Slji3LlPdBaIehR8BRj4EPXX2Y5Agjvrt82Y7M77bu6j3lMCdZSZlkWFaW3fprqtj8P7aSV3qyvV8urEPRLczw0Z+eCCrYeGm2np/NzylIA8aQUxXgcR298RbBxnbP+anPDIO26mhKUZ8XxfB6nOaIiW6R3222AEAcSQCARAcHHSWqc88A5JzEip7pppvZ6u03iGBKexAnnyaznfhyrbHl7/aZpGzXqdbnCgt5sbxiNnp+/KqPLanV79SYY+1J/Cc4jwKWZ667O0YLzSDPmEfGYLlfX60lKM/E48gDmEV+tltC44/F5t3sui1I7A3RAiHgPrQdZnlFMPh+/7M+nq+vvkziHCGitf2UFhhC8C84F7wIIr9IgiBAkGCIEIHx9NRprMMKY0tdJInrNlnDGOfsqJA3AgwDiKO777jUzoG+n/W4fs+Tq5jrPcoScNUZq+XJ8ihmF3kecBRuUltZqayyi5Ntvfru/HH/56ZdIpIjA2Q51c1oVhbcaOD276Xh+0TwJwd1tbqVXX3c/T3qAECeMVVkpGIcIM0owxYDeCZZhBN9dh3P9XKRpkWZ6ff34sn95OfT9PJohyfjN+m2w8lwfBqsIZs5oSrCAkVaub1pnPCLIaokABg5DT7QZtLfLd9tVudVqigiru8Ns1GKxXJVXSo3T1Ek192ODIOil6jApy2UWQNddDCPGGWdClpWL1SrlEcY+iZO2OWsjIQYiFkWe9WP39u4eU+yMvb1aWj/3Q6PkHFDOxpqy6HbzXinZdmdjp3EyQgjBIxiAYFxx9XJ8lOddVa4Zo4fjbl+fAcb7+rJergWnx+7gXECQ3W/uBI2MUtC7RVFsFlvOxMeXz72a6ACAM1xwkVJqQZXyYGVv5qfjUz32CEAY4Om0w5h4b6FHKY+2iwWBaNZmVDJNk6eH8yglhgS80qKxRwiqeXp52SMCjpdh93IWNOkuzQ8//uk//et/QhCd6u6VYkMoM17GWZZFoh9rBHB9av4w/dvt9npZpFWSPe0PzdATQv5WCS/N6Tw0eVFkcYYAKBY5pogSGoKBDsci9xacz6332jq4rJbfvfs2iSMWxev1lTHmdDlBxKrlOhYMwZLxSERiNrrMNwjDy9BdV5uI8KstObV1AIjGwlgdJ9m3i3JuG2S4sfp0rhll6+sFiUTRjvLr4fk//fGPepLrZeUAyopEGQOsvbvaIIjPda2NrLuu7jpBKaZEaaOk7OcJADxbSTl+ejlIGZ6fdrIfr7YbgsAizjhJAPh1CvTx5elUXzAh0thg2aufzvkAMHolb0zz9Pi8u7QD8AEhBF53wDA4H6ZZdv3ABTpeThiHWMRxlPOE5ybbXWYPEMbYOnDu29v1ermoRJRvV1s5jxSRfhwf9o8muPu7t1Gc/re//2/Gcez7DgLgrC6zPE2LELxUsgihqKqIM4CQt8EYiQJxDjhrqjRLGR+7RiGYJGmelVHEzl19ak9VuYpE5pw3rldybtqLMUZZ2fVHI2WaL8Zp6LqO8SjNQdt0gouqKFfVqihXAfhj/bTf7y6nThutA8yra5Zk3fmxngcIsaBitmbux0PbygjN9iiNjAhz2gbrNTAIg4hFSk7OaO9VzHmRZ85LQRGAqbRykD2n8WJRSStzFVFMKOeEUaXmc7uPRc6oEFxHNMp4EnM2zLM1owE6AA9BAB5MWillNkxgFpzRALFezsehLlCaLdIqqkCkBIsysd21zwghhkga5wQiNWlKKGdcY3psXmZjoEcpjSAA2thJTsYZaYwGnmAiDQAQW6dHJSMeD9oCzNbbN5iISfUwQACAD94776xxzrx2AgAhxr/e+iF6fQdAhLC1FkKIMHmVkb1eQ6zTzllrLEJQyskYTSlzzgUAIITTPI7jbKz7+vQQrI0jtsiXAbpJjYoTDgE1nEaJdV4rTSAch/ZCYhGnx74RWsUZjWDaj81PH/9S5HlVlbWrPfKMkxDgODa75rQ/nS9NH6w/52e1mpJl6qxuxs55BwlxjoJAUyEU47Hgo5qM8e/efFjky3EahRCbYl0IUZ93x+bA0nSRVRDAtq3bdogY74e5Hi55ki6y4u2bN1LJpjn3Y5csivXybpku5+ninfEIpfn6enm/Squ2PShTeQCdnyMqlgVBmOZxhgm+NKcR+ijLRJwsOB+HbhxriALD0SrNRzmocajyMosSIVgSMc4hwYhg3HU1F2K13gDg+rEBCF3TtwhBKftpmgGADNMsSRmizpmEmwADxLiIM2u1D2Hftd045oWf5eQ9gSEoreOICxEFCKVRDmhPfLko7lbbtOA++H5sQnA+OOtsNwwPwKc8Mtb0fUsQnOcZAfx83MVxMo1yd24nOUH/w7IshIiIiMIYhr6XyvwKIgPhNeNXyvnptBum/lDX86hCwodp+re//PnffvhFcH5pB+3srFUAGEPofIjiaBgv50OPAnArVGXZfu4eTwel/bJaC87/1gB++PLFQwAw+cv0w936OiWEUxAJCiDqR8sRm6ziXARAfIOqqspEbJzt5ma9XOZJniWFDQDioNQMMcvzmGIMoApU9NPZGDPLiaUMWBuMuQzjMDIQQpKkFKPd0B0vtZytNPbU1L0ayajny9A8PD1KaQDAowqfHg/RmW63K4qFtz4Er2fFWZyncJhGqQzy/vl0QBCMctbO++AjwHbH3eVcm1lzSkQ3rPJinGSt5N+O7VzAiIYQZiWxhyiQV6uXD8F6hxA6Nd1fPj4YY18NnxhhhJD1JvhgnRm6bpYQA4A8LHM7jZIzwii9Wd98YO9PbbM7nRkhUmqldFGIIi+sllqbfVv//PgYc7Gutr88Pt5ut9+/+6Yf+hCC9/DSX14TyUapkiTW1io9C8wgQsPUy3minDddDZQjhDVdD7yOhZ26pq4PTdcyHm1X2yLLtVUQEWus0a5pGuWG4J1gglE89C0C4M32miKipDTGpnkeRzFGAmIwzMmyWHOcG63WizUnHDNyvdx+fPxozJxlhbdm352VcVNQFAlvQz12BOMkTnwAEWNcCKkVRJYyMuu5GS/D3DkfEhYPUsfJ8qq6llr++OUno9X7N/eCE07ZLO0gR4DouloVLhE8muRc1xep1HZ5w7mYQvd8fJZGHutGjhoTwFN0Ph4IiQatVouF0tO52VMUeISrcrEpbpM8xSEoOUo5pklSZitnnRARZHQyQ8z5drE5nY9t16ZRcnV9HQRohvHYdXSct8W2zFIzKusM5+Lu+oOCJC0Xs5611oIKH7x3zjprrHHWvTYDAAAm+K8zH4QwhhARQqSUAYBICGtt+OvOwFmntcFYAxis1fM8CyGsNQjC4F0SxXc3N5+/fDzXtdG2bnzTDnES90ODYFjkmfd+0u5Sd0rO33x4myeD0bv16vqffv/7P//wh2lETJB5HoGzjJMoZqt8kYlUCEEInscpFtF//Zv/ZrvbHeqDMWF/OSkfIhFLpaQcPbAeUM4TrScMvdaqUxOl/P7m/sCe94293t5viuXz/uGXL58X1XKdrW9XGwhCQnES5Yty9bJ7+PL0Cyehh76bpl6PGoc3bz68vX8fEa7k5JwNwWY8+3AdCZYqLSnhUVxCiJp2tzvsOWEIU2B9EguKEQAoWEAhnVR7PO6meWLssFxsZzV3U7dZXC+qKuAQQzoZg0BAIchpjqM4TqNIUDUHCODx8oIB5oSN4+ycH8eh64btxkRRYozWWhbp4nUNQhG7u3pHo+Rcn1fVcp5qp4ZFnG2KSFAOrbE0xFlU94dTf0IEJxHLUgGBT+Pl18Pjy+MOIqy9HcZ5kabB2iyOIp6QZXRpW++J0YhAnifZa9U6D30KQoqw93oYRmUchL+OFn1ALviyLKNIdGNdpNW2iinFd1c3wNt3b94C4PteEoIhAJTg4AHjsUgSvweHenh7ta2KYlZq115+eXmI0zzN8ur/GI01u3e3N6uieD699MMw9xch6GZ9I3jslPLOYQy54NbC7eoqjuJ51qMdY+SatmaoC84HCCAGnCVRkltn6/qsvYsYVVJigBHE0hnVT/M4fX1+mtS0rqoPd++8wcoEwuNlzNNJDkl8qi9k0tPlfBzay+2yWpZLSvm57bqha3vpQzicXoxShLBFWeVJrpSdrFNaGakhAJ2SxrosibM4Tjh3JogsIpy0cpBWEUL6/u/q15vlKsIUUEgZU5LIUZfl4tKPDmAEMcaUYUYRDxAySGAI4JXsaD0EAGO0XCy6uZdShxi13QRAlye8WizTJI9Y3PQTJ2xTVRQBiCDnnHMuOMUAJkKkcaylnMdxHIfTmaRcaGtFJDbVRs6Sc0Yo++7b3yKI+3l4fPg09y3E4PF4QJC+u7mTVn7+8miMs8DkqejnQc+67tqURdfX1y+7p6FrjbNCJIxxziPGuOyHKMriOHXAew/TOHHGIQA4YwjjWER5ms2TtcbEIs6iimBmjIqSJE0SpWdKiNa26bu3y20SJeexu79ZY4s3xXpW84+Pnwjw319fXy/XFGMAMWExwLhtT+fzsw+uSEuMcMKEBKofhqowo+yNnmMRBeCct3GUCxMbFKqyEkTYSSmpXg6n3f4l4tHt9h2EYZaq6fpu7uIofru+n2T9tNtxkqRJRgj97s17ZWQ/jjW7BKSGoUlJl1LR9MdLc5jGYVlUm6u7WEQAwDRKb9ZXFOFlsUIAPTsrjQrAV8sKcgoxr+vmYfqKfGCMEoo5Z3fXb1m2oAjJecYYo9dgDhAC8M5ZY7X/60oXQQAgCCFgjBijvy6FCQ3BR1GkpHz1mb82CWMM5x7i18AACgGY51EblXDhvU2iuEgTTrBI8nEa2q4d50lbyyiBWAiBdZh8QAGReTZDJ+/uV8s0e391ezk8SKkiEa2rRR5HnArMKCDlPMjzZIqixAgVRbWINzEtVqv17nAYRkmpJEQgiCmJAPAeIwCCtRogF0JI0mQcp1N9SOM0L0oC0dg2+5fDMMx3Nzmwfrd/GFTrrFovrwMGAaOiXEyql0oZD/Nssaw2eZLHUSrHCUHf9/U0jZxHWZ7v9y9KaUSJbhuEqA/y0+7pcqmVst+8/ea/+6/+BWG8O700Tb8qVpSSgJCx1pgRw/Y81NKoVbk5XfY2+JxH7dD1/YA8oCwy2H788jFifFlsCBcYEO+8A74sFpRwbfQ8TYKJLMm9d9M0hODlPE/TlETpIs1/++77ujj2Y6egdcQwTHKeYoyc8yZoBH1wLgRnzGTM3M8TCh5hJOehqRvrSVkVucgjIjy00KAoya6u3qRx+/D4NKh+WZQY2SiiWZJehqadp2WmOUSPu90sVQAQhgAQCj4gCLbLxXKReaSyaEkg5Zx/9+49JXi5qIa5vZwvCASGGaXESGd9oEIQgpMief/+PmGEC4YJPs794VJjBAFSf6uE72+272+v+qkXhAfjJyV3l50O4M36Visl50kHuL80WZJmaR5x4Ywr0kWZFmpSp/Yy60lZFSVJVW7LAhHK22mqh3ZbLcZxhh5xgCnEkLLRe+/9IGXu/ShlkZarattNUzAmYnQbr7VV5PHlxRrNmaAIE4JNMFc3q2zKnvfHcdZtp62xCDtlL4LTgCBl3BnDMQHeEwAYFynjFMEsSzCiyIM0jo0H0pgyLb6//Q78P/7312NfrRaEkdHMRbHYHeXTsNdaW+cIEwBiGwAjBFgTMZaIGMLhlRHt/WsYrVsWZVbk0zgSzHo5znK23pkQvrzs22FSVm8Xy0SwJBVFVq2rinPeXE5dW8PgF1GkGd2fjzyEnItLXQfv2ibkUbHIF8ZOFIM8KwDElOIdxF9fdoTgaVZNfwo2jFY65yPKHLDLIqeYPzanx/3h+9u3jMeny6npzkmUam1Xq6s8K8dxzNIyjlIuktlMIkqdtdY4xOm+vkCMKKHW2DjKAwgQgUVRRiI5nXdqHqw1u+bQT73gvEhy74P3IaYRQ/Tu9opjjibEODVaKTlqk0npGWGLfEF5JPtzJthiscmypZYzRB5RXLf98/4xeHtbrTAhBOM8z6I4SlwKMMiT2Mz6VB+ulre31ToBATEBIQjOM8Q2q23pMm9VJaqHM/rl+ISBL5OIUSooTbIUDc0qKQE21nrnbTPO/+mP/6W+HLM49tZxkUaJJZgChAWPOKTWeOVcPbQehKHv0lwsyyrNFhGPHj9/PdUvlPJIF5wlnsZZxbWavLdMJD5A67xzrzBQZ635q1P818qOESaEMuYhgBhhEQlrLUKYC/GaBPAKRQcAAAAxJpyxcRwAAAEErWUixGa5UtF0ujxBjt7fv/POGqW9Nc/PnwGA97ffAhguzRlBcKrPhKHt9to6+8OPfxiGzrsQfLDaQQAFJZGI4iT3vZVBOhu+fn1eV/m2WgkROaDMOBMKRRzFScwpAxAiACGGkBLnwTB0AFGCIooYIbae6qfDi2A8+LB7OTTdxDiFAAgiducv52FfZMnh/NQO83JxvVqsuhY441Meaxe0tseu62dZJKnS09wPSimRmufz/nzexyJFEACCy2xhvQEYKxe6WXVSKR+6rvn585e+b07Hl7xYrJbLRZIRwtO0BBROagLB/fT1o+ARWt4EwjlL1Kj6TtXn7svp63pReQW54CyOg/MAamulllOalFFVQoggCggiH3ywFkLIBMcUzPPZGYaBXS0KJuypPryqQbSzFHMMoZazMwZjzBgnEJKA2qk/Nad2mrtpRjhKWFzFhbNWa+shUY5aQDlLrDHHrjm39aV/5nHUjX0/DIOaKSRv1htljDaOIOaAAQADGDBDWSaYgCXNcp5hT/OsiARpLnsGTcJQJAiCEARIEbXQOA8cAFywbz/crddllRXWyESgdioCAptyxfnfcdBK9X/59JdZqVlavLrNIq5703ZdQpNpmvquG52TxkXOE0QY5ohBwinG1Egl4hww3pxehvoitfWALBdXRbkYjZRGP+5eukGNk9kuV5hiRNm333z3O8qTNJbTBAnOswIgYq1JIq7m+Xff/YZc2tbb4LSFAHTK1F1XlvlmteFCdMMMAEiixFozzxPE8Xq9ygQ/Hl+avl4uqiJzxjnGCCfYeR0lIsZplZRxnnXTSBFO8uTvKiCCWMLbSy8YMsYopZzRmDAiYuuMC55gJLVW/aiMfvX7WOu8BwgCH4K2KhCMGbHAewg8hOeuv/QtgohSvlos3765u765YjwihIyqn9Wg1WydVtYY44yzi6KIIhEQhhhPvY4ZB84AYIM33no5GGMdCOi6Wj6kxe5yrKqSCIoILEUaU1EtCmOl4MJYp413GjTd8PjyBBighKbJYrFYeuibsZVqQogempbgqZP922scgmeYCZ6O+qntGwyh8X69tJlItDRfp08YEylHBKEHWGqdiOyfv/2HoWuBf81ZjJWSzmnEGOckjnhr9Q9fvjydDhThKltYYyLBm+5ovG6GFlIhp0kwUiR5kV+1Y/P48NkaK2IYjO7b2irtg8M+PD1+IYhQCLB3RRYHIyBmVrUiEpuqMs530ox23tXPkx4pgM7p8/lAMe7aoVqU11dXlOAQ0Dz3T9MTxrTtx0l6TjwkvBuG/XGfRlGa5ohQE5xWAwSYs2yY+ijKIMIYRnKQJIBlUVCEZ62Z9eM4xFUEg/EBEkoDACE4720Iv4YBBOud1iF4CNArtBlhhDGijDpnAQKEEA88hJ4LGn4lhUKEMELoleZOKRMiMsYwKmY0hQAIpflq/T58M0m1XW277rQbjlqp1XoFAYhiFLHI+RnA9f2b65urWwzpn37+83G3z+I4TTMqWBJnwIPd4VBVsFpclckq5fnxXM/KJknCMa7KbFQXNY+367W09i8//zFJU8FExOM4ToJBAcIkTjGGl3GMLTDWH8714XhYpDlGGBGWJch6q6RysQI+NJdBa19ksEhJMHJ3Odd1HbG4WiXr1VppR4ZOTWM/jBCjQARDvCrXJijGGLDGmdl6AIPVco4oXeZlmWfLMr1cjs5qzmOrjffWGFk3taQcgWkypp3HPM19gJemXS4xFzxmGQQwuAFhN3uwWdxkSUpoNM1TO/Ug+DxPL/XJOfDhPklEpoyq+0YbA4NPRcpAAmDouv3Ly2eAQMTSLC4D9AKn1pp+aAgWRAiACUBUsCTjCcUUMkIQH87z7tJL4y3ACGittdEWIzwrd+lPBpEkL5VSiDAh+KgGzHAkuIjEbZb96w///nLYr6J0HGUIHsLgXMA4eAgopQGFsiiXjDatLher7bpSdn4+PchRuuA8CAFDSHHA0HuPgO+7nhJ6vd6kaZplmRzcPDtl7JvN1dvbt8AHAD6+FsLHp13A0HhntI4wY6AkAR/P5wjyNOIwz3TXbhZlJGKtDac+i1NAvHISYcIpB5Z8ePuNlEPEYqvUPPQQo4jTw2V3bC9KQhCO0ppFsbi6voIQ4YAEI12n4yhDBCZOpEnFKAvKHM5P5N39W2fs/nCYZwUhAQHV9TBN+lLXxvnTpYEQpUKUZVbE8bvt1TJPg56t0TfL7aTVZA2jKARNIaAQZFEKADpeLlywvMjA/wEHXfdDXhTiig29dM4RQrSSPI1NCAE4580wjNfXG8Hjp2MLIIAQeB8QQAgAikksWFaU1jsEIZNkVS6ds4f6sCqKb958s6hWicCCkzjKJj0fz0czS/qqeQQwyzKAEABwniQXJC8Wz/udHHtKCSaIBOa0Hee2HXqEMMXs+3cfIAKj7PM0SqOYQFTmZRrF/RBO9fnYdsYHivE0T5OZCUaYwL5vBRcG+s9PX4IyH+6+lw5KOTHBV9U2gNAPzTQ2xszH0yHm0XJzVQ/tNHQQwXpsm6auiqJIF4xSLniRVNaqM/LPu+du7DbL5dXVepTaBMcYLLOIE8wgPXfdoW/6XrVNc3O9FpxoY5VtMRcUYowpxMQjXqTlgYlDvaswUlqOh92bqzcuBMKw4JGzfprUp+Hrdr1Qak54DKzpR8R5hAhpmlM/9RhRCFweR103npyy1sdMmlnKed7c3N5fvees+PHrZ2uGJE4iQq/W67woY5IA73aHF/X4JU4WRV4tFkWW5b/P/3maZwACJdRatXv5Ege83r71hH4+PD3tXxjB+WY7TyMASEQZJcAH9woMtM5aa6w13tkAwivZzTn3GgBAKLbeAAgo4x567z0hFOJf7/4BvL4WHIDMOYcRMgAgSCIRQwxnOQerjZkRhNM4PO8fu/Fyt3m7La8v/WGaB2tUM1wY41erbZGkWuuqKqt8kSdpM17252PCE6umw2VALOm6BnO6rNaUi83mCgXrER6UlNbyKG767uV4UFYNsqnKyjk9aR0QtsFAF6ZhIhGLkpIS8eH979bL275tu65NkwTFUBntA5i1JkxASC/NLFj5/PgIMAQEn9oz9qQdx9U8+eARYRghTsVysXJeIwiLrIAQHCl+efzU9C1C1FjDOOOIUgzzNNpUeSqiy2WsisUyL4FVi2phQ9BStf3w+PApEJxkWT8PhGLg7KU5x1ESvNtsNxGPgw2ny5lwWlXLeR4O54djvaPiJk7SOM4F58H5VMTzPBNOAgidHGAA3pi+P0+ycx4YBlBgjPOxl1SwIs+yqPQAuhCiJC8X9kZqRLFD+Nx20lgWJwnhSSQ+7x+OXeMdWC1WEDFCrWB0HlomxLs3b356MJiC7zdvA4Rldv3bD79drlc///gTBGFWOoQAIUDoV+k5BvDc1Pt6Uebl9fXt+7t7NQ+Pz8+XrueExkkMAoQAQoQARgEAo2RwgWAOPJzH6eKsHLqvzy+/fH643VytFxvvw98q4T//7p+ed8/noVtny6ooKWVplMScVtUyFuzSXTBBwWlKUuu8B54wSgiQ80ARA8FyirM0t2kJjDuM+3N9IoSd2l03XeKYJVzcrK6jJMryAoYwzxMjuN93w6RvN28H3WOCxrEZAOKAvpxeSJ5G3nnnF303GeUZYdY5hAnEGEISCL3UdZ6mm9VaUKTn6Xke22m+ubqNk3TS6npZrVfLrr+4oMtikUb5ue0P55OUE/vud7ff3P7t2MMwEYivtms5GSqE88H71/WP88F7BONYZLGAkLFIQNS/+noAhAEAhBDBJATvrMnTbF2UGHFMCKXgerv9/tvfWa/n8fKy38dxBwG9HC/jOCipKGdZkm6jWBCSxoXPYTe1zvpYJHkWx2kCIcCYYEGtB9x5xjkhjIo4injdHbupW+QlRJgxXqSl4PzSdt4DGwJkuB4HciarbUGpBFBfzvtOqy+PjxjAqlxVi422aTedrNOcRk+HJzd33jqASS/n90nhvX3cfYUQJCJZlhutpnnosyynUQShE4JRyotyQSJGMUmiWERJ1zTW2UWaVymOmIjzcv78tVqtGAoeIcpiH7AnkBBaFoVT9uvLC2ZRlaY8FoTSuh1GPTnof5vkLE6Ou5cyzx1B47w3QS/BosgKPavJKQa5Uk3TNTyKqrQKIDyfWqVV3bZpHC+WSwqjy6hO3XM9zt7gsigZBnKUVVlwQoIP0zileRoCunT9OM/vsmWSxBBiwjilIitWBBNs/b/98J//n//v/1Vg8R//x//47u7NaR5e9k+THNUwQkCZiAGAf3XvAuedtcYa45xx3nv3WuJfN8AYIYwAxsh57ylFJFDvAiGMEhoAcCBQALwPzjlsbaDUByvlQDCP40SpAWA4jP3Ty4OH8PP05WX39O2Hb2+3b9qh/np+tJMdh35W0/3d/aAm6x0hZLlYxTyhCPGYI8qDcaRcNPPU9N2h3mVlijHggqdIOGWwEM7YKkokZU+X+npzFYsIIRh8IJQCTBAi57YPAWCCrLHG+6vtLcXUb/Tzy2OUZmWW1oezbI22IRAWnMpEtsjE1XLbtE+P+xeAKPABOdrszePhlKUR52xVrRbX94Rggtg0dr983LV9J+V4OZ8+7nec4dvr9Wa1vb15t16rutslcXx79SYWWTtcIPIclc75VLAxIDhMABHjnHHahjmOhSCs69tejWmcXVWLmEdaGhbFiGIC8WqxFML/+edTN9aLbA180HLwIVxa4x1arq8RxToYigULEEGTpgVnsbNeG+u851EOvDfK05wZYymljJLD6Ugw8y6cz31RrhfLTTsPBBHovbRKK1ssq+1q67QrlYTegeCul5X1liC82by5v31zqlvBiyIr/+H977hHc9fNSoFfw8j/eu/EEMCw2x0QIt98kz4/fz2fjtapKE6Hoevnvh37AIB3TssRo6C1i+LCQf/x06dtVVbrvJ87RAlGUKr5y8NXjP4uA01j/u7+ZjUvMp7FQvz46SdMwIfrb6/vPnTjJTLqmvNhnhjHZpQhaBisms00jkVGggdKak5jRJgHbpTzbKe76zshRRpSDBD0GCAHnVVjqzVeLirk7DCqPC8RBMZr5LyaZTdNsYgv00S0milhlBBnTd+P3llB6Ha52iyX3TClcYre3N2u14uyeHp5fDruBWf3N282i8WxOSGCCMQxj+dpPB3O2BMaouPx2PUtguDp5fntzZu/q4BCmJU81/XudJLavS7ujLEeEgBhTNl337xbVvn+1DjoIIKv/eH16qa0vlzqJcZRwinDjLMQIOU4SkWcRAHYYWogdDa4z1+/cBJzITbLtQ9BOUsoYUIE5+rmqEGQRi7zVRLFEPih661TlPIozqM445wjBBFlPvGcEUhdIEHEEQiIM8ExLavUWct5HCCiIppndal3nDNjTN10yEGDCYJUKlm3h6vN9c31249fp/3hC4b0l08fvXObagkAdM4EpxHGAZKyXEYsjhn/4ec/7nefiyS/urknJI4IKxfbNFtB4IFRVk8Q+eViMY0KUxcnmbMuh/y334kqT/NIOKsFSVxqn8/P++PBOitYRBhvhzY4Y6ypFrlSzrQeIGB8KKN4MuaPnz9V5erN7f0gm3NbS0bmQVoAsyx1To/zkAAoHFRajtPsIUizTBC2LVcIsT8eflba1Gqs5bRdbq6q1dVyo4NGmIIQMAoPx5c//fAXitG7t+/ub98VWUFYlKQ5wsh7BwP4enr63/78B5Ytv7l7Hyd5zMXtemvV5JRySjlhvAuUUACADwAGFJy3xnjvgvfBOwC889Z74oP7dROAMULQWhtHCDHunPceEEpfI6dfKdC/LhGs1noe+jYSWZIlxuLXdBnoECMkzVPgUB4Vk5mP3eVcd6Uot6u7iLNVtRKCG6cH2SHIXv+m1ru8yCMq2q4tikXfnUc9U8OpMtBYBNRmsUaYzFP7/PTw8Pxwc3v77bvvpmm+tI00apKTs8OyXGMfjpc6TdLNcnWzXC7SxFtrIb5/c73oY2i06oD1jFFMIGSYpUmOEQxGymnyxvtg0yx+s33TtbJt24jRgHyAHkA/yhFA23Td/nT88vRgrCUYR1GSJkwwgQG+vbqP4+j5mCVRnmfVdnu7vzz9+POfTAjLxart6p+/fCmKCgIaE5aKFJCQ5yWwYZgmzMTdzbtVtZrGwQMbJ4Ixrmc5tCenZBLHWimYBGdkb5V3/tgPIluuGOMUAxD0PMdxtlpstHUg4FlKDxRw7mZ146zsu66+nMZpjGIRJylAPi2Srut9cIzyu/WVB77th+BDhKkLMIniCDEQBTqCpq09iDnj8zCnUUQhccpkIoEkHE5PfXsJwQ1KjbN+fUq+Ck+sc5EQ377/5v3N1du7O21U054oQmW88MH/2PbTPCdxDEGAwTtrBGcQISYiG0ZlBm3UOPQQBgh9VZVVUcpZderv2YiTbAVnweqLvhyO7uVU/+M//v7q+sNiuW7HC6F0nW+VVef2EIBF0NbnozIGIAhQ61yYJ9W0XVEuF0VBKXXIp0mapPfH+oQB6pvGmRAxoq0CEA3dKRgfEcYwnqbGyKmtL7HIsmwVgOuVJAiQTKQYEIFZlU7tNLXjOMohSdMkFsaa93e3ZZKM04QgJJT/w/ffv7t9dz4du6n9/u17bX0/TMaCpp36fuxGde4GYy1luB26nz/+/D/99djLajUM7eF8vrQNcEkw7vVz9QACCDGCeZ5CBtIiXi6Kl8faef/XRzuAAEMAjTLX201Z5ITHfd/1U5sm6XKx8c5qNadJXGQbJXHMBSUkFmKxqDo5mGDKcgkcODfHvq1RCHmaSSWfXl6GvicIrjfXq/V9Wa7Gqen7i/eBU+6FKEKWpQkhYlZ6nlU3jc+7Z6VlLPjNzf1qsQLA/vTLn7SfMSJ9r522lIo4Sq1xl/Pwknxy3gjEAkWMRNvFdn85QYirdLFYLI1SzdjgANZ5xbhgkN5c3QfjGcRO26CdARoSzoho2rq7XKyTdV9zzq6vbt5srzmLrLH9l5+sntQMeVEETBHglPFhGruhn+Zxs7m5u35Dzi/jLDkllEQhZ6v1yhk9yWEYRZrFURJHNGGUzLq99M1EkUAcUx5Q0NqvNtcxjyMaSaVGO1MuVu/WwQCl576vnTeLavnb77/frKs4EVWyGtr2+esf14ubqqwOh+f/7T//l//yxz//829++1/907JabFkkpJxPpxeIAoRIUGGs/e//+b9fZgUnwCl5Oe2NlBHmFzW+HHe5hWVF08wSCN1fy3bwPgTvvAEAhOBf17reOe9DAOE1C8x7B5GHEHofXtlHr4GurxYw7721xlmklWzaOniYpAkGUEs9dAOn8aJcXq/vT835z7/84ceHH7fLu2/u/0FLGXOWCi7nmVESR9Esh76/2GkSPD6e98fmslltYfDrRbEsk0t3WSy2N+t3P378U9ufOY+TKAEIt1ISkRIs/vXPf4AB8CiWVj3vXxAknMYUEyGiaVaUCWdMWx+s1xhhgBEOxkztNF88CpQxCJzW6nG/q5uaETJNHSC4zItZztPY3q03m0XmMNq19bE5IoIX5RIhFIn45vqmGbrd6bCu1v+4WcQRH4fRe8goY1REIi/ylQ/AA59meVaUOIjFYjNOc5oUPkAA0SIrg8Xb9RW06nH3aJSp8lUZJ15b4AFC2HtrpWcUv+yfz/VllsG74DNPOdVGK60DQVGSUISdMVqP09A52SijDs0FQR4JAZBP4wwhPHvfTSMYh/1xRxlcLisuWD83nezruluklVb21BzGebreXN+u38x63h/2F6Nub24/3NztOG2klHKcxt5o2VsLgEEgSKvnrvAhdMO57Wo5zyBAAAKEEKIQQCgW5WazutnebFbbY/3IMESYEcKTKH5/7071S9c5DCFCgGCCEMQYzUoJDtUof3r4nAl2e71RWt5ulnmS1W3HBQbgV0nkOA3dEKyFGNOyKN59+Pb65oYy6vTISdiPl8nom+1VaAOA3hq1WpQ8Sh0I9WWHIEnT4uvzp8EoyuikR+O10p2IGMOsyCo3G+1nwugke2Ddw+G57ua7q1vjT5ggY/Slbe5v398u1/3Ux2lChk7HzAVrl3nx9uZWqrkZxufT6dg2ACPIgAHm3HeFSMq0aKd2nPv9ZffT519ccG/fvPMYjcOAIPnm7ptjc5y1TeJIWWWsQRBM899REIs81XJs+44QYWRA4Ne5LQYoOAtBANBjzIsiSdI4EBBU8M5CiBBGLgRI0KzHl/MBMbxN8yzO27qFGITgn/cPw9hBt9wsr1fLLWO8b/u+bSBGImICsTxJjQ2466QyQ994q5uhlVqtyxVwZJxVP7Z5lmZpZr2R0zRPXfBmaFsXXJ4Vm8UGVbRvm8vxGAC83t5WiyXn6POXB22UNlbpeRiMVtYOwzDPIAAV/M9fHodZxzyZtQoO9v0IgE8i9mF1w3hkzPzLz79kaTpWaxQWiIZ3t2+Xcfnw+GV/ODAWXV3fYEytDQgi7XzTTU0nV6tIStO0rdFnCIDTngI+9MMe75bZIkD78PisRnldXWX5Yru6BR6kUQIDmgaDKAsQvhLoLAwoQK9tmsYYw3kaIHARI/M084RzTrbLqyReKD16byOexFnRy8F799277zlN2+bw06d/v72uVov7dbHaFotJD9PUWq84xFbOp9Ppp09f59nOKvz7T58+3H9zvbmWRtbNkQAYQPAwLJJiky105OaxOzSXcRgBRotisSyvlIGH0xnidLW+MdpghAEIzjvnHQAABA9DQL/iwgGAIIAwy8kYg7HAGAfgrbNCCO+stfpXPTEIPvjg/SszAgCAMSGIIoSstXKWahxhoN7Cj58/SWnzssqLvH86931zdX0drZd2mpt23/cD5zyNExzo3MvBjDYcjTPBhqf905ur20iwj08Po9RrOR3rFzXNORPAKq2gnqf763dltZqGASIhoihJoqat1ayl1pe2WS/XN5tcamtMeHl5DsEpr17zpxgA1+kiS7PP+4e2aQVrGI0iHuEVRQAhRNqp68eRedwOMwi18ubD/ftrJk7NuR6adh7e3Ly5Xqys0TfbdZmmeZGBoBORpKJseolpXA9N2/UEMyucA7G2owe2G2oEcZ5Wy5U+ns7Wuj/88FOWJP9Tmo5D2w3TutwgD4+nQ0BAabXItpCQY/MyTP2Pv/zQtEORLzZlhTGHWGAPlBtDgE7PXbdnCGHgj8fDwzBVRQm8jzIRRWKaW6XlLEfv4c3tBx9sN43KDI/Hx6E9u4Dv775ZxVWSJEb7YlG2um7VBQXKA10Wq6fTyx9++EvOE4AAYvTr7mGaRgRBliac0KBdhHHKk66vsdNGDVIZAJFzr/dNCAHOsnSWcrKql91+v//45asLZFWu3ty+WS6vuGC/fDyEAAKCEGNrHQNBMAy1HsbJe5/GPMvzJV8STJ3WESMB/J0FNE5SRDFm9O3N+/W6Uka27dFafWSYIqjmWc0T9hZ5IGj8tN/bAN/cMIIJY9x7QBDmPI7iDBO2Px2O7akslmu08CA0Q32s930/Rv1g7RxxNE8KQOIBfl1q9kNnrO/GeW31MPUMCfKvf/4TBnC1Wnz3/u0spQ8micXbu22WRVREEU84jX76+GkezsZb5dTjYfe42x8v59/+5nc0TUywldiYyKRJOXtngw3AYw8DFNvFepEkABxej00JYYzPUmMUAxgC+PWOhggKLoAQCMbX62tCk//Pv/7FAk8C8CFgELwPzliCYJ5GSqtpHgEICEA5m7a/EAQvXQNBsNpZ76M4oYR7D3Rwp/rSjy0TlABqXDjVx1mNrerkqWua+npz8+bmjbFQan0+v1jVLqs1Qsw58/D8Mg5D15zneVhWxbu3Ls9LH5zzhnGWxIJi0A29ASgtNwiQn3/52PdtEscYQ6m1mrXIyuvtOo2jrw8Pp7oty4IQHFkyNu3ZYUzFKKdptnJq8uS5yGfG2apa93L8/PzACMaMUxZjTL2bBKGb1TYSyds33zABz5ddd5jqtrveXH3z9oNz7pfPf27rbmrmaR7avqVMZKyMSOotRDSoSS6SYpEUzupZDdAH7wEmeNJzHKUUcu8dJnAlbvJkOckRwKD1ZIyhVHx9+BiCu3+TxjyO42Kcx2acl2WqtfFWp4KVaUwJ6odhmgYEoHeeoaRrhku3a7pRKf32+k0zdH/44c/STL/97tvNopSTvHTteag548ty3fe9Mvp6exUnedv3Qz9TwiKeJkJTTOBr7Q6vfkEHgP817BciBBFGyCGEIEYIe+8hgiEEQghnXGvDGPfeOWdC8K8c6V8NwxBSRp23COFltUQQOW3PpwuAjgSMEU9FPPR1HEcfbu5UV7fD8PL8cL3ZZlwQD5u6Qfbp+Xk3yJEi0rWDNPJqe80YwBTerm6O56eHx8e6HZtLmyXpMq1uVpt5nGY5Ge0CQD6chYg266vd7uV4OCCMxkEjTL/97nfIg0mqvKooRiC4bmjlILUzxqqUCayxnB2D3NGACUmSbLFcGiWtNg/eNl0LKLld3VR5deq6OcjT0P7m9tubat3KXmqZRVHX996aJI43i4127tyfIRZyHMeh6dpDEvFVseCEMoQZiTD2IIDHly/A6W/f/dNd8o7w6PPT//fL864ss3/705/OpzNjjJNCc9vIXtt56PssOW/XV3V7eT497U9NIbI31VWWJZzF1pG0vK7lsH9+Phybj8AWWayN/vnnz+vFalWSVZFXm1tK2NNOggAAcJGIoigBIPzT7//56enTXz79QSpDCELer8oNpmJdrT2S0rSc0tPlQkihtOu7HkIcMIIANV3/fJre3r+9KjdaTgQixslk59mO/dwDFCY5G+MQRK9TRAgggMBbc6nr54g9fP0o50kaZ62HABFKAybSAIQpwRQG6JwTGDurgdVqGKx3aZZEaQoJWy63jHI59QASOAx/q4TL5Wqz2hhEv333W0LCpbksFksr518eP5Zp+uHN/afPn798+vrN/fthnLpWEtLGnHjgp2nuhj4EVFXXt9WawrDMs2EcYpYWvNA6SKcRJ0jzIkkcpLvDyyJdbNNCiGRVlXV3PBD4vL9I6QCkXMRpVJC67utL+/HhkbHo7c3Vy+UIg3HGXG033769pyRBHjBMHp+eXi474904SIzou7u3/+N/+B8QQ4f2sKk2DZ2IYNfuBiH4cngC1kaJsN4N2vyt74miRNPAo2icvAXQ+gARRhhDjK0JkEAeCUZo27SccIppgBpBCCDwIThr0yTOkpg7FFGhpZaTOZ5OximK2Nvtm91x51wY+qntx2mW1niMcfBullO5LI/nBkLglZZjxxGKo4iz6Gp5TRHjcSREkLI/Ho5925bFEiBytb1x63DcZ1bPIuKEimmSwzjAEJq+Of7wX+I4wxB1fS9EHLFYxMl1JKq06Iexa0ap9MvpuF4UMIlfLpfTudlfLh/evGFIKG2fDmcAyLm+dNPIMfnx5y/X2ynP0oiJRZb/w7ffAUzWqysIcdcNdXM+nQ6MMUJJnEQI+yzObrLFZinLtGAYmaDzJDsq8+Vpvz8dqsUiguDHT58DJIwzwfF2UzFECGIh+HmY0jgLAR4Op/3ldH/7blmtz/UeE7ZebJW1bXdqmrOaXAPG5QJsN3dKKRiwV75MK0YjCKj3aPYQ0owhr4wO3h32x+1qDSHth+lhd3553kGEbXCxiL65u53nabajMeZ02E19tz9drDEIgLO+XE6tD2Acx3lWV9vt6XzBEAMfnl52aZYlWWqtMcYQgn818/oAQoCvHm4IEEKvHAiMEICQYgohlFIKzsNrOnwAIIAQgHOOYEIQgRC93vKAB855reU4jcvVNcCk6dppHDPGikgcz3urZoLQp88P/Twb57Sc1Dh2XT9KBQKHACZxTAhTxnmPlXGci021qevm46fPyDMn5+NLrQtXJet+lBBA78OX56e6618Tx3ozNnV7OtcYY4jRzXZbxTkXzDgr5dCPo9M6EpFzHgZ8tbgd+uHPn74SBGMhXvbPhM3ffPMPhLOfPv9knaKCLYqcApQggQLiEG1X1xCFH3/+k5LzqGW+KBmEaVJGsdjvvyCPME0/vP3HKs///Jd/e969SKVACITxN2/uk0C064xR6+IN/U3UdfU49MvVCq5Wv//+e6VUN7Q/fPxslQUQKG3/5R9/h6F92j/UTZ9FfZqmeV6Odq7boSpXD/tnfEbrzc1qc1tk5cdHd6ovZgoEhaejscZ5gCwMx6Z2CKzxB8FjjPg4Tef6RIVIrYXAT8NglRU4KdaVtvPu8JyQ9OZmYcx0uLzU50sep3pWRUVnPXbTJRXl1WKNEFn4ZcAgSrIkL62zl/rct007tCxml7ZeVnkvJ+MsRAz8Cp8BAXobTN1eQrDQOMHpOOtZ6aS73Lubr09f5nniQkAIEIQEYeuck/PUd2qULBIEUopEHBdZWiJvLWVZVl6tbwH45bUSchH9/5n6j21bkizLDhSqnBzOLr/vPSNu5ix4IlBAVQtoJzr1i/gEVNXIkUAmMj3CPZwZffTSw4lyVeFSjWvhER9wGnuMo7JF9l5rrjCMSBD7vo+AmQ5GhKBMyUE/TVMvy7PV7lDmzPGiU5mPJlcQiR/evw+jMI2CuqlaafrDmQWCc9lLk2NePDw9EAgpdcbBOHBiqWXqwk+Pn+pGJjEu60xbPUR9hGgajZrWYgybujxmh65TpOWKun6UBJzJvKjLvIZAx0GoFbi/f4AQz4bDs8FgMRz+8BS9vXsrOtax1nNHFAOmWFke+25qlBFKBKGXRDGXzSHjL1Zez4/+0gCSXk9vl69fv2EM/u73bwkm5iXNFQKrldLylJeTkQhDNwlDjJF8QbRACCzQ1iJCmrYtKoYghtAR3Dxvdgja9/Djq6srwZTgzaR/NpxOf/Mv//L+3QfP87hoKSVp3niBczabpnFPSNWw7nCod7v9YdA0nZpOph1TeX5ERoOEPq22ddNMx+PFYk4XY6O174XAgrqusRN48YCVJ4ihR0Ng7WQQuJTmWSEZAwCWgO32p/XmQF3XoZBgErjefDSyWlsIbq9fEYg+3L3Ly5piWtQdxnQ2WTyvlwEtIye4v3+Kwmg6He2Oh/1hF8e9oqyKsjqdSowsJuB42Aah6zqO4/icsUPHMTIdb/eH02Z36LgkxBkk/SRJWi46oYwCj5v1arm6ujzzXF8Ivt9ve0kviXttwwInUEIcsvV+vyUUaqE6JhGyDnFcEhIcAEun4wvGu9PpWNasqEul9fX5dRRE54sbBzuct2HQA8YeDwfWtoPBWCgTRD5AxkHwfDzuOg6ATCPfNxhYzRUzimI3bNq8bZtTXjqu6/uutrq4v3tePnVKIYt8xzvmecWYGwaDUe2FsWfdF/XOTwxobV/aAcbYWgAsgAhihCilxpq2bSmlQRAIISywEKEXjvQLKPQFTqi1ssYCAJSSTV0lSb+XxJq3jja73dNzWyshXeqFQRQ4Ydfw/WpbnUrBZeAFUtqH5zUEIAxCignjLAh8BOlifokI+qc//HazeoqCeNybEEKSJIIGKmkxcQ5FsdkV909PvSQd9PsfHx7rupFKcyGVUod9lu9OSRI6gZukCefCSD0ZjoIwaoXQeUUwaY0RVQtPFhF3Njs3FjZNN59fjweDb//8x90+Z6x72m6TXuc7bkB9LrtWq+X28PD8fL44I7eO5lawZrPdnM/9i9FZEobQGEpcP0y4BGVVKGsPWfXl689933ccJwpd5QYNbLf7TVlnAMLpdPAZu/r+7VuX+ovbWdu1UknG2+EoifuJhvir65/fXN4qzbo6++rm1qPep7ZtBPv48LHqGgyZi/Hl7PJ4yKPQt0ifskwp6YdhkvaZYEJySjDBdDAYU4ybtqUE1nVdFjlrme/Gl+eXFcseHu8Qps+r56qt3919iOM4vulFQd/DtNJCGX4sj+tDcLG4vJxeGmO5ElKxuq0BQlHaS4cTIZUBXhg4HVfaGJdgYyQA0GiDIXIc0nU1Jcgjblm3Zd10Wi4oCgJfM5b44VbtgVVaSk2oFtpzSdc2ZVnBCgxvB69vbgk0VXXoWHf3+OD7yeXi8i8nYdd1ggviW6FaaoEx4ng6dh07m11q3dVI/fpnf73a7SA0MRj86pe/zorlHw4PddNACKjjxC7quqpqHdZxC6xSUjLRddxCYlhniU2jsD5uN9vd2dll1zXH4uCUJXIc3w0oiWZjagysy3rQG8vIkvPFvGmbOAoABFlZJlEaBoExBgCquUTEGmsRpVGczuVUqma1WXYODAN62D09bDcfNsvTpFqMz5+361NxOBuNDNQQw7KpAw+Afzf5AoyP495iPM0q9U+//+GFoW0QBNYCazBEVdP+ePdxMR4tpkOKiXzZyUAILVRSN1UzGqZx6CBLRCcZ0xDgNE4QdP7pj9/syywMAtdPG6k3hyNTltUsywtrtetkcehFbgQNLRpVtcJzvDQab9bHoqhvrqq244fDbtQfaEDqtlVaSbPrBJdaYIzTZAABbNvGWsAkRNjvR8FgMP74+ElydjZduNQvi70B8O70vDkeV5ttP0kHvfj79x+3uy2BsB+Fcez5DgzDNAyjphVJHEsAXOr88utfcqWbrvOC5HG9+uaHd7PxwPNcJQHnmkuFKZVK7E7HMPQJglkBESYfPy25YP0kCXy3a7v1chPG6cVi8e7+bZafenH86vpKKM2YHPTHD0+P3/545wbuxWzuevFmuzcSDIYDKVVVVXfLR6U4AuZPxduulYM0fnVxEUW9MIoxQnXVWGAZY3XXcCGsBVKKrDhSiHjHmJbzJGEdBxa9v7+nqzVGNPDIYjQoTtnpuK25kFJfXVxhgra7TVkcwii5nF1XUmwOO4uxFoBLnpWFklIrxQU/ny+ieXR9faOk0sogRAgmECKtpdLaGgus0Ua/UEF/UpcZ/RKHAiBEACGMXzbGLy+AFzExUtpSA16udwC85JAAYIw1UjLBWtYyq5Xi3Wa73R8y3wlDXzGujIVagu1+U3UsivtnI1x1VSe4NZZg8hLa51bOZDxFENZV1esPBBNN3VAP9tMRRGCz28dhogz8+PzMmfCCaJ/nndRKIWuJtYCx1gKQ1aJV+7Rq4yTiTxuPkJvzK65AgGgce72kF3ih7xAt5f3jkhsVRilGJAzjJE2wBWeTs+16t6qXjuNNh+Oyan7/3VtEwc9ef/bVF9OmMUqT7eZUZEXZ1G/vPzpuP45PebmXQhVleXN+Oe5NOt4t93shJWMdZ22SxIpXWZZXNYt7CSautaaXDKbDjn7p3F6+inxnf9iWVaOB1AC9Ov8ZuUAucUPPI8g/hvExy1jHby+uLUZZVXClBOeL/nyYzB7oEyUoTfrtqGlZlSaDUX+sgQZA1XXW6/XTdMK6JkkHLWPvPr4ry9p3w/Fw4LjEBc7i/CpOkrosi6renaqikxfTi/PptGyyx+VyNJwh5AxG/aQfE4qtAYRiYBQPwpf8JqGMS73IDyDSEDjGAvivOrEXvr/neGkaGW2quvK86KvPv07SMAzdw3779tNHpWxVtRASzmSYOAgSrZRSqu74arlq2q6sS4z12dkEWH3MT/OZU/67SMiLs/OIemVxyI6r2I18Pyi7ijqkbRvfDV7f/EyUpZT1dne4uXoTubQwqpcmWVFvt1kc+ZSCujjytgyDfpr0psNR4idGSi5V4PudzE5ZdjyeDKA+cXN2PBUNhKzpvr9azGajxbA/ipOUM0YcVyhN/u4XX0mjALS8ZQ4kBoHpbKCVOmWZ47ijYT+KehpYAMGkN6yrbHN4dlzCGf9w97FVxsWB0mZ92pyaUmhT1s1sPATAQGgDSoD6Nxjcd99///r2RrDmw92DNgYCiKFFiABClNazfvyPf/332+yY50fBEcLYvCz5IAQASGW4AmHUF7ImlAILj1l2Pp1NJyOtjYSk5XrYG2BC98fjZ7evZ6P64emZC13XdctkEgSz/mSflx/uH4FSadwLvAACuN7sjcF11366+xSFYb8/iKPo8vysPWTP623XtoTSJE0FF704SWPf8fw0Heanw/N2XxUF5/LD3RITpy7r4ynLy3I+Pesn4+fNsmq79e7oBziJvDjwJY8DN6rqSkiGkGlZhylhnG/221/98hdVWSVJEhalFOrx01OchBRS33G0lAaDU37cn06wgEkYRF6ktDDGYAyaWpwOBbKwzFvHic5mZ8vD2lq9P2aO7w/6PSdwh+kAWrPaIoDxZHKexlFdFafTsWw6xjh2XM9LAt9zCHpe/7EoGoKcj4/rXtr1uSybtq0rraS1GkIADICUHk6nui4D32OMv33/7sfv36Zp73g4fvvjB641JnTUTy4mM8+J7p+fyrZK+/H71b0FYBCkXds8r+///O0HKQWiZDyeWmtOZVUWudaGQOK5VPK2a7KrxSSJehXvoNG+42KM/jUM0iILgNEQaGvVT3oeqY01WgiKMQDAwcga3bYNAtDBmGACrIXQWGABgBhTCLG11ljTdi0XiglT1m12OjZlztq2yLvDqfYdZXtwf8qKpnGp6xKfdc2xXOdFLQRDGBulMUB+EGAMfd/58cOHoiqTKNRcKQMBcQI/Hg7GLavz/NQyhrETut7NbD4eDd/d3W0OJ0pw0kvqtgvSXhLH89Go1099z/3s1Wd5kW13zw6mvuc2XUs1dWlbFEVe5RTDdJAUVU0xUYLnnDMlDOskawKXDHu9JEwDP5WaOFUnFM+Lej5b/A//8B+Wm83d3d0wCQ5FDqEf+L3V83q5fWZCOG5wc06G/dmxKikl/SQpyny1XXlugBEK/DAMYgSQRzyECTLkenZ5NV5EccRYq40F1iZh3LXyYjyKwuBu+bF5rAPX1xZ7XqyFHE4mcZQkWVaUmUtCKUFZZW1dQYSUNAQ7RgCgLEV0EA25rHbHnWdjWrnC8N5gKpRk2t6++nW/F+wOj6c6D+MwfFEbAb1YnCHiU4xjP4DGtE2TRIPF4pxL1vBWGu05HgSQKyG5MsZWVWmNhRhTTEeDkedDBAkGBABkIUAIaKMtoueT6c3FZL3ZTheT+WzSsi6J47Is/vs//dPvv3knpXUdVymDiI6CiLNOaOV4fhTHWtmPd+vV5pDGfhL031zPfD/Cjj9I+/92FTYaE2xrtcv27tRp8goRbxaP2q42bsQ4b0XFuqZq25kWkhVNXTGupAUAkCoXaRxPz/rP29Wry6/cwOt4V3f1Lt8MJzPNK2JE3XVt02ml14dd0bTDeBRHwY+fvqPI+K7neBHG2PcDTIiWNfmXb779+Zevfv3lz949Pry7e2iapm0KQKEbhNJAzlWeZQrqpqlG/eEg7YdBcjhkn55Xnuv8h7/523F/ciwKS5xXl/5us5aqDoKQuiRxfd41FP5bDMLqcOBcex7d7U7EGAhexNzGcSAEFkIzTFImBKsKASyC6OX4BxAgiIRQy81+MhwDiPOqVlId8uxqPh8Nhx1jGONXlxeu6yKCIEaD/qCMKgeTsxlvm05qITXrtIQU13VDES6KqmlYXtXawmOWF2Vd1VwbDGBdVXXgOP10UOQ1hEhI8bB823Xdz968IXBkLGQdPxX1arshiBRF9bBcVnWLIVJSSq36vfGg16u6SmstJaCa+GE/TdNTkT0u/xBG3nQ2HY8njEvAJUUkzwtEECX4dNh/+PBudzy2Te1XLvYdYaU2mgmOIYjDIKvqY1bZFLdtp40OfRcAaCBerteb7bY06gvxdZj0//CHPygmyZ+/S5IwDQLfCzBCvV4yW8zTOPIDL+0lYRznpzyKbNrrTWez4/HI2vZ//odwezwdstPheMybGjuOQ+lqtXmhLHRdBwFI0p7vR8e8fHxa1VV1PJ0wRuBp2TStkFoZK5R4d/94d/+0GC96/T4U4nm9sxi4hKpEY4yFgEJCpSEyti5bbW1RllqrKA4pRsDATsjlZiO4TOKeQcCPetcYAWsxxoRQ+ZIO+q9IH2Ct0Vpr9XJ9e4n8tsYAYBEECEBEMETgp7QwCBHGBBOEXlYDRgghhEKQSCZY065XG8G41DAMIgTh7njSxiCCjQUQkyRJm+Nxvd0BC16+H4JtdcrDMOikqtjHU1UuxpOmbRnjX3z2xdXZWds2ZS0dz2Mtg0CFvmus3B82HW+8wPny7Mb3gyCM4zgJgojzziG4Y/V83DufjYSofvjxnVJqNp3oxjYt6yVxUTXa6NAPtQGH07FsMoRxwgZGifXy8W65jqLEIFLWret5jLG8LsfDaeCF/SQ97Q/nk4nnOFlZpVFvt90DpeqibrnAvk3q6vm3v8mKfDYah67XtHXRMM9Py7Yt63YyGiIJ15vnsu2m83kS+FVecC2jIDgVWdN2Uz3q9/pC6qxoIjclFJxOJ84kwbiXpmHsI4wocQSXHRHSwKbrjlkOkdN2ZjE5q9vs/eM3g9H6enExTMNW8sfjfhLVcRRCjLTSn795Mx9cdW2W9kIIoVSCcSbbdrPbpsl4MR0tJmOoddvWu8PRImyVbqu64m2bdsYo6tKmrrqWGYAB8pI0wZQw1gWO03RlXpYY4ZeYIYCANYa6dNTrI22hNr0oaMr8d3/+s+C6arqn5Y5zIKVSClhrjTFKa89zrZJ+6AtGHUrqvOm6RnB+OFW/+vJzhRBx3SDw/nISSiZOMi/L0scOsrhr2oYV42QchanjhEEYatVKY/Km/vTw8bBZPm/WYRwgC46nIi/rv/3Vr8fJ4FSUfhRTivpJ/3TMfR/wrn0q9qxrlUW9dIAozaoq7KcjP/YQNhfXnu95TiClfHx6cqgzGg5Z15DVdjcaJjfTvB/1Xbx9OiwF477vul7XS3oYu1m+fXv3YTLof/Hq1XA4CEl8kuV+n4+H/bbqtmLbcX52cX198Xroh3mxFVoHXrguVqvtyaX0L2X3+j2j7OlUKWm0lBBCA5HrUKuU1gYhfDju8uzkEaqIIhgCYACwxoAX7FdRNs+rDUTU993j8djw7vXVpVain6ZxFHie1zRtVVcAo6quOBdcCUrxfDpknO2q47uHj7EX9sOwY4IQAqxNkwRD4GKSeMGw10uiGGHEREMd2nRdWTUUE6UV56KX9sbDoTbm46ePge9rA6Q0neqCOPb8sKi6jgkX4zRJH5dPruMOh32rDKXOZDrsp0FA3Q/3T3cPj2HgCosMoAggyfmwP+gl6d3jg9byan4ehnFePXClcQBrrtrVtmnbpqqsMb7ju56XVWXHNr2kF8XxYNgbDyeMyaxoRmMLoH1cLpO0V1WsLGrP87bH3FqtlJ4M+3/7618Yq1nXhoELrB70eqzj0MIkThDEvueztoMWMsYwpcPhMHCohyEyZjQclmXtel7DZFEVxHGlYMSlLNNP603XscFgkESx60XYbfbHEzBq1B8Frh/7SejHCCIm9bHMjEefD5lU8uby9usvv1qung6HXVmUyhiKkJYmP2UQw0FvBCxiwuwPZd3p0WzkhxEmlEsGAXRcRwpHiY4QQggx2mhECCay45gSSohSCkAAEXIcB0EIIcaUAGCNlgg4BL/0gBeVx8uLAFprAbSr3fr+7uHDx4+MdZ7nD6IUQ4Sovbw4f3V98/7ju8fnZ6G0NaCsO22tsTqSqpeknudNRiM/8FyKfN/V2gBrQt8Nfer5eLnZH/K9VPKUZ1EQn83PW9bti6zkbNgfjsdTQonneUHgAisQMtZaY9V2v6qrZrVaFVUTRkHgJ47jZPnp8XFFKQm8QCmNCc3yQqgWQjRIul4aN1z0esMk7O2OWdPyYdozwgiulDGA4G9+/OHD/Z1WGgNwOpVV22bHIgp9jyAEcOgHUkopRC9Jj6dsL9RkOhmPpq7jGiMxpEJ2opUAEC7Uuw8fPEogAocsvxhPzucLKfbb7AgdZ2QhMBBhH2OYxODAT2VTcy2PxRFjVwlYVBUgTgAdKcygPwDYMRLXTI7nF40y+2NuDRgkX3nYBVqUbcZl+3H9wIUdjwaifet5jtba9zyIHM1hVhyfdrttVl0szrlsoVLZMf/x7pNGmEtzPpuNvIi3TCqxz7afHh7ns8vhaO44juc5bccwcrjgXcs5V8YaDDSEEFhkNcAAbHfb7ZZledbUrVTmxw9PTcsFl8qithOMM9dxCHGUMUwI5FJtbNe2EEJtNUJwOBpT6iw3++8+fIpjbzZ27969+/lfZKCdlKK2Sh2LvCxlEkdlUeRVtjlUrh/f3HzhONGr2686QT7d3eUEWwQtQNjgs9nZsfjhYfU07fs+9ff7/dlkKDmHxL+5mNflYV2XNTNhGPaSQT/qe86BQ019GmBnpId1WW+e1vGAcSUhwF1XSc5J6NG27r59/4ESVzTimNc/3t/99Vdf3l7eZFW12h+l1AY4AHmnotsdPm12u6qoCfTysv2Xb79zKH19df38cF9ked02q/VTEoa//OrndjRpmoYzCcBPFjjZVTfnN8/rvW656wdFkSOHOq6jGFNaQUSo40htAtdDgrmeQyhWWv5r+KsFFiCM67ohGFHieMAqJYQUfccBBn68u6vrRhtbNY3n+6css9a+ur5G0Ky2q1N+hMZwz488TwrZtjUEOAg8C0wnJHWc1A9cipum6rqmdSiE9HH5JBhPoxg7BCfRcvnMBF9ulr7j9uNUaSONTpPobDbt2u653ADHGQVDZYzUKjseoyCy1h6O2yScp/00DaJe3IuiEBpcnIrxdDJNE9Z1h9Oxbtu2bilweunw9up2l52EZPv9KQ6ijikugVT2lB/P57NeEld1HUWRtUYJ5VIHAPT69rrIslN53Bw3sWxvLs75VN9cXNVN+fFp2TIWxoGBiCs9D2OHeFwyqVoumRT6WORVVRGMlZJ3D/dZWd7c3o5GYxchY+TT01N/NJrOZ09Pz1JKQjETfHfYM2vatnUcl2LHJZ5SFgAUJ2mYpBDYwPW+ePXZfDrbHfbffvftq4ubW3QTR5HvB1VdDnvpeJRKWTsExGFQ1XVV146TWAh9P7y6uKirClhwfXndsU5BRV1PW6OkIoQQTCilElOMCSaEvvwxABScI4xdz6vr2lpLKHUdB1iACCWUIASMlsBa/OIFs9ZagBAkCCFoAbCCs8NhC4xdzBZd2wotGykcSizFbhx+8dVXQejtT3teNRijyXgMIUIIug6ZTqa/+urLwHPz02E8GkxGI4JsmWctY3V5+L7cW2Cl4k3XKaMGo/7VxZWU8jWCeVHEUTQZTbFDqetoo7fbdZ7lke+XVRmGnpRSCRX6PrRAK0XD8Nu3P2x3u6vLi+lwGHi+5wdZViZJcja/dCjZHVdhFH91fvPp40PNpBembhAuFud45zZF+c23fxbKNFwc9qdhv8eULurmIIrJdBh5jkddBAAy1iM0z3JMSH/Yb5uGZTxwKOON49CmbZO49+bVZ3leQGWoA33XjRezfhA5RvcCn3i9pu3+2+//ebE4v1icd1xqi7AbGMaPpwoAEweo1xtwxdpOhD6Mwqhq6uNpcza7WpwvotB3qfPd+3f7Mt+cDj0fY233xQY59HgqsBNdnZ0jY4ySVZFx4iDsAEAAgMjx/SAK00TxbrVask5i199sdg7ZzWdnLnaJg9uue14uO8Zegoil7KpaWoPjKEHIUaJT0iKIXsDDCCELoLV6s986BBnj7E5tnpVlLYTUnAsmVNOJNImTKGzbDlpLCdJaGmssxNQJCHUuFv3Pbq81sFzw7fGkdTBNe+TfYdF+++23aRAMk967+yeAyM+/+kUY947HgvE66emnh7te2k+i5K+//qvX5zc1K//bH/75cbU6Gy9uL2+9MLh7vv+vf/yDEWY+zU13bTHMG322OJNtEXjhaLSIwghoSz2igP7u0zvNuTeeK2WbunMdRzLpBkGUpEkUF9mJ3M4XTPCiKASAD8+bU1X6ftB2XdM1hFADwNlk/PUXn43SQdPUy9Uq8TjgyEFoXe6rhqUhft7t67ZpOwaMraoyTWJoUS+OQydoq+wvZbeV+PjhfpcdO+AIIaVSfkABgEJ0UoiiqJertbbg4XldNExI8a/8LggBMNZorUaDwc11yjpWF/XqsM7zk1Fidzx9enxs2y6OEwsxY7x8XHMp5rNpx6QU5fGYsYZ5rrOsDkobhGjVtMZaAlHHmbHW933q4MB3kyjCGOdF0TF9yIqmaeqGRYHPODuGPkZ4vyuM1lW/8SJvNBoBYK1WQRDEcdh0XVkWvutzJfOqlNo4rrc91W1dmlvtIOA5xHXdjvMkisaDAcbAI+hwyj3XI8iturbj/Pbyopcm+/0uenkwWjPuDwAm98vn+9U6Cv04DCjEYZSMRgOKSVVVAOq4HyJXOwhz1g37QRimn19dJXH8V2XFpaqbIo4813P9wK3aKs8L4rhCmKwoD8dT1zEAQVtXQvIgCKq8oAAxjI/ZCWNiq7p4Xu22u2GvN4z7eV0+b/ZN2zqUTkajwA8G6YC67v3zo7aAEoIRuFiczaejus3LNhvPx+PhMAr9oiz8MPzl7PMyOzV1Fkdev3dVFvVudwRw6weuBtb13F4aj4YDY0C/P1DH/emYt01njSGEQADMT5EvCEAEIcbYIqId6DquD4DxMGaMcc5933cdV2lDHZ+6FBj5sj2AECIEjDVacIwQIYQSrARXkvkOdVP6+uImDgMN7cPyiTrOeDhyQp8S8rPPv8iz49sPn7pUBUGolaqb2nWIS2leZk2HteKuTyG1gnOLLMKIt+KYZ0pJJjVxvChynlcbyc3l+WXoB0qI/WEHoJ1OZ5R4WFnRMUyJAUBZs96s87yquZBSGqMeVven76pjVnie7xEvjFKrVZ7leVlZiKKg1Fo9bZbjYf9f/viHT6vlL37+d7/6+S+//fPvv/v2W4odjE19VyNMEACjQf+Ul9vDAQI06g8HvYFFyvODqmsa1pZ16bk+prTs2q5lSZwCbZ6WKy6E1mA0kpi4kBDX8yklFJGqrSuAlFRZW9OaToYTzlhTZ2XhCymI487m88l4stussyyL41QbRoiOo74Fdnc4bXcnphsDFbSKQvDq6mbQH652Sy0F46ZrdeB6LiG7lmkDRcuGSfL0fNd09XQ0C/2w6bhLnf/p7//RaqWUIIFnhLDKxkXoEWfQH1lgoAPrtgJWlVXVNGyzfgZadG1NiNsfjYt6dzxuP368O54OFtiX7PGXI8elru/6ANhemraCCylgAZjgQkguNKH0J3EKABgCoETLGYQUO76D3H5/8MXN7fl4ECXRqcgN4BAIiI3nBn85CbG2VmpowKQ3PGWnu7sPo/EIJTEAKjsWaTBzXfrDhz9jSGe9cVFx6tIeTntpiij+5c++mk0H/8d/+T+rrHOC5oe7+0lv5PdGHWNCKkSc7WGntUqTtJMMIzQMk4fVsihbjLHrkMFkRKlLfH8wHCAEB3BAkl7v6f1bnINXN6/OZ9MgdHu9xHdJIxqXehQ62eno+RQNe2kvRvCiF6VPj0+b9WqU9M7OzxzH+/B437B2PBjmp5OU4OLslkn0w92TFjIvmr+UXeRsL2uhGfFdShziEOw41PFe+Lxd120O+8nkzA9iZbBLMLAWQogAMtAYa5jiSkvZiefVyqc0IE7byvvV3XJ3MEo7jpvXPIlThND+eBqk6TDtP683Suu7p3VblYHrEs+pm4ZzJbSWWhsDjDZaKs8jQeBGUYAgZC3bn4pDVgqhEERl1XZcBJyhPEeIcCYgBJ6USJK6rHzqGWg9j3755jUXXHCupPL9gHWsatoY4sANIHDWu2McB/P5YHFxw4QkGKS9aLPdPT0vW9ZxIS9mZ8P+YrXfFG2GEIAI1l2HKdbGIAgJoWkYh45vIQDIUsedjEae55VN23UMO1hpE4axYjIMHYKx47g1q/yAzqc9gtzHpQBY+K57OCyVMm3De8S5Pr+Yj0fHwXB7OK22m7ysrLG9xIEWaMH90I/9cDiaHbLT9z+8a1tmjXVcF1iU5U1ZlufzST/txVE47PcQIRrMmeAu9ZIwQlC/+/QdJjgN4sVoDAk+1VkhCm/gH+od61qXuEqroq4ZZ/PpmBB4qnKpJBCWUOw4zmq7cXz3bLFwPUqgMUphhJTR4AXrjBDACBAMELRaI2QwJdACiBB1urbtCCKYOMpKiJBLPWvpS2gwghgCrLXVRkoLE+ohRFjbBo6XLC5Yx/OiKOrDm1eff/X68/3p4FPiYtTkh8qaXhJfzqau6zmuvz3uh6DnOu7xuJeKuySIwhgACBHWiK6LkmLq+rEuyiCK+y495iffCaIgyeraLp/PZ1Nr7fcfP9L7+zgOwzi8mF0+LZ+QBYv5WZoMkjh1nFN1/wwgdgMXKPXq4nI+njVte36+mE9nRZkhhCwAu+PxcbkM/DAKw48Py7Ju435/MZ90XbncrOq2q+uD5zoYw4fnu9FonN4Mt8djWdbT4djx3Kflejwf9QNfQQMxVo09FNloNHYwHQ9HlDpPy8fV9nTMC0zI9pTXQvw//v5/iEP3cfnwsNpnZZnG0bDX8/3gab9tlfEIxcasVw8160aTs9FoTAhKejFAJvK9tjNpOpwOBs+rZVkWg96ASWe5XO9Wh9ub25ubm1GvN0p6ZVtkp+3l/BJBnR2z6ei8MaKoasnYIT91QgZ+2wvTYZSCPp2dXZRFJnhnjaFzN47iU3a6Pm/vl0+M8zc3r7fHzSHfIIIgwvvswAUv88pzwyIvhe24bFfbbVUxYOELdAwCYIHxPXc8GHke9oMgrwvXAUpJjHBZtRYpIVjVlMooDDB1EICQM4Yp7loOA9f1PW66U5czIzECRsuyqv7pm+8v5/+GxRx4ATK2PhWilZS4DiGYkLzOjvsjItFf/XLCu+43v/ldyxQh7mw2WYwWQsheOiCUAAQvZxf/+Dd/l+VFmg7LMlufdmPPf9oKydqWCYS9MEp9h5YNk4IP0rgVI64h02I0GjErMKYWqIfHj0YbxSR5d3d/LCtgpLPxIKYXl+eh7326/wiQjv2gF4+OWbnc7r/94e14NBgPxkVZGgqTYX+xmA36vSROoij48e1bD+LZaOJH0ddf/Uwr+/zfNqJt0zgGoPip72HkUzIbnHHl7jcnjKG1BmFEKAbWQORwbnbbXZimlAqttJACQfRC6YMWcaGappOdLqrmsaylFFEYXl9eT4YLo7XjekLKpm0ZZ77vpmkMjF2u164XHIv6lGUeJp7rREFkjDLask5IaQCAABjAoVRtWbRV1bGOVa3QACEACVKAIAKs77oOQcbowaivrVVKMsYdRA7HYyekhdAolfheh2FV1giCQb9f1xXFKIlj36PApV4YxRR+fnM9nM3efXjnOG4c91w3i5LefreDRlshgDZxGMV+NBpMDllWtZ2UkinTNYe8yNI4HY7GeZkfi1wbbayGiHRtxwUHGH75xZezSU9rKTgvqxJylWorq1qwbHfcls1u2O9XJcfIdbAjO1Yct8qwy8trlw7q/HQ2HlsIh70eoSQ7HljXtMqs9hnjoqqapmF3apUVVRxFHZOcqeVmW9X1eNQ3UFDqWGA4ayhEoedt1svD/oQwLFA+Hk/T/mA2nEZBuN8fn/frJIwn6fh0zMq69ghNHMclkGDkW2c2HE2G46wotJZCcsbaqirzMpOKK20ghIRQYC1BmBKqMLH/OrTFmAJj4QtWBCOC8Qs9imD0sgdAGEOEAIIAQmssRphSBxPiOJ4fRW1RWgVc1zFWK60Pp33g+4w1dVf6vrs/7parVdt1s/EUE3S5mN1cnFPfN8p8+PguK3PJ2abIsqr40vny9uqWuL5LqEvdKE5fXV4p3f1//s//n1YsSoYdY01T3T+1txdvrs4vtVGMsYeHZZV3m92qF8YYITfw4yiaTGdRPHz3/t3heLxczEM/oA7vDwaORxCC/f4wCsO6bvOqPpwyBOD5bIoASMLeL77+xXw4/PTwiWJ0cT4/HQuuGEaw1+/5vqe08YNACKGM2R1PEKNB2neow6QQWkptOibyvEAQDwf9oq6KujUAUcdzXQcj2DGurU6SqPvEd4dTJ2WcpJ1QFnChbNUK4yNH2qar2ra5OL/BEBmrG9akSTwaDOu2yavi8fl5t9tobbTWcZSesiUh5nGzWu7X08l4OplSBDEEh7zYHg7KgIvF5Tx0WceUBk0rN9tdkTeHU3F1fjlbXADk1W233T57jjseTjqujMXD4fjtx49S5tvt/mHzXLH8bH45n6TEgLKq7++etrv3rkOjOLi+PFdMCy4p8QAECEHwYgbGCFGijVJK+YQKRELPmw56SRAwpRkXZVM3TYcQeIGT+EHIuMLQSNZdLM76fW+33ZxAOR3056MR0OBQ1Z8e139pAMdjUeflYDptjO2no88+v43CwXJzf7d+O+zDrNh/8+c/HE9N3YqGH4gbBH5MXBdSp2PCADBK+5+/enPcb1wameGo5TIIE0xgkWcu6caT+WQ0RIbvT4eubf3Qv72+AtARQnie23YV9bzQDzeHA9CatS2xECij0ihyHOr7gU+x43nM2KasyrKqWjbpz9tO7banpm4BQBgirZXru47v+mlU8LZRYn51lWWlR9Bn875U5f3jM+P1eDgMXO8vDeD16/OqLYIoXq07rRhGgDNelCVrGyUFwXEcp03TrTY74hBMMUII6Bcdt9Qask42TQtDpAHQAA9G0/P55MvXb8oif1g9M1bP5nPHmX/z7Z/DwI2T0ACtrOm5wRcXr/5QNdQhhJJOcCEUpTQKSFFVWluIqDKQCWm0qXmWhOFkPK2qWgjuEBrHYRz5GEGAcRrQJPQhQoRi13eartvt91lRR3FyuVhwZaqmi9Je2zChzWg09F3HGDUa9L744ot+OlhtlvvDzvXd88msrkrXceMwOpxORVF2XXfIi7KupTEuwtcXl29ur+qmbZputVkCoF3PYawti0Ip/XQ4rMg2jMLI8wkiVdOWdQ0s+vUvfh4EAQ1pEEen7HgqK0qo5DxJBwpqqWASTZ6f1pSq5frYtY3jIwMRa9huu5xM56PRUGu9XK2YEELIkrEgSCyAAJEXOb02tmlYFIZWm2NxOhyPp/zYsjoMgqZtXccNzoK8yHfHI2MKIpTx2lJ3dn7Zdezd+0+CK88NqpKd9h+gRRihKOn1k+hwXFd1CTHdHo9cqyCMgjDMqyIviu1m7YZBXuTGWNdzA4StBRAhjDFGyGoLDQTWEkwMNAZoTDDG2BgtOEeUQIggBBC/tAUCfuK3QwiAQynGyELw9uOnrigHaW88HsVxD4LycDjkRdYyrq1xPA9Z2HUsDENlLBOyaFrGujhJfN8HBCgpW8apH1iE6povN+u6qYA2nuNNRyPO291h7fu+6MR2/YwJhQ6RxoRh8PPxcHPaCm4RwGVeWGN32UkBMFvMIaFVzeIo+fqrr//lD7/XSgdR0J+M+2nv4fl+s9v0ksRzvNl8pqxN0/TNzdV+v+9aQihdrh6b8iSUmI0Hkol+HL2QOOejsdTac9yL+Ww+HlJCD8cjoVQIvts1xKEYIgdTQrwsr6USwqqu67pWIozn06kxpmta1rLdboM0p5BEUZpQPJ3OizLXAM5Gk8lwNOz3CMFVHeb5KXY9CtExP9VFqQU/nHaIYIxg17UWIeo5StuyZtc3bzomO9ZN5+eIYqmhNiYrG0C8hmttQF5XmLeD/sB1SF60dSWUQteX6Wg8d9zgmO+f1+vDbkcQOZ0qLtRisdjt94fdkQn9+PiktFycTzbLreppF8O7+8flerU/5UrpKIpc4mx3mbaW/mQCQC/OcQQA67qmq4HJCDBKaaC1h9HlzQUTomy6x5UBSkllLDBSSIoJxUYLpqyKkuR8fpaEISKEt/UxL9tOskZCowDALyehsNj4QTgZvD6fD9Pk4em+LFqo7dVoZq397X//zfNurwBNB1EfYy74/fMSIiw1uL2+0lq1UmjBTkXdS/y0l4Y9HMdJlmVcqtFkniRpnKZKtkGS9kdTjOD+tKMOwBgwxnpR75TtoYEX8wtobVWWhLGuH8SR73uOMxmOCMVtXb++vP346VN+2qchTJOYEl0VpVZACj1djOuqNtYwKVabzXg4+uLNZ4EXGW2fnu6Kcvenb76tqu728jLt9WfjGfjflz+VzbuyrCFy26Zpm5I1HfA9rQ2wEFpEMBqNRl99df60WT6uniCE1HG0UFpbAwDASGoTRtF4OKhZ9/Vnn1+dn7s+/e6HH75/+5Yp0zXdw2p9e3VtDTRGR77fS9JXV1enU840C0I3DgMMIXWcU1H04sRx3LQO2o4LoTDBUkpjLcXwbDrtpz2hBKUIQpz0UupgqURVNePeoKsqA3SURr1+TMuqrLq053iejxCsO+aHcdrrX1z1todTnp241RgC6nicqyAKh4vz3/7+t9ssm/SHHWshwJvd/v7+nhAslM7L2hiAEV5lm31V3lSlR6mDaS+JgsD1vW6/OzVtuzsc2rb1I5f6bpymHqUGAoCQ4Hy1fAr8IPA8hG2WHdzFeeAGUnCC/V68KLMc+55Q5pAfd8cdIng8HK23ueL8cMqyuv1w/6ClPBUZJrSf9iaDMcCka7lSBhMMjDFaA4y1kdQlg96wrnIM6X572pp9FAZOz2GMZUXRsKaf9gI/FFpGcbReLR9Wz8ey8IgXKg9hEPuR67quSz1Ka94GUXhOnKQ36JrWAjAbT9a7TSek1lZbyzhvmgZCjBAGHjDWGGMAABBCo5S1Bv00jLVaKWsNAKDrOs8DLqUvK18IoYXAQmgBevkhsNZa8CLgMxo6bgAI3ewPWinBOeccICo1O+blZvdxNhydLRZRnEZhrI0+5HlZlRMLvSCqOpYVlTH25va1S6lW+un5EUGT58V4NPECh0NsIHI81yoAAK/rxved+fksjgOg9SCJB73pdNwvjsVqv98eDwigrpE3V1Pfc7ebNcQo7adIGyHYYDTQko2GPTqb1GWZZfsRnQ4H6Wevb6HR1hjqBEVdlV213qyMVqPJ0KUOcYhS0qF00O/vsxOihDqo40IY4UXu8XT8tHqwEN9eXo+HQyktRgQhwrp6tztaACeDST+KlJLHPHM9J00jY2xbt7v1ljM5jIasbQGEVxeXQRhYowG0Fth00Cvb8ocP7/K6cVzSds3htNNAh4HvU6cXp9TzuNb93sR1g/5o1DRVUVQXZ9e+HwBrBGs84lvFDVfH7EQJElKwshDABo4Xxen5Yj4fzbQweX589/GHumRxGBOErQYE47Ist7sVpiQgDkEYEwo1en5c/fj27nn1bCRwvdChESHGcZzt7rDaHqQG7k+CAgAAQAj34hgY23QsP+WTXuJ5bte2s8lkOhmuNpv5ZICAif3gab21wBCMBeOEkLIsKEE1QQABN3A56yw0wMHcqKpjmDh/aQDpdDrxHEBkWZwiBz0vH+tKXc0nAIuy4G3LuALXlzeR7ziu41K03x8eV9tqMIj8SGqmtfK8cLrrDcIAAQAASURBVNAfU+JDiMrqBKwUnCOM0l7qUqeqSoRMGMVREGFrq7rsOL9bP40Gk3FvuNofCfVCx8GIBOmA5EU1HY0ZYzt1dP2gN0iCyBmPzrf7w/F08LwAAqw1l0ZoZY/Z6e2nDxSRr7/62WQwLIrT8/phtXomiPhBYC1grS4LZi0aJP0wCoejwb+5HxC9vXqtLfzx7XNTVUoqL3KsBQRTawFGQCvpuZ4xoCoqpTTCGGAgpUQIYoAohpNB/+ZsoQXvB+4p291999S2fDgajweTPC9Wm/X+cDTazCYLiqlL6KifQGuzspjPxqNen3MGERoNBq+urpI4evvxfVk1GCLXc4QSnDML0Lg3lpwxzuLBgBD8xZcXw1EvTdOiqImmrOEN67jiT8vHoiqjJJnFA85YmkTj4SiM4zAMJ9PZP/ZH293m8fETBGrUH1oLmrqajBY/e/Pz5fL+0+NzWVVCKKtBx7WsmTKqY6yXpHGcjMbzNE3iMCHABL4HgGWM11ULDFDalHWDIBgNxvPpDGNMHTro9Sej+aCf8rr84cO7xWT8ejH/6uZ1I5TijCBQVwUAGAL4vH0WmgeR7zWu0jrwPALReDLtOvHnH94utzuCiNKKUMKYFsoopRwnmE0mbVu5lKRJ6rrOKTtIo62FEAMuxSmrEAAOwg2pPjYVM8INPA3MCCPXDxjjnLVSsduL88Xs/E9//rNo2OevPvMCzwLrOlgyfn5+OZnMj1nx8eGOEIoB8ojbQaGs8jxPa6uUoYRAgOy/y3ZXSgnBjFIGWK2lBVZrbY3FBBuptNFaawggwggT8jLe1cZobSkhAAILoNKKEvKzz79cPj9XTamlYqzzXHc4Hi2Xy6yoirJxvCAZjBB1hdQAk67rpEaLs6uz2VwwdjicWsH7UexAq1m73e+CIIAEIQC7rt3v99PhjLfidMgxoIhQqZoepgGlwCoItGJdXZ6QFcNe7LhuFHqCibQ/CAnJjoe8yrvdlnF2fX7WNVV2OvC2Iw4+v7rsGlDkB8Za1/cVa6Monk4mtze9oiw5bznnD08PSRp7Ds2yfF9VVmvfDc7PzqMg/Hj3AWFUty0hOIoiz42rjkV+8urqddeyzXaTRBGGSCqVJMn5fH5zcf7x0/u8zAzFVVM+rVfu4pxJ0bT1Z+ktABZZlCaJ5/st66yWXhDUXUEdut8f+YMY9vsOxdgiz3cBAEYBN4ihsSGwfhCMRmMu+f6waRuWpn0v8JRkgrcY6Yfl44dP7yh1rNVcCO23EILrq5vPHW973L27ezcaDCilXc0Haa+XpC+QqLopT9kBYjScjqBBQIIgCJe7ZdU0edlB6IWhMxoN5pOJ5FzwrqnLjgsIAAJA/+t/C0EopHxcPpddezk//+Wb1x/vPkAILYQfPn7y4/iXP//697//A6Xu7ph12riEAiy1NkYDJwoMhpv9hrEaWuBTMpvMF9PZ2aIZjOfgd//15STsNPv5Z1+0zendu/dIGmsQQShJ/PWJS4he3b6RivthSCAMfLcsTtkpp5hm+8P66SmM/Y41ry6uaS+tyw4ZoIUo8j2Xumrq9e4ZGGshsEBrYNwqD4gDoXN1dk48X0J06Lo3r355Ph0c8m3HWt+LiesFddcapQ3U+9N+ddpcXF5YsK7qLE2Th6dn1vJ+3KcEt5xtd6dTnr+6OkPW8I5T6p9O+eF0pJhMh6PZeBr60TDue767WW/oiWptf/WvDWCYRm8uzk6l8MI4TjvMuYQQGK210sZmefHNd9/tjsfdKc9PJYHEaGONhdYAABAEUun1dttUlTH24+OfIcJlXd1eX/+Hv/nbfprWvP3+hx8Uk+PRlNLg3Yd3hzxreBtEweubqzzPIYKhF1CAz2eLJPJczwlD/3G9BhD1URwGnjbS9bzhKCFkxB7Udn+cTkdJ1KPEf/vhY+h5luuuFVJbJoQF+GJxEwaBMZoJYYwimEgl6kYPZMraHFo5SEKpRV3mfhxt9vtjVnIpT6e8qmuMiIMdL/R93y/LEhIkOiGVqgT7f/8v/xEB/eHhfcd4y9qGFV3Hq4orDSCwURTFcTSfzW4uLhwHCMmm/Ukc9ADED09Pedk0bTuMY9d3RcfKsoyTKImiTw/Pd0/PTDDf8f7+V38thTzkJ6nUp8fHPM+zvC5rBgHhwlhjuWBS7fOmch1nMZ6NesladhpYP3DOZtMkcBHGXLBOiLptMUZxFCmlHpfrURp7sWe0oi4eDcdfvPlCafYv3/7RUW4/TS/Pz6uqKqsCE6ilEIID4+7z0+Z4nEzOJ/MZIE6WH49FRig12pyOpygMlJJCdGmcIIwttNBCgJBF8F/JoJZxJiX3XI8QTAjxg6DrOmV1gADGEGOCALYQAYCM0Uop1/UAgFrrpq66pvYdcnE2t2BaFsW7D+8htE3TUUqHg3Qxn/V6A2HBL3729dl0qgQ7ZidjTXY8PT2xOI7Gw0FXV4SgH9+/a9sWWWSU6o+S6XQKAUWQPK4ed/s9Z+ZyNrTAasWrumyL5P7Tp+1hJ6XUGliEfD/wAx8aWzes6liWnaqunZ9dpSGs6qM1KvSDzXb344cPjuf88PGDiwmCWOn2cNhjgl9dvyrzfDTmk+mEM5Ln2aSfWgiO+33TtAQRNwwxwRDBw2mf5XlWFlJJ13X7cZ8Q6tTNaNCDyLZt5Tp4Nh1mmSOkmo5H15dn2igAYS/qKa0P+V4LsdytvTCILQDINHU7GY/ff/zIpfyrn38dRF7dlKf9znFdYEFRVkmYuMSJohgRxIVE1OfKAISSOJJKbg+rwPVTPxQd+3j/w6nYjnpDnzrr4/Z3P3zLWjHqu83xJCRnUdgJ/vVgJjh/en7spf2ua2tubq+vhOCb3bJuGcZ4NEjCMMqr/HjKlLaxGyprLITnZ2dffpEgSDa7NfHwZJpUxwJZZ6WYUhoh9NP4H/xEgwDAtB2nkFIM399/2G+3wJjdZsON+mo6u3u6/7h8buquFQIhCpF1AzfPS6Uk9cIgcIfJ4KhU2kuTIPZdjxA0nZ4PRjMAfmoA/69/+Ful2KnthmnPGuNTtxeno0G/aKf9/mXkesvdZrvfDZN0Ohj+6fvvsrIYJiMPoua0f3ooNbZNUYa+73vBsTztiwPBmgKSxqPVaomIm8bR9rQdj2ceIgqTMA2n83naT/O2vH+6h8haIHxCDRJdfSLH48l1HD/0GVCf1hupLDCYTMwsThouOs6Pddm0DCAYBCHQdtRL+0kyGY0Ho/FyuU69hAwJITTyvKZp9qf9drcN/bCpWiFY/9+9AKq8uFdCIA9grAyS2hoIgDXWAoxx28lvvn336f5xtjgjEPGmhdZa+GLWsdbYjumPD0vXpUoZCMxkPL44v3Q978OnD73Ec1zH6rZr66rGUmNEgeu6GlptdBj5k8lQSJ4V2SBJvIAWTcF27SAO//Fv/qrthOs5CEFpNURgkvSw43SK5VkkJP/Tdz+0rLVWT9JB4LiO6z2v1s+bTcfZl2++mIzHQgqudV3WjHEuBKU4L+okiRHCSehR6v/x23daiCSKIcJN2/pBdDxmhJJhr2+tIQiNBwPiYKCN0KrhzGqejkftO/nx4yeHQoiV5Nqh4XjSBxjNFpOLyfjmbDGbjdf7VckU41XbtG3HR6PJ//yP/3jc7TD1nrf7Traz4QQh/PC8Uhb0B+PTcQ8BaOrmbLF4f3/X1m1WlLvDiRDqEMcCoIyy1rqOk8QxAiYIAgNt2VbYIaHvc85+ePcjhoSxDljVT/rDMP785taPwo93d/0gujmbHctstd+RGA3TPiH47nmTZRXFpMzK7Hj6/PWr3X5zOp2E0lobR7ku9e43z7//9s+fff757dX1ynG+ffv9ZrcXXE7GU621FNoaq62mCGCEFQBaG2MMgvBFEooxlgJACB3HlVJiQiBCUgiI8AtERFv7ohuFAFprALAIIca6x6eHpiq1NASTwPNZ0wILBBfUcaaj8Ww+CbxgNBxiii7OpkVVvf/4Ybc/aGMHvb7rkuXTE4Xo8+s3xuiqrZW2XcMssBBhaKHru5vTwSjVT3oucXnHDARdJ9fbw9PmKKTGlEjJPdefjCdj4vK6GSTp+dlIGYspcTl/dXnt+/4fv/mXU1lQALP8xJQoy+5pu+5F8TDpG6uA1cDaHz78yLm4rC7broTacMYE7yDE/TRlbUspcShJ0p61tsxLz3dTGGd5TjAdDIaSMwstovb7999yzRXQ90/3RkNKqODNdrNWWmNCwyiEFiSRHyUJEy1j4ub21gKwPRw4E8bqKIk/3X2MQ+943JcdG4+nmHiOj6VSFgDX97eb7WS2GI2m0GguO2uFBTI75dLvh46XhqGuCg8TqPS2WO/2+8loEgV9zljenO4eVlMAJ6OpNLAfhefz+WZ3jCPPdYkF6nnzfCpySh2oMbcJVKzn+zlEEAPqOMv1CnnUj8J9eQrDkARuVmS7w14zzVjXNh0TEv1rWC+E0ACAEOJaly2LwuBhuSzLCiNotPKoQzBhTH58eCqqDgFkLIDGSMkRgggYY0SZnzBIfHJ2NX/VHw5HgwGXbPn8WNQbi/7NEht6zn/5zW/rugu8ECB4triIoqBsWcHA2KPfvPsBQPfNzRve1sLoy/nMMQAa3U/7p+x4v1qHUbJbHabTWRwlXInF2Vxrfv/4FEeDkCAnci/nZ0kUNl0nlV6czQKPNnWx3awssfv9UjKWZ/v5eE4pXa2fyDYrIs8LtIwGwd/++q9mo8Vhs/EpDeMYOfS1g4u8rItmMOoHQWCUruucILI57E5lvdsetFYW2LIqPM9zQ+eYHZq6LtqaEqqMfP/pw1/KPhzrpuLJaGS0dH1XQiAhDChVxkMQ+76X9HoEQ6u0QzHFEAJrwAv1y2iojdFSqdl8sXxeOgQLoYuqblibU/LHHwuHOHXV5EXhBg/D/iAIAgBB23ZREPTT6KvPv3h+fu66+mIxn03O3n+8O57ujOFnZ8M0AdIoQmno+1GcsrbZ7FeBS2EvZsLfH/ZFXQRuYDrQtq2FqCgKx3Nn0zkEVkoBIGRcYOR0vAqjCCP0tNy4+1Pg0evr84vz6/X+FGAHAtZ2nbW21xuGftCxrmvbtmmEUqHvppEf+UEUxYtwokQLjb49u8rWeyFrrq0QikCBoLIIBb4Pofnx04+fnj92TCRp2JR1FKf90SgKvPBqcb6YpGFvvd18evxYtlwZ87DZxEG8GM8dhA6n03/53W/jNNXK3j8/SwMo9R2CMbSe50ynI2gBNIbxDiAoGO8QOVvMx6OR4DzL88PhBCCwVmFjlBCe6yIEN/ud6zpfXF/PRv3oeCBeJJhcLh+rpmw5T6P+drfRWq/2uzGQSkvi0a6RrudhQjHHGJN3d58ayVXHhZBpmHgLr6ob3w+zqjyfzSUTb9++/frnXxurjTZavcBVEYTQGIMxxgQLKT0vgBBZazzXp4RABLXRAEELgQUWWIARgsAKzgilWqvddnvY7uIoclzXc4jUgvPWWkA4HaRRGAUEItaUbVd+fPfdcn8si5Z1Ikl7EEJgTJlXPnVxgB3XJYIRl0LBF6OFBupQlrhu86qIvGCVl3lZ+tTxXM93gjQerPb7MIhmo2kYBb7nToaDs9mkriuEkOO7x+PRI/FiNIcA8a777NUbAMDD3adPd/dGAsmVR31gwNNqmcTxeDQsi2L16VEbW7eqKNvJYIiQbbvOWggxKutmMnRCFxvR9ZJedH39cXmnNJ8MR2ncj8P4KMTheDBWJUkMh4Pj8ZSmPYqp53oEguXy2fGC8WgS+IHvOUopx3Gk8GbzOYLE89zpZP7Nd9+0dSWV6Lrac52269L+oKxahPDZbFxX5cPyMQlTrtRLqK+SJnCd4nQ4ZkdrcIhiEpLuxFziIgsPu+0+2+wPh8OpgjD/1S9+PTsfs47xRkDkvnnzs67b1Z9a4NFKcaVlXdWeH4TGsLbtBYFuKi44Qh52nUkaBTgQrNsVuW1Zx9qsKqTQ1hrFFNCQUp/zSgqNEYY/LQCstRYhOOwNwtD3XOpSvFztWMc7xcuq/vzV1aFqs5ot5pcEgufNARGipALWEkJd1wXAZNnhh4/QWPzm9oZgVNTV8ZR3jLv/zgfw2z99++2PHx3i+n6HXTodz+MkTfEgiAa+T+O//jvHSx0rPt3XGoMojDe7b1aHw1V7+Q+/+tWgU8esiILwsM+Uhn4cYuwqqSGiWZ63da7LqizYxXx6Oh4aoc8W59KKPM+VkvcPn7RQN4sbDJDqOqbk/piT6Xga+a7joJurs69ur6EFg/jqw/3D093q+mJ+vbi+ubx+fnxirHUIdKPgctEn1FutDvvNYbVaccEH/d4w7Se9iAkO4kHPjzDGXErGpWD/xgI6lh0wjdycNCHASELIzfn5JHL//N33iMDFYnhzc8U6IVqWlbnUxgBo0U8mHgCAMaYq6/1m6zrUGLBcbdN+2jTlxWI+iPptywGg4/FsOOynYbI/HJIkchHlUjw+r/b7I4Qwb4rn59UwGY1H4/unx32Rhb0ojtO2Y7rrfNd3iJfx4ul5Mx6NCIU+dUMZ1G2FATHI3Zw2bVNRQiMLNBPRLHKoUzUVa5uz+bkXeo7jZqdT13VNXdcuVkD5Ue/Nze33338vlTTG+L6vlUzjeJAmECGl9fu7T9u9uFxMecexSyZ4YqzueDufz84Wk/VeIYMHcS90A4Tw+nhqyxop9bBd5lk5G0/TMlxMJoEbaq4Oh2MnGuwQjEkSJ19//ou75UNRZ2mSRn5UluWn5bJsaill/lCO+8Om7qy1hGCCoUPJ+fyMa7Veb/px1E+jomPAWi45Z9100NcAfPh0dzhlLqGjYSp4J412Ar9s27Ztx/0hpnh72isDgzDGEQiCsCxLa+1iNBz2E6nFoN/TQtRVHYTh9GrmOV5bN4f93irD2na9Xo6iWChdFEXoBmkSncqy6WrBO6slY92LjVMbTQgR4iUUBmmtXy5ujPEX0L/W6sUuZo2RUhprMIIvKBEMobUmLzKIUNeyh7tHjODr21cIWGA10CoOQmvAbDYPA4+J1g3izWZTsaZt2WZf8lamUdpw8afvv6eIYAt8N1jMJsAqroXBsNdLRqPR837d1PViPFm4E8HErtxXbTO+GFllfeL+cr4Y9tYI4l6UDqdjrThj7Wq1zIviVBZ525zy/G+//tVM2bItepHnen55yq3WcZQ2lXhz/cr3HSHE83pNMK7LTmsY+ZHjOFVZ3TGe57mSsqwqqRQX3KFu1Tau6xR5GcfxbDrnUhJIojiCCG132/0pQ4T4gW+11lLPxtNRv8+5HI9G+82q5YwpUzbN+fn87Hy2Xq4kt+dn88V8sd0cHEKnl5Mg8ta7tRby4f7h6Xl1dnbmuQGXHCPE21ZrE/jRYDCM0/hwPC2XT2kcAcPWu22Wl4N0VHUN27VSSj+IjFId63TDPEA/e/XG9Zzr84lg+S8+eyU1zJpW6xYjNJ5MR8AJfLrfPX/7/m0U9y4vLqrT6XTYftjvf/azX42HU3xYKs2rtvAcSiyMiUdduDvtm7bjQvjUTYLEoWijjDUWUWz/1QYMgIUQeR4epH4/6WMErQGuF+RlQQHywuDHj+8b1o0x9h2CMdbGCqmjIBBCeJ4PMFESlE0HIR5Phk/LBybVC7RcCPHvZKD5Yno+m8+P+UFItTvusyr78rNXSrePj8XN7ZdXZ4s6305GA4e41MD+eCbcYHH1ZjQ9T+Lkm3fvfOLErkt9XwBdVuXxdHAcP01HQRA2XB7zU5UfH56WNAjvhx+CwBFCa6P2+4wL6aLACM5YU3G+OpzIf/xf/9cgpFab7WH3/tNdx7soCIWws8mFR52uY9rUnAuPOj6hdVEg43bdsSwZdWiSplKK68vLfhobYD7dferaut/rB0G8PhynkxkGEIDnl7I3h53n+gi7SOu2anAQAl7MZtMfIbNApqk7m/cPh7yxutl1UmuIMbAQQASNRQBLrcuqNRZgB6dJj7i0LCvfd6EFSRRypU1jPNfxKHE96rikapq8KDjni/m0btuqqjzPWSwuLERVXSZRxFi3We9iL+ylPUydjqu379+FURDFvabm0shNfuhYN+73e8HAjwZ13a465hAniqIoDAkm++3WIkAQsFaEvpfnheBs0Et9L6i7Niua//rffvOzV5+t+v39/kAQcl13u9tFYSS05YzFcfzm9tVquzGWRGl/uVs1bQesOeQ5tNDx8Os3r4UQPsU+cfvpwH1/9+nxXnDuQKet+bPclElwfnZeN221rQy0UsnpZLzVm+FgWDeNUSr2/GPdZjx7eFqeigIoSyjF2Gm17o+G00FfC5ZVOZOqYWKfnSzGedumceI5LoCWGfW8W6vfC0RI0TRRko56vel4UDWl7/uYUoeQeDCZTiZR7G32awshpURLIblou45SorWQjDddY5SmGEmhj1123B1d13vxeAz7Q891uea73a6fpECpjB17aBC6tGqt5J0U/Pr6ynWolML3fAusEFSDl5ktkFJqraUUxhittVISAOBQiiCCyFhtlZWO6yOEAITW2jzPVqs1a7lWxgD7/PjoBt4pyygi0ti2Y2azsUoxwayFUuqr29uffXHFfvPfW9oihHbbdRj6CCDf9UI/0MpQSib9/gvwjikhhVxMpovxtCyL++dnLmUa95S2p7LwXC8SASaoZa3ImATCD7ymq2WpO8arpt2sD9TxhAKr7c51URM6+yzbb/cedYwG/V4ym4zWu5W1cDKcFHV9KrK8KH2XwLazwAZB0DTNerMjhAZhFMWRVppxizB2wlgY+LBaOwQPktRzPMZ5GPgXs4XjEcbrU55FYRgFMbDws88/V1J0bfzZ7S2lPoDQ82gSBvOff304noRgf/rmT0zq6Ww+6Pd6Scx5u9/tkqQXxf3BoAesCTw3CHwXYU/pJEoc6tRVJYW0rjHaNHVtLB6Pzx1MhORV1RBCKCZQG2AN9Zw3s8WgP6ibrD2tV4ed0JZA13DxvHzAyByOp348dWP33aeHp/X+11//yiWJP/KzrO5N43/8n/6XYrd6fvpwv3rywxBZDDFyHUcpjQGJvIh1B0usUCwv6jwvjHkBQ/00BrIWEEIgsUVXlnXbtt3DahlH0Xw4PlucVaz961/+4sPDY8tqB3mUEKWx1kYZzYVQRhtrIt99fXU2SHqqbYoydz1XCNXU9fL56S8NIOn1KEWj0dAJcHbKJDAQwcMxy6r8ebdj1la8Ch3HdyOl9ez8/D8Qqg3sDfpx4NUVvLq93mz2qzKfUNLydl8cn7fbv/31P1xcvnE91FTl8+Ont2/fIoND6tdtdcwF5+CLLz57/RplxyIva5dgazwXO+OeQ67P56fy4MfxZDp5enyKfTvo9eeLcwDxf/7P/2m92w4nw7pohWCL89H+lD1utOASSDQaji6vLrquIb49lPssr8qGPT6uyGp7eXFFaECJe/9495ey+3FyOmXEM74fEkoJdar8CC+iYb/3/eN2d8rG2RYgXJQFMpBgbJUCFlij7U/aXKyhmc0njuMqxZOkTzDumlZp/e37D0KrWX9AMNyfDoy1+1OOMCEYJ/1eErguIaHnHQ6Hoiw+e/0qimKPetPBuCjzTnDFu95g6HuOlqKqGs/1H7YPRVH2h+lnb27quu2kOusnX352OxomWZ5Do9MoPuSHvChn40nXst/+4ffns8vslCtrMMbjJDRIt6wrivru+TkKwywvB4NBHAZFlhVVFURh2uv3+0kcBLdX103dDPopwEBIyYV9Xj0K0Z2fz87SZJCkZVnXQg0QxgSttrssr7TWVhvGJay7j4+PDsR12whl8rK4e3oaxNHZYpEXVdt0LzafoqqqpumHiVa67rrb29vbiyto9dNmlXO2ORWUuJSyKAgn05HnevPxrCxP2+PxqtefjIZMsKZuwqDftPUgja4vz4UUTdPuT8dCyF6UbHabuR2ftvnqsJcQXEzn2+x0KAsHk1NZBmGIEXpcr7BFcRJ3XVfXDVeCCWmM8anrUiqUMCGg1DMgt9gud2tjYFmVxTHfHE/X143vul4YEEgJoQgTC6Gx8EUa9PJAFIxZawEEWmmLiSXQGC2FgJg4rosxAQhrKYsiz08HLbRWnFLSdE0neRREw16fYLw7Hu4eniihYRjujocgjG+vb0b9/l/94mtkbVvVwzSO4tBa41DiEY8JwUWHCQIIaQACz7u5uLDGfnq4r5pGau0Efi9OXeo5uJG8fVg3xhiCCA28rMrzCgojMCHz6VRbAyDyXf+UZZPp9NXNZ77vAvIINFpt1pyLN9fXVZnzlkljWi4RQhdni1fXN6fsVBS553nWANdzb1/f1k1XFI22qp+mSRQx3impHep1khGIyqpsu04IeXEx90JMCbaaeIS2jEvJpudX08mEtw1vagDAYjq31j48P+32+6atD4cTExoAFPi+552+4bVLqRGqbTuAwKjXCz0v8H3GO4Kg58cxxRZYIWTbsY51bde2XZxlh6TXdxxXcjYaTmBv0LSl1korxaV2gp62+vd//v0xKybjETfKGuo5tj8cEuqWRZbnZVF0+1OQhqP5L16lvXR72KahP50sPv/qayGL73/8Y1W1wFJiIQDo6vp2v98u17so9DyHzIcDA3TLW4eij3qlLIQYAANeHCPK2v6w98Wbm6I8rZanqmP9wTQJ/KppV/vdF198Rh1qIBK8K/KjsRZAjIkHEdHGagsUF50xZV6untZu4AVBWOY7o3VR1svNGoCfzMDS6rIs3ci1wAilCHUd7GRFrawaDoOiPhXflRfzszhMry6vADJRz63Kcre9zwgCgGCIojhBlJ7qMoqiy/ncQowpybo2Avh4Oiw3R4Ccs7N0c9h9elYU+69ffd1L/eOhnA4nN+c3eZlrpQ2wdd2QzeGxEyru913fmy0Wm83m4fmBejiJe57nuIAeDyVCJCuqKHbPZ4uGqbpm29Xh4XkZ1UUUeJvDSUntO8HplBVli7BBZJnGvc12vVqvAXj1UnZRVEVREaEhcjqhHKSMZo+PSwQIBvi4r/785/dBEKrOHrK8bCroeBhaBYC2FgAELFJaOS6YTFKCcVmUge/3Atd3vTDwCMLDXm9fnLTSwNjFbL7Z7/KipOPh3fNznpdXV1ev37xabzf/9Nt/PltccMmrpkwHad2JT+8/nP74/dXF+eevXyulj9mReg5sUL/f7/d61HGzIkdIf/b65vb25vff/Gm1es5YjRDqDYZF0wkuZWfuHx+p64ZhiC1gTQusHQ4G89l5L020FtdX50kcA2tdSiEEk/F40BvUbYERodRRgrOu6w/CsqqtAV3Xcgodx4MIdR07nDKlzWa9Wx9Oz7ujFMr3nOloNOqPALaf7h9Gaa9pWmWhtfbpcQUWc2XWVVU3TRv4geO4dcOKooYxBNYAoEbDZDJON9ttXdeAkJ9/8bW1SPEuCjzqkCgKINDaGoKxS/HXX37Wsa5pOs8Lv/3h+zzbY4ywgrEfXv/q+vHp6eP7DxaYT/cPHVcWg/Oz2f/zf/wff3j39tsPH5OkRxwquYgGPQtTIzTFKB6OocWgrXgnLADGmu12NxgNOyHeP3wC0KZpXNZtlpUQkbKtnlbbh6fl02p1dXV5Nr+YLxbGGEiIhlBDiDA12iCEheFKKsdxjDFSKQQAIUgI7ocOhMhY41KqtD7ss6JorNZPy5XnuwgA13PDIBCc3dzcTBdTPw4xQL7n9Qap5wfjQXTMt/tie9jtXUTDwL1YzITipzw/ZDtoQRiFoR8ghPbH43K19nwPA+C5zmI0BpMJIjhwPS2UFYwxJrQaDgavbm8/3j98/+GdsZCJzhhtDayaLklSBEFRFsZqn0LPdf0w+PLV64v5omzqssylllEcPm+2eVV/dvPqYjEX1kSBJ0c9CBGEdLaYayUenp603HRc1G3T8opQ5DiuUFwIcWxbIbkSwvc818OH7OQ6TuhT18FaWULIYjYNqFt2x7ppgiAM4+jP336z2e3uHx/rjmtt++kg9PzAiR4envbZ7u//5u+6qjkcT2EYKyFpkqz3u7Zu5rOJUsVgOGBc+F7ocs9CSAnVSkphrNJVkcdR5HkkCPy2K+umHA6GHecIk+3h8OHuUVoIsBe4JEmj0Xg6n88eH+66ln3+6jPeCQvBxdlZL+l/vH+wwOyORZqm29Pd0x8eTKejsHfIm6ruRqPJl59/0e/FTc2FYITi8XCgrPK4s+yWQguEIcZUGwWghQC85MeJlo+S3quzN3nRcq4fl0+eQ29ub6XW5bF8dXU9GQ2++faP//y774A1mGCIsDUAWpTE0WG3fdDw4vIsTaK0l6zX6lSc9qfiWHR/uQp7rjudDIVkVtnz6YIJ+fDwgDGWqmtYwxgYD8f/18ffTBdno9kUAVk1xe543K73s/Hk51/9XEnunfZxujidivFw6lIaej5AxGgpuP748e7T3dN0McAh8KUjJR8OJoOez9tqs93XsX11eUUpgsi+//ghTftku98HXpAEQdd2grFBv/e8fP72++/Gw5FLCcZIKuZ4noPHAfE86HHTDJLepD/9v3/zf6/fryihnu8YA/aH+6qokih2HX/5vHk2myiOx4MhOPxUNkZwPB5JiJtONJ2wUBgIqpYTijDUwDiKo6fdup8OhsNBzTuDENDmJRYYGAsA5EzmeSWl8n2vyIuN2Yx7/auLyyQKT1X54/MdAOD27AJAbCwajyZc6ufNJstzSshqu/ECD1PnTz+8/e2f/hyFUZokLeeYOIEfU+JpIS3Qfuihg/2bX/8yiqK7x4flfk0pDeOAqQ5i21Zl5Dk3l2e9fu8XP/sqjdLn3eG//vf/fjaZ9XoxQNBY61CilWZcxEk6Hk+UUlqJrquqqhwMBpPR+OnpITtu4tA1iluijFTHw94aYyyIwghDPOqnh0xXZdmLk7KujkVGseM5nuf4w/5otz9g4gCEsiLDhBR1PeqPoiTdH44OdZJkUNb8VKwgQkrKU1YIIQml1tjtMTNap0n0/Y9vJWdpFJ2NJ8vj4e9+9Veb3ek//V//yfc9pVXHWeD71KPni0Velb//05+0EvPJzCF4Oh46BDW8jSN/mPQxoqPhsKrqoqj2pyxJ4i8/v/3bv/4lxSTPT5NBbzI9Cz3qYFRkWVbkSZxcX1/d3T/fPT4qo3zXowiPR+PQ9eu63nPOOCcOPRxywTlCFGPoEdc4xkH07sPdw+Pj//Yf/7eqKi00GCHiuFhIYIU1EFoEIFZaaC4oJQjjl6URANACoI2G0LKuVcpMxvPD7ggc7EUx52wyHLouNUa1vDsUR+q7xCf9KBEde/XqKvLDQ3ba7PfAorpT75dPCMEfPr4z1jiu61N3NhpqI+um4kJGUXI2Pyuqcr/fCtZNB72Wc5eS0bC/3Ww8j1pojYTYpd++/cEC8OrVTdu0z+sVwi6h5NWrV5ezc8naT3cf17vdb/+4M1q8vr3+4rM3SRwOB/3f/Mv67uE+jZNRvz/sD9q2OZVZlKY0cKsm86j32avbwPefnx96UeBdXzRdJxiPwqBhNcSkaRhG0IsSpYSU0qWEYPLl6y8gRj+++7Fuq6Zr/bD2PR9buD8dCaX/8NmXpzzTABJMhWSBQ9M0Vdru90sp+wCBw+70L7/702evb7/++ucQkqosPtw/dIK/vnmV9uL1ZkVcSqjjuR73/bZrhdZhGP76V7+qqux4PFHqHY/Hp+eaCYYhXG/WVd0yqbW2k8lcKh0G4bCfLnervO1Gk2mSJm1bu5TMRxOAoIHGwejv//pXy/XTZvtY1XnDi7Zt5v050AjvoDDAYCS1/vyzr84v37x79/1+u0QEethL+9HhsBNCuJgiC7QF8CUzSFvP829v3zgUeG4Yx0Ib2B/1y7pyKBaCB0HgeRRj4AceIVhIABCw0AAAjNYEedbY65vrtO+xlkNrB3E0HQ4nk8lF0YL/709MhM9vX+32O811P+272NkfjnGa8K5VCvpeL45DAm3ddE5RPT0/j3rxfHjpgWTam2rFDodVlh093+MNin0/cJ0wdCQLqetTz0WYnJ2f9dK+wdxSeXF1ASWZTWbGKsG7KEpHw2FeHqVUXHA/9IhDyG57upyT9dPzfHYWDPy8KH7+2Vf3D3erx03ge45PGWPr9SYOk8gLn5/3eXlABKdJf9BP/+qvfkUMzKu8arlLI3Rmo9BnHXcdv9frUwefTyfg3fGl7K+//GyX58eiQRgVRW4AMNgBiAAtCbTWagSJ1iDLT0EQQISNseBFKQosgBpjDIAVXE0nqdEmL1pgrJIw7Y/D0K+VhMTTUgkNMLHL5bI3GLuO37W7OIrStA+MXa121lpoaS8JXMfJs9IqizCG0PSSMHTp4XC4ff0qikIt5KTXPx4O1HWUVEaobJ9BA4pTPhmMZrNJ1VTv3v3YS/vzxdnf/vxn0No0TZXWZV05niu4cB1fKEmxzU8nCADjwnHdOE4Op2Mn5OGUlS1P4sjzvDCMNYC7/RETPOwPe/2k1+vtjnvG2Xq7P+SnjvOejxQWvkdur84Dl8Zh4Hme0PpYFEXVbrf7JEmauoERcH2/7ZgQKokCYCEDKoyCKAxPWSFkNxkN48gPQ59xaUxlDUrTdLPfXl6/WtxfHvcHJrXjel98+bO8Ksf9SRCGjw/354spwchq0VRl1XQamfVuY9UnKVU/7UdR3HT8669/tphOeFP+9p9+AwleLGaz2Zk1gLr4YjH/9ofvjnnWNN1vf/f7fVbWbScF98YhF/JxuQLGeK4HETRCHk8lAIBSByPNyhpYgDDZHY6OQyMSKSn3+00QBi5xgIUQICGkMgZiihDHhEglKaAQIowxwhRjYo1tmtZokFfF/nAssno6GSdJYIDOy/J8cZafjgaC2A/LvJAnMZkvqOvsNpuqadB4ttptPM//+edfnM3O/vN/+a8fPn5yHeL7zqA3nI9nXLZF08C2pY4z68Vni3n9vt7uDxaZ5/2aQPoPf/t30ljqeyPqAIR+eP8+qwqlNON8PBhEUXh+MY9C33N8Za1DwPxsZhSnhK4Oh8D3oIXf/fA2ieLxZEqpMxyOtQJS6sD3uFLUdUTH9qcTgtBCCAkMIi9Mk2NVZlWRJkngewgAPxoZrSbp0EJAHU8avVxtyiLnwhRtzYU4lhVFpB+Nm7ZePS/9IISQhEH6+PxIEP781et/zn5XNjWAtuka4nhhGlHf2a42Zd1SmrdNlxfF1eVNHEeD8bCsq0F/qCVr2m409vr95LDflWWNCXJcx/M8P/CVkddp3/OC7X7XSZ2XdVfXDnUm0znligs9THsuhW3betS5mJ1hx6EEJkkPYvTp40fG+PnZmTX2afWUxm0axc9PVkg9HvdJhJVkxkLP96xwhNTfvf0+CkIIEAHwfLaQHYMIzkbD33XCGkgJeRGaGGughQYAKfX+mGEkXIdeXL9SCmhshWRGSpcS1/fSXpLEoetRRKBRVgnhYAciCDGRBvQGicXdn3788XxxO/Fwcayw6mjkTgP/L1Cc3fqhqKv+oP/5qzfb9WY6GUdRWNd5WVUVE4iQtm5evbqez2eyq1dF5l7eBA6u8uzh+YEJA5Ebh+HtTQQxzLLDbtvtD4cgiiAhAJCbq6u6KTfHTdWUm83p1eWtVkZB20npR8FkMjntd0pbzw8AwlIZ0g9jijCGsKorqczxdOhY4wUucZztfusqPEjSfpx6nueHwae7p9XuMB73ojjwo2urzWQ+iXth27GL8wXnvG3r0/E0GQ/Pz8+6tnEdAsBPDaCXhojiY1ZaAAhG1lqL3U7pAFlKqTLmhSLbNVXHBKAYGmMN0NoYbV/CwfzAT9NkPB76NIz8dLXdNE2z3h0N0Mc8mw/Hb15/9rxZPT4/TgbjL774kn/zLXh6UlxaZRzHKcqKsc5ziYUBF10UxZhSxZXQvC7z64uL2XQmOLPWOoGbd5U0sq4qSpzZeL5R22+/fWu1yU7lsSh2x4NDYRxlL5r09X4rgYrDuOkaxjpk4X6zK5sKE2yUpoRahIXgVVUxLrRWLeNMyqar5rMpxBBC9MIleHp+fH58tACOJ9P9/nA8Zg1jvbTn+97usG3arqzqKAouJpOX7xYCSB1HagUB8D3PdZ0g8DzX422bhr4lmF4skigyxs67zsHEgdj3XSE5oURaI4zuh/FsOvnyzavl+vHJc13XmU7Hrksv0eR6dl7UFdRz33Gapvn06f3947YRyg29/e5grTHWTodjz3G45nl5yvNTFMR5fhCi9cLd7fXrum19n2IE7h4e94dT6EcIkbpu67ZL4uhscRb6blbmxtiby6tvf/w+dL1BlI4mEwDB83JJCcrynECAMKSuk8TR2x9/pA4BAL6+eTXop03XLVfryWTsB75SnHMOATTGaqURegkBg1zw3eFYlFVWZJzzyXgGrLJaOgRdLGb73TovSj8I1PHoBq40sn54XC03SRBU1X7cG81Gk6Zr3r57izH54tX12XTieZ6xum7bU5mxrk3SOIojpfX2sH14fhj0hm8++2J92CxXy5vzuUO9wzGjDonjeLfbuY4TxZFUSmtdNR2EwI98QknL2snkIgrDui4hIkEUeV3pBX6aDA5FwS222On1Rq4Tags70VRVORtPrNCHLO/3+hQj13equvr+7bcu8S7mF9PpQkpZ1XUaBHVTSYhms/mfv/vGpx71PC44wo5Udr07tYxH8SD2A4/Qpuse1hs/8Ie9cRiD++enf/y7v6/r2gBDffd0yKy181k0TPpciI4zzw2Gw/FwOAoCPwr9OPClUlnhUcfb74soToeD0YdP30uuvvziK2BBURVBELQd65hOknC1Wz49PXNpirLECAIIKA0hBVfTxevrqybb7Y/7rKqwBGHg//Z3/0zdcD6b5lVLneBUVhCYp81WaGSsmYzOhsNJnq8Zq8q2eVptsBf2or6U4vHuoa7bm9tXg16anfbl8eR6bsub/TFnQga+I5W1ABBCxqNxmqTXr27TODKmrZp6u18bgJIwvThfFHnWsZaL7njYGpVIIYzRwP7/mfqvZVuy7EoQW8p9uVZb76PP1SEzIxJAoYoo0cXqptGsje/8Kf4G2a80Y7NEowSAAjIzIiNDXX3k1sK1dl+CD4FK8BPGwxzT1ppDoDLLuoYwJnreK5wMPcfQwKevvjw/vYyi7SaKFKpcXVyNB2MAbv/xBtC1vu/EafL+5uMvTUeWpZu6AgFCuCnq6nQ21akFIK/SnHVtFK7TrLh7fGjbzrbdIHAN3aCa6fnu/f3jZrUWUpRt13NONevy4rJpe4LU6eAMCBEd93sOR+Opo1uSQ4TweDINo2NRlq7nE4US09IF5ITKrqsM07M9J1xFgec51OS8NQ1dVdX3d3dNWyuq0jBh2LaiqLqpGYbZd/Jxua+bwvddrKim4nDGTmbTyWQ0n00hgLvjHoCHX2AjjC3dpIpaNCVEEiio5SxqBKaICzkejxljPcKqEyR53vcdpWrbC6JqmACCkITQcbTz09OL05Pb2zuqEs8fhGl297joO9azvmu47fpV2VRlh4ckjg7j0WAwGFRFRjDkQFCNjgZO94vplktQltvdgXVsNBx1jNu2QzVrc9hWRQoJTMsCAUgVnSC0WG/DMLItW1WwQsD52dz2nNV6XTXskKYYobLtoiiqmw5iNU2ysiiTJEnzVCJgWy5nrO5bXddRXgSefzKdCt61dc1kt92uDF0LvMHIDx5XyyjNur4PPG/uBnCADvDg2Iahmffr5Wa3tw1T14ysLN8/3gkBKaauYWgKMXV9PAgMXVWp8smLV5Lz+/v7tq6IqVJNcR1dVSkAfhpFKlY453mWq1QdTodEVYUQuqb+4dvfZUls6NT3bWqAokxU1Xp7++F4PAApGGNSgN32WFW1omrpMe86Hnhu1bZZVXWsdVzL1I31ZmvohW7oHVCqtJQPj3lRBJ5T5FWUFIyBIi+oSVvWmKbxqy8+e/HsadtWZZOv19umLjWFHNPUUFUpWZrnZVkI3gtWnV5cG7a1P+xZkz/c3UmERkHQnZw0NfnjT98rhHz+yadt17VUa7seQowAkhxgQgnVq67NyyJKo8fVqkgLQ9cTsisA/PixqPv22ZPLqi2zKsNU2Ueh55id4IRoCsTvow+u7zyuV5NBEEXJIYpfPX9mDgLGedk2WZEDpEnAAm9aFOViub68vlAxrkSrm/Zk6mCqtjW3DXez2dqupen6+nB8/f4jJWQynUZJNJmMEQBFUehEtXSnEIVt6oZJP2xubh836/3e8/zxaDidzL6e/iVVqeB9mWdZFgvWHcOwsozZdFa3bScAhMAwNAABwdgwLAwABGwUeFXbEhWfjCe/eDgQRs+un+oajeMETsdZXiqK4trOxZnbtl0YHrfRUbOcuectVxtN6+bzKY3QertMkmw0HKmKrkCj7xuI0GQydSwLqdDeHS8vzk/PZn1bHzYPqYrLsuICzaZnRZ7XbW2okHWdY7tQMgEAALzr2pb1RFEoVQgiF2fXneC//8M3RKEvn756cnZ2iKPLs5O2zR82j0DgwzGkVJ3MJgAgAHFRVEPfJwRHadI0hWXqcR5leWZo2iE7no4nFJkcQ9Pyu45hAK6ePKnrOi2r6WTGuuYgGLZUzx8Ylqlb1sX1mUHNtu5sy3Fd8+J06plmzdtaFEmSPC53VwB8/smr8LCrq66pu/3xUFR1mMeBZx12B8EllBJCBAGSgvV1BahS98h2Bv5wUBXpyBl8+erVIT4+v34q+P/wmwGgUp1iJTCD3ebw9PpSSmbq5m6/0U37008+//DxI8bQD8ZdUx+aBhCy2uwIIpPhnBD15OwkjPcYqwJgy/VNLz+jthTM0GjVVjeru7vlfeA4pqXmZdpWfVc3ruXWZZqnraFbQnSUUtvUNZ0KhMqqJppBBGBVGb969qrjuGjYy+fXURgvV+sojeMsxlg1qcWZIJr2fH46sAc///jDN3/4zvHtoT9M43K/26dxMJ74n3/5eTMeGQTpJs2LTAJcNv+kfpWIcMG9YLiLcyGhlLJnvMUoZG0v+Hw2MTRjvdvVdev5btHUQgjkgBfPnrdNs9sfMMbzqfv0ag5Rp+lKnjaUKpZppqzXLN1xnbPzU8HY6Ww2GU+qqrq5vXn+/OX15cVmsxgHg7JpVEVRMLx7SJqOXVydp1FaVQ2lWlU1mml88/Obqv7OdSwMgJS86/rBwDct07Kdvu2mowECrG3Kvu1sg6oqGA9fYqgShUjBdQXujuliG/VdH4dxW9cCQtPWVKKYpqkQNBj4vj8oygpBSAAYTU/SKDlGR8HZfhthia5On0gg66o+m888z1FVQzfMKEkFa3WNBt4AQKVtGo2gtm36jhumHbjOaDxerVeB6xCCJGBSEsaF57mIYsf2mr5QVG6YKpAkSVOAYNU0Xd9XbdXL3qqN7HDoWJ+lOYFIVZSety3oVg9rzx0gKN6//dD17WQ8cb3g8fFRQOj4Xp4XtmN5A68sckPXzs7OCIFREi53277pBcBZWZi2ibDa9bzrO85lnpefvfy0qto4jTCRhmE4tjObDrI8/fd//ddRGD67fgoBbJsWIJhWpYhx0zHOJEAEIIVL0fNGoQhDZbHaFWVRjoajUXDc4vvbu9FwuNltiaJyCRzHY33ftR3GGBGFUu3u8T4virJqBBNff/7F43qZhtHT88sPtw8Pq03XCwgkZ7zrWkqVpm0Ny+gqHqZ53XFNF2VTV00BALMtI03jplRaxsq2pRolSMEA5XlpaEYYJdvVbjaZSM6PhwOQHALh+24Yx4y1eqS2jPe9ODk5nY/HEPDxYNyxLs9zAUFWlrbjazpdLu8Xj491Xe0PkZQAIaBrVIheiM407L5nuuaxvgJCIQrJskxTyXQ8no1GXdsew4NrO67vB8NARbAuy75tFIiuLy44Y4zz5y9ffPjwwXZtXdfrtomzJCsSw7JIDYoq6jtRtz0A8vMXT6eTORcQIeDb1HbwerGiqvrk9Pz9h49N1XQN7HjXi0YAfDEbTAJvNJrs9hvR96ZGJcdtU9uO17d1lWdZVbx9+2az3a/h4fb+FiJ0enpqakbPO84Y5BwB5LguVtF8NNY1ezLykuJQluni4QOEoG87DFXbMALfq7NCsN63Tduy6jrLylxwXhaJ65ptU8dRNhgMAQBJXoRJXlbV06fPD7sdVVTHNE1NeXp9UdXVZnv0XacT5unpCRT9l5+8/NUXOpCwykuASC86TcEda+qmXm2r/fGoIqPMmp9+ePewut9t9wSqEAKqm73ohWj3UcoEYLxXCPZ9f7/fcdY3dT0YDG138O0331CiPD2/IFiejkZJFGNV/xMTUk1TEErzuKgKRcE3tzemYapU0Q2tFe1gHAgp3IELgcMh11RNo/T+7qZt26wqTjD2h6OmFf5oyvveoHQ8nGVZNBj428OWL/qyzi6mo4+39w/r5Wx88umLl6v1Lk4zyzQsy6qq/LA/hGE4nk7Pzi+IkhOsEFO36jZ/c/NeVy2Nqvv9vijb5Wpb951tG9F+8+z66cSb7g7HkesrQFKC9WCSVenH8BZiqNl4cjLEGEEsnz05vX33rmX1929eMyEx/KcitMfV6uTkwvE8iAiQEEEMoKwZ6AVUNI2JFiA6mwx918cImY6pqurhcIAQYeIL1BCAJ8NBWVT3q/vAG1ycnqx2R8fQzmYvuZSe711fX7/96WeCcZplCqVxkmmaZprGyels6LpZUZlUOx6PTcN2h6Oi0slowgWEXKoIq1gBEFRltVvvgQSz2WQ+GV+ezWfT0Ww2S6Kobev7x5vj8fjVl19hhH98/UcJuK5Y89PTJI36vvz06dOq4btDqBMVALiJ9ggKzzZMXQkC79nFVVGWDw8bfzBEipLkuWoYPMF102/DNK8bLmnL2oq1CAPboFyCYDAYjAbH3Zoq+OvffJ3Xze9//00Uhy+e/AZDdblee559djof+77gfdkWp6dTCFHP2p9f/1y1nWwk590wGFHNDMOs7cXd7WN4jBnrVEonk8l6ewzjGBLSMkiJ2jVt3TdWpU1H08AdQQDOLy7yPG+a7viwStKCc6louhsMMMIYSmDolmn7tp0W+WR0OvDHRZ5RTSuy3Pe8smoC15uMBtv9PmsbqmpSQg5ldAin42kcJf/x41/XLVustq5jHfahruu/lPjWRYkxtl1rNr5SVXqIjvtw30m2DyMk1LpjEmLTcX/48af5aKpgRUq52KylkBpVXcfp2sbQdJXSuu+mjm0aZhSl15dPLKrmeaarCtCMzfFgm5ai6IdjGjiWquiL9U4IYVlGmhW26UkALNOZD6eOYd4v10yA50+ev37/vsjyl0+fFVUNID6bnxz2x81277m+4/g9Y2XR2I7Ttt1uu7VMU1NVZII07buWK6piGdpw4F1fXWRJdAgPlulcXL5ABP78+odjElKC5+ML3XIW68WTp59G0eFx/eD73ng47rpuuXzUDc00zCjOLNseT2YSQpUorO+GQXA4Hl3X9V2XMWZoqmUaGMLb23shZVYU11fXuq4DAEajkUpIzdqWtePhAANY1jUmSlWVg8Goadtg6CtUtm11dfUEEXncrX766Wco0enZeVrEm/0qa7o0Tl3Pff36ZyS5TrUvv/hSU8nQ9x4Wj9vjniDUM8ZW2/l4plP1GHVvP3xMymIymmZ5ZtuWZVhISglxlmVt3QrJ3aZQNDIOXIOai9v3ZdNOZyePj49pkpzM55ar5DX4/qcfkzgZTaePq3vPdhfbdZTkmqr4rtHXbDacpXEdhilVlUxJDcvECgn3B4JQXhZ393e6oUAFAiiJigxogKa/ub3r6vIYxlzAgedLwZ88eQGAeP/2Z8PSz88m+zhSoaZA5f37x/Vmo2p633aeiU/PTpq+MVSN96DIa86EgpCqKnmed30rBWddJ2Tz3fd/ePfhA1X0xWrjB45re+PJyfnlxZ+YcBtGA8dJ8qzI881m47ku65nnulndblYrw3QMyxCcR1G43Kwvzq+mg8GkbSFCXS8lJp7rabqpaaTKjvFxx3tmWfrj/V3LexXhNI7eNN394iGtqq7FXclPzy4U3WB9l+VF3ZRCoLxu1Lz0ipIgQjb7WBDkeU6Ul67Kn5zPkiRyB6Pzq7O7+6Wu6rre/vz+zZ/9xW9O57PVcrV5eOScPX35AiGswjIYWIatXD05J4r1f/z1fwkcE0mINf3mfnl2cqaQP6EGZVMXZZ6mmRRMwVAKgRFmEECqk07jfd/37Ww6vzw977v2cNxhwLIsrNva8T1NQ4KBOI6rskrLpio3td+XTWO75nQ6EgC2XRfHkaoqRVls9tvJZKpr+t/9/d8hrLC+XsoHaljDYKBZtjeYNBwmeWNZDGDNHwUX89lieesqhoaVb777nmBlMhlZBsUEllWVpGkYx5yz/THebPa//jW6Xyyqhh+TuMjWu6wghCwWd10jAFLWm8NgOPb8oAO1Y2iuaSGEFVX57R//UJYVRMju+rqosmI9G41/Sab89NPPJoOR4OL9zRtD05q6KqrybrGRmJydnPddF8ZFw5jreuPxoO+7s/mJplHL0TebVdeUZ5PJ7rD7cL8pq7JtWy6BquqT0QRC5AZeniZRWLQt3+z2D8sd63qCUVnnHZe2ZZmW1TRdFKaWYVZVORgEge1Mh8PxePrmzbu6rk3LrtsoL0rTsE5Pz7q+K/Lctmwp+l50mqZWVaEq+M+++mK1elytuqZpDI1AKF3HYl3LGCAQ+KOxQpW67TFEEsAffn5bFFXdtAiRpuUewIHnIQQI1TBRRk+u4+SoUEQtkiWZkCzw/TCOfWfgme79/bJkbDgY3T3ev7m9eXZ9lebJcrkQQlR1zfpep9r56ZmEIK/K1eNyMhlDiBaPy+loePtwgyCoupZJoZr6q0+eFUVpaLqiqFJilVIJuUUNDuAxXaOu0s0nd4vlYrX59Vdfz6an//D9DwISx3HKtuxZF6dx1TaQQFVT4iTRdcMwTIIxx7zv265rXrx4Vqb5/aOsqsq1Hcu1d/tNXeQIgzzPNdN5+uJTqqvf/KE+HveeZT05f3Z+NmV9ut9t66qiRH24vWvL+vzsUlPUsq4IUi8uL+u6NgzTdZybmxtN0yBBVVvZjskFq+qyKNjxCBFEHeObwz6M4v1+57muYVuCMcu0BBAaUQyql1Wdt83YH5tzXQhe1IWpkZa3OuzX+0XbVXVZ1o00NYoxfvf+g6LQwKG+aXEpPddp6prqalrk28OurMpeijBOszRPk7xh/a8+4U9P565tYYIFYCejkXF1HafRfrcti1zTzfnpGSHwcXm73OdEUVSifrj9mCbZaDzZhT9VTakpNCsrCTqqGU3XCwCX63WcRL7t2LZ3Oj4xLWO5vD2UlUKMy7Pz/eEwHgSe7yxXm6ZupOTr3aZpmG2Yz55f3X33B8b789PzwB00XdpUbc84wBgj7LrOfr//9o/fjkeBZtOiK7JFNPFnGiEd469efXp9/TxJItNQL85mr9+8rptsf6yHQTAdjX+W9xLipm0ZFxiRpm4p1eIwsnV6dvq0bZlgXZo3qiERRD9+/4f/+X8wYV03d2mSRClEalW3QmKCyTGMddMqmnq3j6u2VlXVNI1eiDBNEEHT2aTv+zwrNE0VsomOEUT49U8/rlabL774deDZm812MBp7jrtcLgggrhu0DLa9vNvtWkBevnr+cPdx6A3StBFC5FWlVZUUUtUU8vF2EQz8Jm9t2yMD5w+376iKj8edodtPnlzefXzch7Hv2xbVZpcnP/70TkASDL3dYVMU5a9/9ZVuaAz0u2MEQHEyv7AMPU6Tdx9u0rAwldiy6D/53xx7s1k3nRCsB4IrCDHGOQSQA4TQwA+Gw5HtOu9uPgAItvsoiqOyTEdDj4ku8IKyaJarFUKoqGpT13btzg98wzarIm25kABUVU4VNUnj8/MT1/QwIfvjrq4brGppmuZNstkepuPxKPA0TS2K/LNPX/7Zn/2zQTD+T//Hf7h7WCDI6qazXef85OTF9dXIt6uuWayW7U8/KYSwvj/GsekGu0P0+z/8ADGN0rpv++//+PPp6dlscrnaZ5yLl89fTMZDqiib7VIC+EvKf8O45w1V2qw264eHZeD5RVmtxf6LLz6bAaAo+GQ8i6IYSmFZmuBie0wPSUpUja+WqqLVVf242X315Zenp5ejwfTtzz8QFXMgt9vN7ft3Q98HEB3jeLXZWrar6sZQcx4WyzRNprOJTtV//a//p/vH1Zv370fjsZCSYAgggBCNBr6qqG3bQi4920t1bTIaqwr6/ufX8zR2XRereDabO64LEfA8bzyafPzw3jDo+cUJhOBhca8gUlfVyfn859ffLxdLIYBCaNc2bdf7QcAFHwSB4P1ht214X5bNKPAVqjAgsUqnXtC0TQcYJMAfOKezaZwk+yi9u79XDCVtin0YdV1vGYbveqzrMcYaBtNRwEFgmaZtWYc2irO8bpq6rsqiLKumbRrf9/Oi5aLHGCaGHR4jRaMfbu7uHu5Ng/aidyzXgJBL7mr6bDSAEsVJ6ntuVVeI4NPTmW2589OZ4Ixz1rTi4uJy6HpYil999kpwYGjUd91jHKV5Egy9IHD7ujuZjmazuee46+1qPB6WRb7eLNu6YaxlvYBQUl1p2wpBVDZ1W1cIItOGcbTKy7KpS50aQMqy2C/uSsBaU1MUxSEY2aaRHPez8XA8nm03C8j66Xzat8Vq8VAWuanrTVenSVSWxW67bOt6MplVVXn3sOiY4Fzsj2HPeVXUg+HAMEwIAcZ4Hx9c0/zk6XOqqjqldV1KybjgddvGRYIU0tVSyn2UhAMvOJ3P2qbabJdt04aHeDIZUUv7/qef7tfK1fkF6tjvv/1j2zPdsg2D6pTqY9O2g5OT8yJLj2nhB4OmrRkHVKfB0C7bdH/YS84MbBmGvt4s07ykuq6oetPUmm66ru86xi7KTs7Osrioq+5kfqGrKDyEk2AcpVGWJtt9eHr2xPeHw8lwf1zbtlO0VZPHikpUFd/c3Ox2x9l0FufZMcsEI6Pxye4Qd20NFVRUVde06/X66vKJ45jL9ZJAVVfJk8vznktMsAR8uV0jqSgYjiamottPrp6Pg/H7Nz8fj7vDfk0p+fT0xet3H1VVqaoSAMklgFixLS1PU4gw1XSdmlfnp5ZnBa67XS02+0NZVq5t67oCwP4XJuxg97jb6IqtAFTWdVb0pmFKwLKmquoizeuiKqVAV1dPOQRpmdw/3n3x6jPPtiAQigJ//vnnvm2bjr99f9N14vuf3r18drHa7Jgkhk7G4+EmPI5H03/zxa/DfVxWZV60Ukiq0TBJuxbMJsH95nE0HO52W4QxcW3bN43BIBiOhufXlz++rWbBcLsNW1b3vK7aTgBEKc2yHMHlP/+zL24Hg+1+jSV2XfPp06v17oglNKltqNqvno96xtbb4+JhbVomh7Ao/+kG8Ozy4s2bj2G4R1IIwRQoIVVaKU0FZ1VXNHW9XulJIpgYjSajodL1Ekls6ZaQXdf2nIG6ZUmWYQIBoqzPGZBm05ZVa7ueqlGdalLIME28odexdvV477n26Xi4DyPHctu+T+okzwvW913fu67NePu3f/sfHdf7L3/7N8fj0XKMJ9eXk+GsaZrH5eJ+IR6WS9t2JJA9Y3VVUo2O52c/vPnQcDgdToqmBxJcX766ujhTiMoE6Pv+xZNnq936ZntLICnyBmFlOAiqKu95Yxn2fBgM/KHvDzTLzetyMh4aivr+5sM/LH4rmNgfwrbrVFVRKLVtGwC4W+8t2zk/O2c8EFy8fvMDpVqYZVihCCIgCYRKD2Db9owjTTE01TANJ0/zrmeT6cnt7UfftYsytyzt9PRE07Wmb+qm0A0dQQVLxBmDSLKmS/PIsG3H1iFCXS/ajocsNDRdIQghoRu0rqswOmhUNSwDIiGlRBA2XR2M/ChJkziVHBmGoSnUGg01U4MQxUmyXCzKolQUVXDZtDUDLkLENo0SlNPZgBDiHnXHMWpeHuN9muRJXHRMOJTM5idN3WRJbJu2goljWoSQPM+T9Hh1dWXZBqXq5Xx+jKPH9cqxLCGAZZiWYRJFqZtaVVUIUFE3cZarqoIxKMuyrmvbtsui5n1HMNZVg3e8bytDU8u6cW0bInh1fWGYOt6AIi/blp2dniRptN08ItHpVD2mx2WeCiE1VZ2MRodwB7g8Gc4vzs63+/16uyzrajgeUE0bj8ZtW3EuqK4QhcZxOB1Pp4PRh9sbgrBlmLam8aY9rHdAQCB4mTfv3n2AEPh+QIj6sNpomg4E71jz9t3Pi+VCSMH6qu9qVdHWm01S5JJxBKRJLdbx9XoLBGQMSyHjrK67Pgyj6XRim2aapkJCjVII4e4YNQxaSMmaZhdGAMG6qcu6SIu8bpgEcDQM3q5uLdPQKamKWg+03fFw97jkPXdtN8xTD6Nff/lnb96+j5L4dDZTqY5UOZvNHEM/RgfD0k1LnYwsz6REwYqq3i+WfS/X0e7Nwzvf8TkTXduZhjUdjtM0sUzXNPS8yrlgEIHD8UDU2cV8PgoGjd8JzjlrV9vNIUqGw9FwMAKQQISvr6471tV1Np/PFvePDes5kI5uPD4s7+4fIAB5UUAFe6bnWP7Qc6s6szwfCN5lxSEOISS879++fbcLozhOh4HnesM//+o3y8f7MI5dZ2BpNE23RVe2USo6+RG82262xyjtGfjq15+k0d7RTc76pmkhBFIKTBTFMFGZY0w03VAURUJwv7jNU0ejqhdYPlA61kOI/8SEhqnoBj2bXAa+Yyjg/u6RcyERXK02QrLhwG/7Kk3q1Wpl2ARIkCbR3/zN308GLoZoMJ2udgln/WjgnszHEGiTyWw0GSFCZ9NT16J5vqvbbH/cGJqpYnp+erY+7KMwVBX67sPbX3/x5+cnftWkUkDWN7yT5OXTa4igRqGhiOX9xzzJh9YQCFQXFZfs4nLi5k5RxNvdtqwsw9B1E6tURZJcX160XUs1ZTCYNz1LwuPP738uioIq2nTsUB2cnpwNvAn4/W9/gf2733/H2q7rOsa5EKLtWkmggHA0GPImHQ4GEEKq0slgbFvOH/743dB3jryTAElIv39za+iWbvqU2px1SEWGrRJKMCUWIZPJNIyirmPD4VCj+v39g6mbTPA4OZ7OR0qGDsdD2wvW99vt1nYswzCkFEkU5mn6/v17KMVvvv61YxueZWGg//T+9nDcP726ePbiE8swwyiMonB8Pv701ScSwiiOf/Obry/mF/eL4Wa1pCo2TC3LC9v25qezvK6///nNdrf1PGc6mM4no5OLk7Juvv/xm/V6qyDlybMXZ5dXCsZloWMIPty+N2x7plvr9XI8mQW+LwU/JlHTdgQTzniSRFfnJ4SSn17/FOdZXTNDM66vZkEw2G3d1WrZCWFahj+adHXlOe54MjnuD97w6Wg0Xi4Xi83u2z98e3529uT6IsvLmTOp68xxbFOzu45HcXx7eys4H42GCiV+YEdxMvAdx9ApVeuqfrh/MC3z9GReFKXjuCLwkyQ5HI4nJ6emYWa5YFzGUWxqumqZbd+1stWxygQry7r9ZTI9z7HdMI65kFICx7Icxz0e9qqChOivzk4QQW9uP2wAbuouSvLrq+vA9YosS7I0cL2qrPqqsS1zFAw0laqUBp6fJ+nQ81nfPy4fbdPACHqDQAjguG6e503TIIR2233fMyGEYei2Yxm6/o99MhACiMaTSVXXQEqCcVFUZVWdzOaDgR+GxzACjDEEQBJFGtUFF2GUYKJkRdbUdeANGOfj0QgjUlfN7nhgPZNcWLZNqZrlZRQlAAjdoBCJ5XabFzXVNEr1ZrVW8d7Qtaqpata3x/Bh8dgxDhCq6iYKo7PTsziKilb0TCzX68lwJDhLskSlmpSrs7Np15ZZWvr+mKoUQ9hyzgEI0/Tt+w/D0ThPs4f1zrUdx/ItAHTd0nRqmPT86lQw3rddFCeY4M+vX03Gg7atoaodwqSp9yoEBqWuZQmED2Fomd7l1eVPP/+AEeol3x1DLiUTQiBgGGbHumMUcskBwLqpnZ7Ot/v9bDS0LavjfZKGlqmpmEsVdpxL1pmW4Qcu74RjjDRFUxwaR2FZVx9vPt7ePTqeAwFI06zpmvVyy5nARFs+rn3XtD2rbtskinqGEKbnl9e7zdr33a+/+nLxuHAsy3Htw2aFMT4bjqqmrsoiTQsGkKoqVV35phe4HpYiPq6apn5MMiQARpAJ4fjBd3/8GWIUl6Vu2Ipu5k0TZ+khCouqS8vmZOpZjtvneLNbZvEtEDBKsuFgPBw5b97f1E01G01Nk262oZRISgAhwoQACLjgQogsL/p+2HdstdurOuWstC2fQ5mE8Z8WwH5xwEKxbH0TbkXf7vZHjNXpZDwZzU/m0/fv32jE3LfZ3cOdaZmaodRF51p628nlYvVnw4uLi2d3N+88LyBEVRVzOp2OguBXn39RNeXjwz2E1NW9OFrd3d9dXVw7jqkaJ2/ff4AIPX321DbpZrcPo4xz8erlK9OxCKZKkRWv3z8SjKIomp9MT8cTQ1cXiyKMjyrVNUpNTdV142G13+zC0/lM060sTTa7Xd1WcZYOBsFuu7q5eXc2nwfe4Jvvv+s5pyppmur24fZPsE9OT9errSYxwNpht+8h4JwLCI/HIxeiZxwjSBQFIvS4fFjtNqblmLauqcR2XNvxr6+u7+/u0zTJ8tS0TNWg6+2aIMUxzDSJ/vlf/sXd7U1bl+PxsGtr13arruGiTbM4jPaYIEc3RC80XcMEuq7bt11TltPRaLXZUp96pmFqdLFc/uW/+J/+uWFYOi2LiChYU7SnV+fHw97znMuLM5UoF3Mvio7TsbnfI0NXsiw9hPueCYHgyfnperMlmgYVFQK0O4bb4wqp4Msvvv7r//o3cVIRDA+H/el8dixyKGTfd/tw7/H+yeU16Ov5eJBkWZ4VmqpjTALXPz+7/P133/3t774Z+D5BaDg4tW2n72pdJbPxcH5yYTleloUD387LPBV91VRFkZ2cTiFRNpsVQng6mQ0836DUsq3JeMh6FvF+ZLuT0XR3iPbbjWdZQRBoulaUWVakTVe7jkUxZHVla3qWZ1BqXdPE4X6xfECIOI7tux6WoOs6RSVMMF3XqELD+JgVOVEJUXCcpnlRMsYUVcGYRFEspOgZI4hcnJ23XaerigSC896kRtOzsux6RAlQB/6gq9tws3d9+2Q85xKURQshipNifzhOJ+MgCPK8IJhkWaFSOp+erDebtmk61Lme17ZtGEaGrnEmKNU1DTLGmqZxJFKIQlSFMbbb7VzHyYqq67skTlRVNQ2z63kYh01TllWBEFYUFUEohMQY9Uy2nXhcbQ5hOBkMm7bbH49l3VRlmaUlJfpys/vw8DgajV3HVVTlsD9CBBWVdH2HAGV91bb1aGj1vWibwjEMgklV177r1V2XJUWeF57nDQYjTdWm0ylCMEkyzvlmv0vzJM2z4Xj84tmzfRhFx4hSEyqFAouTyZxg0vbd7rBP8uzq2ROqq/vdTjfUpm+pbpxezBeLRxUrUoie94ZjtrzPs3I89MosyYtiOhw+uXzaddW79++LutivF1fXV6NhcH52TlX16fWlYdk3Nx8Nw3jx4uVqvQ6PoQkM27ZUrE2nYyZ6TaO6qhIFKQTNpyNC5Ifblon+9nE5HkyKrGCs11TN9/yua/eHfd+WqqImWUm1fDIMqI647IuyhQg0bd3zHkKy3+3OT+ZFVWyPe4BVwYQQ/JNPnjR1uVo+6obxu9//drfdvXj5yePjo5RAAPC4XEgpuRR5mdsmdV2HC0enKpTycbmQnFVNd9jHBtW5ZFzIoAWDYWCZmkr1i8vLtitu7+9/9/tvXcc1LbNpG84B4Ep0yCWDjm9SqiBCTqbzy8uTzWYnpBiObQm7fXiQkiOkEFXFGBNMgJRVWXAhri6v52xyCHfb8LDYhWbRJXX/9PLJn5jQdSeIqJDg6+snfd0AqUTHo0HVyWh4djqr8rBtetMworQwTOeTV6/++3//W8/xTmbz6Wx+dnlycjLP4rhpelXVL86vRqNh39Xf/fBDWZXz+bxrWkX1Pnk+KatyvVrmRfzs7MmnT56vj8e6roDo06ygumGZNsJqXbXkk1fPmoZ1Er179/78/NLUcZxsHHN4dXYNIcEqHg7d5WqNMMGElmX1uNhatjk7nVVNFRD/eDze3n5I06LIcyAkEODk9BwrxFA1lWCEFAAO/0MHyj//7JM//Pg6TTKEpISoF5JA3DYNAEDBCoSQcfHjm5/LshwPJ74fdG3R903XNIHr+I7RzoZJFkKAbNNzPRdxbOiaoVOFIEMj15dnWZKMxh7ruYKVP/70k2HQpmo1TUdYHQ0nTd0GvqvrNMsyxbZ9z3tcrYu6DkaBRJIDeXJ+6vlWnIaKwrnswn3iWo5lWholCIqizhCC2/0yisIwiYuygxj5vt/3TKF603Y3H2+wqo6DoKkqKUAQOK5rAACiKJSA6Ir+xavnpq69fvuzqqimZjRd61uuhpR3b1/rmg4g8hx3Npktlot9eEjSWMjYtKxnT5+bOlUUfHpy5Tju9z9+29d5WaXDifm//M//+uOHN02Vn5xMv/v+5zxNei6SLHt/c0upPhoMpOCObWOMszSHGCRp1nctkOzx4UEhOobA9R2qqYfjPkxCQ9cGg5FtGFkYCc76rk+SJEpihHBbN0VRNm1fFNVxHyqEdLynGtUMLUqzcHvb9y1UoOs5TdNGUSQlFEI2Tct0ETheXZQSyIuLc93UvIFnu9bDw31VN5Zhy7YPLO+XlubRaNTWTVXlpqETCNumFUzUrKdU0SyLQbDe7RzbPj07+/Gnn/aHw2g4Ojs5VVWVS+E6zsNyYZqGpqqCC6LSvu+LotQNvW5qjSpt0yRpQqlmWXaRl1EaU6olWR4nqanrURLXtdaUbdN2PWdd37quq1FFoXrbtFVdN31nGxaX4hjHEGIFEULUOM5a3hGqHuKYceHoOiIkihMIAcJ4OJiYplu3HUYoS9M0jwUXTVnFWapb5mw69xwfS1JXDSE4TvMkjyfj0WQ6XWz3u2MoAByMp6ZtZVnOmZxOzveH8HCMERIdE5ggCYRpmScX08fVvU61nrWH8GhY2uG4EaK3LEPw/vbjnarTIPB833dt5xgdup7VdS2KilJlNhycn/6bbbh/d/MhymLPdqo6U5GpYlikaVfVA883iTLxPEtVy6YMbMNQDUOzOAISyFEwfFwty6Lc77ZhdOC96Bgv8oKqVlHlQkjcsdV+69hm05Sj8TDNUtPWdJ3GcZhmkR+MKdVYyCQXqkICdzAfj01d3W5SyIQUfOB5nm9B0e22K0XBaZ4uNmsI4ONyXeY5532aZYvlUncsKEFgO6xrd7ttVlUIIE3V0rx0bB2pKlTVpKrbrkUKdgBQVNRUBVQ0BFF4jDVqPXvyXPBus14Fg+D5k+u6Kt/d9MdDbKjadOIbpnl1fVWUWd11hIjF+kaIvu9bAH5plhaKShFEvO/qqlSIulovdZvMZ5M0jS9OriRGxyg8Roc/LQBDd15+8lzVSLjbZFn29ZefVXkmuaza5vbmI1UxBFxv1SdXF7Ztj0f+b776om97TaeqiX56851hK1//5ovtdmHoBiEwSaKeMw4xVozFYuV79pMnz5qqK5JY9M3quP7bzSFwhy9evDANlbF+Pp31kksuoJSO45L/9rd/f3IyMyj8F199EQTub7/576t1cXnxwraC6+snAEkB5fkFdSwvGIwEF/cP9wDxLAubql4slgDI0Nz7wXA8muZVk9eNilVToZ5tSwna/p9uAMvVrq66rmVV1TIuoZAIIAQhVdSqzA1N0zS94xxCPJpMf/Xp54fD/uHhQHUdImIY2v544IyNguH5idG1nWfp89FTTdXSLHE8e79ZhsfItKye9a7rt3V3fnbSNo2mKqbl3tzeg6Ecj4I4jo9hq1CqYXhI47JuTs9PFYKoSi7PT03TCndrKFrRMU93iqzKy5pzOZ/NBGfH7bGs66wuirxBolN1/RjFTV2buvb82WQym1NF/eaP3yEpn15e7A4hkGLgBXXV/Pb3v3t6Md8fDlGeCMTbtonTTFe16ydPJqNRW7ddUcTHcLNajEfD58+fW5ZxjACCEAGkEXQ2HaZJmKb5yemUKI6iEEVx4jSxHDuJt1D0nLXD0eiTly/fvH6NEa7q7uLisqqatu0glFGS7o5RWdcapZTqb999VAi2DUNVCVaJ63ubcJtkWVXWGBOEcRjGm8clVlTX8zb7cB8efc9zDNM2PV2XVVm1nEdxBiHwAiVKwzwrmACD4VgzqGFoggvLsIiiZnmOMdJU1bSMyWS82+80BWsUlXWKMdF1KgE/JiEC+MnVpUGpomBFVfuuthyzZ03bNggpT6/OqUolFFVTl3VVNhUh+Nvv/rhab+qmgRCauu64dt3UeZ5KKTAmTdsxzm3LatuW895xTN/3m7pr2wYhzKVgjFGN+shHCHVd1zKGCVZVQ1HUKCoQJipRMFGquk2ynDOuKCpAIAiCpu0EBIZpMiF6IQ77uGwax7EoUTAmQIK8bKmmtV2b56mmaSomRKEaVS3TlFIe42S5O55PZxKROEtXy/Unr15Nx5PFYpkXOcFIQWi1WOw22+l4en31QlNx05YAiIHnC8aSNEuSUFWp5VqvP34wdDoc+/ebB4gIAMg13OiYOpbtYU21aRjGWZHzvuc9MEyjbduqrKCQXVO/+vRz7gyi6Pj9D98XVRV4/vMXzy3D5ICnRUEOKIni4yHUdQspSpKnv9SotX2XJMmKAN/1Ka2rutZ0igHsu84w9Mf1Ks/yJCt71l9dnFdVvdsees4wUUzLwkTRdKNpK8+zoETr9SKNEwGRQkzv1Ds7nf78JnIdy3F0hMTrt+/jNK3rTtGogLxp87rtEMJQwqrpoqQgCLNu8fj4gDEYDweB71muE3h+U1RlXQ39UbPZxVGqUuvpkycAsA93H21Pl4JzqWBMqqp8XNSupQ8Get+2qkK7vtF1JQ7juqyP/LB1VFXDuqFwIW8fNz3gz58+ff/u/f64d2339GRYNOLtu7f7bSolghByxjnnQoi+503TCiofV7vZiX/YrzGA88GwZo2CgejZn5iQd+z+w40/9O7v79ar/WK1nQyH8+mUiyo5JqxvTcPwXH88mbZdnSeh4H2WHaRwBMBdVd19eOt7Lkb444fbFy8/NzRjMBpleQ4k/4///g8nszkQUlVpMBo0fdl3dZRneRqyrqS6vjseVEUxTZMqNEkSBAFZ7far7frJ+TnRtG//+EPVoSTt0XJ7dqrYQCIMDdMYz085F3lRbje7tqqxisPDdhQMTKp3Xds2zeF48AdDgpT94bhPD0/Ozg2qFHUTJ//08/X0+mmepxBCDBUAOgmgkFJIKTBq6u5w2E/n09F4+vTJk6Zt0jJXDeXTT15tNzvfc1VVu31cFEXhGIZna/7FOWvaKNzUWKUmPRxDyfqirO6Xm+fPn3Qd2+52jHXjyZj1jHN4dn6dVXnTN4amvXz+Yn88QAUE7hBKpaiSumk4UxbLpW4aXEBd1zf7425/0FR1NBrYltU0VZZnkIvNbrfYbjFGQ8/bH8KHVdj27dXZdLF84Lw3DVtV1bwsad28eHL18Pi43e8lgH0vWJ9KyYFUsqw8HI9t3716Ohv6483+0HP+9dd/+f/83/5fhzDGCnlcrvq2E71IizLN8qZtz+YnWZaXdXVz8xET6tje4vHecy0FKR8/3CwWj3EaT3f76XiiqrhlzPOC5Wo5HgWKokgADMNs28607PuHx/Mzm0CsKzpV9fV+2/btE4Tavj9GiQqVuu4eH5YqwZpjcybalgFIbMebTWcXlxePi9XxEP7qiy9VVUmyDEIAEYSI5Hn++PgAhCiyEiEEoAQc5EWS14WhqrZOsyTqm4YSfDzsPt6+9Qa+adhNU0sJuo55jq1RDUpBVXqMQ8mgoWua4yR5mmYFLQsuegnkMTyaunkxnXdtq1p0KfaKQhHEWCF5kVJFOcTHvKxFDzkXHeOCy6ZtMISB7xmWkWel4HIynvWsVanaNK1GVd5zQ9MBAE3dBf5od9g3fXs6PkmSJAmznjHGBQBgMDAxllRVoARCSpVqVVXxkCsK1Sls6zYOY6IolmVDhECaCdarimbbXtU0vCgsw8C2OZ+NNptt3bVRnisAPr245kCstmsppW3ahmkCIGaTcdf2cVZZhjEeWD1nAGJKdUNTCTLSIp9MR7PxhPUMStR0dXRMq54pKkFc5H0FAdYUhXdd2bX7Y9ix3tStqAiTMp+NJ6cnp2mcIEQ2643A+M9+/ZXg4vff/YiU7sPDPaUYQ9g27aGNOBPb9e7JxRXVNKzinrOmacMoars+jPJ9mE3HU4LJw2bNuDR1vawKCJGm2+H9QtP19zd3UkJDt3lVGKZFKU2TXCFQAtI2ed/xJM6FgJquR8ewq2tAZM8kIuiYxoqqdxwUTb/fx54frNbv8iKzbXMQeDpVdVWP4whCuar6KC0E5GGSzSZDyzQMVd3l27quIZQj1x64LsIYQD7wh4v1KowiRVVbxjzXsSyzrordIZVSkYgACHx/0HRNz7qu6zkHD6t905Ua0SfDYB/nYVj/3N1ihF69eNa1Zdv1kCPH8He8kBIACNqu7bpGCAkg4kzWoPvs8y9O5oP//X//f+/2R0PfDgJfpQrS4J+Y8McffzBMbTIZDYfjwOubtknziMkKgB5CWDWNaZlnF7OuarPwmJflcrXKsnw2OZ2Mpp88eXn7eJeE0fPrl6bpCcAgFhj2P/3wra7b5yfnh0M4Pz1d77ae6w4no6rOvn/z1nW9/TE8mZ0iiJq2EZwfmq6o6sVmS/7dv/2rJI7Xq+399rBPS6yqvj8OXMcgWPRtXnS7Q9g1H4XgVVnVdU2pASXESGnaHkPQNW2a5ZA0gT+0LT1V4GgUhMlewAZABf7/GcH8IOBQ4n0MgEQQIQA5AFKIuqo550CCJIl3+91f/rO/oCoM4zJOooHtsp4VeZkW27ysBsFgNBxI3k8mgaZYdVvv4riv2yen88Nu6/vDt+9vTUP/V//yX/qem6ap67hNU6uUaFEsduxwPGoT9fmzy2DornYLx6F9Y4O++bhaX1w/6SRZ3y80VR0OR0VZAYiZlE3XHR4eMcKYKGkcUaq1dU8QYjo3VP3TV8/2YbzZhdtD3PWC9Uw37cvrSwVjiCSlytAPxuNREqX7Yzibzfu+r+u60ArXC84uLxVKozjt2uawXfuu7ZrXlOD1cqubZtvxOEnDOLUM/eH+TjfMyWhqaHqZl77vNc1IVdB6s9E1My+63SHd7OIn1y2lyng4VlRKMDFMs65KjdInV2dlUSRJwk+nSRS6jqVrelHkWZojlcRpTiAZOQNNVammMdYBIIQUHMi2b7ACR5Y/mQxNS0cIcy62+zVCoG4aw9QHQcBZbxqqoWuSSQAA571KadW2VDN6zvu+y4qqZ4yxUHJGqSqQ3IaRZdmu7fVtr1P9uD/ESTqbTUfDYL099C37y7/486bJNZVqI8o5b9t2ezjUdcMsORoGqqaVaa5oyFFtVUVd37RdJzgHEEGA5rPJaDjYbNZcAkiIgjDjfL3ejYdDLkHb9RDCqqqkAJBSRUGY9Bfn51AAxrltW77vUVWVXCCAFYUSVTmGoe85EAEpJML4eDzUdeM6jhEYCiGP6zXnzPNcqmpt085nM891EARFVW53+zTJuGBPri/X62XXd35gnZpTjRqMsTRNpeSEYCkAABJCaJt2USQIwcB3BG+i+BAEA8+2JBd1UcZZhhUyGg/zPOU9f3Z1GadZFO1MLhiXpm20TZvWTdf2QqdNXSMAPnv1yXa7O52dSCEUBYXhsedMsH53+4Ea1slk0rbN+cn86fPnf/jj75q+DKMIQcVQtK5llum6blCWSd10GtUARL0QeV1wwDHEURyNgoFt22Ecr9cbohBd08qqMh3LNOy2bdumc3wfKwRAgQlWVcpYH8Yp63soAICwadqrq6cIg7ouq7J1XRcpqOu6nrWYYJ3qv/rVZz1jt7ctQF2SNXV9VBVFwRhjxKVMihqrOhLc8wYSqneLrYSKqmhhFEnAEcwAxoqqLVcb1/Y8179/2OgmMQwTYmTZ9tn5eVVWjPVJnFJKxyPNtewyiYfDoe34g4G92q7bsnn18pO/cD3XcXa7ZZanitL1gjmePRtcG1Q/7NIVPAgJIIQKIQjBXvCi6EbzmSTl7lBOpydUNaIoKsKqb1vdUAD4R038w8O96zsN63RT9wJ3tcoJ1euukqIGAGCCyzr+4cc/YKnmaX77uMqKGiPKRcI4ytvGsgPPUj/e33/9Z39+v3r74TEZmvZqsfEC0TR5XpbHY6xrWte161XGGLw6ezEYjgxTS4sSKZSaNoGISTwwbNu2ybv3Hxnv98fQdYeabtZ11/X9MXz4ib8bDYZU0ThAcZJoBPmWgSWToteoYZhamqa7w8EyjHp3hJgoSAkNJW8SAHCRFojguult2/nTAgj3a4yUtq4hZBJyCYBCCJC/5IDComyZlBDLKIySJDk5PauLrOu6xW43Ho+5FI5lEULKutosHjVKxvOL717/9PVXv/7ik6+++fa394/Lvu8mk4EU4v/77/8/X331FYDi5u7D11//5o8//JDEoW36/uUVhOztu3dv7+6SInx19bSvei7bV6+ezeZneVGIvvlFsyiYUBTFd23Wd6zrh9PhdDJ7fLhLkuR0Njc0TbDedK3Vdv3lZ58kYfH2w4ek6BRCAt3sq/ry2RVWlc3hsD7ul7t1nlee7TEh1uv16ckppTpGkCCwWi6g4JPR4HBY52nk2NZoOBISIKKoSBEB0zSdcxZnyeN6fXN//+LZs6quj1F4Mj9lTL559/Zsfn5xdg4hsmxrGHiKSjomFoslJrhtGgWTrmu+/fbbqigQRi2XNze3BOOiKEfDoe/7ik5ty+mrBiMkueRdfwwPlCqaobVtb2omqBuIUBInx/DY9fD07KwsEwyB7LhUeHSM0qLIksQ2dEjwaDCO4oMKhDMMsqJSFe2QllI2rmMNhm5ZFH3fjkdBksSjwVinxrE6RFl6CKOqrBWN2o41GAab7f71+zdQstP5fL3ZCSGH43HXC6zQY5qutttXL59bpjH0XUVVAs9ruraoKimh61qu6zmWzVgzGvtNz/WWK0TN0gwgIDE47o/HMHSDYDoaEwgZ62aTyXZ/yLNMp3pdN4BAjBHrW9sxxuNRludV0ziOgRDsuqYHQFUpVbXxaEyIslwum6ZhTBCCFUUdDYdN02qqKjhPs6zp2ySJFQX7dhCnGZJwsVh0oJ9NxtfnF65tCUGXixVCaDwcb9fbsq4vTk6KsvSCAADRNPWbd4+KolmW0ZQlIUS3zF6I0Wg4CQZlnh2OO9dx/avLx8UKEUyJ2jelppGO8/0xVVRFQdS1/dube02lT6+vojhsu7br2jRLBAdZVd/c3iVxmlU5fC9lL3RkIJZXVWv45mQ0RBimWZTXuZQoyequY65rGbqy2RwM02RQHJJQcIEx7hnDDdrt9k3b2I7DRIcR9DynaaqyygPfK6piOhhptsnbJhhPoYTr7cYLhlhRh6MBRDJLYkWBSEFZVphUFS0PfH84Dv7w3bez6VDTtc1277je5dnZYb8Lo8QwjOnY0ChVMR6NB3lZtV3T1J3kUkLctEw3NN4L29TOT0+++/ndtGOGZukqvb48RQhrumaZRlO3RZV5jmPpels3H97fUapQqm43C8O6DPxgWa2rJj+ZjzxXJWTY3EVFm3SsKwq67PuWM4USKSUEEgPJ2hYjCKEEQBRp8nf/9R8Gvqmp1KBkXderXebZ1tXzS/DNPybjm7ZZVrXetXVbR2GEMHp4WJqWk+dx4PsYwc12TyCej+dV3SdZud4dqWLO5xe/+s2v7h5uXNfGkN89Lv7Fv/hXqBNVVAriEKzqBm26XNOt29s7XVN6wQZBMJvOLq+eY4LjJC3KUqW6bTqS9VVe6oYRODa5vrj+7TffXcxPz09OIKLL7TFKkuMx7PvOdfwkTReb9Ww6EX2NoLR09ZgV231IdS3Ls6psGGNnp6cSwjiNbe+MouDm5sbWTaoZdw/vwzgF4B/dwH3fxtHxl4HEGGOMJUJScAUrUNdvHx4/+eyFqpEPH2/CYyQ5/+SzV1GU9m8/fPh4Y+p0Nhjfbm63h40q5WToUsNVVfvm4wdel//wD9+tVpuqKWbj4Xx6+vbdQxRXZ6czQlDPQFVKQ3Ovr89ubm6YEOvtQVNMiqsyL4uyLtsG1VXZ9nVdDQaBoZlZnvec5WXVdbWCcZZnSZpE8RFDXBR523ThcW9Y1vTyaiTVPC++/s2n3sDKixog6OjmxdnZIYp++Pk1RAgTlMQxQfQxW3Vdp2maQDDJsrP5dLPbrddrqqpRdISQ9AxEccqY4ELCtlMUlVLNGwSr5bZp+7aTmkYvTi+Z4HfZ8rFbctGXRffDm58ZZ54bKB2uGyUIpk3Dzk7mAMjtZtnUNeOiqquyqpquGw4nVDX6vpMS7Q6h7wW8bqENXNcriiKJE1XBjmm5nu26zm53pKpWFQWCEEJ0eX6130dt1yoYF1kquGCsQQRDCHVF7csGYQlt1aSq4CCL4ygrLMsdBD6CoG3bardL0xQTaJiaoelVWZVlk+R5y3uIoe1YTVevdxtT1+oqT9NYVXBdt3nZQAianvmuV7c1pRTYzuph5Xte4AWd7Ifj8WazVTC1TEsz1b7u0jzLiswxrf0xBJBAAV3P6auOCoVSXdfNru0P+wOUEkKJIDBMSwAIBIQYCiGqqsIYpHmia1VZVmVdO46DMTQMo23b4/6ACZFSlmXZ9T0ASACpanQ4GlVNjREWUuZFkZV5WddVU4uStV2vYNVz/ZevPnl39+5huYziaOC4AEABkaXpcZ7fLhYqpedAbA5HgRXe9RAKTOh+n368XQAphoOBmtdFXRNFV5DaNY2EMrq7C3xn4Lu7/TGtsqZrNJtaloWRZmg6Z/1uu++6fjQZ7KLdcrlqmmYyHhNEqrou615IBBCJ4lRBNHCDrEink4lh6EiArut03UyzdB/Ffdvblv3yxdPT+fjm5v0oGBKV9qyzXDtNUqSoQeBlcVoVrYT4sI9Ho8BznKHnSyh//fnLQDfv7m/ztm2bVsGK5NDQDUyUDx9vXr5UJ9MJY91wMGqabLFaVXU3f/VKQVrHurbtrs6fOnZQ1tXDw6Ku66vL2WhkvP/40FTtxekEIRlG8fsP73TD0qm+XG8RhoOhL1jf1B2lZlN3g8B7fvmEqOrFfK5ASBSsGxoi6PHhsay6Zy+em4aWxnGUxoxxx3FYX5d19e79R10zkiyrqkpRyN2ib9u2rGuFkiBwkziuSGvZzmg4gFIAiFnfM9YJziGEhOA6z5ePQNPPi6pUkNJ0TY+E6qhxdgD/o8d0NB4Mh643dG3DTKNEAvnwsHTs0Wg8SlOmUYVSnzGWlk1e11hRLccq8/r1uzeGS3zf7fs+q4qq6f7Df/mvX332Io7rKC244OvlIwTK06dPo2h/OEa6ZWm6U1RNGN1SqqoqZW07m0x0Su4X9xAhXSdRvCcn09n1ZaoSsNquLy6frrZLxtoXT87TJM+L/MXz69Fk+vb9e9bVBBg6JVXH2p41rOo7PpuMNYIJUaumTfI0mA4RhRdXl01Wv339cbU9SIQBOP8F9mIbrtYbLhCUkDMhOyaAUBRFSCGl4EBmWW4JI8/zzWq3WKz/4ZtvP3310vdcqiqDwOvqlvUd7+U+Tn737R+f5lWZFuv76NvffkepLpjkTGZFDbf76XhWNvW3P76xDO3li+dff/H8H373u3/43T+wrh+MJt7APT89j9Ojrhu///Z7wYDjWJ9++tl/+5u/aZfbq8vz8WDQVrWCEKXaYrVOkgxCeDgmBKKmaZmQVVX8+qsvXds4m8+TJPzj998CQCjVsEKatjgk4T4Mq6rGWFEwOhnNmqZbZrlpGUKK7f5Qt/27m4cs/aEqyvlsWte1YXuY4CJLj8f44vJSpRQCGO6P/TF8+vQp73supWWZtmOsNzuVqj1nbdc6vnuIYi4g4yBJC8uyj4eobTtFpRIILngURSrVKDWitNrso+l4fnl+3jNe181ut7NtZzqZKBgLISDCs5MT1nddW4XHMM8yx3Y8zz0eDxBIIWSS5mF0HI+HeZ7d3C1OT+cqAkmcciGBAGF4RJCvdxsgEecAEEWhVFM737Utx72/f5hMRi9fPU/SRApWFiUTgjNZNpWpa2ez2Wa3kxBWTZMmsa7rl9ezLMuLtNQNK4ljAErOmUqJadkYq7vDMV2unz17ChG4vXso8qpvecqK3aF89uTJ5rBnDNw/rDkXmq4PgqDr+zwrEICT4XA0GCwWa8YYJphqtOm4RE0YRaezU4WQYxqblkUJbpqmqIqOc6ppqqJ2XRcej03bEowRgXVdNU2LECEqNW11Oh0hjFSojIYjBNH9w/EYHnrO6rZ1bWc4GCVJ/PHh5i//7M8vT07efmyOcc57RFWiqjjwvF9e69PZbLFah1FCFPP87CQMt1SlX//m63fvPyyXizQv6rAdDYca1QWHbcfKprw8P63yrGe9Zdi2obpDBxCOido2PM/zuq7KMkdYdnXhOvbYc5pGc3SzBqBIi/FoWOR513esEwDKoskaXvacUQEVrIbRkYXRcDC8PDn1PVcKZmrow/vX6+3+4vSKC5nk7cXJqZyf7MIIIjwZT7q2k1ASZJ1fnPqel0eJopA3b143VdP1XTAacwZ02+sYb7IcYvXp1ZPT2bSqyu1uEx1DBHmc54JBzxmaurFZrxSVDoaj3WFjWcZnnz5Js6QsIgXj89Np33LXtu/u73qBmCSaZp/Mz9brVVlnlmkMAz9L090+vjg/n48HA8/nCEEEk/AoJIQI52XBhPj8iy8hhGVRAUT2hyhNM8cxA88BAENJupa1bS8EeP/xtmOtSqmu611eZnlxMhmbVOvqOokiAADCCEPYNy3nXEogJcQEz+cjyXmSlFLILK/TotIzLcliAP4xDggp2PPt1foRA6VrJEJ4FIyHo/mLV8+3m1WRV6ZlVFXd9mA4mlLTGFbtfh9Szfjw8eHs7NR84l6cXSlQOybx+mEtGMMaDZPkYbE+PblwjtufXv+oac5nZ1dpnjPWWZbdFeUgIDoloms262yzW/ecfXj82PU9+ff/6T+dzGZU0aRp9W0beN5quSyKxBv6RFfqqpi4lv3rz+7vF23T3K1CiJCQAGHku+7UdwcD/2F3oIb2b37zr9yB95//638Nd1EYJQQRRdOh+KfTx+++/T7wA4yEFIAJiblUVAUjhAgsu348cj999oIJ9s1+DzEJgvHxuPu7v/ut7VkKVSXo2qbreI8RQlR/+/FhvY+5gBompmkamlaVNUZK07G7Nz+9evHi/HTSCliXzds3b05P5h/ul2EcPbs4GwSDKE2+//mnp9cXf/mX/wb/fFfFiSvFbre1dCdNsyyri6L96ae3pq2/uL4KPLepW4yQ55+wnld1U7W1SlUFk+1m/dOPPyq6utpuLMN1HYB7XBR5mEZ1XVdVd3Y2UQg6HvbHMPJdR6dK2Tb7wz5Jc892m7ory3qz2dquiwm8PJ/17ZgzphLUNLVp2pPZ7HAMu647mc/ant3e3i4eHhWqCgm6voMISikuzy66tpuMBq5tlWXe910cp4hghFHdNJ3gWEjMxGevXp2dnbK+UShxXHe12ozH45OTqYLxw8OCasp0NlMVjXPx/sO77TbMslQINhpNHNtqsmK1OQgphWBEJQgpk8nUthzbMriU691eMg4AiNKKUmqq1LSsoqkxF6qiYKIghD999QpAlucZAnC5PnRdX1WVpmuWaalUjeNoOplqurHe7uyBYxhqUWZllTPOeMEGwYBzTjDOsixOcifwnzy7tg0LcclYOzo5rcqGalqSpt9+9/1qu7dtc7u5zdISY4IJFpy1Tdu0vA9TgqHnuuPhoGprgGTPeoAlQKLrW12ns4szP4se1ysi1fFknBSpKmRb9WmejocjzlndthihqsowVp5cPcVYkVIOhu58NkGYNE0Vx7FKdQBB03ae7xKCIZL7/VqluqKpnDHPtilR7bFXFgWlOmPdZrODWPFcRzJm2M6pqkEJojSOslxF6mr9aFnG06fX+3BvOtb15XnfV3nf9pzVbbVYP1JVKepiGEx1w9QNZTiYrh6X2/Wm6TuCseNYUMrHx0dKiGlQhHBV5m3f+4FrmlRVZFV2EIDtbishsx1rFAy3293ZdPbk6dOeQ8+2DRUkSbhYb+u6lwIUdTX2m2Dgv/n4DogfXz57pmsGUSnv2ufPrtMsmU+GjDfr1SLLe0ppUbVNJyaTuWu7uqZKBNI0K7M+8LzAsw679dvbW00z+rblfQ8Jub64DNNsOJ5dP3kGpGRCTqezqqyrpvUHXhhyBJWBbq4227ypmZC+a798+UxKqWnWk+t/djjsABSeZfZtI6VI0sSxSM/bKCo13ehYj4lW1k2aFbbnQ6xuNhuEoWNbJ/MzjR4Zb3smOJdNUwEEOO+apoRIqkRtm9Z1XYXg4/FQZbVONYxlFMcAQAgBAFKwjnHOmJQSIAzroiijFmNlOAgCw2lHwh8OGlaC+39kQsHJ3c2+qHvH0cMwUrAyDIa/+uIz29XKLLQN3feCYxQ2rbi8ONtHu7bh11dP2rY5HqL/y7/7d6vNYhvujul+s1l9+Fhpmvn5Z59+/cWXq/XRtF1NtxjTqO4PBtO2TQ1NE7zLi3i7X/VNv1yvAACEKFGclWWVFTkpm/yY4JdX155lPC63QgrTsLq+Y7yuy1zXjcfdsqnq2XQKoOoPJsf9BgIxnEzP5rO6SBabTS/4s9MTBcnN/Qr1SpX3QiJVsyrWDwMXbP9JBVQ3VVMXkgMppISCCW7qpkFRGZOurVfbx/VqU1VtUZYKRlRR/OmEA77bbzerg2CMqirBwNI1czot66aHEqskybIPd/eqqgkA1A4Zuvn+5sGi6uXl5beLzdv3P/9f/+2/+vUXn75+/17VnX//n/9W1yjGuGlZGoamRhWiCA4wUiVA48nw4vxss40cbxom4f1i6zgu1TRNJa5rCo4HARSSPy4XH27vPnxkjmnptuE5vq6aBCLOmGPbUgrbsmaTeRAMV+vl+/fvuQBpXnQdrZpmsdqlSa5dK6PJJK+btGyQoqoK5mzCONcNoyjzumlUqgV+4FhWXuS73U6lGqUUKApC8nI6K6tSURDjHAgEdOroVLC2LFMpgWWbvu8foyMmppTweIga1LsD3zA1BLQgGIyGQ8u2sixVVNS1jAmRHWMmpE7Vi/OLT148xwDYprXabFebg2FaUoK8KAnEVCXH3fHq8sL37Loq0yQ57A8QAMd127bhCJqmOQ4CUze2x+MxPFaNAQgkBF5fnf70+vV2u6dEQ5AEQ0/JM0UhCsE96wWXWZ5jTExN93ynaavlYqmo6nwyA1I6jte2/W637zq+D49t22EObF0P00inNE3TPMsIIXXbzU9OoyiyTLeqWoiARjXGeF6UiqJomqZSlUG53GzSrIQQYoIty+pB3zXdfDLO4tDR1U+eXPm29rhYRXHa9810MhUe3O+2A9+2TS3LSwBgqhAAoKri8XgYJ7GuESFYVqRd3xGKEAKXl+eMtV3fKirJiqzMiuEAB65nmSYEwrFthMlsPDocDkXVKhhL0OqaahqG5/tN32iqWtWNppqWaZVVOQgGSZZUdXV5MYIIrLZrx7IBhIf4uNkzKSQQQDM2X335OZbG6+Vj3zHLMMPHmLF+PpsrSAFS7ZhUe9j3TRQfdEPXdY0x7tjIcR0uYVmVUvKm6g8s8dzg7OwsTrMkjQngqyyO4yhKirrhru30DL67ufmUvtQ1iwnyu+9+IoryV3/1V02ZT8ZB8SbebZeu5xZZyYRyOpld6oaQgkBRNpUZDG5vbsq80FWDUvj+5sP+kOR565h+mMYIw+eXl47jlLtd35d5dqzK9vzyqs1Z4A8Z68PooFIHIZUqOI7fm4Zxej6DSPZtoZvaw+PbjWKYpj0Y+EVV7Y9xXlRttwaQa6oCIIQSSAEABApWnz59oVHbMN226zUNR+E+K5JPXj4ti3R3PLYdj6JYVTGQAmGkUaooKgACAJnlWV3VgELbwI5jZWnLGAOIYIxM02rqDgCGEJRcLh+252dj09Y3281gONBN/exsXDbFn6qxnjx95tnu/rAvi1xTDQVj13UAYHVdcM6Xyw1AoGoLw7AlELrmDHw6HgQEk65tdBU+v75ar9ZFlkymA5qpEqqH+HA2mU6Gw8D1LDv4X//X/xuEfd8XgWfXZY64gD1vymYfRrbj+97geDxCqGRZbRg2EZibpubYBuDw8vSk5PIWPlZVqCvwxVefpUX/n/7m9uX19WAwyOvu//Qv/8V//5v/Nh74wWh093D/5NlTLwjqtuu67oefPiwWK5VS1zN8xb46vRyMRvPZGPw//jEKou/Ydrt1bBNICSH8pbOv7Zqu6RFGD4vtPox1qjUNY4zxvr+8Or+4Oh2Ohu8/3L356U3VlERTxgNf0xSCEevEMcl0gz4UWwYhQQhCiAg6GU2kIO/v1zfLHUH0N7/+8yQrqFIMffNf/dU/9350P364My3z9bsPZZrNTk8xlLpGD+Exr4r9sdQU4vn+v/u3f7VabxaP903XTybT0cg77Lan55e6pj8+PFimGae5TjWMSBrnASIS8UMcSQiIoqgqwRgh0UfbZZ0nF6czXTOiOGIdazuGBBgPBwBKhSqGqT05f6kqUCB5iGIhhe170TrVNaqopKpyJKGukjhLQIGur684Y4/3N4SI4cCtqlLw3nUdSzfatinKqmsaLiQXQEoRHo/+0Pd9hwmma9bhECqEfPbF8yDw7+7uGGNxHEVRomDKe8l6dn/3iBB4XK4IRm3X+J73wnl+c3unU2pZhmEYXd0ew+N2tzV01fXcqm6i6BfXhYySXAJgavrZyYRQstvvDds6dy+oqlZVxaX53Xffb/cH13V1VZUVy/JQSqkqGoIwOkaDYHTYHnjHVVW9v3scDHzPHVZ1QakyGg3LokJIpknStsyxAgRImuaeF/z8+p2iKFRRJ+MxYwxA4Diuf301n5/utvskTYbDYds3hq6XVWXZ5vNXz/Iifv3TmzQrfS9AACmY9l2PMe4aMR4NjnGS/1hUdV43TFPpyXQshMjzUtPUQ7gjWC2qQsGqZVmGrp2dne52+zyPyzYvPr41NN1zPUKw71Eh+tl8Wtf1er0q8hITgiGOw3ht764uzy4vz9+/e2dp9Ori8u3Hj1VZWrZdNl32uDxGcds1w8A5O7/EGOd5Np2OxuNx8jo+mcynw4ngXFO1MIyllEVeU6p3bY8Qdi0nT7MqCheLR8OyL86fXpxdlFVZFGVT15pmKoR4thHHUdvGYXxwbHs2n6pUUg1TBWuObTlW09Z922CCd5tNmKVl11ZtUWQlZyJJqzSvWcd91266skjji5OTh8Wq6bqBYaVptl7e39y9IxilcbLeZZxDwyb77aLreZLlZ6dzqqtv37+tytLQdC5YHCeL5Valxmw6lKIzDMN2bYzwx7tbUzfSOEqyKErKuuW+72OEqaKyln3x2Zecye1hM5vOiEIQAmF0zMpkMh05rp/GdXhYGpQqiur5gW44gvOe866sMIaKok6mUwHE8RCGe35+Yc3GnmtiCEQWbsPo2DSlQmTb9pPJPPDdqqmIglnfd32bJAnrWRwls9lkNBoSiIUEPRN100oAhJAQYYyJBAAABBHsem7qBiRKLyVHqGIMCL7crNuuAeAf44Dm88HAC46HVZpEp+enhOAkiW4eWyCFohqj2VwSYrp2mRe//+abTz/9ajqZLh/uT+fTvqvrMnMc17KM+WwK4OBwjLf7KIkTyOTZxZljaRKwZ0+vVosPf/93fz8aToZ+cIjCqqmBhLxXTmZX15fnYXTc7vcAkcl4RKimN223C8PhYBSMhoebm8AzHU+xLVUzyS5Onj+9enp+oZnGtalDXrx6eTEOPESU7ZbYlqkquO37Mi/7XsRJThTY9GXXl+OJ5/vB3//2t//3//EFJCDvuq7vFQQwxopCMMRQQRgA0XTcc+y//PNfPy5W9+uDYxpFkcVJ8u79+7u7O00zLs5ngT8Ij1HdFFldzGczTXWOedUxppuW0XOFKBhjlcKONYNgyIEfeM4XLz7BBP2Hv/6PjqU7tv3Hb/7usy8+uz4/+8//7e+ivDaMMv34gWqEqAoG5OxkjiA6mU7Xm1VelPfL+8vLi0OYLjerJA2l4MW71+PpdLXbsJ5fnU2rusIIJ0W6221LvbI9WwIgpIAYCQA+3D+cTU6Kqmm6Fgi52+9Yy7gAjmsCKcsi1xTl8xfPXNeu2/oYxm3TnZ5ObUO9Pj8HEHDGhRSqqlimEQT+7nDYrFaeY+u6fjgcTdNerZaO7WbF2jQMXVFVQnSqv/vwHhFycXHx8tWLm/ubMq8Gw4kEIAi82Wi4XDz+4dtvFotVEAyBBEgi3QKuZ8ymAwlIGCeH46Hhbc/6pt7PZ9Ozs3meJ5PxUEJ0d3cnJeQCvX1/a9nm6el8NB5XXf/+w62q0svz88NuGx6SVnRt13AhLcdmvO8FS/NUQZpKaFM1bdMQlZRFizE+nfllVoyH8zAMuZBFVfOiqMqyLMqm6yTgddUohNZ1iBA6OzvrOqFrdH88IEI+fPwoOSS66tguVahn2WmWHg7bwWBoGPji4qR5Vx2Oe6JggsBsNhEAPjw8KBQKCBDGmqYCIBBGsudFWfYK3R52SZaen57UdZ1m+W9+/dVkNAmjoxQVxipjHZCCarpKFM6ZZRt915iGZl1eb/ZrqmpVWamEEqLW5bppaqIqjus4tmtGOZMyz+qirP74w8+rzfrVy6fT8agqa4zRfDpbr9dEIUgltmkVSVWVea23UbjLi6KuOl0zyzI3TU0lODweMUa2aeiqmiY5U00IsG4bbVPznh12h65rINF7Tg5hNBwNOtY1XQswxACnaWbqKlZVlepzfzibTcsyz/IEE+G6NuvY999/77qO5ziMtZauWbbdF7gqKgBwGMVpVvdCKAqWom+7NjyETdUA1mpEYW2TxzEAIC8KqpHBMIiiSiI0HI2aslrc3yR5FafFyLdt2/B9P45iBav7w75pOl3Xvv7Vpx9v7l3P1w0jTZOirRFSfMuvqzJPDo7hR7t9jJDjuoah/eEPv5tMpgjA6WjQcy4E623TcHBV1QxCy7Suzs8FqzSNfPmrT3fbLaVqVpR90x/CQ9U2AVYEbw3TYD3crJeC1ypGVVG2VWGbpm4abVfWbRtFsaHrnus2TQMJKPJs4PuMSQlkkmQYIdeyetHvH+7jpJQASgClhCqlCGMJhARQUbRf+jAUTiVUkqTUVINiRTNVAMpfmPDDzQf64kXTFrOTk7KsueB5Xqoanc4C23FVVV9tNoOBB2W/vK/Xq8c03l1dXEkEup7t9sdjHPuBpxCia5rvBFTR0zjpGKeW1fdNVcr9fgUAPD+77tsKAjmdzQejEVVUBIDgHMt+MvDGA58LsT8eyMBxl+uNrumD4fD28f7DzUfHscumKiyVWsbD5u4vfvUVhsp//+3vLVMfeG5bF29+TpFCJ5MTlaj7Q9i0jRACSYAQ7HgvBEQEQgzysvpwtwZg/gtsXafnZ2dRFGIiVUVRFMW1zbLpMCEqQVigy/l0Np10v/+ubRpCPMNwVULj8Kgb3Wg8KOrKCfxiUyqqEgxHxzj3ZxMF4osLa7FZVl2DMfxFpzQbjU8mo6autsftcrlUIeq7Li+KN3l5t9i8ePrki0+eapa7Xq12xx2TrOn6vmtHg6HgfVGVCjUEkNS0lrs17wSQMkzSge/pqrFd7glWi3RvEiE5g4raMV7kea23ddeMJhOqENeykEJ0SodBsD5u0yyVqjEeTnaHsC5K13GbuqJEPZ2fKipZrNaO5xFFN3QnSQqqhK7jlkUhhJjPp13fqZqmaToGWECw3uzTJKnb9le/+jIIRmmSCSnzNP/V558nSdIzbjluVdf745FQRUEKgaroZc87z3U2m927jx+athsEUy6kpmmIc9b3TQMYZxArvm8ZupLmWRTGqqqUdZnlpW0aiJDD4cikNHVzvVoLKXTL4kJWTfewWJqWrVM1jaOirg+L0DTN0Sho6r7vo+lkolGtaprZ0EVSZkVJDe3p1VPWvkmS5KcfX09GIwlAVhR9zwnVmRBxkgOReX5wdXVBIL/9+PH27sFynBfPXrCe931HNSKBcBxrNBh0vLMNS6HKZr9TFFVRtO12mxWpY3me7/Q961kHIFCpKgFarhZCMtELBeMkji3bKsvyeDwIKQXjhmHMp/Om7vqOU6p9uL3tWSs4K9vqdHq2220RgoZCAZDEolywd+/fAyGpriMEWd0giYq8rJujbZmz6dR1ndv720Ew+F/+z//2cbHcrDcqVbuun02n0TGUQE7mJ2EYLZerYBRQi5ZNqarIMiwo5XzsR0lYlPVqeRgGk2Hg9U29SNaIYELIarksispz3LP5NC8rxgUEmm1bnHWKoqpUEz2QEmR50fVMt00IpG1o6sWJZZht2zMG6qa2DEVB+jE5HpPjxfnFx4/3hzg/JsV8wgeBi7DiWeZoMKMqvbm/tUybqts0zyzbAKzVVDWM0yQrNVNv23w4CPb7XVZkcRJpOlHPyJMnZ10niyzjjH3y/AXVtLKu8iS+vX0k6hYCadt22zPf964vzvebQ5rk1DS3x53ruIZhOLal6fpgMPraCRBAjw/3N3f3puWYlnEMD5Px7snleV5WTVNbtjHwPd81Vuvdd394aznBYOAkWbpYrWdF6vmWgqRr6IrnVm0hASGEWqahEgVBQil99+6trlPLMKimuQR++tnni4dHLNYAANezTk9Odptdz3oFI9fz94ej69qH46Gu2/0xPT2dEYzjsBRCKghKCBjjGGEAOikkRkgAPp3NgiAIAu/Dx49ZnvdymEcZAP9oiqqrbrePFdVECFANlWUlIS+L6uZ9MRj455eXpmFXVcc4P7mYeo4Th4miql3H7hcb07IMUw9v7rqmEoDMxqPDbrffx7/+s19FWZYnFZRK03QYkcFwRIiUvB8NfdY2KgSuZ93fPxzCFgAoODB14+rshKhQYgRX641BlbuH9SGKgYKGg1HfV3/84aeu6m8+PJZthRXw/OqibZs4Th5WUVmVXc8RF/usjJIYAsl7DtXufDobjyYPmxvdokWa/5u/+mfgf3v8BXZV5JqqqirlrMMIciEsXa2aFiKhEBQeytcfb09OTwLXqRT8ydefAAnLutI0hQvOmOi6rqlq2zAGA2s2dH/1xSdI0X786bWu6bqt3D7eUapI1k+HY101sqLY7eOq6RSFVD3r8taxpWc7TcW/+e41pejTTz+ZjQPHNcI49n0/zcrlckkw7sSOEGxb2sl0uNpukcBUoVGaFkX+4upqNh51nBVJhBAxdCXOyyAYQgBd13ItR9c12zIvZtN9fNhtV+9ev+YAeV7g6WZWFrqpz+cnZZ4jCNq+T4oUYei53mQ4dX1/vVr1rMOYpFna9YwqOC+KNC/yMrdN09RMICBCCmfAMR3Wda5jGYba1K2UoKjKOE2PYWS7vu0FKiUQwPOTC3hKfvjxe81UDUu3Ha8XsG3qrMiyJOair8oyS8q8yBVKHMcej4ZZmh/jWFEUyTnCmFKNqmoYhVJyVaGH4wEgoFMdE4IRafseQ0wJaaq6aVpMVS8YmBp1bGt+Mq3qnDGOAcYQ26bl6NY+DotD8ezi4uJkghEgqgokBwhO1clxG9qGUZQZRnAwdJ88vVSpytumyauirABWDuH+xZMnTc/LpmjbxvGMru9Vjn3X2h9DIaVCVNt3Hx/rvhNCAiFBnpeDgT8aeHEUNV1r6joCqCtZB5lKqRAiz3PLsqQEdV3VTWML2/d9RVE0na7Xq+Vq5bh207RJHJdVUbe1qRrU0PMwJVjpql4CxgXjQKoaNXXTce2qqkzLuL642O32qkIgAElyJEgoCryanUVRrGA0nV18uPl49/A4Ho5106x7tlvGZZaZ1DqdzQPfNA399fsoyUtFUxVKfvrphyKvMVGPx5CqqmV4gqG254coGgT+/nAghNZ1QxCwDCNOEkxIx0nPmOc7tw93hIDa1rf7w+evPptPT0fj0f398rhLnlxfhkmmGhbrwWx6ghQtio5ns1mWJ7Ozk1/6QTFCNw/MsNTZ2B24xv5wRBBiTHZZ0jFmV4aqKnGWR2nZdp2ha2XR3t6tCTFfPH2W6vTN+/dFWapUXSyXUmIO1CypPnnxJAxDCPFsOhVSYk3/4vMvb+5vLdOCAEIO9oeQINK1VVEWhKh50QhIHldr3dAD30EEPazXKtGyNHtYLH3PEydTgvXPPvtMAnh3f3fYR2lcHI/RZDbMs/Li/NTzbSB5dIz6picYqyquqlIyqSiq5zh919VtO51Pv/n9bxEmo+EwTeOiLFarhedYtj1+eFwURSmEpKpKVTVJM8FREqaOowsJIEIAAMEllIgqaos6gKDgPMkLTdeSOFHJ0+dXs2+/P+w3B9/3AWh+YcIvXz1fLFZQyKIqVCo9z5xOZl0H0jxPs7au+2HgVU2DiKj76GHxqFNDt8zosHc9T9Go5CCPyzpPVruYfon3u2NZianvHfYbPxj85je/sS394f7W9YzRcMgFi5Pk9v7x9OTib3//jaZbJyen69USAxnD5GH5SIoyr6rM0Jybu8f71Xo0Di6vTwBCd7dLyPjJ+IQQejWb/Pjmx5uH+5v7x6RoCVI+e/kJJ+x2/zgIRnN7lkZJlsUUg+y4Z32raTQIBoYh3r+7+5MKiBDFce1jnHIBgYQQYNu0qqYtqgIoioBQpbqiqrbjVHV9/3h3cXGZZOnd46PrucPADnxnOh5LzokKkjzlS9l1fDoIJIRhfLg6nRoqlRBmWY4V/NVXf27bH1VVrdoqSuKbD3dd2yiUEgpX272muT+9fj+ZTGenI8/VJW9PpuPnV0+yNI3zFAAJAD/sDyoi59cXx2N0v3xUVeVuvY6KYhAMOcRZ1f/5r7/QdONhtdrrdDwKXj59GpXFx/v7j3d1nmc394+6Tn/9qy+jKFkeDqzvh/5Q1bSHx4fRcFQcj/cPjyenM8+DXV/f3Ue2bU/9iWmau+32eDzotiOEZB0ri1pw0daNbVtPnpzrph5F8ZuPHwmGJ6fz2XS8Xa3TlLuuPZtOsKpst7u6rnnX9i1vW0aIYlDj/u6u7wWCalEWURz5QZBnWdsJCbBt+0yy7TbK8so0raJqIeo1Qjhrm6YXQsRx7PsDgjEQUlUUqtL9bq9gUlVVURYAwb5jEJMyy+fz8Xg0gIBB0dVV9/H2/pPnr3RVa6omiRJd1RWTPN4vGOdt20AETFMr6lJRldPzqaFqEnQvnp/bttKyY91jjZhJVnABsiw7HGmZF19+9plJNc76siiP4dEPhvso4kIEvh8dY/r/Y+8/em1bs/RMbHrv51ze7rXt2ea46++NG5GRmcFkJlnMKoLqUAX1qvr6HdUoCBIgqSEBEoRCEVUSxCoxSWYm04S5cd2x+2xvl1/Te+/UCCr1EyhA8fyDMRpj4PvGO95BEqNBX1EatuMwJNNpdao6lwSuBqpg4wu8RFP01mQSxfF8No+TBIbhfr9jOybLkgAAV1WF49hwOLAdU5Z5UZRIgri/m9muQ9IkhiNgDWd55gURUIM0yTAMA4JVUZVxEqdZHCUBx3Jlmr5+9SMEoTCK+mGkG0ZV1ThJ64alqirDMPPlMitLhqHzPOcYZmt7e71eG4aVpxlBEaLARWFQFnWWlRCIgSByefWQpAXHsQiCxEkKEiAIQWmWB5GXJMnh/j6JIVFamJZV1RWMQSxLcpxcF4DreyiCCgILobAo1p4fDruQwLHPXzxtN5vthtIZdEugAsocqCoILre3OoHn+wHw+vWbTrsjixIA1DRDL5frKAjAGsqyIk7TJCvivIaAKs2iGsCYmgFBkCBxEAFDL/EDIAjPdc0cjYd5VhmOKQgcx8uBH24NxyxLF3lSF0WWpiSOMwwdRQGGiU+G/SiLYZSIw/jq4TEvKoxkA93WLRVFUZ5hcAyrgDrL8+VKjaNM4LkwiCEIbrdp149WG2t/e6RtVr4TJUlR1ZBpR1XtuK7n+wnH0TRDMgwlirSm2paVJUnkei5BkHGaIhAUJdn+3p4sSn4Y50UFo/jDw4yiYFlgQRBrtjoQlGVF9jh9LKoyy3McJYu69oI4y8uyBgAAhCGQ5Zg8j9Msz/OirFNZUlAUDZL04uJ6MmweTMZZXJM0+g8NwNisGQLVba8sqgKCVNdpKGSvOy6qzf7hTkPmrc3K3mxU1wAArNXo8jyzXq8kSRFlJcsT17I001zMZhIrPlzfWqZN0fS7H38wgoCSi4vr1ygIJFGSpoVtaIqi8DQlsnRZZBCEsLzIyQ1ZkU7fvvrmhx+yqkIqpBZEoSF3TNOBUcwN/cvrmyQpqjITKVaR5LIusjw/On56fXMlt1svW8PZ9OH4YLIJPdMx9na7KMr4drBeLtM8rmpgbRhIAQwabZLhfMf/h9l3r9NO4hABQQDDcRSGIUDm6AoowjjIizwvS8uyeIGDQEiWJD8KpstFGIRHT/bb7ZZmLRGwZBmszku5KQVRUuUVR1MyL1quU+cFjaK9dguE0Hm1EESqyPyDvYmmq+12h+coEiVQFDctQ5FEEAARDBckCUSg1UajKQxBiNv7WwTFus02DIKGaQkCyzEcRRAkBldF8vHzZ4Zl1xWorjdQAbQV5aOPXsSxv1wtMAJt91quYVimDhMkAiNeGCEwJnBSWqSmYadJEccZx9IcQ3Eib5kKDEGKKAJVUYG16XtuEJia1W61XMcVRamqSwyDy7qwDMf3o6KoZgsVBLNmQ8zqVBBk2wV0zWw2GpbhOZaHYdjs+l4UuFZDlhXpd/6EJE15nn9wsA9C4/fvTqEacW0LRTE/DEiSInGSalG25eBNoq4rw7SyrMzzLMtyGMHiOEFhFEaRqgJ8PxBFAQBhzwuzvKAoCkEwGEZny02apt1OO4rSOIkokmBZWpKZ/qB1eXntBUmnNxSU1qDddAwzywoUwxscTxE4SRKL+co0bRRDJpNhS24kaR5H8XK1gFAURUldtw3bQjGq18XSvGw2O7ZpUiSDIEgQxyRNG7YdZynPSzRFATXA0Iypm3JDoSkiyzLXsbMkFUUpzrI4ztK8kqUOgtFFkdAk1W42XN9LksR1PYLAsyxlGEoQpDBIwiDCMNz3g+ViCYFw4K2Auk6SjOVYDAIquEYQHIRBkqbLou40ZIokAt/Ly2y5WRcl4NhBFlc4hWVxzLEshaKiKFY1uFit8qzwXF/gRdtyQRCAEHg6nVMkRRLYbHrfarUJDF8uF8vlzLIolqVGowGp2zhGAnXdarRsJ8yzFAIAlmPbzdZqtRR4oSwrFIEEUdDUFYRgsixVRVaVoONEYZAXabFRNYIh0yTrttsdqYNhKAjUzZbMcmwcBpo2bzQa09lsY5p7u7sdvAWAoOd6640Zx5HS6FleMh71u51OXQAqqKsbPYhjRRSCJEbyQhYElsFd1y+qstVqlnUeRjGGE1laeG5gEhgIgUmcsgzDczyMoFVZA1Xu2bqqqYEf8pyQZ8XDwz0Mg0Wekwg2Wy/zoiBhNE9jTVvRDNvutGqoghFoe9i/vX2cLTQARLYn22WdBJ4LglBZ1V4QaklYVfC704ssSXmhSZE1hpEcz6ZxDIGQ7YZJWhQbXVGE/qDPsqmmWUWZlxXoeDFJJVkSMQyjGdpwONxszCjyW10lKcIizW07VLW5afnNlpJlaVGUruf7UVLkPoFiw0EPAAAYhCAIqkEAwSAArEAIgBGkruA0SZI4hSDEti0SxyWZoXHi7PwcAAa/q4Qfzm5JkhAb7e3t/nzxwNA0L7B1lX7x0dO0zHzPJUmawCgKZSiaFxghSyPTj/v9MYYigR5ubW0/PkzXCFLW5Up3V7reaiumT1huYCVJ4BgMxTAMbztunqsVCKeBHwVWVVZx4C2SaDhogmBdZEmj2cZZEWFQIqqKKIlphoFA7NnxE5KitbVzdvq+fdDRHPt+Ou12lL29ra8++8hzLZli6kyazu8hEj+abJ+eXjmO+2RnDwaBZqO9VDdRlggU/er7b0mW01X1H14ALMMARUGgaF4DCFKTWFVlQRpHIAiDNQDUwGajsQyT5CVJ4lANgjUwGgyaDSkIvCiNyyhsixJLs3EQJUlku57SaJ3fXtRFuT3Ycl3D0DeKqEwGA5qhoiSlCLjbbSdJAtRAGoUZGH/64qPr25saBCVBSGK/2ZJonCqL3Fa1soa1jWGs9d5gkOWFrlsESa1WK6AqwzCabO1GZIYj6MHWMIkDTuQ5nrm6v2m3OueX12meyjT9uFqXNchwQlmAeZa1OwoEwmleAjC0vzVBEEhV11BV7I5Hqm4M+t3dndH1/d1msZFFBajhu/vHVrNJElQYhRVYb7QFTuC2Fy4WK4oheoMGgsAPD48sZ9cl2G41G3IDgUGeZy3Xp2heNyyeptT1StVsEIRbrVYJAIahua4fxzGKYCSBcRzT77d1wyjyFMfxXq9J00wURrIsTGfLKIrqsg7CmMBxAkc5nk6TPEniugLm85Uf+BiGJr8b4mNYmeYszSAQDGBIXWNJkqIIXFbFxfU1TtGKIOztjB43i8f57e5w2zDsGqqqKnfdCMNkDAdJkgBh0PcDmqRgoEYgcNTrBVGs2Q4MwxjBATVU5LUgcDhKEShC4hgncIZjZnne7Xc91+c4rqXI08U8TRKCIIq6itOEIAkYgcECGowGvutWVYGj+HhrkhXler28vb5Zr5ZKo4FjqCRLJEnOpg91XcsS/DsZleN6AFixNKupRpnniiLSBI3DaLcheY691jQQhhiaHg96O6NhkaW5yJR1SaLYRne92mdZMkxiWZLzIl+sVmmWoxieZVkcpyzDkjQVRzFJ4Dd3d0mSBX4CohBte6uNznIsxTCVX682mlIIJEEgCNjvt8LIi6KwrguBpwVeiNOIZ6n282eL1QKCQHVjXF7dSJKwUQ0cI1AY0nQ7y3KaIoEaYFjOdJ00iV3LJSnq+OiAwAnTMqMwrMpiOpu2Wu3BYEQJEkGQu9uT7394hcDoF198YlkGz9NZXvT6LUtbEyQ6mYxlWa5BECiKdpPHKIJhOIIgYNRM4xQjkDDOeU4UGCGMYoLAwKqkCIJjWN/1A88RZRmBIQQBfTc0HT8IU0Fqpnle1xCCoGt1o5ve7t6BZZmPql4UFcvVpm2XRQ1A9e7exHEc13X297YRBO11erbvuLaDwFANVrPpAoSQTz46/tVvvqco/tlWb70CsqrAcAQCgPFgd7nSk7QAQBIAoKvLqyTJBJEB4DyMUduKGZaxkhiE0V//5vt2U2l32nEaeTO7qspWq6WpFgj466W2UVVe4NIkzbIqSYs8yxui7HkeWAMgUMEgAINA4LllkddliSFkXRSW5XQ6HRTBWYYiWeL7Nx/2d/eane4/7AEcP3saBQFOst1ua7F8SNNcU1XbvnZcq6qq/YODtCyKCqRJJog8BAJ/17/LLL1+uM+KFMfQzz79qASKy7NbCME+/uzTwHedIImznCEIlpblhpwkiSw34jhaLBc2hjcb0g8/ngqKAqLQ+YczWRIRFP/4xfPt3V0ErIBmQ2RZ/sn+k68+/gwnIRCBoH2cwzAvMjtNCYZQAMo3683bN+9Jiq6AwjaSle5IIn1/o1UQ9PXXP4XASpRgnhcu72euG+EweXE3xwlW1Q0A+I92QCgKp3lG4miVJCSG0nCZp0lSlHGSggAIQ3BRVEEYlXWdpxnLce1uZ7VcOLYxGPVenJzMZzMMI5qK8ubs1PSjoqzLGudoGsHAXrsNlJlmREEU4UUNAnCSp0GY1CDc7vazGl2tdbguQs9sNhVeEef3D65tKjxt2lqcxk+PnlIkQ9GcauiD4ThJUs/3ru9muuWRBMqLMobjX3/5uWFZd7c3BI7hFLMxrKPDY1M3UQQReQGuStdPPT9M8nI4GMZhQOEwhlFBkhmGlURxWWdlVb17906WZZJl0tiNoxSr4UlvkKRZjmH7vb2D/V3dUFme9AKPYvCyrBsN4XBvUlZ5GgccR1dF5Vg2VIG7u/sADBnqOsujIAgllniy/czS9NlyCaM4RRO3t7em5SRJhmNEURYYgQVhZHp2t9VI0xDFyDhN8yKnKGI07KAoYZpWVWUcw47H/SIvwzCQm7KqGqs4QTCM5QGKJ6oCKIqqrPIsSQSOwTAEhoEqBzAU3d6egCAA1CVJk2VVL5arqqz8KNR0vSN1ojipANDx/JdPjwgcswxz0O8gKJqk5W++f3Vy9ATBMD8KMRwbDnsgWOVFFkYZCAM8xwdeCIJVmWcEArabXd8LYAjee/aMpIjHh6m20UEIKfLi8OhQ17TVcs1yNIGRt1fXYejwLNdqN2bT6yBKxuMtmnyiqhpYl9tbIxQn1PV6PBpGUYwTBIogRZb1ev0wit68eQMCwO/+QGzHtJxS5Mk4TizLYVkuBIMsjx9nD0WayLxQ1zVL0fPCQDBYVDjYg3mBo0jG9a9MN4ThiMRxhmHKso6ipNftfTg7IwiSxEnDsHfG+6N+23TsGqgPd/dcx4ZhiONZy7Z6vR7H0ShegmDTcpJ+t5WlcQ1WFViIMpOXom17LMsyDH305PBd+YHAyTgIsyStASAvyrIoiqomcILACIam+v3ek4P9NA3DKKRpRtdty4529pQ0ByxD91CgyKKySnierOFKgako8Fqt1mrxeHf/ECfZfHbX6XQmW8PFcsGJJM1SZQF4rpulodIUASBB4BpFYJZlTp4eXVxcuHZAkDgIwwSFxUm83qzLEkBacpwkJE4wtAAjaJxkFENjKLJR1SwvdE0ncKwG6sMnB7plUjSDowgCIxhIOJ7LC40iKzC49tz16YdrHKNwgsBwFADQg4P9NHKbsoDhtOfYLEMu9c1i7Xzy8umw05w+zhqK7HjBfLoSZSHLomYbVCS2KNNWg0tivyyrNI6Hgx7HUTBS0Sg5mxpFWdimTxH0YNQ3DTuKIxBCSApF0YqkAACERFHW1GUJgDUAYAhC4ihN4LFbIUCNQCCAo2VNeUGEIDFL04vFGkZI0/VhjP8HGagi8SmDAzDmuMZoPDAsI4ozAEIdNxRluqii+UJFQGw8Ht9PH8o698NI1yzHcTu9HghUG31FEjhGEbwskATdaXWEnW3bNV+/PW82mrbtp1lJsziBoyAUhYFzNVUPDnbGkz7NMDiJq7oJYyjNUTCS3N2+Rh6mWm/QcjPr/vJ0a7Dtm0kNVt1m+2B34AZ8GiZVnvtJFKTBeq0BVbW9O/rTP/tHC9UytCVP8I5tcSQzXy8+/vhT3/dACOt1BjzDBF4cRUlTFgGg/F3Yrm87no2TKADWDEWSKAiDlSIwDYaZ3j/4GGa7PkHZZVVQJDMc9m3bdBxv3O82FQGo093tCUfxtzf3KM6e9CcQADYkReA5GEFc13mcL8MkLRGSrAsISWSlAaGoYdth6ANVaRoWQ2FZkd08TmEUrwBwNl8ROAFiiB+DSQ5Y9gaAdEEUDF1Pk2TQb43anxjOAQAjZZECdcmxWKu9XwE1jqNbw+Fqs8YwGCeRui6yJAmDsCpzimZAFBMEodtQ0iSsQTAri+PDnSQMVN2Yzk2CYVTLIOLQ9RzLdIui7g26vMTQedFpio6lTR/vcJJAUaTVaD8+zjzHAJKgKGuJYy3VMHUzTTKJY6PQNz0PgWHLDSRBUCTu7dt366UKgtD23g5BkFVVcyxf1T4IISSOdbodCEHv7m6KIu92O7P5GoHRvEZcz8dQeHd7r9fvQZta4nioAhEW3d3dKoCSoRkcJ0SR53hSM/U6q9O0chwvArE4icoyhyAwLyuSYvKiFAQeAGrDNgkCpwimLMCj/ZM0fu/78fb2TiOKMBxjcPTNm1c0RUdJWgN1sylS/EeyIN1c3ri+bzsOTZHdTquhSC0JS5NkpZoQBJMkNRr2aQL1XUcUpDjOprMpCNaSIPEsl2T5eDgiEayuAIIgaIre3tp+fHgwDLso6xoGwzAa9HtpZGdJatkWiRPbk60aghgacxydook8j5stmSFJAICDwO+021EUAxAUhAmBEUmefvvju6asUCxvuC6Z4cHZTbshg1WpqZbAcXYUl3WN4TgEoRhNCCInsPxka1hUAE3iWZImecYx/O+0jMvNyrLs0AsxFG83pMODnX//t38Do5imr8s8b7aVKI33nuzjKB4EdpT5vVFDkktNNTme74pcGLl3j7dpkoqCQjO8oiiWa8VxHPohgeHdXv/q+n4wHCdxlMYxhhKCKIoyxzFUHAXL9fJuOhdYLk9LSVQ8Nyjz6qMXLx8eL84vPwRRILC8aTpxEnNMYzgaffv9j5Ot3adPxwR5lkRBq9lEMChJPdM06wIKg5ykyLoqgjjmOYnnGdt1ILj74uXzX//9b+aLTRwnOIH1uv12pwFC4Gh71Oy0qgKCYVIUOFVd3j3cbjabIi/7/cFkNMIQBEaQm7u758+POZZYL5ckTvGiWIJli6I9yyUJLIpCmiYgEGYoBoLRydYujObv71ajQc/QTdfzRJHx3AgEqaOjj011VoM1y9FeGJEUU+Q1DBOWGeiaqcgyhsO65uRZTTNUHIduYMZp0mx0IZjsNAQQqEicqKtc4OkoTjiJJUnEtaMyB/0gaLVag377zfv3fuCXRZ1nAEVxEGQWZVzlKYnTNCuyMlUVSZWVJEnUoIPjGEGyAPAfj6OYplHWNc2zi4eZKMm8yHESxDAiz9BBaHzzzS9dO4QAOAx2SIprtuT5Yobh2Hy1SrLi8GA7L5IwjJ8ePRM45er66rsff/zzf/qncGB//vnnSRpsVA2niBqG3MgRBRgL0SQHvn/zYXt7XJYFRZIMx87na5ZhEYyushRhhCaBi46jrzNL1/2qBmugviRuDp/stylxsdJbTRkNiXCVkCwlC6xnW+/ffS8rzV5LQWp0Z7tPYpjIC1mWlWUtctJ6s+QZ9qdffT29e4wCDwDmvwtb1TYMhadJDkBgUdUIRtAMgZYAXCA6ReEUSVRYEsUkTcoiH8XuYDB8dnSEwFAQm0nqjwb9NAFN38dh7PH6+sWLk4ZIVlUe+d56tRgPeyhOiqK8Wq0IikzzJIv9vM5mt/ccwbVbTQzBbM8/OjmxbX+xWA7GW36S4SC8M9m37DBNElbgq6puKMpqoy1WOo5ALMP2eq2qrjRjo+nLDgwJLJnnWV4kRZFiMCMxzNHeHgijy+UqTaOirrq9HksTgesCEBQEgWubDIk6tmmalueFIFiTFFmBsCA33CDBKKSu6zSKGIbRdD3PyvXaxnFUEGnPDl3PZVisgsrVUluv1kBdO0HUkhUcxzcbFUXwHAZgBH7+9GQ6na81W2i0SBzPslwQhCiKOI7rDnsMxUB12e11UARncCTw7SIvBJ5DIBCC0LRIIRAp6jqMAokVBr1ensR5VTRaomqprQbb77TWqhaFAUlgBVS0Wi2KpIuqBoE8zdK6rjzXV2SJZhkURQb9fqPRAupqPBisFsuqrPZ3dymaECWWpFEIAlfLNUrgrXbDcf2qrjCyQknc1jc7W6MwTOeLZQ0BIAhBALA16JV5zuIETpCSLIWBF0YRDKMYhtcgbC2dNE3KopQkUTNNCAI0Q+302ggM4hjKMGSv36mBiqIoEIJd328maZHmhmY5jk91KdVQDdONgsR1PZavojQkCYpjuTiMdyaDRkPww0jXDEWRSILUVB2GIIzARU6GCETXTBAlncijcDxMioVqwhimtNoczyAQgMJIVdVhGPIshWIYz9CLpfrh8vqPfv5zEKhv7m4PDw9t0yYJBsfJwFPj2PuTX3wdJKG51qoSKoAqMXzbMiiCEUVRs8zFymwL8mQ8CrPIcaw4LmRRTtMwSZIoShRFsiyryIqyqgkSokjqz/7sTxWZuzo/q2vB94OtyagCivVyjiJgo9m8uXu0XV+RWiAEuZbdbbc1c+m6BgJDKIyt5quGLNtOWKT22emlYcWTLejq+pymsfXSElg6cP2yLvIMiqKcY3hR4LM8Kst0udH7w8loNPrLv/yrdqv7k6++mk5nlu3AMPzRRy/qulivdUUUha0WiqBxXM6mMxjMURjOi6qqIQAAUQzT1FVb4Y53BmkZXly/R1HOsNSkKl3HU9eb8XjIs8x06iMwqutm6PsYTtAMkZcRWAO6ZsVpwqJwHCc0RSqdRprbeRFtb480zc6TYms4qoDC94OiLMOo4nm+KAuKIhIwI3A0TbPATzACr6u6225yDB37LoFBaVHnZQZCuSJzaebxHIbAZLcvDIcT17GeVjvHh7u6GgIQTFDk3pPD1VobDYdpki43S9vQi6IAinIw6PTwbg2AiiwB/x9TBNNWSZoBwowTmHa7iaBwDdY39gMEEggE+F402eoZhn19N20oTZplYZQ4Oh5w3NKxw8eHB0HkCZJczKYwiPz0y5+s1prEMTjSzosyywES3bq8nQV5wLHk3d3C0D0vitO8eHt6vbe3U4ZZmtssIzW3hjWYkASJfPzJl7Yxx1B4s9TAOgvjiBf56WplWo4kSSVY9xtDtIYYnCAIhRfZhKKLvNA2KggiMIQSFMpS5PHhdpzWGYKOxpOVqqq69e79h9l07nsuALD/MWzLljmuKoEsLyVCoBiGpGlttnDsCKQFjPEz30nyrCe3212ZITAaA/odoa4BzCosINE1VVUdhkQHjWYFNGmSNE2TIhlV1zfGWuTF9fR+Z2ev1+/czxZZloZRmFa567glVeAEqkiNtbZEUWh71ItDt6EIaZLRDPvs6cl0Ont8uDd1o0hCzzSeHBzlJQBiEE2ivusapvnh4nQ86fuuE/ne9vb2crnEUCQJotnDI8dzvX5no05PX71lWb7VaOrahmc5OwjkhlLX1f3jHEGwKM49P2IYKsnKPEmlLFTasmVZRVW25XYURbbrgxBSVUCZV3mSCxxvGvZipXaaUl2VAAAQJHHYH7QaDduxMApRZMXxg63tEYqgqmq02h2CoDAElkQeAOrRsD8cDm/ubxEYBGvIt/VGs41jsFWWfhhneUHiaEeS3SBYqxucIBiSDF2PwnFWkaIsKcq8jBOxLQMgQjEkQWNJFC6szbjPPn/+7O37twxF1XUNgmBW5JPxBKyBh8epZahNpTlfLjYa3GjJFEVmZbZeb7iYCsPw9evX69UGxfGqKEAEIDDq/btriqG3eiOKQOMklCSa5wUEgUPfu7m71zaqJIp14Oq2KskyxdIkAFmO7Xpep9NzPc93XBwjJoNRlMRlWVRlfvL0uevZi8WyKgEYAtrtZlHmCS+WBeCG+WypGbYHYRjqgL7ri7woigLLsUxBhWF4eXmZZWmn3YYQGCchGC2j2IvTIEkCEARrEFjOlyAESZIIwBVGUlGSoyjZGTQIkqjrGqxqnCSKGkyStELLKEmoujazwg9jBEXv7u5Yhs7TaDW7f/7sKU1T94+PskQvV3OSxjTDrItyNGh7cdjvNdIYEBlxsjUGAfhxNoMh3PMCL/DTpBR5RRJF33Ns20MQJE3Tuga63WYSp9e3j4NBX5Ko129+eHyYUhRb18CH84ud7a3BYGTaWrMr/+wPPr+9e5iMt5rNtqFtILhSdYvlRAjG1+s7CMJhBDNNt9tpwzDYbEogUhsbw7B8x/Jpim8ojXcfPtA0PdkaNhSl01LW6ub29nG1Wp6d3v6TP/tHn33yVRT4cRSyLCUrEgiAnXbr/PwsimPdtM7OHsuqiqI0S2KWYX/nrR1GEY3B6noJ4wgnUgSSep4B1bljGwynwCAM1pWiSCRJ3j1M8zSPojwMUwRB4DqvgNI0HAQlXT/wA1/VTYLCcZLwI/ff/Yd/vz+ZEBTGi2wUp+OtPknis9k6yYKiZvKicp0gjnMMxYMwLotiNBzQLIHjCFAn9/ezMiskpUmwOEqhUJ5t1DlNIxhCUxTW7Xai1JkuH8a9HZFn6xPYsR1d0xhO/JNf/CxN4vPLK8PQTcsbj/rNFg8AFQCgDMN5rvMP09AwzqLYwSk4zVPXs3AUY1jGd3SeAOs8zMv88nbeaQ06NI0gSJIWiiJfXl3GUQ4CqG56WVmxTJLnWVkA3U77+HD3++9/S7F0VWd+4NUVQJKMqCi+b/W7uwTmjEeI5/scxzE0RTOk47i9ziiKfQguoygA/8//p//d1fl7miEYkp1O7wEYgzH2/uFW02cIghMU2lFa4+6QJEk39wEYjIIwj+KnR8eLlepFQZ7FFIx1O+1Gq9todcK4Or+4wBAwiqKyrB6nj//N3/5/b6H9nt/ze37P/5/zX38UQQCc5WlSxeNRD6pBBMYt0yRQiCaJpWXhONfg2weHT2AEIkgSI4B//a//70lSJ0nJUlheZSCIrJfa3s6eKHGCQFMUXQHocn03my3Loj45fNpqt+IkAIoCAMDrq6s8L5OicD3n4MlepzWIk8Q0dZJEr6/vIIHGOEHAKPJqeoPTxMmzw3/xL/6Lo+NDQZCKusZZmpaYDEy9yKmAyrDVdoOXRI5hCIYh8iRuiuLe7o6iKFkSWdpSIMGtfhNDIAytqyoa9Vr/qbP9e37P7/k9/z/EZx+9oDCkLMD9nZNuo1cCaFkTB4fPEZxtt4c8Qx3sDp7sdTR16vkuWMemoYlSG0VhHAcbTXlrPKhLgMTJqsi01bKII7jK0tAfdPo8yRIoEUX+cvXgBfpaXS/mi/u7uaH7IID0B6P12knzoqwyy3Jubmd7u7uIGyTzpVqUBcsJJVDdTW+X85ltuoIgKe0OSkEYhimtprrSTdVJytR2A22ln19cnTx7cbB/JJDUajPPi1IQxCIvfO+6qMGkyA3XSZKARon/8X/99F/8t+//U+f89/ye3/N7/tPzf/yvniRh8PFHHxEUK4ic66gACjOs0pQ439ParabtWZ7lcihDIlhVJt9+c+EF6R//4men7797//5WBTACR1mK2xpupYkPg7QsypphpgA6nmyf15e729u6tXl/9vjk6S4ncosHjWAZjmW6/cZSWwEIvDGWNI56gctz0nqlgv/X/8v/Po3DhihleTpbzVTbQIq63xkbvmtFDobWLM1Igkzj7M39w/vTdygIYRh+fHwwHA0wCIdr6OLqLIqiyfZ2XaYNWcpr4Ozqzg/9vMiyOKuLOkxjVhTbTcV1bASCmoKwt7sNQpDr2UmSojjakpoPjzMcRXuj4fuz91UN0QTPMjQAFI5tFUVe1iVDo2mav351CYDYaDKIoqDdaAZR9jhb7D856PZGm81CYKksypMsUxpKVRTz6SNFoizP5SWQpnFdAzVUN1rtyI8Eng7S/P729mBr++rqajzZNoLkv/9X/wNHkBBQUSRJ0OTuzgSBIUESMZJyDCuK3TTPgiDCEDTygyAMNd34xS/+FACQq5urIHbCOJAFGYNxmqGyuiYRjMTxOI6CKOQFrqkoVVnSFJFmyfnlXV2DckMBQIAlybLMYRDQTds0neODQ5pizm4vZE4Ai9wPXYKj2t12FOehF6Io0hC4vf2Ds+vrIIhpkry/e9AtF4Iww7TD0BVYaqvfK8ucYSgYJZKswDG4IYkYjvl+lJdlWmSasSmqiCVIqIJgCKFZdnfv6P3pGQzWnW6j0WjCEJnlWV3nPMsmSXzzcP/hw3Wj1RoMe2WeJ3GqGRrFcDzHbtabugSev/jYdv3//l/9q6qsGIZst6SXL04M3Xr7/vyf/ukf+773d7/6TjccgqBxHMFJ1NCNsiw73W4cRxRJF1mGoGBRFBAIwjCK4SiBo3GcwiACgDVFEqIoAQA0n83TLH3+7GQ0HvqBj8CoLIqLtYpgxGQ8MqxNGMaWZXEMWZYZAmMQWIe+ByFYkMQlUFU5gMJoWVUwhNzc3rcUsd0Wl+YKhJDJYNtxordvPkAwwDHk9mQCwXAcJ2tVBQEIgqHNRu0P2kBV6IaTJnme5/1Bv9WQXddyXKvTaXp+YNvBydGxyJN/+3e/Gm/tkiS2Wms4SiwWi0aj4fqhZTsIgtE0XhYxTdEswwsCl6RxHEdVVTuWWwM1xwu9boskMD+Mdd3VDVPVTILEaQLjWUaQ5YeHR9WwyxrcGg/TNLcdP8szRRRMQy9BSGDoTq/5n//TP+k1RQhFV6qOQuDF5UW3206T1A/Sjao5vtdqNTmW1TSzKQqHh3uLhZbEebsj2o5FswKCYVVZvT89E+Xm7rAPgLmoyFmWv794TZIEChLzh1Wj2UZwMM+Kjaq5TuB7yWw+azbFve0Rx4oYSdiOA9Zgr9s4PT1frVSaZSEYiXxPUeQKyNM8KbK6BiACx4siJylqvDX2XBfHqZOnewxD3D9MLcPZ2ppUVYFhyMPDlMRJURREUfQ91zB0qK7C0GNZsayRMIpv7++DMMBxEkOJbk+uirqsgcfplEDI+9kMRlGepfM0GQ2bIAJ2OqOvvvryL/7iXz/cLw8OtpQmTREIChOPD6puuw2lQaA1QcFRkjlOhqHY9u5OluZ/89e/fPr0WZYVBwf7m81c11RNM6oS0gzDcV0Mx7bG46PD/TRyH2drhhPGk9HuzoSl0CSP5Ubz/OzWtf2GIuEkiaNIlWc8x0ZBaFl6dzwiCBYBy9PT9x/eX6A4jqK4JEgwWsMwfHZ5//z5071J6/L8nWGmT46e2rZdg1B/1BMFJo5jWZTXG53hRJIE3716A8LAm3fvixKSW7wXuLLYw2AUqLIoyiiGzcsYRmBJ4LMsDILQtWPE0B7SpBBp4v72gqAJQWAFSuh1+oAK8SCnq0tJEMMoZGnhs88+FQSuSIvVav07J+fJ7rZneyzHsyxPkLiuGeOtHkZSZ5dXZZqTNNXtDFezOcUSP/nZF5pmuL6d5gVKULO5ihPoRl8FfiRwjDFXKwh+sA0z8DiKqgE4LYsojUmc2KhGWeSSIodhDoP17t4WCGICL39Yq9fGVbvf/pNf/Kzd2YrTwrGMh/v7r7/+mufkrCrBqpxPH06vzr764qv761s38ARRwikiKdfbg5HnmAUE0Bx7ff9o2A5jGAWA/OLnf6iuNzVQ2Y5te+Fvf3zz/Oj46HgMorBm2Ibt65pWVfXWeEsz1hBYbY1HSex+/PLTdkP4+9/+Ks8joEhbjQaEozUEtxotDPndBb64LMrBYOTalmMbFM3SjJwkSRilDIPPV3NRZHvdDiXwNOtdP9yJEouhMI7AumVEeby9v81yfORrMIxNZzOk7synDzRFExg+7HY92x4Oh6ZlSwILIbDE85ahR1mKFjWFgbZjsgxNEWirPWF48e7+zjC1OE3c0NtkFgygTaVVQ/n15S2KIqHv6aruu15ZgZ7vFVXBMtx8usyKXJLkwA83a5WhqWajUQOVppsff/yy3+mapgFB6ffff+v5IYzgse7EcQhBoO9FSZr/z3/x714+Pzl8crBYbTrtbhRHmqYKPF/XNQQAX37++c729i///pe2Y8AQVFc1TZFpmoAoInAcgeG9fjfPM1XVawDsdDuyLBVF/ubNO1EU2q1WmieNhlBVlWmuf/zxDQwjnW7bcW2WIhSRvX98DIOI5vkkz1emWmeVwPB1WZE4SVNMWQCLxYZThChNH+ePHMcfP31yc/mYprVtu4LAwnBNEUgQpl6QtTs9WRZhEEiTCuIQFMdxHGs3W4vF6v5R1Uwfw7E0SuM4SZKA5gUQQW3HUTXdd8OyyMMoxggSQbE4Sra3t13bzNOMptlGQ1mu5kHoUCRJMzhQQ6qul1Ux6HXSJI3iSFU1FCOSJP+dy0BW1gzDUDTz5MkTjmPm84XrBgiGgVXJ0YQbJWBVgwAQxUGWMzAACBz//sOp4XhFWQ47nRRKfM+RZJGiiDhORuMhAoKv350yjLB3sLdazS4uHwRR/OLLz9rtVl4Uvf6QQEDX3sS+VdfI3njyMF9GcXp0dFIDJcczmrbGcSVtyrrhl0BuW943v31DUUSn2yYI4ndrFr7vj0aDrKhcL0AxzHEcAAR0w4jjlKIYgedrAFirRlFWRZr+5KdfTadTRRH6vd5mpV5fX3M8GSV+XdV5kYEISNPE+w+nWV7KvKCr5mypH+w/IQlse2trvlwHQbC/P6IYKIoiHEM4dss0wrho8iwDgGVeshCC2Z6dlg/75u5wsPX4sLFsl2AgghBhmEjSHEVQ3w9bWz3P13GMbTbwuioMzaqqCkHQ1VoVRCnL4jhOswJ+cvQcAuuLyysARkkSs113uVaXyxmKkDRTF0lME6ht64+zxxIAur3B4fEuUENFGqdxxAtiXmQYhrCcGPgRBCC272M4wwoCAEJn53eHx3xq+TBU7x3uTnZGVZZShEBTPoFD21vjCgSTPLCs1LJdnCC1zarI4hADvMDzQl8ShcFw5HgWgVKSImEwJnLUeq2OJztx7CRZQlOk5ySDbjdKAERTLYpj0wL2gtqw1dawVwDwxtZlhfe8oKm0RVYkUErixbose+1mHKadbsf1DRiCgLqqiqwssjCM8iLECeji5gLFsKos9ibbbuh1O+3d8dZvv/3Vxfv3W1t7T49efPhwLsvdH374QWIpmqO02FnML//4pz/DSeZxtZq+fnMwHmMkjdFckkT399M8SwWBHfSHKIyURXL3cN8f9giMeP78GY5gdmDmWQiBGQalPEF80Kzf/vrvjo+PO/3hf/irvz47uyiQ6sP5OVpjCAyBQD3odiEYwHHANN0oTw8PD5Aa++Vv/pYVKLCCjo/2PD+IgqAqCrACozgaDocYga00NY1823TVjcFyjO8Hhm7iOJak4Xirn6QehtWTra0sbeVR6LiW0m4xFCGLbA2AuqmTNE2R5HqzgiFIkCUAAEfDdhCEmm4gMNJqtOMwuLm87Y1GP/vJ59+/em27XhB4VZpiBLY77MVhHCfZYDAiSRaAYY6jEARFUIwXuCSJjp4e39zcYhh0+GSLYQWeEx8e77MsJRBUt1xWUHa2xjSJr1SdohkcwzrNjh9Gw+EkiXPPC4o8YXnq8Mnu//xv/+budgoBYFlmNEPjOHZ0cLBYawWIfP2TLxiO/uXffxN4/rDfzbLMNOzNWn396tXHL198OF2dn19CECpLTcu1YQRCEPL9+1uOo2iWLsry2x/eszTN81y/24QRZH9/OwrDIAgYhgWqvEz9P/7Dz2zHWq10VbNhCK3rajQalGVJYgiGI3ECNJpyWdaiKGA4HvghBMGSLJuu5fqg7Xpb44lru5rmdrstGIb6vUFVlh8u77MiHw6GgWcrLIejBAwi3XanBEoUgmbzVZ5XYeCbeoTgMAjVqqrt7Rx8+dVHy+USgiHDdjqdDluCAOiTZMmyXF0WaZ7xLCkKimqaaRI5pp6maRwVAJBTJUjhRBwFfuC7rpfneUNS4jgLoliRlTAKyjpFUUSUGBBK9/bH6/na8ywIqmzbNTSXohKeJ4sSjqLEBD2wBjEMT9NclpU4TvwobDaaW8NeWRaKIrEUybK0bVtgnfm+zTBMUxZEns4qSBJFDIeiKHnz/pxleRAobcttNXuywFuOtdmoLMvjGA5BuOeadW03G3IUV3nuVnXZ7vQJil+tFpq+iZNIEkQEqBerZRr6dVk4rotyKEahT58+L9PU95y3796tlutms2EYJkkSzQaNY3BViK4XrNbmeNwrqmo6W3R6nZ3JeL7YBGFc5UC72UjysgJgz/XiOEUwFADzcbMtCjxHsWFg39zc5vnQ83wAAKMo1gw9jJ1Ot6Wqa4ZxGJK6uXsAQFSR2j//xT/+f/w//6e8rHqdlmnZ3d4YBKEw0S3HtG2fZUnHCmAIf35yMltMAawYNhtNoX16dY2T1OX5Gc8xP/+Dn1iOmWfxZu1iYMxyogwCBEnFSeY6iR+FJ09PZrPH+Wzz8uXzw8Ojy6t7guYYgtwa9njeQxAkS5PxVt8Po/393cViYZp2FJeGMWVYxnGc+Wy5WS90Q89r4M3ry69/+vVg0Hv1/Q9hnP38D34ucFTgBxTDGZbpum6ZpyCAEgQFwPAnn3+62WjPTvarKjNN4/7mut1owDidl6EfRKKkUASxWLk1iBcpRFN8VWPT2abVFgzT77RbYhN3HY+hCVEgABDa2RlnaWA54MXFKYKgg36DwOCK5HwnqhAMQTBckbnuqMNI4nR2l2XpuD/wowBDUQwCJzu7gRut9U0axq1Wo9NqJ1FOUVAcE36U1wAEwpAoibzIaoaWhgVQA9PH208/enH45PD69mF3PDZ0a2trF0UAEqN5kv70o491dRNFLgrVaZ5++vFHZ+dnbhDUQYgTLEEmdpDCWd0kGEu3Gu3W3f31liSRBJVleZLXrNAqMmDtGq12ByhrCUMQGLy9/rCYrW4f1n6c388X13f3rXaLQEgIQKCiAkAUIakk9BLdaCuSKDE3Vxc7owmEIXHiS3KrrBKoKgiczhN/2G9/92rue8Hx/lE09wkSOb881wxbVa3QiyEIg2EsTlMYQwiGU9UlTrC3d9Mgjvq9Hgq3DMO8uvsOISgUwc7OLiiKqqvi8e6WokgcwxGERAmU5TAEqRarRZLk643GUnS7KYV59OH9WRol/X5v1B/e3t54rs3zLEHToqy0ZIEi8LKqui15NOiBQL5aa7OZXsEgK8vNZrNIU5xEyiJ03bTR5BiGZUg6zbK8LASOX8znFNlGERisizTPGk3F83yFoZqHuw+PU8s1/81f/PuL64VthQxNN5pN13ORuEjLHAIrkad1bTWbxUkSIijxzW+/294adFpKkeeB4757+7qq8iBMRVEuipwXSE3VqgpkWZ6i8bqsGYrNsyLwIgAA8iLs90d1DW3WBYHCOztbRZl/9913NENjGFHWwGjQJ0gqiINWRyrzYqOqXljgJJXnGUVTosRZll1VuaxwgkCBdR4lWejGZValefnyxdO1qqZx5ILldLoiMaoG6qvbW8e09ncmnYZcllXg6RiJy4q8NWzYdrC9NYyj6PruFqgRmiQ91wVhEEbrLC0CP1oUS0GURuOxqesQCGgbLU4SHCMM87bT7UAocrdYLdZGmhcUCI6Hw9Vy9vb0nKZoAKxc2yEQ0vXCvb3dfl+ezxZFUSMYWtclikKGqT1M72VZwXG0KitZbpVVudxYHCN88fHHV7cPNYgzDEczTKvVTtPEsqytrUkNgFc3VyiGOWFcQogkNcuq7g8HoRcu50uG54ajHgzCZZ7hKJqANU4hrh1SFDUaDVvN5jff/IoROQAEojijKbIUmThKQz+UJM71PBCEr69ucBolcCRPEkwQaYp+/+GdqqkIDEEwIAkNsARNW88HQegmFxe39/eLIMpYDvDD9PLqjiQpFMNlUQDBGsFxjuUpBOp3moZtfvvDa5oRf/rTnz0+3t/cXHMczzMcRzOttlzX9d39LYbCUeSMR4OzD5dJkqsby/MeMQylSArHMAQTf3x9KQoNFKltN2wqHYIg0jRcrxaiIMZJ5nkOBJTjQQvBkMU6b7U6NM0nSRKGMQJVnhuESd5sCyiQQhA06nedKIJQdLVWRY5vcCKMKCCEarr62ctjV1VtP1Skjm7ZUWxYxmq5WEiicv7hcmfvcDQattpN13eub267vbbt6I7twwiCQNBqsYRBqD9sYwQKwUielZfX97rlQXURJbEoSShMXJ7dFVkJIQiAVH4SCRJpe3G3JY0GzOXVZQ1ANI3eP84wnPuv/ut/eXt3+jibQwDaaTZM03r9/nz/YO+nf/CT27tb3dBwBEYhkGFwmlBcYz2ejLI0vr+76XR7zTZ/ffVusdbG2yOBA/Moeny8TvMwSkoEZRqKHGWWHzuW7sVp2O72kIOD/dXqYXb7nqepYZOBkQYM1gyOr9cbU9eyMJ09rlzfY3kKBosiz0iS+vWvfgSAeu/JEQIBSVoKgmDaKgiCkth+nC4cPyoroC4hmmJs2/Q8F4bBMA6jxZSmecPSVXWlKCJB0BzLUAzT7A2urm8jP9o5eBqXFcPylmsvV9Neqz0eDNabBQyhmm7lZeaHnutGEscq7Ua72/1weuG7IQSCb0/fkxjeGw4brQaGIFcXZ2mcohRB4MRg1BcbkmZY7WZz3BtQBObHviC2bm5vO4MuThLrzcoNHIahwjh/8+1vuq2uF8VJWpxeXPc67flKjaIIRWAYBV5+fCwK4vXtve8HNMmwLOe5jqlbRZEbrkXgSKvZ5QW51ep7XpznqiLK+mbDcfTWqIdjCM8xnhcOR1uqtpltVg2lkcQpWFkQAERhguI0A+Oa6Zf1Qha4jz9+qar648P9yfFTXuDWi0fdMzamCUEoioOrlbHcaDwvf/zJpxAI66vV48O9blgsQ/M8s1w8gnX5ZO+Jbussz3lV/nB/g6G40mh4YbRar4us6HT6qmZeXU/9ML2+u61KoNFqNpQuBFUvP3oRx+k333yzWuuDbsc0rPVa7fX6KEFnRYVTwv3DimfxJMshBHUeHyAYKer67PyD43oIgoIgCCP19mSrBoowDAM/LPMCx+Esz7WNc33zuLe/t7+zi6JQnkYIgrQ73boGFKURRrEiCKvNugKyILZ5hjMtuyiBLkHDMIwgkB9FjhvkaRmGKQITMEa2pcZ4OASByrQ3DE01FE4W+R9/eIPj1GQkXl7f0JxoGs7V7eNis+n3exRNf/hw47lvGIYeDLt5pfE0rUjCcqPBKILAEI4gH3/69MdXp57jIwha5Pl6s9zemkiC8Dd/ozIMS5BkmedRGBiWbdpefzAYjeHrq6u1qiVZ5ftxntUwCtMkBcA4wzCbzQrHc0nk07zUDTuOYscOqqoWBQWoodVKK8uCpjleFBqd5qcvnu+Mu8OzruGEnu81ZJFnqdFwr66LxXJtWN4f/vynGIHpqiGyQhqHrm/GacDxnKpRq7VNs7ws0mkSpDHYUPgsjTzXjZP8++9/+PM//3NNM+I05mWOpUTPC27v7yEA5Tle1dUwSoqiPj45vrq5XK3WsiBt1moUxY7je4EnSjwvMmEYFGnmh3HgRnGUzGbzbqtdwShJYkzAHh49e/fuw9bW4OTp0em715ykQDB4v1jxvIDjHImDg173s0+PX77c/Zu/obSNjsIIw1AAWNzePNi2hxHkYDiYzdQoKg/2D1VVN40AxxAPDOM8afdkEiUxCN3f3q6qvNloUQTB8/Ttzd3scd5stgzD1tV1mlXdQbusKqQuTHNJUhRFQXEQsix2vD9mODZJkqbczopUtVTX8xtSc3p3F7nhYDDAMaQsi1ev34WuHyUFy7kiqzAU/3B3HwaF760ty+sMhqNxN0ujIEmTLLYd7/FxLgoNAsFBoIbA2rYtkkB3tjs7270iLWfT0vc8DEMInDF1h2HIIgvTLBQVGvRBAK4+XFzSBEvQ5HIxV5qttbrRLPfnf/SP4zScz67n01lZofv7BwJLv3nzIYgykpymkT+dr3e2965m1xxDMix9e307nS7+5f/qv2wqTCAyBNe0Xc3UXASm4qziIfTo5NDU9SxPVXW5t3PUHyiPU9Ox7DjOEBy6uHyPVEV2+zBNgwAuSwDBSJ6nabbR6iRpMZ+rMECESVaByGyxSYuyLB+enxx5QfGb3373+t35L/7wD/r9rcVah2BYkbu3Nw8Ui+7t9RtNxQ98ksLKughj/+37N4LI7u7s39w8bDZqFHqddvPg4MixnfV6HcVRu9cd9wfd/ujvvw22uv3wIqAxtK5SGKpHw6HQbCZhwaC8KMnv7fPbuzvfM33bqqpyf9ITeX5nLBm66QXhZvEgiTJDkFyzPRqON50Ny5EkRQ2H/aoqsjRhaRaEYT8KpVYbQJA8KyiU6Hc6EAw1mg3FacM40SJZsAYrAJBEcbVcoyiRZUG7obAUicFgv9NIZe5wf7sGwGFPabeUMIzTvHTcOM3Wju0kSbxZb2SRJUCYofCmIkAocvc4g8pKkvi612VIqtGQZamlbtStfgdHsbLMeVnipUacZLatoVBVF/l40NnZHkiysJgvl6tVXeUojgEg9Pbt2/liffLsxcnTYxSpdFVvthtJlhTLYjLZtS2HYqR+f2i67t/9+se9nQmJE7O5mmYFPd+YjieKUr8/CqM0TstWZyAWdVKWBIa1m408zyEYVNfTZ8+eB85+miQkyS7XF6Px4PPPPvtwdkaQ6EcvP/rf/m/+D8tlVINAlEQszRZlwbJss9lGEdpy7CzLirJ6f/qBolBREj3fx1GcoKmsqE7PbhkaV9cbEkMRBJ4+PrI0CcHgs+cviqKcz6aywPW6HcSA7m9vW83mZDJAIMy2PYZmSYLMMkCWmiBQkwQqywIrir7nwSDy+tXbCoA67b7rfnj96l0UJk+fPZsvZ6rhbs4eGJoUWFbTvf5o0B8OcJKvKxgCARQHZJErs9Jyo539/RIq8sgVBabMY1Fkh8Pew8MjSVIASCVRFKM4y/BRmkIw3Go1LMMkiVQWURIDxqM+Btcb1cBxkmGrMAyzMG80FJrF0iwL/SjPCpZlqrqO44TASBhC8izGMIyiyCTNAQBMs5yuqzSOdF1NYlsUG1GW5TWuNFqGtvG9AMNgBEYkQYhDH0M4jsbqKqqhTJT4EgSzNO8PuqKYTUYD3zc2qnZ9e8/QtCwrhmFblo3g+JvXb0VByS0tTaqWRA46Hde2XT92g0A3fJbm1qv1x588J3DU8+Oq8g1dy5K01ekoFAUABYyAaRnjJB0a3v3jLA5DgRM5ju+PBiBYJrHX6rQQpLa9uNVt4uiz69t7glIeF6tGd+uzFy9NffHwePPrX/0tDINp7Gua5vmB5zs0RVcVxAkCy9LtVgsE4clkx9DXrVZjb2fv6vL68vIWJ2GSxFpNqcohbbMUJOHw6JDA0NN375qNtuWGy5Xaaog1hL87vVQNg2HJZlOZzh+VpkhR9OXp1e7O+OT4KEySrqIc7B5cX13PF9F8+sgLAkEzIAj5aXZ8vBeFxs3DmqKFk93hd9/9kOXas5fP//AXT/5v/91/FwXpYDQKI3c2jxAQsWyzrsu6KmmKresyy6IsS/KiiNPs/nEOQRBOQ5EfRqE/HA0Wy3ld5c9fPDs63Lm4OJvN7gCoVpRWmWbzx2Wn2/vtdz/CMKwo8u7Ok9VySZHIYND98Obty8PPYBJ2PSdLYxSBQADYrMzZw4zmWBiDnr/86N3bt2FS8FKb84r/8X/4Nwc7AwAoemO01+7ZW3vX9zMG5ziK3yzVq8ubZqvVbvazLPmf/vX/i2V5EMppkml3Wv1BD1k+TmVOjJIqSQEYA0NrThOUFxaO62VFXQA1q3Cz6aLV6RiGvnfw5PT8Lkzy5y++NLSlbXvL9fe25yAovL97cHxy9Ob9qyQLfnhzul7rBIn3Wp3FYpkWJS/IuuVoln0/XedpvLd34MfJdDb//JMXCFQ7nqeuH0EgSxJ3o9VZEntGRFFojVy5rl0D5ctnn03vHwCwHo9HGAZjCG4YwcXpux+guqFIK8MIgxgjKD9KxuNRq6XUEEAx5JDsx5HPMYyum0Hk8zwLwWAY+pIglHWRZwkMggRGkAiubjZ7e+Lx/j6CEoHtlmWpNBQUQxkS9Vy/rKog8GRZlmXl7en7UPX8NIYg8Oh4n2XZb379g++Fjh04zq0scZOt8ctnx1VZrpaL/qBXVplp2GlWK5zEsYKq6kmWGq4HAogk8mma+r4/HvZJlrJcXTdtnmNZimUZejZ7rKECpQ5fn53OHx44ChsNB6rlff/Dq599/TVHEOevv4v8cLy1C3FCniUSK3iuU1V5r93GUPT09Kzb7nEUW1XlZDxZq6YbBBhGIhDcUMR4uSJwbDjoj0bjTz95fvr+LQTVQZBEUdDvtG+vrq8uzne39zrtpsCzBEFOZ9PZ/J5miLrOlIYQLNKyqIq8TtIcRSEIqEGg6nSUZlOEYMT3wzgORYnL0rTZaOIokeflzv4YxxGFo++uL1+/egXBMIoTkiTFgb+cLzXD8DwvTXyKpLS16rvRen05GHSLrMzSbLK91es3WYYJ/MjQ9ChwHly90ex2O40aQHf29ru9DobAYTh6uN98/PHx1tZWBWF5iQ9GMIqAWRhOtrZ2dnsIBpIEsZyvAs9VqCbPsyhCQRDEMjhCkW9fv7q9fqxLuN1WGIaZTqcPD/fPnh922500zQej7uN87nreYr5oNRRREJAgroHC83yCJKu6TJLcD+KiqGRBwhB0/jitqpLlOBAogiBCUbQoKjMwDw+fYBiqrleCwO/v751dXFI06di+ZhgcK1AUdnOn8oL4cDdNw5wm0P6gP5vd8wKvKK3H6bTIkzRL4jSrgYpmGJZmTcepSg8CIYbBzi/XJYATFB5nhWElhhV++fkXF1cX5xfnT57sb4z11fVC5PjHReyFHsM3nj1/WlYQwzAAmN/fXkoC/8XnH787PU3SGIWRLE2TLB2MOnnhpXlWADCMgW7oJkEEVnBWJJa1LsuM5akaLI6PD169PccxNI4yLwha3faf/tEfmJZ9c3+K43CnP5hNVw8P971+f29/f71ZV/NK1SwcI1udJk3RN9c3R0eHh092L8Hs17/69Z//Z/+MZU+6vRaE1LPlw3yxUaTmYq1BKPLdD7/99JNP9g73Xdv7qv3FX/7l3xZF2u92Vd3GcKosgb/929+IkhiEcVqkoRPkV7npuJIgb42Av3r4i06nzZDEL37+8/vHh4oFcZLqd1qiyNcAAIKQ0upMdrcubq7Pzu/+zb/9d//5P/9n/+J/8c//+t//NUliJEnIkpzFuR8El9cXCEKCEHL/MDs4GKV5atuOKPGtVqPf6yd54loxhpKRH5MYgxIwTkCGoXmOt5obJM0OO5xEiy9OXi7VzcX5zdOnJ6ZuQHX9/MWTt28/vH37fnfcCyP74vSiACsCp6erDYHTNI3TKB2E8asf3pycnLz8+DOKxJI0nezuTadrpAYcW//u+3ej8UiRmyzpAjmYBUmRJVVeFVktSsp8Md3Z2kUQKC8SAkdDLxxv95AcpDie7fd6ZQnXMGh765bYur65pUniJ19+mmex6dgnh/ssTR7sDEEUL/KMyKPnxx8Zpl4kLkPRW5OdH1/9oG+Wwh6jNBSgVqq8noxogiS7nZ4oKrqtYxhelECv3x+N+igEkijpe/7+/p6uamVdOqYbpBEMQpqu5kVCkOje4HCuLuar5cmT4yzOby7PSBxNs+zw6HiwNaiqyvfC1UZdPE5pgcgBwYtTrCwbzQ4vyCvdPj5skiyznM1pioAgaDKZWLZe1hXD82KamaYBgQBYFSBQFWlBkmxDbkd+WFQlTYOiwKRZauhriqKqCkQREMwLSSB63QaKMziOowiWFznHcA8Pc9PUWUbs9Xs0RRja5rNPPwKqMs/Km8fHOEvvHh/GoyGK01Gs0v0WRuKnH67iJOYEkSJSEIR0y2JolqCYoiwYhu73hpvNZjZf8gw3nS7iPJKandALWJp1DLUtK7128+mzIxAoPdsDStjS3CS5vpuv5/NVv9XBSWy1WjalBkaQSZxEdZnG4fbWWDftjaE/e/4MgVFb113HA0GY4xgAyC1bLcr0k0+eup53dzsVBBYEodvbtxhBPjneTzJvPO5kBXR6dc4KfBoXf/EXvxwO+71u5+37cxCA0sxrNmQ/iD0/quoKQWGOY5otucgJjmMCP4JBeDIc7O7vFnXlef7p+/P7mR6GUZonSkviKAqoyjdv3sEIQlLkt9++CsPUCyKCptMcms82ZVFQFEkSxNXVJU1gCIKt1mqaZzhJfv3Tw/XiznbddntAINX7swuaoP/Zn/8pwzEEiigt5WB/lKZlnmTGRu3020HgBpH3O6/E+/s5cDf74svqj//w53Hs/vjDj51+P4mSo+NnFxcX2xgxmWzv7T2BILwoSz8MTNOezZerjZZlNU1SEATJspTnWhRllqErzcaf/uLnaZrOl7oXeL7rzGZzFMWqqirqlOdoCIR9Py4KsNvrCiIbRQnPS64bwhhBM3QcZ0GYdDs9hqbzKsNJwrNdAqFAoB6Nh5dXV1VdAVFh2kEY+K2moqnmWtM4gS3LIg7jfq/L0eT9Zv3dD+bN7RTFiE678/TkpWGoL18ckxj4SKAbzXp8WEAQNegMms2uaZm9wXav21suVjs7u3WVG9rUMTQEwRmRTrOAwGECpWEERko0CrLBaICicOQHIk2UILCOQggtSQYogTAIE1V3cIrg6ODJ/gRD6iyPu70ODAGnp6+VRivJqnfv3n395c92t3f6va5pWkCdTca9sgCqCgehyvNCDCF7/UENILf3txwr/ewnP/c85/rmarK1QxJQVfWyFGYEGkcJx/byLL1/eDB0/cXzF1WVtdqyJIhlne/sTg4Odt+/f2+YThyXGIYRJD4ebluWdXOzfvmiYVnudLZcLHUUQx0/oDA0TNPRsLe3PTQ2m63JjuOmg36r3Wa7A647+jIOIhDMG4LckATd9FpPj1bLpeu4gsR1u0PNMFiOCeNwvbJIks6LWlRIVkTbXerXv70YjncpHP/w7n0YJmRJlRkSeNnzpx9RdOv2ftluDXR9DUIIUFb/9J/+WaMhv3/742rxAIH53e29orR4kXMdTZFF3bMgGD46OkFQtCyjJExxkicwLIoSCIaC0CdJQpAYCOuCZd2KlaSsOZbR1TVJUoEXKiJHEBhJ4orM4wTabipVledpXqRFUpR5AczudeTjTz+OwkDdbBRFJhiiOzj+4ZvXFIk/OznaqLMCzMoit4NwMny2XC3iwBZ4QtfcMLDOzk6PD8et1kAz/bqE07zyA1dkuaqq4bos80KQFTf0Wp0GgNUUhtMUTRDUbH67vz/xnDjPIJam7++vpgvdtYLhbtePYs+JKIZsi7Qk8yUE4gTIECDNd65vbziO4gU2iZ0oDNfqpixqXqCxnclwMHjKC44X8rzEC5ztGN0iPjk6si0ziUKGIpMkzPLQ9Lxup2/YFoahZZnHUQIBdV1VMFkJilRW1cPDXGxKluvmSQLBUBon3X4fhpFhd3h2dooQlSCwuu6THMml8u3F7Xyt+UFA08RouFVWVRRGNVBp2pqlqPuH+Wy9kTiWpSjT9mazFU2TF9c3stTgJVkAoF6va1kGy7FpUaiqytEYjOBBGIdiVJUlQ1JAXUxGA1nhRYb57PmLlbrWSMiyTZQmqzwvkjSMI7CqBuOJatgtqavIw8A3bMd8nC4Yiu/1RyBweXP7KApso9mrAGRnd7fVbFmGPRiMOJbe45k8j2kSpRnmfjq9ergTWKHVVHiG/fU336VFub23nVf5arkoi0SRGxw3KPP6avlIM4Jhufs7Ox89f5YW1f39YxDGFIl7ni/J4nA0fP3qdVFWQA0AAJImhSyRlmP+3d+vMAxSJKGhcOn2VpbVaR4qDY7EkDRJyxKI09gJwqIAoLomCFqRmjzPf/PtdyhUnhwfRFF6f6+RBDjotQzdrGHkp59+0uy1//pv/ppnWRLHNovl1qC/Wm+qKkUhwtQ3vh/Zlu1HydZo1O02//1f/QeKwXASNQ3P89PdnSeKxOMotV6tLMe5na/MIGMZQrP00dYYguE4Sbu95u7exPOs9WpT1zBJsYd7SrfbFgXuw+mpbdsQgsAwQhFkU1Fcz9I0oyoBFIHDKEYQDERQgqYCN7KsAIZhWRZEgW43G2ES11Xx+acvYQwBAbDTaFzf3B0eHoy2uixNvH/33tDt0It7vbbMURdnZ6brojj5z/+Lf55GIQwChqZGfgzWSBykmm4URd1U2up6jmJY6HqCwAucGMbh2cW7Lz/7pNdSrq6vMRQjcLwGgWdPj4okwmDgYHfH9byHh5utrclw0M3TWF1NixwkKJaiaKXJ1xXIUdL+7rYXBBUAMDQLgdVqvl6puiQLg8EABAHLNE3d6I07vVFn9rCkSeb77197XtBqtpoIJPC8ppmO57MMB9aoYVqbjbazO6mAvCyzhtL+6ouO63rLzTyKsi+//AonYBACERQhESbj+NlyhuGUqqrNBg+CAM8zpmXRDAeDCMEgcZRouqvqZhA4RVm4vu+57ldffUoQiCwKvU7v/Yeb7d2dTz/95Ory/U++/DT0vf6gv1ptWkq7qDKcQO/u77v97mjY1zbLyFOBGiwKmCIp11B/9csHFEMm48FqOac5FEZKpSkzPFfmkcDRVZaZhtNtb7meVVYRQ9OzhSaKnCiIvueZpoECWZGls8e7hqxwPPc4W8FuKspLy1IxHBtvb3/2+QlNwaenjwwjIhiWpIHM9xuS6FiObTgIACSxc3a5wVEIw5AmJ8tiE+qTaVoQDKlqalWVlmlp6qrREhCons7uahDabMzxsEuTlEAxPE8SaBuo66LIXcdrt5vNRisMgzgBbq7u3r67anY6ssSzLIOhGEYiiLackRTRaTVgBECgEgbqIHL3dkanZx/ev3/1k5989uTg4OH+LstjQRSXV2fT2fL502NGYPKqDONkMBwSjC3y9Lff/8YPfEnsnp2f1VUpcHxWAyCKrZeruEjYBu15LsdwRVZ9/933dQ385MufxWGGM+RHX3zkG95SW8Aw+mRnX5CpvtJcrw251Xt8uI1Q6JOPd5/RH71+/SorCpykcAKHAEBuNNMgWcRL27FIBiOwqiy92WzV67dbjclsei+JQlUXYeRTFK6Z9nSlNhvd2+urSacnszzZaDuOY7tunGTvzy8UXqJJZrHcQEBtajqB41tb483GPD9//2d/9icADL47vYYxOg6z64fLJ/sn7+IkKZNmWx4Ph7ZlMRQ56HWu40DVdWZ75262aDYaUF2FUZYWEceyru/jGO04fqPRGg1HnusyFJlG8fnpWV7kOAKwjCCJUhYni8cpANeswFVFZTnOy4+UIC5evb+QRCZLQczJoJqKgloQScfc2IZ5+OwYJ6CyrHIEqLKwKfNR4C/XSwCGuv12r9PIimSyvQXBEEPA4+cHvuvRJJlXpcQrgW9bhhGFCc8LNIHfzOaGrvf6HYwkXM+ReM42iLvlosxqRZa2tycsQ9zezYoajNL45fMjx3NEnoyjxPM9ksCTJGFI6mBvPy/yw6MdnuN4Tjx9f2HaEY4idhAnOeTaVhxE3X5n0u4VRW5bYeB5KI4CEMyQ7Mnxbp74umGv1hpQxJPJCIUB13U9z2dZmmexwbAr8KJqhjtbx0UCdLtbssz/+PY9Q7N3ixVYAyACPTzcx3HkmE6r0QIqyE/zx6WK47Rh2p1uh6LQo+MhTeKWrgdQGUVp6Ecnh8d/98vffP31V/cPN8dP9poS//bV951uJyRwEEYvL24FUfzjP/5ZFkUQWM1mi3a7sdJUnsE4que7IYgi66mBY7Tu6Hf3M57jRJGDULgCKhKLbNPmOJamyThO54u5KEtxHL95+6bVbTQUSZCIRosdjdplEf/44wdNs/Ks5nllrbmLlQZB4PZ4C0RAjuPsLP7+u28xlMjLWpEUUeKacsNzfVO3LNehaILleVW1J8NtEAKHW32ao85vbooy90NfbEoVWCJYVRRAXuQPD7dHx0+LssRxeLV+7Lbbf/yLP9I2epQmjSavm4/8joLW+KDfpnn+2+9/aDbbAFghGE7x2nDYM7RVFMccK0ReEkURx5YnRyPd8jtdZTIZt5pNyzJsy2w2m67jDYcDEII9P9idTDAM7bSbt3c389WizGqSwtod2bLj69vLzz97cXt7dXR0DNUVw9A0u5sm0XK+SPMEw0mKJIaDF1mSnX44BcAqCEgcIyAEFAXl/mHNtsVuj82yLAxDEACOjw6UVufo+Oj2+kMQpvP5WhK53377SpCUTpt3naDM6s8++zzKIk1Xwaq+Plv3B/3+eDDZ3amAoqgYGC615QKsQIIidU/fPRh/+5sfPddtNZuTnWFRlkUJjMYH8/lsMt4xDIdlKZalX735znbKX//6A0UyIAhcXtwSBIcT4smz/SgOmi1F1dePy9vhsPGrb75x3fiLz8dx5NmueTO9Nny9N2oGtsUwGEFTpzd3IAKhAIZDOFjN/+hP/oiXmNubW0lp2rYXRb7SEM/PPziWQRD0bLGhSRaBAc+zOUY8Pj6KgjAInNFonGc8hiOO43ICl2YhyzJffPGV2JApCjJUE0Egw1gjUAXJPAchSFkXZZn7ttlpCN2m/MOvX6dBgaOYYZm8xJu24XlxXUOcwAdxtFwuKQZneVLdTMOkiEKfIhEYLMbjbhh6rhccnzxTN/pyvQptOykSx/SzLPG90DQsjAB93371w285Tsnquq5SpSHWEKDpquVYvX4DhHAIJSAEGo+3kRqYLeZ+GOMs3uo3vdCPNX13spPnZd5uRVHE8zyJM5vlnSyLIFBO7+9xGECQCgCrnYPdssjDKJmpBk6QGIYf7B1mYRTHseWZD9PHIs9roHJs9+uvfnb38HhzO52Mx53BZDadvjm9Pjl5enj04uzDZbfXAwFisTBFWaEYcTq9PT6eJFmBInCeJjACub7faCjtlmJaBoJAL54/pSi6qurffvv9ZGsM1FVWVggCebpWVaVubMIgODw4uLm5g0BIN+yiqnZGSJHnOEQROEswmBsEQRCKspQWdVnmLUUZDfuu7eEYcnL4JCshXlBUhlvMHt+8PpObSqulZHlkmmoSlwiMWqbGMmiag15gt5pNxzYVRcmS9PT9GwyBmkoTQjBZ5osc53k+SjJe5vMo0XRjMBzHccQxjMjROIoIoiBKbcsJajiJrh7uH+5Jivzksy/evn51ef5uOBwIHF1WJVURFE1omr5Yzr784qu//Mu/Utfa7PGRY2mKFDrNAcNQFYCIsvjhw3vLtPOiuL+dVwWIkXhv1F0sFk+Onzx/9nI6fVhMdaXRLkqwriqiSD3Pc5xElAQCR6RGp6iIlbZmBWUwHEWePRz0rq4uEBhzHH+hqr12s91snZ2fC7ICEtRsrZ08ffrJy5eP05mmOi9ffjKfz54cTMaT3l/+27/CYFgQBcuyARCEYGhnd3t3f8f1rd/+8GqzUVEUt+1rnudRDHv+4hCEyseHi8jLLMuZzmdbW1sizyIYqKrrKCrwMPno48+iMCZJ+nciy0ZTBiDYNh0MQgWO6fe6pmF0ezu2bc8XC7AGpIGymGsEzqRp9fTkRbOlzGf3k8l+UTzSLNdut0SBgUHYd30YqIIkXC2XjqWFceqFBVCDsW2LEj8eD+MwWGtGq9c1Tb3f79tWBMDgzt6k229BMPTu9APHsM1WJ8ryqi76vf6//ev/0G63G+32+w/vR6MxjoJlgSymU1EQhoOhquvL+XJ6v0FhCkcx07H/5f/yv3z58iNR4G1LH3b2jg72bFOLHWh6vxkMxyfPjlzPViQWBsG/+9vvnhw+xVGsLss4CEVRvL17EAQpCNzRaLxRdbkhO7b5y1/9pt/vu24QeqnSECsQluWWJAo3V480yZ2dXvm+12q1OJaXJcE2LVGSaIaSJGk2nYki98WXH5++v1yvLFFhXV/r9lqffvWCJeg3r94we9th6A9HI5wkjp9RYA2Axc5ktCvwLEEgjXY3CIKsSGmW/f7bdztFXVbFwe6ha2tecB2EcRTF19c3W9sj2zFsz3AcvyE00+kKJ/GsNF4+O75/WD88zMMooWlEkjnf05MwpEjsyX7fMDTP07e3x6fvryUJS9Osrqv+cJzn4M++/rIGgt9+czcctKEK4knuu9+8RmHqs48+LfM8z4rTt2e3j3hv0EqDCMbqzEv0mVHmJQQAFQSwHF9mxQ/ffrfabP7gD392dvbGdbOyqDz/UZJ5GEZdNwBqSDfMJI9xDI3jOvj+h4e76RdffrLaLDCMhKIizaIsJ3vdLlSDnp/SDNbvtziWSuOoLHhEUljH1qM0NR1zs1kdHT7N8nS5XLQ6rQqqrq7vxqNhHEU4CndajXaneX53S9P85dUjxeKO51IEU4M0CGJJmoIwYOgrAgXFQTuKXEHgqiIXtwenl+dJmCIQiiJoo9lI08hz/avrR15wh+NtFMTCMCQASCQptD8E8sL3nJcvXoShp6sbEEJt1764vmU4Os7j9Wx9uHcE1mCWpJ1WI01jnMBlkW80mPVqk3rV7d1DFEZKS36YrkVBYhj8bvZQAdUf/+Ef+X5wdnE+GQ5qqMZIjGGZOI5roOx2WoaheZ775GBP5DiWYTAUkuQGCNaS0NY1CsfRr3/6peO6e/v797NHbWMc7Qp1nuAkiaNYGEVhGGRZKiuybm5Mbd1v9VeGVYPQp599KgrCh7MzCEIDP0yT8uL8Js0SHMfLElyt1mFcIhiF4nir0woC//mLZ+fnN+8vL/3Aa0jKyWAchCEIQhiK8yxXpFUc+1WZUTQLgiUvSzVYWZZtWGYQRdpKXa2N1UanSLLVFCVRMk2r1W7gKI5jhCwrRVHev3oTRa7Ic3v7++1+I03jIs/LPLm9Wjdl5fBwnxel+/sHSRFNXbMdmyBwmqW2J1u8KLi2r8jNGqxNQwuDUOFZy/YfFpsaAFiGSJKM41gYhl3fbbY652eP+08mGEFRFBnE8cZ2Pv/iS4ZEOz1FlPj1yqhqkBIIURZKoAyTrIbyt++/2SzNp4fHOIHv720XeRaFwdnF9Wy29L1gNOoTGFwWJUtzn3/0InT1JK8qEGVYucADWUEqsLZMYzqbt1stDCdODo6DMLy6u41+FWyPt/7oD3+q6vr+7q7IcT9+9ypNM0YUEBRaq4terwe6/mR7SNP4cNjXdS0sisj1wRpYaWaZx61WU9eNJIs+efnJ02fPDdvaqGuGJCVOpHCWovAojNar5XA4aCmHIFjhGEbT5M39fQ3Uo9Gg3W4FgYcgQLevpGkCgxjNkO12owXKIiesN2vT0CC43GxUjlc+/uTF3t7O/cOtoaktUZFF9vr+Xjd1PwwH/Z4kKXlZP3/2tKGIWZrpukrS1P7+DsmwjmNhGIbjNIZjy+Wj77gogg66PZZhHqczEEF3dycUjtU1CELIbL64v70VRZmjyCLLaYp//fpU3Zgsz3U6PZoWAi9B4booq7v7+3a75djWd7/9Nk2Tn//8D8CqNHWTIhgcw0mKEPhRHMRZXrx8/gnDSZ7nizzdbndu7x9xlAq8aPYw6/b9n/3hTw1zTQu41JIvb+4VSRIUWTV0OqU3G/3Lzz/jWT5JIgTBwriI4xxDk9lscXZ5/dGzl0eHR3mVZWX+y29+ub092tkdPTnYxwmwBhMvScbbIyjLt0c9isQEoVcUuaZqe7s7l5fnUZhNtrchsALB3DZV23YgCKFZ7vnHLzzfo0lqd290fmqLkhxn5V//7a9vbx8OdEeU2GF/N42nBEnjCPRwv0QRjGHyXr/97PnTx+ksCFxNM0RR6XR7qrpOglA3TNMOnr141u9tL5ebk5MdQeIc3+j12pM+N320nzzZub6+CfwCRRORb7Tbiu0aKAKv1PXu7vZ4u/fm7assTUWai/yUITmSZcIkogkGLOuqrE0zGY53Ldv1vNQ0HE7gkjRZb5I8LQEAQjCIRakiL4u8LjLw9uaeIKjFUkUx8OjomCBhnMAQFNd1i6aZx8cFipNJmjuunyVx4AZImnkQgqqLlelYYZi9fv2+1WlDMPaTn355c3f36tX3YZIAIFSXtb7WxIaEUigAlodHB+cXZz6O5Ap0evaWgJGVahI05nlBFhfj0RZS16FnNuTWm9dvVvp6d7w12d5Py6wo0jTF4yj3wvr8/q6oa4lj06JIIreqi4YkO8ayRhF1eZellaPbFVCkVdZpy0lSplHRVpTtYUtRpDTLdEMnUBSsgdl0LXAkgcFPDrbbvc50eiM3lOFIjMJkuXwsqyIJ/fnNueGGIASSNBmkset6RZ6HceT73leff7FabRqykgQeLnEYDMBAtXi8N11bkWRFEjAMcW3vw+WFwGNbgy6KYYbtFlUFpgmD4wyBjQ+fSLK0UFcgDE9Xa80MagTNi+zrzz/XdauEwMnuGALB84srhmLSNMVxNC9yQRQqAIZRmOcYnhMInPybv/+7k+Pn/+Lo6Pr6AoURUeLrOkswpC4zBKqeHO4WZW5ZGg1kHYnOaBKsU5RAKrD0PGcw6FteAhNJAdcgTjhh4gXxmKAn29tlXvi+47guzdIgULdaXRCGX796nUSxqds0yyIEDCPo9qT1w6tXOE45XnB+dbs1GkMo1O20OYYyzZUkyizLPj7M1c16tdEdx2c5ttvpGJq2WelFUbAc+/zp07fvXm1NdiAA2Br1SJKgSLLX6xAYVlapYxtwWcm8wBDcfDHP8jRKclW3AAgLk4RCmU57nBVV5DgUSxMk6rkZTZGSLMVxmialaQUwFPe7zdX8moBHnMi+OB7JHAwA4Lv3H56eHLW7/V/9+ley0lws5t8br3cn22AFdDp9URbiOEwTZzweAkW9vTXhecV3ndOzKxACrq5v/sk/+ROgBDazKQnDrUZzuVarskQgFAJA308HPXZvr/0wv8FJ1HGMPMs004Yh1BWS0bgv8IwsCn7ozOcPw26/zLMSBNvN8XKpYjiEYijHszSNr9fLm6ubJEyfPn3CcYzn2vO11lAix7Fxhp0tL33P6/cxUeANbTm9f8yK2jCu+4MhSbMyANAMCQLoaDAu65yhENfUOF4c9nu2Yy4WSwmsEajWjQ3PKYokMjh4e3vvB2GcZSAERVFC0nCeF7c3dzRKNnll4YbHT45xBK+rGoQQkmRarc5qva6Xi87Pvz452p9N1YOdsevZlroJvCDLizSH5gt9Nlttb/VLAC3KIvT9NMsGvW6j1cJx7HE6931fEPl378477danH3/i+eHd/a0osH7sO94m8I2yBH7+k69P2UsQLH3XmYw6aV5MZ6vTs8uPX7w4/3D62eefpEVOszTLsqblZgVo+9libXS6jX5v5LthUVaixDclCQYr13FfHO9XeOGbtixKGIajKFwURafVacjKmuFJGqihuq7qx4fFm3cfUILotNtKixUEHgYBjiNev/pNGmfPnh1WFYwSOEPxCIK6dlg16yc7+6oxJ2iabzC+m0dpnlnWcDgG6ypJq0F/wrDU69dvFEUOHDfNwU8///rgcPvgYOfy9OzubtZoNfaotmVvVuuZZppZATb6gwFGkRCBkwSCowyOQ0hNxzSKAtZ8AQSpYdirVK8BmOO5py8Osywqk9wyHARFD7YOHM+SeAnZRjD4voaAJEVWK42m6K9/+pOr60sQqLSNAQJomiQUxcRJ7nrxz/7gC8vSNxfr8agvkMzscSFx3KA/FBXZtFXL1b/6/PP5wxTRDCfJCtsLBFHs9bocxSMAkBXZYnbfkkVFURptsdsY/f3f/bbZG1VVBealqZvSjswR3Gbhnpwou9uF7/qdIn+cLoejHs2IfhjSVZnFxWw6pyi61x0qrd5iOSdovNPpe17cbEDtbtv8O70ECpJB9bVTgtnWqG/bXhD4BUFPp/PxaNJot28ergkK00ztcPuAZ3jDVOMo9BxLkKQahrMgaDWVsoIcx0YwWBBpzzUFjl4sFp+86DxMH358+zYt0p3J5HHtqBt1srtl2ZZtmjCGFXn+OJ8LPOWYFoqSeZ61m60oiG3LBQCIYxmCJlRVbTWUzdo4PH7adbwffzgVRA6DAC9Pnxzsl2XGMpRnmAyF5km0WesPs3maZj/7yc9Mz6kzYLGZm7p58mQSxZHnBc1OAwWRxSqo0sq2XUnktwbtNMkRHBIE5vxsVuWFqa3L3Os12Z2dPU23w7Do9we+H5IEk2d5WVdFXhumE3iRbjgoRcA4guCI43pqakqK8ORod75YrNYqRREnR8dffvYRTeOn704nWwOgAuu8mowGOIGtFvNBr5mEUbc/UDWtp7QZhpnNZwgMKZJAEozEcTACtTudOE7qupalZpKli9Xq/YervAAYRtBUtdFushx7dXUDwUiZpgSGauoSrEugLDod5fr2+ujweLacBqFtmdZsNmcZsQbrVrvVaXcxAnUC7x//6T++ubm+nz6UGbC7Nz4+PH53eu75se3mHEelOdht94e9LT+KYRzvDrYf7q5UTQPqXFaU73/88fb+DsOxXnfY63VxFHi4Pfv5Tz/O0pJj+CiJht1Wr8nPl6tzRzct1/NcGKjKLBUVudcRqia/D03SOKnh2tA2xtrQDA+CkaaiYH1c0y3f80WR6/Sa/a4otigIa4F5/uHy1o/SOKlgKIvz6v2Hq2azcXJyKAq85wKnN+9oQUAAzPe9ZydHqmWzFMri0N1yWdd5GNVRFFCBvVrNIQjptFsoAgGsILE8BuHtVuv4ZNtz7Pnj9NOPPqrA4n51g0MgTYrv9Y3rBk929+oqTzKgBqAkq+zZVFbk25uH84trEIaPjp7kWaVFmqmpq+VKlltBaGm6MfhkVHZry3FhCLPdmEBQsCrzLN3aGrVarRqoXMfRdC2K4iCIt3d3XT/gBXaXwF3H0zR9b08AQACnoO3x0Hd92/Me58vd3QNNtRSJZwUeRWCcwGiG6bb7thsAAEpzCgRj97f3lmOhBNjuKWiA/Obb755s7bmGlfh5pyXdXF/mVXZ5Mxe45i9+8QsEgVAC4yXZ8QKgrJIwulwtP/nkOY4zo/F2t9+tq2o8nIwGnR/evFIkmcDxLM+VVi+KQ32xKYuqP+iLsuJ4DsewcRS/eftG5HkcR1VNC8KoPxwIsuJ6PorADw93LEXJEleX1fn5TV4A/W7e6/Q++fhlEkWuY//t3//65ubm2fPjKCwAIMJhCmRLEISjIFE3msBzZV2mSfL8+UkcBVdXD51uV2h2D48m3Q5vGHOGZQVeGI8G681is3BOTg47rb27hwXJcK2mbG00imGVpgxU6dXl+fOjY003zh9mtmmZtgdBCAzBT560AttiGJJvteqqXq/VwNdwGAk9N08CRWaTpJT55ngwNGw1iuyXz0/m0yWJcZqqcSxeVnVZQb1uI43Cq4t7mqZN3fOj7MnRk81sEcVRbQDDnQ4vkJdXZ+PBFvL2/TnLsqNhP69TDMeDMFnO1iVU7+7upHlF4MRsPjc3JkWjCIkZhm8ZZpol709vEQj+/PPP6hpsKl2GdkEEoBmO45gkSW0/SdKi3ey6prtazpV2qwIqGEflhtLsdGHU7nbbj/PbMI4epo8vnp2AIGjZDgrAumpiOGq5Nk1xb16/QgiUFSieJ8+vfVHm1PUGBCEAwpO0Cp0VK3ChW5umRZC443quZ+vGuiFJKATiMPLdDz/cP873t/cv7q6jOEVJ/PDoyfnlBUlh2+Odf/cf/pIlGJ7j4sxjBIKhJTeI9c2apUkEQZbrjcDTRVXzglBUxWDUZxhM4ChNrzCSqKAcAgGeYUAE8HwHw7G1uu522qLA9DptkmIZik7TmGnKmq7TFLXaLHCCBmsAh1FBEBeqKgtK56Bd1QlJwIEX2Z77m29+y7PceNTDcRyCYMdxLNMEatDzPFGSj05OcASezmZVXflhUtY11RBRLHQd5/r+iuO4Tz561utuff/dD2HoKZK02ZjD0eQ/+9N/hKPlarFgCLLMSoqEP//kBIWA5Wb92ScvHcd5/ebMD2MURQmS8IN4vthEcWjb3vbWqNUQV6tllTOKxAeeP1+uRVkeDQaRF/thCoCQ0VT29rdVVWt3OrP5nOG4sga+/e4NyzK84HZ6PQhCbm9vWYa4NYz/d0Hw2eXGYSgGdHqvmIYOLLZzl1xKpCSKqrZe7Ch/MP8gH/L1nZzzYkeWZVVLrEtub1j0GWAKpvfJvSCA8Xy9qkoAAqOkMkwbxvC/fvvt3f2QJBCBIRdz4+rL2A/aAAAWxklEQVTy2tQXCIryHPfw0YG1NBkCy5IEqCpeZtaBt72tQZW7nINFliVpvn/4wU+/HldguF4XVQXWG2WRF3//2z/EGv/o4aMffvhpMR6WBeCsfRTDQQh07MDlM7DM7t+8RzC8rPK6KpVZ0mg0qjijCPyzzz97/f4siPzDw80k67x9dalqTLOrTMbLl9+9IxFUZhPfi1wvcte+pshJnMIwPpsbeZF3Os1Ou+kk7mQy4yi+yFOaoHiWK/Pk5PS95biiJFMkfXs71Fe2pmi+F3rr6NmzD2fTkWUbrWZze7Nzc3eOoPRcN5I8URv169vZk8Oj2dwoc+DhwQPTNCzbomimqkAMQVEUv7sbS2pjMwcYhq6Aqj/ollWxXOg0y8dZStHkUfOwVhNphqlGIz8MCJJcmpasKIqqDofDOI4hGOI4jq8JJViSNLn7YA9DwcurMxhGTi+utIb67uydWFNUTSRp6ulHj+cLY3S/eP78Wb1eX8zmRZFwgpikyWw23dnfJgmaZBhVVX/96UdZViAUuh3edrr80d7Bemn9/uo1AmEICO3tDpS6FsZlVpCaWu92O364TuN0a2cnCHzTWPf7fd9bBF707V+/uZ9MkthHYIhla7btHh0eJFFU5jlFUJPZIoqSJMm++OJTP7BfvPy3onVRJJtNZ0WRw1Bo36/iJIYQ+OLqgqKoLIm9JF/ougFAWdGjgvTh4QfD0fjuflqryYFng0Ap1ojPnj82Lcdz9BZPapr2/nqoGysUQXob/aKKILhCIIihGHtlaapcE0UIRVmer7J4MZkBML65tZcXxfD+nqGZB/t7DUWpiSLP8iUA4jgmcmyWp0FoTyfzxcIjcdcPksHOgbUyopNzAMS8tTsczUgSamra9dVoe3tLVaEoCper+aC/AUOAIinnZzdSX+NEJYjcJE4Fnl0zNAhAzFZXrHGTxdxauXEUrVarbrfDcTQAZjmQz/VRBeSqKi8W88l9aVvrvADAFoJ8/PRj37UtcxmlsecPD/YeHj09ojmGYdjpdFHvbuWTanQ3okkeq9L5ZPTo4eMg8gkSv7g41xp1gRfyLDs9OYVRcHd37+3xi4eHB9cXQ9sJYXCZBhHHsjzHsBT66OiT47PLxatXHM/s7226Fz4via5jvTk5RRHUW7vzkbFcWk+ePgiTxA+sel27ur0C5pW7dlCCfP3+OAqC7Y1NQZJs15/NRnv8frPVeX9yvDRWOEouLdPQp5v9LkliBEEapnOwv0cgmLN2szw19GnKiqbt+TN3uXIqoALhMvI9CAOOT4+3etu8LB09faSPjbdvjs8ub2RJdmzzweG+YzoQdPvw0QHLMXEWn99d0hTdbtYhsEIQBMWwqoLLNLMdk2Oohio3m12BE4o8ysoCx3Ecx1mCoEgiwwscxwmK/utXn0s1PomLf/38E4KAmtKuiTgMwQxDcxwly+L52aVtLiEQqiqYZZg8TcqyyoAqjoM8z1SZZwX+4v2pYxjr0AeKInCi8d09AoDz6cgyLYblv/nyeaPR+PnH71EEfnz0Qfuj/vv3r71gjYJFkWVlWf3j+x/ttXt2flUBcKvVXFkOhuLzud4f9BAE+fnXP3qtZhInjuNjCMJwzNuT95Istxqtra0N23EFQbJMazyd9DsdTVX7G217baVpKmsKQzFL3YAAaH9n792b13VNBIAyjiqGoZfL6cZgoNbrN7fXrVaLwqDr62ulxu8MNuEKubi8e/zoaHR54/r2cmmQBBIneV1rzGZzFMPb3e707np0fQ1UII6T747fMwL/1Z+/evP2rbf2b4eTvKwUTVqvkx/+9fdeb2tzsPX2zclivmw0VVHk4jjtbfa393Zvzt/XFKXebK+MVZGXvutH3l1NpNvtLkfjEkMdHw8RDGj3tE+fP/nj9z/KNFk5AQ6TIs+CCDafGzBKUiSVFQWJwiRJgFG1NJY0Q+ZFOh+ZUVgVsVcV0CKyGIZsNFQQQhiG41mWRJHtwcZyaYsCvzXoHD1+pOtGlqcVUNE0lSTZxcWk0azDCPr+9DZ9e/Xt//jveeilrv/Z0w/iIqiAqiapUZLOFwtVUQReFkSZpPBBr3M/HC6WOgwD08lkaRg0zaZpnmbZ7fA+zbKdrcGXXz47OT9DSeSzL57RFBX4fqOh+L4nywoAAlEUKIpkW2YaurbvZ1He3ujmu0VSJEWegDASRWC92zw9PwsCn2Oo2ewOJ4mN7f7Z2dl0Mc/SYjyZEgT56ccf8UWCgBnPkbZtaFoNhmFNVU1T19QmhlGT0VjRGnGc1WSNiXKRE0majKJAFITADxr1puNYWZ7XlJofh44bUgz++PGj47fvBYHSlzMQQlhGKAvAWOhJpsuK2m4LeV7YzgqCkacffTWbT03T7PR6cRyritzqdM7Oz6Mourq8QhBElWq6ridVgRLEq3cnvXYLhsqawOZF5vkOz9H6YjGdThiWj5NobllVGGdxpk+nYZRpjebLF69QFOF5bntr0Gm3IQit4kqWBACqVEWKY//k5H23O0gjp8hioCggsCQJdKFP375+RbN8o9mkBa6qvLIsMARSJAlHKLEmzo2lJAKHB7t7e5uusx6P5peXtwLXGQx2cWwUhTGMIC2lFWcFghMcjfc7LRjAKgjQdX2jtwOA4HQysw0Dw/C0zG+vrRyuOv1GW2veXN/VtVpNYo/fveZrfJ6AcIXMpnOKIM/eX2xtbGdl/sMP/0JqPJfGwebGYDgex1Gap+H93SUMA81We+fBk99evS8rfGPQ297a+ffPr7v1OpCvv/n6mWU77abycH8/L8EocCmSNZbTqpfZtr2Yz9LEwyAwSyJe4DEMr6rKD7yiCBuaUOY8x1F35xcETspqLY6T2+GoxjEUTpMUwzDZ2gtu7kZ//fPXFQiBIOzYdlZWUIacng1FjsFQwrJMfWWPZtNur1UWCIyiUo3b3d5yw+i77zwIQj03ctcBhWE0DiMo/OjwQRSHhj6/uhmCEARDSKNZz4AIqHLHN0VJ7HZ7cZaZwyvPtb2Vz3FMs9EgCWpvb4uicAio8iKxbNMej2AMpTGMJPAwCq+uLvcOdouioBkGrMo8jJIk7ba7sqwQOA4j/cVqSZF0uA6rsogLvzfYWBrL8eh2a3Nr7dirpSPy3IPDfYGR7seTra1N0zSjOBiNZ/f3I02VBF4I/CiJY0OfQzCaxJHne2Ec6au8VXVcPxxOFlqj2aq1siQpq/L07DpIKkFplUXhOOvxaGS5AcMQ3/w3oczzOC0urobtZnOp6ytrHcQpiCAATERhPBzNaIZGkRhCQd3Q86ywTHc2tzAErDfkLEllWcFRCgLAPI5wlm+oYglWg0GzLGNFEUEgl6Tay7fvjOWyJohbg4GxlCiaAQCApHDbcpKkaLe6AAgoymFWFkvTZnnp+mZkLV0ExvKsvLm6w3Hqiy8+F0VWa6iv35z8n//61+5Ov9Vo/vHiVa/X6fVb5kq3liYEAIIgIgTpBOTPP/3xpz9/g2K47+uaqg16GzBebWw0kzj8+acfSRLrD/qzubF2PZphZvqyhKCvvnz+6jen0WqIIg9V0Hw66XQ7Ikfqhv7i5dt2s6Ww3Ld/+SLOY3vl4DXs80+e3g3v54bH0VwcxR9/uOu5/h9vz/Ki4PjayjRarWZNqg1v3bvbkapKQFE1tbqiStPpJIoTmmMnc8M0DFmSVgtDrMm9Xp8gSIqh7fXq199+vrmcKKrcH7RREv/bD78HQcWEaZ4DAtd4/OSAZ/E35ycogt0NL0x3xfKCIGgwgDbrDQyBCBTgWMJd27ejmazWeyS2mE2hqtraGqxMZzKekwSLQtX15d3atBStBmJwBhSb/a5Sq03HCcvQBAohYMULfM5Q19dXc30BAiUMoDhOhnGIU9jsZjbo9wAI6ff7AFBiZPVk5wEGwd/9/bs4LZ58nO7s7qZJ7rlhHBU4jnuud3d3jcIQRVGO66XXMU2zDIXjBNrUpN3NjVcQdH55s7u3v7ezjaPQfDarAAgoc5HnjPl8kmQcz2xu9W3TaTUbSZxMxuMHD3Y/eLgLwcV4Ps7zEqwqhiCJdms8m9rWyjZXEISBMEgxZKvTo9iNuqeEQSAIzGw2y/OSICgExr/88k+XlzeOa4uSQrLkar1W1CaJYm/fnXE8u7u7g8LgeDLx3aCqEBDEZYk3DduNipntB0mytbkhqZIisxiGCZxYAtD9/VCWFVWTSArXjUWehkmcOk7AMGZRJllaDDZ7rmdNpzoEA6zAL1dWnKX6QjeWuu8HkixRJL5aLQGobDc1lsGHd+d+EK70FcvwR0cHoliDIDBOExgC12s3jF0EBRRVjLzgl19+01T14PCgvMznhtXr9nK0+q93/4jTsttptlpaEAer1TL0giLJK6D0vYgixSIDbcf110GRVHJd7W9urdfu+fXw4OAI/N//63/e3U5G91cUjZMEDQPV0rI3dzZpmpRkjZe18f3k9Ozl/s5OlWIYVIWRd3M7LMpyb3+f42lelJe6Gfh+kke27RAkrhsLDEPCIMZQWhJqi8VCNw1BZOsNpSxBGEJQBFQl+XY2vxzf5WkFA1WvqU3HUwRCOU4wHT1OsmcfP7yfzEZjnSRRhIYYjFWVhqaoMsvCIJKV1U8vfpF4ZtDaTEC4KtLAdq5HU1mRjvZ34jizVqbAsfP5Ym4v2+2WJCtXl3dhlIBY5XnO119/9Z//9z+BvLA9n6aQw829EsCKCkRLIIuyzcFWmhdxFJmO5fv+3s42AJQXF+dxVYiyTNDYeHyfReXOYEDQOIigIiv6jkOhqO24IAImSUISJARB9UY9DGPPj4LAz/OMIElFFCoMC4OgqdQxlHCDNY5CSZQxLJ9mkWWZGIYvFkvLsjYH/SgMpuM5TTNpUUIIGoaBKImu7y9X9ufPv5yORySDNerN47cns9lse6vJC4phmFuD7Vev32R53O9t+EHAMsxweFsTWBIn5voSBADHsuI8ByBsPJ3FSR74AY7DT588XjuOZXthGD18eEji5P/7/p+bm+1mo7aY6XGYQSjCcdTRwZ7AsYIoLk1T4ITb23sUxTiOoGhmNF1NJgue5RoNieFpy3EJgjYMo8jSfq9N0zQAVmmaTGczVhD8KHmw+8DWV7PFAgVLAsP0laEqksCTxtI0VuvFYhWGEUlhBEWgKGzbNk0QvYZW5DEnChVIXNyMqhKIwlRWZRAESBxuqHxe5KPRLAyyqgKyPIvzgiRJRZLctXt7fz/YaH/27Ont9XWc5UlWMhS/WMwfHz2Iw4Bmxe++/2l70Nvd2QjiIEpjGEI4hs7STNPql1d3jrmOywKDsjgqXhyfJ1nOCUwQeY8fPsrS4od//iwKwuZmf2934K3dIAqvb27yrFJVudlqnp1foSgKAdWHTx5TKAiCpaDJv798CWVov7cNwiWCgzTFCaIYxWtjYdAUr8oyUMTn5xe6vsJYhqGo+Xzx4PDgwe7efDoLPBcAy1pNnC8WoijZa7cCqixN4ziRZQnBMU1rnrw7Wy0tkqAkRaYo7PrmVGqo6yh49vgIKEprZXnrAAJgRZUVVTk9P5/N5zAM11WJZwSMoIPYK8sURnB9uiRIptlqhKHz7uLk6OGjt6/eghXECzWaZQSO7XQ7Ii9MpzPHXgs8py8NjuHt9boCkCDwBZHBMTRM/CDwKJJa6qYoKKzAyJJg6YtupzOaTEzLPXp8pCqKvtAty5IVBahAAChvb85ZhiEJRODY5XI1mRuLlXNwcEBT9JtXxzN9JQjSh48PojgYTSYojgqi8Omzz6IwNFcrCISCIAjjuNftl2VZVeXlzV0UhQ1Nen92mgPwV19+vbaWs/msKHKGwJIwqEqorjU8zy3Kcmd7a77QgyBy1+vhcJyVxe6DHRgCQt/T5DqG4c12vSjy+VwnKer+/j4J4s3tbUkTp9M730m2d7aDwHVsG8NRN3B9N261mlEcjYdT01xHSUrRVE0QBVFKsjiNw36vK0rk3/7+PY1zSRJDCHH0wVGRRRfn191ea7U09dVCksWqqMoM2t3a0o1pEscbGxt5CeEEVeTBr7+/YAU1TWJeYEzHidO8VW/0u01B4CajydoN6/U6iiKT8TT2YoRAdvc2jNkCJmhZVpF3pzet3ubi1fG+JOc5EEbuVr8DAvjLNxctzcjy10VZkQS7st0nj5/cXo/tIHP8qMjy45NzRRY/fd4QZWWxWujGROSlJEvXwXpb2+RF7PZ2cXXz7nC3HaasFyT5zOEocqPXWlmmYdplCcEApGjCfDKeTGe+G0eRXZYFy7OA755dXa6sNc3QBZit1laOpziCCQIxnvogCDnrJQAUph/IoV8V1SpyBYKO86LZapxfDhkab2oyjoB+zLh5FGehba1wFPFcz/PWQRyappnmVZrEUZoSOJgloSoxMILDJeqi0WyxYAVptNAVuYZiWFHkprXUVMXxvaePD09vz0kC22m2srLM85LDMRICMJ6K47jXbZ3f3idp1mi1rYWeBCGGIJrI2HApSIrjuqqmYDi2WhNjfUZjdJkXVhJKmrLUF/OZ7vt+q6VJIpukoWEaumHapketw8FgE8LgpbmWIBhDUIKkVEXqNKXT85M09vf3d/r9Jstytut99OSD5cJoNZSVY1lrS5XkTz55jhACUGaSSMdldXN178cgy9BZlpVlIfAUhgJlkd/e3dTr9cP9bV6gKAb589ffABBwc3U+nkwZium0WtPFqipAY2XBGAp54WJhRV5GEBRGUFkavbh4v7uz026oG92e44fLtbO7s0MS6NHhwenZO5aF3759heN4muWqKuBYFad5jYMdPdgetAgY9BxLqW0cn5zNJkXgx6a75jk+jYPR/YRmhLTIkzj+5OPHV+MpBkMyAHheEgQxS7PtBtftNG/uJ9OZMRpNSJygCNzzIgxFa6IQxCHJkECZz3U9zzNjof/y808sSVA0mZdZHvuder3Xaf/2+wteFP70xadrx8ZI9H4ZIAjSEhjL8cIwxlH0L189/+WXf9M16fTytqZSzz+hf/vjTZIWKEZUVdnpNLu9Bkmwo/EUqAqKJGEYrglSkZdrZ03gSF1TJzNdqvFpGrZl8eTy5uTyKssBc7ly3bjTru8f7smaPOjLr18vtze6nrP2zfnL18c8Kx092gFh6ORswrM8AuRnp29QlKgp4vnFjesnkiwlWcHVKKjIi4oKgrAqCozAKYb9y1/+Yz6dy6oWhO5vv/97YVopXNYk/vrqynd9VVNu7iYCJ3I8P9fnfugTFJwlVRxFnVY7DBPXdkAExLAKRQmcoLudhmfh3U4vz7MRq7hBONjcrHHM5cXFVRhmeUbg+GAwoCkaQWAcJbYGPT9Ks7KAwCoM/GgeQiBWE+UsKAgcCUIvCNwoSJNypkia6xW313dZWmh19bt//sjx4pfPP7y6ursbTiAQBMASAqo0zRGCqCBottRlQVLVZm9zECVZf6tzcXE6mY4rEPpA+HA4HDU0hSLwwItwDI3TyDRndU2ezvTxZNxqN4LIDmJfrWt57EJwiRJoW1RRIPvhHyc4xYqiGKdRXmaWtei2FACE3xyfCoqColi71Z6MR0GQXkezdkNDlobvr83Vemdnt1Vv6IYFwVCa+H7or/3IdT3HtgM/BCvA9v0o8vI891wXqqAgiGqSFKW5F5dP9/dMY7IyFmvfUrTOw0cHAicLDP37qzcEDq/DLE6i29s7DCWvL0f20kEg2HWD1WJBUoQXhllewQCCkxSnEIPB9vbudhS4d8Pp3s5ukqZhkM4XJk1TG93ucmlpmhbG6YPDHWvlp0UeBtH1nV6TFccJ/z8go4C6AHiVBQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 170,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(annotated_frame)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Run the segmentation model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 171,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# set image\n",
+ "sam_predictor.set_image(image_source)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 172,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# box: normalized box xywh -> unnormalized xyxy\n",
+ "H, W, _ = image_source.shape\n",
+ "boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 173,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).to(DEVICE)\n",
+ "masks, _, _ = sam_predictor.predict_torch(\n",
+ " point_coords = None,\n",
+ " point_labels = None,\n",
+ " boxes = transformed_boxes,\n",
+ " multimask_output = False,\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 174,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def show_mask(mask, image, random_color=True):\n",
+ " if random_color:\n",
+ " color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0)\n",
+ " else:\n",
+ " color = np.array([30/255, 144/255, 255/255, 0.6])\n",
+ " h, w = mask.shape[-2:]\n",
+ " mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)\n",
+ " \n",
+ " annotated_frame_pil = Image.fromarray(image).convert(\"RGBA\")\n",
+ " mask_image_pil = Image.fromarray((mask_image.cpu().numpy() * 255).astype(np.uint8)).convert(\"RGBA\")\n",
+ "\n",
+ " return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "annotated_frame_with_mask = show_mask(masks[0][0], annotated_frame)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 176,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAYAAAD0eNT6AAEAAElEQVR4nOz93XIjSa8tCC7APYJSZu2ze7rN5v0v5iHmdp6mj1mfs/f3VVVKZIQ7MBcA3D3IIEUppcysKnlZliQyfv0PwMICQP+f/+//Tx8Pj/h//Y//wNfDA6pWLLXgVBYwElSBZamACOYpQUggqhBRQIF5zpimCUyMQ57AmTFNGVoFAgWYobWiVoVCUUoBFEg5YVkXzPOEwzSDmQEAc56QiUFEEAJIgcwMEEHV7qmsAAOJGFAFEbXzAYCIQET4nqaq33X+Z/tsn+2z/V3ae+yHm2soXz/wg5/jr9j23vu1Mm7vGpkIYGaQC10CQVSgqljqAlKGVAEzQ1QAAqpUrGtBIgZxF94KE8ZVBKQKTgwBTGGAQkRQxa6t1R5AqkCn/kKqCiUAfg4pUJVAqtB4CVEkEJQUgIJAm5f7XuH/2T7bZ/tsn+0DG8mblYDP9n4tZ04myNWEq7qgjVZqgagigUFMEFKIVNRawGmCVgEmNCucmaFqCoMCUBET/FWhrliICIjsnJQzTN6bIAcAqAJEYGKIVhSp4JSgrjwwCCoEUAh7AhTD369r/1St8rN9ts/22e5psa9+z1653ZvNeFP9NNbuaXv9fz4W57JPHR2/dT1mzlAR1FIgIlCXpXayQfWcEjgz8mTHllJQa8VaV5Rqv8dFVTEoAgrxhyzVr+9KRq2yeSkRcxmMCoiqooqiqkBUUOMfFBWKooJaBbXdR7sS4/cd//4U9H+ddq6I/srtc159ts/22mYGHEh+9oP8bdqecnBrb1JV5LDCkwtsg+jDQk9gYmSG+fnZYP4q1Xz56AI2MSOxoQQpMRIxqgrCNBcxVGAw1sEB+auCOTUUwp0JEDXUACCoaFMgAABslxYAScndAASijib8dUTIP6/ZMNr4XGipOhxEAPBpJXy2z/a3bZ/ugA9r1xCAkKM5JcI0Tcg5AzB/PYjAnM2ah5H6GMBaC4gIOWeUIgbfu5Iwp4xpysjMcK4eEjPWAnMJEEHFhDlTQk6ExGQkPrDB/VLtOABKMFRAFVAxEaD2mQKmSDgXACnZBFKCMkBkhEPoPizyT273kkk+qp/avdRdNwhl4OJI+w4VOFfkNH3Is729UX8HMuTs7jYiHbEJvvYan+2z/aA27hXvsUfY9QKdfXnSv/f9/2rtpfePz+51hedpmpBTMgSAFCoKqCKnBAIjaUJOCSoVkID3k/0kRkoJU87IU8aUM9itfVEFkaECZQ20QAAwiBNS4v6g/qzMDIJZ9VBppEE7ThtCwTAAIO6holAK0iBtNs+X/CQf0V47CD/7ur92c6intV/73WND+86rvMM1Pttn+2yf7XbLZKg8Sq1AsvC5RIycJiS4dZ8zVCvqKliX7u+36AFyBSI1Eh8zo9bqUHxwCkxgszP8iRgEdUWCmhsBDIs2GEiJQEcDaiAA8G2SgAoBC7WwQKBblR8pLF/SQD9KQ33v6368Ik1NnulrBfiAFLy27SlMH61EXR+bG/e7OEUvn9ORuc/22f5O7UdY8XsEur8DMnyLmHnv+2QSRSJyqB0gJkwpg5NFBjAzck4AEqgsTs4ywZ2yoQMpJTCZ+I/4famCUguWUAQIIFcRiLntZcQGn1rkgH0oThAstaKIgIkBqRAx8mC8vLkLjACoECgRCNyiDc4H+T03/b/ihLnadpm4HyRsfka33YcuvtO9XnujneN3ntcoE9dZvZ/ts322262tnM811FomEIjZLGuplgvAY/4ZbH56UmP7S0WtFeJCmAfrPzqV2Hz9ooriP8c9MRADOEmPhp1OAYiohfvBFABRASdqwt+E+5lFJ9rcp6ruxtjAqKYs9LuMJLTvTxr0124/591v523Qd0BwBkYsxTzb0z50HwEh+kk989k+2z+w/Qiv1429JHLQ/NNaBhIqFGsVKAqmlFFELPMfJzAZE3+tFVUF6v8lZ/sTAQKH52GCtYpCq0KKCexaBWstBvNTAhPAyTz5VQnMBEqEomL+fEcERLqwDhcCQEjMYHTRpVAIWWigkQVdqKuhDgnkqgY5qWxs3dz6uAlAF5bhyIK/eebepN0JnVF5vbi6BwZ7iSD4HvHBL4Wq3Go3YTD0bmfdOh9u3hMeh6L76tHHK4x9vvTHJID2ka2/YnuPefNParf662f15XtkoiMad/Fzsu9t9997r4N7rvcrzdf3eJbMTCjFwvo4Wahdj9VLkCqoomaNi0BqhYqA84QpTyDP9lccPTAr3sh7pdaGHIi4cE+2q0aeAKiAyRCEWle33oFaC0QUKSVXBOxzIwruCCWg5TAA1FwScVpzoxr34Gr7gdwrC1d83TnNLwxDZb633TOBfhbP4VYbQzxv3v879wd9n27+bJ/ts73U9JP4+jNaBnWynQlpMl+6MKoApQJCJtClVhNabmEbY9/yAjAzigqomqAXM7/9uiG8O0+APCyQ1FwJtUpTEgA43K+uKNR2jrkousY75v0PrkE0BoFdCkhYTmfGM9GYL+DaJNy6EzahW/dImTut/d1TdwkeeIOv+ddqCnRu4KDY3PNW9+R3UERIq/0R9v9ddACbpIBqq0fxEnrwd7DKf0b7kSGof4d2a579pWHsH+IC2Es6tNefOw+iQ9RafPST+/pe5OfWcRlKTsRTSK1IyhavrzBffq0oECyloK4KqUBKGTlNIEcIlJ2pXwxeryoo4lC7ozhMjBThg1G4R3voX3ALNsl+AE8gRCDiFnUQygdgysNWAegDNG75hiZZmOBF23x2bUMa73O1r3/pdk1v4HPk7c7j4lj7qZvPrKucF6IAnSX1Ga8/XmPDFwG2HJE7On6zQeqgaPipHSW63gJFauCkb06fIv6zfbaPaT9PmP5FN/N3ajmK//TW8HIogKIVQgbJ16pgJHDKyDyBPHkPMAHa0/sWqajFCgYVEajCMwUmEA+kO9+MLZWwsflb+CCR8wQIql6sCGfwvaUrbFZdXHf0HGmLFOhKJvsJ99ibt3Ivf2Qb7/RawTPiGWOj8wvDhJuEpKSA168jDybcuxDXOHE4vAEehIYSxb1bVNvF014qHS/hMufvYecMR466AF23/du5DYm4fJhRCbgLRfiQ9gmTfra/Z/t+9OJHrcq4z19jHb6ETOawuKusVvGvmrmUcwKlZOQ9ErOeE4FpAjuOHpttrRWFzVdvcf6WlldBkOrIwpwAcBceHs+/1mJ5A6S2fP9BFgy5ZAgAoLCQwOqcgJwz4KWC0ZABasKmOAmgTw1yK9OOSXidUD+fYvdMuXunZVNiYF4KCWtYw5XxwvkebTHSHljPICtcwueqOOPanPWHdFQleIaj/71Zy2cw07hMdDSfXSm4HQUwPN/4xN+xvuM5Rp/+1fsGf+SsCXdOwPn3P8QtEAP1lyUmbJN0fbaX2/m6+ju7TN5MZmzQ/gf2w8Z9EIaCV8H9RVwB9x43Pm8upQApNnNFdbb+NE0QqVjXFZwjZz+gUlFJMXE2Uh8EtQiYxTf2bvHF37Fxi1RHDQQMMmsfgGpFrYJSqqEMbPH8ImgZAMeEQIBu3AGtqQJM7r7QTXrpZk06IkBKQ3jYy01h7xVCNYQhBczs2so9EPO1xrvPYgKwDt/L3h1COA8WtrTftu9xcYdbwutm93RN+O5kFHrpwf9ZGQ6vFhzSyzDE70FkPlu0n4ed/FXbxRr67MKd9jMs8r/HIOSn0zOmwwGigKwCTlb4BwDW1ar9hfVsZX0F85wACNbiYUlTQhJj86sqQLaxihcWynkCOdEv+AZVFRFwIGJEweLXSymbolAFSlZzQFUbkY+HLITN4nQUwH7XDkNjX/PxqgRDV1wDzuNbfycKHMFabb6Gy1OjHsH4eSgce9Z43L5B8AE5hwI1KBntHnsbhP/g3We6r22vq8P/P679EE36nlAfoCtUTdtH44/ca4Dfep/vUXb2LvtXsKzvfcSXCpj8k1vbU37mM3ywwr5Vut9WLfD71tc9HTzgyn8xVGZ83iwqWEtx45mgVfDw6IWBRCwrH4CUEqoW86VThp1XwWBoNuHNBORkudtr7RUDjeVvEQQEUxKkVMgF79vEohGwFaWuSMkKv6ylQKGtcuFYQ6BFFbhCcGvoR5nY4GUaN9XtwFFY9AOmbQLaIeUblrLuCuDrE0N2FrcARqAbH2FPAOhWcAHYJfLd08KNwMPfn23bfqoXcG9g/wJuge81Xv/SLPe/Sfux/f8rj/VfQOO+o+Xn0wmTuD8dRrZjWGpgEWnCtVaBSmx86nH+BXOaATUegJLl86+qLQcAETsa4OmAqSMAgdgHKtCiA2D1AAxNICzrAiIjEhJ6OGBEMIT3PFwF3d08KAk7Lz+yA64LZtoe25SAQBneb5JewyC2Ssv1Ngql95ien2jjtgW3ZGy3Z8319q4JfT4H6bP9DduvrfC98Fz3bNi/QMun0wKAMefJagA4mU+1YlndAhdYRb9qhLyyFghZ7L+lAnRxmA01WGvFslrdgJxTg/tztsyBSgA4Q4s4O18AIiQ/tlQX4kRYS0HKyUmBBAaDKbWwwJFYpG4CB2hkagG138efnbh+G1Ibcw2c+4zfe9/du96993jPtAChUv0d23fBl7pd14qBczFwQuI++5yOd3oWb+9TffDj2kdma/t1hcPfr93i+Lw0xt8zTm/NVvo97W4y4g3UbYNr39ict6HlP34+55RSe4g0ZYgIjqcjUrKaAMzJs/IJiIY67AJQSo25b58REqfGFbA6AkBZV0AIzHnIAWAphokMzmdmrGW1XABVYZUCLU1w5tRY7gCa/99+38nlfzZw3zs9PmqjeQ8BsHeNn0Wq+1Xu/1EtCJ6RGEihg5uH2jHhjhEK7sDPeuLP9tk+26/WtttiENX2DNGP3z9zzhMSJ6RsgnstK2oVHKbsvnFxS34ykp/76BOyFRAitTLCTKhSUaqTBaUip+wwPCElu4+9M2PkskdkQCkeFeBB+xb7b1Y8J0ZixpRzIwEaArElxmwSAZ3130XUwDu098jN/R4Kxt0s/Huvd/b3W3rto0hw79Fea0mYxd+RqYYA9AvaNWBJp0ay50e+qXqCpV9F1Yr++SH3emvY2Hee+9Z2c379omjGe6QLf8/2I/eNd0GbCKA7LIDBhhjad8gPvQwcJ9aLY/NhfsSULUnPuq44FcvHn9jIe5aJj5Fd8KoymAlVFbWu4BQx+kCp1YoAoRpcyoyUGGAGYwJzspK/xEjgVvY3FAYV4wZAQ8D78VAQXAGIUsXhHxog13Of0Zj3/0dOnF91Md/bNoJt+OylXAT/hDa6jYJ0GbUJBECCbqIFfsys+4Xm298M9flRzThNnez7K7S/+j722V5ueZ4yOGB6VnBiFKkoVYx0x4opZ6RMgLLF/wMgqVBKIIIT+sQmMFva38NhxmE+mCAXWGnhbFa7CRjz/wNeMVCKpRAu1S3+qZEGiYCckxUfGv3xsWAGyHnXyh9CBN+zDfrHzXbtzm9dXrR75sdvvG9/3r9+uyBi0vjdNtkUsBX+70nMfPHhfnJ7V3Ljne31ZLERJfyFiGZbMtNn+4Xar8w92Z3DNzKfji0fpoxaC1YpoMQotWItFYkzmAmJyKB8YoAYeZoAFayrYmJYBj8MGdYIBtNnLxeMZKWDiZGmZL7RUlFLwVIKEhGIKopYqmFVtXTBMKVCRMF5yx2otbZ3GxWBEP4jR8B+ElpsgL4trnSvmSJz32Z3kTkObyfu/Rhw+bLd+657qsIvIp922z0C66Ujhu0BcETAUBO6IAhea/dmR7x17luE73sK7PP1+KPa9xMpf532o4XNW8frPeLf36PvX1o3t3hSb2n3PvO5MvyRY7n/TPtuzk0mwK8Pj1ikYNWK5+MJixP2pFZoSuDZhT+4+fMJ3OPza/ELM+AheDlnpGwCmzkhUS/hK7Wiiv8rFcoAszbhn1JCShkpcetAESsSVLRnw+tJaGH3Pevo751Y9w3VnRNh77PveLyeZ3F8kl9LK/2ntuAKAGbQvZ+6+dn+ie0eFvx73ONXs2rfs+3Jgh/BATm/770ckB/JT8nzPGFdK0SB02mF1AImwroS8vyIlDLUffJTTpg4QSBQApbTAhFBztkgTw8LTJzN5g70oJH+LJuf1R4Q1FotsoCsFoAqHBHoQpxTsucpBTklrARAu7hrEQzcEbQ9N0DPUf/9jPvhk5vHj89wkb73hbF9iZB2+dnl8bxz5L3nfpQn8leztoAPilogoJFjPvr+9H3P/p7v/yuO79+pfVTWuVtC8jX3eI11/JprfBSh+FfJ4vez0LJcoVhLwep5+NES6ogVBHIIPecJh3lCAmGtlrq31ijda+V65zkjwgrNbz+BiSGqyJwgJFARlFKwrgvWsgCYoSAUUSSH7wEbBCY2NwAs/h+ARR54giBqx3t+/7OSwXGdH93B0X5Frfp7FKDP9rr2w8L/Ivbws322v0h7SeHY/U47uvbZ3qfxKgVrNdJfrcWgf4Wb02ZpG/s+mRBXhail+a3iP2uBUQSoWfk5Z0xTQvNYkzrbX7DWgpNzAIpUC/+rJvDtrgRKDFHYc4nnANiFqhREPVnPliR4duQZafA17WcI8++9p+78MzbE+O/+Rnf90+3fRJvff1pr8FB/tvbV9ypF5/wbbFNcE/bl85an8opGGssT94YZ3dN+RYX13Vrr4/EdP5aeuQ1Jvh8Ofu1xP2NdfWSCp6vXvwPputXn3/M89x7fDM9XoMPX7nVtf3it8nSr5SpqAtZT9bIKAHZhbrB+zglztiRBRVaICkpdcDwtUK14eHiAkoUBJk4QqiDyAj6igBJEgHUVLGvFaa2o1axRgQJFm5IxJaszIC70jXdgVr25DGiw8hkK8YRBfNlRw+/nwv8lnsDP3gzfJTfAzmeXoXx6RQ247MvX8gxa//5kWHjvOaj9L/7+js0CMOvkfIPy7rpH+L9mAZPf8CN69Xze/R0g/T7+8cnro2hevR53xjUMk3vG/J7jfqTf+HvnwWYvbp/s78Gb9artUP/5Mr/rss99OIZr9Oe4ff5r2vkY6Avv9xrlbk8JOEe338LlyCKCWqoX61FwTi28LaWEaZqQUgaYQVIsY19dIVCIFK/cl1pMf2g+pdpPqeb9JgXWsmJZF9RaIVKhYuWA5sOMKWdMU0ZiANXsVUtJrGARCHrWPyKLMGDuKYHToAC0xXOjf//6G9vLA33PG16/yl/DGnyTEkfv9HZ0VsL57FE+Bpn/a4zLP6G9Reh+hOX/s42VvXYTzh9/a9v0jqCE9o/bz0tVov11bblfuYbpAu+Hnt0vgEMT+b72HjIs1yKoa0VZV7Ous+XcT8ms/sf5gCl5VkBmqFQomeVOKYEoo1bxxD2ExAyFYl0rVAkqVjPgtK44no5Yy4p1LSilgIgwpYzDPFt2PyJLQUzZowtMQUjEzcqfcucZxD3ju2vtNVr3r9LoxkQ/h7C/6z6437K/RZh5bRTGHsHo7gmt3Si4ieJSt+tpOKeF5QEgJSgpCNvFO1rzqrqLEIRwbyG3jgIgeDG7j/RKaJH33FYfo7z+LKX4liD7VRT1F/3TP7G95f4/FykIh+S4Su59nltkwOGo3ffbyY63I7Rf6ptrKNkYAhvNUugDTc1xRKK9/51owFuVzJfOy+taoCIWp58JgACJLJHPNGFOGTklCIAqwFqqC3CBCAzEF1iSH/KQPQAoCqkAJ4VUwbIsWJYVz8cTjqcTQISvD18xTz25TwxGlQpAkRJjyjPmaQaxDV9KySIDQJ4RUD9qP/xF2o9VSs4n4ksT6F5/lKFD7aovHn/tXsFjgBKuX3H7twWudgWgOgKQfOoI9hdht979/HNOCVxRQJP5fgy1899NUXuVi+D+DeC92lvgRzvx/Z/ls/38ds0I+FHzeP8+53sbcIki6IvW/F4Cur3vx/ucP85HKY23+ALnLiNVRQ4/zDRPSBOjSgFzwpwPSJTBZDH/KpatrzhhUNWITpkT5mmCQnEqKxJlAICUFSVVTHNGrRWn44JVqkccFMzTjDlnQBUMICeGpRIw32biZM8xZUwpgcg+N6QAliyI7uvIC4LGlYF9j0HZdLJd9NqR+8/wwvdxzN4E/UhL5PzKFNbulfvrmfBrwnDQhs9bXyjn33eLmtSySjYYX+Pcy/4aLf04fswjQWrPzBguBGrfGTxJm2uct/h8D5W5PRxDBw0oxmtH8DVIy3u1a+vou/3EH25JvywUPuSuF36g1+0JmyNeSCDS+9Cs7Mtl8Tok9Ppx3Yo/v3acd75H3UNmu9Ze+7z7e/z5fB3cBmp7Qpxnlvs+4rn5h772wwgwfo5jq2rcOiUnBhMateHsDV/YL8bnvrZ/3u6Hvf7P8aDx1ZRmzLNZ3QAbMsCMIpayF6QgTsgMgBXzNCER41hOWMrqnxOkFKzrilIn1Co4lRNKXVHqipQTvnx5wDzPyCkjOdHQFAAG1KINEjMmZmQCLBMhgR0KIO9o1ddNpI+2iDaT/uZzhT26/eSeN9kjffwojXLzHWJi753X1oJP+LPjdqxjE7zUu6YtFGrnDH9hxADOBfUI9cdWFc/DYaWPCsLGMzmceKNbv6vHB6HQS1b8tczhnw19v639iGe+XNvb9iNQmdgXxj2PtkLvSrtvXPfe0UKxL681SNkP6P+bSIOOT3nFxaSepWaw7Pfg/PE7UYtqE7d0SNEUAnblh6krANEvI9pN1EmhMS7fo9CP1zv/7FrLALzgDlBKwTRNyJPB/kxW5U/V0u9GDL6R94BpypimCaqCUlaUtULMRIOsFYDVCVjWBUWqx/0DXx4f8XA4ICUT/DlnTDn5IMChCSstTExQttLERuzjJvw3AzOImC6AR9XmY9q5//zepb3nd/9Vt1MisokONPQhHrYt98GKxZkwHqHwNjnpksWuGlpwv77usuhGrTY+OtNuh+No/IzOjzm/4s6XO9f/3vYewvOvKYD/3i2s/Y8zNN5+XZsvPdHa9eOAsF7vv+6159tZq7vIxAe1AVXbv2dI7zhmX/iLeE5PRwpEFKtnqBVYFJ19qWCyInbs/a1QMKlFqjFAkFbRdk9Yf8+6fu25WZpwrxBIS/EbRL/jsiAlxlos/K+qMfulKqackBKh1AoRwbIuzYKTUpGnjGWpWNcVkRnw4eEBXx8ecZhm5MRITuIDoeVNZba0P5zIfP/JjlG1SoOs20x/6mELF7GXgqbAvNZH+VYBvRUyr19Ar7XoP1oIxPV5nKhAt+ADasJAtBy/P79e+2VPG4/fztwoOLvX3jjuXI93jr/WX9d6cVQmL7+8c4z49bvdq8mCd0Kkf/e2hT4vEbbLcbwXd3tNUme9G859bdu77lt4Oq/97n6C5i2FvUN7zQ74AUrsS7563RH+6hZ+P9ZS3Y/fVamWQ0ctwV24r4mKcdVC+1C0qDUAYHKXt2ovbb+jEFxDIPbeJT67NU5752ZLyWuhgEj25bquYLbyv3KsmLyIT5UKUfONMBsJT1WgWqAqWJYVtRSzutXi+CsUooLMCV++HPDl8RETZ8zzbGGGXlFQA0rxDkrJuAfs63McDOxpSu+MLv0s2+pnWYbbJaoO3Z9b1V3At21T+7ebc4YfL4mf9xR273H89XPPrDtiEHiXTPS2m30MYvUS9+XWOb9Ou99HCoSgvO6j/vltbyze9nxvIcu9zxq6916/biHxKNp1Dv9LoN1qJHeotONExDlxFWtZUTytfakVRGi8OXb3qMLr46QEECEzQbVnrU05IzMDYtF0GmSoYSxH4f1WpGDv+MxEZmFPGZwM6l3LCmbGIU8Gc8Cy7Uk1jYVSQguNYoJWgiih1ILjcsKc7GVVFXOeMD1OeDhMeDgcrHOIMacMSvZAogKIp/J1fwgnbsIo7jVa8rtW85UFRETNQLxttNl96A0b8X3Emf3jv6cZM97HIuTSjUvvvT8h/OJNPzcBP9ZcODv+8jnim276087xXVa+bkP/3hb99Fo5vQeHnisF5uZ823i+hsQa9+ubgT3b993r0lK++5q76+Ta9cb1is0x1wmte9e6t9173g9ER+ilXeX7UZzbSBDwnu/7s0ifF9E4fpkXkZBzIEIBuOw5t/xNyAOiln4+fP211uYOrbWgloIiZvyWWhz6556iXhXMhFwrEjuhnpMV2kvGcwOKhdRzclmLhjbYewG0eXhua2asNgqX0/24l7elLKLIeYIyY1lXLKcFuSZMbGWCVe2lEwOqgjxPADGK9CqAoeEJgOoIwcH9/NM04fHhAQ+HjMwZFjngmQZJWrKfeAE4FAKH++1VDBoI7cfu2ydPEDn2CBDt936H1raQSPcXv8UKe2+rdCSxXH55/ue5Zb5/7WtzwaaUHSB+KqP3+/Xz9Gw1nh25B1PtPP/97a0WUpxNb763LbjdWfSmR7tJXLp95v1zrc2hd9r0RxfP1fbyhN1TXPbfacSP3vIO9w7Kj1ECIog1/vrx7Q3v+YshQe+SWGucUqpQdOt+JPipWE66ItVT4AvKWlBDzoigeG2bSKMv1a5jCICVYyMi1CqY5wkEoIgaV0AYmlLjvWlSJN0mtBt/WqobHqLg3EC7gc50JCz2ry0mm0+nE8CEKhXH5yNqXYF5Qp0fsK4Wj19KwWGeME0u7Mni8TNbeF5x+GOeMkQmpClhyox5nvD4cMDDPONxnpE8pwBEsNQCUWw0L0vsw60UMPqz+8vQxb8ejtE76/YGOVx3sG/N4sUPXpfbwQj0oT9fK8Lsj2sfyo4go+HfrbudNzfGu3duR+BTHLnrt99a1m/R6m+FrGw/e/Wl37W9VZ5eg2hv8VKu+Stfdd8499Vn7j3P3qf3Wug/rijyrbm0134sP+LXEqYvtV/BDfSemTRH9FNVoaRNDKhYhdqA91UtRb4oIOoybl2NL6fO7JeOFojaHK/VjVaiFllARMge8h5cOzO8k7sgFApTBIStIq7x3Rwdd34VC4HYCIWZLBmeXoqCvV70Z+rr1eY9WRSAhetVrMsCUsX0mFCroKwrODFqNXLg4XAwhr8oODGmPGEpJwCKaUpYKkFP1nk5ZzzME+acMeeEw5Qx5cmJhC5MHC1uRDOHSM43zD3BD3RewB5rM6z6CLHwq4HGjaF/bMKX/dN3UARolKRnE2/4a3hW6xLeZbOH5Wx/pZi4F/c8O++Od6DhF8a5i+Cl1RcW4est63st4O9RKKK9SXje8JvvPdO95M0LXsW78RNed9ztPtlDGRT3CPJ7n+mjfNWvPe+l4y6ek96GEH5ve49+/SiBfm8fvholfcWyHd/7Wh9sPAAXhD4T8qomI4IDIAIT0GLF8mp1+QXtbmWNKAB0H/5wD/bItVIrkpiDVfzkkIeTKIQZlS0pH0RRVFBhmQTN6vew/JQ3MrNHwN0mV+4pxVlVQUzIZAzFaUo4zAeIKpZlxTRPBslTtw7NUk8t3jHnCUlrgxsSMR4fHvB4eMCUzfefc2qjsIE23C/GzJYTwJP+RAtUYO9F7mX3OwBy3dpCoAvaQta+x2bhM9x8vOstIeepFYDhnXYXzU4InaDrLfcus42Qe7MFf4eP4k3X3bnqGy259xCy38O0fo+2R0Y8m1nfcb3vb+85vh9plb+WC/IrWMF/9fYj+/AcNj//HAjkf0v2a3H9IkPCYIKqeHE6s9prrSieJCgNxmgQ/GoJ1zi16xMRRBiECrDlJWWysHsWQlIFWAYE2JKTVWBDuieCIegYjT1tqLxrNhuX9tj21ldepTSr++HhYIx/cigjKSYkCAjHZcU8T8g5gwBM2ZQGwsFS964KTgmPj1/w9eE3F/4ZD3PGwzRBKTrPQw7FXpTceGRm5Gypfe2FjSdwEduPgGBNUp8rA+d+fzqbEGO+gM4niGnRCRVvmbQKE+DcEIQO30eOgzY243OG8G3/G+5/pxrcwvReSUbc3uuuw1+62qvvv/ssH3LeCFm3gcBdINqt6+vLVcovzx9VtvNj93/vt9tb3C88AEKpvGc+efayjZvsfTfyW9d6EUW54xVGJGtTnNnRvmuXsFlxOZ5797w3NcQ10tpLx+21l+75QxWW2LduPHe4GM/be0H7jTE/fiZywfWKz87RZRFLVR+ku+oWOcGgfwWAaucDLqcA8/070j15pVwCodiFTaFolWoprEyQ9syjogJVhtSKZV19wbkt7255glrRu5Q9dJDBpEgsFqqvDJDV20mUzFDXcxGzhaLHPsiiCvaXj9C8yPeflZEToyo5DGJwRk6Mh2kCgbDWCqgxHecpI6Xscf6TJQrKGarigl+t42q18sPMANSF/9QSEjWoH4OP/4pGdx3+7/OOhg36Uvi70vBGaG9UN0KUnF+F1AT0JjWt7izmtireAFm3X15btPf8Art/7tqaunvk29uPtbbe0crs0vLK17fe65qA3fEfjfcDbt5z7z6G4N2h7Gxuc0NQf4dQfHO7zyvV3VK6/wa3HjMUho9CIvbSaP8V2z2vsG+Lvm+7COHbkRlSa19RzYXsCoD7/cXD+SIqgDYCG7DKszB5RwSQF7BjgjpxnSlDASylgFTAiHC/6AgnuZNxBEQF5WTF8WzKOqFeBUBFYkLmCZwVpBkV5iavlVzuckfoxZ5PKTDvZj5f7bvMREhggBTkoXeYkvsuLB7fbmQdnDj8+Rlr8Yp9bMfNNIPAOEyThzzYdde6YtWKWgVS4WEUatoNMXLOmCfLntRE4DCAo69/M/DSojixp92048426FAuzK2xz6q+Orl1e4/dHC+jx2JQUEMri0EJVvBr5d6LFtLrLneX4N1siGcK1nn7scSq17QtyTLUwh8BPd/b7nFp9Vd4/fb6l5c7O6+8q6jQFXzllmZ7fuieK26YN5/tvvb+JbEv22gojtB+fBcQfpsAGuQ7aqQ/FTHDNJ4brgyS/cYev69Ag/8TkWX+S1YIL0LkJyLUWrfyRbXVuxEx/36RasRCP9YPw7ouICZMUwYSg2H3qsSmLACQRGARpJyQADBZjR6J527C5/qqzwe2anwpMabDDBFBqQUgwjRnTFMCoycoIFVkThewS6IEYisedMiTF/CBERlqQZXaLH9Qapay+f5N7wk4ZxT+5wM7Qv3hmwmi34UgO7OUiGgzqOOi7qfYZzeTt23M4WALDEJxfIzB6m//6OzLnfZjfcrve86ryT4/w8/aEJ8Bw7kJ89/e+N/rnV9DmLppoe9Yvtfg2F+5vUo5H9vZ+9OZ221z4KgpnFnnl3vKgBQOX/0w5XHfa/TPbkPXdwXAkvgAHrsvgrUI4DJAmizxsDpVE9B+nZySI7Xk7uozGUIms5iTW+kZQuY+MOFe2zFpcDWT2/gCd4nX0pCHTjxUlLKCc3LjlTAzo1a10HmuKIDxChJjciFPtSJp8AUcacDt/SRPacY0MeaHGQqg1BUgxlQzmMz65sx2UbaLZrbwBVFLkEDw5AeUMKUJh2nyEAdCqStEKqSYlqPuEWew+60VEPOXKABls9ZD+46f54jA+PmtFxy/IyLkIY3wLuSvA3x4pd0bYnTxHHcc0I+5AQH/DdpfjVz1Xtt7f+9fz4rcQ0JujlN7lcHFtofA7Vzv1mffk69h83ixzs8E/NlRuwr7+fEvWf3n7/0roEn/lBbJ4rb/TKiqmqBdS8FatzwAc2mTFaNLQVLvjs2w/Mf5Gdn7tJoyYdVpTZallEF+PyorphRZQuM57f8tudCYahieabdaIj7AIhAy3DVRBMoCVViCIjLZy4Ekx3szeRZdNtnNvfbD3trMeWYn9yWstdgLCyODQVo95W+yLlFjyYuaEC4iEBSDTYRAiZASMM9G6Ctq5IrqYRYq5p+wkAZ3L0CxSgWrtOIJW+F+ubCi48LyB3wgqdt0LZsdLAsgeb7lPrC9bYAAtRTGlyU8L4+//v3ZATqUjbxL8H3f5vEeRLpbitW9AuKtitLL7TxGg3CZbjRcQy+1+47be3y926S+7ea5qby+1c++hZour+W6dzNmN91A/ft7Gp2T7HYe5gKc2ztqe52Xb3tDYdG9vtu5KF1+zthu3Pc+zwVy0Bb9ldu+9OEOuXTncT+uDWhHm+p3EF6Bs73E51LXF1/3AufnXz0uhKAIqgiK+/IXL2Ffa3cXd0IsIWcAlMDK7paVYf+zBDzZS5A3vJf7GIfhmpkBrUA1grwmzy3guQFEFZUAQpASO+GdRWBpxVcX2OaaT56SrUpF0YqCCsByAhjfy8mL4qGEKWECQ1GREyOS/+y6swDk0BaqmLaUUgKJaTicE6ac/W3tBPHMRwKD9kspqDCCBVUFTxlE3AgWULKMSlUAFSvxmzPSZO4CH7rtNjzMj8gUOPp2Ouzvfhg2YqJVL+w/AY+rH/efjbYfM6trfR+ywugW73j3hFdc+nIT/NXax1v7P+fdw0IAbvc//fgMU1fbuYDde+zNErjRtdfSSt+83ivPvafdPb+GB9mec66w33mPcFOOStTFMXcqbHun7ilhP3Cqt9LcGLuO9vfSFy/m4lZxF8/lVU278G+P6QIlat2UUp0DgIYKAGgRcKQVyb/j7EQ8z80P6sLeFAJ3h8Pc0E0JIEICQdylrmSucnWIv4qgakUiIHGkunfC39AnU8qGLqQEI8JjI/tqrZ4j18jlnBKYGVIF8wREWGBHvre5dMaWIUDVilJW84c4J+CQJ+QZICb0ijyW/3hdGYsseDo9Ya0riigICY95wsM0gVOGOLGheHjElBNUDTKZ8wRKqUE0UQ3pHHKxeWNEjbHkYrwIk2ldKaVefIFMMyIX7nEp06O8M4APU6Wvb0bvLwB2rah3Erb3+aBvH/Nxgn9vZ/xx2ea27f1QhvdshCsCaee487/vNvy/45WaTnQOkZ6DBTsm8EvROtRusOdSoM3fu4JoLxrnhhR/qc/uCu9rDz5ely5dD3uP8b1T6wJ5uHGvn9AIV5Sh8QDYfrNBh+HnuPAsRRocXkttQtJK+ppINWI5PBut8QcIbqUjCtzVpsRINec1J7O42yMRg7gnnmvIRBVwzs7yt+vWUqBV3ADPLRNuczeoNrRRVKHOF4DCIP5SLNPgBJRqyofrNyAkjGl0Rtc6AOQo41tqQeIJE5Kz/dk5ABXEYdELlrWg1Irj+oxvyxOWWqEKHHjG13wAAHsh73QmQponANZZOfwT0Jbgh8j4BZ0s4RZ8wP0EsBAkMaAEcXt6SgkTMxKnFlphTbu6CTj5ImbDJRw5ds697ZpP5b3bRxHv3nrO95z3Xo26Bvfj2g4EqcOHdxuh79Hn91ziBaGwqzyeuwiw7wq613q7911DyEU9inAp6B7s+wrXwJ52c648XHNxjXPMyMmXN6ZNypitjvBaC/eafLs3QudWu/ksfXO8+3o3n+UK0nNeMoTP7mLq2h46Y9cgt76vvot/3C1d+53hVjJ1X7il7q0gcGPfs/tqpFYUVSRNrSaNDX+fCy39r1i1oMRk1n2pyClgebH8AkCTczWiDWBu9JSsAiCcs5BSwjxPfoxuXOJm5LIpAI0sKGA1/kLwHixtsWw6JakR7QFtqEbIr/zHn39geqCWB5ZpMmhebUBEFVoK1iKmpVSBQvC8POGP5RuKKDISpkMGlIzp79YYubC3RyGknLyEcPfvR2wlEZA4tYEzbaeCMCRksBEGFJYS0QmJjUyIMclPz5nf4zivTe1R449jfpx1+1eA8T/bZXuNtfzme7zDPLtLiAwvMr7XR6JMcbO2Zs8M79fd5WU3y73Xu81riXvtnDfA/Y0DgC7Y/lZtTznbaeeC/yo++h1KfUR1jUaZpZUHRBOSKqasALG5Apz9f+5ajvsHGz8EpbrCUpysHi6HIoLs91tL8ZBAk50tF8EGRbJkeaOCIu52FwUO8wzmjmLYKfas0zTtKuHNWGb2d0Jz5zc56/dMfDm3879//298kS+YDgnICkJGooSUCUUqVi9+sC4VqCtqZggKfn/+E0/rCUSEL+kR+TEBWlFlhXJqCEKEYrBrMfaCrtGBWqdNHk4RLyVQEBsz07Iw9QVuYRfJFIbIFnhmISnQFINrC7p/Hlvez7Xo39uy/tmW+nu0W2TMd7vHDsx8YdJfQ43O/t5T4l60tuNcv2A/mvZ95Xvn7jxus7JudqECfPm6bbMOq6tVEnt9u+kjf/ns6181oWFlUNXTpgIwP2h73jMp9Jq7n41nt0LdLD1H6DcDEabH4J7yraY9WVx/UITUici32l19Sa6w3NpzgJ13uOPar2h3XW8PYXth3nSffzP/oc3CFbT+1wopQCUgJUIVKzcP6QK5qkCJoV6oh8iqAIZSkdjSAtdS3Q3gSACzJdITQU0JKwgyxPZb7ZwCkWpZdB3tBpnsm6YZpRSkOSG59c/MG46C5f4fhD46dyESAXVXQUWtCmFL8R+BgI0wf9bJ+bg8I50S8vxghDsWgBKKCKoWlFpQCnA6rajLaloVCZ6PTzieTsiUwf/xCIKiSEFSYx6qAlwt0U9iS/aTPNSCkxVgjLrJidjzAACuQDUNKiCQzvKmdo75ebrfH+iat02evvDOY3cvN+X3tOjt56dB/1K74dS7RCZ/7CO8sX2P0jVC4NHufbxtOulrCu+tK24F2kafJurEqje3exXs0QF9BXrfrK/O89n2/fcr9NcQuXN3zOa40OKGZ9g8xbmwbV9uacJXhd7tR744+K9vAljbHYuGDLusGBLGGbJs34okK3mP4oLSYXdR6BA91HP+SyMKqloUwDxPfi2x6DYAqJ6O11MJ17UY8784OV4EWhXrukBVMU2zcQOIwKnLMBXjBUQivrUUgBkqiilNniBPgDjX5V1w3tT7wnIJEHKOOgXGEchujIe8HFsWVJyWBQ9lBkOgrBAUC1kQy963rgVlKajr4lWTVpyOR9Rltax/IBRZUYSRJUGKtnwBKZsCYIiAVy4iy/kP9+tEAgUSjBgaVHvcZox/csYjjfsEWQeR/26oQPuyH2dz5UMt4w2B8Xxz+Me2zdY2fHZtg/3o5xlvpG1ujZvxj2ovolMvzZ8zi5IC/hqE50v8gRFx2PverJIt/EgDatafsPflRo5THHU2D8ZjLu96ocyMYVfA+Ezanquf8v1jeC10qj3h5n7xJP6eun22szM3Ej7Ifs2F0MrM2bebZzp/xr07EHp+svGufzFt4Nx9ANg7hMBTRzjaYbbhbsaFvXpezi4Ao1yvH1PVUwLrkDnQ09VHch6Q+evZ3QZSK5QIkeLfafpOGATE8w1UqVhrQa0FDIKI4jAbcq1kLu9wC6Rs/7QKNCUIkeXfIfaOMEUlW8ziRgkOlB1ESJyQOSEnxpSSCX/ua/W8ZSZGLSvWZcWcHgARFBSIAKUsFiGweOifrtCq+Pb0hGVZMHHC18cZh4eMlMiyJ4UlrpYBKYEwc7bJLQJK3LYChTS0oA2KOkQS2l2MsA9m85f769jXfQfc+Eb2Ntc7F8GPZNP/le7zcruy4XnbPubHPvPtTXtQNDfa5DvcFy9YagPc+5Zrb85tjy5nH1y+/+0pcv2Jz5GD/ndXs9vTkeJCo3KBbOu1W+zXSF/be599R5d33T/2+xGAl55t/3i/+9gP5+6Tof/GLtJQetAP17Hgu54hMxvg4czVueOe+Cu3URnT8b9B4F/+DgDsaIAR6Nh97oCC1RLDCVnynepWdmVG0OjDH7+uK3LK7XmMGErOJ9BudFY1Uc2MkyqWdUWeuK3Z5EmDLIGeDZEVFJoc9bYwwIrajVkyl0Zic0VA0e5nyYCscF5iC9tPKWPKjCmPwl9B4EEu2tzLh8Mj1mUFgTHP5o+AFIgCp+UIuP//dFwBFix1wXFZQFDM84SHLzPI8wRNeUJi81dkZszTjMM0NYYlqJdI1CbYtX3eNhBRS4FIxs6MWshEBHgyobbJUrdFPtuv0n7d0dj1x7+nIjIIu9efumPt7Qmg8+4l3TlsTwH++HFpGS9ou2m3788t+s3vW0t+vOp7CfT3bXvPM8D+TRkAIqAvBH33qfT3bkS2dvnoTT9ruOh5xMb53NkBD9oT/7qr8+UWxLqR5Bbserglf87tauRAIhCjySNWtOp6qgmkDCVzBRTtZEAiYFkWaDYhCqBB76JqRX8oWcK82t0Q8awiipSMrc9k6DWFCwJWUZCZQGo5bVT7e3DOjdfA7LwFF95MjAQAiUHhFmdGzgnJS9vbswbqTmducyDPhwMyZTweviBxQkVBShnH9YR1LZAKPD89YVkXMDFWWaFlxZwnfP36FWm2AkBzmlroXgJhStlg/0ix6J0WfpYYFNWw5LVN5LD8SY0IaDGYfVHpUEqVSFrxg9duEL+K1XybdXy5XH/2c/f793zb22f6cc+3F0Fx06K8c/e7BZeehzBtzjuz0kLHvXiOKDYxwPfbODI/boPl+ho4T3q4/yT3HPSdbf8e/f1t8zy3al+61nXF5bXv9LF9sI8w7RwXAr79jStwzLkiF5ND+6+RQIEGNGsDCcfE2apMCgUrY0Ri4h0a0vqdbU/hC3fH9ju6XGBkggoAtJWKD3hkMBjjqhrhfBZb3wv6dPTJLP8ufyxcj5oriewwUCJMnACH/CcmHD0zgJKFtVPKmMFIIEAIlckK5HnfEcTyBDBDpaLWAoJgThmigGqw9O09VBWCamg3PEEQZ2QkrLUawd3T+dp7AahiQj71vDnNJR7CnbzWAAHEQCbyiLls+5bn4gkYPk95glJumYSIyGD6BahFcTouWJ5PKHVFmhNqWVCXBfPDAx4eHpCmCXOe8Hh4xESTMfSn1MIWgs1IsDDA8UH3Nm2CW/ttEPsU7seYNjdOiKuQ/9n1P33ye23P4nrpOB+Lv4AS9ZbW83T5vAEaQHX7PGDsP9r+2duwt28+BJpwuCooYl8cseGz+362n9N256Gjm98VDniuGGAMfRvH3xkFtD1lww3BdlrtoQL7wvytD94FTnuas/34qhI8VmWL9Re6s1pumSq1pdztVQAZOWUkHrLGqv1zM7+NR/ycc8ayrkgpIaeEtVSnkTvSoILMZq1HHhtVgJNFpRHBGPtCWMuCeZ6RqoULhsWtzhcoltAfiROWsiDnhBxMeFFMKVu5YLgrSRVMlguAk5EIjd/gYfCe/S8UA+KBe8epW/5no5OnnLFqsbAFKiAGSqk4nVas64KyLNBakaCAVJyen5CIMM8TUmIQGFO23AGZCdM0Ic3mE4hwh/DaVO+I7GENBtmMSIDay3FqG65BYiH8u9Y6zpo9WPH85/j9j0ric62NSs1Lm/b5876/ArNZmcPGMG4LdHHca62rawlCrh5/Nj63oOSr17ADh4tcMbzO7rOFEIffNnvRFakOuh6mNyC+dHZt02fVfbkY5vu1+5w90Kfw/wltbw3srJtmnm+Pu+rdubLGt+hSVwLG+RD+XcbO0zmfbBubPjztGVRze6+M/aArNiMXa3tox0D684ayG+denqpkKLAOUr9letEOs9dIj1ut4qx4Xv0i4kQ4s5JVzD9vcfIjWmLXZE9TD1XMeUKtgqUoChOAglXMJU3S2CuYptzS0KN6CCJ5Fr9kOW44svxxpPa15y7iuf0tJh4T+/oHfA5YyjtmC5VPTp63CoaWY4es0E3bM1IygR8p/oM3F8DRuWKYqzjjvxQoGJKAogXL6Yh1XbGUE46nb5imjLpaSMPD41ekPMG62WPyk1n+PCXTmlQA96/EZAoNBXAyROpCzbQ0g4tEexwsnU2NPcG++Yz61voiw/ontLdA5df8pu/dLklU57+/7d7vEVf8mvc+D/kcvnhRb9m/j5kewdbmq9rLlc/JiUEhB+jyUFN4z7X0Ox74H9R2U+P+cu26knyP8UGA8Z+AC0Xg8rS9vuha5u5daMiy6ErnmdzfaOfXn7Wb4y+uzD06/9kt23fNZqT+9+asjhgwkZXGCUjdmfhr1LWRBNXc8tIAbL51sTj+CktsB1ioHHla+VILJk6oaUIVQcoJpZywVndvW2kgQ8wng+FJTRAHad2S3iVTVGqBklrFQXFZB+cVsGJ+mFCkeHpfRVWAVT0Xjj0T1DgJiSLuH539DzR3h3EF+lyh6P6YUrLtUyty5MQEkGlB69EUgFpWPD39iaenbzg8zFirIBPj8ctXUMqotYLJCA4pZ4j1ysZaNW0McBUFytusTZwiiQEANdCD3fLf7LM+YyNRgl3ytrX/2a4366qPQhXOb4YPl2NXlT0dtN6XhP+4Ms6sg9jmXqb3jQprWGnn97H/6XDK59S93Ub331/ZjXc3cmUHX0StdALhrXbrgK0LoEH9r55/9yJyg+geOACXKOjZM+/lpYaCHE0gop5HhhlVGOQ5+qUKilQIiyEISTDnDIKz+ilS/go0wv28AA+IMOUJmGAh76hG1tOCtazQNIPYYvdFakuty2rPrKrgxHhIDx4JYoX1WsY/FCPqgaDiSYXKijTNXiIYALFXpDUUXdRTDvv7tr6IvABDCWCiQT5ilKP2zIaq957NU86QalX68jRZTH4pOC0Lvn37A//1v/8XKAGcCeuy4uHhsVfeU1hu/5wA7pAMEPmPfXAJCG9AcoVhzGDUH5ZAXoqT48F1nESdPxCT7lcW+ref7RxSf027iwV25frnsP7rFad2/DXE73yDJrp45F07e8dQuJkJj7pADuh0FNAMwhgQrQ6PbuK3N3C8brtneJBNQb+z7+xa44a2fZGAZbdtx/L6SdbtLXfLvb7ge11U77FeX3rea5+9pV3mAVD8SP3jwoUZSurQXnr/2+0ygqQpGbT99PLZbn9/rV1WRr0fYbQCO4BH7IGVHLpPzgkADgmAnqBqlj6roqqCnTwuCrAmYCkouqJ6Dn3jnnn43JRwoAlYFFwJtSwoEFQVVBIo2TwotaKqAd5QAbG5DwSexVMVmgAQI3FLko91Vau1A0KtCs4Jy1pNpk6235DXFSAxV4hlBTSBH7Iz5GgKeWo2Pxq5k6wPoHXT1YFCZBW1bAgAIIrTesS6Lng6fsO//v1vnNYTHvMBx+MRSQmHIPeJJT0g5pacoQn/Aco0kR65mSMxwVg1qU/Y5r/ytIvXpg+wsxAGYfD3b3uLbVcUX7/Ce/Agrlj2Fxv0Ow1LY+/uGQzD/9tvtLMxRsKo9vlgX2w20t0neOHv13z292h7HJuf/Qzv+RyX19lh3P/k9t59TjRq9hda79Be9/7f+5xdGVWAzD+emABO5pvPnrOfrRLfWsuOUUEABJENsIrA6vkBS1nABKQ0m4uBGfM0QaCY04zKFgaYUgIIOC2rFwEyNzogeJhn5JxR1KsEKkFybhyEnBNUGCorpukAYW2s/LIuJsTZlBvSHtsWxYCC9T8qAOH6jpwRKp34GHv0aISY+8CLAUlVSLXsfisUx+WI43LEt2+/49vT7+Y7UUZdCx4fHjDPswlbT4OkRC1tb9w04hH7A7oR6IJ/XDjjedvBvs/K/RURgI9/ppesrPabHf2d1tB3L9ydx71XKSAd7r+HCuLys75/jdabtsV0zd7YWvF77fzz6wjUCNW+lzX6Ue2ebHfXvv+R7f2Y6ZfXHdu993htf/xIheHWs73uOX4dJScyUFqYmyHMRAKTxwwgu2vAYfFSzFAldtdRL/ijEBOy1UOZGahSUJSRZWqAZUoJs07QwyMYjFKtiiAnBrCai6FWVKlIc7aiPMyYQMb+B1oNgIrqbgBXBNLBXN5MKEtBptRSEVcBZFUjMHq5+1H4b0L/ADe4zeVge5yj8Y3zEchkuCWtjzJRAkEsGyAJSlnw55+/44/ff0dZVvz28BUTMr48POA/vj6YFjJb3uLw37PfJHHCIU+Y8rY0r6gJ9Hig92w/m9H/0e0l4XkptPasoe73ubXZ797/3a2Lfr1deP/N192B6tv9zvyVF2ffg6jcD6n2/fVyTPrme+5D3X+yX6b95EcbfdbR3kOg/sitY49k+zNAhPfuwx/VNq5fVUjT9BUUmfMoO2M+IVHGUlfjoXlNYVWJqDo7T60krwIQckRApfnXAVhkQC2geUKpUVnP6tswgHU5QYmQeR4s9gz2/AU0PDsnSx6QUnIUOwMqsDQEVkJYxdIGA0Y6JEcQUkqeNGhA0NmSAREsDDDCDNsuU6sDH2R9BAzvxsgEoJQV5fgEoYw/nv7Af/3rf+F0POJhOuAwP+CQDvj62xd8+TpjepzBUwYImOYDpjwhJ0tBeMiTuwi6oCcYiUF3Vto9rNjPdm+7BdFdms7vYdndy+7fhWj9/IHse/99b3x2ea/32uB2/A477XUbql8zNqSB3PCrLYmf7177OEX057SX0KbPNrYuK4bPfN+wqBoGsbjlzqDsKXShEKqNcWMogHpVWkJK2WH8CoCBZJEEIIPmjeRHyNOEtayYpgQCQ9QSCzET1mVBmicE3ycK4CVOKKtVxyVHzRMxwAJmAH7suhYoBOtqLoWUgKTmZhCRVkk352z1A2DZCsPvz8OeHv8sSZJVKewKgIcUDmWBs0jFsjzj+PwHnhbGv57+C//+/b/AKeG33/4Th/SAxMA8J0wPMzQzqiq+TA/48vAF8zTjYTrgy/zghQpMKxlbPDTREOQ0DOSoBJyTWN4LgnzruaEpXrvGHkloU/7zO9stqLz7dejKPYcUy+1ZdfPM5JP8mh9VVFvo5nnNeAqiywvtlqLwohJBl892eyjfD77dE+YjV2Ukve5drpOewx2g7Txor27Zjo+kJaoe9LL/jM2HhzEsLpSGMwjkDe1nCcc3k1F/0nO8DwLx9nf4iPt/3zWvucS2e3lL5HbluPvvZj7/2jQBmJVPCiRFIsVMjFKsUKDljGUQCQjiqKEgkaX0laogIaAKhIywV7Wa24EY7DkCmBmyGpJQpKKwWDQcecZaz8sPMMAEVsWKFZQchSjOD/D+Ko46CAkKGZKR3NmRckbOk2XWHXKQJs8FADVlgODv4MhBFWloBhTuFrFQyPgvESN/e/oTT09/4Hj8hqfTE47rM7Qovj5+xTQdMOUZXx5mpNkSG6inFTxMMw5TxuPDAYfDPKQk7IKljxRtYJBb7dYEfC18feUqrzp6e6vLc/v3r184r2Xs7rOzbeafd0k7VtGExJ5SFUIsiCTAPvj9mj6nG+9z/+a6PX4PPn1Le7si2HwokEGY33eOv48CRkDyn+fPNoRjUfht+PIeTdOPi+MTTfsZ7fWM+79uu+9db6+J23PzLfunLZFGOG88AftcYYnlMpKV9hVyH7uF0ImsnqnWI9NSAqEn4rIaA7CQPwhSJqAM/nRSiFZj5ieyREvhl/fqtwxGkYJSzDBWVRRPDMQpeeZCYK0FRUpzaSjUKvpNE3KyYj96VuBJ1J4hKg1WD0sUsTDIIrUl2ptSQqKeiddkNSP/z//5f2N9+obT6QlPT38iTxN+e/yKrw+/Yc4TUgLyISNNjApG5hmHfMCXwyMO04wpZ8vsxwRi3Yb2hcVPwwSC7o71axbRtTClS0tx75o/brG+1s9+rQ/OBXb8bOS2HS0+FoIMxzehca3/eEiAO3y+8TkN9DoK7H5Y9yHErgns/vFtgb4j9i4+udbeQwieK0uK6EOgBfMoI3KuNTuczlLVtHPIfx8Ft7brAlbco9XtJrXyo/XSWNKz3wwtUMtN/oIS8KsoCL/Kc/yV2/sR/e675j3f379O32Mf9v0vCHDt0gF9+7pKBBBDV0VVE/jmlgZEiyUDYkJydzYN16jidQaogtJkn1fFclqgWpAm871b1j1/qhCylCAsLf4eCiPcl2rXrhXLumItK46no4U1pgzmhJwy5jRh4gymBBWCuoGNcQ8RQyFErCZClWrpkdX+haIROzfDQwfJk/j97//7f2JKjFM9YVkXPEyPePjyHzhMDzhMGUiEioJagSknJJ7wMH/Bl8MDDtOEidiK9qhAPM9yGgUadaFxz7i/ZeLet5l8jODf1TF2rLaX2p6Q978sqaI/f5SnBGKijT+3giuiM859Q21hUI/KICLQED5yblGST5goOxrwf1j7566d7ZB8P9z3M1v0pcAreKkCYLAajLglVfVzutJlPR5wnG6Igv34IBfFAlVPpdEVRFcwSJqFY/uBj432ueB696eg/Wx/u9Zcbw1Vi/0LjrbZ+rL9TwaL19ZCs5BrhSiwrIvB7tMEzJ5y19N1iq44lQohyw5ICixLRV0FaU7O6hdk9/mnnLzAD2A6vycaUoEqYa2CUiz1fikFVQRlNSQip4ScJhzmAw7ThMN0sPK+nuHP3IfS9hRUtBTIm/19+Ak2d0KUgYq9m2H7TH764994/PIFp3KyJArzIx7mRyMy5AzKwNPxGzAlpOkAIssFME0ZKRGULCcAQuOBdJ/xIEx2hvFiE4zBjXNfMyE62/snb3jnKAReFnUvwfXqfp1RoNutyMtbeuzooACIaJ8s48So4oKDILzlDbREEoMFT2P96YEZu9fTP1bY7PfsRzzDhlQTFr2GR9GexRa9P5NvQqEwCKkVKrETmzLQEQUT5EzGLM5eSdPUjLEOOswFgbqZBwDASJZvYyz7yZ9ugR/RRrTss/2YFkha5IsRCaOGIExg5e5GPPsew55YpXgGPiPhzdOEw2yRBCyxpwoWJ9MRWUE8VcU0zUhTbmhdouT5/uE+iP4AKop1XVFKwWldUEv1eQOsZQURkCjhYZrxOB8w59zQ9ZwzSI2PJWr7t4ig1Io1Qh3hxqjazly1wnz/bHuVDrIVtp9zIuQ/n/7AqivKWvH16//A4fAFU55QPX/xWlf8/vwNj/SbZQwkIE/JkQG3asDuErGMRZEecbT89/zO28HcugbOfb/noSsjbB6QqR33+sn0XRvkzqm9DjNdPQbY9sNo2W+tdljKSC+cVCFDogdGYhh5DBaOeS7wu3Zovq/4u2vEdh1AwexM2NCoXXNWVhMvPtHb53A3wF1qznu37f0+SvC3/gwlQASlespP6kpRJO2I8zpiIC1Hufr5gGLRoXoZTNAf8tQ3NrGwH0VHY5RirbjWbzcz5ZsrEhKY1VAEGMt5n0Pxce2fqmx8BBz/Pe18v/wrtj3FarMmHVujMyZyIkYli6EXRAleBbMi52z7ooivkYqiKwhArQVlrVi54uFgMDzI0gYrCUDZFIWyABODErVwPoYaIohA3tSJhnC+gaLWgqWecFyOWI4F8+HBIHstmOYZj49f8HCYMSc2/39KbmgbV4DV+EcigrUWHJel+fkZhOwoLak2Q842iY4UM0c1QQBQ5FIKUikgmvDw8AUPD18M3k0CTYqn5yc8n55AzHg8fAGIWopC8Y4kJmhYKmfwNbAdxGv+7PbT5QlTj2s0QhR2BGkXPL+A7d8bdyv5WhuFf49NldaHYW2KACKl+aOKVoioJ4OwEpKJ2dAYtjzYzWKNpBIOQSEsVxGLU22JmWyiWprsOkDJNsHbczKs0lUIPX9HfoPL49dv9nYiNgbqylOpFaVIUwAMffHMlz5NRYzlK+4/jGplIgb/iQiOqChVABEkWIVMTK4EqgIeURMKgKBvfEXMkhg5GokTNIvVP08ZSGyw35mi/Nlebucco8/2a7amDMjo/+9ypBmWQxtD6nhZW4a+lDMUglpXqFq225ysKm2tubkNlnXBqZww5RlgT6ebgv2fXMgmi4QLxUTdEBDFuqw4np6xFIGyheBzBvJklv7kIfXzNGGeJs86GO4I268lyh9H+GJLyscDV2ncGzyHwJSQcq+/QwTkb89/gnPCf/z2H/jt638CyiiyYpoTVlnx37//C6dlwW9fCPM0YZomMNiizkYIMvwsvIWJ93D+0dq9GMxQArj7LKC9LkCH+k3kh++7kdN067f+6HbPPQIRGJWZUFtEdCOwz332tfaiE2sxpqjAQisTC5AABMnDWa4hbAAXRtWFTVPIABvA7bNHpqw4l4hcWTANNOcMpNRcDT/LrvhRm3LkDlQJF0BXqkox2K1n5IJZC6F4qZNyVKClNsEfPruT2hglEHia3EowBSHQM3a/TiwJ+DxZyoplXa0aGQOJre65SELOrgp7mdDorzEL5yVZduDsnH32T2wj5+ItLslfof1KVv/39N353GyoQHjbAu1ENwfbzjRYha0/TFiAU8I8T1jqjJQX85WnZGdr39+C0U9CIFGsZUFlwWEyRDQxYXZyYM6Txeonr9YngeCGkkKQCqzFGPr1WFGkYMaMr9r5Pwb7Tx5Zl8zCZzYyoopD+rY7JS/9FyGBVRUYMhDGv5TSMA49IVJ+On3D16+/YZ5NuKtajmWI4tvTNxxPC4iAw+GA375+tVzHzEhBBDvzT4Z/5SW/2DWL5II3oGrpFYdjO/t9PO/lyfSj2q3Y9k4MQ4OVA6oPeD6aQT0VaNCzKQCrKDJXC+vI5EQ866MglzTymQsvC3cBmDNCCYh/RBF3bkpAHOtPDFVtE6j9izzVv1LHv2tTWEiQAp7RS8V8+bWKucjapmIKWfS/KWyKoqa0yVoaB8CgRoHWAgaQpsnrfHffffNP1uopT83VIlArPlIEUmxOkBDAFZQJRRioAqICpgnkHA/mnoXz1mj9fcfyerul9Ljt8eK5/8R++xltJCYH7B/uNvspDXYl4W5AwtZAcHAiUU/wbZgThLyqH4Dq5Dx1SN/WtrvVVFGhiAoCzITsMf9TnkzRdpge4saeAIAJcMCM1Voqal2gRHh8/OKx/qn5/CNMj9jzgog2Q1BFkRQAW20dOMWvEbyJkDMj59SQXkNsDZUQcdcJEXKVsAw9I2BKmKeMZT3h29OzaRKaMfMBhzxj8mJA3vttY1QRSzRIhIRhYY0KAuKjDvlvBPtAQIskJ+onN3d6E/7dyg9fdv/+zgkVz7P3XXvH4Yi9z8bmiulYglZdC42jQzCfC/9STEgEhENEXYMcPSsKsGuVcHKZkifDABpLPeJLO2mt6VJNIPRxGF6hWT32AhYzKxDlZgEzsS0Yp8B9rPvl/Mo/zrIZAUTF6AIoFsqjthjNDbJVUm2hVpR1wXJcvDIhANJmEXBy0pBDhqOC1fqa4+5koT2uJIZ7Bo5+qZrSXmE1w4XNx6mjIq7DQvpsm7bXK3q+MK703ad75ePbKPztp6HO6nuRSI/QUQ3l3V10zWgB1DlOrIScjXR3mmYsspqlPSVwstK5KoCSQeazTnheVpRa2v5tz8EN/Q7uzYbjFogDGYJ+8nVeyoJaCw4Pj3h4sIy6KXVrveXUcUwjkNzG7kcoJp1jEPV3jcC/rRQYgZKqForIZDIqZ/IAAWJAFGUtSKRYUXGqJ9Qi+HI4YOLJYf8ObYBTiyck7UUKgEHIu3+mu0Oua80j9NZqPoJAFD+t3nEcO0Kbu5PmhqygGBxcEV6bc+nmZyEAzytPWZXEzvQGPBvVAF2F5R9KQLSw1M0BbfcjEDIlENuEhytDVQQs9jyjK8EUzuhTO9YWBzV+hX03ZrcDwkMTvn2NmTO6MtTHS+lNguUlklL//vy6AfR9XBtdUarG4h/Ha12XgVzpC2tZMOfZYm49IchIyBEPGYy8DKadJ+RsCveIsIQLhpOjD2LzX4dnIzbYL9ZVKAEsVhVMxCwVGpS9cRPd9vE/t+31wd58bAjnlba3r/0MGP5Xgf7v7Ye3uJ/sewtKZiJkn+MifV8VWAa/NMglJvLkfAzijMoEVIXqV3w7HVG0ojLwMDGgiuLx++q1AWqtWJZT28NJqE2JnJMXzgsDL6x9dlchkJHAxKhSIFqQpwl5mg2NYEbmCYk9m66fqQIjJtaCMaeL9QNAFCGC0pBye9/RPekZBAelJVybeU4ZU56ROEEqIEmwqmCpi/kYQfj65QseHx8xHSYQwcEPZ5YredlDCzUgZSTuUKNQ3HgYQOxA/dh+H2J1AzsPKMAtwf/y5HnftndFQig/2izJDc8B2Pjr43eD2/PFhqIOH4PZwz3q4EqQ6GgX4OcKgD1HQGIB/2wtHHvSODc0y72m6BEKH98+Fl8A9jehze0HxUdqNU5FuFk0sn6FUDVtW0ggWgAlpJwgAhQtDeGanE8TJT7N/3g5P1UikQh7qJH5HkHYpNwmnxfjmjrnk0R0zqfF+vFNzzbra+2fPg67ytaVPhs/D9StW+Ext2FKc1W3nwZeFSLM2Yh6iRMyZ6ScASY8n05NVlFirOtiNxtkUCnVygJT8K0EmLbJ0tqeDAK0okppLgiCkQu/fv2KxBPm+WBpfp1bJSKAWiihqBraWAtiE+rSxJpTACwRkbsNwnBj9sqIoQSQ8xmahFXkOR8wpQmJCIoKIcWxVCx1tVKIacZ//PYbvjw+YpqnLvg9hhIEUCHwZCQJhTEUCWibYqQjDEIffMPcEhN690Vsp6sKZxaLFWC4i3z3HYvrVhW+bYgFBl9CJGbpll7Ijx73ffkvFIC4qPXv1sVB7idWre2aZvl7oSUyjViGa6qOiYJoc0/AJlv73BWEkQDor7TtA3c92DHnHfQ2iPnlcfp+TeMtc+F8fEQiv7b54+x1e+EP9oQdKTFqBVaYYOZ4/mLjM7MJ/9lrh6ecvaImeZES89dYhjI713IOWrESMpyvzTsig/oRaJsKoD2KpsOil7ycf7oAeu+mAQkCm7UGXFrFoxL+FuTgNor6c5GAe4T42G7Nw/NzwhgKuFtJnajnhstgOAZyM0Ly7T8mcBJD7fz7VSoqFKsWkMKjqlyJdyR2hNTDyjax1iPhQsiKBlvAwgmhsEQ/6YBaFVM+4JAPFucf6zdcxBG9RcY9KCKWVlhWQAkT5XilVi2wy1nr00TdQAl3BZqLUZHBjFoU67IA+B2ojBUVecqYpgN+O3zBf/72n3h4OLTkJPZiiqVUZFEg28uLxz1GXzMREpN13KBFsU9+9gPD+rHF0wD19nKmBGD493M2rV6KARuZFB6LmJTiAlU1NDZXAES3GumZEmCWefjdo2+2igAGP1dcj4hQMQjz9g+bc+M+8dnopglYOYpJbN5uVBwMvulj0MZCf4Ct/rr2HvOkz3dxxdQseyPnAEBAjOThkXYWkYdnMgHSYy4IZOE+OWNqbF+vYRaIC0nngqAvcCJCxuSZALe2QPvZrJ2YV8P8YSdP/UqD9HdrOrrULhWCvXaOxt0Dmf/V2i1E5Nw19dJ5zYBRbcKm70dbFAxqygEzOUo6XENhidSYcJgPECielhMWLdC6IqtZ7cuqyCIoa/F7se+7w9i15ydA+/tUqSh1tRt5ptzD9ACagVoUczIEwJR42ycEirWWVsmvSsVSVkv8U1cYOZEa4rch+vl7N0QyahKE/AUNCK4iPzw84uHh0SyRmbFowVoqUs54nGd8fXzEPE9IU7YO9wxEp9MJSQpomsEgHFUM+neNw3oZSCAnKVKrkjQKqg2pA2hlg2kQLB896e8pa2tjOx4YEwyINR6Av5B2K+7CKu9CuAl/Fy46+PXP3zsmW4VNiFoHLgEUXurZYzxDEG2FP+BojKelhMISOnlIGrk/n9oz2Poa16xNolGGdIXtZ+5NHzZHYp66LzGljMQZqgWcUsuJYBOYWqYxIkKeGEUItdq6SczIlDClGXOeMeUZOSWzHBCkJlcaa+d+BLxIsM2KOHsioO5vdOxomFM21kmjHCi6dXRNA+hL7rN9ZzvnkYyfA6PAGtdcO+oCeXup/cqKwYiE2I/rSkD8HueNPy8+GxRdAtwyB6oOeWm8L6sADCcu02BimsRFZsZhmlFKxboWVDU026x8QlkLahUQJy8/3LPsWVSAo6jMILXNmMBegAhm0JG5LKacrRAQ1PJ/hDICQ+9KEVhyXZMdaylYq6UPrrCEYqyENBGIpg3KO/bfJisodURCtY9JzmnGlBPylHF4OKCWI7IwHvIXfD18wdeHr6CUUD1zGdUKeDjCjMmAEBIkZFTxXACSfLSAVdU3LfunydBLYYa4MBGIowte8Qhdiw4/9EYY7iyOMRlU1/72j9uUtX1poZFiXKsX13Oh2TZudH9/MLnjfc4XQpvXPqPCtWJ+nMgZoO3GqoqqiqUWJ2SSKQJWQcYn9RCXDvWylF7CUsRLzfac0kSKohWlFhCATBY+oiqQ6mO2eV+3OjcL+fbm85HEqHex8oeNoqE20jdhVktznXhCTop5VmBhK37V0iOH4utIC6QjQbC445xMG5+nA+bpYDk1muswRHi1zxSAdtcPFB56ea4gS+MJBCcBmryAibQ51NTKQfGOd+8bR0CQ2C6of1B77fy8Zbmfo3ztM+hmczZXzbBJCwCcuQ8AYBCS51yOPVfC97T34i5s3jvWl/bIsy3Ha2usnF9ne61B2Y19yBVx9lTAIZRVPQV6KNriaB2ALs0VE014mIoV5ymCypa9j5VQ1orn5yNOp9WioMSSBlWR0KwdwSVQSqZ4q9fngBm+IgplS/mb0wRAW90Agrkw1nXFUYul9mZCKStOq90n+rxWMZcjJdCZkG/zY/x86MOxTwAgJ85QkCUWOQLIwDRNOORH/Odv/we+Pj5gSgmR+HxdC6Qa7GDVhxZUBQ6z2xYkLryacgtUEzTsWeXMNVAhoakAvrH1Drk58b5DhpwL/Ouwtbrwj81x75C9VJV9kXff/vnGew7P99/tu84BAJl/N7TDhhQoPOyrInFuEM95OFqLAQ+0ZXgWI5yoh5fZ75wZPbuzgL0izblbwZ7tdk/e8lH+Ku3qxiLbUE2D4T09KDpyZX4/D9ZQ8WxciloqVilQceLP7Ik9wM0C4KF8KODk2pZ0KFKJ+kaPruS1lMJDfoKeGdCjA2AKSnVrJAkD6dfq+5/ZvkdgnlumYdWOK+Bc8EcOiF6k5Vz4ufIGeGhpnDso2T7+o/C/Bp3f+w5vOeat9w036PheZuwM98Tlfry3Ri9+3xiACSkDNOQ/sf3OFOwKQoqU2Y6WRp9O04y5rFhKwbJaqO9arcLe6XTE87dnTDSjzjOqbOHR2B8TMzQxarE9NWRaqQWcuLkplPocVFUspaBqgaggcYaoYF1PFuLnbvJaBQRGzjNSmpoCAHRkOQ3IJA/yUjb7uBmo2UxXQVkWVKrIfAAj4WE64OvjV/zn//gNPCXkQ8bqMOaUMw7zbP4JtfKGjGKalydCiEIk1jEmuLJPGsmCImJogneAqDikopuFcd5ik7s19drifkdnZxfY/feWglK71R9lKHc1fz0XpATVkWnfwXVVC+9TWNEGyyVtqR9j0yc/lz2pxegH6rH+Phbe1+HjN63YCC9KBK1OOqEMYQV5HoHRwrB3EVN8mtPDowp+oGP5Pa2cUNbaBqGhgMXfUQTIcoxTnp21v1pCH8Q8sDKjxGjVG6UoVDxTX2JLxQkL/cuJho0UPsa2SRYp0KrN0kgp2ZrytWwK22o+QyfjLmVtLGOBwYwQIPFkPAR74SZO3tti/BntPdCkt17jqkDqR0AlIqbQY9RhynvA1m3FaxSW2s7LHm9OfUMX2d0jr1nPt559r234QVev55gSvbzyWx8NhkdY7UQKRkJiy6cfSNW1vT/2fzOuhj4lT4TjoYDqQpaZN9Xy4n2qsq1F0uYvty2ZkNOMnAtOZUWplvXTMnl6PY9qe2P41sIASInaWJqP3ojuM2asdcWpLFh1BYORYQS+WN9VBctpgWi14j6BMohVCUyIvYI9eshThasnFlNTZIxPZMpi26GJXJb0jKZhoeeJs1vgCikFWifMDxkPDwk5uc+R0JiEzOwuA09fCo8JhydX8IxHpXgMJUwBIFKs1bSTSISi3DdeAqDphn9yOxO6XvzKDezCBXD1SOpqZYxq+0Pbn22hiEP+Ks1yHJ/1csPoyELX4mQ4Dq2QDKtpf1EJKt6emDyMzOoCpLQlgmxhMrhQ61n+gmkK7nGi8aqitVkk7Z09EYTG744OjGP2VxAo52MRefvHf7aoFRq5KPwtidldAoSVCqoAggqGZf+rkYAJaDkA3C532M7Zx0MdBlvE1EJ+imcZbP5KspKeogJURdGCqpY2eC1WTzzqDTAY0zyh1oopTeAMQAZl+Ptl5ne1c9j6XSHrUTsf2ov3iHNfuocf21Ei2VR4vEQDPRqItuFogM+NYa0SqPGfugJgVhucx2GMdztuzLlyjxCOFzAFZP95x+cevxt/H7lZbVZd6btzo0ciK6kXsBmvFyZFQzCHMdkic3a0uG/dkvWoEWOlR9CAg2cWVw8UQMxy5woWgUSOAOfRSDPqAM4JUlaoAqdyQpXqhpNX1wPaO4ViRxoheRNIaysKVlaxOgLLCQ/zoT1LvP+yrFilYK0LlnVBTpNFeTGDKEGkevbCnnFUhz4CyIW/hUIWqa6IOLcIaMihDAhmfng4YJonEDOelyN0rZi/WDlSmhirFsiimMgFDrERlCY0YWfFEKwcIhFQY6Ddz9wqEHlucyEYUc4eF6FF3VqI28kaE28fMmrnQC9Yz3suAAzXOL9e+PjJ378fHRpwaP4BGQepLxbxVpveWgyuByvBMEGxvgmYzDMsJu+X6gkpGFaJKnN2BqjByckJgEBo8aa9uhpmMCPUZLdbvVUVJNU3JNPIgYhEaIriWS/FFXtB3G2PfqwS8D2CYzOP2iKWTTKmSOIR0ahMHpc7KH6Jkytpkb0xUnEWr9hltcahbNkas/drBYQqSl0QOQMUVolsLYuzfYvP24QiNocSKdgLngsq1nXFaVnwdHzCaV1QRCCrVRX7oo84TM7/IPFJH5vhdjOnbrKcDZ22//ePeg6Ja/16a1z2rMr3UALa9W4ItDsu4gjLNWGqzXJvVqz/vrEwabuXQAIr0wH+tnV2rgAIYrENFnPsjbA9Uz3zKym8Chyiipdf90b/YxCk0S+DwXF+aswX+8++ZNVe70X7lc/ve6EM+ZVETQBrlJB3bhLUw+ia0PN992w70RiDKNLl/TDuw+pGabwrETDl7JZygaJCimBFxUIW3ZVz6kiA731Zrch20UDWzDBizU3Rr6V2l6wtWYDMDVCLuHJifVHduq+qWNYVWipyzlYiuFYIBMfl6OF/aO4JkYo5Z8yTF3ATkxMWplgQgeGxV3cDDW1ugQBUI/Arm9GpIsjruljlP1YsZQUt3Ha+pRQgMXJKqLUgaWqhCrVUgPwhYQQoBbAG1EDa4GojImRMXit5rFOvFPbRznTVKxN6nHu4ob03jffGwjgzjGiY1H1XPL/utgaCuKZvk7sX4tkoCuMTa8DM0jVUn9RVKlbRxsjnuL7HoFdCS8FL6K++FdQRk0pgNogIUK8No56XQc3PXxQiBYms/GTKHtda1V06pm0GtNQUmHbz8379MQjAKHDuFSLngsc2D+M/lFJRS8GyFkuCpUG0YSuBHTG2sFSaRATSBKhAqvo1CoqaAkD1zHKCZfSC52YoyQmuykAFRAuWdcWyegIuSpCYjILmr2QmiBYcTyf8+e0bnpcTTusJx+MJBOC3L79h5oxEjJJW5ClBKUHP5iCwseGaMjT8rwmezVrDpdB+SaCPgv+W8vDatlUofL2q7q3YjjrgfIZ6L1AIWjv/8h22941KqKpWn0HUEQH0hFsgNDIpDSgAgA1nx/Y6AoF9HzXT1pbZ2c4oalU/4QaCuwUs+UvwRWCowNkYXexZskUcydEmaM8Z0SBz9Dz2HEYdzhKyEa6GmTakTSnSVdhYqUKqWmpxNbKcIojXji63jKQu2tSMyzBATbnaypU4HghUAT0Jjrv3akttqyjrav3oCXmiHk6mhBMIxMZeF1JHR33fcLdArBuBgl2mxTwiV+JinqxFsJYTZk4oa8FxXVBBKLJA6gqAIaWCs43/ISdLFzxlQCyDXxQcAoznU6ugQsDi0UrEbdI2gmC12iSRNj6BkL89/Y4klglprZaekDz5yLquICLkRwsBnLjHPBMBOWUXcXaD6p3O5OVNtSebSSlsfUKCFxMiT5dKnei2mU0/s4WBT3QJGzTraNz4thByv0hAvWjnjOGAGwXAFwMcRSDflMX9W6JmAbDHlhNFBakeLQGE5mghKsFQN23fX0sVcDRA3O2QmcC5s0q5VccyJKF3ixNnhmRMtzgbH932rMp7zgnhr83Xb2iIpfotWLUYqpUyzJ2umDlBwSgi0Cq+WStKXXE6nbCWBceygGDhfuxoTSToKKUACkxTQqkVUAsrIpDXGKimJMA22EBvihLADKUESYxSCp6fn/2eK5bTgrIsmKcDtFo67+DjTNOElY18ZFAnN8uR9GVht9d3L/ma9767Z5zeSmbrm/6wIs/usxGGm8/HT0ObPjvo7F5x+JjBM5Rs0VgPXUkHUeOUtGQvXlZbo0w31KuIm3FA6HwObUqFK2w16kTYvIBXZw1UQclDqs8Us21/eR0Sh7UbDkEAlNs+EWiYDAqANgPIBFtiBlhbDZS9viPQYDj1fhQniHc7yQtcwfddUlAzZhVQbspEbSFtskFYurvAEYC2V1Ebnz6WljK4ir0hqfTMngREBE4I9LUUFFQcTwcwJcx5Mk5OI2dbn0QXMCUkVOubav1cVyvolTIb4ieWgrhKgaUcNqPscDjgYX7E48MDJq/q1+Rl5CQRSxCk6LKWmTGlKQa+7c0iFaeyGOoLG7e8lhNOz4ttSAB+e/gNZTG/YpbZY8arMfjd6st5sipKnmAgbl6xBYQbOS0lzJ7tbI6ax57+sAsw2pQSHifuSxvDa2DEayGE5yH+28udb3rdaopQv4vJp2FZxLVM6LTaCG5FqIwZpCzcrKIYBN9Wk2weSESRqWdTDIi6YxYadsxFP0XqYSLGKhWrVKBWJE6YYW4GtGfvkG+klExsISyh9P1qPv9xjLbP5hvOYAXZT3Iry3xtxMnqMKyCtVoFxgoCUuTzt6xhpRaUpUK04rSc8OfxCc/HJ6y12KKnhClNyJwwTzNQLaQoT7NZA8W4BRnJebhkaAD6YlUVkADCtraEAbgWvywWF6zVLKc5TS2hSBVFKYKUCpZlMYtgddcRXDkcom026+eNClW02+St6+018+jcyhPR5p4JmLtjU4SGVp+hA4biBGza2RomtK/d1xIublwBIs6t6fHnVr/EDSLf18JfDBh52iKmLNzLhL2l9I4wOXsibeMTeeWF2Iq5+B6SGFBigGpTzvdewYSl/atiyFV7pqa4EMijuMKlGdB6sM3VtyQkRbL0b17siprAiXdvP4dO1TZOwSGy+wsI5AYkMblxPlwPCkhUOrXWaqtIz74aSpa54tyNMKJXsLh/KRVL6RVYFQCxIBEZGsoJympub98WSylY1xVs4B9+e/xqUQJqFnhSe69AiIyYa0mACOYGX04LoOZeL+viFdqsnkC0wyFbCv75AfM8mwLA3HLsWMVCR5Kro0uOdGhSkFaTzdpdf8u64rScAM8aWEiRa1mhan6IKU/QKqhLwVJOONQZUo2AkB1C4WRCnXwBIUiCCiR1/5C/ROQ4n6bJs6IxDvPklY+SJUFJ1DS0nyVMzpWCS4gQF5+MG4A6+UsiHtvJY4SejnV7rcHHp0Ct1TcIaf1KxE4iu9xgSXvqR24FKMyii/tJ9ZxSrSgFmlYsAjArSvV0kA5DFqlgUQCMhM46TimZBTmod4xebvN8wY/PetF3LxyzLyiumBU3W1fCAv0AodemaFf0jcsLTeWcYTnDJ5xwNLdLEZxksbA9f29RwXE54Xg64bg84+n5GX9++wPPyxFMjC8PX3CYDkiU8DALHnSyzQSMUxFkADlPCFSGQUhpQtaKUhaUYgAlKzchQ2zrbXV2snpJ5sTkOQqyZXOEKbVSK5Z1RcpdyIxjJqINzRu7/V5r/Zalf/7ZOAY+PE2ohD95/2630YRgNUv42od7NUqxo4uR+yqe34QPmlUVyFesof6Off7ZGorqc7a+GpRuOZov+jKeM5Tv+Cz832PVtmbJBVN7NKlE3Eiyp6mu/JlhbAqlkMHAQmik7bEnm/UfMHiNvWLcd6qR6GSLVoYvmZkNifRCWJ5pxNNZx526sqDabh69j8aZGZS5hlARWVErPzaeXgFPkKVhlDvvhtp4OFXXrHLfj9kWrhlY/n0iYEoTShWsZbXrECwtN9t+PqUJUqtl7cwTSjIZuRxPOB2PeDz8ZuW5a8VaK7g62heF2XxON15CSo7uVhAUa1mgIphyhjKBc25r+suXAx7mA+Z5xmG2hGHZ3RBtrNwVWaV4NJ4hjMwEceM75mCtFc+nE5Z1QcrZ3cBADi1rSglfv3zFl4cv4JRRV0FZKkqqSGtBLtU0C//PipLAN080hiGrIk8zgmCUmFsClOwKgcGTAJ3Fwo7t3H81ws3jjO6Wy22nQWh+MQf3lY2ziwyaQVjowSkwJdgGtmhtm1ARdZ3YLuUlXqBqcJ8tJjgRRtvGRRSTVr1/CZwtlWSV9tAIlhHB/NJwBIbRfZi9z9B8blXNRSNNizefEEORcrb7VsEcFR4TuzWcPPtdamkl28Y69s1On3bNH7iGDbax1Vjiu6N39ZO4aoCYMT4bSTP8ZptR4CTkqJYJf49gRfZECJwYpQhqLahlxerpFmu1z5a14M8/n/DHH7/juDxjXRc8PR8hVVB+K3h8/IpMM5gS8mx9WcUsDErJXQgueHJCroTTagpCqQXEjMQAe4gsQJBqvkci53QIg5wImtK86e8KgKVaZs9UwVw9/lkt1JN0GDu06a83x6KP257lfw0NCCsS2q8f2EsMJO3ec0eJHO5fNbIewsKzWogZbYS7CVt1BnR/vmZRw0WtKljPFZyeyLmz0ggCdl80UDVg7jj28ulVt0pLJHchrymvvp4j3Cz8vGN478Yg0IhUUd834AqCuh94uwYp4GkxMmrkG6gahgeDYKF0xkbuhOaqnVVORKgsyImhsNwuKSmULVytwZ6xFP2eBK9lEuiDQ+fwvbVWNXY+2/4XClCb0k25i/0w+rPzHsa8K8GbokBh/CR2dwARmdtMjOWvUCiZ6VZLBc8Z4ISUJhxmYK0rHr484FiPSFNGyuRhe+a6bf2LoJLazmQuAjPytJoCALXshJaBdzKCfU6maCXGIc/IXh44p2QIQOpFgsAJqtlIiVxh4KDzxCqw+DvnbKjguq7m/xdpxMFMhLyuBUTU6hBP84TD4QHzNIM8A1KeCrR6PeKUHQ7mloI0ChWQL8ZaCh4eHgC4hQGLc7bwCGr5l83wGoQ/9W5rC2jYREYlQLXpHlfbObS/kUeDUjE2Oqednl8QNsDhOzct2jT7UhVrtcSQ5v81eCtgmxGCs4nCUHJN1ZmfqhZvbmRLF1Kg5vMLvoT6QhNEClnflFTbRgb/rIqiqKCI4lQEJOZjrFXAiQ0+hALEYNfnE4d7ZhD61PNKxyaoca8YuXG8MA7mdatyIzS2ozFAh10kKc6vM4qOrSK0vVGc14VVHNUsJVVotpw5JAxmQa2MUglSFpyWBafTCaflhNNpwfPzM/748088PT0BZH0qoliWFcwLeD54NkW/ryoyp0FJdquKUosoEKi5ZsQ2WYFi4slCAb0IkTqkaMWGLMFQTrNl63TiWRUL7aW0mvLNAs1dWJIP0KiAX8R03EABxnZeRGrvfPX9IX7nzlNqY3fr/LDZW/4V7WvDNmFpBVQUvsdErQbtjjF/4m71k6BZJApAqO1PcecQ3jY+buMSt3/qgiwU75aHw15ig0aJSCvvmlKyZFtupTVWfBhQCe08VW2hgq1viEC1h5NFBlFmE8jMPc49Np5GWHRFJFwJ1JRBQzFGC11ccMcYEwlqYkyTQjUDSqAsEM9g1/ZK1dZ3MYaI+6spupEsS9VIdpzcAOJkK3s81x4AoOCPRR/1Pd2Q2NpDDh3VzKm7FgiAimAt1nd5npoPnZxoV6siUQLU8u8zEw6HB6SnCZwSpim5/PJ5AO5zEz3ksUhpKMPxeMTx+AyiZDVBpgmVBBNPLdPnPGXMecY8TZiSJR8zNN2TfIk6IZhBtDr6MfCYxNfBugKnE6IS4fG02F4DBWqFckJWVffjxwbt+eSZkXJqPnzTMqXBX0IVQRjTWhvc1AWEXaexXVtqwq7RhmCJSTUu9M22sKsEYNefvznvvr1r026I/wblWOwvWux/QCy1mC+wpckxbk4n5IiBy0rU6rSTWhW/qqahk+eTV7hFo12jVdVW3cks8tQeVoZFrh6qUWFKRcSI12rkNfEIDhX4c3gGwZaTsecXMMNTAdKoZYFe6hKgGkI6/JS6ldtv6P9Nj2tAqlvVUF2YNmHeBjt8Xrfv0hEEapZE8FCSmCwwKJ2Nb+Gpq2tVrFShdfHx1uaKqdV8sHliHA4H19xtAavYouNp9uIkJmpbRUaSBidCTakTBepq90ACMA2QKhlkmKrAaLWEOU8oaomj5mnCqitUTCldakGSjLV6ISPOTq7ydev9ISAo7ls4LypzF8K8+7ftb1yQfy+v2ZEcxSD4ZfTHm7sjQo+L10lgsTKxSRkSGTHHK7NbbdSrLHom5Sawx1nXFM8m1CJ8rVupbW87H18lwIl0ZizUFj3ERNCUkDz5CwC33Li9f1cgesG1CNUNwylQiyYEk3rk1hkS05ATaUIq6pCQPaCHOEp751AADEk1xVjE9p/Y16kSwIYgDMBs2zNbHL0rH6VaPgutFZGSt0LhoU6YWF3p7eS2DRI85kIY5htRlPv1/VoqRCoKKLay9nCqlms/cnOoGok6sfMRkhGtAUMLvj4Af0xP4ETI+YDkvJsQ+CzUUFazuKtlBS3GxzkejxY6n/vzR6I8gRHrH+aDyd2o6RJgiBthQdK3Z7VEQZISSjUEXlUNwIERgmNelHW1nC8qYALyxKYAQM3iCxRAfXKstSA5+7DVLCebhCKMkD+tnKJrv1HdL8gcnQtgVuUIZwV0c2/bLGK93GS+q/lqN7ub4xZNA5VhY1TVIbViLxWrPsGUDJYTVbe4XcATDRtK1/SJACXPhuj3VUIvP+vPEZaNQUITWox37xJUhbHBxWCn6n5/gEAWzAowuXbb+zEUuJQTOCdUeIwzgOzV7yw6wUJFVQid7dzHs7GBQykYna/xnAH6YFQ+tVnEF8fvyqTLsb8t/NuMa5t43BfofRA9abAlWs0KBnnRkAn0+KWH5sFqfD89PWFZVkw54+Hw4BsJg7MzhhSelc836uHJ1lKwLisAV8DV/KAgwjRlTGlqWcE4JVQIqhYkttCgOc0tY2B2nz+L8wHErp94RU5WfZCradCJeilUgrtEhv7Yune6JXoO77ce3vm8++R9pkYQM0Kp7kL+HAVo81r7J23cAi8JJUC1ueEMhdO+qYsrxhooHxAJkjSKlVG4RchImR3o8nfZTq6ebTPWtWIsxHU+P01JdD+/WsU31rCYYWuyJfNKbV80Q58bua0bUrhooZhEH4oIotR0PJKokVgbgbH2BGG2Xl15UQtxNIa85zrwDJWcLHnOxmDyjYxIejiga23VcyIqWWSDlbatLfKG3KCIZFpICTUJMoWFTchEzZiKvr8sXx6GCFop7pytZkrVApIQ6HBDhSwU2muqkKOvI7ycc0aSjJkyWAhfDl9NueIJyUvy2r0FUFMISrVst40HoIrTukAJeHh8hFR4pk8rCETkGXanGdxc5VsF0GROZPSLd9emSAYPrdZqCcoEYM8YWIu5FAUWecHZrp87XBbhSqZNr2tppIhSC7hkUPIkDUFacT+mq1IgePiY+44B81NbzXPzcWyIY00RoFZM507j48PbVpAMVkiDxLY+zdi4IrSqH1OtVg+MuQsljz33jHwNISEUxN7ogxr4Vq1N+CuAKWXMecLE7BaU+a5KNe27usa7rgUgeElKY42aZihgzlBYGlkqFZxnm/NMyFOGAFiXApCnqE2EDNuYFGruDSYwpJM4GzEQLvQJyk0b2PZkszjOrXpsYol3rcxbAxfm0f6oDkIfw/h14lhAuYC5qgyFse8STGlKLJinbtkQGWeik5ksKyMjYcoTpnkGieBhsnGj1DevyPHdiH4U64eNSaLAfDhg4oxlWZFztsyDylirJWZhVwKJCGmy9SayInk/qgjKqlg5oZRimyeAiVITbuqhT+ShWi0yJXpumO/b/tz2dbg6YhNuox4KoUaqUrnQ30TgCFJTFQbrtSuR8S35erKthAGPwpe29sy6reTRSGB3fVBXAsj0YQgcHjYlWXkj2vqkGTqAYJs4ODbzijDZWl5/pWZZN6jW3YbViWcqtjeMcfXh8lMEGTGs+4tJPYwFNojhaDUHzybG20rLDq5ddy2Z7EtuSJiSUsXCUaulvbRrrh7arWjXby4Vt1Sjq9SFkqoZJRXqCmzPoSBSTJGmDICM2Q5BSQkMm4/FoxWgaq4NNtJ5TsnMtVFhZQKrkeES+ZoUz6An0tBndYPVLHTLBUDzDMCJuUQQtvma2Ep4H6YZkky4ckp9bvt/gQiXGsK6opQVxV3jD4dHnI7FjGU2fpUZEbmh7pmTj3Uk1VMgGZ8gwM+iNodCSaueRbTVdvFZKo68mIJlSlciggqQyT8UKEpZzYKZne6kM+o04bSuQLKYaBUTRj5jm589EdlHTJYT2YUJechKckEffuwGHWGAZHYsur3WYJxuSOwWL9tzAQTku7kf9Tj3vQuF7/Bc+IuzgA0lQM8IBd/QHTOIuEsibpprdS19pBw0rgB7tkU1XkVO3NIk52Sxp9M0GfTjeJuqtNrz1a2hqgY/iaqVuKwVy3rCuqyYyBajViMBMgRExR4msyEI1eEjsYdkIlTXmqN/lSwFtCd5NN8jtG3MUDJGs/f7PQhOCJqrdIy9z2I/p3FccSHExp+j8A93TlVt1rqPJEDqcxjIRE52AhIdwGpCOHvSpGmaW+QElJDY0HtzqU0QgoVOhT8FcNKXIS21ClaNUCdB4hk5T0jEOBysT6WsgFYwGbJjiYcqUvKywKpQYhQU4wSQuXm0ast4yMyQypZsiNtggDb9RlBy8myM+bAOolKkts5Er1gYcr4Pja1/snDGPu7dyoWO6Bj1uTAO/Q6ZlHzfYSagwjgQUrE29MIiJjJrUwDA3ZpONsqW3CwDlAjw3OoUCqk/U1McSZtyGKinqGxIFE0oqsfziwsDVWN9q6eVBhxdg7sfpCkKCKXEK36qWxziBoEpeD1PgDaCq3VqjHXwLxSGWBaxxFVSjAVv2e9cUfGCNOE6jNSxtRSYe9DyhWjKRlCVCi6WHdPIpb0TmnWq5pevxfYcFUItzhlzaxVMoMTI5CGTyq3PparXvrDnZ1Vbd+SsJVf8uRmkGQo1Qm+cJ4zE/t7irhSxfdYWkmCpFVUrHh8e7DxY/Rvy6IQ8T3iYMk7V8oSYoetr2Y8nZVNsREBscmJZKqAJU36wiB1SqwnCkxkRjrqmPNk+K9UeiwiqFcJAFQalnoVR3NcffI6+l4XRYnNcSnXEx1AIZobkhFILMgEtBCU2x3WxQieoFdOckcsMWhhTKjbpfYIZ+1I8Ft1CKzgFsxktdty+Cz5A+HGCdIVxv75se0Jch+/u0xl6O7NIMWxh0D1MrR/ROngI/WlWZDvYJnuQfICujRMndFDn0qoyv2/kgO8kJYWAs4XhWQ6F1KzE0BJLAcJ10/x8VSzlpJr/Z10WHBfP+ZCtsqMqYyJG4mpjlhhcCgAPM2IGEjWItYgCFNCca/oe3mbvFN3ZzA377XLf3ih/5wnEbvE3bnI7tvrFgELGF2P2sx6KFBb44gou+7PHGILUmbo2f2tlZD+OoTiVZEWzcnYFmKGVcJhnELwGBqwiGCgB1YS7KqHW4kmJwj9cUGQFlDDPZg1AncxFA0FNLHlIXYw5PDmCsNYCISsqFPBqzlObozpsFlIdPQB5ilD4fNZmadgREa0RfRfHnSlZwHaOI6ztUCDOrgP1BCyh8FHbXzbjqd3yNyHmQtA3vKDmkT+cVCO+WoprBmuF8hAW5ldjg8ggLNBsYyxUAQaScnufeBT1SCDT3xwBAjkknjqS6cSz5jogk+VELuQwQSHdQFLLQxHHK8xPn0IpCpTK+6slG3Nh2Yh+QLtmc00267sjIxbPXloGS8tgx2gGod+rFEM1iGhATzzDaClYKPrxgJwqUp4GlG2ApqvxDLTlHjChDnc5KMSEOI3ZEe29tyVvnfvhc12kolSFSJc1kQmPGBD1UGzuG3nJjohW2/NEGUmtPE+FhdOd1hMep4Mr0AkAo4IwzwmPXx5Rnp8QydJS4rZW4Iqe1Tuojjqpl/DNYCRotWJdBEsKRBO7287IoGUtrf9AhFydbIhQdGMPql4PxHITrLWYn9+V1jBIw9DscluwlgWHw4QMohajH777Dh3ZQ9S1YFXCOs19Q4zjiD2FY7D8zc/AzMgBz7irYAsV9Rcc20Wu/jsF/P2EPw3T9a4bdeBdu6BQHTQuv38QIskn+HAMYGhIgtVpp0HZGn2soRaRGvlF2QiCpYrBUQ7TBjnEfJbsYSbqcNCKtUbBDVvcgA36Ulac1pMtggojhKnxMioz5py93G2QjYaiIwQn7KAhOIld+9ZzgtXlYJz7jcNi2ZxCw+/v1M4vFY85Vv6rNbKiiSfYqMHX6hB//A6zEBnGxp2mCYrqSXpsIde6IpLtsJM653l2KNcubJkAzQ1USpQdtUUcvuREuYXOwgUdEUHUkj+prljXguW0onq6tJySuY2ooOiKshpPIE+TpTKF5zQXDx0j46jogIypom3GrQcDQvYNlXw9hDCO5qDPjRHon46KcD/7fLx8fXQ9eVAADIEbfZ+xToN0q2JWeUFBcna3eorV2AviWTgIzqwWcw+b642yQPYvEtcxJRv7sMAEEJJAhM3idkFteyA5CYtBJF2Zw+gyCUsSbcxDixXxvSt1sh8Nvda5AeFWGvuxhgZjfVTVMtKJw8cqALwmSABg5AQ854U1Ko+HyRrZyBJl1SQeXVK7ywH2/lp6H9VA16QrecFXiX4DmUKQkilLrWfIkMYwKgJqh0oX/JHKVx2Rjk3GoS0lIGnCJNkLb60eW2+x9FQtG58UgSRDQStZqnAic5VFSuBQ6KsmVC2owmCx1EjVK4FWGPrauBjk3KukUFeupmRKPhNZQT6ft8XlY3HeiKojkU7SFxGUtXgRMXM5FM8NkMjSGmtDqawXc05NJjAnZAuRQbMwAqJPZL5gJcHT05/48vAV67LidDziME1gTt2yZ3JB35n+AYn28L9tpTqrcjdYFjH4Z+0iSY8L2Wa0h2C5SwMYjqHzv7UdogqQVyoE9Q3HUJWtld0FeH8eVc8+pWpwJOC+PqOXt2ceLUw4RBrC13/n4AJRT9pi6EAnONkCsOuICKonkqll3Jzcl1Tc17eiWXCNZRvwkvdLS9bE3NEGij7oYAqN7029L7bb/HYM7cG70DHBoV1Ct7my9UWPxDQ7/ZbiZt/H75sxFKt2KAOaI76I1nVBFYPMpFbvF/Z14YWyXArklKGYzJ0CRcoz1rViWaxoiEhXhlOypFo2XgYdxr3X1bKSFVlRUVz5sgQkzK5wsGV5ExUQnxA+R4PzTXlRMXgUXHFcT5CqeJiTj71gJUHiUIC6hR/9I+O4idqYkHM1XLLbVHMysC8YjXGNBXTBuo+J0oV6WLaNGOtrMsZU+iLfbA1tDQ6KdinFLaJe2CmiVbiNt6e4LRWUzH8MNUWWwBDxeuthMQI9immYZyFHxz1A3VIPm0YB678QViL9fWF8kgqCugIQITYmG82FYeoaQTUhO1scgKFw2lE3swx7yunxn8jqaAEZKZLsesJGYjO4vrhRYMoAC/dMfGL7QmqEx8jfwG2oTdcyX3ROCdRQFvT3VzMgingUAVk6eLCjnuRZDhVNkcvhHx/mEqvJHMu/YPM05mxTlqqRdYNT0TkQbgFDm2JuPw1dVQR/yuqAxFyt62ouUVQwCMflhGVZcJhnLIsl8+GvjJwUtFZfz8Xz8yuel7UVxpNqrlmCzWH2fDpFKnSxOU1O2FYmVFTP+lmaSzZxcu6Q19txAvq6rqZQcGprJyU2uk1ioBhhNmXjGigUecoT5nn2rEEO9UpFWdUSHZxc0By6OhmCMazReZqQciQGsjjD6HSr87xdvJtFhL5IQksb264fP1TwzZIcv7/HlOzCaSOwNkZPbNByZdEHKhDCLzYLqw7fycbqfq8C4oSk2iIqgpDFvslY5Cv5BgAgZasV776oMRsfIrRIDNr0nJBNGIRyEZkGQ6kw3MvYreIWfeLUEKBaa4/eyHkIv1FPnUptY4wmvvji++i/poBTV9bCvwz0YdyoCufK2cV43YaFQoCMcHEj+Xl2RJvncvEvFtpSLcd+HSyaabJ0u3Oy1JyByoAm2zzJLALmjJQYy7Egz4GqoCEqok6ya+FShOPxhNOyQLMnDVECZmoZwDYsZ+5qD7nwMlKPg3wubKTY7iyiKGvFygWJE0q1TTWJQDy6ozpkOCrjSuhx02xCaxTGYemHtRoD3RRCxHzYjgtCsY5zXHHczA+Ka3TlrS1PHZC4psD5T392EcFSCyDuouRked7V4XpSREnegNR7RtJhnyJT3to7o+8BvblCOCpDasINddgz4vnIyLSJPSSYjLBGYE8YY8JSqvU5uZKvVUxhoFD9jJMSpOxzI6vD9dwREb//nGdIMXKhcdxMQSvFXmNMIpOclBZkPgAtEZz6/B1Z6OL9HONk6JqFOldVTy8vPp4mIyIdsYga1yAxMrpV3/ZJ34iLu1lrrcYNIOPimAvVOQeuVLSMiE2J8OPU+GqZGRy1O5ixrBaNM3vp+ig6VGRB9WidUgqOxxNEFId5dmPJEvqs64p1NaF/KsUz8FldHZQVqxKSh6ACVpUwVZsDmZNzC7JB9bJiOZ2wrCdYgbKphdSnlEzR9UitSCxVvc+yz3uwuVlWLx8+ezliKAwBmChhTsZOrp6cYakVyhUzJvDhwX2JgpwJhzkhZYNjUvZSv0FSaYLQhYZ0y65Zyz6QIyGPfEdpOoACoCGgNBpdfnTZbgn+4VJXrxPCIhQU00xFqy1M0c3kBiIFsCtJahpysMg5UvoogWps0DRYlg6DoQGTkEi+k9T7xfLLc9NMxZ+nevz4kJJUbXNjqC0uspjyKU3QuSIRoSiQpoxKBRbjr7ZJ+qaRObd6D+GfjRBODovQhXJHNLznKRJ7jNtmF/hGBqM+zAg/8ThytrvQwBanuI5yP5P64XYBExoOmoAQBVUcFdDYB3zctP8DgGQmGLSYVXlalmal1lqB+YBEGRPQEBNWD9uR1eYszMen2Tdwm/EgSvaegpaGmVJGkYJTPeG4HJvmyB4GZqE7iqQwf6LPf2JqBX4U5iZK7Mqjv7/1MSMp2cYZbCvt6zGK2BiJ1MY/8lwQG4GNmS05Ckm3z0N5b4MeOSSAxgHTPuYxW+y46PMYc3JFoSsRNpTaLWlom9vn6JvNjPAbG2lNVCG1YJWChIQsCZ7g2kLDOJsSRpbf3ciAjpRUQIIayITKw7O1PcGsfnh2O6kKrWiEOY75SoTIb6/JMkFmAZQECOXadgPbZ6r7jz3HfVVDI2ZOJjzDYo0cHi1J1zZOPtZkSsndgabFqYaxIZgmRq255SpJapYiJSCnyUrQpmzThezdcvL01V2rawoJAETBI0LkP+hEwCDwqdqcFfVUxm0PcKTEn9GXDTgRplBufAdhFVA1oRYJ6fr/qOUxMEVSkNXzpoQBM8wh4gya3PgRadlXK1nhrkwESMFpYVTAK34WnE5P5nMnRj6tOKYjaH5wvpUR6U/rim9P3/D89ATLOLqA2ZL9sI85VQav8AijhMwZ0BWnesLz6Yjj858G85fiRshsbr3DjEO28OBYSWspWD1hETFbIrCI2mPGSrYfJmJwSsgRI0pBVkAFyYJaC5gF8+zZmGCWJQI6rALl5EQYcfZvTLweGx67emjOIegbJBhLeGCBNYQ/Qgx+SqNuKbpFUSUE7TkCEGUpHTKKQi5kLhD2dJkhfFwcdAjPWeZRvAGuVIgSJpAtXO8K1ga0QBExn7UtPFU1qzRnsCskOgHltFpK34cHMFlGQCXClBOIDGK00zJIFVOekacMuEhJDgOi3T8E/iCyGwRsn3d3wlZJuLDgQ1pv2lZpGD8nFlxro3vIkrwM3+2gN100DUgOupIqqxGkcs4Ndm6WhPdHFHhCJLkh28jnacIhTd5bvsHBrC7zKdrmvFRzOSgU67IAIDw+zlZDw5PBtMJbgzVtSpb1ZySdUq2QFZiSvUXizusJpUxrRXWI1vJ+ODLBzgVQVzJksB55CHciaj7x7kHvJK3YuynmRCh3antHnzfan/9iILX9VKhnjgsBosPXzm5viYH6OhytUiVFNrq4FYJx/oMNpzarSkWw+tibDsZAcCWGOdnmYtc0DS2RCIOz4xiA+uZLRK2EsPm2HaL1ES2rKWfq9wPIo1K0hUMyJ983jEAYzok96z/meNXa1qmFJVoyGY4S37DwYIAA/zxxwoEnVLYqldWjRYyfR02Y93H3a6kbQ2cobIPgxZS0UO6q1CGUznkOfo64YhoIUWb2+1gOgjBGgkMT425VNF3eVEPpzAU3Odw/7kE9J0dmNrRNzcCx0rnARIbAlroY52ZdcVxOeHx4AKvg+Y9vkNVzGYi5fWspONYV347PeHr+huPpGevq7le2RF2Js61JgtfJmV1hdIu9LjguRzw9/YnT6QgCMOUJj4dH5GRky+SRQbUWR5gUVQh5qoDktlaa0i6KdV1tb0nZSIBNoIgXKKAERYHOjLWs4HUywkgtOJ1OeH5+9sVoE7zWijx5hcChWEFLXQtYmslRa4RvMvFkgxDQOEhNuz636F+CgN+nBWwHF9zd4m9+dR3TalrqyG5RDhqma8KhUCTKPiAOm7cN1N6tAQkqgAZUGIZb30whI4zdn6+Xn12MyZzNMJUqyDyBM0GWFctaPE+DFWjKnPEwT7YxcbbqVG7NB+wcG/bQS83Cw/Bs4wJDtxvdsB/+BtAYd+dtV/nbbsCXn3elox3S95Qzy3Hn6tTdITmnFmqZOCDCwZ8YgqNBx+SEQrvPuq54zBPGEtq1+DwRBSWrEFhrxVosJwMApJQx5blV0Ox1ygmktb1bkIDWUgCJ8rKKKgXsKVk7R8XOsfhkIx91BZbBXP0Yg3aDsZ4SA8i+jrsvPDbb6OTNknQjIKrSbdsI6599EwbC+RltnY0uHXgfaFPAmhugrVNFLT63uCLzZP1TSnOk1RqKekJLhxtrPFAfBAIwKKXUn5+JLAMeHMqngOnRNrkQyGGp19rZ9aDgchjKkxggTm4HRHU8S77lIwSNeREWOHUlLMZbncPB5DHxTemy58gptaykta7uBmFnmqeGAKXYB4TALT+CISDRd3vE5hHxBdDyH6gopChOywnEjBlopLbgV5Hvq30fRXs/61tHyFSBBIhE/geLOCiRdVA9cVpir4fhxg4FmukGrUhzZ6+l4On5GVUrTrVgYVMCqxb8+cfv+PP5G/44/onTsuD/+s//E1gWfFtWc6GKGcmn9WQW/PEZf/zxL/zx+7/w/LSg+Hyb5wMyWfEuztmTAFnOECuWl7EsC749/Ymnb3/idHwGM+MwH0BFwSkbilhWMCVb85zaWGkxzoLWCvKqu3DXwloWT5styORWhVUosllda0XO1tFPpxMEGdNcUdz3UZYV05RRisFXUXXIfC0GGyfX6ppwQN+H2xZCZsUONuXQuJ05CtIQphvN8h1bs2jVteXYcDbP0hWCjTIwCOFgjKsC4szuDnEI0OBU155jsUQqYHUtn8Nv7HBWEJ9UW13wllrUmcsAOsmFFHNKkDmZ5pcTKAlWNUbuIc94eLDaD4f5gDmyOCa23NNe91Iv+tpGM+YMcGbFDQMflmAT0ZEjIGZEG1fpJzXUYBQ0oTDuC5b2zWCpiie3xXDtuMZoMbVndQVgzgcnKrFB88wGv7lAb3PBYZ1ucQXDXlr8bSkFeUoWobGuOJ0q6lpxSBlFVpzWBUstLRPkPM2Y84QEI37RkG0s3r16UaBSK8pq8f6cYz1lpHk2ZvJqiJCKgnJPQtUEqZibLTF5pI6tuxj7MeMakydWacqVtnnNbWPuFpYhAbYJb6fGdq6EbcCBPgzHyaD4Rl/387SNc+TYGNGEnBLWarAuwA3BabHx8Brsyc6xDJsTEsyiDl5LzJk+Z8c51xWp8LEXkV5Hg514GHsYQqExImiF8Wpa7ohk8DbYFLykgSQQQKaQZjKrvWW028yM7QeWECeBIkEIGb+Ah/nPzEjKDRVij+gK9AhiOU1iTrR543MjjLk+cGcbP8wAjPNqtdoNq7teFMFHqi11LSX2Oa6QRIi6D2OiheCgpZAhfn1SeH6DgupEyoWpRbqFgZQ5eciuVemL4c0w3s3ptOC4nGztqOLp+A1//vFv/D//63/h9+MfmA4J6+kZ/+/f/i+URfDfojh+fYRowfPpGcv6hG/f/sR//a//B3/8/m+sp+Kchox5OiCzlQY3nVsx5Qlff/sN0zyh1ILTccHp+YjT8oxSVhCAL4+/oRzMj28JrARzmo08ycWSE+VsO6sTY0kVlJITBhWcEkqpOC0rsjq0jVpsWVZFRgLzbHWO4R1PyYV7sJeBupa2+TGnvrBS+OuMnNEsx7Z4O5P/UqigD+YggMWZpSEUPqypPywik1V/pq5ddwUgThotP6vRPJKTIhkHtY2llNLISSEIVb1mO1kWwFZe82wxxXMpXAmp0hQJgW1yES/K/i4aoTIggBmcCbnYhnKYJ5+Uyf3ALghdww4bf1SOxucAdV+8Ao04tienaejHDUNsMwa6o3C8vhENpEVPkmRIiqMSbr30bh2ViOAlzOBEKGr+T1MCcvPtm8XdyVGlrDidVvOdK6OUFcdneO5wQwiW0wqtFVkyilhxoZQSynoCpYx5MoWMnZwU1wV5xciI/12LbYnMqKcVAmO+z/MBiRjPxwUJjHVZ3MJMSJlRS0EpQE21bUiSGMxWW17UIiSmqSumquq+Yh0QPWz6zkKvOvIXjIRuNTdbsFvHvcf7MRRKgm5cLptjNr+zW6aK7IIm/Og5ZyDKvWrfS5ri7gKioBjHRoY0ugSQkGfOjL3o/Bniejblg+1tMqmjq7FXmFFvrG2DhJyrkVzQk4d4UQWE3NI3QpzAku1kosY1GHplXy/2r8IoCZ1bfLxafLgr8bb2exEwJUEFEDUIQkPjFG6UGOu+5k3hHtCAEQnQcKf2zJerJ+ZpCgAzKrrSmTlBPBeGhkIZiNBwbQJaiCbB0K7TujRmP8hKcOdskTyB8CU2t6f5yVMPAy6CclxwWlcoKp6//YFvf/yO52/fcHz+hj+/rfjj2+84/sc3/OfD/wH9dsTTn99QseLb8x/448//xr/+9d/4/d//jfV4BCkj5wmHwwF1esBhfgQRY11PEADzNOH56ZulkXdeVykVp+MT1uUIAuHb4xO+fvkf+Pr1K+BEv8nLgFdUFFmAUlCLJWpSEZBUqCSIKNa6eE4Swel0RK5Ssa4d/snThAKBFiBRxeHhEXM2ITFPcytRWdYFJREyTaBqhCSpCZqNnBbhT2HfN+hQYRBwy4ImbmWSZ7vyDScsbuxZgL3twbn3Co7zcwNGa4gEufBrn7P7wEIZ6dewtKPiIRkKgUFGpawGtbgvWDXqf3d4UWWA/zTuVyFsSYCMPEZt8RFso6hiGeNMy4+NKPxfrripEc+a3szkG7xDbWxkkNQ4AN1qAdCTrcTmp2eCEh3aBEz4t00yBtDMOyu+4nA/8WAlDhZ7nBIQe08c9bqxbdchOCHSfhcfyxg3JliIDAAii6NVt2gFlr2POSHVEJapxewGclPE8i8UH491WSFFMaWMmi0B0GldsKhB0msxZXspC56OC6QQDocJKAKShJkzDnnCNBHIi6t4HClEVpyWE44nQxPEWeOUGEUqEjGmycKAalGA3NqvBFkEtJJnFkxIqSDnA8iJiyLSkgEp+zgTbRQmqFdso/At2gBaLhCvD+KZBW26ePioCx/2tSUIxRddUDrhlDFmGLRxi82+Q93DXqCAwCzoyQVOLRNKEWNUUwayZzVkgCqMwwQAXviHyPz+tVavRNfJdR117Hn+O4qh/sK206moKwyh5lB0iPWjWB/C94eq8Pwg9t45Z4/J935xblXydLcpeZyQoiFRgDYFyO7a14g2QUlN+bXwOFjCSydoW8GcYm4j36c0uQWHUExcmQ47gCzOPfzqUKsGGLUUwj6whFuAEoNThrhl2twrtWIlsjoDakboUgV16rkYYt2nQUEzBMdqCgT8X6F2fTe+LKnPguV0stoLbAoWMWGaZzwE5O7+/8SWpGspi82JWvH879/xbT2hlhVPxyeU+ozT07/x/PwE5gz9Y0H5PyseDo/QJ0WpC37/47/xr3//F/797//Gtz/+NLcTEebDAx7mR5T5hNP03OaCqOJPEQs/JTPSIBaCWMpq1jsp1kVQFsvoutQF356/4D++fMV8sBoCx9OxFYpL/p6HwwyRjLWuOB6PUFhGw/rlC7IJf6vBHCVKg/BEXhZzmswfCphAWJ1wQJqgTEjCmCQyjfXpNwrY0ICjslJ8b9a0Lx74RhHaJM4sxo0Z/DGNHF7re5PDZOqDogo4ZAbAali7FUFQLwARhCQrxGOhGuKEK1ciYJqoahTDyMYqHwQqw8Jd4MIHQEvNimY8d6tmZLMb2duhzcFCjxrwpnj5eKhvnq4dA+PYBakKLa45vlegk8TC0BMT9slTZDZykvcPtWfpnIfzdm2Ut9yCl1tTVGySObwPT+sZ+Q8CwUgQ6XHV8S8n7kmdAEybvAhRqQwQCE6nk2f1qzieFhROYAKmaUY9AspiSbWO1awaEpyOCxTUYEFSc0Ec5gMSt943Y1ErFi9JvKwL1mKbw7qIR4h4tcKWSdBeQkSwrIuhCADm6YApTTgcJiO9rashRslcBSknJMc4ulnZFXhSNUVhYHCbxUhXR29Ez8IdZHPdLh3EwlarfRy77ZX6ZyNxGGjjkt1dYwmxPL01sxe0IsvGqKakWxprNuJuFZCnYg33x7YCXeeAjC4fSPV8CUbSaxwENSJvIkudKzVyFzh/w5+NtSKTYs5Tc+8Rm2A2p4oLXrIYeCK19NJE2/XoymCv7Dn0Gcgt+gGdMWsGxfldgwk/KA7By4g+oIZoBOohJIiioJwD8RiQIzGEtBYnUVdpZbVF1Xg2otAqjSwpTGAnU4drtdbqWWc9SR1Z7oJSIjrLE3l5qN7J8+9bHRTBelosX4QI1EPneMo4PBzwOD9gmizygYDGul8WWzdPv/8Lp9MJv//+L/zrv/8f/Ptf/426Fkx5ghwX1OOK3377T6SU8PT0J37/47/wxx//xtO3bzg9P0NEME0ZKAouAK+CmiuSh3lDAa0rlmqZW6vC5lFwRXwIpJ7wVAqOz3/i6ekPPDw84I8vX5HnCYf5AYkytFYrWzxPmB9mrOsDUmIcn5/wxx/fIKJIhxm//Y/fkNdSHO6bWo7nlBLSNCFPlogEoJY/2YrM2AbAABIX1JRQU3UtUiDSfUvnG8D5ptBDfwS68Q2PVl+gSPdv/m9pTegN8qxZLTHjiO1ZnZkvVMzCZteu3VqBeilLJAiKk2yKx4QLotgHs2vHrluIp+EKqzti0+d5aijASPoZlalz4RwmsI0pwOTEGLfCUzZ/WPJETsmFnbqFoRj4BiID2ar/rM47GIUtwVEH6puGte2YXhvPTda3M6H/GiVg3CDRIGnvC2UIWZUzBELA1CpbWoy/tEyACtvEWiU0UCvpXFUhVXA8WShf9bFdlwXPUKylgssCnoDT8Rn1BBzmg0F9Dj1KEVMuPBQoEv6sa2nCdamLhQUdj03he356Rl1hYYcpQQQ4Ho8IYmXibIVIlvBL2zymCU7ws9zgOZtlKYnMDZg7ByfQMPKRJvQNiUCNpzKO7Q4w19Z7CBFVbaF4Ieh8lB3s2hI2L8Y9FEi3SgNSJkdqDtPkQnFtympAvVGGVUTBLFAxv3NUPh1TrsZe1uBuIkeW3DrmrhBYWtri17Zw3l6q2sGAautmrVasi9Vh/0gU5QI4lNZIkrN99b7uDb2xHcuIn13hH1vgFLG5aa3tHVLK4BZdY+8jPq9FFMo9tDeSiqknDIp9AApgXbEKwBHC3YwTT9i0rljWtbHpS6lmXIqlwA0LvfpWm08Jx2nG1/URy8PaieZkERulVpzK2t0+xaIGSjHC+loLltOCU1szasK/CpbFlGlKjPlwQJ6zI94ZtVYcj09Y1xVaCsrpCf/+3/8bf/z+O7798QfWp2dIqdBcoGuFLhXLtyOmacbp9Iynb79jPZ0gpxWyGjIITkYWrYLKagk729j6/uoKkrkhups55rXiZOttTUAtKMdnHL89IeWMh4cv+M/f/ochKM/PoJxAOSFNGaqCukStnwPSsmBdF2SoWjhAnlzDTcj5gJwnPDw+4OHhETkfjDyzrKg5QRIjzZYbuXBBzXkjHLb++kFzHKFc0LD/x7n+0bjh+2yNuNB7BMA58/mtjdzi90Asj5UfNGsC1EP8+nsTStmy8mPjrMUiGkLJWYttnongroPi8Fv4MUur7JeSWTW9H3WTuCV4BZ2bEBwKY7HbvlNRi0N7FLAeNQsOMP9k7PsN/teeyzvuJVWskMzQF3GdTARwanHqF/16PhfOBDwGQ/LcTRO+ylFJDCTpmpLZxwCIoFbzTBgOqgxQpCJlRU3JkRbjULTnzeEHH7OgbaNCaqkoSwHUsPBaBYoVjAoplqu7LhZSpPSIRBNSmiA14HtDgtZlQZUV61Lx8DDjVFccV6vl8O35iLWesNYFdS1YTrappIeDk58qKMdmXZ3EqJ7XIQHwZCPk5Ujn7IzxjIw+X+P9iODHk8P0ncwG4maRGSrVXUDnzY7vg3vO/+lKq/WtZXsbFOKz/eRi/lCfW8kT+GRmwGOl2/FAQ3TIfUPM7MJlEPSeDCvm8DhvQwmIJ2/r3x9eVAFWkIgp9cPdwx8fSKOqhcOt1dL1KgEpG1Sv7R7wLI/U7kniCXQcTTNFJDharkU7OqcIZcKMBku+Y89gClGCyLiuzCptoZT+zrXaXKNqD16BtkcoFKkQKhekNCF5SHFkqou89cvpiLoesZ6ecTwdbVxDaQmlPZRurTgcHrEsv+FwevBoHGpRA0uxGifRh6VYhUOt5toutWI9Lfj255/49vRk0H+28DsiAqrgeDxazZRkpbvnOYEToa6OtJ2OkOMJ3/74E09/PmF9PkKLlVFWWQ31FIZWYM0WQm9Fj2QzZ9u+XitqLqiSLfWwACK+N0j1kL6toSUilmGRyMadbE/mhVGmBWmaEAXhHqYDlrJgfVpRRbxqo6CuJpcev3wFTxn0lJBN480WlpD//8T9WZNs2ZUmhn1rD+e4e0TcKROJTCRQqAGNanR1oapVJoqyNhlF8aGpd73R9CjTP5SZHiiJNFKDiWbdFHuoLlRXV6EwZd4pboS7n2EPSw/f2vucuJmggZRkClji3hvh4X7OPnuv4Vvf+tYAHyJCGBDjgOBHBgM+IrgIr4AmG03rAEjBatlHa9+oxrj9ttq8nZyevX6j+1d2OcfOCfQN34/v/2++2nV12pvZKwHZyF58h7Zgl+eqPoEJKT/akJJs5EDK8q7rCp89MAqikPXaVK+KFEgG1DcFLSVqwE/p8NfeMXan06RP60YQo6qf1SQro/11XU1a2LoKnPRAYD8gBWgohhmu1mONJpdbnigNdnjSlMP4vadru5GMBN/mqJ8+g/3vfPPvzTm1LLdnkntnjZ3zN2PSYUzjmzDLcjZi07I5cZzI5qwVyWotzMK01+OZ7RVmAXbQnRBJg3pcH6eulrbMM0Z3ZHBRMpZlZb0+OhwGj9bqqiAMz2EgCq0ZNQvmacWyXrHkhGlJWNOKNS2Y5jPWOaEkCosEx7ZdGJxetCKvijUvbP3MlVoQziM7D1kBqQWDVAxuAJDhQrD5Du15PHmIth7tBftyX9s6T9G7j5//HqnqUHP7LfuLYB987tX+tja6fTYu+2cnbN/rEq9OINZ2CQcE51HESF6yQ62ce3I9PfPeZ/y79eicnGa0ZEtguN+4Fk2Eive1z9q3X2/ZtqpitTIN4FEUDCJ86O9ZaoUhxrtulPrN90YrQ27kXZLqAjktVmLQqk+CXK7DN4Orhv4Wa3PzlTYiaUHSggq2kXrnUCTAuQQfWU5BqUilGHdlxnSdME+POF8ueHx8RCvRqWpPHGlnMioqYhhxvL3FeDgysLDkQqv2ATht6mkpGZoLa+eFw+vWZUVeF+Rk76kkMUKcjdPmJMh0WZHWFUkX7kGbnVLyCi0FNZui5pqQ1kzkipAOBJz/QbGljfC5X8N9coZKoap28mtTNcS2z5vNBWCdekSV9nbaOYeYEmpYUVLCfL1ynHDkNMSckwWZDFhCiNwHkdMHg3PgpDkfEOMBYzxgjCPnmIcBAm+1IIo7ZNBvEO4pGIQqYTAIjodW0No1BJSNbJIVjT0tRsihUWiQF0/YE/Nhdb5tTz4lnf33ff0ur/vmzzdxj57lKNnPqJXfl+26mVE6FDtAWq0ntSrbwHKCVmo5QwW1GEGmWrtYyfA+oGgBcoVjcRWlFix5gVa2JmlVlMRov0qF9xGqYozujHVduhogoVBH56QwhnlCXhdo8PASUCCAh/WhGgmwrbf9UVTQeqvZW1tJSLGAY+9w1bnePmXL158/B1jIbiDU9ix/2zN5Wo7ZImFukV321OEKoGlQbJmoPvlT+gXtnqt6oLqnDsbQniZPyu8BfVpkyzSNWeycR9N+884D0SP4jEEa637uhKuq7FEumRey5pmu3+qxPPCJhD0AtSaURONZawUKiaauAPWaUdcCzgxwSGXBsi4WhFBUUHPmec0c1uIGBy0JJVv5p2bU6lgXdQIviiCAWv0VFmi1biAxNnhjW1dkCAIhdEMI9hwagAGomL4AC1CNV9JqzM1AAi0aKFo4j8F6upPpw3vx8Prx0LINVRNHMp+qwAWBFA8Is386dCIWCAoHz9HLAlhO2J+tfUC/RifNlrSgwZLrxvpXBvqbQpK9XwWqa2XEHWvdtP9hJUBHYoA5sdrFe5zzpsBIfQ7nIxRkcbczAQiqjRZue7TNueBQV9pkEbZmOwCinjC9r4A4hOqRqnEOxD3RGBER1KSoyMhlNYTLRoZrRkZB0RVqEtZBIqIf4UMw5SBBrZkZ/3xlJv14xuPlEdfLxfaL9rHEWlj2TDkDwpbEOI7ww4BxPJK179hBVVR73b/YaFyO1uYDqoUlh7xuI4/bnIhaK9dddJtpkjPKOmNdFpa9W0eXnYUmCKfS1p6l6xYgVdMfUCNvNuEinkazS8YLa/tp6yZrSefWgeYgaEOvGn+koZ3NP2Vrq/QVcC6jeIdF6JOLTQTNlXoAcYjw6wRnQ/oCABtwYgMG1NqFbHxpg38zgGzQSc3FhAccZ9U3AkYp26GWpl7m+t+9yVZuSkz7rK4txva7T3/+/6evnuI0CLB9r4X7FaoZTCnq5oSgVm/VbiAotRu2e3S+bx6Avd2gsiQUdLYpG7QWPFDaugTr587ImUjDuq6GAqiROrMlyK2WvCDlhFoSghvJfFcaxRZgPQmGRADb/CmlLrnZhq50UuduAEmrrfZn3v9tPzcD2yJ9fsx/f4DGc2B7o9nWujd+/CpQoDZn4Hq29u1BoNU4DT51QkLLNle7qYpZXblxP8CBOq0zodjwlE0Jsj1XQfAB0Q8YR2ufDQ7XdYUWcMhJNANWMpwUZiEVWNYZcAWaGyHURrmm1LUlSqImByyZ8ELC6PlywbRk3EaG2hTBUYwxEE2oW2sp9yavu+mGw22KdW2PP3HULdM2yLllu9KyP7+Vw/rzUzVGeO1Gs+m3Axs5uKE0UhlY55JssmWyaXXc29EFRB95HR21sha1Li9shnlXhmvBh4JdDN7qyEiAdOW9Chf21000gff9tBul7Y19+a+t195xOi89eWp1/Y5E8dD19lwtZLRnIwsqWklwRA3s+2+jYbnXuFdL69JoMyJaQmXOVKv93TNorSYrWiptSyP7UUlO2I2ijcRckbUga2HZaZ2xzitKqpwCqAlLuuByvscyz/DuiON4wmE8YRwPIOtWUPKKZTpjuU6YpwmPjw+Yrlesy4JlmTnIilkRAOnZey28bx8pVe9CJMPdMwhow9VUmbFXk8Vl8MWuGb6XAqV1FZgUcWkkQ95j72SwRKp1dTX+22/7qlUJyRt8/7G9acFi21eNVNwIxHtwswXDVevu92WnlPsU5eRrDR1v/rc2InglsqDkSgBAmReuYyPMtl5077yB32zjy+rgqsCrR62ZYw3zyv5Uu5DD4YBSgqmZNbh7F+XunMB+SfomxVYG+Ibh6D9Vu+kdtPjtKOP/4K/fBUVo17DPStu1Nngyq9WbUjLnyBpQqdSMznnlfTo6EVUauS60Um2cb2rDLXjPlJ8kn2Iog82jZ/tUztzYKa1YlgnzPFlm3oScghlnB1cJDa9pgYrAj+z7b7FMex5tTSq0C8Y01uz+3824tfWIkf3xjUBFTkl4Ap+2j9iCv9/9q3c2WBS8h9T2z6k6CpxQ88D13ur2ii2g3OrbDXhSbFApM4QNNgVAiWzZ9aYDGwu/T6Iz4Q2TyiH6wfaiYRxQkLAuCTEADgGingpl7EVDVWUt0iWsU7Z7wRMHU6siTQvWdYECiJHB4JoTrtcF61oxHjJJfLXCh0hyp8G7IY7MjB2RJu8dh4EZXDv4gCAeMbIluLV1tmfQymT7kgvTSnYNSX36bFo21GDwblg/gqb7M60KqHC/ZgoktTYvrRUIAi8RdMgeewnaqjuBpJYR6ubkOCBGjQ9gTHIy9dh+VU0sR7d90AZktT3zzXvbgoxG/tX9a3Z7SGubs2DwrXddbU9kE2GqWrCuC1JZLKCtgHjUSsJudNEuhMlX12sx9ECglihYAAw6oW1EOWNHBrB8Dm2mPBwQlC1ogEPWirUkLGXFPJ8xTRcs1xlp5ryYNU94+PAW5/fvsK4rDjcvcXf3AuPhiMPhYChKQVpmzNMFeU2UyZ0nzNcJyzwhLQvWZbFMt4F0NsND7V4mQxB9YObqI3p7pc04UBuBzm4SNUIlEQJC7hV73/T0+RWkdubNfjTksyU8e1Gs/kyVolm9Ti8FnVvUP6vpVDReTrWA4duDiifIqtmFj/1ju4ePbamqEYv5D/6+nQmnFqhkdEGk4I39LZ6EExcF1RUUFToxzQirx2E8YPYVulZr3XBwQmEFGr8VqmNHAZgVcUMrFOo2QkvTBmhBgGIfqbeJeLo5Dt3Ef1o0L79DBPC71pr/h3yJwKRfbYsqUAv1p9eFcNOaEtK6oJREx5xXI+gMcI6wXs78nWGgQ2+bKqWEVFbeqyjEUcEprYl675UQeK0V8zLjOl9xnScs82ziMAmlKMZxJLNbHJCBNS3IZWW0uFIy0jsHj9bvbIcJLfuxDgQjYu2Jbvs6bOskaM6f0sKy9YOL7hAB+QbS8G0Z+lMDa44fe0fY1NW2Z6kAmrAQsxd9Auc+2T+731XAiDelZ/IcrpSfGPy2N4G2LZ2p+i2YpxnTdMWyLHQo6mygjDkfrRAHHA5HpMRxwAEDoh8gYHmk+oJ5SXC1oOQVD48PELR12+2RolhWDhs5Hkcs64oqFZf5gmma6WQSp5QFH3AYBsLi4qEIGI4jnXuIGIaIwxBwdzohjCOgijGObEMcTTGtDcjBlvG27pVmoJrGvohASzOuta9z/w+baFIL5rq8b3/4XOGUVswpYS0Za05ojW3VbQHY/nmiB0vSBVQIDRcLPEweVjgjPZcC5zfOSnPcuST4spEBm3AXA3b5aO/yPBph20ZJFxuwJE8ClCZZTKS0mpBPK7sx8CmmIDmvC6b1gjVdASkoNaFWQfCDoQoU/MqZ17LkhGzoXAjbwJv2XyPyGa7fBZtUOYa2KAnHa1lQUkEQD1eplJhyxrwuuC4XnK8fcHm4x/nhjDxnlKpY1wkf7t9iejxDi2C6JEyXK4bxSEKr44z7WhLWeSa/pcK4MBNHb6dMNUtoV/ITq1UoGKCJsFziXYDzAeqSnUdnKElbSEBUba6F6RuYT2LLdttj/GJARueoUJhqBkswHzn79vc9AroPJBiEZoiVX9rXFjQ/bSv9GFl7+vrN3tWyEVj3r+/Iayu7ba/aJThbi3htqHtDrwCWAFr2gkomeqiBtTMb2uOFGaRezfkHj9PxwN7xYUStRzsMWyvg/kII0tHVQ0CSDnaCFfvnUiuq9Ri7jwgp/9/8+l15BMD2kBsxg05M+waECV3UaoFASkhpRU4rhziIImeOV/ZKxcSgFTkViGRqPtiDrpXtKQDfGlqYwUuGOiCtCVA6rMv1gmm5Yl7Xjj60/3LehFaqPddaCtacUZ3D8XC0MbOuZ82loMO0DQ7ft/DsI1Nm+b6zp1tE6f22wZ3QaLaWuZbhfAx77Z/JN7MrdCnZWpsK2FMEojv62uBg1kObkljXb4CBtLqRzNqUsloL1jV1qJkEzmzXQmcOywqa4mVJBdfLFefLBfM6Y12J9IgGwqclIyceTlYZPOIwQEvCwY1wEgFRDNGhYMU1zygCrGnFdbpCMz9zHEeIiIlKAeucWSYSypO6KCi6QFFxOh7wwx98idPxhIoCJxHzumJZCrwbcLw5IHqH4TDieDxijA7P7u7gTHs8OmZYwyEYlEwbwAx6T/J9ymwXODO0smGezTjWlhBsCnCta6WNnm7PwoSEkdKCJScsOaMpaXoI4dmwQezcZ3uDur1/qUb6qmrIFe1PXhJEjGnvqQEAtRHdRRByRpZt3GoLelQpHds3nQUrzc7Vwj9LLmwpdQAM7evox67Fi2iEmhBQtfVlxramhGmdMc+PuF4npDvFOJzg4eAHntd2/0tiu1sJ2YK2Rv7bLpWjYtW4BmJDpoC1cqJo1YwlEVlyEhBdhBbFuq5Y1wXn+RH392/w8P4d5uuEspDfNC9XTJcLBxkVwZoSrtOEMAx9CE8nFFft3USN5NeQzJ4AqpoQlBKNMflObieH6mEZtNkTRyRIm6qhqiVmPNN9rUtFd6O7YF5pDIjAoXFwnqK8/d+WILTn2ETd+II9WVSMC7Bl/7VupfB9EPCxj/k4y98HuPvIZSu7ylby2NtQQ37auSMabIh7Kz1B0EXGc1rhQzBIKaOsW50giSCXdmgCagk2MGXBsk5Y1wHDELDkgAEjCHMX1CqovrURbQiAdDC43YyDVAVslCfMYKoonOIjPkCDUvaLh/9RX98GqfwOv2WKUxw1mgwid0LxDpFq8A8skyxwUjl4Q8kR8D5wUl3OnMceCAHnmm2IBWdKN85BdqxLZWWLC6xMMy8TZ9Yn1ktbCUaUWX9RUJXRyhDqKgoqfCFcS/I7obY1576ObfAJixAFBQVViOI4F+DFdANCYLuV9/xTvDWYUQDHYacR34Im/Hbnj90mbsUJbdGqbrVKnrJGCKRzgieaVOkzoVD4yu6NJgfcPlvNONImbQ5j4zjQYaxpxpqTHXr7WAHmiVPBVIGSEpbpiut8RarJPtvD1QAnCpcI9eZSUaQi1wQvCjhqwUMAH4CaBK5GKBSLETbnywznBiIEVVGLMDMrrH/nnHB7e8TxEFBqhNwNWNcKF4744ns/xKtXd3BSMc8LPny44vHxjGEIuL054dXLV1hzRvAOL549Y7tUJEM8Dh5VgJwap8cMmYQ+eVKV60zxlQonJqqkZEILgEZ6Y8ZkXIbcsuT8jXJSl8cVJQfAXgvNcDFCEZCTonhF9hTzceJNXG/rhmkITs4rZVYVqFmhpSBrRcnU7RDJSLXCeTLuqX8SrM3TQeNWTvMhMBtVU74z1KnBzmqjuYsWns+sUGMkioDwsxE4tVakmgEQnZACIMkuAODar2vC9TJh9QVOB9QTcAiRNhEeIXCIzzRPWEpG1UeEwLHh5E+wncwFBiOiwjp4pdOsVbFqQUWC6orr5YrpusCBQlQOHjmvWOYrPjy+w4f7d7g8PmKdiBTkVJFMKKeRD506SF2xztSXWJu1F/QsdctsW0AIbNMFiUq0rpsmH9/OedUCsR56Ei6LfUKw2rehxXxT6kOoUU91Z993jh0Aisi2r3vguqFXtPybLeJ+bqUkNaTFGXKivWwK1G6zNlVT2dmjLUn7Npu4T6abE3/69e1YeJN9VnP20r9Pu0zhMMcAoNcvSoEAxn6kUEwI0cRqKlzkItdS2Kc8xK6YlDM9DgkUeHLhaPZcTZUODUplxLTBq2JZB3bTAzfH8PTZbRvj4+jof+zXPtoSefp97Zliq6kUi2ITcl5N9ctgITTDyDnhlAblRtmIYnTOOcNgvkbmI4zfAgDvFWtaEQNr6zlnSoiWgnmaMM2zsVQpvwwYJKTgzCEIITGlCIcGRte5bGplqHT2jbpfLfgqyqxErYjoLSsKboP9gylztezfucYpAZz/GDL9dtTl40i7mpHcj3PdaqdEj/BE7GQHeQE8+NiIM40/si8DtM9pUqLFWpzY6UCkZMkrHh/PSJl9zTkvDNSSIq2FutqqSMuKx8sDipBRrggYwwlVSOQcxggZBAWKUig8Up2aBgSFiaa5sLSjam1GlO0MAUhr5BQx9XC1a+0ipYKf/OTH+OEPvoco3JO/ef0W7z9M+G//xX+HL7/4An/yj36ET1/d4O7uDg8fThhjwIvnz+G9w2WaMdjUweg9RptPryCnIHpHtrUwOKxGJqK6GjsgUsoAaC9q9PCeWVtDy4gsbQThlBKWOdl+JXemna2idMYMBjjdDJmfGV2EOM4fWf0KcczqmniNau3PMK1s51pzxryupsDH/ZBTsXZIQS5iyI4itL1dRriB2WXVxhPgXgnewwWiNhWFAXatzGRrxrwsRl4sWNeMWAoOtSI6h5qZ9aacqeZYZ5PG5plVazHLBVgzM/F5mnC5XBHcCqkBWgRDiICKle4qSk2Y1ozzcsWcJxTNcEoUabUWMB/YNRDBjq3RD/BhgKqgYEXOM6bLGQ/vH7BMGSEcMBwO8B7IJWOeL3i8f4eHhw9YLpMNlSHi0c4TOZVsV5YiDA7Ljt3eHDPQEaJW2tt/9WAcdZuFAiY1nQamJPrBOSsXFLOt3AeoDPCeKpAI2th6NBlru+Y9L6NdAy9z0xDRJ/4GHWnafIaVUtFKY/Wj1zDAYJBcjffxNAjoVyrS1+HjrzZ5tBOsnXtiOz9GLuzWu3sUkT65ERAEyoPyjUrlgJI2tpYCB4xyfCB7Xb2iMX6prLVBYSQcbG0QLYtrf3P9708dQ69XdVhtg6++3a0LoI7Z9v+HXx8v/rcFE31RG5RZK+t+tdV96FxzSljXBcuyWNsJ3VXbcA0L1FpQKqCoNPSLWv0/d4fX5wQoJXvXJJDskFOC8wEAjWnrx+czYWQfHLXeiaR4VDi2O9W8g81kg2gNOm3PQFWRVckWttai4ATRB8SBdWtncqvBJoY5x5kCrfd6k0y1Vf0d0BXt/4NlQ+VJfb49n+Ciqdh9LKiiT96Lg3NlqyFYFtGyWlik3iDIYtlcqgVzolTp5XLFsmbEGDFN1PSuRTD4iFwSpoVlnsvyiCrFqv4BenCQACrBuQKdGEiVWphZ+QSPBOcjUlYsS4KidiJnzgXLssK5iDUlcCw0+9wdBDenG0Aq3r97hxd3d/jeF9/D82cnfPn9H+D163f46qu3OI4HxOCAUjB4j88/+w6hXy0QBe6OJ5ZmtE2RpHCNyibJCji4SLnSUiti9SghIOWMZeWEsoYKsCPEMt6WKSnbV3PJYGeLtaxWOv55nrfXqcllV9bTx2EEckVJBSsShgEoyBBXIVKRGqQqbiP9gUTKeV6w5hWX6YJsGvAeHshEvkqtQAZSrYCrCJ6dGwM2sl/UNogpYxgGyDhCSmZmDyDnaop+xWa3L1jShJwpT5srp4AW8aiJz3bNhPbP6wdUyfAuYHRHhBpQU0GpgpRImFumK6bzBXnNmA8ryouK6AO0UJIayuz7Mi14nC+4P7/H/eN7EuvSSjRMqfioNeM0HnEaTzgdb3AYD6gVmJYHPH54j/kyQZNCi4MPI8IwQESxFs6jv5wvmK9X2h84ymlD+llvp64T14oFN5agqXVqyK7+17gVLQEU7H0By8bNtxBJbOqilFgXg+AVxXxB456Y7cJWFmiJ6F7orCcFHyUg+69vQPPt/Xb2hi19ngJr2H7+W4zcdh0NVcTG12jrsv/sj7/2/I49WfAb9/AtTnQ/yRRQhJwplVmrUDzARE68jz266DAeFFIEfjTn3wVkYIYV/fe3zLzl8NKhs37RvJLtpuxCq5o4xZOF3BzzFlJ4NIhF5LdnmL/tqy9YdyC71WrDibDBQE3sqA26oEwu+u+2/6hx4BDDQKEFUnbQR/JIg6TIvq0mVJKaGIRlpzlnDl2pBaUkQpXGMicEzJYTL2I1PiAEj+gjhjiSTyEFuYKtH8rs3KnB5m29wXpVKa6Xy6mCR8EicQ4hsEXMB9/7+TmgxJ5nk07FfmNuG/Z3fQ59prehD8UUvVpA5JwDPDN75xsDfKfZYDvDFBO+cRi17oIegLXXvIkoNZi2lERiZUqoS0GuYloKK2oGKhLJnIlyvPO64JrPgACn43OUtCIVQRYHRWCboudaOCjgFqi1hPpSTVhkD1WSQ5BSwqFyaliMAw5DwDE6fPrZd/Dy1XOcDkfUqnjz9h0Ow4DTGPHZq5f47JNX9hyZXW/B+sYKb3XA1uHRmM7eB2tLJMzpnFhvPVeXIiwOMkRE77CkRHnwakZbWlmFhLiSgVKSKVFaaWVNWE2OFIC1tlVk1nKQU4WzNsecrA1LSLJaisOSGQQ68YguoBY6/oakTfOEy3LFvE5Y0sz9qwGusj1TkZFLwpLZtRMGwWE84lQUGnk+1szD4D31ArJQrdFbq6tmIFkte8oLztcLrtMD7yNRdOnmdINBBqL9tWLNGZflivvzO5ynBxwOB9weniPqAO8CSq64zhPOj/f48PAG6/lMVPCyApmObi0Jd8cRNc+Y5wmP5wn3j4+4f3iH9x/e4Xo+oxpyUlNFLRwD/uzuFne3d7iMI7wLWFPC+fwB6zIjCFUigwS4mJBW2v7pesF14jUw42+l3D2iRpun+pSb0DLr7qD2Sqr9+0aYhPY43YzGE9tfUTdnLq17rP2OWPtge7n2zhrt9kdMxf1pNv/bMu2PCXrttWhBjNm3dmZg56zk0mW8v7XEbKUQARFgaXVFUHthT+bbX8PHjP9v6wBov9O+2gj5J5/f1t58e9h+yMfQ+xOd52AS8T3bdz5wFKrzGELEGAfTkPedidjm2bdoT6z/30sbFtJwge2De0S1u2mVZqTl4wpAu1W+yw7SaQvwO2Wbu9c//XsTLmFLk9hGbJlpE9jYQzu6uyMBB+EcxmBwI8C8xYKI5micGmlITMCCC9AcHoMuzhAoJUMWtgzB0fAMwwCAzipE1iid9cd65xADdeHZ28vOAxcCggQA1J6v2dAGg80gtY8Pbs48+IDB5kKg9dhbYOScaTuYQXCuzYLfHvDvGpA1h7wRD01YowVDpfT3zSVBRck3cG4XqO0iX0FHZzp3QIGmUvkEfqsWwFa2kdWcIcp+/egCCiqGyDp7sVG+4j1q5mjfWpmZ5DVjTQscBtyMt/1MGbMSORkZUICaEqrM0KIYgrMASijYIWLiQjRWpcAUHAVffu8L/Mk//H2cTjfwwSMa6WudV4zRQ9iEQONX24NggAkhOa0pxzk4lJJ3a26BWCOrNa1656Bm5EpmNj3GkZklmAFfrgvmOW9aBT1wI0eAEyiLIWQz5oVI2TIv217yZHmLeKwzRyr7QLniVBLgMqoULFeejxgCjocjs3MIlnmx+enM/C/LBdNywfv7t0jrihfPXuE43CL4iJQWzMsVwQ0oJUGC4uWLVziEEas6rMvKOrMzXZQSMeaFdsxxRK3TgFwKpnXBkmdcpwvO13ucz2ekteB4OmGazhjcAdFHCBxSyThfH/Hm9W/w9buvICL47ne+xBhOSGuGVME8X/H+/iusyxV5sc4dKRZALLhMD5juTijrhMvlgmlKuFwn3D8+4Pz4gDSvWFe2ZTvLgsVXXMoZdck4WxCjADsljAjYg3crw+RcUNZk3UPSXRPN3tbdw4yW/Kd91voxQx7yNKPd/t4QOv61O11sn9kyZ7MSaF6ktnKf7DsBzH/0t1Yj+lmgWZ9myh9D8d+OAjz9dwMymv/oJUUhabvZv41Ds3PoeMo1YDRgGgwfrc3HmX47K0+6Cao+CTg+LgO4RsTcbqC/d+BYzwInAWJs6Mr4mL8UBcGiYASHOB7gY0QcI8bDiPEwcpBQdAhBIB7woU3N4i052chgH19Af2j2I/Z+CkmB+yKOOXpmfP0t0IOA/s/6dHF3D/jpFx19y+gblLxfOLEMqV1XmziVa96YqxY9qjBKrSCTuSolkosIqiYEOCsZUE8hSkStBbmYXGMVFNMTWJaZ7TFGZpqnCTEONos+Qm0K43g4QKX0unv7osylkrjHsBKCgNEH04NnIOCsF7xkY7vbPXtPAo4P1KaPMfbIvZVx1DIAfqwFfM6iVQuMfkvk9vQp7A1CR5HQFcxqKT1ao5yrybkYeUwEXaMe5uSdSH9WVbWrhLV/N/SCxosBnHO+q9yhAr46SmBHtm7GEAA5IC1rn+lQjC9QS2WQJIFM4wrUkoEAeD+QK+GAmlirLLWgJMAFIjRVKaEKx1LSkheicC5ChC2bMQbcHA8YnMObN+/xvS+OuDmeSOhxDsdnx67ZsJ0H3UGM4J5Qtel0gpy3td1PbSw1Q6VCDNKsmlEzeR5SacDGwaaDVoH4gHDrMcQZ87KSjApFFcGSiW6ksmJJE9sl5wXLOrNWP2eOLUbFMAYcxhNEAt9jZuaetKAg45ISpvmCZZ0xXWekXHB3d4fTzYkli+qQloT5POEyn/G43OPdm6/x4cMjSqp4ffcad8+esw3NJJyj9xhiQFaSJcV5HA938Oo49tZR5VOvFcMYeaZzgfcRMYxQAEuaMaUL3r3/Cq9f/wbv394DVXC6u8NhPOL57UucDieIAMsy48P9Pd6/+wrv3n2N8/WCX/78V/jiez/AaTgizQvm6xnT5RElr5xcWAHvBiz+guvygMvlDd4LsM4zW/FywbQsuF5mzNOKnOn82lRDDwenDpoVZSlwFL/syUhjtLeETUGCZR/Z20idamdPmPHbtyDf4rj2/26OXHSf337zaysZbOWBhvCZ7u4TW9585/5dm7gO1NAGK2e7KiioPUDFt/iHluV/DL23DiPB1t63H1MulmygabwIetLRyHj9fcQQCN0Qba1G3P7ozO6v7duQgHaN+4T0G+UH82vdv9baxd+sWEmCTC0FaumD9GlYnG4HNHlcZ3rng40x9PAu9GFC3gc4yFazfXIx8iS6ay7im5vAMv79BK1vvugbX9+IJrEPEp68sjuZ9tp9e9KGQGy0DrVF7AHATvSl3WtDAxhsMkL1NrmqFIU69MPGPuHN6YYQkNdsdbvSod+UEqN+QyWcUPLVew/nA8ZhhHhYdvzRhrZ02YmHoPBPR1lhLzYr2o5PzmUL0EQAp73GP0Q+5/ZsXH9GFpAJOgGoiZp0VKs/rG879tLXbENhmhNvQZ1BY/Yc6i7y54dQZrPNkXNGCupBP9jHXHLpRNXWutMmvlHqWlqS3q+tVjKt2+AfsesJcSRqs1AEqFpm45xHjEd4XzGOBwRHSHXwEeMQ4SPLBhDOgWeWLyzTlIZUUPgprWxZE+fgJeAwDrg53eAP/+AH+L0vv4AAuDkdTTu/2ljUJldKA1bKrk3Ob0a1lIy1VAZ1wsCxQZO1sFYPVDjv4L1DKYqUFjQlvFYO3JP6KnitQ4jQTLiihoj3j4/s9V4rHq+PuExnzNcr5uvEoKIWrDN11QUK54Gb2wTvop1R3k8G21iv8xmPj+/JRJ8Tcq0I0RMB8B43hxuI81imBSktePjwFm9ef41lSRAXcPlwwbv4BmMcMMSBo1O1UPxmCJiWGWsuePniExzCYHtJ2CqHtc9pyFkxhAPiYYQ4h1wT3t+/xuuvfol3r99gmVYIBDc3dzjd3uDt+Aan0wkQUPnuesW6XHF5uOB6fkTFFY9vH3Bzd+Io9jVhmS4oOUEqEMMAH1aqCT4qBAWj2ORRCJZUcJlXInpqUtbNflu2ThTw28YZN4fe9A5KL43tX9cOVSMxPznJhgB+7Di7QzKH3Jzux+Xf7bW7LLl/dvv5t5gQ7NBb7CSl+4UpUUsIxdX6azcX8ttq7E8+pSGGIr0s3kplH5OcGxJQDWV74uhVmTCKQGSzfUTeKSD0bcPTvu3aPl7nve8SoYYPmo1RPP0d2ZDPUHKFc5w/7Ni7BZrF9mBtg4DzqttM6hAGOhU1A6wk1zT4kJOmLDoCuroSP3/vIb4Jt3AzbVKxHz+w3svYH87TRdJm/Z8Id3wcDdiGM05Ii9Y6JA6l0e9CJdvPt8i57IIJtitSspca3AAhJweWR9SR4MSoqgVENmbWNWJR7pufEpaFI5kVoLDINhaYkH8rQcAUzrRHp6rC9jMyDtn6sdswpRSkvLXdeO/gxSM4QQixK8FBaeAbSbNli9uhs4fcZkBoP+/oYMCTA8oXqB2OHgDsAhjvWGeuzjMTVSW8DXlaSnIwCdQ2otfgyGrlFZDoteZsWuPVWherla4AFudN1En5fiF6aK7W0RBRS9NUp4JjkWwZtQWO1WMYRqhWlsZCtFbZCO8ivK9wriBEjypk9cfgoZkTA9n2akxh+j0M4wG3pzucxhEv70744fc/x+effYrgAsmI1tfeyJIpJQSbzJlzRowDmvZC6+fWWgDxEAHGgRXANaVO3hVxCNHtJJ4VwGDlqq2GW3JByhs3AxYwHoYBEMH5esV1Yv14uq54PD9imq+4nqkkp1KQ0oySOaVMbaDMPC84Hsh5oMpigoKo2fn8AdfHR0LciQZugeICoo4X/4EZey1IS8J0OUMXha+B9gCVbPtVgVhtBDIDjbw4TNcZ83nG5eUZp5sTjocDVIWDbPKFanXVwUk0OW2Pqorpesbjh3eYr48cxWya1XM9o64ZF/eId4CNWAYHc6UV87TYbJCKeb7i+vgAJ556B5UtmsF7iHLYTTaENgaqNMI5FC1Y5oxqc0IaYikqcMY0d0IC5D6r/DaYXkR6xrrPilsC1C2nNl6JdvvefHz7eft6QlDbv69udvdjztjH77F3ET2A0C0Q6QFKtzOb8myrdaNNOtxdw7e959Nr3+6J6Bg6StrQEmB/7bvAqj4Nlvbw/P57/L6iqxo+CX62a9lUCEvn3xnU8a3rTRdrYlNuC9z7tQjRilBygjbylhlCtCEwRXq2RG1zj2E8YBgPCH6Ac4EwqY0ZbXKWLXDYs+bF05i059RCgW1D7UkcHz33FsW2jdgWrS/i01/tZIv+g6eElR5tWv9pY5q3DL8xe0Wbo9JvbI5qzOcWrHCMsvWiZmYswCZYEkKEpgx1gmBsfQ79YACGysO0psX6Y7MJySTyKwI3Rh8JDJO/bCiGKV6xJrZCK/vJS05ArfAQModhnRqBPefJMkKHCpcdxig4HFp2vDsJ9iDEuZbybwalPzDZRWoWIAiVvJTUt92DlXYet+enakSfbTNzTKnCSYXuWl9a7b8Nd3Hin8wagKrNn/AoTgHJLPkU2KCfglBtSJERPotSh71AUVCQSjLhKxt3XbnuPO/CLLYsyDnBB6piVi2bqmag8M8wRKhbECLnzavzEKkkYpUCLcDhEOC86V6osrsiKL788nv4xz/5I3iv7GNPGS40iLR24ZJGlGzGJYSAqgXrPEPECFm1Yp0nDIcjvHemD85MRWQ7684LES4jNLEP3luwzM/LKVsLIIOCYPwPmHE6HkY8v7vB9XrF/XzF+3dvUHJCmhZM5ysu64Vtlb37lIHqcplQbu/gxGFNC1KlJvw8T1imK0paSRCEs7Kd0T2rIjuiChSXYc08uIDBB+pr9FDZMiStHN5ke09zwZImvF2/wuPpgGEYKQ5TOEuj5orT8QYxAk0tN5WCZeGwJ4Cyz9VGD9dcsOpMdT4IyspEql2jZkK/DKwEQSm+AyX61JKrhoqKkeg4u8XRuZV2V81hd79ADpPf/2xDNPtR/Ni2WSLU3kP7vwmPb06NpWOBzYwxy954ZB3J3Y7204wf27+/LQvfXx+RrR168C1BwJPPkc1hNyeuDkDhPzabWb+xFk/f7yl6SVuzvc4515Gw9nt7J7t39LXWnaz004CA/lq/maPuXsthQIC6xiOQb315d/RdJ6UloYJaW3tiC/6AUHMGvEMGI31pRthrZ3Z779nyZb3eMQTTB/C226RvLsIaeKL49US1y/ntoegOcge6OhsURCLaRpTdY9DNwONb0JJ9QCDu2xeJr9tl/ub0eyBgCmKEfpmhf9w+sv2jZUuAsclQc4azliQ1R+S8A5JBREURo+fhLAofI9Zl4XVXUFLWmNk5sdUqhABVhbfee63t2sUQF6txlwr1CrV6ci4J0TJdtrlRwANwWDLFnUqhwwkDOQJq98u+2U0i+EkU/NvWdXt1X2f0eG33m42kYzuxlwMgmzERD2prt2i7Obgd9N+U5/qXwNI9vodNZfM+wAdj8TqxIR+E3Z0XuCrINRukXbCWFdNMslpegXGIEHXwzndEqEXkDfKDUGI3xtAvyQUqzhUlOdTzG4heEJ1grRlSPWIciCpUZm8xeDx/doebY8TLF3f45OULg8oF65rs8ytJaiJmXPg95zzLWoZ4LEYqDX5z9NkmVYY44OZ4gmqwc+qgNonOB9+NRa0VKZf+b5aIgkGXuwwjK7XancN3XrxClIh3b95hDA4fzjNyKrg8nnFeWeNOywoRx+E8YKC8LiQG5pw4gdTaXcUU2xiDMgCusODG7I7a+rn2zIllWrdDI/gaO9oJYXW0/I1M7DItmNcVs2yEURkinCOxNzieoWJ97MEJSvN3wumaJD5W8ljM/jWVvrJmlJQgVVibd82gs5++Go/DN72NaEOWQEJftJHOIoLSyXi7nns1BU4x7Q7rWrDLY0BYdx03jd2+Dw4sSO/JmTn9bzjcHbIHaOc57U1k+3d3eu2U7vxCd3K7127Jmm7vZX8R3QU1siG9YmVr5xoqoXbTDKAaPUbbYjxxxN8MBj7OrtuaNIno9tp9m3K7D+c3xHW/Xt8MNPRJcLq/noa2FoOUWdXYl09/Syu8bolZ4+AVcV1oj9MhFSGXRMMGGyLhImeJh4oYOco3OsLCwxDhY4Q6gdim4uCbhFoC1GRuSwW0slczlWrjLB28PeQ2RJetHw1eZ9mAvasW2YsRjVqqCOmtIg5tdO7mX2S3MfiL3AnaQiG0wGNb9Cb/2FqhWgBQk0GsYI1cQdnOYLWfZnAYlTddhJEPnAV7rOtqBki7YhYnfXlAHYaBgjnLmtl3XwhfVSPlND9Gad9kqosrZBghQpGO6GN3/Dlxlnit2XQGClRtGlTO0MySQM0meTkJQonsGvCNyxGsFzuTfS4RPSJTQW2ijNLDvd3hsANqGt69hif89xYE9LNiG7nBWRySUWBiUuVpvZlJrKmA2bNs8HuR2vv+u8FoJQnDnASOan1KJUOA0qWusg8+lxUVFUkzzhMJbWldURYhimEs+lITruuEJSesqSJnRQQFV6qJXDvHcbRhdPDRoRYPXznNTkJkD7MADtRPCNEjm+AQ4HA4jPjud17iH//xjxDgkBZyRkqm2uA+Y+foVBsQpDDCIhfYCZ/tsk6Aj/BDhDjX9cWDtZZy35BA5bxjq5w9vJQSHh7vUUrGYI5QxGMYIqBE0LoR1taSyut7fneD3//+5/jh97+Lf/uXf4Wf//yXbIpdKECTEwfS1GKDieKmF8BMh/eqYIlx8NaGZzYIahybXWCo4tkCB0Xxud+bI7EDqBz3rMaG36OPIoB3sa9fmy8BMYldE0FrQ5YA4bqbgfYumjEvVAm0xMIJic2aS3fwADM6krI4FEycIloyxW4eZwhCgCsVgoIhcnKrgFl+Q8R4/c6eu9/QMnMARA0YADlRk8Z1hj731Nmy5GahSQpsw7Fa+Y0meXP83WGiZdibHabT2xxye57t9d0YgIHMXh+Aa4X+ru3lTqSTCivoM5yI8V3UAsRdQsEJQQywinbydtsbH3/tSxPfVo4QSBfl2SNvDSnp77njDADoqqUffw5QOKjNA1D35LOfXJ9ufyrqk1R0Q2ma8+f1DZ7+tlrgbyE9agVCSivgHfu9hXUj5x1818B2PQNrZDAa3oJSHaDeYHQyoiEZIotlG7DhHxUaKtSUxmqt8CKmAc4LbllUrbXz/7xnT/B+sEIb8kLX0zYH94+zv3xMzPjGQ8QGLbV6zb4Vaq/4p2ikjm2amKozKcUGM3F9RB0QqWJWwdpq0YIQPLOxFkFb1lEs4GmbfP+UU0o9MEIlN2BZF5wvj4SvvUcpCZCmT1A7wSRnSgoveUFZV6ScumxxShnBDaz7QjHqEcfxYF0EG7CkRsRrZDK2+Dw9JE7MQO4O+x5zafu2TWTDHp1pdkQFlNQEUJWzxatlTmUjXW4HlhO3WjbSuBIfH0AGARYdMk3sa8x2nQ1WKiu7Opa8ojq2GV7OE2qpEOdQakLKgI+gLvr1EfM0IaeKeV6BWlGy79r92SuCKge0qALeo2Yg1YKgiugchYRSm/Zm0sPLAlHgOB7w6sUJf/DD7+O7n32GGCNnA1TuDd80F+xZp7RCa0HwwZ4BjIlvUsgt+xQA8D1wGoYR3vuN01LZjprSiibsVAu7TNZlRi4LgAOG4QARIKWmxdAevthUUelyvM55fP7Zd1FRgJqR1hkCxfu3r3ubYC2UeHU1cL3QtBgakclZzMnhRI2f4E0Qq4nACDjUrLUqFiicOdpaKcUrzZlUlnqwyyCZORNa39TS0INdSqiyS6JkkyGuRoSsiuAjilOoDZISAFUF2YSX0JwKwFG2JAQxXYWgerLVPdM3ZrPeI8QBAg/nK5zapEYjaIpj0BC8J39lJzcLGLlVBOoEJMgIpaerwIEE0trQE8uOmotQs3nt5O2zZIVaye1jJ9Vs7VMSYUN5ARgy267xaYb8McLQPmsHAvB75iQE2s+FOkHzrmx7ZeBTzcarPYP2Obpnzn/8mbss/VuDAeFn7O+xIRpdyE2B6uruntRKmnW7Bv34cxtK801Ogr3Ftv7inrymvW8P0tofxkMTSWidCm2PhHVdoBalCAQhWC1PNki+f0Cp8EE55EYYTWUvcMXB5aZ4x/ehYWFkHmOE6oBSqTDmvUfZ9W83h7ivRznr1y61bN4CQBOO0A5Hb5EhF++p828L/W1BANqm3zmTtoAkxGwPqh3eksmo9yF0WB4CBCFM52pFDCOqsiac12waCcC6UnUx+LgTsQErB6Y/37oK1jXBG7mtFE4JlGkC4KEl2fjdyHnjQJcmBhiR5lqwrAvWZcayUqhmTaynDsMBtVQcDkeMpuDWtBzaBpbqzYFv60ORoN0atgAImxRo23Qfb8yGpmy/vzFqe5kIdJIpr+xBtgBJC0liToAAjr91ztS+BHBG7GuHovX+t7ohlPVztUBiv69tSufWtw6liMz5zAxbzeDXBOSK63TGZXlEWQvWxdqkaiHNM1dUV+HdaOUzU2HMlaKaJm7kskKDs/psxbIu0JA53XG6ouaM27s7/OAHP+h1Ru8820z7YJstYPXeYzgcEWPcyJ1p3YInVTgXADUOB3gmfQjImRltC/YZCFRKylZO5YMqhsGhTLDxqNmMjEJa4tCIoUriUYzRECnBMBxRNeGLL75AKYr7+/+GPJdEOWCBo1x1rRA77m1SIBwRNTXNiWYLGqOd3RIMVnvW41yf7qbKGRxi0DzaQJpmKEU4KrkHSZbw7PqsGdgA0jpChOW0nDOgJJwFF6BwcFqsrPC0bNX2oVhSo2D9vzlRcYIKz5kihoYxAKC+B8dKc7DMYJM8F82AVDhvOd8TGlUTXdsCmi1ZETjHuSSpwkjPW6y81af3f985PjTU4qkDb8jb5uDaS3aSv9rg5y1gZ4DXSgnfTNjUfqfD/yK9zU6a78Cu3dDuWRXow75aDV03u1B3n7H/rP73tgj7n+9s28cBwhN7186dOkt61ZRandnBhpLtOh3AkmL3i992TXYPHW/d+bhtcmVbFyaGpWSeicbDq5ufDPM8w0fOl+b0psiMxurPKaRucLRQr1oLoSwpGet6RVgijumIYRwxxBHjSnGJYRypXlcLSmYm7L1HNCRgI3MRAnMfL2i1DAog+mAPTYnIGTy1RZZ9WXaL8o0NCnny83bYnWrPLEpt4yNpZJ0IalOxUkV0HkMIXY62tYg1ONu5CO8KiVyVWZoCnUcgwe7RcehJrVRIqynbuio0ZfYfa8swqrV6AU4KSh0x1AKcFRI4IIaEID78XAvmyxWX6xkpLYZGsFdVsqIOJ9RsWg+mh92CklqVTk1d5wDUqsgWwJXaWulYE2/Jkpj+dguqaEDotNpaPl17ogrM9vn9XDPmtGJeZqzJDKz16HkHjLFCpckPUxyo7SEFR+BWZUnE2ecUCxpRlUNMatkC3EooPlcK/MwzBV245gVOK9YpW7adMK8T5nWGFEVKzQEzE5bgoRo4FImxCWe3O8fSlijSPAMamG1KprLdsmIFkNIFh9Hh7sUtfviDL3BzvEHZlaLaRo8x9mBxGAYMwwgRj1IFagYnjszefWZgU/0moyotCM+1t4BGswExRhzkiKwZKBlOgMv5EaVQl8J7BhI+BCoC7owe4WbyD6SYYa4FwfTrRQQpFfz9z39FIpt4xCHaFEX0faFGnlXCf5TeNQ11NZ7Ck3G9uVh/t26QqP1lb5y3MhWz4tYl1N9LbPaB23QiVNHFzVqS0ci/3mymKlj60WIzcQTqARVmz8Eytbbfiu25Fi0LDRwdRtjslkizySRhi1Z4zxKPQJADILkaEmlBsaGJTSTLvL5l84rQMm8RCCetATY5s2nztzXcr113Kk1Ex30U0Gv77K2Xvttcebr2HzvV9noiwjtE5mnObyhi2yibreF7VmtHbZVT3697KyNsQUp/128JAnY/7Gu3ve5px8DH/wGWjFky2L72Erxcy2YDG1K6o/XtAoKPr7Fn92jk853/U22XjDZXhOg8WJhs0Pouvgi5w2xUNiu+QHJGMeWn6D3WdcAyr/BuhVRFESCJYF0nkgJjxDovGA8HHMYj0kAy1Xg6IgzBOANULRtCxBAHEgnb8BgfjNy23Rz/2MhFrcbDyU4kKsJer/K0B7StUd9YsmWbrb7Q9kHb8Ia6EeozMldT6QMUUj0Cwy+EEBBtSFJrhlMrG6iVDngQGFOnVDphsdSCZU0IXm2aF9upcl6Z+RrhqRmKteZeqkglo9WLDjlj9QvGMTOAU9Yz26jaqpwzkGeOJa5GAIQAya2olQQxB0FNBRrJ3G17rWYGINXtDi6EyA0YZQ8hQKxcSl62GVZb32pBVDZ51jYiE4BlM9ZSZjCwVkWuFMK5zFfM0wKtNrkKAu8EdcicB47dc92ZCqJNlm1hf+h4HTlzSlouFnQpM7SSC9K8YFkoTzvPE6H/ecJ0nuAtsJinq+n5c/pXLpzQmNYZrnqMhxPr53mBDIK8sL+XEK0gpwxxHIbjfMZluuLh8YqwAp9/dod/9Md/jO9+51PcHG6AvNWQCVdW1gnVZIEPBzjvWUdPCxEptEzT9ag/AiiVe7XtpWJ7dBgGm1RpvcRVbTws23aH4Yh6VLx99xVqsaFIPkAk4TTedIMnsqkXAja6eA+xCpMI70g0HccjZaWlKV82qL4x0A0BEDD4tk3I/eO78ezXrW2Xuv68939umeJmIPbIoAhLn84cLnY92az1op9xrywFNPIe821WZMV5AJkz6mxQkRcjhUFRjS3orFuKa+P6eN6GMIhvZBs1jg75DiGIIY+AK2pEQWGt2UpbquZO9mgoNrIkLBB0zsE7EokBmHPnOjXU7mPnthFynyZWm/BN7dB4F5xR2sG9DHD344Y4Mnvdl/Z0LwVDu9xUWJUIRGlBnd1nVYWvyi4f3c8Z6Eu5rccTp75HLZ4miP3z7XP2RMk9tM/fb+XjRgqWvgfZvr19rnM7tGknXsfnUG3dviVAscCoarO43JsCsbKIBRVaIJXoZRZFHJzxQMjNa4FCoMMCYWj7QLawAUjAGthzXDJnN3shjJnN7HrnMPhAaVMb3KHHgpxnXJdHIDhUqVSuiyOOhxucxhuM8WCRLUdP+lChkVm1aBv2oFvtPdOQqpJXoE4xRKttqbFonTcZ1OaEbKpUJ8jYyMf2s7oN9jHaDUsUAFvHdqESAQhGDS6w37+PBC3cZM6RUrgmOpGUElJeUMqCqkoRkeJQZOWI3RgNcp6R84KlLJgT5T3ZFcC2tMZWhhPMOiGnFeWU4Z1HSgW3t8+MGNdILnT0zvNQLfOCioys7AF3rrJubOuqawaGgryu5Ew7sQ0BM8DtEErH9bYRzQoNbF0jPOF6plBqRioL1lLYh54SamHtdAgBwZFMST5J5tCXkjCVCfcP93h4f0bwAafxCA+q6Wni2lcJgHWU0IHw+bayDA2QtwibLV85F+TEEkNaV+TK6X4OHilX5JSxrDPmaUbJCWu64sP7e0zny5P6nkDovHwAKvdUjA7D6QjRgPm6AjXhECuKzwh+QPAk4KxzRdUJfnAAEj58+IDHxwmvhlt8/8sv8f3vfR+oiuvlCijIJzF0SlUhPkCFSpNaAS3ZAs7auRBkm1MEhqNyOcq3ZdZ0MmxJZMAEkIdBtTTNBSWvWHJhDXoYcHNzh/PlkdlrKRBZcbkITscTvAtslSu5ywfvEhWIBDjPrqHxMOB7X36GZbkiFsEnn76A94Kvv37HAI+EDf5XC+AF1WZXhOAsKFf4oJAGtbYRxQBEvAXfxd7rI0Ov1fQyQIRLtnoomtPcJQ1AQ5iAAs4CkBbY9AIYicDsu3eoNteA+hIAsgVwnQi7BS/NUYuQY9Cho53XqoaoOe8wxIAYPNbMT3euwLsKKjJaS5458ootyIE2FKmgKsW9nFZ4KWgr1exrG4vL4Klg7yzbOWs/b99sXKYG9ktlosZBQWrZfXOcm2NrjpdBAPrZ3YK67XuuZ7gMu0pP8LYlEwv7GQCIoTMNUd6Q2ifBy+7v+8/7hvO1z98jmQxAC1rrZ3P4UJLGiYoFsPa+RSHSOGT2fBoBfltT7PwYd1kLGFp3SH8dDB/ZvX+Pe5SqqrlUBEeKslpZvVZBqJUKXO1XmwY7o1IFtb7JMpbFAasgqx12rUBVHIcB6XBEiFf4YcDjYYRAOf9cV8zrjGEc8Oz5c9zcvsDp5hOM/ohjHHA4HHEzFpzGA7wK2w/7xhFULaaHzwdKKEcJA1cSP7ShA9Yi19AAqjFZtKTGBm/1HzQxnNqzDkscLQOBBRb8u/OuuTsagV18oCC0B4N2Ss2YlwnTdMZ8uaCUhSSvDFT1iFFRXWCgJRXrOuF6ueB8fsTj4yOWy4zGru/DgWyDO++RPO99GAZoEQQ3GHt/V8MXagrM04Rl4ejRIoqKjOBH5FxtIEvCGFjPTOvambSKSuKWMyawGoS0M5BaCxAHi2gp2tNmPqgym5/Twv/mBdO8IM8JQxxwPBwR3AAqJVbUmrGkFUtaMOcrPnx4j4cPFxzCEXVURO8RHYASIMEhKx1bLYplXZBzgfce48gxp60FtJWSgifLnoQ/wvsiLbsW1KKYlwWXywXX62xRdkJeE66XKxyoVa9VLVMUOCkc8mIiNuMxQPKA5TxRx14FQRQOLIEt84zrJWEsBVgqSlqwzBd4Ab7zyUt899PvYowR18dHXM6P8EH6QVUNCGFEjGPPFHIuVOlTGAcC/Z6flNhETFUSPXgZ4kAGvHIKZS4JKVPmuKNQyrqlDiNOp5Ptbe0twKrsz49DZLC7JiiY+TsfEH2E94PBxdxDt7dH/MVf/BR/+qd/hJQyLucrcs64nBPm6WrOgOOHYWSxDp1bYCsZCMHQAQsea4F1hKoFZQz+ze32JKHYgKJWvmjllVZ2pWNXE9gyY+0aR2CDWZux7g7OIGyAmWob/NXOI+B6ZtysxhZsGB9KWk24dP9fzeE0JNK5wX6vZcoNqVCSAgV78bknTq7df1AH6M6ZONr8rBtC96TuvHOSe8e8J79tfku7PTacpb/P08viv7aMWGxN9+x35f2rraZrgcxH6IO28b+uBwHb5z5FMLRZcUMI9q18T0odH/25W83+uo3t39Cruq3Hbr1qH1mN7tf4c7FAuZHJWxDWULMt2KHv6uZ3Cxx6ULk9q6pG2O5orAUlaN1qXFdVRWhwaZcJzTxA6thDTrEMgWtCPAZBLClhSStcBXSIqGmBCwFwAXE4oNaMVBIer4+Ylyvi4HHz/AbPX3yKF68ueP7sE+DZcwxjtFpZRcqZ0waF7WZVK1JZsSYapt52oooxDDxEgTVpMWSgWGbORd46GfrwBIsKCYnVLp7z8SbRahMQq3YGuhg6oaomtYj+wKlYVrCkGfM64Tqd8fhwj+v5g2UADmsRVA1InspvzgsqCh4e3uN6udjvPKImsnoVnA0vQJ+TnpHgvMCDOubwGfP1zEE/nmNb1WDjZZ2xGvwvUJSasOYMf/Qkck4T0nhCGQ9A5VS0lADJhNHYZknRIh6c2p8/HJCyp66AFsrAikKthlpqwVpmzMuE83zB4+WC+TqjZsXN8cSuHJd6f3LOKx6XCdNyxWV+wOvXv0FeFP7gEdSjOkFxFU4j1AtyrSgKTEvC5XKFqGI8HDDHaEaIW6VPKzRYGqamVmw8ba2pq/yty4p5YbBSSkapK9bFlN266Ikir4nBEjbo7eEDIHHE7SEiDJEys2BroRR6Lf7eAnHAvFLU5tNXz3B7usWnL57jOIws2+RksyaA8XCAjyRkBu/hnefY3Cb16gPLNXuVL2DTngC21k6DJRuasOaE3EdQF5RsnAYHziioBSnxuQ/DiGE8McMy4S9n2aqqIg5c98eHB4gIBnEorkJzsrPIEsGLF6/wne98huCAy/WKd+/e4quv3uCrr97ifD7DN8cGAGotxU3ZUpTcH90cYnuW1bpmnVjnUGUu2nr19/XZVoOtQqSrZ8lmBxoZcqtjNxJdh8J4FnRzhm230UE8leZ24iwIagzsJpaG7gQ2h6sWrOzb4QpqpWjVPstrDqIFAEzeXIeU91/doYqzFssudM7OBgG8MLnbO+1uF5uDFPTMdW83taHHLRIw0ZymMeDRkMP9/TorC26BmMIIhqomlLZl826HIuz3elvXVlppi7sldc2u1x6gNBhdzZ9oQzSkOdqnzp/oJ9C4LA1B7qhGX+Pt+31fMZrt1925Z9KEziiU5yo6ktCuv+2TfWLn2qXUp22A/XMhHfVoZ6FWgTpsY74tAAmK1pJGaLSoGGPZNm7NGJxDdK7X5HLJWAzSFXEoySPnAX5gf3CYI2pRTPOCx+sZKc2Aq3i4f4/LwwNKnuFdwjBUHEaPEB2qA4ZSKf4DRYgeLoPZ4zqzxRCsAXk44HCkEpvNKffwiCFvmQ8YJbMmTmjYOcKDnVxhi4baDIPVwUEyWsllgwtrhcsNXbD2GwH75XPFmlfkwpGgb969wcP9e8yPD0jTBa4WjIdbFB0sWs5wXrAsGfO64OHDeyzzFdfpjOvjBd4FZAk9EFFVSM59swUPLODkPj1mjEOBLwPcOAAVmOYJioppXrAuC0peLMBaUEtGCRFlXVCWFWmacfWsQ51wQCqt1ZPkRicBzgULmIw8Z/36zgekWjDmjDWMOITB+us5/nXOEx6mR7z/8Bbv799jmhYchxN5JGuyTJKtXNN8xbvHD/jwcI93H77C/Ye3OPgj3HNFcC/g4oiSKx4ezkh1RVZyJM7nBdN1wRAj4jjAh4CiFkwqmOmGyPGoKcOBnBW2ULL2lXMmQnFdUAv3xJpmrGnCusxIKwOHEpr6Is9ANWIrINB3CRmK6VRwGp5hDCPS44q4TjiWE7JO+Prda8znBOeAeZlwiBH/0T/9C3z68iWWZUEMDiVzRvzt7TNzxh4qAucY/l+nM3KmqlgIkZ/vHEs5QGcCVyVptzsh17okxALWBSkZwbdD95VkM+9wPN2SJZ6SIQTVSK9sP6seUENdgo/wjnMScqLksDjOF8k1YU0zhnjEEA+AVMzTxXgAB3z6yaf443/4D/Czv/obPNwPWPPEe1W20jXEjzMPKtSxZFeytU+aDHItimQcA4Hr3R6poQaGEz9Rf7NAwxmRzzl0+7HxGpqIjnUftYzcRMOcsbmpKFi7jeqENcXOWcKexT4za5YIZn8AaGE3QEcAmBApPBqngZC77qTMu1t86vT2mS1YElrXDOc4F8RpNfWEze339uhdUoQW0OjW7rYvC2D/2va59vf9CPjO3TAoWmvprc7tvah2x1Zg8quqCS35ncP+GAlAL6ds6/sUyfi4E6k5coVagt0Cna38s1vVHgCKOfSmfLtfn/1/zjqBvHXKNMRmK/tsn6OFmKt+tI77LzF+iiggtRiixwB5ux9bDwvqGzpdCwPeapor3Zcw0soGlBX46q0Cp2T8Vka0WjNyJlu8wcU5M4ObE5DXBT4EqwG7Dqku68oMQzPqpeL6eMHl4YwP797ji+99H+UHP8SLmnEYn+EQRngbpzaMzLamPGNaFqRl6TDeECK0JmD1KLZ4QUIfT+w8x+Iq2BonALMy11rb+EDb31uPLolPhPJWG8jT0AUoEN0AH4gCsG+eGuVrWrGmCfNyxfvH9/jlr3+B+zdvISnBl2Kqfx6KgrUAqB6yKOvNacbD4z3WeWKPf65wkuFc6K1IqqA6X1U4sUje5pmvKeNwyBjGEbmOgFZM0xW1Uld9nmYApQd4qBkxTliXCct6wXVygEvIdcW0jojD0DOk6AKGcIDzEcUOf0HGnCcUFITxgCVnHIaE41CgQ0XwDBTXsuKaznj38Aa/+OXP8Ztf/gZQj2e3z3E9nHFzPOF4c0IYIkrOuH//Hq/fv8b9+7d48+5rTJdH3BxOSNMV6/wKtzd3cKgoywStCfO6YF4TLtcMVQ8frLVSxGrRNOBx4Oxzp87G+0Zr0VNC7FqQlgXLmrBMKwkytSCtM7kCy4y8ZBOK8t1A2s6xqY0VS7J5A88UyzjhdLzFMAyo14q39xXX6RHv375DTSwhpKXgs09e4cWLl3j56iW8CMJwYOnAByNGmhNLK7x3WNcZl8sVCraYuqNDFUL68AItJFv2ui03Oh2Lc/xTOJHucrlinRdo5bhXiGCIg81/4AyD8XDCONxAdOkE1FYGasTSxTLmYRwwDAPunj3H/fv3mKfZDE/FcBiAOGBNMxQ8j9O6ICWPYYw4jAf8gx//CL/81Vc8r9KIU22CJoOb6qg9IqqAMGtSUwesqqi5WBnAMsvacj70s9RQPe9bTbXZ781x7ln4YihBVd+fOQd6FeNK+e4EaNzVnNqWgTbUof0+nVPjY2wtzcwEwfytI9hkcees8M7aTtUh5117myo2TpN9/l47ZhcAqDnHpl0Q3bYGWlnSlRZkaH1y3Rv6sAsuLNDRFqhtH4qWGzcERhoCYJl+reSTtQCivWcbL9HeU1WtG6Qx5aUjuPT8jQy3/QfdmPabBshTB/0U2m9nxTJo4/q0xL29smXcYuUmkadBRfval2ec37R0WoK5gSy7Nf3oPVqg1bo5BCDp3nv6VAtLgIaatSDX+CHmO6qqEf+4lz3UknxFgI0nhQOqCgKMbSn2EE1jfl1XQEqvyQnYQ62qJp6iKCUZVEdSQynZjEDuZCbNwMPbR+QlI68Lcl5xua64uX2FZzfPcQoD1fFSxZIWPM5n3H+4R5pnDM4jBI9xCDjcnlB8QLYa+CkOOAwHDJFqhXAeBQl5YedCHEdAXB/o0gapCFyXjxTG2IAAS2UAU0q1HlyPMWbEEhCMhNE0yq/zBZfrA94/vMObd1/jV7/8OdbrhKDAIA6HQ4RqRoXHNSkUDlKBZZlwXc5Y5gnrZSLc7xyHBrlqwktmmKz9JqMCpaJqYOtfnVByxrz4ToArmcQwzhJY+67VzGi/rBnzfMbj2SPnCWm9wXAYSWozQaDjMOJ0OKAcEtRHlMwDsZQFD/M9LssZMQ64vX2B25vnuD09wzIeGaFCkfKCx+UBv/n6l/ibv/4rnN9fcBxukS8r0s0V0/GI4XGEeELzH+7f4/27N7g8njE9PKCmBdO0olwnXN6+hQ8ep0NEdEbyKRnXVTEny7sco+xkgkm5ZIQYMB5OnFfhIkY/YAwj4AAfSOyseSWErk3shq2RxcYyr8vC3ncoXGErFsz4NCEoZtsVj2/uMV9nHG5OOB5OGIaR0/3yisvjGfN15ljncEDwgnEQvHn9Bp99+h0oBCUBMbotWxSuTVEiY/P1Ci/kdmQtqHEwfo6za+bsiKrZRjMTGl4TywB0XhnT9YLL4wOzP6fQIHAIuH64QFFxuLlFGE4oVVEOJwxxICJWCjk6ZRvI1MSaZusgCDGi1IL5embgHSLSvLI9+BBRSsW6LvBOcJ2uyGXA8xfP8fzFLe6e3aDWFSIZKTdj2DIvK1OIUM2uOmQREvJKZfmiEuaFo4PWopsWVDU9DivtqUntiusmHVSha5k80Gu0YuqdsiEAKfN+1dkaqgIodDYNau6+8Km6XYO6+9/NjzVNBC8VrL45BBVo2U0izRlVHIo6fk/bdNE91N2c3VMEIOycuCrHQbOLh9fsXWOwl514ju78kuyc59MsvDtAVYjspO7AejMrINXKUkpVWEeb1N6jasvA+VnVeFWNBFkV8PsSigUg0oOVAlQSwbegjBLcakPW9tdaW5asu2dh584qAR2Gb4PGct1q/DwCW4mkBRR7/g3LJZuDbt/va1rbzJlNzE0h7SGyPF7ROUjeKUIAUBxStXbD/tzF0C7tHDUVoIhYKYWcHicsMYHaEoLcbsZ+QaEINmRF7GJKKbDSzLapYFBNhRFc2iPnV8nFFMHKFq2y6RrzdcH9m/eoVXE5L7h78QleffIZbk+3CE5RyoqH8yPevP41Lg8PiM5jHEiAKVjZ++48Qjjg2d1L3BxPON2cMBwOUBGsTRinVATnKc4jDrkCbWiNczZtaxe55zUBqlhzxryuAKhPPsYBYRhwGEfEEBGMQLWsC86PH/Dmzdf4+qtf4c3XX+H+zWs4oQTjYRigNaAsMwoc5pKpQZ+Z2ZVakNYF67ICCrg2XKNnI9uG4z4pUFSIVhRl+1HWglwdctpkhAWCtK7GruXG97arS85YrleUlDENEY/Bw8eIYWS2H+OAdDihnm6o1e5jJ35+eHzE+8e3eDh/gHiHFy8/wSevPsOzuytuDrfGQK9Y1iveP7zBz372b/DVL36B0UfIwWAxUaxpsXbFjHmecH74gOvDI/vkSwbFTwWhVmBZoVmwpgUSPOAIb5ekKBkoCmPGk9iYEjP2JIKyZIzHI2ocUVxCTgvgHRhUF2ha4RR8NvNCHknmLIi0LiS2WeuRSOoIkahauWBrXVKtuH6YMV8fcR0OEOftWsgbqKVCxyNuX53w5fe/g3/2z/4TfPHdz9lSpsbf2MGHHGHMMk4NhH+XxG6cwUWcL4+El6GoKaEktheKEzvom5hNFqrKreuMebogr48o80yu+uEA5xzyPGM5P+L8LuL47BUOt8/ZcXNzhziMyOvCVs3Sxhnzmqp1qqzCHnXVimm+YhwGRIk4ng7d4IYQ7bxxEM+aF5xOI37v977En//ZT/Gv/uW/xq+/+vvmbnrC0TK8ai2YBRVeTFJcCN+n1BQlgTajATDos1JMaHPIljmp2N8bJGvqfFuKxtcFm5MAlhy1E8CaxsPWTdBqtc0StmmNLYjn69T2zlPouFTjB6n0q1CFdXrQKVe3tWw+qZ/rjrfU3rN3LJANHqpYcNjmFACbmGPtHRXtPWrP0PdENqClxt+A/VXRxo/bQ+wBBpfDuod0a50jl7zuUANTstytS0OvJISnwYdddxuqVLWCQ+lb0s+yVwgBJTWejPm6jmjUJ++ntXRfBpAH1fQSSKZT9I4a7hx2aelW999D/PtgwHl2MXFvc213mEZ/4K2d2vUglGfae+P+KJiMGG1h4yjsngc2P8LuF/tdC6BEFaFtxKpiTHn0+pA30lF/0JVQgkiLnrZFUFftMEp/iFAFSm6UWSNgUQa4poJ0WXCVe6zTivv393j75jWOxyOczRc4X8/48PYtAgQ3x5PVWxWX6xXruiJrxuF4wO2z5zgcb3A6HeGHiDUXTAsZ7Yc44ngYMY5HqHisRY1P4EwBj9m9VrV2x2TRGslWMFWzGCPiEDl7nHgdkmY8zlc8vnuH+9df43x/j+vDGZozfKQeeykL8lohziPXimmlyl01RyMwnQN7flBlfQetl5TBV2HkAghbakjaXKE1wxdvMLDvBx6AKd8pt1GH3niY1eSCNa3IgToM67TC+4hhHICUICUhrzOqCqa84jxPeHw84+HxA+Z1hgsBZSkoq2K+rDiMD4jBAyg4Xz7g9Ztf492vfo1ynVBiQQJw1YwyH0yxj0SzdZmxzjOFkEqGg9rQKYfoBT4ISTJQQAukFDgFAgCptQ2wJAScMqQYs0UVBRNWrdAhIbiAahwF54WEs8pRyLko1pniQ30ypJHrGJUbOckJRK1nWffZhwU3UOQpoUwrxHuUQgElAEQiQsDnX3wPf/7Tf4w//P0/wvNnzzDPC6cSmnOgiiZbEj+8fweI4NnzZyx3VcWzZ88hLthZV5yvZ5S0IKcZKS1QADEOGEwTQaTp85Ob0eR4q2Y83H9gueLmCB8E43HA+9dvcb084u7lJ1jmC3L+Dp7dPTflwNxr5E2vv5SCshZ4IbR8d3uH92+/xvv373B39wwuBDx7djRBIFjQrai+woeAZZ1xf/+Ay+UB9x/usS4Jx2OEgK13ThrpqlgQ0JAX/ukde8Kdg51tQGtGw+Ebr6ha+5MVBayXWtDa+aSPp5Z+ZkgSrHAIHb5V+7+GBjSb61xT96wb1K1qAXsz8AJobdL0fe/07LfaD+yanHOohUOgGkpJfoDB4rWglXx4Le2/vQOnA2XAXYDSSgbKDhghSa/1pFvfD/vs7Rw1my7dcQKq++BlQ024KyvERhBLd0ws5wga+sr322rfjWeh/X32rqR9vhhxU4XliqZA6tQyW2xoyx6ZCH57s75WdRfkdLfJrBtm58XvZdKJ9Oyn6rU6O9ACQfS/t9G9Ik1nAn0OiBh64YQTYgFF0oLCbdsoJQiOuzQ64BCDiXglu9fGTmADpLekfLs+CwIBaHV9HzgwqQneeXi7EUblAu+jDYdhXzxgG71ByW3jwwRF7EobuaFvvrZBa2unq+bwMjNYqZjPGXpNKPcXuPAGp3FEFAC1oNSEnApcGLBixqKKXArWJZlgScb5+ojpYYLzASF41ldzQcoVLgScxhGHIWI8DoD3uCwV87xAwUhoHEZEHyxconJbjIHCGyFY5sfaMpUMmbUu84TrMnHm+eMj8rxASobmChFP+VrHcLmAwixKL2V1Nm5WB9bhSjvUdiq0WpsddDe8gs7fKYDWHmgGpWpCLRbAiUCsR77VqJywS2J/RHmqK1QzBwTljCwzUvKoZUHNM66e+uyXZcLlMuF6XVgOggABSDLhUd+irivG8QDvHNZlxvV6j8eH9yiXKyRXVF3pVNcF1U0sdQiH25ScgEL41KlCHDgtzwNhd1AENHoi1Q4O4dIKQwSyOWVY25AotGSUpQJpRfVha7eC2Gc4qAhSocR1U95r0CCMtMnlKqwbuMr1h/ZaLUddUx89gFk54YmKw+CNiR/w+WcvcXsarP3K43q9GnRX+5krNWGaJ7x79w7LdMF4PHIfaMXds2cIPmJJCcMwYJ6vLFFkOvaUJo7qHgZUbFlwyhlqa12hiCHgdPcSqoLlOsGvEe50xHC6w82zDCeKvM64fv0bm3cA3N3dQXWTIi4lo0maLhM7MXw8IHrB5599jr+9nJk05Izz+Yy7ZwNiGEzmee3GfRxv8OM//oe4v7/HX/7lX2FdjjgdI6bpalBsyxgT2D/dVN6k1/wZCIjp+5sBlQbEt0qpZVyWgUNoQumXmelVKBxCPx9EOBU5aZcO3uragPZiPXpGKyZM1saJu4YgwRyK2UixQKDZRp5Kc5xNiwPmLAQQqYiBNjZZB4vm3LsX1JCJZvDbtD8Y/KtKWwLZAoCUgEE4mTR6h+JtxK0lG07ZPpyreV9zrM7ZiG6lX2jCO5DQ/cB2c0QkW8ukGrG6d1XAoP7aSgtPnf/+y3ceABPzoiy4UMyFugtaC1FCC5D3HAinGRCFd9oVQWF7Zl8KQA+gzGE7Z11gloT0IGjLuCFP2/mY9XO/NmVJ58Bx8AqbgEktHafgcxPagmobzEPgjDczOI/gBTF6LGuCarFLb1yxpnuxI4A0fMFI076yDZDdH0AI0QGmUhQ9W8l863N2Tx16a2/hvW5Sq6roRBZgYyIDrU+WvoY9jrUfrFQqyiTImpGMnZ8OI07jaFEeD2zBiiSs9dF4NJat9YmuBYKCYsMzoEBOCSoOOq9I0SHNvMfrqjhPC5r61tI09UFZ28GPyNGjRNbDs21MmBa9CIfFzMuEvBJSzutqB9uW3Fp+UOnIOSCJDIMgAhVrx4Lvoa03w+RM075U9DYYGhVYLQjNlIHETTKUxYqd/RpgjG/bpMXEinZAVz8cJWdU5804OjhrJap55vFUYFpXXKcV85wARdfcTwJAC/J65WaHACUhpRllniCFmaFYoKIF1NVvWYFWSNmMmAP3YXQO0dEocfIb7YlvUbgAXpgNteyi7RlvD0otYqW9pyMn9YMGnINXWNvNqSKnpcOfaP3hUIN+dzCkAE3DuzkojrTls0i1mJEi1PbDH34f/8v/+D/COA54+eo7OBxO+Ow730UIDrlUg31JXM0lY1kmnB8fkQ2NSutM5Mxzr16mMw6HWwRPtcr5csF8vse6XjFPE2pRjOMBh9MNZWODxzAOSOLg44jb48EC6RXhdINSMpZpRgFwc/cMp5efoKYF8+MF0Irl8ojrwzuT8A5sAU2pG5ph4Nl6+PAeh5s7iHocTzf47hffw/u376BK9cx5vgIjMyHNqRPRxvGAF89f4B/95Cf4m7/+d/j53xU8nh/gwM6DUokE9OzFJOJYUmhwKlgzDyZFDLFpd615mEGfyiZipWastyiOr3LYzlGpCqmAeIN3tbG1pUO1osz6XNMDVLW2QTujoh0drbvz3AJeSGuNq2jTUh2A0DabNFKuIjhCt14zRDnts6MQWtEJBYaOOMvSWw1eXaup0+HksmAIB6ijc3KindPQyktaYG3g/BxnWTi0YSf8qhY0aFvzhqBo63yoGxJgNso33yJmtbpD1Y42iAAxsK3Q2blXe05QCjB1R24tg6hiZ5U/Y+eGvcaCYucc4X6zkRDuoVoLqphCaS3gAjh49d2Obffe+uhoURs3xhtvzO3KAIBNjjU9g/ZaJ219bM9kWDIohlyxNZfgZdsjFuiVCt0NAWt+t/MSDHlqCo1tyBsDFUEIQSDWOxvDiBCYSUOcBQLoX+1hEwLkg/MOUG31xs2JAQ0OMTKHANDWolR6QEC5WPZiKxQJiuwdvBlWKvUlaA1siykG27RQC+jRWCnoU7yca2N0FQKH4Ng7j1RR15kO0XnU1SH5wGzSBdRhBfQAqQ4ujCjmIFEzijLjKZmT9WotqG0wSuu5tv5+EgcFwTmMXjB4itf4QJ14VVivuN2PiYS0ASe5KpI4wNpk1DaP2AZq41AblCimPrYNm9AOM1VTpGoPnRm1lWxMIKnkzM4PcdQsQAFyg16BlAnzOiuLOLH+6ZJQl4y0OoMLaz8YTiuCDStqLTGNjU01NRv1a0hHO+DBEABnWU/w1BZo2Qcq96B3FdE75KqWbDiDgI04JgK01qFupVrNmOScpooFa0kSZWSsZsg4NrbBiGItpZ6HVTd+BY0cYWlVh6qC6APG4wlvXj/g1796wE9/+lN88fkPcHN3hJSE6+VC4m2MCCJs2SwZ8zwjpZlbygkOR9bQb26fIS2c63B74/H+3Rv86ud/g7Sc4cEBQOv1iul6xa8ezpiXjOcvXuDlpy/x7PlzHG+f4e7Zc+R1weXxkQGMA8QF2KwgwHnE4YgsgpTu8Xh+wG9+/RVeffpd/IOf/BTj6RnEOwwxYppmiGOJ7Ob2FtfrGdP1AhxOCHGEjyPgHaZ5gni2Nq5pwYChkwXZNVJxOT/i+fM7/OhHP8Tf/c3PEEXgxgECG9ksfM5eQPgSzbDSyMU+BlaobOoZXDURH7G5Ia1EScK79r7opqwoDnY+C3Ll+wZP5+hbIKmgU1AiPtv/at9mDab2srOcFnGoVkb8lr1aeZnBsf0ux7ALu6rAsmkUgWtZn2aIZv6SlVjVyKg0/hbM20eTzMzAQNGyXd7Dui4AAve2AxA8VuxhcaGyX22ICuz9jc/fUDfL9inNTgftnQdHDhiKt4sYBBXBE0VRtSVpGbjZKkqAAzEG1qxDW2uL0Z3rJEEnNozbShleHGy8CZEhZbmBAQ74Wu9QqvYgsLaOge7gLdCr7DBpz0/t2XutVMXtpRwjAXrC+t63EcybOFKzvS3hCb7NweH7eFWudzEnLkyw1WwTHXzpSQ0nOpr/tQBnm3QI2lpU2qZSDEXjeQ8BHsMQUBUYYtiMrUHIjm3GO+cvpranKK3vtWpHA5rQg49kpFcb4tOgOAp3MHukf1Myezvz1p5sUzswB5Zz7oeNz3KLMungtp5KARm+tU1/q4SFiGJVeFA2tSozZy3FmPcFQQTZCQYX4ao5qsqJb00sp5RscpPsI/dW5yG0TGg6eIfB6thDAA5DpBNVQagBtRZO+xMbx1oVqE3bnpnHkjMk8/Bk5B5QxQYnWZeAa0pilhk3BwznbKKglQ6EAZ2zAKkFE7oj3DAKNmOkhjioco20kEjY7tGcKCphe2EQi8ZmdcI9tR9gAdvATaZVhLVbEYc2m6ShTw40ut4U4Xpti48dQRwGr6jVoygzfy9CwpRQCphOvPXeGsMeNIbROwRrNXMCRCcoyr3pPAOK6ra1cRYUh8A96OFNMY4RP+vqlcNfANzc3FKGWYH/+3/5f8G//Bf/HP/sf/2f4sd//CPc3t5gTRkhDAjO4d2b1zicbuC8Q0nJ9BQigneIceTrQsD5wz1qKrh/9xqvv/oVBAsOg8cyr1iWK9blgloy1nXC27dvoUhI+YqaFyzTBZf3b1l2EMHzFy8gw4Dx5haaC9ZaMYxHZh5hwDxP+PDuDd69/g1ef/VrfLh/jz/7i/8QEgfcPX8J5wXTdIVqxYvnL3B39wzrOkMgGA+UGF6nBYfnB8zzBO8CDscTlmXmoDA3WDZEwaSqGT/60R9iuf5T/Jt/9W+Q84zz4yNr4G3rmB3yYqgcPGJkW5QASFqByL1eC/c3oVvHQM5EqkplDtq3Zp/dYZMJARAqbvuce71l8LDMymoQdrY6ywYQGnzvhW11m9/bgo0gKG34jXfsdVcqszqvcJ57VExdU2DJk5XJYGRgAdng1bRMGjLqrOfbTAEnGtroZJuLTAdqXC7C1Y4iY0rCo6ucRgpnQ7sU/TyIFwsSTGK9Z/rGg7Az0tE+8xFdMdECdu9pg8S3Z2ArZT5iiBFD9JboGOIJkhqVxrJD/O1n9BEVMDnwEALvXSkcl22/QNDJ0bs8/gm0rw3qaz7OEIeqFWqcCWlZt7O1FUA9VVVjMHRQG6JoNlWVkszmX70X+Op4PaLUQ2gEU3oFtt6rKZh2e8i9yMo+163dTUNSpO1b+54T7vEQY+DgG7ThEAZvCoksUBpLZmfGgBZF8BzSwoEopTvgLgEpoAHujkXNiJfeQ1u1oFoPZ0NngidL3JtUJxnX7RDRYfrgDA+XdnbRoiet4KLWTd6TDH+Kp1QB+79Xcz5itSHYmdCMUsSqVgQSS0mMXrVCYsgAzgABAABJREFUakaAMssHq/gCkN1ptUhxMK17tnUdBsfanffIFYhwQCVg2MolTeiolQByNWESIbvamc0R69sNwfW6Uoek2wZuHtIOzFZbUgQA3jZke38Vh1Qy3A729qIWQZNANniuEksaYtCW7spEZRfd02BQlMWejT0Jji22aWgmrFNzCx7569E5DF5sdLQzXoojEbIQlhQ1+FcI4yU1SN8JYHr53POWyRjsplZWYrCgCAY7kM/C8b88+7UjVIJ2eC1o8jRejbxD5IsZT62V5Ys4EO3BALaaKv7p/+Kn+J/82Y8Q4wlrSpjPZzx/8QLv3/wGOWf4wSFoQC4rrtMVwxAxHEY48Tgcb1BV8fj4AXmd4INHHD18OCGvC+p0taCxYJpmhODxB7//A3jvcTiwLn++f8tZDNHj7sVLiACn0w1UgWu64O7Zc5a4csbl8QFvX7/GMk8Uu3GKr3719/jZ8Yjf+9GP4ZzDOJIQO00TTqcb3Nw+w3W6Yp4uOB4HQBUPHz7geDxiOB6Q8gq3iqFONJhryRyKVQsOhxO++OL7+Lf/+meYLlfkNHP0tQd8FahvmumWfChtEINER5he6Yi998wYI7kW9FPcu1opEMQy4o6zVIx9DpberGiAYL35HEBTOX9BjHQmlnCIEBVrzlXw5Az12NfQ0UY+I9sdcM6jesFqcr6DEWCj0RFaN1CTSRZReLD0CZiYTu9JZxnCu0Yu49lzNrxI0QKdutMb4JyDwXtU1wIs2sFShFoEVj6ozRb3tHAX1LRAvdvd3KWzmbSIlQRJqGVTmINY62YbzdzbD6siBuA4sLvImyQ7147rkIWzY7wzqLxHimq+ikiIGsKRcoIr0uUBCOtbwcYLcioWdLFbpBECxZIRlj+BomoIjlriZ4mWBWcOlZ5NOVuH8H9vKGCQ6GkfvRdIJfpZnBW1xMPo/vZa+l+qhFK4iyaOKqXUJTfb5cQQc+OaCW0XEzXrCCtAcAb5t1q+F+nZoTOIWbSyltjGsDZowPNCfdnq4wwCLABwzK5IOGijf0ERIVMfS6WgIiOas482FTA4WCYsFuYJM02DeODAQSdWl4UtrPdUynPeA0ms64CbMQYPFLY4DiEgiIP3LUhWLmiT7CwJ4oHgFA5UJWvSi3aCCV8KI0TvrfUKwoMUA4KrGIJgGDxi8PClwuVKeCyEXl5REO7p7UOqyEW7g+ZBFiQTOgne94wjxth1DLqrtSi6QE2/nI5WDEYMgZF+aAGUF7hs+g4GYfE9LYsRjjhGzsZVsrqiYyDCvlYeIAcO1xFrIzUvDLWQqjhhVm0HrxYb+axqao0sm0Rrl6F2NfeNDwEiJPsE46B44y64oqjK9+8wBpfSkB/Th6+8Gu84XCSa3n5BQazbsBkRZ5K5ppkO2Wq7arU8zxntLYt0AlR1KNUjxAHLsmIcBhyPR3zy6Sv89Kd/BhW23V6nMw4Hj+n6gPn6QIixvIA6weP5EQ4U5lEBxsMJ3gecLxfUWjjARwx50oA1T1jXFWlZ4UFEq9SKm+fPAFWcTifUUnG5XHF7d4sXr14hjCfcPH8JHwacHx4RQkAtBQ8PjxAo3v7m18jrDCeC5y9f4MOHD/CqeP2bX+FwOuKzLz2ce4bj8YiUFMuy4ng6YRg8rpdH5LzgcjnjcBjx4eEBr4YBcRCSPkvFvJwBpVIjlNyjEAdMlwccxojPPnuFt1//mi1/lV0aEGELXGH7nhoUSmfH8lLwEc4pB405Tjvse0gYaDTeBZR93a39rhZQSMlelzLrqUMQI50qMoya15TYtLHcM0S9oQUbusaS1laPFivF0VG3MbwK7yNqCVgL5bWH4DC2urcZCo6fLt1pOy/WMl3hlIRP60MAnMK7aoG6nU1piEcri2w8liF4DN5jMDGtGlg2KbVN9HRIZiNy6z83VE2t7l4dLUDZJ6BgZMDETRBcK+3xnHpxcFrgsnD6qOrWySSNh8be9+isBg9Dd72HTxkLBL4yYQjeyHWuJbRWtosB0RKQNXvMae2kaMaGxh0rGc555MzAwll7IeW3maCSgK7m+3jdIXBIFBNfKwUb0sgSjqHnZpoUHYCxRMqeaUNqHBEYAqyFQlsh2MAsKyPZe3FvGRHf9ovaHgWsO6ZWKCflAbAx1lCEOAREZy1rtVqGE2wTtyyHU8PEhAC2WdkW54VGcAhobSp8DRN1Ot+AGHiXi3dY1gUpcRMkr8ykHUlfMXpDALbJWzDHRkEGgSkVEX5to0+dg/McOywWAeZc4JxaAOMQg8dpHG0SGH8XjsNgaodoCC2KGRenRsYzFKQ5U+ccqrfWCnG8R89MMAbWgIfgMETeUymcvtWZoY4Q9abgxehNFfBV4VKGmOKZS3afIBu1rcMYyWy3fJfvYwGNN0hfBUYkcYjO9yBLYEhLAVbXCEoWyLWMBVSRC2bUGkTXOAYkjYoddP7pLCtq8CPJnK6zfFujkdiHeWG7WghUzQpOMFi7i+vz2bnuORuSYYa0VkFUQBz3EDM4gMev5SEtZmM2o5WHmcRPHsxSBDUY9BfYvsQ9aIbbIEaqcjGYadCe2IlmJwAYRNSKwxihYFfE8xcvMRxu4cMAFYdxiJjnuaMhD4+PeLYucC6gpozbZ88wHA4AvDmHgrxMG+nNRRMHesDl/j3evv4av/7FL/Dh4YwYIo43R9zc3eFwOCAVxbPbZwAcnj1/jmEY2VkzzViW99CUmBE7qiU6L3j1ne8gLzO++s0vcHM64v7+Hd7dP+IlHB7v38OHATe3NxBxOBxHaiesCQrgcDyhlILzmTMqBMD5wz28f4njzRHLNJtmwwp/d4fgBblyJHNwEX/0oz/Cz/7tv4aI4jCM5EWAgkgOAh8dfIXB+DxPwbM0prWa4XcIXnA6jrQnznf4d83JHD84GrpWNqHYs1Aww/OO52bw6A6zdQK4LEjeyGSW3AQTavFG/mrlrdhgbzszTRkOdCEgN8FDqyAqA56WvcdmRwvniaSS7Rw5xACUIChVjODGr9iQK0e0swUQ7HYyh+wYvDal1Bg9joPZL0EvyBYTTsoV7BIAg6WUM1FEO+NUiLVSqrIds+o25Eec+QW3lUgt14GHIAft7dG1CFp3ifMsw7YAyolaskfPJ2DAVIyX4nvP/dYZ4h1t8+ADaq0YSiaiqFuHQLN2JTu4VCy54DnOhTwLcUJb7NgnIhmcdmsFTQiZD+J4LSE4DIETb2MIXU5AbH1bTd9ZIlGgKI7PotlZ2s6A4zDgOESWhNYEDyZK4ts+aoGAIoAcMnHaVWy72FBDrGFdAIfItje16GfLMLd6//FwxEYcoHN3BndXi9ToELwdoNpLAi1oiMFhjBQJca4AGnZqRQJvdZxoIy/bdLOuSqUb6MS+bWv/qiSJtSjfeY6aFSiir0iOzigET9hcPFAF4dige0ofb1MBjWgh1vUAwsSlWjRtEXTbYIBtcLCGPEZPdMAJxiEgGgEwOM5xH0ZuXI50tGi7GhMcdJKlVMRqLS+hwCVu/KG2GdJsLxEhOcZbhC+gEauQPqlRLNKrhrCMIXKynglKQAgThUD55mxr3aeSgsYsa6uN7SLNVuO0UpG38gWNovRoQkSMcVxouJtjNZjPCw13CwBi8D0AaEbGW6CVvOMhszAiV25/KSblbM+KIcBmaGGOmW2Trgc4JGxykmQrO9FQNz4GyzRQe72hJtVKEM6CMa3KZ2L3XEqBqMAfblgucAHiPMYYMS0Z3kccRgqUPH64R62Kt19/he//3h/icDgYsUcQ/cA9kZMpFSbcnE4oVfD47h1+9bd/i1/94uf4+d/9HX71y9d4e/8IOODz736Cy+MVf/pP/hTj4WAkyoLHhw8AGNRT7lQxTRf4eMCn3/0cMQ5dOOfD+YL7+wdMMSCtGYBiGDy0LDg/vMGHD58gHo4Y/cBhQEaQOxyO1jrJPXdzOuLD27e4HiKOtwfUknA83KAWKgZGz6RjniccR0NMXrzA49uvmXUnRbEunEZ090ItAW8oVAzB6qzOpMDJvzkMFOPyNiq3VkVYwe4eFYTskHJGcYLi+BnMyvn+pVSEwEzVi0CDRyyC5ASpqmkRuJ5tKgph6G7/WimLe4S8H7aebn3ifB5aK0Z4041gwsNSH1AS95Oqh4IaBuIFGhkwVHhD+hjosxwtmyiUAwbvIK32L0ZWLTwfbb3G6EmXFLtOMDFMRTt6ogqUEjdUAQQdU6l91nwJvregAsxUgxHjgnPmY6wjCg6pVGRPfganX1rvvAOceozRWylFNzQFDPqcY+07xtjRS9+6H7yhid5hCA5QQS60WxVbGaYF+2mtcG5B8ECpDmsmVyuXVgoQS18UQxArHTBZ9eYDxZFXNwwBUdi2FwJLvQ3Rpa/xHXnxjuCzMz5L0YbYMIEZo8fNISI4j5ILDjECmlFJ0sKmSloAx86VWgVZKlAMNRcx32xE/1oZALiwiaOoCA4h0GF5xyx2YPuRmiF/wvRXtQyz9kiYtQntkBfhTG+Qs+v1sCEGXJcVIVSMau/hHMYQrdajvSe7mIPxFkalXNiiYgFA9FbXNqfhvXDkrXEMCC0LDgMNRUocfcl7toi1WqHdqdVvuAbVoLCWWfRoy2Dhotzg0ZHRyR5vZyxQMBBwrkPfzbHVyki8+tYu6KiKVXclgEwo3VsWzwfp7ToanL+RmdQrq4KqaKNrSQri78YQiUpYCYJrbPfvFb4q2hhlWMYjgEE5jpmKQeF7gl6DmjojuiNEFuSp63yHUhtaYRKpjgd+HCKDuSBWQmk8hY2pLYX37ZwFk8XKFqIo6iz74Wc4QyoYHBn721mXgt2Xs8ysKjgmtaEf1tbXGpYaicnbWWkKi01Zy7k2n7sanMi9+/LTT/H5977Ed773Pdze3uB8foCIiWyNB8zzDAkBIUZcH87kEBzHXhfOmaOOhxBwna48TzHg4fV7/PW/+ld4/euf482b1/j53/8Sf/uLr/Hm4YzPP/8Ohg8PmKYJP/zD7+OTT19iXSZ89Ztf4eWLV3DOISmJUSFGZmTBYZ44mneaJpzPj/i7f/83eP3Vb6Dq8f7+A1KpuM6K1+8e8Mf/8CeYlxnzfMH58YzD4YTb22fMjkJAyYS2YyC6c3N7i2WaMV2umKcZ18sV3/38u3j7+issMeJmOKJowbzM1IWAMmiPRDxCZY26WinOw6Gg8WFIxhxisL1BpztGJgND8HCBmWlrs/NGaHMS4IR11xI8nMt0QqqQzBLaEAOieAqGAfDJI/qAAkqgG97FM2jqhG0gmfOthOf7a3xgtg+zBbxX2qWsbTgO6+feznaGsuzlgDlleBhhGx65zEDrVGkoRTuDpcB7wPvAANu8ca97qzECHFFKknata8iZfLQNW8rFyicwFUwLNphEVORcwZRJUTID/mp6A85QvWDdPcFzz4kEQBxSrjbfgAJTHJEMmw7JMko7jy3odnYPQ0omahN66bpW6chdiN6SCgpRlVIwarCJoqybOyE6tGiGyIgQPHIuCIHyy6lkk0NX4zE0bkUrfRsHwrMUFYPDIfIzgyHUAitJgLysVvIeIvdGcWrdKa1jZSsvHobAkpBziIPDkBkIMsEnqrIFr21YVYVzGUm0NYowOA0tWHUILjBrNb/HQ+u9XXwwSD5wHC0INzX1omYAiyoXHNKhGTU2ZoNjYoi9Jaxv9pQgTqirDekbKhqs3DZP20hPAoCQbUQwI8MxRGZzRsbzIijeWmwMng7BYRgDXHAQl9Bsu4ggiGWOquReOMHBauXiucxiU6K8CUIoTBmxw0x0ikMIBrMDTtiqFvuhb+IQFhZbns1+V9agU85wziabCaVdg2dtukXvW2bhTVoSnTiTSzEpk9Za2NoFmWkNBvUZEMUAwFO2ljrpraugwUsCqYKABksxQQnedxKcNdh3sg/69fD3+WwLoXZtkTcAgwIFwDhExOAM0XH9YAVisT0r00pURpUa1xKJAFBLgdlQVe0chDa8RyCbql/D4lTZNoMtIOjlJLchArCgwVnbmmolPGnvGwMllOdlgQ8D7y8X3N7e4E/+/Kf45NPvYrqcoanADR7ZSlDVCQ7HE15+8gnmacLj4wccbm4AsC11SQuGYcD1ckZOK46nI9K64u/++t/gr/71v0DJCb9+c4+f/e2vkcUjHu+wasSf/0//5wiyYFpmzPOEF88/we/98I/w9t0bBAjPdByhTjAcjhjiiOv1CugFOa/I64x/8OM/xJu3X+Ovf/Z3eP8w4eE6I/77X+LFs1u8vZ/xHz9/hdvbZ7ieJ4RPPKbpgtPNDWdS1Mz2WRGsqBiGiLgCl4dHeO9xvVwJ+YeAZVlwLBXH2xM0F7x8+Qpffv/7mM4fMC9XiCUAJArTtnhxSMrgdgzOyLahG2Vv5b4YdmRXq1EHMElRhbHKXUewvADZRASDpwrfEAMG71kGhcO8rjSyEOMJbM4Wup25pmAo5vCaOM4QAnU7DEVryKXzDqME69mu0OrBzhugBkH2FSEQaYIhrTTkI4bSdDysTNXJjb4HrtGQ3XZ9rZTXAoAhcA2bbkfTVIF6VAXWxMAoF+3Kkk1Tof8clsD4ilyzCQ+JBTmNAyDw0WO0DqGqwOAVJZLgljNbhhuBUkzrIxqC3Dg8LQmL0RA6Q+daklRLtUDDd94TkzZqRaTKOTUMtimj7tXIehnIlmg2snD1nLsQjJgMJWF5FrBU45wRHunvDkMk78yeSeOEqLLrIZitC8EZKbSpe8L2JvqzGWPE6M2OeuAwBoSws7G7LiRyWoycn7nHipWZg5FLg7CkHA4xYBwiACArs7vRLn6IrNt708uvCvi6Mf29MehcrT0AaCzYNozBGXEjRBJMFGqynQOSEb3WROUjFUUQoYCCBQClKEqlO3NCXi5EkIpH9pkRuXDzttpabFmako2erS4cvZHxjMNQqynKeYfqLUNofawCHCKdqy+cjKiNgwCQjGPwNVDtAPG9Q+RhY7Rb0GYOkPLZoC3p0JU9cov2zMEKWfVFSVDjfbknQiKtjOCDtxoPDWSJobN1vXNbTRLCHu4QTLaAwjkpV7a22HVU67BoxNDW/rblGHS0wZHR630jfkqHfQGg6aVXbaCQEY8MwPd+p4QGYIhs6XIi1v4Emz9uI1q1wktlk4FW641l5B0tw2tqbrWiZyec2MYDCwsAxAlrd6pAodOHEqJ03sEFhyZ2JHYgnSFaamM2Rdg94n1E6+N9/uIlXnzyKYYY8fB4xmdffInnn3wKcYFtVLmi1BXhFHA4HPHixUucHz9gul7w2Zdf4PEyYb5c8eLFJ2ZsPGIMWNeV/JYY8Xj/gH//V3+Jsk54+zDhv/p//ne4TBnPn91gXgs+3F/xf/g//hf43//v/jP85Me/h1IS3DDg5Wef4e7FS3x4eMC6Jhxv7uC9YJkmwDk8f/ECKSUs04TDeACc4i/+g/8ABQf85//F/w1FAtalQD9c8c//+b/CzfOX+PTlJ/irv/xL/MmfBsRx6OO3SaBUiPdIhaJBUhTrdQKCx/HmhForbu/YKqlgy9i0zpAg+LN/8k/wyatn+Hc/+0v85pe/gIrB7b3cKIgmJT3Gdva4k5yV2BgA0JbAG6SqAhcivLDrJhXmrN72UvUOxVsNVsRIlx5j8BiGAVDgeBhIXq7AmjftjZKzldqc1dq3wHHr1nFGtEOH/xvSGIzyL7BMLme7Z3aiqFMsuR0m2iCiZJ6qdnZAKXCjHfEgv4aOBigmge5BwRz0IOAwRIyRZQKxNXRoQTUwxNL5LaVae63ajAQFlpQ30mAoWLOx0J3v7PPYULPgcRwGONAh5trQXodaQ3+OLeGCZd61azvUzvWqdd/xw0Uo1srnROGD6wEAyb9EIkPZpjw2QrIXD/EJPglScYZWcJ1qbSTBFpQAiCQuZ8voqdRHJd0xMhFsiZhYcKgG6w+mLOu96wh0Tzqs8wAOcMEjCh130YqxcOR1LtapZDwOk6EyoqZDKZZsSkbucvMs9wwxQCEIh5EBAA0zPzWEgCEGjBY5wTYBrGeaE4gM/vUCr57IgEXCTWmqwcLM6g0msR/5EEjC8h4xmjYzNpjdO4+ipY9F5fPdHyi+X1OZ8iaj6gSIQzAIlgShVDaVuWBsYSeKXCzyVqAG7e/LKJ5RXxwChqpYfKamf0cU3HZNFslHH+BtzViSoNiPt7o9a2oVfVCLk37AbLmgUKhxddozYR1OUKtDk7Nu6Au7DwxW0kYsYYRb1SFIMMjK6i7C64oGS9VaISFgTYQbqxknHmpuFm9r3qY8umawPPX4nXedHAVlAAVl8GLUeLbuWUSvQonLavC72GEfjPSEXdsKpEGagKggSEB1TYlLbBKWcvszWiDMGYxhawGVaLs+rl/VsjHLBdbPr4hWvvGu6SyYYbHnxANaelkFwgDUedb+JDh8+ft/gM+++AFSWnF79wzBDZinKzQnXOcL4njAaRhxPN4wWs+K4XDCsmY8v3uO+/sHrCkjyoBhiH2yIzNQwVe//BWWaUKtwH/7L/8tXr9/5HwA73EYPaIHzh8e8V//1/8P/IM//EPc3tzicnnE+eGMGAY8e/YCl8sVEMHhdAsXRzgBjuOIN7/5GvN1wd2zZxjGAV9+OeL3//CCz//tz/F4mXG9XHBzusPrr9/g//yf/1f47stXKMsjfnl3i+efvMK6rqgqcI6T/8bBIbqI8/09fFWcz2cMNyeMQ8BwGFmOWyvqumKdJ7z+1S/w7PYA7wN+8Ps/QkXFfLkQSUg2FwCcmleUolXRUMxgEsFQ3Z0NBgBNLhhi7ato2SJD+tgV8oxX0h14RYhWNovRyFl2TtU6c5Qk4lILx2bbV84kRTaRNFVm7CHEjhp2edyevRuPqoiNbCXfBbWgBmB01AegLQyoVRF9Rqpsi2zCR60vn6Q68lV8dFDNRl61/WqoL2ol2TsEeLehGAaSAo5JHGCDlRTQ1i9vyVQMFGuiFDvRwaLWUO2IOHpH8pqz7ijyFQS+TWlVtuqisqwXrHzSnoV33kR9qmXXgqYB0HhcqhUFJPnx983OW7nO0ldEbQTsupUYnaJYe7M3p5nSSoK2UMOlJ2m9TEzkwluyHIwMPoaA4CMRW+PPCU1VD8p6KzczWdvfZm9hKJGH8cgYKAyR4mVReS1afUeeuJc4rbJogKwMWHLmOgUv1qJuJeTj8YAhtAzGNqVvg1icscWtfqqCROuJNlbQOTW5yea0thYDkdYq5a290KIy2zSExQNyYb2oqfjx9zxUA+H/skkZNsjeObBtC9vBiSFuB18EawaaLreFlGS/BgfnI0LdBDMaR4B95ZWwT3AdKfAAFou8G3IMg/cay7ZF9IOTHgAEg+rFMv+2Jg0F2IxQO0ztegWs/HFtUwGKOLYd0Y+jtaIxE+WmtC491GrXZFlraJvLXrtNpLLSjasQEydyCJ0g40BmcxP4qDAIzznEHdmpC3F4OkgFGzVEHERLX5umBCnNUXML0yh0SJTMaLuVTiZqQlM0FFZPFRqWrNqJVd5JX58gre7JTKMFbRT/CZ0j0IxZCBQHam2rfTgL35DRv3KPtLX2nXXtIM7jfL7iB6db3A0jnDjM10fMjw84n8/Ia8Hp9ogYBojzuJ7PmOYZz57d4eH+Pd5f38OFaG2iNI7zMiOnjOEQkVLC669/g3m64vHyiCEGfP/z72BaMqZrgvMOp5sj/uCH38NnL5/h3/3Vz/Di2Q2OhxHD8QCEAOcjPvnsuyiFhu/ZzS0EwPX8CB8DXry4w5IS8pWCWdE5nI43+Nu/+zViFLz78IDzPANS8X/9L/9P+OM/+gG+Ph3xvR/+EM8/9ViWhfB5Lig543RzwuIc3r35GtMy41ALvvv5d5FLBSQgxANyLljmCQEVH968BnzA7YsX+IMf/wQPb9+ytOIzlSjBYJqjewmJegcMniOhGwk0+Jb1eSPvEldlB5Wp5zmB+gh1RrxTYDB751ogEejMQgyGBlmmBmeM+GKqo9V2Mx1LyhZgmyFvzHZvPCFmpejvCWG5wotAnSN8r+QCqKGzpSqQMrbedSAY4qe7JKzU0vd6StkSLb5nCORpuF6C5H2TQEh0UKQ5IaCJGom9Xq11ca+1UStJfDkbDyoU5GLnpyG3oLBPCEYG9MECfIehMnEsvVzX6v7NaVs7ueNZUyiCdX14g9lTypSJV7LgW0m5kSFDT8Sk2/AKGy7lvLX/VqiMcG6FS4I2r2UrEtpXQ2IB1OhRqrc1Znk7OKKZwZHjwDJJ6Ukf1FRhHZNqHzfSJoFcy+lrxRCb/ea6lBrhPFsvqSLLqZztvb1zSIWTeL3zCKugDtYh4z3tmwWK4TiOGHywGtXmmHw0eNcgKjUDKq6wRmMU/taixwdjB0fYckKWru8f1mBiblLXI8ygipwKZRqFJ8JbnUtW9t46FUiQ7jDU9WSOD6bVw5uzI2CBlE0pCxaBB2AcvEFZamQx18sDfDaKPqzHkffAmMUm9FnNpVYTtXB7h87gw5vghZNv1sUb2VF3sLuI1dOcojq1OQGCiswuBYO3e9+xiT041zJkPg/Xej1bGUasti3GRIb01hC0iLG5W3P4tUH5uz8b+bHa4fGGwDgPe67N2Fl00jNz7ahPMypeTD/BrqWJEm3OvpHvag+a+rmzSFMgW92PD9cMmbYdsWlPtH1ie6/WJkUtnQTYAq2eobRxpp4BU7vRBsdyXXVDKJQdJcfjDUoquF6u8OKRckZeZyzzhOnhEV9//RZ/9+//Hn/2H/7PcLi562uUVmrj33/4gNPNLW7uniOXFaUI5pnsfywVyzzhw/0biCg+efUCf/HnR/zmzQPe3l+Qk2CtBd/7wef4Z//p/wp/8pMfd4MdvMd4vMFwPBqM6uB9RFoXDENAWleEYcDt8+eYLmcEFRwOR9zc3SDlguf/zf8Lf/onP8bjwxVff/0bfPLyBp9/coNXLw94/+5rrCXjyx/+EOPxhPXuBhojSs1YF8XhyM95/uIZbusNTnckCw7DCIjgdHuD+XplK9rNDbynE5/nBXfHV/jxP/5zrKng3euvsE5niHXDoCnjWdvx4EkCbENefCBRrtWRiw3VcobYMCNjEtMQPbTg3pCyBs/7HckYdp5UyLeJwQhlhlQWM77iOHobFuqKzZ1oXS3Bk3DXdPfhxJyc9LPH88MBZNW6aJrNa4lHrtq7WwQmkpNTzyYHI4+xjMdy5BA8nAtog5Va5txLLG57f7HgietGpLGUrfTBe67ILiN5wBcHl13XWOjBSs1sbRxMI9+bcxcPJ5zIWmGlvcrpd851Cw8Yekouj5VMxcp/VvKrhRl9qk3uCJY0AqHp2Ji9VmXrMKfPAdUrnONzVGspbPyD/mUByzbyme9NEjydenBEi3qHljYESHsgSBSVnVylcI7NhrqI+QQmaYMRYblvWNZerRujVkBzgVoS65yJUhW2qoopIdJcah9C1Lr4wiEGxE6SMCjBO9Pctrq7bAhAexx9lnOrO9kmYQCwicg0CGe3hP0AsLbDBxGtDtJW1XtuCA1N/GFz91oz4Lyx4mnIIS2qtPYgv5FEWtaoMG1vZxCQqdtRYzr0WnY10qGoOSxn/buZbP1e4nC+Z+yUmtwclViGWhviAVsf1Q45aau1N5zNNkmTHe21Q0NmxKIePlDfX2MJBigOIRDw+RWtEPVosJDavTYYzzl2NzTosz9BRecUWDzGDejEWvcMyrKygymz9wPRsoluquzxbV0W3C9P5qNbl0E7IF37YSPb9q+mHQ5ULJktlFVZ03fBGzdii5gJopoyZGUxz4FQsB0L/idtgOn2HIDWD7HdD4Ctx9b4IlBhO1EI+PLL7yPnjLfv3mIIA0ifdchpxbqccTjd2AEX65X2HAI0TYR6S8F8vUBcNAY2p08iBrx/8zW+/vUvUHPC82e3ePHJp/jsi88xzwlrAs7XhD/5s3+Mn/z4H+L8cMHts2e4e3FL6V1vkGFgEATnEMcja5BFEcYDvI/ww4BhGFBKRcoJX3z/9/Cf/W//N/h3P/v3+Mt/+df47qsTTifB3TEiOA7eSmnFr//+53jx6hVefPISzguGIaKsK969fovL9YIffPk9rMuK+/t75KK4vXuOu+cvkFZOmByPt8hO8MnnX+Dh8QHLukLOFxxOt7h79gKP796hxthrqSQ9pY7C+fafNmTQbfwUMCgv5phbrMhulm0fNo5KO1fegl9vLZ6uJ0nOUMzAoV3WApdL2QXk1k6NVi6071qy4lrgq+g2loeOzpU172wIH+vwRRQR6HoHIg4h4KmevVaoC1uWu+NGiDhDMzyijxDnrVynvR259e83zpXRYzoyiwpDhs0MOsf5KM7Blwpk1utzMdEzx0wWIAwfum6MdVU5D3YXgciFPS9nHCZ22LAs246g7BAVjnOvEBdQPcm3zc6x9NvstevOH0K70Gijm0IokcAhC1ZLdIN1lLV73d63bv7OESdwIuz9N4JfC6I2u0i72Uo1RE4dgrPExRn0D3R0N4ZtHwXzuz5lFiBEUIq3jjITVhIgVI/gC4KvnYiIurVKc78pwjhEwk7emcQuPYw3iLYNVwBgqkhg+50ZR8oloi8EM0a1DIyKfo39z/YOsTqXArXAhYA2S6ATuSwKpgU3OWHubECAatCsCAOFp+GByYIKJVsFDt7vh+1YP6prY0X5EJrkbGvrI1ExbLrgYGAA38od3NxA6Ae0wR8VrHMX3Tap2Pf2s5p7xCewQSQC6g80pvwGfe9vskV0Dcpq9qYFFc2wqc1PhwhHMPf6l5U6QIJksrnuqmrkIV4nelLNA9sFM2SLZHu7zS5gefq1cSvaWnRj65r7/X+z9ye/ty1Lnif0cfe1dvvrT39uf+/rIl5ERmVbJBMKqiaUYE4OkEpiwIA/AYkhqiESAgkJJsCIGTAChARKqKysisomouLFey/e7c89/a/d/VrL3RmYmfv63QiqMqWskkKK/XTeueec3957LV/uZl8z+9rXaoyUEjhXyTwCPKxGquuYPDFH6T0epP1IzlVAJsgBTSC4VDWwnfQzewMnzp5qWUzJBGRB86HxlT2rbVmgmgS+3ptJiOYMbTshZ3jz9g1HD+D8/JyLiwf03YHdbsfs6Jif//IC37RMZ1NyTiwWC4gDm+2GNgT2GVa3t9zdrDi7eEj2MgjmsN0weFhfX+LTgJ+0LI5PWC6PODo+xoUpCcdu3zFfLHn98jXT6Zyziwnea6rVS6QlayF166aVnuCYBLw0XgGuD7gkLUMpZo4vzjg6OiH1PavrI06XC4Zuy93qikPXk3Lg3dtXfLL+nBwHhqEnNJ6WKV9+9SVHyznT2Yxvvv6G8/MHbNYr1qs7AI6PjkUDYLmg6zPbfc/J6QX73Q6XBmTKs8M3DW2e6tQv2Sdez2XQko9wklTNUfePZM5yMeDjgTNyr7WtOZG1BOR0zVDmura+BrV7GkRkPZAOKYnaGajzI0ZZp6xchNEZMOVU05fPZJLyb9LI9uao1y9oRzsiLKMmts4ck/AjNBgYXYuB4dBKwNL4gIzQFWcbY4Io8rVCjNSWZicZV8nayjTIe8GOqyJsru/ITlLwISQ9ep6sSEd0G6qEeVDnTxbgYsGarEtTSpjyRSrUVsC5tTlL1sB7KRlDljIdYlgtEMSrXRxF9A227qZUKs8gNgHfi08YhlDK1N5VArlNpfRefKcohVJ0DkIQEmXWqC2Z7LOuFwiQuyd/XFdVpX+1i8FrYBdFQyc44TiQxR9a6UOce806hyCmK2exI8myPOjcEqtHy0PwJaJxWchdNrowa+TpkhlLsAzAuN97bPgFQSr+EviMkcss+iPlcmGWXiv1VOfK0I6s0aPViUvGzlMOuEMct8tORRkoClyGuEpbiB5kEAdnQIKURGkviyAGHh1ZabVua/vRgTyK3E0NUBxaUscpaNomfNm9iYOuiDJ4beVLlXApgidGjIGcg6THsqQEJYUjvIhaWtGalmYvpFUugQ64SVEJe3qIUqzqW7IOuQyZMMRRWQJqM0cRjWUWTO+jpkgzpsPtoq5IjgpupN2q1OXtczT9adkDuSZ9PiUql8goajo3pszuMND1vbQb+UA7mUhtsQ3koIBWkW/M0j/OKO1qv0pWRw0RyfgXpqGggM95srtPAM0R1LoIGzh4Lh5c8OjRE1rfcDh0NG3LbD6j6zraZkZoWybTGYftnrvbO26u30HqGfY7/uLXv2G6OKLr9yolPGO3uWO7vuOwWTFdTIvxn87mzJanzI9OadsJ7WTKZDoTopkKG0lkI+lxmw8vJZ2sEVnDZDKhbVtSihwOnaRgJy19P9APkXay5Iuf/T7L5Qlf//bXHO5uwUVOu1Nub665vdsQ/JR2OpMIzA8MXS9s6OBJfc+//Od/yp/96s/5R//of4BvPc10Qh8lgidl+v2OF19+yYOLC774+c/Aw3Qxp21bmsWUyXJG0wX2my3BiQFOklrSwMF2qp5BnLbe5rLPTHXTwLDLGZUGUAcpe9NhpS7lkehZd9TuD+czg31v48hDLKRkOddN2csp1/q87WoTTsrOk8zuelHGSymXITfSmTQivnoHWQIHF8SplYhXuSxCNpPuiKz3jGbBgrbZiqqkgo1suS9Jknlnq+m0vU3vaQR0xDQrcNLIMyv7NsSkPe31XNmo7tD4uhZaUgAIuSk/b4Giyw6RZ0cAhPoMC4K8R+5Z+9wbzeFZ3G8BXp0K6cpucJrxEz+iw+9SFHvpEi57HBKshhBoYyBr+Q/lOXlnaoPqcB2SQW9q55WsqWVrNQTTLAd4BV3Ua7OA27raLAPlPNnLpF43DKW1L+MIKRXeh3BI5B5D47UlWnaHBVI5J4YkXSRILbpGXxWhIi00ynayukcu0aBtKmfB0I9AgKWU5aYK+lJiVUYQEK46mTL2VQ1sxiJdo6ypaxodGEth23tishqL/q2y5B1S3zX2rbPvyop4DJRoRJhzKg8rKAs2Drmk8hyyPpbWAZnIRa7XIgCgtsrEmDBRHmECQ9Z2W0NtTiNruS2bwFUvr1yl85Bj2Tj17+tPFZJbzvQ5iYSlRjNZnZ34hJp2t98t8QCjaKr82dXPt+sag0FKMlWuJduoTmpKDgrDP+UsLX7OyhyGUlFGsH6vk82cnKTcD/3AZr9neziQEhzN5yymLYEJBlBlP8l/DzlpyteeIJhhLCRBjKxY3+ucdBwkb2ujmSDBlwTnadoJD58+44uf/pzzJ89IycmQJSfaEJuuY3/oOD5/zHJ5Asnx/u0bXn3/NSenS6aLM16/eMXt9SWPFxPms5bpfCFlgRTpdjsO+y3HxyeAI4SWppkyWx7z4Olz2nYCTnQ72qYpPclJHUkcJCM0DIOQwIJX8towao3NDH2PB3brPevtlsl0jm9ahiHx6OkzXE78+k/+Jfv9htPzRyyPjplfXbNa7eiGXjIzhx5HZr1ZcXx6zH675c9/9Wc43zI7Wkq20XkV0QqcnJziQ2LWen71p3/Cw8ePoPV0febk9Jzf+4O/zaRpuHzzmu7QwdBpxUjAcDmD2Zy0G+2ymlFKKdbSYfaC21KWko5G/pYN0OCQWgTKOlTMF5sl2XUlNwdti9P967wnRw0Y9MOKibQzatG59xrMqOF22nWTa4nOdmcykKpnLiWNsjUSloM1Ksmh/efGGwo2vEjFdZJlK20WzP0shVPdksYHGqdlEO9LNEmG7D1DchowqSaAipoVW6Lp58It8nWgmdm4YL7egfYOivNyYvN9ogB4bCS5Q5BQEpEiLV7r86YQeR36vSWArZkMCxaNqxa92iEFyTFBtmmIzkkmAA1KsnV2qU0fzXkBJ7wtLzX9aj+V65TRYKmSqa3cYnMjvGYevRIgQ+M1CIQcxA5Kk4K/54ttDU3htrX2ViSIbFOgAXcvlSsPS5nligLNThrLuhhWfVAuOJnCh7ypCBNotC518FozchodSwToys3L59rGU2Rum8cWxVm62GOOyIHKl1KuzTTxKe0/6IOQtJ4NmAFJzUTVBLBry/pQnUPVD63uFUobjBkJ76ztphoeG2iRkvStuyw9nMMgEbb3obQt2nULySWomENN3RUgNNqwZkmqYRmbKapxyMIFkAwFBF0DXJ2sJkBlnBK3Dak1qSx6AUEzNON2TNscKVlpQ9fYWWeA9mwrY1cOoG3Oer32mV6Nemn/9AXyletqnYxuDo20fvZxYLXfEnsZV5yTDEXJqk5GRrUBxAClXI1pqfU7+w4DLLX7wK4ta6SVLLWrjie7QPae5DynDx7z4OkHdENiv9/jyex2W6nlO8ej5895+vxDMoG7u2tWd+85OV6wmM75za9+w9t3r/nw80/57Kc/5/Hzj+iHxOb2qhjroZchNTElhgEub+/44Iufc3x6KmSiGEUvPicmTADHZDolk+kOe3KO+ABD7JmGCTEORCc6F4kkky+RZ7ndrFks5hydnIATKeO+7zg+v2B+csb7q1sePjwiRXjw6Cm+ueWw3+OcY7fd0nWDZCVmU64u33N8fISfTNketrTDRIYHtZKpmB0t2dxdcnJ6wsnxEbc3Vzx69pTDYc9qvWG5OOHTn/4+2+2W1c21lBOR/YUznvbI+Lt6bsimbmmgFUQXHYJKzqKOxYIy4/bYeUsp2k7XUFMNtNMUdDY1NtW4UI5S0nNSa/yjSE93nIGA8VlySUG3BSbZfokTS9o1lVMmIt079oHSBieOKysQyJqVxAIt0OyH2ByygACfkfUrcZtGtvYei2KdCnQh2dmcZABOUhA2aVyZtyD/Z+uv5UIsAhcAN5BqVlfXKqBkNbs39QWiCREBFWWjrp9UsHMBcc45CHqGLUDR4MIpuMfVTKfwMhogidAOsleaKIFccpX4Ls5WgjDrnkPb9ZwtoAWT1HurdlPJ5fIPxWYm3ZvG7M8kFZyjZKWSF39nokTDAHmQMfWlrKzAyvZGkVRXW4iTNm69ocq+zvplqKF0Xlp6iFE3OjhnM5hdmY5WnaIT0rQfAwYzulY/MyRiU4rMBiu71DnwojcgwE0dgHd2PkvLhLzZq4qdcigVLVltWRZZmjks8vXKqE8pEYehZhf0oIABBWV9aqfQ+Gesa8FhXAjHkIbq/HNm0DqyzOxWpnAaMGlc2xj3/3s0JChrbb5slLpxJC0nYNneb3Unc+kgYCiXda9gTGNjKqgz504BAY23Gl9l1NfeWYlyqmGw68sF4PRx0M1bU2Jey0HRRCxGJZkxIo4q5jSKncDrOOQmEGNkf5iy7zoGNzCfThWQSU/2EDP7vockvf7zWattOHV1ytMeHUxbBwNgAiKEeEWp24nzd86RCJw+fMSzDz8GGlK/Z7/ZEGPPdnVDHCIPnjzn4ZNn4AL9YY93iZPjI/Yk3r99z83la549f8rnv/+HnD14ggsTmm7P+5cvWN/dcXN7w+XVDf0w0DQt02nD8WTO4vgUI2i5kYElR/quJ+fIpG0L2HQ4co7KUFcBmygtSkM/EJxju90R48BsOiUOPUPsmEznzOdzlos5P/293+fm+o4wmXMyn3F7e8N8ecx8sWC33bFarYHM0fKIv/j1r+iHgc9+8gWz+YK2CRz2eyZNy/LoWNUsG/ohstttOT5eQsocdgfauafrd/iDZ3F8xvmjx1y/fUM8dKRUhXCMspIQMRc597HscO9MHMf2utolbF+W3SWRsqOcByM8kxg5U03Nq5MrTt1LWhsSLvliJ0tkXs5J1s+OIzK0Bh/aOmgZRFE+REpZyQDMuD3W1/NYjLu8X4SZkDKJU4BtWbuUcSGXAEdzbli3gmWDZSIo2vFkEXclIBfQr7bXp0z2XsYcZSDFkr8oPLFQfYPZLAPm9tf2XTXwsTWMpf1YwFsmp4GE3qsPovanzPyqS5PEcVh3kT7rQhJXh+sQTlyMSlTMyv9S4mfSAM5GtFtpyCuvyisXScqvTtbHLK+CEDcCO87Kz4rvDLxkVwMVexU/qO+tgVMd/eyccCsGzYTjxGd6zZpbBizlTDMMg1ygy0qa0+i8MFcrk5NhIKvBDs6NRC/UsHtDb5aer73tEn2phn22Y5nKDdhiyIYSUOA0ynKqhOec3OhYDEf2VyooPCOM2Na4C1SnbzKuyTntVPNFCMKQnqW0naofjtvIZD2g5lfsN71urH6u2y3V+xu0zqPYUQFDKimw8RrI4R85qGwu2i6gRhUSMQPEkhKVsb4Jl1RFUIIkXVuKgTBxImddrk6MiXS8aSuj1v9CCAUIyL0JAknJULFcqqXCSoTjxUkOOmLXughqmrGScowgJelUMGnk2ges6678guA8J4s5PsNiMqcbBmaTqWz+IdKnzGa/Z73bkxMcLWbMVAp6hI4qKleSK1nakcb/XsoAIxJRTpkc5MDPl0suHj2haXUyXt8JUOg7vHMcnz/g7OIhPkxJeBbLKfvdhhAmpBQZ4o6nHz/l05/9kqOzJ0ymS1LMvH13yXdff0vuB45PTlgsj+gOA8MwMJnOePbBR5ycnTFbLBC1soGcIikNxE7GA7fS2lKMrLV9xeEgxiLoOciJthHhkr7vOT45JnjP9dU10/kC74WHMp1M+eJnPyXFyItvv2E6n3KUM+cT4TWknHQwS8N2u8H7lp/9/k94+uGHkKHbb5k0nvXqlnY6YTKbsjw64tWLnpxh0rYM/cBmveWknSqJOJOy59kHH/P2u284rNeilGeAVc/pvRSq7lObXzI+wyVfZhtXM03yJzHc4qDlz9apk5HIOwlbjIQDZ1G27k/vIKqjVwa8YWuJzNCSUz3LBsBL6lcBZ9YvjskCMGWJ6xmOORYRK+z5pkwOqs+SIqPcR3UlJehzoAN5vNmzEvkbY94Vey5/zJr5kPNrBMusNX5zMF6J0D4YL0ECPhf0rerIDGBbjVP4i3LFyaVRO6LXi6sZZrnOJJoj1iJdsoyufKZTx419n0VyFoXrGqDlYBu3LuqRWXgNTtbe2PcSesle8UgJyO5LhNGkYyJq1sGcvAEoy0iUEhBOSz81wLLnUQNKtUlo5olRlthL10YQ1CPnXb9TiNS1vI8+62ZMtkrJlUg+5lzGMOJ1U6mhdDEr1UKJRG70UJR3ZdKyuaBrjdw1ii/PwD5THb+BhKwprzGRzwON85JqGjHk5TGI6mBK4ihi1nS3IU6XcNFJjstBjiYspF4xRm0ycCXKtoE7JthTF65GhZQNpzUajS4Mp6Wsc+t1xS1aGLOB/agWVkoITs+Ey4pS9cw6BzkSEFTe6Ea9F71nIcmVSDqoaVMwhgpIyIbIQiSKkv2xaKRxTueNO+2lFn3rco2agihCTbo2vhEyjbN9pfcb7D3F6GnUFHwZQ13KTVkMWXKZRg8z2SETKXWvBNkvofUcHc1pJxMRZMnQ50TsoO8il+sdq91G65yJ4/mUadOC7rFxSs7syxDFHEYsozTKfFhazww/wuNoWhk448OE7rBjv7kj9h14x9H5BdPpnGYyFaW8GOm95/LtG7a3V1xfXRH7gWcff8Hi+JzJdIYPnsP2jvevviennrOHDxi6nqv3VzgXOLs44ezhQz78+HNOji/wE+m199EBgZwDTKZM2pYYB/qhJyUYkoCTHCOx70umxgBme9TS7fe0KhR1efke5zz9fsvq7pYHj56QfMt6teXzn/6UlAbWt7c8+eCMyWxJ00qHg/dOCaqOX/zyj/ChZUiR3eaOu5sVV29e8ujJE/b7LfPDktlswWw65+V2x8l8yhAPLCfnDHng9uqS49Nzhk46HB59+DGrm0u6baf96MUq6mu8Z3LJMNrflzHPaJ3cqX6FAYCskbw6UPFN9jMSjcc0FG0UsbAiXhVcZV2X7/NmrFMx3iHU6XJgPB1Xs1NZvouUpC05pQJCo9a6za7WoEZ4AKLT70mKc4PNHYCSUcVnLQ/YedYynxNbKsHEuCysi6sRLV59BRlUHyVZ2cKcDp7srDRDbcWtJ0jvXNbKsFjpnNIsQM5SCnTeAJsaQ7XB2Up1+uxCdmSfjE4kJj8D+BGR2oIQs+le7Hg2jRYd/OM9PjfgNSuT6iS/4A08KHleAYORsmW5cvEX1e/pdZMLz8jhSqnDuBVhFEzLrYktEuJfFOBjAAeU32UAgxJoOygienVCo1xLY05AIkN5p/RtKl5Uw2xIA7IcimRg1xXWqxH1gNIvKc7bKUu/9h9atFkNsIEBigM21Oi8E0amOp3QBAKBmAZZuEaQlsnmxJwYskx38yPUk3NSwCYoDm/3GitKN8avMXmDHVZPJhKHWu9Po8jCpYyLmpFQYNEER3JG5BAOQBXuqQNn7N69avbLqE8hb9maGZAAXXOrUZa1LEevvGKMNF5qcSiytN1igKtpAilGneKlrFZHkQMN2tLSqMTlmAdgyDUFZVzLxSlGSUVLwDsVF4JRdIACooxPXveZIXXwuZY/zFDIofAkZA6DclOlW6VJ9MlxOAz0UQBrt++52+zYdh3OwezQ0Q8R76eAkkXvGcHaJ2vRmAES53wBgqk8UT1wPnB0csJnP/kF09mc26v3xCjdCYvjYxbLY0JoORw6aX1Lie3qlqs3r8ixI8aOu82WcHlLmByzODojDT2r1S2u8Vw8fkSMkavbS2gnPHxyzkeffMzx2TnT+TE0gTT05NhDSgzDgcN+y+GwZzFfsDw6wqESrkPPYbshdT3d4aB98VLmOjo6InYCDlLfsc+RvttzfnrG1fv39MPAZYo8evqcMJlytxn4/Gc/5+X339MNA5PFksViwXQ6xeHY77fsdzs220tygt12y2///E95+ugBz58/4+T0lHax4HDo2O33PHr6lG+//pIuJmbTwNHpKc1kyqE7sNvuWSw8+92Ojz/7gpu3P/Dyq5UAl2yDn8yDULIA3jdIGj5WY61gz2Wv0ayeK3UwRvbTcEDsdRpn8BIhDBrJa+tykvMlpEQ7ibnkFMb/7cgykwBzgOVYKsWgZg7tnJnhTpjRH531LA6BVB1qzg6fKGU/O8vS2mc2xBUbLndlnB1z1CYI5MpZNVtl5QnsHnLWVkeICWnDzLYQFpigCESv3xa3vFLJ6AhZ3OGSJ2lwJcOcxJtLJ9P9gLKWidH27VyuDeMSRMo9yP4Yfb0+AOsQtjXyJTOuXRRelD0sSyIJRbVrqD2xkMhR7G7Rf8EAAGUdys9YlmLkxK08LN/v9PlGch7URlr21oBM9cM1mz/aT3J3DDHRuHsPVh6WpHURcRVtcajPKTM+a2YFLT1TUJO12YwiK6/5aptzHFU0o6pUyYaV65AhB2DtbBKHOScOPAQHScWAvKfVsbDgpGfWGUFINrA45bphyTWNXe4jS3Q/bhMTwQ5wXqZzuUbr81ofKnV3vUdpHgx6fw7npMbnMuRBelSDrwMoLPqX1LmqH2r6BhXpSKkKJGV086uRyk4HF+fK1yBXwp4ZHTs45DzqEZVdk9BhHboHxECgay/tQqLoWLWrDcEGPWgpRrzzWJeoZY2S8TKcXI33Vjusjr0yf52yi6mlmWwGp7bK2B6V0qbUOWOOHPqeu/WO7b7He+EH7LqOmJLqcoeaeXD1QJgxMP10OwuFs2DkMCz15yoXxUkNOjRTQjNld9gJ+Gtbus2aIx/wrsGHhsN+x3Q2Ecnfd6847FbcXV9x6A8MMfNP/vF/xD/8b/07PH76lGHoiWmgnc3JOXN3d0k7nfHw0RM++PBDZvM5PjT4ppVDHgdS35PTQL/bcNitif2Bu+2G2B1oJlNi13PYbFhd37DbbkoGIObE6ekZ/XQCW1lPkfIdaL3j269+x9tXr3n2/EMWy2N2uw3H0xlxGOiGyIPHj9nt9rggA0biIJPfQjMhDlu26zt+9xe/ZbO6ZTFt2G9vWU88l+/fkl3D808+JaXMydkpv/jDv8X7ly+4vrrm5uaWh4+fcnJyLpyOGMlxYDJZcHr+iBd8jdepfpaRMlAte7AaRlPps2coz9YKsVpeKhYOqSuj50uio+IEiut24Kz/Hu3uMdZ7NpKZOikFtq58nxodNcgG9M1QF2NtTs0yBWlke8v15vI5EsBoj3hxvrpvnS8EaBkxbsGOnSuPT46U61roMmKchXrlmgm4d50VvMh485HDMSBv6XlGEapTK6VtwmSLVB0g+iU+O1E5dU5tmgZf3qnDHoE1J+svnISsPkX8Qs6qE6BRewEio0BKzJNpP2R80kylDiJqnAioMV5TfRKWVbI20zQCc/eemfncXAOzAqTqrsH/6D0xC2/HQGGum0r5Ibns7frnXNp/AR1GlFXzAjSVZRdqwjtKKImuKEnlPEo5OEMSenS0T1ocjzEabfM4staRqwCLGXxhJpossG07q1+4LOWGrJmIJnjVd7c6kGwUczzBIXr0igztexoVNAEDGLI41iJVH74Wy227OxRAyEYRB5js6kr2BORaXGHaDLqxJZVKTjQEERhSNGopNgEZQetG8llZ19sbAcjJlhADJJoDzknyzGdJ2etN6QqKahguV56Aod4QyE5bbjL4xks/bDaei6WxhIlrACU0Chqg6DQkZQDnprGHClkdv7PpVJXTUQ6DrqF3xglB+uud0z7oKm4hh9eeSaL0LNlBypm+G1hvd9ytV9yudyTtY88pM2k887ZhPp2WiWtoVBd/dCBLFJiNY+LHNrneYz2WDP2Bu6v3vHv5A6cPH0FObDYbZUdneh2La9meEAInDx5wfLLkN7/+M17+8D0nJ2d88/UPLE6P+eTzT7UUI6Ipm65nfbeinUyYTCci2hNamsmMAOQ04FzioKWHfrdj6A+0bWA2nbHfrsmbNSln7m5uefnDD3T7HZ5E1/dMpjNxYSnSTqcs53OGNHA47Oi7AzeXbyH1XL57w5DhOGWa6ZzpbM7QDZiSm1c7stttyDkzaRuWRwsOhzV9d+D28hJ/umR1/Z6UI7GLTCYzXIx4MqvVinYyJTQty+WSzd0dOWcePX0u6onuIHsrO04ePOH49JTd6kq1QrK2lVlpzbI7auxL907GzHUpOZktQh91Fk4RaDo2V/KugQnpNEgMOeF10iDY3hGjXDJzFmkXQFKBiTlHQboC+MvZjknLrmINTb+gBDQYIDEOgBLanFllV75fbnRUltMsQFC7gpMznb2UT2M0ES0TPKv73QCX3Yvcs3YBWcRtazHyEhnJtLbFidcysvLeBcjkWhLIylZPaaTip0EQQd6fNdBTd66OXpxPseZJxKIItfQHqA6A8Z40OPVZ5wIog96JaJYLKqBlG0H9gQnIW4BlWRUREnNCSE+mvJoKDypZBgPpRJP7VCVGG8VMBVjZAlTM/2j5JEMegTY0RExa9pR1Eflv+7ykALYRhKep2PIDiaRM2piT1BXNeBcDbqmjshajyFKnNGn/oaBF+eI6olUWzRD7WGTHHK9MjlPimAuYvLBz+j5EA1v4CfqeUTbCUvnSby+ztaV0oQdsRBAp7Yf6f27UqQBa39cUl/ECbM3k4SgL2zaw8wqc9HCkDI2XUoGrUqD2/bWEklRbIJM0ogkqjxlLi12mbndbyfqnAurIKjBi6T6NMryizqx1TjMS3uvADIuKtSSgA0LwubD5zdDGmHHBREHqFkyGuBmkP1g3t4EceURaXTdnLqkWPaASWVsnRfaW+lIE6+qeGoYov/qBrus4HPbsu47m0LCczvBhwmLasphOpD0ry8GR8Zs1iqkcjBoPemfptFFqQJ8ZtudzZHt3w6//9J/x0z/8O8xmM0TgKnB9fcNF06pUtFchoAn++JSrNxs+/OQTjk6WvL+8ZD5v+N1v/py/+O1v+PSzz4hR2PvdbkfqOh49e85sOmE2nzGdzcE5VVVLdN0B50VNMzop/+AcIUhxZ3V7y916zWq14fb6CkckqghUP/SkLIqQp2dnAihyYug77u5u6Pd7hr7Decd2c8vsaMn6+pr9dM9kOmff9Qx9x3IxYzKbMp22bDcbrla3tE1D07Q8efKUH77+ijevNzx4eM7zjz/h8s17vAtMZiKMdOg6DocdL1++4nS55NGjC3Zdx3azxjetjkXe0+Lw7YzJdMZ2VR2z03Pr9RAHnQJYI7Cs51zTddmiQMqzN1EWe+TObJ5Gslmdojh5V5yVcaDGn+dL4GTcH4+J2pjLtu8yZ2ecJckAaq99ciNbUW005RpqqtsVW1pT1LXMmqtTtqDC1ZJF1ijfZ5CB19ZON85K2DGoYN5anrMC/2Tl4+yVyW68qFwAh09lgYUrkM3WZqrD05a4lHEukpKl1zXKR0rDAmhq8DQm6goAsOIG2qFRXz774i+crbsGQNlnhC/l1N81MvkvZeN4FmdPztrrP+JBqH0o91eCFrTdstoR2QCUvWYZ3fsvy0zrmpMKAKhADA1Q5aNSFADQjCa2GhE4k2msPz/Zl6vBizkKqqdO11Kav6Ic3VzKPC91cwuAndR9DQNKxCsL0ASZqjVAqUvJ4ZCbTPn+bTsHjSHLpMivoNqhpOGDdwwac5cd7iXdm52gquyz3ob1jyatgSqZBiEiWrtGTElY43ZsDd3rf9tUO+up94jMsGsq4SLlhPAPjXjiQeuu2GZJCd80mPQxSPtbzJC8UNLkh8fuSba1cSMsG1S7LzQDowfLWP/WuihcA7MEBkq07kUt1bjRsw24IrVcjVwFTwldN63Vx6xdHLYnchKCoZY3yFnBiP7uq6pbxuMGXccgByRFm8CopZ5sAZsnDuLUuq5nvz/g/AFSYqYTuibB4/OATZETQ14He9SxzCOn4EftE9kOd8bp+RABI4/PkcPdO7rtNcuTT0gpsb65YnZ0Sk4Dm/UtIbRkRBdge31Jt+top0c8eT7n488+59HDD/h//b//MS+//4azizN5VjiZktc4um5HTKJ/sD9smU5mxMEWQAFXEiLmZG5qgYmu6+mGxNX7O968esW+O0g3BDL9bb06cHW9IYRLLh48YHk0YzppZLypb7l4/ITQBPbbPTc3V3TdgZ/+8pQh7tndbJlMpnSHHd12TQKOjo84Pj0hu8T1+0u26w3v3r1jcrTkg+dPefzoESk3fPqzX7Df7UVHIassbJMhwfX1NafnZ8zmC2Lf0e93zKanHLqOu9uXDJuVtO4Krsb64zPCn1GZEQXLan9UcUtctuoFjJ6pKJA6iF5JzKl6aFOjGxmnbKIqPgnbXnkFxVQm4xoIIx8lljk9uVAzTxozi9MEkmKFFo/zgeg83hv1z3RC3MhvWHCgID8bVk0E39A4R+2f0qjSSYBgmhYhR2JOog6XHINhH7Mho7JdyiPn5SQyre2FEgBlknAj0GCC6gOKA/dg2Wdrq5MSnZ4zV7kFaLY3eI9LMu48B2EOCGEwKKAX7pRT34FDCPnRaZaR0lYt12BBkgIza7nGsque2CRMMC8bnPCS3U3iSGnUF45LIsE5DE7FEkRAMr+vHW4GVczWpCz+JIQaIIFxPaS81KjCa+EGuOqfRIVWbFmSd+m1mL6CfFvj9ESUSMfJTaQk0/l0zEuRQzU0WOqy2SJsS79V5xCcuih9Ej5ThhXIga/1Okm3qlMdbVIRfNCHMWJtjl+Cfi2SztrrXP/V1jVoG2CJ3tRpWi03Bzs4bhQZppK+sT9DRX+S9rJIQNdPI3oDCj6jzkLWw9J06GdEY30iUSMSiEjErWs9RIeLpmJWEf3oLkvUYik5c80WrThnJQup10vpxSn3wDIxmi1g1GcLasgq/a2kMfXzLerwZLIHnzx9kBSUZZgSSbM3rtxXiaKcx3kFASoClbIKqWiNMml7UFJ6T1KAZiOGU47E1HPodhwOB+nlbRqmk4aj+ZRJI2nIIabRPqoCQeNIsezjbMddwKelW+3+C0PZCVdlNp2QgcNhp3K1kdub98xnCzqkt351dUUaet69fcN+syaTWCyXnJyeMpvP2G83bNcrKQvhcI1nNp8zmc44OTkj4NjtdjK7XUFF1/XSrTGb4ogMQ89hv2MfBw5D4tvvXvHyxWuGoWe33XHYeYbDntlkIvftG1KT+ebrH5gdzfjZz7/gZLGg9dANkdVuCzFzcnJE10defv8dzz76mCZ4drstfd+xmM24u7nl69/+muPTU5588IzQeobc8+Hnn/DFL35GjpH17S0vvv6W7aMNZxcXxNiz32/xzYST0xOWJ0e8+OYbbm6uefB4QhMc+92WpplyfnTOi/e/5pvf/BnD9oqGKFwTM6J2foOp+qm9CtYmiEa45jydOi85p5Yxk/q9ZMOK1Vav6krRNtfILpslsrPsSBrQ5OwMGRc8Me5DTdpJYOcTNdBe3xt8wOVENHEwJ8PLsmK/Qpb1FPKy2ahxUEbUtLoGBJaRM7troMFlk1xXol/GqiZYpqGWyXxZr0KaLZwZudcSVduz+bENH0XNvv6V+r1cggojcSdHCSoTQb/PKXjSjiLX2M2UYLXxrgBAwX65fIetlQm2OUznRum+XpVTkwZVwd8Tji2+W0WbLJNjEbsw+rVNE6zLVMndIuaTcdWkG5gVlRfdR9JtUZIdmg0xRUURnjI/5MjqO0363bKcNrU2J5l7oQzWmjKS7ekt6NG2lvrmseqdbQvMIbha4zY0hzPEp4utVQBJwUs7QdYIt3ykcxC553jlIfmyee277zli+wxDwA5clgPpvY65KBkMbWZUgyHkFWvVydWZxqjDdAx9Z90MiXEbJaX9zzZ1LvwBT1BiEVgJQoyFii9ZayH1nh3Sx4+ld0YCH1i0Yus/csoF85ToQA93sKV1Jbo1drAr084kqrfDbF8hKLMCjhJiKYrXb5K/yjWdpnGAgqER+ckicNnaGOFOjLQrhx3b7PrzdkJqfVEOxpAiQ0p0wyBDO4JjOZ9xdnLM+cmSk6MZwSdiokT1Er0bajcAoM/NZZwP5e9ydgW1W73XGbB1yMCUJI6s6Q+sV7eEnJiRaNuJ1MuHnr47EDxstju6bg8u4kPDJ1/8hK7vePL0CSkObFcr6bpoWk5Oz0g5cXx2wePHj9mutzShoWlbqSvGKBPLDj37zYq7m2sOhy377ZYQpnTZ89XX37GczXn68AziBa13pGFg2raEpiFGuNvsePn+PS9fvWd5fMJy+pz9sKOdzKUUMezxvoHc8/q7byVj1M4ITctuv6U/zLh4+ICYer767W9JsaOdT9lsNixmC1Lbc/n+in/+x/+M+TTw9//tv8/RckEXPPN2wnA4sM6Rd2/e8P233/Ls6WMOhy3TxTnT6YLDbsXq6g3dekW/uyX2W20ZRqJD59QJBiFnoc/FDJlHBbmqwzI9/gJIyRWc5/H5UnW3INGXd77Yl/HLaQAw9oNZ/yF7ayfVtl59j8ccEcX2iPxrLpruLktWYiwBbL5ZbIlEgTZi1jtq377u1Rwkuo1DBSLeQ4owNhxmi0s9X4GGrYTZkJIJHp1q69jCuRrmKgjQcnqxFzkZH8shszbUN5hmipNzZ2qyZgOjApQhg3c2Qt7hQoLoik01jpldg3EdgoJFKVlYhtruL5cbtTWyeSq2v5ocVAMn15+zh6LPwoiNhVunGZJC1rZrTGbg5PO8+kr57NGMEgxUyD95jPdW9RDEr6v/zpodtvLGj0pdDgE8jQNJAztU41h/z6MUCvaQzEFZPbcxsIE5IYsiJVIz827boy4uzghXdUOJgxOHHuOgjjBoCsgAh7JEDfRliyp12purZQrrpTfk3XonqelU+7uzq8REUZ6rC0VOxEHSqzbu0XSlJU2jzN9c7kwdSX0o9rne5zIHAOzefVkOEe9IajUyoVHWKxki5BBUY8DLAbEsgz7ckpLXCNVAW82ojO4Lc+ga5dtgIh2lLBvDjQyjvdvrfQ+S3sRSe9rvq+iWVFUQPbahFdjYYYB7z76+jFxEKTmkUufSrI22AQWPdKkEmTo5bRyL2YTjoznBN5wdLTg/PuF4Oadt1NKlDFGjJSjG3Gu0ECzlD1jt0Jy993AP+KqBcV5UBl2O3F69Z7I8Iw4dwzCwAM4vHpCT47A/kFPm9vqWt69+wAXPB198wWJ5zGS+5OXvXopGwNCz262YTec471gen3J7t+LRk6fgAqv1muPzMzVmcHdzze3NNRPvefn9N3gSuMTV9Q2hXfDy9SWewCdPP2DuM/12Rxoi7WRGP3RsVivAsZzMeHp+Dj7w5W+/5NnjMxgOzIbE4bBn6Ae2mx2TScNsOqU/7ImHHt824DKXV2vuNnc8e/qEL372BevVmus3b7m9veXNm9ekIXF7s+Kw2/EP//v/Pl/8/KcMQ6TrBmI/0G23DG3gl3/we6yu3/P+7WuOTpcMwynL4ymzecuff/dr7l6/IuQe7yTesUFSzpmCn3oZL44F40Ooc3KAS1pBzV4zOxo+JMjaL25GuJxXLPrTPVuCEAWx6J7yai/JOK2Hl6E3mpr16pjlGpSUlUE03uWznbbMWfCSsyOW6E6Ds2iHqEabkgUQITNGrccyXyRpqVPs32DXa/wFDb1HQb/YGyVpG+i1nvzSFeMcTssHWTN3WdPXBsYK8c8CiVJxq0hJlDYr6IYa8JAzUW1a1DQ5LtO4oHas2kILPg2jSUbTzKBEoJFMqTug4YuCjKRdH7YWZcCbkg4LOb345MrpkMdsiCkXm5yTZLQt+53IUkI1UJRrsCaXIuUPa8WUjj6PzVTIKWsboytqrMHX4T8iCCTPtmaMEzaTQOxmqC1pzqvzdLLtjNxhSNFeFomLQE0oAKCSzUroKcuiLRH6bgR9jWoXhu7M3HqnSE7QbfCqma9p9qRIKruM99W5ZPMSqtSXdbiMGXivCHPIVa1K6tLqEEcpbzvUZKvvi3NOKSFBuaa1rVXNIsLsy/tssQyEhuDUICgKdb6CCGf7xboLZMFDExRNZ3CNTKvyXg+LGhlfSy/BVRlh74SEQ7nOXFCwpRudZiGcozL8xZ6UtJXL1vsuWYscFSTqWbJ6YIkWgEJOQTpCSn+v/T6OeMqam2hIhSxy0EbRCJngsoDWmMmNY+4mwgqOc4J3HC/mgONoPmM6aWUeNhbH+RK9GRK34+tH11MAVpZ3mf5/Ghl92XeqvKXA9fb9G45PH9KGwJvLK86efsB+t2ez2rDbrtlt7liv7vCN5+mHH/H42UfcXt/yF3/+a96+fkl3OPC73/2O04sz+mHgxAfiPOFC4OjklM1mQzOd0rZCinv97Xe8/eF7Li7O+P7rr9ncXfPo4QVDziyWC7a7xNX7S549+gAOHXfrOza3K8iZLknNt21aGufJk8Rk0nCxXHJ7e823373g5z/9HJ96bq+uuLtbsVwe4X1m3x3wkxlnD56w6zqyi8ymE968fM3q8pKHTx7x7v07Xr94yXw5Y7VZ8/7tOz7/9FNubjJhPlHSpxjb2A9cX77n6OyY5fGSP/q7f8T7t+9IMdN1HZvthpOTE37yiz/g3dGMl1927O4O+hwtwhFrXFpStZsGb85ABsaY9C3jR2nAXyyZBAfGu8kWSeYaTWerM4/BKwW8Cp4Uw+lRcrCWKlyS0pIBWnRvm4qctPeq67LoTkeX16yZpKuTq5kw2Y+6fxmVIH2N+gx455yIypZ3TRZUU7RtKfeNOlqfxS5n8w9mL7HAA8kiqpCYOGg0eJJ1ylpqK2hen1fJAmhaxJxd1rKJcZayMo2L7wgis+7UGbrkyd5XNr/69ypJT3FkKSXFOiP1V2wJZEVtsJvzXu47jzaN3YYaFl2qkR03O2fdFFAI8VRRJ+cYZbHseZs9Na6HdlwVcSlXvrvMXBkFnObsXVDgVYIa4zHIdzl0FoAYf2FdozckDjViQhluxDw3kpk4lIS1DsoHGx6ydXIagSs71BmPxlWAXW50xIL1dsj0WnLQlJIc9qqqpQ7WOATjw4iMk/TKIDe0GhFd7CSQS8h5Wr8uR8wnSdknqQ9mbARthKzaBKmm7bMtdOFJKJjItYffrl39hRKFZFNmZafXnzPGq6SjQ/I4BgJe691J9bB1nrelJJG6p5COqgxpKaXoonsvs7AlTaoBwGiN5PTIAZTDkUt9yzoIBgTdBmfxjoE4RdIjoyr1VTnYImtg5QJqmlPTZPp22V/lgSY9nDbCU/ZYISTOpvjgWcxn7A69lGw0XIspFlRs1tl7CkNZblDV4XKU6MnXEbD6NLHuhNo9Am0WEqtdY9yuuHrxNZOjc3JOvHv1kvniiMkkEGPg0Ld89NOfMz9a0OC5u7nh8u0rVjeXLOdzVusNf/Kf/zkPHj7kgw8/JCfHkB2z2YI0DOz2O4Y40LQNVz+84Ktf/Sknp8d8/ds/5/b9Oy7Oj7m5uWa12eCnM5Kb4LPjzbcv+H61waVIaBuWi4lOU+yZTmcM+45df6BPGT+dkF3i6v0V+aefsVmv2W53tNMp+27P4njBcjqjO+zZbdcM2ZG9o2kyp+fHXL2/ZHXX8u71K+5Wt+wPW96/vSTGyHw+IecjGhe4ubyidYGb2xWf/+wRR0cLYtfTtDMunnzI+flTDrHHh5b19RXxsCM42Nxu2e8PxdYEI7ZiGUOR3g5kvE84rYXKSNWRZcrgk7VRVWEbp3Ys60OOWJkRdS4SCVrHSvksdVYhKzAImuly4hAzGZ+0Pz1XAJprXKkRYpJIP1k5ropOSd7X16DB/JIafuvtN6NkvACndpvCHpf8Q8wZN2RyiIRsYlepcHCy2XD9Mi9BpIiFZHHMRhpOTghtTfD4mBlyKtnkXMC9fZQQv8c2z+yedPnIYntro0aeUci59LEb7apMTEyJRpUTCVpCYbQWdtbNHiluskDOsAmJkq6PeZBgNEpGKRl5VHeb8QnEdypgUDto6DP7LGPRcwaXlFMnFjN4GbHsvIAZTakKDyGBd6LSKT4yjmyqgJoGz1D+PhcAJQOpFJ46BWC6R3JCO/WggaSCIqEgWlloh2ua4tAsYkqairHauFfnA9J65JyIgFAMpkXKdohqrTVnGcgjyMna8lxFiYqosou6LrXdZNyG4jU/K6DBlf5x2VPquEIuqB1bUN0YSYFM0bePCRcN3SWU3isHc6hZEagEPvmoJLvB+vxHKA5qVwBODrW1q0hLyIgjYSgQXydZAU2AIQ9FZMSiVEkmVOnimJSoppH6eCaBHUCLBsqvjI5FrdGOOTo7QKU1R7MeWhEglxS6rmVJUVpt03gcZmRrLQycpuQrNjb3/pdaZPTazfELI0hAiHeOpp0wm02YdR37vYjr9AlSGiDLYXPBE4JkO2SPaO1YoxoM7DrKqNdk1jfnurcQcpYP9qxR4JrZ3r0np8jDs2OYTplMJsQU6frE8w8+FT3/vuPNDy/ZbTas1ytOzk54//aKFy9e0veR3/z6t0ynU7pu4O27S37+e79kvV7TdT1t4xh2G776zZ8R6Li9eUtMB87Ol2w2d7y/uiFMZ5xOF7z8/jWvf3jD/uaOm9tb3tzcMZnN+eKT58waR7fb005nvL2+5fW7d0yD5+LkjGcff4CfeX744Qf6zYq3r95wcnLMRx9/xNn5BdPFEb7xvHr1lna6YHl2ovob0PUHrq+vSDHSNA27rmO12fL86WNyTjx78oSh23N3eytKk5MJt7fXLE7P2K83dPuexfEcN5twWK+Yz6ccnx7x8svfcvn912w3d6R+Q+O1x9l5cA3ONeAbyDLSeOgHcoC2qW3GWZ1A4Y2VkEF+N8nfsn9dPX9j8q2RXuu/WTCiEXFwgA6SgaIkKG7I1fOugCKRVT7bAgorCaCZg5HqqJ5Va3GOep1WZw+Fa5AV7GrUq6JcxVeo3RnMuWgqnfF32WnMZptqzqOwn7KcXx+CZgYyjlCkksWn6KeN0/6kYgMlmLQAT6NYJ6XFEpDqz3lkUV0SJ2mV0nuD03xWxVcNhrAsayzPzUxi5XIZ3LFSp9m7KI44W8o/KzDUYMKJHLgz4Kd7JZnZGq2dz4g6YzLA5ortlMBLxQrVxkT1kcb9KIl4C7ryyE7qc/JadAgot81WVlorcEiXjAx60/dKnUhTZtnhs6DllDV1rUfFqQOQ6UgqYlN6K7OCAHN49x01mGMxFnbdWNavKHVxr45/5MQxwohshpp619R3aMoGyVT1LgMfVjMRVEk5AUIqEcUvSZhIlB9yTd07XUJrDRyiGhKnDksvTNLLdpfqGHJ1hrYxyK6Q/gqbXh94aSf099M6ds92MCjCJGpwbDPJ45O0dK7vqd+lRszCB0F1aM6/3icG0jQSxw7ZCFyRdQiH6jG4AnqxwTp1z+RSUooKAITpXNPxZpBqvcqMjyZli9A64KQmKnVOyS7I6PVM2zTEZiCTJEWaNf3YtGQSwdlsAtSaSiSTKnYvUZSkVL0a8VwQPtnQdR6tqS4rif3mhtPFkrOHj+j6jkPX8+jpc5bLY96/vWQxnzBpG64Pe07OTtmuV/xn//yfiVBKK2N8V3crAYrNFAdst1um0wmTpuH6/Tu2mzsmAebzGd5lXr/4nhRFmAfnePH6Fa/e3PDVdy+YOse72xt+9d0Lujjw/u6Kv/N7P8XlyPvrS/7Jn/wZt5s1nz1+wsPzC25ubjmZOa5vbpgHxyeffMhms+L2+or5YsaQIg+ePGI2n/DVl1/y0WefMT85ZugHpu2Et2/f0veiwni3XtPHyMNHDzk9OeX25hYXXvLFT37C2cUF0m4sezWmxH4twkHNbMZqdcvd9TuOT8+4ODvj9e9W0K0KuU/qmUKbM0KaOIGBnDqG5Ag0+JA10zRy4ClhZaey77KMRlfrVPak4YTivPX41LKhK0FB+WHZpnKtQNay6UiOnUISy5YxM+arElWjYJqUIuM2VTm2MvlQUvOWUbhfBzcbYdnVyrtyBZAXfOsSwaLU0uo7vie15QUcjBjn+iEivS5Ny9ISqbyMZOBIzpOBaLEp3Dvr47Wz+QY2rt5r23XOaIZPuVz6jKQrQsBB0nOcnARZhbCtZdeUjRQ6BgBqvqASD3PWoWpaisCJPo0D7xrtmjKbIe+uJWt1Yfrx4nzrTATIwvXI9+/dAq6YBnDChPK66n4EFoybIkBRg05dTdR/mJhU+XwNSHPONKGR3sngrB7lxIAof9sZANCbHFTVLHhhpRbJWYeOFGUEAioauucAMYdofydONXhV+NPcjkwcrNVjcnUO3lc0Y7KLJvkIA8OQtY6m35HriE0T0Yg6ZCOlgZwDTROIcRBVpiDSUA7dQF5QPDnr8JtcNjfloLjSU6r+E+cCVsqwaMMQXzkEamjGDr8YHuxzdPMHITE6+4JSw7co1B6+K583Bgnux7/sO0YbMt9j2ytxUZ1fBRSQY9JBTDXtmG3n5ZGhU0RtPA8ZGiL1IGH/OhUNopCL5JpUWdG5utZYCarW9lJM5CSRvexZhwsBClCT1Cqu1WyHtSSplLOrZZIa+WRhkyv5KaVYnwfIofW5ZHisBp2JkGXK42Z1Q7h+R7uQMbaz2Zw3b17THw4M+8x+vcIRmc7nfP3V11xeXXJ8esLlasPJ8RFt07Df7fjw4yds1mtSHPB+SkwD1+/f4cjMFkvuble8+eE7jo6PWJ6cEFNgszswaxvWe8flZs1h23F5fUnMkclkwna/42q9wZN5f3PD5rDHhZb3d1t+/eIHHj4658lPP+IXv/9L5pPAsN+wX9/R7ffk1NE0LVfv3vH44QP2hwNN41nfrdiu1gQfaCctm9Waw+HAbtex3R7IzvP5T7/gj/+TP+bly5f0h45Pvvic5598gveeo+NjZosl1+/fkYeOJrecHs95881LXn/1K9rGAT04OX/eBTn/OZNTL50bCUn9B4mkXMoiz+uMSOqrNTaRKdsnOG37tB1AZXubCfJ1SptTkG92TYCztQXXMylkMbFPZXJmGjn/oiyayxmSzJ1mLxn0O8ZTDdVu6Bm3WrB6LlyoKd8SffoqLia2UHNuTtay2OUsrt2X0pwFENU+MXJW5iztn5xzhEbJyEkH64xbA6k/iwZ2ZnNqVGt2BKRF2X5co+yM+oksQj1Im7DJececCfqpUvZQ3oXan+LYR04+KQDpcxXFizEWcOGt3O2dtDo7+QbnQgkqkgZGEQkeBvtu57Xsk3F5KHNhygJSwau0qWowBFjXiNl203mQzpeazVL2mPgSLVv7gGofjLKwMZf/bqy+JOmAoI6pxLyAaeEjqZSmEZWx8tDLkxw5tB9FvHZAnBuh6ayotjqqUosp+gB+pFpUvkQ3QVkyDHHZoZWeyFTkHEtmQB9ATWXnkv4RMBDKzw/DAMGXa25cHdsrBBrZfCHUvkpXkLUaGltBkybO5tiFoJd0c2QlRxQhB/2ObId0jIoNVCn7syAN20iWDdB01XjYjUWo95CmfkyViZQPMonjnGvkbuz+8Tpk58DXcoGJoVh/shmgEuXY/0wlsqixKQLN9m/FmpS7vHfBWDrS1kMigeC8ALahgqyUI0MSECDLlgtqx1GMqIlmKpzW3w1A2gKPUXou4EAMmWaXnCelgbjfcPf2Bx59csyknbBer8l5YNo4/uLXvyLHyOn5CUPfs5gf8dFHH3J7t2Iyaei6A0fLBevdHnLm7du3nJyd0k5aYrdhfXvFYj4jxkh32PPkySMuHj2CpmXfJx60S37169+x2e45OT/lm7sXHJ2fcfrglDYE5tOG15fviTHRTho+ev6cfZ8gOfZkzp4+5uHDR9xc3zJ//oTNoePlD6+ZBhH/aqYNi8UJu+2G07Mj2smSdt/z9tUrSEI83O/2rNZbNqs1OSX6vpdMwOOH/Pmvfsvnn3zMzfV7Hj57zPR4yqGLnD95xABs71aEZoJ3maPzM3Z3r+k3K1lrIz4RRjZAU+xJAGVwWQS8rOUtZ3KWrKXLFp3lsjcl3V/3vDztXKModa5Zz1jOuaSz778USDh9v9pI70RYRyI+AcgxDgXoJ63jmrHOCEvdg073c0XIJZcN6e59s/GnJHJM92yr/bsPvlybS76oYgoQ8eKYoLRAylt/ZC+o6XMHVYkV5cxktc1+DKj+cnSv1hhb2KxBwY++iXLWvSS3fVb58Cw8Bkb2IuuzDZbmTwaobDaA1/Wxsy5RShL0IHX9rEEsrpD7MN/m1AbLTVZyeckImMlQfpZ1NOj/CiEQ4ZY5+zysxV6D51FpuSx/zso38jiXsJBkXK4pQb4GPvK5XoMgSpBo+7hpw0iFS9h0gjS8tkK4qsEsQCGD8rJdihgr0ntPdGJNczbFqZrmluuvUaAtg+xZqylre4JupNov67QtQ5Mg2TacoEAXU3F2KPPXBSO8SLuez1KvB4+KARZHnqKkHlNWbWS9K0mdJHWG8mStBtzHKCQ8W/BsaUSb8KeIeZSicYpkbfb6OMUoaE/nSyu9JKYIJfFj6TfTQwgFvBSSjyFE2V4Er2Odc70OsjFkxaEbxyCrOI4JaVjrHllUzsYgyjTLS6lFT1lWtnXpoMq53ieqh5XE+dqEQqfPt45MNYNbuSdYxiFXg2yH1yMkGZnZLSDKR+kc8LYfcQyDTksLNbpIRD3QNuAoV0SddRdY25iuW9kTaFo2OFyWg+609GERafaRfrfGpUGAYBO4OHvID1/9Bbe371nMjrm6vGY2n5Ni4vGTJ+z2e46Pltys1uBguZiQU+TNq3esV7f8g3/77zEctuATy9NTdus1bQuPnzzl+mbN9e1rnn/4Md9/9x0//PA9J8en/MEvf0ocBl68fMPxYimyvi6w2+9JRMJU5HpnDoah5+h4xsOLU54+esD15Vv+9NUL9vstm9Udh/2Wz/iYbkgcjiMX56fEQ8fbd3ecnp8RGs/LF6+JvYCiru+4ub1jNmvxOfL6xQ/4lJlNp0wXE7p+z8tvvuWjjwOTeU+4nvDw4VNu2xnkRDMJXL38ln7fYebJRZT3ofPns2nxqyMpkZXs40hENmdScqymUFFtByP02oPWUpIQ+5QEWnrL5YzkpDbEeYJr7OuKAzaAkUl6KKXsZbQahcUMyXru9ZdpfXhPdjLPwztty8Ucc1ZGvdi4NMromTUxRUI5mpo90zZI9WMiemRMOAvQnLRASpo5KM7IGowYoNGyG7mQugPgkpRSs3OSeTGnjoAyU60z+2XZR2eCZ2nc8htKe2S9L7Ghzic8jdTmldZd+Bo6MTDGVLMFwaCSZAtjjgwo1yhnURRNjqjmtnCVNDByCHFOfaZcqyArzaaoDfS+BHYCNGT+QJ9hUPK39xkfbb/q8wyuJqVQvoeS4A30RadzC8paOLV9xmWTB5GR/V8amL3T8dfacqiBWVJ71gh+TqXf0NAWTkUlGKVGs6BGAQFWKaHuaCzqq4a7OMdxykj/XNszKlEtZyklJFdI6BJd6maSlLBBGEF4iYwbBrJKiXq0N8E7ek13RFW9cr7Wa2pkoLWwGElaG4zqaLz2Eg8xFrxdsxgVfdkiZN28FXnrjAOVJzS5zjhikmddE+9HZBdqvd1RI3iQDEeMcZSyVsBhyFSfmdFkFUPX6y62MqnOdSqpwZIp0egmxljTYDYLO1M6QVLMhITyQLwelBpZRTVAliLMep2WcRDpZrQtyugqrqDu5BNulL7Ko2fmGBErf/SybobSb50EUE2bRiIVL0zcXPbCuIxTry9TWUaSarNykPyrdI9URM/IoEpw0nN3/Y6L5x8zPzrj7uqab7/9ip989nP+v//4nzDknl/8/s+Icc/JySkhNEynMy5fveLNm7c8fvyQ3XbDu3ev+fbbHT/5yecs5y2LxZz5dMqbH35g0ra8ef2Or7/+nidPn/D6h5fstwf+zt/+t/gXf/qfc7SY8NOffMRmt+PVqzcMQ6fTHRsSibvNhhgTTZhwcnrML37+U9rgubu74eTkiA+ePuRf/ot/Qd/37PYdX375PY8e7jk73+NcZrqY8uLFt/zu66/wQNeJZkBSe7A/7Dk/PyHnyP6wo98fGPqBfn/g8v1bVu2Ko/mCi2fP6fYHdrsd08mEzWaNc46HF49YvVyy33RYRDNOSZtBrrkiJaoqqyOqTZL4Qk1jpraDOifgO2eUf2+GSgMTC1T0r4tUrAJIn/BJAg9vrXSWXtcAyICtgXNjwUMqLWni0CFqRJ2ppOtkKqUl4rCjbFG+7E3rjrIzlEf2BVD9C92xqghq/fZWurR2cKftxqnsaQkovBJnYWzvtQzmrGTr5DzomfXeYV1cdpax81bACyUoCsV+VsDvNEAQFVNbhCTs/DEnyh6fPm3TKcjqIJOuq9MFiklLAVQ6lAUcOs5llEVVn+ADqFJn6Uhz9f6KWU65bhwyRUm27FT7JQ7Pqcxhufdih6BuzPKIix+Klo21z9Og735ZU7PCznxBprE0lz2UsahMzllBgP6Ak+EjSSPTZC00SKSVks1YNxEKO4i1tmMvSzmNH1qpPyUjffh7TrrUq7Mtpj4okjDJcy69t/K+KGk/nOq/yOY1Mp9H60L6/Umv175TnIuROuqG/3EK/R7R0dk6Vm5ETiIg5IKHrEbAaa+sElP8WIDGKZorGRNX/idSkKbpn8tBrBkC+3MlpRSak6J5W0M5n9pT6+t9pZxlljhWIslKmNKUYTQOgq6fd2IL9VoNRNoAEIserD4nolo1ojCqjGV+SrpV9xWWNdJLr7Oxje0sRrCKLPkS0Vg3Y1JHEMbtkt7KNL5cz5gDYGk9AQEj0KkgymVX6m9kM7L1cOEEOK1v35FSD87z7s1rINL3ezbbGybTKUPfk1Lk6PgY03ffbXe8fPWaRw8fcHN9Tbfbslwuubm+pnHHTJcTXr96zXfffMMnHz3nxYuX3NxcM19MefP2DT//xR/y+uUrrt6958GDc3KMfPThc1abDbe3N6SU2B/25JyZTWTa42w+4YMPnrCYTZi1gdXtDT7NYdgzm01YreT+b25u+eqrb/n8i8/oh54PP3nObrvjh1fvuTg/4eR4Qd/1vHrzlpvbO+bzOdPJhP1+j3MIKbLfkxycnJyy3+24vn7P4uycxXFitbojxch8Ethdvef1178hDfvS1lWcPxZgaKamgHHNPGXJ0tmedpoRGHNwTAffSl5OCVclcT3ai1YONOdVSM5OJFidCdeg7cLFvJuv0/2tpFMZ9KUDfxAQ4oNm50BEyrxl9oLucXX0enYtQlVa+cg2ynmVLVuDBwkM5Fw5vXeDEtkcjzpVmzNPNuIuSLeUCb7VgMHWJLtY7tgImmJPHTkVCz4CcPXPZpecq4S9e+ULE2ortlZARgJtSVbGu/Mq1ZtlPLt5z2DAvfrSVOwgwrvIuXSmASWTUl2gU9trjtoyivne/kMrmxJsqNnVsmIBNM6Ca+GSRNtPuh7W4q2WsAYo5VvU2o6DUGc8t1yeXV3brJwSCmdExgHrppZ2BwobvN51+exyo9bmFjNF9ShGqZ07PK3KlI4dI45S35X1MKhXcKE4liwbIKgwhBshJ1uAchDNxeSMi5L6Mka9tpJKfyUCToJzte3ODj8gkwIjWefdOycSq7bBvfMyEc/c8cjR1vUAyv5UY1AMiFx542Uscflui7jdmKFrd1VBAFBBQhbnZORCqJsYO4iK66R/3UiIsp6J+jPjaH0MbCxVmYTTJoQ+jeSHlCA3FBKhKY5l6Xk1/fJEImbbhCMfWmIf+3Y0g2UtkZTPdknBg21e3UdWJvCualDYwalrRQVzOdP1PXk2IYSGEIKmimtkYoJR9sz0cZeTYBrkmoykhl56T6XMogZZ92o87OkPe7p+x363ZjGds96u+eSzj/j005+wWm/p+yuGrmMxm0JOtG3D6vaWN6/fMJ/PWSxm5Jz54//0j/kHf+9v0eQTXr54wWa14t2bt3z73UuC91xfXdH4QN/t6Q9bHpyecths8MB+t+XRgzMeXZyy3x94+eoNfT/w6NEFy8VM9kbX0e8P9I1op7sMb9685v3lFbe3K4YYaaYzFkfHvL+8YrPesjt0vHjxEpDMxGIxp29lf95c3xAThGeP2e333N6uOF4u+PTjD3n7+hU/+eInpOzolYezWMwZEjSzCe9ffs/Vd78l7lfkYYd3uZDyan3bzJPyVtQspiylPbL0QycnDHWr3RtgzoDzuu+SOthypkdG80cy2vZNFigYEa8mpDSYGpEEpUKk7Yje0/hA8qlkoII07Zd8XgRykPeZgJWc5futyM7VSBGS4VQgS+LRW2tjUqlgWbjgArnP5frs3BhosBHs8k+1ZGk22jCHgQexG5nsUumosmvMSfzEkAZ1fIHxRFXKaam2675TpZznUq6zv1B8njBhICkNShLOAj1H6ZM0fScNWLIX7QgjImanJRwnUDCoszR+Q9kHaKCQi6ERP5DqdXotExct/ozuCcs0Bi2baADqKtgxgTe5skjKjmb0rBRFyt51SYfvUfxTzjXTUYPUauO99zRW65BIUC5EymCpPDisX91XxGYPCI0OjawXYyKEiGgMVadi6aXyZzsmOZcHb4fNHIKRcuznCzlMmRaJTFYCVhn6IQo/xbV47/HGMUAIIq6gX10QlwnB0w+D1HW9DMfJo+u1oQ3m7NWjCgodpRJHe56CbCw1k2R9zIgEc8i5/t09MCdhZrl2sFu3g6ERqrayFHBUHFj9XnzNcthaGwiw52TkznFGo9b+JYIfUmJIGRckVerUNnoftJdZvjMlERkZ9DNtCJN9btBDnHMudTeHEZ506XKmSHCaGiMI+16NkFPxEXu/XGs9QPL8Mww9UQk21r+f7RkGq9s5fZ6jHXrvedgzqJbXCgDOshp1aTHtCNKAdyIetV7d0HrPbL7g7KynHxLtdMa79+/pDktmsxlp6Dk/PaYNntXdipxFDW+93tL3A7/+zW958A/+Ni9fviB1HV99/S1/+qvf8vDigvV6Awq8lsfH7Hcr9vsD+23HtPVMzo6IMbFrG25vp+Q8Ydo2TBuJDFM/0B8O7FyiO+y52m24ub3izev3XN3csdlsODo5oZ1OWc6m3Nzc8pvf/AXTxZLbuxVN8yF93zGfy/yAGDMZT9f1TE6PhVQ4mfDwwQUvX7ziyy+/5tPPvqAJLSD9+8dnF2QyDx9ccP3VnjzsZS2dI8e/zCky0kY5JvoQBMCDc01RtaxG0M6BpW+tlituQM6zzewwG2bAIJeW0IShY7U5DlyurXm2x53TKaFK1MkOcuPoY5LsW7LMhAMfBMTEoToS0w3RWrRu9vt2ZvxXVO0VXzhZ+tMGSnTWigU6XlP+FqFaBg9n2ceswmJCqGuCG4lg2UU5zbTog8jFOwqA0JKgXO8IcLuaSr/3Kljb7rFyAoq/yBlSEr/uHS55miwZn+QkUxOdlhqDBF0+Syd1RkEL5jzlz5bxGO+W7O53UlXBpYzzKu2boAR++uxc2aeUEjTOlUx5Gu3LMeCxwAPnBFDlrCn8USBl+1qzSuS6X+G+/a6faN/laWJWreISoYmhDSrqYFKysqHqFLXSwpLGjoJCkvPlA+X7ErWPVX5WyXW0+iwdZJk/KJ/o8U5T8OokJYKV+dg1Oq6OFBDBH0Y13BRLD704MHkQMl1Wa8ya6go6BjhpIWicfjI0pRalHJakyFzqi+KUM3Xhca44Q9nEjiK/iz5MrxaB0WEaOWbK2gkKBEsfWfTrKyDKIFGAfocdYgNPzoCA1uVRJ5sqsiyRkYEv3Rfm/FNGhBJTIjjPoGKH1oZlGt0ZGTxSkLWuX9M0asQ07RgTjZyOwpDOWi5wvq6lOfqcKZvcBFJyltYbE9kwg+kaMQZJBNxx3tEEh8F0NyKF3UuJygKXvZ6C7NGiH4A5f0rmwCQFclDjpI1Deei4eveaxASP4+zRI67ev6NpJzRtw7vXr/nuu+95eHHGYnmM89Lb//D8nLYN0qaaIqRIij2v37zn3btrusOO9d2Gl2+uWW13LBYH9l3PYuKYzqZ0feS7b79isTxmvjwltA1dP/Dy1WuycyznUyEExZ40yHCgFGGznuLjhK7bs91sePXyku3+wJvLK4Yh0cfIboj4j56RUubN20t+/w8es1pv2e8OTE4WxEHqyzFGuu7Adr1m8uwx0+mEQz9AaPijv/d32W/2HJ8ckbJjPl/Q9z0xQ+x7+q5jsljQ7W5kjzqbjFYDEdCo1fgjtlc0KhxyJmSte+vxlbZeO4/SAicTLOV8RAknCxCVvWFcFZCTpizxrKwCl0naIu20livvd5B9iXLtegVwajbCeUlPO1Fj9QWQJo3eAq4RBTrnRQnUu4YcY3GOFqWXICshxF7vyYNlOrwSBgUY1HIn2IRO+QBxEknBOVnuj5R1cJBXpyrfHzC7JmWMnLMK0MjZiNZKbCWSSBFcSv4exi4vUeYL5frsvYWnFi31rgGH2a2YJKtcCHENySvxMRsxzsMgli+Xv7czK74qj62xBp0GAshZs8uSxyRoGSaNBoZ5vW/9C+OzZbXbAjdVbrpo3+i+TeifLUiVlc3OlX2CKtRijwjJuOKsRCrPxAI8534kXOUBl2jGxAUzdvIAzBk4jTJlaWoAqQ7YEFaSqCPhGMzhqbHWIJsxwpFySF10Ax4ZTZNn0wao0ZYwdXVBnbXVUN5vEaleIDhP8CIFO0ZBiVwU77zzWlfzwpLUSVTYw7Usgh85BkXLLqsEr5fRujinPZajtKDVyVLWLgQHKHNfUzymMWCtgzX6tqfi76270zUPOpRkPBlRnp2if5/qo81Z03L6c8Z8lsUTucpc8aH9h4CF8Q6hiizp57ooSo1Nvp96ikmeYdQOgyK3iRkt/cUozZorUCh7Io+if1sXJyUAi7rIVBSvqbfgHa0SWbNrCcqIdcVh6OMcLbb3suftSQlokpWza7DkX40ELNcCVuW0WnXGkVPi9t1bFscPWZ4e0+/3vH/3hhgHTvdb1jfXnB0f4b3n3du3TCYTHjy4YLfZst/vCE3g5PQYSISd5+3rd/zpn/4Zjcvsu5679YZdn3nx+pKcIh8+e8ThzTXka4ZDYjbN7DY7NvsDhyESY+L95TW7/YHgHfNZC33Hcrmk73tubu/YbwPbbs9yvuDm5pZNd2DAsdrumUxadvuOu/UWlxK7w4H3V7c8ePyY95eXtA20J0eaho9Su4+R7XbDfD7l0PW8fv2exeKEiwcPmUyntNMJzqsQVoxsNyvuLt+zubvV+RYOg8jjvViehxNQWJ6Dgrk06iyxvT+uN9vTNBty73NHKMMCnuQclvOVIEQAqwFel/Usl3Jd2UjyXSUzLufEe1fmWsj+czXq1/Wov+caDWrEXDKPeg4qSK6BmdmilKIET9K+gHNOuhDc/TUt5VYLBJy62ayKdBbMRAkebOqg9dE7TD9B35hVq6OcDXlJAGLiQfcjX0qU70qZ+N5FljUtw8FHAWxPTFqGHLUtJwdtCCoSVTX6aynZfJJ+DgoYc8JaT1OO6lN0LK9mdUrpUblvzi5R7avHyewL9YNJg9es1y/zc4yPZQJu92fTlHkXZZE0SLLMkSFWh2blEdCWKNd4LyMPNPKX1scMoutf6+32uzkdey6mchRTYoiJQx/ph0TXRyZNo1mx2otqn2WRnIm5jJ1cUuJMHKXzfdlH4/S4OY6kUryUFFHKytJ2epjs+0YbqqS1MoTQkNJQHLvzqoUfLGKojqek7nXjOWQOs8xRaMrCF1Q6Es2RWc09KQnSC0FUroVQggqEaG3dVB9G92prJw9cN+zo4Mi+Emav6RqMpSltA5VN7mod0ztUctIu3QkqLZvFCxlA/22M2FNOJKSVdEi5UA5FwEmeaT8MxcyOETJIR4O1KN4jWY0AwPhVUlkZnBU5bB85I5tSjGtjnA5ve8iXvVS0340pqEjVJJUl4tC+YZKiA3HuJbpzI1RNTTNbdsppHXV/d8Pq+h2L4yX71QbnYDpp+fabr1kul/ydf+sP+d1X3/Dll18znc34/LNP+fJ3X3J7s+PR2Tnv318yDD2z6Zyb62v+4neRZ88eMKTM7WrDbt/TDT0NicubGavNW2bTCcfzOX1c8e7qO8J0xt1qTcqZq6trEtLps98faIPHhSnXNyuG/ooPnj7mu5dvmbSB2XSKnzSs1lt2+z2ZY5oQiBG6w54+Jr5/+YqfH51wdnbGdrvl9PQYgOlkwnw+5eHDC5xz3N3dsVyecHvzlndv3/Pf+ff+XR49e0rX9wQXaJuWk5Njus0Nu7srYreXTODI9sk+KLu+OCDy2JGY7TGhsBErw6jeo88ZHXONXOt5LyBUDbmdOEs/V+nyqi1SbI6rJSODJ9mYo/rLupbsepxXETS1FeX86v/QgEwCE922ClRdua9x1kyvF0dMEZ9GNqawzk0cSMtW+h05QdPIvk4WCDqNorMNVZNMrXNJRY9yAWMlo0rVXCnrg2VXarRrwRJYN5Ss+T0gpT38klC9bztMTdKnJKWUbMPj5PkPQyxEuL8qVa4GQddCWxdTBYlyzblmUK2bq7SsqR1QEaes0ZNzDl1WwCkpOZJSJDuPIxQAXP3iyGeObI+JDdk2KqUTR82cagm7fl7dF/AjAABOI8rK6oRcSBqZelG2RsnUl7JE/90wsO8kuuhjYqKfJ1rMlAc2vgj5nHGq3WtfrBhky5rdT/fpgdGbxElqOnglltkGzg02WKYCAHXEGnEb6+fH9W87lNn7mlEon2OO0RyJpW+0Hu/rg3POicBQ1m5NrX/5gGRHhliieOsasKji3oYcPTBnwEbLKWNp3oqApa3TZa/99WUraVtQHqFp+55MzOYkVTTHWb0KiRiypQ8rMExZ2pa817KPwYosyDbFKJrsWQdOOehTommagnQrM99WQEsAyi0ZM44rGNKfFi1iypQr69s1lSwvA1gab21aYmzS6PDb+ho/wJkgkWZ48CiKVkM0djQKHHO5qLqeFsmEtiUNB15/9zWf/uIPaC8ueNp/ROMcXRfZbjbc3N5yfLxkuVyQUuLRw4ccdnv22z2XV1e8e/eWjz/+iKEfmM9a9t2eXddzc31HaFr67oaEY76cslxMWe06tus9/a4npluublfgpYMnATEJ6zilRHSZ3Da8eXfFdtfjHbx7d01oA95PCE1LzonFfEbjPLO2IcWBYUjM5gv2qzXv3t3Qdb/iv/ff/fdweWAYBg6HA857Tk+P+eDZE54+f8pXX37D/tBxfnYKwPruTnrcQ8N+f6CZ9vJc48BudQNZQL4BVhjVgKlnAmcETP6KiJYSSZe9OcgMFHFMFDW5yhHw5Tlb7dukbM3Qlu/Gvk8zfSM59KD1/Ppz+j1u0PbC+9wfY+8Xp6j7tUw71fNZQYqRkgFXo0czXCZxK6VGyUpEl4otl/Zcj4kPyS9FFSrwFaOrQKNcBxUAeHFCQmJUDfxUAVjW7xALHYXt7hHS8P1jODqbRhbP9lW68NmqAXItPuMGKccZ+IkDBF81UlJUG6jXqXGgnOuY7l1DLTHKS3u0CghwTmatAHgfFVCWCyQ5WQfVFdJMQtY9KR67xKJZAiXr2W+QvWLrJXu2dioxDlpwEmxlASTZCVCJxUdXIGoD7Mb3iJPguinpj4z2ljfgJI1v8oa2O50L9xyO7i2prQ8DXZ8YhoFJ8Mxn00p+yOB9rYfUje4UBPtyUaXXXNFzIWoV4JFJmgq75yRzTQDmjLSq5VAWPoRAisIiLuk3F4h5KA+roGUd8OJd3aC650oEamSQ8T+WtF3Mdc3QtkZdh6KMlYx17nEapdoshjq8xyZMUVDuvYdI1U5g9L6CgqFE9RY4VwxqTqu+T4yKjrdF1kpKHQJdhYmcS49y2WhZMkGJrGTpVNC4zWyIUZy6D6LPkIrSVkWmyep2er/WllkyEXrVP47MvNb4NDhSJreWd1QvS48norhmI6xtPQ1hW0ZE+QN4Q3TFAFqGYgxGUKDkChCzvetUU8LhXGLqYX1zzdGTZ5ycP6TbrGmaCe/efsPd3R2ffPoxDy4uuL65xnvPxfk5H374nO9efMtnn3/CxcUZfdeTyXzz3QuGmAntlHY65Xg+pZlO8TkyDD1nx0d0bkccpPd+PlvSDUMpcXgHXYy0QURmmiAEs+P5QlT0cmYxmTKbtKQY2R12TELg5OKU2XzCZrdls17TXpyx3x0IvqU/dPzJn/wJ/81/+PcZ+o6+75nPp5yfnjBfLPjs0y9YLI75p//0P2HaBJ49fcLLF98RPFw8fMTFoyc451jd3TFpRQ1RJuMpQU6JmkUTf8QXKpoXWTJzJU5PUt6yuRhjY1KIpW60eRwKdG1Pya4bk74s0wOuRGb1V81cmQMr/z/aM6O84o/Aiu4vA9oloVgBTxlSo7Y7+Fp6M3vrys/KPWtClmTdTfZn8f11qJnLKnKk7CBL+Vs7nHrP0lOfk5DulEQaXa6AyYucvNG8jVxogDllpOUuaWlkFOiN18IY+WWhFBCV4UYWl2cr2eq6ZiNCCsE9xUQTJIiRjOxf/X1mcKWsUJCPAA7NeMcEOQ+l9GvPSACMVw6CEQxzGdhkPiQpMb3MwGHEY8gS5NlesomnQxywCYzmh5zKYptQnbUexiT6LRiIpGZiSjbABxpwJfr1yavxl9pEdpKatml/GdOFFxSVopDHJFqTP3f9QJy00g2g6U+yRYlg1r3edp3MZuhG2sFGAh6KVqSXX240BO7VrE2RzvmgyMQxKGpyzlppXEGSOcm9mX8pcwIT+GCiPA7Rsi6wSrMiTjaG82RfuuwpV+PGm2m0kaP08HsEjSeQbEmwfuSsrFytuxsazWJEvLco1GGzu8uhJ4/ShblwDoJmDLIZgdLXWlPX6HWgGD2HrOpUquGg9yOtkI6cIlW/TJbGBiR5Mo3TGCLmsumMHGSqj/J5WuLJ9bplWwg5xhivTh0pGt1YFG9rnlxmIENyOsLBIqRAysPohCtJFVcU4eoOQoCNLm8hbGoUE5ID0ZT7S0CsZAacyJSCCCtJx0kiZeWXhMB0vmA+XxIHx3r9lturK2aTGVf9Dd99+x0Z+PCDDwlNw+LkiOFF4mh5wsWDcza7FSfHx+x3B06Ojvn+u5dMF3O2hz0xZ5o0EJoJMcK89Xz40cdcvr0WGTEfZJdqxmLImfVuz7RtyjkNPjBtpgQys8WEo8WU1XbF5d2GQ9dzdLTg5HTJ1c2KAc/RbML+0DNpW44XCx4+OOPkaMF+v+P05BSH53gxZ7k44vj4nOwann/0IX8nDrz+/gf23YHWB67eviUOCWh4+GzG0HfMpi3NdMZ2e62T1rTPO2EqMaXGWdL1QNao0tpYjeAcnU6FK0ChAmhJq4vdK3KzWqy3OnsYMdZzyhZ/lZ59ieqNrU3ZpzEmlBpOVs34bCPssp24iOVzLUNhH2vTPm2vm5PLem4clurVUqjaqpzSyDao2Q1ZW9LkKw0OGWFON35pzyU7kgvlu1DTb5466n8OKeEGuy9ZStE4iXp/evbNLqWsmVBPShpUZANS8hyKBHzK4KwHMyticQVsW5YEtTMhWClBnj4wEidL1Q8xCjrUvMvQISFQy3C8oGudCE4ExBIaMJGIOdDkPAoGxRZEN1rzLEGHCRVpj4naIajxTWIwW+IsQJUyddQIVTJJFvhI8BSAlMUnRaq9lk3rhKAdpYwSCw9DNoAj08Q4wkE28lCNWY17R8jU0K0eD1wqNdx+kPSOoeOEKwzyUrslFwQoey/LWEdDxjkXqlpKqm6kAhDR2I3OF+SekugPCAm/omznIKahGIbQqPNX6VD7/JTiPWdr27vU9exAJmHjGokNowlnROAiMZo2BsYdyOpkbA2EkKg/AyJMFMH5FmtFynptwzCUA2yytj5oZJLGnz0+6Lk8Q1fqkZUFGzEhIcpB044mQaXOQ5SWR4swTJ8gZQV8IwOUk6BZaWkRoyIluswoeVScPy7TNgEXxCFJ9siieC9Rif6c1e7K0AynwDFnjfQVXCSvf29gPCtlQWBflEKk2jCLlsaEVN2xru71GvWFEnkYo8L4L7adY1aBISB6y2RYtKNRYzvn4vnHPP/8Z2TX8vqHN8QhcnxyxtXlNe10wqOnD/j4409YHp/StBMm0wmXVzc0bct6s+Ly8prl/IjZbMqTJ484HAZevX7H1c0NofE0CWZB9CqO5guW7ZRhvmTWTEUDo23J3hGHgZQzq6lMFxRQJ0NNFpM5jfcsl1NOT5f89sXXzKczFvMJyWWur264udkwnc802o60beD09Iif/eInXFycMZtNadqWtpngFg3Oe6azOUcnJxy6jp/94pd89Oln/Kf/8X8MfeTx46csjo5JMXJzfU2YTNgPW6aTCXej52ayqHIUcsFvFllFtUs2Hz7m4hekVpuR1KoqW2ZN18rWMbshmR/ZC0lBYKjnHWNUZ4hRB5BpVkDrzV7NQyF3hahjay1S1P2dBHzI/ApUy6OCctuLZZS6pfsxvKnOQrt+tAFG7WgaAQNnvp2Yo4IGsa05K7jSKNYiVLtXK8OlZFyC8gVKgnN4DTaykzKh96HYBZQlL9k40TaIOZNjJDqPNOdkkD4gTPXVms8yVn4xgrQGn6O24FEirmQaZE2iRvC6limVsoaJL9kI+lKCLUGKlgpTpmnENksi1BcfmOOA6KFkHU8+CghKxsKytArKkDVL6m9Mgh4yAROPk2CBJJLA3nmddCo2twizleST/L/5x1JqicZ5QHkmY8CayCnRxBjB2wa2Hlj5kBxzqblnEK1/uctiSMeEtaQPKuMkInQjw5iTzpunXISjHmTb1jmlMjErpUxymk7WhU2FTW+ILUuvseCCsujOamHY5lE0d88ZSzpn0BKATRjMowdp10HODEOkca44JEs/DYMqS9jwoJzq5sQQG/fQW9T1yS7AEGlC0D5hrw53EBnelAsgMSEIGz4kG1e+2jvrdrDDoQdJ5nLqoXAiPIGAhMqLkPdEjbLxtmFBCKJNOUQ1tWgHSXW3qUORSpLB62xyJxFOqVXiIDlN7SL9ugVPjQ6Mnmor74tRz/pZ8pxEtTCVZ+a9PuNUgU2M+jxSJg0a6TDK0OieNmBw/5WLsRVyT72+cSbAEp1Jbq0YkZgdbTNlujxhfvaAk9MHHPYDi8WS4DKT2YyTizOGvufo9JSf/uznvHz5mrvVmpgc5+fndLs9q/UaCGw3osp3fn5KivDu3RXz6Zw+D+wOA5Omp/GOgOdkvmRy1tDHLP3mbQMe4iBlgsV0ymKxwGlE4nA0vqFpAkezCY8uLvju3Uv6dMODs2PuNncyWlf5GKenJxy6gTj0nJ4e8/FHz0k5sVwuydkznc04bhsmbeDQHcgusDw5p20bfvbLP+Dk9AH/t//z/5XL2w2PPvqUs0cPyL4lxYEXX/6O9eV7SX0m0XlLNq5a9RzMaUftDkq5RkhRi7yZVHk/GVy2FlnNill065JMeVPD7eRQFXJgUqB9j3Q7AqbyMbKvYtLsVpQoLEXrCkjC+NfIUDErlqbNNQ9Zdp48F9uDQbsqNBJVUODLDkQmG5Zgq54R/Q9wpjh3f5ebfxENfcsAUKJwdV3ymSMn5w34aNO8N8a/XkPthkml3i0BjqMflOmuKkxe1yWmpHoB1k2ApUSxx1UDrFpusfV0Cr/l78eBa5bBi+MCzI+Y9uhZN7vhg46bzrqO+qNRQ3fhKLnS+lvApDciYb1OseMjcKnflYYo9sJnghf1x5S0DFSAQpasbJaskvgYaIIjY3bfbkD29RDFv/WDTNq1rGvjnYj2xSSWve+jEq0SEEctb0p0My10LP1B3aYFMWkZIGW6rmcfPLNZC8FpL6iij2TkPqcbRsGDy8U5pGQiHoaudSe7UCI99Fo0FJX9EXW0LOBzow89Sg0IkVa0M1vqaEm4CUkjfDswhcCRUkWJ1GyGsENFTKKgqqyT/4oP0XRXMoCk29MyG07vGxi6iENGEmc1XsnSgyOjEKNlKmrEQpbBNgWZ6gVIP3MW8RRVcQq5IlVLNSaNsGzTk3zZuNaChKZCk6HycpMSuggI0HagmPFazvAo/0IjMNFKF6Mgwyy0qzpGbc+7//lOSUWSDUKfrUYo6rAHAwxZwJjtU9Mt6PuhEGH6IWL6B/YdY7UspyJCpn9R4YA5fTMQtfAj/5wEZWuKk+TBN7SzGc30iOMHT3n05CPa6ZLGRz794id0Xc9sNmF9d8Pd3Q1DjOwOkcOh5/XLH6Rtsck0wcvwnHbCdr3h8eOPuL6+xrnE0WJCHHquVx2pTxyansl0zsnJAz548Jhrd8chZfbDIATJ4El9B8B8OmU2nZGGSFRiJkjr7OnREWfzYz59+jF/+ruvWRzNOFocMeTIdBvoh8RyfsRq9YZnT57ys5/+hOViTkwwmy754YdXnJwec3w8xzs4Pl6yXq9YEDg6PiXmhk8++SmffPZTlqen/OKP/i6TSUsIDZv1HYvFnHU28pKy0DVL4TRLZB050Znap0W5maGPJToSARcj9IFLqHBY1pBAs08ZkjfH7Mq5lmyjXIe1dWXrPlJ3I84tFrIgCCHLS6Ebkuy7wdLLWfULLOs2akMQm6X1YQO3RMmAx0gTmpEdzAJccpKZHEhN3XrtYwlEIEevQ9KyRo9O93jl1ZSfTWoYkkbrZuAwUTgPiI3NPuOiU95kPRUWZFl21eaKpCgZBQLEIHY7pawaG7mc1Zyls8g5DdD0Aacs5GLc2A4ZOLOUvjpo1C8pILGJe3afzgtZ3UbDC/gY8D4IUZlGCKLBxjNLGUEi94iLMsgsJRvkRlmfUrpErscDoTXVQXlmUe8dzR6RBdCVe9FsRQJSLxkNy3wmsoJURUu272LU7SSAoR8GGUbkodGylHOZLkaarI4pkxgGGw4hiy7TDLUuwogpPzKIMUpPpaVVhiGyP8C0bWiGgHeZFGo61wGDNvBLasppH3mVwk0xlwlX9uC9r6OB02C8yaQpH3Ouml7K0EdhE6eYCF7YuFXZxiJ7qwcaStZ+2TiKSPP9DeW8pZgsDaRGInoiOvfaQgJ58upYyj7V2mUqKWQ8ROdhiHK/rqoQihaCBxUWkYx0Luhc9omw9gElftgl2Lrr4FSNjkzhrJgv70QsRK8xkqFPoktu/a8KAiylKvdmCUmxX9EZAEs690B+zPgUOanRKzENxawMKUIS8p2pBxYdd40e7J4Hr+I+xcBgDYGInLUermGg73uGGEUFMEv0m2JEiEA6kzupER30+Ttl95JIXoCo9ZNnKjCUEpg+a+fVEaF7IhOalpMHzzh98gFPPvyMs/PHOAK+cSyWp4T2QN93hHbGZLZkAqzvbjnst3TbNZfv3vL84w9opxNWd3dy/bFns9lyfn7B6m7Nk8cP8N5xc7fm0PVcPLrgdrVlGAZOFkt2d3tcyvimwQWlaIZAEzxN8LRNA8EIn0H7mB3BN4QIXzz9iNOjY65v13z49CHDvhcjkyLr9ZrgHc+ePeXZ8+fgAtPZlJTg1atXDEPP48fnHC2XPHh4gfciEd71kWHI5CHx4OlzfvKzn3F+8Zjh0JOInJ5esH38jNs3P5DWEZ8HZK6HAq+SiEwkjVUsG2V1d2mxkjp8CPaM9Owj9VIZbCUDX6SMqbV5LPJV+6K6EF79tJyBgkYLsVfKkcpRaXTnJmXZY62EnqDpSjn+rv4Skk7JGFqdOCuZ1mlmLqmIVTZ7px0LAqp17zt5pkX50wmM8npvwrOhOChIxel4HzSYEptNSiMwIWDJpUTjndgIL+l9koQtNbOYtOavYCSOHJ7mLSRwCIK/XMbamMX+OT1vVnLz6gzVFqRIafPUIM/8gQER8VmWHagARuP0omQ6fubiICVocV6DtVgDLAMx0Wyi/hvOFaVWG9YmTlz+PXgntq34D3n+vb7fIRymSdCW+KyZBN3fYscky+iQfWudWpLx1vVTu2iOwIJ2n52EXAqY+z7S9ENkyFEIgC5RJtB6UcuLMeHRWnSpXWd9mFFI6kmQdTf0dP1A9jBPMM3iTJzWve0MpmQpXEHL/8P/wyV/8/rr+fo//Y+eIUdSog5PJR4WmemIOFwSKapENJAZSqupJcUETat6Y7ZkHiUblDU7E0f/bRFbNIDmoyJ0qxdKylEEwiJDlDGdQ4w0Wax6TlUgKLqkFy2gMOoQExnBLKUgSwF6X/sekkaYXrNH2bdEP2N6fMHR6QXBN+Sc6IeBrjvQdTv2ux0x9uoYe/qh53A4EHxgt9ny9vVbPvjkEx4/e8ZiMqHrD1xdXXN0fMJHH39M1x0YhoGXb96z2my5ulkTXGQybwizCY33EIKkvlW69ZATTdsyReSJfUwMyZWM0cSIqimzmLecHR/x1es79t2BxXTKjduTc2SIA7/8/V8oCPEcOgFWq/Ud282a+WxG7CLN6ZTjkwuOzi4gtCwWC4J33O13fPjZZzx59iFpSLSTCdvtmpvVDc3kiLPHH+EnEw7rG/abWyWzOn2mAradd0o2lf04DNKCmHIk5sRE9UZqps5ks+UV1BnIpDn5LAN23hxgFoOb7bkmCrHMK+CVPSoWToy1kc0ErAcrTzqN2rz2zFiUSq3vlyxokgxmKYnFAXCUeDxLWUACl1wzEVq3jymTrI0qJ4ITRnyZYpeSrps6xCw98qGR75XLTyXrMUTrutFIGpVNz5CUaEwat1tKZraPw33nadyA5AvokPuJWJuegACr+2ccSRT9yjqLH/HOwJfdA2hjHGPNgVrSTdUhOq2NF2epafTslIg9kJpcpOTt/VmzqlZJSE5sgivlP2o7JhZoZlxu6C2gU3A2xESnI+m9k2KrH4SQC1IiZdCug5joegF3TfBSTkpB+FfI+OFhkK6ZlC2TbVLs+mfvRpkWaKQGLgYx+kyXBlzyqrrZMMRRn2rWSC8Ka1zAgeDKmDP9IKIvoRWp1+QE3ThcTfursczlIfyoGPU3r79WrzpGMxWHb20ophOeLUJLmZh6Sd3iNctSU4+ZqLU0Q/3W3yxItkQF2UoTVACg7TA2PMgijZrWFL5KzFUOumQVYgaXVHFOldEyati99NbiCEFTclrWEcOskaYyhp2TlG72LZP5EacXDzk/f0DbtMWQp6jRlBNlwpQcITjSfmDoO2IcmEwnNNMJt7d3PI2Jjz/9lBwjh24PDu5Wt5ydnnF6dkLKmcdX12x3e9rGcX56hpsEbg5rjo4WrLZ7mtAw5BpptE1TRlzHwdrhoPWBadOw9IG28by6eYtrJHOy2x149vAU17R8+c1LfvL5Zzx6cM5sOsG5xHq14vbmlsNhT2ga5vMF7WQKvsH5hulsIWJRPrDf71ks5jx69JjJpJUSVfBMZlOaw5S760uOHzxmeXbC+vI1V29gv9/qZtISQM40OSjxVNKnJc2sRNKsf1/aAUuGTp0IWs4zx4+mPp1ES7X1LxeHmcqzH2UyzUln2cnG9XFWv8wW9cayh8UpWZSYq6PTNPgQcwEXYKDHj75bjL6dh1pvdppmr2dPTys5o0x5axnWf8tW/4fUD5KyVuAjiopyD7JtJWpHo/4sX1Kibq+AJidxcMaRGgsByXWOs4DGsa/1+pQixiEgjxVZDSBk1eio9fSata3lUPu8plGwbntCSzDy9rquMSVcHmhcI6PpseeEcp6i1uHN3lVAYmyKcRmgjFMm4lxg0OyAXaNiRBGD1IxF22jGJqtSrAIGy7KTG7wLDDEp6VL2RggQh75kRjH7qnZauBWyTx2OZkhV0WhI0t6Aq3UI7yU17Z1wCyUNkWR6V5Kf62JiGEy0JTCbaOSRUYENqcNJDTljAyMN/f7N66/vyw7ZEMecgcSgBzl4p+m/SBxsGBKkFORAB0/TGPrWyKPIodZOAjOYFnnFWNuccrZUmCskUisXCYiQrEIIwkLuo6hv2d4vOvFRSUox6eQ4J1mLBOO0ptUL6zRCV/XlCcTsCdMFi9MHPHr+ISenZ4xHDuMM4TeE2ZxJ27A/7HAOptMpi+WSxWJOypnLt+/IKXF6ckpOkd2uwZN4//49+/2es7NznPN88PwJ19e3DHhi7Lm5u+HNfMlHywfMh5ahG5g0LYf9HlJm6Aato3r6vse5gG8CbROYNJ7FtOV2v+Y/+/Wf0vcHhhjpejFuF+fHXF4t8T5zdn5K27aERqZDbtZrVqs7zk7PePjoIaenpzx4/IwwmdD1A7P5XCI3D5PJRPbKEHE+QnC0kynnFw9Fwnk48OaH7zgconT6OGuf0mc9SvFampziWKmWxRlZ2ZFT1c+XhIeTDBBey2iqIVBSq/XZW82uOnsrI/mSti6MfXNu2aLhOkcFVc60eSi1+0SiQCvdjWvp+mEjp12vxbRHcnFEiaQiPeRUHFDQ9klLT3sdfQzGiVL+gUWoUVr1nJH3cnW2puCJU86B1Arkeuz+9R4s5f5jWW8fqlSvU+BkpD2xBQWnjdZau41G625r7tyIVzEC6VU0bdSKXj4zlzb0uta5rIkr4EkjDXzJyhRlXF+vp3R42f5QH2ell0HL3fH+zY1AXShAKLgq0CfXH++Bp5Qyg3M0mnWpwZTyFbCz4CTg0Y63mJVXRaYRMo2kWoR0EqHxtDloPSuKIh5eQMIgIx0HJYa4JGpm3SDGZDptmLUTYaomk8l0qtimNR2UEUtN3f3N66/py+qUqnjom+YecdCMRoo/dtoDbdv+6MNcMQjC09Aq6digOgrnJN8zxh4TDjJOSEzCN4mDtHvGJIayj8LGjrEeTon8dNBKitJuqXoPFQBIlDUMsRiKmKLUzr1mLdoZTZhzfPGEo9Nz5osjQpgwaaf6OT1N6/G+pesT2/2OYejkunG00zmffP4FkMEHnPc8fPqUBxcPePvyJSlmmmbCg4uHvH37msN+z5PHj+l2e16/vuK7l6+ZtoFut+P2sGLZtjyeHNMNiT6bIFNi6DqGNGB0ch9kQuOkCcwnE/o08JvX33DTbYhDj/cCnGKEo2nLg/Njtts1s/mMBw8ecOgGptMZs9kOxzHT2YymaWiaCYvlkpwcXdfhnKNpGpUg3pPSntOTQGgaUtcLIc4Hzh884e7yFXfX1+x2G2KMDH1P07b0naSUZYZ6LfMAJZUukY853nHHixs5YttTjqI4pnwo772S2rQSpBMofxy9Wr3XvsNAnjgHc+7Gq6ok5ewEWBZVT3Vg5mYkq6Yp4JLaHnUlWWZA277SvUxBTTsb4VVKX46gn+MD90S4MtJy5qLDRcjOMQAu6twS5RrZ9WbNqhAo0wRFidARh6RaHHKGHbWDotTfM5qVqc4dcunEEj6FRMx1Po2p+4ViE8bEP3OUhaBbMjLj512j8/ocDVBVYGjgys58zS7UyN+uybbTWLG0/DKgipSbHL4EwC5XcFl+z1qKiY6k9+lFSlfBrt2bL5NTSxCjdkwGSmW6OBRNE6WhSMbAie2LMdM4F9AGMXmgPolIhMhDgRtogjAcs6Y+Bo3+E5CGgcMw0A+xkHx88KqWlGgaIRw57afNubY2GGv8b15/fV91PoQYhF4Prdf9FLF0vGYKkoohBa8qP9XgWdapoPuctPfbVXnektYDNLKSM1yRe87S6hSHga6P9N1QWkd75xj6SOMB3cNZOQxOiTc5qH444NCWJKzOWbMelVQJKXvi4KBxLM7OOH7wlGcffsrRyQnO6ajpWCdTdv2ezWbNdrOR8+el1adtJxwfL7m5uSEB548e8fz5h7x/94679YrgnY4GXkMOvHnzjv1uz6PHj3j+9Jqvv33Bdrfn0B14+cMP8OjAxaM5R7OWm30n0a7LdMNA33e4BNMwwZ6Cc6IE+er2Hd9dvmJIA9vdDu9gOmmU8+D46PlTji/OwTmayQQXGmJMrFaO2XzKZDIrfIn1Zst0cQRZ/uxDw9D3hBCYz+eAqOw1QdpNY0rsdltWmy3tbMJ0OiMdJniX6LWDQV6VMFf+JmsWM9teyuXvhGTltQxQ32d1cNnGkgHKBUTIvzEy1qWtduTUjMdSx+va9di6WurZERiKIwkh4L05PnEsaXQ/4nSbkROsfAFrvyWlkia+/531elGBpCg/IK2zQfMIKWn2w5yLlC+E/5JxTng71fmjQmoZXPxRtK8qffeekl6zc8qjkIyBjOeu6rKFGmxrrs/zL2cOZFqtt578XAnD98oKOSvIMkduQbeVEf2954h+dwFp2ci+CnxKbbB2TdTPzJpllDZuCRIQYJuVqS/pJHKUYXlNkAJ6CB4XM0OOJLM3zhGynMVkZc1kmgwZ6dar5U5ppwScLx0v3glhECfaWdmLwFpMovSbMzTeeWUXK1NR6AS1H38Q0ozdfDdEhqEybPsoGYEohVLpvE1GPhCU3jbhXutVNilK5wtq+5vXX89XTMqiHkUTQ8o02nlhhKTitNU4OK0f1rkG9jMizhKcGKCUpW0pO8RSl/Nd3zNu6TNn3fcSqXfdUFi2APsM88mUSTDeAdZBXYBEjonsU+2cQEYYm6yqAQ8DJqV/u2nJMTNdHPHk4095+OQZGc+h74CsypnijFLqyTkymUhf/dBLm15wjt12z+X796Q+cnx0zN3NDa9fvqQJnhSFKHh9fcN6tcH7ltVmy3wx42gx4/TkmOvVHavdgfXNLYvFjNuLPUfDBIZBzrZ37Ld7UozCTXCZadtKJ0aMbA4bvrn8gdV2TRwSLrTMJlOeP3vEbDEl+MDJcsnHH33EcrHk9cvXnJ2fc3N9yWazoW0aJu2UZx98QNNO8U3DoetoJlMmkwlNO6GdyoyBtp3QNKGkab0X/tFhf2CISi7F0Uym7PcbabPzY1XJkijX/1cAAHjCKMKydHntsLHo3KRhLfUuGiiRmD2uCeAjwQVMxyKVyX2+OIIirzt6mbO0koOkcKVKTq4kNcmEeY32bF+KCJVzNm3O7sFSx6bnkXAjTf0x4Kh/58vUUuekWymW8pWs3zjyTfq5xnXQuxmN5oYhDQLQS406KXKpaz6e3yFrnorDyk6URfshEsKoOwGKvoJIC1SgLVdnzz2U8rFw0BzuR0DIlSxQzQpZi7V1D9SR6nqvshglqgdUr8XKkjJAKybNmKTx2F7LDtizLC0qOOOg6DPPUTlIRGnN02BJOlSyXqfYFZmZIPeU9PqSihxlS+dntLVUS/ea2bRd6b2DKLa4GyKlLdshhJr76JF7qEuEQwZlpQqKH4ZENwjhZhhSARCVpCIKgWNxlfKZudaFfizC8Devv2avbABRkK8NCzH+SPlde/yDlwmK4ljF0FkKtBxAKD/joKb9cyrGtERmGjUUkSFnNVBxHik7NLAn5cRh6Nkf9kREPtgiFWvry25EUrV9rPcgrxpp2HWYFGgTWibzBacPHvHo8VNCO2GIJlIifeVDGui6jqHvMT6AjNJOIgbVBFarFTlGlkdLUdRrW6bTKa9ev+blq9cs5ksuLh7gEOD+wQcf4kPg+OyIn//8C1xKXF+vSD5wdb3iX/7217y8fEceBhwwcYHFZIbH40KDC55J0zLzDbnr+fLld3z9/hW3uy1dTHRD5vhoyWcff8STx484Pj7i6PgY7wOnJ+c4HWLifcPp6Snz+Zyjk2Pa2ZQHTx7TDwPeBQ77gzDILS2OJBkPfV+egw3+mc8XPHr0iGcffMh8caSMdnEwQMkcluhTPe093Q5Xn9X4z/b+cc3Um6a/PmHJWplJ1rS+1pZNrtZSvvd66N39/YHuJXS7GofEXmZf7ZvNUaL72d3b7/WarcNltCX1O42l74uzGp9FdX910Bd5dKbsgyh7szDo1ZabRLJwN3rxCzESdcqe+YyxHokBGys15JwhSSau2/f0+56+jwzaPcG4++feWqKOO5QbN/XF8XktazFa41QAjS2Y/BI+z2hcvIMaktYWbp9rO7r3Xu2YE/ljBQ/eiW0TyXRtTE7pfqrfSg8aKDuVmBYuVFNnS4yym+PyEkp+tS4O2Y+G9FK5Zl0ECWZSGm0VK1HJPTd59JcVIVdDXOZgJ2VEqxBNzBlikjqq1nZFUMMWV4x4KE5Ak2yjFI1979+8/vq+gq/OO2cncqdWq9QUp5BeeopF05fIPKtRcl7nlGcpD0A1OGb0LO1IjUTsoGfyqB6sJCBN5aWcaIPUdIcY6YZByDXelb1exX3kJUOQZI/6EIoBBUrNd2yB7b8Wx2csT85woWHoZSKjqLeJBWkJ+CylkmTDOtRAhxBY3d6yur0lDQN3d7ecaf/86dkZh8OOlCIPHz3m7OwB8/mCH77/jqdPn9JOW7758i/4tJmwWW/51a9/S86R6/eZzXxL3A384Qc/YTFbknPmsIts1yvO2papnxByZNo2rLZ3/Obl97xa39AET5hktusNzz7/mKPFlOOjJf0wMJ8vBGABJxfnPHz8mKPjE/bbNfvtjhwCk/mM2XyBy5cM3Z52MmOzXvPgwZxp0wCOoT/QtBPRQ/BTQFr5QnCEpmXfJ3bdQEwwny84bLdlzeW5jUxKSRcbGdCPaso28twc63iexIgNL38qUaix7MUQe2wwzRhMVBJgBb41IPrLqWkTMLNrz5odCo0y6zUJnRQMhKIwau8xzZQapUtgOM5MSGYjRplfT64zXbBqg0aTtutrN45+zqgc4Udr5Z2QaYXjVYe8jTkQYNLM1ZGNa/1RyeQ5i2iTGxxNE7RDwdLtMBZQqWW3us4FYKnbGdf9NaGna64qoaPsQM6ZfujljNu/JaWYjrIGRZhnRLRzXgil9hxKziAr2PH1mRVwoc+ptEhnpCxABXrj8fN604UXJaDNKxijXGcaIq4RG5VjlGfNuGRRn/G4lJJiosm6gKUEIKot95CcEU6yClsMSdCxGNtcCEwZVPUu07aNOP/yWdJ+UgV+IhnP3wCAv94vH7RnHIQt7DVVmlT5SgFARoWZktTvrNWKMnGxGlUTo8KpOpirQzi8IWtGRtWZ2EVWg5W180BIVN5lgss0kwmxsyhsYBImsn81hyCMXVHLqgCAvxTlNU0gRk/O0pdtoEZ6gR3T2UwMQfA03rE/DOz222KRJGu2Jw4DPojiWIyR7WbN6vaWw35X6nhNMympy/PzCw6HPZPZDFzHydk57bShaRsuzh9yfX3HYf89n3/6AUPsuLm9ocVztV5zu9kz9xN+/vwTvGvotzs2qzWLdsJRCPjGs9qv+c27b3l/WJFSZjoN+Bx5/vwhbfBMp1OayQTfNkwWc4YYub25I0wm4D2T+VyUBnEsj445Pb0APEfzGVfvXrM4OsHlzI1zTGdzprM5i+Wx6DOkgX4QsGdgKDQNFw8fETcf8WrYsF0daNqGOCRZewmIRtkgcYIpDdSUugw7MpExcxwqjCn2MSWcq/3igiyMSW/kMiFnGXfA++Z+ZEaNso2EJtdTRYCgpsX96LuKQykBmNe6taTLB53iqJu9fF8IgawKnWPnj5NI02dJO4tqYM1iFedmzpA6bnic7ZLr0b/TsyFTUgM5QW/Z3CEpt6I61pSSqmvW8keMlfuQspQP+6GXYCHJZyxmU4KXgUxOEz7273JN5uQHLIXvDSSog612oZY2xo54DFLIaFteFTCSITy2NlAWP5vJ8hQdCn3+wXhyo0DaOSHWB0vrQ+kgUiyle1L3hdk3de6molom02LaPKYOm0vufxh6SvlFAYBlJqNmDOpLgEZMiWboB9UiVnSVqzJS7V+0FJkj+ai1ILmGHKU+YhdUEy+aYjHihjfk6gtxzGYd/83rr/FLrKFoTSfT/q/GQByo9Z0PozSrbiBQow8pavQerJ1GyUSKnseVuTw+oJr6s9nmwi+wwUtSv59OWoIP9F6O4jhzBTXqydoS5vS6DPUHbVms2gKRGJ1lUMGJ9GvX9wz9gEyMA+00L4qZ3gdCE4gp0E6mxRiGpmGxPKLve25ur2gcxO7A1dt3PPvwI3LwzNojFosj7la39H3Hfrdhs1rhcDR42uAZhsSh7zg7P+Ps4UNevXjF4eaWlDN/9sPXXN/e8OziESFD7w5cbW4YXGRz3fHbH75h73sIjtOjOR8+f0ITRBWs9Z7T01OathHQ5jwuTDj0Pbnr2H75NUdHS+ZHRyxPzphOJqSYuF3dcPn+iosHD3n45DHr9YbV7Y1E/MGz33u6vmO+OMJElaITRbVJO+Ho6JT+0RPWd+/pDlv6w4EUh7L1LGqqnSf2EsMfQkMITbE1tT5ttijifMYVecGkDlMtWo54mzFgJSMHPrg6HRB3j4FeU+WWzlfHrteXjQXjatvbvRS8XKGAkDTim0j8WMAMTtTdHBa96wwCL4CKkUqebWecRH5OeQgCPuwcyc80TShg1umaycAlFV5K0E4a6CWzUroJqPdiTi6RcUHsfXBOZ9BZTTrSDxW4JxeFTO4cwUk2YBwQCzHYstI2GdQVMDcWiiIjJEGX9N/kCmukbc9G10RtjNcspZQyyz+XZ1PWOUCDJwfLREYd1hTK9VpJQTJGmiUakVZjSmQP07YlJ9kjDYmkvALZsWLPgpdZEWF0rRlIXtbOZV9mPGgMj0toO76WrwrAs8yToxmGoUzsq5tQBCacU4asQ5CGRvxysCTSIwoSi2mQulBMxBRwgyA+H0RQZGYpiqybG0kZ/w0H4N/8a0Cm+f3XQa/M1A0pqFVraBb5uxLoG2aViEujbJxGHt7hUj2cIgGiqauxk075Xgq2KHllJdq4LDroMQtTGR3t7DwNnsbBkDP9kEhNrtLOuv8bF0rmyhx/qxK5QhjS0dnek2mZTqaSKWgmuHbBdL6g63r6TjIeWaPREIIoeDWBEFppZ+t7copMphOJgKOkFNfrW27fvSXHge16RUqR5dGRkIUOPbe3d3z/zVdMmoYQPJvNhndv3nDx8JzPf/I5v/3tl3z/w2veXV1xd7fheHnEtPFs93u+XL3n+80Vs8mU5KDpV3RXL7har5gczXAx0TrH06fPOD89pjvsaZopn376EYujJbd3a1J2tO2Ezz77mKPjY/IQef3qNd99/z3eT5jOprRtw4cffMDx0SnLoxNOLh5A03B8ekK/2+E99IctMQ1MZ0eica/BQX/o2A8RZrKZUjvl2ac/ofHw7V/cgWqVjJ2WbIeo0ZiUF7xrCL7RLECwbOu9CM37jHeDBjFoVkEZ/U52oEtjQSADi5na9+5LbTelAdOvEIczSjnbfsWCb0OPck1hVPqSvVOj1CJbXfQkpP0seOPJOMzBac5BHZzUqkUeeSjpY9F7EeCSQSeAZm13rAFbAcZOas6NlrICHu8bui4Vlvpflcu1tHrQ6zJlRaBM+LNxjtlJdjlEKcGM5cRlIFGq9+6KNdHavAKqKkNUgMhYT0ScowLNOErPj+2Zk/uuvIn7pQ3R+3C4HMiNgH59cOVnxv40G/BKQth0qG5CTcLgHLRepkKa4Tb+idhJyWIGeeglI2ILZJ0bZTSx/mz00thXMkCmU6Hr0YQQSEM/cv6yseuTsjxFwOk0rpC91Id0Cl9UrfU4QNf1QGbSyOz4qXc4nXIXQo3+5aMd+a/aNf8Fr20a+I/6K/4b7QVHvvkvf8N/Da9/k9fUkfj/HN7zf9m/JuXMvz9/xr8zfcjsX8Gdv0p7/rebr/l+2AHwUZjzHyw+4aNmUX5mT+I/vPs138XtvbTQf3v6iH+0+PhfGzSYg671T0OrFqGbypyg6qSTrKS/WABlq8NRzAjfO5C5Gs+cJZ3Zavp1bHRk/+qfFeUG0PZTJwgdqefnXuR4E9NCwAm5InNf0sSexhlQsc/1lQOQpXY8aVoygZwCQ3ISHTttq8UXne7gA8GHe/XPw2HP4bBjt12zP3RMJy2NDxy6jvV2SwgNdzfXLE9PmUwmvLm8ZDabcbQ84sX33xFjz9HREQBnp+dcX1+zurtjsZjxxenHDDFzc3NLcDDZtkyaCdebNetuRxsmNCHRxT3H58fM5xNy3zObTlWkJ3N8fMzjR084v3jAty9+4PziAQ/PH3B2/oDl0RFd1xGc5/d++ftMFjP+xR//Cw6HA5PZlNOTY8CxPDoVEtYQmc/mTHzgsNsw9B3TpiUNPVFnNkw1K9K2LTFG+kPHbrXmzTe/Y335g2iyUw26RNKSCk94reWKhWtCi7Q5i7Oy2SakGlaG0GipMxYnLvPlhTgWsL2cwVlfPkDCuUadskVJ1SmJTLH5dzPKtr+UKK2u2vZ8sY0wckwKalWj3VrabP/LPrV2R/01Oi+lpIGq+EGZDKdXVtK5FulaA2xJmUOJxO07AVIWTYfx2PKxQ7U5Mo2TskHw0gVvfLCmCUzbRlqHU/1cO19hNN2xAJGyVpGm0fZI9WgF3Nj3JxPnkUfTBONYyH364PE6+6EMLRrbH3PO3rJGvraRWgacXJ+65fNHr+JXHRpA1M+lZIkUyDklNSZL8fuSJZLsDsWHlhHpGB/A7kzb7JFyfuMzyYtGj49SLsgEmcxLppm0gUOSWqalxbCtPK5ROWiDpwmBg4uk3jSGM+gIyL4fMHaJJxAmDc47miAbRR6GlhDIf+WC/Ze9XqUD/+v1l3x4OucX/vhf673/Vb3+TV7T//T2z/jHh/f80eQMl+F/dvuf8w8mF/wvzv4WzX+Be36Z9vyjy3/KwjX8tDkik/kn3RX/98Mb/o/n/4BPFAR8Naz5f+zf8ryZMRulq7ofk0/+FV855XJAnKa6nEUl6vxTlLaTQfuKh5iIuaOLieV0wqydafrO5mOngrpjqrU5S6XZobK0anKu6FJQ0HvQOeco0hbEHYLD9ZkhyUyANrRyOEp91CJKPZBeDYtyD6z+J4YQXBrIuSFMp+RmxmR5xPJYmPApJeEvjDpkmrYhZMfusKfr9mw3a9Z3twzdnr7vaSctTh3NZNLSdT2b9Yrtbsfp+TmzxZyT0yP2uzXTqfBsrm9vOXQdL354ydXVe4ah5+mTR5xdnPHihze8efOG5XLO7GjO1XpNcF5G9PY9XcycHh1zenrC3fqOiwcP2B8OrHc7ck40bUOXBu42a05PT5lMZiyWR5yenTGZTvHO87vf/pbdfs+HH37Il7/5HS5nzs/PmM/nbLcbwnTK46PHzKdTttsN/eFAv98T2pbFfIYLU4YopZO2aUsdtGkb9vs1qT/gYke/W5HSQcpLZI3qzQB7SAL0ZFiOOYRahnJk0HLBuItDGNGpRP3Wa221diyK088Zh7r36skj51+ivVq8L+nlWutX9omrznYcOZoNVpyj2Y6a/aq/S5p/rP4mGVaLDFPZf4wctBHTZG/nQoDzWCtaLp9vGYh75Fc9Az7U8kYdgkMFPRk9z7oG2YY0SZawHwbNHEdl0htBk3vXa91E5u7GfAUh6qLrUJ24rC/lZ+VeFOBLHwwxZHLXaV78/nMQxURP07bEEdDRp4MRBTWnXv3a6OW9l7ZLr6OrDXC5ClhsDLxkLEJZNxvrLhwDj8+iaGrESzV5+rwl42NKvtJ1JTNQ5IRUO5q8x7tI03rPELQX8p4s5ZjIIqmixjucbyA7Nl3UdsBY2gNTSvR9TwhA65m2DfNpw6QxgkRNq8YgqZzgqxP6V3mt88CXw4Z1Gv613vdf5evf1DX9bzZf8/88vON/f/H3+EVzAsCfD3f8B1d/zP9u8w3/4+Xn/3/f+z+/+zUfhwX/y7M/KlmIPYn/yfW/4D9c/Yb/1fn/j73/DNZlzfK8sN9jMvN125997HV1Xd0yXV3VbqbHaOiRQCgCfUIKgQwBhDAREggkNAjQaBgpBAImBgLmi3BCCkEgBSEYAgIhEAyjAGmGruruMl3dVXXr2nPOPW6bd+/XZT5GH9Z6MnOfqpqpHn1QdERl9627796vSfM8y/zXf/3X17DAt7slWyJ/5vAr3LOT/v3+r7FkkFPCuKH3V4QwBsESdEpX2wa6Vsfdtjs23U5qent7TGtPUzcUVa0C0ZWNKMRUg0wQMH32DeKQTc5kKzBnjjJRMWkELHCrOmLtwS+s66hERdO37xgI2t/r5PeSMrkbgWpv2JIFX2GqCaevvMbJ/Tc5OLnD0cldvKsJoWOnRqMgB6GT2faxa+naLbHbkdoN26slm82aECL1tJauhRypvOXq8pKQoZ5MWOzt4b3n1u27vDCGHCPVdqfzDTKz2ZTdbsdus+ODH37AsxeXhJRJyJjfaTNjWkXqyrPZbpnvzbh7eovlxRWHBwckDIfHh3S7LYeHBxyfHLO/v8ekaXj06acsFgfELvDwk0+ZzRfcuXuHw/0DVtfX3L17l6ZuuDZXnNw64fDokKOjEyKZylmW52dsN2uausE5UQksOowC1duRAxEHUE0n7B8esH4+5WnqwBboOOOdwSSjCZnIMUczZNHGyvpLOZJy1CzrZldTyiWjknWLCfrIRYEupUhOUlZISCeJJZN6uz90Tg2a9EWjv0/1FEXS8taNDoHB3grZT++Hcwz2utT8x+nj8LcxM91QWPGy/1IyPUmucAnG7ytQcC6QikBoNzL5XNCDUXbdo8PywRqolPHGI3Kcvak1YJxWtTVp8N5RVZ4QRSaXJKWgMVvfqX+SAEAQHxGVk1MwWo62faZeAp8hOwfhbciwMQ0EYtAuo0zlvUjlhjjg8vr9dVNjjdc2R+UapJv3sg/gKEGbuRF8oM/bWRHhMXqv+5b4LEjDuNuocFqGXN/ibCbb1HdwFFskcZkGdEVx0kg5w1sHORKM2lcyUdEEXznDzuggAjMQNIyOuyyEFWcc3jmc9ZRW2C4GZTQHUir90BlvDVXlaBonm1Thi9qBMY7gVC8+FGGVv7bjN7tLrnLH5+2C237yY19zllq+HZbs24ov+72fmEX/NJ/1m+GCZYy85+Z/xe/7Trdkz3m+7Pf/iln7+FgS+Pe3j/lvTe/zZXX+AD/n9/mbJ/f597ef8bfOX2OfH19iEGcLE+v771xgcUCrT9ECz+OOCY5lCjwOF0yt4x07p7Z/Le5f5kBgI3XfUpc0hxgWcErSV93uAqvNluXqmuvNGu8s08ph2BPhCmfwOmRkEBGBkgI5IyqClWqIxxhVDjaobZTsLShPQGq4iZwkr7HGymSvlIgajdea8zjr5ZxVIrXvo+7rgOOoXeN/Ixt41wZWu8AX7r/OfO+gr9lZhZLRHv/tLtCFgDGGbbtls1rRrq/p2i1+0nB6eMT1+prN+pq263C+ot3uWG83zA+POD29Tdt1fPNb3yF1LS+ePWG7XZNzppk21HXDXuW4vrpmw5bl9Rqj5RLvHZvVVkYAzya07Y7T26ccHx2wP59xdHjALgSulismkwmfnF+wmHV0nezx2WLGyekJ+/tHnJ1f8vTZc1579XVmsxnT2ZT92QLnRVV0UtcsFguur69pmin7R0e9CE3XtpAizWwOFra7DZiO2bwCIy2AAJPJRIxShKvLJav1mqpqiLnrs/XKOmnQ1gwzxUSXosL0Q7adCb0UOTGSU+rLMSYbjK8JUaaYWidwcjZKFE1I8GWtDMdRhMACWNuT5eQow2XKlMih86Aw/8saKhwGgbjVeagAVTH71hq8l8+Uc8l9LFo+dxiQk5CiV9J28IyMUJbgVxwUfYBRDjN4FwrQXnrmkyZoJRAasuebAQLcLDfEGDVjpd8nmYzzFped7PACf1MIf9CYSnvb5fssqNCWXI4tBF/5g2TbtiQuUm6zKj7mVFWyV4pUgp4x4pNiSVA0BPWaAIQEOUUZpRwzflpjXUUMEecrtWtJ+/9H/isPz9MoCllsYIndMsXJyzoo5Mei7VQehVOtjKDDmwqhVEba671OhemQcLi+DCDVyoKSJqxJRJOwuZBWxWbWRoIC7zTTALDG91GktXpiyPhAp7UmazLOQuUdW2sIMdC1nWRv1tDUUteZ1hWTuhK5QytGu/F+FClnvLd9JPh7Pf7F1Qf8RndBbSwVhj978PP8Qn144zXfai/5B5a/RZczmxz465rb/FMHP9e75P/r5lN2OfG74Yr/cPuEibHM8fyj++/xX2lu9Z+TgD+1/A7/9+0TagyVcfzZg6/8yPe9H1b8w5ffYqdb6VeqE/6pwy9T/xRBwCYFHscNr7nZj/ztNT/j394+ZJMC+z+BY/APLT7Pf+/8L/N3nX2dN+wMbw3vhxW/G675N47/QB82fBQ3rHPgbz/7L1kYJUsB//TBV/jll67npzm6mPG+lMQSIXaA7+FFMH3vNAZiDGx3IlVr6wZTWNLO4jJ4X9F14QZkV2BMZ4bWq6HlSkZSq2mVkzJZ4X8R10gpE4PCbMZjjaFLmV2INKlsYslKnNOecasdDWj0bkv2M4wwdc5hsgPjqeopMgReas5J5Y+ddUQSznuaLJXqEFpCuxPYf7MhZbj36mus1jt86JhZaNtWOwYqFouaB6++ynQ+5/rJMzarFVcX5zx8+JAYO27fPmU2nbG8vOD4aI+9/T0ulldM53PMpiOlwL17d/n0k8dsdzvmsxnTyYTbJ8fcPr3NZ48fsX+0DymyaXdcXF5yeHiIq0QkaLVeM1mtef1zb/Pwk0cayGSePX9OSJHPvfUmD26d8PTZU7oYeOXVB9y+fcpkPifEzIvnL7hz9x537t1nNp/y/MlnhBiZ1p7UtRg/kD2999JJEQN1JUjBZDKhqiccHByxuQp0u1aY4k6Y0QOUrRC9OsC+/zwW3MdJdm9srz5YnEqKJfMvA2aKaReVuYSWjzDaIlacoHJa1KD30lLqp4TfpggBWsd3A8laxC9kKmO2Q9dUcQ5Q2hB9H1DfgKetU4ficaOWuZiCxEa5iNwMyNrNjoOyTwf4OveZp2TfRVtBnNVIgS8P5zJA9lY6XhCnauwgdGM0yLfZDeUM3bmVd/oaQ4oiMGTUeSbK3h2QxuK+jRlEeUrAVY6h08NgbJl5YzU2FNJlNqmf7CcdObnPpH3tKEqBRsfz9vcPo0qAvdWR63ypPDMuo9gsWiUSQBlc/36VHteEwdqCAA2CPc7J/cFkcnJEG3suSyEyD4iS1QRIbGGyco2SBGUZvqblCh9j16sWiaRpVK12Jz2kGrnq/e2ztMo7mrpms97KJkyRuvFMKoH8nd6Myom6UelnNBhccngfX2rb+emPVQ58FNf884c/z56t+cvtGX/vxTf4Mwdf6R33X9w9539++U3+rvmb/MHmiFWK/JNXv8OfuPwW/7QGAf/x9il/qT1j33r+ucOf58DW/J9XH/K/u/pdfqU5ZoKlJfH3nf8mj9OWP3f0NebG8vX2kv/Z5W/xLx/9Em/5OSDM+39s+W3+/r13+OPNLR7Hlv/V5bf5z3bP+OubO3/Va3qaWvZtzReqH+UQfLneZ99UPE477tgfjzx8zs/4k3tf4B+8/E3+Yn4OOTOxnn/64Cu8NSIBVsbwup/zty8+x5tuyi4n/qPtE/7HF9/gnxndv5/60MxbICyBbot+RJ8FaK3LO8ukqTncWzCta6ZNzWwyweSyIRwYR13bXi3NaUtgCCNot4c9hclrrYUobG6LiP7knPFOBxNZ6Q2P6Cazltgl2hDE4KaEJeFthTGWgKqHgRh7a5RwFLXHHEBY5tVkn8XJPe69+iazvX28byDF3vA6a3C+JqUoQfNuy/VmS7ddkbotOMNivo/zNW17yXTSsNtEFosFy5io6wnbrqOqKs4vzkkpcvv0hNXVJZvNmr39PZz3VN5jnSOmzHyxYG//ANdMWC4fYXUP3jo94fBgn+lsRk6J/b0FroLF3hRM5vT0lDt3bvOD7/2Q87ML9vb22Ww6rpZr6mbK+5sf0DRTmkaEe0IIHB0dcevWKZvNhhdPn/PWO28zq2rOnj7j+I7h9O49yb5zZhc6qmbC6d37nJ+fs1ltmDQZb7zWKdHnJpBuTBFMJsZAu9sRdi3OeLJLYBLYjNGMdCB8iVOWPuiSBQvEnbKhkJGNGfqtjfKWtLKgjs/255NzJmoAmgGcEDxTrzonBNOCSWuCP6oapR6yNiMYf5hiNzTFihNK0HXyTK2cVBmAA1IuMVqbNgphO2t6Aa0QIwSBioe6del6GBKuHm7WLy+ZaYyDo0ODgtISnky+qSJI7p2uXFups0tHgfgSg3dWhXMc3uVR2cViEFijBAsGVUvUvEnZN1in90C/L6WsyJ9C0uOOCy1lyPPMvWDZTRvipEde9RRyin1hw9hC3hU7VgLDAuUXjpLRYKLnYzAgM3IOqf8+1I8m7SUt5Rexk3ofjdT3xXTqdZf7ZAoHSstktlzLWKdEghcpLWipyQqZUILOcdnA4I3JConIPaydUxGfgZRViBlFtMTYzHQqk4WMErGsyUwayfgrLxGZiLCUHupysyTa89HQMcAbP+3xl9szvLH86f0v8QfrIwC+7Pe4zh1/avnb/OsnvwLAP7b8Dv+1yR1+uT4iZpgYx98ye5V//voHfD1c8Mv+kO92S6bG8R+c/hEWmiP/d6av8pe6b/LdsORr/pA/d/0+vxuu+b+c/EHu2Fq/74C/cXKbf2fzmCP7gIdxw3UK/NnDn+dvnj4A4Ise/nx9xJ/fPOa/2tz5q2IAbUq0OeJ+zP2ocHRktin+mHfK8Z/vnvOPL7/D3zZ7nT9UH5ON4T/fveCfWP42J7bij9QnJOAf3/8SwI1Cwi9XRyys7+/f/Z8QZPy4w6oWPkY2pyuknFEty1lH5TNMxADNG08XA01VsTebYp1kPt4W8ZaBAzAwjlMvlFGYzwI3yudL59eo1mgcztVybjFhvCV3CRF5k6EYQWfHW1M2rVESmCWGRBc6yUqdx2aoKgdWBEyMrajqBX52wPGD17l19wHW6fzwEGhDS4oBISQKs7frOna7HVXlqfcPuAgdbYzM9vZpu0Bd1+xW16xXayEo1hO67ZbNek273WK8Z329ZH19hTEwn89ZLPZYXl3z+LPPWMznLK+WHB4ccLXacn5xLq/Z2xfp4BPDbrOlbTvquiLHgPeeO/fuM5nNefT4EZvVNdZaJrMZl1fXkDOnt25hrafrIu3umk8ePmLv4IBXHtzn4aef8uSzzzg+OmI6mXJydMSjTz4ldIEuRXbbHScnt6gnM5aXLbvdjtPTWyz2IpurJevraybZELpWnZDTVjojQkm2QPqJSGE/yz4ovfs5Z7nvpdcZgc6dwqJu5OiM9tAXdEbWLuorUp/HGzNMdoOsJNNS3IJIFAqZKTB+GWsrAlGS9bp+zC6k3oC/vLbL0XfLYCljkuvajYIVyAgqVIw+aM7nBieQcwdOtCcG0RZ6pzj+3lKnhsFxlmuScypJmt63rDK0lGBnlPEORW/NMIfApqgHemPJTqFqI4G1wemY51Ki0JbxNBq1zOC0hoAlK3HRciMy0HsptsQTUygquf1x87zFaRbEIOSsyOPLWby2INoMMfdlyH5C4CjCKM64SOMP7x/O0xpLWaTWiOZBKXkMRGM78KnK594IMApBsHzvcL4S+iRtu5a/SYeBICnOObwxiMPOBhDnX1eVTEuzVuAR5Gfr7bBBsjh9CXwT3lu8tXgvzt65AtPKQ/UasRgrVC7vHF1sVd/7pz9+pT6mwf5IJfyPVrf4d8wjnqQtDst5avnzm8f8e5vHw6IATmzNbdOQgM9Xe+xyugHRO2M4jy1RF/7HccMXqj1O1PmX446d8PfMPwfAPTfl0Na8PoLvLcKs3xIJpL9qGeDQeiyG89Dy8sU9i1uMnvuPO34YrvlHl9/hH5y/y98yf6X//a/Vp7zt5/wvL7/Dv3T0C7zjFz/xLMb37/cUADgl8ngHJirRxo/kcsHaSOU1Y1a4smjfT+paiDm5dP4zMmS5Zx87lQp2Xti+Y2U377U1p7Bn1Yg657UGGjCxbHTdiIW4qhBu2ZSZTAyRdrcjBpHrdcYwnUww8ym+qUg5ipE2lrtvvMEXfv5rNM2cdrdlu90Ruo6YAjEFyAL/WwwhRuq6wpiK3SbTzPcxVc1kNqPrBEZeXV+z22xZ7B8wWcz45P332W03vHj+FF9VfPTBh3z88UfSfuccVVPz8LPPePLZc5yz3Do9Yrna8uvf+C1u3zrhvffeZbeLTCZTUuq4Wu6YzeZMmgZDpKprUjZ8+uljHj58xNHhXl+rXCzm0r3jPRlD1wV22x0HB/vMFnNef+019uYzHn32mG67wabEb3/n2xwc7HN6/zZ7+wdcX16x26w5Ob3NYv+Ivf096fWuPdZZuq6jQUSbuq6j8vXgoL2IDnU5c3B8yqaG6/PPMB0yaVJHmyYk4/FOJo9KrdxJaSrqepIYVYutWj/N4vSLml5fiNUMr8DfkAkR6HQ6pZGEqdSyC2lRpleKYS9wcMyQlADI2On3WfSofp4HIlmvbKkKqgWGlpZHo2RbN7zPGJUSBm8qzfYG7Yoe4lbVVkxxkoVYZ/ruyJIxjkcf3wga8kBglH9ZaZYsDe+5dEbIiG6j6J419LX1zFDGK3LfWIN3TngXXafTDuUoTk6gcqPBlyHpUCJGio3D2GD5XLlnOu1wXLLQaEfmfxRExvbKnPJnq+tRVAyN+jt0zThXHHwYIT5DgDF2/sNQtFzAov5cbIlWkSAja6kIkBZQ1Tgpn1UCgKzzKsbEQ6tIZz+DwpSOEvkf2R+GqvJ4qw9GymZaT7GWqtYv0EUoJJVMS+olHLsgkEkqUqveUNVeAgVn6VLEJYfLSSkqytjOEmlbSkT0//tRHELQwOTQ1vy988/xnr8Jqd92E15z05/4OQNAJ8d4UNJP/O6f8Ps0gsf+asepnZDIfCOc82uc3vjb17tzEvknwv+fJgkQvtz8aPngq9UhmcynYcM7fvGTr2F0/34vh3eWxnu888jY0BHRSBelQe6RdYag2g/O+GHgT+/si4pZcchZJ2Y5sbZZPsNag9Po1lqjk7qkxCRjRgGFdq11uJyxCKQYoyi7obBur3aZhYSVyMSuY7PZsNys2O12WBwnB4dUdUVVN0wmc7bBYJopr73xFo2f0e46Nu2azXotg36UEzOfT5lM97RDZkfOkS50hJTY7XbkFNntWmaLA7bbDc18j2oyZT6b0HWdOBXnePb0KdYYnj97yvLySja0MUw2G0KIPHv2gvm84a133uBquWK9blnvOq43O775W9/m04enHB7ticbANuK94fjoEJtkqJdxhgevPmCzWnN065TnP3ifzbbj5PiQxWKfxf4+777zNrV3fPThxyyX18wXc1557RVOPj7h8uKCxWzG4uCQg6MDpot9rK+5cy+TYiDEjHFOGN5doGt3uKri+O5dsAIPx9ixazfaemW0rGHZPzzF5ExVW2xsOd9ck5K2bXlpq0wx9bPPnbK9nTFkOxY4K+Rmha51kAtaCkBiA6waeYHdBRIPsWPXaX+2kfr21Hl9jXKmokLNijRYZ4CkPBc7ZMegY65L0GnIMWNIZGNJ/QQ71dPv6MsWA7ItvATrPDlJl0NSjoOsfafn1o2ywkDOVr5PJDax1kN2CoLITs0pDPNdzKjOX9oq+6xZrrMgKLLlS31c6ylYsMIb8M5htf88KhqSk6A+zhpygfyzMv9T6u1xykmQulJqsQqtu6GzAww2y7X1WXPOQBwUSvWO92PEKZm/owjpxCS2o0cbchzZJAnwmromRKuTcQvpEwrkX9ARYeOXNkyVgDYl0CspD2QtETkrAVTKajNLCcAYkVpXXEWWkpUJnkE7EhTsEUUMhntioEudipJJgOS9dPP5QrLqSSFmgCGMRdsDwBhHiBJphxjZ7AKb7Y7NZkdKiemkFiTBGlEosx6s9s9ai/MeLz8SssFbUViLv0cewG92l7Qk0ku//082TwF4xYhzrzA8izv++7PX+tck4P+1e8bHYcUf+Slr3W/6Pf7tzae8SDvu6LASgGdpy3+4fcrfNLn7ezr/n3QsrOc9t8d3uysC6Ub3wO+Ga97xCyY/gam/bysysP4xJYKtwqVz53mUtvzZq+/xP5m/fUMcCH70/v20R11J/dkpSSYZ7TgoLH6NotEI/GbbkmQfIhIDObcYIyiHbgv936Jw1o+4UAOkGuQokSqK9KUBUnY9VFZ5T6giXYQUYr+pxv24JMg2E0NHu2tZXq95ennO9WZLbSqcq9nb32eKw1UT3njjdea37tDMD/XKoNsFUoaqrokxUlcV06kM32l3W7qwA4SbQFWxt7cghYBxFQAJw8HRMeRIaHe06xVHd+4w29/j7MlTzs7PePX112gmM84vLqiqiudnL9hstywWC1559Q6z2ZTr5Zp79x7wwYcfk3EcHJzw4mzJ93/wPqcnx7z62n0R6TEOYyuePXtGjInNes3z5y949vyM9XrHbDrj7u07kOAb/+Vv8sEP3ucP/6E/yIMH95hOL7B1zeXVNYe3bjGdzzl7/pzVasVqveb2fc/d+0ecPfuMqpJ71u5acpARxGDw9YRmNsdaS7dt8d4xnU4IXZBuI2XiVVVNTJnnnz2mvTyTpMEUPf8Bco1qHiUIsHjjVKp1ZMzLesowDJpRCBgo6j0hxsE4q6DNet1yvW3BJg7mc0FKnR38nxkx1Q192ZMkyZBkdxms7dd3MeQJ6GIEK2WG0hlgcqbrOkIL9bTUgB3RiNZ+yj3QS0xRxG56HY0iIiOzDkqdeez8UkqU6Yxl6l0qELsZxLYM9C3bkkgWwRkNcor8t3aDlUBFyicCv1jv5Pk72W8pZe3fl8BIOplMrxKaUZG5rE7P5j7JKAEBVs5D5Wz1vmqmntIoeBlKLyWo6dvvENRSfm8IRdkPEOVPCToEzTZ46/HO9bwS7zMiTRw0wx6+N5dgUNdqjFm5KIVzwQiZAeFDCMJVMv5yTzCJHLVkVSAEfZcgYYNiZMoFdRjGsZOlRTQrehBjxNsMSR9eT3hJWSI1DVIFKo3sotQ8upDZtTJrvagITpuG6aSmaWqBFnyFqxxetbidkfKBIGzSFuidxZrfmwDNV6oD2pz408vf5k8ffJGF8fyl7px/Y/0J/9uDL3NP2/P+kb33+JPLb3PgKv5QfcKWyD+5/B7v+QV/cv+9n/r7/oeL1/lGe8b/6Pw3+Ef23mNuPf9le8a/svqAf/HoFzm0NR/Fze/pGn7cYYH/9eGX+G8+/8/5Exff5n8wew1rDf/q9Yd8vT3n37v1h6mxXKSW/8PqQ/6L7pxfrY74O+dv8GW/xy/VR/yTV7/L3zF7nXeUSPhBXPEvXX/A16pDvlodUGLyv//yt/rXtST+/c0j/vzmMf+b/eH+/bTHpKqpqgrnRA7ajiLtrKpthVQq0OAQbDpb2nZiD9uV6NS5UmccjM7QOCSWRopWujmtJeSETWIkI0r48g6bIeLpoiO0HdZa6rom9DCfzlZX8tF217La7HhxdsXF8orFZM7h4pAuGpL1bHctz5485eD2q2Atm3ZDaFsslr35vsKissHbrmO32bDeXNO2O3FMvsYYGYe6Xq+ZzeaEuKapa5q6Yrfd8OThQ3bdlsNbJ7TrNdfLS1KMvPraa1hbcXZ2zvHJCa+8/hq/9c1v0e0ix8fHVL7m8ePPCKGlqh0PP/kEMhyfnHDnzh2cg4uLCzabFdvtlrt37/Lks+fstlteefUB+/sdq+s18+mcq6srQtyxt3cbk4+YNMIb+PCDD9g7PKZpGuU01MznC2KIrFbX7LYtm/VanldKtNvAXjPDukrHikcmswWxC5Ayk9lUWoKzofITDN0NCDmnpKJJV+R22wvWmLJzTFZFUh3pjAYGSjoubYGlFkpfh80YV1qf1elEgc69MgI1/5G2rK7j6vqKauqYhorY7TBeWiwFShbBl0J2FvEhce6i4V4soBzjbhYx1l5GNpuiTDeyyTmTtlshfBqwppIZBwxlq2Sk3ktMkCJGOQ0DHF2C72IJCiAhDtSa3E/bNCUoMFmCVCVygzinHs1Qx6YcfxGfMY6cSgClvB0nolW5Msi8BeX0SF2GosXx8mj6pCiA2A6rsrpF3EaurwReKSeydfp4C9SuPDUKUbNIABflPykvSjeBEc0HG0muEBLHUL5RXya8DF9aRmORyJfujsE5y7Nx1vSlgpxTjwLASFk0JUw/9VHOP6aot9kp4XS4L1mfQ865542VlVUmH4JwNkqZ3Wj3Qcoi2pcx+Jxz388cpfiES4muUwqHddLnn9X0GkdGeoOTYkR15Zk0FdOmYjKRzmohDXqcq0RyUR+KQXQCsjPkmNj9FYhtP+646xr+29NXWObA33v+DWrkQf3vj37hRlve3zC5zV33i/z9F7/Fv7r6kG2O/JH6Fn9q/4t9bv1rzSltvplt33YN/43JXe46cYQLPP/a8S/zJy6/yd9z8Q0aI/3A/9zhz/OuQuovv4e/wuf/lY57dsK/cPhV/tTyt/mfLr9JyuCNfFcR7UnARo3XRpEQj+WfOfgK//Dlt/nTV99lz3gSggj8sckt/pmDr/Rn8ONeZ4B/4fBr/IqSKn8vh9cSkvMWkpc10QtlFCNnsMnqCnVDDYzBIOUcCV0kWNHDF/EPIVpJqUgchJhurcVmYQwbIzCbc0LgS/o3aeUzZBwTA5mZaBIEQ+MrTBextqLytWZIw+jXNiS6kOnaTPBCNsw6rCiFlnb3gt/8S/9v7r7xjDc+/0X29w+oZlNyLgzx0BO52rATeL+padsOayPHR0fs2paYUu8Uq6omho5nTx6Tc2Axn9Fer9hcLQndjvX1iudPnnHn7j0+/vhTnn72lF/4pV/i+PCYx48+YzKZ0nVSUtg/mPGLv/xrkC0fffQRlxdLvK9ZXi+ZTmdgKpbXazYffspyeS13NUXefuctmsoxn+3RxcjB4Zx2t+PO7VPu3jnl8vKCGDOnp3fZbbdA5tnTp4QQOD0+4fT0FpfLJZPplM1mQ86Z3XaHrzcs9huapqHtOg7nc+UH7JjN54LWOMtqfUVOMJ1OKaNwZ/M5d+7co714yuMfXug89HIMLP0UpZ3OFVTA0RvwgmxKGx99fVlq6YasBNCsgULR7DcmiQHH9+1m3hoqK2hT5auBpJg1J7NWjbIqUTqDTbJ+BuB/qP8OPzucRQ127GvKWaHvGCMhSs3bF+foZMEmVdfL2s5oiKKtYVAnaSnIvXATNBM2EvgaRk4kF9RklIEa0wcAUTvFkmbcTjkPOaHQvjL89fkIe186fKyRGTGmlwSW8ogxQlCLScS8yj2R8xBCXmnTE78kvDKrzx9Tevtj7wiNog8mZ8gWx0DKy1LYl8/1Si41FozFJemRL0lBSoJ+CLetUs0AR8JA7kiVOGuZdghFmtmOyk9F+REcMdJ3kMjt1pJUisQIRXc5q0CAU2S9dP7DQKqkoCYZsNKyXzqoigZCL21OlIatlBUzEi4eKaHkCtH7d973/dmlXSOnjDcC2aegtYQoUZyQwDyTpsZbEQyylcco1Cf1LKedAaXuKgIpZbP+tMc9O+GfOPgyAL8RLriMHV90e9z9MZnrV6oD/q2TP8i32kvmzvMLmgWX42/V8sD4d+Xzx78rffK/0Z2zzIEv2Jvf9+Pe85M+/692/Gp9wr976w/z3bAk5MyX3B6zUe//sa35E3vv4LE3SgUW+KcOvszH4U0+TRsM8MBOec3PfuRaxq9rjP2R7/i9HN7K+A1nLDhkxj1IrVXJJwL1R8i2NyrWOIXVCitZp7klUQ10rrQGmV47XWqQghplzQJL14G07OnEvjy0GHlryVicq8iuJuPZbQMxJGqbqKpaiG5OR2qWDChnUgRjfJ+xx5zYtTt1EBWu3nF4sOD46IRsHO1uy2631YBZszGkLnx8fEROmcXC4X3F1fWKmCKz+ZzNakW327DebVmvVjRVxWJ6xEcffEDsOp589oijW0dMFwf88Icf83Y14fbpKT9cXvHt3/omJydHvPvuO6w3GwyyV+ezOc6KFv5bb73BZ48+5cOPHvPk6XOultd8/t13iTHzwQ/f5/69uxwfH/HW22+yWMw5Odzn4cef8unjF5yeHPKDH/6Ab11c8cf/+F/HYjHlYN4wm1SIQE2gspavf+MbvPHG53jjzTcw1slIZGNo25bC9o4x4qYNNicuLi+4OrsgxcTiYI+Uoign7nY9hF/XDSEEUWKrJpzcfZXliyeszx4pIW4oHyZFJ51zlFGo3ku/ecyRvm1L7VEOIlhjnHaROENyVsR4hI7dQ/+yXi2TSc0iTGlqy/5kwmw6o5lMVH0yCOenwL9WYd4C0doCnZd/BvXU0s+vu4U8clRiJ/UijchK79qt8F6MIei5lep/77hHRDVzw8bmHsK35aRQINk67Ih4J18pz67vpIA+EJDJNRKMCd/CEmIJ/OW7yhwGoaY5DavAkiR/z5EExC4RNbMlxsGOKNLQw+lJeUAI9C/thTK6uUiQZy0nWOuk914DQ6wgPTHF/jmlnDDJ4nxNIfwN95EeyeujMQ1oLI6cDNZlfE6E0KnSpDwJ29u1EReCkhCBSSI0JWaucKAiRSZZboMGIVFs2HiwVNR7FGNSeeCbGg8Zzf61jVFQEEVElEuSUsZXKjhgkkQ0Jo8MZ860XSdQlhG5iqT1t3KTy42RqVpQ1x7ra6xv5Etz6GEqtA6Xtd6BzQxDF3/6ozi0X/SHP8KYf/m4ZWt+bXL6Y//2kxzzj/u9BX6x+skZ8k96z1/LMcHyNX/4E/9enP7LyIIF3vAz3uBHxYT+Wl730xzZgvECoSsDBVn3hgLuOGuJeErFsNT0sxJ2JABWg5Yiu67DV566cgqZCctZscD+U6TGaXWeu65dI90ISQ2T0cwyZUdjDbHydKGjNi3BdmQjxBpvRCpX5oLLNVTeYLxkjnJtAWIrM9rJ7M+mHN+5TQTa7Y4UOnbtlna7IsWOmGUjTiczfDVhsxFGfLvZEIHjo2OePfqU2LUYMtvNlhcvnrGYL/CV43q55MnDT8DBG2//El2E5fo3+Mav/2Vu37nDe198j4ePHvL4yWfMminPnz1nvVljdSzwb/7GN3n+4pxXHtzj7p1j7tw55bOnL0gpcXm55Gtf+wp/8Fd/mdpbmqZib3HAxfKc23fv8/jxU155cI8vfPFdKm/5C3/hvyDEyLuff5cXz59xfb2k8jXT6ZSD/UMO9g9Zr9d02x27FLl97z6Tpma2OGB+sMfeYo9du+Py/IzN8pr941uc3r7Dcrlks9lQ1TWh3RJjpmkmpBzpupaUInVTUU9nROs5vvOAdn1J6tYkqwI8cTDoInsqk9CKUxRlP9P3+QvrPKniHbgIRWjG2qGMIHPVpSYeyDS152A2AW+YzPfxdSM16cqRQ+7rxanA0lLMlQ4qnMgHAybH3gCXOm5POis2Evr5A5RafKkrp0y7bTHZUjcOnA4sKuZYtS0clmQ80QVi5kbbZOV9r9thrcGoEEPqMll16Y0xA7zsVLQtl4wVOe8Ccas6oE9yr5KK6xjvScbIhD0j0ss5qThPlnDH5EzI6vyQsbaiLqttgKWeHZLae6tJh9gDawuJUp+zsbgsSaxD7mkCKVG6EdKgAUdpKc4pYBEORaaI8EBKDmMKcQ7loBisK6i4kAidrzE3AsCy/qz8gwSX1irRVP1qCdikXCVcDCHaix3zWXVNvNHAI5FjliQoS3neGfDGkVS0qgR5SdmEJWBMRu6vV5PmvbeiRpQyAZHGFIhDbpQ1VhiXRRrYilqX3XUSZVe+bwd0Vloo8FKfwog+u0THwsiVOdpyk0MUMY+fHb9/D4FMlbBiVAlriAv7DMQ7SxeSROFZDIxAmqUIIUIssvgTu7bFuwmVH/r+o762MHIL2apEu1lJUSkLqCmkGBHgESTK9FBq24nz7yLSfuYagUkxffZiLVgnWZgBUpBN6r2li0nIsJsN066FmAjdTuqbsSV2O6JxVFVD1264unjOZrWk227IKXHr3gOePvqU5cUZs8mU9foaMOzt75PIbNZb6TXOcP/eKxzfus351Zq3332XO3fv4Kua1z/3Ou995Uu8eP6cRx99KtD7bMJqtSHGTBsiMRm+9Z3v8/TpEdPZBOcqJpMZKSa+//0fsNibc/vV+zjj+M53vks2cHG+ZNe2HB/u0bYb3n33bR4/fAI5sby8YDadcX5+xoMHr+J8ha9q3nr7baq64t79V7i4Wgocn2EymzOd72OsZ7GoCduWsNoRM0z39jg4Pubps6fUVU2OgbZrSTlKD70XIZu2a6jqiulszhJLxhNDxFfIeohFqhZQsRNnrThAkgagY8EayRZTzL3OSRHBQevFUWdFpJyJ0fQ66pV3JGdwdQPWY1wt1W+XMTlitDSayAP0aqV+bbX+Wtq2dAPpupbW0oI65DyI7pSMUKBu15MEuy5gbCdZZ3EklKxZEDHn5HtjLmUA7aIpw9mSKLuK/kUCHZvsyr7VgEquZ5jyWboUnDEKdae+Li4jB7yUEoxR+F7O2eh7B3EhLbVYua6o2hxjr1DKEn08lyIhZ1wliLQtIk4UFEBJiFFLA5rpB8BlV1yZlAeAECLeZ5H87QI5R8FhciKGCF7aDgeeUlSiXcmox+jLuH1U4zmdISABV4dwCUSDQlCp3Hf7SClE/jvqPTJZ1mgMAoHkJCFQgp5PYLTEZaPpywO9hkAqpQi9hixtrAaDlwELjhhTr8NeVJhKbaIcVr/QGWHxN3XNpttJCxgifIER4p/UZCJt2/VywFnndVsrtSJfVdj8swDg9/NRem9JaYgyNSO3RgLLbBPOS/tRLBsmZ0KQ9SUM1yFoyFo7Jw+QlrCfJctJaguSKlVGpAY87rkt+i5SqgqSRaVMjDu6bs16vSEbmHhL21VMJw1FD6ByImftvZSzKictac45nKIdISa2mzXr62sOjzu6tqNrtyLz24kAS103mAzXqyWm25E2G3IMTPb3qWdzjuqavcM92s2aTbfl6PSUvf19Hj16xKSZcHB4iJs0tKFju+04OTkl7Fpm0xltCHzw/oesNlLuubq6YjabsTl/gQHOzs/YhUTKlraLXCyvabvARMm6b73zFp/73Os8ffIIwo6jw2MqZ3n82RPs7WNeeeU+rz64z2RSkVOWEsP6mq7d8eTRZxwe7VM3Fc5b1ps1t+/f5dat2zTTKXvHx3z28CG79Y754THeVxhjWK23+MmUB2++xbpt8ZV0rzjrCa2UX7yvKOJSWeHW0Aa8ZlgRC04ynawGsYjICGSb++eEGl9jrWR1fd3V9I5Ipk1GfIGNjQVXiexQUk18U8hgsv6KcqoxDpAec2ll83TaoySws1U4rNT59etHMLN8pul/zhklWnfSB14ycW0Fk+49o05S2N6iuSHz5FG+QDZmaItMkvUNaK1IYkunVhL0oUfMimqcQvXaliaoncLx4yw3qUOywlRPFryiGjln6RyLiWgTpIwzUfehBFlO14bwBCw5dTgNutugI7y1NGJ0fkIJBkIXyNZQOTnnIoaE0YmO6hQBckxEDJ2iRaClHyP8orbtqCrN7CkkzERMYJMj2UzogjrVSMwQUlS+zwidyS/pDDBA8aX8UVALj5D7SsCWFAEZJuoOgUXXBaLN1Eqoz6O1lHPBkei77tBuAMr9QpM1RHQtpygJvNGIrRjssricijMYvSEydMWI7ro1lPaSvoVBN0nlK4z1hBgUxslkZ0nINEFIKtKR6W5syp8dvx8PMa7KsVUnK1mMEq68jCrN2eC8GG1ZBaaPdi2DDoHzroymEDW8PETTWUsAoBuUsWiKnEuKMvvaFWENzeZLb7MzgRjW7LYbsJbGN6JoaYTIGFvJpCpvmU0bdjFS1zXTWUPdeBUzkXMpkqwSVSdi7Gi3O3xVk4GqalhfLbHGipCMtUxmBxzfvs98sc/VxQWb1Zbry0sWsznzxR7f+ea3ub5c8tY77zA/2OcLe3tcnJ3x5PETjrvE/t4eW+eYA08ePeKD93/AdDoV5b3QsVqv8N7TdYH1ZsN7X/oCT5885ez5c3a7ls9/4R3+6B/+Ve7ckWDjtQd3ePr4MaurKw735xwfvcN0PuPWrRPu373H8+dPuL6+Ej2DxvP+D37IdtsymVSsrq6Y7e3jXM1ssQfG0saMy/Di6VOurlf83C/+MiEGdusNm+2Gu/fuiayyNayurlgulxI0euFGTGYN3tdSy7dOapvZ0LaBqp5weOuU9cUTtlfnWqtXQpWB8sBLs+hYyKY3grmUI1XnJCei8kqMESjcYxUtSqSsUrqmX4AiHZvFWWI0e07SmS86AAPRLGcVTFN0auwoytELuZj+VxpQiJZB+T+rGi1jEm2ZtkfZB2bkrNEszwmxcavS17Wpkc6JhFddjSKDq4zG3omR6dvK5M8C55ebmfT+qtKBdBII2t2X7IQgF7FO6u+ULD9LgOYqC8bpd0lmnJJgAylmki28DiXDFUIgUkvHl3tTZoXIsw1p6JsXGyCIkojYGW1HpUcJQugU6RZEpg/IUsZqQEorrbx1VZFUjErO1QqCQxzWncohyxMWHoLtW0BLhm6Ub1c4I1lRzdy3Vudc2veMBgkFgTHKpBCn7kwiGxlqZjUAky4DLWsKTCBkRSPEaR8z2u6Q+9YT8e0aiZQakUZWQaEf40S+MaXYR5oFL0ixjAoOQsSwOsKqqEtZq2SJOAYYfnb8fjxsERXRR2mMErTo4bAemowF+pNoWPS1Yx8EymCq3s7q5hqzZeXnQYKTgdBC7iduFUcgMqNChpLtmbAEnB1mXvhSPzVKKPKGuvZMJg3z2ZRkLVM/ZT6fUjdORoZmQ11PmExm1HVD00yFL7MTCN95pxMJLcaucCkTnaOeT6mnC5rJjO1mw/XVJc+fPuHs2RMO9va4Wm2YTmZ85ee+wi4G2q4TIxs6LjWz95WjmU+pqprTO6cs9hZcXJzzvd/9Hhfn57z22qtcL9dYV4mg0GKPF8+ec3mx5PPvvs0f+JVf4Ytf/AJPnjwkp8Td+w/45m9+i4vzS/76v+GPEXPk5OSETtt8l5crJk3DwdEBXddyubzm53/+qxgbWK2uwVhenF/y5lvvgqmofUVsd8ynDc+efMb11SWT2YTl2Tl1VdHttjx+9Jy422kJsWK2t6CqG6SNCqm9W6/KbBkPvbrf3sEh9WyOrSqInbSQ5gLpKktch8qU1ZDVERTbHkUekDL9zaoKqnWFFJd622RROV/9uHE7nKxxITObFDBZVCNF9z/1CFbJSEV9MmrvjhlKWFKwHYiDpkhSj7JACgtfMlvvZZBXSdIMqoyo50USvYuCglgSOUc2bUsXA7W276Zkqb2XtrEebaP/7FJeK+2KfbBtDMZ4uU8m9262bEKLBAomoyJYLSY7nE3kGAaGui2MfCXtWQRRKUqHIUjng8l4W8kcBrUh2QhxXcqIFmfBOT8gFWSC1tYVGtEkV7giXicdStBkSEbWCikVWQENtjqks03sTdtmfV5F/GcgdMYU1ebJoCqTGWyeKVLK2nboitaFtIjknHBaysjJage0URRK2gSLne2FmbLpCX4hJYxVH64+u7aOYAqxVVtLkSAqpoSPSWCbQXNJbl4sQx9GUakRe6+QRqbLUvt1WhYAowZSdNbbrqOuJr13SEmkILtQDLsRyeGfHb9vD5OlZijtfx7IQsgxIh0tQaz061aGvoZWMh7vBznTUrc1pB5VStp6Z1wGQj+EJRE100pCI7Ga2eWEzUJoLRMqY5bWU58t+IpF09BOI95V1E6nBXayjmOSzH4+nXLQBiZVzXQyYz6t8a5MOTRUzYTp3j5NMwVrqRsRhsEiGvZRmMFV09CRqc0Ew4R6Mu35D85X3Lpzh/X1kk274/j+qxyf3CJ7j0mGHLacPXvGxcU5D169j/MNF2cvcM7z27/1bUXUMh9//DEvnp9xcHhADontdsXp7VPOLtZ8/7e/z+xgwenpbfb29zjY32O1WnF8dIvV1TUnh4fcu3uH9eqa3a7llVdfZXV1RewC17uOg8UernKcTG/x8ccf8867b/PK6/e5Wi7puo66aoi7SFM12uttMHXD4vCQxIdsrq/Jx0ecPXvK0eEBF08iH/zO7zKfTpgt5lSzKfVkwv7hbdrQkWPAeksp1FpEREzKixCjw5hKyo4pEJNkejGrc7d9GgKYXuZV2FzIZMC+npz7bpOCIFgLMcgnOIdC5xJcxhy1D79S+q0Iv9gchcSG1qOdIaWh154kuVqk1P8ZHKVC7saCdeCSJRhJoSXTk8Ev2ZS614AGCBmtTMiTQDdl5HtyxqQiXawiQKkjxx1dkjp3iC2TuoYcaepa6tV98BUVX8salAdSsn0p3jiv1y5BkEDPCZLVNs0ywhj5fq1d5xRJMSGkOMHwpHyQMUTRISglPyftmTKoJoGJyttQGF+dvElKQCyEXXm0DMROi9XAPefi11R1NGuQQpL1YUD4GKIJUOYzoByRqlKESQM6aW00BFrVKJA2PxH+EXTUKHeiT2bMgKJ7ZzHJ4vG9GJCUUqV05craNVa7nLRUhTxy75xwDMujUoQpIUqWVdWASbS7ruc8lJb8TMJnZcJKeBKxOogBM+r71BqTiDTIYiusW4thPpkwbWqFdJMOWRnINVY3m6hOQQyDjvLPjt/fR0ZbmDJkc3PsqbdelbrACE4mhCwjNcrC8jXQO2uDwWUh3ThntVYYKHO+NSyniGr0+qGpb7SRjAuN3hlav0QWODKfTNh1OiI4Z3JI7FZbcrDsdjtiEMN5sLcADE3TMJs1GCO9xliDrxvq2QKjGUdTV7S7RBtkhoDImBom0ylVVRE66fm3zmOdsIl32x1kw8GtU/YXC07u3id0wie4urpiu1riK88rr7xCmzIPHz/ilQf36TYbag+r62sm0wn7ewve32wx1rJarQgZnr94xPsffMr9W7eZTCYYMsvLC66WV7zzzjssFnMsz7g4P+f09ITV9RXLiwu2p6c8e/ZMet19xWw2Yz6fM51O2d8/YD6fEGPA+5q6mWCs49mLZywvL3nr/n1W2w1VM2Hv8IivfPVr1JMFvq7ZO9iTwUfWcff+PYVQE10XWZ5fMpnus390yNXlhTg4HQ8tIlOOwrQ+ODzmUVWL6E6ScdSdCgCZXFyKtn4ZIf+lrB3dIantMSV9pyjOpZxxREq9u4deC74kzfia9RmF9IO2oEUK5l3a1UqmSQ/4ym6Rfykb3BQRoJJh67+txUS5lqLKWmZreOsFbrZy/akH302f3YUg8w2skmXV11I7y07LFaFtMZUnOkHB0KROHIi2EKYMTgOmhHYKDBC8dM6oM9LAuL9c3afiSJWvQOncMYLHaQuQQNbKgtfAxZS9rgQ3emnfgb1vQFuMnSqKSoJZWhatkdbE0mZcMnozguELCmMNOvdDuipCkJJhVIdqkc+S89UhPcZq5j/MFBEAIUGMVFb0Deh9oHZzaJCSUsZ7QWASmWSHKahjZcNSy+8DF2MgRxlPncssDLkXSc9XOpq8oqRGS2qqzxNMz3Ew//yf/NsyyBx2WQASfQm739J1rWQrVliHbchcr3dcrTYsV2tCu+PWwYJbR/tUVYVxNZ1meBlDU9fCCzDCZnQmURmVK1Rk5r/+z3781+yAfnb87PjZ8bPjZ8fPjv9/HP/RP/SetOy1O0KKxG6Y4udV4Mw6i69E2ExGLUsyUjcTmrrCxCgdRJQyUaKNHSGhg5OU8W8NlZUuvZxDX16ISfhSyZROJ4vzFu8r4bok4S2tt2s2u5btrpPuBiLWaVQRC3PblnnZA4mktFUoyk8IMhNdIAxPXXm8l/eEOJAgZLBBkrGoMfaZW1S+QczpZ87/Z8fPjp8dPzt+dvy+PP76P/M7PU8jxThwmrIQ/zKFIBwp0xKTajuVTgjhWHisq3q+nMyU0COnoRSfVW8iDyqMjD4rAzEn2i6I3G/OOrNA6v+V98pTkY4Xj6GPJAAhwphCPBEIiiQs0kL2896Rt22PaAk5RNjXMZX3lVHA9Epxua9FZaLJpeDys+Nnx8+Onx0/O352/P48CiM/ivM3RuailHbnoc1TEmqrk/9CiBjT4Y3MNjAqmeeMIxkRQCujrrW+I2WYURnUOUdVVcSUaZV3h5YAYkrkEBEqQsIqEVZ0MZQM2XfGSoeAihVYEY4Y9Sh2McnwiSx90t6pfGuGXYi0XcQmCEZ0nytjqaxM/JPXCREsG2Vv9q0sw/H/+PsesIuZtosiumJlmMt0OgVML84R+7YtI+QsK1HV9bpl2wZAZ0xnwMFkNmOxd4ivJ3Rd5Pju68wPbmGM1eEXma5tCV0rtaYsRDWQudQytUpISSGKhrXrpUIjzogIiKWIgBTdZyBLy5qzVgRudjtCiMiMZ0FLykxn7xze+l4n2jlPXTU0TY1zhhg71usV2y5ijGMymVCm2jltg8HIfS3s0tL6EYLMbyja8yklqqpiNp9JbUhbmjabNTkFaQ9SJjJZlLlkwIojam/5+dWa1XbXj+3EGKa1ZzFpaCpPXQmJJZvS3qML0Qjxr+taeU5kZeOKJKf3TS/NmdKWzeoKmxNNLRO7ynUkJTlZ56icpXKVqrsltm2noi4qqRnkfhtniCFxtlxxudqyWu+0NSlQOctut4Zk2JvvcevkiMX+TIhWQE4WV02pF3u8/eWv8tbnv4wxUs8vAiZd7AT1SoHtZsXV5SXd6or11QXrzYrFySn3X3tbFDWztD22uzXbzZq22xC3G97/ne9y/uwp06Yixo5bD17jc+98maeffcYPf+c7dKFlvd3w6utvcOf+fdbrDb/59W+w2mz54MOP+d73f0g1mZE2MjL3V/74H2VeW9577z1Ob91ivV7z3e/8Nl/96lc5PDqka3dsrqUjod223HvlLs5anj9+xn/6F/5TXn39Fb72i1+lqhvpLvA1i/mMmDLb7Y5mUhNipplMabcbvIWHn3zEpx98yOmd+7z2+S9x/5XXaGNivneAVfJl7HZcXV1Ka1pTM5lMuFpegjFUdUVdNVhTsd1tpVtgtkfTNCzPn/Ct/89/xuXTR4SuZRd2QKD2ug68o6kczggzPurwk8IEL3VaqcfqWGqKfGth1O+wKbHdtbQxYnyDweIrOc+mkdKmcAHEuKaU2LXbwi8kxE7q0bZ0KIiSahYFFyHdJanXo3tWxIDEOaScdIiW2A1Rp5S+ee8qMEb3dZJRy073RwjE2IqCZun5VkltX1WkbOiSCLFZW2Gdo/Yq06u196SOrDQEoNyGpNPorHX9vAsQFoLYIFTkRvgyuzYoGVD4Po1OUMQkKu8EGTZSeu5UtCYbCFFkplOO1PVU1TQrYpDulC62dG1LlaVrJwHWCyHZmCT8hP7MLNvQsW5byInGMqgXIqRfa73aRREn27aBNmViktd4m6m8oXJCeP8b/9zD3m/FFFRvwpNzq068jG9OkJQVqLdSNCaQ6+4yVPLcvEE7GwwEaQIw3pC6rM/K0CXJ2p31OJXzM0DlHF3S+TxJSatASB0Yi8ui2SDyyYagkumeXFo6FAXIDK1d2WhrgyHorPbibCpfSXHAGHa7jrZ21BMx5kaHuThlYRp10MIkEUKEMWWYwXAIgUHnM3sR0ShTlKwyQ0XjQIkhubS+WEIqHZ8qkmAN+8fHnN59k9nkEDAs/923sDFxmeHaeW2RGXowobTUoExUeqGH8ntR8tJeWDkJHRqiD8OMJCD1304DHUtmJrZBHEpPZiuM0qzBy833R+VfZDJ1hkY/o6iX9aMe6UGZgYuj3+aRBaa0F3ldLuIeqnVnDA1DpApgS6RZPtdIkDgHDkfIEXoPbv+dKwlu0HNKEaNM68JyLZ//9F/bv/l+WT03aFO3/44LJeeouEcSJnAIUcloXtr9rGgQSGth0m6URDOZ4qzl7PkzVlfCXG83a44PG17dP6CuJ7S7js8ePmR5ecF2u8F5w2w2o5rPcbMpVT2hS9BMZlS24vBon5Pbb2BMRdfu9FkI2cgk2G03IhK0umJ7dUm7WnJ1/pwnz5/x+myOc4awFUOxPL9keX5GToF6UrG+XhG6jqPjY27dvkUbOhaHt0QZLwaObx1xeOuEEBPT2Zy6aTh7cUZT16qeaDjYn2N9w2xvn08fPsFhmU0aLs6ecni44OT2EX/o5FfZn83p2hbrHUynOF+x3l3z6htvcn72nLPL3+GNN15lebHkxbMXnJyecnLrkEkz4cmTxzx79pzXXnuDZjpnfzrHuortakVOHcendzTDsTx9+DEXz18w2Tvg3S98CesaDSi5oXture2HCHVtS4oZa1oNjmty7EixYjo/5MG7X+H01bclcCRSVV6nuSmxLCetuZYJgLJ4nffqyKKSt2T9pRiJoSN0LdYkYisTDauYqaczJrMFOcNkMqVqaupKlPScBtdttxUBq9gJcdE6UpLBPCmKIzc4NttOxvbq+0uLrAySSZK5KSxc6sGQ9e8lOSkKgU4Tw6RM/1Kulb3nlTyZs7SjWWsxrghyyT1Xbq6y1lGRn6JGKBbEqcBQ17X9fexRX03kNEaQ2SDOi41UQa9EVm1/JaEh5WNXauR2aEuLSvZLOQth08J0MhfRqFSIvYkQA11IuLjl8vlDUttJh4R0mdMRSQacyTqWWWrnMQjRU3mFmnXbPpuOpYRt5Fyl9c5RuYT3VrrWXtau0W6OylfSl5+SIOl6iOtLI98wCAalmNmllmiRBAc5sUErIveBXJeAqhK13n54Uem60qmGuRPtBP1mGfRXJPy1FFC6TrLBF6dXjHJG2qGMs6QIQSV7Q4g6a31QOZLpa4YuRdoQqGKFr5wwBnSghoxZ1LGSZeEigcaPDgLKvXcsQUl/I0wZSiSqWKWu0QXp8RaWKaIZbw31dMaDN77IwdErfPZ/OlYyY0sbggi/lNnWxQnq4dygj22t6C73QxmgHyGeGXpj5fnm3gkWwQ7JNvKNDVWuCZRLUT5vVIIp7GA0KCvfU3xlMZzleRVRCPpNqfdNN6/u4+Jh++hgLEhS2LBGg6ESIKSkYyn188kSoMWeMTwKWIDrP2cpk8WEBiqflVPCunoIAIwl0/bBXWHoJu2fLuM6r/5chTG13OMeNRquuSiQkbUVUUtMWW9suZehO6ULR3L+zpKdY1dV7IxlvdngwwnHiLE2SrQxxhCNJal1/PV3/wL37pzyCw/ucnByRAyyL4yFlEI/1a90KxiEUZ2y9EXM9g64e/8Bzjra3YaryzN2q2u2q2t2Wwkk6qbi5PQ2Ve2ZzuY0WOb7+3Rdy/LinBQDl5cXNPWE1lhePHnGZrXirbfeop40vPX2W3z969/ghx98yNHBHj/4/g/5xl/6df74H/slHn30nMZXVN6z2Fvw4vkzvLFs1muRQ64bTu/eZ//olKvNli997avYmPiP/4P/GJMtx4dHXC+v+N2Hv8PlxTlvvvkmzXTCpu2YLCoODo4hGlLouPvKgtn+AS+ePMGkzGqzYra/j/eOrttKD7qiJr5y7FpBt5xzzOdzcs60bYfRfdK20p1hjcf5mmp2xFXwXK+uyf+31/v1pzE5pd2u7DdrBpW8oZd92AfkLE5FtRcKSoaxpKqi1QBv61y/H8d2IykqVZKHH5XwpUfmyp4u+6YICpU13+81CkKgm1YvyBgIqaz/MuVPXzVKYLpRgNVPwBvu1Oi/DdEUs2B69LLYkNC/bQjPSxvvkE5osqL/lPcXrcSRae9tQ3ldEQUzgImydyprqSgJiiWMz9yAyzJa6Oi/+5Cr9Qbipeo87GSksxWoPWZRAs1lP+pzNjgJVHLCOqnBo0x65z3OJEncVdm2rmRSo8ky+Gl8WNUTENWRWgYViScXZ5wsg51VCWC1NVE5cl766yXo6H0LGszSP/sQOqyv6AIkk2TcubOQRc3SWysKitqxl7KoMcZSbjc6NltgKAkAeulWJ1m2vk4erZHe6JQFgve2hNMyJjNYgWtClIsSaD+QgsFMBJIRZSormtE5DaSJl2oARiOaMew0BCjDwmMEJ6dUZnYXToFEt3UzxZqKx//HI9puR+gCbSdG2vmql4MsMFd5QMKOhGQsxsQhQy8Pe+Ssck43MnkKSmC01W2U4Q+970PrUQidZP76uaa0JJFUq1zhNXVAxTknjVa9ak4LjGXJI6csRk37aY3KO6fhWmyPYDBkEdC/d6zXXdqhithT7MrYXIEJQ079szQMAQ5qgPt7J1JolDasXqFNDUn5TCgB1fD6IrfZf3BBa14OIl96XmUiXzG83nu8ziaPMRLCjna37fWyxVBYAqLEZYxOO3OeL3/v1/js+LeYzWdsN2tyzMQQJDNSsY2cIzGI0lYzW4j07mKfvZM71NMpJ3fus1m3tNsN7XpFCi2n9+6y3bVcn19ivaWZydhi6ysqZ4mh5cWz5zx6+Amvv3qfrotcXp/TTKZUdcP9+w/YtlsuLs4I7ZZ333mTxXTC5fklt072Se2aHDvmzYQffv/73Lp1Qu1EZCVZ6T++urrm1ukpr73xJtfXKxaLffbmcx5++BFt1/GNX/86H374IcvlFXXt+YWvfZX5bM752SWn919l/+CQmAIvzp5Cgv3jI+6//iaTyZzrywv2jeXo1h127RZfNb2T7dqWqp4xn89YrVbyjJzrZ5cbHa16fbWimcyYTmUWw2Ix5/s//Ij879wHJHiSNmPT/2wwfTA3aPIXLYrU74PifGKUAUTb3Y6u6zDGUFWN7inbi6uUgMKoLGxpMx2gKzP+8YbNoJzbaFhMSaoKWawErTnnXhe/OPXS4pbUAVs76GgU+9ifrwYAvfog4z1kFDUc2sbG+yn3+3IUuIwcOcU55yHISCNFu9LK2W/Esmf1dTGl/i6VMoL3rh/TXAK0Psnqg7pyD8UGrf7lI/wfu0NlDyB3pLAmhjWxW4u+fjn/0AkamQVlDjHgsugM5BBBXKGglWSc8SL1m7MEAbbCOfrS3fgw1kj7oLH4ZkIKIlBlTSYQgCitxV6VCtUupyxIhwRzmS6lHgX3Kk+RCrKtCbU1Tn1EWctSnjBGhzI5p5opWsrRDgFrBN0Qu2sw2cr5SsaT+4c4dgD9SNMbzrg8iNQLMgyqTiquQMQYrwMapLZrjcFmJ3XYl25gOYaIuAg1WOUk9OtVF1rZEmao5WUoJQLRlrec/1tvEuNWdAlCZLdTuNbJ0CMZVBH7BS8a5CXSHjZVv6nNICqSc5abWBwv9H3IReRDeARmhACk3iH3mWrWgKcYF+gXvN6MPksuU+kMRj+/QIQi/DBGM4ozDaXvuQ/pwPRbOPeCGuNnkKG/pyXbLr3YKYs+u2zC8l1WN1bhDIwcf29EfradTlIAAQAASURBVNRIlWvPKWv3iYzYjCnhnOlRiAElKAZg9LMuhSJFnc3Na7DOqRLc0OWSYqRtZdJcSqJVPiATxcgO6E45Z+89u3bD5cUFb7/+Bjkk1jHShZacZUS2c47JZCZQsxEOiesWWDJ1XbPZbLm+uuLi+QuW5y/YO9jj6PQO25hBN+tsccC2bQltR7u95vpqyXa9pfIVk+mM2nqakDi9c5tmvmC33XL1yUd8+smn3H9wj3t3bzOpaj7kQ371V3+Rp0+fsr6+5t7de1xcX7E8v+DW8QmpqkSYyFcY55lNpzz97DGPPvuMd997j8pLXfQLX/w83a7lerXi4vyCxeyA5eUlDz/9jHe+9HMcHZ6wXC7xFk6Oj/jwg4+ZHR4ymS7AvKBqZkymUy7Oz+nalmY2Zddmjg4PSDmx2+6YzCz7+/u0raBC2+22V1vc269Zb9aEIKhA3dRMasfxwYJL72+sJcpKtyO1Pv1dUvp1b8705xRjvzbImRyTZH11w2TSUIaqlAC/OKeigwIo6bmHznq7ZY3p6/n9GF1dT6UuXtYq0DtiPbObNqEY/WKXkSywrNuCtAnSmvqApA8++n0yIJO9wp8dhtr0gfDo3yBcJkb/Xa6jDAl6uRxo44BaomhdzjobIMX+88uDKt1lwoRHExcpjQz2EHKS5Amgrircf/JL8ssMT9/6tzg+3MP5TO5WKnOs6rXkPtEp9z+rkqhMFEXVQzOpS72fGAIlCQReylvJGGzlSUkcu2pWyV80iZQyqCDXRbLYm0SQmeM6ATGRjMgpW2t6sR+KnQZ8XSsKJPy7rGqZKhosiZJFZrAkEWMKIfUSyv1AJqwICVl9sEM0mcSgG6sQk5BDYohEI5Of0EWWskRKRX6waEHL00sCi2FlopQ1mNFUopL53jxMDymZnHR8pQYCFOUoWSzGikZ4TpGoU96sSVTeEJJlt0s6VEPqgIUEJyOKGUJbjKhsMXALesdUXkb5b1WA0nMoUYkYk+KgdTGpE5Hsc8hkBeLRzWS44YDHTnccjZfNTTFypizgkh2MRTyMLpDCLZBMx3uvTlS+r4zQLfWuAoOmYmBGBmCMBpRnIJumQF16UpjRf5dX2R+5nnKtYxGg8jvMEDyMUYrh/gxBBOWejLIcM1hndQSiN+F0OKysg9BnGiUzKvegnKPtsz0JQq21bP+G9/m1d/4A733pHSDRdi273Yau2xBToKkbmskM5ypSDKSoAUrOrFbXnG9WtN2O7WrN9dUZMXSAZXm14uDohPbomPV6zXSxwGw3PL26oFteknNmPp9x5/59pvvHNNMpvp5QNzWbzZrNasX18pr1asXB3j57830O91e8+eabbLctJyfHOC+s4Pc+/x73X3lFyhq+4uT2XSaTGTG1dNsNjz78mPlsztHxLaqmxjcNdTMhxYDNmd12Q8iRxf4Bi5Nb3L5/j8vLMxb7+0wmM65D5M4rD7hz7w7b9ZrlxSXeO6q6JnXnPHt4DtZw6/4D2rbGecPq+qrnUKxXK6bTGdPJVGBZY3BVxczts7peE6IQrnKE+3fvEP6Wx6z+zVsD4tPvgRJ0SlDlzSjwHKFaSddEULGp0HV475nOZuoM6CXPzWg+SnH0ZSocOd9AqXzhNmi7czHgvLTey74e73NX4F8GNE2WUVK7OdjOkV/sxdkkeSsJlOmvNWvZwBgtp5V2bUUS+/V/4zuHUspwDaN9bnT88ej+l9cMW3R8lqZ37uO/lxJkuareE2QQ0SAJ1q0i0AUVTSmy3e60nJw5/u2/iU9e+Tc5Oq6Z1plKkQibAt5azerLvU4yd8SKmJPNDrKO/I07vbxMzkKkk1KjJomjwyi/o6pqUsp0MZQLkyvOCYwjmox3QsJ0JisvcJT0FgeeE50qk2YMKUeylQy/2DRjjBAorXx3MkFIgDFi1D8bMqSMzUKITMZANsKXMxHnvHQBjB9G2TCoJGOpP4UgalfGSMTdKTveW0vlPE0lMrCi9W966LWoARp0TKJqHo8XzXgxW+vwDnII/QzqPvrVCF74DE4yPouqDgoCgAYm223bM2SjRpwScatxKBDWSwu6OPchRlBjYQYlphIc9A5ulGVg7fAzhdioP8cok+IQomRV1XQ62s4aqxOxBkfUZwYZxs5zXHcb1+yHTGFYfMXZpxgV8ZBFXT5fBuiokpqhRxJuOPwkNWw0OChQar+pTenyMIzvTom5y5n3BqWULZzrwwRyVtKY3jN9tv3n5NwjIH0QoNdbyDu6k/oziDFisToy0/RBYP+pI0RFlLPs8I8bhqw4VRprpjV37z3g8aPnzCYT9hcLnJc2nImbUKnsdYrCOI+xY7td07Y7uq2UGazzLPYPmMymuAxtiJydnZFzpplOMb4iJSmz7M/mrGIEA/WkYXF8zHy2AGfpuo6rixVp1/Lwgw94cfaC/b09vvfd3+HNN9/CNw235ntUtTjv0HX9LLJGtfRvHR9T1xUX52dcX1/irGGxv8edB6/i6oqQMvVkyu37D7g8P+OzTz7h/mtv0KXA5979PCknLs/PmM0XbDfXhC6y2FvgfcWHv/NdVqsVi719Dk+ORdmv8nQxMG2mXC8v6ULH0cERnd1hneF6dU3d1KQsk/RCaMlZnKgMx0GEU3ScbQLOz88x3YHsBTuC3vsFIv/00LJmfs4N0LkEwhlyYqJSzWNVNbEPA0Jaln1B4cRumRv7dFyK886R+zkXLwf3tkfiCp9mjMIaY3rluqJ/P0D6gy3IGviOAwpx6gP34cah51qC52IDxxwCY0T9bggC5D6UiXg90qfB0DgzlvfcTAgK6jDcAyQrTuV3qiSac6/qWVCDPogZ2VNrDDEEttstlXc6Q8Hy9OycTet5/cE+2YnaXsbQdRl6JFA+pIuZ2HX4SrT544ij0bVtH0iaFpq61iTx5r2s60bIlMZiPdjoiLEVm5uKyH7WIX9DsOecx8VIzCInXexjr3jqJKExiK0snKOqfyaCbnQhkXPohx8VG1eejXzlgOr3yIvJeOsqhJSQdbMFIWVoht0zZY2w/Q2ZMmiNBDioK8d0UuG1FQHKJCNKktw76JSRwgWZl0EAY8omEcdURkSWerYus37BiXOTCxalJNV1D5lNWA9CC6k4ncLmv1mz6x2nYVSeMD0aUF4kutKmd6qUz2IwJL2h0CAodamvdRaSmjGGylYyFa08YO9vQF/k4j5R5zqQfcrGGS9DqXcO+uMDkiCqUCXD7ze51jTJA/+g7OCcdUxqzv3zN7rhcx4RSpDnZHIZ8DP6XQke01CPdz3KIEFNzGHI8DWCFyPBkLnkgbOQ882MpJQFSotiKSHljDC6YyB1A4w6PBc5ozIPvaosVVUhkKgEAt57jLF9LdhaS8gVX//6tzg4WvCVL30BY8qks0RdTyTzT4EutLRdp+1XMGlqKmC7W1PXM7z1Mve+bZnuVyyvrnj86SdMZwsOj0/YdQFjDfPFAmuh3Ym8sHGGq6XwBEDOvQ2B/eNjHrzxGh+9/z6PPv2U9z/4Ie9+8Yvcf/1zxAib6yUpJ7bbLSZntruWibHEruP733+fJ48fMplOOTg84PDwkBdnZ1STKRjLdrslpsxkOued977AbrthtdvgJlO25+d02x1rYHW15NOPPsE3FUcHB5Ay+4eHuMMDcsqsNteAGFGAEAMnsxlXF+cYa4XclDO7tezbppkwmc4xRoYh2UqlyY0kH1YRtul0QWtHnUIFUk9ZJ7HRB+hlbRSn7uyw9qokSFJVVyN0SYNEhWN7BMqINOw445fRwPlmJg3ccOZ2mFBY9lkfIGvmLeee+tp9hgF1ZBREF7tlb3Jnhu9laAnTVHpwniVEFrul/qFHEe1oCt2ACtx8X2+D+yx+ZJuGM+3FaWRiYpDXaWJojLYVjtKp8mEibas8gfH1ay085QSJ/hmEkGSYl0n8/NXfzXebf4WulCBM4UIU5276JEbmfyRVu02CPFuL9Y7coslREpnvpsHbqi+Xl0PQcu3UQGeVqO0MYRD7qWsHZT6h9C1S+YoQpGWbPgiSTqdc1lkqJZDCC1E0oJRUNEAG5WaVB6KJpsmF2yQk95QR5CNlfMLp/GNlDhoZfGiSLIjSAZCzLM5OCU4gN64ylumkoakdzlm6FIkpYpNT9aOOKhtM5fpBQuVk4kvdFCFGQjakbPHOyKYqDtEYmf+dsugq60YjJbIGAD1kjWG7bZXsM0DY45pxTpmcXppHkIfPeDlgLu5YApjcb7hx+m1LBJGzPECViNzutsNgpSw15tIqREUfVQ8LajAukl3YPmIdNgnDhDKj/5QSRB7OT6BsZQLr62WjDrCbtRJoFWJNvwk1GgZlHKtGdj9jnQH5sHqeqSw0bf20RS9Cs66iaV5um2TF4y6HYmBK9mJAVazGEGcfcKlR9d7LpovCuheESmqv3vk+0xlY2BowOKuBmBg1q+RKGPgOKSVMtlxcXPL6K3f5/DtvMZ9O2G42NHVDTh3bzZrtdtu3dnkr7NztdsNut2FzfU0XAnfuH+FcBdayS5nJbEHMsLq85unjx3S7Hc10StNUxJRYXV4SY4dzlt11S4iJxcER0+kCN22Y7x9yu3oFyDRVw7079/jw4484PL7FfHHAarWmaSbE2DGZTqidZ7Va0XU7ttdXPPz4A54+esxb775D5Rz1ZEbYbtht12w3LfP5nHo6JTUNNYZPP/6I+f4e66trXrw4o26mHB4dQQq0m2tSrNl6w/7+PrPFDGsd6/WKthVNgqauaWNgPp+yW684f/6C+d6CSMb7hm63wxhD05h+TfhGRgTbQoLKEgSsVtdcXa9oRnu/7J+SudGv0mHjlHVQ1mHKWZjfOua3vD5D78AG0rA4pAij/aEkWwYHP86Ks+rcV7XMPygZWh/YMjDv+7Mc7f/S4Fcc2NgmxfJ9+h6DXs8oCEF/lxRNKoTXUgIUJ6G73EgSyEu3zpqhpBFi7JOmEozL96fefhhT5s4rsqiO35Sbo11hWYOIjJCEx8kUSe0guSdES/u8vCHp5+WcBbksZeIMm7ajC5FsvJjnMpWWTi9tKE3W3hPJtKHFVzKHJISgBD3pKKh0LomlcNvGK8poIpCJWbQEBHmW36XSTh+jII0GmZFiVPvF2Z5PBZJA5TJPx+mY4TysK+lcMBIAoVw01Xzx1pL1XCU5K/dbbp5wTqRt1FqPp7AKs0DkzlvNosugC4XPjFFYNBBSJmrmnXOmrjyTptYxjwpPpUwXInUl5Le2jaDRdUg6JpGbd7I8sHH2J5liJKYgMsM5k4nC4MwQu44UOuEYKGMYvJK8xs6ffsOTtaVQl8Lo1iu8VTgOg5HoyTOjiHW8UQ0y76s48i50OOuEbaoZpSwWIZNhoO1arWWN1J7GC6uPzs1oswxnbRRV6WFHNUilJVGMRdJ/uGkQlLw5tDKK0+y6cFMK2hRCpnxf0FFpzlT9Zi5BinNOak16v4chLpqhFXhdDUMmgx2es7WGlAZDLra1GIibGUnSkk5Bc0LX9YZdUJ/Y123HWRiaKTplhldVRYmsi3EfPQBK6co5y5e//Daff/sN5vMpqRW2ds6JzWbDrt3inKOpG4yxhNSy3W4lKDBCDpzv7TObz9ntOtbXS9brDdPFjNl8wZ1791ns65jgywvc3h7XywsuL54TU2Q+mwibHcf+0TG+nvSI1+HxEevVFW0XWV5dc3B8wtHJrZ7wuN1ucSaz2+1onWOxmBFCRbvdYq1hvifqFPP9PaZ7c4y3bFZXvHhxwWz+BnU9JcbIpx99RBcis2bKxcUFzlfsHx8xXcy5Xp4TlP3sjvaJypGYWUM9nVDPJmyurgkp0e02tLsdtoZmUit6Y2mmU05undK2gqAkBCa11sl/R7mPTVWTcubi4nLIlAfP0we2QwZ9M/iVf8pe1X2dufFZQzAx4h7dWBv9EqEQia3yi8o2u/FZRjqMSrZJWZO6x4oDt2YIfIbAw6ia2/D1fYjykprqOMDwzqO7TNECJTkygrFLUi+bubd7JRnq/26Hzy+XX5BKKY+WrogB5i/3Z4yYD4N70ugealBmhkzf9BebFRm5mbyNbv7wsv5pwnqzoY0BY2p5ztHgbIV1pXRhqRSBjcgCKNXBIQeSe1U5GcCUUyaZ2AdDw7OQ7L/rItnI6OMUAqTUB2jl3oUQcM4wrWuMVYKoEiLJvHTvhvJSGatsrayHEmxJUKLaOtlKucNIYptTkrZKst4zve9GeCZ15YQDkBOEZMgxEWOr6IFGQUYDgCQjVUMqEKoyt61EMMZYsnGAlZGbQCJgrMe4KPFWCJTeSCHK3biPdElgIZNFxCEjc5iztey6TksGtqxVcpZpTRiJELPOpY4Rtm3oyWyy8AymTB9i6NEt0LMYDaPwm8yS3243dEHIXWXxiTARPTIxQItZkRJdNL7Sj7f4WtrOQPo4hVCZhs4LDMakfq8NYfXIEUopj6ibxSp7VSSCZKNLC1FxoKV8IOdWBjqV9qAhaBChjAJ9o4u5PNukaoc5oYZFzs2WLIshgBpqpjeP1Acmqe9/TmaI6ktGbqztoVbDIHSUjBIWlbWs1pJcZl/rdchmcb0qX86ZurZ9sGcM6swlGCsGuzxvO6pBOoV+yxz6uqn53Ou3aJqKdrcjtKJUtt1uwRg1JpnddqtMboDEtK5JiOph3UwgG66X5zx7+hmHR8dsN1sJCivDZDbj+uqKrm0xZEIK+Lrmwe37XF0tefrkMc18QTObYmzFdruj8jXtZseLJ48JoSXGwHx/n6pqWK/WXJ6fYXKimU1IKfHi8WPSrSMmsym77QZnMrNpzXw2E8er3Qe76xWbq0suzp7TNA1PH33KD773Xd770pcxVUXKmaNbJxzfOiZ0HSFETu/e4ez5M9qu5XT/HpPpnBACVQxkY/FVQ9jtMDER2pZ6sYerapytqJoGX1VgHfuHx4QQ2e222s8t5NtSD7WVxwInJ0ds28BOWzpLR4xwjgb9i2yUra8w9kD0HBz+GNW9EVAU5kQeVnopIYC0CsOA0A0ZswxgKQ6ztB0O7x8nHurI9CuE7CabK+WR3ohJ/ctjUpVPDYxzEkZ5v4ZTBk/f+tt/nzFS7lKn4HTKZu5tzugemRKcDHygMcdBrZOq9xVinjpobQlEbVD5/qT3vURkpS5dgrP+GJftzLjUWpx8vnE/UxyEi3LO/OH2H+BR96/LM8pO7KuxOOP1c6TmnyXDBKtcHx2gk7LB+YSJ9Kp+RkcLv0xgT6GF1JFiSxejOP+cyQwIkTWCsmaSqpx69bMSjMqP4ym76pqMJizZ0Fm9vj5yUjEnIy2UrvLSwYLHGLHj4vSHttiUUl9atxj8rm3lxZrxO6OL1lgiUd6MZOvCBbA9fOB81assGVUP7MdXkkldJKQNiczEV4Qodd+YhQ3JSwjA2O+NI8mMCF+kbHA6kjL1C1vaG3JKdDvRQd52iV84+7tpU1eWSNn7YlDGrTd5aMOzDG1+1hghd2zF0BvdFFblNksgUoxMIRiWzeRqR9d2fU/zsK7VGaF1eG2RLAt+HP31Hy7rgEIA7jcGP/7oiUu6YWPvUAfj0Acf1lD5WkhaVv7p5T2tZdfu6NpWHKJRKVJrRVVL+RVDiD/UpMQQDOdYNm9UKdFitIaMPkOO44vor6U/VyW9lO8oteBC7Cy8k3HN1fuqHyuM8iGSIhC9/sWoi6Csw2J4syxGeb44UsysV2spkWVZe5WvwFeiVlhOPSdoLTkmTOq4uFgxmcypmpbVasXRyQnHx6csr644e/YMbzLTxRxrHfWkAW+Zzufcfe0Nbp2c8ulHH7DerNmGju1mR1Nbus0aqsgHDx8Cgdu370CKVJMJMWe60HFwsE/opOWxnjQcHB+yvrpid33NRx99SIiRjIgh1WvRJjBkdrs1zmZCt2F9dcGjTz/m1skBJnV028CtW0d453n66LHoWcTE4fER8/mcRw8fwiefcPs+vPr6MdPJlPPlEm89s+mM82dPubq+5mDvkMXhETiPCobQ7lpyNkwmU7yr6EJLVSnRKuY+mG3qhsPDQz759PENxzHurxfy5+D4hlVqRl06aQjq9dlZY0ROrvj8cQZ8w5mW9WkGxzDKag2j7zaFwW1famll5HwLepXwvupRL2kntiNRMg3cS/0/JcqwF1dbvHcYCmSgyUB/faYvO0RGOid5sAmomS8/kzN9GbGQ2sb3Qf9bnLvYuxgkMy4fUe6DtOQW7QDtRhrt+f5Z6j35kdJOH/EPIYAkOlKacOqPUk6sNlu6OMM7VJJezlOSACnzSfIqz83ZCmM9XRRhIO8b2iCIQa/0OT5HPQryRc4SqModpydo5yT6AQnquh61g5peybRrQ48UyYna3rdaDE6liL31eOt6BMhmQzaJtm1p6rpP7gablvWeiOgROVN7Sda9d3jJGulFCax1WKetHbqgk1o1Y6U+knJQkoYZbkrZPFYkfmMQuUaTLaa1OCMQDDgqr9rLL0VSZYuWDVz63KUVQsYekjPGJtkQZS1o1p1BWq80WOkd3siRyueW1rtx/qoLrmTM+kCtscQYqLynrmv5jpSl/VADkbEnLvV3IY+BrwSm7Qlq/WYcGa3iBG9AWgPsWNb9DZizZPE9gnFTR6F8j/giMRxe65yxwIpqxUIMJcpTiKhATrnX3RdHKosm9xEloo5lBgKiZOG2P2fyILfaG7pRieJlxzvcp9INMN74RqU8x45b2lbLMyylDUYb0DCs00LKgQFhKKtvuMdyjkN7aKLdtXzz29/lwf17NHXFfDaDlJlOZmRqYugwWYxq27ZSj/MVm3ZN6gLTuqFuanJK1E1DXXvqpmEWIktnWZ69YDKdcHRyTBc6DAkXKvYOjnhxsQTnOLl1yvOzF5ATObZcX5xhMDx+9JjPf+E9JpNJz24PoWM+mxK7jutO5x0Yy+xgD+8MqwvRArjz6iuknHny+AmXl5c4Z9k7mIOJ7HYran/K+YtnEFoODk/4+Ic/xFcVh4eHXFwsuVhe8pUv/xwvnj+ni4lb9+6yWq/pdjs++fBDmumc23fvMW0mqpoo8OXZ06dMqprTGJgs9rCuwuBwVRZJ4c1WiE66vq3VNl0MJkmGtL+/4PTWCd/8I9/i4C98oV+TpYNDfGrqu0rEeMteMNn266ZA7qULpazJG//WDLRIFpfe91L7d66sac301VaN7Vm/r9VeFafYL/4SKPTfrdltGnRExiTCGIcaOIzscRauVkzSedSFQF3LDIdSm6es/NE1wiDqU84jls4rFT0rQXM556QZvMH0WiBlvw0JVknUlJuUEqgozo1SAcV5DtbxZkKkP/doyihYGO3j8t075QHU1mD8gECW8p9cp8U68NkQ+wSm8KICMqVvQGxK8jg+pK1YUEdykSOH2AV1K6V1Ue3N6F6X9lNjItZ5DfaUMJpVPE0TyIJEoOhvAaKssSQ0ACplnixE4WInUxYRv+m0AW3xd87jc4IwEkfoNCBwpsBQWt0OgeilLzdj6XqCg2R1KSRlh1ssmajElxSzRrVqkrWmJ8zJl4gvDINiSi0r5wzODQ/GlWcucInt4SGpk1nrcGnE5KUECHITY4gYQu88e9+ibRzj/SibykIy/U0feAVyxr2jGy+L4oitvZHl5qwiF7wEDd5wggPEMzY8lgGuLC1KoD28ujmKg7WjbHistV7Y/9aMvy9pG0nuBXSG9yRtsdQBJVEWGbp4nEbFMvCkZExDoFPQitCT98rt0cBMDUOR3Q0jQZYiq1oyhsIrGe536V+Wn1POZJXALFBwqR+nnHUYzBB0jOVcixpkITH2JZQ0gjHJPP7sCbvdlvv37rJ/sM+karAmsdmtZSjNbkMXOrIahEym27WsV9fsthv2Do+o6gYM7HaCXjSThv3DA7yV+mB7daU19SucgbPnT1heLpn6iiePHoE1eGd48vAhTx89ZDpvmM8qfOW5vDyn3e2onSWnSDaW3WbN+vparqeuqGzN7PCAdrNlubyiy3B86zbO1zz86COePfmM2exVdpstqQtcXy25OLsidJndLpCwTOZ7zPcOcHXDrbt3MMby/PkLbj+4y2S+4PjkhImrOF9esd1uaduWeuJZ7O9x8eI5Ictgp/Xqiouz5+ylCM5jbc3ewaHo+KfMtu3Iyp+Q4MFROa8ZVKb2nsPDfSm/6J41eXDKQ/YsbkXkuVVFr+xLbpauRCb1ZilrKLnlft9mhWaLMyolgKRZoK4gtS2DnSt7a/x5A9PeqMO4maxkBKoPYZAaNv1ry3kLwa+gW0W+uyRCMBD+SqDfd9YwBAGFn1A0OvogSPlg5X6MbVVOQsJDx+E6HQCXVY1Oko08JHS6R51z2uJoZIeN7/socRjKEIUp38M6A1+p39P0tqbddUpkDz1KkHPuhZ9Kdm6tB2sIody3oQW48srcL10W3CRXgsxI6IcyGSktkLK4DSM2yzrfizwVBCVrIuO974MFerVBGSbslcMkyLdo+1udfRJDkMFCcUhU+uAxDqhQSjKMbj6bqJ3NCGpulAOgRq/cmEzGeUNlPTFboouEENju2n5hhCDOIMZISFJGKVAJJLIT1mVCyCgYS0jI1Ckjf3M/RhJwiHq1nSIq6aHchHEwjbSrWSfTsYT8UBM7p1n8YMBloTNE3KbHG7T+Z7SPePh7WXxVVesmS4Ox0PcbjGSKpkReuf9bHI2HFK5F6jdXYZ6X7yh16sLQLQ8UZGKcMaY3Tv3mLOdZNktWsocda5/Tf1dZ8OV+OGuxrgQTI8KSBkzGDAJCg+FQNEMBopSy1h5H7Xaje9cbjJGx6p81pQwiBNMyeKjApyUTyFq3QrP5VIINRW2Kkl9hWxcj632lIlBdfx49CoFG//raggoNqMSIXKn/e+vkhC9+4V0mjWdSeyrv2Kx3bDdrvLekXeLi7AUk4VDMF3OczSKEs79HM2kwzlFXXhQPYyQkQWZCiFgSR6endCnirSOHjotnj0gBnm82hN0GU9VcXV1y9vwJV8szuq7mtc+9yeXZc87PznECBYnmuV73ZDqRoUVdAOfYhsCnjx/LpjWOLkHdTJjMZsTQ0nWBFy/OWC2veP/9D7HGc/fBq8wOT6j2Djk4PuJg/4CnTx4zn884e/qCZjLl5OQU46Bpprx48gTrK5EcThlXVdLdMJ1y78ErbBYLrq6uqeuGpmnAVgxPUWSrQ+ywztF1rWQrak9MKf84w2w2xRj4nff+Iu9994/e2DdlXYltU/nZUZY9ft343zfWqBmVtV5a07EE3GWNlz3OQLIdfVBPMB7D18VJ51wEaobdcSOpoHQMDDD92BgW4nRR0ytruyo1bz1Hk/ud18frZqiT9K8rssrFtvR/HiGRpURRPrHYmx69YMgJyrUVoi/lu0c7rDfNcrHK2xjOybiRPdFnUawwveM3PbIRk3SWRSsT/Er5M6WgJSCnIl/FKWZgQHZC7CBGCcgMxJyIOQ4+Qg+RFA+afI1LFvT2yDvfkwdTTJIgazJXShLOSgdeF1ppIUYC1ihDCXTdgLGub+fDGhUc0+449U1liF3OggpMJhMpK2XDxFu2O1Hc9G0XsTb3joEkqkNG+x1zNnLyVjTOuyDEglahCmsk041pBAFZ03NnPGWoCngKLCFOLYWbCIBzpVUDzdw6Qso4rWNUlUyZ6pJIJ5oszscbqGuPMY6qmbHudj0TfdhQWTPwwegbdZRF2nYMJJUsskCQJaMon1M2RM5o3XEg6Bnk5wINVd7jq5qk2QcjJ9UvZH3ApXRXZDqH7WoUThsEiWCoSZJLaSIRukhnu/6zi+HpR/oaFR7Se1FVQkjp/z46hi4B3YQjMhM59+TGYijLPRxn0X03hQZZ5frEsKjTDyVYGqBX3dqDeqP+7BiifKQ8OnofODzOCRRXiJnDvR5n/rouUib2z6Y4/zwqFYiQyNn5ObuwYzbxmGzYbXdsNmshy0ZBXeqqotsFvBfkIWFwVS3CP1VNjIEUAm234/IykFPk+vyc8ydP2Ds+4PLyUjoawo7tds1mdc1svodTIZ1d17FdLplNK7q9Gc45lhcXvHh+zosX59x/cA9Mpt2u8c1UWhA3K621Zi6fnDGdTjk6OWE232exf0BlHVuVJL3/2qucPXvKJx9/jMmW6WTOa2++ycnd+xye3qaZTpjUDU8/e8LF+RUnx7eYzzdUD+7TTKdsrq7YbHZQ1RweHnL+5AnNZMri6IgQInUzk6AzBLZtJ3VIX9FM9zCKZrWtECmLBzFIchJyx8TXfZmjayOVcezNZuQwCmBHmzmPBFYKc3rIonXvGdc7vDHUXLTtx4ExlMxxvKaMBt+DJHqmOM7BkZf3jDk2xUnERG/Ac5YSYx69pyh4kge04UYCoY4rK3zM6DbkUbDcW7gfjS+GBIZhP43+pG83N+xBJou/6O1GHvZV/3mDTRnsniIxOXLjnBh+HNuUISkoaUExvvS8s6wJUNL7c7Vt2YTExInfIUtZzxh05HDAdBlfQcaSsb0kb4yRHCNdtyOTqSZeZJeVYDo+SiIZQibZICPKjemJnEOiIdLGISeqnKlrL9+bYTqbS2LdtZAiXRoI3QkgSlJW1bVqlAj5vnIt0PUk6DaEkX2UxLSpVbvASKDRdaEX6vMxyQkbSm90ma0nD9Fbi6ksmZptCLRtK9KYWebJT5uaqjC700DsysXYy5LAZEMXEy5KzzY5EsP25vrDIMN9JaF2vqLttqB1twJ7Fd1m6V+1Wqu11NWEZjLBrUqUVqDnYXEycuI55r4NzWoUNtRrhodcHFLUSVWY0abXsCzrTiv1cIdmAxrlld9JRHnTgAADI77nRYwyhFLqeOkfMCq9LHGrsOul936ctZRspJBjpJ1FGK5VVRGjDLspdawiBDImvdyo1xdjqM/cGPo64Bhe1x2PKZK4dlhZxliBeinGI/f3sBiirNHsjc6GPDwbayzZjvTYtS2vSKAWglbOlpsGewgEUKMyZC6ahY7aqUQbwPD48RN+/de/wR/5A79C7SeiNVDGmergkOlsRu09IQV2bct0MsMgY2GvLi+1oyQRdi2riwuuL8549vQxFxfn3M2f45ZrcEBsd1yen1FP58z3D2S88GbDnXu36dqWq+WS3WbD9bX02O92LderDfXEs3+4z+ZqyfLhpyzPz3HWsGtFo6DrIu+fnfPzv/gLnNw9xThpB3z65Am3Tk5Yra/5/vd/yGJxyMnpbU7v3eP+668zmcz653r+/AXPP3tCRMa3xpSpm0am9E2k5e/+q69gMnzy6UOasxcsjo6IIZJDYHW9ZLvZYozh4vwC52u6LuHqSsY3e99nVSIOVst+9kYMZIamaaiqiq5tuXVyzNHBYggCKRyYAVbu+UAFltbU1GB6ZK6owA0Eu+Jsxv7y5r7ts+BUAga0ZFgytuKJlaOkvyuwej8Rr+cljfzgDWc8rN1eofMlZ93PGgHNcMt2GqnwaTarGN+NgL+8vvxwMwjI/WeVuzEOuMavK3+P2oJmb/hLpQbmBMn2gdhwPvRjWPouLjPKufOQ+RdksSAVxWYUNfrdriN0idx4jKmwPmGjKObZnFXMSUqbXQx0UQOBKNoyOQUtKQVStFjr+/t787DkVFq/DcZX4k9LsqUlkRgTXduR0Vkn2SkJu5KJtilR+Uqg/ZRJhL7TI8aIc1WfDBmMtpfLbIKg8uaxSL3nBCYPbc4J9WGB3W7b23nfbxB0VrNmUaUljJRE1KSp2bSBXdvRhg5nLbOmZtIIg1xTU3LsA2XtIMjYDIREyJHCP20qR+zam5spK0vcWmX9y82NMeG9KDLlDCkFrHHiXKwQDL2vaSYT3Vix35g3nUtxhsNmKQ4MhvLF4FyLxO24Vi+LuGQRxdH2sJnCTeXzvJOa7w397/HGIY/6SnMf8fY3UT8njTaj+FJzQ72vGIJCUiniOEOwQO/gjUEJfZ7JZEJQtbv5fMZms5OuBzNs5ZtkndzDnK7P5ot1ov8+W1oIlbVMMQt9Hb9c55ifUIKq4fWMDEAhc97kTZj+70UdzpgiXV1KDDdJj6VzYIB+bX9tozNlnGmklLhartj/wtvM5wudby7Z2HbXEpX0WaLw1XrFbG9BPZmS2bBbXdN2HfuHkglPpzPCZsPDjz7i8vKMO6/e4/4rr+BcRbtdk0gcHh9zeOs2KUG7vGS93fDm8TGPHz7ko48fEtutiohIq+a9+3dpJjUhtLx48YxnTz7j9OQYg2G9ajm8dQoYHn7yKd/+5rf4uXrCbDbn4ccfcbR/wJPPPuMb3/g6t+/e47XX3+DuvfvU0wlYx3a7Zb1a8+LZM2aTKXt7ezTzGfPFjOXZcy4vr9g7OgZrOL17F2ccOUZef/0NMcarldaGM2fPnxHbjtPbt1leXXF9dcU0RJKxLPYji4NDJtOJtCeHIAYZSF1LylBV8uyrqqKqKu7dvcOTZ88H5j4lg++3kDhifaziNxJESDp9tHBYitMf24gfdbTc2MPFfpT26GSKIudAiitnYfqlNWS2N9eevlKvI2c0ay3emR95/ctlqz4YsCNCHlpeHO1ZrRJqVqt7wfY776Xg4CbqMAQkN23hIGg0qO3179dgXhz/TXtFHhGZb1yrKf+vu1G4XgUQKXv+xqH25W80/wue8W9gbC3/5KC2vCNEaWuXFniZFNvGJJNiQYjuyploqonyuUqQcfP7vFfdmSgKfmUq32B/JEBIURLGXkoZcNbjqwlGbWUy9OsiBh1jbAYNlRSTKFw6RRacw3RC4s5ZiKzoSOGC9jonRPTddtvPtSgIt6+cE5a6kikMoj5kvev7+U2SVqFJXbNtWtrQ4bFMJxPqSYX1uqisMGtD6GTKUkZHcUrLWJcCVsYDUZl6JPYgR8qGGBLZG83aHWifakpZBxqIylVKSWAz76irmqaZgclst2uuV0uO1IGWYL+PxU1xBLZnR/YjRNVZOV2UpijXMWSH5Z8bTo/yuwEyNGgdvpTs9ET6hWzKSh0MiH5Sn62U2n3Jrvs6/yirKEcfWKAdHcp47dm4L23k8vaubftNKPVDhTKNCDwVJb+yIFNKMtkqj43kcE+sKgACo95s+d4+y8k3DchYnz9zU0a6j/ShNyh5dB1iRDw91tSfh4qSjDaCPJeSPY2RlEE8qXxmH1z032FZLPaYTKbUdQUpYZNltQ50bdcLb2AMzXTGZDajmU7pusDV1ZLN8lyIQqFTgmOi262JJnD3wT1OT+8Sux3r1TWVdbi64eTklNX1Cuc9k2bC1fKSrms5ffAqb4dA2K3JMXB+fsakmXBwdMxmt6FuJrRtx6uvv07lKy6XS6b7hxzfucuLZ895+623WW130gedEh++/z7vh8iTzz7jwauv8MUv/Rz7xyd0MbBcrug2W9quo6oq2s2WV155hfnegpwiV5cXbDZrYuz48IMfkLLhlVdfIYSO8+fPOdjfZ7W+4ulnj3nrYJ82Rrp2J8Fx3XD73h4X5y+IocXXDSlGrq+uyMtrlQOeYLztSZxea6aZzGazoa5qFnszjo/3OO/3gXJ/ipNFBov1SA99CC/rmIzt2/1fIgD2gSA9zFp81MuOx7nBEb+85ktJgDwE8PRrcSgrjqF09LtGqXn/41DCGs7ZjVQ3BzGfMgY59+PexRbpPhTj1mfgQ6BM30FRnPI4Gx8jg+M9M6CtMNhfze77gGT0Hu3kuXFjRyFTMZAl0BjsbsZojfxGm/VoD4Mgu8Z5svWYAv6kRDKGLmnMWFCALhBTFs4aGWMzzog8tDFOiH0pk+34GsUuWWtwXq6l3B/ryv0cgi5rvUwLNKMpus6pGpEMKktJ0K8xj6SuvZK/BVHwzsuYX3UwMYtIXhs7jK2odUy00WeQYqINHV1XWuPlPnrvvGoYG5UBBm8dzso8ZBGSAOMMTm+wJvtUzqq0oSeTiLHr1fq8K6NXtdZirURcOZKSoQvd6HHJEZS4IKJDVhaKEZg5KiJQbq6MMBYGeVVJXTB2G9p2w2az1k/O/WYvTqPMBi9OrbzKqeys1c0qWWTHbrejqjzWOJXSHGnOD664r6kP9WvT36wb0X1BJBKUvsyoohhlA/YCEtoFUTLL0t6Wc4nU6b+rr1Faq3MXhuE2vQylsu1L7S6EQAiDwRIiCzeyhEE61/XXWpCF8QK1yuYtM81LVt/PTBghJ8VYlc8o4hcYo2IvpuzxH3H2NzZ5IcbkIsJUGMa5j8DL88jKjsZIlCxtW+Xax2jRuIxRNrjjm2/8R7x+8hq3T48BgdeC9ghPp3OB2XcbcrI4b7Be1Ouur5Zs1tdst2slwApptdu27LZrprMpy6ulatg/Zzafc3pyivWey7NztptrZtM5Tx4/ZH19xYcfvM+b736JNz73OVLoeP70Cev1ltv37nJ2di7EQ++pEip0YggJHrz2BtZ7bFVz+8EDVtdrJr7iarnk+PiI5eWSg4N97t65Aylz/uIM6yzNRMiBtm1pmlqGHzU1z18854Pvf4/FYk633XFwsI9xlul8j5QSu13LYu8AX1fY7TUpdFwtL5jM59R1LQNQKs9kOiM8f0q3XjOZZRZ7+/i6IlO4KZIZWWtELMh5OlV9dBOnJcnInTu3+fCP/Qbz/+cXKMNzcrKDDsANVKes5DxypkUlb9imxsh01OKUSgAx8IL0U/JItCoNLarl8yXtpA8E5A1ljxVEos9UbgQgxeHm0cI35uXXDWu3R+B6mzcEDBgZepXJEAtigQYlJTvJlPYxYy1ulIkXO8T4/F6ybcPeHEjRfZAwOr+y3+U7Bz4GjMYyZzUCDFykEuDlUcBmX7pf41MrZQTFFyizY7Ke6y5mTRwlsXXOkyvpZHDWSp3dO4yp+iDOjsmdCMldFCorEd8ZBXcDyTjjdd5IjDvp1HKOMq7YGkNMga7dCfpA7PlLVsXLxKZ71e7odEUmMJL0bduOnA0hitLuZNJAkTVOgy0fhgVZPAYShhQyISch3NlMpest5kjG4LPBkjBRyHfegfcy1MYYrxrIuthUVMdZQ5ekI0DWlkCzLQlvB3Z9OUKQiWWi3GUhRyXGSGASYqaSycIygtFaKldLncNmFDMkjRx/2QDFkZaFVAYcvVxzLzfImGGCmMg30kfPpS1NnEWRd3S9gyktRiMbMVqUYzyiGByxAiVTLZnv0CJkh99FjfatG20miWRvtBapsl5vJMyoN1cfvjH00GdKUQfiKEzVt0Safj1ba2m7rq9bGQrUJZ/nrNVaVPgRJ1rgx+FO62mhpYyUemWu/h4VdMWaHnEYjJ38LaSgjNfUZyw5DTLH5Ty8c0RTuBAlU0Q/bzCQJbMqhkvksR1vv/s5Hjy4yyv37sr6ifKeuq6JqSPGIPMIksx/iNoSGLYrCK0QVlWfu6oaicSN5/rymsoZ2u2GXReYTGq27Ybr59dcX19T145Pf/j9PkO8vDjj7MmngGW5vOaD93/Ivbu3MdbSTCqmswm7zVYMqHX4Sc29Bw9oZjM26y2Hx7dwzuKbCecvXvD1X/91vvoLX+Fzb73JX/wL/xlPHj9iOp9TTWYsFgu8tzhfMVlM2Kw3+Nqz3lyxujjj4ccf0dQTPv/5dwmxwyRLih2Xl2sOD06YTCast2u6lLHesV4uabdbacX1jmwMvmmYTGaYIAHqZrViaqyWThLtVtdb0/SBbuE8lDKWs44YInv7c3Alwy37aEDuxNFJBlqCzwL0WKPaIXnYi1ICNP2+Letu7OwL6jUEqQz7mGEPCvQrTqjoFYDuPwbC4c0MVrPnEdLwMhQv//3SYDC9qH4EOkZHGw/7pk9QbuxF+j1R4payL8gDRpBfetOQmesrjKZcQ/Qxunel3DYgA4VIbm7YY/3sUc29nFMRo5MM96WAaXRv5I+uH7rWhkgbOmLuZADPyH51IcqwOxPIqerXVbYiIlZXNejPkXjj+yQjF+XXOHAcCTGIjHBREnSOsNvhrNdEeECs2hjoOhlg1kWZmxFThATOSZ0/RrFFMWdCuxH9nhQoHSQ5G0hSZE9OOHcpSSddsclj+991AY9m1v3ghhxxVFR2yJD75hODTJbLgmxX1uKc6VvjJNss4iwCpeOtsuNLlCcfZJ3n5RWYMqSsmaN+nrOFkCMIQ+1rnENH20r7nzMVKe5IqcMUBsloUY+/ppynQTQBJEvWNgzv+z5VMNLalYaF6wqsYke99SiJwxgdX5v7rx9qc2Z0f3ThloD/RoYyBI/j9w3lAzOMDB6RIothKfc2M7A8y+eK+JLtywgvbZk+IMjQE5qKM5QphRmHoAAxJrzLQ7CBQeZmK6ylC6x8d5HcLffD6tCV/vU3sgEUIXCDEdVAqxCQyj0p12/UgEcGNKHXkUACAu+96vTL+32vnzBeH0OwVLgDVoOP+/fu8Lk33qDrhBgkpyzroOuCrJUY6bqWLrR0nYwAbjdr2vWK9WpFMpZmvsfh3iE2RcJqyXw2xTvL9XrFxfklMQT29/bYblc4A0Fb8m6f3ubNz32OejrBGB3ZTebo+IDDk0OMhb29PQmaLcSQWS6vmWXD8WIfsBKstDvIhsXBHtkZ7r36gIRhNt/j7p17xBBppjMObx0hYqGJdnvN5cUlTVUzmU65eH7G8uwcR+LDH3yP44M9jm8dslqvubq65ODwGHLk4uKMlBMnd+5xeHTC+dkLNusN0+mE2WJfdUQyR7dO+Wy7wXuvZY6OejLB1Q1VPWUynWoACN4ZmqYhxkjXdX0QcHiwL/Peubl3wIyCa/1ZN90NZMmMkL2S4RXk6qVAvl+uo4CxBMrGlF7vYYP38PfIEZbQv7zWZHPjfH5S1jwO6MfO78Z7jDiBMeIXR4GvKchgzlr2zJTT7TlJuaiijoR/eovykq0anUe5QT1uYH80OCmvHff593ZCxx1jtL1S39cLEPXfObxuuOayi4efuy4QuoipZH+GENhudxjQSXwCtRdUCYYMObs82CCzo6oq0bh5CQEQeyJolXMNUGTTBYW0xgq63rd4G8qk0WykzB1CR9vu+o6iGDJkfUZJJtx6Z+iClAhMTiSZ9COBXhGgsiLil2JmG1tp9QaySvhLm6SgtTEmPECOidB1GnFEGpOh9hKN6cWG3NGFTAw6hMX4vv5grEgSys+S7Vs1ss4ZdiGQ1UElWwMiKuFfqqGlJEIHKSWytQqryxMvinuG0sZhsLaiqhrJFHYbunarFxaGiNQUWH6MBGj7X1U04g3OuxHMlLQNScQWyuIsG0DWeL6xmI0xMha3Nw70vfilFlPuS8py/jcCFVPuwU2k4kYQAL2R6skyowi8BFnSDSCbOOYoMr9l0pkGAEUh4cZmLpvRDs5aFnPoz7OqfK8OmDUtLeWHEhiNY/bMqFUReh9boNDBVAxkQAy9kEl/TmYUUCn0H0JBGowQmZIESOQskJlKM4eu6yGw/hz67KScj55VEo5JgR5lbLLl6uqS9eqKptrXwNdLwJhrMIl2t+X84pzYtsRuS7vdENqW5dkzUo7MFntM5ntMmoaw23Jx/oKnT5+wXq9ZXV8xnc9488032XUt3/ve9zg6PGJvsdCMJfPNb32T1z/3OU5vn3LrtGE6bZg0DXt7c1IKeOO41IE8dTNhNttjPm+wdYX3FQbpANhttoQUCDEwn8/4hV/8BXa7HU+fPOXjjz+Rlr3nz5nvzVktl+ScePb0KV3bMmmmLPYWJCLzac3h/oJHFr73ve/yWvsqVVVTN1M++MEPuFpesX94yK3bt5jMFizPzqnqhtM7d6irmsvLKy4vL7Hes7eY8+DV16TroWmw1rDbbpn5SgNLCbi891RVM6iu6boPIdA0DW3XqhTryGHqsx1zUXpC3MhpldcZ0HJM7xFvZN3j2veYEDeoSpbon/77f7xjpy+1jY+xTRn/rji7IbCQ/Hk4h3L2Q+DQo3jG0oVORL2sxaabrb2lM6jHJV9SNx1KmkOwkym6BKMbx/AfBZkcrll+f8Nuji5+nCyNf1ciDPl1VqXXIXPOo8CJEtDbYhNFkTamiEtWCXBSUjJAlxkhmPI5pV16XP4UmyPXW5DtHzlMKbnF/hcDqjgQUot6aQkcQ+hGgWlZOKXVe0ieQohYGyBEZK4B6qfkvT1XTJ9J0eXJOWmXn7lxTiJgZaQLgJwgJkJoyTmQk2R8WRWQ+j7ypBBKkpocRiAIUeqTyEIUiyy1l0lrMQSayiONagabRaUsxkDsNZHliDHqrHO9WUbqqU3TaGSqXQW+huzwzRRXeUIn08XCboeva0oNa5x1lp9LjabUrIuzT1FJM9ZQV3XvZIy5KX9ZtIviS9AfWZyW1eyxBB1QWnyKlrQahjyC2WQF9hu7tGIWsk6Jonv0Ymwkesc4bBLR9C9kwDKCUgiPzlohsYyz3zyabV6cubkZVRdnOXy3GpryxXlADQpHgDEaMlrcou6XKRMBTbmQ/t6okS7nMIJh0UBn2PD6bNMgkOR0FG/XtsJp6Ue9yiax2d1wID1CYwxG31vkQkOQQUgOy+nJEfPpghgCVqc7krWzJAtPIoZAe31NyoF2txUZ6XpCM10wmc7YbrZ0FxesV0suzl/w+NNPaduWV994g5PTOyyvluxCIKTIervGOs/tO7fZdS2PnzwmW1EnOzg6JmWZKFkGV11cXABw6Dy73Q6n8s39fs0JZyXr++yTj7i6WrG/v4evK5589pTpdEJ2huliznp1zcXFC7rdjtXlJd7XLDc7UhKI0qbEsxfPmO3N/7+s/devdVua5gn9hplume0/e2xEnIiMrMzIrCyv6irR6qYRDaoWN/BXIAR3iAuQEFJL3PYFfwA3CIEQEkJImCoBhRq6KFVVVmZkZJjjz2e3XW6aYbh4x5hzrn1OZoHECsX5vm/vteaaZozXPu/zcHZ2xmK1kCzIB7783W+5vrnh7/y9v8fhsOfd27ds7u45v7iUUcFywfmTCnN/z25zC36gLEqa9Qn1akUYHIf2gDYCwBpch6WS4MwIMLYshdZWRgWh0JYXz1/wPv0+E+OMoWhyJpOzJu+8Ketl5oiYsEBiAybHNjnPMDq5nKTMfbdOdK4qB5xpzeZzyQkC6XzHaRSmwHjuqOdF+JjXP3OnOdsb40veP/H8R3xwIzixsBarLR4ZI5OAfeoR5++aWpETFiIoqWzk/SKCPBPRWK6eTbS7x2eWQb3hUUY9vjem809/z04521CxLfPPzuwEubUgiP5+kCw/a5HkYGRkTAxT5q91Jl7zY4AZAKsMVpvxe/Irxow5imOim5H+KjHIZoc7BqVxqqBGDfhA9A682FBjCkLI1XVZa5leHhURgh8liP+IcA+gxmTrODCUkUdtpoDCx0hUEeuSseldz+Ac1qSFlKIk6anKYg1+IFNT5o2hCBAzm9tEbFFak+8zVhli1NiyJERPezhA9COyd7yRhOSMkrazMigiZaFQKox9Ym0Loiopq0rkNV2Pcz257GysIBgmSk3ZzsF7uq5H9cNRZj061tnYzDwinEfX8yg1Z8C5NwnHUT7xmM5youT0U6n80UKS90698zGK5LgqkKPGH4qcxx2T3pORn6LAOCGUR2OUIsLjc8jZyZTl5OsHxspI+umY+OT7IcQT6QfpM3Nwz0S6MwsyHt2Lo8wpXdVjRjYAFafnFELAJ4yC90JhHSHRdMrnQvQJWDbRiAYAIwDK/F7p6Q/J8Uj1o+/bNNUiqo5d3ydjpymLkkHJrHlZN6AVhQalLVor9rst7X4vTHZpll+mCirW6xNub+549eY1n/z4Y7abDTc3t5ycrKmqir/x85+z2Wy5ub7mu29f0Q+eANzcXPPxRx9CiDKVU5VYW9B1Lfu+54ktaBro2gNEh1KCUdhvN0Tv6dodPpQMQ8/v/fxnnF6eYwvLbrehaSqMhmXzlG+++pairGiahttXt2wfHlDG8NnPfsrV5QV1U9G3jj/71/+G3XbDZrdj+/AziI7D/sCirgG4fn+NthsWTUVTlejg2d7dEdEsTtbUdU2zXHI47GkPe+rlkkWzwHnQybnXdT2WbWXSQ1j+Lq/Oea+k/SU+LGW0j9NspnG+vHADk2PJfP/ztTjyaIwVOnO0N/KeFlnc44x/iBNQ7Yec3VRZSCDWWeAyvYe0X6Yk4nif5E+EvAnHLBimiuGc9jim/rA2EzHZmPXKG6bvBzRZcS8FQkQpLcepFZhHJ0GA2yaj/NN9z+c8Bhajd5fzkZFEjgCKIQF7s9mbPcb0nfkeBeKs/qgQboeh76WHTwKOa5s+K/cytwozcDMHOyZVn31C5QsIEFQ4Xk8ykSZV7Zw4DMMgtPZIkixwMgnCh6HHWo3SkuCRgNBi5BXaK5TRxKATqFqUQVUUcjOiMFtiFXkCX8WY1F6FOVApaXmE4MFIS91gKYxNEyJp0mxIHMY+RFAaoxCFJGSeuQ8BgoAZQgAV1IiYHyPRkDmQZeSvtpZCSdsANH3vKMtGbnCIWKtx/YwBanygU18rRPBRoTCgHKU1aC0MgtYUaFvjlcb3Pa6TMSxUpB0G9l3PWKrKjistqsEP09jI/DmqvBgfObTZec3BJVOfacpg55mxLMjx40dfNJYPx7cfhwLfKwHm78xVgu9Zh+PLOaquPb7FPxC9ZmMx36Df/6rZ85592eOoPt+XR+9GIvLpnj1+TUFV/v0PXeSYChx98VGWlIxnpzuAWQA3r17Mr2j6O2o6R2MMTd3QJcrML//iz/iDX/ycVb2CqPBDL2U2JZmMdymQtJbFyVkipNpwu9vR7e9hB2XVUNU1Qy+EWsvlElc6vv7mO562LUN3jVKRw/7A06fPUEHx3bdf4wmslyvefveWw+HAyw8/kMkXqznUNQ9399RlKeyE+46HbsPV06c8+/ADvAvstw9izKMQ8WgFFxfn9F0vMsEonHvPZrMhxl7IckLk/v6eoizZ3j+w3T7w9MVL6sWCv/GHf8S7d+/oW6m8/eqXv2K1XvLtN6949d13XF1dsVgt8UPP9du3XFxdUS9PMEUlgKYQaXc7drfd6Di0MbS7LQpRAowh0LUHhuUarS1FtaAsikQ4loBXNiG6oya4gFKeP/3kf8Wnf/ofSaB5tNTibFWpCXQ3OtOp3/+4KpWPlbE4R3vx8WLKpiVOgDjilNFPP//eFvjePp4W5vT7x7Ykv/vYHs364er4vfme5L2SA+TMjTFHix+dxzzJGP+YWgLjt6j5npq/X412LJUUvp/8HNng6ahjMDCa7Tg+E6XURPNsZnY9kY75lNl7PZCH5cdQKZF3hWRSYkQYZ62lMAV+GOiGlqgjRjegNKS21Pw1OMeQqieVthBV4inQhOgF2OdED0eGTQIEhVVC5pMDgJCCP0JAq0ihI0OIBA2FKbFVhR8cfd8RvU8VN4hpskjPaPND0ueR8BiZTEJhSFNiRoCRtk/qaLksbY2ltJYQRU2pD0HKB4lGUBuD9glJLyFLog0WoaCisBgFMTh88IkgQUoWIeSyiERmRh/fyLIoxwxM1OuEAljrAqOhrizaasqiImDZ98JqJHPFEmX3ThjY5qIc800psq7CjQx5dp8RNZ7/HmeLfk48k43AuKVjErU58ow/tLu//5o7Jvncv/uz035+5L7ifJOkwEc9+gxz43b8m6MNl4OTo3c9ChzGn8wd8/wDj67je5f2/azshy7/+3fj+8HDDxxptHzzasz3opX8/tEYTYbZOYcb3AjcuX/YjK0EhcINooVhx0wx4t2ANiXL9QmAiPAoLeBDo8FYquUCXXnOwwVD33F/c8sf/uIXFKWwlT0/O6HrD7x59ZrCWk5OTrBlSdf1VIuGy6srUS8zClsUXF5cyIxvK6j4oijY7/a8f/8Oj6euaoxW9EPLYXcg+sDNzQ0nJyecnZ0x9AO39xvevPqWm+s3/OQnn6K1pt23WGvo247dw4bDYc/NzTVFVXPx9IpnHzwjtD3/t3/2z3nz9jWfffYJJ+uGZ3/zj9htd6lfb9jtt3Rdx2KlaJoaU1Tstju6vqUwmsIYylKqFqZeYIoKUHIPQ2Rze0PXD1w+bzCloP2HQ0dVlUnXXqivYwhE57i7uaVtu1RyzcFiXl8/tFLi0bL9ob9Pq+xx+PzoPbOgfnLA6vj3R0c7Ppe5y52+6dE5H3lRjrbfD7xxvqQn5/84cnlkK76/wx6fhzp+b/qOv/qzs/P5oSN/77nMzjv+dcecPh9jHDlX5uc7luMjMnVSWLSOONfj/CBA1ADdIJNf2hQoJS3soC1Kl6CVBPQ6qaE+quKILo5UV0cBO61S5cDL9MGQZZAVBGnDGFWAzu2CkFoowpyoUGALSjR1qnqHqGldakdrTW7dakQp0OqIMobBaXrX46NLwV6qdluk3RBBG0WlC6xESZnD2sjMI1nmMRvNdAMh9WXT3Lj3DC5Q12J4UKKvHP1AiIF929J1HaWxdO0e26yEWnFIJbZHBrmwdlRV0jrNpcfIYlFRFZaylAfQVDX7XkhVDu0eA0LGks5NKIMeR9JThKy14Apk8civRZ1q6gOOPbJENzpn8pvL9h6D5XwCzM2++Yf+qlLPJknzZlamKQg4OvF0zlLryeJIx8Zs9rmjiOd7p5D+/cNWI/4V//iewfgr8vjcNxV2ke+XOv+dO/mvfM9fYQz/HSbne+c2Eo7Mj3l83HmA5ZUIDfzPvvkf8l//xX/E7c0t5WWJ1iIRrREmrhg8bbtnt9uwWp9SNSsR31FC1dnvevbbPYuTE+EosAVNs8INgZcffMx2t+f+fsMf/vEfQ/B888uvub1+z9npKWVdsVqtMUWLNprLswsUgYftFhe3tHshwzk/PcUH0QV/+uwZ+8Oeh7sHWIMbOh4ebpP2hRGn6QfuH+6FCtUNfPjhCyKR9+/fs2gWaBSr5ZLLqxWlLahuKu7vH7h9/14mf4aB63fv+bM//zOePn3C+dkZp6cr7m4f+PL9F5ycnLDfbDns9tyrW6qyYb/vWK5PMMbS9T1D8BilOOx2DIPj6vkLLp+d4ALYssIWBd3+wNAPU4snCvirbYVG3AeHC4MYOwI3N7e4waVsNkz0vI/W2HwH/HUh9+P3HcW4P7zQHi+p498dbaVZtPD/Xc7w/+NL/cAqf3wF2QAmjMHIYvj9Yz0+0jwLn97x2DbMfveopZePMT/ueCvizIL8tVs8459m3AtkILJcj1Yycl6UBQro2x0xSAszhEg3OAYnVU8BOQsQsCoNdbXEozC2pCyqyf4/ejnvwYeJxAxpcw5enP/gJP3POCYXA4U1VKaYSfhGqd0kDg9rCikZoFHKCgNhFRmGTrRm5mRPCuqqIGE5CYVJKohSEcqibTYIjaJgtQpsJkgRyUABi1mt0UbGxpTP6O7UM1MTq5V3jl4NFIXHWtGGN1rhI3TDQDf0AvRKM/pt145EDCLAczwFMJZ/kiErCkSX3ntMVVCVJVVVSW+mk15KDFE2fwgiNawi/6Xuv0ePOzryvAw3ReV5kXAM6EPwA7k/LGxajBUAPXP6MZ1vXr5KGaqyJIS/ZtUqYUjMFJJZgnM6I6YAI/0sMzV654+OMzceR+tyXk77gQU79vi/l+3ncF6N2cJjxO50DyeQ35hFp3s0aXZ//zWBIY8DqFxxGYGb+QM5dVHThf473f6jrKZIQjxZcjgf57gKEsf3KyVB4uA8P/rRc548OUcpIbCyxspIkJb1dr/ZcXd3S2FhfXrCMIizEjGigUPXU1YLTs8uKOqGsqq46x0vP/4Uay3XD5/z0Y9+jK4qbt+9palKwmqFTXukqmuUkVnis8tLHm5uefPmml/95a9pDx0vXrzgT/7OL1ivVqhOY5uCdbXGOYcOke3hwNA7rp5corWmaRpeffcdWms++PBDDrst1oBzkes31+zqLU1T8/DwwMXTKwprWa1WPGw2bDYPaAU3b9/w/vqGjz9+yfOnT+jaPV/d3fHrv/wN6/UJy+UJv/3t54QQ6M8HXnzwMc1yibaGk9NTQvT0hx2379+xub+XXnkILE9OqZcrDruO7X5HVdWUTc0wOPp2IHrZC84P7A/bxDbp6doDVgc++fA51X1JP3SC3H4Mikvx6dwC/HWvx+8bndxflZke9d7m6ysHxvN1/cOJwv//Xn/dPjn+jVZSjRlSS+D7EdKjwCGKyqVWisH5MQWZhxX5XkUi2ljRgFFMgEsYHWLG4/gZNmfevsuvPMWhEOc9DD0wTX6MV5cmBKzWFLZgUQqjpFFaRnCHDhWEm2Pw0mdXmqRtETBFRVEI0LewFcpWosqqDf3QHZ2TsRqLoWt7Bqdwyqe2uGJeb33cjpRqf8Ckd+kEoNdaU5aFKPFGUDGNEqIF3h/kcy7ZaeUDutDYQiMcwaIyaqw5SghdiAw+UJpJKt0OvWMIGf2ohSSkLNBaZEtdGJJBztFqSJFNoHcepR2D61FGUalCog8vnMtaKZxKsr6DEB8IIYIwdD1ehHLDUi8kVSWi9SyCxRpDWRYUhU2zkg7XHYCAcz4xB6pRGzmvMLn+yA/t2HkBYu78paqbOPVjRvZ+HzQIgvzPB2pqmTPPwkgQHy3KCXQn44peVN7MSOs3K0dnB54cX3bURcFYEYBZ9WAWOIwObroRcTyiSvf+OPtQzL5DJQsZJ+cfHznLR6Zs/L7vVdlnX8Ps2kdE8ywrmm/2o1ZFjKO4iZwLP/g6/vmstDt+p/3Bz81POeMExtJhiPzdT3/C3/yD36NpyvHZa2MIaZxO6KQ1VSKrcW4Y5UHr5Yp6ecLyZM1iucTakv1+xxACVy9fUJiCs8srDu0h9eo9T548Zb1acXt3x36/5/r6mqsnTzg7u2S73fHll1/zxRdf8f79DR9/9DF/5+/+HVbrBud66rpmGCSoVCHw6vVb9smRfvvtd1yeX4CC7WZDXdc83N/x5Vdfcnl1lQC2ms1uizKKwXt237Q8e/KUECL7rsM7hzWK4D2LpuL5i2cs6pr9bs/NzR1nZ2ecnJ5weXXO1dUl272IEO3blrMnTwlKc7fZiMBSUdAsFlycn6ONofeeu7tbzrTBGsPJ6QVBKRarE2KEvu9QaAgSoPddR9sdRHypa+mGPaumZNFU1HUp2dQYLP416yYtnqNc9JE3G7fgGPjKG6YRt/kajOOeEeIhNb139J/x6Nj5ZzkojyqZrXmwOq9cHbX8pr9MWIN8Ho+uc2YJpuuOlEVBWZbs94dHc+4zuzB7hRAoq4K6rNhudyKNPDt+/mvGU2mtsUUxmpd8P0YQo8pj0pOQV56uydc6jWLHdN8Cw5DOT0+2ZOqoyueslmRLGVlXBIeOAvTre8cweGIUbJv3QnVubTFRIRdC+CXkaoY4HN+MGKVNbq2h79p0LQmUh/AxeJ+IfZJgmYqBGDXea4wuRN7XBbQVoJ7SCItun6pYYcAoTSC1KpTM9QcUTkesSlMPSqOUOP+KiBQmkjWNimEIKCwoCeAsyjC4jhgihZHJfmPtjGQjEINKUUcaUIngPQw+op2jGHpRmQoOHSsZpbOFjJdoTyBSGENRpNn6IH1za46ZACGzFklA4kLAmELGVryM2DknLGC77QZNkLEkNxANwl1/xHY3barJuajR0c5fE5I2I20TIFGLROQ0OsS0GFVC1WpZpDYr6qXvFO3vmL4yGYG0+STBVtN+iQLXiEF6y/MNPs7gjuc6i8cfgWmyU83jJ3mDZzaqiUN4ynazQE+eFSXGidWQSCbhOcrWIZHuzOWBp0DqMY4AprKcnLf+3u+n1CP/c3pmjwGac0BSdtgTWGiqWEzTHimoOOrJ8r1zUPn7tLR/gg/89i9+w+tXb/kn/63/Jn//7/17tPtOMgXXcmj3KKVYLJfj/PqQcCk+BOrlimaxBgJucGwfNrx/+xZjLSpq3r19x837t5ydrFE4usOBTdfLuWrhofjtr3/Nt998w49+9GOqumZ5tuLHn/2YP/ijP+STTz9hvVrx1RefczjsefbsqbA0Rtg+7Hn96jV1VfHk6iltK+yEp2cnnJ2f0vU9tijRquC7795yeXXO+vSEZYg0KevO6/zVq1fUzYKz1RIU3NxeE/vI6ekJfd8Dik8++YQQPJv9lq7vuHrylPXFU9brM0xpub9/4Oz8DE/g/u4WQ2ToB4iRk9MzKluwWK2pipL7/QPLk3OpfKFHw0lqDcr8syi2ucFzd/uGv/zln/PLX/45z/1/NT3/MbIccTrHY3WzpfA405yXj5i2Yx6zG5ffI/84F8ARO5OmAmbrLmexpM+FGBIx2GR7UGqcV38ct2QHOv53Zs/y7/K0Fsi+y9+ZQbIq9Z2Pb0KgWTRHkfTchkAmS8qgSIgEmkUlvmG2f/PZ5UpYSFTI2fblMnpeX7m0Lrz6E6V6bkjMT3NsNc6ez3iyakodZKJjIBLxBAptcCHzugglciT5tRgxJDuRgo+yLGjdwK47UK/XlKZM9N/HT8QnESCtFMEPDKPirVx7YYvxHkYUHo33Pd4rwOK8CO4RNbYoU8U94KOjGxxRGUJ0KAK4Huc6CapSwDI4UeY1yuDdIHoZTUF/6DmEgRwjJRACvRNGwd4NWBd8EhVIiV8CTAjxgKEwlt6nsYLg8P4YWKfSjQ7e49OisumhlmVJJOCHgbK0lGUJSov0ovPfA1MMg5MSVI4KkdaE8xLRCBeBKK11XUuMiF5zKvfEmMZz8ooZI8Gjr5kC+zEzlWuY2gBp+Wqhtw0qzHgBwrhgYojjBoxA10s5ytqSaRxGNmIMEnEpbXLuOytFB2FAzFExPd4N5LJWLqkzGq/xzguwJVEtZ8c1KgUecWklauOY5H4fp+o5qswbzORzQZQXSXwI6bxjjGBiYrAaxgBiHPhRM8OTNndUwq2dv3Ce+ci5T8RNOfCPUaosPhku/SiwkfNTFGWRRo6SVU1OP8sokwOu7y2E/CzkTsnad/je03c9SituHu7Yt3u6dg8IrW0kMrheeDAg4Tk8Xd/hhoHDfk/fdmgVsVrm8vuupe97FnXDydUTirKkrLcsmgY3CHvgolmwaBra/Z7hcEATuLo4R2vNdnNP2+6pm4rff/Ezqqphfzjwzbdfo5US6t39DpBJnrY/sFw2UomoS549e4r3gfuHO8qq4uLyirKoWS7XHLoBpQwXF5ejjOt+d0PXd3z55VeUZcGnn36C63v6vqMqBRNwd3dPVVWcnJwy9D2Hfctuf0ArS13vODlfcPn8BYtFwxef/4a76/cslguWTcXm9g7Xd2w3G7bbHYtmRYgGIS0a0ErRNA3bzQ5jJRiLPjC4Hl2WDH6g73s0ke1mw7dff8NhsyEWwpKY95ePQh8snvo4i5wvhagSZ8RsBJDZPh3ZNZWSsa7MTpnXYoyzrDWNSStBehtjjip9WbAr28+8Mn1wozS5jAMeO+7xfNI6n8YBGW0mKUmL5ARobhCZEpIxqDnOwrPdS78dj5/tTf7cVOlUSd5WrntKXsTh26LAOS/l7MyIeETMxGhXHo9nS7QwUSfPKyJjoXL+rHI/nRwAeEJwHA57rFljjGEYn1u6Zq2PuPlNJhALqR3hZSLFNpZ8SscvhfcDAYVHgOiOwLKqU1VdHL1KQPnBe4aEgxM9FYeyGhnUt6ANMfoUvHi6XgTEjAIdhAkQhPk0a6/0XY8vS9AGow1tYgdUSgmjaKoUhxiEAXeIrJoF1nmPGzxFmv8XfuFIqoNTFCWD6xgG6ZX0gxvL4vkB6WRztTEEGBWkRBpXohpjtJQcyopKIf2S4fg2SlAQjxaCMZoqoYSdc3R9R9e1QokbA2VZCTFLWghCZpE3R3ZKs/Jftvbk4OV4XeVFOZ+3z4tWwnUpP87BILlU3/W9VCEUialQocgOLaBUREURkMkBBSByp0HmuiNivE8a4WHPmzbGjMUQgyAzn5pD19P1w5Q5pCyCFMjMEmXAEYNH5jcUGcwZ0qYeKyV69neyQNNk/Oa9TKMNi8ZQJQec76VsJJ3ITnQChPazAGAyrEe9vhzwpO/3IVDagrKwic44fybrjYsxHdyQspNpZDOmMhfx2CDOyifjvZ0CgciyqalL0UU4dB1NoXj+7AmrppEAtyhoDzuGvkPlQDdG9vsdClg0C4J37HdbqqIAYzBlgfaOk2bBerVieziw2TxQKOHM2Nw/cH1zw2Zzz/n5Ga7r2W43HPZ7bu/uKYqC58+eMXjP23fvqOuFBOhlyfnFOc+fv6QsDG3X8vrVd+w2G6q65PT8nGEYePXmNV9+9bWcW+oPDr3jm68/5+uvv+XlBx+yWC5ZLVcJLW3Y7/e8ffeW09WaFx+8GB0uQN/17HY7losl5+fnDH2P92KQlssl+/2eh/sNl08/pGoamtWSZrGk224Ig6iSGa05O7tgu9uxWK0oKwH+bbdb2U9dy2K1pKrKNGYle6AsK5m794GqrCB6yqrCKMXV6RrbTUF8RCpDq+WCuiyPnIMkDGnPaBFvGpwXFsnJQoxOKgQ/OkjvYwqaGbUnYgj4KCqaRkt2lnFQI34oOVcdZTwrtwQzcUyIMCek0dlOpAB9Sv6nrD+GMNqxyCTQFWNkcJK86RmpT4yI6JbKSVAG0unJns1sVExWJxvVHIz4mFOZmY1RifUuThWBdr8nRkVVNZNt1ZqYxdXItMPZxs3sQ4yjcM/RS00EYfPXhM2S8x3Bo87R9a0o/eVrSABBk+5zUSScAtImdcFPwVgIDCkpc/3wve9USuOTb4xRCQVx4alNKdVva/BR0w0uackU4pkSC2PQgaIs5TghjtLDIQQBwUZhybVKCMdCFAFBnwIwjzj5PP8/eCecCkrJ3U2JVIiBohCcgQ8BKwDAiCoMRWmxhU3VMyWVAS1c+VEFBu+TEhEyq4hkecaI0IHWGvQ0Rued8AcYo9FGyFmsLYgKvH1c2JIHLotep/9D00xc4DHC4bDH9R5rhVSoroW/PwwDxCDlwqODwqOxzaNFi8oxweRApwU2lanyYhz59JmmbUewR95d44yxmVoH0RO8KCCqGGV+c4ze4yg1GlEYqygKWTSZuCOTU4wlRUgENQ1RweBSFYRcLk8mLFc3UsCWiZ3ESR+fvwRM07lM5ZFMojNl78RIpjmrqpJFJVUPSIFP+j6tND5IQGRSD3DMzlIWo3LEke9FrhjESFVaFk1NkSRg5wHRtAHh0CkOXTuO5RmjZeRHZcXBfNxs9CYnkAONGCNlWdDUJaW1qeencG8PlKXFpDKZD57t9oHtwz3NYoHRAtQDRT8MRBNZrpa8f/+WumlYrdfc3d2KdHVVstlsuH77CmUMBoXrO+5v77i5ec/TJ1dcnp1z2O9p2wMPmy1NXWOLgjfX17x/f4NGURRLnPM8fXrB5eUTolLc3m9YLhYsl2uGwXN2fs7p2alUJNqW/XbHctHQdS1N01BVFeXtHYumoSgLzk5PaduWi8tLMPDygw8gRt68es1m88DqZEVH4h4Pnuv3d3StY71eY62laRa0B+FMv7y8IKS+p/MDXddSlgX3h5aubVmenXB1ecXtzQ3r8pyLq6fsD3uqZkF32OF6h+8HDoed2AznaQ89pqhYNGt87DG6oGpK+qGlaBrW51d89+b9VAImT/cYVotG9lOecU9re9zbiIN3owKnGj1anjzItsG7gUnrYiIOQ8tsd1UWwsuAoMN3h3aUmg3BE41oxiuhNh3XvDaG89US7z3b/R7vI1rZ2V6akpOJGEcxossBpQxgx+xXAvSabIZ8mozQszZnRNF2/WTXVDKacWYHH6W9Sok6rCTSYgvzpI1K9lP2pkqBoaKafz4dI/+ZiCqPP5t+Z7U+ThK+l/ePtQ2ydHo+TH6WSqsk2jWg40TYUxhDCLnabRJvfrLFaqZXAEKE57Ns+vHLWkvbD3StiNGNAZ9RlIUFZTj0ToI/XdE7j9URKzQAcslJ70acqAR2BFHG9UEmBLQyKJPHBr1MBigJBvqQyKyS4JTrBXcn9tqntm7Ce1gJcq0PQshjjaacqWs5JXzbxpYSPQYh4PA+la3EgwgNpLUYU6CVwbuIR2aiJ3sdIErp2yQAlTcBN/SPHqIa2YxkLhqWTUNT1UQFbT/gPChbgFaUdUWJZnAOrw2hb3F/Jfo+u48pu89SkUd94TEDzeXodGZj1WBeA5oWsErXOmYOqXowrtnseEcsQUKyzksQySH6AP3gJXv9gWU+GTDJCkpj6AeHesSClV86La5MfDHmyUnqNPf7NROrl08UydqI5sPEjJbNqxnPPzvsqS6Q/6boBseh6/Eh0VAC4zje2E8VEieV7pNWQhddWst6IeI3uRx6fC+y0YO6LASQ572sR50lYePo4EGlICkmBcGc2wg7YFUU1LVQzvogfVlrDJ/9+Cfsh57lei0Vsd2B4D2Hw4HusKdqatYnZ0K+EQP7ds96ucbYkqpZjAyIGmGBvH7/hq7d4/xAUZXcvL/hzfVbXr54ydnZGbvthj//81+y2W65evqEX/zBH/DV19/w3TffoFXkxfMXnJ5f4Fzk5UcfUy9XOD+wWC4pEyWpLUpOT88wRkaZ6sZxdnbBr3/1K7SOXFxdYQvLBx9/AkiAXxjDN199zX6/4+OPP2ZoW968fsN2u+XZ8yvevHpFDLBoGrz3NE3N/f09r9+85fnzZ1RNTft2YHV2xscff8y333zL62+/4eT8XO5dWXF2fs43X3+Fi4Hrt2857Hf86LOfExS0XYdShhgUTd3QHjaY0lCWNW3fY8uKwpbUVYUvBFMUvKMsSparMz768Wd89+4OXtvUCoPoBqqqwhozCkXFcZ2maiUyCu2SuBcJ1xKjmoJgJk4Q7z1WZ2c8rcXscNq2wzlPU1fT3p/ZgQxwnlp+QAgsqprCWkprKArL4dDSDRJsGK1n5EVpH4RptDm3JUcrkWyPngOMyX11PTpFnd+XgpGsvDlvLeSqSb52pUQ7xaTz0ONWzAmTWJiJ7XOqOBzt3XmlNSpQM+GhZA9NIn/KYj35/T7M7z3TwSPTlEd6H7nqogq0CvSHPTH6MUOuCity9cakaqOslc5BWWjJ56Io5vbOJSn7uSlSKanSoDUqZN+hRh9ojIDUdUBA8BhKrSi0qPuFnISEKYlVKApj8b5P/0oBLAowKeGVybsiTfD5VEEasSq5Fa3ke8uioCxKjBIxJDukmdnSyphdYa30qZVBadETD4EUvUrWF2KQlsDgWJSFRIBKoaLGpVl4H724I+XF+ZjMlS3RjdyYY2dtjSUaEeIwxlKWBculgI4CcOgHlLXoKDOMVVnLObWH5DwKNn03uqhp684WyrgP809z9C/Kb1pJfzyrc0mAnZxJ9m25JBVHP8+YFafMQQYP/OjslBKMwUjzOb/0OMtoU0nOeT+SE01By7R35ldUWIs1gs+YApWcVMfZxotpTnWWPSAtDSJpEYpk7dlihfOy4POCFKc6ye76EfgjzI1GTVWREBVucHRphjsLaeRbOPZKYaRgzuAbiFgjeIEQYzruuNvS9UzVABAGr6aqxFFYC8xAi+l+5ewgaxDkYCSEQFkULJpargvQyTEopfiTP/4F/+pXv2bXdvJ8g6zVxXLJYSMkOc1yLSQhzmPLiq7raOqGsqppu07G6O7viVHGZQ+HHW/fveKDDz7iydNLfvLZjzGmYHN/z5uHDUSZBf77f/8fcnN7Tdt2XF5ecXZ2xuWTK7puICpYrE8oqhq3faA7HHApuLFlxersHN8PQrmtI/vtnvX6hLvbG9q+56RuaJYl51cXfPv117z+7hVKaW7ev0dFz3a7Y/NwT9secK7n7PSUvnNsNhucc5ydnYLS1IsFpiiEmOjJE376ez/n9Tff8MXnn/Pig4+5ff9O5pqrkqDh6dMnbLdbvvztb1ksGva7DaYo0UDfiaBX5x33D3dEBScn53jnOTm9oLTiVMuyoIuOoXdSGveednvD4eEtwTsy1Wl2RC6IBHkOMmW9ZYpcRlU4Zo4vwgSQTdWz4EVPAzVbt7lOnqD7KpWASVmx82F03nmcN39BLhoWRUGZJnwEIG1YLxeUw8D+0OK8E9sZ4xjc5H2ZcQjZdsh5p3JwkDZEVRRYY9B6rlkg+9/Pqh7fz63lBHOg39S1MN8NA15prLWSOKjcRlBH5xTzvc7pV7aP5ECDcT9rnUXL4hSohYhLcrd5/4/Xm22BUuNJH4HAUWhTiHCX1qioicGJkh5ZzExD4tUvy0Iq1slSeefxKkhiO3i8jlJaf1QN0aYgRGGklPZNwIjQLm5w+MKjjaWsCmJ0uOAwKqnIkuh+h2HExInDl/UkZfvEmxMTd0yMqKBQOqCRCTijxHfJc/Ki2Jt9lYJgNFGZJJIm1VHQWOeTsS1KqnqBsWUqh2pQhq537A8dg/PjQpn6SRHnA33vRLzAC/Bg8H7sh/nosBaKkQQBPEqMQdc+upHyncoIsG3RLDHGEoKn7VoG57FliY2KumgwthwXwm434OIjOsj051gSSv85BppMjhLUmKWi1LjRSQs4LyudEclEYEKxZofinWzWSBSax7Qh8nhjkcVy8r6N8++QDSMZSaBKzHMk1zr17kYcbJL3VNKXzNl3zCAbRqMmARkj3Wdue0wlcEG+rldL6lLKVMPDBnliasqgxlJ6MgxORFl0kTSxo9BjOifjoFYfY3lzfUCTPu8TTgMxbEbnUUqPcxpTFmQk/7jX1fRc89PTKcKdgoMUkKTSfQYe5ewo029WVcmyqcdeLiicEyyG1pr1v/6P+YM/VhRa8erVt5wsz6SfKYAZ2m5PXVeAYXe9o65LNpt7Vqs1MUZub+84P1mK5lb0Enlrw9XlFcTI6+/e8MXvvuTi8hy8xw09IXhW6xW2rLi/e+Dps+cE76XUvlzw1Vff8P76hj8AirJgsViw6VrevnvPcrmkXi7wwOrsnEPbYoxiebLm7Pyc9bu1jOGZgrY9cHJ2SllavvjiC775+hVaxVE45OzslH5oaNsOawOHfcvNzQ2r9QqlNf3g0cpyenrBoe148vQpzjt27V4kmOt6VDaz1tIGuL2748mTp3zy6Y/YbR94eHjg8slznNME51FB+PPPzs7Y7/cMvWd1do5WAjo1RsBUzjnhxbCaXbvn1avvwPvkRATEZa0l+EDb9SzqUhx+hJgqTtmxC/g4VaOYValmZWqXWqCVLkZHN9f6GLP6FFAPgx8/a1MLS4S+UuUsVd3QiqauEu9DLqWLLajLgqos2B9adoeOGEVbJWceanSms2oi2a7IPvA+0MZe1p2ZAMAq/S9X/fTY1mBywnmfh0BdVZydrPEhcGgPHFoBtWqtZUY+3dujVuqx4Z0CBBgxO8fJ2YRbEmefS/85MAuz982qgjkQSM8rRFEBDCEmzpmYrI4AunWc7LbWamKj1EbI3KK0TUXqJsqYo/ey3sZWKGkNZOI5sdtiqb1w+QchFdJGkunCWqKLhKBGVlHf9oQ0+TW4QZIEYySoUlBWNTaR5KkgBjbEyX6jhThLJduprMG51E8xs9HKosQoI+ugsAQfsSEETGETzaHFRymTKi3ZfNcPtEMv6P8UJWbpXO/F2RdBbnZUETcEht7JHKPzAlowgm4lisxvVdYiT/loCsAYkV7VVlOXJU2ddL/dwOFwEDTp0KON8KBbQ5JkHVLkl+iJZ9k0xNmCzDP8irnzkAWnx17evG80bvJ5WDyubzU62BzcqBxEROm3kZxMdtgZUKTz96TjjWp86eCp/ZOi8h/m9o7Id3Rdz9APxKjQVk+bP4Zpfl5ObnYZk+P3IWCNoalrFk2NtQYfA0UhVZi2zbOtU7Yznk/KOgY3sTs6NxCCGzNo2biK5IkJ+Ol+5NZCQlUrpUfcgoxuudSWmpU+edQOUJLFjAJFM2Oo5AFK5qQS13kuySpo6pplXQsAK70/l+O0VkleNnK2XvPu1Wuirnj+By94u93IfR8GBufoh4HTkxXOOXZbUc2zVsRA2vZAXxc0TU3b7tO4kOP+9pbNZsuf/ulf4EPgj//ob/DRhx9itOHs/IJnLz4gKsXq7JzCGE7Xaw6HA4f9gbPTM968ecs3X3/JT3/+e2ijWCwXFA8lqrAsViuc9xy6jvVKzmsgEqzl5PQUlcbp9vs9q3WDMYZFs6DrOgorhqsoCs7OzpLtzqBLKMuS5WLJzd0W5xxv370jAi8/fMliuWQYBi4uLnH9gLWW5XLBYb/DlCXNYkHdLHAxsjo9JRD44MMPKaqS9rZld39P33VcPXvByw8/4v3bt7x9e021XNH3A0VSGXW+p2uFl6BZLFFh4O76hn+v+++mrakprBqrSCFIC7EuC7Ika7YTwuCZWkTMy9ITwUwkUBg7kuVAzuTz3lLjnhrXF4x7PqvFifCMGjP/XO0q7Pc5KrKZ0VqzXi4wxrDZ7fHeocYgJB4HKtk0pWAju84YBbjpjGTteXIoO3fZJmHMzPOI4HSeUnXJa6GpK0prOHQDh7aj7/sEphOwtyK1GMaKSraR2a4qYvQJLyTPI13G+H3izzMJ3eQr5LbPjjXjRpuVCohRZum1Mimr9kQ/EIMfj2ms9P5BCOfIMvDeERRoFUT8R/vZlx9XACTZ8+O9yq3WGOWZ+hCEOVRbVPRolYStglRce+/GFufg5DqHVJFark8oqwbnPEr1ot3gnAAtUUm7INH0qymxsloJkZD3oKC0NimYCrZOJOMjVqWMVmlF1w3jAvDRIbpmEjGpeEyCkykPBy/G3zqHMpp+cEQ/9bcDAga0VhOURNpKicEsy2MegKqS9oNS0FQlhkDve3b7LX7wWCWcx4IPkIfkw8DgOsqyotSWzcOGKaLMYAz5l7WG85MVSlsGP4eUPdp4yQCMxBM+pIxBTQs05gV6TAaijRk5oX3wGAV1WVKWkvUpo9ntDzgnJEA5thjngEmRsZ6MhMoAg5ljc8EzOE+fSry5rC0+WDbNOHKjJXvXKTMi9ZKytOayqQVoZqaAx6TspKkbur5PLZ7UwkmGKwRB6GqkpN/1iTQqhHSsTCetyeDEjDgmneNI9BFTNpTWTDauIUo7xGg73uNH2w/v/ajhPU1rkDZ5JI+JolK/P8gop9Yqab8zHpvZ33OetP3j/x3u1lCeai4uLyjqikWzpD3sEmVniQ+RfpCZ9r49EKJnf9hxefmMk/WaEBymsAx9x83NNdfX77m9veZhs5fxubbl2+++xQ0yTvTyg4+4evIUpQ3nF5e4vqcoa3b7A9vNljevX3F+esJ+c8f7N6+oyhq8kPQMfYfRirqsuL+7pz8cWC4X9H3P3d0t3X7LYrHgsNtzc3fDfldhUOw3O0pb8vTpE7q2ZbvZ4X3g8vKCxbJJiqAQA6xWK3b7jo8++pDnL1/w4uVznjy5ou16ttsdTVVxcnoijIlK0Q49m82GZ1dPWK7XWFsxdB1Ns+Cw33PoBlarNf12x932hvakpe0GnPcUZclytYJMrdz39EPLdrelMAYVArFvKZRHEUcgX1mUiKpo2jMusI8SBJi8TpKxHQP5EETmNv87OesQI4uyoiwMXd9z6DqRiU4turkteVxKF6cQBJuCGo17rlBVZcmI0Y9TeT5TvMox5H0+BA6HLikhhlQ14NhrjlsjSsUwreOoss5Kj7dmajmMUwRToDzZNXmJY7eyg2dBQ1OVlEVB23W0STgrJsM1ntJ4N+IsQonjcZVKUxVMSVJOrvLlzPEW2d5qLYHVMLgx+BmrIOmB9L1Qy3ddJwlG7FEx4FOWXRbSS9cpiWj9QSYZvR/XjTEFJpcfEy3+/NUPfRL8ke9SkuFJRSDx+3vvU/VHyvXKTIlOtlkxamm/x8gwOIqiZLE4QZsSW0QOh63QXBsNLo54jLoqRwl4fGBIiWeutRigKmxSvFQpwPfSyoxKMi3vpWR26Fq885SlcAAEC96BisLPLzz6BVVpE5JUxvd0N2ALk8q2njgEikIyyeACpQ8E5wiDAxMpjaV/NG9baosyMo5RWktwnr4b6Nsea1JpxggpgnNDoqI0qGhEB8AqyrJmLI4/8u5NXbJeLmgHT++GKUzIrYC82NU0D4+a+koZ5X5cYZhFyWpavCAl5HUaPxqLEFoR6prNbi/VivR2zWzDJdCGCzD4QJU2no+JKCnIyKFzbkTOqqzk5WSOWAJkBToROaUFLNckJSRrNMvFgrKwUhwLskD0rCxXFsLAOPQZiDJt4tGGRhIrVUxjhpEQcikVMrgnMgNhjS2MZKTGnS5/1ypVB1IlyhqD0fm5TP+VMVZxvGpGKpKJKyVu0iPKXxy/lCyl/6txMWCO6izZaIlJKqqGZ08/xK5POT+7xA8ObRXr8zPKQ0nd91RFJeRUWlMvluz3Gx7uHzg5uaBZ1rjDjt39A99++SXt/oHzszN2+y3u5p71aolWih99+ilFUXK32XJ29YT1xQXeB5aLBaxWdLsdX3/+Obv9nru7G2LwGPWU1998SUTz7OkzNIqu6+j2LVpbmrrm/fv3uKHjZL3CaIXzjvfv33J2dsb52Rn90FPagg8+/pCTs1N88Gw292zf3/LN16948vQp69WatjtQVQVKLVHacPX0kt1uTwye9XLJu9dvuNvuOLs4RxtR9SPCq1evuHzyVOSHu46qquhTj1wDb9+85sUHH/H155/z/PkHFPWCxXpFjJHNdkdAU9cLqnoJ6MSgWVCVDdE7otb0LtI7NTrfPEVEkiwLibMj+EDbDxTGUBWWwTm6rh+z6OwEJ7cpKm5lUSRqWMGLaK04HNp0LjaBgPOCm3mIbCOC9JR1yva9DzjvMNZSpP03/9jIHTQGEyr1mUV7Prck8jFNnt3P+2C0a/OMJV9eYBhCOvc8aTSdq5glNe6hSEj4MHPcZkgbXCsBhhbW0qVprEwMNCYhatpTch4qVSfnJf9cKXhU6RyDouP+vjxnNatsCm4nIokJQO8TDmkYcGHA6FSiVyYRt4mM7xAmSV4ZswuCxkbR6AKlZOzRh8AwrzhAwsTJpItLOBKNJKsggWeMQ3qucg9LUwl3AhodLEHMstCHB0m61+sT6noJusL7nu1uM+KkhmFg8H5kLbS2JPohWayYVIazABHjukEretdTmgKtwfqYStQh0A8yb2iUptIVeI8mUFqLJ+AKGbmrSktlrWR2mpHpyrtASFgBpQWdT3TCMRAjRA9JDVAhKMT5yxhNURY0i5p+6OmGgfbQjkQ0g/cEBdZ3aA/ea2TsRRNJCNVxccYZlaYsD5vEk6V6Mm3UPJc6lud1dphpCabIE534GclcB9PeSqs3ZRByHlVZURYFI0gIWfhFKsFlx5YjWoX01kP0qWwpwkziEJUQKA1uVI0S1OmEySA71xFlLNla3gzKK5F6VQJAWTY1pc3Akfk0hAQAMX13VRT0XT+ONKpUXZjLfIdUKh8VsXweSVF5MDg9F9Kss3CO11WV2N7kRk+jQXLgXE4dvIBxRpAhgj/JOIOxYhLCOBubqz+RVFEJwsVgUm8/oAhR4f1kSKSllkfD5AH3fuD02QUf/+xvUJRr+n6QoAOF0paqNri+Z7/bImU54SzwhwPvX3/Dbr+h22wY2hbXd0KxPQzstjtOTtdUZcXN9S0nqzVPnj7lZLvj4vKcEAJf/PY3vHj5kqvnL9jc33P9/h27w4H7+1suzs5ZNA39oWXXHnj+/CnOiwFuDzvKhNZ3ztE0NQRPGBzWaN4/3DF0LeuTEw6HA+Vpye3NLYfDQRySgsVyKQZHCb4iBk9ZlRwOwoV+fnHGarXiL//yN7jBUZUFp5dPuLp6yvs3rzk9OWO73fHrX/2aomp48dHHaGMYDtKucW6g7zrOT88Yuo79Yc9itcI0Nc2ipkjo7EwM1NSaqDVWG8qywmhN1+4JAR4OnnfbgIuk2W4lWVx+pcrSWDFiwDmbkO3j5pxZoykzy0hx2e9iTwprMcsl+0NL7xxGG0xKiOZ97tEujNMnfpRN10bYJuUts4B4bEFMVQogTbSQWgpWAGHOj4DhaIQnQ43ZX3aok2fP+2zKSuWdRk92SOxb3txyPmVRoMb2xqxdqcRmEURMzQYzjslFonDvZ7uR93fSVpmOIeDIjC8L0Y/nDhPuaMwX1RRrjdwI+VcpuMjVhLbv6PoW7QScJ+Q+ktXL6J8m6Cht7hBRRtpz3mVf4gmFH++/j0n4Z/6dKZN33o8joxEShkwC7vz8jZaJOVHNFXtsiwoVDdENeOOIoRfthKJAG4spSoZDBzqmRC2m6ncQHFyQ6+n9kGyc2NjgJWnMz80oLRi9QSr9Vmms9L/k/33fY63BWAHZGGuJg1ApaqspoxUUZPAUVoumMElpyCVkuJfoJSYHa5UewV4+Ib+Dd4kD/3jMrSxLqoU4hGE/sN09JEpim8odsqz6g6BxhaShkPaxl6grj2jkTJdxYyH95XS+McbZqOu0iKa4QGLMCeSTY4KpNPUovsg7jhhyP0gCAvS0+GMavavKAn9IWZCaGYA4qTCqlBW03QBqGsGcNhBjEBMBHfXRxpXjTcHM+B2KBJaMCZ8w30DZyefLCbImjGA+clQ7zwNmsdIYrORIPmcXMZdT0wYRXYdiFB/RI8mRmlpsY9wkzGsuRKwRKunBOZyXaNskzEWmAs7IbcZnMCGfVWpd5ecaY8Qh5Bpp3mL8zvygv/7mK252Gy6ePePyyYLgPUVV45OqWN/3HA47vHO0bUtlLTpCv99x9/Y1m/s7IYexhvOLc+7vb7jfbjg5O+P05IR3795zcnLKw2aLB56+eIFVmtfffsf/9Z/9U/7BP/gHXFxdUtcN67PzcTSsLEvu7u5omoaysOw2G4qyZLPZY4yhWa6o6oqPPngBBH71q1+yvbun71tsYdg+bPjyq69YnZzQ1A3vr6/56suv+eSTj6jqAmsNL54/4c2b15wsK8HbDHK9+/bAF198ISyC+5auG7i8uOLi/AJrCz7/4iv++I/O+fSzz9jsDnS9SCtXTc0QBkyvGVrD3W6P0QXr05qPPvmUw2HL4dAS/BqiZrFYoI2QgA2ul7FKpZL9EAd+aAd+98VXbNsBNyTK1JhBo3m/zjZqFAPZdYMkHUUxltRVeu4ZhBeJAh7UOu+o8VhGK1bLBW3fy+hfSADW5Kkyu2pETTTVzPU7MmYgj9JN5f95FpwxSM7LLPeIdI9SLS2KQoSunCMENfKoMJqHOO2Ncc+mxEEhk10pPMpTESZVzYSeNzN4zrMdJtua/hwZUuf5DkxtDNTsOaQ2ZbKL48STmoCJ83HnfC3ZwWeg5bG9SknA7Dkf9nupkqg8yRYoVYHzAgjMgL48fZAxQgEJIJUScbshC7bFmFqyx6/gvQQOPlfKBUtgklqoqNx6tPaUpdgoXRosFh0iMRqiAa09Sgm9clnXlGVBINB1e/zQSzs6+VI3DBCqcTzTB1kjuUrsM7FUYAw+XUq8fPACHvQhQAz44IixIKvYGVOgU33Zh9S/iAGjFdYIAlMrUMZIAOCndFDAJIJ2typilPRgQyShIgdc0FIumr1sUVCVFYd2z+FwYLfbY20G7aTMOARccpLaFthC1KhC8FS2SCXoeQEvZ4OS5WXHLItlApZEco97ilbzb8b3j05jvNS0J2YzAokbIffXpRKhUJldL320KAp0149GJ8aENFV6HFsR8Hzut8VptCNfg8Q3CXQiP8/3Ko4nmkLl9Ptc5QgJ/GcSICeXG8drTt8XU3+sqWu2u91sc02bYAqapog+zrL+fJ4+yrNZLWqWiwalNZvtHhfS/HV+VswzqJSRBJHVdC5hS8LxxMQ8VcqBBuNmTqxqxuakXn6v1JgBuQA2Z17pDmSswPubLds28P/+z/8Ff/L3Ki6vnjOEwHYngWwXPUPf07UtSkGzXHDYbwXPAlI+b3cU1Yp6uaQfHE9MgdFKRggXS5YLAc/9+S//gqppWNQrfvebX/PiySXd7p7+sKNZNrz44EO+/eZrjJb2zW6/Zb1e0SwaXn/3HZdXTyBGttsNzWrJcvGU7eaBb7/9mqHvRCinEeGXd2/eUZUVTVNzc3vDfrfH2hKFCBs5t6dqKojw/v0NH374kpubO15994rnL19yenrKm9dvGXxgtVrRLBesTk5QQGks3377LVfPn/OLP/mb7Ld7Hm5vqUpL3ZQ4Im93O3a7Hb3znD99xtXTK373q1/xZ3/6b/n9P/4TbFERfOTkdE1Ie8hondQ2w8jAGEPg7/7tP0KFjuUva8nwh4HcAFcpkMssGSHv1yhASK11EhmTRGju44wWdc+x2jduk8nxLOoKayzbQxLSeZSVHvvMlDGnH7qkHi5A13mgMnpN2Ts+JDs3cXfMExCFJGyDS1wYeSflSlYqJoyJjMoERhplVapSzKIOlWi3tdjlMcieBUFRTVWJOF5buufJ5qjpwtOJzpprKRkIjvG+KzPZ6KkqOY1iZpt6fA0zkPT8liez50PA6mQjlGFwEVvkaa+ARjBt0SiCc4z2UIO0D8H5gEkV68e6MCa1JzOrJMjfM9hSyvE+EQ4J72Ekj5Na6N1IVuaT88YaTFFhioKhE1Cxd0PCGfjRRmUxOu8liRGMgoAcw7hASG3hRMqUEp7CGGx+YBnYMZanlHRTfKIVLI2VzM3qhMCXDYmKaCvO3blIVDHR9OZsEJQSEqDgBdzgY5cYwo6nAGxR4nxgvz+w3e7oB4c2xawkpkXic3RiPlUcNChhUeqH/ighz8tBAVmGktlGyItFxak3PUbhxHHdxrRgVV78kDJGSbKNzopRQn07Gp5xVabFkTjCjZ7IPnQyULmsN/IOJPS6nKZGqQT0Uzl7SMNzKs/ZymtOUTxF4rOLTZuiT+Xg7ATzZ0iOP5AnFRTWWKyxcmytR8M03tJs1BLtaIhDahHktoYQzSwXMmmQs5JF07BvDwJSTGuOZBhSwWd8Dl7pNOd+TBii0vXl69Xp+vLoqraWoirnMcI44ZHxBCEEvFIUWqMJaQxTzv1PHv7b/D/t/5zffPmaz/5oz4nv2G0PDAkxXyS6UK1hfbIWo1kveP7hJ+zuTnjz+ht8pzl/+hRbLbgsFmzvb9lsH+g6x/MXL/ni8y/45NNP+NnPfsblxSXWGoJzFEaxub/l889/zc//8E948cFLTk5OsFacdIiepmnYbXfs9wfM7R2LxVK0M1zP6+++5e2b1xitaJo6EYEU7HY7aUFZyaK7w4G27elaEdsquyLNeGu+e/Wa3apmuVhw2LcYU9D1A6frFU+unrA7HDg9O8GWBbYqMUoowF3Xc/3+PVcvnnP15JJ2t+Hh5j0+eOpaSG/OLy44f/KU1fk50Rhevf6Om5tr+X1Z0h06jBaEhqgwqrFy2Pc9y+WSzUPPr375Z1RGyHeCd7Qq0vXDEZ5HabFT6BnpFDkgEC14pZQIviQDUVdSrs0B7Rgnp/YSqcJUWMPJcsGubXFDZnzT4/6BKeg8Cp5TAOu7HmslELGz8ePcAnNpUiGkwDZ9taz8mNc/NFWFQuTYfRSRGeG6P+61j44zTJz8GS8Q07/RYDDCGpcjjezH897MmfpYzUh7U4zqeGxrLUdWJjtnLwHNiLPK95epTpB/kD+T/zHaQpXblfm5zCOuxEyrxAlqLG7weA+psyzYNadS1QMigdSFIKKFol4pbFAIu+tx5VqpNMFGGu1TjJwGxhqpTnuVWpMkTQi5V0RkOiBEnB8EOF4UFGUpoFFboPp+xHfkUWUJfhIAUmu0TcRsweJSJYLUkpIJAY3WBTaCi0EuXhksCbSgSIxC1mBt0mtPo2jeeXwq2WgdU2lLjGXUGpc4hokii6ijOFt5OJGoo/RagxB8qEDqpxy76sEP9IeO3aFl33aC0A6i+KW1aDkbbYjBpXDWYG1JUVhCdPTtATf4cZ3mRTQlpnkiIIPhjtG78006/WbatOPCiikbn/H5W2tY1CVd79JHxlR9/IZ5b1ApqMqSrpdesi1EBEVaE6kqMG5uxl03RrtKEZUEBUTQCXjTJ4SxTr3S+fePl6SAIJSuw2CoqzT/K/EJuTeSr9eFQNsNBLTQXI6BhRrfN6+c5D5kCNKTigoWTc2yqdPkw5RKWaMpi5JD2x6xJIKeshwkZs5heQgerSZmtnniksuGPgp4q65KBI07iMymQiY64nQvczYRo8KFiUYqV34UERtbPvvpJ7x4+SHb7R4NKUsW0o6qLAle1PXKqmG7eUi0wBqtLadnl5ycXxBR7NzA6vSU2/t7FssVZ6fnXFw9UJQFH330I5QWo/SLX/whf/qv/gVd3/HV7z6nb3tevvyQP/rFH3B9/Y77uzvWJ2uMNXRti7WWs/MzLp885eHhgZs379jv94TgWa9WPNzdj0I+wqyW0PK2YDfs0MDlxTneey7OL/jtb3+L95HFsmG33/P2+oZPP/0Rf/Nv/21iCDzc3XH9/ponT6+oq4pF06CtTAI9ef6M7f0Dw+FA6Ht6SPrkkbvrG4iaT378Iw5dy+n5Oa7vwPcyQWJLQhCmQSWpKH4YuL+7hhhwfUddLxGQ4JbeOb795hvoNnziBgGl1TVKKdp+GB2gT1TZORtGyT4bp7i1pijFcQ+pMlCVxdhvzvt63k6IkDJhGRuty5K9F4lypaM4vhygq2xDZ2OAaU+HKAFrjEBpKXTirEf6uFkhdNx7yWbn/8rh00hYQuy3XZcchDimaSw3TnuFFFAoRpuTbVouh3exgxhTgMTRe8aXSoFUmH6fr1FrQ1OJY8wJlPxfytm5aum8l6pzRJKgEEbTNX2NmrU51XjMyZVMlUFIXB5K7o2wKcqxO9djVIFCUShNWVh6eiplhIk1Ctgvk0jhpUpuDDye2JRVZUbTarRggIrSYo3GJ/2X4AJeJXreCMENOBRd1yamVBmZt7YQnIBt0NFQ2RKbMAtKuzQBNqCUBJ5aGQlMUBhlKUwhAYxWRC2JZaaljwkobrUh+IDNvO2FMRItqghRZsuNFlBeNVQYrfAEfEhRdRCJxSn7TMpDxqZsLkWEiLENMcAwSGlKCSJWmeM72R4OtF3HbndgnPGUGrcoVCX+5qiKlOUaqrKhKi1tt8MYw6H/gQpA3rxMi1J+ro6YvsaA4HFUMG71tGG1QoW0YVKkbpSiMJo+fU7PDUX24mm15u83xo6jPYRICMMY5UqgH2cVgIxuzWejxu8RRSiJDK01FHWdaHGn0niuVIyXlc5j8J4qFiOmYALmSBtj8I6+HxgpG9K16Ex0lG5YrpqoZFS01njkXi2bmkUihBkzolm5vSgsXa/xMc0upyAtyzrkDG0q+xkUITFdzTIHhIRIymKwXtbUVUU3ONquE3pjpWEMZFIbK1+WSrzc2ayGSdmt9B2ffviC63fv0cpysl7ICGrfj/dURcEqiNGXoEVpTbNcjSW4oe+5v9+wWjRcXlxADPzpv/lXnJytKaua0tbUi4o//bf/FkPkgw8/FIKer77m9bff8e2zr7g4Px/peLVWXF1e0XcDd3d3KK3Y7DagZDrHecdi0VAtGpbrFVorbm5uiX3P8xcvRXJWQb9Y0NQN+32XyJEaLs6f8PkXn2ONZblcURQVyhg2uy0Pt7fEGLh4esmyWVEtFpRVyf5hS1Tw4Scf8+71G7a7LdX1NSdnF9RLmUJolivev7tBWUupGna7PfvthsIqFs2S3/u9n1EUMtK7WKywRUEIgb7v2O0eWK/PyLP1mWjlb/+tP+Hmm9+i/iwHbZINa63ZH1phdDN2FpzHsfIVU9Yak+aFsZqIpSzEgAfyPoxjFTHO/psXX0hrr0h06v0g4klClZ6mTqLK7e+UTKfVo7JYdqTrerz3adpAj3TWuQQeslbH7BQgTz4ksJlRrJYNbhAuiNzqsClDPSp/kpP16WCjzHeUqq1zUi0SwRwzkopN9momQpSoxWXvhlkymO/3JK8+YaPk+3NAoMKjhClCrnbmqs4Pv+Y4HlJSkarSyeiFGGn7HhMiRVEQI5SlAV3i+54YHSpNSmUuhSGBCEutUeF4em1wLo2S5vubbkqQqa08oqzTepUSvmDheh+I0eGGIWm7FFRVJfTrtkB8iwR0ohIoa0Ybg7FKEo+RZVJAs0YbrJHKiocRlKzSFJ/Q7UtwakllC52cqxAAOWzMoyWGuqoIzjGERNSiDUZbeX8UQ0mMSYlvegQC/guSaQRRvDMxoJRNXOvHaMq2a9nuDnRdmjsfy0pCBztSRRIJXgKAwpZURUEMPV3f0nb90UJWs39lJzKhWI+28bh85v+asks1/UxW7uTT41ReUzkCVYZRSyB914hKD2GM4rwTcNTUYMyR+XEpKx6B9aYYd4jipIxWLBcLFk1NjJFD19LFntz5zDrewNHeD15aMUWqh0mEDc6LzK93slhzqZQgmXVW1RpN2HzuLr2KwqY54ZTNPCpE5JVijWXRNGz2hzFgZLznYqijypUGUNZkGYPxgMEL82SerFgtFhSFZJyFNTgvBlkXBTJfPd1zGVtM91Tr0RjlawsxcNgf+OaLr/jR4oKL8yVD37LbbcUJOUfbtRRVRbNYJAY6obFWRBarlYj7pLExBew2Gy4vzvhX//Jfstttubg4w5qSYeioYsXQB/70z/4Vz59c0A0Dq/VKGP6aml3qnRtjePXda9arEy4uznDDQNt2ROD29o6Hhw0QOLs4p6pr+n7g/u6Bu4cNP/vpT9Fa07Z73r17x9XVE25u72jbe2xhcS7w/PkL3r+75mGz5fxszdXlFVeXVzzcP9AsVizXC6qyZLfdc1pX7A47dpsDzWrF8umCs4sLnHfcP2xZrKQycb+5J8SBy5dP2XUt52uZQhiGgf1mz5dffEFR1nzy2WfEELh7uOckwnLRELzDJRBijJGqqji/uOD9244nF+cMtwsUagS3KaApS4xWbHcHhkFoolUCxk5h4/F+k32dWg2pFHrkL+Px2HDeuAK8giwvW6UgQMZ1hVhLpYNILWuyMWMQkebhu05K/oW1xyXtfGEzu5J/XKQy8BgsEylLcdpt19P2Hf0g5ExSHJTPZ8DgOCqZ9kM+rk7n6Jwb+UuslTE6oSoPCZyW7GfCLo2+QMkUSZguc7rXcWrPZts7TmXNhZnG1/TMSLb5+89iel+IkpHLPdF47+gHR987tAelZVTdB6FfxpoRJKiUS318Yc3rhl7OKx4HAG3f4VLSoZJzFgfvRSI4CegZY1Jr0TEMPaYU2xHcgFEKj5BCNVWJi4qAA6OxQVEaC0ZT1RVaaYrSo7SI5a2WSwpbEoJUe7TVWAxxmALMELxw+SBVFecHGr3E5gUwZtcpegspGivLksoW+MExRIdzSTUqIf2VApvAIn3s8T7r0cuDGYaeEB1WyzZzMWBsIsF4xKjUdR27fQsxioFmWiR5IVhrk5GPJLZ2NFKCb7tW0J2zaHZy+hwtpLyR8yqPs8WUF+HEPjX1/tOeGKPxedY85er5GJCFGHwquftUHvRZmCc7IZXP47jVMHepY3aOwkeh7rXGsKgrIRsqirGsXaT7FFLEGMnnmwxfbmsoqQJYm2eLpdzonESkOaDJRjELp/g4U8RS88Ap3XelpBqR62WK71/LjFxJmMkS17rR44PI5KTzjEQp0qxzTGxaAkL1IVBVBaumGUmW5JwjVZKT9s5JNDzL3rI+g0KQstJCiKO88f+5/R+zbk7R1vLBhy/ZPmx4uL9Fac3V1VNubm5Yrk84OzmRjRs8VIHt5p7Nw730/qLHKmFJFF79Nd9+9w1/8Rd/zmc//QnrkxWLRU3Xad6+fcPTp0/49V8Y4ezWirKQSH+73bBsFhhjk2OJfPnVl7z88CXVsmFzv2Hz8MDgHB9+9BHPnz/Fe8/19Xvubu+4v3/g93//96mbhoeHB95fX0srzhj2bUvv/Jg1rE9OqBcLolKcnp3TNEseNjvOr64oihKiZ7/f8vrVG77++hvqpuHiXPQKTGHxW0Gmv3j5gUhl1xX+LtD1HU+fP+ftq9dsNgJifPHyA+6u3/HT3/s551dPMLZksVgJNXkMvH/3DqUii+UJWmu6rhvtATFwc/1+bOvkip5U0QJWa1bLhoftXqTDZ1oRjLt22m/5JcQ2SRyGqZo2rV81OrPIJOM7T8/LooDEN9APTsBiqMTGlgBbcbQqowNXqBE5bvSkhjfikuav5KTtLADIf2Y10aYSMrI2VRfyfs62L7+X2Z/5fJTRzCl4Q4z0Y1XApKQsTU2JvOFxUqUzLmiynfl+j85+7ujH9yXCGmbBfn5iMf8tXe3MR4zHGKsQ8s6gUq06VSqc9/TO4ULEhDBObWQpe2kf6JSAyPhwP/RMqqjykgkS+bvJWg9prfgQ5itMKhJGiPdG1dsU1C0WNbaoMBqsKcAPmMpgbcRoaMqKqC290ljnKIqCpq5kIg9puYJPmb5Gm4iOYjtlbNAL2d/IcBuwIxlDust5lltZg61KAaYoTd/1bIY9BDeWFjRClWjyv41OanxiXp3z0kvDTxz2aAiiDS0SqtNru5dxoaqwqBjHcZ+I0Ap7I8bZmIQyjwGizFh2fcf+cKBPY4BjySxthcko5E0Ujz3SuCYnUowMrMl/H1fWtDWkrZfR5kETEGRtBHxUqBCJPiQHFfO6lcw8lc5HmNJ4DobMgT1VEOT+hRiTUp+iroTG1pqZyl66EGvE+ba9gESyut149rPgy4VA7ySl7gfBEOSqxgSxS5mAOTYWcnMUk7CTGu+XS1TRUgGYP+l4/LcoozXLpmF3aElzkznIn+4DarzGDGAKIzgqHAMMZ8ESSjZmVZQcug4dwqz0n5UMM0X0FHCKLncghJ7FuuHnf/g3cN5xe3vLcNhycn5JN3h8VJydXwmaPASsqXlzf8/mYUNdVLR9i9WG3eaB3WHP6cUZIXhur2/4+JOPOOx3PGzu+fjTHxGC4uHhnhCldPjq1WvOL85RCuq64Wy9JjhHnwy5LUSG9/7hgaurK4xS3F7fcnFxwenZKbd3d0IgkjjRf/yjH+G94/PPf4cxhvfvr3ny5ImwoKX5fu9FPEgbjS0M62JFs1iwO+z58OkVZxdXOOfY3t/x61/9lm+++pqz01POTs74+ONP8Fpji4Ltdsu3X3/D3//HL+m8F5ZOH7BK4/ue4BzXt3dSmi4MyhZ8/OOfcPX0Ge+ub+mdo7IFy8WSt6++w6pIUVQUZxdUVUWMMXHRi/PbhoFmZnzzus0l5+ViwXa/F+ZSkxDwaf3J8tJjYJjXV9t1xCgkOEejhGrmrLVoxAfvUrYc8kZOlQUhhYkIW6bRQgZkTNpfY9KR1+To32Q+Pu+3kZknYQHG1Ff688JKGMfKgBC1JbCfipgoEwttQp3njEfY6mbtQqWOQLISVEnQlGWQM+DPp0mZdKcZv37usMdKm5p9x4TeT7mPXFOcvT8x0Ipzn1qGxKlyMP+eKezJCUJ6aakKWSuASOsd1jlcjFI2T8BlpaSFSuJGkaqApVnUDN2A7iEMvWTms1dpC3rnU7JB6sVnkqM4AuuDAkNaw2VFWRqEp08qE1VVUDcLorIixhd6fC8TdNpAU1o65ylNMeo6lMagwoBWEYO05UNw4/3DCzGf8p6opAYTYiQMns4NMh0RnGcIniom5KC2I6NSVdaoEPGhQ0VNZUuaqqEsizHDlGw9UBiRbXSoNEmQdK9DQBtFVAnZnVCzmYM5v7a7A9GD1xFdGGG4MkIP7ELAOMkQbWnQPuBczzDsUKpgaFvZMCkKnveb8tIYM+CYnG7O4sk7OS8jNf4pKldxXPBj+SqXnkY/GBm8zI8qpBc+uICLwp06iwHl7TMHlJ1UdmxKQaaGUkAMHu8S4l9DY0tWTZOYyeIULADCzCSHK4xh0FJtUErNaEEhpvaLTkGS8y7hQeM4apg3nE7VkEktLffw1PizXGEYDWRUiVxKeofzFsR4D3ILQQsVaO+EJz3EiI5pyiHEo3PJMpeCfRDubK3hZLkSwF8MiXfocTYgZCbCHyBtAp2CwnntQiUrnKNyVKI5bnse7u/xGJwbGLwY8/7mhsViiVbQdQcKa0QjwA2cnp0T3UDEs3t44OH+nouLc9xuz29++0sW9YIPP/yQ3/zm19zd3tF3PfvdhkVTsXl44Kef/Yh2t5Xc02hOT0/xzlMUBXXV8Otf/4b1es3F+Tnt0MnYrDGsz88YhoG3b16JfG4pgDjfO77+8kvKsuTqyROsLfh2eEVm19NGEYLj5FQIfpzvEcCzpqpLzi/OOFkv6XYPXF/f8vWXn9MdNjx9esHZ5RUfffopd5sH6rqmN5pX33xNt9/z+rtvuLh8yvW79xSFpqxKtpstq+Wadtvy8PDAoq7o9wdcVfPdq1eUdSNiQlVJXVdcPXnCd99+zToJvIhoSsANLdvNXZI3NeO+nPrAMW9PpDJWJBY+LyVsa4mJT2JeIcyBuYKxh1sWRbIZR8ZCKkZpRn/K0HMiFEYwnTWapl5w6Dp6N1DEvC/k/TGhtvNEVmZaDT7vuylbyfs9r9lc/s+TVzFOmffoGFUcJavnVY/5sUc0fU5+eORsU3CTE5PHeAStZ9MR6bPBBwRpmW3UbE9nczGWLaanllKsdI3ZpE92JMQ4JpbAGMCTq8eRqe1gS4qiRCtHYT22GNBBsUiEUsYWWAtGiappCJEhSJ98UTVQNGz2W4akVzJ/lVZYaqMSJdEYA4XVoiOgSBoJogsStaIuChalOHGFS1osGqNlBNeY3CKXoC+EiIpeWC/T+g9EyfyTDQthwCcQbQ5qdTq3kP4dkuRy9mdu6LGFMQLq0CmLS7K1osku8oeuG8aZfdHjbijrgrY7EJ1k4taKjndVagbXE/2AV2AII7lEmsgmAz8W1XEFIAbJ+n3i5jakm0cu3chi8mluNARH33fCdBQCxhRjyX3qSc8X9SQ3e7TZj5acvD8vummBTsjScfEqRe4PBqKI0ag87pJKkCGgYh61SQtcJTTmWIWYA2EkcssVijCrBOTyUqYljbNweyyRM+lJi8yzEST0eHWTkzdJtENmcXMvTpZBSPW6sTw4RvppMaUs2xgzvmncw+k7iLlvKICqHJmM+zzKFw6DY98e8C71VoPMyWo9BTNyLmHkNYoJvFYUVlogdSliHuk+51nreV/RGFFd27UdQcnctAL0jKQlxpinOAEBFcaoePXdW/43/+v/Lf+1/+Q/4eT0nKZp8AHquma5XIh4iB/og+Ow34sKHhALgzGKd2/ecHZ+jnOO16++Y71aU1U1Vd2wXp8SY+R3v/2c/X5LVRasVqI1EEPDr/7yt9zePfDhRx/wwYvnPHv2jC+/+AowrE9O0MZweXLFdrslxkjT1AzDwPX1Nb3psZ20C15/94rddsvPfu9nnJyeUpYVdSMc//k6Li8uuHryFKMVr1+9ZrfZ8Pz5Cz744CVKK77+6iva/YH9bsfpyZqri1Oub24J3tENHVXZEFzPm9e37DYPrBZL7t695+LskhAcxjY0i5pvvvqa1fqU5y+f46Kj2+0gRNrDgbMnT3ny9Dlt19F3HWVRcvX0KV3Xsd3tWex3YrCNwQ0DX37+O+5efc6qVCyOt/KYDASkHKu0jG16r6XEHmJSIc0LIC3TWQVKWmNeWkyFpSonxUkfpAoxzsPHPLkTx72eM4WqLKkKAWQd2lbGFLWZguNEIJbPWxk92QQ1xwQdr9fMbCm0uzq1FXPmrsfvjzHKxFYQCKyEBvOWiVyTTnZtym7S/stFA62TTVYyK5+vWeV9n6uv0krLtyEHEnnrZwM7tuBmFdp5cCAPIhuC+Oj/k/XOidl0ExX/sf7vc1f8LyjKCm0qlIkUzlOFAa0My8UCYwvquqYsDApPdELvbK2wNlaFFRlqrVDWMAw989eiqYhKaIf7oaOwpVCoFwVKRQHYFyUooTUvC8FPCPWvoSxEOliSXZU4A6RKOQwB1wvB2H5/oOsHur4nEjF2TWknjhzvRUVUeGSkpY8RZkafpsRU7NHpPKJ3WG2k3KMTBz+p7G7SiWx3O7RWDGFgcAN1sxDmsapAK2E7c4MsFmtKrMkXIA5LqALyZkhOqSyoioKyOqYCLkxawCo7viSXmFGTSjbtpNamcf2AijL2JQ5ninDy3pt4YmaI+tEpPw4EpgWUAtnZPpj6bxlRerxDvLQnjpJ6NUaM45xt/m7E22Zim3wCwU0LW2mZJTUz8omQNtbIIJiChClszj1taQVoRHlRJ0+qs8Egq36F8XoniU7SwgpjsCJ2RaXFJBUJrdW4cVVEcCFpF0bEmXd9n8A0U78xb9BhGGjbNi341NpJo30Tn/sUFIyESSlwKotC2LLGMQXg6HkdZxS2sJQxiYQEqT7E8blMn1UqjuNj6ycvWJyc8ft/+MdU9YqqbCiqiqHvWSwWdN1BCG26Dq01fd9zfn5OCJ6hUzjjuXr2jP6w5+F2h1KKJ89eMPSe5WLBixcf4P3Azc0dX3zxBU+eXPH06ROqsiI4T90s0Q8t1+9vePb0CXcPW7599ZoPPvyAxXLFu+trnllDWZZ4H7AJONY0jRDmFCUPt3fstiICVDY12hqWJyvOzk9p2wPPXzxltVpwd/fAw+aBsrS8e/eWk5MTFouar776knfv33N3c0tRFPzhL/4Q3w+8ef2a9ekJZxdX1FXD2ekZ19dv6doOay11XdEf9uy2G66ev8BWltfffouKkdVyxX7fsT5dcXd9w2G35ezqirIs6LqepmmIURDYRVlxenYOkMiT1pRFQV3V1NWCQzvQ6O8r6smSVXjnE7BNMqqMeRoSSM+OWJV47Gxni8J7z8FLG7IqCyn9p88/fimliSplyLnimYJ24c6vZWopMQjahNKWRnkiuElZIymzFWxdHLN/qZTFJGUrgDwiGDWxiY5mSiV57aSboVW2Ydl2TMftU5JkMn9A+l6xPSpz+I3VkIzQl8rF97ehJJSpATALzPIYL1KiS+dDmsyaAveQZvN1zNWMuY9PVdNZUJS/IydYRVlhiwpbLKQKNAjSv7CWui6pqkYcfsJluJRsaYOUzVXEWs2iqXChR88I5ACWTSP4nL3cB22kJVVVBaURimhjDVFpugFUzNcU0wSBkOMZ67FRCO4iHuckZW4PLftDx6Ht2Ox3tF0rLQXv8MkX26TgGUNgCL2MECZMn0k4BlMYKmsTlsHhI9jVasVyUY1IyaqsRtIGN8h8v9FWxoWQolZViiwmRYG30q9WGNAF2kdsLGXWWgc0UTSMCSglRENFIf3pzMyVX4tFIyWqNH4WVUrkJezEeYceFBad2AnVGNX74PA+8o+3/x06sijCbKGgxp7T2FNOqegUBEwVgDHqHKsFGSh4vLFien9hDTrkyDZtmLSJSfKTE3l+Xrjjm2XzxGnEZ2x/jL2yOfmNxvlIYVQKHsJ4oVpJ+yG3NxRSUcAFCSaS4csOT6gM1LhjhbOaST8AA1okMUMMhOhRWrFqFiilRh6DuTa39O6mcEvGaAPWFKikRRAUDAnRnY2EBG3SNvIhSEVlRsEmy0AWReYI8EmjPeMg5vc3B50jaEgJY5YfHDE4XFCpCpJJouT9Ms8sRzNac/XyOX/vH/4jXn74aVLoWo2CHfvtRsinoqDSvfcslkvqZknfHRi6HpBRQJ8FnIgsV2sOh45u6Lm5veFkveTZ82d8/fWXtG3LbrcT9cqLc36/WvKTzzynpyseHu747W9+x/MXz/j0Rx/jBseSVQL6XdP3PR999BFFUXB6eooCrt+95+72lrqqZPO3hzHLePHyJV9/9RUxRi4uL/jmm++4v71lsagpqxKN4ne/+S2D89SLBScnJ4QQWC9XfHf/HQ+7PRdPn3N+ecXq5JTr21uUslR1w2q1plms2Lcd2hqqRUP0Ht8PLBcr1qdnnF/V2MLycHvP9v6e/X6PU4py37NYLdk+bBh84Mc/+Yy6rgknJ7JnlGSzxlo+/tGPaazGbd8T/5IEr09ZcHIEWTEzz+LH5GjLomQYetwwJEa3CReQF10mpdLJYe0PLUMCk04slI8cUApms+OsqkQnnB0eiCphDgKcS5l82p85cye34KaAZLQDKaiPISRCNDPuo3FyYWyDCQjZ+SQgpgTgO+f2n++fSGQYRGbdpPFBUjIVSJUHrcdnMU5t4ccKRAwxVSVG08rxlwjGxpOJiWb3jxx0ZL6PONrfHLDM33v0SrYnjxtbW1GWC3SRqoRak2V/c5IgtiQK336cY8Qi3g/46Kkr4c+YpYqAsLpWZUlZlNJa0MgIacJ6jJXjGBIlcaB3opwq6oweH0VwSqfg3TmH6ztUhLbv2R0O7NsDh7Zjf2hHbQ4VI2VvKUsZ4Z+UHYeksaITqNEICDfRG5dlTVAau1isuLg4ZbGo8EOPLSzWlgIEwuGHgVJrFlUFJInEGLBaocqCbijG/tcwOAFVBFLm5hHKpZAmA0yi3SzGDTF/1aWweLkQMEHwAZ44Mn8pZcZSnlE6BY4qjdKlye6514+M2WheoCN47QcWTsyGX03iNqOTPN4d4lQmH4PWSX85TAtPYgxNjKKfECZXOwtAGAEnLvXqq7KcKJBDQI+LXoxN9MJfbzDMy2DHZbHJgFVVjdKO+Xw7ZFKRON2OFLjkDZ6P60PSMY+RuipZLSS6zCIkfQoupnskRmEE7mjF4CPWRqwyuBjoBpeEfFKUElMQoeSZ6hBGjMn8UWkUWkWywGHwXjgrMmlMyiZkY0+90ny+bddJvzsKjaaPIYlEhRQATYY2hsAA9K7l5Ucf8vzFB1hjqauKh+2WttsSgyi6CVWqBLirlZTlD22L8+I4vevpqhJbFNRNTVHWtJ1jt7vn+vo9N9fv+Oyzn1HXNVprNpsHnj55ysn5JU8/bNhst7x995777Z6f/vRnvPzgKc73NE2FVobr62tub29Zr9dpPl7WzPX7a159+y3ee5qyQqHYPGzYbTay1qqSjz76kL7vWCwWfPzxR/yu77FGs1qseP/uHRFNvWg47A9cX7/nxXPhQ/jLX/+OT3/0Y66ePGO5OmHwgcEHTtYrhmFgfXqGNQXLsuL8yVN8hG7fsmqWoBW3D3dcXD1lvVpwcXXJ7379F1TbDZ88e0rbeR7uRcpY24K72+s0/mSJStH7gTBoSqs5vzjncPeG79480MQAMY+UycoZhi4JAykhEUOc2EjDndb70PfEwqa2Vg6A4/jfHFBEZGJJeBj0DBuTE4UoAVbyU5LwyJRLJtzJe660lmJp6IaBfdviXaAoZHQxl8xnHSp8DgBSpiEkQpn5T4JQnYKYEPxI4y6KdUJSJr3yiVBnbgdA5MGtlZn1rh/o07Flxn1qS8SE+CfGWeUvnVqMYyKQUFGTTWJKwuLsOcwnq9RsCizbhOlzU1p39JoeQbIn+XyUJGOpOoqSseLOO4xzKDOkwovCRkaiOuccptAJ7AjKB6yxRLqjr5XnLxwMOs3aS/KV5q+UTpNTMgHjA3RDL6PUyLOLWlgIdXrmwzDg/SAAcudTIqOw2kKU1lPbe4zp5TmqYmxdai2MrSKjzpjMCEGcqPgKM6rGVk1D3ZwIi9cy0B22GAVoM8r3ZuOqAaUNXYpWrZF+Wk8gRo0yelxg1lgBriVAoQrigAyKqtCpj3b8AIVNzaC9S4InUyZsjMaSJG+jS+UdD4m9TW5wPFrIuayUvyU8KlHNa/VHiy7OFnMUmYwwLrwkpauSw0sRwOMqQnpiqRSnAT/+fALsMaJojdGs60bGRpKCliIpYD0qY0tbQ5iqCpNBj+Lwpp2gQRkw4IcBgkutkDjuw8fl8XkWEJIzDIkMR2brGxaNEPq4NJ4jM/Ypq9Gzmk7ywyF6olc4oFPgjaHv+9mccUxZTfpYmFokuSUQUjahlcKrCeSU74tzjn4YqBM3/PQcArkFM3hP1wqndg46xipBOt9p2mAWBACvv37F/+s//3/wH/yXT1itTvG2YLVYo8KQWLxCyiA165NTvPfc3dzStfsk1WlQuqJqVqxOz4hhYP9wR2EKgnes1yuR1QWappYseXB0bUeMnndv3/Bv/+1fYI3l5YunLBcLPv/d59zcXnN1dYVCcXt3z35/4Gx9IprgbmB/2PP27RvWp2u6tmXoeskEypIuVRlOz89p6gXv3r/l3bu31HXN02dXWC1gRuc9MQbevnnH7f0GN3iMvebFBy/4/b/xMy4uL4kI/iVERVVVNMul0AOXFXfv31EuT2gWC4iRzjv2+x3L1ZLKGNpDyx33VIsFH3/6Y5rVkqZZ4cKOrpV+ZvCe23fvMdZycnYqhCoEet3x3fu3/PqXf8bNm6+5rDVNfm4poh2cY+jdGAzOAXAZvS6BbUFpNYdWqjRinDNgONuI7HzDOMKVx/PG2uHMsYEkQnVZpP2VnK2aOABA1uFquaCuKra7PT5OxwoJdDZWL1HTPk99/xygDM4T6UV4aqT6jQSdR4/DyJEw7tF0GpKohFGkzRidWiyViD91Hf3gJCHSCVGfEp0QI9GHsTCeVVhzlW6iIY5jNU7sShgTM6Wn9uBoQ8b9qY4Cgvl9m/uQSDyaboox8n/gf8o/8j+Xvr0YpOTcZZoqhl5EnIyM1XmlMUBIPiD6mCqYThysNVTlMXZNOF06CB6d2MRiDGRGaXApyw/0vSOgsIWw83nvxddFBWVNiE44E5LjF2VCSXit0Zi6YegHhuCTnLGmJwrrpJZk1agM7A4MaZTbEoltIv8pK1CijWKDc1RNTVk3KDwxeoahYxgEURhjFDrRGBhcABU4dAOlLUcq3KIoccHjBoetRBjD9Vk+VuPcgEUAD7awo9PKI3v5ZWyJ1gFTVvi4JcRIUZRYI6AJqzWESDeAH3qUSqOGQco37ZBLt2L08+bO5aB5VhtzNq6mDT7G+zMfPoL90g4ey08poI2z3T4VHqZ+uDggAzFgUibv3BSsGK1Zr5bUVYlSsom3+wPOh6n/xlRNIG0ookhTWvIkw1QaFAomAS5lPnwhcMr7albmkrs1VUZmFYm8QZuqpGnqNLWRhJiUImqVxg0DvROZzckcJRxGniwh4t2AS+XyzH+Q3il/D/PzSgabOIJUc/ADGbg0Cbv0vRCc2JEfIKF1tWZwgb7vyexX+blJOc5P+ItZmSdPgPzT9n/CrvP80//TP2O/H/gP/8P/Ch9++DFaRfpOlCrLusT1Pd47uq4Tyd6He87Ozxj6lqquUBHKsh5pPofB43tPUZa8ePGSh+2OECMffvwxb1+/4t3bd+z2X1MvSl6/ecd+u+Pu5o7N3R3NskJrw+X5BYvFMrVGNGdnJ7x48QKFou3Ewdd1RVmWNE3D/c0tm92Wq6dPZIZ4IW2cd+/ectjvGdzAdr+l0IaYqnUPmy3eB+qmoa4rOj3w4sXLZMAiX375JacnF3TdwOnFBcvViqJqODk/x7edtKpAbIM1DEPHfr/jsN/gQuDk6gl9u8cozfnlFYEoALm2Y71a0nYt716/YbVaojTc3d0I/bcV8q9f/Zt/wS//9Je8e/eGf7L4HxFKyM2grNOeI/x5hUoAY/LzTL5ijaawBbtDS+8GrM4MdnmhTnidTIubqwKk5TN3UyDvK6wZbRCKNGKr0jlO2VlhDcvlkt2hnXKTKIlASN4kE1XJ+o0jg59KJxCGQDv06KQTL7zzTDiFR0lzmO03paAqihHXQ9pvVSkcAn1i1Gz7nmGIUNiR8TQK3etkB3PyE0mTVPzAS74zTyrkv8eUPWR9FjmPqQ2SxzHVPChLwZowluXnERkSmZl3Lk23yXNyQyCoSGG09NqDF07+UcolJ4Di4H3wQq4Thdp4/uo6IViSarGcSz8MlNbih6zSKPT1zgk5ENqgSSq8nQRWVTewqDVDN+C6YSznK2SssCpKglE0dYMNnhiEL0BpAQtGo8THhIEiKIIRED8xUBpDoWUCJyqFLSqpKEQ87WHPcrEADFEZhhBo20MqAfXicL0IIoSo8R581HQuEqKW0rx3WFOI5rDwqRK857DfYzXUdZHELmSUZnAD/XC8KrQyhMTdXNcLfPCURTmOuGhtiDpQ6gqvwLkUqCgDyuKCSB2OUXGYVJOy98tZ7lFJauZU5iHo0T+npDAZjvwPWYg+UZIqbeeFhXRoRVSa3glKUylFXYnyYVHYWX9NSEuqshRGQ2NSZSI5tWws/NTb9CZQaA1R+jwhQu89vQu5OiejmmMQIacvlJBq3K0qQEz0v1JYiVRFyaKuyLw8MjucR4smkGVZWJwPiQ9dyq/ZsRstLJPZwWZxjyMYzSywV0olOUuJonOJszBGyEL0+MDkNTM6/TBgqypVH6TP1w+D6F+nbCE79nH+f9Z4zAZFkhQ57tn5GX/0459Tnp1zv9vx+tUbXr74gH27Y7/fUVYVp4ulEBI5x3675f72ltIq/NCz226p6gbQtIcDIUSa5LR1UbJ9veP05ISLJ8+5f7ijqUQl8P7+nhgj3377nv/iv/iXoDU/+dGP+OCDl0QCF5fn1GWV+oZSpgze83D/wP6wAyVa8+cvX+K9Z7vdjsa+azu6umO/33O/3VJYAeT6GPBdx2K94O72jvX6hPPLC3a7Pev1ChcD/dChdOTLL77k6skVREXbdZxZS1FKImFNwapZ8d37G4qipKlrHh4eWK0WtG2LAtq24+Hhnma1oqqXAp4cHPWyoW6WxCgJw9OnT9g+3NO2B86XC1wIuEEyrdvbG7797i0Pmx2Dh26QymBdiXpfnyR+50tsLPfNXnVZSgsH+c7VcsH+0NL1/VjVGilrQxj77D4DjufHnqIFlCIF9sdeNyeuY8ydK5PJjqByKzMHH9Ocvkk01iDsqNOhZwF1kL714BKdsNFjpXEk3JllOZKVC+tgZiuc6qYqVenUKCTVOMduL2s5KAm2pyRpfp1qvCs5GRuTLpUaD3Fy4kK4M7U+JucPMc7bAxxVL6d7T9q7+Z9J5CvhXfphgBBEHlhrYmpdoyecRQbAY8SWkoCcIeEswuy68utw6GmHXsato8xXeCeOPeDohl4UGhPg2JaltAUQWz0kHJM57PBhwETNkBIKqTJJhm+0JgYBNRaatP5Igl5Oqgckf4xmGKS6EGNgUCIs5oLgDUIEW9TYoWtp2y1dt6IsK3rnEwXsMJZphsHR9r044yLiQqTtBsrS0juJsrW1kCh+nXcQI7vdjphKFaawGCvMXdKfGBiGYzRliImESKsEhpCAwSbwWgyBwUWMLnChg6gwpiAqNek7p0z4qBUQp8xRFvsPhqPT29Ovc5l6DtzJaysfTwKHKTud8AJx4sVP7xmigMrWy8XYAsnnOvJ9a0VVFHRdR/RunMHP7QcxOPl7YVARXZaAyCL3TnShx1w8RSPSAZVNmkcLZbJgQtaHlDWbwlIaQ10IMjYznI3jrzlgSmRGRivKQsBMKpoR+GNSpBwS62H+1BiEzSOuOFVrZJTFsFyusNqy3e9kzDODF2fVjvlDdoOjTwRIAVGL831/lD34JIAzBnDZsKe/S2Yl/cL/S/hPeX7xKWdPn/HpT3+PxeqEqq6IQNvuyTgQ5/xo1Lu+5+LiAoLwwB8OBx7ubqnqhmGQ8uztw4GiqjlbrlitT+iHgbOLJSjYPdxRliVnZ2e8fv2Gf/2nv+YvfvMln3z6AX/77/8tVBDVSWM11+/fsdkKQK3vW/b7vYzFKsYJgHfv3tF1HZuHDd45rp48oaoq7u/u2LetkEB1PSenJ4IDaBbjJINzjhcvXtD3A8PQszvs+fSP/pDdbkdZ1FyeP+F+84BSmtXqhJPTs5EJrttLy2G5XrJer7BG4QYh/1EKFqsVMQSqspSyvi64vb1GaUXfd7x/956qKgkx0jQrlktN23UoZdLIlqVzjm3vaINGVSsimm4IhDhQlTbNz3O832d/j1FGtKpUfYOJFXLZNGgtwc3UEpR+rjZ5NCUHBumfIeYfprZCJcH9I3sTmTcmp8Be2EL9WKGSmDlzxyt0AmpDSoZyIB1nLbTsIBMxVzd4TIhoU6CDaLDkxGissKekpiiKo+s52mKzMkdRWMqylKpCBJ8Y9iaJ4lw9UOP9GEv5pAmslGVnsbBxwmFeP4mM9ms+1RVjPvYc/Z+DhhxoyB3+J+X/gHf9/5K+7DFo3CCKewI6lB58CIGQWjrGSJVAa42xln7oxC5qLaR0fo5BkNeQZHpdIlTyIbUl9UDbe/bdAaNEPEwpBUOgrGRyqW0dzk04gf1B+GycH4jOUxcVUQkgc0isp8EPgE5VOEUMYosjjLiOEAMusTU6N2A1kEfHlUrEYD02+AEVPd1+R/SRrm3pu3a82dZaQWmmUTwfklRqCMR+EGevDMqYNDoqDvZw2BNjHClmpY9cYFMFQIhnjgMA5z0GlVCLwh+vU/9LZnbzxcnjFkBDFLKdsXycQCVqKhsplWkXVXrftHQehwKROJbYp8WvEnI29aISw9YEGEv0kQrBOkRG8g9IqFklEfSyLigT0jM7/HHaIDlto1WqArQoJWV32VMpjx+DD/metneESGIaVFOpcZZaH/tL+U3uX2YhIZMwHSrV8iMzTWmlUiUiTw/nWyPVgKooROrZe4ok4RxTuTRJhMl3EsaNPc795oArRmL0FIXlZLWkLKqURdXsD3sUQm0p8UIGMOUyqlxzPzjQafZ1GDDpvUcZxRgITcFglpU2WvMvl/8ZH330KX/37N/ns9//Qy6ePWe9PkkMXiXODWkU0uPdwH6/GYFgTdOgFVy/e0MMgWa5ZHA9C91QVZbv3t1wff2e5y8/TM8soBJHuB8GhjRa9/CwYRgcq2XFk8sLnj57wpMnV3z7zSuquubhfsOf//IvWC0XnJ+dA0ILbesqZR8yolikIOw+3qdRM8VisWC5WGK3Gwbv+fr2G66eXLFer3j//j2DGyjKEu88u90epSQQXy5XlGXJ57/7kp/8+LOkE9IwuIBKXO/dIEx32/2OerkAAofDgdXpmhihLEuK83NCEGrS63ev2ex2LNdnFCkoLqzl/PyMvh94eNiw22755NNPaQ8H7jdbyqqiKQyrpiB2exY2EggoJ+vKBy/VxbzGkDUQZztC1q5IJBt9rDAXgkyj1GWJVopD16W2l04JipF1m/rSuYcNE6FQDIlnQ2kic057NftzbEQiVdEk40rGCMjekTZEDqbzeSZXOWbzKiVA2Z9nSlpGL2+TKJFzk+3VKcPN2vX5XORjE3/KuH+U2Jm57Z7bgjwiDFkUa37P45HNzEF/TgqO2PvGN82y/bzPj754skW5hDsrbkAUZ+idI6hh8mtGoXSBUlYy5W6gLCpRT0TIl4QLJznSYYCiTOvjWMMG5J4Ms4qTcwFjRHL90PVYpVBalPqCkQkoYbqVSa8QI20rPxucwweHjgIIVUzy5kLk5CDI8xVGTE2XKMyzXVco0T3oOknANEncTPB0WonaorXG4AcxYt4PDH07zmHm+XWjoDSSbZeFTcIwARVlzGDsH6fn1x/kSyXCg2hkfKSy1Vg+7jtHCMdZXB88NipKI2MnIQjqEtcTU3m/7+V7UUYiL+9TRghZUWtaaFOpK1/PD82L5t/n5ZXBLfMe1HypTcn/FPFnDxezsx2jVPn9RGusRAeA1O/Km+zIOATh7e57QgpIlBLO6IwuHgOckImI0lQEYrzyON98A40ZSzIsmRREQcJZJP7HlLE7IqYsUWpaD+OlPrp3SguZTD/LuDMrlcwMfz9yzv5Xsn65l3VVsVw0SQTFE6O0RPqhZxgGGatR07NI+QEpCkNp4RaIQdoPKvUmc+UnZwlhFjD6VHFAKf5p/Z/x8vyKT3/++3z2B3/E8vSC5fqE0hSS0beHlGWbtNk8YCXyd14IOZyjrCuGrmNlKzxCi3zY73FuoLAFdVlw++Y7bt+95fLZM9zgeP3qW7puz939Hbe3N+x2B5ZVxUcfPCUMHQ/bHUVV8nB3w5dffM2rb16zWi84O1tzeXlJcNJyOxwORO9ZLZfjqKyMlim22y1t23J2dk4M0pt/eNjw7TffcXl5wW57wDeRy4tLrC1Q2w0RYSVbNQ33tw801QJiwJQFNgaKWlp03W5HVLAfRBypaRrBHlxfs7m9Z7FcYqoKZTR+aNlfX1NXS9z+QK8NWq+JMbDf3KOiplksObQdzWLJMDjqZkE/eKF/NoowDJihowg9vT8Qk1JpaWdg0NQn1yqr+k2BYGkNZWFmezdX2aY9Y7RgYAYnpVNl7AxMLMGCJBYK4hx/kvruUTAGWfI271vyFFMMKC2u2zk/VgPz+5TSBKXIO0k43aUaZhIqP9s5xcQNQtJJkfaBT0oGYl+sNRAl6AwpscuJ2mQq5o5Z5VtJROPDMCYPoyFN+9ekqoTznq7rhO0ujwvGqZI6giUj8EhknFTlnMzFZJmPUracDExW+VHeJvelLCqMFgVZl7AdhTEYJdNJu8HRO0dMdOKlLUUzwgd0FA4J13cMtqQsF7jHcYqxZJK6YfDYQibCBidSwiGIaJvpHU5DYww2CIV4pht2QSZoyHYkyAi087J+XRBcQfSJVTIlod5FtBE21BBFJTXEgE623iext2gUqEAcPIUNFNqjg8fqxBNvgmO339IPPYWdstuc2YjoTEldlRQaVPBpkRpQWqh+faDrOoIXQz3ESFaxK2yBNlZKXECMwsQ2f3Vdj6rzqImIFAn9rhjzru/o+4HCVKAEBOdCGLmWlf5+ZCbOIm8mNf0gzt6QnPaYSUIinklvTQYhs9/ljTJuVNKAnRJRjCD7b1aBYKwcTFlITJmpGgOEKTNldMqD82nmU0ptzN+TS+mA1pL5TIEHySjMSmmj45YREYUQXlg9o8VVU5aR2f+sNSPYJ2/e+Z+iIJl6jGouHDLt1KO9nP+IGYkrDmq1WCQN+EiWuBTNcAEiDU4IjY6eZ74DqYSXDdEUzjHZHnK5P4znH8IUdPSDY3sYiNWK290eF0Eby9AOeOWODE1RFFhzgnOd6Hw7j7GGZb0mBE/X7tjFSEgAxJg+UxYlnbXc3t1ze3PNZvvA6eUVxhiGQTLeXPLd7/a8fX/D4GFwPf/8n//f+ff/8T/izf09b9++k4BkH7m5vhlFRTYPD5ik1HZ7e8t9mq0vCpk5Pz8/o20FO7NYLBjcwHK15HBoKVK/+M3rN2hlWK/XnJycEvHstlv2hw1ff/Oas7MztvsdnsjVk6dUdS0VDO9HNdGmadK4b8XZ2SkP9/dCSlTLmFq5XHP3/oZD2/LBx885dC27zVYqWpsN1lo+PL/k9PyK7XaDsQVKG6q65rA/YDVsNhuub27YPmwEs3Qp5ekRqCulokf7nfHZV2UxqlzG2f/n6zZn/k1d0PuA9zMbQAKEKcZRK5LTNEpsSO89Qyqvl7PJpzEzVpI5uz7hgyaTlHL65Iq18MWXRUFpCw6dqBtqbSTQTdmznC+QKciTDSYF4SkMABCp47SHjMkjxY9umVIjqp9kz0ZAYZyqnHk/J9y/XJMbUFpEsMY7mvMlJnuTfz7v609aKNP9FuxFaolOj3IMVIDUM/dH1QFjBKyojcYoiyEmyl9pZ2dGWUIPOELdQJLSBk3nHKrr0aZDYUaRsPwqygqldqA0LvT4AcrCo42h6wWLYZiCE6lSCjur6HkU+EGA8ilVR+sJByFtYEUY4lGyArLu5uKEUhWQgEQNTvxiiGlSC7mewQkfjzbYEILEX0bGHypd4F0/9oO9z3zGmmVTSd9B5760wpoCrUJaX16oCf3M0afHoJV8cUhs+U0yGvNXzkZ9jCmCCQSlRWyh7+n6QZSbbGQYenloqBSAWBmZmy02BWOmN2bvk29MlbGYstO0gNW4nGfZwtTnzzd5Pl0wLuAQE/JfPjNm4KSxkoiwTKFlg45OVzal1iN+OaGCLT6QxoIUGRSk0mYO+RxVivcTaQXZOcYJZZw3Upht2iKRVYzBdco+RhMYIs7LeIyMD+VMOm3WZBT6QZTOssEgVyN0Lhek+5TumdzrkFTyhABjvVwkAzmdc753gleQddB2HYWxhFHLQGNsyjDChJXIm0euN11/PmbMI6GBsqpYLQWUd/cn/0f+Af+QarFElTVtL/TShbFoIxn/kKYYJGr3UgmIIioi6nWWw26L947DYU+730vroKikimNKmmaJLYWT/vT0lKvLS7a7LXd3D6zXJwy9o6oaQoTbhy03tzuauuQvf/kbtAvYosAYxWc//TFlaem6A9fX1yLb7T2LxYIQApvNhs12S3s4UNc1z549pa6rMfvSRtMsaj56+ZK7+weauubi7Iyu7bi7v+f29paf/OQnaAX7Q8tmt6dLeKCLwnJ/f4+xBaawgElSs2akmO67nuVyQdU0VP2AGwZqLZTQ2hSsTs7QSlPWNaosWa5OuL+7w7fCqOidZ70+OUJd60T/2/cdtrCcXZxze31LJIrAjpaqWA5i8zqIozFSBO+pk0z1OIFCnK2ROG6JHGxqneVpQ7IdcfwdSDtAKZXm7nOeEVPmL+XhGGMKxIrxhKS9KRNUKuZ2WJSWI4xji1IBhKauJIMtlgxOnkU/OAwFxljhGxkz7WyDFKNZSxlBZAr0ddawV2r8HbOK6Bxp770fOUHmtlDBKE7kE3ZstINHaXkOAqaWSLYRcZa85H08f43Yrjg5//mxJRGcSvQqXYcttIxGWsswdFJ1SZmyUcjfvfTYt97hvWNRCNOjHwJD7zGFx/mBbjhgTXl8XigBsAfJ1BWR3jnRsPEB5wTzMHiPsSURwZZorSmMxhjFwta4QYKOEA3eJUC10sTcRkr3y+TnRZIeHqsp6Z4pUYMdrJegicTlEryMmLvAMAR0abH5YG5wLBcLqtLQ9S3bzTahJXMvV8BCWZxHmXTg6KSnHUQMKGdrWkuU6H2grIQiuHc9HmkFWFsR/DGnMqkXMkaYIRCtBRPphyRDHJUgu5Mgi0RD0hJwvhsz3WkF5H2vjr5qVhUfnUzelOPvxkh/WuwT+CRn/nGM5Hzu102r/GgTuBCIXgmzVop+H/cFs5hNTAu6KFLEqNTMLEnWTQLQyBZSKC3SkWq2+XOVICSkqdKKphK2x8ENBJJOR7ono6EECTISIY8pJuBTNioh+ESIEo4DjqMsarS76ZEm9jFIhBRJvlerWZSaxmnSMVPRg6os6Xrpv8s430QSFVOlajLhpAxlcvhy7nF0/oumYblo2P7J/57m5ILPXvwtPvr0M07PzqS15KEqhGY1tzCquqTrDxzaXSqnWqFWVgJefXi4pTvs2WyF4Ge9XHJycpICV8vJ+QX10ye8ffua4B3Pn74guJ6Hm2v6vqXvDd4P7PdblqsFV5dXdK3n7PSEs5Mz7u+2nJ2vOTs/QRvN82fPcM5x6PYCll1oDoeDoP7TNeb12fc9XWdYrZZsNlvevX1HjJGryytOT07Z7TcYBZ989DHfvnqFGwL39/fYVBGUqp3h/PKS58+f0SwXtIeW+/sHmmbB6ekFFxeXFIWAgctKU5a1sCOu13jnktqZomoa2v4VF2cXbPcHmpUECk+bBbgB1w9EBc4NVJUAzoZBeppEIUp5/eYNLnj+Gxf/KUopCQQfZfLzIDxnsMYY6qqa5Qpq5mtmez3tcW1MIsMKZDKuKR3IFanUDkoVybGtl8r4RHA+EuIASieZbNm5WWxIKLezcZoCd1QkuIGqLEaCHqUVi6Zh0Yi40O7Q0ffd2BYYc6GYSXYmmzAVOuUagg90vhetEa0olE02Kd+HFOQg/encIh6z+ZSEZJKVGKMQHDV1YgqdAvAs2ZwDnWxvx/uVA4u5GVLThM78548B3RMuQR3ZgHSVeDekKYg4gg5V8Jj0b6l4ilCY1walBSugm3IEYysVcI/8lkj+alwQ3jup/kifPwMDQ2C0pWUiACJEdKHHYFFGxXXi0MkJlRZpYFwK1KQ6opVNOU9IE0gS9MUk+JQ6fhIUmTCuX1GHNVgTcnVGyA5sYRJTWKCyJaFp2Gx3qdcTROzDDVTIQYMSwFRp9Njflki5wCdOf+8DUSkZhdHSjwjIbLboxR9HUoNzmH5I0Yxkc8E7vFGj9rnWiYlZKVl0WqGtiACFnIXnDHDmyMft/Xijpx/OfN74+bz4cmVgjKZzFv7/YexPY21b1/w+6Pc2o5vNWnvt5px9T3PPvbfqlqsqZWxXGmOHRgSJEPHFNEq+IJoQAVEkwgeMHAgfooQYJKSAIBKhDxICkQ+JkGwIwkigkAjFOLHiKrsa162qW+eee85uVjfnHN3b8OF53jHG2udYMG+z955rrjFH875P+3/+f9bNVKLiLVPWuhjzsuEEQClldRaNcXHuWccnMQbraxl5SkVx8WnXu4AZS5BRghxjZVyuZPo5ixHNOVPVNV0tIirZSM8oxITWDBf5zWzWjSVMewOujA3qWcxBaHxTFKYxucS8tSvieMuIkG6wECJGeR2MQUSkDMwx6LiL9i4ty8hgCXCstXRdQ98PgJTUF6yBKRnCJtDLWXUiMjaVrF/aC23b0nVC6GHqjheffsb3fvALXF29wFpDYz2ulomGmINQYath7rqW0ynojDnYJMRX5/OZGCdCDBhjef78Fd7Ieq2bhvv7B7y3GF8x9D3TOPLzn3+FsXDcX/P64494ON1T+rTXV9eMU6SpK3b7jhQDl7Pofbdtw9XxSFXVPHt2w/n8wPl05uHunve379ntRLMDZBqiUr74y6XHGMvbt2+Zppnj8cAw9ux3BxkNrWpu7x45nS60TctP//BLqtqzPxyYxokUE7fv3lF5Q103OFdxOF5xdXyGs0456T3GJKq2YuhHbF2zPz7DGsN+t+f2/h7nKl69+ojT44l2t+dyvpC5Zdft8b6iP1+IQTVAkuiZhzgveznMgcNux93dHQVsXAJto8HYdvJEFqiO8TmnJDrarspZY/YSJLLsV6MZ1DjPGkxujpXL7ta9ktOqLbHYB6PaFbJ+Y87040goFb4FPW4WG5PLOS9BjNi9pqoWByqsczK0ftjtaOqacz9w6XtSNkq1vtq6NSfaAII3ZYECBs4hE+ao/AU6FuisjhamJbt+YlM3hrBk/ruuxVrDHMuoZLEpS11hNRTFdum71goRTvEB5ukJL1WH9ZflD+E7cdvyACCtDksRXxO53AXvoRWbqnLEIHtlngLRVziXqarSXvakKNgWVz3VsBHCHXHEpR0h2BC5TyEmFXbSIC8KPi6ZxDxlnKkX/oCyBp3zGpDAnOPmclbjWtbe1t3EJBoCImQgLSprBGdCkgQsRGWenSO+IHzrqhKmIV8xToamM2AcZ3PP0PfkZJimxDDO4GucF0SjAFwSjkSKBu8agjFaGk04Z2gqxzwH5pTJRGIlBvtDLIXJK5JSohfhHMhJwBIo8ErKUBmyw9uKyqrkoWbkpTz9YRRZKhlZHYOABzdgE/N0YS+/h9y8lZ57E2GWh2EUCVwixcUr63Y267qU8Uq7UiGX4MIKlfA4R2btN8aYl8rI8s1lA+gGziqRl1TMIumoW4gRtOzY1JWS5KiRKeCTKJUVZ0pPct1kxanL+GUA7wkxMoVAVP1rrABYFqO1WagGtCWi7QeyzMBayVKMWts5BApgxaRCgOTAuk2wJfe41lGlohmRF9yDZCFFuKj8TsprGyCq8erajq5tMMD9r//rHPbP2R9uaPxOdAKswTgHNqoscSZHIfSwvpa2QNVIb9Ea5nmin87EmHDecTxe07Y7Hh/vON/f8Tj0vP74Y/rLg1R/rq8Zx0kwMbOMZb0b3lA1DpNEcXO/v+Lrr9/QVA0//sXX7PYdYZo5PT4KXznw8PDA23dvSSFS+0pR3pYffPEDqsozjAPv3t0u4kRXVweMgdvbe8ZhwChQLOdMP1zo+5F+fKBpOn74Cz/g8eHM/eOJ229u6U4DwzTImGmGq+vn1E3Fbnfgo48/xjvROMcKx0dSgZ05Bp7vb8jGMFx6DleO6+tnvH33hm5/ECEcK9Sk8zyRqxrrPO3xmnGe6C8XqrrW/eXxtSGEEW8yB2f58S/8CPcTj4BrpdUmi9AgmBvdYrYE2OI0hzkAlXBomLRU94oz29qNSYWEUirObuuQhN89xCRS5RqIlMxWql3l31ItSCkzxonZKeI8I+e1lHAXD4ZogAhlsJRz5WjWrgDApFWH6+OeuvLcP57I2mKTwFiPrQyGBZS3ZOVlv+ufKSUd/QxUwdPUDc47oeaOa5ZfblKpkWa9lsr7pVJhrVHcxGI2FxtqrfvWJJg1GjB94NiW7yz2fTU0a4CwVAnWfwNCBGSE+CfnCDFhjJTEU5RgMgZh6MNYco7MYQY8Ve2pq4rD/hkhBs7jIyE9JbAbJ5kSmKMACZ2psJVXfIEEPjkbYsgkp57Krvoo63RaZgwzORtlJ3QEMkYDRJEKFh2cOUat3BoyygOSZiCID4iidZLiag8Lp0DGkRGxKl/G41IKjFNPTUXTeOosDt6QSTETwyAkDcoy56ylbVoJAEwkhRlnMwlRPkoBGjoqkyFFmTeeJ5VgLcXsp484KfhJhDEcIA7fO7sM2Bd0f85a8nYVBslOZ+WW3xbo1kW6bikJRvPiMBZMh67pnAsKtQBoyg9L2WtdzWsG8DTg2Caikr8K0K8Qtswq3SkgIq80kYJ0j2HtsdnlTuVNiX4jDFSObzYb2VjmOGPJHJRlUMZI5oU4ByPm3ztHiHq/c9lE8vNt0BJCYA5R6UbXEp4EUNu7az7IXoAkz9s5cf4fvuLyvCU4sov2g25mUza50Tlcs94LU9QjKXwlS7lQaJzzgko2BnZtuyq/IZu3DgnrKlVd1PWLzvRGNDuSrMEawxSEoGO/72Q+V/u7SlOAsZZxmrQUZzgejxhWWdCQMs9fvGAeB86nR3ZdRz8O9MOMsZ6f/OR3uLt7xDrH8+fPef3JR1xfX5FiYBpGxmFgnAaKoEs/iaJiBn75l/8Yh+OB+/s75pOQgOz3QrQzjoJfCCGqNrogyU+ns2QvOgJaVZ7Xr1/zwx/uub5+xt/4jd8Uhb55FKbDd+/4+utv+OEPf8Buv2McJi5h5NPPP2d/PHJ3eysTAk1Nveto2oZhGMlk7u7u2LUdBx2P7LqOaRypqorj/sj7d+9JMfLi5Uumeebx4Z79YUddN+zbmmGYmH1FCDPfvH3D9fUB66yAZTcOH90LRnvo8gwjzhqhRZ1nhjATnBh5uwmAJRnLOp6ZlQ554yztCuQ1mvVmdcIpRWyRss55Q26zrmcNTRfgoAWwVnBCaVPDUtpuQ14Ier7ztW4/FayRvSoz4wFIS8WgBEqlwpG1orDNqo21S3I0x0QcBCCaUlzsp9nYJDIaaEuAI0RMct1PAcmlMrIGGwWUK0mZGpxccFs8eZ5PJqY2idq26lgSF8waR8UQmZmJKPDZCg4k5cxZhZ0wFpNRvJMccJwmfFtxbDv2+6MAXU1iGM5Pbv/5Msh0SkqqBCjTICK4Je/jWUjSkopYWQ3ewizjnyEZUrKElNQHODCCh1vaRHofphCwMeKtI2aDSElHCWyCrPmYhRvGGCsKoYtqpUiwV67CY8TxRpMZp4SxCUymbfdUviUnoTw9nS+EKVCFQK1ob+c9tbc6voLIGGYjQIPK0DoHITDMwl0cYsI6RB7RyuTA9hVVA6Dy1bIYq6Jnb8wiBWwUTV/mmp2VcsowjOLYnFDvrn2mtQKw9gZX51I2wdI/zuJNMloxoAQFpURTPGMJIiDMM9l6/Af+rZxDKsfIBTOQiM7Jw51GQYprmbnEI9usv/SwrRIiLfl2WezLpSa9b55dW9PUtUb/q0MuZUDJqD0hBhWOsEs1A52bLtmQ9KQkzS73qtyXZdOVDaj/SDpmVHmH856ko4klq1+CJ2UgdM6LwIqWOJcNroZ9GCUrAShwgQVEaWT8aNtGWTOxhPeWuhZa1kUo59f+ErbuuHrxmna3l9K78qgHnYDISTJ0mflPhHDBWEdViWTtMPSEEFSKNy4broxPXV9fkcLM7/3WTwQZ7x1hGOl2Bz7/4gf81t/8DWJKHI9XnC9njoerZdRsniZ+8ge/z+39LT/4wfd59eIlOUWMszR1w+l85nIahJSra/j888+4efGCn/70p1wuZ6LuJec8z66vuXp2xTiOzHMURTGg7TrGcWR3OHJzc0OMka+++orf+Z3f5vr6hqvjNb/+63+Kb775hmEcOGC4u7vnZ199Rc6Zjy49bdPx+vX3eHbzDOccV8crUoycT2cJEEaRg76+vma49Nw/PFA3tRAS3d7KtTw+Uncdrz5+xds3bzHWcXXs+Obrrzg9RrpdpKllLPiw23GXA1MQJcWbGPEqObtMAFjIOSwVvjlELFJtQCeLTDbC6RAjVe1x1qshFSeYsorsaGKy3dRrQ07Kul3b0FS1BkkTIaNjtWurQA6clnN6CtFTiV4l3pKZba16KTtkqSqsap4l79aDG5GZNdq/dkZBiEmAezI+XKpvH9goTYgM2lotexWpWEhyVYb1pK0nCY3ibJSf0HsnXCLFJGTZv8ZsjVQ5cl6qmdt85lslfoqNLg4+PzlK+bK1ilMqBfId8zyRmQlhpu1ackoMo0zmxCTONCPUySklQk4M88w09jT7hm4ncsHOO+qpF4bIzWscR8ZppCRiJfkoFd6kU05OGVGLxkmMkSEm4VCJmcswavAF1ni86mDIWGCUcdGUFj8Ywkx2G/pkBJSPjnE7p9glBQCmJBoIKUdp86eEt8YS5kCO4ExFmIXD3zmPszUhJqq2x3ivKH0xbL6S0bEQCho/I3AyuTiMzK7GGBnmmXM/kQzsnGh4O7ty05dXGf2SuWURIzldArPSDJcZV6cz53UlfZloEtkICthYieSk9FYQtCg7ndEsfxM9Pil5rz/5MPJc+ljkJ7agfLocX/fOBwfRBWqNEhtlTM6EaSJoud7qeT0JQvLq/NfZ+iixd9JKiH5Puc6c5L2maZaMpDhliyEu5y/naq2jrWv6YdCMKbO2T9KSaZcRSaOa6+V+bcomuqfTsrhzjjSV4D+k1Pe0K1mMYNnYGRQclZfAoowYDtMkPcrMk+AACnGL3mfNKMh5OWfrpDwuYDZpA/zBF/9Hnrff45Mf/iKffv9H7PYH5RjQEjZJhThElSuEGYMVXXHv6fuecewFSeyEne7+/l774kKqEnLm6599xU9/8tukmLl69pyPvmc5PnvB5TIwzYGb5y8Yh5626+h74cT/8Y9+gY9eveJnX33Fu7e3hDkyzYlut+f66ki3a0kx8pOf/IQ3b97z5pu31I3n008+4Td+4ze5vX3Pbr+jroRLoqoy2Ulb43wZuHt4oK4qYgwM04Cva9nPWl68fnZNN+9pm26puO12Ha8//pivvn6LMY9cHa65vnrG8XDFixcvePXqFSll7t+/J8eEMwJmHK0FHC8/eiX0pinRNI3qO1hOpzPti5au63jz85/z6uOPefXRK9FKiAnvK84X0UmIUdTMxssDw/kBZ+GXfvpfEAS+rIRlbQmMRdZcwYnIOGtZNesaiikShyQkRV6TB5Cpo1hAdGwmZLL+V5xN5YUZDzJNXeOsox9HphCU6KW07MTxl3OQWGWt3kkQYIQnQTY+1kr5v+zhtcq3SShM+W02jHRylVbbktZaCQKSINIliGC9HmAtbJrVBm2+M2tQTLE1mY1dXBOKNQk3xRUv93ybhJWnsEX+byubHwYB2/dLoLd+opwnizEs0y7zPGKdjhbrpFYISQiegKbtRO0Poy3wmWEcpFqWwsIfYbSKUtog5RXCvGAJjIrEJbWBBdC+fVYJEWi7DPIdvXPMGqBVdY21fkX6Z6MSzgnjZDR8GKfl3icra9UZDbSspXJesU9I7z8nQhilPaq+2aiP90nnIH1dKXGL9BFzzviqocFgT3cy2pPMIm5hs5G+aBwZh4ucsPPk7DBIxNrPo2oYz5wvE92uE0pK6zegtvUVkwDVDG6R23wcLkzzzM2zZ3R1I322yiltJRLtpChjgAUR/sEMaVlq60hgWSll4UGhxDUlui6I1s1CXOQzNxnvduFH5as2eTkoRiNltwhsZEXLJnKUgMqWFD5ttmNxwtso3whitwh8rEtff5jXz8UYyXiyiokYI3Owhep0HT8UARAxHFHOpWTReT36EjgZpSVlBROtsqLKFBmE0apuatq6YQqBOSbFUKyBVgmWjN6uGAJO2dfk8VjGeWZUYOiCZs5Zy6l2MTZJo+5iqORZepGnNnKOKVth4sozu8MVn//wx3z6C7/E4XAlFSkd2fJe+BzGOAshByKzWtUNKWamaWSeR5qm4XLpqRrJ2IW+WJT3LIY4By6nM1134HA8gPGkLKV4rIzzVE1N09QMw8jQj4Rx5v37Wy6XE8fDnnmOnPoL1hr6vmeeRhF5tIbDcc/f9cd/lf7SYw3s9wf6vsdZx/u377i6vlraHW++ecvPfvYVTd3w4sULCcVywtcV94+PfPXVV7x5+xbnPLtux/F4oO2EjfHxdObx8Z6f/ewrvn4rYjyHwxVf/OhHfPzRR9SVEHzd395ShKKiFbDTPM90B8NwufD23Tuhwj5eMU0zV92Bzz7/jNPDI94Z0jzx9dc/59PPvxDFyTDjm5qdNTjrmGNiPN3z+O5L3r79mp/8/h/yx1U0aw0oZY0lrZJJ4CCl/5Ukh2Xvl6mVlLPQb+eKylcLydhSLSvrtbQEdb1hDG3TLHLQOWfRgveOyzAwjjOmcFRoABzzNlNcxb1KRcwga8N55elwErgkvcCcs+KHi43SCljSCarNGGDZvNZYrJfPzDEwTrPK+7o1aVG7VTgFFvusmb5Ud7V2V87DgMnSBikqgeUXy/hkTKuxXIuRT+3zMnG1sZvLs1raB9vjfPvva/K29rwxysQKtG2rOCANF1MmkrA5s9sdKDLSvgr0ZIZh5v7hxPlyZl8dGPqJeZqWEffymqdRplVqTxFrmiZpCxZwuFQHtdUZhHr9Mo6EEBUQLZWelEX3RKaLxFHPI2AycQ7g3ZLkOFtkqxPWeSHpMyIZ56wnxYzwQcjTnOZJiIeQKZpdU+HHaRRRCVvjVMgmzEFHGwyVr6hcTdN0xBCoqpau3dPWFSkF6bHFmXEahebXVljnaFzDZKT09nA+40q6r+xHc4rU27oPkLOVcYacmMLMNAcScOj2PN8dRGd8Ggk54auGGCdMlnEtfM2vv/3HmE1aZvHNhwISrICcZakU//ZERrIsp01kqtH+dlxvMSXFYX0QFJRyz+LQsm5OdepuQwNcMu2CPyi/v5TdUsk68uLEN3EGa5wtn5tDwM2ORhGrBp0kKGX+8msamDRNS+x74GkUvgnnl+80BkWCyL8tQugzB5mTbqpatQ7QuWijWc8azBiM8sbrMdWYzClTe0fMmWmYlvYS6vyLYd/OBJdnljNSsierpGml92jdhNYavvy7/jIfvXjFy9ff4+p4LVoVGjxaZeyYxpF5HrDOUvsdGTGuIcg4HSq60XU7vLecz4/SZzVoMCwgxucvPub65jnWiQyvcF9krg577u5HjHM4X3Fsd5z7C+/fvqUfev7oj75kt9szx8Tv//4fcvv+PV98//t89OoVu05aOzfPrrk+Hnj14jkhBN7fvud8fuSbn3/NbrfjsNsJdXFM3N09cNjt+PTT1+Sc+dnPfkaYZnxTce4vDMPI/d0DIGOC19dHzudBsBPOcDpdhJ54kjG27thx8+I5x+srSJl5EiGSphUyoaEfsM5hgam/0N8/EEl0V0fquuJxGrl/eOTm2TXjMHA5n+n7nsY4UhC0eZgD7W5HXbc0TQvO8farnzH2A7/7kz/ij75+z695AY1ZI2sq5jIGKwu1GGCnqOgSKJT1mHSkTf6ZmKdZgVIlaYiK0F6zuIIFyVkEs7xm0yWjzbAQWzVV4NwLaY/zlepjFFCcXasBxdpkDWY0CE8pMRsFv8rwmgbQ4pDl3POS/ccwA6WNuO4PlKI3pSytRjJBJXK9r3CKns/FqEhZrhiBhfmwUBJjSnYpLQGDXQjDQJKgtcWhx13+khebufAILMHZt8v/Wy+x/Umpqjz57KYa4rTVERLYymkWbxdti4hMJHVNy67bUVU1cU4MlzN9NiLnG+Dh7pHWNuKMw/gkoAFxppKEWJwRvFGM0v6MUSTrjbVETZByNswpitBeDLTGUqszd1hqJ+skZ20FxUDOgl8QITgJEK2x2Cx2sfGOuqoxWLIVhsNsM9Y7slYQwizVdGszKddgLH6eJ6qmxRgrAjykhdVtDgHvHF3XcTweIWe6ptNMULPMKJ8JIdL3A3Vj8F6IFipndKEFrPdLkjvHQIhmw54lr2GYaNtGxIgyGOu5bjpeHq+4OuyxQkGIV2MfokgizlbnITML5ekKWFHgjVnLUdsosywxUxLfrZEoFJiUdbZmzULCk3Us5+nyLIA/cfqSFdgCYnzyvSwGZQ12jSLZldQma/St552U5ERKjjyR1f3wNc/K0WBWRTNnpYpQshJjhRK0oLstMoK2rZxs92NppwgCv3BOiwCUNSJV2dQVZOk7FRpa56SUr4/kCRK5PAOyiJUMeo0xljGgYvjKH0sawZNebJbWiih6WSCqXKqWx4B/6+Z/xkfpJclXhKiZkS1Awsg8J8I8E8KEsRbva2IKzPOkehQymeGVzEXAUTIh4KxhnAVQVDcN1zfPGbQv3HUd4ziAgnnevv2Gvr+w23U6Xw43NzcMlwtt23G8usI7R//wqEJY8O7tO6nOXR+5m2fevPmGtq2VP17WyO37W56/uOHVy5c4zRYeHh75+c9/zs3NMw7HPfd394Qw8/BwLyOmzrLbdeSrI6dTj8jBOqypuL+9YwqBuqn56OUrquqBYZ5lZDiDd55BhYjqqiYRJWv10lqcUyDmyHAeuL55JhM8KfHs2Q0hBC79iG86jr5ZMsxxHCUDn2eqpiGmSN9H2qbj+tkzfu93A3/45ZfM44Bx6/pfQVIaVKd1zLa0F8tGWSbGzVqZy1mJd+ZZAjNrQAVk1g0r6z8k0V5omnoJRLOSnLE5dtOIYuO57zn3PdkmbXM9dWBLcM3GGSbEaQySKdZ1teB0Nicj1xPTAkaVYHrTblNinpzFrlSVY991QlY1ThI4EIT6eft7uTQ5lgxqOd81cdLKnN7bEognUiHlXPbn5s4sx18rAGC+Qza4HM+Y5UCb312DjOV+PgnE5N/TOOF3O3nXGnKehLLcGvbdnv3uyK47SAXQS0lfSvXCTfLweKZyDcfjQZD8MTw5x3Gc8bXwkpSCrTjruFyu0ecQU8T5Sp+XVF2jixhf430tQl9OJrlEkE9loEHozZ2hsoK7M2RN4MSeLvo0WScI4qRJSamo5gXPlGIgpRlPiSbsSi9YNk2ZTbTWSNkfOOx22LoW5KReFBrJxSicyc7KqNY8z+QY2bcdRgEx8zwzTBZnE/UHIMApzPjYYFyFyYKaPlxf8er1p9w8v8HXDcZaLudH3r97yxAC43Cmay3z7NRBsjhdAbTIArHWCAhtWXQlw95u2M0KK8s2P+2zffizcrdKy8AaAVkYpJ9e6D3X/vcS6y8UpAsv/ebY4hx1dFGPY42IBJXftdYtObX54FpK3XKOWdsPGnmjzF86rzxOoloXtdeZQUcuNWDRe7U1kg4BWs4xkcIMRnqfwsRWgIToNcjGrFQAKaa11LckGUvCIXUBJXpQHgDd5Jsgq5iS1fBm7dGrnrnJWNLGWOj9iDA/PFJ9/JrXn32f3fEKGQEpIBkB2MQ4AwljnIL/ynuytpzz0srydmGds0rVGuOkwcvMOA3gDTfXL4kxchkGmq4jzDPjMBBD4Pz4SIwydpVyoqkbdoc9u/1BmPPaju9//n1evnjOrmvoupZ918i0SAwMQ884jtRNza7r+NGPfrhE+9M4McfI5dIzTRPPnt0wx0TdtjzfP2e33/Pll1+Kc2labp49J8bE8erINM0M/Rt2+x12nLAWdt2ett3x/v5eAqJ54nK+YDA0bcscAyZF2l2Lt45hGKjrGl9VVHXE1wJI7PsL1kpFZBhHDLA77gV4p33TYRjY7XaiqjbNMtbIKJWnHKmBq8YvDnPZT0nWR8nSd8r1MIyDjE5p1i1OpbTZFlj8WiWIAuZ01mKqSvu8EoxaIyNUTUG7p5JaUDII3YI6EmwMx/0OQKsBSWfLpS2wZr+sjhYB42VNMkKQbNJ7twDtyOIUcFnnv+eNZy7tSq0FKB+HMcIm6FTbxXuvPW+hhzZWiGesKyJkZay57Dej2Jq8HFey38Ss8sh1LePh+alF0ut7mrR/mAyViu3y4aWAb5bbk5bEsbxfgiizHHMJBiw6sl6TjRDKRR3XA0/X7Nm1O6zy1giXgAFNWFI2TEGkhPt+lOAyPUV6xyTYAqxd5veXqRFNMGSJyPtV5ZnngHdeajVZsGHeCalYLgqtKcgoeMHe6fU3dYvbSeI2TJO0G5OM0BtrGcaJqu3Ulq1ta2MMxsldCvPEMAx4g86UOkE+N7WXh5dlDGoOUXi240xTt0vmGCsZ07OxCBLIqEFUspc5DZyHC9M446z0OjOStffjRO0M9gMxoJSNygwLTuCzzz/jT/29fxZfydz21//ycxFaSZHXwMt/4K/zB7/7N0njm2WEibghZCjOZflPibEX7htW5Et5Y31te0t582+ZuVyrCLnw2RsRZRTxFNbIryyS4rDK4jSFGU/nPIsN0myiOH/vJGKvKrcgby/DqlBWouS1D7FmOrP2P2tfStxOhUdmRiV2AYFvFq2DHLMECeWOqBOW25UFXWIVYOSEoMS5DQtbuRDDUhL01uFqx1nH1RYOhCUL2lZBVB7USlmmsBVnUKO43EpCDMwhCBsfhiLdWbgktuVbMjRVwyevv89HL6X8L6dRyGaEKdEj2gvWisjPNA2M/RnnKoytqBuP8R5rJHvOc1haDN5ZHk+PPN7f6fHA+QrvK/b7HXe3tzTKpne5nHl8fMBXFYera+kvtoLK/+qrn5OBm2fP2IfA9fUVL54/4/r6mpzEQaYUmec9fd9ze/tArEWLw1vL+XwhRTFc0zRxPFzhfc3+cOD5zY1UAB4fpc2WEvM0cfX6NafTWSSEh5lh6Ol2Nbtjg0WqEN+8eQdG+A7GceLh4ZGr62t8U+NyQ9uJYmKKkf3VtQasmRwy0zhxaFuqqlZhpEBV1+x2B3KG/VXNPJyZxoH9/kDTdlrJsTRtS84ie2yxpHEm9iPst2280kpTsqeuo/aOTMa7HcM4Mk6TVjfMuvb0d544I6THL8BDS13VS6VL2AkbyeSXqoMEqQUiIMzZGjzbFchbK3lVCCtroIyH6femTNLgGd3/1toFYxBmRfR7YQV0Rkh6Fv6Urf2SCEGqX8Yyx0BTVRI8sCYcglnwQi08KKNgATYaqYKswcC6+Uo7UpJFOWZMWfjvFQ9gncUUro6NXVps1vZsC4ZKk4ESTG1MBKXStw0ByqtUJ4l5jaOKuXIVOYuQVE4RX3ls1TJPMnY9hUQyCYvFVS37w3NcfVBxKYfvKsYYqJQLZfsKgqbHuQpnK2ZkTLhgEJz1yocQcK2nqmrqOopsuQlU3lFV4vydtcpPEBfQcyYv+gNd13J9POKM4zL0Mn1gHdlYphTJITLFyHQ5K+7FaEXOsdt1tLlWf9LSCPePWwBQVhcjCJBqHHpCnLn0J4bhQm39UoY2RgEh1tK2HdM0E4KMW8UcOZ3OnC4XUkjCax4S2UpEJJGWaDBvX+M406cJX3nqtuXVR6+p645v/rcvFNjVL842A/b/+scZv/hbECJV4/WmF+e5rJglsy8L6TviUtaM3jz97OLLFF1eVp1u6BIiLEp5oAIdT0lAygItrHXbnSCgmrwYsKifEeEPYePy3hFjEIdoZFZ7mALGbZ3cB/wAWSlg1VEVJPA8z4R5oogZLdGqBieCFl7nqp+CHstfDNY7urZd+o2JTXSvSbtd2AOlilR5Tz9NuM0xn7ZQdLYamawoPP5bnEXKaXHYMQmv+65txYCNI05BfHJwuwRwzll+8Cu/wvc++4K23QsuJSUps8aoyNvENEu1JYaZy/nE/cN7iIGm2eEbaLs9zsnzmOZ5Qfpaa3m4veXu/XtR0PQV1ksmXFWJrq3JKcrc8CSZSNu0jJOgenf7HaM1TNOEs5bd1ZFhGLh/uMN7w+HQ8fj4QNZneL6cePf+Hfd3D8qs92Pev3/L0F+4vnqGM5bLMEjGqKybX3zxBcYYvvn6a87niziyquJy6Xn79i3WOu5uH8lZ+r7jMFK1nnN/4fHxwuncEzZTOrvdAeMM+92Bqm7ISBBS17X0vL0np6gtEnkkcQ7suk6Ck3Ei5zN1XSuAKjNOE8+eP8c7Ga1sO48xTgLLeWQKE1VdcUmphKUaLK9OqfKetq4oHsRaw65tscbSjyMR5Rf54PV0v5dgWqhei7MWfYyNjoCST23q+BhNboQlUzhKQooaWButkJbWUWlDlX2smQOGQvaTc/m3fN80y0isOFmR+H1i1RbBK2ltlR9K63CtdpRKnUXoe/3OSnKhhymYm9JSEM2D5Yea0VvBNpTDpqTcG2ulYOuQt3ud7T+XC9iMc5ZrXjy+Hg/WPb55eEs9YIMFmBOLEF0k46qKXdUwxUzMkfvzo9DK157HhzPPrj/m6uolV8ay2++4u7vH+ZpXL28Yhgfe3t09/doyNecr/bukU06ftXNOeWwc3lrholC7jjW0daOj7whXS06qObKOglvFjux3O64PB+qqphk7cJ6A2Pl5mrlc+kUbRlqRjjoL0V9Kcr3OGvZtowqwXsbxmspT1Y6gJ55jZBgfmOaZ+4dHwjzTuZaqHXFZdIqtq/AWbBrxVaIKflkXIQVVBoxkg/Q3vDB6TXNknCLVBxswxMhlHMgDHMk8nE589b+6JsZRKWXX8ZUYAsYmfvbVz/jkxij9qEPmbMXYp5QJxKVPvqSNG4eTFUTxYe+pLM5SKtzSUubyH80qpcdSDIBE3TKOV4BqmhUrR8Ia4GdhbNQSf0ySdYhQSbWgOkuJWzIZmePtVEM+aFmzhNRZ0m4K+1fJtGdFBydVM3PWCaPcB/fGahkuxKiUwGwCo+3dSaSQlWvabZz0+j+XtSKSESeg5++t1blWt+BAtGMhjISll2Y1C4+hDHRKAJB03h447na0Wl0yRlgJQwjUvtLnW3q/hr/5/X+VP/mjfz/f+/xzunYnzydvxEMMEvTOMylGprFnHnuYBKwX4kxld1jNvHBeGRWh6wzzPDIPPbv9fmE4M96S55kUosyZq1Fvqpbb83sJuo3l8fFeR4wiwzRS11LePl3OvHnzVhz0u/cikx0DTd3g64qqqvn0s+/TtTXv39/y9u0tdV0xhcD18ZpAZhgnXr74iF/8xV/EZLh/uOPh8Z7dvuNwOGhbJuvEQKZuG4Z+pOkazucLw/2FyzBwvgwSUGV4fDjjv+9F4tcJS9zw8EBVS+XIOwnCvK8IwTClzLO2wwFf//xnfPLZF7Rdy/nSk8aRpqkYLo8ymlTVnE9nqmpUFdFK1lsUnnPXdNT7PfGtcDpYV3rQadmvu05GjaOOfRZGtrYRSuRTf2Ga44KwX93FZp2X/azBv1SXnIzY6lj0kg0XZ7UxH6LUJojvhahI/VpxDknn/ecwr63YxVMWu2SWyYGSHRfsUIgJowBhsVdlP228ppH939QVlV8re0ub7oltNIKWz9oK1Jp9EfrRs5Lf0vl+Eawxy/caV1g+M2XsdlPDWyuruby/fI3e7o0xNiUBWG7rEyu0BW+DVgAWjhAJTrJ3OG8wpsbFmjxZTJR++OUyQCWKq/P9mX/j3/x3+M9/9j+mruvFdr7QCsZv/+Jf4uZZ9y32Qu+ckOpUlQReClb2zuOV7VDkyQsXgBy3rmrIkzL3xSXBkVZi2jxLS06Wyhl2Xc3hsKPbPaOeZsYQeTwP5Jjwrsb7QD/0WF9hrdhabw2mrlSUyCo7r6hKekETCrOfMBmpznASZaJ+6LmczuScGZoee6nwdafjQi21qYhTZp5l5jUn7dF5yV77FLVkEqgqmZHNMXDuhTDj6Y3MXO12GCfshLdv3/A8zAsvNEYoYJfebwi8f/uGz24+Xvp5lpVhf10VEhcWAN3WWT19lQj86bul6pE/+Pe62fOyUCWTV0GfvPlZKhUBeZWRs5RLj8dIr7Ty1KX8niGyXrszTqscUs5v64ZzP1DKl8UwlFliIdSRLDfNgg4umfly6gqeLJrfmNKP2hAjFTTPh/crC1mNb8XYlmysjP+UGL2IYKSUcN7Tti39MMrX6djMwh1R+nv6vlVa3kL5W0r+tffaFvHLA7PG0tUNl6FXAKtdgGB/7fA/5YfPf43j4UomBKyRlWKcSFlnw6SETPM8q/HS+6HkQWAFMW2dzHdLfA8uMkcna7NKxFyEnDzTPGNMT11JvzukhMPQHfaElOiHXuR7m47L+ZFhGJfsEKDvB+FVmCPBi+Sw9TIGu9vvmeaJoe85PTzw1Vdfsd/vefHiOc559scDL19/tLBq/uQnvw9G9cKt4dNPP+dyueiYpVTljocDf/DTn3M6X3jV3IjDyBXNlYx0Pp7POOc4HPe8+OgV3X6H8444B+qmwVcyv+xVRClnsQ0vX7ygritCmHDWcTmfabqGnBOH4xWXy4XHh3tubp7TNA3GGJ3FBp9F76MAfZ8//4hXn37G5XzBjpsxNg24Ow2gZf1ZBQSz2LbGeZzznC8XxmlSSeySga9BQKnM6eaW6kIMzFmSDO/chhtgW3kz6tAU/a1g2JLNFg/lFHzqED2JaQ4kFVdz1m72W95kzxqtqL3DqAhRab8tGXKxZcKGYq2ha5sF17WQlRhtjeZ1vzsna5kifKSRxzJCvVxvXiL3bwEat8l9iSNYMVjy8RWkWYIds8FQLL+sx035Wzk/S1Si12qWK9dkISdMNlRNTX8ZITuckxHTcZrp50AN7HzL3/rbf8B/+uYvinyvV/bPvAKyP/1b/yB//cX/htaPT86gblqqusE7zzwNiiNQ22XkHFNOco91RNNoFaBwM0TiMiYtQk6WkMUHW2uJCMNiVVU8e3aD9x3n6Q5fVTRNWoMM4yEaxjji/U7a4kaVX53sCOelCmGtlQAABDG7kEOoMS4a31FLnPM8MY0TaCvA+4rKGAiTEh8oUx2ZnGC32wn5SN/LRsxKRICRMtMHhArHrmHX7rGVZDCXx5NQNqZyA9ceX+nov39/R0ofKz/9vGRzYrvXqLQsoA/ngNfI9Kl/286llg2AAmnyk+NAkd4qDIWJDXhm6SM8JfxIKS2AOK/RmnVWwTNbk6IoTusWxHoZQSryp8LiJyBOAWxWitTPitTPy7Hyh6W3slc2G7P8XAQtrP48PU2Q9BApJsZ5Zt+1T8FVZq1CGO3hF7rVUo1Y+NpLoLQEMorKT5lVAEr61JnMrm3Yd91SLdgwNmCNqAb240hMSUGJcLh5xuc/+hE//MGP2Hd7YVx0TgyEKUJFQVsBClhNYWmZVFVNUzeCb5lnKt+RU5SytnP040RMgh7e7XYYMuM4cH58YLhcqJuG/eGK589f8HB3S06Jw9UVh2fXkLNqK8C7N2/56U//iPvbW3a7jnmaubm5YX/Yc9gfePnqhVYKZl2LCWIS9P/zF9zc3HC82nN13EMOjP2ZjOGbb97y5Zdf8fr1a7rdjh/88AfkFLm7v+f582cMw4izHmOEnOf93R0GeHHzDIOsK+8rjPOMszAf3t3dYZzj5tkz2uNOM0F5lk7L0uM40u12OIxMQSBsi3fv3xJTYHcQroJzKJl6AVSKUwshkBLs64bSrtx1O6pdx/HjV9ifVVKdUzvhnKVtmu1GZglKTcmwBRh72ItYUj8MmFq4S8wTFq+loFyWl1iLlITtz7klmLQLU58RUjA1KDmX2fwSUG6AboaF/tZZR+0hpCiyynrs0n7bJizF9JQMdW13aVCb19IxRsDZu4JZWKKl/OS6cikAlNn5FDc/BKnlpfXLl0zebMoJWi1ZzcpiT1L6LuddHlGZ4ILS/vgQfF1aAnnz7/KEtonZeh/0yZUqrfXkLAHlNMs4b5ALxlpLP4z8h9JfYNqMDBe8QzGJKSf+6MuveP3R7sn5C9umyAFHXYflmZVXCFGr0jKdZrUKYJ2VMfbiH4zwAeSUYVZSshRIJJxr6JpG96NTLZfI6XSS7D4L7TGqBTBNk1Z8RBNAdGKU4dWI3/AlqIwpYJKgEq01CyAsKhkGuaCkZxhHkeUEjHHKY5yJCF3rGCSzqr3HOI+ra6YhLA8oZUhGUP/b19XhyPFwZJhFeXCaxmUcrERKZVEUx/SzN9/wMPyAP/X1f5nJRAUwZpWW1UqBZtkflm7KQn7q1bYI9k1EXRxk6YmVIHpT+ktZYvtUNgVrORxlKxOkMmTjcNUqI2sQ3EUwaaHSLFUNY7wsmM2CKo7cayug9PhL4JF0QXxr5HChSNar3ZT3pbC3Hb8zS9KxZDXlYCX9MDLuMs2BTrXm2WxeYy3OOFKQzD3FCCnjrSijxSh9zOUM1IiZnDVwsToHK0DTXdvSNfVSAi2GrmzVnIsxrZjCLKhvZ3n5+ed8/8e/JGAy5L7EGGRiQw11QQdb65Zx0jkEEcuqG+XjHtjtrnSzzThnhGt8ltniovDW9xfOp3sup0eaWjKvcRzYdXuunt1wur9jmme63W4Ziey6Ha9ff4/L5cLv/fZvc393yziNHA5Hnt885/nzG6q6wtU1H714TtM23N++4+03b9jtO0HsG0tdV2AMwzApQPCe29t7nj17jrWe73/xBS9evOTN11/z0Ucfcb6cOJ/PfPH9H3J7e8fLFy+JKXF3f0/KieNhT5wSp9OJOSTqpmPoR25vb7m6fqbjkT3e17S7dhlRfbi7JaXEzfPnhFEYQ00WlPjY9/SXE/vjFV3TMe9myFErJxWXy4W+77UtEdgdjqqiBs5b7t+/43w+k63BFlmUnOiahiLdumSamvkvDjOv+1yqNJZpnnFJaWzLEjcrBXdZ72WdlqAtxUi0dh3RKzbHoGRGQddNsRWs9oNSVZD3m6ZmZyzjPMl0TphVr0Faqws9T3GC1ioeSgLpp0G+OHNDprZ2qaqUTHs9k9Whl/06zavqolQ+VJkvaRKGBOYhiW6Hc55l5s9uzUMJWlY8RcnSJRBaE7Qt/qqc0rfHpbfnS8k2ln8a/Z2SaJSEhCysjiknYpZRvJACrnJkK5o2v/lbv8tHYaVDj1HaAuX3iw+5uzvx4qZl+ypqqCHKxEqKwodSVxXWWAlio+oNKEYgRrFnLq/221WOpvJ4CylEcnJMxhLmkWjA5rhgp2JMTLOMcY5hJs5CGRxjZphmAY+6KIGHF2bKyjlSzvTTQNPW5BDx63iBUfShOggFn5Q7Wxb7PE0kLNM0ykOzhjmJgl3KMITAeZjxxonOOxVV3TB52QSCEpf54VwlYC2n1G1DJHF/fmCKsthiEhGhpJrzS+k8JWLO/GOf/4/4G6d/SXqHfmWBEwYwqRw4zFLqXtZO2aVmXVQfrKcnr8XRLA5n5RfYSjkaw8pEZzTR3QiSiKP2MnmxKasVlgISApbUTH8NBFbim7jBIzRNI5lsCW7KfP5S6svrfc95qYJkeFK+zJRxRCkP15WUm0IIutHttzal3Ad5BZ3v9jryYqxULZKSq4QwbwIwudEWS7Zybk5pkp/cX0m3lhHLpq6XMcg1OMkUCeiCxCZrj1WDjt/50b/C3/eD/yDGVszjTNUJtmIReUmJOYzM0yDCSF5YJfvLmbG/kHPichmxvuGj731Kt+s0IpeeX9S54V23x/mK0+MD8zypmM8rmkboRWct+U9DT+nRzuOo88YClJtC4KOPPuLy+CD8+HUNOXHpz3RDS9UIoOfNmzc83N+Tkgg8FVbC9/fv+OZN5ObmhrppmKbAOM5C+dx2fPHFF7x88ZLL5czxeMXtnTjSh8cH3t++w3nPixfPefbsitPpzMPpRD+OojtwvghNqa+Zp5mmbbm6Oqqao7CptU1LSpF3b9+QQyCFQAozVV2TsWAzh50IG8UsgMdxGjTrTyoqk9nt9lIBiJJMlMpAfznTeM9V0/H1wwMk4a/AsHBQFJBwzlmnltyScWXt0RpkxjvGsACk5hiYCrBOR2xTWfObYoBRG2Z0KaecmaZZ6KaV770E4vMs44Pf2ffW/RNzFiVWDVDKSO04TYzzzBykIpA1UDRG0fWLHYMy5rvsjSdl+7xUtqwmI2ztgFY9rDXiIKPaxlyyX73BMtogNiYrA6O2eK1ik8wyBrHaNqkoZ7bt+g/tSCmVP2EAZGNvt8HTh68SXJT7sR5VKlfWMoVJ+UgMrpIpMxMC+6bi/nTi75/+vLR2bAkeEymZDZWvTH6dLsO3mAAzaMtXWFBjiksFs2iflTatUOw7nJVEb55nrDOi2Oor2rqicpbkIzH0stZSACNYpXGadYJkYOgv9JeLgLpDIEyBEARAWFXSqpxmEYXLSZRTjXGMceYyyLF90c+apkn6Fr6iH0a88aScGOdJ+relHJdHbIZh2DGNAWKinwP9NGFxGo0HhjlQN5GuriFGvJcbMo6DSmeuojflVdcVOSQNRNaFu6jjGbM4Eevckqn+6Yd/EvPMYp2UiEo7I6US6ZvFIGwXlyy2by+a73xto4cSNK0HouwrMsJGV4wQUg6tlfxjjnHTh1O7oo7LmtXpGezyBTkLsYbkxjpxYK2CAOXh5wWTUDIQs56zMYsRSk8ygELxmbQULgFFU1VLVu6sIU1zYSkWoSezZlJZzycjpTVTCxMcxjIFKWemFDE58aS9p4ZJJv306uwmw9I/FkGkrEjXGGkqAchtH8lCFoQaEyM9s3EOTCGTjZR+60JItRgxmd+fxoEYJ7yTbP/0cM/l8V4NmmWOkavrA1WrhCH6CFMss88tzlmmeZJsYJo4XB2pfMvQn9gdjpzHEZMTp4d7QapXNTkJ6M7ljJsnhqoijAPWe5q2JqW4EHFZ5zifex4fHmWUSdkFp3HifOq5vb3jdHqU1ofzNE1PzkLf3bYNN8+v6HYN7969oWlqHs4yhng595Ayd3e3XD97xn7fcDpJL7r2jnEytE0L2ehYnGOYJg6HA7v9nr4f1eAI98X7t28I48B+t+P+fOLu/S2vXr/meH1N0zRCrHO6p3EtOSb6/kJVtdRNJ5m6q4g6GeErGRMEhII5TBhj+OIHP+D3fue3+Ut3/xT/0O6fJQMhZ6JqDKQYwWRF2CtFeJLMzBip0k0hktRxWO+onWOaZqYQcQ4Fba5Odsm+N8H16uyltSXCU2Xsa61aPjUhmyqjtrlc7djsDpyzdG2jss4Tc5AgTsh6WGyINUZkbjUhEZY3zX7FGEFG5vzDrIG9ADQXe2hKkGNlOoji1PImwNiMKSPBQtuI0Ng0zyKokyVxEYyM0z1aWrdrC6Acs9jybbl/W51cbdc6y14Ckrxs9PLZvCZ5moSlbKicl9G9nOkqS4fQNk/TiNe29C98+V/kHAYKZ0LKGW8EJxBCXOx7zpl+GlUPZcWvpSyS0EZp9UOKOGdUo8IsRGjSLnLKUCt06s4YsoXaO7q6oa6krZusUQxTgBzJ1jCEQD8FLv0FnCPMIy5nhrNgnqz1ElCYAvLzIiCUhd683FyDMu4C3vlaegE6x5+SWM+YE2GapKyQMtY45iD6yTaBr3seHh9oK880TiJBaCzGebyTcaehH8kxCltaTAoGNEJQEiKVfxoC1K6mbWsex5FhmjmfR+W010WiY2uLdKz+LCojoDUWnMxlfuAdljLOk77S+oHNv8ySsW9Dge3vbV95CQYK25hdVOnqyi+iReU8Ln0v40DGUaovy6Rc1lw8RULIVErjC1nLxNI+EIKIQIqKTN5kvuWcluw+l3eKw6bECDJOFyXqbeuGqpYMpoCTyAJUqishC8lLa4PFaGzBRiFIJuAxzFGV+9RwCktVYcZagxMhW7NKkVmCgoJyfnq/Y4wMw4CzHZVzi3EpHr8YKWMMTsMlG+Ht3Ylxmrk67ql0DjuldWRyjrPiMWQPhDBz6ftlDv187mmaiq7t6HSOfZpncWRJ7p9NSBCBVLKatkNQ8I5vvv453eHIy9evGS4XYso8PNxxfX1NtduJU1Mei91uD0kEc6ZZJIibrhVDGBN1W2G8xyDyzg/3DwzDQJhFs8B7z76paVsR3DHGLfLaXdtwUaT9PI+cTmfGYaS/9OwPMrnw/t07qlru0flyJoTA4XBQymPPu3e3PD6eefXqI25unnPpBypfiwiS90xzgGx49uy5ADet43LpGceJrhXRn7dv32Bdxf54XByDczJyZTVDImfMNC3Os6oqhmGQtWYMrz7+mOcvX3A63S97QxgD+0UIq5SfdYFSAFhgZSxPgZZlTxhjla45alA9LTPzaNnaspEcNptfhqUsHtXmxY3jkvW52hK0YhWTfNZr2299yT/KzPY8B+WODzQKrtSbsfxGXv6tGXGU0UBbWow5M04jIbhFjGnJ1JVdbg4rd/yTSyyJRZaQqYDHsYbOtbTANM8M48Q0B2xUURpjntjdMhmxXOXSJli/7UmSps/7w9d2yqH8OKndXxIU8lKdEYEug7N7TE7MU4+pDC9/8x/hcbiQ1RmjiUUZNc5ZAJTeOSIR779bxK5wlRijUsMRYpXIJun6dlR1RVULOHYK83JfrJORwLqutYIaMQmMSeJsMRhTMU1yLQ+nE1Vd0/e9JMHGMIZIzrLPa6Vib2pJdoQgiqWVRAiSjE8D3lrHOEw4qwhyB1gvG8Jaio3NxhASQpYQI+Mw8PDwiD3uwRgq3yjrkF0ytzCNkIW0xBiHV+Mr5Ckzw/B0CiDFRL1v2O/2GDeQQtZMUXJus+kblfEZMqp9HUXOMaxYg7JGDEW2MvNdr22yvHrRzLaH9Z0LsHzclDEhqZLlDFXluDruBU+RivGRbCwMk1wLBT+4BiSlXBY3LY8i6VnYwFZ+8rz0u9ZxOlNOaXMpG6+tVYDCmuYrr2ImjkK3Wfpx5aq9tQRTRpEU5fDE8KyUujEEJSURh1qMRjJQgJtipFZxlsKvkLQVAKhmQQm8dNNpttQPI7br1mvaBCJCb2yF3WyaSNnw2Q9/iRevPqF27RKoYLL2aCdSCjhnmUNiHgctgSa63YH+cpaAwjuarqWqK2IoGItMSKJ6GGPQNkkmJmh3uyV76S9njgr2SylhvWSafd9DzuyvrgkxrQFULQ4Va4jA/cMDDw8PvHrxkqHvuVwuGAtD35NTkD6sdxhnuHp2zdX1kcpbUhBsRn8ZtVQ/0+aW8/nE119/w8PDI846ro5HHu4fSDnRdQJwquualy9fcjpfGOaZqnbsdzuapuH97S0xTSLW4zyH/Z66aYHMoGOQ3a7j4faWqq7Y7XbLliqjkHXT0bQtBYthkGy9qmqysbgMh6NTcKQlzFEIeeqWy+melDIvXr7k7Tc/x0RdrVpBmqZRKyCNBJ66/7Luj5SSgJmzKv3ljCHq6Lw4Aqftr2Ea19J+yWjNdu2XnaJsebpeF8yRZrXFOSx7VJ2/s5amrrFmPexTMyX7pGsbWTdz1BL1GvSWBIelNbFu/gWQy7r/SmViyUqdtDtiWvEwawtOr7JUMcgCoLWb67KSKHjXUlcV0zxL+2ISTIy127J+XuKp7UvMbQEi5w9vwnL/DOs0QNoE/+VZpJyp7DqWaK1lmiMhZrKTcfGUBnCWP/ijP6IdRmIsQO/NsRW0aK1ZdGyMMVwf9xvLWM5d+G+s2ro5BEiZqZrwapsMRm1s8TdyfTElmQIprW3URrDyQhjnsMbhXMOlF8n7upK/Tzpe7L34bOedJHJeErkYRRLbe6fMg+AUlOqsUzVAA5e+Z991GFvJXKlm2oWnXMrFGj8bAZdM48C0a7EWfFMT+pmiTSwZauByGcjZ0LQdXjXTKc7YCV97eT32Z6pa9AisgU8+fsVfefMv8B+O/+TSg5aNLHO1SxQdBSHunVvQq0LYEZesdylp5XVjPElnl01j1rc2q3MbhGZ1TNuaWBnzIcuiETZDnTEv1YeUKcqAJUNPSBZcHPmyknVxxJylBK+UwiXD3Wb3sAYmE6kOAAEAAElEQVQxOW8z6E3/v2wY/R3vLK4qY21aXdCfJRCjWDJqBCwVx5FStizEJ4W+srCZJS31eyOAwtWQbPr02kCNecUlSEAnwBlj10rDFgVc/hcnKd23bU3p5wqASfgIhmEQYhQjxvx7r57x8ccvcc5rT095EEwmhImMBFRD3xOmXsrQVQ3WcOp7cgxUbYNzFfMc8XrbC+BumqSsHDT4qauaut1hreHuzRsqL05SZJITu/2RFy8EE3HpB1zTcv3sGfMchWJ3mqibmqura776+isIcHU4iPN9946Hx7UF8PLVc8lUTOZw6ESjgMSl70kxMg7KD28cwzBydX1FCJHzuef2/T1t2yxTPvvDgd2uo2ka6YlPZwU3zpwepeIkEyuWEISx01cOX3lApih85XFNI5ihnDker9hfXVE3DdZVzDHSth2+qqmqjpRmLpczSRn3Ukwcjs+YYiZlg60dzsoI4OVyJsSZOQZu7++5DANzLLP/LOPjGRQ9nWiaVpRDN1tapKXjU7Cgslgt64yCsRHp5TlIlXQ13tustXyvjHctbG5qMHMxGmYdkY1Z2QrrZpkg2Jog3TL6vnxHWzdYF1d1zGVfsf4Sus9ienLNbA+lezUESSp8VS28BKZcx5I8rCX8Yv9F9Gcd+83r5Sm5jAjs9IO0e7cOT2ucei4bkDQrRqsoNH742k5jbQOFklzlLHvQLxVMuQOH4xVhTgRviWFkjjN3p0d+5Zt/nFF1HlYAtQY6WiF0JeHUUfRhHL4FJq+8p3IeFDsQQyQlmZpLlcciWCjxYWZ5rvPy3eJbYxLAZYqiYTKHDFmmTIy1WCdtq3jqsXain2ammBd57SL/vtt1NHUjOLlBaen1GFnn05cEMKTE5dLTeKflkpGqalS1qqygsnCN8CpXKlqghrquGiZmUp4I8yx9tGmgPz9iSdR1QxUapmFkUDnFmKKWxtcA4P39vWiS58S+a3l2deTTT15j/lBumCwWp22BdYGkJEa/rhQdnnUccZrXRapzkssWKSWpsjm3u0S/a3lfF3CZWd/G/Xlzj5b7pGWAIpZTjMkSBFgrZTItUwpz/VrwNiWKTzJdUSRWTdngaWMsKEGwfpM6fKk6lKCHZYzSao/O63evzr9k/ywLpsyjFqayGMX4lCDHefek1Fo2ZBHeWW5nuT3L4tOZ2FQy6NWohBCwOttvTOEdR6Nxuzw3Ac1F0W83MhYzx8QwDOQUl3FJg+HYOkwOjOMg1+wcIQZKRjcOF+Fp0BKy955dXTP2F4bzibppSNkQQyDFmTkrwMc7Qhgl2E2iYFfVkvFYLNM0cT6f8b5iHifa3RWtstGZLOX2um6IITGOs4IuxUA0jQgC9WNP5RxXSi6UcqKuK+p6p8GSXOduv+P6+hqAx8dHck7cP15URKamqh23d3e8ffeOGDN9P+CrmqZp2e06um5H1dSklLm7uxeWv27H4bBnurtjniMPDyfatsMaz0cffULbydTBMAzknBaAU1LUeLfrICeVGs8YL+u0qltMmPF1hcmWfhDcUeU9WL9wbIQYuFzOHPZXUib3NTknDvs9vqoYx0GcZ+RJUFr2WkiBGM/UdUPb1BhrVAkuLNn61nlKfJw1SxZCrt2uk6rTOAqexeRlf5sy571JLIrk9tafb4OADFoiltJ/vbT5NnulBAGLXZH7JhTekaIfsDhfioNdR41Ltrw4ZwouYN2P1olDCCFQsDxWnewqRrb+rygnOrMmDCtAmTVRMgKMbpoGNNha0T1rovGkMmmWC/6gIru5byktUsV/p1epusCq+PjjP/iHefj1v0yYR0KaOU09P/i9/xwX0dkVW2YXi7UGLOU8NhXKrNWq7aupK7y3zKMEnXMQ8rkcxSEXPRqTxd6GEBgnlV+3DqMj3HOMxHGmiNDNUWR+yVk5LASrZ51nDgMxGbJxVJXjsN+x61pySjjrGYNgw+q6JoSRcnnDMNL3M/OstOfn4SJZjbPS408SXbatMh5ZnesnYaxwHTvrhaHLCve+sLALQrQfR2ENO52Zh4HKO5raQIoMQ2QMkWEYsRZq54B1FPD+8YRznmfHA13VYMg0VeEpKFSzEnl667RMLrtr1PGLwgAIUtKSjbhxcLAuxvKerrhtv8oaQdJuwSvLEt4uXF1oxjvCvEaGSxldM2ENvEkZXNZsOYoylCwuxTDols6bzV02QSn1Pe2RrVFryjJS9GHmL+doNFN3kmFraVLKkCsAqfy/kTkmbUHIddZ1pYtWSodSTg/L8dfTXKmYtgFWXioQql0eg/S9u5aulfL84/lEiGnpx5UASkBLK5mGtYZplll47z3DLPKaKGFPTKizt/jmgKPSNVT6wLLBwxykCpDkjktQaohzYBp6pv6Rqq5xVcP79+8AQ9vsNFsNqiEvxxNWTcs8Tzze3rLfH9gfDgz9o2QFIVDXDfMkbSrZnFKOmwbBu4hkZ6KuWz777HOcNdy/f0eYJoZpIpvMJ5+85sWLl9ze3vKzn/2MYeh5dnNN3/frCN7DifNZevuXoee5veFwOPDNm3f8/OtvCHPg2bNnzLOMLhkz8f7+nhikleYrTz+OvHjxksfTiffv30i1yHlunr+k2++o6w7va00aJEtPMVHbZskNz+dHqmbP/lgTZmH281Ul+gqDKA/u93uaZsc0Dcuo8TSNhByUivzM0V1JxuJrcjZcXT2jaVqayvP/Mn+R/0D8p7TUv6mSqe8ahl4qFk2tWVcJ/vOywZ5kqDkJfXLlMUaSiX23o/Iz/SgSydYYbC56FrLsvHdgShVSgKIlaDe6F4uNcb6SoESd8uKwi+Mpe7skI9YyjrOON5cD610u565/xJxUSEstV5I+8VPbhwqCyS+FoK09dcRlf6eU5Pf1C8ooZUxp2fMbY7TeQyRILxl+qcOuJfBNblCClo1NK//QWGjN+Bdwdfn5xhYarcRakdXNWcakU87cPZx4vrMM08jrv/kPcx6GJaAR52qeAjZRW5rSk+fmvf1WALDrGgEzRwE9hxipjMFbJ2BEIhmZxQ9zIJgs7UlY+B6skaRknKc12UH4C8p9TxGh8sUQgrBSVt5zOBzZtS1N5UhzYJ4C3nqCnSFFdf6Jceo5D4OMB48TzoGPuiHCHJjcimou5f+1XyQReNN0AhZUozfHmWEaCUqYMo0CjiollMWBaF/7fD4RYqBrGryibMsrhsjp4cS+bZliIPXDIohQShaJqH1eo4G7Rvsxchl6joe99nPjEumXVxn5MtrzWspyH5abzHZT5aV0t13pT9e+efK3hadgOVyJbK1k1Vi8l/5sTkLcQMl2S/ZgSgBhMUa0u01c9/02BFk2w5Ltax/JmkUa1xatAi2VlwpHVodozCqgUzKiYgwKMU/lBS8goEvpWRfnHhcD9nRTLhlQzsv7ScGclY711XWt1LGw73aczucnNZYFHZzXlkFMSlvsHCGhpWAj93KTdnnr2B2viVnJOCqL82IcylSBczVj/8jl4Y5p6MF5Dr6mv5yZJ1Ggq5yj6Q5UvqGqhNI6hJmmrhEZ4UyIM3GamEfh+T+fHnBe1PBc5QVcNs+LoRLpT6EGTTljdbSqrirs1RFfGb75+ivGYWCIiX4caNqWTz75lJwzp/OZeZoZhoH378tEg7S95jnw6tWrBUMSY+Tq6oofdHuOhyvevn0n2ac1RAxN1/HQ9wzTTO5Hnr94wTQH3t/e0nQ7ME7AwM5wdb3n1avndF27TuVYbSc5h689JibGx4nQj1wuJ4yOOg3Dha7b0bYtKUEIEzGIQE/hkB+GkXkecZX2LUt2rWXahGF/vObly4/4+U//kBAi//f0z/AfMf8dFt+xZMDFhcA8FaKw4oXKCl3C3iVIbZQKNqWkWBXB71jbLaJCSe1kBlXYVNrXjYvYAllLMCG8/bKOjbXLnt9S4BpY+EGMlYmaxfmX014uQ4IWg9JkzzMC1PMi0lWuq8QOen5lwmVro0rCk/VcnVbdXM5kJDvNGvHkbavuAzuYVNCm+ImlUpA3ff6UhMtA97QtNuyJ7Xhqm7+FD8jr0wPISYByh/2eFAKgGiRVzbPf/HPUvVBaS/JoWce4V7sl31vYXEvyIl/n6+pbWLLaeUzKhHnWFjei0bJo30i2P0wjwziB3kOn97dyXvytJqzTPC13cxmcztLesE5CpTnM1LWlaWv23Y6uaYTLx3vyHAXkGhNN5ahsSybRjz3jNHAeR2KOdO0OL4AOS0yBMAsaV4ybzMRO06RUkhZnhbGuqmpylnLHOE8iSzjOjFMQ0A5ixCISMVWqnT6rFCMor8AHvRRnPXOInM4XqrrCmIm7u3tAjHVZasUhWGsgr73+fhioVMVqHCfJMM26uDeraH0vZxE12vzYLB/bOLK8cUSwBAlL38isQcF2ZGZZmLm8b7FWy6VaEjcKSCtfbsp5aSZfApBU+paszr4s3JLxJy1XSclPRmDscqmlUlBAJoiaWLmXlBL75p7peaeUGKdJKWqzZsw8QehmVoO7jaTLn4UJ0nvHrm21d1wCDcFXV1VF27bCGqethVQAhzpm5hCwi6j+ab1EcSklA4TiMDI//YPf4XDc8/3PfkjXCUtcAVPGEIhhYricGYeBS9/z/OVHOOsYhxFiJowjYZ7ZHUX8yCk18HZ9zNPMZTjRqv77aC3ny4Vup4yYirieppFxGKS6onPAvvZabRLMREzSrpjnibZtmKaZOEtW/Oqjj6jrmt/8zd/k7du3PHv2jN1+t5T7yHA6n7B2Xlo8u27H5XxhGAYO+yPH45G265iGkappOF/OPH/xgu7qyLu373j39i3v3r8TtPK7d3QL4FL4y/f7PefLhb6/UCsFqpToRV5WnpNk3vM8c7CGy/nEbr/HGKmQSOnVUVcV708PkCQrrpt62TNkzYSSlHarWloeKQd2+z2+6ZgijBGmYeRfN/9t/mPdf3cBchl18oIPMdoCLIHvt427/F1aLJVbJV+XdZ2k/C+gWSHsKRMWTvEnpWq1bEKJfpd9UdpFzsmMtouiClfkd1FHXoJvUf9EJ2ryU4eXIWvVUIjKJJg/7FqpJIXAnFTkqsDUy/UUu7L5t1kNnx5+DY6MNSp/LPiGrOysT4a5SxxjWEbHt/fju6aokiZlW6zWh06//O63pgM2P98WQcZxpFPsR4oR7z0//P1/hMfhkUsvc/yl3VGIf9Lme5bzyus3lfNqvP9Wwmg1kAxFZtjkJfGVqa604H8GFfmZg1Re61oSa+ccTKtNEQbSoJN5mZRmrQoYFlVDxA56fb4mGy7jyOPlLHwmFgnKyYR5XDhiorZIK2fx3jhsBZWv6dpKSxIVOVkGLUuWvvaSOeorxECOgTGP9MPIHFjobZ112KqicuIMBRBjyNlIJoacyPblfAVZmIxOfU/KcLmcYekxbRYpa/kmKXnFHCKP5wvVKCjU8vjEv2wcVV4xAE9GAreBwXe88iaz3OIJiuPcvlYxhzWbNprNzFFogDGOnOVBFllNKOJCuvk3gMzvQsdmxKlGNXoyGy7AvjmEYu9YUgatL5azl5FFWexS9VmfSTFC0zwz6gjSYpx4ugGXjGTJfuSNEjyUsumubZfzSwW8o6NBsmkyde2Zg5NWQBn5zGtWVIhaYiwsaGwbBWv+lSJxjrz5+U/5E7/+pzheH5SRTug1l959WAWjjs+ec/38JdMYqaqau3nk7u6O/c3HWAO+dtJjm0bN3g3TJGRVRSOgH89YZzleHcHKpMEwjkQd0UpJKj/WOfpxYK/3YxoHLpczp9OJ08MdYR5FU6OquEwTVVVzPBz43d/9Xb788ku6ruP58+d88803DJee8+OJrI6yrRsBgmUx3M7Bub/wzeUbQhL6Uu88+6sDx6uPOZ1OdIcDN89vGFUSdpom3rx5I7gF5whz4P379+y+OuKqjtPpkbadads9OSPTETlQNyItG3PCek/dNFKpmWe84nRCjJAD3kGcJ7p2R7c/kLIA7+q64uF0T5xF5ORyuUjP3MpoY9sd+PSLX+Djn/6Mn/30D9nvrwj9I3/5/Bf4h3Z/cbP+yhTNU5zLqnG/bqmUZb21bVsK5QuHwNZGkIVyeO875jloDS0vwFnWrawHl6C6jN06V4iJxCmkNFN5CYyX6RcyDnH+/TguqPTSTlyHj7UKoMF/U1W0dQ21jCGO88w4SntUkjhPQbwvxT4xzXq+6/4tDrzcoBJIVF60AooTKvdPBNHEScWUFi+9rcJs7cdahcxLmb8kO0slQj64/KxEKnlJHsuXr08pRej7HmN3GAP9KOqbfT8wB1WStUZlkCUQS7FUhhbjuAR05Xv/h3/zH+fP/PqvMIcJWLEba1VSV0KWdrnRoD5FVC1QqJinScaOC/W+UzVF5x0+OuYwaUtNvYt1jNOkrJCWqhK7nBRob43wjkxx5DycuUwXYkw03pOicLpUrhZxOWtloqmuaaoa37Q1WMt+t+PqsKf2ldKAPpAQpHb5YqWhESY6JeqZw0xIME5BjLQ6LusM1tfi4HLGOM+swK2QArVxIn24ebmyMK1lHGalSCzqWE/LwcZo3znLNljGe5QpaQX5KUp82dLrsjGbP7cPc1mcH7xHycj1mGWBpKSCPlrKFyrZvLBxpSya1ClMS1sFU1yV1aCpRM+S8RZVq+X8imhNisLKnRU5r9rXjXMKRvHLuabsRKTJKueAKcEPSJ9+NQLSV7cLMMggPbyojn9zIgvG4sm9eZJFZV0LeZl2qOt6kTY2aiDKxk9EUtKIWYmGmqrmEnrR0HYeody3WqFCWifLeZgF5LhWZtbcIwdpOU39pAFlxjmpqJAjYRq5TCO+7ajL/H7lqZoOa6XvXRDhOUsWJ4JLhnmOQnELtF2nznOi61rCHJnnkf5ypuv2sn+y9P59VTFcekHuBrlGrBHNgaYlNC2Tyby9v5exwBCw1nB7+56H0yNt2/Lpp58qUO4ijydLkOmrmsPhQNs21LX0vac5cHV9wzjNnC+9VuAmvnnzDS9fvsA7z9s33zCOI+M4cDqdtYJiOT+eaXfCgTBNM7v9kV/91T9OyolpmtjtraD8lS++cGK0u70aqkjbNFzOPefLez5+/T0qJ2N2jw8PnM8n2qal23Xc3d2TU+bq+pp2CvTxIlr1mg3Neh8q3/DDH/4S189ecnf7lm++/AP+rf/H/w0ujwtYNLMCwZays/xLf/60mmaMjNsJjmgjhLMus2WSSHQHDG3bMM7Sm5dn8IEd2dqW0nO264hXyWjmIAGpd14En9SWCMubzqNvyvRWW6CFoY6UFs4O0JZMVdF1O8k8x5HL0DOFScGaftm3y9SNeOHlYtdcQ+5DTJmUlVHQWpwxOr6o9lWvbQpBgZxGr08y4CkEPuT2kFsgDJGUZ7QNAkz57qekQevf5ZzNk3udGeeJdEo6sSJ0zCEWzQGjXCdFEMcvbKJmSeaeGDRyhs8/+5huVzH0j2wDAO8sQYhoyAig0GKYtWXjvMVWnrqqaKqGYRTZcrDU2grGCLjSO09bNVIZ9J4QtVVk3BJgpCz2pyhHTvrZfhgZLgPTINX5yhYRs0xGqjbeOdqqYr/rBEzbdB5jK46HK46HK7qm4XR+xJhHejUc1/s9vhJmwDlOGCeCBGGOJJA5y5SlpFAy1Qghyhy2dZDCrP1JpNenrFzbV0qSdTlfyWJLaNS0ltSWLHizSGThGREYKPmfKYsvrxm4MetCyZu4dJPRroH7xskt76+Fp+3PT5deS2RSKi1z2QLKi0oOsvbal5lfI9PDi+Zzub6VUnyN8w0YXWixqCMCde3FsRYGtJRVOtdSVyqdHKMGt2sGtG6+9T5O07yQwEzztPSTS8ZARst+bAIgzaJAe4y5VBC1f2qUS1+nRlImm9LeWEtrMo4lc7LST3a0bSNjcg4NHESNDVB+irwu8CXTeBqUOOc49yN37++5PkykmKlqucHn84mhP2ON4ermlbSnsjDT5Qx1U3M8XAnBlYWqqkkhE9Osff9JRmFHUZQjC4amjCCGELAY2qrR9a3z03puOSV8lnl9amHYq5qWK++xOfN4ygs5UOUc/fnMMPRYY/no9Suss7x9/x5fN1RVAynT7jqMd5AS3U7Aiv0wcD5fuHs8Yb1kiK4SVHlK8PXXb2S6x1c8PNzz7v0tfd9T+UqQ3Op8mqrh6uY5P/5jv0zKicfHE/vDUc6vrhj6Xu5BSviqXghZfF1m/1ucshSKU0i0bcdud+Dh8UR3OOK95+HhEe9runYvhFnWUlXqBN0azLdty0cvP6KpHf/O/+f/zf15ZLe7WnapVcbMhZp7W86lgATzUjvadTLHXgLIZY9gVvCoZnspJ5yxBCUNwijbIJvv0SCjTBtlVAFws0a3bcMMTCFgU5QJD3V8thBlbfZs2chZ+QYM0FTNQuJldcZf2oCGtmnY73Zc+gvny0VUGcsETxLmzu3rQxtRAiTQ9llcJbSdE8dV6LVDWLUEtu6+H0acl2rU8j3bzzy56R+0Zb8zIVufkNhLo2DLrPZsWgO8DUDUqdpsUlvqVBSs7Nts8haOAcBf/Hf/Uf7s3/fvY57Hp+cJ1N5j0zoiu0iaY0ADDFdVdE1D5SsyhmmOTNNZWCC9JMOCgYiK1zKLWJ4AV2UCLmEIk7S2bSX4sSkGYs70/cgchOdEfKCoCE4hYLKg/vddR1U31HUlo/n7XQeuwVSequtkRtR7ooG7+we8dVTWYRFUfAyR2czUzmGdxyAMROSsiP+KHBPnMHKZhe/7Msw0laAZyXmZqRSg3BoExJhod5UuaKFfHUPgX7v8c/wn6r+wlMM1qF8cvdHMVI63RZ2WJfg0+1+Dg6eL6cPyf3F0W0hPcTYlMciJRTAGw8JopwenGAIQg2SNqgXq+85aSEWT3soBozy8Aj6S/mXSMl0mpUjbNuL0l++RnxlrsEs9z9DUNZdh+PamKRssSxaRUUbFsUTaawZUEoPtERbDuSml5PI5/S4hUPEYpUU1xuGcJccyW6xVglw0CtISkFhraWpxnDklrNF1U1ov5Z7atT2wGPRSGTDSkvrm3T39OFE3Hl85Up7p+wsxzlR1y/5wwBl4uL8jzSN3d+9khr3rMBbu7m7JdcOLV59wPFisZeHfnmbRcZcI/AIG9vs9dd2QE1zOJ/ph5Oq6Wbgsdu2Ovj9DTBJYJ5kdtk54BVKycDiQc5BefTcoq54EujtXYxI8PDwQUsZ4R6UgTlt5Xr58SZwmvJeWToyRrm0ZQ+DNu/fs2pZnz65lkiYlmmbH0PfcPt7pCGHmcDySlGvAmJa2bTkcDjx/fsM8T9zd3XF1dc3N82eS9Y2TMuDVGjjU9OcLYJjGmZRg13VUdU2KgntAhXyurp4xTpF5TrRNy/W1J2eWNkQRCCrrYisKloF5nPjs0895880t7998yb96/9/iz139RcWIaJCYi+1YQvzFIuSSBUv0qXswLyNnS8BW1v0mS57nQC7se8ZQSug5b5ymkSDEFvY8nu6ZD/dlSkKvWyowxiqN9gebcFtEqApZUc6L/oFRIaxyEd47jvs9lfc8ns9SWQAwScdJi2feTB+YdW79iS1dgiQjWWqc2RqKoushicCKlSqU48s1LLaEJxWO72p3bl958/9m+b818JdA9OnNKo+4ABtjLOPCdvmMxBLfBiJ+/voFV7sO4oA3mwgGcAqQrazHGrckPzkjoj9WiHt81RJiZhwn5jAxTYGUIiFFdm2Ls0Zk2LOMEs5K11uIbUtyN+uUVIyZaQ5UfiZamfRw3tF2LcY66qahbhpIAsr3viJiyTHjvOwxf+h2JNfQdAdsJXO2GMv7uzvmELR/KItpnCYKYtnVNU1Tk7JE5855mtrTVhXRJi6TY0qJh8cL191BFmICbKRtRVtcytUrG6BVvIC30uMdg9yo5zcH/i8P/33+4+6/yVKWY7sR0ff1Ty1pZS0zbxdVRjPhD5z9srC+5Sg/rAysC8rkAh7ZbBRl6QqLqclqFGRTyZrclNf03ykb4ctfzlhH3oxUQoxuLmcMddtw2O8xZFViK9KVaxC0kmlYqqpinicKCFFO/4OIerklS/608DyUoGuNa56EAoBkKtITlCkDpyOH2ayZFlF6pyLg8zQ70A+tpUQn5SvrHCEXdUcrBpo1Qjdm/d2FZ8BIWTTGRFUZ/syf/fv54gc/WJix5lkIe5x1VI1o0t89PHA5P1J7oeL0rmKaJ8mY+p4b7xbHPodRQDS+ghaRn9WMo4jWzGHGOsfj4wPdbi/3QtkirQOMpR96WevKlnY+PWKMpW1bAQuq4uY0T4zjKDzr3pJC5tJfyDpCRM7kIAbt9vaWrm745PVrhnlg6AcB802TsPu9ekWYJsYpsDvU2OwWpbif/tEf4ZxcZ1VLidNZR1G1u1wuXF9dczwe2e0PPLt5BllAV957um6H1VLxNM8YJ4yMMczsjgdCOLE3RzAwX2aK6qKvPN1uD8YxjuMC3pRKkF/3bl73clnD3jtuXr7iT/49f5of/vhX+e3f+hv8m//Pv8JfSf8D/qPxz8uaWj2EAH6lF7YsaJPEoMp8tqD9zYYYZrEbaP3AsLQjCqX04iOf2KUsAbwmAnYTfpTvXgW5PszsISRBsReuB8EwrsdPSYNja7WyUHQAiqN+mlHn0lI0RU7WLkF8jHEzYbWhJc5rIpQxC/hXKorlZ4JBIq8l+4IbK8Hah63CJZwopX62p2oWzMYWb1T6/sUp5/I8Nrd0uYWsv7u5rZv3DN555e/YUL+rPTb6j3/63/jP8MnrV/zdv/bL5DSSFVS5fUVtAaN2zmSxmyFExXElpdEvZHE6dTeOFEZbkRh3C2bOWEdImTDHpb1sMIQUiTnhKmH/M8VBIQF2udfOOenxW0vUyrh1FpOyTE8Z8RG+qStcc8A1nRBNzDPv3r0nx0xXN1ROIoWYRNkqZYP3idqL6pW1bpGBbWuPIy9ljZwzh92RXbfDuEjjKqrqSFs3omIHbAMA5xyVt+zaDmsdl2nAOUNj4fNPP6K5bZY53uKZhbCCdcFvovysFYeSYZZPbZfgh1n/dhxmu7IKOGeN9LebfN1uUvKzitZXA2ByqeovEbDRTVqMh0PQncX9Yp7O7Ypf1GtQJy/OFNKszo/SixOimWy0HGstSRUDy/cVPgWj32XKdxm99lTu6xbFu7kvep9ThhjDUkrz3i/EFmtCoOFPStLLdatxLZiRtScqd2oOYVW+ysCWg103UenwFDUzyVikj2eMlGiPxwOvv/gMcuZ8uYihy3HFbcwT4zDQDz3dbkcGDgdovOf92zeM08Ru13Hz7EadEYoE74hRWNSMkfZVt+twk2WaBP3ubcWu2/H6k095//4d03hmtz9S1TtpMyA95WkcIMiI6DQMZO37zTpaa53TSkEEkoi/pAzIepnHGZMzYwych567xwdBqnu7lDWbpub9/SNTiFwdr0gpcXo8Kz233LvD8YihjCFlhmGka1uauubu9o5du2O332GMEXrfYlANKgZUkgSZK88pYr0hzInDbi8TQ0H65U3TCmlYDKQcqHzD/vicpmkYhp4pBpq6XfhInI7Plf5+cTZlDC9bz8uqpvK/Skwzf/Wv/lXSQ9k/67qWPrxdAvJ19h1yToQ5yHP1Tsq1uRDgbHAFWoVISnCzTN6UUnkJArIccwrynPB+CWC3zmhxZiXYXhKcwqxZrnVt6W0VD60t0wJ5xRcsQZNikxZ3KXsLlAhI7ZbLdgHFaklkQ3zGIjFQ7JPR5MQULI9hubY1mZBf+JDZL5eL3ThjlmsptiGwrTY8qQY8+Xv5P7P5U4MgswYCJmuHcjEzanPSar/1srFA3YhP+/Vf+2N876PnNE6VHY0lx6ftkvvLSfZhSbKslWqPUiDPYcaGSThXqnph5ItB6aeTrJNU10RvtJ2SVWE1KjBb5MJzMngyXdvS1jVtXStzp2SJdZl8cBVOg4ZyDuRC2V6CK/DZCFNfxDHPkRgy/RTwVY23FU3TMudEmCLnfmAOgbZpqb2na4QwxGgw4J1jGkcu88Q0RXZ1R9u0OG85HI80bUVbtTRVI6xrQw+clhuZVDihUjZAvyz4gFG+9hDMMuNeQCClHC1ylNuocK0UlB7QGtp+uwKQN+9uo//15/nbHwR1OuCMEu4Y5KmSdZZ3JQIpHceysI1qJ5DzAnSxzvEU1lL67VICjjkzhoD3jZA5JNG5LkEFuiFXrIBMZSw6As4t57zciadanZKBq/769lWMU1KWwqCTBlbZBQvxhlkyL71mo4YxZkI2C9Pkk5EpK/Otg4pFpcVQFNGSLXJbqwCmfGQtVRpjRHTDCenRcDkzjSPgiSHjvCGloCdnsc5zffVMPjv0dG3H2J+5XGTO/uXrT3jx8mNK0FU3HTEEhnFgnkbNqIzMhscoBtl6xmGQjD1Lqe7h8UJVdxg74qyj3Yk4UYiR0+kk2bavVKr3yPF4xbt3b9l1OzyGx5zFYaZIDokcEiFFUkjU3uOMpa6EnnecBvKYqauaGCJVU3M8Hnl4PJFz5KDiP8uUj7V0u5a3b94RY+DxQSiA4/5AaBup6lQVl0vPMAzEGMi5kmDXirGT3m/CW8d5GNjtOqq6ZQ5SKXPK3zGchG75cNhzd3vL5XLC+RHra5q2k5bClHl4PPH8eS3lSi0jz7POouteLgBgcsZaj3MVj49nLpNU4sqWFydil3WiObTssiLNjSYKUZx+CDJC5qyTsbdY8P5CICXrrahwLqH7Ul2Q4CHRVF4C5RCIGrRsG4slfVjwAxnyZl8kDSps+V1nl95/QsXR9BqNBhCFG8BunHYpe4so2zotI22+jHGWZLJW8wI5lntTahdaCdlk+ULDuCYlshk32J6kwarZYLaKU37y3nrcYiFL3eXbPf/yPMuzXQzN8rsLbilpWqQfESyFtDxSDDpdlZZHV9ibnHP8teO/yB9rP2MYTgJ2j5k5RaxJQLucyzCKTPYwTwvOxzmnoGpJGkIUFs/WW7q2w1cVvg6LpoizqhioY+xyYdIetloRb+qavXeCVVIbTZbk0leVaJgkmTIwjfiQEBNzjEwhYXNSJUOx1ymB984zhwlX15AS8zQiSH95+NkYQgz0w8Dj6azRnGWsJ+Ku0Z6qPOQpJpIxnIeZkAzH/RVN7ai7muNxx3G/5/n1K9q6ZZgvnIcL8EfrQ5Uwksp75nFYHJDBLoIMS5a7ccJV5Rd64SeEN8Zo/yRvSHaylAE1At2WmUokvs3wP/T1297Xk8hUnf4CHtFyfonAUlm0sBiglNY+ekHFA1TUCwWkVALSssAl0BPAXu2d4ACMJds1EEKDoqVXSlbktJfvSRuRErEY65XqucmIpWdR3FvOXwxEUB6Hpq7p2hZrLafLhXGelNTHLKBDgwr/yImhcg1UyrpXjMDlclHjJD9fyvzaDikZzhrwiRmT+EANnjFr3xMBYb752ZfUzY7Xn36B9zsRPbGW2jXUVUNrW0KYGfqeGGZO/Zn33/yc090tZMv+cLUA6oyBeZroxwvzOGqlK2nW6Ln0F969+4bdYc+u23E63dP3Fw6H46Le9fhwz/FwhfNe+5COw/GK0+OjtCjCLO23uuFwuOJxnjEpMoUdYRpwzOQUpNQ+CdDQGAF6VU3FvmmJMdKPg2TOKXJ+eFz4xAt74X6/Z7ffCYPZJFiGthPu+0G3mOhRwOF4pOt2JDLdrqOqPPM8cblcsMZwSEcKGnwMkZ2KChljefHyFc5ZzucT1jj2+4Nmi4bKVzgvGiFiSC3Wep246On7C7vuIAxqMSzlzTLtModAJuK8TA5dhlHwCPO0rIHCCY/ZDqlq0G4FAFcSCVgz0jKiV1fqZJM4iDBPC0Cr2Jmyr7d2IkXhFOhaBU3HQD/IVI01Mo612pRi19ZkZtk9JmsWv07POGuU0tsuPW1ry4TBRjcli/1IWk0oQWohuim2K39oJxW5X7haxKE5noIF5QBSgbCb2XkWG/y0BcvTsGdJsqRlty3Jr1Fa+Q4r+2zhDFhPXsYPWQz1GpxojWeTyFXK8AgQssrSO+VGKaRJ0ShHAFgrap9xjqQoVNKycq6W6xjGkcykE2h6z9V2O+uEq8FYnBeJ3yUAiDPZJXZtx64VfEzbdVzt98SUOJ8vzJMEH/uuoalq2qZijoFhmpjnmdFamtpT21b8A4YxBBLS+rNG2gvDOOLINI2i2jIyFZBSJo0jISmoYLxAloU6hYAbJ7LNwvAXE3MM5NzTNTUpH+RgSdWWrOVy6Qka8fuqZrfvaGrPVXvF1eGG66vn1L6iyR2ur9m+6raj2++pmoaaTMp3eGuodOTl/zT/8/yD/PklUi69o8KnPQ9BieDcUnIvscL29WFWmz98vywY812QofLvNUAglyxazUrW8aMkCytsgIECZLT696T9HWgUmZmizO4mBOH5ITuWAcUeZM7DxKFrdKaeJSvIsDp/swqYFHbCZUOkvPRE1y6nZgqbay8pRJnnj1H6YLuuFZ55KxlI1zRchn7pg3/rHufCdyAcEtZJH72MQBX2SGlFrJu8nL/RKgImY1wxWEmNV1jUzcgyrpSyIVjLw/07/vbvJKYp8vEnn+PrGv0KJULLxBDo+wvn8wOzXsNhfyDMidt377m7u6NrD6qHMDGNE5mM9xXn84kYA/v9nlhXpBRxxlFXDf25p217Dscrbm5uaJqGx8fHJZiJipruup0aQgnOHh/uCSHS1jVn7zHRS99vtmRjmXRdYZQjQmmI961MokTtLYaUFka/oP3L3a4jTZmQE/VYybiQGui27bBWCEb2KMMdQtf76uXHfPzx96i853w+czxeUdctWRHU8jygaRqarmUcBppGNO0fH+4IYeZ43GOso9vtOZ8fZYxwt+PS91IxsX5BU+92DeDp+155HyQ4lDaTaj0Y4f+IIVA7dYje4XKUwHGzf7aZMNloAClrqpTv1wC6rDtxmmVtxRhVtEX3olmN/bJ/kP3lnRAdlRpz7T3VwTNOE/04Ms9Jqj6lSriWH59EE5lS4ZC2XYqJoLigrVKd00zRUObw1YGbUoWa1YFt7wZLv13ie/m7NZamXeV8ZSpLKojGFgD4BxNXeQVmLqbDFCbKtCRYT2xRSgtYr+gPfFh5Lc58qTAsBmUN5MqPty3dlAWbkFKi9hX7XavKi4bTRSSAUxK+/VI1Kd8n2BSHGcwCEoyqyPphQaL08AEZL05SKTR6/WDE4VcVdd3QtJFn10ect9TWcdjvVXtix36/o20aqQpeeklWME8CvZjED4+zkN15L0HzHOF0PnO59KKpkxK180xTTybincHMgd1up63biB+GkTnNzKmnrhrCPEsGUgR3rCUn6Q3NUyDbcpOlx0eWUtkUZM4wJkEYOgWAOLsi3yUaA1dX2BRoYvv0Thop0XWdsMRdDxfmccJaufl/rv6nGcdpBcOwQFPWKFx2/JLdk1HaxzXD/tbrSdi6XXSbDb7N9vWLnixSinEp2bUFs/JIlwVmclKWLFm83lnp49TCskhlyEaYooSdb3XEa6VCvmsOkWEKtLVX4KNZIt6yKVcHWTbVmpUbtxIYLdK95S5tx44QPogQgjLLdcKJrVl3wmCyWQzeNM8rEh8VTzEsxy8z1mOeFk32cs4Wu3BPFMDTkp2VrGiTSaxgocILkRYlOoMhWsNPfv8P+eEPO96/+Yaq9bx89T1CjDgDIYyEOZDSzOPDHafHeyrnFq2LoT9xUY156xwxFOpbqVZNU08IE03TkLMEB03b0XYdwzCx219pyVoCp4f7e9pOWgij6t1nViDdOEpL4XA4cjo9YKyhbmqmaVimKQRUFBjDTFPVIgBSebwVsF/KMhrhnWMcJUsf+p7D1XHpbZIz59OJx5hom0bHfCWLLL1gax3OWPbHA/v2wP39A2/fvmV/PHJ9/Yy6qunHYQkOq6pSXv9mAQ6Ow0BVCSNlipWMp/nCrSAo9fP5siiaVV6wDvcP9+z3B3b7I6DEMxrwyEy3zMwbY0lR5Zh9Rds2Ggiv2ehSeTNred0YrXAqe561pUKwcYzFoeVC2JOX0uu2+iejY+aJeTDGLEyXxSYlIxWHXdvSNA39MDCMEzFJ+3TZ76bgf4pf0/aElpdL8iO1MWkvlUqeVzuWUkblWchIP3kcJz0ZBdKq5yxJi2wsOX6Rky1tB2uFqrbIbBeGQeekelJGEb/FqqqdgfK/J6A91kTFmrXJUBoA21RtTbckcjc8Ncebb1y+R85L7EDXSc+86JpQnskyir7ae0zmr13/i9Ra2VgrK3JesVR/9OWdlN8LHmWe5yWYT9r3L+RPTduwS3DzTJIHizz7bCK+rmnblrqquZweOQ8XhnnEYOjHkbqqMVYUTYdhYpzFVvTDiLWOKcDpcuE8jtTK5zIpdiblwNVxj3MVDmH+ncKM7y8DY4IpWeo64AxExEllRGglRaEAFTEYAXF5J2CCpGx+RaKybVthIDPSDyYJ6c0UB+Y0E0j0cWAKIyE+JQIap4nKVRx2e879iUO3o2/PIlhhVyW4JbvMeanuLQ9x66N1AQzjhJvFQHyY/W97UN/12mYPH/ziko0DS3BTEPuRrCp6Bmvzcl7WCqBQsAGoBrpXZy0Lu/KebU2rZOmG4gjlfUGYRkIw68JWqxHjWi4r98wtRmqNsE0um0oNHip2kZ9sOUgZ40X5qq4ky10nnvWYSHaWYSmRFj7zci/Jqmylt7EAE9cAbpNFSHqhhEo8+QzIMbxfy/3l59b5J8/lz57/a/zm3f+eXdcyDTfUrsJbT4wzYz8I+p7EPA44BNB2GgfiMHD/+MD3P/6Ew+EggYUKhIhGvdD1OgthHhkHwbW8ePmKqm6YhpkXL19xvjwQY+BwOPDw8MDlfKHrOh2xszo1INMJVVXR1DXjMFKrKuc8z4w6ehfmoI7TEcaBtrGLwtjh0BGCYYgSWMRZZIGHYeBwfU3XdRgN5IRERNbbfreX7CZJO+Lu9o6cEjc3z6VFgZOswljubu/49PPI1fX12vqbpoXCuWkaUow8nE+cTyfiNNN1jRpG+V7vK6ZpFszIbk/bdjoSaBHQrDidYexFiMnVSKVeWh4pSrARctgA8jJTCrR1x35/oGla3OjWDNFsQ+nVccM6micxcF4C7PKZtUMoK77Yn63dKCRokqwaKImPjvdaI0A0o3uiMg6/F+K1x/N54VEp+97YrV0y62QTEriwBL0oOl76++M44p2KhhTkHkYB3AXMnJdzFQwIWAVtF3vny4jxst9EgM210nYcpolpGvFdJxVItQdrWWUzQVGSgScJwKrumXMWEh3N1ktA9SRf2+RfRgMfim168tKbtME0ee/w1mhLxGpyxHKuJXgxRsamUxKMjEkz6bDHukKFXqqbT7/VVzXO13LOvUyzDRdRFTX6HU4ndnLONLXsB2stcZoJ80RIiTEFep20uz+fOA09U5Qk2wdPPw7kWDOq5s4UpLdfgJ2n88ClH5hjhJSUL0Bb4jYzxkyr6yuEyDiM+HEcuERDzA6DxdY1tWvxdUMmkJDRrbapubo6MEwTbVXR1ErRilkWlkXYjJq2JRloKk8IE16BDPM0MPQPpFQxxZl5ehoApCg876L1vmPXjux2LcMUyFZ74no+chFh6YVl4majPlkOoGUTWyoDy7Z66uA/7AGy+VzxrFtntR4rLwuvCExsqxJlsxWxHeekXFu25xTi+jm9n+tozFriWuNi+VaZejMMcTt0uCnnsQkjkmTq+t/lXsIKrtveAzSCNmo9C7CtzCiXrAQgK6q4XJM1Bus3ID9TqiNby7p5QKudWgKU7WesXY13znmhdV6CkyVT028sm3tz6PuHe1JKHF/cYL2REvgk3N1WM6UwS1uiaVvGcWY898QM3W6HdzXWWSW3CsQoY2xtu6MfzqIZP48Ml5OwHjYNmERV11z5Zzw+3HO6f+Bwdc3kIu/fvaFRBURrHU3byT1PmaZpGYae8/nE7d17Ncgq/VvULq0gfnNKtLsd4zzzcD4DMEwjMaVFYVDGheD8eMJgtC1X46zFVzVYwzQNWGO59L04YO85Ho88Pj5wejwxDBP7w4EfPLvi008/wXu3BP/WWupaZo5jjIzDhb7v6bod7uhIKfD1V19RqUb5NE/EELSPb5jnkaapqepKGAiNoW1EdKfvR6qqiJPNXC4n4XmvnVQSrCdGnZ2fRnxl+PST13z14pq/Of3P+RN3/5WysHUnlX66vLeR11l4N7IpmfO6Fs26cbSCsE6v5FxyaoXuWr9m1Fo1kABfOPJJ67eWiqd8zK2Vsk2gL9++fv/W7RljsBoEF4c6hSCBdzLk7LBGA+9iu/Tci60oxzHFgW9sQbm+pAGHzJN79tZqosLK5f+0BCJ7XsGbTpOQ9EH2XH6vEHot7cMPbLDcD6m8pZQV1b8GAR/a7HIfjf6OtYaffPa/pq4rbOW4/uv/yWUEL2epWq/VDkPIhkO3ExIfY5iniZO54CqPM09F7KxvyTnSVR5vYJpH0SzxEuDPYcIOhnneS5LrG2rfMLtAdIn+MnMZe+YU8fpsp2kmzOnJyLJTgHWMOktsovAFTJHaCyvnOE/kbBjnQAgzWKis49B1xCkRahiQ3xvDjBf5QkPOhmgjySZMtkIJjDirrq6pZlmcddPQ1Y6ucVjnGMaRKSSauhEkcdPijGdKgZhmrNOxmZDIUWhXwzSqVvdTLYC68lRe0JkYcfR1t+NxOvPbv/W3+eWDCClELT9579h3zRp1snGApTT8LY+zrCgNVM2HP/lWVWDNAswHP1+BOzFEnI1PFn8hIFn6i0+OWXijF+zv8rvLufHha+uUefL3co366+styR9e/9bjskSoH3zLB59fj/9dx2C5h4ZvHWx7lPzhcTee/8l7T89/NX4smxrzHdefN0mPnk8J8P7u6b/Ev/blP0u93/PFj34sCGcjxBneO1IQCdgQ52V0sh8GcJ7j9QuqulWcQiRqSyznRAwzJgsd6DBIj1RZW7i/v6Wuaw6HK6x1PNzf0zQ1Gcv58QFjM3XdInwOAsIbw8g8TeScuPRnGS9sJSCom4YhJcbhImW9lDBeshNBAQsfRFXVhL6nV6rhTpH11lgJTuoaEObKuqmZ5klIQlSv4fr6itrXfPPN1zjnl5+1u46Pv/cayIzjwDgK41vXdXRdp8h5QelbZ9kd9sKlcBogZ2qd6bdGepohBLq24/27t5xPj3z8vU+0dF4z9CLXWtfNIjk9TRPjcKFyMuWAsTjjFagoFa+pn3h/+55v3nxDHHp+xa6sdMuaKQts2X+ykz/E2jxZkZuFtvx7W5kra9UYSB/YlJiW7HeNzM1y8PLZhSRHP6bxbIlfnibEWRZ7ZA1OSgVRvlOurSiimhJYsM6AlyrCGl4DOlad1i+SILm08QCTDEUMK5bWjL621dnlftnt3dzsy6XnL99ZCIzKPd5iFUplphz6u+3jJhAo9jZLQvLbn/7LvNjtiVGVakHBkBnvPXVdMQ4jp9OJqqr4vd//KX/iV/8Y+12Fs45hGGi6nilF7FYACdGwqaqaq7ahbWru7t8zOV1sFqKR4PR0PuN8TWqklViSqTEEYo74HHBeqoGiLJiUanziYixtVZPq9WGK/xIxvL4fmOZR3tVnM4WZbBLZV6TUMs+BGDOXMDLNoo/gyRpRWck1h3kmJBnBa6uOXV2zaxtCnKn6mtNlwJBp6hbnPCElqsphXUVdOerKiaQoGVLEKEK/qSUDHpX8YBx7laPcPLwYsSRCGBiDLG1f17x594f8pw7/zCJRbI1Ekm1dycRAjOsiy7JYnmg7f+AoluX4wQ9KJFlyY2vWKYEt2GfNNkXtsGtbxmkiDsM6mrZd76zZwboFigHafmb7tw8823e9zXbrftvxbr/xQ9f89DBPz+zbTvnv4NZlBW4263f9fHPM74orvjtw5//Xu08Djm3P9MPfXgOK3/jt3+PuPFIfrvj7//Sfoa0rxlE2ZlY2x0Tk8f6O8TKAcXzxgy94/clnhJiIytktOAAjKPjzCWMMz66v2XUHrYYYFe+QkqJzXkRx2o6+H4ghUHmHSZnhfGKeJpq2pdkf8M4RjJQZX754we3bt/z0D38PX3nFKkj5W0blJvq+F37vnczn55RodjuauiFMpa3Q0LatiiipXdJ568vlvFRnpmnCe0+Mma/e/py+v4iM6vUN+/2RaQz89A++5Nn1c66ur4VhsOtU7dAojkHAcibLKGhT1djDFWM/SDYzjYQU8dZS+Zqqqjgcj9zevhcgVTYyKbDbiXQqoqYYlQPAqaBWDJEhD6AGsQTcD49n3t4+8m//e7/Fmzdv+Hv/1GUJqL/9+mB/fFdM+ndcruu6+tbxviOp+P/v9aF1YPMdZvOpvPnU+tWGFdC7/F0z3GV0kg8JctadtGb/8mepti10w0afrZEWowRUeeHRL8HVtvK53qAsAZsr52AXQHDO8uy8NRhnnoAScxFE2Rx3vdNrdFTsdLklK0ZDAId1aYEiPfHf/vR/yS/89B9VUTboFXBnVdXxH4j/Df69L/8X/Oj739N1Jxz67BqcW3UAAJqmoq6EvpwkjJXOIgyJ2jZMTrJykeK11FVNSFG4Miw03rHvOurKi3hTEqpxoSVPBCdcK2V0o/ANSEVtJqeoiYuRcpT1zEHYdHNKzCliQmAMAZsD/TjKmGs2KtzjLDFHMW7Z4q3lsNtxtd/RNBXj2DPHRB1hnnr6acYuamyWurbU3qvwyMQYJlrvqJKAR0SoR5jSzuczMUwCIty8wjwyjj2XHsaQyTgcjuvDFdVjtZTFy9yrlHDS0kfd7ITNfjFl4kgXtF0WpuFpH2oF6603uEQPpb8lv2vBCOjRWikZTyHqeM9TMNCTHfrhXzc9ur/jZ2EpWeayvjdZxBqUrJ9/UkbXXlhe39F/l7xn/c71vaf9x+WPDxL/4twXc2S2gf+Sai2Bgp780/uzJmd/h5hgnQZgc8aZElRtDaMahW+XRjDZ8F//8b/EP/9b/1Ve/Lt/g1//k7/Oi+tnnB4fubu7w2ah5RXxngtjP3Lz8jU/+vEvUdXVAoozGNq2I+dI09TCGTCN+KoRRrBs2DUd0zjK7HCY6YczXdvy8fc+4fTwQJhOWOexzjOOE+/fv+N4dY2ralDK7OFy4XI6cTqdePv2PXVT6ax9WJjIhO41cHd7RzNMfPzxxyqcM9O1nuPxSkvxHVVVMwyXpV9fVZLx3D/eaxXEL4yBb755y9AP1Mrhf//wCJzxdc0v/8qv0LZCgnTYH6hrUfcbh1G5FyzjeOZyORFD4uVHH+G9p6pq5jQKYBEY+jMhnGjajrppqeuGYRjY7XbrmCqZcRxVKz0xh1kkaXUPF5rjuhWaZW8dX371M7786i03r77PP/HD/4n0pktmrAt02756srQ3W2ZxixvH+mQ9me2K5cl+WSv3BbfDEyzM8rNNVi6JW1ocl9giu9ik8h1iutYR3gWPsAlkNl+ynOu2+pjZ9OWX27I6FhBiK+HzgIyOsgEZHWmr5LsLO58QJUkVJgblqrdOSuulNWjNxnTpFICLFKrgArYrSPeF62Az3SS4KqugO7ucQ67knIuN2to7aywOoZYOKXPpe5wxfPXj/wPf//3/LOfLINK8VQF3il+Yk8j3hmmkqSuuDy276DAftAB85ahqsQ0JHbubZlIEXwkgtmk7jLMiHJYt3lULNXFdOXZtzb7b4YFoBGOXUxTFvyITrhW+VEjfdA+MM8Qg5117T2WF5MmaLJX2IH5ynGfhG3GQU2a32+GrpsWljHECTBgmHS2wjso5QeR7Q9c9Y4zwOEwYX9OHmcrISRocbSssgikFYppIKZCQspGgIwWJ+vbtO87nE8awjE6U1xwCw9Djq8yULCGUmy1RWyzyk0kevvH18sAMSl6jzHFr9GyebqIkXAWFralIuiaNaK0uMJnT9atjyijQRY5ZZlWtYhCur7xOG2wi3yd9sdWRljE32fRrNF/6XE+xA1vDIQ9+ixEoG7/0iJa+fFZAzcYxF87/ErUXQ7Uyha2luXKMpz/fngXa8/92z70EE+Wsk35XSqqZrZt5ywBo7Ao5KsYQXewFGCTntFaNtka5lG8LwZAADWUKYgVuGf57f8//jn/743+FN1+/Zd90C26hMMBdhhMmGz763mdcPXvB4+nE8+czvtmh49MiCpSCMG61Lc4ZxuHCOPZ4rwHhNDINPbP3PD7c6mTAgW4vwYNvmkUkp213TGEmpkB/uvBwd89wuUivXIPkFAVwK9LJ0LV7mrZhuPScHh95PF346U//iE8//XSpDlidRc05Ms8Dxsi5VwroHRQ9XNc1wzBQlNNSSlp6n2hbw67b8fB44gc/+hG/9Eu/tKjlxRwZlQip61bhoajjZrtOuAKs9zy7ecZ46RmnkaqpeXh8oG32S8vi5uZGgqW+X+SeUwpYVy+JgySRMuZX1zUFslrWv7GZly8/4nvf+5z9/iVXf3il2aQGFKlkhE52znbvUbLOAkKVQKHYh7JftpXAwjZnsnnCcV8CcDmW2kDrFuDvxhCsazcLuFTGDNOSdS4gLtTBsTr9sgcLCyCbuFfsZFr2aM5ptTV6PSXgKG2MqOsLs4J4ZYpI7mGRJF5MQUmoUKlgUy12XRg3s36PitMEZfqzFmdWcLK1T21eCYLShwFAzmS1z9J+iFrdECD1NBVidrNUDowx/J/DP8ev5x/yeOkJ2RGi7IfjQahzvQbA4yj8Ds6Lyt65vzD0FyqbaCqHMw05e0J2bBlsY4gkZ4lk+nFiDJGCJbHO443lsNuvQm6VcIlYDF1d0TZCBb5vO7z1GDOx73Ycr/bEPDMOM1Xl1+kTffhhnknW4o1UaqxO35W2Zl2LTxr6gZAyc0qcx4HKGrq2pqtbfN20amAVkWwMp9hjnCOGADnSNTtSzlxdXXGZI7d3tzSVV2rXtNCA5jwLSCIl6gyNr2Tmv25w1nPuex56AQhV7ttlslwiqGlmmGGYDeD4vT/4A/7EPuKs01Eg4YZ3IZLrilLWctaSzFPntZ1Hj0uEqAveWoIi8osDdUqkYZWutvR6dUvLJtKI1bgyH7oCV5aemino0m9z72tKIJtPpYHLptzusEUMZMl69f0s31Ei9PKzuFRU1qpCJqsqmnC0C6+Akd5QLkEGUnpVuuAQhFCntFXWlsfqzJ9kQGaT/Wvss8YLBmNLOS9vggV9Zq7Icgob28KGmJPynGcwQpgja6w8x7xWQGCR95QyZZFbXVs4W+NuI/zGb/wtbu/e8/ln36Pb7UhNQ5wnvL9it9tzffOScZ4FKKejaTlHpnnERjHKMQZSmDk93hHmicfzhcPxipwEeHe8vuZ4ODK/7RkuJ0zO+LpR8ShH1zV4Aym+5O7+jsvjRaSCrUh79kMvoMBast6mqen7gZwTzlmOh8Oittg0De/vbvn6m6959fIVwzgSYqRpO0Eop0TTSjbifaWKdlJRvDpckWImzAlrHG3b4qzj8VEASM1NxafXn/L6e6/pOpnrN8aSQyLatYeac8KmifP5xOFw4Hi1Z5pGamB/OPDu3Tsu5xNtW2FipHLiCDCZ/f7AOA68efM1xlieP38h1MzWMo9SSRGA4UDXdriqggwxB+Y001QNGUPT1sxp5uuvvyQqN4HsJaMlXpEsLg5wuzfLGhEKVZZAQEBuPGGe3Aa4354kKojzvFQSC9p+sU26YbZ9+9LCKWqDS8KxHNYs1YEn1YUPnWepLOSnQUsB2pWgBC2zb6ugWQPmnFeBrhIAFEXTpedvVjBk+buz4nxyzqQQCHFejlWqMLZULjS5KbohxWh86PS39zRupoZiElxZuTXb2yTxolLfkhjGnjkG5ijv1ZUI5vzV63+BX/vmn9B9tVYUY4z87t/+CR8929FWCNmOdzjjGeP2WSufS4iS4YcZsHjfMsUA1tI1O8H+KHdIVmyYdZYULU1VreREMWJMZl/X3HRHzJwZ64CrPLVWv2KhRzci4GRQ+XInuDxnK8BQG4+pZLpmDAGTE/M84mtP0zTsj3v8bndgHEflcxfSAWcds15kigGDKP3VNvHq5jlNVWHjzDyOnF1QBy9ZyRwiB+vVWEe8FyKMcRyYpxWQU3uv2tXn5UaWTRNjZhhnTpcZjKFp3ELgkJSEI+g8dHlZBZAYVC5Wnc22XFicUikxLgssQrJrhAzgsifneQXLwNISWDi3S2lANx9Zyof/X87+PNa6Zs/vwj5VtcY9nHOe8R3u0Pde+96+7W633dgQsDHYgsQJUwYpwjiRCFJkRPiDhCgKjhwTJSASwAHJCrKS/yII2AqTgxJBSDCJI/AEVnug3bfv+M7PeM7ZwxqrKn/8qmrV2ud5rxvvV+9zztl77bVq1frNw/cnby8FeyJIVAqXoWKznTBO8j6C9xsFh3WCJpj2J+1R5PHl2sovbTRRAESmsMS6hneFLElevHJhXLMXkJhYLBMV7QNBF9MPMVSaQgrx+pmggpTbS4AfanlGEd4yhlvivi/Y4NHrAtDJ6Iqf5WHaXNlHI8CGMcJFUfC3vPoH+Q/q/xO6gPeePqEqJBpkJ6m2n0aZUz+H8dTnrmNfSAvsOA4JhU5rxTQPjENHWVa8//4HoDTj0GPtmFrklDZ4N2K0om1qzueezz//nCdPHlEYAX9qa8HEqKqCJ08esd21vH7zBjfN3N/fSetbUdHRM04jWyUFdoLuJt59XTfM1nJ/ONJ3AnTy6PEjGcUcjLs4MGQKeOFX+2s2my3H4wmnPU0j6+iHkaKq6YeBU99x8+QZu/0O5x3TNNLUMq9DeMGEVryJcei4vb3l6XvvC45C34Py6F5GhW+ahjcvX9B3PdvtFdM88vLlK548eU5RiLE1zxOn05lms8E5jzGFFCcriQTe3d/K7Ia2FT9da/CKqqppqooP33vOD3/tB8lQlJByFi2KSjZEyLxaomYqyBgh+2zAS8pZL0oidZAHoz3yTu7YeLxMv8wUcaJNv25Bk88j0h0JWyBGylQI1Uvm0AW0MYlA5K+lvsinbrjItnJtl64FKo32JfIoSzRDKSU5ZSf5+1j8HCMCPgxKTrxXyB5FHomh+9gp4NLzWNBNvdfI1Pf1faxMKrXI3+j1x2imzEuI643zCIKxj0IH48crjUccibpuKIoa7xTWutCSu+yTRH6E3nxZhm446fO3wzpyPU8jhdIC9RzwKYrSwDRSFhVFKYiqdVXAKGixUtEvtWtd1zFbqRWKERdjNFebLXgY5klC+tqgg+fvA46JwlEaGfHtw9wA6xVNVYOVCFDbtDD2FHjq/Za2Ltk2DU1dUtR1w+l85HzuAtBErCaGsqxRHqZxoKwameBXGrZNy+n+jqP1VE4m1NVVRRWiBqaIISqxBPtewoRD38vYyralLUvquiQ3ADbtRgqDihLHxDjPlFXJe++/DwcYw1zkNCUs4LlH778sCtmcZMktrRiwRAByRRZ/OmdhXgjVzDYxXKwbUNHzT9azWxTTMm8jBhkSU684kMD4yaUgKa8oiJZA+qLMElNEQyGF2ZdQYvw8KcOV+xBGdK7YarmaD8IoWg7eBcs/fLh4GyyCLu5DftNxDaLZw+fR49coNF75lN+bvU/IbnHkafJEolGFD21LpOcfZ72nPfGOtfyIf0QPMAKtRCGnMLrClBVFISHzONO9KEtevnzJZGfqRiBtTVFKDUxVoZQUADrn6c69CMAQSeo7mbU+TRNunjnd9xISdY5h6Jm9p6pKysJwPB65vrqhampO3ZnD4S3FwdC2bSAkGwrjxCMZx5GrqyuOJ4OdPcfDKUROCmYbwEGGAbym7zvKshAEtO1WOgyGARNqBPAy9OfJ0ycCQdo03N7fh4r+Lf0ws93sAIHYffXqFc/fe840CXLfOI1UZclmtw1GvsXOE3e3d9zc3HBz8yihHCpfcj4fKArN/at7jAmDh4zm9vYNp/ORsiilin/spWhSawjz8zxQFBV15XEbaQXsuhPjMApwStvQj2OaPlcXJW4SvICFNoUKRVnpEIrO8/BrXokklHgp/O4fsg+pbojEPgs/ygHLZ5HXL060sM+iwOK5IwZA+ltpAvxWxsD5ufxy7VCgt9xHlA1LOMNzqXzFcFZZNBPlcT6mQgTuVn769f/TJMBMmWFjtE44LjZz3GKhX5zcacLsjvgwotOVZKBf9iV/XFEGeiRlYUKaQaOCsq8xphCwKK1p2g1VVbFpN/hZomlFiGgL0p8YKo+fPJZW07JGaTClpFgLa4Bh2W8fBzSFQryyoCxrPIKZUBhFWRjm2WG0YnYz5/4UWioNk53pjjMOFSJ6BQrPOaTXNsE5MMYw+5miMIzzTKEFl6UI9S9jqNuYpkHOU5R4L2iibb1HGUUVIhl1KbqyUCjB+T8csNajTIFH0zQ1hdGUlWAnD0NHvbmm1hXzPLHZtYxTj/UW552AWHgBv3EQPKWS7nQWIjAi5EsjoAltVazmuwHUZcm23SCtDUcmHG6a+fizF/zN2znlk5SVcHVTlSmcVRjDFIrwBHffBdJYLNncI40MEhU+qAvCnJYwlXMpzOUDhGieF5fjVfKWozTwXIafF/pNxTtuAb6JSi8XSqG+NhB5uHYYWKESM8QWpmU/I+ZAmn4W9iMXckvuc8n1LSHDXCgsUm0RLT61M6cZ55kk8sKN4e3McFIajSeOMU1rTSy/rM57sAHfP96ZD7UT0TjLj8/3ApYIQHosPtKFLHOYJopkiMqshO50TOkIgMePH1NVVYC6teL5WIuzkyD5IaNkx6ELNSwDzlmapma3v+J0PjIMI1Up3vn5/sD+6joMHOpQKKq2ZjvvaDcNGsfb27d8+umnTMOYpvmN40jRFtJu5z2Hw4FpnMKUQIebHX0/cH88CLb+7GgaQ1XLtLDYvx33+ng6MloJLZ5OpyScrbPUVUUR0kZXu13KTQ/jGKqTB+bZs9tvg+c/o42hOx7p+4Gm3abWPaU8b16/wivNbrun2ezYblu8UjJe+NEN77/3nKpouLu/k3XMM2VV0TYbRjvh5jDm1uhQmzBRGHlmNkatQpFxP/QM40C73eJPPg8q4fHJyF0iWheGeiClBU8/HOtVTmJBmUdSigoKUp4gcQKL5ZwxdqLHwH94h1JF6nNfbIAwDjxcN0YY0rW9v+Cb5fqRG6PCj0iGl9zqIeECrIyeGOGLvzvAgA8DzGLEMaLeJSMA8VLjd2Ouf0mnuRS+X7ZdzhWhjcVYD0OOonwItxbTCbkhle+BicXbCKLhpt2IQeAVV5sd++1eClON4oPnj/m/fP9/yj/05I8EWl7kzecvXvL19x9RVwV1tcGGZ6nL9TjgebZhop9EMSMoVllvcHamLEQ/zZPMqpmmgWFwoaYtRHuc7NNsJ5QKBsM0Mw5SD1CHKN48CsqgVgpTlDR1RaU1U0DvHMcJ62HwPcYIamsVpgvqQlJkBQLcZOeZYhgH+r7neDyKh1O31FUT2hMUTVNDAPLt+jNtW4R0gfT5e28pTYWzlnZTMdmJcRgZxomul59lXaGs9KR6PPumDQiD61CKd6HFz8umns5nmqpmGHr0TqHLkKPOe08Dkbqs+jSNfiQU7gVijZLAq2wEbQr5rUPcCUtf62zCHXjCwJkwn2AhQJ0ARCAP3EfyXlfeOkemAG32u4dg3S/eSxhWkffi5uwelL9PEYrF6HDJYo+FdzqTDEtEQRFz/j54SPJ73LcorHJP/yJitxgZaWXxVzlXBPmItRZR6cRnH022uIYYdvAshtNa4C1plsUWWO9x/DtWGccuAfE0BJWraWsZlDRbxqHn7du3KKW4vr5mGIaAYDcyTwPj0OPsJOHuacJoGPuOL774nCfPn9O0O+ZZS9X9OOAc7HdXlFXBJ599zGazRWsRTJ339H1Pu92y2+3oh4Hb16/pugm85nzuGfoheEbipdRNA0pxf7hnGKXToO8HTsczr9++oazrNKjp+vqapmnE89cmFfmN48i576irmjdv3uCtxVnLZrelbVvGYaIbB4Zx4Gp/RbPbstlueXRzjVLw9u1bbm4eYwrN3e0tm3ZLU5VYO/HkyVOqWnqOm6aSUcKvXrHbX7Pd7mmaTRqb+uz6MQDj2FNox/5qDwqGYWToR4pyTnn6YRg4d8fwPMU4adoGG/rdqzDW+NR3fPLF55xDUaOEixMVRCJKP3wg7jhEbClGXSuYyDBJtYZTpfCzXwznaHAsdnFuYERFKwaxJk7282H42TKZcK3WfYL01jqE7oNsi/UvniiPlrtd+DemHfLYweIcLZbSEs1IaYB4D3nxIXEt0UO/MALi/26ZTWJDNEBlP2NhZuRtn/ZNo3UcZraInVwOrPd1WXM0OEBkbN22FFVFrQr2uz11XYMHN0/ikc+hOC90dSkEDvt0PDMMFrsBbz1gwuCxdfu6c55xHvF+xivLdrsHZK6G0aBZxi93fU937uimMbTwzdSbBjc76qoNkM0d8yj1AnVTU9mSwkmX3mwF2l0hRlupNUVVMYwDHpnH4rzQzziOaAW6qtjUNUUp6UYfujGGaaIY7UBpJOww2hHrJApQFCWbpsS7EYvCWS/Qqeook4rOB5kgpgxNXWK0wlsv3p2Sau9pmimLCh0EXdfL1MFNo5nnvGhNXvPseH13BG3StKPr3Z5vfeNr1GMlMKx+GaIiNKuSYnahWCfl0om55AuGDiGehVhUsviXwj8fRE0krpz5FwEQw9QxXLZwTGSjUOymzOIprASBeBuxAHOxoj1xTrQiVO2qpQBGmD0vkiHdM55lLHLij9w798v9JCbPGEklNZws6VW9Qbh/lxidrIAxDzLEMGIUJnK+oijQRjNNU7aq7Nw+y+eruMZwX0TDJJ5bfo9RHNJKczMsGiAqrffvPv8j/Ofzv42bZ/xc0Pe9AGeEsbddd0YNhtevX/P0yXshpykofM4rtClpiwqF5fb1S2Y78/Tp+xhT8ubtKypj6K0gaR7PR562j3j2/D1mK+vc7G/QZc3peGC+uxVYbK/Z7fYUpgDnmSdL1w0oNJu2Yb/fpxa+shAUwK7vifPttS643kkR4na74fn7HzDOE/M0CQ66kR7jruvxs6frOoZppKoKmrKmP/ds2i1og/OKw/HMOFoePX6EKUpev37N7e0zTqdTeLahMMtaxllRNltMSKc8vrlinmfOxxNGKdrNju3VNXYeefX5Jwz9gLcTTkHbbpmtpT/1HI8nikLgWJ0VA8qYAo/ldDqFYikfRupqrB2Z7Axo6rIBr3EOuu6cRfRy5XFRH7JQR6LP/BVlhrU2FAYvBoInprVy1l8zwVIXs1ZU8WW0kcmrwUD2ZPnzaJhcOhRh0VrJ+F457sIaX25gdT1RmgsUt199FBRnVK7hc5f2a32e+B2JRGqUskkeLdGB6BjIK3ZKaS1zBJTRIeUsWk2G8+jE8ulaPotOyAXkZ1hvLsvSJntZu1NK0k7tlqZuKExJ35+Ypw7vZvquD8pfBbheUE5xtWulPd5ahmlEWU1mTabXOA/M0xiSN45N46jqCqUEIM9OczIwzn3PsT9xPJ8xpmCaHWgt+PxqxjmYZ+jHiX4caKaJSsleoRTnvqfvBpSCq3pLaUrqQobqzfMos0NigbkOkP2mwCnDOMygPc7MTMPIOE0U+80Gd7WnKkrOw4wNQnJT1dSmwM0yT3iaHUXV0vdnqWqNuZK41156DouioAyof4Ux1GXFOE3BK5EcUTf07Js9droAAiLMLx4llFoWJXVZ8fzZM4qPCrppSMxbVyVVJYAMXpGGhcQiOSHuyOwL06Zwckao8Wck8jjL2YfjhRlUUoy5lx2v5PyirCNjyDCbmDIQQyGfLEWWTljl5jMPXYVWSvFe5T+JkixtLnkdgHdLpaxUJPowfDA7LpjTi3pceyiyp2phMBDQJhfvfTEOFvtiKWZcjIpM6Ab+tM5jxwGQ/Yvje+O0sOgZxBNH1K34fFZhPxUNrODN+Yw3fYhrBCMh9s7Gc3mvUnGcQiJO8zRRliVt+5jxixHwvP/++zRtg1JSPb/ZbBlHmQFgreVwe8vh7kRbb5kmizaFAAo5xzRObLZbTvcHPv/sU64fPw6GniBqKqV4+eIFPiAM3t3d8eTJE7a7Lc5PeGRAiBpHKtPSbDYUZUl3ln7+2dqQBqjYbDa0bUNZyGCob37rW5RVxd39Pdu2QRvD6XTkeDwxTTPd+Sz8GPqidSh4evP2DY8fP6VpGuxsue/vmaeZ8+mMUpqf+frPcHPziLKs0NrQthvqusF5T9PK0CJrLW/fvKHZtOw2O073B0xZY4qC0/GerusxWjMMMnG0abZcXV/RbrbUzQZrJcpnTEFdl1IkFYCAhmEMRoDl3J2ZZ4tSimmc0L7gar/jl37rbxGMgj9XSrGwdQsdpsjY0gHgE124ZYR17NtXSwud8pHWFl5NoiUYpz4a/xdKIjkJie8WetRGKuDneU7eOorkPSslNKpSBIvk/WqfGd6Z0o5yKt7vCndfeVl48NAjA8UOn5zf8KTI3SoiEK+nFp5afsY9XNKcMTq4pCpjRFCFAlXS+nwCpst5mSS/NKTx6ipGJlJk0C8tmcGguL2746tPr2gr4eN+7Lk7HpiGM6B4/9kTeQ7JCYSqqvjg/WeAdP8MYby09zLZL39N0wzO45TcZ9d1NM2GqijRWjzwuevwYeSwNloiCYgHb1A0dZXG2k+zREkLYyhNAQqGoQcUzluKWgzEqqlo2iZ0ERicrygr6QYYJnHAnZXanNM0yaTZuedqv0XZMMLcAPvNhqZs2c+WczdwHgY2TSXFPcqiPRitUIFB7DShU9hNHuo4TTin2W5b6tnRVrVMdSPmckNuaJZKYfwmYUnHV1PVgArTlCTkFbqEEjX4oKw2bUNpDH/2+l/ht7z+RwMyVeyRX86pMmbIiXVdQJYplFUISWWcyzKQw/sQEgpeQLrOYv0vRkYMay1thUoRuhLEOCkKlbz3ZAh4nzwA3BItiYy8Nt1Zpi6qBcHQqwhFHizq3LC4YNzEa2SpEBUEoVJoLy2WsR87X0vqr47CLTOU4t4lBo4L8Eu/tURzVKhyXdIcMVqTr/CyIBJIHQO58UFS/jFiEFcRPRLF4XDg5etXfO3DDygLTWFqGbSiNNvNTizoMNxIp0mHHiZZa1kWlE+esW13eCy6MDgvuejT/b1M3ytLjFHcvr1ne3VF3Wy4v7ulHmc22y1X2y1v375ls9ny6tVrfu3Xvs9ut+Pt27f0fY/1DqcArxhCMeHnX7zkeDyjdEHdblLR0zAOaKO5vt5zc3PF7f0BYwRV73Q+y/ms43iQKJ7M3Gg49WdpO/Oe+/sD19c37PYb6rpmHEemeeZ87jgdT8zWcn19zePHj2k3kusvyjJNMpwmS9NspGfZwrOnz7m9uws5UMlT3jx6SmEKzkNPURM89l4Ks7ZSVNj3I8dTx9WVYbuV63RdF7BDFMaUHA73UsBVVFRFTWEMptC0dcV+L8/Ph8lsq1CxUit6CHpOFCWx8l8tn/lY57JUzi80yEJf71D+nkUxpwtF+kw8EuaCRByAUKym1IJjkZ1sxbuJHwJrrY3j5Vp5WN7Z0AlABgmc+GXZI4Kxr71ePO/snuW4NUaIygRNijMYkp5wLsqnuG+xHdhkUQMXonXhOnH/snvTS0gnyTOllqjkUt/kGaYBUxic9YDl2J2Z3CwIzd7zN/3mn2fzkybh0jjnKIuC3aYVx9LD1EcEy2Lp5or7YSV9473IMess1k409T5M8Azjz7Wm0AWFNlxt92hlwEFZFjRtg9aCUTDPA4qKti7YNDW7pqFpxMjuhh6UjFAvC0NRapFdaBzSUmiCQylRNMU4SzuvdG1Y5oBBAIpimkesczR1w6Ytme0tk7cYHcZeogQCFQTUQytKbWh2O4bJ0k0T0zyHfl6Fm6U9oW0bzl3P7CZQjqoqqesKZRTaWdw8PTSSlaAoyazjia4fuL2/pyjLpe3PRy849I4XkvuzbkkB5NwnulLydMmCvQjLJQYNr8sJdTkz5QUogfYS0cfQfIouBO885siiUImel1ZROcX2I0fMx6e8GhnR6zySocOsaGE/a63APnofPApZnXjYZlGQwfKM13lgFPh4n7ELICtA1FpSPV5mkieXWy1RhCgPorcjq1ApApDjGkSTxzknYe/4bnbOLLiRnllMfazqGVj2J+5jLhBjFEJqP2JHgOejjz+irUtKrWSmfNtgTElZ1VgvY2mfPX8/TKcbcPNEXbfoRjFMHc6PFJXCmJpmtxXlGgwaay1d17HfX3G4vxM43qrizes3GHPH48dP2G43nLsTs5348MOvcH9/zxdffME4TgzjFIZtOcqilDRa1/H27hYXoiWzk3n1WmuGfmDTtjx7+pzD4cirV6/48MMPmaaJ7nwWYTgOKKOpSsPQj5RVyaZtAaiaGhVAfsqikGr/cQzAQTWn04kf/ehHPHp0zdXVnnEcJKSLAJsITLGRyaF1Rdd1vHz1gqapaZqaeRrEiPJQ1S3eCACLeIDiAduQD5faI8X5KDMQdts9p1OHnR3jOAj/EHWuxRQabRSn84nPX3zBRx99xHb+bupdj/xw+fJ+MeIXGsvsyMjfKtJQVkQXI1IpGrakyhJdRsWrVKjVWVbhIj0Go7soQmGjFfz+GL1clFn4bm7Ah5vIknbhvhZj1z8QtAtHKKTCy3m7kpHxHPHeF3AwUkRBoiIBsAt/uTuraInW0rrrvJUxzpkRkW+8Cp0c8Xp51DUaaXF7iY6KZ9n3sMbUauxBlQaPxivpHiqNxmrDrDTjNNHUhqYJaacgS8QYJIy1dgzBeFWVkaK/1X6KEzNN0iIc0yg6PLNhHEKEWiYTNrXU8ZjQLq+Auhagn2mccW1NW4uDcbXZsm1qaRfsB+w8M81SlOqtYC2MSMt4XcuY7dIYdJgw650UxXa9IPnudy2FkfHcw/FEcfv2DU29wSjJ8fsAOziMA/1Y4ZGe4KpcJlUVRQDd8XAOuP/eBwYupHPA4mioGCeLU7CrqlDB7NiUBZuy4Nz1q300RnPfnUMhxMDxfBKhEqamBYoQQg9M4AIsY4QFjeyVkQMSRl8r9GjhRq81km08j9aCBEim8BUKrdYphUVDqcVduAiVpUIjHSMUEgqSMZpCPLHHFA/KBEXslnydh9C+JiOFfdwDxHBwIZwnITb1YORuNJxynltyiz4o7cXT8EnaRBr3yZMSi30pWoyT0OJx4tSEdXtWMKgC92lCqkKGz6hYZBkLsbIIRDQEVukVYa0kFOJ34vcWQymuKUYTXEIPU0rx1371r3F3/5JH13ueXF/Tn84U08h2uxOF152CdypTAZ1zlMYIDoY2nLsT97dvmfojZVWyvbqmrmoePbphHkZmZxmGHqM0H3z4FTwK5xXP33ufTz/5Cbe3r6iqimHoAgzuls224fHja7y3ODczjB6NIN+dTkfu7u6ZJims1UjoO47ZtaFQabPd8tHHH0sY3858/MknNHUtI1cVKCMDR0Y7w2TYbFq8d/R9z3a7Y5xGXr96JVXZRsb3VlUNSNtj07SA4vbtW8qyAu+T4FNa+Fh67R3TLIaB8g6NYpgGBCJNUTc18yQFf+1mK2AqCsZBUgT73Za6ajmfT5i64PrqWnjAeU6nA4IzoukHC1pzvX9EP468fv2G++MhyRQbwtyRHmO9ypLOInXAZOol0ZOK3nVGa+nzyEuRVv3D9tzFBM34KfIcUalJYWrsD4+KLQ4+izDU0VOPynCxM3z6WwS/W0Us1xGQh+sgU9YpdYBfMAa8z7zrCLSzli1LLUIm+aIhkvh/CbN7r1bHxO9EFNDc4YnrYnXksn8+PhwX25mX5yyKt8LUFfM0StU8UisyW0LxZXzu2dREb8PMCc8cqvS9U9iLGTaCCiqTRVVoUd62behIk3sriiIgb2rqqsJ7JeOwiwKjFU1VSBi/gW1TMrtJHO2yoi4LaY9Fou7DNOIdnM491k6h5VBAiJRSFJtNUPIzoxmZZ3HSXdj4zaahLmsm5yiGfqAsW6yTEONpPDOOAxpFOU/oQKTjbAWoQCm8tQzTzO2xYxhGTGnQheQrQkQJg2cTCnY8UJiW/e6aulRsm4pCKVB3q43c1oau13T9yDhb+nEQtLAQho4MGz0+6z1/04t/BIsNxVmRAUjEZkzBJab2EgDIFF7GniYgKqVwO5mFrXKvVF1Mn4MYNoMFTjP130drVpv88GTl5vUGKEQxptSGcJwx+XdjJX3ogQ/5ZRUMERUR8XzwNqJxFJSrWu4qeCo5c/kELuSz+8bDqv5Aq+U8ca8WF2kRmMmAkurlmJO3sdsiE8Zx/bJWkqGTpN0qYrOYb9EQzfOQ0RORZy17F2FK37y+5Xw+8eTRE37huz9LaRS4iXkeaTd7TFFhTI33mm27D5PPRrruFFrrxFD1FrbVhr7rsbOjbbZ8+voNxkiHQFmU1E3L7Zs31O2WdtPS1g1D19N3PVoX1E1LNwxM08jd4R7nLNvdnuH2gDGFoHuFnE5pQl+yUZRtjdeaeXY4Ju6PR24PB/bXe4wpBM9gtmx3Ff3QS2RitozjzDxZCuOxsxh2ZVHhPXz6yefc3d1jQvoD7SmrKhRoCSpj33cYU4RZAA7n5kBhBqVNaA02WKMZjh3H4z3tbk9ZidJ3YfjSYCdQwRMOPdHjNKCUwZiS2U6C4jYNMgrVzehCeqntNDFbUMoIrTonUODWM5474b3ALxFATKklT+99FBYL7ce01CrN5pcUAE7j9WLsrvjeXyqzRIEZra5fs50Xbz7kymNHgtZSKDtNM3WoGUngRYGHE617UoQhGQNuuYfcCEhRD6UW4xiZiS0GQSbU0lzkjOOiTGAZExyLrZNDQXSEFutJsUB1L3JibTBAgI53cQDRYmw9eMXoCrHGQdJlEcgpnrIMiLTMHuWgnxznfqQfRpGfVKkTLJ7PI8N8rHNoO2KMGP0ohV/bJdh5JNFQkHWyrwHbAGkf18agrLSqFwH5TynhrbquqasCowv6oWSaB9EJSAjfes1kPed+FFCiUlEWNdY7xn5EKbBO0EWdFzRLGZUt92K0dBE0ZUVbtWLUFz0FYbiDw9NNI6dzx3bTcnV1RVlXTMOQrGjlxVqalef2cODzN3c4pIbgerdlspZhmigLJVXH2lCh0YUCbxinkZurG3abHc5ONJtxtZHbpubuPKEIoY5xwmy2WXjfr3LE0dpwflHfHo9Ri5JcFa9kCimvGpcfKhFfzEdLDi4Sc7xujB4E/oAUlQASNG+0ElL+PfJTeD8q7jh7AJbcfVyri+FLpR70IcfzpKpZIh65Xo7J7lunda4ce2KEIxb9LawYvB9UrktJBYM5j2Vrzl/ORSteJSPLRuG0uledqphjpCEaXcnDWaRLWoOH1TrS5yqRBpExkyfH4oU8unlEURqOxzO3t/c0bcmOhrqVe2k3LR9++BUePXokPbjTRNd75tlRVYq6aXj+/AOUlt5fj0IXHqUNN4+eMgwn+mGgbloKU9LULXVdY61HmxLnBtq2Zbe/oh9HTudT6LX34AWtzHOQOgQfr9vg/BhaRwtAcuIRMGUYRn71r/0qH374AdvtFlDsr67o+iHUAFhMUVD5RfiPIYUgIC0DwyBpQUNsMRNPJaY1+r6XUb5tLc9OC/671pp2W+LsyP3bt8zTzJOn71FXFe12jylrDoc78DNlUROC3+lZFmWFLgqKssLOXqalAX3fcTgcJPTqBf7XOSu07rwURWnN7B3dMHDuOjbbLfpW+p0htICGcLhE/ZZ8/qIEVXAkJAqqI2BQRl/RONBaL63I8cMUMQjh6qTAAp2n/nSh4QiylcLYPiDWSQw77K2RImorRWER0TIVDkenJ8mVjAcCP0ejZuHRPIq5FNdGno0Favm9xXkKq7qeeP9KLXKOZS/j9R4aRUu9zqVajwZ/NGRiDcSD6O36dEutklLMSBopefIO7DQyzjPn/szt/b0gVGqReMM48afrP8Ivnf9Hy9p9GKWsHMZ4CDwgztj6+nEInNEmwanHqKxRmrpqUV7mYxhj2JRVSDWIbFqG2hm0kVZfPSq6/sxkBUBsmi3jNDNbn2bUtHXLOE4yPXcYcE6w/6d5wlnPOE4SBbHS7ryrC549fsx2s6EoC85DR6F0KRWDrufYnVDKcLN/zHtP38dpOB7umccBZefUZ+8VTNZy350YR0dtSlzt6BCvXeN5fL0XuFBTUwbr0vqZcz/yaN/glWI2642sq0pCIiEXZgIa2NAPCxFlyjSLtidFqiCMDbaJGJeQ8qU1u/YS5dxiMMSQ5hxbVHIPNC4kecesrF8VAAHE84+WvU8GgY6WfKizyOsJIpHPYf2Sv0fSAuFc8bwKITopPAl1DqHHU7EwcfSHdVDg3me5yCCsVMaQueBYGNOvGDG3C1Kr5BJaSd/xIUQYhWNi/CD80vnDA41CLVkjnkVIpjWDXz8Mlvzj4tkp5RNDL4JjaZ2UQUOe46njRx99zHbT8PzZU6p2xzSNlFUt4WzvmKaZeZ6lZa5p8CFfWpiSaRJPQphfiju32y39cOZ6fyNzNZy00w3jwOFwx/XNY3a76wSYtStrqqqkKgzzOHPyPed+ZJ4sVVlwOp7o+56h77HOUxYFWhUodMihiyd5d3fH4aBpmpbTqQs8YejPPcM4ybTOcWK321GVVVBmUoDV9QOH+3uOpyNVXVNVFXhBFKvrCmulFqGqSpyT1l7nHG3b0Lat7P/sOB2PnE8nyrql3uzwZ8ebN295/v4HGGOYegE4quqGtmk5Hc/4RsCO6rpGa8M0nsFLrvLm5oZxHDkeX+OsR2t5+rqQuQVt24bZJZb9fs83v/lNdFGgPo19+Zl3qnK5EZXh8nteWKe1ygrWYqrw0njNZFggxwTHHd6LjiFJYS7Gabpu/m9YwzhNUtiY5rJE43mJaHoXo3GZNEtrjrymFu808OdSQ7AY5+l+skhC4KTEv/k9RwfJOZciJEtdhE/njTVSq+jc6nxxzcKfEtFcDBITx+alqOBS/a/8Mvp9MSpCcjPpcsf5dGaYRrqh43g6o7WmNCUCDusZR5vuKRY2xrVO84zzOrTeenSxDgFYa1FFmb6rtWGYRsxcUFQVGoN3EwqBJlbaMI1jun/vPb2SGhAf9m+cZ2YnA/SGSeqBhmnGWUVlJNdvlKEqYfY2RUv6fqA0hqKwHI9HTucTWkPT1FxdX/Ho+oq2KpmdlXoMVYTCAwR0oywrrnY3PLp6wmE4U9YTOLGsI8naeZaqczTag7eK87lnciP3pyOFVmyaGq1LVFGDKnBuxKswwQmFNgV9KC6Mr8kLNOw0TSG82ISe2MB8sTI2WFi5xa2CBRYJKj3MLAJAzgQZgUfdHgk4TqxajmPlxcc31yHAzL7I31uHCgJRiyCI7YaJsFmEVWyHc34RJvkQDh3uLxYaiq0kv1/ChOrgbSiVeyAXrygUopCJ5w/rWccH4laqZESo4GWlz5Dvunzd2TmDk5/tYajVWF2AJOTW/ggsPo2/EKbhQQCxzXJtuQmT/onuX6CoK672e37zL/wip/OR+7tbPv70c549e4/TqZM0gC7EMlcaXwQc7jDjoiga5mkIylciRNZ6ZjfRd50MQ5lnmt2Owije3L7BKMXN1RXe1Bzu7qmqSrzq6YybJ/pzxzQKDLZAaMus8tdv3oih4Rx13Ybq4jl55nNA6us7iSocDifu7u6pqpJHjx4xzZZ5thwOMmJ4msQIUEqJ9xDgW4/HI/04sNluqaoa73xol5TWu214v+s66rphv79KCqkoCsZzx/nc8/jpe1zdPEIZT3e8583rt1w/esyjR095++YN9/f3oLQUIW43GF3gvKwhFlE6J8hpZVny/Plzbm/vGPsTxkBZVDSblqZpaJpNaL30jPcn7u/vef36NV8PvLOKnkXjcmXqrnPkWiUVQnQOYpeEVKu7EKXxaVpgpG3UYvDLOUIrH3ppTwvkGsPolxQaFxvz6kZLfdA0zRijU/3N4o37tE75UyXZk9KBauHN+IrrUSF8Lnp5kQFJQQdDKLbeZcyMVtJplORBVOyrwxYjSkU5xGJ0rFelkoyPa3Deo/NWxHy/w24l4LYov5NugGEeeXt/Sz8OAhCFpm03VHXLPM0yB8OuZRQ+ThuUCJJzMhdmtjOlXktPrY3IGq2TQea8TLc9nc8opGrfgyCZOotWnmkWSG6vFKdpRBGmdYb29rIshRLqGlOU+K6jH6ykAIrFudTB6DBaosbn0zmABgmyZ1WWVHXFpm5kcJ8xnPqOYRwpHGLpzrP0yzbNhl27xTsLyjHNA3f3t8jYX8FA3zQVZVHQVDXKWcZpwuO4O9wyWcumrhjHmbK02LnHq4qi9JKzLGvBRvcDp/vzaiOdg3Pf0c8TXpFNGYsWdFAcSgY4ZI8sKKBoGYNSIbyucu9v5XSu3kvMqELlvIrQwLHYLidRYYToHURv2y+8mFaVGxzRKBVvMSJh5S1Ki9UaFWVUpLI0nT5Lf4d1Rxz0FLZXkVlzAZcX5SzdBpkFlEUGWEJwaToai4WdCdTFKw+34N2CI0D84rIWXDR0fGaQZIo7rs/HMO1q59fRIKIhkns00SuR9EM0AqKh8G9O/xI3Tx6z2W35DT/zDX7uOz/LD378Q7ph4NH1Fdv9Ffvdjq9/7Rtc3zxaUOJCXk5azwpBZjMG78sQmpXiS68Kab8M+XKPZ7vdY7ShO0uRqynEeDueT5QBanjoz5y7E4fDPed+ZOgnxnHkcH9P33WM05i6AeKAkdje053P3L69RVDyNPf39zILoJL8Ztu2dF0PaLxX3N3eMQw9bbsFPF3fgxdl348DWhnaZsMwDAkvwXvPo8eP8d7z9u1bvv3t79DUdeoGGMcz3enA1eMnXD16wtAfOd+94YvPPuHq8TOqqkKbiv3NE8Zx4Hg8cnV9TVWFaAMwTgPOOZqmYRwnugB8cnV9xfPnz/gv/uorjHE8edJSlhIp7Po+dMDA69u3fPLpp3z8ycf8YhpyE01SEnCMeJSx2TzS1RKZivxnnRgjxhQUQaksCj7wWIyoZQpJovhuSW2RYQ/E4jyCa6PyZS6GtIsV/EpkdFmWmczyDwzoeC8uFFzmPE12CZPWqciLjLk4Ls1ACTycA5VFQ0cclWVkt2fZ0hxcLa/qj/IgyTYfnYuIsyBhddTiCC1PcXk+kc/j3seibZyXQUohEmOd5fZ4j3Uy7n7X7tls9wLHrXvOfcfsojO6yOtpEnwOr6Dw4unLsKq14yogSCooV6nmn+2M7z2H6YTRQtvT3AsOgDJJbs7zLEPGZot1MhVTaalvK7SiMBpVlrSNoakq3hzOHDsZO25QqcBPpqUWjNOEouDcn5mdRXmoqjoY8DD0A64w3N4f6IaRwo4eTBiwgqIyhlN3gNJy6jpefPYpQ99jigI7jxgcZaExqmC/3eKR0OJ56JhsyGl4L+EL5+injtEeqeuKbbulrhomO3EeThy7tQHglaapa6p2pOgKasI8a6PxNpZmCPPYYBXG8FKkq2gARKbL0wQ++zdammIlLt5jZI1YDLJQ3hIWy8FpYkguXstHAiXkHAPz5JZHPtwjnidVymdtegu6nnw/4XXHEF0wgXy+lkjDnoSbH/ciWkyZ75yUeR5RYbUTYW+jgg3MH6udIyPjQ8GMitDKbnFrVlGHpchK7IkL5l6eTgrBLd5YvN8gLHz8bqzyVmnvYzQoGjjxvv4t93/g0bNnvP/8Mb/w3Z/lm9/4GuC42n+Xx9d79tdXPH36iKLUFI1Y4DE/LvCkBSBFb/M04ZxNedm6qpjGkWGaaOqatm6wbmYazpwPd1RVRVWVfPzxR1w9ehqq7/eAxhQlfT9gqkbyfv3APDvGYUz7MA2DjD9VinIug+FgA7zvFKIBGmNEMMhMAqnwN6akKGTi2Xa75Xw+czp1TJPs3TiOoRZAoZUJID8tSqlQgCYRq6Is6LqB588+ZLPZgzZcPxKjQDoeYLOpcfMA3jE7RXv1lCfPvhLqFxxlVfLk6TPu7yUCUhQFzs8yStaUoDTGlLRNjXPg7IH7+wPbbcOjR3tevXopQ4aUShPxxBSWMO3No8c8efoU9Vme7oqyY6FFlaG65TUika90+Fx40aFCON47l1q8IBqgBNs24ggEvHsl9UTxuPwVDVOV+DUUDHvBpFfRGAgaddUaFyBrc6aJEUPlZUO0yqKY4Z6jQyRdNcKbcQpqrHuQ/VTJksmNm3R9pXDKhfG1Khk8i9m/HJ+P9c1llFdI5wcqFfGJHJPUp1YLPkBexJiun51XasO8VOhHXyIcP4+WbvDM04ypSoq65ub6ml274/XtayAAs2XyygOzd0JePutIyPYrvsqiwhhNGSJl8dhhnun6Ea1myqJg7EdpV9UK7QXL32tB/RvHCV0MgeacpOe0xwB1W6G8QjvYbxrA4p1jsD3d0DGMEgkkzAWxVop1Ky17qLTGa4VTnnPfoZTi3A903UTRjxO7bY3ynqqUcYPH4x39eOD29i24GZSjH3vGXloR2nZLU1WURYXzvaAkeSh0AcrT1HXyx+Z5oh9HZufYtDsIk6xO5zPHw2m1kdf7K2anAQOzIJQ1dcU4z+RRvBzsQSuNzR52TnxRecVQSTxkIaT4TNWaGVkm40Wlnoe1Ym98TgiLIe6TMMlz7UsuLBzGcr6kBNPwnOX9qGSTcs5uc/Hm5d+V8icyQfR2cm8hP86na61CeFHpq2iQLF8TnliqdL1eRvySzfXO9yyeNzdUltDgsqjlSvlCw/0FYy89lPRRrMAlEwgq7dm/Y/8Vqrpiu9/yd/+W383Xv/oVCu3RCopSSbEbmu/8hp+hqEr6caSuN7RVE7pIFEpDZUo8hnmWToFYHyIGnOB8+1na96ydQ4vnxOl05P7uyM31Ddvths1mSxHSP1UlLa6bzQbvpNbg/fc+4EfdTzif7/HeY0xJVdYMZmAaJ5SGaZzYhTYi52TQT13X0pUTWkq9c5xOR+qmopktdV3TtlOaeHY8SheDNkYG6fR98mTiz3humcBpOJ1OfPObX+fRoxvxiEqTUhFlWTANhr6fqZuCqt6wuzI0m4kyIHfO1uHtjNaeotAcj/fBMKoxdUtRGrQ3gBiSZVVwfX1F1595+/Y1d3e3DP3A8XBEodjupbMgKp6mrmnbht/99r/PpCesnd9phEfGicbvwpsyP33tqQbaQsZKrxR/rhi1QrklcheVUPSME05FVFKryJVPNO4z2pZIo6xHh1DkkvZcvOxcEV52KSwRs4UHU3RzETaZ0b3sS1K8sWAyyouVub7sZxIQLA5G3CvybyuRd4IGuOCWSLTFp6K+/Cp5nj+HPvbeL1NLL54JeLquZ2hliFRbV7SbLW27pWqaUI0flYTINR88dO88yqiASFmnrjA7T0AGYqckpa20oSyrxUCZbcBnmRKq4zAMlIXB6ALmOQGMTbPU2MUC26ZpqIyAxM1WUVUlpiwpraPQGusdFrL2b4fgYRgEjlgGgJlQx3a8v0fjaZsWO02Ssp8tRT/0lJWiKmWmMN7S92eGWwkzlEbhnKHrBvp+oKorARQoK4EDNQaQ3v+mqsPoQ01hCkwIL82zxTIzTjNTYKDD/UGaMLNXYUqeXt8wTo7jqcNZAQTpDgcwIReUKQgdBpxEGNkVQbAQg1IKby4FQE4ouTYJBBuR9fxM4sggBHJFutBaMBZS+JDAVMtZV140AsARDQ/v8nY4hfJLD2lao4pGTYwuBCEQ9ezqfnxm4cS1rhlYxVxWMAbShMKopHUUhkHnLtuQvALPhYXvFmjRXADIOV02/CMXDNk9XrzSOZIFkrd6ynmWKIJcQ2mZSOmd4990f5Tf/lt/Mz/33W+zv9ry3vNnlMrg7MzkZjwO5TQeR2FKjueOptny4Xtfpa5kDKe0Lc7YEC2KleVKSSqqbuQ4ay2zdwznIeRqDcNwxhQVj548ARST8zx59hzrBBfdBjhfow1N3bLb7enOPfv9nrs7MQDKsmCIwsdaxn6gbTfS+x8GSbVty+F4YpqmBK4zjlJsdzqe8AFoJ9bUSHqtogudATF3GmcNxG6YqlqKm4yRqMB2s8EUinFc7tN7JVXOZcVmu6esBB9AG4vxjrIsZFSylfqJ2dpgaOhQLGwkJ1mE9Iky1HWTDA/Rpo/Z7fbc391LpKWXiWfWOmzpKMuacxfamFe1PzEKxAUP5UoykJcmKNuYp5bPxNkQLo65+YjqGTlboHqXV9zDcIJM/EQOWmh84QW5tjKSz7VOZsanUbOmkPbesA6BBV/LpHcV612+lnRF5J1LrlufK9XT+MWYV5mH/s5r5c6DX6RBiih6F9A/1549EIqSSQ5V+j+dK640rjHoB62W3Q2OzzRLIZ3SoE3BbrenrhusBxvmevze4g8x2DF7NlKE7p2jqASHI0YppEA7Ay4jTLtV0sZaIfzgracwRTLIBPdF6nW8U+hKJXj1OvBipM3z+czZe+pKDGsb6KIqS57ePGaYRs4BUts3YswVRlPXFUVhKIuCQmtc6AoYJpkB4gJwl/eS4iistQHJL8xObiqGaWJ2nsJ7mrJAObi3Z8qq5jR07MeRUhcCc1oYTKlp6oZdu6GuZcxiKpTwghonlbtaRhzOI/M0PoACPnYd++012igOnYxRVQZJAbByfi+86TXRp1BZ1mKnsuMWQoverkJdhMvwLH30KVToV5zyLt21Mjqy4y+dj2gcpKgE6++s0w/LMfJWpkBRoEkpkugkq2iKB0W8kjlqnWKICGA5PnrunUSLexVxiJMH872P4cp4TU+IlpBFIHy6i9UTXZ1LpQjK2oNg9fsSdSF2cRIL0v78V/4kZdvwXfVtfvff8bfx/MlelLfXYtmjqJoNEroe0IUo5MePn/HB+18JoXOPczPT2DNZab3zXipqjdFMY5gK2Esbj9Fi+GodplbOkhvfbbcUZcUwTIzjwDjOFGUFeMrSMM9jqrMZx15+9z4YEC5U+btU5zHNE4+bhnEcQZEUdxyJK5X5LX0/Mk4z7nDCe0VdV2HffDISIlnEATRFUbDb7UK7YgShEd6oqortdoMxWuoHNnv2V9dMYbJZ07TUVYXSinEUYVMUmqbehv2QWeZ2HlF4QSD0MqFwiu2PitBzrRAwJEmx2dlirePps+fc3r5Nxs08T7TbGc+ZebI4ZXh7e8vzYQjKSie8/lVIPFPGKnjW8e9kPGc2tFoYFQATWqdzrznRfowAhuvkcUDyfwN/JDHhQSmbFFwK0ytS5MFrH/C94yWXfph4HwmmPFPM8R5idE9oyS7fy+ROHmhcgHvWSnpJmTzky8uXpCZyp2RJzZis2DqXh+k5XZ7MLw8l1l+k6KKTwTpK62UUudwEs/NhfoxMqHQhPXM693gfUEQTGUjxpkU6EExRJHpJWDPZyyGyY3aTDOMJtTdaa4xHOlI8ODthvMZZizEKFep1sDMEWhpDd4DUX2jGcy+Q+2iausJUmtJUNE3D1W4vg4Zi+gKRVx7p7DEIuqkNcNhFEdJtk1yvaWqKqixQ3uHmEV1V1KVBa7B4NALrq7Bc7ba8vLvFWkdRhGIHbWRssFJUVcGj630QMo5p6ENl8hAKoWTYyul4ZJ4FAbAo1nOVvRavd3aW89hzDmAeo7XQZATm/SoctihZB5hFmb/DMk0GQPCoNEsvck6w0XJfmCjWE0QXOHgV+XcuCDYWj9m8LSgdH36y9hrwITIQzxnmg8dpWXlQ7OFvUdBkecXs3tFRqUL0ZHyUPCwCYuW549FOp732SUgEXIZVt0QWUsxk3lLwt96DyMxS8EcwxN4hsLK/86+mO483G4yhP/P83+ZbX/8WP//z38W7EWcFQ98oKLRiQlJKGo/1S46/qiref++DgHQn/dB2nJjmgXkemKaJ7WYLzvLpZ5/Q9x1PnzzCVGCnicHOGF1Ka6Yu2e9buu7Eq1cv2Gw2IQ+vOR7PmFkYV4ZqSfX93e2b0GUgkKnWzsyzQymhiDnA5G6aFqU1VVkxO8s4jqmIznvporm5uZHw3zihaxmiUxgT5K9is9lINGGacM4FYCPxaiUvX66ebwx/fvLJJzx+vOdqt+fJk6d03THzBhVloZhG6X6o65qqNHglntQ8TwmCGRTTJJ1F8zzT92MI5VdYFxW/wjuBB/Z4ylIQCcuqBqQb6XQ+oYxB6YIf/fgjDseOX/zxP8AYRo0rpVLNzlp5RVrK+kkyZRKJK+XZ/UJi8bsxVeCzCJgYoIsBHM+Re7c+eMP4he8SLQd6VsgUO5HrYvzpwmRGsjhU6+iBXCvN6AiG/7uM6Hh5QeZcuqtgMUrivXr3jr1bORTL74uRceEcpIhLLvtI9Lh2lJaIxqobwC0yJ8rv/CXdAplBlJYlkTpjDFe7HU1ZMU8CmjUOI/f3h9SrIWsP18YJoE5RUBSxv99mUOvy6voeGxBvm6YOeXhRxDL5VDAcnBV9MCuJRlhv0daHYnVPVUoRX3y+1s5opRlGSdvNu4ZrvaGtG7SXqpemqlCFdJjMdgYqUF7Ag+YJpUIaw4UeK2tRyoN32HmiaKuCqtRoA045+mGkLivaqkI5i/MzdVtx6IXRN1WDs477/sipO6XKSKNlpHBTVkx25GRd8HhG3Dyh0YzTwOHkMQrm2Qu6WfYqtQlYxxZvHUp7isLIyMRIHJFggoea/EhP5Lb0vudirK8K73uPCdS4zqsvjOK8w87+AZERrxWv76MXna0vO3BRt2vCXq838/hVvMWFoZOICp6uypYs70fjIBN0EMC9lnvK82eJMR/eXfJMokKPaY+IAAgLY79zf8gErPJ4J0bQAgq0eAJxbWm/cqHCWmg+WGR8/kk4wZ/96r/L7/7b/w6+/pUPaGsZxGOUT7nqyUnHineWYZyxs5XhU8qw219J2N870I6+7wSEY5oY+rN4/dPIiy9e8fb1G9778GvUmx1D19F1J5SdMds9Ap/pQ7V/yWazQ2vFOMtEr81mR9d1dOcTdV2hlWHoJz7/7BP22z3eO8ZJRnMPgxjQx9OZu8NBQnumDP3Eiu7U0TQyyMQDSmv6Xrzf6/2OaRhS6WQ/DPgBrq+vxfsqCrabDcM4UlcVUVDG3mh8GINbGExZYJ3j9atbXr54zZPHTwN2/xymOcpzPs2TQArv9hKe9FIH0Y8dboam2aBUnN7pme2Ec1BWTcJccB608jhnkLkNGmMkpP7+e+8zjyPf+96vSoTPaKyd6c8d4zhzf3dcFFlGZytPPkXf5M1UepPR4cqgT4YqwYkNinClfHNeVhl/ZgbsBb3nJB0xOuK3Ihyu4O2TojVR7qzSl8kxSixFTJvldTyXHnpsYUyyJkXwFv6TD+JC/XKZfAhQdt2HciVXw/H0wcHRi4zLg/rLTJe14k8iM0/vZCvL0xnRUIh1SWVVcn19xdNHjzAoTn3H5y9e8Pr+js9fvmS+mZeOAi/7oHVBWQsWhVGawQao3VKc3Pg6dh26kFSxLsToPntpd68K0a2RLoqiyoxKicKWxmAqgy9LNk2L9Z7RzgIHXBjKUowK76DrRgo6iTAohdcqGAMqVfp772kag500g4NZWUEMHEYmPYPSKG0CFHFZSt0WEqKblFT6NnXBPEjY4HgepYVIBex6J0V8XdfhrGPTtmglw1KscwzTyGgtXS/hTud8yNXN9ENob9A6hR3jyynPeZThBaUpqLd7bq6u+G82/wRDwCGIhDTPM4XRKRcXc/5axWl5i8cZlUMiYOeZvaCK5Tj1+fljXk2GXrhQS7d4DYt+W5TWYvVn7XWxSGwx+MXL9z4NzllM1qgc42XyKuaHgiutNxRWxnuNYfBIDPlPvKDxxcXkHnzM6etMQC2XWguQJBiz5eceT7yXBMspXBnwFVQmqJZ/wy2ntbhodCwrSBgQEh1hMcI8/OVv/4f8/X/X38M3vvYhhfI4ZgpjwNnQLmcR7WYFg36cKMtKjJOQG9QRJ7/v6c4nFA68ozKGoe94+faWu/s3vPf8Ax4/vuGLl1+waRuGsWM4n9h7gatVSjPNAvZUl62gdyl48/aWTdOGGQBSUV8WJUVBGKvrwhS+tzIuN4S6u+7MNIlytU1LtWmY+z4gEHrmaUKjKAKoz93tLbvtlv31tfBl6PPf7/dorTmfz3iQ0aZKBeEk0z+dc9hZhOE0zzKy1Bim0XI63ovxbkqOhyNlbWirDWWpOd7fM/Znrq6uUTimoWNWGmUKDIq2rSmMDBWbrRWcD9Wk1IAgoWlBbrOWcTxTFAZTlCm1UlYVT5+/x9vbWw73d3icyBjrORxO/I43v2/F9wolHm1QMqlwNdDnivsT3WcFaIvXQTpx5MHFUU5RQpRaQLVUltLLIgRR+GdssJzPLx5vNG5NGOYFsdo95/9oxPjV23kaMimcC95M10lyJawt4nZEftZx3G54O0YB4vsXUZN4v1JXkuEC6BRvlecRcQjCxVKEMTpmrH9PA+BihCOPDpIbFMv9K6UoqoKbJzc82u9pixLnLG/v7rg/n/jxxx/x+x//86Ggd4n2xkff1DV1WaUR7KUpHuiLfhzQszjCzornPTsvdNTI0La6rtNemVBc66wT2tQmum4SNdYKNfQURgdE2qVTbXKW++6MDg5J7KKJkd2Y2qu1oaoKDAUeRXeYGMYhKP2A0tu0FN0wUBhFVZqk+MbZUrc1TRkmJJ1GUJo+zE+eraUfRhn9WdcYJWMOj+cOVMfsHf0wMHQ9bhaBJr2IgtDnnacIxQr569x39P3I0HeUWtFWDdumwfU25F4WC8+GdqglWrUQedL/gZhS+1zYYK+lolVpUgVqROYDQrgns91nqTK9HE4Ba2x+ETBZe1tYS2y90Wbp1YfFko2FTLIGaRORkNxSr3CZz4sCxPtYxbx4IlFwLR7OovCVInVELMIkaW7xLKNHsKZzZKhS2FPiV+QgExEIo2BVMjQjejLBIQnulg+yMp7PpXuN+6lCGFQUUYD1LHRiUA/JC1ZK86s/96f4237pb+bD957g5x4KCd0ZpSAIUDv12FHQ68ZBit+22w1FWVPVG5qmDWA0Mx5F09RoHPPQ8eZwK0rTK/a7PU3T8PqzT/jis5/w/P2v8OjmEffK8OblC06HN1w/eoRShtP5SLu9ptnsRUDMA/PkaasryqrixYsXKCVG9fPnz3nxxQtO3ZHT8cz5dAYF4yjh7KqqGMcRU5UM44zCM00jddNQFSVD1+OtZVM3nE4npnmiKCXfWVYlRVGmEb+idEX5V2E4SQ5v671AD2sj9Omco++lpmG72zJNk9C5KRkGQTMUpMQarRV2nhgmSTuUdSvGl1Ec7u558+YNu+tHlEWJc4q+O+Nw1NVGCv+Moa5bTqcjXRcL+jRNs8FagdB+9vw9pnHi7vaWu8MdZVWz2TQpepfnrqN8WHvcGV9FMzRGB9Qi4qUALyobtaJ5FCv+TOfXy/ly2/7SiF7PLlkrs/gqwjx4H/jlQSQv8HqcLEqIGCyG9FIDFQ2WfCN0VP7xqpmjE1OR+CUsoLL717D020fHJfu+FP2Gn/HcsqkIGIiYJ3FAWjQUrLPZni/GRHyWLvTh5zVLMVKAjoPKlu83dcWTx494fLVH4zkc7jmej3TjwPk8YG/coj/Sbcgvm1a6gWbnGI9SYBtHs8eX9z4VtaYIBh6Hxjr5rR/HVMsjg9AkJSFTXSWyWoWx2kopnC1xqqAoyzSTBSVpiSEAghmtmZyjKgqausYHmesdFLNKxorWRgyQoFNQGqc0/TBQ9H1PXZVSvW8KKAom5/AUVE2DnUeKqmKcpoQGeO57mlry6HVRUpcFznkmOzOF2cOzk/G3s3O0pqCta8qy4nQ+ogqD0Zq1+oeyKLjtbpm6nqYoaJsa7z3/6ov/Of/dm38m9apH79D7AKgTh+EkD9sH71OiGkkYaCnuiEQjxswcZjkvGMtWheEhgYCi12DtUuBDdikhTgIR+qSML/NWl1X22st71vtA9PE6iyIlsW/wKlhC8mkB5Ey3XFsFoyUaAD54GPF4F2FxFSvBFK8IufGQee2RGYM3Hnt2CV5M3DvBuLbJS09riUJHSy+/C+hvOhg/sudLq5MPg57mecYUBdovFfGlNvxnX/uT/K2/6bfxs7/xGzS1kboVHYc5Waahoz8fONy+5dydsPNM07RstnvsPDNOE4+fvEdRVkzjgFYyy2IaZ7745GPevPiMcZp4/8Ov4pxnf33FODs+/+Ilh/sTVXVLd+6DwDd89ukLvvjiFV//xjd4+eIlT58CXuFQ4B0vX3xO295TlA1umnn16gUezzDO9F3Pm7f33N7eyfhlbzBNEd0a6jAZU4CDeqqqZLfZ8PbtLbN3TM7SbFumw8z94UBRlGhT0G42KKW5v7/DBXS/sjSBJoKnVBQBW1wE3DiOocNBqpJjFCXiH8ROA1MU1FXNdrvBeyc5y2nEziObtgmzAix3b16KsneIE3E+c339iLZpJDRqJCU4DBNFCbvdPrUmSqpmQOuCuqroy4KqqfDKcz6f+OR73+N3Hf6HWG9TqmpVhIt0c6zz8eve+hXh5yGtYNjHvxYBsPTN59eKf+d1NLnREDV6Ht1a1ulXijrKJiAh8iVnO8icJBdyjzjzypNswGcyJfPk4/34dFQ8IL2duQnpn/heirjm20auwHn4ivrWZ1f0yxp9th+LX79+rfYVUsuqCVFbowVGvfCe66alqSr6YeDudOA89Exx5HZw2rQWpzDeU1mWtLU4wodhZLKOfpQpfXkXQFmUWLdMFdRaMTmHCqkx6zylWnAOxlC4V5dyX9baINXFCTUhZeGRqGBdiWE7TSPnoaPrpB1YRmZrvIN5cmJXaWkDPU0zVVEGQ1fwS6pKhuNZ58NcDUWxWMFSkamVYvaeUzey3eyomgKlDlh8Om6eZlRraNpSZhoDGsdp6Dh3HYWSnAlGM1rpTWzqGlOWTFWFjE+02IuhCnYcOB+OaE/A4Z9Qk06z51decFB0RhuMdszkhB2VsUuV0gqV820iwhidUoAax1UIaE2w6h1vZ+F5fKYnF4aLvf1J6CTFvljUXDBvfskL1ru48jvk1ep7K3mTfWu9xnRkfolkX3hWG0ZubPgljJeEzHLBd9dPLO5JLqSiwTLHeRPhlnNPQCmFGpcBUkor/m/qj/J7v/1f5zu/8VtSwKpA6SLkMy2H21d0pzum4cw0jlRGpmoZBdMw0B1PVJu9IOB1XSiCKxnHjrevX/H2zWvu376hbhrsPHPz+CnnYcCj+dq3vs3z4Wts2pY3b17w+uUXPLl5ys//1t9O1/fs99eMVjHbgXmasF7gbfvzmbevX/HkyXvsthv6bsfb27cYramqmr7vubu7ZdPuqWpBzgSpRh4GqSOoCsP11TVNXXM+n9FGUzc1oKjrhtevX9N1HW2rqE3B0PcpzBmR/aSN0IeiJgkFa1NirQwX8d5T1TXDIAWQ3nnatuHu/pbj8TFN06I17K+upJhwtoKEiEQVnFH0fU/fnbi5fspc1Lw5v+HZ0/fYX93w+Ref8vb1K7zyXN884el7X2O33UsBIhKd22yu6PszVa0Zxx7rJ0xRst1KLcEPfvh9/sJf+M948+Ytv/Th70v8EqfT5cS8ov0Vm6/pNOe2S2W4/qIiP5W6POwdry8/75qHc3thzf1fcuLV0nKp9EC/X67gp76+/HbeISdzZf7XO+mX3Ib3Dw9aP7346craCt/N0BbDfygoKKhNJXU3Q4cNkNOzFeP/f/lnfj//m//Kvx7E1uLgbdpWBvwowzjPKK2lq8Z4cgOgbRoOJ4mOF1LMsUSCSxWcyxKjNeMQi+J9giW2VtAAld7TNApdSMTSOahKcZyNMdRVjUdxOp1RaJRX1GWdPP1h7OndKM6Y8fTTiPEKraVuqCwFtGh2jqEfmdREISFqTaEVulAyIGG23J/PNE3No82OaXY4I0hETW0ojAzpqcqawhT0o8CIzqEQCa+l73fumeeJoe9BQVlomrJgHKW6cbRrSMWhEwhS5+XB9PPMpjX8/qf/nEB9Qgr5ay1ti7Gq2CMhK5NR+xrg49fxulDe0dvOUaXepYp/KlMup15+eZcsWf+6Pv7iaknRX77/01YSrnW5Wh8+eyhgMk8kP03Qzr9u8RGrFr/8iJWFn2Nyo9b3K9ePX5KUSrsr+fpXnlM3Bu8tHhMisI7udM/hzeecT0e0Kdltrzge7zgc73l7f8uz975G2Wy4urlBLPEZY0qmaeJ4ukdrxdNnzzi+fkl3PlJVGl0U7KqG7txJVfH1FYf7Oza7LX1/RW9HHj95yn4WK/tnvvlt3r5+yWeffESzadlstzTtDjtN3N2+oqo3tNuWu+M9dVXx+Rcf8er1a2ZrGceBaSJMwxTEPwEOqZKkvDvcU1Yl+/2e0+lMWZS8evWaYZiZLUyzQ+uZ2UoluQz5adC6YJqstAspI0JhClP2jIwGL8oKj6fvO6ZpoqpkquHnn7/g0aNHfP1rO7bbLZt2x+l0kkK+omA4H9Fe6oSkYr/EKUPV7Hj2/ENefPEpL198jikKZuvY7vacDyc+Gb7P9c1jtts9ZdXIFMWiQWvF8XSPteKt1bUMHmqbmh//6Cf88Eef8E9+549iQ+TC/1RuWEze9Ttr1Sxmr0r/JlLOmEhkw9LFs1ZKl9d+lxq7eONdBviDwx5wZHr/ks3SdzMmuixQfKjG3+0Afek7yfJ59/rf9S31Uz5frr7I4fTJO0MJq7OmiE6+lr938wf5Yf8nUG7C2gk/WypTsGlbFJ7/9d/yr0m0lKVIHCUpaKMUo3OMdqYqS4ZBUlvQpPMXRcVobwXFtpAcvp0dReEE6TCMBC6UQZU1567DIamsPqTJvAqj0S1gpJPHeZk9UmhDaUpJlc6zYOEYGO3MOI6UtaQNtDZY7ziPPV57mrKkDEX7SmuKQiKipSnovSAdFvPksIXF+SJZUNM8cTifKbViW9Z4D+NkmZ2lLhuqskBrYcDYd9x1XRrXaUrD7Cz3xxPDLH2NT6eJqhYoVKMl99RfYCrfHo5MzjE7yzzNzCg2GwNKFu49UtkePelgscW+bgVJaS8Wea49LijjkvAurfH83wefZZa1X7eerK4TPdzkiof3FHkh6YNXVMzvkAAP1vHXe+/yAH/JqPl7cW3vOGlijovX2si6tGjeZUUsny9b5Vdf+RI5FJYnEYeyKPkH/v6/h29+4+vgLVoVFFqhcAx9x/H2Fbdv36C05tHNM7q+4/72ltdvXrPZ79ldXXN37DGqCGE4xzAPTNOIcjO4ibs3r/HWcnf7hi+++BhT1XhVYGfLbDum+0k809nRtltev3rB8f6Ox48fUZYNTlVcP33K5CzHw5FhkvTD+XDL65evKKqWu8ORu/t7yrLhL//lv8owyqjfsR8TYM80TXhrUVp68KdxQivFzaNH7LZbDoc7+n7g7vY2YJFLXcU4Tiki1jQN20ryjBFx7MmTJ/Jc7YydRoaxDzl8xzCMaCOed11Ju/DhcM+z5494dPOEzWZHVcv88W0YLDSOPXVdMpwnxtFS1SVXj56w2WyY7YSpKr51dcPrLz6jrEq6fmR/dUVRlHT9mds3b3j7+g26KLi+ecTTZ++jUBIxnB1V2aBVCcbhteL2eOZwPBOH86yp8Ms4JNdW8chLuo2Gq1/pnUTSSQhcasCM3ld89NM4cy0rfj2vh30GD43yTC2u3l0r2PzzeB/vZkCVHePzNSzx+nDghYGl1nX++dnexefLt2M3RlbHwdqfkHRoHkmM55Cz6BDTP5wOlHjwM1obrnZ7PNDUjYTI83ooL8q0KEtpSbUWF4wGV3jO3cTl62q/43rb8OTmhnGeGcoZVWhmb1GzpCvrdoP3cB56jqdDSv1aG5D/SqmVG+eJw/EMSDdQ27RU1UnmgIw9ujBUSM2A0Ypx6gUMK6S/JE2kGbqZsT9KatsoillqDorCg4a2bSisIoUCx9mCGxn6ga7ruPee42aL89BPE0VTs9m0gjRUFpSmxBrLMI0cTkcUAnrQT1K9PEwz/TiC85zPHVVVsqkNTVtLrtGtNeCpGxjHKQARWfrJM0+WP377h/lvbf5QUkBKxdC6yvLqYt16z4IMmBWO5IU9DwPhD//KifDLTNs83LfiAb8+Lv8gpB5TJDxPr6foeK70Vwv8svDB5e8P1/rgxt4h1H7a1/Lvr1IeRIuZRaG/41TJ/gnyJe5DPEZdfmH15ruFUVkWvP/eY5SaEJCpHqzkyk7HA1/85Id0fccHX/sZtDH0/cDpdOBwOLDdXwuSnFYYpTmfjozjGednClMwdCeOt7eM5zO3d2/5T/6T/5Rf++EP+Nt/18T++iag3pXUTcv5fOb29o4P3/8qUzfwp/7Uf8jP/8LP8Zt+82/BdvDy9Us+//RT9huZCligGMaRq5sbDoeO0/HE2I+8eHkHusDj6bshpUTincuIBReMYcvjJ8/Y7Xa8fvOGTz/9jOPhCGrpw3cerANlpa2q6wa2W4srPcMwUVUlWsvgkr7vOZ3OIozaDZNzGO85nTumeaQsC+7v7zGmYLPZ8vz5e7SblmEYMMPE7moPQK0U/fnIeZiYveH5h1+Xyn4cx8ORVy9e8t7z9zgc73nz5i3vffAB1s60mw2wQaHpBwEJe/v2DQC77RV4QVVr6oa+7xjdyDANNE3Fzc1WCr98lqfPVE7epvdOkr7U4SyOBCntqBLtJ3mSFd6lYlfWNQa5il05GYmPArlfOCqXleaXx63SfEqt1pPvQTRIcvWb1xAs11TJsE5H+4cGULyZlQxVKiDwRYAxl11Dre5H6hgCHr5acAzWHQAuFMb5UAWv0rONzlbcU++9QM3H6I+LnUdS8Ka11Iu9eH3PrjYoHLv9FU3dMt8dGK1eigvDuWPr5Wg99nhG6yJ0IMicjAu1RV1WXF9veXy9ZVfX9NOEQzPMjmm2opgRQKuiNLRtwzgO3B0OoDWTndmaIoBoacZp4u58ZBp7qa1p+5S2A0VRFuw3W4wWlN1+kHZl70EbLTM1dI3TnmEeOE8ntFE0dUtbSctwfM6FQ1OUDVqHyWLeMYw91s4MASRh9uB9CB8EtMCikZGkXnlO/ZlDd2JT1eAFetF7yzSOaK+oqwbrrYw/rAylMbjiUrvBqR+kzclZ2u2Wb37wMzx7731+71/5vUzjGEKhTkYF1zVFWaOUpqx9EJxizEhLkxSDFIUUOml1Sdzhn5Dbl4I5ReylTwV8YbSu9MEvzItbW7R5ntpnxBoFSBpRCaF4Lrb5LN/3eaFRIvLl+zLbXY61GUAGsJ7UFV4uW9NDxSxRk2WCYhZ8UwvWtvcE6MtQea/invok1VR+31kOLbUZ+YVZ89eqEjtzJpI1H/5ZCXK/OGhlWUgr6DQzDmfpPOl7xnHgdH/Hy08+ZXd1RVG12FkQ5q6fPOfp8w/5/PMvePP6DQ7YbnbM1jEMZ9q2wZqZ+7s7xvOJTz/+Cb/8y7/Mm7cHTqeRLz7/t3n//fco65q2bfn2t7+NLgx+mrm/e8PrN2+o65Yf/uDHfPDBVyibipeff8Zf/eVf5js/+x2urq5wxvDq9Rt0UfLk8RM+/vQzzt3Ap198gbUC4qGNRnmYrYdR8u/n7iyomN6x3+6wDn7y0ce8fvOW29v7JCSHfhTe9B6tLWUpWP5WKe6PJ2YnEx51WdL1A13fcep6hmnCTjOoIbVgyjAiy6vXb1AY9rstAO22pa4rxlEKEcehl+FBaMFNGHoePX6ELhRvX79gtjNDP/Ls2VM0DoXn+9//HlVVsWk3GK0YnOXt7Vs+/PCroA3Ptlv6oeP+cKQoZHgKWLqAQVIqw+/5nb+D39f8U4KAlsNMKwGw8QoKY8JwqIXfFx5xqe9cKWT0blToxOIwkyl9MTRMUSSeixPdXIRUzotiiUrJJf7ykfYD1KzYdcvkQHktld+J5gEfJgRGIDQp3pT7i0WBecg/MVWQB7FANzcg5DzLvAEf1hyVeeyPXxU2JmMnAp7J7/k1Fp71wRkjyTKjxeOOMtIHPrc2TCAN6dscvTGiCUYjLO6N0wYTCrRRClMWaVx67Cr6e/T/Au0DnsJZoXvDLyrL7/mtNkUwlVZSqzONFEXJt77xLYbjLedu4O54J7n6wDv5673nz6lKxc2uweDBFKiipp09t4cjd+cj19qEdj0pTmzbViIBnfT0l1VJEwCujt2J89AhQ24k7VWOA03dsN/vaeuaXdtIFL0fGIYTBD0V2+u9lwJ4661E8pRGOYObPHVZUteVFP83dRUwuWemsWOcpeCoMIaqKOiGnvM4Mw4D49Qz+x1XVUXTVAJvOFtOpxNGi2VkvZWBKucJhWfTNFztttJv7CxKSa/iue8xF2rJWo8pDG3V8Hf93f9Vvv6Nb3P/J77GWI9UZRlCm5aikOEhIIzVtBuadiF+mWKW07/PriGWogloUqKA3tFDn1m/yWzwhO8sTJmUp5dqz0jkPgzPWOj/YU9wZNSHhsQ62OZCm0gcb2wDhkHuW2ilQnFJnIzGStgtxs9DeF0dokCRgRVLsMF5CV/FoqrExEpAWKL3k+oliHsTK6fj/agEPRqteJWtISwIaX90yTCIv+eRHnkuXuZmq5rTeWboJ47Hjr4/Y2fLOCiefPhNHj95itOt1J1UW3b1jrZuePX2zN1dJ9PD9Kf03YCzM9c3V3TdiarQGDvRdWcOhzPHc89PPv6c58+eMvQTd4cz0zzwK//FX+M3/MbfwFe++iGn80laf7zmL/3Fv8Sjx09oNxVvbg+M48THH33Md37uO5zOJ3788ae8fn3LV776VV6/uacoKg6nQRDxSmFORUCb0wUeS9VsxYsoSsq64v5wZpwUZb3l6lFBUVT0fU+7E9p1AcoXpF6iLAuqWlD+2k1LGQqTqgomC2CgEoOz1Brv5VrT5Jkmy2bbMDvBDnB+ZhgsQ9+x221x1tH3nnkYGI4HXnzyMdM0CNSxnamrLdfPnuCZefXiM9p2wze+/s1U9Pn27VuGsef73/8es7V89zf9AtZJt0Hbthzu7zh3r7m+fsQw9Az9xOk48vW/8ntxpcW5QkaWa50UROQr4ZuIaLgosEiL+UhZHXgmKpvFsw38mRvOCJ+XdU3h63DOpTNgCfFlr+y9vE13MRAi7y/KeREOpBY0KYAOULKkzkMeFEprkQYu88pjZ8+i+NYKLY4IhqXVzgdZqEPbbTRE5NpLBMJlsm3N2kuhcLpv5+R5qKVgMX5X1hUTu35lBGXCN5Ol4cmEaEO8tk4oPKHzKp4zGDo7FudFOrAm+u6M0Zpfevnfk/C/87z+nf8xv/Irf5Vf/d73sBePtKlqrnY12k+cxxFrHW2zY9aWgzqJnFSeuhHPX6ZzGnZbGY7XbBrB0tFaWuGHHucJA8MMTdMGPAwZHHR1tWNT1ox9D96FlkCp36vCiOx+mpndyDCO4CQy4D2p46rveoECrquSti6YZo9ShrIAZUTBlsDsPLf39/TnE5Ob6eeJwsC2MjgM3eszWpmAm6/Z1jVKKfow9rOtK3ZNy6YsaStNXWnGacQD1QXhbZoG7ya++a1v8JUPv8LdH/8q0zSJYvNeqiMRi9faeRWuW/pEPTGhndgpYzqtl7kCKljh0krhkxCIxJcH4i6V5qLsxBuXkyMCc57CXGbpSY2GRQx55W090UhYDIm1UowPzWWgGSaM4o1CKPKIDm2MxIgD4jFEQ8AFzGhjilRdH5W3Snu5WO1KKQG1CwhTWi+DgRasAofKcLfzlsi0cymasAjP2AKVBy3j2nOZN1uL1mKQuixMGNf45l+tcdaCupE9MAYDbMKUvKP3nDLhA3DvPTv/PBkix9/zl3n58i3n4x33f/ktWjl++2/9LXz8ySf8p3/uP+ejjz6XMZplxWZ/xQfvP0Obt7T7Kz76+BNU+Qn7m0ec+56/8lf+Gh/9+GO604k/82f+PM/ee8Juv8c6z939gf/8L/xFPv/8BZ+9vGUYZt7cjdw8fszfO/xj/M4PxWiMSmoxSHPPLtKFx18tYCvxuAi8lNDT3DJSalEvgVzjvgT6c94nLzopUZ9/G/71w/+O12/e8uKLz3j86BH393egYLPdcO4cBrh7+5YvPvuMm6dPQSnadkehJZ9qioLn73+Vzz76MV/7md/AOHf86KMfoim4ubnheDjzg1/7AV/96lc5nO45HO548uQD/Ow43t1xPp1pmg2zNfiiEhAVJUAql21t71KiK6Mz0YTszGXbnFpYK0VXFKIwY9uqYTFOo2GaDkzBiAW/IpyK6FzE74kSivsdv5gOTjcReSh+J95CHCyVxpazyBeURgUsDK01Rc6PmfJe9dsHz+ddqYjcmcnfI9vOeK51xcFyrtTSnQOxrSITa3p3ctK0FzrKzmigeb+SKXFvlMplxlp++xTF9elcgpXRMPQdPuERwPu//F/j+u98zMcf/YiXbw6r/dBG+O72cGS0I2VRUcxS6G4KTdvUFFrTTQPaKNCK7XZLUZRsm40YB2XJOE2cuk5a9oyhLErqsqYJdXdt2wguBIrBTfgCfAGmKqlURRlaCL3zzM6jbcC4waJ0gdZQFuLYa6Xou55iv2kxxjDbiaLUbIsSZQQYxM+Wueuw80xb1dxUG67bhkoLVOfsHDbMYPazpW03tHXNNI8URjFZ6RG3wfPfbDcirH1AkDJr4mqbGlM0/Mw3vkH3J7+LnSd8ZvHaMCM7KupoveswsCT31PPeVC1xqsA8GUqec5GVpPDJLWA8SYQk5bG0+XknxRuJ0BMRC66A94IBnRsNKij/dKwXq+wBgyXZFASzB6UNxmdzEFOofRFwUb6oS1aLClUteO52tgk8aDl46S/OhdCqoJIlv4YjePTrXtzcIo97Fo0lYwphgFxW5Na0Wt+/GCDBm42e2gPDQphMbBwf8ouy17O1K7CQL3u1/++f56v2u4zTyJ8c/0Ws7Xn5+Us+++xzPv7kCyqj+Pnf9LN8+sVrfvDDn6DsSFnX7Pc7vvOdb/Gtb/0MVV3x5//CL/Mf/an/H/v9nroq+PHHH3PsTyhl8N7w4uVrjqcz2+01/+jX/wVkEppOcM0y3TI3CiNQknh4a0UUjUgdiqKiMUCIAgUvLRQ3JfUTo0LxGQRPSisl14hzJ7JXNM+89/z+qz/Iv/XJP8+/++/+3/k9f+fv5NnTJxIF2G44HA7sNg3n04Hnz54xjSPKe+a5Z5g7qqpmv3uCdY56s2e70xjtefniM9pNSV2VPH50TVGUnM4nxn7gk598zKbZ4+YJoz3d+cTLV/dcP3pO+x9+Fwp9sdLFWMr5g4y20xTMnI48CRGPzICNIC0qVzgq/z/WHiyRrsSP2WUWMJysaC+wWU6bYsSF46Mb/SCKEL4XviD96wqjTMLMWJTgQksRcCvxrLowAuIkvaSIs6ef3UscipUbCFGhLnUE8TlkO7Pe9gczC8L2JCMgr+hXFxsa5amcXL4vNB8xV1R2vsXwsjaTB2n9y+8ekd2zkcl+IICH4ziw+f/+dp4++/f57IuXq8dxOp8Zho55GjgPE9rMOKdpyhqUDMrbbDZoZBxwYQwFit2jR0zjRN93nPqOYZ6wk6UuK+ZxpCorqqqiaWrqMIjLIzM1xlGGRhlTsNvu0YoQtfOC0Bv2vjCGuqzYbba0TRMMZcH4GOeRYlNVyXIqtEwcUrqiH2eqpqabR8qmZGc0X3n2mGdXLVVhmKce62VKUlHILORY4T97G3IwcO7PAWVwwzD0bJs6tR/NdlxtpNaadtPSbLbMoSUpKmWUWDdxRKgxJuCfi6KXXumFKciYJ4bzYk9+FIgLAZLyUpFoY4HiKkfuSZ6zoOL5pMQjIYuw1ngVcBXClCkfIJQJnysTJfrCZtHzisos4fjHewr36llyiJHRhAHU+mxJeYZzZx5foYvVMYnJ0ymSCSQY7Ylv4x6y9I+7MDQm7Hdi6rAUn31HDIjFqMu1kYc06SwyrgvhLaVIkJfxu94HRMLslQvTMqDgxbRPHnqMEQ7RfxqtZU/+Pv1P8seP/yx/6aPvYa3l6uoR3/rwEUYr/tqv/YDalDTbHT/5+CP+0q9+n+/+7Le5u7+jHye+//1POHYjzcbjesvdoeN09mhT8I9943+P+pBkrOrQGpS8zbATEUhKBGwobApKIu2WiqiUiyZYBDEXnlQyi1fPf9kwuX/nJBIkxpNaJkUSK7AhprX+O+X/jP/zT/4w/96/9//gt/2230pdV5wO9+z3Oz7+yWe8fvWCw/HMm1/9VXa7LcfuBEpzc/WItq3AgTGOtq159eILfvD9H/Cbf/7naCvDL/3ib+LXvv8Dfvz97zFbx+2bt7x9+5qh7/nss8849RZvtvzSn/kd0o/tl9HM8Z4XTy96qSrgQvjgSWZ0jsfHiGGgW+VzIzWkrlyUF8uY3wgyFj16VpE3kmyJI7IvZ9hb+473w7+RNvKxxpFeyeVZMABExoBXWSv0ii/AexM84sU79xf3naKZK1Hik4yJijnSS8Ll94tRkVIq6dr5usN7KcqVE+LyuUQZdTrJJZ/47HrRfvC4oBtEKsTIKatvEhxHn9ID0dhSSkGcgxEiMlopjFbM1jFNMx985Sv81e/96mpv7+5v2W4E6rcfR0FHRAkKoPcCgmcMRmkOh3vRsUWJnWdJ46A4ng44BbWpqEyBrWp8WBtK0gHOOenvD4X1cVR2XbcURknh4jiCKUDJiPGy8LSh+K+parCWYZLC4mmeKTBgJxuAPwZUW1OVmqJsxRLCczNb+nPPzf6KZ0+v6fojx2Fk9o4Sw7bZ4OwECuw8UhtNVRlOk7T0oaQyu9CNwCFaETrzhacBkicp/6O/lWkOof9QMIfytFUV4FClVctaR1mWQijxXFHXaJ2GWyTBr2OumkxAihKJU7GEcR3eC2yxtIepRFQqzBqIQjoyQsKnz8Jech4VBp8s8wqiMRGVYyp2yYg8EmpuJERCVitG8el/YAU8hArGiLfLuYLi9LGTIgpLvzB5UiZJ2S6rWmoJlsLDbMHpOa6eRT70IPHhOgT64EcQSs45yqJMa8rvO/8Zv+hVLlRyeOGkxshnJSxHaoHd1Ip/UP0h5u3EvzP+S3T9idnUfPrpa8rmht22xVIwOUM/GX75r/yYeZ64urnG2oJ/7nf9X4M3vXiIEa5YnodK9RZCRzrt4VpwXyjuZCzId2QOeywEJXl3SSiGc2i9gJKIpyghgiWlFM4ZBbkKnpRyy/OKz8PrpOT+B0//Gayb+df+X/80hfF88P5Tftff/rdxf/uKX/ve9/j0s1dMzvGVr32dsirYbra4caKtC+axZ5x67qzjT//p/5T/+P/zn/D29sAv/vy3maeJc9+z29/QDROv3tzxg//nf8S3vvUtfu3XPsKpiv+G/31QLcbckiaRZ7+ktJRAeKdIgEITCljDMS7jnajoPGJML3NGIrqlDdf0YSTygFJK2sViFXpyBBY+jI6FC/Cv8uzkiiZEfRYAGxaaye4jV4DRQEZn0cnA9zqLbsS0wiJEljXFfVpkTqSt5A6sDPelrgG816six4XPM2M//82v6dJ7j5sfCLb1axVVWeRcgj/Ozi3/L3DicU9iOiyF+7N1+BDpzfdKnEXhqXmewTkB9jHy/OZp4ubmCU8eP4EfLmvQSqaMWusk/K4EDbMupIdfeY8inFN5zt0Jbz1KC8z1uTuL8YLGKJ3k6qmXQV9F16OAys3oUtZaaCOw28akkcrjNMgcnilELpQKaYSSbdPSNDXTPNGNI6OdcVpRFMbIsJFxQPkJo5WMJqxqqqJCmxKtK/rtQLtp2W431HXBfHfm7bFnv9kyTpa+F2SlzW7Dpi4p24Z+npm9R+PDYAONnSxVUWCdYhzXOACztdRNLRW1WfUpCNM5axmHPmykEPE8T0nJR+IVTHMfHSg8Ye60Cg5mVNSZ0nMhpD0HhS/nsEmq9L2MMI6tGjE8FXOsKbwecoORuGy4l+jBBR5K+XT5Wy0f+BhFCAU1yZtZK+KMT4hVqd6D18uwnASBTBpHtWIqwVSIc8GFeaKhIswmhX7x/aIowjmXcHzupcTK4XRH8Zn4GHRUiSGXJ7P+NYX6grxQgW4Ww2rZi1Vk1IMN89NTEVOUUV5uNq0t389odBhRotrKAI55LvkH6z+I33mcs7hnDvckChGP/dDiPggeWGhrSsoj5uO9D50oxQNhvOQiSYaZ1EPlXRlpK9LDzoWW9wG73ztQGmP8QkbZNfJXpHuDJoaFF4MupKk8KFWk9S2mSDS4orCs+UfK/y2znbCnmX//P/gjbLc1b16/5e39iVevb7n+i3+ZX/z57zANI3Zq+FF/oO+kWPPtm1v+/J/7i7x+c+JP/+k/y09+/AMePX4EynB/6Li5eYr1iu9//4fc3Q/8t5t/iqqsMKVJ0bXojUeDMt1zVCCe5PWvZ3nEEPxSTxKfZeQz52UcLB68kfuOxoQO+dZViiDpS3loUdnHSJZ3Mrth6Ps0UrYKTk2EVs4VfRwA470lBBES/S9Fxir9jONqc7ZIa9F6ZaCLvbHwqkvPlvBsI60v8jPWPuAFPTI5aGKBZnJxobsoY6N8trMN5JN3Cyy0FQ3dJIvCuVMqIcr4IPNkdLRLhlYsVs4dg5hKSW5IUvZrQy2uRSHzbozRUJbg5+DVwzBOfOOrX4e/sKQBHt/coLAMYYF2njG1XM0UMqVP0pEWo0XfHrszKPH+NTIZtyxkaJZ1DuulCaDre3AwW4H+3WwaUB5VhgmcSKuLMRrrFdPsma3I22WuisYB/TiFyadS91YWJUWpDSc7M3sw1uNmiyotzs3gCzQB1hOHMgptCvZNy6xaBnfP6SxTi8ZplHngVcV7738IXjErzcs3r2gDYMEwzRRlgS4M/TRwPvfkr2HqmWe7hM+8CNFpnnHWcTvdiWB1WQVrJkgX53JR7JEOYm41h66NzBGtXx8UZGy5cyFEF4uplFJ053MKTa0UWsZ1USl6WDGMytYZIxQqMFfuHUsuOx9isjDJ0oLiU63CknPLrd01CmJUQMJUkUkXhZozfBRmRVHAJKEi5yxlUaaCs+hdx+9rIy1NsU5jsWlid8BiycfPo5GRv2L7WvSY5EtLvUIMV0dl6r0XmlIyU1swIkKBUWBkGwCnVuFKtew3mXCRa3iKQmNCa+k8LwZp9Cq0sRdGC0sRUrh2EWkh0ejisQuNhNy7WbzymCs2YQxuNKCWCNPydxKsJu6h3FtMx6yOyWhEZUali+3rXtZH8rACH6BWw090iCCE4LF0F+iKwhT8fe4PMp9mfOX416p/mrIcePHillcf3Esahz23Y8ev/MoPuL2/oz/3nM4TdV1zta04HTuUqfni1Vvu7s985UNLu9nyB772RwKWgExadJNlnqWXWenFY4q8kBt6JuxthF+NEcCFLxYazek1dt4kSOH0nELdkdaMoxQz+0ulG+jK2ZneWallCoJonqWqvAxTGKdp4nQ8pscX16BTxHHd3ru4EbkhqYITswzUSedb0WimFCEhnC5skEVDgjOy1BPEVGY0eHRQ4HldzvqVnkVu5+fXyHyRJUJ5cY58Y955kfh9GWcPkM9YiPog8kRcTx5BzN0RRUyvBo++8FIEEKIDP/Mrfy/Tz/wbwGIA7HctXd8xDxNlU1NTS7S6LAVq21rmgHsg8zZm3h7uQCuuNzuZNtgYlFZUpqDreyYrcwoKY2hKWeM0WYZhCnLD0vf3GGOWAULh2RhTJFnmgoHWT2OipSHAqVdFRVGWJfMsyHt1ES1qweHvHBz7gfvTmbqu6QfHoRtoNjuurjb0k+c8DDgv1pLW0gP79OkHAhJUV4x2Qo+WbpxxemTXbJms5fXhnrvTESjTRlZFSd8PAn4ScubWytqcX4T6qrArdwUjMQcpl5NNQphVShTKxfcjoYDCKrtS7lGgWx+hRklKZIkiXAapL+g0KM2cN9XFdxIh+sXAyZVnvOdIxGvB/m4mhBgCVUG5LMy3+kaMNmQWuAiFpd1nUMNqPascPjkDL88k5f/S+knHR2UUBW00jIhGDGK4ddmEwLhWT3xuPvVA50ZZ3M9FaWdFk2FPHhhuMaQa1p6ERuZVSEvk0gt8ue/xCqt6g+w5uwuFnBh3dY4QVdHBYEVhCpO+Z4InNo7Tmn7J6ErlLVmhY+UiIrCkDxYvDZW1dWX7eCmc03fCM4th2Lh3v//6f4W78vyxH/2T/Nk/9xe5ubniyZPfxqOnz/nRx3+a/txTFwXjNFK3BVfXWxzwk48/wzrD/+Rn/1gyxK2z2DDSOe7Zu6IplxEPpRZPMQn6d3wv3VO2h3FvLj/P2wiX9EO+U7KHcxj4wsV5osKO6Tcp2kvu/aLw1PIs0x/Z2tK5cpn3X/K1CvO/45XLuZ/2esADF07Zg+MygrpM4eXPB9QCv5zxfrhIOCLciQrSNYty4Jfre5/huLCmh3wPPIi3nzkgHqmjik5AUVWr+222LU7D1msq6ymLMN7XWebZMY8D2jvqpmFTN4zjjDeLA1pWJYWX4tTSFAI7XFRc7QxtXdM2Dd7b8JwdxlTMs8AAW2spyyqAekkdmykKBOp7AmR+gUdRFoJgKg69GHMFSjHOlmEc2RWN5DBmSzdbvJ859gNv7w9s6on9pubN7R1107LbXlFXBYX2gKOuK7yXQSOz9Xz4/geMBbx984JXn3yK8mBmh9YF577j9f2B++4E3KSNbDc1ZS2FXnE6njCdxtkYHtLEQpYYHnpAHNnDXIgkI5pE0GqxkMODj0bAJWPkf0dhumLEi1dujSstudgHa7sUqtkveR4xhb6VRypDlqNzz265EZ8sfKXAZcySQmnZ9TyCHaACw6UxnrFieHGNV4o9XTj9vr7DJUKQJQYulMh6MR7l8ugEuHi/UdGtBIScY/JTplSXVFBSfF/y8pkwiatcGX4X5lk8Z7zn5dhl69N5k8BWwR7y2d9qtSvxs9woyYWvUgo1zw/2PirvRbEvRum77lNlzyklazIjNuacXT5CNtuLOBp3vSOgslBt5IuYc/0DX/sX+Ze/94/z+YsXfOc73+TXfvBrfPzZF9Rlw9V713z0xWtuD0fq6lsoo/kDX/+jArzjM6HtZDBtioCk3C5r+mNtVMvehGmUJNbIjuUdfzyMVsU9EgWwfCZRNp/y4QoxEHyYDJc/o1TMF9en4v2t9+7dr8VQ9Re8nHgd8F/y7fxZ5vy4osvs2v5L1vJAnuYKNT97/H4w1JP4yJYQkwvv4rGg9ZfvqLXhk19bzuOyBSwyivWvaZ35+vM9y6MD6dkTawkkZWadY7qAsC+Moa0bCt2EizqmsRdaCdMxOz+jioK2KtlttvQhNdw2LXVVB3wXh1dQNw17L8Z/Xde0dc0Q6t68dwnJTykBvAMfRnELpo9W0ipfVTXDOKHC8Q6k0LAMg4mmieJw6jh0J4ZpwvsG5z1jPzBT0A0dh2HEeQmHzM5x7DtevH4dCos8eEdhNNYqQLoIrJrRheHp7orP93tehOEiddVw7gaOXUc/zUzz2vPZbFvatsX7EEpODyk8bC8h3kshtzD8oiu+jDijOJM3ctYJwldFslozRC7UxSBVq7xfWksWikn06DxeZWkLYgWuKPSc1/Lw+EMPJRMemfJR8TpxA4hWc/hOZBalEuPly1bhuivDSEEcnRzvfYXBnTxGtT5RtuMxTBzvOU1yChsjRlf2Xb98c9mLqBSX/uecUdNM9WxNUtUdd/idIgZ8FvaNAkstQkAOCbubG2I+7mlce6TNTGFlYiYqrbgHidIS2cnx2aNb9jyd3oe56nFfLp5eOjaeN6PVYOTm9OtXBoBffe496BBKjQaxD94JNntI6mJfoxJLy16UzD/xG/8oHqh/UDKOI7/wG/5hYmrEfXd51ik6FH/GtV9YyX65aNjCTAn65bpySyrQ8UNjzWfnXO4rO4BsX+JzvsSB9R5S27CEn611i2LPintXeAEhNOvjYsmUeaKNiyJbMh58Z/RiuYHLtFtu4MTPl64oYnHUhXLMaXA550pqhl/y3U3RMZWeYvpbLqeW8+YP4tJSeIcMv/w7PvtI8yvWSGyR3WdOPyqTjfGy6Vn7lOoFRY5BMrv1LIDdZsvQT7jKoDxM8wh+Zp49viyw3nN/OmC9pioarnZ7tDGchx6jNKowglbpHIOd0Eazv9rTVDXbTYudJrpec+rFGKnKMkUnYodTXUurYFVVEgUIwD+z81Ra4bxMKmyahsIIGq/SmuL+cKYfZmI1sg1PdRh6Tv3I7DVlWVJWJVVZURYFx3OH4i1X2y3buqFvBsEOVwbvZryfsK6nKgp2uz11u8VPjqqq8FpRVDXKw7ZuVxvZbjZ03cg8x1zO4uUbrSWfa+2XGspLtGxN7Lk5qdZl4kThq5Rf0eLlebVaWgQTyXi1eG3xAl5y85qYd1yExyonTwTeuHhfLYAc2QozJpPX0rPtpX9ZpSOzO17uW/TSw7tT79ivdGhuSOUckq0sz6nmd/eufcyZL+31pbeReeX596JRJIcve55XeC9nz8K9q9PEqEowEKLxoNSii1n2G58ZVpe3snpPGDOB7xDSEheFgatN8sv9xzM5v7TvJYWqFaCTIs5PEg3dlYCP31vEf1rTWp5nf79DwOcfpL3MFOnKtfL56eIvSUWk7wwB0jjvnc8jIngW8Jp8ndH0u1CGiyp7h3K/fJbLwwwHZSE5dVGlHlcQ/86qydcvlbVqBSCf1Ha67FOsCdIhdZODM8ESKVs5NYsVsNrJ/O4f3G9mkBL2awn6/JRoWNgiFWTJcnfZJoSVRH4Jdy/vRiMyhN4WW0OlK+fsmUnQi3W8g88IfJl3PuXHqvWaLr/ro0GekYEcHnAvwppz3lIgufus3inatt45qrpZXcdogzKWuqjxzuKw1HVFUWiGAc7DyDBN7K9qrq6uud7uKasSe+sRB1pa/PpxYJhnjDZsm4btdoMxUlToECVvtA6w1rKecRzxzlGmAm1x8qZR0Fu1NjikALIoCrabTaKoCij6caKtd9RlSVkWWAtFZahKKGeNQkLyTduw22zYNA3HoePt/T1utjSm5GqzZcLJzGQPlVK4eUDrgu12x+ObR/h+YrNtZMMnRVPWdGpdBGitoxvs0r4RBFvMZy6KcRHg8bhYVLUmoUzxR5oJnt4qr06Om798L4aSF3jgOBdgUdox5BgL66IHprTCYMKQkHB/zibcbE9GwAG4RsZRBiGcF/GFkbqRx+ODdtK0ylIYGHKwK2nhQ2v9ws6rPcqYy8cj3qU90/7Foy5bjDL1cBGGW507/pUtIiriZOikEPeiEBdpF0RZ3PdM6YsQyvoNlMo/lXNfKIt4ahW8ZxXeuBRFK4WfK1uVAygtRYIutPWkYlP+OudM7y1HxvUkBRAum+Y+xGLYd1rEsk/JkIj3qh4+OzE6Xdi/dCgr7Z69m58/kklStIr0/Bc9oIKnpkDpFHFZh8QjzTx89j49G/B+WcOXRURW9sfKEFipTFJUaUVvmTES38et6GXlWbOAy8RrLLpJJeUvRWU21QXAw+cW73cRcVlU5AE/ZpHDTOmunkN23iQW1qdY3WfimWRo5emUKDpVOmEyvFZMFvclP49ntf2Xr5VxsLwV9zDdkLo4/NIIjcfH7/hlLUpnRueFI4aSzpd4jy6CKcUHkUGdew/zxTDAdrtFVzI1d+id2OsEbBkjBXpNXUtBX12FTgDLMI+4ecZbGX506M5048Rus2XXiCyfZisjyPc7kf3hGczzTDcMVFWNCoXD02wZxhljDOM0M82TrKEoaBqZNLjZbOX7dgajKIqqZF+VzJOirUwi4rZpKNuabvL0w0BRlFxfXVEWFdZojt2Z47mj3GmuNy3WWw59x2bTUpmSebK0rYAaPHvymPHUUZUF98eDDCmwjtnb1Ub23cgvfPwPM/l5RQy5kNCZh5C/JEcXCA+fMVPMcZJ+T/SUeY9FaCHJQ2dKBXAdFeVaULQZDO6lV6ZDDy+AN+IV2jlAGQdBoEOYekWMicZVSBfojKgJ1/PZffp0XxEDIZD6IiwzIs8Z/52mgFIX7+R/LRIlVg7ni8tD2/H4dJ6VMIzvZStQrMN22SvKjiVVE8+3knhJWJE9u4fmi7xx4US+64rLXypbIxebmvVbL4JtOSACqsRWnOSlu4sFrB9UZnxlzy0zqHz2f24XXZoXK+Ms162Z7ll/I1c2yQRZCe7F7olvxIiBX8ni1Yrya0YhH2gtpZ3So1QXdoBavnihvZYED/iLqyoe3FymytbvJcMghq0zGlpuaNn/+J7Qps/gR+R7yZFIU+/WxaJLAWM8l1o932VlKtvMpT4j8nh6VlFHBbm20Gtis9yuCmdbbi0ZfNmzzw3wfFULDa01/uK0ZPe4kiSR30OK7uL28zURaWn1uJbU56X0SgpfLfu0nDjTA9nF8qLNSEOrNk5PmGiY7VRyUkJrXvYqjIDn+XAN66RLxSjFPFvapqLZVOx3V5SV4dwfuT8eOZ5OWGc5+g6F5v54z2RnlHJc7Vq2Zos2BTiHpsAohQ2TO6d5pgzV/8Po6IcBj2IcRymiN9K2WToTOtB0AlIrC4OdPW52FE3ToLxFFR6tPP0obX1KQV0U1G3Lue+Zxw7vPbvdhhHHdrPlfH/PZC2FgrYuUaZgv93SNjUuVO2WWlGWBb4sILRB9ePA4XRkGAdgkzZyHDPAnJyJg/cvMMIPDYBoZa9fUUE61l5SsPKDEo/hFIVChbxc1G+rau08369I4feojHIGiNcFlap8FRGx610Mv76WsxmokI/KPltLUKbehdkCYY+iUM0VSGZFLaI9MXjGDN6HkZXZdYIx8W6VmQspEaXS0brsf1pntMLjRzpu4mKMxaX5/FLxUadnt3j9lwJAIREIoqERFGB2J6TaAJWfLT2AtZDIlrUSxpnAimvxQfIWhWGafOr/NyHPJjJz0aR5skktxQCLQso+Xylsv6x4rUgeWBDLVLewqYutG1bt8+6Q9XOPp1kEeq57M7r1EKEY157qRdeBCnufb6OK+7o8g+Ux+4TG92X7r3JCyek4e8U1LAWYa7tAZVbQ5WdRqcTnFp91fB4+UYg8exVm0kc5YbRgADjvVoWTKxrL2nhTa+tqn/N7ipvts2caGcavnlf6dk7eKwtgMSaJ95WOz2ggW0bsWkj0mJ03p8l4otxmR0UOXBtYebdAtooUAVl4N9u8ZESuZeZyw4tsFUNpuZFFnSz3m1p0Xf70c2NtMbkjdkLfrQ2Atm3pxwml5HnP00xVFBitqKqCuqnQpqCqGs79ifv7A2/ubzn3Z3SgE4XDlIqyKdnvax4/vebJ4yc47xn6EziYhonzMDCFLjnCoKJptgGpUIr9iqLEesH60EoxjzOH8Q5pkbaMAURsnkaK3abheD7ShNGeDoEarI2iKVvqsmC2BpxmmnqUgm1Tw/4KNc3SX4jBaUO73bBptqBhdhO2t8zTxDwODFNPEWYzn/qObhRM5PwVc/yLYFEpX7ZUKi8gO8laTGJTJWKLhBTbwITX/QrvOhKDQjHZKQlCHx50nCwGoOyiyJJxQTQ8/Ir552lKf2ulKYxJkMbamLW8ZikuSSN/V0JxCdf6tYRIyleTW/I5Sy52RqYTM4bKw8sqRTjy/cmPffhS63+jEo2CMoUJMwveL89pKesjrmIl51UUL5nQ8UHYLmtf8pwq+95iJixrXd9ClkMNBuFy7xe3uNbF4Q/5fgrTKxUQ3Tw+QMSqYOh5le/Neu/S3qZ7vJC8OtK0QE+T3d9qU8gEqs929oEgZjGEPIhRHp9/Rm8Zfnra2XCtCFCzWm/GdxKyzz1pzap+IK41+/7ytFRYdvR6M28yyuJM975zKzMazw0eFKve9/Rdn8uXtEmJX9JJ4zLSB9m6WBSS0lnBX27PKVLEIMekiFucK8ZVWB71gB/fafBkzz+tU+Vfij8u9lTF72bPJ3uu+c80qIqlGHCRxtl+r0g0PmtC5DOTMUEwpAjhpd1DpGeWZ0GUDct1k/xQJH7yMSUa7i0FjzOjINJapA15FgtNesQ4sDaAMWnFuTtfbLx0vyltqGqp8p/HgXkaqMqCm0c3FKbCOsft/S2WGVPBlWmpdEnbtJiiwDNTFoqnj5/y9PFzNptrvIbDQXE6nelmy2w93TiivKJwMnZaIciAqpSIAx4KVHBCCulcsJa74x19f6Suahk+NI8UCk9VGNw0UBUGTYlRHmOU4As7i3KWstA0TYtWhk1d4CeLv7rm9f1bBiuT/Kq6pqwKZjszjxPz7JjGmX6YBASoajCqSB5uU5SrffQEZDNCu1GUgShcLmiioELJZxnMbnomubccH2okRg8RcMWHGd5RKESkKoVCeRcig2q1ykiU4JltwJXXGuMFHCOC/qBUahEyISoQhetlxEJlRBct8WUqnFkEVJRFwVhJRL0SmgvjiC3jH1wnv6u0P7lnEBkjvHRUuFk8eBGWcmycUY5X+LVtt8jrIFxlnR5CD3kScplQj4JKePbh4KTFZMiFZbrRC01+uRjheJV98YFITZEFn7TKZVeBgtXwKIF5XV/3UtlcFngqIfJlP1kiPlpdGITZU1ucnwuPO7xWhas+gi4t3o3LCtbi2OBFEkYl5DPlk0coVtuUefgZVUV6UpDhsC1ryJ7bpSe3ijosJLfaSM96L5fIz+VeZOoqe/uSOlI6IirmQI9aqYQEp7IvJ0yHsJ4lErnwSooyhLUldM4oj1LqYcG9z/dxUYprTZx3TaQ0xsoQWZN/HqHxZJ5vtv9xrQ+3cKGD/H5Udr3V1l50NuUMoLJaJp+cBL/8hJWtGCkk3UosoMyf9fJIkkG1ktixDisnkCjf0v0uaSyfPXvCPUuRr0ejOZ+79YWdFPKZQiJ+dhpRTqNVSV3XlFVNXbcJQErhuN7tKEyBUTrwumbTNjRNzdV+T9teU5Q1s524F5hGmrqW9njvAjiblymPEfBLa1Qhlf+1MeEZiyPaVA0KxziNKOXRWnB2CpTFTxNNUbBpK7oOqspQ1RVV3eCcojSaaVZUZS2Pw0NdV0x24mp/RR+KEeqqwiMhknM/Mg6zWB73B/zsaHSLczCNM4WW7oL8NYeq+eVJZEInhcL9wpzhsxQl0EuLTkKMixiauQWfeQArJyJ4gku1v0fZjNIzK1OxFCZ671EhRbHMHg9pi4ybRFgECExlV0wc/1Us3QHxWjqgUsGCb70m+niJyKisGCha4wsfPlSOlwokXxdEBLjYGJhd3RP6tqX1SQfEsMg4uYDOkLfl29kQFoLATzUbBMYFiFXjUchcamqVGSZJuSz/LGy/mAx+efPChFjCvdF4XJkX+b7mv8Vj1QLBSTwPeXg9SwAoUH6hp/yDlQJc79pqAx5ENVJ4M6BZOrdaX+79xhGxHlJ9Soq6BEMkwjKoB9eTX9Yoh4sHllorWWd8kuJIinN1O+v7jUZnpnSi0yjRt3xvlnOlrc5PrJYoT/QoFwW63GM07Bcej1C3so2pzTJTDgk4KYve5eBO+XqCFCPXtCvjf3XkoiTjKzPlc12W5GL8e6UAwz85rayx8jInKb/WhYxYdWFEBbpe1PLe6osP33homy9R3KTC8+v9Os+T5GFaZ0bf6rJuK7xWdkF8LtGICulctcC944rV1+08oRCn2XkNfkYpQdMtipqqrCnrBuUcV9stGsGmqJsGO8/YEBlumoayKMTQKDUWjyXC409oZlAtZWE4nk/0fS9w1UZhvGFyToZBFQbvNWVVYecxIPFKO2qnYLNpeby/oRt7ir4/472lLEsUnrIsqKuSbbulrLc4VeEKjT87tPGgHdZ5JjuilMOgaKuaqiwDhrqnHyZO5x5vPcfzibv7A9M0M1lH1/X040RT1+zaBlhKKl+9eSNWUmaJRsJ2ocLauZn5Qgjl1LFm+ofPmcvPo1D6EoLIP8tYZVE6F0wcAUDWr+UiD2XdOxa5stxFuKS+YnLxIOdemTNRWLIw/MrIyW56IfDLPVjO57PvXeaIF06bWRkeOX892L/1miAK5PX+xCgH6t0tdD/1lSv3fA/i9vhFMUeGfxA+JWsxzMwHLu5xvbfLZ+kbHqxymYJfE9b66Wf7nhR5PG59ZJ5LTYJ5te9LIiSu2V2ewy/oaPkI4FwZPGxNI63H49M5U0V82oN3P+0Hslctz+DBK7eJ3qlXlofw00Li6Vib/iDeImTh8NVnamEln32YtUl475hnu0wMtdF49SvZsD7FuspjLcFybsu/mbUIvvuLF/uSv5kR5Lv4ZwkXXrz3Jc/kyy+7/mT14ZdYeORGzzuW9lOvwSJWk77wWVTh4tAEJ64yWZBFKoKVqlhSsj4UW5OOlxreSxp2fmYaJ+bhjC5KjNKM/Un0ly4Cbzk8FlNotm0r6W+l8WUVjAuVIH37vuN0vGOz2WOnAZgpS8EKqFzDqT9jKs2V20vLvPIM/RCGVBUopZnmKcBlG+omrEEbSlOx2+643u/RZyicA28F6x00yhQUVU0ZZhlvdhussjSVoShk/ODpeOJ0OshwnkkwBLq+57rZhPYGF/AEZLPm2dKNA+c3I+MwMk4jV5uWpirJDYD7uyO+cvhYOZsR7pqV10S7FiDvyjXmlu366an4VL9MubxDaX+Jnvsvo5d+Xcf/jbzezWrvMHourv5fZu35O5mv8utYg3+wZ1++XJUJrXcYVfk95MI/ep75z/wr77j+38hz+BuwRdbfVWtB/+A8mcC+FJBfLk5/na+LRa3OeREmzY95+Fqoednmi7B3fDeGj+WPd573r3dfP22vVfrnoYBOR+RAVPkn69zBX2cVy1HxG8vMir/+OtdfXhvUEbwL4j34h8uJ7/uH9JMM9Vxo+sCl+Xlyo5ioCPWDaz1IZV1ELCHOSvApeieGrlqOT3y/rmF65y7n51gW8ZB/siiWdY4xjIW/sK3XNxmisWtRcWFUhX2LaVRPnG1CivTGiY75ax4HvJV6N6U1bdMunr2uUwuoxqe91tqgC0m7yVhikaXzLI41KOZpRCN4BFVVUhQ11nra7YZpGtJcBuekpRCvKXVJWZYMY8/xfGKcBzAhKunhqtjz/PoRtdHcn2aKwlRQeqqyQhtDZQymrJg9Anrg4cnNI+w8gHf4AGRRFyW9C0ODlGYePZOzVG3DRhfMDuw0UdUV280G5xxvD/eMw0hbtmzbHaZck8E8zbjSwQKNHZDeLltH1IowLr2oSyGp8BSFDE3w8KDQbtUaGD2aQLBS/LHMt055wtxgDt+IRXwEAvo37v4w1s5oUwocZHdOADFlUVIWpQw3cTMKwvhhESbpXN5jnceGfZAwbTSCfMojKWRuubVz8gg9Hmcd1nr+wNf/5XRfl6+FJT3/x4/+x3gFs5W0RkxpSJpD0KViV4MMzBGMemtnyrJAl5o57Nc4DngrlrSd5T15DmUIl4kHVVUlWhmUl46ROIQJr5imIXVPxEiA81OIVNVopbHzzOBktrZRGjcLXv/oHEYbaU0tyhQSt7N0qHS95PJ0YcJkN5nW5fGgoSxKqqICNM5OjONAdz4zh1SP0Ur4piiZZsejmye0NzdUdUtRFozDAEA/nCirlu1mzzgOnI+3DN2R490t0zTJPhrNfr+n6zqcdfxDj/5Z/tgP/3GUkmFE0zShjaGuKs6nM9ZamqbBOcfpfMapbOy0l1SR8qBMgVeeaZwoigJjNPMkk8mKohSe9m4RQkkR+ESHVVVRmpq6rmiaht3Vnsc3j2m2+/8/XX8So9m2rutBzyhn9VdRZOaq9t7n3FKWsfG1MUICJMsNevRpIyEheggaiBYtJCSahi5ISIg+QkI0kRANXwtxr6/tc+8595xdriIzI+IvZjVKGt+MWLm2TSxprciMYkX8c84xvvF97/u80trUhv3+uKmTEz/+8feM5zPrOlE17E6P/OVf/CVxXXBGk1PkfHni/PIiRLxctlx0ed6tsaDAGotzLU3bUGphmkfWZYZa33JHurZlN+ww1oq1OCURHudMP+wZ+h5jHSkGxnVkWVfCGjHa0ncDtRZyTazrwrqs2+Is96ecoJB7T2tKzrLAdx1t19I2Em/urcxbx3GkKAjrKsCy7fntfIu1lpgiawhvdt6uE9CLdDYz8zyRYiSEiDGGphHwmtyblVTyW9iW9x6llEBkUsJ7t2HYs2TCb2vXGgNrCCij6YyX56UKs2VeF3a7gcf7R4bdgWHYodCkFLhez9zGG2kTtDpn317r3X5HLZXrNPH09JllHLFGsRsG9t2AbxuOxyN916GUYpoWxvHM7XZFJFMK3zZv0dRrmKFkGufo+56hH1BVcZtHxnUihihtcS33v7UOZyzWWPp/+h8QY/hFaNPP3bxtTf+vLKLY1pJXbsgvDzKvYUyliqiufOHq6roBOL99jxAjeQ2EMEtHq5Qtv6JifSGlgjJQcgWMpJaWjEN0A6+rcMmZFAKFhPUOaxTaeJSBeQ1YY9kNg1D+Snp7dkJcySXTNC3GCpJ/mm8cTgOlCrkwl4zVBmcbeiOjgWoKdmg7qA7Xepxvtptas6wLcY34LtI1QgGsMaK0pTTbvFvJhpBTZOg9NUX8/h5rNBTNp6efyCUxtB3rsqLL5ovcNxyGlqR+SVRYo1xo9Cba+KLF86U47hc712slrX7+kP7iIr927P7v+X/Nf+Pf/rextuHu/oGH4x0KTciZcXyh1kxYI41t8I0jlsL1fObp5ZnP5xeMc9wNRx7ujrRty7yuxBT56eNP/PDjj9Qc+frxxPvHRw77E5nC/6D9D7nf78lFcQsrP376TMqRznta29I1LaqkbcRdiSnKqCQlmf1v86DyykJH4jaV1uQtn7xrWxrvMRRSSMQkoJGUEwmxhhTgT+v/hWVZibVitMVqQymVHBNaSdCEtZb//t//b1NVpSgBE5Vc3tgL65povcNaw+uMvPWenKV40VaLdsQ5qFW6PWFhnBbGZQatscbRtx2H/YGm7Uhbq0pvC/6rWCaXwrguXM4Xhq7bnm1FTAFVEseuZb/bY73jOk1UBZ21OGNZ18gSV9awMrQdD/f3UixoAWgsIfByPfNyOZNTomkbnPXEEHGNp1CpqXI83TF0O3KqLHHhcn3hj3/8IyEGUq403nHY7WnanjVEfv0Xf8FX336HMW7bsGbQhiWM9P2O+/tHYs6MtxvrNPLjD3/ih+9/T5ivtE3Lw8M9y7oQ1oU/8n/mv978isY1XG5Xxnmm8w192/LT589MS+DueGToW37/hz9xneZtwc/ShYsRrR1t2xBSIqhC0zqMtkzzQimVxmmqUmgtr1tFNBzeGqyzsnApgZgMuz3v37/nN999y29+9Sse3r1jON5TlGZeVva7Pf2wp+TEX/2Lf8a/+qv/jPF24e7uxD/59/87nO4O5GVBV8W63vjp4x/48fsfJfN00468jiO891QlLVHvenZ9D1Tm5ca8SBFQtvt4NxzougFrrJyKcpKTWykcT3ccDneAZl1npmVkXhZyKnjfwqatiWFlXkbmeaHte1RRlO0fbx21SkJp2g4+w27PsBtEFK1fUxsr43xlGidU1YSQcM5hjaVkSTGcl5l1XbbY58puf8A3DWmLOh9vFz49P7EuK23T0Hcd3nkUEFJijUmKT6PZ9T2N89LoqgXnDMZYlnlmnOe3TW1JgWldKApa7dG1cptv5OKIydF1Lb/61SPH/QPH/YlaKufzJ34sNw79AaMMCoO2lqZ1HA9H7o4PlALzOvJy6DmfnyglQi30naZpNPfHhr7vSDFRK8xLwNiILorGdbStFeV7raypUGvGG4c2gAqUAs5VXJWwHGMd1lpKetVnJGTvrFuB9jP0SustefV1hPX/b5TH23n/bTtRWxy0Vmqznb+6NeBVxD30+1/sW2VT94ewYKzZknEt1WhMWGjCQlVsgr8scfZI+11tbYkUI6UU1pTkAKIyXWO3Is/St4YqjCGcsSijSWEhU7FarH9d29F2AzknvJN7smQ2S34AVbHWoatmVYWuabCn44GU0nZDHnFGontDzJS6EsLK4gyqJLyR01kslQwsMVBKwTuLN1BDIIVA1x0wu4HLaLheVnTZMuRrBaU5Hg988+6BKS/A8xcv5StH/2chmdav4rnXyNk3Cc1bEfDWUv3zmTFy4vx/1P8N3909MI1n3j18xa5pcE6zxkCuCecRKEMtaKNJaSXmgtWR4+Dph3fkWvn67gMf3j1uvws8nV+oJbKuM+TI4/HI0DiGXceaI9NyY2g07x/escst+6Hjcr2yzCOqRkrIWA1d06GdQ9GhtCLEREqRXAulitiwFNDKvL2OQnnyghetkZRW5nmlpCLVet9itxOKMpoYI9M0EVPGGSfXdVopxTMuZ0rKGKXY7Rza2O2hkBPzGhZyzjQ7T+MdJWeqAmsUfetZQ2RJlSXMFJUFYtF21FxZw8RPT5+Zww3fWvq2Yd8N7HcdrunI2RKiRtWM8w3WSTBGrIHx84W2Nez3PUrBvM7kKjf3YT+w3/VkrahWoncPnccqzRIit9Uwr5ah62m8RauyFRaJQgKTsZ0iTgllHIUVRSEEwWEbpbBKkeJKzJlpGZmWcdsMMutW3KQU2Q1C5frXv/1rruPzphkttMOAdp6YE+Pthdvtmfcfvubh8R6jP7Db7xkGz0/f/4Hj4YgxGusMP97OzLeRFCPeOpQGoxVaVUKYoGaUKpSSaLzj7rhnmmdSlc1U9DIF7zXGKFQoaAVGySL2pVjDe4vWBgtUpXFG0zX+Z/3V1rFSRmG9pd8N9EOD9YZKRlGIYeT5RVJBT4cTxhuu0xVrFR8+POJMYbo9YdHUoskpkEuQr1fyTIe8knPBGktIgNasSRCqOQWsM8S8AhXrHPO6MK8TY4jw8kJVBUpm38lpW2sF1yfytuakHFmWRU7X2pBLJGWIIZDjSs4R4+Sk64ylqoJxjsY2GKO43q7Ektn1A71v30RV2oj2KdeIbRqakliXSNcJ5txsMcYhZZTKeCvPszGWLeCB1ntiCFijcY2jUml8IxuflvHKGgK5VrSVzoBSEiUs0g25F2pZWdaVOcw4K8Ewyhh820rXQBtu45Wqsvy81lBLIawLal/ktciJZZ1Z40qpiq6x6Kq2tUE6FiiNcZZOV2pOaA0prbIBGos2hpAiJkQpsNIKFOFkpPIGQ9NGXkNVI5XCGgNeNegqbfZGt1QU1omaHqWpSuzocVn52af/Gqn+M4DrS23Ja8cY/kzv8V/1pl47xJByQW1dxNf2f62ah/u7X3xJSpL8uIRAXhLRiShee4/zK8s64RR4Y2WdXhacFSHhKxo758QaVq7TiLUOpSzLGqRjl+X7v578QyjUnGT9CSu5SrfLaiPi2y2fh1LRehN8akNOUqRpq/HW83h8wO52O1CGXBJKG5xvZPZgBCFYKpwvZ2qKsmA00lJbUhIoQVxxpt8wt4nx+pm+9RiV6RqPtZbltrLGyJQCbdsweM/d7sDR7IG/fXsh/91/69/g//D//l/wcrnyP/vH/3uprmqFnN/mO39++V5Z/EqB0mabR8lD13jHf7z73/GtfSDEladxxpgLu25PNTCGEYPCofDGsaQgD1UtXMYJhbgdnEbEFH3LFGcUcJtGaY86w/3pQEmRpm1FBGIdVmvW25nzOHF3TOx3A/u+59C1fHrxnJ8/E0vGtQPKuc1SZPDG47EY44GKTLe21vtmAUkxYHltvWdCDKzrwjItsjDUxHDcMwz7t1aksy2H/YmhabHWMM03Pj898Xy5EqsnEWhaT9c6qJpSXq1PlUxlXmbudnu6tiPFyDjP20Ol6fsBXwpuneT0vczsup6ub2law7ROLGtL23YchyNt09F2DUVVYkxvbeiqwDcNx8OBXCM4zeVpZL87kFLAWIUm0zeeYejpuoGsQduIillickuWeM0c6U1L33fknJnXIGMdrTHOc//wjkN+oGQRls7jmVu8Mi+R6xxwxtA4sbWO68LL7cKyLKSa0EZvnO/AHBJVTaSYWHNiXVZySHRdy4evHc3gMMbgnKOWyvPTE8Y6um5Ptxu4f/eeXDJff/iakgPnl2eu1ythFZbEMs/kKF0dow0lxzfBXogrt9sNpaXzEtMrk166M6+bT0VO8j+7AmRz11rR+mZ7sCraaFpv6WwjdiGn0daCMaAUbdvJpqItzkunUBuzFZSR6XZjt9ux3+9w1tM1jrCu/P7v/orT/YHGtuybIzlG4kYDLUmsiNLZKdAocpRlOpUCamG83XDegSq03tO4jlAgrBdCHmXDdI5919H2DUZZQly5TDfmmNFaRgrzsmCMweTIvM7EklGlomuharDObAAXBxaatmPf7bZ7UxFikK7EthlZK+1oUGhlMNrSOM/sF8Ii62WMmVokWfW1e6eKjCqWZaGUgsuJkiWRVStNu3V62k6Y8+uyijo8Rqxx1KJQ1hBiZJ4mQlyFa18h54QymqIUaoto73yDVVqcVwZCdNvJfOsqpsQy38hJ1OlriFRkrJdzxlqL9Y5aC/My4dwN5zy1yIlyvz8SYyCnABRyToQ1kPMGQSqV1nc449BGuiJKa+JGgk0lEXOgbTr6bnhjpygMTdfJNbNuKwAK2RlWNIr05mb4mePwZyNh9WfFAH+eufBnG0qVcYyzFuMsMSXB5qL4X/3T/yG/+e7v8T//i//RL74krCvGeIbeMK03YsmEccTGhPOt3CdNIxG9KfJyfqbrepEFFhm/1ZJ5uVwY5wmt9Tb2kCIp14qxGlUqOc9YI53g23RlHK/baNjgrCPGlVzi25i21kpKceuOFYyx2OS3jkqLbdsOtCGEhRgT0zzCFsX7qgu43a7EMIvlYI74ttuUkls1aBypKHJeICbiYaS1HlOkKo8pssYItXLoe/q+JaSAN7+0Af47/+gvuD80/PR05v/56T/iP0z/U1KKP1OyeD23fKEcfRPQvL77iiaVtth3333N0/nKlCPnlyuX60TIia/iI7lEnDLcHe4x2rGuE3GrpsPmVFhCYOg6hmGHMRDTyjiNzOMss8DGcXfcoUph13c0Tcv+cGKKAX15Zo2Jp8sVZYyEJ3UtuRRqSczLSjsccL4hhMA43bityzb3k9lrZz1oEXBM87i1cn6+a70XYUjKM+u2CWpj3uaMOWca6/DbqaEihcRu6InrzLosrK7FVkXfdFhlKFTmdaEqRcqZdV1QqsqG3nicdywpMoWVcLsytD2N93ROLC9919I2fnNzKIyCzjsaremsxykj2gSpaqAUjFY4Z/DO0/he6FnW0+oLCpimTAGG1rMf5Pv7xjMn2RBDjEzLwrquVDRoRde1LEtgmmT2G1NAaUPje/b7I8PuDu9aYl7omgaFIuQX6hxZc+LldsY3jvN4ZVzk1GG0QaHIFIqSTbRsLIkUAi8xUktGGc3Ly5mvhh274UCtVTgZTSube7mQs8yYd7sdp7sH1nkkLCtd11OPmfPTC7frlZjTW/Oy5G0WWUX5eytizXxFUL/mBIh242cMtjH6ixOTaGKMFQpZLRVlwHpL5xsaY0W4REU7g29a0RJsp+9UC9qK2EgpzcPDO3788Seez8+4tqHre5yzLPPCy/MZbQvoxMPdO2KOzMvCNM3cxokctxZoCm9hNLVCqnJ/+MZClK6G9ZppnihV4X3Dw90DuWZqSRz6HXeHPV3TEUPiPN04Tzeu4yzdM63INcsoyDkqhZgivfPoojb8uKLmQsqBUhRdN9Bso4IlraQim2FKCWWMjK6kZ73x1gdSthjrmfVIWCKxZsZ54na7oraxWs6VmIKw4duWJiVCDNyWCZTCGk3bNXjv5LWISdrfsLW3RetiFOSSuM1XYY9UhVEarSokcMbIOKXKWu6dpW0tIOu3Vo4YZHMIYWZdJb9lWRZeXSu5RHa7O0xjuE1nrDFcR0XTdDKUrGCdxbqOmh05rqQs+8mrZkprg/ed5M8791aUrmGlAmteyDVz39+z3x1Ee2Q27odSUqihsE6jlSG/FlEx8zoc/XNhlvzNz5kZb51i/kuf+tZtfl1XSxGwz+f/2v+Vv/nT35ErPN59zf/yv/s/5v7ugaFZf7FvrSEAmrZt5H6smbAuxBhovcd7iezVRrMuM+NtJMX0xvjwxol2JYnOKKdCjpkQC8Y6GQNYg2scOEdO8qPO88SyLNSq0OYKSqOVaI5yqdv4RrRWMaykXHDO0bYd3ncyCp6XgLWGNS7klMkhoshQFE3nQSmcMcQqc96UF3IB5y3WebzzWNOQyEwxQEmEaWI4OMEDb/aHGBONMTRWFpBLmAmXp1+8kMvtynFosbpwtxuwf2eIKb7dSFC31uSfsaa/EH7wekNsAplff/0tzn3axGKFMS388PwZreHQ9xQnLfclLMSUtzbwIqcmozgMex4ORyiFpm+IxTCvE/tdz3gdsc7SN56ubbBa0/UHdsMJkwLD7sx6vbLEwo/PZ8Z5Yr8bMBoOux139+/EalkVehyZw8J4vWC0oes6IUsZhcVKzGhMTLdxK24cOctC3zQtfalQRGAFMjN0W+tMWkwiZszabQXeitWG47AnlQpJchsslTEExlU2U9F5FI77PbuuY9gNKGNp2paPz88saxA4BXlD3yoZISiNs44lLEAmp5WiFNM6QligVpy1VK0wwH7o6fZHmnbH0O2wFtbGUQ896zyjOsuqLN45Wm/omgZjLbaCZiWXwHW6MY4L1rWyiaIZ55nLdSSkyG28MS8zzjU83N9xWkb6bocxiloyfdNR7gqubZimVbo464pB45RGNw12O3llMrEkVEpEpHVtrMV7h1GKvm1RVJZpou16ur7f9DKJlZkUCnFdmOeRGAI1J7phx7ou9P1ADoH7+3vmWaiZqWQUdWvxKXIWPUSOiYoilSKjmcqbcFOYFsIBkI6AIkYZq1kjpyyjFFWLEPJVSGYUmKowRlJA+7ajGkOpFec9tSqez2fu7u5QGLp+4MPX33D963/J7Xbl4f7I/cMDH7//QUZSVjpbFie/d5Sf81W5nWulYKhpZVkjuVZCTLLGWEPXdBwOe5puE+eVyr7b0zcdhsq6zuKjblqscSQtQj5tLcZUcooUDU3Tczyc2JZFdnWPpRKWiXWJUCGskZAi2SjuH9+xP92JqO76TKVyvd1QBRlXeWl5d+2Ap8e5Bms8MRa8bShWYa3wKzKVMK/boq9Z1sh+37AxXmQD15qsKlWrnymkVQSSbdNSWcil4swGAKsFrSrtpm/xxm97WaHrO/quo2rRVq1xwdsB773co9qQsyL5xLxIIRGijBy1Vlt3x7Hf7djvekKYaY1GG3Cq4FTZeCqKWkVQ6lxLsYYYA9ZIDoa1jlRE7FurdAxKScxhYY0zISbWtGCcoYJ0Cb7UcxmNq1KQvvq7lDFEbdD2FT3+ejp8bfXzJgaspYi8789E2/X181813V84C1Cimne68Jvv3nN3uOPd8T1d0zPHlen65dga1pihRHzTMAx71rgwryuN9xz2O3Z3d2jrRTi/ztJhL4rFjFgUTW9FC1AqNRc55FWYbnLY2x/3NG1LShk7yMFwXWUfVtpQquIyTsRcqDlyvT2Tc6Jrdwz9gVrV1t2p1BJQiCDRuUY4AJmCrkVgNikwTTe0tbhGYntLKdusYaukTEZXOT1oNgRqKsQ1omrl5XoVZS6axjkB/KQsyk1rWENinCaWefzFC/l3P31P07QyC3NGqsBXS9Hb9v7lTOfLS6q+eF8+57/4+v/If+vw77KGQAiBthGVrAbu9nsJRQCutwspi4p8XhZRTFopIL55945D17CGVU6bqfJ4d48uCovhti7YpsO3LbUG1jQxzTeqcXSuZ60LKckM9fk28XI7c9rtuTuc8N0O63tCLFJwTBbbtNSYyCEwLis3PW3tL/jp009czlecdQy9nLqVkhm/0pauH4hhRSlpub0KV+Zl3CKWNc4UvNWENVLiQsmFwVvwFmcNTokw7DxN3MaJgqJzBlML5EgMgd2hx7sO71tSzpQsIh7Fa9tWE3NBq0jOkbIJE2tNrGEiJLEFNU1H3/Q0jTAoFDB0Ld5qlI44DdEodCtjGK9l8WubBmW8xC4bjfUOtShiiKAqbd9wPOyJMXGdF7JWaC2FamHhOt2wVpFr5DZ9lsISTes83loeTz2xT0xh4eVyhVJpnMd6UWXnlFFVodVMrZrGt1IIW0Pf9rTeygOaMi9PZ6Zl5XB3x35/Ytd2OOvQVOY0c305E9eJv/mX/4J3X3+F1Za26ZjMlfu7e55fnrnNIzFl4iodiFI0deOAr2njYyghgOUshdjrs/PKwbLWopV5KxCslXm3NoZS85YAKotvqQVlpKVojYScaKXpu46+23Hcn3gZr/xpCdzdPXK4kxzy919/Q4ziRx66lmlohKxZHeuamZeFxlZKDDhl6Lxskq9ArRg2YWrNQohERlzDw47Hx/fcHe/QBsb5RglJhKYxMS2BaZ1k7qosOVfprmShFFhnGPo9u2FP2/UYY4ghEFMkrxNrytSqqDmz5lUK30PL8fGBtm15evmEMnC6u+f8/MSf/vQnjJXCyGrP1Ab2p0zJQmMrr7ogDEobhkEcEqVmSiqsIdL0nYTDWIs1Er/eNg0hJ9FBxAhFCgNtNNooanFUFNqJyE1bhXGaQbUYZTYnB6BhP+zoup41rtzG6zb/jezY4bzH+Q5XxWqmamacR4ypLNOMt62s1c7S+ZYQA43zHIeenALGWpy3kndprOwVTk6qNcrHUhGHTgV0ztS6bge4TKmZVMTuprXMq71v6LoW50SXUJCCTFXpglCRa0ql5EpjDSor5vozQOjLUDSUdB6L+BP5EuP+Vix8uad8URlopfh/7f4j/n55J+OIIgeBp+cnQok4/UsQUMizjMS853A4UMpKSgspBublxp4Td4cTpSROxxOXlzPrNHK7TDiVaL1HaYvVVsSHKXFZVsYpAIo1Bo6nA23XsAZxnIitUJMzxFzo+x6lNefryPlyAyopSVBR17RvtFJjNAZDWGTtt8pYTE2UNZFTZA0L0zJjjKHv9qRYeH5+ZhqljY2WG60qxRzllGQbzTQtrNMKSvGsrvTdDkohpsy4qXadkxPFuq5c54nrdP1i40ZCh2Khaztc635u7XzBJX9jVr8WBl86Bb6Ud1Z5YaZ1kQo0Z8Zxwli98QcK1njCNGGcw1nDy+3KH376CW8NXz88YJRmHm/oPGO8iDJyrHx+GlFKcXc88e79B5Sx6FrRKnMZL7xcPmPdwO0ip/6iKgfVi1ioJH76/EStmm+HI1pVGm9A95zCPU433C5nbtOF80Vaz2z1zroGxmnG+5YQs7TacwalKLnSeicdBqsptXCZLmhtWKaJWsFaRySyakjrQlwmmd2VivUyV++Hjsd+h9KGdYl8//kJQyOFRFgItVK0Zr+/53A8vXVk1uVGTpFls+yUkpnmWeyjbLPGXFFWrp+xlrYbZMN0mpBm8jQydDOlcZQcWJeFGIK0vbf7x5utw6AtFbFQsflqnXW4phXBUK3Sqt3uIe8stevIujLPMylV5tvMZDLZiMiysw27vmffKfq+xzUicFxDIKVCiRmlBcgxdD2lgtENh+FA07SS5x1WfNcwpUIqgdPpwO70yN3jB4539wyDKNYVYn+8np/QSqKi/+Vf/Wec9idilPnwrm35N/7xP2ZZVub5o4Rl1YKxch/lIhbPkguFSsxiPdJmUzNvv7tYSjcKXRUFurWvYTUVpcFZIwt2rmirUVVa1b4xlAq7vuf+7h7tLMPhQDXQ7Y58eP8NTdeRcub9h6+4XF4Yz59FiOTELTItM/WpMi8LQ9vjjcVZz67fofTPKWUpyygnpEiIESUaMYb9wDAM9P2OlFdqqfzw9JHbONJYma1mlZmuV6y2lJxQVQpR5z27Zs9xODDs9hjvCSFwucycz8/EdXqDsFiriTkRUmDn9hyHPZRKKIGm8zwe3+ENfP/97/j8dGXsO/bNgfu25TqeuZ6vKDTWy1hI2qwOrS1duyPnRNQr1jUMQ8/Q9aAUIa1UJWVozpkQokTEWnEhSByEqLYb32Cs2RwtPb3zjONIRuGsBw1d17AbdihtWVdh0osQL6K1RLsvq7TmlVIY51CrJa6yFixpFfdCzMxBMigaP2C82DFzrTilMfU168RhtcVYTbWWsiCcemPIMZG2tnhlOwiQUQqJyPUOHeXwMvQ9zrmtOAsywkrS09VoYlgoNaGUorMd3plf7OdfngnVm5jvZ9JjrUXEd1U6pH8OUHtlFsibUPUa68m18unpMz98+gHfOB7v3v2iAKiIN//+8ZHDfmAZn2lbxy0GqrL03UHm8yHTdz2Pdw/cyMTlyjq+EHyLH45SWDmP0jO38crHl/ObWNI1hlxkTKa33+VVTNr2PV3bgy7Y6YrzLa1vOOx3NNbjrMM0YnPW2ohjJs+M84jdH4/UFFj0yDjKqWdaF1k0/Y2YC0/XM+s0YV0jN4sJmJiZtjlPCplxmpiWgDaKWAr+6YXGWS7XiXGaWWNgaFu8MigrSWl8wSYHaGxHLpXzONKVyv8t/2/5D/ifyAV9G+Jsloyf3/2vILbJafLT85nP5yvTIpIR56wQlbzlts5iPfFOHiijKTWRc8C2A/f7I33jWOYrMVRuS6Bp97RNz22ZeL6eWWPgH/YDqib6tqGkTI4rt+vCfrAYLfOtp5/OTMOBh8MBRSVVzfk8otQPnO7v6Nsei+I49OyaDqvh8+UTn29nLucrcU1UJZRBZQyhbFhcrbHOSyerFox2DENHrYXPL59Jt8i+P9C6nhgC6zizRHm4jFLUzV8eYqLtKq7pqdpjveV0PHB3u/L5/CJzO+NELFqLpFgZy8He0fdHVC1YlZmmTNc6at0CkFJhXfIG4BDmdYqFeY10jcGbhqZpsK5SrZw0Y1wYx0rKK+M8E4IIpqwCqwqu82+/ewyyUawpgtIMu4NY+EplXRYqlbb1mCCFwnG/53Q8MM0z8zQyzSNzXJlrwmhLsdIuXULklKH3LX3T8aJv3MJIqjNtaWiso+iMbj2H/sC7wyO+aXgez9RJMRxPvPv2NxxOD7x7/zV3d0farqVu4xRKISwzYbG4pqWWwrff/Qr+9Ft+/PFHyfqeJ/ZDxz/49a/Fw/4fTzzHGylECpFc6na6l+dC2v8/J0K++pi13nIctnmjzKEFw202rYjTBm/stjiDNpawJprG4xuHbxq++fprHu7vuU4ja0l03Q6rtVhYS6GWLGOZ04nz558IKdE2EjoyzzMpJ87XC+u6ctztxeLmGznJaCOCxSo48LiNsbSVNu/xdMI7R4wLywY4mVOQrpX39M0AFtKykJZ1K3gsvmnp2gHbtKQkHAEVFqZpZBzPTPOZmCLebB0oJSPHMcyYMDOOI/3dO7768BUxzuz7PY6V9+/u+en5dyyXC9/8vfe8fzjw8eUjIH798TyLFbRUrJERnDWert2JmjxXuqaRwo/CvM4i7k2iQ1BalN+GjWmxdSebjbjamFZGbQXZiJVcB+8su/0B5yX/fVlWnDMc9z0hyg459J5aI1QjhZL2YCy28dR1xngj9rGaQEHIClsUS3KoqFmWRcZdXjbJElZ0ylu7XzoTOaefRadUQlxYwgRKxlFaa+leGk1MWbozuxOnwwMqiXVZI4z7XMX6WANU5D4zVrgcpWyWOb7EOcv7Wisa76ST8kVhsOt7Sk6EW9r2lZ///fqmteYvf/OXfPWwo7GOeVn56ePHzUXV8PhLEwDffP0rfNNRUuR6eUHXwG434GzPYf+OphlIKXI+vzBNI8Yo+q5lLavoBeYbWSmK8bRtR4wJ83KlUihKi6D1emZX+s3VpbYRjhxIdvs9jWspNbLbH+mansZ6jFL4jS6IUhQlBy8R/BryumCHvsGanquTjTnVRMyi0A1hZVwXrtNIDglXCl4rlnVFG8u4TKwhENuAd15AILGgTeLFXGi2v1vXlbjlFJcc0Vh664jGA18IKpQh5SDispTeFrNXvObPAxu+qN1+iZJ8/UOtlefzhT/88L3Y4rzF6o6H4x3HuyNLnCk5bzMpmZ++O53QZfOje49YnGYuITCGwlfdHY1vqLkSY+TleuGHzz9xuX7mfj+w6x3nyxkYCGHBGcNxGLgtK0/XKyUXWm9JMXKzK9d15el65sPDO3a7Iyip7na7jof7E+fLC8vssUYW0df2lNESgvQ67zNGFMglZ6ZxJBU5QXprUQWx+RTxmp4vZ0IIOCtgD9+0rOHGdbzRDYOAiJSAaQ77nm+/fs9ud+TY7zCmir1na1vWnInLjPeWUiK1RnLM+GaQ18kq5klmm7WKRUfsQgmq5nK9YE3FGvkdK0asbuskc9gkF7TkLEIgC7WaTQgn6txlmQlJZmZN0xBz2rQLBucsfdNQmsK0LOha2bUd+7ZlGXouU8fT+EJdRUjzekddppE1ZN6f7rHWcne6o9/viFFU2vthEJtQKXjlaZ3Fe0O7Gux+4P7+xIdvf8NXX38nc9GcSCnj3ObcqAVvNNYojIbz+YW+62hcw3F/YFlnbtczP/74I3G9EVLieDowLmKVyyUjdcR27c0GuCrynHy5uf8cOvMz+tlYs32OprIFmWhLLQVj9Jumo2tb+mFgf9iz2w/shp4pRD4/PfGrr75hXRbG8cphL9ek1ETjG47HE13fs9SEVQJLWsLCNM+M84Qz273nPQDLurCuETa3i1IijvPOYZ2hMRaNEluTgn2/w7UNFeh9h1MOjJKO1rJCTVCS+KYrhGVlzZm8dcFyka6Z0sgYIAmlTSsn11hr1rjwPH7i/eMjH+4emcOEMw2dv+cf/OU/pKiWFAK/+epr5vlCYzTvP3zD8+3C/ONECEFGMK6gqlgtRVGvWfNCyYGipEtlqrh79m1PqvUtb0BVsfrFHDEFfOtIJXKbrygFa1iZ5pElrBjnxN7lLc5LO9450aT0tafvPNoovGuxptk6EwZtPLlCxrOrPaU0cqjLiVLKZqmEECa0kW6INmYT70WmeWENEb91UeXEKXqSUjZuiVFUVUk5ChvBOayR8UHfOZp2oGv39L5nydOmjJc1ZVknSlZvSnnr9Ea+m7c15/WxrV8u/m9xzK9n+lor1hi61rMuYot90wHwxdcim+tpf6K1W3FVFV3bMnQ9KRVS+CW/xvmGdZnJOtA2jqFtOB3ekXaKtutlfDxdyDnjfSvCS6AYRQ6JJS+0udlgT+CcY9gN7DctwNALsGpeV1LZxKv9QC6F0/FeOqONJ2clYvXB0LqGkgQWlHKSMZuqaGPfRMpQsTlFVAXvHMk5Tvs93UatSjFjDOTjkRRFGZ9zJoYVY/J2IlW4xokIpLFMtxFy4nyptI2n1Mp+v2eNz1zXGXtR9F5mEs79MhFvmifmdWWuEbVk1jV/cYFer9E2EviFLqC+QYm+/ECIgXGeOBpphWhdQGu6pmHft5KEZjS3ceQ6TbS+5dff/opxmriGidYr1nXiNiVSFbHPcbjj7nCmUDkeDqQcWeNKLi3GSBzyvBrmdcEoeDjcoZXlOs7EGFnHlRwToYKdNU4XLpcrHx4/cDqdsNpArrw73mN+rfi9+RPny1UIapsC3PtW0hetoebEHFcoYLcuRtWVru+5H04CIJknSi7c5oklruSU3qw1+8OBpmk4366EsBLiSohiDeobx19+9y19d0JXBbqyBjlZ902LbwwpLcxTYVmvpLhSMZSU0Y1G2wbvOnJ5QWuwzkn4TcqEEljCzLRoWi+DS20hxhmlCmuoKNNjdCHnibjOmM5RisVuKtuUKimulFJomo7GaF6DIryxWOfQFWKNeGO5jSMVRdN1HA4nDscT+9uezy9PTKtYqbQGjMYYOaE0tuFwOOK8p1SIMeCNRRnFuMzcLhPLGrjeRkJYmMKEaRzHx3ecL09QK00zcPfwTvQwKaJV5XL5zKcfvufy/MR0uxDDPX0/UItkyWtjmdfAHFpK1RxOd4zjQk2VaV2pVbzBSgvhMm2nLrtt7Cg2OMqrJmZ7hJTCN17a81XsgUprjFKord1cq/AFnBUoUOOla3YYBg47wx8/fea8Gxlaz+XlGWOsnIByYp0r/bCj7TpSmCAmdBX1dtM05CSCsHGUSFWxw82EsLLG9AY+ianDaruJnxJtI4W5MhrvGkwRV4K3Df2wE1W0NBEYr/Lcl1KwWmbIyvitA6NF/WxlU15joObK4/HI+3ePVMTyWF3k0GisKbi2wzSi/dCl58PjdwJGyxmrLP/q/APWt7S+w9oFNppeSom2izRuQKMwBpawUmskhBsEQwiRlAN926OMxxmzWSsttVSWsFBahzMyKvFWhJ3iKtEo1ZBJ5FpJOTCHWYAPSgJsxP3ToXTdyIoN1rZQxb2ltdpawxlrZJNWbIwBKlYbrNKUus3xtyQ5jRDmQhQgmtFQslgflfa4qklJOlOpZKy3tLaR+61CzdJ2966hcz2d76gls64zS1wwFEKYebmccabB2wbvLM46QlwIIbAu4y9Cl34+BCpyKSzr+jYbqFXuH/1FQfx6kPxZSKje5GQ/fvyBqxY7XUGzLDPzKuwBsQX+/Fbyq8AuU4tHq46hb7iNN77/4QearmU39DzcvQeK2OtLZNWZbLdOuKmkGFhXeSaHoeODtgKnc56qKrmKW6RcBQbVtj3e+40YadAaWhpqRngMWkThNYtoWTvRa6giXBio2I8/faQZhL5GqWjjcY1UCo3LOKNROYmPfxWkbcqZlAr7oQej2Q9HsRZ0LWfvmaeVlCPTOtM3Paf9nhQDH1+eGKcbu1boXs79UkwhNChDDIk1F0KOKMvP837YAhrervT2d0icqv75xoLKMHTcnQ50TuZ7t9vCtPyAsXB/d2LX78gp4YxENSzzjHUVjIWShaTW3aFtoHENOQSwlW+/+5bjdGA/7PnjD7+ncZb3d488nO45Dit/+umJ7z89oY3D25ZTf8BqyzRNrCmyoDDbjBxEFb3Ogdvlyv54J/OcYrk/3aGN5o9/+oGn8xnnGhrrZT5X5DQRU+J8O7Oucjo11rDbDxxdSzfsuEzPrDlQi0I7u8FFDO3Q0e333D9+gJoxn36UfIe0UJMi5pU1RXb9QKMNaC350VYEMTlldFVoKufbCyGuuG3jipv1s29a8bv3N5ZlwlpN7zq0aWVxMZqSE/M8CmwjQiWilEWZFmdgTQtrXKklk7IhRhGprWtgCatEb2ojCxCVXMBYj3aWZV0oYaHWTEyVjLhAVHF0RmO1p20SQ79SkPbzbtjRNS0asdSElKjzTNvt6JqOisJQySVynVeerxemcWGe501lH7iEmYevvuHd6T19PwgQqGYulxulBH7327/hP/9n/4zz5ycBK5XKy8sz+/2epu3Ic6HrBsIcePfuaz68f89PHz/Suob/Ivw1Swob60JtUcVA1TjjQCtSLlj0mwiLV4+0Upsv3NNombUapXBKCIHKaHQV9LSxFjYR3rouTNczn59+Yrc/kdaZTx9/YP+bv2RdA0+fP9IPA6WK517VSlwX+e/WwlVa45Uj1kSumZfbmefbGaeNzN1DIJWE0QavDUuUpLOmadnvjrTtinNWxnVockjEGtn14ojxbUtKldt1Eu92KaQUmeJKyYWUy1aQeoauE3jVEliWwGk38O3X7/jum29p270gd+NI2zkMBVWlha9UggzWFbSGxneARZlMUVCq4INfFyuN2sh3Cmc1CkculkBEUzhfz8zzQq0FTaXtBPTl2lawrcZKd61GtFI424iIS4NzHmM0MSS63cgUAroKEEdcHk5m6DkR0DhrUEqjjceYZhOTZqGOaoHGvM6XX22iVlsa12KNYQ0zMa84k6kk+ZmApm3pnITbaCdq/cY7VM3EHIklA5W+3eGMJ5fMZTxznq60tmVXwTUdZp4pZKZ1yMY25AABAABJREFUJMcV4zZr+rpQTKHUjFItdUyy2VYRvn4ZT/6qeBWVu6RTvtEAEQGc1vIMqNevUa8Cwp+LAQWMl8/QGJxrySqy5sCw63k8vePh4Q7412+70DfvP3C5XQhBTubViOvq5emJv/67v+W7b39F43sKeuOLdNwd3hNcQ4o3tFKsuXC5nVnSlsugFY23b6UJVHQR7HC1hXma6dr91ilRlKo2zLKhIhj0mmWkXZBDiOgLFNREGC8sKWCvt5W42cRa36BBVNpJqszbvDCuqxCW1BapWTarkdHsDwfuDnd03cApHzgMe8Zp5uX8wu12pWlbTo34x+ew8nK9MW7EqNcs7Nc3Zx3Wifvgti5cxxf5f1ao26n/y7hGY7TYS3hd4L4sAhWPdwc+PJzIMXK9Xvj49MS0LCxRWAaH/R0lZ87XCzEF8aXWTNt27LuBXd+zxMD3n36g1EjrLWG+MAx7+tMD1hqG1rPe4DZeocqMKsYbt9sTCYt3jXh4lXRErNEoND3QOs8aV+Z1YVmfGNfAYQocj3d0jcPZymHYkd+9J4Qs/uemYT8MYhOZRkqVE3AomVwCnfbC5O57TOto6OBywRrLMPQ83N3TNC2+cRxP9xwPD+S0UFVGK0ldFCV3kk1NOSyWNa8scaLxLbValpBATYIcrooQxb7UGkNKmZ+ePvN4vKPxntPhyDydKWHFO8djPwjKMi6kFLbO0oT1dsMFd3gtp0OlNV999RXOWc7PLzzfZqyWAKoQxDfbDjv2pwON78lVY63DWsUP3/+Wj5dPWKNwrqVTDbHErWuQqboQc+I2z1xHSe/a7w8cj0fiGliWmQqEXPj49ES/33E63tE2nfh1syxuKQdq3QhdZL579ysaPCVFsSrVzO12Y1kX/vP/9J/xn/3z/4QwB4wS4mLXtnz8+IlSK7thh/ctd3f3zOPETz/+sGE9M8fTjsOh5zbeKLaQsnm7118zIl7HSEa/xgF/Of9XOGtp2xaqHBRfMw2s1WhncNqQi2QGWKPwXnj7Whuen184XyfGaaHreqZxwlhDCpHn9TO5RNEALQs5rtRaaduW7DLrxuAX6qhiiSvTPNNs2g85plfMVthQhHiZYmRZJPgkWCPiMWcISyTbitJij90fTkLxLJllCZRU8NaTw0IshR9fPhNj4pv371njzBoT13Hi/njk64d7htZjebXVeXRrSHllmUaMHWm6Ae87csqsy0hV28ZlGobDgZgMBSGZigNDWrl929E1Dc55tMrU2tE6BykTfWRaVqRjIAu23k5y3otv31cH6hUAJohjsWe2eNfSdRbfLUzrKFkGCHI2l8KaIiEGprAQi6ZxHt8M1KpY1kCKK2ix8Qn0R5wKgoQWV4j3XnDgtWKVplqxjQayjPRyZu93dG0LRrQnuhZiiMxhIVUZMSljKEozhYXvP33kcrvSWscprFjjoZUZv8Tebhu4qvi2xSqHNoaYMpm60RE1Odefj4G/cIWxif7kHir1NYhqs1f+2b7z857BRuaDodvEl0qKqePpnsf7Bx5PD5J/88Xbfr+nlIw/NXRtz2268Omnj/zuj78XBsT1wjBcBHCmFSEkfLvbouqhbSw+ZdZSUUsULVRYQSWMKyxr3LgPMvr13rPGuKHjIymKlitvY5uck4hEs7iwvHX0m12/qMoyL6Kr0BWLMpQETTNs+MpKVYbx/MLlduPT8zPny5mSM7uuRxs5DRatCSmyLiupC5i+p+t6du0gqEOjabyjaTu++eobHqcJpS0//vSTgBO0Yq359fIBIsA6HA/UsKDDsm2W237/Z9eXV5WnFtpU2S7cl1WASokSA5fryPW2MC6JEGEcF56eXzgOO5y1jHPgX//d3+Kc4/F0wtaCtoacFsZp5Hq7cRlfOB8vGCvzMKUN9/f3nPYH4jLzdD7zr377d5x2A95blM7EJfH5+TNN0zKtM2bDPibAGgm0yDFhlWWMq7DS3czyKeKspvGGXeNpm5b7uwc+v7xQqmLe5vtN05BLYtf19E1H1RXfWh7uD3StcL/fHe9RsTBNI61reHh45HR/h7UKMMjh3vHu8ZH90DFeLsRFREk5B5Z1kq5MTVhncL5F01CKOB7WuAKWXBRhcwGI5fHCOE18++4D3jmGrmeuYhc0WtrTWINShmWJAmupVXQFZQFl6Xeeu8OJw25PyoXnZ7kn7cY+yLXQ7XvuHx44Hk/shgNFaZR2WKUwSkKBlnli3/ZQFedxlLlqEFtSIVOqkA5TkqwDbxS7oedw2tP1e5zteL688DK9YCaFNSfGcZYFqWac18RY6ZuO3/z6O4bhyL/867/ix8tH/p1/+99jx44ff/qe3/7tv+Zf/qf/Al0qQyvzxJykW2Kc5fnlTOVn4c6w2/H8/In424B3lmmacVaErCluyv7Ns9y1LRlBRBcl2gCt9SYUkoVPa81uGLYAmfgm3HLeCAWvbTgMO/pW4CWfPn3iu2++ph0GUJqmHXC+4Td/ceR4euB2vZCLzP1ziMQ1ENYbYZnRQOc7hr7nOj+TEhJKkvOGt4a26SSDISVqinRtg1Zmc0lUDLIR9k0nGPCayDFSq5OgIzQv5wtpecZ+/MjD3T3OOsZUOF9HGTmVyroG3Db2ULWKBqDCh3fvud8PtAautxtN03BqGg5Dj3WG60082dfbJ/FxdwMQqdqwpoRaZ06HA19//Q+53m5QMv4tVt3grMIasVCWnDdhWoNChF5LyDSdFEd5O4I2zsmz7Z1Q26x0BWrNjPlGzJElZXQ0sGmV2q7Hects502MvVJVFY3AdGNaJ4auoWRQZsGq15CzsB2cpcBgC7xRKIw1kvYaVlJKhFXYKNWANy2qVuY1sKZMZwJVCRXRKLHjLjGwJukWr6Vu3ZHCZbrydH5inVZ0v2ddJP+kNuKEiTFi2JgzpdK2PXu/I5fCbV6wjYitY1lZ14yrrzv3mx0Mav05UGzTSmmltqyJn7sCkpIoO4zaxssVAfaYwVNLwTVifX3//j0PpzviujLNt1/uRbXSNA3DsIMCTz/9yO9++7e8PH2mbXpKztyuz1zPPZTM+XolKw050VjpWFtrOezu2B8suUTG8SK6mVU6nLvhsNn3JqYwE2sm1Cgj4PlK2IBor+FNNUWqglASQ9czpEyqmdsyssxX6epNM9Y7Q98P9MOOfgvdsN5RCrzMM1lb1pixWuZnoFFaqrFpluq8VPGx960gQLWWdsvhsGPod+yHgbvDid2w5093D7ycz5xvV16uF76Mep3XRVquSkJorBFb0luZt1nOqnqtBtQXf97iILdxQVVIe/xy5ely5Xqbuc0LQyMBGy/PL/xBKYZhoOv3tP2e55cnOt/SWM84XwhR9AGt86j+wPVy5WX3QpgnFAWrK6f7b8ix8unpifM0c7c/MnQDhyEwzxemaWKOAesNH9694+Vy4aenz5IQpgzjIjZFjYj7SopklXg+XwnrQucdjw/v2A1H+mFAW0n/mtet2jfSZWiMpe89vjOokrmOV3a1smuFZHaer5soJm/+/ITCbtGWcurpvMFZwzI1TOOZ9fMnIGCOlr7d07QDxlhKFuHWuIjP9bi7x/cdawyM4w1VFN5bck1cri8c9oN0dryTU55RWyvOcni8wzpHTgVr1cYRLzjf0fUD3hmWsPD08szzyxOVjPUO1zj23Y7drufd4wfatiXllZCzPHQFfNvx9/7yH3K5nCUBzhiSNZyfXgS8ohRWa467HSWLd9trBXklBuj7VpDD/ZHhsOe0nJjGK9frmZyg7VpJMqRyfzrx1eNXdG3Lv/jrv+L/+zd/zT8Z/j1UFY/3+ekT6+3G119/zTjeuJ5fZI5rHIVC37UojIxW2oaaM103SIBTiNwd9xjbcr7MstDaKLN+rd82e2U00wIxitiqFIky1dvp3zuHNSKmUqhN/Gc2HoCmaRoe3z2yaxuaRoSn/TDw3a//kj99/wPDMDDsD9w/vMP6jpgC8zSCEjvYMs1crmdKTNRc2fUtuW7CxyIhKHNYsRszoWs6vGsZ15mdP4IqLCEQN25I17T0nYTu5JyY5glFZQ6iRxpvwr6Pc8A6x7oG7o9HgTWlzGWZMCi6puUv3n2H8fYNb6uNxWrxijdtg7VK1oy4cJvO+HaHcwPElfPtGdccaPthU5gbKlrIgm3P++5A138iztPGlriRQsAZab0bozfWgYScxVKo2tANe7JWGO8wW8bJ62x6jRFTqjyzW0KjdW4rWDMhzltKnwS1aWWJVua+pRamaWKaRy7jlVAipWS0sjCvMvIsmVIiOQc0UqS4LXBHKREB5hwoZX3rapQtcGyZzgyd2FXndaLXCmcVOXsRvJZMyhFKZbyNrDnjl4WKIuQVpZUE0WwhVN415FKYlpl5XdClAiJe874h5UrMCaMUjWtYCcR1ZlxXjr84+f+sDRMhoX472b9u/ErpN+vwL1MAf95mjLE83j+ijWI/nNj3e07HI84ormHG/9nouuSMNYYlrPz06TM/ff7M08uZECPvHna03lHSyuePP9A2LePlzHkaaZuWoW9hS/Cs2vLw7j3O9FCl+OmCdFgf7t9TM5zPn7HzhSUG+qZFqUoIM9M8YTbUcC2VkhIhJ7Cy3j5dPpOzJuRACjNaF5TRWN9Y3FZxNl5SzNraYh8da82cb0JLa63brDueVCRt7jm8cB6v5CJxmn23x1tPSiuFyn6/Y7/rQINuPSd/j29aPj8/0X/6JOzvL2IVm7Yj10pM0gpr2hY1/cw2f53lvCk734QB2+zmC70gwLJBQl7OV8Z5YZwmetdIetP1zLjeePf4yK4/cPfwKOlz44T3nlAqHx7veGzvyMWCqvzp4x/49PwZVeV00vd7jsfArus57HaM85XjfsfpcMB6T9MOjEthzgXXNez3A1opfvz8ibjMZKM5jxdikVapL47eNsQUSJvuwljF+XbB2YbT4cC8LKjOk11iGSeoEvawlkRbDbu24zze0L6l3fUcjyfWHFjDTG9a1nXhhx9uxLRyOt5zuuuw1krFVDV3pyPpcGJZ36G7AzqL4E8rGK9XUfLaBmdbnHYYLH078O7xHWtceLl5ick1VqBAG1+87TtiWckx47yhdS3OO473R3zTgta0vqdpWgpQtkZOChJi1Dcd3374AEqq7bbdoTfSWNftMU5TQ6GmmVQUVjtSWlAFDvsjnCxFa2zfS9hPhcYYDJXGaobWCb40JZw3aAuNM+yGjsPxTohm+Z7beGaZZ2KUxfz93YkYZz48vqdzPT98/BNFR97dP/D1/dcYqxjHF3qv+ctffQ3W88//+q8Yn35kcA0P7+/xXtTn1rayMVuL9p627en7gc8ff2RZA8fTHeeXC9471lXEf8roDf8sc0OjlWwqWiMZGXLyV0gBkHMkpkLrZZ7svMca2UCOxyPffPMtqghet+97pnnh7v49MReWdQYF8zIzOE+/G4gblzTXwuV25TqJ4LSWSlKKvhbxtBfB+xZdpUOBUEG1Vrx7fOSbh0c+vfzE7ccfhIlfFT5nROO1FYxKEXJiioGcMrd1FF5AqcRFFr6aM3070LUNcVowzvHu6w+8Pz2y3w2iKQkLa1jJ68TD8cBut8cahaqZsBU0OGHXpyQYcqULYZ3IRU6Vfbd721RyXkkp0LY996fNo50i03iV+HTqFtkat9luh8FgBtjvd8zzJOtBzsxLYJwD2jraLU5XHDIZbQ297wUljRQUMUgmh1Ea3zT0iNYlpki6SSpkyBGvDJNayFnjnQjWcomCjc2ZxrXcH05Y00hfbJW8BLEaW+FCFM3lNnMbZ9pWOoLaVEoNzOMFlHBiCgIHs1rTu4aKgJ8a70lFUdaOauQh10oRlpUaYd06RGuKsskqRaqZl/MTKUf6psOFQFgD4zxznq7s/7z1/2U58OXHXvcQZH/55ScCXxwq/+nD/4n/3tf/hGkexfppLDUKpbLmSL8FPb2+OeeY5okfvv8T8zgzNAOnwz3WTrJBrws6KUCohM5Y9m3HEjNPz2dm71Aq0+93WxYF7IaBlCtarXS7PW074K3DevA3SX3sul7sn8aSs5XIb60klKjIAfj+sMPoysvtM9eLjFkP+z1USVm0cV2wxrN6R9M1rItkSd8d7okh83H4EadAZVBGoYyhcQYTDX3TYq2oMKdl5bYkUi7kFNkPDd3QkCiEvOKyVKqHww71Ot9V/KIAeH+6wxnPOmVcbbjTHWrLnFFAfd3h66bsLPXnIgC2ls7PF/w2r1zHWWAVVnPYdRQSn85PrGnFdx2639P3Gm8aHu7ueT5/5rZOPPgdfbfj4e6O2zJzW2a+ef8V6yK2yGWeWWJknG8oFI33UpEZTTWGrhv4tukwtmUuhjmu3G4vfHyWwscZaBpHYWAKkVTF1jWFhaZz3Nk9j/d35Cozm2oBXTBaKtRdv8O7hnG6UXTE1Eo1mY+XT9zGmePpPZ2XkU3rG3rfUOPK9x9/5DqP7NsejZAQd8MJ5xpebp/o2o7Hu+843u95//7XTLczH3/4Hb//02/56eNPlAwPpwceHx7kVKErOS8Yqzj0D3S7gxAFTSuWzumFaZlR2bGmzMv8iSnNDPvdpqyvm+dZTsLaSghVRTMuC0sOKK3p247WGYyuNENP399RtdiMmq7HWkfb7nBxkIdso3VdrqI92B3uOQx3HHd3tL5hGi+kZZERUiw0qsFaLfY8a1Cu0u1ahm6PNTJrt8Zzd/eIvquEJTIvI4ehQddK10i08d1hx7//b/yb3ILi/Xd/CTnQqsLx3Tt23QHtO5q+Z981dNpxt9sRcmCKC6VWGtdhtGzIuRThOyjFp4/fU3Li7u6O1lmCdRRXqIhmVeb9UmzpbdO3SpFtQaWEdxZrzEaKZGMFOJreY62maTx3xxP7w5FaIcwjvpVitJbKh6+/43d/+C2VLV50XdBK4a0ID+f1ilZF4pNzYl4mUo2kYgW6FCOpis2ppor3iqoVxcL9/ZH3D4/4VrHkmT/+8SMxZExvaFpHYzS3JXKeR5zz7Ic9Rjts8FyuF8osbIWcA2v0dK3iq3cf+FDvsN7RH4/0/Q7nHTvTUtNKWK44u2foD7jmQK2J2/WTQFeMR1dDzJFA5bT/wK4/SQpnmDfUbQtUptsLqWTWMNP0nrbpeDjds8aFsM6sOaKqEAm9lfRO5wUZbIwh54K3LTd15TpfpRhYA1o7Usmb+E1J/HCzJR2qTAgS6ZxKhhioVkYGnW8ofSbnyDRZYnIsQWGUJaci45ayUlIixpnzdGGOC6fjkS71tOzJRfDMzopzo1ZNyJHbdeJ6npniStWOnW1xOaKyIpNJRaGtxzVeHF5Zsdt5DnZPSTJuy0VBPHHdopnXsDKNN4ZuswtWcW8ppcghs7LwMk2s68T9ruCMZw5BtFNxfRPtvXIA/pwI9PqxsrX2a8kSUvT6cSU9gDeUvKrcPTyw63dQRKypqzjeoNL0Lcb6XxQAIUY+P33k+dNPKIQG2rctIQSWdWWaJSb466++piiF9Q7fdsTLM8saucbAus48oFmWCec1zjt0EX7JvmtxVjDMx91AYw1ru1BLYQ2BWiPeGnQV90PjHVNYOBwGjocDSxhZ1hvGqC3OXRNroWv22NvtQqkVaxWXmrjOo0RXWotxmqbzpHWGIhSykDOqKDTQN55eW7GhFMW8iqLdGY1VglYNy0pYAjVm7k53NE1Hahq6rqHk3S9eyA/vH/CmIT8rQgjoYlCf5RK+CoW+zAGoX/5ZvaoJfv4MrYQFfdjveGwfyDlxmUYu15G+6xl2OzrjGdqBw24HZIxR7LsGX0FXJSIlX1jGGdP0eOs57k/EeaamzMv5hf3ugHWevhs4HE8cDyfGeRFGuXM87u5QxvDDR81tPPPebOFB3cA3Xlqg0xLZD3sOuwPHuxNd0+JsxxgFomSsZV0WLs8vhCVx1/c8PD7y6ekjt9sTnbe0nWdZR3y/5+H+PcZUbtOFaRkJcUEjiNfd7sDj4Q7vPGsMxPNn7u8e2O32hJCZlwmMlhO+lbSu2zxxnm7kXGj7nnaZ6HrH0fe0rdgB9RY6ZIyj7XZCWJw73HRFYzgeH+mHneQwnO7pu55aEqVUaVPXAjVTM1QkmjYqKKrQdJoYQSuL2dTuxihiyoINZQtJMRanDY0V8qK1lmme3lS+1ln2hz1930DJ5BRYlyCcbWfxxoBKXJbPlIxAk8KENp6m71H6NVwksaxXYlw4dCdxIthE17d80/+G4gaKsRgC2vQ0TuhsaMvXD/d4/iE6FdTWLi264KymVkMqlqKkYEop4bxnjTMvL08Y7ej6jnkWYW5B+OrWbKp+Y7bQGI3auBHOSkqd3kYeeusaNI3HWFHWN95vfuJWvMpNQ//0kXGeuN4ufP3drzgcJPWtlExKUeJHtRQS4hk3vDudCGHm+VopKHbdjtlp9DoyOM0eI9kKxtD3LY/vHjkdjxhvOOoTH+7fc3keWdSKaSSjZJ0XnscLl7DQFvHreytdgd2+Y7jb0zcDIQeGfs/d8Z7We9ZlZk0Lru+5e3zHruuwNRGXkdWBM0pQ3ClRa2Z/fE+pwiOIITCnBesFcxzWIHP1VTz+3vdoVckpkPLW2o8BbyXmumhFu9tLdHoskslR2cKOKvPWshWuQxKbmrKkUpnSirUV5pF1y5jXxjB0A41tyTpRq5wsY4gUIy1tbYyIE70w/HV9R9s2pFLpm4HPzy+kCqpkYlwZ54nLOFLUNhNXEmyTqggCnZUico2Fp/OVeZrl7KWQNr731DVwOV8IqWCbjnYo7Jo9zm3X2VnQEGNlSRM5ZmzbYHLEVlBGPj7HQMmVKQbWnCgBUih0/Y6HU4tWd5wOR6EXrgvNzgtc6HWu/7b2y2v86hR/6wpXsdcWhN9RK5vjgTcdwOsXOJdZ1jPWFqyRDqE1DuMEhsafiQh/+P5PjLcrVMkruM0j4zxRlWJaFy7XC943TMuCazxDN7Dvd2KjXBbCslALTPNCSondsAfEp3/c77BaMS83EWdaJ5ZqI2Afa2AOEgttrMMbyStxncE1DXOcuI4XrFXs9weGYY/RilAC1rdYReU2Xgmr4CjHsLIWmR989f4DRleWMGGxMvtHUJW2Vry2GK0Y+oFpidymSarVtuew7zEYSpTs9GVaUFWx2yVu08g035jX8IsX0jrDoR94mUesUoSlvFVmryTA8gsb4M9vv8A6ylWlbST0pfV+uwkjGkVrGpw1HI877u/u6VuPtor9ToAZXeO5vHzmMs98/pu/YV1WHh8fadqBGiJOwaenZ/7m97/FecfX779mPwzkbeG9v3+kXzPTcpNca9/RdANt03DsD6zLBGS6dsAotbEEInojQcmsXtE2PfftHbYR+8w0z+RvvuX8fGZdRTB5ujvwcj4ytJ7T4fDm+wfo2pawZnaHI03bUHPkvkLnGwbnSDlxCytKV0zN9M2e3BjmeSLEidb3lFI5nB74R/+45eHdO8Zp5NsPv+a4O1AI5LJSKax5Zr4t7HZH+u5AzgHjLE3Xo62iFtjtDpxOd1QyRjuUKszjhZQCzndoI+pXpTUV8Xu73YFpuhFjxrYd1nZ414GSOV+tlRwjCSGb3ZYXqJXe74UUVpFuSbOjaYatiyXFpNYQ14kYo9DarEVXuE3P6OzougFjFCGM+AZKllFJjomSgzDegxdrDmLbsU0HbseSNbpKAJbRLdZ5QlyZJ/H9p2Wk1ELXtuyHHVBQRYEyxKJYCzKntIb98Ug/9PwX//z/w+XlmcN+zzKvpJSl8NWSDaAUm2gMUQwryFpJ29lonIJqzRYPLVHWzhqscTRtQ9/39EOP8xLXfLp/5PaH33G9nnmXvmIYBq7XvEFuNBFFVVqif7sD823E6sqw34kPelpo/cDJ9QydZZxHNJrWdm92vF9/9yvatmOaJ0IpPD5+jVKOP3z/R67TlSks7IYDvm/YOcNxf+IwHGi9JdcdNQecadDas9t/xeFwh7MCjtHqnTggvGZ3PHLoB3KYmc7PmI3Zn0thiTeUcrT9nnVNOOvwviFOCafsRod8wVrJeJAYXyX+bCThTmUE9mSQaNjWY7wjV8X4IkjulDMpRGKayaUwzzNKSUdPPOp6g/PIbFxVBLoWFEO3Qt6snEpRSxVkcA0479HWQc5v1EdnPafjI9732MZxd3jkeH7m93/4PY1S+P2O3/8QRIGvKxSNRjOHmZAEppQ2++T1OjFNs4QEacM6LuxyR4qBuAqZMWtNSSsPncUPA7pkmW3rivcdbe8wq6JOoiM4DjsOg5yWtdKkUliLpCsej/fs+4HWd/impVFm4x9I5/gw7Gm85vr86YvVv77u85vFj1+MjdlcGd45jNaoL7Rn/6V9JKzUNdC2HY3rhCHjBelc6p9b0eG3v/tbTsc7ur4npczn52eKUjjncTZwPB45HA50bft23WIjQlRnDMpb0Iq26WichHFN45UlZO7u70T8WiPjOhJDxttmw0ODcRoVRWPTtsLN0KpDqcK0rsSiuDs+oAoc9ydaLyOemKXLZJXWTNeJRYtf8DzeaIeBdRpRJbHve6bdDr0VAHkZIUZ848V3arb4ySoKziUVdl1Fa8O0zJRSuVxGSq2crzdOpxPLMvN8Pm/ztJ/fbpPMXADmeSGGX8IZfslqls3+F3Oe1ystwwCO+z3H/Y6UM7d5JMTA4bTjV4cHpmXCGrBeo00lx4A1mv2wI4XIuCw836786dNHalH8Nw8PdK0hLzPjOnPeRIU2BBr/DKXw4f6edV2ZlplheGBcZnIMxAraWU6He/pmIMWFTMH7BmfshrRU1A0BuiwzyzqjG4EWGefkpLexu3d9yzLNONfRdj3HY0+l0DYd1liu1wvPTz+RUqbrd+ybhnVdeP70I+P5mdJEdN+J4lhtcbIobtdnoXJtWhCQuOH94YFHKs2+5Ycf/8BwOPLu/VekEpjnG59ffuJ8PaONwTcd1soMM4YZbSVQpGRRvGM0zjTb41rohz3RR5SSVEZNxjUeKKQErh3Y7U6E0BJTACQDAISD7ayEAhndbDO+zDxNqCzWOEHC9vhGNAdKq62Fpzbh30TKEe+2n0kp4cfXE94NqFwZp5Fa5fu9irlUyXR+wGnLNXxkXQIxNqQieo9SgDyTvMMPPUopLrcLt/OzBEkZEdRqFPM8E5YZtYmwUkqgrDygxjAMA4f9gdvLM//qNlI9DMNATJkUhNxZStmEXJZapQAwSgsyVOVt0ZOOgLbSGZH/OhrvOe727HY7WUCNUNROp3t+/OkHLtczawgYI2OVGKPM5I0X+lzTsNsdGa/PzOuCMx1WKQ67Xl5Xlfl8Cfz09Im2afmLb+43AdPmCb9dmMPMrjtw3B3xRuFMJVWF63riElnWmb5teTg+YL3YaalZsiJKJgN3d4903cDt9sSy3Og7z263ByfW0IoB7Wl66UKt80QuiUPTgjKSv25bup3gref5ul0DGU/VWsTOGBLOFqISNXrXWsl6rwHtLF3fo62AWqZxIc4BVQtO6+0UqojrTMyBlCJd19M0jVjglKIxHpUqIQXmHKkl0bQNhXdM85Wqkth1k8x6jfOifE8JtaFe0cLPb10rEJ6u57tuwBpNXhZKEjRzKoVKZd/t8MYSc2KOMzHMWKOwRr7nu68e8Y3l+frMd4dvOPR71ulG2/c0u56ny5miFce7B/a7PSUsEmKmobECfkMlFBmPpuRC43Z0foe2lpBFvW68oelaWtts9MQIIVNzYE0rhkrrPM5qyIVX1v/PEDj5syRh8vZMKxTO6K3wV2+2WMWrVqC+xfPe3d9RS2GcZkIsrG7FJQleEwHrL0cAsFEGux3Pz59Z5gXtnLBurCXlzOl0wvuG8Xbjx/OZROXheKRrPTkFfveHPzJNN56ePjFN0oFCN3TLgLWatulAacZ8I8dA1QrnREOzHwZqhWHY4ZwT7skaUI2Vbo3SNK4FVfHOI9TtjlLB7vZHYsrMYWWNEWcNrTEMvkHFTOdbWURSYRkXcgoMrmFoWwBSDozzyDQHxmniPC5YDUYX2kaSua7jDGjWmIRiRiUGEe98+aaNQplCTNI2SeWXWQFvYsCtXfPn4Q9f3gRQ8daKB3u6cp0ncIrHfcev/95vqCVzuzwx3248nz9TS8E3Qj8z2tP4lmla6JuBrx6+4rt33zDNI3/6/gf+9Oknckr8g69+zeEwsBtEoHE8HqgqcXm50PX3TDHw059+Ky2kZuDDh19jrWWezrS9oFCNs5AhF2ibVhZpFM44urYXmp0VLrb3XqpqVWiGnqbbY4wVi5WqkpyVNa3vOByOlCztY98MGOtY5huX2zNjnFjGlU5rhqbF2oaE4vP1GS7P3O8f8b4FElgvyvwYCMuMUZVaReBUSKArw26Pb3sMFutairGSJY94kq3piHlhWS7kvEK7p/GdnFzMjhCDeL3TIuEgRpjsqIqm4FxLbz05JyEVpkhaFxrf42wHBVKNhDhLhew7uvaIMlba496TS2KaLxitsbZBG08pCWMkXtM5L2OCUnHG07kerRpyDZRS5dQLxBwpOWMUm0UqYjbK3bwunK8X+mIExlZXmvZBNg/EflZrhqIZp5mcErt2QGlFzEAOUItEdbYdTbcnIYp6Yx3ffPdrXp6f+P6Pv6drGsp+x+V6JS/pbeSF0lgrojCtFQS2EC4RZ1aqpLdt956o8VuGfpC5o1YixMwZ37QcDgfWdWaaRvph2ERvkVIMSpc3YFA/HHC+QVmNsharK13XY5Tl0+UzqSTazvN4uuP9/R05JT6fn1iWGe9aikqUkrmOF6iR03HH/d17ht0jJRfGRUiVZjs0uEaSCs1eS5RtjgzDAWc9q7GMaWIcZXZrWsfx+EhKiXG+kaYrKUyUJOlyWkuRHdKC7xqMa1gmYbFDIcRF1qfNSnk4HGibHblkllXS/bqmxduWphNOf86SGHl/uKN1jnWeWRe5v1PKnJ+faJ0Adlrf0/Y7CokuCRL2Mt54OV9Z48pu18rPogtLHLGNwbYes1p0EWyy1cJEySlTKKxpxmuHKpBDYFputM2O3W7HdesSHvcHsXRTGJpW5sNo1uIZOsdxv6PxHcfjOw77E9fxwunywuPDB/bdntv4iXW8cr5eGHYnumHgq/ffsmt7ggbtpbDq2m7TpwTpNFrPy/iM95Zh2NF0g4yiUNhWtAyvB/SQAtfwQsgFpSXMLMaFXntiiGID3CqA1+1fKelUpJy+AGDpTQAoEbuvAtk3d9nWLdDa8PjwDu9lTa5F4FY5R1JacaWgnfvFvnV3ONBaz+BbLsrQth3WOclusI5PT5/5+NNH7u7v3wpprTVd4ykaxlvgtO95uY387W//loeHe775+jsOp3sZPy0rulr2fUvrW8EOx7ihtCspieun882GbY4SVa4crWuoWuHblpIlB2aJAeu0rI/vHu/E+vJ5opQokahGU2KWtKySyLFwuUyMtxFrgcYTlMJawzjOTMvMy23i+XxmXlY+qQQ5CnAESeVTVTLBSxIwg8GQyi9HAIe2x1YFOYmvMf88a/nypC8Nn/JzhfdaAbzNceSPcUsVo1aa1uN6z+F4pGtbrrdnQpqAQC0JVQ3UIpx269jvB2LO/INf/32GrmddZ14uL7yMM88vIykEdl3HV+/v2O8GgXuUymWZyUlhPv1I6z1Gez49P2PdSlWaw/G0ZW17tLEUFLlu0IZ5ohRJqXLWb3OsAljJOQ8jYR2J60jKAu1pukHakmHmdPoWhSKkhLc9Sa04o/FW0KfD4cgHo6hZMS1XPn78PSGtHPcPhLJANW/+/r1StNqSQuBWn0lpxVK539/ReUMsM6VknGs4Du/wTtpSsURKVXRe4ilz3mydWjPHBXLAGSk6SozoN0oX1CyhwMoYrBKLmlJGLEVZijtFxRrIWWaexnlQipIWlvnCPI/03QFjHFVrUAZjGub1zPn8Cau0tBWbAyiZ5zd+t8XeZnIIgtitFmclXta7BaUU47SwrAvUREwr+91xS0SDqmFaZKOMcaXkKLQ25zEG+uGerj/w9PFPXD59ZFwnVAZ9iNzdv6PrDyzTDaXAN46qJfSj0S1FiXbh7t3X/KN/y9Dtjvzt3/w1/bBglOLH9bOMUVonLW8Ek4sBoxXGGYyT57XqgjPi/XfO0jSefmixVlFyklOBs+TNJnZ398DzyzPz7UrftRtXQLqBsqhDTolhv+f08A6dVk7DII6BvBVMQOs9+67jYX/E5Mo4XRncnsPhDuO2NMCUhYBnDcaKG8IZg3IeZSqp8aQYWZeZZRS4lW8HiXw1env0Nx6wcsQcCLfvYXFY6znsPaoWljARlokSI3OY8E3P8fCI7zZGQk4Y2+DbvYiVS9piWotgehuPb6Tj5Buz5U44SWYsRWBpSgu+2sLxsGduHH2WAmW6njFkltmQU4/zPb4VMmrbXLD+Rk4rtTbMC9zf3/HN+2859numUFHOkKJ0z6yy6FJ4uZzR1mG1Y00LYxzpXcOukddnDDOhSO6BcZbTu0dKihzmPbVC02xRvCpxCB1KaYZ2x353x/H0gULmTx9/J2vD/oFdp8BaxrwyF4mFvtu/Y9ceiHnhtk6ouNB3d5I7oDbQERrtJJRGWSNQMtduICvJZFnWhZKrxDvrV6hRoLEtloZElmIgf4kB/lkrZrTBe0uaZS2ttQoAq2kwW2jSxPo2NN4azG/AoNZaGt+whFnQu0mqjBgDbbuntb90AXRdSwgTP3y68Ve/+z3LkjjuT6xLZNd1rCGTS2K/yphXU1jnlc+fPjFOFw67HQ/HO4rS/Pj5mW645+sPvxIHQV6JcQY8znu6dkChWeqNWqJAlqyRA4w2pJrQylBiIeaRfTtgvUdZSyTLqCWuTOsq0LWm6+gPHV3s6NnRukZa7VrxfDmTcub5fOY2iupwmSWl7eXlSkHm+9Myc11WbuNC4x01ZS7jyFqyBHlUUVaHdd1iN60kialfdgDOL2dulxvXy+1NtKHUzzGNr8Xelxec1yKgvv0NKCkYPl/OnA57Wu9prOF0PPFud4euimlZmddEax37fYtRDuMkJ/w6zTy/PPHx8wu97dDa8Lsfvufz8wvjKEmJTdvQtA27fieY4JRYw8Lvvv+e0+GB52nm4d07fv3rf0D+7V8Twkrf7zkc79/UvJIYpjBGwjum8co4nenaFqs98yiK7aYdZIa8XJimq8xLQ6LvZ7pOgiLO85WmP7LrDsSNjW+iIcYAehLxX7+ja/dQDT98+j0v48S8TGjbsoSAqnDY7SSXGqHDpRRYlwnrLMNwQqm6+c7tFhiiyCUSExuTfkUrAdnkHFmCeOtb3zF0R+bxzFtqHeI/9q4ha8Nc6xYP2yDAXU0uUfjkFYmrXm+sSa6BdoaajDDTb2eu1xdiWVmqYdRnTCPcc+cbjLGEsHKbLljbsdtn+uGA1hajHVAJYWG5zbzcPtM0Hb49oSrELBwMax3L+UVOjqYSQsY7y7xMqFWohs46pvHKx0/f0/cDKSc+8CuG4QPedizLxA/ff0+IEWstMQRyhYfHbygaQgjSolWagcpuOKG32N5SYDje8Rf/6N+kas/nH39PzpnPzxdqlYCuur2GqIoymqHvyTkK6c8YvFI01tG1HcY52rbldDqhjGYNKylEVK2s60KMiX5jEayL5JunmN6850sQ3K+mEMPC1x9+wzpfqGERVKzWWDRFwWUeictCWCZW7dBZtAJts2leaiWquMFnApRKUpkpSJrbMt/QFA67A84UUlllI8gNGCkMFjNjlcX7nruDzOvXuKC9JcWZZX7BaMNuuIP+RIoL8fP3aC1jEwETaVKUjUq1vXSitLAycpYCwBiJbXXOMM3y88aU0NpsA2hJFtRWOkGUyul0hzENMZTt2coYXSSN0Q80TUfbeA67HV+/L4zvP3C7XPn8fMG1DQ+ne4yxNE2Pska6rEaEhet4Y1omhv2JYbfDRostjsH37NsDru1IKksQmzY0jYNaWaaJvBPrduObbSyVuCxPnG8jGRHl2XWFIjz5y3RGf/4DS75KLr1xDHePlKS5zSNN04E2VIwQ6ox0JWrN5FQloEkZnG42MW0hlyBZJtZTMpQK83ojpgXvWlBFusMascDOgafnz/z48SOHn6f+b5u9McJHqNO0NQcUbeNx1qKUZCJovWVN161gA3lmtndzKdL1DFFUj7kwxxXf9tzGX4oAjbXcbhf+8P2P/NXf/mvGUDntjvzq/Ttu88qP5wutt9yVSgorcwz89PSRD4c92kDT9xQyfdvyl7/6C77+6iueXn7kT9//fnPO3eFsIyJfJ111Y5x0ireusNb2VZ0JSoaLl8sLzVawKtPQtQNDu4OcOV9nztcz9vHdtwyHO95/t6C1xWKYp5lPn7+nGtg7z3mc+PRyZponnDHkVJnHmWWZyFVu4iUnUJrT8cRffPWBSuW6zIyLKDUHrdntdvjGM3ixwLxcf5mq9Le/+4MkRVnHGgM5hy/a/K+z/Z83eWusCKE2LUIpr7ANgQItS+DpfKNtBU7kuw6NYY7iD/7q3dc0WpFKkBHHOpPLSsqJTy9nztONT5cXxpy43kamecVbw7fvH2id43TY83KZ+Pxy2fK/PWvMrDGTpxH1WfPd46/56quvSRR+9e3fZ9iEIjEGtjH7hkXe0ttLIS4ThZXr9UIthd3uyLDbscwj5+cXbvNKjIFxGjkM+02QBfM40vue68szwU7SHciR8/OFy/mZoet5/+5ruu7A4/0jv/7VX6Jy5vH4jqeXJ9bxgsrlLXtdcL0BqDjnxRJUtgdaKUpRzPOVcgsY49gPJ4wXHniugfPlidt8Ybd/QO0NbSeuD/Gir2JzSRnTaunwbPMqjcX6DqWNtMxVoZTMOJ6ZLxNrmumaQUYnNcriHxbWHMg14zXM64RKkaYV6IvzjtPxkdW11ALeWnQtqCKBGWuaCeuMqsJPv94udO0JauY2vlBTpesHCUnJmdZ6EezlwqfnZ6Zpomks9/cf8L7h+x/+yA8//Ij3HXf3gsCV1nlBacOwG3i5vPB0/YEpRlzT03YD58uVy/VCrnA8LfR/T9wSaypUpWjagWF3x+nugR9//45/9p/8U/72t3/Ety3GWtmIjOgVzIZgTZEtCEYEUEPf89XXX3MdbzRty1dff8Oyil4nxZXz8xPrsqDQONvgfbMVdHVDxLZCsnSFxnlKWngZn+D0Hmsd4+1Kvz/S+Ybz8xPGeCmybGC8nSnzSqqJyzLiLs8yegC8kdGb0rDcZi6XAErGOCFMPD9/ggxD29N3gvJuW0PfH1jzSqmJaT2LoDkrQd3WsgVsBeJ0pun29O0ObTzzeuVUIkZbGttBEYFazoF5nhjnVYKHtEFZGckJqCoID8NLwTVNE85ZdrsDUFjWIAI2L86dmjO5VtpuG7U4g28UzrfM00hYV3LWdP2e3e6eWiL7bs9H/YmXNWBd9/8j6096LcvSdU3oGcWs51z1Lqz2IiJOxDnn3rxJCiGkzAYoER3yn9BGdKCJhMQf4CfQRihpkRIthJDI5FZxTkR4YdUuVzXraoxBYywzdz93SS4zt732MturmOMr3vd5kVEEgUKa2K+c4gAp/UFuL6lxwvm428SFVF1JGiVkWUGYZEjt/HRHa8DS1KW/bmq/cy/SDGEtTVNiJ0ESpBhj6NsKqQJW+ZoXm1dI48FEmY7J8jU6CGm7luq094LauWex2KCDGx6fHi7++staK0iYJq+3WaiY2Y0eHyzB2hljHWGYEcmQSPni38wzgZRMOAIBBsMwtj4saJ4uFvFf5H8Cb6eeJ48L9zt/efm5/fnhNQB8bSq9aPBy8juYhgESBcZeLH0pfd9jhGE2A8dj95tzK1usUUFIki4pih3/9PMHLN6lcjyePZVQiQuLxttIZ2Y+PXv7pWo6okvc87LIGNqSnz/9xPF0JIty0niBNRPd3BCaxFtgA2/rdFYwzwZlZ6LAC/ysEAihGPuBx6cHgkgTBDE3V2/8e9k6pIOubdFpnlIUKzaXPaW0gqoqCQIfVekQKB1hgafDHi0D6rLjcChpup5pngjCCCeUx+q2DU3b8uL6hsVySW8n5nEmcBonHNM4MDnHhEfa/vp2qmqCKGC32iCVoqyrf+m4+HXv739/eeHcL4UgX+wf/03wv+f/I/7PnOoaocA83BOlCUmREIch63yJnUaGaSaJErqxZzAzWivyLCdIMv7NP/5nmNnyw/v3iNkSKUmexDRNzae7e4+WtbNnil/feFdBmHCu9ggE5fmM0vqigN/6N/Xgfa5fdkFKKYzlolxWDF2HxO8RnfVY4tFMtOPEaC9gEGdp6hpnHGm2ZHSOp/0TQRBSdzWVObLTL4gTv6ucx55yqJFiZrd5RZ5l/On7v2dsO9I4J88XHJ7uSIKIJFvihKTuasZ5ZFGsvM/dTF9jnYX6kvCWIWXqkZ35kiCILvfpsWYiVBFSSKZpRCBI0vTS5fWXPZYf8Rvn872VDPxuKtAYOzOPA054Klg3tIzGQ2BGOfuOOM7QuWa53tIPN/Rj5w8tGTHb6fL8aqRQJPGCOCwY+sZPEsaOKExRSvO8/0zTlFxvX7FYrmn7nrI8ME89VXnGjAbnBEVeXAw6zqeACcf7T5/48PEj11c7rAvYbtYsl95Pr1WIGSdOh/vLSNFyrFuE8/Q6ZwX90PO0f2azEtRNy+PzniiKSLICKwROKMQl/WuxWACC+jz530ufAJhculSE70i09la/QCmM8ULJOI1YLZbc3N5wfXXNzx/eg1AsiiVSK6qqQklFW1fUTU2W5vBFNBiGPtTn8u/wpDiHNRPj0NK2Z47nJ/IkJwkjxEV7ECUp2VgQBykfnu55HjoiqdBhzIub16ziDOMsURwTRwlmnKmriqo+IyVs1zukCHBiItYxz9WB++cHIhWwWq65vml5gaAo1ggtMfOAFAHCSSrT0TYlRjgIElDGT97SHKUlchI+UU2HHvozDrRNydDVnKuabppIYi/0TPICXSxRKsC4CYf3hcdxfLneeFHWNPqAL6klXdfS1iWBCmjrmnSaWRTriwVzgZYhWmhKd6DrK4LIa1r6oaefvSvr9uaW1fKa3WaNcDNt3zIMvS9qpKTvOg6HIw+PD1gneXX9wgOCppFR9gxTC4EkC3PiKAIcXddcGg8/PQuDAISgbGqq6sxgembrEE6SZTnFYkkUpeQOnJWAF9/lyQKhFG3dUOQ5dtJMQ8PYxyA89yAKAuzsrZVZtrzYdDXT3FJ1BwT2Unj13qsvBEpqMBY7G8w8efbC0PlIZBmwyXLSJCRW4S/uL/El4MeTEGdjLiRAv+sfx5Fp8gRKY8xvVspfODNfqoHJztw/PdF0FavV2hNQtcIME8/PDyj1WxHg7uoVdX1ms3K8unnNN2+/4XQ6cTge2HMi6AVpFFCVJQ+HA69vbhEqpGpbTnXNIsswSlK1LVmRoawkS3IgREtFHEcIabHjRNfORGGK1n66a2ZH29VIIblJs68TtDgMKYo1cZgwGx+s9fh8T9P2xIFH1UsL+unpM1laMDnrO5Rpuuw5YZEV6DBis77i5vaWp+OecbR8/PmOpulp+xbrZkB5TKU1VE3Df/zpb9wfntntdlxtNuxWK+Io5VyXvL//zE91zTZf+lnPr25SBzT9wMsgYlEITlX1S2X2LwwAXyo9z3S+7JEvKwPnHM5a/lvzf+CFvkHOM856Qcj+fEA0jtvNjshJZjsxG0uaRlzdvEIEIefDkf6y3y7yhR/9DgNFmLDfP/Hh6YGnw5FTVTOPhjDSmMmnht3cXl/WBhFRXGC1Ii0SoiTHWMcwdDjmSyTkjDM+k32aBqZxZOwH6qqk7zuGviMvlsyzZTAjMkx4+eYa5pH9/pEoSQjCGCUDAuWz3MfB76uddbh5Ig1TQqExi4pxaFAXPrydZjQgpKJtS5yAbLEkUDEqTOn6jmYYvR1VBaA0whpUEBJEPhzGzDNq9hOMNMkIdcI09TTtgb6rQMBmdUsQ+aJACq9MTuOcOU79HtZYZuuDKYRSKK1wwtL1FePY0dRnZutDgeq24u7xE4fjkTxd8/plwDBBnITEQYgSAi01odKkUcxoQh+Hac3X/awU6qtX13PiZ8Zx4G8//AfatkZaxXZ3QxbllKWv3oti4ycVyueDaym9z9dapNZEUcxsBYdzhXj/I33raX3XV1ekSYqwlqErGYeBJF6QFkvsYNmslsjtmm5oOJVHjFWoIGIWeMb8q9cEYYx1gjwvLgwFQVuXdE3F4+MDj0+Pfm0itRcQ2pkw1ISBt5ElFx0OUvDq9Wuur66JAs04+Nz71WpLnGQ0fYu1jlCHIODpqSHPFr7QwRFGkb+oKoWOIubej6/myccoj8PM3eNHYiW52uzIFhtwkiLP2W6uMcJyaPaczjM6ybne3vL6xTs2+coHSmHRQnPqTtzv91T1mWEYOJ57Xr54ibMQ65w/vNsxTD1914CAvu+5e3hP05Ws1jeXQ04hRECULOmnjjCMybMV89TSdjWzsURpgRNeWBvIEN9nWPq+YRwnpAo8XEu4r6PheZqQwlt0u7bCTObi73eYecaqACkVgfRMiy/PzTxNBBfq4al89joH6Xn6Unl9gnMOrLtEuQaEacJNml9S3PyIGBRFGBH2Fafjidk63GQ4no88HfYEUcrhfKLtG8qmZFV4SqOMQrSOCKTXRQgnfGEoBViFsDBP/rOhdIS0liiQBFISqwAxjljZofCQmX4aGKcRZwamcSbSoGXChGN/fGIcDItiiRYg7Iw1vtDyNlx/KHez4bncY6Y9SbDwcfR24lSfCVSIQvnMjnlkngeMHb2+Q4AVjtP5xOFU8v2vRHxfgF3OOabJI4m/rI+nefbuGtylsXJfR/+XVADAiwets4yDD2lq+4GobsiSAK00wzCS/QsSoLHWC2ClYJ5nVkoSBoK+L6lixWSg6xqafiQMQq63W471kSSKUcAwTMhUUrY1t+oNm+0tSmrWX887g1YRzWCpyhNKnfyqRymCOOBcnanKGh3EJGnM1PtsCQesVlcEgWS/f+CvH37i890Dr25fcL1dk8ZL9GF/jxkHnNT0XY0zIyhNqGPMPBNnGcVizXp7zWZzYJz8qPtc7lHa8XA4+jd0GGCF8W924S1tZV3TDS15k/L3f/gDf//ye7bbHX99/zNj1yH/hQ1wvd6wPx2Z3czr6x1V1+PO/Irm8Oubf8Fn7GXv6XfW4HMKZmsYp4l57D2UKM4oogSmmckZMIam7xjnkSL1/P8kLkjing/tZ57LI9+//AYlBee+ZJp7BtNz6np+ethzPB0Jo4DFoiBEUdYdM8/MwnEoS1aLFWmSk+cF680WpKRs9vRtSZ4uvg6fZjPRV+Vv1hdNWfF8fCLQAcV6A4FiVaxROkYKSd2f0UlBttgSa8E0tkyzT32a+sbv9saOg52RziOLdRCBdOTJklAFzGPHNHVoHSNRjPNAXqyJwpiua+hNg9SaMAiQzqEQhHHmdRsOQEIwMXQzw9TR1jNmmnFuxtrxoiiPQQiGoeF8OoIQpGmOiaznXKcFXd9h7EygYpz2CnXnDE1dXTCnAqVzj0oOM+4O90xCkGYrEp1SNiVl1V8AN4CzxGFOnxReQHn5oDshkEoThykIQZKuCICmbfh4/54Pnz6ANby8PrIolgipmHEk2ZIiiGj72k9lxonH/QPv739gkeS8vf2Wf/jd33O92nKuDkjh42r71menZ4m3tWopIQgIlOIff/+HryleZXVCzYpFHLJYJiyLHflqyaJY8urmG2YdEEQpebEEYBh6xmmibWru7j9x2B+xxiEVBIFHgvp8iJAo9Ml/4zhzffOaf/iHf00Uh3RtzeFwYrt7we5qiwq8GGs0M804sl6tMXi6m3A+ZVXrABBMdmY240Xro3x9qL1C+Wa1wQw9wsxkQcwizvz3Ss22WPKn7/8OGSiuljekQcY0dF5foj0C28wjQhiSJGSaY5TUDHPP0/MD+pJVsIw2bLc3DONAN/hu+PnwwLHeE6URSfKSeWopy3vvGBlGEIox7ME4pn6gq0tM9UScLdkur5FC45yfMA3GESZrtBAkwuKsxZmRcR7QQ++75nm6FI8Nznjeh3Gzz+RIMn91MhPSGfquwsiQl7tXGDfx4e4/EOuMq/UNgY6ZEVgE82joXY3W4dfY1jTNEUBd73FI0myBnUcfhTwOdF2LsN79cXt9S5Yk3g2RL0mS1Gey6IgsK9CBZsaBUGRRhGHA2IHn8kTZN+TpEjlPPO6fqPuBVCufiyEgiSNWqyuMc4xfumdrKcsjCsEwTz7kyxqwUNZnHI5Ya85tzTiOLAsfGV8PPXGWEQrN1BqasSHZLDBGcv98T9c17FYvyeOcYfJI+WGamIaBQBWEkWYcG55Oj/xX0/+Wzn0RTX+hFlr/2TLmaxy2EBeHDJ6S+dUq+PVo+eV8kcLzHbA+h0JcYsYnq5AyQ4cDebb4zUl0ONyR5yuyeMFAD8bilMAI6ZMprSWIUkxn2KxWxElMbhLMMCC0D8zTQlC1DQa/GipWa+rqhIRLfgcMU+8P+6ZmsfD0TCkFZhp53h9Jsj3fv/uGJEy4P9yxPxzZbm/QUYaQilW2okk7T1s0gixJ0W3XcbV+AULQG4t0sMgLXz13A0Pf+dARoVDMBMISa3j9csduteC5rBiniSgIWC4L0ihk7nvs7C00Tnj2t5aSJA750+++583Llzw+PbE/HIDT1ycyiCPiJOHctbwr3vDu7Vvkv/V0JYS4EIC/FALuKwjmyzjWq76/qDoF/6vof8d/N/wfwQm0ysj0ijxNOZuKU1OyFJJpnJASdtaihcIaxzDNFEnGplhgzczYdYRBiFCSsqk90SmOeXN7Q6wVh3OFdAGLfAlW8Py89wEdEhBeQWxwNE3tD8kExNeKf750Fj6cpBlaDk1FlGS8ePGK7c1LsmJJmmQ+WWvomMeJPM0Q4DshY3y4hzQM08w8jszDyHkYETJGBxHFcnUR3Sm6vmWaO6Z5JA59KXIsnzieFVfbW7h0LVhP1JqGkQ6v9rZ2JI5jlAiZ5om6PlGVJ4IguDDVI1CKIEgIVMQ8jfRjh7Hef9v1DcPYMs4rVusdebHwFbBSwOwRpWZm7HuMGYniBQQRs4M4XvDt6z9RZCuycMliuSYYOpTL0Eowjj3D2GGNYega+r5BAlnmUcFYw3SxcgVaIuzFvxv7QKF59Du6thuYkXRdg5aa9WZHFEWMQ88gGggkZTNwPJbEQcar21dcb9akiWLoR8qqpu29liRMeuJ0vMQ1G6ZhYBoG4jhmuV6QpCF9n+G+WLG0I13siJMVyIAgjEjSDHGJ7FZSgjVUZcnz0zNt2zHPHkajVYi1ftKhpEQFATIIuL1+xd//47/h6vYFxo6kRU6+2ni2vZuY7UyS5WTFglNZslyuUBdPuBJeVe+1OSFWjv7foQRS+vkATpIlKUpI3OTdP0mcep3K2Hr7kenYLHasF1t/kR562s47JvQ0UU4j5/qAsvBivWFbrCibhlPlPf1FnqOUD+sxc+ohLXFM37eeWaF8DgBuJtBeO9J3JePcc6ie+MuPfyYLc243N4SxpuurX3QmwjGNPXZ2rBdXRGmBUgE6CDFmoi73tH1NGAXMZuDh+d7TFaMMO3cM4+CvO1Jesua9XsLMhmk0JEufcfHw+MQPP/wzL67fcLN7TRBGjKZHKI3U0QWLbXBy9sFEY0dd7qmrE0Hkx7td2/C0f2QeBqbJFx23t694+eodQgjSrGC13njL7DyRZgviOGWaB4TSREGAsx3H+si//+c/MzrBq9u3VOWe+88feDgeWC+2HIaGyQysVhvSLMcYDyKTWhOHMeem5dSckQiE9qJQLSTT0LJ/fqbvG7RQ/PTxPT9+/siL6xteX9164fR6wy7fIJwg1D51r+tbunYkDLwl0gmFcp7MOc0jgY6IovirwHvo5ku6HxcAlkddO+dzL4ztfUN1ucM0Tx45rr5ky3wZLv/CmXF4AW2eJsShIk1ylPaQHYfACsvkDOe6+k0B8PnTz6xWDbu11x20Q0fT9UihWK5WNF1HIDWzM8RZRJQkWDvx+PjI3I+kScZquyaJEuq2pR8GhNPEccYwdkzWEgJFknNUBxw+UngYJ6b5jDGOKIz9lAOHCjRhkBDohnN59IRHM5NEEa9evvB2yL5nEgI9D4aH/QNIwdh1vmPSEfnyGiEDHh8+cz7tvbd0mtA6pO0rtIabmw3v3r1jsuZCXwsvIy+fJzDPs/eKC0EYhUxuoghglSfE+pplkQL/4esTeXW1QwSK/emZc9uQ54tfDvzfDAB+KQK+FABCiK8agC+sAGsddd96u5qUnNsalWriJObxsOfxcEBqxSrJ2C23RBf2ubGGNE6IQk1dnzgejmgdsFmvud6tafqKJE7ZLhe0XUtRZHy/3nG93tENLe3Q8uL2BXES0w9eaT+ZmaHvSSNP0GqqDvulclYB1s6U5z3H0x4dh3z35nt2uxuiNL94/Uf6oWeceow1BDrEGQsW4ii97MkdEuMT5sTsK9dppm17TydLU2ZnaMqGsjqilKIeeua5p6pPKKVxwnfnCEEch4Rh7BMDtaZpzpxOz6RpynbjBV9RuqAfRsw8MHQ9LlSESQBIptkLdrxC2q88+r5lGFvCqKLtK+I0RQoPUgGPVDXWMJgBIbzqWgZeuDm7iDQqkDxyOJ1QQUoeJQREhIHvfCV+p26GAWsGxmlC2skHS8kApgmt9Nfo0ck4FtmSxff/4AWtziFUwDBOCGlB+GCcJIoZ6prz/pkiivif/sN/waE6IqSg7WusGzk2NW3fsMgyXtzskEFAP1ms8Pz8cfRJaFGekWc5RZZjzETX1MzzyGxnju0J5UaCOKOfWvJ84ZXVgHOGeR4YupayPKOUL7ru7h+IgVAr5nlmmnzcrg4jbl+/44//+G/YXb2gaRsviApjrHE4q70qf7CEYc56s+Ph4ZGua4njhHGcPLBHKqRU5Islru2Yhh4lJUWWIs3EOE6EFx/y0HceijNNtP2JduywzAjtyFxOVze0Q0ldV0yjFwELB33XYkxHoEO6sSeMM9bBmiyNaNoWIXzug1AKpyTGWZqmoZ8G4jgjkPbyPj6SRClSOmY7EkWRV0ZPgjROCGIfTqaDwL9nLCgsgx0xYqDuOnIUWZ5TNXuU8GvFNM5J4pxhaC+MDIUOYjAWpQKCKLyAa4xfOU0jk/EMi1CFDH3DNA4oKem7lmEcSJICY727I0ky6qam6zoS6QvT0+nM+48/0FQlWkd88/I7Ziyn+sjc9KyXG4wQdMPAZukFikqAnUYmOyNVQJLk3illfdrm2Ld01ZEPnz/wfD6x2dyShCE/f/6Zv354zzcvv+H17St+/vwj3dizyNeEKqGsa4ZhQEpJ7UokgjzygVxxkuDMTFOd6NsOO1se7x5omo6n45HyUHE4lpzLhj99+x1SVdw3IzoAJzyJNtIpL3YvCeOIJE4YOn+ta8qeYRwpFhl1faI8n2mbhg+fPvDKfJn+Sr+iMdOFgSQuHb/DOQ/v0vKSmPlVM/aFGvDFkfSL2MwPPhxRGHqWhuQyUXDor4/9y+10LjkcSw77M1GakWUZy+WKIs44nSuOdcl2sWR2jqYfyRYL6r5hdIafP99x6jpe3Vzz+uYFoVacT8+eoxHFhCqi7TpGbUEoVss1SocYa9E69J8NlJ8A5QXCOaxxFMkSfR1Q9x3GWWZnmaxhtVp6bZ+xHg3eNB1//utfkKHk73//9wgn+fn9R+qh57tv/wBC0NUNSZogEbjZUmQ5kfZugCDW5HFBFEaApTydGK1hkeV+t+f8uMwaw+H4jBkGHJJ59paUX9/+x//qHzh2LU+HR+w483xuKfgF7fPL7cuL+6sq7stXhEAI93Us9OLqCmcFkdY0c0d/GElSjcNijFeSyqIACW3fYM1MnqQUaYxWfuxS5BmTcbR9h9SCJItJopBTUzLNE+tsiZOWznW8fPOS7e6KPMsAgVACM890XQ1Y8jTHTCNdVzGNPXGcoQPF+fzMDx9/QCrJcrVERwFBECCcB/BIqcHMDE2LFRJnJWb246/JOHQQMJqebhgIZIAuIrQK0IFPmhvHgSgIGeyADgJ22xdopZnMyDT27JY7lPKHqHEGnCCKUu/RvbD345uY7eYG5/y+EGtJNJg4Z55Cv4dGYOyIdpIgSHAuxjFizMQ4DkgZUGRXCO1dG13TEgQRYeguv8b49U7A6Xxgfz6SFzlI6R9j7pmsIwo0Q9+QRwndNHIsn3EXu14gYLgw66dx5O58urgW/Ic6jhKkCnySno4Ig4g4znBCfhUOtl2DsArhoGsrrHVU7ZGfPv6IGUbevfyW69XGX8DqinaoyaKY0U2MzFjpCENJGoXoIPe2ub4jjEKKLENJT/xzzhFFCUkUMzsL8oxBgIX0svdXSjHPE+PY0bcVx8MzEsHV7prPHz5/LYgdDq01ReG7wN///T/y9rvfsVzv0EEIrqapKvLEx9q2fcP+8EASFyylf63jOKZrO/Is4/7xkSz2FMNxNoRRQuqgMR6gpJA4B2aaL+FejvPpCaVSpIoomwPd1BNqzWpZMDcNtesZ5oH7+zuqsvaHZxAQRyFZnBJEIaNzmGFgVaxY5AW7rf8JjfXBOB7qNHjIj/TPDdrR1AeavudqeYMWkvVyTRLnHjKVO9I0A+FjqkMVkoYp1gx0k6Vqan76/DPntuMPb/6Rceo418/+veIUzljGyYJ0xElKEi8v7oQOtCSIEpQOMGZkmgacnQkjLxCczUjb1VjrePfmDxTZEic8YEhJ+ZVaJ6XAuYmuHcBB1w8gNe8/31O3FWm2YJWviGUAiWRZ5CA0wzQzzRPSzlg7+1WYDlgUS4JAYeYJJSVTX9PUJafTnqYduLm6JU8XFw+84Jt33/Hu+i1KSYrFmqvtLct8wePhATNNKK0YhgHhHNe7HUpIpnnGTjNj31BVNf0ITTNQVhWTdTR1j+sdT+WBqhvZLNZ8ny7o3UAsAiY3c66eCVXCIvWhZMwz0g709Ynj6cRyewNC8Pj4iWmacTOXePpfID/gUcwA4qIF4EL7U8JnEgRa++RM+SUG+DJB+OIwu6wKZjvjcCgtMbO57PYnhLVo5EUf8MutHw1dNxCEOWGSskwKFnlO5c4o3fLm5Sturq6xQvL4+ICQmt3VjrZveDyd/b5eKFarAoSjq0vK9owSGiVD4stqo65LAikIA08cjaKEcZrp+4kkjIijgHHoL9cVCwgWxcq7XqTk58OJMIwpigWB8u9p/Zf3P1PVLXme4Iwg1BGH8sjD+R4VBBTpguqhRUhJcYnAtBLiYu1FOPNlfK01QkuCzZap9UK0eZ5AhBhjeNw/cjw905QVw2w4NxVREvFf/vqZtDPbPGVdvKPveg7VX79+6UuXL8UXIqBEB4pp9BdRqeSv2M/e5vH/zP9P/Ktv/0ASFijheH5+pJl64ijg6XwkURFX2YpltmQwM+fDM+Mwc727ZlVkiHmk61uut1cUqyvuHx95Ph7Is4wiK3h8eOBmteXNy5c+KIeZ7WbJ69tbpA6wztOkhPBqaS19FjvOIoQnpa2WNzgnGOd7Zmt5dX3NKl8gMfRtiZSXi7sTWPzYOtSSOI5px5H7hwPT2LNdrLA+bYQwiP3+PoqJIo+GDJRgnDqcs6zyNXGYMgwDz+cHhnkgzdZk8QLDzDS1OCu+Pp8CcHZG4jOqp2nGmAHLTDd6q6c1hjBwTP3I8eFAFEVsNjdI6QEW1k4gQUhNnm9I0oS2rbE4gkBfACAVvSsRKkApRR5nDG5mGv1GesTQjQ1V2ZAHMYIemxuSNKNq9phxJEgycAY7TzRdj7Gz93ErTXU+c/94z2qxIolTBmNYLtfsdinyAmfqmpbTaU8Ue9+sRNG2FWV58rZXa/n8eI91jrev37JYLJgwKKXJgpRABUwY2mmin0fWxYo49L5x6fDjamuxwlwmIg1923gq5IVJoHRKEK/IFleEYYQ1lqH3NsXz6UhdVwRBwDx7fGoYhZeLlyRJE/7uD3/gu+/+wO7VG4IkQyrtxaEX0MpsDCJQnJuK+4cHXt0EkIOWPkSmbzqSNEUpxflckmQp/TBgrEEpdeGpC+ahpz6VtF3tky3NjLEjSkVYOzEMPXV3ZpEtaMuG83hE6Ag7O46nM03TI1HkWYYxlrrtWGYZizQnjmKSJCGLE6zwHWw/9IzjgJ1HIq2I84x+GLEuxqgZZyAKInSgCIMMOUqmcUZHMTqVxGFGFKS+KHcTdhxp6zPjPNF1PYnOybZrcJZpsuTZ0k+kpgljR+rqmX4cmczMy5cBYbwl0Tnazmgdfi0A6rbC2pkiK0h0gTUT09ijVMDt9TtCHdL2J6axQykvGBz6FnX5vA1dyzh2pHHG2+0t7t3AqTkRXFwdgQo5VHvcec9ysWC52qB16gtBv+ImSxZoHVLXJ3CGUGmq8pm2ayjrBikj1rm/zzQZrtY7kjhEOINzluViQRrlnMsDP3z+gbfblzA7hqYiiWMOz48MsyHJC3ALqrLkh59/5vP9s9d5rFacqoqfPn3CWUVZ9/z89MS3L9/y3dtvCULJOM00fUtZn7H2TL8y/H6zBixtWzIMHUEQsMxz9sc9Q+ehTZvVyls8L4f3L93+JVSMX65dUnhLbKA9YdS4izxOcLmff9q+RgYIr7Ox1lA3vkDFeBxbpAPatuF4LH9TANxcX1PVLYEOOJ/PLLMF/dDx4ekOhOD77YYgKZBBQNa1zMPAq+sb8ji+2PgsaZZihKWvG8a+58dPn/n0+Mh2veGP332PlfDjhw/ksSfzJlmGsVA2LY9Pz+y2W8JIX6Ygjn7o0EFMEWdIpNe4XYiLaZqihGAaR/QPDw/83btveXt9Qxz6gyPLcsrGcD7uKZIFUZBQnUrm0VeYszWs1luKogBrfkGdjhYlBSLwleIw9lhnGKaBHz5/5PPdHX/69nd8//obznXFw+HxN0/kP//8N7SUrDdbP9Kx06/sGb8Ndvgi1rDGX1CVVID4WvkA/M/6/w1j9t+yXHi2s5l6kilks7tCBREf7t6jFeTzisfnJ4ZxZL1YcXO1I48zqnPJ3dMDQRry6vXviKKCQ/lEqCVRnBBIeLW95vXLF8xmpmpqFH6v7wT000Df97R9BcaxzFccjo8+xcsMLBYbBJLJTpRdTRon7JZbnHQoC13bUDUN0zxQdbUPdig2RHHCOM9EkR8lP7U1P3/+yDR2JHHEbrUjDXLmeWA2XrEbaYXQ0nviZUA5num6moenTz4CeXHFi5vXRFHEZGZvvcJ/eCJ9CUQZOqqppG4rBIZFtiJJMoIgYp4uavt5YDITTgiGaaBq9xTZkkW+IhCC8/lIPw/cqBfEScFgZ9qxZu4GTucnfnr/AxqBDmOur15wdf2COEnp+wZrLItwQZvV1NWRqjqhpeLV7Vt2yyvq2otmuq5nnCef0Kc0aZwSxhlRmPO+H2l7g3MjYRhhJsv5dCLOJ6IwJpSKcRqohzPv0u8QTtA1FXYaiJTm+3ffsCqW/v0mBeMw0A8dwzASqhQnpF/n1BWn04HP4R2b7YZXN+9Ik4ymPjC0Di000zzR9S1t0zIMIypNuX7xPbvbb0iLlbcJOsEwdoxjS99WlOcTyACUpWlL2q687L0DrHMs0oJXL9/y5t23iDihHyekkBh8dGygQ+bZECd+NO6MQInwa8JboBN6NWEFLFcrjscjtu/RaUbf9yhnMdOAUyFSBMxYyr5GtRbpHG1fkxaW7eqGIo6p2hPOOHomlA6QUnJqjtw9PtP2PdvlhnUQYIwnUJ5OezbLDW9ev/N8CzszzwZrvJPHmp6uq3FO8Hx+JgpTlosNOkhYxjviMKDvGuqmpR47snzJ9erWI76FREiNMw4mc1lRDTRNzWxgma/px5794f6SihiCNUQqxBmflNe1Lf3QU2bPrJZb4nRBN3XY2etW5guu2swTi2xBGCQYFP3gk/QUkqY5cK4PBKuQSEcMbcvD03visGCRb76OrYd5QmrJu9ev+Ea8QQeJD2+SILWgGWrOXU2aL4mUIslyxqljvByOQ9uCMASBxllDVR8Zuo65n0miDHkBAA1mIo8L5qGlrs+0Qw86JMkWCKV5/eItWRDxcP+ZcexxWJQMiNOENIipTjX/73/3/+Xnn+5o55mXr1/zn9285PPDf89sHEmgCeKIdSAIlWNoK0QvyZKYq8WSdbbg8XRGCAgEjF1N17U4odlt1tTlnoeHj0ghUcGMsRP7U8WN+wKH+5IJ46fCszGeJ3KZAEgpmKbJf8b0Lzqyr5P8y/ZYCpjNzN2nBwItaIeB7WZHkRSoQCOcI9QR0b9AAb++veXu+ZmxnTAIyq6irlvqpvXWYOswFrK4oMgXtJwQUrDebvj+u28xkyPNU8qqohu9K0kIxTxDXXUYI2jbltEYPj4/46xlt94ghcIMM0kY4xw0bUschiRxRBwlWOfouoog1Ggl/ZouTXHO+byY8wH9r//+PydW/oewwPF8ZJUtKNIMO1tOxyM6CDmcn6mH/mLLGJFa0bQlxhq0jrw3eJx9UIhSfvfctxe0achsBc04edBJ41PysuS3ccB3+z12nDi3HXESU7XdL37/L5OAi2rT4Zim6Su+8esY9OtewAvYxr7lbB5ZrTbc7K4ZzYwRcLPaUu6fKeuGdd4ShT7XPYtjoihChQFRkhDGEef6TNWcEGi0gFe3175bCgNWywU6uFQpYuZwfCTN/Af1dD5y93zH8XTiZvMKjeJcnXDOsFtfo2TEc7Xn/umBz897FkmAsZZpNARIcJJmmmibhqZuiBOvqlZOemIbDdfbNUWW8tPdB54eGwLnuQFRFNF0HcfjgaprWW9WxHGEFgJmR9k2/mLejZ5MdkFutn3HuT152Mo8UV4mPEGgPWJTB0RBiBn7rwZafdm9+8nASB4X6AspMQ5jtAqJo4woTgmVr6K7piZUCWEQUVYncBKhAvrR0Dct43ygG2baviNJc/IsQQCRCgm0j+hUTsPU01cH4iInThYMfQNao1yMUB4u8qUTSNOMOE2pzzVRGJMvlgRK0VQlXd+x2WxI44QX2x3H8sDxsCcMNHa4cPvzJYvllqur1x42Mg6U5yPO+RQ3hyONU6yLPE2yaqjqGn3/ifO54/fvvqHtzkyT8dny1jD0A6fTmXk2vPvdNdur1yzXO5T2wUXj6C1v8zRR1zXGzMRxxMOne+7uPtM0jbcDBZ4xH8UBdVuyPzxx9fIlwllv11QBoQ6ZZsdsPEBktdzySb2nbBrW1xInhM8HCHykcxRL8oWjamqsAaz07H/XYM1Elq5YvClI8oyPP/3A+Xzg4/7BMzR0zGqZY+UVznrrnLgIMK0xTHaiKDKudmtUIBkHb7GTWhInMdbOvH//A0pr4th/ntI0ZhgHv99GcWoqdlFMkqQESUoUhbRNxbms0FKxWuxYLa+JwhhnfFfXVkfK05Gm9vAuh0YFAWmWowNNN/Y4M9O3NYqUMPBRx+0weE2Tc5R1hbu/Z1FcsdURSnq1OUIQBBHr1Y6h9bkUUgwXpodHlwc64Fx50JBdWVQUkRZL5DHh1DU0Fw/3bnuDM2DGHmMnlBLM40w/CLQKeXH9knbsLgY2RaBDoihmGNsLDtoShgEOiZKaaeioq5a+bdEqvrS91utcjKEsK7q6wtiZOElYr6/JkgyFBTGwf3ig71uiJCaMEjarHUIKHp+PvP94z//vz39jGC0qjHhz6xuJU11ydbVhmxV8FwbkWcrNdklZPnNuKm6vbrm5umVVLFksdzjhmMeOuimpu44kXZDEOf/uL3/mx48/kUQJizynazr2xyPXX+Rh7lIAXCZsX0A/vgiQX7M8GiHI8ujLSPmX26XB/CK0PVUVUSB5OB0w1iK3kjzLkcKSZQVFsQJ+/PrtX+Kt17dbL6CeDdZAli6Jo5DT6USQpOQLP2n0dlqH1AHr1e4CkQvQYez1VKMnir558ZLdZstoZtpzx5sXb3DOsj/tOZ3POCANo688kLZtmaeBtq3JkhwnfICVdDPTYIgCjXOWtms4VSc+fP6E/q//q/+a/9t/93/l3/70F15fXVNWJcM0USwLjJ2xdUmoQ2YHURixWK6pqzNN1SAkOCVZFLEHraQRc1VRdy3TOF9Y7ZpIh7y5uqVpW/p55K937wmF8qCRX92iIGIWkqqpacaBpq5/+0pd/O3+RYfJeF+nFwj96n6XatA4y+eHT7TtwHZ7w4vr19xev+BUnjkdTsyj5e5wwEyO6+2O1WLFNE5U5zPn2SeX3VzfMM0Dw9D6ImSeCZRkuyzYLBbIICLUijgRCB3x+eET//zDf8RZ+Pz5E2VVEiUJebSkjEqGeWIcezZLR9/3nNvSJ6S9+AalLIiAfhyphgrl4Hg6EqmAm+0Ni9UarUOk83aspvWgpJvdS1aLNaebN0zzQKg8+ta2Hd04+hASJ6nLM3f7O7bFirqq6bsOGWm2mx3L1Q6hAsq24mm/Zwhr9tbx4fmBREdcb7cUWUEUx1TNmaFrwRrCYbhc+EICqRBRhBHQDxPGeTGac5MPEpKKWGuM0lTVgaEfSbIlp/0zcRxTxAu+e/U7rDEYLALHzEzbtSShX2WcpgP78zNYR5omVF1F09asr2949eL3xOmS8vTIvnlgngaSJMUhcc6DWparFYH08att14E1nM8nznXF5rDh6mrHcrEgizLuDwf6tiGN/I52nB1JviFOY0zf46RgcoYQTSglz/snkjjDCW/rut29IAnO3B0e+O///O/59HTHbrPgerEjzBas8gXOgtWPxGlMvt5ghENIhVDaR9X2DeM4MPUtQ98RhiHT0HN/d0dVnpmmCaV8up9zfg/vd/F7hnlkvb1BuBR14fdL5TkG1jmKfMXty7cIxyXr3ONRpfJcDxwUi4UXEI0TxlgfXSqE5yvgO+jD4UDb9QgdsdlsMePA/cNnpnkJUhJcVMvTNJHECdv1irfGr83OfclK5qzyBfFqw3DBCzdV5RMxlcDYwkdbzx3n8gR49Ok4j5zKE5viijRfMU8zTVUjndf/BEoTCP9em8cK5RTH8xPPD15/ECUJN7fv2GyuAc+CXy9XhNLRNg1VefLTMCLywosxu7rFzQ47GY6HR6QUBHHIPM/EceoPTS1QKD8RmEeU8AJYHUT+55k9HO1cl+goIU5zbm/eUNelJwwGEVGyRglJ3504n545PT7Rdg2LfMn17qXHemc5zlrGcSIIFRKPmgXH2LdMsyQMU8IkYJQ9SZwjL3kfzhnCUCOwNPWZtusJtF+TpHl+4XpoTKiJdMBqsSLPMqw1hGFMGGh+/vieY9WQ5jnv3rzj/adPXF1d85/94Y9U1TPXNzvSoicOQpbZgkBpxmmgamvOTUWar1jOllCAFJYo0PRNxf6457msWOuY1FrS9Ybmh78ytA1mhlAHDNNl9XvZ/zvrftPZ218p/e2lQJjnGWuCy/7/yypZXL7nkg4oBUlWsMxj0qnndDwSBxH5oqAbBorVhsVy/Ztz6/7pGaclcepff4DodKbpWw++G3tOxz1KSR/FHcekcQZSX3gqEyBQQcBmsySUMDtDoDTXVzc87B8Ze8N2tWW1KFhlGXf6ASd8CFw3DeRpRqC9BqDrOgIVEoSKuqo8WMkZL1q1Fq0CFtmC66tb9G6z5h9//3v+wz/9D/x017FMCq43a4QOcMpwvb4CgydzOUccxEzRxN2njySp54hP3cAsA4SeUcKwXS7QQYRSimH00JpzdSCJFHY2uHkiW+To+LdEpbqrWOcFbdfTD53naH/FNP2nN2vtpXIDe7GZfRkDucubohlGyqbj8fBX7p+O/OsZxrmn6mqP5SxDfnq+xwWSLMsYh57TwWDdRBIlBHGIVI6uLxnHHikdhpnBDFxvXxHFXqY4TRPzDOem4z/+8GcfADHN5GFImhfMxnD/9ORDY9qWycLbt++IgpQoCOh0h5KaotgRJRNje+a4f/TdKcLHkFpLnmfkaUGc5gz1xP74DE5Q5AvmuWcYOmQqsM76UBMp6JqGj+9/Jkojuq7GhBHKzj4EqhmJo5zZOLQTJEGEFIof7x9o24ZhGLkqlpRhhQVc03D38JHjfs/19oqbq1sPUwlDFplXBUdRiGRi6DqqvsE4y81OE+uArm04no98vP9Anmx4+zakrU805cxmdUWaJv6CKRwOQzM1FNmKIow5V2eQkKcL+q6lbQf6cSAKAs7lkTR9ZrO6Yb29oe0azqcZi8Q5wzh1WGcQzhAE0sNbpt6L2JzjcD4xDANlfSYvFrx585YXN2/omjP7/c/gHEVWYKYeM2na5sjU19w93fF0/0TbdOybM6tsQRz69/5queJqtSVfrGjGHtRMkmZsVlckWYEKQrJ8zWZzw/F88LFPYexDooxhmga6wavu+8avQKRSHPd7jscnurbBWg/nEVISRTHTNGGMIQpDyuMepUOiOEdfvOU+JUz6rjFMeP3mLeMw+OjWizg30NrrVZQXVRZZzjCM9ENLnEToKMEYQ1WfOB+e2e/3zMYxG8fYT2RRgFTw6eEzUipu1y9IkgQhBP0wEIYB6+WKZmzRoWSzXjO2M4/nZ6ZxYLNYcbW7wpiJc31ACsE4jszWoMOAIFBIFFEc0vQjvZ3AOqZxJApDokBTVnuEUAxBw4fPfyGQgu1yS9OcGdoWKTSztRzLZ7qxRavgssOfGbuW/fHA+8/vGaaJ25t3oAKmvved3npDGAZYM1Ke99izYzIz6+01OEd5PiAFpFGKVBrszDA2lPWJeZoZho5YpwzdQFmeWRQLlAy8iFUJwjDyh5NS5Msd7jJBCEOfF6AD5emaw8A4tBcVfO71DH3l99h9hZQauZCYIMRZQ55naOBUHkkyf8hPY0sQKHbximHsOdQnqrEmTZYkWuFGT2kMtWaaR295dIJhGmnGgSiNeHfzjmWekMWKb7/9jkUecKpHNpsccwkzG63BCUkQxeyyguvrF8SRf87rvuR4emIRL5AW6nbk+XTGqpA3t2/5u+/+gB17zs9nhmkmywuCYP+rfs/DqsDrYL5OBL58zVoEYIylbYevNkB3uT/8EiokkCRZzna7Zr9/oKpLwiig71oCHZEX+W+bTeDhdOb1yxd+/TnHBIFGBhIxOoybyfIcgWAYJlQgCZQmjlPO9YlhHNEyuIiCB/I05mq5ZLnIv077zhWQhkzTSDeP1H1LHEXEccxsDEmakCQpYRRQ1xUWwTDPlG1N23UMw0SaJqxW0cX2HJNGEVmaoee5JQw0u7xAYJicoSj8CuCfP/wzdhpIooyn0zPH/Zm28xeLqi1RAt7evvCq0Sz3Gc3O8OblO5a5v+jEYcDxJHBmRFtD72YUAWkSky+K3zyRbdtRxDGTm4iTmHn8otL8lQ9AiK/cXyHkV6DOLy/2hQx4sZOVdY2QGmPh7umJm6s9yzxlnCZWacY/fvsHjLOs8wV5ltPWNb2SbNdrojS9AIVGhrJCyYDV6hYrHUr4J9mNHeIS33k8ncEqpgHu93vSKORmtSZLc4Iopiwbno970iTh8fmRIIp5efuWqu94On6miFIiobytchoJwoh15mEgj8cj+9OB7XLJ9fUt1y8KVpsdx6OjG0dcXV20ETA0jYfBaMUizxlWS07nE2M1clNsWaQ5jVA+ZKgqmc3A1Ncwj1jheLG7IosLurb1cbxhSJBkJFFG21RU7YSOM1AR56pFad91nKsSqRVpnLIt1lgj6MaWKIy9R9xZ6qrib3/9C3fPD3z/LsHNlnEY6buSQAjSbImOUoyZfQqglCRR7kWmovTpfSpCRZpu7NA68njPeeDh8Seq6siiWBNECegzVVvRdpXnGlzEl+KCOVVaMU3+UL3ZXXnvvMRX0W3LbnnDJk8w5sTnjx9YZ2uYJ7rmyPn8wPl45PH5ibrrSOOEb/I3l6StHiUVQdNCJthur/gmzzG2ox8axnHE6TNT5Xg+HohTj/ZMV7fk+QpnLdYZprH3oKS+o2srn1Hetzw+3NHWLfNsvbUJgTMQxgHzZDgeT2y2VxdBmRcPBkHodQtCYHEoBUjBYrlimmbG0fikP+EPIK39Xj4IvLhNiJp+6OjHlCCMvJBxnkiSDCk0n+8+gBTkeYBAEiiJFp5vvlmvWK68N72uGrqupzczL29vWeQFsYoxemKRRkglSeOMKIyYjCQMI2YzI4S+AG5CmvZI3dTEypM6pZbMc48yM8Zang+P3D3dcXsr6NuJz3efuN7uCHcRszPc7Q8IGyK0Y3y6Y7Kzn9w4XyyuizVK+Iu0UIYoyekHr6SPk5RpmuinCVoPMUIo8nRBnhTM48AweP6EGQfCOCPUiiJdE4cGKSOcCzB29CRJJf0ERkqC1HdwxhqmsUEJCHRCGqe4xYYhSBiGjrppsMa7neZ5wElJVZ7o6xqtHeM0UJYVOgwuVuEJM48MfU0/tn4Ks70iCXOUVgRhSNc1lHXpBXWXJkdqTRgn2NnQzyODnZiFI9AxxWLJd6nPJyminCwNWa5jojBknFusNIRxwO3tFXb0u/M4SgkDTZLE7I9PCGdxGA6nI2VZ0pYdgQgxl6J8nHwQWZIk3F7dEAUJ02R4fXPFx48Pvy0ArO/mhQJwXxkBX/QBQgis9dHN/s+/nhqXs8QnkTogilOK1RrjZtJFRtWUfLr7yDff/B6dhNw93/G7X51bV9sb4iCmb2tfVEyKycwsliusOdJ0LYlLuYozZkbGeabre/qhRUqBkpHP19CSzkwMw8DVdusF4MLh7BUfPt1xKI+UTcnj4z3DNLFe+qlMdGm2jXXMs6WsaqZxxpgZpRVhmCD7kXNTkUv/nERa0/Uduu8qqrbn5/tH3m42XN3sCHTIoay4f97TNidWxZLTqef52HA8lzgcV7s1TXXiLz/9TBLF3Gy2ZHFE17fEOsJKS54uCIKYzfqKpmyQ8pH+9Ix1MwoI1G9tgP/693/ESkH58QfM0BNHie/mHRcC3Zcc5y+iDe8Hvqz8MdarnL9kP1vnu8hX21v0VcKx7XE4srTg1a3PnC+CiDxOfLhJHCGcRbuZq/WaZLnGIui7DjN7kViSFJhp5HR+Zn96JAtTnFP85ePPHA9H1sWKF9cvOPe1V30LiZkVbnYsFgXN2LKMU5TWdHXFf/gP/4M/ABxM48Bfnv/Mw/MdXBKfprFjt14TxTFD29A2HWVZkmTPZMsVWbZGodBKMvQNSZTTtQ2P+wdC7cEZy7zgzYtXHMqjB84UK1Q4XuBPjlN55Mcf/0I7tASX/d9udc1VUTBjiLMlWb5l6lu0m9muV7RtTZ7FhCq+2G/8mHiRJGRxzjRZqqbBDD2RTpm7jnYesPPMIl8wm1+ws89lzen5HoVjshDOXqk7zj3pckmeFHRDyfl8pGsadJKyuCBkQdAOE/PcsV6lYA1dV1EUK6S+4XDY83y4ZxgH77boW6T3PaGDkCBMSOKULE5wswHhyLOMLIyozk8YOdKNI5OT7M8nwjglKQrqceLDcc9qseFmE9I0LUW8oJ17ZFVSxBlJnHJuK37+/MFrRbRjmnuezSPtNJAGBWlWIOqQ3e4Vt4sN3gFosNb6ZMBxZB4aurZCCMX5+YnydKTve9/5zxYzW4R0nlc+e+vV6VjitGQZephNPzRIFfjgnGHAWoOSAvB89HnufackfExwGEZMxqF0SCi9E2SyBphx1kOCbN9Qlkce9s9Uw4iyljTSPHc13cMD6yJjkRdo5YeuZhqIA0EebyiyhHJuUWjqpiEQlnWRf7UI180RrSKMtXRzx277it3mhnnsOAz37Nsj39x8z4vNK07lmef+M9rCP/3wT/x894lXL98SOE3fVqRR4oOQUDyeTvzHTz/zevOGl8WO0+OZj4+PCBkigDRP0UHKm5srFosdCE2a5Vhn0GFIVZ6omjNl23Gzu0LqACECH4AjNePcEOqIfuhomxPD/rNvHPIty/WWZho4lDWRlqzDhKFv6OoTgYQ4+oLrtb5gnmfq8UDfN37aMxuPXJdw7moSFaDDECclfd9TtyfMOHI8n2mHicVy4QtnDNOFQbEsVqggQuAtrz5YRmJmx27zEq0cT/UddXcmT5ckOkUkkijOiM1A1/tVSlFsWIcvaaojQ9cgXUTOAutGRjN5LUGoCVVKsk4JtAYUSMVkJrK04Gq1ZrItc9dhBkHd1aRJShLHrJYrD54C0iShHxZYJ0iDlGUc8D86/685idpbGC/wq19bAgEfJWzM5aD3wkphLhox510Avk5wfAmdUVrz+vU71suc3WpFWe/56f1PPrEVQYDmaX/3m3Pr1c0NTsE0SLAzp/Oeshm43r4ki1LapqSbHFJ4DHpZHaibM85Yj14XIKQl1gmn0xOfHz7z8uYVyyxBYimyJb/73YpjVVOeT2RFQbffU9etz2TRAcEcehT86HNmkotb4Au8yHQGFUb0eqQsK0Id0Pc9+lCVLIsVxgnuDwdE5H/QY1mThr4TG0bDd6/ecLsamYT3nTPNfJoF//TxZ4o09aEnOJq25cfPdxzqilcvX7Je7JBh5FXhw4QQksUip8gzgn/BATh2Z/K8YLtaoZygn4NfdjN4AaBwX7p9+1XGKTzGye+O7Zc/93aQZe7HsKvllk3Xg3Qo6diuVkRRTNcOPO3veTw8sFqtuF1dEQcxUimS2F+Q+rajqiuGoKfr+ws7e6RrOlQaEYQBdd1wripe3r7hD9+tkEpzPHkh2+f9E1JKdpstsQ4x88zz6cQ0zfRtR6gUr3Y7zsZwfzwwz4Y8zRnGM8fmzOzgZnfNchH5widMwCnsOBOGAf3QMU7Qdg1xEDKamf3xyHq5YbEs6Lvej15jL/4Jgoh29Al1YZigRcv7h2f21Z6XVzfkSUHZHsiTG4pohZIRVfVEW58JneTldssDo6ewhT7q2U7GJ8lNM8Iozm3DYf9IHkWc5yOnak8/+KSw7e41sw6pxwEjFS9fvkYL2O5uWW22OKGo2wrDiJsmmqbk57sf+enD3zyauDljnU8L01oxjD1zP7MuJHEQ+e556lgWO+IoR0nB6Xykrmu0AjuOhFqTJRlxmhPHOW6eaeqG/fFIN40k+ZLVKqapW6bZsNteY+aJc1exXr/g9c1bmrHhdv2SNFzwfHomi2JvfZWCpu0pj3uEFFgB9+c9eRSQas39457nquJmNfNChzgkUbYiTpIL6Q+MmX1i5DzTNTVtXSKFojydaNoW5xyBCujN+DXwKAg0uIvgqanJV0vPo3CemR9GPlNAa0XbNpjZoKXF4S+cX/4LggCtFUGovFvaGXSomQcf4hQkIYGSTMJSlgfuHz6hdEISZoz9RNU1lG1JEAQ0dc/Dwz3H88kL+ZKU0XgBpDUWa32yXt3VHI5HpskSRgFxHJEnC5q2wSpLHMdgDMfTgcfDieXiire336Kcoix/5uPdzzwfSh6en9luNry8eU2oQ5rmxOm0B2nZ5Tu0UPzu9VteX73lfD5yf//E/nhGqoBA+UPq4WlPGERsVjvyLLm8x2YeHx89xGcamS/8BikuyWxmoKxatApJkgVC+oyP58MDddvwHBxZnQ887J952p94udsydTXnuuT+9EyaxPyr3/+J9JIW6iI/qRmnlmnqvc1T+iRGg8M5P33xK8qAc33m/nSiKSvSOGG92iIFtN3AOAvmeWCzvCJOFtRtSVfumaaeaZhY5stLNLajbk58vvuIk5KurVlka4p8x6LYEgufrNlUJf3YkklPLzVK0A8zQiiiKGcaBw8Q0zFZmIO19H1HlmWEkbf/LpOEJAx5Oh4Z+p6uGxFKYwVEUcR2vcJYSxL5a16SRMyTD3cqTy12+oMf9YuLtfYyCcD9Qvbnq2X8lx2y40JhvXzd2wW//OrFwsa2/PT+E1HoAWzTNDLPE01dMWQ5L3c3wL//5TGFJS82yKJgf/jE49OB07klDjNerK88S+H8SNs1XGU7FBYz9hyPR59LEUXk2YKr9Q7mmXGcEFJjEVRNTagjtqsty3zNeHVLP458/PSR0/nIZHvO/YnAxBRRShhGLJdrEu3jjwczMljr19HFAq0V4zD5VUeaoaWRaCEIgxAlHE3T0XYf0SqgSHNGjBc3qTNvb16igoB8saRtvar2x4d7xmmmG0fm44Fu8rQoJeB5/0wYJoTOkiYJWmtC7Xnos5mYO/PbAuC053Dc8+r6BVfrK3788PjLi/f18P9l//KfjP9/tffhwg1YFVuWqzVxGmG1RAcBRez3K1JYVkVG1xd8PnzE4EgXa2KtGSfDuTp48mHX8cOPP1HVJYvlitvtFVJYurYlUgnWOq7XW5ZJRpHmhFHCi/oG5eDj4wN13/PyCoZh4O7+AWU98tNMHlRDEtP0HWEUsF1vmWaHwdJ2NVU/0M0WHcbM44hRgtla5nmm61rqU0vTNwijPMEwTVnmOVdX1zhjOZ5PCIRPEZtHdqsVgVZ+711VDNOEUiGnpqcZLVmxYFks/HhxGqhmeDz8jfvjHUmU8fb6lU8bbEtWxRVZmuOA3sH5dOLx+T1Z/kwUBWgBQZIhkHR9w+Qc57rmm29fc/PuLYfTmSwt+IerK17tbv3YUwZI5a10VXMm6FqKZIWOAja7W9I4o65Kyrpmu9mQRDHCHdhXJ54Pn0lSRRiGNFXJPBmkCtiur1ktNgzjQN0c+PTzz8zjSJwkfmXSegtmFIUkseep121DFCfMsx8vrlcbDuc97+8+II0mSjVBAGEcsV5tmcRI11Q8n498fLxjHL33erVYkOQZzdj6pDMnkE4xj4YoiL7u38MkxBqDNear93yeLjqNqmTue2ZrKcvTJVhJeXAQXA5sz/93l134NM3exoYffSIlzvqsiSAIUcpf/KdxQiiNUuprF6WkuthvLwZfO2KdYxw7ynqP3DiUNTg38+rFS46nAw+Pj+y2BVIKsjbidrtjcjN16wVJCx0yG3/AzE6wWC7ZLHYMY8+yWFLXOcfTmSQNUYFPuWu6jjSOMNIfIFVV8fnzT0RxzM3qmqZq6IeWz893/PTpM8tszR9//3vSOORcPnM6PWHsiDGOZjRYGfD6xWuYHWPb8vB4T9u1F2tbj0oy0jgkjiPapiVSFVmS4uzMn//6Tzw97bnZ7lgsM17evGS32RGGAZOZeHp+YJ5nrq/esCyWBGGI1pK6WHBuapwUnM5nDocjx1NJ1fYss5T1cslsJA/PJ97dlFg7MxpDni3IYh/+ZI3DmY7Rjoxjz4zFCLDSYMyIVgHLYsXtyzeIG1gkhbcOV2eQCh2EhGmMijSH0zPD1PiiuCqpqxIdaJySDNPI8fiMM5os26BUinWCYeqpmtqj2uMlOI01YOaJsjqwPz5wPNesN1ds4ytGMyKVn6pmyYJxaGhMh5ktk5iw1tBfSJx+B67Yrdb004iVfo8ZBiHnas8//+XfkqQZaVaQJTlB7PVYWMO/WMV/FbDCRR/2m6959PpXZaBzXzkAXjNgL9MEw19/+DPT2KG1Qkoo6wpjvHbi+vol3779I/D/+PrQ4zQQSYUQirLx4uphGDidDgQOlBSUdUlVlxRZwul4oG1afvrpZ5rGF0ZXV1eX8KMepTRxmBAoRdd3PDV7znXHarOhyJYkxZI4Lzidnvlw9yP78pl5mNmki0vctCbUGiUEYhSkgUbgI8i7rvVcGmfomwEtjKEuz9jZeOCGcZR9zYvra7LFgjFQqDCkP9d83vt85+j0wHqxZbdZ8Md372j6jsUioxta7DyQZSlvXr5htBNVfUS0Z9IoZVUsWW/W5GHI2A/M9rcFwGa14v5xz9P+iJYhddew+lXp5vh63v/qf9wvPtCvhGD3tbpb5mviOOFUnRimmdViSRRp6rbn8/0DaVSQxTG/++57NsUVr69fYzE+mESFnogXJ1xdv0BpD1zBzjw+P2KnjmWk6TqY2p62aRkHnyE+dg3LNEe+COj7jjxK/NfHgcD5qcZ2tWJ2jnNT8dg03MRbbm6uMPPMuSxpx5hsSimWCxabFdE48enpkeb5kXboEcIxzQOrrPACNeFQ0ofRvLi+pSyPfLjbk8cZWb5krn3XrhEkccSrly/ZH48Qz/wp+j2Phyfm0fDp/hNSwtRPNENPNw8oEVCkG/rRcKhOTA7iMGG3XGOcBbHysZbW0TTtRRSYolGgFFXnKXhpsWR2htViS1Zs6OqaaRpBgZMCYyf6YeDh+SN3zx/ZLK9Z9zWLImO3XJMFBf08cDqdPJApX3AMJVV1ZDQD1jqUjDG2o6z2BDphGAeMmdntdqTJK5pzy6e7j3x6fPbWr65hlS5YFiuiOKJvBqq2QgcBbVNSdWfmgUtRNPHh4SeyNEHEXq3vlGMwDc/nR9phJIpCNsuUVbG6gI4C4lBSlQcGYbm5ukVEAXY2NO2AnQ0ffv6R7XKH0hpnrWeXz5PfN7ctfd/7XX3XY8wvrAt5IaJ9KQLGcfz6MQh1wDD0foydFxc/9PD1GigETPPog5QQl7Q03wmN08h8yR6Y5/FSHBimoaI+S+96OD+wytf85//wr3m8eaAfR09sTGIslvvDI8ViybvX31O2JU9PTzgnyZcLNvmWPE74sTyipeTm5hXbzTXj4DG2LCzOGPqpRoeaIl/Rty15muKE4Ljf8zB+9uscZ9hsNry7fkMSKx4On9kfTkRRyvX2hpe7twzKEYcpMznt2NLXPU44FosVKkqY5pHdascfvv87imXB0HY4Y9gf9hye9/zw8T1xFFPVZ/Klj2WWCoaxo+8Hmr7xeSHC4rAeUOMgCkJurm/IooKu7imjmiFzjLOfwAkH2gqSIKTvWvq+JCkyxrlhnL0WIwhCpHBEYYSzhro6UDY101AjnSNPF6gwADuzXl2xyLygL0w83VFpzTR3dO2RU/lMEIQQRKwW16wW1xR55icXqWK1vEIHGhXkCCcxtqcba6yYUTonDGOk9FqTLEw513v++vPP/PWnj/z9n/5ztqvXGCt4/+kz0kq+uX2FkD4bweO1FVIFPjhJawbTs1guCYOEU+UpmNM4cjidODcld0+fGUfH7YvX/PH7PxIFMajga9eOc7/oxC8VgZQCY93XafFX1p/4rZ7cXQTjX+5jnbfNxTrixe6KaR6pm5IoGFhuNgQ68kJU8VvxetecuX8U5Ll3WcRxxOPhwJ//9hcOmw2LPCcIMuIk4v75Ex/uPnI+1Tw97glVQJF48aFx0HQdn+4/k+crrpYLurbn88MjKqz5uzQjSS0BsFisSJOEKFEkDwF2sCSXrIRFliCko2tbxqFFuQhkQLvv6brGT7qEYBgH9F/e/zO7zY4/vPuGz3d3BComcpbVYs2rF2944aDrKk6Pj1THI58PT9wfnkjjjEWcsSpibq5WOKAeQ0QgCALFarVkXx75+PAZZ2cW6Yq+G1BByPXrLTKFqvotUelxf2AylrJpOZV/oe4sb8Qv4xzBr6YA4leVgBNfdIFfCwWB94HmizW9EPzt4SNTP/POGsJAM06WaYbK9JyaM+kipsgLAi1pxxbrHJEMWBVboqhBq5BXV7c87+/puxJrZjarDcvVhs4ITt0jd6cS3JlFFntHghA0tR+1VueSsm1ox4F1VuCMpZ1G8mJBIhxSKUYL+7IkiTTr7Yq0yHlxdcNiufCCQyHZbjY8HfZUfedZ7E7QljVd40ezq+WKaRqZxo6mbVAIqrpiMjNd2/KpqVkvlrx6/YbNcsvD0xN//fA3bjaeOvfjh48UScDN1RquFLFIKII1SbrETIa2q5BS8WL3Eik0ZVcT6AAhQWrF1dU1xXJEWsNsLMM8E0cB26tboijm9cs3hHHMMHR0Q0ddnX11Ljxi1VlH1XSM/UwSpdxsboiCgGZoGehQSLQOiSPFw+NHToeMYawZ5okkiujGzhPyLn7b2XQcjs9MY0cYaqIoJ8wLXr/5lqfnJ8qmxDmLEQKnfRd8qErWShEnMfvTI6fzmfO5JAoinIBRWd5sXrBarwl1SF8dsWPHelHw+rrAzN5qM82Gbh5wxlKdG5qmJokz1ustLgQzweFcczwf+fZ7HyXrrMVa8zWz3Mw+Q6Lve2bjPF1ytr8RNn0pBKT0wkYp/K9CQN91CKlJ0sxnJUhB17WY2ec3gPfoG2N9XLIS3nM+zxjjsz++fLACAaGSCDcjXMCxOfL8/My3N9+x2ew83wODTBOej8/keczbly9ZrVYcqgNCau/fP514CB85xxFPhz1FnLDOOtCKqvXRyHmekucLdLBgkRWs8iWDVJTHhH15YrA9aRyTRil2nojXAVEUUHYl++oI1rHRITjQKiBKAm8NtKF/XOfx1svljijN/M8nFZvVlhlLPY1opdnv99w/PbJc5Hzz4i1pmrG72bLIU9rWK/uHaWa93JFnGVX9TNOcSIKIujowjR1FmmImH9iVpjEqDLzga2jp+hIpZpIkZJgHrBugFzw9PTAWE1mSMI8D8zRi3RdqYMM0jyByokvKZ934BL6+r8AJsnxBHoVoFSCsd7wI6+j6hnN9JkvW3Fy98WwQ6W28TvjVpvfP+7W4M5BGBXFWEAQ+VGtWA+M4MpkRHYZstzc0gyTNlj4C/bzneKxwsyCUCUo4kiS8FEiCOIzJkhwt4CAU1dAyXQSIWnoap8hyFvkajKDtBhgdQ92TbVKSJKNxX6/+X88DvwFwPtMEMLP55Yz41dH/RTPmf//LhBnnUFLy4voVUaiY7UjblGAgkt76OA0tdXvk+lfn1tPhmf7pnpubl0gnyJIMgaEfOiyWbux4e/UKZwzvP//M3fM91aHGGUeYpsRJRBqFJDqAKKGIE56fHkm05v7xyMe7B169fEsUJERRTNs2jH1LGIZslxvcPNDVHUM7cypLJJ7a2rctxlmK7ZZ+GAlUQl6sWC09/2QeR/S//4//xD/8nWW33FJ3PUpAEmTESUYcJzhrKY8H9vtHmr7HSQUy4O605xzU3GyuuMq3GOPQUYjCsT8fuH/6SHDZ/ef5krKseXraMwwzdw9P5FnGr/QaABzOJySSVbbk3A/0rWfdI/w+Db6gG7+EAP36tXVfhR3iUvEJbwIFBE54ONHT/kA/9DgnyeKCm92WfXMm1BqEY5hrjBlw1tGPltlmOGto6pKmKtmfHkiS8GLhi5FRzjZbMouQth/p+sZT2yY/wtwfSsIgJk8S2rGlbCoiqVkWC6/WdIbtZsOL21vWxYp5HOnHhiiJKRLpx0IYz6IWklWWkUUaMzrCMKJXknma2JdHaBxdXxNqfVGGBuzW1+zLPWXXkgcZTX+k7B/IlmuWmyt211f87fN7HvbPZFnGze0Lvrm5JQ6h6mu+ffUHiqDguT5wf7jjaf/Eual4++IVr283REGMDjRVV9GPA8VywU2UIsF71MOQRbEgSnKcswRIjDOcTo8cDk9M00gS5ygdYqVlvHSb17sXdEPKMi5w80DdnGjqljt3j0QihOHj0z3KBESh5Pl8QAIPxweyOOHl9SuW6fKiXG8Jtc9El0IwTwOLKCW6ueVYRSzzNavFivBCWFztrknDhDSOeHj+7P3L1nKsSlbLJVm+ZLnYkUY59w8/ca6eaeeBKAoJdUAcpJ45rgXKgh0mwvWaIAwoktRfNJpnZiMZ54lv3n7P65ffoLX27od5Zp4nzCW0w1jjQ36swzrxGzSGt8JehLFSIhRIpZEqoO1aIgdJVmCsfxzlfL7B0Lc0dUVWrJBSMAxecxAE+pKqOPgJgFbMFzLkPI3YydC7jrjI+NO3/8jj/Sc+PX9Gq5hFltKNrReLKsdus2Q0I4/HO4waSZKQIEjIXErXNTw83XGsT4yLgkBKojgHJ1kUnomepBkvV1u0dZz2D9w/fuJ5v8dKj/4OgoRxFlR1iwoUbdfQdJfAIymJpWYeOo48kcklRm6J4oLVckfFESsUgYq52l4TxaFHz2ofixxovxrNkowgDlivN9yubxjthBKG58MncJJ2qJgMxGHE0DQ8HD7hnGC5WPHh4088Pd2x3WxZr9asN7dkecbzeY9WIVESMg8DV6sVx7aimQeUNATTBJGf7p3KDoXDTBPDOCCVJIlipI7I8w15kjCbkTDwB9Sp9qCpJEnp54FpGpEWwNC3DfvzE2XX8A+/27EoMl8IGsE4tbTticPTPaiAxXpHECbEQUAYJkxDjzPgtEYYS5qmTPNIO03srq559+aPl0wYSZKkpEnO8Vjzt4+fGIeW796+9PbP7ZY0K6jrMw+PnymbM+M0obXw1M2uxTiDUpJlvkBLSd1+pC7PPBwfiLMYay1fA+B+PfkFlFJEYUhgLY3pLvfx3f6vu3+PlRdfBYKCLwwByYzDDT3nak/btiRRgcHwfDwSDy392PLdrx5rvd3wtN9zOu5ZZBuuVlccd49IrdguF3TTiBaWp6d7TueKrh9ZrdassxXjNGOk5GH/SNNVRDoi0jFD1/L+02d++PyZc1uRVQf6vkMI2O8/c3x+ZBSOxXJFKDVzN7B/3tP0I3V75nw+s1luefXqGoFDIrwGLU2Z7UyoAoQFnccxp+ORtm4Zxp7Xt68YrU9YGqeRqe/4y1//mX/353/PbrPlD998z+32mqfzkVN19tGwYUjbNBdOfkKzH/jxwyfWyw3dNLDOllytriirlqfzE5+eToSBYrf5rQ3w1dULzqcDp+oAgUTqLyLBX9p6L9b4Ze//S7rTL0KOX9/atkSQsMkLzkZSpBmrogChiYIUrUM2xYKiyAiV5nyqaKeOKNDUbUfXezBH01f89PATx9OB3718TSgDnk8nnn76G8ti4cNXvv+Gbuy5f77j+binmiZMoEiKDBkFNPPE5AxCwGa5osgLJmtYr1YkUUTVHJlG7/v+9ODDNBaLNeNs6cfGdw/qJUkS4LTfKT49PbBeFiRJyDyNjGOHm0ICEWHMhBOwXm+Yng8oJXl5fcPgHEIGPDzcoSX88dtvMMPMdrNjvdmS6Ihz9cQ//fgf2R8e2L1dEfeapqooyzMzhqfDM3GYcL29ZrADh+OBONDkxZIsSwkuO+VpnrHGoKWm7ysOxz3WGg6nE6fTkSzP0dL/2wegahqiICRPM4a+4e75E9M0UA41xgAyAuewAnQQkqUZ/diiBNR9xfPnBxbpEmcFXd4QhynbxYYk8eKqIgm5ypccDs80bkQFiiAJ0HFEEEQEQUie5wTSi50WyRK5AiMdfdeCc2ghOdclVgieqzP//ONfQcLtboeWISaRXusSaoQUyCjmqkjZLDaczgceyyNSKrSWvLh9wfff/47tcgXgR/gX77K/0PE1Zc5eOhwhBfKSXmatRSl1YWH8oglACPrer7FSebE52V8ed5wm+rEn48s6wJPqxnFgX50Yp5EgCHDkDENHEuakccrQCbquplMhy8WKLCu4e3zA2I4sCpnMzL46ssxysiji0O5p6op+6LlevSCMc/JkgxlnjuWe2Q5MLqafDIssRGsN0pJlOUWxxE0Dp/Lk2ROnks3mltH13O+fELImlBInDFXT+NS4vGCzWDGOPcII5gmfHzF1LNZbtssdu80OzOzFlzojCAK6rmWaBoIgJI1i0ijEWktRLMhWKVmYokNFVR89qlUr1otrDCCEZhw6yvMzdjDMFu7aRx4enzmfz0ilWRQL6vrkE960pOo7uqHHjAMyTggDxSLxo9s0jInCGOEc3dgzDp0PoHGWLClYLtaExvvzjXOUzYlQKKYxoG07okhwPD4zziPj3BNpzTyNvP/8Iz/d/4wOQqap43S4o+k62n7COcnh+ZF5GokCzedP9zihefP2Dde7a+rm5BMmlcY4x3KzI4kWrBZb2qFEqIkw9CuDIAi4vX5JElWczkea0PF88mfDy1evsNNI29SEUUJie2IVkGYFd4d77o/PhCrk5voF680OGYZkdcPiKkYGGoOgH0es/dr7/2oazNesCgR0fX8hT1r+xd2+tIi/0o15vLy1lg/3H1nlKZMxBDrmavsCKyz1UPJ4vPf5Ir+6LbMlaZhStQ2TnaiGnnNTMbmRsqvoRsOfP/yEMzAOLUW24O++/T3rbMV80f0cj88M40A5dTw+74nDmKabiELNq/zWq/aHmsfH9/z1L3/GTJZ9dUBHijc378iTjHNX8/jknWi3L1dcX+9YFTHPz48IFRGFAc7MjEOLi2K6vkULBWmWoIOIf//z38jSgj/9/k+oIKQ6VxwOj3x+fOb+eGKVLXh4eGQWwieaFQKLpR1aRmE51CechtlJ/vL+M2l0xEjL/njk21evebHbkUcZd4czxkwsFynwyxpgs1iTxxn3h0e/07rQnn6d3PSlIHBfnBuC/+TQ/+VujvYSz2udZRnnrLKUbbFkuboiTlaU5zOn/R43TyS7hK4b+Phwx83VFdYJfv7wM0qHpFHEcrEgDCPiZMGxavnb+/d0fQXOcL295mq9RQaC3XZJ1/d048Tz6USsQjZpQZjFLB5ybosNm+WayVpUqNlsVjDPfL5/ZBpaijyn6TuCKOHq+iXLxZbn589Eoea7b/7EaHrqsmaYfDresZwIQt+5OeMosg1BlHDuKu6fnvi7t7/jxeaa5+cHFouC1eYaHQY83H0gFIah75EiIEsztpsd1sC5OWLmmaf9Pdt86Q/bLCVvYuIookgyhqbiQ1czmZlTU6KU4nA+sFysSNLEf/Cco1jsiNMNs3FeZzDN2NkyzxNt7QE3dXXGCJ/iF4URSZXQdhXTPHA4P1MNLa+vXvFye02cr1FRRNudmbuWY+W4WrylGztO7Znd+gVFsqRsjgRRSqAikjDGOME4DQxm5uPpiXbsud1eMRjDLCCLfbaEdZbZzDjh2G52ZEnCZCfmceLT3Ue6tmFaTNw9fuLT0yechKvllhebVxRZgZbq66FclWearqXREbOApu18+l+RUzY9q801u+tb4iS5XNh8d/MFcvVlSems/drDSCm98vkLtU8HXzGm1ng2gC++DLHzxXwQhh4AdOEAWHPZU0uFMbNX+mvF+XzicHxGSkGe5AxdRxBdXAFKoITCjANtcyRWihBI44DZGZJEY6yknXrcKCmiFStVICXEY8xyVaB16OmC08hyVdBMNUKFXN++YhnFNG1JEGiyJGXue5r2jEMhVMJiHbLZeuFgmGaEMmLqWuTcY+eRtmvQWhOEIf04M02G7WrBKi0Y3MTx7LMipNLkqy2WkLHrkQrCUGGtPwCCWCICjZktXd/Rjw1JFHKoW+Z5ZrfcIkVAHOYo5QFHXVVRfWWFbGjbju1iQxqEXN+8II8zPu8/M5mBKErRKuN43HM4H7jebNksF2jps0ymYcLOPpLZTTPvP3ygH3qy3AdYqShEOEHY1wgz03UlvdBoYoSKKLsWqQKkdPRDS985zucDT8c94+wY55FPn+/pzz2n2ttLY53y8Lzn2DYMdcv+cCbLCp7Khn/zR02YKH9wzCMPxyeII/7Nn/4nbNY7rhbXDH3LbDqU8hO/b959w3F/5mqzQeiZsavRYubp/ieGcWRGcrN7Q5FmfLz/yLlsuCpuiMMVbV9jlMXMA6sk5R9//yfCuECokCzRPP1f/ivu3fN/crkXQqK15vhf/N8Z+57o//U//0oL/FJUe1icuEyUfwsLktIXBJ+f7hinHCUkebYkKzxlT8WOD/fvCUPxm7/XAXHkdS/nquJYnRisnzkcjweEiLhrDsRh5AOAnKWsT4RSEUQRzVCTpAnGGh4eHynbmkW+IMtzgtaH6iVxRhZF/Pjzj/z1w0dW2QqBpDqVNGnNZrFB65A0Sfjdd7/n5uUNw9DSNnvchfzYdQ1KKdxsGG1LN7ToHz+9x6iZ/8V/+b9kEAHP9/e0fc0uvuFTeeLu/hNJErMsloRRRDMM/OXDz3zz4hVOQpoF1B2c6po8T3h1fY0SmlCGTP1IO3U8Hg9gJt7e3PL2xQvevn7NoSwZxv43BUDbNqzXW1arDcM00Jw+/Obg97ubX7ybXvClfkN++vXNOsvd0yNJmJLGCcPUY8aWvqlphpFiOXA4Hvl09wlhLW3Vs9zsfHJc07Pbbvn88Jmq67ndXpPEMet8Q1e3VHWJ1oI3b17x/dvvePfye2Zn2J/uEcAmXxGnGd++dAz9gJ0m/iH8A3/85juWUUY/juzPJ/ppoOtblHOYcaZre9Ik5bt33/Hi5jXbzS1RlPBqd0Xft+RJhBMh2kLf1VxtNwh89jlOEqcxu/WO7XLLYHo+PJU8759YJEvKvsZFitsgIEky+sWKEEeSzQzGYp2H+URRSpYsiKPCPzfmn8iznCQM+d2bt0gLZduwr49EQUCWZFyvr/j/0/Vnu5ZsbZom9Ixhw3qzabOfq/F+N38XERlZWZWVRYGEBFUCicuAW0BCosQNcISQOOOAC6gjThFIIEFmEWRmxN/tztvVzt763gYHttz33oGYriV3uby1ZoxvfN/7Pm+cF2wPCbfbI6ZlMZ9O2SyWKMvCtm2y7MT+dKRvehzbpmwa4jRHpePYBWOMeu27BvoWwcCz1RWzaMqf3n/H3W5Lrw3+bvWMr1//lv3xlo8ff2IaRoSui2kqTukJUzlcbq7RXNG1YlzEqxotevIqxTJ9nl2/5ubhE/PJkufXr6jairarCdwJlmmSxHvKJie0fZShibOEpu+JqxJ76CiyjF53mNLg2fqCyJ1QljUMAt/1KOuUJI8ZxAiZMgbJMYuRpiKKJkwmEatBYDghXhCOIUL6583752d4tDYJKRm6sSWvLJOuHjMfjKevL2rmp9bo546YMCRCGFiWM9LShMR1fdL4RD9oDKXo+548T/G8AMSANDSOaaOERGqNqSzqKhvDhKSF0JKhbxG6wTVsNtGC+9MD+8M9ddvStQ1Z0XHIHJ5vnuHYUww5qsYHqbEcC9NQfP3qW168eEPd1jimom4rjtkeQyo8J2RomjEECHAdG0spLCk45iOi13EkQ9eOgVWWTVZVZFWGsm3m0QrTdii7lrrvKOsaIQTraI5t22Mh4kwo8hN5kYKG2SzCkA5Vk9HULdPZCgzI6iNpkTIIk2cXL2jbesTv9uNopsxT6iIjy0u6IccwxsNCXRdsTzuupYmhDaq84pydcJ0Wx2wQfU/o+7iWRei6SD1wTkb/vTJsmrbmdE7JshLbtfFsHykk+/0jtjLpqhw9tJzLmOlkxXS+oNMCX3d4jkdeZgjDRNPT6oHQm3CMY5K8IJu01PmRvMhxHJ9Dk2Eoi69fXPPu9gPvtgeqLOf07h0Xm2uu1Jy7hy15cSbOYpTnc7u84ZydCDyXabgY9QltxyB6ivyEHlouVitmk4BzsuPf/+N/x/F4wHFd5os16xW43pTFoqcsCpQwebW+ou0qBnrs0CPLc85xgizSMdNBB/TdNT+rwj+b/vSXE/5P798iJeyi/wP/cvu/+NL1Mi0T2xpR6/RPzf+nzthnQaAQMA3nGLrDMk3m0wWe6+K5DsJoSfxgFC3/svBgQEmFbRgYTwwH350itaTKY9ASA40SGt33tL0kLzOm/oQiqRj6Mc530AOB7+F4PpvlGm3Ah917bh4eWM6v+ObNt2MkdzTDcwPQNUVTcUxippOcRbQkmkxxfJumLimfEhW3hx2npCarai7WK4ZuTDps+wEljZGZbWvBv/m7f8nuxYG+avn+43v++uGvqLbm2eqSNEtwHJfVbM7uiTMuTcGnw5HL5ZKmq+mGlvkkZBZGDK9fk8Y5P3z4kcf9HYc4QQzQ9B1+MEVh0ba/tmrcPjzgOR7z6ZJpMOFTcP5SoX2+1J8rLsMY/edCjJzxXw2CGGc+/aBJ4pzW7KncgcP5iC1hPZuhlcv2lJAWOboHpSWf7h9QjsMiimi7nv1xz+60Z+JPmAU+p/TI0PSczzGn05HNZsn19RUT36csM+Iy5nw+oAybzhnBOEEYsFwsSNOMvCkRbUvfN0hDcnFxiWWPSu2yyLG9I3e7B1CS1fqS+WyKkA2n84EiL+gZSKpHmranLFrOSUycJeihZ+hruq7Bnbk4lk2axeTpSNczlMC0FcvNCqVsiiIZ7SZqRML6ZkBoGJjK5ElIwXy+5uuvfsfucOJm+0Dg+ri2y3wSYhuSc56QFCkzf0LojkE/y2iFtkyyqiDPC+bTKZcXV5RVznb3iSRJYADHcbFtm6br6dqBui2xLZMwjJ6SEissWzH0HU3XMAsj/vD6N2RFQS8VKCjrjK4fCCYz7MHD0BqlFKuFS9tWDH2DozzCKGQyiejriuNpyyk5M3MNpoFLt9oQ+BOGtiXLj+RVyjya41vj6SxJYlqrpG5K0jJnezyRVBmREaKHDt92uFqNGN/9cY+ybEzLpmpbPtzecLu7R1iKVxfPeLHasJqvkErh2OMYw3c8nMkUwxhDoKQcN/LPC4x4KmKRAkMphrbFtEzM2qRtGrSQOLaNMhRajyOAoR/GVj8aLQR9N2pnlDJGwlo/oIcex/fp0fS9puuKLxuB6wZUD59o6paky7i8uKBIEsoqIXI9Jt6EtqmJky13+y0Tb4ahbNCMbP8ioW0rXl2+ZLXYYAiLwJugDME5PWAqiSkMTM+nqQ0ceobBoS4KqrZCDz0PpzEpcBWtsA2D0+mBNMswlUMQ+pySE2VRcGJHWua4lo0yLIRS7OITWZkRfRVgmTZV3yGkwLFtbNvBVBZKGjR1/cRNz4jPB5qmYTlfs15NabuCvquxbYVSAie1kNJiOdtAB+9vPnBKjsyCGZbl8vhwz/5hS1nXzBdLfDcgrwr+8S//RDM0LCePiMmU5JzwsDuwnJu01hhxPYt8TAl5fOKYHOkwmARz8irnhw8fiZOc9WrOcjpj4nh0Q4MWYEo5rhtVSqc7bGXTNhWDhmg6GwvptsaWJv0gWE6XNF7I7ngmz1r2+yOmVHRaULQZSZoQRXP+8NsLLtdLXlxfc44THk9HPNdCSImyLAzt4Ep48fyrMea5ypCGZBqtoe/Jiy1NVXA43nNKCpq2RIoNba9R7oTH8yfsvMUwAm4fbpnNFswnU/RkSl5Wow1WgO34+F6EgYklFOfjke3DLTdlzUX5ZhwBCJ4ovp8N4YLvX/+3PFtcc06OvI6m/H/k/5Hvf/oJy7H5N//i71nOQvz/+/945O//0mL+i0N94PoYumU5X7KcrfBdiyI/c397R68HsqL41V4jBzDEmGCqTAejrtBa4NkheZIi+hZbSaaTAEMppJK4tg1oijIdCZO2hee72M64LrZDMwa/IXCUzdQLMKVECc31esWrq9c0dcx8tkSisN2RJjrojnMaU5cGdVvw6f4TZduhhSDJU7zChrajbUdAkPrbr36DY1q8v//Aar0isF1Mf8r3t7f84/c/cBUFPN88Yz6fURTjHPrFs0tudw9QjfCduqrxPIek6jikRwwktm0RRMG4YCkTwzCph56sKTD6EXnrue6vLuTF5oIgCJlNJvRdjxTGF6PfFxgQ480yDEngu6AFXZc/WaM++0GeXAAIVvMNXT9wfziRZjmCflxwtaCXkqrteHlxiaMUH3Z37E47fv/qK7SAh8N+5EfnKXke8+7TB8q8wTRsfMchCqZY0uJ4OHOI33OID9jSJIoWVE6LkglJmbEeBG3X0Q4dWVVws30YZ0vLJeAhEQReyLevfzMu4LQMXc/Nwy2+Y1PkIwGqlwO+52AqmzwuSdMzkyDAMk1O8R6kxJAWbV2SViVCaS4WCwLXZRaGTGWIVop+6MnylL7tWS4uiCaLEYHbNvTDgNADXd8SOD7TaASHCENRNBXFNsNgIK9qQs/HsizO+Rl3aJhFS1zPYzGbj75y3SM0HM8xu+P3hF7AZn0xprYVBRKIXJtjekRiEPkR2g/48eOPVHWJKQRZUXBtPOdyeY1yHVoNtmnSNAWhN8H3J+RFSl2lNHXFZn7BoFvS5EShc9onv5sYegY9jLzzdssx7yn1gKvcUbFbFiTZmbuHGwLDJysqsixHKLhcr1hEE5LsjOcoLFthWyb0LVmeUbUNWZZjGg1VPeBYDmXdMGiokoKfuncUZcyLixdcX77AtW3O2RGURWCY6KeN/jP06vNDLKR4avVLRu2fRpkKyzQpGUVMtmWPiWd6FIp9Vj4LY4y+VcYY+ar1gCHHjIGmrSnKMWXRdlzyQ/ol6c6yfepO01Q51+tr+r5l93gPaIagxTJGemNSlXRDhzQcQtt9StOUY9tR9zjKYekvUKaNkIq27Tifk1GM5F+TNilpFtM2NVE4GbPaq57l5ALTGpPk0rIkblu++/6vNI1GC0nTVYAm9AOiiY8wTGxvxnK54pQc+HTYAQPb8yOdIZlNVqOdrR/ntnGaYBoGbV2PIV9tgzQsXMfCdjykKZGWRAFZFqOHgcAJRo93fKAqWqo84+buIx/1DaZ0SJOcPMloh47NxTWTSci72w/0DFzMN3Ra89P9Bx7OJ6TtsVqt8WyTKjtT5jnF0NE1BXenI4vVc2zH5/u//JF3n27G8QcDRg+1XyNEj+eMkBfbccZEwF6jteB4uqejB6lJy4SqqpgEU8LJhLatOcYx33z1B2aTHVVZ4tgudduiEMzDEGk7lG3OLJzy2zevOZ6PzMKAokyJi4TIc3HcGY4f8vzqFbNgQpHl1H1LVaZjsSklbdcjhMExOXH/8Eh2HfPi+gUvr97Qtprtwy113VA3LVoPWLaNYztoLaiqnHN8wOknBHaA0ILsnPJ4d89xvyOOE+Zthx5GLcyXxV6P9r/XF2sWM5vZxCMpMv7Lf/V7/kf//X9F0dQIPYqoYyWh+UwC/IIN+iIYPKV7PNdmMBR113Le7fjjd/+RuhJcP7vGNLxf7VuGYWGYDl1V4TsTiqbmfv8dldOw3R/xbIUXusymE2zTZBCCwJvRSc3D4YG26VjP51jKoqhK6rZlMAS+5fHm2Uuer66YhRFVk7A93yMNC2lqAjNkNr9C92P8uO04yAGUKOnqgoftngHFy+tnHA8nZtMIMfQj60QMHKsEZStF13f823/6D1wuZsz8ABVOELplOVlQ6YJttsP3HLTRMYgOz7XRPcTnGMszGYYxNMR3XJI0JssLlGmyWj6jE2BZDq+vnrHP99i+w999+1vQFvcPj7+6kJfrDQ+HR1zLwjIUeZZ+uTGaf+7bfLJ8SOOfmztB/IwIUobCNCW+bbGKrumGHt11HM8JgyERSnE8nxF64JwmFEWGGOBqMactx5frh9sbfvr0pO4NQkxLMJ1FCMMga1oGITgmOT99vGPiekhpYdkWSlnkaco/bR/php6271nP16zmF7RdR1lXnOMzWZ6MlKhwQdU0bE87lLDQxwPKNvB9D6UUygA9gKMcpldL5HZsebuuh++/Qg8DjmHiWs74b+sUQgzYrkuvx/YT3dh9cC0L6ViEYTS6H57ifYeho60HRNvQ1xWh5+P7EzabC6qqIDkfyfKEXsMkmjEPI9IsodUN5ypG2hb+ZIJhGpzOB+I45hinnNOcodNM/Al1mXM677AMi9Aa9QSGsr+w7ruuRUqJF4ZIZSGUSYfGMQx826FoarqyoxgKzsWZxWTJPFqQZme07qmqjKJIsEwbU9ocsxNZekZ3HWLoyZqYuEixbJsTFlVhoaRgaAbysmGxvkaaPcc0x0Ew80MuJhOSk0PbufR6oKoKpl6AZ47BLaZnIzDZZ0d2zY75JGIxCXBtF+WOGd2z6XRsQdY5nu3iOP7oaHjazIVS40b8BOQZT/X6qTMgRoWz6dCoEffZdR2maSIEo6dcyC+NMCkElmliWSaSz26YJ6UzBl07UA4108kCy/ZAJGOOxtCyWq3JspSqyXl43HE6nrjcXIFQPB72nNID7+8+4gc+V6vnKNuiPDa40mQZzHjYPvJPf/oT53PO9eUzDKXwnQmr+TX321ve3rxlNl0xdANN0/Hu03sYBuouYxku8H2X3usRDCRFOiYj6hopJFKao9iqjQkDn6vLF0wnc7Iy43A6cDGb0bcdx3PMfLnBMRVZlnMuUkxjtFoaSo6peWJgEsxYzayxSJSCc3Zk0MMYJ63H643UlGXO/f4jpvSYBjPCIKCuO3TTY5uaaLMEBNOJj2Dg+nKDH7i4pouQsEsP2J7LH77+A5fzFV3bcNeUNGnC9cUFcXbmnz7e8JvfXozzXjfg2foKgKrKub1/IJqGhBMXqSRtXmJWLUq6BNEc0xw94FoK6qrm/v6eSTQjCOc4tsPpvMV3J7y8XrNZbMjS09gx6gbyKsd2PabTBWVdUvcNuhvQQnJ1/YxeD/S6I3QcpATXC1A9nM5HmmYMTtofD1xtrri8eEZnlVjKYhFOyVVN27ec0gTbm7BeXkHfgzGmuTZdx4CgLGvaoaWqcuoyw/d9snPM+XTkr9//lePpRJFltE3DYAyfl/mn5/kzIl6Sl3ssW2HZAaFnMZ1MqDrwDZvFPMI1BJlh/NxL/ryh6J8Bci01cVHjxDFhNKVsGhxnxsvLy1Fg2pb8kgQ4CMWAQd8P+GFI0tf44ZyJP+X28Z6iG3CN0clmmwaBHxGFC07pjkEPbPdnLNPFcweUUCynE5RlsprN0YOmrGoc1+L+8RYxSCxH8nj4wHp2xTRwud9/IsljLt1nGErQ2wZZ0ROGES+iKUmcABLTMjmnCZ31lBlQpKjdfs9qsWYRzvh4e8ejaz2FekT87devud295+bxE6Z0CQKHdigR9Ex8B911bOMjSikC12MajAtinlcowyEvCizTIormY9KeaphGEY7pkJc1x/j4qwIArXk87nEMxXq2pGrqL439pynPl2JAylHwMdIdxBebx6+UnlJQNSXd0DOduFwtlwgkTdOOLHVL0QuNEga7w54kyfAsm4+391RpMbLWB4P1dIVAMJ9GRNOQ0/lIR4cWA3GcMp0v+dvf/z1+EPF4+wnjyTMt+gajb9jvbp8CRwKOWrCYjHPIYxKPTou+53CO6aqOh+Oe93c35FnBcjFltZyxdDwmnkc/jN7wyXSJVDZR19JKTYfGVSaOsmHoqYcWPwoxO4+ySomiKa4KqKqUJD2SlxW91kynK7qupeuyMenMHJX7ddeTDwOiH9C64xjvcWyTq8UGRykmswmO7bKIFkzDCXkecjjtaLuWPE9RpoNQYkw/e8pVUIjx/9q27I8H3r7/CSENQi+grCtc5eE5HqfsTNnk41w9mmO5Hr4/oetb8iLDMA3qrsMSkBYxN3dvacuK683VKHSpct59eofuW2zDQRU5x+zE6XQkCiIMYRInGQ/HPdMgQpQDDA2WoZC2xdXVM37z9R9I84yWGtGU9GVOYyp021HlY5LjqZNYQmIrE9t0sOcenh/ydvue+/tbQtclXMxYzsaMcOspI6EuS85ljO8EGFaP7DosIUdxjtZPav+fxUmf5/pSGhiGQikTwzC+cM5t2/6iGzCfhGtd143vh6kA8UUcOAwdVV1h2zaXl88oywKEwA9C0iwZ435FT5Ic+O77v2JJBUOPFArfnxAEU8oyoShrhsHANCyqqh4XU6nwvTmH7Zb7xxNV1fK4y/nup4+s10v+8M3fcLW5wrE8vv/xL0TTRy4WlyMVrqzIypSkOnE+H0dLX9cw8ScsgiW//83v6drhS+jL7rij62pcz6LsEoxqdDzMJhO6xmC/OyKEos5rxEyMZnY9jMp6CU3X0fTtaO/NM2xTAcOTun3DPJii+4ZBD8TnA0Ua0zOQ1jFCV0zdJavlEtd0oe7Yxzv0YFCVDTfb9zRDxny+4M3L58y9GY/HO6R8jhQm69UFru2hpES5ktlqhug03797y+XFC756+TWgubp+zuW6p65K0rLAkArDhO1xy9s/f4dhWLx+8YrnF8/wPBetDZSyCSYRQpvs4h22YwGSttVMJssRc9sNdG1LU9eYpoltWti+O7p/LJdDeqKpO/pes1huxqhkoWmbgjyJqZqSsi5oq5aiGtNR3759y7uPH8nflFimwmBAKs3l5QVD1fOwu+XH23dMZxuerza8uvpPqfuOTw+3lG3Nze6Wi9lyLPiymLwuOHz4CWqDtqrHw+HVNR/v7vCEhtO4Y+unAJ/PLnApBWmTs7/ZYxg2XTfQSwMhPf6r/8H/BN0mnE8H9PDyy/v1z3aXp25cj+4lURDhOz7pWRK4PpZlklc5nf41wO5wPo+iZ6FxLAPH9fj7b//APJzi2RamElRdipCjPgLRM/QFp9MDcXKmrFpcN2A1nyLRBM544HMsh64H151QVqPr6OXVG5Stud/dMgwtbZdzTo+0bcvDww2O5xP4LtPJBNOYoaXgw+0Nlu9ySM/cPT5wubrGUtaYPrmcT3n97DlSmXznOHy6/0gQhqymEZ6pqOuQ27phuz+R5Yrj4QQIPNPl9fMX5E1NVTeURY1tWhiWwlIORVFTVBWB76MCj6wumftzVuGSpus5HHekefrrAqDt6fuBu+MOpETZDuKzVUN8GQY84Urll9nn56bp51PT55JO61HrkZc5m+fP2cxnHJMzfQ+OpZCmgWGNUbu2I5mFAaEd4FgOjhsw9P3ovQ9Dnq0vCQIf27NwXRtDmWhhsDs90AOb12u+efEVtpKcTzse91tsU9L2DWme4VgO62iBNC3O+QFZShw3QEiTYBKiHJfz+YjlmsymU6QhmTgOry6fs5gv6ZuWOE8wLYvAj3CdEMt0iSYRZZGSVSm2adN1NV3bEfghAz1lkZAcT5gTSZYkHE5HOq1RykD3LW1d0rYZuu/ptUKKkURXlAWWMMiLjHpouN89EDkOYeDTlAVtmUMQkeUZTV1RFxW9Fiij4Xjaj8QsNabB2cZISCuKlJ2GpCgo2oG+6zCMMf2rY1TIH+IYpEYPMCApquop1EhzSI/skgOGYSOmEs9yeLV5iTIc2r4bLYdSMQDb/YFhGANstAG+59MOBllRUBQVCIui7GjrhNAzqeqWviiwowVd1xFEAcvVnOp4oOk6DmlO2WpOaYoUBnM34pTFZE3NfDLHtB2qOqetC6LAZzmP8FwH17YYtKYoS5pq1Lw8nnbAmZcvPC4W1ugYQND1HX3ff6GbfWacC+QTnMX44l/+XAD/bIMd47CFELRdi3jKBwBNPwy0Q4/jWGNGvOng+WMg1dD1KGkQBhOGvuN03HH/8RO+8ri6uEY+qYd112FKgRtOEBfXXG7WTMIQPUiOpwP9AF44Qxo28+mapmoxDJvt7kRSFby4fjVCibRAWSafHt4S+gGh7WHQYxsO02ABuuR+f0+tIfAC/MAjCtY45siEL6oKlGQWLZBq4MeP35Nmd0z9Ka8uXnBz/56m6zEZOB1OTCc7uqHEcXxCf0LXNRRlwaB7JB1tO3abXNthNpkSBNMRvlRXfPf9n9jvHgg8Gy01lc4JIgfDEczMCN8N8E2DU/nI/e5IU496lraruHu84fn1c9JoTt5U+KaJMEyKriKcRLiGSU/IxPN4++Ed0XzGv/7271hFixHtqjt806RrJVoIposF0PHjp3dszyekNFmsNyjbHMd5TY3vu4TRAt+fcnn1nL4byLMMz/VHW2tVUFc1ZVszCEiyDMeycE2HND5TipSsSInLETITTadoOpqm4hQfUdKgA2jbETilNck54e5hy+6UUH73I9v9ntC3sQKbl9cvGERH2Ve0WmMq0KIlLU4UdUWcH6mbCqkMNtMpUkjCMGB3fuB4Svjq+itC28U0LFzP4/XrNyMO/f/ytOL/PPEFRrW/Z0XUTcJufySOC/K85T/7z/97uAZ8+HRLkedPxL/xzRJybAIoQ32xkSfnlMvNBt+1xmRVDYaErEip6/Jp3PzzRxqStEwRUjKbLjjFB8STLuAPv/09xjBQNme28T0GkqYduM937E8nmnZgdbFksYjYLFeUdUGcnEnzFN+dsFk+IwqnaN0yCUJc10UammkwxZCSj7cfsVXAdGGRZgWN7kfGv2cgJDweH/GnHpE7JU9jNss1yhjjvq82G5TjeJiWRd7WlFWFqSW6bHBQKENiSImtbBxrZN53WtE1LVl8pigabMMagz0G2O327PdHeiRJkSONgeibr9ksN3x8/x43tJCD5v2nt1RVOWbX/uLz8e6WLMlIpGZ/OJPmkr8XP9OaPus+xg6AQOuetuu/+KV/xgHyZVFM0nzMHehaejGgbBPDdtGdZn94pH5S5g69xjAs/MDBNi3KvmLQgqKpwNA4gYdrjWE6y8UK3wko64Za3HJ/OvD8KqNvejwvwPN8hq5HyoH7hxtcL2I9X2NZPlpBYE8BzTyajqmAzRh/7LkW61nEq80l/TCwWSxYRmukoThXCXXbEU2XDMPo15ZiQOphTFUcNEl6pKxyEIJnly8552ce9o8kpxTP9jCVQVNVhGGIG00ZuoGiOBGnB7K4oKkb1qtLlosLtG64P+/Yng8jxlN3I7SlK7g93BFYAQiDoq4xDYM8zxnagbkyaPuEvhu4WF9hCZMkOWEqySSM2B0O5EWJazqEs4Bnmw1aCAytxhm3q0APeH5A2/cjlrmvMKRifzpzLuLx5fQ8hBozrW3bp2xK0jxnHi64vnzOOT5T5w2r6RLDMbnaXGGZLnd3H6nbhul8yfXFc3TbcX/6gO4HJDZVW3JKTkzkDNt2aSxrLCoMk8XyklVRUbUFtucyIJi4NsvlAtH27HZ3PDzcMY2mNH0LjUZKxTAIugHCSYhpKN7vPvB42HNx+S2+NxlPpU0z6j8+B5oMPbrvx+/RXxwCQkqEMhBSwtNY4POmb0gDwzR5mh0gpcGgNW3fjla/J3uhZgANnuuRpsnYSbAs0rjg8eERz/K5uLpkEk6Qsqd7Ygbc727xLBMxDLi2he7G0VHXNXRthzQVX3/1Wx6PO3764SdcJ0AqQdllnM57llHE0DXQN5R9we5wT2P7aN3zbH1NNdR8fPiRoskQwsC3LObhFMeyEdIYT5emAeYzHCvEkIJXl5rD6Y4oCIiCkGZ1yc39I/f3W9K0JG8z/NDmavUS3VUcTluyrh7Dy9oGU420y6buSc8xfTuM8cJNhcSA3kAMiqbNaIaOxasNy+mGpi5wlcUp2Y6sk9mC5fSCus4pioSqLknzM1JAWtUkhmI6XRBqSJIjraXG+9JqwnDKbLkksF0MY8D3/FGY2FYIAxzPIZqEpHnCy2cvMEyDvu24vljQDSVpdqauSrScYOUnTMvlev2auq6IkwNtV5AXLY7j4NguQj+Bi+ya+90N1eGB+XSFZZlsdw88ng5gGDyejqwWKxzbZJds6XuNFBYv1s9wTJe2rhFDzyyKWM822JbD2/v3pHWBmQF9i+3YOIGJ2cE8sNFdRdqW3O5uOeXpOADTgv3+AcNQDEOHGCSB7bKZzVBCUjYjkjwIfG4/HbCGn+f2X6T7QqCHgfv7R6SC3THj4f6AY/okxzPfff9n/uE//gNSSH7X/Q+/tP7HsdkYy2w8ddUkBqf9mT8W/8j15pJFFDD3Q24ft5yzdOw8/+JzPO85ZGcmUUTohaO2aTbBMCWmMtG6RfQGnjNh6OBwiJ9CsASL+YJvXn2N77lYrsdqdfHUJd0jpMV8scJzLKSYYtkujutQtg3TyRppCI5ZwuV8jatsLjaKfXxCIzE9h7Zr8PyQr2dTyviMbG3armF/OGGZFqvLGcp1IuK84uP2jn/4059oiorVYk6PJIx86raFruPZxRopDA6nE01bcUoSTkmCY5oYpqJuWuqqIi0LwKDsKkzb4PZ+S1Vp7m4fqNKci80aJWHmhdjKB34eA7y9v2V/OmIoRdV26M5CeJ/rO55uNF+AJk37dGKCnx+InwtChmHMRrYdye64xzA0nuPhuRNs32bShjwcSwbGFmzXwyGNuV6tWMzmOO6EzXJDVeaYUpHmOZ8eb2h1z4tnL3G9gP/0D/8JeZ6TpgkC6LuGaTghCCK0Hqjqikhrovkc17ZASoZO07YVUiv6p1CNeRASWDZ5cqaWAt8PmIRTXNfikJzYx3vm0yWuE9L3A22fUlcl53hs/9RdRZLuaKuKYDIjLzKSJMGyXYIJxOcEx3aYR1OW8yXRdIlmYHe65fHxgeM+oWkbGi2YzC+x/JDkcMOpHBdjxxwtVWWas41jKldSdjuqtsJVFn3TobuBhhZpgGu51FVB3zYMQ/3EUQjphwrHlCACqq566lx4zGZzqq5iUruYhsK0bZRlUtclh/gRz5lgmQ6O3eCaLqHt49kWWVnStTktDSODXcMARVNT1y1ry8GwNH3bgLRIq5JddiKSAeEsYO7Owa1xLJfQ2fAQ3yGlxJJqVK8LSV00mMrEtmwaw2R3vqds23GhMl0E0LQdRVXQ9mNWfMOAMhRVCwiDrm/I6wrX9siaDgyL1eY5hnIo6vQLt3zQo5K/71r6vv1SDIyb/c8nfiE/dwJGL/+oARDIp1M/w/Dljej6ZiQMth1SCqqqeKL+WSNymLHILsqcPC9pu56Pt5/QXYfnWswmC7ToKeqc2lbYAszWxnR9un6gqRuUEORZzFF5OF7ALj3jNDVeaOKKgDQ/88PbvxJNJsznU079iUEOWLZCa0Gen3k473ncHzieU3Q3cJgcqJcF/iKg7xrOeUI/9Ail6HsTtEngONSWjefY5HVB2w68ev6G2WTx5GxwWEcrIsfhdHhgd95iBQGzcI5AEMcn4jjDtWzSrOSUHZn4AbMw4uXz51R1xfl8IM0T/FnEavGMRbCgLI4MfcsgJcFkxeXiBctgThxvqds5A4J+GAvdRTSSGSdeiKEMjuc9uRhwwxDH85nZ9kgazU8IqbEMl2UwIa8y6jxjPpkSuj6OY+G7FrYtUIZEGQZJcsJ2HJarNdCT5meQkkvz5dO9TimKEhAjd94PsKRJ37f4dosWGmEYRF44Zj5ozWMSk+Q5k2igrAqGQSG0pm4aPNce+QRCULU1PQ2DGpjOIp4tNwTRaGdL81GPM+ieru9IsoxPDAS2S9u1pGmMkoKyLJEY3O0e8DyfIq94OMQUVYEYvmMxjXAcF+W46FyTpSnT/z/cl2EYuN0/kBUp29OJMq/Rvk1WFPzjX//CP373E45t863RjyyMsc32BbchpIS+47BNkRr6pWQehjyWCTf7LXUzsJivRhfPLz7fffjAIABD8dfiO56tLgmUwjbBdUwQkjTvsKX1RAx10CiGs2Q+nxM6Hm3fkZRnVosFE39C6Ed0GoShqesSYVhMJiNgDVGjTYe0ONC2LWVVYAUWdB26bTlmOVlujU4jP8A0JA9Zwu54oio7qrZjfz6R1jkqb0qO2ZlPtzdUVQsY5LXm3c0W92Cy2SwxDYehG4MSmrLGtjwmgSArcqq6RQ4Dd/stUkBelTRPMBUXi4fdA8fDibYcCVNOkrGcRORFxamufnUh+15jSBOtNWVdYQz/DAD0hP8VArq+57+t/hv+p/yv0U+tUsTPghD9hH/MkoSyEhiAHATTSUeRV9jWqKa+Wl3xxnrNPj7zsD9gKUVVNdR1QxQ5RJOIrqlompbH+MSPNzd4tsNqvuGnmxuuNxu+ffUVaZY+zSgFx/TIIMbKNK/GcKSm66ibEscYLTVZkVKVBaZtc05OUPcoZXFOUhgaPKejSM6cTlvOSYxlu2yWG6JwQtPVCKnGtLim53w+U/fZaO+yHCzTIEtjJPB8c4kpFfVTmEwwmeC5HoZ0EAZkpc8iWmEbo71rNVthKxvDUlwuNry9eUvbloRhxNC1PCYH6ran0DWmdBg6zSlPUIaB7/kMGlzLwnYcqqZGyA7TUiOkJz+SlQn9oPEtj6xq8PwFF/NLqqbi+w8/0DY1r5+/wLHV2ImpOrIqB2mymi+Jeh/HdimqktPpSFXXbBZXIyNbJ9zt7qjait3pTJU3GArsQHLYbVHKJWtqlrMZdVNwOD9iSo3tGsynM9bRNf4kwNCausqpqpzA95mGS/qux3FchGVStBmebbOZrdkfdsRJTOD6XFxeoh04Zzm7JMHMSzbRhmkY0OY1Xd+OeQiXb6iFIpjOKJuSpmlwTOdp8x8XzLYbFf2fCwIA44mM+RluIg3jC/ykqqonv7xD143e+c8agr7raZoWw2hAaLquoSxLHGeML5ZCoIce3/V4dnXF+w9vOZxOtE3H6TxwjjM83yPNzkihmU1ChmGgaHqOp4S6KvnqzUsmfkbbPLBaXvK3f/gDf/nujxS5xHLGwCX6DstWuJ7FcjIjdAIcx0EpgzIv8ByXf/mb/4TNwwPb05a2HTVB9aBxHY+qrqmqnIGOARPb9mmaAkMMNE1NUheYps2LqxdsrTsezx2XmxesowV3j5/46cN7ZvMFq3DF9XJEpPqmge9OmE2X3D984sPtT9hKk4qBpChIm5zG0Dx//oaXL17jKnssbPsOrTtCO+TNpYtjBdRNhalsXG+KEJJz/MDD9hFbjZG9dE8uHkMCEt2BKUyKOma3G5MJLWvLYrahrEuSImE9u2Q2n6MNjSdMirZFopFaUxUlnuvhBS6uY1KX48l4d7zHwMBWFnk+tqzzPCNJMjbrMUa4bcdkwSiYMWiNHgZMafHs4hWm63M4HVjOF5TFib7OmHkh68gdRzFdS2dqvNDllG7Zp3ukMvBdizBwEAwE3oKP2xvubx4Q0qAZOrK8ZBaM0duh5+LaPmrhcoxjhkHRNhIlbCZ++GUfOWQpAZpAGgzD6LaJ9C9awT9/h6EMXNchyU9EwZzN3MM0DZ5dXMHQ8er5S2BAnkbh7c+asZ/jsAG2p4yXFxvmUURZ1zzER366/4QXTAjCCfPJrwm2Rdnz6vqKZRRxt78nzTLK9IjjmKxXVzi2R1/XDH2PYQhsx6brBJvlBZ7rUZYNeZfjyZ5zfMKSCbofRnmbAbbl4/oTur7jdDrQDD2uZVJXFQYGUhhUfUudFpR5wce7W4q6YDWf8+bZK4bWoG41yvZYeDZBUZH5HvvTEVU0BcfDjiw+cr2Ys5guME2bQ5yQZAlxWjFozXZ/T1vXKGUxm85HNXfdUXQ9dVPTVg0CSOqKtusJfY/Q8/Btm77VOKGLshVxlVF1NUop0vTXfsqrxRLXMMEUmJbF/2z436AHjaFGhaX++bYhEJjSRgyff+7nhLQx6nH8VYvZjKRMqaoG7UnipAASJr7NfLYg8Ce4lsc5LbCVxXo+x5TjCcu2bWzbxrFNDAS+4xB4Hk1VUeZjuMv+oAhsh6brcFyH9XxNVVbYtoUyLb75+rdIYZCWGTef3lGmMcKAm90WKUxeXT2j6iref7ihbXs6WiaBQ1pmNGXDKYkJLJfLy0vuH27JkvgJguJjWTa27Y6ZAGmG64Z4XkDPwDAIAs+nb3skYFsW0jDwHJdJEFIWHV3b4jkeoTtHGRZtW+P6PoHvUzclplI0Tcc5TXi52OC7Poc84cXVCqMzWEcryrrk+5t3KAa+vbzkcrF6qlINlOWBYRDHew6HOwbdEwVTDGngWw4VNWmWMY9a8iqlbUo8x0XT0w8dnjvBaT1aqZlP5zjKoSvqUeW83fPweI9ru1xvXiHEqJY9JylJmeC5Hi9XLyiqE7cPD9jKJ/BDlDL55vnrp4jTnJN1RMuaLDsTqITAdDinO47nLUWesYjmrC+e4TkuMNLxrlYXmNJgES2RSO76jqqt0QzMF3OEbSIMm9PpzKfiI3LQWJaJMg1s2+LZ5UuscIYpx9hbwzCQPFn+xkY9fd/Rdg1D39MP45hLfh59ao1hSCxrFAQqpZ5ajQOu61JX1bg+/kJM2LYttj0gjFEbYJomAijLnKat8W2HYejwXY8o8LGVgeNPyIuM+Ilm2HQdlqkQhoPjGDS6YNASLRVl2ZIlFc9eLFkEIa8vrjluP1FVNa7jsprPmHgutjmG4aCmlFnFoWiJonGeGUVzZt4az4xYLlc8bLdkeYVpVijlIIWBqVxgYDAkMBYzyFEc6wc+eV6wP20JvIBJNEUJSR6febzfkmUlz64m0A08PH4iq2P6rma1uEQboA1JNJ1R1ClVXdMOgkk4YzFfM/EneG5AlRdIMZCmJ4oix7ZdwsmEx8d76rpBmoomPiOlyaAr3j3ccjyeqOuOr15+xX/2L/4eaRg87O85n1OW0RLTVGgpR6twm2OImEN2omprltM1++MjnR6Y2C5xlpCmGXIA03JpjY63H97iWjaLaI2yHQzU2EViYBrNMJVN0zaURYFjOYT+hGHoKYps7FKWJUVR4LsBs2DCb199yynakeYJtejoVYtlKCZ2gGHIsQOpG6QYExu17mnbgrYdBYvyqaVelRnn05luUEznERNngqscBtEhWonrh1xcPCfwYj7d3JLVKYtoiiE7XHfsVhyzM3FZsAgbbCG5eXjgcvhlB+DnbAzTMFjMQgZZE7oLlDCxbZtvXr3GVAaL2ZysjFH/ViJqvthu9edEwSdS5mwe8vr1C3xLYTsWhjLYlSnb4wlDCpD1r/at11cbXl9fkBYpjrLR7UBRVzwcH2g0PF9d09Q1VVnQaMHj8TzqX4IJru3Qt/2YRxJE1EXNPj5SNgV1N67H8+mGaSRRpk1cFJyymM18Rp6XiEFiY2AKA2Fa5E/Qo6yqmAwDeVURBVOW8w1JUaDbFtcy2Xgrmq5G3dzfj/xny8GUBkoZtLrl4mpJWITcPe7Iy4Y4eZrzGT11d8SxTbQUmJZN37bYhoJhQAGW7RBYNqYUhKE/ZrwPEHge7QBV2zINIr69/gb+z//dlwt5sZyhLEXelkTRDHWraIYWhs/o3yeM4xPl7L8e/pdj21NKeIrg/GVFqNEsoilhNKHIx0S/tMopq9EZ0GrNh/tH4qyg7ho2swW+M+oAonDOaj6q9c/HPUl8QuiBmevSWCaPhx221kxsh+PphB564rNm4kbMJjParsA0YBJGIAxM0+BBGHy8f0Apg6KsOad7dKfJuzHi1TUtejoW0QTTsLk577l53PLt9Uss22N/3HNODvhuQNN0LJcXTMIpeZ4TBlM8N8B2fMq2wHED+q6ja3ukbfJ4OiKMcSbVtePmqtEICbNoiuv47A8P1GVG17U8nLfjA23bRP6EYRgV2J7pYkmTZ9cX2IaNLCSWbdI2NXWV07QhVTVgKYvZZIZpu1TpgdCxmM3WhOGCpioRckCaBqc45e7xBj10XM/HOFxlGEwmIa7n4vcBGDDxPdqyYX/acrG45nq+wkcjLWds4fUDlrRYLzdM+5Chq5k7cz4dJD/tbjEYmPoulmnimCZ+GCCzM0t/CkY7KoaHjnNe8g9/+g+cjjtCz2PoemwnwPU7lGGCNHBsF1uYI8So7zllMQOaLE0IJg6L6ZwgnOHaLjfvP7I/3WOaNm4TYVs+g+kRzm2aumAYOizHZ9CCrh/GVL5+TAPsuvaLI+CX2FJDjvhfyxqfeUOOyYWj+t/AdhxgxNp+hmV9XiwNQ2FbFnmefXlHmqbCdxzWiyW1W7A/3iJsyesXrxj6jrZuGLqWu7v3gODF9dcgNMfzASlgfzqgLMlmc0nXd3z3/R/JsmTMsR80XdMjEDimwnVcPH/CkHZUuqLvNB8/3rGaT9jMlziOS09Nm5coU+B4Lp7vYZujVU8iEIYYUb0DZFkC0kRJF1NaKNVxKk7cbu9xLBs9aB7ut5yTAsseix5HOTwcPnDIHolCn+3hljgrWcwuWc6WJDH07UBgezS9pmk6dklCWlZEfkDdFJRpRl3XOEHL3eGRw+ERzwnGIk0ZTMMZ3dCCYVD3mqSsSaqaetAkyZkf338gTc/sd6Ndb7lYMPPDUckfTMEUFHUBuueHj29xbBe5uEIrG9vyqfOaNKk5HRI+7D+yms0Z6vF0aXkeuh9ANHRdRVMVBP4Udz52JoTUT+yIYbTGCoHl2BgmlOWBvrUw6FjOIiynY3/ajs+QIcagJMPGEIKmKunbduTvWzZKCJSWxEXK/rwnLkqSokQaLr7lMfci+q6jaToGoah7kw4T2/Lp2pZdcuYQnzimd9ieS5KnpFlGVpeYQvF8taZu27GwFV+oMF86v/8P/3/HC2fC1AyZ2CHGYDIJI1xHcT4+YokW3xo3+c9nxS8FwOc/TQi+fvOM1WrKPIzo2grfkcRFhJawni6x7V/HAdd1yl/f/ZWyrimrDmN5TejaNGlLnCT4pk9RFKRJQt73VG2P24/0QMuwkZYYtWmGSVvVON4ELJvz/p7sdKRqOgYUi9kF0XRG3lZUbcPNwz1JVpMXLZvFEsM0kKbF1199w+9MGz/wqIoCoYxxH5KKrmvxXZu6LPndN79BHeOYoRsxtOMJvuWUJEynE9bLNbbjkGQlAL7r03UtZVkgDI/Vakno2Ox295zTE4vZnCgc/e6WpbCVQT80uL6DZwTM/SneJCQpckxp4E/8X11IlMTybeJjimPJn21Qn0N/hOQL9enpxvXD8CsMsEZ/eS7Q0HQ1WhkYlqJjYBAwCMEhSTmmMVJITNNmOVvw8vkzLq8usGwXpRR5nVLWGU1d0vUNddfStj1t3zGLIlzXQUsDYRgUaYNn2WPGKx16aBm6gSprabsetORyvuBTEPFw3DGfT1GOiVSCqRPgmQ7zWUTbVTi2Q9v1NO1A38A5ybi5vwULTGUS+DNmswWDGDjnMVVdIKXJ9hyjjIKkSnl5aYyQDcPCsQPy5pY4PWMIQTsMrBYdoePTVC0fi3cYhqKq8jEQA4OqafCdkL/7+vdkSQxDD0IT+B51XY00Q8vCthWeaxN3Dd99+MDtfjvGqoYzurbFdWzOyY52aDhnMcJ0qIoCx1JE/oRockGcn7n59J6u7XA8gW4b0vhEVzcMuscYNLc3H1BSYQowhp4o9NCtgzAsujp+6r7MxzjpqiXvSh5OdxRNjomg7xsOhy2mYZDEGfPZlMuLC0xloLWkLFNui1sMwyROc4pqwFYDQtkkWcbj7pHAdQmCCVKZtLqnqTMEBrYVkhUprhsipIEhXKqsQmlYRBGmNCibBqsbW7He3EXolkELlGk+tet7hqEbWfDdKFrV3UDfNGg9IJBfHmppSAxj9PX2fQcSlFIMDCP3wTF/MTobNQKjgHA88ZimheO4tG2LZTqUshiV0KbJZLnitf6KoqrZLDckyZ6HbEdT1yxXSwTgehLXcumHEsSKF88vubq4xhAmf/7xL+weHgk9jyAIMR0L3wthgIftlvlcMJ9dMPWXBPaE3eFEWXf4vo9tGMynIXl9pC5zrlcrqq7jrz/+CT8Y3Tmu7eF5PvpJHe97AYYhOOY5XgdtN7A9nNjutiOCWRpIZRH6km7oqKua3qth0JyPGU0zEIWCKFDotuLheOB0OuFaHvOlz2q5om56VJZQF/kIEzMkWjlY0mY+XdHqGsuyoGvp25JuAKE7mqrENU0WkynTSchiGnA87ui7Btv26Jp25G60Fafzicq0kRQUbUtc5kyCCYMWHM8xi4WB7dh4VjiOOfsMafSUA6xnV4R+gDJdirIgLlLQA5NJwPG0p+/hzQsf3wmp25pTeqZpW4QeIUcWPghNkjxyf/8eJLhWQOhN0WLAMQK6riXNzijDQTkOGAqkiWP5hLaPaZgIS6GkTXYoeTimVO1AN+rex/jgpsOQBmXdc0z3tFLhT6bUdY1UFo4zcvENy8B1bBzX4ToM+Y/f/RP320eWbsB/Lf4bMirGI9/Pkm8hBFpqptGUhWVyjhumsyWb1Zy6K7nbf6LKK3rd8+xL8+Bzx/gJKjj0CCG4XK0JgoAwDKmynrLsqduO5+sLXl6/fGJqvP2y59zcPqANQTv0tE2Da1hYTFHaYHc44AqbwLURk5AmiVnPpriOR9O02OZA6AWgBuq+Qhpjkiud4s3Lr6iqDNfy6OqaMksRhsS1TbbHB3bxkboSoHdUXcssmnFxeYEQEkNLHEuRJA2eGyKVwO8dAn+OZVroumV7uEW9evGSvu143G4pyxohFGjJ6ZRRFA3H04m2H9gfzwghCRyH6TQk8jxebS5YTAJ0U9K1DVeLDUVTU3QtlinRusEUYAoI3QCQ7I5HbMdiEoXwz+KAT2nGJIpwLiyytPps+hsXQMP4AgNCa4a+5/9q/W/5r/T/atxgf64Anpa98aHwHIswmtIN/QhHqRTL6YK+79ietiyjiK+ef8VsvsR3DBxb4bkhRVOyO+xoywoT+aQzEIRhyJhjLCiLCttRTKIZd48PVHmKaSoMJVF6FMblZUycpUg5+qa/ffUGISGvUiaBS+B6KCGZTqYErkeaafanA7s4oR00pmFQlAVFW46uDCVI03gsEsTA+9sP6LrlzbNvqfpR4GU5Nsv5Bo0mzc4U+Zm2Ldntt3i2y2J9wSmLKbIEIQWnPOZ8PjGPIqJghmWa2I5N5M/pupqDHLh7uCPJE9aLBRcXK/KqodU9liWYhi62MrCEySFJ2KZn0rQmPp+5ulzh2Iqm7ai7GMN2MIWBYZgIQzFImyiYsrUctqcH5oakbiry7QPPL57Ta42yxlN33w0URc277COb1Yy6LvFtD7qWNJfYtotUivN5T1qMwSyCnonnkiQ5+76m6wY8q6ItK6qyZH11zYuL19hWxPcf39O1Gb7n4yqTi9WKSTTFUz4MPQ/be+qbD3j+jGgyZzaLCMMJf5j8HUVZAnrssHQ1D/cf8LTBavOSQZm8395y+3iPpQwm6w1lkQMSxw0x1eg9Hq2rYxBR91QEDE/q/c/tyb7vv8wrlWmMp0wBpmUziOHp1G8ijJ9P/vpzaax7EKPwz5CSFpBC4ToewhgzE3TX0LYlUgiKPOPu8YYkP/Js/ZLN9JJjuqUoM7q25pwdsSybi+WGyA9omob5fMp8MmPiB5zzI4+HHb7t09UF22OGtHyS5IxhmyzmI69/vb5A6o5BGmR1RdV12K7HOU24322pu5qsOjOfzun7hqJp0NKg0y2i1xRZMcKW/Cmmcnjz+nesFtekcUySxGP0uCeo25HOWDYNynIQwuR4LnGsKXc3N2AIUAb7+IAxKOI8Z1mOQWJSWaMjynRYzJb0Q4MUgiiMEAJ2psH9zTvOaYyUJm3XYtkWtjQxDcEkcFnPJwSOy/GYM49mLCZT6Gpm8xmd1jRVTZyOo0KtDPwwJC0zlGlA33E8H/DcMZ58vVnj2t7oZjoeULbJfL6gLDO2h0/sTg+YzhWeH+B5ExzbRvcDgeNRliXKHl03SZUhNAxtS5oeKKqEfoDWAqmtMf8lrTAdi2gSErrTUeCoNa4/YTrruKoapGnQS4NDnFC1HZbn4ysb33V4//iJXXJm6GE5WyKkhTI7HMukzGIsx+HV8+f88KnFMOHb9cvR+hhe8ts3v2WxWvLj9z8gPgv3+Az+/bzmjx2Bw/nE42mM9r68vOb1sxfUZcbN3R3HJMVWJp7/a4rf5yJA6wH0qKlhEJR5wbHvqLKEj3f3/PT+E9frC1az9Zckws+fv/vd33L3cMchS1iFC+bRdEwVdX28p/viORbH5IihJLpvMFVA1w8MDCjLRKkx28WUFugO2xytuV0whbZnmz9yOO1RymIfP5AURzzPGnHky0tc3yWcRGOCZFlgKYP0MSErGq7XL8maFENJ8vxMhsTG5H5/j5oEY2pbP8xIk4K2Htu3Xd8jDfW0kCi0MjmeTkyCgPVyhWNKmrLgrsyJi5Kri2s8P6Boai4Xc1bLBUl6pNcN02hG4E44xCnbw37cpL75HddfXf/qQmbZGE94sVlRFS1CSEbMzVOl93mmKUYQUOg5GOXTTRO/KAK+tId4YgWMqupJELKKphjSxlAK04TLzYZvv/4d3dBQ5kfuHx/xvASByXF3JM8z6qrGtC1CP2DjejhKEXgRw0SQFDF9N+A5PpPQwwv8J1SxwnBMugHsfsRdKmVhOh6ua3NKdiRFwmwyHS1O1rgROrbNMU4YBui0RlgGpzxDHRTLTYRpViAajodHkqbmw80NBoL5dMl8tqbpApJiT9c32KbL7faWvkwYun4MOapKXvsRw9Bx8/ARIcB3fBbTNU1dUGYpYTjBdF2EGL3jpmkTTWcodwxx8V0Px/VJzme6vmMWTJgHBq7l4E2mlO8/Ml8usaRmkBLT8hi0waAESplMo4i+7vh4f49hucyDANtzUKbJKc7Im4JeDPzWn2B5PruHe6aTCb2S5OUjrW5YMCMKI5qypuhrLGFT12fOyRnbdZkHczSau31M3dSc4pjA85gtFpjC5ZjX7JM7TnnJ0BpMoymWAVVeMZ9G2EqhB02RFwSTYIxLTVLysuRVuMD3PYQwRv6/6RBGS5ShMLqBf/zu3/N/+3/+WxzD4d/8F/+GV8+esy8z7h9vKaqcOssRmFiOB4hfQvroh7H137WjC6B/4vuPG/tnAaAxfmFgyP4JAiRR2mTo9ficqbGz0KMxGYmCfd9jdB3aNBl0R1VlKMPG83zqOgNDkOUpt/efGITgffGB+4dbvn7zNdeb58TZiY+HG7qiI89SyrrgxbMXZHXxxH1QLGZLPNvHlBLbs5GmjW571HTGuSw4p2OkajgNMAywHZtAOvR1i+E49G3H3PWpTIvb44nL9QWe446230GjTBMMhZSKQ5yiNSPZr+1oh4GLzTWmYTKsG+7ub3CDkGkYcNoeqOKWptNoZaH7mtAJmYUOF4sN5/iWm8d7kCYMGtmbnB9bbrZ7wsDFti2W8yWzyxcoZaCkRZEn/PT2gThNqKqc42HP28cHbMvg+nLFernh+uoVq1XNKXnA9zyuL57jOSFxdkTIAVtO6fuBwLHItURkBUhF2/e0fUOnSzzPwVEWSRqT1jmBF3Ixn+HZLk3VYrke0jRQwmA5W+A4A3/5cU+Sn5iFKxg0TZUxaM0xbhl6yWJ1iTQNGt1iGg6WFkjREgQRtuXRd08uq2HAdicwDLT1gDmxaNuRQGmZiu1+hzIshl5zOKRE0xWzxZq4zFBSIYaBqqtp6o5oMWez3NA3PdO6Qgw96J7LxZxu6FDSYL1+zovr5+xPMY4dEYVTfv/6d9iDpEySXwVlfTnpfZ4ICM3DwxYpFV99FXB395HDfkfX17heQJYlpGVK9PnP+OKwGcebQo526rfv3rGZT5mvJqRlgjQVhhRUdcmHTx8x5K9tgIFn8+rFFctyRmiHeI7D9+9+wFDw5vJrLp+9IcmPuG3NpW2TlQWWbdDmFVo3CN1Rly1FnhOFCj1AXTXYpodUFgM9eVVSdgXPLp/hVA6BDjCQiMEA2SP6jjqPaZpR6yD7jiyvmUymSAHt0CD7gbqsSIoCz/E4FgWqqUtMNbKl+64lTXOGvsNRJpvFkvViQZIVBF6AfP6M69WK2TTi9v6G290jjm3x4uo569mM3XmPVBIlDDzboyxy9tuxmja1y263I0ljpIDb+zteXj3/1YXsn9T/h9OJh/2el79s7evPrL8Rc2rbFs+eXfDv9v97/ubhf87PzaCff6S15ng8sTAMXN/GtAws20JrgWkbuIGD57toOrLijBA9ne55//EDtvKwHYf1YsWgNXXfjRx2x0H3PafzjgZN1VYsJkt810MwkCUpXV+PM19vguuFT7Q2gTQtBn/AthTC7NFK43guaIltOdiGyXQ+zu5t20MLiemMEcXH0wO2bdG2LadzguwFraGQwqSqK07xlov1JVeXL3n7seBx+wFDmPz07i1D37OeLxipcC26b5CGgRajN9m1PDzL5rsf/8Tjw3sif8LF1QuU8nCVxXS2IQhHUhdtTdcUCDmwmM0o8hrD7PH8kL7rmQib337jMJ8ETFyHvmtwlE8fdNwd7njcben6DsdyUZZNnMUjkKhrmc8m1HVPGw8goR00U9ejaFv+9P4d8+mS59cvyKpxVlhZijKr6BCEYUDfN+Rlho/A6cXYSShKBgFBGOIoi810iZQWf9r+SN20nOqcU1WwWay5mC+5WKxpdDOqtrXGkJpPu3v+/N1fMQ3Jq5eveHH9iiiMUJaLH0yQhhzbhxo+7m/5d3/5I1a44Ktnr/H8CZ7tcL3a0NUFfV2PX07L0OunAKYnxoWW6H4ktQ1DP0YADz0w6hOGQT11Cj4LAQ2kHJHAniuRlj1qCIaxna+fBIOfI4D7vh/tgF1D05RkaYzrhPihT9sZDE+dB9FLLKUIJgH0kokbUbQlu+TI4ZQwdaZsls9wnzZFx7Fp+4asSpDCQuhhZIYMPZNogms6xElMFM1IkwN5U442wrpFtB2SmvVshTQUZRFzd/uJT3efuLq+5utX31AUJcen5MyiKui7jMV0hTFodscTgR+wXiy5WiyYBT5D19EJgxfPL5mlHqJtqBPoBgvLNFBCYBkWgT/BkALdVlRFwdAODLojCD2eb56TxBVxHONaJloOaDGAGNG5iI5zkvC43/Hh9hNt16EMA9f1CXwLx3IwMLi+eIHnudztQnx3wiScs9lc83i85fsf/0yrNYvZkjg58eOHD0TRHIGJpywCJwClmUym0GmyosCwHJ5dvWI5X1LkGQMdnu9gWTZNWZHFe/q6wvc8mrpG+Jq+rUi7mqEf2KUZTrhgaVnYpgFomrLE80KWszVN14M2KKuKgRr6nqvlFX1XkSYJp+OevMhxPQfPD0AOBJFPkqQMuscybZ6tLp6icTP0oEfokR5TMl1pgasxczjHJwY8bMumzEoC18UUir5uCR0foTTb/S1pfETrnqyusQb9/7PWD4wCvq9ff8XrqwtePntG09ac4z2mlEy9GYMe+D5OKcryi9r/83skn7prUko0krqtaNqaPEsRQiPEMHa2oilVWZPUPyfYAhRVjGNb6K7h2BzZ7nru9yf+5m/+wMXlG2aLFXF+HPH4kw11V3OIt2g6pOg4HXaj3V4KkDF9rymLmnOcEE0XzKII0zTp5UDgB/jBC3anPQaS9HymbzWupWi6GoQkS/bodsBVFpZhUBRn2qogPh3xnJAwXKLpSesKJVGEToCBGnPrg4K4KIjznLzK8IMA33Nou5bXz66Z+j55USCFQJk2v//2W15dv+Kw35EUMd++fE3TDaRZQdvBOS5I05wkrzkkGW3XYVoGcZbw49sf+S9/cSEX8yVZFrM9HDjG57G0+xXt6eeb/v3L/xOWJQkiD2NnIOh/ZRn8eQIqaOuWy82aaTRB2SP8JC1iAj9gMVuPqXN1SeB7ROGaujLwbAdTKTzHYTabk1QZrW6ZThfQw+G8I41PSK2ZBCFVXXF7f0+WpigpWK0vWa5eMJ0uyYszaXpkGDS2aTM4DpEOCQMfpcbgmLKsSYqcu4c76qbCc2yurl6wnC2Bjh9++jPNUGJIRZo29E2HaTp4bkDX9hwPGff+O/qhxZEW2pRYymUz2/B43COEwTwYtQNtXXPOzxgaVpM5lu1gCZOrixfodsASxujrb3paGoSysZTDOT6RHI90fcUpPWHbFpcXVzzfXGJbLl3bkX74ga4pqEuBHUVowxwbTpZNVuQkWUpR5qzXVzy7fI463JOXFbapMJWLnlgsV0v6tqGoMrLcIQg9XN/DNX0sU1E2Mcf0TGFKHGljmCOprWkGlutLPNvDNV2quibvSkzbYflqhW4Zk/3SE/3QMpsv+O2337JezfF8h7m/JItj7j7+idXsivl0znZ7x7/79/+B//Cnv/B3v/kt/+JvF8xnGyzXoapK9vt7hBxb9I7p0HYd//rv/jWLMMJWjCmE+0faqsI1bI51zv3ugUknmM5NgrBDPbX2+6d4WT2Mltt+aJ8WqeHLuHLo+5HZjwYxepiHoUfIMT9gGPSXLAUp5RM6W3+JRO26lr6TNHXFOT6hB4Ef+BgImqohS7KRyzBdcLl6wf584C8//ZHvP33PZvGMr178nqaq8GyLwLGpyhH/6rkuZZWRpke6osCxPXaHR3bnI+vlBqEHVrOIxdTnmByZzTZcrV7x/ds/E6eHpwhqH6RBXFUoJ0AZDv/xL39EaLBdj6qruXu8RwqFbXqYhsJxXIqyxrQc+rYlPm3phmbMCDEkhm5pi5iiPDJIjWlZCHqapubm8YHT+YSlFEWRjOK9SURZlRR5zLPVmvUspDckD/GJ3XmHVAaz6WKkBzoeV5dXnLOEh/2W1XzF36xneK5NnuUMg8AyLSzTwXUmRJMlg4aBgSCcEEZTDO0wm63Ji5LAjxj0qHWahVN0Z7BZXSC6mpuHG9q6ZT5ZMvV8hqaDgRH2NHR01YBlGtw/3nE4HSkrzdBrhnDAtE2atqFuGrSSuL6PKQ36tqVpcoosoa/O1G3N9nxEChvXccbN3QuR0qAcBpIihzzjcfeAaQkWizm2Y5GWZ5Iq5XRKmAVzmrpjf96SlwWX60uuV88pm5LH7SPHtub66po3V894sE3OVUVV5RR5SttUpF0HjFbHqmsok4hBa5LsQJycmOpfdAB+wX03lMF6veRqc8V6uWF3usEyBNKwUMrGdz1ev+jZn+6Re8mT++9XgsAxgwPqruKHT+8JHYvryzV1U3G9XjDxQ05xgu0YwM8OtrzISDJN1wkMY+xwvnrzNZdXV6NOp8mxleYxP1K0DVebC3SsQQx0bc1yNsV2A3o0p+MDUiiCIOLj3Tuytsa0TIompx0a6ibBcS0swyIK5/RlSzOUKMukqFLoej5t7zglJc8urmmHPYaStG3DMT7z4vo114sVaZHiBT4qSxo8awzIWUwiXl5dU9Ul5yznbr9nF5/BkAgLWloOaULk+EyDiLiIycuUx+MDP7z/iV73vHz+isGQ5FmGFIqvnn3F7ryjbDp8z6XuatquRQooyl+jgGeTgKbKidMEpRyon7ZyIX6+11929mHM3Y58DDmmpTF8PvH8QhyiJGWTc3/YIi2DTTAh9CbEp9GOp/XA3eMnsjxB9AvWi0uWiw2WZZPGKWl8RhgSx7VwpMXED2g7jZEkVHVLlp4ZulHgVjU1q+kSekVe1qR5zCQMCIOQbmipioKySNBDSxbH9LpnEkasZ2vk3CSNzxx3OzSCy80189kC25a8//CJpq3HOXpTkmUtTd3RZRlZWYKGWg/8+OGGrGzwbJ+yqdG9IE1zYMB3Ld4sr7Bsl7Yt+enHnwiDgHy+QuoZ0tS8un7Jwpvy6eYDj9stluVycXmFYZh03VgpN/3AOSk4JxXLpUtVtZzjmLY5jCCkZsDEJkszHo0HFuEMLTo+3dxR5xWX8wvCyYzN8hqGMXpTaEmRtUjTQgvxJaioExqpBUPTEQQehiEoiwxBj2spyqLE9m1sW7FZXOB7M+omZxg6XNvHCyPSKmMYer559S22GRCft/zw7p+4vpyznL1gFS3ZRDOKJqMoYrqhxhYGXVWy3+/54d1HyrKjrDX/9MM73rz4isv1JVVbcTrvUE/ciUFoZn7EOpzRuD1lnrA9H8mzHAzJLJqxmF5Qt4Lt/oAwAparK9pmJPiNyN7R8jc+5wNCa+QT5exz5avRlFVB27YYhjNmCDDqBhzHeTrFj3HC44lmpAjqYRhxwk/tS8NQKGkipaTrOqqyos5zhDYZOsHb9++oqo7JdM4kmpDeHkjTMxeXl7irBV1Rco4fSdMM27YJPB9Dm5RpRdbmdHpH27foTnP7eMvzi2tcx+Lt7SfyqmFVFexO99RFycRyoKtpakFTFry4fMV0vqTIMoR0cFwX33c5xyfqsqFqxsVstVhxtZ5QNR1tq7m/v0PrnnqoQYA0BBZwGcwIg5D3j5+IzzGONYavuLaLsTSRjNclLhLSPMcaDOKsBH2iHlrevHjNpeWwPx84ZWfiMuP51XMuZ8tR+7RZMQ2CUdekG3zHJ3CmnNMKwxzzLeIkRRkWndPT49F0I88gyU5IMUYAL5YNu/2Bruv543c/EPo+/2UQkGcxSVawmq6Rg2C336Il1E3NLNyMMcjne7Ii5fufvuMcZ0STGevpfMRmGw7GAHWfo7Wgb0qS5BFLSgwGdrstn7KCeTSFYcANHVzXoShj6qairMZi5ur6DYPuSIqcus242d2QxQd6bfDi2VcsvTHzpW0GotmUuDkR10ekNrG1ySJacru/54/f/ZWJ7YMEaZl8fPhEUeRIAWHgYysT3fS4hkFg+yTpCaNvaOuxo/DLbeBLASAlZVVRdDVplfD4+MjbDx/ptWI5XfL8+jmLxcWYj/Bn8fPvfxKTi6diQGhNlhcMw0Dg2YSTCQt7gTJM+qbBtRSaX2cB5EWF43oYlsnLq9esVnPqtiKOd3Rdw84yMKWgLkvqssAYOuQAjulx+/hIpwXPryyUobAse+zgSQPb9nC9EENZPO637OI902jBSs4Y0JyzE7vTI2ma46YZXVfi2pKyqOEpoOiz3izNEtpuIMlLVl1DVqRY0kH9x7/8GQPBcjnjm9cvx9aPbvE9h5fPNoShi+mM0AbbdPnh7TvK7EA7dNR9zc32gZuHR3bHA7/9ze8wA59Wd8ydNa3bEvhTyqGn0x2aYYT7CIfNbMXM94HtlwtpqvEClFWDIcf56OeP/kwA+jLbN7hcXaJMn/rf/7NHQvOl/ankKMCpm5qizAGNRFCVLXF6REnBMTkjGO1K3TDgej6mGm9Eo3v2pyNpHmM5JgqTttfsTzvKOieuE6p9wvl84nJ9xfOr57SdoGoaDod7ujpmMV8hpUXft3y6uyfPMpLzgbLMWMwjXr3smUymDLqnH0bx0AgMgSRLaZEE0zUSxY8/vSVNY3xv3BCrpqEuG5xwyuVmReC5fPz0if0pZjqNUMrA7RT5OebQGximQ14VFGVHVZyZ+HdEkxLLtljOV6RVzvu7T1jKwLBsTMvDMEyGvsBRJuvlBtfxefn8KyxHcDg+kGwLTnHC5fqCr16+oe97fnr/F+JTQnEuKcqMOI0xLYfQGoOJhk4gTU1dVMz8iJkf0XcNZZ0hBj1mYSuDoinx3ABT2AxDj6EES+eKib+gqHIQmqYZN0TTdPj46S1a97x4HuDZHp4XkZc557xkMQ1ompahawgci2ngYSpJmmUURTZ68fsBS/ok54xj8sA5yanrhpeXzzlnCX/87i9UbcFvv/ma9WxKVVQck9G3bVs2i+mKNE2p24bLzQWePyFOU7J0HLW5doDvNJiGQnzepPUo/tN6bPePhpfP/P8nRKkcswDGE9+AkOPCpZQaCYVN+7R49OOY5yleGD5HDI8LnGmZ9MNoF1zMF0gh6ZuOw/4IokdpA0PaBI5Hlp7wPJc3V8+okxNxlnF/94nL9YbQdlCD4Hw6I7tb7u4eyKqRmJnEGVVbcbG5xLLAMAXXyyt2h1s+3dxwinPOx5jQD1gEc66Wa8q8GAubpkcjGfQBx3FZry54eLhnt90iDUmejeOZr7/5HXKAoqqZzOcjXEf3JFlMlVU0fUvb1QSWg9EYVGWPJWx6U4/phH7IbLGgrSu6puXT0HFOYjAV18sr5pM5+ySh1BX7LOY3119zNV8RVylVUxG6LkmaMnQtvuexnq1p+p5DekAYDlWek2dnkniL79osoxm2MrGkgaVG5C8abu4/QN/w9au/5Zn/CmW7vL/9f/Ph7oHpNOQf//xnDvsDlmVhq4jG7jhXKU1XkqUpoX9gs7rgFB+529/yuD8TOSHP5xeEoY9teXS9IphecqoyHu/u2O7OvKUjCj2atuHHH9+zmi1ZThXLaMJ8fY2pLG4fqqdldYyQdV0f0PztH/6O29t3/PXdH6nqFqUkchhYTtcYpsNqvmKQFVUbY5sm++MRpSLqpidNUoQw0IZEIDknKXf7gpcvXnIxXdNUBUpILFtRdCVll5OWKUhNUZVP2S//DAP89OPj6cSda/Hp41uqsqBqe7pudNAo00Q/kTld8fM7ofW4H/AkMR+Gnm7oCUIfNwgQymKx2GCZNlWRglCILPvVvrVYLFkv17TS5OtXv0UpPUYpzxZ0VclPN2+ZBgFvnr/g3fv3fHj3ka9evCbLC5K4QqkYzx5dPEVRkmQpWkvm80uu5ytMoVlMQrI8w7MCIjuiaTRV3yBthWxsIt+nFyYP23tmwYxNEOE4Psv5lFOyY6sEd49HqqoHYWI7HoEboU6nlNMx5u2nGyzL5eXVBffHHUK39G3LxWbN1y9fYCofOYBlKG5ub7k/PtAOPXlWYUiTV89e8l/8q/8caUm28Zb1fM3ZLFCOxWV/hZSC++0tdB2u79ANPVnT/qqScqIpssiwXZe8GH5V6X1u1XzG/duug6XMsaIX8gsB8PNJ6fPzEfgeoe9h9xLXdGiqhqpo2e33tH2NKS1ebp7zsHug7zVZWow2sLKia4fxhDX0lFXBdDFldziPbde6ocoTbCnxXBfbcrlYXGJKC9tzcRxNVaXstjvSOGYaLUAqLjZX9CvN7jGka0oc10aZDkVRkeUZQmvO6Zndd/8BzwsxhCRJUxzHw7U8HM/n0nWYBxFplpOcc6q64X6/YzWLEL7H/fHI/nDm8XjkzfPnWNKhbjputwdAcTgdSYoc21B8/+MHLjcFkzDAtRxm4YTff/0NGIrV8mLMQU8yTucD+/0Wy7JQpsLzXaQxEHohV+GM9aJiGkRYhqTVDRM/ZFe3fLh95HG/ZT6b4Qr4/t17tFBYtoVjG2zWcyypUNJC64EyKwi8EK0F2+2ex+OeF9evWMxXHE6PGMpiNdtQdx1xsud8PlAXPWdyFjPYrJ9R1zVCGwz1wDSYY5kuApNhkJSDQJghlhyo2wY99Gwfd2yWK4QwSbOCTw8H7u9GglmnezzH5atn15RlQdnlI6t7+0CRJjzuj3RtiwQOzZHjPmbQkOc5ZVlzsdmwPxwxxCgwur1/IAhD/HC0VrVti1JjB0Dr0TeP1ognOpt4Erx+xgAbTxkApmEihKCqqlHhzdjC/Gxo1hr6vn8K/lCjUBbGyniAvh9omoq8yFksL8FQnJOYIs8JLYvIddgdHunqEiUl795/Ii1L2r6nqQrqPCdJUvKqBm0jEPieh1IWddszDAZ122PbIxzrdDrz9t175GDRVyW7+xNN1DP3V6R5hWAcX3y4u+WUpDimjRKStM05n2L2h9OYe2BIrjYb5t4E27Fo+1HMmOb5eEJz3DHVUBtczK7J0oy/vPuIkgLPcbh/vENZJV999XuUbfHD+x9GzY5jMYsmmEh86SC1xBaSzfISITXf//hn6qokbyomsymWEKO33nN4fPyAHCSGGfDm5d8wn0z4y1//kbuHe6q6Bq1Rls3z5y/wtaLpE9q2ZhU9x/yNS5KcyLOUxXKJWC75w7ffUtc1SRbz3dv3dHUHAuqm4+//5ncYouP28ROnc0ropgRBwGQyJe9KTnHGfLrk0+MdxkGyWl+xXF8ThVPe3oyHmbbQKKm53bV0bc+ApBOa3flEL2FlvMGxPQxpkxcFh9Me03EIug7BQJFldHWHY/hEqzlNV/KwvcNXAVdXM9q2YHu853Q4MvECmrImmpuUTU5SHAmcKRezFVIqZsMCbYDrh/iTKV3fcTwdSOMzcRZjeRbH+MRiPiGtiqfRl/jVOj/uE5pTfETrDtH2OLZJXjaUdYOfHHnRX/Hx9gNlWfDqc0H89E0zvmtD36MHjWU6KGFiSgfPiwiDKXLo6EyLMJxysboGfvryd9uOi+8HKO8prIeBzXyJUpJT1zKfRUSRw+l84m67JzlXWE7AMTmzXL9EyIa//PADfuATBR5ZnlK0A7PFBZqGum6ZRhMO55gPnz6gnqy8K2+FZ4W0fUtkC95+fEuWt0xCgyQ70euehZwhpUkULMkLjWEI8izhcNpTlh2qqDtM2yWYeNRVyznOSM5jmzX0fPoO3r//gBAGF4sF1/M5V4sFf/kU8N2772jKirIqcOwlpgFVV5EkB2Z2NOZ9dw2e7zAJQuo2Z3+qEU/iPscNflUATKZT+sdbvv76G6pKoP/p8z3+5Z0e55/Hc8J62eD79mjL+9wd+JVgQCOVIi8K4rR6SlOzaOqBm4ctUmh+ED/x1cuXNFVHU+esZ9csNhv+X//wD/zw/Y84jkPdFJimIjrnOJ7F9cWGKJzStB15VbLfZ2y3O/bznLzs2Kw3lFXH+XxADj1MTD7dPZLlOZvViqurS8yrFUPf4zo+aMiyDMPycMI5VXJEGALH9EFr1nMP2zQ5n2LaqgIECRXb3ZH7hz2mbWOZAmUoPNvhcrkcCV0C3rz6CiUkP777nnOSYRomcVZiGCYX6ytu7m/xzITA8nj//hOBH7DZLNke9uz2W8JwSpykxEnK8ZhgSI2h4LB/xPNtbMvCskb63L6sMeRAWRfs9kcetnvKukUpa7SGTSYUdUPZdAwdfHy45+72jpcvrnFsl6ap2e0emU6mTMIpRV7hWR5d07A/3bPbPaJMQd90lFWLlBpLWdjKRxkeaJPN6v/L1p+EWJZve5rYt/t+79M31rp5E82NuM3rM+uVqkpUQaWgQKIEQgg0qLlAIFRQQiM1aCaEBppoJCSE0EwzISFElTKV+V6+fPfed6P3cHdz646d/pzd93trsM09bryUQRDuDmHmnDjnv9d/rd/6vnOyPGW/3xFEGX4UUNU1z86eYZs2ZydXqJJKnidYZg+alt12S5YkDAZjiqrBtA0QG1RR4Gw8Jk1zoMSzDYxGgrYmrzKaSkHSLOLkSJLE7I8BqqZhGBp1W+O/v+b+4Y60qhBbEUPV2R2PhFmGZpkMRhG65aC32seU/gcqWVs/SYGewn4ftp8EsSsCFEWhaRuSJEFRFEzTpCiKJ7hT11Wo6/qjMfCDd6uuq49t1KoqiaMQ1+3Tcx3qPEGtG9brO+6TiKoo0RQdy7QxVYs0ztksVoT7gCLvKJJl2XJz/4hAZ1xUJJkszzBNA1FQOJlfIMoif/u7v2O5uMM2Hca9CbIs47o2QiNQlS2SrLL1fZZrn/d3d/Rcj0G/z9ubW6Iopqxq8qKkqiq2mwPH9R7XtVBNDddzyfOCpqyZDEdP20gF9TFElmSSpqEIE4R9iyhrzGZnNK1AHKfM588YDwZ8/Yffs94cybKUu9UKt5diqBqmYpCXKUld8bDacnN/z9nJKfJzlTpvKbKY5WrJ2dzgfHSKa1kITdMhgS2XvIQg9Knalu0h5POXn2IYBqqqYlsalWYSCwmrzZIgOoAgMJ0O+CS75NsffkBTDE6ez0jShLIqyfKE4cjF6bvUgsQXz37J1cVzqjojjQ58cfUcXdF5lyTERcbbm7eEaYwkZGiSxMXsgt32iG0ZtGLN/nCgqkoMy8L1+mRFF4BTZAlZUhgMOrJnnCQoskAURQT+kSzJMDSHi7MLwuzAze01oqRwv7gnTCJeX7/BcRycqx622UeXFMK6oGpydsGOx63J+ckFF9MLmqYlrwrKKiNKIhBFbK+HN5xQlBUNOpapkubVx9DeEw2GD41hQRBI0whFFtFljSBKCKKYtC45UURM06DOMlzD+gkh/BSQbdsuf9c2DXVdc1iHDJ8PeHn1HFloCMMtaZZyfXuDYbhcnFz87LmVpmnnwzBaiipBaaFpCnb7HWmacTq7oK5TIrHiT37xZyzWawShwWHAb379Jxz8B363vSGKYwQBFFXF0To2SZioZGlOS5ftKbMuL9YKMk2W0sotnm0R7VYsV2tOTy9I05idv0UNAkRVxdBMFNlmNlZoGoEoiDp+hd0in53MiZMYxzZBgEMQ4Noelmk+rVwo1HmJKHc7mKKiYDse83JKWcUslg+kqoBlKmzXd9yslrxZPrCfhJyMz7hfPbL3t5yORjRCjSAJBHGEqQP/aJZCljN2epyMpxzCCr76uN/xs4e6gEAYJ3x//ZaT8YiJInc0OP64YOgO0jiMGQ09HEtFbGWKtCTLagQkPMdFFFT+9vdfsQkOWKaJZnjEZc1yuyOrWrIo43D0adsaTT3gWDq2ZiM0Cn5cESYFuqrj2WOWjzt8P+LqMiRJc7bbNaP+gBqZKEk6xnuzJi1yyrpAkiQ8t5OSJElM20JWCoiSQd82GQzGvL19R5l3vntNMQj8DQ0C1/t7lrsdi+WKvusx6Dl8++NbVusVsiDQty0cR8dQBSzLw7Js4qTAdRxKQFNUfv3lr8mrmjhN0U2X28cFX333mtl4gK5rVCXkeQfBkBSFsipY73dYloEsChz8Tj7z9t0DeZHRd11MQyNNUh4flliOx/nJCa/f/8DhuKfnOLx4dklR1WRZyaA/5ubulq+/v0YzNc5nczTdYbna0JQwGA4oy4owDLl+uKWqckQa/sH/gTQpGXgOL87Pse0elu0giSJRGNPSkmUZURp3wacWyrLg4O9QBJE8zcjqkrnrkqU5tCI/vn+PsnhEEhVMXeZkNMDfH9jvVkR5QVnWXJ5fIskiq/WSwN9i2S4Xs2eEZcFyu6aVJOqCDrYS+N0qX1WRFzln8xPsuc2zZ1dUZUVdNYii/KQhFanrkurpBkLbUDd1Vwj80SZM/SQFEkThiYrX+QA+BAg/dADED1azqqZVOrwwTzs0TdPQVA3Q+TrKsiPFZUlGW1dUecpytWKzPWCoFpZRkeUVTStQl7DaLAnTDNvpczqSCNOwy5s0LbIkY2ga0KKFKpPxFFEQOoFLf0CRFcRRjKIL9L0RggjL9abT9DYCb+/vybOikwkdj6RlTVWJtG2n/c6yhBY4RAVJtcELExzXJr9bossyV2eX5BWYooLj6PTcHqZuYagydVny/vaBvKmwbA9J7MYArucitXA6OWX1uGYRPaCqOtPhmCCM+e03PyAq8IuXn/DFZ1PiuKGqZVbLPf7BJ4gjfnj/FlXr4zj7DnpVVPhBwNXZBePehDRPedhsKMqSLEvJswTXdajykMPhSBhlOD0XSdZo24aeO2A6TFE+V3l+8QLbUNlsVwRhTE1JjciLs18gn3emVkvXkUWDneWwOxzI0pzn589oJZFD6JNXFUWec9KfM3Rn3Ch3KLKI5/ZJRjFJFuK5A0b9MTU1UBFFB3q9Pp43IUtjXG9AkmW8fvuaIIgwNIvxcICqyWionJxd4rguURDghxHrfYiflpxPzzmbTgniA7cPD4yGM0RRZTDq4/YdZEWibehYB01FblpdR6xtKKoGTdGxDRNBrOkSHT9dBH8Khgn836r/JbOxS1M3hFGIrtt88emXuJ6FZWlsNyt+ePeWqmoJ47/lP+J/0n3WJOEJm80TWK7lhx+viZOUIAqQpJrT0wm0NbvjnvlMJUh+jrA/Pz3DVnQCf8tht8DRbAzDJEhDFFUmSWIMzeTl1S8ogoCyjFitt1xdvsLWFPymoue5HPyI1eqAYxsoCkT+jjwJsMw+nttjOhzhGi5NWZKXVRe8LQ/sDwd2uz0NCoasccx27P0YQciI02+5PJkxG50w7I9wXI88y5BVjaKqkf/yV19QNhUI3TxWFWQaEaazAXVVsT8cUFWN0bDfubKfbtmT3pAoPLDc3qNqMnmW8+b6LUnVoEkmVd3wuF+yjwOKuiGIYmbjId2Ms8VUZKh+LgP65ttvefn8iiKLeXN9w4v2V0//e9snCqBAAyiSyF//2V+xOuw4HneM2z/SQ/5xqdC25BVYdp+ijLod4lZgdzhwNp0xnYw6rrUgk+Q1w94ASVbY7HZ88vwls1HEzd09eVETRRFJVuKaJrP+hM0x4M37W6gqPKeHqZsICDwuNzSNRJQmvLt+h21Z9PsDHNvm4uyUZHvg/nFFmiQdec3zKPLOIOg5Bqpu4HlDjvst96tufJDnJW+uH5BklSiI2O0PHIOA+fSUvjvmfvlAmKQ8rncYpoRr6zimQZk7mJpNGIUUZYYoNiRZiqTIZHnOcrPiN7/+FWEQ4roulh9QFhW37+5wXAtFUDBUlbosaSTYH3ds9nsEX8C1TGzdpqoLmqZBkiCOCvZbH7EVCI4JqmpzOjvlYftI29ZsdgdUw2DQ76GaGkNvgNA2LFYiSBKTyRmeYxOFfneDj1OyLEdSNXTdxTR0VFnk/vH3+H6MLKq8vX2k56X085IgTkiikLoqadu6Ox8aEJ7mkFEUYBo6WZbzw4+v+f7bH/C8Hrvtjq+/f0Ne10iywqjvcj6Zoas27+/vCJIQr+/w4+I9LTAwPdIk5v7xPX/4+g1l2THgx+MpbduwD0IC/0hdN8iCjK4plHlCGh+4PJng2j3CPEVoagxVQ5LEj/N6aBFboKm7zZa2+im9X3ZyoLooOt8CoEoibVN3ISoEVElCluRujCA0H29KkqR0s9e2CwUmaUJeVGRFQxAlHPY74uBIliT4x5TtPsJQK9qewGZ/wI9jNEVDkw2yNGYXPHL0I4oiQ5QkmqpGQsR4yqYYhsr3b97ghwGubVHnFVUjgKxiGg7DwZgkizge9yRZ1qm4NZ2r2ZzxaMjr62uW2z2KLOH2XKIkxfR6uI7DfDSi1/cwdI1PXnzC0T+wWt+jSgqGrhGnCUqtoCkJvu9zDI8okoA3cPHDCEWSqYqcY56TVQVNllJmMaYmM+z1cC0P0/Aoaxk1TCmqnKMfMZ+d8O/8k3/Kw3LJ9fU1Q9dk6x8RBAPT6LG4f+RhdU9WFKiaydVZh2/dhQGKItN3XfzgyGK1eGqxi5iGhWU6iIjoso4oyYiNzLPZBZfjE2zHJssS6qfRkGs5pEnJ+XiEbZlcP7wlvo0wNYO6ldB1h7ooGU4mOLaLezjgBwc02aIsIQgPJFHnrq/KptvhL4CqRREVBvaQvAxZ79borYMSahRNTm8wpahKsrrl+Ys/od8zWW9v2UdHLMfCQkSUGhpqTk5OEWUDRZJwDBOhaUjiGNcecHJyRl5mnbnxSV4mIHQdgLyiaVrCMKBtOkuhIindqqkh8J9I/3PCD+n7nyhAgMDZZMrV+YTH5YrpyYT5bEKSpbiOQxD4/Ku//Vt++9VryrJFUzX+w0tAaJFEsVNkt13nTJJE6qrl7fUji+UWzzFwzT6vns0wDLvjlnj9nz9omhpJlmijivVhgzZViY8hoqwzc0YkaUSj2WR5TlKEZGlMmCTM6oIy84mjkCyvKFsAmfBY4DkO09M+96sFLy6+QDN10jwlSiPWxyXDyYw6D5GbgihNSeKUuqp53K7x44ShM8KxTb5/9w2K2GBoOqpuI0kShmEiyTJ1GSH//Vdf88vPX/Ann/+C17c3vL6+IY5jktgHRUAzLcpGIM8rjocDlVATxyGj/pCB18cyXbbbA+/uF+iayj/9879g3J+w831aWeXFhcF6+UhZRZimhaLJuJpBnsYows+hDovtljyv0XWF9XrPy48Ms65EE8SfHvJD1yMrCrLQ/+kbCHQzzg+/bOFhuWEyHIMgcQwjqicV4uV8zmg4JM0yJEnixcV5t68viwiSyKA/ILBDVEnmdJaTxCllXVDWGWldIigSUdQhjX0/JI4zjmFE3QrsDkf8ICKMcupGAiEiDCNMVaXvDfCPEYIgUpQFNw8/kKYpv3j1ClkY0bQCWZqz9yMWqyWyKOP7ITcPD4RRgiSIVGXZ4Yh7Ywa9HmEaUtc1ZQlKLWNYfTzPY+8fuH34HZatM51NGY8nZHkJeYkiyhyPPqIsosgS++2GN29es97tSOIII9SQDJWiLambmqzIkQRwLJNDGLE7hLSeRJKk1E2NZWhdgSZIPDw+slytCJqKz4ovsdw+v/vd76iyEvkP3+C6Fp5pYujdIdjrucxO5niOjWHqeD0Xy3E47o/YdovX6zGdzdjtdmRJwr//TyxWuz3bw57tbscxjpBUFVVRWCyWfMDlpmmKALheD8Ow2R0Dbu8WRGHIbr9HkkS4eyCOE4qypmpaiqrg9ftbrt/fcTI+odfvIxQF949rWgk0WaFyayRJoigEilKgqgXEpiUKEuq2xQ8C6rrCdqwunNYIpEXJw3JJkZe4To9GBMPu8UwSO96A1PH9S1F62nr56XbzgXxZ19WTurT7PU9tS2i7FWIERLlL/iqShCSKnTL4qSgQxY9RJ4qioCgqREGmzAqyOOFxsaTIcsq6Q+yKgsB6t6duGkRZ6lgFkozresS7HY+rNbR8PFRkqSXcH7Esk7SsCLO37MOAk/GEOEnIspzPPvmMy9NTkiQmiEpUXSdLMgQqLEOjaUs22yVp3o3bPj+9wjBMTMvBcVxM0ybPU1RZIs0i5uMeZ7MRRRHy3fevqaqK2XRCHbfESUbPdfDD+GMP5gAAAQAASURBVOk9alE3sN3vCOIDoiThZgOaquDx4Zbrh0ds26URZYIo6YyWWcYxChgPp5i6Rd/12G+2nE0m6KrKIQg7kuVqA1VF5EckeYFktLhRyP3f/Q0H/8hsNMbS9E6uFGfohkeQJARRwmQ0RCwFHpf3BEnKdD7HNQ3Co09el9imyd4/ECcp03pEv9enKGsOfoytecgK7Pd78qxEliR6noflGIiSiCKrFHlJKheUjUCcpuwORwRRJUkbTianRMmBH2+/YjB65NnJOUPPIilzbncbJnaEY1sIkkhd1Xz66hXzwSVpcsDrWQiCQFkVZHlGmSQs1ys8d8zJdMTJZIxQd9Kh9XZHK0q0VU0SRoR5QuKlNE2FoikdWCrJaJBA1LvOjCKTZSmmqhKnAXVd/1EAsHuAfxiLjXp9xLpFqBt6tkkcHPk3f/gDRV4Txil3D2vyHMqyoqp+qh3ap45Z09ZPsCkBVZGJjnEnyspztvuQ33z+KZUoImsaZte+/vhVZgX78kgQBBiSith2dss48xm7Y2zLQ1UtTMuirhLKpuEYR7y7ect2+cD98hHLMRFb2O19jkHEX/zmTxi7A/Z+gGE7KIpI3+2z3x0xDMjThDt/Q5YmVK1IzxsgKgqHMMTqe4wMB12UaM6foRs6umpSliW3d3eoispoOCRLY+TFas1o6HI1PdK3+2jSirvtA0WWYxgamp7Sc3tIksbhuOKH6zdMBn0+e/GC4XCAJTvsy4DN5sh42CcJU1bFijTPOT1/xrPzlwwNi6O/oqhrTN3i0V+wWO3RFOVnL2Sv36OpWvb7kKp8qsp4avp/kDY/zW22uzXHwx5dVnhz8X9m9PV/82cV4YfG6X9L/5/x/138bxFEBcPQ2O12xHnKy8sL6qqg73k4tomu68RxQhiFIImEUUieF+RVgaJIzKdDsjxjHe54ffMWR7foWxZpViB3iDY810USQJNkXN3sbhO205mxihhFVYjTlCCMu1tIXZHnBT2vx3g4pG4a3r57i2kYHY6zbEirFNNx0A0LP0xJswJNkvBcj9uHuy55PuzTVg2KojKZDul7Jqai8eb9Hdc3t1imRtGKNHQrT2WeM+wP6Lke17c31HXJ5fwMy3I4hjfkVY1kCkR5RbJYEScJcRjSNg2GaqDpOocwIM2WHcLYcRgMe4yHE7Ks5ODHjMbdnvrtwwOu1yMMMwI/Qtd1VrsjbVtTVTWTYZ+/+JNf0bQ1WZpgmRq0NYNeB90QWgHXcREFCUM3yJIUoe3Cb5KiMBwOMVUFXRK6JPJwSBBEaLpOnJX4oY+sapRFhqwpZIeau8claZoxGAxwbQdNt5G0mM1uD03FqD/C1Awcw8UyHERBJCtrdsGBRle43x46LsbFc778/AseFndst2sCP6BqGhRRpC4bjvsDgtRRGmlFsqJhsw2I0prRbIRh2UiyQl52IThVUykLlapIkWW54/vXDfXTqKBMcyRFRpFlqqoLhgmiiKqqiIKAIEhIitw94usSERVZ+lAEdCFa4Yk82CI8SVVaFutH3l/f8ObtW7IsRdcNBraHJIiISsvF+Rkvnl3x49vX3N7fU1Q1bQNBlFK3LU1bY5cVPddD13UmoxGGqaMpYpeHqBtoGyxDwzIUdEPiYblhe9xQViX74wHbdDidn5FkKRv/QJBnDPtDxuMpsiKj6zqmqUFbIIrNUyejYrVZEIUxi8UCP4yxbBPTcFFVlcNxz+3tAkWRMXWTquo6PIejT1ElCILIwE3peQ5xXtDrDXGtHuvdgTjJGXo9mqLpVm6bBmSJr77/jjfvr6mrGgnY7wPCJOGw87EtA10WEZGwjO7ALYuCnuux2x/YFBWT6YTxaIqmajRNiSQoFGVKkZSATF5UvH7zBl2REUTYHo6cjyeczU8oiw2rww5BVRm1AjTduFCSBFwHtvmeII7I65Kdv0OSNKpCwA/DrvMiqJRFw6A/AEmlKSWirGQ8PyeuGja7I20DA/cLdEmDuiBIDuRlwtvHG/KiZTwaUCQ/oOsdUtrQdQRRpc4FDv6Ou/Wa1SHk/OSMvEwQqorD7sj31++oRYm8bDibzRjpNnmSUVYFm0O3sjefXTAczVFVFV1XSdIMSVTJi5w0yZ+yK3+8ANgF+ARgtV6xWnVOhThKKKuG79/cESc5RV5StSJJ2hUqmqp+vFo2bfO0BcBHymD9VAwMR2MUReVhueGbN+9wHJ3ZWOP69Wt++Ud/izgtKYuItqrY+UeCoMR1bALf5xgeWG5DNMPh6uozVNXmxfMvSAuZd9fXHGWJVhRoEZEaidPZKTv/O24Wd0z7BobSAfROJx2/RZANrs7nRMGWxyggyhosy6LnDujbfXR1Sy7UKIaCKamM6iFRELG8e8QZZORViYBEmoad3dfSFZIo5esf33TayLhgd4z4/v01f/bF5zy/uOIQhiw2O8qypkEFUWfvp6y371iu14R+hCzoHIOEv//6G1RF4eXlM+5v3uMfjkRJzOLxDtey+PUXv6QdTYjjmDwrgZ+oSmUacnV2xf3jhjrJEUWRsq5/ojR9FP90uuCybjA1HbHInkQnTzXCE0DoA0hIlLrbuvxUEet0GtGiLOirKjQCb6+viaKYumkJ4xjdMDrLX9vy4tkzRKFhsVqwP+4QmoZcN7B1nbIoSZJOCmOaOi0NaVGiqCqeYaIpEnEckqYxiaogCAq3D3cUWY5nO0iqjOTaPDzckxU5D8sHDFWj73hUdUPZ1HiuzelsSpqk3AdLUFVG5pCqaSjrisNuh23atG3LdrfCteZ4fQ/PtOk5PWzbQmgk/L3PeDph6rlkacp2vyNKEpIoQUGl5w15fvmc9WFPUWZsNnsc0ybNKvISyqozwJ3NZ/RchzCKsG2749cXVWdsQ+Tl82f4hwP7YMdyt8QpE67Oz8inNVfnl0RxwNu7B5Isw3JMGkEkr2rmloMq6+RlRlkl3b+Lmp1/JAxDZEmiqkqub95zCAKunj9nNBqjiSJNU3J3d0d/NGI6n3F3d98l7BWJrMhZbzdkT6E5VdVQJBVN1qmqFhBxXA/L9RBoMTWdz158wnw6Y73d8PU3X/Pi/Irn4hWO3c33wihg2PMYjzzKMkKVu+5IGEWEUYSquh3TwLC4PD8nCkNo4dnFs85GKVQomk7dNlRl1T3wnzS9paR0KGlZRnkKAoJAkeeIUmf7i6KoWwNUFDRV7d7nsoKsdDf9pi6fSIbiz5SnoiggiyKi0B2mRZ6x3a6gaTmZnZAmCUVdEpcFqiLTKhKaY/HZF19gWjqb/YY8jJEkkcl4/MQWENBUmelkym+++BxT7wya49GAyWiELLYExwNJlhEFW74NNrS0lFVOnKZUTcVg1Ofy/JKyLHkpChx9H8e2mYymSKqCoqnUTc1q9cjxcMQ2DIIwwLJ0yrKkKiosw0Booa4qFMvi6x++Y7Vec3lxznQ4xNQNdMPkcAhwXZfT+UWHs90tsGyHL86uePf2higr0S0PzbQ4OTlDWmvEfsBXX/+BomqI84LtZs+w3yOravwoZlv4TKZDbF1FVzREQGxadFnheDgiyTL9YZ8kjskOOaaqkOUxqqoQJwmu0+PVi084Hn2EqkFRBQxNwzmZ0Tdt1KamZxrIeo84SfmXv/3XnJyccX5yRpqX1K2IpJk0Wc5uHwINjinS6w3Iq4wkLbAMAduyCeOI3X7J6eySk7MTbMtAU1S++fE1m+DIcr+lZ0hIdcvGXyKqCru9j6TaXJ6eITYNTVUS+gdyWUWUVEAGBETVwDBtLM+lylMWiweytETSDJbLNaq8Zj47RZM0ZFUiSVPuHx5Is4y66iiYZZkSRiVt0/HwRbErirs4zL896oWW5WaFKos0jcp6n3A8BARRQVHW5HlBVlTEaYHnOrj2TxI64Sk83j4VFIIoIisq5yd9Pnn+jJqWvMhZ7fbUtcnU6yH/I4nN3339NZ5pMnR7vH5/B6LML7/4FZbTY7fzyfIIt1dzd3NNz+vj2i5/9uWf8vLsiigL+Je/+9fcLhacjk94fvEc3TK5vn/Pv/j972iKhvn0SJM+o5UEjnHN6ckpZeJj6haj0Qm2ZUPdougyFTXfvHtNnefo4zlV1RJHKZqqUmYlmmliux6u7eAf9sjP5ydkRY7v+xQI3Nwv2YcBhmGSpClxGiPLCg1wOhnz5WefMPIGxHHEw2KBq+eQi6iiyGOwIYwzPEvifr0hSrp1Op7mOp7rILQiPcfBUk2S8PCzFzIJC96+ec/6sCNF/ckEKP4kbOjSzQ0Pi0fqFm7uH/HjjEHb8v//q2U0GHD1zCNLMyI/YrF95Hjc01QF692ed7e3JEmK47i0gkSW5QS3j90u92xKmpWURcBudyCLM3RN5SHcUtUNoqgQxglN2yILImme0bQthmGgqBKmoeHa3ezl6PukWc324BPHMVGcYZsGWZ6xswwkUWKz9mnqmrAfo9s6o9Goe4PWFaZp4jhW10UIfAzNIK9KjmFAWTeoms5qH5FEAc3zGlUEXZXRNI00z3Ftm/FggCSBLots90d0TUcWNcI0Ic1znl+c0/NcNps19odWV9sw7g9Aknn/cM/7xSO2ZeBYJoogYdkuo9EARZIJwxCEGqdvIWo1qiiRZynDvolleXx6eYnrOPxpEJKXFVHs49g6mq5hmBphEnI8drf2omg4+AHb3Z40zUCAJAopyhzTNAmPPgoimSSxO+yRJJk2jPDvF6xXa4a9HkOnzzEKuF9uiJMEVVGYjEaYhsnAG6BoGu/vb6nbjkMhiXB+csp8OiJKjgTJgfF8zHg4xLYM/MDHsCx+PfuU4LAnjg44tk6/d0ngR6zXOxBWGKZGTYuma/Q8h9FwQNNAvz+g2m3Y744kcUrbNF1SH7qQrSgiSiIIYnejl1pEudthVzUDaNAliSzLyPMcwzDQVI2qblBUA0VToCn5kCjoimeesgM5kigiyzKKLFEVOVWZYagKmqfw8vwKxzKphZabhzsUVWU8HKFaBoos84tPP+N42PHDm3ekXoVpWtRVRRRHaKrcbaoEB+JUoq5yNENBUFqKPKcVu7FMnhTsjl3yPCtrZFXHtlXuF0vKvOHi7ALL6DY/Nts1CC3T6QxF1pGqliLNkBSZBqjahsflI8dj+BTU7Ox6N4v37L8J2R18dN1Al3Us26OtK46HI8cgpBVEbLMb1dwtHxgP+/z973/Hu8UDv/rlX/KbX/6ar//wW775+msUSUWSGqLrqJvRA6NBn/0xYLXdIiB2I9HegFas0A2TMI2Js4QgCtA1A0lRCNKENMk6NWvdcPewIC8K6hpGoxJJ1hBkGU03UBQZRZQJk4iQznVwSCKUSGEynJBnGXF0IPANirJAVjVm8zmT8YT18pHD4YDjeNRNhizXOHaflpb1ds9qvSerYxqhQmgrFAFeXF4x6A9ZrB+oy4Isb0iTGlPT0WSZdZJRNwJFkjF0Xe7ur4nTiOlohmVYxGmOpqj8e3/1112YtCqQTZ2mKGirFse30GWVQX9ES4OgCkRJCG1FEHYj1OXjPdQFaRIhyxr90Rg/WrPbrXj79prz+pOnE/3p4c2HLGBnp4SWnueRFDlFWSD4kBU5RVF2RkelW539H77833Usje6hQvMkekPoumX9/oDPrp5zNh5guzZ7/0hDjkCBIDXo2s+FQlLd0pY1QtNl4/aHPdfXbxiNR4iuA1Qcdj6eOUPTFL578wckQWHWG+OHOYqm0JM8ep6HqEj8+hdfMJsO+H/88/+K8JCimjHfXb9n0hth9EakWUZRVohPgKC6rvBcj7TMkESRoeVys3jADxIkSUJTZQaTEYqiIRsGg+EAURQYCANkt9fj7scfkI7w4uoFZ7MppqXR67kYmkxcxGiKjiKoHPY7dENBHPbweg6icE7P9ri7vWP5uGDk9jg9O0VVdd7cvifOEsaDIcf9nrKE89PnZKXId9d31EXJ0Y9/9kL6x4xNGVHUGbLR7RYLwk//8EetmuV2w2RyimE6VI30s7pQQKAVuhtP07ZUdUmZFtwvFhhKx9lOkpL3i2se1luaqkZVNY5Rjut4iKLIZrdn4HkMvT73j0uquub67pEkDDA1DVlXieKYPK8o6k6B3DR0LduyQtdlTFPDtk1EQSBLMjZ7n+0heJq9igRhQpoXmHmGeDwiijJ5ViAIoJclYikTBSGGotMILbqu8Pmrl+RFTpHnVGWFYZhkaUYYJzhPDgYBlcf1Dscxmc8HnJxfkRUlsgRez2a5WnN3/0CSpeRFyfnslGH/hMVmiZ8cuq1KUSBKUyRF6mbAQify8SwHSzW6qIXYoqgak9EIXdcJ4oQ0zZBUiapusCyHKiuxLBX5yRkeZSGGqTCf9pBFjduHAqQCQ9PYbh+oqoYkzunJKs/OzpmPR+wGQ1bbPYvVsju8m5aeq3a3vSLvTFiGxXA0Y3vY8+13r0mSrNvp1TRoRQ7HmCAIOJtP6Hs9HNti2O8hyjI1c7IiR1N0XMtGFGpev/sGSZbwTIeT0RhBlthHB/zCRx8YbKM1WZqgyRpVXeFHEVmeMZ+OkWWBfXikrEooWmRFQlVVFqslqqFxenKCpivIQkNTVUiiSNXUfGxciSJIIsgSiAJtXSOKDZIiI7Rd219RU5IkRRZlJFntzHhPtrq2VZ70vx08SECirlvqpqRsBVxFRxRlsiTBVHXck3OyNOfo+/jRllcvPuWLl5+y2W8xFBlNEomPW8K2oec6XMymaJqOqhmsdhuG9NBUjd1uQ1nlaLKJbTlPNyqJWlR49AMUSUEzHGo/wLQd+prC7rjHUE1s0+UQRbQP95zNprRty7dv36K8f4/jWFiOxfnsgruHO8QWTuaneO4A1/FQ1T3h+3sQJDRTg6rixfkF8/GMOEk4OzthPp3hB4cnOiKsdztuHx4wDQvbsnh780AQJTj9PifzCWka8LBcECUpUbRF11QkSeDm/prRaIx3NWS12xEEEdPhGFXXuHt4ZDwf0TcNKqEzmFZxy9Y/MBqNUSWF8XCEoqjcPdyyWO3ZHX0kWWa1PxIVBf+1v/p3cCyN24cbbhYbDkGA59gMez0Mw+RusyKpGnRZQWoaHhc3RFnKaHLKaDRGlkXcntNhfA2dJG3wvCHTwYD7xQNB4DPoDchKlYeHR9aLLc+vnnN1dcWo12Pk9ggSn8N+xcX8AlGoOewOTEdnxE2BH0aUWcb2uCctSkwjoWd5DG0P+gqz03MC/0CRd8WtMtdwbIf9Yc+zs4T3D3dkec6rq5esdku2x2WXuxIlNocteZETHEN0zcI/BhRtSl4mLFYrTuvm4wn/xxc8URAYD0bouoRhmhwjH03t1lwlUSIIE1qxoigywrhbC+6eLXx8ngiC1HWYRRHN0MmblH16JGtKpKeOWhCG/O1X33Ix/7nEbqCbXQZo71MkJYqsocpdB+8YHdhtdoiyzZ/+ekKepvzN3/wbkqxCljVmswknoxOKoqTnDZAVGUSBi9k5f/3nf8nh6ON5Q4LgwON+zVg3uFsVlFlCkhWIUlfcGqpCEGeURc7Ac0iKEXktkNUFo9GIrC2QJIWWipvbtzR102WyXl+/ZxeE0JSoSx1BUji/OMMydN69fwtijWOY9JwRu0PAw2rD19/9wHg0YDwY4wcBjSLgDvucnMwY9Hu4jottm3z/ww/ogsRsNMGwbb784hfUVcv9v1xSJAme4wA/hfgkScRQZGaDU/JKg/0f457/CAcsCOR5w3q1xvI8/vLw3yMg/tnK1E8VYkscp5RpjR/G3AYRZVlgWxbPLp4xGZ7Q1DWqplOUZRdWyjMMQ8PznCd4yyOabrLzI/aHA7oko2sqtmnTNBVN3ZKlBWX5wVDdQC5QVgmBnxCGafeQTgpqREQEZLGiMzG0GJr21L6qGYz61G2385llOaoos93tSIuSVhBoqgrX0EklgTCIEAUY9PtEUYgiibiOg6EroCnolo2jCHx69YzhbMbrN69RVQ3H6aFpB2y3x2a9Rmhq2qKAusGxbBzDZjSYsD0cCJOUsizJqoY03nL0D3iOx3A05hgc2flH6qamaWsEscPz5kUOksDnn33ObNKjrkuKPCcIA4S8wqtbyjCiyA6sdyuCeM2w3ycMciRRQ5VUyjTD362omoyLi2doyoDouOd0PKYVBIa9HrIic9htydKYpGpYbA5keUEYxsRxxnW14OCHOLZNmpXkWcXDckUYRYxHfRqhQFFUWhryLEYRRCxdZ/n4wHazR5QEfPHIeDzF6w+YDafYpsVms+N+84hrOUy8MfvdgSCK0GUFV1XRZAFZEjFaldlwxGQ45uD73etQ5mRZQhgGHIMDZZVT1R21T5Y7AZEsSp1WWOqwo13+RUSSOlOd8MT5lyQRWZKerkEgP20TSJKCKEkIotgtOAudSU8SJRRFRZJlVFXHsG0SP6CtQNNUmramqmu2+w2mYZBlMVEaYBgam92ah8WCJE2ZjadIssjFyYyr8zMUw6CpGt68fc0hOFLmGUv/wCH0+Vz9nOeXz5E1A01W0BQN2/F4cXFJVaf8P/+r/xd1lWG7XSA3jkPe3yU8P3/F5dkFdVORZRk3Nw+Exw4407O6lU/NNLoxwXSG7Qx5/eNrtrsdFydzLMNEUXP6gwGqLiOKAv3+ENuyiKKEYxix3R8QETibTREB1+rxqy9/xXw45N3NOxRJ5Pxszn7nk1cZkijQ6/cwDJ2qbjCe2AtV07De7bvwsNdHVVSysuhohHVDmhVd4FaQGA76+FGIHyU0iCiqjqapSKJAmuUdHty1Sd/lrLd70rLEcT3SoqIlp6hawqSgMUTUsiVOQ5Ik5vzsCknowmxxFuO5DqPBkCiJOYY+t/f3rNdL6rrbdXdsj/3hAVluuF0ueNg8Mp2MmU6mKKKAJMD26LPabqkaOD+5YG5pZGlGVUOclCxXa/xjzHbvc3l2wezkHESdKElZre7RVY3xcEKaVzStxHA45oe3bynLI6vVhpvlPWF25HR+wXziITcQhBHvr+9YrX9EUxVsx+TZxRlVVtO07U9Aq5/d+ARERaZuKqqqwpAVClHG0nWmgx6uaZJVNVleEMTRU/blw2Js51P4+Gdtw/nJKf2+znq1ZE/AdNBnPhpBDdsw4t3t48+eM7udT3QMGEynxE1L3xvxyafPsa0BD8v3XD/+wLAvcPA3fPWH37Hbx0RJQZxvkTUT03CQNQ1BUUmzggYYeX0+ffGK3WaJptg0wxFJXmJaLpIs4B8PaHLKeDLvQqRNzma/JU0SDMvg+bNLEFSKokDXNZI0RNF1LMNiud1CXZMlCXIrQNVUeLaNqioYhomhSF06t2mJg5AgCAmTjEl/TpJWrFd74igBRCRBpK4rNENDNTQMz8bPE+KqYH55yeEQoMsin8z7lFXA+9t7sjxiPBxiavrPCoCXL88IEx/Tdnj15r9P1VYfKzSE+qd1DQQcxyOOUxbLNc/bfwwA4mPCs2la4jhBsERqoEZiMJpyNp/w+ctXBP6Rm8U9WRYxm89R1Tlfff0HLFPDcS0aaqq2oaeZfHb+gt+FMYoqIysyaZFTFJ0a0zZl/DCkrlsEUaFqBLKipKkbovyAa1lMxlPCMKIoclRZwXEsHNtAEgWQJDxTwbWMpzmUhGaoxGnKerPh4EfYjsvFyQl51RDGKbbXwXKKumE0GmJoKk1TMRr0+Oyzz+h7AxbLBzbbNZqhcTaZEYUBmqrhWDbb/R7fD0jTlO3RJ4giyqZBEyWenV/w6vklUZw8vc4PQI2mq2RZQuD7VFXN3XbLQl5h2Ra2biCLMmGcEEQRtCJ/8qtfYpomiqVgOjb7w459EKLICmWe43oDKqGmrARce8L93SOKUvHwuCNNYlRDpBFEsjhjvXpgMp0zGg2p65qHxYKsKCiKkiDLME23+1CLMk23EE/dtMRxhm1ZtHXDzu82B/bHHUkWYZkmcZKgqRrmqcnRP7Le7ciyCkEUOeQRraIxO7sgTTNe//iOIq/QNZMwyNhv3iC0Ha7Xdnv0XZvt7pEwChAkhdVuR15XnZfdsjiGPkffZ7V8RLO6n9c03ajAFDvgT7eO1KX427pFaLpwiyzJNEK3aiXJEpIk0TR1lw1QOp6AIIAgdXwAUZY/UFIQxS4/rSoKktS5M354+47UDxh4PcbjEY7TQyBgu+0KvSTLqdsGVdcRW4E0zbAsi6ppyYoSP07IshTHdTEMA2SoypIky1EMk1YUiaKch+UjURxC3aCrOtPRiDxPWG8fMQyDIi1YPd4jyQqCKlM2DZZl8svxkOV+RZG3iEgER5+2aVkf9lTA7GSOICvdHr3t8uUXX/L3v/stdVVj2ib9yZi+1+Pm/j3L9ZKe66KrOrP5jKpt8TyPV1eXbDYb0kRGVhQeFrfEwZ6iKpiNB5RZQd+xP9r15qMxZV2jqxrn8xnz8RBFVtjudsiKQlHkrNcxsqogCSKqpCDLOodjRFkVFG1FmqakSYkoScynU5qmIY07FsN6vUSsc5QnIYyrSEync/zgSI3AbDRhMhwx7PeQZYkwsjge9ziajiKI7I57Ij+gLnK2+zWiLHXFRZrQiiKKrlLVLUGU8ezqFWlWkmYp0/kZoiJR1gJ103AIYpB14rymbuAYhUh5wqA/QFNljn5CFBZUlcizC4/ReI6qmeyOG+4fH9mu18iizH4fkhcVJycnrDcbtusdWVFze3tHVZecnE1YPqyoejWaJHD9/paHxwWb/ZGqqrFtG01WWa0P8LPOu/CzX2VpSpxG0ByQaaiqGuoaXRK5uDonKwqCOOV20fC//uY/4z//8v/QPSaePABPKE0a4D/M/wes5/93XMtClGXyJGJ3DEjSkiwuEZoKkD7+/KKVaAwTazLg5dmcoedyc/eewE8Q6pbL0Yy2bfm7f/U33K83VCh4A5u+JJEXOe/vHxBEibKG588uqeuKpCyoi4y9H9FzDbyeh9WTcByXw+FAXlaMJnNc18PxPKoywXQ9+qMpkiiw2a9RVJAkyLKMnt1jf9ggNALn83OEtiUMAuQsS+mbDrZhoKsqk+EIWZFIooiXF895++4dx/0GzxLwXAdFrgn9gLqCsqiZnoyJwoimbcjKgsVyyXg44rNXn2DqNk3dcnd3jR+s+YevviYMU55fXOD1+szGM/i/Pvz0QuYpQRAhiNqTvewJjCI+IYD5MNeE0WjEF1+ccbd8gH/4ad75Ifv3oTJsW7Bsm/FwQJSlfPnJp1yenaEZCt989x3f/vDD0+025WbxyPPLZ7SNQNPU2IZBz/V4cXnJfn8kqzNMS8OxTCShCyLufZ+e46KqGl5kkqRdUSDJUjeTbFsUSeB0OqXv9SiqAkXp5rtuz0NRJcqqu7WOewPSMKShxvZsen0HJQgJwhSvp6I/edGjNMOwHLxen/PLHqvtnuNhT97WSAIoqk6eV5i2xfDkjL/77d+xOhyY9IekWYKAxHK94f3798iyRFHVHIOo4++LEovDkk0YcBUG6IqCKin0XBvT1DD0lM16T5wkrLdbkiTBsDUUQ8PxPHRFoekg9xR5zuLhDtMwMXUdUWo5HLZoJ2eYmklZ5MiSQc85ITgckQydomrYHnesd93hNR6OeFwdqfKc7f7AIUp48/6GuizZ+wckWaHv9ZgMxiDJpElOVTVIstR9oOsaJIm6KVE0mUFvSBQekQSFzWrPqtlgWyZqTyXLMg6+T5zF9L0epmFR1CW2Y/O4eOBmcc8u8LuZcqUjSuAYNpqmoWkKuqIQ5QmmbXEmq7i9AWncwWtm4wmP6yVpUXbt+LbtbIVxjPDE+EfvZvUf0sjCU8enbZunlH93UtVPfwYdhUzXQXuab36kmwnQCl26+MP34ikI2DQNVV3T1AKqZoKssNxsqZ+AMXmeg6hQ1hm7Y8By/ZbZcMTpyQm242FbDnVTsz0eCcKASSugmzZhmnHwQ5qm5er5SzRFoa5q7u5vEYWG49FnPJqgmyq5INEIIqqu0dX5OVEUYxgq87MZjmNCXTNwHQa9KdNxH3/ns9hsWO22iIikccnV5RRD11gtHxEkEa/vIT5hjgejAXWZMRr2UGYToiDgcNgwUqYMBx6fvHzedb+aBkU18aOQIA15XC5o6orRZIimqMiqTFWVqIrCoN9nc9gjKjKKKpLmBUVToNsau/2Od4sbWkHi+cUzxsMhZdkiiXI3ckm7jEiLwGQwoW93OOjd8YCmq3ieTdO0JFHC+nFFnpUM7SFZkoAgcHl+gWmZHx32LS3eoEeQBHz35jXHKO4Y+mnMdr+mpsYyDQxFped4KLpOXtf0exM0zaQ/GhHHIb4fcn76DMMwOwBPFqPLBm2V0+QVu8MeRe7WlrPAp6DFVHVsx+PsZM58NKMuGo7HHa/ffkcUZDiWgyxKtHXnbQmCgNV6gaTImLKKLEpdwVeL3N8u+P6Ha+4X9zQlaLqFqtjIcoOqqqzWW/7b7v+KonxiezxBgNqnM/7/svuf8ol3TpxmHPdHJj0XXddIk4TZZMJ0MmSxXDKfDBBpOjZBFwDoguNN9/3qphsNdOcXaKZGnqWdBlqVyJuKMM2QZPVnBYA3nTLRVZBLAn+PrYrcP9wShRWX8wlIBYGfkyQZeQXPLq6wDRVVU9EUkc1my+1iRTgYYBs2ZZ1R1xW6bjHoj1FkA0EQCcI9tOVTGFjE63loikoYBohig2U72KaN1LaEUUCa51w/3jEaTBj3hiw2O2RFx1JVJFHG9AbIRz9kOhqTZRnraodmmPQGLqatMh6dsdps2e236Lr5NEvMKZuCumrZHfb88O4Niijz5Re/YDIY4vt77h9vWCzukUUZwzQ7ildSE/hZJzlw+1i2xXA0+NmlvREVnl++pG6Fp73n+gnT+BO7+cOzva5KdE3/OHf/IAsS6IiFCN2aqCDAZNDn6vSEusjpmxr7w5rrb+5IkpzhaMx4MOF49FksH9lsdzR1w2xy0s0sn8AwQttyCHzmszGjXp88zxBEkdFgwIvLS1zH5oe3PxKEMZIgoukqRVWQ5xktIuPemDLPyPIMZzBAliU++/yc4aiH53n4foRcK2RxTpyl5FXO3cMtfhhguy4zZ0CeZXiuzXg4wnIcLMtiMp3x1/0Rq/WS29t3CFSM+sOOghiFTEYn/OLVL3l4eM+723uCMKQoKtoa0rymjDKqpiLNMnquh+O4jMZzPM/FsVxkGkxDB1qyLCcKE2igeoI7iQKMBmPm0xmSJKGoCoNen8lozqDvkUfd4XQyGfPyZM4XVy+Ji4qqc1EThT4gISBwv7qnqHNM20CPNaq6xtR1ZEFkPJmSpgV/+O4HHlbd7aKqK2RFJstqiqqhqipU1WQ2mZAkIZoi47kemqayP2wpm5q2FRAkyMuC/SFEBFRRIpZD3sYhWVOgmTo1DSNJ7DS0WU6eJZRVxvPzM05mZ/zDH/5AEWd8+uITdFOnpUVTJcos5+zsgslkzu7g8/bmGllWkOgQpalQULWdua+uW6qqQZFlBLrZ9IcxVtu2VFU3t2yqioa2k/zwhAxuWiRZoimrziL4NNcUJRFJlmmfPjN101DXLYosf2x7VnX1FOr7nIf7e8I4oC6rbgVQ0xiORzw8PHDwQ/wgRtVN3MEIUdEoyrortNKUshY5Ob3kdDanyDK22z1JkdO3HVShpc4SVps1pmkiyN3oK00TNpsN0+GMPCnYb49IKIiyQlnF9CQFU1GgrRCoqbKUKNgjtgXDnoOqadhW5/Tw+gMsuRsDHcMj6XpFlmc8OzsljUMO+y15kiKrEmeXF6Qx+MctWZagGQZVlmDbDtPJhOdXPfwgIM8T8jzn5u4G13PQVYXD4cgmDGnrGkMzOTs9wzYt3l6/QZREoiRBliVs20bXnI6UaLi8uHxJmmQsV8suCCyIlFWF67qczedcnZ/x9t2PHIMDjSIRxgF3jwu0kzOysiBOIj7xntPBoUQ810U3jE6KU5fopkmU+iiqwmazI78pGPb7qIqE1IrohtadqxVopoPQtFi0GKbJaDQmL3M22yVJnOF5fXRTpyozijxBEmtuHm558+51NyZr6y6waCQIAjy7vOJTVWe1W/P6+jWjwQBFUUijnIHXo+d6H70WURywP2wRJJHhdITQiFCCaVo8rB8I45hjkCIIOpalMhoNmE8mlHlOkafEUUBTf8jp/8SF+XhxLEtuH+4J0oSL+Rm/fvWSt9dvngphgTdv32E4Dr/+5Zf89re/Q1E0hLZbhxWeHhQft2SeumPLzZIsixBaurH0ZM7JdMbpScxgPId/8y8+/vy0zvjlJ5+RxHtev/4RsWxoGxFZFHFdg8d9TimIvHj+irLKMSwLWRAwDY3A33PYH1EkhcNmy+PdHZZjkGYxL86fofQ8oiBFbKAuCvzjhrysCeOIx/U9NG1X7FNT06CFR0xZRRBULk/PkHWDUhDZpimvXvyas+mA7XFFmiUYuoOs6SZRmtBUNY1Qs9lvWOyXnF+c0/JIGB3wPJebu3uyJKfv9FFkiSTPWK337I9HXlyeIrYNeZqjKAb7/ZHtfociyUyHI2bjKZZhM3T66IbG8nGJsleo65bf/FEBMPRsXp2fsg8KBLFLQDdt88R8aD+u99V1zVfffMN6t2O9P/Kv0r/hvyH8jz9QTn56kzxBUx5XK+Kwu5m8vf0DgigRRCHPnz3jn/75X9D3PKI84dvvvqPKSsajKYpi8vrNa7bHA3GeYNomL68uOR6PCKKApZsoSJzNTnBtHU1XsSyD28dHEET6ooNl6tRNiabrDEcusjwiu6lYbXZMpyNcu4ciG/zw5i2WrtPmNWlSUNYtWVHQInF+cvWEZa7JioKmqbqd8KogimsGpUeWHBHakoFrUdYFUXDEcGyWmw27Q0Beluz3R8IoQhJlVElFtwwMwyAIAgRZpEgLyqoiLDL+u//xf4pIzZubH0mznCTroBZpmhOGOVXdbeDato3j2MxnM67Oz1FVKMqMaX+CY/ZAkLi5u+MYxMRJwtBx0AyNIs0IggDHtXFtm3c391zf3ZMVGYaq81e/+TPKomR73FNWFe9ubzkejxyOEUGUISCTFw1t05IXGWW14RiHaKrKyXjGqOfyWKbUtBhP7gbX1BAlqdObFgVRkiBJIo5tU1UVtw+PjDwH3emUuoomMRqO+ezVZ1R1xt9//XvUSqPveVycnRGGIUHoI8kCdVlQFDk0GpvjnuVux2RyxmQ+A1nlcNyx8w/IikJTN+x3e2zLpKpKiiLtkNSSRCu0CK0AotjtBn+0A7YdaKXMu60NWUKWu+I6TdNOWCSCJAlIkoyIRCuIQJcrqaoKTdMBgbquO+hKHGGoMuenc1qmBL7P6zc/IghdZkZRFIYDj5P5jF5vQNHCr37xJafTKVWRsTvsadqGw27P3V2G43RdtjQKkWWR7398TZIkiK1IU1X0Ry7T6RQBBVGQuV3cst5syLOGi9mwK2yqnDAKSHyX9+/esdquKcuSuoZWFLvxpGkgNC1RnHUdh8OeME2Yn17iWQJhtKNtKizDZLla8/2bN6i6yndv36BJMqIgUdUJ2+0GSZZ48ewFwfHIaJwzmU7IM5nj8cCk79EKsNtsiOMEWZTRLAtJlhBEge1+w+F45BD4lFWJpmn0nT6yrKBGMaNBD0Fsu0JUlZhNhxwOKkVZMR2PeHZxSt1UIAj07F6XvThuqIuCh/UjumXitIDYEEcJk/GYH9++JS9L/vSXX2Laevdg3ayfgq7gByGu5aLJKrbtIMoieVEiKgZ51YAo4jo2ZVWy2i4wNQPPsCjSjLfvv2Pvrxj1hhiKyuNuxb/57muypGDU14h3+y6/Yneq8S8HM4o85+7+lp7XJ00Torzh+bNLiiJnuX4gSjrI2mjgYlk2x/DIbn+gqlsczaJqG1pB4Oz0lM8/cxEFmeX6EVmXmExdwp2P2Kosqoz2j/Pif2QAfIqFk6Q5iqCgSAI/vn/DZrWCpmG9XJI3FV9MZ1zfveftwz1xlNLMn+ixQrdF0FT1E2yuW2sdugN2VYXX83BNB0PTkWWR6fSMwWgG/FQA/Nf/yV9QVRn7JGXo9TpeiqLRczxGgz5+MqXfv8DWdB7WS1abNUPXYzoY8g/ffsMh8Bm6I3RBJN5vuLsJqKWW2A+wDANDN9kFezb+FlmqUZDxnBGLxQOirOE5Nqv9ivF4hi7KVJKM5VlM5906+DEJeH/3HkFsaSkwZIVGLEijPfJut0dTVQzLIKPi3eOSsmqhkZAnDTPHJc4L0jxnFwXESQaigGlaULeMeh5912UyGjMYjXl4eMTTXeShjCwr2LpOHMds9htW61W3MhImFEVG/x91AMKjz/uqoBB1xk8tng/2v4/1ntBZw776+jXv3t8yOzlFFsSntuk/WgVsWxrg7c0DmqY8qSEbJuMx52cXaLrOm3dv6Lk6qqbS1glpEhFGEmUtISqgaRq10LnaLdtgMhlSlDkH/8DAddFNBT/2ydYJA8fir//8T0nSAk1XEUWBsq0RRJi4PSRVJa0yjgebosz5h2++I8kS2rZm4g0wVQ1V07lfPHK/XJLmGZ+/+ozJeExRFuR1TRRE3Y206ABFRz/CdR1EUcK1dBTF4Pdfv6YuClzbQRA7kYdh2ux2B2RFZtjr07YNsigyHgyQVQnqhqKuiPOMts7xxiOS1yVv375DVQQEqaLMa1TFYjzpgyQyO5lwPhlzdXrCbDbmcbMgyCqyPCSJE5I0ZzSa8O//9V+zW6+RFJ371Ya0TJgNJ4iixM39gqqF/mDMfrdBAOIo5vTkhB/fX5NEnWp4vd13h6vcQTyqphODaKqK6ziINJimSSO0BEmIpMpYhkGeZ3z3+nskoaOK0Vb03T5Dy+HTq+cYtsXb62v6ps3V6YxdcGCxWSM7IkOvjyxLXN8vORxCFEkmOAQcdns+ffmC9WbJfr+nqGrqukGtNDRF5/3ynt9+/Qc++fRTnl8+Y6GqfP3DtyzXG4q8ZDKeduTGorvJ122NInbjl4rO1Nc8bV58WAuUJImy6Fr5qqpRliWSLCOIImXRFcwfDsb6SXEqCk+2s/aJFiiKZFnK7d0NcRhQl00nkNINsjiBFoq8QFFVpqMxs/kEUzcZDYdIisj56RQ/DPnx7RvWmy110zLo9dE0mYe7OxRB5NNnr2iamjCJqOqWNM46WIsoIbQCmqGx3G+7osDtockaeZrRCJCmJY+rLXfLHUVZIynyU9FjMBlPGMsaeRQzcD3OTkdUTYukyGh5zouLZxiGwe+/+nv2gY+CwOG4J6sKgiDlbvVIz3YYun2atoK2O/C/e/M9eV5wEV6QpAFC3ZBnGUWeIggSfc8jSzoZmKrIuF6Ptm0JjgG6oeEJDofj8Umc0+mFW6FFVFq+/fFr8jqnoub93XuaWkCRFYo8ZrV8pHpCT1u2hdCCaxvYrktWJGRZwdXz57TAarslz4oOuOQ6vLt+i2Pp7HYbgjRjPJ4iyTqqIVFWFS2gGQar5YrJ7ITRaIrQ1ORlStsWtJQc9kdKo4+l6p1KNvTRJRmhqln5j6w3GyajCbbZJ88yjvGe65sFUwQmoyll0/lGzuZzlutdt8qrybRU3C/v2ftHFEVFqCXy1kWoMnqGwVEQEaROePPwuEDUFQzbYhPssSwL2dQ4+AfW2w11VpNlHeb2L5wPD/t/+yuva4Ikw7ZMbh4eCIIQSRRo6gpdUZElmSwreXtzhx+miE9jsQ8dtw/ft30arwmyhCEbXM5f0B8OGQ0G5GXGw/0tfrSkFX8OsLN0lX/+N39HFKWYugWiwOnJObZtEiQZfgZjXeGr19+BoPHq6hV5ElE0NRfzGWoDQlPT9/rsDzveLx6xbJf1Yst0OsOxXfKq4OR0Tl3nvL+9w7EHWLKIamtczE9x7W49vKxqTk5nmLpCHPmslgtauWWzeaDMMo6HDfPxHEVRWDzeIa8OPrauY9Yl9sDkL/7kT5mNTtgulxiKguU4iKrCS1XCPwZEfsxg1O8O26omio7Iosxyu2YfRKxX2844RksQ+ui6jmap7A5b4ijCT6Iu4dyU/Pjuzc9eyO0uIg5z3NEI2m69oxVF2qfD7IO5WRRF3N4AWRJoq5r/RP0vOu0mH5sAfIQ7tC1lVTGbn/Bw/4AqSxRFjR9GxFnCUZH5/fc+qqwShTFH30czbxj2B5hmJ0hKkhTbNOl7Nl98+hn39/ekacT5yZzZ5JQf316z21/TNDmnp0M8F8qmQlYULMPAdjyyJGa5WWBqCkLPISsMNtsNfuRjaiZNCkmS0Aoivu+j6hqz6RyBlrI7+cnyAklUSfMQy7aRRJG7hyXaZo+pKzx7dsb52TMeN3tMSUUgI0lT2ral1xtiGSZplpImCUkcU1QdftWzDWzDxLYdTqwJVZEgNDXPTy85PG4oyoi8bimKClkoEIWK9kmDLAgN37/7nnf3b0mzAteziIMI2/Hoj0bYpo51ecLZyQTP6vG4WvLu9i1BklM1DTfLZacUHs9RRZHtfs8//zd/h+N51FXL+/t7ygYUxUCVJSShRddVptNRN+JpGrI8BVGgyHJSUeb0ZM54NKLIcw7HI9vt/qkbVCE1DVVRoGsaoiiw3KzRNJXPnj1jNupj77bIuk2RlTw83BLGAUme49l9VusldV2z2KwZU1LVJbKukMZdl0eSFaRcQpJkXl+/Iy5zqrTbQ/YsF/1EJ4xiDMPiEAaczeaUWcEPP/zAl7/8kqatuzXSqu3CpHSp/s61ICHJEkVZduM4QaRtG3St29EXxG6Gifg0/3/qlkmiiPAE/JEVhbquWK9WbFdrHNtG1TR0VaasC/I8oW1BzhUGno1lm8iCSBYHJGnA29ff8LDZEfgJWVrger0uW9A0BMcQQ9GQTAlV05CfyItCkXMyOqGmYhsESFHCMfSxdZPFMeAYBBiKiq7pGKqJ5wxYbDZYps1sNMWyTQxdYzIccDqbEEUhoiiiPlE9ddnhZDRHQCRPUz558QqAm+t3vLt+T1NCmVfoigEN3C0ecB2H8WhI4Pss3t1SNy1RUuEHCZPBEFFsnz43AoIkEkQxk6GKpUk0RUdGtZ894+3DNVWdMxmO8Jw+juWwKwq2uy1NW+G6DsJwwG63x/N6KJLSdXAEeHi4R9VNxqMJpmFi6OrTCEulLHRm8zmiIKPrGtPJnK+++YokCimrgjSN0DWVJE3x+gOCMEEUJU5nY6Iw4ObhFtfyyKuKsuxCylXZYGoq/n7L7rCjbSQs0UG2ZNJ9hiZriK3Adr1ic1iy2W7Z7kME4chvfvUnzM7GZGlGHhcIosarV78gTddE7xLQFcIqp6pLojBCN0yspiFLEnqmSR2H5EWOKOpImsrEszElkyJLWftH2qQzyh5CvyuK24Yqq6AWUBSDPA9p7faPV8J++hJg2BtgWQa6pqApEg+LNVmak1Y5QRjx6YtLtmHCIco4mV8gCx/Cf0+ALJ54GU8bBlVV8d3bH2laiVfPr5AlET8K2e2PpFmO9o84AH/3D1/z9fdvUWUNw0iRNIXpeI7jenjSANMeYBgKzp/9JaruobYF795H1BLYlsNy/RWL7ZbL5IJ/8pvfMEgrdgcf27TYbg5UtYDhWB3ZsawRRIXD8UgSHamDkMDPOJ9P2e+2xEXN6ckZZVtwPB6pqpL3N++oi4qrkyskRKo0JatKNrsj8nQ8xTY0VFXk6vKUL54/Q2hh4Fzy5v0Nd9cLnp3PeXbyjKuLZ9zf3pFlCaosoNkmFyd9ZEVnsdiyWW5ZLBbkRc6g32Po9XF7NlmRgzOgZ3RAnLwsyfKSIvu5C2AXpNDElMs952r3KBcEAU1RkJ/Y7gigKDKfff6cLC0okuyjRvXDG+IfNwLCIGKzXKGpCk0DD4sVXt8jjgPOT+YM7D5JkgMK4/GM4bCPZ7lstltc10YTFfKy4PZ+wWazQxAEjrHP/f2CoTtiPBrz/u6WjX/A6tk4jkeSZtRpiqEZqLLOIfe5u18yHo2QFQFD0bBKkygJkZBpRI3lfkkSdwl5u4U6K7BnNqqiEsYhWRJzOj9Dt3RUVeOw35OmKXEUEWkSFRWG3ePV1XO+/fZbyqqkaRoMw6CuSjzHYeC5nQikrvnx+h2rTcHFyZQ8zZE0mYk0oWlr0jxhPp9xejLhcVMhNhIDp4elmYiixONuTxJEiFXFzeqB4yFgNp7iBRYnkwmm1glgttsdaRF3xENJxnVcvvz0V1w/3OBHBzzXwzZsgiDg3cMDQRxRliXHm4Bxf0gcdQWMLEvIUsfpPpufktcVj49L+o5N37Px0wzalrzMybOU6aBPDbx5d812f+iyHEOPIk8pmxrVNAiShCRJGPeHSIrEar+hagRMy0GyuxllEAS0bcvJaMiw71LWBYN+j7ooiMII07KYXs7QVZ0kitluNrRVd/g9Pj4wsh2Kqsb3fSzNxHNt9kFAnEbdrnTdGeI+UNDqplP4FsUHMEln9uPpkMqy/OMqVF1XtK34kZLZhU6b7vbz9HmQhK4DcPQPCKJImmTcXN8iiQIvn7/okgdtDXWFY1q0DcxmcyxTJysSNNNhuVwSZjFJkrHcBORJiWd7xHnBP3z7LYooI7VgaCYnswm0FXld0EgCvZ7LaDTifvNIHEWcjCecaBOKrGAdbAiTmPH5iLZqMWSNX89PGPYeEQWJnu0xnI6pq251crF44Oj77AOfYxKzPx75iy9/w6xqCRKfnq2j6QbB/kj7tOoWhwWvnr3AMLqVqPvHR2RJIgpS6lrANmxUVSUMQq6zvDs0y27nu3wyOaqKRpjEaJqKfwxwHIfZdE5elsiCjO3YCKLIar1isz8gyjKGadDWNXVZMxtPGfX75HnJeDRis1yQ5BlZ1RDEMWdnc07PZjw+LCjzlrPTOSfzE1bLLaqsML2YYNo6j+tH6qLk5v0Nd/cLTk9P0TWTvOwAT3mSUNcNpmEzGAxxPIftbs/Dwx2eY0OT8bhecTgGDLwRYRqTrRPKssQwbZqqIs1S6jhDR+GTF6/QdJVnZxOK7MivPnlBWQsc4oS6TpDELpszQsU0FDbre77+8Qdsp8fF+Tnhfs9+u+LNZsMvfvEbxsMp0vaBqs4JEx9dVZBbAUfWUTSB9X5DnKTkRYGhaLimi6qILKtuDPyRv/ePTIC6LjHwDPpuH0kUaBvQdJNj0IHCdMvk+7c/EmcpY0nCUGWEVHjaFHsSAvEBONcFx4O46wCNJ0PuHm7Iyuqjlrsoip8/t3ZHTqZnzOZzdsctRVmx3m04hAc+/+QFVZ1we+tz9fxzLk9PiI4rJqMBqqyhNAL98YxCMzm5fMVoeobruHz1+jWGrOJoGophUFAThAG7/RZVNfC8EaZpEeclu+Oe8Ljj5u4BxbR4P3yDaaoURU3dVGw2B/KiRBNNmiIny2LCPGex3SP/p//sn2FaCm3dsNqu+fHdNWmeYpsWRdEym5yjKyppmlE3EXleoCsqhqwQ+T5io5GmO4IgQ1E7u11ZFjy7uKDvOTQ0vLt+R5pE9Ht9TNPhcbtjOpnR4XvuP76Qy+0aXTMQJY1Wbmnqbm5FW6OIItnT/V6SBGbzPtvtkbit+T/d/Bf8d5z/BR+dwLTQdoHAtoUgTGhakFQJz+0hawpBEGIY2lPrzSKvapq4QddUdEVG0xVUTe4CKr5PnueczKdESUIYhui6ysnJOa0gEkYBrm2TZSnLxzWObtHzekhK57D+4cfXWLaJ7fSIo5yyKVkeO8f0uN+nZw4w7AFRlLBIM1RZxbZtbMtClmQ2qxWtCLIIbVtgGTrHo0+RZwx6HsZTjuPgx/yLf/k3/OLFJyz6fTabLbIoomkaq/Ua27Ip6pY8y3Ach1fPX7BYLWlaGdvr87BeECcptA3b4xGhFVB1iZevXlIUBYYiYcgafW+A9uM1727fU+Q5qqCSRDn35ZLA7UJSUZwQrkIaoaWsSqaTMat6yXAwJIpjmqrC0Q12UcIhP3Bz98De96Hq8LaSpJLUNf3RsHuYFxmH8EhWVsRZweawp5UkjkmC57joqgZCS9ZU3K8fqX5bIMoyfhxjux6jXo/peEAYBxhGR2ZTZRlnMGE6mWA7OsvNI60goCgydVlQ5gVJmna/rwvKLCdOY5qqRpHEDlOcHtitd2iajvAk2xn2h+iaRl7nrNdr+q4HVcUh29ETB1iaQpi0lHlKWeQ8e3aJpiqUZYGhG7S0FIVC/UdNz24WXlOWnX2xrmuqqgS61T5REBHEhrZuqdoSVTMQRfFpE6bleDywWDySJTl11dDQcn97i2bq7A8HFFGmbFqSNKNZLmmriqzIaFuhUyE/f84vPrsk+5t/RaIkiKLIevWIZRmIiBiajmWY1FWDoshM+v2P8qSsKiiLkpPJlJPxlCDweX9/T16WeE6Pqm7ZBz66pmMXJpIskmQJxSGjpMAwdeI0ogxq0iwnjBOWj1sUVaeoYLFao2kisaWyORzYrDboikpTQ7/nMpuMeFwvaFuByXCCH0Xs/QNHP8DQZIQkpaXFNE3iOOZxuUaWFUzLxnZs6qomy1tESUK1HIpG4GbxiCpLDFwPXdXJ8hzLNDifnaDqMlkedY4Dy8I2HWgFPvn0U6qyIE0cPnn+HEUxQBDQdQXXMpn/8ku2uz1FkfEPX/0DWVkznc0Z9Hv0XIc8T9is17huD9vpMxj0oG0wdQ3TNNBECb2qcW0XVVGJwpCyKGm1hqZuiKOIppUYj89QJZmizAnDuCNDSjLCk7NB0VVezU4Y9AdE8YFk/8hiu6aoW2RBo8kL7h9ukMSG7W5P35miORqv391w97jhT778DZrsYowMDoeI3tThr/+9/xh/veD+7g3vF3cYloXYSgiSiKaqnacBGVu3ydItrdxSVBlHP+I/O/nfUFbN0yj4p9tdSxcQF+QWPw0IooQkSblZPODYNvPhmNOTU8Is4c9+/Sve3NySZBGqqP9sY6xtu02AbtzcIooCLy9PGbg9qiTGD45oukZRVMRRxMP93c8KALfXQ1FERqMhqilx2B8oabqsyO7AITxyv16TtS1hHmKpKoZmU9U1s7Mz/qmsUDcCvUEfx9SJQoHL589YLjcsgiMTRSbJEzb+jvvVir/4k3/C+cUrNF0kDgPub9/xww8/IDYSlmIQJSG7Y0Gew2effcLLlyKHXScZ0mSJttHRJJVxT0V+djZnH2wxHIfJdMLd7R2O0c325idnIEj8l//l/5vH9YrhZEjkd/P7k7MRm/2B22VNkZdQioyGIy4uz0nTGNlo2QYbDseQIM64vV0gL1ZcnF8iKyaKrPH+9vpnL2TfcdnvD8h60+18CsKTK73bu5Rliawo+T8e/nO+OLwAUcIPfMRG+GmX82dvj6eZqNAwm09QVY2qynHdPrLUGZuquubrH99Q1BWzfjdW2Oy7pPBmf0SUZGRJwu33cE0NTe4AE9vtFj/w+eTlC2zbQVd0poMxfnAkLXKqPKU3GGLoKnXZrfnpmsHN6gbfD+gPPT55dUUUJaRlxWnf5fNPnjMauhyOR4SmxrMdtsctRz9gNp6QJhl/97vfcja74LA/UrVda3jsWjRiTZKl+H7E9f09tmV1lf5ggGOZ+IcDfhhi2hZer0+/7+KYJs8vnxFHMYO+B1KXqM2LlvvFLUWRcnY249RzGbgeQRARFRUDUUKSRRarNYdjZyJs64YsLxGilLe3t6iCRJTEFFXDMfC5vrtj4Nicnpxw9EOSOP0ITPHDkDCO6VsudVUTpSnPnz/n+fklQltzt1xwzDOWex9F1lCUDNu0mExH6JrOfDwjCPasdjsue30moyFZkRFHMZbZJ04iBp7Ns4szirIgjhM2+x1+UdKzXZbrJfN2zH51ZLHdUApwPp2zOuzZBj6qJLMPAkzLQhJFbh8XSK2I4zqkaUoUxeRV0XEfngJAmqJQVAWNBYqi03CklVoe1o80jUAQBvi7I8vdnmfPYgxNQ7dMZEFBlhVEqUvyN63wcUPgw/u5yLKP4JK6qmklmVbuVlfLokCQZFRNQ5JkECXqssT3jxz3W+qipq5yFEUmTmPSMsc2bYa97jOx3m25vrlDkRUsy2K922JaDs+fXTHq9/nTX32J2LYkYcTQc7Adi7ZtUBUZXdbJioK8SJFkseMwAKauc3V+Ttu0vLt5TxjHlHXXhek5Hpqio0oxZZ5w8xjTNA2yKKOYOofwyDEUKJoCSZaZT6fUbQOCiKF1vo7JdMqLq08wDA3kW6hFFstH8rzg1bNnhMGxE880DUleIooi56cnvHh2xf6wx/eP6Lr+dHPUeP7yOVGc4vsxdVvR97yuwM9TqrJGVXTSMkMWRIIwIElTiqLk/HyObkkoskRby+iyQpLllGXG9OyS6WRCnsTkcQTAyXRO27bc3N+x3myIk4jtdk9W1EA3YtP1PV/lEZqi0BQVSZKCCKNeD0vXO2BTniKLArrh4CjSUwFZkqQZaZaSpAlJ6nA4bHF7/S5DkmeMhhOE3oA46ZDIdVWRlzWq2aNua377h9+yO/hMxiPypqJtFHS1pT8cIisagX/geAzw/ZTN3sSzRsx/9QKv57HarvAsg+nkhE+/+JKi9Pn2+98Thgm03c0fRC6fPWezWfHwuMa2dHRVZj4c0FCT5AmqItIWP4W6+UeN3v/9w/+If/Yf/RV+sGfxsCdMM/qDaWdTjBMWmzWfffYJiqrQCCJFnuIfd0+rp12X7eNKIU+FgADBMWBx94hm6l0n8LimqWv8IOJh+Qj8RAMs25ogCNBsjZaGoqqQlQ5odvAjqrZiODTxoz3+NwHn81Mcy+Py4rIjNvY0wiBgvXrPQRYBGUkQsR0XUVHYRwG2bXMxn9M+Cb8OaYKNxG6/5WG5A1Hl9NRjuV3z7r5CkQxevviSnmew2wZMhxOuzq44Bkfqqqah7fw4y+0taVHh9Ptohs7s5ITlcsnN/Q2KLuE6PXRdRUNhtw0QRZmDH2I7GmezE+KsIooyVostN/cP2JGPbeost3uqssZQTfb7A36QIEoNovyA5/RYrh5ZPD4CLz6+kL7f7aTKRU3be5KgtC1N0z61XboWzW4T8oc//IhpWlRpy/ZwpHabpzXAf2sCQFVXqBpMJl63k+oHmIZBz9S6m4upI4sSw16Pjb+nruonOcqc5WbN0Q9QxkOu7+85HgMuLy95+eoFj6slf/t3/5rTk3PyMieMA7yBR5QWvPvxDfvff8vl+RmfvnxJVdXsDjsUXUWIRfr9Pv1eD0XVOPhHRLHmk5dXPH9+xW+/+gcWi3sOWYQoivQGQ/w4pchLyrTh/e0tiqZhWRZSy1OAq2U4GDCfndHzXOq64NnlGa7jQNs+7YnDZDxm0BsQJT6SKKMoKlWRk6Up/YFFEEa0DaRpQq4IqKretY7TjO3+QFU3LB/XPG733K93lEWFoatMRyNG/RFILe/e3zDyesRxQtV2N9C72wWczKmaR8IwIo4TTMPs8MBxhu9HCI4AbQNUjIYuk7HHcrUiiiKQZX752Ze0rUiVp9imjqLK2LaJQE3dNsiShKZIfPn5J6RZShyn6LrF1999y/GwQZJEpErAMSye/eYZt3d3vP3xDS0N797fkOYVrQRnpzP+g3/33+W71z/w9Zu3uG4PWVUo8wJ70KMVPJqi6wI4wzFCK0ESkqdFxxNpG1arNYPRkLQo+PHmHQgtnucQRAmHQ4AgygRJyN1ixc3dA3eLBZeXF5zOz5mfnHR4UlmmFgRqQUCUug0CUZQomg4DraoqTdNQVhUiIMsiRZFjWGqXbG4bNEXpEuabA74f09Y1dw8LdKMT1mi69gS5ybi6umJ6Mu3mjYgYuk5v4KEbJuOBze64YuOv2K43aKKCZWqcn8woqpz98cj2sEZowbItLMN8QmrveFg8ohs6EqBrKiejMUwmiLKEqenURUVbZGRZRlFXDAcDXjx/ztv3N3z75nWnyC7SJy6IQBinuK6HKIAf+DRtjaEI6JqGYZl8/uIl5/MTgjgiCI6UdYntWNwvVxzDiE+uXnB+MqdoG2xTpxz1niBKCrOTOXVVcHN3R10uSfOic5rkIbIioqoaRZVTFAW7JKEoc6qiwNB1NF1ie+hC1ZahoKkSddUiyzInsymmohGkO6I4xjQtLMfmD19/xXK95v3tLVGaU9ctfW+ApRuYqs3NzR2bw5q/+vO/JA1jtrt9h9guShTX5XGzJoli5rMJVeUzGA7I8gJDt9ByvetoyQp1VVIWDW1VE/pHHNt+wpUbJGlAFAcMB0PSPEeUZFbbLW+ubylbASQdU5NxPZvReMp8PuP25po06dZg87SgFeD89JSe2+ft+xtaGtY7H8/zWO2vufvdDU1aY1s9tseYMEoZjSZ8/uln9HsOcZRTFBmyIjEeDrpV2VzlIX34COv5aQ38j1YC25YiyRm5PV6cvuLoJ+R5ze3DHbqqcPX8OWVdE+wCXlw+YzIa8NXXv0d4/XRF/EexAknqvAs379ecX5ziuTZez+XxsWLv79nsfXZ++rP/Rtc0ppMhRZnRVi1n0xOyouTm5qYL71YpcRaTZTAejvn/vP0bpienjGZTRErC2Ge927F63DAbT/jlF7+kKnP0/QbHO2G/9xkPp2iKgqUbHeisLinymrdvr3l3fcf0ZIBkgVGqlGXOcDBh0DPIk5DlakPktLy4uOwYNGLLj2/f4Hl95NVmg6mbuKZJmqQUWcag3+P+4Z6vv/2G8fD/R9WfxNiSpml62GPzfObRZ/c7xY2IjBwis6qLDZFNEiL3IrQQBAnQUtBOEKCVCEob7QTtBGirjaitAFHNFgvdXdXdWZkZGRmRMdzRr09nHu3YPGthHpEZtnFfXFx32DG3//+/7/2ep4emyEiSSJbHqLqOKvUxZR1d0EnKgE6jxaA95N/99t8xeztFkRV0Q6UsYbW+wXO9WruqGkwe5jyUc2zHod/pwvqvbr4o0O/3yASJsqwoygrxEdZQlnUeQKCCUiRPRO6XM9rNDt1upx7p4C96yL/eBCRxxn7vkWU5hqHj7l3m5Zx+q8356RkN22LrHXj1UFckro5PQZAoK5F+b0CSFTzM5+z2exRZZrqYo5s6kqLy1fev+f1XX2NbNs1GgzBJkGQV03BQZJ0izagoMCwdcV3x61/+HNu2+XB3y2Q1Q1EULMckziMEqSL0Dti6yuXZMa12i88+/oSm3eRhueYf/8N/4HgwotVy4LHPqyryY4kyxWk06fcH5HlOkadEkYfn1VWAQa/P/f0tu80cx9Io84RKzimznM16RVWWlBXYlo0kSPTaTda7Au9woOU0OPgeG3eHIqnoqo6uGnTbPZardQ3GEEV27g5JlnF9n167h91oslpvUBWVRqPDwU/YutM6g5BlbHcuaZohKwpVWbHY7CiL2n743avXZElM07Y57g+YbNb8zS9+xXy55e//7d8/4lhzoiTGNAwUXeHk6Ii9d+CPX31FkaeMByNUWWLY76LKIkES4tgG3UYbSVTodbt4no/reqy2OxoNh5cvrvjN5z9HkWT2+y2DTovB8BhLV1AlEXe3Y+fuaTgNLi7O+XDzwIe7O/Iyx9B0FFGi3+tjaQa+77NKEuIkQVYV1ut9DfEQFSRJQJc1SrVEFRU+vPvA7d0d/9X/5L/C8w5UQlmLe1QNKc2gSqlKAaESQZDIi5QiSVEUGVGqoST1JEz9kizKoh4fjELyvGTQH7NebkCV0G2HJIkZdLtomkJZ5oRJxNrdoBgasiHTthukUcyTJ+fYhsV6t2W+WkEl4kc5byf3iKLA9+/fUFYlqqZhKBqjXpeizPADjyTNsO0Gx+NjXO/AarUgjSOGnRZhkqApMr1um8V8jq4rVEJFmQlImsI3r7+nAp48uSQMQh5mU0RJQ1Zknjx5wtnohCwOuf7wntlyye//tKQsUp5eXfDR82c0HItup81vv5jx4faGptOg127TbXcIw4DtYYfdbKKYGl6wQ1d0nj+5wjQMHh5uadkm+sUpQRSRxgm2ZRLEPoIkEwQ1Fli3G+R5LSHSlNrm+PLpRwiSyKs3r/BDjyAKMSwfQzeQKoHVtiYG/rPnL9nudxQIyJJCmsWYqkKz2SQvHlPbWRtEWC+3fPGHr3j+9IpPP/0ZgiDjHVze3dwSpQlPL5/QbDnM5lNkTUF+DFUmhkEYhaRFgWVZ/PIXv8Dzdmw2WxRFZ7PZcP/gE6cxkiAwm8/w/JA4KyiKisFgTJYXWKZFt91kspyyDyN6gyGNZoMw9NEUmXFvUL+PhBJVEvnbz3/BZHbPfHGH5+8JEpcwDBi3x1CISEuBtIRSqm2vL55/wsnZM968+Y7VYoIoC+iSTrNts14vKaPHkb0fr/r7qgJdN7i6eoaqgK5ZOE5KUQq0e20OvoeqSKRpLQ/TdQVJAsPUfzTH/uT6gQtAxcXlBc22ThwmCFVFx7EZdrsMBgNO3RD+1V8Iti+unrBcLSmSOsmvSSqr9Qan2SCJQvJcwNBbOI6FLFT4QYTqetw/PNBrOYy7Z+g0GLaGFHnMej1lt9ugGzpJIOIYBqamYlkqWWyhaAaKriFKMscnx7SabUopoVIyTs9PETKZ0WBEWeWkSYRtN+l1u+wPG7KszrUYlo6sysjLxZazsczs/oHx6BizY7B3XX72/BNubj8wvZtjGjqqoRDHMbPZHMdqYOsWDw8r9oc1oizRbLTptJv86le/QC4F9t4eL0zQFBvxuMK2DOIoQVMNWq02iipxMhzAm82PN/LTl89Z7vds3KDmmD+Gn344+fO4E6yqAlGQKQrY7bd1Wt/56aL/405RqEtNaZIzHDQpi5K9G0JZkWcCzXYfyzLw8wxB1imynLQASa6YTCa0On001SAK69R0s9mGsmI6XdY700qh1TDRVJX97kCV171CQShpNSwsTWG9XnP19Am2bVGkGYNWm816jaKp5FlOmebsVjuEEtztnkGnx2g0wAs83rx5RavZZnx0zG9+9jHCI8I0L4r6Adc10iRFUw3SPEORKvbbbY3HTFJUTcNxGqy3tU9gvd1xCBMajo2u61iWQ4HAcrVBkiW67S6tdoNWq8VysyJOYmaLVS3/SBJahkgupRi6zNX5Caam4Fgmuq6TFgUb18X1QhaLFY1Gg8APEOx6LCmMYtI0p2GbUAnE5HU2wrLqzUAWMeh1cWwDyzKIk4yy9KhKkWazyXy14OziCUc3Z2xWa+Ksdjh89PJj9t6BfnuAaVnc3d5wcjRElkSqIiXwDnhBRCGWzJZzqvyaLMtpN9vYtkMQJXz66cccDQckwYHf/9NvEWSJo6MRo9ExVQmKJnF6NOab779ls98RBBG//8MfWe0O+GHdy9f7FkmacTeZQlmiazqCKFCmGZttrb1WFBVJLIgPPlQgSjLL9QZVVbBlmzzLWK3mmJaJJquPWRaRNM3IyxJBUhDFBEmWyfIMBQVBqMcExUeNcPWIvy4L2Hsuq/UGd+czHPRpNExKCvaHAydHx+y3G0oBHMPisHfJtimD8RGKprKcz/GCALE/Yrqco+sGP3vxEcejY/71P/wj795fo6kyhqHSaXUZ90ckWYgbBAhhiKKqjFoOx0dj/Lc+i9WaSix5WM2QBYV/9pu/ISsrFEOnp9SbyO/fvmXn1ZjpOEnodzrYtsXJ6RjbMtBVg7yqUGUYH48o8wRFVpiu15iGjlAJfPv9axq2Q38wRFFUut1+TS7NCkxDJ8lzFE0ljWJW2209YSQICLKAaetYzQYb78DOc2k2GpiGjggYdo+yyBk0u1SPxM2sLJhM5xzcPUla4oY+SZqyOXgookzb7hOEPtOHCYZpIQgyltnk7uEOWZR48eQpv9v9gUPgg1DV9lVVx2raKIbKYjrn4IcoSm2P3Lsu52eXOI5Np9/l4Ht02l2KLCYII3p9nXa7wXq15HDwkWQRVVPRdR3DNMjLjItmG103WayWRFlNAY18H1VRGQzHKElOkhZ0my00RSAMQ3RF5XR0jKSqKLJAo9FCkESu378njhNOjo+pyor76T1NJ6RpOzzcV6RZQb/fRrYl8iymrAR0Q6dKVdKs4NvX32GbFgIiMgInoyOyqNa7j3pd/hCl/B9/9z/jv/mb//Ynb/cKgf/md/9zzi7OWG12SGKKpiqcXjwhz6GQKtIspnzcnGmGTrPVoOFYaLryQ/ngLyjgx2WmgjrsJ0V89eoVJ0dXDHQJd+Mh5RGKrTE0Df4aYb+c3eL6Hu1Oze9fzOYMB31s28L39xw8Dy+uM0mhH/DkyQXj8Ygs8pm6O7SzS0xVwtvvuH24JU5LBFHDsSyuLm0ESWC3W7NcRKzWa0zbRpBlQObyvNarzzdzvODAfL7lydlVHSoWKqIsw7BNBoMB29WSvKjQDRNEiSwvkduWgyJKSIKA53tkeclmuyaKA3RTQ1ZVFqsFWl4HXtpOs36YLJPrD/dMl2v6/Ra2Y2LYF1RFyWA8wGlZhFHM6ckRSZIQhj7bzZZBv8vJyTFRGKCpMvCXDUCraSEqEpvd4a/O8BUIImUFolBXAYqy/FGBGQUeUZzyf/H+1/xvn/7ffkJTA/g//P5/iWMZNJsN+v0uhmJhG02mi3kd+FluKCnY7HeMu32ePX3Ow3zK3cMdg06fjz56SfLnb+D+njzJqPIaT+kevEdymkwlmCRphG07SIpCnuSkRYJ/2HNxespoOCJN6r6tamrsI4+szPA9D0VWGfXHzPMF33zzmqoo2W0PbFyX5WaNqgg49u7HufDZakFGjmM5BFFAHEeIlcBqvuQQeDUdLi9QZIVKrHe/nucRJ2nNmI4T4iwjiDzGoyGCJPwIwijKGtv6cHdHhUB/MGS1WrPZ7AjimFazFqEs1wuCMOLg+di2yelg8ONLT6BGJGdFjgB1aVRTMU29PpWEIU3LoJIllNMjGnaNPx1HEaokowoShqGRZgmyIpNVJWlZ0LYcRsMBL589YTK7417X0DSV4bCPpimciQMuRie4vodQjDFUlSAIuL5+y83dgiDN0Syd1XJNVZWUVcWw20dXVZIiYX/Yst9vsU2H/X5Nmobo1pKri6f4YYhhKEgifLi9Y7XeYhk2oijj+yF+GNFwbI6PjrEMjd2h5vtfnp3zzavvsDSdjt2kNxiAAA+TCYos1vPjAoiSgKKpNU3y1SsUtXarP718QqfdJIgiJtMZg0G/fonnNa5XoGZiFHmBKEq1AVAQSNKE5XqDe/DYuTuSJGHQH0GVUxUZqixyejRitZzVQTjTJN9s0Eytfi5v75hO5jRME89b0W/1GPUGBFHA6zevkSSZj55ccDwcoOs6ZVXghyHbw444Cmk0HWynDjkt1gtuH27ptLo8e/4Rs/WcyXTC5ckYVdFZb3YoqozjOCyXSzRVxXZssjynKAq8IEIQwLANZEUmjEMGg9NHqU/dSjFtGz06oJsGzUaHteuSVBKVpNJq9dBUi6ISiNIAz6vzNFVasN7tabfaKJKIZqh4vsd3r79Bk3VOx6cMh0dkWYbn+zRNEz/wyASR0WjM19/+GUPRa7xumiBKKlleMVtuCeME2+ngGCa6rBBEEbezOYZp0G31sRy4ebjnn//N3+L7PiUliqGxXe+oqorxyKbbaJOkKVESo2sm3W6fbreHaRq1its0yPKcnaujqDqrlYvtNOl2ery7/o4syXn50Sc1IMhzMU3zMRNQ0GhYTJcT7u8fSLIS93CofSQCKIqFoMD58IinF+cEuyWrzYqd5yFlYJkGv//D71A0i/FoyN4LUVST7cFDoOR+viAt6vbToHdMtztgv58Rxx6HMOB+OkfSLVp2myxLuftwi++HXF49odNqstuuOGy2aLpGmASsNnviNOP/9MX/gv/61/8PAP7PX/2v6Pf6fPrxx1w8uaLp2JRliBf4LFYzSkQaVpPTkyPc/Y4oDknSiM16QZk3yNL0x+WlLOq20g/rxg8TR6YOn7z8OWcnF2y3c2bbLYqmcHl+yaA7AK5/XGOyNKHdbrBz97x5/w4BAVVTsW0Dy1AQEBGlGD8KORmPMDQbhILQ9cjThO1minvw+XB3S5KkOE6TTqeJaZhoukWr3eTm5o7ZZEpZlQRJSlYUaLrNxfkFcZIhiyqj7imUJdv1kmUh0B+MaBg2VSEgihKD4YjNdo0fBDRbbWRFQ7Zsg1IokLWKNA0xrRZOq8FmsqXTatHQLIqiTriqqsqbDx+IkwhFVYjzEtNxUBQVw6rDEllacfewJIp92u0mkqJiKQ2KPOd4PGI47HM0HiEgsFgvgdsfb6QoSdiGhaaof9mZCTWyMa8q5McRjUG/T57nZKKE2uiw9zyyLOX/ev2/IYly0iynKkEWRWzTpNHQOTs54fzkmOvrD2iqTKvdZeMe+HB3T5bmZHlGGhc4zTZhEBMGKVJPZrddMeh36Xa7hP4BWRJq5KKu0e82SNOINMvJiwqCgPliRZ7m9Ht90rzAcRpous1sNSf0XQRZwA18RAQ0xUAWRe6nczabLY7toCoSigxnp0c4rUZtYItzVq6LJIoEScp2uyWKUwSpHksK/ID9fo/ruVQiOHaTIs+JstoXL3o+nVab49GIskhJooi8SpnPJ5iGTqfVpd/ucDd5YOseSLOMTqvFUbOD0BVZCSsajompW9xMH5gtljimhaGbHIKAN3cfKEsBTdJomia6UkN4Bt0OpqGiagofv3hJVRTc3NyQRCGypaLpCs2GgapqQBt3u0WVlPrFf/BQNZXeqIf82Os2dJU/fvE7DvsdpqHRbjtoJvjBHlW1eXX9lvV6BVWNBa5KWMzXhGGEouq4a480Lei0moRJwiEMSfOERtPGMkymszmm4WOYBikKoRtQ3d7h+T6dVgPfC9nuffIcfM9HszSSPMayTH7x2ae8ePaUJAkJYo/pdE4cBeiKzNp1MVWVqspxPY8g8CmLjDIPOTm/wnRslqsleexx++ED1SOgKT0+Jo5k/vTNVyiyzM8+/oQkTUk0nSTNaocAIlUBkqwhawZhmuAFPlt3y91kgu/6mIbBXl7gI/DunU+UJTx7ckGYBBzCA5KmsNxuaDUs0rJAlnUUQeLN9i3NdoO76YRht8N2u2e13fHy+TOsboe8KAiSmIPvgahTkdNpjfD9gPuHKRdX56iSRFgmGJbDcNRA0lSSqMAxm3U1sWmjGwbT1Zrv3rxDk2WGoxHb/ZbhcIAI+L6PIavYRgO/9HEsA9PSeDt7z/XdjOlySavVZtDvMRqO+Xz0d2iqRllkBN6Bw2FHmaesNxtC22Q8GhMlCWkdG8I09UebooRp2kiAQE7/sVUhqxLHg+GPXAlREnl29RRD19jt9gijAQcvQFEUmk6D89MmSZKy2ayZb9fodoOjVouHyQxdTzk6GqFtRabzOlPU7/VRFQNFMMmyGjE+HI5o2DaiKuAs1lycn3FyOiZLIlazW1xVIghCilJkPDrF9zyiJMJUBfI0peE0EaqcetC6IE0Tkrxut2magizKnJ9ekZYFv//jH5AVjY+evuTJ6Smr3ZaL02OSxON2dgelxGq9qTfc4yFQt6F8P6TXrmFZW3dPHPvYlsHO23LwDpi6zuqw5mQwRBMtCknAstu1KwW4fPKEKIpwg5DRcEyexqzKHMlWabW7mLaFYducX51iahb/9/v/HY7d4Oef/YzzkxEtyyIqEqLSZ7/fc/ew4BL42ccv2awWRGFKHKUs1yv8MGLj7ei0bFaLFd0fV52/UAVrYFYdvHUaXdq9LqHv0m90+fnLl6x2a55fPf0RS/zDpWoGmqTQsTosZiueXl1QVTmWYbFYzjAsh08+/hlv371DkgTanQFpHLGKY5BlJrMFsigz7B0hyyrHp8dsdkskSaVEwm62sVoep5pDVeaYukaYhLyffODDww2dRgPLVvEClyTMSKOYpt0kClw8N8E0bMoyRdM0HMtANzRKUSQII2TdlCnJCYMdL5+9JC0k/Djno+dXbDc7HiZTtu6O3WGHJKlYmk2Rl8i6zvOjE7pOl2///DV/+OOXNNoOvXYPdxewXCxxdx0GwzY/+/nPiAd9TFnEsDQ8/0CFRBD/dJ6yEmWKsqDV6VEdqh9z/D9wmouqpKLiaDzE1E2miwVRlNBqN/HjqD4lN+DFs+ckccxiuUKSJI5GTZ5eHiGIKbqh4LkxmqZgWxZunqHbBo1mg9OzE8o852Q8ZjgYEoYh76/f8/z5R1xdnDOb3TPodAniGFWpsZMfbvfEac755Rnu1iUMYzRNJwxjdMvkD99+Txh9SbNRv1iqqiBNM7rd2odgOw2yJGXU7yKSk8QBWZLimBqqCoPeR0iCiqzIVGUddlqsXe7nW7I0Y7fZkUQRpSBgOTrqY3pbkUW63Tbtdhc/CBEFARnoj45xt3vW2zVlkbOcb5EqkcuTJ1RURGHE6dGYVquBqpoYpsV271LmCYau0Wl1QVBI4hhdFkmSmCwtMK2aMdAfDJhMJ3SaDWRZpCKnqmTyoqTVaiJqdbA0znwUtcC0VKhk9q4LokAYx6RZRpiEZFWGHZkcVivSPOPgesiCiKooZEVCQsrkdkqr2UUUSt68ekuaJQwHQ5qtDnd3d5SCQKPdwvN8nIZNq9si8D1MQ+f09BRZFtjuNzws5mRxRonEIfCxHAtRqsuUaZZSFBWeF/DpR58Qhgk7d4sk16NjDafBeNTl4Ln8y7//e7abDc+uniIgkMQJiAJuGFDuJOI0p8grEGUQFYqqJCtiFE1EEhTuJwv8wCfo9+j3O6znEjfXH+j3eswWc2RFpaig0WiRZxlpktblf1lB03Q+3N3g+T5BGFPmJZ//7DPupg+4my1Pzy54e33L7WRGmpUI1NWDNE3QNIU4STBtkzQs2LgeUVqgGyVBHBHGPpDj2CauuyMOFJI8J0gSNF1DFmvfgecFmLrJZrtnPlkwHg6pioL1agVVgUBJu91ks9uR5wnGViXJC7Ks5Pj4hKPBAIGCQXdAmqd4nkcpwCEIcBo1Svzh4Yb7uzuiKGS52tYMdxEMXaMsM8oyxTKdOvOjt8izEEoFWZE5HA7oqsxoMGDc75MmCevNiqbToNlu0+l1UEWBKAjIkhhFELk6P6fIc/Ki4PlHL3j79i1O08EwDKIkZnfYc/D3mLaNHIEfbsnSkijJgIqfvXjKaHhEUQqIIrQdDachMb2foKkqT07OePP2HXEYk8YCaZGSlTElEufjLsNOi35/yGI5o8wyLF2jKiSSOMJptMiSiNA7cAh9Xr36ntl8yVRYcX1zjSCKnJycYOkmWZHWpLuilpI3mk0kVeSoP8DQHYb9Fnt/RRC43N++RRAgS1IkQcUxTTrtFtHBp8wz2o5Va7ajA4fAoywKAn9Ps2mRxBG77YFutwfA3vPZ7D2CMOTp0+esFgs0RaVhWVi6wtOrc8IoZDZf0242SEuLk5NjhDLj5x9/xC8+M6ASCL0ARJmsTNEViTSvpxwm81pMpoomwSHmm69fczu5YTFfIgsqggCaYZGVGWWZsNy69ejf4yFTkmXyLKN6DJzLsojT7PLFH/6AJis8PTtHlipO+n322x2Savxk3dJ0HUUUcb0dfuijKBLvr99jmRaqpmCYOkmZ0B10KKuSZreJQINCKOo8laZx8+E9SZJwCH2OJYl2r0+clLT7I4osw9Q0Br0xh8OWbrfNfDWnuM8IogPnoz7vrm+4nT4wHhzzyYuPmEwX7NwDtmVi2zZh6LFarthsNgxGI07PzpEVD1lSZCzDJko8vn//BkO10TWV5XKJHyQ8TOZEWYrjmGyXM55dPWXYGrFYrek32yhUaLKE0RlyCF3eba4RJAHdkRge95AkEUGqePbkhOvXr0nyiK++/67GeAriT27k3WTC8fE5jVYL4SD8pKlfVj+kNkXyMgFRYzzs0W62kUQRq2Ghqiqr1aruicptSjFGRmLY6xL4ITeTGzqtLucnx0wWaxqmzun4I4qqotVucXV1xatvvkWWJNzDAUXT2O0Pj71yk+OTMb1mk4MfYmn1KGAc5yxWaxRVY9gfUpQCQlGhihKqVPeawiBkMV1CBePxkKPhgIvTI8ajPuPxmP12S5JE3Ny9Z71e86uf/wpJlPjzd3+qA4SKzdHJCXt3S5YFfPL0KWFcsFhtMGQVEJhtl4hCScsxsQyFTqfFs/NL/CDg9nZGu9tDVBT2nodqmhR7iSjOmG9cvCimqDSSPCHMk9pyZ2oUFXS6Xbr9LuvFFE2R+PzXn+NFMb///R/Y7ja8ePJrJEHlYTql1XI4PTli0G7Xp6/E5+RkhCCIZHnCt999S5ikVHFFUaT0On003WKzOZBkJR+u79isd+R5nV0YDodM52s2ux2CLJPkApqs1sS/LMYOdUb9EZ1mHwE4Oz+v2x1xyvp2wt71axGObtDsdJHEmiSIaWBbDm3HwfU9hv0Tuu1BrUrWdfyDR7vVIghjOs0Ww36X+XLJIYnRVJ2qEiiEiu1qw2gwYrfd86/e/T1RknM/mdNs2KyWGwzDqIOrkkTkB0iShNO0GQ8uUVWN1XbNcrMkrXKWmy1iqdbed0HCajT5+s/fcNQfoUhKPUkxm1KVFbqm0mw0SJMYUzdQNY0oSxk1HCzTYrt1ubp4gq3VpjBDVUA3ma1XOJaNohis1i6dho2qGNxPF5RliW2buAcfx2pRAbbV4Kg3omFa3DxMyUt4/uQ53715g3/w+OjpM/wwAkHi9OiY1XLNbL6k1WzTaLTJ8pzAj3EaDZIkZTGfY1sWuqoiWuC6dZJZURVsU6fXbXF1ec5hv2W1WWFbDc4vXiDKAt9+9zXr/QZNljganGPYDe6n9zx5+gnb7Yq76S3tdotBb1ADfx7uMEy9vh+7A7bjMBiOqQQBVVbIs5Rep8NqvabZbNJuNsnzHFNXsR9tn9fXN5RVxcH3ubq8qpXHQL/fR5VlojwhyRMGvS4SAkEUIckKYRjQ7faJk4ROr42iVSRJyOXlE0S5Yr2Y8M033yJUIienZ7j+jtlywiFOcXcuzVaT7777FrEqMDSdn3/2c3RVptducXt/x3y9RBZrsVA+mXM0GGNoKuttyqu379gHPsP+iIN3wHFsbNNGrCoqobbyJVFCWRU0Yx9Flxl0mpiaxf31G4I4YTQ+5u7uDne/rw2QTQUvgq+++TP73Z7+aMTd5IaW0+R+PmW799BVhXbTJItyxr0x7i5is3HRVIWD4mLaFpIis1mukEURL/D5cPMBw1QQlFrII6sipmBCnPH++gNpFLDe7ChKocaXlwVPnrwASt68+hbTNjg7HbLcbVEFHUVQePPmjulshqobZElKy5I4OT0mzmJMVafIwPcikOqwuCDU4rl64gyqqlbOf/nVH3n99i2aYnA/mdHuNGg6dSD47OL8J+vWfLOl22iw9w74nsdsNqPVbJJnOa1mk0OUMJtMMK0Gpm1SFgXb7YaH2ZTzs0tG3S7DJEEQRdKsopJkWs0WumGh6zLhYc1uvaDIcmzb4O7mA0mRoYoS7m7L93HKzf0tbhiSJhJpUHByeo5imORZysHzieKAshTxohjVC2j5AbIoI8+WO0pZpNVqsPUCmmrBk7Mx+/2WZrfP2eUpH24eMFQDw0j49s33/OZvf83J0ZjJw4TZ7R1FkfP0oxeIooQqBHS6NqajcPnkDFmx+R/+/l/TaViIlYCkG7y/eeD0+BRF/sl9JIgj/MDDdQ91zOMHC+APewFBRBBKiiwjyxLGoyMuTs7I0oTVeoFEzuGwIUoiGu0Wui5S5rDb7QiDEDeICYMZUTsjiGOcpsVo1KdEIElTdrstqqrgBz6z5ZzhcIShG/y7//DvECWFPIt4qG7RTJtep4tuO7S6Q+JCYO/F2HYOkk673+H8aMz9wzVNxUSXFP7w5VfIksJw2Mc2NSRZIAhD9q7LZrerEa3rHbPZkl/+UuTm/p4wLljvd/iHKYuDjyzL3N9/qAmKosJ0tqLbG9Bqd0iJaJg6TctGFGsr3z/96Y8EQYggijhpRuSHHPwp4/7gRzvcJ598yrDbpyxK3rz/HlPXiaMQPwz4cD+jkmROj8/I0pTNzifOc5rNFoNBlyxLOT06Rtc17IbBbDYhjQNOh0MWqwVvb2YEYUCSJBQVqKrBsD9EEESanRaeu2e78UmSgtliye3DgjzNkCWRIPJIiwrHtrFsmzhO2W5qPGb9gu3QcRqMej0GgxHff/+aKIqwbIco2eL5AZZpc3JySpql+J6HYztUZVafIHSVMPRRFYnf/OozJpM7JpOUOI4xdRlBqGg2bPI0Ic9BFqDdH6BoClGSIQk1ovrrb1/VLIc4qZWvSUELiU6rhSiCrNWI4P6TK3b7NYomotkyh/2BssrptNtsdjvajS4tq8nNzQNBntPr9vlwd8P31+95dnWJ6+15eLinLEvCKCLPMgxN5+zklEoALwyY3D0wHA4QBJH7uwdG/R7Xt+8RBQjThLwqUS2Dlx8/w/cDTN14NL3V+N5KKLA1kwKBtTtFTEMM6wkf7h+4n8z45a8+Zzw64bdffU0pyHXIMwnI8pSduyNMYgRZQNVrVKlhmJimhSxJFFJBltWjXi9ePCNwPW7uKsJHkJPddFgsZ0S+hyhRw7asBk9ffIJmqPzhjxHr9ZKWbfPk7BlnpyPyzGW5mBOFIZqscnv9gSSIODu9QFdUgihEFlXOLy6IogjTtGg2Grx//x5d1xFkkTAJcRoWRZkTRgG+n7Ne11jYNC+YrZZstjuWywWtZhPTqYl5tmVTUqLLCqZmEIQRXhIzaA+wjgzKssCPfCxdJikSDCFjurwnSUOiICCKKyxdQ5IkXr95i6JodBoabcuuDyTNBnEUoRkqru8xXy0IwoCsKtnsXA6uh7v3iPOMX3xc8PTkiKZj1xkgco77fczLK3buluViTuB76IbF0Uld9bp7uOZh6SErtV/j7fU73P2B/mDIYvMNYRygKxqHIKQiRdPNmnOBwMN0ym6/pe00cJwWJ4NjLNvk4eGaVRCiyCYXp2e1T6DbodVu8DCZEUcxVVUwXcyI45o8+ez5JR++/CN5kXF2ckan2SVOXeIwIctrlbckSjSbDZbLJV/86QsG/Q66o+GnPof7LcP2GF2WSfOCly8/4erqOfv9FstUOT8d89333xHFB5briF6nw6g/gG1d/v+h71+3mkskJIoiJ/ITTk+ekiQ5ZZ7iejGqWSEKIn/+6o/8F3+1bkVRzAd3z37rIogqYZRQVhKyJLPe7DAsGz+OWCx3hEmEqqpYlklWlmzcPaIsMhoP67zJwUfXVcoqZrveIogS333zZyaTGZ999ks6LYfZbE63P6DVaPLwcI+MTLPZIckFkqziw2JBgsxHL59z++EdvVYX140pyxIvDNHDkKqsUHUF+d31PZ1um9hLcJwWcrfBH69fo6kS6/UC03B48uSCD+/uWG52tNsOtqYzvjjmz9+8phRkOr0Wi9UM3w/45S9+hWHq5GQs1lvA5/joHNs02Ll7Xr99j7vxsZQdtq39ZAPQaDjMZlPitHyc0ah+CGv+aPZDEOi2O/R6fZxmg9fv34IA8+WW7W5LELj0ey3yMqXT6hD4MQ+TCaIo4ocRlqGzSBa0O21MxyL0XZKiRk3WClmVvbvj7OyYptVCkmWW6wVRFCOpOq7r4sV7ZvMVo8GAfqfmJPi+x6effMRvfvPP6HYG/P/+h/+eD7f3iEJOFKc4zQZnx8e8uLqk33YI05j7yQPJN9+gPJag1rsdVrPDYrXl93/8GkHS2LoRWZLx1Z++5eTklPHwgsnyQFGUfPT8BcNBD01RmM0fqBDYH3zKEuK8oNXqoWoxk9mU29sHOq02fhAyLZd89tmnjAFFkTgejNludwhViW3rlEXJfO2y2rvIqk4xeajhJ2HE3WzBr37+c05OLuh3R7z69mtkVaKgYj6fcf3mNb12GwSR9W7HZDbHdpqohklPr62SrrtnNB5iaCr/4l/8Z9zcTfj+zRv6gwFlVSFLf7F09bttVEWtQ29FRctp4Ro6w/4AVRH56tvvOHJ3NJtNJFViPD6i0WwiiNBqtRj0h7x7+wbT1Dg7P0YQ4Pb+BkWUicKQ47Mjvv3uKx7uHyhLUGSNNIlJ0ox2p0NRFnQ7HcoiY7WYExcZQRDT77RRNIWcCknVGLU6xElMSo4gQ7vb4GQ8Yrffs9y6fLi5QTEV3NhnudmSptmjX6JFnmZIkoQuwajfoaCDbdUl1lWyZXfwiOKYKAoJ/IAgjEnimHa7jecnFGWGJAnsTYfNeouia7x9/4EPtzdYj8G+ht3EFASKqqCpG4z7XYRKZLd3abeahFGIKEucnIxx7CZHJ2PKIqcocuKk5Pz8gl6zhVSV/OLTl5QFmHptR1zvtrjenk6vRafTJItSjkd9xuMjWo0m0/mEwaBH4HtMZw8kUUyeJ+RZbTrUDIUkCREFsVZhR/X3liOw29a62DgKMDQTqorAX3L/IYA8wdIVFKWBLIk4lsl+vWQ86DEYjJnP7hHyjNHRiCzxmdzfEvgelmEQpxHufksQ+CzmDyRRxHA4JgwDPtzek+YlRVGyXG/IioLQj+j2upimVZeNJYnlbkXTsvj46fNaqKZpRFFAVdWK5ihJ2Pl7REUmjSqqasl2v6Hb6nByNCaJQ2bzB5I4YbPa1YFWW+erb77hZqpweXaOmOb8/os/kWQ5hu1gmhqGpmEMLBynw/HxGf7BZe36tDvdGlZUgGZodHoOQeKyXC2pihxTsjFNg+nsAdcL0AwDRTXqMLNh0Wy2aTZMFtsDx6enHHY+UZhyfHSOoYpsVhuGnQFbd8vB3TNfbjg5fUK73aM37LFcT3GcBn4SEnt1uFNVJd6/f89isWY8GrPzDqwPB8pcpj84ZrHa1eIlpdYqp3HCdDrl8uIJjYbFw/QBWVAxVJknF2dkRa3Brih4mE8Rq7oV2x9aKIbDk8vnDDoD3nz/Lev1gtVyiqbJfHLygu9ev0NV6wrNj9ejcKv8Qaf9iN++PLvAbtl0mk3mk3tmy9oK2XQcDEMBlj/+F6mQcreYYSgOCiJBFHHwMyzToiLnEIeEkY/rRfhhQFWKXF4+pRDADfbc3H3gs5ef0nJsBEoUReDbb78lSxLitODVm/ekaclX37zmo2fnTGYL8krGNGQGgx6zzZpBf8R/+tkv2Sx3BGGA5ydUZYWma2z2LmkC42GHm9kd/V6PxWKOKEnITcehbZl0ux16/R5nVxf8+VXIuNNjPt+Q5BFZEREmKSU1VvZw8BCFB/6j33zGdbfLfDlFqiSaTYunTy+ZLtZIlYClOZiqzi+e98nynOl8zf3tFMu2KAQBP/hpBuDZxTnff/+OzWZZkwAfTU2iKDxiH6HIS/w4IppOMPZ7yryk3x/S7ymkWYVYSdiGTVmlpElGkUOU5OwPByRZAFEjzzxyKqw4IQgTnGYLVa+hQFVZsXH3tHot0jxhcndDq+lwMuix3Gxp2E2SLGMf7fE8v+7DZhnNpkNeJPzjP/4rGs0W//of/4H1eo3dMHlydcGwNyaOY+4e7rm5L7l9eMBxGlTUsqIoDNB0jcHRKV9//5a4EBj1hvhxBhVcXbzk8vwURVbJyxoN++LJMyaLKe/n18iCjO/FiJJCr9shDD2yIsY2HY56HbrtHu12F91u4kUBw0EPU1F58/4tv73/J8q8ZLnakKQpqqqgaBqO4wACi+kS22lwdnpGXnQoi5Lvvv8aTdPZHA5IilaLNCoZQVDIEEiSjLwQ0RUTXTWxzAae69U61NEx19fvaDcd/MDDtnVOTo7RDZ04i4niOognCgpSJdZ9S7Eij1Ncb4vpODQc47FkVpKkBZt8U59oZRFRLDFMjSgK2WxX6JqKaZs1KvdRMhWnEZ1+m+3eZb9zqQqxnhVWNOx+D93SEYQ6qf9wf0/gByiKSllU9UuWJqIo41gmAQGjcRdZlmmuDRoNk6gIWO+WuHuP/c4nzUsamsz46Jg4ijnsdziWgyLJNCwbWZbxPI+9u+by8hLbMdE0lYujI9a7LXfTyePEBNimhW1ayIpCFNcnCgERP4rZHTxUtZ53DoKAKIpwHIfAjyiyFFmSMFSTIi3IkhBTVwmimKbjIIgCl1fnmJaBNAPfC0iSnNOTY/bulvnsDrFM63Kzu+bBcynLCl1VGfb7rDYLKCqOe0ecn54xXy6Zzh8IopDeoIum6wz6A5KkZtZrhoKsaOx2dStl1O3z9vo9sihhmxaOrlPECavpAkoByoLAi3n9uu5Pt9sdZFnldjJD1w0oC9I85tXrb7l/uKesSvIsJEsjVEVnOpux9z2qvECkwtJs8rRgOp1DKZDnElVZsTtERGnGZrNlNBriWBau69YjbJqGIAgs1lviXMAWFQ5xzGKzBVGoAVSRj+t7RHFeT9P0OryaXGNbJoYmE/oRRkdnsV7x4e6BIitoOk02nktLEvnlz3/D96/esN3vOBmPa6yzWjEej2mYBuvtCtM2sGyVYd+mZWnIioSiqtzcP5BlFdPtgu9vX9NutCnykjRJHwVLA1x3j201sUwDL/QoyhxBhNV6hayOOT86ot/pErdTyqImR07mM1bbPb1en163D4KMIEpcXV6R5ilRdODoaMz9zR1xnlFQ0TBM7m4f+HBziwB4vo+gSLSsFg27Ta/VJIwO2K12/dkdfFa7DYIgU2QZr169ZrHZstu59Dotmq0ef/OrX/Nwd8Nmt6PZ6GLrGq47x08Dkq1LmVa84zXz2Zz11iXL4Ve//Bh3u6RhWBR5Rhwnf7XqCLVJs3wEyT1O0lQC3Nxf47kNdE2l1bFpo5Dmdfj2ry/TUjBMjdPhBZ12A1OBmw93FEVJJQpMJjPKKqfXbddjsvuIyWSC6cj1lMZ+yz/8w39g2G0iCSLd0YjJYk+RZ/S7TY6PBgjoDIdj+sM+oqwxHp3QtDU8b0GUHFiuZ5i6hSppnJ2cMl0t2W42qIrG67ev+OVnf8PZcZswdqlKgTyLKdIK+aOnVwiigK4JmErJw807vL1Hz+5BKRL5IUWVc34xpOk18P0d88WcIKx3k4YloWoqYiVzdXFOkiZoukK3e0Sc5ew3a7598y2+76MpOqNBA82Ak+NTuq0h/P6ffryRv/v9l+RJyv/U/q8pH0/lP0hNKkCWFaqyoNft1pIgVWPYHeDYDf74py/ptRusi5QKkUrQ+Or7a0zDxrDaaJpDkaeIqojpqMiajKTJ2LLMcDhis92Spjm9Xg9dM7i5ucUyLPKyYLdfc3LURzmIrNYrkqwWt8znc5yGjWmatXBlu8FzXd68eYNQlfz681/ScExato2EwTdvrlmtlzy9POfZi4+xTYvNdsN2u2FwNuCTlx9TCQLb3Y5f//pzzo/OubnvMZs8oKkSpqVz8Hwcp8XRyRgvivjq2++ZL+a0Wg1G3RFHwz7H58cEUcxXf/4D0+kcRVR48uwFpxeXKJJE4BtIAry9foPpOIwNm+n0gcFwTKdd99rW+y1xkiJLNWhov99yeXaMrMl889037LwDUZRj6iZXl2M6nS6LeZPJ5IG0LLFsk3Z/SBqFtBpNBsMh6+WKVu8p/f6Ah4d77mcLvvjjF5ydnvLk6pyDFzBuDImiA42Gg6U7pGnBdrfj+vqasijo93somky747Dd7em2GzRMA01TicKI25tbLNvi5PgI3w9oNJqUnTb7/Z7Vas3x8QmWaXHwSvKiYrfdYekGqm2RZClJlWBIKnmZEwQRyQ8vs1aLhlOH14pHbnjDtmk0mqxXS1RFpCwzLk+PEWWR76/fMkMijlK2e4+ryys6zRb+4cD+4NJptgiDkCyMcWyLfqeLrmqomkan1cbbu/RabfIs4+7hDscykUSBVrdDWUKj2XzMO8SIoshiviTLcsqyxDSN+rk0jL+MxQo19nQwHBJGEVRVLcXxQ4Iw5Hh8RLfbZrNZs9nWRjQR2G+36JpBWZRstnskWeHgH4ijiE6rS14UDPp9JFEmCmMW6xV5llMVJbbjoGkqBy9gu90D9cZMEEse5nM8P0LTdTTNIJ5MUaUlpqETxiFRnpGsN9ze35HmBYgiYRSz3Ww5PTllt93iJyVZXvIwnTLs9SmLnP1hj6rpVNWE09MRaRJwcAPa7QGaqiEJAklRUAAb1+XVm7f0+gM898DtdEHTadCw29iAYdjohoZpaZxdnlDmBVmSst3tkWSJn129ZDjokiQRgqrXI2vRElUAU9No2jalKLHabLCtFheXF3zz7ddIokhWFSzWG4qqIi9LSrGWT6V5ynq7oagKQMKwdE5Ojpgvl4z7PRzbJi0y9u4G29JRpYJKFUiLgipP67+7TpMiLWmYfXRFR2lo7LYbgijk3ft3XH+4o9FqIACueyBOY6YPc4q8RJJ1Hu6mtJsWTssmShL22y1ZLiJKGmcXVyxmU9rtJp//6ufc393XfwdNh9VsgiRJnPb6hHFEGPi4rk+OWJ+8o5C21aLzWEnarSe1nnp/QCxrEFxeljTaHb7807cIksguCDBMB8Ww8OKY3cFltd3ghyluEHM8amE3mmSexGzxwGF3DaXAdn+g1x3Q6zf4/s17ojhk3B9hWRqz+ebHmX9B+Csa4ONaUxQlWVaQpTmTxRLV0CjyAMduUwgV+83uJxuA5f0KqVSwHYPZZk6ZJSyWayRJZTQcMOwfcXw04s2b79Fli2Vy4MPtByzbQjcVIj+laRs1gv1+wm9655yfP+PD+9e0WvUmV1UsRqMR/U6HX/zsM8I44O72BkHQaBotdtsJH24+cHl+RaNhoZrHvHrzFkEUefrsKY6lMVss2Wzr6vHLj15iNWxkSVPwDz7fvblDlkS22y1HxyNOBkNMQ+X+3mezW6NqBrqmYekqhmFyO1kyW2w4ORqjGzYHd89ssSBKQnYHl263w2I+4f3715weHdFpdfnDV1/W84uqTByHXN9e/+RGHp+cMJ3MH33NImWe/bXbhzzPAcjyAkkUkBUFQRS5e7hlsqgdypZjoKsyTqOJ02hzdXnFzYcbXHfPwXOxbAvV1JjOp8iiQsO0cPdb/qO/+1s+XL8niQIGgx5pEtF0moRpTFEmuIcdm+0SSRZpGCZlVtZ4U1mg2WySJSlxEDDq95nM5mhtjZZlYuka9w8P/N0//8/4j0wT29AI/C2yIqErOk8vz1ivlrRaDS7OT1FlhfOjFtvtmtHAYrkUMQ2Fw8FltVmS5SWlKHB8dsJ0NkfWdQSlPgEu1hvm6wmiCj//7HP+/t/8A7t9WPsNVktOjsasfQ+hrBXDy82SVpHx5OIKsoijQZf94VD3oVQDSZLpNNucnV7w+y+/5B9/9we67TayKNLrnuA4DbI0wlBlxoMeR8fn2I0Wh8OGbtvBCzzcMiOMQ3z/wPHJCEFWmM0miKLEaDim22pjahq2YzMc9MiznG2R0XeaDPsjFqsty/mMlm3T6XTQDR0/OHDwXeI0otmw0SSBPApxdIODd0CodNI4ZrdZcv9wiyjKNBoO7WYL6dHmpahyTe8zdDRFY7Nbc/C9mo6lSOxcF88PyPMcRa0BO9vtjrKq0bv1GNVZbS5TFSpKiiLD0sxaWBSkZKKGjEq33SWNEjazJc22w/HgiKKCwE8eqww+y9Wa0XBAp9PB83xkSeZw8FE1jaPRMdPZrPbUiynNVoskSdhstpiGTpGXaJqBrgvkeU4cxzQqEUVWkFWFPM9ZLBY0Gw0Ofkiapex3+7oXaVqkWY2pjuOAIPTrDImiIgo1Z6CmgFYkacndZMZqs2HY7REnKcv1miCKCYN6odVkg4fZgre3d/T7A5qNJoqqsFquEUQBRZVJsxQRjTwLSZKIfs8my0qS2KdhmsiSTBhFtJstojTlsPfxPJ9Wq0W320dXdUajEaIosN8fKIqC2XKB6+1xvQO9wYAXz56x3GzZrrdomoWg+CiCz/HwCFmSSbKUxWrJ3jtw+ewJmqGyXCwwTJU4S9AMk5PzI+7v71AlpbYtFhlmwyIpMrxDwKDXIjjs8XyfUa/Hk4unpGnI6zdv8COf5fSey6tL+r0OZ6dnaKrK06sLTNvh/ft3mKbJixcfMZlO2aw3WJg4jo0q6YxGA/IyQ9c1DFVFVkQUWeRo1EeWK95eJ+RlxvXdA4PuEP/gk+cZuqrTbrVJ04TlakmWBKiKyv4QoOkew14HzRApqgw/SBBEiJOIrMgQBJnlYsHZ8RF+6DNfL0FSKfOSsiz4+OMnxFHA5OEOwzT53e//icV8wYuPPubu7o6qghK4e7inqiqKqsQLPBxLo9lsUJQNDE1FqKr63xQ5YZyyWu4wNYOiyinKik4C3V6n3uBoBucXFySpz/XNDb/7/Rc0G00s2yJO4poVVyhsVx5VLtBoW2iagijLHI+OuLg4ZjZbUFYlvYFDJaQsNytwHwcABaEO6j7uAsqyoKrg8uKKo3zIarNgvllxv9hg+Sn7KOPpxZOfrFvN5hBRVhFkiaurJ2RRDJXCdr3G1FSG/R6nJ2NCb0MSZ1imydb1Ma0GH798yb//9/9Iq9HieHzEaHzE6cUxx8dHHHY74jhDVQ3Ozy5rSm4a8eXXXxOEAUdHR6RxgqK2+Pj5kCAMmE4e8Pwdz06f8MmT50zXa6IohDLDPfhoholtOYiSShQmyB+/fEYc56SVyOvXbzg7u8AyJHb7GQ2rx+XpFYIgI6kSvV6Th8kUUZKRZI0gCLm7n2M7FuOTMWEc0pHbrNdrrq/f4ro+vufVEf4Sjk/OkBQZU9VRZQlRVIDVX+5kVfCzTz9G/FakqG0NP/b+hcfABoAiKQiCQF6U/Pn7bwmCgEFvSLvdIU18siyukcbNBu2GSTLusT9sEBBxrBbNVhOxkDANHdPQUGQRU5e5ujjlsN/TH7TIswJFUvjTN99gmhpxmKDrBqKk0u8NiaOETruJYWgcDgcUx6HdanE3meJHEZ1+h0qsKKg4Pjuh1bbZuRsUpaCoUjbLPU27gW3Z6JqMKJT40aF21C8f2G43bPY7/CBFkGp3QJblKJpBnKS8f/ceSVUZdDrEYUhVQqfToNmsXdXb7YYKGUMx+OzlcyxD57tX36IqKpZuEqcJbbuJLiq8fvUdhm6AINJqNBkPx9w/3LPcrNi7O8pqh2XbPHv6HMvQUBSJk+NLGo0mX/35C7LIIwhdekOL//K/+Be8e/s9cehxfDziy6++xXP3ZEXJ/nDgzftrNM2g3+1SlQUNx0GSJA6uhyDB3j2QpQlUOXe3tyhyXa1othtouspqvWSz32AaOt1uH8c0OWy2lEVOlmbs93u2+x2iKJFEMb4fECcZvh+yXm5QZJm0yNB0Dd3U2boHNvNrsixBUASarQZxnLDdbqmqegGM44TcKOk0WkR+QEXF+fkZhqXT6rZwmja3tzeEUd1yqZKMjt2i5TRQVY1+v08SxYShh2UayEI9HljmJVGeoWkKum2TCzBdLGg4Dienp/z5m29Yrlb0e31Oj09QVZWiKmk2Gtw+3GNZJrqqUhYlsqqRZRm+H2CYBlEcoWv1uObe3aNpOrbt4HsBW3eHpunsDx67vYtlGGz3O6JIJw4S4iQlK3LSLKHZbKJrCopmkMQJYRQRZymOaVNUJevdDkGQUEQZWVbZ7Q4kRYqs1Wa+vChpGAaiLLPd7RGEmvfR6w6xrCZRkiKJIgfXxfV2lEVJHNSHCMO2GI+OaDXaSFVdYZBliZ3rsfd2DAd9hqMR9/Mli/WGEoHuYITl2BwOHkVeMRqesVxtWK13iGJJmpdIskhFiWVbHJ/XiXZD08nyhNVmjWnrrNYzyjLDtk3KIuP63QdUQ6PTadFut2k6DdbbFWmWE0URpR+iaQrjXpezk/+U+WbJ6/dv2R52tJwGYXRAFS1UScB3XdIwottqY8kKw1YLW1UJ4oCOY2KqJqZuU4g1867f6XE3eSDwA5aLOZvtiiIrSfOi5lGoNn7o1Zu1NGeynNNwLOI4oD/o4R5cLEfHMOp2i3vY0u4M0DSdfFNXa1RFptPscjQYYBkq85mLkJdUZUG31aLVthHKlMV8gqJIuJ7L/WyKgMDdw5TA8yiKDPdw4P7hAaNhP2rlG+RpwmIx5xCGiIjoqo7rBTQcA1FVEVSVfRjVQCVFogEoqkgc+giKjiiIbNY7dM3m2ZPnlEXKbDqh0+3w/MkVURjw+n3GerXDVHVGwzamZXF5dYkfHIjSFFkuuZ++pywz/svif09AXJsFK35c/OsxwBIBgcn0AcORORoPcd0d58eXVJLIerthvf2rNQswjQYfffwcVZfZLGYcDgc+//mnhN6BqqgIk5jr9+/QVAmBAiNReXJ5juM4DPptfv2rz8iSDN3QUC2Rb77/EtNR+PzXnzGf32MaJrIssN9vyYqcQpCQFJP7+wntlsOTJ8+IwxR/v6PMYibrKf84W9Fp9njx4gWWqZLnGUejMVlVi9uEqqLRaCL/23/8DxwfjzE1gX/+q8/odJr80x/+PZOpz8X5Cxy7w9XVExArSqHi7FyjYbfoPCbHb25vQCw4HDbEYcT9/QNQsbGWtDs9Bv0RXhjX4weSiqVotByHqoIk+2kG4GFSwxuOHj+IR/svP8AahMcTianr6LpBWhS1s3k44hef/IzVasnt7QrNMGpCmKmzXK8o8px+p8fZsUmapLRsg6P+0/pBPOxptByWswc26y2WbZPlGc1mmyRKOTs9rmfeVQXLbvL++gZ6FYN+h91ux3qToGgauiSwcncEUczJ2QmKLKKpMhdnJ1iWzWYxRSgTyjSnZTTwD2GNpy0qjsZ14Go9X9cBksiv+/llimoYrLc74qgOMD5/NmQ4PkJTVP7wpy8Rq4qnF+csVhuoSrqtDlEY80+//x1Pz49YrlZsvT2lWJAkMTv3gKHqXD15wrDfJ4kSUt9nt94wm9wz6Pd4/vw5tm2y3ta6TRERXRY5HfVw9xtc1+P4ZISsNFAUGUWpKVh2w2G/myOUGUWe0Ov3+fijj/j+u++QRIkwSjk/vyAMY5IkRRAqtnuXxXpLEEXomoamGbx6/Q5FlnBME1WVkVSZZrvFbDNnfzgQBhGSVDPwN5sds7sHJEWl2WoxW25Ybta0Wy0apoVjtTCMijAISYqC7e6AIECro7B1N3gHn7yEbm+AbmqYZh2CtE0bWVE5eB6SJKKrKpZtMhwOWCwX6IqErokEkYskyRiGRkXBer9BROLJ5QWmVm+WFFUlSyPshkWWxyRJjCgqPL08Q1M1KqEkjCOCKCSIQ2RZ4osv/8RkOiOKYwRBwDIMGk2HKI7wPJeqKpEkmThJyYsCx7braYsio9GwaLfbxFH6+LMkikc4kqZrtMU2oiiSpilJniPJEqpqoigq262PKMmoslKPtEUJ+4NHkRcoigoidDq1cKYUwLQs8rIkK0tWy5oY2WjYaHJdNaECL0jQHol5nuei6zqqJCMrGrqmYlsWVVVLvR4Wa85GYypRZndwmTxM+fjlS0aDIff3D3i+hyyJKKLI5P6exWzOaDDi6vIFuioRJwFQ0m21KfOcvXtgv9+gqhp20+a7d28xDY3eoM3N7BZBlAGRptlku3Zp2A4tSUd1NDabHQffo8gyigxMy6yppkGIUFakccTLT35G0eiy3a756uuv8MOQTqvN8xfPsU2LggLX95FXIvvtjvVqg2HYjyO57iN8piLJUvb7PROZmievRYRRhG5oSAhkaYppGtxNJ3gHj/0hIMszLs/PCMOIxXxFVuRIsoJl20iygm6YxElIq2UjVCLT6T3ubk8piCiyReukxenJiG+/39Js2DQaBqJY8t2rN+xclyhKUXSNUiiIE48oSRFFCaESCOOU7d5HFiXy9J67u1skCQa9Lp12C7vZoNNqE/thnQFp94lnC3ZbF1WzefrkCZDz9sM7nJZBVRYUVf3MhGHA3X1E0zbodg2yJEFVNNIsxjAUdpsdURCxLlbMGyqqLmGYCkVZcX03I6Pg+dOnvHn9huV6SdNpcnLcw49LXr1+RSrkj4yZH6YAfugAVFRlbdm8mywYH7dZLadICBx1e0R5jCJBmeU/WbeKNOfm7XvavRY3Nx+YTpbcT+YMez2ORiOKMmS/3pNnCZZp0mq2GQxHJGmEt99QFhmHw4qqbFAikYYhH96+ot1qIokS795e8+Kjn2HqJt1+n4PnQVXwr/7lHzkeH0FZoaoanX6XOAvI0oitd8BzN+RpHfZcrFeoSs2I0RSN/X6PKIA8WSyZzKc8OTtD1nW++NPXhKnI3s0QH+acnig4VIiSgGmZDI5OKIoSzw+YzxYkYYSkSmxWc/qdLpZm1NSpOGa1XtHu9pBFheVqzdJd8eT0DFNT6sDS/qe9lKdXT/E894flnp/an3ks0VSsVktGRyP6gxFPnzwhTmLcwEM1FT75+CXz2YJ2q4mq6lzf3eP7dWmx5ei0z8/I44TtZkYkqWiWxmq9ocoz/CDk5mHG8+dPSNOc+WJBnqcMhgPyLKcoBE7PrjiEXj1Xqut89PwFy/UKQYFOs4dQKfjhniiOKXKl3g1bJkUpYBgGs+WaxXKFrqr0+10c2yaOw7p0XZTMFgvu53MkSaTXarFcbbidbEiyhMvTEfcPt3Wp2XRQVRUvCNCimBdPLrm9u2O+XFIhkGUleeZSVQVUCodDwGq9JslSXj4d02sPmC1XZEXB55//Hf/P/9d/WzO1FZm7hwlZklJmJa4f1NjjJOH06JjDoRacvH//DknWaDgt7u9uaDVtFFHh3dv33N/fsXN3jBZLRoMhqiqR5DmtVoeHyQODfgdFUaio+55JkmLZDje3d5ydOsiChKEYaKrBdDknyRKeiCJJlrHe7lEFhShKubt9QJUl9IZDkZckSQ6CjNNoMR6NOb845+5+wnq14Ref/RxVVdgfDo/tcAFBrIN3d3e3UJb4hwBRFEGooADP3+NFPqaq4hgah/2WLI7RZIn1asG761e0um0s0yGOI6oK0jSn1XBqD0BVoqka692GKhcwDR290WDvuXU5LvApyoyKivVmjWVYnI+OSJME1dZ4KJcoiob4qAD1fBdNUVjt1nhBRJkJFEV9EqzDibXUpdNuYdom3iGgLCqGgzFZnqBqKnGcoGsqRVZg6vVcexyldNp9FqslcZZwMjhmv9+z3xzqWfOi5sl1uxaSVKGpCkJV53NUTScMQ4pNgaJoGJpAEiXsNjtkRcG2ndrr4R4o8wxV0XGcFmEcU/g+tmkiORZH4z6z2ZwoTdh6HgoCT8+vKCiZzKdUVYVjOZiWBZSMhwPSJGN3CLFNk0HXJityECQ0zcDUVWTRrDkPoz7jwZA8yxEqkTiN2K5dwixHUWXEosTLQgQkdEWhSFOCR5xymmdYhs3W37APPMaDISfHJ7i7PaIoM5vOKCWJ3/zyV5RFye+//DOikvL29gZNqxHrSZywSrYUecl8uuDJ+SWariOpElmRE8cJm+2WJM3YbD2WmwOjwQhZkrmdTcmLCsswCEIfQRDRDYfNzT26YfDm/QeqSsA0HIrQx7RsNE3D3XsoskCFTBJ7ZGnBfudRlgK6YbBdb0ijCOSKLK8QZZG1u0NRDdIC/DhjudzRaneYTF/j+Qccx6LbaWFoKoZqsNttEYSKSZixdX1KoWCzPzAe9rAtE1NVWXhzoihCECr6TYdus1nLq4SCbrvH/XTCZrtFUdX6HdFsYNsWUeizWLlUlUIl1iPL7Xat+c7ylDTNKAq4nSyJ0wBdNhj2Oix3HptNxLfpNZIo8vLFM9IkqMmZhUjDbEP4uOD/sOhXP0yd1aTZiopPf/YZx0dd/rv/7v/NYrnGNOZ0O21UTUHUf6oQ/POfv8a0dIbDPr3egE4rq9ckb0tehUCGINSQM8u2OD0fk4YJh80aLwh4mEw4HDzGwxOG/REfP/mI67sP7Ddbnl99hGW1KMkRpBJJyPjm6y8wDIez4zNWqw1HJydMF3NazSa9YZ8wOvDV969oNlss1xuOxyeIgkicxJRFwSpO8cOI+9kc+X/8n/+P2O92TCdzbuYrlm6ApKq02wM6zQamLFFmCZ6fslhtSON3lGVBGIREUYSmmQiVgCQqxEmGJEAaJ7gHD0GO6bR7OLaBqwj0+x02+yWlEINQS0z++mp3OhRCBZvHGyz8xftcVbVm9fETYr/fsVgu+Lt/9rdoqsBmF7Dbb+k6NYDB9wJcf44XhHQ7Xfq9LlWRMRx20BWbKIlY7HZkUcKTkyNWizntdo9Xb66xTIP/5D/+j2m3mriuS7PRJI4jVE1G3+4oFzmr9Rp9qPL82QWdXpPJ4p5GQyOLHchi3k2mnF89Ia1kpjf36KpKr9fHD8La5lZVxGnK6vauBtTICu5ui6bpJFGGLIrkRoGpGnzy8hnLzY7ZYsN8tSPNSvIsx7AcLq4uUCQJQazQNIVeu8Ng0Ge/dVmuN4zHNc88iiJ83afZ6nB6cYGiabWAJ4lZzae0mw5N6wpNlpg+zDEsiyQt2O1dNjsX2zS4vfmAYVoM+yNM3SDwAtrtFnHcR1VEprMZhm49Pisus8WOJ1c1ZW7QG6CoGrIkY1oWURigaxpPLk8J/BrlWZyM2G83NBs2hm7g+x4H10NUawW1LMj0G110VUXTdfI8BUrKqqSgIsliJEWgb7cZDntYtlGffouS+XKKKEIUx5iWQbfTocgzLFPFNHSq/IcAUIaqabWtTjfJioIsSzn4Yb0Y5huqIkfTVEqxYr7ZYtsOTadFlmQYmsF6uWK3dxmPR/R7HabzFVmS83d/+zfEsYeuauh9jaIoSJKE+WpFFMXkdkW/10HVdQLXQ9FFGqqDqoqkWUyS1qlsBBEBkaPxkH6vy2w2pahAkGUUUSIvCqbTBYNej6LiERtcS12qEgRNQ1FEJDnj/OwMoaSuIjg27XYLTVWpihIRCUXRapPhZkO71UAQa2e6KEms1/Xv3Ww0MDsmiixzN51SFDmtVhNN1UnihKPxmFazgSiAHwbMF0vc/YGizHlydcF0+kCapbQ7NifWCF0zyfMc1603sLIs1ZboRzaIYzn4/h5RFOi0G5RFzHa3otPp0nJsqqIk8gN2hwOSItMf9PA8lyIreHZ5wc49sN0usIo6CGo5Jkmc4EYxaZJRGhpxFCECn778mPl8wcn4mKosURSRzWZNVuSUecbi+i2aaXM8HJIkMWfHRzx9/pw//ul3xFnAZrtFFBRMRSdNcmyrSbPZIQj2RHGKrukgiGRliRf5FBRIgsR2t6Xf6eI4Dpvdjul0hqzIGLpOEIZYDRvLdEiShCROabTbSIoMQvlY0dHI84zNziXPMoQSEATiOOHy8imiBFEUEAZ1m0dU6opQlidIsoShGfziF5+S5TnX1wmIKftDTBStHymoEpIkUlQVez9CUg3EsqDV6lIJKh/u51SCgqrobLZbKgpE4QCShKLqPExmNJ0WrWabm9sZhiXXI5aSiO04nJ6dEQYheZ6x37lomsagr9O0HYL9jl6vh9No0+06TOZTkiDm5Ucf87fNFs1Gg8XigYPnoigpWZnTaDmMu1eYmoH0SoK/OsULPyQBq5KyLGs7qRywWAWMRsdoqsl2u8XfhGRJgmEqwF9G2G9vb2i2G8R5imEZtDpNJhMPWTOI0pCqrPXBkiwRRDu+/vMfkSoVz/W4vptw8CMkUaMo9+SFiJfE2E6Hlq3y7uaGz3/zN9xMXvH2bk/Pcpjcz2h1SuLYwwsC1usdhq6TpgnTyYE8F7g8fUG318e0dFw/QFQ0NMtBFkTySqJrOjiOg/z6zTvyImO53tBs9tANiyhKSbOM9eaWb4rXj0pgnYJ6LEqXRdq2iVTlVGWGrpn1D3JdFqsVtmkSLdYIkowiKmxMBS/eAxK+6yPKNYXOcRo/2QBsllMksQ7cCH91+v9LSrP+4gcJeVUhSBXbzZb9fs/xySmRfyBNU+4XCwaDAUVV0rDrEasgCpnd36FrMoOjc7787hs+/9Uv+ezjX/GHL/6Jm7sHsixlOOxSlSX/33/5/+FXv/oVCCXvP7zl889/zZ++/pr9boNjtWlfXCIIOa9ev+bVhw/s/Q0vL5+ShRlFlfDy5TPGR6d4vk+ZxT+OkJV5iaIotJsOeZaSpxm9Uc0wv7v9wH6/52R8hKnrlHmG1bSZzKf8/NOP2W98Xr19y95PUWSZjmGRhREXzy6RVIXZasV0veRhMcXzQlpOi7wsmU6nnByfoGlGHZ4UYfJwj1AWDPtdVqspnrul4dj0e/1avCQrqKJC2cnRdYOiyNkd9txNp7y/ueHFs2eEUcR6u+H46IQ8r/j+9StOj844Pz1DEERsx6bXadXBr7zk/v4BSZZI4hhFkknTmC+++ILQ9xElkaSoeP/++jGdHtDv9Wi32yiGhmM3yMIYSRSpiooizVhvVnX/3NRJkgxLtyCqWer73Z71Zk2aCZycnhIEeyQBqrSgUgq26y2u73PY73FMA0GW6HcHbHcrVEoavQ4HP0RVdFZuQFXFNBs23V6TwPfJsoRBv8N+v6PfHWBoJutwxfbgstpsCYMIRddwGjbdXofZfMl3b75HqHJOjo6YzhaUZUVvMCDNSiRFY+26TOZzXn70HNsy6bXrAF2n1SJOE/wwpKoEmk2bZrNFw3bI85j+oE2cFRhJgSKrHNwDiFBJsF6uWW82NB8BKLIgkOcp4+GQ+XKFdzhgaAZRFIMsPPrQE5yGyWBQlxvDOKbRMBFFgTSNyQBV1dDUeqxPlhUeHh6I45g8L5HlOkTY7/XqioOqUhYF7uFAnCXs9zsURaLtdNi5B8RK4P7+npSM8XDA1dn5o+BF4+G+ZngMegPm0zlBFHF+fIwfBLQ6HaAkjiO+f32HoujYtkkcBMiyjGFbZGVJv99j2OkSeAdW6wXNRpP25QV39xNEWUKTVbI4QNdl0qJguXZRVAVF1Gg6ba7f36CrGk+vLtnuNiRpQpomuIc9ZQGHMOL99Qf2O5dD6CG8qaiyEkM0EXOPMEww2xbDfg9REnAPW7zIo6pE9oeINM1pNm1MQ2E2W9VtFaFktd9QFuWjUz5HikUWiyVxUtMV8zKtJ0NaDeI4JAg9Ou0Wfugz6vbRHYsiiekMRgiVwHQ+o9XpISkqvX4XQaw47HcoioCoiBwOPpamUiYFnXab3qDDH7/8gvGoh27ozOZLGs0WF6enrJYLNts9pmkyGpjomoYqSfQHXbwgJElj4iilKmoCYZzkGKZOkZU4ls7ZyTFffvuaUZpj6jaGqnF1cYIoSuiGjm2ZxFGCHx5oNRrYhkESxbx98wFNU9A0lfnsHtO+oNPu8BBOCWOP46M+raaKLPeIP2zxkz1pnuL7Gg9ZRlLkP/b8f3TGVj9VyBdFwb/7N7+l27bQVQ1Tk5lGEZPFgZZjc/n8Av7wF4+95VgEYYSRJkRJxHazRZREbm8fsOwGnrej024jiQKz+RJZkDgaHBFGGftDwHSxRlMsjo7O+cWvf8GH2/c0mw6SUPDh7p5//s//E8S0JNwGlHIDWVIxTI049dANm+vrDxi6QlbmdDsdxqMxF5fPkWSJ3d7FDwJUzcCxGlR5RugFGKZJp+EgX51f8U9/+JLzoxPOjo8RRI2H+Zrtfs96vSHLUpqNNnu3Dn2MR0PKLEIUKmxDZX3wmS83aIbOwTsQBjF5nnN6ckIlCOzcHU7rFE3s8P79exzDQtNNPty+YbNzgb/gALMsYbddc/VYcvzL6i/8uPsXRZHr2zs+/vQFqi7z9t17NustVVHw8acv2W5dsldvefvuPZahMe4OuJ5dM1/NUKuKYa+JZjZRVYf3795SRAG//e2XTCYzwtiv0+yjE169vmW7Czk9GSPLIlkOYVBh6k2urk55//59vbjOV+iKhSaFBF6AH0QESYwYhQRJRhSFdLsdTN3i4HlkRY4XhKRphCJJHLwDe3fPdrdGEiR83yOJUzbrJaZtM7q4pF+peJ7P57/+hFbXxvMjEAUahsX56Smr7Zavv/0OQRSRZJH9bocsatwdJqRpWhvbRIH94cDp0YjZYsF0OkVTVbbbNYIgk+Ww3bnkeUlRVghJiqKoaJpOq9th8jAnTjKStELXNc5PLsjLgg+HB+7SB4oyI/BTvv7+W/Iip9XsoKQSUazQ6YyI45zT4yOgYj57II4i8qIkjOoxtDhN6fWGaKpJlqVUlchitaHd6lBECYIDzWYL3/frBLsi0bBsmi2HZrPBYrFGU/V6MyHUhsOLs0uWyy1JmqBIEv7BpSxK8jxGlCUEQcBQVLIgRpQqBEetX4AFHHY7tgcf227S7bQRBer+72KB67pIsoBp6Zi6QRiEBEHM3vNIigxBEnAaNnEaMV3MsAydKPRw3R2qIhFFCV4QIwgQZ3mddk8iNE0Dp8HkdkK71aLT6pBWGb3BgNlsjiJpdWjUUsmiFNc7cPAPNCyb5XpTz2aXdZAxC1O0UkHTDAzDIk0yVssVQlUhCBWiAKZlUyJAKSBIQk0ZDEMkCVxvj6GHBEFIEEU0Gg0kScA06z74erlCkmWqqiIIAtIsA0RKKlRdo9evR8EkUaKsKjzf5xB4BFFEGEeUQU6SZiiSSqvZ5qOXH/P6w2tuHx7Y7rZ0G01AoBREbN1g53lc39+jahpnlMxWa0pJoUgzBKFEkjWWS5d31/dQlfS6XVQvwo8iZMVAEVXSOKYSKrYfPtBpN+i2myyWa9ywHoXTHQ3btpHE+nMt8ozFfEmaZvSHXRbbBQ8PE+I4ZjgYIIv1tEIQZZSVCKLMdueiiBqdZoeD7zIaDjFNA7Gsp08Mw8I9uCy3O7Ikw7EdPnrxlJOjAe/fv6Hf6dWBzjzFbjq4exdRUel0Whx2LqGfUAkSq+WOfr9Dq9Gg12pTCRW//NlHdAyLDzfXeElCEic1RroQMA0TSVZ4++49H32kMhwNyfOUXrdPHB+4n0wIo5Sjly9RRJ00T0mSlMuzpzScDkEUcnt7TxRFXF6M6fdN3ry7JQ4Tzk+GiGLFZrvjzdvXGKaNoRk8TOeIkkC316bMM+IoRdMs4iil22nx/OIJsqpyfnSEIgjIioRh6oiyyN3tHUGY8uzFcyxTx93t2Lo78ryg0WiQZ3Vm5vWbdxi6WWeDwhBFkflwn5EkCUEUoWgynU6T/W5HKCfYTgNZlutKcu2Wr/G/Pyz/gkBVlDxMF+jGGX4YoIhK3XoQS9SGyu6w4keJENAfdOn1mrR6TRzTwt3uqai4vX2g4fTpD/q4bo6uKWhau65uBTFeFCEpKnbDJvAivnv9PWZTpt1ukmUZh9AnjFP++3/9b/jVpy/Y7SK2rk9RFkwf7hBQePr0KdvtktV6i2Hb6EYDP4zZbK/RNLWuBCUJ4+EQQ5O5ub9BEEUMQ2a7WyIfj8ZcXbioMkzmU84vnjKZP5DnCS+enOHuPTzf48XzK/rDEa/evCFPI2QeoRZpTpLlxHlIlhaMhwN0WUKWVcI4Ye+5dEY9RE3g/PKC+BDx6rt3TOYrKlECzn68kffzDZPpjL8b/KXzX/1ABBSEv+zQqpLDwcMuTTzPYzZZcH8/5bd/+IJPXn5Eu9VEUxW6nRZplJBnKUVWsdzt+d0Xf+KpFxK4PtObLV/805domkGZVxR5xcGPEOZLRoMxQRzxxZ+/xzZ1PnrxnM8/e85vf/c7fvu735KnGd3+kFa3ydnJGTt3jWGY/P6LryhzaDRsPvnkU/7tP/wDycOcy4szBt0uSRihiCKapnM/mbLfHxAEgdV6jyyIdeK8rAhDn1/+6uc0HZPToyP2+w1/+uoLQEbTdCRFJk58VvsNy82GMIyQJAVFEjnuj4njlIeDh2WblFXJfLkiSjJev7/l4H5N6AccjUc1ItVpIcn1Arle7zi/uEDVNAQENss12XrD06dP6zBUVWHbFk7DZDpboGq1+jdJExrtJqttze7OC9i7PrbtsF5tSZIURdXqcbmyYLvdomo6mmaydUNmyy2jwREXZ2dkeUEUxSwWCxynwWg4RJGkOqErSoyPj8mzlDQJ2aw3eIcDDadBq9VkvV4hUEs99q7HZrtmMOjheQfef7jn5OQIVYT9zqV4nE7ZbNaIQo0opRLr0SK5hiHpakq76WA3mtzc3DIc9vno5XP27p6qzAn8gLwsKfKKIA6xDJ3T8ZjZYkH12Pdz9zsMw+Diaszh4OG7AYZps9/tgICiyFE1Gct2kCSVxWqN+zDl2bOnCCJcf7jF90KypMDNfRargGdPnjBbLclzuLmdUhQlulG3NtJHpKiIwLDXo9/tcn8/JX8M/Gm6RpwWVGLMZrvlZHyCIsus3XraQ5Ml4jjGD33SokDTdVRFJU1TNus1cZIgSxKiLBBFIfEjBllWNSxHZTTqI0oiqqDQ7/URBZGb2zXrTR1Ui5KEptOg1+2z3+94d/uev/vN33BxfMyrdzHrnUeR1SFaVa2xyj+UOUfjMfeTKZvtHlmxODs9ZrOZo6kan//6c16/ecvDwz2u5xNtEvqPXI+yEEjSnCAOuDg7IfQOZHmGbTo4pkqz1wC5QJJVkrjA87yavBh4iFJFGvk0Gw6DVoM41mkYFhHguz6Dfg/f80izlDwtQajw4wNxEZAVOVopoEgqm+2afLOl1+1xcXxCu9WkKnMsXeTtm++Yzpecn1xSlBV7L+H8+ITq6JjFpkbCDgdD0iSlEipk0ebs/IR2q4W33aMoMt9//10tFMpSOv0BRQ6G0yLNC+KDhyCpPL18wsl4RBgGzBcztusNolCw8zzKXKDV6GEZJrPpBEXV6Pb6LFYzbNvk00+e4B72BP4WRZI4OxmRJQVNx+HDzQeyUiSvZHTd4fjolOl0QhDVQppep83BdVksd5yfnXE06NJttSlEEUEU2G/WlFUN5fECn7ws+dlnP0cQBAI/BFFmudriugcaDYtOqwFICJVMmuQkSUZZwpt316R5gqppGIZB6gUcPJ/j4QBL00mjiKKoy//CY4+5+kE080NRQICjoz5VUbDfB1RlxcGLcP0Q46CzP+yAv/gAREWi1XaYTO+QUEjjClGU6HcG9PpHvHj5nPlsgu+FWLZJGEYkGfT6IzTLpBcmLJcbNN3k7btbTk9PsJ40OT+9RBF01vsd09sp/3/2/iNWszTN78R+x/vP2+vvDZsRka4qu6q6q6ubPWQPhxwORgIICBAE7UbaSAtttJC2GmCAWYwWMtBiBEgLgRwZiBqJGpphk91sUzYrMyPDx/X38/54r8WJzu5eSpuBgHqBWAZuxPnud973fZ7n//sVWYakayw3G65uRhzsH1NbTHj+4ht0vcazw1O2rkuWJdi2Q+L5tFsyhiZTJBHj0Y7xdESaZ7y9fkeSpsj/7F/+S/aHQzRFp7Rs0jim1Whwd3uL521odJrIhkIYePTrNs7nz7i8vCGOIi7ulgiiWJWMJZFmvc6gWafdbnI1naOZOn/wxe9Tbzf4o3/zb1hOV9UXV5RRdAOh+JvDFD/75Ve0mq3qVMaHQ9p3MQ0BQYC8LKnVLJ4+eERWZPxiNkOQZFqtHovFlD/905/iNGwUTaUkIY4SkjxFEkVEzeDVuytGs2qT0iUZy7Iwdb2aLBcVoiTj4uVzPnr0iKODPnEhEPoRr16+5GB/j7eXtyzXKx4cH9JutVltN3z17XPunx3z27/9B0jfXhCsN9TLgul0gm3U2G537HYhnhfz/PkrLMfg0dkprUadKIyRRJFGc58szQnCqOJFayqKJDMZj3j+zTcohsrdZIxt1qnXQEqrasFyuyIMQ4Ig4fCwjyKLLOYzFssVzXoNQ1Pw44jZfMZm69Jw6kRhgu+HH3SsdSRZ4ORoSBr3yLMMVRaJohDLcugPh8wXS5IkYX9vSJxmnJ+fc3N1jaKpFCUkaYIgCpRlwcnhMUmc0O+2qTs2vl+pmtfrLaIsIUoiYRSRFDlSUSJlBc8++ojDwwOyNELRZGr1Ond3Y3q9Hvv7AxRJ4urqBk1XGAwrj3yeF7x5+5rJZMlut6UoMrrdPjXHJtp53I3nFGVJUWTIqowoKvT7Axy7hmOb5GXJaDqjzHIAVtsATdOwVA3LrtjdUl6gKtU0vChKPP3oIxAyXHeHiMDtaE6SpARB8KFsaaNqKuv1ikF/gG6YjCZTnHYN01Tx/B1+4JLlGbmX0W61yfMcWaokLeuNS63V5N6DMxzTRsxLsiymu39A4Edous5mu+WXX37F3WSG41hMxufstj6SJFcc+DwjjmKiOCddbpElgUa9Tq/TJohDEEvSLAWpBLEgSWMMQ2N4fEhzVxEH5VKl1++x8baoRUkcpGzdLb1Ot+Kkx9XvbBDskCSFe6f3kT4Ii9qdOnvDPqJUsT7W6zWqZoAAUZzQaNaR5WpmZTYboWoGiq6SZxkNx0GTVZxeA9/z0DSDLEsYj6cIkkKjXqPMMkynxoGqI5Sw2q5Z7VxUUeVudI1tm9y/f8ZsOcOq2ZydHJGmAW4afzh8BNyMrtFUBS/06LQGGKaFYSp02gPurm+ZjMZEH6iJtZpd5davr9FkGcvUEEWJwHeJ05Rmq45laahKSeAnCMBkOqEUMpyaTbfVYTKZcjgYcu/+fdJcoOE4mCpsNktuRhPCMKUswAsDes2IVrvJy3evofiGxw8eYOgmsqqRJzEPH5yx3W3Y63fI8ojR3Q07N0XTNLwgJkoK+v096k4dQ1cpxQr24+8qxXelwx3x6vwcXTdJ45g8TRFkmbPjE5bbHZ3ekLN7D6AsyYqSwWBI4IcEUUyz3WC5zBEFhbZhcTee4EYhWVHSrDs8fvyAsizRdZt7Zz9iPp+CUNCwLdI4qoBp2w01WybNY1YrH90wSbIUSdbxw6gSUjWaCJLKeDxGlARqjs3+3iG6tiDLY9KsIM9LoigAEfI8IYp8BLFElVXiqJptUORqViXYhRiajiSV3M/yv3GD54MPoPyu5wyh6+GvYqQPZNWWWSPuFjQ7baLMh8u/+utFLnPxfoYXptRqBsvlCkVS6LQ6fPbJM5y6jr9b4pgGzUaLxWpJFBecHB8yW02Jo5yz03vEccRivuLf+8M/5G58w2Q5ZbGdMR7f8fZdgK5bfPzsKd//5FPuRgssp45u2GSZjmY0abcHxPG2ah/nCa63ZjK7I41Sbkd3QAXTW613+H5QcU/8yGWxkXh8ekbDNrm+nVCUBZZpVyfaPCT0XQzD5Hp6SxSEDAcDEFSa7T6L2RiBgk5/wOHekNDbcDMekxY5Dw72UcSS8eUdYqoQuFWpTNVtgiyl06rD5K8e5P2z+4RR8F0+szqQVUcySRQrFDACSRxyN7lmdDcmCGI830eRRDRFoTnok5MznU0Y380psgxNVZElsA0dazDADyNSoURSZTa7HW8vLlFVnQJQExHTsHjz/gpbUzk5OeGXN2NevfmWv/+3f5/PP3nKizdvUI0a/+yP/i3GB6FHFGdsl0ssXUORFYocJFGlRKTX73B8dMh4sqLWGLDcLLm8mVCr1dF0HV2Vqdctilyi3RIoypzr2xvenl/w9l1GzbIxHJNGrYmhWshChcetOQ5lWeDYNsP+Hq1Wh7vRLW/evCEvYOt6JIlGEEXc3E3Zblz0M4Vuv48bRmz9CFFRURWJPOuT5TmGaeL5FXte1XRazRY128b1XKbT6YdbuwaKgiiWnAyG+IGPoohkeQ6FCIZGzdAoshjfr9SbtlNF0xarBZJsUZYCi/mKSEypt5uYlo6ITqvVptvpYDs2u90WRRVJ4oysKNgt1mRFiaGpHB8d8+TRQyTAsWzuxhPuxnNMy6YswfV8ZEFCU2UW0wWnJ8c0Gw5h4LPdbKpyOBVRL44jclHAsix6rRaWYTJZLFgsFwSRCbKALAucnR7w/MULJpMZmqwjfvBgKO6uikPKEmmWUuTlh/igjKUbNJo1ojjg9uYWRVXZ6w+hLKnVGsRxynQ6I0lyZssFcZwg5eAYBsvtCkPTKv/Ebocsy4Rxwt7+AavVCtuqEwQVzEXXdLIsx/UqL72u66iaSiaU3I7HbHc+giAgyRK2bZOSkkQJe/0eu/WSmqHy5N4pTUfn+uaO1XpLmkYM+gOKhsBsOqHddHAsnZ3rAwJbRQYEVFWi1+uw3qwxdJmiyNh5W5I0QdZERBFOTo7IspgkjVFUmZ23w995dNoSrXoD27IQKKg5DqIkM+x1mc/neEHVvimJMXS1ilE1m0RphK6qBGGErlrYlo0f+LRbbTa7DUEYcHLcRRCrymbNdkAQmK8XjGdZdesrQDfHfO/Tj5FKkxe316RJVhE6r9dVdnq4hyIqUKokWYmaCqRpNXRomAaGUT33miNSq9fISwE/8CnLnChImWcbGvUWh4eHrLc7Nts1Mjl3uzXr9YrVxiOMcupOjTQTeP3+PU+1xxi6TVbI/OzL58iKwk9+8hMi36Xfa+G9XDOd3FJv1PF2PlmhcNAfcmJU1T5ZKKpqVKvN+fv3+K6HoZpomsCb92+ZzTe4bkzNarLcrhElgYcnJ5XcaTolTX3c3YLAjzk6OSV2M1rNTjVUuJqjajVEUUVTJNbrN1imycHREEEsSWMPw9K5un7FWDGxLId2u4kXBMwWa1wvIE5GIOToqlKBeEqqIU8BFEnl/v1H6JqDadWJkxRdl1gtZ+y8DU8e38f3tkwXC+IkZ7Vao6oSlAWiJKJrWhVXpYpX7twdYRCCJuCY1YFO2op/bWepLq9F5Qf+bur89mrC0WEPyzEYT8a0O20My+DwsIcfecDyu33r3v0HNJw6s/mski6pJopUCYwgIww98jzn9nYMIgSxh2k6lBQYeo12U6PXbiFLMkkcYagCD89OGd2N8HYb+oM22k6lFFTm6zmH/QH9Tqf63jgt/oP/4D9EEFLS1KPVcAh9FzEvENKcyI+YLVc4tSbNRpvFYoEgKOx2IabpIBdSjmXp1BwTcoGTg338vORcuCYIlhiKwKPvPWPrpfzLPznn8dkZ7XYbN0z43d/7MX/2J39Mr92k1e1ycXXJvQf3abRahHFCkiR8/fwtNzd3qJpGvWHSVBxOD05od7vsDXvwn/0VCjhNMiaTCbT/6lBQUZqqBEBZlB9kLhNmyzWGphNFGVmWkacpJ6dHHJ8e0Ol2ePP2gpfPXxJEPrKu0Gs30XUFWRLJkoLFZodhalx5EzJBQP7AgBZlkf1un7KQeXM54v3tFFnU+OLzH7DZeWiKR6dp8fs/+R0a39R597ZCOr54/RZ/u2N4cIAklBi6xny5wA08ZgsfXZFpNJv84d/+CXejMTfXl0RJSr8/oNttMJ9OODg6wdANrq+usC2L9datTq2izHbt0hJlSjFnvl5RClQmL1VGkkTEImU1uSV0NxwfDDF0k9V6RZZkxEmGWFQZXYQSRVMwLZ17R49RFYFCLJl/oNw5zQar0RZD11BUmSBwEUsBQ5VZ7zbgiZydnZJnGdeX75Hlgk67ThD4FHlKvV7DNkziOMLzA5IoIi9K8qJSbS4XC5qdJs1mrSLx6TbzeQXoefbJQ1qtJhcXF2RZVr0gVxsUSSNPS7I04/LiGlGE69s7ZEkkTiKajQaPag95f36BoWnYtolpmiRhzGK5YDKdYBoq9Ua9wsmu/pL3ULLauJSApRsc7veRNZnpbIbp2BzVj9FUtYq5lRZffvkVk9mcer2OoaqUQcbOXVKWJaqiIwoCq8WKdqvLfDInT3JUVeXy4pp2u0mj3iEIPTRNodvt4HsBoliy3WyI44ya3UJEZrt1aTRafPviNYqioCkq/V6vImEKUKvVaZ6dsrd3wHQyY7Pd0Ol0iNMI0zDwgwDbsXj40QNcb82L5y/Z7nyajRYiIoqkkX4QECVRQa/bZrHe4H7jEYQVw15XNfYHvcog5vrousp8OUWW1Mp5LqnYto1p6BweHjCdznDdNX7s4r17hakbNOoNZFmi2dAoipThXtVyGo3u8FwfSZaRBIn1cs3ImXJ6csjJyRFvXr/G1jVOj0949e4dge9jOw5+lLC7vmWxWhMnEZ1WjcOjEyRJwnV3DAZder0emxdr9vt7DDp9irxyri+Xa8qyxHNDNM0giVNEUaJu13C3O4LVkpuba0zb4fjoPseHx/iBX4GkwhBdt1BkmYZjsl6viOM1y/WcmuMw3BugaiWaLqEpVSzVrtkVYS+OkGSJ6XjMcrfFT2KC2MPb+eRZwWYbsHVDsiSnWXeIEh9vu+Z4f5+rmzuiJKFt2my3O0a3l7y/eI0siWzXG0bTHXkuYDoys8kNSZqz2bkcHuyhGSqv3rwi8CvrY15krNcbbm4nqJrJcNChLBJM08SpO1Xe/OIcyzDZrldsditWG58wzmk2m0iihKaoZHHGJ88+Jc9KJvMxw8EQWZERRViuFuz8Df1Bl1q9WSmB57cfeBgqjWYLw6xR5DlpnpP4AZIkoCgq/cGAgoLFfMlylnN0bDPsNahbEgIFu+WE5WpBFPkockkcp/T7e7SadYIoQFakD16WmM1mQ5ZmrFcbhsM+3W4HWZAoSiqSalFh5oUPLGCBv1mJLgHVMBFkhbQsyUWRIMugyLkdj4iTCPgrH8DeXpt2o8Vifsd2s+Lg6ABZlthsVry/jqEsUFST7nCPUpax6g6+6/HzX/yCp0+/x6A/4PbqkoO9AWkSEvo7arU6tm2yNxyA0Ga+WDOZrdisNwhZyeHxITVbpyTjwf1T7m7e8ud/+ud0O306zRbz1ZIgCqEUyFOF/eEpZydHLFcLJrMZiDL9XhdZ0yuy3HS5pNPu0up2mL9/T6thUWsoOLaKbslM1xse3j/l/tExumVyZhkIucdHj4/ptRqIssJkIuPYFqoiEacpvuuTpgXrjYusCESpT5L69PoNms0Wf/7Tn/Lf/WsPvhBykiT5jvj3l5t/1a0RvqMCNmoOv/2Dz7m+ueNyNKdmmXjejvVmw+s3b7i4uEDXTY6PhrSabZaLFWHksQs99oZDdLXGwg1IsgzDsjHTHEVWkCQJVRNIsoh2q0NOk1ajxiePniDJIv/8X/0LarZBzXH49S/+lGefPOPs6JA/+uM/ZeWGmKbP9t1bNF1GVhUkZA739xAFkf3BgNH4Dtfzuby95OTkmPlyy+34js12SVnkeK9f0BsMuJuOydKc08MBQRggiRIbb8t0OsE3ApyG88GTUCBIIgXw9vKKw/4+XhARJTEUJdPZlCzOyAuo1a0PJjUXXVH4+NED6nWHMA5ZLNfEUcLBwQDHVDk7OgIB8iynKAtUVcG2TFqtJtP5nPHdHY2ag2EYzOcLLMvh7u6WmlNn542wTBNDUVFlGUMzeP32DaIsc3x8zOOPHvH+8j2+G9Du9CmBVqvBsNvh9uaaX/3yF9zc3NFqdaAEsRQxbKg3TIaDNiUyy/WG+WJOlMekWUoUztgbDjg83MN1N/R7HUpB5OKiykjnhcirN+fYjsXBwR7dXo8gSXnz9hxV1Tg5OmI+nbCcb4iLhDipDi12zSHLU9IiY+tuUUQdVdaIPtj4ZFXG92IkSeJg2MTfefQ6eyyXS/KixAtCcs8j8H18zydKEkpywiBCkTXCcIkoihweHpIkBYauMVvMEWWZt+/eUeYCsqFSc+poikbDdtjutsznE9rtDqYpcXy8T/Q6YL6YISsSsgjDYZ8CgaurKxRNoPhA39P16mYkSiJlmuP5PqmiMZlP2ey2HB3sE4Yh253LF59/j363z3K1oCwCJEmtYpdlgaYbqLJCnmfYjkmaRFimjn1yxng2qoYx/QBV1pBlldAfEUUhsqpQq9eoOXWslUtWlri7EM8P+PXX33I3HvHR4/sMet0PsCeRvcGQ0WhUbTKqjGPZeJuAwHcJjZjVcorrVdY6Q7fwfRfLqkijy8UC6YMl0FBVthuXTLUQkDAckzgKydOM+XROkkQIskGay8yXKzrdNkmWVN8lSUBCYrvdYRkqkqqiagZ7zQ7D4QDfd9m5GyS5qKRgScZXX31FvV6jUauRZTG2oWM7DqknEXgBILFcrdnuQtKiQFEkyiIlTmKW8yVREEEWo8sKWRzhritmiut5aLpMu9NitQooRZFOt0vkB9xcvmfjBqy3Ht2mg+OYNJtN1qs1iqQym8+IogTD0Pn+Z0959/6SeqOJYZpstxu8OEQUFZp2kzDwcTdzamaT1XTGWhSp1euYps6vfvUz+v0BIgKDbps0zymKjNSxMGsSQRCSCQK2ZXN6dESRBei6zKefPWU6mVR+CM8njVLmyzlBHNGSFIo8xrRMslRgPLqlyENUSSTwfOLAw7EsDMskTnzCOGa1WmMaBo16nSiKEGTw3B3tZpMsKykp2Wx2SKJI3bZJi5TZ1SU/qud/Y7cXxL9+AKj2nGajgR9EKLlGKShsNj66aqJJCrqlAn9lFHz7/i3ao0dEscdwfx/fD8mLHNf1UXWNwbCFU6ujqgZ34zHtdgOhTLm9DBndXbNdTzk9PqUUIUkzprMFi/WaZquBIlfRz2athaYYbNcbkixHs23SNCLwS2azO0Dg6PCMNA4QKBkM92h3u2iKiggUeY5UpvTbDXrtJnlRMFvMkdu1OrejMYZu0O50OL++5O37d9RqDn4U4Nkqmm1yNb7gh599D0lQ+LOf/hzbMmg36sShx8tvt4iKRr+/jyqrzObLCjpQFIhlZfNL8pSiEBBlAUEC1w94ezEC9r57kIahcXR4+NckDRWjWRLF76RAgiDwPz77X7PY+38yHPRJfv5l9TKWG5hmHVXWWC8XGGZCt9fGCwNqrSbe2K8iVZ0ui7VLc9hHESSOj21uxrcESYQkCd+lG4bdHvv9LlEYMFlMuL29RRVE0iTB9Txeuj4XN2Me3b/HJ0/uo9t1Rnd3TBdTsjIjSlLSJKbb7lDkaTVNqpkUlGiWze10RP5Be7zcbGk3GxiqyeR2Vt2ytjMsuaDMMwRF/YD9rF56YRLR7ffRFJm6bSMqMoam0Wm1GC0mbHdbStWk1+kznS8JPb9iGYSVN/1g7wBFlbm5G1FrNJAVA9Oosdl4aMqSeq2KuhVFwd7egCRNUD/QFyUkCgFG4xnbzYYwjvnss09ptbpsN7tq4nvr8tnHH7PZbEizHLtWJwhDZosFsqagiAqyoFKkJWme0KjXGI+nvH73lihOaLcG5EWJruuIeU6WpkQRZHmGICk0m1VkauvuWC3XqKqCH/rsXB/HMhFlmfl8QVaWWIbF6G5EURYYtk1elARRwtXNLZbtYGgq2/UKLwyZ3yyxLItut0UUpqTpikG/j67pBFHEsFNHLEt2no9m6tw/vU8Wv2Sz2fD8mxf0u11KYOd5pGmOrBlkRXUAptjRaLY4PT1GFnLO373j/OIKu1bj0YNHZGnFG9B0mZKCWs2m226T5BV2V9EUxrMpiqKiKDqTyYSdt6VmN2g0a6RpRpolIICqVa2n27sbijKjSAsUSWKzXmM7Nr7vs1h8mJHIckzTZG+wRxQmpEmOpum8PT8nzWKKPMOPAw4Gh5VCVBQwFQ0okW2NvMh4/eYNFCWaYSCKAlkYIZYinusTRgsc22I4GFCv1zi/PKfdavN3/87f5vrmlvFojKqpJEnKcDBgtVhSUtLf22e5XHF7e0er20KzNfzIR1VFbLPqy+/1mqw2Szw/5O52TqfVp9NqkEYhN5sRoiwhy/KHeaZKSnW4N8D1A7K8QEDHcWzyrEq8qJpOkVaV4J3rkaQZhmMhUOKYOurxPrZpVabLDMIoxDYVFNFgsVmw2Cw4Pjrm3btL5muXxcZjr5/TbtURJYWGbdFtD9FUjfeX59iWg6ZO2Lo7bMesNnxVZbnestn56JZBHLt02i1msyk7b8d6s0I3ZNRDmXv3DkmSEm+3I88ynjx8hKbr+GGAu1lzfn6NrE6qf7/jEKcZzWaDs+MjZuM5242LZllMPkQjTdOk5tjVMGm7y/drVcXo+uqS9xeXlWvFNlks5/R7U+6dHOH6AVEUYjsm7WaDZt3kbjTly1+9wq61aLdrbHZbbu5GDL0tjaaNIpbUTQOlUSeIPUpkZFnDtkxUWUEUZDRN4/XrVxiGhm2aaLpOXRZ4+uxjbq6ukYoRAPWGzcH+PtPxlDRLUSSReqPJbL6gXneYL+aEYcxsseXgYIgsSZB/uOaLf3mp5MOQ+V8q6AUKcgbDIa1Wi1arwdt376oUV9nBXe2Av2LYhEHCdLZGUS1EETRdxPcDSiHH9wLev/Fot5scnZxgmQ5BUNE7948HNGo11ssNiqqSJBmXN2Ms28a0DJbvL0iigIIPLbHplNlszee/9Rmr3Q53EyCUClGUIIky7U7liSjzlG6nSRZHqEL1jC4vr5gvY0CgyMEyTE4P95FVoUQSBe5GY0xN4eJqxHy1BkWk0+6SpgG//vo5SZDy/u01fhwgKfDw9LhCy643XN2t8AOfJM0R84LZzme1WSNQkqc5gppwNBjS6/a5Gr/HsDW8rcsf/ORH8F9cf/cgA89FV9Vq6O9DTKP8cIAo8oK/DARmecGLd+fsH+zTqtcIFIkn338CpYAfBui6Ql7kZFlBkiREQYhjmrTbNsNOnc8+eYKo6HzzvGLgG47C+XWVLy2zlEGnh6Ga7DyP6WxNECUoikyQZiRuTM0paTg1oiDnF1++QNNEnj59wrDXolY3Wa7XNJtNtjuf29tbZEkiKabIsoRj6+wPOtxNJoiFhKZorLZbPM/l0ekpw16XJM/wNitEUcY0FNauT6vVQeBDBtyuYRg6jm1xPBwwW8+ZTu54/eIFOSKNRouGYbHzPQzLYG9vH991qyhbmrLxtoiSQKPeoN8ZUG82Gd3dkWYJkiSz3W1J0gxNkXA9j63rfZB6WFXWvhAQRYU8g5pVI0sS6jUb01SJwpiyrIAv6+2WxXKFU2/iNFqomoyAwNH+McKBzNfffIVuqZi2gVNrkBYCcRSy83bsNmvyIq0kMxsf13OrAcGaQ6/bYbd1WazXFVEwzxElCU3T0VSV5WpJWeaoisZ8MQcRDM2oSs6iTJymSIKEJstEQUgUxUiaSqPVxtI1ao7N3v6AIHTJshwJCUmQcCybmmEzWy/x5h4Pjo853u8jiSCrKpQ5iAIDtc9issQxTTx/hyQKtDt17t0/QdVU8jgicoMKCiUpzJczHt27R5Tm+JFHHEfUGiZJmqLmEs16FfMryhJFVnGada6vQ9KkqDQbJbiuT7vdpNtusF6tiJIYyzAQEUn8jETIUDXtQ0nfxbarWYkwDAijCKdwKuaCoqAbGqPRHbd3d9TqDlEUs1mv8QOPMA6xVBPNNHCXW2RJIQlSSjLyIiP/EAO0DIta3SEIqsnns+NjptMZqiIjAJvNAlms3Oenw0NWqzWKJDIYHvP2/Tsurq7pdXoYlkWYZkxv1/i7HZZmczDco9W0sEyDF29WbFwfRVdRNJnnz7/Gc0MkWWWxWKKpKrbZoMhE4jRnvlrRbjWZzefIskYYRsgi2KbJerNBkmWSXCbNMhrNGudXF8gyhI7BZDbn44+esTc4oNvrcnl5y2K64d7ZCcvNDtW0yVIYDvYRFZ3VasHhcMjO3TA83EcWxGqoVBR5f5Vh2irDXp123WQ2XyAKApIkM91tSLIMJzBRVYX1zmW19YmTBNPQ8b2Y84sRsmzx6P4DtobGyzdvPuS9VW5ubylLiRyV3SbgyaN7LJdLBEFiOBhQlCWSbvDJx59+OIjYVY01h9l8iSzKJHGA53vIsorrRRSCzPXdCMM0aDVriLLI1WiEKuvstjuubm5pNhoU+wNkyeDZs2eUCFxcXjCfrdiuPRaLFf1hB3fnc3x0QKPpQFkxOdIoRZYkVFUiCHzKrKzaBrUaaZIQxjGDvQG/+PlPESWZbqfDdrvG8z3u7m5o1Gwcp8fV9Q2e51MUJZqqoqkqm+2OIhfZLLfUagZkfDcD+JeDf39dCFRSsnE9dEOvIsfyfR6eDvnlV3Nm4znNZhOIvtu3Pv3oITc3dwhFiRd4qFpJo2Ex6A9JEti6LttdTBimdFoVBVOUC8J0xdXNNYZmYtgWq/mMeqOBomuUObhrn9DdcDddo30qMZsu8IOCQbPBfDam2WrzxRdf4NgGV5fn1Bsm3U6navdsNpxfXnOwf8y//fkv0A2b/f0DRne3SJSshQ1Xt9fInu8SBDtMvcb7i2su70Z0ey1OzvZBFLk4v0XIcvZ7+8iyxumwzzcvv+H91SXvL6/ZeDGyqPDs8RNyOeN8dk271WXPGbJdbdjt1mgS7BYzsjRG1zVarTamWfDm9cXf6L3IskKt7vCXM4AfZv+rCkBRUhT5d1QgVTNQVBWnViMIQy6vLzg+PmGz23JxfU29UafTcmg1awx6Pco8R1Zh427Jb0uSJGfQblEKAsv1nNODAaaqUQoCu52LpEh873s/wHHeoaoqQRyw2qx5//aCJI5QNA1ZE7ibzND1Os9fvKHfHzA86NKoG5R5zP6gx8PTe+y2W9bu9sOxM2c+m6OKMkdnxywWKy5vr1FVhYvRiJXnVe0HQWIXpPzg80/QDZOruztmhkav2+Lx/fusfI93l5e8uwiriNvlNYah8flnn7Jabbidz8nSlE6zg6rrXF1f0e108RYLLq+u2T8Y0mgIJGnIxeUKx3EYNPtYlsV0MmGxmGM4NYqiJEsyfC+kyAviMMJxbO7dO8KwDFarNS/fvUOWBPYP9hgOekzuRmy3OfW6w3DQR1IVJpMpYRiSJzFpnBPHGbKsYGomlxcXpGmBKKh4vsdqvaLZauHudsRJQYmE4zTJyozJZMXODbAsGy+IEcQUXZbJs5goSimKgvV6TbPZrk77RYmqKGiqxmw6Q5FkgqB6uSEKpEmGIMn4O5e9vR69bhuBDKFICIOEd+eXPHn4EYaqEwURm9UGQzVQLJnryxuyvHIsCCJYlo4XVpWmg6MBpqpTkvDo4RGOoxBnC8JUQpctNjuPvIDdbsd8oeG7Hp8+e4al6eRZiu/5LJYLmq0Os9WKvChoNZusFms0Q+f48IBOp8t6s8E2bIb9IUWZ0mrUKCnwJi6NegvLtDg9OyMIQ26ubwijqGpZHAxZb5Y4jgFUEUtNUzk6OmS9WdJu12k2Wxi6zvn7a9bbDYZlVIe4UiL5QEekFLAMG9u2EYSCrMgJo5A4CQkij5pTI49jfvXLXyCKCpKi4PoB88WiekkbFvPFiul0im3b3NzdkeQ5tm2Rpik12+b03j3G4zGLxYo0TtBNnWajRuB75Fn1XRYFFUGQefX6gijOqNWcamgyihH0yvMeJylesCOKIp48eoShygRxxnK1oigLJFXEcQxqtTZlBlt3hyIrNBoOoiLRbJbsXJ+jPZFGzeGzzz9h0Osx6HYYHu6RU0CeQlEgSjn3Tod4OxfXg1/96kuGgyHtZgsosWyrYo94HkIpkiRVuiJKMsK0RKQgTgJKVOzSRhAEdENDkAX8XYTrgee/YD5bcnxyRJoULDZLGo0atXobz/U5PTrBcSyyNKLMMpI4/jAjYxEEHqra5KOjA4IkRFJ0Qj/k9cUlaVagGg7efM18NUVRFOq2jaaqFJQkacrdqPK2NOo1fC+s7J4Di60bMJqseHTvmNlkhLsJiKKMohRZrgOKcsN2u8N1I2o1C8s2sG2TZtNiNl2zWiVEUcB2t0XXDcI4RhZFgijh0cOHtJstXD8kzSp41sXFNaYp0W44CIJKrz9EFBOSLOHy6pKsyEnSFE0xyMoq5l0qf4UBEABJlCoWQPFBOFeWtFt1FEXBi2JevnzD2VGPx2cnJGGJYSl/4wCwmIyxdYX5ekeeFWSiyHS7odsx2N87ISsmPHpyn267zmoyYj2ZMN0uAJV+d4963WY8HtFqdWi2OyRpxHa1YrZccnt9TctpcvHmHavlGtOy+OoXP2fheZjtjJdvfoUiULUl44z1Ykan06FumTQdizxLEEUZp96k1u7S7rT45te/5M9+/nOSokAu5JJGs0G3PWS53CApKlvf5dWbt9UHlyc0TYdOq01eZiRpytNnn/Dm7Wvagz7f6x9xfXXBs8dnTPwdy82Chw/2UBQbd+0xvrsjTkOKEsaLBXIGh90Bhl3D3bj89WnK/eGAKPT/mqax+pBkqRq4iNOc8kOhZrVaUW/UEAWRdquFG3hcfTBmPf3oEYNBn9nqDlnIcWyVMs1p91p4QUSRFtQsk3a9yWq7oUwzLEVhf9BHEBVuilsaTZMscXn88IzZfMpgMKReMzEUHUXRWK4WdFpNBARkVaPRaiHIIqPJDMtUkWWdd+fvkBWVvd4ASRBYLFc0Gg41u4ap6xiqRJFFfPHZpyxWa8pCYDqeIGYw6HT4/vc/Jwxd7ka3qLrCYL/PdrFgtZwj6UaljPUDZEmlUWsRZzHLxZo4ygjDhJpjUbNNas06q2UHSRTpNJtQZBRCydLdsfU8lrOq1L3dbGk2WxRljqpK5GXGarHBdQOyrOD6doogJPS6TZIyptFos97CfLak1+2yWuzYrHaoqsr1m3OajRr9bpt2pwVFQZHlGJbJbufy+PEjBPGEr7/6BrGU2a5XKIqK63sYhomhGZh9k/Vqg9bTKcuCxXJFklSl8iRJkWSVMIxQJAVJkSkKcF2PZrMBgsRu55OkGaZpIssqkqRwfTchjmP2hgOCICaMAkxDx3EsWm2bg8M+r169YedFDPePaHT6HA56bBZLkiRDUTW6tTqmrmEYOrc3I5bLNYoqc3Z2RL/dJYpTwiDkbnSLqCgoisF8vmaxXqGoJvt7KnGa0+sNWS+XmEZFq/TCEMOyWKzXhElMvd7CMk0owbZslvMl7W4Hy9RJkoTtZk0SxTSbLcIkIQwT4rSg3RoiqxZZFmEZJoNel61bbXzb7Q5d10iSGNs2aTRa+F6E7wWoqobretzd3iEKEt5uBGVJFCU4NQdVhEIqkWUNQRIwLIs8Kxl225iGjufuSPOEu8m44kCsPZKwQDNVkjCk5jiYikKz2aQoBW5HI9IkY7d1adSbrFfbyhYoV7FP0zAxdJXrq3P6/QG6qnF3d8vd3TWrlYnjmBwfH2LM12iqAWVJv9tnvfFJkxgRcGoOg16f0eiORr1Bnhcoskij2WA2HSHKKu12iyJLKHKBzSbA91KyOGMynaHbBnGUsDcYMGwNUVUFgZJev41Tcwh9j9nshm63W7k4lksePnjAUOuDILDb7hhPloRhQKe7z2oXcXJ8wN5wSJnBVJgznczxwpBOs4EXhchpRrvRwLE1tluXrMjp93vkZYofhKhahRXebT2WuoogCkRhjGPb1Gt1JFmhyEsoUnbrOdPZFM/1qdcapEnGxcU5kiSQpSmGrHI9viPNMgxJIY1DZrMRlu0wGPYpxcqeeO/ogHfvLrm+nYEgc+/sHnkZ4e22CIJIXlStsVnkUxQSX33zkiSKqTd6mEaJqlYyqzgMEQWR9dYnijOyyZxOp8HB4QGOEzObrcjylLwQ2OxCDDMiiQJs22a2mHF0dMRksiQIXPp7HaLMJ4tT1muf6eyG5cql1++QJDFZlrPdubhBRJa66IrK0eH+X934q5Y/gkjVFhA+sAEQiKOIKKz4Fut1lcZptW0sTefbFy+Aw+/2reffvsMwdJrdAffuHXBze4FtWdQbDmUR89vf/4Q4T3B3WwzDQldNTMXGtOo07EbFM3FDDg5OUBUZb+5zenqPy4srxrJMXuaM5ltG8zn9QYelq7PaeqyiCG+zwDZtbLvOerMlTacUgkTsuQTeiiIvCL0dt1HA0WEPQSjJkohub4DmNJFtRScoMoIoxLJtREHl02cfYZgWs/GGb7/5msHjIbPNmvOrK/aGHR4+POXHP/w+u+2KtmlTJi2ubs4RDY2nZ/f45pvXbDZbPrr/EEmAXnfA3XRCkEQ0TItf/uwvMJwa8+n0b1QAHNuGLENMhe/mAEShpCzzyg6I8F08cDKZVSKdNMcwNMSyipMcHx7S67bwvB1BHJIHPoNmC8dyCL2gyiZvd3S6fV68e0mZ5dw7PGW7XbCYT+g0O5wdHlbAhijG1CX29gZEUQQlxIFPIoT84PPv8+bdW0pBqFCtoUuv38LSTPIsZT2dkZcSs8mCxXjO/uEhSZoxn6+qfPhoBEWO7wecnT4gMBI0WeHx6RFR6FFr1qnVbV6fv2XQH/Li1RviNKZtWVyOxuSlgF1rkGeVKWww7CAKEnGagyTy6PQMWRaZTseIRcaDk2Om8wWHB3s8uH/Mm/P3TG4ntJsdKCXen1/S7/UwdBM/8CmEksnsFk3XWO98bm9HmLbO/mEXWZa4uLjEqa0pc4FBv0e33UWWBOp1h9XWxbTqzBcr6pbJdDxiOqu0sf1+nxxYLGZsty5hGKLIKoauUqvZHBwMmC8WZGmMpmns7/ewLJvAD2i3G1xd31VM+7zE8yuDoK4p1OoWcZRWUp4Cbm5GuJ6LqipESYW2VlSVPE5xLBtZlECVKctKkKPIEnmR8fLNGzTTotNo8PD+MZeTWy5v3vHg6B6LxZpSLCiKlO02QFXbqJqAYegIkoDreliGiUSJLAoVsjYIma031YCpXoNSJEtLGo0ammKiKzKGplJr1FhsliRpyt7BHrutS61Wo99pc3VbcTd0XScrC8I4Qjd0JFlCyEQOjw9xtxULQVM0Tk7PSLKc8fiOd2/eMh7d0el20VSFVruFYRhcX11Uuf2W9F1iY7PdgVDgWA6z6YI8Tel0mli6hSYp7HVb7DZrxrNZxWy3LE4O97l/fESWxKRNm7zMMRSVyXzLrnRxHAM/Cmm32qRZyu1oVBEAVY0kSQjDGMd2MCyTMAgxdI23798TRQmeGyEoItZ6x2gyx6k5mLZN4ZaMJjM6WQND15FlgYODPn6wq8rHZUajbtGoNwjjgLpjMvjsU25Ht4iiwHSy4NXrt7RaDSYfCJKKJDKbr0mSFMs0qkOXU2O53RBHIdvVFsM0efb0Mbqms1wtCXyfIs+4ur6i3x9weHiM2Wih6wYP7p3xs5//EllS+O3f/i1WqwX1ukWSZuwf9FnNxuiGwtnZCe12m1IQIMsY9Oqopo5t19B1HUlZEocxqi7jhyn1WpOG3cAPQnRdRShyTF2nZju4Wxdvt6HZbiNLIrIs4G59lhsXz49ptHrEaUpZisiywng6Yb7c8eDhY1arJZfTOVlW4NRKlus1eVaCWPLg4RmbzYbtdsOjh/eQZYX94T5rd8N2vUGWREqh4PrqFkGU+a3vP+NP/vRnmGadT0/3GY8gKSrYlQicHD7gbjQnijMQDEDk9avXRFFCo2mDlOKHCutViO3YrKIQQVL4t3/6Mwa9DoPhgDAO2F2vKYqcfr/PbLpCwGV8N2MynVJv1IijmCQpiOJKFd5tttntdvwvF/9D/kf3/zff9QHyPP/gmCkRBJGyFFitNgyHQxRZw7FNDEfnZ18+59GDh/SGe3+DA/Ds008IPA/NcNjb63N7d0Ecp8ymU9brN2y2K4qi4NHjx8R5RlZUVTMv2CGLwneHyjyJeXNRgYw0VeGHP/g+ORmvvn2HKKt88cMf4LlbNl5EmKTYuo5jtWl320RRRLvdJQwDbu9uWatVtfjnv/iGRqeDoIi8eP4t7VYTWdH44vPPuPfgAbJQQK/bxHHqfPToI378xQ/RDBFBFhEfadRUlV2wZNhrIYkKiCmT8YRff/k1hmlRkLFeRIzmG1pNi/O3MwpR5Cc/+T1EoaDZkqjXG7w6v2a7DdAkg5fvb9B0h+l8AfyVD0BRJOI04R8t/+f8d9r/MaJQjVqURXXvrxwB8J8+/4/otGp4fkBelqRxglOrMdgbMrq7ZbNecHi8z+cff8zN9TWqqtPrdPjy229YugFZXpKXGjXLQlYF9gcDyBNmiwAvCNCyEgGJKI3x/IhSkBjsHZCUCqPxHKnM8HdLer0O9U6Tm/MLtuslnbrFcj0jjEM+efoJpmFjWjWmizmHRydEUczO3fHm/TXz1Q5DV6g326iaxk9+50csVivev3uLrqlops1kseLpk2csP8TkmvUGUpGzdWN2rk+U5hwdHhH6HqZWKV29KGGxWBEFIXmZkBcFX331Fe12G8OxicMtYRCjlhJn+4eV+11VebT/kMePHjBfTHHqBjtvh2lr5HlJt9vgycMz8iIlDj1qNYsiK9is1oiFwIMHj0ASWUzHJGmA5/m0HJ2P7n3Kajbn+u4OSdEwLZ13796xXG2IogRN1cnyDFVX8fyA5W7NXr9LHPsoalX+S7MU09Q5PhqiKDrL5YqiSKjZDicnB2Rpju97tHttptMFozBCVlWcOph1nSLjA944JYkiGjX7Q3QSihRUReHevbOqs1TmGJZBXpTc3o0o8gI38JnN5wxbQ4IwokBgs3P53idP0TWV1WJZ4aIVhSjO+dOf/ZKPn36ErKq4QdWTPTraRxAK0izBDxIECeq1KsMtCAV5mqDLAoPeHu7OQxIlHn76KYapc3lxxWwyRxBlsjTjydMnzGczRndjnJqFrhq8e/0G399Qd2r0B12ur97gBREnJ6dYxkdMpzOEMufe6TGKpjMdjzn5oJHVdB1FlsmShP39A/wg4Msvv0SA78rV682S1SanWa+cAavVBsep4QseSVq137I4ol1vVNY+0+ImWyCrEs1ODWknUW/UMA2brfua5dZHkoIP5WibPC8Jgoj9vX2ef/stum5UUqXFmvsnjzg+GLDcrCkpefLgIdvNGkkSqdUdVusV+/v71GoWipYjCD1Wm4iDvT5JHFIKBYWQ0WzbpHmT9XqH4zjYtsXTj57wVf4cXTMIPZ8kiimBNMvJs4ysKNE1HV2t2PQHB/t89PgRcezjBz6WZTOfr1mtA+4/7BCnsFrM2SmQJQF5EVGvG5RSQUcyCbwd/X6/ivOdXxBGCTfX7xkOh5ydHnF7d0utaWA5JnkGu+2WJPbp9KqesyyVlSbbsfn4k6e8fPmS7dqrWgOShG6qhFHIeDImz0HutwmjCEPTsa0GkqwQRgmmbaEqMpPptLqUzObomlo9348eM18tK6ugIiNLMqqgs9ltqTe6ZEmGKpXstmO+ef4GTa0G9FRNARQeP35EHGzptRuomsVus8axDe7mE27HG37re59wNOxxdXlNt9Nms/O4uRrRbDdIkoDeQKDTcsjymH63RhS65HlBHIYcHe5Tq5lIcoGlGFxfLcjyjPXSxdQtDo8PWC7WBGGAIMoYpoKiFBgmIIg0m21m0zvyv6aXFz/8Kb5rOcN/fvc/RVFNdl6ALIc4lsXt7RhJNlhuXSS1zl+PAXZadWJbA0lls11wfHLIYrUgCBMQFTZbn2bbIisCbm6nyELFlzm/uiAv06olNlux2WwZ7u8jUDCZjzB0DdXUqbcbGLrFsD+kcf8e6+2SX/36Bb1uj/XaJU5yLKe6CAligO9teH015fHj+5ycHVR0T0NjOl8iqQpWzUSSI96/+xXyxdWM/cM+22TF+atvOD28h7uMKIWCvd6Axw8O2Xp1Yj+iSFPcKMCLPcbjGRQF9x4c8/f+/r/L7XTFYnZHXa+zWa+oGdV0/Rdf/ADX3SGIKvvDQ+q2jbcLCYKIXrv5ofZSra27ZrNboxkKklhx/0UBBKGsTrSiShInaKrKeuuim2vyIsM0bI6ODlivl2w2O04O9uh1GlDGPLh3Rs2s8+7tOYrm8PHBGSIC3VaHRr2GJMtstxsub+7wo5hcNjDKDFGOaHe6iIrCYr3G910ocpaLFbapkmQJby+vkBSNAoHrm1GlgFVl3FAgSmG1noA4p9FssJjPiaOIw4M+x4PfYrF5DFLVu6bMqTkq/cGjKiWgKZweHTGajFFVCc2QKcuMJIrwvSpvb1o2gqLSaDTY63aII59SEEjyjGdP7hP5HtP5gqubJbptM10t0EOf7W7Darkly0r2D/eot2ysNGPYa7JZzbi6fI9m6CiKTL874PLymt1mAZFHlpe0ag6r6YLlfEkcJbRqDoHvstztkCWJ1daj1WjQadX49a+/Ynw3RRBE7j28j64bFEVJzalTlG71JdVUhntDRFnh/fu3FXxlb8j1zRhZUkhLme3ORVUkHtx7yP7BPuKkpFWrIxYCsqPw4MEpGTm2ZaNpOs1mnVrdYLacUyYlcVyw2ewIBJUwCsjzFFEUSPMCw7RJs5xGow6ULNZLdF3D1G3yTODpo4+Jw69x3ZB79+7TDQJUTcXWFL788pdYpkUQxZSU9HpNzPr3aTdavH31lq3rst5ssEzjg7mvRb+lEkcRo+kSUZQwDJPjowMsXcHdbmg2WoRhwtX1FYJQ0mq0qDs1oiTl5OgYQ1YpC9B1Hcu0uHd6j8uLCxaLNVleUkoCvh9weLBPHFQtgtV6haHp3Ds7pRRFbEtls5ljWjppGtLrt7GNahbA81yGgwFBEIIo4vkRuqoTpTF/8Yuv6LU7mE6dxXaLkWh4375l0G0jFDmz6aqaag5C8rJE1TREUUG1dBrNGg2nztnpEVkBlqGRRDFRmlCz699FzO4mI1arNf7OR1U0Bt0WTx7f55/90b9CUlRm8zF5mtIbdAjikIcfPUJTNDxvTZC47B93abVzZtMltXqdvWYNP9jy/vIdcRTTbHSw7DqdTofVB4qm7/roqsbe/gGv35xXh/UwIA5DVEWn0WzSbNeo2SZh4HE3vuP91Q0Np0Ya57SaHXZbjzwt+P7n3+Pi8iUvXj3HCzwaTp3lckMYhdTsLkfHx/zFz37B2ekDPvnkBN34lijwKreAKhLFO5bLJWUm4nsphmlQFhleGFKvtajXbdbbDaK0x+ff+4x/+2/+lJvbCWEYoekq+3sHDIZdBFHg+N4xvWGfIhORJINmo8Z0esf7i3dMJhOyNOfg4JCz42NUWUaSZd6+f89nnz2j5uiM7+4wNJN6s0ku5PRNi91qi6GrBIGPZemIgoRt2oiSwtnpAyQl5ev3I44P91nMl2x3O5pNm902QBBMnj79guX0mlIocWoWOz/AMG2ytESSdFZLj/lsWbkcNIn5bEOalFi2SRj6bL0lYRzR6+4hSgbDbgOBAkPTKYuURt0iCCNqLQfDkNmuA/JUwPU8+v0+hwcDvvz6a/4Xv/7vY0o23X6PJ0/ucXt1wXK1Q5RVDM3Ccpo4bZMiiyiSHMPQKYUNmqaiGw6QfLdvLZcL8rLEqjvcXlzTbLWpN2vUWiK23aRuW3j+gj/7sz9mu/YRkfC9+xhmjV6/zc3tdTW8ORoRJRlPHt8jzSJ8P+STp5/SqHV4/eY1P/3FL/gP/8HfQ/LW/OhHPyKKPSbTGZqpU0oi22BDsyGh+gpRCj/78jn37p2Q5xmmYWDXHG5uxji2g6xaFEmMbDd66FqTzWbOOFkxn7sUZRWJeKW/5clHjxiYTW5Hc/q9Noqv448iDMek3XDYrVd8/dXPaHd67Pc7yKXC/XsHGKpKs94gSRLyvKRZazGe3FG3HX7vxz/h6v0lgbcDbr57kNPZBNvUiKOU/9Pqf8Z/r/OfIIgioih+hwT+L8L/GM000AuVKAgxLIN2s04Qbjk8POLTp0+RJREvXBLFLseHB8SRwNJ10SSVyzdv+Pzzj+k2DYoiJXB3jEe3nBzto2gGzWab0WiEbhrEaUQSuqRlwvW7c2p6jUG/hyqrrHcuTz/+mPXa5fb2jsOTU9woQRMk7p89YrX2iaMIp1GnKEq6nQ6jyYzb0RxNFnFsh/39PkVZMFtMmM3vGEoiDccgTRPSLCLLYlTJpmXbPH34EEFSuLsbEccBWVmwt7+PY+l42231svY8tusltqGwWS9ZLlfsdj6CUGKYBoUg0Wh32XoRqlmJXOLgQ39tPidNcsbjNZqm0Gha7NY+290W21EpxJzR3YzxaAxlycYL6Lc7aJrGZDJFkTVSqVJefvbJx1xd3TCerWl0+xiaRpKkNBoNgiCgVquxd7RfvTjKnL39qtRmazKeuyZLKy+4LFZpgziLEQWZrCzxA4+W0+Bwf580CkmLjG6/yXQ1pd91OBj2GU9nBL6HoatkYka/38c0LLKiRKDKWpdlwW5bRawsx0ZRZA4PDuh2+1AWnBweMrq9o8gLHj14gGnpNFsOhqUgigKjuzGKrtEfdNls3YqXYBQohsZ6PuH+6TG+H3Nze0cpgiCIiMDp4T55muJoOppu0Gq38L0dfhAgSQqqqlEKEqu7TUUozHJarSaz5RJRhNliynB/gCwJaKqCbRvsHwwpKTBNE0GU2LouvSgmi1MWsxWbjYu5ZzJdTFkstwReNQvg1AuC2MfQTWpOjdAPuX92SLfb+HArWdDptDB0g9l0jiSKqLpGs9ZG1GXmsyWCYrAJdpiahh9l3E6XSKpKpz+gVreRRVAkmaKopEF1x0RRVeq2xe3dlOev3vC3/+APECh5+/4dT548Yb1cY+g2mmbg7aaE4Y6/+4c/wYt8luMZRS6SURAtXNarBaZu02w2ma2W3I6WDBptzk6O8ZOAzWZFGGa0m23i2CeKIoIgotNpsVpVoKy8KNENEdMw+ft//+/Radd4/eJbyrKB63qcnh1TkDG+u0GRBbq9Hm/fX7LeunRafQRRZLtaszcYMFvesd0ukCURRVIZ3YzottusNz5ZvObbb16xWIWcnYq8fvMCy1IZ361oOBbe1iUvM9JEJAhSanadZqNOkgbkeczdZM7B0RnHx8f883/+Lxj09/jdH/+Yq6trVh/aTN///ueUZcZ4PKfTbNI47aPICmGYc311jSSkKJJUAXFKERBQVJXZdMSgU+PZ/UPi3Oflm69RlBqL1ZSoyNludkzHE05Ojqg7NldXLrKkMJ8v8V0XVdOxbJ00DxBKmM9WhHGEo0iEYYRlGnSGXeJ0TZoF3Lt3zGy2Jo0yTo+q5+u6Hlme4wcF9XqdLM8wTZ1ISNA1hTiu2kKqrlEWJXuDHjXbInS36KpInFWxYkFM6bRrxMmOek1Flgz2DhocHZ2x3az4pLjPsycPmE99ECV00+DhR08YjWccHx0RRzF3kzvWi3kF38pyDg+H7Gt7lAh02i3+OsJ2uZ5iWDb4CbWGzWDQQ1YkSqHk7foCUdCRRXB3AWen+ywWa968v6Lb6WE5DpKi8/TZIbXaHZu1z+XFBY1mHd0wuL2+QhJkfu93fpfReEarZqPJA9IsJ0nBUE559e4aL/WoOQbv39+ymO/YBSFxmvHrb97w8OF9cj8hTtc4dove6RGlEGHoBvIXv/U7rBc3qIrE5G6GUCb4YUC9WedqVEk3Wq0WuVBy0D1CKUVsTUfXO9SbDpFpkaUZs8kUQZCRRAXdVHBMg2dP7hHGJYmscHxyxmg6ZTpf8dXXz7m+usHdbQHnrx7kak27VqPIIUlz/mnxn9CuOwwHba6ub9msAwSrgWq7JO6GKE3Ybw8Y7LWxdRVLhYNhg7IEdZWxImI+mzKdbrANhcNuj4IelmGw/DB8NZ3PmSzGNOtNxlfn3L//kP2DIefXtyRJjB/4xEXKdrMlNzM0XaHT6jKe3aEoIveO9wn9Ld1OgzhKsGyHTz/5mKuray4vzlnOF2SRz2654KPHT0lzEFQRy1Bwt1sWyyXPX37DydkB7nZD4O64d+8ed3d3qIpM5AVcX1xSq9fYPxgymV7xzS9/jePU6Xd7zGcT6k6NtefR7nYoy4Lzy5tKxhSm7NygUqQmOWkU00p8OoN29fIrcgbtAUEQsN5WN/KigDwtSKOURq3OcrHmdjRl2GtRFlW1Rjd0nhwc0u92WW9WqKZMp91h43qc3jtGkRWm0wX9wRBdN1FliVazumEfHx1wdHTE2/MqOSCUIu56Xg2lqBKrPMf1wyqDrSkMW222nsd4OkHTdWzDwN9WG47TaREkUTU0FEY0B20QZEzbQLdUosDndjXh5MDhs88+5ddf/xrbNCv9pyCQZClnJ2cIJVxcXrFaTOl1etzc3TKZSXT7bUzTIMkTxuMJtdDE931+9atfMR5NUDSNIssQZNBVk6+/eoNpW5zuH2PqCmHk02pZ1D8Q8Xx3x9v358wmU1rNJqW3Zb6e0mq3MR0LA5HVZs12t2M43Ge72+FutmiqztnhMUFUiUyKPOXjTz5ju1tze3v3ATsNg0GPLE+J6k3yDLZ+yvXdjMV6h6iqKBsBd+vSrDdpNhs4NQc7q/5Pr169IklihoNBpcg1RCQlJwh3hLFHFHlVVlqAu5s7BFGk1WqCVKAaJkGUoigGw8MuuqFXz7go0QydrKw89IWSE0QRZlmyTDJcP0RWlMoSalukccDo+pzPPv0EyzI5v7yk3bK4G91gWCqzxZIyyzk+HLALfQ72u8QhNO0mZ6cnCEhcXl8jiRq7ncfOc4mjnGa9Q6vZxN1tWK8rpHIcV3HVvb0eURjz5t0lh4cHtFomv/ry51xeXFW41hKev3jJ/XunHB4es1zP6O21+f2/9SPevb/g7OSUXm/AYjZBlAqm8wq7Kkoa4/F7RFFDklWWyy17wwGSJNDrtRDkksVkwWLlslm5WGadbqfLV8+fY1kWZ6dHdDsdhv0O4+mEd+8uGY3u+Pabd/z7f//f5Ye/9WMCzyUMfBzHpN1pISAwHPR58eJbgjBkvlzx7beX5EVBEMQkUYhjO9+pnP0gwFIlpuM7JE2m1jTR5ZjdboFYpmzWC+xaB0mQEMqiOgwaBu8vrkjjlCBI8f0YWZaRypSCnOVig6wYVXTYc5nOl+imhmbouMGW/+q//mc8OjtDN1XqTYcgjDk5PcAwNK6vx0SJR1bapFnBduMRhimqouH5IXmWcXx0iOXoaJoMZcT5+TV5ktHq9NAdDcVUENOEyfQGy5JRZQvTVNnbGxLEG67uLjjZv0+z7lB+LLFZb5jPZti1Jn/3D3+fOAp58eo1i8Wc5WrHyfEBvX6dCi2sYNs1dtvN35hd88OEINygmRJxGrPdrdAUFduxcTdz6rpAmfqkecqrdzcM+4cMLQtZlonijE6nzavXrwiDFAGF+XJHkhc4dkSaJuQZ7A0HPHvygJ/97M8xHYuiTHC9HWUBhmHT7HRw3RUHew/Q1Q0nxzI7t5ojsi0TyzbYbLbsD48JQhdRygkCD+F//5//r8rXL77GsnVsw+Hq6hwkFUl1OL94x2x+jSxr6KbCsNPnZO8IwzDYpi5IAoHnkwYhnzx9xu1oyi7wSJMQU1LZGw7o9vfo9of4YcGLly9RZaFCq+YFl1eX/Kd/lPGb9Zv1m/Wb9Zv1m/X/j+t/8P0AEYkkjYmKkJPjfcRSQJY0VssluiJiGTp3qxWaVqNbH/D4yUdIsohuGKg6/JN/8n8likqiKMcxVdIiQRBkxnczHt5/SLNVo9GwME2LAoW78Xuur+/Is5KPn3xCf9AnjDzIKsjBm9evSdOcKMvY7jY8/ughw/4hYRSxXM4xDIU3b94jNiyVWqOBahq8vnqLZul8/OkT/uE//G/z9NkTGo0WWVmiORZWyyYRYnbBpuI2r6cMunVazRq2rWPbOmkU0ms2efjgPp1OhyQKWM3uaBgCpwc9VFlEVUqKIuB4v//f9Gf3m/Wb9Zv1m/Wb9Zv1//P64fc/x1Rl8kzg0f2P2evuk6OQlzqPn3yGrDkMBkfUbZPHDw756OGQ2fSKnbtFKEOWixnN1gBFkdA0gW6vzenJIWVeAcyKLGE2uiMLA6QiIfZdDocH1A0HXdEJApe70QU7b854Oub25pbz9zcs5i4CMgeHx4zHG+I0Iy8SVqsNb99d8/DBA+StV5nisjzDqTXIKXh/9Y67m2vWyy2NRovOYIhiiqiqSqffYzqas5xuiPKY9dZjNprz4uVrPv70cx4/ekrDMBlNbj4MVzXJ0gx396YqBWYpi+2GKPKwFJ3/y//kE/7hf/b1f9Of4W/Wb9Zv1m/Wb9Zv1v9X63/3H31E5Ht88f3vo5sOjWaN7WYKioTtdOi1ari7GYN+j/VuxW61pabYGLJKkUf8xZ+9ZOfF/J0//H2++fqnfP31O6ao6JqCY9Y4PToljlwkwaLdbDNbLIlRODm7x4vyFQ/u3WO+mvD1t5d89MkDas0atxczdMeuiKYHXe5mI5AlJos7LE1h522p11qMR1OE/+P/4X9bxqFPt9kiSWOuR9dM1wvkrORgeMLC3bIKNqhKiWPZtBptLM3h7fkFX3/zFYogoqoaz5495uj4EFXUkEqRl6+/JQgCzu7do8xjuu0WaQnfvn6P67ukWUISJpRZiR+HOM0mg16H7WaNLIr0Gg0ePrhXDdjs1lVWW1Pot3pcXF6jKQr7x0d8/e3XFKWIpddxbAvI2KxXZFlKXubYlkIcp/zql69AUDk+OyQIPAbdHl6QcHl9y6OPHrO3f8xkckvDMUmClChJ6HQ7FFnGzdUlpqHg1GukOcRxWMVGxZJuf0DgBjTqFl6ccv7uHY9P7/H69WtOzu6x8CL+0T/+P1PTDUQKTMNAtwwe3D9DlkQarSaqYbJZrAjCLXGa4HkBqqwQuB6e7zObL/jDP/x7gMzrt6/xwg1+6NFutFElDcs2ScoSQ1YxNI0wDPACn3qjRq/TochzLFMnTiJevHpPWQq0ux0QKu1snqdIAsyXa5bLDc8eP8Eybb5995J2rYGQpbj+Fr1mMtgbEIQp/s5HUWS6jRoPHz3m2zdv8LwQyzA4f3/BfLVFFFUWyzW+v6XhmJwe7JPnKbZtIik6UZKhqRLdVhNVU3HdgDTPibOE2WJCVgQ4uoFYiEiijOU4PHj4lK+/+RZJKBnudel2e0iiQZImlGVK3XGIopC3F+c8f/6Gbr/P4VE1eBeFMbPFDNOuUa85TMYTyhw++/wL1luXf/SP/zFFXmDbBoN+i+99/jGL+Ypff/2Cf/D3/g6uu+Nf/8lPmS826LqFpslohsJiviDPc4Z7e4RhUA0cJgmyIpBl2QfEq4KqKeiaQhjGSIIMQolp6DSbLUDk5vqGOIn57NOPOT45wvWqQat2s8nteIqs6pydHLNYTfD9kNVqRc02yPMEWVIRhRLfrSaZvSgkp6BIQZEU8qJAEmXevjun32kyGDS5W44QRJmzw3tsNgG//vI5ogQ12+De2RmiVA1wjadTBERESWQymXJwOIAiY77YEEcpaZpycHhAv9tmu12x2a4YDnvsXI/12uPjp89o1g3+6F//CSenDzAMldF4hqbo3N7e0u122bo+q/UGWVaxLI08C7FMC8eu02jUiOKQMAwoipLNaktJSa3eYH+vj6GruH7IfL5lvlgynS3RDQ1LV6k7No12m4uLS6aLNXkpcHpyRBynrDcuSZrQaTZYLubkgkjDthju9/hv/YO/y36viagojKZzFFHg5auX7O0NiKMY14uZTGds3B39fo+a4zCbLek1Gzx58pDb2xlRmDIYNllvVlhOA1lVKfKCr7/5lma7x4OjAxBSmp02SZLy9ctfYRg6iqBzczGi2xsgaxWtcjKdsd14uLuI65trer0mD+8dU3OaqIbOerNBKAX297p8880LRqMp1ge1cuDu6HTaFKTEaUSWlJRU6twsSzFMk5PTE3bbLZpm8vEnD7FtnfOLK1aLDaenZxRFhqrKXFxcYWgGzWaDZrOJu9uyWMwRywLf3+E4TfJSxg9C3p2f4/kemmagKjp7+22KrCQv4fLqCl02OL++RlIU6o5FGkccH/UQZIHh8Jgf//h3+Kf/9J9wcX7H48endHoWpi6jSDqXF1Pm6y3dThddKdFNiSBK2GwSVEXl3oP7JHHKv/qXf8wnn3xKkmQ8fvyIyeSG+WzKbLagyEVmiwWb7RZVUzk9OeHpkyrGeHk9xq41ODk75sH9MxxTIUpD2t0eL759x3bt0u200AwDTZEp0oR6zSHwfFarOXsnx+i6gyzkfPPN1zz/+iWKpqEoGq1GC0kpkSSJb1+d89lnn/DwrM+rF1+xWMZ89PQT1us1pSBycLxPs2EThiHtZpvxZI5da2IYAl/98ksECb786muyXKTdr7PztrSb+6iSAkVCECSYtkOah0iyRKtRJ0kqy+V2HSIvZhfEUUbT0jl/9xLd0mk0HBpmg/3hAUxF6kKN+fSOVqOJH/g4VoMf/vAHNBo1sjhjNBojKRJxEnH24B679Q6nVsdx6uiGxny24OR0H9Uw+fbVa/I4xbBM9oZHjK5vMB2d3/3932Y2W7B118RphqKbXN9M0XSFyXyE5wY0ajaLmymFKHGxXrD0dtRMkxKJOM8I4hBD05lMF+RZSqvTxvdTJKHkwcNTBEGlUW/zfDzlzeI1g4MBf/cPf5/B8JQwztisFlycn/OTn/yEeq1NUuQIRc7N1QXfvP6WH//2jzl/846tV4ldNFMnysfcOzxmt1mSiWDVHN6cX7JYb7AXCzJk/vAP/h2m4wklBevNmvXO589/8SWfPX3G02cnCIrEbLFmsXaZz2YURcnpySmzxRhRKDg9OSYKt3zxvR8w6Db4N3/+J6RpAFlMv9tF1BRKUaLf7aPKMkEY4ocheZZzeHhc6T3XC0zLwbIraIQfxNi2xs3ohmbTYX9viNmoYzk73ly8p9lyUBUJTZaYrxYEaci9R/dwanUCd4YkqVxdXyOXQ26uLrBMC13VONrbY7dec3R0xHK1ptVwEGWJVr3OajEnSGKUrMRUhQpFa1uYukJ/cIZdb/L+/D2L5Ywwjtj6OybJCgmFXqdPKaa8efUORZHx3R3z6Rx3uyMvBHbujqzIcOwaN1d3JFlKq1UhUSfjKbZl0ut2KSmYzZd88cX3OBjusVwuEMWYn/3sL9i5PpKsEc43hKGPKAq4u4AoTvkv/+l/xfc++5gnHz3mdjRhONgjCANmsymNep2yLBGB3/nRj7h/7x5//G/+mPVmgSSKlEWJZRoVMliRadRqlW73YI80TZhO55QIDPeGtNstsizlyy+/otlsMOj3idOIbrdBURQsl2N+8YsvkSSZ4d6AzXaNY+p0mg7nl5f4XoBVrxOlKaPllDIpaNh1yrzA0Aws0ybP4PZ2Qq3TIIhjLm8uqdXqPPvkI96+uiSOS9brLY2GgySVmLqM58fsvITBcJ92u4kkQBwViDUZRdPQNJVBr8/t7YjzyymzpYuqqcRBTBhGVcWv3kCQFdabDdPZHHfrV9jjIETVDWRFJQwi7t27x3a9JI0TLMuh2+1wN7rB8zeYhoFla1CKTOdz8iLjcH9IHMUEYcB0OkNRdaIoJUnTalo6Lyt1sWXz0UcfUavZ3Nzcst16yGoF06lZOtsgQihKBCAIPZLURgIatTpfP/+GxWZHluccDYfEYoS729BqNzFNnTCMOD45QhYEfvXVN9h2g4ePHzIaXfPy1QWNZpPf/p0fMhj0SbOM/YMjdFlgu54QuivKUubhyRkXN3cEYczTpx9TklOr28xmYzStQ9xrM1+45KSsVzv+7M+/xDR1hnsDdF3/ju3gui7Hx4ckWcF256GoKpvNBgSYLxaEYYxp2tXvLTCeLsjygiyO+d3f+zFXV1cVnW9/n8loyps3b6jVDYLIpSxK0ixBkAUsS+fr59+QpDnteoP5dMn13ZzHjz7C0FXunZ5yczfG8zwePTrGtEWCIEBTZWrOKcuFT5j1qDs2CDlp7iDKKuvdmji/4NHyAUeHp1xeTFitt+i2iK43kSSdKE5RZAXX9emf7rNz52iqQ6+rURYZi1kF35FlhdF4SqPZIklCwjAmySQ+evoZolDy8tVrkBQMQ2W93XI3nnJ3d40iG1h2SRaFWLrCej3n8vqSHNjbP+TJswcV1CsOicOAeqNJmiWoqoxTa+K5ASIya9dF1WycRgMEkW9fvOfJszrxykUSSx4+ecDZ/WOKJMbUG1imi66J3Ds9oRAEotRjtYpZrbdousFsMiJLQnyVypniu7SaDQ6PjtnsVuiKSavTQpVUmjWT8XjKydl9wnBDlFRpjN0m4nBvjyACeTZdYdYc4kxi55Us1lP6R/tkSEzWc9qdOrudR68zoOk0qx9Qb1LmOfuDHqEfM9wbsnWrlx1lQZEl5FmC7wekmY+mi7x8+xJFVSnyjIdn99j6O/aGAx6cnPLnf/EnvPz6a05PH/LJ0895/vwF7fYeP//5z2k5JlbNZBZuuL15xd/5vd9HM2wuRyOufvUlj09OUA0L1aoRRQHn51ekSUyj4XB4cIQiyeRZxPuLcw5Gekp6AABgZklEQVSO9tFVnc8++xRNVll7S9LERxQSVDGmrus8n63483/7r3n27BnDgyP+63/xL/n225dkcsHzFy9QShVZEhEoOdzbQ5RA02C53BKkMU+ePEYuVf74T/8Ip2EiFCLPnj5k53oEnldNjRcCQRhwdHSEqquMZlPiwGW93DKdLHBqNq7rsZgv0TSVKPY5OT0gineoasnZ6SlJ3CcNfDbbFZ1BH9vUaTcdSgTmyzmGZWEaBuPJCEkUabRbgMDx0QDPq6oKslRl/UPf4+2rd+wfH/P7v/sjfvbLX7He7vC8HUUco+oqD472Cf2QMEo4PDzGMByQJGo1E1lWkBWVeqP6DJ5+8oy3b9+hqiJPPjrFdhrUa00uLs9JkkpxOl9tcRod7p+eYBkao+m8go+oKsPeENcPODo6IwpTdjuPLI1w6iZPPnrAf/n//le8f3eFiECeJ1i2haapPH38mNvxjEyQ+cnv/jZ2zeKP/82f4e1cjg72SJKE5WLNZDzlV7/8JV9873OefzPixYtXiKJCu9VjtV0jySKybPD11++o1UwsxyLLc/7i51/jWBb1eo2DvR6SLPPo0T0C38fzPGzbgSIlj13+zr/zQ9abFaPRnOlsjSQqlGXB8fEheZ5jqDKqJhNG0O21q6hss4GqaXiujyhKtNptltsVW1dgvd1xenLGdr1lNtuyt9dHkkQO9g8p8pznr85JspSjwyO83ZqOU0NTdCRBZm8wJCdHEUWub0akaYHvuSznAbImIYgl0+mMh/cf8zs//j53d3eIkshiXdHQnFwAwcUwchynRplnxGlC3TFoNjpMl0viKGCznBPHMWGQASlmLmBqOmFQTYRvtzvSNKXb6hCGCV4Q0ml38AOPvIxRFJlmy0YQYx4+OmF8M2a3WyGKBev1lsVsi2lWcJ0slwiCiKWwQygFVFUjjlPa7Q5hGOEGPr1uj9OjffI8o9Np4ZgGjmOxXq8QygTXXWPbNr12g2bdIilEWs0mqiYSBBFffv0Cx6kjkLNeben39mk36qw2KyaTKY5TR1M1RFFjt11Slmt63TZBWJCmW4oyZzA8QDfrjEa3zOYTwiig1WgiU3I7uiP2Xco8Y7PdotQUVFPhk08+I49j3N2GX3/1FaO7Mb1el8ViiWHo9LoWmipRZE22O4/ReMnJyT5ZUXB1fctwf8j9sxNubid4fkiRwqDXJUpzCiR22x1hGCOrCggpJ70BzUadmunge2vevn1Hmh6x27mAQBCEzBZz/HDDcK/PdDrGtjfYhsnb9xcgKHRaA/7gD/89/m//9/8HaV6wP+yzXK3Z2z9BEET8aM5qs2S9ruiQm5WHJGp89vHHXN9egZpx1OvSawz45vUbNMPk1Ytvqdds/uBv/S6rzZI0CZmMt6hCiFNr0hZAN0zCKGG7qT7zjz/5mOvrS26uJ3zve5/x5MlTXr0+R7dq2LrB6dE+9XqVBEniiJPTA1w/4NGjB9ze3rJcrgnCnMXiCtux2Ww23FzfMRnfMl/MSUv48lev+Mnv/YTDw31++bOf44cJf/C3/oBGzcRzPUy7xmK1ZLvdkqcxAgq6boIk8Vs/+gGTyYxPP35EUSQslwvO375h0O0iaRZp7uN6Ac1WB1PXuR1tKQWNLBaxzDpFqXJ1PaE/aLBYugwHfZo9je1mh23pNBs6CCL375+QxB6rjcDLl98gywqHB110VaIwaribgEJWkWVVo9OusXc8xG41ubp+T5LEnBwc4gYeqqKgigJn9x/gbQPG8wmxH9Lvdxn2B0RBimmKhKGOG6SUiAiSSLPVpN50mC1mxH4GJVxdvuMH3/+cJx894c27Cx6cnLCYrzg9fYAig6Fa1A2LH3z/C+bTCUGwRRFL4jTmB198n29ffMvW8yg9H0130I2ItRcjJSU93WY1X9Ed9Hl//obTVgtDN0mSlCgtcRp9sgTG2yqeRl7SUmVkSeDdm+fcXo94dzHGDVPOb2558/6c/qCPLhuIyIhZAYKCbJhE/o5ovmDQadFs2bx9/ZL7x2eIqkwYubTaffIiQiwydM0ijVyODgb89Jc3uDuPZ4+eEty46IbMi1cvmC3WTKcr/F2IKKpIkkoYx0iqjG5X8A5Nd3j3/govDDjY30eR+iwWS16//ymybqLIKt9++xLTNCmLjMv37zBNA03VkGUDRVdwaiqyXHA7uiWKUsaTGY5pMei18NOA519/SxxEHBzsc3xwxLt3b9lt19TrDrpl0Wx36LcbmLpGXhTs9dscH+4jkDIaz7i+nlNIAk67Ta/XI4tjNEMmz3y225hur4ZtO9iGRZwkpHlGo1bn9uYG0xigyBJCWW0u3V6H3c6lY5v0njyoYnrbJf+vf/rPePnmlvXKx7Ysur0e290WOcyI87SiT9Yt5rMR19chUeQjKzp/9uc/5d7pIcN+hyxN8TZbvvr1ryiKFM+PaTbbZFlKvWEwm84oCgHHqWNaGmVeYpsOaZLh7QIA0szn4OCYshSZjDN0ReL+/VOyPOWnP/0plm2hqjp5CceHB+iGiRd69Ict8jRjMp2y8zM0wyRNE0zLpNmqsVqtKYqUdqdGo2EilClBlOBvQ/KkIE5zvvf5J4ynU+IwYCvkXF2NMFSTkpLX796xWa54dP+MYbdNnhd4uzmqodHutDk96rJee9w7PSIMAt68fweljGUY7LZbBElAUkqSOMNzA26zOxrNFscnJyznc0QBZpMZYRShqTqL5bsK5KTIvL8dcTteEKcZpiBwcnTE6O6aX3/zAsu0QCjYrjfossF25/Pw4QMODtrcXN+SZSWyqlCWOYoisljOuLg6p93uoGkKRV7QbvfJi5y7yYqa3eC3v/iC1+8uKAUN265h2Tb9/oA4jlitVpyenlEi8Prt6+oW7Ifkokyr1SMvSg6ODvF3Pnc3d9j1GkfH+0iCRJ4maIpCJJRopsx27WOaJsfHR/R7Pf7sz/4Eu1kDAYIwwTIN8qZNGMT4rk+rVWO72yEIEm9ev0WzFHRNJo0i1EYTy7T4+vlXTGdTZElElKDV6CLklZgsPfTwtxEvX77j/PwWL0hwauD6Ma9ev8cwTBRVo91sVJA0TaPm1DFlkYNhj8V6yV/8/FdYdpPf+73f5/LynLdv31Cr1anbNWqWTX/QpixL3p+/Q1UkgmDDyfEh3z5/RRSlTCcrdrtLVFXBNEw0VUVWm/ziV69oNroocsl669PrDNF1nTj2GY9uaTaahFHCbrdBJOfksI+sytyOU/r9IZZVryqQfogsFuy2Hn6U0hs0UIgRRZHjgz02QVC1X8ZTmrU63VoTSe4giAqz+ZQffu8Z2+mUtevTaQ2Zr9YE4YLVYsTd7S2tZocXz19x/+GT6nMb9Ni6G968fcfe/oD1Zs5m7SLJMrIoMrq9QxJEDo4GqLqCKMmkSc6rN+fMVzvEssLlN1stFEnn1bfvyZIcUZZBLnCjgEbLYL0L2eu3OD60efX61f+np/9ocmZN0zSxyx0u4IBDaxFafVocnSd1ZlVXV89M97BtuGmOcTf8PzQuyB9A6wXJDTlsVSorK09mHvVpGVpCawdcq1lE2myxCUMgAv4+73Pf10WMSDotc3ZxhaJm+V/+L/+Bk9M3XFxdIyLTqFaYTKY8f/2egzv7/OJXP+Pk9ITReIgqJZBFAV1XSSfLLMY9Nrc38Fybs9NjGs0W1XqOo8NX3PSGbO5skM8K+JbFxcURrm9iOSGSrFMpl7C8KUt7znRkYLsm9WYL6c6dA7rdc65OXpNLp1iv6iSkCgkhRldVer0+k9EQz3S5uuiyWBpkcikSQkDge2haim/+8CMQs3/3PpIIjhuSz+eZzAYIgkCxUOfi8ob50iKMIA5F0imd2WyCYSxIJARM28S6uSSdzjGejhgMupTLBZLJNNmMTkrXqbbWODw6wVpa7N55hB1G6Jkc08WMTveSVq3O5toavf4NCVFmOJrihx5L02CxsChmM5TrFerNJm/ffGC5MBEFgZdvXqMpKq31dSq1CookcfjhHa7tIqeSJNUkaxttCpUiw/GUerXKZmuNVFJhaS/JF2ocn5zQWGuiakl6/S6L1RxdT2HaPi++/SPNWhPDsnHcgDcfjmg16lx3B1iWhSwlSMjwyWcPKOQLHJ2c/YUrr5PJ3PZOJ6PbXMN4MSWpStSqTXL5ErVaG8Ow8f0B5UKJUb9PNptma6OFqkjksjqGYbK+scVg2Oeq36VSruDYLkI0RQQs00FW0+gJleFkSRjfUMpn+eyzTxgMRlycn/HwwSNy+Sy9mwtGxpj+ZIIoysiqQLc7ptMfksuV+OzzLxCFBKNul4vzM0bjKRk9TS6n07m5QIhD7u7fZTQbkcllMSKf87NjFFmlXKlgmBbdXo/AC2g02gyGEw6PLlmaLkenJ0QhVGpVKuUmohjxyadPsW2XP/3pT3R7I9aaDSbjKb3egFarjZxM4wURairP2XmXXEbF8XxESWZ+cY6YuAUMvXv/lvnCQJJkBEEgIcW35DwCTNNktTQJ/QBVTeD5PsP+nKPjC/YP9jnY3UOWRXzXQpIk6o0mcQzlcgXTsinn83T7PSI8VvaMnJ5lMp0RhNBMpkkkEkiSyNKymC9W+G54269OJEkoGvVihc31dQQiJrM+ejpFpZylVMjx4w8vUNUU2xsFPh4dk84WmIznHJ5ccNPv0263SKXTvH17jLF4ga6nWVtv4kdDcuk05WKeTn9IQpaQEiKqJPHZF4/48dkbjPkSSZIJfJ9ev8PO1jbFfJ5/+qcBup4hqWmEvo9lrhhPZ0xmBu21NTY2ExwdHtIbDHG8iOXSxvdiEnKCtJaCxC0CuN/voqo+xULuVtU7nmFbNvPZiiiKKeTLEIt0u0PCMCCdzpIr5Kk0qnzx9Am7m03W3zUZz02MpUGlVCCXSbGxvk8cB9x0eoynBr/59S9QkgqjwZhCJo9rmyyWE2x3RTaXZTBM0e3NSGdylAppXGeFawtUyjk818JYLLAdn++//4F/9+/+HcPhGNu1yZWyZFIFDGPFydkZIjK5bI7BaIBpOQRBzIOHDzg8/ki326OUL9LvDbAsm/l8ibEyKBRz5Ao6prkicD2Wps1qYWFbDldX1zRrdaK/XFHrqwz37j/m1au3bG2t8fDRfd68ek62WEZMCJzddMnl8qhqFk0VWGs1+fKLB3zyyR7/9E8phv0RckJC11MgBJwcnzObGShJjbX1Na6uBlhWyJ2DewwGIybjFaoiYQgmtu9Qb5XQZA1FlDnY2SGKfKqVGqlkklwuzcnxKVcX11SrNcbjGaNBD9eLaK7VCaMIKQ6YTDpoqdTt0LgyyWQUHhxsomczOI5DtVTHC1wG0wELY0mlWOXy9BRrYbK2toaqSIRhwLPnrzAXSywnIJNdUMiU0VM5zk/PMFcBS6PHdGrQWFtnY7N5qzd2XBzPZjY3uLi4ppCvkJRUBGJEIb6V/iRldnca7O60CNyQq8uQpWGgKBJJVWcymqPrGoFn4nomhXIaYSlAIuLth4+kkxmSaY3OzTXlao3eoM9wuuDXv/3X2K7J9dUR15dXhJHMwcEd8pk0L168ZWV5aNolrrXk8rrH7s4+h1dHZHUNPZPm5OiEy8sb/sP/+X+mWtZZFXSS2SqzxZDJcIGUSGF7ETlR5v7De0xGIzzfZTDosL97n/ZamYvLCfPpDNv2kFSRDx9fI0WBx8n5Je5qRSIMQVLQcrnb3VutgeMGXF8PSJDEdLxbL/RNHzcICcNznjy8j7EK+OOfv+P5q/f89W9+Rbu9xU1vhJhIUC41OTk+J5WR2d9vU6mWWa6WaCmFMA4w7SUvX78gX8iwt3vA8fE5/f4AyzRo1KvcuXOf+WxOr9fDsi3qrSab7TWa7Q1+/+2KrWYb88OKtCITRy4JMWZjfZ18tYpjBuhyjkKxxOvZe05OT1kaE5azKVEUcrDdopDLsbtZZDyaYKxM+jfnFAsl9KRGtlpnY32TfqNPJquhpVKsr7eJogDPdcikMwiJBEvLpFirgyThewEpOUm70UBMiFSqFcrzOgk1SU3LIMS33OlioXBLk5OTeN6KeqVMJqWhJATajQpuKcu9gx1iBNZbZeq1MqZp4/oh84WN6/WYz+Y4jk2/16dUyJAUEugplWo5fzuRXVwhhhHFYo641UTXUlQqJUrFGoP+gK12A1VWCEOfXKlIrljBdjxmsyGyGBEHPptrDXZ31iiW8txcd+h0u8SRj6wqIIi8fPmS65seDx8/5eGjB8hSxGgwolqv4HgOQSdge3uP2XROSi/Sbq8zWSz4529+ZH93G01NcnU9wPUC0td9JnODQqFIu72BabnYbkitsUYhiHHCkKSiUK9W8H0fMSEw6F3y+PETVvMDXMdB0zJ0eh/Y2Fzjqy+/vGXLazKffvIp/7f/6/+DTsciFsByLDLpzG37JZOhWq0jS2mm8xme5xGEEa/fvCWVkikUCxjLJaqskkyn8IKIN+9O0NMqg14fTZGRpASXFxdk0hpiQuDxk6cEQcj11SWlfJZWs4E0Fjk7OaFWrbK9vYYkKsxmBno6g5bU8DwoFasIxGhJmVIpT6ZQYGkYJASJ589eEiHSqLdZLN7y/NkrLNPh0ePHXHeuGIwX9N+do6c18pkMw5FBe2ON9voaqpYjjhKIAsgqlApZQi9kurDYPTggFAN8a0EhrxP6NoVChvX1FufnF2haCoQUjmVhyyoZPYfluoiJBLVahel4gpZ0KRVkNAU2N9ooifhWtKNq6JkI0zTxTJ9KpUw6o+B6HubSwvcCMhmdKI6xbYekopEQJXzPRlEUUikNx/UBAdfzSccRrm0xGg1w7BmFQgXL8/BjlXKlxnjYZ2msUJQEUkKimM9jm0sUKUs2rRBHFrHoUSjmCAUBz/VprzUpFDy2N9ZYLsf0B0OOTs7Q02lKpTLj8YzpdIakqrx4/pJCvow/HeI6EbWixlqjwWI2Y7G0WaxWjMZLMuksvW6Pzz5/QlKVMZY2UbRkPBriOS61RoNyKgUEJCQBN7RRtTTm2ODs4grbNMlnC2SzOdobawhCiGMb1Bo1JClmZtjUmlVU+TFHJ2ckU2UubrpUmlt8+fQTJqMbzi+O+eYPvyOREHDtJcPhEGO5wljOSafSRJFINp8nk0lTr9UQhATb27uMRz1qtQr7u/scfjzi48cTVC2BpinUqkUiX2TY75Av5rl3/x5JRebNq1dUK3WmC5NOd0CtUiAWVV69+chgPEbPaFSrZS6vLyhXC6RSaT6+OWRvd5OHD+5jOg7Ncpk7e3c4Ojzi+sbi+vKCXD5PMq0jCCJL1+PBg30sc8zxeY9UOs/DvXW+++4HPH/I40+e8Ju/vsv/8z/+R6yVy9rGBqa14OraQhIkprMJcRwSRyHpVIY4DvE8C89z8IMA2/U4u7hGFEXUtIi1NLHMJesba9x0rokjnydPH3P/3i4fPrzj6uoUxJhyuUboelxfdGg0W/z5ux9JJBKUyyX2du/S7XRIaRJra03evnjJJ/e+JKElWBhzPNdGlkQEoN+dcHV+RTqbIaGIPPnkU169fInpBOSKdbJGwP/n//2fuLO7BgS0NmVa9RazrX2Ozq7Q1SzZVI5+Z8Dhx2OqtRr1ahvPc/j//X///7frLNEnrenUGzXaay2kzsUlpWwBy4lwXEgoAub0mnQyhWEGzBcGXhATEJMpZ7m6vKHWaDAej9i/c5c3708xHZ8nT79mPOwwmxl0et8zM+ZIcoKDvTs8eHifF6+f4Xgrfnjxhl5vRFJTadUa3Nx0cIOQXL7EaDpnOJ1xdtnDd2329++wtB0ur6756vOnSGLM3DAY9C4Q8HCcBf1hjOfYGGOLVEomlg5ZLGbEhHzy+Esuz85BiNnc3EBREiiSyni84sObV/wgxlTKRbrjMebKRkmmWFoOm5sb1GplYhFSusa61sa2lmR1ndFowspakstlEBMCprmkmM//BeHpkBAEkkoSTVIZ9Pvs7xd4cHCAJCdZzRaEYUi5UkZWZHRNxlgsCaOI1cqgVCpRKpV5+eY15sBg6dqIosD9BwdkMhn+9M0PLA2T+WzFfH5CqZhle2uTTx4/IApDup0b2mstwuh21+16MeVskWwmz2AwwvFcxgsDAel26nJdlsslm+tttEyK6WLEaDIjl82QSWXI6Gmuri6IxQA5dY/n795wfX5ONqWwsb7GYGrw/Q/P+OXPf042meT98++wliabW3uI2Ty+51DM5DEWc6LIp1Wvo8gyb968o1lvkU1liKKQ7c1teoMJi9UKRdGQxASVcgG70yWpKqyvtdnY2OSLz5/w5vVLRDFmtXKwrBXtRp2TwyMOP7xnb2efRr1KPpchmdS4vLrk6vqMtJ4kjj3KlTyrG/fW2e3Ht0EiWUQkRiCi0ShTrRYQExLLpYltmxSKWTzXpVqpospJfD9k92ATVZUoZ9OcHn3k+bNniIkEspqkWCxir5Z0rjsMx2MMw8B1lqS0FMPegOXCotf7yNpak8AL8VyP7Z0tWu0qGV1ntbQYD0dYqznnixGVapNmo0KMzO7+Ac1WA0VKYJobnJ/1+eyzB2xtbRGJCn6osraRQJYEPNNke2uL3b0WkiKgJZN0rrusjAXlVJVcLoMspRBFkYyuIqU0Xj5/xsnRBXGYoF4vo+s6l5eXnJ+f8fjJPZr1Bq7rs7bR5OL6moVhcHN9Q61SppDPI61sYgIMY0lS04jiEMfxWa5sgiCilC+iSDLXF5dEUUgmm0UgYLWykGWZIIiYrCbcu3cXRZEZ9Lrk8zkODvZ59+EjqbTGfLZkOB6TzeRJpRSOTwfk8gXOTy9xTZ90Uqa91ubq6oxcPke5XOPi8pLAd3A9B9v1iIlI6zqZdIbJfE4UGoiCiK4rvP/YI0QlmVKxvYDx1GE8Nfn6q5/w4fAD7z+85+7dA/rjHodHNxSyOS5ubAzTQM9VePzkEWEkous6CD5nJx8p5nP85KvPePXmDY5rIyckPNfF8VzWNhr4gYHrewQkSCgCC3OBs7IQogRe4DCd9ghDj0wuRSwEPHhwh2cv36MqMrblYaxW1Jp1/va3v2IynXF89gZVTdBor3F12eX8/IxWu83+wQG9fo/oOmIwnKIqGrVGlXQqzfHRMffv3+Pe3T0+Ch7f/OEb/t3/8G/JZB7SbNUQpZirzjnXN33KxSo3vSGiLPHdD3/mi88/Z//eAYuZwU/rP+Hv/u53BIFLu9lkMJqhqCnCEH73uz9SKBZYmTZu4GLOV/iHPpP5gmK+xNYG/P35f6bRqKNrSf7617/m7OKcKCOgainajRqFQu4vpliRcq3B9t4WH46PePf+lP/0X/4r/+O//7f8T//Hf88//Ld/QNMUNC1JqVjCs32WqxUfjz4gSRqCKHF2fsWdOxu4vstsNqdQzFGrVWi32ji+w2Jqo8ga1tJGU3TkZAI1KTIeDzHmBt3rMVo6w3ojSzFd4OnDT+gM+nx4f8yjRw+ZjMaIccyTp3d5+fItL1++Zm+zhWnN+PDmA4EQkVTTXHb7JNU06bRKWk6zMm2e/fCChw8f8slnX5LSFBzXZXtvn8vLHlIM89mI775/xcbmBuVSlYy2AF/AWzkE3q3yPvBiCsUy1zeX7G7tIUkifuCQVGVMw2Rzp4XkCymyuQztVoswTBAnBGZGj1qhxtHxCWktyc++/gLfs5nMZzy8d0AmrXFndx1BVgl8j6Rv8eTBp4wnIwJngZ5Ks7W9y4/PfmDU75Df1ylXyhCXifyY7Y00SU2j2WhRKJQZzUYoikoQQqvdZmOjjSwKaLLG0lhycLDPaDAkjEPmkwUr1yIhiAxHg9s3pMnsr93jenDDdbfDw7sP8Gyf44/v0FQZ1/O4d/8Ba1trRFHE0jDp9gfcXFySzifxyWPYLkoYUqk2yOVLdEczHtyromV0OlfXpFNJRFFke3ub6WxEGEfouRwF9zbIIQogRAECEYEboGkZKqU61tIkiELSaYFCXsf1XMajHqlUiigSkCUBwQ8o5pO0mhVkVUdVVWRJwQ98snqW8/NrJpMRGb1Aq90inUoyHvb58otPIQrxvZDjiwtsz+X04pzNjXVkNY1lD0i3ayiaypu3h7dCknyBVNJFEERG0yl6OkMypROEAbqept1ap9/vc3XdIadnuby8wfYtitUGprEik84wHw+ol8q06lUePb6PQIgxMyBMMB0ucJwjTq97XF93adcaqJpCt9uhWqygJDUc28GKQ1zbZGdrk9FkRn884vGTx0gJmdloxGJ+u0PNZnXAZzobEIQun3/+iIVhcHpyST6fQRBETk5eoiQ17j44wPEMNjcbeIHIm8P3ZPI5XDvgP//nf2F9vU2r2eDl6/cIiLieQbVSYrmyMZYWURwhybc/s1orEfhJstnbh3JCSLC9vsbewR5BHGEYS968fs/Z1QjTtHB9h3KtSDaVgijkxYtXJCQJLaXx7bfPME0XY2WRTKdxfZHrqz5hEJBKaWjJJIeHH0knFSRJodsb4Poeqqbx81/co3dzymyxoF5fIylFvH73gXQyzb/9d3+LntVJyhLlWpk7Bxu4bojveIz7AxrtOqvVgpVl/O/WsLOzazi94idfR/zVb36NbS/48YcfabTbOJbD/QeP+fDhAztKku3tHfb37yKKKkEYsjRXTCYzrq47dPtDPC8mrd0eIkqlIr4/xLI8puMR5WqFv/3rX+O6LtedEcbKYLmYc3V1jSwrRFFEELvksmlEIcFyaRMEAs1Wk3whg2U55HJFFguThJIkradvg4OmQ7PRQk+n8SMPVUtizBYkpRQCMRub63w8PCSKI7ACJrMV5mpJrVpmOJjQGw7J5jOEYYBt2rRbTbJpjbN+j+9+mHB8comsJGnUGzx6+Anj8YBPnj5AUwQukjL94ZSL8xtEMcVaY41qtclkOqG1tkOr2aJz02V3d4848hkPL5mPh0iSil5I43orkmqCpJwmISWQQhlr5bG2sYYsJ7CWKwrpJKEAPctElEM0HUJMVqbDYDRHTSXJplfcPdhGkWI836bZapAQ4c2b55QrNRzv1gD6869/yd7OLu1Wk8lkCrHH9maLMIAoUhHECMMwUSSNVnuNGImTsxOymSK//NmvMYw5R8eHbG/toiVFoqiF5ybQ82lUOcl8ZuB7Lmfn54xHI54+eUoUedTqJYr5AmHss7u3zZ07e7x+/ZrxZI5thyiKQlJT2VzfYTqdcnzc45OnFabTBZdXHW46I2RFZr5ckVJkTNdlY73F/s46436fre1d5guXtXaNej1Dcy1Lc+Nr7JWFIPhU8iUqxTyjiUHt0X26nQ6L+YJ8MUuzuc5wfBu0Nm2TXneKpqXxg5hCWSNTkKk3U3zz5w+sb+6RUlXevnqNaTpoYYrQk1gZHk8efUoqXePkrEO9tsZo1EMQJQgj/vv//t9QqZR4/fJHujfniILP6ckZ5XKNXCHLYj6kXCowMqaIiQT37z9EkmXC0MIxXVQtR1JRsCwHMSGyMpdoWpJ8UUdUmghhTM0u44Qx2YzOaNBD01KsDJNyIUsyqaBpKuVSDjUpU6+WiSIf3/UJ3AAnCPEDuDobIX32xWdY5opBv0+5XCKpJ2muPeCHPz0npak8fnif/uCKQPBuPfcrk+31x3S6N9irGflcktFwgbma8u7dGx7c26RWW2M4WRKHCVw/YrlaUMhkiaKYRBwS+gH5UpmFaVBrVECJSSnqbZUsmeLq+oSDg22MuY3viWTSac7ODrm8GbGYrljfa7K0bIy5RUrXqBfSFEs5QlFATQroSYF0rsHRyTHZbIpcPoNjz7FMk96gTxjE5PJplN1t1tfWeJTLMzdMcrkiuXyW2XxMM7B5eP8+s+kExzLRUxqOY+L5JhPDoNloM55NURSZMPSxLQfxL8rihBaRLxcJo4jz82sK1SLTxQLfuf1AXduh2W6TSEisN9d59+4NUjIin88wGi3RshpZt8TJhxOue0OWqxXpdJKN9a1brrdp3dbZhj0yqRRn59dc9foUsxkyqRSTmcHVVZd0WuPD0TGlYoVcsUQekVaryXQ6JpPN4AYBg8GAbFohId3yts2CRRSG6FoK4oDtjTVK5RwFXefLJ0/pDnoMNZHpbIKc1oh8n8BxMW0LIYpY29xmMJ5RKzYpl9ZZLcfM5hMuLm/QUzla7Q0EPnJ8ckEhn6FSbREhsbu3R61aYzqesba2QTaTZj+n4/s2aU0mreucXV5yeH5KPpOnVi2T0zN886fvcIOQnf0d/Min27khDBzKpQrZ7BqhH3PYuSCt5xlPFxzs7vLpk8e4QcTZ2QUr0yalqRjGkmKpwPrGOs+fPScII4gBJFwnoFTUmM4n/PPvuyiKSLmYp1LO4u5s4Xkxrm9SrmTRFAnXcQlDsF2b+cokCECMY5LJNOVilVwux5++/Q5ZDHn44A6W5XJ2NkRLCqy1aoxHE+KExC+++Jxqq84//NM/kMtk0FSF/k2HrbU23V6fKHKRxSSTUZ/l0mI2nbG0HLY2Nmg2q/y3v/9HUrqCqslMxgbG0mVv9y7lYg5VTtHrdpnO55xcd5msPDJ6kuF0xMbW5i0DwHFptqrs7W9jGFN63T5xnEBLZbi3X6bZrFPIZ3n75g2z2QxRkkgkJFJJjWq5zMKY/qVvDbKUwLRsJElBkGSS6RSrhcV0uiKRSFAq5Snk09SrFUzHJo4CvvriExKKdMu4r1Q4Oj7l3r07bGw1yaSTvH71mvFohmnYtFp1StkUH969Y7JYIKsa//7/8O9xLZOEAOPhAGtpI8QS9splOBoTBDHVcp1B7xpZUTAXBvl8jny2gGmbvPvwiq+//JxWrczh0RGKrJBUVWIBHj+6T+BYKAm4s7fLwjA4Pz9ma2ub9bUmvmsz6F4S+ALJVIZUKk25miOOBLKpIgd7OxirFRGgpzOIQkT3ukd3MKJYyrO2toYgwHQyYTIa09ps0NpocHXeIa3pfP/9cwxjRa1aoyqJ5HM5hsMJc2NJRs8ixDLjyZR+f8ju3jYRPmHoUSnX+elPGiwWBp3+NZbl8fXXP0VNJhBEAUmW0CQdL5vjqnOFoqYYDAZUKzkEAXI5ncl0SlrPkhAkkrqEbTkMRwsGowmr1ZwgDFgslxiLBT/96RckkxKlQp5Wo8Xrt8fs7O3yxRefc/jxNT/7+gvMpUF7rU2326dWrhNEHmpS5vTsjGa7ycZ6m2G/g2UMIBYIggQpLcViPOAP/3KOrEhsb67R7VyTzsokpJBytYSeyxL6FvlsmsjzmIznNOtbLIwpYWShp9Nc3QwpFLIU8rertslkjIxH4LlcXZxSKZXJ5rJcXHVJLFwKpQ7T6QBFVdjc2eHLrx6STiV48+YCXS8gKQqOu6KUa1MpFphP58zGcyTAsee8+9hHlUUURaKaLVEqVBHbGq4bkNQ1BsMBURQynUwZDrpUankkMeby6pRYEOn3J2yuN0lrKfIpnVxOIynXIY4JAp/F3KBer1Kt1DDNFbYDx4envHx1SLXRoFTMkcnoKLKCoklIw84VWipJo1YhIYEkhiSIWVkL9nc3ePPuLa9fP+NnP/uSu3fucH52iufb5AsFOofvuLzq8OTRA/S8jh+FmLbD2vo6SX1GIZfm2+//yHK1pFho8u79O+IoJJ/N4cUgyAq9Thc7cMhU0hjGgqyeJfAivv/ue+IYfvb1L7FND1XX+PQnn7IcG3SGNyQSMnd3D8iXUrTLVXq9MaVai4vzEyxZ5PPP9nic/pTnz5/hBbdpazWpIgKlShV35XBjd5jNp2i6QlKJCMPbB2erXadW2ebq8oxiIU8UB5jWklRKZTiZcdkdUK00OTk6ZLvRopTJoVXqzOdzZosFtuPx+v0HyrkiaU3nptNHJGYyHJFUVba2Nun3J7x//5p/82/+BhICr94ckVDS2KbH0flH7h485JXt4IQO1XqJzfV1ZtMpekpjrdXgyF4xGI3Qd3Y5vbqhWqncwjgsDzewyGYyLJZLVCXNfL6kUqmxsb6BsVigpzRcy+b9m3f4gY8qQUbPUywU8WyHm4tLSMRk8lmiIGI6n/PJp2VWdsCz1x8oFnQ8V0CZe4hxCmsVky9ozCd9ZuMJ9x4/QE2KhGGEL0HkmVRLOazVkk6vAwmRZrtOq1HBCxy2d7YQEyJ6MsHmkzssFwZpTcOPQoq5MqvljOl4jGU65HJ50kmV46trxqMRrXYDRUuyMOYUc1lm4ySnnRtCL6ZcKrKzs01GT3JyekUQC1iuzSdP7jM35rd+e8vBWBpoSRXHcdC1FHf2D/ADn3v3d8lls+SyBd68/sBkZqHKErOVjeOLLGZT7JVFs91gu94iCHxmU5OVYSCrMogJdC3Dwwd7+M6S0XhGtzeEwGZ7ewM5AYvFAsNYksmkyWUU1tab5HMFBhOT3a0HBA40m1uUSjl+fPkaPZ3h9KZ7a8eURM7Pz7Bti/lkTq1Sg0hk6fpcdAaoaprxZEaj2SCVkrn/YJ20pjIdjViJIZblYi4tHt57wD//yx/5+c9/ytn5MQ/u7lMt5nj57HsazQZmUkVIyHz8cEK+UOCv/uqXeJaFKERcXd1Qr1foDgfkdIVsqsVyYSLIEr3LMaqSZjQfcXp2RS6bpVDIIsoJIiI0xWI2mZHNZkinNWzb5frmmkKpiG3bvHj5glqzQqVcJF9MUqll2NioEwY2P/74luFwiu/F5HJlesMFN90hoiiws7mFIAlks1lmns33332LIifxw5hysUyhmKVaqmAslkxGU6aLOal0kkwux2AwY3t9B0EUWN9qk86meH98TBD6LM0lhWqRSAiRlIggAD/wOT8/4f6DRwRhiKom6PYuaNbr/NVf/5Zhf4TlOlSqOUaTC3K7ZeRYZa1dJ53L8e33P1Ct1kGIkBSVVG7I+nqL8bCLZdtkM3ksw7m1aGZCHt7fYDRd0miW2d7epFatMp2OmU0nVKtVFnOD9fU1BDGBsVyxt72Nosg06lVOTo+57t7+b2gphXqjxHRmc3Tyka++fMrJySH37z9AjCN0PU06s4frWHSub3B9B0XVSGlJ1tee4jkeb96+ASFitdJQlSSiJFDIlzk775GpF2i2Mnieh2maCMCD+3co1xrcf3Cfk6O3rEyX6+sexUKWP3/7jHyxTKOeYzFfEXoxX375FZZnMRwNEKKYo3c92mtt2ptrbO/tEhEQRDqJRMiwc4MQCSRTGiNjxN6dTb79448Yi8Vt5mZ3nSAMCULY2LzD9fUV25u7jMdzMpkUmUyaZy++YzYP+eabt6Q0HUGAjx9OSCazqMkCDx8fYNkrqrUyg1GPi84J6+sV/vCnP7FY2Pzkq01sy2C2mHB8ecR4OaK1UWU1m6LrCsl0ijfHpwiSiIyCKqoI0TW//ZvfkivqnByfUCxXmc0MLGtJuVLg/fu3zKdjksk0Vzd90loGKQGGMSOrF3jw4D7WymS1mrOxsYnv5VBUifl8QTafxfVMMhmdn/zkpxQqJVIpkfFggiSJjMc9JDESKeWyiJJEGAeEoc9yNqFRydOslvjhm+e4qwBVVhhPJ+SKOSazMYZhE8ci2XyOlW3R6XRI6SqZnMagf4npBFjmkpQmkRACNjebmKbBwljx4OFjBv0RnV4XczbDCRzmkyWe57A0TCbjKUpSYLmc8eyHP5PNlvHimDhyKVcKxCIMRwOm8ymtdgVBVBHlJKIksrm5gxTD1c01S9NGzajU2lUMc4k9HLG3vYvvh/j1GpZlkcvl0FSdfueUUqmAQMjl2RlqAiQpAiFi987eX4AlDleDMWpSQ1FU7uzfwzMtbNtmakw4v7wg8H1iIuazBT//6S85Pb/g+OSS7c1NGmvbXF1e8uLNEQ8fPuLe/ae8e/uRZquFQJKbmwmFUpmUXuDy8oQHD7ZxvABZSuC7DglJZLFcUqnchgIn0zGSJPL0yaNbSUQU8+dvv2d7axPiCC+MkCQRYzQkikJG4z7masW9O3c4Pj5FFERG4xlBFLG7IRH4PqqYIqlmSOoKi9WK1cqkUCriBjFh6FMrl9lYb7OYGaiKxMN7d/FCkVy+zEDPcnN1wYvn7yhVy9RqZTzfYjIZ4NghUkJmOhmS0WVcX8BYzahVq8xnk794I1zevH6BIolUy1VESaFUyhH4KrlcDsvxyJVy+JbDcDRmbX0T27bI6jqFbBpVlsgX8hSKdabzFXHCwTo85+z8DC2l8fmXP+Hl82d8fP+K9fU18tk0YRSSipKk0kmGwxE3nSu+/slP+bu/+3sGvSFXFxdkM2lSWp5GdQ1dTxEhUSgVePv2NdPJDD8IODu5JgoEFE2ltdHk5uaGuw/u8uTxJ1xennNzOaJcqROEAnEUkQxcDMNgPncoFPMkVYlipUEQJekOe2TyZdbWN7CMGetrLQ4PPyAlFObzJTeDAa16lXq1xrv378mXygjJFFe9IQ8fPeLzTz7h4vKK4WDOJ598zvX1FXfvbLO53eLv/svfoyQS5At5ptMZCAJiQmR3b4e9g10Wyyl//uHZreJZVpnNjsjlcsiKwpOn9xDEkIvzD1jGLVP88vqKra0tCrkMkiIwGPSwrADVdPj0sy+xTBtNS//vdblKtQRigtlkjiLK5LP67RX1eEyztctsNuP65gYhhuJamZvrIUlVx3UjHj18SrVW5vrqjO3tA4LggnQmS71eo5DXSQgJloslCSJWjkm302E+HWLaLoYZQCxgz2YUijk2N9exzRW94Zhaq8lkMqLdbjObWpAQ2N3fptmuISZEXr15S1bPUK01sDyfKA5ot9r8l3/4R+r1OpV6nddvX7OxsYkqC4SBxM3lJYV8nvW1dQajEZ3rDpdnfeREClVWmMxn/If/0//MJ598SiGfYzYdsd7Y5/6dfWaTIfZc5PKsz9r6Jg8f32dhzCgXMyQEgX/+3XfcvfcIVVaIwxB7ZVIoFDg5PSefL7JaLdjY2KQ/GFGqlJjPJvzLH/5Iu91msVhhGrffo5GQoFSqUSzkOT68IK1leffmkOXSoFarkc3kKBXzzCZTCsUiaT1FsVjk6vKKQiHLT77+jDevP9LrTimUMyyWQ5qtGl/89CmZZJoXz16g7+9gmkvWNzZQtSQPHqduD6/BLtsbe3/J60hU6k1WqxVe4JLOZPj+21fsBjFhFHBn7x6L2RBjdcTKtLEsm6OjY7Z2NpjNx8yM8e2Qk6/iXnZRNRUvHPPJ4wecnfc4P7/GtBzSaYliKcvSGOGYJilN4e5B+3anb4zY2dnkzesjikUF1/WI44j2+ia+L/DLn39NzIo//+mU9bU6YiSS07J898fnyIkUX376BaHv43sBb16+4+RCpbVWw11ZJJQYz3AYXY0J/RARiETIZHOEXsAP335Ht9/nV7/5Je/evWCx8AiDCGN5QbGUI5GQWSxWEIuMxhMc377Nf9gxq+9/4Pz0kp98/Tnd/g2KoiFaAa5n4fkarWYTMRYwli5pXaHdrpHNpHBtizDIIRXLGeazEZbrMplP6Pe73L/3CM936XRuqDVqRGLE4dEpmxu33WFVTtCoVag3qrw/PSGdzvHx8IJURmVuLEgldWIhjSDchheEBIxHXZKyQGGtjmUtyOezRIFPYWeNNx/f45gukigjSzKVagXXtTAWSw6PLsjlF6xv7iALCqZpkkSkoKWQ2+vgByyNOZ88fYppGowGfQRRZraY8eHoBD2bxvZtelc97u3fR4gFPMelUavgujZqUqVUyFGp6PS6fVwj4uT0HMu0KNdKnF/2KOSL6LrK6dU5ERF/9ZvfslyuePfhPdvra8RijKLd6h9t2yYmpNmo/eUPa8HdO/sUslkyuo4iixRLFQQhppivMxqmUFWZn//ia+aLBfsHB5xdXTDsj7m/lyf2nb/gJhVMy8I0V3ieS6lcYjTpMxn2aNfadMdTYkHkiy+/oJDP8/bdO0RRZrU0cZ2QD++PcT0HVVUJQ4Fut4dph0hKCllVqTVqrFZLnjx9zPv3x7z++JHlyqBSLPNwbZOVaSIIIoqskstkCdwI214ShR6pdAZBCMmVisRCxHQ6YzydsLIsht0B3d6Ybn9EStOoVQsUC0Umkym1egVVvlWTlkplgiDk7NkLLGtBIZdl/+CAevv2cwp8n9B3ODnsUS2VuXfvgFyhyNnZOcVygcloyGw+I5lUSWdS7GxvkSvkWcyWlEtVYiFmMh5irkzKuQzT2ZLzmz4xkNGTOI5HNpshkUiwWC6o1hq8f3fBwd1tlGSKVEpjZdv0Z3O++snX6JpMo1WmUMzR646JYoFUPkmhlCckxHQ8YtHn5es/0e9MeHTvAWpS5WB/h8D3sMwV7z4ccXXVYWms2Nhok1QShEFIJp3lq0+fYi5GOH5EJMjomRKBuqJUloiEmOlkzOXVNfVaDUVN8vDOA1amyeHpCdYfVuxsbvHb3/yCwWjEwd4ehWyWH797hut66IU8kizSG9zQarUQFku2d9ZJp1XW19uMRkPMIMBaLBFi6A4nhL5NrVZlNBrjeBaff/I5jx4/YTyb0h/00DWNYrZASs2QSqlYpkWv22F9fY1a+R6CEKEqCum0xvHZGTExGxtr1Os1VisDSYJmu4zrOiQEhbSuUa9XqAklCtk8vX6PyXiImAjp9wdkc2U++/wp+/u7nJ2fMB4OqBXKlAoZjs7OGE1GLE2TtXaLYrGMH8Y8efyISrmA53qMRgO0dIqDg100PcN8PkVRFFQ1jaIqdDoXLOcLZElmrdkio+tcXF4hSDJ7e9ukVIU4FhBEiavrG85OTigUSmRTGoHnk07leP78DYP+hEwuS6PRIp3OszIc5ERMEEacnp1Rr9eYz6Z89+dvcV2HX//6VwhRyGQ0IZXUURUVLZUkn9vAXt1qsj958jl6tohhLCnk0tTrDU7OLlDlFCvD4ur8imZ7yS9/8wvGkx7pvEqxVuLj8RnlYpF8ucRgPCLtpun3R3z91ZfkMjkcx0KSFEw7+IuG1+Hq6oZ3H4/49PEn3L93Hz/y8EKff/nTv7Czs8Hu3gZ37xygJgViwcFwHDZ3NhA9n52NFilNIZ+/vR0bDobs7+3y8eN7LNNje2cHUYgQBJ/ZZMBsNkcUJdKZLE8+e4qxNEhrKfb2N3j/ZkahWML2Qv7hd99wcnLOndGcQjHDensP174kqaVRJZHzsw6ypKDrPq12ncdPHnFxecVqtWA4HFMolGk0WwwGPZyVyWg8YTJb8fjpY9qtHTqdPg8f7pIvZpkvx7RadbbbWS4vZty9u8vR0TGrZYAsOxRyFer1MrPFGFlK0B302NvbYXOnxYuXz/Bcl0I6i7V00bUsWkbHdCzSSR0hjInCmMnEYX1zj+lsgWG4TMZzsvksjuvQ6zv4bgiISIpIRk4R+CGBHxN4AifHZySTKW46A2RF4P79ByS1BGpSQZJVRqMp6bTOxcUNsnrbqJkvlniOzWqxQnI9A1GSGdx0mcynmKbH8+evqTXqiAmFn/3ia45PT3n27HtMxwFBJA5jRr0hhUoROSWDEHLv/h3ef3jHUpXwyyJv3r0kmZDoDiYk0wqGscKzAzY3tpDiGNOYUCnVePH8Bd1Rj73NLbZ3DnBDjyBwcV0V2/IxzJj3Z6cEcUzxL3trx1oQxQGVYon5uEMsSww6p3huxHw0IyLAjTwa9RKOE+JaAfVymZ31GuVyEdfzGI1HJGUZIYaryx75rEZSSXD3zg71VoPLy2NKlTLrGwUs06HTuSCMAhxzyfXxe8YLE0EU0NIaK9dmsTAIfB/TtlguDX761U/odvtUSmWclYFazKIkIEHEzcUZk8WMcrFEuZhHUSQWM4O3Hz+QzylsrTWRFYXxbEEQRQiug66q6EmFzXt3KZaK3Ay6CIkEl90ew8mKWJLxA4+ff/UVo9GUUBTY3ttEFATefzhET+m4rouqyviBT76QJyJBQk6Qy+rksnmSqsY//f6fefjgCf/T/fscHX1ATkgUijni2MNRJOLQQxIj7t7bIwh9ptMhaTwaxTReWkOIXeSkRCSEGMactbU2U8MhkXQIEjGCmmRuOhgrm81kmu2dHUI/YLmcM18sSGfSCMTUak2ERILnz57jWDaT0Yx0JoOUTJCQZHa2a/zw7BmqmmJurHh/eMLWxiaiLNJs1MnqKSaTLsVCiUwmw8X5NYN+j25/xHy+JJPN0Gw0GA+H9LsjgiAgk83w5NEjXr56xtb2LiKwtdFC05KkNI1Wq0FSUQgjl/lsTCKMKOXy6Mks1zfXeL6L5fgMRlMQFUzHISXrNOqbeEGENZ+TyqRJajLG4nYiLpaK2LaL64RMpisSok27WaV7fUQysUG2kOHpgw1K2QQg8Or1Wx49vE+92eYP3/yBUrnKzc0134+fs7e9gxBBo9GmUMpj2yauM2dzcx2CmJ2tbXK5MsvFnDfvDhFEODw65r/77/4GQuhfXaIlEtQqVTq9AVEYIokyIgLLpctaK8P+fp3z62NUTWY+H+N7HsPJLelwkXfY2GyTz+mUCnmW5pzr63PWm21C3yMUBOrVTTqdAYoqIisy2VyGdFql1+twfHiMY7o8enSL6zUWM657Qypli/l8hqpnuOp8ZGkYtNsKhXyO8bDD5dkFXhAzHh/RXltHS2coAWldQ0BmY22TMPbRUxKLyZBsrsB6u8VsPuHmpkNRiJHEmNG4Ty5bplwsoKsCJydnLFcmtuchiLd0QC2dwPcDTo5PScsa1VyZm4XJg7sPUCWVOIoRRAlN06nVGnR7PeLODY1f/5yH9w+4uhxwZ3eThTFjOuizMlZ4fnAbDL0ZcXXVZWerTYhMEAaYyyWu57HWalKp1VBVhYvLa5bLJflCjlev3tOo1/jis88xlianZycU8hmW9pK50We1HBOG8Ouf/Zw3mY8IQshyMWd7o4HrB1xedXnz7iOfPX3K+7dv+PKrz3EDn3QmTSaTYTJd4AUCs6XHTW9Mo1mh3dpguTAJwohCMUe1WCQhRCzmC54+OCBSA5aTGaVCEUVRkeUEQRDQqDWolMr09Bxa+talEkcxF+c3vHj1FjmZpFGvU65lyOdzJATIZpM8f/ZHXNvj8eN7RFECOamip3JIksxiZhJVY+7uHjAYX5NMp8lVdJYLH8v18aZT1tc3EeIIx41Ya2+jZ1I8f/6CcrnEar7A9QW++Orn3Lm3w507u3x8847T0ysqtQr7qTrTWZ9u74rhZIIXCFTaa6wpKTQxiaolkVQZXVURpZi0nUaWYXp9AyuX8XhG1x0RkyCby/Lo6T08zyJ0fKbjOZIsc2frDnNjSjFXRNqRUBJnxCI4rkS3OySdSvPzX/yMw6OPCEQM+2MEZFzHIZXSsR2fhWHzy1/9hOl0RP9Dj82NNnlN5+rihmI2y1p7nUK5xGQ2YLoY8dOvvuL6/BJpOJ7jeAEzY0W+UKDVapJN5ZAAL/C4uTqjVipQLpep1As0Kxv8/p//TLW1QRRFCP7tabW4WyKbzNK/WfDwYZm9nYDlYkkj8Lm47LC+0SKtF1iaJukoxLMDri6vSaXStJrrlGstbjrXJNMqjcYt3KZaEak360z+eURIgKbLjHpzQsFja6PNbGawWi0JkmkuL6/Z3NimUq9zfH5EMqUwnAy5t3OHnJ5jPBlgWybGfEq+WCROJPBWK2rVMmEkMp/PkJQE+UIaYzEhn01zc3PD508bnF+e8+PLl7iBy+72Nhe9OYP+gO29LaazKbPJhISiEPg+F9fX5HMp5pMpsqzh+x71ag1rZTObLgCRbEYnmU4yGAyoVcr0e2PuPXhEc27w4w9vyBeyKCIYvsvdOwe3FSA9hTGeoKdkfMei3xtxfnWN63r88me/ZGLMiT246V8zGU14eHcby7ZuMc6NCrIgcdNdEbm3WNViIcfWWh3X8ZFUkXxe5/27KyI/YDLsEfoGrWqG3d19hqMZphnQbq+xXJpoSR3f8wnj2zrdeDJnZViMxnPkVJKEKiGpEvOFwcCdUCznuXt/j+ubG7q9AalUkof3H/D1l5+STqu8efWG7a01iARiP2J7Yw01qdC9uWatVcUxLZrtNQbDIa1yHV3Xubq+QkrchvG0pE4xmyUhidQbDWzbIY5jSsUqjudy0+3y+u0hfgC6nmc4GFCpV8lkMxweHiMmJELXJanIDAcdhDiEMKDRKHN0csT9ew+46lyyMmdMJ1Ourq7J6AViIaZWr9GoN1GSMvOVwb/+23/N8fERZ5fnhB7s7W/y4N4DXr15j7G0mS18stkUri/QrLdZb22xtGwSqkpzbYfz00MGwyHEPqVyme9//JGTs1MUVaHVXKfVaqLKcH7yjl//4jM8NySr57Aci/VmjVY1x3Wny/v5iMl0cQvaIiL0XArlEq1Gnqia40DcxrUd4kTMeNhn3BszHBuICYlquYzSVhmOpiyNJYVClkarSrtZoFBLISo1BN/n7ccTlpaL7UQkRA/bj3j99pBqtcLDh/co5HMYC3hz/Ip0Po+EwnJp8PjhfQbTGZmUTEYVOe10iGMf04qxrBWp1Yxu9xpRlGjUa8iSCJk8xUwORVSp12o8eLiDMZ9xfXHJF59+SiQEnHWPUUWBtFbg9ajPYrHi7t4+ceTjeBAj4ngRs6tLSuUSJ8fnvP9whJBIcP/+XXwvYmgNmQwHdDtdSqUaK3N6u276fIOwGTOdL0iICrOFTVKSEaIQ33PZ2tqgVqsRE7GYzxmOhliWzWpls7O3x2K5IpfPsJe8xbYOhyP29/MggJoS2dlcZ7lYMjMMLq477O3dYTiYUi7myORzyNLtVJfWdZr1NrPFCpBJZ8uICYWzkzOm8ylyUqDeKiOvJP747Xfc3dpnMZ7iLH0atSLHRx/xI4+Px9fks1X++q//GkkSkZMKuWKJubGCMMIxLT52O3z++RNUVWdjc4dmu0kcRWyub7Ox1uCHF88oF0skVRXP9ynXWli2yeimTxhEtNfaFEpl5sacrJ7Btm5zHYVcDlWVGQyHrEyL9vrabSjcWCJLCc7PT8mkUpSKWeIw4v37Y/wA2k2fVqPF5599gmNZLOYzfvf7bzg+PubxkwdYZgBYqIkUQiZEEBJYK4dBf0g+lyWMQ1zH4cmTh9jWisPDcxrNJvlqk3v3t2k2cozH1+iZDPlcns2NW6hc/2bOw4f3aNT2OT2/QdOz1Kolpv0hKT1DuVqCyOXw43ue3H/AcDTm/fkVs8mUycxAFCUSYoK7d2t/yQNo5Go14iim1xuwWg5RExKmscB3VpRLGRwnpJSrsrm2zng2wLJmfPLkIdeXHTQly3AwJJtRCaOYMBJpNSu4lsnhhzPS6TSTkcHS8rh7/y79qxss2yIew/pug1xe4+PhOzbXtpBevn5PJpNhY72NH7u3LHLToXPVIxRj9vZ2cf2IpJrk6vqaSX9CKi0jaQrj8ZLpeILrObx+c4IkJvjqqy+JY4FquYmeXiBIkNazZLM6juMyWzo4bkC92mQxWdDtXFOu14iISKgypUqZaqNJQp7RbNa5uD7BtC3OLy94+vghgiAwnc2RSTAaTFBUmeliRjqV5cXzZ0hJmUw+RS6n8f5oSaGUZdDrIwgiiCqOG2HOu2TyWcxFzGQyJampzBcGC2PGaNyjUiwiiwJqQuK7H37g7OKag50DPpweYdkusqZy7/5d3n/8gJZS2Nnc5b/+49+RSerksllsz0DPJ9HTRRYrm1G/RyatIUkSnV6ffC5NEMXk8nmCKGBto42uK+SzKYajCEVLEok+ogA5XUeQwFjOUVSF3qBHs1GnkNdpNepoqQx6Ko3r2ujVEsPRiHQqRbd/g5pMI8SgJmTy+QI3gwGlfJnGnTpR7KAlE6wMi5mx4I9/+jO5TJbNjRaqqiKKCebzOdPJBGIBwzAoFEvcf/gQVUpweXVFFEcsTYcwjklVCsiKyWI+5+jskGw2y+efPqbV3OL7737ANA3KxSL9/oT1jW3+h7/9V6hySPfmBj2pEXohKS3BV58/RBah0+/x5eefMJ/Pef7iHUvTRpZlklqS5crm+qaPZZvMZgY7WxvUKgW63Q6Rr1Mu5lgZS647PQqlEhtra1iGzdJ0QRAZV8vsH+wwGAypNxpcXV+jZ7OEMXz73QsyGZ1cfkGj1UIUJU5OTm6DhOMxAgq5XJ04jkAUsN34dgJWVP7mb/+W88sLtKREXtfo94YcH50wGfSRZJlcNsvDR/eZjiboSQXfdSGOyZV1FuaSvb0aYmww6gmEvo/rBdx98JRv/vyaWLBYLELiWKDeiAiDkL//u3+iUMzx6OEjfv/7b+hfXxCFMF+skBUVQRSYz0yMnI8Q+Vy+fIukqERxQL1aIvJdGo0GseOTSqr89Gc/5cXbD5j2igcPdnD9NV49P6Ja02muV7i5HvHsH9+gSTLljMtqaWMsbYzFilqljOt4JBIq3d6QIAxYW2uy1m4ydw1ubrpkUznCwCOdTJHLZIkCl3fv3zKdG7fZFy3N2dmtta9WqbFaWiwXNl999QndzhXT2ZBWs8nezhqn5x+R5DS9wRA3cKk26pycdfn0wWO6vSFRAA/v32MyGTKdTUmldeJYQJFkZFnl/PyaUrXBTgC6niYmZnN7nSgOGfUHpDM5HN8jldZ43HxAsVggrevEV1esLJOkpjGaTClXKlSqVS4uLnD+0vLJZrPkinkiIUJLaxzcu4MiCxwdfyCRkHh/eEytUeXNhzcUihWqtQJaOsVnnz+h1x9yddnn66+/ol6v0+/2CEOXbL6A67l0ux327+6hJdNouk61WuXP3/yBcrmCKIucXZyxtp7j8Z37LEZTvn/+AklUkASROwfbVOo1LCfCDzVq1Trr62usrAWe47G7v49prpgMF2xubrJa9jGXNn/7N7/l8uYG11khJUQymSKzmcHjB/dxbZsoCEglU9x0+7e3Wa7Pz3/+E1bmjB+ffUelto4s+XQ7XcIwICFazC7HOK6DKCU4PD4klUrhuw5L9xaTPUTEDzdImR4PHzzl4uqa88sOxWIZczlDIKJQTPLTr58wmc5Zzge0chq1Wo23JxcMhmNkSWJja5MwthETMZIooqd0ZuMptWqZYuHW9pjJ5Yh9h/5NFxIqO7t3CMKQi8tL9LTOvbt3aFQqFAsFcpkcEQKqqlDIZvADD9Oa0bnp0e8v0VSDlemyvX+f6XiI/e7WQrtcGFxcddE0kWatxsnxFXt7u1SrIrZtMRr32N7cIiFCpVTh44dTSps1soUKpm3gOh75XIaFnkZARN9dp1DMctPvMR0bOLbNeDxmfX2NbDYNgk9AQG9wRUxAtVqm3+9xcxkxmy4IQhBaEtIXn33BypgxnYywPYfl6oL7dx7y+LPHpLM6up6h0+lTX98luIlvSUVaDiX26N1c8ejhE0x7RVJTOTz8SK1RJ5/LE/g+79+9JyELHBzc4dXrH3n44D4nhxfM5hYJYYRn2mQzGXJZnUxK5tHjL3n94Yj+8+dkczp37+xgHK7IlQoY8ykv372/NUAtDHpXQ0ajKZ9+dg/LdVmZU+r1Gsdnx9CLMRZz5KTGi7evsU2Tva0d8qUSM2NFt3vFndxdmq013r57zWg4RpU1RtMJw0GHnc11NE0hmdQYTubcv3uHpKQwXxj4gcdw0MHLFJjMlqy6BqPxnJgYIRFhr5aICrx+/5rdjT1y5RKPP3vE4HrIq5ev+XB0SrlUZj6bcO/BXeaTOaJ4xsNH98lkdRzf4eP5EelUmnazjijESJKErCjEcYLI85nNJ2T1FI1qmWZznXw2TxjY+FGIqqqoqkommSSlJfHV29eSqTR/88ufUSrmcJ2Qf/njN0iSQK3SplhQSYgJdD1NNpuiXC7w8cMRs8kIURCJ4wQZXSfwXKIoxifGcUyCwKdavp1QDt++Zz4csrBWEIaYc/v2igmBXueK6WSKnsnx2198TaPR4I9/+B2ylODJ46e0P9/k7dsXLM0FshAS+j5RFPNPv/sDs4XBh4/HxCRotZqMp3MUWf2L5WoDSZL4459/YKPVxHVc5vMViiShZ3VevXtLqVym1Wixu7vFbG6Qz5eYTqZcd27YXFujVq2yudVmtpjieR7lWgU9pTMaDBERubt/hzcvX1CvFYAIx47R9TSjUYet7W2q9TqnZye0Wi1SisjJyQmVYo797R0SscTh0TlPHj3m6ugUYzVjNBqiJaXbQ3CtQbfbQ1ZU2uvrdM5PuDo5gVhAVTXevH6Lns/xy9/8kpevXrFcrDi7uCGIYiq1EouFy+//5e/Z2NhlZ3uXVy/f0e+NaDSrFApZHMdjY2eTvTsHnH58S7FSod5sMx6OCYOIlbHCXp5TLKRpt9fJplVKeorXry+QFGhv1PjJ15/yw/c/EHku47mJmtAo5DIIkkKvNyQha6S0FH4YoskJNC2JYMeMhiPSukYQevSuJthWTOgsiUORvn07BTUaVQRRQteztzVHWWJve4vRaEYhn2N3e43HTx4xGAzxA4+YmHQ6hev6HB7e0GjWSUgyb9+f4b065m//zb8msJZ4xoqffvYUJzSJiSmWqtiuR6/fp1qpkM+VyRfKaCmV7Y01Li8u6I8GJBLQublhNBySTmfwvADP9zm7uMTzffZ3t/nFL77i3ccPyJrET3/+FelUCnO1otGosFotKZcrIIBtm1QqJWbTCZ5lMFut8O2A9tY6wUGIG7qEgYuQkLBtgfp6k/cfP2CaK7J6im73HFVLsrW3yYcPH+j0e/heyPVNh2RS4ydffE4udJEEn1xWYzYbUqsVSSQS1KpVJpMBtWoTRUlxc3V9S3V1fIrlGrodUMgW0NLaLewqn8dcmTTqTebzKX4QUKwUWTkWc8Mipas8efKI16/eks+nGIxuNdIZPU8UwrA/wPUHlCtV2u08QRAym48RExKfff5Lur0Ok8mEtY2NW9xvpUxrbY0PHz9i2zbHR8dIkkS1VGQwGODGIXIyyfM379hot0iIEcV85raJsZqTy6YZ9Pt0OjfomRyOa9ObToktB9/xGXQ6WLZPrdHk2Y/PkWWJXC7L3u42a+02oigTOzHlUh7EmGqlhOOsePfuLevr23j2nNB3IAwRhQgtKdMfdHj14jnpTI5Gs0k6nyWOl0RRiCKJVEolVClFoVigNxxRKsCD+wfcubODMV9wfdXj6OiMfHaN7e0DVOUK23JISBKtSgvHD5HUJNm0yuZaiwQKsQiDwYCtjX0QBDo3XWbDIYqi4kUBZydTgkTM2maDdq3J6ck59VqRYinD6zcvyBVzBK5AIpbodnqkkhof3h6yu7WHHwX8/vf/glTMZfEck52tbS6ur3Fsj8CzuDw/IpGAZqvN/r1P+fb5W6JYZWt7g73dfb774wvW63UIFvz2V18xnc1pNys8vHuXIBKwTYOUlmE46hBv+MxmM/q9Lp67RBEFfNcml8+hKCpxHLMyl4ShRaOWJwpyZLMpzj8eklQ1ytUijuNydnFFMauTUtNoKR1d91ksTU7Pr/ib3/yKWBARhATz2Qw/ihF9ifcfLihkdRQ5yXQ6YTCecdW9XUlEoURClikVsxzs7WJYNv/4j0tEUWZp2BgLk5SikFYTSHKCRw/uYTsWw0GP49MLBPHWU99o1vGxIQ6YryYUSgXW1zdwfJ/JxTFLY8ZyvCKb1Wk2GmjJFHfu7JJKqYjEBKHLdDZhdn1FQpFJKwpaUsWyLY6Pj7hz/4AwDEnrOkIcEVg2ruux3l6nXK6QVFUS0ib98YiUlsZaWMRRiBOu2NjeYjQccX11xu7OLov5jPFoTiGX5d6Du+T1EpfXN+zu7jCZTLAdk6vrLpeXV9SqJfK5PObKxnUchoMeYkLGdWyWqyWWYzMYB7TiNYyVxcVNn1qjSavYwnddojji/YcTTDcmX2kRhSHz+YLrqyumhomuJ/ntX+eJggDHCzk8vqDdbDIaDBhPF5iOhyBJkEhiWw4XV13SehpZchBlgcFwQOCHTCcG3d4URRKoN8r4rke5XEGVU4gIBI6NmsnRqBaIhJjt7SZR5FCpFBAIKJWKPHv1huFoRDFfYHd7m+GoRCqtA6ClVGbTOa4b0m6tgwCVygP8KGQ0mZHJlTg5vWI6MpASCoEfcXp8jqqm+PnPf0ahkKHWqPLi5Tv+03/9Fw72N2k1mvzw43M2NtbY2GwxGQ+YjiaIQD5fQEpqzE2NP37zA7/+zW+RFZXVakCtWmN7Y4uEGrO11cR1LP74zR/QNIXN7U26vSELY0la1+kORkSiyC9/8TXPv53TaDUoFHKIsUivc8Pa+hqF7G33+Mdnr2g3W1QyWf72X/0cJ3CYjeeoRYWfffkZ5xeX9IZLsuksju3wxScHLI0VP7z6QBCGZHNFxpMhrVaTYqnIxZnB+dkV1WoJwphmrU6lWqLTucF2XNLZDDe9IZPhkHKpxLg/pFAss7GxSTKpkdLTzBZj/vztHzk9uqFSLbO53UbWVP7u999jmjG65REEkM82ePLpfXIZlZcf3yFLCucXh0yMMZlcnny+RgKZZr2BIokkZchmkhiLGWdXXcrVOhuaQr/bQYxjdne3GU/m3Fz30JIZZDHm5OicxWRKpVZEUBL4hOxsrlMpFulcu2T0NElZRBJicvkcgZ7i5OSY3qCPQEQCGVXVsBwLNaXQPe2yvbkBosTm5iYQoWgxn+7fQxET/OPf/yOOF/LpFx77Bwd4bnCrprZvD/RLY8n5+QlyQiSVSjE3lngnDul0Bj2loiZlmrUSBztbPBdFPh6dcnDnLnf291BlkV63S4wIUUAhl2XY63Hj+mRzOju7m8wmc1rNW83yzfU19+4d8PThAWIi5Lp3TRBECHGMntRItltcdzvMpmNmkzGiqCAkBFK6Rmttg1Rmi/qygmWa5PM63W6XIIhIJlNICZVf/OLXHB2dMjdmFEoVtIzGeLGgUm2iyQqv3nwgm8twcLCPnBC4vrlhZZjEsYQg3AJvJsMZhh3Sna0wXZfdnS1K1RKVcgZFUchnC0SIXF5eUC5XqNZKaCmVwbBP4Fm4jsd8bqLrE8LIxfdCtnc2MJZTOp0BYgIy+Ryj8RTH9xj0BwxHA1Yrk1K5REpTGY9HIEa0mzUyusrF+UdWpsV4MCaj53j8+D6FQhFRFHA8l4QosFgYWI6BJEOlWsBemvzpT99Sq1a5/+A+0VFAbzhlY32DQI75r2/+CceLWF9r0mrVMB2T8XiEtTQJ3YCYiNXSJqUVCH2B2dxgtTAJ3Zhyvcrmzi6LhcHHkwvu33+M8P/6j//3+PzshqvLY1JpFS2ZJkHMaDpjZ3+HdFqjVK6RK9e4vrzh/Ydn3N3fJ/YUFDHGspecnl0QRhF37t4lm0uTK5QZDSaYqxVuYDObzUlqt79sRZGwTAdFTt/KMfp9BpMh+UKGeqNCFAkkRAlZEqiWypx1exxdnxN4MQliNpo1OtcdJFEmm80zmQ9wXJ+vvnjI5U2Xq+sBmiYjpUV0JUO10qBWqVLOZEgIEn4U882Pf6KU09lu7eAKCeLQw5zNObnqUK6UeHx3H8fxmY4n5LMZer0+vdmIdrtFqVzh+Ogcy3YRlJjlcs6vfvVL/tf/9r9CEDJbrkinJB7s3CFCIYwF5Ah822dnexcvCHFsm8l8ymq14s7+HhBxePgRJw4plMsk0wrX15f4dsT+9jbJtIogyRQyBVbzOSlZZjY3ECQB13XRkhqiKFJv1LEsh+XKvpWLBD5JTaNSyBMrCpZp0qzUUeQkhrlAlUVc20fP5PB8m+l0gqKo9PsjptMpO9ub2JZJ57pHOq3jhRGiJGNZJoVSAWO1YjSe8bOvf0Hn+gpNV2jUm7x+9Y5ut8vebpNcvsJwOGF3e4/nL17iBw6bG1usTPM2WX1xRjGfQVOT9AYjBGA+neIEAYgK150ujhtgrkxUNcFnnz5hMZ8znS2xLJuHDx+gqRr/8Lt/ZmenTbNRpN8d4Fg+oiyRzaZ4fP8O+WyGfKHAaDIhn81zdnaJLCtks0lSaZ2rzpibmz65TJZGo4SeSzOdGySTaYbDIaHvsbnRJp1OgxDjeS6dbpdMPs/Kdrl3cI/ZYEy330cWIpKKwmA8pFopkc9pDEcThuMF/f4Yy7LRUgrJVBJZTjCbzUgnk2w0aoSBQ7aQJxaSHJ5eEUdgWx7lahlBAE1N0KjmCMKAq6sulukTx7d9dCcI0TSNSqmEsTA4u7xke6vNT7/6jLOTExw/wPUj9FSOfr/Hk8f3cCyTdKbAP/7uG/a2NzjY38J0TGzPISFKZPU0vudTq9U5Oj5nPlngRCGK6OPYIT++/ojrB2TzOqa95MnDR/heyO//+Y8U8nl2dja5c7DNcmFg2hYnp6cEfky1WqbZavLh4zGyLCMS88mnT0jJAoIQka+V+f7ZM0RfZnNjDyERIakC6VSWfKGA7SwY9oekUzmq5TKEDh8/HjIYjFEyOnoqRa/X596D+9w7uEOv08VcGiBEFIsFev0+hUKJ2cIgJsb3PBzHpVwuIakKtVqTd28+MB5N0ZIpSpUyqZTCyel7So0qC9vkqyePIYyYjqe3YjESVKplKtUK7z9+pNvrkUgkqFdL5PQ8SjKN6SyJIo+EpDLojEhqOs1WA8ua8+bwHY8fPuLV81cIsUguXySd0clnM7eHtVyeTqfLfLYgn8syGA3J6jlmiwUxEqa5Il/QURUZy11hmrcI6tFgQiFfIZPXKZfyTAd91tfWuLq5YTI1ePzkMdVKhUF/wHR6u9YgFoCIs9OPZHT9dq2VzTAajbnpDemP59y/f590Ks3L56/pDsbk8yU+eXL/doi4uUFWZfKFPD/56qfYlsVkPEYUREzTxHIcNtY3iaKIOI44Oj3Hti0atRJvP7wnIMEvf/ErFtMR3d7t6kBPKriWSRyJ1GsNlkuDMIrY39ul1x9gmjbGYsHFxTV+FHJwb5+ECNZqSa1cR1FUmu06YRjQ6w3QUikuLy9xTYedvT1KtQKdzjmrucve/h6maTCfzVBUGcM0WBkOrVYT27G5vugwmSyw3VuTZzFfIF8o4foOnmOxubFOoaTxd3//O9JqFtd1EKUkj58+JvRtDj+esL7RYjyaMBj3KZULxGFM5Isc7O4yGHZwHYetrS2CSERNpggDkz9//yOZfBXPdcjldSbz2wxfq95gc71JPp/l5uqGhWFRr9eRZYmb6w7O0kFKShzc2WLY7ZNIpimXq0hv3p/S2tih//w1d0tlggAs22B3cw0BlWcvD2nVhvjBC8IoRktmGM8MPn3yKWcn18xMn/nKJvQDXr/7SKVc4CdfNyiUK/THfQbDGwq5Eq7vsTAX7NV2yBUUzs76HJ++4cFBG8vLsDRdgu6cbEpja6PFeDphOJkRRSIJRCq1PL2ba246XVaGg23PbnniuQysDD4cHzGeLkjraULh1poXqB6qpJDPJ7nurBAEkfliBIRMViZla0Ucxoxtg3wyjROENFsNPh5doKdVmrUyqiSwcnSMwMbxLWbTMaossTSWLJcLTMdiMpngBTGe62B7HklVwHctqiWdhKSSiGQM2abb75PJl7jqD6iUi8iKQhgGTKYjatUK89WSz5484P3ZR7Skwn6zhR9FBEFEVlXQRFByKRzHYWO9xcezS1zPp9FqM+0PcE0LRZKoFXRmiYh8qcLcMKjWKiiqwniR5HrQJa2kiYKQqWtRqlUYDfr0ugNWqxWtVo1SIYPrWQwnQwbDCbPJktTCYnt7B1FJMJosKIkJFEkmqaWoVkqsNUu8//gOz1lx9+4+m5tNMpksM2PJ558+ZdQf0mpUGM+nTBdTqqUyX375NVIyD5FPqZDGiWJOjy9ZOQIZPY3v+0RRSD6XQpEhCgPOzk+p1+s8uLtHLp8ipUv85le/BRFOjz9yfdNBT+mstVp0+mPiUGA4npJQZMSlRb8/xV76JJMplGQK37P58fAtB/v7tBtVttY3mK8sRos5B/v7aEmZxw/u8/7DGzKZBK9ePUdVVTw/oFrNoyoxjhdQzCaYD0z2tlskEwLL+ZRKcYvX7z7QvQkxVw4TY0Eum8NzTK4ub0jrebwwwHUcvvziCcfXHZSESBlYLl1M81Y41W5kWV9rcnp5Q6c75OrqBk1NkkqqLJc2iixTLOQxHQtN1yAK6A0Gt9Wr/oA//fEbMlqSVFojiHwCZ8Vavc7GWptvv/+RXCHPr3/+ExbzGYomczkykSSJVl5nOl9iWQ6qLPOvfvk1f/rTd6SLJd4fnVGspvj6yzTf/vAS1wuRlSRxHLG21mR9o4GWzHB13YE4JKVpJBIJivkSYXCbGE+qEvValZvugFIxh+dZtMsF3h2d8u7oNvg1GY0xDIe1dp27D+5QrpXZ3izz4sWIva11lvMFq0mPZy9ek8uUePxoHyEh8u7DDblMDomAD+9fIstJipUCHw9PMVa3NVrXD8kWU4hhQBinME2LOAxRkiopPcO/+ld/Ra/To1ytYVoG337/Hf3JFC8RUSzlODk+ZmWsqNYqnJ7f3Mp7cjl6gx4ra0UylcB3YxzbZq3VxrJcjNkcQRJQlBhZTqIm06yvNVhOVdbXNggCn6vMrRVze2eHYlbn6PCQY8vCD3ySqsr29jbpVBpJSqDKSXa3N1jZHn4UIgoxlrnC7lmIgkKxUMY3Q5KqhGktMU0D2/Rwoy6VUg1jGXJ2co7vhdTqVf7xn/9ANlfgF19/wvHxOecXN4iCAEKESIznBUjJJLEo0h0NKOdLVKtNNna2sV2fzd01Dg/f38pzBJGn+U+4uLiiUauQSqqYy9sOu+PZTCZd6rUyne6A65trWu0Gpj3DdFZU6zUCx0BMRMhJmXahiozP7//pHWoqQ6FQwPFsgshnOu2z3qqAkODl6/fkKxVkWaHdanNzfYVpepzYXdqNGtJoyGq1YDJesL9/QKveYDCcIiZEPHfFylqxWNkYxpL5bIa5shBimK1W2PaSIAhYGgZiLGKaNsVSCdsLWDoRn929w2R4w3jYZ7GaUqndGhvz2TJ5Pc33z1+SVBMsLB/HtTk7O0eRNU6OrpiN5khiAsMwGff7aKkkS8vCD2ISSKhaimwlyfb2HnsHe9imwflFhzv7B7ieh2V69PoT0ukUW+vrjEZTarUaluNx78E+0/EKLwywTJuT8wHFcoX53OJ/A/WaUuicqOkkAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 176,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Image.fromarray(annotated_frame_with_mask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Image Inpainting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 177,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_mask = masks[0][0].cpu().numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 178,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_source_pil = Image.fromarray(image_source)\n",
+ "annotated_frame_pil = Image.fromarray(annotated_frame)\n",
+ "image_mask_pil = Image.fromarray(image_mask)\n",
+ "annotated_frame_with_mask_pil = Image.fromarray(annotated_frame_with_mask)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 179,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIAAQAAAADcA+lXAAAD0klEQVR4nO2bTXLUMBBG2zOpyiyoipdZUGQOQlVcnCScBB2BI3ATdBQvOIDZDVQYs4jl2JLlVquVmAzf22QsS0+fjH9lQwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADK560e6qhc03A1/H56Lbs7U933fTqt96eeEoj6gW1ttxjXV8OccKH/WU0F05Y5izBIYb+Vh/BUXJJIpuNo8gVqw83/lB0lsabUCdYJ28wTFBdVrJGinC12GQJ0AAo/TFgmsSHC1XisrAQQXIWiKJjhE15TalfO5aEGzeYLtBXbzBC8sMKUTxA/XRIE6gRjjLd+Ez0yz9XfRtS83BObZ0bCC39oE8XuSREEqUUGnFXybLT3IBalEBUYr0CZInoOICbzpACMWJDMIar/8USgISN2TSw3hg1bwWSswQXnHNbxup4KQlhMc6nUBy9DeCY65HicwfrnlGrouB0HDVA86GFtkbwOnLLQnmvVKC4wzELkJPgkF1i8YHzRzp4FuhYLOLzgKBQvnl04kiJMvaKcCy9WOn2N3U1uccNbYHQzbbQN37SuUoNMKanlDt1ljQ2hkCViC24UfnODIGNu5gKsecnY9xxLU88XKXz+OKSbgHmEsJ2AxjCB5cm27g8m+dIJkcakERitQJ1ALzOsnaLUCLsHClUQm2P554Wtatfgaw/V8XBf84dpzCfxtGD9BRQTJ23AQNH5x5y2HJ2nXJJKgFSawfrFfUDOCAMP27LqIbAOfo1/QuCaFjka7XonH/z4huJ8IKvTz4319Jm6pQt/byRCCqz89feNwH3wJMeE4+b1f6KBzxSciqpYrjAmWOBB9JKKn44j7t7pe6OA8TlJGKnAJqnHw7eQJKSRhR3q/PJU2HKAVEdH1+uFf7ZfO0b8OqQnIvFuzJyRYRpBglTKC/Jn1f2YI/7mAiNzbhTMR0X2XZB9ONBOBlXX5LHCdCAUe+6UPzbgE7WSxyhBwj77JDAJpAv7hW5ZA3r8nUCeAYCOBu9q94SFAUF4Q3qsKBfmnlLwhTAKXGkI+210XPMEFbIM3J9gt/nzNBBAUEFw9f6WSmUD9Lc5pfMx6qxvxEgWKm+XINJA0gdjQeQIpk8f9MttAQ6H3C8lz+dEEEMhpx9m1PEGtThAIrFEK1AnESL9DYRM0OkFGjEc3hrwhHO08gQa3H2gF6gTN5gmsrFXjC5LfbzqMnyCfjQTfveX96U4muKX5K4e9/PXAHrM4pQX5/6fskq4LEEBQQqA4mv6VIWwgmN8rP4ovrt71OOPCMrIjIjorBAAAAC6Kv+7/oRx3VAPBAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 179,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "image_mask_pil"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# resize for inpaint\n",
+ "image_source_for_inpaint = image_source_pil.resize((512, 512))\n",
+ "image_mask_for_inpaint = image_mask_pil.resize((512, 512))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 50/50 [00:02<00:00, 17.54it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "prompt = \"A sofa, high quality, detailed, cyberpunk, futuristic, with a lot of details, and a lot of colors.\"\n",
+ "#image and mask_image should be PIL images.\n",
+ "#The mask structure is white for inpainting and black for keeping as is\n",
+ "image_inpainting = pipe(prompt=prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 183,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image_inpainting = image_inpainting.resize((image_source_pil.size[0], image_source_pil.size[1]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4nMz9XZolOY4lCB6AFFVzz6z+ev876SXMw+xleior3FSvEGce8ENQVM3dIzKrJyUzzK/eK0IhQeDgl6T8X/+v/zd5Ge0aKhDoWEZbXPcLWCAwBoFrDJKLS6BT59vb2zXnUNExBDDaGMPAtdYyu+9FAISoqurbnHGzCCBjqABmJioQgFAVAID4h6FDABH4v35JfQIBkGD8QYHkD2y3fHsRqHbqEwl4VwgRgPwbzwtA+foykeiHYP8b75J9txzf+gPt56NLyNcQgPijzM7IHnY1tt+6u9r+/TKMo/+NPpBO0/0oSH/soOb3ZGrfOVVFEMzhn4Skd13awzk+f0KCCjkvx+2/7sW314OR/qlnH+8iKSK/6sBjBr5vonXr1+/8JTf+U9eDBR4/fXv9qk/M5uTLN/81F0Ou2WWpdyunjjyG9Zja+J54/tS6+kXYD3xIcUy27V3cktsf5Je+tGdOov1q7AEUfwZC+4100CL9ndy3OHNGOyQhmmJkojSqmk3INcYYC7ZMdGKRNDODYC0DqUNEFIp1r/W6hw6Zc0wVcMwxhnAZBMsWVAmse4mAZjSqYASqB8aJUAQkCaMJyTEGCVHhMgNUhOZkUog4GATMBe1iXkSEpDiCPGfs+0sSeBHs5SR0Kd6QJBKqoKC2tYDOVf1naV9IdtRZJ35pvEKhcEMcnq1I0czbQI4+GvH2E4MdRB1No281BmQnWEoDR58a9Dy1Q0iOPIbJkEzKr2Dru6/3zcWqMYMxua0/PtitEWqCyCL9VxT680vKdMBmpH/2knxpMAoPpvplo6VqugpGawddO8pjXh6q7kCwDgZ/jsDyXfeKm77KzZ83RdmMsRX1tkx6p/6y4S+jEdmWh3PLxhCkwYD6IeelJKzx5ZbTeIV3nDkB0t/FYO1EgjbfTy0u0tve30Wr3+LQ9+LymDZ5/Df+8FEXujAMsISp+C5hLUXsYCKaOq4IaFCAEBXoWuv1upeRgKqMKTpEhkKFAI12r3XfMAKiQ1XFlpmZQKr3pNla615OTFqyNISgiIS9D5CkGUknGYUEzYwACRL+m20V6AjvmAPSJ/GkZcHFt2zeuFySZRJz6D2K/8Q3GzmBei3p0Fev8M/x//wWz0tjEGhc0TSW5O/l1NRNksP2tz9VkbiCRGiI9qITwcHGrEBird93UOp4Q1BqjxZ0XfPNs4cO/qsriN1NHPFvnYbR6a3+ggJ+Z9KZx8v+VO/Hg3VvyMp/jWXNg+DV3e84ke3fk07Mr9jmkF/+H39noH/z1s6L7U5Kk5E/uSQBl5sRyIO3ftWFX42r38ywgJ58DZyyeXTom68l5BRS/JYfuAeZlGcTqwd9+P1gvlLqePY/5b0FsldraSuFaGwL6bBGC+lYQ0qdWA2KAAqxIZgGrJsiIkNVt25kqA8ZQwG57/u+l6heomvZnNAxjKRBNO5fxrWWkaC5bQ4RgkMHQuLNJU9UALVAXfWfSBtjioi6obdDIhJwXSZ7mUt73Dg06XdkT1/podGlUK3gNsn6+LD1hSu1+vr0TNJC6VOZyoc5sB7M2D1EuDMBvS28IBQAVlzae8pS+JstaDn1u0tyvOlwSKS6X0TohnZDM+at25dCkwPanwYzon9OrkNndB1V5i8DrKOz208QhOsQ9/PP3rq7WR+Dxn8ew/m282GMRPe2XfGV4/4m/u4/+Is/v+vG19//mTYO3ubxb4Jlu43nh63bJJzvZqmBMMHfUCC/vjKksdsHhDTgcCLT5z0H7BYxM3yEEG4pBzrRpAbE5sgms23vvyHrtiA3QjoRTjIncKWf0nXAjirIcw6+0qEUU1H4G6YpohlS3aWEsn5K7G8kBgRiInOZkYvEKJOWUFJFr7d3uSBD7vv2kI2SRnvT6xpzzqEqqipCW6YyTJbb8poyPURUh4jQ6P6ECAFFwJO42RdBJ8JkCSCiIiDNQ0E1JiZAht9hPqiEnK0wvpFnhsLfvgT+TOgfIn3eGFPONgvBpl9VQE1uh9otNc+J30YK4DhXmrgkdA8S/JZ5NreSLDEoRfHl1tJ/qcaaiORNFh1JLZgqqnjp4a4d9MLZWGK3bBo2XNlu/NfBbYEU2d4Pk3Sb5n9xFenT+5dHJ767ojedhnuov9RA30Iw//TXv7z+taceLTzAfWv4NiupsON6jLBm+nzqKxF/gXC/uLo0iyjTzcB22kSkWQzZy8LUsrBSYTOth0LUPYgmtDmciOyh2BR7gDjG7Ey4x1cWS4YoyrIqJkXZb08Gf9Dti5rvE9W+SoUnssV9vzwzAYL0IJihMpK0SWM+QDLMd1GRITqGP2tGyMvMhMJl+i46dIyhIqKiIGGAwagyDAwIB4yY3hUVo4mIK3MjCaoOkrctfzMAGEUMBm8ZAFHqpJle+Y0krj9I1f4oUEhrQtoPv+TMv8SQShvEy07eOiwKR8lmr+Zv36DNs0Pl+PTp98bEx7+bJLDjf8erslNl7DxYj/2/J6ZF5LHxbQ0Zzcg4xlUkOUUGCf2y7bcM+KPNy3fB1eb254fK/ZfI/XPXtgilf/nd9T2P+KOHev9ne3Ag2P9j1xdkeQ6wDI1vKfstj0az4bs/bvzPKCw2XtodJ5L59hvOhJRb5mWexL+lFdpoopkyZMI2RePKPsnMT2G/njmJ702BR7XIyd0No74Z/J9fSYfQdIEVztjVp+RxARnx+Ppa5xxKgS3zMdMIoQ5VGUMHVMzWnlJVVRWBqmgkFCIssSJGdAHhWUso0e19RMYlFdWyZUYRFdDVQ7kDMgYSLxi0RkCHs4IP3b2BDRnfIXpqO580JBozOTfN7e3NCZ5uXbVTl9lOskta6mW6HlN8SAELxJEg9JjQc2rr6X1/aTxprLPDII2vwjIPFM/XEc1g/yJf2WAwTJOWIPEWGG+I4Z9l2UYB8zElDBKz0T0ciJLk3gFBj9WWWeUN50zpoa+2CPZR/OqqMEcWkhzXg5G+a6k08nfPf/vCx138sx9/eed//uKf/lnfSGONr3/u6+z3r8yPf6p757sqptJw+LvYuotMgE6xS0pmGeeF4MiGxAPkwghcF8rIvqP0nL9JMn5ItIiAnIV7hy307HAIxB7Mv2wDCLb3Q4G2yihCpGpFuKnhlwKcJFRUps6hJCBrjKE6ho739+u+7QUqDB4Uut7mdakOFYWrCzMjzZaZkSQXU42KyhwDEhU+EIgCkU7lotFMRDFI9wAEFCzjUAFhoUUAghUManSSUu1P8m08C7RqEfCNI/7LOS8OYS2l2ed831a1K8B2GP9KihvHdCXROtP+PGogsPvc2buAtfC6DeSwa+X8M16X9kI18b3Bp13idt6F9Ux+2P+2n7JnIk09VsgoFa2r97QWBLDKtWeoR/ztO2K7Dc1KB3SJw5fPj3GhjLXjjv5En/5fX7KduT0pX9/65Ztvyf2rvvb+/W+9vpLuyRDf96FKU/pdv9QareHnDfL4NyYqJIxHxme30I0f6cEe57fsyWbflK/8QdKfF+5YRaNF8HaLxgfwy+bNbLLLZu/gtoQ202SvTiL9CdXOiyVeJABFwiaz1iHvY3QtLVZ/dt6v++1tigu6sZyf6214OzoUL4AIp2AMUa8CNILmsRsRgQ4Vg1xz2jIRzDHHmN7abWsMNQQYL9paZrQ5RECzrCkSURVC1rohQ6GUtBtBQDR0tSc9vs01yaZM++9BhuSBB5t2n7Ld055PfitUqp/Y7ufmy3ioLHBn3q2gq6gxK5of1cZsLlTdzHZ/G/WREGhpBrZkWu+jeL6ujWyT6sGKbTw8f4uelYKp1z5lX3ZeLl/mErcxmOfUsXq7w7RSzePMrvUH64PgOwZJodlTXtdDbf19tJUauTzeeoj9GRzow/xLNfC/G/d/9aLqXv/+/LN4OWe+J/T/QhMe0vnLLu2yAU8FV354T3gGC5JROttsrv0qzuVlR1aBUcYQs3/2viU9AAAq2gRuF5gmLxyEaDJYwpKifNCgidJfX9IgQ1KumY0fmsWHFGWvAkBIzjnHHCPvo9Fg+PF+jTEE0DnX/blsAR7YFxHRMaKaxcypsLjgmV6JYsEhMuYYqiTXWjRfdrDC/L+XpVo1s7UWwSEKQkQBIWCLolhCIXyJmieTKUyVntq9IkWNLGjj31PUwDnvTwN4Z2XapD8UcXFRRWTC2cnBJLR1BEj0jkqe6kzv24Mzaz67ivvyqTNKi0Um4D6ak6yEkw2dFbdp7XW1GF3NoJ0bB/354PjQNC3+08iffeJBx4D+zNXFi76Djixe20Zhahmfesl7+kz/coXCbvh5wzPNgAyd/Y2allQp3+ubJ248O/N3RP1v3vZfez0m7BdovX9sZsDX/j4a+CcGVBxUuUrimGE+Pm1dQBGvONFvXstkzywqs0x57Qh6s2NaA8kTW+HtnpYKaB17FBc6u+CbMod//toB1NIkMRWlCZ5UqvylAPOa0+sy9wobJ0uq0Nfr9ni32/2q6rK41hIuRIQpouD3fXvVkY4JeoTIvEkzI4XAutdtN4yiamp+m2qgetYR+QrkKIWPWtNKIZZJm/YhHtLVYOXBHZk5pVBzqGjx/y9Sur2oIk38txTKlvxuAR0z2728rAWt8HlTHz5jspnoG1nKUMmeUILC0y3ut4fPvIOZOTAgE1los48k7daVjoPxh31RRin/T4MpMDqbbKSTen8NLuNUz4rKwuXH2KQT53CdThx6fP6lwPHhgeQr/hL9sang7RQkMCSzKgd/WYj1dXj/3a6v6N9SZQ+75TQF4kt8GV+fnP3s8co9JXsCvyr3pHYyg0tmdk1Et+GTvwf3MCcooKR9gVqdV++IWZJwEeIFnldtRQVedMoK+SYcNR9dgmX7HX/3+la3hjbrK9xykWyz2JKYEh2HTFHYCr8n4UvM7HW/5pz3vV6vRZqo0AAFYALQlqioqIEe/jfBsggKzTHDNjYTwsx0qNuRa9myZYxiYV9yjFjt615YJYqNRohCcoYIgioijLg00uFu+Z2DzdIsecDxk2+lWHaLKjNclu5mviJzSkZSkzv4TBuzDIj9Hu67mgJrlsVW4ke8kT3u3xyOetduv0odMnuS7JFtiTQlxhp86qBGE3n8vYMmXf7yBd/bMruQu75xKmYrfKbxv6LkNqYOkPfCgZiLdsv5WNeffylkT/YRnGP9m9eGiv7l13BZ7/J/gSn4//j1JeL/5fe/S72vOp7Hx+es/rqVcMl3r9Li6pOZmj5tn6+VywAIQyVXm5XHFChUdsoBhg1X4/s2/CxirIxhJRNO407+Lps+vzntJjGWBG9wS2koRQaZy6giBpDmlr6oGk0Ma9m9ltEyCCCO5mYmAl+0BYNncMOXNypUM1gvIoZa4stFs1gDLMg6jwIkLzAq2oTuEoi3JiCh2CIfaB1f7DB3/Vey7R2eRJYmBZkOehb07xmTMwadJkiVl0VeG9Umt3fSxIPlvf5SJBhBHJ+jzIEmoFfNOyhfW0j7BfuRFtosq+SrPDZGxH6+hsP+Q97b0umhmEpIGp2zVzmKPc58KtwKkSOAx/Pu/VQzwJIg3Qz7l5D6VM//+asKbRupYzQK2lnuel6t2vbo2H9zxZCFxRRRgBnE+5d7/Y0NtU2kv0uPJ6NXmLzKoLuR020KRAi6w/JhEJ3WiyNsCkyVBJ/z7+5GdyzI3vI5oqd99c9dErbj9jfTYI0XhoXZbNn5et1z6LLKrqgAQhGB2fJVA2tZJlm8RoYQoWEJXT8Yba3l0XwdEnX8Y0Dgi399pwdbtszcygeho5LS4thWRNA0VGv1ZyJa5EENVGh5LY8a/1SJwgbo/v336jNehrOVVOzY0MuCRjmJK/mfAvGkuTfuKqPyL/XqpltS1TQw2PGnnQf7aq/EdGuzUwJdtxPBfWO9rHegrRLw0Voflk9A13Stzz6m7ZlssSpV0WkailA2TESgL8D/iZOCTaX4JtVhydxp/Zwg8SeA8e1PqYP+eQjj5qHqyf7cgSEnFzhLVv5Gn/8bXa24DkA3eVNF/6fgDF0lFmjtz7+65PFvQoT1BqO5ry2VnLYvzrLuUCKBBmcXk10ZZl8axvGT9SE83/00gn41xF//FIk6AoDlov0UtFwDVGs1CIhMgy3ivhdpQweGYMBgXABkLVtrrbV0QEQJeip4rQWIiBp5G+/7Xmvd67a1IEMD7mgmy4wWZqtrCAhUZF5X+FDuEagyXBVAgCr3USBXCTju++D854etXVWECaFf6CQ5TV/oeWpK/4+7IBunth3q5nB6iAmjadmKZKAIjm6tBD8DHq0rsl+G9qWwgSqqEZ4sUPupVa506xum91A9LTYBEsqJ3fyWjg2pFbsoW6fcGAkDp+vVLxmZ9LlkUzUlIqhXBtUxTcenh9yn5qkA6lGI+f+3a5dmVQQ8w80tzyIeP8yHIn/zZUeB/PW/8dXy3i2fhSjTeOZy/l6LCMaVjFic5k4Hv7+hpDfH7CAqGsvtew7eYjPY68ayntJgC/PyiOllbZKEgbO1R/q6PSR/6h+p//75KL9VgoUMZfCK571bAg9budSzEwDMt10gaYLhJfn3ugHxRboQ6Jge0hERpNGvQwVidt++DsCoOvw2EPdta91e3znGqNJPEDonwsj0xLLjOSQDR+prieN1McSEaQoUoJGqseAjo1sC/wFW046cr5z1nMgv11ESg8SyI0zfwEq6fZJ5oG0TyY5TJeGl/rMZ5ZjC7Z0BuZii15sGARoqShLRv4iuMYIxpbAOQ600yGG8tR87b31xcba+Atqrs8QoFFuzc701t0d8xXrKG+vmg6opj7+CkNL2IAAFLIxoS5cX8p+xPQOp/17298uzO40Uf2+hz2WHUoSqtNN/a5z/k+tIZyRL+C/19T81EY8EEI+oxT8/IY2u0oC3+PNLfjQ2GG4GE9sYBGVwgKdkbVWIHmWSQnl26ZbwSMK+bA/jEST4pY77ogZyLPnKHu+qcIUzo+R7iCkiZjSaQ/cyU4OqePnObet1346wHqMnbRlhJlDH39vW5+uTZiCuOb1Y1EiYnw5gYwxA1m33ugHEOjICQovAaBSYuj5Vz6mLyKG06XaTphqgxBqEoFlftcodS9i0STRsc7NxOaZ/8+sBfBuv6DNP2Vi/a8J2PaTs7zbgP9T2+Z7nz3yE+52xChWZfuq2G/KH/FfLtjlGVTZ6sz929P4Mi+5utieT954h77O56iEb0pd1lWQle7lIr+/LRIs81cA24oLXtcnoht4vhSiPqwb6bJ7/CtK0K5fBM7AjXhKil8aC37gNtz24/+7K4OCllIsW3nqM5e/T8vuxZ/Tyq8X7eOQvSBcVN6xJ2YITg8FW2C3SCwC5G81jdM5Derbw7Xi/ixW4kRO+U+iUr9L3J9fjXpblk8PwpmWXYtRTUnI31zJ6gJ6gmV5qEFAo+nq9IDJkiOpaS0RELltUROKOXGb0PYKAgYFlFNVFv0MCoCG32bLlvVCNNMv9uueYHvxBWsTC5VvBEYSMrWgDw5VHMH7jE1MzF0oFfgCx01ACnCCtMNmAhD3fZ0hjTy4jnJMGwF79FL3dz7DtL1q2A08Ns3FT9ovKfuzh1GdH4r6DFZrt9AiMlU48QXprwhpQtVp9ac8/yhPK3EgQFUc0pE5ur0tAx1a5Sb2doMMmBfNunOhfw5I2EIY1A0kbYK+2Pij0VO1b5PH1JWcJx9+7xLsgmhzUBU+Sydv9kT9lek/fJfj/G18hf2HgIPe6/ZfzmE/k2yp+v7KHKf8uVMpTdrakn5U91TgFZT9Iau/eiypDb6/wlqz1Lz+QZ9GC7EaN5mFuhCnFPsbHSHvwZrNKGbQSYFkjKjzIB/nU1MT0rK4tA8Xtd0RMyAA/JUZImtky07Uoy6gKMUB5L6/riSVgEpwgoqo0lyIxo+EmyqjnWuZ1SiTMLJaADQwVX2cMEYkcrzNVGXSJqy2SwP1FH378WsnMlmMuuGQBbupfn4uq6an37Wcli0bNK+Kb5bxr5TcQRhzQx+QtdT+5v6v4qzSOfG8SfBGVMsak+TeHofb1SW4wRuvrpnH1rKuaLo2PPoQJEl1mvkOObgi6pbNfWupR9sIFgNQvHsBz/EePtmqIiNym3yExqcK/bS756J+Ese3Jb4NvY0oMv/NbTHA65P8abP4/dW1cLxeu0y3d0cP2wIGvv7oOo2TXYdf3W5W2Vhqt454uQIfNi92lZAz/RjYb1hdddH1eehQX6fL2noC1rEC+oHd08Zz3TSGNoqPNKN8JbiX6drTwEMpWBfnQmP50/He/xn0AqMpEiK5JLJaLNdbLlpklgIYFTpKiEFnEoN1Gu20t83gWCRjHCAs+exjzF8E1hZGCWN9LLIroEBWIiIqqqKgHyKpW3uNEGpMEgFDRDU+y6/CZvn8YYdw86D8zQ647uhSFRU/zcGvdXCzljOHFsj1DK4BvhN+tAkFrL5CIOUF7ihoAVwoidXyo7VJ2bQHLtiSOlyUKV1uyVeFTZluUs0yEnfZKqhWz/8Iq6b8EnHOnOU47OvuUuX9G/Q8yC5oTsoclrGaP93ec7l0ud/qJOI1ou89Hozt3/09dTcNEYcKmn+SwT3YIGIri6urhn5yw9l93/S090256TAr7PThp+svrL35+UnwDfzLIkTCT46aM7WfRBL7B4LJIxB3xbV70IQoc7bT1160SN9JlUwGZPeiyJc8X7g9Pd51uBKb3maH6I5uMxvUFMs1HDH3kjGRJmAoxnAK6S1KQ5qsjIGaEW3yJF81sqahX9JgtgaBV5zPqZJVcZjBkXX8ZVRqkpsUyYAFkiFhsFJFBclaASqHZropo7D0GzdE3f6lhIesvyVgDSoa3DuguY/wZNBXLtMGpcJ/QvDGheKYXbJxSQdluClq/2xUz+m14OhQI2z1pUac7mgr+O6xo3czOtQBt7+fjtc8PpUUgSFWa4B49se8aa9pWOjt3TqxiCCAsG5WKlzXbvB6JTMCzu9wf963bwMmxd4j/UyJUJKjEjt8S+fFQSWoFAZ6PfJnpSEalUH/zyP/O6+8jdpoiocebAdue7hDKZwvtpj9/4TEnraWep5E0oJyF6sYK1ydzitO8LwwqFmLNs6QO3nGVsjW2kskZbS5pbn7b+tVBI/VkRrH7eM5hyvmdHDZNS/C1SgFpt+bHHXwOAQqq8SBkoUPvNgBM+goABUEjjCDtXmvZonGoSB7g5ehpy0AsM6oyMsKuFcSXg/iWEcsrPgE/Df5eL3+tihKxc6gIgSGKoTK87kcVAqOnIaKUuImWIkE2v2wlFMUh+IrCAkJFzAx+5vAW7i/wd1CoMCH/2FEdn2FpD+/YDyqX/1U2sG89X9dtnLB5EtPKhsHuWI+1buZM5Z8a8fni764jDwuUzthi0JDqYYp3FVfOsXm9T+9cJ2jTEvStWiQW1GVYTopKso2a42rKxZmj4Xeb9K9SsPljF4H4X23EPpo/I96Rv/2nLPcTT0KvVhHE32/nX77k5KS/us07uNntqIWrW3/d3F/rmzYzpyDstBEqRijt62A5JvSFVH47HTXkHhAvmjuoiwvu1wIC6VZR//75hd+T5hEPIUhO2yW/Yb/vLiWxtu+8t8ht7wrke2JWV3jynOPmhVR0gOAMeSOWmUyv2Rcv6oQBQ0QVUB0CxGYPsmTZmnOKyKJJBv0dKhzM77XWunUMSNJcotjZVxYD8MW/Y4w5Z2aDQYiompknUjWdj/DsNMIFe1JdAFka8tC2SWg3BhkHDG07XTZMI1n7YJiG/kVeSFoAG5T5eIz9M4/5f7LRg4dKmIIxq6XTmj/CTdg8sbXhhpm/uir4UvoLPDjmmw5WlTMOiyRvcTXg0x5fVuMhXn7idM5sxF95tPD43N7ydVxyVo3K865UCg/ZbE7h7uZBv+2ln43neL515v782rCQwb3dxd7dv9dY4eZptjTl+Lz/+7lNftmYVXYFgAqPF4PsHvILeTZHtdv/QvW0O0NDd/Q8Qu8sZkpLPx5uixkzqQpsMwL8OmWPStA4FWAPQ+qpc5SOKTvC/nXyGvhijypfJ3t2qjapgI3YGN1mJKs5kTy078vwxk4bbthpMCEgm58sU0UhXFxmhiUqCzocfMW3eBYdOlTVbC0SyB1Qu5EoUbcPYI4hENgdAzdgelmkkGY3a9iqIqo65tApqgIhjVQP3kdJgW1xcVER2aidTEGinPAdLWEnQUXTYg6O0FHJjewXbeaQxKwifLbb+OQUvX5JlmbVG74kGeX8M77sooMkwS5y2mPsglWe5N8NKHeu3cP5+i/O+0omczxf35Yd6e2eIxGIxK4lpQ2On9vtbbrYpuhb9WlF7pL15wgOBJBGrs5secNzaDtL3Z76m3h9NoRzkIl8Z2e/oucXGN3s2L7rOjTaR6WR/IudIPSIbNhbCZv+kx/z+2fDLHMcx41/xoD9520pbXPhzMc04Mo9YzMrGb/ljl1Zi+A3ZlKLpQ82Xx3xljxliDGnpVDT8m9A7/+R0g4HJkSLktGiPVUR1SlQ3+tBKvjri20dUKPj+0X53up/haE2wTtLJFlq+j2ssKdGAJmudbw+x5YtWalMRUSHTlV1cNcxLwhEzJbK8AMdVQcIVZ1Dq/5nQ7UIwXtFOGjdi+Scw3uqOlSnRlIBFHKRapIYDYIKMI+J90MiaSKKirE5/WSr90zOoJf4JBugzMwjdPSFO2NqNoWbjR+aOeemC+OzWrk3KZ1BWOc5/kJIzla+yreEjFTfosmoKqrI5t9SAo83yvnvV/T3j2WSJdWxMSCl5hDyLSYRxw0dkHQ7IndduYI0xDGjDb2+G9w38aJKgVTUsGNPN/PbNw9w6gha0ZuQOcEvJ/2vrt7RikdvYzvfeUaHNqFR9/FgpscQfzG3m0cyjlz1V82MCFHe9njTUZ05Crkf2mkzQ5uy0xSoJh7z2UbMvCEtgb3N4PlnYazgyApUHUXXij5+SsYXxGMyQGOWqj7pA62BH/N+3tLmgqhoY7643cL+CKtj3rvE7x0Iq6GUrV8+GrDvYODfuf0Rk50CNThVZS1br3ut289owaSIDMhQUZGhOq4BPxnYd4wzE1HmKZKqOscYOgBAtEobSCyzZXujUWMsNoBgjqFjRJ2oF8MaAQOU5jU1uS8RaLkMDW4HMON3OfqIOHusMhR4TONx+W4c3cxJrnzay3syg6yPL1C8c6h+NCGMmd9KpN3ZGfHExt1KVo/w+dvuX3EMz6HK8Z9fX9/j1te3PX7yj9UFeXSfOQEuhKcL57fz6F0m9bcKaJqtNXHEYR+qJWWhxfc22hxAewKNi47sN4tKf9GuFUyQ6O6CNBn7T15lffshqd+F77b5d4Stvnn9N8zgV9dhALzaQjKYwZPXDn3S/zjmPBpmI3p9e6jxX3TpUK9p2aMKbZo8ZYQjKEFk6vcrJSKAusP5TtTklNS1LBz1ZKd2OyC71tTlJuPTxHpOQZraO81zsuxuMjm2BzBy8FULUwNsna/+JVDswIYP6jQDtlaJ7fUBYIIGcNm672W5147jPoaY2VC9xhuAT/s02r1uWybCOYefEaB+gORQQER0mUF2FtyW6Rg/P36KYOiYYzpw6xhe87loQnCFxhKzUOmgIryK4pAWAGoK9ahUlB1m2SYCgR3r3SqjmQ1bjE9e3ZL2AKckK9tknywSsxK2fuvi+YIv/7a5LWPvdF0fd/mo+yoPfmXIo8lHO9/K459h2gMhcMQMtuvO1MzSR1iDqrselmGXtQyMykbGZy8qOAdQpB8UXIGaTo/TPM4pTzHOyI6PKq2nTDWCyNptuMD9V6dtdwi3Oijekz0uFwmCJxbEddihOGgrCWiBSi2l1PZRbvNXBKxmuds+4aU+bF1ecZXv4nD5BuJhljOtn8z1CrJ+8Au+bz7q7j5zPEm/AMcnmWRPf87uJl6r9Uv06IoGKdwHjdsliblx78N0ygnd4VOpXoQmkKjpiVLoeJP/+lWnBvpXyVM3WYtOQRKtX2Qi1SPN7vvG5FDlHDrHHNcc4+39LVv3UyAhIm/X5Z0YY8wxvO/XNSm6Xr6LKKEwM4L3ejkrjTFVBcBQP97LaCYqy8ypO0TyKGCP2QmRm0GjUC6ms5IhAgFpwSqFJxkepzkD5CRq0mtTDgkxiSg1q9LRrPjef3gIGDZ+HYzQrMdvJODPrqPuq1D5y8KxrfmgJQ9PlH10kMB3XeoD+PZzkLbRRNpPj+FtffqoM5LClh1KaOruKM5LzteGgNVY9G6vY0CGCtmpd3T2q20dIYOKym7OYp2w+qR3aBtEYfmfqst/4drU6jBU32V4Hk91gS89ke++L1ivJlOht2U0ONE/gxDNJq+o+n7weHUB25dR9SmslwT8iWRcHw28pIXQgYL775Iw0lSF+t4B7X0Zeex1YrWNdamT6lt+8xzLBgigk6mP/3TUEkFSk22BKSzZCP4UzQqVHvPZUaxs//j5xLT4MpZh7bTChPhtRjNNx0pFx5xzzh/zbahAsOhwveC1OzrGUIDzmnNM2o3Y+6HCRKSZnyawbDmaG00oY/hOcLx5ExhD1dcAiFiLlHlMW9PnAcM9USp7oRWENElNeeDkBqCann5wQFGl2x87R9AMy5pOBEq0UkV8mff2OmS4gOi65M+ug5NT9uoLFgttfipg24Pf4Nug8hk/OTzE/fVffa4/9+Oygbyu77yiNkDZv/pkRYH1Qds2jVs/5HIt1kil2cKZRtt7YT+7IY180c/8yJT5IlPnDSmQOvWB5OSmmvxqlf+9q3XzV5zSAw/8sxv/7gsLKY4RfWmXRYsNTRlqrUqmZ21Rla63HzpcB48SFcN3cc47+7qn3WQ9G3p5c9Hj1TUVDQARaYCkXcPohv6tfKQLTLF9Y4ztA5w3HHeS+NoPt0kPXvGXiOQChQxOiRWON+lPBbRn8UF5yRcVdqEyaakGJkka1zJj8DEBKFRkDh2XauxiTXJ50ypSkdAxpurwXf79qBdDtOeHf3HZsjV0zjcdY4zhS8VonhGArzWjAKJKNnLkfkPwnG/sMeKlokwLUpjHcjmFGBoBQZQz0N/BtE9ZEZbAfuTBfEzSRiDyq5S0G9sv1kyq853PqzPYN/fVAPY5jvG9T/JhI2cjMaIsidrcmkL7pSTp0dOzFz1zXfKCcs/r14DVnIFHlFoyPvAgiTe7U9nI9Jy4DRAMkWgfMQIiq6VDO2S3/RYer3joyfiPsXaHEgZI5PAqb1aMscvP6mqQUZiGf/Zq6aRv8wohuTmMUlj/wpWWe8RWfIP1MHL9azcRKCK5Gfuh8eM/28oqltgzVDHJs5+d3zLn+mjEZUBrB4SahXgI35FIvoBgdaNxWgMYAEDuNUJsHb4zDW2wISzJ0qn1q6EnyO9+ROT+7BvS3Ele2a8JL3bTiU6K7HYWeqSIdJP2TJwU8ZHKu/lpAhBzka91R+E/wCVzikKG6Bxjqqjqa5mZgUEsCu7XGhNvb5eDDj1nEHWcXLetda9la90Q6NAx57zmnFNFzexeL98SLnMVpORZ7xHzFy8MbZPXiLTFU5KJc2JS8DcB4oF9NSV6fEBr8tvLsSYjJ18rfr6d/x1A+AvT8JsWA6H3OGo6S25Ylu8v3/vgY39Xoknd8GUo+9b2N7NhSHH2NyOpDrBiwm1E0W3g5OM+J5mOCVu/opZV6gT0MbP4m/nXrwIz8vxrK6jkqS2WGcWOPpHHzQ3tN6CdePDPXXuifsWEJ3t8S/1fXzEvjmJ7RpPUaS3vV/tduVT77F4mN1vjkZ4Tt+nIolEqiW8604dT7IUq+MxR1vGLKdDNBm+Zhl30sgtjItpeQf091S2I5BrfVV3veRgzFVBqVZW7N9WR/Jxcld5GAEbC3XlPsZFLRNYjNDxDdRNMZdzpttmx4eO28tr3Tc2FZM17rdui5uZ132MIhCqqc+icUwcEYgRt0RYJTcjGIse9Xo7ppkPA1+tzrUVbRlu27rXGHAoZQzNeab5Zvw9UhyZHiZf9hAsu4gdESkYEfahEqL/DoCg1LDiJlomUbrh8EZkvkRkJqThVesCSICOKZTD2+olqsIETDwX+zdVYLdtvk1fdP0dyaEBIHAywcSy1VWt7f+74LjjuSSWa72SPC7eIa2pvv5lZyFk0qW629o/xHjTCGagNNg35FfhJ9O4FHOhf70GFclJBSQUTvoa8a24LYnpkISzX8C365MSKw+/VfH3++6i8A1ptHF9uyr63kNb247u+/PN2Yh4P/Dlesr/ZPxFIN6ylRuI3ns2wTXWyyuHVlJv44LlqtUPpk1I989Sj9/W8I2x8UPE9DopSZzIvi3/TTHJOiLVMyS6Riyq/uolhu7i5I60B7hc9UARdbe+zIsK5Rdav1hMxuUxkq+hQqcpMaRRddur51Jk1ApPMYIrKNINX7jN6IKpDp445JKVhmb3ue60lAt/7U9Ugw8zu141cQAGRj48PiNxrve573UYaOMacQ8cYIyo5xe16GWP4CmNVHaob8SXOB0AWJnuOuKSFwW0FNPQ7maNt1sEWTZ6c9Rd4zOOm05zbchYSeTKsa7AN56Kut6VBgxxtZag0IxjxF5B+bge4A8jQOiDIyN45ytJadX+wScazi5OqI50IzKorj2a2gZQK9FdlGqqCFHFObCIY0diXugUliZbA4TEE3xaqRXWKKJ3gh06qMdZ3PpItkCft2v0bZRGdlm5aJXm7SmGf0Iecf1U2X68eVtpPHeNojfTEe9o5IgB24XX28jApDhvgyKgUnm2wiGjhgz3jnso/IJ5OfYDjhf4hBdBx9Cl2NRbhF1qdfc7G+lQ0dS5NvIOebIaD1Ew517RwgmxNVszV/gz7Ww695W/MTsatj/2meCAT0teKWbOtrW2rc2bQvgF9iFeRgPXNHr60l/onZhfOmKTjwxnU9h8nRGUOXQOfIqLX23Vd823Mt+Fru2z56V9G38DHnbFFXjJIeS3ToX4GwFrrJszWx+frXrfvKjHGvN7ePKUcYR+CMFEZQyEyRIfKmENQy4np24LuuWpsnzSgVZ6naBXBuQwvyGmYJT15RA+33jikKEm7uQWh22WjZEnV5h7sckwpMVMZrWNHGcrWVwmRG+ByzMcez48ruUtySa21kSbP9PuacNIFpJTPNpr9sM+Usf2oq24eXuzWtkU1TTQ/Op2zEuRKp6FJl4OviWhVXeTpiVKzVH3yCofTDd9wW/dLkfxbGM7X7i7ikPiOUJJLTxCar37MQNwxNVsxf+WoEHqU1ju7JIdKaRzL52/Ph3vx05FSS7LtNxz/7QJyjCEJdER72sddUXI0l/EVFLK1nmfTDdFqv+MnKfI1e8B7GX/iZb44Qga1/gt5VxvMd33AIRj13+Y1pFrJ9lw1VL8CwsvrFgOT90LqIzXi3rLHFf1QMCJsaJpQVAUwlxWnXqRWs0vNbnDSxkjIMO1jDsW/ZEbSajRqjI01BDIBCnPVr/87xrzm9XYReN0LkLXW8vJ/HUOH2TKjLZrcttaUNxGx+77v++cfP9e611o69Lou9TCSquoQUYjU3nOOdFOHqnghkGb8x9Vmxs030rLMg524jLhECDkqaH6w2nF9EZfU0fiG8yK0E0BDwLetTsQPvbo9a3dwElvR3D2UDb7ZsLFpl7m8J5bgS968/68wjxDEbtk5Wm2PVEOPV/sn1fQ4+3sTbnWrkCBovIXbdCqsdTeVMUxNP0Zyvp523qZiG3z6wiIirPKMvE1LHpncLNCKNT/mEskTqVLTNjvZohmELIL2ifhydfapIQbdTlJujjye/671muIGPfvfoxE5H5aDdb5td19s//OxpPlTfSBEniSIvEob4n5ryujXS46JCAmWaqXbW2Fc1N2tx7n55hc61J0HTx9djaHm7pHbFm6vsOxBf29ZRl8L96ozaXI2LEr7JYeU+sGxK6xwY6Y8UzFkr6IbFieoh4axU1SSUOWvh7VZAJX8mOGoyGCxU6nuhGAqsG7eLz+sUa55zTmvt0tEzXibiei9FnxboBGbNd/3SwGj91CFi+T9+bL75bs+DNExxryuOYaqkgtQrw01cowhIiOjPpW/UZUNASgDa6N/bBYd4w43LCe1gLELybYSuBVy0/Qsg64e4UaJHcspyA09nrbZNiaqQQK5qXXZQWVJ7DEd0KA1nGZ2eGtM93v/X/YEgCdl/Pa2TKphdIwjkj6H5y+AbZlrEiiH1RlvK394Q0BSPi0jLw6joFa/9TX6W9cVxfVA5NKXCf31QznJiICAMzFJ2ePfsyBMSayeNyk6+3EYsQ/dUJyX35RnnXYrksV6ZVZH2Xb9wiTxnyi/+vErBpXRuv9+qDZ+90DqJWlfnYD7sIG4v98FOV2uzi5/q4osmTGgaxswKfaB3PVva7D8nk1bRzwR5IFTGXNJjkwXQk6p253rPqOUyti1QPEbjcFK9cgelY/B4AWMpMAQNfBAJgRVgDiLkKkEPJJikZpOBhNEAkJMAK9n070Pf+zFpOWf7cxjVJknLhDIEGpKTbnSoYi2Fw6Qc6172SKpmpiswws5HRjvtZbZmCNOhQTM1r2WiFgcBQMRWcb7fi0z0lTHGOP9/X3OOXO/h5AnkWu4T6CeFPBpwD7/y2exCv0ivRlTmsKV1veTlSWZ7TBNtsNYglLJN54A+J2QJt2F+ccpg1tNbKPmkNEmgI3DM/bkLM0SqhyT+N6nj76coOSNN5MnvpIG9Ch6iFSBY7K1fIvrfhzbhlQCscOT1qDqx5KleEWIkEa+dL/zIEmHpexSED+9ul1m11yKY1YShX3KMy7bMbtgOiN1GcKtP0qZS5pRLkXFjXu+5Mi57fdYtH/O1Rfz/0mDPrhii25b7EaOIkD0n5//5jgeXYlHJDDnF6poa+lz6Nmso2qyUHVp66R2eyZRC4UlV0z4kHbsEUgdnJxZb9v0eYymUmV8aO6mErZoB1Cy4kxorzo+15y1tFDOh3umcMYgqMVc4iqEEdSBFxZbfPBHzcxN6mVrMTYAB0CjCBwNVcRoSuhQErEJm/ipKSUeG9u2D9JqbYMi6ccAEW/lM7xGQKaZZZ2vjDHUD3BfvO+lqiL6uj8AqIj5pv+qhKqoEYukGV43yGXLaDo8gDTf397e3uYYc+jwgUa9rXLogGAMnWPWauekhqORRXVpqbL0glg2Qtqf6THUHIOnPnwyZkiA5ecE9f3fb203Z6kj+JGMx/OlSX1XM80QPgSThUUHi0vhKAsZ25ALq9iQojnZSMavQagIc0vVI7dQbgk9lkJ83XGM2KU3h0LpKBOSu2MJicA5n0hxP3GnmY/N29snMlXFGyWWhUvSO9l9PynYWb9Gp+po6JL9Ihb5u0FQKZBSJjub1uLOzY+UGkiD91Iy+d2ZdmrURdEIOe3VcrL47gibov4WwDd9+lzll1s1Ph+WfH9aiMeDXf+ExXzMWLLtIT0tNJdqMie0z2PLhGytXC9m+2r3s6Cu6CApcaLwbTPY2nFlQf857a74tc3VZk+2AEOxrmez2Tg6bHpfQbXMkMsmPN7jtLQ8JtiWkXzd972WmdVYxCte1i1QHVn+YmvqEJUhQtUhIwtUy6iJZcNMtilv/JjS/KuVyDWwIOa9jORQvZeFU81lJvfim775+jAzGk2G1+arDqWAtu77Zbdx0k9qmWNe148xxTeQmGO46lN/DoARKm6dqkTM35N+TZi5mT0mI8BKy77MadpSXRpbOttvEW1UaVMbbBPBIenVJWmNu+hK9aK4ImAngzzedMaHgkV9rM3DOCSCEbSuRqVkL9A/jdZmG1fnmqLiNp+whbF0pS+k64ZDcgJDGhgbfTSJrqxd0ijeUfU/zbaLkcRPx2vixeyTcFzJkDk8hpOxwRYR9EmLsL1IpI0b4Ww4zbuyTdApbQBwz1EaGvutNf1yIH/ClUi9NN/T7OXmdHz5MvuZJG9ouPt6djtmgN8107VyVz+Jnh0DtinRdNM2eDqSlzYII3rrTB7N7fKXyEy2X5ERikT1ouPeGUsEkrG8CmpLgvFTVWW8KMd7OK2Hd1fhfmhWY5xB8N1mw8L9qqbcwyzYs11S4aH84CPPbPpiQjoWG0gziPqWCL6Wdpnd604VYD5NqgMeYY9NFlRFdSgINaHIGBRREQpEdR+f512Kd/voW8aEsf1cImsykwTqEoCoTMLqXEejrXu95BZAx9vrvm3Ffg5jXtc1RdSWKYRm675fn580szXmGO/v1/X+/vb+Pua4xryuS0RIG2NYkIcifuajjjEi+g9C98oLBySVPjVwdvADZ7DvS5OkwNfVRv+q7ki2DDO8GDq0O9LP3riPB7I3cC1s9DKnYopUFSQjULJjBW7XpmGc4/DfrNK2aMUqylDyDjuHLEuNN9jRYEHNwyprw8ShI5AAld9o8nWTg0ZeFyRu0Gm+DlJ95Jqpvh1nqU/G5h3btJJyOIi9hNkHHEQLxyODBAjPe2f5mUEF5l2sZSMNOg/CFBPt3/embzEgKe0MpJ/PeGFONsIrka4Ja4rOXev29/Xi7fOWfDJtoMaO7FMv6I02vbf5/wvm11T3wWOfZNJ5vWagPjBtrlKHKCFKih/B6A2zZZYxIuJxaXr96DOCvCdv7IgsNcj9xQ5k1hib/oD5hgVbk++2v8zMZg3n5PbaIDnLxc+OtBeH2Rhmv3iMn8uMpHFBsPwgLfB136R9vl736wWBGQGY0cM/qmMOj46MgUFGUAgqWEtzp31Jrs0OEJ43Fm1rpsoni7mMSa+hpv8/RYRmtihT3aG5708RXtf1ul8gXFtd0De9DFiy7nUb7XXf614AdFCHvr2///jx4+39xxg65/Q0r2uWiEKE+ebHC4hxkUso17gY1X6EH/n1CGp3HJXmzmfFQrPIyrLIad02CmVPrnSWYlMcaHRtfmcXrYRU+llp207RWA8Re5HlW2JQ0XMJvEtAYi5ydVeu2BAEtHbA78z/4FkAwJA4pUdaMhkaLT/Rn+E7hcB2fNhljpue5Tanh5S5i2wn3pIovVkM2ybraYBEnnKmCl4C2iNzUINmnwz24yPzcXX3nNWqJLMk88dcl5bKnmc5XJtIuCkVW8o1+0Go2zxObilzoqpoidKUgiLY7u4Z82jQjA1VIatluO1x5d0elKifU5UlZGWv0WYtpULqoW2M7Hb2AP0NJ1xWqJZs7bP6nDMSaqMH4rdKSz99O/rFCaFUvubTW+tnlwoe9nyE8t7c2YSld6b/2WkFZUZSd/I5IciaEwNB7JBpwX9GA81s2TJXA4CZQXWtdd93rI9dRnAt8xeYqQhUB+clKmvZuBfnHHN46TwGTDAwCA0jM7PLoecooqals58kAgBokX0bOFN0qC6PAs2hAtDs9fr8+FAjpw4VHVPHwG0vFcUyIebQTxgEQ8c133/78dtvP/7t3/7tdxEZ13A4EIEqjGCsHRPf9k1qywdAZQRrE542tJg/P4LYyvbYLmGaFDtpEMJUuanU1VvhdR4Jnq9jHjRtl116iOxfOCU8U6IpgMmNdWSSNHST9q4y8vKGADHbIUVNU8zKMjwc/vOqxrNCoNyNo2I875JMdnYKhFWePcz+A5C2KzoQLrEIfXeWXc/aZI9fe5tQu0f/ZQClsNOu8uod2UtA6n/MPVvw5ad82bck6qPeMRdYWIuV+WgWKZGnT5dtH15z9w9lvzrP9kkt2G2JbNKO5lxmwYrrbj0TiFewI6EVahxl4iUHslEjzNCUKGxcTg5NE7KiWJuPD53LTb56IVIZt5RG3z5BWuq1XIcGu8KcxxLjHGCFFtGffUwme4yj6M/Uh8m+0lRIm7I+Nf1P6X+JtOgzH88Ej8aUIVxQkYA4ksay/XGb0Xiv289EyYzButdNMCpoRGJLNB/xEjFREQ71wLMuQzqay5aqn8IivtWmqvgOnmOoUm1RVXNyH6nzMAO5N8kAgKkAxpBBhULEYFw2oWstAhhTRadvy0MYTYBr6OuONQ9jXu/v77/9+PF2vamOOceYSjCWja0wKYYOHTLHTLOQKuK5GoLeb2cgM8s4Ckm6RWvCiJOUgEnNS05wTuXTRTuVfuntQuRoJBn+YXxlSjKkCYkjOzaaCIUqEdntNvbbmxBu/tQdnU+FIT0g1KVeKpzhiJkudu3tnfe1QQItwF126FZVilzF0HwgkQf0pRkv0mTicaXaa3/FIJnuaRl97aGn5yUimn6Am+Eh81I5Fy3Wdg5pkfRcAQSGhfo4y4lpKItkRV0OLLGy6c5ijY7FfcCZDziH302NeO3j9J+eDd/2RnJxQdi22bu63Dip5bi0+6R61rvRUDNlRCQrrXfj+47NACVaha6sf339UHFgKJ1z+EGU6F1JX1dLERLMbgGPSGaxZSNT9ip/2LXzbcTx/mdLh0o4e3uoO0NZhCVxURsav9M24pN+YlaoAZJmtpb5OSvLzKXHt0aO8buRa+blNiDWvcYcRojSzHAzjtPy/RpUeMf0uVyrQcV9hIlECcmYqcjeF/McYkieiMRj4kvSjL6Xv4p8fryu9wvw02HGGKruywiWildxioz3H28/fv9x/Xib79eYQ1XgFgEI36O/WFoUgLouKV8/p39v4CliZioam9Ml2gYEpEnevT5Xj25TSxmjfCrAc7ZPyyRrZxoXZJCxiejG8OPaHCn73+Dzg+W2bd6CddjiBKllXKzSlRDeCmaXcmoN755kD9NQa6Ou4Uh/rUSl0oNWFS/YNivNKG0VWnYm0f4IQCcytUpup2nFJp92d7zXUkk5XDACUJFm7PVNeVt1pNKM8dWpjPMxVzCJX9ppnX5eN6n3KOtTKq0MmMXHAM0Hf7QeNBYoeEpbs3C+TWhAYnJU3ykeZUNkRNSFqb8iywBCxJ4xDTZK1aQHkzyvb7498RaZgckURht8XQmmO9qX81ylBWnXZAfxlRPbdP+ik3x827hU+s3fjRShS9w1RCapItZpEZIQL9ITL6A3Lhf0PC9xGcQVgxfZL6+pN4qKlUUvIiLrNg//kwaozrR4fMnYokJe5FrmCmCtrA8hAQzVMcaUCEd7vEhVF01VaeywSHRPM2RnGpnehK9EEJCv+1bluOa61xCRCR2qgCqWDNwvVbnmEJm///b7j/cf1/V2zakqQwO0SNy2PCIuca78GCN2dxFXoIjAv+Y5MHUkWZit7ndrDwgQ+VMqBj+hiYLwopIRyjT2+zOOn3HrE3qYyCHb5mrhoNIEBTHNgf2epQpUE0LRi4wg592FhZJ4JK2KOU3SrdSak7wDe4VWZRBJh2GBb0uX+MjWiZDAXu55WLzGrH5hGlUFXVu2Cqye1Ar6V/dyDo8rDYUcNXk4RNlcMyMLX/ukiJT6QBuajy9NjzZLT2xA0ifHI9tiiok67ceckZ6w7aOrD3svSW7rvl64NQ/S52Gql9RSXcWWXs9URzigYSpwD3uzzFkalaElnl8xb2dxFr6xpr65jnD8ebXQUBCjiQiyBrMLZTJnL24pvvJnzpu/on/7m3Xb97+Xki77MZMq8BB/Gvfdx3azfxktzsv1M29hNKOvDIvoUHGrqCjUaH6EIkbKg6gIhg7vh9lyoDOBWBT/mNGX46y13ImdOt/eL53TaMJBy72GmhR6+4KMW3ADBIDZMkQyxhDyNpqZL1x44R7XUMFQHSKk2r5f33yh1xgesAKNThQuM7PbTVodY/gOE346T5TpmZrF2ZQeivb6Wc8dlGsqaegF7+QuH5KmAxI4GvdsLsx4DphVASUwXXi3GPA0TvyXeqQ40G+IWPkDOlIR9VYS9+RxJ+q3jSs5kJZArNqjNq4U+JjA4lqkPRt4TT9LK2zDxu/SPz7DFwdO5LPcANuvQ+klYpZxfA4WQd/qyn71gWlFFj/ASKQPWbBzQqlld/amosHSWm1BLadWU8YC6R3M3koGzzYL1eukVVPux1pgJJ2vo91GhCOAWG/PZP1B5dRP2jToQX15BnaDpowSpgLHJG2LC5Z6FoZNs9vtxrjsKvm/oQi+uWo4Ne3MVl3ZSdfG7bH2QB/0tuqKR7cgbbjPQcYX/DICaZ3KR4qXMpKTMO7TG/8OHWb0GpllC/BVzx4WYlZ5elkac22AW8HCOxJddIOWjPrPR6+Jey2IuOKxtQh40aaIjqGcpkOGh86mB1rFDMMRVvdaZPHsT8Rck/yCKaJzDpE1rzl1rPulCsL37SEUoqoy5phjyLpd8+gY4+397ZrXGGNeQz1C5Ppw2b3Ml0XkHp9Q1QhZETTQj3UR3xkDjSPZoh5tgsISqHNeSlySsRxxRTbvx61nM07d/UeHmip3K92zjUw5uGr/twAZOwHwyLK0h74YUQGYGcWqud8RzHSoD5XVNsN6gsIGsxB0SIiEw8A30iG7oaJaSgwzgPe91EePtzdCYINREPVhZ5aUty7vaQvwtApSpxPBDAHJMYkNpvylB0EStgVtFISgtsxD73m3c8NeS0S1lpxPbbNpkqmMiFei/yD53wcr5py0m13jJRM2ZYHUq32sSQHuhoqBs34YzHfXqxpBcgKkELKmJCUsgROPZ/q9xwSdjTzu7OplS3mTFn7zcNVrZdKC5bqA9VQjTH9JsvYhqLse6tu+hjBDEsoJwGDL90cAQKpKYt3tacuYJquOOOKK+gY3YvAaeIiKDB0+E8xYNyJE6ta9TJ0A0sO4ly/FshW9CUSdKrrWeqXIjzkMlCi5VlCgPQ7BTefEzTnGEECB67p8pZUZqSsQyQMsHmOiABxjjDnlXnPqNX297xxjAvTlwMvWWmYWsupFnwHZFhNoi2kE+DBjXDtS7Cu/tEU9SNSZt05uKae44suBJo0LHhZTpUTYGVKKIxksU5yRHFWqoP9ejUQ0PdRHy9f6XfVsvxrwHa5MNwCaT31KbL55W9IiJBRiWRm2x37aTs8P+bkgM9mjgvTbtuqd2/+J2HS8NJ9gpjoqgfZVBSbVeX6Tzo0giy2cXpG6baUglQ7v0YeE4yRnhFDQyLm1hWRkrBUWZOWsps0Re1N7aUJMwUGHnBb2QEfCcsXdD07q9Ny9TM2ec4HScE2HJW+w9yR/aZaEbCVGZHA5pwdZjnmCf+/mAdQV7CsCxB2bXWsG+9w+rYump3Y0pYupD7ph/OnsIn8+M3Jd6vcU9R2agM0mj5BWvb6GWNhkXtCyuJbZfedmboBX7nlJzxBlwUcUdxhVjRSqeO0TqX4sisrA8M4o9MbNiM0aqEOUZosvUIyeQPB1Y2vdXlZKxF76CtKW3VgyRJYY6PtuMmSIQO2xr1LqMMeootOMc8icc6hOHfdNURkcfgCYjqFDdbiaUlEvWqKIjDne3q7ruoaIRMErX/fNDER42ScygqouQb4CbucISbOkd/gBXhujYU5J6TDVIZHWcr5WEaCicikcPg9aybE++6lP2Ng6lUYuJiKoCWpHHrb4vLPUViEZeNkIc/Li8+rGa+I5+yRJRYV2U8m4CRGpsMIoZepISdO7Df2bPtSvwh1yfkBCtYzSCxt0UoWdkNdftq3ljGqUvRyTVsGcFmnL4y0lZdI/KJ5m84H87c+9Z/UBkOwzXl8LcmW+oPCTX2pnt7dZ42sR4dDH2duNV0e07dSp3LMsCSstrPFkqqd5UWgVBlOm9Y0mjTfq3bmZ7KbKziVtbOUmQj56zG3chRwjD32FTthdrBE92wTh0Wgy9a4OSju9OIR76reIdcoe2iFgnvFqlMpq4isHTSuygArYEEYuOvqaH4uCPPPcTVt6aYzjOUx1qEeGPd1peURBmmVGU+qc0yFaAKO5PiBhy4aqgTQ45N/3LUMhWLdnmM3jRXvpCwhg3TcINRORoTrHEAXF36s6YtNcQRgg5VjPMYYKh2rs26nz5rrvhbWGzut6H2MOVZBrvQjcr/v1+Vr3en9/u+YcApVY/laI5lt9CvycSOMSKoMSbZ01QXh1VE5ciVChvyN9OhPQ+BOGBYhzUe5qXPO/OXTjPFP0yxDalhoyqJK0KcMoIp+nKumYsF94mEInvhxXF79UAiVCMSvc/LsXHp8MX1D9Pa4/v/4T9M+OnKZtM/MaxMYYtw5Iu/5weXKgxWlpUcpeLho7FFUuvcdKDgkX7Y136I4ePtyH9pPkYsvj/hhC7KudbhY36OynNyG7n5GqN3MtJ/Q1Q5uyp7HM/YD/bYZYKvtQh3iQrMYkju0ZTdpOI3aoyf9WyGatcmI3iwqQddW7rCBesu8oRC4vzKUnsjAR63wE92sqckE4kaupm1IsnRRMVzqvEagkMPf22OQ7tNOe29JIbeLqZXuRXg1k+4dJyaS6rxldywwgsYjX8tpOLrP7XrZWQDzgJ+f6MeekyVTf9NMTB26o3vciMKBjaPKXqnJQJwcW7vteaxEkp9PP/ABGHciQidMqDs8avnOc95ikJx8WheQAOIafykFoJGdFlBaVQim3MkFTjeW5KmKAQsYY19vb29tbRGTNYFj3mte47/u+b58EFTHPUQBmXvNP2ba/uDKFqK+sYxWl+NQbuehAQTNncF/x7McDaITNUuYzNCy+9jUlraCFZS+k07+ZQ9qnkNZua0jOSlgJCVyJvvKF2ySThBvqm+X+5ZIy9xDy+h0Db2MtWixJDE4u3N3daC10sPhLzD9HkcZ8Ga2lEZHsEmPceIIdl37Csn5RmVIN5RfHOuqagAf1znD7jl+n2Zod7JTJCe2+Sr0oKcq0SWU/Ls2xync1jZDNR0FONwQOvYPqU8MrbNO0x6G6O+X/sjdV/h4zjPYdd4lqIesOUknxZDqxTPYXHEuZpVnJXyYtdUx+ndGYQ0F+f9nJr0mR4rEabhK3+SM9+yWNUQj0nMeDECLHmHMe8+ky0eq/NVzW0LwFPwiLlnZrlHX6Zp73WhTzGLWI2lpLRWiUQbfQFymQqeM2+CYEBJaZJ2/z8EPoGGrUSm4R97pVB0Ej11oSlZ1iFPUVyjltRgP4er3GsDmHZ6lVBSMQbAydMgHxfqq5Roh9MFUAygSNJhgOe1jLRGQONUJV11qfL8Dodtjr5+c//vHH5+u+rsvLmHQogTiQ1gtOFENHbN3jBY2uiNLAylU4oFCHmFmYCRCoeFHRGAMZvgJN4nMUcTvflPct4QE0yCJbwKGhagk4sTl7B+AL6kpJtFq8ZF4GW22jD/vR4uzNscX4gv34tmS3XdL1lUtDHXUQX2B3/ttL6p9UbGmbthqAvFdA7lG4XGUUu6aryUcF8YvCm4anwik/jweBXN+0AbevfzWiHavYrfdY/p6mTSMezUlCQSpfv7HNSWOco3dSES4e6qDpxk6fGPpTUQBh8Ow6zjQUiL0RSLF1zZ/Tj9Xrg4l6ffeejVRlrNurZ+VYlLclu818ayNyxRqr3mk7ox6tYjjj7YEyqbzbfrdVobCA22fqVNu8clg2rLNcGifXg9/xTAToZSd6kYZhUqrfnc6cz+VOYvidGZrOR80MtLVuz8xCNcpp7sUJi6oe2jJCl598JSpqSlHRxeWoPTCcpcx1jFBEdAysZctEYyO5te7YURqiKkpBxn3yBF1NwgqNbmOvJRI8f4NT1FSV8IVjJhBfdVtpwglwGbFuvUVIo4nqmONeecaLLlx2zfm6X//4xz9+/vET4NvbZWvJjGqDtcyBw7Mc6t6EVJbNO6lDwvNx+VkQcjkvDY2Mg46hIsN3wg5xi+0hw64EC583cOfsd1B6yujxsT2Do8SiA058+Wt46tfZ+O4Aw4KJIpbTcswqm9IYD5M1xb/Fl/Z4fyEE+UR+lr3DT7+Nj0f8isXJ6YxXUkywt7b2rm8PS065OjuyYRZuYzxEXZAhngL1bTtvaKtpQtJ2v5NpGwrqZ6C9tf0379lRlBpA4v5RAL9piGo2lSG3p9jUrhslW1scvXELXeTsU+GsU8z/YODoBugIEW1F0kfrn4WxYLJYr1qO/bi69ZsjLUNHkOGWrYoymNolo3k51RZSBZDQLQS180/3/uLhrtUl4jFZsgxB7q+1h9v03Ld2UPUtjbrSv7I9pBy3BjWaVgViBU5o+8zMa4hCEDW8MTMjIMuABQFVZS27sZTD1vLtnGuXIIRC8VANhlL9rBSvBipfT0akNH1HiKEi4uu0YotJgYgMjZ88FRx1qG613zfG4FCjrfv2DYLgFr0qtB3CRMxlpgJ7kYCawVPVIgK979vIdb8gfN2v1+fn//qP//j8/LyuS30NBBZNFmAWrtMQ9SxkbN2ptUpLczuJPZtD5TaoCIeP13MXojrgifVWyFxsGhja5CqxajPTAUjczHiwYfgjjZ3PB9rNKY3bEEyWqRqHEgmy2+2sOG7LyT6wJz6U0ZWiy9zyO5pNfdeg86+uUEN8fvUA7IwGB0If5R6Pu54N9Q6j9a88p+4pBaYdKjnyLr3h5x8MSrZw86FzNj2/6MQE4qRnQU2zXYMXDvPgGEv0ovKpoZRiW5svVOpP5s6GbCCb6xYfjyYAlNmQFjatk16CavYdA9Q0GkpeivZplPdA5Y5b7vd7v6N+Jr32pqxwpsQiTZYq08s3SiRdJUSNwfaytoPQTZuE2NKPfFA3rfXv7I0nZzN1df5FoEII7hdYzRSDqhloywoCFTUsAXwrM4udeOJKxUdAFhdNQRiX2BIRMxmU11pey5NqQNZaYpQRZ2DFnnG+WCwsedA3Z5vTbIEQ1WWQuXVgnqQr8I1Ijf6lLxcTipm5q7dkwc9wAU1kgKAya16m2yz3fd92zzlVVExJMbN73eb1R/dta318fHx8/APEbz/eXXGt+0Uz59I4+3eOZuJGnCui+hv7vdMWYqBQqKqMCP5LLYeIdEmyZtV1JG/lNMsWWPTfcGiGLUKuEr0s6oiK7P/4Y909KEEqtyC/O4AxDJlq50t0Y6NRx4n9e69GAHLNkvTeN4fgeHH7vrv/580P3MxvXdjTXNzkPJ7JLh+KykVHOsk2JUl321IMk3gVzdj7biZlJNXmno6y0+K7wnF28p0hq80M0TRlT4fr8owVfQ2sV/qxaMSISpcGaybzWXlZlN3AKAnZaIj3LGeqoUpteuF644iYJHucjkefqOhoBGrSg6gIRzSwg+2HMZVTWvvbJUd8A7n0vm7n5ejobiDexVoqICXLrgubk9IHlabTo2vyIN33zJ1+UjWXRk4uUsmCqNSRxQsUisEc9M0wVI0cMjBAjjUWKiwmgMiIEIUQNOO9bt/xHsaqcgwmhhgpRsFaACNkRRjXWn7Dstshc8Qm0UIzkaHrBsQtfUGco440kRmnqwAIGPXsPZlKhQRIMz+RJQwjkbnuBdrn5w2lGa85sez1ukF7vW7H1o9/vNa6Pz5+mq339/d5TRhtrU+za16xs7/X/Qg0Dg4mGVuAScMaP4jczGCWTCAK8bxI7L1ODpVzV8iwFgrXCPq64i17xTabaQouXHRixpJFtiG4eTOfijRS8V61WQKxHdiGQgU4hV4dZevFDSrkgK1ooienqhsuOkwgI7sY7BM06rHNo4A0S0s2HbG1Y9JiS+Ku0W4ou4cTnfEbijZF7Tb+oKqria5M4JNfL92jCR3YgKUCgdUus/oRXS2dqquQuHpCjfwRStdIaIN6ZtsqCTdSeVK3/1jrq0mtzVMf8ULJjoZ/0SkTe3x1yyWsCs+H+e3d8MB+usMczuezUWcrzS67FtIe0W7CUSoS+6XRYljNicZMOcxOJl+F1igSlDBI4x/ZndmTtZluXzsY2KeTj9/DJz+EJxk2yNd8WUmW3by5H937uQJgHhVfRsPQqObHmDbttdYlet+3Y5cOzdW54oWbIOYcolEJGdTf4SyHfblvA2DGtdZa91pL4PEPid0VROa8zAyEqtpaPiWq4sa6c29xIMmhQ4a/tIOID7qKK+GbiAKYn58fAtz3LSoqa+iA8PPz437dNI6p6+VHv3x8fHy+XWP89gPkWjdB1THmUJl5unvGpSRRLBZzlhFBi1NzzDz6L6JAPCwiGfcI4yWBVMJOSKMs1wpsnqrbSnRLoddfW6a3fSz972CqZLRAc+bZvImhgsr1xX3b7PWetr+2Idn6tDv7jWGVUNagu+HuvidVxQMTQkSrqzW+0Lale7DTe4/X737Wjx25t4/yMJyPpmTT9xh2Uwm9y0yECdXbdq2AW5HxbhTub32Tuq8Z7PFLhOsqbNgm6pimDQXZTi46cFBrdm50KLyURoLKqJfaPcLn0Tmm910FDSgyeYuHi7CDKb+k9PFn43EGFPost1jQqQJa56vrwSSZPUL9CY/3blhlG5okZFcroTIOzcIca854qcZmCbQ0TPoP0YmnGsjpLqrvAoRDKE4fDcRWy27yIzFrUymVMcVPQYSImE1ATKy0c2hWD8SQXjXJOyDi/Xrz76NBAwbMwrpda5mtOCh4raEz8bNMMaqqwotlgvHG1KFDBDSIylBXNtt3jMgL4mT5CKyI+F5DFaITkfl6vTzWHggMgrDbXj8/RMQWbNm9Xh8fH2vdNtSXtN1rTUBFaaZTvLBJy5Vv0OKyRD8auQrO2CKh0sQoJENBk1zCVrchjC87wNed8+ROKbY5zZkNR+0q46NwtIF4k+PC8myg5iZ92vqzsWE032tSyjpqAlh1XdU76TdwD6Zb/bEdbNMPrWPfAYRU2CZlr6mIJGRBz6ZZE6JN/D6kFhAKIC+xlN7EDhvtl251XXCNnLNjZFJh+sLDaI7CdhOYBncFOZhmIIvaqcslla1/mawbAXTujrWub2L46LdRve2QbJKynZSt8zQmYAegk5CNQLlLzp6O70yF765Gz+DkPbAiwjbV0anSx9fGLig7uywwx4/C+YzH7QgoswSjGRRbTnNgQWhNvGC7s42m2fkPGd5fHuosR3EOc8vzZiNm4NSnxIspaaAt/9a4Aoc8wqEyqF6tzkzUXzqBZb79PQNPfMnrbcvT77bM/TPFGDr9Ta4ahgwITMy4NI9EndcEzczmVBWlYSh8j0uH9cwTDNXhPBY+gbqHKrEJ25wOz2OqqIw4MCCmaqqI2RIbOtRPKxBg3ffr9VLF63ONgdfrY923qMw5xvTNR2PzojnmnHPM4evFNLRIaP9Kqmh4wvFPoL9mGMs93kAWGq3qmxLiS7MALWRcrLn5JeKdSDWTshjtSKEOG9tICUgwW4q/Q0WFhoKRG3t1hhYBUBXZqdG+su1DE33L0a0n0RBbVDNz4WXmnC7Gk8nB3o9uWtf2n2f4q3B8jy7oCak9sQNnEerS2LVFBnqDyM9+taGnUXbKsOwZQEpZs4Zz7OdDu9zQm9X2braWa4q37mghvW5dHPN0AlcLo4UVkQrrUKyNKEW3YuXtWCSHi5/MzPPlz/DeLxWCq7yyRLzVtLqO2E6pZ4C+NWcpvL0e28e5PeZd5FqxnVIvjUClECvDLLvFqg7Y8aRIOT/kAl/G+CshSrao79KQjcIBx/li6eqwf6jS5Fjp5fv7W+z9JhHJF8FQpZAYAiwz9R2bnfkNquaQpqpmtUEQIoRAmi1RGTJiLVgoeV8pVfMjQpljQD1fLRTWSZAFuyR1DNJUdTr608zMNNYnzzEEoiM28vfFwDX7KkPEpUPndc0F0THGpeu13BHy+p/Xx8vW/XrZzz/+gMi//f7777/9uK5rzCmic1xv1/X2/nZdc4wx5ywYh7Ox479v+3xipSpUJ4L+QGYLmhnklTMgLC3OxKkTUTYTVJi2tIFHjTZgbPNkc1PjsRTKxl0hk30t/jbZ5NgisWRyRy/KC3g4+190wP4zWjkDDmmjZDZJuAMFWz/ywCu21qKNwxbKPskTXHro7bCdwm3fYZYzlfAA8P2aBhEsJ7sm6+hmH/MODWxrdN/iRnoZ2wfI1xs9mHtoetahMfluZtFJvSM13KaeZ18q052smSoqc8XJs6eneMx1/dqjkJUoBjLUedKiqLTjkI3f2h/7m+DInTY7ZlmSbQR5Nt7eay8VBypS00Ij+XhKEhNKd68yBM+8c8dzTtlljrRkFAeXPvXBMYL2KTl5GwRMRZbqKunrweWd9i3RinSsmZn5CS95/AmJjI14M6JDIbHvm/jmBIqJ8brNT3bxBkGqqpgJxLePGDJUVHUYTCBU5b3MfAmBx5cWVUhRjrWWs8O6zc2fqJMUMdoQNYGKiiphfmKMm+biy2glvvFAkKZ97URQRBho0qgib9fUMdZr2Vq2FtdNW+u+Cfv8+fPz88OXr815+cm6qnq9Xdd1zTm9er9HBrzeoSSw8U349n15bzwS1WallcV9+wqzJZN0CNsfOhYVjNfcNxvhUbN5oEMwbcIps95jB6BP0Tud9vqVu3cniraefL269Zii0l5SQ0swDYBPidreQQf51F/5xRY9oLRMysHRVe5G+uszFHP+mJJxjGcryi8CzcRLJlCn2Vkgu/GxqChVpsSOL2d/2IAyH93aNCDvwOg+lgQ+/2aHofsdD54pkyQ5TdozyYS2Mb2ZDPFn1qZmfUwrLg6bpUFaqVK2V2xuLkWYo6rzKqUGfgxXuukgIYdu2Uj6skjJTgRtZCpvZlO4nNP2uupBp2WvCZAH9ONs84AK4PiLObTa773NY06Kr5vbpkKbhb1ZCEG48e+lmb6YCxmr0NSRvkbJosYm8GoMXTZUlsqALPF9m81UAV8FFt1hnaE2AJMAa4dFW7mCSsW3IALE1MYcAgyF+vLb6CmpXLZcR/uqAqmkvQckIlojGU/POhsL12e+v73TFgi713rdH58fnuN9vV73er0+Pz7/+DDavK4xhxNJVd+v9+t6G3PE4iwaIVnsm5wosalbWDXeAQEQe5UUEzTVsG2TWFBwmIanhZXWUwOFr9ee8GpmS0mZodx8w2TVxq4tvlmc8rRmvnm9PFg3OO4Umd2j89M3gzi+KdumuUd7LElFdzJrLNlQRUn6A4mbAiQeNyocjx7SWcPZ4l0bwTBvDnBpJTlVT1kw+8iWZxFB/ulDqQlKdR2zv9G9xpL4xpiL7OSXMe2hPC0CPmZRsBHVvyiKVSdTpyZVEp95Uq5PbrqmLRBX78fj9bT+ZL2z9agnjpufkrJWY5U9VNem9RCLAA/oFWTooimhc0TxktzoI/NXJbkt2Ebry/D7K5Nnzg6fxADKUgiGyCe3RNiebmk6qM2yilhSiUBEgdZaZr4YFqRE8Dy2qHG2M7i2oK/XEshQ2NALY9kw3/XSz9EDLWafBltc3hAXhyphBPxMLxMD5JqXqBjkvm/fdEhExhhZxBqIazTfxFBavtTpOdQXVGlsrKAKB2CNqCNja2bOa87700T1j4+Pz9fHx8+fIrC11v358fPnx88/7tdrXvPtuua4/BgA36tBdUCyrFV8TysLhKjOxAGQkL25Y6lftlkIfpD0haIiKAfk1mJM31H3lbbJYX52m7ap9698FAolMS+Nyuf1jMBuYW8/lAj1+740FWyd76pe1P3N3mS2cIIG8YjbsMawW8pnJSA7MUEkizEzrJVqIsAyNRRSqlJi61spkU4NjLythhTge/oKLZRzBIAalAfqt0H3E8GyLYnUXaqejKS78Vxe3jcGpJwcIM+JLZL2wJMct59KvVGc/XP0Jgmcw6w/BU7AxjCuW5py+sLnBCqrvDO60oyW53i/qDipzExrfSuL3veK93Ui5Sj3NBHHe7nfEU8kwptAcs8YOHSrl0iWakQ7hGcbMUXpHM/2dZPFd9Zvqy5Qck/Zvmtdbi8h1a5IZLYlt4t3dqTR7nt5qH0oLgHhcXuPFvmpvwsqhCihOq5LoHqZR9HNNRzzAyIOQ/HtQ1V0qGLQV8NoehgjFhaAYjQxue91XReyKKuQJ3dLi1Iff2if4RurqhL9g4ebBIhOwrcAuj8/Pn7+8RMEfeHafb8+P1+fHzTO9x9v72/zunRMMNTgum/BgKhMHxSN1ExAazkeqZ0BiQx7bgMpXkcUVXHh+CBdqpiqYCJkZL0V1ZSlsOU6oCT/kM35TRqIQq/govJVyxxpkZNvrm9+OUXlwO3E0ISmupFpUjV5rNElFBejpuQjmWOPuCIe33Q78STVZyqLcJwDOSpwG6Mv8yt1g3cppiCkf59H30NlLZd+EKor+xTSkvFItDBX/xcBS015IAW5/0kRucYcJn+SvOhcem7rSSdaC+f0Scu6nixwTEwhG888qNsU7lbhh0Y+b/dHmi4MndzU75PJeo6zjRCb8Mc7EuZzELvVp5XyGEdC4f7yHG1uuQhA1E3sHPouBsqpZSqL6lIB8a4UzJARm3OA5LwHEbtekXIZ46RGP8Z9K0KLwWSvuNdjhPCxSOLGg4qYQFXUkBrWlq17cVAEU0RkwJcRG+/XvbiwAANV5hhDdZFjXiJqRuOd1XoxUTJG2OKuCxSkHzfkq7pUh4qob68swlzf5SPlfd8RiYLIzgqr76+monR3JML+TjlvXqNCbmc0xWjz8/O+Xy9RrHULBGL3fZut9Xp9/vz5+fPjmnPO+Xa9DVVbi6ComlEj5QV3LEiMONQs1G3EsrJiSQDKIM0YpxUHaKSzkNqiUK+fwZ7R4jReyojZ81iGwRdmOQUvoHpzdwp4AkpN/derGGY/0K/0c8M23pzcelxWpLQi2KO6LvDpYatKqP7d6w6fxeOlib7pXJlNJYGlR5JZyj7IWSg8qL9KfWGXQu+feNwj2BGDBIhsFHvWQK+OZMYotyIumzMsmCTpdhOahtoDD0O0VMwJenR4OHaleJCq6Y3d2VAH7NyDUuR72I2E3/FIzZvfVbXR2ftuR3QmPnUJabJ7KtjA3PMibUQBss+Gzr6VOs6nvrBSezpj66VvGvijRu9i2hYPYHNhPGVZXrwnco+mQm6ZLYnJYGeT5LTc0Ac9uLQd2e5xEfRKHskd6xxSB2EBXSpree/XWvKCTKgJRDJVYPdaNOOkV8HomGPoxWGC+x5gHCQALJjMOQWg0Uvn/YyVKYMYUvWQIiDHULPliOcp6LWWL36iiq04bBEiOtwij30h3BcYnhDOuAvhoS1QVtSMRjCV87UWBaStONH+fn2+7vvz449/fP784/X5OaeOOL8MY4wxNZwUEYgfd0ZA51BRgTGXsMHdyDIYGcvqVAWGFZEE2VZkdhUFY2GcFtaxsZrk303lf0HthnCNyZvMlYBtZimArh86c6dSTcY+QL01l8og3ucLPy1WMJSDg8z4lQmUSo/Jxf4hXId9qniBUYFJjjUM4S8yvs2xQi8R+rFGiBdL2UQIl0G+LFVmHraj3f3P0prCwZhxN9PiO34pkcmth8I9FQCW+qb0ZpJ5g0MT7SdIHh3dA+2RqgyBfaFRvYRkJA0LUxo/dKLuB3+Nq40T9lPpkLWmzg7JUU5QpkH7O+ZbapTfdOzcB1CSO04dXE9UVob79S14WBLQ06llGlRi8ehM73hZbcHjj6BfEKGZIDmGaogUMBxEj9jsHXMD3717DVY6EzTFkgP0IETuNwlVVVA4hBxzgCbkJ33LShj5Wi/RUUXPJIy81/J9PyEmIlN0Kd6mfi5QoaqACvxkLepQIwYJQBUjF9Iu2suMgGO066BrXjLU1lr3kikqCvOVAgU5O82r4pF/z56SMEn7m6n+11oQ1DZGc3EJ8McfHz8/P37+/Hl/vGj36/OPjz/+WHZf13x//3Fdb64bRYfCkV7mnHPOa/qZ8Cri5wfvkI9EcScX18jTcxDD1maXpV5vXNtYeTNaQ9wyMfYEPwQsvjni1wnVzlDyvDfs917c2CMqJ9K05rIVQg4Z9i6XKeW4795mTp3rSS9qdDxuwJbWZzhJPpT9a4As8q7Sm6kWT+MtFcN2SEs3hwymtk6gKO1bnRKAKgkUTVql+S/IGE6L1gDbyahBoZWtJKVTPFnvSJRoaFVA0qf74f8dUFlRqVK+iFYPzI1oJAQCL9RDnrCWY/vCTQ3ovtrd1ezu9re3CSra2e+Ufkf+W4Grra7OUSQnI6y+oM5+toyfjsml+aTRqJk1e2FaC6RJKwKt9dnIaKIbdMw5PZWN7NaRMlK8DWRUBgJYMVrixSnyzbVgdbq4etNxB4CaBUgXlYhdK2AKoQyCI+wtEagYKxrj+0Jvutry9Ea8xS26qcJx2Vz0s7quKRCSRlsLCsWYqjL08k7OMYYZjF565BbV23VZZhII3mupmdv2wyBT6vIw0BgKUMuZEjeUs88ARIwLRq9pAjA/fn5cU0F+fHx8/PGH2Vr36/Pj4/P1SeLH77/9/u//fr2/j+tyzTLm0DF0jDnn9TbHGI77uVnpRoXi8vAI5BDjDAEVU55FIckZNU/ZWNVtRzUGd0irC0LYGKeUnvjdWSj+F+jfyxuqAzttWi/YuVOvdapwRdq/nQq5vVfvYsZmmQmoJikH+1pZ+dWxIpFr25bzLDnamrJBzmFQJZVLSrdVHwOUgosQZ+9qGlLNJnV59/bOuqwNlymlacelYGPLMCoUvpV+UbzG18df49xfhmJ1NEPyJfeg9gruQIptGkaOLbadld6N/u8Dxx+A3a/zzr7BXBvDvtmRrrh2K2CfssMXav1pf2bgq1RpTUR5C5tO57MNqDu39+B8BbQTRremSAc3Hqm2vixka4HeVPuNFp2Bq71viHvGs5JcpeCLzzfbbPXZExLBERCDiYrRN7UhVKd43bv4QSkCqMgqgzqFf5mttVRjS0wAXPAiHJ/O6+3NjK/PT1trve752zDw0jnn8J0kvM5oTNq6c2tPFchSwwJJW4tcLurX2zWv6UtvYx9Nkaj19EV93gQFAvO9KZI25ioE8OVh8/X5sV74/Hyt102SsPt+/fHzg8bf3n/89vu/XW8/VKe7F2POMXSO8fY2r7d5jRhuRJwEeWRwoXwz6Jq0FwomY6UkOvc3iemRYiflhiNEbAnNHHYGbMj8xf8+Wex5neBSHUgvN+55ZLOy5+FOHsKA8x9h6gBXdnQT52EhNerspOSurMsOMfei2IL4tC55NBWm3CMnQT0GExollS4PKAj65Gy61tx4EnorwXfTMJ2b0CEENHPIPRyeYS/igVyoisyHsZyxjCyjb0OX3WoOvkXrN8PwMCMKQV1txAHWzW1IlfMLuO9dwzf5h6bRjlkXRLauvSn723TbUT/2fN/WQk0XPli/jT2/DLHhoV3Yu7FjlOcbu7KIBGM8WYHfGmk9wj4D8ErCVLlkV35JxK9D/To0ALHul/XifFPXNF8HsInhXK0KGHw7z0lgUgFTErSV9fO0sBEkDntZtuS+3+b0M7zgdvqYDoJDh4h90O7bzJYxNvbxTT9Bkn4KuxtcHKo0ghBCRVacuWIimFFyOq55CWQOdZNc1LdXgO/l7MOz5U27yxJ+94KfHjwAzs+PD4Xdy+gHAxjue9Hsuq7f/+33H7//7qu94hrjuq7rmsP3pxAMlSEYNWYMM/NdXt0rQZi9teonJiSCi3VyBb+YzM+Z4obemKuq/Sq7bnNWiV8zK1MtfcOT1fZWHZ1Hao+rZkOkN4myQ7iD/qUqIGHaB/jmmN2GENkObtMIhb6IP2OI2msbe9a6SCvHwJ6cfuT4wgBTSYCrkUvlTlKcn01JESN7uc2+pFcvTo27t/8HsV3Pzv1bqbz4IV0N3xM/+rlLihOXnHk0kzV+imzqDLZOJ7ptH4+7BzUqEc1Z28q7q7nvybG5bYN7uzkjgGyQU6MAPN3X3rANiO2rlS7sTN4m5PBed+ON19P/qj/rhuaH7VBJn6NU8N1Lb9ZU50OGPMh5d6MmUzzLmPLeNiunyp13G2fm5jETUkbGtjuPaXOHfmu4bU+KAzAoIophcotvoQ8hBiZlEUDU/mPvG6EqAwOIUIwvJNaoaMAYbpkPUeGCRkmowQgwA/fqr/cd8pG2kp8On3G87JuIr7p1/vKofBz04lo8j5i2OGrRlmucnOg5/GiDKEOan58fdr88/7vW/fr8NLPr/e397d1t//CH5rjmvN7eruvtuq4KMwkMe2NO0s82i5kPVb79RB8PUnDReePBTQfs1ClHJaOSmM+aSAnWTiRkGKNtvhs7sNcUNDflZCciLaN8bAc0N66E3WLmOQ8mKrcVncyD8UhDKb3Y+xfKDPJk2CdDY/sr1C9dFW4sb5Q57ktM2xqudFnW0lVdSyXGCV9Bs42n1lwZ49uCZTBuYGzDB6YcctdoQ9St3ZC9XZtM+JrCI7xmFst5KIhcEj0PxlLMLtqbnQTFCR11iiClJTto55Byz+0g1kP/Pa+O1p0DveFcxxCo9yUW0jT/0d7js3z3n/gjQyncOLpdmgevJnLU5ufn3Yn+ZcAc2YK6P9N5+wUV+0kNWgU5x84b7A9kVE627XOUvkWT3Z3/lduVgi1FkHiqf5FCF45kilDWH4ck+GMCUahX6UAEw2BmhAoMrgXWsnst4wKR1Y6+Tf4NDpI0SwPFFAoRr7MRERmalZqBy6IiGMDtW8R5jcWWLyNpfszAGGPGscK+MDhmvztwBBfNSN+emqFvdCSe6xwqQ0Xmul9//Mf/0jkAfPz8eL1eQ8f7+9vb2/v1fhlt+CkCOt/e39/f396ua15z6JAshi2oc6mDFGowAV/qV6twRzqNDt7Ypq2D7imwiYYPaybZpOIq/quvNnjs1QNEThobtdBe2z1yD5+XdoGU4bODx0x95LyzTKRWNm4TtoIeIFYm5Zj/5y8cmQpAjFxEUnx1C3aZeEEGDX2aoeoOaqlsSjaEPvx0RRznYpxNU7hLEuRq4FjS1/2FBzSG5cXk2biH4b6QrMi6iVhWMfpi/ATIvHNrWpaZoGOIicRG9Ad4E9HvcJxVVOJwy9Zf2QqseCI91MTxcweZc4jPKFM3KTaFgCxD1HrNVic1MfV1QRw2WB8Y//Wbb7rwAMf2V5E2RtWDXSGvQc9NTISSj1d/qwNLwVQQVELUtYNR0T8ZAyXlfVCNvap3zqbR73P8p3/Xdbx0irXRbg23jSQXLubm8xD4/pySUCPmQRhn3MwfFcQRpMeFMPUSHRSYLZqpqi3zaiSSxkXQd4jzHTrVFwR4ewRETSzUBcm1YGFWegLAEXz67pvzGmPOMR2aaDTCxMJOBu617nWvZcxCVR0Di2MgDpJEbGg6Xx+fZstu3vf98fGhqj/ef/z7v//7fLtuW6nJ5f3H+48f79e8vObH4/0UEBEQo5h7O27q9ogMi/eaz1f/TRM5vhRqn84W8ulB3brSeGs/RXIm+KBUhpRdeXBRAepuJ91WMkVWHFkqKk3fJQqxYyCNYYgnpzgb+3EPEhzg2RgyyxzTuRMqsHODlDhUWQGqaTkF2L2Bg5jnOAlI29QzlW2ZPw8bbo+WUpaYpJh2Cm1YbsqAUmq+061NlkhsV0AzIkaNlDQIcjd/CUW9VQUA8XWIcXOoj6DBMIyhKllflL5W+bd5rh6EgjGcFzQ6vdmxhxE88HIw5terx74r88himE7VQKXGfUxw/RWC9+vbe375YPJE5T/k6Guz6sOe2TYxUm2UPdKHtaG6BvWLLjRbSupvf9Fu6QtlH+ptM2fC+RbkTP900w0xi1X1337LgxpK5UUAZbvOadWlS8oyMdw9j9eGdQoRKIVpOJHwPTiXGoB1e/oXtsYQVR1YcSoAALtvqBgDAVTGUM45h840KzVFSwhYlpdaSAE8vfy6bxWo6hzX23zzcLyHYeBbwTkDGwEs30XIfD8Lc60D0jezgFGnQmMd8ny9PsaQ//k//2ORNIrKfHu7frzbsvVa411sLQBjqI4pqu7aLJqKwNPPIgaDqALi2yHvTV32LCT6R+bEIvqxI+lhEWQKKN3SJE9ni9OACttth/O2LyIPVkuJOPIHUqECtwXYovJNBsQpHC9ZtgLOzbb6WshleZK85/+hketOfEoY8ZjvbfcQLSteIMsgaipKNRXx0JKLavglAX1F0jobaMtRiZRI/wtpBHX7q/s0fUbYzbQGdkUftNtSg2TQ0gdrdeBpDVu85E43V4QGhZPTl877U57O8mKHZaY2rnkNUSelhPSSFWQkJM5IsuGQpOqZtG3kbh+gpim2MEueQlqXgbGdjc7bgvf6jxkUxNeHvrsenPZ39MR+0v9zWDv+R9pbLaLTHmwbq7Ac3d0TOd+w7YD+2nN0zE/HPfymzfMJ2dkmOay0lNXEjXju4SMAzPUxNTbpQ05LJaP/rbLAt16AglxcngUICAAooMCWZ6EUuD3cv5YJfMVw6lLVZfa5XgIOlTmGEF6xA8i6F0VE1GObvqWCB438/yHixuUKzcFlZgKCy+x1335ksBnfAV+Ue4UC0OIxi21MlysBGu913/dyeVRVaNhIYw6I+HpjkPPnH3/A7H/+f/9jvI/rep9vbzLHay2SY05bHH4cgciyZa5hbM0xuJ37EGlPbQARS8sUgfOiNXYgzDxmtrh01wzhBHznhx0g3hy0qwQbrrGCI1J85aDZ3Ihuh0l6nVviQ/9U8ihw3GhpaAFMW36ZgTQzenzQczKqQ4dv2uedWo6AnonxQoLg9Xi7quRe8mV0qBhUdWJAZAzgtOQ198xAJZe/xEe/4lQOU87fXCkIQMnDSuQgdhPfQ6skWX0ipOZXCBhogC+TXFxrRbgKcd6hrGU5axX0wX3fDBMj1cYKBTDnHDoGKDoIiioyA+CFbhZawNNq5nkxd9dVY5f9PG668IedAXCM8Zs/vlzbqnwQ7GyS5yP9+6+Q+k9qggOrc3p2IDZuOpUAm+aLf9MEir6nBAh2UudQcr/ocwyq7DiG1fxIBh+WVTXbAr0M22wbH95h730a6Wcb3VU+Wbj3u31LCNTcWicB8UVRvrMl6IlhX+AWMSIVLjFP6Tla+1mOgExMo9E3+1QMiq2XD3uZLZoAKjrnvOb08km3FUmYh1CMBIx2r7XI9bqXrdfr04xDdM7r7cf79XZd19Rc+wXEbqYkX/dt644lyotmy2MziaLhYQtkiKhBlTp0Lrs//vHH58fP9/Hbj39//+3H7zSuteYcInh9vLzLKrLuleeWKaZbU2VjRJq2jIg43N5nMpc2+BT54ZlWeTamJ9+4NejNgORqa3uFADJQzgzrSkVvDssl2oxvMt+1V3ls7rHkv1BpZVXG3nu+b3hoaS4uGte6F81xyk/y5OTAcAKFD2ahwy03CfRaMQ9mj6Hb9smIhw4dVJBDFa7DwTF896etJjOfVTz9KOhB++zA1wErUxGn66/yFB15ftoTnV9K6oAUUvE81Fprvda9lqs/kSpYFk1bfwFYy1WqmXGt2xWA87eIqKqZXdcFlSU3VceIHqXpYxSaAaSojDHEFKpjOITFKrTEe9eohSI5io0+zUX4Cxz+qnYTfhJHk2IPO/rxyAnRf/+qPjene+v3ppeb3ou5T4COlaL7O5FGmF7N5cRssaQ+xE2NHe131gpk7th7pNeLJlvHZIj0oEki/GGfNGvwKfm/SBpHgpqsGGo46SB8ixCvO2AswFGPzRviQHZRj6Grigwdr3s5B8q4/AUqKsI55/266Sx6L9U5r+mLA97GEGCEC5BvFrqpTLN73a/Xyw0bEPNtvr//GGPGsbsqQ4eqwuzF1zK77wWaqPK+XQN4aNS7q7F0a6iKW1dDxI3X+X//f/7v++MDMt6u67fffheBLaooyNfr9fPn5/uP3+eYQi33TIc6jCpUoFG55bANYeRgkzmqwCW2A6q5Jzb49DLsiGkk03zZIrGCF9xr04vDk+O3pednx3cmahqkyU4LziM4ItAsDHgayLW4Q9tg5lqWH+hMcowhyyIoS7jblDqAy491JseAAFQ1+ok3SrMwKkAVVTPM2U2y0J0EvuyI1qSqy37JbK7SbMqyaHYmDL5KS3lD3cT0e4P6zHKO6hBB5nbpywsRXreRrPSs+rkWYe6bb5mylntS932v+/YQLYmhOueEiI4xLP1QCWW/7jtK2NzoAVxbjDFUBhfUVOZU3VHwqO7PAozOGk2hNRuVf6kGHlfZJZvSJ/T/Hax/GjF/8rJk+FYIlYiaSv6wnVL4vn8pdz6gG+rBhickH1qzxiW1quAXmZXmoKNZJPtt/P65s6c7oL+HLNmL/U+0zx6aYwIQPGQoi+IGB9yA9nu8TUu7D4SKDhEbmGb3GMNLfcB7vS5OgQ4dYwxbLzdEPj5fZraWAUswNaFNI8YBgWcCCGTKl/z8+Pz8+PC+zjHmdV1v1/QSfB1jSO0MWTlgiyOJ4ewgqoN+bOS45vAlagKVMD7pcZr5H//zP9bn5//xf/6fv/3229s1IdMj2Lbs44+PtUxVPLQ0vFrFzO41Yl2wCvLMtIA8LV8vnA72yWTZFBn1CCVVs0gwKqqSEXYyOef0G9aoheMizQLaxoHv4i2bIwBkqm4HEDNIiAxgh2WQRqYH6YzI9XXL7rWWg1d0TUSVvjo89F/oAHob8SYaRP3oobVENRIKNBPAFDTI8o2TZInAa18qaN7ze5sgG7WYqtLlI2YHzRWPmo3wrTbIbVHMT7Jh5UHA+ju4LtLfhCHKXclFW8tTZZ6s9bTRCnUlcBXgejSq6253giNdJMnoqSz8hNXlzxI0s/uOhJcAHEqqu1PXHL6/4YyjTMe2Rvuyp8CIvnVO07FfgFIePx1GcMCZ7O+3ik2l8Hjsoc//OVcg5Cgk2mImLVJMGyCrtJin0VTyxS+tnu/h+TNiPMeCD6C+idsyxPQk42Hzd+fg71Cg/c4MQ2SIIeyGw/wXIEs824EK8ZOTZehwFrWE4XiErPIFiIhwQKi0qXMNMxs6vErHlhkoQ3SIYITTS75eLz8FXkR8J31xT0JQzrDX/IgOyA3SbL3uF4g5L5kyxlSdvtuoaGyl44legShkJR3GUEInMjjte5uOISJ7ywYRZlhl3vfHGPp2vf348eO63sc173vZsvv+XLautzc/CyxPk3eCh6ZxcPSgRGB9rtxhhFPQwnXh1sX8aS38gyDOpSuB97nTxNCMauzYRU1ycWpastsVKMaSrcw9BFRTH2LPiErFOkxnlJV6/y7rNI6Kc74TI2OtRVjvgMmwXHiNsm+DnSx3PXROcvByq81CS6YLupaqmpiZiduzoRTlO8k8r9OU37ow/pXUuki5xGHhpgP0CK8F+cui2sKWapaJL3BhW4XXcczeWg6MEWiLqQYBGpctTwDc91rrXub1nqoysvBMJZjPxKWJMCB0sysGpslhrgLMzA8lMno1s/ge6tFfpeZw9kKJTj0ky3aFx+Sd5IQvlr3s7x8VlL8AeP7yl1O3fPdTKhr/b9YrY5vfgY/1EHNhNvoNyLBnegHn2+S7vtVvB5gfYJ8a4q+4trXmkLFH9917m40SIp8+d0CA/Orh/UVaK0yqQUSoAmoUrrlVZgl8bj+LTBWZgEb52ZstDzwyUdnX5epQ3lhrfX6+CIwZe/37nsmA7zFxjCcdAk8BQ4eMqUOHZw48dTBiwzUR3vsZQCC5mWjinPgmYx6q0uGrdp09oj4VE8Db+4/ffv/97brmUFFwrdd9r/Wpor/9+O23H+9v7+/zevO9KdyyAOFbQ5tgyMjNEymqBMWSCQRRwFI8kqa6kQpolkon7hf6V3DaUTrcyQT5mPUyPSrkenCOv3CzSXce0qwMuzgyFBX2dxC3tVackGy2zMzaWguy9okUAXztKEiu9Aq5MndQSxqj466PIxRRfaaXAJvpGOmBwAlVGrd24T9MnMbpzgw9qLbt2qRPzYWkhn7KV/3STcTj05fb0SgshLjjSLMd6bnXEkDH0KFpE0X34h5G8gqgxy7nNed1zTlHHrfqsaOBfMoCoXNzqXAxNNNroroIMYOo0ZTakM5xv8O5JFcgvI6udY94WMJNJ8XXzw+23Bf/9M/WmT9DTslR9PhfICG7Qt5drvVx21KoUYYfgR2+STUdrno2uMeTQRip74L3uCkgfz6IBw22vVbL4f9s+GXcJBcWL0akP6mYxAyHGNjLIyMlSYHIELW0csPHRLrIbq+qisiAqrPeWpfQlvvua9ltJit2yBQsW/f9AkC+I4I/ovB1KnlQewIPJU5xHGPMK0r+r7f3Ma8xps6pY7qxrOJLlXlbZMtEUxULPPKjvspY9BruPOjQAU8lIqyAue7148dvv/3+A266vnjb/fn5IcK39/fffv8xRuz66XHqZWuYG1cQmKhCoirUF0B7rHyfBgP3bCSts0joui5Na1ikdq+OuS8DtNiiytW2uZRr5RpzsX3YXydWSxoIyShMKSFMoPQlG8nHUV5iNPK25QlJP4In+iKqCjWaGKCe/Fhr6RCBLF/2nfNSOiDTuG7908xU1c1WXw5utvzciWDoiqI1Y27bQCUrqUUQR2HE65h8X5LPEIHk7e4sJ702hQM8DsOuJC0tRUnD0dtlHBKa4dMVnpCHzyztgMAqKRsg3XPPlV3X9fb2Nuc1hmoInpLUzIG4NBICjowmalJ4e6zuw5uRGiFJ1VxGvPteRD0KVjaoNN2Z8fC/gWps/x5tbkyuOfxbDx/96vZsTFCptrLzmW9CTCJ9tXM2FHcxU3eld8r/kXyshPFrRw8SNT9DahHJX1Arobo0C9AWif/1RZ63budVoqXD93fQDeB3ThkYIsYWCrYArf2I00uGDJO3OQiudcHwen06q9/3yxE2knqGZRG/RATnVQHfv//oEWj3glEhc17vbzZ8z83r8sCRIg+uicMXvdDOAza3AB7oJyCejPQ0g47pO8b5iZBaVBEIJom39zdA77Xu12vd9vHx8fF6/fb7+xjjmpe7LF7uQojvULFsqapgxClfsQaMCoZbZQYPHGWiQ1VJ+AGY9LIWqctJQADhQzSmajMpghZfbLKZDLNt1GRWIhVNE7Mo9JLNq0DMVARjPCJkIRT0FKMZIWK0gZmHEEWEk/Tv1b8QE+PKLTgqX+NYPzxGgSq+QAKsl5OC1xi+2K6cjIpNsUtS83WKP12DluptRJHjoZLG71BM8tQhSIWDAlhkI9a2juuov6KJw+u6F8h138vD+jl1RkY0M+hsiyYqMIGIr5t3yyPWvKhUjfHKMzrGGC5RQ4aqRSBRhH40UmTXM88AAohjVEVITeu9J7Al1Oe3V8GLHP/5s+t78GJvgsXkXQfw8ZY/Q8HqR3K4O/6PV+ZOt8ntbtKWjgRQyXUz5r/5OA87oTyG9KXKp9ovTOzvavNPr13r0AT/X0T/8tKLxFs1RuDXv43QPlZYA1RgKmhC2AKAACwRwQAUfoAjSAEVfBPBNafqz6GfHx/3WiIClTmuZYuM+KMDH8OWM4S5bGHOAwthb973y8zmVOJNiHldsc2En0IDiPEGIGbwEnMs0qPEZU3KcOHyRO0I9S0w2MAgcjGW2ZxjkPz8+Bxjvu7X6/O+160qc7y9Xe/XdY05ROR1vyCQOW8uMSUQWB8oI4hd/k0VAwPTE9uRefe0hzplpRg9nwRaKVFyZcxhU+TIScWfCmFivxw3VKwwmIDMmEhQFaTdtiBQyDIal3kVv4eDslkV9U5q7P3gDkRGOQSqghW9ZtjcqNeFlT9H2KSuIRSIVWb0Yzxl83SasRlvTyf9DHyhXIRAPF9plVSUooX3KGNSB902BDXbxJdQhcYMhZqvKS8gI7cC8Ty2iCwzqCxbvkmDqkCHAHNeEBljOOVVh0osCjPl9ISVjjnH9fb2dl1e9GBiImIrkiLqi64R+5BjKLMbLt3qG7rRy46hXtJNL1jQLAA4EsHYTgl/jTwZVfg713fY/mBaaf/97pam8fnN98nkTLM8a16LecoCD1bMXYCQ+iCDad7usvWwHsz86DevUkz/oroB4IsXucOke/h/6jCxhpRP/8kMnJfkxhu+jjUErR/0LiqMIaSLwSjkkNhCxNHQk7OR1lQqjRwSXqwHgC2PXVTEyl5fkGtmoK37XvSsYbozy7hSIpyqfmKX7+YTnbUFX1nENecU0WUGfIC45vTzvdxkXLYYaEDPS651r3WTdi8aTVUvvWCQMSR2fXNbEhAM0VCBFvnI6UeWrWUQvO779brnNeecv/3249/+x+++8dzHzw+BxmoJiBFD7brmUPTDadYNERtzQCAcRhNiyEhGahiW5sPmsi82T5vg9A6QtbvfW61uZW+eCKTaIrKrg5jOpWtjrzlZtuAxi9ivkxn+Iel1wSIQGsyX6TrAb0aNeDd8FZhmiZOKxHYD+8jpSDJ54QC84EfDECMXF6hcMpQufnHcQqBEytJG/0CIHa5NLdvitol3f25ZldrsYdzSxvvfKh8KOcsYVXzDMNg9AAg1oVcuq+hQgQwVszA2IQG7LieO/nPOOeYcc0TNf77LDCoCpTGPQor9SABZXq1rJgqBAb61J4wmFCXA+CzuMmz8L876c+wpWPmzm/q97cM3j5Wx8gtvYev1Lz2rDSdKsLoDkYUZVe7VYz5Cz2dZTaDLAgFE2koktqRPi7kNxi1a10Dbx0IT6GQ2hoW0xTAjoXv0pzdaMdlOqqdOaL/uPIdE6i798jB7yLX3j82k5A44iXvmJm4FBkV8SxVV5Urg88CmuUJR95+GKufUpWaA0bg+Yg+GZTrGvWJti5+V64cp5hkq6pG4qCwhBFAd6lEExZjTDa3hys1e64MYChUzu+97mTEKExGSpzMOiM+TAvJk3pQREiIRlyahOq/rnYQo/vjjDxEB9H38+PHbb//27/82dPoMu5N+rxc/DcCcEVY1NRkChzO6dQwz8wOUM7JPUTGuAT/nrCpOSvKK+UtKGh84hEUCqhk934hKBSuydVL2TqXeTkWsxSIanEjs4ToIggckQtYO/4wlYP4wCZihTPPNH1kxoKrJcBGXJpalpZaX2wtkpENJkCZeoK6QDFjntotlwTfzqwWyCqul0FpKPCpH0Cj9FYu+oW177tDRTK2dwMM0ENNEEUAUY+i0CUdjcTcwkEVExX0td55et28RqqpzXpH6HcOPJAXmbau2wHMyZqJJBMAQy2oqr+QWUAVD/U00M6qSFN/vsx9H2nTk/uOBynLe+B0Fv9Aznyx1/Gg2gyTsluwZGDz9hXov9/1lEDyEo+lU5lMxh4SgsXTxcbKzm05luqqMZjTkllYB+flaiQBTjm/vqbYNla0gUjU1a0QyIdRI29L1ydfEF8KHiHj8KgqqCysYtYlUDEisCUcoPNmrb4KLY6f+3NiL/sHzwkJZXuvx4oiS/kB2FYyhYw77jLo/BdZ90xncpRsUFSeuV42QobS854AYfRsfE0MYz4St5cvTiCFL1r3WWve6bS0dGqtKvS5fBMAcV5YKSWz8nGZCmRQ+2jmvOa8J8PPnJ1Tf3t6v6+1//B//48dvP2Byvb3rUF8wDUOSl8sWX1zDZEkTGc457F4u+f5mS7/HaveMPp3dbOnTebA8S25SZ38jeAxb41w1hpKsenPYp3555WBmX9ULV5Ahu8h7xa1MyyQ3YjCEx+Br71ZsumTkEIlEvcTKV+Y0l7ZYa8UOCWa+/ae/ZuhwuaTbqlbHLRzyE/TLFTff0CT9gNKupSq+p6E0QS1dE18kgOynotAo50oYRC0/iG59jzEFMsdYK/LOFgubfWOGQXNOXgJOnUabCf+R1DK6JZodIFQIxj4qgeRC30LLeK+13FemzaG+8Yn7dVFShQTDKv+KIQShuNOAnZ7Skp8tEFQUeqJS+zbDU2lOBy+6iZfvTTX66+swnhMZczbcuNgihtNwpgc7yYyPmCVqeuFGzlv01Z+O6HMKb1o6IfOhgiBAbDOZQTU2ejgxD0mktErkpCFtNWXpD+ah8yCoFXNu05CsmborN+iyfYtAA6l9e0YPQksZfwGJAZBYZr7sNd/mhgoWw8+kmaoQY0DDOrc45QUiMgbWvZZXU96v171sAWJ224rNeSp6DsT+c4woK16vz3stiM4xfFhQRIGzreXnhQmX2Xot0qZMT+1K5VAgGlsgSu0XREbKpwLIIGg2fdsau5fda75dKvL+ngeOvU+dw4yqEIFvRb338BKkyQzXgRCYqTtiUf8ttsIezuXXX7JTzXDtXI7nX7nzn5R/+I2BJkVYxph1gxhy1ZOjd82+70fgW48xz2AIUz3gILoQK3wtsoyk3bkTwW0+MZ6uF98UAoAggtSqagyDI4t/zHcTIlVt2fKQdc5TU9dlksphEZZn86BEugVst3XrPYz2J17tWTjaS3BseiRvL2VGcpkRdOcXiA1BFQLP4FosdvMtcmNX9DBMZMU2GxiKOacH/eNkJWetsDUzr+IOp8jyk1rD+4pirZ8fn691A1SSbyPbkaqGzTcjTNiKdUnnxz7Y/HOz5o4k543yxLh46zayjzbD9j8slApLoKn6lDVmBNACOU4dnoUTkd+qmcs4UPXU/a20eFVo8P2pllkaSGlsUChUFZXhKeIyiCTDkRVwhEVusXbrrl/KkxGIwYoYKaSdLOxuSaoIAQDt36cSlM2NNUm+KMe9SR85MYZ4tGcX/oZ7HxrSlwBHtMdiFWNpADfkdC2Dr2002iLHFM3tYRCbQsaqYluL677ve71IsyWv1+t+3baWmQeQfbtyK8fInbl7rft1z+tKD9VNxAVBrngJkxORdFsTojp80wiqYvBer6kDoj4wxHYKQUDX9g5xc6i8Pl/3vcaYOvTt/e3t/c1d8DEnCVWvRrreciMLT3lY1GVaUdGhf46hImoLnK4x3XdAOoQlH575DMs37ftuqLrF5euW3QJkmAqBUQVsTSEIkuFFSojqW7e4YqYNtCrRSkQ+fHCHS81zZUIzkI5ndDuCa1kKrfp+T74fnJKRTgINVBWjlIg2TmcVT/EMz4dP18fBKHgvZ77bpVsIck/UbB0HqbCp+BCpx7XtvkbsDMoFGLi+X2sZ42i5vJsQUQzfzUdAcFFsLTMyF12E7eoB/Tmnl47RuO4XxlQME3IhXGM3mAwAcZOimIO3kLzXutf6+fr8+fPn530LeQ2BXFOnRUyu26WS/BHcJ7tODKhV6l+utI6LqyTJ2R2GXnN4aNO9xIA1HTiKS5PcyQpNmSCDPaz9yvZD8aaKnOYg4pdYGErPGyby+maNCMT0xdVZC+Rcp6o0OADFixErnjYRPWQK8wJHrwjL5U6bvcpaT073YZqlWk27RFIkTRE1XRK52c6TDdJYPgCSat5C0E5MbsGgABgySpjjkVCxiGU7hAXaZD9ySzVfXLKWwczkXmY6hBD6pjgwyeoSo/kOWJKRMS/WvO/79fmab+80kzHcLveC0KHDk9iWO1y5mfJ63QLcdpstu60opipzeDjewAEFBIsUmrqGWCRr1zgpH8fIdS+fvmlmHz9/zjc/nF5+/PhxXdeYKiKqE0Kz2IxFhsIgEB0qQyLUljkIz6wR1OHOeBIXBhlBYmUrSk9RcjXbbLDk2ZRKJncgxfSBVRnhEmisQA5k1C4YqJlO0yKmKkyiELioFBxZl+J/hvWN2qTMT/sU4Lbli8QEojrGnDrm0Dk0nRURgcQ+NU4qa9GwTDv70gJfS9GVQ0hioRX60L4iVLdl237aTCqk0CR05FuK8mVYppqOyYpgcu7sBDD2SIltfO61VlZBAFDBGLPPpaosg2OOh9pIzw+RAhkiFMEuHBYZIHzb7fuOzUFjh6FlNpQX53iDETRfb/l5v35+fvzxxx+v1z1E1lSAAwPv78AaY/jrMTa9YmaJhpxpEyYVmhZMCuczqP/VhAKb1RBAI41vW7Nlw8QksDbNLWOlqxGGvsx2Q59kAvgpGIRkyV2gWOw0uRby/OFAW5CU0AGMSffLzNcNiWeqmPW+3sdY7OQg5gu9Y9u9dGFzNYBTq0ZDVyZhemFjvwh9GabPMyDAkpUmeCNHDFLyNIeNHGmUmGUK5KZ5FFEl3E2JM+k0u0GjZDgGK5ZoVidjp/4MFsptoPn63iGSSxSxn4CBZVvmqlLj8m2vzEww3K5VUaoTR+CL32UZ7XW/XCWYGWGvz5cvl3fvd46pOsccY5cUJVVNoSC5ckOurFgMAvnxws6aM7yeJTchv5sI73W/7te8rzEXDb69/bqXQsY1Y2ZVVXH7jgVmXIY8yUUoCO9GSCL3kWgz5BymG2LqmK3GwanU4Wiy7deDxUMStrtcMpMGZrFLcrmn9eGob7lzQxkMdRBPyVhAD8WSP4ykpG73XcTNT1zT4WW3QvW9Cix0luowI7HgCiAzkCHzaYeqjrIS6a+v+D4JSrerUPbnkyqyKb3147YVj+iC1Dc7VSK+7i6FoFpoBlrKKuX22IsvIL/X4hLI8AUponFMptHCLHBHgK/Pl4zh+uS+acap42VLiLfxplAzmphSfJeI5acpxTIUM8BgZksHSbs/P1+v12vdr8+P1+fH6/PTVGljDJljxrr80MeIyB7THi3Oi6Rpj+xoMlXDF5Qd05gQbAqaaZCG+i8m3GyK7krsuY74daBwFfrEKzTTXEg+d4rmVveZY0i9b+kguv1jsTjFVi1xgUBj2cSdGxoy/TsP6KwlfvRgpS8ifAq4FAggmgFmBhYuM1cOGg4rNfKcYapbOiV7FCHmQj/GnMzAtpeYL9/PW31DjyJLxHM20fxLI5eZIjp/LxuillsIl8QhbS3vjkfbow7Q1lFWRECChx1ejLSbJK4xfYliwJaH2ITL1nqt+75Bfn5+fr5e675tToN5fllEVMb9Wn4i8Rg6x7jvu4gdhYihz3ybXBPI9Pq4OYf6PyOPgHGCKIeoeNBBSPPlCJUgvz9vV9xTFUPh7sa9Xj//+Hm9/Rxjvr8vz/YCSiVBD96t26Bcn6YivkuQim9FZB4g0jnHNcY1Y1u8jMAmNAVnbXvFTeuyn5iMXlcrI8Nuq9xKpC0GxDmJaU/EaiZk/Gb7JVH6um1tt/3pS6e5Xd0sdiOdn8xW2ggLyXn0PTAUbkyZLRUBNTqE6EHJe4RMze77JkHaGMM5OTwVeNoKkibqJgizJLT+pkD6Gv3uS0maa9hAgvZL5dO2ARkQibKLJZZKIIM//iLHEN/AM2wbsjZ9G6qkiY636/K2132bcZGvtX5+fC5bdr9ElcZ73UIsNc/9iiiJm7fdS4cuW7mpRpQ0enrpvten3g5ettbrfn1+fv78448//viHkBxDIK/XGvoCZIzx0nHppGqnQbKXg4Ag/a+kVF8UtpmNqZE7OmPvgA4vL8m/Ul9uegdDSpR+1SRkYmqrhARiNIMow3s5PyUHzgu7U6n5AaHH0G5fOLpuH6yq8saNiDZEPVYAIlUFvqDTmTaMeYntTXwFe2wILCBsmWdyYnsw8Q1zLMJJ3KVoaXq5SeQqqoKWaf5k4YUHx11/+DkQYTy2/Ip7tIzl5unUG5aYLYoMVV1msUEeLax5ruW+u6gRK70B34fMzOLMj3BOwnlWVWASwjuOXfSwvkDMQzpjyFqyJAfhVZvv63V/fHxcc9oirawLijrSSigWwmzJGGY+U1zLPl8vZIHiuOb19vb+/uPt/X2ojjkQqWLfetK3U/QTxCKfZne4Mp+fn0ZK8t68Xy+5Jmmi+Pz5+fHbx/8QI/j5usd4AXFuDggV37vY1bgR4pl2P50AhPiO13FcTRxcHDtSSMtfSjM3e0inFbPlf9KDzaKEh7nbLNYd9JA4VjcRl2VxhSdnUT+b6tDC+Rg60nbzDdr8hB03ScSyaM77G2u4kI6NQKGA+BbhGufvKmhRe0DLzeYAYnE5Uooviw2tiGA0XwvmTF3Uy+3guMtCq5AxDZ+N0WmYbvs2/u4x46429tdM8XLFFbohgC+UpYWpK2Ud+4B1+JqS20xMlPbJT18GaLTP+77X+vh4ve7X58eH0fxUAK+4e7vCBw7fzJYIfDNpB7Lls0eutXzHFtF5zQvC+74/X58fnx+fnx9Gg1GGLNq91m1rrPVa97R529Ll5xuZilApaTMAzgtHLRlrFTSFXInDXpJwbFOQNIK7B8wj7xHKs+/OJP0pIouRwI7+Hnv0eoHy+3JNTXY4U3uZ1Y4dMJqIeJ7OSRd2j58y6L8aq5xUU/+EGqjpRawPiMX8SEM3siY0Qn3bYPgWBWZDAF+Ttegb0kCjLgXb3PaaAEdrxh4GFY/LiIUPVd2DEFUuEwzxQjLZjOvsKZ5i8j3DHUhzxYdHfkIEa35Dxy6sCqB4XBPwNZuWewwiK23g+m6omHItuxdlraGs2m8RGWOse4hrC0JF79ftBSP3fQM0LjJ+RQb9jLbW/fn5QYC2VAdBmr3WEoHv5TbGeH//8W//9vv7+4+36xIPGwCmtyPDCuAy1WGkmvtM8NDTfb9WHLIkqmPS1h//65OU999/W3bf9+u+b7ObND/5S3xvIlUQNI4xffGcpo0qKpdcpKlK5D8hY+jw7ediU6AjFoOsQpGErjRp8gZsg7lVO0gL8UsFPlHmblRL+qqrcBFSShngEfleuDsccicQZJSA2/lyY/a03dVs+dvXfYunN8WlwwvhIlovaYv5gWGRvjeCuO0OObeNNS7BIjpE55zivtXIbbf9/8N09N2tWfCdYYwsF+mo1MLVafbnYJC+kjsfQo3gbGETEtWw3YjQLmnK+jo31cHhIQMjHWU+Pj/nnK+bqgPkMvtc6/P1+uPnz4/Pj48//jCaLarK2493hQpwzYtRNQ2FQuDUDlUUm5Hb6/4caZX6ZX72mFF1DF3irDimh9TMD1Z93ddYKqpj+HKDDGYF8ZjVn8LinDb87f2w0QEFhazACMnaiCwTl81W8SejXrJoGTEF5BFyDEo4jnn4y/lYRMI1EbjhWe5Zavx4e2z87m15gCP3qPFxtMhOxvXd9Fm+w6WOMW6j0lTU8mTPkkE3+xYNWGK+ZFXVR2Z+roX4aeVC2yYZgYjUIw0xW25E7/NZoiQvqKY21JM4IiIcCcqiNXHluTEap61Y7wrBuq2cHhUHceEhLlFjlp4Hw43IJHksptAo66PH1lWB5dgNy5JkRO29ql7XHGMC9xjDaeNJr/Zit6gcb+7Xut2E+rxv38aZNIHvCK2i+v729v7+/vvvv1/zLRFCSb5gc4wbZICbicFIyVWrXpr5er18T0bx3VY+Pj/WvVTnuF+ecFv3WvfiWkN1jDFEPcYkUcS9RGSOS4c6141YbDVilZt4VsLP/YiFmvDtt4JTC5Zi3cczNt2npPjTHTc3PRiYELIjm5JZ6sdqrUy7nNStbL2gyvWEauziWRET1yEW+0DEd0jrTEUBMYtURkB4VKbTYEoJc9JC6ZD1Uri/bFwezksfQobqNadX3IrINecYqkMiqZLuvbVRSww7IV6y62kaZUS7/xuD2XEPEAaTjDwwq1hYTaQqdCeCCWGkwk9gh9IUS97e7tctuG/DMoPhXmFPvNb6+Hz98fPnHz//+ON//a/7vgGo6I/X/f7+BvI1pwjA65rD1xi6hiXEPZu1XLHG1h0qcr+WG6/uScgYA9ccY15zzOmpiHuZvm6Vcc97qJof16AwCsydGKJXDTTXclM62bLq+8kdtQhfUBDGdjhJkpHe0lVsryD3NtQStcGZv1xRlg/xCKBRvaw5pitmbilVRDFUq5jUXBIAEF75b2nmN+8jtF7IXWR93HlZkahUpZlvMY+FuwLyHg1SFSPVgUwEW3/FWZxDR3AvIBblDFFmQxJi4mHDOPotC9+Z1dFIjwhiYsrlVdZOShXVYTCR2GwntFOWlyX+ezuLAmalhohorBDNeryty4UQxVixKWSKE714KlRRiHnWYtK4YFQdKacqOsdYU22N33778cc/fs55ualeaMV6dynoRS63/qPk3DHOtwa75nW9zTH8XMjp4OAVSKTIvLK4n2vd91oitiwWCfgMOV/da6VdLfNeNw1jBk94PCdMIjMYZGrGXtqyYt9hgjtS6W6C7zrqk6TFbYlHskVKwr9MoYgDYpzg4vHD+qJSxEzPNy02n++Y97Syuvimd+XsYYglGFV/kDIcrdoKtIwV1iIiet93CGNGAIxmcmy5RYllF8OPXEjbAc7O6QKRvGPpa3RslycSMsQVqHjZlciYUwMAFJBK2WJb8i0OIRFvbVZ+IcIZGEhUy/RufJXAgmbtImlYJK0zbdKJg8OBZt0ccU1R4UuM9vIjTs0+Pj4/7/vj8/Pnx8fnx+vnx+f9eombVEPnHLxK5K3CvEMHQY1Ax+4azWEuIgG+34973KrX0OHbSKT+573usebn6+WTBLfNFaL09otTi2pJ3FzAtckhcW8uhg0+5LZZIwKR4aV0VDeruprVtjCQpB/pXTkV91DpCSERNaif14SEO0IMjC1ZQllsvwKwQNriEEEGi9KpKpH2NbLRbmQU1cYgMeABmCj0B7wiB5VmC4ZcsfdGBWvFwJFnZQsBLBG4K2KkUdym8wx/bhMLLymmdQ9A17Jhw8gh0OmKVdM/j/dZrkxyd3/doUnXWhCPRpTCUqgML59Phyz0U5QyQSIpsmsdzbizl1UqpUKKeWkNMfK06qE6x1xyv72/m9Ej9VbQk/tOZKIDyMCYB4t8B08I/IDx65o/3t90zDnn+9v7NcdQuYbSth1tNoYn80XoCzvMELpSBGpm9/K0h4cLMZ0ZVHVe85rX9eZ7b8EP6cAIhvUpFRXP7JJmK1bRgh75iVqkEQdQ6sjld4IMUbrhKK7YVApmRA6yJr5UAUOKn5SG38gbpioDwKRaYDq1TXK9NiA2UcqYDACVQVNVdKc5z7RCHg8gWa3kqETx3cgElNxtW/3oktI7fgakaAwkXawbxL3uylSk8+pFYAIIjePy7WwovqZJGFUdQg0WNXrWKZSiU3Q7A+nIJF47W5+h6435Ze0X+cIJ2E1ELCa/yJhHzLLnANTXyYmC4mf7rvuOHafu+06hTPBRPxLZDKpj6hQZoe2yCmVirDwuUlRt3fdaAHwVu44Bmp8UPzghy4usPHwhIoxQnvjqeb11qAK+p7RKOldpgLTxZsRCYs8cJ+pBIwgFI/52fkv2SfXhTVtt2gAcRcBh1GTYAWkUphVuJERleLGgiFhYSMzKXALgbdQpIoI69awmXABYrdkULwoMIJcMUnndCkQkpCCKkczWWnMMqGe5mkSKiO+CJshiNieRhHDjFioJpQxz322IwNOtZtvVSJJFItQykB9mlDjy6LI1OTlV7xtziquNDJKAkDyFm/QU7rrvVwjzsiURpKow7S0vVfXYsStWqcg21G2OFT5dThVoKw8H9iGpglwUu40wmseqoJSp4yVDxd6u93GJqiLWYdhilEL77PtSWTPe6/W6XwWbrjvHGG9v73NMHePt7W3OoTJUYuNFDUVFDzqNOcYyWSvdKTPa4PAqls/PT9cuGMPM5lrr7Xp7e3+7rrcxh6/X9NJ20rf6CW5248rPuokFUGa+UYRk6rKgP8+tR0bCN8KgjMdQBQVBzcDPwCywLXRE1D95d9tBYYUizeMtj9kuY31gRGHcqI9CBGS80kzHFWrK+TFqIqiqZnS5WffywSYcyBhjzHGN65oe/horUrwZRorieNzrdrY3i2ytVxMxonUB4l5N72e/CSCgRXDC1yhEzlCqWDkHXERL+Efm8g4T1umaEJ/2fxqOmYh5PFBNAr38It7OLJGAh30XqTqm74FnRsMYc17iC1eWmchvb54QI8Z1zbdLVH3dqeeNfDE1weU+vsCTNPYyEVGJY05VBDpWWj0AUsLVE+jOMGa81xr3GnrfOobq0pV8K8ylAQxgdfwKHeQIIhH4cpSPs6YFaY4woTbMlLK8BX74zzZbKrsQlE8HFTsika+5/WhME5M4RwdbrTP8JwAQhS1PSJGxJwmoTCcY6aw7xg/1d3v+xjdsZdoIno81ct1rjKHESibyNQGSNpelvZ/Zo8wimwgUhjG43BINB8I8Dr4WfUWCH+UZFE5PguB9L7tXFtVDRPxERBLA1Cni8ZyhQkHsbpFF+xXhtTi11WgAFYNKUUvFGDkMVY+TuM09gTx4SCShWcjhR//1qJEnEqycuAhkEMBQwZABnXO+bIlg6Lyuy2cg+uaLL9IrNHLZWvcKrEsOVh3XvFwvubUkFhFGE4ywACLYUGaTevzOjYpc67TW/Xq9zMsOBcvGBKE61E8e85NKLGze+16eML3XC+CP+f42L1UNP5G8rsttE998bswxVOZelsBY1uTgQqaHmmidgTvxwx83zJBVE3PAUPrPG/0h6aEHz0u576lnnPHp1vG67WYudgTSzfMtXwUQcxfV7Rs3etwUGupFPsCI4ytJhZmri6F6Xdfb2xR4YU/sgqTQ25N6cRyw2DJbXGuJH4y+LDxzQrJQ2my5OrDFMZRzAqKSW+z5WkVwSMXTNonIMBGdlok4RRDU4iCpkFFCOfanKFlJyzc0SiP7XhHml0e2coW5QNXul7czx1hyT1UM2HX5fljrmmb4+OMPgVxzemCXi5yUEaupkbigOjw56q4E6B6suJ5w7Fq2QN8TOIoxlpkwzowEICpr3ct02Vqmy4YsCefUzzLahvn/j6s/a5Ms2a4DsT2YHfeIyKzhTiBIgEDrYzea6kkS9X3653qQ/oEeqKHfNPRHNgle3AtUVWZGhPs5ZnvQw9p2PAoF3KrKrMgI9+Nme1h7rbUrVgYFkwDGf0hk8Yj4DJjVxdIqa6qU/GcUWz5z84cYfsZyWk4n+IcQi2R4JnkkCCFBcMtZh5qJkiRTKw8JSX1wHGWkkaudRRg4SwTw0yrOUBWmII3EsolAaWRm2rQKoFbPHG/wxLOqvU8iIEtZWhoC7J7wBMMXQzPEAeW2uVmV7FKvqB6Nm4MBCeaXqiZlkhKz1GdHRKkUklWJw4TEg6pbRHuaxWiCqRSKHryWiCDidJNUFXbyDCH4qNenUNaaXFIWpmAiYFhYHIX11HX0uYoPqQ6cWVRakxY6DmKR1jeqJa8YK0JiTEHpmR5hZkj5YHCyKEFzSlxyLlZmAbMQXUKUueGaRmTUGhLhdFizOFFG0FprWyoQZnKWRvVycQ5QcWZEzDFFlN7ft8vlRZ6kvCnWzCrp5KdoA/kFv1roR2QqRaSwyj8P/kRrpL6KynzcCyqXmI8t9wfMgtaUs6ras9A6b9PHeMjgpa3R68fcsKZs9V+wcMp80gdGh2cQNE28rlGeLQo6NDQ+eBSIJMxMmhRSKBkwkGmWxHNOeG5HRJDxKuBE1MLFDN/cPVQ4k3rPSMUPrsmKaC3eOetiWtgUJVLECtLJ9b+KUhW5V6B6QNu/7pzo/M+P7yyE/Spn3foAK1Be4mA5vjUad127fZh6bonOKFHIJ+nyRsrM3lrTjpWnvPo/lLcZiQmth0/zOecYMzK2WpvXVDUzyR3dXe0XwObfOkmV8d3MiUy8t3M5QEamsFQy48d5O1PoKikLMYl8/GaCC8D18Bb7mAhGgCeF9JFb1+uhxdcv3D2JObDyBmcotXJAckaahwQFJUk5ERJVcwfqOpOQAnnhkh7C341poYUr2BMLc0TWPtbkLJ8SJcqEOaE5Mlh4tNbPdiERd7g6TwRSzyycEskmzg9vTQJgFxPJLCiiwYjwiFmLgiyJKEOIibnEMUjb52cXrt5iVbjC5/Gp4g71CJzXzIr0XpM7DGlPEnY8OEO8QJ1MYeJyCid64LhExOtJBZXaizlYHItYqu0AXRRNKkbjER4s3Fs/pvXWlIUyVbU1pdWvcLkwpZkD+mfh1vsGQQzxIgFyZLqnSjhPTiWqxXgqCv9DLJxB8vtoGbTIBGRu9RllZIqbh0QDLr4CBgM2O47jsm1mUze1UPMHJ9fTKKlVQk68K4IJjogIa3EhceakYnL1iP8sVp8B/QxHDz/nFcjPWqe+GN0eyo5csYvX9zvRiwcsUvG84hZy5opWS2EH5mEK8+KXJUJYzUAwTqloyGfhk6zCxAKzpNbk3N6LG1ogp5lbRnjGmIcZFvjAj4WYKJlZSziOnQQZQcTsoP5LSAAzT+zVYQ4+54swRHtELrw4QQ57BPUlBT5nf2fgX0kxVxKovLH+k9TQpVQtJ66BIR3uakSYW1Iuwwv8NMZMkJhaU5RpW6ZEoyR3i0gyZyJtEDWqqjBReITWhqM1OEp3d5s2JwDfhlXBqiIKCjItGS07xCuUSZ5ubtMnBfWuQWLhZj6bsTIxc6plKiUggnpYRBmExT9Zag8oA2UlP1qlbkoyK1UR/EBwztxZBfPqKzIfOsf6zlVvCC+1G2aENQJFjHGODM4wTJnOSwI/rcgaL1JTYhchyocFJhKOsEC4q6wknkTmJqwlj1qqyYjaaUVYMYgCKPE0KJLIXVVTGc4QmSXUR7RZ0MWHZMgFgHmW/weilWMoNN3dArzsTMIEFeW8e3hN+OAaS5TCYiJNIzyrq1j3HUMUxwbvSERCeviOkIhmJEn193UpfoWiFiIRmeRUEzrkflHo1hfFqxRRYbMKczePcA9VPddMRLlV8eAALCVNVXQR0oOYzT0yp/uc08wySLl8NxkMTGaU9u4WjYW6h8eISUlJDWspzcH3Mo8wT6a08Al/LF8VLSExQAWC09GSodGoUzWHMe86nTNZ5BJP2EC5mCuh0kSZRSiysFZixP1F+Qey9uiUKU967HrGVUL/KkLRY1VARbKPuDWfNxP/4IVSrJ72bKlxZ06MYpX4tLrhD1DH41/OS1tHI9Zw5vzpGM9GLiinTC6IkmvmAd83Dncv0z9PTFPwpuc0DEHRX4Y7viEFde54a6gjCtb6NV4QkfAg9QwVOeFpqloQz6KIJecoHfDaowSlB7xTT+18bPzP/llQ+PmEzmf1uCqB4ru6eM/w6cllZrBaaZZaT0aa2ltKBEUzIqPAcow1T1tHhomIykQX5x47NszhWKkq5YTCosrTCaWQiJg5RaQ73ilyqntQEhu3lhnpEebRPCEnxvwePl/rxNISYj/OI60Zw6oQqOpIifyw3ZtWU1QPmD5CoIW5OcSxRJQ1XkbuzFxfjKy6ZAQo2jxCRJoKVhszQS8oFFiTKURc27wWKvKhT3t8ujgA+M3CSoKCC4hXUUpS9taasGTBBYJFdSjnGVjb6pMiktYQOCKVT5VcrX1AGQBeJdRftKoE1GBmtkpmULmW7q8W5CFYRwQjfmVk+a+LBrgJGdD9ecBovb4MoRtvDS2LcK0kyhVkVmGHdI6x80IYWSvCCDOxro2QEEFHBgvPae4GkNDJWFhJ8X09HKHXM2KMtrXr04VUomRGyQzGl3vNKrLABOKMbF3qADBDAdm8MYdRiZ05iccq/UQCJyGT1oo9JlbWzKzdS7T8LgQwIDcmFpbWurYW69kRm/lUa8dxaNdMatqYWVb/IszceE1QtKk2cH5FkrDvd13mlWI/xv9H6I3TX2md2kdOyHWjznhF+QGzXjeUH19cd/7x66IUI1jFEsPUN8N5KGCDYIaVy9uEmRciT8tLkhmocOK1Ai7LU95AiQZxcRqWnKc6RPM1e5a1vTOJGqKAB4mkB4bIOG8glS5QDR7LnKmAVyOL9STYY02BseSHmMWreqJzaPII3h/yG69a9BH06rfovCSEI0hMxJFOJ3a2kirUQwjVGHqIKAnrudCLUoQ1hYgacxBnOBjsGQnUJiNZ14Ot1OJF55jTAGhmIu4J5YoNxMzaRE2Fi+NFRD07Mbl5cb2g6CZGExdUGy4I28WiAB4gBnjHK48ynZsRVxx9TFnOtPH4NTOvXE7YAUJZ08N6+lFNN9BMFPz1gRQ3ARsjIiIDYyRtmtUKVheipESxnBlTRTjY2TNYmrKHMGiCH4vcqkzxsZ4nAr3HuopYWlsqJNz3rPeZlOzmFItBy0L198cVRP0kyipcAFqB0tUbEVbCCYk4qJnnOeJFlscdhP2wCGArnEoODy8sUZLpvGvVCAR5+JyWlJzctEdYNdyFLArTWpSCz/KEpiI9Q3Ul9Pq70FJMCpfBVcAAjEVY5qRwz5YBbFkDxJiIMJ/HnB6ZGYaQT5wZFsmOBUVUgjg4ovfuFh7Ztp4skXUgklJVxjTzIKZqFCnNHU0Ys9S5FSGKOYY79MxVAQhTLLrl2Z41Zi72fgpqK8QKt3BzTzObUtOBxZ+SahEFyq/iPhJTTSmXyoVIgIPKGXRyPdN1Ec5ojghERURehwmsx/Pgrm76A3B0hjdkyhX/k6q4AI3AF9Rz/glmrogptPoCBkUP6QIX4Kyy662rNEBoaAhi2enWvOmUIEY1/JTJtHRgxFBQy4LpMyNDsfSNiBbrCx+EtlOTUS1U1C5ziQVfMotHlkE0BSLLCvt14HHO/fSkPFNypc9VH64kUaeD15FnQDHlu5hLyIOEmrVOp/AgM582pxmKIwJWw9qaAi7vXcWI+uYeXTsI5ekBelmdhiBSyqCImGbFHsW00EPWtnhtoo/Bi2CVAqEQi6RpGSnKJQclPkm/+GA8kt3R+TpFYIoFSHO1PLlcFnBoPpQWRIuNht9/kBhWY7ACbuGL66DW6QdedMpzg3BVGex/DEjdije7MoE3abQ8zBf7TiOCFsMwnCk5hdOJ1gwmzyIgiTkZJ54iFkkcT28dmoClDz5boLf1EBD/KSTEKVB3h6SypJTejYgwqOBFaeayvMEknRmSZqCRSRmNgkLDHbm/Ik1myCKDVb2YzsySwkmR7kHNM/Dr1YxmkjA7LWyeF0wNxDYw2fYMUeXWGopKmIK4u5U7Pz55iup+gHKctWnVjSosBPswAkwzRaZZRNCa2BJQl0xEaos0D3VPi+zEJOwEVsM0O+Y8IDnycBFiUleECEhcmuqU0AZlHWeERxzHvoYNDU7XsK60OcNRawYRt974I0d8TU6bCFOkz0mXC3gm4N+iDd7sCvWag3W00BXVwnmkGnhaFLkFNFf5uPwJVxPwIWwXbyDL7DNXGfqh6jq/OKkAol9lj0fdf5qvn9H/Q5BaJXiNv2klhQeswYibZZmaCLWcIVwLcKoUwtttzGgUkogZRv9MlJGBBYdw7i5BJrCtSo3aNFaT34jC/EyiCucmbcVSb6rSWBSKaqgNQDDgNe5H6YI8tKp4cBhwDXnVqHUx8sytZ+tDj9j/SAb1J8AWWuT1AkzLE3DVa7h0gCuAWriHuU0z9wwhttbochEhgVwVBg+SRCQiGkWzQybBUB2VHuKom805LcBkKHZE65v2rtJasdlMhMmgA0p4LlJTogxfb0rWZkhiMxfxSvAV40BNQfFbJw0DfnpEUFonIZc5fQoKnpoT0tKnnT1ursdcHdbqqmJNX5cbyWOMyjWUgs4m0h0eq2EzQmOjvlI0bmu21mDpwCIBkkmC1x8Lg2GizIfvCTGXmLxgAiYhCWBfIprstSG91Dy06o8kCs9kL/kdJXuyIkIyUWIEqFIYCJJ6rEUrZ2mBZ4Kj3VojysOSkyBCYmIixRcV1JIw0K3dcDh1mD5HJWmOKNooSDnragPyr2LG3TNZtXEXbYrkJMyUycppyUG00ONialIx8YuhAHCIkNmYmKSjry1OcICflEm1kVSZPZOOMeW+X59GBHF4ZsMtBLC5z7nv4/39llHEOZsuKgCRYbM2VZsqHcwqETFtHuPAzLuJXJ6eemuLxkXkVtR9ZtVWDwW9eSZJHb7GdWzDfaprmLGqR0aLyHh5+XSW0SIiLKuetd47ugFEp6o0z4hKtOoBYC38EHXVXVroCtf8HYHnBHXWl/LZPf8asX6wqunRNDzmcFQ2zqjIAft6lsb6gdLkmQ2Twj2TQhaavhpt5ADgxGjfVssAQvra/rukBovjlWfAxXFRlcgkB5KroeIiLLL11rX13rat99ZQ7Iuylr10rdc8n12QI6EkEcCTglwfyRcoFcFCAo8Ulf3DsHJ9Dpj38nq4H+2Pc+HX4HYA58lSMCQ+spP07uYRZ6qgyDRzTH7MtbkKSxPFR8DEKjJ8eHiaCJivpGV+QkmZKQB8wyPMfM5JLEzgnVXORNQBiA8Tk7JvSppmznHqEU/FdQbouzjzxKQsSeDw1c1Pxp0RViV6lDCJh4yj83FLJz+OLVMu0HFFW1Qj+FhX40craxKAAjTp4ONHVZ2c9HCRgg2tk8/JeO/ocOuEqYZTiFADGYgJ+rPMMmNHt1nn9jz1kpDlBqR7QgEb11QRYhIGGlN6K8o0q0xMXCzk5CzuBjNT0eJYHhMkXr8PEsWKCBhxcoSvwTolpa4mjIUF4HU45teiLdxXPEDXkhkZHLo8POreZ7Gj1gCFwMo1ArtJy/CAtLV26l7gExdY0w0NXDW4xSDB56IwuOZSraEaExIVaVvLzHGQg26OTM4ldzObt3voa3+6XiWD8opPyCOm+9vt/vXr1/f3GzOJaG+Ky4a5qrbetpRzqxnRmOP+ftuPHdd72/r1GH3rOIkqSu7KogozTsmaaaMhc1h/q0Zz+EIw2ZxZekhO4pa99W42j+MYx+FPz2Yuamx1PWobTuZC1vCAoFV9qGHxekNwwYqbjL8CfnWUyxCPF4i9EJ0PbcCZXE46+or3FWDxc9bJ5ur6aeW98wotkweENwzEH0A2BdTsusZESSHcpCxN0eSggk1iRVbicofi8BU1lz6oZmfMIXyRxpEG5Fo4WJSSRbatXS69tYZVnIUUweRJFaGZsliVNXuvN1irKc/gcz6wRz6W9QElx5pWrJpoicgrAVdqyLq8IEtUHDvhM6aaxAjLyfsECJgiZCwiokJwg8fjyIIg4pTWw6ZddI+DU5q2IGFuop2Y3Su+BBWzjZPDQxuIdLL1Do9/QO244djpB9O3jGwitBZjY0ChIm6GdlFFzCWJPMg8VUSKLwlPCRYJ8L6ZqBAL4F8l0EMYokI5mM6eoOqeB4+qPpCs61CwP8qDWH1CRjWx4UFcyvMqvpnR/yGCeziVPxK5g1DgYF+kQ5ouGKdQYpNvlVaRAaeTPO0t0Zyi60iSFatVMlRp0SbNU8/mQEG5iXK+JSaiSsZrKo7boEjOJXAERJ011i5iFTGTtmbTWFnqwdPZc/emuXZFeBCqITxhSiBXiNIcXKL9WHR8wn+zpCQpGb+4Y3AcgKWDwtNPbw0hVmYWNnMixmSucF0OX4YuqqKoxEG6JhDugOFVs27Dp00bE1yf/X2f89j3+xgjkoi/Z08ick8LszmDaN+P9/fXn3/+Mo9DVbfWUKu2rV+vT5frVedQVfewOaa52Tz2fd93yhTV5+fnebHL5aK9CYtqcqZFNM3r9ULndI1FVR04E7lHNBVoByxV3M0mBmFMIgs1gS+IjTHM5tabFPcuIxIbnBwHAsm5pAJZhWcuRgJx1u+vXjcpPJi5GukqOHOFsVzVfV0ShPb1z0djXs3XQuioCAORWZPfXKfjAQflubjY3R0xMhKjG8D0OEWI+CGs6KPx2nAtiXkRjav14AVxnXkReUWUG6t7wLILuQYj3N60t65Nu7ZekgoUXwzwjYmCyjKoKD1ZI8ssSixxnoomlM5oVVYEWfClLKpUjVrWY6UTm1tJd2WJR7mIHj85vVjDH/uGxHQkPFvTZGq5oNOI1kS1aVMRdvemTUidPItnIUjDzGBhR5J4Tg6KdABJIhoZTRuzsFLvnUlUW4USRuGeNQmI5EwP0+35hPQjI2d98iIS5YvALiEqxtxrlIXZj6D6bqrCSkv5UCeSi7a/IlEyL0rJh3avznNlT1yFDx2xcL3l8MIk17GBwxp/6D5FRUPjUe1zZppDL0qMpVRecEqkmBtImswprJGxchP+j2M19XTiqOWAUEAJiiAps8wkoozQ1pK4axMJd+PVZ4CTL8QwNsaYUFlUJbAi/HFh8QwzMyhSWTNJmJoKnjsATMy9oIJFxmhN2BagkCWPJyJY6q+Tiz/Bi191ioFdWZv0AiyJM8nMN8+UVMDYmBwxC4P8yRIAvZF7/GT74zUUDtmECUtMWVi5KXGAcBCZxzGOY3d3yjj2fYz97evXYxzaRJXSaN/3rXcPu9/uSXm73X7+6Z++/PLV5sjMDfgKUd/6dn3aLhfRdrlcknKMMY7jfr/v93uY96337ZLm/mRu1reNRbfrRdfI1iIEcyb4YRfbIINJhJu7pWtmj3A2cuCeiia5FoG62XHsRKCIZe8ULSICFjXhoSqJEqJM9h5YTcJTI5bz7ApSdQ6gp4+6RAxoitYA8tdF1K9/yavwfwQvhmNtVelcnoOPP1q1F3PBWA6KYTEvOTNDcnXOhXUhUuI+L4SpAiIzk0IHiMVpKAPPFBDVpCPFEbGkNEmvPJUSnNJ77x1bFE7n7WJBCGEtUpT8hPAv9X49VtAv/ynAD1BfB5WEhJZH9kqljznAmQD4V7/zgN6Ykms8SUQlhU1mFhIsMEIBlAZ0nZdckyhhDicUoa2M7QqvyVSiGeE2PQyDLFLlYDc3NlU1d7dIpnEcDGyXs+Rj2qj28PHqLnBRLWJJitDiupFgf7WDMIcmBuRRV5vMzCwOM6KisFPGsjLkWKUoLR4AzhZSW42ei/5AJExJWEOOkU8+BIMV9HHouQ4te8BGuNLGwugIdAw5dywiIWGiBe05OrslcJUQEqCZGR5oTjIEAXRJzk42SHVkqzAKruIGw9mMYMm0TECmeBcsCuVVUigLc3uMSQR0NfBoq/wG9ljoLi9TrayBUR0RChGFvpBZVJNyjY6J10MjCWZm0arSKUrBXkPeD3c7SkUfWVBkelgA+BVJggmYBYUYj6FM5CwijDYqaZ3pWsx7ml9TRM4555zQpjUIf5qqat82VWnaWDiww7IpTYnkMe397d3n7jZt7K9f/+nbt9fjdtvf31vbrk/Pl0u3OW/v7/f77fXb65eff769v+MltBUT5ujHcRDL5XrR1ohojHns9/v9Po8jI6/Xp5eXKGzabG6biLrN1trWe+8aGcNNWMKCReYc4PVQtGPOBqKFzJGZsriegBCj+Hdm03yaiaSSiDFz9441YUBUcXvoRFHPoSw/nLZQmZ7l/8cwjla9YhwtKg//Kh59CPwnOPQAM7kKZaoivYpYVK25CgrhDLAZKzNknt8Krm1pzksOTdJISEKSY9F/V20PsLyahA+ESZDz+XyXVbnDq77A9Axhaa3BIahp761v2yaUDU5KCyzOIlogsCcRBfkjTEv1AijMmShXyb9w119lxw/RH/AFCLayHunjmVd/8HFmXA1cLJ4Xn0h1ULRSijJnMDVwQDRSCVwOQPvKRPDzSiJ338sW9KACjcXciHPjDrnE+cnD+g0oAouoNJSRGSAKxZw2h81Rqyzg/zXH4YvI6O5NFh+1WsW08KZNVZMkPeBBpPB9gJixytVCUirr19NQEVbsACrorVpfPJSC0c6SnwtsWx8LFazDxPzBRu10o2RuopnhqhFRGSkfVyJrAMBE4Q5Tcf3wWlYKB6pVBF+W08q1GkdgUAEp8bpfuW5oRQBWISLwd3Mt1VoIIazj6mJLMfaAywC8Ilr3pv7OD8nOas+DKCnPq4OxV2Fk688lYUSsVOh/FW2P/gwWRsKCBXJwGjIzMmdxIjJzylQFG4yDAmu0QDRChwjavpkNm1A1lpjKfcyx7zslUQZ47621bdt679vWRRsRm9lxjP3Yp41xjPv723F/v9/e3l6/ffny89vb7e3r6/vrt6eXT9v1uTc1t/32/u3L169fvry9vob55emybZtPze7Rmk0jGcy0vysAQJvgRViYC3O6k/scIz45E8QiGmGttbxchMmbsUm1vBk2PdK7KjZ4t8igDDNL4k3Y3VhVZPERl40l0jinWwiUqdUUc0Y8OE8npIkQw0X0Seg5qqA+RUq0us5qZuVEotcB+1C6/rr8f4RvZopcfTr676TSkrDiZIZTikrN76Og+liooSeU5xFRm3eEIqiTkrCefs3ELKdROWM5XR1EYtgJrNKDiZdWl6qtKdApiLM1xfWnJJjrKdcKHTlvF3PUpKE4CdjjA3snFmFYjzAn14o+rd18C5vlmtFW9/3A0nLBRR9r/wLQ+PwVLZSjvgMJgO3SfQLRxTYIiQhtZE7K4uRCFJyNJZnCQ5lbU1llHQAIs+nmtA5NKexmhMcYw9zapQvLHJMye2tEDLNCVoEMIiOYwnAd3NwtweXLVJGwAJEkogZbYQYBmOtsrW8Z1DMoPLjB0lGwSgCbbRaUQEXlKiQHLhPyEV6jdfTxAMHW4hptVVh7HOVcCu368D6YXiUEaInZAiWMxiJcRUWSVLC2qAA2tNbJEZYmQiKg1YK0ghQlILShRUvC0sJcPgfFjiWG7tqTePkmUXqpapkE4GhbCTW5UmAdXakFAJnr+nMBWdX7Ep/y+YLCuDLAg6oN+I+EtQ4KhqgOIheRPuYtJCKRZJEqCU9Q5McgCk7LMLdhfow55yTOsJIiZqY2nWbmtFl4yGXL1jT9o74i57Q5p1vkSgBjzOPY930HsIOGq/V22bbr09Plcnl6fiZidx9jHMeYx8hwyrzfbl+//PLLzz+/v78f+z7aHu77fW/bhYnmnOPYb+/v729v4ziE5bL1NOeugEjSM9woc85bJHgOcHQuMMPDfFjb9znGPI7WNxJR1X7p27bN43nbLsTMqtrU3OeY5t5ERbhrbydjqsi5LCLS+9a0Xy6X1ppwmfClhycxSyCHVg39oSyp2FzRh87YwVUErBi+BrfCmVnY4xnhS5K0aqgKp7/+CY8gVXEr6ZxvVlbgEm8RFYhRIBQRi0DvJ8y4/1HHb/lmiETxTahhC14UQpiZ5FHLmFikgIGl3IVBlNeeu8cjCggTw9Ha19upw1bUQdVWv73UpAS6BVEtxI0sZzpaa0xEVDUjfmUOsNIgP4r/PJ/UOZnAQ8Lzr55m0YdWUkD4KvRgFZcsySUNOBEShL0MTUjKkWWjUwsmdxcicFGYCKMnKsJnGXK510K+ZGb3Ocf9OC6ZqhoRulSZUnNH9ghyY5IIm2Ps9+OYY845h9mY6PprPUDFvYiF43p6c81MUSWajTIZqBs7sSy3GeaiJoBEvp4kCpXVxRZ0wlWirkf0K/jn0Yqd14GjjkgUi3HRfjBbzgUbRrJgE5Zo711ck1JFF/pHhr1d+MEr9oN+z/glSzm6U2UaElqLjyKiUH4cf9V1MIgfYCeVsBzlJxHBRIg1I4kjSEtqfoI8LBJwSUo6bTrr4QihxstVHP26S0VbJ7G8LXBUcFgzCd5cnJnOxKxEKUmSTVtwYf5u4dPNfI657/sxBlGmZWtCxL52T16e7CmezGzX1nsXzM2IM3La9GkeFhnuMeeEuuV+vx/HPo4x5hzHERHM3BpQoHa9PgEYYiGbNidWlN7Hse/v78f7zfYRZp459t09tgvC+pzHPveDPSSSOWOaYyKtQkkR4jCtCw83IJ1gNxNlBk13ajHnmMfc73tr8J9rl+vWWx/H/vT8pNo8M5OmmZnNaVtv18ul6dZEsYxPRAWONn3rvfXL5XK5XJr01rtog+BIKGprRYaFNVdhSuD+zMU4ERjAnVgBZJdxpgR84HUMPtws6LRptQN0ztBQOuWqMU5dWK6pFdEaBlbZigBaQRGFOpGwkjBRiAinMBFFCLOhna54XSWahbMbCXMqtL8cVfWaOXGIbAH7jRoGFs0mwsccTORhEQkM2nxamJsRUeeWZ8uCuMBruL2uwAJ9EPcDHiPx6M0ZxhSCtYas62Evxcuq5H9dz2dCDZhOVXXyysYFCnNtucHXPlLFGdrgN8BEzibMlEXbEuGIQomFpCmnJBF5TQUJAaWoM5ReryHHGHhEOH0qwknD5pyDiHrfWm9IDeRp5L2puzPE7ERuNuYccx+4cMc+xnS3jNi2S6wPJgJLKuGCi+EMej4JRENlomrokJUjoayOSDltt9cRq4BLD17yOWY9IZ7VE2SejeOZdIlAgCh6mrAI1TCZ62AiVqcymRYRfV0TIlZ4ajKVSqPseJeDTP31sAOqFoOJq8ko1xZadyyJU1gznGmZQqBBBssWSFpSBO6hSAaxBBFJw1au8zCVUzHWxQcvkTT+9uH5EJ0iemCkKMqILEmq/HkYQnAkiwpuKnhM2ntXDW1edUzMUasnbNjYj/vttu+Hh1Nka0pEi3FL99u2X6+t9a13JIDWWyZl0JwDaxEzcpodx2FuHjGOcRx7Zkyb85gBiXlkeHqYiLTW+mUTUXezaeHTjnF/f9vvu5sRhYpkhM1BJKFOGelORG5uY8LBaA4w7lgYNqAOeBFiGflYzVWDmG4OxvScg0X61kR17L1v3ea4v79pax7hmXNMQKa9967t6frcWJaysvfWumpvbet92y4bA28TzgwPVxV3NBNmZpjyR8JC5UMEwnTsDD6rv63Z6VkQ4RdZJcYZSVc8rw4gT2b6wlZofZuqfDgjQ1gfrToBS5UzuDEXypyUAuGBrezDLMIT9aE7BmtMRJHOzmXDBhLeZGZfsuymnjBnI1KtZjwzfa3dDjeAmVG254Y9MKrC6ZyooQVTX/wIKQgYV4+SygsBRPhCn8DGa618J1ZlTwXzMiPmPpqmkjVlDR5jNdgLly2cFfc3zrTMZyu1Jt5r+k3JqcoRQjV4YSFlDcz7M1Nh5hUhzNIa08pnJR7UKLk0qNRkc1KDOUBmxJwzIo8xpKmkCKgLmeEuopOmU2pTJoI/0HGMY8xjjHEMCyzbSZ6WmZjvQaWFVgzLi7BawCNouvR1qoSZFVH1PMKZGbzq2aAQokworxL4yHrsOLTVThUXgaoTyLOeWbhj2WEajjg3WVfjnOuQJKuqZqh6hAQGkywUaWH8sakoQJ5rTKLFp8SMurjYdTMysjT8EQaITFeyIuby9sMoAj1uLaDmiHDzyGy9tyaUTsxuLk2aKhUbkoU4gihDhCT0NA5fPQiVFrhwoVRqwVh7UGPys/IL0HAypicTa0ogypu7R98u12uPvqnjAuLlxTH39/v769vr67dv9/vN3cIcjkAOWCdTW79cLqJ6uWyXy0W1we0mM+c0CksKdx9j7vvdzJEAIoIoMFrI2mRJZfg4HSmXmNzM5mRmH3Meu82RkellEDBjirQ5UCZ6mC9MrEaGgIvNTFWFsX3L6/ychCRcXCICNONQgE4RDTdhttEOkbHvKkoipaeZhsJLWbbej+utCTdtvV0vopvoxtyYG0vLBMld3MI1VJwgWWdqoe4Wrhn+mAmBc00CtVRdnwWRANfA7oIHQXpBIFX20CPoL9ynvgeXLGu1Bg/wJ7kq/Tijf00g6jSnsMA6gYWTJNOVWZU9MsJL5pE0zNw83XBQW8uWLJJuLl2oOAYwbcnIGDHEpbcNiQX/zQ1zBLcxiJLEKQgur0gDFDSZs8PWrRaXq/Z6iytwL0yqyiKDt1X1AJX1KBg+anXxzzrvI2SRtIp9OmMcZTkB5NqxvD6Ms2wNYf1gbvCYuPC6zUxCDMLbOasR0GIfMPnigiLuZ3BGCEtSCisM80SVIpi1tdZU0x9sx8JDnLJxZklmHZbvEeKBInaYH9NHgbaW4T6dmCxduYdoZk4LzKFFNSJ5K+s+olza5GJwqyKESgVTvP0yx6cVoQW876QUpD8qzhmfXSSVByDGnDiHSYTtZHAiHzYjgoUzsPM2FEkdzqaFKpGQNGkhWLabNV9gBdiCgQetQ5OrN0IaC47lsFU9ZkTWfUg8AhQpXIoqZhJexFSkQ2J479Q+BiNmO0aLgHcrC2sAwqsiIyhLKs8P1/s6nUKcsogNKMeDwWUSxdmBQrpuejAFh4WFRwQN8mlzDqc4joNFLtvlcr0+PT0J88C6E7P9/XZ/f3399uXty7f9/m5mWQq7gGsyUYpAdK/a2vXpadsu2LqeSe6W5aHvc/oYB2w5pk1eFdNi92Vgp036NANrAz+lms456zNf5k4Zwar7cfTI1lpmeJQLdDpnpBlIdeLhY06RgHSEmd2danRYZcTS+ifcjarYBjhn5knhhgeblEmJBEDE0dSO47jtTXtjFSaptVZbb33xJZiIPMLNhggRY5VK9t4QO87BItLSSXQruGFtClttMi2lKAHSWejfCvK07BZXy8iLe7nCHp2mg7koGUSca2fsOTZgjJTzEfqE2U/ZE+COpVvJTDPDBrQo6hezpGRCQ6YZkhIRxPBTzVox2pqIK2tSNQCRfswBOgpxhCUTodFfG45SVNjYyFVavdRHuC4ohmp/oVPN/WfpGRbWI3VlcAF5gb4YnSWfU0yq2ExVyyNXJSheTLz8gao4XUpeLjpWEjTcJfWmpLLJPAfwLKRQd8XD2JLg+0swUCubMKAuOW0C5sbL59bCjZm1NUbZqyKqBJ57LncpWkwQN4+wCA5iaTAURpNegj9zQNW9dTPfrp2TRlpjSDCIlDxCI9mTYZYTDwVH6UmYUdoQ6AB8vgpuLMTsYbIaXSaG0UFkCmBASO5Lql2Yw+nrhRHeNHOzjBDlJs0osFzyw+OFAxpGGAljOncoWDzLkSmQdVUTFz8iUnK9WgBYdJryEOzjcYLhMATdMlNmRjiXvXQNneqQEEeEgHxJZGZJNMNb1+t24eVEIrxsBTxZSIiXaVmtuyO0XEvKQzXGFCJM4HAdkWvLCcTd9v0+55x2YOGPjWO/3+/7/bbfpbWn6/P16en69CSqFuHTps39/n57fX398uX9y7d5v5tPM08iCz9L6VMh3rbe+2XrW+sdKR/kMoRYj4rwWFCT7hVYMGOqOJwePn0mvNwBW1XIr0FPuJtbZnqmwNQU4+0V26pbr7gI1DMsXZMosolGLRVFqUJBIWs2swrA9dAC5EdiYZ+WEkSMSedab06tqxBP1qbalBX1j4q0YlhD0OU2hpnZbNMG8+J2ew/MwR9zr4I/az1GljhqBfI1CyK83A9bLT7QTFa5SUSPpPErSPVRhJ1FLpfLxBoV0IKV6g9zYa8f4j1lWVfCscdtDvdJwLkSLW/F5UjicHcBMIrdtpRZYxkmSMpRXlDGrOnPYT4zA0pCnHd4mkFABzyaennXFPYFQm29vIxMc0M9UvYGxPCHwF/wwl9jPxFmFeVTlP+hJ6j4u5IpE+ohBBbccDyXXDGfAuxuxuS+7CIwHKgQT746sDK2xOrUSiQBW41EIcPMFW/czf0YwxFdAjZKTVW2wvqJMtvWLZMypSmBkl8GwHGMAqYxj6KkMY5pw9zncQy3pNSuwhIR0nq4Q+E5j7ldr23rBUkve5cONrcWb6ZpPzc7433yWiCBMsIoJVNV1llLvMG1hhE+qRlRiDnKXKYaKgPRg1mSzZlurbfQ3LglW2K6CsSuIHjPtIiZ6ZRO5Fmh3osVxty0URCHSQo7wzMUQmzltRQyks5PkZI5PAcKl8hQ0CFZ4uGGFu7m69uEG4tSUqYf83APYpZD6JmUtTGnpnL1o5lETm6eDeBXqDY3Q8yP0sowZRbjPsIjphscgwIriCnd53Hc39/f9v0+j919RMQ47m/fXl/f3o/jUG3Pnz5dnp6vz8/o7WzOOcd+u93e325vb/vbm40BJVd9iJGJelkKkWqHattxnyp4ZJUvdRtQvYVPs6yyaXXiSPa4r5zpwVkboE9uE8odeINlbfBGpKeIh//NGpk+xnio2iODk7zKP4TAYlRFVcRV/hIvki9TMEmrAVXU6gJzC8eLTXLCSi9qDNuZBjJIhIfFZGYeJJShJq25HWOqkPStNZXRul8u8ATO0x6LCvSsQRgvD7V6oBRL4cVAIM6QfcYoXhPOR6jPRyhfRfKZDwrieVT56zMjyjxXd67QB10XZZRpuJvbGGPOCT7+nMOmoRHS1rQ1kXLfdfOsWDMjHM8UQIcRt94ImjkmN59jzmljHth1hJykKu5IAFFEFrjNJIqsypVoIhAa4cgYVJVEUgqLLuM44NjCoK6LLgHNOl+PR5f0ETPDiaLVORHa9qUJwgeXmZBCEkktnaRC+hbdZX1g6CvLu8xKMQlFFnKDV/OP4+7uDpb0Mcd+v9u03jswL3CuUZSlUu9JWFbKwjBrnD59xmER0VpPwfIjMJjD3IfPyOC169gtIoZcL9en64/f/Sac9v24XC82p4heLtvT03NXxVYZbU2Ie2vbpUslADlB14gskI8XH5rLPG09R3CDcWPTPT3SIgxLIXJdAqaMxNwCrKXM2CiZNeFOSnFqYpIyLOYE/vyBKVlW8g7TCAxUKMnc1ESSQz2YvYrc08GfqMS9gbofez4qykSwkGQxbXyuVRYRQawCVDrDY0wbY95vdxJpvcHrZBOlbQs0jsIJplwSz6mqymxmOMnBRaIDypYrHw6zMZeXVJL7JMo59tvt/fb2eru93d7e7rd3s7Hf77e3t/t9t+l9295eX/vlerlctfeknMirx2HHMfdjHke4F590hSF8qCwYrNKcERquZudcPCu4IMdHZpijayrc/3EFVukE4cMyt88Fx+FYYMJYw8NMomSPVA+QOKq6W308BgIYctY9K05tFAAF8lhdY1kKjpXfz/KPTzpDJsFM9yzoIgNZpdFKRnBFYDwHIbdp8xAVbT0zVHXbNuZtHmq9mV1tTttMvFzyEAoyuPpP/mdPKOvZMVNRcJgyqezCT6iHFxb9qPhXGPvVX/kAiOpHLJBzPWJkCa4PA+0nalCbE/82DSta3KbhQrIoXy9n/YzYaG6SmhnmRV3Hz2NmZXUzo+RMbWo+59zH2MexR4ZNE2VmiVQoFMMoYs8kSEiYkjnRu9cuj0fWChwsQAFJ1Z8tsocy1qbLEvxyJsXDln1N0SsFLKAn6XxKq8tFdFofFINoAE9Eql1RATHU2YgllcIvOcM9DCMukMwMM0S8XShuwpsqM03wq+ccx4F/oeXymBkiqr2JiFC2LDsJ7SrCQenhY4x5jMzozbO231U5mR5b7xnh05uomUGT8en5+eXl0+9+9zuV9vXrNze/WTw/P33+/PnpctUm8OJurfWmrTVhBhcFQBt8AODzg3IrKITYckrD/lsYbSTeKgBihydq1BobpNegCgARMc3mGBPGRCLa0CsGrCxQxDjAoqr/w9Ot0IQwmzYtM9eQliJCWBE3aQTLhbkRp89keDThgwcKFjX3n4S2ArvjhaJMJqaHec7V98D3jsyPOe/H8X67vb2+EsvTy4tQy+DnyzVIeuM1dE/DOq+okTugVQtnYVDjQPgizphuY0wr5j0xY7xic5jNfb+/vX59//r17du32+192ri/3+YxMdNzs+O+S7v1bRPVLO88C3fyCHOKoITPflKtryMmSslYYwZMHEAGw3C60M3132Hlv9JvVsGUC/1YNPMMoqBcsr6IyFpGxl67I73WAGYkBRtxoyDBnmfGXA05h5mWLwIuK2OL56okqMx9K7QuMhg6CMHRRYtV1s5VVK42IoOYnUiZG2W6O43JxI0ohIn5dhtcFMMiDLTe5rwQ5eV6ycfKHYtoEbVwh2quvzx/ZHWc9TYWTF8J70wS678S8Qci0IcS9vwOCEFcof1j7/D4AkR/XmG6fg3o1NxrH+9jbVBAuOE+USd0aO0zImrhOPjIEbFMjgNdla9uoGRwI49j3/djHAP3MyKSuCkczAsGO8aszxBkjMU3zyrJMtfHlUS1lh5AiTRtDSripo251jIXvst0/ksVAuuxIIJX1YIQlOTFezol3GeeRajgR6yvSv/xcWXtBVjMHmKAG9N8TncKiBUB1g8zIeqt4ZmO43h7fx9jgBtnTXvfVDUzWBot2ATAXV2GMlR0sznmgNNBBs3pSa6tMYsopxMnf/fj909Pl9dvbyjh37++i3P7/e8uXe+qHiTX69Pl+pvvv79eLoQlKth9KNxayyQPz2VGj/VdFhyYMGRScCMmEagzhDmJCat0U8Ixi3DLMIjTAssNfZUNBKY5/o+I1Jq7j2lNhLgpLnaE45qlH3Mcx/AMm4bPxNx9eR2azciQZcRDzD0bPrdw0JCZi8vDXOb55JGO5Q3TIlIkuVqCihNWn+FkEY0QYiaZ5tN8H2MfA3VoBk0zm/aJ0hoGp5ER5o4Rd9v6ejvuHqwCiBrLJpnSzWwcc46x7z6dlNOTmM3mGOPt7fXbl1/ub6+329v7+y080iM9RZQFhDkXC59WktWIFWBhbp1nU02Lisu0DAcoicFgXt7R8ghbuWIIHESyvjWtVR8nEF18gEVbqanHQn+4BEY1+F9fF+kpHLCqQhIi4EerTAN2VIgaQmY16oXcrthXBD9a5l9VviawIi5T05X68G90ppBmZhgiTxue7uHKiu2dzKQqrbUMTQ4RrdI8K/GFn1nxIeZe17b8DAAM1itAfRsSTKIfAvyjkv9VnK+A82FEVzEtz5fxoTUoN4SkNXDIQjV4fYwRa0yYqxsCQTMCTN9oXSgz3UlVO+xNzinu9HR38+nunkwtNyLeeogKCp4xxpzDZtFKMwkehxiqu7ln2jQW6UQRLiKAUIRStPxTa5RXZp9KDVa9rKzasY2ThXn5RRfVGwFLpCgWfAZqZsrTVqgKEwgsHbu/McpdWB0O/wL/iZKcvNy3ishJvEYrNUUs6BbP18ecY8w5j2HzGMPcqaRWyUzHfrzf34/9GLcd9e/T83Pvm6iI9giPnNgoJiLE8DHHysAkBo5kNoeIeFFVpHfoVPx6vfzwww+XrX96eo6I/bb//Dq23lXkeuk/fHoJj8vT5XK5fv/dd+DOiHBTOBsG5oKO9bvVicucIuYeMcHFZXY3lh6eTOSUFiQqmLGF2cwIT4uY6HfM3H3MqUuolUFmE8A0E2MsLOKZ6ZEq5XvhkTbN3PZj7vtuYXNMIlJtQJVFJGe4+yRnkeuFRXsyu6d5JhnDx5Qggk0Fm5+Sicx8DHOPOTzCRYWCVCOmJ7O7ucUc877vJNT7lp5b2wx7WJLNbMwx53Hs+8vTsz+9EOfWu6rOcdicxxi3+83ctm1LogyfNqFfZeFt2y6XTVkow+Ycx3Hs9+P27tNAz9Lexhj32/3129fXb9+O/TaO6ZYRqYuhVbN5tDQeMU/WH6U7IIlYYjWmcrVa4a+iMzNlKsEAM1mSg1xYIus74HKgIMmILDO1RdnLB1bNFZF4xVhObG8LMNjOzh4vgimIBJ6QmcGZIGzz4u4KJ3HxynjN2yryPX50xVvitZGCC6ml08olz7eRgWvOQSyE89/wmuBLlRFMmexRLC72CC0qDzg6GbW7ssYquWDhCh0seCnYavKhnuTH00eZv97WI4Anne+TkqFTr6C/itp/DgWt7JGxFnudbqNo1KqORQbPJE5KhBBzJ6bWm9cXspkJCxOZmTasXvIkQsOeZR4H6MhrBViEWxeVWt7kzvD/yUxmJdbetCk+ABbNOevYYg0epbkTGTckcKoF1oX8kJze5SJoxVDKYbkKpgKFq53P6UTR1tNG0M6FQlRBYmWDip3f5X+UmYmdGzVeyVo4g++SxZfhlWGSKQUUVZzHSDIPcx/TjjFv9/s0ywwKcjNko9vtfb/ffc7wgH/cdrGgIBEiMZtErE1Fm7CgJeLTeYlpzBFj9o5tOUpJvXe36F0/f/50aRe7jz/84TfjGO27H//2r//683eft95708+X56fnZxZq2kTFp2EhJcPsWpjXJk6zJKrtrNKoq1pka03GBG4T5iwprBGZlE5JQcN9HjM4wsPMxzGGjTltzOFmRTlsysw2a3E5E83BzJkwUo3MJNWSfZnbGHMf+33cxxj7fifi6/WKCWNtiMQtZKHM3rqwmMT9OLCCTSUpE0cowCQ0TBB8uA2f+zjcTFVMvfWGCeaYcz/223G/7TcP3y4XFT3mEUH7cYx5eNiY+3wbKq/23XeRZj621vvW55z39/fb++317fV+3M5DiF6IMrW1p6en69O1iYTHOPb9frvf38d+j+kQ05LwnLbvx/12v9/uFCG1LQwhsbaXwXQvyvofFMIMosaKcqWAUBHs367Ac0ZoIK3IDwvyldP5vNAVWLZzuucqspfVWS7KSYmVmJYmatVVCUKrCPmK/3neHbDuys+q0BFiIqkQuKLimpnHB1C82oKz4K6htpRPOAQqQK7OP1Avb4VURN+GgSM7AxpzA2VLWIREpfhBwoKlYsWbR0cHTwxUNoQeBMxl2MUQI1rFGk4/knCBM3n2Ko/XVX992L969gf1VPj89xXxk4jdDcPU+nDyHL8UEbdSCIYdBY0lE6uqCXQxFR+VOdzHGKrNUbxEzDkAbsNiCrQA1cO2Du2fT/PM63bR3vAxsKA4VZuTtQmleEB0I8wiuvYHBBX5rDhwtPhFTRtmyFBXgPHNwk1blf6LPMBMZwNZp5kLvSECsQ+Nf7HW4G/l7hICizVm1sKTJIlEFNAUXlJmeoawnJ9mFQZB9Z0tzPCpffBe8IRA5tiPY9+1CRPdbm/H/WBKZgozHcyczNlUtXUzYxEyVnVqLSNFRRIvjW3aPAZz7MN6u2yXJqKX69N+H5Kcrtfry/MPP3z3+YUyny6Xz9+99N5vb7dwa1d9fu5zGJOnGR6YwNggyC2T0tDOrs5fFZMeaq0FbU31OEagYY9ElxxBNj0jIWAGDdzm3Pf7cYzD7NjvGdmatLZdLhvMfPATQBof+6G9XS4XopjTREW44TAe47jv92O/32+3Y+zC/N5a770ab/guRKjq9JGcT9vT09Pz1jbKZJBIE8vWwW8QzLzM7X6/3+a+7/dw75etceu9a+vEeRzjdr+9vX17fX2dNrfL9vz0rKxzxnHs93Hf77f9uI37nSJ97sf7+/OnT0oiKjbnse/7/fbl65fX12/hZmbMDFmECrfWn1+en5+fhXmOOcaB/485KKI1ZZYImh6GVhu+2ZlhjoWqDnyWqU7jiWmgPMfiFzAP19LWetrMJ56DcgLTYMI6UMLgtBBsKejChEWIVdY+8DhLK7CAzvq1VPS5DPaImVUoI63IL+iSUaQLIGKOB77KuHHL7yuD4JFdQmink+iIQYZIwFqmoiRJuR7UjjNJigh2ygQgRiziHoU6RwpnI8oMd6ICHCJKBkOkytq0qbbetstFsYyvd0wgcw1Cqcp2Kd5gpaY1GKbilgvDarneb1KBUI80h5CwYjvj7S64/2N24BppxpkNqr6vrFn5E5cslzE4EiNAA4RXo5UGsho3tJPUiIhrCXmE2ZxjRsGa+A2PDFVtAfUQeiHprQY4zMqUItqkM0u2TCYyFlUs9CAVEg5ygA/mRg44MkXPZTDasFoPDUCteEEXLIX6kS8hEy9HR/74rFaaLGYa8rdn+nKYqKkKMyvHOVcEMMnV22UWy3Omr1aNqtEhIiIzwNzlgxQeRBwec053a6pmPueIEJ9+3HczU2ZpWvNfj/R0j0wjEMbS9j0i4/n6zLV9uiVskSjDQ5tSaXdla12fmiT/4Q+///3vf3Ptfeu6NRVOibBjXLpGY+Ycx4FtHlmqnKR1rVkoo+T9xKQqImDMJCtLEjN3lf5y9Uj3PGx6xDDHVt59P5L5GCPSLXK/347bfc6yKHLz3purZczWOqwD55jhxkzu1nt/e2ezmUTbZWOWMQeMaLBL5O3tdb+/U9L1eoG9F6qV1lokiciLzwy3pxHhs/XeN2Z0d6At1ZTIw48x9v12u91u43a73cO9b9tl267PzxkEJ4X7/fbt9evXX3653W+qsrXL9fLUexOV/Tjevr3e7m/H/c5E+/39+em2HzdOzAtsv99ub2+//PLL67dv5GE2W+/gFV9a2y4XNs9prSlYmz4s3DKMMse0SGISz/AowD0IM0tAWMSsGFgkrR3gmTV+rMo8H7X2mo9mnStUhutrFhSRhQ4Ivi8TyIp1l/C9BPt1l5yZ1lD2TAh4KSsCRFYO4oI6srT0xGAK+ILri02Hb+NZ+/7Klz5r0feCMx6AyANEqdkv3hBXE4ORwwnOVL2QlZMWXN5ovQV6fC8mhkCDESu79i6KFg+mubTqxPMRZCEC6EdKHoz6PlGFUzA0Nwvvf4DVxJGxVjusZ8GZWYttP8QzOrszeqBPsQYstEBvIq4Fv2YTjV45NIAVm6sRWYlCRanRnM7QPbIRsS9RH6pmx35ukDvAOHDo7lW09UvHK1BWYGgq2lsj5qSYHphVsjHzCd5LuIswNCGZVOJM0d6atqbEycmigk0AksrKq/Msy3XhhfucXWkuNH85mfJaElvNc+CXGM9VAhA+vdgBRSZOHq+xdFKkuwUV0MbaFI/RrDJZYAdIIu+fI3gi2DQfASbonP70dBWGFK6LNCLY8khEiqpHMjladFGJGj0wkaDiZumyXZ6eXr77/MPvfvvbl5fnH3/4/rL1xqyUfRPO1DLrr7kkC4VbNE0gaSIs5O6UZxBIEB8ikoJYSFUozC2Sg6EMCGpNe2900D4GU7pNt2gq3759G8cxbYwxDhtjHz7HmGPf75TkW9v6JdMGHdokiWyazXEcx/RBkR4xxmDmfrmoKotkxpjz2O9vr6/fvv3y9vpKSU8vT5e+td5FpG09g9Azvby8fP/99+bH/f6+bX27XLn0j56ZrfVSJ5jNOfb9/u3rt29vX2/v7x6xbdvL8/PTy6feLpFIAO9fv3z585/+/O3blwxv2n/4/ofr89O2Xcxtv92PAZKlvX+j93LEvIrKcRzvb+/Hsd9e3+wYALbJY61ZYoUK0WyY7bf7nKNCFS5AghSbeQYlYkg3qgwEeRAb8SpwVrWNgpIZLE9ZENECHhCHH2F0AemFkVMxLQMLKJemlTITMEaSMPkqwSsrZMZiVX+EJ8rWpUIvC9XOAUSwINb1/k7xeC6APBgybwA2nsTF4y2Q/YTJEUUrBJzDALzizDMqnsphLl9hUK2SiTKoUWLtUFXVyzSFs2xrpYxEW++9q3TRJqxMrGVdXO8xF02plCcnxkZETEKCWovWMOADSvTIPiu8I3aAu7g+tsqr9YF9hIAKbYiF3NWxKUudqMCURfkEM68oTIX6EBGE0MSGR+kBZsXDDQ21RGRUMZvJxJdLd/fs2bbWWqe1oSjmZGFpjVUpibkkWszY8ggjM5Tgzs5mhrq/9ZL4FuefC9aqR32iNJQEl4sK+mfb8xiT5PlJgolQJx2fFkBhEUk+MzYXpQjzBjqbMPQPSe5mHm6WCbo3sxt2UuIRI5gWTkqBJgmUaAxCIG4g5m3r22XDW94um6oC82Ks39SCFCkpwvkstoi09cv1+vR0FW3PL8+fv/v+Nz/88OMP33/+9PTbH7+3MThTYNNfBUWKcoxsjcecGRzDvZ6xovgHuyHXDxEWbdiulW6GrcoZnkFwjAwLYt+aCl0urb/f73OO45jHfjuO4/39fb/fi108jn3f5zgiom3tenm6Xi6ttfD0IsbMt9e32/1m4zjGcd/3Xt6L/PTyrCxjjtvt/fb+9vb67fb2zszvrxuYYJen69Y3j4B5wNvz89j3Mfbtcr1cLkQCBSuk19tlU22qMo7x/vr69vr29esv72+vt/c93C9Pl6eX56fnl227bpfuZve392+v377+8vP76+u0yUz312+9b1vfksgm9qslc4bnoTKO/dK3yBzHmLhpwyRJVQE+ls9jUnokxzwmM8Elt+q4NTWE4ned1wpDBXaWzUGW/wjqPzqPPGILLHoClRCfFisnhLwghFX85YIs5DzvmZkpRCFl1cQ40FTS+So2QR+S2gqZ64dX23FGZGFNqQ1ORetBEIxMqelyPYM6tdUyRFE8VyMCK27iMvkmULeqbi5P/vXSKsR/yHlEKSxRDXpF0xZw3qNTtluxG59YicS09e3Stk1bb9hU01uW6n2t3aqpdcnDpJYVfghGcLQAWrQ6tFy+V/U5LggHuhtCi5brAzsxJaje1oMsIRL+cXrVUCJm4VqbFc8HL5bX2w2Ys2QSZW9bMnZtZwRpk6oscvFxg9zCrFQrqhKNhS8wSCUUlUuIBPp4dZHMXEiN9NaQwczWEiuE55bbtqlq713XojnEo6zvUHCYoI2ErTQ/DkDSOfNeZ3v1wsJ8PmlkU1EWguEHa6mJa+5TjWnA2AtVb2JjAvaRrsqGauSPARURJQp9y1pbAT9UIk4YPDhPqoKiq/TeGvaFSW3XaKqtykGuRV2YVCdRWE3Unp5fOHnbLt//8Pnz9el3v/n03fP2cum+32RBjaJSHY+kzeI/p4M/Ghj1glnUmkLWCxFPZSEhAjWL08GMQF0VLipCMs20Ze+qKWNw2Bz325z7/f52f7/d3t4sQAfbxzHGcUR6a8223Z6vrXUKmuHD57zvt/e32/1mNscxhplwnb3b26bcpttx7Me+z3lwOiXP+54ZwmLHcbSOLEXCtt9jjNvrt227vHx+iUgYY+777u7b5dJbF5Vwu99ub29vb69vY99tWGYe++397fX6dN227Xq9usc8xu327uPQqgLouN9sHENaEupSYZLeFdBkmk8/Av7G5pzZhLEsMij59ChF18oo06uAPwNygK8NZDOLr0ZnTSflm73QkLPnXxAQ54cgckaedVaXA+6jP6ZHYcGAR04XGqIM47KBzfP/0SPAqyI+fJOKTrGC1FnQFsZDQiLO0BpUxVvU8KQlxinmduEjH21UaG1YJ0oKgl6blyQZD2z5qT1+NNF6TMwkQuFJnLBABqW5SWtQq/IKURIMky0RYZBA+9a2zqIiHbahIoopZkITGzWgrr4tkiWrii+jOMqH7xiuUm2HL75McumDV2dT1lLo6R7TYKSYh/aY6gFCpgjyNGFaAu+L2vjI7OG18F5YU0NaVyAaIcxRmtrCGuCSCGCNQGGBFSLQnznNzMPDuQnbZk0jzKmTkETGdGiA2cPcseKxKprVceJDhxwhgoNqBXOuHRvwUyOFomNZbmdNURbZq3IhL6MLWnBm5cCVDbKUYCWLWy1S7Uzg6p9XPkF3jGp3Tdjpw9MuvyqqAVQQk1bPlu7g9Q2z6XMSpSpcBVlZBjMra2L7H4liYQ9jgASBW6ZnpDZuTfGYlhTHM2trAn7shfvvvvvht9//8Pn5iZJU4OHMKqzKFmFhMUE9pDSKCFHIqZHmQ5Rb35gZK+O53n3ls6obUSQk7L1TRLSpiPi09Eym69Y+P12P/fbtl1++fPly7Md+v2X6HOY+x37YHB4Rvfk+9ts7hAuHzftxHO83G/ucU0Ul6UIMBwnKdD+MRmTEnGzZqW1dS7uBe2LYWY6zRX7MW7we77e2ba9fv2SmeTCzubtb7xsG0ZRkbnOfNKKlMKuH2xHkdsTdj+H3EaAiD2MjTRHtOGpMrNxAaUFpIkTC0kRhj8q1OJ7SA1ADwU1aMEzXVcfQeSDXSHzFM2GwilFOr+COmCDJSRTr86+qkupORSzEgSjL3f9XqSBXmXTewfqUq3r3SDlvxipIedkjgcvzULYHr1cQ8IeIFZIeEl5a34yqsU7M/U+IC1wdWETQCoq8mlH80SqC8cNiqQ4q1nPFzzP8F7ZdqsTVqBApizYMINdXMRFlC/PIdCLKABWdJbR17cQqrXftnblh889qxOjxd4bIKcM9mYNYFFQtxg7bQtfylJ2jhwp4KVHiKegpCF7t0cmEykQgLlCCeeEeWaSdssfysJI4mWUSLB/CYXi7kjGVE21fH/+Sd2dTVZVObbqj8GfBnoQqgcq+HeNTFO/pyqSqrW3b5WLT4DUY5tNMlcXFzAi7fTIcJFoDtJ3CMm3iZWx9OxHD1VsycP/koHOdTeFnWTv4CrSsg0rohqDew/epcmedhlgXK2I1CuW2tmA7ysgy+T8L+2RiYSXSIOciNDChl8RHxNqZCeqhY8z7fp/TkrhjP4YRUxlZwMieiKWpNBHmiIANCzN4Z8QRvfXeS6VY3RVL094/b2HZmMnou5dPf/EXP75cuxBHGItogjtLlGnmNm1C2U5kDsf2rq1l0pyTIrV1VcHIGkeEllWCYzwSXniYVTKKILJUaUzEHE00SL77/OJp/+Xvu43x9vrt/vYua6PqnAe0WjYPIZGmxJKU+5xjjLnvCGbCunX1oCDqqkVTIQliVlZSSmxRDlFOiYUlUgLsYmVlrF9wc7OJJj6Lb9Byoj9m8qBIJWksLk1aY5rCgNU5jdznY8ecaJNmNtODmxKxciMmljKLroGVwJiK53TPVOIZySyYPiP6MYnAWgSRqjjrEAOg3F/dImFmhCDAgSlC1nknShgiwdP0AwnnA8KJHIA/wquiZs7y012BMlfljkIKXQmTsK5IxERae5ezZrgoEPADFg4mHrGsGOjRXpw0TZQVmFKcWEuAvVqRjIgkmSNFShJOzJlBLCeYs9CZ8+ckc6XPiMAa7hrrLQ+0oMA+OBZpTWimo/iviJAt3IK0gK1MImq9E3Nkauutb6Akswo+xEiKIA+P1Jr6OQWHkxtLkjdW5kXRrV3B5XdRQFcFl0dvVrKDEzmjRziiNfY4016us1AfyDI1y0xoatDaB5YOwkA1yzyzKROxCKswmhJV9XCGEyylNvUMUcYGqwW+AUEMURYrTwlKD7e730X0ch02N2b2GbH8Mm3CjSAjnZLhJmhm8ziIIqPhxYu2y9Z7Y4xVMjmcehMhySQnx+MSobNBpRrSl6QaKTKzpI7CfKq60C/SidAAxkAf4mERnERy4pVnFZERpJigBe4GI4I3bWYuiv3glT6ZeWQS5fA5xhjzmGbIbUINPGcDu0zUDBMXQYjP5LBIRuXYVJUKGCR8VBmZEpG0XS+sQkntqW/af/ju029//Pzp5bkJtS7Ums3JlCzdDcbFExKEJLYMkBF774nc4NZEKcksiJKFnZIjiMjTp5lbZJpwZsJ/ibm1pGRRER5jopjApdPg3/744//0P/3bf/kvfv8f/sN//E//4X/5+uUrLOPDp48JU0lmUGbLoQT7XVuTrl2wHY+YVZLIvTgeKkrlZB5c/JGoCwAyADiLLEwckenJnCK1SZiS3Ym19rFJMJFEppAIiVNkUmtbJkqXDAsrDoUQi0jLyK4bydoUgTVwq77GNKJ3rc5MiCmYU1iEe3ICkYOyiViiimtaYYCZyjNasOYui/FStXCugedZ4K4GLas3qMkcAFIBzkplarQokisu44khjtdC+ZOXyQjHJ7DCmSQUaZRyhpjqpgsSQjnFJyJFVN8EL5PPKJdn114juGIZMFVdTEw1d1SAURX3qJDugsQX7lMuVMKamRzJun5MBdgSAeAZp7CwKENvP81orXAnohaYZFhy10w1D1bRTFkfGkUyi0pD9Pekwyx2SioWyAzPkHAO8U4cSS1JgeGKUKa71ftepWjUfDmDXDERh4yLV3xfMus1IFoPjzXytEwAKFYzBDx9XwYsCZDdy4GZgA4rhOnwYGjOpGJNwfAJeOkYQIP1Yt19zmE2M5ZG12b6cJvhKY2O/dhvdxENnA2R5HR33DTHkxSZji3Rh9tkoZF0fQ5p2pgjWyaRSCZFuMXkoM7MKXBtEZYgAjELZxqJBQe7UNG6HuRZZU4ShWObTSFPEQ5THfdyyGWitBTNnuqakqpMmMS6h4JrKsQo4YmZuLdm4RyZkQ6nTPcQBU3WxgxPn36/7xEO0PB+HPvtHhmUDv+Dplwzv4yksGmYAxOTqtgkd28qxEIS5MRCrTUmmsNEeLv073/8/un5Six9a117uIeE+6Qq9YwCG5UoM2KEqHpBhIhjKqLaezU1wuHhZjbdzVYh4iRM4W4EEYxKvcimGMyQTQsK9C2/+eGH3/7wm9//4Q/ff//yf//3//7nf/wZtCtVgUA4Iieee+naSJKVWlOVpkTCMIKIJEm3ICnRk6OI7ps0D0e1ROFJUkVlZAgLNtsA6OJkdhaBRU/BFOawtOMUapeernN6ZlAx44iIgzMyW9Xq7OSA+gRfRJRo88v1H1EfxWuSMmorpQYCPjNTUOCWAtQlyeAUpkUJJ2YhXQO8gHSWk5g0F8WZ8DZZOGWNDx/FO6BXhvgmgZEzEbmHSD3rWPeCsSEEg74VZ9GnADkoT0UkYIVAMiINs8KIAlwkJdgX0FLACpBUrgyXK8x+mPOu3642nGE8VfgUagMp4sZaz1eFvzArUVSfz4zhM59vG9vOq3qOepjECdap59ZB88hksunalZnaHIO6KjepTbcS7hGOxUIRztSZOTwSfqyZ0tXDpYnOyYcQsWd6qBNFcG/kEcrSm6JLPdErdzRKKFsiWSR1zfZLQwT8P4uRS1SFb7Vz9UQWQQgjgViQ4dlTVJFcDinJ674Tk4qyAnBjZoG7J9na2lBiqchaCFB6ZwxkwyPPRX7uNp2DpPVj31kE2nRsmYgI4szgdNytOKbt9z1j+phQr3iS9u3lZdO2Se8sCIocns7uaZpNSZIzhNhZtbYQRyaTK0uds3MkVoVL0KkaLMJEJiG3uFOOYRY+zYNJUG5nZmbLpkKkySEzpooaIwBCjRthsNAgXo4omWlr2YXZPI7pNt18zAF1T9fWWh82jmOPSLMxbW5b16bYvzHNaC32qqmXkDRZJIZgIpjIi9D16dJUe9t+89sfPn/38tSbMGfwbseYR1fpvSelMBb1hIgmVlZpszm2TbFcXhraVE4hN2dh9kiPY4wxZ7lEmTOnKj8/Px3HMLMGjWpSEDXRCBLiUvNT2Ijee2Q+X59+++Pvm7b7cbSuyelmQAPGnFh8FR4qkkTCHZBAemovJw8sFyItEFQkkIfNnVlV0d+RKlV3zsWNEdHVRrNqqyFWzTEkKVQUhXB4JHNnERIPSFM4V48IUsuqcynh08eKUVGCH96YMkVgo1RrwymX0Xsyi2YwJaU4I+py9dNLsCrMQuQ4wCwMr7SFkSBkYw4rwpJlrgA2OfIPXjJmr0IJc0lUP5Um1v5k5tIOlHSAmaEzXwU6fQDfqUDVGo2W6o5rzlZx9vxBEFqsCeMpoUed+pg0rB9R2CklZXoS1fIEtPnhyQIUdqHtSURKgsEQeNxFs8cPigxJXqmEiMrVlzixuoC5GPt4C5FMVIEZXkCZ3iIjvLUmidEOGSaZzDB/sONID24ybfat8/UavmGrGQeZNhZuar3r1huml1vvW+/gNIqwu4GLWDk5hRKOtvXMAVStTiYKP8xMJglOxsphL9CjiDxxdgG0dPzYU5TErBaoM8EpUW3a5AOtT4hbbx6ny08FMyEmiUhLWINh2BA+xn4cu9kSiEVkGB2HiJAoMbe2DZutdVXOSFtyzaDcj+njCJ/z2D2ShFP4Op5fXlh7O0ewS2YdjTTIgaSlg1wvKaeAgGmRDnAQ/JR5cVKkR66ZrlYFYjZsmvl0s3JRZooUUXaezHDDlHONT5Q/BH455zzMsU7CM+Y0+KqaWZg705xjmkH5Oca+73ef0+IgxirqGZljjEjqTREIRIVdSGnOIdPHMVU7dnL5iDmnMM9plDTmCM7vP396+fzpu+8+//Z3v325XsimwE3Mpgo37SwMb8Wm0lSS2Em4sYi23oU5wpo2PDyiDHOOSE/DmChciZ05PRxTHO3HfrgHJSmrWfQueBrEkkxb6ywx5gTEYxZMGeZjjmSwEhJqOxTsNg1aVM8QZmdHyV3gNaLI8nmU4msXNEEsM50ZEiHH0Fpg8qZZpQwn5unIBHCAoEwiqyKynJiRv4OJ2dJZJdbWzABymEU+FyJm5XJzIiQbMMYiREiYhEmlxJBNxA2LMtNxQ1Fd85o0USRJ1G1lLjxsFbFZJIbCClZFB09rLrY+vgwbClfIRhEdBbYwn40xV6ioYp8Tk+ACNqt+XHgCM0sktcKOgOZi+ig1Tj3BFkiCl9t2ZAhJpNP6Kz+0F0ChM9KRMTCxBnBNwdi/kdlaW3k4ah0b5MGZiaFzDW+BaMHoICVZmqJEPvNN0goAROkZ7HOO3qT3foyxkhw1s5mJpQccfQNLPcxoI8oMM24tYk6bx9wjg1Sv14v7YPI5LkfvR+/aemsKZtj1ctl623qLvJBkoxYpFBzhENfUhyhV6btV2mcG7s7VCzJ23T0Y2gC4F8JGmVRiD8pVUkjL5GzAhFTYgzMCE/gmqsVBQztZLjsodszjvt/DorVGKjaCRTPJ5oR0fvq47/f9do855nFgx09yjkHCnAuccU7P2LInFsx4zGk25zGmz+FWsqDtet0uz7EkecSMVU1QDmampCYnsYGFEMIR2TRTsomwsq+BACpxh84NKayif7lmJTE2Rk+zYXM/jmNMMy+xQW9c4sZDmJsqpCXkiWJOW2Mmi2mG9ifdYxzDy5d4cqY5NjK6+zz2cdz3cd89POZ0d3NDYetzEos19T49rGVrrSWlG6JPmM1MxbsYY4a7Nt02be2yv96s9R9eXn7/4/dPvXfmIFKROQ/msvfBTREV+FicLnupzKTuJlRElNLweMCCovc+5giW7SKZGE44Z0qxvw5iImVgj4BTmnJEjDkoSUXapsnY+xhvr9/ubzdyb/0y52Ritwo4TZqlRzovpgpu+2JoMWHpGXyoWAvSXUSQpf/Oc/9f/cXLDpBJpRXrBh9/ZOLNrIBUe7uFIhbtfPkjY8NtBnu6nJg/kWpTxr4ASgrCfAg0ZdT/KkTiHqLkvgjgnFjzzrJYI6tmJjoDtTCDdpuLCQK+AkKs5jrizIKBcDmkha8HB3+eoGQSaMEQ2Clh6hdLRpRFm0G8j7VesAJrxXOHTxetMJtlvRmBiOO50OwE1f3BVV2jjY8lP38YYObj+8YpmCcKEkpWSKlhVyHJRIqYWGAXNjAxle3vA/IPAs+kwJOsaqMyXnlT4NxSiqo0lZmOz6fNMZyJRXtvlKSt9d4ynCIoPGyGiY3wNM8wcxY9rpfL/cmP/XK9tr6pKmu1LK01be3p+fnTp09P4SPssl2w9MPdOblhjy0n2H5M7OkQNSg/TEOl6lYYcq3fr9bq3Fib68vxm0RE3JSFsZBERCRaRC0dVTgNInUwM7E7CPyo7+P2fgv3p5enluqJpVIU4VjzdRzTxjyOw+e0sURPmj5s0GCWoZ2SuCkrBwsRp5MNG2Mcx36MfR7HHGOOA4ae4eX/7uaxAV4kowBhKx5QfpkZMounqIiLNFpXhzOIwsMyh9k0H2bpyUnK0poocxAbhU0fc7y9v7+93oZNm956e7peN+/ohWHt2XrXJqci0D2aKJ8QqrBHzDHcPSixIYc97sd9v9/CIiLGfgwb+37f77sdB/xBakdMBlBBFem9q7br9QmoF3i4NcjGdmUKZf7zH//08nz93e9+83LdXq5P3z+/XHuT8Ax0d8HEQDNpkTlAGl1tPxEluOrKfdEFyIPCK7ai0O6qGIdLk1AAIzb3ERG9byLNZ0gXFSEPRD3KmHOauar0y0WYbVpybr19/913kR6Zc45jHJSAaypwsOrpiqKSEZHBEQk8BIaAVSRG0oqP7l5yVhT7cLEHllU0awLVEpdfVAV2ORFYR7WyTSHR+CJINFMFwCvukiRmy9j3lg8xCtftxbC1uBWtNW2Z1FpmGnMQR8XA2k/JVX0nRaQsZAJ/Ppmt+HxLnn4Gt2X1gJKPH/x/4PXri8oZNLjmIxXvCvRgVhWMSQqySfwn8oiF2FOWxxtGtMxCSQw5WE1/KSi1CKgZaLmYBEMJAWmnOhaAMMREnjXURBDjReKJWhRBxMTByUEC+zZmCI8SbceDQuThtTNpUTlgXcRM5f8fyR8eWVWILMTnSjIHlVO4nH0bbrJILuQt59BxHH27jGPXJNUws2MeNt3ctWnGk9mRPua4ijY4LHgx9LVfL89Pzz/+9rc//PDjkz+NY16frsKSEUwcW+emMV1UOMl81nUlEgnVWhCDncQiIYk9baX8g3R6rU6pj9lXzSvCjgVba63EY3hcB4Mwm/LIOee+7+Z22/f9fnt7f7vfb5SpwtE2DJlF1d2P+74f99vb++32drvfY0yC+oZSs4nwHJEUlG527Zdr6x4RIhLu08YYxzyOWlQ0R5gRi/UZETCFn2ZzTFkVXNOWTFENKmYQhHymKl3b1ht5ihBmae7pEYP8vs9jjPvYKbKJNJKtNZUWlDPtOMY+9m/fXr9++Tp8Zurz81N6ZFybqlPu933MgSGGiETUNeSkppoL2QVAnlnW8ZSZbvf77f3bN6xOC3MLu7297ft97ocwEIkg4QjyMGnSxmE2CSFY6sNhFoC2Rj7mkRn/9PMvv/vdjzH9/u39b/6rv/7db37/+fOnpo0D4RP7DBAnYzELKINET/igLncwN9UISk4Iwqk4BzQH9nQEikdcbJj+nZh3Zowx3Q1CsYg1tQBaFOnhT9dL23Ts4y//4l/8u//9/+H19evr/fU//of/+L/+5/8yp9n0TOwc5WKVZVBmRBPnEHa3BPy+9vbVe+KSWCJqw1ke1aQIVjlmLrwYBwYGHZTB3EkhHixnglUgF4tdmEmFucz7WKhR8xojBdNydadMSg4u3Kl6F2YiYZI1+sQJVlXUncVmqcL/FCquLCQLHK/P/0xOGGEBDHt8hISpOSUUsdjbCzEVC1OyiuKa4IeebRMlLOEyeG26Xn0zrWajMIXAAAQjVqYg1kqcUBoRe7mOUb3OZMPrrKHro+LHFDlXW1A5DYGF1kQBKeoxiP7QFdWDoSr8qR7x2Uec8BgRZ6FpRCvxLWxg7RMgWA8IxKrn94g251QmahIRc87IYJE29otdzPTubn642xgDZ16bRkyVNo/7uzYiiQwzAwhgkU+fXj69fLZ5UETY9351EdDIq4xVdhFx80zyjDlmZmoTleS5ztZ0FWmqLHla3WBIwBhBrvFKUsLXnoiXMX2ca5jqWTMzS2adDLhA7MfYj3nM4+3t/evXX263+3577029q4MJQiSqY4z77Xa7vd3e326v79Om1HEIJgoz7SqmNm2Oo4/9KT5tflGdIoKtkHC8wg6sCM+yJ4+wcdzv4+l5HINInFIYtI3QiPL/pAwPR8Jnaaq+IRmKBAtRimAJ1+Hzfb99e7vd3t+EZWvt0vq2bdhgPWzexnHbb19++uXLL7+4W9+uXbOFNQkjOsbcxzGPQavWK/sfD1XdeidBFQGGeLIw5txQONzfb7f3W4bZsIiwOe9vb8dxD3cmElUsHIykVCZh1QZj/3EczHLcD2EevV+u/RgjJd3mOI5//Ic/dc6//Mu/+Mu/+Bf/6l/91aenT5TG6ekuzMVWEBnHSIwdVWk5FeZDG5GeyZzQPELElwELxASZnTLmHOHZmjYFoSuVmbpyl0gymxExxrBpl6fLtm1jwADc8Emlh6+FLb//w+8+fXo+xn2kff/DD/sc//SP//T+dsCNh5JIMoPcXJmDPYUTlAO3xObuzNIFJZqcFR2ZsgzxCk3xsIQmQCSX4UxQdmFmDq8FdhXFfBFLmJk+AiAAaDJAWoNNKnB25OUC1DMzeF1GoPmZqzVfkW6BbOtF5qMsXbNminCfCPDlUYOwysSxtrytbxsUmgT/eq90TuVrSwsNpszkUiasGpvWz/UMYuwDXmZXsXosWuF/TRaSMoF8PRA2/ExK2CacqSOLjpjrCxYBe3E414OqWUQ+ZoLVH9QMb03a8ITg/YgZCVY1rC6OFpeq3rSoJBOLVhLFi3igQeuFRRBkr866zINgsdFAUyd2kaILMFG/tLHfmWLrW3LzaeOYGB25230OIj72tvULMR/HGMdhbnPMSHr9cnn//GkeR5jbGJ8/fy/Cl+0Jz30OoyBpAp9Ei9pZ1nq7XDZRPcUarcnWNxXB5EWlSRf3JeUOkA+ZmXGfCR5eRJmBNUwYkjJRa909OUNUgEaMmLfj9rbf7vv9519+/vr15/1+xDy2rWe6SHNPT6eUMef99nZ7e9vvt/2204KBVSg8hKVFA0WBJs25JbHNeb1embnMWOYcYx/HYXMwRXqwtow49mO/v+/3J21qbsfQbdvg9CsR1VFGZOR0t3Am3rZ+sav55j16gzSD55xj2vu4//zty59/+unY771tn55frisB2JyH7be5//Lly09//PPt9VWVLpcn9n0+XV+/qRBNNwDQc0ZETHO32k3QVHpvjJV7yLTgfrCIsNd+xzHGbezH3Acmw9OmzRGLAUxlpsKpDHrutrXW9YlDpc39PueQFsmX+9uuve23PTK+++7lyy9f//qv/uVf/9W/enm6NmW3jHCzwdIhzZ42M0NVMIccE4vmCfsyk7gm4p7w480wFsL+8ISvs2O67SJsky/bJqrhZJ6soo20NdFNWN7f7f32Nuf44YcfiAj2vqzSewsLG4PbBnx827Ygb9L+m//6v57u/5f/8/+VRRNi4gwmca8xIPS6qsIpmYFVkuEU5MxKZ4g58c6IzFQRSnYPgOY1VwABAABJREFUWDcmMiErC7cmkupMTtRbg6kAKAu5bghULxWeK/wW4hIEISSoEmiMsJJIzhkoyC5UUpzEIJdWmjmb81XaVhzCTxORokQKLJ3Tzzi+ZF0FaiUlRWQyGbOUNjQ408+NW7DDSidWijTJDXPbIJQnsWDjZCaYn1NV1CjUF9DKZ9tRmZW4wjkTR/jCnmJ9Dou0iWeWSZXngmCrvB4uKvOaKQuXSpXW+mD8bTGfMJxRYQE6JlLG8vXeIzkwwiEuMiRL/aq+WRQQmhEgRuE/4AihOwCnEWTTFhkqnJngF4uKTZv72Pk9fMR2tQNUs/QBqBnQiArlfUx3N/M555iHm6vqMfZpR2akx/39/Xe//4uxH9//8Nve9Pp0pcbHGH5P83Ecx34M5L/e2942BTupMLts2jCZiIjWtF83UDgjCbUSOs3T4zNrbd+HcoI5PLYe8GNgbQjIt/v9ly8///TTT+/vX799+ep23G/3rhqzhwWzjDFBjjOz+/62v7/fb7d5TJABmCWUCbJQPzBU5NZ6OBZozDG23onSprm7z+Hz8AFtVEqSjeE2jv12e3ud49i2i6g+Pb08f/oUm2vrSWRRzYOFmTkJXy6Xl6dPnz49T4vr1sNThN3GcYzX+/uf//TH//yf/pO7fX75Tn78jffLoY3SjuOYfry+v/70009f//HP+/1+2dRbj/u3+9Pz4g4kFM02fQw75rTp4BkIc++bYNCnzd0js/UuLFvXDK8EsO8+J6xvkjLMKSPNEzQ6aDmZmMRsDp+/zHF8e/v+Nz9qa2PMOee+vwmTdn1+efnHP/50edr+4i9+LyT/5t/8m5eXTxRm4boQn33fBVVheKUo4tpW5MTSIIVBbyos2gR7YpnJDrM5mCli3t7e7/c7ptmwPrlsl+dPL633SPJJ7NI9eu9ta220MXiavb29fff5MyXZGBHW9EqZ45idhJjNp27KgyLi5fnl3/5v/9t//3/793//D3+KEajvKiplRjgxu7M5wS6wClYMBAj2qAVPnR1tUib8NZUp2Av9FydX8FNFPVQa40qC13rWniGcnioNgSnCEdfWRrq1tiPyjJThziQRDrBbKsQ6iUMhhjcSyxMwHq44tPaoQ7EewhvW6LqnLIyp3iCTm+cKi1Ehv7xf3ONDdQ0Ma3FjSvcLcaRLlcTCTIUUcWZgpO9E4BMx05KgMhOlMHnADYKDSKvFoVxoGFfCCPy4lfyCIqTq0sAqlTO5EjBnWiOK0yUC0ymoOIioqFmUeGng4nFx8JKc0plcJJOqPQW/190u0iVDK0sxhVNGUCS3yqPuSY6Ob7qpkLamKpYhzA2NX1CcC8VhgOPuYWI83EhYVdjDzY2JM93NMmqlvc1h08OCKMd9OLNbUFCYjwNBYTefl8v1aX/q28acGfl2e3v79na73THF2rbt+em5bx2MWhER1W3btm2DvEtF+96btNbYPWxaJoliNTm5W2ZOt3XQk4Fki2Zks9lUYa8T4TaPn//pn/7853/40x//+Pb2ZX+/b5umh4nQ81O4UdIwH3Oa+7Efx36zcbhbeqmuODm1qLhI7pFJQ8LNbaZPG8doGzObebibjTB3m1TMhpyD9lujMApvvcNP5en6vN8/X5+eWt+IxSPGPMY8xhxzzKS8Xp7G9/txfLpen6+XK7BcG/vt9e3nX37+T//r//KPf/wjN4nv7jnn5XJl5Bqft9vrl59//vb1y7y/c7h4J5bww+cdNX6WLVqPyDH9vo/pzlKyOKxsJGaSBgpGa623Ppsy5xwjwuZxzDH3fZ9jEqWbC3N6cUtgs8uUEhoR9zmPfX9/fXv99oWFj2EktLV+3Panl6e/+tu/EabXL6+/+/E3f/dv/+7T588RwUmtcZaf8RBmJ2NmyhBuGTrmmHOqtiRhShvOxMPMbRIlS+tNlOD04EHmw+YY99u72Zxz3G/vbt62/vz0NOfx8vn77emyacsUYQ4PEX55fmYCHORmMyncbL9PO+bz85U457H36+X99U1UPOzp+ekYU1n/xV/+5X/8T3+P5snM0Wwzl3ksgD5jU7jFUAjRNAuWAJ8DWEZWU5sZEaGsRIrhKDGlJ7O6moowW6RKioqEC3SRdS+qZJTM2lO4QPDkJHdARYCwE1gnfniYBbkQuNrATYKJIyzCmDQ43WeB3FUmR82vkijB+GY3IwkEP08PLfQjErITDrQECXkGtjzlGgdzJcBFC6E18ksiXUsBa9vLGjes9EkA7TF28nAmCgr5ALiLiNdel2pKsAUXRtMiGEGWH1xUj0I1Wc5cUf/8J95GaQOKqi4s3JJr4g2cShQ7Z7Rpo2RsNauRchTtCfA+s7BwNeJIA5SNual4hk1fEkMOrsYmmUpHXHNUSkr4MzfhduoZOOEuzwJD/GmhSi3DAwylDCYHOJgsbGOiGaSkMCeYCwtFUFoc7zfOsHmM4/5+e31///r86dOnT5+v1yt53vbbt2/fvn39ehwHC3HK5XL57ofvXj59AmJLkdv10tu2XbpNt/DLdnl+eVHmyLTp5kgAYN+3WhRr04YlhYgKeP/awKYVbl0bCx37/fXLLz/945/+9Me///Lzz/v9nSmfn66tqSeTT9WWTGMYyJLmc46R7glYpqyjGFoK3Jx1RMWP5Ijh1lrPPnDYsjyn/VwNypRhYXceaT4PaY1ZuPFxfTqOT0/X5943Eo3MY879uO37fRx7Zj49vcz7D8fnH56fP922Z23sPsZxf/3lpz/+l//yD3//H1+/fX16ebowS8auPYhT/P12v9/f377+MvddibYmQs4SdriPvbVGmwrRNA5V9ziGjcOG54lZz0Nq/McSTKrs2rNvuTV8kdk89mOOse+7maPwEebaK4GLaCQiFrVgAe3tcdxRnc5pl+vl2tq40+3bt9//4V+Mw//uv/m7v/nX//rSe6ajVrVjzDHgWuoe+21cny+q+v7+NqcJK+qq2C2CWu9MHDbcJ7M682XrwuRmx/0ebrDrd7cwG8fx9uVNtxbfzYyYFp/88/PnTygPicONmurT0/Xt1cxs3/eujSj3fd/vd9XcLldsiiPK29s7K12eLsCF/9t/+2//P/+//+9P//STmQvDH40jIiYREQSSwnAHweMhYnKbJ0GeE0Y1sIlClVp9AHhWALuFBKTotJBUUo304rzW/JFUVDhYFCrHFVULH4J91gns1x+FvDhSFCiDVLGYCf16XYGTyAN6ZhXQiTkAZVJAQUweJoIVPLT1Xnb0EYklEGtukQuT8RNGqQ6oBAAlT6ea2hasIkRgGaJgX6+iZEd8LmpPoiABk0YZhKXSw5ZWNSiVWKXYtEEstd4iiqFFUl+aZXnt6Wt8m8zYdEIVfRfRptISRn3MwgxpZBMRwVQeQFQQQXCS7MiUAD7QHLAqC2drKsKUMskSC45VoFhcEbqwoPD0RkwpwkLKRA3ECaCQgE3LOIEJLhIBp4Xg2vzKodqI1hQkKCxwejDjFQpMueZ9t2Ps77e312//9I9/ev706bvvvn9+fsrI/X57f3t7e3s3N2ZKz9b7y08v23Zl5mTqrV8vF+zEwIrw5+eXz5+/27YWSWOMMUat8mRpvWNoOce0OZMTRvN922JxIy7Xa29tjuP1y9cvP/3j15/+8fXLL2kuQqoUc8/sJOIzYqpnjGljTHN3szBjJi3jY14ErIxkd0dDycQsEZxumS6Unl6bcxJOpesfBNYpx8wgKksZ8Ffm9Wpjt+uTaGNunnGMse/3+3479j2Jrk9P87jfbren50+X6ydmypjvr19/+elPf/6HP77+8kuGT6Z3/mrHoa1n0vRxjLnv9+P2nubaG4nmdGVsLwuJFE8Vzsj06eYxkyNpmnsSViA5LRyfiMmJvGm07oeiM55HAf9hRksyT6qEyo8XiAmZDBSiEUmc7JTpw4V5U/78/Hx7H+/fbn/4A/8P/+N/96//5q+++/4TR7TG4zhWFKHeu1BMszEOgPz3454R1+crpdnwt2/vGf7y+Xnrm0qGuc1BRGFg2tEcIzHjzhjHQZmfv3u+PrV9H+M4tuuWzK/fsm99u/B+G/3ShNt+jMv10lTGYXNmul8ufRz97e1134/WN1D0rpcW0YZNmxOcz3/5r/7wN3/7V3/+05/CnZNFW3nBYPkSgYBZS0f4JAKdMZsZ1NAq4ILXhNuFhXP5kKGQS+FAxaYUCnnK4hyiOI3k+o6gmYBSAQZdRq5RZi5sBmAV87LgFKUSczILB+FjjSgAC8y1KM+0AI9+GTFkVC0cWBYtBOtzFXUKCbwbXos6ivgJmtgiOFYYXV7D9VSIyNOEJUM46ezPWYA55Zorx1mhF5pUE+YiGGZiywqrFpsQpz+AaweEzaWJSC4GK2cmeVkHi6z1VhWsa9Cy/l758vzWwsLSVERJpMhU5fWFQM8CDlbUTCi4tniQCoukSFKkEFsGs2YGs0BIT4zt81WqRjgTbASCE6IiYVXVfnp218yHliACkooSGdUgv2ZEVDKL+hcAeSXDYM7wY5/HuPM3vb4+f/vy82XrwuLmx77PMTHiyEyPePvyi/YGm8Prtm1bj8wxBvamXJ+ePn16eXl+9sz7vu/7EZGk0rT1y6WV60uCY6OqFCGtBXGQUkTvTSjH3N9ev91eX23ffezKrCQcxdwSSskIt4xMs/RJEUwuHALjLxwzEISpdJ44BVDFMMF4Iyi4Ij6V5hInL7MmqeHEmcbnoAxkCKN0H0fvPZIsYs6x3+/7vs+xB2XMJ/I593283FS/qtJxv91vr1+//Hx//ZI2lJU9bd/TDJishY1pbkZmSqmSnKlYGU7EnCrZYEvLWboIAsc562LnUinRmiYRZ1iaBcz0M93NzcMc65ZxanGCOasyQwuflOVxTsTJsGTpW1kX/PSnn//2v/rbf/W/+ZvPL9/95sff9NYFt40z3FiYMq7Xrso5ab/tqny/3e63W996b72p+LDjvtu82Rhp++WyNW3ghbHwPmLfjzm8dW1d5mGZ+em7l/2+25gUIiL72L/88uXl8+ct4uvXr58/h7nfbvHp06eINDNVbr3db/fe2ueXl+fnp3Ecx/3oW2ut++Te5Xq90MFm3rfL89Y88q//8q/+5/7/eh9DRDMMu22LB3+K3tOBBnsgGAUty5s1JYQtWK6pHi2zTEoAzcHggCRzpnMqYbdzlB9g0X9EMo2SSQEy0NqpEbKkMgI5ZgmmMsKFKYO1q8ry7lrNgzALJayNKTM8Mv2kpJyMPRIQ21nWDaKkcBNuUgxPlKvBmbxWfhSXO1f0Ryqr8E3VIxFlYlVhrkIlGD4dUP4u5wCqDJcnZwmQO374GZU/cDFx/EkERkAEk03CD8pa63v+LzMjJCtCiyoaq1xsnOUcxyDcBZMyE3PAK4+FKg0wEyXLEmFgo65XbCWCU5uIVCGx0loUH1JOJtbJh4MxDFOkaHGLW+tN4GmsurYArFakBiCgxlapCwgsI8u/UISYsa288I2EBVx5LRFRmLtP8rTbflwazIqZmFd3BgFiMDMAR+HbfhutB6WZgRhxv78d99fb5RJJxzH2/bAIeMj3bbtsF05qvTFzUzUYAkeSaBL7mBmWkMOOke4d8alImcxBEtKENJPSI1PSW8m5JIWAgOCD8+Bcu82gT8e4SVi0Tg1pUcrcM+GziIEdndeGnCnZU1SKfEbp6ZM8j8N6I2LPnHPascc4co7MtIiZSWY+Dkoh8jn2Y78d+96ItFYSB7lFBnGahbllJFzkVEQpVVmZBPOrTCwcAEONM1XYg5TIKQW4AxUZGfLyrAzACVMzJc7kKleDKWqpRxlcFTsBVQGyZHCi1kgidkrOrqoiL9fLD3/xl7/73e9frtff/OaH777/9HK94I6b2bTxdrtfL5fnT09uNsY+bYjqOKz3dtk2YY7h4zg8jvvtfR7Hztm1hUdSiraImh1Ot/ltuLlyuzxfmVNFs7ntU5m3S9/349uXb/1yEDTkTSNoHIewDhtPz0+Xyzb2fR5jb+1ybden7Tjm+9vt+fka6snR2oZI23qnjJdPT//df/93r19//n/+P/7nb1++eNS6+Sqxw5mDiTgl05sqRQZTSs19cfQY9A/FbJEya63GYgDWB1m2bjVBPZNL0BlNlSJcRQkW+/icwpUyOYUfP5OIkqKQ9dIbkJDIaljgUauSMHZMZKTi6MfCcWhVOMyZVE6vuAtOSeS1OIQzsQQdSANu3Ar8j4p59dxU76tgnSq50aiCpozZSSmFfK035aWawFUVaU2ZiUhSFrRfZV0uWR0BUumqnGuuUSZGFXyZKaL0AixKMPr3kFzz4xNWK0YpMTErl52GFP3z1APV5KBeakJvxgW01GeOV9iVwS/P9PSEjBijSao5fiVPrvFJEAlFMnHrrWlTYW1dhcpqBrvgFcuhpIZgzJC7BUkkYR+E4kMVUhwuKpcHSpJAw0DJyU2bEHOmT1NFZhQiiplgGYtqEmGtlzZNojkHGL3Y8BeZ012OQ7VluHAqZ4ZF+gzLMVSFvLetJWk6n4TL8PR5uDlTUkbjJEnJZOFIRV3fSLpQF9aGORRmQtrx8Djhi8CkmRTJ08x9fRAEfwuWWtJVtG0EPVlDAqIyp81M7NoRFoV5PWFexpwQW+dyvMowTzfJ7CqZJJi3HLfDJ5NEeob5HI1Dm1JTtPUUMGdM4azqJqhtXTJFubFK1JJJ7BqWsq5LzrUJUllSGlN1AhmiUheqiAupzFvDloYMjibMKkzNCZ5eWU73YDQwiSiYu1i4npmRpCKa4sO379r/7v/0P/zmh9//w3/+6Wm7/u63P15692mXSx9jQkl52+9t0zGnTzv2kcQ2/bJtzy/P29bvb/cxj2T79vXLz//0k82BbtqGuZlqvz5fn1+eiRtluPt9P4j2EfM4tsula9PL05PP0VRePl3v+9jHvL2/9q35bG3rIpThc07e+fnlebtejtj3+7315+2y9Ut/f3u3OUXJJmWQY5MDkUdkxA/fff9//Hf/7tsv3/7fx36AVJ3JTWwaFq5RsnAykQplo55CVixyjBGlTBMoMsOzOrNCOSSLLEPEWH0jit2tJbutCJqr8AVbpngmmaq1JYoSuqq1eHcFVsRFZW7EyiRMEgTf9M5MRDOr/wNLk8vNbcE2JWWgEgLgB2VSRBglisilQC8WUEl/ySOEGRkMPH/YHVMuNg2ifpbRNosiPpEkbO2SIipKwwUSg4MAzgOXOxGsOY0IFoKdESX//7n6z2ZJliRLEFNi5h7k0mSPFGk6pHsAjOxisCIQ/Hh8hAAfdrG7s2ymu6urHn+ZeWkQJ6aq+HDUIp+gpqWm6lVm3LjuZkqOnnP0C1ZHmGgVQR+AMTpoqpl7EN/zV21QbTmLpvogWII9LiI6XAsC51NFOZ3q0/DXXYSUXFk9ohQJx/zVg2D75wi2KoHEA7oqBMLUTaOz90KMQXp1RnZWkVJR7YsU2O+qoIguRVVUhN1I0DCwE7Ojp2JSlaIFzb2ZQbQAWA2IU3M3whayUAkKZ1KcDBUGJUa15JnGAg7LeCOioiQiq7UeHcnXFcw3ISIz8oAFj0RQNCK1CEW4UfbWCrO12RcDME1CpWh4GJOHC9aPKCvzUHUoOgyqzMYkzQm+HCKg/ZAZkLwgNhcmakws0TBVgr0w8DhNtCjChURVPU2uiHGpWFWkqDBTKdnZG6NIF2YqShwN7A9BIYg6QxlbEpWcbGGYw1rbCIcohNYIvaAvYJWhMmOvujJTxDBWFR5UBqQjtpxtACg0cKsRr0NUScWa4YJ4eoygsAftHOt/pbUQBs9HQT4L7HhjV0W2ZxKqRZklcuFFsIhZCxYe63a7/em7j79+9/Bv/92/vb+/vb+/ub+7XZe1rYt3wsYwDOlEtDa07rXI7mo3bsZ5Wk/zqa3Lus6fP31al8Xb0tYF24FEeNjwtCwsUupQat2V/bjZWriZscraWpAMQ61le3h9dbdai5Evy3Q6vo7DxqxthmGoGxU5vB5qrZvNaEub52k6z6WUzX5c1iXSw9RDA/ZU8zQTxXQ61yLbYXh3f/8vrDOtKgwdiXTAAWhPLRXCWhTdEuCIcJ/Cd2oLobW8TFglNxrif9Os3ATPPqihuKZePDJxluLBRFKEgpQ5uOUyIQDu+sUhDsRrLVILFf0it5X04SRxqBZb+kon8mwdAMxKHjUHBg/CQZA6uGlhYpbgEDGLEIbpIgUJPJmpt90wA/bkB2WfGc4iDLsxAluGxFm4MLVwU+moPbzs0LkLVRUVLkWIRYhptYuvZ0R6u2GIBeENGxm0cULsuTU4mIQlhObVgUJTskjT7Zlx4smF4F3GqIxFWRULr4I4tEjnhgUR6lMeikbE6s0ZrYg4MaWMEd43rJhPhlNanHpOxBMtc4KrPOfgq3RkqNRSsCtA+giAsa9DSylFVEr6fUf6J8Pi0l2YlVmEtKhRGIVoDKUCXzOXJhyz9GU/kG9HKaoIfiHgbIIKa9k7UOLpQloKEw8KGXeDR78QiVNhCSmrt4sSAwcSzm7uPg4jSZnOU3iQuwRYFsRmTKEqjTEsZxJiZanMQqoiEXWoKiawUOK8dDKIEntEa82cVGRtPjdWL5jyCCOgq6gwSzB2QAszm0U4rFFY2COiSCiTFilFUiJv1qd9BKUfU2CJR1VxITMnYlW0awjYxMRRKgMSlTBvKuFBydoKFg9uLViEqQirML7gOBROvWV6iKWclUKgcHaSIuYhCniPKFiFSMIsAmlJpIhi4mJNDUwwZhK4AIACESK4YEpMpfsVe7hKIQlrakFFpbr/8M9/3t9e/WVfpvO3f/s3/9aXpTJZGNlyms7LuhaR3XZrzYgZuMxQ6zAO2ENdxvL6+nh8PWrwMI7H9Xx8fp7Ok4zl6uamhYn7+XQexqayrcO422xEa2s2L7Mv62bYWMRpnk3qMk+fPz4s03mzHdZ5fnP/Riq1admUzdV2f3w9vj6/fv31V6WU+UzhcTweYXswnSeiYNat1DJqMKSH4WarrdNxur+//farDz/8+BPXrN5Ds0hTIeFcpKHiokUkzDzbcXCxKTkIqK4tFVHMLBbpY43sjDpABcY7oeL2ZTdURgZV9KOEYTIJwW3/Uq/ilIEPaqsC8hWKAl84CZjqgBwjHIXJhdys5UY7kg5IYdsLXOnyLkgk01GYOZRDNbVbShRCymzOhoCDu5CjYCzACiZ2p2RTAmdxz/mfFmbSquTAKUtrATkAdTiUiZh9qKqipUo4NzIiXpamjDfDyqkUVw5Eea3VzFsYtNt4Vh7E+cyLiqxrJ+9mysZaAo4Ql0ZkSF+iUnqhXdPBD1GOk21Lrrn5TXwlbG8nZ2U4R1ERHmrBnitV5KQADQeudYRWgIkk/0qSUsOLChGXYazg/3CuEfyCKooQU25TCWIYcUgB3l2ZSQoQMXElIlXVqnD7DHNZlYllsSaNg6ioFFUtrBB/MAMoNzcitmjU2WLYiUscgrVE3dFPMa8W4op8LXCEyKIyh/giTOHOQcNQ5vPM4ULEiiY6p1FVhTTlIEXBgJIiXFDSIH8TgwHsEfA7j6CodWm+NCc2EjHLDlSI8CF4XITFAyzM4hrmRiHCLOSZt2FfiVqPwhG5ifvANCSLOBYV9wgxki8DBqBozBxOZk2IObUpYQn3igfOk0LjUTQGFRYZSh2U0SdKb0nwiivDFMaJ1YmaYeDDSSVjJqaiHGFBoarAkSmiMHtRxXg8sVaUqqIqzIQcEBG1KBA/98ZEXiWclGUzFOFYYnl5ev6//3f/j9ubvXgzsxB/evzUzMdxrENRlXleMW73kGHYsKtb227Hjz8fXx9frq62jVYm+5cff/z0+ePLy6uzvH334d2Hr/e7NgyjUMzEbVlptxNuomUstYyDqp7meV7X0+lk1losz8+Pry/09DgMom1rdailllLr/mo7z8t0noZhOECWSPT584OKzNM8Let2uylSWaQMUoUXa/vdJtzm8/T+qw//8T/9Xx7/n8+vh9dhqBYWxCJqzYC0Wxi5l6IDqWLBlshQB7xtwuzNrYFDhQlOaDOzIA+Fw0pz7wdScwAMIloyGLmIFtUIq0WRfljMvRXVojXCVQQ+CZwVJbuwmzFzES1FCDPjAC4E8rYxhzAVZuLUfjATuWF6zxIMyEWzsVYJj6xLBnxbZjMzdpijmIgLY4XPZZbp4SwKHzfzSKEXEbok7PaGqW0EkTp7IEQCcyI8GSYiz5OppMLB7B5FiKpQL1xUcW0B85LWEhFVxZRL07WZR7CIe5g5C4XDcFYyNRLcDwPwuQsVLVGC2Bu8jZkUP0ikqpZSAGAAM1PBIXAhKkUkyIyEqXnUokJcqwIyCnem0ASZScHjIYogI8a+t4T/GPEN9SiVzTCoMGfYgnlITyZK2RcQR1HqQ11mUinM6b1hKZQLFR1KAQ2gEatScPACBIM0/wXEjcSCSXOTZhCTUpClFoGURZkLRgyCdXGRjZvk84mc8zOmyEzh1lw4XDi04+oNFQOyf2DWooJ5NlYHqPCgpZZSahmKcIRqDC4RyMJA3HLK1txJiYvJamIAGIgoAOhr0T4Oz8kns3qQh0JbCJqQiNaiRTraF2RmkRN6piBOXh9jouMemHgACcAIobMUmFy8NSRLNHvNw4ygODMmbBGoQkW5KFfloiyk3udnBPkikzhFIyOGoyoOFrEmhEhEEsHknv0WCMTMYm6Vtat2UPVgISipCGpY6b2GioiqmajAoMWVi0bc3WyXqH/4/V9/+OoDKy3LvL/avL6++LKYu+63Q6nkUVQtgoOGYTOMozUjpmU6t3niaMrrus7f//Ddp48fn56eXw6H42yHUwsj/fqt8FXRbWsaEc+PL8MwbLaDSGEty7S6rRzWpqlZG4rc3e0+//p4ej1+z3L39u5wenn7/v3V9fW6tLb6+XC4vrkd6jjNU92WeWZmLrW2dY2IkJim05Z3K0VRXfGChNcWx/Oste6u9uuyFFYi52BTCnMFJqlSiwq7We5cHIeBhSFjowgmNdhhsXiwBzvVpUG7KRbOjZlCRXCDiEjI4BsYFKxZFQqxUA7kRUjKoHn3CyaPoJk4dpg0QPFUQHJ0NpFmFsEgBTWhWphc02cSXjNMcAHLEXavtzDbQEYS4SJSqgBBpSgQEpvpajlNTnAAUKA7BiEUZB4G5VDHtlREi9TCKkyU5v7mpA32MCjOOmbApMpV08xFWJtFKdLH4FFKWnJBtFxgWM/iLqqwBA/Q7VyZgotya9GaGxw4iDQpLxTh+OtUBOUqB6mQslcttUot6AOEhcIw+OUiUosquYaaRWM2Jw3mMCGpRVRIONB61TS4J/JQ5fR2Ig4H6cthX8cgxnYISJlIhDvNj5gZ+zSGUhL2ygXL2EVEyLFgMl0qY2YqWopiAsmNaIG8jaXIGsFaBLu/ETWC2cWNmOniRZyQIxJ4Lard27YJXh0pUxFilaLSmFZrHQoE0dUVz4JDmOelKTOckSNykiNwK6QQZpUiHEWlljLUMpQyFnRIkMMIYacSSwIaFs1dPLRpESvNGuoncpTGSODU/4WYGSHENRlTZBKhoqVmAkAXjeWzmaSz1CZh8fDmFiIo9/B+BWmZsowSkciDSTACFLOG/8hSXIiiqChHVSlF+hkj72uMiFmYQTGmlC5Q0Woeab0Ka2wGv0LMUxYnWD5oQbWYapTwAKPO0zkgXERqVYyLVFiL5sikjEJk1oJiKMN23JjLhz/81T/+N//Nzd19ELv4assyT6JcgglLlMxF2Y1YdLcbolBbjHydjq/T6aBMFPbrx4+fPj6+HE4iw/t337xRHcu4HZXaKkFD0XEzUFBrFmzH10NrMW4qFB7rOqvy+Xx+fngSMff19eW4zuvhdNzud6+vh9//8XfjuFkXOxxehs22jLVNx8pVqw6lluLP07m15hzWLMKttWWZ3fx8PhetRPb9v/4opFXFOMahLphecoGXXFFW0VpERUmdKMaxllJqrYBwmVMJDJ68WThJcwxUQmhpFqJEwaokErWUCCIqqm5GHsSCJRmkAJWSr0jwDscdSTaICDNMO6nrGQPqe/Jw49XYA9GDhxzuG4UQQWvWmSyAodG8FgLd0ClDOwsV5qpSVDrCKeZh7hWAYwSLRqdYEqk7jCHIzFvOmpmZ3V3Ei2oBts4crlTUzFdha+kZMwwVYwUAwooJMHNuBMRCA2YIpsg8kRnmWmEwADRY11Wsmed6eDb3ymUVa+pra6s5JxcErCSkxVDlQRQglhYuInWQoqRKpWTP4exALIpSSVY+SbK2yFyYpAgp01Dkgh/WIhrsiYgQGjHlXMkOAyAmovAkflOUWlDddqascBnKOJShDgWLnlNKQhQswIU4izm6rGLgYJahFu3iN3NSxjoOWpWCSEtRRqFJRBQeluNRsYgo2C5LWTOq1IpDKJStIiBTVuVaNYiEQlKgRLCQw1kbigyFKShU2I0LU0jOLQR5WxzeEkVVXEWGKsOgQ9WqokLu5GghICmWrAjCXT3YXNWbsAo1TxYFBSV9Nl84R8DOF3PqnHmSMfeUo8xoHmHHRHRR3iaRVlii74kgLoH4q6wiESlP57xklPpK8yCkrcCOcVBAcLerSlEGMoXCM5iZNf+7hRdng5aPhcXcI6nEQuXC3GR3YKlc4BDHplLMg0qKD4FduomHARgD0pn/pspMZSjWLEhKqSrjuNnf3L7923/zD7/75vd13M7zHNwePz+vy3I+T8xal+bj6s48VPcYBh3GYTqdTqej0PLx159Pr09DLd//+eF//a9/+d//+Z++++HX66v9P/zd3/3bv/27m6tdrMdaebMfxs0w1CpSVPT59RVo8ufHh3Vp4zAMwyAUHD6dDk8vL08vh8fHI1l8/c3br//q93I6fffn7/74179nUVE+T9O435VSJIjchVyE2jxPRNc3Nyq6zMs41MPLayQkyDfXN2/fvpnn0zRHtDZUUS5EEe7olDU1QSqCPQdeVIYRozMqnW1tcLQINycPUg9t3sQL6drChJgIz7zUQhHrypj+BTabRC4fSZqbpKSIWVFEF5H8EpI1AkVKlBEK2WNdZhb1dEpgUcZ4TDhUaU3lqrgHHOmJWJRwGBTyh9Q8cxEZaqmqWjRH4kStNQ9NKmHyKAiUfM+WOazF6tkNscC6impF+cgiijGxuamSaYQTK9cikFYl2CDwYsiZhhlDZAouH5dQYKyEellElSha81a1rRhPcmvezB2rR9bGHMJhbp3KKNi4YOLCVByUfClVqmqpBYy1oWAmrNg1gF4/LUzAogkJgLesBWm7cLiZa0SYswWRcMASgtwsoSRwMgLkF6ZSuBRRkTIOyrkjVCicmYvqZhjGcSia5A2OtC5B55bMUOGI0FwFE4IELsQqmNEoEbmr8FoQsBJMQmgzZ3RwHlRZicg8WUwFMUMwIWEiKoYFHRHhJcltzCogEUWEh7NjNs+1KGRfyJBrw1rFCI8kNgkLQf2A6ajWorVIEa4IhiLQ6rEIMQPvcqcI1Qh1X80XZuIQIxZ1b5ijojTXTr4Lx9omsXAWZWZMUIoo1NsAMSPcBfYIPQxQ4uxCEpSzBFB7OaeyGNg4CQuyiDmRumAc5G4S0Tl4aVvBtUgpmKtId5HvAqIgUcG+cYdWBhgAJmzMzKKinf2MsZ8KsVMIhkEY/oLu1LmkxKUA+RMRZTx+VQ0KLYVqYSEtY6n79+9//9W3f3j31TfMxdyXdQ0LJ1+tnY7n/fUNMbd1RUAh1mGsZrG21Xx+fnx4/PWjz9Ph2P63/+X/+P/8D//zn37+8fH5XEt5fX6pY/2P/6d/GLdbkXCP83lajYZhGIZxGIf5HERey8iuKLRLSBvHq/32h59++ac/ff/4Om+qxsC+3Tbz0ytf78fbu/tyravbrhZWUWFb18Y01BpmLw9P47C9ubte18YeRfU8TdubsWiliN//8XetzQ8PEb6goxWJMAq3rM1R5RTsJfRadCxg5ZHCp8tNjFTCQlOd77SwqZgx1SJYhFtVwe6joFbVPVr3UI4vJNI0UcvZEizGVYr07aMEoRJoHpQaEBaJKDLo2hqc/pxYxLEWnryoLC4XCQC8DUSIOYSklqKqiOXRQYVs+lFDsUaQW0lxmtuFxwroBsx+/EarYVMpxE8FwH0peiEpMLGFN7PWMKjgWsBcDQ7qZBZQ98iDmrXcUZWE0eAgDElVi+SYkIu4GUUpHgF/mrWZBzMb4q0KOZYeUIAkwsStmYm4k0ewcC1aS8FwVARPRpglHLyb5OMIEzAlS9Cbi2BPp5TC5uyO3dppE0QawsSszcIsWGi1YCI0kMJRCtcqElQ2QyUKHcVBTSUuRTfjmDoAWChbkm+JOBrAFK9A8iQpv7CQQGMgRcODBo4ozXzD1cE+BawYEcRhjMUWFEwiRGwOw3aC0bAqY3M4kYSHYQWje6miIqWUKGUxeIQwPklAqFWpWshbAcIvGQcjKCmvDCJaqIiylKJVdVDVzGHCpJ7cSEnyDkVoipbVQ5pDqWdGxGxgTypmCqRYa4vpWNLWCuUJcBFGFSzCFKQBx383Mg+Szn2OYCcHAsmccwVkRcneq+/qIDa2UDR6Eh7KGnLZOOTRt3bUIgU/Onswx1QsPPqMQzlpI6BDgzVSqEOsFFGI0gUe1WOXBwqLW2rrCVN78uAYdZAi0D0pJmtEWtSx81brWPf3b775u3/3D1d3b93a+XwM0ek87Xeb3W7/9PC8u77ZbHebzWDrIkUPL6fd9TURLfNcCk/n06dfflmXc5vPD5+f/vzn73785efTedaidbM9Hub/73//nwep/7f/9I+73UBSpvNyeD3WsanO19c3uytdV9tsdptxLLVM59PLy3MZ6vXNnpXndVndp9eZf/74dJzXv/79h7urw8sLs9zcv9W6IxZVCfI2L/Pa9Ipvrq/O50/n84HCr2+uSy2q/MsvH62165vbOgwfvvrQ1uXw8rCpdRxkmRctzETRGiFHRRTVUgozYU5bRFAwYOslB3FhDEIkOEKwZboZF1GY7QuLFpw04WAPCycLsrQuhjVQSsZw81MNBQaKigiXZASzAr4B9C7ExGEtWImppPMDqRMxm0qVaBbVHIZrRKQF40mOcGWqtaoocZ9KEhroolpqLUg8EYGCyMMjCsCfXBpLoJkgAfhi0jwsz3AAQkGTkUomomBtLmYSVnKOJhAeJFNSRbgvtG+mkWovzqtIWf52txwGTmqW3A0Pb9XW1VbzZHYaq3KzxizhLkKgChYFhgN4nrF/ohYYMWjJBNA38HkUFRWFKNCdC6B7YhWtqkVYlJpTRCFmR9kYFGGKlduFmwULy+rM1FowkTJV5UJRi5b9ZiAOUQl3LUWYaynDMDCBIxJBRCqBToB45YXIi9QihSWwbx69WclpkoiANBpCnPo7zO5zjB/hZA2VZhoqsYi7mgPPYpALQUVFfWGmpgY8vNY6lOoUxcwtug4LMr6oRWotjh17RslnQJONaXspEkHs4GwqS61S+jVLhSaWbFAeU9AuI+CVHslc40DoNyE8Pb1QaTn6FA2L3HKYwRdFrnattXsLcjctwobeyT1c8lsAT1VIdSUPoFI3ICImp1AHFmzuYWQiihMLglKwM5Eq9zpDwImwxCQ5ODX7FDAIISbogJGaWeBrRZSD6N+QHDINOPX+Bi8i6UhBgZyrKqys/UqqqodrLR7l9ub2D3/9V+++/l2ofP75Z6ksMmy3o6rOE0mppSZXbT6vZM1bY4rlPInquq6vz0/zNHlbz8fjn//853/6078cj1NYjLvtuN2KtYenp//6L3/6d//+j+8+/KE14jLoucHqua1WShlqLUOpdVAR96jDvLalGQfxy8vxdbKwtS0HeXqaT8f6D397fH/XVn/z4ZvrzQ127LV1IbLj8chC2+3m7mbvZMfTYbffFlVS3e62zdbXl9evv/16s9uPtTx8/OXXWMZRClxZ0KYRMfwGhFRrNCcUibUq6NhMFKFMWAfkEU4SzkVYyYsLVSDbDTy0kjbDGEKSOSaTqSLwCDSg0Q0Ou9wA4VBSCZrMOGJWGCvgeJgwi6xmihNAzKJRo1W2Fs3dsD+ARQpSXBAcsrrcNe0LKIioFMjzJXnHLHyZR1H+Xw4kgiABdffVvGB1hWdXDKQSPwWoMxRlahy1wIIC2BaWEgI9VmGmJNo2g649Fe0Q+LIQCEHCX6Bpi4pZBBO1ZstqqzVdVm1aTNema1NO0C7pp6wCqn5kAgDhXqWwSDbLXc/h4VFAJqSknWJEiAxXRbEyq7kwhRRrBtNsDHqYIiSEOYIKgDtTxGYvADxKKZuhosAtIwP/0QRKoKUA+A7bb2YioWphg9Ygx8dzYr6UT1Uh6SNjETYcrrVZldrHm2ENCS2IVbBsOjyC3ZU5h1TgQpSiTOLihjm3BAvVqpjUi1BocNorYrlqFAW/vrq7BDWs7mOINRjltIoSdSAeQZkZK3GojzY6gYKItSMbFAYsk8S5iFKEmxWI1lRA4qZOg6HMhmIQYqiAeZR0KGbyMDTIpaxtJcaeWzTexMyF8Rm5DRyuOMyODBJBHjAGI5IQSj5ydirMDCoOtMfMBf4/GNMzFZag7gAc3dKJObKjzycTRCokLO7sgKBUiLz5CkTRoiunIYJgSTE/lyAT4N8iOf5VQUNWa5WiLJv7N29vrm7M23mem827YZjPh7vbD6fzyixaKlFsN1tv53VdihZVBkVmbcvp5UVFsIzu0/PL4XzebrdXu+l+2BwsqnKb5vt3b9//7uunw3yefZnazd3dblsxBzHzWmsdaqlVVcljaa2O41V9o6V+9dXDm5vb4/TUzLUWc3p5Pn7++Pz49vn2jk7H07if1vNGSI7HcylyXOZ1GcibFl6WpdRRmM18sxk/fHj3ejjMc3s9nK5vys3tzd/+/d80O03H181mjDAyowhlkO5ZtTRvVJg4T0vVNDgjrPpAKyCUy9GIBtEo2v1eFFUVOBzKCiWr5aYBTHOpQT3q5mZwElAt0tfL95lPZgWigIwD4htAEVVFDH6gCHCFg0ylqV8MFZwy1OK/gfIoRbEWBUIJhrU16GiSs2PKUBAMVrZkzRMRbqbuEaHmaq31BQQU1AkSpKoQHlKQk+cGHtRE0oN5g3/J5a4KBxU1d/VEYgOLw/BAktLJmSoCMu/wwE7DoroScYiYOnA8xcQejsyiiufpzUEBKqUgyiHZ4mUn3ck9whOCIG4pqXZm4gjQ1mH+IlbDiWVdFUtSc77NFOZsFipWNVYldxcRCi/KgHDKbjOkpY1AIAciGiv6UoxcnNNOz0lFCtcgA482hJm8s+ZJmURIiZxJhAtJEJu5DrnQh5nCowy8potcUllyMOweuTPItGgRrSqiSiGriTdzCREqpahoRAiT1KylcaUh8VWV9PxzLlryDaSA0ImjqBQM/8FxEUI/yKg4JIQE18zJU2iWe2bh2B6k2WphUARfCJy9PjRPhqqgMqKgDuRzJLQE/ARehfiNmNjcYSFJHMnHgxSY4NBHDH4SCXOIqJkxKwU1MvhGERjOOTRgYpJOH03lcQR06hSkomYNGE/aYWX1AKM6KdhWxcoqHvAvx1xdgSRLYI7MSTEgZ+IqBdoT8FNVhINBWg4PVV3but9sbu7f3N+/3ezGp9dHI6qV//Wf//n+7bvpfHLD4IWvrveivJzXUiTc2tLWaRq3sk5TW9d1XUPCSzSmcbP7/R9+/4//4R+D6DTbtEyj8B//7u//zb//ezKeG7HWYbPbbHalVhFxgzGfaymi0pampY7b/TTN7766+r9eXwkP/6//9//w4/ffba6Gw3m+f3tr5B8/Ptzc3Ya3WNv5cBxrmY4nt6mt8/mgn06HcVu01v3tfdYlQcJiZsOgRL6uq4p89eGb8/Hl559+OL2+hK8QswgFCZMzi9Q6ANlWLRXQeBB2tPfqgrg7wZk7CaFgcGpEomj1uoQYZLYM80ERbhHFycytcaisDsmuJpzLyn0vpIoqU7AoS0C6Sw6KvIevZAQaOpOKhpM6CxtMeUkEuHgSK8NEWAU5IZtFjKMQRxUWFhhNZ71jHt5bg8wNUdTc3V0timnrXted7MciaVXAuWldTLDMMhevigixCBjO7kgtKsJB5sQujoIP3KcIYhJVxcpoyMQgpFIJJBgPFiPJhWpiLswrNQoxbswqLGiRofIBUaIUlH8KYAquPEktD4GwXFgio6coEbGTO4b0VQtBARxEwtLMxS6MW3crwSakah7UWnE3zH5EqWoR5jJUJF7xbk4NzY70TsRTrsdQYObSBqZIS9I+LURowQxREsbGuLKwwAc5z4AEPHJAycqsjj3XGZDxVzmJIz2+O7N1FyJVjqAilYnTVwHhPViItAjy+lDJzMzTBAnTSQ8rLPqFD4rgh6kpMxNWD0mJRNHJ0uGAAmMB+EkRojAGnsn2TVad4JiSMLMl0EkOX73f7HCDQsHDA3eYuPlK2S1z9mAYk3C3xO3Ie853PZjFDXu8IdXglMUhC+XXTuaeCPzjQQPG+MZhgIIX5MRtDcKyoaEyNkiDKqrMIY4aBNoIIQp2VnSHTOLkOe7DLArNAsVFxUNBFGItyjA2i1pHd3r4/DxH3L67fX56eX1+vb2/Ox2O2/1d47bbbcehKoVbG8fxxx9+FK3jZldraet5ng5tWcbt+PnzpzB++/79sNn94Y/fStB+N0oZmeXu3furu/vjaXYLZi51N2x2pWhbWq1FFZa3QUQ6ah2GcbO5uaYg2293/+Ef/j2Z/x83V7Ov52XmoLb4d9/9+NXX79d5CV/awkoDCS3n+fHh4eqq1bEcD6e62byt2g26IpTnZYnwbdA4blSExs3dm3fH42ubJ/jPckRVwm5DVCMm7mEIekRp/UYpMAkKBl/TzGtRCEsDlwyOCyyqWdaISJAUAXLHEdE83KOJubC5iWukqks9HJFG4VMpXLLyAG8nRAqF55xoYHe3lkuS0DyjQU9hF7pSh0GxCcQBnY+B0ZEHuYeFM4wfULkwK2uEBAxTEdgxGcfesQC5RtQxcUIKgUglKTSiCmPKgQv1ol4Uui7GuY2sl5lV2KlgEgfGlLE7Q0aE+ksLQ9514QdiMG4R0phhxCSqZnBZCyd3ZYwAJH+iRDAHoFFVKVWJQgGfwIOZGdZyTGnbqTmMdAoK+DerqAqRFDZ0j41hQJzwjYUSYXuyurupmKcUVoSLpnWmQIMMBhVGHFokKVC4tkECu0JAChLmJkkfZpCEOwemT10iBeW49kIFNHciDigVBcHRRSXHhjjkaTuRxiVEJEnGx8iegkHcrFlTM6uWRDAwFoO9gbDjYhBQD2cPJ1fhwrUzWREfiZyMQlnM077KhSSUJBRUtgjGxBp2/jhT4bk9uzvTovgmlmBo+RDyMhQzhVKRzHDpAIqg26w1b+QsIq2tIpo9BERhiK6dUo3O3A1X8WI3je/k8sVtiy4NAPcpCNItfrJzoP8FRBkcwbKs1lqYNVVurWEajy7U3eFvQyhFKZkkYAIQTIUhdwiydCPJP56IpuXYTYhENUSCVYeNR5TCH3/66ZfvfhT1m7udrVZLcaKITVEJWlZbD0+vf/nTX969/3B393aZz9PhMJ+Obuv5eKKgYTtuNpurm1th+ebb97f7bbM4T74bNrvN/u27b06nMwnd3FwPpYSHkJaqzGTNpIBYzNaae0jloupt+t033yjJ2/v35zaNt5vD4fCf//v/6enzaeW2+ryu8zhU6DyfHp4+fv7Eqm93b0qtzDLPyzzZuLseSyWPcRw+f/o8n+f9fs8SQ93cv3/ffLF1eX15NA9yg5tAsMMbUUMkTRC4P+2E6SiR5wBiyBf0nikoB5oKvDrrFEZMUdZ0H2nmoK8ys4lIRmHppAPu6Cin4APlhlB0ClqqMMFxTHQFfwuBG0NWJZS9TmCLEnP6AaoIK6trwOKJXQIJD0inkGgUHij9JT3pSlC8uzkgoOZqEU7NLb8o592TtE1J1+TeEcO2AazBVKL2UBC9e4fUPFzATEFW5bQjYs1OpXNjgrGIJ+GaWZtHbRZVW3hA7CLcvwJRUeYgLSrCYPgGOQCYFDBjeuoMdnvAaiJhOaFk50tRzZaHEI3FpKENYpY0ItX0AjdIRwzTRMZgriQOQsSaaINoCiOyqYoE7gVqIIkgKhCOZgvn+AvKcBSKBB8i8HkYQEGRGsGrN+YOgASHO6aSucgehaQb5/HOFUJEROzKSlJqETDQWRJejnAzy0FROpIyviHEkB7szPrFx9AwaOG+lDpdQiyMjJjYWIhAd1RhZyd3IDDRFVtBJCROLb87kjUgsWQtZzOXysWgYIsQLCpFVEdkRPLDvFkEQI0LpSkIywW5CZw1AU8U6FzPFShpcNRyYWoWUr3f4DwHyWeisHCorNH8IPovzabzudRCYy1aFLRa+M0xlr5dhndIA2AmQzfXRSMOhVC4dFTKndlJVEQ9MAeSYbu7vrsVKc/PD59+/MWsvf/qLYXUYSBma43JpfB0mk7H04/f/8Qi4250X+fX+fnxc6nUlnk6nSliHIdgLpty9+bNsL2em0Xodr8pdRQp2+1eSt1f79uygCEjQq21ZVndY9Sxj7opIqZ5VSGRWN02m+0f/up3MupxOX314e1yPP7z/2rLebVmTFyq1kFsWV5en59eX/bXt1fTutmOFrSsjYgsMfC62W6QRqfj69V+G6Tjdv/N7/4wHw/rfD4vDdpYIqwzKuYNVv39gmLOGh0eiYvbPtxyUXdJZn2+OJNf/gkziyJ6YkrvzRwmvBFM3gmTZBySnQOQCARPJiE1sjyLqGSZ+9/vwFSfGKOxVtVAyMhCERUIQyIKDVYuLwCnIJJoIEKiTBpFOB3mKelISAAabAZLcxMOc2cXlZpbNr8MrrOM7RsRcsIBxYO7Y7Au/RtwZljGLkYiF9GIRJSNrEjthvY5ds5nQUzCgxauFMDK2IU43Fyz94VpdQJQ4GWwCLOWy93pEQb5iCVFGySimn4UychPfI9FhEWChUXdmkguOgZ8zwTbbuJQE48gxVCl88KZiTg4ctGjiKDkVBEKar72jAifLwk3otyfdsEiEApzQkOXmIeIEx3OEDzcIiVWI2HsZxaRL1bJ6ahKcBiMXrwg0bCmtTCkiJ2ocFkFpx7G1t93hzsCpkj4LCB9xBzqqXzIcO4WTtYBEwoKoVAu4Y5Bq4qSGzG+JEg2mO5SeIR+KY36D4svZwRVOuUOFbQMKhyOUU9QkJB4GA6WoGPv1ZdcQnvktJy9T9WoX0dhTGiSQxIckaZLiPtwQUcP4cCeftufCJZnk3vM5/nweiIJur0ah1qpflGE5iADaB9JCPWbcMF4nAJu9U7uTOrBDEvUTF/WTLWGIZiJFK0yrPN6c3O13b+vQ2Uq19fXh+PhfJ7H7biu8+l0ns5nM7t/f39zd0fB8zSFNRI5vR4PT6/zNA27cdhU1Tps96ybOup2tyvDyFx4GIxisxmVeNhubV0jbJlWpF5mbs3JjauWUvb77evx0JZVhMyojpuVYqiVmB4fP/3VH37/87/+cHw62+qsbN6OJ2utmXmRcRhG82ge4VFrHTZ7i5jmeTOU7Wbc7YanhwcmGodxfyNRVKXsr67HzW4+zmEeEAqSWzQGuSKbxJzZRJBRnwLgueccIAEazH9hC0LYNYaRQtp4CyV+RKRYGihZg7C7WzcUoYDaq+NNl3quiLo3kAYciOElBObyrGASc2PhwoVJWMjMu/yYE6XlNHOBZ7MbpLZ5ikRIhLRIkYHYiYyYC2lWYMxMBH9/YiYWawY8P4KdTLrXG3F24ohXQX1IABAZoguA2SC8JCj9RZd/if5NjCIG2jBBetRHMelHHAlUY0bM1pqHuKWhTJGcggQEX6hZgac73AHATLoEqvTcD2dPw4hefUb2WJnguQ88iAlrIxE4sREEqRjx0NOHL1J9RyRMhRzRzFE+MAXKILhRMMPbt9eSCHRonLLSoxQLolqPfk5RIgP1JmfiokNgGRHkY2l0zAl3Z5CD7bgDzk82jUdAHgghYbZcqIwkEXPImOPL1cBm+Whp08r5moKZKUJJe3L1y/+HujVFV0RESthsDnPldIgNDwqsPg13t3BDjov0fCJg69L7hOhb5TDjDfjvK2z7UIiHCFtDiEyDHsGmiGQd05cOACfWmkinluJFMImKN1cRC2MWVurQEVH0uUN+jmcpIdkzBDkBKCZbW5vnudk6DmW/223C17URmTfvHWqokFzWjkZq+gK6MbyyBCnUIyhcMScQCg8FsZDL23cf7m/fFNbT8RBhb97cR9Tdfr+7vrLmx+NRWIry8XA6z1NrdnNzc31/r1LPc5NSN5vd48Pn1+fD+Xw0szjJOPLmamdRN3dvtQxUpDkNddxebUFFFwoKX1tz92lZg9xbK0OFI4c7k5ZShqvrq/P5RBHXdzfL3OIg83wmsl3dTkt8++F3QVTqbllJKhfh8Kilvnn75ur6ptZhv91tdpvr69vVqTU/nyeVwVqbT6f1fPZhezodt1fXHDqd5+ubu/u7N/PxfH6doQ1Z3VVy7wcCNvU7RWSJ8XsfAvWAQeFMgnupIewdOSJnJe41OrAUCU4yW5A4q5ABOcI/Jb/Avzhj7lYUERz2WLDXx6XrhRuHhEtoruHygEM0pR1NdPiFvpCM+q8mIurCQqheQRMSZoXXSKB+FMpqXeCkrRIJYhWWrOFCSTnpNtQTI1EkHTInYJfaSjPIcsZu1DcoA41JI5w8x5YdH6PAXAu+q5jQRjDouYxvyUIW5Mw18kVkzsATIEHwYyIr8C8ShXsAJx8DZWYCqhjoJGKLyjJLazjGM9CxYGZJxAcAi/SegVi8zy3B+Q0PYSr4JEeucyIOKSmISKiYXBlePCkRlbTR6HEnR8ER4Uo1974iLmBWLORkQY51xxaBcyrCSLnZ+eRpBSvAAzgfM0UI1vxyj1zM1KUF0b1L4UyItIbGQhgbXMA6JzcjosBitWYRISQtEgDxzvciJ4aBsge2bitpUSF8ryBM0pEzkAiSMdnTsjDeUfaFlmYoWTapaDdCpcAvQPjC7C5BjikZPqhgniPiadLpWWHkp2cUDoJFmiH9aEj07QKIyJzuEH2RFAsCBmOrTCrARYis8GYzTJvBzpaglRGzWzNrbuYqUccqA6w/iUWiZYuf0SCtWXAoQMdChUdKJEKqpZRKdfvu69+9+/BtrcPxNJU6MPPV1e3+9mael3C7ut41c7O2rNPpeFjmeXd9VXQwozpWZT2/Pj0/PmmRd+/ftdZao1rLdru/ur3Z3Fxtd1e+NhwbqWXcjsvp/Ho6llJI9HQ6LuvcvG3HjUf4tADNb7aUUkV5GDcUMQwD69TcHh4fTsen6+1+M4z/6b/7b1c33W88uJSy3Yzr9c3N3bt4PZjp3Ye3Hz7cb7bjEuyLG/k0T1X8/Pra5vmrb97udntWtrCr7cjh43Zsb0/Pj0/zfBZ2bytUhBdmHTMLw5HNPDwFOTkTSmIaAftkTPLFoWOkMGow/qK8tula4+QOsWmuC3JhIQ5jz3EoKpU8wrhtRBEWjRMZ9kR+mCLLIQrC5kj2MGYxcE5ASM5+lCSSb6gJ0XcCgQpnWQJrCikiLE4cUFYltYQFJoNErMLmqWEKeA/0lZac+E8+JMran4kDwT9SKQN6XoZ+uZxiTMuCnNjIe+yiNfeAwHorm2cm8jC02WjYS0RoDFSweiRLwNTbBeOGkweRcg1YVHJ8md5FOLadoMxGvOWcylzSfkIViec4YAEPZ6Rq/fIIElAxYyYV9Q7bMFPB0xQcOuT2vKvsHTrEb8ZQe1J+SWBsHUWA8zsDIowggUSRnBnT1MwnwqrK7qwiYJ5wzpGy22LyhkqZiUjMg8jwVajjWr0sYgsnY5HuBoEwnm7JKiJBpkRMEhGN2S1b1qJi4Mxw91uG7EMkxx74jYhUChO7G1z9mLmILK2ROaBENIRpQR4uEUrCIuaNiTm4KDtAVs/+O+1VIpvuImKYfQlWZeC9es5LmZhIhYoUdywYDcu3JqD3RcOrlcKytgXUHWQjEBiIwd0MjQsxGSQ7IhY3y9KMdcPiMbhfiVKtQxC5UzMo3ds6r8OgpahQoSwnkyeAoEWR9sg4yGlLj1Mo6uJM5OFR9P3vv3nzu99R3SwerOMwXu1u9rurm8PLmSOudldLW06n47Kcz8fjTz/8oFz21zebzW57da0aDx9/bRFreETcXF+PYzFz5nKzv7q53d9f7Xxp5laK3N7dkOjpeGBm1fr0/NzMmq+qRaVYEDUXofAYS2GR5hZOqmValgjWcdxGvHv79oFtGGs0v7q7JeHJlmVebDov7Lvrm9s3rWxvb+/f3N7dylAtXJk1bF1aqTru6jwFUayz8ZaL6jzPe/c6jGbLuL8uw8iqbi6a3UhyFAiTKIcZe9YqoOJlhw+JLIukTAwZF1UHrl2kZTIzcTgJFnFeIIwkm0W6RqIwSC5JxqP40pBHhEPnGGnEyE4Mr0bPhJ+0NiYNofA1s1hAvo4+MoEB1EiIvhEhQQItL/h6FIVAHsaX6rV833Lv4cKaXWh4Ad8aZmeEkUk2Gj0KJ1MQVSKcIfDcJCnpnmO5/vDBSmFiD9LoQU96De6GS0oMYgsWH7BiokABmwpgBFBzBzkL54IV6t15puhAjEoYBjIIpgSlkBDikv8T0CF2JhKSCKBzWN4GpBkhByeqw4kgrQhHROGeJc2diQSUUU6f/TwCkYps0JKYL9N4WCQBl8OqAYLEGU+dWQktZ++6cIQRzFUEtICiJd8wBREVEbyaSDv5rGE5ekr7kgdRcXKEY9MXM6kU2I4GG0MJ55GNgrCymgdpkFGwM+Yf5J06n881PLhk8ks9PY5DOEjWIRGOxcsI0Em56HhMVC2YfoA1ZP3lAUaSLntBUY7XytmhfvEiLyoioKtKpO2iRwSU9NkqEkuRdHkJGoYBvSF+d49gLpSFlXi2jIlRhXthcURw0SCqVSOUZYuaaDU7nudhHM7n6XSaIuJaRlmkDroZCn9JbdjLEUSRK67DYNxbJdfGUaKLRMTDMF7f3G3GnZY6TbNFbPdXWuvnT88efHu7b9TmeWrz+Xx8/ukvP/z05x/ff/XVOGxu7m/H/f58fF3Mhs1me3X1/V++e3x6vtptv/rw1fXtzdX11dV2KxEist2MdRhibebGzT9/frC2Rvja2jRPt7c34X6azktbbbUq5WU73t7twwGlizFbiyJ8fb2/u9598+2777/7/uX5cDov43YYSpHg83kKilKGtx/e/+H+1oPaaX49zVUWFTkepmF7tdkMKjKMY91snp9ebeX9tQ1bOpbXq9vrhYRK3V5f8YO0uY3KwpI06xQ1wW/Ac9CCBjyhaxT1DnCLWYKak2NnCAb7acpNOQUNCQsSrEAKc2IELGdr1phUWD0s1eI51okAIz1tXJjARky7QO8Fk1/iE8pusDJAL8Re88uss2McBvYI/pIKX9RC0L8CkEGPq6xOHGScXyMrNQ8LDu79Shbi0eEJIgjdGYvKA4klmJUDyUwoSf3JywA8AfSWPAnfxE4UEugYvnCwCEQpGLdJIbAVExQiolBR9rRfBe5ftWQW4XB3XGrMSPsUOm9whhKKcBepAQ/siD4rCEJdzQwk28P6GCO/IPe5ISWCjRCW74hESm7AdCIPEXIC412DYP6B4lssFhw6wB0Z/SWjcWaFQJ+QDvogBAUR9g0JdTkDAajJDkOxGLkIM2PdmFAqgDyHwkAhMaPGbLxH/yxIDHEYQif8/pq2pWRuJGFwUeJMtOGY8Yo5DlyoivsFZAfnATBh7rQFnsUsDoIa6ElyaS3zGbAHuFB9EBssnr8qfZnv5xDd2ZJK+oWuIJ3wrEpFRQSLMnr15ZfOMwhrB8F6cvJLocMUPSUX0gvhlJiFhLDbLHUXhYKaNRRlmPRuSpWQ2PKymlvM1lrE88vxdDrXWrfbIfnKTEwkooGxDzjLqATliw9Wr0PQX+YWchG+2W+3tbhbmxcns4jP331a1vbmw/u2LvN6Pp9efZ1eHp9eHw/zvDDH7c3VMI51GOdlCS4uQlLquP388FmquvL25nrY7uq4YRbdqJZCEspCQofTZLSowgMvbHZbzipqbVnXua3t8XDabTbnaTcMI4sMdXDiYTOens826t3d9Wa3/+r9N8KfPWjYjON2OB2OZkHOQ62b7XZTBnc/xuk0HWZf1nlRKeN2421ZFtI6jLvd69Prw8Pjsqz37+qhHLfXOw9ylts3b58ePr7Mk/kabtgMy0wwv0HMomCVkkKkDFKexDNCF+odJEjdjZETCulooN5msRgE2xjufDn2KCKpedIcgkWndGSbn7k+G0ciIwrzxqlEyr8CdJRZrFl6qQh5WF+VBGLKFzkWgbDn7OzcYRTpLX/vs7E6QtBwM6tDxeseKcfNSciFpsf5syiHb/h6UBuIsJtzBJmSKGMDAQQul8COZEGZ83CD88EQCCrAczJtZFSObAhEgoNcIogFa35cRFgliPqM2vFM5TI5JRFhy82rSLtMQQ5nTWyjzfBJJC6c9xreSDmPRNfdryV5BBGFE2HIG+kcKezhJcE7zJRY2J2MgqKqBjEcxZD+0yuAMK+/0FKJwSABfJ6un0n/7JBA5gUEX0fL4/lRJMQcaRGukaqOUpiz2gWpmS/5GSUEyDCZLb27X6AR9Ivtj7KwsLsxsUmwOwXMcdwklGQoxXwl5sIlJCz58BfHHlgXg8lMhNolwjqTCg1GTpRYGBo/zIDZe2tElEZTCZzhj3Iwg2OQO9qZmEQ5HRlFinJJ16DsudDM425ncZY9FbEw3FK7rJK6qB5z9egAFxppQa+uJO5RSAPbg5mCqAhPZsxkEctqS2tttefn52mab6+vtNzXIYUU0Dk5wcGpWJiquOepJ0aWzCqgCxrcyVmoqgiTtUZsqnF4eT1Nh7s39+brfHb2VSmm+fzw6aP5pMrn8+IsQy3runiYKK9rC6Fxu/2bv/37Dx/e3N3c3Vzf765ut/urtrahFJXi5Iu103mal2WstTIJ+bT4rNHavJivFq2tZl5rad5O03m1Vmv1MA45HY6lqp+Dme5u72/f3A+7/byupYqQb8btemttWUVkKCLrenh+nueJY315efr006fddscs13y33e+stf31tb1bl+N0c3d3c3+jw3ZtTYput6PS7Zu3b04vTz6vqoU44EqFhRYodykvQXTsn3ps7CMmRINeKCLKp3JD2NmEcCrEwwLLfQAQsgipkxODhybCvXhLnQdhNqAkRobpL4ZaQoKZcECXRRfYnYncLFS1z5LzS4mgF0c5hrIDoROKp0vNFRBC/oYaaRGdKROoZdNE/fIj8aO4R/yE0YDrd++7MMs+AdBIkZCAIkJFehPj3NsRzpko+o/EaWGxhXQjvbtn4gLZkJCbowm7wENIHwL3SyJswQpOuk6QC2skYIQyNHsCdzBL44LDZZ5iirRp9XTt+UI5yTai0wVSTIeH0Z89lQud+MsZc4/ksgusARJ2yTKXGAUsk0huuM+6DtQT6mUzUly4IBBQEjqJPYC9MTNJYcHqBg7SHsRJ0K0C0oSbQhSIWvCVgpgdVkKenBOgbiGURvhMhBNvzC4g8ueRNu5ZnNCUZgqzgD9zdHot9QtGuUUFSAaJsXEOOYTTPAGbIYSFHTIo4sBgyzveejmZ6AdJSgFVCvqbrqyTLAEFzqgXq4UklOKDgAs6eP0Who809IDSJwThec2BwKasPILCWcSZhUTELYQVUG9zX82mtR1P89xsmuZ5ng+nI7tj9xCFuTF8m6DIF9jdB1MEK6tzVmHAcnEEmThJ0MwUtqxmq1lsRp0mFvIPH94Ow2ZZgsKlxjytz5+fS5H7230ddA35+cefd9d70vH0erR15Qi3uLq++vDh/X6zHcftdn+tYzX3EAkti7u7zdO8LKs7WWsRbstyeHn1MCd+enldw8dxZJHNbiSjIqxB4C22dVnm9XQ8jYP6XVMt42YnQ93vdrXodJ6YnLck5/n0crTl0OZ5bdO6Lp8+ffr4+dfpOMX9PfHX7j6dFyIuZbi/fzMP52GsIry/2gS2vovUUjd1W0udJgoJIB+5wpfEkyJJZsYsTgBkcg7n7oqFE50Jl70xOSDiyFoThYMTmTADgk8dJxEJxgPpj5mdQQQDYUfDiD+YFpFOHsgHvfznnjKoY1TBzKlLy0lmPwMsHUuG/ogRw6KTMiggcMNhjR6EGXBQLzcjvO+ljGwx0UcXSUind85AgnoxQhS5HCycotnKjhhnQiWBauo/lBO3DSbg5Jz3Fz14b1nAPb0gOAiiAYAmktWBT+ulPwuraJBgDQjRZSz65Yv3yQel+jRhluj/lDKzBUhZ/R1EkAVzgig5BudwGDsjVmowcekNTPBFGdufEoB/SlEuSeQ+Ge7MH/xK2SiBzETqHXwA7ziYlItT69VKqrpS9ob1L5yGCuDtExMpBbGHhHsoM4dyBuAg6+RzlOEorgXgYH8KLKzk5GJ4nioJDgUR9kf26oNFSji5mHswMYbTl5EELBgFo2RKjIbZ3SQoJHIhGuUrziK659lsHgEMJosIwZKY1IhcQi8KwMSAiNFVaBdXC0Z8IkSsYPgGE+ciDjZi3AyiyNYqnzAjvXHaleDkEDGreIR4sJJ5CCtHkJJbuNtqtjabl/U8Ty+H6Xg8L7Z6xH5bS9Uws7aaxMrBAKHQaofn2UDbmopnMfIIQ99KwfBzXef56eXx6vQuqGgp3tZa6fZm71bdl2U52zRP55O1s7X59HqKwi8v0//4P/3nsh2++vr3Nq9tmqfjWUl211fjuDEjHUZiOR8mrTZsBgtfl2U+TR5OQuZ2npfzy8vp6YXJI7w1+/z8dJrX3X672W+v4nqsmzJUX22dV6z2cGpmy+kUBdp4fZGh7vdXt3f3V/vt4fWwnhc3C4/j+Xg+vE7n4zLNh+NLm+da+OZmN9ah1FqHDQc9P346H16rxnpep7WV7bjZ7MNjnuaxlpu72812e359MnPFhDBtJ6V7MkaId3jjC0oDw8iIxkRCSuEUgN9B50sMGCZ8DATcEVO/EFn4i3N6JCRBJL1iypWAoH5Gv33MJCHBIgyRueTqJAx7kEngeYAZdXzhflLqFrNwZiiRIgKTAPeUIijQLOoxEeWwXXai9daHL8WdBAjPnIBOx4TAWcCMOHpwCydhcqybJRV2a0BSuVebktgvfiuso+jlcObhSNtU+RKUehfSbRyBURPybnKyhQNj0GBukKSIWCTI1pNa756YepNEGQizifnScCHnwXc58/eXcjMZlP3d4YO4MPTZCbileMzdw5X6JMXpEuSJMAPV3OvWc0aySijQtbGIMrIqiZKsKADzzJJgvzxAYsZKGUTnyAQb3WdUxQnLpjlLHhy49Ir68qrR3XXHzw6SXOQKQSJsniUF52lg4SJMwMkgiblYFlMP4Nx5W33cQUpSiobBEdoy6KOjkfxWWUWg9vcsiZA+IlxVoUUUZma9tFcIp9KN37RoPhq6fDh7ABfIt5MzMVitRKJARD314DGFCBkEdhxkxkLecBZZAD05R3BYRGvNw5e2nOfp8fH5PC3OsdvtdvvtZqx92UFAra0pwLAvk5LscDksmcCiSp3djEMyTfOnjx+vbt/vr2+I4vXpWQvaOidytzZP51JoWo5/+tOfpqmN11fPh/lwnL758eth3FbhoXBblt12s9vtqo5Xt/urm6tlXqa1vdnvipTz4bycJyYjpeVk53k+zcuvnx6n6bWt8+vD48Onh/N08qC3b+83m+3bd+++/f3vC41NZJraWGJd5tZas7acpsCKlWGUtsbayNr9m5txYF95XWkcS2t6OB5/+u6HYdAPX9/vb4bnx5dSSnhsdvtx3Nm6PD88f/7489u311c3+2Cbz2fhUsoGkCLcfYMDUkG++PmIRgclgjQuBJcU9CC1UnR3PxSOF8WfeyLZ/Xgwd/YQpWY+Au0A3IZwMboHGYpFRPn84FTqKqlH0vDYUWimByOmvX458Kl+6uVx/nSspBPqAGXCpBhsULd76PUwd14SSikg10QRnjZ2F2SDmNnJ+xQhg2Oyk9GYOIVDxOPsbOrupODaY9iLzgi/MrYQILd9mbqlrAa/EK4tIBQQYY2DhbVoC8KkAKYJUN7JpeRNOkau0yC+zEnhFIxiMpjhmCDuJqxo0XAIgGOhXwCKA05SvqycgZBhLs2dy5gQNhWKlEjhZ+AxgcWEjNYBnCAi9ygVvyyedcBtH15pTIwFe8qqQpcZMTCwTMa5Z4GFqah67yx7OYAGMOda+OpKIsLB4dwKbJszqlNS7sOlm6ZkyAeNOlviL5z8yHQZiTjin+MPRPptIm0KZVfRrxR1nhJ+rqiIoVHBraJ8JpwjapwH/CA808vsHiajVnP7ACUBuSfXHHIwCRqXnjazTmKBIr/vvHYhmC9HgAWcb/iSCSkiIOQQuuwIj2aBldadKprrmUBaa+Hzsp7O53mZ17bUcdhuxu2wqQU+HBAtYm0FZr9EXa4i/ZqbkoEkRwqclPtI06wdX55fHj+PY3VbX1+fh6rWVo9Y5vN0OrU2VfWPv346Hs5v3ny4fnu7uV3bdz//8tPPEnx3czUORZmHoY51c39/d3V9va7Nw67vb8pY52k+nY8cTtSm13k5r7MtLy8Pv/z8y/n8cjq8PH/+/Pjrp1q1SCnW1u1VcR6orDdvxuudc7wcD+fzxO7L+dzWRSZqbamDMnH4+vz4YOt5uxlZNMhfXl+Op6OWwoVfDy/L9+f9brsZNyJlu9sXKafXo7fmZss8/fzT4W1789U3XzOFt9Z8bm1el/b69Hg+n8KDClgul8gB2DUicqVhv9aUFTCCGgWjD+RE7d0tpbrBjKXfYdGVXx3hYUZ3n+RP9zBhVdaEWbP6D0qDAblwAxNlgWkl9rw7XEFQc3p0T4GULBJFOEB26lwUd+LEAvqN7kNHDnZyguFKIDtBfRIUBGVASNdvUe+M0lUXQZbdLT9E+DfTgkjZQgDwjqyvJS4WGBQM9jqzI9AUKUGQ4wDPB4WvOxT1FIuLj0zqQoWU8oIEO1tYFpf8JaciYDMn5AO0h/MzUPNZIi/d8yO1RXyxMszcyMxFxDO7d1c7/LIUHlFypEhEpDCDw8dSIktMFEIAhRGPQpn9kmCDKLBQkFhy3A8bFZxV5xBG3MRIAOAJsgYFBfffAr+zMCTIl4aN8D64Y1surFIZZCFMA2AiQcH9afb0ngAHs5iH9DYzV8plqeFZj2cKpeBQZsKeQsK1iQgXUQFOhl+BM8+nqY+A4IBlbJlnIijIjYODtU/B8zR3rhuUhVVT2y1Jwo4UrmFAJgzGWOQWnd6bpzEra7afIUyedyBNwZx64da5gXhElRW1BgaFooIempBdiSijv0O9wUy4u6Xqdhxu99ub3X671WFQUY7ObmbjRLQ88U1YUDm5cLCoWSSZjoWIzEM5pISIvT592l9tm8V0Oo0318zs1pbz5G05HV/JjWX4+ne/+5u//pvJvC7T50/PTw8P5+eXb7796vb6+vXleMXy5s3m+uZGVOfFhu24GbbrsszTFBZEcTwcnh4f2zQty/r514/nz8/eVpl9X7abtx+u97uhDiqllGrH6fmXX/3cruJeNsNqrbUlmtehCkUdq9m6zGw2bTebYbN5fnw61kLMy9o+P77O8zxUub6++vzx4/Pzy/397bsP7zyYRddmy9oK0W632eyGj788Bsfb9+/aut7dbV+eD8fD4fXl4fD0eTqf3d0bGJ/iiesKZ0uXc0fOAkfYOX0JveEf4ypS4H6ips/SC70851AG1za7R1AziI3ItQ9go0/RkkOQtFK+tNhQlKqSkHQQmyycWMItmBLD6mitJumHvoASHcJhFpHkfYAASL1VSPJHYsrRoIbLYBAhWFHH4SEApRKFgIAYi5USkaWuEvUI4fQi8QgLEmYLt9ZUVDWfeSfCIxOk5aHmQtZMThA84rvl7AT2+uEcVEJIGGrPMLzOxAAwv+k8yohw6fMVJ7xTu4QHzhVM5lBH4B0IB5OKtFzWwgSQLZhIjBqSCQuZZRkQ5NjhhTEMU5QLWBZEjOXrFNKtkjv8FCIsrkDBgtC7iaBCZcQdd+/thXCWIZyTelAyg4IzPF1efwSRgnoa3XwbznmiEdksBLgBEIILB4E9iSOSomIKRpGimfk9IlZbE3XBNCdbnOzXIncqoTzvQxpJRIiDA28AKAvhqojgGhGTm4qEKJxBJZ/ERVFC1IdpUMLjC0sWUNRRmvDwgm5ALtANMNQLytgHLUjjbioF9OHeT0OKie4Gf5ixyiChYs4sgqY5sSOmUkozx/dhBj1JiupQfLsZb6+vKLitbbfdXO/H3Vg2Q6mlFBRfnNI2ysaYU98jhHrfU/rIOTbEf2YmJnfztq7zeT4d4b5xdXMlKtPhxOx1KOeH+Wq3f/PVN2S+297afHr88afz6bBO88u07LaDBokUUd1dX5OWubVpnsfNMJ/Op/NxnhcWXebT08vTy+tzm0/zaWqH89vdXlXMrkV0vxt2w8BU3Ftb7NMvv9j5+P3Hz/vX+2//6q83V7vGImNR4c1YvZmIrM2FdG2tnY6boU7TfJ5no3D25+PLZijW1u1u9/nj56fHQxlG1s3HTw/XRldX17dX+7Ea8fLuw93jw1NbjYLIbRzrp4+Hzx9/efr8a2EvytbWOgzhztoPTSciak598Tj76QphUezwkeT7A1Em7UpXuIVz3k6Bq6WKXqoiaJSo9WSQn5wlbfqLRR8sRSdbg8NH3VE8+1z4tJQeDC77V4DxJAJPAQS8R1ZE0CxdLwAXeg2SXEbmTKG5qjSr/9xakFgPtk1k1ukRFkuSiX8LNWVnDjMuiijcfzqSQVGhYGh7UASiDO/0xg47U688kbcCwR5Ffc79OOUHEKChKkMbkxOCDEiExoUjgwbsLMId7tNi7pwgPWIIpy6AIsjyB0eiAcyMlZzKJRAMEhnxXDBKJKIlX2c3eEjWogjkau4msJdDw0CJ1QQIOFlE5CfAkYJyINOriAiHFUwiZojZAOZChSmMet+IP05ETtA6FbM18xBHEGFJPDOgOo/kpmK0HEk2iKAgIW7eLBoRiQtAHKjsIOymkOatH5skUSDaFlLPIiVzfIDaDA+/AkRbRyZ3YiILcsPDy54jWXT56zJxH93mS8DhwSRO0JQJhzKkAzm4ydCPexDhhlkStkngkEWEUy7eS9yPM9lnAQXbUSDv0QkBjHYd9VVfuiSqhYNIPLQW228GEd3UOs/rONbdULebAg8IFey0g0T7t0MqCg7uWjAclmDAJi7Z7mU9QeTh63w+Nudxsxv3+/NkzDRs6vPTcVl882b/bz78vtYyH06f/vT4+PHR1/b08FhIHj497PdX2+2w3e5qrUF8PEzzPJdCp/Pry+shODbbzfl8PB1Or68v55eXqrwZyjdvv/rhLz+I+M3tLlp7fnpsa2w3ZZ0mWqdff/7x4fX1vU/v394V5cJcx8pBKjzudkDapmlSr+u6TrW4+zTNOtZmPs3zMk1tms/zXEsNp+12P4zjeZ796Xm/35K0/e1GPis1qcNmmpu+Hjn49v52Mw6MSMHp6oHO2sLFjAGpZ8nQxXSC1UYoacmhjgKgwvCRh1ar19tg1OU7QZWphJWfItgbrq6s2HfkvZnuA+gOsgBtRCFfpODjncXAtiBgx6jTFI2/dCUvEbGyW/aaRMG57V2w7AMYMcDmPtvkjgMrdeA6LweLc0TPiBcWEewsMYrqv2wwkzXvj48B9mSANqOg8NYbBWoWmP1iHQK+CUh5LN3uKm8nBBl84VIimwBoyD9JLpSz+447IK+GsALxj05zYkYrL+kWTBTYJIjfWS5cb4P7Txqsh0RYZMhI6RxcAROJ6W4ZdBkD9gBTOj4OAEHyUzoLGH4SKjDwoXyuvcjPrw4o+IKodwgM/zDMickuBkFZJZMyeQ4rOCcWWZVmuU2c9PK4IPeUeCEFBUGFmCAJBTGFcKHIITi+HYeYNw8HKBFY9QIlffTZE+Ra5OGCrRKaIMzlJOKkdR88+lJEYVcEJWBHDNc+RS71lGchiguAkK6T6GMPYeLLEKkH0sTlwfviTmMIgt0XsRK14JTyZm1NCREFfn8w8LzPvyIHFhn8yUH7WltLGIyJELhFozrToFw2Y+zHcVkbcxThWkOVwWKWEIsg9HOctw2CHs5CE603sxCQx4j//8bHbH18+rzfXW+G67a0ZT1vN+PHh4fptGw2u83VjdTttLTjafn86YmFROLw/Prmzd3SlmVZRMo4DkMt03R+fHq4vdodXl8Pz8+iOmzHdZ6eHh5/+vH7+XS8vb6eX1+Wmb5//fMPP/xI5P/lf3tZpvn6aleHTVvnZT4PpTw8PD4eXmWjbz99uDb2qvfDGwo+HCfbbvc3OyX3aX59fh03m9Pjy2Y7mLfzYYpSVGU+n16fn58/Pry5v/3w1VdvP7yvw3Z7tVvndnx9kZjHUa9218u07Hc3Rep2u/W1nU8HZtvvhna1WZeTrwgOF/jQzVuf92fwyCL8EmE4QiJSwe+UmtgIzzItZ4yAfXJWlv05Z0OaYT4HwJZ0DPy8PmylPIfMFH11NmIUEIHLzAneOEyoMTVJzP1vUy9Vw9foTb5kHsiiv5cpWA3SARasFksQCr0tKjARYirYIY+iI4MRHltW5MQMPxp0oqLKFg3OzDmRzdGzM5O5qJN1eyAmEhKBXi16Mx6U26GI8Zo8d9NTlubUNVSIOvjVOM24OIGpZIEC/0f2gC8AETGr5v5PSlZNMgJgDOic65gY8EIG2ghmAiUw2Dm9vi83EwizEvWRQE7vqNfAFBJCQgoqJ36RS7TtdQS0XW5ZzlPSC1Kxh3cMBD0izFtmUZZ0BHSiYPOQTmhmZhKlJPMGBYnzbx4mhUXohf/DnnPLCIfgxTRLGKyUiYjcgooJh0EAQkwSHg63zQxWF5kczjxMo+PS4OFCdlQ1gziHkwrqD2TG3KgDiATNDsFKOiNz9oocjkESXTyewi3pASie05QkJL7cfCeXUOdgMls5YzdTsHQFg4UHBWSIkGyySIQ7GfeBQGI3HiravOHIEqBFhfyUOWIIbrVO82LeMMHAYEbji08A6MBE7JBfUE9HjDE8B4cEuxHJRRQYFGxmy7LQuo6lHl+e6ri5un3z8vR6nlYS3t/c7q7eMPGytsPxREzjqH/5l4dai6gE8dPz69fbfVAs63KYJlWap/PHjx9348DRTi/np+eXX379tEznq/2+qj4dTn/+L//68Onh9Xg2t8P5QE7jqFc318I+n84x2eF4msnk7qrpMK1NPHxepdbD8fxynj5U2W2GYTue57asMxc9HqfwhsLC1uX1+eXzw2d2F+FaSzgty7JxI3azdV651u24217FvbAUKSo+Hw6Hnz+9vD4fnp+9LRLuFLXU6FZOTB5uzSOYlADMUu8so7+3fP6pjaLu0UPAmhPL+ML1iFBN7LdLk9Kyv8WixKzsuVuOWpjFGnGpmoLCs+6lxI5BDO2cPJTtEp5WFgwQMCmnMD10YvZgcjJyEtZQpQhximxJUU6BPorwEr8BTQjeU0IKi8ignDIEX9zwOaPSpfLsMCRlOlViEnFBDZbQaHhCrB5kbmmxniB7CtYy7aEqTaY/OnrL0I+sSBm53J26MWcv+/rg7mLvQIF2BnRtFWm9+QPiZfalq0PN5VDt5byNkoap1J8GRjhIlqEkAUaV9EqTgoJL9mfRpRqZPwhT3eTfROfPOOrF/DMeIR2woF5OU2/bOuCQXRQze3gBhobOD+ANheY7YOaL2zPn+llmd0mfThzszOBEziBzZWIKDW7mrnDfRidJ2CwbdFmCQkSMFdyGOrxQ99VxAJKXg5xNhEdcFnVeuhhmFjHpa4oisS/mTLWRlYVlk0choqANZKwl6h08B5ZsEmQeUKVdIMugfuaynLAw5m7o0fM99rNHNCgze/eMzY159wJhGZ/aFUJKSulUR3mRg1RZSxDLas5hS7MgJnbDEhEJFWanbi+VQYkz8FN/fp4zaxJldmqRN4WZ1cOsrSzy8vp5mufbu3tuKzM58X5/c/v+jVSxdT28Ph+Or6H+8vw6z5Moret6nM7DZnuap/P5dDwfRAtTPD0+ztNxLGHNDq/Hz79+XM4zmUnQcp5/+P7n//2//NN5PR+mhYqu1CKY1ti6DSLL6eSnpZlZ1VXHNeR+txHn6TStdDJrr6/Ty+Hw5ub66uaqDPz509OmbCl8Xebj6Ti1ZZrnT79+fnl6kubv7++Y6OnpaRgHVr6+vR5GHYdxf3XdWpymdV3Wx8dfqc3epnl6nad5Oh9VXTTEKX0AswGIXv6kr3+vv5J+mycSMEq4MKfVt/WtIBeaCl1gubz+gCOFOYT6Lco0wkwJNtDFNLQ3ohHO4HDja3DHabLMxggK8s48GZTlRe8AWViin0Fwh4yMkxvCvbUhJiZN5Cq9shC3MulwEY3cdYWGFIwG5y/1P7IFE4nn4pf8Vh6hXEjZwmAF2fFWMHyguxIO0iwYUThlkoP4mTiJc3kN84M4wj2IOdXyYDxhbAucprdL0A1kgDW0Wwg8fcRAF3QlW7HI5fKot8g59zlyyukyDidREzIpqGEwwogIYaVgSk9HESZS5ctinDRWQPyPbmwE/S8LMBPz7BIStUmwzDMYOpvllJwcShROxyUiKE4IWTd6QwW8jDnTvFPXBxCCc2CdAF8GPEhCbmZ9IOOC/RJE7o04ggk9gBkkbRKg1uHdIKEFrLgbcRrnZs9BWdxAhy2XrNnbv4gQCEeh7iBlwoofwsOjCFIyd2ENZfcsYjTZuJKXJSkbCXq5wQUw7bg7GJr1Bgc7hSZtPhJNhI91hORWSyZyD1NGlPB+svGfqRcuZGHCQsHCGuHgKoszMVecseCmYqFQhwVTEXMp2udQGfUjVDXPMnGkty0Lo5BBSy+9N4CLNaCMZkbmi9lCTON2t1359s29cjx8+vXp88PHX349HQ8PD5+W6Xx1vX18fH58fN5d2d3d3fPT06+fPt29f78ZyrScp3Ve2/Lp1+PVfjtWnefTPE2xtpPTfre/ub+lsfz884PXMh9Ni9ahevPz9FJVyZuRaSlv33/1zR//6vrmzp2sLUZi5GReJc7r/HTw8zRfXW232+H4dGSmZsvPP/98OB7HzXB6fV2XJdbVbC2VLczDN2MZi67n9rKcatmOu/2w2Ymctt/c//LdX54fPg0D+TqPRRgmsZXW1gorgZiAtuliw5LzsLwtAC7DOTpm3I9KLkD3IJUEdDmlwKSJdXOeLCKCMwyA9ST0BIm7ZZmb+AglLhrpGYy7DG0UUGxGoEFVQXlbUxLql6o8KXlkKW7F5JnJ4eeVq9nwDZuZFoGvSoboYCOXi2aZWUTDYEvnvTVNGCTB40w8ectwAySjIUcuLUfopiSCSsfyE66RhJf7i8CtcnNPWTE4lznlRVRotuLK9/YjxRDSe5Qs4oDW5oeBfZLRoCeynrwJjCeTTOtpuMWSzQ4LFAMZGvoayd694Q1I4tBMlN7/aNXShjXCgdeCDU/BzEpi5tlN4oglVVWUO94TFGxCEi1noRjNdDibFZuNkSwMdhmGFdAsyaFE8wdMkQg0AyciciQZogDWFPnCDfvk3XyppVLI6g2ryN2acCFi4ORu1txEhL1vu2a+ZFphFWYjA4qR0Hb0R4/uR+jS0gE76vciEwPaXO8NMTFDxe8U4qCWKSp5uAEBjwFLlxlOtsHESckPD9D7iAjjJb/sA8gtA8wUzhHk1My90ChMq6/CwiTmBpPtDsr9pnrirKGgEcEELB8vHJ0z51MpIi6xWmvk1IYCdhalU0qWKDhc0vlpcpkyw6sDf4LDL6o66FkoogzFrL0+v9x/+IOW8eZ6GMfB7fz46eefvv+hLU7hbs3a6q29vrx68Ha/X9uqWn/99eNf/f3fDF7buobY+Xz88V+/+2//4/9ZhObz8fHzkwbf392L6nh98+bbbz8dTy/Hk/IqJNF4t9vWUkj4fD57a7WM795/dXd7v7Q2Tafz4bjbb7SqR2gpu2E3ra3NM1GI0Pl8XJY5KCxsOs/uDk+9m7vbMtTd1XbY7oVLYT4fT+vsq8f5vH7zhz/UYTy9PA26bjY8btmW2X1WZmvm4SoylGpmRbKSICZnwpmLnggwOstUH9ZpJokl4MW4m4qmlQ5fPAZ6iZO3PFC0UrJNWTqBrePR0E2RUu6pztjvwOvT8B7AjEOR0+Ms2HFFlJgvk7m8eNzJG5e4DuanE0snNAc5mZBkt8vUscoIMgq9qGc4x2YZG3pai+xLmQzcbqc+5uxdarKbUviF6UtmN0zQPJxdmM3TlAxcn0h2vTtFc9SR+PeQUEpghzjSKDsAMaOmxliDUOkK0IlO1UqIJSVbdOlkSCTEQxgm9pHVABVlcpTHWMoYTEyG5YbRF7Yx4L5Mwmg4emZIe3qE7CTzC2I0mRJX0SKiIkX7fqrfoGvZq0U2W8yCXszD8pdCHmXCGMC8WTiDFEysrE7u1CKasAt7hIU3CmciZVbhIrk7tCM4ESCMhuWcGe7VRO7RzCxaa0t4MKt9acTInBDb+KLCk0yMGKZDm0ZBQlSElRlbOIUF18Ba7zUDRZB5cl8lZd4ENRmgIKw8o8KsQiqhnDQhFVjMuUeTfhgjjCFfzEnuGm4R7B6tmVm4Ue6JdnYLN6MIt9y+5J38Z+GinEEBZ9rRb4fTF194vDwhAXAVZNQhRWEpacjYNcksLOxMzWmxaA4LU5A/cYOJwoPWIItcZZ03ysM7iRb0RWcBiiXEEs620rKsT8eXaZ2CYj9uorWnh8+/fv/dtkibz7v98P7t/TpNp+PpfD6J8HY72LKu6/L4+PD6cghiR9a0OBxPnx4+lzre3NwdD4cg4qrjZre7uv32r//63/2H/3C1vd4O2924GYdKIRyiUooOu3F3d3Xz5uZqP9TT4fDp8eX5cH55PR8P5+Ph1JbVmlmz19fj6XSez5NQuK3TPNfdpmzGw3maW6PCd1+9uX53O69tWZZxVCHbjvru7c319c3a4uHplYR3++3T85MQ1cLeWoEgKJVaXYmKYHcxX0DIcMPBI/IIY1TeGcitebPkiIaFFRUmI2oRTk5uzc3IjXLeReTuZhEgywdTMDnDTYsDlmw4/9xfYVCQwAtMUDrhmCHGOWQuef47cMEkkgUbEgMM26vUIgqyTfbQmaAScWDKAIqte9wZ9whobqv7StEoLNwiDKBHVpA9VnRWKvePTzgsOrDkPVvA2gZe4M3NsQgmC6KIcIvmERYGI1WnsCALhq0eh7i5R5ihJv0NNYYJYVbYOXEucjLCkFyKSsE0HlBzROCD8YB7y0QYnaoKE5sb9UeVzmEXtm+qxEDv7nuuIogizWXxn5mIonB/XUlxAd5CTBdfT865CmC7XutSR7MZ60Vy3AORCfbKEGfF3MdESBucoHj2a0IS6cqRZ5JZLEwvgaWXIRFhbSUC00uEFCgpHEuFxLDpyFyFgjFoQqZmd8MVw0QnVxbg1eRA2pkkgrGuk4gJfFQiioCu5OJw5JnzgxIIpDznKHwoKBwLHyKxq9/8iyk4jEKzZQ6VNBSSPt7v/RRxJK2OHHAZW1aCBFM9D2dssUfUldUj2EVILRqHGLuFFRZFh8EY2uOtOCK8RwgG9QnVKHhTEeFGhtuRQCB2ARLkgeF9QA0cMClN4WnaTnmL0ZszYGxyN9UaCQZKhNcy2GqPjw9vy1VRme308vj49v39v/zTPzMP9+/u5mVi5lJKGYab+5vrm+uxju52Pi0Pnz7dv7k9Hp6W83n1dXe1/eXh0+56v7/ejrXWKq8vL9vNVR3qMNT3X70/PL98+vj59flFqwozq4Y7WYz77c3d9W4zvjw9ruTH87kUPX8+bsaRgk7jeby+am5ttaeH81Dl5upqMw4t5mldh93m5fU4zctWx2EzBtHHj593V9ePD09ffXj7hzc3795/GF7mx+eTWWvLOmw2V9c3h4efOd94ylSS2LKijoY3X4cbPIKiFGVyJbUwghsHiBoR7Ky52sHd22U1eotVneDSmHW246gHTPuyOIjUAGY5R6jRybE+iIHMkLtx7zGozwMlhAXBNLfIYcyEvWDhkSbFSdZDsykhne/YcRCPwOpQoEMUUUUzyAU196SqZ7OAy9eBVGasoO5tewIiaZ7rFAGiDmNXKr6LU6gCEZLg9MWiCKeG6wc+bE5OpQAViGRo4PMTJqPfqHBC4BPMzBwXpjQQBejacgCfYdYBvyV8iqIqV/RoLrbqfL5ea2suH+mXjDDQ4Q4ccRZ/1HffQNMLSqcHJaEXS0+SCyb9kyhdHKJjWfkInfv3B/3QV+NaUi1HkhIE70vY8R+RcogS7AhyN4aTMGidgBv6tIuTdBTGJhxcMIcQUW0NQbyxKSWFlNwsM0AQEXu07Hg0N2D0Lx+p+CDqK4KzG8ajV9wQco6gJLbmOwsYbiSBJcKDhN0p/bn6K7jw5pgZ1e6lI8URYMYICT3e5d4HRf4+WSZffhD6DCdzxzpWFGv5mJNganh/sIADfdrDcBo8iNylmx3h9mSlAJgxiCjFYl/udTL+8iuAoEWEJJyPDgs6iRG1UJ8kR/23sy2Czp6AAzvOCII+M2Ho7R5hzebzdHyl+2Ve22F6mabjNE3b66s//s3fruvy+fPj9vp6WtvVzfX923sWVhVvq6/Lp59+ur+5+vN//ReP1loTlXk+/fDjd6+PL0OtV9e7w+thGB7PyyqtrefTm3d36zK1ts7z0sLdXIiu766H7WZ3s3Pxw/lwPB2ZudV6Pp6PpajIOs9ls1HVzW5r8zxU3Y5ja3Mt0g4NnhzNfF3sfJ7Pw/L2/k5Vj6/Tr5+er+7vtzcrU9zfX9fNdp1mE1+X9XQ6W7OiJTsqThYvCwohZGLGc3d3IchLYScv5lZYPUiIgwsoWkkcYAmGyywFGVGJXCbcEV7sgLw01EljTz8pVTaYKHZ3QbSP2PDh5BFsBr6zEDmM6TyM0sA5t8coK5yi2YCoUngW40nU5OQCdnSbgi+icSZOB5usrxh87E6qIPoC7+C/UAfmu84WfUX+VyMmcTandP7P1oWFwkXF2RXrcSjnBO5RVSMgbyYhFaDTGdQiwG1xbGPxHiuw2jhlQ8BwLoBxwi7pf0DZOffam/poDZA++gMRguqyNzEYGKIoQ1LpYw7Ek9T54e1lQMdXRZ2XmYSJmQoF0YV5SMm1pZzeRAZvwAa55YMt30ZCLkyqiglJ9BcQRBTmWoSY+qyfcnoEq4o+NKbOmMy/BZYkdCtCGgBCQyQEYkNnh/9IEH0xAw/SBJopPKR4R8kuUDUmDdz9iDmw0eKSn2D25JblRcqChTnARe0bSz3AYvoS8SOSx4qnjEduHpI8h7ggcbDEQDcTl1TDQX3pJXCTdEjyMDP3MDf0HEzBTILFEl3lQeTNOd9vSLhjR5IAmM3tkdT9N/CdiBL79cQbwbMDrfo3WtL48rUo+gZjFhZW6Rk2v5gAQUYnINTnI8EeGdYEaZK7JRzQLkkQ2JfpvMzzdtw8P36ez6/juPmbv/+7Wrcff/61reZBy9q22x2xPDw+3147e7S2PH78+MvV7tMvvyzLOu6H/X4rxD/86ftPnz59/c2352U5z8vPv/6y21+NpWxLPbfj9dXewz/9+nSeZxW6ut7d3l2ti/nalnVtbZ1Op91239pyPBzdfRiHdZ5lnreb0SJiWU5hIjoMhVWK6jwt87wQJqKrU0Sb1+PLaZqW4+FQh3Ecr4axqI51GErRw8vr8+PT4fWF21qT8UO99uqBUjmTQVAYLBLYjVFeUJqESThIINktR48F0etRJkWx2kuxtPHI0lACG2bww0VwsZhxxKkfSwaeydDnOwF2FSIRSaoBcaLQBEIbPHCIuhcshltGItC4ZguO0fdvgMkcHgp/GUc7TASSmcJMHpYzrcjrB9QFwcDcBJaFlmODlIYFRI8Zw1H6ZqfAhDZYJMyCQ7r5b2cEYZTdRyTIedgrQOnMmHA/9bobAwaBlx8+6rc1dmeZR48bEN6iCkwfRbwgcAbTFq+PBTIVRB8lch80o4nPPiIHHkHdoyuTL4MHE1RyNp+CushcgNeQOcAABWFfj1t2IYmnG7kkHBFuCR30KUakQhhRycNIhMVzbwTen4URKacYOA+mp6gASTa4o+we4ZYVRx+u8OUkcY++FE6WbDAWpdyZivG3qKoQJTWB3MM5tDdw7GQRxCQhMColIRbKpS2JLnJ0yCzteXoiyGTCvYbPMoFSsE7ZdRAhxUWfnmOI9iWc9jFTuLlbGMq2XlW7hEjR3nFKOkKAFNZ5Ph4GgUW4EYmGkOZxD0gxuyeEZF4LonALZsZ6L8o2oTMJiLuEuyOqfZKMeWLKO770u10TYMSculTGOyDuJxeKJBYRW5ZlOtWi7u319TD9+vjtH4vw8vL5oa3T8TgvzUqtRcvr68s6r9f7fSk8nU8/fvfD6+tLMztOcTyOhenw9PTx10+1Xn31u69E7fnpeZlbm9dgX85zhBNHqbqJodSihYR4Pp/aMtWitUgRZSFf2zLPLfw0z+u8Ln7Y7Tb7/azuyzytzd+9e1uKbDabp+fX0+nM7rvbzflwenBfj2dr4cHjbns+nT//+und1+/u3763RqVyUbXWyN19NdJESJ2DXYBniFJq6jA2gTRYjU0iXeOjVxyA11I2krsamUkYfpxJyPlSzDm7kSk5B+wehWHHIbm3kYOSyiIhgjFXJwVm0AHTk4mCpTDQnsjxrzATXGITeU7YHkwlJk87RyYR0JfzZOM0e4Sk3EuSIkqwR2KlEM7106DIyW/mvTlncDO3IAYTm7/cSaAtip1QEQE73o6b9yIRCTeMgiXEwQVxykkpuqvouI5IW9Y82YiKyLDkEnyByDi1C524C6YPzKO9JzZi7EPrLh6ZGt0dtVzABpiTXk55NhyMHiB7RBQdcsBlI/gNSKagRO9R4TKRUAH8Rw4xiF+wKByu6N1F9OIt+uZ1t7DmVLngwRNRkKRANzJ3ID7nODiczFzUOz5A2b94Qm1Jiv+NvV+i7fi/zPdwUMAAPjrLFWoyYqNsiDxnDBm+WVhcCEKtL+OknoQRhRG70hsoKcBMJJm5kbODcl50Cded/wrfFQqC3bp8ieNZDzMzcScNExNH2n0xu/ZqJonVzbOhyt/YyNyISQTLLsOAyFEEexhZthSSHYWgjvRMjdHbQyIicTcP68BNb24AC0bnA/TOj4X6amIJD+5O9JzlUOZI5kQM0xyEIiiEVJiMPQtSfK4kwCycwy1mJrZ1OX369D3JN5txbHObTlOb5raeltNpo9rmxS10U1S0aCHmovjP8vj54fHh8/7u+vByXD5+3tYiFCr69Pl53G92+83xeDy8HqPFaTqfp3mxNq2r1gJd1Pk0HY+neZpURIpe7Xe1FmnrNE2H09TcpnkN4uN5eT2chvr8/s1dtGYex/M01qKlbjajCu+2282wOT2f5pfDu3+4vfv6jlybGfu636tyuEUp41h4v99sNnUpZbUs55EshYXc00kFOpmQyFFTSEb4rLFAQUfL2P+dElzMIk+oL1ns2TzDIRpxgn2sE4tgIsVAahMUxYAkBJBGDghJQ0Id9VEvZ0ilRC4bwRBAhNj6+hFOHLDPtiI9pKiTpfE/9i+JW4MaFGGXe9zM4MkhcCOH9IFyUzxne9MJ+tz7HkobxBSmUK9pCPx8ZE+wximIubkhlTU3kmDWHoXEPLX9QDVYhFofel7Kc7Q0HXC9wEb935iIzD1xhkwmLGi7UG0iePY878k5unw+wqpLly1JSF9VQwDYhdSAuFAk0A37EMp8jPdQIi1pqAPawTl1diF2b57lfGaB/lfDzFszZiaN4AjBycxMmIGbQwNQn2CDOpggEQQrVE+wU/uL7XBAGLzUKcn6EPeyMBYmUC9+0b3AS4QR7oOTQoHCWokJggY16lAXX7Jyoi7ZxEEE068Rfi4Ob2qbUcfjQXzJtJnpkPHzKkakOQmwqswgF6U4rmwaV1BQMHZDp19hKq8zkP4m41O6TkULV2YS9oAQBpQOJlRqTpK8DlYnbMDub/rCnCUVcXIUdpfM5Oa9MkI5QCxSipYi7iGpRY2Usqk4KRNFrCkGhbMFsZNJrx46Vhkpxo/KESCCwqZGgtzb68vDdrctm+3N/e317e1mGH/8+Yf9flOqbjfjaZ5LKSw6DOO62rwu1/tRRJzidJqO8zzPc6lFOaK5M/3y60+ndr6+vTodz2uz08ukVRrZ4Tgfj2ePqLXgUp7P07TMQy3D8dTcRfXp9UTExnQ8TWtb19WMRVq4GYtMy9IoXMWYZCz7uhXh3Wb77t39E/vp9Xk+n/a/+7qUOp2m1W05L+uw/vrrw9fffkvB63Ru6xLmKmzNsO0P2hBWJUrgB28bt79XsuQRgDsQ1tF24jx79L+K/wnNN7ZIXSIr2leQ1imhUxxV7SBRx1WYRaQojJ96e82J4HUcAts/GCV2R2OcG+oItK2JOlKglPZAuKIvN8a7M1VuhOIcsiLVWf5VClLVhkSAbAM78s7tzN4TvJVQ7u51qSkKDAnAU1J0uqg7MYroT6zl9bYWXCIEpopB1NxSqNyfPB6CUUI3TGntni8zt11yDjyEubvpx8VHnTHmZmZWDEcRUlJiT+5GROaZD5CI8X6+9IGZXS5tuzoRA+YOc/MWVor+xg42h66Fu2FsYsKUITAtTbHpB7MRzohmEc2jua1r0yLNraMD+H+o9JKdKJG4V2JexO7uUjovGVPfvkOR+fKGzEy77RlF/wiBBVSCLXn6hSnSfVlIwtMxVJyZtQPOIaz4wwzeT254QEWCVdEYYUeAByzkRNDvBmeyjcuyCNingJcdid+pJke+n/to5gENnnTlCnRbFJG+UmxkRs4uEay5RiM514j72dIQMwN5FYzxiTh9PoLcyNxXqAQTHnTBFIIJTn5BmDhxmuIxNW8imm4vl5a9FzgICOj1VbioNiLcHOqLh3reFU84J3suIpbQYA8PFRhBW68f3MIqGLes0YFmpiBvh8PTNmzY1N1u//LxmahdX23Hpe73w+tZa63KokXXub08vaheV9HtdrPdbP70l7+w8NsP707T0uZViVuzz58+//LjL1rKvFpErAZKbSyrmYVWRRO5tuYeq/vj56fzOA7jqKVs99ugeD0dw7w1kzJw0eub/bCpy6zH0/Tm6/fKtN1snp6fyyAifLXf23yejk+Pj4+fPn/aDON+M+6ut7Sam9u0nM/z4uvHX385Pr+QmzdDZMsz4yQqnD4KOQy4BJre/4KB39e/ZPmB3jGTBLPkP+kDy54QJCnTKAZCWMgosNDLYE8CzJ8xOTBMzdz62mq8bEoDTjQaAAuERYTMLLFflqSNdX0WDj+ZIeSgBAQnO8R7/ZjnkCJnDBFmEbC3QwklAm+Lngh7ZkyqPfVM58aivW/prArOEiqvj4BFnsO1rHcouv0BO8a54PV7CHtYTk/AYkNJ22EAdoCnziSiaDvgEorrH+hZiLLODkAC7m7ZuKDgJ0D40aFZ9zAL6t1yYIie3VOf6SENoBMiIob3WQ5HiL1Zl2I6B4WZBUUBKSTcHcs/c6ZywWA4cgiOF01mYRYe1DzWsJq4Y5+pAwjrTR5jMC4ebpbtV4iyUs/4TsRs3lD7+wVDQTpx/+03+W37I9zZpBRExgxGOgw3YIkOIIRVErQAcy5L2sRF2DkvYEQEm/nq3j8axVEnfyafDduKOJwd9LZ+GrBRL5suvOA+EA9LuIqEGNYM+HxAtgBzUBVAJNG9+7JxJWLUgai/PEJIcnAcEakbQ/NLzh4eopKiYUkMiQi8O8FdwteqqmbmCepEj/vs0VCnsAiUDyhPWKSqltyXTKhbmULCWbDelli4iCBXhYuRBQu2BMRF/k/eoSSMD6RFVI4yyun8qkNhraLldD7e3V+/vDyO4/bdu3fOdY0QLV9//fU8zd/961+Waan7DZFvN8PbN7c//fLx8dNTROyv9tc3N9NsD58fFWt3wtZ1WVYzd4swxybHRsLUUHpQm5aixYgbsygfjufWbJ4bUXgzJSOLt3c3sazb7RgcsS51KBpm8zLUsr8a3725+fbD7eH546dPv1Clu5vbd2/ub5TLW7m/u220OR6Odn59enpY5vNA1pej5DhIfjN9MW9Cyl/G6Zxb3DsGyul2RRmV2YjA1BYiCWoRpolf5hkjIoInLgWFkQdmDXGpqRi1xZdisqef7BeyBkssBbcJhA0jEg9mZTcrXMM5QQByYZxApvQw9WAPFpA+0Von91+IiQ0wl3vVARfZs6uRxb26VFamLzgSYVHLhUrokNT2gCmUzBtJA7UMdOB2dGgUeHmXkwna/0SyQb/uHVXklLsTnYNwGS/1EzMJdX0d2I9mQVgtxvB0MjdiQCso+oKEzC0VmUG9I+euKiARJZC7NL3imBVybdAu4P8MMhhQ/wgC7Ra8v2ZRFDwUAmupgLUZHWHvYz0JAtGQO3QHzzWQgsOdLchZjNW7giDMRJTCMgAnlufwzOSc0lDzYLMi4mSWmVclMl+JqFAFQs1CbvCpSbJm4lN0odbnDeikxCDAuvgjuc8azq7JU0KTiHyTRheYoESwM0fFbuzLr8wSTAwyFkU0syAhtxBlLeQhuBxkjHAZKVrvEB7n7EvCU0TdRyZdpgC7PSaJsMu9w9/yoAZ2PkuQgczJFs6GbQyYp3uADkVmSFBUAb6gu0WiJBBHUEaiYgpPXqn3lhZDJFfSFpY+W/j6LKJKkUt5sEHWA3tIwH/Inh0i5Av7SrQYRGkXdCJAYSKh0i9JKIt54xg2m+1Qt9v9/Xma3354//Lw6dPnx/1V2+53//jt7xazj58+T+dzHcrdm9vtpm43G19tu9+UR9kMtVmTUn755eH5MMW6Lq0V1/3Iw3aYmMRmF13bWkWNwyEwYhJhLWUom1jXoZZhHDxiXRcL0lKamQziHqoqzNP5HBw39/uXx6f7331l63I6vs6nk75/L8r77f6Pf/j7H3/88fh6/Prbr27f3V/vdkMtzUw3dV/qZGfyFraQBoUzkwUMFCCoZQsnst6n+6XmyWiS1G6xvF/wRwkSnLAs4p3Yg43cIzQ905xV3NN0EyMGMo4QiwgxFQnrfQEQUsbA3oDwJM6ACS1qYvLI0aR6OJFRsEpBJG7RskDtsyz0DOae0hsJd+NOsu4gNDGxmQfz0lblwp7UOPFgETdvEkLpbYM5cQe3eqfkiaq44csnNKLCbtqxCo9OtoETATMHWZbWCcGmCiEAtBIxAZNhYrMwJRUuHo0FbmsUAQJJ52S7ofzxaGIkqsSZyfumRY4weGV86cGRQSDgs9wK1ZGnHtwTIpB0ZXOn9HztJT2pCDfDZphkeIKk32mFUhzoAgoJfHvJOU22VgG3I6SyLNvNbG2tNcNWKWMhMw5eDULQBDew8IEuYB9CtIezp+oUvMkI7ETOp8CeP4WIwtC1YVMvdTidCLW2d3SEcgLPepm9J5jFnIwuZXFsEKNL5kYPe0lXYcTM5ga3BifQnLhoXDA98HIi4BcKHTYJawhwHU3+Tr6r1MG6p401C1R8iUEBlseAN4thEqxTxi+az4k5QpxzDw7DdaT7oVLPtRFOaQQtUlCmX6a2PcSjwohse4RFIAsi6uMPJhICEto38AiRdrUzbiuBKUUc7IwBJsPnVTvRlhwAQ54aRAP04EVCjC0imIRFwpvW4qusHLdvr2rZnVqb2vLTzx/P81pH+/rDu6s3b8zj6vrq9eXl468fb65vttvhfDwOpXzzzfvj8fWXj58Ox2nYbIPLx89PVWU31qthvNtvq8pc16WszTw45nkRldaaB6kqM2vRosLmm/1Wh3pc2un4vLjVArOSmNelFG5traW4txJh5/MwaFvbMs8QZKxrkzr823/4xzdv3v/lpz9PZ/PgKGUhX5rtiO7vb57XAzm1tkhEKdwsT3EwmbcU5QSza3T5rSdTI4S5Uu/UMRSNCMJzvhilIbqzsIQvvSjRVNgkcoRiPDSDIwhkGQ77weN+QUBlRB1N4phRZjXjUA/0SwivhZBwM+5Gabiq+KEwHUbRaT3ACKmTBZNfFmyTmDVVadYs4xWRExdBFPfIlXw4kYwwRr36SpYQVJ+Ku9jbAr4gHREkynGBEnqdGmEeIaTkSRkyR4tGkdOyBONzLxjuetczwbQ36dWcOg6AMwiHIUZhxAS/lujkHY80mgBu5R5mbuYRXmtFJHVYcKI3COy0MYIalAAMkQc7sJsIkuS2ewgR1TpamBlWt1HpSDpxn/ME5UsFKIa2wvOPcRCZ+7q2dV1ba2bWXKSlAUDSu0DwDvdgxYjotwHIwwG9BeERe55w1PDw1w5MC1jYk5Ug3q3ykoXD4tGAjGiyUajXPhCvJJ1UKGGc+A1Z2rt3RyZdYClQejExcTNHH0SFRFVI8LuD5gSluFKvLZTYmfB79/Nl4c0NvxfunYgmOYnwFhkPJDwa3OgwFMhNRoFddN7TM2VPF0S5f/v/R9Wf9VqSHemC2PeZreW+hzPElBOTRfLWrbqlVjcgAZJe+k8LEPQjpAc9Cbjd6m7UrWKRyZwiI860B/dlZnow8xNsgkVWMjPO2dt9DWbfZMzQ2nz11dy8voSUECNSVVDxvNtSfUVLs+7Kcj1/euSyLrHf5rssaM69jC9JBgfCwjX5XOHrj2U1FtykpFXXeAwSw4ZQKZKSL2XaCETajtPh3Yfv9/PtsuJvP/2tTYevv75t87w73sFbjEVd9n335v7t+fn08PnzWJdFl69u3v3DH//hrz99fD5/XJZlNZs7m7Sb3f79zfHtzS6WdTaRaZcbd7lcPYISmT+WhpVxHdOkx9vDCIyH53lSd7iHilClq+ymfpinrhWiO90d9/M8RvTWb2+Ox5u9dg2Rt++/PuzuPvz+67/88B+PjxedD8fb3uZ52s1uTqJNTXt3u0YgsiSLDUkXYFOUhyPh71S2JIDgWbDnMFRKkfG58yXM6vzeoHCF56ZOYNZBjhzHDiDoGM5QSJMW4kRo1h+hG0Gb/fIrxVhAB0qskeWol20GRU9GlEgvy4V0TaLCJgGQodVhVwtG3woEIMhUQ4iNSOA1R0wiSyD+7wiQkuNlJSvydx8Pvm11SgEptQ+3o0zypAKslLVbkboJmPNkMPOUgaSqI5e9RB5BlgexuYFMU2qGXkqlJ0mmjXoYAA21Qt4S/EqRd3IP8I3VSHzPI8x9+AjflPwBMgUiVRzkRe5hrCKZqe/Or5NN2VZAJJE5gvlGghZ5AWBTrmzQRWxVxNaW4bXMtBhm61jHOpK+cIvQnKxmKk2rg6jqIDJout5YdRsqEiUGrvrGLD+H5UTFPIMoZKhFCCwSqba8ZgQJgDqGBQIr0xAr2TPkB/Y62yEqjEyHyA+QmLvknbDxJNtRGEXuAjT3oNMwVmiXEjgH8kIPs6gpvnnIbgd/3ZcpzYnN24tQSTlWOKP8lRDqwIgQc0uWbUQQ8apOsIq8rtVeJUaEvuZZoPJPtMZhE6yJE+4hIpuqIMTTKlpqVqk1FyPsVVaQsgoPSwNMlgWxVXE5k9SmfAh5e9WATN+aj0RzzVOEKv7lKCiPe0SI6HDXSFtejQY0CGX67vv/9NXXv09a4enx5cO7r483h3UEwOeXl/C4XpfL+bIsK0VPLxfzFe53t+t3v//d73746byMX376OJYVADva4XB/3N/u52FYNMv8iaTsD7aOLKrhnHYTgGVad4c2Tf15WaYm4T7W1SzmeTfNbTcdbm8P09SOU/dhvfWvP7w77PbP5+tuP08Hvbs5ejCkh/a339x/aF/f3b99uVwo/e7+7c39/bzbkzpW3+13Y9mvFx9jURWzyolFxfpHRIwYEpo4XTX92JjJnAubD5sbB/Ba928FDSGqdDMKvWaEJRgjvlXADGZQbgaJA4BSkoSMvzvrc7GGM9EMpDNls8CwdL5p99a0MkfdPEXsBVixgKCEIxvmyFURyacVP53rtXqG4XXVpTlRo0Wo5SDuPJKxHezIYDzLELos6LKPCrfkwvOL+Aa9vKqlKzSgLpN6jFkfbpwegsosVB0ilc4dQJhXEWn5/yL97UJYNjm5HUqrT42gZ0x7nhKp1MyNXChZ7s0KOfJKBVPNCwDYxkzl3jSHW2ShKJu/OJKZCJgjAmYwGwkBbcWBA2ix3STcoJUvFzf5yqFvuEpCOGGeNJqvy5rRZplIolsMnme0aVYzm+swXxBcaNGlRYJJbmFbBVSTu149dSQxwhFGCTH0bWZBHtGeR60HzFW1+uENf0n1QPahzCmG2Z+JhplsaXvc4J+IYNDKWBxAFFuS8icLtPTClLCTFHcjQlUsEJWpwO0XVS+weSSAkZx2aqscqYcrxshSD8DclLkDpcxk24vJLVwHqiEIq3i+JOuCKq9wKkuvnMU/IoC0p7+KMoIB35KIHBTUbgqhS8ACEPEA3ekejjB3AcLh7i5bKVLtI8panE8uu2VklFdUbIaXsSNNhSFwWI6zgrbd7vj2q9/97g//WfpOnNT5+z/9yccwW3ubP338CDx/+vTp4dNv1+vF3DL4YdodetNpt1su65u7u/u7u3VZf/rpV4Cn68XsOLd26FPc4MJF2Jo2AE1pTdbVDNRJD8cdHbbb5XNSyjzPHrEOI2XeTbv9pMDt7dGW6937+/PT+eb28Ob+bj9PTy+n3nTa7ffzfpqnab8bxBCd5/3vvr9D5+my7KYZmM7n9bgXtjZMljXPS3HP4rcUDl5IcJbnkQ8tPD3/KZTO+1jK7V8VR1EDUshMbO0lKCzwZSsz4/XkjQiPJgInVOCs852BCmbfSuaElQunZbLoHmnal3BXkQ1wAZhtiNSdhsI4strIABBDqu4ZDNimWvM60fIA8RTzh8dmHXs9gNw98RJJ3mTLzosSzFidyWk68pykRW5dy5bgT3gRw69t9Nb14JU825CJPE/yI3jOZ62hvbWd8HeFMiks0fV2FNROySAmpKoptlLeEznNv5SERcItAy8z2dEsEJljMGwjGjMUMEk21LENRKatxKbBSjTCImK4O1RVRTzg4a2UjB7wYISKuIARFNmI5uJMsaEsCEbAzJd1qC6iFPG5t7Rw1eHr4RaZtcStgEloxwG3MDGKVMRZrfUNXN7WVtCBNeP3SFWNxvZaqid2anXXB90ttnpoo0GQZYAZVV9bGbMhKqtZk0a+9ja5MmrHoSK7A6QjYwCNklO6SXC4C7d43uHSUkotbuXGdIvsUuocDCcxhlNbvhvb+Orcrq/6bqlObIvGRmXwudvrpULQ3cpEmSKeWgDcDgRHQBgDJmHhzhp0qYi6/LOB8JpjhK2Fl8j/BRGRBhgPR1YqEZHVTR5bboFwr4SflJBoXmISmfGHYWZJoBkcYW5Zaqh2RIhn8JlQpts37//wn//x7t17hC7n9XB/t8duuSxohMXLy0t7bmNdx3BK288TiZvbu2Hj/s3t8XhYrtf9freb293dza8fPy9mfZoGbLXFceitzTsR6b0pAst5cYhOpLR5r9M0Ndem/XS5rGPpnZQFAEUi5HBzEGLuOs1tfVnmaT5+ONzeHG6Oh2nqItDWWpvm/e54f9N3k612bXH/9jBNDYLDQXe7+fm0jBGi7Xhze3P75vT0+fpyFTYbo6DPPAPzrXvkzJx0ChaU56BUXn/Cirmz8opIoVbN6HktiktvtmHGEVkopogSQQaGmzakMSawluUnNAr4YTgYr7Ro5u7n5011qUWO/knsG+I+moi7VxFgrykxhWuV46duM0ZanbPR4CawjxRHJlRdUGsKMdwsNYfVIxQ6FdlCrGaWFGgKRY2Q6JXUUmGqnnllQHD7xzaFRKIlW8FV5x5Q0qntSaKknzDdYnbckYBhHikeFNLGyIeQYE5EVD5dRUDm2AaUIGljhsNUiJR1eIHOiHC36PnaZduVgNlIULbi3nL4Gpk3pFlsSWkMpK9Ns39IAW6zjVpO0iYLUEnXoQGy6bcCX24kxCsUHiy8z4arJONZbY2Xtcgl6uUlJqKEExmaGiktCA+HeQQFBpZNLhxJk1qEayOBQWsi2bSOUTlwiBirRWaDJuJEiZztGSHGkqGVpDpP0zC6wEpmV7k6sJrJU/SXVkIDzc1TaEyJ0hHHaiuzKJf0rouF5zRUD09SNe9eoYRXYbVdQ/nqIdCUv0YgMbXkXnLew4r1FVV31H2ea7LqHYshniSdV76vUeQLTjYQzHBb6Y181U+B4RRofZ6KSBVU1bK1DwZSrF6952oZbuYuIeZOwCyEW4wxTBmElMYo/HUhFndSsTUu0n1dQwGHtOl4++H9t7+/ffMBkAClNwlZFut9x4ljWfbHw/F68/bde6HqRB/rzc1xmqaff/q5SVPVaZrvbm/fvbl/+PR5nnQ9jexgX15Ob3a7rjK1yV0C0hptmFnMNzNbu7nZKXUnvctE4dOLddEohBe96c3NjV2uH96/nad2fXyh6P393X437fY7BPZ9Pk/L7f3dfDgKZw+K5rgHaJ9FMPWp977bN1B8LLub2w/ffnd5efl4uURcHfZ3sSEe4UFG2lyzYY3U+gpcJCThwZJFxqtRLDKISEtmUXQlN/QmFw5TeIYo0XRqTgkLN1tNyHCFCkQCmhwDv1wo2UgWwvpa1VbNuYleYErJkzQD6BIqiEhNZXgE63rYAh3B1VYAqg0pf47sO2GWqYWZnCwJFCc8hQrCTo1j9f4OmJtZJgHXbGw4Rp7nvgGqGQxJODzDQcHS2GX1bjAglK0w3XrGkY80n2p62uvccHOP4UmFCtyFdA9saHZFx0cEPDMhBZsosSAyR2HmIWmgxyvuimGek6YGTAIKTbVYgufDHO6ioAggknPUvYqDLKdTGmQWUhgelWLmbZiJat5vJMhGesaugdTQOssTLB4+zN02jI3MCHBB5rSFiJVpEdlRZM/nRlI0K1rbzmBQMi4ZDvPKDIuqlyNlT+7uloK3VZoaXKbmoypsD0b2U24FdJfgMNzCPFQK8h5m7j7MCVGFeShjwEWgzIBzGW7mhqBH4UPb/kuLCyyM6plel4+FqiEaKka4WeVf5/djoTaSWiEkp+cjPHOZzE1EohJ7ZISXRjY5MimtZVrV83ogJUh/XY2ZNxfi5luVAQ+GuQcatfpqDESIcERko05EjoAe8BGrRyThYpnMEiZZ6RHGSGjHtlMkwtfBZazSmqWGD1xtSGtA6MaEwCyVw4SODZetfjog2iNcVCC6mNL3H77943d/+FPT7utCUQWWsYxhY11jsbFaREy7/duv37dJX54fg9HmPnc2+rJc6T6u11n13Zv7n6ZJ3Q99coSIjOFjDBPd7/qwtg7ngKpo0/3toWlvoF2GHGYROdzdPKyXxe1sI4Sty37fD7s2HXf3dzfL6eroBlk9dsrVzcbQRpV2uHlzuLl3k+U8+g2mWRC2rFcqocBghM9TP6+xjFX7dHN3vy4vz59+GX4JWGaTbGgsCzvbMIIUEzuGSKhoTepL0Dc2mD4vY6yASaUIJeMWmZ1oPlIVlolvoARkKxdABeyLLqBwbpamkK8NhEdKj6ooDWfm+eYBBxPAlVacLr3AGgQCmQotyTFs/UOhKPii24h4rSxJHW6F7yDd8lbYlFfbm3ftVnHmVtAEIVjyny3/IEo5aKWUgyH3YxMRf1WFRkLWrFfxd2fYF3I9m4bU7W1GSkaBth6+houIZpx11vJ51OeNsXGcqTjJOzRFLpGlfrqGQBDFLKwGQVOFm7qqalrt6urLA3UYG01yKsemHQlaLSwwnXoEQB8RHi1PpVxoTTRCsOleUx+ZSDooETHMPLL3d1JE2XrT3pwAXJHz/wRVaDJ7WwsXkTEs6AhXqEd6xDbcbJtp5F72dN9QDLOBMOaF7h6iaUPziOFYVsu7NyfYIMI9xDckCQHnqxMqz0wWTJYsDfMGKgkAkBO7uJEh2dAJMYaJ0CNgInxljcK8humqKlUiNvAkz1RIGs1SYOMRAuTggfzVUqRubblimCKodI+uLUws27N8WKh44KxUilxO7DKqMMxJnCVlEpoPEQibWaRho9SDHk7PHIW8qSxM0rPn7jlKzA2UCJjHsEgPIOAXX+dpagsJLrYKpUlHaCB9gq7iG5LAYavndV0y4tTdYh2LciJn7fu797/76ps/zf02ewRJMTCpTUUF4SrrWDuv2nQ6Ho50D1/Guq7r2nrrXae5//bx07Jc+9Tff/Xu89Pzrx8fzfHDX385/O7r6bC7PR72x/t1lfXs1+cnRExz3/eDRMxzu67etUemiGgbNi7rCEJVelO7Xm7ev7d1eXx6cMdlHaE4X68QuV4v0to878K464c1RkT01qepB91p87QTba233ukR+/28LGg3N199/532eHn6jEwqLpV9dtqOAo7d3FN+RlEgNFoeORFZ2KDq8KrQvc655N3gwiL5cpswtoiqTZzI7Z/mSOJzW7glz4lAqOq2qJIMQLYRkfhkYFM811lb934d7PlVuPXfubtdchJ17tokivLLZnMQJZJLqjmGERLehJKkGTy5rsilj0JP6Q4bBdYkvInwxB5e3Z2xYaTb6RkeKz1DgnMi1UgRTmrbKMiWIhLPgFZDlJQ3ivwqBtu3pUtBwIbFBvTnV0HU2AzfJoDXDV40HvK71w0YjK1bGDYYFWjp2yTypAfK/SPximXXhel1ssnGD5Sc0sO3bOCGyn6BB4wBGp1hOQcK5ii2BRxlMkzTHUjJuOokCCx5aiAQKpqroyBDeAy0psRWAW7HwMZRZrnowzbeCq8nUX6BYHpfU6ecsgHDmpN7CJSdILyEVAVZQjiEkuIBCOAW4QMZZ+w1pScPdAuPVMRHDA+qNPcQQcBJjhGqLWd4lQU8kLaAZGqoiQJFChEY3oTb2y0rjIWjonICDPPRqGDqkCICbh4ELVSbOyIGczWgcnrTIxZfnmQRNBTW3AA3T9GxB5sANDMXSlNkMkRU7VTy3Chl0avkK3NWspTKBTk8ho1lHdVnt9wnJpsJPkvR/M+K5ZLc8vSg5yJAYYkeGURGBH1wd3P79qtvb27fjG20s+U4XVC1ARFhYdbnaTd26/U6hk/zPJYwD527nOd1uRz6bnc8XJaxjvH+q69HyNPpf411jOs4X8dYrU+73pQil5clJ8mdL9f3TedpusbyYqudzvNuh2HBdVwv19PLcl373CPgYdfrSalffXj/+NvTbu7SFcQ6xrCYJr25nQ+7A4k+qXTVSTxsWVbtO22tTVMEREn3YQbwclkul+v5fHEJEE1yJHMeLBIBoboN384MYR6X9Agpoiu3Tx2qdXAjYhhB2aZOeyUNRIXmx1D23HQUliUYZardTu/08RDNKSDEzDN5DZHMASTo5VL/u6WYFcn2JbamAa/ihY0NQ4o+X02/Fb/iTopXcEH+qbT0ptAQbqO13qGeLUvFi3ouJyRiBgwfqS1RFbaWRoZkTaWU+FnzeSFsqQfVV1y2KsE8pQIR2JKZHJX0k1169veVX+CBDZIA4hXVRaEa9ahiY2dq6gmQIWY5r+PVcGWiKaqpboGvf8zdIiTp5+RIbIx8ZSIaWyBG/Q7hl/aHzG441agRFWnTrI6TQrgAABaASvmAzUcdwx5BDstxhIaoiNgs6DyHGCTq/SonqRKloAgVASQY5gFYJr19cadW0FApVkAkuYFAZgLFVkV7xGpxXW1ZV4/I+SSvrJinuTeyBU1H9Surn+ikS+WVW/IwAOCV8eReOzG2jjcCkk2npYgBFHjA3egBoYVhDekNKBUMay7Ga3+WWjdP89fWqxiADG1jsQvmhV0WrQYYDUxevjx+X6ioJECA0NbC4Za9lCf6iRgji6Yk7smEAkXqSolXd2k1yGXAiG1T5wMw92Fmw8xKoUqqrT4UqszRYxEjISogVIQh6Y8xs7StWC3trEHo5l07IX2a3r1999WHr7T3so64ZUVV0rPq6nnY7Ri+nC/LpZ8v62o2RkTI4Xjw/U5Ubm7v+zy/vFzChrbp48Ppz//xI3T59fHxh18+vr27m9q0XNexXC7nkzRxiDfh3DmcguvlNJZrNA/609Pzb58+u0JVdn0iYGPsj/OH92+78PZ2N0/z8XgU4nK5UvrduzeH49vdfq74QSehU+8MN7ME3FTV3ZS6juXl6eWXv/34+ddflsv6WipVAV3OCcv3lUEIWWuXyTcLSIAIeRUc1+ZA+XgjLE02paaL0jOwlELpd/mi7ie+7NRs1HIMoFMybjI2KmpLjajzdDvetlWUGrFgHfRA4oBFwNVxVkrV/OeKlObmT96WngsB3Y5sSwlORnha1IAzwMwjTEo7nv4fuplnv2NUVToioyhJymvsCSJpwmIRwpOPzs4mSoVZV8JGY9MlatMENlPOq5q9vmhOS0rpYPHJG3PAugSl7vDtCt1+4KtYq+rGZC4Bkk3a5kLwcHHfOhqiPqqLu6vkf6KJjrGKCGAeBmguolTKmnlTFdGWnH5WerL1d7lfczrOcNsqBQmkB9jXYYWppNqz7nmFSJiHpYQ2q4vtczK5/4pZKOlSBCpdslRiG7pSQEG2QkB5PyzLQY9ltWUd12UA0K5NawWyZg9A5HVGTT7dcjkVZ+b1kmO74gGm588YWRClxDO/Weq0GRYB0UbPBLYcEywebmNgHQWnCkW0Se6bkt3yS0+cWE5FRGTjhtdU19JJCvMq8dC0UVTZvpndYyu/cpqMBTLfJjGoSPtYYkQhGUORogsUR8HNAoOtYUREzpe3RHvz6cGT+1mHj2xywzGwrKu0NksLxjaVPiG22uYsIl3MRoFbuQ1EMqgjBEGZ9oe379/d3d6q0sn1OhJ8Fk2BFDKqmoLr5TquS1dpIueX83K9tK7zvJvm+XQ6pfCPVFFtXYePu9vjPPdn8LSs//rXv717966h+2p+WcNNeqPy8+On3X6epw735XreTX1Z/YT46fPj87pCNBzH/Xx3d+vXQXBu+PrDPdxGGFTn/U7ajjrd3L5RnVvrrU+tTYDCIU371MLDVp/7VO2yhurxfHkWaa31proudV7mujfzoKS+xQs/qTVI6axtUVqZEoUmb8+sguERlXEqDnPFxrRmjodskMSGdOZ5XurSrfxGIMJIwDLcqUkddEQiH7Vp0wCWo8HwGq5QGoja4cUep2PE6RIisn0qobhEpM0qD+XwMKJGFKQRnamsGJ7jQ1SchFW9FBKh1bsXwesRNLDK6NpNzPmZf1eI5/pOdJfmm/Avtxq3B/V3/4WAJSqAunwh9c+JoQ5TjyLtkTd6yihFM0GsZO5aMUibx6JSseqHAWFpySLCS421aQXgNFrW3hRozmny7dKLoIcK2LSNYSl0zSNeREqSjUi+s+WJieSjUSV8/v0MyEgSPwUHeRaYDTevPGd3t0w4i6jZQ7EZj6rtAROw3qY31Dd28UDkAkN5LzZ0L5dRHooUEWVOsAsLCxvm6/B1tWUYgFlozcX/3oiKFEkDTMFx3gSWfUad9dhwuDBo7gtPFGQrhGviRWYLZS6HR2Y55S8KRrilHglOUeRMn9Y6miKTy0Veb7Kt14nShmUGQzLOUginhSBxUqlYu9jmjorE5v0plT23sNNNYoDsMCoSm6hJcmnUiiK3cpHL5qcMZMW1gctATopiVpk+clsxayPA3daxdpckbupNb8Z0IGybDKUgEc7wL2oyENDehxndtU/TvAdgY+g0ZWItane5A8NsHWO9Xq/ni61LeJjZuizXZVHdTdMciN9+/fRyer5eri8vL2OM3bx7enjuTT68e3M5XT8v54fl+q8//HjUw+1+Z26tawPWZTkty/PhsO893Kb93Kb+/HL+6dPj314eLuKT6a7129vjPE8WbT/v5zbtdrq6PT8/UdXMGLq/2V0XG+NlN8abt51Kkg5frus8zVn1VdcVQca872/f3LX//McfJvv1b892ff5SBDpYLlhN/UDWi2XFkZR5bCdKQuUkkGLGvApYmw4egRzKmOxlbo6Nw/xSB9ceqQ+QlYDXScQAINSELisLZCtEtzYyBVO5eVBccdTGr79EZKUcUWbyigfMfwnhr0+g8FgQAtH62K/iUPeyDVXQcVlgEv/Jc7byRZEn+BjD6RHRpAYgyGZbw9b4eEA3hAqMLbgAKALv9XltVVxhWeFMRU45Jih49VxEfZztz6Q2GvWpNlggQ11Z1+4GwdTPLtcPVbOK8te/Gwh3Q824qrYLRRlRpNQfBHrTTNTIQYebe4DhjqYW3tyKfRSlp2o+x2Pl20UBuEBYpc5H5sXnsZxADTcYBVC+DnmofqceDV5rmbx1WXdx6nxJSs6fKMFMBJAtrzRNCxwy2sLp5jZKmZV3jY/hTSmKrYFyh5C6naCF7GQpkidiFqqFDiUimCe0ZBNaF0g+4wCQetosT3LIjLASCVOWjaKkkwcCMisnZFMJe1nh62qMmoCDyooOZnApfTNU5SgKluAigFL7JltXFtxA7sP6JIXmVJJkFBWrBT1ta7lgoYArJV0wX4bHpBytth0c3C7OUiUhlVmQTNhORNQdOZ0wXzIJCgOh0t2HZL+R1p9UfouA2qZ53u3cY6xD+5Q7yIaZre4xhp0v1+v1ul6uQmsNy7KsyzrP3X3p07TbzesYw4abJRI4yXQ6Pb88PeyU3324n6f273+2l8fHXx8//esPf/7H3323b7pe16dP53nqVDz87W/t3bunh6fd3c3nx5cfP/32759/e1oWmeab+XB3f6OTusjN/fHt/d3xsBexdVlF29PT87qMrru22y3PL6pTm+fnl/OBMs87H4OUy/k676nWxhiktq62rtfL2qaZaOuIZXGqpuyunj5CSiWfqIWCySmqiqootqEXeasDKbeXSKNfKQ6c2eaJhjnAKjK2giZxbw8mJJuZlBFBQVSkwWvseVaFEGrViCzUlonjIIQNhVJlulOpqJHXR447zd+d1Rm32064gQf83zXKNVlOiEwfZ7RStThyHhhqsmo+pQLls4veVnHARtKLwQj2HiKE+Jc7MCAIA2q8Elnj0xhRU7qiptNnLY+oDkxeu3Ezyw8rqCC2OvWZbY2Uuyb19dX2oO5XBHKQQ5ZalHiFarE1fpmVgla6vAiAuqX0bfcmCUmdkVvNXUPi7YGm3cM8UbmEpcwRMDO4N9+Kx3AIVbYv61sqReXGRWl7/dWXgBBNy7K7ZR5pRLiI5qopiAsb01hLMuUv2bzQM9IEX/jMSnpmDXzQpqpSs2yiCtSckFpXGlJ7n2NpfKtiMgO2ylv3MPqm9snFjqhEGlERkQKm8h6Wen+2PdxXWRC+/FBQkJOC2EFYJv/7dlC75yAGhDaI1vv+QrWyDkkQohLbIK36Pe4W3qQmGeD1kwEFx6bxEl71A4KEqoxhGQiRXSQrh6la7io58pdXXSWRGUbb+o4UEUCycfeMxfJScVIhSXRX60ChBNNnv+ncIvLWFKGbU10ABFGxjNUOk5P24/H27nBzN+/30hpFfIz8fRSa2eV8Xcdq67osl4g1bJyeT+6rKPs05WKbJ3n/4d35vH95ej4cjuu6fI4x73fHw34dg10h3//533C9Xv/86Vd2/e727XJZBGgql8ulyYqpP1yvP/z15dfn548vj5+uF+n9uD/88fvf3Ux9Wa/LsEkw7443N3d93/a+Pl2ul/MirR1vbyjadT7c3PV5CoePaPtGYZ80Rczhfjlfe++EkiqiAT/c3d2/e/f0+ZeX5YUxwCBEJDN3w8N9M55mZkkGO1dL/JqLhZoC83qkeOknERlzFpsgnUxI3RleQ3oBEP6qBdiWJiu8ofYuHVkfE6/cA4n0/KdUpEp9QCjZ11ddBQg5tosnY+lSAeGInMtayGx5AohUZTAlbNWyUNlDzTzSI08GPB2luaAkIx0iWQhuWCfcfFlWSwYbaNpUUR05ti6F9eG5FfKoy82FmRaTrHjhpTn9iEyjqxeY9WVHR+TEgmrTQ7YpA5GxwxlKz3qtrzdqvkailKF5ssmGgnh4zhrJI6wGr5JKegzAc/RbHleROE56zRAQqohtKaFRgsOUpqNhm0lWqihhOsNy5ZmNrLMz6hEOMx85C0zoqPtRWSPWgl+ABWwwJYUilZrgdSZtqHGCj7W4RZOLzx6vqCFo8gYbHp/chL2KqhDDgmB0KQU1QLgKWcNnUrKStzK2drtO1DVGoDXJ68hL/w5QNb9KTneO1E2hpgF56bNCCYc3TX2UDauLlAX7wMJ9Hc1VpPD+LApKJR2x3ZCFltS/GSriZkzZdw0Q/iIZfl2vWuo1juEA+LqN3aHIi02FAVd9tczUS4GE+JY7WoBTllVY14UiUQxe4cL5HpMrMM/C24WADZG2XZYFUGd6qIp4mIKQipEOimiG4rW7N+/u7t/mnBgPRObWgqrtcr2ul3WamirhZqOv63o6n1+en1rjel3cbV2Wz8S7d++maVJlmF0ul8PhxmM8Pj4PoE/9uJ/Njk9v7h9enh8+Pf5Pf/nLT4eHD2/e6LCP53NYiMoPp9Onl9PTGL+9nCCifbrZ7969uXt/u99Nk+xunsfS9nr39mbeHY0UbYdJP//ytLvf7Y63MbDf7SYRBadd1yZjXY7HQ2+qIr2JEHBDSLhI69KaDXOXr77+dlxefri+nB8v6whRySgz0VLNBhkugQBjhAt99Zj6pKKN6u6p57WEbJPLy1efQ81z1qNkVCe4+bOCTajuEWEp0tb83QnMCuEoBDu3IOl5rKhU6ZtaMoZTSE2eJkOSCUYYw4WaR1yjmhUb3VvZ4IUBGDPPKgBitREA0r1o5ulDECldHEMIyzmmwQiuUXvjdbJoSTtJpViIJwZGHZbnybqbBZREsphjTpC4UiBAD5FwgIbWtPzADCqwJV1GQIQ5PReEW9Ve5JbTm8SigwjRhKJMRLNbKwYUGF6a+/DgJqvMm8OilKPZyglJRNNkdBmA+UZJBESkKRBc1hL+uSSJpq+1QQHFiOSJFJhERxL9YCOxaW8LvMtL1Xyk9CUikifJDmZEXMdY3RnUHD5iowlyOqvmho3wYakaSulBgQIAI8QpOpkNioZ7lS+pcc2eMr+IUBAqaMpUhQ5DOFwJhkhMVJRGLYbAHT3ZYLcMqM4d4QaDTz3L6yzqAcAtRJg9DLNJzsWVcedlbwnmucg2WKUwCDqcIRrIYiS1qiIiTsP28iTCCdF6GeGZgqrJHFXaFDIFmjUxSCUDRsiaQxqVZR3x+gjzGtOE4BAieROoR/Tel+EWJtoCMjz9o5mfUc6IiAAxLDqbg5ndr7WkifIxim/VfPJDedE0VSBc1T3WYTaMTaJU2Vv5tHV4eZrM0lezjOzIfJEsKFSn29t37z58dbg5aG8eWJcFNQsJQvS5j2Ud61DKfp5hS1clYTbWdUHAYkxTN1vXdfHwPrXLGTbG1Nvh5ug+RHw39atMb+7v+ry7Lv789PzTy+MJa1zWeZrDcbleh8TDy6Xf7KzJLHp3PLy5OX54e0v342Ha3e77Zf3qd9+8/903N/348PRyPV3hI9wePz3e3b3d7+bT06PeaptawM0GgPP5BIarT5i0SWMTKgEKhxkA1XZ5sakf+zSfi/AHmCEQBT4mtyciQlFtlAyErM4xh+MJpYk6kFkx5TdKADS2uV1IYX+WxchgYkm1UQlSUEchLIef8rXo3RDDeP2LrNVTjhy2baBNp0GoM+34UfWoSA6qYU28R6VAVGfrhcrmOvoCUkaAiNdsfgoUkjgI6hOn7lTrWxY4nrUjiq7IktEHA4sNUS0yOoGOjUbLn+YeTMdtvEomco/m04liYrIaCuQV50kPvvbi2IAekGDTtiFdSY5txp+I8LppMsXSsf1OVofy+qmasBLWt0cYzDo9r/ZoTRBFyafCJSJDwlFswmsEQI6u0pYEaGOEgiKSU3gS01eVrs2sUpqkSmZ6cFiBC2a2DtNUzgNJ2CtJiULGN8iherSA+wByLg5F1PPgr46LYAhCGEp0VQpF2HQLDS2GPQEEUVeBUmVdxzosow9UtTUQ4gMRwtLhUFU8XCAiNM+1xBwQidfGiRSV8nG9NsiFMHpO66SPepOwADNVlznQZ8PztKkHFVoQTcQIcBTDmiOFa7+QKQB2N1FHRNNmLWZwXc2ifC541TLllc+8VENVtm3qIEURxizoQTWnRawWk1KbNN1Qy3AgHLk/q/vNqoUqsWn3LWWEeQPk/EwJIXPgWm/9er2mSJebGDh8uyryq4m0liPOKSIa4QKqmIdAe5+/+vYP3//+D7c3d9M8g1zXdayjiYYn+Q4hp6mTgHl46w1TE0RcTs+Pj4/rur55e7/f7/OXLZdrhLdJ18tV2N69efPzL78ul3WsNpYBi06+uTnud1NY0O3KxTmMsjYMoO+msaz39/d3+/3tbr6/v7m9PUyte5hflq/u7v7T99++u3/jq04H17k9ffqJLZbz9ccf/vr733+3nkeAxzcHc6zLubWWszJ6n8MhFM57UQXglt46l570VpumqbW2rGuQlixKhGrLgic7tUT/G1U3KL3WJ0I0bXNRBCQrg8xLI7CBxBtlFXW3SIIyOQFLCqbO4ieHQ2wQxrYTWHRuIgyMjBIMug+IaA4KTcQhMfakFhLqDUbGAzJyZ24XSg5+SjReXyVPKPAnNlw4KfSShDnpqZSIgFGCbBsqm2cFSYZkRUk1l+UVvDYDgk1fj2l+ocTzSwqqMC5m4svfFUCk7h9im4GDPDMj9T2UYjQBAGkGJqXytcNMibyd3ULoqNT9QLpZmdhyjsoAIiIn2jHpn0JGaiAAMj+O2aLkrZlP39PnqckUlawVkf8/EKLI9qQBW/x+rbYkMRJuVB+WpX948gJe78F8zZamN5JNVVVaa6okHAyp1EjWI8hbILRWZjEE5ZzOv0zkvSd7WkPGcmZnZMGOQC4lFUWjQejijmGWdawKe84+UpoFSZqIUNM8n0EKgvBQ0bpi6fVL0iIPB7WcHRWo4gUcsZDtLHZYyGsCsVRKmG+IJbdJEBnb4IJNZJUYO6oIYiW/ZcoQVKhk6w0gxvDCFWPTtXlY8nWhdQ3IVjdGGJIdWSOMvK5uNsLtMPc+N0TWCDBDihfC3WiZxvFau+eKzx1Ug8gyx6KOdAJIAjISrQYDbNqEzEwO2ah7VVERVsQwCBoS+wdF94ebr7/97u27D/M8hwdoQvTWhy1uYdc1TQ+tSZ9bmK+X8fJ8ul5OfdeWqxwPB4dL4+l8Od7s5/18Xa/n09WDq/k0Zfb+9Hy9rsvw8Jvb/cPDie77eT7e3JxeXlR4c3c4Py8300RRd1vXdX887Kem7rupz32ixH6/H5d1bvNOZl9jHePu7dvL6fz46Zc+75ov0hl06Ry+HG/2YPv119P1bHKUdVkRaE2fX15EqrXT7MbdiTjc7HydW8teTt1DleGhqiXlseH+KiYJCkSr+3ek4lzohUgkXyTCClt6rdaLeEMBGqn2zuOJWYHVfYIoBWfSqBGA1GLl6z+yKRgACNQ2WBZ1jGdxWAVj1U/VNJTuX1DI9pYQkZ6ZaizwBRPdQPcAN19neRRJFSm2rXzAlFRlII1hrqUeF1eFQAQe3jSHGRsy9mrTpFUsT+bGyya0Sn4LHjmqrQAuZBMGgl7EQz6iDMvRTJbbGMgaA87yi4lIDKurBrk3QnLoIJiQcCpoBJI4Mcs6A1X1uh9dNto7038JQaOV7xfBcNa4qo0QIQXC9FVUNjCF8GgiEjmSrh55FbOvdkNRuCHASEYrdaHD0hCmQN/NvbWpq5KtKYN0oiHLSNY0gO1YSbCu1lXJW7iVuhSk6sfyTVfUfomCcmHkO/CQPMe2dVc3GzMEPSgplJVqebeyKRuIZJ62ThORQrA85SAeyX7Ghrdz4+9L3JjXvAhCghaGgDYlZQQS+VKR8I0YrzSRbJw964J8yMLsPjMVH6tbbxrBZjFereugkJbkAzHMVCiaF1iU4dM9YCOwmi+GYfH8slyvl7Eu6+1h3k1dW++aWjFu4GAe6u4GODY5FLLkd9tug/zyrx8G7rGMdZi3mlUEacpAk1rXylBJzSLqXkyiO1LXSNFZ247SPWJdjY0K9N7dPJzLWNZ1RXhrbbnaGOv1cn5+ev7828fr5eQ+4KZKgTBo6zqWTspu3j19flnHKqLn07lre/vmjY/hEYeb22nX/n//83+7ub2BSGsiwH532O8O+2n/5s0dg4+Pz8e74+39/a+/fFwuFxGhiqpaUKbdZRmfPz2uK1bj/aRjDGk6T13bfP/uzfFwEOjx9naMAXrvfcBUtfVWFhu35Xrt00xPXBxAhPnjw9N//Ou//fzzLzZWJqYAtjZFCr88wuWVTuV2LubRuaEgXu+uiqoUE2dP93eigoJ0tvgEBslKgdz+gaoBuEEvGTmwITL5cSqCLlcDg0SrcWPFPG8H1iYRqB9XkoTY/rdKJkBxe1l0+N+dD19cO+a9tVLfeWTDLdXvMCXy1XzXacH68g5hbSwoVcXcZPtVwnpKyWl4RB4ZG8CWCFsONFQgKBx1EbJth5Jv1yS9OgMUVwe6Q1hcQ1HkBOEjWPBZ5NSEEmpzq4Rfz6lsOIq5rOAHQSBdoSXJYhmEyiqBTEkNSYT5tQ4oJL5utWzWt2usVRkb8Qp8CEvWn8Ibzd+jgpFHDcYyxpp8XYDQlNGIACZUBCQnxqYuvFIwg+6aRpRsmpASlHpdbhEaSXpAqdpSupDItW9QeFTrUEZaN1RGcgbuWXigFa4YbpnsFokkWhHOwTTybpdzFJnGVs1qDtkEs7guzUw5qlljz0UoSoSPbD6QSaEitLIssMRQhcaBLtsuCY9wp7SIqJ+FkgXUpbZt3tfKjZlW5a++dESEsJJdKPSAI1YzCzlfrufLcjpfluWiTYbfaBPNGECXMMiGDKC6yE0OESXC0oRimLw1yVrI2yrhMFvWMYatZlOOygkqgQwAp0gR+0aGNh1pLA1Smk6TztN1Heuw6UAS4SGSPJCoimiHB4XXy/Xl+WW5Xq+X5XhzJP3nH3/sTSP8uizHm8N+3xMfu15XFUaX9Wqn03nqU2+N1MPdzeH2cL0u67Dd4ZCTmHw/z32aetsf5pvjzeOnx8Nufv/2zfHublicnp+meb6uZsu4bZMgnPJyvvbdddrtnx4ex/V6PS22xN3bmzf39+Pq0tu83/sggHnauV0up0vCJtfloiLX6zJNq0wQdioRcrmO6+X8+Ph4PV8lvLUc2RiprVAhVc08YzuBbPKD2CQ9taUlS6U8YSQYCC2tQZ6y20D0xJ4DpUgJZzlAyb+7KqQEP6WRTtl/0lf164sLLCWoVOedRfN2BxQQU4APM1YEQDDHZiFhDsmDKVuXLABVJJyVVeCZxpO9Q3p8c0+UQDOpcr6u3PxiqW7JtLzkHyiiOrkbAu4Wnlbd18svAZU8zzdsgtiAWgDUQntCRf6OLMyrNe8kiUDALOXIVKWqbnFuqSvNeyMDCs3SEJndf3wpvPPAKQh0oxWShGMavqXEV2VkLVEW6QQS5NseaFa3X5aHACPyWiRJobs3bI9Ot9EkKmxC5HRkLTEppInY6g5E6oB660rtTZuKqiBcIGHjS82RLyTjbQKaF1cmLnlQaFGZU1kvOIpU0VxKmURdjE++nJwkhrGWOmVYpWekZsZd3c0ZET7W1bYoH2HKrEvrSbqKIiJ1cluFlRmLDmQsSZRKrRDu1CNJQazbM1VV92AIQxzQxMupG4KKBEEsLPHVbHGq03LP3ODcNIiE4EZGYecizzVY0jzUvqj5OgVpsXQa4eAIwbqMsRkZhNK0N1UtsltCnSkkADWBG1UEcwNYUJwSEgKRsMi2N4LhkuNu0mcdETHMhlk4rMLjK90l8cp8Ur56ng55FGWg6WoxBlVmUlvvYxQ/ySDJae5jDChtjDGGajse2zxPvXHqKoBKfPrt0+PzI88xzZNdrs8vLw+fH6apX58vP/7w034/IeJ6OYNyvZyPb2573717/+7l+RSw/W5qVfP4fn9Yhj0+n8Zqv/vDzfkypt18en65Dpun6enhSVq/OR77YXe6rNeff/v2+6/fvr375eXl6eEU8MZZvB0Ok0pza7d398PWy/lyc3NwcxERlSZtXZd52ges9Z1HxGqI2O9307ybp0m17fohbHU3aEU1hJkQutkDqnA1e1UOFlIryI5VhObbgSubUzfVlqRkrDnJTQTximuX9wwK1OGevTalFh6DHCOAMTKlPnFlEdEcQ5iyzsT2UjlNqsOAZP5oFhSxYRGGDe0JADXTLCXZQErmS3xeHw7I4DkfMQAyVHVDFQGE1G2VFb0KzbUpHDRulh+oiGrkd7FBt1yT1ZYUmsstvSExzDpfkcdjnTCJs2VZHbU3t5aBHgXDhkOaqGpXLRU2Ep71RK9gLlJsawE0r3ykQ75YBKJ6LQrgUjNYU0eYt6BXGwXxKENoUpJCppmOhcLVPa8qPlLOCBWJxtZEoLJuHYc29qYEWm/uInW2RlAWk+vwqnbJ1rT31ltLnnZT94eKZMXO7SplgPiSOJbT3VPGnGq3rU+s0jo2sYpboFiJrICjtU6G+QqjbyHdlZWAAotcPMNAgKgpG4EaKV/JpgxGzRhimtbSpZeMJasrKkoEBCNnLkfCgqgXWmIeeJj5ENHeuqPK8/yCopJ628z5TIY0oTT+Xers8JFJ7Xm61rqqGKKUCGHk+PBIf2RJF9yjEHgIqU1CYK21eQdt5GE+HnakuoXsRChkh1hGiYOM5INRJXx45KESEq6hoUESLqMOHg8vWAhhHhECCIwhwRwAJSKtO+gj48NS4BZQWYdTO9t0vH3z/sO3X/3um9u7u1cYeIyxXJdh6zpGLhJbTYR97mMdorqsS0Qc7w4+lsv1cjmfRXRdV8Cenx57b2b2/Pzy+fPDw2N8eP/Oh037A4aONWLE97///i9//uv5dDoeb5W01e7u7w63NyI6hi+Xob2fnl8eH5917k+fH13k9v5utfV0OZ/P1/Pp+Xo5DRsPvz2Ose6Pc58mbW1/OB7v7p6fTuvq1+Gn8+lmf2SXnrq9TaWbmbMgRHm5jGqZtb396v3l9Nt6+gx3JSma5sJAMlsb57RBhuWhZZbLIEIpITp8iMRmjRGWn96T9DegFViQ1wc3FGerTxECFXLEKJD5VciVR2K4mTkpDDZl4upSiU8qktb4rPG3G0tz/Jz7yHo5xZEb+CkZJZWgwtaXfIGsKk4raB4OI4SUVIkmryCEYcRrVyNZ0DRKCCOH7GR6JnIvVUEWxiROq98qqiq7l3yAAk1auaDi1EZK24KvM2oFqJms+V/hvsLgoNIREGjTFJGPv8sEKy5cCpmvF5rTHkmRHD2y5SEw+7jIK7xrW23JdCYtdNsLbyAGNv1o/di8G7cLfePVXw/lPAmbqqg22TDF1puqaBK3Li1Fvh3X4WFQkTztW9Pdbtrvprm3JmQCUQgVzZo3wjKazDIynGkbljzQUxqdLagKBaoSrUlTEYpFzWoNgUdKDCQlSaoaCLKM0QRUNaX1ooVOFHJPBKTizyilgudre6VpLcsHH4kppeQT0CaRQlehNpFAmnpzNFeppZIvEIoJ3ZsU+68iY6woisNJNmVQzQHG1DsIQhvT0etfNBNbp5MZGxSDMR3Miaq1pusaKkUhpOYqkGFMQrQmjBZDh5DTYXLvojxMfer52pq2rhIiPrC6OxjaWwKJSX0pYrgTIap0iiro64A3MQfcUxOrZJNubsMGgNaaxmDAPLQ1ynxd18vlJIjjbjcfpvAI0fP5EoI//fEfvv/+T2/ffXu4vRO2EaDaMFuWYTbyJhYGwsa4nl5elmUVbT5MJFqfXp7P18slEOs6lmUAks3cui4Pnx5+/PHHdR3ny8nWcb1cDrf311h//vXj29v36c/48NVXXeT2q72K3N7dWOB8vrz/+quPv37cH6enl89jPe+ng1JijKnLZWCe+25uD59ept5bw88//XA4HN/cvgkD0abpYAP7w3EMe3p6vDke+jx5RJ+6w8eyzvMkQm3SJskCrnV1C3fvfXKDUHe7vS9nwiiIcHeqMIQm5QPO7BGLkXHEX0BngQg0KKpL5MkUJCHpEZWxhLZIKSHoregBl1ALF7L2CaWpAmhsnixwoht1zubR1JLNGsOz04tS2qXFIyG/LdMoWEdFCgc8z02aezoEhUwBXNtUpNsuCJA54IikwYWEZyhsldFa5jOK6GILiFYMnuRQlGwzRnqmEpAUqshYB0xFMcZIgoJRY7qZCemV/IDE/bfDP2fR+MYYa377dMqybAxUioo6VxF2bU0Ulb/iTPwEEZWbli8ZCGiep5WlSYE4k07OmakJgdOCIq4inX2MAcLDVKnScliAw7ClfWXB8dopejV5oDIyYTbBcAYi2tRbOKbehnlvrTUNoDXJKKkIz/fokPNir7+g9zb11nvh/yohwta0t0amBSNtw/n52aRtxEDBUnnsYROcySbUCVRSqyFTIorZySGWsSWctAYLU63Xp5GOCRFNJ6wEQwBtmuVGgWvp72W4r733KG0BwXA3y9zdVBw3rXhShyGYU70IpKyvvrUQodrUrVJOw/JeFcDxJe8JW/Zymn5bVit5HwWEkhnmNWRxuxspFBduD40lZ2LT1ltXzfyistRlBSVEn0RDzOkeTWXuLfvZnBqtSA1VWAwGqoXPwLgICjJoNoaLArA0AIqyNXWDqORQoJQGuWMMM0tWllNXMz6dz59enp4eP/VJf//N1zufRHS12N++ffv17//0j//9V1//jlSBENKbuON8ySLJbYwxlt6U5Pl8XpeRZXFTORwP6/X8/Py0ms/7/dsP75IkdLPj8fDp8+M6zD3Ol+v9m7eB8fj5dFrj3/7853/4wz/c37//y5//Eu73b+9eHp6n+f6Xjx93h8N//Mdf5/3u4eH57fu3D58f39y/HVf74W8/Zj3w8nL58NW7f/rHfz49Pcy9f/Ph2w8f3jfi5nh3ermez8vhcKeQ56eX8AiRsa4vT6e7N3d3d7fjaqrS9juSy7KINpvdu4/VsDnu+zTfv3nry4eXTz9exuU17IWlqhFkjlORk9EoSgWwsZWblCELOtY/zGAem8OcimWsiq5KTS1aEbTBUpuwUIRXUQSA7FUrjgWel0ARuRFRJuBS1TUFISoiJEwglFA0SMscb6FICwlmhfVKMmfrD0/5tW07NLjVV0SxC8n3mxk2fEgo5tWnxIZJxtabZgshAvNCF7s2baqiJYLxGLZF42bUcD36pFe2qv81qqUgt/wTmpa3ZNSjCPhwNyFb66LUOpgK2mCSJlvQtbDyhhLZT1Y8lV0uHu5CnUJScJlyOCAiaDFEpE6XjUkJETcTUXdHDjjb7E5ENgdpvvH6egnGpABF2CRdg4RGpRH01l7XiXsNa1sjxhjX67IuFhG9qQq7SG/SlY1spVGmSKqSJEJ9W8Ai7TWHNbvALZPTKXnIFBqIDOyEpbMqwwlYty1ECu1qwiGsyT7bK5MUgjGL5DDzVy6iIFC+Bm4U4LO97+LBElAS0iM1A0VomXv6w1BqYFERbRpu2mp+SUCcli9eUCBXQqQFz2bmZ3hyH3BYuHja+XQdFjDzQWlF1xWFtTXp5lAKtbXShEswHKGBACNUCWoDgmhOD/TeWgZreoyxIpgqNlWGK8IFKLdBtmXiWu2Fhg1WmwMLExuaW0XYuuIS12UV4X4/WUxB8YhMMvj8+PDDTz9fl/PhMN3t98d5nmYVtrvbt//5P//Lt9/9YRjMfdfZVIbHWAeVdNiwsa4AmrTMzZ93EwiH7PZzm+bT6UTRadppa7vD/vnx4eXp0dz6PJnZbjd9//3vP3w9bu9v/vLv/3F6uf7668+7w87d/6f/+l9//vGX3TR//e2Huzd3Hz99+vXXj199/XVQPdj7dL2urWm3MfU29YaurfWH357H4s9PD/d3N8f97u7u/nR5+vD+3bv3Xz+dLo+/Pe33O9E4HKbLZWlzfxpXx7os54jjar6fJxFpTWPTOazrqq1t4YA+Tf327vb8dDg/pg08DwjKpr56PS8ywABlr6miJ1c0IjLrRABNCY6Vf50Rw9Zl9bgs0zztd1NoQgeWGyRrboAiSOlpjn3xiIhMShdRaUj9QYTnYBkDYZF5wgQskz0ijxwt/Zuo5OgtMCQFfqkaTuWbpDnJXSJyDkyCNHnqJXRBSUbZI4cQAhGZUy0tp2/lCi1RtLk3zbgkUriO4TZ8DFGNEKFK05j7sqwSWtbFTN+qY4nlAUO8QgX5o2IDpzJzv6DmTOxhiDBnPGkk/wVKKkoBqzuJyXJWwNpmvEj0artc6peLRoq8JGAJacRGSMg2FzzxiEILM0zNC8eqrJgSd6AynSr8gfmQ6+ISSqvM7pyi8/ooAu4+xvCxOkiJ1WJd1mVd13VxN5E+de1TmyZtIkqo6mu6RbaWKiyyJc+wRMJRESK5krMtUGYSTH2WZO9Z+picb+nbAb7FGuffJ0sgWpunJGfJJGgOB0PSu/UJCkCM+pBJMViNUtoYm7whSCk1J6PwPnFavtyseFySvGWNAULLDG9JAg1QqeeRRjRECJXVQDrANB9SRCNydNpG0NWqk7pQHFAvYZtI/V5okwhEiLm3rFmEnrb8YNNS4FqMZTFTeNPW2vZqojR7iEwwh5NUCD28JekrQsbUFegZ5NFBLnZtbYyBCLex2qrUqUlInJfLb4+ff3t4UPKwn81suO2UIm2/203aCVnH1YZNKoPIeQFCsTXmfdsfug+P8EYeDrvT6XS5LPN+R8HL6eX5+Rkek/are5MWHo+PD33q58v1t4+/HW+O7z68V+1//eEvu/3UVFT5hz/9w48//PT48HC5XAk+PT6r9p9+/e3p+Yz97sP33/2v//V/EfD9br5cL3/+j3/7/Xff/w//5//+uo7lYq39/O9//o+7293vvvs/7frOww5yfHN/b/C379/Ou9393dt+2O37NJ2uKXLovWnrY6yXyxKI3lufelNJscJqNplXJIy7u6/reHo+nS7LsByMEaqlLq/swtzgeWhW1iyIXkA5AIQQOShJhJYDJjYhZ5itNp4en4/Ho6o0mUVlmKnALQoCEpYohlBlARcOIFdmLk9hTvfN2wHB4LBQhogw4w+z25fU2qNE60WRosowZlbYBvqQEc7YZmyFb1Re9RnSmlck1+sVGQhHWnTosvn2CytA9coCqojplnAX+T+zaTN1sxDJQapRLVT5V9RzAqUX+1I5kB7bDVf/aTm4JgIUlSZAqJExzIpAZxBS1Ef6jDYk4+/oHHJDQlR74uMebjRLaDdKGpGHvpupNsAIunu+9ywaNrwgb3Wv8AnmiKWsFQQJ7VrARjFARAP4ZfBWopTZvDhsZFSoh9lwDLMxbJiJyNT7PE3z1KfW8pRJjaNbFNheDRVKNomM18ema3ZV5uWkTVWk9fqHhsUG27ck+CO8DITb8ZyFu5Imdd8pxT3g4WZaokrGq6EsERiWKlmAPE+rnk+uiATpW2niEWWfT84mudjqcCiaREv5ykhktHOCkNka+gZnk+FOasbBMnKjl1seIqTmO8tWKTNgt168lADBlCU5lSDSMk0tmzQ88lk0DRfG8NXEsVVQSE2XOTEGUIEC2feUVC63UBG9yT7Ltmwi2Huu21BRC5C2zGNZ1nAfY6R3qU/NA+fTcjqdbHjrfavF4G7u61iul9N5Ob9oa2y8LNfeuog0lfU6eq5/j+C4nM81e8cCYJ86PWg29+aYxvVyell/+/zx06dP8zzv9/ugaO9jdVX9+PG3x88P5/PL3f3dzd2b3tvDp8/ffffdL/rx+fnlz3/+619/+Om3T78Ni//3/+v/88///E+fHx8Y+Jf/7p9//NtPD5+e/vCd3t3cnteLz/Hf/tvD/tgPx/1vH39rvf3pT/+4rouBD789/vLxXw83tzf3b5IPs0nHsLu7W9U+TfOyrPf7Q4SNYWNZc7yTStPWAdgYAFRFIH2aRXpGCFb1qJnvkxUmhVAVVdVtmmut42rnE/PxtBGGxyYcQ0rURYSQ63UFTvvdbjfPHsEI95HCoTyXJf+IpraFsUXNCZGufQQEjcNM7XW8ovtISpZITeeG6ALBkBi5eywThXIGn6fZa7PdRP5fHmJVf762PmDAo4k6LaL89ghHTuSuliO7Bo+aUFYHKrIkl4SRVP8uRCPhAiACPjwEaFLetK0bSGag4jISqaiOJLD96byTqpJnerJK2L5BSPCopOQQEaXCJRDiYmY2NmVFyTCxKTvBEI46iBCbDycqKQGG7IN8uFRq+OakS/SOG6GcrUQWz3llIkp2XqojtPozEdubqamhWTd7aIS5b/d+BADV1P9oF2lVC2NrYL2csAJhiGSUvb++I375FzTTPQRNpVUgfwDQjAGXlupHEXhODysleh2NeZ2yjk2YOeoWCNkyAeN1JXEj1Ot7WCBUW37TKk9KNFSO51KjZnWQBf9rNSSCLwE4mfMTHQWYhIj5KNmnEMjCSkgdI8YyBNG64hWBrNLIoSlv3j56zol0kUZkOSHZ+SCjILblnKsns5oJWE5/CYQIVHULcBOLgPs6VkTjtnXSFgZ6ak0cMXzERpjnDlJ0c0VEEzUP0Xa5rvKCdVnWtdswMq0sGditu91h6kLSzNd1nbSJ6svTw1///N+09fsPH9o8J+jvjrGsFoMwW225LmFjLCPCQW1N0UueLWHh67Jc1uvpcnm5nE9d9fbmhlQD3E997pkUfXt/czo9j7GeLyvIf/k//pdPHz+FeVO5vTl8/Ph5uSwe/Nu//eVm3t0dj72142F/vb7c3tycTi//8//0v9zd375986YBH77++u7+9nR6ORxufvv4WZW+rvM8L9dh/vTjDz/0P/zRwt2it25mU5+FyUsXgAjQVmut2/BpknVYZr+kdV777nC8f5qPvl63yKeqY7JhF9UEr7dBLohXV3/CKcAmgIHjNWPR6vpuTbtRmFHuKf0HjJFI4QaRSoX3ZLmxSVSS68raLoTi7toEBqSkPlxCLA04mVFN5HAuZg2XgRHJqSaeWdnjIZGHcp7820imtMLk1ZAsKF2kI5CKDBo2lCHHQFKM7ubDg4FJU/RTvB6pCU+wlifqbs2QVkcp3upEr7JSNMJKzk3xzXPnxbf4648C8kSF5cSG7cNvCRmR4ypTpEohVZoFCDNDWbdTBO/1uzxCogLEVCtuplhT90Bng4cD7uYRquLmqYt5vZKSQMzIoHIyJ5a/dZJZXWZPFhEtFwoFAUnBXrrPsWHwTdTDfQzUtSpJypVQQEpeDzDcoSQi6+VommEBYfkDTQkhmlA2fArlSig07fU2JHRzCJBkay1BjezH0o1AuIrIlnQjIwir1rJknXB7hc/SkpsbxIWvHUH9icjSw8MDFiPDdLk1sHlPIKVtolSEbVm0yEsOjlCkZaNcr1qrT0GYOwTuvi4j3QbC9ppdmyK9lEmBdHo1yllxuKtKVgYt+WdWUmlEsubVcEn6lYMsN1nWGKyvHnUZExCEqIS7kFRxB+iGYRsAKp41lKi2SGEgotS4SN8Wep9286wqYb6GrREU7A57jzYpVXi9Xi/nSwOmGS+n68PjdX+87fv9be8iamZjXREOiXVdl+W6XM8xvPemXdMz7xZj2GVZrqeX0/MTbHVbEePN/Y1qe3k+fXr49PxyOp3Px9vbw/7wzTffzLsm8B/+8pfLYjfHuz/98U/r1U7PlzZNIIdZb92G/+kf/+Hu5ubx4dPN/c39zc13X39jwy+ny/3bOwKX0/n3v/8+LNb1etjd7HeH0+n81dfvVnDe7b773Xe//vrxel1eTs+7OCr17u72cl4vl0ufZlV9eXle12ufdN711fx6XfvwNk3TNAGY5h4ey2UJctrtRXubJknLTBJgJTOjaL4Cpsa7eMSoZHYoyYSbs1hxOi3C4UmrEtKou91OyK5dwEZWakRUk4zi+TfhRqHK3Iz0CJhQ3SEiGgJhDuYjhJAws0i9W9ZkpKq2KRxeh3EUvFxG9MiiQpsSkBDPCMDa3i4Qh0sa0sPIJmSHjuTFidSbkHSBNvrqwwbFpwwiSVG6ClTUS/lq7ubGdGqZZdR2pPOmgIW8tEryJ1skBAwhhlSkwG0kGvaam8DwMLOii5XiGMPH8HBhawivz5NUaGcamFRi+zNIPj0qxiNENFKblb5Upjp8GIe6khEVFQ5LEXB4RGUW13POackaW+xdxMZw52FRkaURBJuI9K42DBksRdnKYUY2qoQFfR2xKauaiIo0lalRJXszJ0UrSG+LAQBbE3gIYwvuwKaekchPAqS9JVVRUj1VDB9hjKDnuDlJaNTdU1WbB3KoSuuttUZg0AE2gAyVrEVe8/4KLc0nIVQiNHUodZUX7BM5ByN/euT1k3qdBJiKe5OQ2HKMQsJzgK9L5CmtHB6t5dWlJN3DIgisI5MsDc0rRXdbH4nBJ+yk1ABGDA/zMKmWCipNyIZc3uVr8zKJVSUPgpWElc4sRNTBEmlVUdHmIP+uh65rU6kBCyYGmm5GVdK5XdKgwyGhXfrc4DJN82E6NGJqHMuSnY6bh+oIXzzO1+vNcWaDL2OMy/V6RdSErLGOsQ6EB22MxdaLwp3D3SWaUkNCw31d1svFxrLbd1vi5XQKt9u7Gzf+7W8/2/B5ntmUkMPxeHtze3p5Ph4P835afTncHvtu7tO8mp8ulxvbz/M8Te39+/cf3r9ZzsvLy1OT+PXXH/+v/7f/y7v/7d9/+fnX+/d3tqy/fvz5//Df/cu//2//9usvH//H//Ffzi+X1qcm8v533wGUPjlxON5o6/N+EjQfUFGK7ubJw0+nwjRsZIEMALYO9J4Se23iHr234+1dm3bXswiltTAHVSNow8iKgctI56hRcTncyDxGhAakvZpFPJcU4F9yvEnu93Prrc9NNIt9tUzwjgCMqtQMCw2JCNLEq4Mhq0aNUeV91JIimOWdmYWFKiNzRFOxNFYoW0ZNJbRBtxxOSxKRfX+p8oaJMGOusrvRYE7uyiBbZlXVPIdUqmoeVFmkgnAzk7AwJzyvM2mEOCWA1dbYwn5SL0Fh+BZVExLIVOCC1gRUaZLSeEYMEbjlABp3frGhAUSIExIsRUnxHz4cQs9Nmj6JJONKzx3hzXPCQcbiKFBDafAa1GrJGDOBkAjU3JPt+HPbtECMLcrn72rVILcQvQR8PLL9qQo6253SCEqTOhwlA4aKMs1HbCaUBq42zMx6ExV2ZSvVZHIh2NgGluFVoLlE6DEsQ5kgggxEiZJ8ZklvoDZhhIYOHxDmJU3JaIbQupng4goIxKmU3qauotzU0XCPqGFp8Ei7BIkacCgJ/qhKU5Ei28uZATMbvsK8iTZlWHisQZE0dbu7hIe3EdSe96l7mr+VHqLaGpUSIQ17tyU91aSOMA8MM7ccEhO2mvfsa8tgi1J0BtNI2LVRzNb8hFnVtKaSeFJ4Jk9YjlCTLagC6iHobjlUj0owIC5mgUi2JxaRYJ+Km6YGwsJKCAUGaLSWjo0QCiaVxFgJIEYQc592+/265LxfhzAipt4osY7ry+nlevHD3dz6XvrU5k6hNN4f7+/fvJ3mfQxoI7qY43x6Ob282Lp0QVcRjevpvIpMuxnBlPLtZ5lae3x4efj88Onjp4Dv7+8g3B2Od20OiXXYvD8e9wePeH4+PT49f/jq/fn849Pj048//vr54enp5XS+nO8ux2me7++P7vHm3Zuu7U//+A9/+bf/+PT5QcD9fvf1N1+dT+ebm5vD7c7D2fWP3/3DYTevl6sqLpdlmi7ffPPt7ngMApTe5+P+li6ESmebetbC09zIBuByumjTeTep0sPcRp+mLNgoer5c5sPx7u279fKA1TTcPUTakk6mVOqxnHqiHMMqpiqLOwNVXrNIlLLY6m4+QqQB4W42xmHe7Q/7BghcKQoJbR5QB0it5g6pTVcCOUjSEe7lzUQ6whBErWJzZDqJRFjlhpjDEc2MHsMBZWutiULEmFAAmvQsLSitqyKP6XBhWCSZkDIOEelkgIYop2wiLam4z8JsYOGGfXvOCBZplKx2kYn5okFNhlqjqfpK9wgzN65dpkZJNX+BkirFJBAEm2p0tyXMaXAzqITkcJ8aeQBWlroEYBtivbpbRFNniDBECnqp5is7/AAEVnNShBBU4DKF7tsQJVF4wIdBkLi5DwtIQBo0mIgIEMEUS/nIiSVkmZxARhjCckZ8totCbcq0rxVzkjwEBa3lIFfP/8zGycMiTKVNTfZTzyRDNzfJqDuhUhP4AEFqImSZOuDMsyyrCgBUdXMfpu46NSBXsnVpcTVhZjURpLtRoFFkTcBcgtTWOLWUIcS0263rxWKbXkV3jARIcyyTiDQlQxnJOvQslQIhosO3GUzhIwgTgdDYW1MocqtFoXtrjHyd7uEWsGwMCUAgIYFmoqrCqfVM4nWP4SaU1hrpU5qohQrtaYsLS8HfJuIjoTk0A1u5joAquyjcNKncYKBO79KHURT6SpkkhNWgHh50DzhtuNANzqYSOdXHvbGxUULEW/ZLThsIjSYhqS8esVjYdV0RmLV7uK3r9XLp+26aDLm4mdk61lXOOB6OfZ6DtHAqj7e3b96+7dNOmmhjrHT3dVh47OdpmgRh47osyzLMx/B1NSrn/fTp18/u66ePn8/LRVW17ehtdzh88zt9fDi/PD3fv317vLl5fno+n88vp5ONEOqHr796fll++OsPv336lEj6+XyZ5/n56TRN0+Vy3b+ZD8fd3f3Nhw8fXk6XiFiv46sPH/pOT5dzU/3++99dz+eHz8+99ZfTOQJTny7Lon0+Hu5WN4Q/Pz0fDze3NzcvL+dAiIqHz9O0300klmVZ1gGg9ZxuJ+6eQyWTBNK+2+1vqOoDhMx9Wi3ysYhWXE5FHZipCGCOQd/+BjKoO+tTy3LKEzsNmg24t9YmUaF1BcUj1eIjB2/lqgmAAh2+ZJmlEEvmKAZcwmEOi7BRksyInNDiGZ7l5WwXy2APiU4t4ibcc9KAsEVGJYtSw8NiiESqPCrtJ7bwrKCyJbNLRXjxmvmds1dQlWnuFmaDJBhU5I9N6w43vppN1DPFZRMXAkx0LW2riY8WHQdSQtNh72FhYhkVn2EQ3HKriE2k76mbzY7cvTjQ0jpmE+5JegZyxl6FvGfbUVQEiupmhGgR84WtszZyhXNtyUAJ+UvNUon6FzYAg/UjWKnROV44mZvwgFk0YAsejYrLycpfSgTp5jlRMirpXdhUm0gTNi1uPWerZ62c5SpIyZgjz3m0lQuLiv4HRXyMdYxUdg51SLCRJN2mJhri2+LMuPGk1bV1AzRASlfpAlUxD1WNmGr9mGezmyoDT2WBBWrEKhgevuqGz7gPAbuKm5p7hA1GthgWq0om88AYmaIslEDKffN7GYMtqKEKd/Gc60rVHO7dFBEcgalPgJKhSvcYEQ2m0hKzkRbinjinlaChub+Gt2W76KSwSYbcZaNvCPjW5b4CSulIz6gVag47kBzhY0HJfwtznnfKs7z6NySrlxhZChqQBiRV8anFBcsy1sVWQSNiG8qJWXiz2z3007K6QJXS+yTSKXK82X346us379+BGhFmFgxRCOVwPE4Ks2W9ruaquhOBtj782puM82Ijh9Lr/d3b3rq53715I6LXxe5u226eReTh8+fffvuk2t/cv3t+/Hy9XN0i3D7/9tuyrPM8jbEu6zrv5uUy/vTH37+9u6Gvit3tze3XX30ziY51ORx2u32ncKzXb775XWv6099+OV3Pb+bbebd7eTkN98Xs7m7a281Nk7FeP3/6dD1dpkn7JGHXYR6Q8+UijP1xf7g96Hlt2uZpEtWU4HhErGNzqPJ4vJnm3fX6HLGKatiasLi0li8JJUiT4oWCSM+wyGAOWIfTAjUmyH0E3KjQRllIE67z1KaukIBndodD3chBY7hYVdZrWNSZtenNk/304V4zxKQ2kSEilBC8jjFM6U1CVJAK8EdQPScaGrmGG2C9N035Rk4j942qIzbd6xAqqGDUeO2New03iigEFNcWWgLVNaIhXffOCNITA3bryFHpqeah9tZXjMgY/yxWmSSpqFITFyNcc+aFUD1fHshwqArDK+YLIOkWTnOPJs0TrjGQDIeFEytbKNTdfXi4b/n2ADc1SZhV4FjK93LWSspAHQYy/ZrBkE3t4U5h6upTeJ6K+LSXeWoOCw8qA1lSGBGBWMdoNVEGJdFBhr+VTpFmjLDIcDRJT4pqa60li5MRUA5IpkBhw8+xMZj5mZLP8MTHHHWfVkpyJpeFx5rTDwB4xtJEZAq6qEgIIEusKjK3HrF9GBEV9qZbCKGHSyKWiJZnpgSLqM/cIG6eE7hIi1ehLVxzLL3Z8JXBaALpNG9CKhN8y5i4/AAenibMCKZtAyJNSPbk1tIex8FQmVrzzta65wxYuvtYR4hGo4hAQ1A5K0Ri42mpk4BIDuoRIuiVWYFAjvj19JzEhsFJqqakaGwEQhvhCmS9FAF3uEO8EmGY97UhvORjkapUT9aEOsJT2mTmw9bz9fJ8PsXUD7s2cz8QpO/mfnMz3dxN57McDofb402MSERxmvc392+09XXE9XQRcTDW1WRSEV7Ol3FZUs1lzumwAyQ4UoZyvL0HFTo77Hq+7vY7Czw/PjdtrbXrej2dz8uyZOt+XZZpaqBcrydRWS6Xm8OOiJjn6zqui/3h22/++IfvD/v5559/nqbpzdt7W21t4/7t3ds3b/s0BYOdv/726fff//6bb795eHxu87S7mfq061ODOwOH42E378aynM8Xx7icX+7fvGl9DsO6uoo8fPq8Luvh9qhdcqm7WdYCxUCWKkMoXXQOEVKzf/XEG9iaUiSo5YMBI12TqnCPEMver4vkmZFJx41pBPQQk5blasytT60FPKAeJiKWa4CUVNxEIFpCxKU9TJsticrn8uGWRCCpEpol1BZrVUpLhqdHW0JEW+JTRkAEYqsZkXA9WjQtnbowydXkvjEszAM9PU5JDQrCKvddIKqqqqliaJQVw3yY5aQXTYsAYDYinK8RWqOmTZaZP31tQQRc2JiT17bM/4R5GdAK+c2ZZSYFQEmymyRhITmoGRQVNzN3t/QQqRAR4j4yksM9Zba+JWBnlE7ZhQzeqOnWeuVhNBVVGdDtqNA9IbLjKJtxyrckUpRelqcSX/mWMIa8nodl4mYrsCG5W2GOYPcczpadTNWyQmQOgfbWSpm8wViWd5l7OkFKr1udItK18dpuDneModqKsSZJpqylcYO7BTlUUgTaRERrhDEbGGMlIdoVVAeVmo+GYNfmamsLZwwbDmsqeUmRcKVLCKJL9lsaDDolROAkBrKsttUtCAv11HWG0LZ3grSok5ETlYKUQBijIYl17b2nOoqSKJGrsDFmVYdY0LEC0dJq7zZs6X1uIkxZDhGEEzk720GLRPQkwm048pp0Z9vIjJxN4M6KUk3Dc5ZPef8FtRHpHqYEaOE+ojcpr6OnLcJ9G+GadYIizI0DKusY2ZONYdexjGVEax5YLWjsvVNtN+/fvb2/7mPXd4d5D4uxWgR3bMpmYx2Dy3KdulrY8Oh9tnW9nK8KlyZdJp3ZD0e7Wh82zYod16fTiDje310vJ23TPLexOvLxO9z8fDpPu74/7H786ZeHx8dJ5MP7D7vj5eHT83e/+7bP/fT0Yga2+bg//Kc//fHmeLy9OdgylmU5HI5t0oDvej/sp2m3fzmdvvrq63X98fPnx/s394cbapt3x522dj6dHj//qo139+9F2Hrfz/PT0+dff/5Zlb33pv3Xj5+u67Lb7cz96eF5d9w1KoqMihwNRoq2lkqyeb8/3t6fn372AXrYGOtYAROGSI5AjRANc/FN6sZNtF5Ol1cyMwe7DQqNBkAaNaShN7aGHvCBAUQ0K8lPiATpbjEIcYQ7NMMKwHKkOCDi4Stj9RHOVqFfGReGpDQSoh1jBdioDZWdni4eizDNie++0gddw7tbavlIQlXcAzHCIqhUhWpI3VCgSzCg+TWRsVhgV5o1aEhKIDUFSKVKzgAZuMNFW55Cipyv7YgyP2Wx7RbRERmoWXGORYJI+iY2tIhpyUwgyB1KQD0t01YgNCJFkSiFk70mfqHAn2x53EstnpU6UqSHin7PcH6NhHTMYagfTnq5YiMSGXPLVwHii/iF1UuwAs0GgYzFNkBKVZhVe5HCIrQ6NJLCT5Q9L5CmaSXV1BhkD1VcLknzrj0Z5/D0E6Y8nuUeCYaPCCeNWxJNU2Y3KKoCWmlQNndDABGa15Ig3HsXMw8R+JocjyMCwQaA0rQR7qZJYqsgoBm0r2nfDmi4edbsTSRQtxadIe704HCKUSR8hLeAUIPhOaO11UOTtHhTAZMu2kQRKj6rMDrFHesaFBWnYECbiXtTGc5lwMEuLSx66ywvuJAhbE7kjBWVsIC5ARzrKqrSGojhFgL30aSptmWcwZBGMMI8ocIEBKI04xXXSc/s3y17iYDUXd2Ew0a2XyICiHPoVpwN967TMANkgMN1hI5o6+Bw0qhNoJjn6Zvd1yJ9va6TSpOSgs/zfppmhIwxep+mSYaJgq23l3WI6PF4mLoMC7TGNr8sz+tY/IS00apqb1OXBoZ2PZ9OD58/Xy7nt2/eHA6T2fTw+fHl+WTjejzMTVS0vZzX58enw83hdL5IV22c+/6f/umflC1cPnz17Tztfv75p4fPjwRjmptOp/PFQTe0Lvdv7s+nK9k/fP0m3BC4u50fHz79+vPPw23e7VXlfF6a6C8//vT49GSxfvvtd5yF4NTnt+/ekvz88Hg+nXfz7npddvsWlQSQjbTCOdx38/7m9v5xmt1q0GbdvQnhBjyxjHANc4ZLVYGS2e2g2aBWIolQpj55mAsGAjBxoirH8viOMCjE0nXc3MCIEUOIiF4wCQHUpElV9UBGiY8APWe/VYZLU0UgRDUlEOIRNWi+TlJAMstKS9ESOVjKF4/ovU2s6HmPoESDCruQWtrokj0ggo2Myp7ITA1pbZ5pXC0WwkRUIfXcnEg1hDRI8mWWrjYOIzxbppQGFVYULnAfIU0Tyc4DUDXEmFYKhwOt5ttJWKwpyJPNh5ZsaWttY+kic80qjCFF2alEHenVLCY7R4eBm6QzKp9fMksuD3ogwnIMcdbPUlKBTPyKHPCe8K2KZvZN/jhG8h4iolmdt+JDVBLYSlV+2bpr5LDkYV2UAqkV+5NyIq8LYHtSFpVEHamoyvuUYNBjC2dKjxGhyk0QRlEB9TXUymF1BTOCkY5wAtLU3UVH2EJG40zU7/cAJEQQBgTc0aEcjvztHoiQloVTmnZJiLROMgw0FzUNnUY6AKkiGkJHNA73tMVGKpiEiNAmzoirS0iLqWtXOoXOAAbDwTBzqNiaBEo4IzPhKkE9TPIKV3g4JCiahq+wMWvKs10FNjylb+YWEb3361ghmiJKbWrDzD1y1jIyBV5QPkI2STzWqaWnC4+ibByEpWckF2jXNtYVHRsmmFOrGQEzpNiCkYUjhoVbDJrPBo9pmo6H+9bmZbnGevVYep/a/vj27VeHm/uAaFMRullmctvVGXq8OUxzF6UMC3Jcrzaul+vV1lUEt3d3JN1XG8NsXB/Xx88Pv338jRrv370V43q+rJfr27d3N8t+jfj466ffPj/+9NNPnx4efnv4vCxrn/vNzd083374+gOu9ubt12QXafub40+/fFwu65v726+++dqGretyc3v3/Hh6+Ph4e3d3e7jZ9Wm9Lm1q0ywf3rxdTi/n08Pl5Wk39a6iU9euL6fT5bwQDej3797nlwR8mnbL9TrN8xjDfUToWC3Cpl1P7dBw770d9sfep8ulFj8s85k7QpnCHEeEbICDCZhnQJ2aActpdBJZQgjQPFpGjIUPDIOpS8CCLgJzigsD6zAm+GCDqlVsSzbNJKhAo1qEUjQgFuFO6W5DGpFmBLo0alcNcmhEaNNX204iCM1DAA/aGpVJ2VOjkuBthKfELCb2HMbEJEWTm3QLpqdIIRyZmCmYWjfXUNiIcEcjImL4qywiIMPRWoMHqdSwMUYqIrfIik0uX24hKdAL28gNCKVru3LJKYbwyL0lpdnAJijnq+2qiv2iLhg1iDspYYxha5hmee6aMThM6MdZLzWxe4gEIVVUh1BE3GJTfEZm8ZFQTzYmQakIJLOiYLi5Wf4CSAE4McxbFdn5YRMuTmuEl6s2z2BW3IYkMpRw/5bbn3l3FGnJcKmWGGlrapjS28hBdIHEfHJxCUObCKLJploN5PgeIOCQRgIe1rRl32vhEZpx/M4JoUX3kKsND3qIpWFgjYYoxB6ZdyWkM+oSE1TirpMRrhQIXLyreKbdu4sSTm7DfpVUQlKqFm4+FNbJzqBbm4pmsFjMRoZMRHkKAHGqWrjRodG15d0dlBE5YgDiIuEB8XCDbTAHPKKrRJiFgXxZVpEWqzHzQ8aqko3mECioyATQlA6kr908ezl4Zn56QMxdt1H1njI4BFx6Qm9EIEZ4duKkAMPDt+zWlDdQIOHD1sjqYt73/W63rmKrrqtC25v79x8+fLvbHQMyt3Y9nyO8t0lUbbhP7rZer5f0uAekcZp2xzcfdFku67KcLleRaK2t63p6OS1juZzPHja3LhGNOO7n1kUoH19enp5fPn369PHjp9W8z9Pzw/N1uY7VPrz/+ubu+P7rr2boV998MzV9eX6a5t3N7c3T5weLwzxP09SVoiJjXa+XZb8bu93ufHqxdRxv92bL8W7fPsq//uu/Pj2d/st/+Ze7+7e//fxpt5v/6Z/+093t7TTt5/kw3LT1pkpxbc3MSdiwGhOWKTSXyo11gE1VJ20TBAZ3N83uWJJQckQ5ZazmoFrKwiHMdCBFppsn6+dITWWY0hEOMepwXkdYU7pb+rdANzcPMDTMSkkjJOGxkohM40IOMXF65hV6ODlUe9NpiuEeaFOTJqTAg8hYhLQ1ZeUoSRamMsbCs5QSkBEiEW7OUGprzcNy+xs9YFoS1WyCwcisaC9gDJnPHp7/JS2IEdZI5GRWqFMiqA6zEN0mcwRKYm8RcNZEdk89TCBcRDW5jvyYCA0VNVikIyCquhKqaKLz9OHpNBjDQe/SE6HZDlhBGeCNlLblRZuLBALWqI6wnO2YBKoDgozsSmV/3hOvrQUzzp8k0HuLZW0iqejNqYmecE5EBIQtqYLW2rA1PFoyhO5GMnJ0W7L1bkmPxwbhgGitgZXNZHlzblVjqlipNVKORFp38/+UOnwFQ7Z0BGYHRTYVlVBm5ho95erpjpCWxD1QCtCpT2wNV1sMqhNkx3lH7Xf3b5jC14BHXK+X5XpZzqfT46fl8ni9nC7LdV1WpWtj47rfzze7fW/imtnZSnGBdwAxuvgqxgiEqQh9iLU+9d4VhEo0higCzhjzhEUlEKKLkJ29NVGiNzc3FR3uq4XAlrg2BRuuFjREayramszzTMhYR+RkStXqnzTWZUjvl8sLid2ue06SM5t7D3TRbuDpciJDxRsFTZar991e2y4CCI/hqqEdZksXBsRVbFiU8oyOEFApCAs3+BARi6sGfJiqN4pTQ1qa3rqOXccLh2JhLD5wXZ8M49DlMO/O54uTzw8f4dHmXUCl7RfD6j3QRBq0r+NqPuZ5bqoBamNfMUaY2aeHpwDv7u/2tzsL8tqougxbbZ2U67qQvLk9iNwc9zv8ZPPUx1iW63mMcb1cHx4ePn78LcDbu9vn0/XldFqvozU1bxS9Xpf3U7uent9/8918s2/k/dt38cz5eDzeHFvE+Xy5uzueXk4vz3K5ntflut/vTqenz58/N+l3dttb++WX367r6H3/lx/++vLy8o//+KePPz/0afov/8M/97bXvuvTLgeW96kLKbqOsV6Xcbmu18vlfL3c3tz0PrMEVnADJrm5v5vmw6dljGEwxxg6xYRVAQ0Lc5h7BHwN80nEAtpaitljuLSc8ROkpNRE4IhFaZSaolyjwqP5GC4hYWMgzAN0Gzm1I9MaM4gOkqxZK9WkDfiCuJLXASi7TG2EKyktV1FQ3M2peR6n3lxEhTCChLsPEVPNXtYjRjpN3Yeo9hSlrwN08zSzDSjcHeEKqHeSWIcwpIlQzNIgZYQ1NQ/KEJAOUVEyQkNiABSTLDjhEWEaHnABVhsqFDNREUdDSCrlnQb0npJGNlEzzzCenAcT2GpfKc11xnklJ6OqEViHqfaK6wXWUbCKNrWrCSnaEtfI/PsQEGIems8rIsJiUIWGUWsG2RkANTqar2YCGEIiJ+8kkB0eAvfVAAQ11QiesI4r6S1FVVv3I56mi2z83UeK9SLgaNpEVgyY+TqGDbVwzZ+2CfYTW0H1KiiWAwh4axpOz9S0hKVTbAr0TIZT8QA9LHy42RhTn6gi2gBIEzPtu+N+f3f37jDvb3eHe0yHeX9o00H7tJtnoaYcaLebzFcJb3CJ6zrWp5fT09Pjy+PD+fnh6ePPp+eH8/nl8eHhcj5HnFSVDBuLUM1yeDDDQ0Sn3rRrQAVzxrNn29BEVSWG7naTuK22hrs2hghCV4/WZ8yymieX6xhM6kB7eJOQIFSlT9NhPqw2uAyItD63NolU/OIyzCLa5Xk9L63zcj1fn59n6Z8/nVvvFrH4kCZNtE+6LktX1WliP+q8X9ahItJNwiHD1wGhQhnuojloJxzm1tDmPrmNZR2QvoYPd43YsaMcCuro7sL1GhGnJZYBMwzj2V2u1p/tsNsHJ+l6vq6+QJd49+Zud9AMlXj71Td9ProHOMK99+aw8jf6EIZq2Hl5fvzcd7thh7Eu6wgzW5fRVNpxOj0+PPz2GR5fffNB2+788vzy9ByH3fnlZV2vdzc3tzc3P/74YwCH4zFk/sMf/uHu7nh6/v+eMY7Tvs/zvOse9svPP331/g19Ee2H4yGUY5it1wZ/9+7t88szgOC4ud21/tXh0BjRm652/fzp027Xr+fru/v3f/j9P8/zdDo9j/V6//ZOW396eH77dr+syzQPgsPGsvg8z027Ddvvpmlqy24iqNJIjHW14dNupoiZdbZpd6N9Wq+rBdCbdInWQjXc0dQp4VkZujR1k6AswwPQ3jzDJzUJsZCkXS+himVZWpcm7ApSneI9B3XldCFitSDQW5TEGA56ZN2e5JcyYtLuDJcJPtzZZ+w7BD7vJzaxMDYTDWnStC2XVRw1IxUgaxKUr9TevLJTCtT2Ebt920/9dn8Ydr2EDYsQDo8wkj7EJEbOOg8SrXmMkJGZVzaWq5v0Cei+IEQ9hBEWTSTYiKAEl7yLWqeFnS8hTvMx1uGrKqRNmYJFyiTiXrMIgNhGk4DCEWtWpK/iOgcFIco6QEVaU4tp2HALFQ0LZHp+Cg2jCnjtGGEBKLXGLhugxrQUSgaMwSM8zByiYDCDn5kcMRK4czLJPaGAhpSf5N8FXicnImCR9uYQCoLGdFpv/+J2ZOdf0D2GDQ+JzUEB0MyXZV0ax9Q0J1Yg7cuJlKWPr5hbsM5Lhws0ox48hZ8wOCOHf6OnAldURljeCmwtZU42XPqE6ebm5qvd8c18uNNpfnx8eTotp09P4ZjnHYDWp3neiej+eNztZjOb+nTc7Q/7Ln3ef3h//FZ760oRtzAM2DoWZ1wuV7f1+fNDXJfrebkuZxvLGOu6LjZGeKRCzsOVCeYFKQx0DV/WsS6+Xp1GcZe4wubjnmx9f5S+pzZpu5zvo6pzn6Y+hWqbJ5XWu6pyar3mfjVBQFWl63536z4F+uW0hPhe+n/85b/9P/8f/3e76vfffOvz+f3vv2GPdV3S5Hl+eZgkems3Hz4EZN7f5mTqeepidrm+tK4ubjA3QiScY71iDNiI5UrX4+3NabHH62kxM+h+d3h3936GnT4/WpuvQ0Zg30jGEjhdTufr5el8Wq4Lw21Z376d12WJZcxvZHc49L6fjnduNvf9/nDYH/baZg8bywo4RWysK02bqMTj88PL48PT8/P1ejYf6+EGB/S5yQhlOz3789Pjcno5nR6vl2Wa2/F48/T4PO8mkqvZ7nC4f/dmXcfh9haqre9u379v2nvnbp4ul5MK53mad/O072bjt4+/vX17d3d3e9jN5rzZzU9jzXHe47pajN9+/XR7f0PpDnv31duESgBZx7rbHS3k5vbNm7dvXp5fzs/P3367//nnn9bFAnG9nseytqmrSJhqk6YtItZ1DYuM4u6TutPGoNDMdvvZxzoQu8P96WzPL0vT/cUn8d3CO/FpbjALlyDNYoVsVixgmNNdYLbkwLzYoGwneHpxQi+j9akd0O9nbdN0MR8S5tZFzCJDXMwRC7tCRaLTOFJdLOwUlS5KDLdxPbe23x1uPLy3qTdVBhoGBlWpjSJuWC3WoHtbljH11qee3nbHcPiy2ioujPW6ggiZukzTzYf97rg7HswDx8vL6fl6eh7jPGIsL2e2hcvLZbmOoHe1aQVdwFlkP/W97Hf7+XzV4TKk3755a+A8z4f9Te+dpI1l3u3Pq1Okt2bht2an08vldFLF8+Nnoe/308PD58vTk5kYOJHny7KbmkKQiUEBAeY+X311hJkLtTNZUxS2by5CDW0NAbqvZcuqi0IiB6RspiIUqVoRn5lOSiBSdy30BPLh9BCwyxfJUp1EGd04GJCuDEpIQ1jUbeNWcxw2ICXKtO91ubKiNjbPWopbcoAp3PMHABEZQADEGLbKupoM8xzvW964yrxDaqQ2BKtcXwqprLX4YhEoyjxo7qpi4QnHJ2viwxMkgvD/z9R/R/t1Vnf++N5PO+d8+u1NV73LliW5d4yNjQ2YGkIJBEgmJCQZUiaZyXdmkiGZhCTDTNpAAiEZIHRsMKa5YFwky7J67+3q9vK5n37aU/bvj/MR+Wl5eS17XZV7JZ3zPHu/368XcAGyXB5amyuW5heXmktL1iTNVjtf6AHGUFIYRYBJklQdOAdUXZgrVyp+vsCFJyR6uZxEyZEj45zxvPI95YMQ0uNe4ClPKpWrjPR5TDImuEAuukeWbNDdpd39/KWfeaqJGJHIxoFIUWq0jk0cAjlPKUIk5IJ7wvOEUOS0jmMA4KgYY10DD2eCccYgSUIyDrlwWZsCiAiQeUIUEEEGkERWMrZyfZ7JF/fu2bN1K3/g0XtHRoeNc56nhgeHolp94tK5kb5ioZhvaoxTTYTKV8V8KfA8boGQorhZKPiFvhyRCqOEo1AI4ChqhGkUAeMpuaFCpZ5EqYEkoRUrxouer5vTthG3DLNewILAhR3FhJMKECw4l3kgBKKjdnVRJ3G9UVMChsYGnaVWq5Nd5YKcklKk2hCQ9ITgPBOfaWOMA7I6CqM4TbXWnHHJpScEOKfTJI7idqsZd1pOG9/3i/mylKnn5TzlDw4PNlvNNNE9xaKQHIVMY82EEsr29PXlimUTp76Sa9aumJ/3FheXojCUXPCBisqJKO50wk4+HwBKgQCOOHImMQ7jfCHXiaJUtxYXqrlcvlgIpqcmPKkcOZ2asBMVi6VSviiFT0Z4Ikc+KiUL+dLM3FwuF+ZKGLbbnMmg4AsuOEfwfJ0miU7IOiEl5z4QcsZFwAG6uzTOuGAQBMVieaxUHhtesUbkej0vD9wDz0PQjjhZh04LZMZqhqApsdZycEm7JcECU+3IWEhBWkTgBJxzPx+Ui70L1SWTmLjexCTM5X2SSuVziU5V9y8rGZtx6AFsWirk/ELABEvT1KHzpC+FNEIc+CcAAQAASURBVMaYJEWOXZ0ZAmOCcykFCA7UDWsQIHLOPE9JIeIkSXUme5LWATLJmCCwTAlrGTnM8jOZxVJ4vpAeckGAwvO07TZayOmkk7g0VRxcWCdwhskUZeQMlyzneS5OXRK2Zhcb7ag8MBr0VArlSqod96TkgtLs2QWcOeQsSpFznqZxHMXW6lKx1AlbzXrNVyqOosATzprq7MzMtYlGdUoE6AHXNqHUSo7OaYHckeNMcEFIFrr1X+quqrOfKTvwZhA/hgYNIAouMQsLdlPZ2YPEMmKcKCP9EoDLjqWZfYWccxwAbLcU4iBbwjEugLr9KEDrgDKvAJCz5ND9exMr2zUDZBO97PmfLewyR3y32gUonKMMgccQgXcNXNezndkW12azHepWvMgYsha0cRw58Ozmwa8DSSCT7LKsXAaYhWihGwWCrF3abWT/fPHczb9247GcC+CMKDXOchTWWCF538C4tmrPq/uHx8YLPX2YRFL4Xr5cLJVbjXa5XEx1PDM5XyyVorhjDU1em5y4OjkzPUdkHKLq4rGdFJ5iUjIZFHPZME5JwRjzhOLACoWy8nyhhPJEvpAvFItBEAQ5v1QqlYpF6SspPSE550IKmfMDTzLpqwQhBY+4j7xktI60swDW2qjTrJSLxRwK0uSYc6SBAeNZXs4YpxERDJJg3EkltQOtjQWSzCfLtOnEnYQLxTm1wtQvSuFBK12aWDiz99UEhTLob9i4desm3lMo9A6vrNfnW9pNV+1CtenIBAU+NjwwMjoYhUl1eoGHxoRtPyC/xP1yMD9VZ15ueO3GcrF/uQUzc/OT87P1ZtgxCShpQp3WogfeeHNau7pl3RrLe1Lrjhw8vDg9mTRbS7WmNo57DARWyn1eoVAplnOIk9cmVm1chTa6NjPXO9CDwMm6/r4eY7Tg3PeUkFkyKWvVSQaY6sSmjgtVKvbkcmXrrO/7vudb49rtdrvVbHXa6EwpX8gXilwE7U6YyxWlklGipfSF8NM0idMUkBVL5RXjsFytlUvl/qFhnWqrozVrVnm+QMR2FJUrxUqxlCQpD5hJtUTBiAdBvqeHBUESdkIE8oMcMb+cwNz8grUdNruQz+cTESaJbrfDfL4EwJXnS+EBcAdGG8LUCeUV8kWdWOxOjZ2zWluTcCAwcZx2c99E1ljHrVICGFhL4CgKI8EYcJkLSus33yh9H2S+Vk8Xp5Za7Wa73TJGm+zh4BxZ57R2YDUZrrgnsOR7K8ZGtDHc6xFexZHhQihPIrCoo2cnltauGUfpcv2iVPZEQRrEemhkEDBtiYxzxlOctEYkayxnQkiFjJlswuAAQSgEm2qhpLPAuEAAAxYQkQnGUDhnncnYU1IwBHBI6JEALnL5TidGyFo+FiG1RGmimZQAzOjQGSMkN5qF9U65pxD4ftgO01QjZsVy41Igkn6h4HkV4pSgAWuZpU6jMz9Vq84vx3Fam19iOf+2DSt4Pt/ouKCQD3WaLLc5AGPOkUuiMJcLgqAUhWEYtqqLy76nODGUrBPqXL437xfnZ+f6+3qHV+Z7+4cmL5emJ06jzNyIqMl4Qllts8c9MnAGuqYSoOtNsCzq2R16XGdrZDMnxTJUHLuOX8yoDAy76U3GiTmHPOsaZ+Uql90ciLmM7OGybJLN6lrOQUb9yfh51wP52bm/2zogIAfZ7uF6l5vIOYPEskRJ9kQXWRMautTkDE6XwSoIsAsvRbz+T7YQzh7Z198rQCwr7BJlS/9uozhb8meNum6XBCGr7UEmy834+xlXCRk5soYAgHNuLQEyJWRqTWIhp3JBoVQN0yBfTI1TWjeXquvWrf3+D36ydv36zVu3LVeXL168cPPNN8dJeuLwyZzwSmWfDcSXDx/Pig0JkNbGMWsyeR7jRCCUZEqmSex7njMWEZBzay1RFvLMrCQgBAdCox0RKOXJ7FqrFBMeYwql4iLwvMAPhCc9L1BMKsk9snbHTZt8KYp5ZZPUpNpaYizgnocgwJLILBVk/ECWe4tCMU0aGRJyyTzBWKm3UC4UUqtb7abv+WmScAQydnF2enbi2kD/UMOk+/e+3lsZfPCBhx64964U6q++sq+0Yhv58sihY5VSrlqtjq0aV0V/cu4CxHqkr3B59uLcobmJmYk1azY9+NjbtRH7Dhw9efzcuYuXNcD07LwlUoG/efPaiyfPnT179LFHbnnjW9ctLcXf+bdv7D92opDzwno9TGKhRL1Zy5XylcrQ4kJ08803v/29bztx8Yq9srDlhvH5qek40UpJZFSvLVVKhfEVI8gcARpDLnMgZB1LLogDF0JJybgAZE6bRMdaJ8CIcxGoQCoe5HOMS6UoMAgotCHGRKnco7XudDpCCi4kIveU39/XX+ntRcQkjbjgvuf1lnsLm0uEWCyWAt+PwiSN07AZR1HinCsWS7lCMcgXgAl0TinPOVko2rWF3NVLlx0YAFet1sIwCVuRtyqQ0vM8nwt0qFMdM4HWOSX8/v4BrVPBJUrUOgXinufpJM5y274nGRecc0Se3b8ll45smmoGHKTQ5JSSfX199Vb7/LnTx0+eN5FZXl5ut9rWpkphPu/3DfaSwXWb1kxcmfX83NjKYSnl+tWrent6LpydnLg2s7RYTeNWkiapST2mensHVq4eu3jukhRILrUuccwB98EvtDoaiQmOgnPlU19vqae34ogTE9li2jpjrQViWlMYpzpM4jglYKmxcdKxoDnX2hrtkDthjEmMjnUsGeSV5/mSC9ZotI2lOAmdtS6J4rBu0nYnjLWDONJRGFmTCmRAadgOewf7brlte61an52ZI3JR2NGRZpystflchXEJGgkBuHU2JWccMYXCJDC31MqXCivWrZ9crM4vLTLhC8WjOAyEYsx1koazDgHXr1vjB8HRw0fuuOPmI4eO7th10/JSvVarPfDQG774hX/edtPW3p6+J7715C9/5P1Ow5btO61NF2bOc8EEOASeagtEmVMBALOQEkdO3cd+dmC2CD/HiiKg44JzLhgXDIkzYAysdc5m4wPI1FKcMwA0CJwxwbkB031VYDcpg8gBLAFYIm0sYKYmRwDgXBiT6cay9W0WV4J/r6ohOvw5PSML+xB2m56Q7a6FNiZD2nHkGTPOXU/IZsMY5yxHjtexg84RFxmWif18FX795pEldq8T+Ltw0iyKm5EXutuF7lUFs+b0z3091D12ZCJRcIAOGDIni32jE9eW9h85c9udNxUrfc/96JmBSuGee+9NE3PpwoWRodFVq1a98Nzz+VxOO+qEzcGVozdt37w8P2pazUuXLrc67VbYAU4WXZKkSM4ZSwTceBhzRIjjWAnuy6xRRkopBIgT46zhQnJgxhopuO8HRJSmnTTuEDBijHPlADkwxSWhcyitozRO/Vyw/cZtb7jvw76SVy5cXJpbXLVmZalSFCKQngqCfBDkgJwl64AMYkrOWWx3moIQnEZMTdKpLzZmLjRaUZTE4cWL07OzM0vVhVUbxmZmJtJ2+8K5xVKlX0IwPd84Wup59JEHl1M3PDS0cuuaZlQf6rvt/Jnzs1evvfTTl2+6/Xaez506d2Z0853r1hSv/eTFntG1H/jEb5w+cvHJb36r1liK0nR0dHRoxdAjD95+9fLV02fOnz50qNxTClvtlWs2TUwuPvXED48eObJh49qFuQW/4DmWLM7PaKM7rSolrqen3+pkfr4+smoVY3bdlg0TFy4tVxcGBwcHhvuy0mGcJI6c9DyGTKIgIkeWyHEhkUkidMgtEQNItdPGxXHSarZ0apQnhfCR+dz3Aq6kF4jMys2YThKtzdDoiMhordow5IWcEsiWqkv1ZiOOQs9XA4OV/v7eZj0ULAhyBUA+eXXaWteot4XgDlBKlS8UpeeRtb6f93xg3ArJtB7t7a1MXptstTpRlOSKOeV7jIPRqUPnyLbbUS7n+0FeCc+RH4aRTnQmQZIBV56MoijV2lMeesL3FGfCuMxFkWUjGZcckTvrGLBQx0KBBZibXRAg88Uea5Q2VRWAz2nt+pHt27dMTUz2DObri7B+w7CUQqPoH+kr5PMigMlr5+I0HFvRPzA4XKgUCjmfEFuN5Ykr061OGLeaM7ML7XbbaHRgyclEQxylSqhiTyHI+Vx6qaZ2nDrtjAFBhNwj5M4xxpVLnAVKYg3gCkWhU83Ilnr8dmwT7UAA5yJfznHGgGynscwwJq3jVlubVCcpQ+dJ1GnUbHc4ck8GjlwcR9aYDMFYWixz4Rbmq4Lj3NysSVNGJBh0OvH46tVAIkm1dgBoFCPFCbhwNjUWQodh1Jw4MNXphEJwjkyHie9Ljqg81YnDNes3rd+6uVLO7929Z+Lq1c0bVqZRp783N3n5ytTElb7exzimZ44d/Y1Pfvwb/+9Ly4sLrTAcGN46PLYqbC8J2yQdZaalJEqQA0CXUABE1lns7l/BWQvOAUPM1uYMBEPriPPscMw4Q8EYGG0pNdZhthe/TpxAZBkehvOM8dV9bFO3RgDGOsbAIoJ1ghCxm/9B5NbqTGIAABmVA7t6S3RInKEj58CRdT9vIWdPbU5ECMKRy9ziyLt3muvfsoH99TwqUfbacS47tXe5H9kEHJEAuhYkQOCIjmUf2P1eQD//jLKkEDdWZ/+XdXtwmfXPUdZnAXAZSMOS9PzV6zfNHbxQW1gKm62hgdH68tKa0SF0mA/UwuL8/PTkxo1rGdnm0vINO28a7uuZuHhh3576mhVD9957W/9w30svvZJ2rFfMj4wMPfjgQ9u3bSsUCp6nzpw4Oz0z22w2Lpw/yxi06o1Gs8EYz5eK9VrdktEOjXGpiT0vaLbD+eWGTlPBxXVYWxaWB7DABXfkbJYCEJwLd+XKuR9+7/sf+5UPVSqFmcnJvr5K6kySRokNF5cXTJIy5AQujpJqozPXaCzML7Vq9Xaj3mouhc0lHbbA6hyTcZKmJslXhq9dnYpMJ1f2wrBtk1gwuVhbAqskz88uVVuRrfQOTE5NHXx1j5eTq9eP3nLrjUlHP/vDV06euLT5hq3TExPPP2N+/49+CQ0bGBh7/ZWDf/+3n4uTtFwpDgz2b7tp/arxVf39vQ89csf8wtIrLx3Ys+f1ex66Z2R8+PiJE+cunROeaDU7a9auveWWmzrN6tFDR0+ePDU5NdVTrLzp0YfKlcHjh44WyqVi4M1cmRseHjp7cl5xKVAUy/lyOV8sFAkImchertZYhMxin+2PeJq61KQ6TSVHRGd0GocRMFQq5wc+EwK5yPm+jk2aRO12O0kTAqt8WSwWEaATto21iJCmaRTHcRyjs56QubzX0zMiOFeikESOIRfSG1sxygRDhFQn1jirYy4UQ7SADsjzVWAK9XptdGylNnGhUrYAuaKWwkvjlAsgphOdNGoNYxzHYuApwXMEqBRFoZFCOnIIaFIdhp1Op53L5Ql6PT9gCM46YOTIpgk5AmBI3ZgBIGOAUKiU129avzBdY5BbuWJ1ua8nlxeEyfBo2bnk8OuH9+99dXhkKOeJY4dP3nb/A2E7nLkyc/nsJUS3bsu4TsODBw6G7cbs5MzCQjWJ4yCfi00iBAalnHW6p1i5cu4yAw8gh8rjTHAxNDjUs2JspFAo1pZqy9VWx2gk7uUrhUq5WCqAA8m9IMh1wkin+tL5SyrgAtj9D93pFz1D7tBrx3yvuOvOmy9PXjqwb8/rLx8kGwkweV+12i1PeQDOodNGO0u+57XiyGlnjQGCxBkuRGN6QVsYHB0MO2a5ETMgJZiOYp26dpTWa8txmsSxUYpJTuW8r42OwhYhK/QMFYplkyYD46OMYave7JgUbBgliUmkp4Jf//gvb925o76wcOH0yasXbdyJK5WyZF5vT9HfvOHIviP33H3ra3v3nz1+8oYdmwaGe2XTP33q/LbN62pLU0vTNV8InWpnXSYXyYTV3UeadSiu172ylaxzhCw77OJ1bXg2hkHGu2dsA3A9zekcsW4M8+cOWOpWbgG6o1JE6yx2dQUIDtx1qEL3wzN8CxF32RPWZVN/hGzh0F0FZN8hI5VCBhdiAAQiQ9UgojWOMUTk1qEjtC4TAiNjPNsDEyHDrLiLUqLgXXNARvKzjgDBAutiKBgyJlz2KuniIgmIGMMMbEQIAMwBAbCMlGkdGdPFR2ijC/mSswkKXiz3TM/OhEn9zW+5TRBbnp3OBTgwVJIMKkUPbL5Tm81zm0TNlSt27rphy8LCwvz05Nz83IrB/vnJuXMnznLgpXJFCzk0tuod733PYE8/E2xuevbWO+94z8oVhw8eH/rV/9AJY+vo/IVLxpqDrx8eHh2UTK1cOVavNRlCpVIZGRuqzlWl5IyhNY7Idlrt6alpQguA16an/Lw3Nzs/OTV5bWK61WiEneaXv/ilW2/esXb96ka9/v/+5Su9ff0msdpGDHnRDwaGK8v1pVPHzk/Nzjc6zSiMEZGsSeJ2GoaWHJe8XCw4RCeot8e/ddWuM2dOTVye0E73lMqpcX6lFORzZ09e+cCtH/aV4U6+/OIrqugNDFbOHDywZuO6zTvXP/zY7f/0d1/7yQ+eveOe2w6++uoX/7d934ffNXH56u/99n/xAv+G7Ru3bd1yy127NKXnz578yfcvOIzve+D2nTetvGHzmjWbt87Pzj/xxI8KgbzztlsLpeL2nTcMDQ1F7daOm3aeO392enp2/frNxqaH9p0o5yu377wxDOOXn3v+hh3r3vO+tyOgULKYz3Mkk0RSKilzyLi1BsGhIGsdcwAAYadDRAJJKTI6bbeaVqflSk55ype+VCJNU0qsRaV1XGssLS8uK+nl8l4xn9dplCsUhFGp1sa6erVeKOV6i8X5qC09BY5x9POFslRpA1tSCM6FCoJcPme0btWd4kgAOomSJNXaAFK+WOBcebm8yuXiWmI09PX1c8E67SSfzzPGqkvL7VYzjiPnIO00c0rm/ZwQftukBKA8XxudJinjHmdorNZp3Gl38vkieDzrbUmQSolmq8WAK+VLj1sHBiwQt2HSXy715srOIDoLglROFvsGvXzwzI+eO3p6RkB+qUYnTs3c8cDD+WK5tZxMXJxftXoDQeHMoVO1+oK28cWJa3Mz1fH1a6Snm/XlWMcspfZyy6XxzJW5XMETEtPEJFFazPelxgJhrljqHays27CyUC6ovJe042sTU+dOXlm6PN070IdCNpaTbdtvtMp84/PPb9iycuPWTX0VH4DSJH34gVuUzNfr9e9/8V+vXDubthpAphPGVWOkx4Kh/jCKZherY2OjhUJRcNFotCuV3pyfI+dkoKJOGIamr39k2/abThw+vWPXbScOH52bXd51y/ZSsag8L+fX1mxcJZW6cvHK+PjYrl1blfQHewe9IOjpGxoYGkyTpK+/d+LqZK7o1ZeXvvLFL//0p8+3dafMGepo+uz5A/sOLS8t5YuFWq3eU+nJ50vnz118/y+97/Lp87Xq4qrVKxZnZjZvWHfp7NnNW7acm57mjHfCmJiMkpCs5kjWWOpG/jNoruMiywaCEII50mS7j3CyzhEQCsGRKPOsWtTEyIBlXICDDIdjEbFL8zNZC5O6oNdsaIMEwDhnXGZ1jesriG4cBQmQHLt+SreUbSEckAVCcF05Z4ahyI5aBJAxJQGJcZ71pplzmRU9O/VbB2RMF8UGyC04Z53MuBvkJEdfcU9lwVawjjJkDyPgyK5zlKDL/UG0NgMJgsvWG9eXxYILYynr9RI4Iu4sGXKOHANGwLTWDKGQyyvOjx47XB4c09quWrliqdZes25FT3/FUjoyMuR5vK/cWywU0jiNwiSfL588sWdmYbFZrxkHxISnfN/zCuW+awu1Qq4cqPy1ibn5hfkTR0+uXb3Slx4SmdQcOXDMzwdRqgcHB/fvO7Jq3QrB1Nq161es7Ll65fIT33n6vjfcuW7Num3bNkspgsCLwrBYLBibOiLO+MXLV8bHx5x1U9Mzr+559Wtf/SohNavLX//aNz71P/9keGzsxJmL67cNkqUff/dHt9y6Y+ONGw7ue33vntdTncRpkiQpWeucsVrHUZRaA5ynJmVhmKbUrLcunLi29cZNg4N90zCbWGMNrBhfw6XXbof/7b/9f2957NHX97/2xrvu2bZr+w+f+P5Envr7B372wxeOHD30Sx9938d/+/3/9I9PnDxx4o8/9V/ve+D2icsXZ+bn/t+3vjAxMXX66IlyX/m73/zOydPH2kldSeVinJ6Y3Lx16wfe/2EF6pXn92xcv+mue2/u7S1PT0x+/8kf9g/2v/Vtj/T1lEsDxV0E1y5OvvDs3lind99677Vr11Jwf/Cnv6vDTmN52fckIegktkCSiexmZKwzxpIzZLWzjmVlVJf6gYdEURiF7U6n0yKiQi7wpQcEaZJqZ5xLE5cmnSgKI+UpJTCOOkkc+rm8dcCEdAatdoODg54n0jjkhDa1hUqRc88Y1+qEDkEomQvyWa4fgCtPEbk4SZSXA4bGOKk8R4Sc5/K5OE60I+F5XAghRE9P0fOVBUrSmJgNw7Y2zuhkqBOGXtsLEIHpWLd4x1ndqNeKplDIFzjnxrggyEmphJBZro2cM6kOPM9ayjJm2A2XWakkc7nYRLGJ4iiyzrB2Ezk/cfLic8/u6R8clMIG+QJ6lfE16xdmFuNIE7kr5ycO7j9eLuTf+fi71m1eAznx/IsvfuELX6ouLyguRlYMpZ2wXl8sFwoeLzhG7TDxPbVt4wbJ/LNnz01dnd69e1/c6RCkpWKhUPQ3rt+0c9eObVs2HDt2cveLLwV5D6zds+eld37o8f7hoNFYuO2Od+d8qePoc//rX+66/5Y3v/2x6SsLSzMTNm4DJcMDQ1s2bevt6RsbG7p84eqGrVs3bNw6MjLigDrtMAj8nt6+Sn+51W7XlmqWXLmnJ2pHTMrpu2b6+svP/ej5f/nclz7+a785vmI0DJNyqeicKRTyQSEg53yfA2McuTYmTi1XIqfY/Pzc4uJ8H/Vs2rr1rjfc//0fP5OkttyjFqrNKGGXr04ePHy0t7fPOF3pLQcFqeP0xz/40WOPvvF7T37/jnvuOX7o2M1339qphdNTE4NDPeAoSW0nNkWlnE04YyiZJXIWOOcADoAjIOeZ9SNTudDPq/XZgtRoIzM3RzYoymp62TMc0FpAAGcdImYHZUQglz2gOWacAURrLSIIzskRIpJzwK47ybp66Ax1kHX4M1QBJwcGs7h9tpXN0qT/PgMiYOQw42/yLvoxW2g4Z5w1touGcQTGOgLCrP9MxBiTSjDArgg+q0kggnMcGBiLDBxmNUKWxZiss+QIeVZvZhkjiCwAgrOOjOHEHDltjdbWOZuxWp212iQ5P+fS6NKZ8zcPjFYX6mN9g83lak++HLY6gCy1zi8U123ZYohxL6h12syXF65OaiBjLKKQzLeahgaH+1aOLNZOFPPFKDaHD5/49jee+PBHPrh67eonvvG9XbfsYI6q0wvAWaWvr7dc9LlsVRvrN2w48Nr+u+66PWx3Xt29Z3Lq8vjYys1bN40Mj+zcub1QCE4cOzk81t9stw68tn92Zlb5anBw8KZdO9/3/l90YD//+S+gwJ+9+OIvnn5vsVwm4DOzC06DCgq77rn11Zf2PPvDn1X6iomhMDWlcmV4eNCk6ezMjKaGbrfWjq956I33v/mRh33fn5q+9qMfPrfn1X261+UK+dmp6d7+ytDwQKuq3/f+jzz6jkcWl2t9/av3vHxk/dat9z9c/dkzz3fCy0L6ly4lX/u37//Gb//yhz/2Cwvz8X0P3nfl4vl/+od/6bTb//SFzw6WB1cOjx88cujg0RMOdSsyaa21ac0NqfNXrtw8NLrum9/6/rGDRx9600N9fX06Sg7sPVhvho+89a3LzdaePQdWrBgtlQPJ+cjY6Ip1qxth6+WX9w4PDb/4zAtDg/3lYoEShwyUxwGyZQcmSWKtTdMEnHGgARxnLuxEaaqtswxJp2lGMeRSeH5gtW2220wIR+QXfHCYphoJfc/zJKs34kTbRNu+wcDzpFBCyLwnJJC1zknfR0cqCIRUxjggVFJ4vi8U54wBSatNxhdpNTte3uWKReWTkjyJU8GEM5ojFkt5hq7d7CgV+MpjwKw2aZK26q3lat0xTONYW5PEifB8zkBKLoUQnmg16nEc5fygUCg4x5QKrCOtU8YZOXDMImOMcSEYY+znhaIsge0FXpoaG0ZcqmKhWOwvLzej8+cvTF6bOnPqzG133xFHnQ0bx3749MvbtmwUvl9t1E4dudA/2nvzrp2lnsrZk+eDcu6X3/u+xx58+Otf//aLL7x45erl9ZtWlUr5yenpbZs2a83L+cqv/cqv7rh5G0O5sLT4D3//ub2vvtY3vKIdtyIdS8evzdf4qUv33D/ySx/5YN9g35PfeXrVmpHF5cX9r+67+fYb6ovLa1aveH33/m07tmzdua53qJLGcXVxMTW6mO/54Ad++fG3P97fO7RcW6pUSt/75lP33n3/wNBAGHdm5xbarWapvOLilQvxmahS6Wk1O+XeUrqQ5LzgyOHDlXJFDvSMjA1Wesqe7wvPO3vkxLqNa1eMDYdxGGBw9drVtWtXK0+0Wp1Ep36uYI2Nw9CkZttNWw/vO07WA5FnyofUdkJrKQCRq9ab83MLxVwhiaK+np6kEy8vLYHTrVZjbn6+E0bV5RoSm5ubL/cW6tXlowv1KI6AUOtUMuacBS7AkeCsy+0CEFwIIRkCI2AMCDkSz+bshmUytkwhSZhVfymLwQC6LuEni95Y66y2Wb/IdtfEVkoPMjU3Y5w5FNwYlzWrsoFR17rCoGs/z6KWeB0WB44gw88RwfUqAlmG3akjQ5SSI4Dojq+AsqSmcVYbay0RMuvAWmesc9YgYuZXlkJIITLUXxZFco4sOQcoshoYz2D1mBkorbHOOUvEiHFkGcDJdXOq5Mihy2ZYzhpnnHXOZFofIcBqY4yOOvW5qdlOIyqUKj/64U/Wbdhw5Nixex98oJPEp06d7hvoa7dC5QXW2p5Kb61RX6oto7IyyHt+HlkzDKMe3x8bHR3om2w1l5//6bN7Xtpfby1PzU0aFh09erzRaL3l8YdTlwoQDCFshWPjY5cuXhq6Z3B2ei5O077evkIpb6xphu1SX+X8hfPnL5595JE3vvjSbkBrrTl/5tzb3/N42Om8tvv13v6+nkr/jTfcqBhPjGm1Gi88/7M3P/qo7/tRox0n6Z333NJeau57Zf/46vFOp92shxs3bLzvgXt6ypWoEyZpsm/Pvk6r/Su/+pFbbr1ZShmnyfDIyLat22/fvff0mXPLS/XByvDybL3/3v5P/cnvlYPeME4939915y3nD5+yxr75zY/llHrlxVfqzWUj1NT07A++/cwt99x9x73b9ux++ZWXd584fqJea/7KRz7++7/zyRUrRoy9kX/so0888aR1zKsMTM/Mvfc9j7/zQ28/cfDwd77+5XUbV8/Nz95fui+SrW03bdu+84bYmqe++92Drx8dX7H2wTfedesd22/YuunU6QvP//RnxfLgwvTkKews9vV2wroSasXK8XUb1hQKPhdMa+1AaK0zZ5sj4gKsMXEYJiZN09hXnpTcz/laG+TCoWh2Wp0o9jwPOSqlnAWrDTjylJICrLPGpMCICe4scJYB4ikXBOR0kiSBCgrFipQqabWElIBkjZU5QdY4Zzqttk5N7FImIJ/zlGApaEDDBTdxxBkgUhglYavTaXeCIJ+mptNsFwv5QPlNa5TkqSMVBJpsbFLbbuVzBSE5IvrKU54fRe1U67zM/iuw1rbCUHnKD3yTGp3qfL7gnAEQRITZWZIxBGa1QY6qkF9cWjp3/MLExLWlakv6uVWrhuK4Mjsxs3HTxvGVQyappGk8cW5ifm6hd6h08607GIPpucmrVy5PTkzt27v78Xe84yMf/tC73/X2Pbv3fO0rX2Ect2zaNHtt5t57HvrtT36it6cvClut5uL4ylV//lf/4/W9B7/9jSeuXrmoq8nS3IKNDaRJo7o8NzHx8GMPKIZPfPPJwBdzE9dueGTjQLnIrPZ9Vl+cO3f62OYta3v7SuVivrev8s63v+2tjz928cLVUyePg+Hnzp2Lo2S5saTy7JVXdn/vez9au3blb/3uJ06ePvrVL3/jwYfeuHb9mle/uUcK70Mf+uDy0vRPf/KDR9/yZsEoKHCHlkk+cW2i0ltes2ZlkJf7Xts7MjJaqlSuXZsMAj9Ok9gYBoycZY4JFFu2bTAGbBw7rXWapmnkbIpkPSUZETgySRK121FYuvu+O7VLreOtVkdwPj8/V8wXCFytWqsv1TZs3JwkxXq87CnFwIABC5Ad+V03FY88m/IDEJmM7QMZPZQge0tkqyDnMiEJQJfpC11JGoB1LitCZwdpY4wjdz1O4xAFMobOWZYZteC6d9BlVDlkzLrr2G6Wodky/Et3J0yQ0Te7CwBEROSMA2TdZM4RSGShUbQZEMJZ22VKEgMCMM5oo521XEpHlgiklEoqIQVnaEymN8j07pgyJpgD4KwLnSBjrLFkbWaqI+BdTVjmf+lmTRlaAmOsTrOf2jokIQQBN8YislbYicIo7rSFXzp7cfoNj73t5b2vN5qNRqvV7sTjawpnz13cvnOXddbP+dcmphr1eq7sS+Dcz6MSyPnZ8xfyvYWhSvHsoaOv7X7NSly7YfXXv/bV7Tu2+6Xg9JmzhUpe5fw4Sq/NTQfF4uoNqy5duZjo2JFptVs5X0mOgS/iqCMlF4LNzy6dPX9huVZLdTgzOXfLbdtXjI7Ozc0Zpy9fvrRp0+ZVq1d6vhclHc7Za3v33n//AwMDlcZSzZMwvmJk90uvqjwndNPTc9u33/iWd7y1mM+/+tKrA8NDb3jwnrHRFUvzi/0jA088+dSXvvilNI3vuP22j//6r95xxy2PvuXhZqP5+mv2Te966D987GOYJtfmTp0/f2Vicn7zjdtuumnr5MWpNNLv+IW3Dg72PfPsc3PN+P43Pfjoow+nLvzqV788fW3BWhSMzS5NuTPmT/78T/7T7/3hitFV4ytWrF278m8+85l2c/kdb3njR37p3WeOvPrlL3xhsMcUvKg6fbE6e23j1s1JtPnCmYvPP/vszMw0pPH81NXTpyp333vb4FDviy9O+QJySi/Xqztuv3fvT/dOTFwdHu5bri+mJtq2bYvgLJcLGKIU3KFzrgvSytJBkOkQGUqlCJzyPMa5djY1iVJCCOYFvmAijCIphEBUHncmTeM4ipKhcoUjl0KIfC7VKQLpNA3D0Bjr56WUylKGWXEMoFDwESlKYpOmAKC1XqouDwxU+ntLrXonbYeREKmKrDE61e2wHUYxZzJXKCpPdZodqaTyZKtly+XS4GBfdbnlst4mYyZJI4wyQqAD0NrGkYEKyyDWQvAkTaIoTrUmIiG4I0h16pxTXcBgFrTmnDHDsLpc3bv3wNFjJ4uFXGGgvG7L5uFVw/X64k9/8HxvpfjIw7dWCmyh0xga6W/UhJDuDQ/eGzYby/MLk1euLsxN9A+VTx/fc2D/nrvveePNu2557y+845fe/86/+su//O6TT73xoTd98pO/UywGhw8e/KtP/4X05F133P6BD3zwnjt3rV4x9MMf/fD5nz57+WJ1xUDPzttvAgfXLlx65unw0bc8zE38zW88Gbd0bWFu9dqNCwsLy8uLtdrMyRPHHnnLIxyx2WwNDA4+9OYHwrD23W994+zlyx/86IdyFXnuzMmwsytsqheee5ZctFxdEARojEDbXF5YO37HC62lpUa8MHMl56OzrSe/8/X733C/ktrndml+auLq+UpZbdu29sCB1/cfOLDzppuFhz/54bOXr14x2kRJmmotGdYWG5u3bnrnOx+/9fZbB4eKZCJjOuhkq75QKZXyuZzve4Lj/Pz8nr2vbdq0/sC+148dP/HY449euHxh4spkGEaxjq5OXGl1WorLgcGBdmOpWCyads2XKJVMjXWCg3UMgfOsysQ5MIbOOrDkDGZBGtelIDhy1mbDnJ/3nbJzj3FgTWYVBJexzpEcUXfog44xJrlQQhKgIWBgXWb4JJdBYpCuA5uzGQ8CIiMG1hgEdN2ybbfAbAxh13HDCK6bXRAZEZdMOOesdUgOHRKQtV1Q9fWaLljjiEhrm22ClZIZ6hu6ZeNuvogRWKIMOZ/NuzJmKnWlbN0ecFZhz+Db1wlEaJ3LXjrOZX0G4kxYY5WSnEtjgZBVl2vrt9w0v1hlio+NjyWdBIlp486cOe9JNbcwy5AJBT/+wQ8WFmeDyB8aHiSFXiEgBmkSHdl3INJRO4rq7cj5Kuo0fL/w8ksv3bR1a7PTOXXh/NZt24+dOMOVGhocsTYdGRtYXJyzZGanp9asGs/lA0QgMJ7HHRlCatRqExMTw8P9UqobbtiWJunZM+eWFqudTpgLglKpWCwWFudniezE1csTly/1V0qTFy8Ojw4tzc/NzEwwBlcuXrn3vnvuvvvOfC748r98ZXJiauuNN/T19Nx+183X8oWXXnj5+eeeT127OJB7+tmnJyYvf+J3fuvO2+9505sfbbfi//an/0MK+se//9u5uemfvfQyl/mjJ09MXLvnttt2Xjhzrt5avvPuuwwB+ZUd991yaP/r3/3Od86fnfC83G/+3q8f3a8uT15VQjVqzb/6y8+8+/H33nHnrXfcdvvvfvJ3zp858Z73v6u2NP2Pf/f3SLYyWJpZmhrqH99/4NWRlcOVUvHFSxemZ6YajSWllMdyY2PDczMLly+dBpOA1Rs3jq7b/MArL79y8tSZUrEUdiLlC86YkgoRkfHuHxvXVfToVHPGnSWOIp/LKSWdM3Gs40TnclIwVigWs7mQUlzHiU4TAiK0WjurE2s1kMnCCEJw7QwAaZMkUWd2aoYYlio9REZrg0BSSWBkrOGCW2udIyl9pbTvK9/3yVlntU7DsIOuTVKJKI4XFxcR+MDgUN/AIBFITw/093PGGIOw0+AIcWyvTU73DfTninlE1CbV2gkmpZBKebmctWS1TixZ58g4k7XprbVSSUagtfGUxzIILjjISG7ZB0hxz4O37rp7x4WzV6u15aXq0v5D++rV+c3rNj72lseGhgZe3/famZNn165Zce8D94yPjp45d7a2uHjuxIm5+Zmdt228Nj01tKL/zNlLL778/CsvvvLAoft+47c//sef+pM77ribcU/58qnvff8Ln/9Coz6Hvpmbmdz/+r73v/+Db3/323/1135569aNly5euueee/Jlv9FoHz58ZP/e/a++svf+N7zxyKETxw4fu3Z59sbtN1+6cPnQ/oP1eqPV7tQbLUBcXmoUSqVisfDKcwcc6XKft//1V2+7eRdK02xWiTRR3N9T8jzVrnfyXi6nCjbRgfTBQpqk7WbbaRNFnenp2enpa8pncVRtV9OpyUuVnqDWXHrye09eOHfx2KHj/+HXP/L1b3zD99Xc/KISytjUGoeMnblwanFxdu26ldYmHDDwPSDXbtYd6Vaz3lMpI1Kr0WjUm+VyXihP5tX84lxzuck4joyPEFKt3gryhfU3rO/EoQFKtWHZfN45xYVB7pxGzp2+npK/PlrJHA6OHHKesT/d9ZYUZ5kkHQEgOy8b7ZyzwLN9saWMvAbMkkMGQojr2F3IcPHO2SzJeT0siUCQmdqM07xbKQNGaLscNsiwQV3VcjeIk6GCUEkJCOC6wjGRwSKsdRkM9jq3ruuzAiRi4CwmaQoAUkqGjGdLaNdFSmRVsawYB8gReAbsRnRIWQ0NATJZbdY07t5ysrW3c9nhLLu2OACWkfrJQT5fUCoIo0XgGLY6cacxMFg8fvDo1OTVVavWLDcaM/OzURxt3Lju0uUrg2P9k1euzU5Pbt649vyFc476tE2AOxmIIM8XpqdinTjBCYxJYh0yY3SnFTXrdel7k9PT9XZ67epUkA96T522EK1cM7o0Xw3jqNVqSgXl3gKBE0oKLgjccn3Jy2+yVtfqtcHh3v6BgaWl6uJSFRgopdphp6TLyvOIKI5inehDBw/sumXncnVxfNXIlcuXoii8ePHijh03PfimB6qLS9/85ndOHD35lrc/DI4unru0fdfWU6dOv/TyKyLgK1eNTVy7cvt9t5w6dOrv/+HzpXzv7bff1qi1XnjhZy/87JlXXnxhw4bxXDkfp9g3MvjcT18JjX7D7VsOv/pau5Hceuft1+YXvvvVf3v6Rz/xC/lSpXz2xPl/+vvP/cF/+s007uzec7jUv8Ik+kv/9tUrE5d+9/d/85Zbbt+8eXO91fj0X32m2u4MDAxdmF7MF4tX55YWl15XQeHxxx9fs2rlAcWhXLGOtt24Y93mdf/2pS9NTV5ds3plkkSN5drMhenaXLR67epmre75ctWqlWPjY7l8ECepI0LnyFmGwARzjqNSOokZgPJ9JZUzLk6SZqtDgLmA+Z4f5Ly4024sV1OdCKEy4DsyJGtTraUUBCiERKA4DJM0dsaQMY1GPYw6hVIx238JLpwkxsGYNDXW6BAQjTVElqH1lWTIk0QnOpGCOavTVHc6WlsjpRDczxcKSiqjjecp5KCk54LA2lgw1jvAZhcWGvVGoVQSnOd8X2vLhWDIPeX7nkrTJEkS1IYxobXlnDHOiSiJE+WprNVJRMZYdMQZy7RDqdUDw70Hjh6qLjVyhWCkWD528GJ1dmb7thve/q63OmBP/+DZQ0eOFnJBMK++993vvf3xt44MDl85c3W5Gd51392tsFqrt6pLc729o9qw/sHKN77xrUsXL/7n//qfxwbGxtas/Oq/ffs73/7myvGhi2ndz6nVa9Z2os7n//mfJ6YmPvorH7pp+00rV4wPDA+eP3/+5RdfPnTkYLPRKhUKd99xz8ZNW48fO724VDfW1ev1S5cvN1sdlfdrjWaSWpXPz84tnj17qX+gP69En2KDikFnuZiHTqtWLBaDwBfIt92wRXBOxhnjOPfAcSCM4lRbi8DrrU6q3ZlTZzm4+dnZ+cWlOI06nU7UjqYmZ1etXTM8MBqmydzsQi4n0zQ2aUIARmvfDwDc8ZPHvvKVf+vtKycmjePY92Qc6ySKUp2BWFgrbMdxWunpT1PXrHeShPr6h5aqS1cuX8kILUeOHNu8+YZnnnvl5p1bPL9kKeRIZIyQIlNrOwbMWoJs9uJ+/gjM/g0sY+MDQ2ScZb6NDNafBTuNI2MNAmmtKQv6IOuC24gYYxw5IAKDbHWarXYZYxknhmVs6K5WIDuqAzLGGQdEli1cswA/o65rGIllAyCGyJjgrCsMtI6ARBbwJJdZPbuqy2zeZAkyT1dqUmM1IlNKdvn13U03QfeucF2+cP1n4pwRMefQABHY7lQqi7ICWecQsXvT6LYHOODPL0qktSmWAz8fcMnrjUaqaWpqjoG46cZte1/ZvXHr+o2b1546efJjH/tYEPjO2PnZ+Q+87xfri7Vdu3b4ee9f/uUrPldkTWJTzlmrUcsFKkkjnRpDjgQHRzZNrEmWq0uMi6V6B2BqbGy80+nMzs5u2Lg6n/OuXZi8NjkRtqNSkM/7OS+n2u1OX29fo97UiTl+9KSDNI6hr7c35wdJFM/NzeXyeS/nA4MojBkTWusoTn2lDh853NvfY42uL9fqjdbUtamwHT722FuHBga//dVv7H3ttbvvuuOeu+7P5/zaYjUKkxee+9nC7CwIx9FYqw8dfH3F6Ph8deYP/8sf/sff/f377r3/c5/9h+98+zuDA6VTZ0+LnFSiZ2rhshO079W9zYXJFUNDUUTHjp+9Nnv18vkLPcXSzPRcb//AuvWrrl64/LOf/uz9H3jf2jUbvvfUntHR0aidPPW953ScfOAjH2jWal/8wufn58JKZXR5IXn4oXdyxQ68fmjl2PCl86d+/JTesHndXXffcfjw8W3bbnzwkYeef/aZUycPB4F/7swZAjp+4NiKR8ff+wtv33vw1dWrxzduXFsoBWkSNRtNPxcozzOpBoCudIgZyVUcRX5OCS6SJLXOdqI40TpfKDGhCNAZHcftWq0KyHr6+oA4MOtLaWObxkkun5fWdDpt6UlrXNgOladIG4aUzweB8shZaxMupc8EFzxJXBx2lBTkqNVqJGnKkWWz1yQhck5JCQxSHc9MzyIXld6eSqWkpEzTNIkTQKotLXMuw7AlOZYKhXwgB4cGEFgSx+h5npTOQ89TQnDOhdFxkqSco3UofcU5RxBc8KwOk2WiWJfHQwxBGy0Qjc34uPLKiStHT51mAmuLc5We0i9/+Jc2rl9z5vy5ffsOTUwv9A0NL83PuzQaG+l/4bnnNm24cXxsdMPalZcvnVuYXvRJ3bRtZatNczP11/cdKfcVnvnJT65cvPCP//rFA3sPPPOj57dvu2F69kKpVAjbrXOnTiL3gcGT33mimM89/rbHoyi5dnVi98uvXL54ZXG+WqvV162KPBkMDY0yJcM4bTTbjWYr0akDksprd8IkSf0gd+7U+e9++/u//OF379i+fffuar5Q4DI/OLxifqG6bfstQa5UCgqe5yvlJ9qFYaSNBSa1Ri68eiss5koEXpy4anWZc3b0+GmpfJ265Wq9Xm0LLhfmlg7uO16r1z3frzeWs8MrACGyKIkKhcLc7NxnP/ePK8bGGo2mc6gDXm+EOjFKKqO1UqqnUmrUw3Ub1r20e0+t0bxh+7ZLF66cPH66Or88OTE7NDw8OT1Tqy4vLy8p5aXCA6bAaiGkddaQlUwiQbZqyuY67jpmpzv/t0AsK1CByHzICF2dgHOImYYSjLVZhrSLCc0GH6wrXGGZ/Zh3gQW2ixAlAmJMduH+YK/D5AABOHbpwtYal+2JuxMgylht1yH8Xdhad/+KTGRkwS4RjiEX4ucPayTLGZOCa41J6jhD5xxn168+QNDlWUNGdgZkCDyzMxDvIuayXxJiJsrpMuWsI+sMQ2atY6z7sYwRY2CJkAEXPJfLI2ES6zBKO3FUAHf58tX77rnvbW99x/DI8O69e4vF8uDAULPdPHn6VNTqIGmjdXV5cWF+aWpy8sabd2aNy1innDHndJQk4ClAzhxXTHLJLbOKy0KhtFit9faW8op7Igc2nbg0MdTfN3l1SihR7ilKT/i+L5WQUl+bmJifm2+1Ovv3vr56w+og75fK5aAQnD9/vtVurV2zpr9vIJcrxGkcRjEw7nmec25xafHsuQvKV7PzC2SpVqunSdrT29PX07tUq/UOVHqHyqvXrr7xhk17X3ptzyu7L18+L5WrLy/09/W8+e0PnD176cTBIzpligff/uZXBnqHP/Thj72695XZxau5oqzVlnv7aWG2OVgZ0c3OuRN24/odxOTu3XumZq/deueNN9y6cc+Lr09cnlm3bkPfgH/s4IHV4wPvePsvkFZPPfUyU7l8rztw9Gz8r09Yba9O1cvlMWPFez/46K7bb/zh959mCFcunR/u7zt39kSjsQQ8d+MNN9+0c+eJE6eOHjqklKeTCAg67dauXTs3bt988uRFcDyXzzebTWSuf6DfDxRn6KxRnjJaIznOuEcEYIMgsJoDQBgmxAgQpVSe70kp0jRqNmpRu07OOnJhJ8zn8kHgk7VRlDhAdGQ1RUmLAVOeitodJAPONRuNJI4KpWIcR45svphnjNsUnE49yRBsu9mJww4wxqTyfc9aAMeR8UQn7VazWqsTQi4I8vmiVF5mAPcCT6faWDs/N12v1np7y1yoJIqspUIxV6/W+wb6w06k/Fx2glFSpnGYRFGn1ZCeL6XIF0pCCkREZFIKwTkBMM6AkGcGXsac0Y6AkPIFddMt2xda8cy12fEV2x980xv6e4IXn3vhxJlTjvFST+nUiTPlctnrqywtLU1dvbo0V1+/bu3akS2Xz1+Untq5YefBg4fClCuv98Ybb5m+cGH9+Lpf/Y+/cvjY/r/59Bd6BgZvv2/H2ZP4zI9+DNw1W+2g0AtA61auq/T2JCbZs/uVjVs3jIwNt1vtaqOWJmm73ZZBUKxUgCntoFpvXrx0tdnukGNSYpKm2lhHFMXx3n17R8f6VowO9a5ce/zKwtGJ5vota9utztnLM2s3bNFxdPLk2S1bdxlHUZo22p0wNqj8xNZb7biYq5Bjnp/bsGnzvj37FxfrI6MjS4u1sbGxeq2lpFerLUrBd+y8+fjxE81m1Wp9HVNmGWOtRgMQwzBqNhtkue/ltcYoMoCYC4Ioijljv/k7v2sMybz36CNvefiRt9x1960jg6OHDh3dvHX7G970xqe+98NVK1avHB8dGOhpNBq1eoviTk9AXfAmOgDHuzYV013nZvgCxpAYZ8xm+9CsCIWsG620VnDeDUN2Rx3MWA0MLYCzLhMiZs91TVoAl1IyRCLKeleaHBeMgEiwrrQFuqi17LkNCI4MErGstIuYURV+nrvPGHQuq9oiGkOZgFnYLm0oU5YJznh3/gOEDowS2lghJGcaOTAExruHFuccOGScE5mu8p3IOisyIpIDR2Sctc5xzjOsBAI4Io6MITNkrHOpNkIKYCQEA0BmuzVoRDDG5gpBbbkF4DhjgwODm7Zs7i2VLdjXXnt198sv1drN55557sq1a/19vZViYX52emRk4NTxk5OT85hXCEgWOBNSSOSIFgmzCxtYS4VCwJBbbZUSUvKi7wdK5gNRa7SdDYxGBLDWSJCtdnOpupDN3jxPHT95YnR8eHzd+Kq1o0tLtZnJmUpPz9S1yVq9Njo8vHnLhvFVKxji7OxCs15L4ojIMQZhFLea7UopX2sslYolPxcs15ZPnTj14MNv2rBp0+zC0qlj5776pS8/+tj9PT19Z08dY9yE7TDnFX71o79yw67NB8eOb924zq/kd2y/64c/ePZXf+PDH/+V3/+7v/+/f/GX//Xs2bMrhlfMzE6uWz2+cmS8tGFo6w33tDvJC8//pL+/MDw8vPvF1x5/91t+8Rffs+eFfZfPT977xnt++twzL//swHDfmocefFMS4UuvHrRarV23KoybV65MMx5wFrzj3Y/feuum3a/8bO7KlebSbKW3xDk0m3Vn3a7b79uyc8e+V15/5cXneys96EyrlUrFbr737r7evn/716+0O27Hrl0upaW5Kic20I8m1SSJcx5FCRJxkRUdWRon3WSwo3w+Twyc6yBzQkoCSpKk3WqlUUcKJBTOaM7BGR12wk7YAQDOZBqnSZrmrHGOC8WiKGq3GrOzs1qnyvexgo4sY2idieM4yPlh2Ok0OoiwuLhYyJfyw8VKb6+xQNYyQUvVuROnTgGJrVu3DY+M5gslQORc+LmAiCAH7WbLE55SXhQlSZJ6Qa4CCJxUoKQvozjyghyic5RmtEVjNTJkDIzWcRIpskqpDDFrrEXM5j9Gpzp7zXRxKYzazfrIyEgxKK9ZW37owTc7F7/84lPnzxzP5ZUF11iuD/SWg0I+juK4Xb/t1p35fPHQoYOz0wsPP/zGV3a/cOL46cArXbp8aWxV38Ls8viq0d/9z7/9+oE9T3z7yZUbxg6dOPKlL83+8f/3R1u3bHj9wKFmq37kxIWd27f/7u//nufLf/ynz/3wqWduv3PXlq1bMROncm7IKl95+RxKrq2dnJ45f/litVb3vFyAfidMCHiaWAJerdWf+v4PVowMa+fmFuuXJ+ZVIb9x1arF+YWDB4+SMY7s8dPH56rz0lPNdqvebhjnyMHk5PTwwHCa2sH+4Vy+ki+VrKVOJ+RSpKm+cOn8yNjI2g0b+np7hkb7O60OWSBwkJVku4F6IGsdODLZY0Y4gEQbwb1cPo/Iast1Jb2h4d5Wu/3Od7wdGE5NTd2y6/Z3v+d9UzOzr+8//K5ffM/Vy1fqjfrAUH91uVHu6Z+5MhUwcII86XHGkBAgg312If5ZmAUJBZc2G+fYfyeDcs7IOcfAUmYPh8yyhcg455YcOMhYodgdHQFHzpngyBGRM+YAwSEgWjBdpCCgI7LQTe9n4ybOkKHQzmQQiOx2cJ3LD92EAWXTfgtEgMIhgQMBgFnfN3uPIMvYZ5Dl8YUQXFjBjeAMEATnLAO1UhZx7aIuTNZRY0DOpaljiFlHwVlimdWLrpeRCQgJEZHAWOusM2CYx4kcgmMM7HXaKUNGFrSxcRx7SvYP9edLhR//6OlDJ062w3DDxg1kHDm2c+fNG9av++bXvv6ed71j69YN5y9cLPaXW0lonCMEsOCsNVqTtUEQWMZS67inhoaHOp1IAzmHSknkRggnBFidhGGzkCu3G80kjvMlieCWq4s61VKphcWq5/ntdlsohcCatSZyzOf9RqMx2N+zY/vWtevX+7l8dXFxbnY6ijpkrXXWEQnBAQmAxVE8MjTqnK30VZ559rkPfuhDv/lbv3Xs+NF6Y/nJ731n96vPPvTQ/avW9h89nKLgm7duu+32+yYn5w+/NnHT1k3rNq+cnWkcO3KybyB48vtf9H39F5/+68/83V+9/urrI4OrH3jgLcVcTxAUU905evjg7OxMqAs7d26UYsMPvvn8g4/d+Zb3PPTyT16bm1ratO3mg4dOf/nffvC25eSRt9yJIpyeXnQ2XViYS1tLQyOrHnrsgS2b17z87CtHTh7L5/077rxX+nxxaqoeNnfsun14xcj3v/+jY0fObNqwoRxgMeBxmB8cGQfOX9nzerPZ2bThhoW5JeAYhe1GM1yxepXn+wTAunJDAERtTJLEYadjU+MryThHpDhJHZBz1mjDGXPWEuk4DnWcBPmC8KSzJkldp9NJ4oQxzn1BRJ4nPcnJWnLW6NRo4/ue7ymdWGecRR0n7bCTcIHNRjI3O+uM9YMcAQADT3HOwYFrtdvtVmN+YUl5wbo1G8ZWrFSelwUTtHFcCM5Zq9lq1Bo9PT29fT3z87OALMgFQoo4iQuDJS6ESXWaJtYYgszs5Ky1nseLpRwXqNM4UwwJLo01JrHZbpBzntk1lZRpqgkdIbU77U4rXrtmfM2azbNTM7t3vzg1c7anVECum42a7xV33XKbtXTt8uUbt942MNyz56UDcTNcrp0kbt7z3neD5C++sHflmo2nz14YWbHio5/46Csvvfj1b319oK93fvHC7MzpG7etXFyavfm2W9/zgV/88//xV4xV/udf/3Gj0frMX/3vg/v3pS587bVXT50+WSpVWmGz1YzH3bgQvgFwDJX0FheWa7V6JjAF4NVqgzFJJOLIICSXmxNXLl1JnWFCpEafPbGfJR0/503OTPT29HU67aef/qF2um+4R/jiyLGjljkN6dWpyXyhhJKDZI1WZ3TVeBQnvNkOAq/dah09cgi5qy4v1qsLhw8daDSrDrQx3ZiNsw4ZOnedywkACNYacsZZwxDzQUEpVWs2Pv2Xn261W8Vi+aYdu06fPTs8OvrxX/v1L/7zF0qVymu7X7s6eSWO41037xwc7DOpu/O226tCARhrteGWd/GVaAFs1/JIAJi9CTgSMTSmC9IkchnzoRvbIQddqTYxAEI0zmHXlwtISEQZEC179lrXnfYwxoAB49IQOttFOZB1ZJ11Fv9d58U4RydAW5f9KK7L8MlwnYBElijRpju+YcAZR0BBGc+ashIKZCZoyEwt4DhDKYSVirE0U9ojEgK5LJrT1cRmQJPMJksElKaZTJ539afZsCxbXxN2ZfaMkcnWHIacRMEzpQ1ywZD5vpfL5ZyxpXLPyOjolblqHIfPPPuTpWtT27ZsPnXs1E3btk9cnTh/8Ypinu8FYTtOE1NdqM/NLXq5nG07AtDGEqGzziQ6e8smWiNjURRNXL7i+wECMHRpGqJ1TqfgTJqEgvN6kioOjLmw2UrCEJ1t1etEpNMkbDa0dQTQbneQ5Pr1a2amZ2+5bcfKleO+8rTR7U6z4Ofry9U4Cl32JmNojWVIhNRuN7liUdQZGBk8fPTIl778rx//9U/890/9j7/5X385MNwzMXHhK1/6Uv9AfuvWLbOTy1u33kDWuzrVBFs4ffiaJTg7efbiuXNbt230i/KfP/9ZJuFd73nXxZOXbr3rrtHR1WdPnisUw90vvVbuq9x0xw1nTp/bv+/g2976tqijn/vBXhT+mx578OWfHpiYqw6uWNtcrH7ty98QPNmwdkRJN3F1Eq3ZduPqe+97cGhk9EdPf3/f/qN9g/2O8SDwnHXVaueWW+5au3nTCz99afeew5X+oatz9c1rVz745h1RvXH0xKWjJ04ut8Jivjy/UF9crhZLxUqpFAT5Qq6U8/NxkhjtHKBzlgisMVobssQZM8aCM3GSdDodbSwXQjlL5FKdtJutWnXZak2AQqowDJ3VWqcMme95UoiY0KTGWCuEaLfaxurevp7BwYE4ijOBQxh2pJWM8WKxGIZRkMulSap81dtfadSac7OzpSgEwSevTl66dGVwZOiue97Q1zcAyOI4Juc4537gcWTtRiuOw1IlH3i+c2ZsxYjRTjAhAkVAQc432jLGkIPRul5rKE/kAr+3tyI4ggOdmixd7Qc+ZscjAkcuSRLP850jxplzxBlzhEKh7+XIqA0bc5NXJo8dPb6wNKcTF0cJ2Xi0f2DzrpvOnb147ersmjWry72VE0fPLC7Ml4pFoeTJk+c6ydff+Z53Brm+F559ZXC4/5N/+B9f37v729/65u137lyuX3v9p4ff/MD9d95987PP/vj4yVPDIyvG16551/s/CMA/87/+9tix44vL1f6BXl9KLlmtVm13WmErHR7oRQbL1WqSxvlCod5qplpj1zSLtVrLOY4oAJnJDj02QXQObOCpsNm6fOkiMYjicGomiuOkUMw7R3nCRqOxr73PoavXG61Wp1FtaK2jQM5NThmdSMmdtY12Y3lx3vdzdB1j1mi1gJzWOgNSOmcz6iRef85mA2ciZ0kDWOtcLlcMgiKgiZL45MmTGzauf23f3tn5uQuXzv/yRz586eIlBLntpm3PPP/jlStXjI0P+54fhYlJLTGwQGBtHEdMcJSec844Z60DQN6lsKG22gISCmszbTlkEGzBheAc0JFDBOIMGcPuE5FlfnbGMgU4ZOY3dGCzAY4lC4TMMSE5MHQWHBgiZw04S9aRzQhxDjMIECLLiiTZw9YBAXXfMYDMEVhrnXHI0BExxpwjRiAyDFX3IuO6VWbMJjxEgnMlhdGWceYsMWQ8o4xmSddMrAwImd+GsCsjJiCX3V+AgLq3M5fBr7JPHVimic7eVNlXiziAJEeMoecra3SapIaEkmrVqtVxFE3Pz1AcrfGCkdEhwdnRo0f7BvpmpqcHBvt8FUghFxeqS3NLfYP9Jk7RAgfOs60CkUNoNFuxc1JJAlhYXGAADsBXfpDzq8vL1epyfbnRjtpGTwvuzS8utNutcikI8nxxYSaXC5AJS2k+VwSksB0xChRX69esm5mu7z94YWh4yKZx0l4GDh7nR44e7bRbcdTxlMeZdFnBjUO70XRkfF8szs14Pv/cFz67atWG+97w8Md//T/+t//6R83I3nj7jn0vHJyf2/eG++8McuL0iWPMJjft3DrYM/DP//L5q/NnxkYHL1881TdWtjn2mf/9P9/x+Pt+97f/WwLp88+/5Cv42QvfHxobzBXd3OyZ227dPHlp+uXdLz/00MPz88vf+9bzuY8Gu+7atfDj3aXQDYyPhYF44emXH33ng7XZetJqb1qzctuOG4JAPfPDZ36292ix3NczsLpQVAvXrszOTNx9710bN2zZ9+rrx48f7e8tdtotS2JmvimD4spVa45crDY7HFSlnRK5ZLBcWbNh7c6d28fHVw7192mTZKZnxoVUMtEaOcumK+SMMzpJ0jDqaGMYk55S5Fy71W7WGmGnncQxABmt4zC21qVJjAx9PwhyPgOUinca7VYDvZyXhSuMSX3f9ymIkyRsh4wjA/Q9T3keIHcADNFTHmMQd0wUtup1G8dJvbrge2rF+OqxlWsYcOesHwRap1HYCVvtfLEQ5DxrU50mNk2QYapT5eUYg9ToOI6NNYJzbUy+mCOAqBM650khpKeEFEZbkyRxHBuhPc/zlC+l4p5nHVlr0jSx1vm+r7VWUnFExjHVptJTiXS10a5W+vy3bnmgtrxw7PChwcHBW2++8cDhIxdPnh5dsXJopPf0qTMTE1ODY6OtRosh90re4aNn4+T7a9esG1mz8r9/4uP7Xnvt7z/7hbvvvXXVurHLLxz5o//8iZVjQy+8vP/K1NLefUdvuGHXH3/qT/xc7vOf/ZeZ6dnUJM12R+WC4bUjiU57+vIjAO1a+sib3xxGrT17dnfC2qqVK6rLy1qbbgcUXdhukdG+LwEsY2CyYDgx52yko6WF6sTVa719vQSofD+XyzsHGzdubrXayECbdLlaTZKoUMjn8qq62IJAMslLhR6iVElhQSPHnOcDw654teOALDhCxq7T+DMWgbvOuuyuRslZY5I4jjnniKxQKAc55QiiKFm9dqi6vJQvFs6cOs0QkjjKF/xCoZAL/FKp4AwiN0pJbdJsmC0YkmNRkhAxYyyR40wgRwYIgNaRdpoou5EwS44jY5wzzq+7tiBTBotMtmUtMAaMBOOI6Lo75QyYLxAJEawjIicl45ITIMtIzt2GcXauR0vEu3lKR+w6LIiQHNmssYbAENEQOMqYDkBIrtvtBcZFBo4GcFo74oDGIVokcM5m6aIusREZocuaKoJzZ4xDyFr7GfUnw/+7bB0OLAMPAYGzZLTjDK8ryRAYZEM0JhxqhgxQdAdQHAg4Ux5XntJO15vNTmybzZYUMsgF4JbmZmZmBwbSNOECCCxDRmiqzapfzMVxUsr5ZFzcCdFaRq5QyJlWmCVpnTXEkRjLTGzaasGZYIIhGpMSOGOsMSYMQ7KQojEmVb4MO+04DHOeisOw3Q61M4GfC+NOpl/uzVUmLl9YCk875SlkRImgKE2SNI5rteU4SYmICyEETxJNznJGCDZpNdavWnXk+LEojIaLwx/76C9++tN/+9CbHvs/n/nsb/zur5+7OH//w7e+9OyB+Zn5y1OnQRDHklT9raT1gY+89ytf+ecz508WK6W8CmYm5++45YFHH3wsaTuHWC4WD7z+mucXjE2mZi6EcZtc+52Pf+jJr/5o90uv7rrjhhd+tPfJf/vJ29/71jtvvfnVl3YD2HsfuffogRMLM/OtRnPj5nUbV6802h3a+/qhg8ecxQ1r169cuerKpVMLC9Nbt67ZuGndkUMHTh49phgmcctZ3gmbzTiIdKTJbdy2aXq+evbyFSAKSrn1W9eVyoXpqSv5kiwVVTGXB2ScXPY3QQphreZEDggZZfpvKYQfeJwpRN4JwzSJtU4F50KITCTTabWMs2milfKklGmaelLlcz4iELokTqQSDKHd6jiHkiurLeeskG2ArY2TBIAh44Gf86Qk50ZGhhoNsVytVheXfKVWrlo32DcQhm3rSHLm+YrIxlEUxzHnLPA9JHCpBoZhHLabnaBQ9IRkXDDGsjeNtTaXC7KbsVTKWtI6CfJcSKmTVKdap0apMOfnOedCSiJgQjnnnLNa61KppLXmXDjntNFJpKcvXz166EAUR0pu27hp7bpVo4328plTp44fPrZyxaot2zdPzc5NTE3LQNU7jaBcSNPUE97W7VsXZudy+cL7f+mXX3juuaee/kHfQO+pUycPHXj1ve9661jvSPVq1ePe9NR8oTD827/zO0Gx8Nd/8Zmnv//9P/ivvz9x5crffuZvegfY1OLy6lUrpPQHe4be+Yl33HDTphee3/2znz1bKEqTdoIcF4wlzpE1ZHUUt7SOfF9KxbQGguteEGDkqNNpM84XF5aACBkbGxuzjs6dPllbbjIOrVYLCNrtVtTJx+12q9lScqzSUyz6yjoYGBgIO60gn+ut9CJDC5Ys8zz/zOlzjGdz4yySkmXRsxghMpYVpNA6q9Mk1QkhccFTk472DvteLgzjyclruXwujuLa8nJPpeepp55+8OH7x0dW+IoRmdnphU6S6k1bkiT1yXEwyJhxyICnRpOzgCQ4ZOdh68haawkdOfz303FWbCIgQnTZphaAcc5JEHT7Wsg576btETKHcBb/h8w1wxxl52lwLKtSGTLmevqTEDHDMWQ3ErAOu7F/Apu9h1lXOwDdFyO7fvtAjgDgRFbItSYrgHHGmOWcrCFyAsEZR9Zl5WImGM8QEIiCC2Nt9veZM2a7v9AukBQJr2dkHTiH6LS2iJkungEB4wwYSgeM22zyk5WqAQhQ5HIBZwKdcc4mOlmsVqtts7lvRCe6WC5zzhgXURjlCz4AeUpE7Y7niVSnxiil1OLcPDIWd9q+L5VS2Syq2YpTZy1n5JyQQkiJDjkXjpwncmSRe1xJlWrLGZeIHDlaNM7GaYpEBiCMU2sNR2mt0anmnC1Xq81GJwE0aIXD1CTkjLVGcJbVw8k5pYQUIk3AmlQKzjmW8jkJuHKo9/C5K9PXrt13321/9Ee/01fuuffOh77/9af+w2/82oWTV2++eduBQ6c01wrEGx95x4+e2r24WPvwf/jg7/3eH/zZX/5Zyy5VhgfuvfuRj//ab9eqnf/yF3/6yNsefcObbp+au3D18tU4ZhNXpjfesK6/b3hqZua+N9zxjS9/l0u6+dbN549dPHPg6PYbN2waz2/cvD4IZKW8/ci+I+OjA9s2rVaChZ14/ZbRofGeVku3m8ncldd1Z3lsKH/rbTdOTV04e/a4sW0gcoYBCI974NpM6XOnT7aaSX+Pt2Kwd3Cgf2y8ND87deLgzMoVw329+ZWjo8ZpS1YwIYQgstY5MgY5CI4mdVwAM44z5Iwbazgjk2hwoKS0nhcKqRRaazqdmCuhfOl7UkoWd1opR9/3GHNxqrXWyvOQgYsoSRKZ93zP82Re+VIbaxJNllCgpwLfzzNArROtLZfSWqcT7QmhOHWa1U4kpPKzDHYaJ2EcIoCnRN73CgWfKO20mmG7rU3q2hRVypVyriA4l9Jak4ZxmqQITEoR+L5JrXPIufSU1DxmiIwLzjBNEkROhJkSOoriri2KiHMOQNZRGCdkXVBUQ2M9tRq7MnFZsGR0qBesXZhZ2rBp843bt1+auHrp/GUHrhm1LbBaq5Mr5D0vf/TwybUrVt521w6u0tXrVvX19I+O9hmXFHLBqXMX253arm038unalk07//Qv/iyfr3zra9988aWX8oXi977z9GOPPfbpv/zrv/v7zw71981NNLbfsPaDH/pQqVh89eUD3/7GN5yJm814ubpc7zQ5R18oXwmOJDnFcTsIhK9EGmsOzjmbjRqQMwBMk1RIAQDGmLm5uTCMcvmAIbPOCSGM0Zwz53S91VAqkygk/orhiYlrUvqzC4tBPkfEhYR2p8OZlyQWUBgdC8H+/5Lo0JVoAQFya52QXHJpjHGWnHOcIwCVSqV8KY8Mp6eni5USZ/LqxERff8/4+Gi7sRxGjTVrtwJBpacCrU4YR4hoyCI4IGasQ6TUWmctA0CwzjFEMs5ZR5bAOEsaERkXjKxFROKOM+KcZyGX66l9xrMBJYHgwpEDynyTlG0LMtS+cQ4g40VYC+QsGGuN1cZa58ARISOGmEFVrDHOMMq4cs6Rc5acsRYtcM4tYxmCqMupRmQcOUcAJjL1ozHWGO2sk0pma42sUUbotLbZZkMwFJwJwRkywUU2bGOcAQDnjsAJyZxBDoDXKefZeylbAltyAnlW9+WAgjMSIIVwWas6Y2IhF8rnXGVAXQQGjtLUhJ0wu1WsXLlquV4vlopRmljnjDGWgLThBGkcGeWNDo8W8n6UxHE7rC0um1R3+3icEYCS0hpnLfieVJ7SSZTEyZrV665NTY6vWqmkz6THANJUe74Kw44QjICEUFIGhkIL2NM7NDF9AdCRBo6sFXVc1rZjWZyLIzlrXLcSASC4IOsAwDnI+UE+X9CpRoRqtTban5tZCpfqzdUjqz7xH3/7ve9+1x/83h/837/8zLe+8//+4Z//8e47dr6678hb3/oOWdZz4cXJpbm//fv//Ye/98cf+aXf+O6T39ix5qZP/OYnDu0/8sR3vtcOqz/92Q833vDx9/3Ce77zrSdOnjm9ZcvO8fGx3p7eg3uPvvGBXdtuHj1z4uQb3vTg3Q/dXV9Y6uvPv+kNb8zn80tLjUpPee2qFQQkpAh8nxA0GGdtmKTN5eax42eWVLz9xpsQ0slLlwUxKURqCbgSXFlnd960MYpbp04fW5iPeocG3/GeB5cWls8eP1pbXCoV81JxHZGSXhTHjHEVMAdkjE6TOE0SAEtggDkyVps0TlKKMI514Pucc47MaQByDIllKmWBzoH0pFLSkXNW6yit1+u5fKkTdoQQiXUykIwzYy3jqDh3zloLUkprrTbGV16QywmUJo211a1Wm6ENckGhnBMA7VaT2h3P94uVMnLWaHaMtkkSAxADzPkKHM3PzM7NzVlrlS97+gectdoYJnku71ttfaGkEkSofddpRX7gBb4vhYcOisWSMUZrA4A61conADLGcMaxmyWHJE0El1x0Y3ZcYHkgd9td28+fu8wR60vVuZmJ/r6+O+++fzkK9x86cu3qVKEUGJcKxkmAtmCMnZ1f3Hnnjb/0sQ8e23vwn/7xi3/+15/65Y+998dPP//AA/deuXrun555/tgRW10KHVP//VN/3j84+Lm//6cwbPuerNcbi7WlL37pi/fe/YZP/PpvHNx/+EMf/dDGrZtqi0tf/OfPv/7669XqYpJqT6raYrsVtcJWWwrOGSpPaJPEUcf3ZeB7rRZBdgNA4IwTgLOWcaa1YZxZRxJISmG0NtooTyWxyY7u1jlA7CSxl3o+zwk/Fxss9vTXG23lBUliTOo67cj3ebPZBmCcSyIDP69FATDMHClZDBKzSTpRxiiw1mpE6uvt2bp5S6PVOHfuIu/EUlCj2Vq9ejxj35fLxbAT15ca/YNDFkWhUM4FRYVtYYBzZgF1tuKwJLI5OwE4p40xLttAo9GGACAlIQRjyIBlYl0pBEN04IhslgxkKBCQCY42I5XQ9UaWcw45sowQ5LhzOlOzc2Os0bb7eMFsp0zAIHM4diMW7rp3nZAcOnIAzloiJOscdl+TkN1HnHPCATkgS6SNA8acQyIUnKfapNogQ9ft/BJwBMaAdQtjAngmBpUCkPNuksiTCISELptTITgHjrIgE3LOnQODjjnCbCGCiEAMiCExIMaEpzwCMNYu12tkbBqncZR4Uvi+cs6owG82GoVCcWFxYX5+Ht2iECJQa9AanSaLSwuJTjdu2eKEU9JL48RZQ2QI0TpCQBNb5Mz3g0KxFHhBfRmEgNGVK+Dw/pWrx+NQr+Cs0+y4VI8M901dnVwxvuLEqeMbdmxRfq5x5FA77mzYuGl+YTY1MePoLOUCvxnWGedZM5vAwPVvyLKNOrNgsgKG9HPARD2OLl66Oh+lcSeEnHf6wtRg39pb7tnx4qt7rs1d+se/+ZdP/+mn+ofzf/Jnn7nnrvvmZ6Inv/T0xJHDM0v1cnnw03/6Z9u33PXY7e9/5y++9Uffe/af/vFzTNL6dYNnTh9/6Zmn3/7Od3/4Q+974eUXT525lA8GT5y6FNXb+/cf2rhllSfx4qnTW7Zuv2n7trHhYSUDtKJS6sulaRi1HVmGDFNrbYpkOFLBup6BwrpH752fr6t836WJ6d6e4dVjN3Yid2XiWitM4iTcccu69SOjk6euXDs/MTy6dvXImt0/fmlpdiaK4lJPiRwuL0cOlAWBkltHsTUM0BqjTcqQTGKdMUyQA2p3WnGsuZDOQKsV5nI+B7BaO3BMMG1cLsgXSzyJHTmXJEmn1UHmGIDne0DapJGz3FqCiDHGOROIZJ2Jo45Pvo8gJDOWbJpy5VsbhWG70+4gghTS81ShUIhaHcbAkW3V62GnLT3PEgT5vJK5VrNZX15Ook7OzzVqrTQ2YSf0A1UspI1GLQkjEiilCIIgXyxyLtNU+zk/ClNjIMj5WmsLUC7lS6UerY0fBMgQgQRnBJipdDljUklnbWLJQ58xkMAAbNhuMaCefPni+SuTV66ScwGvJEUaHBgcGVxBmjWbS5VcbxwnEUvz+WIaul033nTXvTt++sQPf/bCz/rKA5/7P3/3zg+866E33Xdg7/7RwdFbNt+yWF8+8uqVD338oyvHVx9+7dUff+/HoW04gE4nyfeWpOXf/Mq33vLwI//zU3+8HFa/9v++9OruPbXq3HKzZrSV0vdz5Y9+9CNf/eZX6u15IGeMkCjbjUYYh8rzhRTIusdHLnjGFzDWCi4pm2+D01kQBZBLmQGMs4NkRq7PHnxxmCws1OJYN5stoaQf5IixQrmUEI2vXKXmlmbnlrKweAY5zspNrjsMgu6jkDKLPVhrkDmt4yDn9w/2vfGhB86du6hTB5zNzSy02i1gXOV8FeRLPb3aWuso8POJAUSWOsc5Cca0sQ55JjtHzKjJxlgBDlJrU2uRss/dZTlLIuAMOQJjGTHTEYB1xlpjLQGAEBIx639ARsB3xK0j7WzXq+WIAIkxyDwBiLY7+6GfJ0mdNRy5sWSNQQDGeSYEAwREJxgSMQS0xrrsi0JIAIIzxrO+F4mszkUAFoB3lTEIgM6SdQ45GkfWWSRgwCib6YPD7D2FjCNwzsFYx1AqL7vWWaORAIFxRGNT4wyCkEICIwCyQIYcIw6AnCMnJrIvAoFSQgqZahOFsfK8dtzw874QPFA+AkopGbBao1FqFgrlkjYGjE4TSqMW2BidbofxUnWR+0wVvBVj417gGSJAR5n8XQmHQvlBb38fWBgeGdI6RcRKTxm46u/tn+xMr145Njc9xwn6e3oXZ+dGR4eOHrVC8VIlV8jnevt6PF+tWLEijEPJ1bYtm5995jkllNam+ycwg7tnr+Bs188Rrv+BB2BMimq9sdioxWkIEiFMAJKFudOFCmzdccPVqXM77rzhyX/9/B984pNhB77w+adslFueudipt4aKQdRpOd3etGHN/bc/fPDgkddeP2HRMWb3vb73k7/16+VK6aWXns+X+x9+8yP9I0cP7j21NL+g09ROdBqd5TVjQzdtH9p125ZyuU8ndrmR+oIhwziOTWqdM0JmNI5s/2+RKGwlUdrUhGjT22+9Y3h4zKHf2782iu2p46ca7eUVq4Lpy+eOHDyKluKOPX7kbL3RCYJ8sVQIdby4VL3r3ns3bN/SSdN8Po/CISenTZqm2hiRwQGBMYbOJY4gnw+Mpo4O0zg1SaSUWF5acC5NkjRJUgNcSkFo2u047sRGG6WU70tF2Go0kRwjxjiFYYjIlfLTJNZJ2u60hewEvu8Fvqf8uNPuNJup1t0CDYBOXacT+n4gueQMo06nHbYdgZSeH3iez8kARxYlYRTFajAYGBktlsvW2ChN5uaXRK0+2N+TeY3GV66KOpFUDoAZTWQdcEySxDrtrE3TuFAsFQKfHFpnjTXaaKmUI8s555wDAEPOhcgov9aZUrl4+uTlE8fPbN2yrbdvdHGmtmHz5pWrx06d2L98qvq2d7xV5tVrLx04tP+4IyTDfec//o43M7SvvvjTC6fPDvYG42sqgN7n/uaz73rPO9/82P1Pfu3pvt6BvXsO/+5/+aPf/KPffOo7P64vTX71u//83//7p3763M+atXD1+nEG8pbtW//tiS986fNf+fM//x+E8Ng73hK2h5/+4Y8RGDEzOjZ22+03/+iZH4NjKNA6mySJdawTdgby+exExxkSsYx5x7hwLhWMZVB6jkxI5ZxDQEeOc+6c44xZsAx5lwSOiIg2TRlQo15P4rTdbDcb7SSqNFstZ1gYxQCE2L1lY9eOdV1b2B0HWUR0mWyNASIhukazvv/A/qlrMz09/W9759uPHj0ehyYOkyTRhGgMjY6NHT1wtDq2HMUpl/6mDVv8ICdcqkA4nTLGgFBrAjLWOdLA0CCAzk7lYAVjwBAcMuhO7hkTGYXNZc+hLH2MtkvuRNb9FLq5IQBEDirL11inGUNjHZIlQOe00TqrEzPGEBnjwjHGkAFkKVhrjaVuDhYRGMOsEUaZ+D3bkjDOgDMg4Jw5IIGAxlitjbFWgegWya7vpC2RcV22HHVVw8Cvv+SRAxdccAEMtNWQ/ZpIO3JZYRqRCS6zaCwwIGTOaiBgzJEARFRScQQlBecIlhjj1roojtM0jeMo1Ya48gNfg8+RCcGRUbVRW83G01Q758gaJXiStp3TyFyikzBJmlEoQa/kjBF6UnFkxprA91pRAtyBwyBXWF6oFcu9gDOAGMYpE7zR7lRrzchoa021Wi+Uio1Oq9FsEpAFxxVyCZVKUQoxNDJYbzT6+wZXrl6lfE9HKSF1GXfX07fdAgZR1vRx1hprwk7oKUU69U3qW/A8IoDEgjHm8snjl08dB4KeLb3v/uBHf/bUt//z7//Rq89eaDRbxcHC5Ly99YbR2269Z2hs4xsfunXf7lcNp9/9vV957cDwN5/45uoNt93zpjcdO75//8m9q0bGJq6dvfeND9HtNx54Lem0IyXI6c66TRvuvO22YqEyv1Bjym+lTAOSNVEUc2clB3JWSCACJE7ADJBhKgYbxdFAXg32VwbK+fMTl7msrhrfUB687eL5i8eO7J+4eCUGKJUqy7EFYQbGxusLM5EJ/UJuw9ZtN99+uxC+cSSkzGq7AADkpOBOa0KQUgAjApYv5BlBKwmtNdpo31fKy+x54Pt+s9GOklqlXPRzPhFY7biSSvpSCQKmU5PPe0abIO8LlHGcesoz2mprkTNjdLttU51CATzlt1utKE6EkIhodCKVxzn3pGeIpUbHOjXOIiDjRFZHrabv5XUcRmFb+XkC5/kBYzxKIkp1Eut6vV5fWhKcDY4MgTFRq5PItFAoKikEQwBMk0jbNE11ksQEVCqXyUGcRERgrMkVCoj8OvOdCSmMtdYYQqc80ei02omutXXT2u233zy+cbzZah6/ePzytctRvf75f/jHBx955N5778+p8rPPvlAo937o/R8Svnv2Bz86f+GkEAbS9Pi+PeWegU033vjU00+98aE3/MGf/c6T3/i+HOp/x4fet3/f4b/8s08N9BanZi79l//8h/fcf+8nf+N3Dr6272//9u8++rEPfOEfPv/J//Q7O3dujeNwYHTg9h1vK/f2P/30UyaGt731rbXl6tTUVSGENZqkQOKM8yiMlRSeksZYY42zxAQjQgKrPJVEKZNdAkHmP+EMgdARSamQobaWCcYAjbVMSAJw4ByY5VpN5RQxzOdzpd6K5cA56jRRksVpIjgQOchoy9e5x/Tvd/AuCUcIoWTg+14n7Jw8cfzSxas9vX3zi9VGowEESaKV8tIkBYRCvrB+w7rRkSEhgmvTs+12S2YqXiQpu1ouzsC5jGvgUq0ZMucgE/sQAAdEzpFs9mCWUrDsIY9krQVExrgxzpF1RpOQgCxblZIDB85Zy5iwzhmXqd/JGoeYqWCyTwd4Fs3hyBlHZDrRyNBmhV5rkLGsXdAlVYNDB85mvJ0suQ/kiBhk1y9hnUuNTrV2ZDnjQiouuEl0NpcnREc66zfT9doxEWRZXwmccy6FJOt0RqC4bpLsfjEYcC44N9oYR8QAHCGSs9Y65wTnnlJKScmQyDLFCaETdRqNZhR2Mj9YlMTIGAMOwHRqjNFR1AJk4JgUCoBKxaIzgExo7SxAom2aWiGlMU4ISQ64kNntXnIEgCSJGrV6GHWWl5aTJI3j+OyZ886Yq1cnFhbmC1ExSqJWo6muCaNtbbnGOF65dKm6tNRptjzhHT16qFQsN5YarUbn2uUppVQrJEQG4LL3brbA//l5REkZExFQo1F3YAlICAHINm1YfcOura/ueXl6tuNJ6B/unV1sDQ31tmvh9hvGWOD/4Onnd+za/vgvPPTZz/51bXpJsqGHH3/nHffc/3//9nNf/Odv3XrnjrUbh970wKND5dHL164898xPX3zleYdxoz0Xx96ru18f7F/1poceXppbqC5P3XX39pWrxoN8v46x5PWmxlkHJjVcgHWQphp9kfN8IMt595NA5JxJyxJwRBajVOcDP8gXqu2aaNWMsxaSXbfuHFtVnJ2dIa0Ghtbni/l2qy74JmtSm8QjK8d6+3sc2UBKspYJBoDGOEIgwjQ1gEiMk7UMue8FSRIhB0SmPK9UKXm+KFVKSRIWcjnGZCsMlZKcCaOTVDsv8KSnHLlms10s5D1fadMKw8SX+VzO84Ic49wXiAycc0mUpqnJhsJpoq2zBS/niOLYmqhdKBScsdrY2MQ6TX3lB4EvPaFjHXdiTyjf8/KFfL5S4lIYo4GhFEIpPjDct1ylRq1mOHaa7Xa7VayUgSES+L4HgNaaNImsNZ7vkaM4ipXyPN8TUqSpSVItkjQIctkg1NqswwnEUFuXOteodxzZ3v7SuYvn1q5es2XjjYeOHpi4PBG3KPBKDOjY/qPterjrlluHhgYSzQoF79kf/3Dy0qVy4OXzudmrl4SAwT5/qTrR2597+qkfnThy5uYbbv6t33qPpvj//K//c/O9O+bmJr76ta+fOX32m088efzg+Upv+ZOf/I0nvvvkn336j+978NaTxw+Rg29/5zvFXP8HP/Tht739bYtzS0r5E9cmoyRCxpEsIMtwMp12JKUqFPOOLGMCgRhj1lrleflc0dlmubdYr9WNScb6+2dmZwSXsdWjgyO1xrKUqllvlMrlOE4EIuMcGLMEnSQd8bw4DAd6Bo0xnVan3WzV02UEDkCcc+s0u37+//ke+DoMv5sEzZr/nicZ54CQaJ3qtF6vDQ6nxXIhiYwXyEa9wRCWl5ettq12IwojzrNcDHCuAAQny8i5VBOhEKybvbTXQfiUqXctOCakYiw7kpMQgnMORIiEwACcJSeYYIw75xx1g57OWSCw5Jyj1BiAzDtMDMAZRJbBbhnnTAiWbUsZl4yzbmssE++iM85aaxmBQMY4SsatRecckNHOZK55xokJxhh26Z8EwhqbJDrVKeecCy5Exq/jaLPfRCRE61w34ZM108hBJiXIOBMMyIIxFp2z4JwzLjNhdq83xBkn9u+/K92UknWMoa+8wPc5Q6s1MtTGhWHUbLWyi5O1FoBprSONaZoKLqenppDQ8z1P5ixRqVjcuHnLlYuXEmuDUnG6tpw6q3wVxnGSalSSDAFjiNhutnVqLYKxPE1iIlddWjb/P6reM87StCr3Xmvd4Qk71a5cnXOYnIfJ5JGoiAhIUFQQs8d0UPEoCiJ6CDoIEpQgCJIkDmkIA5OYyEzPdM/0dA7VlXd+wp3W++Gp9n3f+tS/ruqu2rv2vsO6rut/eYcIpSml1oPBkIGtNcygldJRdSuBNE4x4Gg0RIYiy0hgGif9QVcncTYshsP+uuMY1n1WvP4C5OolaUwJUDUisFTSmLLbzeJa4yWv/IVde3Z++jO3QwQySSwke3dtPnPk1OWXXnnHPd84s7DwvJ+58tLLrv2Dv3zjZ77wn8+74WVbd1583TOf85mPfeYb//3lzdvi8Vnz1S9+8oJ91738ZS/HH3/rn/7ln4+dPe18TmGjR9y8JS5zf++9D19z1UUbNk2sLo+0GNTFTH9l1KonzbpkaQRwObRep2lrOnDw6JVk8I5ExTNEZ22DpEYtcl4+Od+tJaUJSiaJkL2F+dUzT0sFo7LLIY/jZNBb6/bXBsNBNhhIAXu2zrki//63vtPpDa+59sqrrr5y3VSAKKV2znLVjBQAkAQpW5amNERUbzSEkLVaXSlstlq9jgPEZrMBKLKisKEcZTkAxXHinfM21BqttJYSsdSuu9azqarXG0Ilcao4GEAMwQshOQTrrR0666xztigKKUXw3jpLkGWjUX80rG4bUkeBcdjPiEgK5Z1XSkdS5oMRO1RSSyWtMc6WxWiEDGOtlpKklOz3enESN8cacRwTieB9cJYQIh0laVJkhRBSECqptNZCGGtd5V5J4hiqTsEqAup94DDq20FngK4Y9M51u/l3vvbty6+55qprrxufnLrv7nsEO82mvzB//LFH+2dPX3jpVVs2bz1z7Njq8goFPTk+vmfnphdde/OZI0fW+quo4rws5pKJJ+48vHv88rquf/nr3zp1+swP7nh4w5a5rTu2PPSTR6+76oaPffIzeTG48+67X/ua15F0Bw4cGLmgNBw5ceSd7/u/Z86e+5VX//JUe6bIsx//6M58OGKmOEojrRigNM5YxwFqjVQrWTpf2nLPjr2bNm8koXrd7uWTk2Pt9r33/qQospe9/Oe+//07V9c6OybGb7311o9/4hN79+6rX5MWxsyfnRdS7Nu798TJE42koSM9NzVXq6ftsbFsNJyamFpartWbNSHED777A2CP59eY/5kFVfCD85uCBJQc0IdQlG4w7Fvj6o3mJRdfktZqu3bvO3n81NLZk7Va5NlXMQKlyBRF8C5NNVV97QDsAxIxBy1VbkolZfW9LHvPIYSwDoPmwIKlJKVUBTtWoppmVVg2rBRrRiAp0HFgb70n4OBZCPDrADcsrauqAhwHgSgCgUAGUEJwUAhAJJSSKAQCuRAgBAiePXsP3jOzJwESiEgQknc+eF+tRb7arFwgFAHAuUASpQd23jEHqrYGRIIK+C9cVW4cIITgnNccqj0WEaWQjIGIAgdnnTPOOed9QLAk1nWdcJ5lDYiyYhsBhBCqdK71ruoV01pRpWRzsNaXhbXWESohMYRAQnrPeW6Y0TgfJfH4WIuQWhMNqdT4xHS92fICev0hS2E9N5tNSSKzvixt6TxWFzgpUGBSi3RaU7rWGhs/deZMnMi6S7MsbzVbBOy803HMSEqJMitWOquk0Djngy9t6U1wEHJbsAGmLkroD/oCCNAjEXgPAAjEXK1s513JDNVUlwijKrlaFCdOnWw1mjaE++5+cMeuXceOHIE06iz2V0/1/+Zv/uo1r/3Ze394/+t+6fWM3Z8+/r0PvP89f/WWt/3zB9//yCMHP3rbx9//gfcijm6+4uozJ55+9Wt+494fP/nm33vTH/7x/3rpK372r9/2jrkNG/oj/epfeuWeHbu+8NmvnDm7cPzI4Vue/UwIdPjJh7e8ausjDz+2trKQuwElnMRSsGTQSkVM5L0tiwy8saUprS+9974A72JCISIX1NTshiufccP05i21RvPhhx76wmc+7bwFxUTClVql4yjjeq2+e++OS6/cL9zoB3d8b/5cd2puspYk4IN1jggEiuqtIoi8D2xZaMHE62ODwGlaJxI+BFf4wBgCDPtDRjTWk9R5VrRarfGxidKUAQIgkKB+dwAYTJ5n2cgiCh2ndUJCUzqBpBPttcuHxbA/iqNYKYmAtjQIqlaLnRF5lvcHg16/jyRJKBJ2WFjwoVZPkGg4yIU0AAGlGPa7Quksy8uiUEIoKadnpuJIWVsOh7mzbpTlSd0mDEVRFPnIOQcIUsoiy511UayFFMH79ddJhWWsDrwAIYTAwXlnnOcA3V7fmLzX7SzOrxalJxx84Qtf/uEP73z1q1959fU3fv2LX+ydmd++eXzPBTuWF5Yf/sl921b7M5vnrrnqysFq/8iTRx/60aNm0/TOuTlfjCxgbgUGfMd733H5ddf+91e+IlP1F2/935/77Me/9eWvp0kyNj75ohe+6P6f/OTGZ1011ph+xetf+akPf7w92So6xWgR5Bj0F1e+/fXvvux5L9t54fZBd23b1m1pvcEM3pZxFNmA1pWFMVKp6hFFSRQ4jLXHduzaubywdPpk3xmbJHGej6yxeWGyLB+O+oiwtLQshcyLQqDoDwdINBpmC+cWBoNBLakNBoO9O/fOL51t1hqDwbBZbwJCXuRaRUKSs/784b/6WNdH4TzLPgREIX3AwCQklqVN4vTKq68SII8ce/qSKy7asWv72bOfscYsLSxYY0aDgRCopMrzvNEMURQBoJDKluS9I/CBWVSmRxIgIQR2pbe28mUGIQiJgCoIJmIlbDOjgGpRBUAOIRATSIFgvAvBw3osWKy3eTFjYBfsOlFaEkkhiKQQUghEBMdUDcMrmKAH9BQCBw6ewQUmZqrAs5KAKwk6CBeQ+f/T4OIFAoMEIAnrcdx1KDMwM4SKUBGYbVXo6IPz61Mm551UFUZCkCAEts5Ya6qJGDJIKbRSJIi5Kr4nQQKBeL0PJ3jvEZg5RFIRcKSlMcCAPnBRlsZYIUReFhETAkdahQBEUilFQu7Zs+26665rNlqls29+829qQT7wVddey0zW+4svv1op9b3vfPfJJw8Z60SkGNABuBCstSBgZqx94cWXbN2+8957H9i8dfO5+cUo1hs3bFxaOXfhhRebslxZWZ2dm+t01jZv2nj2zJmZmZmsLHbv3BXH8XA0iOO4ku+tN/1O77nPe85Xv/yVp58+BkDrysn/X0EBZGCOo9g5F0URAQoSksTS8srnPvX5iy+9eNPGjWdPnfbdMpHJu2/7wE03XH77F7/ytnf+3+ZEvRXVkezHPvJPS6fmb3n2z441moefPr60eKbRTB956NAtN92iVOvhJ3561w/uvuaG65/3/Bfed98jTzxx+IZbnn3pZVd85hP/ceDAo7Nzc92uvf+hR59xw/XHHn+ik3dHLjtw9InHDz+BSCjZswcQzVqtcLYsLDJEAl3wuQ0hUJwmrUYj0bJeq8/Nbagh6tpYUVKWl1mejezIQUCrmCTJpCig3kzGJuduefYzR4Nz3/3WD/JytGnb1ML8Snel22zWe71+lS60pgzsq4MRAJjCeuec8ySlN84zI3BnrVe9UAGFZ2BgFQsdJVpqACiKotGsq0gaY9ZWVjq9DqHIhoO8GDS0iGOpCIO1wXkQocgLaw0AKq0YWSkpUHhvI62jKMpg2O10nLVJnPgAxjhBpKOIgJ3zgV0+ypWWKBi9yPJCRXE1ONaNBgnyPljnnPdxGo9NtZSKXIDCGmNMrz8QApM0csGWpWG33n3h2LnSO+8r4mk1WQ7ApjRFmYcQUIjAUJZZd9CdX1zNLaetyZyxNjZ29uzJT3783172ilfs3XfBQ93BIyfPHJ4/O9FsttP2sWMn+oPe5l0b6kmye+tVp48eXTt14uSKm925dfXMuUTUt+zdjJH/4Idu+9pXb7/8ymsuveyK//VHb9m6cfsXvviFP/yTP3zJy176wue/7O1vH5w+/eQH3/NPl+y/8G/f8faZDZtOiTNuDUSi/+TPf181o396323XXHHl/gv2tVvtc4tL1uQIPmm0EWk0ykPVjkZY5GVpTKfTeeyRnwohhqNBaYrx3rgxVhB5a523zriiLM6dm+90O865bdu2ZXm2MH8uy7Lx9tjKymp3rdvrd88unDk7fzYfDouyaI9PnJ0/x8E545kr8CUynCeiVffw81mwioUmSRApRIXExnJrvL7nor1ZZ/TjH/3oh9/54VhrzBZlLjGJNAYoR9n07IQSpAQ5ZxvNemlLJOmCDxgQIQQvSQQEIkSPXgYobeBqXk9KaikEMiOHdTE/MPt1fE5Vv7KemgXPyNZVhOkghKAAgAQYnA/WB+cdAZAQWskKv78eJUY43y6AXBk8K7oQQiUieO+AiIPnIKSsyoWECmxspQNwAAagECAQK0FCkPTBB++DZ6rKAJCDX7d9+hCMtc7z/6z+1QeiFESAIKQEIKrOYlU4wDtBJKVQUgSucgBcuZ2qQptwPqjAlZOJBAJycC54Y61zAQBQEDqwzseJRq2UVpIjqdTs7GwtrSPh2TOnF5YW07Qegs2yHBl0khbWCB1t3bzVOquU0lHiPRISSul8GJsY73QH3V6/0+m0x/u+smI4W3RGe3bvMmVRr6dHzp1rtpqzGzeMspGO4yhJSIvSmrHxNpEYZKM4TfMsa7YaZWHmzy1u3LR5anLu0FNHoeIbnSeSwPnxFzMYY+JICxLMHJhLa6SU7eYYAq11eieOn5poTt18401veetbZH38n9/5D//yids2bZh98sgRCDC7qY0K9+7d9d1vfnPfvl1/9Ke/l7ni9q98+8jTa6//5cs+8bHPPnH8wPW3XvGfn/r47q07X/0Lr/188eWfvfUXPv/ZL3znjjsuuviC+flTKLDT4yBMe3ri1JlzG7Ztip6stScnVVTvD0eWTWmyPXsvOHb8eFH2nLdT49OFM73VNQQ1Pblj546ty0una2lUrzUbjbYPYIzpd4YYuJ6K7rAsPbBW6HyqNQLtv3Cv9+7+ex/u9PpXP+Pyk8dPAod6vV7kRfAeCZ1zUioXABkgOGuM984H531AIVWkhNQhBBegXk8Dex8cSCjzIlIRoqjVZGet55CbzZrJ87zIGUI9rQXPPbdmjIuVHG/UIiVA4mBUZoPMGItEWso0TbwP3bVupXQHdkjgq5e65zhJ0kbdOp+mqdLamyIb5R44SqIAwTq/trSGxFMzcbORRlEELJy1oyzP81GSxJu2bEmShtCximNGLG2JyIRkS8sC40QHE8qyqDcagqDMS2aOMdJKaa2Y0TtnrLHOBucDoA+QjbKF+cVz5xaLwkvtPTprSwC11ustLa5s3LDhQaC00SiyYb+wCZW1KFqcPzbqnW02xMxke3K2nta3Oktnu8Px2Y0bxiampjf94Effe+Chh1tT8tt3fuGHd/6g3Ryzmb1w/0Wv+dXXffRDHz385INJs33FVVf/67/e9vKffRkCvf1v3z4mx9dg7Z8/8M82H732ta9aOLe09Asvf93rXrth4+Zub7i6cg5DLalNMIAzTpAUQmoVQQXgcrbb7bVaY8CMiJ21buXYHA5GzFxvNK0zy8sr1dLd6/fzvAAEIUWn1+2srE5MTwXmbrc/GIzqaQ0QrbXDwUBpEdb5A+eLEde9n1WXSPWZ6i8DCSKSSkYILoRw9tTCN7/8LQTWSk7PTCKyVAoZvPPjrbYU1Kg1kjhuNupJkqx2y6IoJSnnggUXwAMSnA/0AnFl36pkVUEklRBEvC4AskARIHh26EUgqPyTzAFYMKD3znNwLiADEVdBpcAsSBAFiYKZSawPl6sUMTNzqHpmEACctdWRvwpBOx9CAEYCQVDxKUIl2jIiCCm9q4Yv6/SdCtzDTNL74P16FZmUhOfjCAHYVsu+rxSL/4nZMVcrdzXgQgApZJDr9QRKaiW1VoKwijb4auMRVd8L++Cd9wgslQKomr5DCMFaZ0rHDFpr48sQOElUPY2yEpRSMSprQqvdGo2yEyeP3Xv3T+rN2nAw4uDiNBWCev0RSeEDTE/NqEgSYBRFVaqChMhyIxuxUDIvikNPPn12YfXEydPGmjOnTxd5PjU9MX/69MHHD56dX9i1e+eBRx994omD1prjx09MjLfX1npPPnU4hHDu7NnZmdlROdy3d++RJ48x4Ef/9ROksCpCO1/7/P+dSlakcgg++OCrgUC/2x8OR1u3bWu1Wk888sT42PjPv/IXr7vh5sGweOdf/un3vvO1/du2LQ07oHDrpu2njp5+/7v+6WWvfunzb3nRF775uYuu3PYbb3rTN776w1ueeeujjx5ZPtefa7UPP/7QBbv3fexjt910862/82u/84Pv3/3A/fdfdsXlZ06dEOStL7XWjz72yPOe/YJzi2ub5uZ0nBorGGXuMTOWne+sdryt4LJMQtZ1FPcHnkWSpEpFSsVCkfWF0mjKDIBGIyytFyIhLgM79lZJp4SbmWrs3rP56NPH5heX9128zwMvLi7WapqEt7YkApQElpmDd0YSEnoAr7UsS1cxcuM0UnHqShsnKXsgQkBigLIwpnBJmiqhgDnSKhuNnDUuOEKSKB3YWpJGSk1NTmAwxagERdlo5JxLanHVy+Sdc85Zb/Nh5p0vi9hZT4BxnLTGCFHEOvY+B2BT5P8zsoviaGV5yVpnTSkVlflISaGIgIRUigGtNWOTE+3J8Sy35DGqgffOGhPY52XpXHDeT4yPK0F5URpjIh0pKX3gENifT/BzYEIkJFJYurC6skoIw+EoMCutnfelG1T+D+ttkfe3bJxotmpFv4zSJiMhyVhioyakz5RRndUF0qmMElWrb96449xyN220T505ffT4ienZ8bXl+bTmB6vzZtgzVl9x9dWf+/jn3v++9++7+JInDxy44vorbnnms77whS/83m//7tYNG9/0279z1fXXXX31ZW94xS9n+WByYuyee+977Wte0x6bKMpRrCMfmNkLEnlZVoyv0pjgQxRFzvp6rT63YbY0RXu8DQEnJycRMUp0o9Fwrjs2NlGvpUkcSSGa9VqaJt6bNElajebYxPjkRJu9r6W1dntsvN0WJLRUSsnpqZk0TR796WNVdvo8upKhml5UNwAGAAjgpRYkMI6T4AZxpPM8f+rQQUC2xn7rm9+pp0meZ8Hp1eWl+bOn4wibzZogsbSwuHf/RJqyEFTmYH3wVJG9BTCr9dE+V1wcJSUHx//j8KzqIENl/GfvfSAvSTGwd8EF5wOQIOsNBMDKeM/AzEQoGIWW3rvKJFXhIlCAqlDMVUas4vkLtNVUhgGQnA/O+QBQ0YeEVETCs4fAznM435mzPoIhrj7rHLFEWQWOpZAVYkUKiRA8YPCVUXWdHbG+sWJFua3esExV0gFRCCmYwRMhxFoJEkLi+doA50MA8AHB+yBJoGCAoKTSWkWRdsEbWzrrvHOCUEhRXXriOAoBQuA4iUZd12zWTj89v2lmPI7Sn/v5n/3mt75hXBmcM7ZM0iQb9aMkdd5v3DR77NiJ6ekpgSQIy8JHUdwYa+ajgS09SNHp9BmTUWbL0gspVCTWOl0gUlpYZ0ZZHsWx56CjuOp6SNJ0NBwBIaCoN+vnjsyzR0Za63Tq9UY9bkipjC2rkQYGWOfjVcRrBu+9xQqHR8556ywCdFe7vdX+3PTcq175qpe+7KUPPvDob77pN5eLolbXK+UAYrmpvsUN+L8/9/mbbrn+7W97+9MnHq819Fv/8q/f+ta/+t3f/+2vf+H27mJ/6cziYHRKNNxwtDgw/bF63J6Ijh47lGjZ665u2rRhZWFegEk09edPfv6T/3bFZTdPNzaBiYNLZVwXvqSQAUoUFIAZiDCOk4aQAlBppeNYoQgoIFTgQV+WRRYnSWBflCHLwHvUhIKhHsvxyXTX7tl6TczPnxprN5uN5unTJ4wtx3Q9SWKtFCByCBbBlsZaa31g75UQSksAZWzsQwgsgkMhdVpLgzPeGQIYdIfO2nqtkSSJKQwRDQZDLUStESulO2u94TCrpbVNGzaSACQ3f+6MFtoGNM5GSaSVEhVWV6JSIc8KLTUhCCGsM9VZSGnFAa0pkX13ZcWHECdxmqZCSeOcsb40ruK/Flk+t2Gm4KJ0nKS18fGJ2Y1zURK125NDVQREJVUxyoUQcbPeWe1oLYedLBtlkdJZNjK5SeIkiiPnfJV8994Bo5TCBxnyHBC01kkaSyWa7bFWL7Mu8+ykAAbwQUxMtCcnxlbXFme3TS8fGkqpNbNKI0CnRNRuTRTBj8Cwihr18bHJWalrO8bneuVordf3wQ/6PW+GDS0ppTQZf8UvvQEd/scnP3n99dcce/rJRiP9wfe+fcPN1734BS/+jTf/5r9+8AOmCO/7wPtvfe4LnckGgwFYuPjyyz744Q8KQiEICZVUAMDoA/sKfwJAgJznhgZDIuz3+v3+MNKRcz7Ls+DCieMner1urZYygrFWRTqwrzfqJMTM7PTqyurkxERpy8mJ8eFwODU9UdpifGwsyzJEnpmeqTebaZLAeZ1tHUeGVK1O1a5QQYGQADEQsRTc748GvV6ejUxZcOAo1nk2crZEEJnLHn/iQJnnmzZvDMwoaazdZoZ6LbHGpLVGtoqBYb2wE7D61utVu+uKA3KAaqhBRMQYAgCht84HLyUGDNU5kAF88C445zwweW/WC3wFAbNABESlZAiBkBiq+wEyVF8EVXFXYHbVe4jZ2gCAjrksy3W+EDEHZKp41AF4vZSG/f9AgtCDF0pY5xlQVgZ2pWUca6UUEiJj8FXDWXUIqxTlSqpi532lKKAHKSEIRCCAKiHHUhIRCklERACCBKIL7JHXafCVRi+FSuKklqbA6F3wzgXvhRDAwZdWEjUatTSJvA0KMDgbnBuNslhHJKjIsj17du/asfvhhx9Ka6kzFhGtMWmtZspw4UUXLi2uNBrNJI2RQRB67+M4LgYDpaRDFKRBCK2jmZk5a4qFxf7aakdKdebsWedsr9fd2Ngcx3F/MGg0GlEUS6WQKIqjWr3W6w8mp6Y88pmzZ3bu2TO3eWO73br/vntlJIIzlRvsvA1tva0BK+YlgJBSCFFJQ8aYSEW33HTTFVdc+ZlPfe6H9/3oomsuWFhe2bhjJpHi6QOHGetv+/u/mNuw+R/+7r0f/eiHL7hs/+K5+Znp6Q988IO/+zt/eMlFF37/zu8cXzzYqIXLNm6Zn59/3a/+5sWXbfv+j7++e/dGVIP7fvITLvObbrzWmP7xY096GKEXxw4+ftGui4siV8QxkjJemQAkiWJAjeyDD0y1QORBEpGQCOwEQgjO26LI+5HGVq1mXciyQqXJ3m0bpSjqaTw9PWkMbt0y5nyvKJfGxuoLi0urK2scbKzjsfYYc6gsLqJ6bTmXj0ZRpFQkBaFWcZJCkRcIpKRQWrqycC4AMzuPHttjrXarVTif56OyyEfDwezsNEnR7XSKPItj3ajXWmPN4ajXHwwH/aEiQhkJqZIoqSU1IaVzjpmJqF5vWGuiOLZl2e8PGTiOImAOzuo04gDO2YozzJ6NscYYqbU0JgQuMhNFikgAUWnLVKjWWDNO41FWFLmtKkeiSJmiIAdpmtjSGGMirSvASxRFAFx1a8tISyWLoihLU6vVFWmtdRRHzjmp1OzcbKfTHR+fPHliXglAH4CDs5zGjWuuuW7vvn2HDv5UxnLnrt2msGhMM8aJOAKQI6ULKdO58ekNcxO1tusXXBilqD43mdRqw2x1edlDbJqllHNjV1z97Btvuuq73/z+wHS7ayQFunJ06sTo2FMn5/Zu+NC/fvCnjz707a99+8prrrrpec/0LkpTm/WKLB8ePfZ05XEgKTzbEDwRO1cKKbTSUkrnEJhLY/qDweHDh7Msc96WRbnaWRMoj8pjvWF/OBwF9kVWrK2sKKkWFs6trq4JSWVhOmurq51ut7O6tto51zq7tLjginIwGMzMTS8sLNDyylirGcWRc6EaAVUr/vqfAzOsS+xEwMELwQzGhdJ7S8xEYFxwzgM6tqHIbb1es9aU1iytLP/4rrubrWaS1kt7xrGY3oT16YlK2BVCelf1v1CAyroP6zx8QISAULHfab0Ny7Pzjgm8DyTWocdVn4D3nkAgMnPw1rJHSahE1YUOWsl1lDNXrvlqh2E+f8Mx1pd2vRAASTjnqhNatQg76y0aYIGASish0Dsf1nFugRCFQOAQvJeKOFQmUkIhquUJqmuL896FwAzVGRyq2mHCwN46JwQE8JXTWSmm9TmSZw4VhxsRqNJDqmQgkiQiqQjXXW5C6iSNoyjyEEpTGuM4sIqUYDQOAEOkhCBAAbGIpJIAdjgcWGecD1LJer0xHI0ajdaefbuefPxQUZQVgctYXxZFHMXeekIiACkEMDjno1gP+n0QAgBJiDStDYb9vBgN+sPVeMWZcjgcIlJRlKtra8YYa11prVldNdYOBllp7GAwCAyj3iCJ2pPjU3v37rnnh/ft3rcrirX1phJi1pd8QAZf1Xs65+Moqq6lRAIYEKjI81jGl15+6czc9I/u/NGDP31YSjMxvUlHsre8duvzfuZZL35xLVXv/Ju/v+OH37z0hguPP308TZrOh87a6p3f/94v/sIrIhUUGY3mzFOLv/LmX7/1RS/+9je+++SBI1t27Lj0yt1ZtvLkgSMnTh7/xVe9ZN+eTffdf3eWWQVE2pRhqJTX2gvhEQMhaKkVauISGJIokUpJ0lqpOE6kUFUjbnWE0UrNzc0UxiZpMjk9HWnZqEVxRN21NQbtbDEaDBXC8vy5LOfBcMCB52Y21Bt1Y2wI3poiVCCgIrfGMNtISyQERgKQUgcAHUcIoIQQicoGhbc2rmspZa/by/OyGmBqKRF5NBhaY3WsYx0R8dLauaXFJUTAwDqK4iitNRpxGnkXQnBASELW0iSO416nh4wsmYiMdwyolKqlsRCIzHGkJZEQ5LxzmR/leXtiPK4lcqCl1lJrKaK4VkeZGmOFVJGMR5yvra5MTE7XG80oin3dAwcGqjcaa6vdtJ6OtcfQQ2AWUpZFIZSOhSDELC+YIU1qiATsgg/O+qSmiUTwbHKTjYaIITiLiOCCUrh//74oScanpkKSoqpTCK0oil3pR4UHNQSB7ZpLpSvCmbPdGumGTguXxwVMTW547vNuzbJup3d6dXF54fRQiPjMidN3/+DO00ePHDyY7d46GUkKIjgFiyeX07Gxn9x7/2c/99nrb775nX/9N1/4yhcfuP+RC/dvOn1ivhP6UnhgYHaI6F0pCTFwcF5rVW/Us1GeC8HARVGmaa3WaFjjqpEzBzcajYDZOVs5p0kJH7z3vtfrRFGUZ2WjXs+GQ6zXbGnzvDR5ORTDQX8w1h5zxkaJlEp7z+tBG66O+utl4tXZX0gK7NmH4K01OQfrrfHORbEOmXcMCEIgNRuN0WA5iiNAENaenV/csWNnURT33nvftu1bp2c2FXmxsryCKJCoyjghUSVAV13wgChIeArnAQpVNyQzQ1jHgQJAULq6rwAJEZzn8/DqqrOEkCWRElJJFLLydyJz8A4du+q/XedcIzKjd9YaxxCEFFKryqi63lKJgMienSQkoaqNiatsPwIiSSkRwTuusmQALHlduxeVrOIDW2utW79iVIGvdQIFI4fqEsCeAwQWQjBbEuy9c84RYZAALKtxeNUoUIUKSIqqIVkRgRBRpCOtEMAWZZ5lxoTK78RA9ZQCK0JAdBYxy8z5xpuqiR6EkJHWHEAptW/PvqX5panZqbOn50trtEpNaaMoMsY444BBkJRClMOcnRUePfsyz3I5AusWz813uz10nKhYS9ms161jax0CAkNeFGXhBLIpnUQNJpgydM0g0VIpubTYfeSRJxihNxzV683RsO+sqSwIUhAAWAfBs0Cy1q5rKESFtS4EIRWzG+Xlj++5b/uevZdcffGplacn52orp3pHH139uZe98tkve3FuzW1/f9u540cve8YFh48c8sZLQaeWhgz8k5/++NkvuOl5L3zW4wcfPHXkxHOe8+IX/NwrH3jo/n//909ecdkVAUcnjpy+9obLgitOnzj731/5xkte+jP7L73yyJNHIh3nYSm3A5bGkfUiBOkBGMlKESRxEBBpAYDgiVhHKtE6QkQlVbs1CSzn58+YovRMvbXlmfHahpkZ40ZnTy6NMixDWL3z4NXX1/btvuCrX/hvAxwn0cTY1N59+7VOmL1ztijy4G2RZ9lgUHFCnCmlED6g88wchJKEwJ4BQQrKRqNevwcYitGwGOVCSaFoNOgToDW2KEsG8N6PitFgNChNWRalIIp0nKSNtNaYnJqEEKwLOlZVB1lelFKIer0OAMroMWPzoiCkJJKSwHljbEnI9XpKpJwPg+EIAYUgayFOkuFwqONEaGVKAygFEUPwwWmthsNsZXlJRSriKNKRj5y3Pk5qSd12Oj1B6wcxqZV3XkghRAU/pcBQlKWUCpCJiCRVGaB2uxW8AwgcPLJn4ODLJLKjztIyFoLimqaAFEcsXCYJ4kYyKhx6V3TWXB8EiVgrpJD5HAWjD4lIbCGUamyYuSjVw97g2B3feXDv/hNZd+GiPVtLs3L4ieXadDQzt3VlEJIi37fv4r99z9s+8dGPffRT//HjO79/+UWXf+OOb378k5+Y2zC93FkVklZWFw2X7AQj+GCNK7SWgoQprRQiimKSBCFEcWStDcCzs3O5LdhDuz0xHPWt82kt2bp5a2dtzWNAIhVFQEhCtCbaK2udtFYzpReRtIG956mpSRKAyO12O6nVAYRzvpJGz6//1WSGAweQUgpFAp01zjmGYGzpnGPjnHM792x/3vNvTes1QapRr8/PL3z6U5/etHnLxZde+sKXvuDAIwe++IUv3XDjzbVa/aePH4zmZqk0IebgnXNOSMnOwbqfvRpnECIBV5E4qjwxHKow1zoRoCoCrjYIBmTAwGydc85XrngXvPOOCARLsR4KQWZGJqhugMwAFWe6go96RBBCREoLobI8J8T1cG6klVJKKgQKLjgXQnAcAiBJKaVSzFx1TjIzIciq2mbdqcTsnTOlceuBFPaVXLXe9bX+oIMP7MP6lAORPDtvK6ZHEBhkAABBCCgcEhFVWTABCAhSSalkLUmVUoF9XhRFYYJnEetKYojjGMADexIyhDx4G3zwIRCR52C9q0SWWq3mvGfAZrO1cdOmpcUVJNlotdhzkib93hAQTGmQOThfqycaNMfJxNxsvT23cfvORx98WCLv2rJlaeXUq173qo+8/2PPffHz77/3ER/4mhuf8e8ffnrblq2BoRwNpqcmx8fHBcDRp4/t3rdn/sjh/Ts2LJ9dmWy2N116gYqihqLVteVBd5DnJTPoSOV5RgBRFANAYHSerfcBOAD6wI5DIDTs7nrowfbU7NLqCnrdPdnfuXnXr//FG2dmph4+ePBt77wN3fCyy3c9evDhQa9IUuhnWS2WEdWKtfye791z5WVXHTt8bsvs5l/51V995MED7/nnD5ISechA8tpaZ2Jq/LIrLllZu+/gE/NPH/3sTTdcNxjqC56xc5itOp8TOI+ZoWFAI1H6YFH5IAwyETskEetarNNIpQKVd8G5ACBDEKUNRVFOzc7e+rPPJWn6y935+dPjU7MTs5sDqM5yb63b2zA14zgmGbrd/Mabbr72husQRIAQvHPWeGe8MS5YCKC0DBCM89W+S1IQQYCAxIF8r9OZPzff66ya0rQmGlICklte6EKQ4+MtZtA6Lq3p9/uEgAhJnCLQcDAkCIxUbzbiuOad8VwCkZQiLwprLWiNjMF773wcxURkrLXOZqYoy7zISmOtUloqGdiVZQlIeV4gYaPVOHd2QZCowj9RIkPg4XAYaSkVIXF/0FUrOoqSSCf1tD7Kc1N6CNBb6zaSNE1TUxbGOa0jcOS8i4SIlLbODwYD530cx0JIdN4Yi2yLLA/eI8jgra26OzAkKbUnY1a6tJjW60jeFV0kUZowKEsUmkUAYKhGn0SMrJM4NzkEr2vpwkpnYeHM1i1bmcMll+zfsWnHyurxrXu3LZ89e8N1z33Podu6K+WO3ZOnDx/+1df/wm/+zq9+8Vvfe/yJJx+8555LL7zyvz77mVf//Kte8uIX/d5v/+HufXseP3DoTHYmIGgFBKyE8K6s2kCcM5XZO01q7KFRa+Zl7ly44Zab8jsKYHzmc571xS98MYqjSy69fHJq+sBTT6Hzm7btXF4bohTG9mc3bF5a7E9OTiFHSiRxVEOUGzZuHA77k+2pclR0OkOpdT1pOG8AvFQKEZ1zDFSW5Xi7/axbnvnju+/uDYYcfGWuN8YiYgBAIdKkFsXR6ZNnH3no0V97468ZYwNwp9t78tDh/RfsP3DgiU6vc/Lkye07djBDXEuckd5lEHw12A0cABjXq31BCJReBCErtyasQywg4LoaTUjBs6/m7xQC+8DsQ3AuBMcM1akdOHDwgSUjgiRihkAVYBS8s1xx0yoGz3pWHwUJIckZp5QmaUOes/dVp281hvAuWGtDqKb5BFgZlygEh5Wbh0B656oBFjA770Pl/A9+/YoDVN10qKqurOpoAmPlMSL2PnjgEML6YMkBe1k5g4CDUsqFwM7jep4sKCkrmQuZjS1LUzrrqt3bFDZKhJAEgasnUEkZR5povbU4eL8evWZOaklhyuCDD9xo1KWQvV53ZnaOUGqlpJSCBAZUShV5MegNagImaq2L9uxd7RplrQi8e+f2S6++6GMf+cR0e2xybGzz3OSZ6Uldb27ePMfOXXLxfhXFP/7+D4WQ+y/cOzE+tro6fOFLX/Cjr3AtSm55zs3X3Xj1Pfc/tGPv9uffcqOxZQWEOnPidL2eOmN1pGc2zbz/Xz505MixphTeOQDSSvlQpfICSczscKWz1Bv2pqba48nuV//yb1x93b6vfeGz//65z//M864/fPiRI089kQ2KRgqFBZIQJ2KiNvGGN/zaNdfc8MWPffniS677g995Qwn5P73vtqge59YeefrkRGvmGTde/+BPftJqTW3avPP4j36atCb++0v3X3bZ3g2TOx/96d2KTVyX/UEnCsFxIMnWFcA+gEEhEAPBukMlUrFE8na9LA4garenJ6cma42W03Bu9cT82tKwzPsLS4eeOg4o4iStNyfj+sRLfuF1Tz31eKNRu+bam4CktU4q6RmMtRBsYA8IKtJEyjtA8s4FZhZSBAbrrHOmP+ifO7ew2l0bDvs2d0kaY4R5P3fON1r1tF6XFOlYGWcAsCyLSCslJQculLE2WMNSRaa03pngnbeiLEprbBTr6lhgC1PV0EglOITRKMsGIwCPgophCf3BuIwA0LsQp9FoMGo060LKsYmWkMKUZZLqSApjHQQfIHQ6PVMY9q7Ms2F/IFpKkGAHeV7mWemsz/NcR3o0yhig2RpTDEVeKqWEFAyU5WVZlERYT+tpKkpnTVkaWzq2TOADWQMqAqnIezsYDoKOdWMC0OSDrkBdegtMQcjShpIB0ziqJVpHyOgLM8xNvzcc9vqrC72nnnry9PzJMwtn2u2xDRvHn//cW1vJjU8duuIrX/1y14fxLbOd4wt2ZF73y7/C3H34gZ+8+x9uW1hdkK3I6XD5FZe89c/e9uY3/9odd3zrF17zi0vLC9U8QDaSRruVza8ABx1JU5ZlUUilamn6/FufNzM9PRhljz326CWXXFJL0+XllZmZjTt37VxbXBRxOn/u3Mpyp7faVVqOhkNnTDAA3hfDjF3orw16qz0IrEhLIW1ZVk9aWtOYO1ImaU1IVQmKUmkVx6nWsj029vJf+Pn25Ng9993vrfc+lMboKHbeIwkC5oCBeTAYtCfHGTnL80E/40Ct1pjWut0eb4+1W/V28MFar6TSMiqDDwDEgQGrQTys541RgEDiQKAlEFIl9VaA0mrRR0aphAvBOwe8XsICgJWf3ofA1fTl/2f2p0oNDoK8J0DywVbBZiLyCCRICpJSRpEioEhpoCCLkoiABa33tQjiSoomJCRNUEGKJEkpOBCyD5X9J/gA7ENgQOAAQMSE7IA9I1W1vlxB/oiosnJXvFGBYr1EGKrbBAskhhDgfEKP1mtwAnPwFj0SkVY6iWIlhHOuyIvKhFqV+wTvvHci6HULZfDAXhAigGevIm2MGxWFsUaQUDKWUuZ5MRgNlhZWArOxFpECc6QjJXJBEhi1ip3x3hiHYc/lV7zoRT/zwx89qJPay17+Usl08f6927dsjFju37dj5+bNeAMFpmY9ueGGqy+8YG9/lI+3WiRp49ysd35mw5ygeG7TxkGvt3nnDnZu5cyillDftqnZbDbHJxv1xtz0XBJpAo7jpDXZ3jS38enDT43yDIEEklZxdR4RJAnQZMPZmenLL760GGQvffHLajNjf/d/3nL7f/93MqGPPf3w4tnT2WigEAZdaLVg645NZtXWQuJ7/N6//uDaue7/+vO/aLWm3v6uv+11e+OT46ePn9u1Yf+pE91d+/iFL/7ZL/3XV44fW5xpTy91MiHTKy9/Rq8zevyxJxvNGgQb6UCiiKRiFsEDMgMF54J1hn3gYGHd0oAIxEEQaZJxFDfiqNHrjL52+w8eOXBfma/lo75ARCmc9cRydsvWRmPu2be84KqrrxuOlqamx8rSa0UIGEKoWOUy0goYGYVUSMIYhySFZKVFWbqizE2Rd9ZW8nzggzdFGccRMK8sdow14zOTURKPRuXmLTMkhB8N2tNTSwuL3UG/nqSRjicnk8Vzq7kpC2NKY5FdFEdC4igriCiKYmc8ClSJYGZjTFmWOlIhJEU+jOK4KK11zgxGtVoziZMkTqRSAYPzPi/KqZkZcD6JlDPWgY0SpZUwRWGKUgoZaU2EpizyLFeky8I4a6MoarVbJAgCIAlCUFoCclmUcRJV71EpZaSjJEkYQQpJQnhr1+P4gkpTUdwVBN9f6ffWBlRrfe32r3k3iKQ3NhcuEEMIrKO6DZCHst4ei1RiSzvqDtj7ztpKUYz279597OSRAwcfazQaY2ONWhw/+ciTt9x808033/zKRv2JJx4T6vYkST7z+U/dedc9d3/ra699w+/uv/SiBbPsrK9FtWueedV7b3v3ytriX/2fv/yLt/zZr/zqrwKJtbVVAREGDM4ZY5xzRZZZa7PhiIi00BjwwXvvP3r82FVXXDUzO2uK8oJ9uzfNze275BI2fPMNN/W73c7S2en2xPWXXe67g81bNwbjpmdmalLW0kYxyqemZxiZFCnitFFvpY3mWEsmLaG0RFASo1jX0nqtniilmIM1dnbDzH984lMrq8sq0t4FQVLHqVTaOUZErTVz8AFMnq2udcrSSalIiqoQcDTKhRSR0qUxWDUmKuV8YOIQgg+AKCozDSEQMBFjlemu/PPAITD7quo8hLC+claEosCBmNchndUpngj4/6Mmn3eOV5ZCYpRCBAAi8iFIEojrlGEhpNY6jmKltXXBFsY7DwBSCQAQKKQQGDCQJ0IIhBX8WRCRIEBROZiNCQGkDx4g8HmOEiIRog0QgJEBPEtBlZorheDAAQE4oJDVhogE67eJ834hQsGBvfdIVWcZIaD3TAgqUkkSKSUB2DprrOVwPsEBSAI5+OAsr0PsvPfBWoeIHAISjYoyKssiM5Uzx6+XJ4RIS+aqDC0URVGU5Vp3bYPdZK01xqZpHUmUpRmbntm8a+dLpras9QbTG6a7i53xyYmff9Wrduzc8uKk3h4fm9m0GaXOCvuGN/767OZNzWz08le8YnV1bfO2zVrKHbsv2bJx047p6WzUF+Ptdrt56WUXcXB5p1+UrtacqtXrWT7wRd7rra2tjWSkJmcnAUJZlAw+iiKhqAq/Be+FJI00MVZ/xctf9uh9h+6+654Pf/rfDj9xcMvcjE/Xnjh8cCxJVITEND5eb09M9Bft1NjGd/79ux6856Fz8wt//49vb09Ofe5LX3zl616X++WfPP3Q9MymzlrWTOn0kc5VV1+yeefM4uL8cLW/YWLy0kuu3DjTuP8nd3SHuWWBnlyc+rhwgRFUCcECe+eYkYhcqKxMBitvH1RED6GihvOCPSb1dP7c8lNPnRWURSpgcIheKpkkSWdl8bu3f723krfa9Suv3uehyhSuJ1wAkKSQQgoIkYrTOLaFBfBxGpvSCoBIiTzPi2HXZUO05XgjVr7urQ9lqYWM49gWhoRpNhOUWGvU0mZtOBp2VjplYREKZk6jRGtVq9XKojRFDhjqvpZwEumIBLH3SayRYluWZV6yD2VRIAnn17tKisIaZ52D4TBDwChWQKhRhxAE4fTEFCF4Uwz7/QpsXuTlaJTpKJoYn5RKj7JCSgkcfHAhuBBsvVbj9hggk6S0nlprKzeG90WvC81WC4CkFGktlVIxI4CIImWczYqhjsRwNMzzIjD6wrSazW6/H1CXmTl+9GQkPWDB6OpRjN4y+1rihqU7evKMipINczNFbophUW/WnXHOu1E+mp6YbE/Vs96ws5ivZnDgJ4999QtfvvTSS/7kj//o+dff+ujzDyQ6TZvxXd+/4+Of/e8rLtu1uLwMXVtrtZfOdcqTHevggfse+cEPfnTldVe9+AU/95VvfLXfGQjUiOS8BYbgfZTG3rsoiZyxmzZt2LRpU6/fa0+NTbTbu3fvnBqfnJqYbNWbe3bvu+qyy7du3XH06PFn/Om1pldMTk7kubv2xqvLYdbv9/dddIlzXkdKJkqi6q72SYfdF2wfTxuDXuYhkjJSGgkABVa/cWDw3g9x8OMf//gjH/2o884EbrViVW+WllHqKEmcswxsTOm80WkitSrKslavSxXVG60oinu9ntQSFYbgXXBpEgEwkTCeyVcMTyASDMCCEClU5U8cmD179AgowHnnfKiKDRDQhVBZKDkEx05KwVw12KDzHhmFIAQKgbGy+4P3AUgIQqRqrQDSOmKiKluAiFJSkkRJGiOIvBhaa51z53H0CAIYWAkEkMF5JmAMDAjBA3FVEgyBASAwS0Cqeo2rsJf3PnhGQgFU5ZiA+fwPA1JUMTSsdjHvHVRrPoD3HjhomRAqDuyck1JiAITK3sQkUAoppAZAY2yW5dY4Z131mJk9kgjeOgAXMHAgcsYGy5AbF0KQSiBSkRkhZa83sD44E6zxSNRstfZfsE/Ioxs2bYyjWl4UANJZEEJHOi4KN8wMmOJzX/ryl27/BkZ6WBoR6yIrJXASR+wsAJqylEoC4mBUjk2M6yTpD4etpF6YIkhQSjdak4IxxVCv10stkjjZNjUlGGtR2mq1KWoycBSREmhtIUg2xycmJsZJxdW+rpWenZ4JnoNnQSgd5yvd+++6+7k333LldZd87Lc+9tijBy665MKiOzj65EoyAT2TxxGlcXPLxl1rZzoTzalf/KVXLS0tnZtfefvf//XMjrHf/q0/uOuu++74wTd/+U2/Mv+etWMnz8TRWDbyx44v3377D8emmnsu2LR0eiTi5vXPvnStu/zA/Q/EtXRpqSNIU6pJCkIKTN5Xw0kixipv6azhWAYuAwvvLHtAUuxFYQoXbNbNjXXGeiQXvFPCKcmA4HwBVq4snLL33/W859xUb9TLIl9ZWNi2dbOKJQEQAqKQhI16PTBw1QioJKJgNkVZjIbDPM+WFue7SyuxFuNjTVeWa6Pu5PikUML4cnm54/xwYrId2PngtVSRku3xphLQ63WNK0PwIiKtSQnuZoPqGuqDr9Vq9VpqjPXBBcujLB8Nhz7YUZH31wbAIWlID1AUJTNEkbbe9PpOKaUjLaVQOkESUkUAYTQYqigikgzknM+KUcSMKJWMG6mWKipMHryPdNwflmEQ6s06IEYqYg4kUCvlnF9bLaQKQkjrvCRBRMzoPZPAwEBEJESe5YDswVc8+2GRMdLps2enJtNarCAgo87KIkdTk+Rc6aDMi5yDFagnxsb1THT00FFvrC3zosgW5s95V+a9EkpfHxuf3bZRxXDHHd9ZWV1pj0+cW1z4+Zf8/EOPP/a8G1508OknJsabP33iiEQEkKNeBy2MsuK6Zzzjre/4s7//q3flt/3zNddcm0gd6wSAh8PcewxAnkM2HDGDUirSurR2z949W7ZtPXrs2KA3mJmdvvoZV19+5WVFyB968JELL7hodveGxw4dLK1/8vSJ516wPUTyez+46+IL93sMx55+enJyMsXad26/faI9/ozrrkXUD9z/mPRuemZmw9Zd1uWDvPDGBfClyeMoKrKy1+s//NCDd3zve3meCy3TuFZrtGxAB7S81C2MK/JiOOxphf1hd7ZZr8yRSkdSSmbSWpvCIlCkI1s661ykIiUVSQ2cr/uOAgdgKSUJQkDwlWehEnnZe4ceEbBy8QNgpQFU8yKs+niBgUP1r0kIBECq+P7rOVl0AAASgVBISUjkna8s/ohUtcVIKaUQAGCdM6Ut89I6FwILEkIIAqqqIisH6Xr0FhAQvA9KagKwzoMPhCSrM3pw3lnrJEEIHKobiUQAqjYFRiGlQpYCcb2ImSrykq+41bhuf6+KiAMwc8BQZQwqQYIjHSutkcA7V5alsa4oyur5kEQheB88MVhvnQcXPEl2HoajcpTl1rtBb5DWUmPyRpqcOntmmGWjUWa9RYRI6zjWJBAEeAwopUqSxtSYZTcaDQWx0jKAHhYZecEZOSFMlkOASMgs6xMyBySEkJsQGKXsrHQ89QP4oj9iZus9Ei+dW2EGGTwJyoNRJO+1lUs2IEtjWSAJichBa+RA9VYzrqUShQtWkJyanmqNj0VRNBhlNjdTE2M/9+qXPvTQgb9+61vf/4kPfvK/PnDLDc858OjDu3bu2bpx98lzT0MNXAjFqFcOlutJ9JpXvnz3ju2f+cxXr37GdVt2bH7fe969snzuoot3vuud7/iN33rNs265cf7TX424ThA9ceTp1eLkvr3T441krM2XXX+NatJ9d/wEhB+Vo9x4yexGwygOWkkbvC8ADLEjJO09WO8DOkArFSMEY70QSkhV5MOV5UWX9eMkjWOliFCowCZgcOAFC8fgnW3Wx3Zunbvhuiv73eVHHnooz7K52ZcqmXAISihEHylVXYOdZxEpYAgcEMFZkw2HRZGxd51ud+euzWm9Tp1+bazVaLedLdmE8YmxonTZKIvioXPWlc6UhYqUjqSQOOgPCYUxttWsFSWFYIVQIbhR5vKikIJIULfXy4bZKM+cCxx8nhXMQUrpPZuy1LHWuSIUwBwlUfAhy3LPYWxiQgqxsrKYjUbOWKVUFOl2e6zeaPSHAzvI+v1BnNSoMlIHNqWN01QoMRwOrfftdhuJlFDGFkJQCF5HWkUKiEPwJMgam9Q0CTTWaxLBBWIEFwR7KcB6h6hIiKJ0a72OlkuRMIOsHJtoL6+dA19s2brVFLL0XJicFBhnl8/1LrpgbzNKczNkzgCyhXNr3bXuUm9tYrxVWpsP7eMHn65Fkx/4l3+/4NK973rnP77oRbe+5Gd/5i/e8mfTGyaLUQ4MzfrEzT/3gpOHHltc7l13zbXvfM8/fvozn/zxPXdOT85euO+CK6687OSJYwTClMatYyN5OMqQqCwKInrfe9/74X/9kFIqcDDWyX8Qg+Hw1Mlj/WF29uSJex+859xw4Yuf/HIUCePKr3z9C6P+KI5r3/rm15tj6eEnD19wyRXbd+z84R131Bv1QwefWO0M1vodyLIt2zdPb9lS5pkty7IoRvnIOw8heOsBPIf1OXNZhsnWXFKvbZzdVK9P6KTmAw6HBQAF5kazhoRJLc5Go0Z9jIQojQGk/7fOAwGBoHIrUMRAKBX4wIxCCYGiQnczcjWwJ6Eq4m9wVeSFK+O+IBHWC7rgPGMBq5TJ+QSDAGY+nxMArjqAUcjKNIMV+yfAeWxJYAAgQczr+H1rXVkWlZJKSFXYCNbJEUyEwCKs63i4vs14V430AUmup6hh3S5a2XsqLCgiAgcRmLjqrAAhsQLGARP76mfhqnihwp5WWQznnEAK6NfTCxwECSGICLzzpSnzIjfGeO+pQudVsyNARPA+VHkcIChtMKWt1ojAPDbeIm5qIQaj4WiU5YUtjbHOkRBKKGPLLM8SVqOs5EDeYfCUpHX2FJAZyLP3PiAJA+A9AEFmLYCvWnCqp40EndfYAQMAhPP0D0TPQASogEEFFJV/nUkQIqkYK1BICOwCsGXb6XdCby0gg2OldWnMww89XJSFsxa827N1++tf/fI0af3bJz7xV3/513/yh3/wyU996Ovf+c6/vP9jrXh899Yrnj7+eDkwHkPeWHnta99w1TMu/sD7P9Ufut379v7Zn/yfBx6/Z8feHQcPPwbafvFLX77smstvfeHz7/r2E5GMOqurJIVSNmyfvHD/Bdu2bL77vodPnTzebNRJ6AEYa2FmfFZHsLa25mzwjphBsuAg8syWZeHZMEhmVxhvvdM6lgKNyZ1JSgISolGL60kslDZFMGYgNZXWRDU10Wpec+3Vz731Z448/fiP7vzR2bOnN2/evLa2EqkZ65xzLk1iIShwsMaGECCwdY6BrbMYINbKFEgg5jbMpvXG2lpfxZGOktVuz3s3Md6sj7cGw9HyYicfmXa7KYlMbnRF/FI6MBR5xgBlWdQbaWusBQGFkmVRjgaDrJYKSWWZF/koG4ykUs56UxqtVVpLHRsKjjQJKaxxCpSSUkSisGYwHDpnCKHX62bDTGldFiVAs9FoSlkF4anX7zbHxqIoKYpCSFmRaBr1WpHn2SjTWmmtmMCUJhsOlZIVr9hXMpsUFeULkYSEPM+tNUprrXUIkKZxaasnCVFGiwurW+e2TI2lw84g2DyJo2w4ajbq6VT7gYceDdaI4Errjx5/ssy7W+dmR4Xb1NrBYL0JqytrQukTx442xsZ9cBNj039z21uvvv6Sf//AR//qbX953133ffkbn/u3f//wR//9wyeOn5xoTZ46dW7brh3HDjyxdfPshz/1L489evBf3vsv23ft6CyvTU1OXHjxvtu/+jVmdsF6HwjpiYMHzy2cRQapdAjOlmZpOEyiWGm9/mYX8tjRkyurq1G99tTjh+6752FwtlVv97sdl9nSZVIgj4zREjBaWl6anJyRSc1ZO7thZmRBZLmHfOfunY2ZmXu/f0+wmQ8+K+3cho0r5xYmJyeY/crystK6NDZOGiEIH1grGeukIhBHcZTWG1EcxzrRUhNRacrpOFZSDvq9WhoHz5KkJFFNwhnRlMZ7V+F1SEpEGQA9M1e8NgASKBCBpLXovbPOMYcAEAITIgYSgar+dTwPLMV1kj9AYJSMRHI9BCCAgYP3wJX8C1UrDEFVBu+MtTZISUQSCDmws857VxSFc05pIaSo7hlVZKyS8TgAQpUDAEGCsJrTS4c2AMrgA2Jl0q/oPSCFIEGVJBFclVnwBEJKoZVECN5776poAiBT5WQSosoNo3FWMKh1ZB2E4AECIhFS8MF5VxZFWZbeOagq6gVJKStzNDALwd57DsFaNxqVo1GJwIjICI1Wa7I9brNirbs8HGUgyDoviEAIEIRAyCyJgvPeAVJkgDwppIhRsnBaJoFBRjEDOQBCButYQFViDBwkeCISSDKSJUPgIBkDewMUAkghGQAYOXhVTeuIgCmg9EBCCMGEFAjRo+MAwfkQWCqJghn4R3f+OKnVvQ9RGpl+OewPLr/koo99/PP5qLzvgYd//49//8/+6I/f/IbX79607V3v+eDJE93ZuT2j7mn2vWc+/5ntWfm3f/sX373nwIXbr53ZvKHenmCvjjz9dJaVjVrz9OkzUxtmXvqSFw1X+MB9R5qNqCYoCfFVF1y3dcP2I08cP3vi+Fit5ly2adPM2kpv94UXtCZmetnge1+/E0VIGrHikI36Oq5v3jqzsrZyajkweaVl0TcOHKONElw5u6ql8GlkrVPEO7bNGleMhhjFE8GbNE11mu7ZvX/Thrn77v7RPXfePRyN5uamlYa1pZXZ6am8yJnB2lD9pp3z3tnSGCIyeeGsEZICh7IohBA7du4oTblme7VG3bswHGRCCEaRpjWp9GhgirxYXV2bHG9HWpmi0EmstcoLo6WUJEbDUZomjWbd5DYbZgRQZFlR5P1eP8uy9WsyodIyxVRrHelIo2QIw8GIhGw0akprBmy0msXSSq2WRlFUq6VFOSpGWS1JhBJxnBRlWfRLpVW93sjy0lonhJNKxnEyGAxNaeuN2vjEeK8/BCYC8M7m2XA4HMZJUqvXgcFZI6SSQlRoQpJVfJ994DOnz3V7GaEqshFIkkIWuR8VfnV1NcvXdu2cVjKsdYcbpmf9BARBq8Pl0o58WaTEJGzfjeZmdsjUssuElKa08wuL3tL+TbtGA3Pf4/etnTn+f/7sH7bu2vx37/jHD3zgfe2J5qGjP/21N/763/3jP2yc3fi+D/7T1770tbGJ9r/+8/u3zM2+913veeT+R/7wj/53q90uy8KW5srLLxufGiMEIakoS0I+efr4pz/9n8vLS0hobElISJTEiSCBRCRE4MDsijyvmAb9bsfZ4Nl3u12TDQ1SVE9LW+TDQTreBAydQffAoceC8Nb4xZWV7nBIcWRGmnT61NFTQ1+mIcRRrOOJNGl6v3jJFZetLS2fOT1vIAQEqagsh4GKlYUztRg5hOA5ieOp6fbM5IQxbkzrWq1W0e4nJidOnzhpTEkEYh1C44SQUqFxznmnggeA6kXIAVxw3nvBKDVJRCEIhOD1g7/nirnG4EMQggNU7lzk8+2P603ozC548KQVCaqQycDAPgQB4JwHICQOQCGs+0i9D469AJJSxZH2zjFU53D8f4tw1tVQhKoxxjID+yqzJiUJCUIiIgYWQkLg6h5QXQiIqsCWklJKpZVSUhABBAgewFfeIynXBYF1fvU63aHClBIzGGeMtVXnUWmMc44DVjEAF2ye53le+KoKhP6n3ZIIZXWHYMDAFUiJi6LI89x7r6W0znnvV1aX+/1unhfMONZuj4+Px3ENGKwxw2GWjTJClEqyIKE0CY1IKASD0DKJZNKM27u37d+/76I9O/ddvP/idmviwgsv2Ltvt9KoY2o04/F2QwvUBIkSaazTWhwnUZxESawlCSFEFGldUSuVTOJU6VhFqdCRlEoISSQZJWMViGZmH6wL3rMP3d7amcXTlY04jpMjx48eOvD481787H4Yep3c+9ShF7zkle94+9tnZsY/9IF3v+FNr1s4t7BrxyWf/vxnIeh3/f1tJxdOtlpw6PiD9971k6tvvK4orSmcGQ0OPfno4sqpA489Khnf8KbXIkE7HWvEjRc+/2eece31iwuL3/vO93tLPUU6ePLWX3nppfv27FheXHrq8SPD4dAHO+gPh1nBHEREKlFJLZqaaE/PTk5vmJmcnmi360oE50dZ3jl16thTTz956PBBlH7nni379u3cumXL9NTMvr0XXHzpFVdcdi1RdOLoyXt+eHenu7Zl64b2WF0Sl2XmvE3rNRVHQonqqCulNtYpqer1mo40EmbDbDgaIeH4+OTk5LRAJZVSMkKUozxHKVSSAEj2MDU9MT4+NugNlpeW+6PecDQs8pyEZA/AKJQggUVRQAAVaSVE8ME7v7q8mg0zCCyliGJdvQOFIK11vVZDhmF/VOZlo9lojY3VGzUAHGVFt9dtNhvtdnt8Ynx8bGJ6ZrrVaimprfG9/nCs3Z6YnEAUzWYrTiLvXBzHUogo0hUNLEmSeq0WxUoIssZ2Op3OWmdtrWOMBYQQQhzFQsr1mCegFFJpaYzr9rKi8O3x6VZz3Bk0BoH11k07tmzePD9/ojdYrTeRwE2MT15w8SX7L95/5ZVXXHfNNeNjE6UxyHzTjdddf/N1o6zzxBMHFhbnDx55/NDTT4yK4QUXX57oWne5/653/fPLX/GSf/vQB//irX9aT8TEZPIHb/v9Bx966M//91/V0ua73vH3L/3Zl3ZXOzURff72/xoNh//3H96XpClGISuLZnvs+huuO3HseIU+IQRCePzRn37/+9+t2KpECMBSCEIUUkoSSigptJREAElSF0IgevZZqmVwBgSQ4FrcINKegWQEIL31RTaSyII4H/VHveU0kY1mU5A8evBpXxbB5Ht3b223WtkgGww6jz/y6NLKUlSLiERaTxGR0A/7XWuyJCVbjrw3iFwM82yUM6OUkhDzbGRNSUS8XtnIgUMSR5XlHZGMc87a4MN6s2NlimAIgT17DqFyOwokIYSQ1aBDVpDjiudQ2UcDB+ZACNXKiVhlfZ33jqtkcIXIDz4E70LwVdsMc+UX5RAISMhqEZJRHCVxXImvgkhU5k/A9VM1MyEIIQFEAHTB+xCqhwMVr5Q5IHiGAFBVsAlCoqrEnhkRBaGs8KRSEBJKVFIIgQIZGAjRhmraX3GehRAICD6ABx+8l0ICOec8AlTRAyHIGWuczUa5dW692UwSM1d3EkEkCCtjj4egtVQoE22kKLwzgDJwKEq7unhOIboQSND4WDvSkfchG2VZnud5NhoO/VRAQCUJQkDwIAARB/2sEUUEliOVF6NI1Vfm56NY9rs9oKCUQI9JknpjRKqEUMgoAAODMw4QFCiKJAey1hEjCFSQWOeRNHjyQVTEVI8eGUiSD9XLJAgi5xwDICOBCHmhosgbU2+1Vlc7X/zWna/7zd948Utedvv3fhiyHGR024c//NTTT73hVa9//YufdcMlG7/y5W99/5t3fue7Pzo17yaaea8HAP6ue+583nNu3b5975kTB9uxyPuDeR708uyrX/nSv/zrR379V1/56f/4r1e97mW3PPfaH//g+9/81tc7q2v12hhCmJjeeMm+iyaajX5veOTI0/OryyMcKtJrQ67HNAqlgrLX7fTXVtlZW5jRMF9ZOjfqr8SKBt3lYW/15PFzMxs2zM5MSw3WlKRwanpiemai2WiWhVtYXj5zbmF+fnHQ6WzeOp2mSVkUwNzvd2tJar2NdOSNIURmcN5LKeM4TtNESzkc9BlCs9GkZrP6RSdJPdKJ94xIRWFomE/PkmMYjYqqG68sitGwP95uMYeaNVFSq9VSYPaO40iE4LMsi1QUvLfGSCGtdWm9bkozGhXWWaGkJLnehAHoXXDWCimU1EJKIXE4yEQkA/PCwlKUpFJKHemNmzesLK15H8bbU7V60mo0nHe+jkgEAbI8T9JU66heb1hnGdga61zVTh5CAKkkSbLO5nnenpgkIdV63QUJIZiZCLSWSb126tQ5GTdnm2Ptiemxpd7KWjEzu2H7ji3Ma0tLR0+fOzUxMb5l2wZVm1hZWn7q4AME+c4t23bv2q6Vnpibe9Zzn3P7V792/0P3bdm0efncAsaQF8Nde7e3x6JGEr3wuc/95V9//Te+/rVvf/c723du6mWLItLf/foPVGPm0MHj//Zv//V7v//bn/nPL9x684t//TfeODUx84FvfTgzztsw2Zo6N7/42je+bmysfc+9DzCz0mo4HKLA0uTVABRpvXokcBBCMgYPSEoQVFCAWEeJt86WQyniWqPZ7fSUjqcnN652e3EzIpkkjRoETGuNVpKuLC0LkuxYk0wkeQLjCmZjbWm9X1xcWhsCaYlKHj1zUqlqjIyCBIDNbeFcOTGWrC6cHQ07SSKzLPO2QAL2XkkRRdqUptPtFLlBEkBYFf4qrYQgRCiMiaPIWqcl+xCqu4uzFVg5ALD3IIJkACIQQBgUibBeugsQOITgvSdX+Rix4qUyM1fgnMA+MDEErib6HKq5aGWvYSapAACZPTOEEBBISx1FWmlFSFLKEHIkVFpH65sEEgIyKyHWlVlfQTswEIXAdP6s4Z2r+EASQqj2kGrLgqqbuJKvERBYa8kBtJISCbjiOTtgIEHV8xDABwE+UEWwCN4DI6IPPmitkECRDADGmLzI8zLnAJGOhDzflinWbx+IRABELIhIEQE26rVuv3DeWRcYmFDYwjSbzcwW7G2ejc4tzC8uLfS6/c5axzvnna/0dFuWHJyxZb/fnZgY2zqz4dKL9hlrPHO9ls5unLvi4v0Vqdp4S4D1Wm1qZpIRvXPsffC+KApTmuBDhe221oUAzFAWzlkbbOGdN5ZKx/0898HlgwEHZ8pCR2qY4dCUDgIw0rp5C5xzURwH64WSeZan7fZf/uO7bnz2C277p3fj7/7xwUMnFvO1Yf/k3PZdX/rKl559/fxzb33e8rn5d7/3I4uLFoLM8gjAgoTHnv7JLc++9jWvffWXPv3px584LQXYISwOVu+9665/v+2DF1x68W+NvXn/lbvvuOPrP/zud621OtGKFIb0wv2X7di+9eBDDxjpnbOFM6ICZVnTLUtTFqa0g/5QCAKP3U53dfksUrlhbiLvdZfPnXPB5jZbWFro9VcvuHCfILLGguDVzloAKMrwxOEj5xZX8lGxY+vcrl07ut21AJ4EKS2dtyF4rSJW3hkTQiiK0lUIcxRIpLWO40gpVZbFytKKKX2j0QiAAgVDiJMEEYqy0HGU1urdtbVsOFBSWBvWOl2GIJRmFmmaECEyBG+rsjBA1LEWQtbq9cIURWGGg9FgMIhqujHWHA6y0WjEKOpJw5a2zIoAkMZpHEVV09NgcZCNcgZcXe30+r322Jhzvt5sbN2+fW7DpqLIup21TqcTxens7AZrLSBYa01pAoSyLEkgCaGU9D6UhRGSpqdnG83WYDAUQgpJhGSNQyJjXBR7EoIBBZF15eTM5E/u+SkpnJ6e2rV7/64QP/zgQ08//uTEtIrrtsiK3TsmlaofO33m4YcP5KM1pcLhA0/u3Lnz+muvm92265FHnnjwgQcaaS0bDhzYXq8/Mzv51FOH9m+/4Jbn3HzJxRcfeeLJ3/i1N4PLt++ay4cmjcSZlVMHfvLEVTe9+CP//u6vfvlrf/nWv/jE5z5Rn2r+6ive9I1vf6nWaNaSVAuam9nwxl//9cNPnbz/voeV1sbYPC98cEopQnLeS5IheO88I+dFSZICAKEIDFpJMkYLPRwNGokcDntJsmVp/uymzTuAqMjytKYbaVKPY1AijdRYu9FZXfamKIZDb/LVxbNz0xvmzx4ryhxt6NhRcfhIiSlpYrA+oB8Z8ICSrFFjjbF6Ld26bffmjbMLZ04OumvWlGmspRLWOGMdMKRJUuS599Z5o7QWQpKQHAKuy5aUF+XkxKTzgRRVI7v/oaUBh4BQlfsiIDISgkAUiK4aqazzHiwJqi5DgIKQkKGChuH56rDKaI1IGGC9CKwy/PN6NzAHQMQoUgzESHGsBZEPngQIRZUlFAUE77XEiqWMFWpuPTYLlc4a1gthgneV1hugooGGwKGKMAgEYO+c9xA4kEAGEIJQkqwwzZWNiZAECR8YOQTvnGdgKarCeQAgZrS+snhSqrSQgpmLssjz0honpcB18RcCew6MlZGWkRmJUAgSJLyzITgA0FE0ssZaQ6CFpLSWklWCJACMhlmv15+YmvDsvOeqQ0drRYIAg7XF/PLqhRdd+sznXrVp05RWCsADUyC2ZRG8tcZbZ0xWpHGtM+qhilUkIyU5QKIjoYQkHRCYWJEgkFJU35eRffAePAsGKaS13jMbNqOsAEG3f+Mb/3Tb+5RUwNW9cn1DBxYIjADO5nGqt2yb/fM/+s13veM9v/aKX/r5X3ldEAqweWYJ8+XBZ77yua4b/eLLXpU7/wf/+y9rzdnp8anh4BwnvrS902ePvumN/2tpdfGBJ+9vTeB0Emd93j6xdflYZ9usm9rQ/s+Pf/TAoZ9OT7XrtWQ0KIZdt2PLBZdefPHR448dnz8+MV0jZLIkvI4IQLg862kt+t3OE72D3pVpFE9M1Y8dfrS3snrFVZfd9KJnfeQDn5H1Vjqmz54+zcylLfbt3T0zM1XkWafTPfTEkdXeaOu2XdfdeNHWrZtjNAcPPkpSTrSmJifG0nq6uroipGg2x4AxBLbWeucZAgp0zhZ5iRU9nJBIRmmKCMPRqKq5MNYmaSKE8M5b66WSxpoiL5MkSdN0MBxkRRYYhv0hs4+SKI2T4KkoSjEunA9Fltfq9WazMRwOu71zhSlVpDdt2hJFajAYMaHW2gc/zAbOWWtdr9MRhErr4K0tyyiKm82xMjda18cnpprNJkIYDkdPPHHAOVspxmmjHoI3xiAACsryrCjLUTaSStabzUjrsjRlaZRWUZQ0mq0o7pnSmtJGsfQhQGDnXJZlSa1GwMNhYUvXGmtcetXF8/Pn1rqds2cW9+69YNP2mZXO0tEj8/WWuv7GZ8T18ScOHDp+/HSwmcTgXVYYm5em1yvqHcMZNButrLe07/JdS0tnF8+dCOBtPPzwbR+64qprb7rxWZua069+9S9++b8/1x5rv+HXfqUxHf3um/4PNJMHH3/glhf+4p23f+7pRw9edPGef/yd9z7xxFOve+0bHv7pg8eePj3VHP/j332L1MnHPv4vK521ONGd1RVGZoaitESgpPLOV6OSmckNr/i5X0iTuNlsSikKa4RkRDE5M7uwuLphZjLP8/ZY4/Chp/fs2bmy3AWPzWbd9AZxIvs/V0xMtKM0XumsRVqPtVvdft97H6XR448ffP1rNtaS2rgSWV5A1EjTONJQ2tKyS9O00Wg0W61Up0XRHfS7P33wMUWVj8YVmWGCDRs293t9YDa2HA7ybTt2EkqplNSxtR4ZXOkyHmkVcaDCMAkVwDkfBIkQWEhCkNZ75sAsSURCagIK7JEDAguqUr2KJGEARAHnj7hCEHDw1gIhAGodVRZKBGD2iKyksA4AMDAhowRBQhJTYI4jhSQCiVgrJQWwdy7EkWbAOICxpixK8KYqc2df+VIrUxNgYPDAEHxpUYkQQnCOxPrMv5pG+aBD9cUuBERmlkRElSe02ryqBd5VxVfVOGw9T4yM3nuPjNXux4yhsjMTCeIA1lhjTAgOiXh956v+v0ACfajq2atkcRAAGAIQG2OsseBZKYXApijLLFdSopRFURRR1GokUkrvQz7KpZRJHNfS+sLCmilKQZhEGuJw7Kljf/eOjxg7ZDYBPLAw3oYqb+F8FYmokt2kdPAWOICQgpABCERVxkkCBSkltZKShIiVjKMoiaJEqVQnjWZrano6rUWN1vjc5k39Tk8AIdJ6SwQSh4AkvPf1JB3mo0jG5SgLoRwu9T/7+f/6td/47X/71/e/4Tf/FzB864ufBDAA8MO7Djz84GP/8O73Lmf9d777wxddctnqucbE5tajj97904fuL1/df+XrX/nBD38kN6OZ9sZn3njti17w3J07tnz7e9/9j//89PLCYtJMH3jo7osuvGDjzIbLLrtmZnbL00cOPfzow2z6sm+b9TRN86KwW7dtPnb4cLNed+wi3coy3xwf27Fp7qIL9rTG9XDYnRif7HVGey7Yd2ZldYySwXC0dG6x2+2cPHECAXbs3DE9N5fUWs1O3p6YDFI+cP/DeX9xero1PjWWxpGKtJQyhBBJHWkVQuCgjDVCCbFOhg5RFDOEPMsR2Vo3MTHpvDl98kxpyoqmNz7ezkb5yvLKyZOnWvX64vwCOKilSa0RNxoNY401ZnV5DZHH2+M2N1Ei81HRXRsYY4fDYbMolNKmcLGOmhvrSZxGWi8uLmLgqfHJdrttjREqkjIipaqGkaq8s9FojoZZ8H7Tpi2NseZYa2LY756eP5mPcuPCxMREc6wFjI1GkwHyIu901qIkinSMiFJJEusBegYQUgBilCQcfBzHgoRSWkopBK13I3hXobaKPG/Ua9MzE93hIGnEK73V1d7avffedeHFF11wyXaivfVWQxJ7D+322NEjxwaDHpKvxXLL9s3X3XSjc/jj++588QtfuHXH5A+/981Tp06mcTzRmllZnV9aOdOu74nHal/66n9v2Dz+7n9+760vetZ/fPhTjz58aMf2mW0bZk6cXtz6jD133v65173u9X9125//6K4Hj82ffuPv/WrcqF1142WHDpz4mWfetH3b7icPHf7Upz67dceGbmdhOBqyAGAgAVKIwEzrA2+YnZ37rd/9ndXljnVFYQsAtsFIoQBpw5ZtPtgiH4H3c1s36iTZtLUGXmAIcaNhnakTDfNeZ7njMRSD0dmFM73uWn84HGTZ8vLy3KY153yTCJBY1YXCWEJaSzFG8JwVuckNG56YaHbWVibG25deeeHXbv+GVkkQrjrDEhGHoKXsjNba4+N79++97757A4f1XxZgdfsPgWUUSR0RmarM1XlgZhKkiDCwICSg4BgFexeccd57IhKkJAEJBq7O0xU1H/+H8hZ8qGpWziugKBClIEbUWobznFGlFaJgwABMBIiglIwjraRmbzmoynQkpFQsWdkAhAxCSiLBQIAopQQGBgzVzcYHkATnh3QooSL30zrxLZB3wXsnJQlJQkgfPLOr1ntBxCFIKYO1lYIRvAtVZUFgrqypziMhE1ZdOUpKAuLgq1ObMUZKqZTiUD2PSCyctQEDB68CQsXVO6+Gew5Ckg+uKBwwNuvpKgYd6UGn1+8Px8cmBsOBc06QnJqabrSaWiulpNZRkiTWGh3rYuCm52bL0krBeV5ILbWUUgpjDBCyVIysoyh4h0IFQB+EkhoZvLVAQQlVOWWdNSDBOx9QuuB7rmrjFIUrmA1JAewDOwgwPtbeNDuXxqnxLrAjwhA8kWAOiNI4hwBFWaZxMurnjbTx6S988pLL9t36rGd/8B1/8pa3/y0A9DKIFQGk3/zuj3/5scdf++pX/OA7dz543w8XVk/AY5Am8Lh9/LHHH/nFV77q+mtu/tFd977u1/7ouc+/5dzJgx/88D9/7/vfLZnjdq09NZH74uDhp3ft2zs+OXXy9MkDjz4a1dhmfQdFMj5z3XVXPnX4dMjMzl17C7PW6w1dCTu37XzGdVfu2rSBfZ6bYT0dI1I//t6P4rFmNsxHtmiNtQbd/mg46Eb64IGDJ06enNk4e8NNz9wwu/PrX7/9yUMHpOCZyTEpdAhcq6W7du3csHlDopJIRK60SRp7Y5WSRFA1aiCCCw6QkiQty0JFWmlhR1AUmRQkhfRsW60WAoyGXfA2jqOdu3Z0Fjv9wVCZIJVQWlfYdELUWpalydZGtUbD2PVhrTFuOBgJorF2S+vImnJ+cX5laUVJ3WgQMDvrlVY6TvqDfmusrqPElLYojSQx1mpt27ktTWsqUmfPHO90O6PRyLmQ1Oq1Rk0KRSS10s66Xr9vjMlHWRTFSS325/mO7AEBhCASVXyStI6k1FqrOIqEUN4zEQkppRQM7H0wo2G9nrALi2fnXVlGUfClO3Xs8MWXXDIxPn3qzOknDx2aGG9dcvn+fRfs7g+Gpck2b9l84SV7Tx0/+shDTzjHxMVrX/+afnf5v750dHVtZEO8bc+Fne7ZfFjecOPFJ0+de8eb/vo1r3vVW//8zzqL/T99y1ve+MbXnDi9eNWzLp8/2XnZL738TW/+5f/8xCd+53f/VKB+3/y7du/Zs33Lphuvf85l11585NDxd//j+7wvb3rW9V/6r88BQCRlaR0HcMEjESAKqWIpyyL/27f9zbfv+O6wGGktkYUHJ7XQka6nrcIY4+2oN2IGCE5FGgQTE1kXEIB0aYrSlTKSqYxsWcaCjC36o0II8PBDYFLMTCR0ysTCu8AViYd9tcS68MIXv2hmsr1h6yYbvGP24IwppZKMEAJIIdIkGQyHY83Wju3b777rx8H5siyYg9SqLF1gD8FLAiVjDEMpBAJKJRgJUTAABk/AQkDFgfDsrPPOB6lICyGkVMzeh7LyeAEjisCEoWp1V+QCGK7WyUhrLVAqURWL83qtDQkhCESQgByqEXmkFSFCZUHHUIkMEMK6Vx5ZkRBCAK2fraHK8xI4D1zdTggFiYAQQiBJUiCJanpTOfbZA6AQSkeRUDKQdaUDz4gopKAgXEDrfGDH4JgDM3JAFIiIEIABvPOMQQitlNKRkpK8dz74wB4RhBQVIZWJPftKtHHBMyNAWd00qqS0qWpivA8hEKIzZYidlBIArTXe2rF2q981tVpdaZ1Cg0hIqeM4ZUBrbFkWzFjFdpJEZ8WAJVv24K0HdsgoKBADS6njyy+/bGVtNSuK/mA4Gg5RCB1HJs9ACSlFXhYOIDhWEoSEYDEgMoG1jkMJAMHbKNZKJUjSAxRl6YJ1wVWpjcoOAIgcOK5FWZ7FSg3zUaTiKK7HzfSv/vZt7VhfecXl73r7Wz70oU9c/4zrl0f5Wj46cfTI+z/4kb/+6z+97rorT578HHsAD6MSfNH7t49+5GUvePnv/dZvP/vmm37uVS/5zH/+x/vf/Xdjse/053NW+y676vrrbgyBDz3+WNxofOX2Lw975tbnPdeYtUceOGkFzo1NbN6w4dAjh6AMM9s2Lp0r47HWJZdddc11V0mCxdMnapHYunmXY+z0+7nh4WqHJK0tdLSO5mZnFubPDYeD6fGphXNnirxs1R49M7m8Y+fOPRfsy4uhz3OEMkpwZmZi86ZNkYzqac0U1hgTwLtghCTvAKu7ZwhVoXYILhTBOltkWTYaBXZTUxNaa2NNnuc+eM9ea60iPdYcqyX1tbU1Y0rnTKQiYJ6dnokipbRqtYR1Pq7VAKkoiurYZZxp1BoCqciytW6n2+0ktbjVHEuSOLjADCpO0qbPSlMUNiuMlmqs3a7X0yqLf27hnPPGWm+NEVLIKEqSBAIxgNQyK4p+dzAcDKQQ1jopRBTH1jkp5boUAYAEpigKpZMkISGrd1qlUnjvJYlIaS0VA0tJYINW0ezc1KOP+GJYbJzb2Gw0kriWJtHZ+aOdzlo26nRXF9Oa3nfhfvaiLPP9F247ceLoww8+umfPRRs2zR49fORbt39z1+6tb37Tm7/zre8dPHC47Bsw6uWveOnmbXN33nVPVpR5aR997PFRkb/h13+FapHU6YM/eOSVr3/lP932fz/0vvd/5zt3PffWm+749ndZ0unjh1/2s8/bfcH2w0ef/qM/eMvTRw5f/YzL7vrendWgIQBKSc4FIlpvYyeM4jgr82OnT0SpLkJmXJkkNSFiz+wcr66uJfW0LOxomMVKKanBYCD27GJUkSImKUiSj5z3zjEJicREBABx1HAI3lvNEICrjiWtZaWcGmOsZxJYr9d//Y1v6q2tra0uPHDvI0LKuQ0bEPnQ40/GUR68N3k51mzY0iqhNszMxioOxuZZFoytZiM6ikPwuA7vIULkAIKIhRAkkQR4z8FWNkoOvipwCet+G1RKAmElIRrDVUwMUSAzEFWOUWCWQuhI6UgrgUIAgAgcGNB7XseGVx7iKl8LyOyc8wECe1cWZZZlznnrvSmt8xYrA4wFEpXJEqmKGTtJhEwgiJRURBS8NcZIQimV1FpppastDgErn5yOdWAEcFUqTgghhRQC0AKhrVJqQhAFRJJSSUL07NZHQAhCiDhSsdaIGLwjBCmkEFIIWbEnODBQxYnzzOyAmf06J4nQQ7Deu+CtdRwQEaUQSgoZRT44rcTWrVu2bN5EW+eYuV6rOWWb9VqaJLGOqqiRtwERVrtrW6ZmIx1lI6RAHtlBcMEHQAEIQDJKSEd//Nb//eB9D23dtfXsqYV//8jHL7ny0quuuuRbX/mGjikYv3v/PkQ6dWI+rsVZb+h92DA3NeplnU53dnb28PEjjbH6pplNjzz805PnTkoto1izD+vJD0QEYg6IwAhFmaOCgi0oKGzRyXtNVeNG/CfvfOd73/l/r7/2Wds37/naV79y9MlDB44cNYXTrO/+8b2Adny8fnp+CQA2b9hM3pnV3je/+Pn9Vz0jira//U9+544f/4CguPzKK35413zvnP3JQwc3bbn4lS9/ad4ZPfrIg8tn1wjj+++/7yUvek5nYe/CWn/D9Nbl+eVymO/cuiVWyaUXX7l7z55NO7afOnX69PETkeKNl154dn715Jn56U0zm3dsvevueyhRcSS7a2vEvG/f3rWVteWVpU1bZiemJo8cfbz36AON9vhF+y/bt2/P3MSubDhcXjkXYS2JG41ajRAD+mBdABE4CCGUViQkBx9CcNYpJY111jrnXZln/UE/ieNYKURIk9iUpsK8cwi2NNY6FUXtyfEsGy3On+v1+hOT7eZYEyscTRRJzYE5raekRGaKIi9rSQ2JTGlG2cgUJTAqKdM4TuIECBlh2MuTWiPJ8363Z6yvpbVYx81mIwS7vLQ4zEbMHMUKhQQiIeM0qadprdlsImGe59YYZy2HoJWQJKpKKma21kc6MsYgsbVmNBwigIoiZvbOA46IZFkarbVUEhAEiSSOQYP1ODu18bIrrhz0R1EsiyI7c+LUwZXlONKmcK1mkks4fux4rVbfs3t3f9h98sDh02dOzMzOxol88qmD586eGY56p/8fov4zytLrqvaH105POqlyrq6qzkGtDgqtLNmWZMk5ZxPMBexrY4MxcPkDF7hgbAyXcA0YbAMmOFtOkpNkK4eWOudcOdc5dfKT9t5rvR+ekt/qMfpDj64ap07YYa45f3N2eu/1+3/hfb/8la9+9fGnfjy+dWz/vpvPHD995OhLt9590y133vH4M09MzU5/4sMfGxrpP/HC+aee/NFf/sPfnT91+m//+u/zuZ7Nu8bcEpiwuXnb5vf+ypt/+pPDf/5nf7s8t7xt18TAcN/MtanKeoVLACLMHIUZ6YBxrS1jotUO9+zdtWfvrpWV5bPnLvhBbu/efaXO0uHDLxlDrUbL6+ncsXPX9OVJ35W+6wIQWBgfHGUMq806kUy5NYSBdBrN9ZwvozSxc+tpTPlisVpdtpwsR4YWgFJiFtGitVlbLcLw8KjDg+mps/e+5hVbtk4cP3duvdqo12pcijAMESmKk/FN465ztNVuDw70jY2PLs7PNxpVh5NQUlqHCy4EQ9TZrgZZCa5gXEkpXQYMGUeLwAitZYxgQ9nOTD3IgAQTKEhJwUAaYzPju+CcABKTuT9BKuk6SgnpKMYZWCTGuLZZtwjAzycEDLKzsE4Fy5bUVEdxnKRJqk0UpVEUE1ghBDoOeczZsOgQz1gTkkmRNcIIITkjBtxxHYVEUmULs5Su43CAjEDNucRsYEyESIK97DWlDbS05IxeTitjRhcCYCwjHvLsquI4SkpBiFkFq+u4CBv3GrGByGM/Jzxn/5DVIxAyZGQtaW2RkHHGmfBcR5uk1qgbGHJcNT423NNTunb1SpJElhkmgQmSjvACb2MXIQIipbjvO0JxLng22UZjCIA4WkAOikkRxuhIL2nrvJffsnXzyPBIT0fXju2bfyZ4RyE/M7XY093j5wqLs5W+/sFr65PtVnvH7i3XLk6269Xbbju4/9De9WpNSe/k2bONer3UUeBExiKxl9N/2c1oo7DOlvLFWrUBHMABtGm9kvoFL7T8wx/9xO/85ofe9tbXV+448PzxI2lsCnl26PbrFpdnr12+Ntg/cPHstCe7VOLfeGjPr/36+wr5jqeeeuxz//hP5fWViNu15fLNhw50dwc/fOpornuCIXv6iScW5udX19aYkKmOp2cnn/yZDDz3ur3Xh4144ep80fN6OgsTW7cNDY96vn/l8sXJyem+/t7hsb4rU9MPf/vhfGfXTr290F0sFAsrayuCoJD3m7Va2tW9/8Bu11VhO5ydXYi1EYxNXry8OrO6NDN9+y233XTwpvFNm9I0luBaSxo1AQnJlZRZMyrnjDNOHBCJSw6cEZFSjud7hBaAdJKuxWXOWaFUJEIuhR8EcStMk6RRq2c0Xcdz/VywVl6LojjwEwBU0mm0Wq1Wy8kFzBFSOK7jSSG4YLVa1aY6iqPUpNqkSQxJnEgpGZfWWAAWxjHjolAsBkFeCtVqNWuNKllLYLP6quZagzFZ6Ogc6B7wg4BxScQ4iZyfsyXbareAyFEO58xaq6RinGmts7wPM2ispTQJY+ExxjjTRofrkfJcAnCUssaiNEq5cRwr4URhUi23+roH1pbOX7l8YXV1dXVpSUoa7O/N5XKCVC7IScdFRGO0y5001Rax2axXq+vlyoqUjlLs8qVz5dX13o7+973rfatLi3fcf+fK8uJ3v/u922+9bcu2cd8XJ86cvDY5+am//Mz/+6t/+MJnv/D5f//3qJJ+5EOfQC7nl+fX0/nAka++67VvecNbvvXl7/3pH/1tpb5aKPQsLy1dOn9BY0yMstyvxShbqwiBCISQcZwA4x0dHT39fXPzi1GSvvZNrysWuvbs22NSdsNN+59+4qViR3Hnzi3Lcwubxgab9Wau6Leb0c7N49/65nf6No10d/Y9+OYHUm07OzscJdcrK+0onJ5c/dbXvr+wsuS4UF1bklISWi54JioAIRoUShJCZ0fn9PTUzx79Wa3e3r5j+/TMQq5Q9LxC4DutWquro7i0tLJ3z3XFfHG9sio5z/nBwQMH1qvrQ4M9nEM7TRBApymRMWSzsWbWAi+VFFwQgQWjjUYAh7uC40Y1OreZ1zPT/QQBua4RwkjDGPcCVwBYwsQgYzEQccaUkFIIyTmSYYyZ1CCRttYiZoErAqTMewlAjCOhkCrj9ltEqzOyTopopRAcNr5HSSY4R0NCSJFdzIRggnMAqUSm+KAhqVTGvHJd1xFA1nAk5IwZbZCRTtM01Y5ykLI/ZNEwQiUkY5DNGSzhhp86wyABU1Iqx8miFhaIAVNCMZ9rJODACTLGM1rkwBAYYxvgCyAGxIlnDcqkjdkIywuhhELOjbXIwPWUq3hHsZCmOgpDMFo6qtls1ms1R/Ks+cxaKzj3AzeXd7gAAiRiFlExDsTBIstA3GCT1ERJ7AeOTZOezq6tW4YCR3hCcqJmo9Vqhovz1ZFNxeWVmp/vRlKXr8xYkmvl9Zn5+TNnT3MpqvVmZM2VmauA2iKWK2XBmUVinBNkzREAAGghV8q125EfOFGYQgrCJVc49fWG47klt/Dnf/lXp86fvfXu63sGusZq66+578Hu3u4jR09euza1+7q9Pd2DYUT3P/Cad7/nrSNbun/w8A+/8C//sV4rt3USxS0AePSnT/z2xz9y6O43Pvn88QvnrizNJs16jUlurEZg0pOziwubNk2slGvVSp0DdHQXhrcM9vR3EKQz04srq7XBsYFNE8NT1649+dOnuRJI+sXDL9774N2jm4bW1pYBiCOOjw6H7bBSXn/ta+5rt9t+rnDy1NmpqflivuQ4anFh7tlnn15cWLrzzrvGx4a1ThEMoSayrucSA2MMEjmOk6ZacAbApFRRGEZx7CiRz+XisO17/vJ6Nau2cF0vCiNCCPJ5ToyQWq1I69TPuYJEarXjutZYS0YIFqdRGEaZw04nhnui1FlMozgOY5vqsNWKo0gbzTlYY2r1OgC5nq+N9TwnabaU43q5vOOoVOuw3W62aoSUK+RMagio3Q6lVCXe3dnRqaO0pVtJoguFfKmQd6TTUSoabRgDAlTKVcplXMRpnESJoxwgayMjpZJCZVh1INJWc5SSKwYcANBivV4HgKtXJ5eWVoRXdJRfWaucPXM21TEaDaleXsMu05kLCq7n9fR2l0ql2ZnJ7s7ukZHhtcriyvJa2G6XSvnxrZsbjbqRqHLi8NEXJ8Yn3v3291sVP/nUkzceumXT2KiQ7rNPP3f0zLHa3GLSrL/j7W++794Hbzl4w7OPH758bdYkreKg0i39oY9+4k2ve+BbX3noO995tNjZtfvAnpeee7HZDPddv//U6ZPKlWSMThO2oXQRAOOMpWmqpINE0pPl8tqevbufP3x4anK2snaq1FX67kPfGRrpP336ZHV9Xb31zc1mO9Kt73zj+zv27tyyeZubd7/76GOpSbdt2jy6a2RtbX1hYaF/cKCYC+KW2bp11/t/+d1T05PN+vq3v/X1xERxGEMmqgDLQP2U6chKIudBIR9HKZBUym+14v7+/ptuPDB7dXqtvEbE77mrmzE4e+703Xd054uFXM4f2zLiOvzShUvGWoLMxm9SbcEVZEApKaXcgBcDWWu1sUBZASMHllHdBOOQURiklIJlvl5jtBGCuZ7HkDRax0MRCvZygFYwAEZorLGkjdZE2lqBKAU3JMhaa4wlZIJpnWprubZC8I3CSYAsaw0AjAmDlBhLpIEYk4JsNvIFxjgDJOJcCEIU2TYmrBRcSMkdVypHKi6s1pYMAhmrLVIYxcYYzrmx1hoLWY8AERdCCbbRWEwi4zFhNofgTCjuKLGRSdiwN0lgPEv4Cs6BEBCAZ2WJG/noDK1hs/1EMkJK0xQgC0kzRBRK5YN8qxl2lfIm1YA0PDy4MDuNGks9eUpN2o5c1/Edt5gvcC50mghOXsCy/jMkywg4F45ykji2QIhkLSJYq2lkbLS7p9eV7p7deyvrqwuLcyTs5JWZRrN9+cL5+fn52blryytzwG2lsvrVr36t1a7mHe/JJ568Onmt0FEkqaJWBSS0whZEEQBKzjCzRwABJyJSSjAuXE8lcQIAgkOcaBEoQEjDJGauYPy/v/Xthx/5YbGQe93rHti9e8/PHn/22WePdHf1mQh2bbtu565dv/o/PoBgP/cPn/vKV79pLY1tHa+uN9aWFyw047a9cHHKQrEzF3Tkc1cvzSLTzJJgTHnSkh2dGCt09EzNLPR2dq9Xlu558NDQ+PDc5bm+7gFi1NNb6Bnsnp2ceerxZ4OcF5Itr5ddpY4+f+TGGw9euXihXl/v6eyoViv33HufK3OHD5/dsXPzxPh4V2/fzYeSqxcnuSXXEdXy+onykXaj+eCDrx4ZH2KMLJJQwnEctEhAUkohBL1sGSYkY40xxnFUtllKJQvFQuZ5UEpFcWwsMc5c3+PEms12rVqrVIwh0w7bUnD03Fq94XjKasuB5/N5P8ghYSYGJkmsTSpE9qkEIZhyJQdmbarTVAiJRI7neL5rLFptwzDmDBlnnh+E7Va7FQrJueCe5wVBrtRRyk5TkgvP8zzPN8akaapchzHGBUvT1Hc813WtJQbZHd8RjEsptUYCJqUSXKK05JLkMsgFUgkAjOI4jqKZ6RkkdurkKQNOkCv0jw5M1CYunj/nSJXqNEmiaoU4if6+ga6ujup6fXlxqbK6tn3n9htvvPmZJ5/2PffgDdcvLiwqJvp6+nsHOtdWVq9eufba+x7ctnPzO9/1juOnT7145KVmpfHs88+Tz/tGNq03VxYX5nft3XV77tY0Rz954ol3vP0tlbnp93/w19/53l/8k9///Wd/9txade11r3/TE4//LNEhCLGwsuh6jtHIhDCpzTAeAjM/IUmpkjRxpPflL311x45tjbhZr6yePHFsYnTi3Pkz7XZj6to1Btg70C0En5+dzOe3jE+McmBpHM/MTmsdCc6HRgf6uvtuufmWufn5y5eudBY7OzZ1LkwvPvaTn+47uPe+++85fvSlC5fObLDUGBAhY2wj5SpFELj5nD8+vvkNb3r96PjES8cOF3KliYmJ3u5uE6f1amVtda3Rbvg5v7xWqbXqd99z51f+6ytbdjzQ0124dPkKZeVX2jDGtdakgBgXXGbJVgJAm8EXGANCa5A7tDHtA0SyG4WKxHhG9ATGkDEhhOCSMCVHKpHZbzYQ0GgtGIupNkmqddY4zElrARzJmuzwLbmyFrXWQhKANHYD46+UAs6NNpwznj1yMFZwbZAI0hSAcSmFyGZOkjvMYxzQWs6ZBAAlhaO4p6QSynIRp7FJU0uobVasbNFYtGhlZl3inHNGjBgjBgiMwcZ8BtnPFSTIlnNGSIaIQEqOwEBkQVoGiDpNGeNoNWMZSkIwLgA5gTXWZHAMsVFJwqIonro2nYBptaNmvXnNmt6ezrNnT589c2Zubu7cuTPJqbhRrc3CzLe//Z3J6cVGM06tXl5aLAZuvujkch7jnDiQha7uUl//4OSVyWaaEFlMtes4R146trq82tV5dfLK1aeefbxWL5skdFxOCRmg1ZdWCEEpAQgaLWNw5cJpgA2MkCEwqU4jzBrnJYhirlCv1hIiIRQiAAeyGgRIqSSXQUcwOz0HABaBcdUOE1AuCGwm7Xx350Bv1+r8ygMP3Hvva1579MUjz71wErG4Y+v1e/cceMPrXjvYX6xUl/7fP/7V4089127JIN+ZNOG2Q3eVK/PLy6t333nfhZNTT77w0ujmoYmtOxvN8szkVc+R3CXJxMjgaGdv91q5KpViDDeNDW3euWV6ajqXK4IUA91DS0uzy3PzLzx/XEexA6KyvNqMmt2dne0mm52ZuuOu24+/dKId1g8euGHHtp3A2RNPPPWVLx/fsXv7nXffjr38hv17Z65OXbt8LTVuHJtrUxd/9jO64+67xrcMOY5kjBOBVMoDyA4TUkprjNHaIhprpVSe5xOA1pYBK5VKJjXACAHSVEvlCC6ArOMqa5RO4yiNms12FKeuUsFQXqkcWXKUly/mOONJnArBlWBpagmtSTVx5voKyTDDhBBKSqVcYBuVkFwJwcASAmoiAs61NdoYRNaO2pwLz3MDP9fd2+e6XprEuVwpcAPXdzljqY4MWkRgnCOB1pZFieO4cRy3mm3HdZSSnus51oviFqZpnue55MZaoZTgTMoMk0UMmE7TdrPe1dvVbrWWyw0LsNlEe/ftRpNevXzZ8RwhuVROZ3eXl3Pn5+fmZxalEK2GOXXizM233fDgg69eWVmO0qSjq+v82bN+vnD6pXOTV6rFXG5u38q+m/acPXnqv77wnxGGpUIh1+Gtzq/d9upDjtx+5dLMn37mj773/ce++b3Hf/CDL//4kSc/+elPtVr4V5/82yeffdbJyR1DY488/F1PKgBQAqpr5YxJqVNylG9JAxCyjEjPAsd1nCC1Zr1WO3L0aLPVZI5TrVUX55eefekFjMJvf+cbWmvPd69eO9WuNZ951ncdadGmqXEciWCkUCdOHdX/rF//htfddOvN1++9jkuulHTvdU4fP/ns008dunVPGDUow2MSMMzwNhu+MiRkghU6vNHR7ktnzqRROjc7HUXh8uJSV7HYO9C9trJQLBX9wC8VC0hw4uSJIJ97/VteVygEV69OBkE+XyiWV9es1UoJz/eEYnmHkU2NRdSGcZGt70oqAIvWYpZiykbAiIlORSIcR6A1SihrrTWWM7RGMMkJUKdJtklYi8ZaiyK1JkkSozFJU8uyfKS0iNYYRCOZ4EJZgtSQtsQEmsxYg8g4ZwiOEo50Up2QRc6EMZYxMAwINkCj0pJSggQT1mpirrWMMSm4VI7K/J0GLefCoNXaWsQwijNgoQAu+AZNKRtiCyGRkDCbTQNluOcN/igpJV0hpWBCACJatMiyZhjmKfkyuGjjF1Ou1GnqKo+YsAyIMSBGiAKEJSwGPmrNOY+T+OyZ082o1dHTi1yur631debJmlq9xohOHDsS6Yg0m5ufvXhtiqtACM9fdqdnLu/cNu74vNiZt6gZcCFIcDE2Nnzp/AXFuSVGBhMdnzxyMlfqbrUrl6/MrS6tCkVkIY2QkwBGACCycywS3xBzEAEINoIhodZSCIe5grPA84uBG1YpIqaUw5FZ0BYtoo2jOBgY5EJIIbU1IBRZfcfd91aXq+th1brYqjWr5frb3v6WX/rAL164cP47P/rZejPWltfL+p47Xt3XP7Kydu1zn/vb7//oMS9w2okudA7ecfudnIuBwa5du8z01PzSymylurJ8bKl7YHD3vj1J2KpV1gLPHRzcND46Pju3EEZacIcp2rl/x9zcIgkGgtdbUedAn19wzrx0YXJyppD3VpcWNUY6jcurulDsnJzGodFN1+07mOp4fHxLqs3yyooB7ee9ubmFZ5589uD+gx0Fb3TTQNiud/XmtDac82p17fSZY509Oc/zcvk8cYkEwAQBIloTxwRGCAGMOUqBw7gQxlrleWmaMs6YtdZgRlMHYFJJJoABAkMA26jXtKGers7O7u7hocGe3l4hebvVDtthEiUADNDWq3VLtlatE1G+kGu3oihJpHK4dJ2c5zouZ9xoG0YxcvA8DwE1as/xrMUkSaM4cRzHI1ZvNJmUBceRytGp1WkS8VY+FwCzqbGMMdfziWx1vWpspBzd7XobQzPGTarbBh3lO76fI8aFkNIFshbJpEmxUGCMR1Hkea7g6urVqXbYUjVeKhWn51aiJD5x9EWb7Nm2bQsjtrAwm8sHg/0DuUJhdmbemFQ6PGw1BPMJ2OzM3IHr9/T2dD/+xJNTM9OEePnceURneHzz3a+8vdhX+vpDD911+60P/fhb//qlL/7zX33B2KiQ94SNV9bK//f/fbrRXvvExz6a6vCN9+Nf/Pmff+YP/+ozf/eZL37hr4OOoFpbXpmHQp9qrmqRF1bbjo6OZrNJBL7nl4qd1XoZLWanP+mo6w9cPze5GNWqQnKdJJ6jEmNb63VgABoBIKw3GWPtOEWyjHO0Og4NARpr0aYgmEZK2pUjR184cvQFROzv6d2zZ7c1+Mp779WQHrr90OXJq0srK5iB0BiTMhvkAOOMAXeV1Gn6+E+fGB7oun7/1sWlyuTly43a+rnaUmVtQUgOiEGQ+/wXP19ZX8/5eW1Zz+Ue5UpAIzjv7uleXSo7jioV8kopx3EsRgiMM45otTFSMiE5Zy6iAdJomDEEjGVofLSEZBKeeKknPJEJ/cRIG2NCVEoRoNHWGsyq4dNUKy7QktaYptoiWQLJBRBDS2gNWsMkz+JX2VHDaBQCEC0RZPBmAgaAUkiDOlvxM00egCExJDRap9YIKRhQqg16SjoSmCM3GuEtWYsp00mapEYbRGOsMZZxxjkDJNi4sb9Mf85wGLiBmsvwSEAkJXMcyRlknZQWSaMl4gRWSsEABBdZ4EUIQWQZoOc5ANwCEYAFylAMREwQUGoIDZJtR5E2qQBoNmrIpePKlZUVwSnwfMnl+vo6EQjpagNCOmmciLzbajXOnz01d+3i1JULKyuLLOtA5uA4qlDMcc7QagEcQGkLDMSe6/avLK/fdU/3qZNPMeCZfxMZAmeMCAEY47ThUIVsmo0EmBVBIwI3gjGdkOXYv6nXRb9rZKLcrE3PzMXtyBEiNZYABBeO6woutLXZCC1stt70jjcef/Ho4RdeKnrBb/3hb9x6901HXzz+/R/+2JBVyniu3HVg6ze/91Bvf//mLd3PvHSkZ6jbdUQhJ/bvvX58bGTvjdf99NHHLl69NHttikkM8n6UpC8+99Jt99yy/botS1ddpZyJzZunJyeNgcDjistGs8YUT6OkozNXWamGLRN0FRzf7ejq6O3pDOMmV2SSNFfKKXCBi1bLvHD4xKsfeN3ocP/Roy8ury7u3LWzv94dtppz02uo1fDQOlk9uql/fGJwdnp2/77rSj1dS0uVweEhLpVQDnCutZaMZYknixhHbcGw1FEiEkmSpKlVynVdr1AoAaJJEyEyQRIKxaKxiEhorUkTi8YLnLDV9oOgv7drdHyso7srVygAkrUIDBxPpMaEzVbSihkjwUB6CtGEYRRGUanoSFcp5QIIC4CcaaKwXHMc6brC9RRnGEUpEgmh/Fyh2ViJ41QoiRvNi4IsAGPCERYtZowtYEyKfKmIlqSSnAsiko5yHNVsNBFQSJUvFZXnikwIJfI8L1M1jbFJmiilUp3OzS21W2XfDVwv8PygVm8g6auXL/hK7dm1Jx8ECFgo5tfWyuVKpbOrmKYxYxwBe3t6u0qdU9NTQ4NDE1s2zy8sVMrVOGH9g71333tHEtYf/8mR63dv/vY3vjk5Nf3g3fcvXpl/4rEnwdqf/PTpX/7Ae0Y2j3zol3891eGt99/zxKNf+7Vfnfmbz/zDp//izx79yY9mZ495Pb7riHqzDQC2ZZkD1XrNcUSijSu9zZsnTpyqMW4BSTkycN3e7p6ZKwudHZ21Wo1zGUZhR2dPGiRpHJOJrUUCbq0RkNlKiMgCig08JDFCZq1ljCdRCABcyNXV8vTsjwDIWLNtx663vPUNn/7Up9KsBdcCY0wKSbgBYMx0lX03XpeG9unHnrnt5ltGx7pLhaAV1gmwWikrR4ZhKJhITcoYd13fMNZ8vNqOQjTacVWQy+/cuTvn54ymVqOZzwemXjcGHQ4EzFok1FIpxYUUioCTRJZYSyQkcMuBM0SrtYniWAjGFQAjwbghQ8ZYi4xnZfGMIaEhY2ySxln7obbGIjIuf962kqUIiLTDFBIZbY01DHhWQAmYDRmBMaJMQ89ms4IRkLEkpWKCyIC1ljRSBFIyIQQiekjgcmmM0UZKwRARU9oAtQNwJggsYwwNWobZ3Yo2kKaMgFljDFLWaJ8ZlrKbNWdcKpmp9lobo+0GCZUDp41SZERknEkhgXjWkWaNRWOJGFnIHF3GZMREUsrJ5fKNet3PBanNRgfWdRxA4zoe49w1HhEBSea7JJRwiAHpuL22tLRi4qtXL6yurQmuMkRtUCj4xZxUypAla4lACb/RbBFzLlyce/V9dwAEjBshLCFlV5sMNJ2l52Cjv5JRtp8AYwykIxRXnh+8/jWvHdu0ae3KtWgovOPe+5UbzC8uPvficy8dez5No6gd2cz/yzhwwTgFbn51ZeXpnz61Or969x13/PKHftHznB9+/9Fvf+d7rbDZCmtJGpZy3T/68Q+V43Z1df7e739EQC6sN8f3T9x9xys7Cv1dpYFmq+4FanZmNk6NRCO509GZZ8ydujg3NtY7sXmLtTZshSYmKaWjiDDu6e1q1ppJmHrCGR0dPn7s3IULF3bsGu/r7x/bvD41NTk6uvPiuXPFYkc+3+nlSnFsJsYnBvsHl5eWgnzh/E+vtJrt/fuv4yDQOCtztcsXrzl7xgcHO3sHehnj9WZj887tIxObpeOEjTAIAqUczhhaAwRJkmidAoCQkoglcdxoNrXJ+oMKUgkuRNbKkaTaEjqeQ1Ga6rRRayZJBGSNxlyQM8akcZKEYei5RhudmDgO0yTRJm2HkdG6UPAdJ8O/6DROiazjCJ698ThP0jRNtRAc0aQ6CdutfM730YvajdVyxSJ1dnXrNA2j0Jg0SYRFKx3JJY/iULpOEidCyuxKQwwIIV8oorFCCqVUHMfZO1wqlZo0y7K4jpt1TaSp9fwAgJRScZQ4rotAjuvNzMxynloutSXOmVCys1RUDq6VV7p7+vdct7dcWVteW46jBIhq63UEdIXq7enyPJkLgrMXr8zPz++/cf+td9z6zW883NMzfNudtwmuL50/e9ttN+/ZO/Hwtx/5r3/7L8+lD/yP97/uda//wC//8o0HDv3FZz753ne87+hLxz75r3/0f//y/779Pe+opLUP/f77/+wP//ro8Rdf/cYHTjz3xH1vf+vy6tKRp54pjRbrcw3hZLxi8D1v1+6dR44eEUwAh2Kx5AtW8PIH99+0eecWpVSi24uLi2fOX1pYXOjp6DO6WSmvZy2wlpBZ4IwhEAPLNmykAJg9n0TZp86mJAgEPPjqN77znW8vlDqWlldPnzkHgptUZ+wBYqCNIQIppJIKDQSef+DGnWtzC88//cKe63cTxr4SUZoimnYrchyFljKaJgAoxluNlkFLNjVGC+WurJQxtPv270+TsKPQ0WgIRJNx8zXqJEm1NlYKRympBJecgzLWGmuJAAm0IQTKwk/agBCSARdMplYjmmxZI2IEjAi1sUCYDYo3jpqQMeAyAd5mRjJuLRKl2hDZ7HHzbMcDJGKccWORMmxQRiYCzjgBE4wDQ8CsqdKiRa4UcM6MQcGtRLRhFKFRrMA2Tr4sw+pKTpihjJXkGeWHQaaw2SzbRUQAAgE34sQkORecSykVMGYwsyptrKBoyXLK7vMWCSADwJEQAgmEzYYXmYhG1mJqbGJ1kqSB7+3ctrWY92ObLq6UgXg+yEPM4jgUSgKSktINAoNY6OpmzF2v1oqBX8wHaRyHEdVrDckVB2W5CfKBlyuslKvgOoBoTMKBCSGX19YSoydn5rp7R4C5DCwDIgYb6kNWr0AbFT7Z35wBJwSLBd8DUnfd9ar3vPddHaXc+fMXX5qc3rPvuliHzzz/3Jvf/PZNWzbdeseNX/qPLzXrdTQ2iiMky4CUcFxX6SiduTz7qx/4pde89t66bnz/e9//8WOP7b1x19lTZxYXmgBQbVY6e0wu372yNCfIveNV9//gkW83m/QP//CFV73ildsmdh64eZ+UDMkaa7lypGCBky8UC66rooappzEa09HVfd2u66auTvqOAQabRvtXl1er5RYQdXaU9u7Z/MTTLwiO/QO9Q0N96+XVpYXFsfGxlbW1zr5u4QTXjW3bMj52+szpdru1aXz4hlsOPPPEC339I9u27u7q6D8jzrVazbVydbQ9kCvk+weGwlgL7g/0DFaq9Z6eHs45EOMM0LIkMYTAmVCKOyprVbXAM881aaONoTRJkyTOvrK3meMo4KCN5VJGzUhrmy8UEE2lUomTuLO3SwmHyJpUk7VcCQvMkVJJRYhJGMPL/dsMmBCCM5FESbvdllL6fiE7S/l+kMsHRBgncS4X5IolpZz19VqSpsSJcWKMpalhYFzH4Ywlcep4JIUjpXJdsEScc+IsO/2E7Ug6gnPu+g5GlFmiARjjfMMQAagTLSQFuZxSKkkSRK0xadbqYRLn8z6RLnbkXEe4gSuVW6msMcY7St3tdnspWWSYmd6xNFAslVzXo8uXzzfrzSRNz52+cODAgVfe84qjR04EfvD8U091lrwtY32Xj59ZXJttJDMPff8btxw69J53vumF5y68693v/v63H6+2Ku/8pbecOvXspu7CN7/yDT/vjoyN/tkn/6i/1P2zhx771Kf/+l++9Lkdu8ZHt0/MTU1BHmwLhAvMQm9fd76QM9ZIIZWUvq8CJoeHByc29+y78UBfT0+hwzcWUwNf/+rXvvO1r7ZT9P1cFLeyuD9nL3+kIPPpZfmJDDVDWbZUKCm5OHDw4G994uOAYrWyeuXS5VqzCdagwWwkyTmnlxUPAgq8/LXz8/Mz5Y6O3uHR8Z17dkqpkjgEIGs0ESYJcS44Y0q6jDHlCsu5QK5THaWxUHx009j4wPB1e69bWy+vrq6krabKcSmYjjUxQEKjDVpOAFIJwRU4DCwnIwSAfNmyibThcmfGMMYZZ1KoFA0SYoZC4NwiGYuAkKRaa5P1cAlprWGMIFsqyRIj0swabbVOuGBoueSwQZC2SMQAIQtUAWXQCA4EXEhgzJpsVSVEAGLWEgPLs8ErMKmNAWSGMZ1kOduNiksuOOdCaw2AwBlwAA4EZE2m3iMhMc6AMwESGL3cbcmF4ExwJLIWETOyAwfGMwhwlpYjS5wDF1KwTDvLnhCW7SmMAAEskUGyAJ6f27Jz34EbDzSjcGl1Lda8r7trbLi72ayHYZr3grAV7r5u54Url0F4O3fvZRxYmoaNepomlVq9VmmfOHHk3NnzVlspvVyuUG+G0vd95VhbZcClw9phQwgUhL5yujoLrVYIWacDI0JiXCBmzawCAEAwspaAMcYcDoLxG2489NGP/6Yme/n48clLV3v6+w4cuqlWbxc6Ov/pX/7FYPQ7n/jNmZmpn/zkR9qaNEqJiCFzlBScK5Bvf9ubX3X/XWHY/M+v/vcjjzzCBX/0h48lcZjFQAoFN8iJmenJD33o12648fqgs3DxytUjL52wuvbkU09OTU5rijZtGhkb2zR1bU45LhH4Kujv7A1yzuLSaqMd2tS0W8aT7vbtOxr1xZ6BjkSbrlJpcWbt8sWpXFDYumPkut3bz527TBoLxdzE+KbKUvXa1Vk/l7t68dotd94+2Nd9/NjhZ554TihFcPPWbdvDtj5z8tKm4dEd23dyFJevTsZaawDPLxSKhZF8wc/lkkQX84XsmEVgiRB1hlySxhAAWESOQkmnVCwZgxtvaCImeKoNEfi+l2qTJLHrKNd1Kp4bx0lqyQ38VrstpUh1XKmU4zQx1goOPd3d3V0lzjmCkJncmSRCCM/3tE6EEBZRCgFAOk0YB8d1Mlw5E9x1lRQyCqNCIe/lc8BEotNcMSi0Cq1WSwhBSGkc+76fLxakcoy1wghrU2DCUY7BzLoMQigESo1mggklpVBKWaUkEKRpolzHEcrhqt0O23HEuPDyOdf1kKC6vg6cojQNw3bfQE9PX3FpeU0npn+gZ9PIWLPZOH/+dFdH/849O5M4mZuf4TpxHHdsYkLHydS1K5I7rVazVmtK4Sz2rRzcd7Cns+v5F18wVr/29W+oVJaWy4tewdu0eeTWO+/+zKc+++53Nj/+Wx918uoNb7i33a6cOHUREujpBwAY6u998JUPPvH887/50Y/85m/9r1957/srjYVvfOf7vX0dHcW+WmWVZZF4A7193YiGyBIyoZTDeaGQ6yx0tGN+6vj5A/t3njm16PhOobP3N377I/fee9ef/O8/OXfqTD5XaIUNIDIMCDP7aBa14mxj/SHG2Eb9IZeci8GewZWFtdPHzwyOjj771HMcmEHMOP7AAC0CZXZQIbi6fv+BQ3fcsbCwUCrk+kaHGff7+4enZ6eMtWiBS6mUykAIQmSJX9q1cysRxVFzeHRsfPOOG266jSWmVq2UV1YWF+aG+zukFDqNgHGLkIEsiSA7njPOJFeUEaCBIbCX6WLZzkbaGmBMCgUvG/sBLAFDSyQJiQyi1poIbKYxcMYMMpaRpbPdkKwxaZpaQsYEZIAfS2gyaZQsZDXbmeGTMwCWpa2AE8ON0zrjwEhseKUAtTXCSquNcmV28UKyLFvzXo6AIWLGQuNCALBTBqujAAEAAElEQVRs7oyIwIgAORNScCY4EaAFxjCb9gIyy8hm8hQXmaS18RpRJpxaKYQQjBhDAIOAlEFVIZtib3ShZS3JjANxxrgXeD293SsrUbPdHt92Exrzza9+o6urr7+3nzsq1+HPzq0trS5et3O7btfbtRDJMCH3XH9grVI7ffqqBb2ysnbTbbeMTAw1W1FluYxRgtZ4SlEa9XYEu3ePeIL6+nvqzZVsrJ2BOzKdZ8NtBgAWs0IczrngLCjm3/nLvyCLnYefPjJ9YXL73q1bx+6JmrHnOeX15bMXzyRp/MSTT9x2222P/+yxdhgncUQWleMo5Qvy3vOu97zjbW8y1H70yR//7PGfdvUVKuvrzVYLLDg+LxX8sYnNjdXKG++7/4/+4Hdq1fTUsbNve+v7ytXatfPnE2suXT4rlL733gd3bduVtLBab7muGBsd8lxVqdVaYdtYwxyoh42Ll69et3snWtGoRSNj4wZNoSN/6eI1L5fr7M4PDPSWV8tLiysMBvxCfs/B65947GfVldrmLRMDvR2nT750+fKVdrtuNBw5fFhKtmvPNkI8cvRE/+sH9x+6ASXz8t7o2NagUOzs7vT8IAPcC8UtEQfGiRtr0zQlskJwQh5GIQPmeuT5vgTgksIwMrEp5HOO42Q3dCk5ErWaKWfgKqeQy7VbIedCKU9rk8SpUmKobxAYxFoLwdzA5YJLKQwyYKzdjow2Qc7ljHEh/MBrt9rG6CSO4zixmIUzeanUka01FtECGWt0o6WNJc6lcorFvNYpIqZJIpVSSiAh5wIYQyRjNFryu7vFRlzHKOVYa6SUjIGUgnEgch1XAaONjwnIbM2TQnAhLGKaarQYJVFvf1erUV9amN+xe+f42Ggax0BQLBTKq6tLC8vr6+thPZSCTYxvlkKulhe3bt0CZBbmFxFMksb1Vg2kbEdhq9k2Jty7Z9fpUyf233OH53k/e/Slc5eugOSVlfaZI//R11H60U+f+uPf/4Md1+/s6O1otyuQwOC2YHU2BB/SdP0/P//ZWgKFnPid3/+VT//J3/zFH/+f3Tv3/N4f/1FvvkPAugWTtqFQcAPPX1paFMAQreTQ1VmUTHLGB4YGJmfnLl29ksbJ/Pzs9j0HwiTeuW3kr//mb/7gt3//xKmXisXeSnUtO+ozntXiZulNlukY8PJFQBvDJOw+uIfn5M59u7bv2vpv//Y5YzQAA04MmJDScd2wHQIQB5BCtepRo9bs7uk69tLR3t6+JEoefO0D5y+dbrainoHuifGJQinvesrzfM8rbN+2S1s7OjpaX18HrodHBicnl86cOt3f3YvGFEu5225/89LMVFSbB8aFkMABEcFYBiiEAGQMWKbVGKuN0VZrQsygY1zwDBRqkIyx2T0ALM9qYhAYISNiJvO+U3YtYIQAG3JDZt/nwMAiZpMDzpjgDI0lIq0NAhmkrJ1RMq5ebiQFAAKGtNF4kVllN3IDxBAYCAZAPMM8CCml4IKLDFmTplqnxljDsrKWDH8BXAgulJScZ29uJTP8spMprZnnCFjWhJCZZDkTEolbC4hojDEm80RZYwwiILHU2tRYnfEZsnMAMSAumHCk6+d8EtBoN5fWVtpplOh0YWXp2tyVaqu5vL56dXpyZnamnaZhmjqe347jp556+oUXnq/WK1zaMGxFSTK3uJgrdRJ3LEJnV7fv59uNds71Ozs7XddxHAmkG42Kw+3wYMfc3OWR4SGZVfxs1Oxkwe4NRY0BE1wAAhJYa9Ga4cHBG2644eTzp9dmV+56xR33339/rRrGsUm0Pnn6TK6Y833/ypUrm8ZGpZRpEmeGv0KuaFM8dPNNb3vbW+u19c9/7gv/9q//CWDDJKlXW3nP7+gIXOn09vSuLVa2jG3/33/6x7lC7oH73/jnf/LnnfmOP/jd/8+XubybbzXC8lp5evoqAGzePNE/0L9rz04Gdm52Zm11VQkG1prYCMHSVB89fpJxNTS0qbJWz/sdu/fuKRbzV65cnV9cW6vUu3u60zi9emnG4bmB4YHb7rilf7D/nlfc1W7Vm61qGofKYY1WWevo3JlTa8vLB2/e29vbcebk+STRr3rwFbfeeajYWers7XZc3xqUUkrhxFEiOHfcDGsiXM8FBsZYxrmQChhLdRonKWYTPESpBBcQxTESMoAkjrVO0zhpN5qtRktK7vpKKGEsOp6q1evVatUACqUc12Wctxqt8tra2upqo9aw2gBRu9Uur6w3G600SZVUnusxzoxOOQMpRJrE65UKEpU6Sp7nSekEXqBj26i3DKJQPE3TOIp1nHqOVyoWHUc5UrkZO54zBjwIcrlCgQshpPT8nOP6GxZTpawlk0F3BUNrOWNKCQAksMBAOcpxvTTRWqdJksZxEoZhR0epp7cnjqNGrdnZ2bNt2zbXc5HShbnZlaWlIPCiKDpx/PiVa1f279+/77p9VpulhUUkq9NkdXVVuR6A6O7uGRwZvHjpwura8rve+65Dh2788pe+Oj+/ohSsLS+rwN+yd+dCZf4X3v++17zhtdompy8d+5WPfLCzq/c3PvwJm8BgMbd562hDAwAUOnK9o4X//O9/fPSR777ijtv++Hd/t7wW9XfuAJNp0E6p0HH1yuWML5Dz3VzOI0uDw8NEZmpqMgqTW151y31vuOPhh771vW89PDu7WKs3P/QbHyp2lKyxjnAy2T9b6tlGYHKDKbBhqgfOGU+T5FtfeujrX/jG1LmZF58+PDczq7iQIqu55YV8wfc9xKzdnLmulALbzeoPH3744rlzc3Mzk1cu5XxvfHz7HXfcuf/ATa993Rve+ra33HnHHRNjm8ZGh9arawQ0OzMztzh/8uRxRNPd220RL5y7/NSTz144d6lWqbfDkABcx1UqQ1wqqRwpVVaCrpM0TaJW2G6320mSGGuyNnfOGOMgBCiREfABWAYMylb4DIiTpZHIWsiuDtklOBvEAmVdjRmGR2RuewCgjHuBGf2TAYAl5EIwEFltibEb3VqE9ufjS4tkEdLUWJOV/zIklnk0suiiEkKw7IcbRMxsVZwJLqQgYEJJx3U9x3Fcx1GO5zie63iuVIJz9rKQR2S1tTZrm8lsndxa0sbESaKN1Rt7AGprjbVam1TbOEmjOImT2GRlYZJzLgQTgR8UcrlCPjBWV6q1mfkFL+fv3btz29bt84sr0zMLN958U99A/3q1dvT4cUflbrzhtlfde+/gYH8QBLlckMu57bi1VFmppWHncG+uFORyBakEWru8uNxqtOMoClstq1Ok5NhLR66cv3Dq9LHN20a4g4wEos2aCjZmLdlkJnsNGTImQEiUPF8IbNTUtbmBIL1l/86VmfnJazNbtmxbWalYCa2onaZJq1lPotjzPGsMWuwolZSUA4MDH/iVX2GCHv7R9598/hmmwIIp11adgkwwIom7D1zXKEe1cvw//scHXRm884H3T89d7ejJf+GfPndgz/77778nNnH/QH+apP29AydPH09Yevsdd+okXl1barbrrXY9jBu+7xIZ1Gm9UeWKXX/7zdcWF89dnD52/OTAYP+tt9/cUcpfvDJZD9PplbX1ds0wffLsSRC4feeW17/htRzEmVPnyysrSjElWW93MdEtbeKZqcl2o7n/4HVd3cX1ck0n5Cp/sH9IMcW59P0gTY1G67geEbOWkiQFIkdJJRzXcXzf8zxPuQ4R45x7nuMo5XluLgiidpQmqec5ypHWGDTGdZSjZLNVb7danDGlJCE5rju+eaLY2VmrN1dWy/V6HRCCQj5XLHlBQbmO47jFQtF1ndSmcRqHYaRTwzm3xgopHFe6nhPkglarVa3V01Q7nssVl55T6C56OT/Vph2FSRqn2nApXccpdRaCwJVSKdfhimeX7yDnBzk/SpI4TZCs67lcSIvEhWBcbEDjkYzOAoeYJEkYRgyykR55viuEiOMojuK+vr5Nw2Pbt+3YvWcf5yqOk67urq7e7ulrc1EYBQXXcXmj0ervH+zu6pybm80X87kgqNfqkvM4TEDwRqPd3dW9dcu2E8eOnT51+vCLL1ZrlXq14Xl+vqNgGDEGvSMjrlu45eYH//nz//j4jx/7yhe/xOr0vre9p5Qv/uihn+2/bvfSSnv3vrs2b9tx6NBtiwutpdnq5YUrjz73vcDFX/nFX/zgL/zaYrWZcycAoJDrc/18tVbVqIlZ15dcCu46Xb091WoFwDZbtVbSHN88OjY6UF9v/OSnj7da1X3X7z54wwGlGNvQbzZAOwhAtOEoyeTqbBpKaDu6ut7yvje+6b0PvOFtD7ZajTSNgWHWTcLFhseRb8SO0HHkq+69+/rrd95+y0133HXzxPjo1PTU4cNHdl23d2Lr1lyx+NKRY6sryznf7e3rUo5I02hsZKQQFMJWHCeUxHbv3n333POK0U2j9z/w6vvuv/fIi0fKa2UishazmTMXPIMzM8a0NWGcNJvtsBVGYZIkabb6AQFwbpGAM6Y4ExyBNFJsbGq0RYPGIqJBm6Sptghc2A28MgPGATgRCMGlyKgKDs9qUrjIRqeMgUFCALRAxJR0BHcZk9qiMVZrY6zOQliEmW2TtLFpaokYAiGANmTMRo8Lk0JkdQUASmbavQWwNnsZEGmDBcQZgVCKXCmJQYaPywa9hBaQLJG1llvGBSfijDFrMU5Sa1PXUUAb41QkYsBSrYlBqjOFCogBEQIxzjgBceVYkwKHXOD1Dw8Nb51o6simulgqbO4Yj9MmYHHr2GZMiUtnen6mf3BTqbOfuA4ba90Fv7ujVK3XWWlmZq7c4rR537ae/uLS7LQxpqe3Y3hkcMuWLXFj7+LC/JVLF2zSnluYPXT7rUS8WGJIhkkpMZvFABBxxhEQMjmIALOhMLGNvmaMqwuTW0aH41p5bmbK4SKQar1c1iYNk4YSYmVttVxZ93NBamzOzwNjURj9+q+9feuOiR9+5/vfeeThKA412WarAYobSHOez8i5fGbal8VPfurjw6OjH/vwbx5+4dlN4wOtsHH45E//9h/++mO/9dv6b9NjR1+47dbbjx0/furU2avTk7XVqp8T6/Uq4zzI+zox5Nru7s6VhXK+GLz6da9uNOsvPPdiaihYcrjv3nLrDYmOLlydXKqWr07NNVYrjqwmaOM0uePmm3du2/H1r319bmaBKPYDb9PwpoH+3rZuz00tEOrZ6enB/oH+gY5iqSSk6usd4Bwd3xFCorGBHxi0riOy7jkpBWNkLXLJGct2eGsRpGKe50nBW62W0QnjaGza1d2xurzMyHIGwpFWC8l5q83iOBJCcKByebVer/X0do9v2UwEWluTpmmq22EKgXBdh3OurVFC+bkAERFJ69TzPWMQiIHLEK3nO1Kp0dGReqMZhzERcmBhEhs0xMGgqa812s2wkMt7vqeNXl0tu57LecRDKZQnpSOkQCBrMaMuam0dx0VjkzjlnDmOA0SMcS4FcdZoNoiYFwRGm1THSkljtKNUVkDPGF9fL/tevq9fNZrR0mqt2Wp0lvJDwyOVtfpM41pHsaNZb45sGrr77rtiEz/+xM/y+cKbXv86q+Mzp0+5rldtNgf6+/fs3Xvp8rnz5y4UCn4YNy5euuJIddd9r0iT+n/8x38Xir0eqaje/PLX/r2VxH/4p//LQvJ7v/fbt99599ve86ZvP/TdWq2ez/vf/fZ3lBTl9ebNNx+8cPb82K5tL5449mef/LOPf/wP3/0Lbz91/tLzR48B9HX445v6d7Rq30MCIBCKGwIvl1Oei2BbYSM1neXlleri7Gte/8C5KzP53lKz1V5ZWb77zrtefPF5tJSlt2BD7NlALGQ3gIyBBgCcsbAeTV2cybnFnqCvUi77gZMmMTE01jgiG3kKLoUCMEhxEu26fntXR8cr7rsjitrNtdCTcmphcveBG+r1lrF8vV4rFAtxmnAmOjo6gnyxp7e7Wqk1m81XvfJua83VK5eDXFdPd1e11gjjeHR8UMdtgwmiYYZc382QO1ZTkiSZ1KFTnWqjtaYNdAHLCh+5UgxEVvyLiNrY1CAQaUPaGiRLBhgDwbgxxmjNOJcgGWdZs6axNsvvZoqQRWQbThzOIIsXAOOUdSoCATIyxjBAREspcpEtpexlRR2MtcAEJ2aROENtrBRCOI6Ttb0rLiy3RGAscURAoqzMSilEm21qTHCXM0aU9XwZIkZgU22s0dZInslVVmvDpeJcUlaPjaRTA4pYVh7AyFoTU8o5s5Z+/iZgHAwaDsSlYowLoYBMrVpHuSqDYjtJe3t6XVWYuzbX39/Rk+8KXL+eNMnYvo7h+ZmV06euJXGrpzfXHuytVKozMwsyX9q2a+dgYo6+eKQ8u1Do6Nh7w/7NW0crtUapu6tVbywsLVvEVjPiQhRKnV/6969+/GO/6DpelBhGfMPuCYyAGHCgjDhCnLPsXsVANJoNhmnSWA/4wPzUrOCMI6VxErXbgCQYk5zV6416o+E4LiPOgMWx3jo+8ea3vWV+YfYr3/xqGLZIsbCeOpDHFPM5B5AnIeRzHR/89f/52te85W/+8jNXFq+Nbh+YXViwBjZPDP/3l/9lYmz0Ix/6jc9+1oZRfHVqshG2Ogc6n3jm0YGB/oH+gXa7IUGVOkoWsdhZ6OztGRgayRW9F48cKfUHiHZ+avH0iWP5nBoaHqi32/NL5cuXp+LKsqtEX3/XwvQM3nBLYtI4jRuNRi6QaHB80/iNN+0HwZ558tnZ2fk0H85OT+3Ytaurt9g30OUqIaUDgIyB6zoApKRAJDQ2G6hwstZYyuQeICEkRmk+7ztSxHEcR1G73UrX42KxqJRAaxwpARgak8YpKqltGoYtKZ1KuRKG7TiJleMNj2zKzlhoMA7jRr1ugaexQYysa6RIjdZBPiCCNFHGmEa93dFVSpI4SVKLtquzy8m5ruuFzbZwFFrju55l1iJyLhAxasftsL3WKitX1mr1dtjq6x8cErKzM+8H/oZkCkIpJqTKLMsgbOI5SZwopaQURMRtVvQKnGcdcRjHieN6nu9lnC4pRapRmyRNDZDi3BLwdjudn708MjE4sXMLWr26vNY71H/9dfsr1fL5KxerjVq9VX3iqSdeceddSTu9NHW5b2hg2849y8sLly5dUr7K5/O5XL7UVbpy7uK589W3vvEN73v/L37yL/52fn7tT//gb1qtysff+dGJ4U0337v/C//+bzOLU//9318uuvn//ck/Lea9pdkyAHT0eEmMWzePXzp5amBs9MXjhz/4G7/6T//433/72c984Jc/fPrimXzQUyx0UgaC5GAJo8R0lFxNlKKu1atcTLTajaLn9g/07Lnh5vmluad/+jOf08SWUSBQykWDAC/byIHYhnadzds21jqL6CpeKuUYsDSOpiavJknMAJM0RqRSqbRj1/arV6Y4k1yJvOdqrf/j3/5Tx3qtvPy+973rwTe+8Q3vfN3y8so//fN/nb5w7uDB/a7Xc/HSJSm41snmrZuDoHtwaOToyZMdXcXLFy86HveCgueWFhfXTp+9ODBQ2DYx6jsBAw6WHKUYz4DHihBNmKQmQQRGTGuKE4uEUnDPc4gg63wWXEgGFhOLOk1NloLRmtAiIQAnzhgSaGMtWk5ASJA9pwAWARGZAMaZNdpayxkB45QViUEWWs/QCyyT2BGJMbKEjPhGDJgBMA6MWwIE1AaBBGPAFRAD+bKvH7KxlQCuHKm0JKAoToyxhKSF3sg4MyaVYghSMsa4tcg2WiHRapttUEYbgRyIIccMlG20tqhBSUGcIxAQIBq01hAXAgGsRUILGw8VPc/N7n9ojE01gJBMkKHhgeHu7m4l1MTYYBq1apXVMA4ZMGu1RpvG1vcdQicfdOYLnbX11VotXL68QiBixLHR4QvHT1nLvve9Hw309f7gOz/s6OhuVletrfd0dvb29c/NL/f1DLq+f+DgTSYVUjCtNQFxxrJtYMOpALRBgyJiHIB4pVxr1Vq+7+qwPT877w4ORFEMZMGiAC6YsBaZw1dXKtYSF9wgREl6/6tf3dnV8e9f/OLk9KSXk3EUJia+67Z7Ojs6cn5OSGmRd+Q6br/lzscfe/Lz//qPpa787EwVBXR1iESkQbf/pf/84vDIpl967688d+Kpo8eP9/f1N9cbrssXFmeiKM7nClGatKOos9RRrzZ277nOc5wnfvLU3MqCNe31yhoZClv+iWOnhOCbxkZPnT/brK16QhSKHYzJX/zlX1IyWFpafue73vX1b3yzVl0pFosXLl1BRve+8r7bbrutr/9Ss9ksdgZjm4dcPyh1BNxuKJScMc5BCImI1uKGpxltlKTWaIuWASjlADDHdYFYHGWdiWGzUUviRHIORFIKYwzjLE2ttibRSao1Y2BNStbEYUiWkKC8ts6A9fb2BkHge4EfeO04JaPTJMqGCtpaJpijPDQYxbGQUkll0BAjrU2cJj6Xggs/HzQaLSlZLh84rmuMjgPtBZ5QanlxuR0lptkMco6TcwaHx/KFUq5QEFISopRMCM5AWrJSZUKtyOXygCCkdFzHaJ1S6vqOy3nUTqxB13WUkoIzaxEoOy3p9fL69NTM6NjmVitemF9OU220qVZq07NTu/ft3L37+i1jcUs3G83a2kq5vLJWyhWM1WdOnCWL119/XWqRJGNor1665HoKCF1XdXR11dbLR44fTuL0hoO39PWN3nzjnXEYv/IVd33uc3+/bee4NI1vfvOb7/mld1w5c/W3f+/3//D3fq+rr+M3PvpbnZ25arXdKMe8o7mYhvtvumFxcWXL9m1Ly+X/+PfPf+y3/uAzf/9/PvaxT8yvT7btjYWuwnqtygQYA2h5qm2t1s4UiGqlMRinN9xyO6ZWm5gscs7iJO7sLOWLuThOKaMIAAOw7OeJomxR22hW5wz4+NaJB9/0YE/P8I4t27753YcY5zqJuWDGUM4v7N6z5/BzR7Pdo7e394EHHwxcf71c2bx14uKl6aN//BcrM9Ovuu/BfL777e985/rqquzquP2WG4jM3Nxsux11dPhMqv6+wXplfcvWiSCQrhvU60nYrccmRhRLXd+rra92FoIwbBCAEhIBMrGKC2mT2FgUPCsR4GRsFuXlUmamSMYFI8rsQ5Yo1cYaozO6D0DmMcnq4xGBc7LZjRUEARCiMYiU1RFYRLshi2URAcymBQBkkQFZJATGRKajoMWNEqLMnswsZyIbVxu03DDOmBJMEpE1BpSbCR0gpFAKLQEHGXNts3NutkBb4AJeRi9Zay2CQdA6az0jRCBGBg0C51lYGgSBTo1BYxiA4ByyVkzc+HbGJeccISMTge+5YgO3R9YYBiCFLHqFgd7eYmd3rZFwjbrdnJydisNGZW2lVMrl8oV2HHd1dQe+09XVsbwaal1ttzzOnesPHuiaW718carUmQ8c31N+6uh7Xnmv77lBoXt4eKhZXXv0Rz9KG2XHzS2srmzZvadzYLjc1D0DW5fmryIC42CROAMC2gDCQhaFyGhRqJSqVKsXL11zi6WlWjXXGzhA1VajHTdKHXlCywC01tpxZ+ZmiDFgyhrgXB246dYk1YcPP88dAsmiJNq9+0Chu7R510Rnd4+wePHcpcvXTueCX6hU1xLQ1Vq1qwvWE1iv2v7cWnMFRnfmbBo3Db7rLe+8evHKsVMnSoXC0uqKQV1rrYZRzXcD3y20q+2t23Z05DsNorZmfXUN0dRaTU+JerPa2dk1O7uMjDsudgRcAmccDx28ZXRo4vsPP3LtyqUPfOADr3ntg0dfPFyp1hHjEyfPNlvRO9/5VkYUFDzp8mI+EI7HstkRIBecATLGrdFIkKaaC6aNMWlqjclqMbjI+oOE5wkinSTaJHHUbkftNucCLaKxrufF7YhxrhwnyOXSNMVGw/MDJSUQC+NoeXl1vVIJfL+7u0sIyOd8oy0miZWCJHccGUUhapPL5dJU1xsta6wQsr+vw3FdL+cyxsKw3Wy14jh1lZedXZRyHMeRglvD0BqlNuYEQS5KUx7kckMjY4OjY13dvZ7naoMEjDPpCIlESWIAwBpNwC0ilxwNikBatI7rCiEBSLnScVwi0sYw4MAgSZPsiqkcUavVBZ+XjoOoa7VGGieOy3jb1pfKrdJA4OX6OwfPnj1XK6+YNIzamBiuLZ04eyoFvWfLXmJ4beZyd3fnSmU5ihLHU41mdXpyZml1effO61ZXls+cPffrv/KRkU1DquQ8/8KxLXvGpmeucICHvv7dm2++7Qc/+QFH/vGP/cbn/uGff/O3f1NJmSv6A4P9/YN9k5cm+/r6z5w639Xb/72ffGPfgf3v+8X3vO7BQ1/9xn9Pz1+s16oA4LoiyBW0oTixM3NrUnnDm4YbjUZfZ/f62ppU7vpauVlrrSytBYoP9PUpqYwxbKMgPUs1YTb2zdzAG0M3QAKsrK4//dhzI6PjYSWaX1hgwAhBEyoHPNfX2rbabc/3rTVxkm7Zuf2mgzesLa9WVtc7u0uVahUQz509X15bPzhw0GjTWSxJ7jiOV8x1RCGm2s7OLtRr7f6+gXvuuf30iZPG2uHBoXKtsf/A9du3jPX1lR59+IdLq3Mu01wAGisFh0xyEQCco7YMiEnhgLsBt2ScCyEY3zA3AcMstIsWLWpDxtgsbgsc7M9/W8aAM6TsfwIRam1Sra1FqZTkRIhMCtxwS2e1iTarnuXAiWX2SbRWACPOQQguOLeMZz+fCy5JWcMArEVrDDBgEhHQEhprtQYhlJKCc89xDGrPcTIrkpCSiHg2++Bg0peT+ci0Ba0zLhFldi5ryRIpwURWacayBwcWjTEMkRNZREKwnCsuhUVAImut4Mr1XMYBwZpUu0pZbRCSNE6SKBIl8qTQSTzQ3zM61us53BgdxWG92Y6jpLenTzqys9TV0VVw854BMTe31Gg2+wd6tm/d0QwbJ4+fnRgbcQP5wlNPDA0MHj5yIqyGXt5ZnJ7cMjHKPZkiTV69eu7s2ReeP+N1DLDFacE5ZkXlWVcBABFs1N1kViXODBoy7LuP/Oi+u++5fOp4shTe0DvQiqM4DTu6i52dHdX1Gmc8idL1yjoXkjFOAEoIx/HqzWa93WSChe0oCIJ6q/zi4fnHHvshV4yhjUIDBMP/+ne/+dGPv/rxe48cfa63M1+ZWhsahKG+sfHB0kd/63f6Bofe89b3vereV37wgx/6/L9+8cSJ4329Q3OzkymlxDEn/TBs33Lojm07ttWq62GYfOg3PvD5f/63l5477rud7XZ9x5YJxkVldWWgr3vrpvGBjp6nn3jqhhtvvO/V9z3z7M+eP/xcf//Ad7/9vfte/cr9+w+cPHnq2uUZ1LKyun7p/MVt2zaTsN29ncAZIqVx4qqcZJJxVFJlyB6LBjcyjiZzNUghuOQMGAEgoOQyja10RJyQTrXrOsViIZcvcM6FJ3Vq2mHMGMsXC0gUJTGiYcDyxfwQDTYbbdImbrWgWIrbYZtxwQWitjqN4qRRr4dhm6zp6u5CS/V6jXHe1dnhuA4CGYu+5wIIk6LlhoEhtFIpANZutKQSQeC3LNbWq+1mCxAc13VcZ2BwsG9wKMjlgDFjkBAzQwgwZo1J4wRcSuKEMYaISjmUmbJBADOZJcSXknORpDpNUimE47ppnEqplFAMoNVseI7j53xXAeqIIOGKBgcGNw2NhmHr1JnT23ftGBsbRRtVa9W4HRe7e7kQQVFtGp9ox5FFHB0ayfuF5fKyK1U+X7xy5dr07GRqsbpeefhHDwum/ubT/3j27LljZ09emTzbTKrLCwsAMDhSOHLkGDr43Ye/98ADD9x6x50f/LUPHjt2amlp/rZb70LS5ZX1cxcumJQ1W7Gfc770H1941b0333xo55PPeiePv1BrNB2HAXDgzHFVmhjXCyoVWl1bv+3WgwtzS9tGh5eXl1ZqrfVKZW5hbvuW4bXyaqPRILIAxBltwHIB2AZrhTjnYDOtlROwvv4BJL60tNzZ0T29MIcglOeiDnNBwZHO9ORsd29v2I6Uw5NY//vn//0HfT8cHhga7B+6b8s9uq1PnDl97KXTEzu2u46qV6vjowPz83NxEhaCUnd3z9WpmatX567fv+voc899+1vf5oKk4yeJBUIAjMPmt7/xaE93z6ZN40szl7U2nlKIZNFw4NYybZEYQ8YFY1I5DpGxJptHZws0MKaNMWgJIMPyIEMmAIhvQPRZxgmVxGzW//KyWd6miY7TFJEcYqCY4EBE2lgp+cYTBggAiAAMBOecCWACIKuhZlJKAkG4Yb3fGK5wDoSMMUsggCQaSwatsanWXFsBnBFwkVFrHBBAxBTjjiM5Iw5EhEanZJGAtEXEjVivkBLRQqZsGUaccWCu41jLlCMxTpAotYbbl0FChMCJM0lc0UbMjBltQKCQnCF6vpemidYGBXIuCGB855hOEjRRIZ8vdRVX1xpgc34+yBfEpQtXY90+eHAvkKyVW1pgmiQ534/DdrvW0Knt7Spsm7i13qp1FBzfDRq1KmdMBc7izCUv8CyZsNW0GN9y6Pr1RnXvzXddPv68IEYCEJGzjLXNGcsuWrQhdmSJFeDHTpy4/dAdQ5t3PPHsS7u1aTTDhZWl7v6e/QcOOjIHnG/aMr5tyzbO7ZHnj0rHUYLNzc8MbeoZGxtbra0pLnSYLCwuKSWFIK1Tl3HPFfnA//JXvlQseJ//l3/7oz/8o4e+/+2RoeG5+QVI40/83q/t2rnzve9831p56aFvf31hbuYjH/lYf/fAt77zUN/A4Gp5cXR8lFveNzo6vnlkanbq7KkzfV19Vy8M796+a3lhfXpmZnhoi+uXorC2Mr/Q1ZUf3zLcXcoN9g++8fVvuHDx/PLSiqNYsehb1D/60Q9vvuXGLTu2Ca5mp+f7+ntd319aXR2fGPdzBSk8i0AWHN8VnGWlFrRR8QNAZIxBa4GIC86z4L4Fa63jOlmZlJCkhMgFAcv5QT4gYsYgl8rzg0QbsoYzJgUvlUqVSiWKw1a7pRPd19cdt9tRo7GEtlkorikFAFGYWGOk4xhMkyRSWebLGKOtEGANNZutRCdZHthYEwS5QqEYJ2mjVo9rTcfhUkguIQzbzUar3WjoRFttBGeO8gqlkh/4aDCKEs9lAIxz4EwQQhqncZQw4DzgUqrMOCYdwYUgwiSmOEq9wCFijIgL7jiu4zhSiJQxx3GVEDrW1XI1arY6OvL5rkKpxEySFoNCLggcRy5X1qph++SpUzfdtHfT+Gga66V0wVV8cHioq7+nf3DozMlTF85eeOBVd4+Pja3VymRptVxZLa81G20gCNv1Vph+5CMfefbwk1/6jy//4+f/8Wtf+drUwoXAgTCFpfnK4MjQ0uLSpq2bVpbW9u913vqOd/i5Qrm8kg8CqUSp1C3UvDU6DOtCBisrM4sLU81GpbMjPz+7zBAskrTU292JyA3B6Ejf5NVLlXLz3LmL+/ZsP3/hwvDIiFmp6CQKfFcbfW1yOjNRZJEj2oAIv3zo37CGEgBTXDGl9h7Y97o3v6G/Z6BeazrC19oqzk0KXk/+pltuWV5Z1da6biAcdvOtNx+67eZjh08evPGGmZm5geGRE0fPGkvGYj5wj7zwfLPe0hrPX71EaEodHbV6eGVququ3TylWXq9evHh6aKifcb6y9uyNt9xhGvXl+ZnlxUUhJILJlYqoI2tJKcGBjMY00YgMLUohBWdEzFGKMcoEmzRJGSPiZLQhC4BASGgBLTFiWfSBAQPgnIGQEk0m8LCNzvYNrLTNeOlKKWCMGCMEtPRySxkn4kjEGbDMxiMYUaYmsYyuYa0lQwx4ZsTPoncEIAQwRpIxbg0abckVQmYJN0RExlFKYMIBJnylPF/BhjuV2Q1EBRqbATsYY0xKQZh9tjPZFxgTUkjBreCcC5ZdGzgHtAYRM+qEx3hfd5/jBXnP1TpcXV1pRg3Xk4IR58yidZXyS0UCa8gEgZ8wLC8v857c3OzMaiVsNsJyudHZ2bOytnbuzEmTJIHrzS3O5UqFdtgcGxmTyl2aX1xdW96ze/fe3QdnpiaZbnYWO7uK/tLiCnfVva++iww7d/Y0I7p88fz2HRP9A0OyqYAkE5I2ZlTEWFa/wNnGJIBxzhEsIQrH5Zw//dzzb33zWwtdV1564aVKrXzs1Jndu/Yq6fjKS4xZXVkVIO594B7PdRGIiI4cO7z7uolf/R8f0F/UTz/7jOMoidLaBJCEgDDEYtFNUzMy1vfZf/7nRjv6+G//zrbdez79138HAD2F0be85S1//sd/ceHSpYOH9l2bvvb8kWfNZ/FDv/6RICgcPvIMWjCWdm/bse+GA+dOnpqeWSgUnDMXjzMPJsa2vPbB1zz1xLOrK0uNWr28Nr+8vPxErXKwcX1nZ9eHP/SRhZnZFw8f9r2iUnD16vlNQxO+67/4wuE77rzz1ltvOHjjHgtpErfzXb29fX2em3McT6Pxg4BxQkCbWZoB0qyfFdFaDUicA2eScw5AXHIhuZDSGqNckaaJ46jB4b7qek0nmjGRGutwmeWuXT/wpNNqNYVUjKsorlUqtbDRUpI5XEjFrbXtVttY0knqeq7nu5yT53i5nFfM55VyqrUGYyQERyKTmqgdeYHPgIyxylFKOVGcKCWrtWqtFsdRyCUv5AMAFoURAHeEINfhXEjGBAhjbJpopTwhBTCmU2ONiZJIm4QlkMYB9zkROY4juLCIynGUkxpjdWotEucgXSWV4FwQAgNuLQlAwbnjqDhqL7bqHVFHZyEQBhMrrDXl8up6rW60WV9ffvGF8Lbb79i77zqwplKrFov+ptHRF55+YWl18dKlK4KZt73zbVu3bl9fX79y9WoYJiAkI7O61nrT217zigfv+uX3f3h5buGnP3nsk5/65Ncf+u/DT/746rX50fF+tO4dd9x9w4Hd7/2ltz/6w599/gv/+sJzz7/1rW9K4libdOvWrdPT1+bry/kgBySHh4ZyQaG8XInbiUl04MkkMRnAyXGk1sAYmlQ7XJVXVzruvPn0qbPXrk33Do1UK+u1cgUI6vVas9lGiz+P+xJQ1l6emYDIZpM2bgGYxUq5euniVbFDuV7eC3LDI6OeJ6q1susFxe6O5547yoClaTI2NLJ5YvPdr3jFvr03dRQLrSjKF4t9AwOdPT1xHPf0dlybmrz++j29Pd2bxzf5gd9Yb0rpv/Z1b0x06jjuPXfdPTjQOX1lcmVttXdgYGF5OU7SRs109/SvrK7lCr6gJHAcNGmqNZHVGrVJiYgLQYwBF0IqE6eIHDkCh9TqtJX4rm8zLALhRgjKGJZ1aQIQIJAl4MCBc/5yJmIDmUPZfsCyoyYRcQAGjJAg64/MmBJCCkcqqVTmqbHCkKZsyEBIaMwG+IhlpS3IGGWJMs65zIg8QMSIcZ7tHmSMsVozBCGE6/u+Uo7izFrBeNbgiPTyJ31DFYeswAy4JMzQmUK4CiQDQQBoLKDlQjCjbZJaFFAo5Ee37BgfHHeFX+oMKAnnF2dhncWplkI4igEai8bLO/mCbLfLThBYsoeff3F9dWl9rZIv5cvVemdnV1eH11nyVj22a/f2fQcOdBY7/PNuV1c+bNY6i10ahY2iS5dOH36xurK8sHliExpz5eLZycmpXKFw4sTppUp588Q211WJTuZmrh6649bHH386N3wAVAAU8o0BCAkOG0FrIERigmWzEIuYppGW4ti5o70D/dt27PjxYz/u7u45f3FqZHzbyurK8y8eAxcYxZb49Tfv7ugtrVeqVuva+tqpE0e0Tv/5s5/99Kf/7kv/9Z/S5a7jmzRKU3J8aLWSUmewvLg2NNj7re9+udkM/+Fvvnho793vfvd7/uR//9njP3z+x4/+8OaDu8+eOR0a6OsbuHzt4t/8w1+9/tVv/MiHP/6f//Vf5y+fuf2uV169cuH0yVObxibW1mbLlfqF82dmZube8rr33HjwpqdeeDzSjWpjDQT4eXnq9Ombb769q6vvB4/8eHZ+Gqyotde9XKB1KrktdXdMX7vW4ReAY7ErcKQ7PDgSBHkAhwvHlY4AgYiMEQIgWmuM1mmaJsQADWZ8NCmkFJJxlmV2Gs06oiHUrWaLAfmeRyCYUFxIk7TSdjvDolgk7kg351VrNaWcwM+VCrE1tlwudxQKo4MDxc6SJYzDNE1TAkrCNmeoHCE4S5I4TuKw3SLEdrMlOCcgbWxBqlwuiKJEMqWTmDMUnOVzuTgKhZJSCW1QSJEd6KSQ0qJFZMQ4gqscKaTve1IpxTkRJKjTJFZSCMbiuA0MGXDGQfo+GgvIlec4wNvtkHHKmq0dx+FMKEcZg8ZqIsaEcF0XTbJeq9cb9aHRQQTp5os2Navluo5tuxm6UhHiieMnb7rppp1798xMTg0O9F85f3Fpbmm1Vu3q7V6vVg6/9NLBAze1mpEb+LkgF7ZT1NH45qFXP/DAf37+y8tzCwDsE7/7W0ePnT6w6+B//+sXAQAsW5ibHRvsesUr7/3mV77+J3/+52tL5Ymtm3/wgx90dJe2b99ezBVTrUdHh2vrzZ7O7ne/931a0/TMfBxbJd00MYxAJ6lSwmgTR2mahoWis1ZZefC2e6ylWiPcc2D/2VPnnn/+8L791xdLHSvHjnMpuBHamiwDBsA2vHYbdCCGBIJLNBwB4kZy4eTF+mITJV9cXGPG+B7XhNW1tfWV5tpaJQxTzhgTFEXNh77x0Mzk7MTEZmvthTPn12vr5Uq11qgfvGFvtV7ZNDY6M7PQ1VHU2lhDPd199Vb7wqWLhLbZrO3etaVarW4aHSvkive+ap/reidOHQXSX/+Pr5VXyyMDJUnIgUXt0JLJHi7nTHKhXC+Xz0WxTjGJtVXAfUOMC2M12UQpaa01Bo3WqdaWmNho0SVCZCAEy5rMwGpkJLJiBbthNxecA/DMccOFZJnCYyxqo43WnIErvZzneDmfiMWJiXUCnDMuiTgRCiY5aCQURK6UxlrOSCnuSEUWZSZASSmBMyRMUg0sm1GQtaikksAdoTxXAaJNDQAwLtFoJAssazPjkPEoLMLLLL/MWWQROWeMgzGoU50SSSmSJCUl+wY2XX/9AY/npy5PrldWbdJeXlktVxpJSq60nmDGaOEIz/ESE3POGYeVlVVjzOat2zln27bvHG5HUqqlpaUwbAY5Wa/FV69cvevOe/bvO4gQe3Kssr6+urZeLAZ+EMwvLXmOv31i61D/UM5xCsWcNvaFZ1+SUo5NjM3NTnlKWZuuLC2ePvXSGw7cqXo6YbWcGZQFF1l0G2gDspc5tRgxx5FGmzCO07b+0WOP/Pqv/ObBfdc9/fQzUnmFIHfTzQeOHD4xv7oQ5GVaa58/dmZkeGB1adGRzsz0ZP/IWz75//2f8vL6pz75J9vHNv/eH/+R4zuBKjgyaTYSR0KzHkoApbzOQvfDj3wvjcQ//e0XvvDFv2fC/Nt/frHerrWuVsIQgMPq/LKTc04eOTF1beb2Q4cOHbr1/nsfvHL50ne+973uXOHi+dNLazVQsFIt33fgpq9/4+uHbjt03XW7T586llO5xDYqjfCtb33zrp27H/7BI/fe/0D8w/jkkROGxY7jDfQPHNy/u1As1OttYCyOUyeSO3btcvP52KadhYJSniELZHjmSzMW0YRRKDiTIlszGQFog5wBCJYBplqtJqElQqMtWjLGRFEjTXU+X3AcNwig2WwAA9dzOedpmrbDOIzjVBvOeS4I2lFKJA1a4gy4FESlzjwTLE3CxHfarSYComGtVtsYI7jIF4Ik0dYarVG5SirJhMgVAi/nhK1Wo15nTEgpSp2lVjv0Az8f5NNUOyrW2pJFrTXnwnWUEsJV0nEda0kqxhgHIMGF63pZnZlOdQZ9y9iBypGMsaxEjwleLBQFl0mcWEsEVjmOcpS1Nk1T4Yh8qTA7M8cZT7VdW294xa641uwuBJ3dpUar4bgCEImgUq0cOX7k0I033XzzrYvLC9NTU0anYLHZaB28YY8Q6kc/+Mkdd9113/2vfuT7Dzevzff2D/3Sr/7SM888892Hvrt1x7bJq1Ooo/e//11/+If/e3TTpjAK5+bWbjm47x+++LfPPf3ip/7PX6+url6/f8/FS5c4l/OzC/V6bWJsy+YtW65dmRoaHPrghz7U29t3dXI2TMxaudmoV5mQgLZYKORz+cpavd2O6tVKf19nsZhbL9crnbU3vOvNx184dv78hTvvuj0IgvX16uTkpE70zxGLsJFUzWodKZv8AnAODoLo6eh63RveePMth9Iw+ekTT1kLxaDU1en73e4r7n3llrGdz77wUopJ3E4qS5X5mZk9e67vLBYAgJAtzC2sVyqzM/N+znc8xwv8R3/0WKuRHLrl4G233T48Mh62o1qtVmvVXnzphVw+99zzzzLFpuennnvpmcGRcSndfJAf6u/dt3//0vJsPlAAYRxHyIiBAGBC8KDoceRcOCmyjt5Bt2gq5TKBqbVrtm19pdxCLtSpMTqO0iRNU2MYE3IDK2ORwAJuQOaJEFFKIUUGVAZthJXABVNKcbCckzGGK0lZlSESEgkhOGdKCVepNEWlhOf7HJgUItMuiEAp0hY5Q9dVLnMIUUrOgJTrcJE51wRjjJAsvpwYRmDGktGWkISUSrqOdITgmfrBGAcmmMhwONnJGAjRaG3NRoEY2o0vNIiEiU7SJIqjUCqRL+TjSJ89efbFF58/fe7MmXMXJ2eXaq0ImSAlkIFFMogIpJTyfRcYWTL1envbth1j4xPDm8bjVOfzeRBs08R4rpAfGR5MorjRrDVbzdQSk0E7sevNdpia2eWlbTuvE07nzNKa8oulrv6eoZFaK+rpGRga29TbPxInxB1HcBGHraGBodGxkUBCb2evRYMEQnBE5GzDDsqyyrMNMYjQWNdx0FqXu5Lh0aNPvOKu23Zt32LT8MnHH58Y3/TAA6/asWO7AnIdde3y5Z7ubksglLw2Pd2sp69581v+5rOf/eCv/vo73v76733zq8CVNayz2Ds80pcacHyVGlhYXphfXBndNPLkcz/63T/4aFDwBgaLpa58Lucx5nkBAwQQbhph/5Y+18cf/uRHs3PXrIaR/k39vUOTs1OL6zXHg6DT2XH9jo6BbvLM4aPPu9K97Ya7JPNYwnuL/a9/zTse+8FTx46dJIKxoYnOvh7G2PDQ6Pj4RD6XW681EOnM2bNCqY6u3u7uHsFF4AeMM2u14OAFjjGJNVniuy0YcrBEVicxkYGsBlJKLgURCcELhXwuHwjBtTbKUbl8LpfPd/f05osFx3VzuVwuyJPdSIdYS1obIaQ1qLVth1HUavu+EwSBTnRlbS0xaWq1RUvAgkK+o6dbuV4risI4ieJUo3V9P1/KK6VyOb+jVMgFgRQiyHlxFDebrWq1luq41FkYHBocGBjI+QXGue8HXpBTjmuQtDbaWrSE2Zkna6dyHdfzCEA5Tld3t5BKCEkEGQ4GgNIk1WlKmZhp0XVdIC6lDAJPCsE5T1PNGPMCVzlKOtIP/FTTWj0mGWitUkNJEi0tLPquNzoy3JkreFwKkoEK8oVSiGZqaU4TDI0OA1qrdbGYG+gfTlJ99vzpR3/86NjIpr179kkl3/y2Ny0vrH3lK98cGhlaWlxAa7Zv35Fg/fTxE1/75kOVtcru7Xv//gv/8ujDj//VX/51b3/39TfuPH3qXBqZuB0Lxert5vzS/NpKuSPX+Su/+qu33nHbzx59NsgVhXCNBSZVNhvjXPh+zlqKk/Tq5cmo3Xr1/Xc4SiHyp376/NLS8oOvfyCfL7Ra7enZmatXr8HLSLLsAwUsk7MZcJZZghhseFc6S92edGtr1aH+Yd8N0Io0sq16+9ypC0/89JkXnzlmjAUSXCnlqt6+rptvOfju977tztvv3L1r9/LSkuPKFOJc0QfBS6XOrq6e+x581a233e7lclKosZGR3o7O7RNjW0aG9uzYfO+99wz19t5x6623Hbpz547ds7Pzfi4fp5gr+IP9vQatQUsEjpfz/Hw+nw8CHzgzghvJWhpDMp29Pdu2b988sTkICmghaieNZitNrDGY+T6BgLNs8QC0mAEbMsAPow0cRna1yOoQGQPOuOBMZXXEBPb/36PLOBdKKd/3/cB3HMf3HSmEZEJJCVlDKc+cz5JzphzpuMrzHD9wXcdRQnmuK/lG8BgYY4CYwZkZI7JojEGLSglLgUXLNjQlyzkIITIKKecckDHYQP1obRAtMEgS0Q7b2hqrMdWaEHRqXMV1qh3l5Aq51FKlWkvjJFcKgiDPgOIosvVarVp3QBZdH4m5XqCkVNzRhGmii55fKhZNGldqa8LpnZ2bi6NICKdcXvM83w9cncSo9YnTJ8Mo7unIxUkilQ/Cd9xcsaN3ZXnh7OVrytsd5Av9o1uaYdxK0rHx8XK5XKs2RvpGVtdWt+3csmvXzrBe7e/paxVK7VZiDXIljMUNQklWjpNVGgBIIaMkVZJrnSQxv3D+3NEXX/rF973/Hz/3jyePHQVr77nz7pHh/m998+sz80vV2vrY2BgHpo3WRl84f+lt73jX9x957JEf/uzkqdf+r9/73aMvPfe7f/gHj3znB+Pjo71dcbMZMgCTIpcwOTmZ7wy+9p1/txT+4f/3229+8+vBofNnrzntlFHIuCx05gMlpq5dffd73/6KB2/90//1lxObdn74Nz72ub//62sL127Yd+DMmXNpDS6cvVCur1CcPvnUj3/hfb96512v/M73H/rAB/7ns8+9ODk9U6mVn3ruqe5i5759B5YWOwZGNj37/At5xSY2b22H7UKx1N3d09c3CFx6rnClJzgjQEbMplZwkSQx44CIaE0mBSWJ8TzP8XzHcyUTmeybATiNTZjgylGMkVQSiAmpCBmi1YkWknm+a6zRWgOho1QQBDpNW816vdpoNhqGTAsAtY6i0FnzAbifCxxHujKL4oHg0is4XApEzEZwQeAHuaBYKiZah612q2WQSDoyl8+FYdhotjzPV8ohYiY21pJ0lOupel1razP3N3Aex9pC7PqBkJJzAQyklK7jaq1brUaQC4KcX63UckGOODBgSZIKIYnIpFowrhxJQNoYa6zrOsaQ8pTjKNS2r7+rf3igdmmaOW6ps4sJFrXD5eUFzml0dDhs989Ohp5SwxMTTiF/9syFlaWV/XuvGxocrFdr7Tga2zxmUjM9Nddqh9euXXnmqad2btv5xte/sVQq/vB7D/tufmlpKQzTQpdn0Ax093/3h98s9fX81V/+3d4b9tQb1U99+v+ObBpeWV1aXqlmQRcRACALXFcnaf9432994neEEP/v7z8bNXWhowgMHNePklCnJhd4nHMpZKpTIlyYn2s38/e++t7l8nq7FbXa9fGJTVOXLq9XqxMT4088/ngYRkJxa/Hnxn/IRsE/D4IBY8A4Z9paIDxx/ERlZXlibNPK6gqgEY4ThVHYKC9PL9YWy2tLy0Tke07caj/102d0aO955T3XJhe379q9b+++h7797dnJ6YMH9jpKNZvNu15x1+imUR2bfK6AaKzBeq2+OLfoSGdseLSrNz8/N+NIvrS8vLN/SHA1MbTZ6PjU5MV8wMmmRJgvlIAkZ6iAEaOUbKxtZWnND3Ltejtp6yQOFeMHb7ppfMvwD7/9yMrSgpJCCGmstYgZ/geAEBGJBEF2qiRCIpvFaDKzCSCitYRInGeTYqQsIc0YF8iQEVdSuJ4XBLkgn1fStdbGxhIDgzZbxjmDjPamBCEjpYRUigmeOS+JSFoi5JRldjiAkIxzwRBQo7WYGM0E9/yYA2NALHvJkABog24EjIghkUU01mQUIQBI0xSIpdqABa1tai2XDAAdT7qez7mrvLwrZCEoGmOFcIVgWlshHE6cIQjOwaCjlADhEBNE5fIaeIXy7PzQUH+tVhccKuVqX08PMb55fHOzXe/q6mrF7Shteq5DgNfv3Ts9N98ME6RGouPBwZ5mdX16ejrnO7VadXl1xVWi1mhJt7yyuKyE22y1VmrrTz3x1OM/frRrYOuObdtOPR1K7nCF2lrB+IZvARDYRo8EAzJoHEcBWOFIgzaK4oe+963rrtv74Q//z0/9xSenrl685eANwLAZhsTFSnmtUMoZq1Ez7gWP/PjRN77lF284dM/VqbmZKPq1j/zPX/qF937iox/78Ad+6S1vexsRHx0ebNTaK7V1NNBdDCrVEAC++d2vv/a++4VTmhjbuVZuVdbK1Vqrp68nX8hVauVX3PeKG2+65b8+/9WZ2amlcjmG1m987De/8K//cvr8+Te88U3/9R9fBsHBtTu3b+/tLDz97KPbt+x+/WvflpD5ziPfRoulzvyx00cO7r3xphsObd289aVjR2ZnFg7dcJ1F0z/UNzA4aMgq37GWvMBHslqTVByykisEKaQxiU601gnngBaFyMZMAEjESUrJOGltdZqiQSWkU8jHSRK2IyL0fI9x3mq04zgkIM91+Mb1S1rEIBdYo8Omm50wbGJiikwaaZ1yIYNcjm1wtDgXHC1xzgwShqnjqMD3gEGhEEgu0zRdXS0jIucsyOfygS+lAMDFxeVGvdXd3R0EeRDABXDO4ziOkzRJkwzWKB1lrFXEpHQEF8YaYyznIopiIYTnB67nua4nlNTaaKOVUsSYFC+HXYiiOCZrkSirYSICnWqrdRzHtfXq2NhwoVTiLidL5ZXVpbm5VrMugDxHdJSKenjQ833luBfPXV5ZWxVCXLs67fv57bt3Jjrq6e5aXFypr9UxpZ6R3mqlPOXO3XzTLVOzV2cX5joKDgCEYdpsxGn72nJ5rl1L//R//9Gn//Svr5y99PFPfMxxnCRqLa9UswW4u6dDOTJsp77j79m19y/+6k9Onzz/mU//XwJ5zyvvtGhd19fWIFrOBRNZLJR0qk0a+R4zURy1wuGhobnF+dS4R198CRhs3jrx4vOHL12+7HpOolMCEpwjZRSYbNknRiyzRzJGBlPFxfBQ9/j44Pbt26rrq9PTVyLT6vbzY0MTxXUfLXX3FSdnrniuk8SpkCZX6BndNFSuVOIkLZfXFmdna/X6gYPX9fR2rpZXe3p7hENh1C74eaC01dLLy6uXp66cvXQRhH3+pZduvPm6iYmJdhz2DvY3mo3+/v5yZaWro9DR3dNuLDtKALmOIxlzOJFIjWaWgJIkQULBGWodJikDbETh448/Pn51aGR8pF4ta2MYobHGaGuRGM/KFCn7jTnj9P9j6r+jNUmv+l587ydVeOPJqeNMp0k9UaPRjKRRBGxsEwSYjAADxthg+9rG4GtfXxy4xmADBhswmGBEkgQCCYSyRjOjyXmmezrHk8Obq+pJe//+qDNev169evXqP06vPl1vVT17f7+fT92rquOciForRIgcQ/QhEghgkghSCsHMNfyilsAIIU2SpmmemEwoFSsPKEMkH5hCkFJCPT2HfTCtSbRUtSSApFIxBhEpBh+cc7RvNAYGFEIyYAhUVXYyKUeD0WRSOBvqI0kIngIBsUCUok52/P+VGbAGAUFpq9FoXFYVIROzUhoZE6ONTJixKF1RuvG4qio3KorxuEAUKCUjBCZmNFKlIA1wIiUC9fZ6vd09RtHvTYphxcR3nb79+IlbD66sbKyv9fb2tFGra6svvPwyCJidnR5OhiY1xOTJDie9o0cPSsm7u5tVUc7NTN99+6lmmh89esvO1vbedq8/6AfGdrsz3B0uzszfsrL4wD33NNsdJU0kBqH4rTs+vfUvJWJAjPvJKOli8BQcUWn9L/+P/zaZlN/3Pd//3d/7nYsrs4995bH1zc2yGE8mwxCDNgkC23KytbG5evXavXfcofIkFsNGM/ud3/vIP/rHP3b24sXf+V+/Pb+0ePX6Zqs5Y0AvZp1yWDx433EA+Ps/9v0X1y/91u/97yRvHztxvDs9HQOQjxjx8NLiQw+87czrr3zpy4898MD9i0dmnn7i8T//zCe/5e9+18PveO+F86unTt4NMUKAN984v7W19eTzX1nfWvvQt37Ll774pRCiMWbYGzHyuJhcvnxlZm5+qj11z313LRxYmlueP3zL4XFRFmUJAI1WEwDrC0ar2oBI3vsYyVU2BI8Ca8w+EXMEikTEUksUGHxkZq21lLIuWNjKeme982VRleOiqopIsZoUk/GEYqzRmlIqIWSe59PdqanuVLfbybMs1SbP8unp6YWFhYOHDi4uLnbanbm52YXlhanpDgB465VSWZ4qo4WQzsbd3t7O7q6zNsvT2bnZZqPlAyVJMjs7c/DQwQOHVrJG7mMobTUejweDoXdBaSWlIgahlFBSJ0nWyJmhLG1lLTNXZdUfDACx2WhqpUOIaZqHGCeTcjyexBBBYGKSJEkFoq1sWVZE1Gg0tDFEFH0YjydbG1t7O712Kz18aHGu2yZfrq5fHwz6ZVnt7O2ura7G4I+dvKXVat5YvTkajwSCc3Yw3Nvc2Ig+3HfPvcNB39pSatFqtaY60w88+ODu3saffOwPbjl2yzvf+fY8y285dFynAAFQw6TvWlPtD33b375+4+yNG1s+hEkZtrbGbwF5IG91SxtPnDj1Hd/zXd/4bX/7V/7bf//hH/nh6zev9XvbrWaTKQgF3lUxBG2UQAHIRKGsSmTIs2R+furs669vra2//NwLX/nCY1qpu+686+L5888//0KaZkVVEjEC0j7HGN8SC9ZnbABgFEwcskZyx/3H3/u3Hrn/HaeXDs2ZBIA8GsfGf+Dr3/Mff/GnG63UGAS0QsbKVZH8+77mfcdP3TYcjyLwVx5//ODhAwI5VBaRFhbm5uZm52ZmWq1WVVW9fm93Z+vixQsHDh5gJqHwyuUrC8srVeUXl5ad9VVVAYNS8sjRI6LmM0jhQ43WZ9IxRF9NymBjnmXGpNqYJEs7nU6WZr29/gsvvvji88/XY58aeMNU45L3y261Tr0WbNVGRSEAAWqddN0OBiKsNS8olJJaq1pNwQzMNahTKaUAIIYYQnDWee8jc40rDjF6CgCgtTBaitoCwywFCIHMoEL0QSASOeeNVkRc63UY0BNVPrgYlVRSCsxzrQwxA0AIERCElLjP796vGEhJAHXSg7zzzEiaGYRSClkkRkktIrGPZHIdCZhAJ6nUGilS5CTNjUmir3yAVpqkOpWpBIpGolZq1Bu1s5myikLI6enu5QsX8zTf2tp1zjZaTS1gd3vvzttTKWSr0SrHRZrW7QU2UjYy1Wglu1uDW2859PaH7vfe7m7vvfjG61kjfbl6eVKOOp3O7Nzs137dB7/3u3/w0oWNSQitVmenGAAK2MfX8f75CxGYpdifwTEgEQsUROS9z9J0d2/3F3/l53/owz9y56m3vfziS73eoNNqTcoCgEaDcZqmxWicK50hXTn/+m2333b70ROvn3l14gfSKK3TX/jFn3v72x75T//xv/zFn/7Zn33648sHF7e311RXvvTShW/99r9z9I6Tv/7rv3Xt4obU4sDK4qFDKxfOXSqKvelu647b7m43Gn/0J5+b6ijAweb1G3c+dOorT305+PjQ/e968+y5S1cuHThw5ObNq/c9ct/VN8/ecfzU3fef/LO/+N3bbzvuwuTGtdVue0qAHI6Hly+fG46Hx07cWtkCkadnp69fvqHT9MCBpTRNmHkfigmAKGrvUVmVyIwA2ujoXfA+BA9CAII2xiSJFKreCdXDTSklA3hX1WZRpfdfcJLEeO+9gJrdn+d53RhCBOedMrrRyJ23wVkAaLdbSWLSRu68k1KljcyFUO4NnPNamyRNBAopVSSKwVtb7ezuaG2WlpZm5maB0VqbZilwHA767VYbUJRlNZ70+73+eDSRWrcazUajEWIUUuXNHIVUWimtnfe1dkMbUxZFjNGHoLWpr5A0Ta2zAGwraxKDKBhQa0VRWOcikWKWSkopYb9Pgi64EMPu9naIIW9nnam005na2R77yuVpLpWsbIlyjkASUZal0TlWPlKoqgJA2KqcmZ7Z6Y0RsdlsHjp6wLvw+iuvXb9+fXl5/ru+43v+9KN/vLq66SuQGpaXlrMse/TRD8wvzn7sjz/xf/+bn/2XP/0ffv23fjmT+XA8AojTyws3rly774EH/9E//fHnn3nmZ3/mPwbmA8sHULIQ6vr1G7vbOwuL81opKSXFiEIACkBZTCpmnhSTVt4Y9npXv/TFqvJHjh46efLEC889/8UvfTlGPylr01FNWKnT/1TXoQGA/g8WDhkgNts6xOqFZ5+95dCRbmfOGDk/N7O+tn798ptvvP7ykQMLEHyWmBAdEmstA/H27mBhYeXrv/7rX3/jbKPVvHrt2jsevrfTar/y2msn339blmbBewChEqMr1x/sSEnawOEDh5JMjYo+AObNllb6ypXLjzzyrunWVGrEtesXnI2MKJUChBA8CuAYq8pOyiqCyk2qtIkAxFxY52LIG/nuVn80GHTaTQb0ngMzIwgp9icIKFAKFgj8FsotMiOCACaQsqZ/CgCQUigltJZKSmaOxEICxXpeJISQCBhjDCEWk6KsKu+j94GJOQSphNEa9T5RmiJBIASIzDFEYlaI+/nbELwUQkgCEJHYhxgjhRCZqayqPE+t91KCrA2JyJGYGaRAlkJEVFpGpkCMCPuk1zrlRMwClFaCyCgOPqACrQyAoBjrpl9tTA3Bh8ggtPNFVVqnZa7ztyriUXC8fvnitUs3Tt9zN8fxeG+UJEme54E2T546ubu3u7W1PTU9PZmMH3nkYUuWg202GkR85dIVLUS70ex2Wls3bz711afYuZdfeHZnu//yG2f6wwGiYuIDBw41mtlnPvnXjzz8nvMXV0/eeadkrYxxzgGzEILISyFQyEhBK02RAWXkkGoTggNAyTLEOCmLnLMb19b/x6/96rve9eju7jYhhRCt9TrRpbV5lpejCSJTdBs3r9518s5bV2698Pp5UvWwAaZnF59+5qmnn37mI7//B9/7w9/1kz/901dv3IAKfuTvf/d9Dzz0M//+51evXoVUP/bFz37gfV979NjK8vz0aFweWFl+90OPfPELf7G8vLxycPbchfO3Hjky3ZzdbQ5u3rh5Nn9zdrH74CP3nHn53Pzs8vVz1w4vH/wH/+DHvvj4Z//sTz/5Y//wx9/9nkc/86nPRB/yhrn45putVufy5VVwfOcdJzGly1evuLG7654jnW5XoDRKESMySCmqqgiBYoyI9ewWBWLl/KQYOeta7bbWWikF9fsP7tfFUQgBInAMMQiBUso0TdM0jSE6p0sogjEUKTEGBdYeO2ZQUnuwJkkECiZI0iQxCUWqikoZDSDAeSSql8zENByOClvGMJRCAJK1DgAaeaPTnU5M6qwTUhqjbWkBRAgOERBEnmRiCpXUznsffIqZVrp+K2NmKZSUtYMkiSHWSinnfFmUwKi1TlMppJRS5nljMBw4H5hICF2DhJVSgCClCiHEEBFRa220bjVbiwtzztnz5y/obXni1MmjtxwZj+wky2bmusaocWFvXL/ZbLanZzrM0ZdaEk1PTS0szl2/caUcjU7fc/fE0s7m9pHDB07ddvL1l1+LERYXFp94/LHbT5564B0PPvNf/ocCeNe73uWKamZpKkn0pz7xqQvnLv/Fn37y//l3/3ZheeY3fv3XhmWzKMaT7eHf/7F/+Mi73/7v/+2/v3ThQiTqdluzc9Oj8bg9M3Vj9YqncNsdp7qdbgiOQgQGpZJ2s+tCAIBnn3vl6772/cdOHZuUNsuyzZ3tj33042fOvO6Dr8qqrlS+FResKfLwln5VvAXbFYgohZAoi8Fkc31Dsfzq9eeef+E5b8s8SQaV6PcH127c2N7bDFwBglRGKnXLrcdff+3M08+8eOL4bc7a2emZmzdvHFo5NBmOW63WaDDc3du74+TdSqrV7ZujwXg4GoXgrl65muf54tKSt/DSy6+V1q5v7hLF9Y2bw97e+urN7bWbAsfNTDvvTcMwgXUOKVbWDQeFzhqqrQHQe8sojJQA0O/1BIjUGCaQUkZF7IlBCGCJSqAgrNtFCIzIGLmW59aWx6ilkEpoowSx0loIWeOGGEEQAFMIBPuEMmAmZ73ztqqKGENVFdYGIkZgg1oKAgNCSikkAjrvKMSwj9sDlRgDgRjrYjEws3cxRvL7iU8RXCQCIg4hxiAZ63WokJKh3jYQCCERSUgJIQKwEMCAUqOIKLViFGSdEkKiUEniUcZgFQcJDCGiRi0yBkItXCBGHJdjxaU00RWEQQmAnd5grzdMOmZl5cjCoblQGQs+zRoB4bbb77p5/XpvtHXo4MGdvd7S8jIF/1ef/JRScPuJk9a6TqvRneraspBCuOAqXzXaeavdWFxcCIlEJV554TVpYG19tXKTjc5U9PjK65e60zOnT9/xpcdW64VUjEEbFWIARq3SGBwKgYwKpbO1pZP2a3wAZVkJxI3N7U986pOdVidEKG2QKqHIo/Gw2cjXggOhOcStrU1pRHc6kxh88Ebq6zev+uC1UjKB7/y+7/wP/+/PfuR//d6v/c9f+eVf+Y07br//hRdeGE1GspPFosw6cHP1zeXD7cOHlrY3+u981yNr6+tFUb397rdNLTRXlo6ce+Pa7tZorrt88vjxC5fP3NjM3vG2h95977t+/r/8bOXGP/qj//arT371M5/+4smThz/16Y9/07d8yzf87b/z5FNPbm9vZCbzIRqDSaZQiI319SuXbxy/9ZhWRgqtla6bLBRj2MfdE8WgBLrgI4Qa61QLK0KkEMhaB+gNJdpobZIYYq2CKcrCWS+kbCRJkqRKSQBnQJcll2VVFSUzT2VZmiQE0O/1a6djiFRncZIslUoJprKqXIhJChgg+lhVFRMhgA/eWRdjbDRy711ZVNPTUwtLi8w0mRRlVSVpVhS2/iClaaK0rirnvGvohlKmPxg478bjca0lHAyGrX4/y5sdlNroOoaXJWnds/c+SilNkjCDc44ZGs2G9R6Yi7LKUqGMQokpJtaikjLP8kkxqblAeTPXRs0tLuzu7vb2hntb24vzc9N54+iBxZtriFpVkTe2txtltkgiTwx0OxhJqO7c/NxoOLh29Vqn2Tp//rxQ2fGTx++889Te9u7Va9dtVTFArzf63Oc//e3f9Z3v+9oPnH3jjWaz46TJs+YXP/eF829enJs78MRTX/mln//Ff/6T//hP/vgPz742mJ9f+rNP/fn11Ss/+oM/Gpw7eGTlxrWbSWI2tzb7e8ONjY3EpOfOnn30/Y+Ox2MfXORIHoxJskYuhBxOCruxefbypaiEUebpp5964+yZzY1NH0IMhFIIYIrxLQ1YrJtOApGYsBYpgqxLT8Q4N7sy1V05eeLepcWlF188f+XqlU535sihIyhuWV278sRXvnrt6rXggxCSBUmZLB048Oj73v97v/27T2w/qdMEAx09cRQQz1+4vLiyuLOzOzs3TzF4YIHSWScFFkVJTFqbRtrM08YLL71IyPffe9/mxvp42JMtyBoNZRR7ct75QB6iFNJoUXk7rspAbKSSQtVAhhruVle7EHk8mjSalCRZzUoIITIAc6yHP5FAgCCAEMN+Vhj3DSQEjAyyVm9JqbTSWgnEyByJAUFK4T2H4G1lvTGgYnAuBB+cBSJgesvkJVEKBozEUgBFCj6GGJwnqQQRK6UUCkCgmvjPgJHI+UDAQikAlEoRcCRgxsgEzMQghNjHyhHUREPm/U1g/b9YWxMAQAgZqNYSEBMoowlEJI7eCxbADEwx+lqzKaREoZihrGxZVqg0uygAitIhgkAu/eT6zSsJwlSn6xzNzU5duXq9KIoTt9526ODya+fOfeFLn91Yu7m0Mn/rkSMHV5Z9jG+8efHi+Ysz03NSKOf4+o0168Jtt524dv1mPjO1urFhMaok6Y3741FfE6PwSYLPPPPElWuXqnKsEhmiM0pH5wEQJHrvM5MgEIDwLmglEAQoVV/ByIi1WVlK64KPnDfb0O/FEAGgsqHRaoPEIAQgXN24uTPZMw0Jyqc6DdH3ent5mpU+6Ci9C9/34e978G33/4uf/KcUdXOm8+TTLzkLCZjCl+UQrpTXPPhW1jp99z1pqn71N3/tnjtOLS3ccvnGmfc88t5i/MXHn3r64be/8+bV9fFkfOa1V3tbO9//fT/wDd/4oVYje+yxL3/hq1+en56+ubla2PDUY8/cffq+e+6/8+nHR7ZwKJMTJ44fO3nr2uqNK9evpWmSpkZKleVZCAFRpGkqkCNHJIAQBFIIFHyYFCOtpBDgvSsmZaPZNEZrowGFkrI+EoYYYgiVtcGHGGN9mRJF5wgZmVEKlZgMALRSwYWodZpmJi2jx063661zzo2LyWRSFuNJPUzQqSlL670DBGOMVtJaiwh5oyEQhRQxBK11TeQuirIoCwGyqqxJzGg0Gg73ECA1OYpaZx2Jo5CYoHYu1BvjclLEGGo/EyIKFMoo76MQMm82iEgKAcBSKVe6SJQkSZ5ldaojhGC4XntIpVRd68/SrKxKiuSYprrdM6+9sdvfLV3V6w0unL984tiJ2e7MpPTXt24Wle2PJihgqAbTU81mnqcmVYkZjsbb21sh+v5wj5CIzF133XVgaWX15s2yKl1w5dhOzcxNdWf6e/2HH34ob2Qf+/in7rzt9vGweu3Vs8Rwc3MdfPXf/8cvP/Luh374h35od2P7t3//94qy+PF/8BPj/mjx0EJVlFrrvd4eANZFNh+CUgqYlVLeBaKaREkoVJKmOsTRePT008++/srrADQeDofDUWTYB/twDfuURCSFBEDiiMBv3Trr+Q/WVkEpjBb59OxSo9lttWcXlw82m9Npnk0vTN92x4k0fef21vrVq5d9jAYEC6xcCZKPHj/6Az/8g088+cxub/f151/+mr/xwUaerq5eRwlHjx2zzp8586ZJknbe2dvdGw2HMdCkGM/PzzPCXq83KcrFlaUYyfuqo1oIUSlCCkIIZlJKhhiIORJMhlVlIyqd5g2pTfShZvQLFDWoU2mtEy2VZGSumccMDHVSYZ/HFgVowreyr0SRSCLXp+Xa77hPVKvxKkCR6i8VI0P9GyLrbPBY27YokpIyKCIWiEJrkxgthUAURCSllpKc8yFQCDX2HN+SzKBAxLrGGSNJUa8a9osaPtTPKIg1wQIkoPLEReVK532IzvnoAr0FKUWA2iRZywjqL0sQUYBAESl6bxmYEOtRUiRCRCXqbbV2PjjrgvNUBjcO3qHBvJ20wMf+7l6oohbG2hJQnLrtjpXDBy9evvrY40/09np7e/1jx2697/77tFFXLl85d/Z8WVQAcHPt5szcTKfbLYPrjYaeqlExePn1M6+fvTAuR5UrQEUKtjOV33J85eF33vfVL39pY3212c04RoWSYshSnaYZMyqtgZEIiEKapihk5EhMKBClRFmjtynEyBQWFuamprpaKCElADjrGo0GEAsAY8Tm5vrWzkar08jz7K1sERS2dKEcDceDvdHigYVnn3vhk3/xhQjqlsNHf+TDP3j7yaNKwOKBFWCwDKtX1zDE03fe9fiXv+hDefHiRVZxambm8pVrebN5YOnApStXJoPx5o2NRq43dy7/+u/8slA0v7Cw0+v5Ku71+kLgkaO3Hrn1yDPPPYmAd52+a2qmMzc7c/r03VevXnruhed6e0NAvHDucqvdds4LFNLoEEMIwRYVMOWNDABjfUIUwgdflmUMMcQgpErSNE0yJVWkCFAfF0gIbDQaWZZprUIMRVFZ68fjItSQdEAphUAViV3w3kclVafTSdIMpRRGq8ToJGWA4Wg8KUrrXO0RA4Jud2p2braRZ3nemJqanp9faDQawQXvozIqzRLnnHUuxmidG4/G4+G4GBdlUVZlFWKorVJUT7QA6jBPCEFJPT3TbTabWZ4Zo5VUJtFaSwRGhDRJjNFaa61Vkmitdf2GlGYpMKIAIfYBvkIIrXS9BJRK5o1G/URpttuNZqMz3W112kKb1dWN/vZG9JO8mSQ6saVtNpuuCsVk7L1VUiwvL3kXt7e28iQTNVPaVidPHU+z9LGvfOnQwYOHDx+RQrQ77dtOHf+bf+dvrW9snrtw4fbbbl9emp2bm97Y2CAGkKqR5yrr3nHyjtFwMDs7+4d/9IfPPP3kBx999/bGdkB/8+bNzc0t5ytXRedCjEREeZa9/e0PXb1yZTDsa63SNAUGpZTWSkqVJcZIWYwmWzubm1tbk6pgZKJYbzWZiWuduMQIAYBAAOzf34gFsKT9G4xAZszyZqA4HIx3d3s+kJCqLMvHvvTEb//W70Xmb/q2D7Wa3W53KsuyJDUhxp3e7pWrV4lpd3v7wrlzK4eX8iwbDofHjt06Mzs7OzMfnLfepkkayVe22tnZ9c61W83EJKPhYNQbNFudbrtLEIOLzAEgDPd2lKI0NbXyFgHI+WCDrax1lKWNNMnq2aeSUgpJzEQxS5IsSRNjEASgqHu1FGNNcq6xQET7ZJ769Rdof1GMBAJBCam1NtpopQRQHa+OIXjvnfN1Fq6+zKrKlWXlXAg+IoLRMk9MkugkS9LUmEQniVJSICILjMTWhRBDiGRdEEzsfXQ+xBh9DEQcKUaKIZKtbL1PqG/9xORjCJEYUEgJUkZiF+O4KIbDSVlUPgTiWla5j6auiz8xBIhMMcQYYvD1wYFCYNo/RIQQmAgYJEqFRqoksOxNqsHEVYyOQBqTZikIabRCQutiYnItlXP2+o2br778auUqZ50CPTc9s7253evvmVTPzc0tLS9NzUwJrTxwo9lKm01Quj8eM0iTmEa7KTLlUTDIQ4cO5o1MZ7KRp3kmHnr4dKedhmC1wkRhs5lohalSEL2RupZegoJmO4/RAZOUaK31thTITNE5X0wKKfHkyRONzCgpgEAgjiejPMm0FokQCLjX7z//6kvtuemZ+TkAtb8eQgCCvJEuHzi0cXPznQ+/5yf+7x///d//yL/8Z//mwOGDP/ETP/4N3/QNrvSLCwsHFhbn52a/9Tv+7qgcXzp/USDnTfGFL3xGJ6lOssWFxZWVFe9sv7+3NL+YiGymM/fIgw8vL638xac+ddup03fcfY9S2bHDJ48sHb185cpef+/Ma+eU0nefvuve++4Wit9887y1gcAPBv35hbkQPAqR5TkyS7GvZJUKAVigGI9HRVEwg1ZaCKGkbLWaed6QtTtC1Ho4BgallVKKgaUSNdOQkWuZqkmNUEJqpY1GRB9CVdlJURSTSU2ldT4Uha23JcGHPM/SLMnzrHawtlotrZWrnLXBJDpN03o7HTmGGLwLo9HEOiulMMYA8KQYD0fDyBGFQiGllPXGQkiVZmmjkSutkiRpNht5M+9OdWdmp9M0IaI6AU21xFhg3eb1wTECM0utpJJEpI1JUhMDoUSpatsHxRidtZV1MZJAkWRZ8ASEc0uLM/Nzt544PjU7Y31Y29wqx2UMrtttJcYws1KKgJFAS2WdZ6ZRf+Rd1e40G1k2Pz/XaTVfffXlV155Y2tr65F3PjQ/txir8P4Pvl9p/dxzz3/0jz4+GU6+6zu/Y7bTvXblqlLJ0SNHBau/+YEPfvwvP5438h/6/g/fvH59UkYAmJ6akcJAAKNN9KA0aCmkAinErbccPXh46VN//imAqLUqy0JrnSbpW44SklII5DrEgiiIWSoZY4R6tVs7AIikFCgQWSCLSAD1TIgAaooqo5by6sVrLz/78vVLV86dObd246ZAJuvzRJfj0V984lPPPPmM1NIkidRSKjEzM7swv/jFz3/x85/53FR36vRddwgkij5Ee8vRI9Pd6eFoqI1JksQ6V1mrtRyO+oGc0so6W5aTVqc13e0QcwxQTYpUSarKUX8vTQWRR1mPMUIkPx6PJpMxEydJarSpVYfaGIEgEOpX71a7YRItZM1KpxA8E9Xm933YD2P9is0AkdlTrDEYIGrVFyopjVZGKykQgGOMIYQYqe48ap2hkDFSZW3pXFFVRKSkNFpnWZqlyf7PJDFJooxCKUOMIUbGOrsPiKCcdzEEIGLgFIyUUNvLqsoWZemsM1oDAzERQIgMWDtoJEUOhFVZWetCCLKu90gE4OAjaCGEiJFDiMF574NS5D1opVnE6AFRk4H6YEJUrw0AAOqacSAKJAoXrSi11FJIDhxi6HbaNgn9Xn+3t0uxunmjPzd3sNNuTs3NtrLMBzCJSVKzsb65LbCTtZVSVWmTJJ/RBjh22vnm3u5gUqxM58qkb3/XO27Z62/fuD7c2n7P+961deMmRtBCXn3z0mhn8OA9979+1lxfu3bo0KG3vf2e1156ZTgqjh0/NRpPdrf3br/9ZHsqL0bjwWgIiKPhqCiKo7fccvHC+craRx55R97Ib1y7fuz4LZcvXWYOREEpOR4Nl5fmjZFAgQkZ5Rc+/8U7b7vrnrvv3t5aqzyiABYgAdvNzt7m9nR3+h/983/87376341GOxevXvpn/+yff//3fe/Xvf99mVK/81sfaXemPvC+989OLX/ik5+wYWLj2NqUmZ994enbTp3Os9bxYyfWNzcqokkxak5n995z+sGH7v/4x/7yuRdeXVo59M6HH22ZrNXt7PT3zr92IQbfGw9efPnl++65d25+5trN6+OiiBykSrMsnZuf63Q63emuSbWQssZBCQkMVJZVURbWWyZuNFOIsXDOWiukJibnvRRaCASQdfsxxMiRyqJAAWmeZJh6H8bDiUkSQFl/BmrxdqhdehyqimWIRVU5601ijE6Cj0KJZp7VPrvJpIieiGI1npjUKC29c6NAMYTBcKikMIkpi2o0HiUmqd30VVU6540BpXWWZlrLJElQoNyvK8s0TaSU40lBBFLIRrNptIa6QAMMkaUStZopxlCWpZQiS7OgQ62AB4DgQ5qkdWeQKNb9/7cUlb5+3McYpZS62ZQgb15e1anoTrVcsFv9oW700mZmBHQ6jZ29kVAopRBCDccDPxjkrWa70ywnk4WlWaXk4tLyhfNnB/3dZp4999wL3Znp0/ecFvfAwsL85z79xc2NPSnFU09/9Xs//D3ba2sQ/MEDC5vXNh79mkd/8l/9k//927/xH/7DzwLAf/r5n/v8Y58//9prf/SxjyzPLZmmuHT+CuzTULjVakpIv+XbPnT12pWnnn5aKRwNh8CcJBqYKEbvHcdgq6rdagol6pVvI2/s7OzW8XOqhwpCKq2V1ByBkKXQNlZElKeJIB67QkidSFP6URFLkOHPP/GJheWl85fOx+DuPH3b29/xwHPPPn//Q2977fU3rl+/kaS63WhkaVb5eOsttw4H1bMvPvXt3/ntw97k3Y8+fO3CtcuXLjz67nfv9sr29NTuTg9R9Ht77XZrNBoJKQQhhQAcy0mZpryxvnrqjju884CSgh/s7KQmaqV8SbXamiH6yo1Hk7Iss7yjlUAEF4IA1miYIzMIFEYnqdbEnqKPkWOIVI/Ra5YM7B8CBEWqpQeh7pkDoEAUUKvBYB89gFi75CIAEEVgqMn8FMkFUGJfy6WVNEopZB9JK6FV/fAQiECMoW4yCRRKCiJE1DoRgBSC9947a513IYZ63+uc218RKC2EBAAXvPc+Bl+3xKzzlbXORe9CiORDpDrBCxxj9D74EJ0P1tkQw1tkOq51ltH74F098ag5ecRM9ZNRACDGSLbw5aiqiso5b51DrfMslwQi+smgv7O7a7QEIiBfFqPtzZ2NzdVut+Nd2NzY9NYFHxKdSqE5UGLSLM/zLGs3mwp1WXkh5GhviA4vv37lta++fPalMxvXdoxMBAtry0vnzlWT4dLyfGlLkGrhwMG7772/3Z5ZXjn43kcfveuOOyLb++679+StJwOF22677dajt1CMH/zABw4fOjg9PY2A73r4nSvLy8gwGRUMZKuKmRGhKscHVxZTkyJCCEFQHO3u/cXH/+zRd7978eCyxypLJASYmpkla60vf/yn/+ETj3/2zz728WOnTjZzNer3/+t//q9PPfHUBz/4dT/6D3+kOzX1N7/+G7/4xc9fvnLJpCZNdXe6u3x0eXtv96//+rO9/mB+bvbIoSNaqyRNms3W3Xfd++UvPP7SSy92pltf+spjwYV3vuvRZqO1vblV02LXbt7M86b1fmdnRystldSpAuYjhw6dvu/OpQMLWWqM0szkfGVdxUxlWYzGQ+tskpgkSYDBOTsYDPZ6e71eryzKGAgQ8C1oSG2WCzFIJWoLuLfOuwACiOJoOHTOU2QAlFooKZVUWukkMUoKASiVbjXbzUZTSmmtGw5G4/GknJQxRCWE0brVarbbLa2Us35SjHd2d6vKKa1bzZbSyjs/KYrBYLC7szccjn3loycEIaVUUjNBcCGEEDkWVWWdj1QL/EIMJBBtFWIk5ogI9RHI1R0G5/YjbcTWOgBWSmulmdg7D0xVZcvSVmVFAEJJqVWSJABonbfOxUiIODszZ121s7M7Mz+b5MmE3PreTrC+kzbnp7uNRBulO1NTg+Fka7c3HA8Hvd78ymySZlnSPHniVDEuJ5NSCOm8Lezks3/9uaWlhXe86x1n3jh7c211am5++fChzfWNS29e+eDf+Npbj528dnXtO7/7237qX//UL/zs//dz//kXAGBpefGrTz7+gXe973u//3sWl5fGfjIe2/pDKoVaXFqRkD700APvfPQdv/U//xdFTxCsLavKKSmllt45a60PQUoRYzx1/OR73/ue7/ru7xz2B1NTU2mStBoNZAAGY9Jue3p+fi4xycL8YqvVmp2em+lOn7zt9qO3HD198u677rh9ZWHhO7/124/fspIaevhd98Y4scUwNWjL0eU3z/f3+rfecjyRDQBgAmZM05Qi5zoPwb3xypvXLl/f3F5tZc21tRtG6USbNDXRh0aWSSEGg97a6urZs2e2tzfEfryb252GUbAwP5umydb2ZllMrly4FH1ly7Ioiqoqisk4OButr4qycgWRNwqlxBgDEwGA9y5yjDEwsNY1uRO4JnDWBjsARAECawaGEIoRIr2Fy0FAkDUEtzZdO+eDr++7IfjAkeuPDCIyQo2ECzGGSN6Hfbq0ELqurtQpUiLgWAsYiaIL3kXvY2QBQss0TZR3deoafSC0NYdCALAQUipFkaXWWmuBGK13CKiFQCQK1jpnqxgC7ssQhFJyHxMKACRDjLFOirxFh6+hIYhIHKJ3zIwCI5EkjjEKIfYZ1/WoGBhr1jijMFqZFFCMxn1XWkQEDI0029xebzemG4mJQJNiomXc2dxSWtz7tgekpk7eiY4iipvrm5OiuOXwobnZ2Va2PhmMGcW4quSkKIbD4GySmTfOnGs0W+PJZDgeRUWzK/NbxV5JviRn0WatRlGV3Waj206zFKSA4CuRq8tXLx06sDQe97yttFHn3jx/4MDSaDC0tnzu2We1UWVRKKNE3fbjGH2YmmpqrauqBABrXavVfvPMKy89/9p7H3n/ubOvM2mAOAgQBqMPfv179na3f+s3f3NuZjpRZvX66vTszOKxuT/4oz/OG+277rhzYX7h2s0rL77yEnGoivLO03cszh4YDEbe8ZXL19L0q1//dX/j3nvutJP+zs7uPXfcff3SzZdfeWNhcXEyKTtTUxfOnTt24sj0bLvb7e5s7/ki3nLryaO3HLW2unbj+rFbjx1YWpyUk2Yja+SJQPDOlpOJ1tJ660qXGAUQOQSOUQmUWiGgQHDWFuNxWRRJilzDlJggMFEEYK4Jh4gq0WURfPCTySRr5CkmRVEYDSjqWjy/9StzJKklEAoUWmkSQgqZp+lkOKi8da5KTd5oNJutPG9kQiJB3Ovv1W4W733WyBvNVh3JDz6GGAE4BkIWQqH3BIVLUlMFC2Dr95UIkeJ+uzHEkCRZq91GkDGSUtoYg4wUqcafBO+DD8CQGCNQxBCNybQ2iFhVljk672OIUskYWMiQJAkooYT0IdiqStNEKhWCX1xaPn7rqa88/qXFhflTtx4/f/XqeFzs7Q4aJl1od2EednpjIrHZGzBQu5ForcjS0sGVVCX9wTDJskajOR5NENFbP9s1QDzaG+ysbaWpWV3dHg4nYbz7xa98/r3vf/8PfvjH2u0/+Nlf+Hc/9ZP/6plnnj2wcmD15vXJaHT4yNGvPvXkb/z6b/yrf/HTf/9Hf+TAwYP1A2B2fkmIZGam8V3f832Pf+Wprz75RHeqs7m9Wb/WaKXzNANg710IPkszATw1NfXOh99lcm1U+gMf/vBeb+9LX/jSP/u//smXP/elZqc5PzP/6b/61D/5iR/60pefWF6aX1/dfP8H3/vsM8+Px8lP/fS//N3f/d+7u73v+3vf86u/+Bu7Ozvf/O3fmLXyUTF4/fWX1m/EUX/gWR4/duwPfvePG+12ORxmScoutBqNxfkl1OZvfePf/OhH/1xn+I4HHxRS5WkyHPSmphZ0miVJxohLK4vXr16bnulMJntEPsvMaNjXaroqKoo+T5SWOJlM9tY2Thw7ZH3V7xfMUWuNQtjKxuCJo5DCaFV3hKTSQGFf5lj3YgEBWQslVYw+CIDalIf7ul8GIVAJCpEIIu5f7oiiprFBCCH6fZFGHY2taT2wD2AgrunStaaQsW4IMygllJJCyX2zWAgcgBFiDM4H70MMEQUiKiGUklrsf0lmgUhv7XAFCCWFkAKkEFpJpSBi/SgKMUSKPgRrnQ+eEaSSJk3SLNXGACIxE3EIFCjW4pd6wbwfShJCSkkhurKqrZUUSUhRnwCIqLZsgBA6NSpRiBK1UIkRzFJEV45dVbabjWG/V0zKwWCUaH1geenBB992y+FbW40mQRgPRmura2+8fu7ZZ1/c2tqhwInR0bpyXOVJE3wYDvZ29vYAZKfZzhtZ3si1EpNiMppMGDBGdi6s31hD4DRNJWiJajgcF2UxGU8WFhaLosyStNNp7+3tJUmCAkAiAKZ5Wrmq1x+dOHVKGLW9uR0jNZqZAkTezzkIhFYrrwIFNIASBJauzNLk9//wd8aDybd/84dDVADG7tr7H7r7Qx/6ho//4ccEirSt3nj9tSRNdjc33nj9tYUDSz/3C//58Se+eOT4kQsXzr7j4XeZNGlkzdnppazRvHl9e3e7f/zkifX11Se+/JiS4tTtx+666/aVgytfefwx721lS+/dwtx0dy5/4qtPrq1tHD588PjJY7Mz3VO3nbRlde7s+dWbm1evXG91m1rJNDVS4PrNdVe58Xg8Gg69dYigpGCKADG4yrkqhiAAAcgHF0JQUmaNPMnSSOyc88HXJTqphJTIQFVRhuCVFFNTnVa7GUJgYqO1VpI4eO+IWEqJAkMI1lY+uhhCCCH6IITI8jzLc6W0SRKTKKkEEU3G47XV9cuXruxt7zrnYiSTmjTNEKTSWioFQljvGUWz02p12428kaZJjGE0HPX7w96g3xv0R+PxZFxURem9885pbTpTnZm5GaUTkyRSaSmUkLX9gJChTvcnSZKY1BhTI7yEQAYmDlLJLM3yLJdCKa3q9xspRAgBAJI0EVIqKRiQAU/fddeBpYPrq+uNvDW/MK+0GkzG61vbFGlpfrbVytY2NhxRUdrBcOxiVEIvLC7ujfovvXrG+jg3P9PutCFCZrI77rp90Nt59tmnF5fngQMFt7u2PjU7++bF8//tF39p+eDcv/w3//K//H//9Td/87eFwF5vm4Hbne61a1dOn779ox/9o89+7jO/8PO/UJRjEAIAqkm4euXqj/yDH2PmP/i9P5mdny2qcTGuiKHVzDvdjkBRC16kkP1Bv9vtaqVHo9H5sxcEwtLy0oljJzrtzokTJ5YPHDx8+JZTd95hPS0tH9Yy607NLB88YrJmo9Md9UcasdPpCCkG/UF/uL26ev2TH//LF5574cxrZ8qqWlieP3rs0PT0bFVVN2+uhkBZnhVFOS7HBw4eStK8LF2z3b3z7rvvvOP0E089VVST+fnZ7a3tyaR4/fU3zp17843XXr959Xp/Z7cqiuB98I44WFsycVkWCLHTbjbSHAGnZ7rAtL29TRS1UUYbihGIpRSJMloapXS9W40xEFP0b9mQoNa2sxRokkRJiYwIsI9elgoRY4wIWA9XEAWi4H27F9X7Ku/jPjCC9sHQAlEKlEpKKSgSRR9DpBgQuO7eMrBAKYTMsywxiRBYz3LqIXwd2RQIEkWtCgZEYVKTN9KskaapSRNjjDFa79OHhBLaqDQVSjETU0AgZi5tqHzwRLF+Uhitk1TpBEDUp5BYg+QCA6OUqi6hKSWFUhEYkZXWRTmpygKAtdZSyDRJ6sePFEJJnaaZ1hoIvQ0CpJLCFsNquKdR5DopRoMbV286S+3G1GjQ6+1uba9v9PcG/V6v3Zxi5K2tba1MnmfO2dyYaG1wbjgYDXuDajweD/qj4VhIw8xSyMOHDiQyKYuislVVVWura7s7m5LDgemZB+66s61VRyRNmZw6fqKd5Sh5OJxw5CzJZzqzw9EozbJWIx8ORjevbzz8yDt6273dnR6SWDmwPBqOO92pNDVEMUR2PnRabUTwjmKkEAEEMwTrY6OZ/PXnPnXkyMmvfdffAHAa/E/+03/yF3/y8UFvMN1prN7YanSw3NtVwacgNm9cOby8+KFv+bY/+ejHX7t05mu//mu++Zu++Y477+j3hq+fOb87GIXIF6+8qZt87uLrf/pnHwXGh+57ZGdzrzcqEARHbjebzbx5+fL5jbWb586cW1vdOHHs1EPveCRJTK/fG/R7HGm3t7u2uu4q18oajTz33td3ZCYWiMYIZ8vxeNzr9UejYTUugCIzOWsno7G1liJrpbRStD/9BCn2YxIco61KH3x97IuRog8+uEjBugqQBAoiVlI2m3mzkSMKZz0CKq2AOUaSSimpsizLm7k2BlHEaMuyGI0mk0lhK59kaWRwLiplEp0igFJKSq21CZFciMSgE501EikBODBFJSUTx3oUCxJQRoIYOUmTNEmlUCZJsiyv40zOuhiCUgoR68xbkhgA8MFLpVBgCPtpOh98lqVSqRAoS/M0TUKI9aK43jT4EGp3UuTYmeo++OBDWaN5/sKbWoh2I7fWFz6sbW8Sxu5MWyhJBIF5OJlMiurAoYP93t61G2v9QXnmjfMM8sjRI92ZqVtvPTwejt947Y3LFy8NR8Pjtx5tZ+rBB+584L5748RfuHx2Y+1ab2fryaeeFgD9Ub+oyiRJ19ZWO93W1nbv0JGVT/71n68cWvmVn/9VIFIi29q5+eHv+uGTJ0/86q/82qVLFwb9fr83VAkyga3c3MIc1+LDEIuy1EqXZZU3G9rorbWt++6/z5aVAKyKin3c3em12x0ibObdztT0ZOxajS5ConRzbm5hc3NrMp4Ag3V+bnaptzNmENbF6bkZBhACut0OuXjPPXc9/eQLICIiIkuO0RaVEqq/t/vS8y987tOfv/P0XQ+94z1T3TnrPQlstlohhO5UN8+yJDFZI+1MtefmZk6ePFavWA8fOZi18iMnjn7g696/unZdStYphhgL6yNiIFY6Ieb9t9GsobNcJZlURgpNkZyPdXoNGCly8E5KylKtlGQCJY3UElAIKYQEiSCAlQABJBDqXi4IlBKAI0QKEQKjj1Q4qnyt81KAsq6UMyMTcqRgA1OQyMAxBB8oMghi1sYIqUBIT+CJ9hthUifSGKGUkPVfysgsUBiljTbNZrPVbuWNvH5GAWCMkTnWPDmFUimplAQGZ/3+QgNBiBo4KoXYt2CSQOtDZV2gCMiiJpkCChR11AmFIGBAQsGj0aiYFDUbj4kRsE4fMYCUSgqjpEKAGIKUWgqmWDlbBlfYqqwqO+iPgQUqsbvXf+O1M3mzsby8pLWsKruwODc102UEgpg1krvvvufue08nRhoBrTyN3gUPed7Y2e4pqfu9wVS3leZZfzjY6w9efPmVrV4/Im71e2hkljfGVfHE008PRqN+MfrSVx+/tr3R6c7s7PbWNjespZdffX132J+Znb18+epwUmatRmD/8uuvnbzjzsO3HL6xfnP1xipHAEIAMTvXHY7GgQGllCggAgKG4AaDQWGLX/vNX59bmn/grnf/0I/88Jmz5z7z+SfyrL3d71EAP2EhQWXQbOTtduNnfvbfPPP8c5/4xGdd4I/80R/qJDt9/z1LyyuDYZEmWZJIpWAw6AcR1jc3OIqycGubGyvHbmUtk0SfOH58Z3vz4vkr49Foc3tt9cY6BFhePjDsDYApSVIU2Nvtra9uHj5ycGFpcfXmKsQoJDJTVZVCCSAui2Iyngz6Q+L6/0vFEG1lI5FJjc4MALrKSSm1MfX9jjlG8lVVFkURfJRCSq3KqiomhdFaK8UcldRSaxCIEpU2ypg8z5XR1luh0GgZo9NGZ41cSFWThYRCnWqhEJiVkkppIgyOpVRKqhh8fWYFAJPoRt6QSjrvrHURWCe60WqaJNEm0SZJ0wxRxoggZCRklGXlfAjj4UgKZI7OlonRSoqskRijlJKNZpakCRFVthyPx3U9jshLKbSSAoV3MdFJnjXq1n5dF0i0NsZ4b7Msqf8wzRIWePT4ifd/zdegSrY2tgFQazkY9IejYnd3oJU+uHKAAVzlTZpNz8wy095OPwQijP3h4PLla9PTs/fff//UzMzW1naA6IJ98vGvAPHd995htLpxZfWeBx78xf/+i5Nx8dyzL/yLf/HPTt1xW/AsUY3HEyIY9EZ5ZnLTPrp8+O/9wA+02o3v/+4PByq/8W9+6/f+ve/+tf/2a88983yn29zY3EZEIGy1m+1Od2ZmAVASo0lSbUyaZcPBeHt757Y7bvvwD3//wSNHZhZmV44sd2a6iysL2uDM9JRSEIJLEj2eDCLHwWRgvZ2Zme5220LLwWDkXcimDSB6C5cuX+n3B0KKQLC320vT9Md+4ofH41ExKZGQAYrKOeuVMMPeLjDOzy2uLB9aX1tbX92kwJOiSvKs2WoV5cR662PwzldVNRmNx+OhFHLtxtrqzY2zb1z85Cc+/eUvPpHo5OKFcy+/9KJ13kdOklQI6VzNA48SRaJTAYpBJPWUE1AKgcTALAAlCIYo5b70UYiatoCMAgElCiXr0GdkjnU3HgUC15lYrBFBPnJZudK60gdHHAAJIDJFgBrZxkTAEZics1VZeu+JajIZMXEIsXK+8t6HyMBSSiWE0KIGmUitAdA6N+gPVJYkRmmhhBAUXKzYM5A2EicYPEsDWkilBYJkUMFZYKbgcf9aliBQ1iSoiDEE73wItQQchFBaCmauH44BAEAYZOIgmJGoLCdN20zSJMYAAD7EwMTMAqGqKo+YJYl3QRTWNd1wMvFx1NJpgjJJdH9i51eWDh084txACH7sqad8wp00a3Ub272d4XB0annRZc3xuA+Sbm5e29ncJhek9t3pfHVrjFIpIQc722ma9nqju+85VQbc2tmqJpMLV695gDevXXvuzJtT3WkK9Nwrr4we/0qr0fCVffK1l1Ujb5L+44/98aicAPKb596MFCAoXt+6ePkKCmDwZ8+fayRZ3siff/FFDqSSzIBgro6fvLUKXqpUC8mxdJ4isQAAZlcU3PSf+Owfffd3/tCdt5/6mZ/51w2TcmRyYBBSnSwvzxe+jKV69B0fvHl1/Xd/63cPHpxbWOm8ceYCe337bSfmFhaPnehfv7oqQp5NLQxHRXdm+tgtxynVf/b5P221mseOHZ1uNV1ZSaV39nq+CIluctTz84vjanLxysUk1dMz0yHGa9fXJkV59I7jh44dOvfqm73d/vFjJ5AjILc6ncQYa6txWbqyElKmadpudaSUxaQoy0pIqbSpfEQQRid5mgklI1B0vnTWe1sr0ZWSJk2CCzFSlqbOep3oLEmJyVZV5SqswSgCg/cCsKiqJE3SPPXBV1WV5nmNbjbGZHmCwERBJzKisj5aF1BLqRQHBo3Be2LiENM8z1NROUdEIdY8K7DBuxCEUEoq1gJQVd4WhTOJJIDtrR1j0tnZBSEQARKjEaFOqQIAIhCzEEJp5axlAkBWSllbxUhCIkWOMUqpEIFCAGBGiJFDjERRChmclyiFEvV9RCi8/fTpSeX+6i8/6WzVbrR7u71BfyyVnkvSdqPVaeXBVouzS97Gs29cSNKkkWajyQQVWu/64/H87HRRTqwNk2FRVDZRenV97fTddzWT3VfPnP/m9zx68cyl//c//nsB4m/9nW98+MFHLp270mynUonxqGh188uXryktkiQzmfyp/+en3//oB9/z0Hv/8U/+o1/4zz/79LPPHD26cmP1RpaZYmyzLMmzrNHozC0sXb2y2u12tTIhEgput9oXzl/604/9ebPVvHD+4nA0IgrD0fjnfv6/XrhwnlAGIpmrl159vSL/3Msv7/ZHrTdaq9ev9Mb93/m9//38y6+g0B//2KeGk0Hl7e71vUtXLtYZk+GwANRnzpy/dOniZLSHihkFILoIX/d1H5ydmpmMJu985zuvnL86Oz938ezZQ0dmQ4AzZy8cOSr6vdFYFJNJlSRqb2fnyuXL1k4OHDrUbrWbzZZOuKzKZqu7uLLsn3l6d29rb6/VamRamcguMsVIHKKSuo4pltZCrVOM5H2MSEYrFABMArEOBzMBCE2AkSJxhP2+q0D+PxLkei8KLJEiMxDD/n2cGIJzUFvegZFRIIdIIUKMHOssGjFA3cMlZtYqxEghMmB0tnKllUBoDAghpEyEkEwBXHSeKDAHH6MyRiVGKWMAScrAICprKQZQtaONYwgxCgZiBkbBHGW9NkBUUlBkCoGlIOYYfB11AiBiT6QCS2aOMaJgjKKe52qhAWgyGaHkqtFutBp1TMhHCrRfcYtESkqsB0o+lKUrnKXojLe5aTYa+WJ7qvJhVJUC/PTs9KmTJ5O8MRrsJZnJsnxne+cc08Ls/OrqarPR3lpfH+z2h4P+/PycSSRRBORAzITTM3O333nnQw+//ez5Ky+++Dz46H0FQsTKUYAYgkDlbZRCV6UnBpA62GAhRh+lUiDY2sggBCAJZCIBGIiUUTaEajCqHQ4sWCmUIE6dODkcFWnashVpI60KxI6BBUJkihMbufzcF/4qMO/sjhLTsBZS0S54rFSijCr74e477jx58sSnP/1X3ZlplcnN1b0H73vowpkLWdpotdNjx48I4V99YTNJkuXFTmtq6tCRo+fPn3/llTOHDi7d3ukcu/U4EDz/3HMxslIKURxYWZme7ly8cO7G9bWFxbkj73io3e2sr2/NzHXuPH37lQvXn3/mlWMnjyZpAgSJTpgiEwcflJauAiZKkkRLQ8whRpQICHXt2WQmbaT1AsiHOCmKypZSCG1MKlPvXfAhhlB3wRgoMZnzfjIZ10xa74PWESJYZ7XSMbK1XgqhEzMpSmtdiGSSVCcaQIIgUCJ6Alm/7pBWGglUqkGQ8ySkYOQQg1SJ0ZoYIlFhnXPWV44ZgYNWIkZ2zltnnfMEMoQglGi123MLc41WI02TSBS8l1pRjCiFj3E0GqVparRJ07ROvldVhUIQRYjIgN47CpSkSR3lVkZppZmjQEiSNARfB+SgNi8FioLuuPvOyP7pp57c29htTLUKa3eHY1C7M7NzM9NdJZRUanNrezwYzs3NJGlalFZpMbewsL6+gSiTrJXljYjbWiXNdmtSFK+88AqyfNuDp6dnWp/+9GddZOcmv/Hr//Ou++46fOSWwXAwv7B49s0LxbgEAVrpophMCuhtv3H14vXf+q3f/L3f/19ffuLLQHjt5p4UwluXJDJJDUVeXF5O0mxSlJ3u9PTMzM211WbeCM5tbWxevHxBK5Nk+tkXC60Slag3z51Vqbpy7XpgzrP0l3/ll51zN25ccSGce/0liUIK+Sd/+qdSK2PSX/4vvyQEgKcQA6AkQIl6c2trUr7wxPMvlGURKbKNiUkY1czM3Hu+5tHtG1vdrNPM0otXr5y6/dhOr//IOx9ot9uRIyM3mq0YAk3KGAkQpFEakiTJ2s2OFEoqmltYnFmYH02qRt5aWV7RRnsKQkgEUTknmMkFUhihqpyNMboQtNaRsG6yRSK9/zwSFNhGq3WCKF2orPO1TLfWyAkUQgimCIgISmCNha7TQZIZYgw+RO8jgUNgZu2VEMjMgqjmMgDW5WzmEImZUFJkDjVyiyIwCaQQgnOgBBqtQUoNMjUAROSRGUCiMrUgTwAISYpQCkZwMYYa3AgQfHBy30GPKLBm+sjaIQY++vrJCDW/SUlJWnJ8C/jHTFQnKiQyEQILlBAplEXBADTjY/AmMYiSlYgBCAID1yRhlEJKCQJj8BwJGELkAJhlmScqitHO3tbm1uW5qa6QygWPQgKHze3NmdmpGrO0ODdnR8O59pRhXJyb2t7eLsaDUAz7u9tJe344Gh9bWTqyPL+8svLVZ14IkRIjy8I32rm3LtHCGBlCIHZKY/ReKiFrjh8HYRAIOCqGBFEixfoYh4wKdV3WhpoyI6Qxiok6eXrixPG/+vRXDi0tRMbN9evRO6MZOSIgShUjA8G5s+dajbm80RqNR2linAzBCE6Sm+ujdqP7tnc8+MwrT1+8dlFKmktmZ1uLxW7/2LGDV29caXXyEKpbbrmFA559/XxrZvrO2+++cfXy66+8MDeTTiabF86o06ffPj033Wx19/r9xGRzSwtHjx1evX7j4vkLwGJzc2M8mcwuzM7Oz+YNY0t7/frN6cXZ3nAYGdI08dYpJS3aGsBi0gRRapOilMG7QLGGgtSNKikkRwox2uBD9ESshMqyVCtBkWxVCYGRWElJxFIqo3XpIwDWBS6JQUrBDEmSlGWVZmmdjAZAZnDWKy0zyIjJ+5hmqu7aUCShZAYpICotlZLBhxCCYsnARVFUVaW0FkoFoqoonbXG6BBiIPJltM4XkyJQlFIJJRJtmu3m7Nxsnue19QiZfAgMIJVE4v12LNVW96QOL5VllaRJkugY2VUWEYWo0yKktRJSxhAikRAyyzQi/J+CaI1JqO8Rd54+rbV56dkXXn/91UajsbGxvW7deDg6duuxhmlcu3FjOBoVZZGVebvVbLZzIWWItLuza104ceLY9Nzczu5eCB5RVNY5b08eO3n4yOHnnnnhsS8+3kibrWbz03/96Z3h4Ju/9Zs/9Vef2tveazTycjKSUnpP3daUc2VRVqfvvP38+XN/8DsfkVLbWIr9LJMgiiE4hXpmaspbt7vdS5N8embm4qWLQAERQbKWCgCCp8w0ENFV3iSpYAkClBAUpeXIJBiFkqZWLdWwLdSSuPaMMEBExQwkWUuRCICqKEEBsBMSOmnr9D13T08vHT5ywk7ir/7ar7/44ps28oe+45tu3lh77wfe671fWFopbLWzsxsihhDH47LTarrKE7Exqa0sNcg5v73X397Z3dnbO3B4BQQeXDnErgg+SslSC47ROReqgJkKjFVpUSjrglGR6rkNMDH5GL2PgYhC1Ap8jBxdWVXOhxr1A1gHIqHOPFLNcxM1GVUIwUpLQCQG733lnKAalcCapBQALJg5wr6ZUTIyRBRyX08shJQapWICoTSi24f/aIoARitmEM5LYIUgjRapVgislEDBIVIM0cdovS8rV1kXmaP3MCmCU8IIJXUisRaMqXrCFUPdsUQGo6VJNEhlXKisQWZjUqGlq1ygkijUnCellEAhAY3SlQveVjE477UxEqUQUoHwBBw5MiETaWNEbkxihBLkpQAhlHQhjMbF1atX72h2Nla3B9u90vtms1l/G6enpqdmpjsz3d3+DiJOysn1m9cW5hcEis70NF28bMtiPB7FpNnv95bm5o4dXehtb+apPnr0EIaK52fzRraztdVotvJmvrOzi0BZlsYQlRbD3qAz1a6GI5BoHQiJwCiFlgKJkBBrpCEwAmIIJIREJZFAgvr2b//W3e29q5evnbr9eHdh5umv+BCrvZ3tRiKZIkc0JifnI8Orr784PTtPKMpqFCEAgnUuOvrQN3/zZFy9/NJrSuvVnbXBZPDwfUePHloB7d+8MBgMNkeDXQp++cAiebr16G07/b0zb7yRKj3s7yaNRmQORK+//mZ3ujUYtnxlT952wlZ2e3ubOJbFRCedoqq2N7e1ke1WdzIufIg7e6PZmW6oe+pM5aTKIJVKcoXBo05Sk+YMUBRFWdqanMPAIYSqKAf9YaPZqo+wRmmR6CRJgnfRxzTJQLALITLVBULrnJCQJAYR0zSNJgJgCDFLjfMhSY13vixKYhZK6MTIyhRFmRgJhCFQVTpnXZpkWinvQi1KVUJFjkwcYwQUIcQYPRcWxT4QPUsTpTWwRyAbIlGsIRZS6sSYZp5naa6E9NZNRhPV1UmWiVrFgSJGMlp7k/gQiEhprZRGFERVVVV1jgIArLWstU4UEPrgtUBArAnSAjFJ04gYQyCq89OAAiSLEPzRQ0cSIavJ+MybZ7VRIfiyLG1h0ySRRhW2JCmscwJlt52zwPF43B8O1ze20iQ7eODg7Oxge2cDhKAYV1YOzs0sVJPqpRdeGhZDRgqemMVTT3z13jvvu+3UbZ+69JfeOqU0AwghGUVl6b3vef93ffjbf+pf/LQ0qrIlSmRmIVigkIx5kgZHhw4eGPR6IVZKiNmZWZRYWMsgACUCMjLVPhAmqnPxDAyIFBGRIhATItftPxbAMSopkUWNVpQoQRKwYJQSpEahpGCkKDjRmfMxbTVY6O/6we+79/QDX/rUX6+vbd55993vfvc7Dxw98NE//tOtnc277j557NgR7wJHbnWm+sOxNmmaZgzYaLSIAghhTGLSxpHWVJo2++P+2E42djar8SjTOBlPdKJTaRigLCww5bJ2eYJWqgYzREChtBACGCOx8340LnMNyOzLIgQsqjLGKGRd5KtB2JFq5gUiYP3sI0TWWkkhAYUQQkrJjMGHekVUI9QBgBj2p5coQEghpFIIQEpKpUyaZUmSeC9ABBSCAV0IKjjDmSJGBmQQyFpJQJTKKIo+BhQoYuTggneucs46b31wPkTnLdhE66SRpCkq1sZopRIpgDmE2ljGjCyUklmeK2Mis60SgVCn9Iqi7PegspVEUlIpqRKt8yzN05SYnLVlaZUxDqRKsxoCKyUSRSQBACbVKjEMoE1CEqSQMUQfw2B3L3o8FeOhQwfTRF+9ds0HH0Nstzs++Bs3ViejIhIRIwPv7E2G1frpu+6cXUguXr96WNPa5mpW+q/9mofedvepuU5n2G0cOXLAEwYfqkmhpGSOzBwCmSTp7w3zPK1G5cL8zI2Ll0Moo68i+8qRpVBYOy4mrqgiceE8EaCPwXvrbGQqrQuACcChw4ePnzr9zJPPXLpwY3Z+fur4oXseuGtleX5nfe3My68YlYPREdNMNyIEV05Ggz2hgakEjIkGEd1Db3/7iduO/dEffjRGwUhz0y2uZLvZPHxk5ZWzz0/PZGvXt3Y2SiQoq+re+x8AhBdffXbQ70sRAVKpp2fmDxTlaGdzbahFK88bs/OJSXZ3dpXUiVITopnp+aqoNtc3nHNz81oKkeSNRjvOLy9vbe5u7+zNzc8niSCKwXtgSNJMa8mMg9FoMBiF4CJFF/x4NC7Kqtno1HEykxgAjNETx+BCjMCIJkkqWzrriWKz1azKGGOsOWtlWWqja6wKAgKKLM+EZGbJiFVVee+TNNFljYuIRgnvQ2Ud1zYilB69UlJKqRNNSIECiNqNpCKFGCOQV1LuRzAjJYkOIQYvjDHYxLKqlFZCCCbI88xoHQMxc5qldVNfSumcDyFkeZZl2WAw0KmuLR9aa6VVVVb1sIuZrbUUgkm0FJKIiKJSRkoRnS/KkhiUElJKDDEGD4BGmWazKQpEhiMHDz/4wNtGw+Hq+nogdt5dvXF1fmGh0WxkeWNcTFzwRDHPM+v9eDQmH621q6trc/NzUzPdyWRMFPI8mZ6dDhxdDKiUVmpSTqwPUplJOXn1jZc/8IH3vfjiS5cunDdGIiMILKvq/gce+Lbv/I7HvvjY1ta2UVJKwaiIvFAgpGq00lazVU386dN3/cWf/2WaKUD+wAfee+HyhWtXV13wStQ3LwK5T0BDABBCK+OD10oSo0BGoaL32mgGRCFE9BCJUAILpRMBUQBGBAalQTBBVBgJHEWgSB7K4eTsSy//wPd971133/fffvHnf+XeX3r97BuvvPna9f71Z19+QRA++u6HXWkbjWxuZqndnt3u7+7u7AZrnQ3D4SgGG3yYn52TwR87dbzV6tpgB8Xem+Nhb2erk2WNPGFkZSQKiBSVkIAichBSUgzBe8wyilFpXU9jUIiydIN+oadSIm+dDQTFpASBSispJIJg5Mi16lEyIhMRRq75/kIgotQq5STk0YfovK9d5CClVApRhhiAQiACZhaQGJRSIZJUUmuTmERJE5kJMTBEZgZygXyMmgipruOglKo+QygmijF6CiGQtzH4usgGkThGLiqra/a/YIkieUvloSQSkee624xCSiG11jpNskAh1dKYpNnq6EQ7a7NEb/d2qqLE+oeQiUmyPClsGYmqokyzRCcJIiipVQhGp1IqAayMjCFwhSZLsjSxlmvUBvsAkVuNFjHt7u10O+00M0olMVC/348h2klRaJXopLIOU3Ptxpor3XR3xmhx/drqeDA4cODg3/7Qh04ev0V79HY82N1l1CpLNWAVHaAxWhqTTMoyNXp2uju3MFuOyuj8yvJinus0y4uyaHamVJoIhLIsAMDH6AmYOAXhg++Pdze3tybOgxRgx+vrux/92CdBSJOa559+oTM9c/DI0s7axiPvfvgd73zgzRfPXl/fMN2Fa1dvGqUWFtp72z2llOxkg8GeQH36rlPf8E1/4xOf+MzF89cWFpcCZweXTx1cWUxF8sSTT9kw8uNhZvQ48tbG1sEDtwiBvd5ud67d7DQGveHc/AFO257h/NmzQnJV0criwsrB5cJa58PU1NSkmEhlFpcX+4Pd9Y2N+fnFLG8AMYGYmp0aTya90Wg4HLXbncQYV1mlVJomBMAEo3FRVRYlSiH9hG1ph4NhBEjTZGp6qh561BQUBMEQiZkij6tJWRbeO611PV1JTCK1JIpVhd6Hmh4KyBRJIEoUKpMuhMFoGCiCxLp3Us/ZmEErxQDeOgYfY/TA2mgpUGttZV1r11JqAV5rFgLqCSdFklILKYqyCiFIIVSeoRQhRlu6dqPVbrdTkwohTJrUbEQpZYwxRpJaxRjr80DWyJRQIQSlldY6+CBkfUqI4i0/EmiutyNSKWNMiBRjrKoqzzMhQSm5v1ZmYKYsTwQAy3DLkaOjt73tc1/80k5vILWabG0X1i0dOLC8srx6c1UwVbYSUvgixBB88BTjaDy8eePmwsJCd3qqmIynZqZDpLK0adKYnZud3pxmYoBKSLM4vzQZjyej8enbbr957bKSsnA2xfyeex/4u9/9d1957cxw7H7m5/7T888/98arb2xt7wQfBUJidJY3lNZ33n1qarZ748o1b50P7s477vv5//Rzve3dtZtrw94mMIVgA5O3VW2+KSaTpNEYjMYLs1O94cQBG6NjVWQmH0xKnSSKY3+v156ev3Z99fCBA8NRf297dXp+2loyQgx393RTO+/7hRuOBv2tYYo0GAyjTs6effPtjz74Ez/6T7//O37o6ZdeeO7Frxw/eepHfux7hpvbh1YOXLpyKcbAtZWC2FlrbVV7Z8bjye5er6o2++OJVMmhw4cYukooqCe6iFIKIkLGGttXL26Dj9HFyhSVMkLrmmBUUy7Gk2I0GuepSCRBzQblKLi+mGsMEjsfXAh1czdEQgCgKAQCsUBOjDZa1cLByloATBJjUpMkSoAoCyDPIUZmRkZTN2cZgWupTIwx1Oi5EDkQAXAgcs5JISSKWNtNuY5kSuWcI2AfmOM+qeOt1LaUkrRWTBwQFEMIFMkDBckkGRFQKam0JhQsAKRkQO+cTow2JsuanU5LJ0kMgZkdxWCjdyFmQFRrN5pjzc7FSFwWlUlTqSMFFsDIlJhMgzBSeReRI3LM0lQbSTZADAKYiYNzwdpyNFHMkUKvN+p0OgJgZXGuKstOw8zPzlSBRJJmytiJ217v94eDjZvjB+978Ad/6Dt0M3/yC49deePM5s7q9Y21nZ2eTpMYuSwKnegszSLFEAgRy9K2O61aXCcIp6e6EVWgKEApxbEcu1ApI5HZU4wcpavjWcXesG89CJ10s7QsQlnyyuGVoycPPvaFJ7/w+S9/6Du+4Y7bT26s3swbiUn0+97z7r2o7n3bfRtXzgcuTt1xaPXmRn80TnPdSpuHDh3+zGc/+/xzzzdbc4iwtLAslZGymWTpqy+/urp2eXo6azYbWSYOHji6vLL0wkvPpml29MhhILhy8aZptDFt7fV219auNbJ0ZfngyoEVpdXmjbX+YHTi6NE0M8SYpOlg0M+S/OCBg61We2dnj0A453xZCoTIsZiM0kQliVbKoBAuxMiMUmR5rhVU1dgiW2u9d0obYFGrHBEgEte47xjIe8eRnXeVrUIMxpiqtEmaaK1iDGVRImLwQStVww6lEhJEcE5JZbSZmZ0J3o+GYyllmqVVOQkx1sX6GKMLPrgoEGP0AnkfxotsQ2CBSmlUQjJXpUXkLMsSY4jIOu+9w7ppg6iVpMBCYLPdIKKiLPNGU2uNQtbTmxgJBUopgCGEkKbpvhoPuG4IG2Ok2K/bSClrUK6UqqYAKa9VqrIsc84Co9Iq+BApokTvAgKUZZGkCUXY3ev1B4OpmdnDR25d294dTIaNvDUYjxvjUXdmSkkx3NurqnI0GlaVlUoCcWIUx7i2ttpsNVutdu3u2NvtIYAxmijccvyIzsxoUs7PLx47fqIqJp/+9Ge6U433vOfdg/6AUM/MLXS603/9V5/90ue/cPvtp07edfs9d95/4sTt4/Hw2qXrg8Eee8qzNE2yRx55x8U3L12+djVC+MtP/uX58xdOnz69vLBw+50nkuQ2pYWWkmIAZI4xkOXgp6anyqKammr1B0Wat73n6KtG3qgsp2kaq/FoMGjMLV6/sTk3P2Mntre+3p1pOwftVuacJVG1pxKrldBpOXbF3u7Tjz/9l5/+3KULl44dOfTff+WXzrx29pd+4b//+V996jf/9//67V/5n0pg8s1/Z3t72zva3t5FqV1lhcAQwqA/qMrxwYMHldYJADCNRr0b11glemZ6WkZKBCspk9QICcFHpZQUkoFC9FVZANFohM7a+ZVDRemyVkOiiCGOJ+OymFSlkbnKssS5kCZJCNH54D1FwwBcD4soMkqs68Qo6vkYSymUksyoZDBaAaCSMs1SVKiloMhJlhJKBnAuOE8ovFFSICHIsiiGQoZGYABbusp6az1CPX2zHEEJGUOoa2W1qUUxSO8pBEYQkTi4SIGAUUkJCQJSDBFBKK2VkVLV86qIIJFZAEghUJCQ9WBfpHlSSwiEFAxstAZtOt1ovRsPhhXUmgKBEKQURuvO9FxnobO9vg0DmM9yfIsXJgQ2m/nS4nx/e09opbOkjOyLspqMVNpoNBqdRioFzM50JRyxtixsaSOliU6UuO+e29durioBRmMAOnH81kGv31LN9WrPj923feh73/Xud165cfZ3P/K7Lzz91KHpbmFtFclVXlSlEioSxYIgYmUdIyltrHOj8WQymUgtysJt7O6UIRqTRBvTTIWiYI46zUKopBAIUYTIDFKJqmJGwZFjmtjoPLmb128Mhv1Wt7Pb2/nExz9528mTrUbe6WZ5uz2cFLLRlgKP33a0KAbD8ejw0QPdQRVCbCWN3b3e5tp6dzp75/sezE1rfbMXXVi9ecM6e+j4YUji1XMXwry+5/77Tp04efnqlS8/9sTi/EJRlssHD7S6c73+eHW7d/XS5Tiuppqtxfnl6enp1c21C+cvJ0Y555eXl6rKr29uRIoHDxzodNqDwaCsCiHFYG9glKiB+Ds+Dvf6Bw8v51nqnQ+BpTYCJcQQgSiE4D0Fr6TM83x6ups3ciJGsX+EJWBnPUWiSGr/h6wp6gAQQ12kB210XY3XRgsppRBKqRIAEY3WKLDVak8mVVGMlNbKKw4BGRg4xEBEgExIUkgXnXJVCBwDR4rDkU1MKgRijeQNnoiUUkrrUFb1B5I4SiGFkEki0kYaQxyPJlPTs1onFLmcVM22qSqrjTZaS6m890QkpHDOGW0AoFZ9Ka2MSYIPQog0TUWKSqv9rQCRcy7GqLROdOq8q8pSCIlvAcFRijRNACAyO+YbG+vOhiPHjhUcv/ylr+z1BnmWXb96PcuyA0tL/TS5dP7ilYuXGq12o9Ws8jQGrZQcDUerqzcPrBxsNJrDUX9rY8NoGVw1GA4AsNFsZq2WkWZzdXMw7CmErY2NViM7cfwYJsn65t7ZM28KlA8/+vALz7zwO7/223eevn1pYaEoim6nmacqz3KjlULV6mYf+b0/ct5rg1/96pOPf+XLxhildd7MtUmUrnkDNdAehESBkKYpgmymxrqYNtpVYaUIDBCjaJoE3DD4EEw6dq6dp97FcjCZ6ja9p+Cdp1j5IjHRAU7GlohzqVrt6fXNnUajc+3yWtJIP/f4p3/oH/7A7/zmH+wNen/1yU8I4DfPnAWKSupGs722tra0tNxpd988E12oCDlSLMrJ1NR08N57axKVNbIYfLPVgFClRkeKSib1LpZqqWkkYwwSVWUphWCktNEBZWIMEriYjFCQlKi0lEoaEMBgnSOuNWgcmSIhogLkGv8GwAAcQ1TJvsSdgBmIiJPEZFkmlUIJQFEK4UsrpWTAemNlUAFKoUStpwfgQBFRFmVprYtxX8/lQ6RYihpOzqiNAgBngxJKeU9UB29C9NbFEJHBKGGEFBisAIk6S9Ms1VIJ2hc9Qm0tYAYhhFJCS2mURCAhJBNR8MFar4wyUgkwic7yrG6Ka6GCjAAkpOhOdwAEMTeyVErlfYwxAuNkVDSzxGiVpEnd4WRgLzUZlSQyVSJLdbfbaDVzidO93d00U3ne6Pf6Bw4sjYfDRitbWJxLlAmB23ljaX4WmYvS3n3bXSfvuP1Ln/+Lj/35n4yqqtFqj7yvYpxEBiXIOq1ICCWEGFY2MkupvCdQprTErGPAJNUUIdUGkfNGXo4LzdqkzbGLUSQmSaN3gata5ANaVNGjkruFZ6FiEijG7d4eReq0Wjvbm8+PB61mM2vk3amuSbJWsBJxj6q0YVrNdkfMTHWpmlSCsd1ozUzNDEejajTy0hFEa6t+f3j7bSfSRJ687QS97317O/1DBw+88eqrb148n2izs7PLZ+LOdu/wsRNKqp31jWo0RuezJO20Ozvbe9ev30zShIO7cvXKoYMHxqPxjes3pmenQ/SXLl0GFIzi5rXrN6/emJufGg56ly5cnJvtzkzNjkej+j4lpE4QAclWZTUZ93Z3+r3heDxh5jxvJFn+1sVdK1CRY0ABzJRoBVIyZVVVKaW0Ud6FoihC8EmSaG0ECu+D956AUSsf2BhTlpWtXFlVRptOp8NEIQ/kfekCxYAIUkgWDAAciSNLrWuYj3OWmG1lXeWM0WmSSiEIwDo/Gk+yLAfAxCQOQj3GRQCpQCBMJmU238zyTCaiqiyjbAmUSgop6y2l98E732w1kyTx3heTCgFDCDpqpZX3zjqXZ5nW+yMFY4xQKlIUKKSUzjuiaK3VSqMQSiljjPehlqJIgSTg9bMXt7Z2Dh1ZWVxYevs73vHqq69S8AC4vroWbTXV7Rw6cLDX6xljGOHAyvLMzMykKNZW17RSw8kwyzLvQ3dqqpVn3W7j0KEDgdgzMKi5maVG2s4bctjvCcSpTidS6E+qo7feNju/2Go3NzfX3vvO921ubw76u0cOHmIIN6/fCMS9nZ3ReOhctbZ5/eKlc3muI7EAVKhRSC2TyaACqGqXcoQoUARP+xVUhOjJGAUCI3CIIU9UZUsCVIgoYiS0EQViJgQJBkC+jmnSLOwYlGQf0voFmTGSB4ju+iak7K03uR6Me+1m8/q1l7/3Bz70D370/3r12ec///jnTt16gDiYRjYY7m5u7PR3tg4ePjwa9tLEiMzkWdrqtBgpRO+rioP3ZUU+krdz012JUNnKGIUAwdqqLCNzs9mamuqMe30nbbvT1EIYrSbecyQDrAWnWnRbuVIohZQaa7qZC15K4EgMDIxAgIzIwMjEQJ73gf0sas1LjFEppU2ilfHBcYx1BlqH6IOLIXjnUCAiKiWEoBijrSrrnA9RKWN9RCk0JkKgEBAjWwrkvJTCKBUBMHJkUCiUUIT7aCHyIVKIUurEKFTSWwsMJlF5nqeJEhAByXobUSBAHfsDZmBByAwUAoTIUtT2ggAAxmtrnS1dPaiNIUQVhIBRf1RWpLTykRZX5lvtFgWqbGmriiLVtxdXVYJBAholA/lUiqTZyJI0zxoTR61W3mrmzVy2Gum4GG9s9PI0H/X6B1ZWWDNHUKnq7+2VI3fhzbPtRuPo0cNHDy9/7GMf+exff14ajSi8jz5UjjyoHAQFSwLYVpXSWipR2SrPGszgfaAQEYRgoYQsJ5O5Awf6vZ6NBUdCKVOTV6MibeUgZFUFEUjU3ylQEANjrOIIEIEJKEJkABiNB8aoUd9WhS3tmjDKewcAElgJkaYKpECpiJE8SRQKBQcajQZSYZo3VJJUZQgeXnvthYXF+dmZaYnkiuJzo3GeN67duEkMjBTI39zYPHflEoMcjSbEVgja3tp75plngoiFLbyP4/7QB3ft6hWTJTtb2xvr61kjL61lRGCoqgoJJsPRy8+/0m02p6c7x48fk1osADaaDcFSMwsmhchM5aQoq4mtqkaz2Z2eNiYJwWd5k4h8cERRK4mI2mghEJClklmeIgpgjrUpLEZEJCIpZaQYfCjLyiqplc6amUlMDGE0iM6F6MiWvipt5CiUkErXWZLalSrqlDILZgQUkfY5ZYhCsiIApaSGBEL0wcvglU6k1tpEX4uwQ6iDyGnT6EQ578bjSZ43jDb1m36t4Y4xxhjyRiNLM0SYOAdvLQmEEMhQ449qPnCIgZlqF7wPXgghhIhANTPSOqu0kUpa76WQROBdIOJJUbxx9szmxtaZM6+urBycXZjjEDbXNmxZtKaa62vXIVKr2RBCEkGaZs1Gc9jvO+cZODjX33EbbkMr1chSC7jrK0QgAYGl9Xz18nViQIxGAiIblDFSrywr64FFmmUA0TkbKLSbnfPnz16/eaWcFFjv/SQIxgtnL4ACAoqRQyQhVKKUzlMSUGNdktRU1kqppIS6i4rIlHCiNUp0zgYSWgkKGgRKQJM2QoBMSmdtKiUjKaODJykwNw0PXhjIlCy9DcyoRFFFNhIoopFFOclyM5xMGq38jXMv/et/81P3nn7wWz70DcVwfW+7157qJlmmNO9sb0byLGh+btb72O/3TZ4vLy2NxqP2VCvPM2Rs503vRCNNY3BRK28dMtQEBUBIUmNUojqdZEHHwIxUFJOJi0onyNEYnZlGu5O6KgiBgJKJo1JUv+bHWCMP9jNAQjBB4EgUJHBkSRxRoEKVmlSIQAzW28l4IhTkaSoVEVFVVZPJZFKUxmjvjZNSCaYQiTjWeWsdIkiUSghA4EjMFKx1tbIpEkdCFMGFqPYbCAJ9iMF7ikEgZEanzVQm0rmqKEqJmCSJloKJIwVynqWSUsS3dgYxxOiDF5IUShQkGDxG55A5aFNZP5lMiqIMIXggC+hCKMsS0MQYpTJZrjlAZUtnnbOeifIsY4ayrJJEa6WstaUtq6qQxKR0DT4djQpmUZbVcDjqD3rr6xtSqW6rMSmKSVW0pqc6c/MiKavC3nrk1vWNVSno6ae/+qlP/eV0d3Z3PBwUIxmtNqCNSPKcKLDRi/Pza2ub3XYTCHapNzfdRcTtrc20lY6Lyd1333nj8uoA/C2HZi8Vw2aeb21udprp7IIRKncEdSEiz3OyPkbWSiilQcrIFUrGiCEKB1FJoUBAEALYCEwb2aQoE2Xq259AGWz00bMISuhIABwEg0QUQvoYeVLSpCBCYKk07u3sjXt9Cp6ZkKGnhpFCJNbaTEZV5DgpCgHIwIIiE+z0d/eG/QgoFdbFcUQYDAbUB4FgvbU9W/tJhRAIDEzlZLLuwxZutbfbk8pPzc11p+dyEEopJQQF9raqilIKKUC12p3pmelWq5PkqdI6eO9DCMEzsxJCCkkYnbVFWQJTkia1MqgWWQTEsqyEFBQJBEghsywFhkBxMimZ2JW27lha60bjyWAwZPBGCiWRYy2sA8Y6HIcoUSAarZwS1oGUWhuTJamu38oEqzqpiBKFiBEAAQXHSM47cmS0ytsNH/y4KHSaTqVJmmtEttZlUtaAV2O0VhIglpUdDQYhhnpPrqQ0xiBimqSRCAUq1CE4JmZgImIkYJZKhCoIFCH6wHYfJCaVRPSRmLgYFePRcDTqeeuH/UF8NXofakLnZDBCZgCYjMb7Ej7G/edKjMwklCLAGCOiQAYjEAUDQASOzHWkg0goCeRtvWhhBhs9ASplJKrEKB+tVPKGZyanjXSVB+IkSV1wlbVaGnZQM8sQJUppg/OjGKLTSgSOHNlFlyq00SMKVgmiCMGzEsZo74gQUAJqBYDGmCxNbGVBAgZo5ippJNs7fQIkFwkRoAJk61irJEkMYtLohF6/b8T/j6j/jtsku+77wBPuvVX1xDenzmlyzoOcQQSCJEhRZliJkihprbUc5ZW09q69Wlu2ZVnSR9GWRIqSSJMUTBJMSAQIgAgzAGYGk1NP93R6c3xiVd1wzv5R70h/Tfj0dM9MP0/Vvef8ft9vTgbzuV49KvtFr56GrHDj0c6Va6//2T/7M889/e29/YOqmr77yScAtdVq7x0Mdw8P21krSbz+9pUqhG6nO62quZk5QOq2Oz7UrcwRKDNZ1xoNRyGKKljDztlO0XIuqwk67VY1qcoUplMf0RE7JSzyvLDGGaMMZFkS6jvZTxB5p96OzBYQgZFAUoTmc4toyFhmCwBWUQHrmKqy9CEYhWgNeR99qOu6qsq6rhGgqr1lJstsWMGEEGISoCiACP9BPSaSgg+qCoZCkGZfmQCMSkIAAmo8MIDorM3zLHeOHXc7+XRiCaERHTR0i2PUNCECSgMVaj7UklgogTRBeB8TcxVDKMswHk6qsiYEMNjYQecX58d1moyn7Z5t4LqqitAwhaRotSVFH0KnVWS5KYdTH8oYakajScpJNRlPpcbD4fDG1Tf3d3aKdsbGADNaHoxGo9H4cFDWZaqqerh/OD/fu3DbhaX5xek4ves9D+1s7ATyg9H+6VMnlH2SMD+zUJclKi4uzkKszpw6NTqajAYH506f9D5I8EWeDY4OL507H0ZVMXb9dmt2tt9p5ePBcHll6dIdF9e/9M3lM2cPDqtBrGdXzyDAaHCwND+z+faVs+dO7+8P0JAmzfKOy7L1GxsQU6vIBVJV10lSCElDYGsJMfqEhAiMogqQYgQVH5Mx2Awo6pgAAYEUk8YESimhYyOgMUZIEQgaMNlx6ooAj1MCzcdQkwogSdLjM41CUkHApM24BhrfVSOQAABF9TGogh+MaGvnxub2wvIyO9sHssakEKbjscZUtFzUIiawrjDWEbKo+qoSlSbs2CAP6rqx48UYowqwISYiJkBoXHfiNfiQ5VneLY5p0r4B8oyn4xKRkiQffIwREFEawjqkpDHElKSJEhOjAISYgBGJjTXGucwVeeaM4RRjlQRJXJYxs/c+REkxlXWdfC0SUwohUNxK3qdOp9/pdPOigOOvcPMbgc7YGEJKaTLxdV3FFCQpEdkmQqraHK1qX6OqsUZVvffWuVZRNF+bBi/T2FwJqWkYJAhBVUBSSinUEnyoakQIvmpkgkma3AgoAjYd/WbMACoqmvT449FE7hVUhZBFAaISIhAYtj4ERUwxKlNzvE2oIk37KgkioRrOQE1VVaoqkqbVFBRc5oIKgCtaGQHVdWRGHz0BJPHELCJNcNFa9lWJiNPxpN3p+FT7aZmSuMzFsqpGIyJMUVIgQETkGGQqU2KKQUOM3qMi+CgmM5PJcGF2cZri7GJ/48YNjvX99z+5tnrimR88053PFucW37p6Y8b2aRaH1VHRKw4HR1Vd+fW3/sk//acffM/7fupP/8yp1bVTJ0+dPnGyM9P9td/4/Pxidtfddx7u7qUUEujd99279cffmE7qCxfWttc3y2lZmIIRmQ1bo532ZFJPZAIKrawoXGasxegY2Tk7HU9BsN0twLiModfrOqitYSwImIOXGBPgMbcZSBEAFZgQ2KBh1KSiKmqYmJiaryg2ZSJgREQ0xE0Zt1lCYFIG5EadnJKAGmcMMyHBcdQJBAQ0QWPqSRGO+RKiol69cxYAkMhECdj0jyURQaPEa7XydqcNDkPy7WEhijEETQEQmKih+kLzytcEqanFMDRfDABq0KYIkmIdwqSsJ2VZVnU7z5qvpioU7bYakaTOOecyFUmAxImIfYTMGaiiMdaHZAwyEZNxucuIEaCqgipnrVZWdERpZn6OWG5u3jw6HJw4sTw/N1tV6dbmtYWllRNrZzKyxmlIIYjc++A9l+5Z+zv/wz/MXHbhwjmSePa2O+u63L61qym9511PDkbDuo4LCycQ93xInX4/JtXN7UTOFK3WzLztdm3047HvzS8jOW8Pu4vnT5y+I/iv33Xx3OWr17bXq5n55bvuf+DVF19YnumWh4cc4bYLt4HJX3rptTrgUtZbXMnmZnqgYWdn0+RJFavk6xDyvJAkYVgiKBsCjURoiJKotQYRVBIoGkJtMmWICgZUCaB5gzZOheYVC83pFgASIDZ/1Xw88J3HRSPoQ2gSZHq8jIV31GwACsd4WxBAJRYyXnR9a7t35VqKUVaWGTVUtUrK21k1jZkrMKlxttUpXGYbLhUxGcuWSVJKKapCnmUppboe1uI7rmWMqerKV0FSarVbMck7CSJShaqsY0rs2BirUg5Ho9F4NC2rJMJskABQQvRVXdXBa1JjuHFSJlUVRUZEdlnGbHOXNwJ6ESFEUYwxhSghRu9TWU7r2oMIYAJVjcGHVLTa1rhuv5vlWQxgLRtjnLGGWZMSUILoa8/ExhjXckzU9IGrqkJEFamrutI6z13j/wLEol2AoIpWVelr34DCrDHOuRRT5WufknUOCTutliFUSQ1HGkVFlIkSSkOVb6bqelw6h4bYcvwCaOADigiQJB5XFAkb4iSAJgUwqiAE1AwlUFGhWdcnZOtjHb23BlWoTgIJAG2RddiY2Zk5l2e3bqwvLC4eHO6DAhtiJlRIUWZmeynGqi5RUrfbzVzHFub61et33XF7u915+aWXz5w9LSr7R0eRZW5mtvays7s3vzaPETvd7nRab4y3jg7Tp378o1ev3RgOB9D3f/pnfv53v/jF8+fvvnnzy3fef4mz7rPPX3viiY9mNt/YuPXhi/ft7+0Z5v7SzN7Odnrjymh0a7Q9bPeWpmrGU7N9UBXtqtett/dHo7ICcl/7o28oxMyQc9nO7p5z+dW3ry8uL02r6Wg0nGlnzIigTFxkBYIdDUZBQ55lDJQZQ9YhAJFK8iimnRdqWv2WNWEs9bAJUlqboSZfh6baRYxMhIDOEhIpsyCCQiIiZiQAABFpavMhxBSVyORZQUiE4ohRkQEza4s8F4Gm/UvEbC0pKgkRgyQRYCYgJCRVik0QuVHxQmpOENYYR2R8VTljBYEQrXUpRWttURSddktIpF3Eud60jIoQYxDVzGUN1Jqoma6KSmQiJBCRKGodqSpiQ/5JwScf0nhS1nVoZ5kxVgHr6BU0b+VsM+csKAISE2nSFBKzZdAyhGlVA2hMni13up0YbRxXyNhq5XvTug5xWtWucMPD0eDoIC/ai1nWarVclq/2FhZW12Zm+nmR29yEajo3P9/uzBWtznyvLZDK6fQDH/5ot5N99atfv3jxwtrJwtlMML+1cXVzay/L+pN66rKWCqukdqeXu/bcfAAsKg9kMlWKMU7rcXdmAbjzwsvXCe3BzsHJtbWXX7tsKO/2l8+duzNWh7ffdXdhyRU9dp13f2DNmK5h3NzeNmTnZufmlvcrX1mX266bVJO6nE4Hk1jH4eH+8OgAEVPygMewQFFBZFAFQlEhRNDjSriqaHODVGxO9QLaRJMBm3hic51o0OONruL4oN9waJCOt7XHr4RmFtH8KqgCAqBoUFCnVXU4OJr4SZDADsmAQESUGELzbilaWavTJqLGpsXGIIKztlkzxeARjiFazWPaWBtjrKqKmLrdHiCE4Bt8NCp4X4OCRPHeG6aile3tHRweHoaUmIkYQ5AQQwxV7X0IAQWJRBEighAmSakKqOCMy/OWsSalpowmisCWY5IoaTKdBp98XSdJ2DymJbGhLHOdbq8320OkFNWwIWQ2hphUVUFExVfBOssWpyVIigASY0DC4FNRFMSGmafTqTWcF5m1BokaMWSMsa4qH0LmrCZRSgQghMfGbMPGcpZn/Zk+bxpfeVS1pnFISWMRB33nd6oRqSv8+/S6vLONaFgDDZEX9Pj6Qo1Ji1EF/v1LHxumPyAjMVtGHg5GAKnba/VmZkIMIaV21iOgIOHk6bOzc3P9/vz1t98+c/ZUq2jvbG+PhsNur720uLyxsTkaDi7edt4as3FzCwgvXLwt1epsUcUwt7DwwIMPP/29p11enF45sb2xfuH8Hfc9+NDzzz5b2Pzihdtu3trYP9hXhVNra6+98vrO5uYdly7FFLc3b50/d+Fnf+anvvzFL4eFqcvzykdmXDlxOsZoTB7qtHHt4MTJtc6Dsxduv2s8Hma91uHhYGVt9cyps3vbG6++8urR6Ohjn/zE00//4Lvf/pOV1eXluVkm8/bbb9+6tQ4K48l4GkqTuWM/tygTMVkEbhd5qVLkuSFmxISAIBpjPS2nEVveF3kfgQHIGqNNBF+UFJvzPppj84NjG6OQYUFKCgpKhJIQVEVSiEEBYkwhJkR21uXG5M4BBILjDx1TGw3ZzNU+uswSU4xJAX30IUZSYGZqgIuGESDGWNV1ZAQhUUUGIjLOOMMmxQjWACkiG0e2QREhRE0GMLd2tt8t8lTHWNbko7C1xloiQwhAwMxRJCXBIGiJCSGCMDACCvg6pJSquq6qWlJEQDYGGtIdIhFnmUsNAafpo/n66PBoeWnx1Mr8d75+ZXB4NL8w4zK7tLo4O9dLqZ7iMNaRjWYt3Jke7Oxu5YUF6cbou1lrb2d3OBmdO39Wk16/fq3FKUwn+/u7wYfZ+TVRFoHNW8OL99x/B9jCtLp55/GHHz5//sKrr77uXHZi9cTtt13c3z+86/Y7yrq+sX7r9tvvPDwYvPTqK+fP3TYej/qzvZyyyXQwtzRjyGzvHq1vby2unPBlefv9966dOT+qh6fPn+91ewcHR3Xw2xu7sRoQaKet1nlgwyT9/szq2ums3cptpzU3MxjtS4Ja6k6n22rnJ0+dcuzWr95447XnJ4cHoNo0TACa9gZoY5dppjwgx89sQCBARcXjx7yIUBONPNauHx8Vm25t85Ro/snmT5pxwfFPps3bQ/VYDweIAKhsgEln+rlhKEejGGskAVRjWVjrSY1k2GGTdkuiZVURm067G31IKYpEBGUmH+sQUwyxyHMilCjv9N2ZmaaT6Wg0FNE8dyGG3d19EZmd7YPAZDwmpnYnl41AhKox1GWIjdI0NQ1HIEgitQ9NxK6a1nVdF1luTUNxJonRsmmmQEREJqXKSwwqgqTNA97XGoIQU7vVWVpebre75agqsnbRKiSKYVaVuvZFkVs2kqJoinXKrGFmJIk+JUlEaLndtCStNWy48QcQmRCir8OxoLyuq6pqWL5IhEggAiJ+WhKbGMVluUQ1zAqakggoAaloY17XY7Q7Ht/wVI+vAqAgjXNc8fgypwKIiKLSrJSaYwNAcyJoboWAKkx85uSJ2y7dnhd5Oa3qurZZ0e92F5YXT508dXgwuHLl7U6nvbqy+sA99339699whTmxuuZvC6+99iYh/MRP/vhzz77ww+d/+L73ffSxxx/5pX/+r8aTyUc/9LFf/HN/6f/6zd++sXHjF//yn7p49sIXvvT1n/6Zz777Pe/6j//i/+Onf+aRRx555I++/Ec///M/+xOf/bF/9A//2T2tey6eO/sX/tIvvPjK8y4zDz5yf6dVnDixeOHMyf5M77bz506cWMidHQ0G+2W5uryysLAw2jv0ED76oY8eDrc3tzeWlhZvXH5r9+buXY+eeOSeu5Oyhfr6lTerejIZD6py2um3Op1W7f1oMlnfWJ+fX5hfWKhjEMDebM9lORKDSIreGscihoCZFVQx1WXQEMhQVYdJWY0859PadeN4PJ1Mx70MmDmkEKJHNM6woJGkbMAiWyJNscEHoQKCGISmFIxEjSM4Jk1JDStCyjLDaBVM9D6GQMR5xgIAANbG5iiQkoQowYeUxCAZS86xsWyYESmikhoUK84oKIBaw6YJ9rNhaWKoAAIkmkRSDB7EGWctZhaNc7EKCYkwJKJjexc2F1CFpjim0ojlQaIETIYJRGMMijiZltNp7Rgb85eKiDYQC9Z3Rg2o2rQzFMVYOxqNezOdwdEgJHEMLrOWXKwqQsiKvIqhLCed9tzM/Mze+v7+zm6/39s/GkuSBGk0mrSyrNtuTwZjANPK2zVW67c29g6OFhZnZ+fmsrzY297/0Ac//sPvPb+0eLrbXzh7/uLmxqbL3InVE0dHYwG8devW/u5uffrs9WvXXnz2h08+/hhi3N/bu3DpvMvIa3V4cLBEM3fef0c59esbm/3HHjq5unI4Gd37yOO5WSh6CwgxhvLocE81pigAVFbTUOt0Uu3tH5RhsrbaOnf6XO3Xmol2HSdVOU0pWTTdmRmX5WPVlLwkVAJAEmzu+IDN4byZ3mvjkgJVRGgeCNgc50QUQAnxnVlx82PgnVxm88hHhOb4f/x3CQn+/U/R+BtEidEY286Lbq+9dnKlnedMMB4OJ+Nxv912uQlBenN9X0Wtq9FgZOxkkckabrc7BCgEiMp4fCMJtU/aFGhRVFQlL/KYYlVORZKxPDvXJ2Rf+8m4brWLEAICttstkZREW62sP9srqyr4488hE/mmmOWsSIoq5WQafbDOeO8liTOGCbEJocWoCsSU3vk/IzG2260Yw3AUVDSzBlVSkizLi6JduFaqo21R7iyKWEMx+lSpdUyIookIoo8ppRjiZDLpz86wMQc7BzNz/SgBgTNnRVKSePzWFXHWMRpfewS0bLyvJKU6CTFZ4xqIYkyxqqpQ+6X5RWs4eEEE/Q/PfGgiA3o8B9LmmKCoeMyXeeeP71z2mnf9cQrx+IXfvAAAALBZIisQm063c+bCqdVTy67Iut0uAta1MKFzWQi1YGz3CgAlxqKdf/RjH2GH7U6nLuuTp08ba0+fPn/1rZtnT50pbOtobzQeT+dn53wZTpw4ubW1Xbh8bXWtqqturzPYH95//73ldNotOo8+9kjWzh6474HJZPLJH/9E7avVlZWjcvD4E0989GM/UtaTxYWZR594oNeZn4ynn/r0Z2KY1mV9eHhYV6UmPH/u4sbGxjPPP/sjP/qRbz/9zYXVuaP9w5V3PbSzsf7YI/f4ukpgWu1sa2vjtTcu31jfWzl10gFtXLvW788Ekel4OjsjzDw3sxBCjcxBYxkwQ0RJlEKK3hrKnIsp1cFD8JgCiT0YHu0PJ625UyZvN1dqVEgptIoiBkVViYFUDZMQWGbLBKrGclJIzZMQAQCY8BgMzU1rBkFZERJIiFEZEEgEk6o2Wr1E1hk0x5msZgao2gyFDBADKEjzxgdnrWV01iSUxvxomQwzghpASgqQQFRjkrr2CBpC8FWdW2bGwhpAihDzFqKPKQqBigRAVIFG9ArYPEgwhCipwXkSIylCiHFa1SHEzGZI1GgijTGNxdgYIkMpJiaElGLwCpJSnE6C977TbvX7bWvZEYOkzBo1NqRkjZntz06gtbd/tLG+eev6zW6v052Zb7VbR0eDvb3DWzdvXTh/ptXKd4f7oQ5ra2vXrtziLMs72eneSWctEl+6dGnn1u4rr7987sKFVqdYXJg9der0mfMnf/8Lf5i323sHg9GkPBqMomgd0ubG7vruekxpbmHhT556pttrN1aD6zdv5EUbyezs7L76ypszszPLJ05YHVF2szszG2PY2dycne/Pzc61W+0sW7FsBQgU9vcOkXh5bfn6jVsGMGmC2klIoOo1iprezBILTEaH02oqTIqABIjAgFYARFQxgSJz0GSMAUABibHZ/QiJIgkiaBIm0oY2iO8MCf6DWvr4yYEASMcLw+ZRgETHrSQCa0yR2ZleZ2a2ZwHn52bnF+da7TaREUAiywQxSVXV4+EICIh5Mp5meR6Cl6TczCNZgg9lWYqKIarqKsXU7XUNmmOmZhJrjbPWGEoiwXtnXVG0YkqhrmNM1tpQliEmYpYoIUQVICSyZGMUUEZCthrqMk69r6fltK6rdqttjEVohlzNSVlT49tDVZF2u1VVNTK4yqoqI2aZUyBElqjOZb1e11ojMaFpdBhJAUOIoGWrKAzz3mDYare9D5PR1FjXDLIm42nmcmep9lU1nSoCIRetovEKEJGzpqwCHteAFBFjDKrACEyoAj6lPDO3337xhRee31zfaPziljiEYI1JgsdU4IZDq9DISZrDHEEzy6Mk0hhIROSd5Q8AkPz7vQK+MwxsJoeq3X4/y1u7u/tlVTrrog8KaKw5e+b8VrltiOdmZ6qyvnz18mg0LCe1iJKF2ZmZudl5YvuNm98wjh559MFOrzuaDh97/OEzZ86sLK5qjO95z7ue/v5TJ0+cevWllx98+L73vf/9Lz7/0oc+/tHVk2sHewe333PHubvOPvWdH2xsbNz34H2vvfnKeDpqd4p/9M/+gUg935/zKc7OLVOKn/mxzz773DMb61v7uwdnz5789Kd/9J577/ryl7/MBMjx0p23ba1vnTlz7uaN1x88ef8DDz18MJisrK6+dfnK3uBoee3EaHTYH3e7nWJ/d8s6trbV7XURYTwYdzt9FE0+Dqal1K6wpsgt51z7yjlyRTsiJJFYVRZTGUNI2J9d7MzPtVqFaUpcmELwPloFSJIQEDA1RzFD0KyIDHOKSZMCILAabiIDQI0rpomjQWpSDCEmQpIIKSYgYSZNyYfQ0JWPfzygIhKxqAIRsjneGEtiZy0Z45wqCB7PDKwhQwYRDBDXoXH3qvcpBG+YATWlICkiGgUlVMPsFBGohhh8nWJiJlBS0AZCaoxVxZRS8CFJtMZkWU5IEmNKAg0+FzGKqKbmuYMKxtmGSUSE0ZdVOW0W63FaV2V9cm2x08oVUkqVr1Uk+hgmk2kSFbBBAiSYmekz6u7OnoK0Wh2VZAyH6BWS99PpeETobtxcn/rKAp45dVp9PLm63M46L77w4mB8VBR5t9t76+03TpxdO3n69Gg46HQ6OdHq6vLMwgywA2cWVldGY39ra5fRnb/Qc63Vm5vrKflOO5vp9fO8XZU+Mz02tQDv7xxMx9XewV7py7r2+/uDTqfd6bRm+x1iIOQksrKyxsyj4XR2Yb7otHv9flV5ZJ5Uo6Oj4WQ8Llx28sLZmXtvq8ejYTmYxjqKRE1N+4iiqiSNmkDJmLKujGERjTH6OgQfysk01SHWNaighRCiIqZGKqrvJILgeKwE+I7KUwERiJqIlzHWERvDBhSzwnVa+excO3e5IWNtZti1uj1JGIKSJkA82D8YjUa1r13uqroaj8fWunarmzkXovchEmJSVRVjaTqeEHMTghbSFFPmXIohhiSSnDpjOMuz4XCKVClACFFByrLaP9g/GowaGqf3taq8g+YkDYkzdi5jw5KSIo729kMI3a7J85wtm8ymJKwCKUVJAMBI7Cwi1iFIpdYYYmSyIspJfRWI0eWcVKrK93ooAPW0VoS8yETFB28M13VdVXWWOyLs9vt5URBSI6pNMYmJAEpMKaU61Fijs7kx3GDrssylGNRZJCeq1BjEKo+ETGzZdLrd5bXVO+67z2T5ZDzUJMYZXwdf+ulkgtiA16ERhjdnQAFtvCPQiGoYbGaYqKGNKkCoYmZMXfuGLdxIbJoTAEgw1lqTieDswtyJTj43Pz/TnwWBmIIh41OUKP2ZnnMFIBuLjBw11pVPKWUmZ2da7TyGOBmWB0d73U7v4oULRZFfuXJF9Hyn3/7kpz8xrSadfve+++9bWluYHE12tva2t3dH4/FkWH7vm99bObWSNC4vLYdYLS4sY4B77rhbNJ1YW3GtzEfpFJ0kcO7cpTOnz+cu29q8hQlffvZFTXH95ubWjR1PMUW8tnVroT93/uypq2/fOnfH7XWoXnnptYWF5bKs37p6RaPMzc/0u70iz8narJUHH2OM5XhSTiflZKTBU3STBNbalfmZGEJmDROQwRhDnXwtflIltK1TJ04W3XmyRfI1W2bHk4OymZ06Nsf8NVWiJoXxH+5rooLEBGCsBWBQbTox0jRtARNoIx+NISoYRmTTeGQ0hAAqeHxxAEBgJgWDCsZaIEJUSQEAUkRLRMDAYIxrANSGILMuxdjQRyFGiV7eGRgyEiFTSpIa0UtKItxkAxEFQZMKiRI1VTdiY4k5pEZV1lxE2DpHiD4kNoaYDdtjQ4BqSqqqREyITJQAVUJZ1uNy2un0uu3O4WRirWl3CwlVXphUjTX6pFCV5XQ6Mc5NSz+ofZ7nS2fPHO53ADkphBBiDIOjo739vfDy9N577rTsYqD9g6PhZHz69Nk8bzsDBtzB3vZV2uh1itnZ2VfffJOtfeWlN65fu25s9KRH09HRpFR2Nqb+0tqj711wXBSzc7O9Rdefc93FttLyyeVukW2tb9Tq5pdnVk9lq8NDkdpYA4JHBwcKOhgOFpeWAUA19br5cHDY6XQBYHN9/fDwqJ33xgfDw+2Dt+srALi0sDjT7cyuLrn8lK98p1+0XUYaE0ik1FCGNEkDXJAkJFSVFSqCiDU0mUxCCCnJtJqWZRWq2td19HVdVbWvg6giCCEkNc0qWZSYBSCqAgEiMZJplBQMmXWI3Cz5QYCYWq28aBWtvGWsKaswmdZIRNYm0ZA0+VoV2LARU04rBNNu9RCIkAERgYKvm1wgE4cQADHEiIre+xRTnuXGGpdlk+HUh9gIspGo1S4O9geq2um2LLuyqmofQgwxxCQSQkPVN0RMSERijCFmUs2LDBgHhwNEarfbrU43s4bJxFCLaEoJEbIsB0QGiCmEEOvQnL4NMYdQxxhjSiHWOzt7zhbLJ5YiSDkYRu+7/Y6ChhCd4aqsy2pStAtCVg2dbttlGQAUecvZvOgUvqqbqBtQ8y0LhjIVYIMxNYnLlCQ54xqPAhNVjR4gNaxdKtozd91zf6c7Ozg6BJU8d5q0LKdvvv7G4OCo8h5UDBGqAAEgkuW800Yka/MsK4p2ixgRIM+aPbzkJh8cHdWVV6EYpekMZpllQuvs7OzM0uJiu90GwXocD9NgsDfM81aUMB2X29ubhGZmbta5fDIeJ5Xh0bDT6xAhIhZFDgh17Q2Zfr/f7Xd3t/ZiTCmlvJV9/nd//8WXXlxYXNjc2D08GLjM5vZakPCBj37kzLnbv/vUC6Nhsnn3pRffmpmd/ZM//j6zue3MA2+/9dIHP/zBqipb3SKivPH6GysrC0/94Id33nPH/Ez/6pVrr1+9ds/DjxwNj7qL8z/65EPdhf5T335qMBifPn368Yfucbm5ev0pu7m9u3mrOzujALc2dybjkVleOnXy5MH+gSQNqep0e1X0WZbn1mlKhgmBgbCuquFonFvqtjMkZFZNIiERwqD0VYXdhXavP2OzQpF8QiaUBJNJicxIRDmQNN2PZmrX1ACaS5ggQnO9zpwhUhGJUVJKohAVfEgqqfbBV2UIkdg2WaEYonONUJqYgI8v9sfvAAZgQ9BA70CTQIypxigKxEwKbEklpQhePTOZJMrNz20BVCOiddZmtvkPEIWQkg8pJE0KKUWQxIQAzASGjJI0L64EKKpkDKqwis1dljkCigpsJ2QMEjVLyJg0RAlBrSNjHTGJpigyGU/ryi8sttqt9hDYuYyIScQgoEoVq8FoKtPonHNFMSgnMcbRdHy4tTk4Okiik9LH4BFkMq0sccPJXltYYs53dp9zzi4tzW/curo4Mxvrut/v3nHXnS8+9/0b16+sb+63uwVE7c302PDWZPrsC7emFczPr/p4FYQNgjGuCgOtbz39nefffPNKbvG9H3p/2e/Xk+rdH37Pxo2Nra11Fb+0NLe1dWs8nkwn1Zmz54PXEyunezPdyWToLOcuX1pe6M10V1bWrl97u+gUszOzIcjaibUYvWoaHE7zohDQvb09X08GwwE3l3SL7BpiFAGDZZtCBCXHmbMu1nXw9UzXTqYTX3tucbtoE6GmhKAppqqqlYCdSyKgSgqGEVTZmMoHIFRAZkLFlKIkacZ6qhDCse4EAAyzdS4vWsQUvJ+O66PDcbfoWfLcNilpvzfjMjOdltZl3V6v02lnRRZiYFFjrZNU19VkUg+HAwmRDU6mU2dd0coBUSCloESUdzLQLKXoY2TmJMKGYxJiQ9Z2er3WcHgwGIzGk8l0fFx0IEQka21TI6jqAAB1HWrvXeacyzq9njWG2YQo07Ks61pF8yJrdk5RUl378XgSUzJEjrDZIfs6eB+ODgebG5v9Xn+2milpGoM45zKXq6hhZkPj0YTZ9Lo9Y457VjGkpo3V6XaNoXE9xmP5EjMZNswGk6RQBVWJwVdVOZmM86LlMlfVqdPqEHNZlzEmY4xlC0TEdmFhQRV8XVljmu1lt9Pb3tquqqqaTttFjqBs2WVZVuS2yFXBNYE96wBENVlmZ63NbKto59aKAIIlNGwyZs6LrLkAFUUusdlYCKMxxiJB9KEONSzpmTOne/0ZZ5zL88zlQLC9tTkpJ+PheDIeN1ueUCbv/Xa5vb2xowp5XlSh5iEfHY7OnD+3vbmzsbV99vSZlRMrR0fD3YO9ldWT33/muR987/lRWc+szH7ut3+H0X3oQx96+dlXbzu31Spmrrxx6423XptfWLy5eXMwGFx+7a2nnnrhs2parfz11968dfXtg+1ffuPVV8+evvj0N787mk7f+74n3/XkE7Ozc9awdfb+h+77P3/1czs76+fOnq5DOBoOmE1ZVbc2N5QEBOoqzC24Ltlur5d3CmJsZa7X7hpjptPy2pWb0zp2um0lFBWJASCmlEJA0+rk7U4CAj3WdBnHQdJwNMrbLWtsCMnR8Ye04YCKJEAUacyHwEQN+9MwhhiSBA1NKkJjTCpSl1XTpJQ6AIK1FhGMMDM2iFxCIjze/NBxe5MJAVLdRD8a15CGiEksmJSSpgQo1lojxoCqJshchkx1VSNnxjE27gJmVagj1EFSSiFKgga7CMZYQ4RCItDsjRNKiAEUiIiRjGFkZGDnnLGmQSSGGAEphOhDI64EZkYklaSKVVmBUr/Xy7KMmdBwHSKC+Kp2BvfGk9GkypFDSkGk8pUPgCqNghiRiiK7sb1dFFlTH73zrrsEdO9gb3g09bFS0Bu33h6P989//GP33H/317/+9Hee+l6oDucWZs9eun12diEJnlg6V1b+5f03OXcCWTkCMjqejstJVQ7GtizWFlZ8PDzcX7dSrc4gWa9lTThVLc+dP3l0sDsaHu7v7Gxsrl9/e/3q1asxwg++/8zqiZX5xZlqWm9vb5w+tTo703/j8pXMmdNnzrz91vXd3V2JsdMpZmb7wSfv/dz80mg8arWymc6sMlrnrLNJU1O+s8yoqBaMtdFLihHBWWdrX+ZQuCITEe9DXVVs2VgGEdcqkMjmmQqkFAiA8bhHwFUNCETc7BVDCMH7GMlYC6A2pQYQG2JQ0RDiYDhstVuZs3Wo9nf323nBiK08y/OMDYZks0xbHdNqtYu8yLOMiKxziGiMLcvpZDypyjLUdV5kTMa6zFrXNMpj7QHVuayqyuFgZKydmetPy1JUsiILSaLUMQZiDj7EGLwPiGQM2yZaw6zeT6clIMUY6rqqqso61+12ssw1B2rvfe29grI1ClCWZV15VWme9qBqOEOiFOX4liFxNBnT7s7i8uLM3GxRFHkr73a7QBhqz0zeRyKyhp1zxGisreua8uaLIwgQQ3JZRgQpiYoScZblxriUkq9DU6MkppjSdDpVVCQSFTImTYQMkzExaVVWofY2z9rdjm00886UPrLLl9fWjGFr2DFZYwXUxwB8HPxNCZBRk7KxIskwZc66zOWFK1yGqCLoMue4heScy5AoJS8IrV6b2SgoolJzoncmTSRFv7O1s7W90+/PGDYqYJwNMRTtfGZupt1theBHg+Hpc2sKIIpFXrRbHVHc398/PDoaT0tjzfzCfExh92j31vZ6f2bG19VX/vALd97/CGam08tfePbZucX+3t7469/65nxn/vru+pkzp2+sb2C7PZUUyIGZsbOra7fXa+cuxVQvnqqQ0Rp69IOPr51cHR4ONKUso9xgv2M2t25dvO2O8WjKxDGFl197tSgKQHbOdbu9cjpNSbrtrpIPIY4GY0Ncl9O93T2IIc+6c/Nz0Yfh4aAqy+E07/cKDVE0xRiqqlZy7XavaHe9AvgYfTAixlh2LgHEmNhKAlQ+fgEkURENSREkxhhiatZ6iGitaXyyliiRgkpKqWHtW2fJoIlOUoopIWjmsix3TMTHXsZmCdyEv5QJmNUQJUVJhMzGmaYVKKCVDyCiKkwgUTVTU1eVNS7PDLFhonDMNzdMRpQkSYgSU1IBBBBRY8hQ87FHTFpHiTGKYlRN3iMzNf6aRmuGgoAEBEB1CHUdJFFMUocUknYBm7Fkg0MKISFxp9dTVTLMxg3HddY1MUQViAEksVpSIh+iIiBQCvWF2y5srWdvvH6ZjAHSotUybFqdfHt3J3cupLS1sSuqqydWZ2a6hLK9uTEzu3T3Xbe/+tZmRX5hvn/6zIWdnf31W+tHW4PLV994/sZLp05fWF46ece9jwyPhlWZ2AdO0unMd9vd0k+NUaN8sLd77rZzly7c8fu/87nl1bV6GrrdzsxM77EnHqj9XdVUsqLTm503Nos++bpst7uKCSQVuV07fWZ3Z9s5u7i8cOr8aqfbdoZnZvrj0WRxcbnXn1OQrZvru1u7KWrmiuBDZg0ZMRlbohRTVXptkuLGOcMpxBCzw8OjGCOz2sJl1oXgjSEVzZgQmZ1V1eCZQAkBkWKMrYLLsow+NqkfULTGEcuxWCVGRGzQhSEEX9fAHHwAEUQ83N/PnG23CqSlrMhFKmttjCnUfirYafettajwjuA3AEDRLozFcjIlwqwoiCimqCLMJkmIMaUYq6oKIYroaDhqtds+xLIssyxHOlbB5EVe+9r6JtoDoCApiUgdfJIEqFVdxxCIsVXk3U6X0UhDBUJsCrHOWpUUvPfBI2hKCQQavDkhpSZo1ehJklR1PR5PG31HnjX4hGSNCTEgQFEURBhj8GWcTKaG2RprrWVmAIjBt9stBGis1zGhqoYYQYUNKUBK6vKMDYuo9x6Axjhh4na3KxKrylchKUiWu/FkysbYzNZVVY9C5rKZ2VkfakjJWi5c1pS5rHXCx0m7GEVVgdBaYwwzorHHDekUkkrKi6IxVKUUQqQYkve1jx5AUqO9JGQkUKjq2sc6y0wSQeDxaJzneVG0rbVHR4PtnZ3pdOxrn2UOVA4OjiQqmSYuzyLgvbeZnZmb67R73S4KpOFwuLS8dOvarbzIHn/Pu8YlFnnngx94z+LC/GhUHuxMH3rg/s3rW05pdWVpbr43HI12tnYWl2d9H7d2dxHT95/+Tt62zzz9gycff1AiXH7t1cPto7Pn1y5cuHjnnRfXVlZiqAYHh5Ph+LVXX/n4j3z4jTdXn/vh88YaRJxICsnP9mf39ve1DU3/riyrVuFn+v2kkUGJMM9zcsWJ1dU3L19NRwPrbNsKgFS1DzEak1tXELsyJCVlgDpUWEZVZpPFlLT2uTFR1QC9k0EAafAYIUpKyAb/AzkqHXfFBFiRSVVEEdudFpCiQKhDCLWgOuvyhrSKCIgpNps1BRUCIFACJRW2Fp0hYjIGyCSREGNzsSWEzJmG6GmqqrQdNpRyl+XG+KRKaJhBMSQMUUOUlJSQ2BkIoMRkyBhrG4IvSmyWT82oK6XMkGN0lhBUUhQBSYKqKKiqQpiUpymMR2V3NgooSmLEOqUowK3ci8YYATSBWLa1T8oSESZ1Xflo1REoWZu3cqdxdXV1Mtpf39wYjAZFu+tc1kgbQh3GownO9pyxKtJqt2dmer6qbDvb3Nki25udnb/99s7O5q3MobHmuWe///Wvf32m3d3ZXa/CdOu1ly7c9vCpuVNhEPJpfXq1e/6xO9G6NK0nw/Yjv3gHmxSqcmV5bvnE0vqN9fmFJSLX6baPjvYpJUfELXtweLi5vh0k5Vl7eXml1Uq+9r6aorb6vZ5lVk0hlMx5O2/lLstdnvfzo52DjWubZTVZWZif6bVuXt9KNtrc+irMtLt5Zosiz1xGyNOqPtwfBh+TArOVJP1ur6zKFGKIgZl80PFkYq1NQW3myCshlmXJCM7ZlIKqxpisNVnBIlJVvqqqGBMzA4GUIpoUFKS54CZVSQmqahqMQYVyOo0htPNseXGxcJxA2DAR1rUvS9/rzvi6FvWtFjDbZsBtDYMItgAR2ZlGs2WdSyk1lw90WeYy7GlZ1uW0ijEZy1krT1Enk2kSSaLtTiuEMJ2W1lpJUVWjpLKsgg8hhJQAEZ0x7Ey32+t0uw2BvIm4GkPxGBdEcNx302bAhYDMjNikmZGQgEkBjLOIlOUZIZVVTYTtVpsQsMYm2sDIMYaqqqbTydLyclEUgMjMk+mkCYXocaYKM2cAMISUYnK5IeQyJkRiNpKCilrHKUVEslkGiUUgiE8xxRinVTkejlQSMRlnBHVaTlQlY5MXeW6z6AMgEWGEKAqZtWLZGpu7zDmb1GvSpLGhaxNSZ7brOHM2y7IWsbO2SEkBU4g1W26+08zGGpuSAGpdlYAqEtlYZ7LgIxuXZW5xeWkynYwno7qsQIUZYkxJBJXbnS4bR2hqX5dlWZW+9CUr+Wnotrr9Xn/+gQVj3NbWLik+/sT9hzvr46NRYfNLF88eHewMx/vffeprb73+Ql3V1pCv/cF4GBWqVHcyM8u3nz197wfe995pPRiWw83d3Z3dg5vXr6z91Pzy4vxkuLe+vpFn+Qsvv/D21bc1paPBYZ4XLnOS0s2Dg9F4eFernVLa2NjudLuZyxSg3eoszC/Mzs5N9ksmCNEXtuj3+inGwdFovj/LGU+rcjSpqqiFY2NtaCpNCoYoEackwUcfQhJghRhT8Iqsgse0HxFIkpokPakSEyADIBFjSk1cl5CyzJqm2UJoHDOQY44eBROTyTOLzA1NJGpMEmNMgGAIGqo4N+52AmADbAGbmBEnlRATIhAb64y1xhBzSrFJoiGCZVRiZiMpRklRgqgAELFJAklVYiJSVGONQUC2bBRQFGJiJGIwSLmzeeYAKFQxxYSM7CwZg8ioFLwfTabD6SSBAiAzqyZEyIpCkaxzdV2lFAdHw9RrtXqOJGkCEZmUk9yYjC2ZTBPE2k/G9e7m7t7OYDqpQkKVlFmLiL4M00m5uLyooEW7lefZeDwCgRiqE6trw+FwZ+9w+eTpl1/YeuCBu8GkN15/RZMfjHbZgVNGNjFOvv3Ul3/iM3/qF37xZ0flzkvfe7Gu4uKZswuzK6NqsLH5dmnS3ffcc3R0ePttF+6974HD4RhAr1z2w6MDiamc1pkh02uloCpYjo8g+sPD/Y2N9elkmCRkuTt/4czsXH9ja/falStrJ1YRKEyDs25mYWahM1tVpbW8urzkq3TuwrlWu2scjCfjOlRH+8Nb128xcR2DtVlW5DNz/VYrSxoXeD75EOp6OBofgUpM0+l0OBg3aE/jTLtdiI+xsM7m1tler19XdQghxWTIgEI5nVZljQaJqCwrQD3mcVvLSD74GEC1BlCVNB4MGbhddE+cWGm1syy3SMTW9tudrCjKsp6dnTPG/XvwYYyhrutyOmm32hRBYnJ55oyd+pBiRMIsbxqYUpaVdSbEUE98r98nNiHUhwdHKoJwXH+PIalKXddVWVW+DimGmACIQAmRFAnQ13WW58RUV74OoaGWCYBlzpwLza8LSEygKkkipBhCSqKqTBxChASZc+1Wi5lAtVk2AECM0TmLgClFVQn+GHoHAIRY13X0kQhHIRRF3iCmERAQiVAQml2gczZOQ7/fm0wmiCSikhqGbGTmLMujgjE4Gg0O9w9AgQmQyDDbzEiUyWhcVqP9vW1SYjKtdrG0sry6vGJz5ywT5XlWSGxQU34yGVd1WVb16ZOnZmfn89ylkGIQRCo6HUSOSWKoR5OUpJFTAiA4tMZwDL6cTmOKdV2GKvoQmIwotNutVrdjjLUm81gDEllamJtLEmMtk2k13j+oyuCDn5mdc86R4X631+m0u/3OdDQpp3FweOjUMJrh1sHy/JxqmJ+dN5YlxsPlVcGQu7zX7ezv7928sf7kXQ+dOH1+dmVpZW4xQXrt8svP/OA7L738YjWZKsDh/iC39iMf/lA5njz/zLNHh4ePv/v9L37tG6Ph+K0rVwaDw6PhcGVtNXfOWpNlWbvT7c3M7G/vZ0U+GU+tNWVVZlmW2yxaR4zGcBOlyvN8OpooKxs7OBoNB5PErjdjs8xGkBCTqiiia/Y8hpWwrGprWQBT0gAJQEQhJdBmHpgaZi0CIBEys2GJiZqJq2HDhgAxJVFIhGSIOafIECUZImdZkWIU31iJY0wqDTaG2ThnDLOEGEJqlEiKTWUUiLkxFGWtVmGNYzKAxIZjo8IWQEU2StJURhKJEKAysEFUlDrGKDEa6FhjiZmALRtEEQBKAgCSNafULFNFSISxMsTOuqb4E1Osqunw8LCOoqJN8yipRBFiXpib0yRVXZXVpBxPWpmLnozRJi/hva+qOs/amNRXcXg4uvLm20cHtzTJ4uJCnSR6b42dnZ1ptYsQ4/rNDWPYOru7t1/7nss4YxoNBktLp6+v37r8xhtgNCX/9De+u7F5IyTPSDEhGidRwzS88cIL3zDden90cu3syuLi8vKCSP2VL37xN37z129uX5tf6N5++x0f++jHV1aX/uiLX7p249Z06nv9zhPvfkgiTKb17Oy84wyRGdnmttvuquJ0Mkka9w529vd2J9VwPBxNRiNj6MVnX55fWDy5dqJo5W++dqWqxrddPNPKcxR68onHLt15x9Fw8NZb1/b2D/b39yTKcDhgoL2DvaODIbJxLbewONfttZiw3+kVmZuf7S8tz27u7AyG416vPxqPptPq8PDo6PCglWet1MpzwZom47IoilY773QWpmXNhpOkqqoHR0MFkRRjjASQZVmR5y5zIlKWtbE2c1YUCHEynW5ubRtDa2tLACml1O12er2ZIi/6MzMud4gcQmhkz8hqjeV2N88z72Nz+J1Op3XtnXUhhCaRJEkMc5ZZZq4rX9e1qm8KX0HiZDyppiUzBh9D8GVZheBTSikKAFjLItKMd4g5qiARIda1H0/GIpI5Y5mUlMgQsw8hxBSDSBKAGElqH2ofABVEiLjI826n45zLnHunMCmV90RkiIw1vqqbSEZeZDGEEIK1jhDzIg8hEFHwxzwMkEjMLnOIEEKo6xpR6roigwoqKRZFC4Gq2rOzIYk1DKLOGQTMnHPWEoGo1HW1tzs83Dssy9IxIWjRKlpFJy8KFdze2CcDrVYGYCRRrFNd1TH6zFnXsgTFaD+kySjLXDmdhuCNMZP6ussdAPb6rcHosK59VZUxirWOyeZZjgBlNRZV0IRCzCQxMplyMq28V4WqnI4nIwXtzXQOD47yzFWlJzCj0SB6tcbu7+63W512t720uJxSVOHV1ZNzs3NsbKfdmU7q1ZUVx75oOZc5JSU0h0dHKpIX7vkfvnjz5sZP//zPnTpx+uatvfWd9Zdfeu7lK6+8+sILr77yWn9mJifePzog8C6z21ubZeV3Dw+67e6knlRVXbSLGPxxZ5BNZrOZ2dmYZG/3wNcxqXgfRuMxISPQ1s7WeDxsd9qtogBV0ZQ0tdrFpKp9VZeWkFiJXVYgMaISI6YEIClEymxmMoMaQ6KcVASIm8SjokqClFRAUhRAIk3Epkl64TsclqaSjYREnASY9fiTadRYZjQUwRIyYUz6TquxAbEaMmSddS5DJlEVRDQECCqQtJn/RJGUO2ed63barTzDlAySSYqNMiaGhEj5ccoHE6IKxqZRQixJQLSuq5REUmxm/UnkeF7KaBiwuRpYy8yIrEIuicuyLAugKQmEGOra13WtyATQ0IMAgIisMZnhGD1qmownzCbLnSrEBEmOGWZ18JPJNEtYBxgNRpbshfPn9/Y3D/b3fe1FUtK0v3dQtHOXW4qYUgQgZi4n03Z7lpE2t3bPXUhLi4svv3zZ12H91s0bV6/GOlrDtfdInDCplUnYL1oaZee2O5bXVpbnekvX1m98/g9+56Xnnz0cbrLT8WT80iuvvuv9733oXQ9ubG8bSz/y6Y8uLc9/+Qt/tLezt7S8fBNvqsTt7e3tjV3RtLy80ml3al/PzM23Orlje/7S+bVTK4eHe9dvXG89MTsajw42D1LQ2+64o9fNu4WdDEfLa0urpxe/8sUv3trYGg6npa/OXji3trKasSOVshzHVu1azuXZ5ub6rfV01x23K6QocWd7x9f17OL8MA5JaGF+cU8PYh189EQ6HA6OjobtTpvJTMtJNskGg5FzGQL0uj1GMtYMBodBwFmbovf1NAbPU9Pw10SlLKdMptfroqWDwYFx2JlpLXUXUko+JmJjXWYz28BdidgaQDQxYrvTVhWJYi2KiCT1dSDEbq9zPEiUlBXZaDyK49jpdfuz3aRaTmtAzIscPdjM4phCiM19QuSdGahgkzhQ0TqG0aj0oVldwWg4rr1PEhseDhMn1RBj3cBTUowxiQglSsFPx5MQorHWGJMVmWECEE0RQZhNDHXwFbNptQsVCTEQIbGx1sTIbDhpMqDOuSQiSRRU5JjpmKIws7OWCadlAhBfh6OjQ0Q0xhCi93Wr1XbgEqikOC390dFROZlmjjJHVTmpymmIVVnWk9EEQFtdOzkch5DqKDFxu9cPSZyztZ94X8WgEkmFjbFF3u72ujNzMzElFYxKJJgAFWluaW4pc6PJKHNZ7ctOpwM0VpI2Z97XnU6XmXvtbgi94OsYgiWXZc4YU9VlAjSZy/NW5jJjTdHOh8NB8LH25anVU9W0tJYnk9I6J8iDw6OsKMpp2em2ltdWFmYXQPVw/+h7L7zc7XV8NZnrud29zY2trSs3r7zy4mvDwWF/ZvYD7//Qj//Ejyvp2VMr87P9//Vv/+MvfOmLR0c3g8Z24fozbZW6DpVCFIjtTn71+tWj0YCN63Zn/+APvtzudF2W3bxxPSustU5jqCpp4pWX33rTWhNqP61qa7MQZWmxNRoMynJaEMcQG35JiJGQHJtqWg0klXWofJzpWmuMpGiJK4h1OZVyWsz2XJE3/gdVVEURAcDUwLiSvtN3FCIGbAwpKqAxpaaV3djAJAmqKIDEKEnw33f1kJyxxhAiizZpTDVMZAwQsrWGDRAJQIpRUkAAthZAU5LoQ/QeVF3ucuscmcw6MtEwkWEDCEFiFLGWkIkNU9MswXca4wkkNW+dWE4ricBsMmNBIzcRJyA2BiA1SClCBEAmtIYNsmFOIjEm72Nd1ykGZqQGZSspqRLx3NxsFUNC7eWtGEWSagJVlMZtr5JlGQgmST7EGDWzzAzzszMxTa9fe7vyIS8yBB6PJ8i0uLigANvbu6PRBAmN4ehjp9sNVdja2EJjLDtvxGsaVVMAQOWmDMVkU0phXCHAM08/pR7+73/xP9/a2PwXv/LLb771BpqUOEUvvo6t/vwbb1z9wue+NjgYf+zjn+h02z/4/g9a/e6dK0u7m/vzi3Mq3jkG0FvrtzY3b5XVUKKGWLdaeUqS/0mR5a3eXLfb7dVlUqX773+QiIeT0eU3rhztbM4t9BZX5l58/vm9g93h0aBM4dS5s7c2tnd2D5547MHzp08+uHHv0WCv1c5vrG9ubO9WdbW9uVmOR+cvnD136dRkOLm1tXnprguCtL99ODc7N5mMbty4Ph4PydDwcHg4OHTWWWsz57Iss9Z22h22Zml5cXFp4WB//+1rbw+HR4yoSQJERFZExFi0CmNMAwS3zgGh92EwHBlj2p2iAQqxZQRCQFGwzoJagGSYCEFS4Mx4n8qqJKJetxtiFEkiKYQICM3GVSQxsWnZEOLoaBwaoFBKKmIdq0hdemiYyiGqKDE6ZzUhM0ZjRGFalsjUBCRiTGwoz3JFnZaVqta+rmsvSQCAmAAgRinLclqWCJjZLMtcltkU/Hg4rsoydtsqmjQRcpEXzf7AV54Nq6qo+hBMHfJcoAFuA7jMeV9nRQZEmpQME1kRIKR2u62qwXtQKMupczbPcxGRlAxbVanrJJKUZH9vb2t9c2d7dzicxFAjYYrJ5RYZjw6PJEhetOcXVxbmFwl0OBh1ulm/32JCAJpOq2oqADAzN9ub6ddVWU7LaVlVE2m3i5NnFsTLYHqUxjIcj+vSt1p5Vjg2Nkfe39vvz/RbRT4/Px+TwDj6Oi0s9nOXGSKDzriFmFKdUla0i3a7KPLB4eFkNN3Z3zXMmzc2RqODbqeVUtSkbE2r1eq2e2sn1pjx5uUXXzqcpAidfu+BBx60WTY/t3jy5Owz3xv9wS//wbee+masJe8U+7t7v/G531xaW/7MZz597fr1OdX7H7373/7mvyYH4ON0GvrzHUwElJXVpJ93LPGNW9euXL2ytHriG9/89g+fe/6973uPqPgQ251iOh4fHhz0ex1r3XyrOyDOC7uxsTkpq7W1E6aVudyJSgg+BqPS4MU1xDqEmhBB1Yfko7g8L/KMUUGFDTrG3cN9Vq89h9rGRhvP3OyXQhJFBVFIogoCTb6CiQSx+dTF4AEIU1IFVNWYYtIgAgBAhAZJFUSAm1snEgI5ywCUAEJooDBEgsqYRFUkxtjQohq8nzQGeUQCdMa2cpdZoyGajI1zron3qCoykTFkDDbuFxUfY+2DAihQAgWAJFJVPnghxlaeG9OMdtAQOedEGpSd+BCQpPGsqohqAoGQQl3Xvg7exywzAEhIIup9kKhsSKoYNGCrlRdFjDIty1bWUtUYBBJkLmMgQwYaKAqKD5OysnVd562Cc8toXJ6FEHb3dm2WNSCkg4OD3GWzJ1YlSV0FQCink5W1k4srgUcjsDEiCFGgqKyMCEksISFF9TbL3377jVF1cO3W1bduvGxaLBoKawBtTDKcTmwr/9CnPrhyevGbX//Ob/327xeF297b+dbXvzXTm/3RH/v0B9//3quXrzzw8H3f/tZ3v//088Zmg9FuZs2kKhfnF2wrO3n2zMrK0snTp7rd2cHh5E++/u0Xn3txa3/PGVic6d5/751b29uLS2sXbjt/4uzZqHTl6tXK+8HR0e/97h9cOn36E5/88J13Xdjb3VE0QCwAC/NzBzs7k9Hk6pUrezt7ewcHX/vaN0+dOf34k++GpJDivffcPR6NdvZ2UWk0HqcowdeqqarL6aRk5oWlhfnZ+aWlJWY0hjfWbx4c7E+rOqRUtNoIyGxsnjtjETEv2i5zzEYRfPBVXQNip90xbFtFK8+LptOIgM1ytYG+OZcTYhLIsrwxi6qqjyH4kEJkS74OrVbRpI+a6nJRZMGHuvQpxaqsVCSEGCUCSFXWItK8cprrM9BxgX5aVgJKhprzqWFWhRBCVVa1Dyk1XkbDlg2QTz7FEEKQlJyx1hlrCUGZDRsgVtEEosYZaxwy1L7Ostw4MxpOJAkytNqtzOXGmCY9m7mMiJ1zIhpiEtA8z5hJRJq+OhHmRV60ivF4HGNMKWVZrkld3kqKxlpCW03LGMJkOimr0mSkyLWvsyITASkls3nWcr2Z2cWl5V63XxS21+/YjKrJNMUwLScqaJ0hzvYO9jd3t7q9dr/Xm+3OarSMFFWjhtlObzSaiKasyDizs3PzJ06seB8QwRhmtpu3NgbDIUrs92ZuvX0jxPrUyRMxypWrb99cX9/a3xmN6xCDs1leuNFkWpfV0dHQWj575mTH2rmF/tkzZ4sss2QM45uX3wg+3HXvXa1u++rV669fXp+MRk+8790h+WtvXz9x+uRnPvuZp557OuuY0aisU7r7vjs+++M/+mu/+es/+ZnPvvjc83/uz/7E009/71/+8j+b6XWKLgcf23nLZKYe54JABq9dfftLX/zS+9773oPD0Znz5wfjCeeuO9PzVdXptFxuyFDLZnmru7y6OBmPNra2Z2Znl5aX9/cPB0dHxdICHmNzFSBJkFD7sqpVQRUFICTJ8sIQgSaNiQEt03Q8nO/kDADaPPKOZ+5JNEpSVBTAY8eSQQMEhIoN0Df46EGVNSmoCCqKSIoCgGSQCIkZmZICECmgChqDgEhCxlCMIjElCQJKnowxhkkaXJhiUiEFYjaaCA0DZs4UzmYGUkzBR2Nd4xUAEWBDjZxaFCTKpPSTSVlOa2LOiNUSEMcoVQiMaqY1EjshArTMnDUePpDkfYyAgkgpQYgxpaRJRFOMKcRYx+BjMNY1LyVEBBCgFOpQTietTgEMrU47qvqQRLTRD1vnMAlKszVBg5RlPJmOkWclpU67U/lqPC6PjkYp+umkHh6NFhbnmp1H0W4R0Wg4nIymvV5rZqbfn5s9HHnPcHh4EAMIAQNpSFwU7LCalK6weas3Pjz6K//pf3L29pN//x/93ZR8HVKnXzBg0c3GR5N3P/7Y448+uruz8/nf+fwPX3hpbnFu461be/tHH/vUJw8PD1975Y1nf/DMZz7zieXVxcpX3bn+1vYmO7t7dFh0e+HgaC1ffu65F+++685PfeYnWq3Ov/u133r9zbe9yMLiwuH+zurJU1y4f/VLv6FEt912sci7e/vDk2dOP/muJ4vCvfL8K1cvv/Fr/+bXz104derMiSQkSb/7nacn0/Htt1+4dvN6DOn0+TOPv/fJra2dmzc2vvutb59aO6kSa1/3+5211ZULF89fv3Zze2u79lVVVoPBkAz1e51yPFkfT/d2d+YWZpeWFnudzvr6zd3dncFgVNdhZn6u0+vFqNOpN9awtQoYQ6oqf3Q4BIXFxcX+bL/b67c7bWxuwoiiKTXnHG2iRBEUiA0gVFVVNXQga6x1xBy8b87OMcYYYowpqRjL1lkASFGssXVVNwWYybiq61oBmAgUUxIiYuS6qpsmb13hdOKscbk1ROS9L8vK13VZ1gBqjM1zsmhVtInTHeu6rbGWiYiQ2u2i1SpSkhhCluU2s8mnEAMCWmcJSXRsnQGgop1nLmNmScLMzMTHF4tkLENquIcN9odE1LAx3ZaCTCeTo/0BRCUgBoohknUuyyWJYddu95JQWcXae03JWDOdBkbK8lZvtru4uDg7N7Mwu9BqtRT1cPdoPB4jJSQt8sJYw2SmYz84GhXtfDwd1XXd6fZmZuaNMTFGiMb72OvMkLHGmHI83tnYkLrsz3ai17fffvutt64/9ugjd9x24e0rV1999bW77riz3c2vX78xHI6mvr585UYdy7zIsyybn1m0Oa+tnpSU2LBhGhwMTp1YPn/p1NWrN1565c3cubzI55YWnck+/ztfvO/Bex949JHP/dpv/u5zz21Pjj76/g/ff/e9r19+5fY77/vbf/t/+c/+y/9sdn4Wk1y+fO1HP/upn/vTP//7P/fTv/ovfuWF5978+//L/7xx48q3vvsNic443tvfc4XrzXTXN7YANUi4fPWN97z3XXfcdXu3137u2RdbiOW0qkaDmdk+Cu9sblmXiR4szM9PJhNSPXPqZL/Xuf72LdNHALDWiMSqKp0zCuBD9HVQBRMTghhm5wyjSPIxej+eHA0HdVna2b4hImrUWJKSJOEUQxPrAWly1g21hECBkJuzORKmGDRJA3cHBGYDoIBEhkClQekaZ0E0ARAmTQAAIg1XMyUJlQ8pRiKT5Rk6h4h6rJund6phqCyoysYQKkgElRjEMDMgpMYiiEgpGZEE4H09mlTltKqq2rrMuGQcExokNsZAo7NvYDIESTXEZGIyjElVY1RBwwaZG9mQYdTY4NOlcY+EmBqmGTMymygiKdV12WrlQNTu946ReERRfYNElpQMGSIgwhDrzHJdTa9fu7azu91udZi5DlUScdbOLswWRR58PRqNptNpq5ULArJp8s1FK5tMJnt7O6MU9vb2tvd2mUCjL7ICIGWmy30Ca3zl/8Hf+wfv+fiT/9V/+V9fuXol6+TOulBX7fnZyTQ8/siDv/BzP7Ny6sT3n/7eC8/8cH/30BG9/0Pvb3e7v/vbn3/pxddvu+3Co08+eOmu23d2B93e3JkzlsksLcyQw7euXh8cja5d2Xjfh9//wQ+8/6tf+sbp06ceevTh+cWlV159Ndbh1ImVa1evXH7t8rlLF7zGK1eunzt/8ad+7rOdXvfKW9df/OHLksLq8oKm8NwPX3z1tTcfeuRhALz3vvv29/a++tWvFkW2vLLogxDbD3/0o0n1zTfe+saXv9FuZyHUe/u7Z8+dGY0mwfuZmV6IraPDI2JCxfFoMjs7Y60JPhwdHE3Hk7Pnzj7y2MO7u3uvvPT6xua2qBLQ7Gy3e6bX7XXaedGf6YaqctYAKLHtz8yeWDvd7fSIWSKwMRJjCklVjCFVkAQNZy5EMU0CmsiSafL1x6w0zGKIdelNxkAqQeqqbr6ZSWIYhRACM9dlHX1AxGpaMZO1YJ1pVrfIrNjkV5uXTxRRJEkpNRfzlCSmEJo64rH7RpMmVUFkY6xzzrBxuWVLIhpjqr1na1NKZEyKqcEfAlK/P6OQVMBZlxqVFiKA+hAsQPOsZ8OGrQJEn4xhY02MgZBBiZRarXxaThowJzMzoGFDSlFEONs/GNUhzs7Pd7udBuvW7rT7izPzy0tZnkvUejw+2tvf3dmMKTI7NpbQdvu9hfm5frufopbldHZhwfva5uxjGI+mw4NDDDC/OHvHXXfkHbt+Y+vNV1+/fu1mXdeFy06cXP7IJ96XW1OWU0lhc+PWnXfd+eCDjwyHk8997nc6edd17KNPPPDoux976LEnnvruU5u31s+cO/2JT35ybmlhNJhsb+/cvHXjjVdfWz6xPL+6+M1vPXXz2i1r7cLC/MHh4AfPvXzx/MU77rztm1/9k9/7vd//s3/+Zz/zH33yl//5v3v1xZefePJdP/ezP3P17beefOLd//bf/Ouf/Zk/c+bk6sLs/Pe+84PbL537yhe/eNvdd3z9q99+5eUX/+2v/fJf/+t/4zc/93/2bT/EEMcRO9Dvdw8PD/rzc4fD0aScnDlz4fLlt6q6bvfabDBKdHnW7baHg0GWZcaZlAISttotZ+14NO73287ZGIK1VlNIKaZjWKc2vd1aPKLNWrmzFhFEJYaqHI92t7YRqd3tZlmhoinFBvMcJcUQ2TCKahIAAkaC41EzkDZqjhjDO4R2RcTU4A2ZoWEzK8SQkiYHmI4902qYDBOAEqFzRlRFNB6fg46XTs2/+jG5mQGJITUuKYgpEarElFQNEaaYVDSJxiqIIAAaa6s6Vj7VUUVRoHHPGJdDltkid4yUF5YNW2cRSGMKMUJZGmNUIiYlx2BN04JmImeNQkqGjLPWOWstMEVROaaQQQhpMp2EEK21ROQyl7UzQIxJCNUagymxM9baFEAUet3uzRvrJ05pp9MejVtV7Vud9sL84sH+QRljgTIBONqPvvbdbouJpmU1uzizsrh0+dU32NDVt1+/efNaxHxnZ3O0fwgNQ49QkpZ1LWzOrpz4K3/lP37P+9/1B7/1xS//3pfzvMWok8HUFq3RaJhz8d/+v/7G2tKZZ3743Be/8KVyXP78n/+5/vzsl37/K6+99urJUyf+k7/6l0+dPbm4tPDqy28dHQ3vuvOBcxfPDkaD11999cbNawvzK7O9+Sfe965TJ8984Q/+SFR9FU+cONXrd9/9vifraf3qyy/alrv3kQfHwymofvIvf+bk6ZOvvvTas8/8cHtz5/XX3ywn415m88ydPHXqwsWzk0m86567BeJvfe63iM3JU2cee/yRhx9+RCQ+9dRTb7559ejoyGW21e6cv3DP7EJ/OhyLwt1337G3s7u7f3DpwsVWu6iqOsvz2bleVdW3btwajccA0CDp+/25tZMnFpZXur3uxUsXFxeXOt125mwMyWZUT6qyqo0xeVFcvO2OxeW1UPvaJ1B0yCjqLItCippiEkmNJ72uauMMMRVFLiK+rpmBVBjUOOMM1RVHL8CUF5xSapzVzTxkMBxUVRljaNixiFqHEKL2sq4xrqorssZmuY6nCSOihhhiSk2azjooy5INex+qqk4JANBZ430oq1JSMswus2xYEdgaALJZ5rIMlFQQlIEoJQHS2ofMZsZqDMCGrc0VgLm5wkcEMRYMk2FDbGJIAgkZFCGl2Lw+6qquqnr95qaoFkUeU6pjQDYMIppikuF4unVwOJrGudk5kxUiEVQmlYTtcvPGFYuMmma67tyFZe9rl9lev5+5otdfskVnNCx7rW5/pufr6q3LV0JIw8HkmWeeZdT3fPjhRx5+xBW8tb6ztb5VtPJ7776ktX/p1dejxAceffDGtY2XX3iFDNx5921k4Ld+83NnL5674447W1n769/4xvbNrXE1uPL29XvvuafbKeyZ04rhn/zDfzQYjZm5qipniwvnz/e6nWpSn1o5e+ele89eOD0elK+9dvWuex8+2h+89urVi3fdWdaT/+Vv/8/v+dD7/vO/9lefe/q5b33nqedf/uHf+7v/63B/cNvFu/74q1/+2Ic+trayKHXIshxjlFB94IPv+sIf/uHOrb1/8Pf/nkj83d/7HWecD7WvAjIuzM2PRx7r6eXX3jp75sJwMOx2W03mUlKsplPsd/PMEmqRZYPBiAwh6dHh4eHhUbvTfef0HhQS2yIl9XVQADYmqsYkSNjp5JAwqpIAg9TleDIZzczP9+cWEWNV1957InOc60FtMAcNmEeBSMAiAqkzzMQIpKKNqyOlBEDsHJIhRAEQH5P3IfmkoBCaz4Vog+Y2jGgMWzZsXOZiSiklQWgSnCkJiCBCAowO8Fgrpaoi3ofG8BtSMioam7pWs3cVAIBMMaaURBQxgqAkYEVQiNERdVotJGhyCw1IQBKklGofQkgIgY1azhCa3UVszm7GsTXWx8RM1jgyLkmKIiyamtePqKowkwKwscbYotUixBjEUhOPZQQMMYQkvixn+m3VWNehnJY+qiAaYyzZpMkya4zB14Vz7TwPkiZlmU3zt69dH40mw+FoZ2s31d71251+x2VGI4xGo6I7TxZsqz/fW/jv/pv/9/2P33O0u//P/8UvLa2t5YaGw7GZyVzW2ry18Sv/7F9eunTpB995/td++V9Xo9Gjjzz69svXdna/Zwr8qc9+VjQuLs6cPrX6+c9/8fqNnRNry/fccedv/ca/u3r1raPD0eHoaPXE2qc/82lG97WvfGNhcf7Ouy+dWFu7/Mblr//e129e2yharJrWTpw4d/bc4x954vS5U2+/feMP/vAPi8wZyyrhwQfvi6Fev3Jlfn7u0qVLFy5cOHHm9Ouvvvm9p54SlL/wi3/x1NnTg+HhH/7hF8pyEmrvyDz84ENPvOuJ1ZW1GMPg6LAoMmR85YVXgk8Xzp/vzvTHw+HO9i6N9RsqkgABAABJREFURgd7O8FHEW0Xrfn5eUVsdTpl7e+8t9vv986dO7e8uOisqX01GgyCj9YxtVp1HV3Rnp9fnJ9fkCgCSgpsGkiJNolS772vq8ZMraJsDIRkmG2WJUl57iSmEEJR5EmFDLbbrfG4DDEpKDHmuXWZm5RjYykGH3yTJqu9D0RY5JmxmXXWWqOYTaqS2Rhrm8Wyc6kqS6IWAhI3oWchJqlSOZlYwymEsprWoUbFLMusddDIixSJ2RoboxQFE1Kog/dT42yrVYBC7etmL2LYNOd3PL7qMzNjg16FhvyuxlhnXUhRU0JElzlF5YpOnjl1eHBQ1XWKqhUiETuHSoag23b33XfH6TMnM+uIMYQYQqzKcLA3soD9bu/cpbUih60bN2Zm25fuuGgMD47Gzz/33NNPvahKKysrM/1Op906c+H0wsLMV778zL333vXgo/cMRjt//OWvvvDSCxub24Vzly5c+PiP/MiP/M1P7e8fvfDSy888830A4Yz2tveef/blvOPuvuveF557/upbN9/z3vf84n/8F7a2tv7w97/43W9978t/8OULl852ur3h0dHgYHji1NoHPvSh1ZNrw/HRqy+99vobl3v97l/8y39uMph87avfvHblxqNPPMHGnD93bnC4/8OXnuv3u+9+15MvP/fSLw3/j09+6jNPvvuxZ5575hOf+rFvfe2P33rj8urJlX/1K7/8Cz//Z++9967N9Z2VtTOZpQDxJ37iJ37tV3/rzVff/Mf/5B8dHR1+6ctfLFyBFuqqbrW7i2fXNm9uTaf15uZOu1WIxKPBwFrb6XQQwfvgsmx/f18Rp5NpFMmy3FgOIaBCZp2kFH2Ym+nMdOeqOlT1RDTZ3IU6OmPn+7NLy3PXr98Ea5gIUxqNh+PRYO3ESWddqEMMaTQah1gjt4kYyTZhgaQiohKDzRw1lXTmxrpBTISomhAJkVJKBomIEFAIa22o0aAikhAAYmoaYuAsg6AhtsZkmUkpBR81RUmiQQiOSwamuZGKxJQUQKKmgM6SgiRBE2NMITU46GbT3XxbUwhNFayqKoCckJ0hiZgbdsxJRVTx2GwtChqDjykhgGHM0DSvmxi9D15UrGGb2aIogsSj8UiPGV4MACLSRLEFJCuKJDodT5Golbd86cVZRGyyesTkfaymlTBZmw2Hw9lyaswCI2r0RK0UIzH2e7ME0ftQlSUFWxQ5IYVqOh4Ome2JC2dd1urN9OtpnJlbuHr5KohKir1en00+tzj/2R//yU/++KeXZueOtse/8TufB5Reu+XLlLXywdG4qof/+H/7px//xI+9/OLLv/Jr/7YO8tkf/cxHfuxjB8Phzevr166+/dILLzz06AMxpX/wv/2Tg4PRaDAmkV/55V+xBcwud6OWpy7e8b73f3Bl9fRXv/DNvc2d9733iYcfffALv/ul/+tz/64zO3P69Mk333x5eWW+12/f/8D9y6tL3/6Tb/3RV/94MDzcvrnr8vyJdz3m63J3Y+fs6dMf/ND7T5w8+/a1G7/+a7+5s7W3tDz3ic/8SLvb+fa3/uS1115ZWlzs92buvP328xcvxCpUPlRlnbdcb7Z/6+bNq29eeeXll9udjqi88cblW+vr4+Fofn72/IULFy5cmluY7fdmWu1OWXoFNc4ZgwbRZdzt5iklEjazHV/5FMU6s7jYdlm30+s5Y1RixqiqKYYyBBEJoU6ND44oAsaQFMExxRAMEzBbZmEa+1DVHoOmJJlz1mWdLte1994LinHU67XKagwKnV7HpxjjKITG7mtAwTCQCogwgjVsGKyjGCSlJJLqqiJiw0ZU2HBdhyhJQRA0hDooBB8kqTVkLSOgsy4rcptZRK4q7zLn8pyYUxJiznJnmBHAOWeNE5AUY6PoasqcbAwjN1/jJEIAzjAyEhKTEyuSUojROVe0OjGKzcppVdXTqWTqjEvOWwNItNjvzj94f0qxkWiioKqY3A2Opteu3tjdP8zbGOrq5q2dR979o3vbe6+89Fp/dqb0k6Xl3mgweevyq91e/0d/4uN33nP7eDT65Gc/tnlj663X31peXSoK07Kmm+uVK6/fun4jSNxY3z6xevahh++b6/d+9dd//XD/sD9bLCzNM9Nbb73Z7fR3D4+ef/aHjz3xyP0P3fcLf/bnX3zphZs314fDo82NnU679eEf+cDCwtLNWzdffP7FqirH5eTm1Zsp6Z//xl+8cOG8tXkK8df/9a/2e70rV68++eTDCwu9F1946dF3P/Tko4+88vIbb1+9wgALrfkf/ZFzP/HZn/of/9b/92Dn4JHHHv83v/Irn/2JP/W+Dz5+Zu3cN7/9J5PJaKY/+5M//eO/8au/ee3N67/yS//qZ3/uZ//463+caY7Ao1EVcIAOD4cHVVWXZSmaqnI6Go4tIgLVVRgejpzL2Lh2t7O3t+ecqyofJRlnwOBgOCCEGMJoMDJ561jT5QyLIMtkOi7HeeayiQog+ZgmZclM3U6BBEwckBICGyMpASNxk3MRFEkq0BSACRGPXUYAwmQaiyeqSozACkogCgIaAzX+TgQgFAAViY0tTJJEw4Zz55gNKlkANqhMElNjkwdilzWSahFIQNr0Hgygi2wsg6Kpq7rxBhnDiMTMbDAFH7wPvqpqP5lMjr3hoiiplZkQtU6gSVREYgLEFCWKeB+JwLBpeNcppaquKh9EtCiKLM/Q2KR6OBzp7kGIUUQENKRU1x4AmM1wNKpTcJpDkG6nu7O5PqbYyglA8yLPXVGKF1Um9sEn0TzPBLDd7e7sHhS9GWtchSF5GddjVOj3e1XlVdQYa9jkedFqd2bnl2/ubqt1WrgkeOvadUNEJmOj5PJPf/pH/6Of+7lWJ8MkTz3z/S98+QuGuBz7CHH3cACV/L2/+/c/8akfv3r95n/73/8tFP1zf+EX7rnntud+8OIf/v5XNNY//X/7mYcfe/jf/cbnvvylr1y8dNGZ4id/6seQaW9/t7+YjY8Gt91+4bEnHx9N4i/9i3+1v73zN/6bv37q9Nqv/etfnVmY++zP/Njv//YX3t7YfuThRx5+94Mra0svfP+FX/qXTw2Ojnb3Dgnxnvtujyk9+73vLy8tf/jDH/nIR94bquqbX//mq69c3dzde/Dh+z/+sQ//4NnnPv/5315YWvjEpz/2gfe+b211ZWdra2tjazyeKOr+1cNbN29defMtMtxu5asnT1hjb9y8cXB4ULRbT77ryXvuv/vc2fMEqJqIzXAyiUitokCA6WQEBJBgOp5IjCFEADFI7W7BZKzNLJMl1hSdNQgQY5CUQIVAJDXzEAugAI6tQUJUAUiiErwAoCCEGLI8G41GKYokYWclRQQwhkU5pZRSypzLnJ1WxprM2kxUQgAEFJUYAxOBQoihwaRbY1CVGl4KYzmdNvBBQ5w5C6KQOVBtuDeqSoTGGgSy1lprCZGQ8sy12jkzgkpVVcZw5jJDHGOyzhERgDBqakAvcmxYzqxDIe8TsbAxTUgv+mDYvCNoRCb2IXS63dp76xwA+tqjYsrzFAOImMyhGkJIMZFlY8g4AwhJZabfvvOO83cxj8cjH70+pM9/78UTJ1c+89lPb29txZje/575KGl//7Cqqp3d7a/90dcAZGZxbrY3E72vp+MPf+zDn/zRH3nrjSvfe/p7Tz/1/JuvvZ1n3ZdffWPr32x+5KMf/m//P3/99VcuHxzuXrr9Ul35N99868UXX497O5fuvrh3uPdvf+VfX7hw5gMf+fDdd9/97DPPnj9/aXVt+cpbV77x/Df2D/Zaro2sO/sHjzz+EDClKq6v33ro4fvXlpfLslKNq6uLVy5fPXvb2mc+87G/9l/8zQ9/9KMf+PB7/8b/82/8/J/5+f/kr/7Vr3z5K3/lr/ylX/iFX/xb//1/d7H25++67fe/9Lt/+if/9Oiu6dLS6vMvbS8tr2hZ/vSf+snf+b3f3dja+L9+63N/7b/+a//yX/zK3Py8r6eHO7tFkQ8Ojg4P9hTirZu35uZmk0/WHKfsyXJ/psds1nfWgcFk2Wg8BpDB0dHc/PzW+laL0+BoyggtMsgmHUt3yBKzI7ac55n3CSzHWkfTumi3Op0uKhCzzZxh1qYDksAZZkQhotiwmSGJxCQISqiAyqgspMdEpqZplxAjMiOiYYbMsmEvAua4ONAIAWJMzemZqZl8IDNZw4RGVV1yXlSRGiZVIxBsyDwphqQAmKNBVMT/+i/9aWIylhnZGGZmEa1KP63Lqq5r7/cOjvKiffbUyV6Rx1gjSF1LJc21AZAJ0YhIWZah8sZQq8jyzLTbjpDrqiprAaROq2h1O+TyaTm5ubn5wktvTCbThx95bG11VRPEeKwOvnr96tzi/MkTp1tZe7g/eO2l54tCe22bZy7LMstuOCn3dw/YZSHFqzdunL1w27333rO7s335zSsrp84A6uBoWBij4tvt9mx/bvfwIERhY/JuHupoKDtz8eykrg52D4PC6HDw7He+qwwggAwf/sjH/6v/5m+GqW+1Wvube3/tb/zN3a3r5bRKGkWoqqq//3f+7gc+8KH17e3/4e/8T9/9+lP/4O//j+/7kQ/983/yf3z7q989f+nEn/9Pf/HNl9/6rX/3W6D4yMMPAaT3fvBd3/rqt5/59rNFYTvdzvziwrs+8Pit9c2nv/PDy1fe+C/+y/90ZXXxn/7T//2uO+557pnnYogf/dSHz5w/2W73r165+ebrL29tbG5tb8/M9Hqz/YP9/fXrOydOnXjve99/+513nztz6o0XnvvGN74+GlVlnU6ePb+yurS1saGA995/59333L24vFQOxyHU7VZxeHj48ksvv/nGW+vrm62i/cCjDywuL5fl5PLlt65efuv8xXMPPvDghUvnZ/oz1jafA4opHhyNDg+PXJZXk2o0HOXOdjqZIUoxqophY50tipyZY0hZnvf6PcPOGLSGQ4i190g0GQ18XRGTNSyNb6LRWIIGXzXMNF/6EASMaVyH3vuUkmHyMfq6NoZNxmVZHRwMxpOyqsrDo8Ot9Z3JtJ6OJ2U5jSGICBIQNrEc9r5OEifl2NcegVUBBIwziMfuOmqO0wCqEmMcj8eNJRENGjTtVrG0vNhqFyJqjZmdmzl75syJkyfzIpcgnU67aLWsdYBsjQFVlzmQFGJiQzGmpphpjGFiUQCkopWTHvPgGhuBMZznGQJWdR1TUtX9/b2d7c3R4DB432m3O51+EsiKPMvzpBKDMLF15Iyz1oJiUj2+XyipQtHvDIajGGLpx6tryxllL7/46uBoODc3f/bSGSJ8443X9nZ2r1y9tb25lWIClbnuzKlza+//0Psu3nlx/dbOb//mF772tT8O4E+uLF+9fOPk6dVPfeoTZVVNp/6Bhx+4487btta3f+e3f++V119vtfL77rp3cHT46qsvT8blY+96bHFpgdicWFtpt9p7u7ujwXhSjedm5wZ7hy+++OJ0Ut9z3+2X7rjY7fQuv/raa6+8+tCj963f2Lr81msf//THWu3+y8+/fvH2SxHS53/rC2zg4UffleXuK1/5yv7h4b/4P/73c6dO7+xv9zudP/Pzf2b/YKfXmz3YOyCmsirPnD39f/7Gb3RbnX5v9n/8n/5///Pf+d86nXZKfjop19ZWP/OZHyPLm5ubRHB4OEBMkqTb7XQ6bQAoq+r6tRtszOraCY2pyN3e7t78ylIMIY3351qZM5R3OpGorMrd3X1Cmut32XC32wlBKlEwdngw2traWVpauuOOOzJnjMFyUj3/wkuD4SjPXWb+/0z9Z9xuWVYfBq609znnCW+8oW7l6gpd1ZGmm04goEEIUDd00wJkjbACIzzzs2cURsEzyrKExrJnZP9ka6yRLGEZRgYhCSEbhCQQEjTQNKI6p8rx5jc+4Zyz915rzYd93mpX1Yf6cO/7PmGftdf6r3+QKBwCA8C6Hzf9CAhNbBezFquLvjsLt203D0JgpWQHN2AmDsLEjOCqkze3V2FBsZyTmU5Rrgixxj40EpiFiGvyPOI4Qfg1qcFVNY1pu+lzKUgcmlZqvE1oYskVQQdCZ0cEi5GcIxAQUwhsWvqhj+QIVrKmUg3ja+YcVE+x2s5X5QLihfyRSBjcsSbUO4KaI3AMIYVopilnMqxeYEXzsE3Hd072Dy43cd40HQBJIIkNB1Y3raUhRGDSZF07y2N6/bXrd+/c6mZNdk1jGVXbRiTMAGWbhz7361V/6fAyua/OzkSacUiXr9330vM31PzLX/yCROl1ZJm9/W1P/mf/1z9esl06PESDf/arv/raay/nfnDCk+PzRrqf/sf/5B3vetvp6eq//m//5q/86q/91b/2F9/7zd/83/7X/5+f+qmffOLNj731fe/5e3/7J268/Nr3/Z6PvfcD7zg+P96ut//iZ/7F+nj18R/68N7B3usv37p8eOnzn/7ys889t5zv/ic/8iPXX33tL/+Fv/LRj3/0wQfvOzs7fc973r3arF74yovO9IXPfeUzv/Vb3/Oxj7z17W/5zV//zee+8vwTTzz+Pb/7Y488+uje7t7zz730X/7o3zi6+fpi1p2d97Gbp35Yna0+/JGPvPnJJ2Ibj45OXn3x5Xvuvba7v/zcb3/mS1/8ytj3jz366Hd/5LsV6bf/w9O/8tM/M1t0Dz7wwB/6Iz986fCwbdv5fNZ2TRcbIjw+Pr51487p2dl8MR9WvakdHh4sdxYErjmncRj6rTDGtkXmNGrTxraLIoyuAFxyLmopjevtSseimiUwUysi5uCAOWu/6cdhHQSXy1kTBVAVoN+O69VmPm+YKDaBqvE16LgZxnEYx3R6fr5Zb9arVb/tx7GknKrKABCLKrqrewjBwfM4ljSiUxODKp5vzxtshLm67zqgRAkSHLxorvkybkYICCCRHT0XBYcgoEW1KAIEFiBv26bKlZl5HAYJPI7GiA6Wc8lJHTzGphQDCrFtVb2UEoV5sgMCJjL3cUyIyMwA6A7L5U6/WW/XZxlMc9pu1wY4DkNo4qybNW3Tth0jEUITAhIXVWJBBjDIyY7unO1fOlgsu1KSW+nC7Nu/7Xe+9NLzn/iVT/7iv/nla/dffv/73vvWp97+Hd/drs63n//s5z73uc/evH735m9/7mf/+S/ee9+1b/22b/nuj3zXh77jd/zKv/3E7TvX3/n1X//cM8/8+id/81s/9KFNf/3v/p3/kQDf8753f/8Pfvx7VV944bm7N29fu/ct7/2m9+3v77z0wsspl5dffumzn/nMcrbzlrc+0czimPneew419R/9+IdDbP7tL/3SL/7CL7nZ/fdfe+TxN/3ar/zG448/+uSTT7768o3BXn7s8ce/4QNf99uf/vzh5Z1xSNeu7f/3/93fefSxJx5+9MGPf/z3/MLP/cI9V66ebc5+7ud/7kd+5D/5d//+31+5dNXRh6OTmzdu/eU/9+f/u7/9d07Ojv7Un/wzi+XOn/4z//mlvcOD/fbs+JwB7rt273a9vX3nlpu1XbvZbFbn6yCyWW/HPLZN18xmZta0kYXGYdgM/f7B3vnmrpo5yDCMg1suasW7eZjNZkWretxCO3OkoU8c4s7uHoukcSBqiajqsACjIwA4ASAzApq5g6WUxsCEDm4AxkqEHBGFKk8UAUDdwZTA3AEq8YAY6nU/2VZ55VK6ObiXlPuSE2IQjk3jjRAxOgqhsEzaSzVDjCJggDFwEHPIueBf+pM/3A+jKTB6IApMLIhEJrgd8nYYXn/9lma7fOlwOWsFadsPSZVEUAIxI6Eq5JxTGi1r24R518SA81kU4ZxLKVCKLRaLdjYbix+dnN68fff67Tub7fDQgw9fu+caMw/brblvh/6Fl14OUR55/PGDvSuWyud+61PzDg4OZhJJSwFnUxzHAojjMB6drnb3DlmC6lhAZbm7u79/5/qNg53FetOXPHSLLmmBDFcvXUHzk5Pt7sEidrNrjz16frz+hZ//385OTrtZ8/Kr19/5lrf+D3/vb3fNDoDN5/PrL938z/7YH7t79zYjnpydveWtT/6NH/3rjzz2+KuvXv9nP/vP/+d/8ON/9I/+yA/+gf/4v/mv/uYv/9KvLpez+x+5b3O8uXr12u/5fR+7e+f2r/7yv7v+2vUPfON7nnrqKQ788ssvP/1bn37H299hWn71V379wx/7nve89+vzWP7JT/3M7du3fvAHfvDy1Svzndkv/sK/fvWV1w92D3/9k7+OTN//gx85uXPn7snxfNYKhSfe/ORb3/qWZPqbv/apv/t3//4999w7nB0f7O/tHl6+cvXeNz32pre87a2BuW2b+XL+6uuvP/fMV//lz/+r57767Fve+ubv/K7f9fBDDy92dz71yU996rd+u53N3/HOt1++cvnee6/NurZoiUEYERnJcbvdlDEz087esl/32fN8Nucg4zgOfUpp3G62XdfNFzNHz0MOIcyWXSBxgCbGUnJOGdxXqxWJ65hjK8zCEhAIHIvbZr1Zn6+CGLjFwF3XgKMRrzfD2cl6sTNvWiGgopbGXHLuN+tCcL7qX37l+snp0Xp1fn56Nuay3fSmBlCd0h3cJUjbtiWn1PerzZkjNtKq2d27x+2sbWLkEAhpNpvFtkFEd0859X1ftFhRMw1BFov5crnDLAi+s5w3obl8+cpb3/bU/v4BEs271txZuIY3LBbzxXxeO3sHH8Y8DiNziG2syn6R0DRtiEKEqqbFqq4/xFhTQqx6ZaPdvX37uWe/cnzn1mI+64fSLWYxtovZYt7NRKSZtUEiIAJT13ZN05pPzrxIVAoO49B24fBgl1k2qyGPmRhdYbtdP/viMzdv3nzxhZdV4dGHH/uGD7zv6rXDr37pmRu3bt28cfvf/qtf/vJXv/zI4w99+7d96Jt/xzeb23ze3ffgfZ//zOeff+aFb/yWD770/Ev/+t/84rPPvnTl3su/+3u+8xu+/t1dM/v3/+4Tn/3c54dhm5PfuXPn49//8QcevHcYh6O7R8898+Wz49MvfOFzP/LDP/z0Zz5388aR6XB6ev5d3/Xd73//e0/PTloJX/jS5379k785bPLv+X0fX2/Pf/on/vnRye3f90M/9PxXnznfbN/0yJueefb5e65cAyk/89P//Kf/2c8cHu5ux+2Tjz32D3/sJ/7CX/yLeSgisN2s15uzP/8X/tKf+s//zNjnnb3l3/pbf+v//mf/7OHhYSvy4e/98ONPPHb79p3rN66rWRPCtt+mcRSZqI/DONz/wCN9P4zj1nPabDYH164Q2nD3doPetMGQtv1ogP1mu1jODvf2U8ksISXrlotc9MUXXsNGnnj88eVyTl6atnW13/iN31ytNovloomhZe6aYI7r7fb4bFVMAbGbdwEZTJmACLp2Nm+aJggxuVlxNK/Z3I7VXa5yKYUYABGhhkAiuvkbQKtqAXdhbts2tk3gAATMHJkrjzXlnHMZUy5qwGxIOZeSVMDc1apEK7k3QjGG2EaJMQYeEzOTqlcvIWBOWbNmcgtEwOSGal6yunnVjgpzYAhRGFkNCJzMkSGXvFpvN9t1KYWFmaRkHccxhKhVNgcUQoOgeSxmjsgHh4fj5rgkZakOjwyAIRAQpKRRmi4uHn3ssdCwNPFsGJ994fn9vUMm327upjLsXD4MCA2F3f29s6OTa/ce3vPA1Wefvb4937z66mualQKfrbbveNtb/+Kf/8tX77t/e7LNnjDEp7/0xTCTt7zzid2dxZvf9OQf/xN/an12fuPGzR/7hz/x7AvP/o3/5q89+eRb/+Zf/3//8i//22/+tm/+tu/8tvOz9dnpaezisy88+zP/+J89cN993/jNH3zfB7/h3nuv/fg/+Ee/9olP/OD3/8A99135X37if3n/B963v9z9R//TT3366afvuff+tzz55uOTo0/86m/863/1C+//4Ps+9Du/BQxX/fr6zRuf+ewXv/fD3/Wmxx4Zh8EN1qv16zdu/Mq//8Q//Sc/c/+DDzz86IMf+/D/ed7NQ9d23Wy7HTfr9ReffbYfh81m/dKLr9y8caPfbt/17ndeu3rvZ57+3N07x6enp47wzne9w5G7trvv/vsPD/arb5O7mxd0zyntt3skaGab9dqwzOZNHvuz834cco37DJ1Ix7kkVQVHEjS19bZf7HTj0I9pBIA8jixACM0sDsNwvDoBplk7JwlpzNvNtmkIwLeb7Zgga+q61o2RTSFtt+7QEsHQj9UCaBg3hmRWzMp2s12fb7RoSankVIWEzOxWvK5kQ0h9X6PfVW3QIaWSUprkMCxOUFSDARK4ORjEEIRl9MTMbROFBczNCzGNqZSsdHLaD2lZFBGs9ZqRkPIYmxCb0PcbZkSC1WpbqprMVAKaAgKuVmcHh4fuwd3bWYuAFelNKdVXZOrDMBBhTqWkcn5+vt2sAcXQiEjLUDITaEkgQdRci6sDSwxBckmAyiIisYNwcnx+cnS6u7+zu7sbsc2pOOTZcvb+D3zw9PTsHe86/dznP/f0Jz/98//bv37bO9/20e/56De896Er91z+vv/D9/zCv/iFf/GzP/9z//Lnv/TlL77trU+545Wrl7/u3e984QX/0b/21z/2fR/93h/88P/6T3/OObx+/bVXXn4JDN72tne+9/3vfeG5F3YP9++799rTT3/25VdeGYfhpZde+D/9pz/8trc98dP/v3/6mac/8y0f+tbDg8vJ0t7OPrE8/emn3/K2p+67ev+Vhx/+zu/7vn6z3VnOzs7OTu6uHn70gQ984wePbt157pkXv/f7vvef/fTPfsdHvitbWu7uf/xjv/cn//GPvf0db7916+gP/h9/6Ju+8Zt+8Zd+8Wd/5n+9c+OmBPzNX/nk8J9ut30qqn/8j//RrOWv/LW/Or989ZXXXrv/wQcvXb3y6uuvbbdbnM0WO4s0hmHTt10HiNTTmAcSwATHZyeXDy+b6unqbDe2kLOqp5KHISkAiyBSVstqY05EQiKbs/WY8+7OrGvjsNlGocCWc2Fi4dC2XStCYFBRR0QmLOZqlrICOwGgEyO5g9aNAQIgmkFRq/8io7A4gQhRIY4iIlxtlYnMNGdxK6qlZNJcAKsftXpEcnR3BEVAN1U3R2BmACpWuZ+55CJpzGM/5qzoFqc9gxKCEAuAJmtiA54JEJmKWVYzRwZAMFcr5mPRktVcAyERxoYI3BQwkBHllIrqph/V+6HPJWcAT8PUJ3rJxT2EUNxRTZrYb1fbfpXzfsPx4GBnTWMTgQCr4bXXz80ol3K2Xj36xFs/8Du+EQEefuLRF69fX/f9qy+/0gix45Xl4VxaIBCUYT0O28zSjhmWO7uro6Pf+NVPINh6s71y6fBv/Jf/1WOPPb4+2ty5fZeZ16ejCP2RP/yHgrSX77nynq//+rPzsy984Yuf/uznh7T9j37g+700/9///n987tkXPvShb/m9P/QfiYR/+ss/282aBx++v6Tho9/3sW9499d183Y5X/72J//D0e2jj3/8o9/+O7/lH/5P//NTTzz10e/5yI2btx556IFv/9YPIUFowt7e7usvv/CH/9Dvf//733/35PYXv/DlNz30IGh+6JGHDg4OUj8SUDvrCPjLX/xKG9rv/d6PMIXH3vzYmx5/vOQMgsvl3j2xuX7zxiZtn/nqV2eLxXf+7u/Y2d3TnJ555pntenvPfVf77XDPvfcsd3baebe/fzBfzMFtu90sl/PZbLndrDWXnFNVr5e+vBHsfOfmUR6TucYQmKmNoW0bYhqHjG4OXgpqKTEEL7lfb6QJY8op5xAIyE/Pzq+/fjMXjV3LV2IDpFbMbbsdCXWz2WxWa7Ny+fLlxXJHYhTmYRjHbT+bx5TGs+OVum/W56vtJkhrKY+breaCACWX6sEZY0CEIozgTRvAjIjGXBAQzIuVftu7e01Jrc7Pk+6XcXqTzu7aSCChpolMqKUQMQtvt/04Dkn95GR1eHilbUNRzWNOKUsI3bLLKeVxAPKz03MzmM/nSMwiJefNdhjH3hViCLFtcir90C8Wi+quXTMCzJyjE3ellPly7ugnp8fr87PLl64wQyBsAscYoGjpXYFIgqPkPpmedV0MUVRN1Ig1xLjYmZ+fbG68fuf4ZH358uWu6RpZAoBZuXzp2ny29+B9j3zb7/iO66/d/NQnf/Pv/72/GyILxXbRXL58+aPf/ZHrN29ef+31T33y6atXrp4fn//Gr3zqbH16fHT243//H7/lXW/55m/9Xauzs3/18/9msbP7nd/9HfdcvT+27dXL95j7Ynfxuw6u/uQ/+snnn3/2d/6ub71y+dLZ6fr9H3zfwd7+raM7u7sHOzv7h5euPPvCcz/+4z+RS/6P/8Af/pZv+dDq9Pxzn/nMrGtm806L/+3/19//sb/zE3/yz/yxNz/2xI/9nR/7l7/wb1959rXVdvOpT/3WbB6+89s//Pf+wf/wA7/3+7br8b6H7v/9P/RDP/iDPwCIVbF4cno2DuNDlx66c+f4T//p/5uD/+hf/3+On/3ifLl75cqVvh/7fmhiTAOuVpu+78ecu3bmBkd372gpgXhvvvf2p972/Csv31nfHjv2NIihGhQ3A0Bid8glVy5maPjs7Pz45ByJdmYdlAQlc2hzSubAJF3XzduWHVIaRjc1UzNhzlbMargGirAIS2ASAvSqjyFi11qeHRBATS0rgCjOIpsjYRBCDlxqRguDgdfYCURyB2A2xFwUHZhRCwNYTYhDQENCQXaz7EzokQUBhEPJ9VUCsUgQQDC1GthdTUCJmZmLK9CFHM0qy99NrVhGUGYRYSYSBGJ2QEdMWoaUNBczK8lMvd+O/fmWiedNK+4caLUdFCm2s72Dg5PbR2e3Tw+Wh7OD5uDygevGNTsaEHuFit3UtB+HrCptc+nqVUe8c/fk+Ojk9Ow4p7xY7M2XeyKUkyGho3PLy8M9V3/9tZuE/Pprr6KXlMtTjz36o3/lR5948onTo9PT81NpcDkLMXbf9js+0HbLVOzs/Ozpp7/467/6a5/+9NOO/uHv+fBDDz/yzHPP3fvwte//fR978KEHvvK5Z67eu//7/+APqGVVFSEWspwR4e6tm1fvufR9v/d7wOzpT3/6m7/9mx5/9PHXXn3t2Re++q73vPPJJ5+6dfvW2A9m9rHf+72Lxez6izcP9vY+8r3fqQrf/ZHvHFP/4gvP9v34liefapvG3D/+/R9rFl2/HV5+8dXXX7/x/AvPu/kLz72wXg2qEBoZ+qFtY9L0pc9/RYsS0Xwxa0IXUJqdTk1vXb9Zijk+v7uze3j54OBwf9gsz45PWPj87MyKOrqrlaxpzNnyuN0C+HKx6BatBGmiiDCC52HMKbmDAowpd/NZQN5uNiLopmPfD2PvFrbb1e2bt2fz+eHOLhDFJgrJmEYWYmpNR2RIJd26dRs5cmw75hBqRqlHDsXzOPTZbLPevvba62Z4cro6OTmZzdpqV+iNTFb+5oElNNI0TUnKzLloUTPznIuqmpqqVuElIU75NhMs6+jOzBSqXRADWNGCbjZYSjmlFGKfNNeHYiwZHILwbN4iQh5SCLxar89Pz9uuDbLH0iKAmx4c7Heze/rtZhjSMFg/DLjBftPPZrP9g30kLjkTUZAo7CVniaFpOwfJSfuh78ZOZ7M6mhsAQ6FSAoswAaDmtMpJpD5yPJvN0LTtgsji7u307Je//OxXvvTQg49cu3ZtubvTdTNzaLpmHPpuHh5980NveefjgWS93hzfPbr5+q3Ver27WL73Pe9dLJdNE+c7CwAH9ewZ0derbS4YQ9Nv11/3trd1u4urV6988fNfeuaZr37d17396tV77p4cn+bzP/hHfr+p3rl7Z9QxFFkud97xrq/LmtFxZ2c/BEHyksu2356encznM7VxubvoN5vz6+dveuxNf/LP/onP/PbT56vt17/7wY/ec/Xehx4oye+7du/v/+E/cOfm7Rdfec6cb908Wp2f7e4fLHeWGCCnHLm5dO0KE283K3Mjxtu37/6ZP/0nQ9P85b/yX3zh8597/Kk3Hx4cLHcXaRj6fnBwc1uvVjGEpglHd+/u7+/9zu/49qcee/O99973/Csv/dRP/uTZyd3N0M88qPk4FmQ2hSaYuZtDDU9db7ar7WZnuZzPZ4xAkcAKS8g5GVhsAiNqKv24VVNEbkLTto26o2kl/jdt07YxRmEkdicwRPRiCAjghJRLKTllLU3gOTXgAoZqhqUkVQAsWVPKPFmWMLKDoyMjMoDnklWx0o4ADIlrQBsCTMsnhBBAYgylmDBpAVXP2WLrQJiy5lKcXFXBXYSY2QyI2AzMrCp0xlRSUTUXoRoqSVXp7wgA5mZm/TBmw7PTs9li7sXymAGgbZvAPF+00rSz3f2DB+69+frd7XY1a+KdG6/de+WQd+eApC7bfkuCxVCQFNwcx5SWu8u9S1e5Dc+98uLZ+fkXPvuFl196+Xx7EkK8eavfbtcp5X49glslZbQNg3pKmRgZnMzf/+73/KW/8ud293e/+IX/cHT7qORxNm/OZnPmAC7JaLPKJSmRv+udb/6mD7xrb29/sbNnoI8+8gATnZ+tMZWvf/fbTs/Or91z9cXnXkp5NOZAMp91bRuC8yBRs4rEh+97UwhixR+495Erl+91s1/7xCdDCMv5Ytv3X/z8rZTTO9/x9r2DPdWyd9Ax+2Y9nNw5fuhND3eL7uj06Llnnz87Oev74dLlS4eXDy9d2e2aWTdv7rnv2t7e3jjmzWrbdk11JxAJNauklMzMRVWQi5WmiSFM/hwOkMaRiFR1TEOUOI5jLllLKqpxFh3sbh4NrVl2cdZo0T4X0foEaTVTKwYIwBIYqI2BBdOY3BQBhrG/e/vu+fn53uHBfDkn5H4zjNATSTdrA5MVAdLNehtjw8w55W4+B6DZbJ6GnIvl4gpuAENOq+1wfHJ+tl6bKkYOZMW1HuWUMgDEEELTEIuTKjgQqU3RfVA1t2OKMYkEd0eCkrMDmNeQOqwEiup86+C5aEqDmxNBSfns+GR7dq7jWMxiI5oLsoiIlsIiOY+pz/P5opvN5oslgPTDUNSHVX96cs7kLDQMfTebjUPabDYAJHFbrXgW1QTb1d1zLighNvPYdARkRV1rhgyTNBJDG+Os6+oqu5qoq1t1Dz4/O2MOSDbrmnvvu3zfvVe+9OUv/Yff+nXz8vDDjzzwwEOHl64s5rOubRyUEJrAiLy/t3twuPfEU48N43Zzvu6HDZF2DRCP7j6mGrFWJHBoKI2r2dLRA2N+6atfRNe3v+2p3b3lyfkxMd334LU2xnEcrly6dH52bgLq0M7mLVDkUIoS8b333Pv9P/h7Xn7lpfe86+tKGeaz7t3vfU+MIRAPYw8I3/qhD/bbHtEA7f0feB8HMbVA4ZGH73nfB98BAACwt7dzfHSaUhLm2WyecmHiruPd3dnQbzPBer3tt/2f+KP/l3kr/8Vf/es7r+9ElFRGzWXbb2fdbHd5sNluzrf95dni8PLVonn30uHVh+7XgkicSrl797RrY05KzBJbZGQRIy7q1Vpnsx3Oz8+36+3OYqebzUouy515HkYiYBHHal0PHNAHB8B65NrQOuKYkiMGoqaN3XzeBkYHKAnV3RSJ2NGJXF0dQZGRobr6IDpiMUtJx6JmVlJx9CChbdsqODcHrEwGRPNqZmoIzoJQ1IsDWhMjAQoLMzu4VIMiYiJGQFDwkhU8OzqSgHnJmZDQgRBZmJjM1NTNtLqpqBnWso8oUmlBSAhOVM2v05D6GscB3nBoGjk42E9DuXXj9rxjKWX/3p2ua07uHr381ee8jJH51RdevPP66wVwu92knFLJxtSEgBhzARIURuaz26er3/jkJ8/OV/1mu1mvQoyxieM4EqETluR5LCGGdjlLBUAtSCgK87Z54N7dtF3/xf/Hn9uuz5oYd5eLwNw0jSmlXNqmmy/2dnZ2rt5/7crlQ996hsFb6/XcCfK6UVAA2ZQyjJ2q3nh1YCwheCQPBIQ6bHrVQq6hiUxC5mVIxTIgbbd9ysPVq4eL3WXqc4iyXM5iiOM4vPLCi158u1055RDjYjkb0/bOrRtIzATL3Vls5bVXX3nt1dd3d3aBwMp4985ZbNp7rt3TdrO2aXYP9nd2lkyy3W4RoDosVeIjMW+2PQtX+iMgBgkAJkIOLo0goygBNEQoUVJKi/l8O24B0MxD05jqOI5pGNIwggACjMNoagYuO8s2MrkEESKQAEd3Tr7yxS+fnJ6dnJ4jEIs8+dRTO7u7TRMQ0TRvtquc8nK5u+63J6sTI1cAIRn7Uc22w3bot8enp31K6/PzbT8MKUNl9RQrmnIpzCQczK2OmyV7TmkcxlyUAqt5KaqquZSiBZH6cZQQSDgEqKHn1YjUABlAzaCAmpVSUk6V1MBMWgoACoswGyiSoFCILEI5J0Avmg20aZvFzk5KGhuJMapqv9pqHg3y/v4uM/Sbzc7erqGj03a7aWctOKZxLFoIUaLY2mfL+Wx3fnbC1TgeEYhZWBqSwEGIwN3cWESI3R206ihLZZebltPj4xDu7u8fXL16OQY5Oz+7/vqNL37hc0MaF4vZzs7yYG9/Nps10u3u7eeip6dnp8fH/bgZ+6SWsxU3a7tZJRlWtQIApDwwSUDWMTNy23VxPt87PFjeWAIzCbdtl8fcNrEJIXA4Oy+xnWXduhqbi4SSx8Dhvd/wDe9459sffuRhs9z3o6PRQEFCDEIGZ6tzQmoZDy7tH905TuOWgxQbVCuXRUsaipY7r71cLh3uHeyfH/Wxieenq6Lp9Ozs9Ow867jeDtvV9k2PP/zmJx/5xg9+w807d2/fveEG8/lMAjl58dy0sYDduHHz8Mo+s/zaJz75mU9/pm3a8/Pz1Xa1vLR7eud4d96iEIJoUTVVtVIyADVt5wAOuLMzPzjYCUzsqLnUIMbt6QYUSKjW68AheXF3B6+RJwBe1IJQEGpCiFHQAcgtqSOhI7EQOLJRkKKW00gEwAzMTqSOKafNMKYxgwEL1Uw6RKmmzmAAApVuZ4TojOBF1c3NDRwRsQnBwYnQgcXNmIkIJDARxhjcKWcDMgPPKSNCFJm1bRCBokyogGagUP39s6rFJgoTEQMQuNf7AAHcHNQ053EYCWnsx2YuXdd49Njhzmy+f7jXzrtudzmfLe594F7xlIbeSmEWEVIz8EIEiKwOjcQMkhWQ0fNoanE+O7l7cu3qlZQTEzt4iDE2AdxIxI0RqFvMMBIDC4UQJMaWkcx01sV+s07DMJu1peTd/R0EMnBE3pxvUj9u0vlv/caLs1l7fnoaI81mbduI5dLN2xgbBcjmCsYSXNHAiaGVJjSBmQKzuQdqYts2bcdMbdPEGNb1lgphPl/057eFBQnVSr9OSIAI1NDuvCPedfWz09PN+QYUdnZ27r12T7ECbo88cn9OxQ3GktOmP7x8gEqIzOTrk+M7t270254ImJkAgRAcsAbcSiDknBMYmBu4qSshIGFsQtM2sWmQCZEQJcSwmC8Dc6DWVPtNvykbMBuGTb/dNE0IQRTKsOlFuItoZRy2aBKQkRnWq+2Lz75wfHRnMwyf+vVXYtM+9MgjDz7wYNvEUrbD0J/dPR2GcXdvv2m7yO0Lz3ylbY7e9KaHDy4d3r15NOaMjCn1q7PVrTt3jm7dXfcjsjRC4G6pqCqCIXMN+g0hsogXK6qaCjgQcQ38slr+iwEYwCg1wLTxtp241uZe04BrCq4mrYwgNAAgMy9m3Wyxd3gpdt0wbPshLZfz+WxWI5HTOG62Gwlxvph3XUfIITbuHoLMF93zzzyzWa8369XVey652cnJ0WyxyKkPIS6Ws6KWcsKEpWg36whpuVjOu1k1oQQiI0hahjQSkxdCYQAXIDcSFCZG9JITEjBB03buDhTNy9m6b7vmyj0PXLvvwXe88115HM/OTod+O6ZBU3KCrm2ACke7fG1n/9KMRbqmSyWXkq5eujyOo4OXopNPjDqLOAAhq6q6lpLzWErRNGxTylrKdtvHRroY0W0saVSktgOiNAzaj1o0peyOs26+HYZf+qV/j4KqVokrF/0nB0YAUC37BzslZ8sjIRLRZtNrMmEnt+3Qr1bnV65duf+RB66/fGO9XeUx9du0WvevvXpDwbMNN28cged21hbTlMZtPxJT0zRIiIi1qR3GIed068ZO2zTPfPnz2/UIRODAxMTCzOMwOri58xQW7SGQA8ewZuGUUhApJZ2vVk0MQxoC4UKiqprbZrONTWxDpBDEKeXezNWUEIUFPLMQElU/fHSvVs8IwEgohOZu5EUJSbj65LYSIjGnlLNaGktRF2YJjYRQjXVLuXDyqbc3cxBR1ZJySqWUQsyBK5JlwAiIZi4GikwijIxBJEYpQx6HpJ7VfeyHGHgx7xaLJki0PhFhdV3HCvKYIWIIgVmEiOrF4uZmjuDq4GgKgDJftKYZwYqn5d7uPffe//ibHw/m2/NtnO1A4QcffODtT755ZzlHIAkhRmGiQIDoXh9pwz6VPpWUEjMSsQGEIO4+jqMWZWYkzDmZas5Zs5diY07FCxABsIEjE6MoOBA2Xdiuhpz7WzeP1mZImMYEYCqN7DXDert86FrTilxaWB6DMAdqyJigmGmxUUtRF/c3bJg2vkICJkEiB9fsSEQhCAs6CHPJuWnbsR+ixBhl8lMCI4DQhNjEdj4nCaU4AwURtXLn5nUmUstIpOqq1nWzvb0lBQbHICSRpJEY43xJal0ZlxXMjjEAYUXJJchsvnDCmhFBU/zc5I5ZtMrUoairGyIRMSGDO2RLJUd2VM8llXGrpY874fjo9vnZOSBeunxIaMIAoJvNkEsxyzev3zg7O7l9+86tu8eXLh0eXt7fP9w9Prl9+9brZ6dniNY1zXx3lwNjoKbr5rP5MAybzWp3f0caOVmdbTab7Xp1fPd4fb46X61RQmCSKIQIal7TtImLQWwCMTGQA4ACQLBkpZADImIppZRi7qbmADT0auZugNBAw8yIWE2ba5OHgIQYJBAikhIhES+WSwfrx34ch66NVtRd6yC12W43m83Obqhp49JI0bHk4urFc9PI2Vk5vXFcct6/tB9juz5b9dvUzrud5VLVHJBZ8piHlLbb7Wa79qJNCE0TYgx5TJv1WlVLSd3cHN0AmjgDKEhFiFnI3TgQi4iIgy9ogYTVkG7MPSVLA0WRg/1d2t8jJAJEQXPLqk4OAAjYj6Opxa4pOasZTHWKkieSahpjBgDowFjUFBCF2xARaD6nKjQSYXDVKupU2JqOKcfYmMFWtySASHFGs4PDvbS7HXotCuqRhYXBARAJoGljXZrGGLudBSM5+mJ/N1BsZ8FM05CK5eV8d/dg0XTL89WqFMvmIcavV0NDZtpu++16vdqsxzzUsCAgJEC1yph0txqhTkQkMSJRP5ZuPoMC4I4SJMZAAIxChF6NGBAA1V1VkQDNSy7FlBlVi2pB1zBrY8Zu58C3fSpeyugGxEjGuRRHEsLqZiyMrqol5xqLmBKYRmFkQkJhJkdADCIOEEJkFmKuYdQORCRBMDZh1nRdG4OwmRIkNXQ3AmRhQFZzc1OwolYPm1xEFlTTz6IqmosjARgiMLOwOHvRYRyzumnR0IRF186ahlmGISM4AnCNDQCkVJBIAtenCAGr4Zzq5K5exZ8xNrPlfHV6nFOez5cPPfrQ/j33nI+jbgs5Xn/lxug3wyyWUWugASK5qxWTGosjAg5UFBlYqEYJcmAAVNNKX5kkbzX32AERCJkYDSyVYg7I4gA5eyluDkU1laxuyOTuqmV9vlZNZoaBgwQRmc9n6pgoFHRURHVXF8Zqq1qM0SFAAOIq/TZzBBQMBEFNq3qbQVzBiougFoJV0uzgo7ASZSIimKKYEcc8HoN5aAHJRNBUHTywTEEigLGNAGAvK6A7oKqCkYMzMoJLEKYQmoATY7jaE6iru1DOTgLCIQSJIXIgnqSDdQkqQkwEUaSJHCITYT36TcT5jFxlNu+2PZwe3331hZfUFZDQSxtkMV8ud+Y5l812k8bh9p0b62G17rdadLm76Lo2p/70eDw+OsrjuDpfz7rZ1Uce8Ohjn/t1f3J6exyS5v78/FxiuHt0cvfOcb8dkqkxz/cPmUNsIocJqc9aSi46FhJ3x5TyOFRRmLvqOI6rs82Y05hzKkXNqyebuaWc3CsJqJScJQgRV8d0U3UAZpIgiEjCAZCJdw+Wjzx03+X9pW56ywMKrE9SDD72KUYh8tXZqTBrOQC3nIeiZbPZVNt39RRnsoBuc75qg8yvtsuDHabzs/OzO3d4Z3efWRBdXdfr9Wq9Pjs+SmNvJXMjYIWgQBlsAGJkDWLMylhGEkY0dAIgN9NiVEqGxCLkToyei5qWUiwXcOsBzI2J6oA+jsVAs1nfjzq5ernmuilXJBzGGrfA7o6M4IQsBmwGwiFI5XqAg4lwiBKQ0zgKE7iBmapngNEzEqAiMc+Wc4MsxLHhbFthnAfIpqVkyMnM1czMctawDQgACM708s11O+8cGJFibOIqNk3TSAxhDt3uAC213YL33ZACAVDThGbWCdPQJ2KpGbHuarVjACCmGkzk4K6G7iEIMQHBkDMLBw5IUGrZAkRiNgB1Q3MAM3RnY3GH2kU4ODOWPoWAZdyq5wfM3vS2db9e3Xjt5esvP392chQZzc2dsBQWuUiJQFVN41iTwsY0EjkSxoZDCI5cfZJjzFotg9yLuavmrIAe28gSmrYNEkIjQgCGTlCKmhtzCDGoo6VkqkQY20aV3aHyIFTN3RG1mElJWd3dPLSxiTEwY/AokpKiQxPjfNbMu6apt5Nb1V7WqQ2IUyq1X0AABEcCcKip3CCsRbUYEqGRZ9NBAUvTdISyXm83Gx3WKaekpqMVOMOcqWkacERAtQKOgiQkiu5ulD0SELuhCgkxomNxBUAAIGIOTPXydDOoIYMO6Fq5XEAOZGCulXgLyUpKJZfiakDoDkRohnmb3EYn4rO1mX8tygHBzKCWeQBTC4RIIziYOnglZomISiBzB0Q1AyiV7o3oluuYEpiYiOvKBpHArfSGAERBGDQlc3VV0wzgQmxmCAgEagoOwgwMBCTM5EyMTIoAQKXoWuut6eQIDBAIwQwjFQVAdENDUHBXq6BJhS+rbQkzCGITKAZiZhFkohiCCAmxljIO48ndU3XnyFl104/H6/Odxe49Vw6DiLkeH53cPTp54YXXnHj/6iUg3o7DrWfuMvnuYjlbzNfb7TPPvngyjvdt1688+wo637l1a0x5b3/Pn32575Mzjrk4izObO5m7GSEikTMXtVRKyRnNq615KsVUHb1a3I79mIdEAdOYs6q5V/9Fcy+meVQqqU9DkECVQkFEtdtCIOIQpMqJ3TwG2W95zOOrr76yO1/OF935eU5jpkgsnLdjxda2w3Y79rOZjP3Qb3stpZ21CNB27a27R2nod3d3Uknn65Uz1dK8Xq/VfHd3F8CRYbU+O757sjo/XW/WIBRmzdCnvk+zRTdfQAyC2z4nZelDiKEJKFxxUa828m6ECAQTOU9VPRsAERu4A5qDqRU1MNRiWtQJHREQzWv8FSqiM7tjkYiI4OQIBGhWN5mgCpCS20CAQFZBgLonH4ehlDQOY0kpWylqfeoBVYvlrFmzQ3F1zamUrMUAnRxdgZwqPo5EwCQiRKwKEmU0K8WcSR0QWIgFQ3X0YyJQEJLYSCuRmVGYO5YoxAxGMcRZ2zHX8EVARKzCPEREKprJkcwA3MCB0BANFM3UHZmwbqIdxJwdMrojoYM7FqDqDgTo5u7ulhTIWqyO+V3TdQdX77906eqVq5ef/q1PHt94ncXAwJEmD0wJQFC1IFYM3FJKQhhYUDg0EZ3HnGuUaaXS5FQYQa2kNBmbMxIyVeGxAzESMBMSIASJEiSbm2nJCBCY0EJ0BIcqnXTG+vJNUs5aLMbYhjBrozAngK5rFFANAG0+kyiMWI0eDFzVjESIMLJ0XSQiYVStBhEGjjU/Adyqx0O1vcglzefdvffds7x8Kasf37ibVTTbsO23/Xq9WSsYUCBkRq4v08xNTbMZKLmTEzEZAHAtmk6ODl5bFZKARIAETgZ18AAEmjJowNBwuqVq+MJkrehq7gY1B2Fir1aJNXBF05icCBgRJ6AYwAHQCZmxkqQcqaZfKTOEApTMzImDArgTECIJCTuYG6KDF8CKtxMCQMnqDMLkjljQoXWLUcRJq2ksoasWzQXcCQELkAEDYgFC9OTIDjBlmiCCuaM7MRA5V8sO1TzJlKZIIXTHiWhT64KOOU3pKTmrleqT6mpuygRN4CgSmOe73QOP3DsUvXt8sjpfjf24t9y5du1SFyMQnp+fn5yfZ0eXsN6ORU+s6I1Xb1y653D22N7ZenBqi/F63X/1Ky++/sqNbja/c/c0Zb15uiHiftOTsIGTsAOgVUhAER2IHAhq4B4CIpp5UVWAouqARGjZimUGJ8ecMyBdMN9q8CmoWnXEGjwhEbgzEyFJEHAgRiYhJncnITQ4PTt/8flXP9184cqlwytXD3f3dnZ3dzZle+Xq4e5yR0c7OT1lltjcvu/+eHTnZLlYNE1jxRGobRaX9i4/d+vZ9dntw8uHq/XR6ny4e/fk8HB/u9qeHp9tV2uJwQleeP6Fu3eOUPBsvdFShpunBK7Zjk9XsVnFGEkCAWkp5o6EBohIxbwYIHFJycAUzMDdyRUdEEmAg7MABkACCshMzFaVQeZ1LQiOZlZjNcEresxEBEBm6qBeDC1bKeClPkcA4GBQI6yIAGy9Xg/DMKRRVUtWyFnzgKBJ3YwNCAkR2M28GpMRAKChT72k11RxQgKs9vjuLALqIFTvaUauTTgCCKCbIQK4ETkiIAESuTNylBDMPIYYohBWMBC4ll8CdEQCCcHd6pOMSODorowIDKXaLzu4K6pVYZQDEmSmGhcJVK8ApJr5XtSYIHYdhchR9hd7165evXLtwfd+MH7qV/7NydFNBC5mNU2LBZ1Q1dxAzaxkNUVEA3Bn4ugG7rmGKFIFa7wgUC1pWtRcTY0APCgEpiASiEmIABmEAzA5qgjVxa0WF2YgMjcgFyKqOy43QaQazq45gxkHbgLDvEMJ/VhCwFnDXZQmBENkJmRAMHVFIEIKLNX8Z8zJA9crFrBCE+DmKWU3V80l6aX9vf3Dg23W6zfujFmL0ma9Wa1WuYxqpcbmEDJClbGpmUMtuOAIxizqpIDAVbDmCBWRQqgeGUgO5FOObH1GqPpxVAYvgxMCAYJPPkYAaARuAMQOhEDmDkDEgciBiRCNoIYaKqoaAojXQEJQRieiCrSAO7ohKmKuUj0kN2dHADRkJzJ3r+cNAauZh9YLxQBrpQdkEgPXokHMilb3GnezojVSEc2xBrLVv23qPv3HjuBK7oQ+JUIj1OWHuboWL1mLgiu41mfJtLZyKEzmzkIkrEWBGZQ4tGqK6E4kEjRQ0nx0/fSVV+66GxGUouM43rh5/PrtW7MYq7Bltd62i9n52frGq7ejxOXuYnGwv97mr77wcpRA4IvDZdZ0/dU7J6erdPuk73tHaiRQ9WgrBcCZGIkRwb2i34hQMVJyMyKuitzYiAGaVjzKsXXDVkvabnphAqGaMg82GfDWPDsAcAMARyQ0REQotd0yBXdEEWFwM9ucrDe+vut44/rt0MSdg8WlS7tC/vjjj+zu7vbr3g0kxNVqKKqxaYBxs1mTgBgP20F1RPLTo2MiuHXzzmK52G4HAI0xrM7Pr7/2KiA08/jcMy+cHp3Pdmbr7YZZ0jaNm22tygaiiKV+Bu6G7k6OxMJIpFZ5I4hCwORIyILEwIwu7mxAlazryJMFJSK4EwtNvTEC1ZruYBczboX83YkcwIIrWALPWP1Oq+cpoqs5OCKkMQOAASOwk0sTgQOoMhqYWwWawBHAEdVM1QzAkZwMixECAUCpqBYju5sxZ9BKgKzBsS5CtfMGNZEqoNJcMiIgOSGaIwADcY1mq4YKcFFE6nusiJ+Dl1IQqqgJTYHYELAGwwkzGNXlXOXzACJjBq+PPiBA9eIDAGSuDRoQh6YhEYJwcHjwxJuf+uB73s3fmH7h5/4JmMcYmLgJTWgImNTcVEvJ2RWcQ6guCqTq7p5LsVzQncCZkGsDKqIGVIpmLaopFxIu5qRQwW8kotrxEGqxGqwyplKdspgDs5AwM6ll1QwKEppoqGCuWcd+y9QKUhMZmJHZrSxm3c68C21U97Yb2iGmVH+hiUgTu6aJuahpZkZCYOZcCNCZBdFCjDRmLNp2YXdvnnI6Xg3H5+ucsmbYrrbFsl24qFO9dfFrxqeGtZd1B0g5A7IjuAE6+IV3UmWw5pxr/wKADgQIKGzJzcGpSuHAKtXGKqnWiZCAQKsVcAFzK2YAIuKFFOoWpZ4ddOECZBSAyCg6TcOl1zncwd3AoM6z7siRQckBJps8L+5O04vF+rqnp6fWuErWRCIYAcHVuf49d0CCer8AIRIxA7GDISMBIZiZIRihmzpCITe0aQpyQgBydLMEVsiMVU0LodcpEFUJjeqHUooBjkM2MwqoxWvXCQRCNBYTJzfnZtbMYwwRwF0tpmFMQxa9eXZOjF3TrM62frzZrlcpjVnzIuzIrOtPzm7fPc45F4WdWTubNWOyUsUZIohChEJcXBGJAR1JUerzT6ZIrIgKSAoUUCuwIygMpRhPfCpzAFNzxzgjLQnUwd0IzSE05G6uFV/F+vA7ojuhgxHWTR8BKqIxu3kAMizAYohKmJzGNfR5m9bn168fC2HbdQcHO0V1d7l7dHT04EMPbDfrfr3JJe8d7p0cnRyfnJyfn5v7eDe/fv16GtJid1EgI1FO49Gtu7EJ3aK7fv1G2qZ+WG/7ZACabRyHYoAsiiGTFIkOAUkoRuJQDXwlCAAacc0bdyQAMgd3UHV3UHNAdCAzRzAnrwJ/V0PKXqtYbZgQanwzEAEAYa2MAO5cPydCwgBmQHWUMlUFZGQwdQuIiKZuqsULGmSFCiARefU+czNydzAiC1ABjqpIQURwMIB6Iyk4ODmYYwVbFAAdgVIyJK+Afko+uacRAqCWAmDV7e9iNoBaRMysPpyVn44XfrTuDlZ/gb1RcxwcyQpQfeywhsNDLQIOxFhtMOtCFhHIzaD2b4TIRI1EbjvV0nXdjQcfePSxtz72xJe+8qXPL2KQJrBQjAFq5VDKCQlAlEMMs/lCOGgpqVSbE2cGcmThyMhEIgGR3b3oUNeWmrk4kjooGbsyC6KiOWFWd2BzU/OiBRUQMQSSukt2KFlNrcKdtaVyNy05IQdERnQm5xBCCPPFPMQ45DxfLGYppeJFTZgC83K5aNpZylk1Qe3i1dUciZHIHUSi8OAB9w+Xy71ZP6Sz1aa4bodt7t1LAXQmUgWekpO/9gEbGNRLAep8BHXcq6OQ128GUK2YOdEUsAOOgA4IXtQNah9OSGpeyRuAjNUPwMFsyja2GpJpioSp5EppfWPjYcBEAcNM4gJkYdKANE4AaLVR8uleAgBUcCaRyLVZqTgtIjg4wnQ/AyJ4xVArpOF4MQSiO4KCOYK/sWuprmGOSMgA5IRUR2MgZiZBQjQoVJ8Jd6xjhaurkQGYAmV3teKgVm9OB6e6vrAy4ZmqZiUqME7vHh3cDF2RgCuCiegAQmE+m81mbRurOliHYfvic88Nm/XZ+boU0ZT7EWaLva5rGGO/TqqABVEpj3a0Pl9H6seCxPvznZ293TCfE1CIjQmDACMRkSE7AQIFr28GwZwVjepwaOSI4GNN+nUoYKWiEmbF1EDrks3BHckqFo6gONUeQFAAcGRHNy/gYCBADmZkoE4Z0DE5qAMixoCMkcwCzwFK8XK6LkpD7rfbTbp58/b1GzfiLI7bizwy96O7J8zUdE1KZbvd9Ot+tt68/votERmGYewHImYJKSc0iCFxjA7oEKjrhCNIDE03a2YeZ8AdUuAYDBC9psugGZgDIzqguZshOhAyI6oBg4dWan9FlW9AtRhabRywPmp1deeOBiRs1bnbLoqoaZhQcZ+qp0OFPqssv5RC7nUD7FZIFU2D5TqSMxhUEKVovQZ8+rHmYLU9IkQzA6rcNDQ3hAlzJkJHQ0Rwl6reAEOb6gBcJC+CQgWfCSfqs5nChWFxbTGnieBiGHAzrGIHcnBwq9R4RwfTTERg9WMBByNG8KlCTYEO9YcoEKCrcSR3Q0dhZFQoOQ/9zRuvP/bQg29/5/uff+H5ooXJmYERRUTRGYnqVeAe29h1nQQe+qHkXMlpbdu6GjMJV6osOWADrTkUUyE205LJ0XJGJpTA0QM7AGvJCQCsFASvyIwIBKlcD8kFTBUFBIGAgYlYkLjyw7JZKQZaFIFrRSbmANjGMO+6MZU0JgKIURbzeTdb5JSG7fl2m0op1duIOZiDmgGAmyLoctHEWby7WaeSU9JhKADgMn2RTgiM9Su3rEQ03bleXYdsaniJvHIWp1ANqsilIziLmdf7+o3vrRZaL+pIVGFLcIBCwGAObjWzvoIqrooI9VkHYEdyR2DkEEvRlMemW84OLnnYHSGG2dKprtD0Avgidzd0AnLDwAJTp4ETj6wyRLmiVhW2dMf6PBohTQlrxaECSggMhAgcmEgMEZCMAImB0M2FhIBRUb0gIHLlbiCR1PfNAIiG6FzXRDX1DcGnLRKKK4JVOKp2gHXEEkcEBXIBZISAKGBoGsDRi1tO43YYRrCpdSLigtvD+0VzSsPaPVnO200fY5jNurZtteRxs8392M5aAxo254Ht+Oi8jHD/fVeeeOrxqw/c07ZN4DgWByaCis/X7wtCJaYiAgIDWQW8DJjY1HJVozkYkiGWkpl4hKBEACAVSEJ3ByFCJsSJEEuEwEgIEalyI9CdQNSsWClFzTF5zmZWko5FxzIOul6fD+vVdrMqtu37Td+vut1dK4N6uXt2xhs/Oz4LIZp5SgnMmahtWzPv05hTNjMizimP48jCJZUQArKE0BiGGGccAkiLsaN2J7YLiXORGYZZO98BqpJ+rveEThFTiCDFHAiQSJ3M6/klU5v2AhW31YI1KtDdTdGmigxm6AZgXgygOhUDAJRSgLyYKoScdKJV1F1ghRXNiK0JDnWOrqwb0xrQAxNaZO6G6KoZrIqv1UFd6wPoaIZAfhGphmjojliZGxVpMpjCw50AzZSkXlAGjl4twQGQwaai4ap5+srV3QwuDoDb9HPqhUdQzVkRAJC8Tt6AE9N9AqAJqrq1+ojg1FDCxQ1QDXqYEQ2BJbAQM4kAY8lDP4563wOPHR5c0bSaz7pZiE0MiFgcDPRiiIEYY03D9SliFHky1necgEmqZlbCLCGgMoLVDEcHL+ZaAQiigAWUSiV4gbEQURDGGGJgDhWzd6GmUVPR2nti5bmiu49FtXhWq5/kZruNQZwRObCEIDGyGBV3jYG7rl0s5usVIFEuJSGxu5ohoKuXYjmnlNNsFpeLmamv1tv1dshFMSAoCXDKiYiA6uYHXIFZ3BwJa5/iNn05Pgnd0OtsAFWKUF831BmPagYtYP3iEGrfWH8KoXt9jz75jyK4eXEDI8LQBKIwpuIIyIFDw0jmbihxFgPHsNhDbrlZFoijRzBALBIah7qUw5oKpfUeAKqnDbD2qwDqiE4MjghggO7gF9irs2Bt/wmJKNTWxkkkUCFC4hodR1TJ2xQaJgRU5EBxEgQ6uBOzgvs0BhCgOgADCgoRGlm9GnNSVGMHwgqMGCEgc8XXyF1ig+QiRA7BicFIFTQzhhjm7e7h4ooQMzGG2ICjqt6Xe2EWYiSIzO5u5lq8fps5JSIec0/MzUzmLa1Ozk398qX9ncW8bRoEJ6AggQQJnAiYiNARicCZiKlK8Sv6xk4CgMIUgjDXvCcHQGEeS9HYIYOQo9Xdz7RKuJhh0OrOh+uSQImoDvUVAC9mxTybe2BAFMtQvOQJoF0P6Xw9rFfnw3p7fHR8fnbn6MbNu8c3XnnmOZDS7s2r53M+XwsjIiQ1B6cgDVsuRZBJsKWAAIRGRCG27WI3zhaxW3BoQ7sjs0Xolk0769qdrmtDaBmjEbVdYwjFwEkoSjFLRdXZEYqZam1y3EzVCoozk6oVU6i9lJpO22Jzy24OZlUAbaaI/rV710GiA3jVJYWu2hRPsemq2VQB612Zp4WKIxipGii4EgAYaM00dHdzRmBAM0QChosp1ckKgEtQ9Fpsxd3RLiZrqNNw7c0RjMgYzd1UM0zVG5DAvbiDurlarSamFQzyeonU+cCh6pOcsLL+vAKwNcMcwBGBecpqr2AEAgKiweTTDFg/SwQAqqnuCMx1J1E0k0ijuYDqZr29cfPoybc8cc99D5zeeml/b68hBCsGBI6qE7xEWOc5gmnHjMzStk2NHVUtOZWcS9ZiDuYeGBkZiamilmamddNyMV8BaHFTJcYQBBFjYGEWYCJkrDxEL4XEajdVjxSIALpPA3RVCq3XawB1hG6+wIsViKkiubDEEIOEKLHG+BUqBu5IbGrFc845JSRa7u4tlnt3j1ebs3W/HaRbcC7VWSOIA0L1z3CHajXBwuCuAGQGRAruphSaCmkRSf3OnRCnv11NlJCRAQAJzRwITYGEXI0uyoM7KCAENkMisgLI6EAoorGxMAdid3TplAM30oTIEljEIVC7MO76DMocmzmQI5mW4rUxI9ZSGFgEimYiR5wMNmDKoqq3FwACEpmbX5DUAMpEy6mPCjixECLVos9CJITMzOAYUKAyZNmEGBEdnYm5LtDrWqE2Nk7uXM+UgVddnhsaKChBATCoXWEAIQLwwsiOBgjqxbJrAptYGSjMsV1MYs1zBVCiijUlESSsD+FY5ReTdoaRkB2dmcCjgEBoOdDW7HyQZrnHgEdAK420NUEkQczKXN8tIUMMIXJAMHRgxYDCwMhYuXpd07CAgAs5gwUGNDUo3GDbJk8jFEViCczors6Rpt0moAFV/wktRkJOaFA5su5gTkYAM8aEpo4IhowSEUxDsTDrwv7uolzKQ5mv8nYz2hef4Uu3E1w6Pb6zuCISyN2W/aAloSsh5JRcVeo5NAUzIYptHIoVoLZbQrvg+Y7MdiV2YbYT581s3i0b6WKIHUZiwabPmkwNPCKVDMXcCoERGJRS3FyE3czN2KmBUAsDMUdg9YpyISIjMDi4xXpJG9TYcgerCd9+0f3WgQBaIgUwB9eKFVaXr1IxItNSSnLT+r7M1NWKam3KwEytgFkp2byygtzdUKa1vHpx91IMAHCCaIwAqkU5EFXhIrgCGIGrD2zJTaFUmv80Y6uqlcqZqXC+IyB6VT0RXmD+te0iADcodREBADCxDLyeAcdKE3EnZrnoFoEqwFSZQ1QHeag64WwWOEqgYhbcolDW0qe8GUYj3ju8lM7uLGedgA69Vy9QHRMmVQVV5RBMay48Vp0Oh0AU0K0YOJiq5VzMDJBYgjAxQXVfAARXy1oAEGjKoEYiQiHCGuoVRIRqJDXVmV9QzIuYlTQWzZmFeTmXENCNRQwRzHPJYxphYxKihBZQ0LGK6yUwVQ0RMRIQMAK5uaEhk6qpejYd3TyEdj7n0Gz7k35QkYacydDNgB2RAJ0QFRyFCMEVwKHCzRTE1BHQ2Z0QKm0TJv4PEhHU/hpZOLyhrmZyACM0QCIEc3GSabGFSqSCAEIcIjWMDCzMDYSQw7wQFgUAZplBDFN0M5FgU5CHlJAwsoGd17ZfkNTMCwBTK4KuaIqodacoiPX8Al4cPqozWwUnKx0LzQvAxEjFi4USAiAwEl20G2RATKTA5oSBHEv9yVQ3CwCCwAREJvUAIBsSAimAC5gDOLlzbaTcAByd3d1SLgjAXHeIBmAkaOBWGxNGIEwGuWRiRARqAwIgURX058qILooOYOpYq5Ajo4MTI6i7GgoNKSESkmTNpSTQgByMC0Fl+KljJkJxFAJiDEIEJIFCFAAS4RgiNxxiaGKYd13TSGASNKlv36lrAlkRQs0Z0L1eGASMLEIAjkREYA7OBILTYRMsYK4VQTZwYAzMOppnIEY39S2II7WuQyrHY6/mth22vY1Z7yhtSuP719rZnoNikCjYqKNbSYOWMq9i/0miKARYNJtax1CMWSKGFkPr3BTBVHC9Ho77MdTZEYzMzLxYQa7IhtVZCIBVDYHc3czqaEsT3uHuTkwVTWdCYmBEQBASJ6g/GmAam61OsoATO9SdprOPAMY0UWHcqI4NbgLmCm4OxGCogOZQ6u7RoKjWcVgdyKyogyuBe1Xkurtj3ViLmzkJuFcDSTc0VTAEU0etlRjQ3dVLcS+oGWHwPIIbVspmZUjBBHBVuNDdAZ0I7WI/V1eLeLE7AKK6/UKiC9TB3+jEahU1cyS0qiwnCkwAziwOhlXH42igbdsQoFoOISKgiAx9cUAMgqHd3b887F2fNxE9xbjwENSwEBN6UctmpShLcABkqTS0C/KepVKKaTVfZCFhaWetEIE5EhHUF6+cKRdTc7VScNJqhSbihPGgGyo40YT0VIaUAJhpNtNKkHVkYGaBwOjuklIah1IsjamUIjEQS3WaISJhZokcIkmQpmERB0U3QgAw1Vw0qxljaGOXB82johMCW1HhYFVsUSolw5nIHAwMBQGxJI9NDBLUtEAVQGFEkmzERMAOjkwk7OZZi0gg5mmNz+TuRYs7oaCbce2YHQywqiLrIjmV5ECWN7UcF+kKVTVxYBQEZgrA4iRmAFxiVR9MEwtr5joAuMFgNiCwCHCFrRyBqO6tsRLgvGobJoaTT+WgPqow8eQcAdhNCKlurtwrnuBWV2S11qITK7hRlSg4IXqVO1X5AzIAOpFzBRPZhWu/ghgRmbBufggJkZhkUgswEeJ0SRm7s4NPGUXghgoAVmd3AkTGardW92xW3LXWDtUaKSBkaggeAEvKyKhqjJBzqdiUmqujVmTP0FzVDSsaauDuHKioEdOkhENhDnXbISJCgqGO8kRERigSJURw9UpuraxAqPxD4ep4aOoEQOgI1TbOpjhuteIAmM3NkSQK5mFQ99B5IYcBpBRY8ODFehBGFU0IIMG6SESmOaeUGgnEnDelfqea2YxMawdTBW2Uc0bmtE2uaqUQOIGRqqpXioCBjcbqmDkaBScmlrr+rx0rITJBVTr5G4fEoVjFFcmgYiBTVawqIbrY5E8oKtbjAl7P58QQAXdA5EqrJDcGJSsA1UKlkoMMwd2duS6iJ+fSun+rACiSY1fLCgCKAxIEd3NUgpop4kjgrpVnrV5dJourkYvlgk51LXdhP8+mXBK4YTZUC6WoXfDsrNRSAWhemT8EVOENUxXmKgv1aaS1iYjkFx9c3SY61ta/ggs1QBrAhbiWF0evpAumAOCEzIwOAkAE3jYzR4xNSywilPO42mxOt9tmtlgsFjvz6C5KkqeHyYQbRBhGASRmdpgmOUUtzOiYU+77YRwHK+pmkWU2a3d2FkRkWQFdBOsJQkSADKoGCOZBOISIiKaqarXrB4CSiwQxM7ViBhKEShAiYmFEVDUkbEJkIQBvmjAwa8kAaGZuJkEWy0VtFRjZAZm4id2sm/Vtm8ctokVhMywlq+Y8DnvL3ajFx6wplzL0xYmjIBGBulePCydHRFJnlAxeAJtle+Xg8PjWXURnEhYZUpYQimVBFpZcXT1MK75RTBHcTF0r4OA5JzMgIVVDdyE0dQfM7kBY1IHADIq6qjIBAStEF3aUynqgikACKrABuI2qiYWEQ6gYHLbMoW5g1NHIANjQyQkRJ0bPBWGhgphEgEgT9+KCyIoXvIRKR+KJkVhVihNXDxC80jbQKgu2zqLF68skQ6rBPwboQA6IAkBedW9Vckb1TiCY5BCTqxO6oyFh1VJMSjdymWDXyoJDdPLpRbqamyFVPyGtu3iooK45gE7Lv4t5HA0ulnUogloUkCQKB1bHXBQAvNToCiOWisVS9T4opbL+AdGQizMyV0OUOswjMCIZoglVYxktGauxrjuaE0BgQGRwqJOgIxUCBaQQDcANoeoe1dVcK/kaEYdtzsrIRZOlnJgJKcBAlg2ieylWgJkCDpBDE5jQ1JxpmCY+c4ecCgLqBVUJwYmwpALoboZWdSaO6FJBUCY254Zm7cwDZ3RlM2pMvRRADFWdbuBKgG5A6lWEf7Ei8gpZT5V/4jtVwmUBB1OYgBGoc0Mti8Q4ScNqJfe6lwMBY1c2xenE1b6m9p1aats5GUlodXUANXetOScVoqi75aqonZZ3/jVEFgGYaVrAuKMjEzE6T05NytPWldwAuw68Lb5wNEICRBEBqECRlpxQ6+4QTauOAGoep1dNo1VdbqnLcbOJZo7VGgkAp22jTVyNuumtKgZ0cKd6kxLWQXKaTypPiGvvXecJci3DsD09O3f3+awTdpGYjdDdDAI1IXIIbS5qiLmUYcjMlDWpAis7QEppGMah74mwjU3btrN517atMBdJlb5rkC27o5NQYKxLR2apVSNbKalQwerVX3UYgK6lOKBY8cjsTCSEaCkNMcaa4V5XzNhBztTEULO4Zk2g3Z0QaCxFYiSmEEOjtpjPh3621VT5gtnUELPpkJNq6toQY1RzA2SuBZLcHIhUlZEAwMwJUUtpY+NAqE6eLK+GYUOhy6qIcTv0TAzAWpKamUPOVkwRMcZoZiUXIhThikWaOwqjGiJYlVG5gzsLe3EErxHLIIDABOrIFOI4FqHa/hp6dbIQZwI0V2pDJLLt6njTjxIbaZpImEYFFifQ4m4KRkhQ0RN3MUCtpt7OzoDV9K9eoUy1ZSlgpqlKMrMhEmupGu96T9SLAwCc3MAVxMiUFMyx+iSoVZro1K8TEpapETRQRRCd2HIXq2dwq4sAI0NAULBKi3SSDIIkgOhIlUKIVYRFFwt3M0ADs0rPITZ0pWlOqWQQAAgGYAgOoIha8y7GwtJQ4DwOtHUCEEEHN4WAQgyoqaqTXMEVZsBVsjS9ZhRAMUZHik3HxOLG5ogEAYhB0yiRkI3Qa2ft5MSujshs1fff2AjVQKHkVEQiiHnRyjtEAjLTIRPk3LlD4WGEBhIggHHppUFhBk2eEhqDEWiCJKYKZEagRcHBTEMMVKxCmOBvYBUmjm7AxEUV0J25UBydDFsGjE0HyGUrToBMRO42IkoQsah0wY2eCFyKhLUJ8Co0RzBCQNeqcZhWqQgTvawWLTWfeg4HMAaYkG+agMJpd1XbBuDhgglTdYmuju6m6lobgipFNPdSSy9AQVO0igvXm70KHM2KA5EBehAjFobgyFYIC5uCF0JTdAVLThhY1RxdS6GLVo8hIAWEUHKudGecONcFa7h13QsQIQoAsABMgYgTlce5krKRKncOgICqNUuliNQPvbqFmJkwYM1IKHox+jDixFOa0CKf6ER4MbBryeO4XZ0dtSUJIaEhEagJVD8xpEas46w+prTtB+XiTlB9e8Cg8mRdzZ2dmq6Zz2ez2axpmuogZqaTZ6uZ+7RpJGYCRwTV7A451XU9T579k1TCCNCZxF0dgZCaGIjIzEKQtmuAEAxogphBhKEOjwRNE4AWOA7MIkGISJi6rokiOQTmSsLUKbbezB2YGM1ZGJmgGAEoVMG18cVrUlQEiEFMCwBeObwCeVytjkLlxCoQ5UU3c9WuiW6mxiSCyGYemyY2sTpUVYNZcHNXZiGuKWdcyWBAREjugEiBg4N5qebW7kYk8zhbZHVy8lIawa6bh6ZRFmbg1tFN8/jqq8997j88fXr3ZRJilHqaq2RBS23OEAioBpIBIrBzFRZUILFKlBHrESVQMK0Hz7EmD03ydIS6S0auqkCDOqFWi6pJLlP/gboQMjMAJyICdPSp1qM7YHEimJgGblBFdhN7w+rJt+ogrQAGhChOWM1DAeo6pe7JpqkZqXaXjm7IwAQIFR6uU09VbVCl9RmgqyMSKWSoPxvrbKBQrVaoABMjERNNmA+KuEgZwKtIiHDCdRiIuRA7B8RQU/GcUAEItSBUV8DqYaKERg5IjqBY/VBJXU2nXKNSsWi7gLfNzDSlATQpAkAhL5or9z0xFkMHJAJlUFQDpEBozugF3JmgduH1JL/BPJ/kRLXFnnJDSA0Q0VkcGBE9NMDthhqiBkLLjGXkyciMWUcvW63yJa268okTbXWOq3E9DgUdHNQvFIJYQcaLw1IXcHRBobnAQSZwvE6bAFUiho6sXrtqq3dC9WIxrRtkJatnHtyqnN+8TrVvMHMJjHBiXGLkSPUwAbkAeClesqYBoLg5kRsVIDBTNKQowjLBVOYhSjRCjOAISOziplacybGGYVWdXw1CdFU3M09ZNRc3Uy31U3MCRwCb3NInNmw1DMDJKaDaRLWxZSZGaNumnXd84QnmlVIIF+uCi4+s3hwA7K6lpNXpyfnRHZRxThNHyB2QROqOjsExsDm4pYRdCDFwZi6qyAwO7g2DtzGGJu7u7uwud7q2CUFcVXNJRXO2cUwplwkUcLqQcaDXTBg1AKhlkKpqHBCZ3A0IRVWRSJhCFAQkiYvFrGkaQCi5oAM7AYcYQhMDCyMxILA7ZxEmJqxOo/X+r4T4SR9eqdZIHKW4khUJIYQIZTAwLE5I4FPEpBkgUqmbeTA0vHblnrc9+cQH3vP1npKImBuhuCMJppSHYRjG0cFFgsQLhkztGwFIyM3GcawmqOBoF+pPr6QFNXVE4jSqoZmTWQLLKpukw5jAIJaC6oVgQ2t1dc65WO43q/Pz8+s3rt98/fXNdmNung0QKseI3Hyyqalkuvrsu1zM4W5enUphQmIJEL0aEU2uoOjmUAuiv6FGBEdHx2mNPRnh0KTgfwNmInTz2h5C5RcRVcuh2sADsVb4AwAInAwNoMqKAM2MHYDAzcisetUZQuX0TnfWpK5EoHoR0OQoDeAGCcAqWAQA4GpG03v1Oi8HRGSp+yhAL27uVJvMyiGvwh3D6lZUucST5t4rJmfIk2QaCOr/gxNNUDdWUw51EmVRZ3JkUEdSAnZgNKoUEEAAZYdcCriF6mrg9casREHVksXdrSqLwKC4qYETVYs6MCCrtHpEIjJHZrt4FU7IdfsGiJVKdQEFTjQtB5vEKFhFRi4OCpyQCpADlHpboyBXVxrgijEAKjjBZJyjlTA8CWKMJnDQDRSnZdOEcMPEgp/gxgnlrrAHQO3tYdoZ+ARNVoI4IFdSJHFomthGFmZhK+am1R/GzUEnhvWEftUGvBL7yQnDVFoZmSkiYi5lzMh4eLB37f4HZt1c2s6cmAMBCSKapTwMwzblBACCAghRpNbrVJSZq4apCUJEBkQEQhPmlF1rpI6ba8ngCm6pjKVkA0cCBM1FS3ZN5qrFilnl3bt5SbmAuxDnUtbb1bbfwGAhtu6AjFbUfboqECfaG9NkOFcfTDcbNqvjWzeavTAPxdnT2CMJB5rYpdWMzkGE2hgqpO5NUwdsdW8as1kHhBzCfDFfdDNhFsSSUyaedidFTe1rftFmuah5Ve0BccUB6cLlDBkwNhKjqLuknGMIEqmaUTRd083mAFiKIVKIoaUG3GMU1+r+b8JC0iEKCwuLmqeUxqHvh61q9aADAGckBoohisR+GJNBr1kBJhslxKpkq90GM5i7FtVKFHAIQb742c9q6a2Mm347DoNqBmAPkkvJeURXdpQgIUoqJTaNFitWEMgBtEwtm7mpelGYAIt6FkrRaTJmMAKpXIBS3MEUEIuZO5pXwam5upc8jpqHcbMdjHCy6uQqFwGszQB4RUjMtHb41a9OJ90gGHhBIKJqXT8V6ipWLApw4YAEDjQBNdOnNa2oAKnW3sqDojfumPqo1hEdELBOy5M3hvsboyoaAZETXAwHiDRdwHUYmfoIrx5LiIhOUNuki1sNAOquhd5YXkCVzL2xuwUkoGnTWCsIgAJr1TCAgxN5Ld6AVK3s6gODhBwErNQ/iepmTji5GpihuYMBggtCpYQ5YUEyMNJ6f6mS1CAhUCUzqxLsKteuawNEcGNAg8k+xrxuGgDcJqaEAdc+MwgAqmcwrZk5ddQpDgZEhMyQzUw9E6oCIeokwpg++6nNBgerN0KFmI0IrbJSphESzZEZ1B0JiAMhTp0pU83vrL+SEKoBOZKrA9R8gupdb4hAFxcOXlT6SQRLFQbRSRCBVBuO/10hw6+NK5W15G4OOv0IpCBBWFTNrDCxVh4OOAEBEEKdI4EcDEB9ImMCGk4qZSJmVQsxuHnux9lycWmnmTWhDTGEUNTJgRnBco2ddisAqm5k0IS47GZB6Hy1FopNG6paaD5rizpFaWK0kmKQYRhDXcYRIzoYVWKe2lLRgKAhF1dAdhcm0Ww8oa1Q52c3Y6TYBCIe8vbm7Vuf/uwXS5X8W3V88Sofwdrk1HPhVlUO5pryCNvz9VnYcre/y44lpZEIkJqCBatJef2N4E0TA5M7SJCq30mlFHNVlRBCDCGEKBxCIEBCa2Mcx9HIVNjNiauJoambAxRVq/sNAHCoWFkxCJG5aZq2mTWNI8iYEqBzWAhz27XLnR2ts7FatQNuYySEIJBSHkdVVUKRGOaxYSIiBrex79frbT8M4A6qzEJIMHVUosZDKeMwroa+uDOFXGwSfwM6uNUDaxCQBAKBzeZydPTKpz7x68gw6zpFGDYDuofQYJy7E4MH8Z1ZbBxFghd0djfPSds2MNOoKiGCECEUK9khm9Ik6A6mGdzJiEhy1gy+3SYwGEcFVWH2kpE8BFF1CjigFtJNSSlkXnAqOAwpRjFTEyhqVVxU/OLpYZ60jFZrIU3oKwAg2tQmElQ2Yu3AqhmcAnCl61RzlK/N5QCTL4ZCdSOslLVazwh80lFPK7dSO4ypxZjm+zewCISLP48X1YkuVn94wUVC0Lq7u6BB08WF5AgQJgJTJQ/WH6VAXkEuRkNFcKLKzUNEcsK6kkVXcDJFR6o2RxMTyggcjNTUzIgZ3LbbJFEaIfevba6qx18yJXDmCqdoHWbALtJtKmzh5u5EXPtff+Pzdwdmq4MVYpnQ9IIOTOwTa9AFmVlK1WYAIjDUMU8V3YnFXMGAiwEAM2U1ICo5IbPXLZcb1P3WhY/ZhLrVNl3rDUmgDoBGaABUDQCtrkAUHStdwqwAWojs6lqUEFGk0vXZGQC81K+qbgi+ppKsCCCRGFWvtzcwC7+o9A7gJAxW+QR1y1PPRt0KMxgQMQGa4eDmQMjRq6Ri4hxPc4kgs0NOBgKOVKZbFwRBANVNnRRdMaiU3JIHvnV6fPSbv2kl19BZvfC3qKOSGgCSoYPLzmJnMZvpmMbcx9msER632zLk+XKm4HEWl/N5IG462pxthjQgixbPZQSDJkZkSqUoOEtYxNASMrE6mTNUFwcGEW5iiI0IUxObvd2rO8vF/Q88Pno5X58/8/z16e4ELKWYARK6GRKY+aSzporAkJr123UfJM/RSsigWm0JS2ZTMDV1Jw0190uEhFSBCIMwELUakqqac6gxKSRIDE4AJGxRctsQo0TR+jouZGFmllMpWlLOpWRzryFFqh4bZqEYY9vOYgzStG0MHFhiDLPZbLGY56TbYSiUgZCYQxRhRjcmUx1KKWwQRWLTBakOXJrymEsBh/Vq0zZCQUytwk9ZbbXtd5dixcldCLdWch20amNbzarQrWhJKcbQdvH+e692bXNwcLh3uJOHgbt4sLPTcsypnK5HA4rSLHfmy0WwUg4Odw8P9k+Pjlbna2S6dOVSE5t+s039GGNUzevNOquCUBPDvJtFkZSHcTs0oREOiJhU+zGtz1dDn2Zdg4iWbbE3Wy6Xq/MVMZydnW/69aYfc8r9WFZ9jk3IY84pV62NmWsxcyzu5ADEuZQx5wpZa30q1chQAk3Ktdo5MQWknMtguVJ2qj2vmtYOuNK7pscYHQkZ0KAGIThWxic6AOYaVGZVE/gGy4KwwtqVJk0AToZ1BTAVdTPD2svU3wdIhihVVlZbNpgMh+BiZTMhrgQIDMAo9SKp7LCqpKnsZiAC90gSJLCjGxioEzu7umFBwbpWVHBwdaBqAe2x7YBgSEos42YbOs5qLGiA3bwVIXdcn59ryUKsbsOYXN2KAoKha8mmmlNWtUoirGYSDm6qyFznpRCDCCPiOI6ODtVvimkiFhtoyRcQCopEBFLT0MZQgWzAGCNN3uCgNUdRCyKYE7hrKWZGRJV/4jY5DRg6Vu+QulwxBIfCBAiCpFmRiesfdUJUrG55SOqqAEgtGyoZEqCz5+KTEUlt5c3BGcgdiisAEAoS+RROAoQXVpYAVL13wcFBOBQt9sbEV2c1h0qTFwIGpMormMZKN/BcTM20KE74eCElbMjIs6sgciCvmhSt8yTNuphyaYm6/W5nOTtcLPM4cmhCiOolp6KujTTCxEjOqOY5K5EsFryzE9fHg0HZ2cGGeePIi6abRXO7eu3y7nI5mzellM3u7Hy1SiWvzzdg2s2a+bxB5n4YxpJZvGVbSIxRNkO6e3xa1EyVozACAQ7bLYmMubCEt73lzQ8+dP8M+S2PPvbyy7fHXCpoV+cd9CrjRaiisNosEZqrOYFayb3ZPCVsaerdKlvfVD0XwEJN08RYBdOBqTr40eTtiSjMIheuGABWiMkdgtBi0UYNBogsQAzupjVWxEsu49iPY8opm3supajmok0TaghnN+9m81Z2d3Zns65tm6btYmgCB26jAaas4J5LUQ/iXDMt1XRMIxYDDqGdIaKbjVUiwJxSrnZJpZRx1M12HMespYybdVpBt1xGd07FUyIEdKCAAMgc3NAdkIUiMJKjOHeHl+//pm8+PDu6a6b3PnRlZ9nqdnt+ct7cOUpqOzs7V65cahsBtPmiFWIb23nDSDibCTlSF3fmTcnFndwyCscmNk3o2sYNUqYUODDNZl2M7TgmbkPKlzVlAUw5xbZpZrM2Nmen85xT04jBrsTAiAY6DtldtfjQJzADBDMQligCxF6fB7OvdduAXLOngGKo92mlO1t206w2uTAiEmgp45hyKVXby8I1sKUmvdV2w82rx8BE+wOvmhu4MFUnAvKqnPGJEVHZIVWM5uAw+eFU2FxzsVLeYACieeyaigmhozAhU6URRAk1Y7qSqZCZEINwRTO0aBryMAx9Goa+z0mliSISmIWjIBsgWNECBcEIGImxmoZ5MUWDDFaZqN189v/n6V+WJUuy9ExsXVV1bzM7xz08IiOrElWNRqG7RxShCJ+dAwpHHHBMETZFutloAmgUClXIzPDLOWa2t6quCwd6Ag/gt+Nme6uu9f/fV1ulUp/n/Z/+/T/anMfRUYi1ttKY0af99tf9OM7IdLd+jLXiFOVIsGnT/fF4nucwj2k23dxDiGrVvVVBZqK2F2ZRliQ6+jnniBnuntTmnJyoyrfPV0Qptf785SdlJaL9Zduve6sVfEbk6+sNAp+PRx+jDxeCCB/dI4II3Awyp7n7shl/CBvC10VHgD+2IgZBBGGpdScttZAyrWf3im5kIMvvPYCERPp4nwESCyEsNzeuxUAmEbGKR5jbygsAfFDI19V0fZZWVMPMM4GY3C0jVvJ9XRQiktsmH4859vCx+h8JsZZtEOiYHkDAwhDAsmg+wECMSCuIAeAQy7WSQGB5u+yiwkTaeL82Cp7TzQMRaqlFhTmnnZApZYmeBQl9/Pr2ePOArbZa/04Kvf94ryq//OFnLQURA+C4tB9X/fH+tnMCbrfr9nK7KJfw7NaPo0PGp30Pz8epnz5fzzGfx2HpY8y0nM7vp/3nf/qNa4P6T/F//X/8n/9P//DrH34WhnMYZPnQKn5E4GiRRnMZVQEZyYdBQK0lASNRi7iPWmoAB6EnZuIqFQEvPg2swB6yTHMgYEIUWeVcCED09YdCZHqKIIpKlEBCEWb9PW8QmJ4eXvXsPdORMRLWMde6EcLlUmqTWkS2ute6aREmIWLzYBIVVdXwsDnu9/BShWktyAHQzOYYYRYIEenTIGOOaZazT8jwyHP4mMFaMRI/0tVxHgdEbrU6oiKc59MtSsFat+v1usr/18vL558/n33cn/Pv/tXf/5t//Q+sWQrHPE75kZ5zjscxXi710rRoqY0znAF/+vJT2oyMOfx5PKSoqCKiTdtaGzYxYCutkMwwP2daJEBGMuLeGhUlmNIKJ45ZSYlZMLOwgPlPnz85WESUqoxoc9oYlnm2GQ6RoURaRVkTIMyPswcgETVVFl5FZUK4vFzHaStzPWdMs/tx3O/3eZzXvUVCKRQmhdGziArJyqMDJgpxbSUi3W1OE1VKREphjkwPfz5PqRQGWvR3yAl8bCc+bCj5EUBaSWj4SExlhs2ZHkykIiJEwFIVIpHxY9C3AnKJjLg4U2a/b14JEQiJzGaySck4AIkjAJkQNYGBJVhsraBJiFGREmE5KZEEIQMhLBoxIba9/eFPv25tH+5ff/yFA+/fftzfnkhYr1uMdLf76JdWEGD02c2LSELyuq8mDJIS7tMhYE5zCyZmYmUWxqa6RJhVmImulwrIhSD2mpE2vJvV15e/+7u//fWPf/jjn/5mv728vH7aSvVz9n7ut327bK3o96///M//5Z//9Kc/YUIf8zhOD9DCAHk8BwAwo5vNPiMTETLCbOaC4UOaz4gkkgVkWn1/UULR5Ha5bK1VSPAlTTRDput2+Xhrf7yF0+fs/VStzFSKRgIzBQCudD/xIgOtoykRuVmtNX5vPq2Zoa9HRsQK9SHC7MM9kAgipWj3zOWVRLSIYTbGcI+iZc65BhuEnBELBVaqznMszDh/kPcwiPrsy7hIqgIspBEmVQCgNWXUJfBDBBWqRUUxfEOIsquQCBcSmsOOcTvPsbeNSBLs159eEKBudczID9cjAgYx7K0iRiFuIlqkiAZsHoGQVRiCfpWSLM8+jn5MszkGAd1/PHvgp5fP//t/+M//x3/8j59ftv/h+cvb9282T2FIxEhYjOWAlSIJJgpLShNhgkBmALTA+2lB2PYNJ4qUALbM6R5rJbSGl79HA4aF+/AAYtxak99x1GmWGbNPgKylECNgKqsAz8hwF9FluUFi6wAYbS/bpu5OzEk0zNo5xjmQUEQhAjHl9dOnUhSZlBlW+ZQQkVT18HOMPs7D69gvGwIwoiovb4OPMRd3KAMgbJqb9zGACnGpbZPCM7IelHFMm++PZ59Ttz2dX15fNxElAuLbp1fWUkUzkxD/9Ld/Exn/8//8v77b+/76358/3l+0RTebfHR+np6ITORuz34wwzQBDyLeL5fzOH2MMUd/jvM5WQcLkUgQadGiAhmRPsac0xOTVFDlnBOSKknTiphECFJiZloOcG1lu21vP94haNubtkaRZtPKGG6AY07LdCbS2oQlI3ueyRDuBMJlq20RV/x6u7brVXfvY4w5saDdn8e003wmvvVRiwoJ11KkuFlaLj/T2i4l86Q1MwfiAsJhAau2LASZFWX66GEIXLiwcqSvuhoQjTEig5lEhEUywocBIgkxoRSPCEKsrbZaF+AjxvJ2wEorLZSiIwT4DHMMJBQWB3CDtIQskRKiWXwcAWULyLsnTBMAlrWsYELwgABb3TBiYc0iUrTsL3smenepe4TOmc/7/fwxdn3R113wMJ/I9ISnZZyWBrjACSfmxKyiqoqMAGlmIyzKKk4gMoIBAuLyV8tC6BEQkrJlrCDcqjn1YpT5+fX13/xP//D3//3fMdV9v+yXKyObTOK6Xfe2FyEo2+Xt8Sh//cvPP/3EgrUW90RmRLxeihReQ0IVAyZcoRNfxauwYRxBSkzsH+baJMC91eM414Z8jiCkzBQkrCUczqObQym6gK6QYT6nw4TuZxTftNTWFJHMbS1uCRiTgFm3UooWLioUK7+fGRFu67WUSFRqiYg5J9ULCSmTTw93e54Bnr97dRiplrKCpcjELACL3o+KuBCLoeLThIlFWDURzDxRQIAIkQWBibVJIQ6bTgQikERhYe6xwOWsQlKKtK0JFUQGDqJAJSm+kM5FNgDoRxcQbUS8ljZRCjUvSItKjWUr261SMBgAIhO2Vh08AJh0u2zDNh/u0257fXl5KZfL+8P+b//3/+f/9u/+4/3bj//P/+v/HYkq5f3rDyjp4QKEhEGYnkWLJwkmo2OYjQlSgPU8nhe5tVLBnJlIGZLtHOdxPh4HIDQlPBwDbrcdAsKjuy9iSgJshAUxp5nN6WMMS3cPr1vFBEHMNDdDgDSYjsxsI4gAJCMdmYs2JEERtiDsewNAFGEhBiB5/elTKeIJab7yreYzIxkQI8MiIY7zQErlgkjCsjh8x/NuWkX0wymRuaJaiNz2bd9fW7tO8+Pxdjx+PJ7vj/txf4zby8uXnz+/XF9e21aL9mlPm26mtURAuCnxb1+/9/748usvX//6l+f3t//tn//yp7/92+ttH+dpswNirYXX1yIjLJAg0s/z7H3OZRpjQqSIHOcsDdpWBQgi396fC44KrBDBUtu+x8jZ5+iDWmERQGJBn8MtgXFr2+I+fMD4GdcKUgjJRFnc3WwSLiYHJlHBlsBzdkCyTByOjNu+UVXWUjdqsU2z5/vjjKiMAxLI0cLTuZXrtqHgcRzP+wGQQqBFVJSWdDtXLX016JFk5aw4AA6A93tvQpeq29ZUFAESs4gi4vM4zIxZWy3I7D5P7O6GS2TRGosQUilFVWutGTGljzHcfXaDNQQCEBFb7yWiVaVZo+Jxdv+YeaYJmXKrl3MMXQQrCIlERKYPFI55TJ+QEGkIHlQj+f5+98gi+v1Ht9kh7P3t7Zzjdr1qrX/4m8s0O+c5Y87sSTH6DPMljczwTPHMpSYlwlUKcQ4kJ2ZZmUpiWibglRhGImJESk9GVpVFoeNWfvnDL6+vn7e6t3pxgN5nUU5gLo1QlVtRYina6tn7eXZRVdXZj3n2DGh7RSTmJCYInHNk5hgTIlHIIxxi+Ny11VoRqZ/TIdpl3/fLbnP0I8wjgIlq01YLErz9eLduBenamhQl5ekjM4Di+29fA6EWudTLZW+RMA2tW4QTQtmqqG63S9sbUxFYOTlz8957xmCm1fpe8x8EYKIVLEGgAWHep0/Elfv4SAJDZviCsgECAX+MGRnJp7uHmUcEqyKzFIFpBDlshlm6Y9ulCBFCTGFKjxk9HYhQCq/GHAQQk2rRBdYCWCAPJUnBcY6InB/vJU7AqhUg5pyQ4R4QWUhqLbWoFl5JV1EttdRWS5Exh6UhMSZvuc0x3OdtbyLIwDbOv/2bX//093+Xmf/pf/9353n+23/4N5/+L58ePR6PZ4Z5xBkTSIUUgMjnrsjgAUhSk9UALtfrz59fWQwT+Hc82HAz8+N4WlXYWzpse2NERIqYvU8PFwQhlkLzPALz8TiOfgKCZw6PVitpEAETm81+dnNfUY+y+MAIkYHstSGlAGJtDQBUlAjTY44poiKlUGQghZmZk0dAms1wZ0ILSACLxI/CKQH4tHGcnalvl622ttohiUBcLtfb6+vnz59+qrqP4UetZ6ssbO/3y0Zt11ZVkFS0H+dfv31960eQfHp5Dcgc408///zjt6/39/dPX2528r/8438orN9++zPjF4QQyrK1fbus0H8RQWLPOM7x49uDiDLifn+azX3bWCQiiXivFyJ6PO5jhCZppX3fEVCQ7AxhQkS3PB4DS4gqEiMXEVAVEbY5W2vmhoA+LANFhZlQ1y4jZ59ran8cIyFVVLUi0pjDpjFJLQVZHNDTFZURxxxocL1cEGB2ez6eCVFrQcB1PA9fpclg5gJEROV3ssciW/k0ZEJiZCaWNYxZq3gAYGItK3YNolJL3fZmbh8JvcyRIcLujgBMfL1c98tFhH9HwYNnBIBHjjHHnB8dRxYOdw8p6gCMvOoLRIhkNucYw808An/vbTFzJjJLrYWYmZiImRgwPdymr7GpaCMtwoUoX19vpej9/fH9z2/J9PL6sqkWKcykTvEEAh9HH71nuBChqOPAjBjmgaxMGWDGGZHAAYIYrKvhJMiyKNMLZ4QBFLh6VkzESAgqXFQul1qbRoZedT7P5+MsOsPy9fXT5XLRotPGmKm6gfscKUSl1cF2HGcf3WGYlfUTAEg37/04z/MjXolgFrnorEj7Zfv06cJFam1t3wkg3Gyu7ZoQoghHZivb436f3UgBOYnzgwyXFmGssvB5TQoAODNvwoQ+LDKvt2u7boBIouERM4QlIBVLIuToM2a4z2MdobiWgoQBeR79eTwSws0jXCWLKjKv5wuAf0gtlgljTYl9QjoTZEFV0rrQUxAIrAIQMyYxEUfgx/56GW0iAzMESQAEBRPAAYF42Zfio1JsHuCxGvFuzhnM2poi4LQgTLOwbt4NA4S5SNkvOwG6ORdUKaq6UHrMJZ0ggVkzwcmmRbcxJm7c/vLb14CkzMvl+nr7ieTHjx9fH4934O3v/v7v//jHPzyO4zlG2y5VW6vbp2trklWRmCBLcjnO3scjx7c43uAj7JyQEBaIGe5jwBApWuY0bo0UYa4oR/haFs+ZAGPMPubjcS6OS582hgVSazUy57RpNuZwc0LarxuTAKRneMbj6KqVWVi4lUqIkGFzHOchFqEAzLQaBWEeGWYzLDwcCYR1pVAWKTbM3dPNj+NMpI+VTqTUwlVRQEtV1rA453OaMdF2uf6ya7v18zRkTaDKWKuazbN3TMfIpvR4PH76/Klt4nY+7+/z6LPQ9bJdt330Mcd9MS+rVmWdPgCCldLj/nw83h8Q2LYSHs/HMzwY6XrTy77V2oRlzDmHtbrt151l0dpy4U7NyKeNPsecKHC5vmz7pZYqKqUqJIDH7XI75wm/Z7yUZY7pAMCYgZ5sicN8TkcE4WRiFM1IUb5sTVuNcDuOEJkJY8zRBzIWaja9tVZLnWa17lvdGOjxfI7n4WMSsTAVlVqKiCCAA8zpYYGJzKRFVBY03MGN1r+oDytjEWPDE5iKiGjLiDW+d4swGwGUqCKl1n1rt/0iLGY2znGO43ke3cYaTDCzmZlbTptjiIhMYRERXaYCX6c19wyHDFFhn2a2QJQiLMrLvc6IzMgEiMjESpwATGXbri+fP3355Zf9dStSKOjHj7d/5H98jnvAVCIREMHwRHPMFEQBZFERdk/vFnOdXNwiEFc4ax1qP15DK0klH3CNDx0bMuAqyS225gdn7yM/aTHvj+fl5QV8pe8xIPfbhbRYBDHXWiHg+Xhe6jaZwyESat08wkYwRrtUIlrWF8ggXJZZ8AhI8Agt3CoVAeFUzArBNmJFa5GIcdqgRDdkpqLFW40IszHNxHTO086BALXW5bJKMztPAFTV1+uViH58+w7hgmGPRyRw0T6MVVcvjAhrLYBpZmOM5/tjESzcp85OxGNMnzMicFU4EIBQZPWdBAMZ58cCecEPAQKYQTJDQVRIpYTHnDMzF6kFseAy2kV6OqxKVfhqAi/QpCwtChLiQktiYH4k7vwjcMnM6zZaWETFV80nfMzR+zBzgBThWoqirp6oMBGyWwz3BhQJYZkBITMiLOztx/uT0CMvPf7xn/7L/vI5DMfR/9Xf/e1v3+q//0//x//yv/yv07mPjpkOMNze3u/jmNfr5fHp1hSYPD0DVOteVRgM8oz5wcYwoudxzjEAobRKiSRaWiNV1pKEeJp7mE9zi/BEmRHT4+j9+TzgA01KbXdqNZEgcpjPOceYYU4oc7pzZsRxnNM9IkurbdtKqZgZc4bbnKPPKWEx5rRhs/dxnu4e4f3orFyKLHkSrJrUKnlNS4hpY4zugQhCpItYprXN7tPscb8f9+fs08Pb1tre5NK+fLkuQl8ETPM+OlKK4nhOm/23f+nbVj7dfn7/9tfjfD+f73srQvLp9VNhqpWYZ5hl+nn2H++P4zxqKa+fLwn57du38zlK0WGdiUUkOZEpM1VVhMzGmBOJt63ebjsyzz4zHRht9NHH6OfoMyD9DM93Et72KsIsgpAZxd1pKhLaNAA4n2cfg5TdwYb145x9/N7+g3DDDATYqu57K6UApnnO3k15JEQAsrAwGCBTaeXT50+EfLvdrreLnf17HzYsPEqpulTOa+K7jESIESHEWlREFh8ULJlImKeZh9s0F19nDRVtbVPV9XaP8DFnQHgEMZVaW6t1awuumZGEEO7H8znCEEhVVZlU/DjOx3GODh8QRGFmVRURWsY6ZuWNmDOiiB7Po48+IQCRUSgZAMKWrmm5egEQiUWq7peXL3/49Q+//np5vRZqs1umfvrpEW/+9beHU0ZIRmVc13dlWJpsYmLMFCZmWoU9cAgMc8tc1eUV01jZR1wrZ/qImBMjKxZmZmZBTPPMFCZC9Mi5eLkJt5cXIp6nA6I2TUjrvm/l0vYqPIUTwtNFtZYizig459SitW2ERCGqZHNABCMmeobbnB7OrFoLMUXYOGaMk4sG8PAYw3xOIlJGVhaiAT0cGIhIV+Vy9pmZ7s4ihCAolOwGpci+b0zcz27TRPHbb98CQIWOoyfh5eUmrAvri0SpMoWODA9zNz8cz8FEUmSFZY/D4L9VEhMik4kgUEhQkDEWNpmJASkVbbiHZ6QgrpDripMBJrFkfsCEw9LmDFgADlhcEsR1WuUPtlXkSCcH/yhVQEYsKXJRzQSk/CCX0WJie4S5W4SrStFSRJklM5k4EsyMkFlX/RAScYZjhE97Hs+EDOHzGPPt7hFMqEUJk5Sut9uf/vSn98fzL7+9e0RtzSDnCfPoz+OorZStHI+7jWfv45jJXH66tFulbae6lejjPM8ecL8/pk1RuV53Qtn37XK5tq1JaTGB5JkJ59HBQ1UTaZhNiMd5HOOMgHNMBNZHHyMu143xI3Bs0yCDVQDS/QMlPXr3SM9Yc06MXPLfxBhmwloQZfr4cb+PowuTu43Zs6cWbrXEB3WfwsPN050J55hzzgTufUgZJOIOIsXsNLfH85Hu/Rhn7yJ8ebm+zBeVdrm+lK0SiQf0c5zH+PXL6/Z3f3w+3u/vb4FZi/Q5SHi/bqQYGITo4UhRW0nX43x7PN7OPhKACPsY5j6HszAQHGe/Xa/75cJMhZkAmZMopjkRllqEhVYikxRAiXAwuZtFoGAVPXu/P96I4nIptSiGrYVhBjDpmHOOuD/e749H771sxSPnmDY6AIiIihChzYkAReV6vaoo4WojT/d5PN5hleJrRVCP9JyBLpX3erlcNmEaOZdqoxQpRYowZYIb4Mc6DUWIsFTFRFa2YRGBmNtWRq/TJn1gWYxBRZUI/1tka8G/mKiowKW6r4ZhEWZAdDDPefbjOB6P+wOEWqssJCIU5JFzmkKcx5lMGTbmPI7OREiw7XstRUqprRFgqbXVdjye9+NAyOXLzPWYjJhm8NEUXAHdTUqJif1ut0tptytFVypFi/k8HvcgwCzCtG83JnLz+/f3XOLAxXvJxaQI94glG1xI7lVqXlhLJFEAzNWkZUiiZEIRFCYVwYigIKRSK6kyESbubVsXl1pVRSOgqPRzrqKG1ELKooQMpBjpgQkIoowErMIsEFGbYEAgsZIIEQpkZNU5DZhVS2Ses/d+5ocviwPSZ8YKE1cm0kR+PA+fsRgQFjHGHKO7u0dEuIqqFim6v1y+fPmplmLTAcjS//rnvzwfj08/vx7W//kv/xUyf5rjcrm2VoUVENwsPSlRZLGC3eZEQHXZ9otqCQ+z+ZEDW0Bwj7T8aKsIQ3xctZgZiAbZisszUWQwIgowL9BOIqKUIsxz2LHq74tzBQQIxMKiRMJr7BOR5hC2ioOI4GFgkQjMKoyQiRCIyPHRS2ckImSkqnUrrdXGou6+qvnCJCzItLggkSQK0+08zzkmCZPIy5frX//ynVlsmgiqah8j0l9fP/3bf/gfSP+ptZaAS8ZQau3nXIiIcxw/vn8H5mPMtHvcGT9trb6gyjR7Ph6nh/W5bW27XmsVBm3bftk3ZmItnClSVBQA3x8PUrZMUpru3XxMd4scNi0I8P48brfWaq0qwgtkL6IiKEnoASolA9D9o1NK0PtpfUA6qwCCtG3nUtbq1AI9vB/neR6ICSeqSN03EUmAcLc+GVGF3SMCPF00zQPSZp/pETaHJ5C4+eH9sI4TDD1i7qXFfF6vr6VtWgq38N65wudP2+vO/+77b1/+8Ov9OSIpRMve3L2D9+eBmNdL26V9MF78VJFa6+W6K6v1c6sbMbgHVt4v++vrVYRgOlLum64cvIigSK0NEI/jVJGitVStpRHx7O7piMhm4XZ/f//2tQBA0XrZLyLaWNawwNzHnG/397e3h9Ziw8aYgCEi+2W/EmdCmJmbR2nbDkSZ6eY2DSz6tG3fLWB2MwbzeRzP8zgIAIrHsBnmMYuQbJVZ6raVppgAafGRneaia4yOK1wU4Yi4tYoAGWnu63CuIq0UVVFCtzHnWvkSCRExE9WiQEDyMdtwP93teX/e7/fn8RxuBDgGsWgpvEYBtVYW1VKJmJnP45x9ruyxeWb3xOCSVauuzKUIC02zyHQLIHBLc4hc5MWFPQIuup65gfTj/eEAnMmUlO7nUE3FxLTMScLX0pj5fNy/fv/tnDMT3GF87DfSbFoEIYMvCspCka7BAjABRK42ExMwJUIwBqcvACgJ1Vq3y8bSwKD/eFrZ+SXsPNOt7Y2BGysKRrc5xpyj1BKmDAGjE8dcM34CKcTo2Q9ECPDRLSJYBbIoM4F4TsMEIEwwyz7DkggZWUQ53JEtOTKT0sPw8XzO7shMoul5jn4ep5ktsrOZyzLIX28/ffny05ef69Z8+o9v3/scz2fXVmor97deixz3Y57DyhxIwUlMcw43AwJR7d0AEcgAkUsrtRFQFRXOzCBCWj6xsPzgZjMmkP7O/lJadzP7SHNquE+zlVhDQkBg5lKqMg8ZDN7H7ACcBERCuDyDTBhuCBk4PZJ/bx4icCZ6LGoyrZxbLSLEq9VGyCkpUqBwrdv15aVogQQmwoqqioK+dmkGPi3dM9P6hwaRgHzEVgsHKwkjxJzBRIznYyDp7fb6cntjxt+JC0ksrIKIdtq3376+v92xlAToz+cMq/S6NXZTnz6nJWJr5fp6u75+aluhWN9HMXMSIJH9sn/68hklf/vrX/vo8HxeXvbIBEjzAKRFXTrGsiqme8JegWtlVdW2NVXxRAeQotp0BbJrKcoyxzhtAmQisLDAx4WXEVKEj+eYFp509gMBS4UUl0AAnH3a7ASwt0ZcWCI9hs08jszw2cOmnZ2JTHMRBAPA3Kjn3nROmG/97L3tFyJiZhv9OPp5dBH+D//+H6XdLp8vI+Ic8XvqyY/juF12SJrDI5JV6laZ+bLv1+sVCRPh+YyIVJX9ItfLhVlXwKGpCAsQjHmMcTa9ZeLjcWTm4eenz1KoZBJpxVKO+92Hq1Jrm0//y1+/zRn7fhnDbi8viNT2DVlI6RhHeb7H+/t0f/ZneIis8Hxh1cL8NBvDIlLrU2vh1Xyy6N3HNIsTiaUIZMw+CEGYw2OMgZlskJCtVWXatkZSzGPOuZZCjCQikRlmFujTAZOJpGgpisiAdPRBRKK6MCwJMMPHaXOOiGCWWqqU4EX2AVj9sUC3mL2Px+P5PE4zd09ETI8wD5u4kuqZtZbr7SKqNr3WbZqFhbkRcR/THqdF3C64+gsihZgrUiAYGzEtU9g0SyQQsgAW/fnvfn359ed9fxFqFvh+PKOf799+O/spKp8+v+Q4M9OnzdHbXrSUL7/88of3+7cfP368v0/3iUGFx9khPhaRK+rjkcyyaI8IKYjJIB86I2ACYeYFQ2Qe4SysKowfQfjvX7+FxadPr7eXq8/Zn1DLLkSgZdAZ4X0MFlEtkTFGf85uEVqYClesKuIfE7lhHkj4MRcpSoBz+tHnfrlo2/3spF60MLNqKYXdbPTj8bj3c4YQeR6PbmbErBqimuu+Y7ZavSxKrPv1WtoWyFTqWLgKbe1y++WPvyB6UX15eXl5vf7Tf/rny+1FVRdEdpWZEElYsZBvMH0WLERSS/uQ+oYzo1BRZWR2B/NIylqKTVvxYkhc9y0SEsoqVUREFBHmmHPa7zAOqq2WUtYbIWxEQCJYJAkRAJOs1gkQ2JyZDgDowADMSsQpAEHh4OlLXecQun7Vqj5mRiYzS9FSKiSyYloSMMmHIm35UM/jeZ7ndDufx9mf00xVmVVJ+3mwcn64gBEDLttmSX3YHEOYlMmZEHk6AlAR3aRstenPgrWc5wA3tixVUBbRIy77boDEuNeyt8ZMi8bRxxijk5CU7Xq7aKH91gDheTyBMjwgQLUIyzQvpaAw4McnfNrsYz1UUqsI89J8Y6aKiAqzShEWwQQmCrc5JmSqisw56ABG//nnT/3ZI3zOoUUtY45hHnMaAEbAHNaHESCgbY1ZSrdjnud5ThWEiByTMmcfLA1xXQaFiIqwIAOCmZ/jcVqqKhJgxrD556//4ohReIHYC9E8+jg6Ibr5YtH48BPm2tGxshbd9lqbEjJAJMA4B1CWVretlVr72SMSgDJBmEstw/r5PKbGHAMp+9EBop9tu14yg4XnsG/fvhKGstTSSi2Px9HnzNVcEkHExGyt3V5exjwf749zOiEic61t29saL0Wm+1IPwZzxfJ61qJuP3vvw4+jxPK+3y5frlZRUiihvZ+/HiYGZ3s9ZWtm2rRbRIswlPK3oqjIhARJFAECMwxICGQFZUpcShJikSD87MMXsxInY0iEirfdlsItwn0vrBYv4Qmwqkpk2xpg90plp28oH3TAC3EmoaVGiBCgiLEIJ1ocSpqCbjz7P3sPcrILHthUh8jk9wd2ZGZEiQYQBUJt4ImtBkVLb6+Xy8+fXUi/jcAd7+/724/vX5/37eD5QgEN9jjFPDI98T09maVv79Y9/E0DTo48f6f7RuyZEB8YP7m1AEgYGpsFSJrAw8ZoPrgwrrn30Gg3VUknY0gWclUVozvH29la3qkXNjHgkrNPGPuZJmcwiqghxPP0cs88hRhUrMSkrIPTR55jrMZ3TLAAiRDQhRaXW0loDYmZdiMQiRYRimpC6Q8aR6Wf35zEyV9eeEMlmRAIyq5a6VSJ9/fTp9fWllRrm53EIF1VtdVsP2fO4i9LLy22M/jd/wlJ393B3WQ4RRCZeXqZtQ+60CmWMOXof0RmiNamtlKLI7Kv+RDz7qNumzIhk5gEfw2gP5wytwsqESAhEaeHhQLQkGhgRhKlFGzFNnxYJwYgBZu5hAeEfBBNhYsoACCQlJYQAN1jbGsjAxAjKyOcxgWBMm+ZCyMKRqcIrLDDN+91IeLr5HG69j4MYt6Ix+3FGps0O9dowwCOYCrMuq9ayKWZmhl/3yirL5qZaPCHdCRIiKOOvf/5z2Tf3UC1/+PXn66ae+Lgf19q44KL3j95tnEx1ms9hZx82BxDcmGqptFVAe/10ZcI+Z1oQcSvlet2fRwfCVpQo+9nnMAzFAGXFvUJ6xvSERBAk1aJb01YW7tfciKltde0OiUGe9ze8bq21bSsPPoKxtGY2LzYf9/sYI9wDMRIXjnGBLJC4lQJE7/dHP8fyxBEzMof7jCAI+P1CWEtVLaI8j95nN4ANNkQUQmQaMe6nXV9fX15fRx9bu9i0qlVZfHakNcaN0TsLWrhncISFewQKs+i+taWgWXoHLZKY0+ZMN0glYU1WG31FFVIQIfM4jjlHLFai+763r3+Nv37/drvetusNS3l8f7fnOS3vj5MIr9fLy+vL7XJ7fbmJ4hzx9dt3VQHA2powA8A06zbPOSJDSyXB6RY9AWAGJCEJ25hMsu+XsikC1NYSoj/PGPb2/fv30QVASsGVshFBpQifqvfHcZ4zgEstfcx+dkJEyhBBQmSIRPNJTCs0BuE23cTcV4AvVImVkdHBw38vGM7JyqmxUt0ssm0koq9EEelhECnMwlhK9ZAxpo8BkHOMYWd4ukVAnufZR0+PCF9TAijq6UioWgABEMYcYSilELF+7DOYIfpxnI+HjXkc4+3H+/dv379+/cv97btS7rdKGedx9D6Y5Ozvx/O8vFxeXz//4U+/zIy3x305tPvpiAtbDARITPF7nh0JIyIhmFGVlkZxTYSYSZiJOCNUWauyiFkg8Jeff9rb9f7+HGOazRWpGjSPflzapVXNmAhhwwCotTrNbrU9/+XPMYJETPw5j/N5ztkBkIuyoFuMcDGurdVSiHiY8TmEGUSIeZEMmMiD6iZUtLbn8gJOi/48PGz6jJFn78d5Msu2l5fbaynlyy8/f3r9JMxuFnMmokorJCUo4rVWIYKMOI/+6fOrBx3P8wPoF25hkZ6UFCQMUIqHA0BETOthE5WJRUurta42ByACgNctE+Y5Aak09QwkPvt59plnuMf1BZoqZLrF7M7K63bo7sfxJAJlXAVtMXOPcAOffc6V5SNmXFc6WsbEmZhIqqJlq22r4LCa6WPanOM4Bys/n88+TqhlzJEUXJi4SFDv9/f7AxlZJXycx3Ocx7ZtbW/wsg/vNHBv+y+//HqcloEktL5Q5gnuiAGRBNGqBoDHNJ9CHxzHOc7zuDPnrph2Cuvt9XbZdrOzzyG8QrsYCWN6APbex5gLYXL2bjYBshQqiplADnvbMVDO3o+OQk1r+Vz3Sx9zmBthhI3z6GFWCgPG7GMybyq/0zikVNXCuFLd4WFmc0akFoGE8zjk61+/JUJdd6zM1vbSNjObsxfltx/vbo4AhKDMLKTMtZRaihYVqYmC9AQCYmgAyegImeCxwCfBoqWVy3XPzKNPd480FSNkZGJlLZVGNm2AeRzPy3YNt1qUiQlJVJDILIowRI5zdJvTzKfNOfdtY9Ra6ra14zzO43zcn4Tk4eMc4XNll4CAmLdNidXMIFxvMkafY5zHIcwMdN33108vw4Zn9mGADMju/nic53E+H89a9ddf/3B8PmsrQvrlyxckfj4Ps1CViDiPc/ppZjZGa1vbdiYyd/dkJq210rZfMiJeXl+2fVvgWS2lqF7aDhFIcD+OTAwCi5yezKBKCTzuz967maGIB0RaqRLuH01OD7dIgPDAzKICSBHIQu7hHwOdlWIlIgZExFjwEUSN9DmNGNdsTUS2rRFxWISnuU2buDiO5kRoFqN3z2Si8zghg5Wvl02ExpgICRARnikiAiylCAIc5zlsnr2Tzbq1bVeEnP101jn7n//lvwCQuT+P48eP99/+8i/n8RTCiI3C+3knFiEwt/v9cfQjgW632+vr7Xbbf/vLXwTRhHAsFCnQ6j8veB4kIqpQLMcNkspiOiMTqDALiTAC1VpFJAAAshR5eX1pZYekNaxAoAhnB58GDdbJs49+HEfRNXRiQiYgM5tjupYAO84xxkRMNkeCcc7FZ75eLy+3GyLNPq1PVSVmEXGzfp4spbVWaskERPWYi9KDvFS2mIgsrKpayrZdLvu1VG0foC8CZhtTqPAHDJ73sguw2RhzqFQR8TFi6WLDfPpxHmFBC2tGSAyI7OFrfSJVSq2sBZGRRVVxWRkA3SHcBWTx0UDIzIBwzG4W59mJELbKyBZx9F6yEPEc8+zncTy0SFUBBEYIXkjwDPCF/I5MXggsoAxYL/UMLEXqvtVtIxGf2Z9n77P3/vb+QxLttOfjvk4zc/o0l/AFyT3O83G/I1NiRvjj/u42UPiFXorifr3K2Wtr2uqzxwokZSIuACPkgu0jOP2exRSVBIhw5oAY43ww+r/++18AcFhIKXbeKaK+tK02SiQETpTk2iog9aOf5wmI53FMH4hQlCFShH0aBhQpUIkX+J2TiWuR4Tp9PN7DB6UJEhILEAdiAiYxidLKESNhos8YbmP0MQbEYhNHRIxpAizPZz+OufIbtTWt5TyO97dZil4urZ89HAKQ63K/t1aUACKJFa83Le2aGIAx93PrvT2OCD+f53MehalqEWVkygAkicBMdw8gCAYIYuTW6uV6MfMIX0jtVpWJRJUSYAEM8SOFco5TtXif7i4st1vTUjBBaALEefZVkno+nhm+jqW319et7aVWYh5nz4yi8nh/3D0QoBRllsfRr9eb1Pr2/X48TzdnksvHQ9zmnOd5AMLz8Wit/e3f/qvX11dWvd8fb9/vFhYQgQYArTYoZWttazUjzt7DTS5b3VbhExnxctmKqvvMSAIoqsA6jmcr9brvZh4BnsaEDpGQc9hKBAJiRpCgahvnucDr5kHTRT4UrwDYWmWV2Qct0/QaYRKLllr3bauAFDY9wmxGDLfMmKzcmpbSRFe7QMtNieg8j/vjGeZIeBLCyMUm88yHx4JpSimI1LZqbmGpqq3V1urCE7JwVW2tFdW7PMxMVTKz92GWtamQpHumffv69ejHn//lr+8/fhCCZaikMjBRqbWWhjPe3h/H95NFEEFYFzDnPJ5CoISLXLGqvplLrAZurkxBILzG/QSAxCALTk9MRCpyfXlhoud5pNLlcn29vmzb5dIuWhuLErEIltoA2dMj4Dif7+9vow9hmX1Iwv3tnSAXhbTrrFKYWFXNZ++DGc3m6GP1nrZWVTQinsOIFlOZzPw4jn3fb68vbbYxxv3+OI7TbHo4JDAKK1+uG+QFEIuUy/V6u16YpUhBgAiffSQAM89xMjJgiqoI/3ibYwwRra1Z+IKXLaAbZBKhkiBjIAiXRJxjRkRtlYhKrUTgGeYuvESc4B/SXxLlyACAD7V4OBMZYEac/cz4eBoB5BjDwiLCfIzRMzzDWcQBIxI+OvcLHUSq8tHIIExG9/RI8TQz7D0QkMhmzjktZqA52HQ/78/zeCJz3bfAHMMwx+QYRz+eT/MJjnP2/P1m4ZATAhlL0dK0aUMiM6Ml/CKARAiICFzuYxsRQawRKFIyaZgRgShfrq10v95EmJ5PQ1IUvV4veqmRCNM5o26ALCIaaMf78/l4RsKcEwhmH28/ftzf79vWaqlMa1SJt5cdkX0d+DzKkMiigKp8ntMCat22bd9qRULzXJQQjzjGgDncPQkiEpawy83GHH0mgtw+/xQWRCQqpezbflmihm/mvU9A0lJmt/AAcC1l31vRmmbDAiKJZS9cipBguI85w9zd375+fzyeZlOVSCnW24k5F8wyk5GY2AOI+LKV15dXQtm2HQGJsGgRIQ3p08wdE3ofiODpx/OYMi/bPsYMDy1atBzHMeekFcLxdHckZCkRMS1Fyn67hsd5nO6uIgAwxrBp/BE4lvATE0tpdZ/P355mftkvrVVEzMP3fT+fT5/z7cdbP/rL66dlaq9bKaf0e/dhVUu7tVYKZLpNBGBhCfWca+vVWmEkFbnsDQFsemTanKMPALBI1np7/TTnTIx+Do+MBIvsNj1dmCNp27bb62ufw9zCgAmpympgrhOYimoVRFoxodrK1iogoWrV2tpl3xsx2xhuZjbffry5RyCyFCl1u1y0tpghKixaa2UpCXyeJwBca23m01wE+5juuVD/LAwILAygQrLt2+VyKXWL6WZmZqVIreWz/3Qc53meHvb+9t7PTlS2bfv06fPtdnl/vL+9ffv21/cfv/0VMvfrhYhUtDZuhff9pdbWzznG/Pbjx9n78/nYtv2y73/84y/zPI7zSOXpgbie65xLkbiCgYCcUkSQkQlhwRt/J1ojUmn10+dXEcYfauG3l+vW2rZtn15bac0jzV1VSq1E5J4++uPxeH+7RzqC2jRm/P7tK5AAQMy0kYzQ9k1U3t/f7f4gZiRjkfW0zUxYc7oIc4MEIo7IPiYz0pN6773397e3TCxFi9ZWNTJF6fXltbV929sH/g6IBUtRJLQx3R0QI3wO6zGJgJBEOQEiUFVEdNt2G3Px6QhwldRqUQCwcEBYkXtzANAPISXk8MhukVgFlg8uPIiXeDqYGD2JsFa93K58Hv04xjlsTEj8+AGWug5YRJgJfc5Ymmsi9w8rEOTHFgcFAiFgOb0hESztOA8ejAcBk7AKS3qA+xxj28pwOwfFWLF+ByQP6H1C9nH2cCtCQAiOx5z79apSuLA5zDl8OAudeZ5jHs8nxDKW5jrjhzuCuc0xxhiTP4AGtGSTY/qBtL+8/vT6a5Hs04LeCGRj3moBzmEeygTKom1rGXkcDyDsY779uLOglkKI9hw+vZ/758+fWm0AsAL3rz9dCBZ0J47HeZ5PBBQpW4skFNFSi4qE+TAHskI0bcaYHjHnZCEpgojuMfuYYwBgIsiXLz9LFZ/unisPvrJQc9h5DkJYBuTRR0KyUjazpH72o08zB+Zt37dWa2uMYOYEMMZoXMdrH30kzJkODCNCp9VW+zEgqdSCiBaBhKVWUcmEVpsQZ7hq45UZDkTEDD/OjojP87jfH+6OP+W27c/n0y24ImL2PjKjFC1VRVi1lKo+HVVE1S2fz+f97Y4IKnwc57ffvrrb9XJVKapZik6Lt69vj8fTpgtjYvRx9nOczycRbvtWq/bej358/fpbQra2QUSAz9nnHJu22rRotTmOY1DQvu3Xyz5laq1VFTwTHIWXlref53meow+/uCgTcW2t1DLNzOb7/TH7EZjDJiBse9PK7ni97UUFEURfFutGi85zJMAiN4H7Cvu3rakWZn65XkurySUjmcq+bYjotvjEk7iYjzkmIu7X/eX1lVXn8AxHIi7rBZCANGyK8HYhQHQznh0J33/wmAMREzzTGaW1crvu27btl6uynr2vN5wUqQGt7gnR5+nuj+OJSG3fr9fbTz99IsLt3/5DdHu+HaXI559uiMRNWKUwb22vpU4bVEi30ufs44wIgvz58+v9+y2/mtt68K1XEYhwJK74aYaLFGIgXrC4D+I9AhITE99uL58/fylFWfc+RqsVMYVRmbdt94jH41AtzIrIZp4Z5/mcszMRARBhhDPjNMdE0SVp4k+fP5WtoGAsAnhmZFxv+1ar+SyFLOfZ++hTilyvVyEOykSb84D0OfvsVmt5fbmqFsgQZVG+XC4vr6+lljmin4dbXMquurw3IELCysThFpmIHBC22ILIxFrbpoVXWSLSl01aCGqpqwuRCZ4+ESFy8bojMzLnHAOHe83iwoqAQGwfeDs4R9+ElKRIeXm5vrzu53n+9pffvv72bblF3JNJAfE4T8KlLIw5jVVAeDnZl1MeMZAIgc3TI0SVCKabudkcmWEZvFi5iQtJVrTsry8uIFVJ6Tw68ofybPoc4wybIAALmy7p3Tzsul+JePZ5HIdPW8hjm+6+PiuLPmSQgQhM0sc5p/XeNRWBlg0WM8x8Uqnb9ecvn5n8MHBsv/3LXxIHpDNTAFLRWhuyZIKZ+wLsRDyfTxK+ILe2iGPLKEBAaGOe/YATylb27SLIxIIb+jCn3CpfLgzKxOIec04imu72PDpAhJMIIAbEPDpPYmE3fz6e6SnKrCov+zYzgLDWqqJu/jwez/u5oIZjjnkOt4+jfUIyMpM+H8/396cnaCnHeZrNy7i0VgGysNZam9ZMeDwex/NOacggnllhbp2ALvtWa5nmtLwSAcJiDuvemksi/98m1sI+5zzOkeM8z1LL2c/7+32/XFh5zH4c5GZIaNMTykq2pSzAjErR49nv93PM7uZFy/PoX3/7ep6HsqwWC7FQRGuwX9v7+124tNZEy+j+uD8j7OXl8np7aVvpa9WZYTYiJdMBAzB8wd0zI93clgGqqO6XfVbzSEFixtFP6+GFIWH0fjyf7s5Il9vukdqKaqkImcmlPB88+zCPWisGLCuQEhehWmvyhaRsrTDr+XyO2RPcpr39eHv/8X7Zt+u+1W1HxO2ytXZBaUuW+eGYZ5FcHi2ec0QLIipb1dK0ltp4nIe7T3dlLmUP4BqxjNBI6GYohVGJuB/DbYxxJEJt5XrdWquExMS1VmaGyN57Juz7RiRzTjjo06fPRGTBtVY37322trXS/ru//zeK9XLbri91+sSiY4KP2LS0TQOCtW63lz76+/cfP75+J0hC/PTp9ri/zyGIGZmLUISY02KVjQOpqNASLGASJAhCIquw1rbtP//xDy8vn4Dgk5beT4wPO2JElFJmuJrt+86kojqO/v72/v3Ht/N4apEVgD/7uL282EwPBOTattvrrd0uRfUlzczevr+JyLa3y2WDiMf9jhQA0La6xBFadR1cHm/vALnv7eXl5efPiUD7pZWibnZ9uaqudH6DAPB+hn+IQqan55wdkVDpw3ID0ForVW0aEe3XfT19Wm36SUppz8fj/v4+x8jfgQy5cIqARSQ9zSJjDfMCzLvN8z621vbL9Xa5JIAIzjkSQksx8wxaaEHVmpBaRbVAQG2t1kaADHKcYe5mRkIqMi0znTkJFxLfA9wcyFFKUSXkDB/hM8GmDyKEtDSu+0VEGGndO6/XPQWJgGHeH6BAFA7efVg/D8/Qosc5lsZS20akbhnoz+fj7fuPdNOtAeqyY4huZmZroTk7EjHpoqZmUiT0MSQCIABCpW6XW9n25+MxxnvZP72+vvzln/7r17fv8uXTp88vUlRWtk/Upv/42sd59ucwc2KCBC3a2s4Eo/flX4eI8zifj7u7zZivr69b3fbWlOV6aaWQueGahFZNwOcD09PC++zTA4UKYVFBz3GeGY4JEeGeZtMRCpKM8zz7QGImlFJY5ThyjlGqRurzeB7HOeeMDMiAkW9vScRuMX0e5+nvWVp73N8u1+v1er3dblGSmUQIEHkTBuUzZVVzLxQxBaWUQmu9P85+9P1y+/TTl+8/3sacZ+8evgxKmUlMrbbUAu4Scpx9a/s2N/CotRLTeZ4q4hGr5TTmeBxPTLi+XNOgSCHkx/n87bevY/Sffvrpsm+Zfnu53V5eWq2vn16v12trbVo+H8/a9ut+8whmXpS362UDyE+vL7fbBTLP4xmRbWvtuhPTtBkACNi3ySyl1qqlldK0qurltgsLpSHTtjVhXP+7YwyA7OdJhCLCTOd5Aqzd7MaqCVBEcX858jHjMLM5LT22rV4/Xffr5TzPaVZqXd3g/XKpViIWAAf2bdsvFxVCwFKKSlns1PU5i0wLW1MQD0di1VpqVfn9XcjEKNT2OScihmdAXK5XIpr2u9QZoPk26nHZtzEGQp7H08NKKbVV4RL+UYCDtfNZMiyAWsrK3QjT5Xrp3T3Qhh3PU4uC088//3rdL2YjwC6CVEoShyNMZ4aAYObaaiK8XC8M+Lj/8GHKWqRkHgCBAMyI+UEnzrRFLCmiRKCquKi7gMRUlGspl8u1bZdtv0rRMvvjwT6MVbQoAPYxuGhZaEBSITUc7sN9BsQ6VBOBMF9++izS5kx3IOLSKib1c6ThVre4Jlwva807zvPxeEjRy+WqRbf9ysRt37SUaTNmlKrbtr/eXkspCItrl8zAolJYRdKwFi23au42JiJvbXNzZGJilUJMfVhmTBs8kViYlzJBW62qnMHbRgu6E5E2BgCykAdFBhMXUQBisjEt0lW49zGe3czHeUZkUVUWFh3+AYwSYXfrmNuuiFil3G7XdLQRgItL2AgBAI/j4Yj9GK5RWgFY2f2M8MwPkChYXpAUy4qUQAQmFlVVsTlebtfPn7645+Nx2LTwZCQM2FFdN64IAUV5uc+2uhELMvmM6SYqoqW1WqUhYGbMMUY/z35++/FNpN1unzIj4cN7sRAsHkGERfT5eEDPYbOPzmtpEfD+4/0//Lv/34ZHjOe//h//p9tPnx/nvWz68vllf7l+5CQR3PrxOH2cx/3+9bffeh+1FGZey0gEYI4MmOYEMc4+zj76OJ59nP315RVfX8vL7XLdipc5prmLsBZBlkJ6nmOyM9PZTQrvl02Uz+MpyhBBxFqKJ5pPACxF5e3+AwDM8ujntNlqgw9qPJtFxCIALZWEROT0QEs3d3f3XH+9aS0yaa1uKD3ZHAFymPXRfToEF2UGUql0QWIRIg4/x0jA/XoDJOHqlhF5PA7/dP0gwQIiASOXWnLkH//mFzMbfd6ul5dPr5g5+/j629flztv37eznt28/Ru+35/Hy6dVr3t8f375//fb9GwKu9y8ArD2H1lpba9t+u95IyD+/zjFFCws/nsdxHhlmY4bHbb+0rS3qJxLu163ubbo/+3m5zc8/zYzAD5UqMBJCLNfgHMYXWmZKN9taU6LEcIt9byzStrUQhm5zzgmIbKNtW90aEWf46Ofx7L0PFdmQkdkjIyjc5tmLKKmqCNSCQG4mKhGhqggQZiJStSRAui+wayYwcwaYmZsRghQtqqwfYsCYSRosnJijDzdXFVHJiKISGZCAjCwovM+htW2McL1ejuMAwNoqEy8VtZv1c0wbLLTVWrQiQCmS4Nu2aSmtxJgByD6iiGzbNs7ZNowYgQ4IyEosHjF5YDgREGPNDRj3tsOMryrvb+9j+v5yfT8OtOh9QCYzrejHejQTogqq8kKUusPaFLS2b1vbb5daGhJvlytN7aNnJBO3WiNwzFmZmfWDNBVOmt1Ot9la3bedRFXZI6ev+NAOgGNY3aoUnXMiEoFAEjL28/BwLfjLftuv+8vLC4uKaimqWgBx2qzSwuN2+/Ty8poB7q5NAFYbD5g4PImxbptNv1yunbqK1FqgphqHJyQAZG1ljGlmz1zlG6zaSimr3TJmIHHbdySafZ7HEwEQlaLPc7g7ZGACIzCBWcQ0mxMhlcFGf97vyvLTl58yUlgAgRYIKJbYxjI5A1rd9Uubw90CiUWY6UN/M8b0sJyZ6bUJLpsZxjIVQIJhjDnnmFpKRnw4RBqGx6XerpdLK5vQVuh49mPTDSaRICfvuu3akJSkIErdoEjZ25aZ7/ul+wAmESmlVlZA2M56fbnMMf7y57/85a/vwslICenukCiqgOQRACmigPERvHbv/SSEtu+tlX/6L3/+/z7+8qdfdgH7+vWvKPp3/+pfMWWkv72/17bVxhh2Hs/H45h9fv369XF/RyZCLCpp0R8HKmVmnJFx37emQtfr5Z7Yh43uZ5+e6ZmMC24uysJERfXDw6Nqw5nk9dOmZRVeAGrF22X2qaJ139q+n32OMWsRuT/fz94JVIuOcS6nZcQ4j6OffZEg19svI7gyZoZnAqxjPo00dxsjqtmcs59PCJGlNQfLOJ7P/hxFy2WHcBcUUiD6gHrIxyBqi8SAZVOjzBSRhERCLZVZHm/v53EgpNb6+uVzKQrh277ZnOdxnP0UkVo3Ftnocrsc393P8+S7FFGz+Xw83L2oRvjz+SAkN2fhWjdYgzb3wkwA1+u2ej3bXvvcZx8+jJmul2stW4aPaWMMZhbVwNz2y2LnMpG7j/OcfYiQiooIQIwxlw5pjnE874/nIUpVq7tLlY8fLxMzFQJYd/ZMIKxlYxXqfHt5Fa2bTVUWEfNgCxISFCAwn+6CIgQEQCxlIw4PJmbGTJ9mw0xUPrgRGSIqTOGRGXNOJGSBRHfDD40lyuLEzeluwcwA4J7C7BFM/PGyRwoiaZwAQugeqtXDF6ILEMOjj5HQmaW2etl3LdXD5pyQSYitlhTcKlogIKtW1Uqoz+ecw4CBmIoKAkOkJXh4TF8nKSUhyU+fPzHLHPH29miXfdu3fBwhTAxEiAlEmIHEKIiqJEIAiIAeBgm1lstl2y+3fdsjUtsuUs2dkD0dCKQUBHmcA4eJCBIyoXl4TGIopdRaPr9+IuF+PIGGWxyjl30vqoBwe7mWWjMyHPrRW9376HvdP728EtLnL5+IWEQBCElKUWIyczc/5RCh6/W675vP8Ol101XWO/uZlG4OQsMjZtayixbh1QpZ7WAjEk6GzFLFPSCRibSUtWceY/TzcI9aayFWqa+fPtdWfS7PVw4afUx3ZyJELFUCYgzDsMulmPu8z2GH5ZboiSxVESAHIBORRJiPTLfMIJK2qdxKeJ59pAcSturu9jieOAAgRFRVlHn5mX26hzNJYJ79tHAkaHUvWrSIh4MgEoSrBV0ul7bd9t5tGAJCJKfs9VKrSqtjAooIa9VaVSGybjJ8WEZ4FtlKqcyw79tpW1iU2rrh4/2MXFOPYBbCD6r5HLOoQjohLfd2ZrLKwlwFODEC4suXz8gowp9eX9/evn399hUAPn/+iYgg7Pl4HEd/vj/f397Pfr5+fgGHo599jichsagKQU6zbW+X67WU2mo7R04PLhWFzX0+BgKKFhYhwiUUEhHC2PY90lhFVBBhzqks9fYSu61PWi28bRGQ/Tjl2/cfx3FkwOW63663DFhU6OM4bA6E3La2iFqEAJQrrAlEBFwbeQDNUUutpdSiGTnHdLMkQIRpdn+/z9Om2mK3wkJ0IfyezQBkRhaLHO4YmRmEWaQg0HpmmeNxHO9vb/vWXsrLp58+pfl5HOtGzncio1LK5bK31tYlKwH66Gbzx9sbAdS6uquyt22rdc453EvVtqkKhtt5HnP2tJCChCSitVUlklYnSSYG0CqfiJTFTF6iXULVUoAgMyBARHKl/rWWWggSaYRZQmpR81p8LpdAjulznOeJCG0lrAGJ2WwZe4kQiWXb9t7Htl9ZaI45x6hbLaWsTt8qcIabA3xYJ1eocaVnl6nbLDz6sNYa4Yq/rwQTstGSzCBAhlvEHDMBVSux9m6QwIQR7hYAo9UKCLa04yqQgIiAzLhYyghEffQ5DRLWYRYQSlHVNXMQ92Fu08znCoGEkNCyjTEu3NSYfczzPA8kqK3NflKghc3RzaeZE7IUXeGT1m5a9j5imB//MpiFBBVW9RQ9kwlBaAHKREiFMiECkUhFr7fr6+tLa7uWolqXApeIgcg91reFufBMmwaJEbmIWkCgWr58+Rkwi5QEsOLYR0QPyLOfPh0hGbOKsBSfIFj3bRtjIgIzqGptDZESUESIhZACICzMTKQQArOYZSZILaU2YUZE1mJps08gOA9jQmWRQFGCyDHHOS3Ni9ISCi+KARKJiqgKcz/H+swvUy8Uqm0TkVJreNwf99XQ5nGM3nNRVzErICLUwmbjOLvnJGJR9nBl1KroCQAgqCzuJcwTggWYiUiZlRkSCRIhgZAB8jxO4kSk/bKvEkarBRLmmB9VSqbjcfY5iq4RHLHw/f5EwPAEKSKNWIRKBgl7goWZqKhyEU0gUeCiKgUBPUa6zXF62BgWntSwKAvVDP8I0bEyk5mJxKJvrb7kel5FRmQQkbu547ThZliUAD1CVb/89PKnv/3py5erlI2QFvidkNvWtChk9mN8/frjeT+O5wEIqqoiI+YYM8IxsW1NGJIoIsewqpVFFBAIOUJEzcPSbcyMbEBAmEGQbuYAKMpbKZE65rRpjMiIwPyhYCMiEmKOyOmTAaRPu1z349nP4zAzRJpjMsu0GenMzMAIlIv/lwnoFhEJzMKMpQUL7dt22fd9awjYx3BPJESCcZzj7OaAEmNOSc+F4U+AQA8/zu4RRNItpnlhcBsAKbJw4Rxu7n1ZcGd1RPDp53FkOCL6NDcvpXz69Gm/XJloutfWrrcb3KGf3ea8vVxfP10hUJj26yU9xxilzMzsZ3/7/s5yLPhha3W/NmFRLkCwtQZIayb5fJq7tVIRwN3cLT0jE0gSICDmHHMuRSauTFpEFWJ3m2NkJDGJ8OvnzwlxPM+z2/1xPt4fHlaL7teLsBRtWuu6E7EIsxbRUrfFri/acvf11huzB/HKuWegLTdzdBHRUpkxMxfBf7pBIiFGBhOlL1FvImEIIqt7AoSneUZAEGlpjZnDB2ASoc+IdDNfa3lEQFnmpwV0TiIShA9V8Zzn0c9MZl28T8wQZcg4z+NxHHMORGIigATEc9XRiLlWBp92vr+/PR8PANu2ijjSaQw7zufq4bhFUopLYra2uYUS//JHdohj9O/fv/cxGJwJ1zBLhClBRISwliKMvoidhJd9+/LTl58+f/ZELaVuLREiYSHswh2WP3lJmtwszdzMLdIQ8LJft9rOo/t0KbRfLjPMH1m0ZMTzvBPS434nIqIJIet+c7sur3qsXpK527SMKAUdYrtezVyxlCrH/XF2czsJ6XrbI+I0a1srRSVVpQzr3fpxzDm8FIEACPBcoVZOoExCWrW8j0NXhufKfSKplgXmgWXqRCIWFnwRNrOX+DStv7+/H+fR7XTzspVtLxj5lz//+Xg+E6IWLa0kLpwd5CLAKWrVBpwONl2ESNDMzcI9RbXUyixznGUrLGXGSUhSVLXh8gQHJMD0sWott/0TIqrwnPPsJyJU8Tm91dK2TanYjMBeS0XMYb37XP9UC8sgFMr06bOfHWNCxugj3Ee3yIxwrZoZz+fz/nhnkvvzuL/dMVcCYD39V3CCgJCMViGjbQ11K7UADGZalrla6x//+Ouf/v6X/niHBERixiWPZiYEPM/+/cf37z9+2LDMvNwuL3QlgPv9aTYAsNZW97YSkpDweDwyQpiRuPdgldYqJGZibWWcc8w55mCSUhkw+5jHabVt8vE7xPKPjt6ZqJbKiAgY7nPa6NPD5Jc//uFyae/fHu8/fmSCWyRgWYWCOfOjVYOAGO42x3mMo08iQV2KKF4ewVqrsCDgBDefkGmWvgAICGt/EjMRc0W4MjLSez+JCgtnRiICUYIToagwclGdnnMOERZhM78/u9bH+gY9Hk+3iYSEXLXUUua089nH6OFBRLVtiLDVGhAWvl0bCd8f72YzEyDj+XycK+synJm+fPlpv+6qRaWqFAAOTyJBCEQQxtXlHn4iZmQcx0mM6y92HIdNJ6ZSqqf3aTbLZd/NbJ7DI+pWS20k5B5EXmrbI86jzz6f52BtWIU2VpEP/UJkYnomrj4kiRYiUps2w6ZZpiMkEjBQJk43H8HMHgmtLMkJMmgt4bk41RHBTIgZ5sSIBEyMHMezI6Ko1FZraaKKCYG8popEaGPVyCcAEZOCQGIEuGVkAIVQcIabYUBRXc+bOWdGRhhAMIDFeH9/62dHlv3SShUfNvqc00hkw6tSIsqwc9gzfPp80ssFIG3M3k8A5lJXZFOY275rKUQJRFrql59/GT7u7z/S7Xg8mTEsmCiRM1GEt1pqUya06RSkRC+vr7/88uWyX57nZFXVBU4l5Cy1rKtA5HKL+fpEIWKku3sGCBei2solwgLDbPQ53AI8ns+HjdFaNevvP34w18vlBTEjgpgSshT1mI/H43g+zQJZaqvCAhxIoqUkc2kN5iDGUgoLR6z3j1HRD5clq/k5zec0gBoohDRn9uGYLgAw0h2RaB3/M2P2DqqQLkRUqkeISgQs53x4AoSWIqUSovvQUp7H4/3+sDmUmBLCZt33bb8g0+3lpe1XksqlAqKHewYCrxe69eFuxCIoWiRnIHMptdT6cdYpo+glyYVAahnDkHiJujL8PI4xB2S0prVUAjLr+BZz9OteAYlKASQPy9PLVrUgAAXQ4WFmZiAczMKE5H4e/fl4MCZk1CJMApjHcfae9x/vIvJ4Po5+EuD98SSmthcVhZzuAAiEmAjuyYTukJGllHa5tlYBplmQ5MpPlKqllJylbBctRSiFwK1bmJvPPnufc3jRerlsCKSFz8fjv/71r8uvUKpsrdZaMnPOmZhH7xnBogBStrbtjZmYcNsUCR/353EctbRSr6yE5sfznOEtWi1NarVh/Xw+nwcjmvm+7wi0PA3MnOHyr//1/1gqv11+vN1ehVRFp08If54PUr7fHxHrAJHucYz+OPuYU9gzfW3PP2DRYZGa4dPG9I8JCSCyKmREprt9FEY83AwgFiC+XTYtdYQRLUrBotsvwSRTMgKqlP1y7b6QgvOy70zIgsyUANu219oIxcZ5PI/n8+HTPfJy2Ylwhr29vS2pYe12v9/fH+9Vy/V62VslJrOZiNft8vmnn263z0XrynsAoDIpJxIwI2R4TBtzWgfKx+M8+yCGFWHMCICFjCd3O57PhE0UIWDlRAGSZJEI8np9tebb5VrLdpzPyChaipa2qWrFZbNNSDdAnNMyMzmZSyaY29rCuoeqCCtkIggRZs5YiuhQQWKtxDzNUkCYMCIjkSki++zkCBgJ6BEeBolaZH39zCZEAtIC/asIRGJiYfWIFQMlpED3sGnTfGIGL9kT69Yas3jkAaeFjccZOd1GH2fv51ot3h/GB7mvoY6vRT8xl0pbE0x9+/H4/nb//u0vNmbGx+u8bDtraRshNyAEYlIKxLZfyibaSj/Ot+8/ns9zXUARgRKRuZSy7XXt/wEYPbfL9Q+//uHTTz8xYp8uwrU1JPB0FSql7pfLYltmpogSsixwKFE/J0DW1oTVI+Y4YwxCSgD3+fhxfzzex3le923fq4rve3GfcxAQPm0gghbpo/fzeDyfY46itY3dbNZ7baVeXz4zV6mlbi0iAWKBkVnIxohwFEFEnyHMtG/WZ2R6ACBGrPgqE1NgzO7MXLcKCRZBiYAreAaPvhBeay8CIBruZgYQjIKEgKoSWwm44Dg6Eq95ndRtv3xCpbpfSIqottog8jifCREJ02yO+fbbj2lj39rLp9uSTmj9CNESSmZKqXS5ek4zB/BtZyJikgQwC2YWRwCCzAwnIRES4iDJNN0kAHufSITMa88lrAwgLHNO9winWlFRfIadTsARJkjKAoDu8cFnHT0jVLjst3HMv3797pGXrcJip+AHNYGYIwwWZTYpM5nIfa6nFhMLJQL2c/TnaG3TWhMxACJSRJu0s3ckfs1PZs5E21YpCQls9Ovt5hG5drrKAPhxSCWcZv04M+H28kmUihZtSpBrGmbh53kugQQTM0ttbY4xei9amCgJzQ0R+hwzApnMPZdyoHFru7zcPtVSmt5ebl1Luex7cj4f9x9v31A14c+99+fzzIhw++htI2bEeZzpIcLCFD4t5hiUERY25ljoEiJmRgQ28/RkTEAws95PJiQWJC6lirBbMFOEQwbyev6tAQIULeEhqpaR7mvi3ba6bS3dmVhV9n0HoKK6wExEdNu2tm2E8f3tu5vNEff7E17ZAd7vjzs+677Vy6aiYY43ut1uP/3y67a/0EcDY0mjICAwM8yP/ph29qMzIzM/lqvBop82hwFmKVqKMmHv022GqfURmQgACMMmzYmUwhWZlFVaqdu2Qm8xR/pQFVVmLp5zjgmJRSoBRiaAQ5g5iIiwAriHiqyojydAqRW2bblEESEgmYh5MzhtTLBcl5iFhRp9IOKCyvQxPDwTLONyIR4+h22lMitzCkkgVOVF2R0WnsGJAEEUiAZ+RB+rL7Lt27ZfBBQQAMNjnuchSv3sp81pPSJYcMZ8/DjP81wesUQw827TzF9fX0WpuPi043n8ePvxfBwIfLleXl5RzAQlLfbWwCy6JQlqub5cWPFy++k453/+T//5/v6OkCoy+wREFlTFIlxUwwEVS5Mvf/jl51/+0GqdNohRi5TyIUZQ4abldrkKy/QRBgTChItHubrbhCBMASmsdd+9tbM/5f7Wj/P5uGNCRJ7DHo/jy5cLCyFCxJx99LMnRbjN2VVp9ENEwrpNfD6PczxP0YTc95eLvoqQh89h4xxucyuFmOycXASICGCrNTONOCFAeW3IS9GtFQQ4zu42tRRmRqLCjImRuSTOqzYvqvS7pQU8MNPMnZJFkRCQ5+8VKEze2qXW9vn1p5+//CrCz2mPfpbaVAtDipTj/jZtjsfo/fn2/j0hFidq23C/VFVhEs+PLC9CMlh6KGfvxxhdVVMVEvvZzQakY6C7e6QCmM9wi4zjeeoMljLHIGXdCcDdBiMpySYNhCyCVfbr9pGb4LJwEUJJSulRCl2u0PsAAhRqbav73rf+/fF8O85YT6BIRFxMWcyA9V1OwARCFBFlwQxVQaLpsex4mXCcI1GoQCbN6bKLRwDgVrdaa922t2/fM6NsVYX6OGqVWot5tlZU9Hgcj8fdPQgpE0YfiKmtmF/Ck2AZWWYGEHEpJQGPo2ctCQxoGW4jeu+IuFpvqkKIiThGf3+7J2Rr7XLbt7KJIiuJYaDMAAegVlsCBkDvIxPf3r8/7scc8/642+zm6YHm08wYKRg0Is6RkLFDURXVgHw8jzAXKSKSkUc/MlKZtejClyUSuBuE1hruGKlE7j59cCEPTwwiIiyAmYDmrjYZ8f72ox93+uMf9lZF5XrZiWRvzSz19TrH9JgZebns1+v1GM/zL8e08fZ4fHt/+0MEEz7O8/3t3T2GeS3lerl8/vmntl+17lIrA67KDIT3OQkxzKb1o98D/DiO+/2tlW2l9sIzhJZlTEshljkDAlXLHDbON4+oVUjFnn2Ya93aBoIqooQSBITsZj3GGE5EdSfEHM/5fDxararKQkJsw90MiREpMXsfqoosYR6AtQhEAiYBmEX4IA2WlpmtbpQcbgCekEgU04kkEyDScx7Ppygfx8ks4FnLBsFmnuH/f57+bMmRJcmyRHmQSQcANrj7GSKysobupvv/X9NUXbcqs7Ij4hwfzAyAqsrIzPcBHpfI3ozswYgUChHmvddicmLCzKoqMsxYu4oqaEOhMVotx5Hvt9v1frueL0/1WowMGAJERvewjw7Q68f14Smbl4kIRRDNTFTEKBA70iHlvpFKYAjTrMPQmMyHsJQGBkApgWODnyq6Whphd3Fhdj5OKc5m1HEj8uwcEYARqBITELjgQgzsPLBndutyXtbL7//y+2mZWi1Iwuy8d4/OOzN7dh3pIScEVGY3z4t0Eel5P1Q177snIhROUWQgeEImxJDiy5cvy/osbTxiVC+vl/W0pBRhmNau1oml9V5KFtFaH9F+XubZp7AsMZdW8/H925/LWnwIKZ29cwRa872V7MmcS0M6GaHCg2otooiohvoTZE+gxs7ZkBSn83rOpZgSJW8AvYmaBcdM6JjNkABNhqgyk8porV5vdx/9crqklHyMC2KtXqIEJEYitofX1ztOpH2A9kNBvGc2DeykVe0171ute4gOGYEYXaAQAZ3qg3vtGG3IGFKP49ZyRdJSqsU4ZIBhyXnocOzWee5j7Ptx37bH8KS2EphBu+cw+iA0w9iG6jhSMAanw5i888wBHTM7BiIA+ylDbaUPm2N05ObEnv1QIXxElkW6jSZ9qAtkQxX04Q0FsN5HbS04NIA+tPWB8DAwgRo4JDMwgzRP8zrdPt5LLQERlF2g+3bPR4kpnU+nwH6IEvMY6mNY5igq376/lVoBcKj0MY5yfP/xQ1WnOIUQHoQ0lY5gtR6IJpFGz4humiYVO/Z8+7jbafGBy3b0VkIM14/3HOM8zYRM3l2ep23LvbXbto3emPhFX+yErrfdgZQj3/YbIoGo2iw6QMcyTfjyZCDX+K6jOoY991J1O2rrzSGEEBdCVQvBM3tA9jGGEEUkxLQfGYhCcDKUDqujiaCieOcf4YE+rI3xCCwDGBg4R9XEzOIUEbHVFrxHYKKHpiOh2X27369VRg/ez/MMgDEEIDboBj9TyCrChEwGJssyKQghbcd2v92984jcez/24/3HGyHTb/xKxMxg4hi0C4ACmuh4rM/QCYI58zn30erH29u8rr/9/vu8nEZTx12kP9i4jNxUAMmFuN3uR8kp+ZkjIbjI7IBR0ZTRUIeqtFLNOiGI9m4iDeCojjmXchy5d1FDR2RgJhajF+m1ZCQUkVpqjFOcIhI9rgilFJVHWZeGdDKblxMCRE9KXpQfgR/vg6ISUc5l9O4cjV5Au5iATA+5R6uNnKrRAyXGhK12Iwbi3sdARwKmCiCP+Ot+3J9en0vut+ttiKZpmtLEnpzj2y0zOfRoj3MfAiPOU3zMaGIIznPzRWV479CUDRR4OT+n+ZR7i2/XXMoyJyZAMAqMRMguzFOYZnYpTYtnt9+3+8fbx7dvvXViBjUZj6A/Je9TCmmegGKaTr///td1eXr98oQqvRV8JFiQH5XPh7lDRPKxA+jpdPIx+BBUSt6PGB9WTkTT0Uq24X1Ag1KO1jITPl+e6OLBuIuaWYgUk0NUtdZ77i33MQgxhKCA23Y3g6eY4pREZPTRex0yHhVIGa1LI8AxSinHvm1j9NLKGJJkLPMCQLUVIFYZXQcSoo9hDibWa38wpVXVEYHZKI0cA6GJDYFHsBsJvSMTFR1dZdu3kvfbx81P8RHsinFyIagqYp+CBwUxaaPety04ZO+iAxXVURWj9zgqIEJvdfSuAjooxfl8eXZhBiAA8tEjgGMbvam06/vb2/evo9RpST653PS4XvOeQZW9e3p6ct7X0d6v11rzA/wFgMTRO0dOQoSP+33omKYZHfeutR8PPXIvfdwbMJ3PZ/ZOB/Tej3LU4wDQzEdKs/cx+uhAxxittaqSt9JGB+Jeu0NWNTWLISCRSPPOAYiqtlp/2jGRYkqgqioAJjpKLtraFP1ty6WNlJa838ux++CPfSvlmOYFAXzwxBi8dz6en56fX2//+OOP9/d3HxwTq2itlRD9Gpi5tfZg+SGAmdzvt/HWhtbL5XmaF+e6QRmj7/sxmQcVRpRH/GMosVvXGRSHaErJB17K/Paj7Efm5ADMfdx+9Gl9f7/teQNyOlppM5rV1i5PF+eptv7ly6+tPsvo1227beXrt7dju4/WIvslptNpfXl58j4w+jiFGGOIboiU3NRURHvtjjDnKjrCFIhRRFqrmjs0YGYD+GfXjgnpEU14ANxF5LFxFVURScGfL5ePjw8BOmpD4hB8k5ZzFtXW6m27X283Zlx1EdVpmZ7tuY1e6vf7/T76OJ1O7PjpfJnn+Xw6ref1P/+Xf3359MnxY8QLgKago4OKMCMxInJuW6llu+9AuDydfAzGBoYhJPah1WqiKTlmZMZaQcVccBOFl+fnyLFJ/Wc+VRAEZIhaa/V6veZyTNMUp+TdRISG3AUUyAjHGHnPRMDsAEBUkFAV0IjZ1dasVVWdkm9lPHjuD5avqIqYuNFbdT48uMjk/QNkhWie3RA1wNrGkPHxcb3f7+fz6fz86px37Mksl9sYNtoouQTnODgKBOjUiEB9CGhMEs30slgKc1jm+/E2aqUUrRIRgdq27aUcIYbgo6jU1p0jn7xTBh/U1CN7x85Tb633UVpVZPJTnE/EPIk6P+/bDVG9c6YKYCEt6+Xp6fWV/Rx8BKUx2rZfv/3xjx/fvrZSwWz8PKCRY45zekhTlvPzp9fff/3Lf4oxxcT7/TpQwZCcI8e1VQOc02qmbbTaqnNORR/PADtWAUQmRyG60cr1ep2nBRfcrtv9vivItMTldIo+mZITreWox9Gr9d56KaM2M/DeoecYvQvRu9BGi2lCZANBpmVe1+Ukhoicjx0JgnOjD0KK0X/cbj57ImYK8lhGizKj884GNGlABqZ9NDWRPmyoY2JyCGAID6+G6MNP2jx5xyQ6TMU5ElVAGyLoWVX1weAVhYepFwwcMJCJtaNcr29gdjqvMXgVNaQh3QYgIToyprQuYZ6W9fT65cvp9AToTDXG5D2P2szG6Pnbtz9vH+/b9W4m5JEcIuh2/dhuW0pp4lnGKKX00WtvrXVTCCGZgY+ekNSgjT5qHc41rh/vhYFT9Of1lOuRaxmjIxEgxBSZXK9d6pChqjJgiNo8I2GsveRWgWwcULb6/nYdBsT+oT8B+0muRISH0FRUS6syxs/WGrMBqg4TUzGRcex3QEUDMLt9XGs5HlJkGXK73bf9OJ1WZg4xhJiIvI4uIiGE0+l0Op+WZRmte+fW9fTL77+K9v51tDHEFB+GFZS3tx+lVaIwzacY47rq6FVFay7reUaFIZZrAwbyWFvzzqMAABrQ0/MzMX+8X2Voztm9X685l9t1U5BpnhGl15JLzkcW7THGdV7C7wFUmVFMSh7f/nxv7SEj7QAaU3x+ubD3omamCI9teDidVkCsW8lHmTyLGTL62QFALTXvx9v1XvuHD+HRN/6pizbwzj0G1KbWZfjgzWz0QYDM/OnTy7wsIoMQtm1f5vkRyh995JLbGPOypORD9D46ZDyfL4b4cS/bsakIqKYwrXNCsxjj8+nytF6WMI3RQUYvmZDMRLrgYwvM2KuA4rEf1+uVmdK0LKfZcyBmx54MH2Ex55HQWL03u9/vIrJOa/DhqHm77z4EJDJkWSEFBZGS87Hv2771Nl58jOvsvWdmFUFgMtIxCEBE2Dt2VFtl43lZmFlNVRTMkOAxo2yti3TnvSGNLq0JEDL71joTigq6METGqA8epgIiudP5tO/gfGRfib2pGho71jGMrLVaa8+5FIA4+Rm9qLDnviO0RC6JouE8LYF7E5TT6UzOpTgRsgwcD/2Dajmq8zJAttudGacpxJCGWskleufmmYjBqJW+74X4WM5Pl+dfTk+X6MPT0zlv99aq6QAjRQpzOj+/LKcLIDHSsdVa88fb9/v1o9WKiDGlUe9m6EOMib2Ly3r67S9/+fTl13V9vjy/qJho60PUbIxhit773qR1G8sQR2iABqJDVZgYwXzwLnhAYmZP/p7vaOo91LyX3OzRYCgPjLvYgNp6rUVhEEMfHVWcIyL3IH8AEiLGKVFlQtfqaE1iSGlK+OB7MyFAK2UgPQA+IYU+7NG2cyEY0BD9Z7cL1Sw5j6YjDx3NTEZvNTfv3XI6IRE5YERTYMNWBzDmPqaY3GAA9I6HKBqHkD7NS2uS4kSAP3P7ptLHvo9HzlsVRMTUeu8qo5XxkA4QuxADgMUYk5vmdJrmeTqdgk/6z/GaY2o2ZPT92N5/fM/HFpL3PvngmGh0kTG8c6dlXc9r8G7UWmoBA+8CcZimmR/sxqa1lJrbQzb57euPv/3x9diP58vpX/7Tv0wprevkGHvvo9WHdlq7IcKj0spE0acUg6neb9uWDxeoq7aiauScQ0N8ED4QH/Dg4HzJpfdhOlQVgXwI7DwSifZH/cbEeutvP95v+205P4Uw9yYpeWasOQ+FEH2aYppDOcroFRR8aK02x/7X3/8CgJfnk4pu23G+PJ1O67TMrTVgKuUn6sM7t12v+20zxwCsolOaQFU8j9ZFOgIZmKj4GH6mV0TZk4nlo4YUmDjFaT39bAy66+3jKmYK3rOjJUbvnd+P+/Xj4/Zx+/zrlxgiE7AP3jt2lOI4zWvv7fHGaa0oqPNBQEdvQ8UxDzF9PAdp9t537OQ9uhBi9JNTkhpKYC5dmXbvvIGpqhkQkQwhZBUlpMfiAgAI0Qc/hem0rpfLmdl/vL/lXEspxES9O88ELCpq+vrl5XI+OXbLnI4ji2GMU/B+8pOL9HS5PL1cmGi/3b0DRMn7HU0BoJeaevQhmoKMQYzQJZdej/xotH3/+s15/+WXz6CzCqoa/BNXPkYfXR8VEiKKUyLH0ftS29ev30uuzy9P5ByASuvgvamGEJ6fLylFQo4+pTj5EBDI3PDsUgyjtTEGIjza88559j74qKjl2ImJmZhpDHnINwHIFFptQx6qevMuiMpoXc1iikAsJqO2hjXEmZ3zzvchp8twKdyvt23LJ2NHode2bdtoPfhpusw6Ru/97WPvozmiIUAUnI/OTzGsjmLrfbSe0hTjjMAiw0xFOgA4F0aXI9fjOMpxIFnZ6Xw5i2EpDcTmBJ7xEcHU0Vo9DFxIp2menRJ09cAuROcnQ2pCLk0+LuyCipVcWs+36/t2u4JKcIyoYIpETOycP63n1y+vv/7Lb//pX//zcnmWDt6lIkVVVaWWVmuOKXnvezXHCAhiQszTND08JIxoagDsfSRE6apgSLacolkHoMvTUvu4fdxKKYgYgiDg6A1RGBUBUTVGTwYI6AIDkgqOoT4EvwRmB8QJg4+emHob7HheJjPovdVanfNsAQ1Ol4uI+hhCTAYEDC76EKOJWjlEmvRuQ0rZwR7yRVUYcECMcXIzOnTEDGRORQYgNuls5Mh1ATAKMYUYQor3LT/0dsgd7XHuhFoLE8QQmTnFSR/snNro4RocOi2T9w6RQvQGj1oytNLQCNkTguqoVYe03kvrFZmXdT0/nRAIFBjRRr1czoA4pymmhA+xnWgK3jFxSFOaEB9fTLDd8rdvP6Z5qlv9n//jf//f/+t/btu+LPHf/vG3/8//9X/8n//5P5tpycVMH3zWPpSZTAAZXWRF2/PRe7verkNUlH+8ffQOyDH6SYaM2gEfbFB4JJKQkACQGRR9CCF4BBTVPoZnAsLa63HkGSEfeT2d2dE/yYswL9MAYjIfAzMex15yYbzFOaWQ1vP59HQmdCLSR1vWxSFeLqd5ma6i63pqdTA7F3iMfuSqZtM0Oe8NbIw+epcHuVX1+7d3EfHBzaeVkcnQeWLADtpabdJTTGlK87qM0bbbzQHYvm9pSszOdLRawTR4N6UASI4pH5sMO19OKU1gYGxiEmMAgLz34IPgOPKRSy6lseOUAjGpDpGuMmhQ67X3zCLEgF2rlZLzcWw5H+OBG1M1M0AwNRlDVQGg1UbM3jliAiAmDsGvpzmGpDPsexi9O+ccOyREIDU99txqe0CS53l23qcJNdfe7jrEET9dnj59ek3Rn9Zl+de/iAxQeH97O/ZjXdcYo0VnKio6ZLDh6FZq3rf79XbbbpvzcZpjiAl+QrJVZRjAGK31+mi3qsq6rqdTeJCZ92M3xBBDigmJFIEdPR4jRJvTus6LIiI6FcGHxthEQQ2QgyPHKsMU9RGKZRKTYy/7tgOZZ25QDTB4R4hzWtSglmbyyK9hbx0ZmvR8HEfhh6AX1Ih4Suu6nOEBEtcZCPJRzAyATMDUrh+7mVwuERGqSCnlOO4553mZ+lAyjtM0J2CKxgyEoxp0Nau1lFbbMsfAfp5mTSCi+5F7F5jNB2aAB6YtJu/YDZEYfHA4zwEIHp+5XvfbOxzkHsM451kteJ+W5RRPpzBNgNilt95KydePa+/NBQYwHdKLIGBKybnp85ff/st/+y+//8uvr19+7cC9DlAiqD8N1fnovaZpZud9gBjnR/46hDDP89BhZmboyKHjZV1G773k7X4F66Mf7HBZT+zBCSnI/b7lXD59elbp9/tNVYh533KrbVln5xyCm6dpOZ0Ikd2DECW1NmJMc1S1IUaO0+RNlJ0z5kHecWCKxoOU0xzilABQVcgZOKpjaGs1l9azd9xa2ff7A2JKnkeWfd/maSVgTI4eYjPEAerj3GrNuXgXpxCBmDmYqRmodFFgVgSK3gOi9+4oLWcTESCb5vnIWy21tZZirK212pAhTYnJO+/kJ5T0UagiH4gdm+iQjgCl5N77el7WaQox1T6sS89NlRDcaFJxIIrKaK2oPRZy5hF6a2awbXcR+frtx3YUNfSceu8lZ1Ddtg3+gN9++e3H2w1M0JQYcZgjV0snwof9wwRzqyXX1nLrLcTYas+1OIpTnFURDcfjCPjYT/5TURBjYIcxhfFoxDgCIAAkEGZiz7218Lz89vtn9j7G0JvcPt4Q7en5zMwqVUXQLKUIACYGRgA0z3OaEjPv214qfvnyxRmc1hUJSx7rcpnmU2TsbbTca+sG2Ho/6hFqgN6v728i8vR0MtO3H+9d5On1NOkEiM6YlNvRinQFtKbm0Rx57wkhheiY8fn1wsRIuJe85QNAl2X99OWTCw4Me2uPJHur5TH2MtBjqyH55TyJSB2VagP8CdU5ck4xIlktpdeGgqNrb4XdANSqfJQ9Hzkfx9vHrfeBj26YAj+6ZmPoI3hL6BwDwsNPAAa1tlJKSvMyr3Lp+7EjYfChj0EEJTciOF9OYJaPvMxrPgoTnad1rO0vv/x2mk/MbgppmePnzy/PL6fex9c/vm/3WwzObJBL7DB4zjJy3hDIOadDtm0/9iPG8Prl0/l0cs4bqKGKNnyYTvtAwBD8GMPsURghGU1N+pAQUwo+xjhkmAghtF5LLgaaQgoxji7Sc5yN0ES11GwmxA7ATOwR9hhirTfXXQih1iqgvZQi9pgs1ZqnNKUpsrE460OYwAd6mFtNVaW/f7xt22Gg6zKlNKuZqSzzCdhccIZpOS1mRo6JHbGwi2P0o9SxS8nZOfLTjM6NMbqYJ2x9EJcgJTIRaZyCqtYj7/teSyU0f+bgAwADUEiTC773EoIn095rHwOZVaG0BiZMYKbLktgHMEZkesxVRy0519amZf305dd1OU2nC3HoXVrtYrIf+7bdDa33tm1b74OYI4MjXpf15fPry6dP0c9q9DPRZOh96FIeJRJDiCkRcpp8iinnYmAuOBdc33t7AOKZXPBRCYFBFZmvb7djuy6niZgIUZURiIBSikh23Lcj3820lP729j5a//Tp8/PrExLU3lxtzA6Rh/RexrbvgID4BIgMCAStPYQOBQC8T1NafJoSoikCqGMeIsigYK3X1mq+bvW+p+QdUast50KExCRt5FpFbIiFENHoUWl9KFeBHh3GgdS78KPtPcYo1z2XA4BTmhx7dqHV0XuXISYqQ310xETofABmh2AxofcemUYXTo6AkSCk6Jx/eFXjYyNtgmy99tE6AUT/CFIGBmo97znXVvOejyOfTjMymkluFcBa6875du9mRo7u9+vHx8c/vr5P83J5eT4ty8un8+/3T9ePq3P48sunlLyoKg5HMESZdegw0NYkcmR2Q6WOpqRmlvdcavv67dvbx8cvX/6aklYZfQwXnCMSEULsDwY0ARi2JmpGSKpac07zyYUgoxI5Ijo9reRxjPqA4ve637etlVJzjss5TjjNU0rJOb9MWmvbtr2VGrzneSaikPxo9enpclpmZi6lP7+8gps4ENtAotZbKaX1cT12IgzM0tq2b8EFAPTBG+j9fiOyU5rBCwMgSa19oE3TTMiIaGMcvf3sbu/3/HQ5m2gfMob2WvejnM7111/9kL5tOyL2MlBHdj7FcBw5pEQOeq9IGFOcwzLN67Tvt9u2522Muu0boLZSVOA8nxj9o1KXj0Id97K31krrtQ7m4DgaAFg3MAQUESIabcTgH0T2oQ9wk8DQfBzee/ZMzACAZB/X6/Xj4+N9enn59PL6zJ7LXogYCR9GU4eekL58/vX5qZXa5jmxAzGtrRKBDzzNYVoimOZjcw6cc+XYr+9XH93T5VJbGX1470/r6bSeY4gP5fp2HEBGDgkZjXwI8zT5EGppQ6S1dt82QGtNaukI5P1Q6fQA3ggdR8kle7/HFG0IOwdkpWzb/b5tm48+xQjoQoqmSETTNMVpZiTn3DQLFgDVrl1Fo/MABIajGdNjtiEyhnY3QB6H4lKyqcQQvCf2xGyE2kc9shkAOgTUWkprA5SfXzyxO52fa80yOpJ679MykcdeW94PH0BHV9PWaz5uOhoRso9TjJyS93y7fYjUY4cQgvcpxDjFBRzdr2amyGzNTBoTD4F93z76SIHBxul8MpGQJo8OVA1NtOW21TbissZpntfZsS9tiD4oyP3j433P2zSF2ur79f3RNZtSbE3AERAPhQF42w8BiC4ycIihDj9N8+l0bi1PUyJ2aZ49OlU1E0SYUnrsTM2stWoIiIyI3nt4DK8c7vkAEmIKPHnPjw2e6QDEOAdVvX3s0ge74Jyf5oXZIaA+4u06ZDwswlpr3/dtXmcgIoRyVEAQ0RgSR+e9d8RmYGRI2Hu+b9dWDgAA73of0rr3jpilPegkjgFjDIDYuzlGZjaBfBRRIcJpSimmDkAp8uDR+5EP0EcGsOdSWh9jFHbcmu/BgZloJ0QVZVQ0cuRjSIHMs8t5P1+iD+7YD+lKiPQQHnpvZIA/4bgmQ6QjWcmFEF3yTOx9JOLe8lBQM2Km4JwGdA6IVQ2QnScFeAjswuRLbn9+/ePf/uPf92L/9b/9n9Oy1N7I0W+/fP788syAr79/eXp+mee1a5dewXHv0ltXAzSz3GCoETbt921XHR/7dhzl24/vvcvziwoAETAiqAkMBR3SkV1t1UWuvZVSbvfdcXjkRRDEkQNiokGqbz9+tFuLgf/6r5daytvbj0era9uPARTSxblohsdexpBj399+vDNzHwOZUkptNAUbqmKIwC7w629p/mz7bSMtBJKPwwV2jbxQa3XbrszOmIXgnjMa9QF92Ohaa330TXwMoOCjW6eoSKbQSyut56OQmdvvuechJkhweT4/v7ycLnoc+evXr6WUfORpTlNM0nPwsRZWNWU7nU+jK3sfU2T2MsBTiz62Xvf9Lq0hQ8kVAXsYyOSDbyq9FOu250ME+oDaxrqcH0M9ACAix/gwlIrKEOSfjBLsKtttm2e/79tR6wOfmaaoZohl37c+2uuXl2lOaua9m6bEjhGste7n6Lw/nVcEyrn0XnPZ2VEutfWWc4kpmGkZY+RRW9n38v7+9vbj4/J0MbFay2MKT47FrPQCCEc+9u1qprnWlFLwIaaJAH2IyIhIozcxQUMfXBdfaunSApFzGII3pdZrKfV+uxnoeprXZTaLOZf7/VZr2bM555F9mGLLHYkuz+eny3NwrktVkRS947XXzo8AKwATm0KuZd+O3LKp1V6cd8gEYH0IIl2eFgSVMaIPU4qiWOpRSlaEGEKt9f6xtWMQh/Pp6XR+jnWq9WhSecXSam8K6KZ1raUc+y7S12Xdj/v1/sNzIIrPzy+X8/O6TKq99VpKKbWwzxd6juyJiB2VXPat1rLPEzsXu+h9u9dcPGH0dL/dvffnp8scFkSnAEqSUjg9PX368pfL84v3qXdRsUdU7na77tvGgZXsqHnbttY7GpmCD67Ver3dXnOe18kAupibf3JbABHZnS+X2iKAI+IQIsoDAYPM5EOSobct3+7b09PT6B1sjDFMxp43F9yPH9sYfduw1rZOl9GJfBh9+OBO56d9x9H7b7//7kKSLuvpFOPkgyMix0FEg/Mh+MdSUaSbKZo9KlkIwMyE7MhF7xGgHHsbPabQei1lv9+veb8ToY/JeWbiGB0ikGKXYWppnpdlFYO0nGT0Wpua1C4llzSleZpG7xQCEj6KiqVkMwg+xBiWaUkxlVo8e9Xx8E4T0oPJ3IdAH4joY3De996X9eQcxxiDD7U0AEopPLCPR8mifV1OOnpRab2pSqvZrIc5IZCq1NzzcQzVeVk8+ya9thKc88GXktNMPhB7Xx67/dFLqbW1fduny6fXL5/mdX7/dgCD8+Evf/0rM0iX0zy5yNDUxItAq2N08TEG52WM/cgh+jGayPDRX54uSPxxvTHjI5EFA0wa0EOYYfAILDs4Stm248HFIhAHiICeCND4Z/WAvHch0u328bf/+MfpqfkQppR++fL5entvVcvebmGTPvJRe6+jd0b07EFtlNGgPxCkRy6qtp7WaVkDPkge3G6IOk7ni4g9v7zmvBsCO0eOLON923Ou3vkiLc5peTpP5/PjtFnbALM5escsCobQwUx0mhMzunmdW+3X62am7N2U1nlezfDPP//8888/VfrnL59G79v1FkL49MsrGL794+0ox7KeIlupKCPfrtt+5NGll65dvHcxhocvFAh8cL2JdPnpm3aePTlFHd9DiEBoKgY2hpBzPvhlXr13vXVxFn2MMaiKqN7uG1+W6F0u+XRa2TOKPj8/L8tSWzaV4zh8iOzdUBVVZBy1G1iInhkN7DFiXtZ1niOwfP/xcb3e1iXWPmptBua9f7/ej2MvreEdmSlGH+LifXA+HCXft5uKgFnJey7Zh0DMo8sQrbmkNDHzup689zEEEXHeGcS3fTvuLQQGs9EEiN7e3vKRHxqxWsroAwDZ+XlZYkpttD4GIIxWj6OAmXcOByCagTrHy7Iy+jilGPxxL8gABE1blz6kE0HtvR5VTdbT6en56XK5fP/x9h//+28I+uXz63DaeQAYmLbeiJEwPj2dCKhVaa0AWkwJQHPZxpBuqqLHUbx3CFZzPY6MIO6ymtq27RUqUQ8hruvyANmVqn00keFGqGny3vdR7/etHHvJubUiIyC6bS/bvo3e/XKiEFor2/225zqFOTjvgqeJvQ+UpjhN7ON4VObNjm3rvV7f38foaQpH3r59+5pbrW0E8sikZqXk1ko+9pJnDDBEu/fgvTwotMQxzT5MzN6H5NiLdXusL5k9heaaC27bbim6+XRutZXS9vvt9vGhupWSH7XbMXSocnCt9dHHhFOK4en8OaY0xkjx9IhkEJGaoZqxAGjvBVm3bW+tmYoLKDruW2GgdZkceyLn2A2px23LufTRHiJ7sTFGNVQ1u13f85FRYUrx6enS6rhuW61dDcMyO8f3bdu2ffQ2lr4syz/HqtZ6J0AiekQ8++hm5oMTk3mZiHnVZfQBSIJCSA9dtA8u7wczOe96H2bKzNMUzaw+yD+EzAQAptJaFikAEdGIrNRSSnYOh9TRKqB6H1XsOOr1dgUAd7pMczr5tY06+jAAN6S1xhgCu3RZROT9x/uyPn/+bPf78eUvf/3y+dPl/IQKe8nMlZwbvT/42+0oubYmI8VInqfkY0pomPdWe63SEWxKIS6p1j5NSbrkIikkABDpvQ927PzPnIWO7p3f9/IAhMro4D0wGjxCojxsgFqKcVnm00Qx+b/9v392wS+//HI+nYL3SDjGGF3KUXvvzOTUjTbmaQohxRS95xi9KJn+FHf8vHoSgYG1xkTBTY7IkQPEWpc9H6oyHivuOva+T/NEDGZAjgWQiPoYKpZLbio+Ju9DPvK27aMreVzXxf32l78y8fvH28f1o/Xx8XEbD4jwGMxkSj74PupW9vL2Yy/HclpkjK1m534sy/r68hpcZKYpRGXrtdRcDhtx8rVW7yMQNuljjD5ETSgQqBpCa6McGQEUDJlZGR/KYzAXPBIRs3Mckvch9N57bwCPgSygw1JLOYpoDyESI7OrtSM1H6bgPQK1owGCmt7v99Yb007szGiZl+U0O0/fv//po79v+/cfP07LMs9TSPG2bbUPFamlKsiyzkAWvTkKouO+3f7+93/UXNbzpGOUXE7nE59WNCq1WtdS2jSnNCUmfmAzSJ0nYuQ6+iBrvbfW1Wzfd88+Tf448u19k2GI/PLpJc0JFBZaW+veB+9jPhcA3Y/j7e3t4+MtRP5P//KvqqO1ertt85xiSL11MACEXrupsOOUYh0lb4cxTsuSptmnTLwxOVMiciW3NtqDEOdDmOfJuTDF01GzGZRxOPXoaJoWFd22OwI65LIXAL1+3IL3cZqZWEwAgNjU7Cj1ft9SCiL60xtm8IibHXm/37ec995qa00Bhuq25/f3j9t98+yBHmO9B4JNFdQFnk6Bovd+TsuqyEMRVQHxQfE79q3nYqO3Iu/f3358f291yBCaIgIpiIH1VseopRYyELN9t2UBZkfkvIuEEEIAcogOgRRsiCCqUwZE5yJhz/nYjzifT8SEoGPk+/3tx/evXZrznNbPPiVgjlMMicYYfTREXJeV0IuMMEVGRgSBXnLprT8cWqa2bUBEztPrp5dlXXPOZcvBBaPZ1Ayk6sglH3kztT4UTEMI/OgKGXy8fby/vffeYZiKnM9rmAJ639vQj4GeUozvH+/7fQ8hqN3f3t5V8ZdffyF2jsSqeO8ARt6rDPHRiYiJrKe5S0UmA2k1A6XW+mg1TOlBDgLCh+8FEIjgyEaErZQxGiE6xwBUjtJ7dhFDxH27xWkC6OyMCR3h3kof/Xx2hPyALAAqoPjkgvPkUJwoPnB8npA4YIpRRYOfh7Z5XtI0CdDz09Pz+TlwyLn8Ob4eJaOpD247jtba7b4r2Ho6Xc6XEBISMQAi1JxLk2lJz+fLejqZ7tHHX37F6/Vg78xURMwMAB7qiDGUCM1MpDtHSFRKCS4xkig8cDcOXetiZsu6/P7l6Y+vf5+XJcUICtf9ljhOUzqOOk2rDz7nAgaYzAU6jqNri+id5xCcGTM9jNUoMrZrFjPvAgCQETEGevS4MXsXY+pd3t7en19eY0p//PEP78M6LQaAjH10BKqllZx77/txkHMvzy+1NjNAZ73Lx/vNvX56YXIKer/fy2ilVr0+IvkwTYnmaZ6mVjmEeNTy/f39th8lH3GeRHRJ87Edv3z+ssyn6RRNEWD8+Q2365YPXNbFee6jdunShprtxwGHMZuC5aIG4H14eJWZPYKgqenDQI5E9JM/DAgIADhN6fn1GR398cfXy/kso2/bnYhU9Hx+Wpcl+hRCmlIiMDBB5ODjfhzbdjeAZT5NaSGHgNSHILnebSgeRxmirQ93FCBso92uN1CL6VNpdbtvzOTD1QyPUmtvW95qK/Mcl9Ma4mxGzGxd0jLPU2Si3ooQqQ1RaR0MLCaPsJBzuu/HvhNw9OF0PjnnVAAU0VEZ/e3j6p2L3nvnnfNTegTkoY12HHXfN1EFC7frrY2Wj1xzry1PU1IAIueYRbuKAtpyWhT1+7e3o/bW5OXldV2fPKdRyzKvyzwd+16Po406bAyBGOqUuI925F3GGL0A6BRXH/yyzExU60/7+b7vp2WNc5gmV0t9v27b/WDidIrG2IZYaSodyUTGdt/m09xa7r0dx9Z7BbAQgg9uWea859qHASI5Cp5DPKdwbJuKsmdyLAKjKjMQswAomYK22ms5Ss7Hdi/5kN5qHt++f932rbXumAnp8e3z4LOpdBldAbsIm3TnaVoQ0fngnENEdJ7Jt1pLqa1177CPzt4ju2Wdaysyho3uiJmBUL3j4J2BeBdMYYix9OO4z8viHKqiqu1HLvnHUQ7n6HK+XJ5OpR59dHiYlJh0aPDeEFsbYFZrRYPL5UJAvY3S8+ilq+zHUWsJzPO6MlJM3gDUqHf9uO7vHxsS9NxqLt9+vP36+5fz8xkJ1CyXnEv+uF7nNAHCfdu2+87s1/PpfLmgYwLufUjvBhiiU9Ocs0h7e/9GDOtpIeYjH126iG3b/eWJCXHIgFqCj49chgISye16N5W0xOCCybjfbjmX6AmER+9iI5fsvGOGVkc+tt7bPC/kKIWJXDCANgox5mPDefHBE5IA8OrnFUtuTM6xI4AQxVCXNE9p+jg253zOed8P9n5K8+g9eA7Bq8iQAaTrsj49P6/LiRABpZVDdaQpiZVpTU8vzy+vr3Pa9y37WJz3oGaoIgKPE/hDA6CmiL2PWkrvQ1UA7SEsR6JHW9h+TrD5/e3995d1WZbffuNpXj2Fox1D5aGRIIetV1F1joN3zHMrvfd25D2lMCXvgh8N0NHovda2HdmAzpcLMquIKIKIqXLgEIMLwZCQPRGlee59OAYfQhsVgUXs/5+vJOIQEgHno6jp0NHGQylBjolHHz++/fj+9Vua5zhFUGDHLviPj/fzZQWFaZ4+0+c0T9/ffrz9+Lhf7y+fnpb1hEStlvvtiippmhFpSLuczwZqJtPymKIewSfUn9SMLs3PwTnufaRpCTEYmsgg+AlNExMD633oEBf8T4waUUzhgetgwtvHBgLLOrfSdGgf/eny9Jiolr169M6Dah9djMxIfQrOu+iDC5TzUWqd5lhb73XElHpfyn7kXH3y63kpR817XdYJAEsprVTn3I/vb0jkY0oxjTZGb0AMRmDoOZjaPC3raQnByWitlRijitacLcSY4rLMp9P6CE0zcogeAKWPIXp6Wn1yt/vR3q4plZhCcD5EP8+zAY0mojpEPPuX5xfvfPSeHXWpZlraUftx35308fLpuQDt2x6cR/yJflyWtdQ+heVyeuJl3vl+iCCR98mH/iCAMXrPUYa+367bx21AA8ByZFWQVWKKIYRpnlrO14/bFJNn7yJu+/aPv3/TMbp2Ri9DRx+jCxD44E2oZBkiQ0bJ5WHZNBXPDh2xo/V8QiMxvLw++zlFH0/ryu6xtYVeuhl21e16z23McyG/PH8mBau153x0abUcreWWs0jNJW+3bfShasA4TJABBPQBPh9dtJGADhEEi83BbIgCyOzMTFQVetNRW1MzMYMO8BhHen85i3fcajO1Wg4EPa0LswGQc87QVDTnPGrf8h5c9DyRx33PuRytNe+4L5OK6pBRxUBlCAX/SGjVUlsbYsrOBQ7LZdUuBlBbzmUfIjmXsh+W4tPLEwHOc7rfS+ty7G0/2vV2tFZqacE77/ntes+9pyktydaTjjEQwFS7CCF//vJlPZ2XNLNzpuAcPy76BoZmpddSSq3Hdr8DyDwnJALAOM+9S96zqaUQzVSG9CrTnBDBVEVGzhkB0pymlEz6tt99BO2jqzhiE811pBQ84/X94369+pRCtD6G9+qdW+aZC8ho+TgQUWFCJAFwHGTYMi+jD5XB7KYYALWb+vBkjlT7t/e3P//8lmJ6ebmoGBMRYO9tDPHev7x++vTpF/K+9XJ9e9+3wxE+v16mZeLomImIDaD3XnOnB2hL4XH8/+k/QURCUx29mxmY1lJNlQiBkIHtpzQAEUBNexsfH+9p8lOKMgYyee/JYNv22vrXP78PEfbufD6Hpws7d3k+Xe/X68dNRBxjnGIpo5RSWwMwBUXiMSqZQ4X6IMEghu4BiZz30a2ny4/376P39TRL7721WhvgENXz6RwmEoPg+HRagvP7fnz/8SMfeZrmx//nfnz9nkI0kVprbc17d75c1nWR3lsbx7E7pPPz+Xx+CinW3m/3fVpOIS1Pl0v0jkhr3jcYY1QzOkpJKT3xc625j1ZLVTMkjDG03Kc0Pa1n53R02fem1n3yaMBE2uXRqCUgIEJEInpYTXwISHy5PLW+3673ENOXX3+pR3E+Pr+8jja845fnZ8ehakfAPgYgmo5jz4pmoM/P5xCDdHvwJEzGuLW8F3Yu72Xf80NUQ8QmoGqiWo6aU5E2mEBReh9xnudliTE9XV6OcpT9QPTr+aJGABBiNIFjL71nIpuWOI7KHsPkiAgdMIZexDm/LLAui5q9f1wNzEcfGSYdx3bUmgXGINc767B5po+3u4+x1U5Ey2n+/ZffkE1678OjWfD+OPK+Hci473trGmMAwgfb3Xl/uTwvYr/++tvnL18EncNorRNbG3nPdyP1wZ/WdVpOajKOwzn3uHOBYjkOMhgya4jnywUdpClM0+SD3/a7mGxHljaeX87zNA0Ze+21llpKYDdq27a7SD9dFkRChEd+ZllWBFIRT76JKaDDMCda18V7X46yH4d3KF1VYDziEEN8iMs8hxhVRLr01sfoY7Rem4xuJvnIvQ4ZDx6yISIxqYGZyRgq3VSAjB6Kv9EfOMzRTREewOHeh6o+ajvwT1fdw5e2nlYyBIN85Ov1nbA/PZ8YQQRTCgL9yEcfrevY3/bXT5+nSIbSenYO5/nEjr3nbb9t9+3tx9XAUgywzME5E3PsBhoIdRGjjrwj4AN3JyIpBG0tixDCKJXI9yIEzjGaELMTgf2oBng5XV4/nffbPe/NOY8z1Fr2/eit7cdhCufT09PTy7quU5yWaQHAFNLtOgZRG23ftv04xmh9VOc4H8dm3cxMQN5+tCaq5ohtVsfkPYr0WtExDx3HsRNj73W7v0/BO89p8uU4UFyInoyGAbHzIZKKGTofgKy1mg9v4Dz5IaJqAEiEiDCGACoQ5pZVYYpBVRHMoA8ZYzQZAwgIEA3NLE5hWRbvAwK4n5xnISIVQiCFoSL52LaP+3494kzLEuYlbEfNucr7Wz3q6IPpgSQJpVRmUv05dfgnWwXBMMXoTovbttv7ByAqPHK0HQkUABDRLJe8H/nj9vbp+fPz6+v1437s+8hNTEtvx+0wwHlZeqz32xaDAxja277dZFRPMM8zoau9vL1f2dHpvCDAdrsqGBK2XFspjn0MKc1zmuaQ5mFVzRDhdLmgac7Z7bn1weTZueCcqjIikqu955ZLrargQ0hTGK25P/7x919/+TKnOE/T7Xbf7psPgQBDCJ8+vez77aG50DEIaI7r5fJ8eaZ5TswoqvnIu+o6FkBFcKM3H1NAn+tRcnbenZdTcImJ52TOufkURWsu5f16jNFjigjwMGaDDgRyPhD4OE3aBzMTkoqKCjty6mP0wDTNy7qup/U0xSDS1zkROzR63M/UhhkSY5oDMHbtPnkmOvYt5xJ99C7c328C8PHx8f7+9nG7Pb2cz6cZDIL3GiGmSgiqYGaPvNe8zPPplOZlmiZC4hsHdqfLOaVZGpiOerRi0lohEgMZvYfgyWFrVbWRI9Q+ZPzxxx+I4EOY5nk+zdt+7Hvetu16vfbSpiWNY/NGnz6/GJiAPL1eTuu6b1lM2Lv3+1sM3jO1llvttTTv6PPnV0OsbThHf/2XvwQfRm8hBk++lt5knM8XNYghbGAyem+9lywyUgoA6BwjmkP3dLks07xvm6iw44fiqx4HjG46EGnIUAnsMUxxgvXLb79oHeuyAkjrfSDr0OvHtdXaSqk1q4zz+RRTRGZ2xBxMNabYKzyw9b0PGObZMTjPTpKrBY6jtpKP7TCzeVnNMTGdzhfvowGJ9EfIdbSuo4ENlfHwVyMi/RNBzo57AzMzxNEF1NDAHgqooaYChKLau7B38AjDEHnvGQDUjEwBBNQM6CH8VDGVfBzOy8vLpbd6+9hqBXSw3bdc87TMADjPk4HWUkW6dy4mv55WZlePWvMAQ8c+xjXGGDwH73od3mHwCRz1XnM+QoiiYmRzmrxzreQYvGN3bBm49w7np2cFnKb0+vpca52WKU3Tr3/5xQfalklGn2KKUxpDeuslV+98rVVSMhkgklIwUwOrJZeyiw4CffQOkDiEwIzn05e0+FLL3//3H9t9610RUV9emOYQvMpPqPsYotJVZfSmMvbeUryfTisjPT9fRmN2TsG0SooUU/IIMfm37z+OWtA5ZJYxkICYHt6hKfkpeQFqXaSbCADitu/MzkSCOpE2RjOR/chNNc3TPE1IkKbJjEzUsw8AvTbpOmSM0fO+55yv79dlWjLjkcuxT95zH73UvLeyLis5dt4NNUAUUed8790eSlAmJO5HLaUu60xMvQ/vfG/NzAhpiPQ+HnpABIghppjut/e85GfAy3nNeWNHedtVNSS/rKfL83Or7XbbvcMY6Hbbj5yR4Dg2s7GuTyWX2jornnQJyR05H/kQhe22B8+EjLr/8qt/fp6maTrK4T1RSMuUgnfLPNel9TFKbQhwbPu2b3NM+7GX/ai1ppTWT8tyWslB2dn9+PqVzKZl+e3LryGENkbeDx26npZPnz/75L1nFb3fbobAhMmFo9VPn19RBYbcdOy37X7f52kiUrNhOrzz3hMQsON5WeZparXVVuN5Ws+r9EDOLZd9mlfHEQxlCDl6SMcA0RFH55s8ZKZsaqW29/cPRjif1/m8tja884i0nhf3CI8iMfkxNJfcelO1lKL3HoiaVDDLeXt7+7rf8ul0ebo8sYf79f796zdE++X3V2Zidsd+rLOdlzX5CASmFoNDAxVblnlZT0Ptdr0hUUBe5jnvOXB8Pp+PffvYd9XBDkxETfZtb96HGNi7fc9jyGk59z5aH6Vm9z389luIMarAx8e1VTmt5902JGZVIAQiYHOB0EBGYxoxMSJ+/fNb750RQ4hmXNoIwN6D5zQ/J0Bel7P30TkC01ar8wLe1bY3q1u+/fG3vx37NXhEkVxqyXWaE1+wHBWY4hSYiBjGUCavvZdc5mUij46VmFTx7fYmiA+r16cvv6BoK1Vbf35eVtBt27f3vdXunTfT29a/v19PfcxLQgwiUHPbbgcRreflaA0czGtCAE8Y2TOSLSMD9dGGWe9tbHcfp/1eTqfVIRtSfWh5RhcZoiKqrY8+howRHKP9NP6qoSmqEQCpoSqYARIbOiMSQDYgxK46WiPnVIQdI6hzDAZd6mjDbBAgDNGhaooml/Ppvn9cP26IMM2LqNXa9qN06edzcGwl79M0OQ9TmlsdNR8pcDqfld15vQQ/M7lpnUJEU+tDFPDyfCHnPt7eP27vzCyCyzoRJJXSR3+YZr33qgAKBiIqtWYf6MJLb0+fXk9mdko+pGmOEUB67SaQkifkXz7/4r27Xu/LlGIIyzqryf3jXmvJx77f7+uyfv708tv6KZdW+mi95GMPKXnnahspzaMr4YhT7K2pDGYI3osZE49htY/eu47BTFOKBNBKRvyptBZFJIrJc/A+MJoBjThPGD17RjRERULnIk3Q+11bUx8oOWsmqiGFh3yNGRRgmNTaggsc4b7vH++3VLsPoZVaW/Uh6bDLxaUQHJwB5CgHobVSWusA8EugvLMAAQAASURBVHG9l1bJQ32EUofW3NFT8OGQ0tswRTBDxDEEzOIUzcDEylHIkUgXdQCQ5inNE7MnoDGk9uYck3em0nvTyC+fnmvbf3x/I3LztM7TTAzrefnzj2+I9PLpWYcG5/2atttVO0g3JBoitTYfQi4l17LnnQjmmNI0xRBba0iQlik6V47a6mMpeABRLrvoCDGqaRv9OA4GNBPVrkK11lab9uG8D95f5sl7D2BID+OPd4Z6/bgu0/r6+inM0+22iw3pnZBSDF26mt5uH9vHjYguL89pCmldQDn4kOvuQnKhE+J+VOn9vh3OBXR036+1t/jlc4wBid+v12PfDCXGwIitSM2SpgXIA5HKMNOftsrR1LPKAMPa2xj6OAFpt9PL/PTy5DzP04RmIWDJ2yMIH0N0gTxDhTF6C86POoYMQeUAJef77X67XkeXqadWW3BxmeT8dAGHbvLsXG+jNvl//se/LWn6/OU1hni77T359bT4FNenJ+/C25//uL6/r8v8+vJKgJ7IIbRWvefzZem1pDmNXmpte9lut925bmj5yCHwaVmJ8Hw508a9jyMfyzwjQgjh6ekcpxRdaL2F80lBbsehSHFKzP7H250REvghsOdt3zYR+Je//vXzy+chY9vvopZcnJcLIt3vNQZ7ejoTSqkl5zK0mmpIft/ajx/fzIbzKSaSPLZje3t/e871/HJpbbxfO5g5R8EFarpfb7312/368vrcRmf2wLwde+3jOI5lXZZ5Rk9QGzuX/AQ2TieObmYiz3zseyl9P/Zt23tv8zR5H0V0ux9hCvu34qNLc5pCZAUZEgJ4dWoLIrvo0jz13lSAY/zrf/nrQ7gkZgg2Wh99IAIxAlirFR4JeiIVBArOeTAgdmAqQxBJBZ0LKkouCHBuY0rOEA0AzKRL8IxgMfiSMxGjGZsm9oiuVOltHGU7LdM8z/uxl1ZVJIR0vpxutzvx9Hw+P78+532TIdttn1KISyDC3qW2znsB4RAjubAsy+l8qr301hEtRt9KGbWY9lYyAjGSSRoouTaVQTEQmBLEmG63/cvvX9Cg8jDNDPByWePkypYdw5ScC8v9vo+i87p4xwDZT+nz58+npyzS0VMujXrf7vfWmg92ep4I4Ki70+59dMrf/ry1MZxPQ3Tfxrw+x3m5Xu/bvlvephbjYOWhYGbcBcxG8D7Ma/QOnanKx+1uKiEkMBMRdmE9nWKKAnLbbvfruwN1/AhFalN7Or8EClnrdr/q6EurHVwXJeRlnpbz6pxnJFO/3XMHNRifzq8UwnaMx1bztm+9t2mepYvpiJ8/pxSmFEvZQU1FEACIFFUQHqAVUfHJj17rLnNYe22miuhMTVWIEYgfPjgA885t2+3j7dpa88H5GFutzNb6cN79U95qYCAyhph3fj2dfJgeqA9kMLPex7zMOZfbx+18OoUpMkUbvfd6eloVR675th/NzNFhoIrWu9beex/exxh1Ow5TvH7s5Tj2+2FKhLjn+xhtWdZ5isd+3G7XWuqxH8x8Pj/JGKojOOedv7xe5nkqR3l//6i1fvnyyy9/+e3Ybm5a18vpPJ3S+XRO52W91FLyx9v7/XavPhjBIeW+b10GdsylAcI0eTA1daMD4RSjAQoSd6t1jOu+99HbKFMK+23fp9vT0wXBtu02tINBYN638v3bd8DEzEDsCB/CyAcNGh8ia1NV9Z58jNZhWibnPSK44N7fP6TXp6cnUWy1MuL5fEY4mdlWtqMU4VEJvaMymlUpx377uI8uD8J+DJMPIaQU0nQcRRC61v2oo8q3f/xxbNcYOXh//bhOy2k9revTJS1Lz/XIueScQij5qIrsfKvdOc8OLs9Lr+5+25zH9Tyjh5LfR+scaJ6TD1xbOfaKzJfzhT0654YMVTHop9NMROHTWYeSRzH58f0dzN6+vb9+fvXRb9v1Xseja2IKrdbWq4KICRGlFC9PlzjNvfXcswgCyJH3++2jj36UjUxcDqVIzXmIMIEkvu8597ofhzHv9VDVPoZj9+nTcy7b//sf73GaTBUBj6OZYe9bWhcANNNaaj2KYz4vp5TCaP12v8d5nWKcEiHYqIKupWVW1NGKjA4aoneOPAEVk227JnPzGp9fzqT28f19v17JR3u0sCA8zYkIeulI/nw6y1AfQYeoiJmpKTExc+/DHpQuJh3wSA8j4k8l8mPsD/RY1NHDjuvcGCKqxA6x994BVAiZ7JH2e2jnnIPgeQwYY/TeH6DWEMLT5enrt6+jm8GYEXxMTy9PMTiHDoEIeegwwNFVBEdXAh1eQ4gegVhj9AjmKEyn5TiOfBw6KgKoDBEZvc7T3GqGSPd6TDESQT0GEHmyOHsiFJFWqmc+ravoaLUIIRM64ClMNpNzIcWJiU6ndUpxSskxbtvWenvQBEN08+K6lo/3u3O+ttraWOa5V93uG9IDxYjMjIDs08vn6LyTcdSSj+CQqJaWYkjTCcG2+5bCsJgUBNBkQKvdeW+QBwoo1JrBpPZy39737bakCAgj15orALHYwffvP972cjc1f9u7cc51WedPr89qPaXonbdBy7wM0//1b//+48fHL798eXr5pKp73lzecmv7GCbAgKdpcsuF2cUp1TxqrWlNJ7/6WufTTIiI4JhSCj++fdw+bt5dxxjORUduiAIggJnaI9Jaaxuqrdd938hBbRhEQ4ildhnqPKjq6KZgBBhD6v2otZ1PZzvxo6R93zZEnKdEC7XabeiynHI+yLmYvGidJn+7We/SDMCNKaCppJSin8bQ63X78nl5Pn9if/vv//3/++ff/ji2+5TS68un2/163ZQJGXG0+vXb123b9yPfrrfn56dpXoDwdt8I8PWvL6fTCc2meWLmWmuKMe+5d3Ui1lX8lAZKa/3B47zerr0270KTWntupZ7PKyHH5PsYY/T9fvRqJZd5noNzvXWAvm3Hvh+G5GO6PJ0vzycHjgC0d++cEby/fzC558sKRIDovIN/wj6NiMjsMcZFrrV69ilF57xjN0bz3pctl5xFx/c/vyFaDDFNobUOiJSzAJTeam+GWKRJ6c+vl8BBpIcQzxcgYjNe5vO0LM4HFQlp+vyLR8fbfny8fXy+vPzn337fjhsStFLSkk6nS5oWEz3u99vH9fr+xsxpmkJICDRPp2WefHRqYz9qb3U7jqF9mSdknufZe5eWNPowMzXItQDRX//68nJ5UpXeGpixPyGCKcQQpJsPnOb06fWXP7/+kbd8f78i4f12F+vrelqWUz/1oX3fbj+cByTPPsXkCNEGyvAMtW1/fsv52O/39z0fx/2+TOn8fAZ8bNiGiORDWhPP6Xz2yLQfeVnmyzrP0yOtVK7X+7Yf8zytp3OISRSIfQoLEK1nYHTlyKbWan2UttfTLKM/DL/eOWbnfUqhpxgQ1WwgQrcR0nyOMeggZ6VsOW/7PiUOo7dj30M0Ny1p8u4hEyGaztM0n5icKgx57AqRmB9yXgQEg3++/51SJ8THbxDQOS+igGimBqBqaZoQ2Xv/UPsxMTsnMuwR4yBC0JRCbVVUQExssA/scaKJmc1GlxHTdD5fSs2G0Hpz3p3Pl1ZqbxbTMk3TEEEANR7SAAO7lKbV+SBj2Ki57MexEYd1vajZbbuGQL2NImM5naKbUkpbvW9bRsaHLFNBRKWU6p2XroaAQDGEdTkTgsiwp5FbzUVKacdxtNod+Pm8Ok9EsN1vx5HzcTjHl3V1gewYH9fbketx5GWZmKn0Wq/NFOdLBAWRaoC9lVoqO7eezssyf7ztuRRFkCEmhufTMqs6FWmAgRwhwL5trbfWW9VOjD45Y6bhzKzWIqMDwh/fv9eSI7vTOqfZ73X7uO7X2/39enNERtQEvv75HRB//+Xzy8v6+vp8Ws8vL58ul5c+ZNTxo3xXgOfL55Q8Ojry/e9/+49jP05PT8i270vyMwdOw6MSh6AAopbm5fnyEmLMeRPtjqlmyVWGSFdlMAMTGUSgBujo0SICQBnaq8xzWi+TCgrQ/b4ZkKipIhgamqoye0ZuYxBhCC6kdb+X6/7jft3NoO41TZNj//rpWbUT49dvfyLhke+9ZRf9k3vqTVprh+aai6A9P78w+B8/3kzRuXDbb6WUaZnDFL68vCzrtJfdbLw8X4a0P//883/9r3+LaVpO6+unz9OU0JFnfzmtQ0at5dufdV1nZlf2gx2jaS/1OHZ35KPUerpcHPvaOhF9//Htzz//8Ow/fXoJyHXX5GN8FMex5X33MY6hP769D5P1NMcUDHo+jtFlmmcX0rRODo2RyaCVcu2SWwsxqkCKcVnW0XSaZxfPCKgAIoIERGxMPgSHSERDhJgBTKWLjGPfc76zU5+CmsXgPq7v8GHB+3VdSik/fryXWpbT8vL6yRFdbx/vb9eUUkyBvWruIkpMrfVWuwETs8JghzEGRGVbIzqTpz0/6WPWYPiw4JXStny/X28ENMX4+vzy5fMXdN4AowvsIZe673nfc+m9llxr9c6FmFzwfYxcCwKmND2/PO/HMaQBqyeSYUTwUzVqkKbFX+Lzy1MfLectRv/25/f77eqc945PpwXJbreP2/3etQ+T4zjiPHuGPlo5djcyEfdaf7y9G6iLlI897/dybNFjrxUgeB9E1HE0ljhPKYYU01GO+217eno5P50eL08i/Mtff3t/z+z9cpo9+dFGmuLptBKRAQYXWi2IOlqXIRzQyPKR81H6GJfzaVlP8xKj59KKWO1NZfTW+hCYpsk7ZAQArfnYrzebl22/l5zJhchMITKI9p6Sn2IMYUlpeaREHuIgdvSzmKNmoD9VQoT/tAoB/1NFjYTMZI/4nplzzofIzovYQz/0QI/y488MwAzAtm0fozkHdn20jin6iRhbHrU0NVDTELlJZoJlmpY53W87ADDznGa1EUKQMUa7s8M0LY4DALnghpTWcy1NlFvrLrJz9vbtz7e368svn19fXiJOrfV+9Dn4PDJqQNPHoZWB5mlxziPT+Xwxszqap+C8P45u4GLk3kdvjZCWKUbPgHZse+9NRu+9GWBtR2vHx/fve85VdNv2+/3Was1HOT89TSl6z9O0PBSTvZfeW8lHb/Xt/e2+fyzz6Ze4ELkubdtLP74BWpxn5/2w3nszAvRM/3SAC5ibzDnH5HwMAWKu+ePjdn2//vrLl5X8aNZau91uf/7xVYmmaWFyebvlerRqk/cAY9/2X778YsjBLar06dPnj+09BO+iT9Piovcf3x/bNVVbz08uhI/7j/v9TobTclrnuYvV0edlfvr06jzruxybgOF6WkOc3z6uZt2R7yIqYgqmDxOMknPOW8kNyS6XBQ1E1JjlAa9/LB7Riwxm90gCzWsy1dv1FqpoB1CY0zTEnHOqlkJclyWX8u3r19rk0YuuozlF76OM0asQax9qJEQUY+ijlXwgV0R4/fxaS/dML8+Xsu99VEautZ3OFwD0np+eL7/+/pd1PQEYAOgYyzrpkFLb6EN1OGYTaLUuMSzr1Ae7PuT+8fH5y2fvAhIi4n7fj+24PJ3neWJiNFDQ3FqrFVDMgJ0HMMHuQ3x6fk4xKLT73mtraZ59dABYjqKBSEGHOB9rawh4Pp+neVbR/ThyPj5ffpFH4M6MiQlJDJDQO0fEgPA46wH+zOG6x0cfgJmO7Sg5E9Ovv/5iRqPJ9eO6HTsSvb6iDCmltNKGCgCWXN7fPlTMx7BMdjo9PTSl33/crnd5fX4OnqPHut9VxjyfLuenOM019+3Yem+eHILCy+sc0+k0/+W3X89PL7lrV/XRIdpo5Z6PnHP0Pl2CWC97UaulVBF5UFzmZVmnGUD3+/3uQ0pp3/K+ZSJK05TClNLpdD7Ny9J6+cff/17rkcs+pSXF4IIbKtePe953RBYFEUOH7LD1Cgb+gmjca+ltmI0qda9iouu8lrLXVvOf39f1WcUArLXapLFznz5/mqe15LzM9xA8gQsuEqMjvFyeOORcixmKWFpmx9xaZyJDBPkZpgnOA1kZ9e3thw089qP37hhDiBQdII0hb+8/ct2eLmuIqfVW3msfvdbcR241j9qmZfnx/Ufd8rnJAB8XZYdExsQmMJq41ZFz8HhnP36IHkPCR03wYfpARGYO3j/GNYRoDD4EJgYDU0XEEDygA3gYV+hhpSciMzHA3lurx3b/MJVp8tLKcdQYJ50sxICIanq/7X3kECyXu0wJDUOcRAYoOUqlDsdkgxzN59X10UGcCJj1vG9HvqIZuzDyuN+vvvO+vX/982st7dNvn8y0Sx2j2xBRFW2jO0Z0jkJwAb0J7Pf9+fmFI11v1/ePj4cWnJhTiqd1Rmjn83lK8byeEPQ4DiJdT6kPNpSjHB/vH6JttHLs2//+x7dty8+Xi9nI+zHGmOd0WpcUU63b7XbTLsuyZun394+3rz+U8dPr5fXl1977n1//fHt7J5EQ/bNayQWZfHSEHGKYl+V+u7ngh4ghEqFnZ2CIyfHy9PzZzJVev379EdhNKV4ul/2eu9rl8rzM8zKvwYVpOf325dUx9jZSnFXg43Yjjk8vz0+vT6UWQpvXBWw932+vX/5yavnl9eXT62cb49uPr/fbPc2zn5bFs/PEg9ZlZXb5yLfbrZXimXQIkCdAUwNUVeltmIGaIiCzQwAzEFNAMLC8H/tR1fyj8eu8Y8fa0cDGGAykauWo+7aJjPe33cfo0Z0up/V0lq699xCwt9pqNbEphhDIsZRSrtebGnx83B3zNKc0zTHxsi7eByKs+0EEp/PZTWHf6vXt43a7n08T8XM5MhjWUp+eni5Pl7Ss7MMDSzxqBbDnp+fj2I9cyeG+PTqbdD6tt/utttpE3bouMNAESq8hOCIeoz8QHyJy5KO2rqqDRRHRMM7BObdtBznyyU1LQIT7vvc+WhOBashxYIrTPLm8HWbqQ0yOUGhZTqr248f79bq9vb19/vW/PeBbTEzEDyy0jGHsHsBVZnbePYzOzHy5nP7y11+/v30v17sM8c5N8zxPi3b59v3HdhwhBodhu+2icr/urbRytPBbEjViTjGmeYphYnoU8e8f7+9g6thS8KO0Xg4zHUDOuwHWRt+O23HkZVpeXp8vl/X68fEg0JVSutF27EN8reV232ptosbBndZpjPr+duWmyOS9e4i0AU3F0MCT720gtDEMgGOcnJtcSN5HBM5b69YVOVcVwvk8vzy9dhnX24cOzaUt03Jalpen52VZiElkOBYfDXSUmtn5lGK+5dvHbV3TNK9P+vrj7Ufe6iOXpKp6E3LudDlPU/LeTelZhspQAjdPi4I+hiZpmcIU6l6IwDlCe1BJZIxx/bi+v78D2adPz8t5GpnvozM8ZJTt2PcQIpFzHJx7tLdaLiVOEytu93tvfZ6nMfL9ehtdLgpHLq1X36o7siGHFIOnvJfObp4DO44pIROqPVh79NCEqsLDbgtAiMREj/wvPlo5BoCOHDsHgA8nOPzcBqAMJc8hBhEhBhWTNnrtj0zL7fo+6uy9+3i7GV4vT0/LcjqtUwqxpU4y1PKR91KO3nuclmOrKc6zT4RsOloT70OIjhn6aK01w3G/vdd2OHbrGlMMo49yHH/8/ZsPISFoa8dxD5TELM7+yPfWMxyKADLU5hUdpzAj0NBhqGrQehdRU5znlbxXVQRNyTHqsd1S8vm4E5tBv+9HqVV6/3H7aO2oRyFgHRZien19TZPb7h81VwMbNlrNqpK3/fElSgjO08vLswAv88rERfIYreR8/fhgtLe3t+eXJ0IKMZzPJ5UwvcZpnQxIcpM+SimY+HH1vDwFIpd82u+3VqoRkiNm/q//7b+WrmrA5H4/P/2n//aviK4dNTjvHXjv1biLzdFfLs915P/97/82pYkdObfWrv/yX/6v69u3FJmQBYW9X+b1dFrP8+TAutTe2sf72Pbb6FJyUR2GWPcj5z7E0GgMHSJqykhDgBgVjAyl62N+ZSLLGtR0P0BFzNRAH0/g45SJhCpSaukyHFMfTaxP57mOTAyOWbQhoYiWOgAphImcQAd0dtS79O48qvTWcDmdnA+925Q8R7z+eKfenp5ftYNz6BP7EE/PLwHhuB+tdjA6nS+Xy1PTcZTSuzCzC6GXfrsfpR0cMIa0mxJh6+39+tFqjTGmdXKfXj6dl7aelr//v//w3j09PccQTucVEa/bteR6/XEj5+aXmRhaHVpgWT16RkZA3ffde/bBPb1czpdTrWIARBiiZ35AxpWJPj2/Fu0xpv2+LUsS0YcsDAARDAF/rtINRPVxf3k450yBCNX05/UMzAfvk48Qo/Pk6X67B+9VBJFCSPMyt97ut22755yPcpS6lzhFBIg8STMhabXVWo68g2lr9d//57+7wE/nE6vUWhf2bx/j/re/tdpjCIjkA8veCeEo+du3b0h/uzy9+NNaWrVvnRgc+5fns4oRQwqxIMzTTOxDDDG6UorqkNYBhQnZBVAkpsvzxfswpxXAGeI0TwbQa1Oy1up9z+v5BGbbsRtxTMuXX6eX1y/S1Xs/pRUM856lN+eJPRHicRwIzvnknHsAEJRgmU+tyX7/o0rbS2aiNMcweRnj/f2aUj+v63o6jS7A2Ifm3JxnteFTaKaIEKdw3PdWSx0zodXWjv24H7daM9AAekEO0zwl72vkWLwqqQ4zc8zTtCzL0lrej2OIOHYAup7mp9OT2kjzEsM0Twu9+lbb+fRyefoU08yOZVTRwc4t62meF3aui8LPYwEBoogMEXj4ox9zK2KzITJEqMujOq9Jp8e8yMxGl9Y6OwRAYEQgIkAiM22tmY0utbS8bVtpxUf20fXW7/v+6DnH6OaQppRYVNHcnfft8FO0CtfbFc5yxun89PT+ft3ue4iRmdHMBzekizYfwIXUm9y3+xLP8zS74U6ny/kpXD8+cq7EDI6J3LzMarUaIdlovdfRnI88ASgivr1/j2map3le5lpl23afUq2jlzynEJzfbzdicH6qbfeeaun37SjlgZiW4yj5dn9+ef3991+b9NPTMk1xmVPNpbSSom+9Rh9eXp+dI0RKnNIU0yr3exujjz6YCUER9bbfbh8fT6/PHcf5dMo9h8hDhz8CIjtkDAHQuvR2v7IP0zRP0wxm6zLLyyXvh4jkkq/3/cunL5c5vX28V6nzdLo8vZTcprBeznNw0NrIRdindTkZwJ/f/vzv/8//fVlXJFpPn07nS9dRy816RbJa+jyd/OqIYC958iAqY7TjtgHD6emS5tRbkzGO/Xj/uE3TShwfjV4mMgUk6mNEZgExgH3bSy5Pl1MKzC/x8mklqn2oqvTeiCj40HpXU0MLUxitx/P867/8Cuq1DR37x+06ah0i8zQty7QuM4gMsdY6Anz59Ema5j2fzuf1PF9vlcihPcakI3iOnoeItP7t7Q0J/RRiiGagAMyOGRCxV6m13e7bAJ3m5GIA4SMfHx8frRTn3Gk5p5fp+fn5f/zP//Xt7W35138Na3rAAdnP0xwnQnp/e/cuppgu50up+duf3x2zEV23bet5OS/btvfWz6fj5dNTTBEMbh8f0xKnOYFZCFEErrdb2UuulNJ5nheI4en5Mp/W93KvpbNzn59fz5f+7XqkZQEAM+tjsGNiGjIeh31mR/izisfMMaTXT6/3+/uPH2/n59NpXY69SBsGVvLRSkvTpAC1tI/3G5Hb7qXkpsNSnNToODIhmtHo12Vdmfw0p+Bj7WX0cbvvyDAtyxw9g63LPIbUfrQhz5+eYwgf1w8dOnr7j//4j9pqbxX+/X9/+v0vp+dzCo7Yzcv8dH4iI1UFFKz05S9fai6mxmQpMgBMgZE4537ctyktaV1DSsu8oGEIvg4Z1k1xDGG2cuS//+3vKbnPz8/bXgVwmeeXl6fzl3Mr5eP943q7qox87Ezsgy9lnM5La+Y8OMDRR3Dh+r71Zss8+ZD+5V//9cfHe2tVVZhpPU2e4/+Pp//Ysi3JsiyxvYXLYZcpecTMw4NlFRLAQBf1/23UqEYCFYhwd3M3s8dULztUuGw0riU+QRvnqoisteaUkjEsSLWxGiwjwBQpJRdirFB0ydu2MiTBtFDwfr5O05VxaNtWa2GUQFQ55/tt5NJ0bWutUYINfet8KRliCCXXCllLdTgcv379bZ7eG9vs97vGNoi1lto23dDvD/vTYwnadbvdcJLSpBzH6Q4VjG3bbpBKV8RSCjIEzpAxQEylxJjq490egDHGGXGGJWfQCgERUDCGQDnlnDMvDx4LlloYciEFMqyZpJQ+OOd8zts2T9M0TuMoBBiprLbDbigVBJNa65zrWnypuRKVQt7XaXRUGWC5XW4pOKhpvL0/EDml+hiDFKLvW+eXaZps0wop1sXFSNTy48EeD0+cs0RrjCnnxISoiEJrpY3KrheNNGqbHZFjDFOK67aVkgsRAGv2rVJSS7SNzQWmcSIoXAmlZGkUQc7ZAxRkmFOOIYQQGUOldd/vas6pxH27T2NYlomLobV6f+i1NuM0bstqteac1UouBC5YrZWjbCxv2+aw75mAeTx//bZILU7PT03XHU5PWokcU61greHsQTEobWsJSy11mlaWIzJUVplGh8CEVrYf1mlhQrXDftj1gilpFAk8nI6cSS5CiWlaRigphNjvTtrqmOK8TP/4x68E9e39az8MSqi4jJFSru52u43r/LJ/UbKNPozLnEt5u9+6TksllUTdWWm4d84lN4/b+/n8frkenj88HzshDSBbwhJjIkDbGCAkqIR525ZK6cOn4/PLad2yj2UwP93HTSJAqaVU5ESlImcVai3JGNY2DEQSTJGQLpUUHCOgXBAqstINWrBhGv3iHFd8sD3/YLbNa2kqpNPOGKNKSUAprCNIOexsyTTN13UZn55erG6UZFoiZyJsoevabfEll5JrTCmXFIJTm7RSruM9uUAZiCDHMuzaWCIDdjqebGOBgXNBpJC6rlFSaiXd5i/Xi2kUAI7jdL1clNFKm5AjVSjIYko5Z+fD+4+L1rzv2nZotm0joGG3Y0JUKEIK3RhtjVCqbztOxKX0MYTgXUgCeEo5hgjA4aG4j4UhIgBVKiXHFInoweN4ZC0IVKHWQiUVorosS9s0kkvTqELVKu19vFyvm/M5p+CTFHJZFiC0tnl+PrZds8xzpbrb79zqlda2s8PQM+TIKPvIj0cuuZZN33WtNQwYAYEQ/jHxEIwrlasLJVWOwNnqXCnlM//5tDt0vSWg1naCS4kCEX1Yc0glJ8bq5t0cPEPcDU2/axGF80G3tm1bpYTgGKMLIaSU1s33w04qM/QDR8whYi41sxCjtU2pBLISg3mdcoohhdPpKLicRomAMaRHMFNclArXdZ2ndVlWKWQOeYyrMarUUgsYZUxrjFYIWHINMaScl3Xthp0AQZUxIblAzrX3DpARUE55W1dhGHLIMZRSgBNl2MImuaoFvnz5zpj66efPWAGhSCmRIMSAUDmLjHMiqKWu6+rcst8N1loGOI0zABhtJdeCGS2F0rLtBikNInrvt2XxYWl0K4VGkACE+AcsNuVSay25PCDh9aH1Aij1j2yOKjFkFQvnAhnmkkutCCyXVLEicEAEIoZIjBPFkgsALOtyv1wAipTMGDn0fdf0gqv94djYjilEZNu8lVoBOaJRspUqUuHX2wUBbte7d6HrW2Clsbbvu1JCDBtBqlCYwBDd7eovlzsRjwca+gMyYe0+OcZlKXnZ1mQbi0zFVGoBjg/Jay45kyyV5VgCZ6K1LUPcwlrIKCkZgGJiP3SFaWRscVtKYbnfKhQl+LJGHyJRNdYgcmutNqLvWkSwqgEC0WghuPfb7X5jJIw1w7ATnOcSl/s6jpPSkgslpB72vVI6pCBBHA6n19ePtnXHw9GHkGO0O3vf/DTNw2FwyyaUoJyRgEuMKfnoRSla6dv1arXhiEAYQ1RKCyEejaxKuVKuGcf7yFA8CDZS8VqyXzwsUyqkhB3vd6MlUZGSR+++fP3NxxRzMkZ6HypUFxeCSqyM87VA2cLmomJcfPrwUWkdU5qW6fp+AWKVIVcKHqeKR3sAOJcVgDHGaqEUU8qxYu76lgPnTO32Q3q/aqWVSkSVMfa4gj74rFJozhs7mHWdCQVjEQq6bcsFhr5rmpZzqFR8dJmqbhRB2zTCWks1WbU7Hl9dWmJaNndftwWw1IdwNtOwG8rsnl+Pry/HFHLwMavEDeuGBipTWjRtoyV/eT6ez5dcol/nyoVfVq3a48vRxyCVWja/TNPnP/3MJQ8hzNO0zau4T2NllRjmWvanfSUKIcaYCCAXwpS1BqHktrmUZ6kYQgWsyTnKvLVmdat3MZUSc6mleu8R2fF0lEa54IKPO2Oksffb+b5ORKy37X2c5nkVQuSYOSUlZa3lUderlaQQ7H9KTlLKJRdUuuQcQhh2u7ZrY85u8123Ox5227o11oQQHzgRNEYo9QffvMJhf2gaq5WuDZVSJFdJFgSESgyZEny/20khcgFjtZKWE0jEUtPmN60NF/L97SKUPByPObXncv70+XMpmTPBAT+9fvj8+oEQUo6UKmeIQDVnVokTtUbf7us8j+vqGm36zjJkxjbHJzbPS0yRJ0Aep3G+Xq85Z7d5KfTrx59KiooLpTmXkFIOMesGrZHGiFQ2v4Xb7QaV2cF8Pn0WmlGFkgtjvOTKuTyfb5zxWokJIbXWWvsYVhfe396HXds0HUeRYhWCC4nScCCKKS7rjFUwFLtD1zRiC7nUmAsIwVGwdVvLmqTk1nQxxnXdoi+1YruzSqmSxwLVrYFSURKzfHjlEuegG62NzoXfxnNjmv1u/3R8elwcCYgxpo3WWuecjWm6pkfgt8sl13y5Xq6XsxDs6Zht0xIRY4yx+kjbai055QetEQFKJULggotaUwQAICBAYIw/eC4AlWph7IEoJCaQoHIuGGdU/7B+20bf71RK2R3ak9ghA61lTH6eJyE1l1xqua4bIHDOuBQxVCQuUQBCzRRiWFZPNBqjPn46vT6/tm1zu82X690q3Q+dkJxxyXjlXDLGAcm5YG3yIUneGFlZAWVUN/QELG6JEU8FheZA8Mizcwo1o5TqcDgBQYqppJIEr7kMww4eKlVkRPj+dqGStRGbCwS4LL5pm37YG2NDCiWV1+fPTdfcbz+6veJSxxSXZV03D4DSrbkcdkOPqEwLmw+lEBeibXulTXDxfL5Wygzxn//8L7kwxsF7vyxT29kUwzKtMSQhsJTCUczTLLTgArURgmslRUqZIyEywZk1rXdbSkUwHrwbp+l2uyHnTdso2TR91/Z7qnC7jcu8lMJyIsmz31zyvtGahJ7dAmtgXCJA4dxaWSGt/o4qIxBTKcekjCCG99XB+3XXRwRwo6u+asO1Em3XCiYo18wyY6i0yS4DI8aBCFOKLnkAjKmer7NP1PZDztmnWionEIIL5CyXCA+zAj0OKWVb1xyA65xTeTv/IBSIqBux5IhUmrZdZy+ZyYUw6Qy8G/an01MMNN+Wputi3fytQCn90CjBb+fb6eOHf/v0KYSQfNiio1IZABByyfzidMO73uRSEGG364DR6tfxNu+fT0rquHkpuWBMML5xFkOQVZaSfYqb98L5gBOWVDa3lUJKq1wSl2K333Olt81pLYEJzjGEdL/cOGcKmRRwuy+EaEJkjAkh52VlgsWSG2ulVEapLW9vP36MQp5en533X759ZSDw9ZUBpFSUMoLxB73rMQV4ZHeAIIR4QJ7/uApQJYCUcqVYayeVvt0uwHgIW8n1eqMSMzJ4ej11Ta+tiSFYY3wMknPnfa1kW4sEMWZjzDwt//jl99v91hjbNLZrO8lMqbWEkiiXXO/TffMOkArWGLMEmKZZCrXbHytkBOztjhE2puUVUPCUKkdWS6pUEYlYRKwpxZxJMNN3WktdSawuCsukbXSowW/KiFJz8K5SRqzzendbRMH3+05obhu12+/+8dsX3SiibG1bUrxe3qjg2/c33Vr6PVGtxMFoU3PVwgz9jnNRqTrvXj+/IHIExgWb58W7YFvj3JpLGe8LATw9H1MOBKXpLOcipyKYJIYFS6WqrQBm7vdZCY68Xu63nJPSYte12jDnI2OojT0+PbdNt9s9TfNMtQipkFVjDAEncoBMa2UbXSprmrbtmq5r5nEe74uSXGoZSpqWZXO576vSJpSIxEL2zrtKpdv3/a7fPz0JrWMowAgRaqk1lhwf6y16dIEeiB8hZK2Qhco1M2SPLQBDFJwDYf2ffEeOyBmWWh+occb/0L8gUSWKJSEil+jcej6v8+Kut7uxbWEoJc+xxOC5EP3QKCUP+x3nlJJvexvvcd6c9+XDhxbIIJqUuZL9rpU5xm1NTScollzQ9r2QQmvDFQLWprXG2Nx1FQ9+czknpTSHWipw5MllrGiNBWKlFt0IRAYcEDCuUTAuGJSSxts55KSaoW37WsE2DdXS9gaoLvNmdNW6MdoK1Cg4M0wrzVAyxnzaKCfvgpTi6flobEuFYi4V2K4fnk378fWffHAxZi6EsWYT2/16XeZFSm6N2dZlicuH549Sifv1IoV8en5WWqcUYwzH3SHGaprmIUBv+/52uS/rEqM32j7StRQLIRilOcN1cVKoymhZFsEDk5hys63z9XZzzmndJZfavShS/vJfv8zbZf906tpeP0YnWlWinNIWXMwxs6KUaPYtzUEpyZkqeV6m2S2zNVoxvt8Nt/v1y69ffKlPJ2x0L5kgglwTlyLnXErlXBltVrfez9fXD8+rXwlKSGld1xiCsR1nnKGAB8QOACo2tpmmt7/916+5OGM6KcT1cj1f32Is8/0KHLSRgsPL64tSep7uKRcXdD+cup6Q0bqOlHMpiIi1csVl1x1KCu1wBGEYykbzUBm1rGSSyiilkYHUmXO2erdtjnNutNJKcckJJZVMudrOGKUY4yknJdS2uVzSsq1uc8YawThDwVe33qcpxQSITWf7bieUPDyLb9++ASMuRcvaFHMIsVJNsYYt58Lef0x4WxhHY3TOpd93jDHJ0+Yc1Rq2EGNe5uU8Tkxi8GFZxlqqVYqI2+7EhQKOJeeHc1EKiQxKKUBQagECRAREzvmD0M0YXzdfEWLMN3+rpczTbKzpm05b61Y3j7NpmmE37A47uN9qoRxTSYUqGGuV0iEEH8L3L9/lD/7T589PT8e27YQSkOoyr7fbxYWFSYgxc8m5FELy8Xb7+tvXbuheXl9qLVLI/WE33WfvvXMulezdSgRSSqBsjEAGJaXbbdp8VKrpetsaW2pNGV3IDDkK0Z96xjH4uD8cXj48ee9t114ud21UiiFyJjk/HvZCmxRjjmmcbrnEZZqJUArOod7O5+D97ri3ttl1Q/Th6/y7ElpIIYshQq0VYyKGyAXfH4eYwnyfJjenEPfHPdUKWFOoSciSgUsljdTSuCUQVdPoFIISUgjunGNMVPK1snXdKlWG0tqm6wYptJR2GA77w3G8jwwK52CsrRVSrikXJjggEtB+PzDGlRLX6+R8rEVwiU1nSylEeVsnt67duu/aXS1BKWabnRDSdJ213YP7w5DT/ySyUSmlZCAQf6A7AR80dsGFFFiZFJIzRGBcSM45F8gZElUh/hAuPrSjnDEgYAwfUtaua/PpRFDv9/t9vEIBH+Pb+bws2/vl8vT0jETeb6axOR+lZBz4vu98YqXuUi7DLmuDx+OHph3GW+gH+enDT9GldVs374nSum2pRCUFEq85Bj9myynzrnuRWhGXQoocQo5ZcALDcyCtVNd1jPP5vnqKprEc5Lo6JRTnXArxR6k3uhADj7npOi65NirHWEpljGvTGdMppbu+F8KknFa3LFuUucSSUo45llRS3x1CiHNaBRcpF60IuMyFEPGxjmCMIYN+1zBGXdc5t/7jH3+/juPh6chQDPsBKkzTXWutlBFC5Vg2l60drDIMuZQCiVMFhowxkXKRukopJMh5GiFlbZTR6nQ8uhBWNwmOOfrpdo8xUmVKaqMbLRutLVBVykzv2+njh/3xILlaZ7dtnnEM3hMDzvT9Nge/DLvBNF3KaXPxcNpDpRSCUpJSLjmFHHza1iVZ3fb93hhDQCGlUpLgvFYSDCQXKYSa8tDvCuQf7985U4wJAJKqrUSVKhXMOVcijpBzRgEu+HG+6ybYkO/TmGrSSgPWbXVA2uz7t7c3zpgSTSEgqOtyYVhy8jmRMnxd7z++v5dKzdBS5SUyI63mVkhdc6IiGKIy0tpGakQkhrit3m0bEWXIClkFHmqMwTECyUXbGb+Fzc/GaNsZJpnQYplXyrUdGgGSVai3+zzPizG21LKsGxPqw3F/fj9P0yik4pwbLYzSxtj5vhTAFHLX9YvfYsjb5oxVplE25d1uxxhbllUg2++Pvd19+fplnGestN/tlQht01CtYY27vQZCqiSFQAaCc8SHK+xB8S1Kas1ZKfVRBjXGrttcqaDAy/uFIUMEpURKKebIClvXbVnWPhZrbC3FrWG373e7ndsCQy6F4pwFH7u2+/O//DnF0A19iPHt7dx3UWuVayg13sdRWm6sMa2qRN7HlNI4386Xt3VZrDVAJLjyq3s67RkWLmUqqVBhguUUhYah7YiKjV7YxratbbRknDLVCgL5OC21VGQciZm2FYxzxrRu98eX42GqpRDAui5Qa9e0zW64nK/rOJ3Pk23Ny8sHqnUal/t4u98noSwjnkNJOo+3yW2+adr94ZRTmaaLUkorXWrWRgcfc0qHw36/35VSlJFaPlSjkEK6zeN+91RtHeeJISktkYHWurXGuQWobNt2u95Wtxgtnk5Pp6fnvtlT5eNtWZbt5enFGGO0EhKCiykBAKWYcypFJVdTSoErdr+PLrhl3h71FQACzE3bAIF3fpruxJkQSknedIZzUTLVCikX5wPnkiHLVGutKacYY83lj+r/A9oL7PHWwxkDZFxwwD9UQo9l2yMhAAaVKlAhgpzz48aJwKRSOae26RnQMt8nF7Gydug6husW/RZzijmFdV2cd08S121Col2/B0a5FCX089MrF/Z+c8FtJTdq6NuuFVzxRjLBuBQ+eEugSVmrGcd5HKdx5Ayllm9vyXYnYIJXElwCpy0E7x0hKmkFlyHFZXXeeWTSasuFhgIpxCVOueRKkXGKMTbKBr8SFR9cit7ffcn1dHqRQjMmpdRSyHmeb5dbKSgkSJ4b23qE7e6/f3/PKaVaSy4//fznnPOP79+JYBrHUovgatgNXW+kYLUQQim5cMEPx+Px8NzYRgohpSiFttkj8La1KFkqgAxSLKXEftdnX4a2bxqzOfc4SjImHiKa63JvirXSGGvbXddEtU5LiI4z3nat1Eeo7HB84Uz7LeZSPv7p8/DS90PfNg0B+Vx83FIo67Y2rUFAqNX7LcZtPzxp23CEdR7brj08DYyx9T5vLjHO97uDkokzIYUEguBiLYUzrpQEQqBacvarOx0Pz0+nr9++3K/3l5eXx0NW8KG0hSQRglCCEtRMpWQpJBfEkbPKOIqnwwuXz41pUky36aa1FAJTzMgZQY0p3u9XRHx+elGK7YYjYHXrmINjyB+jLSF02/VKmeBDjjG4WDKBYiGmgsAZI0DGpW6w5ryu6+a24GMoidVqG8Mrc6O/3e/EQGuthKxE7c5+/Pzy9bcKlURc4/nbeXPu+HSKwYct5lRtm799+/b7b1+8d0pqYNCVllWk/AB+8LbtlNC7TqWSlTRUi5KaV4GFCykQkHPZ9o3oNRNMnS9rmJ+fn3KqXWvd4ka2IWKtGZEzzmoppRZACjEQ4sNEwRjWAlRrfUxyOY8xSm3u12lzPnhfUj6eDlab8+XW+qa17adPu+eXZ9uYHKMQXEnZNZ1RTa21bXsE3O/2larSMsR0fX+rpVKhWlL01Ri12w8J8/1+u96nt/f3ELwQ6ng6Sim3ddu2zXvXWF1lLZBiCs67wT7Q2RoZ1VQKVUICVqVkiExoXnldfWy07XSbSgkp+OC2CH3XmsYKZgClFIpzsRs0Vgphy8G55MZxjrWGGI3tAKTg3Krd0A9WTSUJVhvJbfAUtmm+uRjjfj8IoQlAGx1STqkAJamYECyn6pwTXBijcilS875voELOZdu81lpoWYAKZtMawYXz29AN2xQ4k6XQfRxv4y3GWMmknJxzWraCYa6RCovJC8lyTWHL18sohdKa55xtY21rc8kxh81tq1ujj1Ka3e5ora2U5/m2rRvnmFJkSJyRVpwhMCCleOHIhVZKIqKQgurjiyw5ppJSLQUf32itjwYBA+TIuOCsghQcgZD+6BbgAwKd/5hXPZhyuaTH/48HmPoPaERFrWzf7Z+fnrSxpVQr9+VfSr/rhODvb+/TPB5Oj+VUSIk451b1DPRw0KZtAb79+HaOoeOSCyViit6FQjmXKpRoVJNTbKwRCoNfa4638SqY0NaHUACVFKJpLGeMKgsRhGYp5c2F+zSN97EmAtBspzXUVOI8jeP1CqwOu0YxKSVqCX69V6w1xxj9ON1LwQpcCm2bFhhTyiyLCyHHXDAUKK5SEkIHn9d169umNU2piSPUHK63e4hhWRYgkEIxVgg01Rp9SjFDZf1+J7lp+1Yp6bz//uO8rGvftjGH9X2tpZquI161UTzh5hajlWBMIC+xBO9TklJozvkDuM0455JXLBVIcCGVDDHkHIksCi65FUIhCGCxsMoYa2xbax2nEQG4FLbVyUfnGGMIVEpN6zxjrZ3urDaMWNi287Zsi9HKMuDD/qC7jvHm+nbXplFSUgHBWK3IBUfGYoiENcUoJL08n/x8d/Oy3+36/UAVU0nOzaUmAOKcPcbojLN+6L9//6IIX16eSuGM2bZvkSWrLeuh23XR+2kapdBW6Vz+kI6VlILf1vnetw0BMsb2T/tSwGirpCm5KCGwZMLCGXQ7k2v1IY3LHT0arSUTQnBjxXQbr5crQD3tj8YYZYW2Km/JrwmZaDvbNh0wSKW6OWhln15OSCSAASBu21bfq/feeYeC2cbGKc/LUqkqq6lWKNVtwShx/Plj17beuVKp6ztk6HOc1y3lZJU69J3UavNumhcf49Pw1LWDCylmr5TaDRqgpigeiR4g5lIoglIcAKhWANJSGaNyrqXUmFKKGQGF4Iyx3W5XKI73URkllZ7HeVnXf//XfzXaWtu+fHhum3a3HwQT1Zah76lS0zQAzIfIuTDGKK1jDDklwdnhcEDGcsyVqtayb9qm7VCpUtiP799///Xb6tfT85M2bYq1bXfGNqVk4OL1w0cphF83YbW2jSba/BZ8SCmUJW1+9duybRtKZUqWSgrBIqEskiHnHJkAZJBKJr9FlwRXw7ATlVJMkvPHxuQxSvQpA4On07PgIvhYM5UEg923/zK8vb0776xqjTKMi5pL33dN38aYtdavTZ9TTjH64FMqwYd13Thj24bIoGMtFxwK/Pbrl825tu+RAWdkjCCq8zyt2/r+4x2KeHl+0VL99PHT6XSIMVQo0bn3t3cpjTEd41ipIK8oS4VacvEhhpC0PRgjlVTGSgKRsi9VHI8nrSygVFwzoRAzUt3WNQQXYvIhzvOi1V1Kkav33kvZNm0LxBgTj3FmyaXkXKn8oWzFh4eJEAg5Q4ZYkXPOBJNCIVJOmUAwzph4IP0fvMaCyB6xRwib1ooLCQBS6RC2iqwdDlJZxjDFJBT78OnZ6MZomVKyzbCsk9EypXCjO0c19AMgUF2C81Kpj58/pJIzpW1bW2tLTjGUdfXaGCbZuiwAuWss4CPYgpB8IBBSL8tUCSnDbrfr2k5p0dQGWYw+L8u6rQ4ra7tWSA2APoShsW1rtpVXrEQ5R2IcpnG8zb9yiUY3WiupVHF5XTznpRJr2silbfueGC6LK8X9OH+vlHb9wTSN0rprWm1V37W///bFWOP9EnxorQkxcgHrOjXdoVKa15GBsKbLOXEhK9RSqw9/VK77fojJxRhrpbqtyIGzHhXflg2pFCG4EMgAkADr4zAEjIRk67yc3TnkoKy21gxd0/Y2l5pTShGKYFpGxqgCccXnbV2XqdQkFa+FmFRt2+vG7hkLbvv27YcLi3dJMLjdppo5Q5DauNWt8zZ0u93uECMR05/+9Gdt77f3GxATDyQ48ppLqhWIKpCL27Iuh6FTyNqmsazTvAFJft1C2IARMKo1F6y5ZKqs1rw77v/55wOH7GOGYkqtPniG7HjoKQBWaNoSky+5eJ/c5gXjzaEBrON4t6Ztu74Wolq7tmv7loMsuaaYuUBpOOdccR5zSjkDUq7gQyysdl1DBM652+2ilP70+rM1NlKgyvquU8a2pdPWNo0tuTa28965LTw9ncLqxP5wqIghl+l2X5bVpwCItXz7/KdP+9P++5cfbnVUIWwb5Wq1Oey7w2n3/l4rwf7UdX0Xc3x7v1zPV6PZ6dgSF9IKt/mQk8tOVcEE7U87KqXRKpUspCCG2mohOaWCFYCQGHAhEFBrjVxIhilmRGQcK1IsOZfinANK+13HhdB7w4icDx8/fTru9ohst2s5Z0pwo3St1fnNeY+NtY1URuSUYtjWZbSN5pwZbbKSBFhNWZellFShcqmkNJ9/+lPTdPv98xqWZZmXxQVfT88727aXt8t9vNbCjocDAFFMxnsthF9dpYKMhegv32/rstrGdoNKMa7zLDlEpXGfmnanDBemZYiINYQwr9dSoKDXuk0hLvMSnR+6lnO1G/Yt/FFZSSUwCV2/U1zXUt202EabTjdNU3KRRiKg30LKWRlltLG2QWTTOKaalnklKgBQS2XI/eaRs231OZctrj4EJuBQhxzLujqr9bqutdKDQXa5XozRbdf0rI3J/8d//H/naZJaHY7PTdMtcUkhGs0JupRizsAFa4w5nvaS8xh9TJE9Oja2ldJ03a4UYiCEMlKAlELapuZ8uZ7/+pe/fP36I/r0859+IkLv/LZkInE8vQjJU8o5R84EEAIhAAEUhAoApdRKxB53AaoIxJABYwClUiEgfCwEkAshGbJaCUtVUjwWoQjQSgmAtm1yCULymrMQChFIMi44AOWaUmVcK4uN0hyoUNVKmBQz46KUQgxyKjnFft/9y7/98zLORHVeJsGYUOpg+s1HIh58JchUkQpypoRSksg2jZDKuVBL3RafU+aADJAhCmEqJcFLY8Fj7NrOhzQvc0qpMVJZI7WOEbjQQjIEnFf343xRRn580cjE4XBMPQDyWlGZxyCvE4I3fWOX1W2L82uMvm27pmm54EjkfZju625/rCW1TfP8dDTGOudKzcEH79xjUdC3yrQqpiqM8CniMqec96c9Ana28V60di8Um+dbDuvle97vh+OxTbEgopDMWl2oViKOrHKIPoZ1W/y6bj6laKs1g7VDH2Pw0yY4RypcMIJciRir6zxH74LfELBrWtZIIpRCANXdcRjHWu6XTnfPu+MyTcCkMpYzHlMdhicikkITCS61to229gg6hWpN+1BXcsZKyQAAjGKOX398G8fl4wsK2346vIRUhFDOz5Lzvms4MEDgnDOAwlgu5L0r6Iz9wAqfpqVtbCNb7ktK/rcvV+Ri1w1aCWP66/k6TVOKgXGQUiglhDJKNzGllNP5dhlyQsZb2xOrKNH7rWSec7ANQ8aolt3epMrc7F3wTLLWmMorCrDWcCFRcc21NUoyqJGoolCcGFNGU8lUCrMgG3FxUSipurZ3LhHw/rhzzk3zrK2tRNoYpfU4jgIFUQYiRHBxO8nT8+cXLiQytvqtlNS0Jpc2p3BfJ9t17a7dHY7zsrW6kULopCHTfuiWaRRKQimNNUrpSgRUGWMlxVJQMFlTUlKEkBjyx4eO//ONFxmmHD5/fBGSRZ+I8OnpZK3pu6Fv2rZpUooxeckF1bLM6+1298Hf7+PxdJJKAUAuWXDug/NrkELYxjIQDwe9WzxH0QzCGDPN27DfDfs9ILy//ZjGcdNbY40Vct912zL/46+/3oZxfxoOh14gxi3My8I4KSlSSef3MeUsTYeoYsjB+wwQVldKCanEWrumLVRSjPN4DyHUQq5pGLAY87auwXsg2vf7Xb9fvSNWt3W5j7e2sVqI3XObUtni6tymjcyVp5i+ff+9a3spJWGNMRLUrmsll43VIWjFhZLSGFNLTinlUoTSBDyn9PR0Wtf16XRsGxNzQCjzPDGG+90uJbqPc0xBSpSK5RTX+0Qps0IS8PrjR05xGhe3OSEAMQppnHMxeMkJoQglciW/uZqri7FpeyFtTsC4FEq1Taek4Exyqbjg7W4ffP7+7YeQikuldUO1LtMavYvetf0OCaWQD2lUpZRzpFqxIhIiwqMkioJBLchYroVylJzTw2AOjLM/An1EToAMUAiZY6ZaqZYcA3DGGEiOmOjr2/d5mQ/HgzF6c3/IbYZ933e9EixkCpurRFYroyQiizG6gE1vkTVMMs4llAekIStputa27ZAz1MpSLOs2o1CmUTuiknLJVUhdqQrGcwVESNkvbra6lVwrZYZBPz8hMpyX1btVm/T29pZyToV23e71M5+ndRzveXO7fS90i2CJeL9/ZgjbvAgujNXr4tJG023UQoNVWoisZPL4dDjcp3vKoYLtTB+cN7oVTO73+1rT+fquhBScN4c2xvht/QbAx3EVjANj0zSFlCtCY/vL+Z1z+fryetwdiUrK+Xyeakmc4ezXFAKXTCheE20uKGWAMyLQRndtl0va3Lp5H3PaHw4EoK2UXPuYBFP9oBiizjmGDFQBqeSMUH/+p5+WdXgIRIij0ppzsS7ruCybD8fnp08vH/Zd949f/j6uKxIzpjs8d90w1Fg5U6VUppjtd9payheq5dE8TIILlNu2IBJD5jc/LdPqVia4MpYJNVidaonZATzSbKTHHRQ5Mo6s7Pa7//iP//dfFPSNQc60NbXCfbyF4HIOWttlWnLJT09PhPD64UOtxbY6bNFo+/zyQsRMY9rYxVzXeVPKAbG+t4SZI14u9+jdsNNd3wotgAGrGEPMtUjPGANl7T//+79ArtNyK7w9nvYo8HK7bC5wqVSmlvHKaR2ndZ44ZyIJH7MAgpfDqTHmOo4cqdQyr9M4rSVWpWRjDUBhgFLJh1MmM1GEAqouRyLaVpdy2g3t6emQc5RalVxqqgUS5jL5+bjb77rBO8FKzclf7+8xEFWjmywIpdSQKzJWGTCG0XtNtupSqCohqdRcKvCKhKUSF1xpxRkUTk3b9O1OSqGk0kqVnFMOzrtaamut33yt1QVPrK5fV2vs4bC3rRWcvX15o0rWaO+DElJIxbhQhgGXjzdiiYgcjdFCipqjVSoNMeYgOGtengHo/ce5axtWaRuXGkpJZV4W773SnEtOxEqiZdqstN2u5YbcugDi7TqGTE3XCS7XabldLvfrXWnBmQhrpLzatrXGBOdTrkyovmmF1vf5vqzbdF/WcWmbPoYwzUtIK+dUSrJG1hKX8b7ep9ePL4xVQkFZlxBd3N7PZ0Bsu7a1FjnUlMZpzrmGLZS+GmvO5+kB3Jvn0butsQ3lSgAxZEJeSwXKOWUu5Losv//+G9Xy06dPUuvbuMzjQhUEZ4iQY0YIbl22xTOEaRqD19M41fIQtNHhiaeMDAURdEPPGNasU4pUCQoJLp6fnwRjNdfosueZSiAqgJUJXolKrZxhzCmk4EIotT509jnnXAo8UECcAedIlXMmuHishf+IiJEhImecP5hT7IH+pRgj51hKYZIj4jav3k/X27mW6ldJNXrvOBNMspp8SizGsC0bPqQ0JZRSldHrtnm/MSEEF96FWmsqDyCw0tpa02mhtWTjtEnkjDiCME3jvJvGlZFoJZNSIySA2Ha2liI4l1Jp1RIIaVshuG6U6Ybb9Xobr0/PL1LyFPwyT5XKvC73+zxN4/0+N01rbGOt3abMeJVSpxCuy3sqGUFCQY6865pc/I/vP5xbTKO3eWEcK/BcamPaDy8fEWBZl67vpe7cuj7Q+QzK0Cdidbd/qiUbq6bxPt6nENIwFCFUSHme16Hb73dHl9ZDRecWJroChQhWFwnmxnS5YPE55hhT2skBOSghm7Yp+RBTatudMqbkGIIP4M1hAM45iJTcso7BBQQWYnBhKSnudj2hmMZZcGGUAQYPt1KOkREYq6WUh8OpInImtNS7fki5cCmarlnGOacMtTZSDUMrrZJSPMIkgFpqASxKKKJacv33//bful2fc3n7/kVIvmzb+fwmBSOUrwiC81IqMuRMSqun+3vbDbd5uV3elTG5QN8P1hjGIboqJZ83xzhu25ZS3B+eHhwEu+tM0yLxlGq/00Y3r699zhk5MKjT/YactU2LAIxxo61iOqWcfdJaQq0cgDNutApxG/b9Ni6rc85hSV3wcVwcAm7RcRdjioKb5T6u68Q5142JOYt1WY1Up9OpG/p5vNdSG2MF3Od5o0xGaLNX/dARQsm1bVvngtuckHKdtpSiVNIY23SDVXxZlpLzvK7jfRNMbJtf5y19+tS2dmjbkgMQSC4LqyE99Ny5AgrGgYA96C4hVa6lFKViyUVKySQnxMdoaJnr+cf7p0+vXdNO88pRvL6+SKmASkpxmqZHkYkxQAZt1+ZSK6RlWTLPuWYi2FZPDJDz1YWcqzLqcNSNbQhRCNHYNucgOaWUk/NQZW/NYdfHmM4/zj55rc3heEBC5Nyt67YkfpRN04UY13WrRbRtY20XnEuP7qm0Gfkct21bF7fK+7zfHWrG6/1cUun7HSKWVIBQcsVBDLsd44JVxhhHrm0jK8MYQtf2jJGWFgABkAHnnLVdo5QsWXHBSq4p516ptm2ssiWHEGL04WHH1lwTsELIpRp2eyFZThmIlwIl0vUySokx5r4VtpEVMIZaKEuuHnyOzrZQMmOy6YbPP/25IqK8VwBrtRCPIzj3IReqwCmksC7rAktIYZnXv/znX5GLf/t3enn6oIySQpTosCoClqLz26qE4FIed0cr9bZsIaVv378zql3XciEeFEYiKqX6sMUQH7woooeGoFAFQEIghsgRGRf0SAIApZCA8KBMCWDIkCEXQnAhaq2MMaVkLqXkIlCWnJd1Ge/3WkFIQVDcugLUbugQWYrxdgnLvHof9/tGKfF4tCmlzuNMDIywuZYYUsn5fh/bxu4Ou8Y2tYJz3jlHxJQQDNn9dmc8+2XDQjkHKIpp3rR6o6JMU0JSWpWSfXAhpGm6CobDoRNChrAhQMllnsda8rottZYQopIciJZpebgSakk5JhJgbMcF73e9NnrbIlUmBKslT+N0u543v5ZzLZV++vnz0+sHrVXw6b5MUiguFFQuuNK2CsEFE7frTRtjd42LPrmNKH/86dPr509SNQBsuq8KuJBcSFFymG+38T4yhiFnqZrb9XZ+P//002dgUWrBuYTwEGiBDynGWHI1prUNAgolTOGkLLptW/1qdK+UMpVJscQQBJMxxt9+/VUw/PfDgIyXVEPwQ78jIg4ixJhiQaDv39/r8cna7lCwYjGNzSmmmLnhYXUppFxz2JYg9XydSszYMOQAFQEevXPBGSu1Sq0OhwNDicCXdUvJ++incWwbY1opGONMKMliTiWnQmiUJYIaS3AOGW7rWnPth0YoRTkv04bAlVTjOMaYGuP3+0OMUapm1++VlMu83a93Y2ysWUt5uV6aVlaqAvnbj/eQoG+a4ThIlGWepRIpR9VoZGhbg4g5JIY8xKRaffz4giDdMhvTAqBb5nmcQsjHZzGH+Xa7t20bUlSNFn/9+19D/KzvWijBEYzRlgwS5yC9Ty/HZpzuvIrK6n2ccipSyLhG02tO3CdojB7aIa1JMYkkz28XF71WSghECVLzzS1acSF7l+Juv39tjPf1/bxKZQkZ/sF7KMARQAKhlLLmiowpq0upOYVaQQgmpWyadt+2jAshZVOaEOI0zW1jrdWAkFMGglqLi15ribXudy3nsrVDjNGvJful5DwtWy3FO1+JrDEMGUfGOaeSUCsoRQrGmayCEQJDJhBVY/H1tDnHGQegfmiVVtfz7Xy+ciUIqNb69PxsG8MYqyUHF5xbm5Su13Ga7vN4CzG2Xcsqn+cthm8xxaHvlW5LyVQL49K0RghZcm6t1kxJpTNnxJlfi+26xprWNpIJYFgL+pBySVyqUrEUfP34sRYCYCEkLWLlfJwDVbRaxISCMdtoQWqZll3T7YHVmnKM5/cbkuSMM2CNaZRMMYL3gXFmm7YWGE4HgoqcgInj6fX/8t85cqatReIgVAVorOUcfv/t93V1DFlNZJXtu641+r5Mv/7972/fz9f7vWnanBJRdlsMiClsOW0MxbKuKaXd0O0O+6YxXLDgU9q8W0PbKm20kJKAGABjrJSYU0l/DICh5FxKKbWUWvhjx4+MM47scdRnSCBQPuQGtVYieoz9//9jQ+TsIZJ8bM5LyjkmIuKcpxiTYFpJwVgKngtZSnUuzuOachYcu8FQrUqpB1CaGHRdG6nmXCbviIrb1vkmyxYQGBIvuZyen1pqULLreP7HL7/s+na/G5ZlWaYb4gBKpxSrI2tMoZr9FtzEOS+5VKhcgZBqnqdUizbq+99+cI6fP38SWjDu73FUTcMY7na7kkuuOZawzu5+nQ57+/J8lFLZRuRIJZdIWQrx088/jdP9Ps2plBizlPp0Ol7ezjnF6FzfD/N63zantWrs3hpTa3z/x/cte6mk8/52u2gpfvrTTyXHSpBzUFwDxRCmEODbt9+d25SWXNtxmb58+3p/vxmlF7sopXa74WHjYRxiCKvzOZfGNsN+qFSdX71bS405+WkcTRs+vmol9a7fO+EYsBA8B86glpS00V3fOZ9LqcH5GBLAQ8XsARgB9rtdO/TLMm3Oh3kVUkJFoVIpqeay3qe4hvfbPaVIVBnjjPFaqlYKoORSUk5K6pAK884M5ng4ZApaG//p0+XyngvlEjlHAJBCFgmlEhHr2vb19OK2vU9p87lCzrdZGyvNThXQSscQCBhnquv3/XCIMVmjpTIAtem0kN0yOyD29vbmQhiXhVFRViefvYPW9FTEVsJ1nKii7fbEOGLhjHHApmlrqUPb+5Sp1Dlu0+Y4Pe67yLg01pZUGcjD/gkYCoGUivj243v0fr/bx5zaxn7+/NPzace5am1Hhc3rYo0umJlijDHn/Mvr09DuOtvt+2OhwgUrVKYxppAB+KPE2fRN2xpjLRXMKfXdcHcL8MqMlsbEnBmLnEsCVqhyzhExYcmlcIZaK2SYS62cUsrBR64EEQQfSi6MsXleBJdSainl+/n9b+OECA8abds0qaTL2SvFbWsb2wCi1haRb5tf4zzP47Zu0iitJWXYgn+/XGsFKQUiccRSa86ZIfroGeNGaS55Shkq9U2bcoZCUImg9u2AjKdclmnOQJKjkAqBzdOybYFztY7u+nbfthmgaqOfDq/I2bTMNVPfDaXW3377hkD90EsX1eL7XiSf3LZ6dE1XAzBptVRaIEkpJWMcmXceCRXXnAtjWmUV4xKYoEr3efrx4/wjp8Nh4Ey2bae1TrXGmDbnhNG6sZmAEWfIKpAUFrD2bdM2FrES1JxzjtN8XyVaKSQHZmy7hvXt7coR+65BIazpGJeFeMyx7XZai2+/f7uPF6NtY/taSkjJRV9Tubxf7/dJcKGUbtqm7bvg43i7zSVpJRnnt/uUckz5aQkrr1BKjT4XIm0NMliXVdou5hxTRpRA+EA655xzzrXUWqmW+lgLPizkjONDKIkABIQMBBcMGQAhg1KIAATngCzn/LhZ1EqMPeLkClSN1st4u9+vAN3h+NHN83i+Sd1ywXMhFAwJz+fbuklEaJqGIdvcRgBxl2zbJNN450ssBet4u1/ThQCP+6MUcp5HRIEMORfG2H4YNufX1SkubtdRKimUuF5ufT/YtisxGGsQGUItAFwQg+q98yHOtcQU9u2uaRupFFSU0jctU1pRpa7b5Zym8e5jrBVqjc754+nYNi0HlXL89bfvbaOeXw6H40no5ny5Xq5jP1wFQE7ZWrsV97e//lIoc5Sn46H52Ggt3s8bFZrdWrEuy3Q5v1PO07QZq4dhaLoOoV6u75fL2353JEG6k+N9+f7XX9u+++d//nP4/IFVWqbVh5BLiSFzjoSnxjZEBZByzn7zLizTMkLNFUpKcVu2vdDrujUaa61WWe/89XLVRlnNU4jGwDB0UuYa8zIuXPCmbzljIUSlhGoMcRRMoRA5FyaYFJJK9c7P40xUlZKMqeCjkgoZB8BSSsqpAgnBa6KSS9/3yvzhHGzb1hfSRhprQvDTsqWSU4xcKgDkTAAWH+K8baeDbfvuoJt1DeM4Reeb9vBHL+N6DSm2bdc1w/Hw9PT0vLkNGVAlIrBNW0rhXG1+FVJjiuvkg1/brtPSNK1puu52Wd7evz0Wl977WLJRGP0mjVGcbVvinGGmX3/5FTlHBD8FxphpzWF3UEox4Kf9Mxc8Y2VAfl7E6kKt11SLVMq7wJlQSpZScykfnj8ViMA1cCW0ZILT9R5DhB6A49D0WquKNC43Ew0yPo734JI0qjGtkrISpRglF0Jxrhvvl3X1BPw+uettPp1aZLwCgQDOeQUgIi54TkUZZByd86VUxhAIH17Wy/WWQ7B90zStaRspRIwi1zTe71KorhuMsZxjjCnllDO9v92Ph4MURgphWrP6ZVldqUUx1g2938KybaHE+zpxjjnmnGssudYihQIgozVjHJwvuaSSgg/LPPsYl2WphQig6ZqmaRnw7cfb/TZ7l1JKwUck0EZKKVOKAKxp2q5tN+8RIfhom65thmVd1m2rOSupoEO3RajTui5xczWXLnim7U6frFaFEWdAUL3f3t4u87oqZfvDoI0FgErZ+ei88yGO87qO83VcT6djyKhkKFRzym5z0mhttO5aAnDryrkwnVimKRGXzX6ZZkDIEYSyp5cWqFYkoVnTaMYxrB4ZbWtgolqLUmltEoscAPy2aWOeX18Fl0Z1wfvbeJ3me85pfzyuIR+PT8fDQWgFiG3XANT79VYqcMmAwbwtl/+4IGBjrTHN0HUVMKawzD7FsIX69PKptQkZMETO2EMXUUqB+gA8VyACAnrsABgjIiKoVKgSF/wBBQJggFhqJaI/5GGVCAoXrNbyB3+wlMYaH0AbAwDehxTyvK3fv/8AEu3QcW2RcbetbtsqNEYrH0IK+Xq/1lqEUB9/+ggESqvPP32mWuf59uPbt5KrUVor5f1WCH2uQggp5eU2udWN01JL1toSEWEpMeVUpdZKcxfX5HKtVKkIyY21lSjEMN0nLqVtbEgplQKMDYfdsqzbusWQ3OpSieM4GWNen1+dm++3uxBKSeviFlycpzlnRQC6a4AzQGaMaZuWMend9O3L91JLiEkpZVvJkK2LW9eSYx26ARb343r+8e2ScmIA7+83JUWOGQGNkTFs5/fLNI5/+uc/+1B8CP1ht07bPK5csJDC5gIRpJwEFy6U+gZN45quVVI7737/+nvMnnP29LRrtNk2pJas1jWnhDHlYhWPOXjnCHLT9jEnF7y2Ugi2roFL1rTGGl1rCZFKLTHnZVudi5f3c2Nt1zdaWiUVIdVSpnHkqKTkDImheCiOaqGHcRqB11IJ8HDY73aDX7emtR5wXWHz0Uq93++Wzafoc07EOOecoD62iCmFmtPwdFSq1aormXLiy7pKbjmzx9PzsszaqpeX591+YAyVkvfbXUqGjOWpTtPMOEcga6QyXT/Yx7tWLdRZQzmVknmlWHy/09rCdJkQJJYgxRAD5ZiLFJkyZ1Qpci60VSXXQsz7SrUejwclVUohxBiDN7YRt/s0I26r//nP/yS1AAmhxFpoHuddt++HDgQBAjFKKW/rNt7u2+Jen1/w6VkrKThXQhitYspUq7WNVLxt2lrT5XJOLjZtYxvLOJvGCQmQi2Xeci4MGSADKFSpIggtOZLgPIeUZBDWKsW9D8FnLiqoP2I9t4VmaI3RqcRlnQWy19eX56endV6YkpnKdPPrurRdK4yJOX97f08+ScG10jknpVXOON6Xb19/lFqFksfTUSnrk6cKt2XenEcE27ZQ6P39Pgzt6/NzLY/DQfY+GG34IG73m3OOOIZczpfrNE1AeDnft22zxg5DV0uVRhwOR6Mt1aK08im6zT8SSSCUQjHgIceYSkwJEK6X92marBZKqHS9277oxtq+dc5H56zmJdRxmjbvDRHfRC4l1eSdu9+m6Tb1fSdRtKaJqeRUC9XL9e590Fpvizs+n9ZlUeuaUyIqXdOUWhDyuswppRB8LdB3OyoQa8gl5ZIK5b7v+6GruRQq5/cLEyznvL5fQ3DGmPW+XK9vlfLTab/O67JMUkpjzPvbuMxTzEUKvT+ejDLX82Wdl8PxYI3dHQ8pRO+c975W+v793fvt6fTUtd14H12IiKCNrDnPyxJjYpylVCTHhwS4lPJQ/BJUQASGhPXBeWaIteIDDe1jYH8gHpFzxpA9XupKIc7/EE8zzpBR8L6kmJKXnCMj3RjdNET1fLvf53FZN+fyvLluv0uxXM8XzhnVqp6PnIuIOaa0LgvA10xlnpaYgjX6dDhxoaZpBcJ5XnHHuIBp9TFWKdX1ejmf30uhed6mceq6ljFkrJaU+nb352UZdg1joqQipeJCrItzPhBBY6x8ElxwwXhOWSkthaiVWYPex+l+vt9vXLLdfvenn/7Ume4thxxi9PHBZfn+401ZYWwTQgYRK4AxxlrTD0Njmvcfb7fxFjb/8vHT0PWH45FKvlzPQgpjWtsObZ9ioWVcK5bX12clxDrNADWlooRCxlPO33+8tcOeAO/TYnUvhYwh75teCuF9plproXboffBKK2O0EEILXRVJIaYxmka3Td9aLZmwxnZ9p4WOPnHkMSQh+Kc/fVrGm7VtLnVe1lJY27ZtZ5TmiKykuG6bc67teqp1WZd1CcuyrWsIoez3TCurFHt6OQ27roSUCzjvhdAPiiwBlVoYIgCrhYjo6fQkrWpt07aNEjJByJUYY1axhx6Vc/4HpJYKcVJK/fTpT3/6p+eSgpB8fzw5537/xztgNKo9PR2lwMPx0HSmFuIMUoi5BKk4AXnvOFNcCCE4ACFirgwxK6Wnaeaadb0NLoz3G+fYNo1Scrxd1/u9fXlRStSSlVSqN6kyaW0v+q+/f4klDt0xpzzO7nq+Pz0/NW3rVpdiMI0xxjCswuombOvhdHp5eZpvtz+QGplKTtf7eb8ftJbGNkJwbQ3VcrvcheBScKr1cj0DEHKaxqky7He9MgaoKGn8ljEjR5VCDi6o1gihtnk5/zhPUxDYWd3mioLxklMi0laUUpGg71rb21whFkDGjFYApCRnaJZl+X/8X//7x59e1nn+/u37OE9t0x4PR86QS+6cW8Zt2rbv378j4x9/+ikFH2KqMdeSiEgq9frh4244CB2+vf0Yp/X5+bl18Rzfg9/6odfWxlwASKSac7re7/O6KqWF4BzQbaEQ+RiNNR9eP9zv94L0dr7+8rdfEdG2jXNeKu1DuP827vd9JZJCaiVjqD6kZdkIEKAylJwLhFQJYygh5O/f3rqucfO2ORc858x757t+XdegOgNQ1vvICLq2DzHeriMfN8HVum738e69F1wZbddpDVvo2vbn5xdjrG1t7GNKsWuaZVqUUNuyeudSLsoqLlUt2fnlehlLyjnXtusr4ni+O78pJZWQYfVamabR0zTd73NKZWBA1JYY3LK6eeGccYTo03/+x19Krovbdn0PiJsLutnX6N+uP9x//u3Pf/rMkPl5XaaFc8EFu5zv+HA91wLIiLFpnr//eGfIm7aVUg7YWaP6XSeV5IyTRKJCRMiQsccJCYkhQ5ScAwIQVQLGOEOo9XEleLAZH2rvh72VM8ZKLZQzEHAhBOMVIcT49v1b1+olp2lalm0TUp5Oh3/88rdtW0KopeI0b+PsSiYfXEzxer6M03g6noCoZmqbXkjpV78uW8zh2/cfv/zt17ZrmnZAYCnl2+2upNhcuN7vzqeY0zyu6+qmeQPAEBdrxDCYVOo0Tb/+9ttuaj5+/Akr0502xhJRysW5UGs9PT9xwf3mu27oulYIFXP5+uVbCFEoro3yPnIUQFAoBO9TKoxxJOSCAVS3+b4fAMltoTIMMfqQav6tMfZ2u1OlDx8+9t2gjQoxzPep7XtA2igcT0cQ8ng6Df2OoPa7HoGW+1RLta00Stym67A7+JilMh8+f/7885//8//8e44ZEQBV32nOTc5ZaXU67RHw8ZSXS53TVDIdD4dPH3+6Xs9+CzVnIVmtBLXkFELMbgu7YVdr1UI//+u/EsF4n1JZESpHKgJKiFhRSCkFJi6U4ER1mRcfitS6ZCpQHxlv13ciqYUtsmmm+5ZSFtzQgyPCmWC85JIxEZJUChmXwggOy7qmEDPRPM0lJ4A8jpMUHecSkddcCalQyTUSkTH2Oi3TfZsujlL6/OljqaxpdMmh74ZSMKZkddN2TSk5zyvnSUoFFZvGUKVCUGsxtr3cr8s8r+vsfTBW7oeWROaGQ0XBBCTIzg9Nq4VhlUPi0krUqhYEROcCIVtXH7ZbyjFRfn15UYqW6cKZdM7rRn74/JFyEZ8/foreff74+U8//Xy3bSpBS+VLyLncLrdl3jgXT6+n4+mouT4dn7U2t/fbdB+dD1pJAFBaCM58St3u8HS0ITglBeh83B+Q2OzGcbw1pYcMJdfxdhtnvx8EEAkpQ/aMC4JSgR5FcoakueCIPvoUE+PIuUDkhHV/2qUU//7Xv8/TeL+OtjW7vpNCzPP048e7jzmHvMRwvY/eRwLWDW2OUStlbcM4b1orJN7v13lbgDKHEtz89cs8z9u2rvvj6eefE5McgdbZ++RyzHJ/fDtfUwo1F8lFRVq3OeX0+vxyOp2ci7XSsNuP43i7TVSrWx1hzTm9vQW3ub7r9ruBMb4tMwHYpsklf/3y9Tre9vv98XSytqlUlnkFxFpyiHnbPBE5t47TSsDKbVyWqdY0dN00upTz6lzwc4h5f9qFkIiAcQ4A8+rWxTkXmn53OD21XdcxLCWv4/joGrW2C8EbI5iRyITiAhFq5r9//f355XVb4u+/f1nmdVmW58NpGAZj+OYiUf729fu8OILqght2bbezl8tbTElIUVI8Xy5vb2dpldHyy7ev2+r6YVAgvv+4/Prr92Ho+7btOptTjCGlUpZ5IQIuRN+3QsiXl5dS82//+C2mbDSPKSECAdq21VoDwrquTbcrOVeqVCsTHBlCwT/osQ9ZBNRClRPnnOWcEaCkXMTDIP1QCTPGeam1lCKVyaXm/Jhcl2WZzz/e7wKFZLfbLRPsDk/ff9x++/UH49gP3XSb376fQ4hSSaVYDLHmmHIpiRCBcTRaI+M5LdbaeE81wTavfbv79PG1PEAj0XOh+t7M0xaoWG1f/vXDYxa3Lo4zPB13ba+E4DVVty2FatPaEmolHmJZ3ZpzWdetlHq+XLuuG/r+8Sf1vSy5GKP7rsdKUHHoWN8NbvMpuYdU9T6OSumfP/80TtOybc4FQCCss3PD7lBz/stf/sYRuqaRXHZN54OvtaRSlmlOJUsjfQjn8a6VFkIOfSsE37bt+9dvNZdPnz8d+kPOrm969VFLaZtukKypkP7pn/91W7eSHUIVQiNLMTjnnBTCWG2sTrlM98Vta8yp7ZqPH+yHlw/jeF6XLYStbdoUMkqeUrRWS8MrqRDi24+Ltu31vhBFpZT37u38nmMUXHrvAdC5CFS7ftBSN1Yb2wIwhIoVMpV19QQkGIcKQilExoVA5ABAFB+dYYY4jVPN1RprGr2ty/nHd7eGLbhUQli2dbq7lFpzpApcAhEyYJzxXP19Gv/3/+N/VOeFEM8fP1VEt6z9MCzL3Vh7uYSUctd1jeqWaWO8bn5d5w0AbNMC0LJNXMjH8l9JySXPtfgY5mVOsRxPx3mZOZe23QNjn3766Xqf1m29h/jyfHz/fmv7TnVDCnWdlpoz1fLj8oaS/fT5Y9saoZhkKoRwvZ+5RMarkUoIqazVh8PJyK5tI8euaxqrrN9CTsV7B8Da1cLhKBhygG3azm/n//P9fzy9Pv/f//v/re+HUjPV1Fg7dL2xzfWWxnFJyUmJJRes4vz2Y/zL3//bv/87Z8JtvqQipSQiBAIA9kdyx6jkGP08TfT4uLRhSMYaICAkxkArdb+PCECVvXx4lUoa2+WUf7xdfvw4AxO15AR0OOy1sk/PJ6I65VxyzgCDbTvbAuNLWpHg6enp9ZWtznkXmr5JlM6XW4755eMzVnIuxhS10Yf9btuWcRrX1XGGTdfUUrZtqxXavospCSGs1SGYeb1u21ZT5hxLLVoJW21M2bZN3/U+hGmehZDX++38fhZC5J/z08tT17XzPAspvQvWKtua6KP3AUAQ4TguwzAIrgqwkGgdp3XdkAMQ2zYvlCy1pJRDqDGm+7zczhe3bT8u53+9XbVW67qmFMPmdvvd8Xg8HA7707EbdoQixMCwRK8aO9h2v9/v397OX778bm2z3x1a2xDRFoP/8XbctyEm05htXZd5+fsvv/ZD9/uX36dlaxrLEN7e3sdpVkYrxUrO6+zm1c3bb6VCt+tNa+d5Ge/3UkPJRStTcuZcpBTnle12Ktd6u0yVcNjvd33vfZjnWag1p+A3//Lh8647McRSiUphyCTjScgKgFgZ57VSLSXVXAtxIxA5x5py5Pzx2/9A9SLnnDH2uD8QASKWnFOMhR4GJf/jx40ox5gywY/3W3A5Rs+5XNbr5uKyhmVem1ZbJYXkuZCPKaTiNxdS6BprrO26tmm6l6cPu93xfr3/27/8+/64v16u6zJxJoZ+yCk1pum6oWmb49PzsNtzJty6ZUpGadtoIVhJJYYolHZuvbydnfMxJcZQGS1C/sevf5NSADCtjdZ2Wbz30YXwKHGcjodpmru+/ct//PV2vVqj+759et5tW1gW9/uXbylna+3lcr1er0rL/unU707JbVTfiLNhOFApP97OwBFK1cbY1hSqkPPqnR/vHLHvuqf9LkL1Ib79+B5DrkTG6JQicNb3e4aisa0xPUdX0tw1GrlAyEqqkOIt5XVZEFnXmmnkh+Ph9HT89R9Lipkhc6u/+6uQoISGSpwLKjCtS0g58GgbQwTI4MfbpdYLUbVGSS4BkIFoWh2ciyErrfa7g+JWom52gzFWqaZWuN8u8zydL+e+awmr92EYuhiJC6G1+QMKyJAh45LFEC6X68vrS6X0j1++v3/7fr/dvI8+JeeWFCPVnIk+fXRUKwOsrACB4OL58PL/+R//+//x9Rer+O4w/Fiml6fnnTWmVYA5RM+lncbJu4CA+/3hejnflrORFoG0sdM0z8tqrQaApmmV0M/PH/b7px8/fvz1v/7rDqtt+6btvHfv1+tq1eF4RKmkoAoYanbJ1aW0AAgSIO/3Q9uCtTsmxNDZUpIfow9eKlUophSncclWCb/FLJFxfn57C2HtesP5ILnknH39+rUC9d3e+5hCQiQl1c8/f3Zu2/yyPx5N2ytjHl26ShVqRiDBeU4pxUyFYnDDcLC2+fXXf/z+25e+Hw6nJ7VFbW3ByoCkkOUB9iLk7CE58wKBm4Zx5ELkUhAQOTDGS6Xj/qCkOl/frtPYde0BEZlQwnz48GHxfpnXD4fT6+uHpm20lus6lxRTSLuuezoctJab94oxocz+6SAEX1YXnEeG0zy9f78MXVuDD94DslrydNt+r1kb84DL55IZw6bpEZkL4S+//J0I0mOXiTTNU/Cxaw0S5VxijMo2pml8KS2iao0uCQmkkk3XcsYYwDIuHFEJwS0Kzn0ItmmMNXILpdxzLkJLabXleLvex2UKm88xM8Yaa7XWRIjAkWibfYxBCL5/OeCVTdvy5e3rOI3rskAFoxVK/vT6YgdrrOWMcS6N1PM8KtkCr0o2SHgYdn5bkg/90JvGplKu15tfVyWZ1LISAbJc048f79++fF/WxfmohNJGPz9/EMLkUpCRMezDh89//csvQKztmp9++nl36O/n93maBJNd27VNK4SYp8WnqJRe1/XLl9+u17tgou07wYTWmiNfl/X8tuh/M1gZQ4whEFAuFRkwzhljhPhgxDLO/xgGED3WJJyzlCsiQoVaKv4x2mTiAYZ+eIdKLSkD4Oa2y/v5fr+N021elrbtkfNKmUr9X//7/5ILrNOyLIuxyq1+WZdSa/Qp+OT9/fJ+b1trG7vfma7tn59fOOdd17107YcPL1qq2230MTAhl+udAI02bd+fnk79briN999+/1UJ8dPPP7fNc6WcclrX1W3BWCOIzfO6rguTItbs5q3cKOf6/PoqlUgpX673Cii9LykZazjyWquPwXmvlDa2cd5xKbcYwj0JLudpMdaWQr/947dpnmNOJWfi8s1+36Y556q1McZKwd7P74Lz3WEXUto29/lPn9t9r96v67ou01hLKil+//Hterudr7daWaYSU1BKPX14FrpBYDUTIsaYckpCcGON2zYhxH4YckhABQAvlzHGdL1MRLB51zW9EM3mgl9czlFZyRkxFAzSo+zLuQgh1gqlEuNcammMaawxui+Uldbrsr19PwcfXl9fre3apmVcIIgUk9XQda014m/rEpyXgqFAqVXbdpU2zrnUChBrLbkWgsqRUS0phRj9t69fr7fb3//6V6lUyHV1m9sWqoUz4so+MIKMIUNkFTkTObOU6/v5zLAszne7Y9f11pppcbUW52IliDkyxr9/fw+u3MfrOF6M1f/8z/9Ua7S2MVnM8yyE1EZx4FZ3nCXGhdYaoEqt/vJf/8kAdvu9EPjl6w8f4s8//6nrD8owvrn3H5fg8vH4lFNymyNgjEsu+P0+Ks1SCNHH221U2tjeDkMf1lXMy0SlvH17a5vGbdO8iPG2AdH5/h6CLxVaW4Dofr3N09y2rem0NcbatrF2WecUA3sU1nJecbW2l0IprRnDFN3lfAupvH748Kd/+vPbjzdkTEiREnDOiWqtlXEmpcgpEhUgYiiMtbtdzxubmagEqZRai1JcSR5iLIRcqGE41sqA4P3ttswLVeqHo7aptbv9accFu93vxkgA0lpzZMhwXKZyLfOykEBkYv5+0VLlWmuKWCsDfP34Yo2Km6MKuRTO6/s4/fhx3h93Uspu1z0/PREwH9O8bvMyWx9KrqXmtunu45RSNlpLqRmCkHpbt2XZjLbfv/8Yx4khKC6sNafDcT/sGQOohMi7vlFK+RCkYPlSvU+20YzHGOMyrUppIr4sy/vl3TunuGqaVik57He73Y5zXkt15Goma23FYjp7Op22bdvthw/5A2cwX2dg+OH1tR+64KNRhimefNy2QFjv99E0SiqZUvzt9y8h5uhCBAbjLKTwIYy3u0LkAi6XMeX8GGQxLowZ2kF0bfv09AxAw+4YYkROAJkD+9/+n//bZZpiTlY3RlkadlpKo5UUXGtVibiUq3NC6hTz7XYHQMGF5KrkWjgNw1BKba1+eX0VkqcYUyLG6SH/RUApVY4JOZNKWmvd5iAmgIL4R0LAGScGTDCiWomQPaRaAAhENcVUSuUMBGc5xhxD0+gtCHeO+6PSWiLgbn/69//2b8u0xZfg1u1+G51z4zRdLrfxPq9bPB53Q9+fng6SsWHo27Y9HA8MGCGt6+JdYAjIRIphvM+A4n6bpHKn0+GwP9zGcRynbVmFZP3QaiVjTCnHy+XiNq+tXWY3zbflPnEhiLMU4/VyV0qenp6eno5AdH57e/v21rTWWmsbsS7L+/vZNHqalv/6z1+QeK2l6/sSC0junS8V/vK3X2PwWpmUKScwbbdMq/e/pBQ4Cre65OPxdDi/XYSU0SXgcH57P19un/7p07K4EEJJwSg5TesyOy5UM/TTtJDkCRErujUq4ZWQQsgf377+/u0L49D3LfIOoCzL3HZd33chpeiTVjbFopQmAC7l8XBq2/ZxnYGCbvM5xRBr3xMidm1XC6zrOs9LKfVwOtqmq7W2WkspkyNkwhh7ej79+suXr1/OAEapplF8XTYhOIf5frun5BGha+1+GOzOAnIttAtZKsEQKpVaS0yBE5ZcSy1KSbdtMfn3t29tJ7Xp6+JNKbWksG0cmDFNBQTkgIIIgKCWygGFpON+UIp9/vmfPn541dp658fp3nedkWpdllwTl60UKpdkDC/QUKWcsnMuxsAZU4qXWtbVrUtI+X6+nm+3KwK73W4/zv+v+T59fn1pPzRtMyyrpxS/fv328vIibD/sjpS4lNJtcZrc7XbfQlDGfPzwOfj4j398++nTx1KhJELFtmkrqWItgmpBoPF2b4xWWucY//bll1S8VPJf/u2fGUi3uXVdToeD1vJ8fvdfw4+3H+M00+80z8thOLRNm1KMwTHBp2VcN/f+/nY7XxhCSTmq+PW3bwAopSqluDXUirXS40cWKiJnTAoASjFJLdpdk3Ld5lU0bSVChkSUc6lUsPL7dYohGa2P++dxup9/XHLOyFALY7tGChVcfBvP19u17VvBWK05p/T9u48+IcfVuZASMr7GrLUouXIoAoBz1jfdbjfYxlTO3t4v3sd59bkU937xLgglXl+uj8mCkopLsTdNpTKP02+/f13XjXM+L8uyzFJIpVWIsQY/DH0Fm3IuMerDLpdSavU+tI2FCoiFoJZcGLCcizIqu5JTQWQEdXfYAWfv1/P1cq2FYipA2SIcng5KqaZvrLVhi7WWtm2kVO+XM0PWD8NPP/0kBKdatZL+1aeUjod9rYWAKtV1dTVXzsW8ORfj6JbxfnNuDTGXnHfD4XYbOWLfdwhFCJZiWSYXU/YhXi/XCmRs8+lDczw9GaOAgXn0I70DKrlEwdhu6IHBvK192718+Bj90+12XuY5haCkso3lXDgXS86Hw6Gx9na7cca4EDlERFRKKiO7ztrGrMu62mV3fKJagCCnUukB30UCQGBa6xxTFJwyMXwc9QUpzVlBhoBIUB/ELkRWa6EMXCgiYsgYItRq20ZwNNYOw1EwPux7qFVIfX37sRuG0+Epxdy3Zl23465/fX6axuV2n5dl+vD69Prx9XDcU6EQ/LKuSkpEWOe11NIPTQjrl9+/+S1xIdZ50lYrI/lVTtOERKfTETj6kDbnlZKY0W8h+BhSpkoxR1RsHEfBda0khYw+3y4jA9H3fakAtW6rTzEzzkuNIUd39SGmkslomVJdF48cddPkQlBq8DGGjJRiTNfrdGL8ZTdoq1KQKZZSyu0+51JzyUyIX3/74oOnUjNd3y83JrhtGsEpfU+tbtpm3wxt55xSt+PzUSmtmKqFCJAJFrK7r0uhVCv66JtqKpToA1VMKcXgD/vjb7/97l14fmmcC1SAMXM6fmy71m/u+9dv83z++y//lUra7YbGNpwJ59aQ/DRNtVLbDVKyeXaay+CdD3HX73NKJafX1+cCzPSmIjx6zEqKbVvGcalUbGP7vuWKhRBiqgut5/O9loqM5VJySrVUzhgylmOouQjDAGvT6uXmwhaAoOSihW6PTc2RkIUSY04sCmYkVqpAMW4vH5/+13/7OWcnhKKcv/36j/1usEYjYozhH7/+xhjyT3K3k85v03yTiu92e21tgTrNU9u047xu6/b6+lFy5b0rOb+8vlpr1O+/X2+zlf3p5bkCbMvWNv06b+NtMlrv9r0xtvRQS7mPUyV+OD4b7621jbXeLaUkpWTJ5eXlCTnLOYIj20hhjRq6jiHd7zfGWYzB56iN7vp+t3tq2ubbt9+DC+u6EQAhNW3z+uH15aeP67ICMO+8FCKmNE7j++0y7E5SyX/88svtcjnsh8P+mELmQujGLvPktgCAuQDbMeQIiIzxWgsTTDAsKaUct3WTQmZCkJkAY0yPO2CthMhKpdttRj7XROs8m8a0XUdEgHyal+vtGlN+9BqlFI7q/Xr3saSU3epDiPOyEqDSMucENREQQ0ZEBNDYprVGME4M5nXzLkmrSiqlEiK4aVrWpJUc9rvDTnZK+VCkFuO4zfOWcy4pex9TKsh80+iSSyn1epsY4421AlnwxVNyfp3n5bg/fPr0yW/+ep6IQGtNDBDIx2CURs6eX1+MtjHleEmff/6JIS7zcrvchJLehxDTNC/W6M62Ly8nLVUpOWdPAobdsNsNb+/vNWcpemPNfrdvmoZLTqXUlACrc1tK9TZNlQEgSSXmpfS7ru97q4zb1uBcdEtI3rvNmhY4U1IFF6Z5esihYozzeJ9n1jZaKbPMG7A63u/Wmsbq+3QvpVhj+tZajTWiVU3z3Gzb4r0nguPpRMDWdXt+OnV99x//4z+897v9kHNaVued44pxjlRJCI6IOUXGgAvGGJZcHstezrjggilIWsWcEIBxxhgDBKkIGVYixv/I9IhqpcIISyYABGSVyK+eMkkmh2Pzp5/+dLvPORdtxP1+ez+fa4V1WYf9TnIZU+zb5vm0F0qXVN/O1/fv3w/Hg+26oR+c31L0033sutYYZYyUqonRf/vydfNeafX1t69NoxtmNu/FtnDBGUohlZAS/n88/UWzdVmWrolNhsUbD3zg7uEBmZE3o/JKJZkaMpl+tMzUVUcmU4HVvQmRQU4fHNi0eDKocaL0E3ZnrzHHeN/ngdBoa41T0zoNMyRg1+3auu2W+vVyqsrqdh6983XdYIRzAoIzwRjbba2z/XVw1iGMc05aW0p5KeruwzaDdL0Ni3YpRERIDqCu6/cfPo7DOPQDwphQZqyz1jpvrbZvMXZZFPOyYgL72ziNMxc8xjjPa934qqpSREXN9aotBW2HJMBF2ULE1Gr1tB6PBQAZJKSUCSDY4JquRgi9jTveepiA1atzzrkwjOPpfPYh2b/+4ENkQjBeVHWxu9sDiDe7XQRqs99yzmOIMXjr7OV8XvRalTXnTC0r5chZvwQdcyqLmjECoI4Qi6bebQ/Wu9Uo4wyCiBILfOaClRULwcXkMqTTtFobBGPX6wURBnKKPqQUQ/Qw/T0YlmGo60IWHKO0TlPdVGD1QjAMEwAA5KS8D97lN5pVhhinFJILOvqw32+42OaAz5erMv52GVz0ajWM4mVWKYfD/iiL4vxyHQfLGOEc3AalzapWzbgMPlpjl2XOGVLKy7qQsiiLYu7a7f6urVpCoTFzXTUIk34YiEEUIj2pq1pLWZE3I4fgUkiMIUjhersO/fW7b7+pSlmW0ge/LIpA1DY1AIlwgoXgjLFpmn0IjDGIEBfy/uERIXS9Xk+vZ0boPM2Ukqoou+0WAJQxWFblnAMxg5ykkBiC6/X2+vy06bYf3r1vqmIeZgBgVTcpp6lfCSZSwls/xAQxwZTwDFFKCYCcEySEJJBeT1fg8fGw5yWDGMOUEcIhxpgABsjHKMqiaNk0DotaEo4uGDfqw/FAGByu85enr857hAhlZMv2EIKEFh28i3FalVIWZIgw9j7lnDDCwXlAYYIgJBCt096BECEEIWYAcfbZ2xxBLiSXFSMYRZQXbWKM0zThMxGScc45Y9GHw+EAAJrnWVudQSIMCUpEyYd+oIQUbc05NUo5ZRmlgvO2awlBnz49ccatM1xwIfim6ygmxppMcow55VQUMoGMEa7qGiF060dESNVURik76WVdrFOMUMEZgJliWtc1hqQpK+8dJXS49aAB06R3h43V2qoFYxJ9NNYjlAoplNZ60ZQyShnCcJoGhDLhOCbi1pQy1sEZpRilbxqZ27Xvb9cMsjGbqqqMwXXdIkwyeHN5JgiAcxZhiBCc5vHWX0GGx7t7gggiMIEUciKUtttOVsVmu0EAf/PdR7Wu1ti2rQ53h/PpbKy+nm6cihQiZSSliBCJKeScCKYJAspY9J5SGgGklCKEEMZ/L4ulnACECIKYCWEUU4hgyjEHiClFCIYYMkApZB88QpBR6n2MIVdlNc/TNE6n57P25u7hLqbw/PzknQ8xVLJ69/6dLCkCrmk4AC0XDMLU3y5q1cbqrm0Iw9a7rmmF4EqRqqwJFpzzZVr2+40ohCxLKSUlDGIMQIYIxuCfn5/0YmKM0zhauxaSf3j3gTLmQ1rm6be/3WFGcoTeeWvcdt8xwp23X798BSkJKXNORmkI8abtMKZaq5SikLykpdWWC0EJo5RM86ydGcdxVWuEyUarrU0pOmvfQvDG+cPh7nq7rqvOCOkQ1LwO/bhqw4epbtty4e2mdcbmGYWc27aDAHMmy0I457y16zoBlGIOhKD7hwdMsV3WeZxyyvvtDmG4rEshi2mamrZOMWtlrDO8oBB7peaff/ybdcFpLTgv62pd1PV24xQ3dZtSwhBVoogg+uiCD4JT74MUZds1EOYM0/H+DkK4zGvOCYDcX25VWwpRG6utda+nsaoLQpmL0cfkfcgxxxgxxS6EGP8uZ/HBw5zP5zNhlHKSc6aY7I87AGjLREw2xRBDTjGQlDEBjFHKaAIgpgwR5JwKIbzxIYay2G4Px2ExIfgUAco4uFjWddNWm83W+9huttaHZVmul/Gvf/0xRI0JfgubTcs8rQtBtCzrpm11WjFC7x7vi6KEAa/rst3u7u8e5snc35m2aXa7XVGWzgUfQwZgt93ZGJRSIWZJIchRMlYWRbtpp2kZLjeMULPtMMHWeOJjUFphhplg0eR1UVTQZVHWBoBRP0zrYtekvAtt1WQArY/HuzvGREsY48S7oOeFEHw4Htp285cf/4Iw+P0//mOK8c9//ktTN5QiY0wKERH44eOvpnn+8vRSVRXGKEPkjOeCEYKjd2pedPCrd6e+f9c+JACc9ZgSill+gxWA1N9ulFMhxYfvPnhnnz5/8i789MuPnAvv02azLcril0+/yEI2db0Ye7g7AtQPw5hTIhQzhmHOnAsfMX8z7uaYc6IxAQijDxBhhDNFkHHKGA0CUUK0snVdtF0dgnfO5xxSjlUhHu4PXbc9PZ9yzgRh793dfYcwen05nc7nuhBNWVgM2q7EKK96wQC0dV3VddNUalpOp1dKkFITADl6Jvku+iglQx4abZdVY0qM0SH4qmwI4RCREIFxAa7aO7cu83bTuuDWdWaU1FVd15UgGMRIIISEMMqO+/vz+fL8crlce0ZgzC4ZX9YFY4QAaNV6ejlb62MEy3ha1EIIlpIjSpPPIJCm3cx6fnm9GaUwyKtdnXcVrzFCxhrjDIjZ7Ox+u6OMVlXVtW3OsRRV17Ux5pjTNN1eT+dxmUpZYoxTjsu65pwYlQijeZo54SF6ABJjFAEUrGuqomurZVHzsszLnHMCACAEpRAIwhSTcxEhlCAEGIEAEcZveR8A4BvkB0MCMsrWE4IZowihlDKGGQIAIXwDvhujtdKr0kYZSsk8zeM0LeuaQY45Wx1u16Fuq+D9cBswIU3Znk+3l6dn6zTjiFAyThNngjMuC7Y/bC6X0zRPGKEc8t393WaznYYFAsUFf/fuXd/fRCFiCBCAw3GHCVGrvt6ualnVomGEkgmyQVrzcZg///LlcLy/u7v3wc3z1HYtRmS1GkO033Yp575XlOGqllVTAohyDBiT6B2ISStVVrLhZQYBZiwlu7zenHNv3AteCOPt9dLXdW1UaDcVZ2Ia55wTpQJBjCEVEhKM+37wOcu2slYjQC6XC8Rd19Wi4N77ZQEQIKX1dreNCUGYMcnTNJd1Gb1PMaXkS95Ms/I+FoI7bzKA3aaFiISYiqp8o3QYa2nBGKWE4rIqt1L056taB8o4l/n1+ZV1bYxQyqqpWmvty+mVC4YyKOuyKIoUYt9fMM6ccUGZ845RNN1GrVQpa5LROi7WmAQSgvjl6UIlKetqHKYQMiZ0WNZj0SJICE5vRXEAgHU+4bcYKChqEby5XobrecaUF6XkgkEIlZr727DdRQQCBdlDEEHGlELINoddxHG8TUqn9+9+9U+/b/vr6XI50YNQag3JPzzeVVVlTfj86ZOzVlmNGe82+6fnT9uqfnq+FFJSKhCCRptpvnqfOWevz2cEwd39/re/+V3T3ffjOCtVdts22CJUTVWVZYEIttqqeY0pbbttwcvT6TXEtO26qqreiNbGRL36oiqkLDljBFNiXRim0yGmopAxJoAQQriqy364heQRgZRjAhjnkjA2zQtY0SZGGKO3JiWWU16Nnde5EAXGeLs7FoXAmKfkv/v+22D96eU55Uwo2G63jGLOWCEKgilCKKRMCIEgQ5hBBCFELIr779632wpGlBOExAGYIUCIUBCBEAWgsajkcBunae6v1xiiFEyIAqS03bS/+d1vzq+X8+lciYIiTBJ4fT57bWiOBScpw7Iujocd5cx7v8y6LIQyJli/zHPRFCmA1+cXAtHu4XB32AopUowYobv7Oy7ZOEwxJsooo3RV+nbt12F+vLv/P/8f/+unz5+ij0UpOafjNJq62G9/XTW1c24cE4iRMQlSZIQWZZli9t6FmBCCv/zyKUbvfcwA3IYBIVKVZbvppCwwZW9usLqu5lkl5Z+en2MCOU/RFQBBKUoI8LraouCykhizdVXLjz9752UhMwAYq7bZep+kkJxQJsi6Om1shokSRDlfRn0+XUMEhNFpXbTRshTa2BATZayRzen1dbHau9hsdt5r0dRNXROMg3cAAq00QkBr8/nz53meHh8+MioIQhSLlJDkQju7LBpE2F9uC5nKotrsOwJRfx26Fuz2h5zzz59+UcsihZRSRBBijm1TQACC8ca5qR9eX87HuzspRPQZQpgRcN6F4CGCOfxdCUkpBiAiBEEGAEEIIUEYcIQwIZRjQnMGAMK3xVFKHpHsnJ7mfl1mY7SUgnMGIAgxEEZSTtdrP81ztzQIQ864d+l2HYXgzpuUQkdqgJFg8nh3Jzi/XvvXlxetNYJoXNeqqMdhPr9eISb3794t08xF2uzwMk87LkJwt/P5cDzeH3bv3z3+7S9/yVvYtB1jbOinLz99npcleOR8OJ1P4zA3VQkhVOsKUYIAvj6/IIJiiJuujTFwwRnnheBq1QQhIcQ8T1brkDyXlFJstcIoQwSssUprxgSX4v379867ru0QBDknCMkwDta5aZohAvvdNjhHMBqGIaS46ZoQQlnKTVdzytpuCzJ8fnp+/vrCBe3nYVu3lJK7u93+sIUY1m3prEaIYIisNsuypBTXdYkpffPxW1FW86qstZSxw2HPONfapJyKoqzKKqRIGXFj6G+TD26z2263uxgiAABANIyzMY5TigBMNlKJVm+Gc08ZIQxTxhAm3trgQwgRAoggutyufX+r6lJybn0Yl8UYhzHhXDAuXAKClxCiN/INgihDEGN8eT5ZbxCEq14ZR2VZG5VW7eZxcZZCCDKI3XbTtS1MOeUI8tsLFDHK//T1VeDcVsKt5m9/+uPpfCUQNV0jagly8gFHly6vA6JoXWZvvEs+xvDweP/w7v7l6cW5aKyTRbXb7pZ5HqY55QwgdM6jHK3ywzQKyXIGIcVxGYxW6zRCF820aKsEk1II60OwtutKxu7G69U6m2L2JkpeffxWNl3rfcCcF3Vt5pWEFIMPwzRXTcslUnrwizfGQAj0qhHMy6I32y3ERBtPBUOYqFVpbSiG55dzjGkcRp+8KkpGCSKIEz72/cv59PTllxRjVZRFUUKUTy+vw22YVsW4pJiknACAKSUASIo5uAAJbnctIAgR+gZVJ4zkBFCGBGGUESN01WqZUkxxGWettOCsbTrO6bIsXPAQIiVst9mClNWi9aIYIYd3DyF6/7Cjgi2TAhB88+Ehxdx27eV8ddZRQk6vr7LkiJBtV439dHd/t91UerWMks1286tvvvHBe+0JwW3XIIyHaTTKJB9TDJ8//YJw/vDto5BiGGZISNk1BKP3Hz6kGE8vZwjA4W4vKDufL4izFNPT6zkllJKt2rbvB4ih1m4Y9O6wDwmFiIL3b7gzwljM2Tl/Pl2tNUZbRrfbzRYhgHEGKRdFUVQSgJQBjCm/PJ+MNXf3d0wIkoANmnEUI6OMEEJBxj7GsHgfIibEeh9Q8jEZZTPMhNIQYgxxGOeikGqaAYSQkqYtjbfjtDrvKS8ExZiKdZq9T85b6yJCOcb8tx9+3I+H3XZzf3+MIb8Mr0orEEFT1VyQpmmars05G2WLstptt0abcRyNtRBhjEhZVIziYRynacYYns7nCHJVb5RSKSXrPITIOuecTynFt/y/8yH4lCJEGRNIMEQoA4QSQABBDADCFOC3NWNEmOSUU0qEEh+8UiqEsN1380SctxkBhLEsBcKEKSNKoRYVcxK8RBCJAiMICymRQfOynM8j56xpG+8ihD6B5KN3xj6+e+w2XYxBrUoIkXIa+pvWVjuvV6WUQWguigJlmLwP2v7pX/90m3vCOK9LjAjm9OOvvok+SlFwwdd1hSgv02iMYoxYa2MEfT/kBJq2evf+AUFkjNWLKosCIRJ8pBS9e38cxjEjKoUIMV0vF0zwdtOEVE7TgiBBEBprBOPJOcqFkNIawzAOzntsCMVWLVJKSiXMYVnUPE9McMnodJmMtGXdvvV4McEIApTTvAxVXQ3DWNcFx5xgbAGyzlmjKUKFlBQxgLJZlbNRSHR3OCjlIECUF0ZphFBZld7HcVowgc65FJP1wXnfVqUPIcaktaEYd5vNr379HYFA2/X0cnm93hjBSmlEECa4bhuI0bosGSHImM+AAMSEBAgr46ZxfXl+AQASxhgHyhi8aoAxRvmtR55Sss4ywpz3IeQYYE6wrGW3aXIEnNcvL2ellgxiWTaCM58zIjTCtxU2ABDChJ3VBWYoRZixkHyZFy4YzAAi4q3PGT48PsYQP/38N+1VW1eUQGDzOPRS8G632R12ohB6Vce7PSPMGROiffl608bLQny4PxLEhvNcNJwI+vTDK8AII5CMtZSYFL8+vRyOh91uD30+n08hd0JQQrBSkWCy6zYIwMvthhCJPhjjiypTzohzHhOCKdHWYoxSTt44RgnnGCMAAbJWn0+vA2XTuLSberfbCUbLugwR6FUZ7ZxzZV1hjL3zAkvBCuP00F+ci28s+7qpckohxhB9TgkAlHMCMSOKEUA5ppQAAGAaVxsdZOz5+UYZqkURXYCYYIQIwjBlBABGcJ2nFHNdFof9tm1bTrnzhlCGEHQ+iEJ++9230cfb9do01eF+E0OYxpkCVHf1tttmCPeHvVp08IEx2jatc2az65xzbVV7a/VqBGFd0x0PBeesrMtuf6CcHt8/qmW5XW7X6zWl/PjuMYckOFfTzCSfl7nve2N99K6tmrpuBZOcMQTwNE/mLYNB8O025Axyztf+lkIklNXttqwKzoTgwjuXc44hppj7YYQIZJBu1xtCEBNQ05IRvuu63abZbjbjNI7DhDEpRWWtAgBYbYx2EGG92qKoirLQ2jhvM8zzMlAhpnWZVxWtxQhHkFZjFqVyQsO41E09DaO2JufEubicz7vtZrfdhJRLKcuqoAhO86qWpXt40FqllMuypI5O0xSTL8rit7//XdvU3nrCiKB8WSAC6Hg4dJsWE1JXFULo+eVZSCmEEEIui/7ph5+s8w+Pj+22q+smx7zbMaUm69ZVrYhSyDDEMMRgnc0ZxJTA240upxxTiCHEAHLEGP//QW8AvnW/ICIQYYQgAhkiiAh6o0FgGEFKiXJqvLnr9rwUry+ncZ70ai6Xa38dEQCHu/3H//FfCCEpZc4ZxoRgbJR5PV2Msca5ECPIYBznYexv/fXXv/pNWZSylCDjdVkxwcuyLMsKAPAp9v00jNPd3UHp9fnphXM8Dn0hC+2U9fannz99+fr87XffFFXNMSllSTAyxkghvDelLFe9zEqfThdZVHpZrLUZZXKiIGUAgeAiJ9hUdcoZwNx1XbvpUk7rsrhgy1KGEMpSUMpgBuMwI4xzSADAVa0IoeDdMs5Cirougw+E4Xma0xK5YEUhMcYQJ4QxhABiiCDobxfJi23XYowBSBBDiJNWepomJumiNIIoQTBNy1Kt264TQuhFD8vknD9fLi6kw2FHaQwh9rc+eFeWUq/ZuRCzTglg+JbCxJfLvAzz3d0RYRyCX+clxSSLoq0lhMh7ByALMXlnccZ1s7HOnl5OWpuqqGNODnq6Z1VZ+k23KDWP8zTOm01XlZUPfppvPqR2c8CYppR99ABkmGFKCQLYtg1j7N37O8LQ9XLSq5GiAgCGGCDCxtmUvPURZRS9zywDlBFCMSYIYL2pm0Kk4EMIZV23u11TN4xy712MiRIsO66+U6fXc91UXdtY65wP3rkvX54ggIzR3W6HGS1l4Yy5vzv+tf/z6XK7vz8eju8YJs4FN3jrNOXs8npt2kYIJirZNBUtpV11Cr5rSwii1dYZZ7WXrCibqmnrCEBKSC+KC7YuszNaMEIoIdO8uJS0ckKKsigfH98JxtZ5ABkWRbnfgWmeXXAuOWPMMA6cYBctBiSkUDSyQXXXtpRzbXSIyQUHcmKMPz4+csq7TbvdttbYaZ6UXhdl8psPHkKYYQYZY4IQzJApbRa9DuMAEiKk8C6lGBmhEAKYEgYgWjcvC6OEFRRkJIVgjBqttDGykEKI2/UWY2jbLkNYVOX+uI8+aGOMDZSRdrMry5JLbrVZ1Ol66du23RYy59RuOwRAIYp37z/o39jr5UYxL0QZkv/65flyun33m2+WRT19eVrmhTHunV9Ow3AZBBeH44aSIkW8mtX73DbbTbdpunZZ189fnk7n06qX5NNxv+OUBOsThNMwBOcp4+1mWxQS5Ny0FchJ6xVD1HU77z2XIqV4688IgxBC05alLB8fHiAEhMAcXdfU200nhAAAcEG9dzmEqqiE5IwzCAAImSA+6QVBolczTkt/G5wxhMGyIHp1t9tVKQ2xoJTerr3SijIaQ7LW1nWVY/beP757RBAZbwUXnIntbk8w5pxKIZ21lOKqlIxSAGFdFF3XGGWWaQZ1ajc1IUgIVlal0iuiMKcMEA7Oz/NqfRjHPuZAGSnroq4biNHusMkpnE/RT/bdh3eY8c1uQxiDBEMMvfXaaGstQijGmHJ03kUXEIIEEYBhSjnGjBDMGbxlzEDKKcTMyN+5ESAHFyBEycVpnpd1/bf//h+7/Q5CWDeNNTH4CBHKKXMucsqEkrKqcwbGmHlZYvRCsN1uB/c7iCDnzBq3rsrZ6Kw9PhyC89fbNcUEIdDaYIIBBNbYEC2XlFKirDpdT97aGPzd/Z1WZlnXedGPQkKQU3RFXUGYZzU2bR0i7LatNSzf8nxSKaRh6CnF07xa7Y3xnJMYIsVcSokxQhhut9uVqPP1xDgDABjtyqLEmFBOMSL73Z5zabWx2o7jSAWXBUMQ+VRjjIXgiRBIkGXGaos9apq6rivC8TTPoii6lqlZJx/lhldNGVMw2pZNGbwHCchCCl5YvVz7HiEaQ8JIEKqD9945AFApK4xQjG6eptv1mjPYH/Z1VeYc7d9lL8H5WBTUGvvl05dxHAtREkTv7u4v19Nf//xXALKxpm6KsuRV00pRvZ6+uuhLzpZZu+itdWpVMEEuBStZQsn7OE7T7TYO/VDUzfH+PoGUMsgJBhtQRjGGDKCzTghGGYEArOsKYP7V9x8BzF+/Pl37a1VU18vtcjlZY0QhAcTepphhFDnEDAAAKWeYMoDWKqUMzDlG653bdpuiLEIIRVk4n7e7DgAYohNS3j/ed00HQN4dRErg3//1j+u8ppTbTZtRzgCKqvzYtn/+8x/ff/OR8vJ4PLxcngEAIOfjw2FZVAmBkJwLxhifxuVNIx0zfD6dm6rqthtC2OvriRIqGBvGZXVus+2klASRVS+YwnmcDCXEGAVBlJwQgglCCWQu+H63F4zermdj9H534FIQyg/H/ZfPXyCEhFEIUfBBrSpneHg8CiEyghB5irMxJqXEheSS1VWNEGaiUFo7F6xz3gch8ZvqF0GEMMgpgwwRQrNaPn36ZKx/fP/AH2gECAAIAIghvuHYnDWU0sNxnwGYh3ld1W24rcsqhHQhamNSyjGnYZztarReESH77TaEdDgeMMGU8RRT8EGterhNCKAU4/PzE+f8cDjIQnIqYEYIzeM0ny5XdBsBSDEGxtj/+//1ZRhXCDPjAlMSbDDWrasJER7eVlgpNU2TEmaSnfvr5+evGYLgfErAKJ9SOF0uOae22wCIXs/XdrPdH/cQEWPM69MLIghDsNttA8jn26WQBcFYVkXfX/f7PSHEOyOFCNGrdb0/3r3J343xIQXrvNVqnqe2qd5/89hUDSYkATCPI2ZQFjKDjAwarqP1NqN4vi5fvr4ClK1xECIAgJSiaqrr+aKN3m03QtKqLAnEjHNjLOPMG+9tLJuCESqlnJb5drtRSuq63O13kgsA8m24vbExtFKYYkowgCkD8PT8rJS69ZMsiqqqMWX97da/nHJO7z58qOvycLhr2hoQ5HI8v57Mui6LMsaSkG/XgRJZN00MCUAAMgQpv41pMMMUc8oJZIgggAAiCACEEYCcM8oZ/d3+knJOAGYfHCYkpOxDWJb5errGEGLw1/Ol3XTzOOcQP3x4b40LPiqjbtdhkyGjAmFkjT6/npZVMcK6rsUYEsqDD5yxsi5TTItaD3EPICrLkhLirE8pEQopYzHy4/GICMkxqxUSQmOMy6qWVTPG6qZtuw2lpO97MhG9rLvdTi3q8+dftLEQYQQgo6xtN1VTz8v6+vxCqaCMrOsaI4cAzlaDYaIMFoWYl6Xp6uv1WpVlTJFgihDEEFHGyqpEAGAAEUBSypyzrEshhdGGUsIZ44ytfpmugxAcCiCllFJa57zxVVW9e39PIBnZUFRl3VYAwmACJRQECBM8Ho+UUEaZYZ4RRjD30LdNB2Ds+8EYczge9vsDyCmmmFIgjDJGBGcIwXFcMcKLU8EngNDX2+n565d1XTFEgrO6KgHMMMN/+i//jDDQSk1jLwSrSj4Mw8vrBQK02x1zzsM4MUwoZYQSzjmCAAFgvYcYi1JUsQQB3G43fzb73bGuWhAVhhRmlHxEAOYUU0oA5gQTyPl8uqh1eX19dSHO/ey1QyBLKeu6quoqeOtD+t/flzlDkFJGCFdF+dOP6y9/+7FuBIEk+nxP2TLMt/7WNW1/uY3zRCgJKYAElmmGGU3TkmLCAO+3HcH0+fVUdzUmBGRQCE4xpgRzwn76+TNEYHNokwkuuJyRMTYkVzVN03T9rf/lx88AIOtM8kmt9oefPn3z7bdSFlVZQJSGebHLgiiECCxqeeOaCEm54ARj7H3gjP/md781xlDMHu4P98c7t+0kY9M8Hvb73+5/G3NmgjNKjbHJh7Iskg8xJIhwCNE5/3q5aG0Yx865ummUduO0jMOMEIYQe2uEkJvdhtAT4xUhJAGIIEQAhBwxIsbZkPK8GHCaus0+huRB4IxYHzJIECPOmMuhaBof8zwtsuBG6Vs/pJi88+uqwJvwG6Jus31raZ9eX601knOAQEGLnMM4rT6GGGJZl28rF2NsU3FjXCGrlLJPZllWLpjzzFiLESIMn68ntarrsIQQECJFIdumJpRsdl1VN/O69uNtUUtVlvcPD1u+XWZ9vZyVXlNIm82uLOqY0/VyrZvau+yCr9r9NM4I34JzyzSXlbQmxpAYF13Xhpjmea2acnu3N17P80ipSLkEEBhjrufLNIyb7eZ4f2+0izkRSrx34zzlGPf3hwQywxhBHCO4vlwxg4SifrghhtdeIQiNDcZaSikXsm5KAPBbSTL5KlwMF+Sw362LDjAmo/txxhgXhfQpLKuWhUOEjP0QYxCCCSGNtiCBdV2c903ZBh8QRN6GZVQApgzgqkxKeV5UyKnbbGrOUkqUUaMU55xgui6L1rpqamf8uMyCkHazgfP89PR6ndZ1tYyLtmkKKXOKEAGQM0IwvWk0Yo4pAYpjzjEGBFACECGIAAIZEATh26wBQErZWocwATkt07QsU9vUKVJrzHC5ZgAKWeaUEyHBhd1uu9ltheCvp9fr6WaMKWopS0kgsc5xzrw2Qz8CmAghdVNXVamUTjkJIay2mOC6Lcd+0sqF6LvNlkv++nrOEHRtRygpil7IYrfbYYS89zFGQjGC2BhnvAMIAAy5ZJwLIYoUU845hMC5VKvizldlobVelYnBQwhdCPZmi1I65xgnlJBbP1KK99stgDDHlBe1LGtKyTkHIdZaAwgAyPMyW2etsp57ADMTosrJO08pcdYuCAopmk0DMUKISFGQHYIIbLdbhPCyqGmYxn6EMGOIrsttXubow/e//g1G+PPnz8Ot39/tDsc9yEAIPk1jSinFvN9vN5sW5ByiAxHEFGKMCCEqiPceIcQF2/MdBlhK0Q/9vM7GGUqYELIsC6M1glgpo7TBiHMhqqZNMRjry6rYxny9Xp2Pep2N9Vzw7X7fpfzn//yjCfb8esoxRY8O90dZFe22JZyGECBGAIIYIwQgx7jMC6Vk6PsQYkrZOfdwPFBKMIN1XcUErNYxZUJZyjHDBBHOKWGCYcyb/cbYeb/t3n6UXtfD3b6/DsusTi8vCSbGKYSYc1E39fPTi3VuHPvtdvfweFBKAxhfvnxNh8O+bP2sd+3e21h3YfW2aqrDYUcy6m83ZxWpquGmmmrpqg3MCEFind/vtss89f3gfXp9ueQU3n/7wDhu22Ka108/fMIMF4VURl8vl91+Y7Qhf/jDP0GEAEDffvc+WL8uilEMYUYYdptWSG6c/dOf/4wwPt7f1U2L0AphdtZZ5yLIdtXevVrnbv3onGOcckGNs03dZphXpSFEt6FHEFZFUVQVufaUMIgQSAAhmGNGEGMCk4/WOu/Sw/u7w8MWIJIRyhmklFNKSOYMXN/fwLzWZaG17od4fjnFnPa7/X6/m5d5HMfNZgMB9NGVslxjNFYTimNOVjvrvPc+pvgmTjseDgghtSoAYEjh+vSsFu2DDzG2dV2UZUjBe4sJtM5ZFzKCXPKkUs4pgsSlKEShlmUch7KUiCIE4LzM5MoJEVqb66U/HA4QQhfeRh6+2+4oIWpS12FY14VSrFZy2O+bpimbAkI4T3OKSRuTcy6kZJw/P7867znn795/wIQ8P3/98enrvCzX861t6stlwIyVRXV8OBBG39wm03Xsw5Uw0tSbYeiHaa3q8uXlNvSTcU5rgyFuu7ZJTQa5rhtvDefUe68WBREopBz6IXh/f/cgpYgpQmRBjkUpCafrqjEhlFJRcgBrzhkm0Fs73G7LulZ1lWACEEzTDCCw1oCUU06EUQzx6+ur0MIYRzABOTPOCKFKaaV0ymGZFGVss98KITNECEGIaYYoA6CtmaeFUS4YjyFghDFC+Q38gGFEIOccc0ogW+9hADlDxuhbyiDDlFMCICEEcgIxuBTj15fnH3/867LMelmapg7eL9NSNxVvcVGUwcfYZVZwrc31sszj6KOH5E1CmYKbAIB1Vbdd27b1vEzrvAIAOGfaqOv5xhgP3peV5JwzilV0jFEIwC8//aK0yjCTtt10m7KsuBDeeaWUcw5BeLsujFIA8jwvMMcEMxe8bpoQ4jiOzjmCifOBEvq2XBKCL8uSQY4hEEJliZUzYz/sdjsmaQwhaP/p61NOsSrKNyqq9xFj2HadEOx26yHGmOAcY9PUTduodcUIdU3LBder0UqVdVnWNRWMSQ4SKLlYYJ7GAWNcFCVj/N3Du2t/Gfoh+gBSkpIfPny4Ox7VupZlkVIKPmBMpOAhBAggwVRUPOWklIPwzesMnLWE0LIsnY/e2OCt4Pz+8R5C+Pr04r1NIBptlrAMI5JcNE07D3O9qYUQh8OechES6DYbKgrrnCS4LKu+v718ebper2VTbTZ7XjGfoijetHRaOdMPfVXUhSwYY846QohSS84AQrSuRnBRltJ7CzHebLv7+3ujtVoW9NY3wZgg5KyHiACQQAY5JQCADyHlWDbF9+W3y9hfL9fhOn74+A7mPE2Ls9YFo60+lsfD4TBO8w8//WRNSDlerzetTcq+qqrdfoMRqYsCQ1BJsZpYyIIXxW/+8R+sc2paH+8fjsfj69MrRnjT7J21p6fXzW4jBPcx9P0gCyYLtp77f/vXf6ubIudQ1QVBGCGSop8vI3+4b9rKrOuXT09lIcnHd+8Y5+fXSzTWrGrpRzVMapy7zRZBPM8LYWxd1nFetLPvHt8RTIxR1+tNL2tV1VVVOeuWRUMA94e9LOWXT5+fX09t2xVVURblNI7PL68IQsnFl6ev87R+8+1vUs4AoBgyAIkQRN62uiDA6JFxJKSKUcJIcoFT5rwP0asUtbNhdQQBRPD1fKOc75p6v98jAIxRRVlyxiGC66KsshBAkMDr82vdNuu6QgBlIUP0ABcFk+M4bbabzWZ72B+XZYkh34ab1oYxXkgJtAYAZJDW9e1BIDrZ7CFZ5lUIabztNq1gYhhuhFHG6W63KX71K87FOM2fP39e9VI2dQLA2tX7GFPgOeEECMhSEEFAsa0e39/XTbvZ7bgsjDLGmo/vH6/n6zBMISSrrZqXzWbz2j8zzo310DgQEEh0URYyfurH27TePTyEkJQzMAfnTHABInzrbzHlpp4JIS7Y17PWxiLKLy/n4P1ms2maZrs/MC4QhN5aredlXmLMJadlWReyKAqJCXxbgjd1lWKAhCLjQAKFlIKJ4/5OrSuCKIGEUK7qhkthtD6/nlKO0zRrrbe7TVHImKMxpizLb775ZlHr5XbxLt7f3VdMgByNscYqCCAT7HbtV2PLshSCaqW0NtbZDH2KUD3qbQYg55wzRoBx6lzMMBNKvPM5AZgBgBnkGEOGCMaIUkoIYQQhwYhgDDMihDgftFan15cvXz9TiiEAIJfrshSlxAhdzpeqtncPR0r4n/70F8KotRYjhDE0i72ebgCCzbYlEHsXcsohBGMsgCBn4JyzRnvvGKdtV/vgY4xMMB+iNsa52zLOPgSE4dsN+Q2YSDkFGmqlnbNaaR9jCrHpaopx1ZSMMc6kLAql1JdPX5VWVVmFGFJKy7ISgmUhKWUh+KIsMgDDOFVl1batlLy/9ef+VFZlSmBa1rIsEITeB0wEIQygVFQlYwQAIMoKQlRKWUp5d/+wTvMw9E1dtXUVQRaC7w77Ra/W29fXl+vpHHyM+ecY02a7bcr6dDpJIcZlJZSUtArOny+nuqoEZ6KsKCUxhL6fMEZt1+WcOWfTOIfom6bKKXgYzWz9vAjJKSWMEUyK3X6zzDMhmHKMEAEZ1HXT9zdjzPF4BOBtZETBquBd3XZ1VaeItvsDoWSZl+F82bQtSun1dMoAL8tqg333/iPIsGrkPE4I8WVayiLFqKPnKSZGRVWy0+kUgyNMPGy7rmtCju1h27XdpunApg3WrkrF6FKA9bZFiC7aYYRySgBhiABISetFrxpEnd4+q2U9r/PLf3tKOd/fHZuu2JCaUu6cuZ4vBHPWlrfbjRcFgGhZ9Dypb7/9SDAhmDhtnoaRCFJUElGWIty23W+++14vWhaSQiwYwxBdr33V1k1Xe28BTJfL1XlTt9WR0Vl7SnmO2OiQc6hrstnvYz4TRh7e39dN8dNffi7Lkux323bbUkaG29BUFaNknhat15gjpZxwijCq29bFqFb9/PyilYY5L/Pcdm0GadXrumoqSFkXxtrxeeiHQalVK3P/cF9XTUr5erkyyqx0ICcfEkIYZAggzDkRgmKMNucQPSe0rYtSMhiSNZZThilzPkQAo/V6na3zdVHXVYEJQffAaEsp4VzEEO/vHxEkKXprnRCSUeKtp5yG6JVRxtqcE5McADSNs2BiXee6rtq2oZRIIZZ51YumnBFOCcWEIgBJ27U5AcZ5BoARBiDabfdt1yhtzLq+kavbpuWcGqshyjknaxSCqSqK++MjgNkolTMoqlIU8na6FoU47reCspTj8f4wzFMIwfpAMLw/Hoa+Z4z+5jffhRD7yxBTHPqrsabve2dcIUR/GwQT227/5x9/Dt5XJbvdeu8iE9yaJebIKR+GGWLQbDqA0Zfnl9fXc8pwu9vlnDkXhFJZSAjB7XziXLZtByEwynrnGWfe+25T390djTbTNKWQBCh2265pqpCRUjrGXJUyh5wTevfuoeva66U/Xy4hxG67wRAOY38+n0Qpj9u9eJv7MogxLetSVCXFxBhntO5vvfeeUzrNM+Ok6zYpg3FatNbzsuYY3gKjL0+vADEmpqqqKCYUw+Bc21SUkpBwcvktFJRBBgACgP5+JsggAxBjwoRCgACACMKUAQQp5Xy9XbVd2qbzwW12G4QJJawsy6Is+tswTCNACALwenr5/jffPzw+XK9XABDBlBAiJC9LeX69XK7n18vzNx+/ZZxWdVcVpfcOIpRCjMlvu+2q1qEfjNFVVTVdE1ziXEAMjdY++GG4McreVkYZgK7tqqqwzt6u/bIsEMMQfH/tD4cjQvDzz7+AnD9+8x4AACD03mtt5mmGiOx2W4KJ8WaaRiEkF7SUZUixvw2M8YeHx5zysiyUEoyplILSACEcpwkCEKKvm7qQUq+qqoq2qRgTwdtp7C/n8/t373eb7bQujLBhGM+X0+l0oRh5Y758fj5Myzwtu/1+v9+lFIP3BKF3799569d1ncaJIrLdbCLIb+Uqxt7uqzAD4EPy3helTCmfT9cY46pWAmGOedULgHCaZ3u9PH350rWdLCTG/v2H91b7eZ4Qxt6H7WbL9jxGr/jsY2RcQJCtMxKU67q8PL/mYChGm7aGAL1ebj67Aouq7fppABA/PrwjmF3YrS4K4JN3lhAyLysCuKm7vr8663Fb5hTbqsaUbdut5IIxpNZ1WmYE4W6/E4K9OfPeZL4QAJABALnrOkgNzmKZoBApJVC1ld1slF4BBJt2V1SF0pZT9nD/6BPKOX989yFE98vPv1ijTAifPn2VQrx/PJ7m15hi1VWiKLd3x5whAnCaF70qY0zyCgJXF/Xxbjeti9KqkJIw2nZNSJELuTs8UFaN1+H733z//PQVIZIRud56VgiMyeefvj6/PO22rSwKAjG6na5qnrebTinlgmdScIS+fnn2ISEMq7qhlBayjDHEEG7XK2Us5/T89MKFJAQjTM1ignd/D2hngDFtmrasitPpNA4jQmCeZ4IJpbSsa0IoAODvVu6cIYIxZ288g3S33ex2m3rTEkhATm/Wde99VfLL8pJSEAJrrYuisMaADOuqFoIP/WC0KcqCMQYAZJSF4J++PMccfQhcCkqp4EwbgwDAiAyqTyl+/fLU9z0XfNNuBJfffvPN6/lsltXWhbUZI9Q01fU2lGXVNI336XI5HY93KSSCkGCMYPz73/9eCpZyxBh7F1Y/O6s+vHv8/te/LWXV971zuus23vlFLfvNBiLU1EX0tm2bFGL0YVlmSlldlUzQQsqYQszBe7eaeZ5nZbTShmE6Tv0yAACgjzn4VNftOM1FUddNYbSZlwUB6KOPFX459QCA8rYyxqaxn5YZIbgYLRinlMAMnDVLhhABCMHry3q5npUxmJC2aYqydD5+/fqMILDWp5gQ4ZQyZ3yCGAFwu/Wff/npd7/7R+fs50/9OAwA4W7bEcIBylqtGWWAoJQFF1wbM01zjhFT4pyb5yXG6Kz9+8F/Xi5GE4KH0V4ut+PdESK8LNOyrk1dl1XpjKGUJYgJRl8+fcohgBh2uw1EQGtrtE4xevdW4gcIguADozTFBDEk+I0gFCIhOSPvV4gs5Xzop3HqvbN1U83TbI0DFLoQLpdeLFoUPIFstNbGQAQBAAjjbtNihGKKhMCvX56enTfOruvSNu359SRKcX49u8amlPbHHeGs780wjIQiyhm0vizrtm21cYjCmIPSi/MWhGyMup77DHNVlV3dIIgpZU1Xc06meQEIq1X98NefD4f9NMy36+3h/WPXNhkABDHBtNu0zljvPYTguD90Tcclzwh6462zmgnGmFqWoii2+110ASIUY2RMrvOSQBKcM86GWx/rwAgWlI3XYZhm511ZFJtuq7QKPmhnuODNpkkhBmcjRFprgJBPYbvbGq1/+OFHKcT+uIcAPn99KcpCW50zCCFGELU2b//+UgqQ4LIsq9IIQgjRdsejjwBAa2whi7vj7na9nq+30+my2+8RBlyUsqwYJRCB/jZASCglCGJGcFUVwcd+HA6b7fV6M0bN80A5988ewAxgTClehj5ar7UGkOw2u81mhznywRJMCy4Eo8fD0SuDEE4hj9Nkor073mOc+8l4N+o5C7YrCn567ili22+7sipen16tUlUlpeA5J6XUOi9NuUspYQwRABnAdV6+fP5s1LDfddvtbhyncVr+yz/+85v1HoLc95OQsigLWdbG+AxhVVbTPLx7PDKOtfFlUbrgzTJ1bYUyZIxhiL11yhqC0Dwp761RSkpaFGIx2lqHMH59PmUAqMBFURZVOS56WVTTlk0tIQRlUYfkp3ECCRHI22ZTPYoM8tD3xiby6ZcnKUhRyKqq9sfDrR/meckAcCGycRDDlNI6q1Wpruu44A8PD9Y570xVV+Mw6mk9Hu827dFaM9xuiOCy4D4EStk8zJfrlVDSNrVSKaUYIsoZIIxSyggBCN/mNxhTRBhJIb7cxr/+51+Nsvf3RxR9SDBjxBgjiN7OF6c1ITiGqJZl0zWn0+Xp+enr8zNnXEo53sbD3b5tm9v1FkOEADjnV70ijqOJIGXiA4Kw7VrK8ThO0zwH7wEAZrUFr0JwUjDK4DyOb5FqiKD3QRsNAfIxNHUTgocQYAwvY48RLqtyu9/EENu2JohUTTn1ExfiV99+o5UmJC8TVstknQ8xUcZv19uf//LH436rrQIAGqvmZazrGmYhOccbgBlKMeeUvDNFIaqmGsZlmWbBRY7hdr4lAI0NKca6KhlnRVXFGJXWRVnVrIkAYGqUMsyHcRhTjnVZheAoAhhlRolsa28tQOju/lBV9e3SUzrRFDHCnNKuaTFCKScAk/Px/uEBQ7rd7ihBP/38ZRzHeVkBAH/965/naZFCzPOUct7sd95HbW1VSADQ3d0dRjiBjCkpqwrCXFZVzlEt6nrr26bBhNyuN2scIZgQklLMKX/+5euyKJ8iQthZ9/T1pSrlZr8dxzXnbIx+fX3WWj0+HCn+J0RhTBljQiixzsEEvI+MUZiwNzbm5ENAEBlnUo5N0+ScvXeX220Yp3WdU0zLMqlFbboOQZQSMNo4FyLIhBDrvQ++qqp5XjDCq1Z61VLKsig3bXu+3CSX2+3u/vFIIH5+egYA6FVRSi8vl66r66paphlCetjvnPUpZmc8yFlw4bzZbjpbyHme5mm9O+7rtp2mue9vBGPGGEgAQVI3tVb6WB8ElRSR3X7TdQ2EcJqmnDJEmBCEMDLKvF0XGMGUYMKID3mYesrwtm0oZYXglFIAIWdMGxO8DyHllN5qDcZr7Om8LCBGTvk0T6tWPkQE4aqvjPKqLDEhjFEEIGeslPJy7Vel283m/Yd3Pvgv//HVWPO73/5mu98QSnNMmBKepRC8qep5mQnBq1KYoLIoMSHjNMXgtfMZgHt4JAQ2Tc04RQinDLa77eU6AoB4UbRdl2IohAApI4ysVcfjrq7lvMz3D0cAstGKIPz1+RkjrIx23qdF7Q47IbjLwDifYrr1/TRPu/2dZDx6P86rT74oKwhiPwzJeEnpZrM5931M0Czr//Lz/7SuA0QRpURYB3IIEchKEkGU1YKLru2WZWSce++VXrUyMaa3Z1nKKWeAAEAAFVy8Po2c47pqttsdZuR/+2//2+P9Y045w+iCu45TBLlu2qIsKSHaqK6pm1IM461p6qos/vrDzynYu/uDXS3jggqpVq2MXueZMc4YShxdr+dlHh8eHgHMWilC8ThPwIHj/oApySi/vJzqglFCGeRVVd2mqW27pq0JxtOwhOABQOviZInJNI7rBN9/fOdClIhSJsbx1TqHMK7bhkuRQhrswLkgGFdVJYSglMQUAciEkPE2MsYeHx+0WrzVIQRASVEW3aZ7enpBEDR1/d133w3DLQQPIEGYYELeghl/D+/BDBJ01kpK3j3eXS+3v/zwn19fPzVlQ6jkTBaFtG55Or1UzZZRUbTyfD4nCLiQ0+kEIHHa1XWNGVrmKUcvBZvG5eHxzuUYc1rWdZ1UjJ5yYrWbptk7n1JsmpYw6oyf58l7U5SFtdpY3TQbRICLrh/6mMBbv8F5j2tkrHrLIQCQMYbO2GVWzmrOSV1XwfmY4u16+fGHHx4fH9Wqhr63zgUflXY++mmduSCl5NG73W6rlwVDvEwrRyLnMaY4jiOEKMb4za9+jRDW2nS7OPQ3EME8TEVVEc6XWS326oJ1ngKIKGebbdO19TxP67Tc7Zr7f/oH793ldIEIbndbALMxxjoHICjr2q4aIsK5IIQe9sfj/qCMcc5UVcW5SDlRhqd5ZQU67B+6zUbP4+tpXBaFIEQIxJCVMSnH19MrFTQndDpfIUJVXScfKCOMEUQR41JKAQEghN4uF2PcolYhBUb4y9cn5zxE6M1pwwQP1lsXttvNvKoQgixLgsk8rVyw3W6jtc4pKq1eXl772xUCBGD6+M03jFKE3urNKcVEGQcpBOdziC668dY37cYap6mOMb68nD8/P2eIUoyFoBhhCEFM0dtknfchWOfnVb1RkkIICAMSw20YQE5SMMGZcyEn8O7de0KIMRZDUki52+/eMpQpRWedtU4W4v7xPnjvrEcIFmUVY1JaE4owoW+EcE753eFhs+mc88EH7wMiiHFKOTXWGWvff3iPAI4uCCKsdRCCBPJjWby8vlrnCHkj3ZPDYZdyjjkTRrQ2ypjr7bzf7FhdtV0zT4tzbpomAEEKSRYixcQ5V2pNGXDBUgYAobIoAILjNO0POybk7daP49y26OHdY91UEIBlXRjBVV1Oq0GUbtodJbQoinbTCsep4Ma7bVM3dW21RRCJgstKGGe4oNttBwCmmProKSVd1w3DEHNalrVp6qqujfW3W69WxRmRRfnb324+fPcr58Nwu3JRSMli9IQg7zzEuW1rpVaMibV6HAfvY1FIUTB9VZQLTOCyzJfz2XsvGJOFyCCXsjTW9sMw62W321IItFHj7QITGpz//PR1sfZPf/kBwLjptoVkd/fHuqpKwY1xBRViU7abJqVonOFC3t89IAIJJpzTuk79uDLKEEQxp5gyxbgqyv3dsW7l9fL85cvn9+8/mtVoa/713//94f4+5ygLcdzvQE799VrJOudonGaYJpB4IaZZjevw86efSYbb7Y4wMq7rhpLr85mVnBLMJenaarh4kDwCeLxdEsgPj++MscYhynhTl8u4vDw9pZj1FFBVxCJLRvfHQ1HKUvIcYwzRGy0o7do6ZUgQwyBCpSyXMuVkrZnG0blQliXEyGn79PWpLMvD4ZhT1kpBAIJ3RVkIJu72+eFwLIVkBMu22fzhn6y1wzgDiN5/eP/dx28v16sPvq6b7aYtq9L5dDqf3s55IGVIIcQwwRxjhjA+3O+7WhZSfrm9PF3Or9ebDyGbJCXFFDbd9vH9w7v7w+V0RhDpyUguClHO83z//hGmSAlCiGIEM8gpBuvi7u6QAYw+ogou08y5KCq5LkppBRDUzqWUOedNXQIHlFLeeIiAcfbY7K2zCeQvX75SzgpeRBAhSJ8/fQY5W+u++fD+/eM7kHMEyVn1+nL++cefOBMZ5K9fvypj/vTnv3zz4RteMBv8+XwRovTBt21z2G/bttZqmZU6X4ZlXZuu2e3x6Xx5enpCiIzTnGH+p9//syzKmMB0OnPKQw6MM8ZoTJkz+nh3NN5SgqVghORlikopSsj+sOm6tqgYp/XHD++DDyEnrXXXthmB4HxOwGLabjbRhVUpALPTuqk333/3K8KoMdoa02zaZuPzL1/6y+38egbJKa1zzmqZtbXLou7ujwWSACDjzFsjhFBSVkVTVxlka7S1ZlVKSMkYu5zOggul1ThNlZTeBQBAcBEjmAW8u7uDMIfg+35CFB3vjjFmwak2OscYQkrRCcaHYXDWzcuKCf7//q//CwLIurDb7zdNgzH1zjDOyqK0MYAM07zk4Le7LcZ86G+fPn0OKayLvt4GSGjbtRAgQgGl5HK+YkQBQNa5GGMCABIwTiGnTDB01hVSIgw5ZeM4QgirpjLGF0V5PN5pvS7TWhWlsXoZl6IqEMZMMOfDoq5lWUQQIGLW2b4flnVJKe62u+hzv45C8LoWfT8s89w0dUrZhzBOS4ypaWvC6DhOh/2RY2YWjSAqy6JsqqISVVtN8zwN03a/lYLrVQEEQQZUkG3XDcNYCL7f7WAGddNIwbTWTVsqpb0PBBOMcQgx5aSU6m+91gYBVMsSArzfH6qqShlUdaWNqqrSOXe5nmGGztth7JUyTVNJWa6L/uXzpw/v3v3L/+EPiKJ1XCGETVMfDod5nn/4y1/RgjhlhCJvfUIYUzwtwzBNEKHD3WGDu2Ve3/J4Wps3j5v33lnftqJrt1VRAghz9M66dVHaapBDTNE5fbte744PXHCAgazlhkitFESwbRuAUAj+er0O41gVJYJwu9neH4UoypTzL58+Kafv749c0HG0znqYwXCbpmWZV73bHq3Vsm5/8+vvt5uGC27Uqv3sUxCYJOudDznl4KPzQWBGMZZcAAhX5QF4EwEgBCGA2URjg8EYlmXtjH19fT2dr5yJlOPQj9bbj988QpARggRDyqBSzjsbk/MxJADqsr4N/vvvf+OtfXk9+xj2XTuPs1Emj5lgWPqyrUTX1ctSEUqFEADhYRzess4pB+vtoiZnLADw7vHIOXPJQ4YxRqtVdV0WdbPMapldwSXYRUQomcflu+8/zLfZOn+7Dozyf/jHfww+KaV8cs/PLyH6GMIyzykljNH9/RHkpJbV5WVVK8QYBs82W21WrVRV15u2JpI3bR19rJqyv/a3oe82rbPWOE8wisEHRAjBGWYIMwAgpnC53qbrhVPctnVi8AEiTvFtGKZhSSHujoeHD+87ScdpttoeD0eKsdMObGLBaSFYcH4Z1P3jQ9NWy7wUlUQI5ZhsiFVdCsFjiFxwxvg8qm6zNcZaY2VZOOusCxkAq80//MPvPrz/gCAlmPZT/+XL5w8fPszLfH//IKpivk2//vVvpmm0zlRVBTCECI7X2zgNhSiNcTGBEILRQQh52O277WZZZ4zIH/6HPzDKtTUgJUqwVmadrTFR22B8ZCY+PV1C9DGjFCJjLAMwj3NMiTPMOVuWlTNGRDy/XBCEZVU0mCx61cY4Z5TWiOD9bvsWq8eAoIwYIQClBGIlpWTs+fmZMOyMG8aJUL7Z7o3TAILL+ZxSQoDcrpeYQd/3lHNEqYs+xrhMs3Nh7HvvLZesLHhKQEgJAEwp398/FHVxej37GKSUBON1Xb33WisMEWHU+2CNM1YjTLS2VVWlkDbd7n39DQCIcw4hpATdbsPtNmijqmZvlEkg7bZtCEEnPU8zkyIlMo0TZXi/3xRFmXNelvWnXz5RRjBMRjujfdVUbbtBCGaAV+UQAByilDKASBkLct5sN7yuhmHGjK3aKKUQBIwxTHDOsKzLEMI0L+usKadFVRAEnbO77aZpGm8tRECKom7aeZoRJJxz52xVVaKkeIWWOIhycvGtAqmNfXvcLosqikIbFVNMISEECIazsQCgGPrbrc85a23KsnAhYsLapmaUXa4XY61Z7bZpMcRNW3LGnLNApbarEYJtVRWFhABMbMIEvfXfUk4x+Bwj56yQwmg7z3NRFG3b5g3wMaxKOeedWwnGhWBFQf/214EzgTCGEAopORcJZEJw13V3x2OO+XR9Vata9ZIzqNu2bjYgowzgDz/8OeX4DfrYbrpuu2WUQgDUqm7n6zTOhSzWRSEMnEvT2K9qKSoJQIYAjf1IGOOC+eCu1/7vBfK65UKmkJu6raoqWO+iyyAZp6yx3vui4gCA6613IYToowpD3wvOkITKaOgggIBQkiNGEDHKi6IQjDPMpJAJJOfj+3cfbvPVvhEYMdntNzABitjju/cFk4iQ0/WcKUUA9JfJBk8wctaybQ1httb5DBlh/eVszNJ2ZQYy5+C9G6eB0KIgFBKCEPbJu5i+fnohKN3d7ba7vdLm4zePSpmyLtq69SHu9vXL0wkSRBFxxk3jHIPf77f79si5gJixg0QYjdP45cvnoF0MKXgPEEgxXIabMlIyIgqBENYqWGMggNbaqi1Pr9cEYwYIUdxuKpghIflNkzeMNwjRuujk/OPjQ8oREpRSFIVwwZPbZfDOfvvte2vt6/NzXW/+y/5usOPnT79obcqm2h32VpuikiHGtzWl8wrk1LZdUcoMEIgpBO9cuJx7oz3jrGX0erpM6wwT0lo553xZrGqZpiVnuNvcAwjf7iYpZYBhBGFYhuv5RjGSQhScN11bcfq4P/iQ+uHGm3a324Zl/vmXL/vDVrblOs7K6M2++1C+O59O1aaJIQbvpmEchmnVRhSCFxJBsM4r57zbdjllZ912v8spV0Xbdt3Pn35pmurjhw8QAevMbnO/LqaQNOV0G4aX19P33//q/uEdhAARJO+OKYO6bV9fX679UDYt9Gm4TVrZnGAGsL8NCJO23dRd3VS1MgZTziDJGPZTr5UWXJCqxJRUTf3ycpZFcbi/8z5orZXSHz5+o5dlv9+vi0nJe+fMYkP0KUTEQCUKfDz4EEL0zjuQQVkUt77fbrb37+6rsrDKGK2rsuKC9/0tRm+cQdv9OE3LNFKKh2HSITIWlTLOO6MVYxhhdrtdhuFW1zUA2VhVSAZQfvn6uSjrsR84JdEDmBOCQHBaliVAaJ4Xzr02GmG03+wF50qvy6SWeQYQZgRlWTLK+lvvnJ/A1LT18Xj/3a++2+12X7++/PHf/+OHH37IORKCjXbX27Wqq9eX0+F4oJw8PT2VVdluKi6o9z7lyBgWkjdthxCZ17koy5zzNE9GLa8vF23C/f0dTCmASBDy3ucYqrqyLg7DIosqw7gYbUIchuXz0ytOrixl09TBh2m5Bp/Kssw5XS9XjPF22xFUYwQoJgiAqpI/nU7BeylKiCHj3Bl3uZxzSpyR6BHGhJDovMeUCFFYaxAJytj/PV4VEIBvzSnBRVu1ddn6GGLwEI2Cc4JJyhBh3Lb1ZrPNOWuv3dku01QIftgfqrKUUhhrYgjO2uBdVZYQZL2auqgII9M0IYQYol1Vx7JkAAfrKSNScs7Zy+srYwxkEGImGLddCxDAQCIE869pzhkhOK8rRogJDimqN41gvKpLowwlmDFabx4QRsEna+wyrcqof/zH30OUTi+vlLAUk85qmZeqrPrbTZTMe/PTLz/udluC+bW/Let8Lw6lLHwMKUdjVIiRYBKjxxjFlK01oixzzMu8CMkxztrr1+fXl6dTWRdFLW/9lVF2vlxBBnVZM47P1zNKGAICEUQYA5B2+w1GWAgWgliUss4Lwi63G8SwqmvKCZiSseZyPk/DwCmvZCkKmWJCODm7UgKsmwpWrLN5+fkJQdx0dShEJnhVM2ZimWdtdUoxxRxSXFbbD+O4qM0m5Qze8tAww+AiRjinMNx6YxVESIiqaZqirI77o9F2VsPh/mCsD85fL70QDGOaQuxv1/3+TlIxjYPWepgmxmlV1yUVBKCiFD5YUbCMYtm2QgpeyMvL7XYdi6KomsZoXTXtbby8nF6++/77opTWaK0VRKgoWqs15cxa9fJirTWcUp+iWjWE2XtHAASvL69d1+42u+333y/D+uf//A8fAgLJGfX0/ISF2GxaRPjx2Dlt5mWxbt00XYIQInK79Y/3D5xx79Pj+/cZZOdCWXQxhHk+9bdhmkZrHf/6LEt5OV8e339AhGJEwFuyO+UYQzA6O19wmVJGiIAAoU+YZ4ThbtciYF100K0Yuse7ndF+ug4wpXmex3l8vH88PtxfT1djLCGYJkIZQ9atqxaFrtraSTnNS4zJ+1AWFYigKKpf//rXv/2Hf8CU/vf/9m8pphBsfxn/H//z/7Oqq8N+vyplovnu229zQNbYEPyyLqKUKWattNJa8mKal7ZuKJMQkN1+k2LqyTCvi7Zmg7vz5eqC55zXdf2ff/zLMIy//e2vi7pmgleMWWuYkEqpDMC7d++9d856xkhVFCDna39BCK3rcthvCy7rqiYYexfqsngj4RBGKaPny7kshRTF3f4ginLCMyZsnpbz5RKCDd5zyZdlKQq5/d2vfv7xx2kZb/NSlF2E8PT0tSyLri2tsY/vPjBKjDaAQC7ENI/Gqs22sdZ/++17TMDnT59yzjmnspJc8JhSu22mcbKDZ5QzZ9d1TSlCiKu6lpLP86KWNdKAETrs9wjjtu1eX0+Ekn/9t//+x//4zxhCXdcYE+PsvKyYkLIqirKShYjRH+8OAOZ1XjGBhHDGaMGoKMTzlxOmdHfcEspiDMu8jMPojIsxnU/IKj2vcyGlkHyd1encH+7uxnVeljXlyARPECCMqrIoeCMlJwSti5kWPS9LeHqp6oJQAjEAMAVnZS0FL1JKl/N1mVdnfEwvIaYQglEaYcw5nWeFFLD27wuk7WGLEVkWNS3L3fFAKEUlBhliQqKPLrlSyoyQKKXph8vl9vj4AGFOOeWIeMGFLIuiQhBmmBDI59PVeueTRwRkmLaHLqfcjyOj9Ha7tW1LMb6czwRjWQpKYc550zXX2w3SdHo5I4Ss9RAN2jq16hBDSllwfjwei+L4/OXpNg6YieRTXTWCixBjCDGHfDjsX19O3ntrbT8MRrsihRDC7Tao1cKM6qpqi7qsi6ZqtTPrRUcXEIZ+a9d1MUYvy6qVOZ8u7z988/T8BGFKX9NusyGcTOPStA0AiAqCEFhnZYzmgg/9Lad8O12XZSwrDkhWymAOfbJ9r5++vFDKyqo0zuRMGC2YKJLLIELnAiGgbetpXtK8lFVVd13fD1+fXxhGCGPnHD4jIQVGiGDEOSkqaVRYrA05TtN0m3pZyGFZRCkwY9Ev7x+OjPKiLpRW0/VmzCqr0nqYYFrmZZ7nbtOm4Od1hYBkSBFhECJrLIJYMAEQ+dNf/vTx46MyWlBa1HXbtcf9YehnTMjpMhBK6rYqqg3OFEMAslPrynhhrVbr8nx+7vup67rNdtM0HQiAEnp3dwAx3h33iCFCaT8M66y6/b7qNm+zF2ZoGobHd4+ikFYrZVROgHOeQMQETeP08vq8224550otK4Bt19bbtr/elkWRd98+prA/3B023eb8+tIdW8K2IIKnp2fjbJ3DuCiChPf5/HoByY/jyAhuSnB+eu1vN4SoUf4Pf/jnx3fVl6enmBIm8Hy5eOucc998+1FI8W//9u/TNB/qo/UeEwoR+jvPKyVCaAppGSbO2LvfPDRdM16HlBOlGAAXUzbWUE5KQqWkX64nITnIsCqld9G57IL78vVFGaeVid7JkhclxZSmeYYYRZCNsQBBLjijPAOQQupvY0hxHMc//fE/q671wXz9/KUfblpb4wxY0jiPKYdvv/+OCzKtt+llIpgYawUX++Ph//R/+R9fnk//8//nf5qm6f7uDlFslF708vjwuN3tICEgp5wh5UwUUggRc9rt97Iqh3FkkkEKk0shOB+dkKKu6xD8ZtdZY9WyrquihNR1+fmXr5SSeRk3my7n5ELCBM/TNA4j5fTh3YPSellUBolQdD6dvA/Lolzwal5Op1cXLUKkaauu6R4eHtxonENVvRVFY6y7nF4yAC5ERPj9/SElYIMrmxIAXBQyxTjOvdamLhqAs7Pu/v6IMLldbghgpRREuCzLtqkJZ5RQY/3Ly6sU4uHuDiHgnd10G0rZvKwNbRnnjNK//fC37bb983/+aV5mIUR/68/n0267Z5zzInZNu91t6rpalwVCQDG+3G7eOkzwfr/bbFqntfUWABJifDO4ppQAgBDhxdiyEJThH3/5kTEGEXbJI4wXo+ZffjJGxxgZY/O0ZACYZM65um0Lwed5KstaFo22erhdZSGruiQYl6LYbDshGGPUaQcRfHz34acff8GYxZiul6sUUkjqrOGch+itdSlnH+PQT9OgpmWklAWfAYzBB8a4MS6D+Ma+/vjxm+jjohSmeBhHRnG3aa0J6zzvd8fdYbdME1ak6ra3Yf3X//iPf+G0btqA4Xy5eOcJJcuyXs/XVVvBWMKZFvg89NbpdVVSyNu1R1/Qbt/CBBaljDFMcIzoOE3Oubqsb9dbTKGU5cPD47//8S/OuZDypoWMM4jy89fTcJt4wdq2hBBmCDDHAAAEIcqwLkqQYCnluq6X6+31fCraum6rui30ss7TbI3FhBcSUiqLutjst0ovt/7GKJ2mWRRCcH49X7vtllGmkxvn8XK51FVNKWOMHO8Pap7H2UAMBC8Irax10zrXdc0YJ4weH+5kUdyuwzLMjInj/b33gTNGMPBD0M4g5wWmzvtpXuq6bEvpg5NC5JwTyFVdwAy9C7zgBFPnlu7QlYWAGVWbljBqTPzu+19755Z5dc4zxmOOy5r+/Oe/8aK8f7hnnF6vN+cNIQhhQimFCAKQU0wAZAShYJxLASkZ5mmzaffbrRBs7ke3qAzwn//0p+3xMA9LUZWYgePdbh7H56/nlOK7rjs8bD9//upToAVVdsUDyDG1XccrerldGUMPhztrzTjPCcBmszHGxBS0y8M4cca67Z5ykkGIIAcXYozTMGaQLs8XRimEWXAiBHuzL3jr+mHsr4MQjMAU67KwxozjbVmXEMOvv/+uLMqUgo/+D//1XwgVnz89/+lPfxrHoWlKWcjZBa29d54QYlfz4f07AOEwLWo107zWTaHW8drfIMwU06qsfv/730/z6HzKqReFJIy9oUgAhDllkEECwEfvvdV65pKEEBDAyuQIY0kr4sO6zghDwfnry6XpNkVZ//D0Q0wBQjQtq/Ox2zWUUBfSqj3CqGiqaZyH61hXFWFUUB5iyhBM4whRdnr5z//4d0yJC0EURQ4heNvUoqveOWMAgnXdtE1zO7+GHK1SpK7atpqG6enLly+fP03TvM4zBmiZp/3dgdfVrR/+9sNf3z0+brou59QPA8ggQ8gYXeclxEAJygnM/RCcl4WUgpdViRHNOU/DtMyL1ooQnEL+/HxOMLRtxTlb1kUp2zb8px9/NtZvNm3MYB7m1biYU4pezeut7xnnt370LqxGpxAgyDkDLjFEDGEmRPn+8b2Q1efPn9d17rrWOidlcX//gAB0wQEIN7sOZkAIAgBqrduwJVS3dVMWEqQYQli13u+PGONJzd47ACJGiBFilE4Zdl0HEUg5l0VVluU4jq/n07os3oWmbcqqFILP44wx3u06rY2RXK9RSrk/HE/XM6I4xHi+nHOKjLHz+QwRrOqacZYyyBlhwu26IopS9Clm7wIAEGPMuNhsNxTheVmY4BjidZkzBABBaw1GFGJEMQ4xWh8ghF3DpRAxJKUNJayQopCVNpqivN3vjNKMkc2mJQRb6+d5RQiFEIOP7z++P94fXl+eKcd1JyGCAOCUIxcshoQJnZfVWReCJYRVZXk+nZRV98cjJdQa7aNTi4I5X0/n/X4Hc4rBSyGNsl/n57KRatF/+fOfXl6eKWUJwsttdMH/X//v/zfC6DDPw5feOcco6zZdzsBl/3o+I5C3u41yq1HGOrOM6nS6TdNUVtXh/s5oPcyL8wEbyxkriyKnNE3jNMyYUlelYVWLVZyJYRxzTk1Vp5gJxt5bfV0hiJu7TdFIqy3MgBDcNFWKGCTgvfcxjOOkjW22XVmVMSatbXvfcMGncckA1XUFUV6nGSNICeFS5piklJSgGDzM6dPPv/gQIohFKaTkEKFp6BllXBDMkDWOC845o5TiD/g2DOfTFUFkF/M6zLvD9vHh/TTO1i5cihjNMhvGZUkIIWxe55enJ5AzRjhnwJhICeQM1nlGGeaUfYhARZBBSqmpZMFY8oEzbo0VXEAMuBQxA5YjQjk4PM/Keh+MdTE0XXN6fVkXt99thRQgI5gjyBkiTCkJNvbDxen1Vx/fS0HXZTk9Pe8Pe0Ho6flFG0Ng9nrdtBs9LWqYd22dEyiKEhMYY3o9X4q6/lVdTVN/en5FOSWrzk+z32yYEP2ol2nGhK5qJZzxjYg6n87X4ENVVjFADNBiNBe4qaocUsq+rsTnT18ZwRkBIQUEeR4X5/1bUA9kBN94WW1Tpxids7fbta2bZVr+7b//W1N3kCCQwU9//bGomtfTi9arDw7kuhSl6KhSmlHSdK18X8acXl5ey7ooqgJgBAHEGG03G5ABJYhjUhWF9zYne9jvCMRvAdC/4xtjggAwysqy5oJ777QxXdt9fPdxmpdxGpz23meEKYSk2x8y5ka71ThMGeE0R7A77GOMCGNKBMIQY+is18Zsdp1RNoKoZrPOihAqCg5ANmqt6hJBrK0yxllnjsf97tAmH4IP//Jf/xkh+OXTF+9NWYiY867bYIqFlFIWxmijjOOk6x4f7x8oJtOyjtNACGqa3Tqby+WXpi610QBCo/U4DlKIaZqUVu2m5S0hCBIIJBdFWVLCEIIphHGYggkRh+1uk6KnnCGEYgjbbZsA8CG0m44sK8igaquQYlPXxhnOm4LLeVnu7u6s9aOdK1kCmL//9jtGaT/dvPEYQoBy1zQQ5rIo5nngkmKE53kKTjdN61ebEsgxu+CGUSOIKKdcyKKoilIiAK+X2zou07Lsd5uC0t1uRygSnI/DmFIiBJtVxxD6YRj7od20FZcAghxTSokwqpRCGHHGAKOFLNZ1xRBXsmSU5hxfT6/W22kajdYpR8GY4EIImUAuiqquq3VVl8stBj9P07yslJGu62QtISLeu3EcQQZfvn4NIRRSQIjKUiJMvAtaO8YyJ3LVxmojigLkPPUzJrgsZXLJGq21vqRbBllK4aztbzdM8TzPhDCESU4JAOisbdvu1t9STuM0Qwj62+i9Y4ymGA/H/fH+mDPmoji9nqqqeP/xndZK65WQ6nq5/vC3HzabTds12+3WWOWCm5aJCp5zijmlHAHI1nofwnA6XW83IaSQxWrsp8+fGS/bTWO10mpx1hHMZCEp4yDjkDzBsB+mcehjDIJxpYwsZLfZyqI8na6MM0LZZr9bl7Uqypyy4BECvDtIISQX4jb0D4/vAcwEQopoAqCq6/1h//z8dFJTkeWq9DIvOSTO5DJPejGC15QQzvihPTzcPwzzyEsuhEwhFu8eKCLX4QoAKEq+224hzufzqawqWZQpJaX0uuoYnJDcem+MGccZAPjtd990TWuDu51PfX897I/AAC6Z92FdNJesbmofUgKQMy65uA0XCFHbtTElo6dxHL2PGOEwzFRysMLL9Watl5JjQvrr4GMQb18SQofrADJIOTNeYEIgBAghbRXKILpktQMxxZAQIhBhiIFzKfpIGX3//t31Nq3LwgiilGBCuq6VRWWthwDE6BFAOQPKSFWW1+FrBriq5DrPgvOmqjhj5/OprmoE0Ga/adtmXhRAIKXUdFXZihhjiCnE4INv2oZT9u2333CGp3FaB6VXdT5ftDEAorKpX55fN9vtdrvr9jsX4/V0XbVpm45LGdcIASrrZrXm+emKMfr4zTfbthVCxJC984xhQokUVV23oiwePt49ffpKtLHGWGNdXRY+xG636S99P47b3b6Q5W0YP336WWldN+XHbz5QTAHKAAAuRN01t0sPMdrttlIWalWrWhljwfrD3b4sJIYEILjbbsZxxghtd13VVsZ472yCJANAGAMYwZi5EJvtxq9Ka73bbXbbvdbm65fPp9dXxsRmtxGy/Pr0miBZZ30bxuPxcNjui7ISgkkp53HxMWGMRcGHvt/t9/u4jSBiuE7jtK46xCwkk0VJMM4wZhBFJXhZ3y593TWUEoTQ7uGAMfbBQojGcfQ+bLYtQiiB6LSz3nIufve7PxBEbuPNOgMAIggjiouCl2WzLsvQDwwQLlnVVuu8WmOXVXHGt/t9vvRG+/fv6+2uK4XEAHOKGEPTsDBGqrqo6vJ2vQXv7+4PKcbX1/NtuN3tD9aHECEA6N37D5RQyunxeM8FH4fBenv/eKzK6vX19bg/fPP4MQGQQWqbBqBcNQIB7KzdbdqX16eYPKMQEdhtNsNtMNYSiCHKD3dHkJEyKgZnteraTkopWez7aXI6+jAMI86YM0YoyX8/3WetV6XWEOOyrM4FURSbrs05rtNk4Hp3d/z/sfQfzbJka5oetrRw7RGxI7Y4KjPvLdnosmKzDSQA44Q0wEia8SdwwN9JcgDSQMJgIKyruuqKvJl51FahXPvSa3GwaxizsBDuvr7vfZ9nu91ABJVS1vmu6zHCh8MNTNAYD2JqN812s309nkIC2uh2s7nf7+d1jj5QTgXn4zDNy/wGhVvmlVKcFzkkiHOeyRwj5H1QwVvrnLcxpSIvCMaE0jwvQorLogghQmYIIe+8DxFCgAnxzhOC1KpiDJQQpdy8zM47Kfh2twWIjMMCwfqmfkUIW+veMoDjML6+HtttFUPIswwCiDGWMhuGuesGCKm2Jqa4qGUYh2kYIYxFmRWFbNuGC44xnKZlNUppY6wjjAbrvQ9FIQjCzvu6bTFZzteLMib33lr3w6cPf/qXP2AMEIB5nuV5Foh/fXqRRRZjunQdp5QQqpWljDkbs1xSKpxdX49HhAAhRAhOFWGMx5SmcYrBc8qLstpsNlxmzXZzPB9lKb0zazczTgCKIYS8LHYspZiupyumRAgZU3Ix8FxmQlBE6qaqy5Iy3qpmWhcsaXQegBRsEFL64B4e7hFET8+PxjpCPUhpHGbvHAARIwQT5DRPEXAm87wosrIbu+fXp/7aAUC6adzf3BBMQ4yzUs+vR2Nt024O+7vb29vz8XX5rr5+e6rz3FrtjInRW22sdVp7WeVCCr2qaVowJsTa56fXBOBuu0k8ueBOx2vwjjJa1e1usy2LjDG6zAuC4HzsAEyUsuBNSCb9myIsQBgQRITRrMgFY1Ybmcm6rnbbXUhgHhWAECEUg4cIYgSVVkzwZH1/HYTg7c0mJDAty8OHjyDBaRwwJatWPtqqrpxxEUWtNUQQUXQ+X+q6xYQgQuZ1cpFiRrc3u3VWFBELscjztmrVaow287RsDvvdbo8h4ZRhgIZh3O22GKNpWhmVZd2O03odFeO5smsmskVZiNGuyDljl+tRGcMznmWSKOMxo1EbSEkCoJsmyBFjoto0KaXEYNEUv/32hXNZ19U0TzHEaRgZY+aim6qBCD4/v6SYNrttCEEplQkBAJimqcizTb0zRsXkQ/TDaTqdL9v9TYwRYZBSdM4SyN7sRZfTlWHIBQMJ9t2QQKSEfHj/McvlOPbztBBCfYQIQsm44Gy3b1KI4zhabR8e7p33znsAUVM3WSHnflyWuSyr63XAmNR1udvuQvDP/UAQyTJRyAITumk266ql4Lv91nnPCM+EmKepaWvn3G63e+vQW2djSHVVccbGflzGWWslMom5SCmGEN6kFkqpw+FWZgJhLKXkQgz9SBndbbdt3QzTqJVeZyUZ55L13dBdr5y/qZoS47wscsoYJcxEHVPgjD89vVBGT+dOMEkJrarKO8cZo5hSSgFMUkijdSaymx2EAG93u0XN3758oQTvbrZ5kQ3XYRp676JSKwTIuHC9TssyEwyrqsAYB+98jFprpbSUWVlWLriQAmFIKw0S3G43jDLrfErw6ekZYaDXGaI0DnNdVwBijHCZZxChaRynbqCcrnpdZoUxLovKOmOMxYRwzhllpffrsiBEUwKHw8F6F1Pc7jbb3c6/eo9tnmVKrVmRiSz3LpyOp6qqGCXruiCEhJQhhjf8fwpJcFEUxbbdaKXfmqje+2merXMhhKLEeZZxLpRaEYTeBSEYY0wrbZ2d55kgEkEEEDoflmXFGEEMYwzTvIzThCAmjMQQx2XRSjPC4BvyK6UUojaWMeOct9YgRLI8Y4wyxuZxIgRFELru2rYbxvm0zJwzmUlttLGOcXE6nYosF0LOyxpDbNrGWGutTR4EGHxwlOCY0qbZKD1hhLIsy3OZUoze22VNEARjXq/XsqxSiDzLQEzDOBNsCaUAAJ5LjJDzPgK4DJO1RpnVG5fJHFNmrWMMIIQgBHpRxqiU4tD3yzRtb3aQJT/ZaZ4AAM12Syi9Xq7juGzatqiy5OM8zzH4+4d3D/u707l7Pj4H7ZXSWmmEoeR87Edl1fl8HmdVFFpKjigqstw737YVSghBYq1nlFVNYZw5nk5jPwmRIcJciOfroNY1wTTPq8yyetM4546vx+5yeX15Hbr+3YeHL5+/ZgVnhHz//syEKMrSOT1PS3cdQwpNUzNKjbYxpQThteu8s/0wJEiUXuu2vv3wThZcaeXP1q6GSVpUZQJJG3tzsxvndegmRCAlyAff96OPMc8rIQiCgHKcZZm1TlmzqsVaQ6jFmBujPSEIxuDC2E8MAW3tovT7jx8xYwCheV5O5zNE0BoLYIIYwQSctZhCANBvv34WGeeS+ei45MsyTYtq62aeFhfC/rB5L4um3jImAUTOO2vNL3/+ta2baAGi5O72sN8fgrOU4Etnr5dzimCd1/Plenq9NE356eMHxMjNbse5GMbhfD4HH/bipi4LgjD+8Xc/fvvt68+//rKp26LIfXSY8OfjKwSoasoUwI+/+51WZhzHfuilFAkA57w1sSlBWZbdZTBGcykIxYJzTPD1dIkp6HXBGEUfv37/rp0dxtl6B+JNDAHghBACADjnfAirXi/Xy03TMkameSaUcs7u7h7KsrhezuuqeJa1u03Xj3kuEUDOO5ggF9JogxHKc/ny+koohTAdj6+1rigmEEC9rnd3B+8CgGjbNtosnN5TgimHRrl11mXd5LwACAz9RBmzauj9BWMsswwpo1aNEMIE11V9vXYggvPx+Pj4FGOsqwpBeHo9DePovT+fuqIsZJ6F4LM877ueC5ZCvL89tJs2gTRPc1nkUnCQ0vXSY4yWaRnH4XC4RQivy+r7qSwLo+0yGxeskFmeVTrXzrsQUUyxv171aotCNk2dCUkxG69DdLGqKmOs844QcDqfruez92G721RV7b1BGNV15Yx3XkOAn1+P1idCMOd8s2kQAOfri9bW6GCtz4uC0dElH2NkjEHjfAhjPyCEuODropZ1ZgxrYxAGXIqsyLWyhBGjdYhJrRoTQhkbh3Galqap67aFqLTWK7WmBAWX+SEbx8k6hzDiQiSV9oc9JnBZFim5c3hVChNaVSUm5DxdEwCMU07pquZ1Xf8NnU8IRhQAUFaFd15KAQFMIU7LRClFEMtcqFVrpRGCdV1zxqZxSsDHlKyzSuuYgg/eOce54AwBACEEy7KGEFKKMUTvA0CexoAg4owzygjBCGMQwdgvlBOjFgggAIlLWmYiBGeteTNpEwwZYYkhpbW1bllWIUTTVFxK5+PpdKaEUMLeJILeh3leIILBhywTdV11wxgxGPspgrjZ7WBMiOAQYwrRWGuHEUKs1rUsS2ucYJwJHoM3fYgkZTmvCJnXpahzGyJhJKFknSaYIAExwcPQzcvS1K2Pb5+GGcZBMF7nRdf30/cvspDXa3c5nxllEFPnvFKaMco56y4ngom36Xq+zGr56a9/9/Xrb7/+8lkImRcFRDCEEEI8nl6N0ZyzHMJ5ntd1abZN0JESDBFaZ+V8dMFjTIw2znpCaFM3hFEb4/Xav7wcp3GECBLKIELx0mVcTHbSWq2L1kpZpxOKXTemhFcDjHeL6oVkb/6cmIAPEeOECMGEzvPsrIkxIox9AlSIeV6enl5QBIRiABmT0scAQnDeMc7GZTLGaLfihKbZrfPqvM3KIqUIE5AZB0gghKZpXFczT7N1XqaUQKSYApgwwZCgv/z8y6YuZS6XdfbBF7IoirLrBozp89Op3TaC8WUy3pr9YddfLy65ui7WZXn69i0ri7KsjLE+gq6fAADjol/+6c91VRH8lVCGOP7bv/1ba/TT489O+7au1aLGccoykVKklM7zlGKUnFW5cKuUMi+y6nzsm02Vl0V3vT4/PVFEgvfn12Nb18Ss9p/+p39alnnux6jcBcPb2wPMIQCw73plTJHlIXhnLRMsXqPVNpPSO4/omxcsbLZN3/XX67WsqnXRzuhcCsH/DQIOISQEN0V9c7j9/OUrhJASChFMIQEAMUUxBSFlWZfaKCGpFFJbnUHhnPv2+K0uy4cP90/Pxzzl27aJEex2Gy6YWhfvXJZxbfQ0jxCly+Xc9yMACSOYSbkqTSmLIXIm8iIvioJLPE9Qa53xnEuE8SKEcC5wyp33CGGEscwlgfj1eA7BRRhjiGVZAQClzHyIw+UyjmNKSVu7qnWeFgAgIUQrQyktyoILYZ3ZbDZfv33d7/d1VWKE+25AAORScE6ttdMwQQTrpsYYamPKqkQILauOIaWUrDUJxBhjXpd5Vb4+P2tjCUfVpqmqGkPIM364v6nbCqGEEDrs9+eO9tfrOM/rqrx1AAJrzOl01Fq/bUc4EwhT7/zhdg8RHoapqERe5JfzuR8HnKgUfLtp58UsasUUx5jmcbl210zkMaZlmjjjt4d98KGqcoyR0RpirGZVlVXTVikB5x2Cb2tkBDEUwscIun4wxsQQZSa77mq03m43TDCRSe+88xYiqFcNYDJYM0aLIluV7ru+u3ZFWYaYfPDamCLPszxfltU7ByCYhlkIXtb1uqwhRCF5WRV6NcJ7xmm73czLClNfVKX33hpLKcUUU0gBBNa4GANlhHMeXBBSCMG7vl+WNYQYQkgxCikYh28aeh+ipDSG4H14+669TxClmKBz1nl7HWzfjVwwiul+f1PW+Vs9dbPZnM8XQhkTQVkdx1hV9TANShlnLeeyQGia50xkfd8rowURu21b1XVR1qfzuazKutlczxcuGMLJaWu95YzBmJQxjBEQg9HL+Xg8no8QgSLPkcen8yUkP6tF2QVCiCEIwYcYm6YkFEOApmGexjWBRChpN+3rcTRaKa3meWKCCcadtSEGgGCIQatVcJ7lWUopLwq9AsGZXpyxdl3Vy+OLd/HtMe566QhBucxiTOfThVJclpWHYJkXY/z10qUQttvty9PRKBUCWNYlE5kQXGaCc+asvZyvyjnMGGaMCi4F76/jy9Orc55g/DbKl5IDGL98+b6syzprIfN5WmSeyUxO8wpQ3O62PvhMZmpdtdaYIoyxCgEDuGlbnmfLslKKqzIHIDHBUgSIYg7RNC1KrxFEIQSiiAk6TqNZbIjBWJtmRbHINxspGSQQJRAINcYxyhGEGOHgg3OOMIwIxoh8+ulTxmnVVMuiXp+ftTIpwcvlEoKFEFFJp2nabLdFWZ27PoaAMO76AWGEIbxcLlKWddOsyk7DSBiLKT5/f+3lWJYlz3gi9Mcf/e3+Xs2WcwkhOL6+fPltqqtScHY+aoLwfrOFCJvF+MpXTZsA/P746IKr62qd52BDVgguRPQWgEROp0vfnX/86UeZCQhgWZVPXx+XRe32Oy5E8L7vR7VqABKmyBinVjNOqxScMzr2k1rUpbuoVed1RSgJPmil9ze7sszVsnR9jxEijEqRUS4eHh4IZv9mA04RQBiid86rRcOEEQXjMD4+PgnBl3EB6aWsizIvEMIff/hRLYvWa9M2xmpC4DJN67I65xgj0bs8k94Fo3VV1//F3//D8+Pj9dJjgauynpelrqu+v37++ttm0xDMzsfhsD8wjq6XPiW4v8kKWX75/jXP87Yuvzw/na5nQsiHjx8pwca4YXyFAEopL+cOYyoEH4dFLyZ6wAUDCDDOuOCUEmssBPDl+cUae3x5ZpRwSp3TWhlrlZAcQQgBACnBBAih3749YkIppc5Yrcw0jYTyPMvKJl/W9dd/+eV8OSttMpElH1JKuZQ+BfqMJMuHfqCMCT4547W2hciLLB+GcV3ndVVSyhhB8GkY5/1OhpCsDRAjtczGGn1avXXOWW9gN/ZFnSltsrxWylSiCt69no4YEe99SgliiAlOELSbBmO43+9Or6cEAMU0y7O6rudpOp/P67zKXGZZMYzTsq5CiOvlAhEimGCEpODrspzeYjzON5saOTT0YwSAMGQTRKhQWmulQojO+3VZZZ4hBK6Xayblfr/P83yapqEfko9ZliEAGaUa2Mv5whkt8jIvMmstQmi323IhjDHLNIfgoYJaacYZQggjVNUVIcQaW+RFCGGeFwjgqnRKiTJKCEsAIoje6v7rqqxz0zClmGQhORMQoRAhQhgh7ENw1jnr99mWMrosK2OUYDxM07WflmUtyzqERClnjHXnPsUEUtptdwTRx6eXPJdFWVprKWEJpHleCKVFVUJMECHWGYjhuqzGOi65yIpccmdN1/dSiK7rUgJCcKU1whAWhfPGWKetiSA8Pw5FkTNEy7oIznfdQAiSWQ4RwAT56JuqUasa+34aZ+NsUVWyzLV27aYmkHHKvHfRp/7aI4JjSqfXcybozc12GtWyrEwyypkyigtOCUUIKq3fwgXaGa0TYZ3IS0Io5yyEFAEkFA/XJaWYZ9IH++aNiClabzHBIhd6DBihTz98XKcFQkAwu1y6CMDp2glOEYqYQLXoeV6sMyAhIWXd5ikCYxQhpK7LZZ5llhGM384inLOYR8EYiKmuKlkUWZaH6DDBLrhpnoILRSwhSC44TLDR2pWWEhJ91EpTxiXLiGZGm6Yu27bGDM3TbKwRnN3sdin1/6aa/rcoKJyVXpQqisIrfX69EEbrZgMTiDH+/b/7+77vX4+v12uXYlyVyQT3Mazzsr3ZPjz88Pj8PURUVxvvg3V2WdSbTW9ZVL3fFllGALbRFUL0Qy8YrepSyuzbl2/TOEnJT6dzJpmUXAgeQwIxZHk+LMulu5bl5t3DR4RhfxoT9FVZ12WBOVqnZRoX8u/+V393fHn5/vXbT59+EBm/ni/Ntl5W1ffDuipCqVo0xCgErxZdNdU4Tsfj+eHhri5rY835ekaIWO+np1cYoczF3bsHTGnXD0YrISXBOIE3iNjY9f1hfxd8gIwA9G9EOARgSmGza4PSfX8hGI1dN8Ihy2Q/dIKSoi7VPFprMCHTOEvBRzcaa/7y868yE1Vdene92d/UdWWUqcr6z3/+M6ecIHw+Xr4sXw+3dz//8Y9c8DyTYz/FkLbbjXcOJDiOE2UcIlxI8fHjp667/Pr586o0wVQt6+V0vnu4BxF7r2LwEMJVawjgMussy4qyWpe1aVsAQVkVVV5CiLiglLDNtvn8+fO6qL/85deHuzuZSQCBsdpaB0C6nK5v84QQIyb025fvWmvKqRCyKEqRydfX50KXnPOHdw8PH95BBL3z1qq+7/W63NzuEEqXyzE4dz5d5mFeldrtthCCpm0YZeczgAgIIa7X6+V8ESILNnZ9n1LSxmR5cX69CMGTDd+/fzscbtq6NtbMZvERBBf6rtfWMs44w+M0TtMIEV4X9f7DgzF6XfQ0zZzSLMtSjMfj6/lypoRcrleYEiZ4HF+nZYYQD+NY1/XblTLLcim4ENI7JzJhtFnXdZkXzMi8rJzT9+/fW2s+f346Hk9lUZZ1ZaxZVkUZzXIZgv/27VsmM6uMMxZDTAnZ7baPT8/eOsZpVhRaG0oIQQRB5F2IwccQZCYhhCnFBJI1Zl1WQsm2zAEAMcUEEiYYIRhCIoy+jXQiiMuk8jwDADLG6roy1hFKnA/jNCOghOBC8KHvnbM+OCFYnhUUsyzPowvOO+/M5dylCBBE374+UorvHu6Ci4LzVRNCYorger0qtTprT8dLJkWWS4QwJkQbA1cSQVBKTcPYD/3l0lOKq7oqssxbGVO4vb0NPgghAXgmmI3zmGX57rCdx2WcRi7ZvC6Y4Lv7u+TD9XIlGFnrMOFWGwhBSmFZZ3hJ0YbgPMWMSz6v6x//5dyU1TxMICYpOQEkpmiNpwBCTABEwzRDhIwOyUfvwevzkSAKIvA+zuM6jfPj5ycAkhDs9nYfQ3wTAAzDKLNcCF5VNUrkDaRY5CWEkDESUxCZRBD207Tb7SjlnLNMSGttURRcCOfsbt8+fXsMIYUYIEEAIcoEY5RxtrvZAgDnaYYY5VkWeHyzK4/TyCgPIcEE81xWZRET0FoXZZGAAABghpyxAMLuOuS5nKcpxJBJsYzrvIxFVvz00+8QoefzOQKw3W4ATIRSykkBwDyl4GNKgTPGGEsAQpAgxgRjIcrT+YVivN1uuORPL6/DOEiZlaWYF7Ws6/xGl1VKCnnY7aq6Cs6fj5eu7+umhoisi355OSWQ8rwY+3FY1u/fH28Pt0WRPz+/aqvvAVrm+bdhsMbcHPbWrauZIrDdZYAo/uO///fjPM/TJDNJOa2blnDWVtu6KTnl8zQzTvSiBaMJR4R1XhYEx/Bwu/dGG2dsbwFE8zAzIWKIQzdRzigj1hirLWF0Hme9KMEZ4/R8vrho52l2LhCCMMarWn3wuZDd5ar1CiHypyvnrG4aZfzzy+s8z029LXJCMIkxWOcgSTEFmfF/+U//3JZ525Yrws5YiNDf/e3fppj67twNXYB407Sfv34J3jNGgo/D0Od5FmN6enoti+I///MfKJNa272yfT+WWVbW+W7fFmu23dTHo5aZdA7VZb3ZbfOskFJ++/qdSuKD98muyik9L+tyOBycd8fjsWyq3X4zDP310jPBvfd//uU3ijEAqGnrqqnXdZmXdVlVVZWE0GVdGKPTPFprPv3waX84/PzHP2trNpuGUAQgJIz54KyxCaFl0edTV28ahDHhUBB0uL0Vgv32y29wgMGHp5eXtql32w2mFABkgPLOWmeG/qK1Gq79OE3OhHHU2rgsE+fLGQAwTKPIeL2pvPfamBBi3TTOh5hSXVdSZpfrFRP09//+b49PxxjjP/z7/7CskzaqrMrbuzsfwNPTM0CYUMYYSSDFEK2xQsiiyDOZLfMMATi9HiEAVVnGGKdp5oIRyrz11prLpYeIWG8hBPf391XbIAitNRBB5531VisNIIAAqGXNcrmo1XuHMHx5eV3myThblvm6KudD2zRVU4cYYkiX87Xvr2VelGWZ57mzFiOilRZCUMYwRUKI4TrCXBZVngDsh2FZF+c851wI8WaJMcZ0/cAYZZRgTBBCGGHvHcakqGhMYRom70OMkXG6LCsAAELEGBOca62DN9aYGEEC6c09FqLnnBd5XlV12zaccwSAMVqtBkJYlGXX91meNW3dd0NKsWka70NRFFLkBOM2tufTxSTbj8OqFEigLMRms7leukWtEEajtdLGOqNWN40DBpAL3m5abyPCaHe4KaoSAoQJzLICpDRNk/cuL4sEI2XUaG2N1tqkGPf7GyH5PM0xRZAARNBYyzHPMslzeDpftXZV3XDKU4zeupQiQcS5wKXcbDYQkXmeOuuWxWBEMCHOec5FipERATFCaGWcGkMRRPvDzWF/gCgtxnLO11VZY1GCWpuqLhklRmvGWF2XxtiuHyAheVXleVFUxTzNjKAEEYYwQnD/cMAYGWOS95xK60ygcdtslmWFEOx2O54xtagYvfdhmWFVlSEE7z19WyNh7CjFCFpj51UxIVMEXEgIk3MumMg4QQmmEKL3jDHO+DiMq9YyK5yP1+MLQCCTklCcZXJVigdmrY4+MEZjgkijEDxI6U0NH0MKMLx//+6P//qfFCSEsnGerXYvz1845z/9+FdltcFErGo5nY9CiMPhjnIag8cYuxCHfuScd93gQ8izLMZkrIcA/vjDJ2fC96cXa5XV7tu3r+2mwBEG75pNVVY54e8fvz1ZbxBC//wv//r+43tA0PPpDAF89+kjRGSaJ+t0U1c+WYHL9tBO/XA6XpzRECZCMLhcTowSa22RlcQimBcyLyinUubXrhOS99eeUuyDgwBBDE/fT4LzdV5lISghEMCqqTBCBOHdbvP0/Liua1lVAKQQwmp0BHCeVxuskBwhjBBMKSUAMMYB+JTiMqxlUZZVRgkWklax2G23v335lRJGMOKcL9r9f/6H/y+TIs/L3z5/LfKCMXp8ufbjwAX/8MC0DtMyEkKHaSrK4u10IQQXXIQUCCEEoyyrZSbbXR1senz69vnLbyFBkeVc8GD86+uxqkrKSD8PWVYIyau6mub1eDpWVQNS4pzpdSWEQQQTAFmR7zE21hFMlNJD1xGC32IY59N1GPq6bfZC5GUxzeu8zN6566VXShGCIQBpXYZlIZQopfKi+PL1a1kWIhdN0zDCpnm5XE6nY9jc3Czjos3qneeUiaZtmuZ8Po/TwJn4+OneGHM+nYu6EJwBEBljxmitrfcuz3MAYZZl4zhFAAFCTVMlALwNu/0NJwQCGILLMl6UudFaWXNzs2VSztNyOr1M07Rp282uOb6c9rc3PgaZZQjreQYJAkQRBphYar1TxkCMqrrR9oQIykUhOIcJmlUnmNZ55cIIIbRSKYHj8cwZbTZ1AsC5kAmQlxJjCkAq0du+vXfOUUatNta47a5tmrppK7WsVV29AdQQQBAjta6Y0aDdOi9KqwjCNM8JRGstgCiGYI3x3r3ZQCEAbdNQRhB+SxP5oe/rpsYEG22d8VJI7z2hhHFmtLPGvhlsnPUxBEJImzVvC1hv7OFwACByzos8c95jDK0zVlsIAaFESNH1/apUQrZq6u1u55xxzhV5sa7au7lta0wIF5xJ9vL8vK6qrmulzaqULHM3+WWeY/TGeG2NVhphVFfFrBVTjFIaU/QxhJAQwAjjqqq11zf7ffDeOF0UBQDAu6BW82Z3eHNrK6WCj5hgSqk1KykJoTT6gDHBhJRFXcrcO93bPjpQ7Ip2s7XG+xjXeX49vnSXS1WXN/sDpcQ5v64qgWicXftVravMpLiRQvL3Hx4up0uCaRyXGEOeZ4TSGDxCGGPEBLNWZ0WmjZ2miVBinTseT4tSTDDvXOS0LEvv/ThoQgghCEL+8cMHggkA4PV4LopcZqLvhggiSFAbjSmehwVhxBS1zr7dmBmjjPK2qiFMy7zwQiJMAoiLWlKMap6ds0IKxplaVxc8iphQkpV5IGgY5/N11GrO87xu6rCo4AIVgkFmvVuVCiEo5ZwHRfk2xICMMgAhiGAa57GbcEq3d/dSypenZ2MMZfT741cI8O3hNvlYZDlj9Pn4khdlJjLrJ71qQsk4rYyzQ7uRnJ9Op6LIiwSddYWgd5ngGV3W2a5GKXV7c4Mg/Pb4eDye9ne3ypi/fP5SFPl/89/8V5jSTblvdzdjPyKEMpn/8pc/X86n3//+x4d3d9fu6k+x7zpjTZEJ5x0JwWljIICH/U4w8fJ8whhLyUUuijZnGTVKu0JKycfr/OXbMyb49u5AGRaSc8GbsoIIcS6EEE1bAwD/p//x6+3dPWecMPLy+no5d8/PrxBC6/zN9gZjAhCMMcaYIEIoIZigNnpW0+2+7YcrRDDF+D//T/+zT+mHH38/6WkYugRJDAEmdD6fD/sDF/T5+VWvlvOMc6Kddd59/fo9Jnh/f3j38BC9n+bp/uHw7etTJrPD7Q1hbBzHp6en2/u74/n07ds3IcU4L+PYLcvNOs2c80zk3vvk4TSOzlvGuDXx/YcPFDPGqI/+eDppbbRWx+Nru9mM4ySzjDDadV0IkTKaYsqL7HQ6WudijADip6cXCKAyep7meVliCCGmFEOIEQAYExjHAbyeCGPPT89/89e/984zxrI863syz3PTbgQTIbimrinBIUREYFEUlLH9zb5pmsulAwBuNq33HmOIEUgRLsvKOO+6cbff2eD7fnAhjnQuCqkm1WzKtq2LrFgWFZCPb9hOaxatEBzysrDOWW+F4JwzTGEI7vXphUs5T2NMyXsvJM+yfJmnmML12seYtjdbiFGMqcrzw2GPICYMa2W0Vu1u47xTyqhV52W222/VolwMwQXCcJvXGJGyLGUuUwTjOGWZBFAAAKNP7Sav63oa5+PxyBhFGHvrnPNtu6nKclnWZVU+2BADgGCcpmVaMUVSyrwoIiZaazXNUkoIMaO0aZppnrNM9l0vpciKAiQUgmWMVnWJEDofzwAATnkm83mcfIjeW+ssoXhbt4yxru+zbWu1Lcsik6IoyhDsteumYQIY6NU4Z8uiCD55H70LgKBxnCjBUkic43Ear9cuhuicJZjUVWmdrat6VQsjJM9yhFh3GbwPmBDOBKJWAnk+dZTRw90txnC49i4EZ10MgxQyBCOkPB6PxluMYQRJa+1DqJs6ywofw+l4tNY8mqeyKre77bIs3bUjhD28uyeIjOM49OM4TULIsipud7cvj49lVW3bRmayrIqX4/n56fjt2yOmMKZorRuH8d27h81m8/m3z/O0IISLMsuKbX/pY0iUYufc2M/jMrVtI6ucScGZiCAShFNKPrhVrfO8YIR88JfrddEmywueMYIRiLG7XLRepZTe23Ec8iLfbra5yM7HC+OsbZt1XWOIh9t9XdfWu9yX2ugsBikkopgTbrzzMa5GMyEiBAAAzBmXnHLWD8M0TjCmt3+fM4Fg6HS0NjAOMWGLmqdxRhBJKbfbm5TiNM2UYIRw13UYQuvcvKzztPiQCOYxBJAgwjjEkBIQjHEqEsCr1798/pxSwoQURTH0XaogY2wcu5vDzcur6vqRUprAGr3f7bY//fj7aZm0NkzSLJOX08Vau922+/3h25fH7fambuss4x74rrvABLrjZZwWLsSHD5++Pj6GFKu2ZpS9vp7aXQswRBCF5AmBp9OzkIww/PXbt2WZfALTsDjnrLWUECE4efz63PXd/mZrtBKE77abp6enrjvnsZKZzDPJCWnqihMab0CIUBv7+9/9hCmaxmHVGsIEAWqaFoAIERi66b/7P/8f/5//9/8HADGvyrIov335zrkMIEEAKGcpAWccIQz+G8QapAicsxTTP//hZ5nTTdO6CDCh67x8/vXzh0/vNjeHXBZ5UTw+PwkljNHee29Dked1XealHPrBaNs0TYzBaPWnn/8SXGjqJiG4v79T8zqME6WES1Y3zT/9//753/3D3y/qPqUUUlLaWGPqtoYUuRAoY9bpuqkZZ96HvusBiJv9pt5UzoUQ4jzPIbqU4uvri7f+fL4IIRij1hltdNO2WtsEQAIJY6K0yrJs6IdpWoQUFaaXy8UZSwgy1stMgBTzohA5z2SOAAQQOO/GfhquI5dyu23ubg/zvBivQ0ooJS5ESvHmZidlbowZxp5xcn9/UFojBF9fjjITXGbGGMLozd0eAai13m43xlqEIESwaArjzKW7jMvw7fFJL0t0KcV0Pp8J43mRu++PKYaqKuuq0caExSNExmnBi1JaUUwxRoxyEGF36ZXS3jofojOO5bwsSyGEs866OcRwvXYYkeCj0ut2u6nqWwShcy6meD5dldLB+6opbm9vtX0bWJhpHOumIRgrpbXWMXmK0bqu4zhopQ+H2wRTJmU/9D6EvCwiSCFS7xwEaJ5nLpnRJsaEITZWxxgxxNZa5x0ljDNGMOmuvZRCKcVDUGGNKdZlcbPdeBe2bQsRXqZlWZc372uRZwtV67rABBimTVlb51hBpRR5npdl8fm3X5dpKfKcMRpsSDFaG1ICZVE6506XTi3z5fTabNrb/T6G9PHThxTi6XgCQjLOEEHzvDDOldZdN2CE8ypXWhdF4bUTXFJGlkGLTDIiQgxte3O+nCmhMQKeSa3MOE0yk+fLJc8kZlgrQzClTEiebdqNVvr4cvQwQARTTFrbvh8YZefL9f27d5vNBkJcb1qEcSaz8+W6asMoiSDG4P/pn/6zNu469MpooFMuKSV0Vesvv/xyPp+UUnXdQIhWpVre7A67oshhhM56AMF2s4nAE0IxosZYxsm8TnVdnc6ndVkhgNbY7tqvVicApMwwJJxw73UKYBpmmNA8z9+/PwnJ/219sq6X85UQIqWEACCEUkrLvJzPVwQhF5wxttlsEYJC5ikCAIE2prteIcJFURyaNoRg1xecQNPUMSWjDSaUcxFjnKZl7BcpV6PM3M2ykLf7W0rJ0A9SZgjB1+OJEHx6flVWc0KkEAhTkAhACCIIAcQIAYiNtsuyCMkRjOfjSeQyy2SVl7//6cfrtSMMxZgeH78ty8SYvLu9u1wv5aaChIzTSBg53B1CClM/ZEVWFHkMYRqntm3qqiSQpAjLslTTLCWHEXbDXDVNVdfWx67vMMRZlhGC+0vXny7eh7ap13n2Vn377WtEyBjdtA3GGKAEQJqnhSAKISSJYCpFwgQTVlYFZ0zredGr95rgzEYPQAw+TavJsvyHT++NdR8/fDh3L1y01jjjfJblmZDLPPfdYIweevLwcD90I8SaMHy4vSuKchjmADxl3DqfIIgpYggBwCEAACKE8HQ6U4iU0eusb/a7u7vb1pp1tcOwFEVx7obrMKYU+r4/3OwhSPz25vhyen1ds6kY+vHl9bVq23cP94yDYZgJRDHEvp83m8P51EXgd7vNspq2rRKK4zBRSkJIVVlxrtZ1vrnZJgB/+fmzD45xxjh3zs9zf7PfcsG7rv/Lz78RQsqy+OHHHy+n4zRPMEWMIUIQpIQJqmVdFAXjfByGdVV5kWWywBSfj5eXl3NRlQkgH52PcRwnmQmCMeFYLWsmM0FoXeYhRMq4njVC+OHdbQJJa/38/JJlYuonAEG7qYMPMpcA4VVpCEEIb+f6kBJQyyJlzgi21lrnzLn3zhdFkRfZuixlmXnvldLWemfU5B2hGKYQvIcIG+OY5JSzEKzRhhACIVr06p3zzhJCgzHLotrtFiZEMC7LWnDJGEeUJASt9RAiyth+v1davR6PlOLg/W67nZep768RgGVZCeUIglWpy6UDEOR5BlLEmPTXnjK6LgrAtCxKayOEoIRmuSiK/Hq5aqN9iIiQdVUh+E27wZhY51gQCGPKaCDEm/DhwweE4TIvmciv3bUqK2OtY54xcrn0BINVq/46QAQEY9FFyIDkfOiHq75STBhjq1qlzE7ncwLwZrdLAKzrcrmcMEKM7ghBmAiZxLqub3DvZV60NgjBtm1D9ABCZiyGbFHr88urkPzDx4fnl+csK6zWT98eP/30A6HcWZuXhVrVX37+JUGQ57KuS4zI5XQpq7K9abpuWpZlc7ONIV4vfbtp8iJPCTDGnbV5VkAIMEbPTy8Io2lccIcow9Y6GFyW55nI67p9enqJMY3TjAlNAOrFPI7Pq1qqvBr6od40yzS9jbnyokAIPw9PWlsh+LU7ryqvqmxextfj5XLtIRFNW2eSI4B8tCC5ZRkxJoRAjFFV7byPRVUIxvRqEEJlWeRlXlVVREBp/fnzI4SgyLM3Y7gPIcWkjY0gySzbbDZN25ZlSRA4ncY8z5A2XXft+gETFEKIIXjvRcEjiHmeHY9ngmlTltbYGALjxHvPOT/c3lpjQ4ic87KopnFcxwlBSCnhlKUQC5a3dcV2iEBiXSCEpAQQgMGFtw5m8kGvayYlRcQ7+2bvYIQqrSBEi1rWCDGBFBFKGcSEEgYASgkACEKMMQUCAcZwWeexG3fbm7zJIUTAeetMLrlWKsuz5L1sN5TyZerfvbuLABxPZxCizGTwLqSo1hUjnGWsKHOKCQRoGsdMyrI8WOPzvFym2Rh7uD0ssy7KerPZLOMCMHg43A99p1YFYmq37W67N0ZBwDbbm1mtRdXESMu2vn149+WXL2pxeVF8+uGeBAgfPn2kiBBEHIj7m+Y9+vD9+9cQU1kXLPBkYwjxcr4O8/Du4X0/9MbN2qgQ/W63ixEYY4dhjNE5587nizV+WdeEUrOpGGOcs93+5mY1f/ntN+ccJuTfghkRv6F7nAv9OGHMjV4zIUSe8yyniJjrOSY7jePT9xeIkbG63dQfP76PPmi9huR3t63T6Xy+MsH2h921X//lD3/59Gm/v71JIdZlO47Trz//FkKwXrXbtqmK6GLV1F+/fp/mUXC+qBVDHLw/nk6xkzH2AACOx0lEQVRcZBCmsiyF5NfrGSFECVFKEUKctRghrRTnrO96Y5wQMsXQNE1M6fNvX778djzs91VVPX77Zr2jjJ2Op80m7m62BONMCmv0Ms/jOBVlvj/s3npPQggQ481hI4WYxpFzXlc3mhCMMaHYW88ZRwjGEN5/uHfO+xCE5IRib53SdhoHiODd3V3y8dr1PJNVWVKKT+crRnA1yjpaFHtj1TxP3rmyrr0Py7RC4PNCnF9OZVv/1e9/ZwxYV+2CHcdhnZf9/qaoSkrZMi/LNHFOnNfjMDgfKF845ylhZVaZCVnlKYJl1YRBRDCEMIFkjKYUF0XOGIMIpQRoQxlnGBO1rufLGQEspOSMTfPknXv3/p1S6zhNxmgESVWX3bWfphkjuN3u5nnprletVVXVeZlfTmfnw8vrsSxLhPH1egEIUYYAAIRjbdciL9+9ewchkrn8+uUbYTSlcD6PVVX6EIONN4ebsijGYcgKSRCZpokLTjDSWi9qiREkAPMyjyGJTMYQTsfjh/fvZcYJYes852UGMY4geu/GeXTWOx8IxtoaCGBMKUFAOH3Y3ld1/fj0mGX5x4/vH79/2x8OOc+u1+vNbg8BQAggAFa1QoRWtRwOh7qSVVNRRjnPmgZb6/puyDKJMKScWuOsX43Rznul10xIzpnSpihyirEPHkJct82yzGVevTV4Xl+OBBEAQfRhs9k4a2ECgvIiL+7v7s+XMyKobkqtXZ6XfT98+e1zVZUIASYIRMgYgwky1gAInHMxxpSi1goSRCidhlFmudGWS6GNkiLXq1rGeRzGw+GQQEQAxgCGcfDeC86vXeeN291sOeNRJinl0A1a2bpuPrz7wLno+26aemOUXrV1NgHoXCzrZn9zs91ug3PzPG+3m2mcsizLRIYhwpwvy1JmucyzIs8xhHnG12WNPg6Xa4pBcp4A2LStlJIi9Hp89t7XZVMWRXcd1lULLt9KjkIIwqheVVmVGBMpJKFYKY0ImaYZIlhW5U5ug3NqUW3dNlU1L6u1LsaAEAw+WOsgTJgi5yxG5O72ELxX85rnGeVku2nyLJ+G6Xrt2qZu2xZj6rxnQpwvV6M0gjBMbtPWGKDERV5l67SEGDjnKYTtvuVECMaVTatxLriu6xHCjPGXp+dMZu8e7o3R59fXtm22m5ZxijE6ny6Ukv3h9ma39zAmCBEEzrm5mz58+LC72VjvnXOkO02Pn1/f//Tu/cP94+PzuiwiY1RQmsA4XBOABNLrZej7q5D50+O3vMjO5yOlMLpwvbwywudJMSY3dZtCapv28fElL/Jmt9ls2ui8XlR/vgghSiHbTXt703ofjQkBJskohClEg1DwzrTbTUopIPj16clpl+cyJZBS+vF3n5x3VV3mWbaqiXOu9cIEDd7nFWV8Jxh3zt7trSzyFD2CcF5t569ZmTdt9ZeffzMm/Przl8Od2t/cfNofyqL+9u2b0gvF+J/+l3+uyubLb1//8T/+B4Lh0F/u3/3tbt9Ow3g5nxJAMXohxDhMPgStjVr1uq7eu+22tsYOw5hSujnspmn+9dcvjBIIodMmpajWJbiSM5znLAYAEaqqDAAQYqQUEUwEF4xRAJDRZrvbSsZTCJQigpDgOFI0DnOeFZhQCMC6GucWwZh22lp7vV7bpokhTuMcXDwdrzGlZdGckbqpEEF61bIQjDFCMYIoBu+8K3MOk48BpxiyXERnr5drSmS1bhzG4P266gQhQrhtaS7EBNA6a22sCwlR0vWjYEwIoY2bxrdqrg/Rr0ozyiCC0zQ+Pz9XdbW72Tln9bI2Td20LWN8WRYIQe1qhCDFDGB4KHLBxbJOy7KeL+e2rRnl67JmWVbXTVXVIYTj62uWZx8+vJcyM9amlBDCzjqj9dupH2E8dL3MpFbqdLyIbIoxOWuvXRd8NFa37QYRQikTGJ3PV+/D5XqhmGBKOGfGcqVVlnGzLoRSAKALnmEOUZrnGWOMKXlLo6p1tNYZa733mGDnnbMhy2S7aadhen055ZnwIYzDuN0iAOA0DZxTwTlCkn1iAKLr6bzb7Z6+P3kXIYKUsk3TYkYulx5jOi1LCG5alrddfVlm07AEHwgmQz9lmVimmTBaVWVdV1ppY7TMs2VRWSG54NM4r6uSWTZMo1FWCFEWBUiIUsIIBSlor8syd84vi4IQBg+00Xd3ORNgGCaldFbkzaau60rrVXDx6cPH1+PzvNgELwmSeZrtujRNlVE2z7O2rqzZMM72chVCUDJmUmijl2mBCJZlfh26U3e5Xq5FWeVlXpT5Ms4EE0yxs8H7UDcNxlRmmeASgGSMQhA+PLw3yiijtDb3f/3OWs95Rimfxslap7VZ5qVt67LMCSLH4wWCCFPklBmllFLd9co5z7MiyzIQUS4ziFB3vc504QxrH+Z5VKu9fQAIk0xmlJLdzU1W5sfXIyawbIppHJumKvJsGud5mGe1MM6E5HlRFWXurM9lkXEZY5RSQuik4N47BCnGyHvnQ8wLeTpfGKGUIKNtAvDdw32IqBvnl9fXpmnKsowgKb1mRW6MIQQd9jeMkM2mEYL//OtfGGEQJO+sWRFKACEYY+Bc3t3dfX38qtZ1nEZtlVqUzPL3Hz7mWXE9HddlLgrx8O5GCu6CX6ZFcrDd1j/88G6Z536Zl2Ve1Lq/vQ1Z/vj0jXEWo6cEE2P0PE5P3x4Focs8MYYBQtO4xOBd8FlevLv/BBB5Ob+gSHOeF2VFqHJOQwCyTCJEZEjbdksx+TyM66KU1pvdpqiKZVZlJh/eP1illVr3h21Z1E5b573zCSCcDApOYYS9dZTSEEKzbWMIKUAiMcG4uik3cEMQBhpsty2lmHHEOI3Rz9MimDwcdlmWZTxzwZyPnQcRgkiZPKELJiSmNPQDZdhZSBg22n79+m2ap4eH+6Iq2m3z85/+8Dd//3eCS5nxd+8edttt3/fjODRtk0B03jnrr6qTMuuHbl3W2mxkJhGGBJIQwKoUwrBtN4wxp19vD/sYwrqum00bU3DGghTfINsxwrZpCeUYE2PtuizRRwjA5i0oaQwIKYEEAOiuvfehKrO6KlMMIEY1r/M0r1pnmXx6fEoQ5EV+f3frrOumqRuGsZ+rstzvDxShBEJMIQQfYcAYTeNQ1aVW+vX0WsgshKCMTSlcj5cQbIoJMxkhNNZP44IJloIZq9cFee+sts5ZH9M4rQlCTkiKQWtb1Q1BcBpn66y1LgSPMH57GYKXMvM2XK+Xpmk2m5YLHkPinDvrQEo+DwCC7tJFAJ2x2iitVQjeGJvLUnJsIyScMsYhSNaazW7LmIgxcCkJZdoYxqh3Ls9KiKB3lhK8v7lBGBFCESQxxXWZu27AFJd1MS+Ltjor8izPhRTamDdE/lu+6Hq5juMIAFhWKriAxpZVzSj3NjBOQwjztEAEKcLX87VtGwvsNC4hhAiS1sZ7r3VurZeSU8gwpQnAqq4xQTH6vMihQtO8IADzMqOUWm2HYSiLkqBEKFGrIoQJIYrCllW1ruubqjfL5eXifQgIwzzPzqduGubgfZ7neZ7FCLRerTXWOkppXuSEEqMtJQQhbLRx3nvrU0pVWXgXt7sNZ8xZl2V59AHDgBAliBYVbTYNZYwk8HYvL4qiqkrOeCb4u08fkouci7qpnYvjohKNKYaun4dpRjAFH0/nfn+4QTF6FxFKp/MZIhBhctEFkAjFz9+eEcbtttbaqkVDBJ9fXmSe9ecOALTf76uqhAgps1rn+mkqioxy7lyE3hWVaDc3wftlXf/0xz+1bdt1o/PuZrd5+v5srPr9X/3OamO0yctCaV3X5TzPwzBu293Xb9/bppZC5GVR5EVeleM4Pz49TusKQGybLcAYpwQhrKri119/u3SXqio5pcGH/e0NpzQED0CEMNVVgSm23p9ej8bUUmbeGbUqjPA8zwiRZrOrEH0LtYAUUgDrqriQl9OFUtJsWkS5CykEvSqljV7X5Q09qVaFIMpkFlO4dpfbm0OeF0ath9uDVro7d1xQAJMP4fh4HPs1k9e+m7JCcprd3eb379//53/655hiLiWjKMawrPN2s7lcr822KctC5HJVk1ILAGFZh++fv75tpL/99ptW5nS6eOcPD4fdviUIpCyXL89Ha8zD/WEc1u4yaq9++t2PCMNvX77/6/CnsinyJv/44ce7m8PT86MsGFy8dWizba1NnEvKmLcxRPD9+wsW5Ga/L8piGMdIMMAoq8uE0fUyzJOKh2hWBSBZnUUmYgzmacrzMugAYzDz7Izlgs+r9hYxRrjgyzJZY/vLlTKCITKrkkJwgjEm3nkAIOHUOYcZSc6XdRW8r+oiBH85Xad5IQh9+nTPGNNazfP0lz//ceiu+9vDP/7jPxxfW86FtQFh8stffjVaxwQ4pzOavAsxQsbFuppxGkFKwXtC0KattNIQwaqq1Kq0NgTHTdve3t7stpvL+bLdtJiQddXD2BNGb2/vl2VRRjnrCaRZnfPAh2kIIRJKOKMpRclLTOA8Tcb6cRjrOm/bxlizrMvldMmLoqrqqq2GflLKTMty7UeI3sJkjADUVBWlWDA2j7PMuTeuzIqHd/cgpZfn4/PzC4AQJKSMNdpfrsM8TxAE65T1saggiDBYjzFU62qUKorMau2cTxECjN6KoBggFBIFmBCaMQFgmsJIKUEQOY/Kqsiz3DtvveWcUsowgvO0eBFCCP3wzJ6Zta5pKsa45LK/9Cl6CBMCCAEMEMAoOudSBG8P+N21ezHa+yCyvKrr6AOAsK3qEAIAyVPPObHWLfMqcwlhwpgiiLfbTQJALWq3Z5u2medJ6ZVgXBaSYOy02u4qrZi3nlMSY0oAyCJz1ossq+oKJ1TVJaZw6udrd62qmmfZPI3TOm93G5lnxth207x1g33wzmkfrHOmLLPg/TiMRVFIKdZVAQhijEorY9w4jHzKttsWUxQ1gBjWZVGWNYb42/dvXd9nuUQAxJgooVVdQgD6ax9iaJs2+iAlOxx2SpmUIJeZczaaRDmTuRSCe+dASiACjHBdV9M0eRuF4ClFF9y6KILRu/cPTVU/2yflfAKhqauqbn3yiMC7u3uEUUppmoaH+weQ4vfvj4yS4doHF2NKHz6+J4QUq3p6fFbKFUWBEXRWBRCtsdfzFSGEEIopjOOMMCQUe+/fxhp5Wfzudz+t83o5n4epV/NCCdvd3IQQIQLeeUYIQuB66bTWjLLnl9M069vbQ7vZ9f3w+PgoJNerMdZFmITkxCOnbQwpRfz51ycp5LzohPBq9DiMnPEff/fXz09Pw7gKnvkAL/1clmW7a2VZtiBtKe76KybIGHN/u1fLorVa1MwZ0VrlhRjn0RgFI0gpGmsxpoQgF8MwDCEEiFGKyTsbfXTeD8OYy3IcZykKCDEhOICYIIQIjcMkBGvqqqqrTVNF7758/+6C3283GJFxnOumggg56y/r9dpdKGXfvz1mUnLGi6wws5FceO/q7cZaR6XAlFIuyrq6udne3t4+Hb/34/hf/m//N4Shn//1j+fTRSmTCem8WxTQxzOVghG+aq2U+vWXXy6XM2VUK3N6eV6V4VxignwAj1+/n1+P5N37fQwgv3Am6GZbcya0Xu/rW2t8TP7p6fHSjf/hf/0ffv/7v3I6nbvL6XQUjFvnIAZKa8HzeZ6CS5moZJ7vDzerXj6+/+CcPxxuKcFfv38LIUCEf/vlm7bu65fP1pgAU0jERsw4RMF6ZzmjTVnM01TXFRPMWDJNi5oJwciu+nB7yGUWUyiKjBLqohv7gTGaZxmiKAT38v2ZEYES0MvCKBeUmBQ+/fj+dLyez2fGiRA0xsAozfPyy5cv5+spz8Td/YN39tv35+v19OHhHQLJaJdl4t8KQUxghA53+2VetDK3D7dlWb5d+kXG6qoJIc3z/PJy9Cns9jdGm2bTMEaMMo5SzvnbQwTn3Dn3+vpKOQEpIgDv7+58jBihYRoRRre7G+sdSCCGgBl6fTlTyv76b37ChB5fj/W27i/DtMx1VW23rZBiVeZ8OVNKbm62bbNR61rXVXA+4wwSMA3jqpQ9WSrotb8UZUkINc6vvYIplXWFCUYEjENfEJYXRbRhGuaEkrXBWn+6DJxhSBBKBKWkximXknGSYjLGWAvO54uQfF4XziQmkDMOAVrmxXqfZaJuWgjhPM8IY+/DsiqCiZAigXQ6XZqmhQAKIaZ5Bgkcbg/Ouy+fv26227dAfZbnnDO1KkLpuupL90Q4q4vyzWrEJYcJ9X3frf1ut40BDEOnzFrXLed8WVYAoNZ6t9tKKW8P+/uHexBj1VTn03VZZ4FZzuQ0T5SwEGKMwTiDS7Lb7YQUMIHL5QJAGvsxARhTdHp11szrREZCMeKCSylvdnuEUALx+/fvPrj3798dj6dpnNp2AxKwxqUYjTYAJELIvKq6rcuy9M6v6woRUloThAGAh9vbqq0BRozReZwRgm+lVkZJnkut9fl0AgBJKYdhAhAZawnFIuPzMmOEIUyZbIqb3fdvjwlEiNAbYEox5Z2llFnnKCcxhdeXF0Y5F3Rzs+GMccZP56v3zpkwTLOzlnNWlHfB+zwTEKSh6zHCb+dRAFGIXghaFhlEqN226zxdLwuhFMXQdwOXnBLinEUQMMqKIvfWJYxeji/lUlFCMUTRR689iDDPcsH4brN9enpZ1rVuGoRACEFKkUACCXTd1XuXyyLFdLmc3n4n2237+ZfPVZHHGCJ0yzoviwkx5FlurE0gQYRXuzBKx3GY5rnrewQhYzSmdLlef/38W4yRMvR3/+7fpwQBwITSy+XqtKUEp5gY58660+mMEEIxlmU2T4ux2qyT816WuQ8BQXg5X67n681+F2wY+gETLCRnjKaUEASUYej5vCwJ4rwsKEycc6PW//HnP+13W0qoNybFWFT5uq7a6GHsy7y5P9xlUhDGu8v1eh0IQS74m+2WYAJwwAgxJiAiKSDvw8vrawLJez9O8/VyOb6+5Llc1Prl61cfwN/81d+4CC6XM5ci35T3h/vN7vZ8fD1de20DjmkYRgARIbQoMkzJ0PXDqhwEpN3Ud4c7mcnX48swri56hKBWahoXAD0EoZBS0uzd/buvX77+8pe/VGX+8vLqQ0wpUcLpTvoQuuvZmJfLdfj4ww8AhP56gRB5b5u6KmR2Op8evz956BLyn798IwQ67xOELhGMUpXllJEY0/U6bG7aw+2eAAwjLIuyriqt1tvbQ1kVnHPrTIpxu2nndV3HRS2WE9YURXftPry7X1ddtw0AwJmQIjxfjiABAFJTtzBCjNC79/d/+MP47t27v/mbv+7G6+fPX/74xz/97qcfd9sWH3ZScKpJWUIfzM1u52Ow5psx9tP7T1XZ/PEPf/DBJxCncWqatq03m+3m+ellGkcIwfV8NbkRXPpgvbOH/Q0bqXPWe9v1nXFerwqAZJQa+76oqqZuMCPa6J///HTYH6Z5TSm2TYUwoZQE4zGh3789X7vufDofz2cEUF7kLrhl0YhgQvBPP/3IKXbGvrw+TsPUbqv3D+8SiCBCkNK6zn60QnA1T4zg8+lyuZwRwO/eva/azbosCCe7u2GcW2u9dSkBiAHCZFn1vAREkJQCE4ogppRb7QLCCAJngNVmNSeRCUbIqiwmOMtoN0wI4OA9RrS/jpttu9vt1LICCG/vbmGCSiujTFEUeZ5P08glk9muHwYAk5Rid7PJsoxzppRuN3UMKQTno0cYIoyiT5QSow0GyTjrjF/mqaoqytjDu9p7q7QlmEohdTLzOKUQvTYoFwSiTDDJxTIv9/c35wvUq04YYkAwgreHO4zgtEzrstpl0fN8vZyVsozxN5HA5XwZhgHAlCAY+rGUEhEINchy+cMPH/Ms22wbjLH3HkK83x1AhAmkaRreUPKbzXZVa1Xh2/2eEDxOvTFKrQombqljkr8eX9d1BSAihG4O+3mau0sveVYVFaXYWd/UG5nJ4+vJWUcZ2+02u90OYTj0/TyMDOdlUUTvKIQJAavd6/OZCcwoDSEos3BKhRAII8pZ33VUoaoqog+Jpvv7u9PxorRSy3J8fU0w5bn88P49igkBlOclJSQBuKwLZZQyti4r5YRFpo1atZFFmUkOIXDGtttWCB68t9bkeVbVNUjAx7C/uTsdj9++P2EA26o57PYJxrIul3lRevXeXbtVa40wTiASjG/vDh8+vvv+7aueV4bJX/3t771br5cuzyQEaZnGaejv7u+youz+8muCgFAGQLzZ32y27Vs4e5rmazfEFNttSylR2ohMMIARxiH4qi5/+fnneVUc45ubfQq+LLNVKYiR8woRLLICQYQwfn29KK1AAC7EaVGrcSHFt51T3/fWuSLLheSEEmfMPI9ZVmDo53Us8qou2z/95Y8M0RhMDHEch+1mkxLClJaEni7dy/G83TS393f39+84FkVRbHfttRse3j388V//FWG82W0ooSEGwZha1bLq8/nCmWiajbX6ejmVZR69tcpcrpc5k9ZaznIO0uPjo3EGQNC09W9//nw9dcGF/tpjsha5EJB/+OnHse+Pp8uq9Tbffvj0I/oxjV1HBBfeu2m0Mcbf/fXv8rr89ec/X4+XzabWasoz+eHdfSbFf/pP//Tt8dvz18dMit/99NOs1mmchq5LPhrtCCIqGMHZy/GIkwf7bQgRE6KWOaQQnLPaVDJ/7l8xJgSjTx8/Qoy+P73CBAhI27YlGHjvYQIwAW00QRBjyTBOlFGOqyobh0UrBTKJEM6FbJpaG1uWBQjp4eFOa5VnGYLwjbdTFFXT/H6cx7/567/+/v35z3/+c1Hm0aeHuweMyX6/v3t3e3x+uXTdL7/9hVL2j//wj977N9ZQ3RYYk36cGBfbzY5RPo4DY2xXbneHHaWkquvHb48vr89KrZQxZG2KIITEJaeYvBGtEYJlkSeQEoDeRyE4QplaNcEUQvxyPFJCIYRS5CBBjNE8qaf1pSyqTOZKapBSfx0p5RiRaVhiDJdrR5lQymSFbJuaMkJgTiklmB8OBRPodD5eLh1j/HK6QgA2mwpQ2jat9y4T/Ga7oVRQQuZhCCHc3u1Slay1TruMyw/v3xmrb3cIU/r4+CwkwxhRxvp+WKAu8hxiDEEKMXlvKSVKqWy7lTmNMcaUrLUIou12IySXUtRts9m0//qf/1AURSbyFOM8jzEmCIFzdhzGoiwYo4zReZ7zLC/KYp1XtarNdjP0w/XcWWedcYTiIpP99UoxbNtqHEcpZdPUxpju0h1fX7M8997vdlvG2eV88T7UZdU0NWOEEjz2A2aoqSqEoFJqvI55UXApOOHWBW8DiDHjvCqLqqqcdwQjbe04TNZaSqmzPpMZpqjeNIzS/tKllJx10zKfj0cA0mbTvv/wIcaEAECEcc61Xo2x67LcHA4xpHlehZTW2ut10FpjhAECx+P5BE7b3WZddbtpMCbz6QwSeHh4KMrcWJ3LLIXEKMeQnM5nCEHdVFVdtZuNlDKmQAg63O7KsjBq8T60u+00jZElpS2M5PLaJRzHYX6bcdd1LRjPiqxpasqF96Gbx7syp5xNy2ynJcsyQjHE4PnlRVCu1ZplWVmUxtqYPMKIOpRlIkRflDWEOCbglA4h5nnWNk1MXmtFGRGSF2WRIhinMYSYQGrbrVrVbr8rivzp6QlBTBl9E4YnmGKK0zhRzoTk7bbOpIwqeuencUYUHZ9PddMQRmCCxribmxtjDAQIJHSzv4UQKG0IxUVZMMZiCmpFGBMAU4rh7nCz2bbfvn411t3s90Ly6/kcnd1t2iyTyUe1LhiBy1VtNpt5ni/dVcr8bn9LONarts5jTAnFTMCqabQxz9+fIURC8nt5BzG01hGKvPcAoWVZpmkgGBtrg4+ELpigeV4wjmWZY4yyTLZNSwiZpmlZFwAAJhQkwKkos2Kapt++nIZhurs73Nzuijyngn97+bbZ7QSkAMHT+TQOY5FVKYLNZuMDuVxO67pgjG4PB+vD6XwVItdabXabx5dnb5xznhjbn/thGDEiN/t2Wdanby+//PrZW1fVZdO0LsSMwN1+C1Iiec4XNT1+e2RFmTDdpZAg2uy2ydsQyO3dXfRw1evLyxEE8Onjp3HoM5nVTbM2q3fB21gUVdNsYwjfHr8/Pb+M61K1FSM0xLgsSuZMcPZ3f/NXXT/sN5vT+ZrnsqqLkBLCxFjFIA7Rb9otpTQlMM9r33UAwLLKARS7/cYak1LKC+mdr5t6UasxWltdVIXIhFoXhFF37du2Gbu+H+Y8z3JZrmrNZTbP87JM9/e3+/1+mdc3jfD5cm429e39gXDKGAkg/vznP//9f/Ff5FJSShknjNEP7++HcSGYQIgATIe7gxD8+eWZc348vfb92G6aTGbWe//oYYII4U3T9l036VUrvb/dtU09zlM/zpxzzsjpdCUYE4rXVXVdJ2VOKNptdxCkdVHW2HlZVmUYYd57H0ZGicylzPJmuxu6YegHkFDTNGVdgZimRV26mVLMOZdVBaC+9pdxGiGEzoW23VRNiwkEzlqrd9tt9HEYh+56XhZVVWUKutlspOS3d7vL6Zrn+W7bJhAOh/3t7bbrxpgCgpATHEF49+nd5dx118G6JQSCMPn447t5mChDQgjvAsX5ZtfeP9wbbbRxnBHJxW7TQoyWZWYExxg55+2mOR9Pm00LITJWCyEYZTKT1rp1Wb3zGKGsrmKI/TBsdxvOxZsGEiNICKEYl3Xhg4/RFUVGWZNS0k7f3t4sywox4oxlueCCYAgA8CLjCURjDMRoGGYXwbIoypjMpO4HmDBjNEZEKGWEOec3253Sxto4TvNb9oNxTilFCKpVvY2MmqaiGC/L6rye59E7l+WFMWboryklzmhRFpjAZZ6HYZ6XpazLtmlABJxgiLBzjnG9qPV4OoUQEYZ13cQUKSNFmUkpvj99Dyl++PigrVmndZiHHMtM5BBCiOL59LqaFcCEMSaUjeO03980Tb2/OTw9Pckcvj4/Z6Vc1hkTLASHAHz57ctuv727vfXOQQhicMG7l9dXgoi1ljJWlhVEEIDYdx0j+L/9P/13/8v//L+Myygld4sTRBCMIURlVb57/8H7sKpZQ5BlsswKn9z1Mltrspi1bZuXJUxwWVchGYZomdVhv7+7ve26XvBst9t8/PgeIvD9+yPG9OnpBWOc5zKESBCllKxnBQHinHvvzqfzzX7XVO31cuWce+elIMZY78e7+3vG6Pfvz9MyjtO0LMs8jRBCIXmecWtAVRZVVWw3bT8MlABnVmOUlPz+dquNGbtpXpa3Nf40rtaFm93tbrc3an16eikyKZmo6so577zf7XZ6Xg/bbTcMVV1BhK99Rylt6to7jxGACJwvr1qZeVmyPG/r9ng+OrdizJd1lZmY5gVCfHd3aDebpmmLokAYcUYBgAmFcR4WtXBBI/B5nVV1eblcrY9KqehsUVdvLG5GmcjkNI95yTnBWqeyzGOE0OiHu3tMaJYJTLGNDiVojcWIhJg4z/I8985560OMhJDNttrt9gSDx8fny/naXzo1reQvf/4FYaDU+uXrS387OmuVUoKzZeyFoIfDwZsUAvzxxx+u10sm5H/5H/8jgmCaBhTjabpAgNqm5ZQ/X58/fPhYt823L18pozElrVSRF9M0PT8/72/2799/7M4XzoUNxlnrUnJWowQgSnVba23Ol6vM8qHrNpvN+4/vDvsbbzVA4XB7Y6xxwaVU9F1f17WLFjEEQIIY3N7drstye3839OM4z3kmGaOUYybI+XRSq07BU0oRgAST4OP1fNwfdsGFZRrmcazquqqqXEqjjQuh6zuE4X/8j/8RJpggSTFabYMPMcW+6/Sq5mEchr6oiyJ/p7UWXNR1tS7rbrsDIIbgjbaZyM7HawSOckIZ9dY/fn/EBJdF9fj4rIyVPFvXNUR/uLmJKUyrymQGYdKrghkEEPRDVxQFItSnhIJvtm3dNte+SwCO01zmBYjBRyNw/uHj++5yeXl+nYaOE+pDbNv644cfRM677tzWm7psCGbv3+Xo8el0OXFJQ/TO2+g9Z42zljKMUFrmkXAyTyNGsCzkNM15Jrkg0XscUilzzcym3jw83GujD7c3UyaDDynFm22ZSW6NjcFTBKGklCAE0rsPDykm74PSKyakaSvJZZFXMpcIwnlZXPAPD/d5kX3//iizrChQWdWU4qKoPiAIEeiuA6F0f7gJ3qt1oZhczleEYFmVnAnK6DLNAEhK2d1dXZTlMAwxhfPpjGK82e/Gdbh2nZTZ9Xqt2lrm2Tqv1nm1mJQCofgN/5ASIJS4MRhtEoCU0xKUGCEphMikyOQ09G1Tgz04n85WG864ENRO6zyr59fnoigxZu2m7brLqtWu3Gq9UEY+fHx3uVw/fPxYlmUMxihVFHXTNIfdXhmDMWKc1U09TqNeNRdcqbUfh8fHR6PNPE55kWlluKB393sps+u167orIVRQClPCEBVlIaV8eXl9fHzOsoxRuixL3dYQgq7zCYBhGgmC25vNjz/9eHo9emeLssyzvOufuE8O4nle/uqv7rI8W9b5eHr9+uUrhlAtyzRPnPFxGDDBawyUMbu+8XOWYRlCsHVdVWUlhYjJUQxXpSCAZVVggC7Xy0+/+wkk8PpyvLtvPn36UOX1ph0/ffq422/fvbt7fHka5+lyuh4ONwgiTOn93d3T4+Nvv3520WGCKlE2zQZjAgEsitJZdzqeldIyz0KM35+//Mh/erd5vzt4dIYh+mWe12Vp2+Z8PG927cP9XQjh+elJcn447IJ3jLIff/xojX15ecpFzgVWOqlZE0yO59cQ0ibuZjHrdfbeStn64ACImCLjUoKpbisuKctEd73eHA4P7x5kJn79yy9lVdzeHsZhvlwv02nQxhqrUYplyecFl1WxaZpVrYxzSqjz7u/+9u+GoV9XNY5jnmeCi2mYIAZVWVDGNrsmQbBqLaTIsry/9rO3EKNt2zpj67qmlC1LOJ3ORc6v17MQ5d3dg3Hu9u4OYxyCO1/O94eDc/7790eltAsBAMQ400qfjifnXLOpf7r/RBD90x/+ABHcZJvdYbPmEv7f/q//l2kZtTJdv3jjs0y22wYRsN203hrK2X/9X//vyqr57//f/z3GaNtslnlkhDab0hk3jSPGrCk3CZJp1d8fn0QuQ3Tb3ebzb18JI01e9t1grIERdv2AICqLJi8k5XTRy+vpBFIkBEohUwRfvz/O80wpEUz87//b/0OdZ+syaDVvt1vGWUxpntZr17979267aZRR66IAAFopgjFEcJ7WCALBZH9z4328nE8JBkb48XiJMcYI35JzxnjGadOWi5q1tpwzymQuhVbr/f27pmnneXI+IAAufQ8BuL29JYys03I+n2XJY4hTPzWbBmPaXa+nriOE/OXPv/z04091Xf3pj3+CCRRZ1rRNTEmW0hjz2y+fCSVDPySAVrU6H3fbnQt+nieYYFkVlJLkozWGUPJw/9D1/eV6TTGFlGIK79+/TzFigsdhGscpgdCU+X/1X/3XPsSYPCbo67dvz8/HYN3N7oZinGfl/cMDpqi7XDCEZVUfz+dLd53HqSgK773WpijzoqjyTEYfjVXBOwgTYhCEVFU1ofTl5ZlS+vbGCBUxgWlWfTfOy1y3DSKAENS27TIulBEE0vPTy/awOdzsQkzXax8CaJpNWRTa6uvpdLqetTbdpfvw4T0AwPsgZUYoxRAN06jWlQlBMIYISSGyIlumJQTfbrf7/f7l5SVEr5dZr2tTtykliGAMMSXgQ4AQMs7fOu4xpWWaXp+fCikk5yGCCBNl4un5BSIUUzJKffzhU/TeO+utK8psu932/TSMizJKabOuylrHGNtsW4yw0mZelk1bbdoaQKRW3V2vxqzWGowgxogQUlV1UVUg4S+fvyIMP376cDq+ikxsN7svv33f7m7KupjGq5qXsqzruvYhQoirplzU+v3rd5lnlOB5nNW6XvuLcwEjcru/FRkfhg5AsG0aWWRvTM0YPJfcaEspTyn11341DmG8zCsmKMvluqxqVYQiyniRl/f3e0oooeRmd2OUancbBMDLy3OIoLsM87K+e7hv2ubPf/7Ty/EFJJS8yyu5zovkkjEKCd5uN6fz2TlvrEGEUE4RwASxFKNzVmvNKCnK8o21ByGihFHGEMQQQaXWIi/ett/rskAI3r2774ZerWq3v7HOzsNCCNFGr2o12jBOm00tWZblZYTh/HJaFzUOnXX+cHvIsnyel+P5XNblZrODCKl5sV4rpdZ5JhgjhOuq0kYlANZ1pZiUVS6EQBhWdQkT6LveW4cJOp5OTOQIwlUZo02M2Hj96eP7u7vD5XQapoExXlZlVdUJxu50KTKJCXXaZ0Wmjfnhxx8RQqfjiWDUNM0yz6+vZ8ZFVpTXy6lt69fXF22sFOLmZjdM4/VyKau6LIqiKLRSWZYxRmOMFNNpnfu+L/KcUEwZzfPM+fDl83djdFOXdd0Qgr31AOAY4svr8zovgrOb/bZtts77eVaEUIQwJXhVqt6UZVm+HF/mec0yOY6rWpW12jm3rEordX93qJvN8eUFY3y43f/+b39QsyVF3fA8b5pK5PnXX74E5wjBbxnkOcayqqdp/vnX39S6VGWZoscErMtESMIQUUKkzPqhJ5T/9V//fVW13diH5DGEv/v9756fH4uirIrqT3/68zxNQggIYNNWdVXO6ywI3TV1XVdlna+rWqf15h///bSsz0+P3789fv38y08fPwEIJBcUUwzhuui+G3/88VNZ5AQhyblgZFEKQL6uKoV4c9jNy/Tx0yfvvDMe4nh8fXZOP7y7O58u06p+/PHHmNI0znkhZSZyI6ZpUqvyxrxc+xjDeBmtcwCBf/cP/xABWObFGfv87cVHV1dVVVX9qRdS1G3z048/RZgghMp5bda7u7vn15eu79qmkkxgjDinEQIIgFZacIYx3d3sLteeC9Fm5fl8uvYdhGi/22m1IiSddUopZNEwjZxzgrC2GhOKILycLnmRh9V553bbFsAoBQbAU4xOl8s4TpdL9/L8Oo4TIuKnHz+CEK/DBYIYnKOUdMP52l2XeWKMFHn+JiuGGB+fTxrq3XbL2c6YBTPkg5umqaxLhMlNvEEIAgCMNq/HCyeyqpqyrLXReZ6H5IN3ksnbT7cuusv5/Dd/87eIJu+dYLKt2t++fHU2woQJp0xIQqiLSjv//ftj09QQorfAzzSO58tZKwshuLu7lTI7TdPyeYkpYYKXVS/zGlMAKc7zUtdV3VZDP16vl932BmGSUwpAnOZ5WdeiLJ1zwbsff/eTFJRR5pzvrv04L2VdrqvSq+JC9F2XvI8gzMM8jmKeVLNpm009f5vneY4xxhR89EabEMKyLACjp5fnEP1hd0AAAgBjSBhihGBZlkVREkqXeR3H2XqbM3k+n7JMxhgvxwslqO+v67o6syAEuuu173tMKWF0Vctq1OevX4SU++2uqnKlFu+D807kEmIopcB4O6/TrFbtLIKo2dYU02VZuJTnY5eVGSuEcq7req1MTEGr3Bjzb2gSAsqy2G33ztnX5yMnAqH0P/y//gcEYYjOmrDZ3twe7na7w7pOxpqqqLz1Pz9+zWexqduiLKw1WZZJKTGly7oaZ+bu+sMPn373u795fX15fnoKLnjrnLYIIMn5uq5tu7lcL7vdnkoGESSUPj0/rYta1zXPs+22jTDs77avz+eX52drHYJESKGU3mw2McbX16cYKojx5Xo6nS6c0v3t4Xh87fsBIZwX2nlflhVG2BpDufDezcOEKbm9vcvyTK2Kcspz/vr8Ok8LFzyvynGafQgQkTwXWZEZo2OKRdOM03yz2d3cHIy312vX9X4xS7vZHA6H78/f1mVlgkGUnLOME54xBDCndBzGdrPJhDDejsMoJQcJIJCqori7f6ibzWcIZzXutttpnO7f34MEhBBllg3j1FRVWZUzISlF5/zLy3NVVoSRsiwpIRijGML1cl3X9fj62rYbxvg8zUWep5TatoEIffrp4+V0+vrly+V6FSJvNhvvwX5/AwCwTvOMeu+1VnVTySyjlEBI1nVNAHLBi6oCIN3e7q2xiIAQ3LIuf/6XX5ZZk03bcCYO+51P4eXLo4uhbWqtVXft8yK/Xodl/sOiVgTi1I+v5OXh3YFxlkKazSJkNk+LWvXNvmrr5vb2/ue//Omf//CfCaXW+bGb9WyN0caZBIBa1x9++PT+3T2EgEn8+PQdoRCtoiDHKb17/36zacqy+fWXXx/vvz28v6urfNVaK3vtrpkUy2qUUt2p98YrvXhvqqqy3nPBxm6knP52/S2ByBknlLZNbf7/Lf3HrmZNm56JhV3er9dvk7kz88vP/r7YJYrsZvdYaECAoGPSQFMJGulQhBYFkaxiFav428+k2Znbvn75tcKHBqlDCCAG8cRz39fFse8HUkpg7Wa9JK5f5sWHj5+r+pSkV+PYUwKHvm+bbrO5Oh2OEAI/zZ62TyPnL169TtO4nBdsmno8QADSLL68ugAA1E2NMem6AWHsOO533799//M7I5TSXt+2UweXq6WyeuokRBYDFAUBgQgi3Hbdy5cvv2BtosBbzWeYYMGY1JIgCCiRlAghhn6Io6gsC62VVNoaq7XGCFDs+K5bFjkEIAi83XZnhFqsF1Cj4/MxS0KMoFGibSvfdfpj4xKqJDfWWICYMHXVeq5nIX6RRxDh24+3d3cPF5v1bD6TWlgM+m74wjKchokQ1yEeQnAYpmmSQmhKQRSHFkBHUGPM1E0I4YkJAHqIoeN52hotlWBccwMgmc3mfpQ6rkcc7JnAD4O6HcZh8giuz9XIhFQyjmMIYd8PnHOEyHZ3+BKcnUYWBD4lZBw6o9XE+GJeeq4ruTyf677v+mGy+rjarCklu+0BIis5HwA8nU7j0J/P1Wqx6PqeUMIm0TatF3hxEGZpGkXRfn+QViCMi/nsfKi6fvRCP4zj2WJWLhbTNGx3z23da6mSJP7ie4IWcMabtnUIoYTgOHZd7PkeMEBI5QWBH9jb2zvOOUHQDz2ppNW2LGZKy9OxqataiZFSEgRhW9fGwnJRTP14qqs4iV3HgRDWTau0CsNg7gdRFCulu66z1oz9CCGYJh5GASJIcDlNLM4STPDxeD7sj2xknAllbFFkQigpVBR588UcAvTq5Q0wtmva2azYbDZNU11cXiRJtN1ut7vDMAyeGwxDjzG6uXk1jVPbdpf80iEkzVLXcYZu7GyfxEmRFcvl6vOnTxhThAkAtq4qzsbQi+fFzPWccWRt0zLG4yhJ07yqar49REmQ5XmaZtoYTKEU8unxeRh7z3enkbGJWwvC0EUIOZ6LMB3GLi8KiDDjrKpqxsXQDcfjeRgHY20YRVEYYYoJpRBibc04jozxLM8wJp7nTRN7enyGEMZpFASRtZBSPA1jFIei7e4/P8RJFIYBwjAIQt+PfT/EELmePzTcC/y3y2Uch0oLCK3VGkIj+BS6jkMxCnylje861ljXcfIkQQBO/eS6jpRCMEEI3m533dC/ef2142DCMfXom9e/JxQ93N+fz1UUhi9fvHAodR1ngP04jMYawVhrYF5meZZBBDHBwJj3729dz/nVD99JqRhjXdtXxzrJ0l/9+vf77f7T7T0bh+OpUlK79AwRxRidqwpC0Pc9dbAQ3BOeE3jamPbU8klAa6LI94OAYrJaLQCEbVNvrtdd1fu+5/qu0JpcbdZP9/t/+ef//vU3b//w+998ur1lbALWWGnkpPIs//jh83b3/Lvf/JBfrOrjySqQr8okCg/7M+eSULrcZK7rYQqTMPzy5i3DAEKcpNH5VDnUnc/mCMEoCo0wlJJxHLZPj5KLMAjevLnxPG+3O1AK0zSRTFojvv7qNfWolFIplZdlW3fHql6sVvPFoiwXdw+3AFsHO33XY4I5AEkWa6M551LqqqqiOGJ8bKvOdWgcJV07EERc6v75z3+aJrHfbX3fmc1LwYXnOrTIEQDfffPtz+9+/OWXn7UFCJH//P/9z77vLOar9WZ1eXnRtK010Gjjh/5VfNn0fd200zhNQ2+elRZi+/BYzubKcZ92Oy8OijQ1UknB07LEkDBr8ixP0lR/EboS6vue5MwCu33eCsHjOGV8enzaYoRczyGUIIQgcJu2TtK0KPO2bqhLszTFGMZxxNl02G9n+RxY09YNxQQD2jUjG0TXNxebZZKl2EFtzwVnrusDhCYxnpqz2/pCiuVyRRyS5bEF6nTcW2AZmzBCs3I2DGwYpjCOMEEYQAixksBanOZ5lISCSSEmCCFGGCPYnCuV8uVqLSWtT4e2G9q2ZdPke/7V1ZUXuQSToWubptnvDp9u7wEAbT8Egce4mCbWdH0ax57nD8OUpH6ep8ZYrRShxPU8pWTf99qcPd/bbpXjEIdSeTwX8yxLs91u77ruYrnI0uRcV13bhaGhFGuthVBN20qlpFTlrPRcV0i5WM4hQsaY+bxECFZV7VASR9HQj/0wdsMUxAGGACGcp8XQTkJwxihGyFgQRzGE8P7hbuiHwA8dh+R5agEklGguDsfz0A9xEl3mFw4h0zD4cRiGQZannIm6Gd3QaD22Xc+l1NoAi9q2I5RABLMkBRD6nns4jVJK3/PDKHRcChGom05wIbiEyPbD+PC4zbJstpwhjE6neuyHcWRN2wvGrTVS24lx3/WnacjyZLVaLlbLy4srzjl2iLUGQBTFMUJod9iX83mc5G3bWwiEEqtyMaPzuq27riuK2W9/89v9fjsO4/piMwkutfWCMEszx/F+ef+uH6d26LzADVh4ublECHVDDyHa7g6CCd8LqOsCCM+nc9023TBcX1/GOt4+7zhjhGA28aZuXN8zAAAIlNFj3QRR8IWsgJAp8rLth/lsebF2ITCf7z7PZgWlznK5TNO0blptTJblxpp3v7xjnMVJ4PuBYGL3fLAWIIiGkQV+4Pn+0Pen4wlBhCkySkMImqbBBL99+ybNUmtsdarZJJlkcZIga6C1Q99//PBh5KPrufPZjLrU813GpdGmrwfXo2mWUEIF5xRj13EfH46n6pymaRinXhAqo+uuTpNktV6/e/chSSIhxPfffRtHsdY6CINxGId+8AvfGE0gAhaGXmiVsQBVxwq74Fe//kEpda5qqLRD6eZiwznHlrz767u6reu6ZoJdvngRRn7gBEEQep57PJz7vlVKer5rLMOE8GlCmLBpqs9VkiazWTlOk1Zit9tqZSGAQRSaAPTDoJT1HIe4jr9aLeIk+PLnvFjP+Tj5YVCdu3PVWAO+enOTRf7UDaEfhG7EevX0+QAvse/H63W23T/tdruLzRUm6E9//NeHx09JFJb5zPWjqjooaYo8D33fpe449E/7x7Hv0iyNw2hWzuqqURJal1DiK2GP+3NVNUmafvr4yY9DSvDV9WU5KzF9HqfRauun4ePj8/t3t9dXl7N5IZVszg3gXBvdD0PgB9RxXc/TRolBrNcba81hf3QcRxrdNLUSpm6a9WbpBy6lyKMRRNBz/bbum76ezxeCq/3psLlcLhZrSpExEFNilKYYYYQeH54wJZKLU1U9bXeYUiOF5+Ag9K+uLh3HnaYhTRIlNOfSWk0QwRBLoZQwp2NLPTcIAocQSlDbngUTvh9kRUIInYaJt3y1XJRFqY2uq7qqz9M4zoriYj0Pw1hz4XneLCuZGKSWTdeMnI+CG4xW64s4zvbHtmkmrkQYxlrZru17CxGAZbnkXNRd53oBdXzGOHXoxEfOuFa66xpgNaEkSiJMyN3jIyEkywuAbXVuhmFK0sz1XNvh86m62KyeDg/n81krnWYxJk5ZJnmZB5HTjcP97vFP//KjsQACM5+V4zh5D8F8lgMAIUTTwB3Xn4YeGIMgRgi/vHnJpgkiAAFazOdJnkVB0A99EAaU0nEaEYYTm6y1s3nJJ640chwICYIABaH793//965DiUPrurKVruvGADObFZiQumowcdI8/4KVFkIghMd+TPKUMWatlVJ7nuc67jSMhNIvt50xppiUSsVJsF4vOJd92ydl7Diu4zhtVw9DPw3jOExpGoeBv1qvh2Hq+6mqm2Ec5mXe1DW0gDrEkyqM/KEfzueai2lkU920fBITE67nZGkeJ6GSerJQaSWEsEb3fdd2LdBmc7kOAn+aRoRonIRV1SphODPDIBHi2lSYIIeSYRiV1koqhLGxwHXIODJoUZIkWZolaQKs3e92ZVlGYXQ6HhkbAbCfP98RByMAEYTW2O3xOQqCpm7jNCqK0v3WOxyOn+/ufd9ZLBYY4bpth3GCEPf9ZAxYLdZJHs/nM6AMhTSbFS4mbui2dfvi5cv6dP7w/kM+my+Xi5ubm37suRQfbj/1TaelCsMgLzJjlAWga/q267XS5XxOiXPYn8aQQYDSNJJCzcuF5BJispyXEKK8yH3fpY47jaNDHdf3iEOGboyTVEqRJVmaZnXVXl0RrUXdtH4QnM8nbUzT9JBQrWwYxUPdN+2w3MyAAYf90RqLEAYQHfaHJEv2T9uXL68UZ8Zqo7Xgyvf8KIwAwsPExkmIiQ/tuHTnxqBh4ussv394enh4PJ/OE+dS6BdXr/3AG4fBc4O2HZR+rKu67Zrf/fa3EKJhHIqioIQGgV/kOUaYYhy4nraAEocxXrdVnudcc+K4Vd38y7/86eXLF2WeIIglF0Ecvn796nQ4n5Jz23daa8bUNNYGwqzIMMFCCOrQWVl+STPPkjln3HU8goi1RmsFAeSTyDJ/9XLZnNrzqYIQUkihBlmaEowx9RzZSsVNFIR+4POBc6YRIjevbtabK4+S//j/+t+Gvr9YXQWef6rPfhBqZZjgv/3d69XFumu7v/7pL//1H/7Lt2+/PjeRkFJrObLe873VaqW1KOaZRwLPoZJzCyx18OVys9hsJiGEEPWxclzPWjNOw3IxdwOal4Xve0HoCS7//Me/bJ+2s2JmFb67vX///tZz3dO+PuyOcRwjhOIkdKhDseN4TjEr/DDQWk3toLQ6VdX+eIzDiDG2Wi/TWSIMp4Rcv7gyWkONjQWn8wla2I/TOA7rq83bb98yztq2GdreDYLvvvvGanX3y71ggisuhOCc9/14rFrH9yQff/3D1/PZGlP8+fP9uWqN0lM77raPeZkvirngynXdNMmk0hghALRSYprE8XgY+qEs8jiKoAXG6CSJiqKYRiaVSNPU8d1xmKLQmzjz3PDXv/q1NbapKs/1OJ+mfrTWuK7jee5+e6TYWyyXWZkTAr3QPe6ehRTVucvSGEKnH3olbRzGANjvf/0DNOp0PAsxEQzbZnSIkxZZWcw5V8wBvuv2bV+1FXUdAGFTN8WscD1CCeyaiqlBiIkzEQRu33V+4IaRfzrtP989PW53BgCptRa8afvzuUvTeLfdl7PUd1zqoLdfvTzvz4RYwfjl19ee52utheScc84nyfiu7YzVZVkWZS530hpzsdn4vl9V1aws8zxnbMqyzBjb1HV1OgEIIYRt17KBB4EfeB7QAAF7uVmHUZRkqWTyuD8CAzTQRZq3bSOEPJ/qcepdx1FCEUKKWVGUOaHEWDvhqes6o01ZFm3b+b6HCFJSTpN2Pb8oyoE6QeBTx/OjCEAQRpF8fHY9Vynd96PVik1stijFxC2wWtj94WSgrc6VFBwihLRxqVvVDaJIa52kCcJIKf1w9zAx7vv+xHvBOGNjGIZt0yql+2FkgxwHpg1kXGozpFmIMF2sFkoqNjKEUJolXHI2MQP0OA5C8vP5xJkMw3A5n6+Wy/fv3nVtX9UVgNb0+v7uIcsKQukffv97rdTAOi90E0oXi+XnuzvHcShxtDV5Viwv1l3TK6PHYRRKXFxeLjZz13Wr0xkTrJRcLmYD77UxUoqBTV9983UcZ1V9Wl6snNBt61Zp5ZbUAkgQnkYBIZDKBEEYJknf9mzkfhFEcQQtpg5JksRa8O7du8VyebG5+uX9L13bMs6Wi4UUjYEGQLB92nLO57OZ69A8S4uyJJiUswLVddfoOIqCMLi4vPjLH/+UJmlWZMBYLngRpxBZTNDpdJZSuIGXBMlqvfB8z3Xd9NXNOHXj0ANoXdcNAXJdv5yvCCF1V+2en11CJJeH7XG5mLdVY63Z7/dhFCVp6nn+p4/3f/zvfw5DP89TQlGapEM3cilEK/76px+zIm2a5uuv33qefzocEAJxks3LGbCQCR5FQdsNyorVaqmtuf30CWL49bffSMY0sAigNEn7bpimPowCZQwiWCiZlqnjYK20UlIZvt89L5fLLMuEEFIZZXRdd5hiPwysNUIqKcVsWWKEhZCe57395m3X9cBaCyEliEx8AtD2fe/HCXFcgoPoqlDWBr7fdC2mBGP0m9/+RipBKTESrC9WAGHO1TKK9qdjURZBBH71m18/Pz4AqIPAI50zdIM0smm6NE0ll4f9+e1XsyyNrNW3nz8nNDIG/NN//WfqO33DEIKvbm5u3384N+e//zd/n5eztu+mgSmlfN8d+iEMopGJQCvH8a6vr6xVbd05DvVcPwj8KIkghFzKtMgX6xXn/OnugBDoup5xSajDhTYWDv2UFZnvBUqrcRhd15um6enxSRsb+OFqvt4ft0maEkxCP0yTzGhlLDztdrvd8XyorDGQwOPpPDHBGXd8TxoLEQ2iHBOPOPTy+hXntmsqYafADa6vXjmYTIwBhGblbBxHi8F+fzidjlHoa6UpIf3Q9V2/XCwwgmwStx8+cs4d3w/8ICtzhLESygAstPpSMpqmyfWJViLLk8BfXlxcd1MfTUkUJLP5fGC91SovsjINBJdDz8Iw7PvpCxTP94Mo9oexhxa/uLoMw1By0TSN57tJlvXtuNsdMXKa06mu62nqykUhlJqmqa+rrIiDNDqdj/efH+IoieKYc8Em1raDZJoLOQySM20tQAhFWWqljeNQS3Fu+7ZrszhO0vi4PQIDaOgv5ksAoTEWY1TGpbHmw4cPgsuiSAFAURwlUQwtcBw3DPyu617dvMQE+b7LpgEBQCl5/eqmH4a6qqVUnDFC0NX1VRSGjE1KySJP+35oz8ZaW1UVdSih9OHxyXHdse+N1looSwmAQGkz9JMXWK210irwfMUFG/jUMa6FVhpTOgzDOPQAgDiO0iTy/IA6Hufy6XE3Mm4gaJv2XFW+6yRx5HkBJR4E0AIKqaIu5pJba7Iy991QChXGkenG6tyFkaetGdsJADRfLPph1FrneQohMEYrpcdhOp8rx/GstRABgkGcuLPZLIz8IAizLIYGWK0MAEmcuI6LCfY8z3EIgma2XERh9PnTLcSgH/o8z9u28z1XaeW4AZvY8/PTd999H4bh0+NTPzRt3bNJKiUP+73n+hebFWfTbrd7efMSAKulZHxKs7iuK676IIi44AAAIeVu+7TfPu92FRdiYtPT4/PFFfU8vzo3jueez5Xru29ev6LUZePYdcP5dHYcTyvNRj4OXGtTVd3XqzVGsKnrpq0RhFywfmhPp13T1OfjOc+KM60RAn0/AACFEMPIlNKYYNejj/ePnu/7vp9naRSFh/0hjqPlrKC//41RhlBEMPwif++67lx369WGTyJwYwxJOSv90O+aRlnhB9449mxiVy+uiePUVS+VxRiwQQR+oKX0HCcMgixJdBhZa/MitxBFYTgx3o99lhYQ4GlgeZnO5/N+7Pang+u6T89bA0wURb/8/H69Xj09PHIuvv/V99vtru/7cRoRWZRlHsThMPBhGC42awuBkPyLN8kaSwhsq2YYBtfz4sAnBGuoqUeUEn3bdlW93T5RB7OJHXZHbQ1EaLvdPz49YwLnizIvM4KRMWaxmAkmIELCiIEN2ugsTQGEhCDyl3/5CUD99pvXjudLLrtp9Hw3KTIDYZrlSqlu4m7o8Ga4/fzZISHjDCEaRNHEZVW1UeQPffObX39PCH7ePkslIbBJGnXDcHm5QRBzwcvZTCpVHRtj9VdfvWqbzlhLCOWDEGwKfO+vf/ozFwIh8tNPPx9O+zD2MYFG2WkcXccdBQujUEsdRr7jOo7nvHhJEbLTOLGRsZG1dV/VFbT4tD83bYURstb89c9/kxauVus8LWbzHAMoGEcYOdjp+wEhtN0+M8HjKPV9f2IsDJPt064beoLp9dX64nKNHfz5l8+csfXlCmP48PTU96OB4PLmQjB1ONVxGnu+3/XDRX6xWEZd2wJkJfcXm1UYJEWWdG3D2DiMg+s4FlqKceD7hNIoxg51pFIOpheXl89PT9DCPC0wxYSSvh/btu2H8eriOggCx6Pt1AOl0jzCCEKr4zhYrdaE+hbC0ePL9QJYO/ad77rTMMZxBGOYhPrx8akfpyhNoyicL1fPTw9W27zI+r7BGJyHpq7OfC/YL++rqjtVlTXYGsAF79u26oabVy/imAx9jXHCpNw+H5+fj3tYvbh5SRAChFJEwyjJfb+ZPnnUhwmom7rvBs/1hRRxFBLPGYdeGxEk/otXb/q2NwAELvV8IqU1Wl5dbQCE2vBhmH77298KKY+HA2csikIEMed8Ni8BBJxxNk3r1ZIxbi1ECHVdby24ur6iDjmfTgAhNjFtTJYmAFo/8LbPu+PhMDDZ9X0cpwjBOE1P+30xK2aLWRgGGGLORT+M0zR2bReGPoEYWutQbCzQwu62B88L3ID4gZvEKcHYWjuNDACECbXGdm2LCBrHQXIBrUmiBBPsUM9z3fOpartaMMGm0VqILP7i2NHKOI4zte3pNNlTNY5TlqdpHPlBoKVUWodR2Hct0vDi8uLFixd917ORSaHiNPzu+2/zIqvrjgt+Pp98z/v++2+MBUPPjDVSy8VqTgj8+O5dMSsYY3VVf/x4e3l1uVwvx2Goxqnt2s3lJs2y7fPufD5RSu/vPuVpAZBpm8Zqs1ouy3kZp9HT3b2UfBx7Kae6OoVx1LV11zeqVtvtLk7SxXJujRo6wQYBABiHUSsTZYngYmKD7wVMijD0JiZ++eXdxeV1HAZxgjBx7u4+n09nY7SxRivFmPjrn3+kBAFgv3r7ymgV+F4cheMwAAjWFytj7G6/bZvO9ZzVar3bH4QQWZZmWWq0Gu3oec5sUXLGEcYvbq4BNEWRX15v7j8/DEOXJanRiiB0fXlxODdWWwixlNPT01ZolaQhIZSNLIr85WIhBXcIxYhiiNtzXWu1Pxxc4tTHGlnzzdu3ECJt2fPzDiBwPNV11axXF/PFAgCMLOCSsUn89W9/O5wOwMIwCgY2Oo6HMXU803Tt4XwCBjDGFpclJIBQTBDpu64fOHGc9Xo1DuPH21tj9OZimcTRNLKh6zaXK0qw5BxSmGbx4Xy0XLuOQymZ2OAQ6pfZvFykaVw19cP9nesFV9ebaZpe3ryECGEMIER8klrpIHBo6IxD77mONgphxJkmF6/XD5/un7bP6+V6uV5+endvrdZAD+OECWrazqH4t7/9Fec8jOPAj2xjpdDb3TZNCwMspfTf/0///m9//qM10gzcQmyNrk6VBhZAxLnUVqdGH47HpqqZGMLQ831fI+2HDiZwuZqfqsrRGlIS+WFW5Lvd8zj4iEAIrDYqCoPFbO6H4elcE98DEIzjCBysBW+6Ng6iwA+xJX3X/fzTTwSRfmwnNoycIeS8fv2myGdZniFkgNZSizCCbdPEcer7HqH4+x++nUZ+9+mxHfuvXr8N/fjz06cw8La73dNuW2RlEsZvv/vmWJ3rqs7m5QWyd58fRj4gg/I0SNMky7M8K6rqtN/tEDKX1xcPn+8c6hBKnre7NItCN1ZKSqg8x/mCGgcQUccpZ2VdtRAAIxEG7qyMV4slxKBp2/Xyoh8GMZfri43VYPf83NZN7PsYQAM0MNaxuKsGiPjIJ8nVcXe8uFzkWTJ0nTEYGBD4ITRqGHrX9+IocF16Ou4Zn4wRtx/fF0V69/m2qut3794bQwxwDQQKYmkUtQhAFcVeOUsowWEYzGc5RsgP43e/3HEFXt1cSwXPQzOOo+Ci7kbX8wBEr9+8bs6VNbbuOi7kxHlVny2wruMFnvt0v3243QEEXce/ubkoipDE1A/8OIowwr///e+Wq3VVVT/99Is11lpQlnPFxf3jAxcKQisVxxAPzeAHfppmQzcCAMpZgTGm2CmL2X63N1rPyhnFsDrXbd8+3D8M/TQKyaVqJ/53v/v9uw8frNX9yK0LghgXs9lhdwRoWs7nVmuM4TgMxmjXcTzf13VzebVR0niBA6wJwpBg0jUtjrDjOBBhQmkQ+x8/3vqhz6V0HHfkwiHuqaqKMuvGvhsmKZXv+ZLLw7GWGoSB3w/T6mKtrSGUTtMUhGEUh8fD0XX99WoR+D6mRGtwsdkEnjcO46woHUI8l4axgwkpy1jKsa5rBNTUNwhqCAiGtq6brMjHbrh/uCMIf/p47zgkipJxGD++v91sNofDoe/HJE2sBk3bleUszwsMked7w9gbAwBEaZokSQKMuru9lZJPwyDkBKHFFD883CohNbRJnCAEOJ/O+5PrOlmc+IFvIAYQ+75XFgsLTdcgACAksKkr1/c8N6yrio2D43phFBZFwYVg02CNVQgopefz1GiVl0UYBUrKEIeEEGB1GAXW2PP+aIyRSlBLIURRHI3D5LgOhFBrLYQQlVBAz8oZn+TT01OaxWU+++WnD5jAwA/busvLdFbknDPXoZ4XZHne910Qh9qo7fNWGnWxXBEMx24Igoy6btsNUBs2jVqr+TzHhNy8evmv//Qvd3cPvu9OfMSYSGWEkErrQ1UtFosoCZuqC/301NVsHMdxwhhlRXHzasGlcDz36XEnhPAC52K9aermPRNB6Pmeu9/vjYXL5cpY+3B3F2fxarN49/MvXRekWaQI+qIdZOMEIOi7Efct9SnEMAz9wHNbpwl8N0qDeblwqC+1yPLcc13XdYZx8ANX//9L9bNxnJqqkVJFYeS6vrGSc8YGRqhLuqbfP2+/+9V/ePnyRdO0iAJj1fa5MtaObNo9b41VTXVO81QraQxKs9Rx3YIpLe3zditVdDqdhBQXm6U14u7h8enhmRCnWBTjODIhAj802voBvXs4VadqvVkRl8ZBkqRR30+CyTAI8zybL5aaiaZpGJ9C343i+Lg/ZElaZJmxgPEhSn1A4GK1+ssf/3w8HLu+d4lTn1s+Z3/3u38DiX319mXXNYfjfrfdnj+fr6+X/+YPf8CENk2NCeyatu97z6eXVxeEIGDs1dWl4znW2rqthNRxFLl+UC7zaeqjMOqGxho7L5f7w369XpezeT91i83i9evXYz8gjMdxhAZ8ePfOpY4BWkqFEbIAlkVhtG3a1lo1Mc7V1DWtUur1zY0FoKrrqxfXLnV3T9u8LJazxe55HwTBrJw51Bn5+OL6ZZol3dAZBISRYz+tlnMLzeOnu19+fL9arzbrVRgmhCIIcVJsskIOY48Rcl16PAyH/R5CQKnjun65mH1JYQMAtvv9Yb9H0MwXMwzQzctXyekILIriLErLduj3h33f9kkQMj42p/rqYh14/nb77HpuEEVM1hjT2I/LVfm3P/5NKjUOoxCyrpu8yM0X+5IGVhufONhFCCPHwwDa06nu+m6+CFzXwQ5N4tQCczzsPT/o+uaw31tjytnManA6HI3Ux93eWoOs9SM/yaLTsYbWWmgCz5/G0aF0VhR107CR5VkJIcLYyfOSILJ9en5+ev7qzas4jj/fP0BAy3mE28F0TRAnXVP//rc//PS3v/FhWJUlRgQR+qvf/W4ch4ePH8u8ZHwAFjJuuq7lUsRxBBGcGDPADt2o9Rf4NnU96rqeFMpx6MRR6PlaypevrvbPZ0JJ27eYk571SkkmhFHWGqG1otSVShmrXc/Z7XZ934dRRKlDMKKEJkmGKTbAEoe6rrderTBAYRA5yGmb2vecKPbGaZRy6PuBCX55eYkgIoRSSj98vOvaejafR2HYdq1SRluTZtluv6vP9Xq9RAjxiUOEvhAVn7c7YG2WFxCCPE8NUK7jjowbbSGCCIL7x4fDYe84BELgevT9+3d5nmNMxqn/4YdfQYQ+fL6VSrnUCah/PJ+NBY7rgKEPojDNUymE7/txGEktn57IuarjxEcE1+cmhNAP3M1mtVwuDsf9+XSqqioMwzAObm5eea7bNk3fDXziQeRTTPkgHNeNopBzMZ/P0zRzHcdYxfm0e9qV8zIOA9d1h37omiFNMi4ZgKA611Z/dBx6PLZJEkZRNEyj3Im6bgDAaZYJwQLfj+MQUQCshQSyfgy8EPp+EIRBEGGE+35UUka+v91tIcJ927m+iwiUSmNChRCBF6xXK4xxz9jxdKQuxRhtd9sg8sMojpL46uoKY3I+n47HQ5HnURJrpaZxOp+rPEuenqr1ZrVervKi6NphvztKpYax+xIAy/PUAqO1JpRkeTJ0o9Hg8939NIq0zGYXpet5SqkiyYHQSRxoIDibXOolaYQJPuyP2+eTAYZxlmRZHEVjP+y2O9/zEUHpLBna/njopBCUkCj1Cab0m9/+wLh8//7T6XjWwqzWC4dNd3cPaVakafb8+FjXA3U8z3O00X3XE8aDMFKcx5H/+tXl89N2u999/nx7dX0FsHdxfW2ttRAAa2dJRCCpjqfj8TCJKQxjI6wUZr89+54HgI3iJEnA0LbjcB7HYeiHMKQTH8iIkjSxBrJRtF2HKYriSHD+/uefsiwGWvlebpU5H45Pj/yfzD/V9bltms3l2nGdcraIwpC6QVM3rudrpXbbw9B3s0WRpfE0TcwCTKA2pu0Hz/PWm+X9/eOpPs7QHGMYRYngjGKKMPAdd71YD8MAMXwRXXLBTufqff3R8ej11Qs+sfe/vIPWvH371WF/OBz2p7pr29YP0/li5ruhFLJvBsnkly5SU9Wn03mYWJHnbGTt0GVx8ubrN6fD4eHhKQwi4jjb3WF3OvqB9/Lm2g3du8+fbt89FEVpAHB93/P9xXJZVw118Xy5iOLw8/3Pu/3W2pdKi3EYIQRJkn748CnNM98LlDJSTUM3+p67KAuIYBJHHqVSSge7r69vojjK5/k4sbrIjtUxTsPlYvmv//gvWkzrmw0m9rivjQbd2Pqeq5m8//SJungaRgSgUQJCW5/2yhgAMAY0DKLL6xXFGLuYYDgxlhWlUTqKoiyNAUBCymmagsCZGJNC+p7PBavqBuO758dngHAQeJTQc1X7jEFsy1mqpTofT8Bxry8u4zRmbEQYuZ673T5fvbhOssQaSxyHOPTV5Yo6DpL8u2+/b5oGUxqFyYf377gSf/frH2bzMvWD4+FYzAoEcVO1y/V8c7nYP91XT0fO2c3LF0KYu/tHzw9mRSm0Yly0VY2xKWd5GIT77a46j0mkMSVdN/lesJgXfdc6iGKMlBYOpRYZwaWxxkiNALRGCyG1NWma9MM0TiepJdCWMVaWpeuEFNM0Jk1TPZ4bVo5xHHd15TqutWZWFHlZUoK1tG0jEIZBGFvk8QlYqFwXAUyU0qEfBq7Pp4lgEkWR57mI4HEYpZB9369Wq/uHJz9yLQBpmt89PAILq6pGyAaB3/UdjCFCUAl1PldlmSd5Nk3DMA4E4bYdynLOuQgD//Wb1xNjUqrrixd13RHiUOoYFxhrvMAbGe/agdIKAON4jgZGKokwooQooaeuj6Kgb5vd81NRZi9f3tzcvAg9TymtgUrT7Pbjp9V6+eL6RZZnH95/bs79qzevAERd2+XFLImjOEsAhJ8/fm6qJk2z1WrtutQasFyvMUW3t5/v7x6l4CObPOpFYTSOU32u27pPs8Fx6K9/+4OQuq7qx6eHOE6yPAWGsFGu1ou6rZ/vKqCt59JJjHGShElcctl23TR1wJquHXbP23Fis+UiCkIhORdyZFOUJGu8zsrSWLM/nPqxb/uGS7aczeeLOcGkrmpjTBIl4zAtlguCcF01CNr1ejNfqDAMTuczgIBN0939Z98Psyw97I/EIRhjBOE0MkKw0rpqGmARgEBorq0WTFDqGGPatj0ej8boIPbSTdH2fVVXECFKKYAQI4oAQggAYx4+32dZ5jhkHMbd0x4BiBAyECprnh+fiYVgs1kjALXSi/lccAUAurl5fXV1ZQ349Olzc66jMIAAQAsf7x+iMMjzQhLWd61UUnH5+tXNx9sP08j3++N8scqLdOiHqqqV0YHnNXWltBGc9V3v+/58NhMTG4cJzksAgLHNbJZBAqdxZNPkOiTLk7pq+q73fI9iCgDACLFxqqt6dXmxXMzZNPm+W1W1mPgv79/PZjOAALCmaduwCrRRN69uXM+5vb2XShTxzFozn81evX7huHT79Oy6bl7k4zBWdetSDxO0Wq3evPmqbtrz+ZQWqYuo6zhaQWM0Y8wCAAEI/MB3vbEfjbIX63XdNPW50lItVrM0SqQSUoksT+Mkt8DsDsfvv3tLEdrtdooLBBGfhOuIPM/9wO+6oe+GJIvTNGvbLs3TiY1ay25oq4eaOq4FllACobbW7PfbKAwIBLOySOIkDEJp9Ha/T9K4qhvOxenU9EPnELhaLpG1QRCeDmctdVO3j91OG3Ox2cwXi6o+NW1XzvI0y61R0zAlSVKdq/PxrDWP4mCcGtfFwMKffv55e9zmWXbYnwh1ALSzcnb14tXT88PYfgTGruZLK+y5OUspszwBACCprAVCitP5ZJDN0gwLAIyJIj+JY0Lwfr9vq6PrBRCToetW89LxnXHiE+OHw6E6N0kac8bmi0XgB37g9n0/jcPxdC5nRZGnm/WSYrpclmEUWQC8IFouV3/7+eckzvb7w6fbD0bbIAj6fhzNAAkWQnz7/XeeF7BpSuKgak4vb6722/04dItFOXH+/v1HrXXXnG9ev/I8d3O5CXwPApQ7rhf4XIiXL28mzhnjDqGMDQThLE6MVE3VYATHvrMWQAsAtNfXV8Vs1o9jdTqnWRFEftcN0zRJLiwACACHEojROPZxkhyPhygKAQG+7/u+IwVTSlKCHcfBEFKCfM85CtH1XbHM9yfOuXj96lUYJm7gEorjKBVK/fS3n7qxM0q7jtf2XRBEtx9vw8iv266qq6/evAFGUodyyREhbdOGUSCNPJxPs/nyzZs3f/rjn2aLWZKEu91umlhb95fXVwCKJI03mw0k9nw8joej0vrm5uWLFy9Px2PbNtvtoR+bPC2W5bzISiEVwshaIKX0HH++mB12p2kal4s552K/22mtkjC+vrg0xnbdMIzD1fXm0+2ntm5vP3wgmJTl7PLyAmHYd53WinPOGDPGxmn0hz/8nhJHKP7hwzviEMdz67rrmibJ0t/+9nfa6KZp2k4e92dtzdXlheCiLMu6EvOijOLo8+2n/f5YliWEsKpP8/n8px/fFWXuBn6Wpl03AAB8z4UANnUdZeGvf/urf/qHf8qLrMxzbbXvecvVMs2yse8QgrMZEoLdPTwKwaXjWmvns1nbthMb1+sNpa5FqK5bz3MwRkqrummzrGhkwyWP40i5Co7I8736VMVpOJ+VwzRN09C17WF3qJpqsVgR6l5dXy8X8/1+z/logC7npeCcs0kKhQkdhynNMz+JdrsjAAgBPFZ9GPhKSS0UQHa/2wNMzk2NMYmDaDabBb7ftI3ruC5xlov58XAchz4Ig8WiPJ2q7W4fBEGcBqwZSRSFY8f6fthcrpMwAQg0dTNOI4AaY0QpePPVyzRNHx8fCUSz2czzcDmLn5+OP//8i5Rils8hRgDDf/vv/j3CaLvdNnVTzHIncBzHHYdJadMN/XK9cFwnSMLZPG+7frEqrbHjOBop63ONCPT9oKqqLMtcSgAiGGElZRZnLiGIgO65UVZKI7MkY9jt+85znQ/v30utx5EprZfL5cubV3/969+++eGrN9++bZpmPog4CbkcqAO9KFRC+dgrivJwOE3TQQqpjcUhPR7PECDfj/K8gKBOs4RNU3Wu+DBCiMaISaGGYYyTOE4SpZViYmx7NkwGGselWZgyxtzQWSxmWklIiBTi+sXl6bhDEDVdLZQkEGukwjBM46TvhihOv8xlUivXd56engTnaZZQ18EEW2A1sL/88k7IMYlj3wu0Nue68UPvb3/92fXc129eJXlKKXl8eOJSJFkWJZFDfWNMGIbPj8/U88MwwIQ21RAlCYBICEExZaOYBtbV3dPDg5Tq6vIq8MLB9I7rjkK4Ydh143//0y9Ky8CLAcDDyKPUe/vd9xjh591OKFEsi+Pp8Lzdz+bl1c3V0+Nj23QQwsDHeZFLKZu609YAINM0S5MoK1JrAZuYlJkxKggjjMhOS6lE6qWnU73f7Sihi8VMCpHn6cuX177nPTw+VOfac528TKdxZJ4HtRIISy2aplZW5QRIDX77u98ulqv//J/+ixt6ZV6ycXp6ev77f/s/LBfzf/wv//yXv/xlsVpSSrZPWzaxu8fnsiyD8+nd+1+aqinyzInDX//6+2mc9m2NIP5CFqKUE4ziNLYAGGVCL4jCIMtfYoQpwtZqa20cBIfjsW1az3WzoEiz/E9//etiMfvD3/3hdDzdPTzkeUIwtEbxiWtl4zRxXRJ6fhjH83n+y0+/xHFydX0VRfHuaUd95+2bNxhjLiappJKyKNO+7z/ffoqCQGvjOGS52uR5Mo5MVMdzVVdtFYVRssre/fSBS4kIvXn96uPH9yMbizI7n083r17+2zf/9vbjJymE53pKa37mi8Vi4mOWpW+//lpKbgEAEL756pUxBgDEGEyLhHHmuO5ssdDGAmjLsiSEUMeJo9wYHUaRsZILTqk7n5dSKSlEP/UETWHg0YuF70WrxbJuq59//IlQnKYXURw5lMZx3A8DQqAoMiklsFBqdf9wbyxYrZdRWJ6rU9s2d58/ccYNAF3XvHr51fPuAQJQHau27i0wURQaa+Ms2e/3TdMgjP3QM8a0Xf2rX/8KAGC0iqKgbVuppB+4UexBjPbbnjG23x4QBmmS1VU9X86vLq+mYXr/7j0AEBjMmfgP/8t/uP34oek6JoRDXUIdgEAQel9/841DvduPH4eRpUnKhunicq2VisJgt9sbZc7tsarbtu3SLL66uCSUikm2XcPYxCZmjXF9V2v1099+evXmlePQ9x8+9n1vjfnNb3/zKit2u10WpxYS1w+VVkHkGaMMUH3Xcc6eHrd+EC7Xy6ura2Vt13VxnEopj/sjhjAMfM/13MyBCAIA/DB48/aNYPLjh49xGH2Jcfuu17f9aXeUSjnYI5AeD+e267Uyj8/PeIeAtKSvx9msSNMkDEKhFZ+EFIpzFgTesToFYVAWQd+PEKC8zIA1p/Px6XFnrf3N737Vdt3mcpUm2cubV0mWMs7DKGqqtml7JfUAmdU2DCOMcehHzoJAhKahdxxUnc+B5+VZopU5V3UYxcPALSJ1MyCMjdXKDFerdejFu+2zYNNyNT+eTtX58OiQq82Li8XFk96+ffPN6zfGQfTcnA/73Xw+T7PU9cLt9oSATtOo71sLbJImx6f6fKypS25e3BBMBZPGgCzLpBT77XEYxnm5xg7s2vYLeoxSaqSclSWlpGnap6ensAuuyAtjjTbK9Z3Q+MM4BL5fluXQ9xCacjk32jxtt2EQWmvKsnj/y7soijCkeZaHUYAQOp1O88W86zrJuNaq77rQ97qu3Vys+m7ABmZFPE3TOPHNah2nfhSFnDGEUJxE53OV5WlZlgjBqq04E8TB1zevLq5eAmur83Ec+uPpwJgg1JNSTBMD0DZ1FQZBnCZtY+Mkns3LL4wq13Pf3Lzqh17vhbKqH0fs+Nihl5crjMksy33f9Vz37v65a5tf3v8yLxcOcZgdA8eHmAAIXrx4OStn292urhtlFHZomiRlUSiljNauQ1zPRQASxzXasklgBJMozrMiz2LOJSVkvbIUY4c61y9enA57BJFHydA2QKk4DICxYRJu1kuHUiXE+XD6dHd39fKSUvd0OtdNv15fLBbLMAyyLEIIPzze39/fB4EvvvlKW44ROu4O++M+9MMgCD5//rSYzTYX63Ea0ixyCL24vlqtFr/8/J4xUWTF5893QsrVes0FD4JwtbqQRj3cP4Shj4BZXy0CN8AUFEXR1W2eFwiRkTFE3Kpp3r97f339gmIaxdGsLA+Hvef5URgO43jYnaWQCNni4sIYE0T+5mLT930cBW3TxmkMEXj//v3Nq5sojO/v7qy1gRfEUQQxfLh/cF2XMS65qA6VBRAjfD6dN5uN1nK/e67q09u3bzeXm8Np34+d63phGHHOAURd3bsObc5nYEw/DFmeX2zW795/2O12cRR/8+3X4zAU3+bEwdX53HdTmma+5x+Pp37olFSc8b7vF7P548Oj1vq7b7/XUu2PeyaYsZq6jrV297xzXDdOYkJp4IdRBIGFdXM+n07Wmr6duq4Lo/BwPM1m5SIM+q57cX1d1VUYxo+PT0Zb7BDP8/IsnS/Kvu9dx2FMOI6TJMm79z89PjysVivPdfen426718Zev7z2XBchCIBl08SEePX65vJyQzERXAS+X5/rzcU6TdPHh8eyyGerRRRF52OVZBFCeOiHh0+P1qDzri7yYj5bPNw//uv7P794sXl6fIqjkGCCEKEOfXh4BAh89eq1NtZa9PLVjRsEAILQ97uurU91XqRRFDbV2VjQNbXjuEM7III9z6+qRnCuteKMI4o2/no2n33+9Onp8QkAiyAsysILnI8fP+Zlud5sfN8fRrHbboco6Lv66eHh5vUNdXBTN45HEQLdMKRp7lPH8XytJCEEYjB0/ePnBzYOSou8yB3ido8PEGGHutM4aaG11K7vno4nBDBBJC4Tz6X9MHR1m+XZYjl73u0e7p6pBWReFmmadG23e9yPXHiel8SR5/jUgX3fIkwNhJOSdTuI93ezIo+iDELjuu40jfNyHgSBVDIMgrtP934UMCaI41DiWC3YxLTSSonlaqGlZtJgDJS1BFo+TsBqCK0F0KEuAljISTK52+0YZ7N58e2335ZZwVnv+VQpdjofrbXEoDIpodByYrOi3Cw3FkIjRdPNqOOmabJeXUyt0LzzPQKsknKywEwjxhh7niekHKaxnOVDNymjp2lSQiplJiaqujlX6nA4rtcrJpkQQhv94faD7/oWQS90LQTb7bPne1wKzoTgvO97xyNC8IlNcRJNTAjOZ/PFOExSqK6rqOP5XoiJOp6O3eB4jlvX9TSy0+nkuX5aJGM/PrAHQvFhd7DWsglxzuIkmsbecQhEuD6PjE2rzYoQGgR68f1aaSmFdD1/mqSSFhN3nMTjw0N9Omkh0yy/fvn26WELmeKi51wxzhzPQ5C4rndxfcGnicTk9Zs3UnIuGUbIo5QginyqAWSAXV9slvOFVappWyFYdT52Y2c1MMJSYgnBL16+BBD+8z//i1QWYYgJ9rzgXJ2nsZGhikMfQii4sABGQg966ofjqTqNI/c9H0Ashe7aiRBssMWYbC4ukzhyqAvmpWQSA+g7nokSQokX+NJIK03TVX7oR0V6PjWTMH7oKQOjJDZaK2WDIFCSS86UFH7gEYw/330mBDkUUez0rlfkuUOQAebu88coChbzktKVkgZo8Py0cwhNo2y3OyZ5djyc/vEf/2V1sX7xMjocjkLK65ur56fHj7cfENbW2N3+SKkjuBqHMQwjyWWj2yzPv//+++3z7nn7tFws8zQ1UiJEkiQdxsElgeu5aRJFcRjH0W63NxaGQfyF4wgxPB4OTd1AhK4uruM4nc1ncZwoIahHb158hRCEFhiljDHSqJFNYRggBD03rpv+V7/+led5wNrlbDX7HxeMyWmciEODwPccx0JDELm/ewIIR3FCCNHKSCmNsQCA+XxugW3qLghjTLzHu0eMcByGZZ7f3d0JzpM4wohEcey7wXa3AwaEYeAFvpba89xp4ggTa1Ga5Aijvh8IRm1bT+MYx7HnOrOyKLIcAgAxOByOYehDCLkQUupxnNIsS1OolBRCSCmLIvc9zxgThUhKeTqdD/uj63nUcYiDDYAYES7Ew/1Dfa6+evsmiWOIwNPjtizyJIq2j1utZJFl87wABCwWixfX14+PT3GYXGw2LqXrzdp3PcHEN9+9beqBBv7j43OaJVmelfPi6fHhC6w0TZLT8dQ1rbW2rdq+7YIweny895MgLbLddru9fxqn8frqsqqaiU9FVvZthxEuy+KwP55OTdNOUqm+Z47jXL686pr+/mH77bff+kH0/HSgDvmf/5f/SUt+OJ38wD/sj4LzFy9eIACKWdHWTduMQRR5nj9NQ9eNaZoarbtquB0+xVmitDmdTpjgoe8gBFEYci4hoXU9KFXvT+fLq0sIcdu1kqkmCC8uN8PQz2ez+WKhjMQI5XkR+gw7jlA6jrIXN16AMXlxtRFcKM/VhmmlEcLKmK5rX9+8SATfPR8enj/4QXBxeSkkdxMfQuRS0rbN6bCXWl6sL4XUD/f3Rtk4jxGBXT/GURzHYdd1VoEwCqIoGvuJMZ4VKUJWKpUXuKpPT88fiyxfLtcYA4hMHAWudwEwCPxgMVvcfvpQnfdFknueS1wShRGFtG8ajkfqOL4XKQC0Bq7rOI7TD9393SelbHXuNVCUwnJWAGysNUpJiNAkJiWUUmISfZRGz7udlDqKIimFSxyE0DCMeZYAILXiEIIsTxkbsyIhDq3rRki52Czaut09PadZEgQuIiAIfKM1xdghZJrGcRhO5/oL8UUpDiHS2gBrgtDLsmwcBgt0XdeUkrZv11erzXr9/v0vSlkpFMaw6zo/9AM/SNPMc/3H7eH2/v1XX78p81JKqbQSQiEIHeJ88803x9NRG4AoPh2Ox8MJYRCm0d3nx7/+6WfG2eZis16vi0IJxT/f3n66/fjD999vLtdD382Wpe+52213Ph2TKMYY912PqcMmPo1j29Rs6l6/fCUF+3R3x9lopV4vlnEShVEgH5jvunePD/3QSjknmIzduCjn0+Q25/bh+EAoisIAWAsgcB2S51kQ+GF07bp+UcwIwUpJTOnpeD6dznEce57DGfd833OxVopS7/LiCiECAIrjBDrg3Y8/NfVZaTUy1vVMSNX1fZqkL1/M0ySehtEqRiG2GLmOMytncRrEccSnKciDpuku1itrrBD8892nNEm+evtVVzdMsPVyI5X+fPtpXs7Xm7XjeUxwx3ERIQChv/zxzz8hOF/O/u4Pf3Bc+stPP97f3a/WG8fzDsfjOAhgrUU4y9L5YlnO5v7uqW1awThnTEiOgPUdqhjrzk0aR4vVYug7a8E4TX0/REGQZrHvhwBYBPE49GxkkvO2OWdFjjHyAw/HwTSOABijDcGEsXF/OH4x3gAAgQVB4EahX1W1juMyL6yxwAhoNbBmHIamrrqmSdPUcQiwlk1McDEOQ5rEnu9/vr3F+HtK6afbT23bUeKsNxtKqEMcQim0Og6ivMiAhVEUO45LMNntdhDCIIhc33WIDwC4v7//5pvvmrYTkge+RwjRSloTF3kW+uGsKI029/d3jufOZwvownNVWQu01ofDKfADz3dd1zfGHA6H7eNT37ZX19eKc4c4get2YoyiSEl5OBwIRUoZ13UnxuI4whiGkW81cF0iOAfGKCY8hyZF5gZeXbea20rUAAE/8I01SRpbbapz5W9WAIKJTdR1BjZxLV0/QBh6Lv3mu+92u63vOwAYIXVdN5dXVwjhrh8WF8vj+VyfWz9QWmkuuOc6m4vN0Pe7/U4rEUbhcr2cOI+SSBnAubTa/Oa3P0yMYQQcTC0wDsUXVxfAWOqS3fap77qiKFwv0kpbq3fbZ4ypVhoCJIyoTmcL0GqzMBYcDmfXIUqDZJUgBH78018hRELyqqr8wH9xfa0BZONQluXAuef7dVX1/TAMI5uYsVYZ6QaulBJAEAaR1aZpa8ehEIDVYiGUMNgM54EINhXLDBDw6e5Baev5nu87oR80TTOMw/Pu6e7ufrlc/5u///vt0+On21vOxYuXmzhKp3E8n8+n80kqU1dNWc7GgbmOv17HbdOO214btVyuZ7NZ03SQwHI+t9ZKKX0/UQJEQXGuGsfzilnR9Z2aFKCmyDJKnTD0Pz98+OnHv2llkjBDFPJBAjCGYSCU1AguFhvi+q7r3d8+QQMRIdagsR+UsYQgYJGSuu+HibcXFxfr9eWf/vSnw2l/udn0U9NNajZfImrzIHl8eDxXx3/37/795eZyu0ej6PumabtBK+N5zmI9T+OUUmc2mz0+PQeB9/TwaCEkmJSzUgghuUQIuq6DCfF9eDoemZDjMAGE5rNyvV7/8uPPxKVZnrNpenp8wg5BiARxNAm93x/ZOG2fdxQ7kR+VxSwKYyEknxQwsDk2Rsmvv35TNd3LazcvCnzCDqVB5GolhBC+67CJFVGyGw4uQeeq2U+7uuqtho7rVW2LKCmLcjpMI5vefv3Gj1zOp5uvXlmrD/vjyIUXJsM4VqdqfzwWRRnF8fXVtRSSi2linBDqua479znjs3kppWLjaLX+5eefD1X19quvv3r79ePTo5bmebcTUs6W8/Vm/fH9h7pqvvr6DTDW94NxZOdzNV8u08yLIn82mz8+PWFC4iy5uL7iXBij26Y5Pu5mZZaEQZoVhDhfff21kOq0P0EL1utLN/Drpv348bMU+vb9pz/87rcYYCMM1MCjZFGWwKK27y8vrwLXF3xcrhZ903z45ePIWJ6nwzAM3bjZbKZh+Mtf/hKHsTLAufKDEH/88GmWzNu6ns1yY62FEGOMEDzunwHCx+P+v/3TP/3hf/i79WZ99/lTkubS2Gnkruftttv9/lwUmeP5EMLz6VTOSylEfT4TgqEFp8MRQeQ6RCt23j3Hadyez+M0SK3ZxH0/oES5Dnl6fOBcrJdzRGCWRF+/eeMFwdB3T487YKBSYuyHrukAskEYuI5bzopxmlzXC0J/NiuiIFhfXColjsdTfW6M1n4QQIOGfkyCiI0DQcF8XpzP1ePDY1kUURR6vv/7v/v98XA8H6tpnLI06drhx7/+LY3zIs33hy1A1nODJCoMtMTzqONMI+v64fWrG4DQ5dWLoWV134ZZut5cxkn/7pd3EioCkRf4URj2bdd13a9++F5p4/mB63rEcfqxC20chMFxfyxmpVa6qhpjqiROLtYX797/cnV1DeyXYU7GSfz4sD9XVRiF26fHfJb98P0PVX1KwjCKIwtMkeVSSGPNN999nUTxP/zH/2y1zuNUS5smRdN0TIrA9THBUmnOWDdOgR9qAxhj08SyrAQAvrm88H3XaNOPfZrHCU+aukIQYUoCP5jGKQxCwcXdp0fXC7BnIEBZXi6XK891EQTjxIqy7NsBYbhZbxjjeIXOTXNxcekQJwhdYw2h5Hg4tn2zXCyttdX2+fsfvuVMLGczjNDpXG+Wa893qqo67neMSz8IhnFUxj497+IsgZhU+7MS7JvvvpvPin5ov/vu69PpjBD+6us3fBJsYvPF3Fi72+3GaSIE7/dHbcxiPru4mo3DpLVdbZYIwNOxenzaxlFAqQsxTPK0HwelJecMA0yEkQ8Pz1aBwHdmy5Xj+4LzLI8l533X50XhhxHC5Onx4eHh4XQ4juNotYyicBgbAIDR1nf9i4sLzjkAtjpXQegLwYdpXK2XaZo93N/f3z8aA95++w3BZLc7UWd6/frV/rgdfmFPz9swilzf7cc2L4qB9aKWfu8BY8IkDjw/zlOjdeq4Sqm6apVSWe487B4BppvN5uVX1w+3jxPnwzR+/d03XPLzud1tD4vFop+a7dNuvlg8Pj9ttzuE8HxRAGTO1WkYe8bk493TYX88V6dh6BDFE5u2zzsl+TBNq+W6KGa+7zrU6bt+GEdrwMOnh9msEEIYqwSfEMKUoLxM61OtJD+fK0zQLMl3WuZl0bU9ImB9uWQT11JCAqM0CsPY8/yffvoRQvTVV7/WUp+Pp9lstlwtHcetTmeM6DRwNk15nmV5ejydg2i12MwJoVIxCC2bRmOUQ6lWIo0jC5SxMk78MAk/f7p/2r0Po/C7V98Mff+0ex7G7uXNy7/73/9+GLrD4eAH7uF4PB9OcRJlRfn5w8fjfk8IXl9evP3h63N1NtpCC9uqna8WL968MghFQUwI5pJTSj59ui3LbGJj/9ANY+z4dDYr2roJfc/znbati6y4vNr4oZvnuee6jDFKaVEWkouf/vLXarH8k/yjECoMAmVsb7uPnz5V1WmxWG4u1lfXm8Pz8/uPnxaLBdOKcyGFSrN0tVxDhzpe9O23v3p6euzadrNerC9X7bl+/8uPy9Vy7NtpFJsXNz/83W9Ox8M//6f/cv/p/unpASPkevTDu9ssz37/h9+lWX7Y7/7xv/7zDz/cMMY+3X7yPM/z6KnZbXfHi4vN9cuXXuB7r14cTsf/8//p//jzu3f/+T/+p9cvbz6+e//NN9/EUVp1Y9NP3cBUM3b96Dju6XT+5ad3SRpZC6wxl1ebPMv3u10cxIfDfpwmjPFisdBKn+rTYX/66u1XYRJ8/Hjb1NVyPj+d91V93qzWv/vD76C1bV1bIIUc//Ef/4vvhcv1arlaVqfjp4+fMMZFmb26eUkorho09qPgHEJrgeJ8OO6PhJKXN5d926d5SjB5j0wYRk3fCMFmy1kQhQDC61fXf/zXP0GIlJRd30VR9NXbryCEh/3++vp6s7kap/b8oXp5fa2M4Up4gT+xiVLyvH1mnO2Pe4zo0DPX9Z73hyiKAIBJkn7z9Tdas6aqMUUIIj4ySh0IMCU48AKp1H5/OFfn5WpV5CUlrlKSc3774WPXDTc3L16/vvn2u6+LMn96eGYT6/tOCPXy9dWFvGDTdK4PV9eXjusuV6uyyJI0rc6N67tCiq5tWc887Pzw6x9cjHwvqtqWC/Xqq1fH0zmOk6at3v/1xyDwLq82gnMpZTkv/SiYRr652kCMxok9PNwfdnv5zddxEo4Dj6N4MV97l25aZJTgvhvOp5M2tmm7vu/jOM7S5G9/+evXX7+9uroe+2FKJwBM4Hk/fPctG6fHxycv9KIo1FppA6Xgrku+v/rGGiul/A//4X+kFIdBfDgeun747tvv1uv1uTpOA4/jRNvG8527+zvX8zHGfOKr5Wo1XzE2XF5cBL6z3w1K68vNRlsFAOrhqJVqu45z7jpOEPjDMMZx3HYNJrgocq3Mh/cfu7Ybp3G+WKZ5BpFhE+tOnVLKANO3PcEkSUP4//x//F+rqnF9oq2J4wS7+LQ751l2Ph2HaYrjhHGxe97N5vO+6/f7nVGSUOKHwTgOURj9r/+H/9XxnP/t//3/OewPcZoYC4Cx68tNURaB77CB73a7LC2mYXBcH1M6TTyOI8dxd9un++eP1fmMESpmxTANURJ7vlMdKiZ4EIYvr2+yJDof6oENlKBpnBBArusggoty1vdMa7PebNqq7bvOcVCShJ7vAocYqx4+PQ7tgDEWSjLGEQbTJMoi8UN/+7wn2BnGsciLuqs/3d7O8sVqueaSXV1cCsEMAvNy1nXd0/2z57sEE0rdFzdX26ctJkhI+XD32aF0uVq4rucFLp/YMAzVqcYEFbOiOtfGWsY4hLAsijCMpJCHw9laECUJwvh8Ovdtf3V1RR06TQMbuNbWDwKE4NdffR3Gwf3dLSE4CgPP92jgEUS1Vuf6xMZpGkaEoZLi9sOnIIgc6jxtdxbYOEmNBpOQmMJpnPpuSOLg8mozX5R5klkDDABt19R1NzEeRtH7Dx/e//xOSr7ZbJaLFSRomPrFYgkh6uo6SbNvvvn66fFBCZvE4flcxbHfta1S5lTXN6/f3H78bBGECLZ14zmeF7iH3W4YxzRJCSGUOhjB4/F0eX25Xq+M0vvd3hjz84+/FMvlcjmPo6Qfu3HoEcCcM+oghO3UD13TL5ezFzc34zg+3G/TLN1cXDmeq6QwWvBp7LsujkLf96vzefv8TB0HAgQBKZbL11+/2R+3mo+7p71WdnOx9oOgqmopdRJFRTmrqrNDHUzRcX/861//CgD89puvNpcbq80//sM/zRblfDHnTBgELq8uq9P5b3/+0cEOxCgO434ahTUjm05V/fSwtUaFYeBQJ47jIs8ZY8Dat2/flLPiX//bf0uzYj6bUdepq5oSjAju++Hnn39++eomTpJpGh3HgQAabXzf9T0fAFudz2xkSR7HcfLp0ydCqIGmTAsAtFTCKHtxsQnCkE0TY9zzPABhP4yEYIyQtYBSxwLdt4MTOEVRvH93W+RFWmTPT0/b5z1AcL3exHGyfd5eXlwKJaQQnPE4ipXRL169OOz3j/e7NE4gsn7gpVl6OOzZyMIoSpPo9vYTQlAwmWWFEGIYh7wo67qfL2ar1XL39OS61A98znl9rsdpcKjjEe9UHTGlGCIn8AywCOE0iyFEXduwiXEu2DjFaZxl6Ww+i6NoHPr94UAwcagXJRGhTlu3p/Ph4uIiy9KHhydtVBAGvu8ncXQ6nbuuu7l5laTxp9tPVsg4SoyFXCg3cA+H0/NuRykRkgkhXr54sd/t+q7brFbEIdrCumqZYJwJx6Fh6O+edkkSzxez4/4YhKFW+ul5H8f+5eYCU1xVjdLaj7zz4Vy3jUspJSQIA4LxfL7AEPT9cPPyRdtWbddIaYwBQeSlSWoBBBDU1XmxWLRNwyWPotihTt8NCGGEkAWQOrTruiQJm7Y57I4fP97O5nNCcZblWqnnp+eJT2Wef/P1V1LwumqM/ZLtR47r7A6HPCvGqf90+2k2nznUtdb24xCEIULg7v6BTfxis4EILjfrIs88hwohHj4/aK2LWQ4hYP1IKIX/9//b/8Ui62CstRqHyViVpSkwVillNOz6ngvuUneaGMaYceb5Lpumuu7zeV7mxYsXL/uu/fT5kx/4EJBJsq7t4iiez+dG66Eb/ND33IASXFdNnKXDMFhjrQFd3/7yy4/n+vD126+vX76YOBvGlmC82+4pwVqroiiTJK7rTiuNAZgvZ9bYNEv7bkyzHGP8+LQPAi8v8h///FMah/3QIgS8KMQYNXWX57lDHa2NtlYqNo7j0LeOQ8+nxvX8aZqWy+X9w+M4jnlaLOdzJ/bSJP2nf/iHvh9f37zaXFxsn54nzi4vL7UxABjXdarToZzNm7pWSq6WC0Jp27S+50slPdeFAEijHOIMw9C0LcKIIAqsDfxASM2Eghg7DnVdj1Lcty1CGGPStx0XcjafE0riOI6S+O7jJ4fi+WIGtJHGLBbl8XB8eHjECHVdFyXB9nFbneuyLCl1mBS+5zu+Sx2va8fD8YCQjeKIEDx0XRyFs1l5dX2JofO83TZtSx3n+Wn70y+/PNw/KSW/+e7bNM72u+eiKMtZyZUY+54gGgYBpNp3wjCOoAV92xRlhgD58OlTUc4JJlKbcRys0YJzIWUcR6fT2Rozm5de4O0ed9PEuBCOQ79UXicu+rafr+ae6xkLAAJREIZBCKFVWrKu10BN4zj0PQDQGogdAix0HHe5Wnq+19YVVObierVYzikhf/rvf9zvD13XbZ+2Qpurl69fXL/QVsWB2zQNddzbj5+TNCmKcjab//zTz8W8dB13GIa2qeflLJ/lge/V5/PheJzPZlLJfugvry7ruu2G/uriOs0SLXlzatqm2R/OBsC67YjjKGB/+ukdGyet9WxeKiFvXr/CBLqYxkkUJdF//+f/ZqxN0+zq+gVC8HSsmrYuynI2L/zQf//jB6lUXqRKKUzIarFyXbet6/VmQR1aN3Xf9YwzIdTpePBcZ7Vax0lEKG2bjhCCAZ7NS8elQz+keWYNqOu6KHKMCReMc9a07fFwCMIYI1K3rUOdpumNNXle9N1QlPn1i+vb29swCILAb5oGIxSnyfZp1/Xj9dXVF6VUHMcT6ykhnuedj2fXof0wQIC0Nk3bZHl5/fJFda4EF1+2lNaaPE8ZYxDAoR+00XEYPTw+UseNo4gpkWYppbQfes749vk5zxJCqDLaoWQa+avXr15cXWGMd9udUFwqfT5V1HE8lwR+KKSMovDx8clanaapH/jDMJzPtTV6tpgFvj/0DGkTJYkfhlrbU3U2BvR9DxFYrBYUw3e/vKuryvddxsTQ9+vLy2maCKF939d18/rNTde0XzSNWhpCiOBivzv7gTOx6QtHL4wC3/cf7h8Z5xeXK5c6nu9vNiuXulpriCFBGALD5dRU3f54oJiEYTRfzB3HwQT3Xfvhw/s0zRBEyqiymNdVc//4WBT5bLFQSrFpkFILIbgQ9bl2fYcQ0jWN7wfUoYIzCGGWJg4l08SSNF3M1wiiw+nEOUPE3j8+fjkR4xxYUJQz3/XcwPM8b7/fSi6FVK5DtVSz5UxLCRGIo7ht277pIQTk+WHPBM+L2KEYI4QhRgDsd3sLQZ7PgbUOcV3XDZNIjGyYOuomQeiHaZ5E0WK+ggByLtIkC0KfcWGsPYnT09Nz13bL9bLp2r4ffN93fdp2oyWAM+a6DkTAAskZZ4M8nytCqBs4Qzeedkc/DNq2HfvxsG+/+9U3XBtEsRjF437vUoo8rLV6fLh7/frNi5uruqr5yAkmUhniBRDYceBd0/th0HVjUz85vptEkeDDyEaIwPFQY4q55JiQ29v7tuu3d0/p74ogzOrzaXu7pdgduuN2t/e9wPG8vCzPp6qu6izLDNTL5axve2tsEIR9N1DHodQJwrDrOkwIIuT4vENoDPwgiZJhGKXgfhhCgtqqdlyfM260CYNICeG5QZomlFCl9HITJ2ECMVJaNU19Pp/DJMhBabU9HU8Egf1+Z6wS0kRpTCmdL5au57mebwBC2oEADaNQHQujsJgVD3f3bdtHgRf60XKxPB4OnHNrYRTFAJjH+/u27bU2fuxLhqU01PNefvXGdcnUDfvn577rIMGcTcPE5vPlYjGTWnbtuOgW33z9zeriwhq4WM24EGPr3n74YCyM4ygMAuqQu9vP++1hNi+l1GEURihiI5dcurHPGcMEaK201hDiMi/SLMcYaqOkEHEQWqD7rhNCfdmXamkJoX4UKM1329PEJt8Lqr6jnjsNowUwjGOAwLE6N03LFW/b2g08TKMgCo/HEyHk6Xl/rlqLcVwUs9n6+eleG+W6QZgkAEGl9Xy9yvOy7WoLrev408SlUFLIumvOp2OSZ/m8EEbq/X6a+Go9Z1JxaYo8O0ohAaybjiD8+Pgc+F4U+M/P2ygMfD/ux+F4qrWBcRKfzxV1iJRaS7B7PCijynnJpokLvlwuLTC745ZSsj3sMULGmCROfN/XygBj6r6blPYNHJrJWOh7nkuJhqapW+o4mGIxSUwJQGgcp7Zr4yiIwigMo3GaHu+256oahsnzvTAKD/vDarVS0jw/PTdVY6UmGA5tnyRRfTyNQ2+sxQS0TYcJGroWIMA1H4bRWjtxziZOXSeMwjAKwig57g9ciixNtFZRFHTd0PeTVDLPc8f1v4huitlsGEZtlG07Y0zf9UPfKyUJQp/v7sMwWK2WBDvzRUoI7qbBAuAGvmWQUJPEauRsGNnheD6fzmEU5FlqtHl8fAzDCBM0jD3G+C9/+XGxmHmuX5ZZP47dNOVZniRpHMdCSupgBFFTnfIsiUJ36kcuZZqnj/cP9bmO0zhJkyyKWDdZa/tuyIvMCwMEkDH25evrvuuElEzwOI3GbujaNsvjtrVZlkohszw10AxyQhb4rt/3XRhEXTtmRVHMZ9vdbjYvMUTD0EMIm7aeLxZayrv7Bw3su3cf1hebcl6WWc6G/nyux5FpY+M0GodpHKbn5+1ysczyMskSDJEUrGs7TLACgEvtRZGwempbJiZCsJA8DEOldVN34zD6QWCMjZMIQaSEoJgEie+43ulwpNQBFlqLfM831rquS2fQ9TxCfCjH6bTnnk/zIm3O3fP9FiHz8vW1heB4OidJjrXyaegkTj8NWZ6vNsthmGI/UtIiBDgXFJPj7hBmkeviOI3vP/9cnerFej7yESq72+2WF4swiQ7HnR+EQzXwibFpWl+smOTHQ6WNTaJwmkYIkZSaKz0pff/psxeFTVs7gUcJtUaXeUZ9L3Bdx3Mfnp8c1498f/v4vFzPmraWSlsLH7fHwHOp47bt8PnT83I9s0ommedYjAl5uH9aXyyPxwpCcvf5MyGu4zme5wBr4ii6eXX1/Pw8TqyqKgzgzZtXFKPQd5N0fTqc2q7XitdNmyWxF3gQwomxOImargEW9f1gIbDWsJFrpZQSvus5cYAw8QLfDwIpTRhHAAIhBKXI831E0Pl80lKVZaGU5pw/3j9CgjjjbdueD1WcxoHv9kM/9COmeBwYY3K2mCVFkWTpNEqLUFs3n2/vz+c6DAMm+TCMfuBLwRfzMopjxkXbjvvDCSC4XC/Pp3PbduPIZ4t5kmVGqHxWEgqVko/3d6fD0UgVR1Gapbs9+/DhYRjV6XhSQEdhPFvPB97XXR0H6cPDQ1nOLi4ujrsDwuTq5aXkAlO0mM/vPz0gCN989aprO8ZFOSsd6rRNg4njuc5+f1qvcs91IcZKy0+fnpq6i6JguZ75Do3jdLkCu+3W84JpGH3f9X2/Op3v7h8pwUmiGBOaKc/zCPV9RBfrdZzm//qvf9FCjn1HHNQ13eFwAhiGSYAo3e8Ou+fdm7evlebPT89ZnkZJcKqOfGK+5y+WszhPPB083T8mWTb0w+fbz4yLw+G8nM8RotjacWCXFxdcyefnrUVUGxAEgeM4eR4Kpdk0NXUtmFvXlZLSdddB4PGKnavmVFVXL6+pQ/I8831/YkPXt+M4Pj9u8yJL09R13X4anh+3SRwHoY+/AE25pg5WWltjWM9+fv7p6vry6ubS9aOhGzibIEau72ilv6AOjsfjfDHz/cD1KON8nCbGRNcN2SwjHvn4/nN1blw/mJWl5zt9MwDo5llyOhxnqzyMg65vj/sjdWi5mB8P++PxdP3yiiCnbRpKad/1eZFxJrRRUzNBALMs7bsOWBAGYZalnucaC1zPO+yPj/dPz08HJcSLV1eBFwBk4yRUVufzvD5VT6fGdZ2ySBG0wzixSUwTc1wvSWM28WHYpbNMCwkh1lK6rmMg6NoWALvf7qM0ms8KxhmAwPNdx6Nu6ArJf/zpndbadVyppqHnnu/7kecHAYC67c5RGI1d1zYNMPa4PV693CRlfnd31/Ud5wx2cLGYeakzdGNeFrcfPj8/PGNKKcGL5WydrgiJgtgfhuF0ONVV7bme51HB2M9//Wm5Ws7mxfl4tsZ6vvfXP/7l2199M0l2Pp0F524YOK5rtD3W56aupVIQgourzTAZL/Tqtnt+3uezElGy3e+NVg6lMPRGxpu2ber66fk5y3MIgQG6blvPdVyK/cCVSnIuJ8Z+/vGnSYiL5cr3vLauuBDZrECUCGm6fgyi0PHcfhq6pocAUoIWq7nrOhCDw/O+PldBFAx9X53OddVdXK2CICauQ9MiMdImaYgJthBahPw4kMZW5wpDcj6d4jS2BgaBZ7U57g9AW63N8/RoLPjd734VRcFhf9wf9rg+B2GY5tlvfve953lRHEjGMEITG58et/mUsUmcj3V1qn3fGccxzRIEEeOMc3ZWQmpJPbep+2maKMGr65U2qjk2ypzTNPIcov2gPdQ69BDESto4sY5FT/dPjE3zxUw3bd11cRq+enUluDycDvkizuYRG0eDfK2Q0iZKIyZY07QOdfMsqc5VnIRtc3YchwmmofICf7mcL1ezWZFjguq64lyEcZhmWRTHp+PJwbTIU2gBpgRaqLgehwlAoIS8fHk5m5XH3eHpaRvFfjHLtbYQkiIvXOrdPzznRTJ2A7AqDGLqOo7nxSae2Lh93hoNhqFLkigIQxejpm0YE33deLSs69b1/LZv63NtAeATp8hxKGmHcblZt207TMNyM7u62dTn6vlp/+ab177rci76dghC//Ll9d3t536cPn16fn56ZnwCEHz99dezctZWtUtdPik/dLt2HJmcz/L15cIoEEbZH/53vzdaiXHEFszKxDD++ZdbAGAHm74fwSuoJhFFvhcE2qjFeiHZNIz9xatLhKwFmmvaDQ2AnpTT9YuLJEvOx5OFmnqoaSoL4MQ4AvD160vXc6UQAMG6aqqqdlynnM+sBb7vE4Ke75/mi9liVnAukiQKggACOHC+3e+dPdlcbH71618HvsPHARE89FPfjxfXG2P0apP98OtfSabYOJ1OT9W5ms9LPrD94fD9998Fvtd3Q1t1aZYAQ46H5nB4MlpLwV68uHp9cwMQtBD6kRF89KLQ8X3GxHl/xpRS6ni+ZyfOjB373mg1TSxNIqVU1XRcCEqx1oYgWBa5EHK/u3NdB0HrutQP3CyPXr152Q/T48OjQ7FSQmnSd1NRzvwkuP3waRyG169fvf72LTC273tCkEcdGIKublg3GockaWQBqk7np8eHKPEcB/cnNjGJKRZcGG2gAev1Joqz0+EQJXFRFkJKJ3IxQa7vCMXbpnGpywnJigxYzafh/u4pTtIvjiqpJHaI57uCc8d11perp7stRDDLUwARhEBrW50az3OtBdfXF3yc5LwECCEI0izuh7bt+i/cfMFE3w5XLy6MVuequnxxnRTF0PVxmriu63qO7wd927F2OOxPiCCrdRA4mNDXr292x8O/mxcGGquNHVGcJtihENO+atMs+cPf/Q5ha5gSjHsuJhAMTcdH/tB2nE95njo+3VwuTqcqydOqaSHCF5eXCBHfJ34QSqEgAEqrcRwuLte77S7J8jSNCUanYzVNLMsSz/Ec6vwP//b3SiiEUT4rHj49ZmXGGfccj41TfaqTOP704VNezsMo2u12bTvMF4vwhT+0Y9eNcRz1Xff4sFVSX1xc/foPi/uXD9vn58P2KJW6vL5wCdXjkLrR4XBKkiBKbr7/zQ990999/GwBxCCxSgWhhzH69PFHpQTnMsuKxWLR9YNQxkLUHBuL8c3LF3mSxGlMHKc6nqLABYj0TXM8nJU26/XCzIovSyklhOuQxaJUSjbn9v8HRBVc3ggKmq8AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 184,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "image_inpainting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.12"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/external/Grounded-Segment-Anything/grounded_sam_inpainting_demo.py b/external/Grounded-Segment-Anything/grounded_sam_inpainting_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..647224f36c35979540a7e753a6f70fc211326ed2
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_inpainting_demo.py
@@ -0,0 +1,216 @@
+import argparse
+import os
+import copy
+
+import numpy as np
+import torch
+from PIL import Image, ImageDraw, ImageFont
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util import box_ops
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+# diffusers
+import PIL
+import requests
+import torch
+from io import BytesIO
+from diffusers import StableDiffusionInpaintPipeline
+
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ if with_logits:
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ else:
+ pred_phrases.append(pred_phrase)
+
+ return boxes_filt, pred_phrases
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument("--det_prompt", type=str, required=True, help="text prompt")
+ parser.add_argument("--inpaint_prompt", type=str, required=True, help="inpaint prompt")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+ parser.add_argument("--cache_dir", type=str, default=None, help="save your huggingface large model cache")
+ parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
+ parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ image_path = args.input_image
+ det_prompt = args.det_prompt
+ inpaint_prompt = args.inpaint_prompt
+ output_dir = args.output_dir
+ cache_dir=args.cache_dir
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ inpaint_mode = args.inpaint_mode
+ device = args.device
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # run grounding dino model
+ boxes_filt, pred_phrases = get_grounding_output(
+ model, image, det_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(device),
+ multimask_output = False,
+ )
+
+ # masks: [1, 1, 512, 512]
+
+ # draw output image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
+
+ # inpainting pipeline
+ if inpaint_mode == 'merge':
+ masks = torch.sum(masks, dim=0).unsqueeze(0)
+ masks = torch.where(masks > 0, True, False)
+ mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
+ mask_pil = Image.fromarray(mask)
+ image_pil = Image.fromarray(image)
+
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(
+ "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,cache_dir=cache_dir
+ )
+ pipe = pipe.to("cuda")
+
+ image_pil = image_pil.resize((512, 512))
+ mask_pil = mask_pil.resize((512, 512))
+ # prompt = "A sofa, high quality, detailed"
+ image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
+ image = image.resize(size)
+ image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
+
+
diff --git a/external/Grounded-Segment-Anything/grounded_sam_multi_gpu_demo.py b/external/Grounded-Segment-Anything/grounded_sam_multi_gpu_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b570c30650761b15170482c49cb5737cd667648
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_multi_gpu_demo.py
@@ -0,0 +1,265 @@
+import argparse
+import os
+import sys
+import time
+import torch
+import numpy as np
+import json
+from PIL import Image
+from concurrent.futures import ThreadPoolExecutor
+
+sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
+sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
+
+# Grounding DINO imports
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# Segment Anything imports
+from segment_anything import sam_model_registry, sam_hq_model_registry, SamPredictor
+import cv2
+import matplotlib.pyplot as plt
+
+
+def load_image(image_path):
+ image_pil = Image.open(image_path).convert("RGB")
+ transform = T.Compose([
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ])
+ image, _ = transform(image_pil, None)
+ return image_pil, image
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ print("Loading model from...........", device)
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+
+ # Load the model checkpoint onto the specific GPU
+ checkpoint = torch.load(model_checkpoint_path, map_location=device)
+ model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ model.eval()
+ model.to(device)
+
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold, device="cpu"):
+ caption = caption.lower().strip()
+ if not caption.endswith("."):
+ caption += "."
+ model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].sigmoid()[0] # Keep it on the device
+ boxes = outputs["pred_boxes"][0] # Keep it on the device
+
+ filt_mask = logits.max(dim=1)[0] > box_threshold
+ logits_filt = logits[filt_mask]
+ boxes_filt = boxes[filt_mask]
+
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ pred_phrases = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+
+ return boxes_filt, pred_phrases
+
+
+def process_image(image_path, model, predictor, output_dir, text_prompt, box_threshold, text_threshold, device):
+
+ # Load the image and move to GPU
+ image_pil, image = load_image(image_path)
+ # image_pil.save(os.path.join(output_dir, f"raw_image_{os.path.basename(image_path)}.jpg"))
+ # Run GroundingDINO model to get bounding boxes and labels
+ boxes_filt, pred_phrases = get_grounding_output(
+ model, image, text_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # Load SAM model onto GPU
+ image_cv = cv2.imread(image_path)
+ image_cv = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image_cv)
+
+ # Convert boxes to original image size
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.tensor([W, H, W, H], device=device)
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ # Transform boxes to be compatible with SAM
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image_cv.shape[:2]).to(device)
+
+ # Get masks using SAM
+ masks, _, _ = predictor.predict_torch(
+ point_coords=None,
+ point_labels=None,
+ boxes=transformed_boxes.to(device),
+ multimask_output=False,
+ )
+
+ # Visualization and saving
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image_cv)
+ # for mask in masks:
+ # show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.cpu().numpy(), plt.gca(), label)
+ image_base_name = os.path.basename(image_path).split('.')[0]
+ plt.axis('off')
+ plt.savefig(
+ os.path.join(output_dir, f"grounded_sam_output_{image_base_name}.jpg"),
+ bbox_inches="tight", dpi=300, pad_inches=0.0
+ )
+ plt.close()
+
+ save_mask_data(output_dir, masks, boxes_filt, pred_phrases, image_base_name)
+ # Clear GPU memory
+ del image, transformed_boxes, masks # model, sam
+ # torch.cuda.empty_cache()
+
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ # print("mask.shape:", mask.shape)
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def save_mask_data(output_dir, mask_list, box_list, label_list, image_base_name=''):
+ value = 0 # 0 for background
+
+ mask_img = torch.zeros(mask_list.shape[-2:], device=mask_list.device)
+ for idx, mask in enumerate(mask_list):
+ mask_img[mask[0] == True] = value + idx + 1
+ plt.figure(figsize=(10, 10))
+ plt.imshow(mask_img.cpu().numpy())
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, f'{image_base_name}.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
+ plt.close()
+ json_data = [{
+ 'value': value,
+ 'label': 'background'
+ }]
+ for label, box in zip(label_list, box_list):
+ value += 1
+ name, logit = label.split('(')
+ logit = logit[:-1] # the last is ')'
+ json_data.append({
+ 'value': value,
+ 'label': name,
+ 'logit': float(logit),
+ 'box': box.cpu().numpy().tolist(),
+ })
+ with open(os.path.join(output_dir, f'{image_base_name}.json'), 'w') as f:
+ json.dump(json_data, f)
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument("--grounded_checkpoint", type=str, required=True, help="path to checkpoint file")
+ parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h")
+ parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file")
+ parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file")
+ parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction")
+ parser.add_argument("--input_path", type=str, required=True, help="path to directory containing image files")
+ parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
+ parser.add_argument("--output_dir", "-o", type=str, default="outputs", required=True, help="output directory")
+ parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
+ parser.add_argument("--device", type=str, default="cuda", help="device to run the inference on, e.g., 'cuda' or 'cuda:0'")
+ args = parser.parse_args()
+
+ torch.backends.cudnn.enabled = False
+ torch.backends.cudnn.benchmark = True
+
+ start_time = time.time()
+ # Determine if we are using a single GPU or all available GPUs
+ if args.device == "cuda":
+ if torch.cuda.device_count() > 1:
+ device_list = [torch.device(f"cuda:{i}") for i in range(torch.cuda.device_count())] # Use all GPUs
+ else:
+ device_list = [torch.device("cuda:0")] # Default to first GPU
+ else:
+ device_list = [torch.device(args.device)]
+ print("device_list:", device_list)
+
+ # Get list of images
+ image_paths = [os.path.join(args.input_path, img) for img in os.listdir(args.input_path) if img.endswith(('.png', '.jpg', '.jpeg'))]
+
+ # Split images among available GPUs
+ image_batches = np.array_split(image_paths, len(device_list))
+ print("Processing images:", image_batches)
+ # Function to process a batch of images on the specified device
+ def process_batch(batch_images, model_config, model_checkpoint, sam_version, sam_checkpoint, sam_hq_checkpoint, use_sam_hq, device, output_dir):
+ # Load model onto GPU
+ torch.cuda.set_device(device)
+ model = load_model(model_config, model_checkpoint, device)
+
+ # Load SAM model onto GPU
+ if use_sam_hq:
+ sam = sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device)
+ else:
+ sam = sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device)
+ # Move model to the correct device
+ device = torch.device(device)
+ model.to(device)
+ sam.to(device)
+ predictor = SamPredictor(sam)
+ for image_path in batch_images:
+ # Process each image
+ print("Processing image:", image_path)
+ process_image(
+ image_path=image_path,
+ model=model,
+ predictor=predictor,
+ output_dir=output_dir,
+ text_prompt=args.text_prompt,
+ box_threshold=args.box_threshold,
+ text_threshold=args.text_threshold,
+ device=device
+ )
+ print("Image processing complete {}".format(image_path))
+ # Clear GPU memory after processing the batch
+ # del model, sam
+ torch.cuda.empty_cache()
+
+ # Use ThreadPoolExecutor to parallelize the processing across GPUs
+ with ThreadPoolExecutor(max_workers=len(device_list)*2) as executor:
+ futures = []
+ for i, device in enumerate(device_list):
+ print(f"Processing images on device {device}")
+ print("Image batches for each GPU:", len(image_batches[i]))
+ futures.append(executor.submit(
+ process_batch, image_batches[i], args.config, args.grounded_checkpoint, args.sam_version, args.sam_checkpoint, args.sam_hq_checkpoint, args.use_sam_hq, device, args.output_dir
+ ))
+
+ # Wait for all threads to complete
+ for future in futures:
+ future.result()
+
+ print("Processing complete. Results saved to the output directory.")
+ print(f"Total time taken: {time.time() - start_time:.2f} seconds")
\ No newline at end of file
diff --git a/external/Grounded-Segment-Anything/grounded_sam_simple_demo.py b/external/Grounded-Segment-Anything/grounded_sam_simple_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..848d7a88d0d238d29e8b28c4cacabc123f259874
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_simple_demo.py
@@ -0,0 +1,107 @@
+import cv2
+import numpy as np
+import supervision as sv
+
+import torch
+import torchvision
+
+from groundingdino.util.inference import Model
+from segment_anything import sam_model_registry, SamPredictor
+
+DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+# GroundingDINO config and checkpoint
+GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
+GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swint_ogc.pth"
+
+# Segment-Anything checkpoint
+SAM_ENCODER_VERSION = "vit_h"
+SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth"
+
+# Building GroundingDINO inference model
+grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH)
+
+# Building SAM Model and SAM Predictor
+sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
+sam.to(device=DEVICE)
+sam_predictor = SamPredictor(sam)
+
+
+# Predict classes and hyper-param for GroundingDINO
+SOURCE_IMAGE_PATH = "./assets/demo2.jpg"
+CLASSES = ["The running dog"]
+BOX_THRESHOLD = 0.25
+TEXT_THRESHOLD = 0.25
+NMS_THRESHOLD = 0.8
+
+
+# load image
+image = cv2.imread(SOURCE_IMAGE_PATH)
+
+# detect objects
+detections = grounding_dino_model.predict_with_classes(
+ image=image,
+ classes=CLASSES,
+ box_threshold=BOX_THRESHOLD,
+ text_threshold=TEXT_THRESHOLD
+)
+
+# annotate image with detections
+box_annotator = sv.BoxAnnotator()
+labels = [
+ f"{CLASSES[class_id]} {confidence:0.2f}"
+ for _, _, confidence, class_id, _, _
+ in detections]
+annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
+
+# save the annotated grounding dino image
+cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
+
+
+# NMS post process
+print(f"Before NMS: {len(detections.xyxy)} boxes")
+nms_idx = torchvision.ops.nms(
+ torch.from_numpy(detections.xyxy),
+ torch.from_numpy(detections.confidence),
+ NMS_THRESHOLD
+).numpy().tolist()
+
+detections.xyxy = detections.xyxy[nms_idx]
+detections.confidence = detections.confidence[nms_idx]
+detections.class_id = detections.class_id[nms_idx]
+
+print(f"After NMS: {len(detections.xyxy)} boxes")
+
+# Prompting SAM with detected boxes
+def segment(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
+ sam_predictor.set_image(image)
+ result_masks = []
+ for box in xyxy:
+ masks, scores, logits = sam_predictor.predict(
+ box=box,
+ multimask_output=True
+ )
+ index = np.argmax(scores)
+ result_masks.append(masks[index])
+ return np.array(result_masks)
+
+
+# convert detections to masks
+detections.mask = segment(
+ sam_predictor=sam_predictor,
+ image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
+ xyxy=detections.xyxy
+)
+
+# annotate image with detections
+box_annotator = sv.BoxAnnotator()
+mask_annotator = sv.MaskAnnotator()
+labels = [
+ f"{CLASSES[class_id]} {confidence:0.2f}"
+ for _, _, confidence, class_id, _, _
+ in detections]
+annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections)
+annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
+
+# save the annotated grounded-sam image
+cv2.imwrite("grounded_sam_annotated_image.jpg", annotated_image)
diff --git a/external/Grounded-Segment-Anything/grounded_sam_visam.py b/external/Grounded-Segment-Anything/grounded_sam_visam.py
new file mode 100644
index 0000000000000000000000000000000000000000..f023cabd96e8aae4841d7fd3ca5e1127f7a4832a
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_visam.py
@@ -0,0 +1,265 @@
+
+from copy import deepcopy
+import json
+
+import os
+import argparse
+import torchvision.transforms.functional as F
+import torch
+import cv2
+import numpy as np
+from tqdm import tqdm
+from pathlib import Path
+import sys
+sys.path.append('VISAM')
+from main import get_args_parser
+from models import build_model
+from util.tool import load_model
+from models.structures import Instances
+
+from torch.utils.data import Dataset, DataLoader
+
+
+# segment anything
+sys.path.append('segment_anything')
+from segment_anything import build_sam, SamPredictor
+
+
+class Colors:
+ # Ultralytics color palette https://ultralytics.com/
+ def __init__(self):
+ # hex = matplotlib.colors.TABLEAU_COLORS.values()
+ hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+ '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+ self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
+ self.n = len(self.palette)
+
+ def __call__(self, i, bgr=False):
+ c = self.palette[int(i) % self.n]
+ return (c[2], c[1], c[0]) if bgr else c
+
+ @staticmethod
+ def hex2rgb(h): # rgb order (PIL)
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors() # create instance for 'from utils.plots import colors'
+
+
+class ListImgDataset(Dataset):
+ def __init__(self, mot_path, img_list, det_db) -> None:
+ super().__init__()
+ self.mot_path = mot_path
+ self.img_list = img_list
+ self.det_db = det_db
+
+ '''
+ common settings
+ '''
+ self.img_height = 800
+ self.img_width = 1536
+ self.mean = [0.485, 0.456, 0.406]
+ self.std = [0.229, 0.224, 0.225]
+
+ def load_img_from_file(self, f_path):
+ cur_img = cv2.imread(os.path.join(self.mot_path, f_path))
+ assert cur_img is not None, f_path
+ cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
+ proposals = []
+ im_h, im_w = cur_img.shape[:2]
+ for line in self.det_db[f_path[:-4] + '.txt']:
+ l, t, w, h, s = list(map(float, line.split(',')))
+ proposals.append([(l + w / 2) / im_w,
+ (t + h / 2) / im_h,
+ w / im_w,
+ h / im_h,
+ s])
+ return cur_img, torch.as_tensor(proposals).reshape(-1, 5)
+
+ def init_img(self, img, proposals):
+ ori_img = img.copy()
+ self.seq_h, self.seq_w = img.shape[:2]
+ scale = self.img_height / min(self.seq_h, self.seq_w)
+ if max(self.seq_h, self.seq_w) * scale > self.img_width:
+ scale = self.img_width / max(self.seq_h, self.seq_w)
+ target_h = int(self.seq_h * scale)
+ target_w = int(self.seq_w * scale)
+ img = cv2.resize(img, (target_w, target_h))
+ img = F.normalize(F.to_tensor(img), self.mean, self.std)
+ img = img.unsqueeze(0)
+ return img, ori_img, proposals
+
+ def __len__(self):
+ return len(self.img_list)
+
+ def __getitem__(self, index):
+ img, proposals = self.load_img_from_file(self.img_list[index])
+ return self.init_img(img, proposals)
+
+
+class Detector(object):
+ def __init__(self, args, model, vid, sam_predictor=None):
+ self.args = args
+ self.detr = model
+
+ self.vid = vid
+ self.seq_num = os.path.basename(vid)
+ img_list = os.listdir(os.path.join(self.args.mot_path, vid, 'img1'))
+ img_list = [os.path.join(vid, 'img1', i) for i in img_list if 'jpg' in i]
+
+ self.img_list = sorted(img_list)
+ self.img_len = len(self.img_list)
+
+ self.predict_path = os.path.join(self.args.output_dir, args.exp_name)
+ os.makedirs(self.predict_path, exist_ok=True)
+
+ fps = 25
+ size = (1920, 1080)
+ self.videowriter = cv2.VideoWriter('visam.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, size)
+
+ self.sam_predictor = sam_predictor
+
+ @staticmethod
+ def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
+ keep = dt_instances.scores > prob_threshold
+ keep &= dt_instances.obj_idxes >= 0
+ return dt_instances[keep]
+
+ @staticmethod
+ def filter_dt_by_area(dt_instances: Instances, area_threshold: float) -> Instances:
+ wh = dt_instances.boxes[:, 2:4] - dt_instances.boxes[:, 0:2]
+ areas = wh[:, 0] * wh[:, 1]
+ keep = areas > area_threshold
+ return dt_instances[keep]
+
+ def detect(self, prob_threshold=0.6, area_threshold=100, vis=False):
+ total_dts = 0
+ total_occlusion_dts = 0
+
+ track_instances = None
+ with open(os.path.join(self.args.mot_path, 'DanceTrack', self.args.det_db)) as f:
+ det_db = json.load(f)
+ loader = DataLoader(ListImgDataset(self.args.mot_path, self.img_list, det_db), 1, num_workers=2)
+ lines = []
+ for i, data in enumerate(tqdm(loader)):
+ cur_img, ori_img, proposals = [d[0] for d in data]
+ cur_img, proposals = cur_img.cuda(), proposals.cuda()
+
+ # track_instances = None
+ if track_instances is not None:
+ track_instances.remove('boxes')
+ track_instances.remove('labels')
+ seq_h, seq_w, _ = ori_img.shape
+
+ res = self.detr.inference_single_image(cur_img, (seq_h, seq_w), track_instances, proposals)
+ track_instances = res['track_instances']
+
+ dt_instances = deepcopy(track_instances)
+
+ # filter det instances by score.
+ dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
+ dt_instances = self.filter_dt_by_area(dt_instances, area_threshold)
+
+ total_dts += len(dt_instances)
+
+ bbox_xyxy = dt_instances.boxes.tolist()
+ identities = dt_instances.obj_idxes.tolist()
+
+ img = ori_img.to(torch.device('cpu')).numpy().copy()[..., ::-1]
+ if self.sam_predictor is not None:
+ masks_all = []
+ self.sam_predictor.set_image(ori_img.to(torch.device('cpu')).numpy().copy())
+
+ for bbox, id in zip(np.array(bbox_xyxy), identities):
+ masks, iou_predictions, low_res_masks = self.sam_predictor.predict(box=bbox)
+ index_max = iou_predictions.argsort()[0]
+ masks = np.concatenate([masks[index_max:(index_max+1)], masks[index_max:(index_max+1)], masks[index_max:(index_max+1)]], axis=0)
+ masks = masks.astype(np.int32)*np.array(colors(id))[:, None, None]
+ masks_all.append(masks)
+
+ self.sam_predictor.reset_image()
+ if len(masks_all):
+ masks_sum = masks_all[0].copy()
+ for m in masks_all[1:]:
+ masks_sum += m
+ else:
+ masks_sum = np.zeros_like(img).transpose(2, 0, 1)
+
+ img = (img * 0.5 + (masks_sum.transpose(1,2,0) * 30) %128).astype(np.uint8)
+ for bbox in bbox_xyxy:
+ cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0,0,255), thickness=3)
+ self.videowriter.write(img)
+
+ save_format = '{frame},{id},{x1:.2f},{y1:.2f},{w:.2f},{h:.2f},1,-1,-1,-1\n'
+ for xyxy, track_id in zip(bbox_xyxy, identities):
+ if track_id < 0 or track_id is None:
+ continue
+ x1, y1, x2, y2 = xyxy
+ w, h = x2 - x1, y2 - y1
+ lines.append(save_format.format(frame=i + 1, id=track_id, x1=x1, y1=y1, w=w, h=h))
+ with open(os.path.join(self.predict_path, f'{self.seq_num}.txt'), 'w') as f:
+ f.writelines(lines)
+ print("totally {} dts {} occlusion dts".format(total_dts, total_occlusion_dts))
+
+
+class RuntimeTrackerBase(object):
+ def __init__(self, score_thresh=0.6, filter_score_thresh=0.5, miss_tolerance=10):
+ self.score_thresh = score_thresh
+ self.filter_score_thresh = filter_score_thresh
+ self.miss_tolerance = miss_tolerance
+ self.max_obj_id = 0
+
+ def clear(self):
+ self.max_obj_id = 0
+
+ def update(self, track_instances: Instances):
+ device = track_instances.obj_idxes.device
+
+ track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
+ new_obj = (track_instances.obj_idxes == -1) & (track_instances.scores >= self.score_thresh)
+ disappeared_obj = (track_instances.obj_idxes >= 0) & (track_instances.scores < self.filter_score_thresh)
+ num_new_objs = new_obj.sum().item()
+
+ track_instances.obj_idxes[new_obj] = self.max_obj_id + torch.arange(num_new_objs, device=device)
+ self.max_obj_id += num_new_objs
+
+ track_instances.disappear_time[disappeared_obj] += 1
+ to_del = disappeared_obj & (track_instances.disappear_time >= self.miss_tolerance)
+ track_instances.obj_idxes[to_del] = -1
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything VISAM Demo", parents=[get_args_parser()])
+ parser.add_argument('--score_threshold', default=0.5, type=float)
+ parser.add_argument('--update_score_threshold', default=0.5, type=float)
+ parser.add_argument('--miss_tolerance', default=20, type=int)
+
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--video_path", type=str, required=True, help="path to image file")
+
+ args = parser.parse_args()
+
+ # make dir
+ if args.output_dir:
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
+
+ sam_predictor = SamPredictor(build_sam(checkpoint=args.sam_checkpoint))
+ _ = sam_predictor.model.to(device='cuda')
+
+ # load model and weights
+ detr, _, _ = build_model(args)
+ detr.track_embed.score_thr = args.update_score_threshold
+ detr.track_base = RuntimeTrackerBase(args.score_threshold, args.score_threshold, args.miss_tolerance)
+ checkpoint = torch.load(args.resume, map_location='cpu')
+ detr = load_model(detr, args.resume)
+ detr.eval()
+ detr = detr.cuda()
+
+ rank = int(os.environ.get('RLAUNCH_REPLICA', '0'))
+ ws = int(os.environ.get('RLAUNCH_REPLICA_TOTAL', '1'))
+
+ det = Detector(args, model=detr, vid=args.video_path, sam_predictor=sam_predictor)
+ det.detect(args.score_threshold)
diff --git a/external/Grounded-Segment-Anything/grounded_sam_whisper_demo.py b/external/Grounded-Segment-Anything/grounded_sam_whisper_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..522a7f63d8076baf429e97f9f0e57b142c58fff0
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_whisper_demo.py
@@ -0,0 +1,260 @@
+import argparse
+import os
+import copy
+
+import numpy as np
+import json
+import torch
+import torchvision
+from PIL import Image, ImageDraw, ImageFont
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util import box_ops
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+# whisper
+import whisper
+
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ scores = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ scores.append(logit.max().item())
+
+ return boxes_filt, torch.Tensor(scores), pred_phrases
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def save_mask_data(output_dir, mask_list, box_list, label_list):
+ value = 0 # 0 for background
+
+ mask_img = torch.zeros(mask_list.shape[-2:])
+ for idx, mask in enumerate(mask_list):
+ mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
+ plt.figure(figsize=(10, 10))
+ plt.imshow(mask_img.numpy())
+ plt.axis('off')
+ plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
+
+ json_data = [{
+ 'value': value,
+ 'label': 'background'
+ }]
+ for label, box in zip(label_list, box_list):
+ value += 1
+ name, logit = label.split('(')
+ logit = logit[:-1] # the last is ')'
+ json_data.append({
+ 'value': value,
+ 'label': name,
+ 'logit': float(logit),
+ 'box': box.numpy().tolist(),
+ })
+ with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
+ json.dump(json_data, f)
+
+
+def speech_recognition(speech_file, model):
+ # whisper
+ # load audio and pad/trim it to fit 30 seconds
+ audio = whisper.load_audio(speech_file)
+ audio = whisper.pad_or_trim(audio)
+
+ # make log-Mel spectrogram and move to the same device as the model
+ mel = whisper.log_mel_spectrogram(audio).to(model.device)
+
+ # detect the spoken language
+ _, probs = model.detect_language(mel)
+ speech_language = max(probs, key=probs.get)
+
+ # decode the audio
+ options = whisper.DecodingOptions()
+ result = whisper.decode(model, mel, options)
+
+ # print the recognized text
+ speech_text = result.text
+ return speech_text, speech_language
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument("--speech_file", type=str, required=True, help="speech file")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+
+ parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
+ parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
+
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ image_path = args.input_image
+ output_dir = args.output_dir
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ iou_threshold = args.iou_threshold
+ device = args.device
+
+ # load speech
+ whisper_model = whisper.load_model("base")
+ speech_text, speech_language = speech_recognition(args.speech_file, whisper_model)
+ print(f"speech_text: {speech_text}")
+ print(f"speech_language: {speech_language}")
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # run grounding dino model
+ text_prompt = speech_text
+ boxes_filt, scores, pred_phrases = get_grounding_output(
+ model, image, text_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ sam = build_sam(checkpoint=sam_checkpoint)
+ sam.to(device=device)
+ predictor = SamPredictor(sam)
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ # use NMS to handle overlapped boxes
+ print(f"Before NMS: {boxes_filt.shape[0]} boxes")
+ nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
+ boxes_filt = boxes_filt[nms_idx]
+ pred_phrases = [pred_phrases[idx] for idx in nms_idx]
+ print(f"After NMS: {boxes_filt.shape[0]} boxes")
+
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(args.device),
+ multimask_output = False,
+ )
+
+ # draw output image
+ plt.figure(figsize=(10, 10))
+ plt.imshow(image)
+ for mask in masks:
+ show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ for box, label in zip(boxes_filt, pred_phrases):
+ show_box(box.numpy(), plt.gca(), label)
+
+ plt.title(speech_text)
+ plt.axis('off')
+ plt.savefig(
+ os.path.join(output_dir, "grounded_sam_whisper_output.jpg"),
+ bbox_inches="tight", dpi=300, pad_inches=0.0
+ )
+
+
+ save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
+
diff --git a/external/Grounded-Segment-Anything/grounded_sam_whisper_inpainting_demo.py b/external/Grounded-Segment-Anything/grounded_sam_whisper_inpainting_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f087188d0c75923a3e8354e8a83aeae5561e498
--- /dev/null
+++ b/external/Grounded-Segment-Anything/grounded_sam_whisper_inpainting_demo.py
@@ -0,0 +1,286 @@
+import argparse
+import os
+from warnings import warn
+
+import numpy as np
+import torch
+from PIL import Image, ImageDraw, ImageFont
+import litellm
+
+# Grounding DINO
+import GroundingDINO.groundingdino.datasets.transforms as T
+from GroundingDINO.groundingdino.models import build_model
+from GroundingDINO.groundingdino.util import box_ops
+from GroundingDINO.groundingdino.util.slconfig import SLConfig
+from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
+
+# segment anything
+from segment_anything import build_sam, SamPredictor
+import cv2
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+# diffusers
+import PIL
+import requests
+import torch
+from io import BytesIO
+from diffusers import StableDiffusionInpaintPipeline
+
+# whisper
+import whisper
+
+# ChatGPT
+import openai
+
+
+def load_image(image_path):
+ # load image
+ image_pil = Image.open(image_path).convert("RGB") # load image
+
+ transform = T.Compose(
+ [
+ T.RandomResize([800], max_size=1333),
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ]
+ )
+ image, _ = transform(image_pil, None) # 3, h, w
+ return image_pil, image
+
+
+def load_model(model_config_path, model_checkpoint_path, device):
+ args = SLConfig.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ print(load_res)
+ _ = model.eval()
+ return model
+
+
+def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
+ caption = caption.lower()
+ caption = caption.strip()
+ if not caption.endswith("."):
+ caption = caption + "."
+ model = model.to(device)
+ image = image.to(device)
+ with torch.no_grad():
+ outputs = model(image[None], captions=[caption])
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
+ logits.shape[0]
+
+ # filter output
+ logits_filt = logits.clone()
+ boxes_filt = boxes.clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
+ logits_filt.shape[0]
+
+ # get phrase
+ tokenlizer = model.tokenizer
+ tokenized = tokenlizer(caption)
+ # build pred
+ pred_phrases = []
+ for logit, box in zip(logits_filt, boxes_filt):
+ pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
+ if with_logits:
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
+ else:
+ pred_phrases.append(pred_phrase)
+
+ return boxes_filt, pred_phrases
+
+def show_mask(mask, ax, random_color=False):
+ if random_color:
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
+ else:
+ color = np.array([30/255, 144/255, 255/255, 0.6])
+ h, w = mask.shape[-2:]
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
+ ax.imshow(mask_image)
+
+
+def show_box(box, ax, label):
+ x0, y0 = box[0], box[1]
+ w, h = box[2] - box[0], box[3] - box[1]
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
+ ax.text(x0, y0, label)
+
+
+def speech_recognition(speech_file, model):
+ # whisper
+ # load audio and pad/trim it to fit 30 seconds
+ audio = whisper.load_audio(speech_file)
+ audio = whisper.pad_or_trim(audio)
+
+ # make log-Mel spectrogram and move to the same device as the model
+ mel = whisper.log_mel_spectrogram(audio).to(model.device)
+
+ # detect the spoken language
+ _, probs = model.detect_language(mel)
+ speech_language = max(probs, key=probs.get)
+
+ # decode the audio
+ options = whisper.DecodingOptions()
+ result = whisper.decode(model, mel, options)
+
+ # print the recognized text
+ speech_text = result.text
+ return speech_text, speech_language
+
+
+def filter_prompts_with_chatgpt(caption, max_tokens=100, model="gpt-3.5-turbo"):
+ prompt = [
+ {
+ 'role': 'system',
+ 'content': f"Extract the main object to be replaced and marked it as 'main_object', " + \
+ f"Extract the remaining part as 'other prompt' " + \
+ f"Return (main_object, other prompt)" + \
+ f'Given caption: {caption}.'
+ }
+ ]
+ response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
+ reply = response['choices'][0]['message']['content']
+ try:
+ det_prompt, inpaint_prompt = reply.split('\n')[0].split(':')[-1].strip(), reply.split('\n')[1].split(':')[-1].strip()
+ except:
+ warn(f"Failed to extract tags from caption") # use caption as det_prompt, inpaint_prompt
+ det_prompt, inpaint_prompt = caption, caption
+ return det_prompt, inpaint_prompt
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
+ parser.add_argument("--config", type=str, required=True, help="path to config file")
+ parser.add_argument(
+ "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument(
+ "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
+ )
+ parser.add_argument("--input_image", type=str, required=True, help="path to image file")
+ parser.add_argument(
+ "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
+ )
+ parser.add_argument("--cache_dir", type=str, default=None, help="save your huggingface large model cache")
+ parser.add_argument("--det_speech_file", type=str, help="grounding speech file")
+ parser.add_argument("--inpaint_speech_file", type=str, help="inpaint speech file")
+ parser.add_argument("--prompt_speech_file", type=str, help="prompt speech file, no need to provide det_speech_file")
+ parser.add_argument("--enable_chatgpt", action="store_true", help="enable chatgpt")
+ parser.add_argument("--openai_key", type=str, help="key for chatgpt")
+ parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
+ parser.add_argument("--whisper_model", type=str, default="small", help="whisper model version: tiny, base, small, medium, large")
+ parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
+ parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
+ parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
+ parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
+ parser.add_argument("--prompt_extra", type=str, default=" high resolution, real scene", help="extra prompt for inpaint")
+ args = parser.parse_args()
+
+ # cfg
+ config_file = args.config # change the path of the model config file
+ grounded_checkpoint = args.grounded_checkpoint # change the path of the model
+ sam_checkpoint = args.sam_checkpoint
+ image_path = args.input_image
+
+ output_dir = args.output_dir
+ cache_dir=args.cache_dir
+ # if not os.path.exists(cache_dir):
+ # print(f"create your cache dir:{cache_dir}")
+ # os.mkdir(cache_dir)
+ box_threshold = args.box_threshold
+ text_threshold = args.text_threshold
+ inpaint_mode = args.inpaint_mode
+ device = args.device
+
+ # make dir
+ os.makedirs(output_dir, exist_ok=True)
+ # load image
+ image_pil, image = load_image(image_path)
+ # load model
+ model = load_model(config_file, grounded_checkpoint, device=device)
+
+ # visualize raw image
+ image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
+
+ # recognize speech
+ whisper_model = whisper.load_model(args.whisper_model)
+
+ if args.enable_chatgpt:
+ openai.api_key = args.openai_key
+ if args.openai_proxy:
+ openai.proxy = {"http": args.openai_proxy, "https": args.openai_proxy}
+ speech_text, _ = speech_recognition(args.prompt_speech_file, whisper_model)
+ det_prompt, inpaint_prompt = filter_prompts_with_chatgpt(speech_text)
+ inpaint_prompt += args.prompt_extra
+ print(f"det_prompt: {det_prompt}, inpaint_prompt: {inpaint_prompt}")
+ else:
+ det_prompt, det_speech_language = speech_recognition(args.det_speech_file, whisper_model)
+ inpaint_prompt, inpaint_speech_language = speech_recognition(args.inpaint_speech_file, whisper_model)
+ print(f"det_prompt: {det_prompt}, using language: {det_speech_language}")
+ print(f"inpaint_prompt: {inpaint_prompt}, using language: {inpaint_speech_language}")
+
+ # run grounding dino model
+ boxes_filt, pred_phrases = get_grounding_output(
+ model, image, det_prompt, box_threshold, text_threshold, device=device
+ )
+
+ # initialize SAM
+ predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
+ image = cv2.imread(image_path)
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ predictor.set_image(image)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ for i in range(boxes_filt.size(0)):
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
+ boxes_filt[i][2:] += boxes_filt[i][:2]
+
+ boxes_filt = boxes_filt.cpu()
+ transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
+
+ masks, _, _ = predictor.predict_torch(
+ point_coords = None,
+ point_labels = None,
+ boxes = transformed_boxes.to(device),
+ multimask_output = False,
+ )
+
+ # masks: [1, 1, 512, 512]
+
+ # inpainting pipeline
+ if inpaint_mode == 'merge':
+ masks = torch.sum(masks, dim=0).unsqueeze(0)
+ masks = torch.where(masks > 0, True, False)
+ mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
+ mask_pil = Image.fromarray(mask)
+ image_pil = Image.fromarray(image)
+
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(
+ "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,cache_dir=cache_dir
+ )
+ pipe = pipe.to("cuda")
+
+ # prompt = "A sofa, high quality, detailed"
+ image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
+ image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
+
+ # draw output image
+ # plt.figure(figsize=(10, 10))
+ # plt.imshow(image)
+ # for mask in masks:
+ # show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
+ # for box, label in zip(boxes_filt, pred_phrases):
+ # show_box(box.numpy(), plt.gca(), label)
+ # plt.axis('off')
+ # plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
+
diff --git a/external/Grounded-Segment-Anything/playground/README.md b/external/Grounded-Segment-Anything/playground/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1b1bc3119482b5b904e9e0fb2a6371adf9dba6fb
--- /dev/null
+++ b/external/Grounded-Segment-Anything/playground/README.md
@@ -0,0 +1,19 @@
+## Playground
+
+We will try more interesting **base models** and **build more fun demos** in the playground. In the playground, we will:
+
+- **Simplify the demo code** to make it easier for users to get started.
+- **Keep complete usage notes** and some pitfalls to reduce the burden on users.
+
+## Table of Contents
+- [DeepFloyd: Text-to-Image Generation](./DeepFloyd/)
+ - [Dream: Text-to-Image Generation](./DeepFloyd/dream.py)
+ - [Style Transfer](./DeepFloyd/style_transfer.py)
+- [Paint by Example: Exemplar-based Image Editing with Diffusion Models](./PaintByExample/)
+ - [Diffuser Demo](./PaintByExample/paint_by_example.py)
+ - [PaintByExample with SAM](./PaintByExample/sam_paint_by_example.py)
+- [LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions](./LaMa/)
+ - [LaMa Demo](./LaMa/lama_inpaint_demo.py)
+ - [LaMa with SAM](./LaMa/sam_lama.py)
+- [RePaint: Inpainting using Denoising Diffusion Probabilistic Models](./RePaint/)
+ - [RePaint Demo](./RePaint/repaint.py)
diff --git a/external/Grounded-Segment-Anything/recognize-anything/.gitignore b/external/Grounded-Segment-Anything/recognize-anything/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..f5491dc78e2a99290a02ede2f547b16c4d798327
--- /dev/null
+++ b/external/Grounded-Segment-Anything/recognize-anything/.gitignore
@@ -0,0 +1,140 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# checkpoint
+*.pth
+outputs/
+
+# Editor
+.idea/
+.vscode/
+
+# gradio cache
+gradio_cached_examples/
diff --git a/external/Grounded-Segment-Anything/recognize-anything/LICENSE b/external/Grounded-Segment-Anything/recognize-anything/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..1141a7683eff9735cd8e063ce613eb4045852f25
--- /dev/null
+++ b/external/Grounded-Segment-Anything/recognize-anything/LICENSE
@@ -0,0 +1,202 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+
+Copyright (c) 2022 OPPO
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+https://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/external/Grounded-Segment-Anything/recognize-anything/MANIFEST.in b/external/Grounded-Segment-Anything/recognize-anything/MANIFEST.in
new file mode 100644
index 0000000000000000000000000000000000000000..70db1e5ec94370d93cab78db2cb780a044ae6c1c
--- /dev/null
+++ b/external/Grounded-Segment-Anything/recognize-anything/MANIFEST.in
@@ -0,0 +1,3 @@
+include ram/configs/*.json
+include ram/configs/swin/*.json
+include ram/data/*.txt
diff --git a/external/Grounded-Segment-Anything/recognize-anything/NOTICE.txt b/external/Grounded-Segment-Anything/recognize-anything/NOTICE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0b40f18e16beee2b4892dc6ed0f561afb6b7d8bd
--- /dev/null
+++ b/external/Grounded-Segment-Anything/recognize-anything/NOTICE.txt
@@ -0,0 +1,481 @@
+# NOTICES AND INFORMATION
+
+This software incorporates material from third parties.
+
+- BLIP
+- Swin Transofmrer
+- pytorch-image-models
+- transformers
+
+
+## Utility: BLIP
+
+### BLIP
+
+**Source**: https://github.com/salesforce/BLIP
+
+Copyright (c) 2022, Salesforce.com, Inc.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
+
+* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
+
+* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
+
+* Neither the name of Salesforce.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+## Utility: Swin Transofmrer
+
+### Swin Transformer
+
+**Source**: https://github.com/microsoft/Swin-Transformer
+
+MIT License
+
+Copyright (c) Microsoft Corporation.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE
+
+
+## Utility: pytorch-image-models
+
+### pytorch-image-models
+
+**Source**: https://github.com/huggingface/pytorch-image-models
+
+
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "{}"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright 2019 Ross Wightman
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
+
+
+
+## Utility: transformers
+
+### transformers
+
+**Source**: https://github.com/huggingface/transformers
+
+Copyright 2018- The Hugging Face team. All rights reserved.
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
\ No newline at end of file
diff --git a/external/Grounded-Segment-Anything/recognize-anything/README.md b/external/Grounded-Segment-Anything/recognize-anything/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..68b0a9d7b1199ab404a2a5ea515813bef18d5be0
--- /dev/null
+++ b/external/Grounded-Segment-Anything/recognize-anything/README.md
@@ -0,0 +1,601 @@
+# :label: Recognize Anything Model
+
+This project aims to develop a series of open-source and strong fundamental image recognition models.
+
+[](#open_book-training-datasets)
+[](ram/data/ram_tag_list.txt)
+[](https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text)
+[](https://colab.research.google.com/github/mhd-medfa/recognize-anything/blob/main/recognize_anything_demo.ipynb)
+[](https://bohrium.dp.tech/notebooks/63116114759)
+
+
+- **Recognize Anything Plus Model (RAM++)** [[Paper](https://arxiv.org/abs/2310.15200)]
+
+ RAM++ is the next generation of RAM, which can **recognize any category with high accuracy**, including **both predefined common categories and diverse open-set categories**.
+
+- **Recognize Anything Model (RAM)** [[Paper](https://arxiv.org/abs/2306.03514)][[Demo](https://huggingface.co/spaces/xinyu1205/recognize-anything)]
+
+ RAM is an image tagging model, which can **recognize any common category with high accuracy**.
+
+ RAM is accepted at **CVPR 2024 Multimodal Foundation Models Workshop**.
+
+- **Tag2Text (ICLR 2024)** [[Paper](https://arxiv.org/abs/2303.05657)] [[Demo](https://huggingface.co/spaces/xinyu1205/recognize-anything)]
+
+ Tag2Text is a vision-language model guided by tagging, which can **support tagging and comprehensive captioning simultaneously**.
+
+ Tag2Text is accepted at **ICLR 2024!** See you in Vienna!
+
+
+
+
+## :bulb: Highlight
+
+### **Superior Image Recognition Capability**
+
+RAM++ outperforms existing SOTA image fundamental recognition models on common tag categories, uncommon tag categories, and human-object interaction phrases.
+
+
+
+
+
+
+
+
Comparison of zero-shot image recognition performance.
+
+
+
+### **Strong Visual Semantic Analysis**
+
+
+We have combined Tag2Text and RAM with localization models (Grounding-DINO and SAM) and developed a strong visual semantic analysis pipeline in the [Grounded-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) project.
+
+
+
+
+## :sunrise: Model Zoo
+
+
+
+RAM++
+
+
+RAM++ is the next generation of RAM, which can recognize any category with high accuracy, including both predefined common categories and diverse open-set categories.
+
+
+- **For Common Predefined Categoies.** RAM++ exhibits exceptional image tagging capabilities with powerful zero-shot generalization, which maintains the same capabilities as RAM.
+
+- **For Diverse Open-set Categoires.** RAM++ achieves notably enhancements beyond CLIP and RAM.
+
+
+
+
+
+
+
+
+
+
(Green color means fully supervised learning and others means zero-shot performance.)
+
+
+
+
+
+
+
+
+
+
RAM++ demonstrate a significant improvement in open-set category recognition.
+
+
+
+
+
+
+
+
+
+RAM
+
+
+
+RAM is a strong image tagging model, which can recognize any common category with high accuracy.
+- **Strong and general.** RAM exhibits exceptional image tagging capabilities with powerful zero-shot generalization;
+ - RAM showcases impressive zero-shot performance, significantly outperforming CLIP and BLIP.
+ - RAM even surpasses the fully supervised manners (ML-Decoder).
+ - RAM exhibits competitive performance with the Google tagging API.
+- **Reproducible and affordable.** RAM requires Low reproduction cost with open-source and annotation-free dataset;
+- **Flexible and versatile.** RAM offers remarkable flexibility, catering to various application scenarios.
+
+
+
+
+
+
+
+
+
(Green color means fully supervised learning and Blue color means zero-shot performance.)
+
+
+
+
+
+
+
+
+
+
+RAM significantly improves the tagging ability based on the Tag2text framework.
+- **Accuracy.** RAM utilizes a **data engine** to **generate** additional annotations and **clean** incorrect ones, **higher accuracy** compared to Tag2Text.
+- **Scope.** RAM upgrades the number of fixed tags from 3,400+ to **[6,400+](./ram/data/ram_tag_list.txt)** (synonymous reduction to 4,500+ different semantic tags), covering **more valuable categories**.
+ Moreover, RAM is equipped with **open-set capability**, feasible to recognize tags not seen during training
+
+
+
+
+
+
+
+
+Tag2text
+
+
+
+Tag2Text is an efficient and controllable vision-language model with tagging guidance.
+- **Tagging.** Tag2Text recognizes **[3,400+](./ram/data/tag2text_ori_tag_list.txt)** commonly human-used categories without manual annotations.
+- **Captioning.** Tag2Text integrates **tags information** into text generation as the **guiding elements**, resulting in **more controllable and comprehensive descriptions**.
+- **Retrieval.** Tag2Text provides **tags** as **additional visible alignment indicators** for image-text retrieval.
+
+
+
+
+
+
+
+
+
Tag2Text generate more comprehensive captions with tagging guidance.
+
+
+
+
+
+
+
+
+
Tag2Text provides tags as additional visible alignment indicators.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+## :open_book: Training Datasets
+
+### **Image Texts and Tags**
+
+These annotation files come from the [Tag2Text](https://arxiv.org/abs/2303.05657) and [RAM](https://recognize-anything.github.io/). Tag2Text automatically extracts image tags from image-text pairs. RAM further augments both tags and texts via an automatic data engine.
+
+
+| DataSet | Size | Images | Texts | Tags |
+|----------|---------|--------|-------|-------|
+| [COCO](https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset/blob/main/coco_train_rmcocodev_ram.json) | 168 MB | 113K | 680K | 3.2M |
+| [VG](https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset/blob/main/vg_ram.json) | 55 MB | 100K | 923K | 2.7M |
+| [SBU](https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset/blob/main/sbu_ram.json) | 234 MB | 849K | 1.7M | 7.6M |
+| [CC3M](https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset/blob/main/cc3m_train_ram.json) | 766 MB | 2.8M | 5.6M | 28.2M |
+| [CC3M-val](https://huggingface.co/datasets/xinyu1205/recognize-anything-dataset/blob/main/cc3m_val_ram.json) | 3.5 MB | 12K | 26K | 132K |
+
+CC12M to be released in the next update.
+
+### **LLM Tag Descriptions**
+
+These tag descriptions files come from the [RAM++](https://arxiv.org/abs/2310.15200) by calling GPT api. You can also customize any tag categories by [generate_tag_des_llm.py](generate_tag_des_llm.py).
+
+| Tag Descriptions | Tag List |
+|---------------------|----------|
+| [RAM Tag List](https://huggingface.co/datasets/xinyu1205/recognize-anything-plus-model-tag-descriptions/blob/main/ram_tag_list_4585_llm_tag_descriptions.json) | [4,585](ram/data/ram_tag_list.txt) |
+| [OpenImages Uncommon](./datasets/openimages_rare_200/openimages_rare_200_llm_tag_descriptions.json) | [200](datasets/openimages_rare_200/openimages_rare_200_ram_taglist.txt) |
+
+## :toolbox: Checkpoints
+Note : you need to create 'pretrained' folder and download these checkpoints into this folder.
+
+
+
+
+
+
Name
+
Backbone
+
Data
+
Illustration
+
Checkpoint
+
+
+
+
+
1
+
RAM++ (14M)
+
Swin-Large
+
COCO, VG, SBU, CC3M, CC3M-val, CC12M
+
Provide strong image tagging ability for any category.
+
+## Why this project?
+[Segment Anything](https://github.com/facebookresearch/segment-anything) and its following projects
+focus on 2D images. In this project, we extend the scope to 3D world by combining [Segment Anything](https://github.com/facebookresearch/segment-anything) and [VoxelNeXt](https://github.com/dvlab-research/VoxelNeXt). When we provide a prompt (e.g., a point / box), the result is not only 2D segmentation mask, but also 3D boxes.
+
+The core idea is that [VoxelNeXt](https://github.com/dvlab-research/VoxelNeXt) is a fully sparse 3D detector. It predicts 3D object upon each sparse voxel. We project 3D sparse voxels onto 2D images. And then 3D boxes can be generated for voxels in the SAM mask.
+
+- This project makes 3D object detection to be promptable.
+- VoxelNeXt is based on sparse voxels that are easy to be related to the mask generated from segment anything.
+- This project could facilitate 3D box labeling. 3D box can be obtained via a simple click on image. It might largely save human efforts, especially on autonuous driving scenes.
+
+## Installation
+1. Basic requirements
+`pip install -r requirements.txt
+`
+2. Segment anything
+`pip install git+https://github.com/facebookresearch/segment-anything.git
+`
+3. spconv
+`pip install spconv
+`
+or cuda version spconv `pip install spconv-cu111` based on your cuda version. Please use spconv 2.2 / 2.3 version, for example spconv==2.3.5
+
+
+## Getting Started
+Please try it via [seg_anything_and_3D.ipynb](seg_anything_and_3D.ipynb).
+We provide this example on nuScenes dataset. You can use other image-points pairs.
+
+- The demo point for one frame is provided here [points_demo.npy](https://drive.google.com/file/d/1br0VDamameu7B1G1p4HEjj6LshGs5dHB/view?usp=share_link).
+- The point to image translation infos on nuScenes val can be download [here](https://drive.google.com/file/d/1nJqdfs0gMTIo4fjOwytSbM0fdBOJ4IGb/view?usp=share_link).
+- The weight in the demo is [voxelnext_nuscenes_kernel1.pth](https://drive.google.com/file/d/17mQRXXUsaD0dlRzAKep3MQjfj8ugDsp9/view?usp=share_link).
+- The nuScenes info file is [nuscenes_infos_10sweeps_val.pkl](https://drive.google.com/file/d/1Kaxtubzr1GofcoFz97S6qwAIG2wzhPo_/view?usp=share_link). This is generated from [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) codebase.
+
+
+
+
+
+
+
+## TODO List
+- - [ ] Zero-shot version VoxelNeXt.
+- - [ ] Examples on more datasets.
+- - [ ] Indoor scenes.
+
+## Citation
+If you find this project useful in your research, please consider citing:
+```
+@article{kirillov2023segany,
+ title={Segment Anything},
+ author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
+ journal={arXiv:2304.02643},
+ year={2023}
+}
+
+@inproceedings{chen2023voxenext,
+ title={VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking},
+ author={Yukang Chen and Jianhui Liu and Xiangyu Zhang and Xiaojuan Qi and Jiaya Jia},
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
+ year={2023}
+}
+
+```
+
+## Acknowledgement
+- [Segment Anything](https://github.com/facebookresearch/segment-anything)
+- [VoxelNeXt](https://github.com/dvlab-research/VoxelNeXt)
+- [UVTR](https://github.com/dvlab-research/UVTR) for 3D to 2D translation.
diff --git a/external/Grounded-Segment-Anything/voxelnext_3d_box/__init__.py b/external/Grounded-Segment-Anything/voxelnext_3d_box/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/external/Grounded-Segment-Anything/voxelnext_3d_box/config.yaml b/external/Grounded-Segment-Anything/voxelnext_3d_box/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..758bd80eeeb20a6aa07ab77aebd4b613ae4d4150
--- /dev/null
+++ b/external/Grounded-Segment-Anything/voxelnext_3d_box/config.yaml
@@ -0,0 +1,56 @@
+SAM_TYPE: "vit_h"
+SAM_CHECKPOINT: "sam_vit_h_4b8939.pth"
+
+POINT_CLOUD_RANGE: [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
+USED_FEATURE_LIST: ['x', 'y', 'z', 'intensity', 'timestamp']
+DATA_PROCESSOR:
+ - NAME: mask_points_and_boxes_outside_range
+ REMOVE_OUTSIDE_BOXES: True
+
+ - NAME: shuffle_points
+ SHUFFLE_ENABLED: {
+ 'train': True,
+ 'test': True
+ }
+
+ - NAME: transform_points_to_voxels
+ VOXEL_SIZE: [0.075, 0.075, 0.2]
+ MAX_POINTS_PER_VOXEL: 10
+ MAX_NUMBER_OF_VOXELS: {
+ 'train': 120000,
+ 'test': 160000
+ }
+
+VOXELNEXT_CHECKPOINT: "voxelnext_nuscenes_kernel1.pth"
+INPUT_CHANNELS: 5
+GRID_SIZE: [1440, 1440, 40]
+
+CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
+ 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
+
+KERNEL_SIZE_HEAD: 1
+
+VOXEL_SIZE: [0.075, 0.075, 0.2]
+CLASS_NAMES_EACH_HEAD: [
+ ['car'],
+ ['truck', 'construction_vehicle'],
+ ['bus', 'trailer'],
+ ['barrier'],
+ ['motorcycle', 'bicycle'],
+ ['pedestrian', 'traffic_cone'],
+]
+
+SEPARATE_HEAD_CFG:
+ HEAD_ORDER: ['center', 'center_z', 'dim', 'rot', 'vel']
+ HEAD_DICT: {
+ 'center': {'out_channels': 2, 'num_conv': 2},
+ 'center_z': {'out_channels': 1, 'num_conv': 2},
+ 'dim': {'out_channels': 3, 'num_conv': 2},
+ 'rot': {'out_channels': 2, 'num_conv': 2},
+ 'vel': {'out_channels': 2, 'num_conv': 2},
+ }
+
+POST_PROCESSING:
+ SCORE_THRESH: 0
+ POST_CENTER_LIMIT_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
+ MAX_OBJ_PER_SAMPLE: 500
diff --git a/external/Grounded-Segment-Anything/voxelnext_3d_box/model.py b/external/Grounded-Segment-Anything/voxelnext_3d_box/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..8695944727cb01de87d1e0f43b0ce73dc08d18ff
--- /dev/null
+++ b/external/Grounded-Segment-Anything/voxelnext_3d_box/model.py
@@ -0,0 +1,142 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from .models.data_processor import DataProcessor
+from .models.mean_vfe import MeanVFE
+from .models.spconv_backbone_voxelnext import VoxelResBackBone8xVoxelNeXt
+from .models.voxelnext_head import VoxelNeXtHead
+
+from .utils.image_projection import _proj_voxel_image
+from segment_anything import SamPredictor, sam_model_registry
+
+class VoxelNeXt(nn.Module):
+ def __init__(self, model_cfg):
+ super().__init__()
+
+ point_cloud_range = np.array(model_cfg.POINT_CLOUD_RANGE, dtype=np.float32)
+
+ self.data_processor = DataProcessor(
+ model_cfg.DATA_PROCESSOR, point_cloud_range=point_cloud_range,
+ training=False, num_point_features=len(model_cfg.USED_FEATURE_LIST)
+ )
+
+ input_channels = model_cfg.get('INPUT_CHANNELS', 5)
+ grid_size = np.array(model_cfg.get('GRID_SIZE', [1440, 1440, 40]))
+
+ class_names = model_cfg.get('CLASS_NAMES')
+ kernel_size_head = model_cfg.get('KERNEL_SIZE_HEAD', 1)
+ self.point_cloud_range = torch.Tensor(model_cfg.get('POINT_CLOUD_RANGE', [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]))
+ self.voxel_size = torch.Tensor(model_cfg.get('VOXEL_SIZE', [0.075, 0.075, 0.2]))
+ CLASS_NAMES_EACH_HEAD = model_cfg.get('CLASS_NAMES_EACH_HEAD')
+ SEPARATE_HEAD_CFG = model_cfg.get('SEPARATE_HEAD_CFG')
+ POST_PROCESSING = model_cfg.get('POST_PROCESSING')
+ self.voxelization = MeanVFE()
+ self.backbone_3d = VoxelResBackBone8xVoxelNeXt(input_channels, grid_size)
+ self.dense_head = VoxelNeXtHead(class_names, self.point_cloud_range, self.voxel_size, kernel_size_head,
+ CLASS_NAMES_EACH_HEAD, SEPARATE_HEAD_CFG, POST_PROCESSING)
+
+
+class Model(nn.Module):
+ def __init__(self, model_cfg, device="cuda"):
+ super().__init__()
+
+ sam_type = model_cfg.get('SAM_TYPE', "vit_b")
+ sam_checkpoint = model_cfg.get('SAM_CHECKPOINT', "/data/sam_vit_b_01ec64.pth")
+
+ sam = sam_model_registry[sam_type](checkpoint=sam_checkpoint).to(device=device)
+ self.sam_predictor = SamPredictor(sam)
+
+ voxelnext_checkpoint = model_cfg.get('VOXELNEXT_CHECKPOINT', "/data/voxelnext_nuscenes_kernel1.pth")
+ model_dict = torch.load(voxelnext_checkpoint)
+ self.voxelnext = VoxelNeXt(model_cfg).to(device=device)
+ self.voxelnext.load_state_dict(model_dict)
+ self.point_features = {}
+ self.device = device
+
+ def image_embedding(self, image):
+ self.sam_predictor.set_image(image)
+
+ def point_embedding(self, data_dict, image_id):
+ data_dict = self.voxelnext.data_processor.forward(
+ data_dict=data_dict
+ )
+ data_dict['voxels'] = torch.Tensor(data_dict['voxels']).to(self.device)
+ data_dict['voxel_num_points'] = torch.Tensor(data_dict['voxel_num_points']).to(self.device)
+ data_dict['voxel_coords'] = torch.Tensor(data_dict['voxel_coords']).to(self.device)
+
+ data_dict = self.voxelnext.voxelization(data_dict)
+ n_voxels = data_dict['voxel_coords'].shape[0]
+ device = data_dict['voxel_coords'].device
+ dtype = data_dict['voxel_coords'].dtype
+ data_dict['voxel_coords'] = torch.cat([torch.zeros((n_voxels, 1), device=device, dtype=dtype), data_dict['voxel_coords']], dim=1)
+ data_dict['batch_size'] = 1
+
+ if not image_id in self.point_features:
+ data_dict = self.voxelnext.backbone_3d(data_dict)
+ self.point_features[image_id] = data_dict
+ else:
+ data_dict = self.point_features[image_id]
+ pred_dicts = self.voxelnext.dense_head(data_dict)
+
+ voxel_coords = data_dict['out_voxels'][pred_dicts[0]['voxel_ids'].squeeze(-1)] * self.voxelnext.dense_head.feature_map_stride
+
+ return pred_dicts, voxel_coords
+
+ def generate_3D_box(self, lidar2img_rt, mask, voxel_coords, pred_dicts, quality_score=0.1):
+ device = voxel_coords.device
+ points_image, depth = _proj_voxel_image(voxel_coords, lidar2img_rt, self.voxelnext.voxel_size.to(device), self.voxelnext.point_cloud_range.to(device))
+ points = points_image.permute(1, 0).int().cpu().numpy()
+ selected_voxels = torch.zeros_like(depth).squeeze(0)
+
+ for i in range(points.shape[0]):
+ point = points[i]
+ if point[0] < 0 or point[1] < 0 or point[0] >= mask.shape[1] or point[1] >= mask.shape[0]:
+ continue
+ if mask[point[1], point[0]]:
+ selected_voxels[i] = 1
+
+ mask_extra = (pred_dicts[0]['pred_scores'] > quality_score)
+ if mask_extra.sum() == 0:
+ print("no high quality 3D box related.")
+ return None
+
+ selected_voxels *= mask_extra
+ if selected_voxels.sum() > 0:
+ selected_box_id = pred_dicts[0]['pred_scores'][selected_voxels.bool()].argmax()
+ selected_box = pred_dicts[0]['pred_boxes'][selected_voxels.bool()][selected_box_id]
+ else:
+ grid_x, grid_y = torch.meshgrid(torch.arange(mask.shape[0]), torch.arange(mask.shape[1]))
+ mask_x, mask_y = grid_x[mask], grid_y[mask]
+ mask_center = torch.Tensor([mask_y.float().mean(), mask_x.float().mean()]).to(
+ pred_dicts[0]['pred_boxes'].device).unsqueeze(1)
+
+ dist = ((points_image - mask_center) ** 2).sum(0)
+ selected_id = dist[mask_extra].argmin()
+ selected_box = pred_dicts[0]['pred_boxes'][mask_extra][selected_id]
+ return selected_box
+
+ def forward(self, image, point_dict, prompt_point, lidar2img_rt, image_id, quality_score=0.1):
+ self.image_embedding(image)
+ pred_dicts, voxel_coords = self.point_embedding(point_dict, image_id)
+
+ masks, scores, _ = self.sam_predictor.predict(point_coords=prompt_point, point_labels=np.array([1]))
+ mask = masks[0]
+
+ box3d = self.generate_3D_box(lidar2img_rt, mask, voxel_coords, pred_dicts, quality_score=quality_score)
+ return mask, box3d
+
+
+if __name__ == '__main__':
+ cfg_dataset = 'nuscenes_dataset.yaml'
+ cfg_model = 'config.yaml'
+
+ dataset_cfg = cfg_from_yaml_file(cfg_dataset, cfg)
+ model_cfg = cfg_from_yaml_file(cfg_model, cfg)
+
+ nuscenes_dataset = NuScenesDataset(dataset_cfg)
+ model = Model(model_cfg)
+
+ index = 0
+ data_dict = nuscenes_dataset._get_points(index)
+ model.point_embedding(data_dict)
+
diff --git a/external/Grounded-Segment-Anything/voxelnext_3d_box/requirements.txt b/external/Grounded-Segment-Anything/voxelnext_3d_box/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b5cb3a2950b43670f1f34bfdc387807ed55c2381
--- /dev/null
+++ b/external/Grounded-Segment-Anything/voxelnext_3d_box/requirements.txt
@@ -0,0 +1,10 @@
+numpy
+torch
+torchvision
+easydict
+pyyaml
+opencv-python
+pycocotools
+matplotlib
+onnxruntime
+onnx
\ No newline at end of file
diff --git a/external/PerspectiveFields/.gitattributes b/external/PerspectiveFields/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..34f0fb8ae90aad729ce8242923b449d7b42dbc52
--- /dev/null
+++ b/external/PerspectiveFields/.gitattributes
@@ -0,0 +1,6 @@
+models/paramnet_360cities_edina_rpf.pth filter=lfs diff=lfs merge=lfs -text
+models/paramnet_gsv_rpfpp.pth filter=lfs diff=lfs merge=lfs -text
+models/paramnet_gsv_rpf.pth filter=lfs diff=lfs merge=lfs -text
+assets/imgs/ filter=lfs diff=lfs merge=lfs -text
+models/cvpr2023.pth filter=lfs diff=lfs merge=lfs -text
+models/paramnet_360cities_edina_rpfpp.pth filter=lfs diff=lfs merge=lfs -text
diff --git a/external/PerspectiveFields/.gitignore b/external/PerspectiveFields/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..de5eb7bdaab83ffb5db42eda3143b67ef6c939c7
--- /dev/null
+++ b/external/PerspectiveFields/.gitignore
@@ -0,0 +1,10 @@
+.DS_Store
+*/__pycache__/*
+.python-version
+*.so
+*.pyc
+*.egg-info/
+*.pth
+*/.ipynb_checkpoints/*
+.ipynb_checkpoints/
+flagged/
\ No newline at end of file
diff --git a/external/PerspectiveFields/LICENSE b/external/PerspectiveFields/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..aa405ef73eb1d784cbd82b75cf1b4a9de29b2781
--- /dev/null
+++ b/external/PerspectiveFields/LICENSE
@@ -0,0 +1,15 @@
+Adobe Research License Terms
+
+1. You may use, reproduce, modify, and display the research materials provided under this license (the “Research
+Materials”) solely for noncommercial purposes. Noncommercial purposes include academic research, teaching, and
+testing, but do not include commercial licensing or distribution, development of commercial products, or any other
+activity which results in commercial gain. You may not redistribute the Research Materials.
+
+2. You agree to (a) comply with all laws and regulations applicable to your use of the Research Materials under this license,
+including but not limited to any import or export laws; (b) preserve any copyright or other notices from the Research
+Materials; and (c) for any Research Materials in object code, not attempt to modify, reverse engineer, or decompile
+such Research Materials except as permitted by applicable law.
+
+3. THE RESEARCH MATERIALS ARE PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, AND YOU ASSUME ALL RISKS
+ASSOCIATED WITH THEIR USE. IN NO EVENT WILL ANYONE BE LIABLE TO YOU FOR ANY ACTUAL, INCIDENTAL, SPECIAL,
+OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH USE OF THE RESEARCH MATERIALS.
diff --git a/external/PerspectiveFields/README.md b/external/PerspectiveFields/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b0eb7ce62e9b745efdcf82004860af029d96a8ff
--- /dev/null
+++ b/external/PerspectiveFields/README.md
@@ -0,0 +1,220 @@
+
+Perspective Fields for Single Image Camera Calibration
+================================================================
+[](https://huggingface.co/spaces/jinlinyi/PerspectiveFields)
+
+### [Project Page](https://jinlinyi.github.io/PerspectiveFields/) | [Paper](https://arxiv.org/abs/2212.03239) | [Live Demo 🤗](https://huggingface.co/spaces/jinlinyi/PerspectiveFields)
+
+CVPR 2023 (✨Highlight)
+
+We propose Perspective Fields as a representation that models the local perspective properties of an image. Perspective Fields contain per-pixel information about the camera view, parameterized as an up vector and a latitude value.
+
+
+
+
+
+📷 From Perspective Fields, you can also get camera parameters if you assume certain camera models. We provide models to recover camera roll, pitch, fov and principal point location.
+
+
+
+
+
+
+
+
+Updates
+------------------
+- [April 2024]: 🚀 We've launched an inference version (`main` branch) with minimal dependencies. For training and evaluation, please checkout [`train_eval` branch](https://github.com/jinlinyi/PerspectiveFields/tree/train_eval).
+- [July 2023]: We released a new model trained on [360cities](https://www.360cities.net/) and [EDINA](https://github.com/tien-d/EgoDepthNormal/blob/main/README_dataset.md) dataset, consisting of indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data!
+- [May 2023]: Live demo released 🤗. https://huggingface.co/spaces/jinlinyi/PerspectiveFields. Thanks Huggingface for funding this demo!
+
+
+Table of Contents
+------------------
+- [Environment Setup](#environment-setup)
+ - [Inference](#inference)
+ - [Train / Eval](#train--eval)
+- [Demo](#demo)
+- [Model Zoo](#model-zoo)
+- [Coordinate Frame](#coordinate-frame)
+- [Camera Parameters to Perspective Fields](#camera-parameters-to-perspective-fields)
+- [Visualize Perspective Fields](#visualize-perspective-fields)
+- [Citation](#citation)
+- [Acknowledgment](#acknowledgment)
+
+
+[1]: ./docs/environment.md
+[2]: ./jupyter-notebooks/camera2perspective.ipynb
+[3]: ./jupyter-notebooks/predict_perspective_fields.ipynb
+[4]: ./jupyter-notebooks/perspective_paramnet.ipynb
+[5]: ./docs/train.md
+[6]: ./docs/test.md
+[7]: ./docs/models.md
+
+
+
+## Environment Setup
+### Inference
+PerspectiveFields requires python >= 3.8 and [PyTorch](https://pytorch.org/).
+| ***Pro tip:*** *use [mamba](https://github.com/conda-forge/miniforge) in place of conda for much faster installs.*
+```bash
+# install pytorch compatible to your system https://pytorch.org/get-started/previous-versions/
+conda install pytorch=1.10.0 torchvision cudatoolkit=11.3 -c pytorch
+pip install git+https://github.com/jinlinyi/PerspectiveFields.git
+```
+Alternatively, install the package locally,
+```bash
+git clone git@github.com:jinlinyi/PerspectiveFields.git
+# create virtual env
+conda create -n perspective python=3.9
+conda activate perspective
+# install pytorch compatible to your system https://pytorch.org/get-started/previous-versions/
+# conda install pytorch torchvision cudatoolkit -c pytorch
+conda install pytorch=1.10.0 torchvision cudatoolkit=11.3 -c pytorch
+# install Perspective Fields.
+cd PerspectiveFields
+pip install -e .
+```
+
+### Train / Eval
+For training and evaluation, please checkout the [`train_eval` branch](https://github.com/jinlinyi/PerspectiveFields/tree/train_eval).
+
+
+## Demo
+Here is a minimal script to run on a single image, see [`demo/demo.py`](demo/demo.py):
+```python
+import cv2
+from perspective2d import PerspectiveFields
+# specify model version
+version = 'Paramnet-360Cities-edina-centered'
+# load model
+pf_model = PerspectiveFields(version).eval().cuda()
+# load image
+img_bgr = cv2.imread('assets/imgs/cityscape.jpg')
+# inference
+predictions = pf_model.inference(img_bgr=img_bgr)
+
+# alternatively, inference a batch of images
+predictions = pf_model.inference_batch(img_bgr_list=[img_bgr_0, img_bgr_1, img_bgr_2])
+```
+- Or checkout [Live Demo 🤗](https://huggingface.co/spaces/jinlinyi/PerspectiveFields).
+- Notebook to [Predict Perspective Fields](./notebooks/predict_perspective_fields.ipynb).
+
+
+## Model Zoo
+| Model Name and Weights | Training Dataset | Config File | Outputs | Expected input |
+| ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------- | ----------------------------------------------------------------- | -------------------------------------------------------------------------------------------- |
+| [NEW][Paramnet-360Cities-edina-centered](https://www.dropbox.com/s/z2dja70bgy007su/paramnet_360cities_edina_rpf.pth) | [360cities](https://www.360cities.net/) and [EDINA](https://github.com/tien-d/EgoDepthNormal/blob/main/README_dataset.md) | [paramnet_360cities_edina_rpf.yaml](models/paramnet_360cities_edina_rpf.yaml) | Perspective Field + camera parameters (roll, pitch, vfov) | Uncropped, indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data |
+| [NEW][Paramnet-360Cities-edina-uncentered](https://www.dropbox.com/s/nt29e1pi83mm1va/paramnet_360cities_edina_rpfpp.pth) | [360cities](https://www.360cities.net/) and [EDINA](https://github.com/tien-d/EgoDepthNormal/blob/main/README_dataset.md) | [paramnet_360cities_edina_rpfpp.yaml](models/paramnet_360cities_edina_rpfpp.yaml) | Perspective Field + camera parameters (roll, pitch, vfov, cx, cy) | Cropped, indoor🏠, outdoor🏙️, natural🌳, and egocentric👋 data |
+| [PersNet-360Cities](https://www.dropbox.com/s/czqrepqe7x70b7y/cvpr2023.pth) | [360cities](https://www.360cities.net) | [cvpr2023.yaml](models/cvpr2023.yaml) | Perspective Field | Indoor🏠, outdoor🏙️, and natural🌳 data. |
+| [PersNet_paramnet-GSV-centered](https://www.dropbox.com/s/g6xwbgnkggapyeu/paramnet_gsv_rpf.pth) | [GSV](https://research.google/pubs/pub36899/) | [paramnet_gsv_rpf.yaml](models/paramnet_gsv_rpf.yaml) | Perspective Field + camera parameters (roll, pitch, vfov) | Uncropped, street view🏙️ data. |
+| [PersNet_Paramnet-GSV-uncentered](https://www.dropbox.com/s/ufdadxigewakzlz/paramnet_gsv_rpfpp.pth) | [GSV](https://research.google/pubs/pub36899/) | [paramnet_gsv_rpfpp.yaml](models/paramnet_gsv_rpfpp.yaml) | Perspective Field + camera parameters (roll, pitch, vfov, cx, cy) | Cropped, street view🏙️ data. |
+
+## Coordinate Frame
+
+
+
+
+
+`yaw / azimuth`: camera rotation about the y-axis
+`pitch / elevation`: camera rotation about the x-axis
+`roll`: camera rotation about the z-axis
+
+Extrinsics: `rotz(roll).dot(rotx(elevation)).dot(roty(azimuth))`
+
+
+
+
+## Camera Parameters to Perspective Fields
+Checkout [Jupyter Notebook](./notebooks/camera2perspective.ipynb).
+Perspective Fields can be calculated from camera parameters. If you prefer, you can also manually calculate the corresponding Up-vector and Latitude map by following Equations 1 and 2 in our paper.
+Our code currently supports:
+1) [Pinhole model](https://hedivision.github.io/Pinhole.html) [Hartley and Zisserman 2004] (Perspective Projection)
+```python
+from perspective2d.utils.panocam import PanoCam
+# define parameters
+roll = 0
+pitch = 20
+vfov = 70
+width = 640
+height = 480
+# get Up-vectors.
+up = PanoCam.get_up(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))
+# get Latitude.
+lati = PanoCam.get_lat(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))
+```
+2) [Unified Spherical Model](https://drive.google.com/file/d/1pZgR3wNS6Mvb87W0ixOHmEVV6tcI8d50/view) [Barreto 2006; Mei and Rives 2007] (Distortion).
+```python
+xi = 0.5 # distortion parameter from Unified Spherical Model
+
+x = -np.sin(np.radians(vfov/2))
+z = np.sqrt(1 - x**2)
+f_px_effective = -0.5*(width/2)*(xi+z)/x
+crop, _, _, _, up, lat, xy_map = PanoCam.crop_distortion(equi_img,
+ f=f_px_effective,
+ xi=xi,
+ H=height,
+ W=width,
+ az=yaw, # degrees
+ el=-pitch,
+ roll=-roll)
+```
+
+## Visualize Perspective Fields
+We provide a one-line code to blend Perspective Fields onto input image.
+```python
+import matplotlib.pyplot as plt
+from perspective2d.utils import draw_perspective_fields
+# Draw up and lati on img. lati is in radians.
+blend = draw_perspective_fields(img, up, lati)
+# visualize with matplotlib
+plt.imshow(blend)
+plt.show()
+```
+Perspective Fields can serve as an easy visual check for correctness of the camera parameters.
+
+- For example, we can visualize the Perspective Fields based on calibration results from this awesome [repo](https://github.com/dompm/spherical-distortion-dataset).
+
+
+
+
+
+
+- Left: We plot the perspective fields based on the numbers printed on the image, they look accurate😊;
+
+- Mid: If we try a number that is 10% off (0.72*0.9=0.648), we see mismatch in Up directions at the top right corner;
+
+- Right: If distortion is 20% off (0.72*0.8=0.576), the mismatch becomes more obvious.
+
+
+
+Citation
+--------
+If you find this code useful, please consider citing:
+
+```text
+@inproceedings{jin2023perspective,
+ title={Perspective Fields for Single Image Camera Calibration},
+ author={Linyi Jin and Jianming Zhang and Yannick Hold-Geoffroy and Oliver Wang and Kevin Matzen and Matthew Sticha and David F. Fouhey},
+ booktitle = {CVPR},
+ year={2023}
+}
+```
+
+Acknowledgment
+--------------
+This work was partially funded by the DARPA Machine Common Sense Program.
+We thank authors from [A Deep Perceptual Measure for Lens and Camera Calibration](https://github.com/dompm/spherical-distortion-dataset) for releasing their code on Unified Spherical Model.
diff --git a/external/PerspectiveFields/demo/demo.py b/external/PerspectiveFields/demo/demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..bbc466648e1ea9a0a52f2a16a1315a108a26f35b
--- /dev/null
+++ b/external/PerspectiveFields/demo/demo.py
@@ -0,0 +1,165 @@
+import cv2
+import torch
+import os
+import numpy as np
+from perspective2d import PerspectiveFields
+from perspective2d.utils import draw_perspective_fields, draw_from_r_p_f_cx_cy
+
+
+
+def log_results(img_rgb, pred, output_folder, param_on):
+ """
+ Save perspective field prediction visualizations.
+
+ Args:
+ img_rgb (np.ndarray): The input image in RGB format.
+ pred (dict): The model predictions.
+ output_folder (str): The path to save the visualizations to.
+ param_on (bool): A flag indicating whether to include parameter predictions.
+
+ Returns:
+ None
+ """
+ def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None):
+ """
+ Resize image and perspective field to target width or height while maintaining aspect ratio.
+ """
+ height = img.shape[0]
+ width = img.shape[1]
+ if target_height is None:
+ factor = target_width / width
+ elif target_width is None:
+ factor = target_height / height
+ else:
+ factor = max(target_width / width, target_height / height)
+ if factor == target_width / width:
+ target_height = int(height * factor)
+ else:
+ target_width = int(width * factor)
+
+ img = cv2.resize(img, (target_width, target_height))
+ for key in field:
+ if key not in ["up", "lati"]:
+ continue
+ tmp = field[key].numpy()
+ transpose = len(tmp.shape) == 3
+ if transpose:
+ tmp = tmp.transpose(1, 2, 0)
+ tmp = cv2.resize(tmp, (target_width, target_height))
+ if transpose:
+ tmp = tmp.transpose(2, 0, 1)
+ field[key] = torch.tensor(tmp)
+ return img, field
+
+ os.makedirs(output_folder, exist_ok=True)
+ field = {
+ "up": pred["pred_gravity_original"].cpu().detach(),
+ "lati": pred["pred_latitude_original"].cpu().detach(),
+ }
+ img_rgb, field = resize_fix_aspect_ratio(img_rgb, field, 640)
+ pred_vis = draw_perspective_fields(
+ img_rgb, field["up"], torch.deg2rad(field["lati"]), color=(0,1,0), return_img=False
+ )
+ pred_vis.save(os.path.join(output_folder, "perspective_pred"))
+
+ if not param_on:
+ return
+
+ # Draw perspective field from ParamNet predictions
+ param_vis = draw_from_r_p_f_cx_cy(
+ img_rgb,
+ pred["pred_roll"].item(),
+ pred["pred_pitch"].item(),
+ pred["pred_general_vfov"].item(),
+ pred["pred_rel_cx"].item(),
+ pred["pred_rel_cy"].item(),
+ "deg",
+ up_color=(0, 1, 0),
+ ).astype(np.uint8)
+
+ param_vis = cv2.cvtColor(param_vis, cv2.COLOR_RGB2BGR)
+ pred_roll = f"roll: {pred['pred_roll'].item() :.2f}"
+ pred_pitch = f"pitch: {pred['pred_pitch'].item() :.2f}"
+ pred_vfov = f"vfov: {pred['pred_general_vfov'].item() :.2f}"
+ pred_cx = f"cx: {pred['pred_rel_cx'].item() :.2f}"
+ pred_cy = f"cy: {pred['pred_rel_cy'].item() :.2f}"
+
+ print(pred_roll)
+ print(pred_pitch)
+ print(pred_vfov)
+ print(pred_cx)
+ print(pred_cy)
+ # Write parameter predictions on the visualization
+ font = cv2.FONT_HERSHEY_SIMPLEX
+ font_scale = 0.75
+ param_vis = cv2.putText(
+ param_vis,
+ pred_roll,
+ (int(param_vis.shape[1] * 0.6) - 2, int(param_vis.shape[0] * 0.1)),
+ font,
+ font_scale,
+ (0, 0, 255),
+ 2,
+ )
+ param_vis = cv2.putText(
+ param_vis,
+ pred_pitch,
+ (int(param_vis.shape[1] * 0.6) - 2, int(param_vis.shape[0] * 0.1) + 25),
+ font,
+ font_scale,
+ (0, 0, 255),
+ 2,
+ )
+ param_vis = cv2.putText(
+ param_vis,
+ pred_vfov,
+ (int(param_vis.shape[1] * 0.6) - 2, int(param_vis.shape[0] * 0.1) + 50),
+ font,
+ font_scale,
+ (0, 0, 255),
+ 2,
+ )
+ param_vis = cv2.putText(
+ param_vis,
+ pred_cx,
+ (int(param_vis.shape[1] * 0.6) - 2, int(param_vis.shape[0] * 0.1) + 75),
+ font,
+ font_scale,
+ (0, 0, 255),
+ 2,
+ )
+ param_vis = cv2.putText(
+ param_vis,
+ pred_cy,
+ (int(param_vis.shape[1] * 0.6) - 2, int(param_vis.shape[0] * 0.1) + 100),
+ font,
+ font_scale,
+ (0, 0, 255),
+ 2,
+ )
+ cv2.imwrite(os.path.join(output_folder, "param_pred.png"), param_vis)
+
+
+PerspectiveFields.versions()
+
+version = 'Paramnet-360Cities-edina-centered'
+# version = 'Paramnet-360Cities-edina-uncentered'
+# version = 'PersNet_Paramnet-GSV-centered'
+# version = 'PersNet_Paramnet-GSV-uncentered'
+# version = 'PersNet-360Cities'
+pf_model = PerspectiveFields(version).eval().cuda()
+img_bgr = cv2.imread('assets/imgs/cityscape.jpg')
+predictions = pf_model.inference(img_bgr=img_bgr)
+
+log_results(img_bgr[..., ::-1], predictions, output_folder="debug", param_on=pf_model.param_on)
+
+print("\nexpected output: ")
+print("""roll: 4.54
+pitch: 48.88
+vfov: 52.82
+cx: 0.00
+cy: 0.00""")
+
+print("Alternatively, inference a batch of images")
+predictions = pf_model.inference_batch(img_bgr_list=[img_bgr, img_bgr, img_bgr])
+breakpoint()
diff --git a/external/PerspectiveFields/notebooks/camera2perspective.ipynb b/external/PerspectiveFields/notebooks/camera2perspective.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ec2bf1aae3fdbe9c1c8aa475f0348778193fe03a
--- /dev/null
+++ b/external/PerspectiveFields/notebooks/camera2perspective.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Computing perspective fields based on from camera parameters\n",
+ "## Read an equirectangular image (in this example reading an exr file)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import ezexr # read exr file\n",
+ "\n",
+ "\n",
+ "img_format='RGB'\n",
+ "input_pano = \"../assets/imgs/quattro_canti_2k.exr\"\n",
+ "data = ezexr.imread(input_pano, rgb=False)\n",
+ "equi_img = np.stack([data['R'], data['G'], data['B']], axis=-1)\n",
+ "equi_img = np.clip(np.power(equi_img, 0.45), 0, 1)\n",
+ "equi_img = np.uint8(equi_img*255)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Crop the panorama using a pin-hole camera model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jinlinyi/miniforge3/envs/pfinference/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ " from .autonotebook import tqdm as notebook_tqdm\n",
+ "/home/jinlinyi/miniforge3/envs/pfinference/lib/python3.9/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1634272204863/work/aten/src/ATen/native/TensorShape.cpp:2157.)\n",
+ " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from perspective2d.utils.panocam import PanoCam\n",
+ "roll = 0\n",
+ "yaw = 180\n",
+ "pitch = 20\n",
+ "vfov = 70\n",
+ "width = 640\n",
+ "height = 480\n",
+ "rgb = PanoCam.crop_equi(\n",
+ " equi_img=equi_img, \n",
+ " vfov=vfov, \n",
+ " im_w=width, \n",
+ " im_h=height, \n",
+ " azimuth=yaw,\n",
+ " elevation=pitch, \n",
+ " roll=roll, \n",
+ " ar=width/height, \n",
+ " mode='bilinear'\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Calculate perspective fields based on pin-hole camera parameters"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "up = PanoCam.get_up(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))\n",
+ "lati = PanoCam.get_lat(np.radians(vfov), width, height, np.radians(pitch), np.radians(roll))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Visualize perspective fields"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAGiCAYAAADX8t0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z6xt2Xbfif1mWmvtePLNqXJ4qV7ge3x8LWaRpiiJlESJUktoBRhyA6YaDbYNiHBDMtGABX+T0dIXodGWTcgyDYtKLUsU9STGF/hyVb2Kt27OJ5+dVpjBH+Zc++xz7i3ySTa6UOgzgFunzj57rTVXmuM//+M/xhAhhMCJndiJndiJndiJndgHaPKDHsCJndiJndiJndiJndgJIDmxEzuxEzuxEzuxD9xOAMmJndiJndiJndiJfeB2AkhO7MRO7MRO7MRO7AO3E0ByYid2Yid2Yid2Yh+4nQCSEzuxEzuxEzuxE/vA7QSQnNiJndiJndiJndgHbieA5MRO7MRO7MRO7MQ+cDsBJCd2Yid2Yid2Yif2gdsJIDmxEzuxEzuxEzuxD9w+UEDy9//+3+fKlSsURcHnPvc5fv/3f/+DHM6JndiJndiJndiJfUD2gQGSX/3VX+UXf/EX+dt/+2/zzW9+k0984hP85E/+JI8ePfqghnRiJ3ZiJ3ZiJ3ZiH5CJD6q53uc+9zm+7/u+j7/39/4eAN57Ll68yN/4G3+Dv/k3/+YHMaQTO7ETO7ETO7ET+4BMfxAHreuab3zjG/zSL/3S/DMpJT/+4z/Ol7/85ce+X1UVVVXNf/fes7Ozw9raGkKI/1nGfGIndmIndmIndmL/8RZCYDQace7cOaR8/8DMBwJItra2cM5x+vTpI5+fPn2at95667Hv/52/83f45V/+5f+5hndiJ3ZiJ3ZiJ3Zi/3+227dvc+HChff9+wcCSP5j7Zd+6Zf4xV/8xfnv+/v7XLp0if/ThUtMraVqGrTJyDJDCIG6rgkhoLVGaw0BnPdAQAiJkBIlI7NiraOuSrwP5EWB1hrnLM47QCClQIj4LwSoqwrvA91ej8FgQJ5nKCmx3mGdRwhJIGAbS12VlGWJ9w7vPQB5UdDr9slyE/dLQAAKUASCdzhnaWxNXVucc/FclMZkBoTAWo9SCqUE02mJ845MaxACISVSCPAeT8BojdIGJQRKKeKfAj54vPfxu0JACCAEUgikVEDAeUtVW5q6QaZzdNahlMIYhYB4nBDiPr3DBwAJgjhGKQghEAiEAIT409ombedxPrJePgQCAkkgNxoh4v5fGk14YTxBH4suxmO1nwkaAVtKcy3LeDfPmMh4vhDvn9YqHt8HhAAh5cLWgkCAeBnmn7b333uPlIpuJ2Np2KeXaZzzjKdT6sYSEPN9aa3QSoNUNBaqqiYARXfIi5//AqdevAwh4AEBhHTAeDrxeRCAFwKZztkLgQhhfgy5cOa03weUEPP9tPtn4Wf8RSDSPtp9ivQ56Xjt91X66dLx2u9mi+NJx2zXPe34SX93QuAWzyudj03P3OIYQtpXe3yfxija46exA8h0jnEI8Tmbn9/CtTp+7ovnMT+2EPgQ4jVJx1209h4t7mu+zmvHkY7bfqfdrzg21nbb9h5I6zG1JwRFnguEh7GHxkPHCHoEOgakCFA+hINriHqX4AJu6hn7Ht0LL6EHGwhh5tdCcABuDHINRE5w22D3IDuLkL359Tpy7Y5cqsfZ5ydG+JuG8N3vEl5/He7ehen08e+k6ySEAKVQzz/D9HOfYHc8Ym9/QlNXaCNxLrC6VDAuIc81zgvwlrzoMJuWLC1lTGcWkxcYlVHPRhTdAeVsyvpKj+nM4n3N0mBAOZ3R7fcphquY7hpCaYJvEAECAl9PkCojEBCyRGhJM62QWqCzJaj2QfcIwjDZukOxPEQJh53O0N0uoWpovMAUGoHHi4Adj3l47Sa37j2itg1CKVA5Mr1JgUBVlVjrca4hODv3D0GAVAZEFp8lIRDpxVJSopVCIsiKDKMMQkhGkym7+/s41yCEQGmFVgYpBdZarLMopdDGYJRCKEGWZfgA1lq0VDjvEQEyreiYjEwrTK7pZDlZlpHnGXmW0STfRPAYbdDGoDODVgoh43tV1zXWx3eqqRr8wQSfGd587jn+/P/hv2MwGDz52Uj2gQCS9fV1lFI8fPjwyOcPHz7kzJkzj30/z3PyPH/s8z8dHHWe8SVteFDX2LIkz3N6/T62aajrGmFtdMoJrPj2hfIehKDIDGQZZVXSNDXBOzp5jpQZzrVAIjkxIMtzpJQURUHPZGQmAxGom4BREoTEO4fwHmctXa0RmOR8Ha5pqEcHaN+n0+2glAYCIoASIYIGoyEYatNQVnV03t6jnMUYg8g0CIlSEpkZpjOL9AElBYoY/tJaEYLHOY+0DVprDAolJcjDKbMFSvFVEXgfUAK0UiAUfZ1RZw2NdXivsKKhaRoEgTzPMSYjBI+1lsZJGmvj8ZVCKYmSMgKSEAGHTJNcLcE7T+M8TvjopHzrRAU6gJICLxU3lofs9rq8OBpztqzI0wsUxKJTjvtdcY5nZjN+oK54NS94K8+ZSoGHuXMXUkRgmpwQhAg8aJ2OOHQmIv2u4rWxZc1UTOmuLDHodim0ZpJASfsiyhDHr6WgU2hKIbHO0c27rK6v0O905o5/0aG2vy+CENk6uDTWueNfAA9w6MjnoGDxbwtXqHXqEMFGu/85KEpOuQUzMjnU1hG1jlwdAySL4Kd9x+TCWF1yyC2QChwCExbAQzjmBAOHgKR1+otAYH6WcyecruUCyDm8z8zB2OJ42321Yw4L32kBok/HDQvfX7wPTwIkLPxdHvno8DNpLRnx3coLTWYEeyX0dQTufQnLhrRwKQnTu6BnEDTeOSovKFZWyFdPIc1gDqbj6WhEWCIIDc02IhME+TSILhwbz380IPEexmPC1auE3/kdePQIrD0858X9tNvmGf7MKdQPfIFHWnDv9g3GBwcIkvMUEbJujsdIATPnkWlBM5NgtGJvX7C+0kP4ipB1WV3JmewfsLzUoSMaskIzWFmjHju6/YLJ/iOq2QH9cw5dDLHTA4pej2pW0Ux26aws46oKkWtMUVDVDp0P0YUBswyqIAhF3zyFzBKAHWQgPCIIgvAQBEI0wIiQSfKDIVQ1dx5tI5UhywxKawQwm81QSuAAGwKNCzgEIYEJIRQBh1KSLO9gdEaR52SZQUpJnmV0igJt4nd390aEpqGsZmijUUoTvEcqSdAKIXKCDyCgU+TRpzWOQmuCkBilkUailWR50GPQ7ZAZg8kMeRYX+ZnWCKXwBKx1WGuRknhOUuJCfC5mVUVV1rjawmTG0q27rO4esHn+HMVLH3nfZ2rRPhBAkmUZn/70p/niF7/Iz/7szwJxhfzFL36RX/iFX/ie99MPgYGznBKC14qct5zlUVXhrCXPczqdDk1jaZro0I0x0SGmlbUPPoIWEW+0Vpq6qSnLGVobMmNQSuKdTyt5j3eOPCvIsywxDslRhJAeJqLz9Z7GWrTOUCbDSIVUEmctIXiqqsY5S6fbRRszd4YBgSIyFVkmkVJR15K6qXHeIa1ID3dkbLI8w3qPs24OuIJzSKHQUs2vbdPU8fvCoJSaX4cgJSGxExBXYd5ZShtBidKKIssxOp5/yAxVVTErK2bTGS7PyTOD1AZchbUOKdvJPzk0EadjJQJaKUIIifkB6UNcfYf40si0oU3gREmBF5KdLONLKyusVRVPjcacrRv63s0hxKLTVcDQeb4wnfLRquTtLOdmlvEIgxMSITkEYvPZMjl7IRAyXv+Q2JxAmLNZhMCsLNnaFQSGdIucXjcgpiWuqiOoEp463YuiUBS5YVZLTNGhN+yl4x51mq0dcVzpe63zFMecNwmwRMicTmPhby0AOe5c52xE+tcCB7+w3fyapFXtohOdMwsLbENYOMYiuLAsAEFxeJ/a8wwkULJwzseZn3YSWxxXu217jQLHJrtFwBaO0F6PHWeRRQoLY1zcpzz23cXjh3SsRRB4/Djtvg6vfQIyexOMqPDdDZSAqgGbgXGCoQ50ZXu9J1DeQtCAUvhpQzkJNNkaw7VLCN1ZONWQTtcAGsIE/O6cKTkyvvbafq9aPOdgc5PwzjuEb38b7t+P4OQJ500IBAH0usgLF5ldXONBr0M92+PurdsoBXmW4b1DqizOE0KgjUEGH1ns4KNzNhItYXWpy/rqAN9bRw/W0cJSN4I883jrEZlCSmj6gp17t9neOaC/ItgwAuHGSCPACLRTqOIUKpdIswTGgAjkwzWENBA86E56HwQq1/M7PuczRY0QHkQDoQZXQTNFGYUxGVLleOto/AQrBFXdUNUNNsT5x1qPdT6x+QIZRJzjZUCrnG6vw/LSCt2iiItPKclN9Dtaq3S9FA83t2iaJs3p0UdZ6xLAAW9dnHddwEiFkpo8N+TGJD+nyXNNr8jpdgp08nvxOPrwHQueICVWgLOeZjbFunjvZ2VFYy1Z7eg92mL14SadqkIAa9vbnOs+Tig8yT6wkM0v/uIv8pf/8l/mM5/5DJ/97Gf5u3/37zKZTPirf/Wvfu87SS9RJwQ+HRyXpeSNIuf1xjKdTjEmI8syjNHYxlJVNVprpExhGyGRPtDYhtmsQanofL331E1D6R3GZJEqkxLpfQI2GikVUiWH73x8TAUE5+cUnNImrrZkfNGMySk6A3zw4ANNXVKWFdo6sjxDaIVLE7pCooTAGIFSkfEoqwrnPME5tBIQJFJIiiyjosFZiw+e4CKYkEKiM43zDuci3VZVAWNMPAcRwyNeCIIHQkApiVCCprHUjUUlIKeUQkqB94mClpKyqqnrGuccyhhcAJfAW/CeECLQ0jqyORABhvMghUTJgFuYCGVyfIGQwjiRUQnpVjsC95XmXq/Humm4XFU81zQUC472yOMBLDvPZ2czXqgr7piMq3nOvSxLq7FDW2QAYnhL4kPAuQjEVAKUgoD1gcl0BgSafpdOYciLjADMqgbXsgw+Ai8lBVJKTNZB62zO7ixO43Pn2o5jEXwcC2McOdcEIBbDBIs/F/9/ERAsft8TQdzxEMbi91pnqxYcfcvY+LTfOXBK42rPrwVMi2DouKwt/q1lFxbGucBQHB+3eGz7hb8t3M9FELT4e7tdO945cIND8JXO43iI7Li1+wnHrvHi/VscvwCUB+kdIpSYUCFkwaQBoyDT0BECLQJ4S33wEFU/RPoKXzZUY0vQQ3rPfApR9EGoY6NJt8ntI9wWZGsgVmmDcN8LADnCmoQAd+4QXn2V8N577wtEFs8Ro5HPXGR26SzjtdNs7jyg3DsgBMgzhXWesnFIKZBpnRhDw57cRAAQkKhMEwToTIGQhCyju9RBZAJYopMDOGRWg5gRXCCM9mimu5w+v8ra2Utkg1MQJErUIEwM5aeBCr0AyYUFLFATAV2+cCfbJ6HdsH2KHYQc3BQUOK0IQpDnGeU0hqOsc4xLhw9ivoiNc1zasxdYEZAiggatFHme0Rv06Jgs+gAV/Y4IidFVijwzrKwsgxR4Z5FKU86iVADvo2yhyCjyjG6nIDMZeZ7T7eQYpdFGkxmVrrUny7PI2gsQUmJDnP8a5yirmqqJYGc2ntE4FyUO1qOlYHk8YeXeA7r7o/hcJ5+YT2esfPv1P/R5gw8QkPz8z/88m5ub/K2/9bd48OABr7zyCv/m3/ybx4Suf6AJiZBxglQhcDoEVoPgaa35fa2411hmM0uexZCPdRZrY8xOKYWQkbYv8pxaNpRlSV3XFEVOp1PQWEtd1/iEFGMoRJPnUWsSX6KAC37+cAYC1lpm5RTnHPhAXc6QUjKdSIpOn7zoIqWk21uKbEk5pi4rQmYwJoIYFyAIjyI6wlxGtqSqKqrGEkIDApTSmKSVaZoGay1CCbSSSK3ItI6hFhnP3XlH3cRpWWuNlpERCCGGbxJRgdYqshfOz4Gc0REABamIchZJVdc0jcO6CucdIUTnrZTEeUtZOQpyTFGkSFFAtKEpAY11cfJPTjsAPnKAc3DiEwXpvMd6RxCCe8ZwTyq+mzs+XlU81TQUwSfHIB5zOsves1SVPFtXbGrNt4sOd7IMJ8WcohdC0FL/dcejnUCVh2DtkK2IE8p0VmKdo990GHQLOp0OQigmZZkm84C3DicDzit00SF4Gae+6KkOR5oW8YtO8Ung4Qg4WdAltKEGT+Bhb4dB3WHYdA+3WwA3Rxx52p9d3A9HHXo7huPApwUai07+eMilPW5oGac0Bhb20wKcmal41Nvj7GiVzJkj32mZmjnLswCM5szEAmNzZAhtmOcJ+o5wbPtFlkMsHndhu/ZaL16fcT5jYkrOTlYIHOpR5vtZGHvLtnUJWK3IZEE9mzHzBp0rNNAFdNpBsFMmd6/T2AmZdGRNQyMGZOtPoTvDuOA5esZpYBbCDGQHxFIELU9AVZW0WOHo2mx+riHEd5CmIdy7R/jyl+HqVZjNIkvyBGuBHXmOeuop3CufYMfu8mhvj/LuDQQeh6ZxcRHkvMcHT5FlFHkx16JJJSPWSWylC/H8qtojehodJNgAWUYQioBAhMRgBEOodtjffshwpUf/1AYyW0OIDMQsXhMCyABBAiWQAR2iUkq0Lxqg4sqB9l0Q83lABMDVBOGoy0AzeoASY/b29tm6v83BQQQFZV3SNC6Cfq0xUqfrC9YHnHU476Kmz3qMjmFiKSVaCKSQSGPigkhKBFEPGZD42lJbS3/Qx3oPIi4I66qOAKQoyPOMTpEz6HYoiqQJKQqUlCgZNSVSSgiespxFZlpGZrSczWJI3TomkxlN4zDGYGuL1ppBv4P3gUI0rN+9T/HgIbKOGh3SXNq+60tf++YTn5nj9oGKWn/hF37hPypE85jFtxsQCBHAe0zwXCZwRgjeyDJed57tuqKxzVyLYq3DewfeRycYBMZEcU5ZVcxmM7Qx5FmOzhXWOpomMihZlkfGQMdwjXOO4EGoQ6fe1DV1WS7oM8T8RzmdREGWyTFZTrc7oNtbxtqaupoQQnT+SkockipzaA+F02gTwx9SNVR1TVU3KOnIsgytNb1OJ7EhEdVaFzBGonR0VDJNAASHbUKcELROepH4EsiFiVYkpsC6GDeECDSEFAjifjMhCNTUTRNfYaXQ2tDp5Nx7tkRverhfEnyg0ykS0o80qPMgaoFKaFxIOacwAaRMk38Al2jIw9V5nJM2heQ/FF1ezR0fqWsu2oYl5w9X4Av+URDZtEtNw4Wm4ZHWvFkU3MsyDozBpRO3KvDGT0w4+3bO2TdzpAqH4ZtD34VPYM1ZR1M39HsditzgvGNWVvjgI33sHKAo+l1EHsGmCPH8REjgUz6+mp6HUTjKLhxhR46FL0b5lH/5wpf44RuvMNzpHjrthUshmE+9R0M6C3acVfAJyKjF7dLx/YITb52/59hYOQpcfHLOcoFJ2ezu889f+D1+7o0f4vxobb4/wqH26Am3dX4OT2LJ2nM4zge8H+PxGPNyDOQssliLgObW8BG/d/F1/uLrP0a/6RwCu3a7Y9qSAsiCoHSGaTNjZCWurFhfK8iNJG9DNW4HJncwEg7sABdKphbWnnqO7NQz8wl/UaAat7QIew9QoDeITlekSNZhKC4QeGP1Lm8vPeDnrn0G5WUEHPv7hNu3CV//Oly7dqgPeR8TUiKGQ9SlS+jv/xxlP+P29XewdszZs8s00xkPt/bZO5jShHh1fOMwuUHnBabToaltDNE6Nw+bQiArCoLzZLkiLwpqB77R6FnN3eGYXbXPR3ZXsc4ANaaeIbIexeoZZNFHiC7xiVeABlER2Q9PZEBiskBw7YSjQGjEMQDnqil2NiIbnoKmpt67xe5oh72Hu9TlCOs8o/0xs8ZTW0dVO2rrsd6TGUW30CiVIaTCeaiUxzUVatxiPI8UcaGnM4MQUfxvfYFzDhEayroCBN56qrrGE/BNQ6YERVEwnZYJfGRkRmO0otsp6HU6FEWBSr4lLsblwnwjaIDRZIJ3UYjvgkchsXWDNoZ+r48QkmxoyPOcMJmg7t5n5cYt1OywLMchGIm/eqUZra7+gc9Pax+KLJv3s0fG0HcurbwFJAQZvCf3gU9iOa8Ur3UUb9eesqrQyWEqpXDOJicT8N4ihCDPcjJjKKuK6WwaBT4mm6/kpFLz8AWCmI3TTgo+4K3FNjYJ7NLkINqJolUfz7B1RVVqqtmETrdHpzskK3p4G3UYQQGZ4I1PHbB+L+PcjQJFjK9GtiQKSG0TmR1jDCHF/uK4oi6ksSoyG1KhNZBAlHeO4Gq8czit5wJUKeJkseiklEyCTtsQQjx/iEI0H2IIKwA2xTEzY7DLkq/82REf/WKPlU1NbS1uMiXLMjpFjIMiBEZJfGJLhBBYm7KOpEClDBfnI/I/aq3+In5vpAxfzTKuO8sl23Cpqlm19rHQwKKjPWMtp8ZjtrXmdpZxK8t4kBfsnnG8+nMTin8gWXtdIRCHK8f4GCRtCfPQzLSsYgij26EVwxJAK0nZWFSW0en3QB3S6cKHyPamx7d1fPNjJYcfkl5j0Rm2vy9mnXgC9wZb/PqzX+PjD5+eh0AW99laG5p5koj0yP6PfS4AswBOFgHN4rpZHNtukRk5/rf2Yj3o7/DrT3+dH7z5cc6P1yC9QUdCHgv7mF+vhZ/z/S+EshbDUMeZs/Zc29/lAvPSjnER8By9WOm+iMBmb5dff+Zr/OiNV3hu9/xj5znfdmFc0xDwKsOHDoLAUgG5cxRGRsfkK0J5H6p9Ohef56xcwu7fo7QBvXzuCNN0dFwNhClITWAZMO//VeDmYItffe4r/JF7z3Lu7Qn+7bfhvffg5s0/mA1p/391Ff3yy+gXX0BdeYq6mTG78w7rS5Le2nmCDWzNSsqqSRloGc4G0DHRYDwas79/gFCK4CwhCLSR4DxZbhiPRkil0EqwuyMY9AuCeMjSUpfffGGLr7xwh1/4zkuER46ltT7nLl1m9fLzqLxHcC6J3wU4h9AdbNkgdQle4coxMgPfCOxsj3xlSDkJ5L0+2gzTGTbEp72hfWptcDy8/4idh3coyzplwQmQBiXdnA2WUqBFcv6JNRVEMHj33IQHKxM++tU+Rih8e6llZL2DD+zvj5nVHhkCtqmT/i/qGk1myIQEJcnzIUJIOnnBoNeZH0dJiZQCoxXGxExMJHj8nGmpqpqyrimrkoO9fZz1dDsdet0eQsBwOCDL88jqCkmuDebufcz1G2RbW8jFhfcc5MQJsur32L5wjq999EX4zd9+8kO4YB9qQPKbw2V2m5pXJmP0HACESGGGmBmzESyf0/CcV3wzCG46R+WiE9VaL4QqUtqqjzqKTtHBusiMWDcjz4t5VomQSczqAz6QGAMOs00ai1JZCl/EGyRlHJv3fp6942zUfTS2pipLur0BJstj9omt2Lts+fd/7gH/q//rOU75gPOBoAVGR1CitaKWgqqqqaoK5yxGx7Q/1aLUEJXRIGLYxWiaxkZ07SzeW2wTEJikrYluIPg0XiJiFzKKZauqTinHiirpRzJj0EribEr3NYobr1R89af3eflrA7IsRzlH4yxlVREEFElgnOVZcvA+XkvRgpEUjgNaMWkE3YIgAsILlIwvnNGSNm13W2fs5RnvFQVny4qXy5Jl595XlCiBDWtZtZbnypKdbMb/54Jk74WK8XoH6/1cZBwZpEPtRPtZCBGMVlVkiXKj5kLQ9nha5xT9XkqzBp+8uWgHkrzWogNd9CLHnW672SJA8Xi+fu4tbi094vrKPb7/3ksIIkhfFJEeX+0vptq2IGjx83a7lllZTFltmZNWuOoWxkQ6h0XwcPhxfDbn+xWeV0+/x4PBDq+fusEnHj2DDAsgcOHcH2M2FsDik3QicDR7aX79FoDI/FosXpv02eJ9fBLT4oXn6so9bi4/5Ftnr/LM7rn4zrTXIrFGIQlfJQJfBcqJwyiBDJrlrkKJQCZtTP0MDaG6hd97RFNJ8jOnUKLAFFCQI1XniMajvZ6EAH5MYAfkBjH4c3Tk84wuZxlN99iWu9Q33uXgn/4KZ75Twv7B+zIiR4DVcIj59KfRH/84cnUVcslkZ4e7199GuBmXLm+gGsv2/pTJrEJKSSY1TmqQgaqsqKoZ5ayKc3C6XjHVPiYD6ll8v9rnSArJthYICcZIrq7v8k8+c4eX/nXgY/f7VLMBeabZOOvY3zsg1HvozFBOKqSYIVSXZrxPvjTAlpZqfwuZ52ivKJbXcdZQHTwgy3KCgcjfjYABKh+izBCkQmrJ4NQaSlkaJ+j3c6gdZVVSjqZs7k/ZH5fYEOYpttEtxdCM97C/XPPrP7/N+bsdTt/NCDLOnzpp9qx1TMb7dJ2jyGIIplMUAHF8ad6UShKEJCDIOoLCWSaTMSHYtE4XWO+obIOQkqpsqK3FeyjLhrKsUVrhmoYQYDDoM+j3EVIhjcIYQ+ScFZ2qpvfaq+j7D6AsD9+ZBUaEEPAC9i6c496lC4zzgnHnaGbX+9mHGpDsS8nXen2u5QWfnYw5V1VkKU0XIRBKUHcdSgcuTB1ng+Sq0bzqA48aS+08SuvICoiAlHIuaAVLnhcUeSfSZtYhhEJKDQh8iExDdJEizTuSLOvQH8a03Jip4dNk4fHe0jQ1TR0zbJyzkXmo66g1cJZef4jWhn055df+2n3uPlMhfaoNImJGiggCJTVaqnmmT1lWkbFIYMtonXQZEahZ73FOILWOtVOUTGDLEnxIbEcAY9K2geBThrCQ4MNcY+FcoGrKCC68RxCFskUe89vHvYZf+1/fZ7zsaLrEmivklHXNbFrSVA34gNZR8Z3lzIGac4og27h9dGVOxN9lgCDa8491QXRaAfgFL+QQjLRm3Nfc6Ha5VNe8UM5YtnaeMkyK4/u0jQIG3tOvKv7i73p+4E/Du0VJ5QzjoLAq6o2kUggRonMLcXJXaSIhgEtCVkQEMc7H+6+zDp1BXHGERa9mIEpliaE/0b7g6e/iaLrpIjA5zl6UpuZ/eu4rBBF47dQNfv4Nhw7yiKh0zowsHMIf2+/88O8jql2sDdJqbhIZfoSRCgv/eMI2i/CgUpbfvvwaCPjty6/yF974IbQ1j4lZF///yZLKo8cnHY+F817cRyCFoY6Npx3jcQASAfrRTxvp+e7GTbwM/PPnv8SfeOf76dhivv3ivWqBnJCHQt3gJvTyJbxXKJ1W0rMH+L1HlHtTKr1EThEds+wi0EcFp0cGeJDYkXWgTQM+xoKFAHVNc/820+/8Pj/8T97mh+819Kp38LNegrCPmwAoCsTKCtmnP43+xCcQg8EcEHo7YrJzi/5AsHLmWTLh8KM9MqUY9roIFPe2R+zu7cbFTKIbnbVxJQ+pjhLzkJJPL6h38T2SOn7WyTKMllR5YHel4Vf+0n3+2//2MupgxM0332X3wX2qSUUglkPAO6RWGMB6QW+6gnSB/YN9BqvrbFx6ge7aOYQQDJeaNM+T7tYAMO1sBPUImUmWz1ygv3oOlRcIX4Oz+GqT6f1t0AegRlSNxzpLY1VMAGhqtJZIZSiU4uZLJf/ir2/xC//9s2TTCLQyo5BIJpMppW3oDwesrK3RLWIoUCgJQUTWOIU8W6beA2XjKH2gLmtk8BSZYWotuqzxLmC9x2iNrePCuJMbAoLCaEzWj8++FHgR5zNbWdS0ZunhIwa3biJnh0DkkEmN86GTknJ1ma1nn2W0vo5XimGWc/bcxSc/r8fsQw1IWpr7kVL8xmDI01nFS+WMs3WFCIG68NTdgK4iaDAh8JK1nJOSt4zibR/Ysw1SCpSMIYQYztHRqQSiiLXo4JKiGCJFH2zUFMQQhySEOK1neZeim7JwktisRf/e1ZSzKXU1o2kqmrqmaerEzDiqckoIgd7KEq/9hZLv/uSY4X1NPZ7hXAetTVxdE+csJUBJTVF0kDJSb7EYTuT+MmNitgvx4fUp7BFTyBRZJpBO4qxLqm9LWcVQj0kaGSladxmzZ7TWBBy2dDgbw1whgPMWkRTxX/szY659YgYCbBFQWiE9FFk2Z6Ka5LQjC6gwSiOExTmPCHGcATEv2gMcrlQFyHbl3+4jrQTmj4aI99wruJl1ud/vcqGqODerOFNXdJ1DBIEU4ciCvimiGPGZq/DCrMROHbezmJnzsCg4SABBzFcEkbIXSWCdNNbx2kmRQjsCaQpMUcwn7yNOVYAI7X1N9URESiNNk8xczMlRtmO+vxD49umrXFu9D8Bb67ew0mOi1m2eH7AIThaBxhEWYyE81K5a2xW4h7lO5Mg40naLKb7HgU7780lA4n5vh3dW7wDwxsYNNjv7nButHwFI87G012GRFVgAHfPxL9hiuEal/SyyH4vnfnybJ4GhxTFZ4Xh7/TYAb6/d5rWNG3zu/otHxnGc4bFC4OoGujn9bo4WniCigD3YKRxcI5QVZnmVfHgpppQqfWxPhxYBSo0IB4BEyMeZkRBCrB1y6xb+3XfgrTdZ29nBZDNKDRZHpRo6LnvsXOl20U8/jXr+efRLLyGGw0NWBrDVhK271/C25NSFDYyBcFAhspy8G6/j7fu7bO7sU1U13scQY3scbRSdosCoNhAYF0NSCJpU0kApSWE0g17GUr9Ld1jwrWcciBu8+sqYf/eju/yJf7WBySX1zNJYyDtZhBJFTn+1h64dtVAsry1jZ57u2dMM18+Qd8/RZiqpwQa0DJcQRP1NemZcSSjHCLOKQGJy4nbCgprFXQRHJj2FFtRVjQgBLaJGw6fHtcgzhh1BFhS/9aNbfOb6aX7m319EpYVuWVbUTZPSewVBRE2hSD7AWUdQOkoPmphKrJWKxchQ5HmX4AXBWWZVRWY03sb6JkuDYSyg2AtzjWBVN/M04aqyKBUzdpg2dLf2GN65Q7G/l555ceR9CunZKvt9xk89Rfn889AfsJTSk3WW0Xn+xcee2SfZhxqQtMWtlJDU3vNGlnFXKV4wGS/6MbqIimoRUi0MGZ+GJe/5vuC5KCVvSsnVALX3MYOEWIUuywuEiFoNKeWciWgFliod36eJrU11ldKnFM9sPr44kUKgQ5b3KcsxdTWjrmaU0zF1VQIxXFSVU669OOE3/8I+XoFqoJ5U7O/v0+v1yYsCpEy1T6JzUALyvCDThlkVM4WaxqYJJWYrNI2NE3bw8/xyKSVKaoQiqrSJqu+6qvDBpDSzWHnWJ8faMkh1UwPE2K7JEKl+yY2nRvzun96ZswB14UkEFFoKijwWnJtVdRTLOh9TlI1GqkgPCkIUtgmBcCIBOpkm3ZTBIFqWUMzTBkkrqvlqNI1BCoETgju9Hlv9Hne9Z3004dJ4TC9R0wLwEprOIToJCvrO8dJsytNlyd50yv0843q3y5bJaGGT8xDjwkm5nvZ36NAEpsgRWj0eblh8ntv6LWHxmXnCFuJoISshBF4E/uXzX55///5gm918TMfmR4DAMZn10QyThUMcX4EvTj4CjmhM5s48MSWCFNZa1GOIo5PYfOxpr1+58AZWxXtR6oavnH+LP/X2H5lnx7Tf/YOu33x/x0JGiyLUdHKP7ee4lkaka9Dey8X9HO46brPV22eztweAk55/+cKX+Nz9F1i8oosA0IfIhoXGgwNpJIJIj+OmsP82bjyibiTZ+hqq04VqCzrrIPT82PN7FAKxDsY9kEViR3QabvrO1hbhtddiyu6DB4T9XUSIq20nDs9rqmsKp5Et3Oz10B/5CPqjH0WdO4cYDB5jiELw+OkumhmdMxdRmQJRE/pLPLx3lzvX79F4z/2tPaqqns+pPqSikwGkVCit6XQ7BB/nqBBSGqyP2TfGGAoj6fUy+r0OWT+jSuUtvITf+NN7/Pj203yfeh4dNI0Q9HsZtpTo4RBTSEItQQe0yvBeIQ0IUQByDmyFMosnt/D/FqRC9NbidS23Yv0SpcCNgBqqEhkcSkChJLXR2CCwHsBT5HFRlmUZHQ3GK6wO/L/+5E0+urPBp95ZZzKdUdcTnPcUMsP7QG09OhcEl0oqAMpIkDJWQRaRNSnygk5HEYJjdXkVa2uq6Yi6KsmyjG63g9I6Ce7j/qwPsRaWjADKWYcI0N3ZYXD7Pt29PWQTfWlID3P7ZggBTmsOLl9m9vxzyLPn6He7CN1q7+KCM/T+4AqtrX2oAYn3YV7bui0csyfg115seOMvb/Nnf0fx479XsFpCu4xuUb0KgbPec4rAC0ryVSHZCoeaCSlT6fLgsY2bO7dAfHm8F7EqHklwGaJQyNclsRSxnNOOUdMCShmkUnR7Q/K8Q1OXmCxnOj6gnE2wtmHnouV3/zcjti/GtF5tJRpF8J7pZIKzlqJTpAqpqaS3kGgEUgmyLEcIQdPUVHWNtQ5tDIRAk1KedRKTRZClEFKhiBOclCl8U3mcdkjZgpLodJ13NHVNSEImKSQ61TSZDAK/9xdGPLrSzD3eLHN4ZFzxCzAplOWcp25iGrIQgqqu0UpHhkoKnLWk3Dq89/HBd4kmdCHV9hBpMlsQnSbiQkoxr6QZQ1fpQTGakdE81Ia3u13OTKc8OxozdA5f+KjtaO91+n8RBEUInKlrNuqalydTNo3hrW6Xe3lGJRVWSBAeHw5FXSIxeEIq8l4PqQ91BS3deWiH4YE2bBMSrbEYnm2fwTnoImoj3lq/zeunr8+/Y6XjjY2bnBuvpkf/kJlZ/P1YZYUjYYojjMECsGiP7drtF5y1E+JI+GPu0MPRaqbtsQVRP/Lbl19dAD2B37r8Kj/z9hdYqMt6dEU2v1bHnCOPX6vFMSzuZ1GofHzbRejRAqxFQLSYRfP6xnWcOOR9vn3mPa6u3OWZ3Qvx2CEc0dsEAcJAb6mLsAGVdRINXxGmDwmTHcqpxeo+WWYiVeCrCDpSYbPDdOQW3UzjTsUSAQ2NhdmMcOcO4ZvfjCm7VUVIVZ8jgycJIoKo9kRr5Rj1AkvFKtknP4X+1KeQw2F0vMeuLUBwNZu3r9EcbHL68jpqkEM5JmQFs/093vz2WzzYGacaRbEmT6wBIueMZisan85K6iZWo1YCXAgYpeICRCmaWcWsAhs8k7KBieBRM5qP/eaVGb/5Z2f80a9fpO9XQMwQZITUmAM8mAROQ0DpAM6CqyH7wwp3BbBThFCgCwgVZFkSqesIBEOG6PUoTimWB5ZsZ0S3qmhsoHHESt1B0Nio1ciCI7Px5b5xZsT/+FPvsLHZZTiG2lq0Vpg8RymDT+m31jdxnjSG2XTGZDrD+5gFKQQsDYYMBgPqxsUqqypjdGApm4ZOr4tUCi8gVs6SNN5h0/vqG0c1q9DTKRsPNlna2kG6w2cjHHuzgjY0p86w+6lPMV0ZojJDnhkcgXI6IdNmviB7cP/+H3J9o32oAUlE13F6ikoJwfR84N/9V/e5+vkRv/tH4ad/o8N/9d+v8qnvSnTwC5RuLAomQ+CCc5wSnreU5poU7BBwNuo8vIu1NQQkkaWIBbKSGCD2Q4k3KopCFU0VV/g+tBUTBVJp8qKLVhkI0u+9CFJSvHLkR3zrr424/sPNnA9XjcBNG5oatIGqKmNl1cLHioZS4oWMRXUQCBUwgFGKRsXUYO/jd2O1WUewkd0IISCkR6vY70ZKiZMOhMTahqauEdJjsixNHklsOndAka2w1mFyzdUfqHj1xyf4hadqqmuqpkYIQ1suQQlBkWkIgbKysXqtkigVi45F0VhbAhkMIZUPiP15Ghvm42nfkVZEGqvExs+jJgMQ7T0KKTQVJ7g6z7gqJVfzgqWlKe6jB1x5ELh8LRat8vJwBZ8OEqc27zlfVZyvKsZKcasouJ3n7GYZjZaE0AKP5Mikoej1UwGmaHOmYpHpSMeYO3+5cH7zUYR5Cf7WyVrh+Z1Lr7HdOTgEU8Brp67xY9c/eZQNEIdZHi0weYwtYMGJH//bAtuwuN0iuFoUwy4CkNYW04IBbi495NbywwXaBq6u3uXuYIvLo1NzEPQYQ3KM3QnHzu197RhTsrjd4rZzFigBinbumF+D9Nmrp64v7Bs2O/v89sXXubJ3LtbM4DBUNh+3ANkVFLVAaQFYwuQBdvsGblZTnL6EWD6LzDVQIDpnQWTzZ+DIjXa7EHZBnifsV4RHt+H6dcJ3vxtLurdzZFi8fzI9aiGmjgp4dAZe/wRMPr7Kf57/Rc7LC48BvsVr772nHm1S799lsHEW2R0iBHi9ysHuiOvv3mRnf0JZRebL6FjcC2IIQhuTgBU4a7F1Exc63lF7j9YK6xXOOkgVpZWS7NUVSksqGrb8Yd8cqwK/9uJVfvLue/zU7ctRHFyOICuo9qeYIqDyHFwDJgMk2ApKD6YH80yYhWdkYa5Ddw+vu8xArqSbqkF1adVganmF7nKFWTpgMB3Haq21oy5rZrWnbmqqskJ7hbKpfpWE3/7YPS5+ocvP/cMzWO8wRtPt9Tl19ixZ3iMQJQRVWbGzu89kNsOH6HeqssbaiulkwmQ6IQjoZDneNowODshzE/WKwUNQKWRmsc7HZAnnkKMxa/cfsvLgEXlVz+fUkFZFi4vy2eoa0+eeI3z804jM4Ed7TCcTHj56OE92iAU9Dd46Xt/ZevJzdMw+1IBEpgyWdsk06zX8xl+9ydXPHQAxk+E3Pl+z/JuCyfUen6wrVpo6TULMKVURAnkIfMw2XAqeq87xRgjMnEMpEUuoJ+GiFDIVkBB45wkpXTiGMjxSaZTOsLaJY1RqXuxHABSJWUmhHqUN/f4QKQTf/ewB3/pLJWHhrigrMcLMGyUZHfUtzjuKohMzWLQiIPEiIGTMM5fBzVmjEAQmNUGqqjJVYa1BgELhENHZCkmWxeJvVS2x1qaVugfRpjrHJnVtJlM7YY+7Df/uz28xWj+aJlhllropkUQRazuhaymjCNa72AemiZqdVuyoWmZDa1qBqxQupjo7h0IhVFydq1Tcpy0zljAgPk3CbaZT8KkQGzHeakwMXTUdx2/9dMO//t8HLt+Cz30JfuiL8JHvQF+BbFt0xMfsiAZi4BwvT6c8N5uxYzJ2i4xHvS4POh28VlgfUEaT93ooJY849HafcFTj0Trglu0JiV3wIYbn5oxG2tej3h7fOnOVWh3NjHhz4yZBhDn9vshacOz/jzMLHHNEc03IArh4Ikh4n78JDvU+i0XCCIHvnLrGKJsd2X6UT3n99DWujE49cf+PAbljP0Pad3suTxrn4u+LAGlRp7L43SddP4fnrfVbR/Zb6YZvnn2Xn776OU5PV46wSoHD+6cU9IuoFwqzB9QPb9FUFaKzQbF8BZEPmLfe1PEdEMGBn4LsxgfEjwj1lHB/Snj3N+HWHXjwAMbjx65ZCPEdi4uKOBirPe++CL/54/C1z8Orn4TQe8SF37nPz793HvVkWEoIltH2fR7dvMrScpel9R4xLbaPnc24+d1Xee/6LerG0S0i8DBagdS4IHD+MMwdiM1IpQjkRpFpEwszJtBEFpKAM1VydY66bBi7GVPVHBnZvd4+f+9jv80fuf3HGPo1oASvCW5MEFm6iXVareQEDd5bpIstRKCJYCPVJok3vP1pjhyLYDhcFOW0s4MXgtmkYnYwRYcYlm7qhhACTQgEKfFIbC0QC8N3OvBPf+I6z73a4fPfWEdqw9rZs6yun8Y2Fhc8PlWJnpU12sTaIlIqymzG3t4W2ztbjA4O6BUdXK9HXsReODrT6b0TCA8qyRiEDIS6Ib//gOG9h3QORrEcQfugp8V7SJOq73XZf/pp7p/aQJ8+y3ImyHNF3WRMZyPu37/HbDbDteU40q5u7G4+4Tl63D7UgGSRtmxyz+/9+ft8549uH5kxtJX4acE3hORaXvAZY3ixqsh9FEothnFkCKw4zyfxXAReV5KHeY7MY92MtgZJPHas9dFYSyAqxesmrvatdwgZyxx776LWBE9TzeJDnxXzfbRpW/vPC774v9unHhydNlUdyFB0OiZm6Fgblc/WUtcNg8GAjuomJCvSsVKqsRB0VOzmqLXGq6i9UKqhqRvqqkJKhTGRBQoqVhLUOp5nndLA5qvhdF21Uhgda4tAVHh/9Y+PuPaJGdISGZJ0GrYbqcqyKcm8SSGlWHVVShGrCZpYlrgVujZNgxWx4ZOUsUuxJqWvuZgeHJL2pI01k2jflpEKAXTSxgTAKI2Xkd6WSftTmJwsk0yWPF//+ftUheC1TwTe+Dj8sz8LL7wBv/SLOR95M5bQb+24445zZuBMXXG6qXh6MmGqNQ+6Pa73+5TddbrdHm3UaL6PNoSQnr8nObz29+SWFp79dJ4icHX1LldX77I6G7KTWJLMGR72d9nu7LM2XWYu3nyCZmQRjBxZEYejZeTbvy865+M2D/kshEMWtxEcdf6Vsrx2+jraKbSTWOXJrEYEwWsb1/mJ9z6DDvoxcNHuu/0pj/2+eO2On+OR0M0COHrSdT+yv2MgEmCzt8t294DMGWrdQIC16ZC31m5zbfkup6fLzJc+7XHSfiSkas8R7M2cIu8tU5x5DrLh3BkcDjkANfgJuBkcWMI3f4/w1jXYL2Favm/dkOBjA8+2AGFQEnHmFN/440P+y1/4GrurMOuADpJeI/iHL/weP33royzVnYULcjgW18yoD+4zXO2ycu4pUCXQZTqGu9euc/fefZSSXDy7jBSKWVXRWM/MBlxjkYRYqV2I+DOxft1uh1Pr62RGETwoJaIzTlk2iJhRuLm9gxISm/sjSFF5wW9duMc/fukmf/2dM4g8ln8v1lZjxVoksYJtTiySVmP9NqouUa6kqUfIbh/VWYcQ9WwtQUKr1Tj+hIT2sQpU1YjNe7fZ3dzENQ2ZUdS1jXNX45CpK3vTeIQVmOZopaRJ3/J//ys3eGFznbNbOUFIJrMpTW3n5z6dVhR5l8HSMr1+n3mHe+8Y7e0yHY3RQtAf9GJla6Cb5XTzDkWWIZVCioCrK9jZZe3Nd9E7O0jbZqimc1tklrWhunSJ8pOvUK0sw2iMD5aynID0aCNTCYfAbDqNhTTTolsIwWZVPvG5PG4fakACMR3MZ/CNn9rk2z+5RTZTNJ1D52FqydqsT3/YYzSb8RtNw5s9w2frivNNTe4iQp8DEx/QxEqvZ7znkXdcywyzXhfblmnPslgJ1TqsszgbQyF1XVNWUR0dS9R7nI8ORymNkgrXVLH+R2grOsBsPfAv/ovrFKXm/Ls97rwwgZBW5qXHlQ0hZLGvjgnzDCBCqraaKs4uTvzBp2qqST8hBLFeijGpdoemqmPn3io1hTMmbi2SwCk6+0MSKtZdSamy8wwix52nGr70J3b59L8acPMTJQ+erdG1IJ8JbFdg8gzhHM42VN6js9gfCGKjQK2jGrtuHFXT4HwAEVdQVVUjhUxi1/gzywx13cQMnNSkTykVO1ImcbJOvXOQYa53gVhqv2V4YhZP4LUfOEBIwRf+9Rq/98d2mA0c5iDn9Zcdv/LnhvzEP+xxdv+AM5Mpg6Yh9/7QQR4zCRTOk7ualarmpb09Dg6msLYG8ln82hp2MCCkjK2wsF2AeWbNooOMtUHifXAwr9cigVrVfOXCm/zktc9wY+kBX7r4BgT4C6//CL91+Tu8t3Kf9enyXNfxhOn0yDgWP38SyzH/zgKYetJ+jrMWj1lybvcG29zvb/O//frP8Hc/92tYVdJpcv7Lb/5xfvfi6zzo73B+dOqx/bT1UtqKs4+dx3HqfeF8nnSOTwIu85omx/Q3h4cIXF29h/Gan//uD/Ern/h3AHxk8wpnxit85cKbfOrh8xQue+J1qIkVLvoIpFnDdPbJhgXCxG6yISxUz/EeJo9gd5Nw6yHhzXfg5m2oYuXOtiDV41c8Pv/ee1Svh1xdRZxbR33seerlVb78mS8j+gOujHLe7G4xqAr+0rvfz9c3bvDF82/xp69/cvGE4zGmO9y99g7Sl5x99iKKGQSJL0tufuc7XL1+A+cFly+c4sz6Grv7E/JSsbU3pSonAAz6XbpFgdQ6pqLaBqUk/aU+axtr5DojBBfDHbYhSyHlEAJlFd/9nsrIVnZZmWVMMkutPS/vnuKTWxf5Hz76Oj+49UleSjoe6BNZD5+ox3Q3hcQr8NUU7z3TnT1y3UUYT1WNKYzC1hXWNmRFgcp6sWeMyRZC13Ee3Lx7k1vX3mJ/f58s76CkoqxEYpjTe+J80hfG+d04iXICJyMQeOHWCjLA/+3PXOWv/8pLmJ09drf3aCyU0ymN9aysrLEyGDAY9MmzWHJf64yl5VWmkzFbdYV1nv2DA4KQDHs9ullOr9NBG4UMHre5jbl6jfzGbYI9ujhfbIsQtKJcXuLB088yvXSBjdPrdIouy1Kxs7vD3sEeajKCEBemsZSDoEkVw9sF0Ph/CYAk1oWQXPvEHlc/s8fn/99n+PZPbjJZbcBDPpOoSqAexbTabreL8477ZcW/ygQvas3LTcPZpp5Xm2tDOUJEivlsY1nf2+eRtTwYDhjn+bwwWWMbCDGu63wEB3VdM51NKcsqikobS2MdznrqEIuhCaloOwL7XPDtz43p72h++J8/xz/45e8C8WG9+CWDcgKaEFN5082NfXjaMIymFVGS2IwY3w0xGy0VbXO+RfqxloZZKB/cMiEg5vVAJOrQ54p2jddqMA4d8qzveP2PzvjBX12l/1Dw6o+PIcDpWzlPv96jySMAUS7VGbGWajbFKoVqu01qTaYiSNJKMKtqnA+xSq4UlFUsla9UpHMHvS4TEUNPVVMdhtPauGWqSNhYG4GPUjQ2Zh3Fl8WTpUq3u0XJ6x/b5Wf/7mne+sI0ZgV5ePmrfarCs3PGMjaGt1ZWuNbvszKesFZVnK5rVpvmCU3ikqC1/SAElkf76C/9e/j2l6nPn6e+cGH+066uHmHp4OhKXxBFq22oSCaKOELHwF4xoVQ1f+U7P8l/94O/AoD2is/feZlGWm4sP+Rz915+rN9Luq3zn4HDyqsc+3t7Hu32YmGbxe8er9txPORxfL+BwIP+Ns/tXOAHb32M/8tnf21+DX/kxivcHWxxr7/D+dHGIeuyGPI6BtzmoZZFRucPGksLNI59//j+Hrse7TUMgetLD/jhG5/gs/de4B997It4EXDS8Rdf/zH+4Sf+LQf5lGJySP8HDlkqD1TEyrda5bB0ioDDl2OaRCPlwRDuPiTcvg33bsKde3CQwjHzHloSnnDOtPqQpT7m2afInnsBzp5h4qcMVteQImfrtOcn33oGGeCtU1tMdc3p6YC/89U/xT9+9mv82N2XWGo6c7bM1SXl1n2K3DE49RQqzyBoqgp27l7n0eYmWhsund3gwuWzVNOKg2nJwWTGrKoJBHqdnI3VJZaWl6NINPj54qdxDqSh6A0IzuFsTSd1CY9i+IAxljPrq1R5Dzq3+VOvP83vXrnPOxv73OuO+D9f/SQ3Bwf8syvf5fzkNMM6P7xGQUKwIDzOwfRgl4PtTfJiiaWldbrLq+jeCpPpmLs3b7Gxvo6ryhRuFITKMdrfZ+Pc2ViGITEKVXnAvWtvs3n/Lk4aHJLc5CgZ5wPVJjkoFR2192ADygpeeWOVb728jVcw6tT88j/4LL/x6dt863O7/PDvddnf3Gc8mVFXDWvrG3RTCw5nHV634XTJYLBMtVYyG+3jfIMQiiLPyFTsgOxcTb19QHH7DsWd+8jx5AhjSgIjbfO/cthndOUyo0sXGEmNqysODg4YjyeUs5LxZJT6p8WsnBBC6jqffChtBqQkX6SH/wD7UAMS5xw7FyybV2b8xP9wib0zFTvnY0391bs5p6912T9bszTuYK2jrCqKPKff71M3Nd8tS24IyQtZxmdmU7qJ7mzFPACCQOY85w9GrM1mbA4rHp0+hc3zWKY9RKevifVGMhPbzU9nJbMESspZGYU+SSjbphMHYGetIdsP/NH/8Sw3PjNl51Qc/7k3Cz71qx3e+NkZOsSy7gHwzlFVJdpkFDKmcC2mAMZhx9CMVipSo8R0X+viyyMXQYkQ8+ZcWsfMIh9rLce5LgQIKaNFpLTadkINgb0zjqe+XvDcO0N+9+d2mQ1j3ZDLrxV85Mt93v7cGCEjY6GUxis9735pncOqBp/lsYqskuR5njQsTSrRH7N8ZmWFd45GRGFtpxOzieqpTZ2FY86+8grn4jX03pNlsdCbDwnUSYFIgEoIuPvMjM/9P/qcu5vz5Z/dw+lAXkrObQ14+psFv/5zDyC9WI3R3OgU3DAZPefY8JbLs5KzZYlJwsfoENMDmkBeCwpFWVK89x75tWv4bhc3HNKcPs30+eepn3sOPxjMV/5z0esCgEgP5NzheOCdlbv8mTd+iHPjNQ7yKPDrNjmFzfiTb/8AX7nwJh5PW7p6vhJaCBEtPDiHIZU/QH/x2Br8uJ5jQW+y6MSPsC0h0ChHoyw/+d6nGdRHKzkOqh4/fu3THGQTrHBk4eiENt/XwjHmYtlFncvC3xfZnEVmpN3XY4zQInhb0JW0+7DSY5XjZ975PHvFhE6TM8lKdosRlw42+LNv/iBXV+5yarI0d+jHQ0sWOCBq08RgDdvUmGlJ/a1vYG5fw4xmsD+KmpC2tngbvhFH4fCR+6IU4uJ56ksbqKefprh4BdUt8FZQVBWyGKKkZG/J8t987Yf4d2ffJLeaUlvu9fb47OZTdFzG6yt3+YGHz8TDuprdu+8x2n7E6Svn6Hajc/ciY/feu7z39jtMZhUXz23wzAuXCELw9ls32d6fMBrPIAS6Rc7ayjIry0t0+oO5uDbPor5jNBozKxuUaTAmNs4LLokxCSghqL1DZhnKQDHT/JG3znGgGt7d2GenmPJe9zZ/5d0v8PunNrnT2+Gl5iwECLbBVSNEGFPVlp2tETuPHkAIXHzuHLq3BG7KdLTD/QebHOxtIQgURRejDaNHm5FtqqYsLffQwyUCFc3Mcu/6NTa3NqlqhxeBIBTdTg8jJUpLgk9MVYz1x0SJxmNqwU/9zkX2+zVXnxpxb2PCQafir/2rl/jWi1tsr0xxd2rGoxFax15sUQwc518XSE1SJVJrlldPMZuM2Nt9SLfXI5OKTidHWot6+w6d6zcx4wnCtx3q5WF15vSeOmPYvXSezQvnCEtLYDJ0gNl0yq07d3CNS4U9YwuSuqrp9wd0Oh1ykzPo9ah1rMQdm9AKnu13+F7sQw1IpJTokefT/+wUQsHv/rn7TIcWEeDFL61w7s0u3/zpTYqZRnc0ddNQViVVVZPnOb3BgKqu+HpZ8W5/yGfrimfqin5Ki2v1CCRn06ktl7a3OT0ec3djg+3hgDr1cRG0glfQStPtFEk4GZvXySmUZUzD9TiciKGU3pbi5S8W5DrwlZ94OJ8Rv/+LZzh/PXDvWo1oQkpbDfPOvjFDphWtgm1sbHwnYntqJcI8SaPVgUgZCAtlQoWQqWFgBCBaqcO4OhyZgAUxxqtk7CQcfNR3LN+QdG7ksBK4/ulYDE04ePb3Ci5+y3Dvcqzt4kI837ww5HnGbDaL5e6tpfQBbTTeRJChpKDX7URw5DksVV/VlE0sqiSlJMtMBJFCxuqHbeaAEHOhbGMjAPQ+ZuhUdey3ExXsBc+800fOYHYusLcRSy13Joozm12ev73Mm7fG5IXBVjVNYpgaYEcqRkZzq+jQDYHLVcVTVUm/btDOolp6Oz0XR1bhIaAmE+Rkgrl/n+5rrxG0pr50iekLL1BfuYJdWsIXBWTZEac+15qkMM7LW5dYnQ3Zz6ZUKqZb9+sOmTNc2T+NF55xNmNY995XZ3GkwNkCSyMXPmuZhyd1AW6deStYPp5Vc0Qweuy5urJ3mksHp5jqeuEb8Xgfe/QUd4abc0ZocdvFfc3FwBwyhGHxs4XzmX/n2HU4wvAc07wc/25ro2zK5++8zMWDDWa6pl93mGQllW6YmYqXty6xXRzMvz8XI7fHDwGsJZQlTCboW7fQb7+NvnYNPZ0ikv7pcLwtQ7R4ZglkSYnodhHLy+jnn8e/+Cz7oqK71KE/XEP4DFFtI4t1iqwHgPMVH986x8f2LnBtdZdhU1CaMXd7e+xlUz61dYlSRVYD5xjvbyPsmLPPXqYYLAEB7wq279/i1o3rjCcl585vcOkjz2CF5tGtO5TTkkxKcqNRQrC8PGB5aRDrKQkVu/WKgBexFUbjPA82N8n3D1AihkKkEClTUKGIXXIlgWlW079neOqNPl/onOWfvnINpwK/vf4e/8WrL/GflRtYk+NsTTXaZ7r3EF8fUNcNO7sTxuMpHkl/2MMk4e1kPOGdd66yPZpw+txFpM6pradqZoynY5aHQ1ZWVlGpQBlBMdrZ4u677zAeTXAhEERAeU/tPHmek+WGkFKemyaG8r0LdIXl8oM+z9wa8GNfOs/VK2/hBfzrz9/m8985yw9+7Rz3R9vs7e3jnGdp2KPfH6CVjnNaSLrBND8qYDAcUp8+Rzk7oNCaLAQGO7us3bmHOTiIE2oggtmUqdj6OZdlTE+ts/vCs8wGfZqkA1EpVN/UDZPRhHI2I88yZIiNEPudHv1Ol063SyfTLPcKENFXxeQECKfX+F7sQw1ItFL0ZjneOW4/O+bmxw8ICoaPDM9/fYXTN7pc+8wIWzc4YcmynEz3qZrYSKixijzLyAaGWd3wW0pyq1Pwims4V1Zk9rD+CJDYAiiqmqfv3mV1r8eDlRX2Bn0a0yqwBUiBDBJj9JyxCN6luT4WBIsVS6GocrTRPDo94dpH4+Q12NF85Dtr5I3jyhszsIGmqVNb7giW8rwgS+m4LX0flwHxn5Rt8CBNxomOi89iPCmfCg5BqtuRWBiX9tHGWdu1dJygI7uiQsBYj68DUoPrCm58IsYJdS14+psduvfg1KsKWzWoYAjElFslJSbLCUQBawg+hnICGGNAKPCxBoFMXjHPM4xRZI1h92BCVTdkJgK/tiuxTE0AhZSx87FzTKYzyir2biBA0B4lZCy8FsDUGo9gJ5+yuxKZlWKqWHloyJTmC797GtnxiMZSlxUhCTiUaFe4golSXF8bsN/N6Y5GLB+MWC0rhnVN0URA9KTQwfzRcg7hHMW771K8+y7eGJqzZ6kuXqQ5exa7vk6zvo7v9x8LR6zOhggEB/kUK+MKulcXZE6T+Yxn9s5H/QmHgKJt1ndkDBx1wEEcFa8eZxYW7f1YBzjq/I8cTwgyr7h0cJq2HtziN2PnDMmlg1ORDuZxE8f2Px9b+5wf2998nIvC2+PszsL3WyB1pJjcQuil33R4breD8ZrcaXpNAQIa6RhlU3p1wfps+BiglNMpamcH/egR+sEDzN27mDt3ELPZQrglQY1jFztOJy07IhC9HvLMGeT58+hnn0VevoxVgnq6ja4CebGGq20sgmgGMUQChOCZVLv8zHeeYra7y9mtLv0m5xFj7nf32Cn2OTPr0bOxPsdk8zZb92+wtNKn6GcIWQMdpvdvcP3Vb7O1P+LM6XVeevk5VCfj+nev8eD+JsNegc4KlqoIlru9Hp1OlyAU+wdjZtbHqtCANprJwQHldIwInm5RkAlBXaXmoXVNkJJC66QhyXnu3T7qluPFfBn9cxKnHF86f4+bj+5zWtTknT6jcclkf5tqNqWxjsk01juxPlaNPjXs0e1rXLnJwd4Ok1lJp9sj7/SROkMQOBiNGU+mLK+sMDh1GlP0IXh8VfHozk0OppNYXFKkxAJr2dvZZX9vL7K/KcOwyDOklHQ6BbnO+cTtU5xtlvmBdw3/z/E19vs1rz6/zdZGzfI9Q7VZMitLirxLp9eNXYAX6y4dvggIIMsz1tZP4Ubb5A/vsrS5TX9rC50WpUHEZyqIQzAbjMadOcXo6Svsnl6nCcQUa0h6PoGWikG/R/CBtZUVCp0RUmq20TrW0UEgco1RIaZ4a5kY98Dq2soT3uDH7UMNSJxzsZxyrrj1qTFbl0oIcPq9Lhe+1SUvFRfe61MUBXXdMJtOkUqR5Tl5llOWM6bTGcZosixD5RlbEl7tFew7x8WtHVZGo8PeDmmJFdIEvzye0J+V7He73FtdYXsQ+wCk6mqxiimQhxCV5MTMl7puaFIfG5m0HO98bsRs4EDA5Ve7dO8GuuOcK+8M6eqA1j5VLE36EMG8eqwAMh0fVAQoAjoVDZsPmMBhGOoQxLQ9YNpt22aD8XQlLDhTIYjhnbRqMVrHwk3A7acs+xsx6+b09Yy1vQKdC579To96VOOFJc9zUIGgZGpKqNAmFkHzqeBa09h52Eak4kmy1dyEWK0xCngPhVixnXosStY6IqMkvU5GJ88Yz0r2DsaRRRICrWLYxzmLncXMnr1OxcFaHH82gvxG7KR8brNDKRoqP6Oq7fzey5gekUJekb0KWrHTKXioNd0QGFjPsHY8Wywx2LuHqKrHnDk87mxl05DfukV+6xbeGNxwiF1Zwa2vU124QHn5Mm59PTbjSnuY5rNYQwboNgXKxWJ4xqm5g4bHmYr2+Eec5vuMqwWpi0zK4r4WV/OLZern58Whc5dpq+MN7x4/tkjdWtvhiSO6nXDs/1swJI99FnjC+SyM/cixF4TF6YPHvisA4/X8eJkz9JrovK10jLIZZ9pxhIDY3ye/fZvs5k30o0eo/X3U7i6yWmjbfmxQR4Dd4t9Mhjx3Hv3CC6jLl5Eba4il5VhFVMBo8z6Nr1hfO4VEMd3ZIeuvoLqpjkYAvCOvLSv3G3brXU4Nh/TrmP33oLvPbjYCERvwzfZ3GG3fZf1Uh+7aOiiDdx0mu1vcu3mD8bTi9Jl1Lr3wLD4fsHPvHtV0yspyl/XVFYTIGZcNdd2gUnPS0bhkc3t33htISAHO4WyFFNDv91geDgnOIcRgXv9Iqtg0QmmFC4H/7L7E+hnmvYZz9zpcvzLm3vKE75iHfPaBRskRdV1TV7EeUt04rG2Zp1jMcGn1PEL2EEowntaMZg3DzgDrA/V0wqDXo+h22NvfSwsyECEWqrPjTQ62N6kam/QXMpZjt46qLtFZTlU1KCkwRUFjPUWe46lplOO5a8ssVQVuT/KR6+t86eP3GPUbfv/Fh3zu7WUOJjNcqlJrsqhZ8Qn4IKIuJXg/L+IopaAzPuDCtWvo+3fRdR0XYiK9mynM14L8ZmWJ8uUXcFcu0XQKVFli61SFW0qsd9jg52H+wbBPpjN6eY5WKmVcKmprY8M+58m0J9OSzKjYWNB7dPG/gEqtiFj3f7zS8OqPbOGy2LfmlX+/wWCSY73jym/1aBpLUeQ4YyjLGePxiMxkFEWHPPeUZcl0OqVT5PT6HUS34FFm2Ftd4dTuHlfu3Keo67Q6YT47CALGOdZGI5YmE7YHfW6trjLKMkJbhVAqtAZRtM41OkPZRPou+IaJqHnn+/apOx7ZwOWv5si7JSJTDN8TVNMpSuex62JoGYa2WBnzF1UIElgI81oDcUUfRxsdQjhcGCYGBJFezhCrznrvUxZM26vnkCNRSuKcxOHweIzUdIqCd77wcK6deOlrfXSIx1ua5YQM6qZhOitTGMtE/Q0p/qkUzjmapqZuLJPJFJPFQj7aaHRbiG7eMyiO1/nYuErKWIdFps9jJlBkAoxR9EWOtZbxeBLvgYqaHOdj6nYIgfGKY7wes5d6DwXuTsl0aOh1OkgEtXVYF+Zi5/nKOcQU7IrAdBZjxS5AnRl2CsWu6rH8oz9HGE7RV6+SvfYa6v59RNNA08ydzvs5S9k0yO1tzPY24b336H7jG4Qsww0GVJcvUz39NPXFi1RLO+jKoTopZGPVYS+ZRHa1LAlwpOfM/HVqP+Owqui8mVzrlBe2a/c/ByPtfhbO50mMyhxcvA87sfidVmg7D/sshKwWtxOL+1vUyBwDY4vbtv8/30fS7rTHOX4+jwG4NnwlBJnTDMoO+QyKsaUZP6Tz9pjs2jWya9dQOzuIpkE2DXj/RGC6aEeAo9ZgDHJlBfXyy+iXX47ZMlkWtSIieZx0pv3BSlysBEc12orvQZbBgg4nPveKsva4YBjuZKyNCliHB50RW0VsnFnv3mHvzg10N6e71EPLhuAz7PSAzfde5+GDRwyHPZ5/4Tl66xvs3rvNwYMHrA07rKyvYIPmYNwgTEamDEoqRpMpW9u72MbSHy6R5UWs5xQ8SnYpy5rGeSZlhRCQaY11AalECh94cqVorKc3MRwwQwXF979zlutX3iUI+ObHtvnU7dOU1jKraqqqJoRYEFFrg20arPf0BgWDpSFSZAQT2J81TKuGoVTMprG32KDfZ3VtnU6nx6DbAedx9oDJ5ICDzS1skAipkSIWmZRKYr1FacNweRklBJkxWOcwRqGEoq4qdGXZmBbMwpSlpuBTb6/z1ZfvMy0avvTcHV4MGS7Ekg1SHc531jmKBDC8jzValHLIyQjz1mvod9+GyZjQpoALkd6D+LYGIfDdgumzzzB98VlCJ0ekGkky9TlrrMe2bULqWcqGNFFL11SQZ+SZwZjYT0doRagEVrjY0FUy1wcFL6gp/pAnPtqHGpC0VP3tj4649ZFYQnj5Qc7HfmsdKSSZkpy7N8S66IxMZuj1elhrmU6njMcNWZ7T6XRiZVVnIXhUQpJWKe6f3mB3eZmzDx+xvr3LYFYeWU2GEGNyxntO7x+wMp5wfzjkfsrI8Qk1SwUmz2mbrolZSttsLA+eKnnwQgUSVm4bLr7aQbiIfHt5l1A3VFWJc/HmG60xumUKDkFJOy4lUniQFkq01O9R9yDaFT7xOjofO0HifexFEJ/jQ1+UjtOm39mmwVuLE47XP70PgHTw8reWUELhcTR1bHmtlIp9F5zHllVM9VWKQEgF2bJYDEnG6rLOWsowQ1sdS9OnHjE+xByWmO7skEIiZQQgwqdW3N5T1xUQu1oqKel3i3kFwVYQhog9cLwR7FyxeA3Cw+l3TQQhTRMFyzpL2UzpOoTDrKXYpyfgfayX0F4wIWJKcdHvIYcd/EaPemOD+vu/H7G9jbl6FX39OmpzE7m7G+n6RTHmk573EOZARk4mmAcP6H/1q6A1n7lk+K9/b8K3X4EzumH11iYyl/huD4w+ct8lHO0zs3BMsfDv8A9PhktzBy3EEae9+JQ9Sbfy2P4X2YhkiqNhlsXj+SeEZI6fRzuu4+fV/n4cVLQC1vbatJlN7d8WtyVtJ5xDzGbI8Zi16iF/7EHJj+zCJ7494vu+/Y8ZjOUTx/kHgZE5m5PnsLyMXl1FX7mCfu455JkzsZrawriedOZZHid/XzuE9+T9ZZDmyJFjerlmeXUV6xTldMYz95b5rSuCWjmuD7c42H/E7p1rLA1zls+cAUqCXqY+mHLv2ts83NylvzTg0ovPk6+cZmdzB+0rNk4t011eQknNwXZJZWFS2sh0NRU7OzuEEFheGmI6XYRUCGFiMz0JCM3BeMpsWqIzhfDErEIdHWUUSoJ1kYOzITDo9vnCjYv8qn8XL+BLLz/kL/7zZ5lNKqq6Sr5C43ygriuqqqKuG1ZPD9GmxrsRrpxihE/hlbhoyYxhaWmZpZUV3FIMlysRmIwqth/sM52UBJXRGyzjvEVpiRAaoStsHSt953mOCJ5CR4mAs5ai143hO63Ii5g188mbpzi91+Xe+oSrlw+4fX7K2qaJxekEsQ5V6tDunENnAbxH7u1iHt4lf/M1xOjg8C6neXpxheB7PepLFxg9/yzNyjIQCCE+J60vkGkxaxtLNSspy5put4tOyQculbUIoaVeZKrKGubNWIUK+ERTWiGYuO8NanyoAYn3Hovnqz/zcA7+P/Xrp+hMdHz4U6lhpXOcdVR1RV1V5CnTxlpLVcWuu0Ve0CkKigQaDjNtBGVRcP3CBR4srXBhd4/TW1vkTbMQyz3MPMmc4/LuLquTCY/6Pe4NB0xNNqcItclARF2GIOBF4OGLsYcNAVZvaE6/peO52To2nOp0MUbPBVFzRiShDimSMClpP5RKE3HLgswnXYnksLutC4FAbGoXBPhwWDYw7ippUFrdAS0giOXinfNIrdneaHh0IdJ8yw8NG3dylFAIJdA6ZrdEMMFhB+QQP48FKONLY5RCdooobmviS2dtA8HHSUsqrHMRVKTaK0apdIpRnxJwif3wsVGUc+j0Ha00tokq+CNzeS7YeSqGy4SHjaux1bj3gVlZ0ykExsS0wzb01RZqiiDiUH8T/CHLQJAUvSEmO0R2QQjCxgbV+jrV930fcmsL9egR6sEDzM2bqHv3kJPJHxraOfJ3a1m5OeGP33f8sX8C2tyhW/xzwtIqdnkZu7JCs76OW1/Hra4SiuJQi5LA0yJbsBjeOJLH8QTHfIQZCXP4+1izuvZYiwzFfH9zwCPmPxa6jyAXRLVPKvP+JMCxeG6So+f0JJDTjqd9h+ZMyeJ1ahrUzg5mZwe9tYXe3kbu76P29ljb3+U/tztUCkTwmNoCj9cfed9jE0GIO3MGd/EinD+POn2a7vr6fCGzeB3nPxdpnMSBxo88Uhvy/jDF95P5BpLzV0qjl1aZHozxruG5zdXYPkrCO8M7bN1XSOEolgqEHYNawjrHzs03uH39BioveOqZZ1g+c5lq9y7TzTusrfXJz55DCs1ka0RZO/YOxmzvjuIix0Wh5LDfR5uMuq6orU9hiAiytIwsRhAxpN3YCkkUtRfdDiFVPkVJgod+r0dhMi496LO+1+HRyoxrG/tcz3dZP8gwWmM9lHUzX4w2TUOWZUwOZjy6e49Bt0OYVWQSVpaHGK3odAtWlpfp9TpxfMEihGIyLRlNZpR1Q9V4VJbTSUUwlTGx6qxUlJTMpjMyrRkMB+TG0FiLLGKhv1lZoQTMRiN8gLXXBBt3Mu6tTbh/dsqtyyPOv7VGk8L6zrlYJC7Vv+pUJd3bt+ncvUm2vRmzB1sqtC2DnxbMPtOUF85TP/cM4fJFXCB1VY8VxwmpL5mUeA3KOiD2F+vkkk5RMOz3EEJhTUObnSmSrxEyJgp4KdJrZKOPCFA7yWR2tIr0+9mHGpBIKbnz0pibH4vsyGDL8LF/vxqpJyHxUsbeLQGUVAx6fWZVyXQ2i1VMO52YAlw31HWFlh4hipQGu0D1CkFQmsnyMtdXVtk6c5oLd+6wtr2NTI5pcRIE6NcV3d2a06MRd4ZL3B4OaVIJc60MeUK3067lxudKmk5ANXDlSwa11eB0zGbxNk46Wul5hVFjsqT5WGRHBAEfwzVtkaSw2ICLpBkJ1NZRNR5PrHKaywyESWxOjZApjTgcdYKtvsSnmiIIQZbnPPzkhLobx3n+nZxiLx5LSYXKVdLLxG2893PtjHdRiW5S2Caei0wN9lSqSmujPsR5ZPAEn64F8RRVeu9sKkInXINvaxYEj3SpSaBIadOB1OxMtJw9Vge2nkpdfz2sv6NjSrL3kQ6VYq4WT6c9N+9joz+V6iRHDZiEEEFj0R/Gthk8gfVQCn/mDO70aXj5ZarpFDmZoO7fx6RsCzmZRGX8As3/JL6i1VkIIJs25PubiIdb0RFrTciy+T+3vEx99iz16dPYU6eiHsWYBLiYt0aY24KjXnSiLVNxRDC68B4cGeexEEv7nrQl84+eDMjQruIjAGnBSatB8ce3ScdYWAw+EbjQHi8df87geD8X/MoQENai9vbQDx9ikvhUb21FHVBdx38p5BaHHCIJodKxxAIwfZ+xBikJRYG/eBH7/PO4K1cIgwGi00EaMw+LPWnbo6zV4Rn7xBq0FVkxPQg29mxR2aHD0hrlM4TJ0boizzQf2T6DROAIvJ7doqqXeebsOTJJFD7W8Oj6O9y+fQ+VZzz10rN0Ny4x3dnFHeywujygWD6HzAe40Q516ZjMakYHIySx7obRkuFgCEIxnk5jF3IZWyxY26CNIesPCcLS2IaO1pSzGaPJDKUltXMphdbROE+n16UQgtF4Srjf8OydJR6tzpgVljef2uPHDy4hpcCV1by9RJ7lDIfDxJ5mbD/YY5SN44JFGvJc4pqapiqZTSexoah1GCGw1rJ/sE9wjrKcpLVUgOBiKwznQQkyk0X22GmQgslsytZOGUvmO0tZljHsbG3qvKtomoorX9K8/hGoCs87nxrzQ9+4gNltaBJos40l1DWdO7dZvXMLMzpA2MjMtjVEEpKOj4lQ1KsrHHzsI1QbG5hBL5639/OEG3zbpDQWqBRWYa0nMxmSlA3a75MnQa5PzcpU2yw0AUmlBHiBD3Eudi7QeEHpYNY8mWU9bh9qQBIMfPOPb1J1HXj46H9YY/lREel8YrEdrUzql1LTNCJ2QMwy6qpiPB7HltZFh8x0yVq0l5x4LE0fp1spFUJpkIqDLOO7wyGrW1tcvH2HwXiMbguXtUCAGO/s1Q0vbG9x7uCA60tDtrtdZkqhtCEvoN6oefsHYrpsNhG8/G874ANNVcZaIjqqlUJ6YaMQVCdq7HClGWIcIoWbFrzTwvl4F5jMKvbHE2ZlDbTF0QSd7oBOb4DRXWSwiNDQTuOHdSYOC6LlWY7WhqKTc+uTu7E6roeLb+Rkuz72h1A6ldzPIhhJDIe1NsYqtaRJzFUIjjzPUNrEdGYV/1mr5k0OfaIJM61QeRfnmsSghMOVbYi9KYQUCZTEeDkpBBNDO+D8Ye+6Wjk2n47skK4FG1c1jXWIKlaPrJuGIsuRImpnIuA9vPYkQBJFy5F9sYnBKfpLKH3IQMzFlu09S6wJWuOGQ8JggDtzhvqVVwhNE5mT997DXL+O3NtDTqeI6RSxUCJ80QESYvG0xYWzsBashWmsU6IfPSJ/551D0KEUdmUFu76OXVvDrq/jVlZwvR4Yg8syhNa4LAOtQaknZun4lgXiEEAsApXj4Yv3m6KCOOwkvPj9VAKMhadxzrC0bMZxFmQOSkKit5smMh1JzyGaJl7PvT10y3xsbkbNRxL3zRnG9xlveyXEHOTG+7E4hhZ8hF6PMBziLlzAPvss9uJFRFEcMiCJdWu3fQyQLOhk0gdA+yx56mqEQJN1BpF5lDpeNVHHjsEidqgVQiLzApAUvQxXGj42OkXmNI2qeWd9h6kJVGXFZAzd9RXKhzfYu3uTuqrYuHCG9TPnqKf7jO9fY7Dap7NxBZGvgT3AVTVNVTE92EWLwHB5CVSGJC7gJtMZjW3QJkNnOUIoQnBUVc2knFGVVVzde09dNwhiyflp7VBaYZsYCq7Kin3nmI7GlPtw+WqPL38UysLxzkfG/MSbClc7Mq3QStLJs9Rt+FDPV1WWvdE0JjuYnBAswTuqyYjZ+ADnPZ0iVl6NmgiPczbqy0RsZ9Hvd5MOLjYznVU1Jjc0TcXe9jZ1VUVtWwJUUsbFUSvWdaHGes/Hf6PHv/1L28yGnm9/3y7uf9IsNTnT6QztHcu7O1y5dYul6TiC9jYsOWf0iVoRo/Ebp5k89xz7l87H+SHEwmyHC1mZEhhkDNsIgZQaYyR5Hpvu2VRRuy2WFpGLmPel8nhUiMyc9x6X/IX3ghAEjRPUVhKO1RF6P/tQA5LNKyU3Uqpvf0vz7JeH6Flsbx9CepClwGhDpyio65rZbJZqWGRobajriul0gjGavNeNDyvtZLcAUNoVxyHhwKPVFXZ7Xda3dzizucna/sFjYxSJaRjWNR/d2mK7KLjX77PZ6VAqzfVPVuyfjqvz82/lnL3VNnwKqaW0OKzMakyKt4qFCekQPAXvQMZ04ha5IuK8BDFEM52VjEaTOXMUmYPAbDohG+3T7Q/p9wbkWRcZGkICJjF0A23/oE6ng9aK2bLj3tMVTkF3JDl3M0dVASciK6K8jhVXtcYKh00ZOoSYLZQZg9c6TgB1g3RhrtyWUmJMrLViRYPwDpFSlYUUZCrHe0/jm3T+h2nOOPDtifv2ero5IIn0ZhQaT1Y9k/U49S/fUeSzSL/WdWRvjIpNAJWKAGqxQZ4gTmqLDcsgAhIDFIMhYuEta1NO26+2wtj56n6B2RJ5jr98mfLSJcof/EHU3h4yrdbl5iZqexu1tYUYj+MdSjsVoWXMnmzHWQqsxWxuYjaPNsDyeY7r9/G9Hr7Xw/V6hG43FnUrCnynE51snhOKApfnkGW4LMMbE2PYi8d9QhjnSA0UDn/xhDl70l4nwSEbcwSUJEZD1DXUNbKqkFWFKktUVUFZRq3HdIqYzWINmPE4pt+Ox4jZ7Ajo+MPWck8CJgLm6csRlwRCkRPW1nEbG/j1dfypU7jTpwlra2CONmoLC9cnLPx7IkPy2JEjKKmqCePxiOHyqcO/ibQnmQE1OBuZEg6fV2kKZNFhuQ5cHC/z1uojNpcrrlWbhNtTkIbs3gFM92iq6DjrAOP9fUZbW1A1LOVDZLYGKILwset2UzLo5ixnXZqgOCjjXOKamrKuyEyGEJKyiqHpqqpwqVZU3dgU3nX0+10yHUMhnhgq8C5myjRNzWQ0YTadwExw6h1Jd6aZdC3Xzu7ziBErLkdLGTPv+r3oF7REK0NVN+hcI9NiR4gYeihUhk9lH4zJ4yLExFBLVdcoCbOqoqxqpBRUZYl1nuAaJpMp1kVtRl1WcR4nrn6UlKlobECLlhVOPbqc5+x7OZff6/LWJ8dsbpRc/diEH9s6w8rBAWu7+5ydxSKMom3yCiwWyAtC4jdOYT/2cfzLH8V3CsTeNtiS4GNmZ1ByDphlyzA7h/OeTIAWiiwzKSwdOzE3dUXT1GR5HkWxwaOkJNeaPEv9kUIMXbdhVhcUDk8QEqGPNSZ8H/tQA5Lrn9hn+3xM9T3/bp8Lb/ZpqjoJbPRcdzGdTdFak+cZWZYxK0vGkwmZMeR5EQWatqGxTXzIU7OngEMqkMGjlEeGtpIrMYzgA6U23Dl1iu2lJU7t7HDp/gM6ZazHMV+1pTieDLAxK1muavbynFvDPl/7ke35DPjpfzskUwYXYqpVY2MV0izPMVojtUabLDX4Ey1YBRJkSEJPL1LRniQGk4nhdUk13QIRmbJXInL3VOWEup4xHe8zHK4wHPTJtQTfRGTfhnDSi2WU4u65ku3TsXPwynbG5c0lOoWhTgLSGPdsMFkMw2ilqH2YX782xcyYw5BU00TdSLuSAYFQGqM0IXhs01A3FUZnKBML3rXl/qPeJTkEHwfsU2aOTOcaiCGjWOFV8vDZhrZtyKl3swTg0oqAdp8phLW4QA1Rla4TYFyslhsCICU6zw9lCOm5faKTaXUS8Fh/GFoGZX0dt7aGfeml6GSTY7V7j/h6+CL24Q1efg0Gu0fByPfCSjzJWsfO9vbRoQoRw0DGxJ487f8rFT9XKn6WZfg8j4Aly+J30jZB6zgbKkWQEqEtPzF0TA30q4beN18lb2Rs6eB9BBzWxqyjpoEEPkRVxX/Wxnha+p5wLjIg1sZsJmsjCP1PsPcDIMevpc0V77wo+PanAqurz/BTBz+F6S7j+33odBZWpgvPyuIxWoZ1AZi444zIgqal/T0E8K7B2Rl50UHrbAH8tasSQBaHqxMBBE9wM5Ce7rBPVQle3t7grdVHBAE3zo65dDsj6xmqvU0yETtzl7Vl8+4mdlpRz6ZIqeifuUhBjsCCd9jJGJVLTg3WKEvP/Z0xs1kNShN8QJkCqQSTyZTaurkDdLahnE6YlRXSZPT7PYbDIUXKMIxaNjHXcc2mM2aTCU0TWZSN64rlHcOkZ9k8VTG+LNl41+BD7CEzKSuqqiGIEDV5IZZPaDvTVnWNVIImZeVYaymbSSxGdnDAbBYzTvCWKoEzW5Wpd1nSBXo/X7z5pDFDRBZVaRNDI0mo3/6bzUqK3OGD5wd/9wxvvXIVAtw4c5tnb1vynT10U8eFRgrLxJDMYWEz3+lRv/Jp3Ec+BmdOx2rcviErOjTT2D5l3voDkViTmHLdZvG0GZZaxjoi3qtYIbtpYgqw9zgEVdNgpKSTZciBnJdjcO3jJQUKjXQB8eR+j0+0DzUgefOz2zS5J5tJPvqlddYnA1wRS6vPZjO0NrGmhddUdcnoIApau50OeZYxm5WMJ2PyLCPPc0xmqJpAaav0osvU4bdlKtq6HFE4Oi8dLwSTLOPWmbM8XFvnwsOHnHv4kLxpkGGBeE6TiPGejdmM5WbGf/OPJH8vy7hxJvDK11YwKjpS4T1KxdJmzjmylP6qdew6fGS+AUg0oEjF4qWQBOFjGqqINJ6Qhizv0Q0Z2kTnLkQsR1+nBlLWWqpyynZdUc4GrK2u0MniOA4dc6yUiPA8uFCydSbmuq9t5ly436fbiQ9oXdexWZ51uJlFSo1KRYKcF2gVK846Z2nqJqXkxmyapokrFq1SEzrvsbQrDIkta7yvyYyOef1Jm1Jbm2K3MT2wvT9ayUS5xs6hMdYehdEPXj6sEnr2rVhbAikiYxwC1nny7DBEEUj/kYefCZJI+JCowOQdTKHjtU/3/4gTa1mRBTCyeEvnX0vbHQEqnQ6u08GtrbH//Br/6PPf5IuXbnB2p8cv/7Mf5Ue+soS6dQv18GHM4EnhCaz9Q7N5/jBbzPb5g6wNU7H48/j/J/MC/o//ssFLkL7h1OSfHhZ0m+/waI+gxZ/vx2y8X5jlP/Y7c2vBlzFR/7G2hrtwAXfpEr/x/ff55R/9FzwaTPipG11+8EsXGNa9I/e+fVaOHH8e5l04x+Og9H0tEGxFOdvDA/1UQXUObuZn2IKdVuwYCHZCmNwjaAMUZPmAj2+f4teei/207n/Ucfb2Butn13hw4zZbW3sczCxCSlaHPQ72Rjjb0OvlVFWF93XUUjUl2bDL6rmzhEnJ3tV77O/vUaORmsR8Zuzs7mCbmpWVlaTlq2Nq/mSKFA1Zphn0+3SLHKN0ikS3OonUaG8WWYrGOoyWnL2Zs/Yo4+6FGffXJ3xH3yJ7uHKYeZcogaZu5jgNKWPlUZMjQ5gXrgz+sAdapiR1Y+N7rWOZAudjQcfgLDL4eXFJKWK7c5corkBkaFGSvNOnN1ii1+9T5J1Ugdvj6orQlFTVjB99rcer37zLn/7XGX/yNyyD3W2ETWkQKcTbdndHCHynS3XlWWbf/0dQp06hMp00baCMJu/1Yt8bV+N9DJm3Xetd0qZFPUsTQ9VSzTMjlXTpnGI4sqkbah9SRVqP0SYuCEUEW9Za2jdRSoVREu1By+/taf5QA5JbL0cx69KjnBd/ewXvYlZNt9fDNg1lWTKZNJgs1hzx3se+Mql0fLfXnWfaUNVobZhVFk9ILIKai8PkQpndtnmampeGj2lPRmtCnnP10kXuryxz/uFDTu3t0U359HOtRyvo044f+mrOK28YvnsFii3FIx1w3uGDnMfprLXYRlJkhtTdIb2YxIklgCAWQ4t9aESafySWKC6KZZo1/aUOnWF8WBCC4B3W1tRlSVWOKWdTmrrCe8dkOkZphVgaohMjQ0ih3eCxWnDnypRZ38VmgNc6dMc6pcq2RYI0TdNQ2yaCI+dQSaCbJ/bAudhnyNomildTVkBVN9TCxkqAMgqonPPYJCTOjE5sWAxjeR+QVaxlMi/uJuIkodM9FFrh0svhvMcHePjioWPdeNvQRj9Ix3PSJWYlIv/WabQ6kjkrk1ZDQkq0NFHQmuu5o2wdEiwS7Qu/P0GXwbHvLzpzmX6vtOWgU1F2oBxmuCtPMzMvR5rZWuTubszm2dyMxbgODhCjUczmmUyOVgj9Hu17ATLzVf/iz/cxSSCrQ8wibEMwvP/1eN/j/Sd85ziD1P4e8hzf60EKWfnhkLC6iltbi2GYtbVYC4QIKvKuxeWGJoNRXlHpBlEdrQp7fB0RDxTBQoBD/chCWPAPNk/ARkY4H8TvNxXozrGjzM8KcNDs4Q8eMtl6RO/CUzFE2Ozy0d1T8y1uvRDYePMZ6skjqtmMaR1Loa+fO83pc2v4d28wPbBsnD3NxtnTKOnA7iKaCtXdICiD81MIDm1yprOappqAAN8pCMHT6XTodDtoozGZwWhDpiWz2QyTaXrdPHX6jvg/ENN3hYjhU6kURV5QliXOWTp7gvPvZrz+CRj3Le+c2uK5mUCWfp7hFxJgc2lRIqTA1RVKzSB4pDKxYCQh9qEJniA0Ou8QQ10CsARfIXBkWUZudFysCjFnTJ1r730EJEFIvDDk3R7D1Q0yraO2xDUEJemaDuuu4eJbU37lv16nO4t1kSpt6Tid5t+WGoGmKJhdvEz18ivYy8+gk+i0vcutmTzDFB18PcM10xYuzCM+wXuk0nHR5yw6GOblKRQgYp+cLGU6uqrCp9Rf2e/F4mfWpsW7nDdfFSGQaYFDMejkf8hzHO1DDUhcqrXy0n9Ypv9A4aUjiczRWjEYDKjrmrIsqcqKTqczr0NSViVlVVIUBd1uXMV4HyhtRJHRt4j5DRZCoE2WWIU2zdOiUvzTaIUxkckwSnHQ6TK6cIG7K8uc39rmws4uxjnajJwgAo2JL8TSSPLjX1H4ZsY9JXkjBB4ohcoiEzIpY1M+7z14hwhqHjeM700AH3BCUNmYi2B0RMDWeXzK+BBKxb4HRJGu0iYyJD6Q5RUmy5HKMJuMqOoSZy0HB/sQAsuD3rxRn9YKk2mmPcfN56NQ0jSS5747mI9JSBlrSSQNjGxi9cIQwrxRHyICI5V66Mi06onxraiZcS72o4nHbesI1Bht0EanBk8xnqmUolPkVHWd0qNT8TUl5zockcr6SwFlVVMHx+YzUcNjpjC4KXCpkmMMu8ThlFUb6hLJaYp5zDmEKNqJjI7CKEVQBlP00JmOao4Fpvwx2r21hVXtomNcFGvOvwpzpmOma6YmsjyZ1/Tq4hC8GBO1C6dO0QB4j0q9U+YC2fEYsbsbNSq7u4egxb5/qt734vyPnANHJ8n3+/z/l+P9p3wXiILT4RCWlmBlJQp8l5djs8Okm2l/igVdzCKjIUJg2BRkKQNhaipmqn4MgLwfk0P6XBwDLo7Hr2PcUfyeT8+/1kXqfRP7WZHGNv/u4kH8hDC9z/jRPba29hHrZ8k0ZB3B5ek5uo1hqhvePn1AU415dPsB++MK52F1dcj5i2ex5ZRCSwbnz7F+4SVMdwOYgfLQvxjrnpSPoJ7RKruapmYymcbFTJ3T6XTp9rrkWYZSksxkZNpQFIbgYnadTNVA23DDfFGXxOO9TsHa6jLWNhyM9rHWc+UbOfpnBLUO3HypxA5gELLYZZcIfr1P1Udly3zHCs5SZCAlShu8Jy6SvMB0h2SdPp28G9OVqwpvK2YH22TK0SkyEHGsMmkNJcQFloxsRiz2ZqnqioP9AyQwGu3jbcNpAacmI3q7e+jxhFkmmKR+dI32FI1E+BhudlKys3GK/edewF98hmL1FCb1NIv9bdJtJkbolFLoPKc2ObaeonxAq1QzJJV8iM+Git16vT9MFU9TkpQSpWLLkqJTUJYV48kYbx1eByweZW1k3kXbUFTGRb1SbCwfbZ75fvahBiQA+UTyyX+2St00aKXRWuFDYDYrETKleC0tUZUl09k0CjKLDkvDIWVZpVoVEfnbpqFpqhQDDHPthUwNVaTUKd1WpgwejRUC0TQ06dilUmRakSXabKfXZz8vuL26yrOPHrF+MMI4h9MB35b7daCcIPOe/y95fxpsS5ae52HPGnLYwxnvPNdc1SMa3WBjIAkSIAlSHA2SQZu0pB+0JEdYNhlShP/KYUY4POgXLUU4Qg55Ii1SNCWYEiGCEEECIEAQ6AHosbqra647n3vmvXdOa/CPb2XuPOfe293+pwpkxalz7t65c2euXLnWt97v/d73Be+5FiMPrOXtaUmViZvvybKiqmuB0dJk3g9sogni0SSxIK3xqZd57wGFlRmT6CQitpnkmbWRmgybFaLGlzgq8eRQkBLvqKqKaZmTW6EUGiPozWoeeO/1JQB5o/nkm1sDjwPoezI2kT4706W8bUCTSt6UlzJfY1G5WgvuIIOtoA1SEte0Yk4oJWlia+1SLhfEByfPDPmIVyKnMWBKwyAkioOG08uOelsCw827hvxECF49+71PxYROJuchQaAgeDnPqJPeRTK5UslTxxYlJjNnJqHzk9Ggpvq8Dj6C8Pt/j/eNQG07VplIkOc+Y6OdrNfDMQ5ISh+kxMmEOJmc4bJE79GJgxG8l7LX01P0wYEEKClgUcfHUorcp35iTIZdcVgVDX+fu5TnBQrPuv5npjae10R9+6SfOPq7L2GOWktgsblJ2Nkhjn+2tyHL5N4ZQ2cMblxJdA6lGJ9b7w+kgK12Qp4EoJZZTW27tQhdf5wRQppe/P4BVIwENZLLPxdkxETytnkOURN9TdQGxei451N0XcPyyT5PHh+wd1zhP7rHpYsXyWZ32OwstxabfHd7n4NswTvLN9HHDSoqtrfn3Hz5BWy1Al9x+8olJjdfw2xcB7WAsAC1DXoKNJAZwmRKF/Zpm5quEYKndyKlvr29w6QsxfOLhGRaqfLQgHcdq6aRIEKvq+0kZSztXJYlW1tbVE3Lcrmkc47bX86wjaKdRN77ZE2zZdhYWPJc+CvedYATd3Ddk+dl7COKb5bJCyHDe0fnRWph9+IVZrNNeuPVenlKVxoK4yQloTRokRxQWpFbmeB7LlrTdoRY4esOV9eErmPWOW4eH3Nl/wlZ8Ck9q7BBY4LCm4jXAW8CWmecTCe8e/0Gq8tXKXYuMjUG6zsshSA5SYFXLEZU0qiKFJmhzUviUqViCdA6S8GT9EtrBSXxwYsuVZoHQSTpY0KNysRp7NFtHwPRR4wTQnBfGBJjQBHJNWzMniruf+b2sQ9IPvsrl7hysgXW03ZSBprnBXme45zjdHGKtZbpZMJ2ntM0LVUtTrOT6YSNYo2iBC+CM8SINVogxKQHgJKHX/JlmhA9VdsIGpNJVYFz0rlbo8k6S2ZFXdBow+FsxldefJFLp6fcebJHEQ8lyo9gvMYEg0K4GSXwkvPcPllyb1Lwrla8Zw1VSjGIB4PcYCk1c7iupfc1IEW06xW3wnudYDmBLENCawT1kc6ntSEvJliTYW3GydE+VUrhrFYrzGySVGBFhfTu7RUHlyTdceeDKddPpnRWtDt8b2+dhkVj+1SOpXPiExOSTH3XtYiaraRmtJLI3uMHqeTe6holbaq0pGpisDLI+UDXtiiEzW1HK9kQI9FDFI6+iPkoQakOXvG4XE5z50NDXp0dyCMS5Okh9Z5SZEN6JQ751YFYG6J8lyrwKepMz/Iwk51fMT9v8h10OhIa068Q+/c10NiWVSZE6txbNrpRQMKzg52xKy6A6ommRSFoYYwycd++LXD5+LMhCMJyeoquKglQVit0VUnFSlWh61p4K96LhHUIogaZ8vO97kc/QXs8719e4HTABs323iU05kygQeIPobUQZ/vfWQZFMQRacTIZqoFUSrn4+Zxo7Zl2OR/0jFeWAwH13H3qt3F1UF8JtNmMA5KGxrZn0Ylzn++/7wyK0iMuo0AnDM/xM45jc3KbA0LIVybHxw7TH7kPgqQnA562Dtz74CEPnxyzaAMbdYXVHpRn3mleOL3Ed3f2qaznW9uHfLHYZbY5Ybq5ycSvyHTHxtUboC/C5AKgCa1D2asoVQALUA1Ew/LgGNe1wiUwlvk8IwYp8d+czynyXnFaS8rVCBfB9KvstpPqD2vxXhZTUUmVjbYGqy2TScnOzhZ1teL0ZMHFA7j+dsHbP1ZxeLnj+LMTPhFviGWFNtSrJc3qBKNEQ0gk0IVXVxSZcNu0LDiJgaruOKkaTo4OaJuOrm2E12dhnivKvKTIs6R0jRBwIbn8hmHBSNRszBRZ5shWLTurU3YePsTW9foeKY3SYKPBBI8zjqN5YP9WSbnxST7c3OZk1UgJvHM419J1DbmfCNHXucFoNK6BWUxmKCYzmmpOvTxKFiExKeMyOKgbY3AuCVYic41SbghGeq0YpRU2s9RdS1dXZCldEyLYNDe5VLyA9tgfLh75eAck5bHm5V+e4hYdk7wkywvqpqJqKow2FHnBfDanaRtOTxdYa5hMp5RlQV2Lip7oZIj7q3PdqFJCURQ5ZZEPBKAQIoWTNEI/UdVNQ9M4vM+EQa2ECOucpzVqQEuyVAe/t7XF3Ws53/rRJ7x4r+Lnfr1kWqW8pAaCppdDykLkhVXNJaW4AnwnRFYhUSTTAOWdp6krMaUiJn5Gorbq9QQaOnBtnTq8CKKpWjpwBLx3IpGe5WilmM42UQqcd3RtS9t1eJ+jrUkDaeTbP3o6jKaf+do21igyY+lcoG7luDHEkTW8xhiwpiDkGW3r6LpukIF3KSdsUue2mZVUz2o1cEKU0uSpIkd4KLlE6iGmY3mBerUa5N0lYxLX8RmKrhXi68ELjpDJPd+6a8hrPUz8/dOslejAhPSEh8RS73lBff9QZ2YWI5OD03ROFL/7NFCvfzJMis/gjsi+8aky16cQE6AxLSvbIySWjXbtG3HGqyZ9Lq7fHL7r/PePP9eX1g6b1rCxQbexgaFHoM4hYzGiQ0B7j+86SAjMUwFKQlcq0/C3/tR/wiJv2Ghz/m+/9JcoQk5MhLo+AMEYEZTr9VCyLJXjrwnC/bXEhCycDzDPtMHounrhteE2xjXZuPf2Od9Otr9HSrHZTc6kbFqz9ioao1H9OY3Pl2cc/3zQuN5Gk1f/NEZNWy/QmUGhiaEFXYyQMo+rHhN8i1eb7B0tOa0dm7OSS9tzChshLJl1m9w53QIkVfDgRcvFxSeZbG+TWUc8fYA2E5hcQuWXIWpCqFkeH5DPDMUMiBp8Ac2KidHsbM6oO4imoJhOhbRPZFoW8uxEpEotJXd0Qi1AYU0t4621woXTKc0QpPS1T/nOplOuXNplVhasqpof/cYxb//YPVDwzk86fv7gBSmHV4quqWiXB2QarJHneLDkyDIhziuDthI8abNi2XQcH+5ztL8vCzlr0bMCU07QJsNkORaNjQGrNZ0X4TGlDUFFXAx4wC4XXH64z8bhEcViufZcgjQwqCEYNcHwO5+r+Id/ekW5c5H/2Zdukj3s0FUtBQhpAS6mpCKP72IUlVubvKiiaPcaJVySYjKnWZ0yLJL6HqdSEGwM0XuiF86NTR48MUrlkA8SYCmtcSHQORm3Yy5VkF0nfCZJ2RtBvINHP6MXP2v7WAckL761wyv3LxG95/jkmEk5YVpOCUWgqipOT08py5KyLKGAuq45PTkhz3PKyYTJZEZVrWi73uMk0ldkhBBpmi7lNy19qZ5J6q8hBDIbsUYEt7quo+4atLHkqW7de3CdFjOkIpObhqIpNF/+lOXv/cUVv/yHHf/x/+4mV5+0SZkSBofdNFjNQuSNGLgRYa+qeCcvWE4mdDHSuY7gWzKjKPI82VsL2bMv6fVe0KOu7ei8H5jhMXhUt1ZIpUdfjKAU09kGXdtyfLSfvCN8Kg+Lwyi7tW9ZbHo+/dUtgo8UuSithhjloYRBAbOfdpVWZCoDpGTWBylxdinH61KJcVEIEtL1MG0STCMhVs4H8txSlAXeR/I8o6lrms6RWYXyonA4bOmZ6BEV8c5QTPc1CxPY/dCQVWpI1RjTc4XUYNgX4vgxTv9peV+pJBgUFTrLKKYTtIFmBZM5oEWQTT7LmYDgWevfMyv4cyvk/jPSroppV1K6inlbUrp8tOPZ9MDZgzw9GcIo+Ej7j9MOfZB0/pyfGm6UIqTgIeb5U2jAcJw+LWZr3v5MyXEZ2GoK2jdvYrp8fexhpZ8+Pw7ieqRlfH19gDI6t7Fcfr/P+L1nmvONzllx9p5oYJJ+QozgcraaCaXLmHa5BB7pmGYcBDEKQs99z2BH0F/Puc/J1vson8VplLKcnhyyuTEHpsO1RiKh2ufog+9Ru8jG9TdYOs3G7jYvv/IG2zcv4xd7aKeYtpE7+4q8U1xaTdm4cYOd0zdQbgntfbh4A/QuKttef3+oMGGFVsfpfHJwRxAXFLubbCrLaQO6gCylaGIyy+u1g5RSKd2AuFgrlQzdclzncJlUrQjfTAl3xoT0jBoym7G5ucHmtKTzgT9xD37B3WfjNBNBtbSoCc5D9GyUhaShM5sqQxBdFK3Jk5cN2kCMZJ1nUhYEJWmdPM9RRCaFJbMSJHU+yURoxbJpcYnb06WxhuWK7Y/us3VwQNa0ie8zsmxQit6MDq1opjPe+cwl/tb/+l/zwc3Az71donJDlinRz6qkCMA7J67lXYu1wnF0zmFsLuJrQjvEGEVmoZxMqfKC4NqhBFgCO9Em8VGCGB+E62cUZNYCDqWk4tA5J+auSpCtGKU6R7RlxAHe6nVqPISAa6unevGzNhVjfLq//w98Ozk5YWtri//F/+oLfPqtywTnWVUrFoslxDgEIc6JBolzLpX7ippe0zT44CmKkjzLabuG5WJJCJ7cWmazMnmpCAt8c2OOTaI4op8RhvxaSBFj13U03bpsSicmuFaSWrDWUOY502khJWa55nin4sM7B/zEVy6xe3DEzQd7bFY1WY8GQPrO5F6bfFKCMXwwnfK9vODBqiLowHRSUhY5RVIilDIsI+caUyVL3YoVd9sJobPzEvwYi9biaZMXE4y2KB3JjXjqnJ4egO9oOyHpzSbi+2Mnlm4aufdizUvvzpj5jFmRUeYWFwOruqNunEB3PXyHDCok1EGuUx6Mru1o0gPsI2gjA8JysQBC4gittUl00psxSuN9EjaKQTggRtO2HYtVLSV3kDx+1MAC11oRNHQqcHzBkzeKjcOUf1dJ8MyI0E/X+VTWm4TnlBok42fTAkgGU0YSHPn8Ii/+2E+ze+s6RanQuaA0/Wr6zAR9LgA4Ezak9541ma7/LXnmWnc01rHTzIeSWRghIOcntx4BOM9jSN8Rxp9LE2dQau0UnN47j+CMv2soWR7tH9N+44AEIk77AaHIvHlmkDZso7aK57+zf318SeO26w8xOlZ/rpAQsdE19vuMAxMNFDGywXpV1wAPygXWZ+hg0UFW/2MOTxx/x+jczgQ9I2TMAoVSa6/U4f4PVz+8HKNnuXhCZjXFZAewKAKhOuJo7x4fvv09ugCvfvYP8OTuO1y7fYnphZuAIp7eRcUMf/yEd5sPqOZzXpp9munmJYyrQS3lu8wVOOPcWhHbR4TVCr15DWVmEFuIS1CR6FvqR0c83luIfLiRBcSgjeQ9AjhKm9vMkhXlgPLWVcXp6Ql5WQJJEVkZYgxkmaTUnRP9Eq0ChQWi4sAv+dLOfXa+Y+FUUdgJikhdrbhw8QIXt+dMS/G5GYQW00JKUtKBgGg4NXXDom5w0RBiSCWsEde1qOiFa5fuhXe9rIAjdo5J07J7csqVgyNy5wcZmGHhmRSepdNbutmM05de5PjOLU694zc+/SGfP3mRm+0FQhc5WSw4ODjk8OiEvJyxsbnLdDannG4wnc5RSpHnBZP5TNSuEXFlKwr2uC5wtPeIanGIsRqr1JDKciHQtG0qnPBSam2Sh45zdM7jEzqSFyXOe5arijahNFortqYzNuYzucfWErzIOjx85WU+/+f+IsfHx2xubvK87WONkHzirasJzoXZbE5eSCpmtVzRtA1lUTKfz/HOUdU1J6cn5FlOURbECK7rIAdrJSfWj4ZaaSaTklUlRMqm7TC2N1dL5aOIWl1fcdNPXq1zNK2jrlYI3yFHqVwQEycVI/NZYBoLdp8UXNq/ShM978/n3L2Vc3ux5MZiwfbpAhPiemUYAkO5cQi8tFxydbniPSKPpiXL3GKLTOytjU7Rtpgf6YQuWGPoipy2bbHWsKyadE4NnhZjxQzMJcJEsJb5bIONjS1Wi0Nc5dAo6qQ+OA0TSlfw6rfmIjpmYiqljVitKTLhrNB5uuCGoMokT4neHBCV8o65xUep7ffOJ/KVxlgjQhVIuqQPaIIPtKFLjr89OoEIykUzpMna4ABFL5Uchtw8mKhQ3rD7QA1BhiAdEkgaY2idBxVkMFE9T1INE6xRmi4EbBJtD2iy6YRiPiVGsJkEI6LKuo4lzkujp6Y4u7Ifr/qfgWjEFJyZqJl5y6x3HGe98nzeNgQT8ey+46Chn6j7SViTPGxGPJbzK5pxMHAeXRgm36fOS2GDHQUu5447SlX12MCzAq3xOY33e1aAcv6c9Oi6gTOOyGNURAEZgkEM+pNKUcTInXpOB1RAb74wRmvG/jRnUKn+HFjfl+F+j9EfNb6SM5gTKgYm5VRW9wnCdM0R1f3vUreaS9evszhdUk5zrr/yGYpJUn2OGdgM9+gdVk+OubV7jfzCJ9H5LopD8PuQ7YDeAIrRdzs54+wyeqtB6RmwSsjOPI1bx3QeAuJ43j8DxhhZKFgFqaqtX9yZLKyR0bR/DCF5XCnRCIpmeN6VUolkGdBG2mbaZHzhg8ucxpZubsiyMkk0XKYoLbmVype2V14O0HYiTOY6P6R/xbvLU7UtnZeAg+Ahiny8dx7UGjW0xmCByarmwnLFpeMFk164sSdsJIR3CESUwl26yPLGNY6vXcNvboIGs1rx02++xHQ6w5Qiz26NSYGYxbsO77t0Hi3eOXF6HvoxyTRVfoR3q8gnM1arEykGsCZxTmRsNDpZetSyALNISjrEiA6RoIU4G7z4g5W5pAVVEOSk7TqatkEbTdbLZvS2vz/E9rEOSLI8ozAmkSQd1sJsJkJZVSXE1aquBhM90Rxp6VZCfC0nE0FSvCfL8+SiKDDbrJhQFBlVLVbVRZGjE/KgVA/x6oSUBFSmpFRKG+nYvWqf6miagNE2cQ0iixiI3jOdZGQmmRF5D5nh4dWLLNll52TBzQd7zBerdLUqCXGth7FpDHwyRl6sG44UPDCG0yIfIMC0/JXOn6Bbo0W/I8SCPkMuRN+arl7h2habS9qHGPDBURQl9cqS24wi72HOluVqRdU0TMuSaVmQZ5Z+muqDJ2tNggETNK1JJDY1rPJkQgwYbSiLQh6QuqFzAdeTY0fBhiAgonAoJYEB7wGdnF1jpG5ayiJL5C4pEQwx4hI60qu59DVvSo+9gSQ1VBQ5EFNA0rfnenLoRZr6VA2xV4OFrCgp5iVZAVqlYET8xchUXE86cGZyHk8x57cxEfJZk+sZfsm5Ff14df7sgKA/2FqEbdiXs4GNDI1PBx1PBVDjTa29MM6jDiomd9307x6B6Y95/lzGiYrhu88FDkOKqd/v3Pdy7hjx3N/Puu7+LwNMYmSUGDtzXTa0qGWNmszRvQFZ2ufMfRtd1zN/EhplQNDE/pEhrp/tM0cUUS7XtRgTiN0ppx9+l8ePHtMwYefSDru722STHGM2EQ0TA+6AuDigXbao3avkV95A5xuocABqAfkFUNuAXS+QCEALqkCpAmKJyB33ky5EWnzjqRuPiwhiDIN6qRqNS70nswiOSemp7zq5/mTLkGWW3hcjKBk3CTLWWiPf6wPCUQIpZphZWi/kfVlIBpp6Re3FA8slMTAQiXQXZOHR1FUqDBB+Xc+96wUVjUpGjKmSM8tEGXzWdlx4+IT58SllK2n4PgWl0uJhHPz7zQ1Wr79Ce/sWq7Kkc04WRUb4G00jdIC+uMJoLVYcWcZimRRivfx436GU6M/EEFLgpnpvTkLKdmdFgdIW7yu8BufkvgmCHTHa4o3wP4Sjo4fqVecc4vbekeUFRZ5hM8NkUrBcLgleLECMseJlprOkxffDqSR/rAOSPm+f5wWZzeic8CRUpphby3Q6paqqITgpimLQIemS0ZoxVoKRFO26rqVpHXnuyDKLc15QkqYVIpPul24apXodiiSek1IrrvdAsJY8le22XYcPoqex9jMJUOZoBaW1lLklywwd8KTIOd7dYHf/mCv3H1MsG0FM0KPlniitzkJgtqq5VrcczCZ8tLvNclLik69AjCITHAeHEBI7XUMMogBrxFOiaVraymGynGgzqrpmqg1ZXpLpKBL2RuO9pevtvKuaum3Z8p5sYzaMV32bCFdDCvWU6suo1xNjjCD1RQKdaq2wWlM1DYtlLZO9NrJfEBjVJ/b6gJjEiItQZoKMuES26tM1vdR0TLnRtD5B0ZcEywkFJNon+WXIYjN5NAS/Pu/+WhJaoPuARckgkJUF5WYxsMtlMIlnJvLzq/fzK/kzq2TOTmDjY4TRZDgOB8ZTVT/pM97vfFpi9Lkz53BuctfIwNGTQMdow/nzH6/lObfv85CLeG6/Z13X2OfmWdfwrM/IHJ5efQaPZBwwnL+m/kcDOcIbeda6TxFRsSanpVASTLgoGkEqnXevLXKGZJsC3f47xj/LRUWpM4qpHb7lzBZT0K4NqBKrMkK34uTBuzy89xHHjeJkuURTc+Uzn0Sb+fpqugXuyQc0J0eYyRbTW69DvouiApbANqhNwJz72ib1C5tuWCCGJaFdoidXk5lhi6sq6rbXR1FJkyPiiYncrRBnbNEHij6twFMqUhkppwek+IA0riAaH0HJYsFhRgiXAmXQBjKjqE5OWZ4eJofvQFVXZFlG8FLtZ7KM6BwoUlEAlLlMqBoFqkzl/IYglQLkNomgWUMGZHXDhcf7zB8+RneuX+4MCGa6GgBxoZ+ULF97leaVF2E6lcWu9+ierJtcz+tG1K5tCkqMNrIQz3NWVY1rG5ybpPmrozeEDT6IlUPq0CEklCRVx0ymc1y9SsFKH1yJnYYokYuBYQgiVCm2HxFvDF2QikfvJPAwSmGzjDgpWSwWdK6jbSVAU2lM7IsSftD2sQ9IfEQcJLUof1qbDexjpRTz+ZyiKKibmqZq6LqOPM+ZJHTEGIOxhul0Rl0Le7ntOqpKMZ1OkvdNQ+s6Cu/JdQZqEANHIv1IjAof3OD2qJVmUhZMSlEjdc7TOod3Aec66qFmPLAxKSiKjOmkwFpNl7QgOm14eGWHD2Ylmw8OuX604GLbJHMliFGnvHdCI0Lk8mLF7qpmfz7l8eYmh5MpTRK5iSqtbZWS0jIlGKqKBsiGCbZpO5zvcESappLBIThmeUZmhVRmlOiDOO8EqnOOk4WY9rVuysY0H7iGPqz9Y1Q/CKl+Mkrnnx5cEUBCHv4YRTApLwgh4mNAOT8EFJJ+kfYUHQM1kEZ7ZKSHdHvSHJCCSLl361XnKE2hlIRuMUBQQlAL53EJQKlB1C0dbZjAs3JCnvQUBuAFWV2DoADD5MjTk/KZ43FWr+T8JD1GDM6v8s8fa5hwe/5IOl94+vjP4rSM3xsfs0dgbHpvCF7Umtcx5qoMisVKnXE+7v89NtPrV5RnAiw5yHq1qdZE1EHvY7TvWRxh9O/n8WjSe6Tj9QhLrhTT/juesS8otHZMZiXomkiJSBHKd/i0b+9mPA7A+qBk4I/ESFuJPYIdcw2euhnr0EgpCL5h9egdHn7vezw6PIVyzuZGwfZWgc4d0AJToj/FPfoa3d4j7O4NssufgAEZaUDvgtpgrZw16sh9sip2gCHUhyyP73N0cMj11y9gjMKvVpyetLjAoLQMCu/EYNPYhKim59kYIU+SFhkRZJyyJpWQCn9EJTQyKtbl+CEkQa6EZKhASKmUIs/QMQzk+iLLks1Gar3eh0pLCsKkKhGQhRJpoRR8xCPVe0opihiYLBaUDx6x8fgJWdcN93IoHR8/40qx2tzk+Mo1Dm7fZnblIpMyE0RQazQKbaVvuejwUYoCgnN0nSPPMjEJTEFJllnatsE78RoLwRO8EHR9CJggYXvwgihhACPcvOlsTr08JrhWbmgaf3vFa6U1xlpC4kz21Y82LdJj9AMZGCXBpDF2sAOJUST4VZLTP1Ol9322j3dAkiYkUOg0hBmjMaYg8yKO5boOm8HUGPKsoG0kKFHaJEEu8YbJcvG96VohfvawU28aJLXkATIQBdBxGalEn877Af7LMsukLCiLQkhSmSdzjlXVUDcNRMmH1o2isCKRbO1a2K1nnPsAS5XzYPcS75Ub3GgaXl6ccHmxGKJPWWX0kzvYELhysmR3WXE4mbA3n/FoPsMrQCW91dg7UMpDrEmGedakDiUicVUqh7bG4EyWZNrTIJ3gvMxarHPJi2JF07Q07ZTZVAzFgpwcSvcD+WiKiOfvZ0xaKTL4GB1S0Kig6/AkFV1GyEeQ4M5ERYNArv1EqNX4O9NXjjgCejzIx7MTU28X3rUd68hlJDkVe4QsTWrpQTTGMtmcD+W9nPn2s5N4v+lz/x5SJ2n/cWnwEDSkfQbS5IhzMKy8+8/0nx+nLs5t/YrufPAyPm9Grw/fnf72CKtAPWvfc/yX82jNejqPa+Jf2n98nH4bp42GczifpnnGNfb79u15pky4/8yorcYlugahc2bPOvYYeVETUB78Up4VMxu+o/9+kz4z9AOlxEgv9SkVE9G76ZhtzVIQ/oxtaNf0z3bB6b3v8fCj93h8tOC06njl5hZ3Xn6BTLX45QmmdBAd4eAey/199HSH+e4tdDGDeIoELJvAjPVkdX7LkDsuWkzN6T4P3vuAo5MlOzf2BJ0+XbJqhGeikxWygClxvSAgpbb7qT8EMBqTJj6SWmv0XfKmEml2cZPtzfZSsKIBrUQ4sk3HUorNzTmGjQEllXuUkGql0gQr+xorKESPdIc0rrpOCNc+Qtd0bB4esH1wwPzklLxpBB3vb8e4udKzuJxN+ejyFZbXrqMvXyMqmKDEX4uY0s6CKCutqVYNy9WSqpGAIbMZG2pKtJLK6R3Uu05ceH3SdHLekccoyt0+pEqmpF0Y1ACw2yKnnMyolz4tvmISURMkuLdM8V1HUJqg9BCkGOsJnSyme0XsEEMKWDK6VsxWQwhCgs0Uz+u+57ePdUAikXEUvmOKlkEGG2MMpTF4m0lZr3PopLDqvaiD6l5OPK2Ys7xgtqEIx0d0bcuqrihSdEgUzY8hCDn3kDovVTYh1W9Py5KyKGUCR+BGm2Wihkekax2dE+7BqmmZtgVbc5WCHQOIVHkXoI2iwbAqSz6YzXi8u8PV0xNee7LHVl1jn3oI5FfmA5cWS3ZXK24dHvH+9iaPJhNRHo2SB5WSL4EqQ4i4lDLJE9zWdo6uBbKczmlZbfRjlCxHZYAwBmstbdvSdR2PnhwynVfMJjOsyYaJiAhKrQenkBbGPeoRExIRgoipdZ2jrmtx2ASM0aNJJGmNJL4OMfHN4shlU68Hwx5B6cdw4cepwbdi0H1QimYWMBj8sn9YJexdN3CPqIhjsOSISYNazmQ+k8l/tLIffvcr+HFEO1qNny98Oz/xq2f83a/IvPI8nB6x3cyYujK102hC71NM/WvnJ+Y+YOjTimqEHPH0RD5+DkxCACJrJOh811Q9MqTW5a39cVe24dH0kBvLXXKXrYO50bmN26Rvx/6YY4TkDIIxDsL61EgflI7PcfSZ/tpVOr5SigJJ1/TB4HD9MXKc1xzlK24udzCxBOoUgXN2S58b38+h/Ub7xBiJTcvGLLlFj/vKuWPJn4HoW06f3OPuB+/z5Mk+rYvcfvkON177HJOdC4STexAXQEEMLe1qiZ1vYF54nWWxxXx1iNLHYC8Cc5KRCU9tESSdA6gS7yrufnSXR0+OuXhhG+tOaE9XLJcrqWhLKQjv18Zt/TOaDLmlsiOz+FZWYSHBI0pplI6E0AihNIluKSWJVh89GCXxn5fJ0Wvx2hLV0UBRCCJujfjf+MQTFCS8D3TkO22uUNElaYMk/9C1IknQtkyPjnnh8R4b1RKbpAPOPFujRgpKscoy3r1ymQe7OzR5QZFZLiV33c57fIgYzZBaFrkIT9N01FUr1YpVQ5HlqZxXKADiVF+IsWDbCKk1oSTedzJ2JRFP4jplY9I4ZTNLOd+gayp81yYOplASvPeo4GUcSGTVXpuFJL2gXEKzgx+8xIRPk+O6ls51Uuih12a0P8z2sQ5IFP2A35fFruu5RelPGl4bhXMWl2zIjbHYzIoJUhqgnfPYTEpmXYLAnPeoriVXBdponJdKEd3DeKPBue1c8lyBPMuYTiZkmU2VOX1GEXSu2N7c4OR0KSVWCCRZ1S1V45gaSz8I1ASeZA5fSyfMkkJeqxQfbW+xtznl1nLBnYNjNqqazDlZXabRTmBwSeVsNA2ffrTHC1nO+9MJj8qcOsuIKbroJ3xBBUIiigk3o/OOroPWaprOiclfQlp7Q7leHdAag56WnFLx3dtHXPhgxc7pjElZUhQZJhFG+8l/yLUiQZtORGFNJNOWkOdCuO26gQ2ukEAuEImdkNN69r1zPZcngf5KctB9WzjXyoSZfG3CmaQGoBT1TuDNP13zqS/Nmb4dsXrt99CjMwnglJiHlGJI1Q0my5lubjwVIw79hXMrcs4hBueCkqjUWv9khOCsURWFSQP7vdkR/5/Xf5Off/snuH1SrtGY8QR6Dk0ZH/N5+hvj835qGwUMJv0d0rX2k+z6fveVFmtkon9tb3rEP3jjN/k3v/1HuLm4+Hx0KR3HPAM9eWr+H7XT84ZExTroOZ+m6s8vR4isz6sXeDA95u+//CX+ve/8Ya4vt4AiPYdmvdMzYOvnDtNKYYt8SB18/y2V1x69x8neIxyW2lsuX73AJz7zWbLNK4BDZSUmnOIP3kVvv4DZuoK113lvJ/Lrl3+Lv/ze62y7a8DGs8/5TEDUAVI9GH1F9J75xhY3X3qVwISDx/t0rqer9hobcVjEyGIkISWpb4Qoi4PoRIxRJVM3k1LObddRFKVwTIIHrdmfVXy0e8Lr9y4w8TZNktImIUa6TjSYyrJER6msUVr8fjrXsaja9dhsLV3bjx/QuYa2asjaho3FgquP99itV/QMOBna9dlAVoFTitPJhPu7u7y9s0ObWZk3YiQkC5PNzS0WriGYyA4TGdeCT00R2dyQ0tmm7VDxmK7rWFYV0+kUiBR5zqQsWK5ER6ttW3LnBFkfOHA+rfZUQjPMENcqpSjKkiorcF2TREHDWvY9+CH4897RuURIZq3FFEPEBZ/KinWq7szQ2uA6R6elyjEGPfAGf9D2w9fj/A9w61wn8FLq8DFKpBlCwCX2dVV2PLm2EoJpkZMXBVmRCzqi+pxZypNpyWNOJlPKiVhDu0Se7Dudc2sn2X446ZxomwQvVs1lWVCWhXQyrYc8mgh7iSRxWYqXTNt2OO+p247TVZNKz8D5yEfbK37jx+5TZwIn9seQb45Ea3hwcZffffVF3nzhFg8vXMCZtKpR6581ngAbbcunjo74wv4hrx6fst20g8mSsZY8z0XYJgUYOkm5eyds77ZzQzmeGs5pPXD3fhSHP6L46l+psLsZwYnPxGK5okqiQf1ApFLFTR/Y9OJn/fcaLUJ1RusE9Qp/pldW7IOmkJQERQBIdF90ehB7O3GlJLfqvcd5GayathNuT5K79zFw742G3/3zC05tK8JqeowKxGGM1krKg/unSIJjhbY5xXw2DLT9RHzmZ4SM9MGKHk2GanT/+tf69AHnfisPpgW6yLubD/nFl7/McZF0I9IWR8dIJzu8N0YHhmBEJW5H/9oIdTj/7+E8Rj/92rrnSvTH7IOf8xOxInJ/fsAvvvxlHswOz5z7uB2e2kbH5BnHHw9ww+vngjM1+sz4s31wZpRiFoUf86yziAr2ywV/75Xf4XubjyV4VZrnJni+3/WMzlUbsz6fMZIWh7siW1jR7L3H/e+9xXK54trtm3zms5/gtc//OHZ+HYVBYdE20h0fcLL3EKUN+fYVstklFvaYv/vab/Oti6dEPT13Fs/bUtDlT9EYrl6/wUuf/ATTiy9APqftgqAMcKYP+aRyLB5bkZ6YH6N4Q9m0ePBpnI0hCHFSm4SQrEUKIXJatPyDn3iTdy4fpj6euGMhCLFTRbrO0bQtddsKP0IpjNUUhfDmWu9xWqNsRusjx6crnuwf0D58zKV7d3nt/Q/45EcfcbGuhn6tFENaY+Coac3JxUt854WX+Mqrr/HWlas01orBaZpjOtdRVStQmkXm+Mevfp17s+Nh0dAHDFmWURQ50+mEza0NjNE0TTp/1LBAFXKup21bvOtwnUtcORktQvQikBYj3kdSXQUxgDYZWVmCNkNbK0g6VkYyCtYmHZIu+RCt2V29y2/wbt0mCvJU6dk5aXfXCbfyh9k+1gGJVXpg+8bgh4Glz211eH7zD73HW68luV9jB38aazOUET6FHyZYmVmttUynM1F4TYOyrOoRk6i2Tfk+4Tx0LnFHoiLPcsqyHGCsvvMMP+nfk7JMHAtoWylllQdHkJlF8Pyjn3ubd145PJtTj0DsVUY1PkKlDR9sbfP12zf5yqsv83B7G6dG05dS/ag2TEzbXccrJ6d8fm+fz+4fstV2idltKcuCSZknHx4pNYNIk5CK4EN6cOTB7oOHvtKk1YF/8hce8uCVlsnWhI3kgdNUNavViqqqk1aInNNTaQN6i2+SBUCOMQIRuq4T2f+6outEp0QlDwUJSITdXWS5eFQYEbQLqZyPhJSI1XaQ1FnnBlG7BsdX/uKCh6+0nNj2TAWLnNt6UpZAMw2mqWEVYGxOkey2nzX59pC8Gv17vK9Kq6lhcu/3HSEZ8k9ZfWqAICnFf3bza3yw9ZjHs0Op0ogkkbQUnJ5Lk/SvnUkTjSf18f7PeAbPX+O6n68Dk3R66+8ZoTL957wKfOXKu9yfH/C1y+8RRmk9Rp/tPxPPndswUQ8TNufuG08FLGfuzbkJv69wMYjyxhko+VywGIm8N3/C21t7/OM7X8epNTp3JvAYf8f5bb10Xf88a7+zHyL6mubwLof33+HJ430ePD5A28i1F15ntnlJlI2B6B3t/j3qvUNRIg0RyIn1Yxb+Q75x6YC/++rXceeu7fy1roM5aSGlZ6hii42rL7F14ZYgGtRJvZgBCQmJE0e/MPDCd+iVWntum9JGhM6Sf5XzffWLWQcpMQwaRp0JfPfmAf/lH36TFjF6k8MJchECOBdYrVYcHR+zrKs0sYqeSJZSwD1pkxjh5IQXHz7kR+/d5bX9J1xYLdDpuDEFHr1pI0A0htPdC3z3U5/lnR/9Ag9v36GazBie8D5fktLLTdvgOhlvf+f6+/ydz/0WHSI1r5VwYGKaV3wQB/mopCw5Bi/IPgxS96hIl1COzokVx+BEngJACfgCwcekxEpKUU1Q2qaSfAlIVK+ILS2J78/F93iyFj+hNJf1xNd+oZ5lmVRiuk6EOLuOtml+QF8mHfljvFlryTPxj/FO5HP7Rgkm8tUv3OO//fnvoNu1DoZRiYSZpRU0JPJPSt8kT5TOdWR5znQypSgKlBLJ9KZtWVUivNYlXZOmaUTwy2jKIqfMz2qBrFc5MnihwGrDtCywRrOqaqqmwweo6paTquLXfuQjfuXn3h+s7hl/Pj0crfMsq47Dk4qj0xWPlg1v65xfvXaDX7l1h/fnG6ysTeQ/JSu3gQAiE9nMeW4tlvzUwz2+8GSfK23LhhEzwknSFukVSSX4klUKvZZIgkB1qlYyWvO1Lx7x6z/7hLoI+FwxnU7Z3JwzKQtc13J6esrxySl100huNvnEDKTWtKZSiNpsnueidTIphzJq5z2ruqJummFSMb04GrJqVclXSCHMcZFJllznEKORkA4kEHj8iY5v/vmK1Xag2gz0/KLRPCdbWval+EbSRilInGxsCkGM9QS9frxHP2lA6ye/fpU0Lg3m3N+k7xp0XZCAAwOHWwt+8Y0vE3TkqxffF3SnRRCU/nxZIxbjQGS8Ch8z4seTdn9+fYA07NUjjecCmz4k7n+fFwQbBwOtcfzz218HBb9y5+s47c5c8vnA7ll/nwlWRuf81JbQn/5ax0Tf4XyjkPxyJSqpzwws09bpwJcvf0BUkf/3K7/NYbFaf3kfBP8w21Od7Nnn3gcrMXS403scffg2jx8ecFp5PAHaE1Se0dN+Y3eE++hLLO/fI053mVy+I33PrcBY9jfnHBY1f+fV3+Y72w9+uHOVkwGVCwJjp2ByQWsWRxI4AMSedB+FUNmPhwpccv4mMHJElidFyvY72kYcvo2RUtZ+YtMJUXRZpCo8v/Djb/E7L9+TElYAJcJrp4slh0dHPHr4hMPDY9q2IzgpWzVaUeYWQ8S0LeXpMa9++AE/9cG7vHa4z0bbpEoVJQHYMHbKZN4Yy/7WNu998Yu8+0d/hoPbt6mLEpPnON/ho6D3vTdPTOfddR1VtRSvlxj4f3zhX/GrL38XbWWBR+LYWCO6TGmVnaTe/YD+Gi3zjRjJtriuld+uT0OpIWMgXSZV7aSgUAF5VpJlJVpbnO/NTIVD03aC3kPyPEtBjtIGk9yxUXpAQJxzgxSHKOCKEKj4vbU/VI/6WHNIuq6h0Fp4CdqIyqd3EODd14/5hX/rWwQbKRfS2KKomlCKNHRJALOGCmMMmFQGVtcVMUaKohSy0DBpQqgqdFp9twmOKvJCSo/TJLje4hqSCxGh+fSRvhCw6qaj8RHlIu/c2OcX/tJbeBvRQQ0rXHmwEwHLB1ZNS+tCEk1SKZ3TobRmoS0fXbjEtbrmhdWC61XFVpc6heqH7T79ELExcr2quVI1PJkWPJ6UPLaG/TKXlUroDfBcKgsz9MJig56AUhxfbvhv/toDvI20eaDVkRClpn46FQSmaRqapuawbckLKY3uDer6tAjIMY2RcsGQJvvMZmSZENLaJO+/buX+8ylHPZKr71NzRqtBLVIkoknscggF/Pa/u8IXgILFzSBLZJ+ONax55Fp7v6A+8JT0jWW6NT9798+t7IeUR/od4YyR23k0ZFwe3G89ehEj+Eb2+cVbv8txKWTDb176gI6A6QzKCYHZZpFo9eAvNE6lxDQxj9ty/K16tD+j9+K53+ff7//uSbfjNgijQO3+9IDvXLgLwDcufcCj6TG3Ty+t222MDg1I6Nlgqj/n/jvGKa7nTfPngxlGn7PANEbOUDufcS+c8nz14ocAPJ6e8o9vf52//tYffPrLxqmip07kGYjI90VJWvzJPfbefYv9J4ccLmuu3rrB7U+8wjQ2xOYYNS3B1/jD9zl98pBi+xLT22+g8h3oamiO8PMLfLQlVRFV1vKffPpf8J/+xl8lj8+ZGs4jPsM1IUTZ0yNODpd0TkTXVHLUTbukhYKg1d470foxiqjE1K1PA0dEDdQFWRhaazFa07WtCKSRtIFspM08bRb4z//k1/nE37nE5cU0ITOBrqkxRmQdsswK7wwRUlNKMdeQnZwwPzph9/iILMk2rNHb8W/5u84yHm9s8nh3l+NLl5ntXmCWZRgXRNcklSz7EEbcpPX9j1G81jaZYdE01vGf/NQ/56WjC7z85KIogCOLQGstmRHdkeCcaD8V6+Agz3PKvKCuTwS571qpugkiYKaiQnsvzsVBTPOi0cN1KaMpyiltvaKta7rODW3b836sMbiwLlTXSb4/ZDkqkYddqi7VAZRO1UMpg+G8+L/9MNvHOiBpmoY8CchobSQwUfDo0in/3V/+Lo+uL9nZL5kspDY6hIAicR5iyqs5Jw1o9JCGQSmmkylZllFVFV3bilEYCMSooWk7oEkrcqFu9Z41/YQvE408hD74oeQsRPFeaNoW74S7ULctVetZbNb80z/5Pg9uLeQ5SAEJPSEsraI651jVwlvJrThUiiJoTOkrjY+RD6zh4dY2O7M5L1QVLy9OmHduWJ0PW3puDJHLq5oLVcOtzPAgs3zXGh578WFwKdUh+EWQVXeaDNCR3/yZJ7z3qpx7WwS8jel5Tg6ZqYY+H8qrpWwtyyXSt1oPXAqxxxb9kiHgUj2vReGDx/XmeUqn/LS0fBJ0TNyStfGdMRrdp1j7TUn1zt3Pt7z/k2to8eRmIBqk1i9tQwZVy2fEi4L1fdcZ042NcZM+9Xf6yjPpiOH1vi3j2utF93B+/5nzKRWtWJQNv/iJLw/HfPPiR7jSoXUm9631uNMOuzHByKIn+Yed0/dQ6pnnNdrhzDWMJ8y+/FiNUjLrIHH9/tAmo8H6N259m84IKlLbjn914zvcfvPiGeTmzPeO/h4qd0YT/hnodxTMDAFLat8zLr7951IQUsb47BLfc1ttOr6xK8FUIPL3Xv4d/trbX6QMvVbHM5CPcymyZ753PuUjbxJDS33ymCfvf4+Dx09Y1B27169y+/UfYWtnF396jxgcKjrc4iO6Jw/Jr16mvPgqym7C8iGgYXoRbzI+mB+kI8Ov3HiT3734EV/ce+Hcouo55ze85AirExYHR1SNI0ZNTKvyiE5p59QPlEJZQ4h+uH+KpFuhSB5cEsZGL4tMozO0sdRtIxM9wrFxxtNYSet8/YU9fvlz7/HXfutT4CNFnrGztYnJMiaTCb1xaFRg25bJ4z3yuw/QR8foJO++bndYP6UyxrfGcG97l3s7uxzPNwh5LkjasqHIJ4PJpk5jlGKt5tqPQdJWkbqpmLYdJorg3HcuPeTvfu63+Q9+/WcplzadhgiVFZlFTaecLk5ELt45SWEFcRYWzp+h7UTSwrUSlNi+hNl7MHYIkkyQNujT7MWkZLXIAYNznYyThSwSh0rE4HFp3rA2x2iDznPaGOhShY8sSgMaWXjmeU7TiAtx8L8PAhKlFK5r8d4lDY+MZhb4p3/lHd78wh7RRGynKU/MIFbmk8aj0ozIrPpMmWMfIWdZTp4Xkg5KYmUiaywPVk9wlYjfiIZJJvLwUp4qna9Niqadc4TgicRk3udwLgweDsuu4Wuff8Lv/NF7+Ey+wwSFDjpN/MItIEZWVUVTVRR5RlnokSMxKacn2qcqQBs8D5Rib7bBm9M5L1dLXj89ZuYdNqEc47FHRUFMtlvHZuu4DXyo4TtW8SSoZC6XtDpTziIq+PCFFb/6xx9RT1JKqQjEHOyZB1V8V0zyZLBNCkoSKbgoCnIrku8iehaIOkGMacKIaeVgtaYjlXym9NF66pOBTFbjQWBlJVorcXStJhG+3BS+8RcqTq6GoS0ObzuCTumOlO+IyHglsU9PRF2ntIzOmWzOSZ945uA9XomfFygbkI/02oCc9JP8ueNppdBZ5Cu33uL9nUfDdxwXK97beMjn9l8Ukc1MYcnE28JDCFKZk00hGogSXj51un0ANj7//rXziAqj154VgKnRZ/vXIuBU4J/d+foIbYn8s9tf43/8nT+YIP8R0tGjImMEaXSs4SxH+53nx4z3eyq4ST8lybXlWSjFuUb65u59TvJ6ePvbuw/4zavv8LP3Xz87qT8LGXkKizr3PWc+E4nR46onLB7f5eikYW/RMZ/NePETn2Fj5xrQocsSuo7w+FvUh0dQbDG98hI624a4AhaQXQFd4KvHvJe9NzTAR/ND/v7LX+KzBzeY+PzstX6fdFJwLYuTI5arlhj7Nu+R4ZC4Q0L6FlhfC9hrEmc8BkLoOWGGqCKZsngcTVNjbYbNcvxqJYRVZJzujKfJZLJblB2/8Ae+y0+8f52X725T5DnMpWfozKJ8oOha5u/dZ/PBQ2zVCGoQZYToA8ChHD1CUJo2s9zd3uXdi5dY5jldP5YFDz7StLX4g2U5vUZVkRe0TUWvkSJjgxkWr8452lWFSaFzaz3/8FNf5Uc+usmf+uYbqCCLBYXIH9j0eedF76kspdpISm2FANs0Dc41dF1D29QolKBPXtANnWw2pBJ7vRjQxpLlBY3N8K2YkfZ+ZC6K6KhO6FToNNpCYS3BJA2VKIrZqDW6aIwIlTrXQQy07ocjtX6sAxJrLNZImajrOlrV8et//B6/8Sc/EFsFwHSK8lg4JhiDRpADghpIUlorqtVKDJXSaz75pdgkGZzl4lwRkvOhdoKYiJW9p4uBqpZgILMV1or2RueEAe1SDk7kx9ekpX7ojiHw4ZUn/Hd/9S2a6TqaVEGhY08UjIA8uMtVTdO2ZFYnfRUpZYNIiCYJq0W0cigXqZqWKnR01vLV6ZzvTue8Wi25Va241DTkY0itH3zSKnIWI6+7yMvAu0pxr+vo2gaX9foh4LLAr/7cY957ZTmMr20e6GxMyoasV/ZK0htGSzVPlkkaZ7WqaRt5sCelCMoFrVBRn+FgyENkyPOCtu3oS/mgdw8NQ/DhkxfOeDUsJcNnJ6V7n25566cbQUTSdnDLJ7cPNTQLrOeJ/vMhBIwyhACZzZhuzJ7urDGeDTpG3y9BztMphzP34xmbivJTm45fvfUtDst120cV+d3L7/Kjey+iejVeDVFDmMnnQicOtTFIlY4Ee6Dz/hhKfFTOXUf/3vj89Oj6xmmcvr3j6N9y7muF1Pe2HvHe9qMzN+R7u/f5YHOPF06unJkIx8FHfx8HBOJcsPFUe51pUnXmtXEwkinhjRjObc+5D7915Z11Gyl4Up7ySze/yR96+DJFyM52nNF1RN+iYwfZ/Onj9/ueCQIivnrE/lvfZP+kYvfadS6/eIeNnZtMZjsyycQMpTbxi3dZ7t0n37pKcf1VlNmA7hHEGmbXIEygeYI/fJP353vDNzgd+KVb3+J/8s4fSCgJT5/HU2kb6NrA6UlN5+MQsfdWO0PKUqkh9RlTiWvvleJdGLxjBvK/1hiTCVFViTy5UqL0ipVURKPWAQkKvn5nj//v59/if/ngCxRkaB1ojo6Y+mPm+4ds7u1hm3Z4fqXPJsg8BSUKcEpzMpvxeGubD7d3OMkEoVFEsiHYlf+5RMDN8mRS5z1FXrDUZpRWVMOiOCoZM5q6EXOrtJ2WDX/7D/9z3nhwiRf3LvRnR9vbnGQZzULsPcqyFJoBkCcRTrE4aciLmqwppHoy12gv56StjIfOOXH+jYGurSXtG5PKtRILj+B94glqYvAYY/Gqk4BKSUBjtSGQYTqbKhnDGtSLUdJsxuC9o25/H3BIxMDHoLS4NP7eTzzgl//Su+sVcISs08xXueS5oscYIeP0qz4pvW1ZnBxL6VQqEe1X/UbrpOgq2iXCYciSGJh8VgIOT9O1+OAxRmGtCJv1ZaYqPac2pX56RdeYTraeOn7lrz/g4Fp15hpVUP1SGVKe37tA28nx205u9iyhCigtmhRK/HV06iFNJwZ6mhxMYKEMX5/OeH8244ZzvLRacGW5IO/Pq48cRnn6LEZeDZE79ZKjvYYnk4K96YSmLHjv1SW/+icfnUmFtEUgZCK7rCKDQZhOx9YAySxK3JItq6pilVZB00mBVhLVqyQ7P6zEEZa5IpWpaZk6+1JqQhR30bjmeMRE+1eaxO6XIckV8OYfqzi8fZZIeXTdEXS/nxpQmp4Nr3WvghhRVjqcthab5+tV/SgFM2znIHk1mlD7a+sn96c2pc5OrBE+2nrC1668h9dn+TS/e+19mm+AbsBG0Nnoc5B0rySQCEaBj0QPxvfpFklP+n6iH7W/9JGzPJdxQDUO+Mb37LwJHsDvXnmX0/xsvz8uVvze5fd44eTKUwhIH7yNXz9/zHFQ/UyV2/Guox8TowQjT026o3t07r586dL7Z/7dmcBvXXmXD+YHvHZyhedt7eKIYmPnuQHU2a2D9oTTu+/w+NFjWpVxvdDMtnbJN7aRB89D6OgO38bt3cVuXya7+Kooxbp9iC3YS8AU6vtw9AGd9ty9cHayeHvrEb94+xt8bv8WRUhTxPfjv4BwClRGpB2QYSFRinD+OibrydhPt+OZ46dfeVFQNQ0kgTRjrSwyfMCDICR2/dxGDf/gi9/hT3zlBX7k7S12Hz/B3H/IbLEgO5+qVuvBqq9kDFpzcuEC97Z2eDTfYFmWouydFjm974scRtIywiNsKScTccbthTe1GThu/SKsX3wopUQFtTubynhvd5//yx/6l/ytX/wzTDqLjwyKscaIqGbbdXROsgImgrWRPJc0SpcqeHzXQREhGbm6pNcUgqPpAm3bUleVBH1a47qOzgdUiOgQsJFBwTvGgNUW52Sh670jBKFI2DQvCtovDskmtRNKBEq7rqOtfx8EJJPZBrkScuv3Xn7CL/+1Dzjd6c6MONNFRkGGKlQSeOkIXsTRTJrQqmpJXdeEFIyMqwU80Lad6GsYkZvPsmxQXRW0A0KoJfr0HqUsPghvxHVJljgKmtAl4lZfgoWCYODrf/mId37i5OwFRknZyEMUIfoEJa5Jkj4ETk5XaG2ZTafJiK6H/hVBS4CikvdMWSSSqm9RKuNYG6pywv7mJhdDywtHh1w7OMKEcEaSW8WYUlWBPAQuty0XupYXlhV7k4z/4o/s4TKP6cCnXiXE1sQBGeXRRT0wBSc6+coYQ1HIAzuIsiFVT17FFMzJCqUfFPo0Rh+JCyIkrG+J1oWRus7dpgEx9BOTnM/JZcfv/fySYqFoZlFQkgiLC556GsgWEtD0xOJe42c8aSkgaostSjqvKFFnlEPPO9am23vm93hyf+7kGcfkUoWPgW9c+JAPN/fYrKecpAqPwmW8deEuXdlSmhzXQdam+dRGTBQCWszAK4hZxEsFIZ0D6yB2YDLZR1tpwMBa2Oz7efH0/fP8tZ2/nlZ3fO3Se1hvsF7jTCB3Fh0Uv3fpPf7suz+GDXZIX535rlFa5lnHPt+2z0NPVDq2RlRD8ufs96zt1NZ8e+cBpcuorcDSO/WUt7Yf8bULd3nl5DKD3+85BMQUM1Ike+6k47kXArE9oj24y979h5xUHRevXCLTnm5xQL55iYiGUBP336J5eBcmW0wvv4zONhEcrAW9C3oukFizBBU4vX2dw0k7cN1M0Mzbgv/Xq7/Fv/fmH+LmavcHtkEElBYzur5Bz1Rb6fXzByT1Voluvffi06NIAoayYwwRHz1Fmcn9V5qIT9UbAVMIOlAXnrBWCKRsFBvHHfuLr3LlS1vkTQvOMU4t9yXBw8kC0RiOL17k0cuvUm1vc1BVnCxXRCd8vMzaIfXU80G8dxCTbUiq3jHW4lOKY3Nji6apRSW811GCZE7qsBhBSM51zH/xyvf4hc9+jb/y5c+hg5D5XefI09wj0gcNGxu5cNmsHWxH2lZM9noV1RCdVBbFDpcGrpBk5cvZnKKYDPpZp8ewOj3AxYj1jrZTaX9JzWttCFFKj8XUVNrS2ozOdIS2TaTYdV/vF4Pu9wOpNcsME5tzdK3hv/+r7+PKiHUal6+H7Pm+pamWGJsNrsDOedpUt41SAw8EWPMU6Pt4HFItbVJvdd5hXScMaGspixxFoGmk3KqvaQ9DNNk/ieuBcVh3a8PdH1vynZ874ZO/dYFv/eF92knAdpqgpcpG9yu0ENEEMmtEpa+qya2ot9ZNS54XFIVZX4u2qBDolCf4QFnmTCYl3nk674QHkap2TqOiyUoOrl9j9+pF7hwcc+l0QbGs0D6duFYC/afgwsTI1DmuuY6//X+Y8Nf/q4L/51894cs/2vBkC7yG1aQjEiTtofoOmlRWe2VdHVBe2PhFnkGcAEn7BdlXEKVUsts3p09On14Y5ToptGmliKkEWISEEBZqWq3I2NSXsMGX/s0lt79UYFv4+v+oggA3v1VwctlxcNux8cgkeDZN6CSXTyvscxlbFdpkTDZ26fM+56eVATl4zirz/Pa8vdTovaVq+NXb3+Lf+sbP8M9e+BrfurQi95Z/+1t/lF+58w3e3XnIp5/cJmTgfcR0kCnwrYgkmbkaAkjp/2CNEPHaQp4FHyGKZYmI1WUkwmI8g4ycQYL6IPA519G/dm9jn7sb+/yHX/4L/B9//L/GmZppl/M3vvLn+LXb3+T+/IA7J5eHz4y/43lox/l274OnMXozbsf+xyIuvs+8P2OUZPTat3cegIJ//1t/lL/92V/BqcBrx1f42ftv8Eu3vsm/8dGnmbviGS0AtpyxbqVxq4xOHU+sD1k+eofHdx9wvGx4+bXXuPTKZzHNfbplBWQQasLBu1SP76E2Npne/ATYXXB7oJZgryLeNOlaptdgcol3Lj7m2mqbS9Wc37t4Fx0VP//+j3KSV/xf3/gN/jdf/bPoMez5jLYF4SEYm48WdDKuxJhQghFcFkMcxAZ7kbM+hScKy1L26kIgCx6tNG3dUOSyIHSuFQ0mAsuyY/e0YPsYXngffv6fTvnzvzKnqAOxO0H5JGenEFXq0dMTjcHNZzSXL7F/5w57kzmtsRhSULqqcMGlAXuNwmQ9Od/26Kykmrq2I+/F0oDtrW2Wy9OEyAsJX+uezyiDiQkaHRXaK5wNzNqcP/Leq/zjT32LVx9e5Ec+uIHSFqNE1qAo8kGkMvaxTIyD8GfXrXBOeJVdW+NcQwiB3OYUxYSsmFJMS4oyl/F1BPoptYN3DW11SuWbpGcSUkVjR2Ez8kzMVQfJf+JQbRiRYg8f5cn0XnRhOhc4Xq45Vt9v+1gHJF3bUU8U/+Ln3uXq/havv3WZ/+YvfhuXB6bHlq4IbBznEANtK06+mc3I8oKpnSYluSYp1K0HA50IqQO5MKmACkFJytE8vRqgT2JcOfTGRKghzRMjgr4EMR/K8yJVh3TycF6xfPQzDT/2T69io+F3/4Tkc194e5uj7RoT9QB191L5WWaZTkuaVCde2AznHVVdk+d5YniTgoj0cHvPvJwNE6vRhszqhC5YXIS2EwVVU+Z8+OJNTonMH+8zf3zA1ukC6/t69tRWIeB1JJjA7ETz419TfOKjLb71asd3bsHvfLYjRp/k9uWLh3YexnU1BCkxSBRus4y2bUWfQ4we6BJ02QvO9YFiT0gOnUuvMVz/ALECmTFrk7y0xRh58oKn2gz80f/zBr/57y4IFoql4nP/dMa7P1JzdMtx58tFD+jQp/n0cM59QyuUyZlszMnzdM/OrdzPT6DPXbU/Ax4f9jsz0Ucezo6YuIKf/9ZP8k9e/F0A5m3Bz37vsxzZJe9sPuAzj25jNPgcQu2FeT9VZB46LfljnQRnbYjoCE5L0OHXETQhKvBgAyJcJmlm4Z30+z7jGoe1aI8YDdcRuTvf542DG/yxDz/D/+mL/3XfI/gTH3yOuxtPuDc74PbJJRF4O9cWEc6mjc6332i//nUJquQT42nWKpVKfEel3T/E9ub2A/7I/df40x99mv/8jd/gqKjojOff+c4f5H//uV/i4eSYV04unf2QUueCHi+NSJoderK4UtAdUD3+gAePjlnUcOXWbXZvv47Jpig3I9/aBt8Sl+9TP/weerpDfvkVMJsodyDH1FeB6TqoQkGxBQre3/guP/7oRT63f5O3th+xtC15MPxHX/mz/Kef+he8u/GEV04vr0/1GX1TnjVRKA4q6faQyJTaJpkANaRrpBw1JiRlnQYJARE71HIXdEJRjBEpcq0EBfA+eeF4x+6Div/g/77DF75meOV7nlmlmVUaGzSt9XgNJo7HnkjUivriBfzNG7S3rlPv7BCCQp0siD7gIClW56goSIjWelCHhjUqoYC6aZLeRoXJhTPknaNzolkV0vzSV3JmWTakQJWPXDvYYnM14c3bD1jmLT/zzqsc6xW/9uq7vPjwAtvtjCK3ZNbgQ0FdVeIX03VkWU4IkTzPKPOcStd0nfjbhAHJyLAbOVkxIU/Vo33/1lqhDSgVKScTysmMrqlo6yVd23K6WLCqK5Q2XLlwgTzP6Jwnqi6VdkdccCyrisVKLASohTuZWVmY1U3L6Q8pHf+xDkhOVid88AcWvPLtC7z24WX+4V/6OvVEdEg+/6+v8e7rh2weFQIrJbi+aWrariHPCvK8IJ/PyazFO4G4BPYf56ijqNKFdTWEKMHKwyTk10BeFMxmM6mmaVsJVKxla2ubvKhYLZdCJjKG2WyGT2zpd1475tO/foFb727x9/+jt+TCInzhX9/g4dUFOvQTeEARBzn32WRC03YcnyxQyUOmaVvazjFJqSQZf6RMVyeuRvA+PRSiKNsHMM576kZMCOvW05XQbc94mOW0sznl6YLr+0dcPTpB91lgo8EEis6iXKQtHUWr+Pw3c37itzX/xq/lnOYd7nTJ/mRKNL0ns7Dtk8CKDBVKcuAxioBZ2zYEH8hyycX29yRAIlrKqscak8R7eqM+uXM6IV+RiNGai7u7oODw4JCmTTbhOnL4YstP/2cbFLWhuiQruWKlufFuyfZ7hkc320GBtl9p9bnRKPjvOlCxBeXmJlkuPWWssPvMtMIo5XB+Vf+s4EWdey0Cb12+x7/zzT/GBhNcKn+cNAXTRclf/b2f5kvX3qE5FQMvdKSpnShNFkJe07EPOuRv7cAbhVfrOUcriDb5uFiFi+CiwnRSpaQzqehC63UJeLq+4Xyfcf2t9rTG8Wff+TE227FkOWw3M/70e1/guFjRKU8RBaJ/ikPT//TchHEQlybgPqAft/u4SkeT1Fj729y3/vN4E0NQGDkol/zP3/xpnApsdCVHZUVtOnabOX/zm3+Mr1+4y8snl75/eBPPDdbBEX0DsSEe3+d47zEu5rzw0h22rtxGT3flGZpchO4J7H8dd7CHK3aYX34NM70IoRb002yAnp5r+b7lIvenx/xP3/4iQUVmXcEya3k0OeFyvcF/+I0/zttbj3np9NIQxJ0h257hY4DNC0mTakdPYFVqXarfS7lHJQqiKhm5RWJSJ2VQVNZJdEtrTVaUtKqRhY0xKO8pnhxw6cFD/tQ39ymqnGmtOS1lPHE2MKkztNNSJefTeKE1RxtzHt26SfHSC0wv7GJziwmRLIjCqFh3yPNd5DkxRKbTCWVZpAoVT0QCjuVyMfSrzjkZo1K79GqpIUTquh6tPhRN1w18NN84vvjmi1xZbPPmLRGl+7UXvsf/9h/9ab578wnfu7HPFz/YIMukqtAam9znO9q2YTKdiitv8EzKkqpsWCxr6maFaoWXN51tUk5myZgvJFRcpBOk2kalgMmQlyXaZDRNOwiNGiOk1dNVlRQQAl3nCBHms5KqqlksV+RWUuptJ5VWeSns+Bgs2/Ozz/fzto91QHJcH3PzX03YZM79Nw74zquPCDqyezDlJ776Eir7gIunG2SZoBKkCSqEQNNUYkiU52RZxu7uBY6PDVW1GhjgvbeAQBlp8hh9fy+61aXS4xCkbHUymeC8Y7VaAoqyLLlw4QJ13VDXFcvlgjwvKGdTXnkrI6sUJ9db3v/kMQAbxzmvf/0ilz+a8+DFU+nkwaMRYz+FpDZ2NuZ4H1gslwSbYUJM11RgbcoXxoh3UjHkY5D6/GLCbDYXid9EFrXWY7RmsVzSdp66ddSNx0XDKss53dxkf2POO03Lrf1DLh2fUrYdNqUGg434fN02eQ0372uCDWTtIbU95f7GjMfTKXXKszLCpYRLook+YJXCak3bNtRNjc1zyrzsF9XDSk/q3bMhPRZCoK4bQUnsmohpjGF3Z5sLOzs8LDNOF6dUjcPbyI+/OUPX8MGdimXiH05WhhvHMy59L+eXrj6iTKueGMH5IAOlyZjs3qJtV4SuRqmIzWfM5vNBAfj8FDB+7fzvZ23Pe28NWkR+/P4rXOi2+GDjCU7LzZi3E4oGbi2voHNw2y1ZmwuaYzXBg6rABRHXtHkKNtqIVxKM9IjQecmWPgIwgJoKx6oLoJ54VK6ZzJAMQnpkxiXWY8SoD/hfPrrCiyeXWdmz0tIa+NHHL/LB5p4gXaOUy7O2eO7vIVAZ+gr0BOIzqA1S4lsOr6k+L/Scb1pvC9vw0w9e5fWjq7yz+ZiNTtyVO+05yld88ugau810Hcz+oK0PdJQWkbH99zl88Ii7j47I5ltk1qOL3rQxQnNCu/ceq6N9LIaNF15DlZeAY/ALyG4C2fqZOfNd8r8NV/JnPvwMX7twl42u5DGnPJiecFiseOPoKndOL+BVQPflZwPK8vSpZ31AEvuFm0zOSYBAXkseCz2vLkZBGaMKKdDXxCi/pRPK+KSdRzU184NDrr7/IcViiSJSWIeNFj3qaJ1JVTlRE7XGzyesLl7g8KUXeZJnNAE2JyUmSgWd1gqjImWeUTsRhogKZvMZ5aTEtZ0gHYn/57wY9ilkIWiS07mxVhaOai3BkFlL07d934dDlMUckawzfO4bd7jCBf6L1W9xMq350q0POZys+JGPbtAUko6OIaKM6B0VRZE8cSpm8w1xaieSFzlFkXNycspycYK1BRsb25jEf/FOuJBR91wdnYIoOT1tFOVkSl5MyMsZZfJ8O1mesqoavA/CU2mccFoyQ6YUdlKQaUGhQwj4IIFdn2IyWidU5gdvH+uAJC4dvq05KT3fvLPHg+unANz8cItX377Ek8tLLi7mTKZzkdX1HcpLCbBU0/gUmDQonTqV0bjQM6NFabCP4scT6HAOKWjx3lNXouw6nU4pywnWZtRNzaqqqOuaPC+YzedCKu06mspjW4O2hne/sE89lxXuy29dYOtwwnSV4ycCxaiY7BN6+WUlN3trYz5I2McIddOnbcpBPKdzHaQUU1kUTGZz8rwYPGj6Fb4QSSOLxZJV01E0AW0zfKpI8UqzmEz4zs0pH1xuuXp0wu7JKVvLFSa2w+SjPWhlkqBYgBCYtB2vHBxz52TB3qTkSVlyUuSsMmGOhzRoKi3lfnlRYrNA13U0Xcei87JKyDJyY2VcTIOq0RZtxKVYa3FqVqyZ/UopZtMZ00nBtMyIviDPMjoXmGQZMYs8vKWprsiTOakMlw5K5jrj8/96h415yc7WJtYYjk7FIDConDuf/0myssBVR9SrI2KXMduaMTTquYF7zE2Ko0nyfH9SrIOA/gj9JH6mXDlqLi+3iTkcZxVdH5C4Eh0Nal/zWriBmRhULr23mOSoFC2oNtItInqqsRk0DjAQ22TyZdP5aARyTzN5P+H3XAyjQE8NupDFvotROJRKNFKiWgcn40AgD4YXT64MiFn/Xn/NOipeOL6c2i2eSc/07Tls4xSCOlu5dMY8b3QMxbqqRit1BtEajjk6zvl7VXrLZ/dvkkdLETLmo4DkOK9QS8W1apsfuI1RneAJ9ROqe++w9+gRe4cLtq9d5fqdO1h3RIwOFQ2xOaZ7+E26kwWTS7ew29dQxUWUOwTjEmfkGZPAuWv4Mx9+BhsMNxc7zDvhujyaHnOYr1AoJiE/+/nzqNEoyMyKQgKPmF5JaRVtLDGk1GrsVVClF5neL0uJto81OhUGiIdKOD2heFwz39un3HtCvqoGdW2ltWgaBUnjmqDxJhBUpM0VcfsS9ZXL+BfvcDyd0XlH4Ryn+4ccHnjYDuRG0usKSYVbBS6dnjGGk+MT2iTuZdIiyiazP7n85ECuEiIdAsb2DuMyfgqhNQiHROl1+l0rrtyfc/nBlEubcz519ya/9frbnJQ1X37xLn/h2xeYdQVd7PAh4lLqy+Y5LLXYmKxWTKZT4d6kc7aZZblYMptboR/4ZCjq5F6YlELyKg5aJwL2Sml1OZsTfIdvV7RtjVaGC1tbYhyb55RZRp3VqBjJM8tsOuHo5ATnhHgrKbVetj4mQ9nfBwFJ8B6vFMus5Rs/9giXB0yn+MTv7FIcwgtv71D6LCnWaYxTOK9x2qBTiiZ4N6AnCsjzIkW3ScI4hrUomvf4EKTYa8iB9hU5QlpqG1FvLScTrLXM7IyiKGmbtTJpnufiiJgCmc543v3MMW3p0V7x4ls7zE9zQhd58d1dejO9XvyrT3MYrZlNJ4QQOT45pXXiKbBapUqLopCSsSBpC6MNRTkhs1kaR9Y5fZWOWxYFdV3TOUFJspQCWX+3/NRlwYdXL/Pwwi6zVcXRhXe5vVdxed9gnWijDNR91VfoQOYc10+XXF5WLLOMwyLj0bTkqCjwjCYNJQ91oTVZlg++Cs57nLFMcisp96E3yP3KMksbk8y7UsPsVpblIFBnrRkGztwaGudpduB4S3g980PD9FjIeJfvl+RZxtWLF9jd3sSj2T865sPHJ1x9cYfc5sAWQd0C57GZHc26z15NwjrA6Lc+WBno2M/gRown0j6d2AcIy6Iayn6nbcEkn0BpKYJGB0nP9MeJCeHQVlER0Q0YAyFTxFqOq4HYKlzj6ALo3KIz0KUaAuPUZVLOXRGzEWE0LajbqLCt7K+tfHcfmGjU4NvzFApzvp3U2m+o//dT7TdKgY0/PxaTGwITRqka4vgr15Pts+7d6FhZ6FEDKLxlI03onfacnCtj/n7HWadBGuLyCfXhQw6Plzw6XLF19TI3Xv0cszIjVrLyj26F23uTdlmhL7xIefEOZDnEJVADO6DKNTIzDqrOffdLJxcBuNjM2W1mEOFxecphsZJn6HnIzjlyL5AqF3PaZjUgIsF7gjZy3wYOSbqvIRKVqGdnmUzgSmli22GXx+w82Wd6dMRkVWFGOhYygaqEgtjhHLOgOdhy/MsvNtjdG/yRvc8TNjcweUGoG7z35Lllcz4jROEgdl2XZM7FVTyzVrgRiZ8mkgTqzEO4vvSEVcW1cGMvtSB8EQlecpvTda2gIhERekScwl957yJlpZgGyyfv3eC3X32HVd7y5dsf8ae+8ymKJOEvyIPoTWltUFoTfMdyuUQZhfeBrvMpCPScLhZMpxvCcxwqboIEvD6InIKPOBcxVg2aO8YYJtMpsWtZdDUnp0uCd1ze3UnCnoEiz5Pek0/dSkxlnZPiB3FsV3gXh4pJa3+4UONjHZDIcxZ5fHPFOz8mJbOTY8sbvzjnZHnIxTdzzFaeOpehyAuMz9Da4bQ4PgZt0EHExlwqDxMjPU8MCSLTJrlPukGd9Uw6h/Q7KpwTcqnSmizpURhDIgxJTbtol3QC99mMg1sVD19eETXs7JXceXsH6zWm1RR7BhW7ISCJMDCjI7Kym5QSRJ0uV3TOUzU1PniatiGkDpNleUrRCAoSg5dcbspzuqSkF4Knbls0QkwiuMFbYTDTIyEZStGZgv085z/+9xfcv/mEP/lrJX/zP7vMrcZI6XCMRB0HMSCVRNJs8Gw1gc224eZyycJm3J1NeVimigQj5liBSJaJSV7XOaqqYtUsyc08ybavV2iSqzZonXwXYhq0kg/GYrWkdcnhE6msUhqcjhze8HRZQAW4+kGB9tAmKrl4YZSURUExmdB0HRtbUBZWuBlRETEoe7a6pj+n2HfW0WtPQehp6weGOPrpP6fGxxkgokiIitNiNUrZlGRNRj4x0MqC2RuFSlo2MYKSW4uda+olmA7yAsglSPA56AhZaRgq9iIk81VUFoVzERTKQ2yiCK/Z1EMs674qkQTBreXjtem1HJ7mz8Ba8fFZ741fj8/Yb5yy6f/dBzP95zWIcZ5i/elelyJGIr1ooT0T4Jw9kfUELwHJKGVTPCMg+T4BTiQQ6yNOH77P3uN9ZjuX2L1ecv3lF5luXgTfoPKLxHaBf/Iup4+fMLt6g/zaKwnKOoa4ALsDzM9cy/fb+lSHDZrXji7zq9fforIdH832CSoKIfQHHKPn6WitmEynVMvjvoHw3qNtTPLAcSCZ9+aTIUaic5RWY+uG7PiEq3fvMzk5QfuASmPPOgaQCrr186QIxhDKnN/9yTl/429+nQ9veH7yvSN+4r+coGKkrmpZcCqFVobt7W1c56i7NpEvRYrdaE1mDapzOK/QuaGYTHBtjU8mdbKwOhvcKZW4MiBE0zz5uiDnajMr80lCh3RylVcoruxviKhi5vnE3evsns54srngu1ce8dH2Ma8cXkRpnQwGQRkjCuJFyWKxolqtKPKCvCjIJsIHnEwmWGNpm2YQ7gypAMMHjwmOGA0RI2ncpBkSvbSozXJMltMkNXGd7u18WlI3UuFUFDlt29All/o8s1S1LOSlncXKxPuANZbM/j4gtcYYCFHz5b/wBJ9LB/30L2+TP/AszSlZk1GcliwmIZneZRibpbJcizMuGTx5YsqRtl2Hc10iV3pcJzdAolKDtVJDLgHL2eqc/qHxziWRtbAmsHbdQCbta8nFHdHz8KUFezdXEOHSwxm33t8aIg7lZci2ZvQ9ce0IG5Gyq/lMXImfHB7Rpjr1uhYVvp4dHkPE+44YRFK98462damErFeRhaquKfOSyWSCUWdJgYokUpaG/BjhZFrz1qvH7F/w/P0/1/HJr7zE578RuHp0zFZVMasbNJGYHC/XqJKkomyMbPuW7bblFa15XBY8LguOreGURIRVmrzIRZXXO3wIZEZKnhOVJ5Ho+jNbu8+WRYELgZPFklXdMiuE+d+z+GOueXhLiGcqwvX3S8lhexlArJVBQBtN1zmazlFubqxdekepiKf66DNeWyMcT+83rP7OvfbUvlFWWTEKcnCSV0NAshFLMmVpo6QhwiKhIhkQPCoz1JX073xuUJlCuQhaESV/kRCLBItnvRg/OB9pvLS5jmLs55eBQgfaNlJuZph8HQRoxUBjwIEKI0AgRSw932fcPgbOEin79EvfEvHMr/5sh8/LH/KX5mz7pVMSAbQIig7UqDQ3RsLqgBhazPwqZ7RCnhOclC5jsz2bsvmB2xgd8RXN4SNODg7YP1owu3SVF994GTu5IOeuCzAdbu+7VCf7zG69Sn7xFcGYlu9DmYO9ghQuP+N7nvfvURt/4ugaOiq8jry1/ZhOeUxPuB3fi/PHG4JkyMvpEIRHBXFQTpbPCNFcoVKqIKsbssUp28sV00d72NVqHR+qdVA+BIXpWQtAN53S7e6wuHyJ+sVbLO4cc//Gt1lMHd+6/ojjScVWM6MP+Yy1oJL3i7W4IORMn0kKGJXMV2Oi3iuNzSxdK98oC8KRBpLslZpgLTXhvBdVV60xypIXhaT9g6SsziB4SqqJ2rbhlbuXuHa0zZPNBe9ffMJ7V/Z56fCCyEYkxMYYTa4yynRMqw1lnjNPfEJrDU3XcXR0TFVXNE3NzHdE7whBihqC98RMxtQYIiGVx0khjIyhVdOwWC4pMkHT266ThW/ToaL4BIneiaTV81wqoDrnBRFJC0qfAjhrn9I9fub2MQ9IIkeXGt7+qRNQkC81n/onW8kqWfJ2IVW9NEVBUU4pi/KMuFnwgc41UmZqPFleIF43Mow576SMqhPZXFGmy9DB0LmOOLjN9tOMrAC6rqNtGqbTqajoGUOXUiohBMlbKkVlOj56Y0E1d+iguPPONptHuaxmA8REZlUp90hMvgs9/JnSRb3lc5nnSR1WfkKSCo4JrnNetFc65+lcl5CjnDwTpdflakWMUWSI2xarJJhZP0MxMeTNcK3v3T6mLmTpfOOjDbJlxv3tCU+2tthqGnZOTrl0fCxck96WXKmkOdBPzhKcTHzgzqriRlVzZC0HmWUvL3hS5Dg0xq7zt/02DFwxVdfEIJYCyXgvyzKIErhpY4d0jTWGECMUmkfXpE5eB8X1j8qUG5YprucWKaXpQqDpPJMLG8PAsr7z654AZyfLcSXN84KX4WJG+z0ViPT8CBj8FolwOgpIZl3JNLPkSkT36gXQICKCdZD0SilWA65TZKkLuwA2BaA9YSR24FuZSDrvyUpRKHYorII8B5QmaEVhZe52QPAR7cCmaE0ZhbX9sUWUzXuIDkwKbgYIPERCJaB/tGKd4AGckGgtonGjWsCkqqu+ca1U/sQUjMlqfIRMyUco03FU/6HxwqKr8EePUGUpJ3ueN/GMrQh24GB02nOcVZzrAWc/3wdZRHxXUx99yMnD+xydVlStY3V6Qn20zyzfRllL7Fa0T96iPXhItnuLbOcOSgUIx2Az0BdI7jvr438fJO6pTSleO7oytPW7m3s4HXrhnDP7ndnG6TAFeTkZUq59nw8hgNZinKkVhMjkeMHG4SHl8THl6YLMjdRWh9/DjQO17v/N5ibHly5QXb5MuH6VTims1Ww1U17av8hXZ3dZFR3fvbzHH/hwKhWRKSiKIUIppH9rDHVT0zkniywj5bNFZmlWDcQwGHqms0geWxCTRL4EIqP7rKQCRwISJVyuLMdnHc75oSihvy7FOtjaPZnyxv3rfOvWPY7Kim9du88f/t5L5F4PJFiV0kGTyYSNjTnReXxwSXxOk2GZliXz+Zy63qdppAy4iIFe2K3n8gQEsZbz1vRyCk3dcHpyStc5trc2gCA+OdNSOD5dR2YLCX5aSRWJsayl7pF/kzIPoyrPH2b7WAckIQS+9bOHrHY8RLjzlSmXPizIrPAl+s7US9p2XUdT15RlSVGUZHmBsQZrJ1LyZTOMaWitS58VEyQRomnTzZWSrcxmkm+M3bDaH0ObolEiwYDpGdjpprvOEVRAGUPYibz7o8egIGs1n/nqFVQaxEOU1AoqptU/gCI908kECbQSESHvA8YaiqIkRnCuG/KkdS116Z3r6J1xtVbkWSYpEa3okgOx6zqyDFbVktCJT0KW2aEiR4JeyUOC4t2XD2kLuQc3P9wkO07jbWY5LXNON6bcv7jLvKq5vn/A5aMjjJf0yBqyHm1RXIcvtB07bcetqqEymgdlyUd5Tixk4BU+TzIxlKYZZmlRUpRBI8syQgiURUm2e5HgOqgbtAp43xFyxf1rwrtRAa5/NBGicgqeMmsTGQ1Qms7B9sbGwHsIZ8793OT1jMmsR0eehZ4IaLD2eXnm1iMoI72p07zCKSG2zbqSPCTr9wyKTUXXQfSg5xYdEuVAa6KNeAs+JFSkkyAYY3H9ojSPuFa+NyABhO2bOgAlRKuGVIiUp5NM+yCL0q7daUwTSwSvUHiIVtpPnw3kfB0lSjH93JrKQvv7nPYzEbQBjzj0ugjOJeXPTgIkaxMqnRjBmUouvqr/30gePQZYHaJshpluM5BhnrpRo/uqFLm3QmqNz0JIzuNh61fxFau9d7n/3nucnC5Z1h0v3LrOlVdfIVYrYvREH3F736E+eITevEF56SWULcHvy0WVV0BNRg0z6lnfL91yrn+9cXx1SOG8vbk3BLjPve5z36MU2KxAa4uErHKVvbKnjpGtvSfM955QrFbYth0mxDMoiBkfW9IewRiWO9scvHCH7uIOlTIErZnlGbEVk9LZKueVx5f46q271FnHt6895Avv3wIkiBA394jzjswastywrCJtJwGJQcpkiyInLiuCD5jM0Bs09hQB0u+YEOU++CKhJ8515EUhxNakgqqtBR9GxGk1jOd9YONbx0989yX+2y/8LnXe8a/vvMu/PflxJn5KDKLuHYMQUfMsY2tzg8XpQpRY09iPgmlZsLU55+j4eCja8D55qaVzDz7RFVS6p+n1tm3Z39+n6xzT2QYYQ2bArVxKb2lZVMcgUhOxEQ2rVMmplVQhWSPzr9IR58NaHPQHbB/rgORko+G7P3OCzyK2Ubz+K5vMKzFmy/NCzIeilGp2rkueMx1tW5NlGUU5lfxbnks6ZypBQ1SS6ggRSfFYgzIabTSmrgf/mizPyLNMjIVCGNTrlBK2srZGxKVCz1eQ/JzWgq5459m/WXP3NakO2jooeeXbF0Yj8xrf7uWK+06sUkeKMeIiVPVK0i+J42JtNiAzWmvarsX5iPEBY1Sq9AkE56lWq8Fzx3WOzGaUmQXXUbuOpm3IsoxJKTwKWYFKTtXlkfdePKLLRF32zt1NNlyBNcKcJ4regCtzjsqCo51t3lqtuLx/yJXjY2ZNQ945VDLjGgYlmZnREcoQKEJgu1vwOvDIWj7MM/aNoTKGNq3EbBIe6qt98qJgoyy5sLNDjJGqWglD3mZsbJW0bQNtS9wIPLi8BGB+bNk+yFLlkgRvRZ5jrSAkRGhcZLq5MfTDPrh4Vvjw/QKPM3+fI2SqdM/PDPzp7z5YWTdV5DghJFkwbLQlJqaVnJIJe6IgrGQgikqhggGjZL7Vshr1lac79ngd0ZtWHLGNDBLapMqBdL4xMZCVXmvD9OfdF3QHLw+RyqSUGIW4tHaScjSKIb2TnXPx00oRGi8clTIp5Q6gQsQoxO7dJzDHio6IcB5SgJIx6KL4CFlI7s61o1Ytk8n5STyCW0FssVuXIJum1ewPRhk0is1ugg06cUhWoz7xnM+Hjur4MY8ePuFw0dI5uHDtGlde+SzlvITMQmxpHr3H6aOHTC9fZnr9k3JO9YegPJR3QJ2rhOn7zA/ifpzbri+32WmmPLQnvLv5hJVp2Y6jFNAPaAdBEDQ2L2nbGuU8RVVTVkdsHh6zdXCI8T5FmJyFFMdoTkz9MctoJxNOr15heecWy0lJ1EbEEX3A1Q1t64Qw6z3F0vLyowtk3lBnjm9ffURrPFmwgoQChCgGnrpIBp+Jn6FaQe6MJc8z8qRNZdLK37uOEJPPWep7hD7kYrSwCokCENDG4qPsp5O3WBgqONXotzyrddPwuXdeYPd0xv0LR3zt6l3u7R5zqZpLH/YdzrVYJUTb6WQmvjZtR12vmG/MMRrKImM2LUXNe1VT1yum3QZFKcYPwXu88yjtwej0zIoD/cHBAcdHR1y6dJUYHNXyCJtFjG2pqxo7m6C0IOzWmrTg99B2zCYlWmuWVcVsMkmoiEu8xrM+Yc/bPtYByUefWrD/YgMKLrxTcP1bU4wSpc8sz8mzPFXKSOS3rCrqusW7JpFLO+ospygLynIiZkjJjbcf+EHKSRXipaInkiduGmFtF0UuwYdSOB9S8KEpywmT2QyjrTjvpgdOAdoaCmNw1vHNn9wjiL89n/mdK+g6gknpGO8hBvEPiYo16CWRbkgjdAiBumlo6hYRJAq0TQtaStoya8nymThSGplgpZLGJSQhDGqC03LCZDqhyISwKQGcIEu9R0xZFAktCextrXhyYQUKtk8Kru9tkNt1IGisQJRDIAW0ZcEHVy/zwe42O6dLLiyWbJ+ecqEZaVEMqwe5xn5loWPkWtdxtetYGsOeMexZw7611DanDTGp8ebMiwkXdnfY3twQVduuxbtOAkYrYj9KG/ZutrRWBoobH03RytKGVqBGo1JAkqGtpatrXIRiMjlzqkMM+QxkRI32k7v3/ABm/P54U+mY48+qVO3SmMAirwk6UraW4rSkPRV3T0nwKTCamEN7KJbpukjGWSmwUUhg0aogapSdQyszpDusVqMTEeAgIsGAiUmXpEeqvHAY6xPPdG6ISfXVzrQIYzVSbuuCQWUS3JzzGMMDqzYSV5GZ1ug8ETD7eUWBMWnF5xTaSH6/ixHtFUFJ+TkGVFQUOmJNJFeK2gWiUeduQoT2FLoT1OYVQEu09LybdG5yVig225IiWJa25TSr8Spgo04wkn76c0qTTbe59tKrXLlxg+WTx8x2L1FubKOUJWYad3CXk0cfUe5cpLz0mjTy4p5EX/kN/v9y3vkBAYVG8cbRVR7OTqhNx/sb+1xfbT3/GOdTUIDWkZlzZA8fUR4fMz0+plzVnElY9h/T558M2avemLG8sMtyd4fj3Qu00wmTIk/FB4LEGCvBcbWqkjR7QIfAtcdzdhcTHm0veLBzyqP5KVf3N+T0kmeO6xyhKNBakWWiAisq20HE11K1XrNqsd6gk26HOKgLWiKLAgY+ycBfUiKK5rqO3Jihv6o0D/XE1r79hqaIiq5tmLVzfuqtV/iHP/llvAn889e+y+fu3QBkgdx13cCB7NViXdvS1DXz+SzdA01ZlGzM5ywWKxnrmwZXthJckQKnKKqxbRshepp6xdHBYdJbgdnmJq6r8KHGGiMkVifCcHXTMdMGrS1d1xBDxOUiZOkWK9rOUfTaIzEO6fMftH2sA5J7X6hZXfAoB1d/L2f7HUuwUaTcE3lV1OiSLXQMwq5ORkjeedqupW0bmqbBWhHAUkqPOpAnBDeI4vSQnvMO7wMqKomos4KilGCldY5I0sfQUnJ5JjWRIGhyxTd/4jEgyOtn/tUlurZDl+JGHINH9R04CZD0fXnwgEjXZ42l1UmOXolmhO9EwKZLpVzTyYRJkZFnlvl0QogR5xyuZ2EnnZLcZghzXNIdWSbcl6ZtOD4+YWktZVlSlgWPdhfs71QQYee45NqTuZS89VoXo/MVrocSOXgFjoxHW5s8ns/JNjfZbipunS64slyShzOKG6Di+kFOx517zzx4bnaw0oZV2/I+cLixCdOpoBtFjrGWbiXCRrLS8OiEVkHgnauHQ5+6c3+Lja0LNHmLsvKZLM9JqiHUTUNWlgKPrs/uuShIjHFtY9+nWtI1jD/f/1YxDiJg4+MMKMw49aMAD23eUVspi8y9Fe2CLpB3iq5r8BFmF6YYq8g2c2jFBl35KDBFOs9sqol5QVt5wqljMk0kvwCmAHdmIZ5aJArHo+cANSoFzhmYDSEkZzqiAjTLiDISPDgVqU89012LyqSqZ9wQYaLIVUZoA84nXogWUCAqkbvWShRouwbJ1WRI6kfJ5GpMMmlLAUqmkhpr9DiX+le6D8F71PIEignKTNYn8oO2UeC50ZVkwYJqWWYtteme62Mj44wlK7fJyk2ibynLOSp66B4T7S7u5BH14w/QWcbs+m2B/du9FIxcSQqsnOlLTwUd51Mr5/cfnw+K14+u8Ks3RDH6zZ0H/NSjl54fyIyP0zRw9y72nXe5cPcu8fgInewxYNR3R9ySvlNHIGrN6tJFTm9cY7m9RTub0iGaUDEEfCc8CWtF8dXHSNMJajGbymILHFcezNg5mfBoa8HDzRPeK/a40E1k3EnzgAvisZJpI95mXSecuDTmAyk10aKNIUsLsBD14Bi+LqKXdEtfiShcjkjnOvJYpnVV+m6jccmQb2i/UfpV/GcafvrNN/ivfvzLRA3//Uvf5m/86k9jEP5L6x02S471WvhtWivqpqZtHdqKwm1RFhRlMbjtVvUyCaTFJOIZmM42CDHStg2ZzWibhiwv2NjcQimN0VLG7eqaLM9ou5ZV3aC1kPt7U1NgqOKZTEqKbEXwEVPqoXJJm98HHJIPf0pKZctDzau/PEdVEbWpKYoJk8ks1YL7oSpjIFrFsLaRDkECk7bBJNMkpZNzrLGAwIH9RGCUqM4VeUEMUpJqtSYEmbTzomA6ndK5HsUwWJO8F4LAVj3s/M4n9jm4JLnmm+9tcePRjpQKK+jNqXrJKKkUk9WF98JPIQUk1mimZYnrHK3zwjEJUo7Wk4rquqbMLHk2IbdGfEkUwpYOYkcdQqDIpJJovZo3yatHiMBC8HUsl0uqpub9rX0Od+UaLu5NuLhXEnsmeVp6i2HhWUhWK43M6QqvFM3GlLtFzkeTCTMuc3tVcev4mGnbknuXEBK53hBJA0Oq0gG2omc7BC7HSHCHHDcNjzY28G2H7lzi4qjECUokX6Qc+oMXF0OfuvPBTEiPhaT90AYXNQenS5FmbjyT+aY8iOMAY2gv2YYKHJ5GRuDpqW68z7PelxfXCYA+2CFCbVuqTNClLFi21ITJZobuINuaCMnUgPKKXGm6oKgPHcVUo2dmqBJSEQoL2dzQaoO1YAm4aGh1Xzq7TsuYlBIKAVotKIlREuQYICsUbgXNSUBPFNoKsqEyCFpBCU0bKTMJFsZtYfJIriFONK5DUA+TUlAJLXdBAhQVoT2psRs5ttDD9USk5F5Lal3ilSjPbPRumKxjjDSnJ2gmZPkmgxv18+7Ec0iuW21JkZwKF1lNZVNAMuz3vABHgymxm1eFQawcoXrC6tE9utZjrCIsHxHNMcZXxJ2XUOoHSHGfRzL6FM73CS4Uik8dXh9e+ubOvefuS9dBXcPBAXzve/DBB1BVKO/JQsA7ByiiSk9AD8Ox/u3zjG4yYXHlMgc3b+JmEzBahPUA33lc29G6ls4YqU4MSWMIWJyekJdF0uaQyrkXlpe5frrNd9hjb3vB3tWa7EE2kPdd1y++PCazI28shkoQQRhyjFEypk9KTGbpujahJHHgrYUoqAqxFwCUoCR4Ibvq3oVc++R6Pm7GNd4ZgeDFMuOFxxd56dFl3rn2mHtbh3z95j0+/+FtEbpspWKT5OEVlSYqTV037B8dU0wmaBR11+F9JC8Kmla0qYzOBjQcpcjLmRBw0RT5BOc8k+mM6XRGl2TjJ+WU43qZyLuaqpbgxYdA07ZszqaURS60hShz1NbGBqumJipZrEtA9v27a799rAOSwxdlgr/wds6tr05F+KsoKYqJKH0aIyW8TaT1Uinje75HWIvZoBQhKDrniGllHlLpl0kPwqBsagzWFFhbyMCskhNw17FaLVlWq7QC0GRZic1yQp6R2TxFk6J5EmLga59/iEslDm984xLTKkseDgkdQQIgrdRQt9934dgvMZQaHqq8K/B1S0Ryoc44XNsSopRmnS6WTMuCzAiSI+J+soqMKUgwSb0VGNAiQNjiWsz4ikJU/051zYc3j3FZFP7I97YIdcTpMIgNibFW78SbJoD0APapZGs1oQs0bUPbtTRZQb2zxYcXL7CzWnHp5JSd5YLNuqFIcKLS/THC6CEXNMJ6z5XlksvLJf7okOXmJpM8Z2oMe8pTaZ1yDnLvPrglHB4C3Lg7IybymwQ8gbpRdD6gTitcVGxe3zqDkJzZzq0+x9U1PTLSr5r61541XY1RlEF/ZrRfz3HSEWrbDdLrubfMm1LclUtRNx3ONERcp1hWgeBbIT93gE2aCV1ME75UzHRVYNVUlDtzVJrUTfrOkO6tM4lkh6RMlKSpRZ7eKGIR8ZVCB4UtU0CiFDpCsWGpTwOrVSPqyP1qOiEckuqL2Bxok6lfL65GSjelzEpQGSdHNRubExFvU5Kq6Zt6DpBW1mWZE3t9fADfYkKHLqV0UifvsX7hoFT/1J0rID4XmGy2E3Ivrb20LZXpRjdz9Mcz0h5Dn9AlxIieFmRXS0x1jG2OcIcrXPOEYj4lmwcofsAI/5yg6Zmv9f0MeOPo6pB6+9bOg3U/jZFQN6iTE9ThAer+fbh7l3h4KBEp6wXTEIAILjFqMkXILM3GBtX2FsurV1ld3KW1No0/iXeWUFsh2ddEBeV0Q8peg5SixxDYmDlMprEpIOmcp7Qln3l0k3/5+rt01vP+jQP4LkxiLtWCRJyXtEqP1qDEQM/ETAJzJarVRW5ZViLP0CPdIaVt5G7GAYHvm1GldogpKMuKQhRWVW9zIQRUpYdmGwKiiIi1TRYlX3j3Bd659pjGOP7Zi9/lE+9cS/4yHbQd4WSBsYau81RVQ9d2tMcnmMWK6WRCVmTkhaUoMhbLBXVlmZRTprMN8rygroUwPZtt0HUNWZ6xYTelXWDwy8mLEqUNXSfIiOtEl8RaK4EdgbzICLV4kIUQKMqCum0JXqodtRpl537A9rEOSPq07Kf+0SZFZymnBWVZElWSH04BhAjLOFZVTd3nwWLvn5KenURSkHxginhjoEsMcYXCTkqMNiLNbkTsRsUggmkh0tU1bdOsCVQoTNbbPpfkeUmRF9isYLWx4v3XjiTvv7S89L1d8s6mc5IpWySVezl1dXYsZA2DKoSk2rZdiv7Xrrc2S8aBonozkF4ZIQ29qaCsNM4OuEpFEfLRCp1KFoRhHljNIg9eFXTEdIpr3yio6oaiyAXyU71hVgTCWleC8QAsI38P7TmnaOuKthHjqKooeXx1Stlss9XUXFhVXDk+Yatp0sMvvITUGGnyWA/yeduS7T1hI0au5Dk3jeI4zzmYzjjOMroJPL4mk/l8YdncNyKQl84d5QltjU2MekdBVk6eCUGO19TD/YnxTLVMf3bq3ITxrOdVjfYfByiDTomLNItItdOy6lM2wQyKofT8kAjaRToPoQAdNDkWXWqiSeZ6Dbg6sqw78sJiZ5owURgzETQknXx0grZ44lByq1KQQlQ4n+LONKkrBWaqiF6tHV7TZSsNxRSqVtEs4wjKluPpGMVFGHAWXCvkV6fSo68llZMh7qveBZpa9BI8DFopuQVNwHcLoiloG2ndoh/9jMLOpiiTg7HDSXS1Jyst4IihBRdRNucpEmnaNrqSPCSExDbUfUBy5s7z/ZGK/t5ry2TrEmxdgnZB6CrU8WN8c4qpFpji4ujQ3yf4+H7vPbUvXK422W6mHBYr3tt4wkl9DPf3sQ8ekD3eQ58cE4+PUa5He2WS7tPiCp2e6Z47I1feTiacXL5Mfe0qzdYmzWRCTOiBjEdaqvcSP66uauqmIrOWoigoilzM7uRigKSyXK3QWlHmGZkxaK343L1rZEHT4Xnr+mP8HMq2r5SzrGhom47WigRCBJq2FZl3pYfKnzLPqGpHDHFQ+w46rsvq0m1Uw1ghfbhP+zjXYQsR5kQLKdxaS1Ah9YY1cSoiXL6mbcmPGl595yKTz2dUZceXL73P281DdpaiC9U0rRi3FnMJeozGFgbvPFpZZrOSsiwxWtM0LUdHxzSNuN0rFQeJ+OiFtOucpIuszXBdneYCQ9u2FEVOnhccL4/JFNIGQUwSQ4x0LlDkRZpXIp33FNaSZZa6rtGqzzr84O4HH/eABJg/tLz6z0W1sygnzOcbFLlUsoiqqoiUVU3LyemSrhMda601BD1MYL1IspA1hQzYIwfEIKXDPhPTOi0cE6t1mlg0eR6wjajj9VsMga6p6Bqxb87yiaSTplPe/dQxT64sQcG1BxvcvLuFSQp+pNp2nZRIddLp7qt4BC6U8xbxGSHS5kUJSiptfNJIybKMssiJIVDkGUWRCRk2rKe6Pio2ZpyqSYhMiHglZVxZJiQtnyy6202497JUp+SV5so3co4XxxRFwSwJtZnEfRHgKU3T/SoqSn6YtMqQaicrxlF1zWq1pNI1eZZTZ5blbM7ebM5b29ts1g23Tk64uliQeScrJ5XWJ/0kn74nxiAs/Kqi1IoLVcOLixV1ZvngWsbr7ynqqeL6/QnTRgLNXuUVrVPNqEdFj84Kiuk0yUmfdZjt/x47y47xkiEIew5/BNaD2ZDyYu1f0wc5/aY1kMFSjRASlzGrJ2ckX5XkDlFWYY0srpvDSCwlnZE41YRSUAgA5SEvBCHTLhI6eV+4HIK6qORCpmKkJQUJOekepONESZs0LaJLUkLQa18akynyzYKuHYkM9pfu0vnnQpYMFlwj8vX/P/L+PNa2ND3vw37ftNba05nuXHN19cRuNrtJNiexKZHiTFkmTcUOFVlhrMSMBVCIIAQCDNgwLBgxYusPizYiB0ICSZFlQYpCWbRpWiRFcRDbHJqkeh6ruqvq1p3PtIc1fFP+eL+1z76nbnU3ATlxw6txuu7ZZ++11/Ct73vf533e5xnLMqORugKmM0v2QmZVGjlXijpHBmMUWCNjt+2wtrRjYlG17Gm7bGeFsUqufo6QBlK3JBsDucZM5yhVX9y5nNnzQmoFWLue1vqdiPKrTBF3NqVL6aheYOoFenqFtDkuCndvse0GIE/iilx+z857FbDoHO+6d8ixH/hXfmWg/wd/l8WjHhUDOUTCyFtTF+OdMkfGmIutgJa2cQ3LwwOOb91gc3REmkxQVS3B/M5gzhn80IvlhYLKOXJOzOdzKlthnWgPhRDpQ8IaVeayGt935CSZuCkg7Dfee5rGOzaV51M37tFNAzqIK3iCMofJulDVUvLpO/HAQgd8CaQqp7HOCFrtjJBJU9rGIymKEulFrCfrRQhpi+KixXDOaEP0Ydv+KkliKs/1iLwAIbPK8MxrBzz94IDPP/eAN66e86Vnjrn++WeklOxEPbiyVhRSjSIMPb5wB4MP0MhaNm0mNE3D2fk5w9Az9APONWI4G0UE1BhDjIFmMsXEQAieZjIVhdeccXXNpu3Ym1VMZxP6rifHTNKZEBKTWlNZJ5IRIYjGl7XSuVlcnUcl8K+0fW0HJBne+98umK0r6qpmNp0zaaY4J1FpLMTVruvkp+/LAJJ63mjlrMQIA4XCmLGlli2kpws7ux96lmtN02RcaRV2zlJbi3FG+q2j9LmPD20o7b0xRdrNOX23ZuNrPvn0A06OWlSC51495OmHB1ijimBNmawL+rGd8ygZSR5LLPJqjImYFc7VGDuhioFh6OjaDTFEZosZs0m99VgQHkZxPi6taGK0p4uuCYXUO4ZqF9cbKII/8PrzS1YLGWhve/mA6+zjG9E9OT4+2Tofi5SxEq+9PMosF4GelLfolFZaFByLMu4wDAw+0HUtXa+Y1A16UhOc44Fz3J/PMD5wc7nk5nrNlRiYDR4X45i6FOhdba3oSRmlRBNhFgLvfL3lv/4Lh3zhec/rtypeeqTos5J2YnNBqgtDjyEzO1hQNfWbyytccEbGxXbru5IvumO2x5UvfITGfVxesvKlf+9Cu5R92amidQNrs1Oy6Zryd7YT/6AAI/dWG5hOHakPkjUaTXCCws0bsTtIIAvMIC2zvouQDHoCJmaGdaCqLNGAKvvdjlN1cYxbCLyCGDL5LGBmFlVdLIauAuseT6F0ERzxULxiQVsRU9NDcSkuYflIAjZKkbXwK2udUTbhKrNF0nDSqm0dKERJM4WA7zc0s4s27pFvIdyTEpDkCj27TticgD8TZbW8AT0RFVU0+31DteWQ9LRmuHRz//BByS6yoYxFz69dHONX+9kvxx/JWS7YakU+P+fG3Vf46/+fhv1712g6xWR9jPKjbu/F6TzmclP+kYwmHhxgbj3D6cEBd6aO1plt0oHWqBgxSm0h/KwUwQ+sVyt8CDTNpKCjDbPJtCC2imEYOD47Z71p2d+fc/XwgLoWA1Nps70onyz6mvfeucmvv/1lTictn7p2j+fOrhB8xMdESKJWutq0uJQYfGDTdUSEN5hKWTnFRN/2JHrc4GjbVtpld/SpxuR2fNTSWO4l0w+daHJYi0/j3C0dkNI+LEjzrjnfSJJ64fy68EieecCDvSVfeOmYb33teWpXns8kz0TlHMG7LQ3Bx0TfdxgjM7e0BzecL5d0XUffd0xmc4wqxqtDT9M0+KEnBo8zWs6roFVtu6GuG5q6IXjPbNoUq5GAYiTIZqqqKrIagb7vMVqE53xIVO5x4cEvt31NBySTY81LH14w1Q3TiaiwhhC2gz2lhB+K2FdK0tZb5MDlv8LcHgeEVuPAuOjoUFpjrKiVGm3wfiCGWLgUE9RsVjRHKqbzfbStGYYBkMHmfS9Ow94LchEDJ9U5X3zpEclmmo3lhY/vw0qMAvW2TKMveGCwLSWNgmijfLxC2nxDUhLIKGn1tUZTWUMMA86aIlSjLvY1LpaMc9vFYpdRY7ct2uid8oLUPUd9jM+853h7gO/5zHWm01nx+/FiJhg8y9WSfhho6hpnR6vukeQrOx2PZ0scLhLJ0tom+jGbtsOrASbV1sMmpcxgNK/u7/H6Ys51qznqA4ebDYfrNXtdV7qULibjzFiSk0P3KqIyvP1Ljvd+RtG0t+mrmnYyoZ1MOKtrHgBnfkBZi2lmmMpuod7d7fIjl570+ngsuwvNbsaqdrP0vF3QH0NGGNc4IYvFJtBVsvi5YJgN1cWTLSs2WjTsUONrKPou0Pea6qgqi+84rYLNQMz4EKlmBldJx0weFINPdJvM4KGaFw2RLdRz6SqU4MsYCSZC1KRB0RhIJVEeHazfdC1HvbJyXBpQTpF6qKIEQnHn+iklHjomg98kzODRrpyXuoiYVM5YJ4hIVgpnEWMfU13cI0AxFPMehzKysOr6AF3PUWkjgfRwCu4QTMPC73JILpdseGzfb7pGT9p237tF/dSb/3bxAbbqb19pAeh7ePAA7t2DBw/Ix8fkR4+wfctzjaerS6eeBjcOnMdKrheT0zCf0t+4TnfliPodX8/kxXcxnJ+S73wR3a9JefRzKveIC2K+9wPtZo3RmsneHpPJhBxFTNI6ty0P55ToNhv6tiUvpnT9QFIGnwRdSQi5P5d9v+/zEpCg4DdufJ5v/b3n2LQdJUNhtdmQcmbmA20nbbMZTc4DIUrnzqbr6LoeVzX0XS/IA2ytRYx120Aoo4gFbZB1Rt4rJXpL8J66maDbtpTJBQXPRQ1aGVNKmsJbrIPl/a89y69/w2dpa8+nnr3LZu7Z6yfCjczi4K6LV06IQebqGAlBfpyzWKOYTSdUztL3HcPQEbxHG4vWVvS0inCkHzqquilIypqURKPK7u8znTa064GqqgWVL+iJcH0CdSV0g6Eoo+uqwmjN4HuMFdPCr2b7mg5Inv7olKdfW7C/t898vqBphBAmLWIapRW992zajt4P20x83IRvgWTMWu1YSku2qLXBOXGT1EUON6ZICENRvgOUpqqzyDujqZoZVTMX5CEG6iSR9NBuaNs1wwDKROqVpj7XTNaW5393Qdd1QMZZYX5XxhbBwiL5mxJDiKQMgxfXYWMNOcci/CaRuzwQFucM09mMFCxVIRbtGgKOpZ8RQtT6YpGMKYts+rY2Kj95ZGFRAjUU+2c1q9nA13/mOlVVkbLFFoflOnjx1ek7/DBgnKWpG5qaLUojAQmPIVKy+Gi0k0nJOUeIgujkwjfZqsSMFSCjWTcN/aLiYT5kiuKZumJ25y7167epum5bwhmHwbjsbCkoAQiROmxouo7DszNuWMtzwKlSnMzn5JypVIIx69sNIMqmS7A4bpeRkMuvXbzxcbj9TctKviDE5gxpyJgaDIqpr2m8Y9Y2uLZCzUsvQhKOSNCiwUEWTZFQI5m9yPhgdkOe0pmYtKIPgSpprNPEVtCVXENVOREly+DL95iioq2l87AYPV8gQdooYmXQDvqUyb2iriBbKT/VwVF7Rx3cVhOwODjIueSM0aIsO3iwl01qEKTGOWhToHZyL8pFvfReubpKGUw9Z0tIK9chZw9pLVFPSKAbEoacxcuoqipoxSRIVRYFTGLF/jBhEhyzUD9WgnqLO35x33eDkicFHU8qs7AzkHOC0IksrbJv/mzO0LZw9y588YsSiLQtuevAe3ISNDnnhCq+giqXC6r1xXcV8k+whvOrR5xdv8J6PiPv7TO9cpWrt54B5zCuxliL8hqdy9wzkj9HqwI/4HvhnE2aKbZA/apojEjZ3UvipTXNpCFm2LQ9IWRsNdBvNsLV2PRMGlcuRebdn7qK/X7NYl0z9FKeyQVVmE4bfPAEH2iqSs4zRWorZZkQI4v5FOus6D+Z6tL8f9G6u02kFFs0RyuRfBBAthiTlsTXbFtgZdLZ0lFK2X0kxPq+55u+8Dx7mwk2GRahwdaG1JXOnSBeaQqoXVUc6X1BT0S1ezQet9YwaRqWqzV+6PBDhy1ISwwDMYqgmR9aKqfJsWOz3GC0Znl+ShpaRH3ZMJTuKa0MIXpizhK0WYN1lm4YCBl0CBgtk0AMqViyfOVN5d2C91ex/dqv/Rr/6X/6n/KRj3yEO3fu8LM/+7P82I/92M7Yz/wH/8F/wN/4G3+D09NTvvM7v5O//tf/Ou94xzu27zk+PuYv/IW/wM/93M+hteZP/ak/xV/7a3+N+Xz+VR3D+fk5+/v7/NmfeJEPvP40165eZzZdyIApKIQuRm4npyc8PH7Iar0SQZw01u0uFmNgi5BYJ6RVYUQXm+eUsKXDxBSX25QVyjiJerVBaYGARw+cCwSiSCfHgO9b2s2arl0zpIHzKwMP3tHz9b93g8lkiiYLGmNEZbWuHNZATpHlas3Zas3gPTmr7Tlaa1HabmHCnMVMr2kaZtMJVmecLll2Lh01cucL9BaJMVFVUn7SlG4JpbYkVDOiK1mIvqIpYsBBX0dev3nO868dUEdbyj4C5QkHJ9F3HW3f07YdYiXR0EwaqpKlppyK8ua4wuSduVZM8rp+IPiBaSNy/6MUdIzSjWQ1TCYNxjiU0kwnDVePjlitN7z+6pdoTk54brXm2jAwDZE6RkY3HimzlADgkkDXLkKhtELXU/K1q4TnnqV/9lnS3h6pachNIyQ9LgKSbYlmJ5DYPic7+y8Pzs6XqouSjlJbDsm2BASkqFg/3DA5qKHSDDrSx0DAswhz8gBVoyAiBFOduSiKlA4lROU3L6FZyHfEXolYmUIW/wCpkwCDSoKKvBPYZ5S0FYci1R5AVSJNr5DFIWkRfko5k4YSJNQKsnCLVALrMpsYsUVrxI11oIL25nL+4/XyHVQadHVxj8ZrZAHTZWLXMp1VOPd43pVzWQn0Bdflcc6FJ7Ur8ZNp1+xfOSAnQ1JTTJVJqSd0Gd8PzA8OMc1se38f1kua6KiixWYtYm7bCPirgK2/HDH1Te/LbBlGq/vQH8PhC0g/dS9tuasV3LkDr74K9+9Lu+4uxymlrS6FHKIijSXUcuFTFiRyqCrW8xmrW9fwTz2F15reD7SbDSHD0c1nedu7voHZdI++a7n36udo1ydSPo+RbEQoJqdI37YMfcd0NmE2n+NsQawQMn8q3TRD39EPntWmY73ZYJ3lYG/G3mzGqu1pu57KaFablr35lL35hLPzDWmueOP5Fbden+O849p8j37wrDc9V44OWa5XnJ6eceXwAIDjk1MqZ5jNZmy6gb39PVKGB8dnhJipqoYhiHtu8J4UR8S6uAhrfWGCN8aTwOgyn3KmbhpCDGzWK0LviQW9VRSeG2C0BD6urtg/POC33/UFvuHRU7yQrqITtG2P0dB1LVobFrMZ1lnWXUffbujaFl8CgOl0QiLTdQPHJ2e8cfce0+mMa9efYr442K6XdV3R1I6+W+Oc5QETkwABAABJREFUqNIOQ890thCrkZzFG6cX1+Smbug7kaQfx8lsPsUYzflyBUphS5t1OwQymTdeeIE/8b//P3B2dsbe3t5bDv8/NEKyXq95//vfz5/7c3+OH//xH3/T3/+T/+Q/4Wd+5mf4W3/rb/Hiiy/y7//7/z4/+IM/yCc/+UlBMIA/82f+DHfu3OEXf/EX8d7zb/1b/xY/9VM/xd/9u3/3D3Us7/zCNY5uXmF/T+qJOSX81iQIEaFR8t9cApFxkd1GtuPDmTOJRM5mW7YRIo68XzsnKn5KY6yQL5UuUvNlH1qZLTSZ0qjKN7YXG1w9FfTCWoa+pTruOfjnNcEMpOKrk2KkL8Z3IdRMJg3OVbT+jNV6LQ/2RQWFHrbKfbYo06aU6NoNRsFi2rCz7DEuaaqc88jslv0WwlQJCmRy0NsgTIK4MaHLmGSYdoZ3vHxFghQjpEeZyArEj+jC2KqiqWvatqXrO3rf45xwf5wT8zo5sHESTIy5dc5ihKdwMmEmUakdF2yjpHSx2xhtrUGNEKJSLKdTHkwmNClx2A9caVuOhoGDwbMIYevhkQuf6HLAMKIVOib0gwdUDx8w+f3fJ+7tEa5cIVy9Sjg6Ih4eEg8OUFX1psVll7A6Xv/x98u+NbtlGn3x4jYoiSnTr1vC0DG9dohOMIsOU9Ukoxg8DKmgD9UF+bNUa8riLfofsQa/zlhXIAlT/JJCCWiqTO+hKqWf3dKOUoXH6oTjIYiJjEvlAa/QFQRBmKkcEgiUNuKUismehyka5SFrRR8VWovnjLaXAzjhpAw9TKIAAmMwYoAqQ11pkmtED+MS4pBLW7JGhNoev08ZckC5mnq2IGbLamXQKkK8S+8V9WKP2G4wRqGr+qKMAlztF4+jGVt05C22L1uCufSe3fflvBM9K7ALWCf4wm04OYFHj+DhQzg9lQv8hG3kNIiXkBBolVKiLwO0xnA+nbCsHGfzCcPVI1jMpdwVA+uzFX3fobSimi6YLQ6pq0YIxVWNKQaio+dWjtLt5/sOcmKxt2A6FWRE5swLWXUx2xZ+x3rd0vnAZDphMZtSV+JAW1eOlKFWmVhZtDFUtmLaiGbGN947IBAZTCKRC9lSBmLdiIxDjFFaZKuKFIXbYQuCYa1lOqlZrTtyFjuOlBMqqC3XnTwixxdPhfDi5L6kFIlRNE9yHrt1DFH5bbAn4LQq9iMJgxE3eB/5js+8HacgzSK2EpPTGOX7QpCWZFdZrBbtIGMtg+/EUDUlnLMkZ2lqCcy99/R9SzOZlY7OQNf2aGpSDASVmUymYr7qA64SAnUzmdI0E7quZTab46qK1XIpZb0IfYRJVWMn0LYdIUJOiiFlVstzvnTn3luP753tDx2Q/PAP/zA//MM//JYD/D/7z/4z/r1/79/jR3/0RwH423/7b3Pjxg3+0T/6R/zET/wEn/rUp/iFX/gFfud3focPfvCDAPzn//l/zo/8yI/wV//qX+Wpp5564r6ftO3vH3C4f8hsOsMV2EqO40IKfSS2ju6tIyqiKM92WQC354BEuSnlIikMxsgiLe21CaUTo+FsjF6CnRihFt5DLpPQ+MCLjb20vRprmc335IFYLWlbgcYe7xBJ4iPQRXrfU1U1IY7KkjsLWrnmKUZSgRKNMZiC7oxSyHJAO4tf4W/IAy8dLSAtwdNJQ+Wqx8TRUkoXba47CZ/wMFQJPMbzpfDXSvuy0uhKo6K5iP7dsHUT9j6wP5+BqcoVpsjsC4s9l0xJLAAKpAmQ1baEpLUq2Yp436AyVotwmY9yTaqqBjIxZx7UNfdnM6oYmPrA3jBwY9Nyo++Y+YsFbLsMlMlFqdJhVS6Ayhl7doY9OyO//DK5rkmzGXE2I1y5gr95E3/jBnF/n7G0U+awCwM9LrpoLsPy22BoXEh3Fqa+z5wcn6FiT0wZN5mh0Oig0bp0s4xAwMCFwvilwGd02V2vO7SJTI9mcmyhOKMC1imwmaHPJajIOzowcu/HoEkpcErQEAlSJOOOGcISTMjYmai/ZhImC/oSN2CycLN6D00twzb18aL7TCmIshhoBaqWoGRagDVVTrMqCYWRK7J1eh1RkDAk0fvZPvR5i8JALrV8g21mzLJi07ZYlRm8gtDx4PUV9WzBzWduoi85T+/ev919X9Q+v8y2myA9KQh5bEuwPoO7J3D3ngQfyyVsNlKa+QpcFalSxAtkBJkbeqN5OGl4OGtYThr8fE6oaowzTCa18CmGnuXZOTF4rFZUtmH/8CqHV65hi129NgZbTwBNLh4wwzCIIrZWzPcWNM2kJBoj6la4bVmRQuSsoMKTumJq6sI1kiAiKQkotRKui1EXPlZVLf5iozN46kUTwzmHNdL94awVdWvvqesKVzn6VhZxrRR+8NQTW7iDmphiUf4uZntjsSXLPDqiX4IuUwxS5XxiShglqLbTkqhsp+Qs85Yt4yjFSNaWlBN931JVewwh0PUeW8o9PgaUykQvDQR1qkunzOikDiEEun5gUYknlXWWxXzO2XLF0PdE34NVqCyikU29R3NwRAiB+WKPtvMsl2dcvXKlCIY6mqYhpIw2jmZWsVx3rDdr2rbFOsv5es3ZySnrzZqmaUgxsl4tSSnxudPjLz/2y/YvlUPyyiuvcPfuXb7v+75v+9r+/j7f9m3fxoc//GF+4id+gg9/+MMcHBxsgxGA7/u+70NrzW/91m/xr/1r/9qb9tv3Iu0+bufn5wDM5zPquirEVKhKBKm12orZeC8QG1v+BEBheasRrgeyoCday6KTU97GKmNgkZFOkBQjUQco4jeyYEshPOdKdD1GjkEp36QYSeTS5WBwrqZpEtZIK7GrahmcMZDyKLQjcrztZk30YZw1MPpxkthYHspJGOTeD1JGItNUlsrWF5NdvnhIfJDaKilRVTUxBs7Pl7jKMZ9NaSq3XUBTEVHbVrlS2nY3KBSmIFO5TLyjq6QuvJBclAVHc0HrHCmvCSFKexwjJjMu2qJAGLQEIdrYrVw4BLkeI3qlJFAcA0utpJRFhs2mJcSEq6ttDZkxG0mJZU6chcir8xkqRPaHgVvLNU8PPbMYqXLGqoL6jB1ZT1gsFKD6Ht33mONjqtdfh49/nKw1cbHA37qFf+ophhs3pLxjRdNl29p5GU3Z+beEqI//7qzi8OpV/HpDt1yJokFdc2VqyEqTrMJpIIDfAOV3Xca73t5HIGaaw5q+zeQo4z4pVQih8n6rRLNrtfK0x56mqnATi20EVYr5Yt9jG7FAShLAaiPeM5lMUIrYwWrjUeuNoCy6whpNvWepyMJPseArzeqhwPLVtCYGeYbcTLJoVUlL8bQSFfym3B41zswopL08lqAXtO/AzBhLBFu0cNhA36IbTRgMqd9QH81YzCaE1TndKpJwKBWZzmey4G5F054QbOzyVy6jJG+Felz+fM4QgpRavJfA44035Of0BEKUhzMlnrg9qQREltK2guQsvqo435tzdzrhrjMkozBVQzOfM58uICdS8hgFq9WK8/NznDVMmkq6OPb2uHbreRaLgy0XTQGuagTRLHNvTlIankynNBMJRsanXlPsMFJi8Jm+69m0HUopDvYWDEEUSjWZEOWeWSMFZgrnT1S5o+hvDCKCObrOimmo8PO8H6h1TVU5vPeYoszad53oelQ13gfqWo7XGCUKr5SOS63IxStOuHRs5xVVHmVVOm/IEngrUfuT+dtaSdSUtL/HmMhFPDLERMxJCKF9T54LcbQbMlUlKEsIqZTWFd0wUA0e6xxDFMd1ow2+GMDGUIuMu9bMZjPOlktCGAi+JTnRG6mbKZPJnMX+EZt2jbEVe/sHkizbClfX+JSplcHamm7wWOvoB8+9u3c5Pz+jaSp83xUuJKzUaNosCWVon4zSXd7+pQYkd+/eBeDGjRuPvX7jxo3t3+7evcv169cfPwhrOTo62r7n8vYf/8f/Mf/hf/gfvun15xRUQ8egIaqEUgatYdI0hJhYr9dSdjBF7GoLkUukTcmqyZLxuaoqraqNtGb5iwU8F50L6YcfCClItL79uzDBoulJIRJSwBiHc03pmFHkIkCGzlhlmU0nhFgjhCF5iJMxpRW35Gs5FT0VqOpKTPMYzZ3yxVy4nRNLJp4Tm81aJm32mE7qCy7EFkmWgGHkmyiEqzH4gfPzJX0t16OpdnyBylclYWyh9OjhcKFWuJXmHw8rZ7REfJA1ppgyxUlm8AMSwGTRy1BC2m37gc5HYkiFIOdwVrQHrHFgPTm36BQvUG8yKUeMEnfmwXvWmzWr1RKlTdFScUXYTuBNyEQb6HvoU+JuVfPagcMChyHwXApcD4G59+wpwyTGx9eey5B7vljgCGLBrh89wj16RP74x0FrwtHRtswTDw6Isxlp/LH2TUtb2llUVCnbGCWt51VjyWqg63r8suM8IcJttRYuh4NqoegGyBGqWhAJGbNy+GYixFiVFP1Zh6401Z4EsRfLrcKSmU0sA5o4SHku+HIJNMQgyqk4tgjKeMyVgbQHOUtArZvMwllaPcdYaE87JtqwbgeiT2ANptZUc4s+qtCDcFuqQoBVZX43WjpBQoKpGYXgLhZ2ZYSIKsQ8jTIWM2vwIZKiwm0F7jJKBXx/ThxqUq6oqkz2LVonrIm4eM6my8wmU6azKaOK8Vtu2/uWLsNtT0ZCBI8XhGO9Fv7H+flF+eX4GIbhy3/nuJ/LKF+5j6mSVty2rmgXc1b7Cx44y9lmg/ceV1XMZgumiwNmiz2GrmW9PoecZE7oOxbzOdeuXUUDXbthfniFvf1D4bON40VBVY9uyiPvLtFMZltk5PIxp5xZb1o2XY+1wkHIMUgiYzR9KPLuIZXOwrEkrnHWkUIg+EjVCIoRfNh27I0lDGs0bd9TOdFkattWAhcr5XcfArYSKfRRzVWrUpZR0qkpYptRiNyq2CCUc8yFjb0VgVRFS0orlNik46yl1yLoKKWfC/RakOUEWUtnpveklOl6T1N5ea7KBVZa48t7mqamqSr80GOK7wxZHHxHfmRTV+wt5lIqCgNhUNhmIuiVF/81pTRd2zGZzGgm0zImajHWq2qMcSxXS0II3Lt3h3t33yAnT+wtVmsqg3T3KMUkZfaVYgNMq7dQtr60fU102fy7/+6/y1/6S39p+/v5+TnPPvss74qRqmtZBs+jquLcOrSrMJWhsoa1ylgjpYKQPVuiphqj+IROlBuBTJRaidHWDqROIWWFMA5wg9WqtDImQhS10+h7/Njyu60tgnUSdOSxXkhGEXFWFE27voWYRRelKJyO2v9phI9dQ1VPWW+WDH0vAzNJJ09Ml6PPsZU2sV63BUnZZzqpGDtnlBJexmw6xVhHVTkJjKzD9uLbMAyDmPNVrnjZ2DKRqC0iY5BupjTC4rAlaI2R0jYQymz5KFobpmoK7QjTytIXQuR8ueJstS6+E6XcZq0EeFVNM5kymUyxqiIrkcanPHQKigS+offSniflnoT3UR7yYYByH8UplJLJUDQIhAfxyDn66ZzXrWWWMs8//26enlqm9+5gb9/GPHy4s85cTEBPhMvHQCUl3MOHuIcPyZ/5DNm5bZknLRbE/X3hohwdEfb3wbnHlV7HfWvIRLTRLK7uMyPT+0QcFH7QpCX0acA4j3Vynkkb+rWmnmQIiuykDGQUMv40xMYRI6iUyQVREf6nPDPWKvRMEa0EOEMqHjYTpDOmB2Xk+NSlcx+DbgXbrgO1p4ke9o8mKESiP3sI3mOVZRINtdIkC74NECPTeXWhW4eIq5qUCjLzZkQghzXD+QlurlHNFIwh+a6UCBs5kdCibYWb7ePXkW61IuYVvlb4HIltR79cUVWOxcEh9XT6+Hc9KcDYeR7fhJCMWwhSajk+lp/TUwlExp9dB+w37VY98ffx1TGYZLGAZ56h219wbiLH0dM6RzCW9WbD+XKJIrPY22fv6CqL/SPqekLft5yuz/He023WnJ+dsX94yK2nn2Fvf4HOWXQs9m8wmc6LaaYa8yJsJaZ2KYl1RfADOU+2uk6qzIQjYrvpevpBjO5m8xmVVqi2I+aMK6i1aCYpwEjJhoJcGwVe2tRB7DTEtyXKfS4BkdqS7hN1JU7sfT8wm8+2hqpKyTwQCodiDDRykY7Q2kgwqmTeMch+RlJ+KkjFOBeM7bHOaHzwWyQ+Kjk2rYQQK6VItUWKtFb4YaCqG+IgpVlb1LfJCYuVRo0s2le1s6QYUGicMWSVS3lKzFKt1ewv5qw30jXjnMMUnzVBy3u0sQz9Glv82rpuw2QyJadI162L503g9dde5e6d2wzdBmfkQazqBucsBxhuZMWhhnlW3M6B/FYI3qXtX2pAcvPmTQDu3bvHrVu3tq/fu3ePD3zgA9v33L9//7HPhRA4Pj7efv7yJtLBb24bMsA8Z+YhcDUENkpzv6o4n0WCMqQwyNJZFqXtpsoEoVQhMQIKYgh0MWJmU4xRxKQgFiGyGNBh7GoBpQ2LuRhcDV4y1H4IEpgUhVdVFsLR8j7FiDOGyjZl4ZRouRs0fbchmrh1UMxQHHYlBVVFrbWZzKma6bbWmZI4RIo0cNgu7OMEGGJgvWlFwK0Wr4attLyx1JXDFAJozlAVJCEEhx8GfAi0bSds9soV0ykrvBqttlDrmzIxMlkldDbbSeqiyaB08WgJ6MQZU4KelBObtitIENv3peiJ3jP0GzarM5rJlNl8n/29ORqPwm8nOVd0Y1Zth9HSapwpTP9SiksxMowy+pQyWJLJzduIbxLzjSNn6GKmN4Zqfo300ktM3hmpsme2OaN59RWqV17B3XlD5LSjQOiPLRWXSzK7ZR7v0aen2NNTuWNak62Vn6oiHhwQrl9nuH4df+UKaTIBIxng9EpNQrFZwWSqmFaGzXTgUb3k2tkBttUEL3Bz7AsJOGXiqsNOplSmOOIOEnQkJ3Lc63Vi+ShgtcjIm7nbBmwowCiioQTzYCu2+h9JCaF1nFh2l+Jt6zlseUjOFgkQbemantt7xzx7doVFnoCS/cWNZKJh3eN7T1VVODFnRSPE3FqPgf4FOpBzJrfntMdvUC/20caShx7VTKlrVxCgDAwoPGEDSlVMpglDwp+fszpZsdx0nK/WHEwsi8WUen4VrR+fOlsTuDc542a3TxPd42WYnOQkk5IA4/hYNEDu3xf0o+8lMBnHz1ttTwp2LiEsyhhRk716Fd72NnjxRbh2jaAVJ3e/xKMHb9APBqUMm6Wgh9oq0lHD4cEzXNm/gXMVm9U57eqUyhq6tmO9WlLVFXuHh1hr6LqephbtpcniUIipSo1Vahkm1qG0QPsxeCrnpNSQEnksfaRM23acLVd0xayNMk50sZMYwV+VM8PghZwZIpqMdRavErYkkl0/MJ00KKXYdB3GCAcwxIjyojkTQsKbQNPI3OeDBPaj1HrOMhcOfqBuZDFPKYlLNHLcxmjCKJ098uXKMccUCHnAaFuCH+GfuEqeI+usiKUNg4w/NT4fmtHpaxQa7Ide9J2sLUGLAm2IXr5rpCcM/YAzmsEIZ0pbS98PMnergZjCdg1KPhCNEFxHYVDjh61dR0bWwtl8Qddv8KHHaMN6tWJwA/fv3eWN17/EZr3EqoxVGqcyV1LmpaA50ArHhbzC1axJbffW43pn+5cakLz44ovcvHmTX/7lX94GIOfn5/zWb/0Wf/7P/3kAvuM7voPT01M+8pGP8M3f/M0A/NN/+k9JKfFt3/Ztf7gv3IEmXc7s58h+3zEMPfeMIYeIjgOJVDgVyGAHiUf0hcz3KDymtaKuxN1Wd55N10MsvItizGeN0PqV0jRNRVUXCd+2o+0GBu8LJCy168hwMT9ZSx0reTiVPLSTZkKKET/0ReVVE1PiTK3Y6JbZiZP24+LP41yNq4Q7Y4xltjhgMgt0mw3tZi3dRTtbiIH1esNsOqEpfhCjyoXwZ/IWEVLGgK4KOdZSRUEVBu+LcqrHGEtTgsTSDbxFXEbC7cNrGx5c3/ANn7qxLYtRUKJREC0GEbLIMdAVVneRzd2iF8bYCxni4MW5OUba9ZKuXRP9EVcP94UUltlacltrBX51wr4XNDyW0pr82/tANwzyWh41aTMPnm555ZuWfOsv3GCSM9578uB57RMf5vTuy7j5PvX8kIObN5i+85uYffN3sDCB5rXXcK+/LujJcolar9Hr9eMByhP4IrsBCimhhgGGgbzZYE5Pqb74RaZlvKfplHB0xHB0JMHK/gG9asirCj2ruXPrEf/4XX/Av/np7+a63SNhyUhJw7eQl4F+3Yt0dW+wjSN5g5sZIa/qTD3RrNueeN6SF3tMKnHqVUXIzAC1YytM5ntFVYKT3JRn67HH9FJX0fh6+e+kFgLuHXfKP3jPb/KTH/1jPLe5snX2jXNZz1VlMaqR9b18n0lQ21xUjXcvaSYOLcPpfYzSmMlU2nXKmNuWbGMPQ0dyoG1E6YHYg2sW1H7N8vyY2oj4ljvaZ3Ljbah677H7hlI8apb8nRf/OX/6Ux/gbSd7qLHtdrmUrpeTYzg+kRLMkxC0J21fJgBR478nE5jPYTaDmzfhuefgmWdgh0gdgufBFz7GyaMHhbNlOD07Z71ayTx3Y49f/eP3+KGTKe5Rxer0mLOT+4Sh53y5ZLWRFtOmEv+T1VJUVeum4cbNm9tybt7p2idDToGMLPTNbOzqkGfPKIpGVE/fD1TW4upicxFHjR/J9IdCVrVG1LCtEYRDW0FC//nzX+DF4ysszjWhF2TXVVZ8YaxhMpHF3Puw5a0Mw0DlLK6qGEIq0geW1TIQQ8RZgx8CWimcMVgFAeEC1rYmFxpAFli1SL9Ll+bWn4e45dIFL1Yepog6usrRdZrVvMVuFHVvdvJkQZQ1EL0XZ2Jj8TFRhSQJWgrkLOJk3g/SLl88xELRIWnbDq0DzWRSFF0DRhumM/FkS6O0e44E3zP0rRB8rSXlWDqRDH3Xs9jbx6/X3LnzBnffeA3fb5hqxYG13HIVL1QN+2NZf0vwlfEwVYb3pP+JSjar1YrPf/7z299feeUV/uAP/oCjoyOee+45/uJf/Iv8R//Rf8Q73vGObdvvU089tdUq+bqv+zp+6Id+iH/73/63+S//y/8S7z0//dM/zU/8xE/8oTpsQDJ8pcW1VbpjpH5XpcSzMXI1Zxb7Da9zwOvrjmMv5hijbfu2O4ssdtEZKuto6prZpKFykkFvun5bggkxlAUy03tP01QYbalKUrTdX8m2c+l0kSlIHBQ3bUvOEe8tVW2wrqKZTHHWEkJgvVmz7lb83r/ygPkdw9t+c3ExiUcZpH2ntx01rqqx1lLVDdoYumJONx6H2sKA+SIAg+KuqQqyWCJuNcLpIqufdMQaeXDrEBh8oB8Glqs1Xd/TFJjOGSPMd63JRvHrH3qNZDPv//RNgVrzhbty2inR1LWQxvzgGfxASArjGmbVjLqZSklFCUPdDz1+6LdqgyklsSB3hqO92RZJctYydt1Q6rfGjF0+GgovJ+cNSKmVscgUSHz620947b0r3v+rV0mbLCaKSj63PnlAfHSPnOHhF/eYLg6YHBzxtve+k6vvfjfDu9+N8h57coI6PkY/eoS5fx/78CH20SP0avXmosJlHsr48hNIjqYEOdWrr8lrRhMnU3wzJc2nXL3V8o7XXmXx8IhG3yTO58TpFDORlvMwN3S9pZrX5CR6HjEkkjKYGLBOyIJV5QhdxFZGIOFeSjuuysLZyAobRYY9VMK31CmjTabSY1nwyeeVlXpMhiwnMDlz59oj/vFLv8sPfOEbeH5zRSD9UpZJBsxBRbsC9IVKcZ2KVMnjEBzkzPrkmLBumS32i2CJhqI8nLICIil6wqZj3Z4y268xzhK7gRA9OkVqrelz4nBvxuzKU9j5FZlw1yvheWw2sNlQhzu89MlP0bx8DvedvL5eF8Rj9/y/Asqx8/uTij+5ruHaNfKVK3D1KuraNTg6kp+6vkAjdz5z/uguq+UZIQnPbrVa0XcdTVOzOLxGeGGfj3zd7zP70qfZ+8yLDKslKXjOl+es12uqqqZ2DZNJhdWwXC5Zr9dMpg2T2ZT9K0UNOZV2biW3IqtEVU9Ikwmu8DhCEhQ3xMj5+YpV11FVFfuzGV3hS5iiIXVRzgjkovK86QYpx6SETgqM4g/e/QZfWB/zv7r3HlIv+7cjupJlnrNGrDCMEW6K956YEk1d0/cbhn6gaWqsNSQStaukZTxnppOarh/YdIGsNKYs2LqUgfII4eRiVAqMjubGXCDEKSXZf05UVYWxmi+8/SFnk5YP/cYLRURNEI6kIlpLKWgYBiaTSSnPJ8bmgRjSlpwfTNHJUoouxoKmiFhZXTkqZwnakMgomoJMR4IPWKcIYcAPHSFMsdawaTdoranrhuVyiVqe8+jRQ+7deR3Vrnm7q7jpHDecY1YE3Sj3jBJ0oS7mgG9JX8Z/aWf7Qwckv/u7v8v3fM/3bH8fuR0/+ZM/yd/8m3+Tv/yX/zLr9Zqf+qmf4vT0lA996EP8wi/8wlaDBOC/+q/+K376p3+a7/3e790Ko/3Mz/zMH/ZQREJ8ZGgWmG2sVYm0b+LZRcWLNKzmkdtdzyfXa+73IiWvstpm7kqLguVsNmNSNzR1JcxlH+j7gVjqnH7wQo5Ujk3bUzsr7rZab+WOXZTIWJwRY/FQkHIOKIahJYYBpRTNJLJ3cFROSDpwtNa8/q4Vv/VnHvDdf+3GVlJYcRE95xTxKeK9Z+hbjHE0kwnNZEZVNSK+Vvr9x0FZlxYwlVXpDLpgjVMe3PE7xteTuGVJlB4C1kWpLfYtwxDYpA12KPsvve73b3b8/A9+nj/6m88RdELH3WRSrL0zmaGoEzonvkDGevqkcbrGuFrUBLfdO4noBwlIuhWb9VI4LjGwWq7YmzY0zpT74AqJLTK2gI8wMlBqp4a273aCI7kB7TTwP/7YXRbHFcM0kte5BEWanAKRBKpwMoYOvzwheRjWA1zdfgHh+nXy9esC5fY9um3RXYcuHTj29m3snTuSSY8I0qUs/4nb5SAlJex6hVmvyA8zN+9u+Fc/FjiIH8HpqZR+nCMZS6ynhP099qYzwvwQpnPi/pxQNySdiG0gttIxZrIl24r29IzFjX0pcyVBWggiF5+ylNGNkaDi/LSlmsDiYPJExsTlAGXUlFEeBpf4yK1XuL045iPXXuZbH74NjRbYd+S5GJjM5f1WZSZaumsuX7OcM34ItB1Uk6sMqqHOSQ6yFHbOz9fkHJlPLaZxTJPi/N4Dxqk1+ER3co5dL5lqxWE21J/9EupffFYCjbHrJQSy9+yllu92PXV8FYZL/JKLK/AVyy7bYGJ8zVq4cQOeflp+rl+H6RSaRn4KSpx3Pj9e4xQDy0d3OLv/uiiVZsWm7QQZqRyLg6tcufU8928EHixW/M2v/2d81z/Zx4XMyckxXbuhdo5mUjOdTplOp8SUOTtf4b1nYWaQIikOUJ6LEbTOSPvtfO+I0J4yhvwpZdquZxg8OSfm0wnKGIzWVNbKmNLSeeJT2O5PtD2EdBqTtBbHlIgm0c4C/903/h7f83tv4+BOtSXUN3WFyhc6Rj7IMVSVSL4rVCmRy37r2lE3NSkmzERTOUtOgbqUqvshbgnmWo8kKclCdSk/bW05dpKu8SfFAE6SpcoKSh5c5Of+xCd54dUDnn/1qJRq9GNzQvADNE3Rc7lIslLBdGMaGx+kO0crCYQmk2ZLAXBWVHBD8f1JSYK/mEcR0Uzfd/R9L/L9OYnsuzF0fcvp8UP88SPeEQJPNVPmWovy8zYFL8O7rF+UJy0DXineqP8nCki++7u/e2cCf/OmlOKv/JW/wl/5K3/lLd9zdHT0hxZBe9L2yrVbvNC3TIcOGyMqF+O4lIgq0s3Ep6TSmkOlOZw7vm4+4/4w8Mnlmtf6jnUIDDFS1w3T6ZSrV65QmYzRCWM0+4sZwzCwWrdyI7Mom1oriMOm62URNMLkU9qgTUVdi59MSonoPDYIFCgPVCSU4ESplnazonJW5IaTZ33F80//0l3aw1gM8cYHfWRyF9n7IrwWk6hHet/TbjZMplOm0xl7iz00EecEGTAl8Iglit9OZHkknu5wG1Rpgy5GI1kL+mBMQlW5+DOIlsjgPaENDH5AzS1/70c/zdl+T+sCnRqYZMtuR4IqM1Ye/w1krcnGyuRknLRRj7ORUoDGVA22aqgnM6pmymZ1xnq1IhUlXEUlEKu19D5ICQi19S2aNFJPyEqsABSqlNVKbVbB7/zQfY6fFiLhME9Up5Xom5R7LAit2Hd77+nbwOGVF5gtFrto9e4DgSpKriFnuHmT4eu+rmh9BPT9+7jbt3FvvIG5exfVdehhkEDF+7cOUC4n1TkTdWLQAZUhhR4dRhXInc+8Vu77iCZoBdYS5zPibE6YzximM3o9I5sGbzRpvaRaTBhyhllNGjTGaTCGGBRmqklBM9tzhKzwvnBDCldoNBvcPeztNUoQPbR14Jee+ygo+B+e/yj/5ke+k6musRMraEq5uJUR115LafHlzWt86Dvu3b6LtXNCgmE1MDURYwOEgZw1/u4xJok1sO46mn5FtTwlPDpDrVvyuoUQCsFcunO2C8Wbtoy3olnUm0DUGZt3O3CejIBsN2uhqgThqGu4ckXKLk89JWWYur5oLXrS5x87kvEfmX55zPmju/RdS0YxDD2bzZqmqZjvXeHo5vPM5gd8hi9wrz7h7t45/+g9H+VD/80VcX9tRO1zPt+jmcyxztB34r5t5orpdCalBD8wIW1Lo+PmrGY6m3NuLMF3xJTo+oF1K9K/R4d71M4yFF8UrRQx56IdEwiDdMXEkPAkrDFUjfBD6spJyVUPtJXn4f6av/19v8tP//1v30oAGGMJIRZkQovHixdTSF8IrKiMUlLOiVFKOiMfT+TUPdporNFYq+lDJIaALjLzo8/OeOFVQYm3AQUI2bUo4o7ofCZL0qs1Z/sdf+dP/z5/8f/+XRytJqBU0TahtCwX5KhojSRdjCRlkhYeSYziO1UVJ3uKRktWwmk0IokRhtIkYMS/avBekmfEWLXruiLZH/GbDWYYmJ2d8szZKddyRjv3WGJ8QfBR29Jsypk+Z5ZkXjWal8n8d4/+/6BD8v/r7eTqNQZjmZ6fsjg/Zb/vWfiBrBNDE0k2Y4cd5jdgUTxVN9yqak6C50tty+tdz7qqafYP2VvMCf1KoD6tmDQ1i/kM72OJ6mFUYNVKMwyi5mqtaHbEmEkY0Fx0eZTMwTmLqycyeIaheA54unZFilL6STPFR370Ibffu8at9GMOveMPQMq6ePGU8tBIyPQD4dwz9D17e/sc7M2xpkSrpXyUSnagGAe+9IpbLeJxcpLlu7SsBPIdwr8Y2+yMMVKDHYZtyeXj77nPRz9wDxS01cBgIi4ZIJYsQqEKbOtDktZTrfAx41P5PjXqhEjrNMUXYmypI0MzWcjEqA1GJeqqYvTycc7QrjfSE58zxtjSXpcK16As1MC2OVkpTo96PvJDD8gKVoeedhK2+h/WVRjnit+RaAmkJN1YzeKAeiIZwMiRBnlO086/xwAwl/8qY0jPPkt89lnanGUBPD3FPnqEefQIfXyMWS7R5+fys16LAB+XvqTsu7UXxDGvI5Nyjk+AEC7E1gKoGHFDjzs+vth1Ht+aRdekbgjWoacNyTmyqVBNBaYiV45oHclZcIakxP06VxK0pFHYbtT4GbN6rbHFeO0snVLdu8f7HzlM/wbLN15m7vep9uyFG3cSl2adEi4lzChIWIjEhEAOAX96THV6zqSaUmvFsO5JuRM2Td9DP3DUdhBj0bWRYNQg+06lnTSljDYSiKvdi3J5UwpvLsiorfXsBXvpNo0rlibPpjBfoPb3yXt7cHAAV66grlwhHx5C/bj66/a27dzyt04JyzEsj1nefZW+3SBDK7JardAa5otDrtx6ntnikPXylNerL/JosiKpzM9/2+d43z+bc6ObM53NmM8X4g5rnJQjchLncDtHGVNkAjxbPZdLB2itwVUNQ79hvWlZty3OOeq6EV8XpbHl2VQl0QrlluSSjFFKPNaMMuwSnKSUGRx0LpAV/MZ7X+FD73ieb//sC9tjCsHTq4yrLJlELLwWcmTwQbpzsgQ/MYgg5GYtarJiNOelkUFJKdOXEpyiBAtINyOMso5lOJXkT5XOspyKSWAeTV4j1lZbdOKzb3/Ar3zX5/mTv/R12EFvRQlVFlXhED2mqhgGj9EWZ0tpJAmPcPDSgCDorxW0Sss1VGUOVUqDKQReFD6BVRpTNxit6Yaebuhpz0+pu5ZmteSg75h5L+N3rESo8faqnWBE7vlxjtxJiTdy5nUym06CzZOz068wYst4+are9T/XLUPSmoeTKbdTZNJM2E+eNHmN622g8aYo5hV1JtguaCg4co5Da3nXfM5KaVZNzSOVOS2ZnVIaa5GAJEjNc/AB771EmdpgtKLrB7QXX5VYFkBrHGhHGPoSNQvZybmGqtaEyhfnYHHHDX6gnky4/faeD3//bYZJolrrUrLQFwNbDr1Ac5qki+haQYbGRbYfes7PTzFGsZhNsEV7YiQygdryRlKZsJRVRZsDRofcLXqAfPFIWDJGo5IgKLoxOFvRLTK/90OPWB2Iy+lKd5z0K0w3F5VBLfVZEKb7ppPoXBtdOpMi6FQWBWn5da6hagQCHwXnVDkW5yquXr2BZaCxkilUzqGUYfCBtm1xTlQYjTHiKZQyRjnhAmkhzfmCGH3ijxzz8NlOMt1p4mzR0w+9BJQmoF2NrWrmsxk5w+nJI5qqYro/w1WPw+5P+vfu7yOScqFwqsA50rVrDNeuQZYJzLQtarNBtS16vcacnKAePEDff4g7eYRZLgW1QdCRUSXY67iDTIxlzfzYgYyIc94eUZlfxuMb19CU0O2aGgXLs50zKKgdF+jaGGigSgBiROBO6RJs7mT6Y2ACECcr/q+/NS9jDJ568BsctlOUlm40VZ5dJfAgugQoBS6ElMhRaoN1jFRcBPA2F0G9rclIQvwRRdxPlwux2yumlMJYQUbUZTXWNwUL5XqXwLbXnkiNQQvp9MoVODqQzpdrN1DTKXk6Jc9mqMlERPK+GtRj9xDe4u+qLMKnd19js15t22DX6zVGK+pmyuGNZ2gmM86P73N29oAHT5/QV6Kv8/ozKz7xrae89Hu32Ns/oJlOMEZK10PXQk5MpzNCVqzbFusqyLGgWGMkwdaw0hhNxrDedMJXsJZJUUbViPeXSsLDMFqDD/gkraxZK/Gu2s4Pwg3ph0AuzoqruGFjpCPveNHy33/zp3n28/vcXHpIIj0vcgXSFaO1waw1IWxt7QQNQRela5n/+tJum/OFTog1Bq1SCUAEddZavHkUY+k7b5+BGPzWQT7pEuRGIRWHGKmslDcU0E4Cv/RHP897Pnmdt33+aIuEC51ASLFNMyGhyVmhlEVbTfYD1mkR/dNGOHjVhAYnPEKlcXVD14vMPEo6G8UjqEcbw2bZ03ctykee1oorMTH1nsl2vsgXPBm9O/Iu1oVjpfgCmVe95zgm+m25igvV869i+5oOSPowSBlC8Dk2RvPhd9zhZ37iF3nuUcO//uFn+PFffZ7ra8dWsmfLOblYdKdKMzca4sCLrech8LqCJRBQTOqaK4cHaKU5PjnFh4D3I1lSFx6ExdoKlQQiDEg3SlVcDk3pUBBDPCdE2KoRXYzQi8zubOC/+zc+w4Oba0CQCJFxtyXYSdtTGHOucRJUWvRLRrn4nBPD0HNycopSivm0FnXVdCHyJpucgzUGWx6w7Uo0BsVZhOMsZkuM1UqjTAlqMCir+dw3L/nYtzxkRKv7SWSdWuxSHua6FpOpzkeUUjIpKESmvHwHMRDoSaU9l8L/GM36tNJUdVMCy0hdV1S2RsUOVcTCRmVIEUAT2X/nREG3qSqaytF2kqlpo8khcnq15+Pf9Yh+VjJdDY9udbRDj8XgQ6AfPH3fMAyDyP3njKlq6r2qyNe/dQAy/vtylrv7mbzzulKKbAxxPkfN59vSGkls2+MQsTlh+w36wX0+Fj/MJ/3/yHNfytx8YKiHzPTUUg0anROqlAjfdFDbkaS2xzC+JyfJ+0pvt4zfcU3fal+Puf+F6qlKCUhQ5iC9+7VPWHczmWqz4Z0nbnsBqnSC63q4yDuf+Nk37SuNdgJ6G1RdhFplN0qXMSpflsdS6HheeiyRSgn2MsejfIGQZ7RmU0VeP/Q8Ooy8/Fzg9nOGH8jfyYfUH0Xt7cnDTxS5WnfBpXsSefXyuMiX/nZxzd78mmgdeVYPv0i3PhXJcmM5OTkmhoHZfI/F1afYO7jC+ckjzo/vsQ5rPje5u93Rehb43e98xJ84bpiHBUqJw230ggQ3kxnWSaaeci18sCh8LY0jUXxrkggcni9XPDg+Zdl1HMwmxBAxZd4cg2dF8a7KMg+EknR4n/AxUDkpwQrvA3IM9J24nC/DhrURZDDpzIe/4TW+7fefY//3nkMVT4ZuI2V1bcWsDzK2coKAKeGUxRAZ+oHpzKCN2iLYKFVKtgalAlohgmxJdKOiNQJhIPOvzI1iUZFGfaYxQM/SPOEqkb8nK0lcyzh44+Y5P/ujn+T/9P/4o+wNE4y1BcuFyWTKdDpnk0FZA9bRb9aAJL9dt2Hwraw3ecNyuQSlaOqa85NHbDYbXOVwzjB0naDFxuBypvaRl3LiZlbiMPFYBFxSDf34wxcBT+ahVnxGK+6mxCZId+nYsUoJ5sbz/mq2r+mAZLlak5uIUpLpf+nmff7Gj/4yj/Y6Hu13/MELp3xibfg3f+EdPK3gmlLMtpOjulA6ZXwt43LmFoobKFYR7unMqVas6oq8P2fTtoR13HZ5WCeeCKCo6rrUNkvHiB8KidNSO4FhQ5QWqxCklctYA6oh15Ff+ZHP8/Fvur+dHLRSzBd7TCYzNptVIWhd5LMjw1reW0pTmpJxSGlm6HtOT0/R6oCmMgWOZivXHqMonRpjthG8iGBdiASNduFqhObklxIwyOtn+wM//ye/QDe5gK7DFPRUBIy8H8SPRxu8D+Q8tsLm7XfnIMS4URhIKSXKtamUyij1fK0km0oJpxOzRtpbSQKvppREd0ALyZUiK22do5lMZVKJ69JKnEgkXnnfOV/8huVjM/zJsx3KAh4RiPORvh/YrNbbrMtMJjTTC3XVy4vIk7bLZR2FPOC7v4/vY+d3gV8NWRswDqUhLaac3pzyf3vfP+EfPveQDExaeOq+5f/yi3+cP/qZFzDn51SrM0y7QQeRt1ddJ2TbYSgOsFxkZEru6S4wcLmEsD2mS1FVJm8TZbW9GOUFPX7g8S3qRFA7CrhKlJeFi7HdMXABDT++Em+jpMLwL67bFwnejlb+xaZNCUhKvX8MZGWMaZSzUDcX3I66FiLpZAJ7e7C/B3v7/MLXfYo/98c/xvmiBNhZcedLD/nAxw5YxEn5tsTuXf9yeMibw5Td611u1I6u0u7fhs0p7dnp9jlfrZb4vmc6mzHbP6JqZjy69zrnxw/ph46T7ozXDk8f+6Lff8c9PvXOU577zA3C4EumrWga4TcoY2gaQVOdcxiFaC2FitW6p+s9OWtOTo4Z+oHF3gE6d9ROE7Q8+7kkR5RydExJgkStSTFRW7NNoMaFPudECkLkT1qDNnQ2s7YX6rWbqednv/8TfOBzt7g5LOSaeF+QU0WKYKyUdoch0NSif7QOHYMPTLJ0GMY0CF8DTd8HqrqS+ccYdFLCFdQGFyM5yhxGDBdzVBZHdG2luyuGQFU5qqoWvzNji6yBY7fU81vf+Cq/8cdf5Uf/2dcTew9aJAxOj485PX5IVYkFRt9uSDkxn07xw8C63eBcBWT6tkUbRVVVrLrVVkJfpYF2JfL7+9qwP0SuRzhUCjsmFjsTkzxyuxL40OXMCZl7Cm4bzalWdF5k/VNMF+tTFiXoXNAV/ZVUjcv2NR2QnJ2dEIcpzlmWVzr+/nd/mDeuHe/O4HS95aMJPqvgGvCUyjyv5CboES2BLby9JXZmWACLCF1KLLXmvrHE+ZRh8HR9Twi+tFwFwlhbzKLKGmMQIz5VTJWsoBA5BXwIxQhQbR0kX3nfOb/+Y68/dn5KSWZfNQ0++G2XztbNOIzSwuJ9O8LnIi8+nkti6Hu6rsOZKTknfIw4VZjaKSFt/7mw2oUwJiRyVcTX0tbDRrQERoljtoqcv/6dX+Llt508dvy+SZh5zXy8ZoPHD56cgngPOVcCOrMtaW2vTS58nBxJPpaBrcnG4AGheyZyFDlkYyvCIJCwj5FN29INvSAqlUwmaEvbD2iVi6lgT8yZYZL5/e9/SDd/XJTq+FaPrgwui/6BTxLphywW6coYqmZCUwTn4CKgeFI+cHlJVDs/5gl/H9fdtPM+kPUoemm51Rpenr/Bvzj8wrbrtZ3CF54P/PIfW/FHjr6FLsDpcsDkgbmL6K6VgKTroO9Rmw16s0GvN8TlErPqqHyLajfothVdFLUDnOWLGEBdPvF8MbnKOeSC6u184NJqPBhfzNUutqQy3kZstJcCkFwW/YLyPRYoFYxGycEoNR7rGHCkreKsUhqsgcaSbEVnKwZjSZVj7+Y19JUbqPkMmgnUNXkMRCYT8ujkXL76n37Dr2+DEYCsMr99+Dm+MLvLB85fvHSBvoptXBneooyTQ0BV1aW9CTrSrU4Yuo6MYvAD7WaNrRz1dIF2E85PHuK7Nd4PnJ+dMeiWhzcfF606n/T8t+/9JH/k08/ivCQrxtVCXg8Ds8pRWYcxUp5WGYZ+IKopXZ949OiMk5OH9F3L0dE19vYP8d0pOQuyGKKU18TnRjSW4hCIpiARuth0GLNFuFJKYifRtoQMdSPKvr1JDPXjT9un3/aA3/iO1/izv/1BQvAYKx2AIYhxnS28FFUWe+ccVQNoQ9YO10yJWaNsU3yyIugabRUmB1xBNVKKVPWUlBWxaJLEGEpHkHA7utEfxzm66Dk9OS72F4bNes3ZjUdvUjH9hx/6PZ76PcO7X76KMZazvqfre+qqorem7K9oX22WpJRxVpHigC8q3tZYopdAzVoNOaB95GaCG9qwH2Gayxp4UXDdIiEX5Uv5y4rMqynxRo48UtAZsd3oh8DQe1HLBqTbVfp/hG4gBNzZbO+rGvpf0wHJerUkDQN5pvmVD3yK337v50g7mZACFu0EpRQd8BqZ2xE+RuKmgvcazU2tsSXb30K7hbQ63pI6Q50ShwqenS143Tj+4NEJb2w2W8+DJAo4hZ0tinhDL7LmzlpaLS1m0kt+EbCklFhdC/zyn3qF86PHZaIzgmAMj6mwjmUfKfkYY/GDl+CoIBpGG4ENU+m3Vcj3lu9cty1W9/JAOYdz1RalIEvXjqBOReJZK0wW7YexphqDiPygFLdvnvNPvv9l6t7QT+J2Ze2bRKpVyQpEO6DvO1F4nDQ0k4amrgXJUAL5t20rKq1ZuohSFAg3BDEDTCHS+wGlDEobNjlzvtowqWsRwNJGJs4ownQxx60FvdZr1qXlF0BbQbbeePeal99/Tr0y25KNyvDo6W4r9rSbbO8SjF0zoXJFKO8JY3QXMVGX/rt7n7n0tye9truvkYrhdeT3Dj7LabWkCRWdGTBZo7PmD44+izIJqzRpz9JvLHaiqfb3L2KHMqZGcmgIkdBKOcjpCFmE2nTR1dCbDWm1wT84YUrChg7dddD26L5D+QFivEBbyn8F0Xv8pOSOZ9oqEoxIaY+xh8majYnUg0YXnfhtQJTiFsUASSYEJlZEY8mVg+mCWFXopsJMK1Rd0xlN76aEusYd3cBV4NIZZ+crzvuAncxZXL2GvnoVJjNyGZdfbotEfvvgc1TJEVQkqcQs1NytT/idw8/xvvPnMJhyTwPwZq+iL7c9cUw59+YxlAXFa5cDGScl275nMmlwriJnxWZ1BlEEFE9PTyAFzNTy4EbLLlg87yt+84Uv8smrd/jg3edBiTLrkMFVE3LxilKIYFnK0tJqlCgqnxw/IMTI9RvPiImeFr5XGLwkMrF8k9JiSwClI046Y4ySzpDgB7ouU1lD35dWYYWgKEBlLKnRdFV47CGrveVn/9gn+K4vvIunjw9xxklCpzS6qumKHL82Fau2R/dBCLrdQOtPxFwvZlYPHxX3YsWDBw8JKUn53EsCWlUVfhg4Pz8TOfeUpVW6EYuOdtOjjJT8exAJfGfofcty8GQSKQxvSkQeHa35+R/5DE/9rQnTY0uMCach+Z4hgLMW4sCmW2Oco3KVIMop0dS2dNdklNVUzlCHxM2QuYKl0WDzxVwy/lxMYGOAkonAGVm4ISqzUZmgpKyvlGaIYseR0Sgtc2lKGW01WtuSIMv6d1RN+Gq2r+mARFvRs/jIe77Ar3/7pzm6P+X+rSXJXjxdR2FPbJNDEJVPlVlmWCZ41WhemC14t7VcGTqqocduSwljbXx0CU7oDHOlePdkwjufbrjXdXx6ueJ233MeA12QwMAYXWTjxRwOQHcdyUk5wZee8RgTg4l85HuPOb3W8d5fPeKj3/sIgLqVievi/YKO6NKuNhTZYVOcc5UCH4RMqkrUO4rUuB05+m7oxTjQGtpNoi+Gc009oaqqremVqKuKUA8IMUkEVlUpeQicGaaJX/iBL3DrjQXv++h1fvEHXgHgxr0ZwSVyLex0lEUbTe0se4sZ8/mMqq5KRiSrfgihGHTJd4/eFSFGvAqFnS5+FSkFUowEMqdn5yytYVo7rvggao62ZjrVhRxbPH9you+khkyGmBPeRn7tx9/gA79yldWR52MfekSzMTz1yoz7T7cMTcJu1I4BVvHjQQLDZjqj2VkgRjRj9IAZF9jdCQAeDy6247n8dxcZyTuvj58b/6sUrG3Lr17/A/6Pn/9X+Tsv/CJfnN3lYJjzJ29/J//82sd4tb7PrdObOKewsyJgFgUc2J4QbN2HTQVMpBklKqjqgrMFRB4e8a8ZVp5BWdxUyoSijp5Ff6y402bviaei1+EIGB3RKUrbeUjkTeBufZ9/8I5/yrfe/Sb+3ku/SOsG5mHCn37te/gfr3yWP/P69/J0f01IgkmRo0LFgcWVA6iLe6C1tCES0JyfHBNiYH79WYYhMXct82lCKUeTBqwPtMenPNgoUA0qZdrsmU00i8MpB0/dwtjqsWuze90fv3eZl2d3WboNP/XF7+fvPvNrHFcrnmmv8pOvfQ///fXf59+4/Z3sh9nO6PhKm+JSEf/xv45cl0vHBJl2uSKYPexiRmxX2CFTWUSvp++k02a9YrVcorXodKTrmmEC73/9KT57/QGbyvMdn3uWg27Cf/2hj/ONP/ciYTXQxswmN8QAe3mgcRM0aqvCPHQdrT/n9Oyc/b0DlLXbrFgRxVsqJXYVKnKM9MPApKpK4qPLYhoZupa27YgokYz3A9ZVzGdTjHOgRLn0rDunV55rd6c8uLkB4Lt/9UVuXz3l//UN/5w//f9+P/GsFy8uW9F1LT5IS3MYPG3X0jRN8WrpqZtGkJeupaorcQcewrb1dySl1nVNP2zwIVAZyGEgpsh04rBW7BomjZH5LMsiPavqrWGe0hlSIvQDpEzdGfpGkqFv/a1b3Lu55te+5Yt8/y+9gE2QEbS9qmu0VsWV2JZET5JcY0YRw4G5NhxpuDlkjvLjY2VbBVW7GK38fwDW2nBiFK9oxX0UsSCNOiUqNBGF98JpNKMdQFkvnNFYbTAqo1QCrHjE9ZuvYux/jQckzlbcffGUT3zbHX7gv/l6PvPeO9x7aomKir3Thn4aOPQLplNxLRTp8wEVhT9SNxPi4RGvz/f40tkx+v49DsPAM1qzt4NFC/RbOgnGhQnFzabhRl2zipE3+p7bfc/rm5YT7/GlJKOLm2gqN4viQit974kHz264e+OcH/qrz/DrP3nhdvztv/osH/vgvS0xNpa+eBB1wFSCmhSTaGSUoAPGOp5I5Rstrbl15YhROBCiwFdjysDuYytyy64SmedGhOFG3RJd0vFt6xpIG55WvPziCW7Q/Nm/+z7+3r/xCQBMVHzvr77IR77xDtFJOUmaLBR1XdE0tbDsi+DYLgQxdi9pZba1ZlWIy0qJkio54XMihMhQCHVKa6KvOV+t0SWosq4q361Kh5EEJzEE2s2KFAJf/PpzDu/VfMsvXOfn/50vSYa1MXzwF6/zu993n9MbHZNH0/LA7WYRoG3FZLbAjQZ9O9tlVIQn/D4ubJeDk/E9T6q6jmh+jpCrzBend3imvcoP3PkW/uvnfxkUTGPDj9/+Lk7cks9MX+e51c3Cl5BtiEAEW7/5mEa59qoC7zOrs4yroarLOEY8a+pZRU4QYsYppDXXii+GqipUVREBs58Z2ky3STR7hspdKAOnCJ+4+gc8uvl2rn70+/i5H/h5Vk3HUef4y7/0Q/zcOzwfu7rgyqN3o3KiPznFKWhMRl+5Ur5UtmkWsrZvlwwD1FYz04OgYGZAqYC1GWMydt+CremT4e6DO/jseOrp55kvZhjXPBGVeKv7+cnFa3zzydv512//Ef7xrd/mWK0wKH789rfz2uQhr0zu8/7li4BCbclYT/iCx7bLocZX+limWy0ZlqdYu2B9fk60U+xcugtjPEWrwPr8Hpv1CmcUdVMxny+499yGdz68xg9/8uv4L77rN9jUnujgJ3/z2/n77/sDPnz0Cu89fZbBLEhYUvB0vpdAWUnSM4TA+ek9lsM9Do5ucv3aLdablsrVhCiCbNpUbEd6EmRJYplEbaRLD2Q+8l1L8j2KYqqHotG1zA3GEhJsNiuWp6ec7j3iyr2a9//BDX72f/1ZkskcT1f8b/7We/j173qVjx99kXcfXyEkT79Zieu3VvSbJVprJrUTYbeUaCpDDj0xQ1PbIvgXqOtRLTpirRByUxjEoqJx+G4gW02lDTkmcohUVmQZQhgEsUbhu1Yk77WWklWKwo2Oij/ya7f4lR+Qkn2ymT/7t97DP//QG9x+aslTr0hAa7Qq3mbFqDKDD0NRAlfMQuIwwyGaa0mxyPrxZxvYcv/Uxd+Ugl5rTlzFo6rigdGcK0hKU+VcVF2lqSCmRBiCdEsq8QQLQeSutVaYpDFW09QW5+xWIdyo/wWQWocr8Oi5Df/Kz38Tg/b8xg9+jmwy+8cTvvG3nudjH3wNeyL5xKSpmUwaMcHrO7wfmM/nzKYzKmd5I0buDh7ftlyrHC/WNS8pxWG+VP1VF8RSSh17YS3vMoYXJxOW87kIr52d82rbkrRm5KFJG7HBOQlIUgWnLw5899+5iW8jd98uUeTs2PLB/+EG959aU7mK6XQuZNPycI51yhSiwH6FADppaiaVSLGP5Lxy0KAoJK56G3RorUnFHyZ4kWbfBMkUJtOGSV1TV7b04Rfvj9JtoZTG1xHvIj/yS+/AtZqXXzwFQGfFt//OM5wuOgZTWNdZLMSxYmglly8XuWTJ+lL5PaN23pPQIRZhsoDWYdtlBIEQoqjeakPbw73jE6oiGW2tQxkrQmha4UrHU4riXurrRJglvu/vP8tmHlgfCGzsWs2tj055rzni4bUNt5heBExyVGTANXOms8UTM+ldZGMXGdnd3joPfnxfu/sYSyHFYJPP7L3Gn//8j5HJhPLQz8KEfT/jf/fKD/Pp2atoc2GHXjlBSPo+058GnAHbWLS9MEBUsDWvW3fgg6Kp5G8xQmgzqgZrFHFIDJtMNSuy1FGEy0DQFIUiVxB8UVF3AgCopEg6EG3gx+98J9frvS3ROufMbD3nR175Dm73D3h4umamgfUZ+1f3mMwPUbvPYbk2MYF2UzSRNAy4SrHcgN5EZo0SyfkQxSRTK1TlOFxozpYte9du4KqqoIvqsf1evme79+X1yTF/4eUfYZpq5kE6aLyKNN7xf/7cj/GbVz7F+5cvyKdyfOzDTwpCL3/Xk15T5RqVJ5GcMsOQyHqCs440tGzOT4hZ4RZXqQ6eJvUb4oN7VFZT1TWLvT0Wi31Obp7zg598F+997SqT3sIcjmctuY386V99Px+/ecL9GKDtmcwr0IYhFAQ1ZdZty8lyTdVMODy4SjNpmE4FCbDW0A0RTcJVDUoZMpFEFr8YZ8HYMp/A0PcMQ08MAUPCWknNXdXgnMFHiChWyxVnpyfEoWcwA+/87CHf/js3+W/+9c+SDHzp7WfcOK75wX/yPPefblHTjO0UrrKSuISIdbYgCgptapRK+L4X0qtz23K1VmKQmjJYZ8q1j0XvowQpldm6CwfFNpmS5ptCqi8aTglp4R0NSWNM3Hp1ynf8yi1+59vvsVp4Xn7+lKu3a374Hz7H5952wpVXKlyy2wRNhDJt8QJLXLGWp5TlCorpqKCaZZbamk0qeRa3gmZl21jD7abhftVwDmySUBCE8N9LqSuKWEPwvhy7tNuPCfHIOFFGeFlaO7RROCd6K1GJ+/JXs31NByTzOOGPfOo9qAH+2bd/nDtPn0GGW28c8l2/8W6++K6H1OeattuINHFVU1VO2k9TYjKZYK0hlFbZ3vd0IXBHw7k1vNzUXFOal2Liaso0ufhmMMJeRcCmsPwqpbhSVRw5xzumM85D4HPrNZ9ZLlmlTNsP2FyhlJU2VDPw/l+9yl494Te+63XaPZmwnv74lOblxPs+fH3LM3FFRh2lCgIgEuzeD1LOyQKHVs5SVUIElDkjiZJrBqUV89mslEUKF8JVkEVFMKYoKNLgWS6XtG0rvj7TCc45qRUWkqvWChc07/70Fapg+dxzj3h4VQKqp95YcOPegnd/+ipVZ7boinUORS77yAWG1IXQOC5GAt1iiiJgziidUNGgjcWagDUDWgeMhmBEiTXGSPSJ87OzrdRzDF7afpUWZrtz24UsJhFqe99Hr9Okms8+/5DVkZS86o1hccfxLW/c4NMfOhF07LEVQ1j21eyQ6Xz+RCTjrbbLActu9qsu/f5WW4hAAEXij9//Rq71B3x08QpBSUC1CA3OO955+gJ1siQTMfniUbcaqGC9CQyrzMRaDOCkO3Fb19fAbE8xDNB7cFXRH4sZWnH8zVqTBplss44oo7C6CPkhc2FtQM9kQRnLZTkqlMu8p32KF9e3WJoL/pRSCtMovvnsXcyY4NsVq3agdo6gpigtAaf3Mmadc3if6PrEECI5tNR+w3lnGXzEanj94YZsZ5ATs8mM9eqMw6tTjm5c5+DmDFfVO4Huk+/b5QBhUIFvPXk7X7d8ljeaYxZB6uR99twNJ3zj+iW+N3wDMUessmTl2JZS/xDb5XKfxKSZFALaOXLwkDVe1YDDNfu45GAY6NYb7KJmtjhkvndE6hTzvT1msz2sq+hd5Ed//92sdM90EHG/B7MVj6qBt995jrfdX3ByekZDTd0UJ9iM+HsNA6t2EE+YyrGYTYVnYjXWGZyV+ch7j60nxT8IxvYBpUCTicHjh57laoOPkbpygMJpjU8RjMFnxaptOT87Z2jXok9jMnWreM+nr/Ds/QU37s64/eyK+9c3LJ9OvPD6Edc+J4rFxmlSFJVqbfW2vRgl7breR0LK2yAjJiHz+nTRTRlKS6twASPZhyLem+kHX9p7EZ2ULMgwKRGzLNYjzyflC2XsEBLv//BVjt6oeeGze3z8g49YLTyfe/cp3/obN7j6cIKqLU2S+dBaI47sKXPNwq0M84xYHozjt7C5L9ap8nrO+JzplOJYKb5oNG9oLZ1U6w39MGyfWe996cCUHYxSEuN6t5sMKCVu6c7orWZVLk7I1laoGKnN/0TS8f9z2nQHThnaReCT33CbUEVM0Lz/Uy/w/P3rPPvaFWy64GJ0XQuFve1chfeBTVukkI1Dlz7HEKLIG2tNnkw4cY5pStyIiRsxcpgy05H+Pd7B3ZukFFYpjqqKb68rvnF/j9fajjcGzzHwKCv0xNEwxRpFtai5+20RP02oADf+RY2+63nhN6f4W2PNUXrXtwuWYuvDkKIEJM5JpK5VWUBT3hIRdj1+YkFbrNalbCLW2DlFKusItWcYBMXZbGSgOudwVcW0aUrrpUIl0blAZT79jofb+/LOzx5ByLzjs1dorSeNuZzWaJVQ28FdhFmLWmHOF+z6MaOXaytMFqU0aSTaKiWmfF7cf0ezqGHoqJwRN2VtittmIoaBGAZGtVcFWC/8m/39BfrmkvW+tL9Ozi3TM4fThhc/ussOl4dd4GpDs3eFanKhK/GkjPcyUnL5vbtlm93PPelvu39xBhyG6/0hKcMpG7ySwGAWJpjk2MsT3nf2tq1H0e7Yqawi7Dlam8kRBgpR2WmwilG1xCqoK8UQYOigakDta2xGAgylwBm8B9VJYG+Uo6p35OKVorJyr/tNIPYdewdzKmV52/opMurxoE5BrWFaa74pPcfS3CakJZP6qgSwwGbdcnZ6hjaWyWwuRmopoXMg+yW60UxMTWUnuLTG2hVvPHyAzwZuvMjDkxWLxZH4rRxefyxz3L13b7UpQKP5wNnbcNlQJ7dFSKJNrOuWuPZcOXVEOnRdo3Rilx9yOci5/P1PClu2x6YUqiyM/UZ0jHLsSVUDtqL3S0I2TBf7uGZKip7F/iFqYpjMZjhXEUPkmz9/k1nrmFUT9ntBAo9nLXfdwN7xOcvlmTiWN0bsGbSIit17uEKlyMHejNl0Aogaat9J6OSKidxkImqnxjhCzGgC1mpSUtugchg6VBKNj2lTYVQpa5MICbKPtJsN52dnhL4DJQZ8SsH+acXi4YQwZF761D63n12RFfyL5+9x+ClXpg9F73spNxpDzmM53UD2xCAaKyhVHMdFyDIGX7RclBDtUwatC0ItcvRaaWISjozKbB3MtVLS9qpGIUDBgU0JKHKBO/fyhBc+dYWjdc3bv3DAJ7/pEd0k8vI3rPieT7wdkwQVt1qzUIr9lNmPmYOccOMaVLbS3LNFpMdBlclscuZhztwDXsvwMAZGd/uRz5jHAZYECR/H5MifG5sedqdmEINWa3SxJ9EFiREaQd00pASL/yUgJJv1CpMz96+v+Pg7XgWg6R3f8Yl301RT3v/pF6lNTTKx8AeEDR68xw8Dw9DT9y2TyYwYA9PpjMEPpCgDsesGaW/ThrU2vKwNr1vDIiYOQ+ApH7hKmSS2UO92VID8Rm0ML82mvDDNLGPiJCbeCJHbIbABHl4ZuPv8hmxg+sBw9dMVaR2YvWIJZxJIuaKvMbo9SpcBWFPhrNQ06wJDjgMmkSUwKb/rUj80WpUujYxCSiZKa4yWwKzONU0d8H6g7XvxbOk6hmEgBk/tKlF0LQNRK83n3nXhVfDSZ49QOXPltKFTDpVFjTUXoaGRi6O2k7PwM6Q780K0TbRiKNdSSd1TG8TmRhfZePFOyeU4Oh8gp0KkFX6KUnYLMQYvcv3WGgYvrdpDCpwe9Ay1yFdfvTPBZFlQD+8221LJCOGa4qw5O7xGvWMa9aTg4q0WNX3p/ZfRkcuv7/5dlxfGy5ISLG1L1BJ0TnxD5S3WKDR2+8GRaDtudWVJFtJpxtRZxkuE0UZoWAWYWFwlpZ4hQddGnAVTGfR29lBCLDGWfh3wnafeIg4X56GiBDgejUpss6mYBPW5CAQurlrcdCifWRxcYe9wH1dMOo01TOcN63XHvfsnzKZTKudIMbLabADLfDbBVBVGdWQ0Wnm6znPFOprKMJnPqOsG1FeeLJ8UGLpstkdaJ8ssyrEFnegWkbqtSF6JyeOwAZVRzuwwih/f/1u/8mZMZXxGfEycrju0rul9ohtOeHTnZe7fu4OrarR+ToQEvbgeqz6jjcZ7j/c9T53u4ZwEDTcfzFDPQ1t5XlH3ubkRsqcuCUKKgdAPDJsVzcywmE+L07cVsUPETdh76TTs+4GmFjE0V1c4WxF8XyoICt8P9CHiw0BTxBmdq4qreiJHMY5bn91n6HsUIvWvFOQYCSGzeMPSJOjtwIuf2efXfuA2AJ95xyO++79/BjKEFIqTudpyOKxzJYkcnYBzEW0TdI+C1IpUQ0YZjXViOhFSwhmzdSKvVElmi6ikLqiJQrRaQtF6qq3DF62OkYD69tOayaYiZs9zr11htnyN5f7AF585541Fz/UHNTcy3FCZRc7MckaXteVCa3Y7KOScxlcynObMyzHwekqckllf5MxSMtr5nVy0Q8aP7wQiY9fpRYfhxTdbI87KulhEKCOod0gJh8I4S2O+ulDjazogCdHTDy2/+d5PsZ4K5PveTzzLtUd7KK35wOfeRl07khVti8EPhEDJqOXHD9LbPrrsNnXDahVIOZLzwHoz+qNYDBqvDA+N4m6M/H7wTAfP+6dTns6ZmouSzrZ7YScw0UpxYA0H1vJcDT5n7oTAL165T5j31INm/7bj2mdqYgyEswG9VHQmQN2gjWUUPEMp8d4o8vWj2mp5lkq5Rh6gXP6ntaKpHNaa7QMz8gKNkgBF4ikj7WJVRVVVDF7k7Qfv2Ww2bNKGqq6YTCZMJg25gc8XDZKmtTz7pT363qOUwhbylNaQSkS9RfsyRDJlHZVW3SIHLsqtpvAKRr5ARmUNWnrbjdEYozBa7qnRWlqSYyYkRUpeBOi0dAOEYidujWEynaGHgRgiXRq4e11E0VRS3HpjuvUPIl9kzpnScm0MGM3i6h7OPRmA3w0o4M2L2ZO23ffslnR2g5EsF22r/5KyIgRYmg1BC0Iy9RMMlgDkAVKfqadsr9u4fwvMFGxmct7GGpyTsRACmKklZKgQPkhTQ9vDah0hQDPV24VxohRUCpwjtsIXsQackrZ5jwibGmeoqgkhQKXlfarM5Y+df8r4ztOerTFkaR+tCxqlFE1d0dROFCw3nmFInJyeUVUNdv8FTtsVZ2eJ2TRQa02XZ/i8IfolisTBfEI9aTBWbb9Yleu7fTZ2rtXuPd29R+NWJ7ct2XgVOHctCo1xhTmcI3lYkn1HTgrKxL3LP9odA08u3V3YX46vW6PQeaBtI3fvvi4BQbTMFvvsz2pm0ymWBLHDzY5IcUXwA8GLTLp1lfjRhMTTD6+h8qfJOvPG4UOyeRodNaY4XberM8gjUb5m0kjwIOR3Kfs6VzMUifiu65lOp4Lu5sx0NmezbFEqk7Ki7XspfVbVVvwshIiPkaQsbd/SdxuGrt8mUtbJQt4Pg7jyBgUWalvx7jvXqDrNUCdeefc5dmqwwRRXeEEaxrkyFS0lWywlYgqF9yFXWJI2EV8brQMMGW0MvqwdWkk3ZYjiT6N1QXailE6zUqiQ0dqWzkgpLY8l4xAzegld8vSD5/DjNVffaDAmc7WHZ/OKDw6GRikMidGgIY0D4zLfKWciGZ/hjRT5bIzcS4kWUY4VpPSSuOAYkOw8AUmx9UjbfhUSjOgSkIwJkRDgBamHIiqIIsZM2/b4KEq4Z6UD9CttX9MBSYqRtev4ne94WZK0oPngP3ue1fIcax0uVFLTdpUYrBlDDOJjEovrboqi/McwoLRoZkynic1mLeZN3rNuWyapxjmHLZLUPsPSRzbG8FvWoPqBp0LgGaW5ajQH2ohl+jiMLk08FoVV8GJl+d/ev8G3/j8n/NL77vH6SceLD+csKccobyYYL2oGSoKJ6D0YhR9A50RlzVadMlMcgEfiUeHIWC2owuhpM3oxKKWwWtpgUxZUOWtBTVyRX0+pokmJqupp25bgAyfDGevNhrtf37Oa9qDgqdtz9ld1aR++CMrSFk8UTotWqZReEM8TyjFpJZN3lIzbGEdS0klTgJQtJKgBoy1GZYbBo4hUzhLQ9FGRY0TlxOCLI6dia2cPBe2oNHGieHBL+C8qwfXXplty40jkLN9aoH2FqxsWhw1j88pldORJ2+5i8yT05DEU5C1ei0AM0po+JLke3Spx/MxqyyGZ+ZpZspgIfcy0K8/QR6YHNbIGqp0DzWgjQUhCkQMkMa6mLu3NZRhjgEkttfhVK6qUk6m0bJrynhmKOIGQQMeMIRekRkkQpRTWwCZnhjahK40rJR0uDon18Yph6WF9Qj2d0swmjx+3ArLCGUflFDl5FjWk3JH8gEqB1WbD2fmaSSPk5qBnaN2Rc+bqtSOMuQg6xvvy2EE8Nk0/+X5eICQXJRuvI2du/TiBUBmUayBJh8pFVH6xr8eP49KIKgH5dtEon48xUjvNEBL4lvv377K4cpMr159hb1ZTTxekqEgqlfkskkLCFuXotu3Z9J4NNdfv3yxeVZn7N1dEA5UV3tfQdXjvObz+FEYbQu7QWgvUnySAC73HzjR9Ly2663XLlaNDptMpQ99R1zWbZdExKpLqztlt+SWESB8CbdezWq0Zuk3hx4GzwkXzUYKW6MVTxllL7Sqss8yWNbduz/nSS+esZgOfv3HKC1/al2umihheztvFXCFlX4XIKIQ4mneWhM/a7TxgrYE8Eu9FCmL0CdJavHbEH0cQ7BAiIUY5buTcyFJyF/uOWDxw5F43wNvW8O/8ty/wHr/g/a8eMF0aqp3n9DEkZGdLZNYp8ygn3kiJl2PkJKVtckresW/Yma+212Jn9KXSVZPzm0f8OF8rhQR5pfN0dEKHvNUGiqOFySDlxE3fvWl/T9q+pgOSqqr49HvucFLIlLde3eeZL+0Tgpf2MTNIFmAdo1meqypcdqVuJsiJoCWhRK8Ro5SQOMvg22xa/DBQ13WBohWDl++YzKc4a+ii4eNdxydC5EgpnqkqnneWW1qLKRkjzHoxqeSywGaTeen+nJd+aU5awumNgbttz5e6ltubFp8ksgbxY5DPJnJSJKXofd7qh8iAH5+rXCLdAh8WxGHr+JtKGUJDKGSlcQpNqSArGcbuoJzLJGJtQZyE3/KFpx8xOMnOb746o1peEBq3njRqlH/O6HLsWY+us2kbJF3YWst10lrUbdlyP+SJMKqobmaNwpEzxJSpnVhLdO0GlUSumRLAxBipqwqtlIyRKO3Cuql5eKOVe5QVt+7tMU5iOY9RDGVSE4G7+cE+TXXxgOedH3gyMrJ79y+/fnl7UoCzDWgi+CIIEjZJxJk4E/l1wJxXbI4NyWVCH4mDpztfMrSW2XzBpK5IJPHsIBM2EeMU9dTR+8xw7qmmFdRvbj3WSjGfGtY6c3YeUASmU1Mm+DKeEHQkd+JF4iqFrartPpyCuU5sYkemxmAfI/hmoDtfojaBKvXMrzyLcW6nxHehERTDQB5WhNUj/PqU9brHaAnIbUjE3LAJhmY+Z7J3SDORFu5qtl9Ie5fFz9Sl3y/f0TeXUjJQJce8ICRBRZauvXQ/FWgHqQN7UUb7cgHsmFxcLEBZ6luIyJbY3iuqaoLuNtTzQ9T9u/TnD9H7MxIzTLNHf34sdTht0KbCGVOIqQM+atap5nTjuXZ3f2ue+eD6CmUVuZOSyuAHJtU+2jjpGgkSVFAWPZkTe0wKrFvP/v6+kI1DEP+UHpxrRByxa/E+UE8mVCPikDM+ZdpuYL1aE/yANooUi9cNuegSFRdmpTBW0N4hetZnPeu+5ehlx5degr4KfOLKG9S/PWyTrjHQUNqQYtourFCk62PeEdyTOztyIRSU+U+0r2JRkzbFdTjG0RFXStMpBiAzaL11+U3F1FTufaIymquu5qm64lZVc7WqsL93hb6o/kaXyZ3awcPYjoWMBA93U+R2DNzNmQdk2rRTXhnHVymxXCAdF6NyZ5fiv1NsR/LO+MzqkhaSKiRaDRkl6EsWwTZpj87FtF2X50tvu4y+0vY1HZC4ScXHvvMNgpMo+j0fuYU7UYTot1oUKSVBQJDBY63DWelysdZSuQKfBWlpCrHUG40hxIAfPD4M9MMg8r11I505XpxVbambmVJTTFpzDBzHyOdyZg68zRjeaQx7Ru9wBwrspTPRlZwow5537M8cz0ymvDfucR4Cr3UdL/cDpzFsobOkRJwsZ6gqJxOUuhBNGss2cAG1GaO3TGldFPfkGpXJhVxqo0IyDVGIjkolMHJNnDYyEYRAXUd88Dz4up5QJ0hw5QuO8LCjNXlbU9TaXHQzJWntjYO0kolZn3BaxlY4YzSVtZgqARGK7fmYJeriI2EEcAEN2RpctDibCUPCB+G75CwTT+Uq4ckYQ107Vuu1tPKhCDpx99pKxtSguXmyT2u6YqqlRVsgi0x23Uxp5vvs33gat2M4tbtsfaVseve13QUp7bxvNx++vNlKU00goskJ6rklHAaCjuik2WdKVcifMSs2mxX1tIZ5hXea5CGsPAJiZbr1hlg56j7jc2JYdazPzpjtz6lnzUXNWOdCLlbMGgNZs1x15OyYz4R4Mo5vmzO20hBlcs7ZXZw04kU0nzWErAkxi2fQeC1zomrmaO+Z7x9RT2ti7NDKobV97GJqlYjtMWFzRrdpOT1bFa0GUUuOJSCeT59h1hwR8FirOVsGYlxxcLAn1gWmLBQxks1oqFeC9CweSxfH/4R7khSzUKGzEoTEbti2XV6cGVmXLEC95a52Ak9PaScpLxaMLOdi3aAxlSX4nvX5Q4yxXL31Aqk7JfgOnzWbtqVvVzSTqTjzOke3FNfyaBtO+8S94xPAcPPRPi5ogo08vLEGh7jAUsw0ET6MMRVZCSpg8vjcZoahY1oUYsmR+XwqLba2krl16NmsN2w2a+pGEju0QWXNer3h9NEx7WYlETcXasQxJeIg3BeRu9HFAww6H+janhAC6Txx5QsOvhd8nXjtxSXv7fdlYYRisGchliRNKZRRYhyZpUia0SXok3MmB8LQgxJvGtGA8tt6xahETLnXMu9mJDZRqFG4eiSEopgbw9ume7w0m7JnLI0xshArRfKZPu8EJEah0kXgm8i0Gb4YA58JgeMU6bOgzLLmxe0gkkRQUKFcxsyI2IjU+2gBMtIAdo6V3TltNyCS538sl+fM1qzVGkHplRoDP7mBMUX6/nEV8rfavqYDkldv3ONLzz8gKzg6nvHel59jqiYMaSDGSCpByZjxxGjE/8XYotwnMuK6kBSjc6LoOnrUxIBS4oyYCyQXUyvwVBZS3hACqu9RSm52P3ghTKHoYqJNifsh8jv9wDPO8i7nuGk0M8QWPbi8bc0yXmAwlBiEzpRl5iy3moYPAg/8wBf7wL0YORkGzvuWgNTtohWJ4bzVcpDsakQcjBWuyQj86RJgKCi8jdK1U7p0QgyMhlYjeTLLxdwGbMpYuiuZ4+c8ScP83HHj9pRh1TMg1tbWGKq6pqmlq6nzHh8SPkjpxlq7RXMkO2W7ADZrkb6urEKror2h9VYjoBwOCsncK2fIKGbW0ftI1yLlubIwjZ1CzjmcG4hDIKF4NNuwnMsDc+P+gmtXX2QzH+hWK8Iw0Hcd3gcmiwPe/s3vY29xyMG169SXFhWZ0h4PTtSl33dRgMs591shJ7uva6SsMjqdN3NoKsWmaYkq0cSK69WMo0OR1w5TRdhU5JCZTya4WhEDEC2JiLE1VVMTNxE/JFnk6prshTSoww4RNiI6I7XMc9YKrP3w7iPy1UOmC4fVSso3oaAkxhJDSxg6tHNozDZN00bjMrgsirtbqaaUyHFg73CP/cMpIZxzdhJY7DXUzXw7QaYYWZ6dcn56SvQerQzz6QQfEuerjSj6xogzmbBZMr2eqGYzJvv7GOPoNiKyl1JRQE6ZdrXCVgpbzYR0O2wEcmsWcqeU3T5DFz7Hcg/3/IQqWTrtOXNPCkg06OpNY+Hy/b54u4XQgZ5sFztG24Pt/2UUA9mvUdFy5eZzqHgD0Kz7SNs9YjGpMbGDUONDZoiZXjc8PA88ePSAvm9pJnPmwXHr+IiXn7rH+aLjUX3GvhdUmZTIuYh5KUXG4KMQ00PhVPRty6HKTGdTYk7UlaPvPVXVsF6fc//2y6KMOmmYTCeyj6xp2w3nJ8e063NSjqVbQ5Xk5aLjwyLqssZq+hBZbzq6bpAuw4JsXXu1Ybo0bPYij14Y6A4S0zONshbUWGISz66sRPU3xyTzoVLkgkCZHU2c8WaNhnvbLSEmnztP9Th3jfQOBVRKM9Ga667i7dMZt5oGp0Z04nHlXZUVJihiJetCdIk8GNa5EFRV5tUUWIWieDzOm4jwYy6O8BejKW3VdEHQQG00VlnMaMgqp1IsUDr6+GY5+61PGlJ+la4aIXXHVLqetKylo3QASolfWIwMIVwe3U/cvqYDks8+e4eHVyWzfeqLB1x7eUJKIrgz1sBiFGXOVJjNxtjiNBlFqtzY0j5r0NpirWJU5QOFs5FoA0brrTdMzkISyjHTdj2D99vvHOuHI0w4wmAR+FLKvOYjV3PmWkpcTYn6uY5bbY3JCuPN1uRP6h1lwlNCqLpZVdysarqcuTMM3Kkdd9qWk5TwMWF8onKF2FrqQVtLeFXM9MbgogQBIyfbOrujBLszESiRilelTERp11NKILvjaz0nV4Q/cnDe8MLqCvt7U/p+EMn3wTP4IHblKdMO4tyrtAQ+zjmsERfizaZlCEFIblqzaXva3mO1pqo0jTNiZKcMSgvEKCZrEhwabel8KuRkMdFarVZiiBc8tbMl2BwF1TwRxcuHFy3LN27PmV+7xdd//btImyXrsyXnJ2ecHZ9i3ISX3vkS89lExL0ujcddmPRJKMn4Hng8MNl9HR7vhnnSvsb5JQRB4nsd2Bi5B1W2zEODRlp3U4bZwYJu1aJSpMaBg3xk6ZNhWCcaowi1RkUNRmGmDucmwjcpB+EjtBtFNRn1SoRfUy0cFf9f8v4r2LYsO8/EvumW2ebYa9NWZmUVqgoEigAIQ9CAJEg2ySabpKIZolodYojRLUrNUCj00M8dUoQe9KrQk9TyVLRaRLCb0WqKHmgCIBwBVKGyXFZWZt7MvP7cc84+2y0zjR7GXGvvc/MmUI/K4Iq497ht1l5rmjH+8Y//n7LaiJT/4WGNSRFNlCx6eUYMEI3F+I6m71HaYYpJ7hLzxJBIeufVhIKqFKnuFLYo31JXNcZOQMmYDsGzvrrk0f0PWS4Wgny5khDAGYOzRpDRFEXcKs/3+cFxFvqDejpjnGBJNldTlig868UCoxIueOykzuXB3BoZ8xaihzsl3h7zMMVFS2N6Nqal054qFrt7rDTCFvjBDqU1ye0eP64L+2MnJZIPVM5QTg8xk5q2UcSkiJsFReGw9SE6bLIxpGUdC85XW87On9E0G0FcvdyHV85u8N5LjwF4cGfBzXu3QYk3VgodfbMe5dBDiDS+R1tD5WwuFQfKYkIMUUxPlxvmM8nSu7bJ3RgG60q2jWdxdc56cU7bbAkx5ARD4UMaHYG10hTOUpUFaMW6aVlvGrpO2vQHBNgawyvnhxwsnrA53LC61bO965kuNKHvculk52Y9zDqt8j3NJNcx0Myo1IggpOcLdoyvp/M6OdwfqxTHtuB2UXDTFdwuSg5GTkouxY3vlJ+XUTnbGfqy59FRw/c/13Dy27d4ApylSFKGoIwgbXFvLKQktfrhzJSUWsR1d2jVFUmFelJjjMYZkzvdMhqeS3CDtYk8Q1AgpWX/0Eq0UIaKgPBnBPUb+Cc+xGzEKPzMFBOXF4sfaMx/pgOSd7/whK4MuE7zubePqS8MUQkUFYKX7LywKFXge58vkNQUdRTdghSDROXRjNCeydbQOvMOBCUZILmsVpp2Al/S7dOP2hlpeA29UyQVQS75/jwmHrYt28mGf/Yff5MvnE/5i79zh7/w6y/h9lPnoSSQpKwxxNKVUrxZlbxelaynUxYh8DgmHoTA2ovg1wAdxhT3JgGZ5DqgEZmkOU5SiZLT8H6DW2MmPQ7CaDD0pivOTjZcHG0hweFVxUuXR5S1lHVSNhFcLJe0TUsAut4znUyZTCeAYjqbURbC1n/46DExBubTCWVhWW8auZcJtm2gbXva1jObJurSolJEKSkj6LwobZsGtNR6fYh0XTfyf7quo+978exxJa4Q/5yHLy/HMXXj4wmkjlnlcPUJN05PiDFKQBUi07oaN+nhGJa2P8jhdz8YUc/97vnv93+3/xoxSRAyDA+nYKk7tllYrIiWqa/HzSoEKCYGXYgraYxp9OIplCLoxPaqw5kckMZEbBRNnwhRFiBtGevCIUpQW+YOGuUU1fEMu/VcPttQGcMsIyX0j9G2wc5fFc5Qv6bpvbi5mgKSxqgoGhqDESSycZcuQfCsF634g5T1WEVp25b1Zsvq4pK+T0RVUE6OqA9vkFZXNJuPMkERlErMplUeYwntqvGOKcW1DUEpQ1VXpBDoLxZcXC0oqxkTXVGVoE1uH282wjWbHKBG+frE3AtCArAxDY3uKeOOOyP33Y7fPY+ewV7tfoQA9bXnv2iEOFdQVhNapJvFGri6PCN2LT451mvH4azGJI8qZizaBU/OntL37citCNETveeVsxvjKz96acmP21fk7LR4z3TbNb7rKEpHkTSGJNm+I1tR9NhK5l5dFbmjxFMWJfVkIgT0EDm/vGJxfkbfNdkpN2UEF3wme4p+jaWworDahch207HZNmKZoZSURRABtroqeW055eiq4lHacHWrZ/sqqO+StZrSeCGvoZI5CTRKvLbkAbJuxlzK8UFE94SPx1i6SImxc8doUe1+tah5qSg4tI6ZMVilR1Rtdx+HAIRxDZYEET4yPf+Hv/JdfuNLZ1wUkb/7/p/mYFtThoCxjgisNxsav1PBHo5B2gGymFkWKNNKOoy0MaK7ZbNmiEb0e3ICUVYlZrW9pkOyF7tleoLOe6R01+iUfdl6cbJPGU5XKKy2RBWvI0u/z/GZDkje+4oY0U0WBV/69RuoBK6wIzLgQxBxnqpiNp3gQxDBLy9iODEIQhKjx2dym85mdVpJr3qdhWPiZpXV6zI5ScnNNcaQvDjppt2ywrDhWysIjN+DrIQ4BN/5sWd8/fOXfO1L53yDhof/6pAfCzPeMJpDpSjZtWnK6nU9vzYoDpxlbg0vo/jDChYx8kHveRQiWxQd5KApYbQIeqHEsK5pWqqyyC3P19/HBz/unCZJiSYhEzBmglbQgYe3rriat6gIdx/OmK8rok7owqKVGP7p9ZqUFD5v6nVVMZvNiAnqakJVlUBiPt8QQmA2n1FYI5MkCeG280LeXG0a1tsts0nJrC6oCj2Wcbrec7lYIv2twq/ovQgded+jlBtr0GVZiKx8Spx9flffvPvRAdPZdOyekU4eja3KTwQeL0QvuB5s7P/M3u8/7Tm7u3v98eN7ibgkQaoNKGBrOlZjQCLtpwnoI/RNkOwGTd9GFuuILS0pgK5EhyAZCUR13hBjAldqKnFpJwLdVko1w2Lukc4aiyyo89oyvTWjX22IHig6MCu0uwNYlAFlDpiX83ziQ8trgbaQuBgXVkXCLx/T+TmqPGRSHuE3YoqotWa9WvPo4SO67ZYYDa4+pJrfoJqfkkxN3XhUccg89fhuy3zqKOsjjB4Cnt0GgNonscqHU92Wyi+Z9Jc0/orgFHFao9D07Rbfeprec+B6bOHG0OJgLyBZ2Yat6Tj00+fGSSBl998XBaAD4jLmz38Q1IZC2ZLy4DahU7TtJutnQNMtWC57pt2aoquYHd0kqQqlLTHzz8hlpRSFG/Hq411Acv/VxcgxGDhUSmmKqiKlxGbb4IyUPvoglg++aymnGt95VCUZedf2GGPwEbxKNE3LcnFO320IvSBraE1S4mUjiIcWdCdzz7adoKxdbvcVbyz5Z4ymLsUYVJ1rbj6Y8N2vnLM87Ll4rePNekraMOo4DVy1ASlJSTR4tHHi2qsGgbM4luf73K04EGOHW1BqxdwVvDKpebOacMtJC/PAtdoFC2oHN+4dCWhSYpUiH3jP973naen55TtXvP3mJUVv+OAnLvmZ3z4WtDtbkbSdzPeBgKqUIGpj0jwGAJkAPHbCyPqtksr+aFIN6L2IS+6rtQ5jb788PrT9aqNknzQakyJKBXzwwv2zlkFDaqg2zFaTTxnI14/PdECyPZRN/tW3Dzm6V9K7FkgURUmVWf0ykTTOiqIcyWS32kAKO8l0UJmboOl9P5Z3QEijMdYYrWk7UfOTllkziufIDc+DOQct3nu0ihgr2efAYAaIOvH+T1wQncDAt759wGaj+LqNfBO4oTSvacUtEsfAFK7BtREyoUoGukpC0Dw1hhvG0KXE05B4FOE8RK5SpOlFMMwaizNmB2EipY80LMgZNg1JhMKSUUP1KMPb0rHTTHo+eu0KNLhW8+b3j2Fw9FQIyUo5ZtMZ26bFb5tszidZhwR/haApKUkHxMUF2lh0bmPWwGxagdYiLe0jTdOwbfr8XiWu3mkAGOOy5kjIC1pFyE7Pw700mhzsyAR/9IqU/bRX3Hp6yOy1+ZjH5o8yHtcyq+fG44sQELjOK3nR/vKi1xnWg08ENDkIwSPqp8BWdaz1DiGZ+wqNIBjRQQyJYgJlrVlvoayk3IOWUp0rDe2ipdl2InjnLAmFzeqqCWCqMEUieIG2CyUiZyp/PqVAF5rJQY1VG2J7hXEHoGbjJ5COkZhRgr2PlBKbTT/OjZRgcXnBUam5cesldAywWdDHGbFv2F5dsDh7yLZpQcl43m7WbLcbtqslV1eXhBCYz6ac3rxNXdXY2mEKOyIOISTW6w3TaZV9NpRwRdoGrs5pmzVt1zI9OmJaR5SREo2rJtgSim5L12ywxZyUNDFFJo2liLLor01Lo8V0LI3zNgANUDEsvZ+89+q5MZIhdw0qRkY1urQbGSEZcFOIEeU7QreVIK0P9P4pxB5SQd93pORkrXJOtDfirmwb+sCdsyN0UESdePjSlSwsaXdmKW/S2jhMiEwKzbbpuAzSim7LFeWswyc1lgC22y0+eLbbDcvLM3zfAaLYLJ0pjCUCozXOOqyTYGTbdazW0pUjhoy52y53xyikNbkoSwon9hJfeP+EX/cP6IvIgzc3/PThLeauovOe5XojaqzjHMsIghbEwBlxJccJ0Z4k41Nby3YrLduV1pwWJTfKgperilermsleOUbt/ZfYkfX35/c2Rp7FyNMUuR8CH4dAl6RFvugcn3vnlG/+2BN6G/nWDz/iZ7/xJioo0WhJZFQpZq6gXAmd+SgxMpZpxsBND4G3SCSkvhvHkI/iSh+jBCQpBVmz1N6HSbkRwgy2EIPIpiR+xkQUhmQYE/MxmdaMZNo/6PhMByTD8dV/dpfgAx3dCI0557DW4qxFa+i6XgitPmQCqgIt0XeI0mkzlDJS1yPZmMkoiEZpNZJVxZE2lzsyw9hZQ1VnSeYQZXFsmoyckDtcEmQ1w+XNlrM31iQFkwvH7e/PSR10eChKnijFkwg1cEjiVkoSoGiFnAW7kg7DrrGD2ZxSvGQUdww0VrNM8CwmniQ4jxB0wmqF1rm+mOJYchp8b4iMZR153bQHWSq6KvDRq1cAWG94470jBgEzeYLAhAfzmfxmucR7z2JxBcpS1hOOXIkxlpiifM0LU1nWIz+ksAORUFFNJqxXG86ePaPpe0zTM6lLtC1QNjI/OBgziIH53fcdTZvEU8OInHzfdXg820nk/EhaNOeLgmlTM5vPRs2P/QDkRQHKi9CO579/UdnmRY/fP66hIvuPjzkYVUJ8RsHW9DRWAhKXSzZKgTMKOxXzsgjYBKmWhWaSqQleQdcqTJ2h1WSoK0WI0AYRRUsKyiKxaSPNyjM9dCLqtXeeBglQjDWkrqXddFSHxwybxu6TDNm//C6lxHrVcvZsMZY/Ioll4zmoHLYoCdsWoyJXyzU9iqvFpfRDqMRyvcT7gFKay4tnhL7D9y1JJWbumGIKtdYcTafUR0cYm89bQeGcvGeKpKSg88TLM5Rv6XoP2jCdz9B1BbmDACTr1dUUQ4KU8E3Htu1JwaM7BVNY24bGdBLkjJo8CbGHSy8ONlFj8LL/v3TWeEERQosgTsMCLxt6ij5D8g4KxbbZouoDJjFQKgkiYvBSzlQaqy1tdu5WIJ+jb5lsSg7XEy7may6OtzRlT7EVtDPGQOyFRGqLGo2jLi2+6ylLR9P2nD27wFMxmR0xnczxfeDpk/tcnj3m6uIpwbei/6OlY8WHjNKlhNWGoiixzuFjYrlpWW829LkcLpdmuHJ61GKJ+XcDyfL1d+YYr+gLuP/6kjhJTFIJrSKt9io3Csjr91B2qaqSqiqzzUUaEYgQIrPOc9s4bpclJ0XB3FqM2mn1qN1/+7kjKjLyUJ6GwD3veRACF0RWDJSkwRHd4JLllQ+PmS1Llgct9+4+49FkwcnFlL7v8WEou2tQMXP8BPkQKkkau900KnNFsjFrTPi2HUUiUy7ZDUJoITcz6LFSmD+f3im0jmqtefyPIYhSwlMKwu2xVpom+hBom+tt8J92fOYDktvvT3n9naNMJo2k1GeJ+ABliVWiJbFtW7wPI+PYWJOZwpnEmluTpLSyW0KtMSPCAULkLAonMLjKLaEkrJWW4qIoAZU9ExKbbRjV+eSQ0fP0CxuubssmcvP+nLtnAsm1XSfdJ7k+t1KKFYr7MfLNpJmHyOvAF4xmrsUzZ8hQdzFJGr8qoFYwURLMvAW0CR5Gxf2k2ETJWoUANbyADEKbDaGAsc46zDmlFM3M8/ErEpDUG8vLHx3IO+YnDTL3SouwUJVZ96v1Ch8C09kBN27eAWWyRoqUyZTSVFUtCwMJYmDbbCnKiulkRl1NcIXj8eMnNF1L2ydc5YipxzpGwq3RJsO5FlJktWnknmajwNB7Hh5e0Dsp6xw/rZimmvl8OqIau9HwYoj9+WBj2HaeR1X+oOfq534eXu/530mLNrgiQ6IJ1roTUiuCkMx8dQ3BSeyEy0oDm14M9qyWIMUnmFaGUNe0jdxfawVeXy8S1iZmM01hNX1hsVFR5BcWNC2hiRgUii2Eh5SHL40dJXLiHjFSlJVOyHaR5bMnfPDBB8SD7S7DVIqXXn2LQz2hffoI6kN6Er0PbKMhuRnKLClcZFrXkkF7j++vaJqGg6moGpdVRVXPmM6PqCcHqKSJQYTgtNaUdblbVJsNXSsLZ20VpqgoNXkuDm3Au/MbMe0E4NlcnuOvrtCd3LElW55tl1w8qzg4OpCuNA2JjNLkzx9h58qtXjRKQGmbR0hPiltCk1DWSltqMRk73nRK9M1CCIp9T+g7Dk5fQYcGQivXxFoKV4g2U/48IrQq0gdlV3Pz8pCLgzV9ETi/ueHljw6EW5bJvCmfa0igjcpyCoYyQdv1LBfPSEljbcGzpw959PF7goy0LUollFH4mGRjTTqTI9WITmzblm3TiLNsSNkzRvgcKo3Ly0jKTDGxaVqsE0W/1z46pN44mkng/udWNPOI2pq98cU4BqUkq/I6b8ZN12pwKCZoThPc1AZ7ehNDzvyvRRxKhCQHvo/ahU0eWJP4oOv4dt/yLES6lIhDojfyptQYGCkUt+5PuflwxvKg5exkxfduPeYrH97OEhWRtpNO0AwUodKgP5VGhFohztvG6tyOK5UB70NG63cBqfAi44h47qMhwzUbWr+HazT6ouW/JZ1GtW0JDge7jl4Q7R/g+GwHJBG++ssvM4s1ppS2PZ+VV0ejtrx5dl2fZYpLUpLJ14WANhJYqCTkupB70Ie6afAKugxR5XZXaywajbIKW1iBPZN0cujsx1BVdQ50BC0ZRL+UEovqB28tWB8J9+Llj0+4dXnMKl7RB08IieQS4DA2G0RpTQNsY+Jxgt9NcMfA53TiNnCgIKuDy6FyOJJgEI8HKFA4BV80iS8CaxSPguJp71kT6bW8lzMimey9lG2GeqhWjAP1gzcWtJX0vX/h3VPKYKXlK9NlYpIsViMKspO6xvvIarOl2WzwfcdH997j5VdeZzafC9HUFSglHU9KiVyyT1KfdkVJQrParFgsrmjbBmKg7QJq3bDZSseAc+I/VOQOnpQMSm9JScy8+t7LAm4Mi1c9wcq1OX5ac2gPRBTOcC0oGS0BPuXYD0aG5z2PcuwHCPDJIGQ/mHk+gx4eF/pI6BPT2mKR7HIbOxorSoiDQNenITo2ByVtB6nMiqoFuIy86Uo6akorn/lJ6WnXDcrO5bmlxgcJauv8wipJFxh0pPQRqj4CdQDYXFaMDEIjw7nEmDg/e8bThx/j+y3V5GivVq24WEXa7RU3iojWNZs+sd4O2hobVDlnu36M9x5jNSFZismMo+NCHK1dwXR+QHlwQHI126BI3jOZFeNFGVGIEGB1SectV9sNaTpHVzPCJhKSzgHE7uTHe5YENQiLe5i+ZWamuCCfc6m3PFufsboqWa/WHBwdUk0O0Bi0A0UE1dP3SYw9VfanGjezQWhub1SlEmUTSi0Incxo30dMUdE1G5ouYBW07ZKinEPqIDT4vhVEN2msKwWFKLJ7+LAyJGkbdVvNzcUh7/AAbyOPbiy59W6JDyI1nxC/E9nQJLBwg+RAkt9XrqDtGr737a9x/vQhod9KaaW0xCScsN7HbAOhKazYP/S+Z9N4mq4j+JgzdT0awMVM0IwpYRVUpQOVuSG9p2s9k7pmYkp+6L1Tfv3Gfdoq8vBLLV+4mhDRWLsa13hSgtw9YozBac00RQ5D4CQmbmOYK5WrVomoB3Lq3ozSQ3Cyk1RoEixJnAMfkbjXdVx1rWgmAaidUNu+GYDK9ZWU4PBxze17M97/wjOuDhvee/mM13/tADpGX7bBNHMYkxqRfc/dE6MO1PB+IWtyDYTVfNtH5dyUIi5rvNgcZI5jMmXH+BEdyfwYlYWgtMKgcQzaJFE6GTM/xYd/C4TRDi5LvvDOLSpdkTJbWCklUVr2qbFGLl4IYfy7MbLASDtoRGkh/RRu8IoRJ9owEN8SRKIsXN7T6x6tRPZ4UKeTbp04Iglam4ywyN9jjFlu17A5aHn4+QXJQLm2vPztA2LjIZO5EgLvDWTTNAwEEiGvpEErHgIPA0xS5ITETQUvacUdrUUjIzH8t6uiwA6tUYmpgs8bzRvGcRUii9BzGSKrBBsrPevkATb05McAaMV33job5+YPvXsqUTQQBzJXSiPMrbSmKEoO5pqkYLtt8D5weX6WtUju7lrNtGR8ighpCBI1vY9cXj3l8vwZxmiOj45YLZe0vUfpPk+2mBVZM+xqtJSOjCEEsarfl3Z+dLzAW3nf4/MJVZqxbRSlk8+yl+O/MFB4nh/yfBDwIpRjfxH5tMd9GtLiuw5dFOQYjz5Bq3u29pNdNi8KSJSCwkDXRdaLHlc5XKnHYEADhCxKpRV16ShrCcdignYrcvDDZqnzmqS1gXAJsSC526jxyuV2cWHdMaBvbdtw/uRDVstzXnrt85QvnV67GhFD6z1X/YapXbHysFotqaaHqODBFCg3Q6mOeTVBaUNZTbFGUTnN4dyhVMFsYrMZYkJZN4ptfeLQGlc45rUVsbVoaKmxwVK2EV3F/YYX2cD7lna1hN5TqoZb0VEhAnBb29LqLQUdOnR0y0jbgQ5bdFlT6IQuFX2vcC5QFkqiwQTX32jvDipQlJhqgr9aEShI3YYuKFS3pFltib7HNytcfcTk4Ajftdh6Qtw+g2RQcbJHcMweV8i9STFhtnB6OQfAm8jj4wUhHBGzd0vCZxdcKZP1vcijtz5kPoPmarmk2TxmdXVB3zWCoBlDTIq29yLoGCPOKEprMFaxaVo2G9H7GTZMlVtSQy5RDHwXufyZrGkMXkWiEs5eiJGm6/jcNw/49Z+6Dwo++NENf/HbBxRlxXK1puu7UYXQKsXNouSlyYTbVcUN65hjcCPMMfjH7EKHkdS6N5A8ifOUeBgij1PiXCXWgE+JzveZrjGGmbInkHYi0EiXjx7I3l3ktW8d8jt/3NBOAx++ccGi3jJvylF5W+0PDZUlHjJop5W6xvcAEQrcEceHakvaSfnnBUJnNW7rzNj5JJ1YsiKprGelESXbSCL6mCUlZGyFFKV6kEU395s6fr/jMx2QvPb9U+4+OR7JpDGKBoXOkdlAbtSZndR3Pm9KdixzEEWNFIP8frC+TqKKGgdOxIjzSQtZROTme2Nwzkng4AMdLYMx3KDzIYTWIOrnOhGIFGtDtbLUq4LXvnUsdtbG4DOUOwRP7MF6I4FpHGSQiKxSYgV8nOA7wAFwV8HnVeKW0gzEsX14cN+eWiB3ODKGI615OQY6xAflXCueKlimrL0CjLhpTBwsStbTji9974ZkSTnzFNOpINLwKUqLmXNY67BFwXK5Yr3Z0HUtl+dPidFTFBVd2wrXp+9F+8V3tG3LtulYrlb43nNwcMDx0QEpBtEZSaCMoarqXB6LNG1L73uqqsQZM06IFCOt9ygtxM2YYLooWB113DyfczI9xZlxnn+i9MHez+z9vI96KK6rrg7H8wHG88HG84jK8++pgOgj02ONzQ+MmQg38RVV2DLvJ9SxeOFrDYcGkklsNx0paaalyr4UYFIi9YnWKUoU2iuKSkabR5xsYy8KsCTpF5Hp1YmIl7vD9TAOpMUmD14kE282S/p+y9HJbY5v3iWUmioWVL6jDGKap1u4PD9jWq3pY0nTtrg6UU+mhAg3br9K22yIoSHFDf16hasCXVehJ0dM5lPqqsTaUjgXVgIr2RvStWvT+561h6I+pdTiI3W1XNF1hn6xod/C5OTGrraePHr1EelqSasPMNoz2yw42CjKzlJ3hri5IKTXKK1Bhwu2rcKqxPnHH+GqA2bTKT2OvqrEhNKkEUo32pL2sffhfioNpqIo16w2Ea0svhWNmbhdkFJgNqlRqUPbI2g3mKJGtQZSRGcnbGdFuZjox1JtjAG9Dpyc1dhOM1kIpysvk2NyFnwPUbq3Oh8pKicEVm1p+5ZnTx7Rd420cmf0QLr2ZJ0pdC5xO1F7Xa2lcy6GkEsH8mFTGLpFBofwjOckCU5CStSFwyEogLU2l8YUP/LeXX7Bf5fpxmVdGo3CMJ1ULK80B9bwej3hzemEI+eojKXYV14e1txxnVXXJqzsCollgnskPoyBRYg0iAQ+GVXwPoxSCiq/xpAAE9LYLKAzUoMSTzHvPa9/44h65VBJUWwNMYuc7SeVmh1fRStFUoJgjSrZmfsUcjOB7EVp3JsiKXdNpiwGp9BaOmWsNTvlCRIq35udwZ4aVb6FeC1JvVIWrxVOG3rfk0iU7rk14VMOlV7kovP/58fV1RWHh4f8z//TP8OXPr6dI2cYlEVjCLRdKy1kWougDlK2CSlitRExND2IoMlzjBWluRSh7Xvhc+TAZjicdULG8n5stzLGjsGMtbLpklGREKRdre/ltbRWaCvCHtvTwNnrK7749h1BZDKq02WtlOlklom0jK/Ve4/WBmcH8TeJUpUS4u0OTZHe/NtO82qKvJwis5Qo4uAls3fbM068Nx2H8HmckFvgKYknKtEaTU9iqyNtmXj40prXPj5ED/5JSaynU9xBzsM5xRxp9z7QtB1XV+KyG6KQWrXWHBwcMp8fUDjhfmy3Wy4uLkApTo6POTo6IqXA4vKSh48ec+PGDSb1ZJwUWkEInrYVE0BrDevNhs22yZ1Roh5rjCUS8Trib2vm5oif+dE/wSuvvTSS1X6/yfFCBCJ/HQIS9SmP23/+888dgpP03M8xJc6ebCmOaiaFgpBoe6hqgSl63dPqnuP+4FNfFyQ2uPKR1dMV2pUcnxZED8EnqlLReHDSzwtRyjcj2JZfxZAJrz5hTUL5J6BnKDNjSN32P/ewofiuo9kuuTy/wEfN7Tu3qadTUNCkQO8jdBsW5x1d27J99oBXjybcDzOaroEEVV2x3a5ptluU8iyePUXHNZUrOTo6oKgOOb1xk/nhCdYWkmkrLcjywBNI0mmDUujU0z/5kHW7pvOayfQYq2C5fMqkLinqGetomJ/cRaVETC1p/QB1dUb0nnWqaWKF8ms+Ck95tnDcPbjBIQ2FqzDFhEp3eN/zbGvw3ZbXb1iqckJf3IIU6KNC2QqtRFfFFSXWCcdtGEgjahYDyW/ZrBtiUBgC51dr1oun1KWoT7fJUM5u0i2fYusTYreEfgXFAatQ8fGjRzx88D5d144ogLOOwtVcTjes4xr3qGPqKmpjabpeeF7GUE3mzA+P0Mbi6DiclDx5tmC1uKRr12OX4aBwnVIYx6AxGYlWiaYVI72u67Mvz3UBsiFQSuz0WQa9IaUUk7ri5OSEsqzE1qHQ4gYcoTE9H7204NWnc6pGUwVwPlBtWk46z0lGSiUGUHtjdm/UDptx/lVAumPWKXE/Bj5MkUujCUoUu1MuowzPCyGKLsfe71VGIAYCf8h2IGJnIhyaGHdcjHe+esadj+bMFgX0aUQ19tcQxS4AGagGo7y+lv0thDgmpSHktT2vxXKvhDNYOsekrigLizUDjwTxESKR4k4SXtTMpaQvAaajLPK6GqVtOoZA2/f880cP+X/+43/OYrHg4OD6+rR/fKYRks99cAPlNElozBJhJk2f7bV9DkgGgR1nDTblkkreyLXWGOsIPhBztqC1xjknIlQmjrobMbexxbCbICmR30dRVbmFFWnLGkoQ2mhpZyDXXj3ooJg9dRye3ySZ7JtgDD4L/Rg9EKwGHYAs7pORk7G8oQbURISbUo5+Ywo0XcdHveKRNbxTF7xcWE5j5KD3zPueiQ87xVG1v4Eo1ICC5A86AV5H8VpSbAMsFCyiZhUUJ++d0CpBf1ISyWODHmVTJMvKbdV5QilrcUYG/WK5Eqg29BhrWC4u2CwXon5LdgFtRTNlvbpivbqi9z1tK4HbbDIl5jrp4EtSUFJYTdM0bLZbQEpGWltRoQ1RslytmbmaYlEwPzphNp9dmxTDJvA8usHez89v+MPv9v/+/POff+zv97rj3xNobQk9NA6iT8Q+UZYapy1FsExC/cLXvHaeKgcXpiAkuLxYY8uJkMKVEdJhK4S3Sa1GXpKYbMnPFrCkvIJswBag6h2S+IIjAZv1iqdPnpBMxZ27L1FNdg6FFQYVFDEUdO0KtKOs52y3G7pkOb1xKvoLKnGgNToqzhdbbDknNpHZwTHl5IhqOsfUx/SpoPNqbDWvnKHSQqoExjntTMJYxwRHZSLG9nSU2OoQDJhZzVE5JwHd6orVxRM2V+f4dgOhwahLmljh5nc4bI959PAea444unmK3zwk9B19dcDmakET4MbNO7iJoBWQbRFSwndrlr1hOhVHcqVLKU0Y8XEZx5DSYEomc4NvOpJPTCqH4gY6tqQUsDHhuwZlHCn2aFuSkkdbMTMU2wwLNCSSuIAHz3J7zqE64e7kFk/NfSGaWotJFpUTiwH6V9rQ95qnF0suLi9pN0tIPuvjpBxkhKwVIuuvMRofI+t1O8qKD2ZwKJ0FuvLPaWhj3TE3FNIZotQOEa+qIhMrRRk6RHBJ8aPfmzGLgWnwo3SC0pZUXm9BHV5veIc9UDqjIJFHveexF9uOxzESnaEshPsT4sCzk2eM6HX+XOLBo6SkL3+A7LFlsn2HNnmTH5E7SS7f+t3THY9DSdehyUiKIj8+DSaA8lqjMqtSY8AxJKBDEptGxCu/pqz6uZw37It21Kca7klUck38KBaZxnU6xSgOyDno0koCWKc10/nsU9eF/eMzHZD0XYMKclHQjIMieHFaHG6k772o0WlNYUUzRGsDe50d1lp8L+Wa1re77hKt0TlIGfgJMQz1NiAplNFY43Aut6x13chFiZncE0OQ2lqU56e9QQ8iKDHI/IJCW5trqEOAIBPH5IVknEA5eh3KPHLk6DdIdN57CW6CNjy2lrKy1M7hmo7TrueVFJmyU3RFSYuYyoNwfN0kugGTJDbzd1E0SGlnqeBpilyoREsSJnqWqk9xyGr06BBJkiAspGJP4VZac0Mv17vrulERNsTA1WrNarOVEplSTOqa2zdvMJ/NuNo0KG32uqc0ysn3bdeRejH5MlmkTsp5PndDgbWOalJjC/eJTfX3Czyef9ynb8efREr0c797vjwD19VfRU/MEn2k7zV9UqhSsfIKE6VjxmjRrCisBA5DMDGoTA+vW1qNOq2IIXB+tuaocJQHBb4VjlC3bqknDov9RHClkNIOgEo9pC1JTaDvSBbQg/DX7mooZC48vv89npxdcXjz89kgTY0Ld4zi9uqURvmGPimMq1gvFmz8ivnJTawtmdaarlXMDm6x3HyPYjbFnd7mcD6lrMSDpo8aE3tCSFSFzqiYzvUlmTfGanSGob2p0cpgbYe2EVJPR6QJBaVX6EKhVMCZNTO7wTvDuinYtpHUb/H+jON6hneHGaJXbHvF9uIKW3b0G9CmYuI6YrummZyiTaLdbqiMh6ahaRvM9CbV1OYsM9+7IEqaGE1MKq9lEhLayuKbDVUR6IMi+oTyDZpIiB1oR4weW85BiTWFyH+LyJlsQpZms8b3LbaomExn1NWUqp5jncUQUL0YVTpXjolP9B3rq0uuLp7Stw2KkDmeO/0NsYewlE4IqNuuY7Nt6dp+zNpl7xySr+xhM2yqI+dhx78YSzek7NrdEmJAx8QsJE7RHCtNnRBxyWH+7KML4/qprk/avFG3wIMU+TB47jcdF13PJnPojNZUu75YKUezC0DEJwdMjCJEmVFrvRfwKHJ3kxKFV5VLKYNw2zUT1BFlFhRjpymyE60bjEP1mMBmTkfMrb16V3IT0bIkDu8KadDQjAasWkv5yxqbVb8HwUR5LzGd9USfS29GSkIhJpwyoHUOcIQ/03VCVv5Bjs90QNI1Dbas5OblcqWI22hKWxETYxAxCIDFlElcWZEV8oTX0p2RMsEnxETI0rzkCF9p0Clh3XDzZKM31lHVM1lcYxhvXIqJZtuMcvVFUWLSTiAtZGlza6P8zVpM8MQUs9ha1i9QjIRZkw2MABlcWhCiEEQjwOTuETk/K2xsrQlJs2kjbZ9G6M6H3CrW9dyInrec4xVjmehEkSeQgkxMzW+ZodWBYFYpRU3iSCleRuGTYqESTxVcIPlXc23iy+RTGemx1lIURRbk2akMeh8IWv4+qUr5fDFS1xPmsynWGm6enDCbTllumpGsLKJNMklU5u4opWi7jsIV6JSDleEepYT3HT5OKKZHVNaNgcIQILyoJXc4Pi0A2Q9eXoSODBt7eu5nXvC48ecE1kE0MmbnlcEpMgEbfIAu8/XKqZjbqSAtjDoNi48siC63/WI04XiO1tIa3pXQNIhQUgdqcj0Y0cgCL+2yLcQVUJK8Ji4eYw5vQTn5xNnHkGibJ9z78AmTyZQYW95957tMZ1NefvllysKxblrRjykKIOH7HjM9osfSdx1t0zKpLXU9JSXNs4sVpzdfxdqsDxJbtE4cTGu63lM5R9Qe5yymGEo317NX+Z3B1o7tWqF8oDTSTl+pjq7fEreGYCcYHqPTinKiuVkYDqcVV6uC82VNTEeU9TFnjxcoXXHzxil+s2CxuGLZLajKSw5vvsLkYEbnPeeLLX5SUqcr+vWazgeSqTg8nFNkUcdBaiQlnYunoq6ZQgDrhBtnLHYyI2FQ2wvQBcokNF7ctHWBdRWJnKD0a0xxnDkCBTEjwzEGaS9WKvt8dcKDi5FEEDFBW1FXNdpYlpdnrBbPiH2H2DcIB2HwwBo24LIQw84uBjZtT7Ntsow7A71kzMpRUnLwXU9CuGDDJgo5aMltvgpFqRRl8BxvGu5oww1lsCnzuNL+/NrjC+n9GTWMBehIdCnxKAbeD4GHKRKMpo+JdQiEvacN1L4daq7GAEpneCVFEeQcApBxTcllqH0vHaP1WFpJAxmUrCFi9Z6GVZ5LSRB+qZxI0ieIhJjesYecCIqUzWGDH81XQ4zoJNyxwaxUKX1tDVVZf4vc4ZSSoKQxk5Kt1VSlk1JOALTQ3X2IZOqPBNVKY90P5uH0mQ5I6qqiLga+BhIl69zLnX1pQgxjYCFEHD0a3w3mbiGKlLq0jBYobcQpNcSsECibsO8lenUuG/JpkY5X2ghpNaUx2Bg23SGyFegriipkkiVdXDKFaCvZusUalzO1QhAcZPGMYdD0EL4ISWp6A4YSgvj0FK6kqCpZrFJCmx0BSaT0DSntPBC00cyOZmyC51fWW0zveaUseEVbThFRtlmKua0zB0D5nFSG/Abir0JaR2+iuJUgKMWSxJlOXKHZJtggUsmCEgmXRBvDZDLNyAz4zLkZVCFn0wmTsqAPkfl8zrSeYIxhOqmFCBzCiCINNVrpaJLP3fl8fbOgnTGG6APNtqUsC0giVzU5OR4VBV8UaAwL3PNoxvPIx/OP2Se6Do/bR0le1BD3/OsLdI0Y0hWavosEnyicEq8hA5NSntEhBNSQF5Cuy2+SEmWtyNpgWCV3bVY52pgl4xW4GqyeknUArwUkhiHjjMAWabGZkNZLet9lQ779cE6OZ08f8+jjt5lUNbfvvkKyE66uLtmu14QQ2DaJ84srrFb0pqCLohnSN1vs7IC0ekLbNlSTY7ZNBFPh/SV921KZAMZRTo+o6inaWqal+CMpawgY+jbgnBl4rfIJgphsGpswhUFv1/R9Q1KTnNFrqqnDTBzt8gmGgCsMOjZoElUJNkV803PZOaKeAEsOTm5T1xXb9QOmdcn01us4E9k0Gy43U2b1lP7iGX03o1Q966slp3fucHLrZdz0YEQqB2xg4F+BaOhgRfo9p+OAJmot5Rkg6YKkWwie5Le0MeGMkfkVOkie0HeEXpyshXwqpWuFwvc9ZVFLorBdEZOo8ShE56ldLWlWC/CdoCIASuOj6FIIidRSOEdSsN42NE1L3wcSaeyUHbggAwfOOUF+OwV0WU17IG8qTWEMB/nfaSFy7XfKCpfbl3dDLl8/Ncyl3YwbwM+IaOYugIuUuO97Puo7tnmfsNZQGIszCdt7Yr9TW9V7Wjohxt1rs3NVj2l3D40S1VdBGXafHQUpqdGTR0pdO8VVab0VruN+Qj0EfPJ5FFZL8mUGEqtSmLT3WaMEgD5YvBe5xz7EEdkZPG2Ukv1s6LohQOxiDoal2iCWA4LcDI/tgziDl1UxEmLLHFSH3O5749+GgKQsi9GpN6Ey0TSNvAqU+JYUrhgj0mEChBhJuWYn/fW5JmkMRokN9RDhkkTJVQdP9GLSpJIMqhgTIfR5gRgmFyN8NplOd/Cbzpsl4PMNN2bXauyD+DhY5zL6gmyW2am0KIpRnCYi0bT3ga7rcuDlM4cjURYSlKQMAUYVshGVrAYh+Iy2OFxRUDk598Vqw/t94IEpmNuCAxLHRO4QuRU887gjqI0jfo9rMtQlJcKHQ+BQadm+EmwULBI89oFHbcei63MwqNEm15qnjsIXhOCzPLwsqFU9YVJPZNKrgcTFOMmAnYnUXgYSvJTJenpikntMSlgr7b+mVqjoabdr+pRGg8P9HP/5wGP4/fOWUS/SFtF73+8jI+SvQ8Dy/PH8th7z2C41bNpAv0mYEwNJybUb3k+Jwm9SEDPhI6qMoijo8y1zCVRI42TpIkycLJpVAaW6fm67ElCCuIa4AHNKCpCaK1E4TtIQOF6zlAh9y9mThzx+vOLGnTeItsYWE27cmlEXkYhmtWzwPmGcET0frXDOoJLHTo9w9TrPgyCco64ldA0hRuxkQlE6fApsWo9PgpDFTN7brK/oup7bNw+YzSeIvo3J1gaChHZNR6GgqsUPxsca746YzGtSd8Hm6T223lDMbnBUl5RqTQye0HUYFZlPC6zTzKc1rqpBiT3D0eER7uYr9KFDXV3ikc03Bs/V1SWunHF84yVOXn4DW1zn4Hwa+obKxPj9X2lNPTtkc7mSdQ+Nih4bOzZdg66P0aYkGuEKtc2W9epKjEWtEDwLV4ilfa4VWWtpUiAFT1VXED2bxTmxb0m+RxF3Rp55pFotxEjrLD4G1k1L03RjUphIWfVzIGKKRUdROJy1GY0WuYO+95gYuWEct8qKU1dwaC2H1lLkpHJAe4f1fljjh/lz/bIptsBjEs+04krBRYqsSfRREazFZlGvwokWRwI6Z7NsRF4T8joq68PuvZw14sFlVEYkYuYkCgoRYtZxytoqwzqgMzKhkIQ6eJGQMFrOQedyikK4GyGksWxj9GCSZxiM70bpibzYpCiUgBgiXedJJGxuyd1XXx2UXEMIRK+xOeG2Rt4jhIhWQlfoMwLXd73oOuVSYFXXY8luUH0V0ctPHc3Xjs90QDIMPtH4yL31acfKTkhrWCTLEmd/BHKdso8hD2SFtU7IsMGT7RIARjRF+UTMbVBFttBOSV7f+5AnhhDU0GJ3LtobxUgyUnu1Rh0T1hYZ/Qhi+BfCTkVxmOgpjoGGlDvyhAsCrQ5utkPNNsQ4RsRFUSI1+iwqFFLm1yBoSlECJZs2oJW0xPkQWaw2dK0oxG5dwRM07yuYuoLbBu76npt9TxWC6FDkayhZitrdA3J5DNksZ8AswWmCV6yl05pn1nBvs+XjtmXRRFoUypgclGkYgjljKIsyB3Rq/OpjwGeNFz1G+kMGokaSshDfJOga+uxDDHR9oO16XBnpthB6RVOK8ulRP/9EAPH8MRI+89f9AGV/CqbnHvt8sLP/nOfLOGNgkhTOSEAym2hWa0Ur9k0oA9s+caVWXE2WfCHdwWlNiCKEpqyiR1xkfA5MYoDQiq+NmYBvxf7dak2xW+tHjo9A4Tn47FrQJdgZ27ZHR4/yLcRunDwJ6NsO328gBaYHt/HKsd60HNeHAPikOb9Y03vPxva8P3vKm+0J03nFdqO4XDYczgyTg2NiaGm3yzyWW2YT4UG4ssK4Ep1Bg9Bt0U7G83q94emTpxSFoyhP8mYlfd2yiIpO0LbrWbcwKWbYcoOZVRg9xa8uoV3jfWS5WNBfbdkc3WJWTfGr+9IRYY/Q5SEfzp9w2G14Wd1mOiuJ9mWi7+htSX9+wXQ6pW23uH5BrKZcPL1P0/Ycn3yOzXrDQSGE5J1O0C7zfv7YR+NQiqIshfx6tZZOJVWRjEG7hNku6ZoVyVYsN56yrKjrKfODY7q2QRtNf6JQwcBSTDUVQznVQVSsFhekAQFLEasVUekMz8tOba3JWbJh0/VsNtvrSWKSzS4Edp5azlEVRfYTkjE2dY5T47hlDMfGUiIogEg17DGTckAS8yTJ8cg4X1JK4jAOPDaKs9Ly0AeiMSi7k4qoUsQacasc5BesNeOcDjHR956QsUy5NhknjGpcmwtrRVVWK6KGxICQy5pts1zysE4NqqwqK8VaY0YBuBBzQGL1WPIBMHFApCWQGQXMst6VyRu/CHEyBm0pAS5inMP3QWwkBsTFBwbacIpBOugKx3Ra7ZAYhONl8l4XonDwvA+yvxlF0zR02YBW3I+zx5t1rLvuBaP4k8dnPCBhJ7tMjlzV4HgovIvO9OhGE0KgSQnjBU7Uxoj2QiYAWWPBOrz30jsdEZLk4AOQNzFSovMBY6SrJSbxvJEblyPijJLEPKi0zUhF2AUu++dvraMoxRbd5D76mBIPXz7n1vuzXAJSoHYtvkNdkAR1LVLhbdeJhkoXiGFF8L2YpeWCQYpx3OlSTPRK2s980DS9ZlY7jg4PiChW25aua3ApYV1Bi6LtI521nM+mlAZmXc9J6znynokPlDHicvnGa0FSdLimJjUSy5xSwr4uS14rSxJw5T0fbxsedh0XoaeLGq93nhUD6DFkQ0or+nZov94jesVE0gkziD1Zy2wyxTpLiCmL4Bl87zG6o/WRZApeemnOrFb8yvF3eG/6mL/14Z9lfzv4NC7Jp8X+zwcr6bnH7iMtn8jm+CQqk2JCWVnEDkoJjput4vBQAr7g4J2DB/zTO7/N33n/r3Lgp8ITAnSEPiUmhnHRcgbUVP4eEM+jB+8/pSpr6nqCMYF65igMOJIYDmbomGImctVJ4bsty1VA6WMOO8OkbIU/1QiHSsUVrpwyPdJcnD+jKGq2Vc226bBOrmpRlDw6WPD3v/zf8Z988OcoHxqa7ZLVuqOczFktz1F4SBMmVcV0Ns2+RIakHc5Z6qw3YVTEFY5t03Lvwwc8enzGyy/dJIUeaVbeWzMkVac+mKKvFjx+es7B6Q3mZo5TC2I6o1UVR7c+h3MPubxaYNKKq+2Ms+UElOPkcMKWR/y/v/Jt/uaDP8QXmluoYoJiBkqzvFySKk2IPYd3bjOfKa4uV8SYWF6d0W839BZCZTHVPGfAOncDDVvF9VG2H7DKz+JLVRWW1C2IykFoabYtfTTixutbrBOuWlXXzA+PWa8WhBj4tT/xIXffm/K5tw/G5CYmSWz6tsHg0WZQaBXJ+96HUb+iLAucs/gYWW4akVgYjPDYW/YG4mYIzKua47JgZh1TrThBc6oNh7lUvV+GGeeBYrcQ5F8kkzU2vKJPsIqBqxh5HDwPU+TcapwpqJSj1+LtMq3KnPDk4DmjQmPipyT4Fnl8i9bSkNB1PcGLGJze3/xRWGelfKJy27+KYyuuMTvRs6Hj0BpNMvDwzoLXnhwTAyMXJeVARmc5h3xyhD2JC1JGmowESEplfiJpFKccmjnk6Ur0g4xBJ5W1sSRxdpmXaHL5yAxdXZkTEwd0yyhiB32IEviiMFZamJumkTK70kRjoCxRpkCTk/Yf4PhMByTiQ7O/uMjXgSfw0UvP2BQdn3/ndGynikR8DCKzG3ecD+/9GMWTEloPIjtyY4Q0ZFHaZBY9OfjxY3ae0JmIJcV+6dfO5zSYc6UkXT8MWaQSaFmpzGqW4ObZrSt+8d/7Nn/zf//T0rkTch13hNikXlhozaQSuLNtG1brLW3bZW+eBt2raxu2glECfySNIfbhTReEFOxKbC915YEXU5S1kGOJtEFhnWFVaVZ1xUcR6j4w7TpmPlCnLX6+5O6zPctptbfF6t1CMBwaOHSOQ+f4YWAbAhd9zyIE1kpE54byExn2VMiiOEK2e1kSOQPwIYjCYMoGcMZQFQVF4fCmw4dI0/eCXllNrz3/+Rv/hFc3N/Eq4NJ1yfNPCz7+IEDyRYHI8wHHH/Ta3nuCNpQYIV0W0ElnpSizm8hv3P0mv3Hr2/wPP/4znIYJqRBdkW6V8NtAUynKmcDA0UDswfeiGopWYkDnBTkKTcRbqCYw6Xu6tsOgsFZTVko6OEKkmhakReJiK10dYIihJ3QtRanwTcTaks35U7arS+pDxWZ5ztOLJbfv3KKuKsqq5unxFf/tD/02f/rdL6MuXwJqZtOK1eKcy4tzVNjA0TGnR6/jqjkpKSweV0hAIjXxhNGWtvW8997HfPjhh9L+GuakdgNVnV0J5RgQBuccpracHk8J1vHgw4+ZV4GjQuHikt7XFJMjjosZWkc2refo+BSPI6ze5eKw51+//n0+Z2/yY+9Ltjvcudm8pCzvQtIYW6LpOblVE1WNs5FSd8Q4JbQtoAlRo+sJ+6oY+2PhRQGuAJQRQoM1RjSLgme9WnB2fkFAcXhwhHGyQRAjRosdw3p7zqNXr3jnzUe89u0/LO+qFF3b0XRtVmnO5U0l3LoEqCRlCiE2KtZtR9N29N3g3Dx0nch5GqTL8dCUnBYFL89nHBcFc22YoMYV8dqsyC+wQ0VyeWHvwqyrwNuvXTL53gEXm8Sjtudx3xG0Eu8eDCZB1/vcBpsyx0FldNxgCj2qpo4Ie4yoGChyaantxX4k+kBZmLxWy3NiSjlI0aPAmKy7ealTsvZIB1rKJXxNLBL/n7/8Lf7mP/wJTs6n7Kdvw41VKAn+UhpRFUE1soGdUrmcFNEDhyVE+bwpiX+T2umMDMiIwpGXUxTZdyYjNGiNDwnCnhlkkkaMtpcyDTGOuik7JfScZDtxbDbaiodSPXn+k73w+GwHJFqPBL1hZAwZ3HK+5R/8td/l5375rczCH/rZM5SPbIL7bGTIE8fYkZwjrGEJILQy2MKio3gCBJ/be2PeLIInxJDPQ4KGoixxzuF7UX8k1/202Q3mYbqFINolvQ3807/ydZ6+vMQUDmvcWIsbouyUQiYySeukMZrZRMie6/WWTXZXtLnP3Xup9xaFvBbaZLRFrkcIkfVWFpI+i76lKJ0tIUqN0BVVRjgihZMWW0hErVgVioWRFulf/Nnv82+++h3+B7/wZX7uGzd5WSmqtLd45oBkCP6G+7Z/1MZQG8NLiIS/T5Dalj4EVs7RZlXbgYys82eRwHEwhYqZOBxGNryzItlstJaWFdUSUShn0YXjWwcf8k/u/A7/3oOfYW0bjvrr/fOfQC32vn+etPppAcanlX9e9B7jz/mzbq86SlVjCkOXEm2X8JtIVSm6ac/ff+WXOXNXvLM44yTdwtYCFesCmjbS9wqVDE6TXY+hXychs1YwnTlmRpTQUpJuHKfEjDKkQlraQ0CUaRTGiF/R2aph2Xiq9QZtJ7SbNU2bmM0nxKhoQ+Dy8pLCldSTCQ+fXbJebeD2TcpqQhdbfuv0bR4eXPIr82/y5fLzWCzry6csnn5Es21wOjGZTLDVobTspo7SaoyzKGXGcdS0HR/df8pHHz9gefmU+cQxsVmxeY+jsX+NEwpVVMxOa5rlFf3iAR8/VYRXXsW2Z7h4hnFT0uQOtiypVcKcP+PR2RmT+U14s+WDo6f8v9xv8h9//O/i9kiN2jkhySJ+Ou3a4yZTbt6pOZg5jPZcLQN9ByZcUdQ16Ol473+QsTNks4VRtFH4aJsucLnp6H3HtKqoTCTGlkLPULrEGkcMgZXbcDHf8M2feMyjf7Bk9uxISndOhAp7FFEX9L6F6PMcg7oqcIU4865Wa5q2y8qqO46dNYoj67hTltxxFQdGS3eMNjseyPi59gKwvBEPF2FAvcnog1fwFHio4Z//yGN+4b/3bX7qH32Or/7Tl2lUoidra+QSt868wbYVBei+LLO8usX7SPSDqrYaN14hoxogcwtjxJhIkUtZ1hoheTIIyw1jMEq7rh5EN6O8jjFEL4GCNgqnpeT80e0L/us/83v8B7/wk5hgMiUva9RoEccT1VQ7jgdTFqP8g6DyjMHAUKp2TsZBCFnyIssg7I+jECHmfUdF6fAJKdB1HqVyk4jRmX/SSxEq5c6gbCCLChijSFqafW2ReYllhStriqLktnWfMnKvH5/pgGQg8QB7RJpEXwf+8Z99m7e//IC/8C++koVkMtMZRlQlZCgtZhniGAI+gVJhj6+ZxjYsnyJE6QCJMWSpY1FtHX0C8vOMNlTTKWU1yW24LeuupW1bKeVYMekTroRl6PoJ2vP1P/oRb//kxxyfTelji40FVTXZITiQeSFCBvVRyilWKDSUpaMsHQpxKt0RbTXOFfQ+sFg1+brJtfC+x/eiJhkHmFUpjHOkCNvNCh88rigISqMbhaksVsu1GygkH92+4B/86W9wfrjmrVe2mG9A7DtuGsMr2nAXxRQolGIYokOWOsIcafytXEsl3AcTIjp5TkOApiFozY2YeJY0K+fwSCaQVZIg6ZxFyDupTMxab7YEH6nKgojhzls/whtffp3pUc3/6vP/D9am4VF1ztJuOM4ByadtBM8jH8C1LGfI9/YRliF4+bSgZXj8EDTL/QaNIbUdl1eB8kg6RoyWcdx4+M3j7/Ctww+JRNavLZg+UiPR1UxAT9y1YCcC1OCtJlqB1KNVRK1IQRAlZ8DFTurVhcKRUKZA+nhEW2K1bjlbB86fnbFuAndeeYNmu8WaSOfhpZde4fCG4uj4Bg/vf8xi61ks1xhjMKYkYej1kl/8/LdAwW/86D3+/D/5LmoT0HbCZHpC3z/hxu1XODh9Gat76qKkcDW+7WUM5w/WtB0fffyYex8/Eh0b3zAtK5SRbptPPVQBRsHmAZU/57VTy+WyZXV5xrqNTCfH3JpZyiLQRlmM52Wgrxomt17joxtv87hc8KxY8dvH7/HHz79ybWSM99kYdClKlq4oseUUQsfp7Qnd5TO0M8LD8Rtwk2sj5Pkg9fqgGdaewGazpNc1W99TTeYcThwpRqrZMdgpxI7QttlM1NMeRhbHW5qJ55f+6j1e+z/dwvcdzhUSLDai8eOTdLQRI/O6xLiCbdezXK4IXY/TShBbY7nlHHerkjtlRa11bjfflR5GlGeAERR8YubkzbZP0OtEi+KZhifWcK4VLYnWB75zsua9uysu/933eOX3Tph/XGb9DnnZoZlg6HBx1jKbTjiYyfVtup7VupHSh9ZEn7lU1lAWBWXpCDGwXG2JaZPJompEZwdvtD7kDp0caIUgCXBRFmglm7exirJw2UEa2qIHC7/xkx/w5ffv8pO//Tp4oQEMpRanDWXpZNPPgd6gsTXMY8WgYUXWmlE4lz28YszdpzsNHim3RiGKR2TyK1Gc3TZScp1OagrnpFRkFFUte0kIga1q6bMir4qKtNfMMZ1MpRtyMiUZR0oak1600n3y+IwHJIwtUuOGZhNf+9GP+Vc/+y69C9RNFrpS2SsgDfGsLNYYhB+SFF5rlA7ETko4Og0btkB4IYS8afs8IDQhiiIseVMelh6lDWVZUpZZQyPFMYAaiKohd8iYrDlinOH81YZf/3PvsT7oOHo6oQ+9iHoZl8WMVOa2WLquxccWTYmHjNQEfN9n0pjKE0sIv2VREJOi6UMmVpms1SFZjbMGrYTAZYyi9z1dK++dFISNx3eOsprgXUHjExMnQUBC0RWB/+4nv8vT0yUJaKeRsq7x3vIsRp6ESAqBY625oTVHwDwmjhTMlTgzg8oUmwHrzIfKQUaeTEqBipGbMXKTQOo8rW/Z9JbGOTpr2SrFZc50jJOylsCZga7v2XSB2Y2X+ZGf+hFeunHA10+/xy/feBsUPC4vWdrtCwOG/eAiPfd1+NuLNo99Tonae96nIS7XH6vQzjG76YhRMTfSorsgsWka8PALr/ySmEAq+L3T9/h3Hv80zhusUVlX5npwpAFlBEEZ0J1gpBsnBui9+GJMjc1jsMcWBSiHBCSJ4Hse3n9MNTmm+fhDNuslrp7TNRtunkw4OLpNiBpnFYdHhzx6esHZ/Q+JMTKbznFFxXaz4P7pfb5z6z4A37z7IWfTBTcWlmaz4OTkK9y4/RJOJwqbqEqxZzBGE7QfL1RK8PjpBR/c+5Dlak3hHIWTFv5NK6W7URV07zoAxNjTLx6gVo/RKWC14vSgpG431EWBmR3RuQpnC5xREDuinXLz5RmcHPDbpx+CgkDg//7qL/Gz518Swalr7ySt+2W1a4F0ZQlJfGWqk1soelKIWcAtkF6wRL9onCiAFNk2K84vzpkdv4QBpvM5lT1g2/R0AS6ffYyho57dwDonCMGhYnkkpMPv/NhTHryx5OblS/RdO3rehCCq16YoUSrhk0InyyGJm2XNvJpwbC3HznFkHXaEf/OKOMztT3waRtRqPwlcJ1jEwGWKnKNYGcvKKrA222ZIn3pMgXXZE2zk2d01v/On7vMnf+ENXBi4GpqyKJnUE7TRNK0dSzMhCfJXViXaGlEh1nJ1U2KUWhBjP1lHy7xBG6MwVhBqQaA9rZcOnUlpsVp0PK5xHPMeNXTLKQWpFBRnMd/yi3/yu/zw45e5dXaQL4bMWJtVXBODHpUm7pFNVV4Thz1fq2FviiidKGyRx8zOCmTwrxk8dmKSUsxmuyX0XhLZnNgN5aWUyzpp6PDsO7zPCHXek8qypKxqlDZ0IaKIWWzt90kG9o7PdEAylBsE0pZ/Z6cr/qu//DUuj7YYr6gasbweqAukQcI3jVCgyio6VkkAkpKYsbXNdpdN5tZbaWVC4P8cGcvJyJch4B/ITF321Ekx5A4fmUze70hUAqt5ooLf+hMf8NEXz2U/VomYTcl83xKyWJF1hXhCFBVtsyGEXjYJrVDG4bQQHlOKtH2g7STi78pIUprOB5GD1hYQljUkafGyFuOgcIam2bIdXh+VibmyEQH4TqMmjkklr3P/pUt+86vv0buAirCtvZyvBYuorbZdx5kPPA0BUJi+p46RGYqXrOFla7mhM3qi9bjgDt1O1yD3vYBFAXWK1H2H8j0BRacUt1JgWRasjWZpNFtbEKyh61s2beTkxh1eOp6jTeC/ufvrPKkuAXhSXrK2W4YtfEA14Hoe9zzysf+4/b8D1xbj55GV9Nzj9oOc4bPGGCmNJulE10qJxZYaV1d8dHqf37753fE1fuf4XVYhYlvDvBY3UhgmvLzqkEHu/3PkS1wIaBD6HoOiWT5BVTVmepjniCUlePLoMR++/33qw7sc3bhL2zbElKgnE+rpAZPKse3CWF8nKXzX41zB8elNVOqwKvCLL71DbyS46Kznt978Hj///ueYzOZUZUVdaErdU5eG3geKIo0LvMpJRgiK8/MFi4szYorUtkI5y7bzbNt+ByLsX+uUBPW8/JBH997narHkYFZxMK0onWUyr5nUB0QNa+/ZdNLaWdHiQ0BPT+ms5rePvz/eu18+/RYfTJ7wxubOtXstCsXDaJKTGQmH5PWMMpv9fnLr/rQcc3hk5wP37j9huVpzMFtxcnQDROOV1fqcEDpManMniaIqS7QxrMuOq6MGFCxOGr72Mw/40X/5ZbZXG8nutSYlzcRajo3ihjGcGM2BdVRlQTmZMGx5A/qRl8hPklBhb82WR6b8nIsYeULkUYwsIqxTZKtAGUulNIWxOzdc0aKlj4lm4gkmEWziG3/sET/2u69w53sit2CzN0s9KQEpP/R9T9P1hDHaF+7RIHY5jouBq9LtyvrWORRROs+0FvVso6kLR5VvhDE6K6qKLMG1uZ1gfyBGvStFffuNR/zij7/DX/knX8UFS0KaIpyzhOjpvaDxhbXYLNeuMipsxvGzu/CS/JIDmR2fZ+BOyviTdbnznqZpCb0f52rX9+JVkz9ByPzHwb035pK+BCIFRVFiXUlCCeHVJEpncK5gWk0/ZfRePz7TAclwDCSkbdXz9/77v8X9ly7zXxTF1mXbZOF67FtGk8CncM2wyWpQzqBSwbbt6L0Y2vk+5BIJ6NyXrXOfeAgSySo1iC3JgO67DnQ/SrtrJYxk4z1Bxb0NVW75xz90yW/89Q8JTn4fY2TbrtB9lTNCuV2h77KzosPoqbQM+x6MFXJm5pUohJw7ELS2fcz966KRElMk5iCLBN2IJGX/n2pCSontNm/Mewuo9y1aFTR9bmWeJH7xj3yLB7cu5NIq6CYBVRlML4UDkyJog8sEqC5EtiHSWMdCae57z282LUUMvF6VvFVV3ASqlHBa7ySg2Z98Oe9X15drQ6IKkULBsTXSjUwihY4uaRZac1YVKNVTtA3fnT/kl09+D6+ks+BZueRZcXVtMYnwSdLZeAd357b/8w8SkAw/76Mmzz8mxkS7bdmuI8oYkd4+LnGTAmM1v/Lq7/Fkcjk+6RtH76KqDqscbYBNA3SRotaUFRCgsjvlVciB9HAeOesyNkBqmJZrkp3sraWK5dUFzxYtyc549OAer775Feop9M0SnKOPjhBFNWfbyMK23W5BKQ6PTnFFQdOsUSbwL996ewfjK/g3P3Gfv/gbP8LNO69z91YB3lNWM1xZE5JsFAPBWTZBUayU0mNLVWisVngreiBWCdfl2iETA1b3MdtzTiYWFWrWbc96u+TgYMrtm7fRboK1FQfWcXmx5dl5xOnE6ekN7GTOpb3idw/fH2/a/fqcf3rra/ydD/6d8S6m8Y4mgTL19ZH0yWBD7T/j2vhRzz8+JWIUg7pJUeGOxDcmRPDBo5WiKiyLywWz0tKFRPIt0+kh0/kBy6OO7Sy3++rE+19+yrOvnXPjGRxsV7xJ5KYzzIsJNm9+ejzFPVH3nMWPVhN7pP7xcpM3NqQd90mMfNj1vN+2rJN0cWhrRh6Y0ZJ1C5oj61bvRexSa42bWsJst8E/eOWKr//8I75w9YdJ65hl00VfSfRFrBjhtR1UIoNPLl84JyTtmK+ZdYWU8b0XPg1KNKeAZAyp80IArQpsVaAQ/onOpZEQcwNCTk5DGPxrZP9ICbzqiPnO9i7wX/+p3+VHvvkKn793i6ZpsoSDEELbPqCVIBXSuCAK3UbL/TUZhdBWo1UaDfEGQciBX2mMEpPYmM3xVDbKMwack32MhG/bUd9kuHcpR08DKqJ1QqlEURZCHwjSDFGUjqqsqaqaohSE6gc5PuMBiRpT0qbo+Sc//y2++ZX74+BUCYqtfMQhaAE1EoAGWeKYNzSdsxdrNLbWFIWl95LV+z6ME1AWCYWPcZTaTblbR5CalDVC2tHcT3q19Thx92FMgNVxxy/9R+/R17v2qKQSfehpG+hNj3NO0BFtCL6X7NU5iqISBKeXzgadxeLGDqQEjITYvCgEkaAWLwifW9tEsCkkRfSeoqxQ2jKdTIkZ3QDhZJSVEGh9Smy6wIO3zviln/p2tkyXj9XWPaGMuOgyFCqcmRjFBTO0Pa5IuEL63aMPeN+y7TreTXBeOJzSHBvDK1XNoe+ZeE8dI2UIqEwSlgmyu5YD5JrUAFGmnQw+UMTILEZeURHz5AP41ae4lxf8+U3B5+68zMPjhrODlqc8IaSAVTKG9kHHAQn5xObw3GOGy8/e9/q5v+8/Pj33+zGwUZpiVqOs2Bp4lVg2iiJ6Pmw+4l/Wv8HGNOPzrtyW7x98wM88+2GRkDfga7n/QYHXopqbekg5ODFaUEKX54ci0jUtZbWEg1soDhiC59ht+OB736XTByyvLlleXXJ1ecaNWy/TLR8xqWvqSurK602D7wNGS4mnridMplP6dokpNd8oPuaD06fXorgHb2zYfrFk7h1Hh5bNAlxZS9sqQ+tyJjDnKzxcO1FSViRd0m5W+BDofEQZda2FMvZr+qsnsHyE0YnppKIqS1bblsW6JSTxxCm1BleS+g0TvcGczrk423Lx7JzQd/zmyffZ2Ha89ku75V/e/AZ/4/7PcvKc8zJAUlpqYnsb9qeNoReNoxFBS5HtVmwTnBXdkFs370rLfohcnT/Lm6oX91ctBmxTq/EpYrXjcD5neqD46e+dcGtR8ubjKV+6f8AfPT/n9VCJ5YC9HirHmLhOCchlVjUQSNU1h3SfYJMiy5RYpsTTGDlLiXMNHkWbAm1GIAwKpxTKZp2SwlEUhYjkKcnmQ4y4rAYa6hY/3b1X0vBLf/xd/uhvf56Xv3eISiqbpMr61rY9vvOUhWM+m0qCaAzWSsDjfS/mkcYI5yRzLwayv6BAZLJ8FD0RpUaxtLGbUcmcVTlyE3XTwSww0gdBXdrM2RuObdXx9/7yr/F3//M/RbFUdG1L33d5vxLUo2ndqIAKUurWsaKeGPH5ymqtUUdUEIn5mGIWNiPLSuxMElNKWGOpJ1MpazWt8K9iEp6aExXdMSiJiaA10SYKK3tk07QY46gqEa+s6gmukHJfyoHTD3J85gOSlBRBJb75Q4/4pT/xDl25++CuNxg/MlnzpiWblER7aSQoDYGJiOSK9LuzIjxTFsXYhQPZayW3VUkniqHtdjLHu4jYo6Ie28NCCFIeIp9PPq/gIl//Sw949EPL6xkFkHQ+xxjpu06kmXPJJpHwfYexuaShtai9Ro9Hj63GYxCksqZHbvcVvwnROJHW3gKjRGK6afs8ERTz6RTnDIvFFU3b0rZbYgi4ssK6gsZF/sGf+V22VX/t7jRVj7eBlCwqw6WoLPOfABXQxmVERqRGC1VSOofRQj5LwMJYzMERT42iTHCkoPaeeHVFtdlyGHqqEHfohdrb2faxY3UNLQXkXFituH1vw9/96C2CSjw9aHl81HA7XVH0v4eazomzGWo2g8lkNBl50SbySaD9xYHG/mOfR1NehJCgwBWKqZOadVtYrhaJmHoenj7knZcfPDd2Er9UfpMfOv8801mJK8R9ucpBhzJQJAlOAtBHkex2SpSBnffSnda3YA3J1UCLUjXeBx7d/4gPP7yHrU85vnF3lNBOKXJ0csrNA4XVid7DfFry7GLFZtNTT+cYNyFGz/JqQVtovv7W+2wm14WT1pOWb9z9Pl/89oTFhcMWM7QrM/KnshKy2BNk5F+Ca9/iTDZpGxKE7CtS5OdDIoWW5tmHPPn4Q7z3zGc1pTUolRWVVeLJ2QXFwRG36hraBc35BbqcMz86wbmOdrMmRc+vHX33+n1X8G+O3uW7swf80Ys5uySGvNYo/LbBTn+wzoMXHcF72s2a1bqhnkwoywkkha0m9MsNV4sLet+j1CG976mmFfPJlPbqnJtFgYtX2KsNR+srjt67yX/4fznk1lVJ4bPwoM99LddKpEMp4/lxvqtLDOWaTUo8i5FnRC6BZYxcpcQ6RXyUNMEga5bWUuIIDHx0hVGi1Fs4m1UCRKU0hkjpCspCyjfeRZryunHbZtLxD3/+6/ztd36GiapwTspO4nrrKQoRRWu6jok1KC2JH0E6cCKJLiasdWMLdYhBjEFjwsdARMwZFRIcCyoyuBazI5CyQ3STSqMnzGBX0qmOa83dCt594zH/4o98i5/7b96EXtZ9rbS4BiuFNj7PN0kOtbP0MeBiwqAIXjge4skW8+fOQUG+nUOrLkkQ/8KK6nkIDq290ByQ4LIsCqq6EkPSLB2f8muHEPCxwXuPc+UYEA0ieIOFi+//LTDXGxCOZ8cr/uFf+TrnJ+trK3+1lZ7rRBIcOAf60qGSf9wDERKiQBcVqGxmpzKiYqwda55Ra7SR8kfMvIqgFH7PMXd8D5V2wUAUNUCQQRyjnNb9L1/x9p97TLDx2vmjAKtGSeXeB3wvHT3a6LGME3xLQKONsMeJQtoM0ZOSoDP7dVuVy01aaVzpAGmHi8GTUiBm4H5ol/PBUxSOsq4JOaJu2y3e95T1hLd//AHvvvWYorV0lR8Xp6bo6V0EbYXfkrOHoDKhKk8U74NsfkpJKcpanJHP7WNiaOlEaYK1bCvHOiUWQCxrCq2ZpsRR33Pcbpm3DSYEiCrbZg/3Xl3btGOK4BNtKSU0krQK3rmsuHNZUYQe6z9AGctgGJOcI81mpMND+XdwAEMmkAOf8RbuEc+G4/ngYxh7nxjb+et+V7saNoIETZMoKihninfeekAqoAiWznhskPa73zx5h3//6ZpnZ+dUlaUoKma1xTmDLpzUii0YK9yRfpgHIdF3LSlqPBMKWxK7ltRuMPOKq8WSpxct622HXz3k9isTXnvzy6To6TeXzI6mzGYlqpSM01gjKKOP0gZfwHZ9QVlaVn7D9946R3eiKxRcwvUGFeH7n3+CuWeJOFwxkcA+Xwy1dy8T0IfA5cU5zXbJIE9OJvhqpagLizUSkaYUYfmIorvieF5ydtFzebWRLrcU6HvPtulE3G255PJhojq6SXXzC6P4Yj2ZiJw68G/ufoCLVhIEEyiCZas7fvX0O/zk5Vuf0LIRNCFe/90LxsX1ATFgfTKHu2bLenHJ7PiUajKRjDhFNuslF2ePadoGGzxls+WmLagvHjHznthssIgaL1EQh4KCsLG7E0gQTaIvE0WbSf0g4/u5MTroO3UpcRYjD0LgfghcpUQbI71CkGE12DnIW2gt3JYUpFtRpNRzqdgZysJRFg6dRbf6jEhYvWtdbYNnRcO26K5dwLIxvPOlJ3z3x5/yU996E2ttLi+Ihk6z3dB1HZvNBu97ma9aHG5TlPHhnMNonZ3BBQlPWZ0UJe3CVhvqStqnldLkfEtKWMNnVdm9OCe5CllnfMxyBIML4N5F9Tby63/sPd769jGff/cGmUaIczaXbIRE66OUQVMSobJt0+VAYhdHDm3Hw7gdgpOBzCoIkBnPwTlHUcrfYwhSqrJizSL+bIJkhRSz3Ul2J84CecJRCYTo0VETgwSaPlxPVj/t+EwHJEpDV3v+wV/9GkFHTp9NObuxHgdn1ThGr4F0fdnPAeAI9saYBMZC8hkFeSDIhdZ7VeAhJdMKCqchOjSJrvf4EPBZ3jdlRjSErMhqIGlCHHQxEpuDnq/9pQfcvDfFtZpHX1hBhGKbNT5UVgtUmpikWycGUHmguUIieVIkBc9kPmU+KUU5r21F8jh7FsQYabN3DCnmz+t2m2eSiLvtemFP+14GaxIRnIDKwkDCuA8x8HR6zm/89Hf4Q7/xEotbW77z1YeoBHc/PmFTdqx1ZIYjROiChyjRfR8S2hbo1NN3DW2zFZ0U51CuGFvbSmswrkIPi1oWHQq5RTtYQzKWYAzr+Zwn1ogK7HaDOb+gXq85IFEBZUq43FE07OxRBVrXUbaWYCLeRXHAjAqvIiElbAioAXLcblFXV/DgQR6EilSWpIMD0nwu/6ZTqcU6R7IWnBOC7t6CvgPAPx0hGb7fIT/S3rttFRVwMIFzt+Ff3Xyb/9n3/jL/1zf/Gfdmj3l1e4M/efaH+PWb3+XwTaivpmz7QJ8C5ytP6BLWVlzNHZWTbrOJk3bfUsk1Zzqj36xI2hG6NbFbEkNBu7zg3W/9HpvguPXy53ny9CGPH33E0ckNYuiw4YqqOAJ7QFXPeHa5YbtUNE2XoXzFZrNmcXHJdDonfXnCk1tr/sbf/1H+i7/5u2ydp24t/9N/8TP82lc+YvGy4iVf0/YRZSJlacfbN1RfvPecn19ycXmBNk5KIhmtGUo4ZSky832zonv2AapZ4oxiXhdMq2Mulw3bLnBx1XJ1teJy3XJ6MCF1DWV9h2p+B5RivXhMUc8p6iO0NjwuLvlwcsb/6MOf45/f+j3uTZ/y2vYGf/vez/PPb36Nv33v5znt58+vXNhJ/Yl7vf/zi9C05AO993TNhqKsuHHrjuj+X11B38NqTf3BB7z69CmTFJnkIEZrI11+OfuKgzeGko0oqYTxmmgiSYH1Gh00XeGxvWYQn0hKjBubGGmU4iolHnvPA+95GgJtzsbDgBQrEXskCqnZjKJRgkZHH3fGnEoQB2ssdV2I87rSYyCigdpJCSekSNN62q7narJlW/a88uERH796CQp+6J3bHF1N+NWf+T6fe/+U09VcyKhK0fd9NoPz2fJDtKKsteOZWeNIMdENEghK0bVC/FfZMqRrPckpjA9ERFLCGuluEeG2XYHNZ+2R4bViFK0c3/c0riWRqLduRJhf++CYG1czfvPPf8yX1i8z39aQUUFZ/4Mkpz7kQMrl/cVSl9IxNCIUGeXQWo17UsxJoKjCDucbcluyg0rKVH3f5z2jy1omYiKrtcJpQ0CRDFRFOXZqhhAwIZKMBC5Rhd2Y+wGOz3RAEi38+k99n7Jz/KV/+of4R3/+bc5urpktS6qto26HcoC02o7HAC+mXDpAeGaDQuHzD5Qyh8rtrTEjLkLmcUajCieqh9bSh7xo9F6U7jJSMsgLy3slsngo3/8jZ8yelPzQv77BP/jP3gZgcul46zdu8OgLS4JKdFlJdFCVldOKY+tWcJHCWRRCdprW0m48qaoMDUqrllEKH1LOVmVCK51wtqB0hj4P4LI0aCOTQ2eIu2kbKa8oRUiC9AQdeffNh9z57owf/9U3+D/+b34ZANMb/ux/+yP8+s+9Q2vjjuntE13XZ2trOV9jEtE6QtPQdkLO1SR06aBwFM5iq2oUGlJDDTQO1t85LdlT7E1asykrntUTtsowsY5DrTnSMI+R2vfUbYNrtiTV4HqD9QZvpWygEoL2lF7u9sD5SekTGwUpoZoGmgaePNnB8lVFqmtSVUFdk8pSvtY1VBWqLCVg2UNUhq+K6wFLSlJW6Voh/c0czArpDvvWwYd8dfE5/syTP8z/7c1/BsA0VPytez/PRbHio7uP+ePFD0uWgoihdV1iu+zYXC5Z9l6cTUsji77VnB7VdK1n4iyVMcQWYqdo/ZZnV494+PABjde8/MaXmM6PuDo/w/ctdVlycHiDaaVpPZQR+r5ltQritZEEfk6xIXZLtirxYB649R3Hn3z3q/yX+ut5zGn+8kc/ztlLPWe3Wtbf9zx59oxXX3mJopzvoZBSy3969oyLxYLJZMpq3bCDToRgOKkrZvM5MQU2T+7x7PF9gvfUpaMsLIUVM7XFakvnA/P5hKYLTKcTDo5vUB6coIk8e/QRjz++z9033sSVNTFp3j56jy8vX+ZvffRn+LVT6XJSKP7i4x/ncbng2/MP+dmzL40LvwwPRUq78Toc1+758ClSghBguyUsruhXK2oSuuugbUnbrQTJbUtqO+YhME/Zvn64Tnvy4WRew1DJHLggRWdpq17wZAWuMySXOC872pVmERNrbVikyKX3LJCyTAjZByUjUWTOwMjd0kJMdXZANuSThRizW3nKgVKicEU2TM0bet7Uy2xap4ymCyEnTNIkoCtF4Q1//he/zP/5f/yv8Try8O4V/+Hf+yl++aff5bufe8RPvl2Dlz1AeBOSWEk5omRS1YLgonJ3jJI1cyjTKzG8I39OIYIKoXW9aUbxsCEgGRoDTL7+UjrZ7SW+z3w/H4gKdFT8zNfe4N/8oXssZy2bg55//7/6CX7zx+7xrR99ws9940sIYXZA3gNKB7QRkqtzDqWFP2KtJSmVPdkSRiGf1cj8Hro6DQp9LUYQtMwam5M/mVt916ISlBPHdCKB2+48ZG/p+4APnojK9z63TcdIVHFHFfgBjs90QHL/xiXzq5q//js/xu99+SMe3llAgrsPDnnr3Zs8eHkxllxU7qMe4ce91xnIqEN9Oea+a7Gwh4F4sBf0jniJ0hpjEyiRmneZ/GSNtJb5MQpl5JYMZ7A8bXBbw8/8l69y78cuaSdS47vz/Tlf/cd3efLmSoiZCRFny0HVANtLFB7ACyFRRMzE7Cgm0XlSCqxRJHRGQDTW1sNHzZxQcdYMIdJ58WsYNE8GbwWJfkVaWCLlRF95XK/56X/0OlenGxYnGwBOHk945etzbr92wDqsaJqZRPcx4n0PwSPmhDE78YruidWiUrjdbjCqZjoRf5+x5Td/TxKIPqY84ZRszorBNyNP/phQxhKsY+kcXVFwVRSUGmzfcZ6eclmd8eX7c4xasp1ecmtZUAaD8QZjIlHvrL4/9dibbOMmst2ittvdQ5RC+p93/1JZkqZT0nSKmk4J0ynUtZSGGLfVDNGC7xXzAuZ2V755d/qA/+W7f5X7ZoHPZYCpr7jdHfGfvPeX+GDymJ979hU06lpLbzopWE8PePD4iqIumcwr0npDs7ricR8oXIkxlsppvHVcLCxXl8/48MMP2TQdbdfz9NHHHJ3eZjY9oLKiPDk9OGY216wbz/liw3LdivdHUaKMYXu5YXXxiGa75ubd1zlvvstXf/sG6tmaAQtSSnHH3Oav3fspzlzDOx9+SOw0r7ySss2CCEdFEk/Pzjm/uGAynVFNpmh9OdQ1gIS1htu3b3B6ckBcP6YMV5xMC86XgeWmowvgfcNiuWGzbanrgpO7d0gYbr/6BkevfUmyxm7F+uKCyiiq5in9g2dse813jt7mf/Hun+dmf8DUSwlnsBz4T7/31/j/3v4t/uiTN1G6AJUN21KCPk/aHCgoGbASWKzXsFrBei3fNw34HtMJqVtJhiPPyyXUgdw9TGqds3Tx6hksNgZX3JygJbEPsN5ig2Greh4ebXn3dEP5rQOuLhXfe3XBbFNjtgUpI31hz3JCqaEKLe9j8ngdzEe10pRlkVWmyUmFvH+nxOQTRMDROkFstM5+Y7lOqbUmKug6T9eJhcakqgRxma549d4xb333JifPpjy5s+TZ6Zpl2PLH/+nnufdD57RFpPCC1iRheKKMBEtlIcrBUv5gFC1re0FHCisbtLjainQ8JFbrDd5nJVOlsc5k4mzmOGXEwhhDStJW672g50N3ZoyRtl7jouXP/dYP8/Rkxds/9IDNpGN53PE3/tVP8s3P32dx3HC6nEtHT5LVzRgY0iPn7Ph9n0so6/WGlJLwIF3CpCRJa6YhSJIoqIbOhqMKSfYMVhSYdYfN901KaDaTWxMxiUqtzt1ONij6kMSYdtAqiZqgwlhO/EGOz3RAcuPJlDfPb7F1Pd/4ygO6MmCC5kfffok33r9BW/oscGbGCETssjNCMQQWSiA3magMBICcPmQSUkZEYGg5hFFqSgn6qYlS5rGWGEVZNBEpXDHK0A9mfkopDrdw+Fs1IUQ++pFLulqc0O5+e87td+e8/M0Dks5BVNqjPo0BETnyDvS9OBY75zI8m9kzOZIdzjkluQbWmDESVoB2lphFp7rS0fcBsTTIxoEpZlSlI1pNCICPfOVrt1C94ps/+2DssHnpWwcU9wMvfWNKu96wujqXGqt1mQzlRwfkoTRTlA5rKml13m4y3wZGMrLaZ/DHkZC1q7vtOCoxDZlA2E22/DelIVnDOmiePPNofcy7tuAbP/yM/91/8CvULfyFX3ud/+i/+CMc4bh1UlN1Fcl7iQpCuI6SjJvBc8dzGYFKSWD1/notdSyXKRlNGCPoynRKzCTaOJlgywkH2jDpBU5Ha1ob+esPfpqT7pBvHT2SlmVg5iuqaPmJy88z9zUR6TIazkjnmz6rHKenU5LSnFQWVx/A6Yy2ucQHGcMEz2a55cn5FTFNmB6/TDITWZD7FqUUt++8hO7OmE4KVCalxNhwtU70fczjVBQd18tzVldXHB7dAqUofnfJzfdn1K9OGUe1AuNqfvj+G/zr7bd58OgxNw5ujMS+GITVf3FxwdNn50ynM+rJdMz6h0miVWJ2MOP4+JjN0/dR/YbCaqrScNtO2bSexbpj0/Z0Xc9y2+QSLHzph79CcfIGyhYopWj6xLZpUN2axw+WXFxt6LTjtZM5Xz1+i4uqYRYkIOlVYGE3fOXqFf7q/Z8k4NE92cUwQPASZGy2qPUaNhsYvoYwBhkSU8XxmuwYGPt8FMXo7aJBYccESo1BgxrR34giGEUbPcoVPD1NXC4tS6P5X/9Pfo3f/NGH2EbzN/63f5g3H99AfTBlGRLOi7O3KwpiIrew7uYcCmkvNYbUtYAEAKJ2Wo7E1FFlFDtK0IsuinjJ9F3PpCyoCuF9+ARt77MsfaB0Ba4oQEmTQOwir3/rGPcQXv/eMU/uLIk6ce+LF/yxX32Lk+8cMJ3WVK7IKLUEGZ3vsy9LR1ytMFbOx2d9JIntEn1WbU0xt+0iLdsRmbPWWKqqEtl4RZab16NfmFGQosy9tuvZbhuMsUyqikTCFC0//MHLfOHxbb740R2++cUHbKueb735kJ9+5y1+6ttv4U0S9CG/p9IKnU0kSWlnAIsa+Rxy+rLPxShJK0bkINpWykS7+yfBU9SJkPcmYzRVIZorISd/MaM8A6KF1miTcvehkXVdDQl+diWOiaAiwf9bEJAUnSiLXp2s+dZXpMugbC0/9ruvM1kX3HvlHLImiCxW+YbCSAYi/36IxiGvAXkSj1LtUSLPQa+EPDhSGqyHckttkseFBEmJMusgDz/45qRoCXjo5XerGx1nb25INlFfOm5+f4bdar74qzdJ+1055HmSJ8je2ps9Z5JopEj4LHXalCFGELg2b9gxR2Na7VrUSLKhOaOzL4MM8pSJTAMpTJKzyMSX4o5sPB9/5Wq8L298/waVKXj1g2OqtRWNFCCGfkQbjMreCjmL0JlYZWIiOJfLOXtkuPxhtVDdr6FYw0Y7SohDJl2xe40M0Q6LTdO2PHvwDBKYwvL+Dz/ictqwmMB3DyJfNyWHp7f40b/2o8wvp6jlErVYoJdL0maD2mxgs5FyTXzBZNsPUvaDk+fRlOF3w+9jhL5HLZfXlF2tUqSiQJUlVBWUJZP8LxWXzFdP+cnjOR8dBr54NWO6ChzHgj/sPzfkxWh2OiPDuD+ZVVysAn7bUEwqUA0mXqLdXPwzkgcLy8VTMFOOTm6BNtQHKi9chr7dcvPwiMOjU5o+cLHsubjccLVqqSdzBHUMdG3Ldn2FD4l6foxftdy4ZynrkpMbt/auh+Lpsyv8RcDeTywvroizE6QYIkH9xeUFZ+fPKMuSqqozmW5P/Ckl6qrg7skMlg85a7Z0XU9RWOrSUhgpgfZ9T9O0WKOoC8fR6TGzG7cpb70BqhzvT9tsadYbpoUIkLUByrrgJ5evc1BIO+kfundA++yU1xdHTN97jHpmuNk00HbQddA0qLaVUkvmJA1E0ReVAp8fS2NJZxhbeTHIK5RcHb17btKQXEnnChoFcTJjBYTZER+dP8ae3GD55oSzX/k2Td+w7R3bIkARWJ10aKupYiFlGZU7K7wkKl3fMyihFs5RFmUO+HObLOK9lVKiqioU0nUIjOVXY6SbKQY/rgsxiaNtH6VFvOs9ISSMUtR1TVFYfAi0vZTF60eOVy6PcFje+P4pv/UnPgTg3hcv+LO/XWGtxUZHMmrs6NEmEhX0fkvf+FymkDXJWpODj8wZyeX6GEXJWimdTQY12sr4N3vIus0JYQoBfC/JY94zClew3myFvzIQeY3ij333i8yY8eaT20w3Jatpy7275ywPek7WM4wfMPU48nKCjiQlZaukJEASJF5Q48mkGvcApdWu1B6hrmts3o8GXp60VEdi16IQPkwsRDI/pZRL/wmXE1rZ76Ig0wpUPpeoEgzO8johHZ3PUSZ+n+MzHZCADODvfPERl0cCj79274TbD+aoJN+rvcxweLxsS1mhlSEYlqxCo0Hv3GOfL30l8ibOkHWkXSF2YEBnh9kBJhVxtZAhVHk/Y8w4CC5fabm8I+c/Pyu58eEUleCl7xySdC75jM/JHBSVyZn5s5AhWmekVjvUYNUQCZNr1yNKMyTmckIx151TJuRqJaxweQPpZZc6tM5Rt0y+FBNt7Hj0xSUAtte8+fgmB9MZ000tGcPRUPrZiR5Ja19egIZ7ojRoKMoyO0dqyP+GzGrIYoK0MAm6o9njFcg19j5m6NTk56nddUARgpdWQx/oYsuT+aXEKlFx9HBCTIr54RGvq1dQNy3cvDlOTDVsLENZZrmExQK1WMDV1bVSjVw/9cnvP62m+vv8XrWt/Lu6uv4nrflK2fKfvf1FruqO43jI0fbbaFVSOSek2qIQO/CikJ8zh8UVBQcmkbo1UAErdHFjzJJiMvQxsd5uuDh/QEyJxeUZzWbFrC45PT0FH1n3U+JW0W23rDdbwGShKWntXq0W9F3D0fEtuqmopj55+BFKaW7euktR7IzDQop88OFDzFrTNi1934yJQYiRxdUVFxeXFM5RlxajGVHAQfenKkruHNec1InKwqyo2DSGxaZD68RyvWGx2tK0PWXhmE5q5ic3eeWHvsL04DZgUH0PfUdqNpTnD3nFKEwb8G3koNfUy8Dk3SeoDxYcpZa/87UbXFFy0BS8dvUI+vNr68b+vZQFWl8bGtfGx94f1N7P+2W8oSw1JEc4R1/VLFOkrwo2RQXzY/T0kEfPHlOfnHK52TKdzIgaVn3HyeKA81I6804eTWQ507C4tSVpQbWMUYSBC55y4IMEHSFGjLXS7qn1aJExnGXvQ+4GVPhOLO+1EsO4mBQpGUJGSYYkI8TIthVCpUZROimFoBJN09D2vfDzUBxuakw3oygMbzy8ifGaYCL33jzHE+mbltQ01FUlyQnCB4kEYoji/l2XzKYzCufGdWLM8jNPbVi3B6Sg94GuF3NVZQyd78RyQ2u873eeZUaUtctCeH3z2UwQIWux1nIc5tx8cIQ2BW9evMTpas5q2vL4dMHjG1ecbmZZETWMe8+AzijkurU5uHWD74yXxgXnJNmLIdL2HmNkTpb1BOcKIF/v7MmmsootKY7Bm5TaB5PVgA+RIstYqCxWqXJAFsSpD/J10yld6zz8QY7PdEDiQ6RPgV/5me+P6cPP/MrrqCAb3Fvf27VMZQROOgHz4NYDxDXAo3FAUnYb3DAIhw19jORzD3YijQHKUD2IKROZvLgEEwbkJaE0MhhzQJKM4vz1DYtbDSQ4flBz48EUow11a/ImnvksuVajtJRSdhCPbOZmEGFLA6mM8fx2R1aUjREx8skvkeHGpBVmuAh5ARpFkAaILyGReDaIena8ZnUkwlCnj6ccrWus0ThtsFrnibEjfEEW5YkBHyMpB2uyxA1taJqQRKE1DZ/7uWs/BhiJHHgxZtA+Z107MuGweEuvtfeewll6wLvI+Z21fMQENx5OcUXNjdMbOLWTrwck+plOYTrdbQq5pp+iZEZqu0VfXMDlJeniAnVxIRD9UPvP/16YFb+o/LP/9xccKkaKNvDSRcndy5KJdzh/gdp/h5xJiWJtLoMNm7dSJGugtFAUaFtBUZDKkj5FusWGw6an267YPrjH7buvsS0LCn/GkW2oqhnnl5dYpZkWoG1PUBOo5lxdnkOShcb7yMHhCTEmtts1KkZODg+4eeM2LRcUXlP0GtfBxdMnFJ10yakki1voey7Pn/Hs7AyrFbO6RkUv4l0C+1EoxayqOKg0k7AlbRXBKgrrOHaOWaV4dr7G9J5TD+02MY9woGCiNOXb70H/DnSdZHkpQuhxoecopJGcrrVBhwDtFShwJF62lmM7lS6trNcg8+i5+6ryMNSMG8v+nX1RN1YaOG1agzYkawmTCfbOHdLBIU05p3FTLpYLFosndM2aoiigPiZpx0prdIhU1ZTNZkUylsX5M8rZhpQUq8sFB+9bMUrTifPbG4KJ2F7OX6tsiaBk7Rnmc4w7iN8ai9JSRvYD30KJGFthHSpFYhAPGK2gbcVWww+Ez/zZvQ/oKCRX63JnUIr4XlplUxKdD6MtRVlIZ54x3O56bj2b8/DWgsvDDY8OL7l9NqeuKg5mU9Se4Z73HRupI5Fvg+hxODcGLjFvrCmvgzGKPWNMWTMCcQoOKdFsW7z3VEWByh5GhStwZSXvFwJdXpO01vK5fY9pIRHYxA3H90puPJ1x79YZj44XfH/+gNc3h8KtC0GChdwVpLQheSGQFoXLAYYg9FVZSglK7ZJPKY/Jhx9LPHHws5ESXMqS+BGFsybrjnhCMPgoHMMQEsmpvF+A0ZYQJZk1MUn3ZwpZ0iGNrXADIvgHHZ/pgAQUH718wb3XnwFw8mzCl757V25EjNhOE9We+Bm7VsEhgJAocyjNyPQfEAkhhEEKgx0fEv2NvIwdyXTYDMmP00oTpS0nD2654VZbTEZSEtBXgY++dEl0CdNp3vr2LeZuStAyAIvcDy/uwsILGdwrh/eWUxfkYrlpJRLOxnqjWFuOUoeFT0thNJ/74Jq8QxlkjRep410SpsYMQSsRjvv/kfensbpm53keeK3hnb5hj2c+p2aSxUkSKYqSKIqyLMuS04qHWN0/OulYDtxIQ6Ac2E7QQYz8iB3EQvIn6KRtd9AwbKC7DaOd2LFbVhzZjkaKFGUOojhVscZz6kx73vub3mmt1T+etd7v24fFSWkDTfgtnKo6e3/DO6zhee7nvu9Ha83j52d0uRByr92boM4CfS/OsusacwqqVCpxr58D68Av/SKhNYDYNyMwYoiRuBBa1RAkbR6J5Z06Ymod25wFL/VcrweDOVAsbMvx1RSQKK4+2mK0vc/+tVvYNKHSPRwQtjV8rmLNeLDOqyr83t7G+UCoayn7XFwIijKbiUKiaQTOb1tU234dx2T9Id+cXBv0+tmqVNrYeN4hco0S9DeMZxnU0aQv/mDju3TfccV5riqNL0p8s0DffQltc7zq0asTenXBqO3IyoLRuAIdqLtArzKqWqzi8yq2OFieC9HYB25Ptsispjg9wukVv/A/vUBjO4om471tTe4lu+6qgp3VOeXLX6bvW645R5Hn2CMFrhes0nmUD+y1De9wHWbWo86F92C1IjqYUCgYh3g/FECO7g1m6VD1xTBPBng09PLZSlBHHTTG2stk1OGupzkpXkZpXUhB+JNjdKMSOQQvytoByfJZRq81djLBj8forS3U9hZhewdvLb7rYDJBhUDuAvVsycXRElOUWFOQ5xmdEo+M0LWcnx6ztXedrBhhQ6AaS0uI4D3L5Yqde+XQeO74+pIehwlmWBsT0pgXOa4XRVqWmaGMrY0mi2iJD1L2aFrpxpznGYSWPjiCF6MxgyO3htD1cU2RLul5Ju6sSov1fdN2dJ34G1ljKDLhyimj8UHR9D193WDPFTcebvPw+jlt7nj87IwXVtfJczH9yqyNDUQ1zhdoa2mbWsoOEL+3SDMWFVEsqW7Lup/WfK2Eh6fQuCjpdc7T9Y69nW3G44rgPLascH3PcrWKtvQO10vzuiwTY7y+d2hj2DI5H7z3PL/37nv0xvHGu04Z3Z1Q1Zl4XXkngbDJovP2BhcwbmapaWq6/xvLx+XRp2RvTG6taU+TTSMi2tGjJJXNXTSm8yFgo518IvEmFETaNzis9kOpmBDW1INvcXxXBySewGe//y5dJjf+fV+6xdayksVYSfSrgho2QmBjIV5vK0ol2/e0FAVSfwatFMrq6EoXA5CUDbNGTtJHGiN1SOc9StkhOUoPL6lNUmRaVz33XjwDIOs173/tDtPJmNVqRQiBqiioRhVt27Ja1YTg0UbQkd45WQQVIuuKPWx6JyUXk2yLSfV14VWnhUWCGamTpgWXCMUFn8pWm9tavO/eDzI5pRT3bp7Qxmdw9cEEcxFY9kvyPsPlOUGV0e3EDOS2gaSb0Cli5h7kniepc7K/DxsB4JoTk6JLxTpykqRWkFazsYkPT54AzOcLliuxWnd54PSqKISUU1w53mL8zB5bu+Ifscnl2AwK9JqENLwu2cmnb1PpHpclqqoI167FDwvQ9xKoJNlwXUOUcRI5KiyXqNUKX9eyMca+B0+GJuvJH1EirdaLUETVNgPLzXfKW4X6KlJHWdxSHw+B0om9lHqBdIMjUwZ6B65l5DzKddCspHeKF3nlCAjeoebnsqhHZCjxepTWqAtB4f79f/7sgB5MbURHlCcUGbpdoB/XG6W3TVxhHUjn3g2B9sCv8NI3F9ZjbU2uVOjo48ClT0NmSwBlDGgr4yBwqenj+vlfRkGkbYGMxdRHRJ6b9NTqtUGPR+jJlJlznLYterLF3u3bjPf3UFWFzzIWXcvWlavCZdBRlROESGiKIn69wlqFcjUWxWJ+QQgabXdBCRSf5SWHBw8wecl4uov3jq2tXRSeohAy7vaDCuXlWk6vreiUw/hUFtVCzk8baVVFnwtIXCKR9hrpGWNtJEGuCMHJQwgOQo8mOucWmczFumVRtxilGVVFdJx29G0bS92CiAhJ1lIW4rjbdIIyaKUp85zcZdw62uFz3KXLHYfPLShey6MyLwY8SgshlFxs6CPPA+IaaizedcPmGiKnJZXEQzSzHLgXWpEjXLi+7+k6KUdamxN07Kqe5YxjkJByLp0yYyLqhRhl/uCD9/D/cr9Fbx1ffuY+7UQz8QU65GgnDrFBibN10IoewMUNPxDvdR/n2toUNBDimh6w1lJkarCyT+unj0gHStaTFGgaLd2FvfOs2haniGg8aGXovWNVN3RtN+xrawM24ZD8ayH7vZjWvPTiY5wJFLXl3V+9QVHbdeaKilbE+hJa8OStSVl82pDlNYmqmtQdWrJQL3WxTYqOrPOy/WglmXyn06YoC581diNwSRM0cHJzyfFtyc53j8Y8/XgfbTxdbASFYihPGK2H2ilag5Markwkg9GWZGEMaUPakAUqARONTs0Eo/pkEwWIm5dMmHXwJEzfqBBCzgWlaXXHW9eO6Y0jaww3T3aZmDG97+k6R9MsWC5X5HkeCYhljK4lCEwmSpc4LSgJtmJL6ySnS9fWewl+EhJARC3W2X8YbJJTuSbVRFMr9bZtWdUNRmua7Z7zvcjhOS+Zugk7+xPGVWSuAxv7+XrcsA4+BuQpncvXoTZykTr9TqnBPI3J5PKAdE4UPd6Dc4S+Z9Z1mPkCu5jDbIaZz1HzBWo+R7ctjQ00xqODwgdN8NHKekAEudwZcFggFChxw5UNVA2Lr0MWP5R43hDEoTIEubcp6E/IVvquWD2R4FnFEkNk7+so+QzeR/Pk1MX58i1YU7iJoE0YkMfLT2AjiUjIJWsL7404DVDr8uOghMjWXKnhdbFUE4guw7JhbJZxL7+eOGkUrfEEFchVYKxzmizHbO1gpiOavKLY2eIiKM7mDXneU03GPDw953y1pByNYO8qfmsHnVspEWSi8U5KsU3Ec/NZBmB5doTzPeiMwkpWfXF2wmT3KiavWCyW+McPyMsRfdsynm6hgcl4jDWayTJnfJ5xfq3h/GrNSrfYXhQYZVmR5/kA++e5cBCcW3MxrM1ErhvVMzYzZHZMUy/o6gWubTGI/NRmFqM1joDpxddDylGKzvU0TRe9PyQYKvMcmwky0HnxviAmbGWRY2yGySzPza+Rt5Y267l/45TeejInG6LSGmX02tIgeJo6lo16Cb6NldnugwTUwgt0MYgw+Igyiu5FRkMW0ZculkF615Pl2TpRMUYQjSBJl/AxogVnQsujMeedxze4er7N3WuH3N074tXygOzwTgw2kpGcj3tIKr0zfJePqIiQ/eO67odRKkhQkOS0yBK/TuBV17tY5pGyv4lqTGcMbdfRup7Q9Tjnhk7Rre9EQeOl1YdCVFEiAtnwzfr24pHv7oDkjeeOeXRDari37u/w9Jv7iSIADPiHyFdZb3bDvwdOwjpzIv1uY/eRgIWhz4F3gdR1MWlsPBH2DhKQjIqc1rjIEneDTG6YsNrgfODlHzzEG/ny9372JnSwrCUz8EGMzrquH9QkafFUSg+N6qQjY+SkeC9yzKCx2kTL4HU0bvXaTTAFACHCczYRuuLuLix4jcPjXCIOrnXrKDjeXnC0PQcFW7OS6yfbFHlBnmWkNtfei7Ng08yYzReMRxVVkROUirXLMGxWWkuAkWU5ATU0itJKRda+uP5tIl7pOa45JoBKQlcFweN6yKL1eNu2cWTIgnN0bYG38gyuPtoiLyqmW5V4u3B5bCRo8kmEIo234ecb6Il64vVDBv6NsoZoUz+Q6wAbIL9yVXrNIOWtthcBx6pe8t/c/Bt8cvQ7PHe8w7/92k/wsccvYlcLTF2j+17IZs6hIs+FrhPEJW28IWFpKRRfo4rp/gZJ9zE2H65DbrV4M6gk+0QQiN71OOJciamXskbKLAoxS9N6yMo2MY8woJoqwjuKoPXavnyIYVKH2QipK2RBTc9AqbiBRMlp3FCNsfL9GyhbSCSzGPCKX0wmrQO0JsTnEuEi+X1ZwmiEqio+eesL/F+f/23e2Lvgp88/xl9569+hXfU0Pmdvu6RdNXQqx60ucFnHql3QeoUzGU0faC8u0OohZ7Oe2fyM7e1tdrcLujawvTOOp3k5MAnekcjz460tHp0ekpUTTFbw6M1XODh8QHbwCBUUTb2UrLrraNuaoi1pm5qiHJHnBa5z7N8fc36twdvA+c2G7bPxkIAYpWLHXU0wYtgIDLbreZaTFxKoeO9QoUcHR6YcIXhpRW8yKTFoTecDdeuoO0m4+r5jNmvp+vVamdmMIs/Jckvn/NA6wxrDaFRRFLmsUUGRacud8312FhUHuzOOduYcby+4cjglBIcvElF1jfiZTAI/56RLtI5JEHFlD3GuaaRTu3Iyroe5GwMda80QkAuq6NaoM4LqLlZN5GREw7iIzKV+M0IU9nzwqy9w99ohzng+8cJXePqVa4OqUroT+7isrQPwPvWliZlHIqLKmFkr4gTJkVJmrjU29uOxWtHrpFI0ItdXYK2h76Vbe3BCWB6VBUUeeSpGkra+6+i7js71uMS9SZUAk+7ktz6+qwOS15875mK7RjvFM2/ucfVwMmwAooCBlDqH2MtGNuEoF/UpGPHDwp/MxkyKGkOIq26K9CTL9cNCJ4uhVmptGqqkCylK43z6XPmXMK8zibat52sfOABAOXjn564N0BcgRj5hPYkSgBNi58Yh61cq1js9fetoV73UevM81iot1mYoFSLcG0s0Pi7nSq0hYbWxzAdidqbwPjLtWcONwXuOd+acbQvCs3VRce1sutEZMkTJcMB6j3M9TVNTN43UcqMsUKlYzoqmSSrCisJul3NKWXQ/kLvWz1Or9aSDmDUMu1uISJUjIFlP33doLc27fFAc3ZoPY+rG8VV29q+yO5lg4eun0QC9rw+18d/NzWL43RM/GwyrvsPDociV9J1BKYocxjmcjhVv3F7yWzeP+WLX8cNXbvLho48QeqAPGHry0JB3HbZtCauG5cmp9AyiF5Ouvoflgvr4kPmyE3dGa3H1ir6pUX1HriA3UqPWXsYbyIakNtBFCVTSGHOChCSUBKJLJqQeRXEqvf2h1MBvSSonWLd4ByK/yq0XvfjsQ0oskFKl1wqTWbKqQpdjQaeSSZ1VEFaErkEVJUyvoqoJ5BlkBrJKFErxT0hqpQ0u16Orj/jEs2ecZXO+9+6S+qFjZzrhdNZQN46qzFnWPa2DZnbGZGefrUpkpOPRmMVqAdkEYw31as6omrBcOtp6hlHiYbGzv0ehHEFpWgf1YsloPJJN3o7Q2mKyiuOjx7x59zUuLs5lQ9WG4B1ZU3N0+Ij9K9fo+468KGnbmizPWbUr9h+OeO2Dog46vbPi+a+lLuEJ6RXlhTWWqixpu45V0wxKG+l87iB0BNcNG2Vh7UAWDUDrAvNVS9v1KKAscprGs6qFHJoCEWMtLgTaVY1znsxmjKuKsizE6CtyGbwT1OHG2Q47yzEHuzNOthecbi+4erQlJM60xscnZiLnpW/bKCXuCKpBmT6i6jKQpDTuMbaQACUaTxKiOrH3w4bvnadre3wVMMaDV3gSWlzTRrt3HOiYpCab92T1/v4vP8U//tFPETR85oVX+BOrH8AGSVBsnp6l7CVd0+CjSsZYg48JZu96CcBNQj49ISJDxkhi7XzABEh+JSoinglJFYRTYa2U47zPols5UrIfKohBepEFE40zNd5L49kQHM5rev/trXff1QHJq+84IKhAucp495dvkPUbboQQN9eUZQZ0UJcgbMmmUoYOScorMYy8JxFJh/fAmv+gUkknweN62Kz7XiRS6X1pUew6gQeNtRw+NefoumyGuwdj9t4aCdnSigWwEMakqd6qaXBO4M48s3RdG018RB+fGY1Wgd4p2mgcJpwTWbyzzJLl+dApU2FJ9Rlror9igt5huD65jdEKOQYYyWhJETjdmXM6XUKArYuSK+cTjFbRsE2hjEj8DAHXm8hLkFojqfEgDNCllLwMWRCjt3To+DpRNq2f4fp5rgd8CgAHDCWkfD8iQPH12mQYk3Nyey3TfX/2fr7vwx/i+u62eH/EsaAgGgCtyy/rMfb2iMnm8WSg8p38LCCM9id7w6brPKdhpuQaimC5riq2DEKsNAp0jidj0QS2px3LRU27vY8uc7AMAWR7dsL9r3yJNx+fMJrusb93jeA8FyeHnD96jSvbI65cfxp0JWgWgdXsHDqPDQEdHNNSY1xLvZLmfF1d47qWPCvwzQpNoKzGQjTVFo342/TK8+krr9GpHuM07/ncbUywaJvhXI/JcsbTKajIdjGGoA11s2KxnNMqqPueLnjxHyPglaYjDEZSVVXwzHO3uPOO70FV27FEoAmqg/YANzsW1GTvGaiuSddBHKFfEjAoU37TJz3uy6GR3tK21KpDW8NkUtDUDpQlMzD3CnxL29Y0+Yimc6AV4/GE7a0dfFBcu3KNoijIjWI+n5FZzWy+ou5P2S4dWgUOTi6om8Du/lU0cHq2wCuD0Yq2b0nNPBWKrmsIQTo5180KYyyLxQV7u9cwxsZ+WIG9h+Pheo5vL2MQYgQhsWbgcYh/kBifddFfBBVwfQ19Sx+lpwBlnokL64BZ6+g8LWiyVlKm6aJdghCOBQ3rnMP3DqMN47KkGlUYE9GayKdKPVp659g7nbAzH0OA0+mCk+1lVAOqoZToQ8CgIylUSvzLVc18WaO0JstyijxnMFfUQvqfz9cEVK0UfdfT9R1ZXgxk3sbVEUERBYoPMlZzG7kYocNEoqzzjtCLe7WUmKVEcuPhNleOtzi8esHjK2c82j/h1uNdiRW0RmUpYpBkeEiIQ5JP+zVJPa4lXr4QE/20vE9mnzoKLlQM7nw0IDR4F/cWohVDAOcFoeq7LibDSeAhPJZko+8cgkp5h/IGx78GKpukrtk5HfG+L92MPxUkIWXoQ4kjhRqpfg8Jthgy25jODp8zbHhxEK8Dnc2seJNkx7DZ+RD9RzqZmMNDSyW/ruWL77lHH8mgz31pn2IpDcASKzzPDNYosj42pEO67mZGejuka1FKOlmq4LHeYYyJ8rjY7Mp52q6jaUXqJv4NOVmekdk8XqdksPj1RB/qfxvoAwzgBJ11PLh6TpP3GKe482CPvM9iAJO8FmTQW20E8g6e+UxsmXUIQ4CQ5IO5FfJcXhVkxdqYKpWXErF4ICXGc1NRzxdgQKWku2YYFs7k/dI78QcYjbe4+ty7qb/vi+mR85N7H+B5sysZ0uYFD+Nlc4Rw6e/f7vGt0JHL9zrZPH/94UNg5eFUdyy0yK6LkLHtRlilQIvaoyUwP+/ZGRnwNdbCaDSibTu6tiXLBM1beDjqLYugMVlB2Nrl5PgQs7dPqZeUV6+hrj5HXS9p6iV5tc2pthwdHnP12k22d3aoQ0dmpCtq13u0yVjVC3wf6NoVNjRs7d2krMZorRlXgpSdqyX//sf+Oy6KBeNFyV/+C88wDhOq0TbN6pzJ9i7Pv/ACWaZxnbRjPzk+4PjRjM4ovLYEq+m6fqhd+1jHLq2ltIarW1PsU8+ibt4GnZPWbNXdJ9RzdFGh9l+AfIt1mghudY5bzsn27qDs+G2ehGSgo5UlcxK2LkzNUrdSeshszP6dBGJWo0zB6uIUbXMZX95jyx3hVyiPtXv0vaNrLrDWsGwCbe9xs5qzkznzixPm8zlFOWHVOFYXF5weH7J95Sbj7X12dq+SFxVqfiHoRhCiOgHm56e0bYPNSpQWwzGbF2Q25/bh/jDYzp6V/kQhiLV7HoOQvCgkQLcarXO2RhUqdDSrDtf3sZO5fFee2xgQGOmGqy3K5phRhjMzFrML6q6j72UTz6whxBJQF9GTqiipqpIsMxhrhmwjUSOSxDTgKNucZx9f4TPveJ0673hw/QyfA41jWTc477FWDyhl13dcLGtWiyVFXrK9Ix5QwTus0WL4FlFVkOAKRJpstMYUpaBDeS7ctKaOJRsvwW1MiKyRxqHL6JIq5y1BSd/1CGIjyEexsLz46i0Or17QZY4vvniXmw93okOuJLNEE8g193Ht0iocrVQgSOKB9X1K4LeL6lIVqwgqluLl80TBFGI1QcqrrRDEfXLx1lL20lKWJ4DTwj0RvqP8XHs/MG6+1fFdHZC4TB7sBz7/FKO6EFQjrJNXIG5maUNBUObBwiOkl2zAArC51SgFISQZZTIa2/S2SNGJHuTFKZINyS9jOJX1ubSm4/X3HeFMQHeK21/ZwiwVHgkenPcUWYlVUq+uihwV1pp5a0SDr+ODlwVYo4KK/Wok2EpW9X3vhu6Nfd8z73v0Sgk0WuSUZSF9HKyNiI+UtKQxXyzhkEpaAtUt8457N45BgXGGZ97cW9+SBEFt3E+tNWVRyPX1jixKjROMug4ME7t7nVXJp4Qh6xpkqSkgiY/BRZdFH6FDIcaaWO+UBx+8J88MZbXLs888xdHeIQClz3m2uzagMenPcGwEConUvPls03l9J+WYb+e1Aei8oCR24+WrHs5bcFstbS4BSe4zJr6CAHVQrGrI8sDO1JBpj6KgzHNQmrIsCEH4IH274vTwgKb3lJMd8lzUam29ZFSVXL39AtPtfSECLk/lGfsVWlt6Dw8evUVWFmyNIDcNoetQRUnTexziTDzeuYLV4LRl1jgy65hsV/QucHh2xtL21LnHdA6sIXiDVxqnNWiL1xptM5q25fzkgMNHb7GYXQxyRSHk+bi5BZkzQJkLqjjdmjLZ2kerjGHE+Q70GDW9g9Il5NtcatSI+J8sj48YV7vkWyMus4MFZe3qFTmazMuSujINK9UQgmw0o5FlNqupfU5QFjPawa9O6foWnU8YmZJqvEvT9rR4+qBw7YpMeawt0BaWriYvd1DFNXywaFNxcXaK1iuOT05RpqDr4Quf+xS7u/usFjPZjkKIHkNxLHUtXdeQ5yXz+Ywb12+T5xXWZOyfjrGdps88x7cWKBMVKsZgswxrogmaUpH42ZHHDcn3XryclBDyc2sl+NIGazLhTGQlJq+EQ9J76uWSumkJIcqKlUZlgjrbLJVn8qiUvDRzhqRJ0FwV11vP8/evYV00SLt2xEWYY5by2sZmw1y11tD1PfWyJreW6WTM7s42mZUExseNXWtDwA+E0TRvQ4gl5F7UbzYTvpEkgD2l98PaZK3cE600fec2EmVZL3wQcrgKnry2vPD6dT75Ay/TW8dL73jAj//m+zCdpu866e5r9dBKge7JjEWRpMyDuiVIW1jhlgha33vpTWZNSuxighgTWe8DbecGZVXXGlzfr+XLrh9UVSkw0j4aqmlD13cE5/Da/euhsgEwTvHhTz/9xE/DwGdL1uipIEMcZKkmneRbBIGCh/BxiGHihqjWg+dJ+/jEc1h3h5SyQ55nAzJis2xgpDvnOLux4uTmEjRMHxfsvFHS1S3EMkUg+XKoWHLJYvQaLzGet3inivJHa9mxzHAP4vUGqWdaG88h1ty9d7RtS9u1rFZRCZPnlKUgNAniHO5qItLFqK8teu5dl3qz7TVP3dtjkJfFhSLp1F10aBz8CbqOrmtFqhzdVItc+oaki0ylCiEjSobX9/3wcNTGfdg8Us+FxE1JBmmgBm6DNhnlZIewrznLxWX2RrfPOFRs0DkvXfel4OEPwAH5gx6e2DxRTkayG6VwQTHKoc86aiMBSRYsI1cx6yAYoT9URmHwqNCBspc23K6XZoynjx/z4MFDVouaxWpFNZpw+PgezfyESbmPY0rvNc3yEN/XbG1vgeoYVYabN29wcvyI2dkxZbYvTfw0VGVGN+/JIuGxKHKM8pzNFhyfzLh+dQ/nppyenfP48aNL16y1RQdx7pUSZkZwAdf3HB8ecHL4gK5ZDXPCeXeJTJcyvSwzVGXOztaESaFxq1nksnT4PsDiEXprH1VeQ+ywN4KR4GF5QVgtWTUdWevI3y7T62pWixmVLtYlG1OzopUJZIQQn+eGeS09seq2wYeMejFna/c6NitZzC+olxeMx1tiMNa3ZIUly8c0qxl939L3jqqoKKtt8nxM7y1ZXrK1rymrMUcHD5nPZ5yfHsV+T6kEuJ6TfdtyfnrCjVtPU6+WFGXFaDTmzBiqLmfrvOLkyoLlVkuz5ZgsS0xcg4zWqLg5e9fRd2L4Z6MjaYhJ2dBDSluszcmrKVk5xmSCenrfMx5PUSim046u76gXF/Suo48KlCKPY8ZErhGRcK/WyUKI/yglc7vre55+ax/j5Dm+ceWQk/aM/XZCVohbalKIaIXwaDKLdz0oNTjLytone0fqneWdG3gwqIh0aQ2ID4nRBmMyXN/Q9REFRtBnIZQ6MmPoezcUry6VfCOqTx+48XCHnfMRx/tzHl8952DvnOsPt4ST4jzGSHqciNmbCtK0Loa4XqR1K/iA68Xl2vqA14Guly7wgwQY4agUeY534lOSRWJ3lgkK1Hf9oFRUKIpCAkZjDMZ5nNYYq8U113uU6/EhFby/+fFdH5C88MpVrh9uDQ8BiCUWP8DulzYXAng39HmRByiwlInknjDsiWlTZ9hc9cZkgLhZxcgyBSWp1FOVBUrpAWWwmUir+r7n8IUDZlcaCLB/f8Tu/UoUMn2HzSxFHk1zRD8pm2QkM8GaezF4oQBoRaYZCEpChJWJqUNAG4/1fqgzysLsUUGaKrVdy6peoS4UWZ4PtWWx9Y4cj9gEy/nARbniwZUzAKYXJdcOJqDWzHQA50GrZCe9ka0ZHfsj9BHVCGLfPSqGIGxT4inlGreWdW4EGcPTiNG9c37gjQwBYzyc89Q9jG88xXu+9/t4fP0+ne5Awe32KpUvvg71eLvjW4Uj3+y9bxfgvG3Qk36H2H0Es150Fp3cgy0LQbestHiqZD4jLCs6AlsabJ6WPh8328tT3hjN0ekFp4uAHe9zdadgvJjj+o6jh69y/cqUra0pnbKcnJ6QGbDRYjt4x2I+AzPFaM3RwVu07Yo7d+5IR+fekVlNllegNFZ75ouW4+Nz5rM5V/a2uZjNePjooXzmcO2K3BoypINwXmSAp+t75uenHD66R71aROUasRQaJfBKygRaRctxaylHY65f3eb5566T7+3KWFqtmD34GplVjKa3GBhC6bm5nsXpQw7uvUWZBdquF3OuS88KgmtYLWZ0naPqCjIvn7M0DbVuwElbNK0VZZ5R1w0r5zmfnTOdbqO6hr5v0SbDtQuUCozGE3zf0FDgdc7FbM7jR2+QFRXTnYqDgwe44Dg+eABorl2/w/6Vm1hjqVdLXnjX+3l4/02U0SwuznGuo65XQ4k6uJ7VckaWZdy/d0D7bE1VjbDWUrmC3dMRJ1cXuCywvN2z87qJu78gIa7rCK5HKeFy2EyUM8QkTZp3WrQtsMWYcrxFUY6F9xODRu01amQoyhFKa+pmxeEjT7+4wCopK5elKDlkrYsZZtq0Y1nceU/XiXla04qnyKTJmMwKllXLg+tnuN3AxE0w1lIUJVVVRIM0RQgF1mgWiwXEQCs1hkvcQ1FdylhTWgmKjPjoeC3n0nX9AFIYKyXzVb0itxlZpgjBRmm0gRYJZGRTQRu9bj4XEdyrj7a4drDN8d6ck505b9065vrDbQjSE8gGG0spwvfo+36dyIV18JkSvGE9dg7f92Ks5xSd6sm0cHmUljVWkGnWZbGI8mVFjnNdLP1Ich1SX7E4xrUxqH7Nu+nbnhD0kCR+q+O7OiDZXVR8+HefpWhthOwVKC39X7w88MQ9SNBlqscLzyBlz2HQam9GqqmvC2xuFFE3voGi4D2J5xCNJtaS1yCbrtLi6qe1gTJw8M45y60O7RTX3pgyPSkRgyNLkWXkeVTihCQ7jYsJfvBGSeeb0Bq/MfCAaPe80S9DKbzSGBOwQYzTxJNEBrCLTZ8S8XbVtvTOk2WCmNgsoywKlAWU5pU7h/RWJtILr13BhOj3MgQI8XN9ktpJwJAVOcaJhiUtUE3TDpCrqCxtWt+GhcD16waHKQO4tH/Hcp1IPNf3ZbPkIzbHltvXb/DMlQlfmDyiU7LR3GmuUbnibcfak4HC2yEo387xJGn17d77ZHDiCPSD1Ti0ARoPZWS5NqZhZSQgMd6yzYhJJpNbSmeiekCVX4fs+HbF/TdeZtEoqukO89kFZ6dHLM8P2B5Zrtx4Cl3scXF8QtMsuLK/T15MCLQs6xknx6d07oyr158Cazk9OWQ03mZUZZguUFZTwELoWC5r3npwwPnZGcF1zBdz5rMTUELo3Dy3PQuF79HtjEYFFBVnJ485O3hr4JA4pBQZYsbgnJBDjbZCghyVaJtjs5ysqChGE3Q2ipWaFd6Oya7eQZnLz7xvV8we3uONN16hc4oru1OpnUci5vo5eerFnMVihQ+WUVOQuXXJplbdemMAjFGMK8OqC6zqDq0XlEXO+ekx6At833Drxm1UcGwViuNePGW65py93V2yao+7b77C2ekhN+48T1YWHDy4j/OO6fYeVlvarsGYjGeee5E8z5nPL3Cu5+zshLZe0axmQk7vG4J3jCcTlhElsTZj5GDvbMKryNw+u77iubeugO/x3UoC29ivxhg9JGkBFXvUWIzNsHlFXm2Rl2OyKBFVcWyLSjxgQhhKwXVTCwKhVOz8bSP6EGQhi1JuD3F9lrWiaaUDeXB+cHgNwfPO169zcG2Gs55777zg3bNnACVrnoLY1SuqETPqxsTGgZc3dUn+krIwJoHOgTZDcqTj+tT3PecXM/G+0oqmbqCQUrXN7OBHlQJvpWXH11pIn+ukWrFzNuL2/T1eetcD5pMVd5864gNfeBbb6cHOXtZ+jbY2OjxHJCSs42rUxv+HpHqMCWlMCl0IWBRaRfJpRKWNVnTeCXFX2ehhFRsMuh7lxM5BmR7l1ZA0Sp8f4QWJS7JmIE9+i+O7OiD5q5/4Yzz31lVMZbhoGlYb0r/BTyORC4aFZB2UKK0jXyAOPGDT1e5y3SsazQgUEZMN/3Xlnc3Nsutkc3fOEfq1Ln22u+LBs+egoVhaXnjjGuOyQqkIUyYDIjaRmrVfSjIu2xx0aeQNS3qMmMOEypEAAQAASURBVOI82jDHkczaGGHja8BG+ZbKpbbeO/FPkcneSZ216aFpaJtGOCdVyStPPx6u/dnXrlyCHyUw0XGxCtF8TQZtZgy9WksAQ5Caa8p4xGZeDxcXPaeGzpOpgVoKQtN/U2Yj74klrUi6UYpIVoOgNNtTUXrczR/RR5OhW90VysipSGNo83g7Rcw3+vs3NLH6Bp/3DV8T/+QZ5EqUAvMetrLIJ1GwUq1k40BFxhVdkSf+zrA6WdYLVsyW+p77b93nwVt3ab3helbivefi5IBR7rl++2nM+AYnZxccHx1y+9YVlK9pO4O3Ga2vKEa7GBcoygqd2eT3B1g8Avtq3WG04uT0gvPTU8ny+o7Dg0fs7e2wt7dPnbUb9wL296YUS007nxGyitZ3HD16RL1cxJYG6/Jp77301bDr+nWWZ+RFSVGUYvylFcuLc2wYUW6PybZvsrd9aw1np42oXXJ871Vef/U1egLv+97vp11ecHHwEHPJlC3QNzWr+Zyu7dGZoexy7CWEpMN70GF9XVlmyLPAtLCcHh+y9fy7UHgODo+Ybu3Ses3JwQNuXt1GmyrKYB3FaIuzszO+9vIXKccj7ljLrdvPY01JUtIFFTDWsphfcHF+htKK8WhClhVcv3abJHpVwbGcnZPlBdPpNvOLs7Vyxiv2ZkLcdcZxundBrsXszblkR6DJrYVoviXuzwZrc2wxIh9NKaopWV6Q3HiTE64KG6rFACCba1mN2N7dZzkT5caw7vkg9Uq1LgV772m6lraWEpa1RkivEdXVWvG+R0/xCV4BBa88c8Af+z19eaPeOHQ0inSI/bsgbdJ402iFspFYHs0BvdRx5LOi7NX1DkWg71ryPGNUjRiNRgNnzzqHUoKQKBSp8V6IaPbQiTzeGx0UL7x+nU/8yEusRi13nzpiMa7ZPh8NKEqI66A1lm7wPFmvOYPhZ7zHaR0cDASDGv4Ym0XbBQjBRbVR7IfDpkBB1uzeB7q6oe09lRcEpe8dXdthgd0sY7sas53nzHvP585mb7u+PXl8Vwck/8Zr7+aKmtDf8LTOsew7jpYrHi0XXDQNffBxAkBYd4gbIL+0iYUYqSdLYAWRtCUP1+jLGyTEDfdSMCL/8qmko4VIaVyQvgFeuAvO9XgVyBeGYmGp5hnPvXKV0agazL9S/dtHHXjqLZO+PQKjw/em0oVODqjxF/LfMLw/6dJTwDBIbK3BmmQeJ0FBbnsy64TtHhUTfSeqoaZpmC0WrFY144ucetTz/KtX4rnKeWqloyZdoM3Ejvc9KKNQZn2OIWhhqXfdUIpZb9BJmhZihhrE/jl5lLDezAOpz40fPiNxhFJJzcX7M51Uw/Pc67c4Umfcaa5SelEVfFtk0xCG73i749sltz4ZvFwq5SAjVcfvWwbxI9GRUyKomKJyJaUr2O7HVCHfWHk9hB508XXoyPnpCa9+7WvM5nOCzjl8fJ/RZMrTz72TyrTsXH+eZe159PA+PniqqsSGmqZfcXzR0rUNp8dHKK0ZjUoeP7xPluWUecbJ0TG3bt0hHxdYm9E7H5upNaAMdVMznlbs7e1HyWlH0Wfk2mJbzcFixdhXbF29CauG5dkxwffYzOL6ftg4nIsmVMZQ5uKYWRQSjGR5QVGNBAntGw4fzhm3hmJ6E524Wuv0Edd1zO59jZdfepm667l+5ybbV25ydH9F0/aRvySHWy1YnB2zXDaSiAB5b9nqRpR9zqiX0p8f0E1Zb4xSFMaxu7tLNzsD1zGdTGlbRznepu8aFvMzzqqSPM9omiV5tUPTOV5//WW8hq3tK3gXODk6oigrVosLZmdzdvevsrt7hcl0i6oacTE74+T4MU3XEFxgMpmytbVDkRfsXrnBaDSNqGIQV84sIwsZV86n2E4zmRd438szQ9YZ8SAxuADKg7aGzBbk1YSimmKLEpvlWJsPrR8GFVwIJIq8fF6AIEq4oigpyopmdYF36Xex/Bz73IhkuaVrRc2jjZh05UURnVHjBq0N73/4NLbXjJsCE7N97wKDF46cAEpF1MJYXNPQR8J9sjoY+GkC70TES6/HjlsjKXmesb01lfJe72KpVb7P9w5jxJgys4a661HRG0qZKLn1awROKcW7XrvFeCnoXVlnsR9MsrB3EKSUpvTaup6YoCUDwLRbKL9u9jhw/IJUCXqX1DY6GqEFUAGjpdqQqgsOP6xNfUTRi0JhSs1OXrBVWXaMZWQNmdJkWpzBT9sWc/6vQUCSNQZtFYUxFMYwzXOuj8a8V12hdY7j5ZLHywVnTcOq66l7RxdSgzGJBAXkWEt/lQpDXczHPhTK6JgdrVnd61KJ/CVl6hCGHgjaaLQ1mF5ksKkp3f75Fv/Of/NDnE+WHN6Zs3s8wmRmsHRPMFvqRRA2UR2QuuOmKVpEQJJp9iVFTEQGUPL+RMgdzNZ0mgQGbSLfQmsCmkx5PBqURRtPlq1dV53r+Zn/23v4N/7Oe5g903H7aEcmTAzyAxLI6cHsTIitIgDTw4aplSIoJcZQ89mgjJGFTG6vJpkHJbvlNAISIhN/FmSD3sye179fIyjGZkzGFYTAn3/0v+XnH/9bHJkzylCgw+WMefN4Mpv+X3t8uwFL8IGVA5VB62GaxSsPwpb/0OPv41fv/j+ZTD22cLHXaMqWPEEXXMZuoV4ueOO1Vzg+OorS9Ib57JxxWfD8uz/AlVsvYq1hdXyPxWLOeDyR7tje0TYdy8WCw0dvcXTwGB8C9fKCg4dvMSpzdH+byaRkVFlp6W5zfBBZp3eOrm8AzWg8EeUTgaov+JX/4b/l3huv8OpXv8Rxd8iZzTgeXdCsVnRdNzRvM0Z6RfngyTILQcdeJ4a8KBiPR+RFSTUa0/WetqlZFAWFtQip9+vuMHRzHrz0Bb72ypsEY9je3Wbvyk2UMTgPq6ZDPHJ7QlB0XU3bSonTecTLxBj+xqf/IiNKcm8xQROqMKw3CYW1RlOOp0wmEwqjqKope3sZq6bj8OAB46mgI48evokyhqvXnubg/sucnR5y5dpNbt58mntvvMrZ2TEvvPO9nJ0e8eD+XcIrkOUF+/vXmGxts7O9z5W961TjMa+/+jIm08xmZyxU4OLkIQf3X2WyvcfN289HXpBG4/hDv/U8P/SJW0zODdpJkmEiKmKMRsU2Fcbm2HxEOZpSjKfYrIgOuKmHlIqbfgqyw9C8TyZAGJ5F2juVNpJEhvXm7Jyj7nuauqbrOqwxVGURAx8beSbpc6TE8u6TW/y3/92f4fbpDmWfr5GCaNueEGYVfXCsFUVf73pRPhk1lMy9E2h17Y2Zmi2meazROmBMYDwe011cMF8uKCshA0vZ2sXAQYwql3Ur64hWKC88kGT6lwbMlZMp/8f/xx/h5sMdprMK7dWgNvLOY2wgBCmV2SwfeqwJPzKgIzdS1swwrFsyD9dlmz6WZQQhMYAIHmTPUTFhl+RVZRnOZmS5Z3uac3Nrm+vjCaU162k17K+yV27lGeW3uWZ+Vwck1tthoG+WThRQGMPt6Ra3p1v0wTNrGs7qmrOmYd62zNqWed/honvputixCaMT5d5qYxFLap34/4onFrio0IjlARWRC0Fb3BBE4GH3YsK1r+2S5VYiZa0xIFyB9FDZ7EYcs5RoCZ8CFUJqkx3irZDXer/2UkkwYY+KrcPlXH0Q+E2vRf3SdtoLy9zYnFz72OkxOgIa4cX0C4+uFdtvTjCZxtuobkj3YTAu8lEh4WRixFVp3f1XcH5rbQwC00TS8b4kyJShEdXms0oLhPwk3sdogzxgJxEl8kExno4ImQx9g8EEw+3+2vD+b3V8s0DiW5VpvtHvUsC0ic4MzpIaSgXOSwmuZN1bxwdwjadvPL0tmaLpEHWNCrW8UiXCppNNIBge3nuT+/fuUTdNbG/gKXLDznQEeBbLJaOqYLlckgh8LgTOTmc0HRiTsVjMRUoePI8fPUBFu3DXLNi5eYWikD4xqcQG0LTNEBSClI3ECt/TXKw4eesRbtkStMa5hq5rY2YKzol9dVkW7GxvM5sv6Ns6etcIAbuoKvKiYDSeUDcN89kMq+GRb7l98zrafr25WaiXhOUxYTbjxq2nKKYTXNdw/eYzEDPIpuuZbI3wzRznDcvZgqA0mc0IXR/LvJ7teiybclwXfBzbKR6MI5a2XZJtX6MLGReLBm0yZvMj6qZhPN3h5PSAg8NH3Lz9HJ3rOb84ZXtvnxs3nuLo8QMe3H8D5xzz2SnbO7scH97n6OiEEALHh4/J8oyr+1fY2bvKXrjB08++gOs6uj1xUK1X8+gs2hKUBHZVkdMuThg1gSrkkasGWEWeWUE5lcEY4eRk5ZiimlKUI5HVx2Ri7aKb4GJFWihT1SvxflJgoDUiZzUmunxKctF3LW3bDfyScSU9dWxmL8lNB5wrAMFTupIXD28NzSIdYszhfaCPFug6BHyUNad1um1bzs49edEMHYIh4F2/LoEEma8+CFKptRazMCfeI5PJJCJjstYmt2oIQ7diFREXpTVE0r+La2HS+CkF733pzqU1XZH6QcVGlSoFRLHjeCzngIqLxLpEtm4gucEjiYlp2/Vk0Vo+wmYyZ4OYqU2MYZpllIWmHE2ptJY2JBsJ4qBNVMP2CMgaezN/0tbx7Y/v6oBEait6mPDDESG09CCM0uyUJTtFSQAaJ2jJsu84q2uOVkuOVzWNc7GmFoZBZ6KPRfrYdRCQ5tk6+k+DLtXZhlg31neehOO11tGcTAzDUnQPEepN0JvWw+BRiqGZXqpddn03fG4qQw0wsVovglpF2WssgyQspXdy/kZqALR97LcQJW5Gi2tqCAK9yyYU/T4A3ao4UdL16mHCBdYIx5PIwqCiiRb2xkiZJ8mAlYqyZi1St7WiaENZNAyEuEjEPjeCkAiJWEW1lSdQjCbcfPYF6fOzWRrZCCS+EQKSgoVvJ+h4u8/7ZpyUb8UhQSXFEkOzP2J9t6hyqnGGMopVJ31vDE66PaskCwS6FpVZ5mfHvPHqqyyXy+GajFFsTUbcfOYdFNu3aNuGi4uGcrTF1naPMYa6rrmYryirLZQ2lGXFBWfkeYHvaspcU1U55ahkNBoNfZsEHfOsVgu899isjEZK68BrtVxx/81XOT05knJM6qwdx3JyDNXKMBqNuHnzFicnR5wcHqC1SA9H4wk2y6hGE5qm5ez0BO96OgJFuYvXGcQmgmls9qsFy7fukqmaG7dvYa49RzCaxcmjYc56H1g1LUFZzo9OUFpMu1KPHR2NvEQq6lHeiQxfqdiTMj7FuFkaJTyq2mg619MuF6AU1mj2rlzHZAWr+pDt3WsYm/Pg/ptU4ymjaoxzjnt3X6NeLdFG0XcLJpMbPPX0M9RNh9ZwcTED71hcnNA3C7pmyfbedZQ2LGZnaDzjyYTRaEw5vsloPGUxu2AyHnMyPxpQnDRudGycp43Y0uejKUU5JovlGWOyWJbREfFKY1ldWpeVVqiQkIWI3sZFQyMdclUsKXjEtKyuGylzRW6dzUStoo2O/cSie7NP6KygBgFZX/voLE0McJzzLFYrOpeTZwbt5P2rtqXpe5bLFUobxgi3wvVRlBCDi4Qs6Nikz2hN18t7UYqqrATtiOVt8VpiY/1ed0Z23mGj2mZIVCOkne4ncUwN5eH4uhCDCuEOyTNSWqODR3yxNxLpYZ6tladhSDDlfX28LkIg05pRMEy1ITeWDCiUJjdGFJIhxEB7vUYp2ayGv19evALPlm8vFnjy+I4Ckl/8xV/kH/yDf8BXv/pVqqriR37kR/gv/8v/khdffHF4TV3X/If/4X/I3/t7f4+mafjpn/5p/sbf+Btcv359eM3du3f5+Z//eX71V3+VyWTCz/3cz/GLv/iLMTr79o/Tvif3HqsQLTWKjSU+/jds3Bg5xLnRshMKbo4nEokHz3nTcLhc8mixYNY0wujW66g48PWbalrcNlEa70UP33Zr+/gUaWxuTmmx3oTSI+ARSw/SuCjVBNMkk/dplGaQnfnoTkrqsKoSerOhL1cBHTxaDXADwQuC0fWikdda00XbexNEGqe8iv3eYntxLY2vjEImd9dRz2bSdjzPyfOcLMvEOyWev/NhuL6UGSRY1oeA1Qbn2qELZnqCSilUSCUmP1zToL/eeNTCHwlxrVNRG79BgA2Ah0Kvbdi/0/LL2ylkvhGZ9Tv9/CdLQsPnBum8mxmoWFvYAwOyVxpFpYEi/rRegXWQaaClW/bYTFw0Ht17k7atybOMvhfUazoZc/vp55leeQrlW/qwiu3dA2VVMaoqnNeMJvv0Xcubr3wRHzzGWm4//QwnD++xvT1hWuXsbu/E3kkyDjvnePjwIacnxyQ5eh8X8Lpu6NqGxw/f4uH9u/SxYdswn1ijRtYaJuMR08kWy+UK33uqUtxG87IiyzJGozFt23J6eoLvOxRSbiirMcYWOK/oViv0aISbn3Py5uscPXzM3u6Eq8/cwhQ5KENeVaRFw6NoOsd8seLk8ITJZCJBrpG1fkBBghrGbAgipe9cIhuqAelRSmEUhL6lyAy+aTg5PWe6c5XJZJuLizN2d69SVmNxMq2X7O5dZTrZ4iu//1lWyzmZNRRFzu7uFa5ef4rRZAevSsqy4Oz0BOcaXDOjb1vq+QkqtJSjHcaTKc1qzuzoPnVmefo9H+bo8X28c5RFSW4tQydbpbDKYPOCvByRlRPyckJWVtihq6+JWf5ahq/U5jq8OcANKDFP0whTPXHkPGA2xkzwIgho25btyZRRVWGzTf5bRMY3Ip7kj+S8qK+MiTYAXizfm66naVp8CBS5tN0Qp2KL8475fIl3nul0xPZ0Sxr3xWtLNgmpdYZJSHAI+OAofVqfJJDq2obgHFaLwVpmpS+Z2NVLQNLW4sO07vGkwCXEQxIqzxPoDykx9mvfK9YoiU8u/iljCxurhFLDz0KUcCsfyI1irBRXlWIHqLSNgUu0miCtqSm22UC/gnzu0PSSpIYK9EBD4KTv+f35vwIOya//+q/z8Y9/nA9/+MP0fc9f/st/mZ/6qZ/iy1/+MuOxMLP/4l/8i/yTf/JP+Pt//++zvb3NL/zCL/Cn//Sf5hOf+AQg0ejP/MzPcOPGDX77t3+bhw8f8mf+zJ8hyzL+2l/7a9/J6fDrF+dc7Tv2bcautUy0YWw0Y23EOhsANXSvHXb79JBjKcMohUVTjizXR2Pet3+FVd9z2jSc1jWztmHpepZdT526Kl1O0VnDkWrAZnyMQom9bkJ0lIxfTdLXr0mnsvgNEGSI7n3xtAUs0ZHgJSMvuVQOp7NRQ0qcFBeiT0MQ/bggBwwL5MBeJ9VV1wtFUhYlC3qZODJh8kKIkn3f03YdXezt4Pqe1mYxOIkOqT7d9/X1+5CaBgqBqu8dRSSwetejEiSLKH9EYRMzsM21SPYCaYSY7oFKEGLa5NcbQW7UE8/u8vGtVDHfikvyjQKLJ//+bRFn5ZV0vYgNtB6GECBoSZ5J3KGGVzsoU+gSwHeY3EoDxq5n5/pt3jvdoqkbjo+OePT4iP1rt8i3rrJcLamsoCujMuNidsZs0Ygz7/E53jlU6FjMzqlXNSYznB4+pqwKsjwnK6XxmTZyks57Dg+OODh8TJJd6/jwuq5jPrvg6OABjx+8Rb1cXr7XcePJM4GSqyJnNB4xGY9o2halAlVVkeViaV6OxtRNy/nZGa5v0Ups28tyRF5WBBRN07C4OCcrCs4e3uf1V1/FK8ON63tokzZESzW9Qip1CRQOr795j0wbylI2OxF/hDUZUcU+KSo5NcfN0YmddlrEgwLlO+iW2GqHPFMQeppmxcHjJWenxzz97LuoVwvqesEzz72TUTnh7PSInd09iiKj71dsbe+ys39Hrmm5xPvAYrGirCZU1TUxZuxa2tUM7zvarmE1P2Nn7wp6e5vgWlSAk4MHaG3Y3dkZjOa00uKsmpcU1YSimpAVIg1OpZXUfyrEsZxKtF+fFMr/y7jVoMMQeAylC0QhpEwWO4PX9H3HqKoYVSV5FrvpDkFqJK6nb0uLJIHeS++vPDPSMqPpqOuWvpcu00VRCrdJK6Zx32rbVtAs7ynyjLzIGI1HsWwRfZVi+cOn3jGphOO9GPNFs0nbauG9rFYYa8izXPxbvJiuGSM+K8tVK3uFSuN9gyy74QasSM7QKTiP0zrasgcUQYt8GNTgwfXEIoJGkRvDyBoqa5jmBftVyU5mqWJ/oOGJPfH+oCAoNaAu4ku1ftKeQIuiUbAEFsApgbO+o3Edr7c1387xHQUk//Sf/tNLf/87f+fvcO3aNT7zmc/wYz/2Y5yfn/O3/tbf4u/+3b/LT/zETwDwt//23+Y973kPn/rUp/jhH/5hfuVXfoUvf/nL/PN//s+5fv06H/jAB/jP//P/nP/4P/6P+c/+s/+MPM/f7qvf/lCWhVcsuo67bUsGjLVmYgxbxrJnLXuZpdA6rgKkXTsSlMLwsC5tLUpRZRmjLOPWeIwLgWXfsex7Fl3HWd1w3tRctC0+TSp5W9zgVSwbSHvn1GMALRG+NF9Kpk6GYfDFwZ+CgsvblUwEE4QglWS8IYSBTyAfoeJET7JXTeh7gpKap4qlioT6+Ai/icZcjM9cDOCS4oiU8cVeCMnkrI+6fWXExMoYKxM2Qu6r1ZLVam0ZX2QRl1Ab5xqVREoj5atMCJjSACuVllLgta6VpsBLRVlveo8nZVAbfW5iUOOco+lreqOGsse3Syy99CQ2ym9P8j4uD6Pv/LPf7n19L+O0GALY9Wu8AmviRL4EoaZDQ9tg8iKmN4H969fZ5wbeeSbbB+TTC5QRsmfbNpTWkud2CBabes5xM+Pk4BFtUzMaj0TloAJlZtnZ2caGhtF4RJZl2Gg6BYGz0zMeHxxEL5sM56TUYDNDU9ecn5xzfPCQtqmH+yn+DoJomdhMMrMZVVVJKSizorix0iAyy3PyvKBpOi7Oz6NaSwyq8rJiPN2mKCrOZnOWdYvJK7a859HxGQ9OL7hzZZ9RkQ8Zvoyr9Tok5EZ4+PCAOzdvEPtCDvNu4LGlQPlyXDwgBiHB9iAoohVi6M7uFcZb+2BKDh/fI+zsSSftx2/S944rV29ycXbC7PyY6dYu+1euUhQZZTUlKMNyMWM0HkfEaUHbNJydKQprGJXSo2a8fZWJgma1jAFjPjiN5nkJePJqHNsraExWUlRT8mpCVpQiCzVGnEFjeSChPt5LGWpAgdM4Tjdh2LrSfIy/TTeISFbXFqUNbdfT957MiHV8Fj08YI2Asrk+qsgN6foYgLTi/FzkdF1U5GhNmWdkeYa1uQSx2pDFbujjccVoVLJaLofSxSBVVgodgx1JEP0axYgIgnbR4KyDIs+o8py2Xsl3xz3NOyGtWmPIsyzyS3xcXxn4d+mO+XTnUsKpUslfgQprvkg8z0QmHtbtePu3bMZOkbGd50xyUcFUxpJtiCLW6czbrFvfYB3rQ+DcOU5dz1JrWmtxmaWLwbfzAeWktGa0ftvPePL4X8UhOT8/B2Bvbw+Az3zmM3Rdx0/+5E8Or3n3u9/N008/zSc/+Ul++Id/mE9+8pN8z/d8z6USzk//9E/z8z//83zpS1/igx/84Nd9T9M0NE0z/P3i4iL+n9rYnAJ9CJx5z5nv0X2PbRWZgqk2XLWWa1nGJBLOtLo0pLkUkmwGKUoQlGleMM2lX46bynf13nPWNhyvlhw3Nas+dquMOnppy66GFuz60gZsogolOpImmRUQUulBMSgmxPZXInwdkYZ0fqkePhCuiFG1B6XSgPeRKCrTX9A+gdrSWmKtjhm4kgg4iBxQW4Nz8RzwMSDy646+IIZIJp6rDTS2xzSyCCctfp5Jn5xhEqTIPQZOO9s7mLwcJsimD4y4r6brTAs9DAhIzL4JqR6brkMNgWLXe7yydFm27obJZeQiEFjqmlq17PVb3xIt+Wa/ezuOSvr/t+OWvJ3PSQiBeu6YTDX525yKC0O1AKXgzJxxYmY83zwVk8ZA33bYLItZj994b6AP8syDCnRdz2I+Y2e0JWZ5QHAdq9kpy/mMrpXW8E1d470jN5rcBIyv2d6ZUpSlOGBqDUozXyx5+OgxANVoFMt0gSzLKHJYzE85PnhIsxJkpCt7zvZW7BxWFL1wX/JMmrqVZcFoNKKqKjRibpVnVhCivKRpW2bnZ/Rdh0JaNRRFyXRrl/Fkyun5BU1v8X7OdLum61pOFjV979nODTZJw9d3f/i/dD3GFgOK+CQnKgD3Jo/ZbqbshY3mfKSSq0goXWwdEYD56RHYknJvl8m4RLkWc/UazlSsZke84/nn6ELGdFzRLE7x/YqTswd4lfH0c+/h9PSE5XLBZLrF1as3Kd75PmazM5aLuaCK7QrX1pydPKJuZhhtKcuKvlEo4ylHV8nLMVu7VzkrztHTiqBz8mJEOdkiL6ro65GIyev/rlHfOCc3yOYp6ApxjRXLA4Y1cag9qLUFQ0B4apPJDvVyQdesZP2LBmkii03rWeRlxISqdY5Fv8Qte4JzaG2kKSDgeo81WSwjm6gmMnGDXJfBbVQ5etdTr2R8+Fg+TmvN2n5hWDgkyFQqBigQjI/+LmNCcBi7Jvm6QRQQeTBa0fa9+PeEMJSYiQjVJbsHtS7xD8FdPIc0XI0SnlWp4WpVcqUs2M0zciMVA6M31sONkX4pEPkGgUNA1KOtUlxoOAqek6Zl2TQ0zqGzjNIaxpnFsC5fDd0Y/lUbo3nv+Qt/4S/w0Y9+lPe///0APHr0iDzP2dnZufTa69ev8+jRo+E1m8FI+n363dsdv/iLv8hf+St/5et+7rx4A4j5zvqGBh/wSnFRNhSrjLnredi1hEWgVIorec7VLGPHWgqlKJUm31yMvm7hD5tPLZZ4AGOYZBl3xhMAVq7npK45qmsO50uWvaPuHfOmJeAGyE+ITTr6f6RaZHIelQGzKltOryx56v4u3kvDvdVqhVZQZFlktafFX3YjnYiaKkmGPYEoJ9YmLqSORNOQ0oiPwUgi7kbpsNaoWEcycbH2foNQpRTO98MirtVaYtZZxyf/0Gv8+G+8O8KXPXW9Ggo2Q3aPLCoWqcnaLCNEFCmEQHABZcOAzqxh2fhMUFKLjn9N9sTrCTvw1WUaK81oe5tqlH/DQMPj+R93f4OJr/gTJx9729e8HfH12/Uu+U6OgNyjpunEXnw6pixM7F8kL3CkpFz+/ZnxZ/nk9C7/5wf/DrmXlvJkFajkQ5IP57tc1NR1RzUa0fU9Dx4+Zlzl5HlG27XM5ktOTw5ZzM7FQ8T5oTVCbqAsDJNxyfakZDoZY7SMS6Uti1XNxcmCEBSjkXiBEJG/LLd0zQVnx49p6tVQ+z/bXvHpP3qXj/7TZ5meFCTeSJZnVKMR1WgkDp5KxdbpiqIoqJuG2fmpBCNKkWUZ1WjMeLqNsTn3HxywaBy9C1RlTlPXHD54yMXFjMoqtnLzxNh64nlrQwiyoYibp0eF9bgLIVCrhv/hud/khx68lx89+x5UjHj9RsCI2uA1aYVznfwhI0Mk0floG0NPwYismKBMjuoWXN/fYWdrjKbD6REhwNe+9gZ107G9vUNdL1gs5jy8/yZ5nnP7qecJ3lOvFuxeuYmxlno5A9fS1HN6v8SFnq2dG6wWM77wnjcpx8e8+OoeZS5KpbWEN6IBMThJCY73IuG31g5cg5AQooEj5oblU7J9hoBivTPKuqBj2a0oK/C9vJd1S4A0s9P39K6nrhtOw4zf+IGv8pOfeDeTckRWFIO7dFVVUkYxMQE0a1Kz0rJG9hFBSX8g0Mbg29rs6/cDlc4CklkaKeGMzfWyXALopu3j7RDJfEJrjNUUmaXteu7dOOLq0RajrpCeZ9HvRvhzG4WRIInDgLIZTWU0I2uY5Bl7mWVre8zY6o1ke8MIQj1xEUNWJ/8fNpAVrzWdgk4paq04C1KCWSF7SNcHeqXotR7s6Fd1PSA6wfuBlNx3jtl88bZz68njDxyQfPzjH+eLX/wiv/Vbv/UH/Yhv+/hP/pP/hL/0l/7S8PeLiwueeuqpSOrxxP8METlAl7d84oNf5Cc+/f1opwlB6mx1CLzVttzvOjIVSzzasGXSH8uWMRvNhiBBZJsjI86j9FsAKmu5PZlyezyh3wvM245Z23HeNJzVIjs+XS5ZdZ20ro4mZcSShYqLm1fwyR97lbwzPPXWNt47QYnaNvowONq6T3hx9GeInXqTGiFeg04TRUmm4kKCJmRR6bpesoVMnDyTBbSLFybuqQFtLDZbZzvOuQGRCaTvkEzmlXce8JkfeoMf+/33MJmPWS4XLJ08J6XjihUUeI9SIUbusf6u9eC2qIdAyMfyQcpM4j0bIN/IRRlUTnLuqT6rI5KiTM7+1Vvs5vml0sdmIHFuFvxfbv6/+fcOf+ZtUYxhRHwDVOPJ1347ipxv9H5Z8KT04NueWe/oC2G62wDaBxrnmRrhxvTU/PLu53itOOTEzrjR7BJ6h83XlvGb51EUlsKK3PfR0YrVasXWdARa0bQdDx8+5PjgMW3TDPdXISZVeWaYjkv297aZTKdkUYVhsxznPScXM4IuGE12ILpeEsQ2vG/mnB09pm1WEvQqqUGfXV3xhY895AOfu00xt9FfwVKWJVWUe6aygfTWKOh6R92s1oFSZqnGY0bjCaA4ODrmfCYt4TWQ2ym988yWDV3v2C8sWYITB8B8fXjv6buWzjn6xZzzQhq+VVW5sTkrTvILPr/3KkvX8kNn7yUntVEIcc6E9QONCKnWmtXigmKygwoFWhm86wmhRtsCdI72DeCoCkFosnwXbSxdfcGzT93Cq4qt6RTXNRgVWM3PWGnLzu41Tg/vE1xHVuRkeclovIUuRhQjUUnleRGbxrWc7M755+/4df7a534OU2dobYcARCd0RGlU5NVIBqwvNXdLgWXakEJKwGS20a0WBKAaTQcreRnn69Jq33e4vouPQeGcRzs/9ErxIdDGvjVNI2hYd6Xnd3/0Lt93+izXHl4lla1N7ETrnRuQ3wHdIhLzI3k0IIaLScXiY88xa7OvRxUGhCyefSwrJ0dabQzKianksm7oup4sky7DXd9jjDAw8izD6JYvv3AX86zmj37qg3LuIQU7l1E4q2GSZUwzy8RaJpllmmdMrB0QvrC5McV7mxK0zRrX2y1HK2ClNK7I8UXBUgUW3tMpotmbNNVLSWUa/6m7sVLi6m2N9FzrnZT0jTEU+bcXavyBApJf+IVf4Jd+6Zf4jd/4DWmkFY8bN26Ijvvs7BJK8vjxY27cuDG85tOf/vSlz3v8+PHwu7c7itil8euPdX0txMkeAHTg0+/7Cp978WX+0O98YFDfqAitpTdIDSxw7joedB0ZYCNism8tV7KMK1lGrnWaHwxPNUDC/VPEneRVIKqf7SJnu8i5Mx3TeU/bO5recdE2nNQ1Z434onQhGYTJov/mc8d84sdf4aO//g7SN4YgKpeqLKmqUnoGxK6LrpdGR03bQnxdllnyPIuDPtmGhyHQCihMdF4Msf1xUDpFFwN/QBHlpgastcIjCQHlA5nNh6BFa40L0GUd//SP/j7LcYvf0WybbZTSLJZLuhT5m5QxCIynhqpbJItFM7UUTHWxhJXcciXaV+voPoRh8g7ZTwjDSwbXXW2EJPdNYMl/vPubfH78Ne6fH+Ji3yD5yMsIyB8k0Hjy+GYclE1vhWqSsVfsiecI0AMt0HaB5ckSk2vKacbCXvDf7/8mW/2EY33MDb8lo1Ovv0drTd+2LBZLeq+ZjAv6bsn5xZy+9+LM2/YcPDrg8cOHQvYLRHWBMPKNUkxHJbt722xtb5MXZZSiWwKa04s5q6ZjZ2+bLLP0vR+Cv9zC7OyQerUUln+8753yvPnuE86v1dx/9znfd/8OFiPByGhElueyicdNsiwr+uWKpl7EluwGU+Tkecl4soUPisODI85nC1xQKNehbCadW71Iw0tj2c1ydOzPkpBKMZECcJydHvHo8WPaPtC7jsVqxenFBScXF4yqiqIo0Are2j7k9fFDXpk84D94+WfJQjYs+qLOiFloGp8AzuFWc7pmznmzohhNcX2DDo7JdFe6M3vxYdFaYXWOw0LfYLRid+8mWV5CeyE+G9tTbt2+RVAZx4f3WZ09wvUt1ijyrGCVFxiTYaspo+kOeTmm73q2b9zkePov+dLV1/iX73qFP/zl710jsEavN9yIggqCGssLG/NjUBOx9hby3tH2Pct6xXy5RAW4dStjbKdxEqTJoFE6oJU4XLte1oDg0rMxeBTLpmW1qvHOkxlDVRVcXOmZb7X845/4Pd79398h722UyjLwNFLJaAgkVMAaS5Zt8C6UGkopLnaWFrK/k2uKcFcgbChcZLzIPfLDvFZaYawQcVer1UBo7fsOZ6VslUikTdbyyR96iXfdvc2z96/JdUcbiK3Msl8W7JcF08ySG0OuNHbDRHNAOFgnm5fuLTFRT/cgPi8HnDrPCZqZtfTGgjGMCnG/BU/X1FFerGKgIbofCfQ8PkDT9XRNQ54XmGgHYIwZnr/znslk8m2tid9RQBJC4M//+T/PP/yH/5Bf+7Vf47nnnrv0+w996ENkWca/+Bf/gp/92Z8F4KWXXuLu3bt85CMfAeAjH/kI/8V/8V9wcHDAtWtiRvXP/tk/Y2tri/e+973fyelcivJUZAmj4NWn3uJXPva7jFclig3TMNTAbZX3b2xMCrrgqUNg5nqO+p6vtTVaafaM4Upm2bcZk0jgzJSK7q0hJvwbgcrw3zAMD6vEmnmcZ+yNSp5lBxAeymnTcNI0nKxWPGbOl3/kLZZ7Db1J5FeBvVGKPJIGjfdo3UeiqSO5y4qltsPVjjZK2vI8E47HkO0kDocS0q1Pdi6CQniXpHO9yNSsdHBUKgYuCGQult8B5R3CbOn5ne99ha+98IiqLpiPavRC5IlZZlmtVvRdG7MIjXOSJRAyQkJzU1C0Eew5Lw2fNheOpATSRrweZOG4HCSkhTQAyhZcv3qDm7em4mkSzeXSuAY4szP+5o1/SKd6HuRHzM2SrX78HY3JP4iSZhiCb/Na7xW9g5ZApSDbeE2XKfoyQ/VLjO/4pf1PcT8/4tCe8aa/zzPLG5LJh8BqsaJrW4oixzVL2rYjr0Zo33N8sqTpfPw+z8OHB9y9e4/5bEYXewwF78mtYlxlGG3Y29/lyv4VirIU5ZOyBFVyOltydHLBzs4WRVFIkIuPEmGYn5/SNsuYserBNybYwEs/eAgKvvgDj/gTn/o+Kl9QjUYU5Sj6W6wPm+WMR4quaXFdS56XjEZjtMnpnefg4IDj0xM8mjwriIYgMk68QynYG+dsBdnwiZwqYpbpXctqdcrRyUMOT0+lcV/w9M6xrBsym9F0PcumYVW3vHT1HvcmR3gV+NUbn+dPPvwoCTCQTSC6lIZUGVLoKAUtjaIalay6Fq0txpYs6waNp7BGOGNKuud2bUMd1Se5zlHdBX1Xs1itMOMxN67dYtV6FqePybVj4Xr6oLAKOt/RAWp1Br7FZBXL+TndnuZ+dkCvHf/gA7/JR954L4WrBmRkgPaVGja9QVET0cvLk0B4Mm1bM1ssOLu4YNl2BK3IbcZeXTMeTRj8iiDxrcXZOqmdxFmSzjmWTUvbtATvxJNkPCbPZS2st07oMsfvP/8Wn3r3q/zYl98NffLLiGT8MCzJIqV14H2PVqkMxdDoTltL29XMZjPxRUI+y5q4ZkRkOSlvTOriG5Hb1ClYhAKaLnRxzXE4lzrqStkm8fa6actL3/sGHzi/yV45ZTez7BY5uUkd6+N6wsYWcwn0UMP4lV+GIZP1QBcCXYCVDxw5z1HvOHWOHjBZJh2WrZKk3Hmsl3NMhG2tFMraoVSWEh2lxD1Z0MmcLM8py4I8z1Ag9hdtR/FtilW+o4Dk4x//OH/37/5d/tE/+kdMp9OB87G9vU1VVWxvb/Pn/tyf4y/9pb/E3t4eW1tb/Pk//+f5yEc+wg//8A8D8FM/9VO8973v5d/9d/9d/qv/6r/i0aNH/Kf/6X/Kxz/+8W+AgnyzQyVoRFyItWY1aviffux3uH/jiPd97Vkg1vm8i2/RJBvFgN5APWJWTvL2EPTFEzhyjmPnUKql0noo70y0ZqwUI62plP66iHUze5djXfaRl4pB0vXRiOujEWF3h5NiyfYF/Oinn2a8KHhqa4tF19P4gBvKFAld0BIMBCFFJVtkn2Rovej4u9gJMrNmcDi0JpMJYTTK6KFGKws26+AmBgU+qmvWttAx8wupkwec76z4nR98jfm4Iesss3wl0jQFVkfSmPd0nYNOHGK965mMxD1TyGvrSD61kfDeS4OypKiJGYjWYukfdKBnLVleE8AS8gJZPub61ZuMtOK1RzPuXJlSFZeH/y/vfJKvlfdAwcPsiAuzYNt9fWT//wt0JB3f6DMGLwcNVQFFHFMDzK2E2Lk/yehXloUO/L3rv4knUJuOL27d5WNnPwDJpt839F3PonaEvmO6M6XMFY8fzmjbPsq8PRfnZxw/fkvUKk4yQxUC1miqwrA9HVEUBXt7u4zHY4KSNgOBnNNZw8NHx2Q2iFouBo4+BBazc04OHrJazFPBkOQSCYH59YaHL4hXwZvPn1Bf9+yfVeRFGTkc0p3a9y1ZNcYoTU9HVZZi3JdbirJivmg4PDzi+OSE3jvKct2oMkI9eBfINFwdF+SrpagZMhsdgUV1Nrs4ZjY74fRsToiGdH3yogiB+XzGqq4py5K8ynjtxiN6I3yJf/zMJ/hjD3+QImSYeP06lgkG5EsJZ6JvGwJCOC8sdEG6z9KtcK5jterBlhTlhKZZ0rcrTDHFY6Gd09VLmqZm2bRMRoFivI3XKyZbu8x9QPdnmCB9X7QWzlVAHFC7tmY5O+W4XHFUnYKCN/Yf8S+fe5k/8uqHNhLtVArw667oMTgZkOmU8AVP3ayYL+acL+Yslgu6thWFYV7QuX5w67V6vY4QktdMJgRsYiavpHzYNi15ljGqJmRZvjZONIpF1dIbx/l4ya9/71d4/9077JyPhxJSSmoEJZCEp3c9i4UY9WVZjlIMXL2mc8xXDV07J58vY8BhozGa2A+g1DBnEvoia46QP421FLFjuzUOAQx6CMLNK5VibC074zF/8uhd/PHfeJZ3nVzl2b0pZRvXpbRtbCLzmz/c3G9IsYiMsVUILFxg7j0z5zkPgZmHVQhij5CMzbTMb+lMH3AB2t5ROLdOEIc1SZBt10TmWkSgREId1+uIeiaFkpjAefLsX0HJ5m/+zb8JwI//+I9f+vnf/tt/mz/7Z/8sAP/1f/1fo7XmZ3/2Zy8Zo6XDGMMv/dIv8fM///N85CMfYTwe83M/93P81b/6V7+TUxmO5FegIkT3v/zAZ/j8u14BIOskcpMMQ208uzSB1oSfZFkuAy3KvQZAeR1FNMCh9xx5jw6ejEAWIA+wbSz7WcZellMOkrH0r8swfDouR7yBLDN86OgOHzq8Q1Yb9E1N4xyN96yc46JrOW87TusVANqvORYqwp4BkQeHzMVaro8lno62a+PkUWRZTmYNWZYBGUZrXNwkfAwIUjASgkf5gPJgDGhtCSmK1ppeeb7yrge89M6HoKDPHN3UDXp9bQxFUQ1EWu8doeuiMVdapNcuj6nUQpzgyZMkoSPppvVeekz4+DyF6KtYc1BkAXKuJ4SGnpxse0xuL6NjJ+aCX979bc7sHIBH+QkXZu1k+m2PRb5xkPGtfEmefB3ICLU6xmIbv/dI6cZoCAa+UL3CF0avDu/7/O7XKE4KbLBAS1YqUAXtvMcrQ17kdO2K+aLZyIICR4cPOT0+knKglyBXK/G0GVclOztblNWI8XSKzXI6F1CqYN4EHj46YL6Ys7e7BUjZD+VZzufce/1rzM5O4+Idhuw1IMHO6z9wQp8JStPmji+/74DnP3sHlGG1WjKZjAXdiSR2AKMN1WhMUYkD83LV8OjxY05PT2m7jp2dLcbjKfWqoVm1cjeDEBmrUUHlJ7j6XM6lrvHzBaqYs/Lw4PEjlqsVxliqUcWF1oQov66KkjwvsNZKElUGXr55f7j3X9p7g5emd/mei+fwSu6D1+vNManHxCZd/CuSv4TyHW0NZSalMWNyMAXBNYR2CQiXpGmX0CwIfYexhq1iD22LmH0Hplu7KJOzfe0Oy/NDfH2G77vYKNNh1Iqya1EETvtHnIxEuXhRLvnEc1/kB996L9vdZJ3zETPyYT9cq/xCELl427Ys65qLxZzlaklTL+nbVuZyVmJsjldQN62cp7EDhKTiBivyYitOrZ2jaRvq5UrKfZMJeVEMapO0Ac/Lms4Iivr5F97ki0/d40fOX0QHH1d4KTurCFE556jblr7rmS9XKAS1UFoSnaZuWa1WFLEvkpTlNqW062AkiRRSYCYbO8PPjTHk1rBTlkxtxlgbxjajMAYLmKzgmfNnaVa9oEFZT9HZy8FIWvPiDy7F1xH28Upx7hUXSgioF61j2fesnKdPa8y6bjV8dvrcEBPaoLXwpXq3RtST50hI3y+cIB15kDYzSNfmQPDCvSmDNFcMStbhb9f09Dsu2XyroyxL/vpf/+v89b/+17/ha5555hl++Zd/+Tv56rc9UoMj7wNOe77yrtf5lY98BmdkYcs7E6HaeNMT4JjKA1oNEW0KUkRalqDKSD5LafZGCQYFDrEmXiLlgkedo1+1hLBgxxqu5znXMsuujbIrJKvdJC0OA4VAXTi82XTfU4Or7GZQ44HOOy7qhuO65nC14rxp6L1Ayi4u9knCFbwnWHEUTMGA856+6yR7UXXknWSxP4SO90bgxBTthhDwvTRJs9agQ3KQDZwXC/7nP/R71KU4bfaZp5m6aEvsogeKuLsaIwGO854+iK9KQkjWKFJAKTNI+1Jddl0KYSDYAlHNsA5C0vMTiDyAthS5BDw744xNg2uAz45f4le3Pzv02XmQHXGu599g3K3f+a2Civ+1KErfgVMBl4kaKR1dD23nGdsaWyh+5epnOMhOh4v61PTLtKqnCDlgsXbM+dkZWZaztzuhKHKW7TK2JpDx1zdzLk6O1tyeOFYzA2VuGI8rxuMxWV6SR05H8IpVr3h8eMxisYSg6HrH2cWMxin6znPvjVc4fPwoIi5pDsozzazFFJov/uDj9b0DPv2+N/jpz36QbrXA2Iy66ei7HmMteSkweV6UaJvhvOPk5IR79+5zfHKCC448z9ne3efGrducHBzw6P4yXpPAz9v7V9DKsTp6hEZxfjrj8PAcs3vOzedfwBjDeFyyWjna1g11d+8DbS+fX1UVmbUsshVfuXkvDg44Ks/49Ruf533nzxDChg8RaZzGsaE1rutpmxrnpyLb1IpV29HoDKsMJh8RgqdvZugsJy+3WVyc4pUh0zl5rlDGYootFnXH6vyAZnHKxWwGKsNmBZPd6/hum9PHb9L0Da53GATFCqMxq3LByUQCkqADv/v0V/na1bf40IN3R6A4IbObXDoIThRHq3rF2fkZi8WC5WrBarXCOyHLGyXmeMH1QydzMU90hEx4Euu1Tcp3Wht651kul8KB0YrReEIZg5GUVBKTyVlZ01tBwBdlyz/66Gf53q89w2hZYAOkUptzjqYVxV/XduKZM8mwqYdLTNwMUGY5ZVFRlRVVJTyhxGFTERMeVEMJnQ1xbHtP5j1jpdjShkopsriPKFKMEa9ZXU5SnXHURUfZFjFwSDBVcrQVFMMHmAc4juWXmdKoPAdj8ApaenrP0MJAx6rAJn0BJYIIjfBjvPMEE6RE7Dw5aS+M/BklPDJtFE6iHFFHWgNeLPaTxYMPQRzUjYagybLLJddvdHxX97KxWRZ7rHge7B/xT378dzifLoZnmHU23sg04C9vFAnx0hG6Gmq9MdrzRKg1WULHyByV9PNxQAXp6SKEQ0XQiiMXOFjUBARF2VaKvcxwJc/ZyjMqpRkZTRE9Mzrj6LKOS7vkBrqyyUnQCCelGluuR6fB3ntmbStKnqZl3ras+o66d9Sux3mHDppgElQuZDGf5HsBguvpXS/dS5FAJC8Kikwi/VSnDARc30QPDOkK+dsfeYnXnjsczr8zjnm5wruOrmsFliViUhExyQsIfjmghylTDxuvk54n8XYMZbE1XJkifB+5NnpYPDeFb6C0YVRkohB5Iq5e6YZ/sP9rPMyPh58dZWccZWeXn8fG8a3UNW93PEli/ablmmHTAqsun0ZAiTPu7IK+8DzeX/CJvd+nMd3wmrvFY+4Wj3jf8hkIDuc1yuSMJyNpeqfW7dXb3rOcnzM/P6bt2ijvBULA6kCZW6aTEVf2dynLEm3zaAilWbWeg6MjQl9TjSqa6JBZFDmu63jrzTc4OXwMiJoqxAAzBOkGXeSW46eXHNyerS9SwWtXD7g3OeROf4WmbemaC7xzTLd32dlRkXQpzp7L2QUHh0ecnJ7Q+0422hDIixGT6TaLi3PJ0pFFcjwqKEdj3DzHWMvJvOHubM7CWPSiodzdYjIe03Y1zrXUq5reie9O1/fSA0gpVK3orOVr07c4nl4M9762HZ++9lV+9o2Pcae7Ilmz3liDkiJMiyS+aeSeq+jjk5metnH4YoL1GtfMhVdhK+r5Ka65wBQTtC2k7GxLOqfxXU23uuDk6BEBw+6NGyzPj5ifLSin+xQ7Nwj6iL5ZkBmFdy3KZJyOl8xGayfNg+kZ/8vzn+X9j56n9PkQ9BNEtRZcoO9blssls8WM8/mCtu/xrsO1Ndq7IeNWKSmIKqagFK3rN+Z1VNixJtEbm6OQMl2eZWTWkuc52qyl1vIfCWDmVURI4tj50jP3+dX3fJkf/dV3kKTjXe8Gj5pMa8rxmCwiIDYTdFgrjfOOtmmp6zp+jY9KHEGVhVIjSIP2MjczFLnWlCgqBSUKk84xlbMUXJruamOwb/5CQZt1WGexzuAC1CGwcp5V8Jw78dqaBahD+nwRHWRe+pHpuL6m9TEppUIIQ++gIZZCSorKe5zrMd7IuEweU1oaJhJLXhrhTjpEbaONwgZDMOs+cN47uq5Fa+FwKgWZ+fYSs+/qgETgIkttW37jR36f1595eGnlzno7ZMkJERngx/gvpVXqVCZ4ZHR3X/NBZNP1QV6WyHUBNYhqvBcb7M55lDLSgyB4nO/xrqdHsQyeh3WgKjq2y5JKBaY2Yye3ZFXPcu+c611F4ewaRlO8vVFNXBg2W3lbrdktS3bLkmeRAGXVibvsKjrMnjcNs7Zh1oqMMdW2vfcS5BggiBqo7ZzI65qGlbVkWSaqncgNIASsEQvpR1sn/OqPf/XSKfbGcWHntL2UZYaMJsLW2kOWiSeEmMCJg06IqEv644YyV+zfMwQaAsYqrTa6acoxPLrA0HtB4fCxY+0grYv/fzd/xP+w/2uXzt+rwOvlAxwey9qj5cnjmwUVX//YvjHC+A3JsBqKNERJ0CqEtqGqNHY05svjr/H5jXJNvHQ+Ofki71s+Bb6nXmmKoqTI7fqzQ4gE0COOHj+gbZrE/YzBiMh7J+OSvb0dpltT8ixDGfGdaDo4OzunWV2we+0O4fSCtm0xRlQKhwcPOTk8oIvOqQSRkCsCmTXkubiw3nvPGfWov3T+i6rh5ecOuPKpLZqmxmrNeCxN+4y1YmuuNRezBffu3ef8fIZCMZ1soaOXQ1mWa2ffeGRGsb29g7EZvTYcNz2vnMw5aT21b9jbs2xv7fDg4UM8HY8PzpgvlzFIW9fau66TTNB7/uWLL39dKfb3917nlelb3DzalSZmG7LMwYlWi1IhNascuAlAYQN1M6epY/BuSugdmo7puBLVXtcJxyYovOsocosfVZTliFXT0rQNxfQK80dvMp+9ys61O+xee4rZyUO6RvxfdJFxfH1xad0E+F/e+Vn+91/4o9y5uEY8Lbx39H3Hql5yfnHBfLEQPog2KJ0RfEPo3YBkJnlt4vAEL6q1vnODh8llOwVAKarRhCvXrmOtom9XQNggoK/3b7FI8CzyGqcvG2/98kc+z7s+fYVb9b6sx32DUZqqKMjybCjPK4jNQ03kphi6ogMN9aqJbtRiZlkQKIMW3yoCmRKSeYbCqifWacXwPNc/W78mWVQk87B09Mpzd/eUA9Nw9d4t/Kpi6QML51jGclDiz2xKrcVc1g/fra2JZnIpEeTryjWb5xbCupu7SmUb58guyYnlPen7pZt8RKSj+ZuPhN+maYd+RyEwNMv8Vsd3dUCitUjEvvjul/jND/+ekMo2jqLPMdoONvEp905HiDD/OpVOZQHJxocYUgkRKVUBdAxgQpDaZOd9HLigI4fDuZ6+63Cul2g6ysm0NTQE2hCYB8eB9/zmOz/HP/2RT1IGw/uPb/D9B3f4/se3ec/BTYoQhgn99d4oaSNbT+oECWZakxUFW0UxlHmc9/Te03nPRdtyWtecrFac1is67+W6QkAZj9Yu1hKlNX3vauq6HiSXk1jPDVbxiR99lZO9BXljact+OJdZXrMKDX3frSdPvI7kbKhNJMcRIeFYJjARmk3ZtEpOYLGp4NBLgmR/v24gJd8VS3VxUexC4GjmubqvN+c/gcDfufrLrFTDtB8xsyJNVCheLu/hlMf4t5cJfzPuxzd6zZM/ezuDtY1X4loIOZc2jKZ1jHSHGVW0meJXdz6PQpF7S6t7cm8JwK8Vn+V/d/FHaJqGoiiYjKtL6EvvPLPZgnt37zKbXeD6dcdPrQKZVUxGJbs72+zu7lAUVQwCNT5o5kvh/1y/dZus2uLs5BwhQCoOHj3i8PFjnOs3uEDRAEtHWbq1mJHmzXedYr3B9o7eemxnUAG+eP1N3ldfRTcBVWSUox3KspKusFpzdj7jtdde5/z8DNeJlfz27j6T7W1Ojo8GMmzwyZRQApLMSlC26Bx3z2ser3pWTsZZ13kePr7grftHLBYztLUpm0FpFUs1JcYYmk5koV999i2skzHSW0/mLCF4fvv6l/jBoxcpvB3KiynwULGja4hQt5BljRQhgmySlQk0vWNVNxCQPii2JNCL6inP6R24fgXeYbIcVWxx5VbBg7fepJ5fsHPtKcbTXcLZY1YXR3RZxXjvJsvThzKHyozHN5coL7YDKBg3Jau84X96z+/wf/rdP0nwnrbpWCwXzJZz5vM588Wcvm1krSnH2DJHK4OL17TJTRBCrU7W0fSuj3LykPLFOHeFLCXIt6gCg7GIuVqa0xvSf2ClO+Z5zfBDBXljObo657M/8RYv/vZzWGWoqorgfTRHE7QgOadCiOmOpD1WK3JtqDLLblGwb4T7YePvdViDtN/oCHHMgJRyhnm9iQLH99+fXPBrT73MZ6+/xReuPOSoWuC95t/8jR/no7/3/SgXlYRI6SV1n0/ll43CDjHLHoKE1GcpxAQ0EYjTeaQ7mcqRzjm0MbS9JKZax5Jjuti47mqlCcpFpNSv3XzjZ6zqJrbxEH7O8fm/guZ6//92GKN5eP2If/jjv86zj27yaO+Ys+k8yusUpSuj0966TJHq4wL4ybNZZ5+sywDpecVjLZeVF2n5CoJ+AsRQSfaVvE+E69A2K5TS4rKqRPGileLe/iH/4ns/zzteeo5PfuCLfHX/gF965qt47fnY77+X/+gf/UmuliW7xlCSIvIo/xxGYfr/deabrjHEk9AIopQbabi2VeTcmU6Gl8+7jvO24byuOa1raSTY9dR9RxMnruvFkCggEuZA4KWr9/jKC/f5mX/yffzqH/4KJ2WPcZqnH+6zqFrmqkb1bl0uS+Maga2tNnR9j980PUN8F0IQJU6qLct714tSWvT6YWFZB5Op8ZcEWJbp3g47u1ZqqvE5KeD1/AG/svNpPv7oZ/lnO7/LZycvcau9yourp3mlfAunHE9Okz8oL+Q7fV8EKnBPpK/NqqWqLJiCE3PEJyZf4D949LP836/9f3izfMyLq2f4nsXz/N7kazy8OKDoK7Z3prGOjNhiO8fRyZnIe+ezoZQCMp4Lq5mMCvZ2t9jbExWd+EM4CIrFquXw6Jw8U2zt7OGCJaiAzSynZ2ccP35EU9dxWKYSofRKKjJLmUuzvPOnO06u1/zZf/Ex/tZP/Tq9bSkby5/6xx/g9953j6PtM24eblGWJWU1EpmxEV+ds/MLTk+OhwaWxuZU4ynTnV1mswvE+K8Vl+AAJITD9eAd81XNRetpXDIvU8xXNa+8+hpnZ2e0Tc3u3g7T6ZSLztE3Aec6cYvVFquhqRru3jzkx770Pl69+Zg3rx1wfbHDz778I3zizlc4MzO21YgAuK5n1bYUeR5LorEZWt/hnMcaCUb6EAi9o+tEzj8pMpRqJckJ0OsMm48A6OsleW7pV3Pq3pEb0Cbj1tPvECPFciKIUpaznJ2gQi9E4PwZFAGXKR5dueCDrz3NG9eOONla8OzZTT58/z381rNf4I9/5UfZepxzfHLM2eycerUUe3YlG7dwD1wc31Fmn/a7FPym0kIcAy4ElnXNjncYlbgFycdDSgQpUBjMzLwjeIPSopISOa/jxJ9zbhY88+Ye9546xZvAzmLET3/6e/nSi29x9+4xLx7cJs9LXC/3EIiBsSZTihGilJxoQ0Wg1JZ8ui1rB0nssLnpPzGP09o7JLZsrHPyVxdEeuuUogVmBLoip84s/9HH/hmffOqLKK9o8o7pasyPfPUD/PoHPsfz957h5sE+RO7T4M4dvydx3nRKoEO6/xK4hMjbGnyaUiltA2VhI6FzvcNYQfBWdSOcP71eZ9N3S9+dICZvSuTrqnf0vqduVjjnyLKCyXgkypz+20NI3j71+y45joszfvV7PsMf/uwH+egXv4cm7yDA7sUWN4/3KVzsW2As1maiKolNvrS2KCU2wokQCUBcmF304ljLoYSEmXpROO9iSOM3oLnYayAOSLFetmijh/IScaP0IdCElt9+z+/z0c++n+fu3RwylOfu3uC5N29ymtc89p5Xved325ZP1TWfWa34Qr3ipbrmXttw6hxt/MJhmiQNVoJ03uZP4lukP1t5zlOTKe+/cpUfvX2Hjz31FB+9c4cfunWb779xk/deu8ad7R22iwIDdG3LIix4+c4DPvw7z/L+L9/hdEeIg9eOpvzMJ76fzvbUuhnuRzrSxpxY2mkzuIT/pF4Obm2qteaSSJYeYtY9ELU2ArF0+FjT7B34XiZaIrQ6PP9477f4c4//OD9z9iOcWuEBXOt2+HMH/ya1bnH4b8r3gHWd+JJPyrd4T3rfcD1v8ycEqQ2XG9lY8ILCqSIDAp+ZvMQfmn2AHz//0PC5Y1fy849+hpvNHq+O32BUFdioTKnbjoPDM9588z4vv/Qyp2en9P2G0oNAZhTjqmB/d5u93YRKrFsVaKPp+47edYNZGdE4qWuXUqZpG3QabvEfYzS5FdfGosgYj8ec3+h4/vF1vv+Lz27cGPjgv7zNzYdbnF9dUY1GjMZTrM0BTdN2+ICUTNJmiJQ2TOxbYiOyMZRIgnTSni0bzucLFoszDg4fs2qjL05EH3vn6J0Et8455rMFF+eLuAZI9lk3Lato7HbvyhHXz3b445/5MGWXDRfww2+9yAcePcfv77wmSYr3zJYrVk0XA784D7WS7DXe/945mralaTuMtVTRZEorsHgMDryUilS/wtLgvCIrKkK3IigpPRg6MqPo25rzo0copbn+1IvsXLmF7ztMXlFt7aOKnN54/jef/yDbSwlyLoolP373Q/zMyx/l15/6DBfLGSfn56wWc3zfQexllZBESRiIUnxDcgfd5C4E72VzjElJ0zVr8jQpgNHxM6R7sxoIrAoXrcjbvmdR11xczDg9Pee0PqfVHf/mb3yAK6ditna8M+MjL7+LH/3Si7x0+z61kXsxtpb9POdWUfBsNeLFyZT3jKe8WIx4h824FWAP4YFsqmoGDOLJdVRHuHxwdpQ/QSk8ipXWHGvDA2t4RQW+HBxfMfAlAy97z6GCRik643jXW8/w7P1bMmZV4N0PnudHv/ohPvX+L+D0Jt9Gre8nfqAXKAWkhDtKkY2NndbZWEBQg0vwprgiLkiklgAhBJqup48cTKWUkF4jyjXwKRGpdmZlr+168b8CqMqc8XjEeDxiazr9pmthOr6rEZLHe8d88KV38fThNf7+j/8aq7zBeM2Hv/oe6ryl6KUmOKBTgFLiM4CKxfIYvauBaKIkk4IhckyRclDrzD0ohYnBRx+bZQ19ZZxMUHFfVVE6qclthrVi7a4UvHHjEe/92jM8d+8m/+gnPkGTSUD11P3r3Hl4lc9+38tSd3fS/6AOgaXrSQ36rJKeOrnSjJRmW2v2MsuOseRqmPvxujc3x02A73LJJ712ZC0ja9kfVYBwUpqImLgQaILnoZ7xw0dPM311xG9/z+vDfX7h7jXee+8W924d0tqOMvmdxn8lbXtmrdSUAwLDbzTvSrI6F1K77Sck07FUNWT2KegJl0IzKelgKMoCs3lPlHiNvHN1h4/NPsAnpl/g2F5AgIkb8TOnH+VfbH+GuVky9aOvu4ffrsT3D3qkoNX30BtRZ8nnegq7No97M3/AX3jwp3i5OqBXssCPXcn+Sc6fW/4Jjp5asnc2FeFeUFzMVhwez3hw/00evfWW8EZSWYxAbqEqMra3p+zs7gwdfNM8MkbHPiWCKnS9Y7WqCWiaesnF2cnQn0axzoy11uRWApGqzBlVJdm0xJeaj3zuBYq5vXTx01XBRz73HP2eZrS3Q2Yq6qblYrYkaMvNGzeGMSCTL5A6WWttUMlILQWGWuG1YuUCr7/xJkr1WKMoraHuJHMlkjCzaPDk+oK+c4KwOhcbw0XnTefIs4w3tx/xxz/5YfYuphQxIOmVBwf/3u/9JP/8Xb+Pv5D3n17M2N5ao5IoYvkrRFm+o+uFmCyJU+KrhTiuw6AMRGtC79A4ur4h5CVlUdN3NT4fYcttQtczO3iLbn6IK0ZU06kE580S1zVYY2h3Fc+f3+HH7n+Y/9F9DgKcVXNWtuWPf+Wj/O7+lziuzuNEis7FG2BmUmBIQB5bVni/7mys1t4uOho4amVoWkHpgrWxbKMQaFuD8hiTDfJuBQTvxYRu1eL6jjwSXcu9iqdmV/meR8/wew/e4nB/RlBwfOWcP/2lD3B+7YIXyox9n2MyITYbRPH4dmvipjVD2NzE0zk+MUnTqx2wVIqF0SyMZkmgdp4miM11qxVt7yhDJiUjXHRGDngV+GNf/gi/v/cqLz33JnXWcH/vgD/1qZ/gK/uv8NaNxzzz4JacbzwFl8pAgaH5IIqIQhkxCrUW10l5L6m8JDZJAcU6mRoGZSrraHHl7pyXcRjt9Z33UYmZEq4k6VVY20WiunSyLlJDQ2sYjatvttwNx3d1QPKOgzvs5FNOty/4wjteBQV5l/Gjv/d+Xr7zFqM6x7kOFXSMJCW7U35TPrrubzAEJVrIni4+yEEhEsThTxRUgd4rXEhOhRtErrjAh/gerbW0us4smYkGYcFz+/EVss4wq1a8deMAZzyjVcGdB1f53i8/x1defEOCIufJkhNgYIAsa0/0C/EcB3hLBXQrHIkKxa7R7NuMbWMotZYARknfk3UJJEb2m3NtY4CmH2daY4uccZ4N0fZtNeVD7U24DT/kbvDR//k2X9l7zM2X9nj+YpcPv/ksmRE+SOKxJBkZQGbFCt+ho2FbNDuKAb0E+5uoidxnWTTW0daAsGxM2JSvoDXleJvb17YorKZ2QSASFPv9Nn/44kMUIeMoO+fCLFAonm5usOXH/Pzjf4uH2RE32v1hrHyz4w8i9f1mr3U+cHGx5KBuuLI9YpxDU7dSdityFmbFv/3oD7Hrp3xm8jq9Ejja1hntouBj6vt5a/Ro2NjazjFf1JwcH3Dw8C6r5ZLexfEbPFbDqMjZ2Zly5cou0+kk2l9Lbu5JBEVx8227Fm0NXddxdnrMyeEjmtVqCLjFBK9HaSlRlkVGWeRMRiOqUYUqCp46ucr+wxHLrFsDXApG1YjvO9znrOrQ1nJ2esZqtaKpWya7e1y7ejW+fiPbYD2nEwdMkBlDNa4oy5KmEbXA9Ru3aLZ3efPNR3h6UMJj6rqe87OzIduXSqD07ynznDwXY8Fl19F2DVcPprzj4gZd2VPUMSDRjllWs1tv8TOvfZhZuSQsBP0wWg8LvyQ5ir7rmS2XTJQs5sOIuAT6Dbo++ce5WJoO0K9wJsPmE1S3RGkJZuvFKW19jlKB0K2YH92jHO8KaXFxyrxb8uZ+w5/6/EcpF4qr51twC2b5grN8RtWW/MD993DWnnCsT1Ek91Q1IMk6KlAI0trBZgW5tSyWC2k3YJ7Irr0Hk9G23ZCJr0nWazTCWBt7fYna0QdomhaCZ3s6oSorijzDTzQfu/tO3ldf5+Nf+Cj/h8ffy7tPrvGu02tsZxWc7ZHI74p1cMfGqBlud1oXN363LnOIEsgRcAgnbR4CZ9HVe6kUGB2RO7FV0MZI0FRIstX1DmMchc0HZDgExbQd8dF738fC15RNQV00vHntAW3uePe952hUExU+WmgCaezEIE7pqKqR2hYB4Sx6JW7A3ruIZkVZtdFDMBGci89Tgtzk86SNRcUAxDmHjuGY3wjMUdLHxns5hyyzjKqSdmjuJ8/bKIP910Flk7UWZeGV6/d5vHcCwK3jfZ59dJM27/FakISwaVajI68ipdSxHKD1Rk+auPPr6M+QZL+JLOmHLDzQRzJciBlriF1208ZJnHA6OovqjaAla2UBO9w752hPspCdiwk3DvYoupzveeU5smgvPEjitEGhRFcfDdF8hCaGKBmYBc9553itaSAERlqzbW10mDWMrWFsDJVOnY43BszmJrmRhW4u/QA6RAhRw26o+Mk338lPvvlOpssSPdF8z8E2C9OxvNpFGXJP4z2N97TeR1g9qfqBtHDEOqULfvAgCWyeYzQ8ClGCnGBFHYsDKcZSsSqtAyZA2zpmtWO6JT14qiDOwK3quJc/BiXX9HxzC4Xi+xcv8jA75u2OJ83NNo8nf/Z2RmjfjMyayLpaK7a3R1zfLTEadOgIQZPnBWSGidPijpZXXJglvZLyRdHkbJU73Mh2ubKYinwdxWxW8+D+Qx4/eJPlfDEoRwLSV6PMDVtbY65e2WVrOhXSMhqvSuo+w/iGykr79LYXaV9VSeO+8XSH6fY+wQeqKiPLc5bLBeen5xiNlGqKjPG4YjQeYfMSQ8az/1/y/uvZtiw778R+0yyz9z72+nvTVrrKqkqgHFAEwAZhiG6KQoNtRCm6O0IPCoZaoVCEXlqhful/QC+SHqTQk7xCITWbTXY0RRJN0ABsAAVUAYVyKJc+8+a1x2233DR6GHOutc+tzKokqQdlYGWcvPees8/ey0wzxje+8X2rW/g6sB1OL13/weExM18zexw4Pz9ndbHCOS8dE0nsD5XxvciIJeR7rBXeO9brNdumYzabiXx1aLl+85jjK1f44O4HNIOjG1xyng4ED23TUpQFffLIqaoa122pjKVO3UGFrgkq8rnHT1OpgovCjyUbrwPbsiMqxUG/R4nh8epClJK1HmFxnxDAwUk7ap18cbJ6rUy9sLOJiiJ1VIGhawSxUgatB8LQEOsDipkI3g3dithvUMFjtcIHT+i3uKLE1vsQPH5oOV4uuL4+ZLl+l6v3K9Sriqgj9/dOCBpmfkbPjHO9FJTJCdo7ZQy7ujKSORdljenE0DCO658EYjnB6N1AN/RUdf1j664galIK9D4SB0cRAteqmoN6xuFiwV5ZMreG0h9TPtJUM8PPPjxgvRaCq1HSojoip9PouvTvy6jrhHgAdCGw9Y4uQixL+sKyjVn9NBK1RpmKWJYY2RSwKGYzRdbIgqzjJGq8ueyvlBrX76+89znmzHj29DZHqz3u1x0PDh9zcvWCZ9bXUYMo0rK7bhiF5YnScEb4mT5XW4Pysu8YtasxlZAro8f3kEYDnXypBEHxMXXIqB20yzu5PpLydrIYkf1JjwGqT51gtrBP3OiPPj7RAYkE6pGvfua74yD7yvc+g42a5x7dZDXfjhOB/BCQCR92kI8RwsoiMOn9NUq0AWIWkwlpDubdWY1yuzknD1FIf7KgTLXVXHPbjdCRV/HwyjknR1IuODrf5+bpMVYZPvf684jUtYOQIlo5YxkMKWsaF+GUcWReiELKRi7CygfWvuMDhbS/Wc1+UTC3mloZcT1Whj0lcvjjwE67e77XPMFNSndFlCiVKMfqKPfxyFcclhWUco4+Rnrv6b1niBJIbX1g7QKd0nSIKA+p28f7kAPx8dNk8k1M+5A2VAFHpu/naw8hsFmvee/BBVdvXgefnkKcAgWnPO9WIsylouL57tb49zv9tR9DMT4uEvKTfv7TOCmQDGhRlKXBqIAKjsIYSKROiVIWoBRr04wlm31qDkrpiCkpJaOO4tDs+k64ADu8GwOUhWYxr7lyfMjh4T5lJcJnnppVZzk/33Awd1AGet9zfrEcFXYjUFY188U+MQT29kTGvVzPUMrg2w2F1czrivlchNWUFo6A8LsMtV2M+4RSSrLo1nF6esb5+TkxqnE+xnFjU2OUnOdBSHMzxMh6s2a93rJteg4WFcZoKTmFSLc959133hINjSFl/UqjDfTDQIjidxO8Y3W+YbteopWmKIokCS7naouCvqxxwVM0aTxpz6Zok0NyYNt0dMPA0XwPpSSD7gZHPzgxTBwGunbLMPQUVrhBuTsorxeRHeu09LOgClAFyhqMTuqmfU9o10Sfs+r0Jak1rl1DhGJ2gPeOa6sjXIwUs0NunV8Zu3Dv753glafQBmNFPCwjI2NJNGfWMY4dND4Euq4FUidGmmfWGilfZ7RZQZfanU2WGYugg6f0PfPg2C9LODjAhECBoioKZkVBcYn/IGuSQmFiSlK0CGUGLQnGiASn881j5cl53AMbpdgq2BA5HxyrtsMrxSwF0rmN9jCX51HJ50hcuUcjT0i+YpnXIUJxwzAkd3aDD+Jl9uX3P4vB8MzyFsfrQ+5fO+HhwSmPjs944cEzo8rpOL7TOe9aleTxkQOOfGitqerZ+DuytOudfSNOqHVCkfKCmz/PR0EI0fI5IYTJQV3rsVVYJ5G0wZnR9LXvHUXhiR+TrvqJD0guFmu+9SnRYKi7ki/94GUAFs2MeVejUuSaISrSzc21W2A0D1OpfSmLb0nZRSFVRwlMlA7jgxQiGkCOUieMNaQ6KuMA0pdRGAUQGazj3TsP6MoBEzSfunuLWVehgMP1PCnn+R0SkSwYOpkaXYI9Ezcj22mHJFBkdiLiiARIUWsaDU0IAukGBXEAHym14sgYDo3hSBsWSos4V5xKIbtaFsFGsiiKDjvnuRsVK5HCnmvNvCjG94ikeijiG+QidIgY0Jl3XBjNsJMJ6B00BaSsMX6OzoFJPjV5rl2/pW+WlMVNbJF9e6aN3+F5pxRfJo3mhfapf4kxOE3+nxaofNwAZarpSs07X1HUsylTnn4RgJXZjCWba8URCz3jyU/TuuD42i3utFse3HuP1fIcPwSqQrO3qLl+7ZjjK8dU9QylLT4WrFvFw8cn9F3HvKh4tFmxbgaaRlranfd0XUtdzTHGUtQLyjKCH9Bas7+3T68CpdXJtbfGhYjGYazwD3Qq603jO/LgwQPUKnCxXBFCoCzKaRHN4zjDzuwEoyHgBke3bfHOUZa1lKzSsPEhcnK25kevv8P7dx8yuIwsZlfbZCapItEPLNcrtps1MUbmi31UgKHt0q0PxO2G4ALuJNCfSHbuVWBdtEkRWdMPjqoqqcuSwYlGQ4hQliL6tdmsWZ6fc3BwLI6qMRKDy0NgGhcj+idX2w8NDo0pSvADQ3OO856ZyXdSj7wa0euB4Ab6sEaXc2y9T1FU4D16fsCzy5up1yVyd+8RAwNFEDJykTqLUH3S5UibWMzPZBI+HBKpcRTjSs9Fa4WNgYJUPu8b9roNFYHK95Sux4TknhUDsTBg9iZnXZWCIaXGWTGu6wpQBhM1DpGR9yYIASvNmSwPEKI43W5DYIViYw19WcnnJbK8j5HGWPoo/J4qRorCjiRq6TJRCQE3qQNGyoQmbdbaRJQTscnoJfju+jY5Z8t67LzncLtHRLPv9njx3tP84Nm3acuON6+/xy+890VqPxvnRfAZHWS8rrxcqPF/OUacEGYhRo8rY3pNSpx3fg+lUOmaM93AR+Eq5hf6EMFkcVCVfIkSCpNKbT6pgQ9OAm//IUjyhx2f6IAkRPj6yz+gKWWB+Oxbz3Ow2kvqrBIdS5lmIvCM5I4UPGTZeCA95JhUA9O3cklBxfSwzJgVhgAhuvF3YxY82v0sWUYwWia2Vpc36qbqeOPZuwL3OcOn33hWysLBy0DXEZSWQTyep0zAXM/P8U0IMlBzUiA94IJhKCUKeyr9nhoNBiGiU6dRSEGB8FMexADKoUKkBmrvWaDYN4a5NlRaUSotKn3pekwwKMTwLu6iKU+WKDJMSB6Ecj6Vgr00ce5YA3NwRJoQaWOUkk+EAalWbL0iKFHIncK1PD6y0SB4XXBytuX6QQXKTs8IGJTjnfoeIKjYi+2d8dn/q4ih/atwSZ58n5gC51LnrTYhQ9ER/ZBU7MyIHl3ojZRsIuzFGaUu0vDLJa9IUZbcuHGTg/0ZN65d4d57b/LwwT0Kq7l65YDj4yNmsznaWCKGVRN58Ohh2tSg6weWq4ZuCHiXM6vcYq1QpgTlIIpTrY6RuiqxoaYsCsq6ZnBC3CyrCh8iRoVE2p4iyRACjx4/xjYCH+8f7OMHT3BJwp2c2aX7HSLBiE/NdrPhwf0HtG2LNQVFWUl2qnQqNWhWm5Z37z5m0zrZZCEF86J0Oasrmu2Ks5PHtE2TuBJaSLxRAjFjDNVMiypl7ymoKDuBpjNCEhGjsrYfmFWlkN9DTGZkBuf8OC9tUiHNCUbfD+P6IcFaCrt0gtyVpjIR53tCNxCjB+9wQ6SfH1Dqkqg6tNaiHp0IyMF7Ih3OB+bHt7Blhd+u8MHx0vC8ICnAvYMTvJLSqNEWY6VbMSidxhQpMEhoTtJbUtpgtcEiiqiVNaJiWlgOypJFVbFXliyMZm46zPYxl3bR3YRCaQGG9fSzEenY3X3zvIlggmYwDqcDZ6ahaGucUnhj2AJnfc8GaLQiKJPWZEVl5BxNbmuNor3hnKNrG9wgHCdjLSMGG7OtRU4g4qVTMhp8SuRQitJaWjXxLmIMDP0gTuzGUFjL595+gf/m5/6Q3gS+d+N1mqKlcIKa7QYgMeRuz0QgzslvQoGyhLvMLTOiN+wEGxFpw7cmEYtz6Vs+BlsW2LJEulGTmWkhGkE6afx4ktM84oQclZPgHpXEQQP94Bj6y8KHH3V8ogOSwTi+9ak3cdajveaz7zzPvK8vQU4jqhtzC+gUfCitZeBJS83YPpUX8JyHxugvuVzK05OBtbtf5W4PCWiy5CXjQx6/Mt6rIut5w3u3HgIwayueu3tLhGWaBmsUhRV/GZOF1VSG5cx4YXp8zxTtxhwYTV1BpAEiGYYe/Q1CZPRGyNcYpzNP6pSexgchonknfINElK2M4muvfZf1jSWfWl7hF955mZeGGXb3+tM9YOc7433c+dl0MydUAAUFmsLAwc5kD1ECldZo2tIyRAlQ+hhxSuOU9Pv3wdOs13zw5tucPHzM7Gdf4Xh+eMlTyCnP++UjAPb8jOvueOe0Pzyo+NcNOj7OEWNEx6RoiZKMXGuic/gObJUWBee5YIPDY6Jh7usxPJveS+5qNSuoq0Oi69iuHtNsV6LEerzPbD7H2gJlDO1guDg/oTBQLfbpmhOWqy19n3yHMmKlVTJnlHEVkXKKDw6lFIWx2Nkca8WfZPCiObO8uEApxeHRFeazBWVVXUK2nA8YNPP5Hjdu3ebs8SPa9YasX7NbcoOEjHjPar3ERS96CkbaHrUS8SalZCFt2p5t09J1blzACZJVu8Hx8N45TbO9JN4VAmw2qxGdscagbUU118y0QVFQDQUqKLwObIqOiKH3ouK8qEusNhSFGVFBSR4UaMVssZ9sMGTl8UnzQSktJaTx35LVaqUxWhShpTQcxZ9GR4ahR5UVypZoUxBjM6rKSmu0lV0yDGilKGxJ6LfcCreYDSWDbXiwf4LX6RkWBUW+l9qkUpIE77NCuvEWdc3+omSmK+o4p9SKKgUitdEpGVLTnEnoCnFn+qcgY1erMpdF2Fkvdkd2XjGGGFm6ge8ePeD3P/MD3j044/bdW/zan3wFVdaEohBSaipL2IQw5CUneHFN31FWl67edJ7OiXJpZcsp4VUAIrPug1hC54RzNBfJ6wQTeiAbtSSagtgELBFrNZ9++DyzrqIvB966/h6PwkPU+ZBUUccVHu+cKPyGvM5OKL1o7STVVSVllLH9N7daJ66IMUbw/wgxEbnz/qdixPcDQRtckoXzHoKXRBUYzSG73mGMSkq9qSsnehm7IXJ6fvExVrxPeEBy98pj3r/+kKjg+vKQFx7cwWJHsZgJrUiDbNwfI1l7XREz5WP6NhlFMOSa2YiixzhKSHvvpo17pyY5QmIAqc1NJYgvxinoQSneeu4ebS0Q5wvv3KbaFHR9S9s2WKPpVV4UFcYabDLBK4oCkxQn8+ZjTJLvDX4MvPTuRE6vlUk3if4En2rSqaXLfMh1E3e6h1SkjZ7GBVZFw9958dv84JV3uXlxyP/k/Ii/snkat92gmi17EY4Ly6G12IRUqSgKremk8lPiUnqUb2BODJ74kVZQoiitYd9Oxk15eoYo0PNgNSujWHVb2s5TbDfEWQlVOd6XR/aMjW5QEZ5rbyeH3I93fFhg8qHllw/52U87nPOovocqt8wlZKAoCO2AGwa6PrBannFy5xSvArNQsReEPzIS9LwnBMnWFYh7sBGLgqOjA46PDpnNqhT0GgavOFl2hAg3bt+m6SJd36FT9lNYSz94lIoja0elzjE3dHjtIDgU0uaubM2QnGbRlqFvpAxgZRwXVYUvNbuzx1qDcobZYp/DK9dZLy9o1Wb8eUYDQfRFYkxZbYws9mZ4N4gRZAhT9gf0/cCmGcAovPOE4BPnKtIPLc12gxtEm6Swlr4fpCyIR7kwyk54HWlbMEVBPSvxTlH3JcZrXCEIyeADbe8wUUjDXd+hqkpKqiGMPK+Q1DFzbBQBW5Spy0R0HkLwaZPx45xou45h6EZPIoKUI5wDW9bM92+ArhmCQhczUBrveggSiLl2Q7s5p6r3Ca5HbQ23l1dYVx/Q2o5lveFKd4hCNDxuz2vqyrBXWPaLgr2yEI6JTiZrxvyYaeWHHeOMyCjLWEMllXiycjPj+jB2uyBzvCGyBM4Gx0nbsh4cLni+/tRd/m+f+yqPD1b8XP0qP/v6z3E1lFJiipHCivKrS2gbuYQTHM7bkSshHWID2dFXyJxZgTaXXBRKTaResRfJMy8nvxFrDSGIT46YC3p8IAWgCrCgNdaU3OYOrz58gT/a/xbbquWNW+/y/MUdjLEyh1IQoq3CaEMeDJPQmaBaMeSSixGF3x0ETgw1dTIVLFJ5R/hKOQh2bmC7WdP3HWVTobXBJ5JyDmSUAucdQz+gtWJWioGp7J2CKHb9gLeerp28kn7S8YkOSN586gMeHZ1DhGcf3uDZRzfycJlelOG9BJuNR4pQMjEPxhglvXR6J0E1Uluvl75x50nlnvT+uaVN60T8zOG/TkI0JkXE6bTSh33z02+MM/i1779A7tm31lIWpbT7EgiJINX3fdJ9AGttel2R5JYlut0NJFSqCWqjsEanhUMndGRHVCwjRJCy3JC6ky77SIQoTH8dJJM5P1pzfrCmN54waPxDxbsngjZ0/SCErzZK2UfBHrCvFDf39ziqaqrUjmxQ2DHryM+LJ1a3nahkh0sw/oxJr0MSG0WlNPNZzY26kja8+x9gHnwgz6ksiWVJefiQ/1j9Au/vXfC54RX0VgSmRGBOviZUawru/nW0Rp7sqvmwwxJRtQROKmWPuZ3VlqTMY0Pr1/RFDwrKaFkMFdH3cq6uI3pDNxgBAVSkSwqgs7pkMb/CIhk0grT7DX3PZtNijaWs5zw6uUffd1irqAph6g99S4zQbFesTh9TzRYMzQrXrnFaU1ph+Btr6btOFnelOT89wbuBuiw5uHHEfDYHpXn0+PEYNGitufXUM6hNRGsrXW1aSJUybXPnSeIeKVmco5Lsf1bPaIqWTb8exbd8kPJIiJ4QPYWyKCPti8E7Ns2Grm0YnCzks1mJ0hHtvCCOO9m0NgpbqkSQzQaQnqq1WK9xpWejO87aJavHS25cOZRaehfGkoAkDnEM0CU4ykHWtMnlTVlrm7hhlqw/kWF053qGwaX7IetHt12lTb2gnB9BdIl/IE7JRgFuQPuBMnoWWkHf8O++8XkeP3iap9eHvNo5nh6WlDHAfomfXyGXkS6N3Qn23B3hO99P/xv/nCapdFVPczlG0YQJkFBPxZbIOgbWwbMKgQvv6XpRjW7bVpCauqKe1dzwN6mHGtSKs/0VZwdrrp0fJ35QwBid5kEm18pa55yQ6F0iAAfvCV7KksYWRO/p2oZZXZEJpSHtB9poDCYlmSmZ825E0MfmCS3aIIOPUsbwkaqeEbFsW4f3HSFGvvjGZ/ijF78FCv70hT/nl7/zJULbUVYV8/kePpVi0l0WWQUiPvuGKYUpS0HQEsLtnUvzW0s7e4z0Xc92s5G2YKWxRSHBiJcyVbPd4v3AbLZg7+CQ2WJvXLd0Kv/bEKiKQIyewoIxjPIOuWQsfMcsGviTj092QHLnA7pqoBgsL919mr3tZfGVUcEuBSWTpsVO7XNn0uQS3CUckbwmCLrgU8QSUkvqCPnF3d+J4x/S7pv4I1qPJkgRaOueN575AJBWzZfefxZjC2Yzxayep37x5EcQPDF6ghdoOkOwfd8LRJtIs1IeEgVUY21yqlQYhL9iVI7ixbguBCFwhZSZhBhR3u+sObkjKWXnSgZbvtbzgzXLfVFo3dvMOTyd03ftWGMkyUljoAWWfcNqtebYe64cKfarGTOjqZWiJjBXilopbAiUcTKW230aeXOOameXmE6XD/uGGssM6dshQNtC23J7HfnP7v8GKJiHGYrXoSjA2vErpj/VzveUMfL3rAGwE6T865Vy0r2OYZTWlrcXvxMAbQzrzZZuc87BcxV+Lp9XxIJFr3GrD9D1FdrlBl0csB0AY3GuY3VxRrtdyvXO59iikhZN9CRnnsomZ2dnXJyf4dxAXdUohSCDMdBs12yWPcuzEyGyOVmYGAquXjlEK0XfdfR9iw+B1WqFG3qMgrIqqaoaW1SsNhvu3rt/qYPg+s1bhIuB9bphl/uVN+PghTAXlU51fclWq7oSUTPvCF5KHwrZhHMrY2ENN68fsG17Hj3aslld0HZipJZLNG0irk5y+urSYixmkwZjFW4IKOWYDRaTPG22qmHl1lycPqa2mkVdE+LU0utTBu6iILRu6OVcTR6e0qFn9GRaNhJ6d4MCpQRNSeWejKLE0KO8Z1aUDKEnbC/QKEpbUWGwCkprsYBtLsTxNgb+0z/5JZqyhwiLoWSWSq+BJPSYsdVpiUuxhrq0Zv4YpPkhR4iRQSmcscRqhrMFTQj02rANgXXfsepbNq1wkmLweO/YbFuGQST89xZ71HVFVZVYY3i6ixy2e7zPI84WK04XS8KZlLMkkNCEJMPuo3/ivnrApLmmKasCbUXGvhkG1usNJgmy5a7MXT8ZiMQoKELf92mjnxIY5zxNN9D1jrYV0nVV11RVPd4zay0vvfcMdV/Slj3fu/UmZ+ECu1Y02w3WSneatZbcNTokYzzpNtRJk0QlvSqRoNDGjmXWnLArrSmqeiK7KkEarVKoWs65b1vhtxQlZT27HCiHkMo34F1PRJo8tDGSKFeloClaS/D/MY5PdEDy+lN3IcK8q3jtzReIcdIcUUolERlG7xKZI3osV8QdSGRMxncidYBM+9ylFkpE7ROLOf1Oantj53dJA8SoZF9NBBVHxvE7d+6xnQmU9eyDmxz3h9KpYG0Sl0ptxVlUKAUHNjiRrvfiKCwkKT/yPWKMuFRyslaCk6IsiGhiEokz+fpJZL8n+3nTZp8HYGbLjxoEyL07O1yxWki548pyn/1mNmbxUh6XP01SYdVaxL1EhyGyidDlux8Vs6T1MPQDikChNLWCBTAnMgdmMewMXHXpj4yGjWW4kZA8Zdnjka7Jq8mUsQgGwoByUzlu+iglwccOcjJ+FQWUpQQoZUksCgleioJds6MfK+E88b2peyngYyI2jz+drtq5QNf1HCwKWNS0Rsp+ZbTsxTnbbYt3A8uVo5wHugCFBltYiqLE24KQN2mtiMrSDpqiUEIm9IFtu6ZzyYo9EYSHGLFGMbQb1suLBGtnnw1Z8N285OrVA7q+S0RvxWq1YuhadAwURUU9Wwga470YPg6TKSNKUdU1vjOYVq4rt7mL067j5PSMs4uVZKRBOBRa2yRdLhB0UZaUZUnfDTJu030uCgN4Lk5PWJ6d4YPDGC1ma5HEgRkuPSetFGVpx2BY5OkhOI8thM9Vd1NAslENvhg4PNjj9PSU+bxmMV+IZoNONm5KjdyKwSUEI42VbAmfcVpxTJ5EBmNqKTYxUsSAjYKoFUoJqVQFbL/EeiPsytkCldo1TRIYlNLNlGCEEFFhmh9e5TVBgcpE9cvzLQOZkR09DH48UcjSAyvvWaPYaEujDAeLQxYHB5jZHGUr1s1aSgdKE9stRVfQXpxhlKyBbdvSttksco+iLCgLKSFEIgfNgqvrA1SEi9mak70LKVMkvpxJJYugMq9P1vdIxDkn7clR2peVSsA30gq+bVuGECiKYgyItdaUpZTXiBHnBvpBuDmZ+xcRBCwi/jB97+j7Dpee6d7egcyHhMTe1obnTp/mB7feZDNv+ODZE1564+k0BuvE5UnjWU1doew8h1xSyYFiTqglEc8EWEY13ODDhIwnXlJRFGyUdE012w3D0E/7gMk2KXLfYnCUhaGoBMkzJltNSCAYhr8ApNaHV84AuPXwCk+/dw0XnWzKaYEkLbYhyqYkE48RTRRp95x9jTsYIAiIULzz91IHCxEXIr1zOH+ZY6HQU/YSw7iAiEKrCCIphCwUiPz5C2+KQ3GEV99/joM4x1aZF5LeM2eEIFCcBbK2hE9eOyFIgBJCIhmJx4cPnmEY6Puebox0DX1ZMKsqjLUimqWykE/unICsvaJILPKdgZgvuS8896+fEXTAesOz929QqAJlk3pqAo20nnrmrbEUhQw7HyI6BFQM6AgQiRp6FdnEQIwqCe2osTNIlGYFQbHDQB0De0RmEcoo72XIzp0JDk73LrdOy/XFURraqSkYs4jf0O6COo6CGInO/cTEb9SxyZkRSJCSApZYFPL33a+saZC+YioX1jigIHdXZb8l7wPbTcvB/oKqOuRd85CtlsC28Bp/NvDgpOPGMwW6rOkHRzlbjHOgKEqcMVCKyJenZNkG+t6xV8lzaZoNbbPFpU4AhegtFBYuzpacnZ/jstomosVTWJlfJikTu0H0B85PT/FDJwtqXbPYO0SZgkcnZ2grzq4/zrWRQFmnVnYfxH00AKvNGhdhGNw0p1RKGWIkeumsi95JgO4j6EhdWuqq4PT8gu/duzuiIsZoqqpMFunCt8mJSRoq43WpLJYYIlVV0m+hqmbgB+rWYp08o8b2NKrnxmzOZrNluVozqyrhtmidWnBFm8JqA24AJ9wVRcSE5LgcNCYGfNdTKpgZnQKQiM3o386tG9WmQQLrKMF21KIDkjcidtatCKNWkokTH8vrMNZQVSQ5AqudZVIQYhdFwTRG+Zw2wmpwLL1n5SMX3rNJhGYfIna+h5lJ6cNF0KakxFAaizEFg+uFIKq1bOQRmk6k5r331LOaxXwm/CNrJv5ECOioeP7Rbf7g5e/gtOfdKw9odccs1ELSDIDSOB/wzidhOicBR9NiNwWjQJjWgshstmzWa4wx1FUtG67VlGWRNl3hcojeiqWuZ6IBoxCx0hjxNtAPPVYbghWBy1CGNPaqVC6R5zMbaj5770V+cPNNnHF8+9kf8pn3XqQsSmxZX15/VBLL1FpKOc6Ju7VWGFMQksFk5pTkhxcS6i5JdRgHuU/cyEyaHYYe79zIRcl7UwzTuNHGEFXEO0ewQg2wVpTJYxBzvxCfSHg/4vhEByT5yXzpGy8zbHtcZqFHiFpk4kGNsJpSgdEpcQdzzE6HCiU+STl2VtO+5GOQ2mIUqDWrXMp75HKNwH4ToZREjpMOmRBUagELNKbhzafuEnSgHAqe/+Am5aCTT1Nq5U0bsfR1p/7zmM89b1zJzCrKQxfUZCLAibGcBCgxRLpuoGk6VnorFt/GYkuL0Wanm0eP5CaBZ30afNO9i0BfOu7dPJNAwxuefXCLsqogZbEhZuOz6X7nGnZMmahWiLlYQnizyVjcyRYjEpBJXpuMCYE+gkvZTNt1DG2L6nrmWrOwlj0j6EqlpCvoyNbJ5yeVpdK7e+UT4JN0Tsag4AnUeXfTfLJUtPN99eTP+x76nrjZ/Ph75vuaS0HGjF+KAGXNWJxVgsa4IeC2DeW8APYZTIN2gcpZqlCgl56Li3Ou3wkMzrOwClMagtGJZS/oVlXIYrpsNY/OlpjY089nnJ9fsN1uiERsgmBzSW91cc752QVd149Qt0pjXUh00tZalSXKwHq9RSFZaVXXzPcP8EFx+vCErus5PDpiL7lOX7qNIM8gZXcoGHs7VIatNUN3+ZEMzuHcIIJlXZ8W1YGrhzPq2tA0a5YX57RNm1o2JXhuu57gw+USDRPCFyNYq8d/u74HVYhXh7IYozjwNbO+ZL/zLLzFqsDxbM7+DSH67QPzEFHBgRffh4O6wh8dYa1l3w+UfcDk+54A3JxwKKXQMfuIjFNq5479eMUyw/jjuphErKbNSY3BehQMdXwTafuV9TAoRUuk8Z7GDbTJ1LMNsPGelff0tsLPDun8QExeNS4hjcZoirLCKAUmuW4rRe+ciIelNVQbC0MLUfgPm81qlFgX4a06raeSOGUcO5fPQ4w8//AOxhuc8bx35QFb02IaeT81SOeic46+F6L1MAwQArYoKAsp/ygl5o0KmNV14uFpDvb3ODjYn5LbNO4ieZNOie8Ta0BIZZwY1/hNgyNiiwI3DJydnVLXM4qyFPQG8TOrPlfQFQM/vP4mD5v7zJc12ZDUGmlZ7nsZ32PRKAqXsbAFxhpCELNGn3iFIuHvMSpSlQVVXbFpWtq2F9f0pK01oSxSHrJFwWy+RybOZm6WtiKhENxA9A1Kx9S9CmVRELxLBOKPWC+fOD7ZAQlQtwWf+d7TON+jvECLSoGOBgY1pjjZuC3XcMdIb4SvZLETZusEP+bFKOb/onQrZMJSzognMbC8faYsLzkrRtL7RAlk7l8/4exwBQqunh1w5fEebhhGyBly5CvvbBREpXcvPVehdgTeNNFEQpCMM+xEwFMrmGQZBJ+uzdG3Li3OEoigRHugGImyaelKtuD58/rScf+6SKsbr3n64Y1L9ySFTQl9ItfEhGneD1P9NnksRMQfhRwIcVkAabQ3J/XZe0/T9ZyeX9C07cict8YwX+yxqOf4YcAqRX+xZt5Gbly7wcsvvMizRwW6a1kNJ/ye/hMOtyXPrq9wdTtW8S7f63zDd29+Pj4qOPm4Pw9hDFp+7Hd26rviZaEoUBzEiL4AioprxZb/+cOf52/WLzIPMz57f06pLO7uPXTXUyzm6AihSDbh2w2276hLYaCtlw3L8xPmleXRacuDx6cMbmA2m1GWFW0jRbXVxRmr5TldP6RgfOp8sFo2b2u0SKuXBToWhKBwXYOZz6jme/Qucnp2zmotwdnBR2ROKn8p0oYFShcobSjKkuPDI7zrGbpO/HIQVLNrW9qmSXByWlTLgrLUvPveXe7de4gPkaIsJLFIHXMxBah54Sy0pUrIpkJRGMPx/ox5VY5+VPN5RW0KaltSGsur5hYv/fERvgxcW+3zWX2Vw6qCQhZtC1jnLnGiQlUSC7FQ0FoJsjqOAYHgPxKSezJV/ogXRRiRT5U4QoqpDDy9UtGrwFsH57x7cMJF5fiVe79K5Q8ZlObB+SmP1g2rzZpmGOi9tJUKP8egVaSMsuE5L+uqtTZt0CIgFhMXRMU4qnzmrkVpUxUBt2gkUK/KGX3V7awGYbw3jMguY1k5hMizD29gg6YD3jt6wPmwIq7k/TPi2id0TStxZa/mMtbr2YyyFFQyRmlFd86xqQr6vkcp4SBlgzlZ12PiB6VNOvF+Muo3lryV8Ei2my1Ns2E2W4wu2sYUKG1xfY/3jusnR1xdHfPB1Yc83j/jreIt7ty/Asgc21/M2dvfx/cN69VKum9iKlVqzeHBHrPygKAiy2bDer0ZmxhKo9lbzJjVc4rSslz2bNbLtKel+Wwt89kCW1isLRJvLFIm9+mcFwtS7wlGE1wkukZQy9SWLoGjH+/NTzs+8QHJSz+4w/xUIk2l5SZk7sUQ/I4T7JT1A+Pf86autLBLQgCj4wTtp4kuLIvI4APeTZLzcuQsKhOkMvo+aX1kc6kYxb33vesPuNgXGeerDw+Yv1+w2a7HPvAcBV+C/tMEREkmbwork0NPUL7zbuS2xKin6D3GMbLNJR1SRhQJOBfG3/M+0PUNsdlS2IJZIgqaVAJTQSbbaq+RLifg6sUhBxdzWjq5VyMRlrENW0XZtApj6JEavc5ZETGZ/klJLOayFTnIm+BGiDjnWa43PDo5pRvEW0FM9qRrIjhPjAmGrkvWyxXnqyUP2o531xu+8HM/w2defJ7vV0v+lzf+ISu14lc3X+F/d/8/4+Z6IYTXpiE2Dapp5N/ZPv3JL/Xjm8GEasedcfITjvhEDqGe6OKJE6qjo/CRlFfE3jFXAz+3uYNXN7HBcNBVErxsLtiLEbPqUJtVgt8j+4lzZFqIqmPPB166UknXAIFnjg7p9/bAGIJWdMUBbdOwLQLtrMKlYNAlNM6ngN4YhTWG/f199m1JoKCawYyrKGNoesfZ2WNc22CJGGMpjabUipktuNLNaG3Boq0pkDjWhEBzcYHygb2qQinNoiw5mtWoWBC365Ejoo2UPw6VIljLjcM9DhY1zapDnaw5GjRfvH2HuqqxWrrPTBqPVmsKYyiNGT1n1M4YRClRo9RT275WuY1evqKBZ+7u403AeM1erETvYqdDa1pXEnrxZPC7M1Zy9h/RYNLGxw6a+yFBcQ7g89/HwpMCpaTI40Og15ZeB1oinbGY41usmhXvqff53/ylf8Y3nvoRe26PxR/+Aq+ePUuMkeVmwxLNNkTQBhWioLExIjO4x7Vb0IlQv3NZ/dADYrQoxAxP1CaJdEnwEnwQqYW07hptqOczBtdLV1du4d65QbnbKt8C7z17Z3OOLw7Y1C0Pjs74INxn3j1FVdVUVZWQFnFNlzJ44uxpCMERgkqIscYY8ZEZfJWExnazfdknUNmw1KQgJyWnO/tDDIFoFGVhqeuCphWyZzWbJ1JyRVlWqFJ0tF4IBXdWN/ngykMuDjfcvfaA4x9WqAh1VVIc7jOf1Tg/MPQdfdcx2mgkRVlrNYOLEIOQTlPA1ntFXxZYKyWnqiqxGqKT5DWXjooUoGU4znsp3WpbjmNOOIsySlUqt0mz6YQ05v344xyf6IBEeXjt28+im0gf+lRyUaOAUCbyZFVSn/4+buqpRq20xqAJKsOAEa2lRJNjkgi4IKUIH0WRUBCWtGwoTQhDmlwCi2cVy5CCgdxK2+qBu3dOaOY9xmueun+V2bKmCwMx9gKB65TdaY1CFsIcccriaNDKgypGq25rLdYbgd7CxAGBcepIcBTF4Ckbd8Uk7DOa9QVP1/Vsmy3BxzEjIMGRmc/x3jMPiGngfeq921KCIYl3jZ8rcGsW2rHJFXKhZmMLZIb+tZUsy4UwwuVyb3fQp1TOWm02nJydSzCSmNxhED0VD8k3A7bbLcvVBUM/yAI99JyfPubb3/ouRV3y/U9/wEm9ZqW31O6AcnEE9eGHD7i+l8Ck66DriOlP1XXgnAQsXrg847/HtuqPPuJHBjXqw76dKy7jIZ5GefuSYDWTzxRINhr8aEaogwSiOgrMXBJHnQIw7Nd6574rQmmJ85rI0Y+XCdTlDVp+T0+l0cIS5/MRpYtXjthtmdYp0/w3Dl/j3/87LxJVQEXNtTaAVYRrh/LaK4sd0EiN49HvPX/p/koSoMcAnBiJ8xs7kHYWmLp0O5+471wORnbee0xS1M7c31lvxvfI8A7Tn7n0lH8fVFIhJdV3zYecS4ZBGevx43tG8YPyiDCYDwEHMv+UEnHA9OXrBeXxTbZuYNOusYV0QEQ/EFAs9o6I1QyzXWHijIu6xfWau4tHvHr2aQBsWmd8Hj8pUw5eui1sabHVTAKwoYXgcIOUz4zRye1XE5XHpHnhvKd3jrKKhOixuhiDNmWSj046Vx99QpFiGvNhzBGIEhx3fU/fDTz/7k3ev/mQqCOPXl7yc/1nMVb4IVVZEIIQUPPKmJsTBEU2yXk8P6sJNXfO4QZPUZTkjqz8zLRW+KBHufadfJYsrG+sZrGYJx8blcT7xOm8rGoxtIxQ+TmfuniWb4Q/p5l3PHj2jNe+/jS6E+dk7yV5nNUzZlWBIa3fXoK2rAYrSEdNdIK85ETRpNfM5iWHB/u4tqHvuxFFGTwYLR1cpD1i6Hucd8JvMobsgi3PQqNikbq93DhGhdw6NQ38tOMTHZBcPT3gUw9vMSvrREiLo3Kh91OGPtUcpvZbnSatJwnBaDO22eYyS15Uczts7wZ650elvrGeA+lzc2ucGhdGgbcEPhZ4ONIc9Nx/+gwU1H3Jq48/xeGBaBV4J0Q8n8TNonfkFuUxateGaA0Kg4oB7wdBGVJ3y8iN12aaVGO9P06qiTF7pIIOQqQLKXBCafpeCE19LyZY1gohNXcAvX3n3vgsnr97ayytZDhvIthJUDKiUQkJEVEnNYpAWTO1b6azZvxLWtRDjGyblocnZ7S9XLc2kpnkX7gk3OP8yHdQSrKzgOP88Smvf/8NvvfcGwzIBLrlrlPHagqAdsZaBKgq2FEUnX4YJQAZBvkz/V2lP2P+2Yd9OTeqJ15+yydKNk8eKuvIJELhztnGqAjZavwJwqzMgylrnsJGdhZQ+YGga1NApVIklD9J5cw7/XcprtpZjTMyl0WvRo4Uu19ijiZQAEkKm0ut+pdvxTS/n0SgcjASd+7riDDyBIoQx6Uhvevle3xpEF4KMhhl1nMLaL4XIKhg1CD/233L/BzSDYhq53zyDczvoXHK0HrPZujp3JBk0DV9GOhCwFQVuihwWuwUvFJ4rSUoR+6DQlGEnr0oyKPrt/j2AgBtS2w1J8aALWoWxTHX+6uASOA/nIu0u3S+pGcXIoN3CWkoMKWUgYw2iBCkxafLiWmDG6PoFMjFhKy4IKJ7e/OFZEs2cZZCRqHzWmxwExgi4z51GbpBeENCgBVxx5fuP81/y7cBeOeZh5Q/KgA9rtGmMBBT+XocT5CNV6W0n1zFycmrSZw8CYycy8rXKj066ab0YZq7OWnNYKpW0kJblQOxT0rBaY5GImgthoDAZx6/zMz9M9bVlkfPXaCvw+K0GonPAPPZnCvHh/RtQxZ8GwYvBPOY+C8EKhtxQ49z0iEKGoLHmIK61hwe7tO1wlV0PtC7AEndWClDiB7nRKmb1P03RtPjuqIxpoCQPOF0Gn9K7dznn3x8ogOS5z+4yZ319bGPO5dMvPcjQcePfeIRQhTL77QojjbMqHFRUWnwZ0KPSvVAn1oTQ1rAYhKTkUMGkDZGwJEgwUNhDYURxdCJLwEYxXyombUVi3bGSx88LXyRQknXRc5+gkgMOzek1qrJPdJ5h3NqbBHOrWAxJullpdHajplvhpZVkpJXMTcRyZQrjCIYyDoX1lq0UkksyiUSmIht5cAkuMDepqapej5191a6FWpadJEWw4AM3TGDBhncfSeIibVYbdFGJ0llJdl8jMnZNG0GWjKU8+WKzbaRQAohuuYNSua3SsTZXeG3Xag34oeBB+/f49HDU46fOeTUnnPH3aSK5Ti+PiIU+PGfKzV1zDzxe6OGRkhW7VlAL5+X9xK4ZOJr10kQ07bQ9WjviH0/lovyhhrJC11MnWLyk3GTzDLuTJvgLoSc/8gbMglFHGPsNDbGdvZxB89nsPOs83eiNNRbnb+fpbHze6ZMU6cCaC5TqTRmRyRN7ZRac1BzGQXJ7IdLSIfK9yU8gTrJOWst+BEk6fYUFORgRV4ZU2Clxg1l93PVzr2Iamdeja/PUV6+x5dHUcjXozVOaVoVWPUdLlpMPScWli4qLobA6aZlvT4hRukCCURMKR12IQai0pQRjquawpapo0wenk6JWchjzw80y8fY2R7GFoSuIwaHDw5tC7TS0o2x7lg8thTOcjjskwUivRvwvkcl0caQOue0NtiiJPjkjpxKFpPPkZoSOFLAloiXMm4ifWodz0GkbGDZ4j7dyye4It73bLdbnBNBuLIsxDepEKuNVx8/j/WGeVehk8lgJp3GhNQ6rYWMGfWYRMl6K+FcURQjH0RrJc7vQaT585gM45OegkyRad9dB3LgrFE6OeMmBCbbkgQl9ziGmIQ04bMnn2avXxAI7IUFe/tzDvqaiDiAa62xZcnhwRF9KcFgPzjaridGaYc3Rrp+DJ6+MyLINrhR7j6ESFGUzBcHKBI3L3h05xgS58baEqeFQ+KddNaZiOwlGJSSayJGlCpQ3idDVxK9QVyOP87xiQ5IfuOrX2K/nTMJNYwp36UsKOSFO+asKv0Z0kKNSuXEqcQBUgfL0Hh+eNMa+eR2tbNQp3+Oy9n4ufKq44t9/md/+99nu99x/+oJV1YHshDDpQ1dFsApC/TeC2ybiIA5S1BM5KopIMmZrKAZGiVt0GraeNTOTcqKrvkktdap395NG0e6D96L3PZ/+Hd+jb/593+Fx1cvuPX4Ctk7YXICzZn3FKDsHrv3JN0myaou38lLtzoEadPbLd+oTIwczzNn4T/2TkwjQ/rn//s/+i3+11f+U9bVijpWo5vwpY3uI/6++7qPDF52NuFpu7h0Ey6/PL0mDBJQm6oAghgODQN0fUJgeprzFdvTM4ZmTfQL6rKkLmEbutT+F7DaUNkiScUjtXvvUSmHDkR+LHdJJxHHjP2JW0cGC9Q4zvMerMgZXyYmyz1QJktbAzul0Vzu0EqzWM4ub/rqic+N4weTxzBZsCxP/fghv5fOeLcElsK38cd5SmcH1AlbiWMSIjYTcm2BSeRMhJ8MUSsCRwSvCErzqJTveWFOEm1BSPovQSlcCKxWax6cnqFnhqv1HGutBN1dy/nQs+k6rJbNQ2lFiWj6GCuN7bvlaa2kA2K6Ii0l1BRUBN9La2xREfqGHMoL2VQCOXzk17/5RX7lez/Hq7d+jugkeRiycNuIHE/cqGkc7I7nJ4LfMcBk+nf+aw5OYl4T1JhcMK4Ru4FpKis4R/R+5NvZZK2htOK5R7f4X/2f/6fcXl1jHmdJayeOshC7Zzg96TihOuPa8eMrQUhyC5fXm8sze7rMeGn9vHzsDtrLr4vAte0V/he/+x9z6+Qq+u6asF3irRsDZhn2k0eOiqIlY43BhUl+QGsjSLLeqQ6MmYgESsba8fs68y1jTtw1OuqJ73Np1YvTfMz/7chr7AbwH+f4RAckz9+7iarU2Kqbb7YNhYgcpS6TicUtyMmImuxE3CRnS5VqnF5P/JKYDJRiJEWvcttGQk+aoFmaOZcHBEKTGDpmhR2AqAhdYM/XfHr1LJAfXBa5QRASxApdxHpSZjR2y+Q24IALwhFAuTR/c0CTuCdKesULY7FJ+luMo5JJX4YrU9mLJGldVRWFtaIo6UXfxHs/isLRRVQXuXqxTxc7Bt0zm82pKpkAISl6Ztn9cXFJKMuljD+SumQUZO5O+v+u6WE/DDRNO15fhMnpMh15Eu12BF0+5Bk5N7BtBrpOc9vcYLc76P9Xx3h9H/GzDwvUxmvJ2hFKgTIEbVD1bJzkbbXirOs5VZHBK/YOr2D1wEV8jKiZe2pbcrR/yN7hVYzShG7LsF2jhjVDs+b8fM3Qu4nfYxQqRFzX4d2ABhk/JKhbCbnTGvHC0CqSq2X5e6WS0mgI0oYbQ5D3MXoc1z7Pk8hkaLaTTOR5EFNglNfPnDigpveQ7wvB0ntPVLIwZ8JtiCSUUr6MlU2r6x2tk2xRG5U0i2AIQQi1VkigUSaLmI8VJXZxxKBN0jEZmFWGclajrSimDsmILSqNUZG6EERROAiB0tqdjQ8hD6duOB88TbtlszwjdC2LWjL+fhgwZY3VcHy44HB/wXrb0/dONmFS0OsnVCtz6DAKRSC6lr7dsH98S/yNBiGglrM9hnZL1zXYomLvYoYaamIrLZvr9WocsWUpBHfXd+RSNjAGRhkNyQmS1npEh2MIwpewWbRLQsLBDaPJnPd+gviTHpDSTBIOMRC8o+s6YozMZzNms5qiSKR7JLCqguX5x7dlTzA6IW4yXvp+2GkYUJfmpqBKAR2S0qkKTBuuJLebbYO9WE4BNlkELaFvPq1zevodn3ShMv9D0KXUmZM6q3K3V5bDiyHwubuvQIys9ICz1SgHL3uKcPqqeoGOjuD7hFoAQxzNEIuyksaHxO1QSuH8FEiUVYW1hqFvCW0LYcDaLD2Q+WVW0JNk9Jjbx7XSxLxPBhFnUKYYEx5lpG24Kks+zvGJDkhW261kkcZgi4JCTx00KNBBAoU8GXwI2BycxEzgTH9myJDUxuSn6BAt9UeBDYVIJdGknEfmixCD+CRoLUGQ7/FRjdG9TAopRwzB4Z1EpkpnfQMDZifWTEgH5HIL5EemkdIESE1QggSHd7kDIrl7JrTDaIO3BWUUzoW8v2wouSKZA7hcilLIomzLGu8dbuhFnTAZPAnEJ+Jmzju6fqAoSgprEeue1CFA8qvV8mdGcHXKpI2xlFUthCgg9qJEO/oHpeDR+yBKh4MTAlhZg1YMXYdzffJrYJwobhQDIqdv7PyDGANnj8/pVluYVx85zn4M1dg5ngw4flIy8ASG9hMPpRXKZ/0ceR6986OmDeme9M7TO0BblC649+AhDz54n4wSaa25heHpG89SFCWDtSz7nu3WcbFpOWt6qRfHSGE11gUuzs5oNlu5n1HGh1Iy5srCMK8L5lWJSjC/ONEaDvb2ODjY46ieMV/ss9wMvPvolOADdVVy7cYNur7Fu8jJyTlu6LlyfMxsNuPRyQXDIEqZi719Do6O8N5xcXFB13Zkf6YYI7YwzGdznPd0XcswdMmdNxuPGbKCpCQSYXxGEdETqaoC5zybtseFQFUVFDaVOJVA9HUlY7mwluhh8J75wYzDeh9QeFMztBti8FgUxICOgmastlvZWELP1cNDrDV0XYcLcRQGHL1slBrbXq211NWMw8OA8wuKpAGz2WxRRcn+omZWGKwtKcs4zqUJkJD3msppsubIGA6EfsNmu+Lg6AZhaInBo7Vls3zMMPQsDq8TkPbTrm0o64VwHuo5zXZF7xzaFEDPyMnyfge5mjJvWSOmGZHLMnrUx49Eo0WlNnhiFI5GLq8QJNLVqbU4xEjbbPHeoVHM5zMWi/llcbQcIKkMsWU1UXGpHoX8QkQrg1GykXp20JP0WpSTwJLUeegcTdvTNA2bpmFW16ltNwcikuwaLUmkCKuJvce0niW9p9wNmhS28/rrvKO0hazJxqISKm5shdMWhUcqR9L9U1YVs6qkMZG+Wcn4NxGdjPwUirquKUqLdy3BR+Gp+EhAgsOqnkkzgetTwu5TEmIlA4gx3X+LD6ItYwqPitm/Jz97SZ5i1IQolg1KSRPD3t6Cj3N8ogOS9XLJUImTo/AaipHfYEwiXwKgREZd7ziKpiBFxr1MlMzPkH7skCJbaXdC6dEZUYzuzYhWxCFOsGkaBCEGmqZDJK2zUqm8xhpxd/TIAMwlGpNU/4QMO5Fqx99NXAqtpb3SGgWIvboxgRAKQpGCrdQCnN0h+0HIqdtWjwJo2dlXG4HqQiISKp0zH7meqoxU1lAXM5wPbNuOwcmAy1FZ27VjKUXUXCd1vhHahRFGVNqgkYzUOWldizGijBkz4EuwZxCDtL6XSVOXM4qyIhJxfS/sf0R+PGdFfugv9b/nQG/3aLcrSvsvgSn+lOPDAhP1xM8+KnjZDVbcMGBwKCoUYjDnXcQauechBNquZ+08WgV0UdI0DavVkqg0J48eCcplNNeOrwnaoaWWu1xdcP/eA7quJyDktBiFJ3SxPGe9Xo2+LkDKxAQBicqIC7WTWrX3HqM1dS2LG0qQkFgUnKvAvU7GxKKAoijZDj1d8NzvelzXsalaCh85bYTBX3jL8UL8TYYQeDR4eh8Ig0vEdTDOcTybU9QVD85PWF1cJJ5VarkYg1gJQQQ9zYgBxCEyj4HCGFShZf5q0U8xWrxAytJSWpHB7pKKZzSW/WofpbKEPFhbElxL7x0qBEJUbJuWtmup6gX90HO+WqGUpm23LBZ7Cfa+jBjGJGKYkaaqLKEHYw0miohV1w/U1T5784q2GxiG5PCZEOKMMk2tsDvBQB5z0TOvKqwpxGNo6NhenLDdrvDBs3/lFmU9owgDxiiqqhan1ghaWYyaIH9ljDgsj8Wvqcwimjk5D0hS8HoiiyqA4MEYXAj0wyAl4hgwukjJTA5uUtlBSXNAXVaUZcGsrimLEtROR1laWwAJeNK9EGl0CSwEcQ7EVKoK0eO9cFmGQTpREsEDlboCjRGTyGa7JcZIWZTs7+2NyW8IcezuniayItpIVdqEvqpExA0jeqR3yiAhBLwboJ6jlMZqCVi8U9SzPZRv8L2UcrOCsbWWajZDa4jeMfQ9WvukfSUuxpEo3UplTdf10nWnAnbk2XnQuRnATh1sUQI453Y8lrzDDR1lVQv6zbQ/hYRoxQyRIddYFgWz2WWfuY86PtEBySQXHYRBPPTkKO3Spmuzsp1N8s+pHGMmn5BMdtoNSITI6lMgkCWCE5QcJhg5GxtppQlaAg6jFcqaVDqSsgopYvTajTLm7AQqLtf7dO72yV/mUneQVuKbMDX7JLg2+LFLRmsoteiU5OnqkzGfD4FuEDVFUnkpCwapZAaYg5EYNd4JOVUbQ2k1oSoxxo8BTCRiE+u+HwbathuVH2UzEFw+oyIxgjaWsiqo6hmFtbiho202SfiqBlNe1lPLYzxlgM1mRdtuLiEoeUyYtCBFf7mUM46b8U9FXVcs5vWln8UPee2Tx79KWedfCiFRoGyNSuVBpaJYe6fNYLPacHF2xsX5CWVZUBWB5cU577/9pkDgPlBomFUz6rKg71oGN7C+OOPs/EyEoSB5zYB3A+vNku1mM5L6coeLBCOKwupxPPV9Ly2d1jKb1czmC3yA5aplMZ/LPYp5YU9BqdR9IIJRBq81m6bFpvJjDBOrwwef/EQ01lj6FGxEBDFary7YrFeslhfyGlukuSuZdYg7T2lECVVCDXVyOpaOqfVGzCALW1AUdvRGcU6Qjrbr8TGwONyTsZnvWw52lWK1WRMi7M33WG/XUnKIIk/eqoGz5ZLCatq2xQ0uiW+lzhylicGlUoucsE4lx4zGKq0Z3MByuRE9lOxBFENCIdkJcDS7Iy3GTGB0mGqBsRVtu6XbrFiePRBia0qamtUFe3uH9M0S33fj8w+59Ko1qKS0HCcCJ0iGn81Ac8dfLmVLRVqefUwItQkOKJNXTM88ziCRdccSb1oijTGYomAxn1OWEhQrpUcCv5xnQpXTNYvStnT0uNS16LPTrvNYa+j7QXxlEnE/t8rW9YyyLEdV2BDEliL6CpR4GZVVPZbihHuhRuR9d9zldCz7kjknKITqmhREZ0E1I2iTgFqoRMZV2qOtFfKwa4neExV0Xcvy4gznOkh7FUweM33fsVxKd2hRFPjBjZ15gsh1nF+c4oOnrEr8iHxPZax+6Bl8xBZy3TE1WQiy43eayNKDIuHhSo2JDKQS/cc4PtEBic73ICUD494TRbwseMeQa6m7ioJ6gs1GUljakLM3QYgR5TwhinOi3HApMSjA49BROBox9dhnU6IYhVhUlHWqD2ZmuB9RmJDq27kdViB2jVJu7P4Zz8lIEJJdHn3urNFqDK5CjGNbcR4Iijj+3BhLLLJXQZJ0zufk02SN0oon9zVLNduxlXq6X9JB5L0aM7KqktbrYRBIM8Ydp0ktGd9iVsniliBK6XpIkHr09H2LSEQLJJ0XmNzFkFuDFbJhJR/xCQWTnW+Upt/tsEkvGScNyEK2t5iP8OmHHbt55k8ry+y+7qPKPB/2vSffN0JCyy63jBottfVuu2V5sWbbtHgP63UDdkE1m3F4fJXHj+5D9BRo6rKkqGY0zYZts+H85DGr5RIVGY3aguvZblY0m+2IjEzQNxQGykKP6pTBSyBalSV1XVPN5jgf6bYt2uikIzNpz6SIZAzIlNZjOS+SfF1SCTAiEtvnp+eJRBdTZutQWnguXdtw3mzpujZtdjrpLoTxs3R6AnkMGS0Kl1EritLy3HN3ONrf4/TxiXC70hi1RnxOmm1L1w702WRRaYpyljanFGx4RzYP7PqOfvCUZS3IbJQgrygrctdI07b0/cB8VnN8cMy8no/oTV47coJQFIX4ATlHWcgCH2Kk6weWmxalNX4YKNKgGcf5DhFnpEhGAVJ8iOwtDmm2G7quYW//kLJdyzOupD1UaSjKGteL4uZoIZG6X/J6pLI3126nYfo4H/1lYntMqEicjODyhqZCIGrhkQCp48SN553X7rwuK2uxycRRyhxhRL5yckdCRUYV3nTf+mz5ESNVEnpsm0bmljXMavGpsWXJPHnl6LQOK8D7mqas6PqW3ABRFqK0midvpgDk5NZYM6IZEQlIpJvQELzDGIff6QoTHtSAVmWS1xcCtNIWZUpi6jbybqDthnHvKqzF51JdWjeGwTG4gC1LqrICW6BNwTB4kUjCM3SOsqyFG1RUuHIgRnBZSM0NKKOwyQwzJlsS75zQDXK2SAaVcpI9aSHl5/Fxjk92QKLVmHHDE4JHOUOKGcmQAAWVyZxTW1oe9NbakdOhlBolqyVAYUQfTA4CCEm5L0fCIkpljRkN9UwiCmYVUtEz8XSDo0+dFFmMJiaSbIwCbyqXSjZOFnCtNN5phsQJYYc1nWXVZRE2aX2Qa9dkKDffN4HR9KUJLH493qUAJWlH9L0jxp42CbMVZclstpjaohNEW1ormewg0PsmbjCdxTtP13ZE75mVBdFahqHH+ZB8DgYRSItiBGi0IQSHUB+zGV4iLCvZTKy1+Cyznq5rtxtJJ+fPXUOnDOmmF8miX9VcuXptFHjKb3imLyiiZS/+uMfK7vv9tCn20wKYD3v9iN4kRdC80QQfaLY9m+2Ss7NzPBW2LClLePjwjNn+MX3b0ex1nMULrt2fU1nD/vFV5kdX2XSORw/us1mvpCZtclu1Z7te0m43eO+Ay8FIVQoqVhghKtukDkxVYguLNgVNO9C0PRpNmaD1vFClRsvxfvlhYL3eChE7be7OyUMcKsfp1SVXVpGqSS3URvQUrBVvn/VyyWa7SVCxxsdsKDn1CikVsUaSBR8ms83SWkjX9MydG7z04nPcu/se3//euzS9RxtN07Rsti3OhdRtYJISrWwOOm3OIbiJOE+g6bbcP7wgRLhqjiQpsZa+69l2a0DKcHJj6lF4SykpC8Swk1lHCcLLoqDrW9Z9R9f3DH1HNs/U2qKIVPMseSC/OOZkO5uAhAMQsKALIXOvzpjv7fPU859Bm4LH/jHe98ybUnSOUGybLYuhA2Sj1CRbjoTYBO/HDSe7zypEXIxCytJZk2LcmmKQc9eK6AV1IGpRco2SSMWEYvngxsBGVFOtGO/tzpl03a0dqF0xrqXee4bByXo0uGQQJ8aSdV0zq2cYk9yTISV4qeMrBa9F/t6Y9Nn03sOI8uRRnmeuVkqklFOCKfyUJImf7lVei4qypHSethtG3gYh4J3D2lIARWMw0aIIeFuhlPgAxXzxSlNVNXt7+3RVRdesYbumcIHBy1pYJWTJWEtTVawuzmniFp0ATIWiKkv2Endru1py8vgBOEdZlgRlR55mCIa+6xhcj3GiEp73gSghbZqDevIDU5mU/NOPT3RAUlhLketgORJPNSxfBLpioN5mdm+e7AKrEXZkiFMkPgyS/Sud9Ud0YuhLn7x3ogpalRVamxENEcXBCFHqk7qYVCszQiAdCFLGsC5graco/BixZ1JbFgz63ovv8fzrN9FDysiCImhPCFOL3ySVn/VTZAPPBnlRTZ0ouY0thmmjzAt1JiZVpoSCcfJElco8rscPQ1qAJdMyJjkqM3U6iMtjzdnemq+9/EN+9V98UXQCSNowIWAStOiz8V8iaho9MfUz8ZfxDqox4JpVJbOqpE/Kq7uHBCYyGbJU/+VjB03RhqvXb/LSK6+mmqkcAwP/+4P/B39j+xt8vn91d+R87MDiSUTlyXN88r0+LLjpu55qXtK3Pd4NuGA4vdiyWZ3hnEebkqFr0SpyeCTE0L4/5fVn3uDN+m3+rX/yBQ6PDrl652nK+R4Xm0esV0uyFbv3ARU9q+UFm/U6WQlMAZDRiqq0LGZlQrLAFiVVVVGVopUz+MBy3dC0HVZbcrKcW8sjObsWBK7dNqyWK5pGSqvaTD5JKLg43PDHf+m7/OLvf4EbF1dRuUPMKtpNz/L8TETuiOMzy78/zrYUDEVy4hHwWUolbTRVWVJWBXuHB9xWd3h474TH5w0+BLZNz6bpZCG3ZnTZVtpIp00QLaJh6MZ7iTJ0LvDVz3ybFx4+xZff+axk86aUDWzIWbxcb2kLqqJMiOyEQOyKEoLCFpbgw9TlEgJD14v2jt9S1xWo7P6a78LEm9hFSESDSYiX1mjc0LJennLlyk0uzk743t53+ePb3+R/+KO/yVF9BWVrlmfnHBzLvYhDD0npNJ+3BLDCy5iSO1mvxM0i2TlonXLDmDbeybaDhHBkFdDMazCpS0+ZnJQIot1n5CclQrmj6Ld/9qv84jdfY7ZMEu9Okk+FoE3z2Ww0iTPGpM6Pgrou6foh6ahkddaYuHCpWUHeSFBFq1PXydTVGYHsCxRTWWa87Ttk7FyOE8RZjc+m0Q3v3b7H589+hqiNoBJRZPS1Uihj8IApKmxZiQx8UFRJQdvagsXeHoeHhzTbNWeP7+NCxMcenXRIrl69QT1bsNmuUSiC9/SDQxvpmqvLksOjK1R1zWpxQdc1XFyco7UgTc47TFEkjslAGHqCNUSTZDPSeMscIYInOMg+ZYP/CxCQGGuTdfkEk+UJ+car9xm059XvPHXJj+nJHSFvBhO7OvXma4MylhCVeHYk+NjaAqcN1qoEWZICCjdunDFEmqYl+EHspYuSqhSzLmNFCt4YQ4kmWMagJkObJ3tL/tlf+xZ/6+FfY7Yux/ZV6dIJqR1NJptPwcSuXPcU6Zu06IsdtET5JIRgt0yRM9oJdZJvK6rCErxhKMSMrE2S8sMgUfMY0KQ7r1D80y99jfcPH/NrSgKNqqoZ+n6cnEVZUpDQjJRx1cmCO29U2uRrSEqjpN/VhrquWDdt4jpcPqyxQlojK0TmKk2GEgVynu8f8fxzT3P7SnlJsO1Hxdv8v/b+Pl/uXuPzvPoTx99uIPFxyjMfD7RM12EtSplxAcWBMQXOG3oXsCrgo6Jc3KDa11TVDNMt+dMvfJ9h3VJcL7l2/WkWh8eTu3LKZGPwRD+wWQtnxCeHT3JgaRWzqmBeV4lL4RIbv6KuK6pqRufg9PQh2+2W+XxBaQv8kKS49ZS5am0IztO0DY8fn9K2Qwp4s++TGhfqs+MVf/blH/Da917m2eEOOm1Uy9NztptNOn/FMCS0cxfXUhIQKyTY0lZRFoYYTVLW1EnlWKTD68UednZM0Xnms5pyKy2uxhbsHc7Eaj0GNpsUDKTNzzmBtJumEai8rAjO0809924/5uz6ii+89yq1rYmpNBr85NZbV5XwIIpiIjYanThpISUJqR0axWI2I4FENE3Lar0ECgqrKa3h8hFHKHRa67IMAZRWo0KPKfdQRPzQ0bZbtNE8qO7zOy/+Pn/lzS9Tbivm+0fsdS0qlYshiw6mdUOZS2VOUUrWExSb+DCZ+DgiZolEKYiKEl5G1DjnGNxAYSUQ0YlzkHl2+bOjyhhDDnCEF/fnd95iNaz5N//Jz6NUSlbLEmuFuJ/XEpPeN0szGFMIryRLHqSkJbvejgFj4qRkTQ/vRBZ/1EtBuDI+iuN6Lp1ks9RLAU8QTZQQ5F5uy5a/95Xf4ZnffYar7RF+6Ai+Fu5dBBWlW7K0Fl/UhHIA5YgotBaU0tqS2XyO0ob1eoXZttJtoySxVlq6JeuoqOb7FNsGFxsJpLTGRXA+UKIp6wXzvWPW2y5ZOch6ZLQeW+uHvkMpcb3O3xOyrmfsEM0BcoxcLDcfb937WK/6/9MjLzIxaJSavFtOr6z4b3/9+/zsN5+VlrDAFMFJzEJaf8kTLX2bLPuujEFpg8EQcVMtM/FQIhPUIKjERJj1iS3thx5iYKuaMavQWlOUxUSy3VFZ1UoRbOBrX/oRbz/7EPYNszBPcO6kPZI5H8AIUQbv8CqRO9P17cKN+XNy9jrK4ycp+nHT0pqsBhd9IOowTmaldNKVkJZKnerfws6W+3P31iP+4LPfZv9iQdZBUdqkjEC+bFGMiI5NwY8pKuoEK8r1hGm7iVGCsJRFzmYz9vqB1XozZiN5PNSzGYu9Pdq2oyiLnVbm9Fy1oarmvPzC83z25WcpjR4jh0jk/7T/t7lrH/C+vT8GWD8JGfmwn31cRGX3dU++1tgijasCkUUUprxzA67v0KYg+I7Tk3tos+D46g3OqyVff+H7PPXwKua5fQ5mN6hn85GzlGFygmd5cUrXdlOpIw0cq5UQPmcV1pjk7Bsoi1qIfGVFsbhC2wRifMxsPmO22CP6gBvSPNHFWEPWKbsbBkdQbdoErCjTxqT3oQ3ORt598T7nV1a8/8J9Xr77NLH3rFZLmo10NhRlsbMJTsGIGclkKTjXyRpGiY5Pbgsti4LCGkpridEQKSiKPRazGYXtQGnq2YL9a0/hvWN7ccpmsyaTvoNzeDcwOM/gnTTbJQRoOdtw//iU86tr1Nc0h2EfH7ODb6TtWrwbKG3BvJ6jlcJHxnEZEgIbYhDp8PT9uq4oCjt2sHV9JS7MWQQsl11TwCRl2kTmzl9jsUAw+qqeY4zU//u+pShnnB1tebh4zN+98w/4W9845PrNO8zqWngeqR0/yV+QeQsjx0urKaBSAaUMuV19oraEtJlPeI6UDEWHQ1CngVjVO8lZCoLSZwoCnBSI07rXtC2b7ZaT2Tn3v3TCV370WZ45vymNBWbHOoP8HmoMWp3zonhqpqAwn1vm+u0KaSoYyb9DSO283kt3GRBzIJkRV20SPwhcRBAXpVGpcUJrQY+G0vH9p97kdz/1B/zmt36FSle4fktMru1u6EfyuQsRXcwpC0Gdg7a0Xc9qvaEfxDTVBYVXBboU1/aoC5bbjj6s8M7R9p6gCpQJKAO6qGk6z6PHJ9jzC7z3rJsWdEExS4lzCHSdOGm3zZYQPH3XjQHeLvVBujZTwTYl2TH+BZCOF66EEc2LJDU+GMcf/tKP+O5r7/Olb70g9e4ckMRpIpAyxrG1MTKiB+gCU9YolVxoY5GC51z3lUgRJV0+MbcUZu6J9wIT6+TLkdrKZO0XAtxkUpe6aKx8vfepx/zzL36LtuzpSieBgtaYmK27p9JURmecd0k9MI7cj+z8GJwjKHBuIsBOapg5SBJ4fQpcJj8fYwxFIi9pI50I+fdCEvoJzuGGSG8d//Rzf8L941PKvoD9yKyvRmVX2Tgm3gskcasQcF5IdJmNbYwI7MhiwMgT8CFQWMO14yMKY1muN0KIi2ICqI2ha4U1X9czhr4fF0djCvYO9vmZz73Ka595if35tMFF4HvFG/xXe/+Eld7wrv1ApLo/dqHmx4/dUgJ8eGnmI0Y2KrVIhhgZBk83eDarM1RY0mw7XITl+Rm2qCnKGevzE/7Ry/8N26rh/vUz3J2C2XCA1gWDT4uXEyLwenkqZoMh7ChXRoxWzFP3iVaapu3wzlPXUne31gpyWB2i/UA9n3PlygHKWM4enaY5KVuG8y61OJJQF8v+3gIfPEPvx/pa5pt4G/jea2+Bgm9++vt87u/ewfRm3BR8CITkSZTvYg4U8iZc2gJjFM4xBrwoQUrqqqIqLRrpkFBYRPRHpy48S1ZyXa/O6ZoNJgYWe/v0bUvwjr5vU9u5IwZPVZYcH+zRDR2bg45H187p6oE/evU7/M0f/FWiQ9BQbTEoCqWh7WjWa4qjwzHTT9TuZAfhwILIocgctdakXdKhvEMNPUZXSYYgI4E7AcjOPbqEIoVAuz6jqPawRYUbBtrthqA1D/fPacqOP/rMd/nNt0846q9zcX7KsbGU1YLcmpxt5XN9LqagKj+nEIKcfNyxHIg5IQRjqxSACVFZB48yeiyDwQLY0YQKuzwVhbEa53qG0UivZ1t39JXjwfUzvvbzP+D5P3iKwttLV7+LCGdeUy7L2CgdX2HHtykk5MX6gFIyR+T3dXIn7xiGgb4fKJUoOXkvZWxbFJI4piYD4bVJ0OijTwlmGBOlvvK0ZcfvfPb3eeZ7V3nl9AXKppRGhCCNAiqtxSTkN5eltLW4wbFcrSCVVrJMe1lV+KhYrjdcLNeIuu0g2jPGjHtB03Rsty2ROFIA5D4oohc9rS6P/WHAJQkBU1j29g4YZeORPS8nwnluejcwW2ZxvZ98fKIDkkllVaVgIfL6K/f557/6XaKJ2JBbdafXj9lCvPweOVAJGDBlEv+RQWS0mqC34EcjJ4hja7FE80L0GoYWPwwYrTA6Th8mnzgGKW6nrqh6hasC/+zLf8q9GycYrznvlxyu67HjQlCUtNhmSEwJQzwHKll8KIxeBWEs+UjitKNSmxCOXHoJShGDgiEHK1L+8Kk0prVmNitF98RaUGpncnnu3nyXb3/mLbwNDNazmTXMhlpItGUOLuLOJh0JLsPaHj90YydNVVUUM0uW8gZZ+DKMWljDleNDqrpkuVyxbRq6rpVWvaKiTyRAHyLGluwdXeX27dt8+lO3ee6Z29Tl5WDE4fh7i3/MB+YhQQXu2Yds1Jb9uPcTQ5JdlOPD/v6Tjo96X6UkOF5ttqzXDV0vrZ2DV/Rhjo8Dc1tweOUmq4sLlmcndMWWr77yHSKwrDfcv3JKeCAy+z7Ic4resVld0CQfoJFMDRRGOCOzWQkotk1HDJ6yLKlnM8pk2660EXdp4ylLQbWyhHrOaENwnF9c8Ph0Sdc1hOCoyrnoTHQ7ZbTIGCSfH6354OmHALz/7ENOZuccbw5S6SpNm/gkJ2hHXjwFvGUyfyQKEbYuizFQzf5S1lpBC6LD+5a2D+Isq1Rqf36MVop5adHKUNY1bhAV5LZp0NaiYmQxnzMrDW3X8+D6Ke28hwh/8NI3+es//CWUK9m2Db4fcJ2jJhJ9z/npGbooKcuSmKNWDYPr2TbrJHpWURWlIB9EwtBBu8X4AbdZsWm2mHqOnc2QzVqCgHIsSeyOTsZSyjAM9N2Wcn7A6vwR3faCbs/xwHwACk4Plnzzsz/kMz/6zKg5ofLaljZlrae5GKMIU6JGgD4hzrkcJSKMhInY6pMvU+600bGQjTfposipCpI3DDIOoxASiAHRz0n8lbqu6W56YgXOer7+8vf4xR+9xosP7lxCi2OUUiI+Ix5ZqJKxxDChIdIJ2PdDStKmTiIfAoP3DF4CIhekw1BI13JIo0UY29az1P5u0CbJhqi6NgcdEXjv5gP+yc/8Ec/88zvs18dUVT1u6DlQEl6VvN/gnOg3BZ8I05LkFUWZkkw1tvGS9o2iKNjd9o2RduKxVB8T7yXECTmKkblb0Pc9XScIiXd+LEWOd0cpSMawChiUcFW8d/TdZTLyRx2f6IBEald6zLTOjtf8/b/+dZqZXLzxqRPE6HFijw82fckAyfQvhdYF6BK0TcTVTA6Tm00Eoy3aCgs8D7gpEHBCSIrJ7j13IpIg050jl4ryzHnj5Q/4sy+/KXEQkZVfsV7N0nnp5FmQUIsk/KZzjXTsPIvjOY9IUApUsj21mPalICVKfTNpE+6cm0KrPnX1mLG0k7kpxttkLS1ks1BGvvH513l4/QyAwQxc2BVHw0KCxXQTRhjUWJRKWYqWBW1skcuLw3jvpyM/L/BYozg+2Odgb8FytWa1XgsUjQSOfd+zf3ydlz7zGZ6+fYOr164wqzWDEseaIk7E3PfsPX5n9vs0qgXgA/OQC71i3+9dCjQ+6vhJAciHISU/7YghcHpyzunZiv3DK9hC0/cDTdOzOLhCALzznJ8+ZHtxwjs/+4gHV07HN//zq2/wWw8carNiwNI2K5rNkma7GTvDskKkNYqy0BRWsqOuE52BsqxY7C0oyoKilM0xd54QRJdCG0OIbhxrznkenq7onGK9Ffl5hXSodb2UO/LNym2RVVXxo8+8jbMC6w6l563XHnD4T/cExt8NRNSEKEj5R8ii2ZRRK8miy0JIiyBqtqF3LBaa2lYCsbuG0J9x9vADVts+2anLzQvOUdQ1fnD0riMqhS0rKT95B9owrysWdUmhFcXM8M4zH4zn9+7hfb51+AafXr0inXQuoG1BdF1WieBitaIqK6zRdK7HKU+7PmPbrimLisV8AYtjKT0BQ9cwbNdUtiS4ga7rIWpUJHVNiUbSbKbRMSbJl7wjyw33KXHYbJbM966wd3AVE3u284HT2QUAXdHztae+xS/98GexvqfvmpH/Qvozl2pCGqfW2FTKkW5AY5LbcIyQ+Cc+6baopHEknIQq/Vvm9NC39N1WVEODQxHRSYrABIdhYFYadKylOy8huQ8PLsax8/61h3z1le/w3KMbGJ/OKwUf0YfUSiu3JfMCtZZg1jO1CrtE+uz7flzfM0dmSFpLQ9/TDx6iwmmxCsnralaKHUuMGT3K9yk9L+c8rW7JTsh/8vPf56+8c5enN89T1hJsBm/HOaCQdn2I6F6n0n9WfZ2Sz7zwTM8r7Q6JOO2SDYgEKam8RW6jRoTStDzPEAJRp0A+VgzDwDAMNM0G5wfZB0b176nhIsQwItSb7fpjrHqf8IAkK9wpIn3l+Z1f/wbvPvNoXJS1n1qCIZVkEolu9EeJpDYtIf4oK6JcmbQlqqc+484ykEMydYoyqDJRK7flKUi+CnEUG1Nx2lrDSD/Jhnqw2ev4x//en9HXqQdfwVANZDJnCIHQe6Y4My2+ySsgM8eFy8KoZaLH+jokzCdplmR/iThOItEwmdrZJHDxwJAG2g4nJdXlc2h37/Ypv/OFrxO0XFlvHI/VGVc3ewmBkdJQRpKsTZ46RiYoQFHYEQUyyWNnck6U4KTrO5q2m7wpdmSXNUII1Cqg8RQaXLvm4fvv0q9Ouf/BAj2fY6s5N68d8cLVA0GGiPxh9ad8tf6zcezctQ+40Cue8bc/NNh4Mkj5qIAkfsTff9IRUxC52TY4H4QEXJSglrgAh/WcfnBcnD8gRk+IPX/y7HdYzbfje3zzyvdoNudUncVVC5rtBmML6vlCHJyHHogURjOfFZSFGcW8Cqup6zmLxYK6roXsVpQjVKu0ESg6LUAxSnATgM55zpcNpqjGADYH/m3b4p2XDooxGw1s2iXf+uwPpxug4PWfv8vn/9kLSW3z0o+StpqM/yLpCUVkzhVJqdkaIbMOQwqCEKlxbQxKW1bnS9774evce7ik9zEpFpdoY6V0ECM6ea6EEHBdK+WKWc1sb87Vo33mlaBsulK88dR74zlezNd8/dnv8/K9T6O1ZQgtKkS6pqNTgaP9BZVSSY47sG1b1uutqIgWJUMxoIYe1zuq2YJZUaKMRdtSuCveCVSgItGJvgaQuGiKmJy5Y4yYdD92Z5FbnhMwXL1+BxUG3ux+wOn+crzB37z65/zp/E/4kv8sIRmQZjRUnue06UTvyKuwTrw7WRMDIqC2I7eQ1idI66+xED1WRZSKGDzd5lzGtHcjdwRkXVIhUheaypZ0g3glgWI9axisrJtBR377C3/Er377i9w+vZbm07ROyGsSX8R7mlYQ7mHwdP1A14uz+jCIWNxsNk+uv0m6wWikcVASqbqq2N/fk3I0l6UnRvPTzH/RkxZPbkdvmpaumJxw27rnP/+V3+ZT/8VTXGuuC+clZlUfkjTE1NpsjBUCts4BiQQ2l4T78sSBkeszITbgU6A8vS4FLymACokzOKROS+cGvB+kUSEG5rOFoJJkeYr0+27qMJJ95Kcfn+iAJD+UYCLfeO0t/uRLb+Lt9BCKqNNAUWNbcIbpPIyTC60wxQxtBBkhtaWhlBDMdlZE55OADwhMqQxE6dEvyjKJJfkUifrUamhGaDm3Rk0dQTBYzx/9+g+5/9TFpfTZVWFUHSV9aogZfY3kdmPnHKM4oFIJzdCjC2butimMTiiExRZP3MwUuAlXI0nnJ/JVRjViFI2BoKRlV64FnAn813/599nO2vHtButYzxpZLIcBo6bouapE8rkoS3KbnGS4enxNHtRTa7EgOW3bifCaXK2Eo1G6HwiRWVml8pRk34rI6vyU9cX5uBntHRyweO1V1NUDANZqw/99/+/R6On8c0AyomM/4Xhyw/yXLd182Dv6ITD0A847+kHIYyEKxFqWJbacEWNk6AaWt1veeuEh3kxj/439d1iaR9wpnkGVNbfuPM/R8TXaZsPp4wecPrpH1zbUZcFsVo7k37IohLxaV9hixmrTU1kpfzifEUEzZnQyt8DHiAM0JkmvF/S9m/gRQ17ktbSMIy7D2/WK94/v8fDGhO6g4PEzS85urDi+v58C2QypT8RC+bv40ohNuhkJll2XhLDC9DtS15bupYtVx6Zx+CC8BmtLdFFji0cjfwolwfEkKRDAO2bWMKtEuM87z8PqlPePH4733pvAn998nfftXW6oK2R58dnBvmTRWp7lersFBdZWGFUSTRASc4B2uaHvA7aoCSYwhAhFgW+3KQhQ+KHHKkVp9OgE3jVbshqEaPyI5cCQzP5kg3eE9QV7h8cQIpurPY9nZ+P5t0XHP//sn/LZ77/IrG8Y2i1Egd4zF0PKMWKQSeaDhUjvOqzWKFsRU8mGnMyQeGQErIKyEOfi5DhA8C3rlaN3stkNqZRr9G6brREukLHJYwxW9YbBuPH817OGv/eV3+N//Nv/DjqIBIAYF0oSK2KQghY1bUNhi6TSmkIrlXyMylI6yMoy53SCkCfnXNe7MQAWobXJsE8pklDkIGNvTMiEUDs4B0rKK2pvpyVWwbu37vHbr/0L/p0//assrHjA5EBEEoBA13V0XSvl69SJd8nJOCGJeU2HSBaXk6U+aWwp6FtH7hYyyfRUgo4wVgnyHqDI3WwWFQPGGKq6ZjbboyhlTjgvCXsIAVNYQUnCx1sJP9EBSYaaHl8555/+2rdYHTSXfh5bxAxqJz+QtW3KvCWwMKAtMUvDj9lbHAeBkAs7+rYhQ4xAkkOOI6M7ewgEReJnCIKhR+RuKpeQAov3nj/hz/7S27jichTpK58mcP7dtLyrqQwgoI9C75Bdg4+Jy+JScpOF30xqi01ZZDaGSmhRtp2eVH4nfRQRKori+Otcgn8l8v3Rp+7y3c+8c+ncnfX0+566nqFQqe1YjecTSdBlvt06B4hcgh2ixIspQ0vtsKkjSC5e7oROOhFal0Qk8LBGoY1NnyPXaW3BzZvXeeWFp9NCB9+ovsvvzf740vmf6yUP7GNi9/FKLLun/a96jFO2H9iuW9q2x3vHenlGu93SbDc439P3LcbWKKWp65LTF1veu/Hg0ns57fnOjXe4df85tDEcHB6z2JuzXl5A9LhuxVaLR0qWuy7Lgtm8xtqSqCs2nWK5XnP9eMHYom2khcUnInHwnu16zeA9Cj0GDcMg2aZoLkxopswHQxs9XbOm2W55+4v3aOfDpfNvFz0fvHzC8f19rC1Su6/ggzkgUZmwWhTSTq8U/SAGaDH7kSS4fbcDQGtNQOGCwpY1tqjRukAZLZ4faczEPABTuTEjPbKRSYfS4DzfvvM6QV/mt7x3+z53r93n1vIKhbVUVVYqjmIFr0ROYEhChFqBRTGbz2V+RYjpfrqkTaLLij5C2w0U1QyjRE6eYRBn7Vz6VBpTiJ6FN5MaNYq0cQXa7ZZHH7zL0bUb3Fd32RSX2zK//dwbvHv9PvsPD0ZuavAepac214iQ0kmbjyhZi1yCLKPSrhqVWE9Yk8qCIaCiQ/tBglUnida2adk2TepecWOpiXTfc9mkLArm8wWz+QKtDatqgzOX184/eekH/PKfvcPL7z7N4Bxu8MlSQTy4tDHJCLQkr3NKKQpbjDpOxlqK0ib+m5xDRocBmtiQnXxVBpJSk0DuZpy4KWrsOFRJkUwpBWWFml9eOYbC8Uef/w4/d+9n+OzZKxLUxZjWZum067qHgCghC0VAAj0pu0jAVZbFqEwedwKVMnm+KZJXjRdzQyGJm0Q877FaSVldJf81cnA+oZFEWdulKcOOya9wV0S7aDDtXwy339JKa9M//s1vcu/ps2mXTof2Gu8jLtW4M0SViaFC0LNoZYkqMdmTaEkmuoI8hKGXmmEWAxrdJDM/w4cxElY6ks3jRj+dlGmFKGquuSWqrTu+9pdf5+zaTo0tfbCrQyInpcuKqUAVp2wx78vo/LP0/YR47EbNos6ckAqtxsVXJ15KaUWJsyyKMSPQSqOsROFSGkkEVO/FjEpt+fovv47XAe0VwSYugfWsqjV+6NHagjWMXRF5k2JHqCxdTCCiAtLqmq4wzecEy1uqoqJJPhv5REfl3bT4GlumdmQz3g+lNTeeusmnX32BebqvgcD/4eD/iY2WvWBZ680oyva6fZuAx/yUafKTApERoiUXt57EUxjPLxJxnUc3HU3vxdRtfcHDe++LSF1i7VujOTi8ijGK2fUDvvvpdyhjRe8dg3FYZ0FFvnrwLf6Nt36esjqQhVBpbEJAqrIg1tIB1bUdVVmwt1hQVTW9g/WmwwXJsi+1eCZU0LlBJN7Pl8LQD4hwWHpYRVEwDMlETpFqzBHves5PVqxXS/l34fng5RO0UyICWARMr1FRce/lU179w2eAVDdPBNdc5y6MoUzKsVkuOwbo+1TXTnBzvtd6p21fKY22JaaYS9CqpayYy0yRna68HCgDLgaW6zXL7QatLUVR8u2br2OCyMU767HOUETLd174Ia98/w5XZleoq4L5rJqC6wjWRqyVtaOwBT4EDhYH+BCor9f0w4Ayhk3TiIKnjwRbE0rQszmz2ZzSGtYnJ7Rdx+CDlBS0RnV6KrWkrF6uyaXgQvygZkcH3L96dinwmg/CXfjHX/5jXvr7n0rlGFFXJWXeef2Sx60xecMZSZwSjJgYidFjABM9oQ9EP4zkx8nrS3RWtm2bSuRxXINiji0TMtPFiDIWZSyFLVjVWwlI0jphvKYzPb/z2te4+uY+RaNHjpPRSUW7LCiKkrKuMYCrK7xLgm6715jUaEUIzo9BXfb+Gm04UHIf8hukuZ4RX0mgAiRhS5M6iwCGKrfeT0vCwytn/IsvfINXv/4K81Cn9ctQ2oJh6KQ0r8TSoSwt2XhQKAaKPnj6zmFs8tyxJjVkOIbeY7WUL32UMq1NYjeKKKaTdZ2IxHJSShucD7iEXFkjY997R/SCpBd5dUuJplaKopC/z/cOfsIqOR2f6IAkGsVXv/Ij3nv2MZ/+4dP86KUPcNZjvMabQEWJtQWZUORVGIMSoUlEojaYqAhJ1lmUQnNMIBu39x43SL0sb6q2kPcWMpHwR1wevEqhbYGKfoT3lFLohGAoJbwNiLz+ygPee/YxP/e1l/jTL71JNxuYbyuGwktAYnKfNyn4ycHI1BlEFPQkZ3Q5lBrLO3FHaljunKAbfUcfO8aZkAKVIknoZxttYXsrisKglMFYgWuVNbzz0jucX9/wW//VL/C3/4PfA+DodIGKimW9pu0bDAbnOplQZSUiWolYazIZzOVygEoQcD7VzBEJuCA+EHVdMXiPy9yePGlSXV7WSCmhlUU1TsTF/gHPP3WHG4f74wbzx9U3eb14h//k/G/xfz34u6z1hmfcbV7tX+D75Zs4PHZnmuyWYz7WGI3TOiPuyA6UA1U/+Uq6zrM8X1MMPc0QaLYrHjy4x8X5GT5kcauCo8Or+IWjKEq66z2v33iP/+Ct3+K/fP63eTB7xKce3eHK+T4/uPk2sUyIVMrsiSTl1EDfD3Rdh7WGsqqxZYX4JSnpeEibePYwIqFM2WCtbXt65xO/Zdq0fQhstw19L1byKniMEf+N1cU5XdvivacoLOc3N5zfWPPL/+/X+N3/6Fv0RaBoDb/8tz/HG1+8x/ralvpxgYqKQisZAzuIX2GSeaaV5GLw4o2Czgoy8RIqp5NJptJaNjWdgpFM2DbSCiwdd2mWaUNMrf7DMNCen6ON5uDgCGaBN27d5Rde/xnuHT7izVt3Od4e8hvf+QX++Llvs6o33DDXksT2pA3kfcBqg1Ih2ThoMCK0ViU+mPC1DEYZIDAMllkEXVbibF5WwlUrC2KnCc4TnQQcKqNDSJaqtAQhMSpENlAy++X6lPf27/KFd17h3av3OTm44Mr2kH/z7V/m927/EW9ef5dbzdPM9w4T9yeMpTFtDVaVcu8AlGTrhkBpoDARbSJ9dATn6HoRn/NOCJWSmYe0Pkec90I8jVE0jtSUYKUCHT4I52voBzrTEVRgVW04uthjMI6Low1BR37r7/0if/qV1/nBs2/zhTdeGb2BssyBySiGd+jCUtuCQUkrsqyuMnpywGSstG6HpPVCSn7wQp4XhGiSh8/cpzH9SAHDLuqT166hdFhvKZxlM2uYdzW/+IMv8P1bb/LdO6/zix98eUy8IoKwFWXNdrMiokbBv2w/4KIakamY7EAKKx2g4mPUsS7KS80YuSyafcfE2E8n7zDREdEJ5fJeMQzdjpdZh7ElvigQm5Wkl0XiTsZ4yYTxJx2f6IDkvTunvPPMI/7GP/xFfvji+3zvM++hveL5927w6OoFNmnwS90vSFkjt8ciAFeIJBnyYayNxnHQ6DEj82nyGGMQJqYeg4OscZGZ5FFLpqVjcv41KfuIEpRIpus5n2/49mfe5jf/7s/zxiv3pWQT4We++Tx3nz6hL3zqYlFYqxMclwXCdtvHYtrsdrbJzFdJk0CCl2nC5I2SOM2RzG/JvI8Mzdltg7VF8voxaQIYusXAu7ce89d+7+dZsh536efevsmNe0es97b0ZqDopT9e66z7UNAPvbTkavGxUUQKK22WavekYCRF5Ra2siyohhLftikIS9yZlAH7pIqYW/YikaKseOGFZ3nx+TsUWp5rR8/vzH6f/+Tib3HVH/O/1f8XiPCsu8P/aPU3+c/3/gFe7Wjtf4zjw16a1ip0dMTmlFBbYkBay9NG6AOcX6zZrjbMC0PTtpw8fsTF+XmyRA9YLZ4TdVkQidii4Lu3f8SvPfglfubk0/yd5/4hAGVj+M2v/xv8f/7qH/LweMUz/W0ZA6nLIqs+gsC39XwmJnCpRt85gd8VkpVNehmyQF+cPaZZn4s6qjVYOwWQQpLz9C5gknpktzmXduPNeoS3QcTSTo6WXHv7kBe/foff/Y++nd5E8crX7nB+c83mVsOdsyNs6hjxqVSQ+WDKCqRuE1xsMts/nbtOaErWvcnBh07jI5N0M7pmbCkBg/MSkKT5H2L2kGFEQo21nN9cc+j2+fe++1f5P375vxzn0avvfore9bz94n0+9dbTxCDvGbVs0iI7LzcsS+irFLlmkjqUae1K9hFKMQwOl2r7UufUVHsH6KKi7dqEQjnJ3oNPzw8x3MzjMU3+wTna9RlrveG/+/qv81/M/hEn+xdclCs+//hzPNs/y3de+jY/99bPs2eMkDKDyAEYbdBqSE/DUxkt9g8Isdwo6WrpUkdG1w80TTOaNyb218TPSeOrtGK4OOp35DU5I9I7YzF4T6MC27LlK3/4Ku8+84CLow1RRY7DIX/9j36B+y+cYs5L6j4nAFMyl0s1Jt1PpRVhiCkxyz+PDG5Ivk3Supzdi7Ns/DAMKVllFDC7hH6SEZ6pfVinBx5DZLCOZ05u8vTjG/zu5/6UwTqubo74y3/wJf7glW/w6ccvcdztk/VBlJbSXrsVg8CcoBph3UIimAvptKcoPcFbhmFgu92KTkkrJG35vWThEKVrbegHWWeqOj0DQ4geGyLaKpSyOCddNN55+r7DZH0qpXF+GJsO8rHd/AVQal0tWn7jD77MrCn5B/+WcACsM/zlP36Nr33hB6ixyQ5ASxucYdzEOp/FiCbC0K42Rc66M/l1FAByLtU4syQwl/xQSOUBW5gkNJPfMIwTAa2499wJv/J7r3F8vuCrf+X7gup0lhfeuMnR6YLeClnVKvEbMEnl0Pko5nQh4mMUx8yUQctMzVcQp+6ZSxoOueyTg5KUDe4Qj3KZJ4bAEHqGoZ+UGlNt9KTacPs7R7z4zi3+/l//6vi7n7p3i1d+9DR/8jM/Qu1pzIXYfHsfRvQjcwAkexXF1vl8xizpmzAGeyplcyFluFLnnNUV3TAQnCMXRjISledBCJFhkJ/ffvYOzz19m7qw6dWR9+09vtL9LL/cfoX/ev5PWGrxebjtrvPf2f4Vfnv+ewQu16afREY+DmJitGxq3XqNWj7GlYr2bMX+8Q3stWfAWC6Wax48eEypDZaC5cU5TdNQzxbYwtE3W4o4UFtLWVaCtGlBof4HP/zrfHv+LRzCw6h9zafNq5jXD3n94H2eevgyKEbfJKM1e4sZMRwyOIeydapPmwTjxtGqQGnF4MSkrB8Gms3Asl2z3aywVjOb1WNgnlUZtZYNtSxL8APr5TldOzkJkwIKbwLOel79g2eothPLWgH77Yyf/drzDAcDtlKYQCLhSfCWhm1SY5VOgyzslxdGY5KrcML8R7+nsbQ3/X0kVBshtYfocMSxfVFI3BKoZal97wN3rz7i3/3zX+epzQ0qJ2ULr8Vw76997Zf4/de+gQse5wzGeClhEFOHSCJzj4imyI/LtUkAkTe6rHCbOV85/xYejWiaFFVFYU2C1AWF0UoCD2IcO2/84HJhmmgie82Mn7/3Bf75y3/MD3iLdbXlUf+Af/vBv40Nnsezx1wJqWMleGJ0aBWpdESVhqowWBWJwYk2RtfTJg5bN/QEL9odTdOOZZGs5pkRB6tF7VmnZC4aNa5dWkl7q7juJlXb4MRZPPQUK82r332GqCLf+fzbADx89oL/3u//Kj/gXZb7axYnH2JCGCGSugrjFCzIeSVNnSjiaKN+SCrZW5PGl0ooivepkyftHJmzREhBG0zOyOlIyWWne/7y259nvqz56ivfpisG3ju6z29+7Vc43hzw/YMf8vl3P42OGZ0E17cURkF00s2iCmLivhTW4J2lo5OSKylQ1Ir5fC6BcWrBFjK4FWkMFG5wI5JqE/KoUGikeUO6ZZJysfd0MTK0PV0rfJrCFul6BXH3TgxUt38R2n5feutZ9s2cH37qXd576hEAx+f7fPnbr/Lg+gUaIUBm+Cxn3ipGCQ1iHIVbpD44wc4TCSh126QFTL7nxp1ICQ0/ZU8CG+fX61GNlQRLJv4EgIm89MPbxDZy76kTHl9dgoKD8zk37x3yqTdv8I0vvwUx4HxMrY7JvjvutpdJTX8kmynFaO9LIj2pqatHXpIWwJBISqRar2bMPPVYAkpOoTtojHwq1B8YDt87pFMtbz9zX74f4Pl7t3jq9DrLu1v0wmI3lq5Lrbp9T/B+JCbG8T5KxlnXs7QQBClxpWNij8vv1WXJrKqELa9EC0DUJKcOoWHoiUA9W/DS809z9Xj/UuBw29/gjr+FjYb37X2CCuioecE9w2Hc5z9c/RbnesWe3xuv+eMe4/NJpbZuu+X0g3uwfYzzA23bsrc4HKHYzWrFttmi6xntIEHnlWs3OTq+Tt87Hrz/BnFzxrVbt5kfHIpGwszxN976DeZLx3Z/NRIrj+wxe/U1nv+eYf2UeP4Yk3woEkReVxVRKdZtpO0dNoqLdYjQDQM+8a4UsG17zpdb1k1L03mcj/ihpyrEHiB3XOX5orVGB896ecJ6ecHQ96M3Ue5kkLgkcuWDfa482JM6+hjdKWbW8sLb1zm9KchbjBCiGoOkzM0S8b5CSrNp07bGJGv0/HlyiFVDar9UqQSlRY6cKG7Xkbzo7wb7YRR7UkzJRoyBa6tjXmqexReeuZdNzytPUzQsmhm/+Kc/w8psscFik34OpPdWFuf8qIMUSe2RkdR+nzZkzWh+CCS0a1JllkB9N/vWqQQldP4QEDKp1iLwllDgwhg28w2/8I1XKVeRO5sbksDpyIP6Aeo08Ivtz7PZLlGHgmR27RrvekzoqJQgMdF7mqGn6zqGoafrhhS0Ta2nIQRxsx25EyoJR5p0z9PdTaU0o7J6bRIYi1AoIa+rGOmHTtrMdc+Lb93m2fVtODX8o/jHROCtp+5SRstr775Ab/udoABybpabA2JCWMX6A7LyfkhE7Ox+XhgLyfwvoFIHo3TNNI2gBJmYn93QJ/l5YCe5yciQrLeBX3vzK9zTDzja7PPg+JT7h4/4oLzHc+/e5mZ5yCZcoIMZy1jeO1QqbQnWJJ41Gb3O3VDbbSNJyCiAlhV2syx/WjeFMUNh3YjaFalzSGVtqBAwRKhInCaP6ftUbnMMXcvQNamLyY9jWCXRvo9zfKIDkioUmELxZz/zozHA/eKfv0zVznj2/dvUzYwQU4vimFGkvwaPUuKjkNVLM3sqky5lZfAJcptk3rPkrg8OFS477o61voSSqMRUJsUJJP0GE8Vjp6Pn8bUVp1fXEGH/bM7h3TnzpuL6zX36oZes0Enka5P3SkgZY1b8QwkeJOWLfIcStGymIGQX/8l8mvzv/NeQ6ooCV/pRlS9vsBkSL1sLOrKZtzy6JjoGi1XN7GGJvoCn3r5O6YsRQdKRUfxMzlGNxDY9Zp5Ta9v0WWpEb6ZsUTOf1XR9T9eLJsMk1Z9PVFFWFc+/8iI3rx2TMax8J2ZxBkCrWt639wAxNHtueAqF4tfbX+RMX3zo2PsoZCQPrzGUipGudzy6d5+Th/cZ2jUGx9HBPurwWEp/QDc43NDTaYUPUv6rZ3scHl2h7wbOH5SUx1c4vH4TU5TEfmDfLbBdx7pZc6bWOCWTvvIzVicXqDPHHX2dcBRQQcZKTB4apioYMMR+oO8aTCnjdwgR5wcJotNAa/sBv9wIIVsr8Mk0L0barhMkMj0zay3WaE4eP6LZbhMUHBl6NwYt+TkaZzi+tyfzIaFl8jPZhC2a6w8PRFY83VRrpTtC6tJ6JGRn5MAkjyiYCNN5TJGCkIx2Zq+VIWVxXS9KqSG6tDFJS30Wz7r0ewldfe7RU9RVRWc6ZiEFJDrQFi2EQNUYyrokllIyE2+b5GWCoCyj47f3yc/Gj4MoJLl2n7oWiJlE7wne4EiddDvXCtmBl5EHE5lQXKO18N20YuZLPvfup+DAc2t9U8QcVeTR3hnbeytKX6DtAVpr2s053fqCEESTQlplZew2bUPf9WMXi0oeLiEFtVoprJEulhCkTTxbU0yJ3tSFl7VOpATgU0Kkk1mewvsKrcHogr2HexzFfdqNY287ZzXf8sGVE5qyY9ZVlF2Z7sHlLr7dBoFxjIz4aSonhUjb9aKGnWQd5JpU0nIS5diTszO6vpduEskex/ZiWf8z0i5Be8gcOODGe0ccP1igymscr/d5cHTKo6NT7s7ucfXtmcgXpHtk0h5ktKZIpq1Zf0rmmgSphbIoNcMaS9d3dH0vnL2spRVFUkLclTMqJ3tWVZaTb1RCs4RTOJXLxGhSrE1CiGyblmHocEOf2sNlLhZaerrVXwQvG6PAl45vf/pNQLpqvvjDVyis4YV7t1k0s7Fl6pJsPIJsWKsoo0img9sZlDsyQrtwdIIYsx9BJCny2QJr9bioSK/qE2UJFEFL+2yi+0iAUxtOn17TzHtUUNy6f8ReM0OFyIt/fhPvREXVJejc6KmfXc5w6tsIavp+/v84wVVGF6ZsShs9Zg0CD2coUwIS7wNuJxDR+Z13yjYoOLm5ZKhE/OjKo33ieWCz2WJbCHYgaiv8EG1EHGnUlYDQtrgYiUp632MIkrECKj2zvADD5WupypK6rugT30XpBJCOqoaKxd6Cp25fTVLxHz6OHJ73jSA8Gs2z7ilZwDFcC1fG18Xxvl4+4s7f1RN/9yFy7/4Fjz64y9n5BZvtimuHC565eRszP0K2DE3fSTtv16wJUdEOAyp1fiki88WcvXnFfG8fpYQ4NriBrm9Ybtac+gu8SpN+7TFeWqOtEy+noOIoemcQnoLuB8IwpE3PjEJXUaUNJUR8RtGiyMhbg6hTKuFe9YOjrmqIYrHQNhuWZ00irqZNMYtSPRHF7Y7RTKrbfZkgcxBVzqYT+mJFxnzXb0mnln2lNf0wjO3tT6pUykCWjNB5R9dsWa2W9IN00V2cn4gcN4nnoYREOcX4k1yAQjo6oo8Yb6gHKdkEHdjohr5vIToqWxCGLZs+ovb2iCrSdF1KjvR0vUkq3Q01uSXep3ZUKV1MK9gojpWgeFmogtyvNH/FV0heH8IUGEStsMi9PO4OMEDXbrh6ejCGcWcHF/SuwcY5hZH76AbHZrOh6zuGfsAHn1Q/A/0wCNoTwQo1YUyWMg/Eak2RUCqDqPo6HyhtLn9M6y7kbkAZG/0gUgMoKMsqbe4R7Qx6I2OoagtunB+zWmzpyp4HV055/v5tYjIrnJCKNPISCjN4j3Hy+QES4T7K+TkpYWw3G+q6mjZpJSqr22ZLu22la8faUQfHZ92QSOaCS5NNIvMLj1GC28+9+Ry+Gzhwc546uc4PnnqXzazh/rVHfCbcZliH9PxFY6oohJtVFiVVXU+lPCIhtePnVl1dSxdOnbhHzg3CxYsBRQAVRiFKncT3bLoOlYa7JAE7yuUxgp5IvPMIWpvUri0WIZnTR0LBZ7PZh6ycP358sgMSrXjj+btcHAhh5rl7N7lzfhVrFDeXRwQfGenGO9uGBBmSEUalxeDNh9GkLsIOJ2NnocwoSv523MmiQhhr1FVhsaaYmPVjKSi5Eqc3UGjcLPL+8yegwfaal99+mrqogP8veX8Wc1uS3feBv4jYwznnm+6cN+exKmtgTSxKrKQo2ZJI0Wy1JEAEWt3oNtkNPxG2HkwBLQgQBMuGJNsPLagBiQ8NWrAfCBkU2m1YEkWKlDiIZIlksYo1V1ZlVuV453u/4Qx7iKEf1orY+7uZWaxyowEXtBM3v+mcffaOHbFirf/6r/9KNL6BNouhaaO1mCBMMOAUtU18jOyNZ6h73gchGUM0+Z3ilGRFRFtQoUSRrjJhtsmasrHIx0hkfOfx46KhcuX2IU0nxNLkofeJWGuOWEmx00RNoqjpRwzikMQZMhL8iEmTOFtWgdRLoa4de4sF2+1OBIgMpOhFOCpKBFa3C5z2Lknn7kSfKeCN5/VKpL9NMjznnzj3qvnsyRvRe/g2584dk0QOt7/1VdabUx6cnTEOA5cvXWZ58Tr9GOiOj6mrms3mjFs33+bB/XsSgRnL5avXCUEksi9cukTT1lR1Q0SIi9vtKd3mVKqlloFghYC7SnvsNwecqAy+QOdGo6dAZSTSqpwt5bLWiEiVqArLBujHKF6BbojjMBKVmyDrQxxGVwlwfHZ6Ir1e1MFIfmoQmD9jPqB5feT1MPfsxijXIZwCq46HKdB6LrMU7odTFr8pSqAYU+4lKYKo3h3BR7pxYNsds+tHum7DOErjMKkeCGW9uKrCJVc2mKyvMEl1C0l9WI+YrdyDN4HjeJ/1yT0O9hfsLVacnm45Od3gUyCZSNfJs4lRjHlIkuLouh1OSyo1O1tgeqGGqUuiKRsTZDaWvkTqdCVFIGJ+X4iFqCkcjqn7d0oRQ+LJ3SOl5P3u0TG937A0C3b9VprxhcTZZsPQdwWtER0OQXvqStMxaeo3ldWcJXjLqSRxlJy1DN7jQ1AZ+GmCFGXoEqVX4vSEyNJVLCpH9IPYPU0vt7uaR+5d5JXH32KoPG9eucMzNx9TJK2WvjwpV+2J0zZqxU/XSbVZzPtATKXnjjGT0+uclvvGCARyX6+mkQaU+/v74sTmVGGioMBR0RKjqKjYZ8NB2oeFbPTfd+M5fuP7PsdYed54+hbNRcdyuyjzzjpBQ6pGAjtnEgbtjp5S2YccFpx+Voy0rXxeCB6UpJ00fSvNXWtsVWNdpXNLHfgkzVODMdg6O43SW8taqGoJio1z1G0rtncmc6/pBQ5W/x44JMnA5z7wCmMtnI7ve/UZVl2rEYPD2mlSzJEEUHgqGqhMyXUmjdSzcUykkgcrvVV0QueUQzZ0MQYR/7GOttZcNRNwnJjemw9jDP1q5LWnROWxHive99rjwljOKSZmFTIpkfURUC6KIZPfUllMSXfNubMCygp/SLgnhiglkurMZHl3WbXoBmBIyvDOm3qRxMdw+3HtJZHg8s0D6q0r+g8xBIaU8Aq9ZuJp+Swj8Gc29t6H4gD44LExN6mSDcKqFoKOPoumYVFXBD9Il1k/4sdeF2jk+N4D7t464ZGDVRE0etiZ8AReryVl06SaJ/2j75hr513ad/7t3Y6xH7h76w7b3ZqTzZZd17NaLLj8yKPUiz3O1jvu3ryHTZ4bb77Jndu3pAtvirRNrcJEoulh9g80fSiVFiGMDH3PsNtycHQBf+gIRgSSjtwRtZuiuYTypkpKTJGmotY3/Rx8ZBwDYdScoBHeU0xWnfYg6WBjqJsaa2B9dsLJ/bslXz5o+Xu2yXNkKs+nqMJlVp+pr8xsIMXpcBIel7VrrNO5QinvFu6XVR0R2WiLq57TKwrWjz5ytt6y2W3ZbHelWs37UdIoMUfmuRwylXTifKOXMkmromYeP1reevNNts9vBBmwkW3VaclothuSc9/tduBH0uhZ1Q2D90TrZDOw0HVbIom95YGQC0GvR7kYaqtiDKRgSdaQoi2S4NJl3JSAKmuFhBQlCEPE6XLbeLR6MIwdB7eWVNHiHdzev8/t+7doV/ucnt4neE9Khl030nddWbOgQnVKRq2s089LoL8TMqpMBDuzRxhoTSZNe5a5A62dVFlzSielRFXVDN7TDwOr5YKUz4vM8eVQ88iDS5BgqDxvXL6twSXEOBbl1+C9VBLq5l2rNo8xhnHYEn1QJE5Kr50RNeCmqYoqKohTs1gObDcbjEGEBRdLUVXOYnFJneAg1SiZz5Hme8nMgnzizgdofM1YeV598gbxAFaaWrbOFZn47NCLjyl9d0SRNjdAlKohayQozxVcuXzfmQqLcGHy68VZhOTEyfNeO22HRGIEjHYJNuXahXBsEVk/Kw1acwO3GdK1WDwsc/Dux/e0Q3J6sOVbj90kmsTebsFzbz1KG5RUmhJppmehGRddpHlADVVm2htH3bQyf8y0QYpRCWWCxRhKnbUo94lSXV1lkaa6QMVp9uEpRXxMzEl2CcOdK6ccXxAG8tU7F7h4clg2EmYxvdEtcR6hGyON0Wpr1LAGBh805zpV18jXKa9srPBNrOqMVFUte09BWpKOg0DWTtNe+fPLQBrLWHvuX1kTXaLpKg7urmAUR6mkllIipsAw+DK+IOPWNqrC6cUZiX7EsJLqp+AllYBG72ZypFLSZmEkmral95FoHD4MeO3EnMae9YN7bM/uE7mu43j+MMDGbrnr7gPwSLjCIi3e4YDMwd6HMg/v+ZrdZs3dG2+w6XZsNlussTz2+OM89tRTYBtO18ccr7f0uzWnm41ogbiK0Hc0IPB2VeOqim470ndbQjTYZl/FtFqWl6/S7l9gU41EG6mCYxEWOS9JQbXUITZJ+Bk5T58K5CUGdteNDINEiIVoqI/bKW+EJJUS0Q/s+h3b9Rl+HEkZFk8Td6HMVR2byoqejVTcUFKQ0ZwnvUX9Z5CUTdalKOepLD4K6RElkGPyRmYKupA3wWQsZ+s1m92WzE+KMZVN31U1zib8OBZHW6oqpFQ330Wa8QfGceDk5IS6qogx0g4NLlqijezqAZ+gGwLHZ1t2nZD/TARHRYoBfCT5CM7gGkO1aAVt9T3bnaWpW0kplLSaKZwWQUREHdeajILmZyxEYxPyM9CI3WQoHQgjwY94ldePQO1qjnZHdPUdHizP2Jod1skc2azX50iOTsdoKscFbKVkYrBBJdpTEjKq2jQDZXyNoaBf/TDgQ2TRirpobnmR9VgA6gSN96y3G7a7RFNZcbRiFCdrdFw+PqAda/p65ObhPdZhi+0tXnlCMUzp9rpSkcC2pWlbsuxD1kTKDp1UnSTh/yXVSHEWUwuHKajUvR8n0UyjhNdSIqwTchzF+c12YlKnlnG8vr7MoyeX+MbiLe4ennDr4gOurS+o9pUgpDkFVxWEcQpWAQ2igQBB4eyc1rG2FvuufCaTIKQc1qr9ys803z+i/p0YqGLFVFE6ZQys7kXBOOkYnyYU3+lYfCfH97RD8iPf94M8u36Cr7/2Fv2256PjcywPajZdxzAKia6QPzVSyBXwGQTIZNW6dVSzHUg861ickKDVOLH0qpGHIXLI0idG5Mvd5NmrJyvGIzdUyp8ghuHr73uzEHJf/PrjkIz2nJiuY35VBiFeGs2tNpVlUUtuz4dIpXnZELJeSSxqraUnjaIs8rOq6mFK18j8WUkXHkzSw8UjAhKWzYUtZ0c7MLBct+zfXRQNAWLSCiPKgpuitoT3oodh7RR5BnX4xtHTdR0pCd9BRLtMgYrXmw077cRJMhrNOIyrsS5I7rNuuHz9CR597HEhVz105LF9w93AKwP+2fHJ93Q0vqsjeIbtKWdnp5ydngl6dOkSz73vAxxduMh6Fzg93XDnzh1Ojh/Qa6vzRduAhbquaReC6vR9x+npMX23IUbYb0XKff/gkMVywes33uBBf49EwkXHYmynKKXszNNTJT+O7CySGH3keN2x3Q0F3crcBVJSJVaZf85axrFjc3aGHwdyqXVOdURFYTIvFlS1sbLUuRTXqlCZzSz/8yOuXUWU7zShHUJkFAg9pEBGNLBZNyULuDmRUi/IJ6QYGH1fZMNDHHR+SdvJEEZFg5Iab0EeJHc+lX5m9KEPnahhatVKO1RFlLGvB6KRXlNdN4JqPDR1zaKqpLeMwvAhBqqxB2NIPhCMw9nAoGM72iyZb0sPFtl0pLNvQW2KQ6jRad4UjFSfoesnhsDQ7+j7XgjLUcS2DvePeHR9jVuHdwg2kJ5rWZyu2D84Yhx7lqs9losFfhy0Pf2k+4I+66IdUolj6FUa32m5vdFUdUZVjDXUtUT/wyDaRHUmalaVCHPZzLMxtAvRzAkhQBwIoxBHQezKwd0Ve5sF/cWRu4sHvOHf4sLxful11NS1ailVk4q2IqeVszjb0ufxYlo+WfhMSsIjMSRsbryKkF+HYWAYBknLqFicURJzTmNMOldp8tJz/GkSzlg+9tb7+cYjb5Fs4kvPvMZH3nwOxbvJTqfwhywuJUVCZnZKg1lZi2g3aA3U1TGRapiozl6eQ8j9xayVNdlqrOyHQbmWpVmqyYGxpWlr2lr/VQ2LuqFpavph4Csnx3+0zeR73CG5uHfIS7tLvLT7CPVYsXq8xTwui3L0ns1ux3rXsd51bHY7zrY7tl2nuchAyGQ7Y8QRyPVeWuaU86yJmlrL/zI6UgqtNIc3Z2mXlIg6PXk/mBauTi2b+MqL0iXURPjgy08VaenMBZmO7MNOm4Ww0J1GwlpX7ox8b3IjQdlwMqRbNg81rCK4ZrQPjHI7igOTP0ujBY22ymaG4exSx9mR5MP3zlqO7u2V606gUOF5ZyQfWa01j1eMSSIl7bTprGMYRzabDdUwsjrI/BM4XZ9xstlKNGUty8WejrkY7MWiZf/wkMeeeoYrly/h3tXBk+Mb9Wvl++f9U7wT+zh/ZARk5pu9EzWxlt3oOVuvCSFy6fIlnnz6OfYvXCAZy737d7l1803efutNNioaVBlYrlYsV3vsX71GvVjgx56TB7dZnx2zaFr2Dw7FeVTDduOtN7H7lqGSpjtVrFj4FqLK/qvAWUbpSFoyro6yD4EQEpvO40bRiyjzJE4T2GQ9HSLddsNmvZaNMaVSJVIg/JmhdVre3daOpppIcc6aAhc7a2m0t0Z+X9EKyVF4Fi5zqklhjEyu/DfQ19tSAVQaQ5JJhlKe3LpKUx4Rp20SxqHHe182oBBH4XE42QzDGMoGH7OjjZVqPU2JtZ3DBa2CWyWaw4Y9u0/TSG8P62qqdiGb+F7EeI/zI32MRGPIQDfGUld1SVu0TS0pt5SgrkQTKEaSbihGZ2PesKxBeWI5/JrUmzEZfTJgHYuFbMohRGLfcf34MjwmL7158T7+/sjh4QX6boerxEkedI0KqTWVPkIwRdfyWMSZHL0gbk1d6zN0SqJ0RU6hbjzWWPpxoI4Ni7qmqRvdSKfUU1XXrJZ7JAPr0/vSgTZOz3n5dsPqrOX+xTNOD7dsLvc8ursmTfCq/JmuPGfJGqs8AooEGoNPSW19KkFlnt9JN/kYVF1Wg9a+27Fen5HSirpuptTOjJdyzmCogUzJUhZlMnzy9Rf5f3/i10gm8blnX+H/9Okfweg12OwYKdpircGmqP7nQzlSo/hoSsQgczsaA8pXClEI7ikJrzCRcDouxkhrBqNoapU7aVe1pMmbhkXT0lYVbV2L6vAcBUmTTWzrmrr690CpNbhIo2hH46tSPSJiQcJ6PtrfP/+eGEU1sO/ZDT39MDKGyOAD/dCz3e3Y9j1dL5r93SiVBHnBC/RVlQiKGCAF1fuQz3CuKkagCJIZ0QSzUfoNGAzHFzbcuvYAgAsn+zx6Vys6khKThG3KvFInb4NTgzEYo0wqQWAM0TiMS6JMSzqnMVICZh+IJivPZshb4YzymeqVl0U0VbjkaoOzCzvWBztIUvJ74XRPomCD5o/luuaEYHIOMiX6YZTmVQZtVjYy+JFK5bNzc8JkLCl6YpCmZF3fC7HMGmISw0eKok7oR+rmkMXBBVaH+1r2/HAUPt3Wq/XUOv7Z8Yn3dEe+M9ARitOopNHDwwOefvZ5Lly5xugT/Zg4PT5m6Hfs7y0Fst7taIjs7a04unyF9ugSIYnI16D31B5dwlQLfAh0/Y6x67DOEpeSOgOooqP1ojFyXogpb1qanskpvrEnATFKfwpBeLODnonPUpE29J00+BtHVS5+Jy8KMrIh49VUjtqZ0sgQlDCH0VJQ7TdUzTPppjhTWHvOi5T5mNucz6JYJBrvh3Fae+WPaSLxmSnaNcZIKlY3lax6KcqoUlVS1XVBIErpv5k2qoxEWAsL3+KCGN6xDgxWVEoXiyWLRVPaQMTgMcsVFqhCEBTH2lJKKfL4eTORza7W3jzWGvrKaf8UmZTGWrE/SuKV+GJCnqyVgEcieam4atuG5XKp1UmKBjvHlQdHZazfWt5gHKW1xK0bb/D4E8/Rtgu2yiPwwUoDzyDp12wzbOGMWE29iB6HcU6cjMqWCimR8rckanE+NhswqiejqCdk2yVlw1XTymuqpjgjGf09eLBib72EBGeHW/qrntW9paaec5NNDYx0Ey69tVIuX9eu57nU2miKzvtikwrKkZ0UMn9tJHivKWZ5Se6knZ3DmOegIhLFMhlJjz9x/AiXNofc2z/hrct3OD7acvXsSK9XSuSpKuI4MvqgfXUmvqHR/SEBXonOWRLfJgmiSYnKSqPCSomydVULd00dxlqDvdpZ3U/r2TqexctzA/AugV9d1Vow8Ucf39sOiRUipUmGKtbF+GTnMx/z7621rBYtq6WQbNSvV6Ms3TtHL06IVwb4MI5suwlp2XY9u2GkGwZGJWrmPglO6mrFAsQ09cxRWCw7FsZavvnsLUIlMPdTb16j1bJBg5TOVdVE/rTqGBTtEbKapsZHEf0+C5pN8F7eiAo8rhGZM3ZqNJZbrus1+uxgGVW4ZeZPWANYok0cX9rQLaRk+fLdA/ZCo3CtjAnGgg+lSiGPRvatgnr1VkWEgg/0/YBbLjUyrmhaUc/MgkB9P6oCq5wj9zaJMQqcnCJjvyX6UVCkFIHzHvrcufjmzCF5xj+OOffX88c7N9+MFT18RB65fpVr1x+hdhXXrj/CEBw+OrbbEZMSH/vI9zFsT3nzzik333ydNGw5vHKVg0tXSbbCBIOzDXv7R7S1Y+/So4xUjP2azekxfui4eOUax3bD4ATWF4SkmdBgk3U4tARRjWg/es62HWNQ2DkmqHWM0uQ8GCvzabvZ0O22jMMokdYsYmT2Wflw1lI7Q1s5sjBfzPPSCCcod/51zpLcQyM7I16XUVe0LaODE5qRgMBOUxDS2FJeaw3EaKQfjHOFA0agRHQpoV2hp6ofYyI+jXg/FiJ2SlOmXXLw0uujdsLF2meFizJ2QzUy0EPaJ2Fo2gXL1R511ZBiwPuBfuhhGLC6AY59L2WdOdhBRLc26zUpxYIWCMdBSrFTqsoMlDhhGh+MpneZiKTGihO4aGvZHJVHE4AUPBdvTV1Zb198IDwOV7PaO8DVlfKcHAERKgPUOZU047wMWzq/Wmov6dd+GGjbhXZv1u7fNiNh4lhd0EqPuq5mnbr1Xqyk2qwScqXzbSi8vMo5LlVHPHp2hZfTm+wWPccXzqBCVE5nz1fS9prOwmhaPyopV7mDiuRZY4kaMOV+ZZic9k5FLiFGKcXPKR4ThISeHXfU7uVvyc8pz/Eka2g5Lnjh9hPc2z9hcJ6XH3uDa1+/WOae8sHBSG8nMCLpnsu/zVRqXzuxn23T0DYtbd2ybButBJUWAKWKLT+72TpOc6jDTPYurxvmS1QGJgPimJRv09BWkxLztzu+tx0SjZCq6HTDnqL5XL5WYKyHjOe5Q52EnFdsm0bhWZBNXb+SocO8QScGH9h24qhsOjGIgqoMDENPCKMSYsXZyThhMvDyc2/gnXjKz732KG1fl3xcW1fazC4jFQKzxhhlcSRbIj4w2c5PDpaOQ1bMA9Swohu9KcYqpYy4WAVJEiaGAmlafb3cs9FFDGPruf3IMVhwg+Xxty9LRKQetlHo3DohWRVIOg+7mZDKyll8+X2G6eVevMKRUXO2XT8q0VjK0sgNCBOkFGmXK5aHl6jbhouX9qmroqBy7sju0Teq12V8kuGZUvJ7/vUPO7l/1GGMo6r2uH79MYkumiVhUB2CMVDVLZcvXcIcLehYsjk5oaoucnjpMu1yyXY3kFf6arXP2LScHJ8SfGTROoahx0SRxd+lHX1xSDKHJBX+hPe9lCKmSEiJ9W7gwfEZx2cbxl0nabPanZsrJImsYxjptlv6viulhXkDeDdnzKlRdFZg3sJXUmMrUXGurlFlSSfO7cPPZi5klcws7VBeI8JmwyiRqw8zdA+Zu5mzldeKzLeE0UqTrB1UkJ5kNKLVSgt1hAUR8Fop5qiclHrWdav3HGl2VlI2wFCP7OhZrzesN1se3F/Qti1tu6BpWxZtQ90saJYi8nZ28kCrfRI+RryPZEXZhJaOKrkyqDzBmKT8Oy4WxBiky69hIvPPNgijO6ExKnSlmhLGzOxajFy+u4+J4je+dXCTppGqjotXrkk7AG2gVp63c/SDoEl1bYpqrnPijGQnoq5rjk9OGMaRpm1VyMtoak6dJguuVSJrRrvFEymOjqsk7RNTYrHaY29vTzkt8nyrqubp249ShS8w1p63r9xjrEeqcSEkabXdGq5NlWAWbEg4K8HjhLwY/R0TIda5ItQoeh1S7hxCou+lxYLYWVkhMU5S9MZmdGbOnUqlBDcmaFLF+288yb979kt45/nCY6/wJ77+EbIKsptVNUkWz7FqW3E+qppl27JoxfmoVfo973Fim/LXMkkeNl6z/XIWEOR1Z6Z1Odtwp9eb+btk/R/9+6BD8j9e+VWuLy/xw9/6JJdGFGJyJcIoDz4nxWCGM1EeVEHMmIxsMlYNOtPChmLs8lFXFXuLlqsXjigPQ18j6aGBru/phl4iuE6+39LzwsWn8Gvpt/LRB8+zXy0Zjad2lkVbaR8B1CAlgb20ZNKkOLsnbc9eIkn5Kk6AmvZzaZ8pzz8vCS73plU7gmQYXTw52jZa/WAY28Dta8cAVMHy+K0rVHXOfQuJKpVGd7MceZnfqp+QIstmSWuN5CWbjBTJ3zfdQDdKVUC33dH1HePoyaTHuAxYKxtEMpaL157g0edfxMYNB8vmnMf/8NEz8HZ1C4DL4SIHcR/FEcqcmB/vdqZ3vja/33Dt6lVcs+D2/Q33T85YLVc0dU2IMAwDlTqC+0cXWSyF7Z+S9ICIKIkRw4MH92gWh/g0kqJotNgU2O02HFcPGCpxSFxwVJ1jHEcGP7BZP+D01LO3d0hKcHZ2xubshBS8aBhYkUc32pYgb76YKEJt251GfXNS9EP3myNxI1U0BiVDG/OQ5L8tKpeuVLdZnK0I5wCsNPs6H3H5Xoy/luka4Yv5IJB6ztunnK+fBQ+JVFIZWbckZan2vGZKRZ2QFStXk8t/nXVCuHR16XhrkmfsRXvBbMB6uca+8gyVEGSHvme72ZT0oyv6HwVylJSRVk14VfhEx6xp6nLvuYIow/IxRuUgTYFSXTsVM7OFYJz7rEgDywWpniLWXLUTQqTZVOxtF6z3Om42t3n5m5+nTg3W1Vy9+ijWSu+gGKd0blVVbHc7Ru+pm6YQUnPjQmuE+3HRSnWVNa6MgVElT4sRJ9FWBQnK88Zo6XAW7xLCfKSqauq6RjgRUxrlyZvXcNEyAm9fucvYeJaDzIU0m7RZidUYQwqGYAwhoww6/VJKBO0nFEhauitm0VpBJXLxgg+B9WZDApqsIyNWSh+zKUKdsqXk9JA4hhZx6Nq64pMPXuSNB7eoTcX7lk/wyLVLrMyCtqlpKqEjNE4EJ6fmeLOVUpyFh8Ood3NA3uX39t2DuHd7r0HXZEr4KJVVISXGGBhjZAiB477/o84EfI87JH/7qf+Ox+w1/ptPP8qlYS28A2NxRvJsjXPUxtJWFcu6Ya8VstR5bsTDHt0MptIUhvxyerDpoZ+Z/cXoJE4Kx60WC/Ye9g5TYnCe5zZPcfLNNaP3XL50QPUxhw8etCGT9yPDOIoD0/Xs+oFuGKT5GVN0mu8lKUJQEI0i7DOJDBU2NRP5tsCiOhwJSTVlqPe88Joptz42nttXjwFRBH38zlWpk8/e/7kFYkpOdRoGrXyK0ltltVxozXtGuCRi2A0Du25g7Dv63VaaQ+l5golsN0KwbFcrIqrl4Aeee/ZZDlXf4uGtTW+Vm9UdejOAySW/zR+5jN/LWXn4MMZQtStGP3Lrxk1u3T3mhfe9gERNQao6opScHh4dYZ3My9h1hG6LWx4wDh273UbUE/NGRpIum2EkrdeslxuGShrrValiqU3etttjHjzYUtcLwLDbdpydHjOOPatFQ6VoRYb4q7qmxbDbbel3W3a7napOTqTVh+85k7CdGuja2XPOQJkL+jWkRGVyKtIqKlkhfsR09knvZ0o5RAwhTRu2zPvAGAKLtqJ1Lbtdp++NpHmazpjCacqoiDGxCE5loTM0fZJ/TyU58LYVx7Yks1IghszTMYxjwG4t1ssrfBOItdy/s5YQPKNWwAkXZLbmcpo5UYjCSU1Q5SrRQrFZ7jN3+Y5Uud9IJfwSr46jcy3RRCSmUsVlL5UxvbPYSgQF5XRJ/y5y8LaLHJytWO93DNXIzfQ2R/cPCEEgzoP9A+q6JoSJS+AcLIGu6wRBUt5ITgMbKz11MipS0jU5ZVO+n5R38wrL7ToKfydLkSOiX5WrRCGjILhw/fYlKvVwb1y+R+9yV+JpfhXSfkra34niPMeYiwCSBoChjPkwjrRtoKoqSDJuwzgy9ENJ14BhqIaCANuqKiXrbdvS1uJUNLX8a2tBNdpG0KWmrvjA4in+5Lc+Rm0qDsc9Lj1xSB2rc3bnnZji+Z/M/NXv5nScQzjM+V+/45A5OcYoWjAxMKaITzDEyBgDIWVnRHRvxiAOSYiRe9t/D7r9YuCFG89i+4ZN8KRxVNhLyl6993RdX2SHK2tp64aD5YrD1ZK9uma/bThcLNlvG2EV63lNNj46kXItfDYeJRn5HtOiODzvFp0bAxUcpBUH/YrKO1aLFrMw5S3z9FAsWiKyeLphYKtIS9cr8jIMbLuOvu9LzfeQEnEmDw/TosPkqpq5QmK+iaxImab7niFM2RSdHm04VZXcq3cvcDjugctQ5NS5FI2KhXwnuXdXNcXIOudo2gVN07LdbqX6Jonx7lUIKfoR33WYGKntxJUR4VpRuPQxULcLHjy4w96tt7l+9Rpv+ZGj/YbDvSWWmeHSe3jT3WQ0kix6NFylTe27Oi/f7nh3A6EbTIAH90+4++ABu26ciZrt6LYO62RDaRdL0UnoNvTdhjEGLLBZH7Nbn3Jw6ZqWuQoJT8hq4vSNdmTIpNbgqIdGZNH7DX67Y7VI3L3xFrvBi/otkNpaycbSTr6uayyIlPrJiRKIw7sSV/N8ssZQWfknaJrKb5uoFWhCJIxIs0BXVUXht0DwudJivl3MnGQRptL1p8/O+1jgbmuttkqX8cubwCzIBUVGslGFLKiGpmTkplxVSaWNFYnzphYSX8a7YoyMQVIDKUZGPyFGMUaqrsLOUjaDHUp/JkFjIhHha+S8fRHIShMvJzdAy8T5mBLRBzIPLfhQHKuQIvTTDUs6Ayor/URimrSUnHVUZC6Ex2Kk/UDfSSfgEKgHw4WzFTcevU9wkdNLG66eHDLEwL07N9ntNiqRbqdqKgytbacGh3aqZilOSUZi8wNi9oxnzok4K8IBMiHgvMfUhlTVIoegaSyDIVVSJZW2ucJRvLjVbsG1+xdZr3Yc759xb++Uy8dHGmhlOYSkeiSm9JwB2BkJ6oZBVKOF4Glndp3CwUlROmcv2oaxbRnGgbqquXThAhcOD1k2DW0tVSltLd8XZMhMInGF8zNNfyKw6heMTtZ1tFGDRHU2zhkoDU3naZOHj4cckhx0Fz5fnLiXicQQo3RsTvJ1Mw6su146rCdBpJ1WLQnSE3JEDFi1zbHIboR/H5rruWD5+BsfogoK1xV42GKsQLrd6OlmojVtG+ki3O+FsJaM0br8DkdiVVfstwtWi4ZV3bDfLthftCJ65pz+q4R57CpVqeO8h1miOkpUA0zwsUmEWc5ciHC6UWY4VrwgZHq46e0psWwXXDx49zGJSerhu3Gg6zp2fUc/jgyDIC3dIMJhXssVc+lzdnYkYpgM47RQ1Kjq/SXgjSduF/7jM289Qu4nAiKkU6BJPazgnCxXexweHklkpzoGTeWorJTRWS/t232UKpzoPWkcMDHQqoEQpyVJHxwVfsuQdYiBOzff5rNDoKkcjz9ykWtXL7NcLGjrauIuWMs3rr7BaARdeNRfY5naPxr5gLJ43/HalCD2YGrGfuTWjTu89uZbnK23xOS4fesmzow4k1ifRWy9B80eAL7r2ZydcHx6TMDR7l0gjNp7whjC6AnjyNBJF2PjHGAZnWdUhMQFi91A322JY2DsRu71Hm8rKXEFMNIbJCl+7aykj05PTzg7O50c4Znse77PnNarnKFWUT5jwEdTes6kJJupNEKzDD5KashaCBHj7CRdPmPtz4+mqamRtEKMUfQ5nAy6dU5kymOppVHy7WwdpRnpVqH8qLBDJkCTEuTURvAsV/vUVUXymTAdhYCauTVlXVvRF+k7Qpg2w3QSSspmqEe2sWMcB4mSrXK11J13brpvg1HxqVCuO2/gY5RUXLEWGTmK4uCY8BCKmSK97+lK5Yi801qLddIs01YbmsrSaPpA+pQYUojs2cTF9SEgVYynlzc0b0oKdtcHdtstdm9vlo4RB8MmR9OouqpWokgTuKpwRLLtoDyz6XkZprG1IeLWZ7j1BgYv4962pKNDODzAtAvhlaieTIGH5SljouHZtx7l1SfeJll49frbPPf6Y8SQCFGKFYIS7WMuDY8JpzollXMs24a6rli2CxVvFOd50bTsr5bsLVeiP1VVtHVDU2n6RJ3IQqB9NyD94eNdglYLuOQYlVnnbaR5rwBXImiVxU9lREH2g6ABelA14pAiIUWGEAXdSPJ1iIkxRVFkUqQ8+zijImheUfeqssRosdqXDYTPJw56ToPGogE2DuN3MBDf4w7JtdMrPHn8KBZtqjbbIpJCu96HsnPkGCxE6bOSVRdTjATv6f3I2TZwMx2XnLlBoOxV06qWQkXrnKSBmoaFpoFWdcPeYsGqbVk2DaummWqv88zMk8lCdLE4tS5WJQ9ZQrwC51LuBzNNt3w8PD2dMSwXC5aLBewfnHtR3mRG76WHQ/Qqfy2wd/7adZ3mhEetOJLyxW4YGYMvvXXeeOxO+dwn33oEMMUIFuJj0tJnzZG6pqZtl8K2ryucq3HOiIzxKHnGbhgYBtEXGHwQOfXR44BGWeGjdH0TJrxRUq/JOiqR7eaU3faMumm5e+8WdbugrhshmNaCCDR1zWc+9VXGx2TRS8qm/V81F/MwxxgYH9zCLS9wdrrljTde5/b9E2KqSNZx7/4DUthx/dplic6Sqgr3PWF7yma7wY+eZrUSPY0Yy/QZhp7T0wcizkc28pFhjpDEikVY0PstzrbQRPqho9JKhqToXyYNJgLjOLLbbhh7jehBo8fpvvI8q5ylcYYqV+RmTpEVI2qtobZ1Id8Jc1+nv3WYEEoK5pzxfgilk94fes1JM/FJlZFtdo2nNSyHNrzM3X9jJulmBCJqiWkxCFgtLyVanBE7EIOqoWbBLTSSVL5BNtKSngyFF9OOTUFIxjowOkFsZXO2BINWbohD7DPqoR+SkRJrmamvqrNDmv39YUQzp4mnNX4OqzVCuMyN+lzniIdQN03ZOKSSJLBMLRe24iAHFzk+2qo8uGHZOpI2XyvNC1VsraTXzKzKZqYzgqEUHpiyU8/uI0fwfoTjE8yde6Sun3SMnIXTU9LFC3D9Oma5FGSvWZDVVfNzDjHy5JvX4Afl1K9ee4v1+oPK05ES1oO9hVSe5BRKXbNoFyzalqbS6iBFyeqq0oC0Os+1m1373Pmba1I9ZMZnKOC5n84fGvDVqaJn0AA2kixTscbs5SElka4IniGIjEXvPaOmUkZ1qjOnY4wZYU2FXJ7J3xm9BKMIRxbck+9zeivEiB0HSh5eJ3GavUfGQub8Zn327vf60PE97ZA8c/9JrqwvzZyNSdRr9CO7rhNRnpyQNWLojJ2aUQU/KqTpy6KPWQ2RKe85psjQB8J2x7zHxLyTZaNs8lYn96qRlNB+27BXVyzqmr22ZbmoCHWUPG+ymCATQmVHyoTMnyHW/DsYkIfc8Xc450Z4I1IC1uhiOX/iUoMfYkkVSYfjaUIO48iuH8BUfPKND3FrcZ//YP1x9vcXbHYdwzgU4a4srpYj28Vyxf7BAU7JrxmdMYby2l41YBLaGn4cMMFTaVQYMw4YVbnWGWxVg7MkQ4l+rRFDNZgOH0a6LLali65pGrph5GK4wAOOecxfo03NOeTjvUDQ90JJhmHg/r0z9vbgzbduc+fBA0LUaANDN3iI0Hc9w2pB0zj8OLLrzogp0lY19nBBtFJxlYLHAEO/Y7s+peu2ZNGy5JQTFALtUNNQAoYFAAEAAElEQVSPFatxSZsa+rShXa4wdUs4uUfTCOSdgpTytm0jSNp6S7fb6hqIBXXIRjf7xgZVW3WWusrxbrZHmj5xtvSYKdUAxlJhCTGfSP7l9FnWrDDGUAdHNcq/TLQU9EArwqw02CtQN8WKatWDOGlOSzeLuiaQUhZ8czQL0amorGy0XqNlh5SX9yrkBTmiz+X2oRjujG9YayDItVbesNjWVIOjHipq66jchBQ5C2NItE2tSFJi9KmkanJ564Qa5OESR99nRyMZHRswJiNYeaPKDk7GjqYoV7g8VlVLhQyZ4tQJ2FhLEyounu1TjY69bVt+b1OicZZqsaKqW+1pcl7ZGcyEnJRKu6nra35WxSHJpiEHEyHgNlvs3fuY7W5aV8mIAF3wpGGUczz6KG6x1AoeKaVulH9RVRV/+vQT1DdqHukv8mJ8mk9+8v0smqaUts6/2vk/k/lv74Q25mXtpdKk/FER5Bx45n/TO/ILz32ZI3plFDOqFV2ZG10aCINh6CO7cZj+ec8QE8k45QsJwVqEPyPaWpGsu2KZJPHLpxujqqzqsLqq9IQKPmhX+Nm+UCowjTZnzal/WRWiXpsbT8YZ8fqPPkx6t5H/3/hxenrK0dERf/t/+Gt8qHtBvfyp8dQYAruu58HJmUYhkBeMUc6CdRXB+6J6KIMcyZocSSXXjbVCHNMyOe9HLc+bGnxl9COTr3JevKpE3W5RCwEKUKEgId2GlWe82PHc+glWdc2qXXCwaFk0tRjLGfkrL/45D+KPOt75aNUI6OR8aEmVUfq2OGMxdJJ6yt67824i9IJUFw09u65jo5Uxg/cirV/VMlFTJu9Jb+Gh77h97y73jk8FIQEhSI3SZM8lURPJzkBIiWgttmmo2oZRPEiiF36AdE1tRdNi5oiIkXTsHezzA3/qB3nfo5c5c8csUsuFeEgemfkovNuIP+ysxBg5vnePt179BiTDN2/eowuJ3W5DSjWL1QXGEAnjwJOPX+XRq0dE2/LgwV02J/dYWEuzPOD+ZkM3jly78ignd9+m7zuCrRkGQapSEkdaqhlqYhzAGWgt1X7NBS6xOT1l6HaMIXB8/66KcpliJ1P0bNYbdrtt4YnEGSoiLcgRiXBjChTc1kKgFIcvO2WCdtS1RMYhKiqgc3aMid4Lh2H0nso5Vk1N20xEXUgEJ4jYeteTxuwE2ZKqrKqK1aJS7RJXyuAvXLxC07b40bPZbDh+8EA32lB0bhIBawxN28iYec/YdzmRUPQwohI8pYXBtGlmpyCW8tup4iUjdcbAsD/SUOO8BQ+1cUVrBaAbPKvVAmegH0b6YQqE+t6TG/flzSwjRFEr/jIPIl/T5MTk5Z1m61fGVV4z8TUO9vd44tFH2FsuyG0xcjuMGCKn7YbODixOKkyAxjV6ekO92KdqloIqKcqUHUow5Xna3FRvhlyWclPEobKz67fG4AZPdf8+7v4xjtwTRp5LpWu8WrRU+3vUly9R7++LRlL0M+2WCdGKVcQlh02Gd7V2D9lR8/Dv5nZQF46Z/TyP5+YoF8xJy2l2Km2JkFKpgEz6NSYYY6APnj5EgoEuBL62epW90wPcmRWeTwolxRQVZcp2dK6zwkOpm3yVKZbmKdJuQbWozlWfmVz0IRWdViOT6MfiqBfRTl07zJzO0qg2Ten/z37lS/zd/8f/k5OTEw4PDx9+EuX4nkZInn3wBGYpzP2gDkWKUqLnc8dGx4xYNlvc2lVVHq525dSFIT0sIGn75rkwUkqUhy+RniFEMSRJo3LxQCMkqfhJVW5ON5Wa+ZQIDyI8aHjV3FbI07JaNCxa6XexaIRo64x48pUR5TxnLLVzNM6pEqbTaExKnuWYUJX5Ukwm/493evBp9j3n/1QOM4NoMdgkpaY5DEt6zr3lkr3lgnR4NDtBJrLJ+IUonBGvpZbDMHB6/TrrzU54L94zhEDf96KAOHr8KLnM0XuBKUmSxXQWP6goUfDlOqOx2sFZHU01lDhRKtxzNUsa9sK19wSh/ij3LxuA7WbNjbfe4vRsy6b3dCHS9zvu372NtQKP14s9PIn7D0442mupljW77UYijmbJ2XbLZr0GI3NmGEbWmw2mbjU6F3NrjSEFz2Z7Rts2mOBggLgNHLtbBC8qvMmnkp6RR5PYbbdst5upUVuYcTH0/ylm51xRAG1ImfsOgcqP6/PO6EiW9s8RpwHpqqqqN3m08vrJ12QwNKnC4BgNxEZRCIWj0XTDNAK534yMU/C+3I+8TUjZlaZLkjZpNAmG3VYIu0n0UkKMQhpVhyyXt+dy36Ljo9frDIzBy/pWVeJK77fpq6KzkmzSvjhTRZvTKiSPGOta0wMxRm1qSEnxFE5UyDpCU5fkvIYmtFw3iryRpOmZ5vHITTa7vpemdNl5SXk1ywQ46JasYsMQxUbCFDhMSE7uZZLZH/oUNSCrqlrkxnPPGDvXzxAkwml7CGeNBGAp4q5epNJgwlUVrhby5KTZkRelAQ0IY6wm/Zz5Ed0E7z10PBxwAKUS7NxnPPwm3v3vRudkSJHRB5Hud04Q5SDquz5GfIr4CGPSPUC1gTypoJQJCQhigsvbRzEmkRrZz6IqJMckYjHSayyLH2qfqJS711Mcg6QXacipUqY06jmkK9+aKUG21cIIr9kESkpKTloc3py+S6Y4zhkhqZvVOx/Cuxzf0w5JqTrRcthcTpfziNljFTKdOglIJOuDl4HVyEiY/LkroSlAQiZnyfwSIo/3U8mYeIcCgEiQMD1Y55ySXmVC5Mgy6jWU3+mRc+k5RRSGnoRKwkctpwoyGZ0x4pRUor2Su6Y6Y2mdozaG1jnpOaD9BpZqJEAmZjo3sZjV6M+ElZJ+/XZOyrkf0+z/71z2eYwSlFx6Sy2DvVxy4eDg3DuyA+mV4xKDNODzIRZia1auHbynHz27rhPpf+XEDONIHwLeS5XEGCLJGPYWCw7rGpveWc76bvcmvtw74w6SkOUe3L/NnXv3WW8HdoNn6DtOHtyl3+2oq5E0LljsL4kR1pstt++f8djjR+wfXMSQ6LqObtyoDoOlHzppfoY4oyhUKkjdQLfbsFlvyhyfcwzquubS5asFWgUhtm03a8IoJO8cdcv9THdkDdTOUGkp7uSEaHpFXzSNmmGCvZ0ii1NzySyJd65ax4hzWrKRBq2igKZpyzIaxxF8KA6mwUCMQmYmUlWOfhhASXNZYErWguhZ5IqKEAM+ZdRBNvpxCHlSzjZtLZVXJDNZK0Ye4VoI6dyWccnzuFYF0aCdeavalnkqcuPymRvfqchYJX1qDOx2PUYDIvSZ5bGK6nycl+026ijmiFs8k9o6Ivn6raJpftpEjEDqEqSF6dmbxLySz4dYyl+jqrCKYusey9W+qn4qH8tVOGdEA6pyM9XqKQ2S/+XrzmWwU7luml2jndI671iF+u0UGco8UkHHc8e3Q5LNOzGTdzgozM6pgZyPgUHLWT1SPdJ7sS+bvmezk2CqahoODg81feInRFjHO6e1BK2cusdn51yUYqUPTubhWFeDcRjVocrtFzAZmdFKJYPw0pjKmwtqYuZpqWkccqCYbzl3+jZ2UrLFVIqgzOyflr3PuzkXDqGVEv9oHe3i3wNhtK4fiVjW2y3bXUelinVNXQvxqhJRqQKRaS4fQ1ncmYCVGd+SksnQaW7EpOQ6Ykmf+DCKcbNGq0umyC/nTyuVZY9l8Vj16GOBXVNeeMZKvlkX8pTHlOudb/gxe9shMMYMeWfwWRyvcRxFlEyFieSdQixd1TUHqyVtJeTbZVOzqGraqqLRcXnYiEzponm0PTuK4/JwVKFOSdLv87+Hj4cjoDyiOp6NtSSVHz737mxYZouy9KbIyz9/ngHpQ6RRvXW0wcPxsTb8MNPX/O/hn+dRUYnYE5vTU771jdc4OT6hD7KAt5tTQow0Tc3h/j6XL19msbdHWnfsUuJsvWW92VC5im634+T4AaP3GOfo+547t2+xG3rN505pRT/s2KzP2Kw3jD7IZWp/jaDIYF0JcdcHTyTQ73Zstztph04qqYz5OFqN9OtK+A4g0U5BOhB2fd4QxjiLpMzklCTyupj60CSySN/k0GXzWy4giMGcz39xnJXkSa4Ik35GeV1UIdDUjUaQkaquJJqLQhoNipzkDUbOoWRYY0tbg1x+mbQ9ewxJq7EgRq3sCkGrKUSCPXODnLWKxhh8EF6K0R4gvfbDyqiFsZbFomVvudCxTYxjYLFcEjICOKZpOSXtC2WyI2Kp66o0GUy62VXaF4aqomlbmqbFjyP9bjPrXiscsov7B1w83FeipitNEEUKv6KqhdDZqPhY6RNWUiOZx1MW4WyTmtbGOXR2+vM71nqxEyanAMw7XmlmH3K+UaRU1jx8zoej/jR79vNy9szTiCkxhFB0NbbDwKbr2A4jvR/ptCGrdY62bVlo9WWIgeA9XS+90IZhpG4aYi0BYNaWKXdhpSImiwlGcvuDbCdlv5BATH50qgiLpglzIXJeUUadhoJS1VVJteq0L07P5HikaY/Jo11+nkrzc/l4MjLfM1KYn4nNKXH9tBgC3idFWYUDVtXvXk338PE97ZCsu442Qj8IjBWCeI0lE64QKQmR+9VIyWvL6Ly4M+lKehhY0FKrAjvnkEqh4aJYmRIpUEoCc7QXDDiVUXa5fSKQCWgpTcJmRetEr9WpUTMmE41mXmeaYEVb2O1505V8OykW4pFEpbEswpRyv56R9TiQMAKL5kgL7SCZpCNqW9fSdbOqaCtH48RpqZw0xarUCDtjy/fiULlz0Y/cvP5PN7C5cZkWAiJ7LTvH9N4Z5Fj+Mrc+ZU+TpWlNdhBNKeUr5cuzzzYg0JY/X1Hy8GEe/v4hByWRqHZbnrxyhUurPaJx0vnzYKE51MhyueTwwmWMdVzaG4gIZO+Sp9/s2J2dUidp0+5DxCjBrMlOmDFCzN1t2GzWbHc74UfFCeWSVu6yUS0WS+qqYrfbsl1v2HU7gAnund2QQZ2RytFUk75EUifSWimzNSZJH5MQ1bHJz9goIqLOu4VccSGo5ITGmdmzEuNZFaNp8oZk8nVl/pQYRJtkzHwSjSHjDI3RlvLW0PU7tpsNYRyI0WuqY7b5pAyLnyeRZhJ0SgnjlISp6ZEQAjinCIjThmviIeW1mlMq4r8aauO0GVukrcXB8loeXDlH0zQc7h+waCcV4bZp8UEQiWGUdhOkpFoulTYhtOqMSBO0WtdmTpXVlUraty1t22qvEoPDUFXad6fK4mS2LMlvP+NncUZZJKY89/d+68Nr/z3OPz95bpJZJkl617eUIyMkSKVXTouEGPSroj1KxvdRVEN7P9LndLD35d+g6shNI8hPCJ5hGGVjLfwUg43SDNE4J5TRWe8bsDJHux57ekpdV2VukdEJK5bfuYFKEYcYvKoPT0Y/oU1itURePmqm8lrGSNRgp5SZmTpia6AaQ5DWCjMHJDFxnwy5N5qmBzGI35lm6FUsTpSxphTZp7zrFhFFoUGkUqkh+9J3cnxPOyR97zHWg3EYE7Q8LUfweeOexHnyIQYpkLJXAOTN25hckufJBNe8Fr2SYCWVM9e6NuWhgZTetk1FW+funuFcNJ031BxhJMSQTZHhdGZBVNCFp5uHc2QBkGy0S5t5mLWhnlQSI7EY4SybLTCwGnxS4d8MIdCPI6YXGPl8ZKNwtTHUs3xw7txaO6vy/VoiXck4tFqvLzX7wn+xc/Ri9hl5Mc7N0rnXJbRPxPyNZRfT14hhc1UF1s1Y8aXo851R2kPHu9pqmBZo/kWMNMlw7cIF0tGRGItZRJpJikY34RhyuadENcOwwl+9QEyhyKLHGCVyCgKrR2AYOsZB9GWG0Zc0lteKqHmqoWmXNIsVq9qxX7sC3Xbdjq7rtR36BBND5oqkmVqoXGNdV1IKaRJYq1C/IecppxTGlLKZj15+fiUAqCpwDqNs/oz6kXKkFQVhKD6kTMJc8QWUhmzOWbbbNX3X0fdDUdXMiFyMQlKd7jVHyHLttc7ZPBetOhq1qyR3boTfUNeVyq5PULegB6qeaSyLVhAFV1VSMmwMTS1dyI2VzrdGg4C2qUsjM0EfTZkj87LS/PeJh2FFkMq8R8RZQmZdWyUKfpc5bCb+x7ed8Of+blRW3LzH6825Lzo48mVmSMy5189We0wicDl3XBX5CyEyjh4/CordV4642qcLnuOT+9IB23vG4CXNbcRZHLPSKhLUTZvytGGj6TpjNc2h6yUHuuQgVNMffhzZ7XaFL5Qd23FUzpu2MlgtFtpmwGKMNDU1unQGJrumYeU0fIaCEkYQmQ9yZVXu5pvXoM3vlv1fK1xkoOVvQXl6Ju9AmuLLiGN+Cpk7lVLQJTRrbpiDMBkuKTM3Opf8lO6TT7AEopQpp4kH9Ucd35VD8rM/+7P87M/+LN/61rcA+PCHP8zf+lt/ix//8R8HRDr4r/21v8Y/+Sf/hL7v+bEf+zH+0T/6RzzyyCPlHK+//jo//dM/zb/5N/+G/f19fuqnfoq/9/f+nrK2v7tDbn7KcceU6JTYKA6p8CtyDs6oYRAiX4Zp9WQKp8YYqUItjObC0BdnxI8izVzVTWllnSdNbozVNjWrZVtyw3lzmRwinZAmaeogoydmVv+dCMlL8hjL/FFO+63mvDEixQ3qPJyHLssGn9FAddISprSZBs2xh1RQGXlbhjj1MxE4O2jZ86CfkcuDM+qUbGK0ntY3BTUxWOp2Kd1CNZKrq4pFVbF0hsok/OAhwaKuhLDrHK1zShg8b6jzmOWvk2E12c5gMLpZhxkBj7K4chpqPlYJCATcXHb8XQz6/MiRRs6BG2O0s+xUMZH/K5UD5foNjTOl18g7rLzOy+wEyZcZHyN/1f9Hk8CKhLzJZZ1ZsCjJRi9zf3qP3PjkpglqfJ7vMa0Pef4xJh1buS6rqEjCFAgcNeBjEEnpstmaqZlj/owYE8lFhsZT9zUm5NsXxC9FWS9NlVNo9ny0V1Iwk5OeDWh55hhtLJfz6LYgjczmVkZyJhRg1n6BHJNmArvOOmvBgTPidKSoglFlbT7keD/08/n5NP0vP+N3vDeDCvPf67tTys/iYUdexyo/BztbM4gaqI0POzoPzcmyKb2XQ3L+nefnqJndoDjZPkXGqJLkMTHutsTb9/CbHX4YCMM4IV0692NKROfwj14nUjOmyK3+GH+6I/lYEGunytvqe022rIyb/JA7HntFz2zX4yrhCgWd76Upn45dtE56BtXS1yglQZeHURyEylnaZsFqb5/KTVos8/Genp0hmoRNk2r25EAbaadh4zT3TG4amc+QZ+TskRjdCXSeowh7Ho9ZBmlmNzOCmfKSnz7DiDRFdiqnEuHsnKaC0IDEy0LrCUWx9Ts5visv4IknnuC//q//a973vveRUuK//+//e/7SX/pLfPazn+XDH/4w//l//p/zz//5P+cXfuEXODo64j/7z/4z/vJf/sv81m/9FiDR3p//83+e69ev89u//dvcuHGDn/zJn6Sua/7u3/27382lAAhZyI+zKEiGz7ma3f6OVVyxiNpVskRjOmAux6hyTJuvOCtVVUtJcO5wmiF0bZ+dS3vBqOcpqMjeUsp2xYkJpUyqeMC6GnJEJnk9U4wgJHa250vXvsGH33g/FoHB82KampUByZaJY7LVzZvX7Ch2+11QmbxQs2M1zzOe35BkyqccfMLEyE3TFwN87clX8c7z4Vde1JSFIgIxEr3HpoSL4GJi6z2VTUQ/cuP2XU43O0CbMw0jfuipgIPVilXT0Djh5jSa417UDatFy6JdCMnOWqw6QZXN0uRC9nUmM/uV/Ns2qhQ7GysiazYccCCqmtPgkkf44aOUNVaOXJWVJD9WonugwLtAmTvZUL+rM8LkjOSUW34e+TmWx66HbwJYqEdNU1X5Galkdj3xl+aP99sdeW6en1bp3M/vvsEW95ls+Qyz+fPQ/UYb6ZuRdqgxYfpbmc/qSM6dsfNX9PAP396RzCf9dvc/v+9zBHCm6NHoc+ybnhgTzWi1465558nOvf/8xmSmYZp+9y7vy05OMucdx3PnNNPmUN4/sx3ZadMRIJpIV/esxuVMfEsuKNudUrljLbnTciRD/VM3b3E0pJIkJKSCBG1eFyFaS0iGQSXsg/L2gvcMuy17Xcfi+ATX9ZhZVVFeJ8lYQlURmka7glu+9PTL2LuB519/iowchDAVOeSNOOtPJU2l5qrHPOLWSBfoWtO8wzhqmmUu+Ga1v1FL09Q4I8KcjQ/UzZJhGAgx0DYNVW4/8M4FVBzeaBKfv/5FPnzng1ShIfOSpBTbgLaIKCFDmjwDcw4pi8UpMBoYSOovtxqYArGsT5Idb6PrIEtXzNsa5LmQS43nZcbW1lIFpWMercwFp/cbI8RoqOtz3TPf8/iuHJK/8Bf+wrmf/87f+Tv87M/+LJ/+9Kd54okn+Lmf+zl+/ud/nj/zZ/4MAP/4H/9jPvjBD/LpT3+aT33qU/zyL/8yX/7yl/mVX/kVHnnkET7+8Y/zX/1X/xV//a//df6L/+K/oNEur9/pERS1CCoCY4zDGMew7/mD7/s8H/vWR1ierorhngybLWxkgd7TFHUZS4peI6fEyMAwBgyo3HVVWmxXLnuekSbWLBrHoqmKtHlhTedoDaawQZ2PGFNhpBsjaMMfPvYVfvfpL/DBN16AaEnmXG6pRNrMhGDVypTSsXccZjJz2akptfJi5coEPGdG1bBPDguqIWBLpDGtM8O27fjXP/DbfN8rL5ZrTslo+/gMj5bYr3xGFlwLwQvPJyoxV9nsp5st6+1OYMEUCQnJ41cVrm5IqqJYZUKnlk03TUOt7P86OzPOsbdc8uILz3J5f0+iH83Zf52XeSW9wkv+B7gYD5UJHSne7rugJcaKEbMFZdBHPEsTFseCDH1qTjrJ5oGdG5aMMBSAVQ3vQ5977nv5+9j0uOSEyFSY86Y8VxMh2YkQODlF5yuuyoMqvzv/+Xp5zDNnD2+w5690Qirea/+PNjFWnto7XNTgYY5imsmBm8e473o87KnNj3O7/dxBYna/U1SfjTkm5//PI3V5ow4mEqsowm6c82T0lA+N8cOXNV2Ehpez15rpS0GC0ru7seedvWmshJwoKYig4xrVBj1oTvn84cs89uARHj2+RkhSaTNGP3EwlIdQrw5xzUK7uybpOxWT6MKgJH8jI5jTVbkNhgR4EkB2fUe327Hbbth1W4ZByvv32yWPLhouGIPb9VNUjiFZQ6pr4sULxEVbGjneO3zAZ5/4A/6vN/8PtH0jay0ERMZ8Wntlky0bqqbAVPJe+FIVdVNjjKXxo6h9o/2HNM3mnNGKIj0Hk/KwtdIjqHJW+xdRRAJl6WvhgCL3oxn59Wd+Cwx88sZHyWW7xFy6aUtVlzGTgGRO5YmDmgBX7k+QCyknLz3Fcvk5kpqRNT9Dn3WPEGfDFgFRlBsS0jzFm8jU2tyziiQp0qyPYjAi3hgldfmdHP+rOSQhBH7hF36BzWbDSy+9xGc+8xnGceRHfuRHyms+8IEP8NRTT/E7v/M7fOpTn+J3fud3+MhHPnIuhfNjP/Zj/PRP/zRf+tKX+MQnPvGun9X3Pf2sffHp6SmgaIZu/NL5sqVuG15+5it85sOf5UNvfLDYnqjNyjLUm4iiV5ECuaTKVgrxFdIbk2FJAELYrOpW2mxbA9GXyKRyYqFzrhHUgNh5tMIUBWWDkpGKmLi/d8yvvfi7rNtNucdMiIoF9s6BuykGypT7fMja5iNPJDNVQWDOIy7G5OqjONvImAlEaSRfXPWZ2dZF8eXnvs63HnuDx29dB/X1izHPl2TN7JLkWYgyrKGuG1EcHEcwPuuTq4iQRmzq4NmqEsGkqmZMgsD0Qchp1jk2o4ddJ86ksdJDRXkOF44u8tTREenSxTI+fer5W+3P8XXzDf6b/il+1H8IUgBONUrZlyEMAbLB0H8uBOI40qv0exg9KQYqa1VRNo8hWkonC/+9OulOqMi7be/Trj7/PtpIcFpxYGdbVR54K5uCiSZ7sfJcZo4zZF8kTX8vkTTl+ZeIb+YsTBvvNAWzqZxqwPIL3umZhGok2URwCZe7ydppbs+jtTwPziMh8/O/x3HO6UrlGs+/BsBi8hrLYzD/vDRPpUEwgWgDwUWCiVh1wh++qvyckzGYWeDwba54uqgyZEYchhjpx5Fu0BJ374VTFAWV6L308erHkVCQDUkjO2c42F9SV46U4Pce/zw/9+Q/5ZnV4/zVV34S4ykaQSHlaidZzwe2ZuEa5eIpfylO8wUMkViCo+A9gx/o+56h7zS1MTD0vfRH0evOpms3joSji/ijfY6WS9quxwzCK4ltS7h8AX90gWgdJOEp3N97wCuPfpMvP/kyH335Q2UjjjEWVda89oV/lNNWs27C6nw6J05JVVU0TcU4avdno4UOBoxJOP1njRK8SQSTxGZETzQRZ0UUM0UjvCmrSsfqaGDAp8RbBzf4V8/+Gs/cfZzD3YE2/AsavKQZepG1bzTtqdVXeW1Yk1sEKJpoLdFNwY8E32BSRkWstGvWOZ0norUqc5EkDRwRzSlIEI1qEMm+6n12bmYBZ4qz1KCoFX8nx3ftkHzhC1/gpZdeous69vf3+Z/+p/+JD33oQ3zuc5+jaRouXLhw7vWPPPIIN2/eBODmzZvnnJH89/y39zr+3t/7e/ztv/233/H7YsiN0RbmjtOjU/7Zn/xFRuenZlVGJHBj6DWfjsJJEo1b64QE2C6FkJZl0kMWmJkcB1uJYI/BaMWNkF/rWjpdBiUDZVNjTGYsiynJMs26z5Z6fIBgIr//9Jf47FNf5rEHj4jTEMUITnl5mSCl+me2YaSYNHcthiNrAMh7c1UEgDlXWhm1nJGU1IOeKR7ONsRMglXPbrY5yb0c753xux/6HOvVlvuHJ2TzKZHSpFth9ORzXQofRA+iqmt8EJlo61RTQfUvcvrEYsBKG3VbVSr2pmMUAslEjEKL1jmSsUSbcEbKJ+uqZrVoOFwuJ/Z8Svya+21+o/13rM2ar/M6P2IbjD+DXQerS+DeXdwnP79xt+PB7chZ2HC8EwJqTIYHx8dsx0DX76iA61cuc2Fvj9Mz6R9jUsJZEbWyRKKXkm1nVDDKTQhP/pcjMXG2xJDeuXyf3WJHFSse7x9lFVZlM80VZiF4qeBR4SmBdGOOZ6Z4WveXgtvkzVV//44NNDs400vPRfXnvY/8m8kBSqTSIHCsRuqxFoSgRMdp5gBPUT/m4XO/i4Px8HUWxyZ/O+fLqICbUVRPx01g/ljWUlG3Vaeka3ruXXpAsIHFuODi7UNyJiBrHRnrRJdCEcB+EHJxSqLSOYzayl6rPkbv5XdBZAiwEG1N1e5hDYTg6bpO09WB4EdaJJ1gFwu6fke33Ur1VdvSLpZUWvXhnCU4WNYVCfj64g1eX97k7tUTPr3/h3zgjecxZPE5RQAraURYtC9Q26GOSdD5NY6jaOh00kV4GHqGYWAcB0WzlQuF6tVUFXbZylq2lmgM97xnt11zqW25fGGfpa1oFktC2xKcIxhDClIT66zl7t49TvfW/LsPfpYXbjzPpeEiGEmnW+dEDj2XLCcmJd68fsjpc22XEcA4is5TP6L2XkvvQ2CXEMJ3XQGp8AWHUapzSIm9vRWr5bL4sjEm7SQsNm8cPb0ZOKvWvPr463zsjQ/xZ775Jyb0GuW3eLQTtSkl/SmJQ5ARIIw4ulPTyVlAY0yxo9akUpafYEpfhan8PZmsyZUDI+HGCJqSVOdEAu8hjAzC0MW52epLSfiKxgi35js4vmuH5MUXX+Rzn/scJycn/NN/+k/5qZ/6KX7913/9uz3Nd3X8jb/xN/iZn/mZ8vPp6SlPPvmkkJbsJIk8ViO/9IO/ws0rt7hy/7I4Hd6TjOiLjH3HMPak0jQrOzROq2oMmCVgpn4AWT0vUUhsWWQpBA8p4lxFCJNuCSmTBiFHDVPZo5LJLEqaNSplbrh/cMIvfvQ3GCtP1/Rk4EvhFJgZ8KiYuTOTYxbTRISaILhsusXTlo67U0VFfsGUW533/2C6hoJ0KP/Fat17kKkfiHz9yW/yjSe/RSJxenA27RsJ5mqACviUK0sKI2fiF4jzU1UVUcdbooSpnBcrVRpmVlJmjZFOlTFKqaa1XLh4iUVTY5B+NxevXOH6I1e5dLDHwaItG+7WbPlfql/krrlLJPGGfZMQN7jTt6FdgsliXaZcc77O/PM4jgzDoGJYicEHzjZrxigOwBASffDcW2853vZsNAWVNxQ/dHTdjvV6I+WGaeI5lUZ0SIO7RSOG0Gk6qtvv+Ccf/Z95cPmYJtb81Gf+z3zywQ9Q2QpjLcGPjN2OYXeGiSOuWWHrBWHYEb2nqRxtLfL/Yyb3mSSVUU2jkOz0vLwX2D8L8lljS+WZIZ173ucONZyZVJrRxOPlCV9+/CvydBO8+LUXWW1XaixDCQxk1sw0esocYpo7+lxSidQm7kkm4soGIcho3S5wrgZXScmm9wxDT9/vGMeeELzYD+8VyRNHRNCIyBg8X3vxVX7lh3+DwXouvH3If/SLf4Zm0xbZ88Vqj7ZdiHquGvgwDtSVZakblvdBNJBiLNcuG6c0K/PjCM5QL60Ico2eMTdDxOAqERiMIWCDZ9EuIARCimVzKw5ejOy6geA9wXhuNLfpqwFvPZ9/4at838mLLGNbnNmpMAAgMPQ9m92Wvuvo+o6+FwekHwb8OGhVhwSDxjqJwq2DqiYZBy5Xb4htCSRMSgV9NCnRp8SDsae+fBW/aFnt75E7NYtSqQruYbi/uE8i8fJTr/Das29z/Y3HMMloWTyzuZgK0myhPIvcPiSXdY+DpR8cbdOAMfTDyDgOE7hnjJZVVzR1o4q+XhEQKf0lJZqmZbW3h7NGxTBzCl/mwTCODGZgaEaGeuBffORX+KHTH+DK9rI6C0HQ/Sw0mNcNKCqlwcQs5R80mJ6XN5iM6jiHcXUhd+dXpATRTarEZW9NSSoaUxCHJjcYZObEzNAmA8ToNU2kgfB72YJ3Ob5rh6RpGl544QUAPvnJT/J7v/d7/IN/8A/4K3/lrzAMA8fHx+dQklu3bnH9+nUArl+/zu/+7u+eO9+tW7fK397raLWu/p2HLJTKVVR1zec++AU+98HPz/6uzkCObjKMF3wp6yJFWcigxNeKlNTrjHHGychkIc2FxliaCGVLmNUKi2er8GwmDMl+llUKZWZblU821vLLH/lN3roo47GrskOSLe0s5aGLKHMyZMJQGmUlJpnrWRioBsCW82XW9VRWqUY/ieOSZapLPKljFo2lNlM5dErQ1wO//bHPsFt0kGDX7hjqgcXYkp2u8tTUmVIfSSMtQTNE3CcIL8NaqqYixlFbX0s0aZWYKo2dtOmYMVOJdopUrubowiVe+qEf5pGLB1KyiqFZLNjbW5but3JniZftN/h192/xWt7xdnqDdf8GR9bC8grYujzn9zr8OOLHQZUwJdpNRvLpzsjiDiGyXmc1VkeMIykG+t1GNDRirliSQyS2LbXLFWKi+mmdVF+lGIg+8cXrX+cLl77BZrUF4HcufoFnbnyUGkMygb7vGPsOv9sQxo7enzBGQ90uGPqexhmaSozmthvo+wFSZG9vxd5qRVNXhWTnvWc3eELKJOHcCl7WUYpRejapE6MaZuowK3/FgGg2SOXPb3z0t/iXT/+yTgjDj375z/KJL36koJUpqJEzsvlG3TiczaiMVtDofM1qoLlhYNYjGkLENUuWq33qdkndQNNbSAOjH6SB4W7DOHT0Q0cYh0J6jDpXRWW1JvdHilXic499g6/uvQbA6up9nn3sW7z/q8+zrJelf8k49IyzjbFyjqZdsNo/pHIVpTlaUF2cJD8HPxJTYrNZq/5L1Oq46cgpB1s7jA/4XU+zv8JVNSn60ktHyp1lzXofaGtH2IucHm7ASIffLz/xCve+ecyzJ49jUNEu9R0M4IcdZ8cn3Lp3XxwQ70UxWVM6CUi2xtQi0pZcVQQGJw5HwkTRlslfLUnSZOTyViBYRq9daoPHoGXzSdOmJLp2x9bJ9W+WW37zA7/NJ97+GK1vdB4wIVshiLR7CDPBMrGfQVHkyk1NATOqEitBXyGVNE9TVywWLctlyzAMJWCpkqDp4zAUMT1na61uFAeiaSpF1itMhK7qAPjm0ev8L8/9K/5vX/o/YoGQ53YWGtT5UxoiGlsQOEiSGlKnZypfOB+kGp2Psk5ykC3zKKqNiylByKX34izGOOoepl2elRckAWemEkxlmpk7aYzYr+/k+P9ZhyTGSN/3fPKTn6Sua371V3+Vn/iJnwDga1/7Gq+//jovvfQSAC+99BJ/5+/8HW7fvs21a9cA+Ff/6l9xeHjIhz70oe/6s8d+oG1aTF1z49otfuOP/Rbb5U6jeBHvwuRNXzpcxhjwQArSrlrY0xZX15PyYVADpEhIjBHrKqzV/grWEdKgjsGk8WENOFNjLZNegslKdhMiYZGyLWPEgWnriq89+Sq/+eLvl3vrakkvmSIWxKQ9kPsYWFP2yMS8VCxPEEtCyZizqHWWKpSvOXWTJDKRCTpVdmQbKhVIUTgQc3uY4EvPvczLT78iPxsYa896uaUdW/U9Jhx/Xl2Ebi4+pYJ25DbxzV5Ns+/AePptz9h5hs4z7DwEj3MjIBVNpW22QvKHR0d89GMf5f1PP8airculvpun7vH8qvt1vmy/Wn73ZnqN4+FtjvY+AlZQs/lxruJiBuvHmBjHQfuF5DGXMbZkjo68V1rdj2zXp5ydnTGOoxi7qsaoMXAz9V6ZQraU2hl1VkIT+eoLr8rc1+OrV7+GN4GqzAsx3nVVUZkaH0bpp+GD6mJUWmAuEU+OXHPkk4xRmDnhI6QC30qFASnhtdQ1lwJXKWq/omk9jeMg1WdJNvgQE57Ip5/7A+7WxwVV+70XPsvTv/4UNolRk4h7LsEesFbWRKMN/xIRoyjNMMq9YiyeSNWsqJsFrVvgKunKbYxhHHo2Zw/wQ8c49OK4jWOJZiHrFqWC2rWqglqpyNjYeN565u0y9rv9jm998A1eeOVZJc9Pm0B+FsZY2qalbheSLm6aUn6a5xEaHefeXN4Hxn6LTR6n1z9bgoLG1GKjunHDdr2RjK81oqtiDOMoZbRNU1GvFqyWKzb7Gx7sn5Rzfevim3zhsa/x9NljuCQQvbBI1N7EgGPEJC8OibHgakFBZnMzOx6EgPUel5I2zUMdD3JsBIpWx5hRD/m9R5pT1k1L321J2pmdLLxF4l59l8FMHMPPP/UlPnvtc3zi1e8rq9aHWQo/20hQwTmnJdAy72v9HUbWx2pZq2KprNlsQ6W6c2Qcnbb3kPvIwa4PCTOMbDZbhroqNsoYGMaxqIXvUseu6stz/OWnf40feOujfOje+/FepBAEQTaItlkqaz/3N0rpnTZpOib9npzezSqsTtXE89iXTvYlAJagPWnbihCC9IVSLkvKLylo+5TKwYC1CRMT/TjwnRzflUPyN/7G3+DHf/zHeeqppzg7O+Pnf/7n+bVf+zV+6Zd+iaOjI/6T/+Q/4Wd+5me4dOkSh4eH/NW/+ld56aWX+NSnPgXAn/tzf44PfehD/Mf/8X/Mf/vf/rfcvHmTv/k3/yb/6X/6n74HAvJHHFbQj77u+e1P/jtee+yNad9IFD6FseKpgy5a5X54HxSOdKqYZ3Rj8SLEM2Mo28KwtsQUNBeqAlFZvCpK18y6cgUuKw6JocjY5wt0VqD37mjHL3/sNzhdrsv1Rxfo7ciSWj3N7BgYlIJf4MOUmC00M6EeUHK1+R4MBuOy0FJmDqjBzUaCnIHk3OLNfByT0RL1xDerLb/6g78pGhh6jNXIZrXl8unFKU2Vz50hc73ubGxLrpKEdXDl6UMOry7w/cj2wYZuO9B1ntN7W4adJyUv/JAkd5ERKescy+WS5aLhrRs3RMlzVrLnrOVgf68wv++Z+/wP1c8TzZTnfNPd5HiVeKa+QCLomL9LKaceu82a3XZDN4w8ODmlH1V5USOyYfQaScgi9iHgh4HN2THrzdTojgSVhbppIfpSpmyNRP0pasoQYe5XVcWdq3d4/bG3lMgqx6uXvsmu3tEOy4IyZEQRU+GcB5+l0MXYOlsV3oMuMIx1Ev2OmlsX70+NkVHkgzLXjbGiZAmSHlH1Sa/pjsHLulN3nRgjty/f4M7l29PQGrhz/S73Lt7n0p2LpAx3p4n8W+aP6vnY4uTK86+qimZ5QNMKQmFtVd4/dBs2pzspNx0HxrGXtJmmjxJT9YGopMomX1WVctU0faGXu15seOv6jTL2ySbefvYWDy4ds7gvTkdKYodSEA6Cq6WqIyvcuqrGJrEhMbd4jwYTpoh8bFqS71VVt6JtF9IJOuf+dfBs7aj39xgHQbmS3oe1hsY62ZxLhGzYLHbc3zsu1x9t4lef/23+9Lc+xVG/NwsmNBpGxBXrvQNctSRLJZAkkrYa2JCi9F3R51WUPdVRmdIFsyqYqFy3XHUWE+Mw4MeRgUAcpeNt1gVxznK2OC38I4BoIv/847/EM688xt64d05cTloTZARtzodBgzBxtiNgtG2CD3FCw3LlU0pybWMAI5ttdlwH7+n7XgUxE7s+0Q/ieeWqnMLHM4aT9mwSejRwf3nM/+f5f8m1e1c48HtT5UoSfCUHtnnxZZQ6p3dLeocpLZZ7PJnZvZeS4ex4KJektAeYPZOkkanECx6RqlAag81rL+mlTShYDqZPjqf59e2O78ohuX37Nj/5kz/JjRs3ODo64qMf/Si/9Eu/xI/+6I8C8Pf//t/HWstP/MRPnBNGy4dzjn/2z/4ZP/3TP81LL73E3t4eP/VTP8V/+V/+l9/NZUxHkiqFl5/9Op/58OfOGeQUIn23o+86Ues0FqxDKqYtPlhqE4revjEKf6cs4xs0JQPi8U8RePShSMhP5bCJ4BN+HGgbKQl2WmYVk/QtKA9MX980lmbp+P1nv8oXH/36OfXRBAztwL7fy64N05aOKuRFFdPRJloo3FlKSjMJT96fJbFztF3OlyZEJ3+ATiVymjfXn6NwZLkQEp998YvcuHLn3F49Os9muStjR3HR9Lqi8F+iMXRDL5FWiKUCp2oMz3/gUS4f7RN7z/p0w63793lwsiUZy/GtMzmXjaSQuymnYjhO12s+/Xt/QF1r6W+zKETQpq74oU9+lKuXLwLwr92v80X75XNT6213l5OFIW224ALUB8wonu84tutTzk5P2ey2nG22GFMRvGe33RKAkJgk22NkHHrWZ6dstptz3ahzOs5WC9VPCZLuUTQgaHorGUtytaCDj97h5uXb566nazpeP3qdo9sXC3oD2SmVFGGMIyH2uFSRGjcZrzRtgsk4vE9gokLYMtQmVw5k19WoE6xIWxaoCjEyDNLLJcRYiKIxBlIQIuarj7zCru3OX/+q5+2nb3Lx9hFlGSKbl3OuOA95yYiEu9iDerHi4NLj2KoWDpnv2W3O6LsNwY+aBvFTOqigirZ0La7rRvthVWSl5znkbcr6Sdy4fpOhOR8B3n30Hnceu8u1u5dxQRWeBxmrqqqp6pqqactak94hes4k6K1sB5VWaQnC63V+O1exWu2x267x4yDBl0L31lqqpgZrGcehXPe8XDQT3gE2zZb7i5Nz1//Ni2/whUe+xg+//slp7NFNV4XxwtCTdj02JSoy2JG0FUua5nXe9K0tfDk0OJpXk4k9zUrbttgZeU4Bk6ymXnM6AFxl2e7tGJ2fLt7A21dv8qUPfI0/9fJL07NjmqM5CPNxEjVEUwwJigibSb40S5RrkQAKRdB2qZN1Wk1S7X0/sNvtiMFLO4amKU6RMZybRxgpWS5OBuJkf+7RL/KZq5/lpVc/CXGm3px5fjIIBX0toWRO2auje/7IjSCzU5SfwUTYjvleNY0PM8tdPme61nmVT0EAC/lbdhFr4PT/Hw7Jz/3cz33bvy8WC/7hP/yH/MN/+A/f8zVPP/00/+Jf/Ivv5mPf+0iJ4/1jfvlP/xv6pj//pyht1tfrk0k3pGlxThvvpVZPMeUNZZMOhKQyu2YmrGO1Ftyg8gDp/GLSqCM7KJkUVPlIW0ObhWHUYBsEvj/dP+Nfvvhv6auJMJWfd1f3Ge84J0nw8CFRh9xLlvPOE3yuMFhgeJsdBPGoM0ysy7SUO2ZnPMaEz0Q7RP4kl/k+ODzmDz7wBZqxZqgH2ZgSjJVns9jMrpCS2iCrwxpTEISS4sIQk2fvYI/HH73CtWafKjl2F0fsniHWFp8sm9MBM0oL+ByZz0m8IQR1chIp1VhXC6O9P0M4dmL4BjPwj+r/F4fpgBHP1mwxybAzPW+YW+zO7tIsW6r6oHj/58adBGlks1nz4PSMTTcw+kBVV/Q+sesHDg8Pqaqa45NTvB/pui3r9Rndbqf9l+RsOd9tkG7OrmqwcWDOlUgJqrrh6OqjpDAyug1ffParNGNDsJHgArWvSSbx5atf4vtufbSMu0l630lKPUv1CHk+SFRlq4o6Od2MVfRt/k8qwyenNcpzCyoiOCox04cg3ZW1505SToQfejF8gHeBN596Cxss1ltiFXGjxUS48cxNPvjZ92O9KU51UoTGGhGUyoTocz6yqST9cvqAfrfG+0EbfuXy0vmmJlo2dVVT1VURPczzaWokNttEpocPwKtPflPLlA2hCjhvqceaVz7wGu//yvMwDJKOw1DVFXXdCBlysSQMw0xmwIJJhUyIiVhXk5LX77UxpJaBNm3L4eEhzkoqoa5rTUWBVec3E6OD8m8yt8Ap5yAQubN/n9GN5YG2Y4OLln/2/n/NH3v9I9hotDydEuA4a9hvKvrthm4cMbaaSYsrZK9BQom0E9l6yH854jbKCVJv1xhLvdynWS4Jvid0nTiwVEStODIgYmvAfXfKYEchsSqfrg41n/ng5/n+ux/j4tlRQRAKOpMmB0vmgmiG+OSJWg0kvaImZLGuGyCpomt2uCVVn/lTwzgyDiOjF75Fo40Jm6bBqUK1pGGzZYd7+2maT/q1q3p++UO/yfff/TAXtofnig5KAs1OBNfCj0ypFGNYk87bfXXiSJHoY0GU5f5lUjs7X+v6pPSaxFGTb8q4EbXqUTdGa/LV6XwVh+VKllf4I47vjGnyv9GjX478xp/7NKvdkme/8ZT8MkE1VIKehMAwDPSdiO9s16dsN6f0WyGthaD9ajSHSPTEMCiMO5QeGJipRApjqepGUjwkibaKMJugEEFltaVZEoRk8CkpuS0qKiPQ7q+873dY+pYffOsj1FGu+7Dbpw4V/WKQiFXvCyiTuODkaqR9CEqGMwWCO0cgM1PVjSlGdtq8Cxkp638xwYDzZmyWKYrwJvClp18mkviR3//h8ponbzxOFRxrJVhmD5qU8/KppLKck1x6u1jSNK1UN40jpoaz7YazuOE0bVizwzWWxbIV9UNjMcESR40qo5KVYygbrXA05J6EVGogwrKp2VtJO+xfdL9MMIG/Pv4MbZKI9dn0FH82/Cm+bL9MqgYYB+mvcU7EH+EhhZ7x7C63b91hsxvYdTv6focfAs46YpSI2KhmQr/bcHLyQCKowjOCyokseuUclTW0bSVQv7WEpAJTahysk79hLA9WZ7x96Rb/4ef/FPvbfQBeuPcCH3/7Y3z16leJRp7tw+MeU9KUpEDtISWGkPBJDEmtHbNLewPdVJwTo4qOeUb9QlRNjH5k1w+su5HtEOhHQRO97xn6na69Xn/nuXd0n+OLJ/ypf/4S1SBOez3U/PAvfooHV445uXRaxlvKUE3Jc0saVSI872NZd6cn97lz41XOjm8xDlvGUXoytW0jZZpNw2KxYLW3x8HhERcuXOTw8JDVao+2acum4bQarpAKDcoJT8rtGOnGHd949FXe/9XnefxNIebvrVf8wG99lNuP32V3sNPlOOGcKUb6fitK0CkwjoPocwz9zDFHyoRjLCiutbY40jnSbpd7HBxc4OjoInv7h7LxOYkzsw0bhpF+EM6b1chXbAj45Hn94G0+/vaHuLa+DAkaX/MXP/MjbMyO3zz8fU7P1mw2O200h6Sxqob95YK9tpGN3I8aaM03yywmZgtKUZ5l/l43zIf1XoSn5jCViGWGEPEx0Y+BYYyM0YBrcPWKzf5AExuevft0Of+Pf+7P0puBz13/IkMYJW06jPT9QD8M9EOv+lYdfbej223Y7Tbstlu67Zah2+GHHj8O+NFnq6tkalQ8rZHmd3XNcrni4OCA/b09lsuWhXadr5ta9LGalrqaUDfjbLHt23pH7SsOdnviTMWaP/7GxzHe8G9e/DTJZmdK0v4xmSJKN2pKVLhnFXXTslwuWbSCDLdtw7JtWS5aVssly+WCxWLJarVif2+f/YMDDo+OODw85MKFQy5cuMDBwQF7eysWiwV1I72ZrEoNSC+lmqZtWSyXLFo933LJcrWkzvPPTFQAHyK74Txg8F7H93RzvddeeIOlX/Djv/Qj/OJ/9KsAOO94/xef5961+zjrpnI/L4quZhzV2FRTfbrLOhdBWdieUduFgxBPM5QOiEFuG8axZxwzoTW3IzdlQ8xCPADBR4zL1TV6/Zff4v7yhP/LZ/4C//OH/zWj9TS+4Ydf+QH+8PGv0DdDQSLmDsWssEeMs7Fl08lxbo5kitwzSjYsRkEjmST534ykJDMZizkWYI2QtrKBTilxttxw6+Jd/uJv/ihffO5r5dUfeuX9nByesllsp/TShE1nBFfjcvksaxzRJBUEipwdd7zy9bc5e/II5xJjP7LdDmw2nvXdDWHrRQAsyYlSyBUcSMiuFTmRgb7bSlQQAzENrBb7VK5ibdb8rv0Mf3P4v7Oj49ScYjB8JHwff9H/OP82/hvGbotNDrvKjAmJ4PrNGcYPmNpw99Y97hyfEYxhfXrCbrvD2qUSoj273ZYYI7vtmt12i7OOpjFa4hm0aZpEJyEKGhJxGLskWY+NW+lLExIJKRc9u3+b5d4Br7zwOj/8yp/g6t1L/Ib5twCsxiV/8St/iV/4yD/l/uIeR8NRcSik3FERkZxeSZT+Nhnts0rYpDi4FIg/hEAKvlQEeRW1CllaWp3D4D3BD7qphgnSVUcX4PjiCVffusLzX3yOX/sL0mKCZHjhc89yfOmEk6NTLtw8EKhfnWFnUlHodc5JZUqJsFVsLko1g3PC06i0ZbwQhx2Vq5n6G00oSL7XcytA137Ijq6WAccYeXB0DCHxQ7/xSX7jz3xaLz/xxGuPUfc1r73/Lb7/9y9PKTkE3aiswyGcHD/09DFIEzZXy9iX9ZlJsBXGyKYQMRSBLGoqa2W8szOecspDqjgkipc0T1tXQopNBucj3bDjXnXMS1/7BL/9/B9we/8e22bHE6eP8uQfPs6rT77O9z/4GEu/lNYbimpYk2jbltXeirbrGXwoJM1cUkvmgahPa2bISH5dGV9jtMR02vhTjBosOnGGq4Z6/4Jo9jhxCKqqoj8Y+GNvfz+rzZJXr34LgM70/O//7Y/y+ee/zIs8y/52VeZFdrAzMTSnPaRyz5W0kUivi6Nb1zXtohUEV+dyiJEhjuKM9z2jtxKgKhroY8DvAl3XU1Xa98ZN3eMzN+Pm/i0unBzy4ree4bc//jnGasSvR/53v/+n+J2Pfpbf83/IE7enKtTM14gxV2MBZtKLaepaCynsuX0j8wUFUZycv/yArNp+KW7IszVp9WYoXeSzzkmuzjwX4KY8Z+X3WQrgxltv8Z0c39MOSWUq/sPf+mHODta8/bgIq+1tVvzxP/gEn/7U7xcSWtTOvpLbDsRoCSaI117KPyeDkUvXcn7ZWksIo5AKgyMaIUguFgvNZceSkxNypjyQEAJD32FSjWsqCgvEGIbac3//lJ/4wz9HaDy39u6BgQu7A77/tQ9z2qzZuSliysJqABhV0StQbym2k89VWE02nEx0komXO/NCFhmVDaVEz7NUjUz2TEoTiHyuu3Hn6B4/8JWP8sTtx/ilT/16Hj6evPkYL779LF9/4psEF3DUZHufbyA7ZjlSZ/YzwObBllc+9zZ33z6h3avkOvvA9qRnfb8jjIK4UPKk8rNJFCVSQ5BAPohD0y4XXLv+OC889xTWGt4wb/Fnw3/ID8Uf5L+r/geZE8nyTHqKH93+Sf6t+TVu31/zyOEhjXEYrcxKrqHf7ajjCNHx4GzNkKR6ZNf3eB/ZbteMQ89uu2bodrKRxMDRhSMOji7hQ+L0+D5nJ/chxdJ1GYJITlPhaUkOKpOrSyRSSykKipdGfDXyJ7/4Q3zhkS8SrcyVemx47PhR/uw3/ixvHL7B0cmhDq96smqIrHZlLhuNtSTVg8mOQ+UM0+xCSKnjwNCPDKpBEBPnnJAYvVRDZAlsdYYyVB4VjQsu4q3nxT94gWY7VUIBLLYtL372eXbLnlRFGio1cIa2aXFVzXK1R922Qnr0UkXRdT0pyYbhmoblYlGqgWwueTdWEc7Zkprj0tm4xqAdvkfGUUjUFJ9eXnjr6m3++Kc/zrX7V2i8RPPRJpJN/LFPf4zP/+BXsLXBBAkaMiF1sVhIuasxQCSlQIwidmZGi1UUKmk61dhYNpipM7F0Ek7OEbwlDn2RfMcYmqaRctQkQYsNkWXX0XiPSSIb32FYxAV//NbHefXRNzF8heAim8OOP/3KD3HAPidHGw5ODyekU50qV0k/qKZp8HGgqmuylEJOEWR7NeUGzv+Yxz6nbkxKoi+kBsrYCuMqQgyMMbBqW5y+fvSeM79m22/5yFde5KQ5hY/KOb919Dp/8ut/jA+vX+DG8gbPnzwlPL5ZOqJyrqCASW2aQdCHGKXD8NRR29P3nYy3brpZUDLESFcCRJ3veo6cno/eYmIgivgJE48FNmx46q3rfPDl5/j8+1/mwdEpdw/vs7du+LHf+iHevnabK2mfeqwEsc6ifPk6C6fEFhn3STPmfAomp1uyeniC0oIgFxvMTfXMZyzPPsa8S2o/NH2omXifzxtiIoxyDt+v+U6O72mH5MVX3s/hcp/P/PE/xNdCavrAN97P4/ce44nbj9PULU3bauvqnD/Orai1s2VBDvVp6XLJxDup9x4L7GqNIQQRo2qaViIwhSZDCGy7XnqyeE8IIylamlry9vI5kid2qeIjr7/IftXyhae+xu39+5Dg4vaQx+8/wksvf5KuGUoOmMA5LY/sXGRYLG8gMuMmJESiGSXkaorEGkMurgsxiIptTLMyYlMmftnAUMfHFNeHx+88ysK3eOd5+4o4hMu+5erJJS52h3TNIN1bB00dmWmcc8CYYs55ivddW0u1ktRDd7xjd7KjqnNKLRJHKTvNrehz51bR5Ug47UmxWi64eu06Tz/7PJcvHuCMjP3+wSGHh3sYY3g6Pclz6RkA3rDiwVssz/jHOTi1fHz3IU6HkWvGEYaB7dkDXGPAVIxbj6kM282ae8cnhDjQ9SPjKEaqPzuh323p+l7SiJVj0TYcXbxM27akXUfbNoxNTQgjpVFbzM2rxIBE14Lbp6o9ISSkiFWM5Vl6wB/77PdDD9vHdsUhqXoHPXz87U9w++CmPq2swpoKUta0jTgdiobk6HEOooWswREjvSpLjlopI0YskkIkhFGJ4H6GBugxM3ikVFR0U4pcunnEhTtHjK0/9xZrDI9/6zoPrhxLeW9Cib2GhBjcpmlp24WoRQ6DlFI6i6FizEKHiDqvNFE0eE33ZIeec+sn4kePVwQkeBE+zAZ3djsljXO4O+SRG1fAGdogvLRoI37pWY1Lvv93P8K27lj6tqz/Wh2Sqq5JUfgfY99r6gLtwZJIygkQGH4lJfdG7EjU5yMCWwYcWOvxvqPrNUVVN5ASfYKFcxwEWB0c0Vy8hHGO0O8YzV1+4NZHueQvc337SOFh3Ns/prYVH7n7okqgK4LKtNkak6idiIftepnDdW2LvS2pGDIipraVGUJixfmwKcluZBy2FoG3oHyRCPRDT9xuCEnKuY06+MfpmKtfv8DByzXhQkM7NPTNwM1rt2gXjhePn8MvAstFW9RRs63JacakqUsfAkSpHiSTXTM6jS2o3rxyEkyxLYUzg1YgEgv51VaWveUCV9nipOeFZvcdP/z1T/L45hoXt4c8ODzlwaUT+sd6PvLm+3j6znXiKmGDLY6IBNgIR2scCycrp/JkbmiKV1N91kw6JlmQMK/zaf9jss0pp3htQeHl5ZlGkMo4ZGmNvL/kVE22BZcuHPGdHN/TDkltKqgtX37xZUAi4498/UMc9kc8cesJGiOdeY2WPxlr8H7yYsk9VOKEAhgrCp9T3lailsylSDFSNw0xSJ8D0TowxRvOpWRekYWmVpjUTl5qDAmGxDh6zprAa8u3OV6eYTBcuX+R1fGK9589x9cf+xZZ6CymUCaOtefLfoUvkVVWUcREkY4SFEuZ5rzl+6QHkpVrTSl7LLSRbCRjKhMd5B4WqcEYuHfhAX0jhNbLx5dYjgsOdvs8c+NJQStgNsv1nwpgyb1Nf5CeREvqqsLfH9lut4y7kbp2LFuLrWA7SBQjNyiX1C6W7K32sFYa5z31xHU++MEPsre3T9PWhSw1z2PvsQfAmg1vGtGRMBiud9e4+9YtPnHyAfxCyMb9+gHD9gQ7NoxDJLoF3gduP7jP/bM1wxgYetWKGIQTMIy5dbrMzVjQjZ4YR2Lw4vol8FGk4jHgoyEmi42CzjX1EusG6IdCHksp0m4WVHVFcoa+GQhattyGFpccy2HBkw+eKsKAIQa2ucNqEBg/lgeim/0Mwo0h4JM4jD5Hiz5MJOg46+IccrpANqyscVCpsmPeyMzM0Q8x0N6viCT8Q06MM9KR+cq9S4Vol0WWQgzURuD6zLMY+p4QInUtUaRcb8fQDyxXS/ZWq5LSiTFI+3rtMFt4YGEiMWZYX2ZmgkiJKsGU9Xz95lUqasYmCHcNSC7hDgx7ywazS4zbQDBBEVvRCmkXC9pmQUIE9YKOiZA05DmGEITn0HWyxmOkVmSXkp7MkLkgXjmVUFdOwSCpGmqSYblY0lx9BHdwSCLhxpY67PiBGx/FGcP1zeXid93bu0/EU48VJhmG2ON9UF6c8I7atiE3o8s2JpfXGy9ppGJrdJ7ndO8wjERjaPYamtVKHHJkk0xRUoJVVLQwCQfGVI6uaRjIxQbiQD75tQvs3YOuslx6cIEb12/TLQbuXTzh2r3LsIZ13Mn16/zNKqfF9Kg9zRu6s06dW0rqPfPTStuGgjzYoutBKX+V+T2Mkk50ztEuFyzblhgknWNMwiTD5XiRD9x7jio4Hjm7wjevv8nx3pq7V05wd1sabEHdxZQqAo5hDNKU1Kswm51dU1Yods6q3op2vFd7njMA2azPUZdUnpdVgcOpfUlB65O6l5lnZbI2ltjlZEJBiGx9HgF9r+N72iGx1nH3yn1uX74DwMXTizx29zEqKp68+QTLbqnQp6ZmggxUtNkhyZGb5M+tsSVaBDFAMUqXwxgD45hZ/UFKD2ODWS6oqobM1FAoRR2XWshFdV28TR+EZBZUs2QMI984fJ1oI5V3XH/9KqfHUtJ6ZXORs/GUzMc2mhe0VngAxkjOs1RLJC2DNAlp8qd3aM6tuckfKDCcHJmgOKV6Hsr3poyQCJdBGjTBrYt38E4iz8vHF2nHFhMNR+tDQEWHrJl9vkYa5TMnSN9Yq6TCiqZp2W13+BiwAXwQdn9KphD3qqpi72Cf648+yRNPPsWybTjYW/HI5SP29lbnHJD5fZZ7AgKet9UhsRiubw5Zr7ewiTShYrc5o10uwFQQLWMIhOQ5Wd/njbu3Od0OxJQYukG0SHYiUGarCuMD1hqWywWr1VIWJ1J+F0Ng8KHwlTxGDYZUc1mT2GsMq8aRvEYlRljruSwXNfB91RWExHWWYTNQVb3k2FXamxREt0p3sjlMnQWTsiPqfWAYJYoMGk1G3bxz2ScZdVGEgSSk16ZpWSxWLBYtjVYm5GgXUP2PUXueSAXKaCcdiRwc2GLkbNGxMVb1T0xeC1qKn3I1iaRtBMY2pby3co62aWUT8yPBjwzjWMSyKHNyQu9yfkGcex2zstno/PGGYEb86LE7mU/RRux+ZH/ZFgI7CJ+jKt1ihVOQkE2jbAQqE5+S8BKaJE5KVTdSraQ10MIZQ42/7KTOWdq2Vf7atLYqa6mToWoX2L09baQl71+OC2LwDLHn8HhfiN/A7foOD84e0HY1mbMgkzq3CahE7VjTHk43uql7LATVicrOaMJgXI2PkWEnAnTBGGzb4lS80JgpTb5wkcNVpK8Md/qkFVoj2CDzIUbadWR5r8X4yKpvuPTgkBvXbzPagW82r9Eea/onb7A6ZNmRc2bivZwr685l0TrPqkp6AKUYJhRC0WOxwxWtcjfQfjchRJwdGfyo4yLKvCEEQt/j/Qgknn37CewgPJlnbj7O7z3/BbwLfPPi26zTjoVvZ7Y6OxgVVeWoouho9Rp95rLqXPIrtsIovGjJ2uHJJGkhosgjKEIaI8nkuSWrImSRzOKoaFpGNxUTBROar1808E5IYN8N5xHQ9zq+px0SYwxffe5rIoqT4IU3nmPVi7d9YXMk0JJJMuo4UooooKFeYoRhmOU9Jw8+GyJrJ8nlGAJe4WsXpVGWMYbFwqjIkdUKBTDW0TiBZ0F88ejH0mQqS19v7IZvXZd0gfOOJ169Tt91smXsEluTc286+Xlo8Rhp7Je9+RziiFMBqNNS0iQpIytGZfSj6pOkczUkRmdjFtQqRg9TFofEGPD2pduMleTXrz64zGJo1OmZl4xO2ihSqguSCpgiJ2NdIdfmTpfS+yNisIzeEl0ljPHVvhjUvQPe9+L7uHrtUS5eOOLifj0Rtnin8/GOdALgCbyREZJkOLhVS9meVph03Za6rYlRkJl+9JwNA6+99TabvqfvPN4PnJ2cst3sCEHKflfLVhyAEESa3U5OXVU1gGEcvQgvmamiw7gszRyprKGuEpudlBMnpMpGzTu1E0PW14MIuyVwvSP0gT7sSLFhGDpS8loaa8q8mIyMTosghMgUNeqKgpKEqCqXurnL89fqMxUIq+uGtm3Z29vnwsVLVK7BB9n4x6HXOSBGMtmIMaFUXzhn38GRkgosV9QojfaJqmpNx1irVXDSe0ai00TfC5dHZPbF0QghsN5uC+IRQkYjcoltVjMuH1+ctaTI5+SyZMLllITQiYPtbAl4hlbKcNtWeE5RHRgx9JP6Mho0CActldeZJGvGWIMzTlNMEe+lyiL3ChF/JAcNct5+GDAIRyJIfhPrWuxq77w2hbGMwdBvd4QwcBAXxSG5u/+AZDzO1hgjCG/m3Fkr6JerxCGuK1cUiI2qXTvdzKUUddYjqxbBPyorHYW7jm69poGiZm1ipLKWtnVcODCMS8PJ2jAETxh7TIwsUuLIB+x2y4BjXLbsY7l8/xIkkR24fekuH0zP6nXnPktMSEJ2aGfjce7Q+Z2LHypnsxs/s4Fz59hRVQ6DNK00NtDMgsCUKJo2Y5ROyjEEFl2rPMfEc288hQsO7wKvXH2d07gmbXOwK45F29RUtRRR4IwoIZsB76MgeQBm0hPJ98ooaUybHe38N9UTEtQylb3p/IrI95uIZtoXJ2Ky/G/qaSU8KqM2p2kWfCfH97RDMtQjX3/6VYILVMHx7GtP0/S1QqxTs7kMS1WuAkVAjJHGeyJn7cksZXK0BxoNqGEwYkSTGuls7LpOHmbTtOQKG2MdrauU5KOTUfPcUeW1nREY+2xvx61rdwHY2y554s4jpb00ObIo6HEs388NZIqRdtFolKI52pT7Hcj1z2glJQecm7qhGc/ixEw4qxhMdRqE/DX1y0kJoovcunSX4DwuOi6fXKQJM3huBiln5ySXUoOkMYScJ/LOJgnqkaL061i0jlR5XCV5TOsalqt99vcP8CGxf3CBo4OLHOztsWrr0sU4H+/mgDyMmvT0vG1FafMw7LPq9vFLgzUVR/stTbPAq+jdth852w2c9p71ThQ++92OzXrNTnVF5EMStoFls8B0I/vLltWqITrRYZjBaYKaaJTlXAVOmgrK5pMY+oFhHBQlmIymNDgUdKxrBCFx0bGMS2qX1WlzqahDaUSkEMh0IWNVY0KNVUKk7/u+E0VV5YSUEnImB1J6TC1oaimj3ds/oK4bjDHsdju26zNtUDcUkcFEVjSeSIExRWJ1/jktFgsa12irBulVlZ2MRIf3Iw8e3C/N6EAchdGP00TXoMIYaUzXWUddC1lUynhV1ClOLSJimCqFpiqkOWqS7+KhOZUMzVBhoyXaSN+MWCW/OzuJ0kUdu9JDRKNeqxw0MOU52Ic3TLSCKCWMV+6DBillbBXptc5KwKTRvU2GZO3syg3YBqol2DVVslwORyyHBWO15v7+Cc1+y6pSpVaTuSB5DU0bkqTn7KypG8rRCNPzjYlkDK4SW9u2S2pjBcHqtvRa2YURYqttW0ZnCEGcgqayDGMiDj37o+epfuTiNnDPRe63Db52+N6zf2cPGyyhCtx/5ATX1lS4aU6Q0aVU0hAyS6agtCCHBkxVl5SMdRV1pU3sYhZ+yyvYaHpMOv/KiyxVElHE3NMmxUhVOxZtizNWeVfiXMaYeOH0WQ66Pfpm4M0rt0hX4UJ1VM6fNEjMRG1jpC+O97WkkxTpzKmWXGZcZQ0bRXlKdqBUySWcM7g4C+LIPlDu6WPOzd2CEpHOOelWdaYktSfDsVy+e6f0h4/vaYfk7uV73L94HwxcOLnAlduXSD4WI8K5gRV4MQcmJgXICozWSM8MN0HgTmXiMcIjkfysKxCwQL/yGVJWHCaDo6V5zkLQkk4D1JUjxqnXR0qJt5+6ja/FWD/75hO0NNham5Yp6pEnYVBGtSBrsVSkoAvE2qnfTYaAc+SZUipiSLOhIalXDAWAJ/9EmuA3oKDDOYeJNWwXO072T0kGVrsFFzaHMzhPkZbijWtkmImCem9z5decCw9RUh1tLaqtTeuAGk9DVdWSQx49p8fH3HzrJpcuHrJo9qaLJV/zBLPPS+DOzSNzjy2imfKkf4zl3gWCS7gUWC0W+GTwg2e92XL/dEPvI6e7gd1WNG7Wp2fSu0adkcoaWhU/apcNtqpZtQ1tXeFtDapUO+mQ5Hkm0VhSElmM0pANM5BVFTPRDnXsQoiEFOirnmQSLjgWUfUAVAPCWKfC90K0KxUAUfrPJJVyd9ZCDGx3W4ZexKEKCqCbsqsce/sH7O/vs7e3r1C29vUYR9Znpwza+XXou8I3eOeRvWqJqupZbxZjDKu9A9rQYtRoJyCMo7ZsH7VxmaybupL3eh+Kk5VTsPOSRK/KmVlqXtaJlmeOfuaUzNYWCTObU3k96BZE5lUZRFDMRouvPF09kJysYReduPzWClibHVFjqSpTNj9AnRJbzmttVf4mtqoihq5o7thckaKbQ+YyGN1N/KiorjGkvpM2F8aWR+Iq0dAwsSLawLXtZU5Xa/p6YLPccWm8UNYws5TVfJk5FY3sfM/oxymIirFoGBXu2ziUjrHJVbikJaW7LR4kBVQ3hKpi9BYfxI5W1qDNN+SZBc/Gwllbs1u2jCbiu5GD030Wu5btwY6zow3DvqfZtRpITUqnMq8jRHHxRbkW0QdJMy7G3CYqils5V5zHjJJkxDg3nLPOYJ2u05RIqlQs/KeaykJySThQLlcvGhpWvP/u89w9/H3GeuSb12/w3Oa56fkjnCNJmYrqqjE1aUkJSEu/GkV3SkqNjPoJ9yuTT22Y7KM4takgHnlu5aqd844IxT4Ymyi1wrrmXEZEE1TN8l1swDuP72mH5MbVmzw4OJFUwb0rXL13hVwjnlMA1k4phpx+cBnCi17bTVN6nETNX0r1zCT3nqEn6xwWV84Vk6jzxRhFQMZaJe5FTGVJVV3y8iW/mqZN/5VnX0e/5YXXni3iM3UlHRKdhrI+CGvZl41EG3CpA5Q3LMyEgMwNHWRZgMkhmRNaM7G0QNUaOcwRhtz+en6c7p2xXoki695uxcWzI6lEygs0/8sLfOa9ow5OdrpIqaSXZFFIGa+tapq6JaSGGOsC5UMkDh2EkdZNm8y3P6ZoN2+A37Kvl78+6R9nsTrEW89ud4ZPlm03sO46Tjc7ujEQoqHrerZnWzabM3Zdr1UHUDlLU0nDxDpaFu0SUyUcoqdgtTkcZhZvzhy2TEK0lSP5ROy3UGeS8vQ8zOz6RzMwuBEMuGhpfK2Ra4UxqVRVZSE07z396BkGLw5JUh2SGEQIahgntzRJiWDd1BwcHHF4eEEExNqWBGw3Z6zPTtntNoyjJyjjP1fRzI/sd8oXrVpwooDZHpx3JX2ImGFUzkpWHVXVTBJ1ZSX0RCqsQJwLqyWPRUnSTihU4VRUFWgJbl21nK1FKCsrb07OBpPzYXK6VM42n2r5b1nh1BsYKk9wOa0lEXjevPJzdxoQBS8Rq1WjLwGRLZuIkD2FGFnVNcPYlVTP5CBN5MW6qQX5THmjNYwkxtMTqtUB9vBI10GEGHQsLMkkrq0v8Y0rrwFwe/8eT509himrePpS1m6aqjhkA8tCaG4KZlLGIHILjVCuPVlHMA7j8kapr03SnG4cI65Ruyk3RFgtudUuqI2DVkQqx27DuNtxdHrIardke7Bjvb9le9RxwV+Qua3Pz7g8zsyCoGn9zctks57TFMRlzohTtE//kNemoXC78rwJPmqDSSXjZ35KiJisMmwkpWmd5WN3PsRvP/v7YOBLj73Mn3vtP5BNXTVTDIZhHMtnWYuW3mv1k7NlbhkrVWmZB1L6UZHnpQGLpOq0GMLmdZ/HaxbIzW1X2RqyA5TXgkQwxakBWDQN38nxPe2QvHH9bfq2pwqOZ248xdFwCDUl2iwebG6Cp/iRTHZpgDQOQqbL3qEYYHFIJPWTCV2msK3zSosqyASTsUsxkUxQGLPSmNRMUYxBau1JjG7kladkM6x8xfNvPl02rQzX5goFTK76kTxeZawo+M0W1HQPmfsxKczmiZxJjIlUUjEFLdH7mKLDaU5lozs/DHC8f8bpSngue9sVF88Op/MyOSQFu8vRB6owW8pcs0TzJCwn68aBXTCkpUx8l/uKWEgGGyKLFKjc+U3i3HVO0M7kxc/u5lXzzfL9+9z7WC4X3L73Fpv1msYa7p+ecf90TUgw+MB227HrtnT9VtJMBuV6OOlhpNwhE4UXlGorrc3TQ+OthiwTN/Nzr50VVCgN+H5HdM0Mbs8mG60S6Tizp3RGEB7rLXYrE0NQPYn6x0EayQ0q+uezhsI4kqLXrqJplqaQ0tj9/QMuXLgomh9VLVF3CKzv3WGzPqXbbYsGiMDgqURIxaCpM2UK5EZ5/hLBOYI9j0RUlcN5Q/ABS5KfXVPGzYeIGX1xMEKIOGe0ygYRtCo9cFIxmglR2Vy2NW0t82gce3ZdJ51U9R053Zqb6OWry06Kzfdk8rOE1je4oGW5bcCtHKlLCHUxgZZy5/WEyVR4+WeUN1PSusqfSpGSuqmbhn5ntcnaOxdk3TSsTGLoRWU0B1lDiuzGEXvzLWo/QNUQho6wO8MtDaZ22GS4vr5aTnfz8C7cmIKQsr/MnRLEsapcRV2JIqmrao2+xYmUFHeubJGxyERpU1Ws9g9xdVWqX4LXct8UGcbIsjHUlSjlJgy2XRCsI1oRMev7jtOzNV3Xs7i7x3IjfIWz/TVnh1vcsaCOOZWQ52ZM89UEaMBY5qqW0paycK3IDClJqa9zeFQpdeZqWu2sbEzCWSGIOy+Vml7RN6fXk1LCqnOZCFTO8bH7H6SONaMb+dIjL0MTqX1VHJw4Q70Tgoy4ZKhiYhxHRZ0ttnJKDJdHGLXFg82P0UySECVwz/ehNtmg3LbsmaszI86YIk3ZoUMCMqmMmvW0AZbL78zV+J52SN569C0w0PYtz35LpOMzWuAkz6KkvKBciVRkjs+RS4u3LBOvqmo1OhYqVWlFFDqdEg5TSvgBMBMknVIiJDEmuXbb2Nx2minVoZbk5iO32KykIuPRe1c5HI9wlTbmc/kcTOc3ufRLTWQ2jrrCIgjjWZ0Kqy84j3bopmyklLiUk2Ujk8+vv8sG1ylTe04STRZO9s5EIj7B/nqP9rRltHPYOS/waRHlIxOoci8PUJhdc53ST8hgXU1MVo10pc9A86d1zf7+iqapz13bux5xUMeumW6M8wjJU+kxHty9zcn9u6zXp4QQuHO6ph9FwXe93uCHnsWi5uhon83OMux6bJo2DeukKZ1xDpdEiG8YB5KtqSpJScUgn591bHKqKm9Eiyph+p4u9KRgsaYuzyrFwBg9cRcZhoGz5Rkd0pzORkc9VmWsh2FgvdkwjDLns2Jx1MZ2Ie/aGbXLHi2y0RweHrHa2yf4kbPthu1uS98JLyQ3mNQga4oK87/sgGuEldGwKeqStZpiZLfdnUfj4oilolG4uS59dQTNMT6CEZXWylV436vSadZLsLNggeJs5bLFrJxptLKuchJmpiJLb2bXSREjy6svoxL5ip2FdqxxUebAWHlSncgNCY2eE+MobkhMJJMbyummltdLdgIy0pNTAaWsMiMuqRBRDepIqaJr3nmDDwImOYsbOtKNN3V8AtEl7PJCWTfX1pfLM7i9f+8dQQjTCJTDOVmH9Ripqxqr+icSoOlajglsxt0sPgW6viNsA8EY9i5ewjatzI8QiONI8j2DF3noupaUik9JG1UCIRDjyNB3pRBgb7vH3nofEqxXW87210UMLVcvie2UKqG5bZpsYBIHKm8MZkrcFCqA6kllE5ebjWV0PguGRZNL4K2Wz4vjn1HilJwiwVEdBrjoL/DU2WO8cuE1Ttsz3rxwg+cfPENWos4BTEkTaXrfOTfpqaSI+/+S92cxt2TZnR/220NEnHO+6Y55c87KmjmWOHSzJ5LNHmxRPcBqd1twwxLsNiDZL4IMCIYBC0YDfjDgNxvwBAgw9GAYgo2WJbkbbIk9sdksktXFqciqYs2V453vN54hIvbeflhr7Yjz5c2qbD05oSAr773fd06cOHuvvdZ/Tf/lgjpqBZvJlopO4VZaC4s21+nKDoK2YNbSB+ZAXW2Kc5TsJ0CnjvZ03oVSwCmX1QcH/T3/+lgDkgd3HokhvDrklfde0upgUdqDLqiN8pZUjhXTTSmJGlWgCCFRNgryosBDGBRVElRY3R46rIq0AgeNUhRB9FZcaGEup2Di7dffJXtRgJ98/Do3m2OWKIESNZ4jHTpOxhgVlyugMGxf5q8vIFX3rnbNpJQVtVpVvjzH1G1APXRzACQHWKyN1zqYeRA++cTT42eMYcRnz63HNxg2A7RO+F+ql+xqvH6iwaf2u5u415w8drALMXgWXUPsVtItoF5YjA3xyLPII8uDJfEH9LlPhq5AEaA47dfI993366/vnt/g4uySbd+z7QcududshsRmveb8/JwmeF64eczLL96jNJG33n6Xp/mpsjlmSpEQaUFGlW/7gdY1hFEKo0tTyCR2/UgqmabRlnHtWnHeE2IgOChpEH/FCUDMKdP3O51RMk0Izk0maR1SzIFlXqioZnZ9z9X6imGQVtuUxlqUPXXZZAteVaNm6bXddkO/27HdXmnL44RcVTUJxtX8dlXQFva2/TfZAnUYXDWakoPfT+8EL+mHEpwCBk1feEfCEZH8+zhOU2vBk42PByYZK2abpTPBJqHK4K9JKRefyWpITN4nUD1TvNNXmZlmRzM0+CSy1YdBWIpd1PA59XNN75hHIetjjNEZy9Hb5+8VZquyhzJ1BzlziJjdT869DTzMObNxmRQCqwIxj2RX6B2cFJvW63jh6na1Pg8On+xhj0k/7Ec/vXfKc2Fn3IBaqXvm0LyCg4zX6IYoyn6zIS42NAupGfKo0Y0NY9oJiHRSy1dSYux31LqNnBh3MoCyjRKluffsDt/I32KMI0+PT4UXJgcMDjlHjbJOLL5iuI1PqmSZrE3RVEiNbiqYqEXIcl6MrCyNidxkgotKIm2EYUGBgBFOag2Hd5Ts1FbIZyzSgk+fvsm3b3yf0Y987fa3+dTpm4CnlFT1RM5TUa11paUQcOp8U+Vh5rSmqVGiNk6o8EhKTaM8TsYbpFqsOsmY0zNS06EVQCtY89ZW7mQqeTZt8cOvjzUgMSX8uW98mrgJDEWZTY07QT24maMuysY5CIEyJk2f6M+Dr61sKc9GZ6tPU9LAbhxmSHq6p0RHckW/kjpC7+Pra43Rzkf47mvfJ4WEy47PPXuTG+FQ2AQVNBlWoEBxRbIXpVB8+eBiVEUhSMiXgBH/SJ53FhBXMJLGGQLO0z2Y3d4rf4j9cq4c+zjw4NZjQdUp8OL7d6aZf6DGRt5bw4FFgR1urwsqz4xdHgU8NiGxaEcOlpnYelIOeC+j20PT8uKrr/H6a69weNQRm3nNT5kUuT2vc+DbyqDoiienge36Cd/uvgNAUyKr+w1HN+6yGzJPzi5Zb3dcrTecn53R+MKdGye8dPc2t27eJAGPuwVPvSeRKVmUW2xbuuWSxXIlRsM1RJfJuy1bNvQps95sSGPGx0iadYaEEKQl2Gk1vQLJ7eaKzVbInap34yWqQlcYW2UgzYFFWsj65izvW1/poMFpqjNlP1plbZ3VswacK1ycn0rnhCscrJYcHh7hKKw3G3a7Hb2y8FpLsUUVsHNG2fsZBfXmrPVVlGvjmj0rH0IklgbMWHhjwhTlF4PHhVifFSeKnZzVK1MvWj/be0+MLd1iOdV6+Tnxla+8J3I7N0U17KEMlFw/d3o22l1LyAKcdrGn94mV76RmIEjkQiIjue6F03OAPkeMGj1zILNrMjmP1UlCdYicJ6tHYnZop1ZLA1vVeJZCdnClW2FEVwezFrzbm5uEHEg+cf/wMR+8XN2nCkqUir92ozgo2tlXoyQqGwWq/HbLZTV6/eU5aRAiy+AcFCG5G8fCODIVIpdCHkZJl4/6Z0p0OiagaSKvPX6JkL12AD5iaEeaXaxRqWo81UwGp9O0DUAXr4NQi1C9VyK1UgG76EX5X8bVeV1GGph9xhdNwTaRYQz0ygorQKaVVm4FAljrbcksxo7Pnn6S/6r8M0af+KPb3+CXv/0XCC6QSZUqfirSlf3z2lGlZbaTm+eMZVZnhRl9gKbzao0WhaAgieCFqwpHRhx7q5EJCl+rRGhEyMoD6kTgYuNXJL38Ua6PNSABcMXx2a98kr7vASog2asGN3RrqACHy6WysVZvzk/FTllp5k2hie7OtVjOph9WL7XYtF0t7Bqs/bSVjg2fJcfmpGD17OSMxydPKA5urY958ewOZbQJwaWi8np0srWoWbHo5AnND7tDhEmey6IiE3MrTErBCI8Mgxg6nutcQ9am5OZYdxd7Ht58AkBInnuPXqgtYTCBA4mEaJGdm54rp6J7IwcrhqjdQRKpCi7RxkTjtwS3AH8APih5WuD45JDjGwd1Aur8Mq9wd3VF03XEtiXTsymZmDOtXzIOA/efvMeDOw8BuD3eZOUOaJ3UsYylcLXecHV5wbLxvHT7kKOjY9puIQyJKUnn01g0zx9kavFigQuNRKEyRKehyzGxTlfskigGm4ha19QUonwBoEgrcNPivdQjbTcbsht1nXV/WurohJAD7SDRouA9y+WKru1Ya5V/yVOYWQraLA2mhd7O11kzltYpudA0ga5bsDo4xFKC45jADVVJW/h7cgAk+lHtpZMuHev+MdBS0FbCuZKzMHIVW7fnnYsCbgga5bG0R3ETI24uAmzCLBLSNI1GRryyFlsxqeXK7URRz9f1czZdbu/v7SxCsmbk/qZwe1jhi6fpJCUzDD2pCCAtxSkpWtaBn9Ncoaq7nIlCmdJjXsnhtMW06rZiEVKRi+AlEpGV06foGZ4iBV6byO3fQn9/sj3i6eqUs+UF22ZgOXYzH8U2YPbNndNZSxK1qtGy4ut7RKQyPoOY1SJ8Oy24cWDcbknbHalOlg245QK8FPQHL3OV3KBNCUXqsoo2ExwcHrFaLEhjzytPXyTkwMDIg1uPGeMI/VTHZxEK6TK2KJ2eByfxHaVmkrUMaATBMIjVP2nU22qV3ORB7jlHGiUxADAMI6ul2BBLW+cysaS67Hj54iVubm/wdPmM9w4f8HR5ygvbO4ijUZg7cimn2m5cHcw9h0NsRc5jfX0pDlwiqESYbcneEbKjlIBN+p4GaCqArqBuZoPcBOxLcVX/2rOm/7YAkptPb3Dn/i31sD1GYFbbzfQ/JmzYRupvazjxmuNDKVPLorMc5IwXQBW2CcEERhzFZeFH0J/7kmnDQqqfgyMGx4MbjzhbCiPr3Ytb3Lo8qQJpLb5W6QymAyYCp+Is92la2k1Gxtn7Zgq1CtDUEixoVj9AAY0dIIvmyPvNuNizyHt3oeexApJmbHjh9HbNndqaSZ/7KIc2F9roATXWVbftp73MGwFP5pC+nOCGQC4JHxMhFg4PD1gdrGbe/KwDRf++udyyOXvG8e070DSs1xc83Ar75Su3IyE2PD3akrwo+rvjTU6aA9yY2fY7rtZb+u2O42XLnZMVJ4crXFzioxh8OXBTC12IkXaxkoLpq3MlyWvxnWMsmQFrsd5PTdWiaZwY7BBwWYqtQ4isFqtqRKTuYzKY3juYpWxCCrSDsKP64Dk8PBaSOf+Ei/NTis8VZEoNg8e3XTVyeC+toTYsQ2XDWCYbfS3OySj33Q7INcKAgpxq0F1gVD6KRlvpvbaJOgUhqeRZqyF7Mlty1oihsKoOw4jzjsXhET54UvI4nwlBClsz4mymMovM7KGImSL1Dl+mtlWvfEOV7MrNFG5F5eYQzIGKPHo7djVCsvEDT/rE5syzbDpuLROdt/ZtX4tO551VBpoEUPhaqwaudkYUpBOtFPPSi2ZCcgUuU+jWuIVU7kqZ6Qa9vHWKyEFvc8ON3TFPD05JfuTZ8ozlxQvzjZm+MFOUxDiccCKzFpkW3RsFghRHIdPgCU1D9p7Re3LTEOIU7SgpaUug3GBMhbbxtK3H72QCcNM0eAd931M5QtqOkkdeOL1DM0S23Y5HN58wNALgS84aualzMfb0HnNQbTKglBASQHaz5VWb4As+F5zLuk+i89EMslFaOe1EEvr6serZ2umiD2L26+7VTe6ub/F0+YxnizPeP3rIC7s7uqe51kdZK3EFR5Ta1lxK1mJ6L89RHChwz6Xg0mTfLHCdiwH/gouh1paIk27RN50MPOHNKmf6ZfUZp/RQzrPD/QOujzcgKfCZb7xZp2zW+g+HtpcJovPo8LVZ1a8ppdo9YqcHi4DMCn3k1bVlFYcM4RqEMtwKpoy3xO7UBM+iiyy7SIw2Yl4823dvPuB0eQEFXri8xZ3Lm6pctOgKqx6hPpdDZQoVPdU7FpWQqOPUL16f3bka+QEF8nmKjlQPF6rXWIsQnXmf1BRIKQJqnh6fcrWUotx7T27TpQVGbx+jGJ9hEKpxK6htfIuDSsdfAaObPGsrHvMeim9JJTIMhZx7YoJl1/Hqqy/RrQ5IWcOt1640Dlw+fY9xLBTnWO+2fO3th5yvN6y8w42OG4c3ecu9z4Cg9xfG2xyGFcNOIgNtcNw4XnLnaMXBsiPEjtEFJMLjhELdJdplSx4Sw5A4ffZUD6B4bq4UNjmxTsIqmlShlAoui3JJOO04UY6VVGpY1euMjKit6cZ069QLLl2pEZKGyIETtmJLXbXtgsOjY0JwbK4u6YdBvDWyRpxkJowDivc15eG8Iy46KNoKH3WQZGwoZV3v7zDOHIt2qCEvheK0XVEBUmX7jA0hRvI4SoeAm4reSilcXV7Q7xrSqB1B5m1RWC5XrLStUSIrVmw+4qQGUgeeXT/f08+qk2LPFTw+7Udp9A3TPSZNsAco0fPfpUN8FpWa2oGjm57uYeTZZaYkz50DT6tgzoeAdwpGtdskxkYp9mUYm32uec9RW029HyjKglyKA51ubA5G0roZUH6YNKurUc0yd9SSGTAKbWq4sT0GYPSJJ6tTXr68NykPBUbOjJbqE6uTKEWAOVqP5wj4oB56StikIArKgjsQmpbu4EjOvkbxks1JKo6UsqY+BDCmnIlNQ7tYgTqhSflVnPd0Y8sLT+5wcXjF1XLNs+NT7l3dkW7H4vem21q7PrVtVdYl2OuK0+JWVZQWhajy5AnRURg1ikXlqcIFZISHq3IDwocjjkxQQDLT0fpd7lze4t7VXf741rd5tjjj3eP7/GtPfmxGi6gOSkqkQZlxkTOXkuxm8hmfC9mLwyqAUIEq0vHjzQG1qBtFOrgk30JwjmQREpvL5XKNck4knlqLc+387IHkj3B9rAGJHzyvfvVFhssdIzqcCSZ0WwMDruZLJzAy9ZzDzIAXiw74aohhEl59t+TqSqYMg/xZ26ekK6dtIkeHB6yWnXqGkveO0TG0A+/cekAfB5oUef3xyzR9w2BMgYWKNlXt6aOJwHwwZDr3mC1KUn+rcmpFS1IfY9XeVrRvAMQ8AbBcoLOSj+rNGxp++4X36+e89v6rNfQdQqCN0tImDqMCJu9p2hYXAsMw0PeDentmAAXlpyQj7H0rUZKSxdimhKS+vOfgYMXhqmOOReYgzAfP8d0bbC+3DOOGdx895b3TC4b1lq13RN+yvuz57u13GbWw+NbmmCYtGPuBhc+8fPuInKFrW5yPjAU2ux78QCqFs6tLNrstKSP8JGmaDOvr1MuRnKTxMzuPEKKVKbqi+V/nHSSh/c65UNJI8o3ce7sVhkhtzzNUavMsclsYZimbblxQStEoHaQk63x0ckuGzimJnwzgCvgQhcjPmXTbtjq6tiOlURRhkVRT08hrrM4qeEk3mDAaKLYIXwGc0o3LHk/poaTRgKbtZs534Wq9pelTlS/Lm1ev1Xh39Kwb/4gB6CnCYd/JBN0M+SQz1aHwHvecVvp6jvT7mZzbeUIdgUU5IGRxjYfYszyJvHbvgGHIXOxGTlYLFr4oK2agbWJNBbRaqD2OYmBNl6SUK2C3gXLGvJySGAxh1E1SqzAMbLdbSWPqa9I4Vp4lOV+5OjM4o3eX9tM2RW5tFJC4xOPVU65ftiJWvI9DOVA8Q85CfIYjM0hqvJgeks6U4h2jDwx4+n7Apcxh09B2XY1gD7udDKFMSTk8Sm39TSVrBMzhYodL0rY+DAMoBeBr77/Mt9/4Pjj43t23+ZH3P10jEkXXMRepaZsb1MlxE/oHZzWImP6bsbsqRUGZRT0FVJRZBEtaty3i5ZwAwGEYpF6RovUXAhhygmEciX3Dm6ev8cVXvswu7Pj+8dv0cUdMUVl49Wwp+ZzITJjJ68Q5YsFHIdTUPSwWTZEoabBIibxVXOExKyA0mVEqCSfpP3HOxfFJOZFIlBD1LJoWuVbL90OujzUgufX4hJuPTsSKejmowRLBNa6q/A2WerE3zzwoMIMsYTvZ2PknuZpPq5tiXQAzJkKr1vbBsVwsOFgu6NpGIiMOYpRDe7G64N0b98HBYuh44/ErEwBx5mfOQdLsmdFDXV9vYES7I+yR63tmhwUJ441j0shO7UifPmAWi52vlX33WhPiCu/eu19X6PXHL+91ukghVRKOgmgkPaHmmtOorWc6rVWcFPGGhmHAlRFcoM8t/RDx5Oqp55J59PgxYxGa+eB0cJmur+1rEzvoMlebNY+fPGHY9aRhJMXAmBJXw4b3uickJ4Dkxu4GrVtxubuAklm0HWMu4BvW/cBVP7DpR9ZDwpXEs7NnnJ1v2O6SenGhEkSNSab+Bue4cXtBjJHLq8LFRaIfJf3gvRB4JW1vTgogxjjoz5VaPSf8clU9mTzKNNymaYhNJMXMEDTFkwJN38gcCTU6wXs8WboZvOPwYEWIDWMaGcZCs1hCKYzDlpwGTRcVQNhXS0n4KNGK3XZLKdBvN9gkUWO1FI+p0bD1OAP0mpP3Bkhkhk/pBcw3lUlyOnSqLmsaqNYmGXhm3iI+OSHCJSGKdH8+zpTTH0bhrSmzczuBlxoD2TsXTs+eGZU9/Sq4ndh3eE3ZjM2AaxPHBy3Hq8B6l+hHB62DMhUiGpCzoZ7SBj5jN1XlPyf9c06p2YcBNxvcWZ0OTfU4K1rE2GyVtr8YLYDUkCQrjnSBZmw4UUCSfOLJ8qw+C0zGek/H6EN578lDwrkgzJ150i9FlZRz0nmRQqTogL4yDgQfuXl8QwDVsGPX7zDahFHr6mKQerg53XmyqHJO9ENPo/vzyqOX66O9c/c9C+zgvcwCMkNZCzKr7pROlqnWytWoybx2QwCynt+9yDvm4YEzYs5MaCAmm5acGcZEp9EDe4ZSpk5MCnzm9JMsxo6hG/je0TtctFfcGm5qSoxp381iOA9IbVoei3RkliyF/AaWmLDBftTfWRNU/d5CI5EV5Lt6Mir7t+RqaoeRRIZGItq1ZqAHaWr/KNfHGpDce/8uJ2fHteXJKveLGsz9SILBXOQ/s9+ZUprAxfMOoIGXyeB5H2gbmenhnGMcZZz80eGKw9WKZdcSo1XvU8eo4z2LYcGy71j1S15/9Cq5WPsxGEGP6dM5ZEDjQDJddT8fbKjZSrTk/101TKVkzTnq7734MXuAp+x/loA4a7FT7hAFbq44Vuslu7bn1YcvSmsxZhzA5amrKMSADf+qRVI5wzgoTbwClTSSxoEYBMy4WEjFa8hRDOVms+bt73+X1XJBapeApyuwoFHaGIms5GSAbZQoy5iE3MgJY+L5uGaz23A8HnEeCrc2J2zONpxfXdEP8kybPrEdthIBKeJNbIeBzdUFp6cX7HYDuYANHMtFWnN3ux05Ze0+OKbQsuvX7PpdnV8h3pKEpo3+HLQmwElnxjiK97fZboQ3A8cwjmTvWaoyyWOh6RviMNDtOkIRAy9D+MDHSNkUJcpyENrahj6kHjfupLgy9bicyCS882QvwMFYMqUFeMvF+Rn9bldTblZhH0IjqZ/qhu1HGIqbZnHI2RJVavUjcYzEMRDHOMmvVwblnMH7iVxrNtzPitUtPGzibCMaas1AkNbP4MNeN433BnQk1ZsN5Vf9MOkPq+nACSCaPEAI2dFtFoS+IfYtw5DY9TL0bCyWn/dEo3yoxbRWUxMqkEBD6d474aeYpY9xHleGiSfCnkXXOzbC1JqTGG/zbu2MjdquOtV4aft/gJgbbm5OaMaGw91qT2XOgcjM/FLrIbwnpV7Ahw+iAFShOLKCEkmFOJ1BVEZJ6W7Xl1w4R3GFYRxJu56cZCDkiGMcpU7DC4KijCNDyfT6+W1NUQqwfe3hS8Qx0Patlt5pm63tZ3F17+N8MGn9i6bEVXadpmqslTrpUFJp7/9gDVQlxFRgEhtH1ChOypkxCV8V3mvYQh1aL/IVQuBzF5/mcFyRfGKRFtKGDLVeKzFFbeqnegHNGXBa9Gu1aWmczkVxs2L2ep/Jya3Rbu9qe29KE8eWRddMjpz3BHsORVTeA9kxG0DxQ6+PNSD5k//ip1lupVjUQpyV4VMNtyBQ+feUy9pXlIYQAaZhejMiMZXUyUlRJVKkqrxrW5bLjpISXRM4OTqgbRuMClrFu4b7bl7c4j/81X+Ps3jBe0cPOVyf1E1zDpmBMLssLDyhUSNQKvUA1bBogVLbZdC8qBwWCd9bmFU8Neyv9VYz4KYCWnGuq8uEK46//ff/ewz/cODZjVPund5RKkBXic2q7nZT/hRD6yrUMqAqy5wh1Fg5R9sEujbQdJ7RBXbbgezkMDbB88LtG7z4wm1C032ofIz9gBs33DxasVis6J88JPUDIQdW3TG+afhbX/+b/G/4D3j//Hs8+v4DvvX0OzWK04+Ji6tL+mEkxBab+uqAXT8yDOIlxSjyM6aRfifkY1bkfLXOPH6SWaw8OQdWyxWpZDZXlxIJwgxDImfJ1zod/500rYYX4BJLZExjJTYyA/fmt1/n3//f/7ukkFndOISVbJRsoYCzEFtCbLQQ22mtiuNqs2G9O621TVE7lmQLZc9iUB6Qkhh6pXIvmeg8bRMlz+w01+482UFxoXqK1aNUTiCLCC2WS/WkoO0b/rf/p/8l2+2GIWfyKKmKGBuaKN+7IN1s8+il0zQAwJgGrVeiHgDTAQDZSxqjbRq83z/rVrTuquxPsrt/9s0A63mrPiC4MvJv/r/+p5ytO148WPGJu4eMudB2DYUR5ySlF5upI6Ko52qTpWX0hA7R27t3URVmPCWz71jvI2spabTA2Avx3TCM7IJn0bXiDIzqrxYgFNocpe4EWcq//O0/x5//3s9x1B8IfcAHjO30ubYKIHT3xnPjY5TJv0U/yzqhXCaUQlMyPo+MeZTBh9sNDy7OZR0mdUdsO4ZSuNpkulZp1ouAi5h10CmOrml06nmEknjp6Yv8h//x/5xbZzdYsIAW8NR9TkygzPRT9ctmcltJIZzV1OmDGQhhkhGTh5wlTRZDlGiR6jsbcpdS0ii1dBYSUCdRu+DUcb3V3+R//eX/gJevXuSwP0TKVPS51QmwTpaUCz4of48PDGiUNat+hUowaN/L6r4muVbiNS8AxlhXgz730Pc1AjcvZwBwwWycyYQ5FECGwYaO/pDrYw1I7t2/i2+n+oT5NUd8op8m9Geh76nOxO0VeaKhppzUwDqr+N4HM4WiujDTxUC3WtA1gaYJWpshGywzaKZ23pSEs2SZV7x5/gnGYjndeYHTLDxil2IQL65c3XT7pUUKRSnJZ+ciXQcKt2qIffSuchPYveuBM+RbrOfeHkXDnNrO53DE0bN8fG/2TFRPRLwSM0xUkOecUKv3YdBwYNCQNerJQQxFDaHHu8KuJDzayto13Lhxi9B0M+W8v/cAF+dnOLbs+h1nl1fkMeGHHZurRP/sght37nCzbWm3O9bf3XH5UMYJLLuG4ls2/ciml7bXXX8lFf0hELTX34pWs6ZnxmFQZakGxklB9fnZE3bbK5q2pWkX+BLYKXfDfLaNFP6NjNZ2q0YpuEZrk5j4JIrtlyf4SENDkx2r/gCWuq0WStbQbowtxSfpUoiR7c4CqfspCCt8E4ZHRxs8C62DsjEIsdZAwKbv2Y0SgWpaobhO2WqBlPvEpv1qVMSHAHmh1dTyjDF54R4BRk1BxRil+FUBPb4QfKyA1nnxuI1mPWvkxM5pJThT2SmqBJy2CZjyt3RQPUCTuzz5MmiaI1j9jcizL2j0ZuR2aljEljurjts3bxFjJPtnnJ6vafwozoGudxpHioNAQ0rSummMmgBGIW+RHlecRjxGO41SxzBA9kULFPWRnbzPeUln4nTUQE5SS6IyahwVxofhcBz2q73vLaBuuq/tYy5GJyC/DE687TSOSh/vpbbOSf2U/ClpqNY7MoHoIDlHGp0MdNSaPPH2AzkEhuK42mT6XsYB5AwuZ5oQiV5GdDSxIfpYjX8zNrzy5EVJTXmn6WGldPelNiza+ajKc0/ZgqVBmNRiBWQSOJDicIfoWTl3iTGNNDnrGouz5dW4+1EICseUhYHWQwiFUjw2/C+N0k34I08+V6MzxUmEdkrDS+2WRZuLAjVXnfORnKTjUwbvic1rYlNTTDa2w1dAJlIgHUkOdFJKoyA653m8Q62KN/trM9SmCKiIzqyL8odcH2tAgikkUI9wjvYKc7ViE0DNzffqLVGm1wK1T9tATh14ZVjZvCY1GMLyqFMNc0acWi0wQkJ8BkgsF2oTdkvBGIcrEPHOjAF76FW/lbzWOSgS3nRl8ihmemNvjeyd5v1ZrtprhXp9zywEZ+ikZihLQTjjoqotV8PISZk/7dVuplQnZa/C62beZpm+t62nvAa863FORmYX10HpCR4ChXv3bnLj1skHxGEecsx55OmTJ+T+im12PDpbM+42lM2avEvs3n+H1MKtQ3j33Xe5/+AR211PyQOXVzsyUYpQ08jVes1mvSEGz9HRkXJHiJIb+n6a5TL7fFQujVcu5UxUg+EViIj3ZBOig7IvZo2MmCfktYhzAp/7etMpmVrUv4uxSckKgXMlJ5KhcqEaq3EWgrX7FqwWJACJ48WC40VH40Ol4DYW1T4lzjZr1uPArh8JsdQzk3Oi322FXddZ0ajDu1BlfBwHtv1Oi3NXOGdU+lOtvtd/G/jqFgtR6go6RPGKMQ8x4rKBeXMaTNRUH8yjIt7uMY+SSMrGeXted81YGSlZ1gDj5NxQCq3f0S1bukYLV9uWNsDJMtG4LZQI814JcbbrLB6ZbjxWgCpYZ96qqodanSgKbLcbNpv15LmqHO52WykOV9GxWhF04KJwY1CNoEOEtczOpymV6toV+9UEJJ0COEvPiuxZCkKeXWpHppQ1koHT9wRKFBk2YN/3O9LYy+c1DbsMOU7NCR7HcrESojsdv0AujGM/rZJUwKKxB4JBrllEpBQBON5PdRZaX76vfQ2f6D+zOnu1w9F7SZGprAnx3UgomlLUtlvjI7H6MLNdViDqvBcQkUZ8BXZmCwo4r06i7aUApqx2Bc0WhKBFsiXXKNl0zuVuMlZFop24mRwr+E85KSdJqR1tMPFj1YUxeOIcIUgRrNkDk5Tn+I3PvT7WgKTmXvcU0NS7Pzs9WMrEFJL9XiqNE16LLynWLUANS9VIy8y4ZvX4QggsFwu6tiMGFbhgcxPAlYwnE1yhkMFlkit4nUszBxB7xpr9380s/B6VrymNKdw4AzJueq8dPocdPFe9Cfu9vEUV7hQ4IVBjQ9U7DfZeBymFWmQmhy7MH0YPswmtr+tv3qANlhMvvoG8Va8gMJYGFzpC3OBLpgmel199jcOjk+dGR+TrZoZ+zXqzpow7Hl4NXK0Hhu0OhpE2J4bdOU8fvc2DJ45n55dSIJh27LZbUnE0Czg8DKzLlk3pWXWBVdfSLDquNj2Xl5fsdrvq8YuedeKxxUCvRGRSN6wgOAjxlUmrVzDrfNT5N06MSLKw55Sb98qEGTRSYSrBlIUwNKqBLpl+c4n3jnEYSXlqy6TIaPTNZkNOI4dHhwzaBtx1HYuuI8bI5uqKMA4cdwvZT13qoBGHdb/j0cU5V5sto3r3TdPSdAslQXJEfa6qCNmPRGR0BIOfmCetBkKKTstMieoaa6uhKX5Lq5qjME+xVFI2MesSxTAhqa/Vc+4czkdwA87OZikYgfF0Zqy4Vj9Hny8rV4rPPSddJpcdD++/C8DV1QWdu5JCbVW5Rb1JOX6aCtR8vbcOmdmZtMPoEJ1TlKUUoN9tOD97hs3hqrVIlRUUuq5ltVwyponi36LAwziqYdJIwUwfmIxR32M/NAm1midJhYTghXl4vicaxZqn17BusWL4RIC1azti09EtD8FRAefYbxmGXDvZVgeH3Lx1t+riUrJ0pk2LVh27AtSQokYznEM7ZDzZZ8hOntE8CD1h3juS9zpZ2rx/+XsuGY84Eh4I5txmScdIlCMrKFGZsVRLcozDUEnxfDYwrDwh2oXnS6BgBH7Oln06R8yfy0CBl1SQRityliiJr3NrzD5JfZJpG3M25NZTh1wleFO9U539mT00+yDgTNY2u4JQFBTt8Prh18cakMx2RxHvpMDFC9RJk7PXOqvM17eCHcCCx+toaiOfMbWniw31sEOhiZFF19Joi+s4FkaXYZgez0iHpEVO7+TdB/q1cU4jA65ufAUa5QOPqz9XYFJmr9l35rA2ZgNklMkTAAEbKdvMC8uLTqkrQFgVc8aagimZ5LyALfXsA06HfBUlqRqrZ+zq6tnz59oyOuVrJ1jlgJQcfQ+OAfwlw3YrqaNVR1ssblueD72LtA3mUnh0dsHj9UifxPj5AjkE8vGKG7ePefDsjDz2MqBr10s1fyvTSm/efJnV4orWPyUNg6QpVge07QJKZhh2CtKMNM/Rti3SzlrIQ6nyFnzQwYmyNinrBNumYbk4oAD9OFCZDpPsbfDSOWaF0d5PRjDESIiBcUAiLA71sArbzYa2bRjHxHK5ko6cGPFOPOft5ooYAkfHxzJkDJXPnGlz5qBraRedgstSP79PidP1mofn56x3O+FxgKroKNLRUbrMkFI9ixUbOzsbGlqPjRhgNRCWVrQIE85AF7VF3aJIWVMYQdlNJ2fjGpi3Ty9lj8W5Rg1n4MJ7r9NbJyNb9UWRkLX80vhhapWBRnYK0SW869n1OzIe35/SlJ5MM61FsSLJQiliuHLWQm5mNAWqAPZp5p1GfLOyZ2ZWqyW4WPfYjNAw9JoOklSjAQ5bx+ysBiFrFMHt6YpqldxsHeeOnhnvGu1wGuFTXTF3fubKySIHeuWU6bdbedampVusqLOOSqaLhS4kxgS7Pk+FyAZyi6t1NE5bwqdkXakpjckRNcdLhtoVA6caYZMozPw7T9/c7h1UjwYvVPO5CIosoJHxRNSxC05JTqQDSeS97weZBBynOhOXc+1uEULDUcncSvXvqHIx6daSpxRvTY/YUudMcrmufVBnW2p+tOZqKqMUIKa6BLSeSSMmMpxTGyq0mcTOnDlZDtTZKDP+m492fawBiVXc67+AGSLX31fEa4ZxVpAzsfPZpoH5UDUn521sNZP3oEqoaxsWiwU+BGwaQJ0+pwe4MHH7V9Q+z6dVXafRGifekZ3deoZmr3fMfj6LDj130xVN15fb3/Q+Uqhp6HXiZanrg3oSRbpJjFQIMq6IsSrG9FgKNuK7go26J1YUptTNBoz8NPLbWCvL6BmScH6E8RlDisLWGBu2my1vf+87fHbZEg/vgHueCGeGYUs/jpxdrdnsEEIzpdBu2pbj40OOjw55fHoq9OjmoZFoPKwWCwItbUisuiWDaFwWiwWxLeTUM+420iGka+y9p20aEpKnpbhqzEI08rMoKR5NUTVNy2LRMYwju35Xvad+kO6btg1Mff1T54UVnE6KCTHiVhOg7cTeOZomkIae7VpI0Xa7LbvdlrBa0u+2bEbhpfGlcBgjh6slSwVlQAWV66HnycUFj87P6cdx5iVp5MJJe3FsFqKUd7uZHZuefy6cMU6TiU2m94qgFZAYsDPPdhwGAg6sy0ZfP/97lePZn1Nt2YTanbrROY3V05zfov7IUYsJMR2S04yhcuJc8E7a/F1cMGzAuTChMX0Y6SCaopRDP9SIBUihM1C7OMowMqYRFyKFoBNXC2POOBc4PjmhbRosVdwPPbvdVjgvgtF62xRt8VylrdjVtF5h33BXpw8LoJRpQWGmLzRSFwJ9b23tYW/9bWHlM3IFhxM4kxb3kBO+DPjirFwCgtPWfilsLikJqV5sakTDnmcqVJ10nw3HExs7RepyKbisgKHY99CUxhzwoPbGTd+mNj3M1nL+u/msLlfHeEyR4eoIZma1TPK6YRjph6G2yZujOBfNpok1uifz2zI+5frdwFrdU609qvOGanQ76QBa6y5zFZDUydIgTlLODGkUEKO2NSq3kJ3ZefpyXk+y2e74KNfHG5DYZk/2UP7MU7Hm3MMxX6ai/iqks9fs5VHUhO8JUgHNiUblT6j5Zz/93W5i3QXyLNbGJ/n7eaGPmz+Th+JkONMEsJyS4Kg3UtG/vufamnxYEZFFYChT+7AoGu0w4FraSDFWCZEgJqAWMTkzgEXIfPIozDtXzRVd6YgaPTFQV8wzK7nWNnhnhbLyvcW6SUdKsXBo8Xh9bUqZB0/Ouf3oPncWS0JzpOuQcUW8iaHvOX12ztnlBZeXa7aDg6YjekcMkbZpOTySCMni0UJmtBwtWF9e0O/WnN4+5XY6YVifaT5fmEVdbCk+QB4J3rFadjXNYAyZ+EATGjoCuVwpS3Cg6TpNt4gCCX4ikfMhwJjks3Tfaq58xqtiXomEwF0tdEVBQXGOq+UVwypztF3igGEcWF9t2O22nJ0J+Iox4rzj4uKS87MLcs4sm8i9o2NeOjzgoGuropM0h+Nqt+GdZ6c8ujivHCoeqWMKmpppu662CValV2PColDn6Q5qCFiU4tDuOLtxxQu7e4TeVWAu4EvaObPm4p1GbGwyq0GR50p9TTm4+gzzNK8ZHamjmL92itpRX2mBgykNijo6T2+dir5Q0MhYaJpWZjTlQs4TAZtFDrwXrgqZYUONaphhMn6WlJJw8ZhespQHAJExbeqsHpGTTI08aorXoh45F0JA2avlHjkX3j98yCtXd6seqXrJts82pP57vsaiW2LwjONOZzUFjKXUPKyiugeLZgltdAUvaUzkJBOtbYecdyy6wMmByFc/CNgahwEfGv34zLbZ0I5NLXi+/qzOTfvqnaTEjKp9Ktbdr9URMr9QZUs6xgrezkAphOAYs6vA1IJDZjcs0oajcm8LSMoTS66fumtKLgzjMNXmzfF1sRQZ5NTRdm3FjKb3rU7FeQdZ6sl6HcpZiT8dk10xh8G5yT7YUypYL/rZRbx3iYx6xzjmyR7MHtQxA/+lsN1s+SjXxxqQuDp22/JbEiLq6bk6WHOwOaDNTY2IwHzhimxEmSFTyt5odgEjWQacWa44yQThtrHcuBa3athtzu5YinXEaIjd8odeIjNZw2WGVqUWwfP+zYds45ZPPn5NigCjeKtD3xNQI1VV5wyJFuE6sL/jJAdbkGJdKtmPvK9Ws8/kryqu2VWjRcFXg1q8ztcoWtznpP11LCP/1Rf+GX/hD/4sJ8NJfb0VzwY3dZWEGKthNgWVc2K3G6EEDo9vcnh0k816Q7m6kEOHhGzPNyO3Z4EnykjJW3L2nD274P79p1xcrIWAbZdwCfxiQSkjbdPRp0QOjpdevM1201PCkpxGTlen/Bd/4h/zv/jS3xEPAo+LkaaJFC/Rj+Ibmqbj4EAO5pgROnbntSukZcwbASNeh6aZF6Fevk1hzQXOzi+EMjwXXc+MTXQNroj35T0Oz9HxDfLZqbCtziasZgoE+N3P/B5tafnZhz9NSiPDMIIbyXiGUdpio9NZQlqBf3x0wis3b3Hn8IDoA+siXveQMn0eyKXw7OKMx2dn4sFKSERbg4tMaFVwLgFJi26o7JeiwKSo4lUZAvp+p+sROTu64je/8GV+/vf/HEfnK5HHUstRpfgweGLT4GNDcZ6x7/EhT+uQa6xy+lOjktW/1M8uuVirRPWk90EHsz2bIiqmc8zTtoLNb376u3S+46W3X1CPMTGOO9UTnoDXVsowEUUZaCiFJrZST6POQU6S2hQW1obo5XyM2hqfsoDFto0Mg2NKS5grBTEGxijMyBaed974ODwxNhLNcon/9Cf/S/7O7/4tbmyOmE7W3BpO6zKrYquv8d7RaLeczXMxJ0eisMZk7EF7CpwZOY8WdRdKGWCcgSGAEtnsliyXK9p2Vz/dqy56trjg1z71a/wbv/vfwaegbKxFh2RapGJ2P61jk4JPJQIs++tnoFHqoKwYfL7OpQK8in1mzqB1Llk6c15OYDpx0K6ib978LqvtkhdO7yqnVqj1U1ZbKHJiIxTQM1EqsLfC1hLkPcF54YPRIsA8q6EypmYpgLV8zaykoUwT2OX4Gu+PvW6SD6lv8TUqYxGv2h2Uyx5p5g+6PtaABDfVjVT5oPDopSd8/1Pv8IUv/ThxGyWi4SdGSYcjzwz5fm8/WqQ08ZB4zeGXJIORYhTukbaReoFcitDsGsqth9gAE3VjbWgeGpWwXLZHUHTf9PzaZ3+Tu2e3eOPhKzilohdQIc/plTGygiZnpXdIa1129TDVqI4TJDylRyBnTZegFNPFigvn3pF536pkrDkpTcyFtRgxeB6+8JDf/fxX+Om3fpwbj45rYZ1Nc7VQaghCVzwvFJSxHLIfIS5puwOadsFuu6tzUAqwG0aePrvkzvmWG7eXssq5h7Lh4nTDw/tPOb+4AmQw3TBcMWYpAgxN4PDwgO0oa3rr+JB3247RNTSx4bc++3u8dfc91qsNN9KhFCQTcRQ2Y2HoR7qmUZrvUYBZPzCmwsHRUsmGGsaUGfquKi/zTq2g13kv3CsuMIwbiTqUaSikkC7lqohAuAG6xYLLqyut3ZiiDs4Vxpj5jR//Ip9/+/NChz9al4oqVTzFlcpmaxGq2DRsUuLtszMpcNQ93e529P1WOifGASNCy2WK0DlXTQNT3HuKQNixqq2rdiA0qtA2Qn/vQ8P57TW/86Nf4ce+/WMs3mtqRFBSp0Fe7x1dK4MRHU5GqecMYR+81LM80xXUp0PTBR7KZCQm37VM7zaDWo3Z5G7b+XLeM4TE4ztPefv19/jL7/58pdpfX57ji3qRuDqZelaWTCkygHKxWCCzX8SB8C7jkqNPYy0m9w6ZQjs7S13TkNqmtljLR5fJ+58BJ4fUZ9r01RCkq+OsW/PdW+/yLz7xZf7q139pbw33Y0TXwchkhG0Kd/C+1g7oG6aolDMvm+p9o5GLoLTjOU1R3jpELgUIhzSrWyR3zpg3e8/x5PAJv/nJ3+Znv/dTvPD4NiUFbDqyK2CcHLH42kE1NTeIPFgEZbb7k7yWKUJSGatnEYA5OLWvV6yrCes0kc+0YvbRWuPJ/PHNb/E4nvK3Lv8qsWno1BkGm1GmuL4CkgotsEcYUybEIgRlmv4OKOiIcb+jskZEAiH6CporwK6Qp9T7mzNb0zOOmjaEad0MkEzOcqFbHPBRro83IPlAWkKGjH3p538fB1XorMjJ8ml22WyIUnWMr8jRplU69W5NEGOMrJZLDg9WLLpFNejy6dNjTeEqLepRr1A8onnhkSJQRMC/e+NtvvipL/MLX/tTUtidMrkMcgB0yNSQRpwMGhbvJqdZdKNUAGRGB6gTdLPVNgWPMy4TZL6CdXfYgth/p+9CbeEDw8ZTmHt0I1/69O/y+OQpZ8dn8Og1CT2WUueuqAndq7q2bqlCITtYdA3d4oAuJny6xBUpKI0WVciFi4s1Q38FpWV7vqaMPe0B9Os15+eXbPtBogYWDs+ZcRxwFNabzMGhGMHduhfSMyJXyyv+xae/zKbZ8ODglMPzexACbZBc67gb6t5u+4HdmPGxYyw9jQLUXGT4XIzSdbLerMl5JNLuzSey0H1sGkoe6bUjx2XV4Ao0UgbvMsFYWy8vGcdBPX/PZIId773wHu+88C531nfxdyIHlwdS1KgkTBJaDUKQVYQR03nPxfkpF+enuvWlOjpW60PTKDuvpokcyjlj0YiEr/TSqFKecslVaVflrQbZOUK7oG0bSut4+433eHZyyvdefosXv3m3euPkpHUWYkAXywbwlCxtwLvdlloPVs/iZETs+5j3NikAN6XAVMmiBsXN+EasyHECUuxFTUpKXB1c8Oj2E95++T3evfUeNy8+I117wyjy7qZ0jT1CzpncZ1IaxWAsEk2jwyc1EouTmieJLAol/vRdoJDxQSITJWeGUQixjGvEjGgFJF5I9lCDZ+2Zj4+esW43/NNP/ha/+N0/yeH2YNIBcwu9p+hm612kFVc6OKTtvn5RvYkzICUIRaIjTupExGgasZl8L/v+ZNFbKUOMC9ou0W97/VyJNT09eMKD4wd86c0v81fO/nX8GMCNVQYwgFaUN4bJabN2+AluQdWMtXBTZ1AVo2yYR11MUyoI914HB5ZKFY/LWPo9eIkmSnG7UEE86U75Jy//Bj/z1hf45PYNjZ7uR6dkUrO3gPsErpHYU9FU+OgliqnutGXIqo6VvXfaiewpxZOLn76z7Yu+3z5bfaoP4nWmwIAuta75DNxZHeYPuT7WgGSvphXx4r/2E9/iD/7EV/mJ3/kRVaCGhOWyDpqKBG0SY0W3Tj1ZQIlnLASZS2bRLVitFiy6rk46nPJwiiTFPao5O9Cwm3p58sKptdAOzDbu+K9/8td4ePyY9WIrSjhPg8Xw2lc+WqTZzbyI/cWY610Ta1NIvnoGFmq1VtxcD5rcZBL4ufTn6iGgg6SkruXd2+/x5U99hT4OPDk+Vc6r6gfKnikwQgUeZ7lkp1NDoYkyhC/GlqJeeTOr1/FRIjtl2DH0OzYXV8KMmh3t6oQ+P2K93tD3O/phAB/ougVpGBlTYrPZAo6cCk+eXRFiy5ALv/3q7/H+0UOaHHlw9Iw3z6O23GoUKySKDppab3tyySy7Bqfh6O12i48tjbcZIo6mbQhOWoGzUlhT0wAWMpXvtd2NlR4ejBbdYRm4NA4M/Y6k6ZrgQ5Xl4gtf+vEvk3zi/Vvvsz7ccLK9obULhTyM1avb7nbaVSWpoIkgz9V8cC2ic1bsq22qweQ3CY+Jg6Btick4R2atrFNAwe39iXM63TjStA3lYOQPPvmH4OCPPvM1/uQXf5pQgnQEZJmGi3ccHh+wXLbstpnkPW2Umom+77Heitlhn/8L8+KMUda8SItyTGdCwEdOGedNVifgYuRT8jJZx4vVBQ/vPGYMI//iR/4lP/E7n6P1gdgnBfEz6OjkMyzKmXOZWkYRwxFDZKeEV/O6LweUYp0whZIF4PTDjtzLwMpCYbVc6nnTdHJ207kGTTHHOnjv0fFTNs2Wdxcb/uUrX+EXv/1zundT5MjNAd3kT81UT6l1cilPjh+mB7wXqmj7LrOodMFX0kEDAuM4SGusk0/PKROaltZB5ow09JIuDIFHh4/p444vvfllfvqtL/Di/Tu4QWVAI6u5WJp5Jn9MkfApiqnRAz+LGBTw2kJrNRQ5ZUrIOGvrRQB7UmfWHD0rcPXK2uqDpHatA6ofei7iFe8evc/f/8yv8j87/3doS4PXrkWJWMwX+hpQQWQnq9zK3237LM1i62yROUk/OdU/0tq/vycW1bFNlohPqVGa+QF3SCecq2dD1jWpDEf/wWd+3vWxBiSmOGQh4ckLT/n1v/hbMsfGmfIz1GaUt0yhuln4yZRONZbOCG8kz5jyiHNOUzUNUOqhs/fXbgsNX/s4J6Jxe+2DEyOaqzrwD179Gr/9yd8FB7vFjrZtcNlh9MBGV1xyUqVqYGcuqtN994ohHbX9dC50NYqURISvF8MWphqSqMg/qRI1L9Q5R2kKX/nU13n3tgzce3L4DOc8sQn4GLWOwnrY3f76130SxRBjQ9c2eJfYjZrm0NoDo/vOufDo0VO2ww5KQ9d1+OUBvnRcrTes1xs58DnTLQ85PL7J5eU5u+0a541GG9bbHnzgzD/lX778+1y1a9rU8OzkEn9fjF1BBo+tlgdqzEfhwkhF6KDbln4rbcMH7RJwDENPKYW2WxJcwoVW99xaOpnJ5iQWRnbkdd5KyYXss3QCzcLgpmRsNP3p0Rnfeu1bADw6esSz1VNe5MUpnKudPRHUOAqAw4x4FRsFrfp8wpXhkIrjXOumREMbwJX35zyNAKiulHnz5tbNwbBFIrzj6fEpb915B4C3XnyHi6MLbu5uSA2UAoaUM/2uJx+0MwAr4Wg3Dtd0Q4Xh9REsp/0BD98iHbN32S0MgBRcbbCQYW7TOSkUTo/OOb1xDsBXX/sGz75+zsnFsYA7A0bXwNm1jyclIc/LUFuPQwjkNDKMgw4OdaIHoAL5gkQPdrstY7qioPT4zpNyomtbSi5sd1vVJQJim+gZizz/06NnbNsdYxj58st/yE+//eMc7VYzm6NGe7auH1hqigwS9U7qlap35qocWNejREYkSlsQltnQtDTdSI/oOEtxgIC67XbDs9NHQmfuPaNGYRyOp4dPKQ6+f+stfv+Nr3Dv8S+psY2zKJiJpsYOnMfHmbFWgCnp5WmvqmYqGm3Azp5GmJwdB0cJnkBUniqpSbSUtQG27LxGDDxpTPR9z1WzBgf//BO/yV9898/yMw9+oo4J8UpKWOtbKnienNn5jKc8K862GEdNRZVpH4MoEkmfW/uu6QHqllEdXycdTmoiJ+nXqGrOlpoMsq8G8Ap4ZgD1B1wfja3kY3Btux2/9Wd+lyd3n+2t5rzjRa4JpFzPrQLVW7KZCoVpqNCiW7BYLiQcaumYYoY5z8ISqozLfuSiGL0fKBBxVeGtFxv+P1/4FYYgud1Nu6mdCl6LnAxcUCx8VqrXa6FXX42Er4VRVrhk1df2O+kSivuhdb0vFroXX0wPXakqyTmdmxADTQysj9b8+o9/ieILxRWeHp5iOXYr6gzGD1DX3AyTq4o1G3V8LKQ0MI6aR7VDqApuSJmn5xe8//AB7z16wNVupPglz54+4WqzE2/dO1aLlsODY9pmgY2sDz7QBc+w2UoNAp7vHH2fP7r7DXDQh4Enh8/wnadpDbNPwNYhIDBoF1FsWpYHB3SrJU3byUwNH2m7ltVqRWw6lcXrUjtxIZjcSG2D/o+pDqDvd/I6Z8VooRonCnzr9W9zcXgJDoY48NbNt0hl1PHzk4Jvmsiii0qjPksnKjCZxxScm5557jXavneLlqaxYtYJ/Fb+gSLdU04/w/gXjJNHuj+kiPcPX/ljRpX9oRn41pvfwVHIJTEiE3pTyuy2PeOQMChFlafJm52f53oai/05O5MlT2tfJvmuUUtmKd/qOFhOvdRjTIAHLz8iNcJR8nR1xh/d+2Og1DSjOR61GNJkSu8fNAJk57qODajRywkwVVoD/VI+RNpuwcHhEQcHhzLLZBjp+57tZst2u61OxTCOGOlW3w9SWOkTz47OZP0d/NGL3+Stk/dmaapSP//aqs5OxiQnMYSJubjq4Unm67/1dz5EYmxp2o7YylnZ9T193yvhYq46+PjgJnduv8LJzTs0TSdgxjueHDyV8+Iz/+iz/4zL5VpAfR26miEnjWwok2oa6v9KGiGPuJwgj5CT/m+klIQj412R1KR1ZGpaxuTA9O78LJicmB42fe+9FbUX+nHkKq4B2IWe//RH/nO2i63U48RQ9b915E3pt1CLba3Gbl52YDrTHEizG0Y5IGl6my81Mo4DwzDoQM/EmBNDkv/JrJ1JFm1Dc0G7RmWKfN+P9L3eJ+l90kg/TAy6P+j6mEdI5Cq+8I3Pf4c/+smvC+se6Fm3ttQap9t7337IcPLR7XdFhzc5CovFgqPDQxZdJ4JdMs6Gt6jQZSSslzT6MTHiKZlRBSH2oaKUR5/51U/9c75z+/v1ea7atRjn4oVxLxszrObxK1zQI65CuRdyq6mqeVGVPts1hJtLrkrLXiBYzlI8VmQ2gSEzTnj4pz/5RR4fP62f/ezglOyykgdN6Rn74OqVz8DJqM8TQ8aVnj4vlKa4TId8hvSPDpcsVi1vvXfJ4eHI5fkF77zzHkM/SHSJRibQOk+/3UARMjtH5vTsnM3VpcwVakd+/d4XebJ8VmXnveZ9NssNN3cnpL6nFIdz0rZbnHqvMVIKxNAQ2o6UBhlKFVtw0LYtBwcHrK8gb9c6tyZXzwrzvvLUVm6sj7axJjtkJJ+lyxaiFACmEXbNlm++8U023aau/x+/8Mf8fPp59WakrbJpIgerI9qm4fLqCSkVnNcssRZjz0FTKSZXkeJ0SJf3eJcxSnUxnGI8LcS+XK6mQ3Vt34FZm74A9ETiy298hfn1R5/9Oj/9pZ/AjZ5UIKq3baW8KrkqQgYYfD2LYhAmGTfAZe+rDoPNZbLoqcEclbuSEwZ/TDbMoBrIGf3Id994pz77VXvFH7z0NX72+z9J3gWNMkn0wOpAnBfv1Ap3bS6MV5loYqyso/NiyakrcHKovJN2X+9jTXEakVZWrgtcUrAQyTqA0PiRNosNp0dn9Ss+PnjGb7/2+3zm4Rs0Zd4dYQ6E7WGZ/WZa9xgCTtO/njDJ0iTW6rfP0zryXYIPwtQ7RLJzBCP80tTjYnnInXuv0i6k2H3oN4wu8XT1rN7q4dFD/tmP/HN++Tf/koSOlEjR5rcEbZffw0jmpCpSKm5KdUz/NRnUb+ykbVpYHQSoGomY/E9SRP0gtVpBa2JKsnZfRyEwjInzcFmf/+s3v80/eOWf8le/+ZdF/ysB5OQwqkwbrq46e3JSy6zOBSS6MX99rhG+ogM90xS9duCYqDDcbG8KhbGy1tp9psJXioxIca4+kIKufTj7YdfHH5A4eHbrjN/4hS+xPtzMfu4qGZAQwuzpxGrcpqiGtcaiFf0W/hKWw2W3oGsbHFKlXoopLj2YekilDUs/I9lmzr03aiGsFUV998Zb/Nqnf4O+mVDkZbNmHAdC8rNOA3lf9bhmSmGauzPxplSDJx8mn1mNuwmy1KWM4yhFjro2VnxXa2SyCG6ao34VtgcnD/n1z//23p5s2x1Xiw03xmUFEQUm71lVk7fKbkzdFXAN41hIZQTC5E3NQEkm8PDJmvV7T7lc9yy7jkXn2W4H7YRqwEVyEcVeKFKTkga2ux2Pnp4TPZwcrHhw8IR//NI/28Or7zf3eZqecJKPkbkv0oKZ0ohDqveDj1CK0qYH3VupEyo5E9oWKYYTDonoG/qMRgYQUq081rBv8EEnlobqqZhdtZHjVlxaAXPOPLjzkLdeemfv+b9979tcjue0u6iKI1EyhHaF75bE5oLB5pEzM95m96AqFVnzgPOjzFvRUVzmQaeUaYopQN1b3bNJV86Uu+Jkid4X7p884P2bD6bnd/Dw3iPO75xz59ldcnIYnbvgiAJO014mO9fOd2H/89F4kEW4CggJoQ9So3ItjSsG4BoYsG/hZjzLDsZm5J1X358+28E37nyH948f8sL6Fcx+BEt3USxMJMBAu/dqCtg7XLawfoE0G77pwSWNgmantQmSJolNwJXAOAyM2ircKHW/DHNDiymnYXEpF67aNc+OzvbO769/6l/yV77657m7vr0nF0AlK3N74JBKD+81gix8UHH6zmqCZ6I2/adMnnq/2TDseqbCUVmnMQ3stpeM/RWuJHBCILY+3tLH3Z78/9PP/To/8/Wf4s6TWyrDWe26RBbqPu9FrOQJ91NqyvthxryukbQyV4bWAuMo6ZnqcJRCSUnq2CjKaSIOsuy31F2NQ+YyXNVF2TY7/uvXf43PfP9TvH76anXeKnV8fdh5tM70AtVH3i/PLdMu5Mn2CCicgKHVq1iJqmRxjE5ea5egRudMjsCivfoB+ol2/rb9yEe5PvaApDj4zT/7Zd579f7+L1RLTXwB9kOqwTaWQvPU5qBBCnJGYvCslkuWy04nik7dBHB902cbVTepAGlPsbk0CUwfe37jzS/x9s1JoQGs243UE6QpLKjEKfVzZ+dPZwfMiJMce1EFZ98bKDUdJfceNRw+A90qWE7D+aVSebssvBhmcUY/8us/+iXODy73FEIfB867S476GzAm8Q5BDWOegQt59uIchYzzidgsILa4FHSGBFUhy156Eo6Ly57zs1PS2PN+DJxfXrHd7KRYLQR2yTOMmcIo650GUr9jlzMhSNEs65G///o/5Oliiu4APF4+4Z3L93hhuINnZL3ZUZACUFdG4QppdMaED/gYtL3Tq4EZcG4pIcsx4VwgE6b0mnNSCpqzME/iaLsDuuihJCnY7Ja0Taslo0LFbmAmlcxu2DKw4+0X3uXxzSd7z3+xuuT+yX1euXgJbN0plDTiSqJtGoYhSnHr/MwwlwHZZyHlmorhRJZF2ZZSyONozmP1KkV+zFWkRpVmIiy1Ic7xrZe+x7rdJ07aLLa8/fp73Dl9Uc6Pvq2UwnY7EqPk/+uUb/MD5qiE+qv69apXV9vvrdNkMkymrL3f7x6YW+Xpno6Hd59ydbDe+8x3jx/w3VvvcPfhy3KOvarynMGFeiuHfE7OY42CglNQOxkb6wbMTDqt6jP0DKVEiFGYf7WAO1gUk0AaByEUG4fKJ5FL5qpdc3Z4vvf8jw+e8Zuf+D3+2lf/4qTLdI2KIj0xlPso0GtLbe0uVN2TizPrBsrCUpRrB2W7tZR2oehLg+67NSIUdtszLp45druesd+Q0sh5e04fZjVEDk5XZ/zG536bv/7bv0xIEVKqjqN1Hk4UDVPhrtXjVeN7vdPFxMDq2fT/dCwPZbYv6L+Fxj8pX4msgQyS1wi+y6ybzd5HfP/W2/zGJ77EC79/lza16pT52X0tCjIHeKXauQmC2J9To7n8XdOnBpygrnVNNwElgXPWeTfZl/1aQz2dez9DGckFfLv80WpIPt6AxME3P/8d/uCnviqjuWe0vll593OOgKscFuJVzhCh1YPMUXKREKF3jtVyxdHhIV3bEIORjKkn6NRH0N2UTdI8YfASMSk2h4JZ7nHqY3/35D6/9rnfEgQ+2891u1HQMF0WckQ7GCy8Cyp01WjrvTzabiiCnLIYNIsFm1DlYpNJZ73vfqo5wYlwDSlRhlF4KJyAlXfvvscffeIbrHYLLpZX+lpHHwZOu3PuPtkRfKBtGiw3Lgpa5jaIk+uq8QpxRbO4iY8t4/aSISVyls6DrJEJsqs0yOg917sM0YFf4KJnu71kvRvY7bQ9MENOO9oYuXF8hzT2jCM8GB7wq5/4xyzXS/quJwVpiTxfXvB+PuX09IxV69hcXVFcI4PDxi3FB5oFUCaqaaffJY1j5TVIoxAfhRCFojvJvJqTG7dZtA0Z2O02hGbJ8vAFvCvEvCWMss43Tm4TguP87DGd82w2a/rhCf24Zcw7dt2Or336j1nsFmzdlhQScYwUV/jWK9/mpe/fq9EU5xwuxKqaqodrIqxyYgob1N6UXAG+RM/0vU7kOGh0znshkXPOQx4q0RvOyfmsN6wHjTGMfOfeW/jkCSmQQiKMATJ876V3+Imv/BguFbJ3gBQzb7c9XefpQje7VdHUxz7T5jxCgpPIVUojJXqNUDnmVADmOTtn84PmadBSEVXRr1IKfOcTbxGSdBakJhFTYDEs+PJrX+Gnvv3TSERP5Fs4XKYrxEjnJqC02cp5wTt2/UAae9EXFJoihZg5JylqtdofJ3uXU4IQiUGiYpeXFwzDwMHBIW3baLGmjGqzZ8mlcN6dc7m6qsom5shi6PhHn/kN/sI3/xQHw6q63UUFxjlZClcXQv9NkeJbpMOiBSnAF1pd3X4ZMSBtrbNuw5LBO5qmlYiw8xXAGqfHdrMm9QGSTOamZE7bU4YwTDagwHJY8JU3/pCf+dYXeOXhy1MBapkcoUnAdU9qJFuJ6WbOl3P2GmrzgjlrOefqBAm49BOrtp2zYo4wWkxboEjregqedbfZV/Y4/snn/gV/5vs/wxtPX6+RdadUFXnKNtrRrGBHom5TTaObd5PVM17IWr8l85Ry/Z7yHjfd3KKe9X6uftbcBtl5s3Zl73yd83Vy9NF4SD7WRa2nt874rT/3O3ziu6/xwv078sMC7a6ZOm38VEE8XzoDLKO2Xk2Ir9Rq4YPVitVqSdNq4V6tSJbOAFfTF5Mn6Bw6bVGmB8fgaWIkNrOpp054OHKX+Qc/+6v85Hs/wucefAoQZXC8OaKPPb6x4lOjYHc13RI8xOCm5gUkrB+1iMvGegelCTfSpJy1yEhTNDYCe9m1rJYdi66lbSNt29B2jU4JXbBYdJIbnh3IMY784Ztf4875TX7uGz9d1/ZH3/k0xRUulpfEICRWBSef2w/0KWmxk7Ak9n0vY8fHDL6TzkBkiucwjDqoSgqjttsdm82G84sLLq4uGcYB8ITQ0C4WtN2ClDKbfsTIuoZhZLO9ZL2+Yrvbsr58xubqnN3uki++9usszjp+4dd+vgLau/df4eV33+Sdw3d4+PQZDx89ZbPtyUUG36UMvlmSciHnUZS8sxSXJ6VBiziDRJ7Q9ISmaLpuwcmNWxyd3Jb6Ex+JzRLXHLA4vM2tFz/J7XtvCC12iIzFU1zLCy++yb2XPkG3WGLD056snvHk5Ck/9zs/y2ojrZ6ffOdNPvvdT/Od175DYhq4ZQPyClroVmYelEWs/Mzbc26Pb2O6asWADBxcdISmoW072rYTeauhdss1S2SsaLGgFb0+Pn7K0xtP+Su/9pdoB6lX6PqWv/yP/zyPbz7hydFTKuG2PsaUsTRFaoBcozE1lK0KoYZk9He1JsEUctp7mf3D7r+XOtD1lKiFvOp7n3ibz3zzTd546xUAjraH/KWv/wLvHt3n6fIZIXYUtR72vF75LZomsjo4ZLla4UJgSJntOLIdhO57SIVdymxTYZcKvaZvRqUC39db0o2Ti5BkDePI1WbNs7NT5cNJ2nEh6zCMA+vdFe8ev89r33uZFx7cqff6W3/wy6yGJV9843ev2clpoWodWL1K/W4OGIehKicD69Wbrttp/1VemtjQLle03YLYNEo0KHUlpcBu2zPsLohuTfQjUHjWPaNQ+LGHP1qf5E9/409yc33CH37iq4yhh5L1M3L1+EXcZTihFFfvF3fK3+V/uaZilOpdZTolsSMlSxQ4ekf0Uvzq54WwTmqImuhpG0/XNshMyEJyI0MYONkeE7PECH784ef4iUef5z//wj8ktYPIvBc9UpsUgpBRNk0UJt9G2+gbsTdR7U7bNSwWrfA7dXH6X9PQtS1d19C2DU3j5X+tp20DbRv13kGbF6J2ODligDZ6mhjktZ18TrdoWXQtXdvoQM9AjI5F89GgxscakHznc9/nzW+/zp/7p3+K05sSclyuF/zIVz5bw4zm/ZlCwZAk+5XPtaOgiNJYdA3LZUcbG6K2rE4Mf3KIJj6OUhXmPApgP6+FUmViHvTe84dvfI17l3f57379FylKJ3+yOeLPfedPcNgfMHbjbEqrPSt7XCLOOS109XXEvAhBqN0PFgHyTngkgvdEBVcxBpo2aiGaRXSm6Zj+ms7xTGv17OiUy8Wa//5v/BXOllPI9xf++Od44+ErbA42tG2rgEr63n2IlZHRKs2dc5JPTSN52FKSDGVruiPwUtyWilZ0F9j2UjyZtLX2uscTYsONm3dZLA+1gC3R+EITBJhtNmsuLq94ykPu37jPL/2jX2Kx68gh44rj5bc/wWf/6As8Wz3ifHPF+XpHoqE7uMni8BaL43vExTGjpdNUu1mdT8mpylYpZuz2DeEw9PK/3Ua4NiiUtMWVkWHYsl1fsttecXH+hLPTRwIoU6JrFyy6A7rY4XB869Pf5k9++ad5+f0Xa8puuV3yF37zz7PretarNVWwVc5TzrKeFkFQi+PddBZUnAEzzez9ruSCK5lF61gttRMgNtT5OsXayDVAr2swN/rFwdOTZ7z86CW+8N0f2zvbP/r1z/HC4zuc3TiXR0ejFt7XQuX5/Sx0Pv3dQsb2cQpenBEiSvSm5CxpFMpkK4t8PwmJT89reXQ3+4yrgyuGZuQXf+3nWG4lYpNd5lMP3+CX/vhP87sv/YFEzIrBODuLMum4bVoW3YK27YixwUUBoUJoJW25Y7ZicieU/crJY2mxOegb+g3juGMcR3CB2LTstluenZ5ycXHJoF1lznuaEGiWDetbG/61r/84n3j/NQESIXG4W/G3f++v8e6Nh1wuriqgmKc46jq4KfBVi92DlzQU0va5j1ssVSkgoOQZ4CxlqqlJSUB8GhmHnn4nM5k224ExZY3UFc7bcz795NP84nd/sX7E+eKcv/nFv8bp8pSni6dYp8wUTdgPkjiTSXXaij1byZQiQ/+SOnVCAyFpbitItrM/dTbOIzF7kK46rraSu3bLye6YX/jez3G8OxQ74gt//Rt/mdubm/zBK19lonPP6pDaGI8pmWpyKwXNvo6WsK48H2KtQ6z76WSkSQizIbKmD7SFe+oMkveYcxOCFz4b69w0TpMQKs+Sc/YM152a51+uXCee+Bhc5+fnnJyc8A/+8L/gnrvH0A187823AVhuOm4+ucn6YM2L790jJulIMV0zgQ79+/WF0uVooi1sqJti+bm55/dh1/M2YN4qmD08PHrE8faQAnz7he9x1W5Y9Qtee/Yy79y4z48+/Azt2E4eH3nu7HH9E/ar8efPcO15Z3ahHpwyoyVWI29dQiaENhDPrsvlml274/b5Tb7+2re4WIri+pF3P81Fe0VwgZfOX9xfM3vW2X/FuxPvM7iijI3CNTEOPWX+wFDJhkoxj9MRm7bO5ZA0Qpg8nbGHOsV0ok0flwMXq0uOTk94dusp9198gCuO249e5ODykMujZ7z44B7RBZqmpe2Wokwx0ClFpzE2tXAwhCgEZsNA0zSVGEgj1pJSKGBD1XK2yZkRfBSGxWJKb6wdTs572qbDey98E2PPmEcevvCIW2c32C53vPPSu4whcev8Bi/ff5n7tx9w6/Qmy92ygqG2WwDQD720ZtraaigZR2X1tb2paQs15lbQ6so0Br64ViKAWYBGGkepLQGs+6WaMdt277g4uaIEOFkf85U3v6opp8Dnv/EZzo8uCDlweHGg3D4KvGOoACWEUI1Er9HOD79EibZNi9d6l+AlndUPPYOm2owKuz7q7Czvyy1sllue3jzl3qM7vPvyA05PzmlS5JOP3mDVL3h48IR7j+/JaECNLEqrphqMGkZXosF6RLWIPCUs7RVq3QJT1EYdhKKTiu3slkJlCU3jCM4KThVGmJrwhffuPuDGxTFnRxc8vP2IAnzy6au8cHGXxwdPOdkesRym9JiqkGktpqAHOImO9f1Adl7Ha7jZ2S8TiLIOjfl9S9EBe+Pep1nKw9rWY/SkVBhGuH/rITFEDoYDvvrCVynA8fqQz733aR4fPqXbLTjQYZP23ecycf1z5q+ZdPZMBuY3cOqkBV+9+z0HuJ4vV/XzPMWWc2bX9Hzzxe/w6vnLvHXjHdbNlsN+xWeffJJM4aK95N7lXVye7jHfB9sN94HVlJ84cyKVBwrbizlet39aaNFBrVmZ/0z3wWpoqkHVvXf15ZOd8Dh+60u/yb/5b/1tzs7OOD4+5sOujzUgeft73+P4+JjNasvYSGHdYrMgZM8YE00fcXtFSfvCt3/NN28mdOYV/CCA95wlvC4WH7hmP+zjwLqV2QxNajjcrtg1PU2O+Dyn3J0M8/M27fmfc+07Xwc06vXNK6L37nX97bMXGUlQdpnL5ZW0+ZbA4VYIlZLPtKnZA0DPX5nJ+NlhdW6q+dm/pqr76Su6epd66JmiVVWp6DObQrSitgJsuy192+OKY7FdEoeGMfY0KeLUo7SDDXLgpPV7piBsPRR0GJCbhyEsUFCVyPWFLpYqmKl888zd9O9SCsl4RIqjbwZ2ix3FFdq+pduqIfCZkGNVEDXPbKBuepQaYXi+dD0fZE+/89RgnD1/mb7zh8lm8UVaG73jfHVOcZLnP7o8FJDsCy5Pz3ZdIZvxhXIthfHcD5zJ1/73qe8ts7WftvVDrxQyPkvB93axo2+llmHZL+nGpip6p62hprSp32PfQH7QUJQP2Q5dW4sQ6t+rsXneO2Z7M5fZMY40Y8PQDGy6LcUVFkPLaljVZ3A/aFn3LrlvLd5+LmX4VJD5vC9n4ON5v7MOwDrYtBSGMNLQ4Jzjor0guYQvnsPNAb74vTV08/9Ur/S/+TUHrM8/PR+U/voeXaMUMqMfWaSOy+6K3g84HAfDinZsnnOr5z/z9Z/uffIPsAP7b9pTrM//+XPv+YEbzUAqfPHXf52/+Mv/xg8FJB/volYc2UMKQppDgZCFJtkn+f0HF80Q3fMWc/b6+r45GHnelvOBz3je2f2wTywUkhdCJVccMQvhVZOsDmYyVOB4XtH3h33unjA+5/17Xs61r/e85y0UKVC7dmWf1QNz+CSpJJ+fV8h4/a7TXswAOELF7qtnuPcM5dpb6x9uLv/132Vv/2afUdE+FI8MRtQX+iIGK6TINDRuKgUVXSbFZajHub9O6quYUp17NNeUStl/4wyw7IMVIxMTPKW1HcWGM86Np9ObSlG1y1EMv3Hj7Mm1KWX7kS2K7dt8Pe09fPCy1OS1s/V8WZtfTh2G+SfMwKXKkfZdyOOyD0hK3Q+eK5vPMWkVhNb1UIGQ9X3Oef8BZy7sOQxT2kgur9Nsy4zh09W/25qU6x9wzXZ82OdfB5STzE8dUfPv4rSQ1CLDKqWEMVIAn319ZXLTnsqa/Cv4rWV/D69/H0sBPs+4Fv39hxpeZ2fQ1deHHHFOWqR98ZWLKvkiM7/0Gdzz7vO8618Bo0yr4vZ0EvYd9zTs/kPU3q4CTWoBJ9/FC0Fdcnl2rqCOMfqQc/hhdueDlz3rc8Drh4GMHwLcrovs9WdMHzHu8bEGJAUnXRH6xUMKquA8PttBNyUxN1d7knPtEmGfG+vyoUrhh0iF2//R8z4xU0huFt7KUZ67+P0K9ud9/L4Ffu6v58b5w65KNvWcZ58O/vM9rzJTXiDGvJJNFWvzmxnBDzy0/UyNDs6GlH/oFyv2PDWc6vdea0q3lP3PsuV02m5YZumnPFO4TueDOHytoKwgxu7nCgKaJpBXAdjeNRnpMv/n9e80iybU553L3UzJA/hrn7UPVPX7YQBkkvliXqHz092uAbvryz7ZOwMx8yfRtXDKX7Cn6NwH7rN/zSHM9de6vdfNf7Z37w8BpR92TYmjSf6mpsf9v3/4c3/Yzd3eX+u5rwKyfx4dToeYzdqLr8tH3f/paQyw7n1n/U+5ri8KFXSV2TpO52u20ta2ART3/D384PVBU4TTdd4Dqvp8s/c8d12vyfvsMWfPNsm0Y5oXJvT+xmpbtKZqZuJqNO3Drkmm/xUwCXtroM96/WPse++tuOocX0KVhZBCfeTRj2Q6Zqw3zz0rH/kq82/4g+T6+v1/+AnYf8Vz7v4RI1Efa0AChTFK4RQFfAriPZayl6qZzGXh+addLm996dU4PH/bPqAjrj+V6vyPosmKL4x+rAoppFA9YfPa5J4fcrPn/HhfRdj3+fBQLjPjPaU35qBs+l7X189RyH6qRXDZP0chltn7P+ShZ783DGNFyM875ZYOmZ5xSuOY43+9zsdNS1ENtv0iO/kOrmhkpxhXzazuu0yrWBShzMPBZf7Cvet5h/GDazCBEkMT9jKHUyIw+9Gst6QatPq+MrtHEYVd+SzsO8oQkdl3cjPyp+epF/vvDNwx+0/54Pt+qPy7IufVzdb12mdM/5HNczN5kPWYTbR+7l5MD/PBLPt0SPdSkQXmEQE33fYHmAJdg/ke1nfM6OkVHFQgNgO58/3bf/L9AzVXBdMZYb5g9aw63N4zmW6ySISbgUiXJ2OeXJLn+6Hp6HLtZ9cgSNn/zZ4umsnMnrqcp2Sv69FCrVO6Hnh1RaI8lc7AT92TbqZL5w/8PB3n+IAk/9BrSlc+z/maf6hj/qnWko/uQSxRX1kYnZC/lbwfuduXh+cAwg+59vTjD35lfTb7jA+zPz+84kN+/4Nru6brYw1Ifu+tP+Tx7Qds2zXtdsHr33qTw8sjTDnIHn7Q46uupxo97x1tbGhi2DN0MHk0eyDYTQpx/76mT+yQOeUeMQMz+SX2hvs37vONV78GwN3ze/zoOz8uv7HR27Nc43PJaJhC+7Umokw/rzl3PeRWGFu/n5sXrc4PsLYZV4ZQKSZNaX8+zxgHvvn613nWPqEZWz5z/3PcPrsja+B0ZoObD5SbL6d8h1wKaRxIGZkFExsFh2UPWcszyiwO5xt5prGnlKnQ1XtP27ZSg6KES1Bq9fw4DFhRlnEdjMcjv/fZLwJwsDniR7/xk4yjFNeuDg5nHqaujb53XnMwKVuu5fKva4FSlfKkYYq2oY9avZ9qrtwxAWWbzZiU98DqVVIuvP3Gd3h87z4ue16+/zq3378HpcgcD2fPOMlljA2lOGGD1eczc211O1lnhnrnZGJx0Kp+BQAhREKUlEWuxaACXfZb6WfXHMk4kdEQA64t/PbnvkgKIyFHfvIbP4NLEy9KrQ3yjsWixSHj2b139NstOO0eGtN81T9wOdBWTE+3XMigzCLTgnd9r/NOMhatm0DXtbu4D973/ov3efe1tyk+8+rl63zmwWcpBXa9ctF4wNlsp4ALgRgiXifcWmeenOFcZal20ZS8x4tSSqbvRf4rn5LKVq7dIir7M/n1s2J12XqJNhRX+MPP/h5Xq0vw8Kfv/xkO+tWHrOTzL5OwVAqb3Q4XGpU142OSPZShc3KW67lRwyxF3bmu63XvOoTIwWrF0bJj1/estzt8EFbaB0fv8c17X2OIPTe3t/n0W5+nScJFdb1uyERxz1HB1K6NBeHa68u197qpwFP3y/RprrwrKiMO7XycZhNZ+75DCBZD8Hzl5d/nweF98PDjZ1/gxfOX9oDn/mPN5yxNT2qg5foZnNJ1rjrNeVYMXeuacPs1rXnSH/Odnpocpu9ffzvzMN977xpx6YdcH2tA8h//3n/CP/mJX+HCn/Pyw9f45V/5G9x6fAcTGyM2ws3p1oscdl2rlBPLRcuNoyMWnSo6bUmbCiRVeRoA8NdCw2Uq4rLxzGCtUm5vs63DQ90P/ss/9Z/xK6//fwH45W/+Nf76b/+Nmk6wcec2wXEPGNuloKuOsYdabGntdzLG3or+JhpqM5r2TDsdtlVKmYbvWfuqD4y5sN1slBJawMLpyWP+Hzf/73z75Jvc3tzh3/69v8Nn3/l8BX0hNvgQZZBTjb5QSZ1E+QzCETJklqsjDg8OWXQNTQhMKoA6ZK4fBxaHd8FHLs8es1lfstttySXTNC3HJ7dp2o5i3AE5M/Rbdps15xenAHhl3W3bBc9+/Cn/h8/9R+Dgs49+jH/nH/677PrC6vCYG7fuVgAiHrrHx6jdM6keeitE3ZvKLBtZD2dR2XP6b/OKSi6Mw5Z+u2az6+n7nXJUNNoJogPeyLicIQRCu8R5T99vWfdX/Mpf+3t85aUv0Qwtv/C7/zo/8Rt/glIK3aLB+UJOYwVn3gcW3RJKYL3eIMPdAhQx6EmNRC6jcA7EwLJthHDLRYa+Bwrd8oCDgxUlJ4a+J40J5x2Nh816yzgmmKUr9oTW2+wlaBYd/iTzdz/9v2LTrFluV/z7v/IfEXdCOz6mVA1xbCK3bh0rx4unjQ1nTx+B9+xSZrOdGF+fh4e8g4ZCDJ5bd+9wfHgEJXN+dsrp2Tl5EE4cS/cGb674zJmoSnv/e33pT/0mv/ryrzDEgV96+Jf4t3/zf0wZHU/PzknjwKJ1eN9IR1jT0nRLFqsDusUS55x2hY1y3hT8Z+VukWFoIzG2hCAGdhh7rs5PGbMM2HM6QK6UrJ1e0jk0GAjX1GPJRackB235FCOZXOI/vvV/5luf+GMo8He/9nf57KPPYJbL4lYWXayGewZ2SikUF+hT5vHpOck1rA6PGceR3W4rYzhWB6Q0sl2vK3FgTqmOrkBHWUxTOAw4yTp3bceLL7zIG/ducXlxzjuPnhLbBauDQ/7w3pf5T07+Lzw9fsynLj7H//C3/ifcvrgDlXtkBjRcqUAizej5rXW3zq0pE6CvzolS9sco7dtyfqjAIaVSKeOdKGW896yWC2nZBnXEEtvtBu8dTRQuj//3z/w/+c9+9O8B8Dcf/1v8jd//H8xmz+ge1KOkXVve17kyZidyyeRkzs++kxy8cGTlUhiGnnGcqAoMrJrtrIP4avedm8nC5JDZBPh67tQBc97zta9+/YOH8TnXxxqQPHrxIVdHl1Dg1sM7nDy7gQmvn3mYWBRgHk7TEHjwnkXX0TQtaGuhC55YpvfPt8Fp1GJy9jXAp/wSEt+17aJGBrzh6zK1zpZS+NZL38Be/Oa7n66egb5Af+UmpTBTBhNkntBpFdUZAJr/T2bD2DrMoy4RvGcYUp01U7J0cohikFRGCIHsHCjoujxcc7mSwVCHwxF3hhdodQqnPb84b9ciTxb9yU5YB4k0baDg6YeBNvpKLV6f1clRjM2Co1v3iO0CHwJDv8H7Jc55YmzEky+WT59YEsc01NlEFGlHa9uO81tndclvnt+mbVu6ZUfTrRR0mLdmqRMx8NZyPK93kOf1eItKFHO/dEiefZ8aXTFgI8RJXRNlhp73OLzWzEp+OWdHSYnD5SHNwU1KiPjtBZdsGKK0SfrkcRsvpFR+Kg52zsv8D5kepB6hKZOEy27izrFny4W2aRTU6uurbbZUi7BCpr4nl0LjIl6snvJ76BtmASELMDiV52E3kNbjvjdXI3vmWMg655zZ7UYllZqr5imiYR/1PBVecNM0bztL3ubGuPrd5s9h75ej7apcy4dMEcpmaLUrbqAPPaMfCa6pQMA8VyPUCjlP+wCT3tD7172omE6Nv0WMcLjQ4EgKWMVJMGJdc1JGbb+OMZJTYkQNzJApyqzro7znxtnN+tUfHz7ms48/u7eGsy3EtBqzPUD3VaZhe3bjUGnx0zgw9juJgrYdTWd6UB24Gi0J+KCjFWC/nlblYEyZTY7kZklxQrqYU+Lo4oTV7oCnPOZqdcH2ZEu7a+vwULmFq4R/ErURsCBBaUln+hBE3pJRvuv+FISgTKMZjTlt1mXGxKYrwFJ5iNRBZRalcVU/hklqi+Pzj34Myt8DB1+7+1XVMNNg0/ooCgCyk4ipybPoXlcjH+o7VoeojAXnRiW6dAp8RS6dDmE08FajPTPHq265fZdiQzb1VzMgOfGgfDSo8bEGJA9eeY/sM+2u5dXvvUFIcc/42uwZMLA2M8BFCGHapmW1WMkoeWfEZ9R7GBqugMTi5qpEZPHVADm1AWroTVEZeJh6s0VdXi2uePeu8KccrY956enL05ezMOoEhdUlsQNqu+7qITKEX1vjlBjNe2eooL5ev5g+p3hLbbeoY6SFnXDEIitOpbrxnlzJ5DxXx1dcLi+gwOH2iLvDXRaLroZobb19kHVNefKkjNgHhBiteEfabfBlJHcNuRjLoRh5h8yKCe2CrluwOr4JFHbbS/rtRpVBUM9G3+cdRt8SYsPh4Q0xdkrc07QdD5fv1mW/cX4bQoePMga9KM19BZPjAH7AIjfFWm9RJmCzvWazLLqiTMG1JRgxLKO4hPgc8E1DiA1jMf6JSdHHVqJ3aWgkWjUO4CPN6hYhnJNbSVX4FAi9MON6J4bW4ZWnTOXbS61VTgkx0X4e7a+KxhXxAB2FnLIARC/rqCZPFfYooAeExColpjbjvdDIBBJKwWsX1dD3XJ2t537fdFY1omcLOg6J8/MrYowsuo4Y4wyAlL1q/v0ao71bA2JwSnYQHPhwrUtHHQ+zE2XSIU6jpbX+Rc9d0zdCIQ8MoSfFRJMWxNiox58x04MSb6VxoO+9Rkh0onKNzNrgtv10raViks1GwdiAnXSMjdPcFu+ETTcr4A0+EoLXc2g6Ss+o89w8v1U/59Hho0kg5vvnZv+yeiuz1OpoSHrCk7Y94zCI/BQY08hmfVWNoxlCccTM2Ss1BTXhw0mPO6eznFKG0OBDI75NHrm5vsXh7ggKXKzOuTy8wD+NdYL2lN6Q6EhSZ2Aq/p50qBF+ZYtqGgzzYqyD9zJTSaMKNZLpHT4m/M4xDMImaxEQc5iyku45D6FpcSXTKNvxJ64+xXF/wnl3xvdvfpf1csPB7lDmmuUk6wtKk686Nk/cIAIgFEDrdzYwJNEOHQKYNKWLzm0y0KG6XniGRJ8af00FNfVAyLJ4BTduPnhSFhPvHG23z2PzYdfHGpA8elkmhDa7jle+9/qE3vVA2Jht8ybmeVlKookLVsslTduqME1eXwUEc7/AQEpFuPuKKqjHb2iUPd+5YEbMRP/dl95mDGJIXn38Gou80FSGXa5u+ixQMHlxTtk11bgC1aN2Cmayfg+ZRKzeod1nBlDsPt7LTIYUI/04MA6jTN116tF6Nb0hkCmcrp6y6da44rh5eZNu2+FC0XC80/C/PH/jPVE/1mgZzJwXHHno6RYdi24hAEvnLVTmP61kC01Hu1iwWB1SnGN7ec6z4V1S9RzB0mzg8SHSdkuZ9muHbQbcnh09qit+cnGH0C5pmsVszWUT0tgLYZNzhCh1KpOxynvyV/cAs6Xy2+CmNtHsHME5LE1ISaLIMa9JLh8CTdPpGHlHcp7t5orx6hIfItv2ktRMEZLYR3lP2+gay3RknNRd5ESdsxFjI96gzm4qqqCC9+Q0igHVNTOPUZQs7HY7thtPGwONFEjUEQU18jAfCDYzqs47QgwKTIE07oU0QmwIuZGIloGAArkMDP2WsXdQMovlssoPNRJRN2ImC9PxySp3KcvAQl8m2v9cSeDMs/N7Qa1663oEp89sxq7yBvVxZIwZN3pCjJhiyQWCpgJyTvTDTs6Irm2Iwpps4xJktEPRrxOw6W9pHBnTSKm0+vrMhMoQ7FDytxBkuFwxvOCJfnJopDZLmE9vnN+o3/Hx4ePreGR/IczrZg78SlVWIkOJwUj4sjzT0O8q8dm8IHmP+6ns7aR+5FTs3/c7zi/OpAbHO2WULhymQ26ub+NwbLo1FwenSLrmOhuprqn6aRbhkD3Vffe+RrPAjLo6rMifxsrqreYuBI2eKH+R6wWIekcTlXXbe5yT/QgWRfCOruvouo5Df4M3zz/F79/9HYY48P27b/GFBz9FbHQivT7+VFeoAz6VbBGUFE9T1kYgaBEh+bmWLsxIEGUP/HR/3ROpAxRnJGdl0jXG2CCkkUHTRpJOLHV9LYVzcvLh3CPz62MNSC5unEGBm49vc+Pp7XoQjF7XLufiLNRUKiJedB3L5UKozbGwMJU0qoZAa1RharGbA0T9kIq6ixoqUQj6Bo2aCCunCOHbL3+P7CWk9/rTN1iWpT7LJHBya3m2zOxDnR1CV5Wdeba5FC3yBO/zjEhIvY5SKl2204hLyhK2N0TrggOdtmmslgbY9AHYhp7Tkydkn4kp8uLZS7q2nnaxIsSW4jx5lPTGMOzYri+ltsA58WxUjXVdR2w6Dg4OII2K9DOu+Lr2aESl7ZaEKIposTrg8MZtNldnbNaXzLTKtHZKUU8sk4KtUSJ4dvBYZQNuXN0hhEhsGkwBGpW+RJmmupbJ2JX6/uuXKdAalrcXVuMgnhWxkSkpo7C/irEGqpci4DgD/WbNbhiECnrs2YVLRi9DBH0ONGNLjFFYMtEoD26K1uh3aqIyEcdIThkfJrmNIVDSiN+upXjYZD5n+t2GYRwFhIfAwWpBXCz0GT3FN+CEHbQaM/NO9ZIIXqSkRAzQ7LVnQowtbWlVoZkj4QihYRy2uFLIrmU7BmgOyHiKh7hYmPmmFvbVla8MMeQQ2KUWenCuMKSGFFZkWjJDlZNcDZAeSjPi+pxTVxo06aACkiEM7FzmoAScb8AFdW08RaMzKRXKkPChEYUfpOMllSIFzmmonqgw1IrHnpQh2HsPaYpCyiNLeHwchVwL7wil1Py/fYVS31CQkLsY3ZPTm1WOnxzaBOmZYF+LOM9/bdT8IiwSeIJSh03WbpGSSeMEamoe0M6s/v0DPpgqXuc94zhydSWRsr7fUdLAoHVvdx7fwX/Kk0Li0cEDNvmK0Ms5a9tOpEDl0VLoRYGn1GOIQSe7Sp8u0VdXZXdeyApSN5hH8LkQos4VawKFyKAzfYxm3qshL0DRsQIyd0xGLyzySgDJnd9h9Ilv3/0WP/Ps56Y1KrPajTKtSQhNBSTz8R+1QF51iNmWnDNjv9O919KCEGTchjMHfnLepqhWIGeJ+sQY6RZLmqatY0EkumU7J/e999JrfJTrYw1IjKv301/9PD45s/7IIpjxnAzPpNgyi66T6IhWuItQ6UZZ4afeTaIt2u2Q3WxegIb+mdBqNm95chQqd1YBsgrU4HZ85863SD4RU+T1p69z4JegKNY8cQsdOic51myehBlUm49SJg9jGprmyEkEq2QJ1ZN19HedVePI3jEOlu/T59RCJkAH9gk4SfXzEttwxcMTqZ4OKXD30Qtst1vGlCA0HHQHhNiyG8/Zbjdsri7YbteU4mi6JT5Yl4gI/nJ1QAiRYdzJ2GsKsWkFxCug8z6wOjxisVhKwWF2HBydsD66wW63Fk/MmcLR/be6Hic1IHI3XT4yT44eAtAOHSfDLVwppLHXot6Id4WRgnONGhcDI7bKClZnwOQD2MRNRdFzY+nV6IlnIevrkAiBw5GShrvHUZSA8+SSyGOvQw49uRlrhCTkwCLJYDLng6ZlJjBgSsmArAED55JGkAQAxaaRpwwNKQn4MG6NBYVGaee9kwiA9k+AKesMxRmjTJnSQdWAa2hZ1yZcC/UaWMM8SHMIQpRJsX3PZnSM24yLK8bs2JbIrokVNETdp6F62+pkFAHYp8nj1robpSH5BcVl8AlfkoAeJPTdukIXVa7mUczaoQBwG1eEWfOSnvc2PcN5IiTosowF2JWGqyy1Us47fCg0g4AybGAnMrdoHKVTxgFtEzhwgVUn97Ho0zCMUuuVRkkZO2p3XLH99l6iZFqIPTsBCAleUVVSWFwtaYeWvul5dPhImHM/GCLZB9h2DxCP22kdhpe0uIGdmTd17WzYT9z+D+d/mzliBRhTIgy9OAwpM+x29JruuvnODfzPyuTo94/e4WI4ZbFd4HD0fc+U3p50nXW+eI0SZ62otcGstVHAjHuNqOtzqrG29HejqZlRi4vHlAnOMUQdeheDNhL09P1A07RIfVoHzvH6s08Qc2T0I9+68Q1Gn2hKo7p/Px0+QeIC9t08eBdVV2jnXqWOnxY15cQw7EBBq/Oii2rxr0YmceiMIS2QBlwIpBQk9dz0CkbCZHJLVqclsrk846NcH29AghjCN7/xKSaBNyXmJu8UZjkvMdxdK1NtRVlO3RJW2MfkDNX3l71ulbJ3f5NwAxCSz5bQcAweH8VAlDwy9hsenDzg2eopOLhxeZNb57fE0Cepih/rHJBrtSz6FS1XWLSLpObvvBmaWYdK0pJKV+p3MyUxB211NLVGWHJONDFSmpaswjzmaVz4Ol7w8FgAiU+ek3dPuLq6pGkaGUHtJIx4dfmMq8sLttuNTPPsVtIlkQtjyhTnCU0HLuoUU6kdAZu1owVdOWs4tMX7QBoHcJ4YI0c37rC+POfq4pSch2njzBAXYFZBbqDtqrlk267BweHmhI6FRHVykUnDPknEJAaZ8lsNrIYMmOSrGl/3YUETU7szcKTGLGchlfNay2Qex24rHTiiGyQk2rYLUhq1pLCQY5LRCXoeurxA6j60lsPi0kDtGkOiddkVGMVDylmGmjkG+dM7AfZR5gR550hjr7U/6i068SLjzKvyzhF0pWpdTSmQLXKXJ4CuSzjP4e+t2DyMb56zF6U7jIndkClOlOIGT+9bGgeNTuWuWkGfE6AfRkn1ZViPiQh0rjA4GMhkRrxL1dHwDg6Cwwc9hxqdtOqNMSVNT9yAJCp143sebHd0FyN3GDnJiUjmwmWugCeaWmmjI68HUulJxUlrcJZamIwEGw6i53jpySTaMELRgXOjtM6WkhiHERQABjfttRkVG7Qpga2MeXOWkLZUbltaDtaH9Deesm7XXLVrDvvD2Y7MQMU8BXfttybnUqdRql66trnX3v3Drul1uUxdg857XAiQ5ed3Ht8jZM8APL7xiNJlmqFRh1NlX+W/aKFooszmeKEzzLzM1SlM7cnO16h3Tf8yjyBL91jTyGTcYRjY7WTYoXM6Hbtt8MGTCwz9QD/ImVpfdSyXS9q24/DxATfXt3h09JAH7ft8Z/g69y5eqikaNNI0oTlNKSGR9KmFGu3SKholkZow5wVwjOMoc6fK1H4tUXIrBZBzZz6wdRZKCnWEHMjjgNv6er4kEiZno5RMCJEnD975SDv8sQckd+7f4/jZDY3Uu2mxrgESuxyCemMIMnRKN9fGjJtQzg+beXjOu8q3MK82tgxqLR6yz1IlmGNLF8RzyjrS+v7h+1IMCpycndA+bLm4PCeNNv2yaurJt6ij1pkGoKmnMtVEOJh5lNXTLKVOq5yjZGfgbYarajGgouKh7wVBF/V0NeRzvjznsdZfdLuO1eMD+iw50wKMQ8+YErvtWoowgW5xKIWITlIJST025zxjGglauOpKmh0gj1M22xCjjrmPpAzOR0opLJYrDo9vsllfMvQy08U5r9OJg0atMjgxnF739GJ1ShJ+aY62JzRlMevOkiVOaSQnAZrBC5OucXRUManb7rQTqlTPc0/4mP/oGmpxEsWSqaGitEysvZd2Y+c8i+WqcjsAxIOW3Or6lMiSA5Vp6aqxc2AdG6a4pCaukBiQosrC0O/od9vq7XkvnUtN29UoTgW/bgIILjTKjSKXj1NUog4UdE47SwT8lDSQmVrI55cPAbdHyz5F9ez1pUhnxFACO9eSCETvOYyOjNQFDDkTHUTnOOhaFouGZxdrxiQ/346ZRYB7nUxNPe9HnmUYiw41BBoPbfAydRcIamSN63YoUlcVhg6v4+NpE12TeTEP3Clb2rSDEGhCgjxwQQOa128b+Z6bUafRRkc/ZjYKTBpkau849qzXVzikVTPlRIgN0qkl7fOj1pw0IdIENRIKqrKTFu5SfA1WWWGzTQvvyoKD9SHPbjwl+czp8uwaIJl3DKm8u5lgG35kGl44jqU6UOYwVsG+fjieeynCr/eX11onrHTEWLqxcPTshHbXsV1seXrjCRu/5SBLDYM9ggWYwerwvDo+GYsc1sg0RZrGNB09Pen++fY6DTdoKqOJjQBV1btOqSekjigQvSN5OWcyAXwgxoa2bbm7eYHb69s8OnrIxeKMJyePeGX9SnVKzbVRDa5R/SwOBJbOwRQ6ahhrhNgiu0HCWJB0P9VWlJI1Su1UPkR2mthM+23SkKVDLtnnKHBzQZpMch5J4+4H7O90fbwBSYFPfPNTxNSoFyg/nsK9H7yc5gRzHiV9wOT15lImsGEhyWsGxThM5mRYlhs2Qa9eGebVjvSD5PjTOJBL5v7J+1yspGX5xukNlk8XbNNaDdxk5Wp42HKG1Ts3w1B/PUVtVFkYl4It1hxd76kCBTPT95m+sFdjLeO3UfQs735/+T67VgTt7uN7xDo3RWpS0nYt03pLEY81tnRdC1pYVpyEW/tdTxkS47AjOlH+IXj1SMV41RHfoWF5sGR52DD00jIcYwvAye17nD97SE5KFmWhbcSrrUPVqlaC84OnUscDHG1u0Oa2EszNAUORsBJjGWs+FicpsGnd68tt97QS/tovrsVN5sBQQIgBUW8bJB6bhlK9l0Iye67maEFq5Ds0tJy0t1keHkrh4zjIGlIUnIlMeC/8Cc77yTsqhRwEpI+a23YO+n5Hm0YpNlZeG68pHNA0JI4uxplkTYWOtYNNZSyXQh5Hcgi4IIWrPsza3WGq+1GZdE5an0splBTBDbXeIhfofSTr7JhNEgCSS+EyScXGIkDKPVe7xHpIFVQEHEdBIhGblGmAlQ9cptH4VbGOI+ec1EWUqTBWvq1nOxaacUFTRLb9MvHyS4fcegLLEZrjmyInuy0xj7Rl5DJHAtA4KW6O3tPnQuc9q9az6zNDylyOhYdXAzdj5iBm0ihcNc47ukXHep1qdLcfdpLuiRHajibOiqPddA5yMc4ct+eENWPkcH0EQPKJ04MzXj1/XfazcursS7BIvweXq/6SqIsYvFykOPq5AOQjgxIh+Ju/znlJF3rXMKZEv91KC+7QcPvhC5yfnLFrt7wT36I9X2haZnpvjRbOohvT01OLWP3eY+UpKFHlQ3V9doSoxdcKYHBBUqI+1XunXHBWRA6qLwukzG63I8TI4dkxN8/vwAtwtjzjnYN3+Ozu89UJcbiaXpJoi5s6lmqKTO1UKZUPq1T5nYrwa/ijmgeLdJhjDFkJB0NAas3MHml5gfErye315HtxOHNKPHz03wJitNhHXv3eJ2SgHtfU/Cz8ZMp2HqpMw0CubLZutpDMkHj54OGrKHAy+3Btg4H5A43jADOAuGt33L/1PimMNEPDvfv3YAcjY33k+lxWKEb1LTSk6PZeO6Fm+53DhqSJrDnm3mXtKCrTFzSuh6kbQtZlTKm2GAZFvYXE/Rffqx/6ysNXpVspRK3KlmhQ9E6KL0MkxFaQsz64q3lXYWhddJ1wZeRR0wcwOjl0RQGjfb4rQh5VUqJpA02MdIsFB8e32O2uhLHTFIebIJgV+snaFs4OJ0ByvL1BU1ohkitzUDuTJSRf77UlUMCC0+ml1otfqthZ0es+uL0OSLQKxUBTfZUJoteQe1DQOykbh6M0mTFKBCqWhqN4k/ZgodGtnbLgpkk+dE2tzmQ/ZlNw2w0wTClCFFjHhj1518erOBevVk+YTmv0Du34UiF1oDIRKFHXJs45Z0z6qGBSjppGWryXQtDs0MAwTv8csmcsChzIjAUGYMwZhowkZbS2oTgCcCANSFwOchYWUitKcLArTjshLM03/SnfWFIkfS4clZZWVeoYB27cO+Tk2UvEnGgXS4bLCy4evM+69Ph8RU4B71uJTuXCZiysc2bIhYMmcqhRmW2BYZtpu8KthdOolZyDGBvJ4VubfsoMQw8l02iaRiJ7+h2ypXVkq0YDetpxxM5xeKWAxI08XZ1OZ9aYQWq0YkZj4CS9JzpW5FI6fPw1J+e/4SWCoLJonyldYm3TMqaRcRgI3uHdgpcfvMJ3P/NNcPDu3bd59WtvaDrUamvmNSCunndrg50Fkfc+byL6+yB4sqyUo+CccDNJRH3Ujs9M7cDzygeEdDgJM7cA8av1FU3TcPud2zSfaBjiwHeX3+HB1QPaXaMf7yciM9WPwkadtX3cNJGloabXivOtzMrVHsh3mOsxc77tO5kz6plAmH2GbdHcttha51y4PD//SNv8sQYkN59MZGiygDMmPdWWTg+DAQmru0ilTJMg7Y/ZwbkublZlLH9nQtdmgmZFA1PEoVSlXX+JY7da8+j2Q3DQDi0vP3qJEFz9HJOOOYKfUz1XAzszuHNjN2+1hOl9Sdug5WDCvJ+8wOT5z66UMuN2R4xeaykizkHKIw9feFhf9/KTV4ixFbId72snj4tS70GIFNdIqNtnPL56daCV7MowmcYej/AY5JKFIVSB0jj09Nsdwy4z7naMQy/cHEW8zIOjIy7PluzyerYCddOqApI9c5wvn9WUzfH2Bm1q69piklU9J/uv1Gdkl2rEoraKFi3ULBMPTcFN3DHzraoH2Tq5JGxctSFyqGMMVZmabZ7SHIUUxgpIfAm0qVOyJslZT2m4qeZI5MRkaPIc/UxRzyXBQthlQvEzuZaQ8TgOH1hjU+b74HeqXTJR9aGZ3xDnpAPI+BPkP031zJxv8HnEA5FCJJOKpyBha2P5dGpERkQ+cFp3mZGokbF1qoORXaH10DaOxjnWqTDomFXRz1MBeU2ZOVhGuOUCUQ1W73fkJrO4e0/4HJxnpHDxLLIdNkBh4UbGHKXgXOWhUYWfcsIVj8YSyQieGlKhi57Gt0q+5TSVnBjGXsAC++lCZykJpsoRs7YhGE+O/KgtLUdbSW8kn3jcPJX0VpiKZNGIEUzDM53KYiXVKwlyJladYmuGAvBJz6ngyWOV6XTMr3qGZ1fKmTElFoswAQjnCDHy8uNX6+sev/RQKQ18LfaFqfvOOePwc0QFJClbBGnm2zLXB8X+NRnmesaLcMzkrDVZGUuV5Dx3NLTjBY3M6wcN/Y62abj7zl2aoWFoBu7feI+LcMqN/qRG5iRSMV+zUtch10aH+qvpXM7+MLtScDW9l7XmpOqnmcNUnFO/Y2anTHgqcFOAOvtc7/bTrx92fawByd379zg6O2FfkemCFEHy5qnZgZC+6UAMViw6bSYzxUSZihRxIsyzcyx74aY882RmJrQ5Pz5zqNN0Dcu0pNt1LPslb55+guVyyVwAMAMlP6hpBOuQMIRvlPg5J6GNNkNT/Uv5o5RCzEYipU+sLW/m8RmYqIJdhN20pj5mgCWLy8tivaRve+68d4+h78mxITaNKD7faLuyHERXRlx21ejlou2NWXgVyIlx6MUP86Y+xdBbimy7WSt1uSieYRxq5XxKiabtODg8IY29cjjonszXQ1fB61qvdoesueR4c4NY4t4hnv/FURkhMGEo2iUkayRGNILODyn1dSZHAlJnXQkz2XCgSsHhtB7DeU90TQWRVa5qlATAS6vv2LDol8QcVDnrU89iznuhad3/lFJViLVN0HmZlmpRjevRixkYMWXlg82eSSo/WSLcSsbmaw3KNBKhrg2FmCJxbIipYSrS9vV5bP1KzmQ8fptZAMTCNttiTMp+4R0LMzAF2ij7N2QYlJiqz5l3N4VbUVtAgYPG0YTIMGaSdttsUyEyRUec3hMnwLbznn4TCOsVcWhpx1baer2HLBGabSlsvWd09gyOLYXNIB6pLwgYCuKAXObEUP2cwlgcw5hpw0SIVkqpHBDibY+YJy8Fw1IbErTl2wqVayTDCV9IUR0TaeQcjA3L3QEpJUk3F89e5LQegbnOErlQbFEjJN7U6Dz3MXewJqneOw/za8+v0yvnwna7EQbaLEA7O/Ax8PKTVwljoO1bgvO1U7BGgfX5rH03eCv8Fz0RfMGK6UFwnoC/6wBEHY7Jh6mOZMiQnK/vxenaVx1tERRrIpAUiUQvI68/eYPlbkkKmWVaslh0LJaLSi4ZFFzNywwm4OcYlYXWgGA2Bu5pFyegprYRJEU7kmrUfapPVHZaS6nPgEeNlup64JyWPIr+61YfbSaSKx8GSf//+Do/P+fk5IT/0f/u3+PlZ69hqEwU+iy/hRXwiZIMIdB1DQeLTkOY1bQwRUcUYNQciPVw+8rtYQInfkuexkPXPxzu+umZpECex2eulmue3XjGmw8+KS+xtI+bRyrsXhNHhDOiGvP4alhwCpfWkecmgNVLnomktvaKCBhXiQ3mkqFt292OYRgrILHitHEc2KWeIfZc3DjnzuldmtLRdUtWh0fYHB0H9MNQZ/MAWPgwZ5k9kgosD45oQiSNO+lKUq6WtpUOj2HQNmgf+dSP/BR3X36ZAvS7UYdTSTqj73vOnz3m0fvf4+rilFImY1a9u9m6ZpdJJK7aS5rUsOwPZofbvI9rmzf7uQE3U5khBC3uvD4/qGqvuv71HiZvei/nPV23JOfEdruuivODetr2M5NcInnpClrsVvaQ071n75i8U/P25K85Zylq7bdSkNzvGLQmIcaGtuuUkdH2cZL3tlvStNfZGGff2WRPZ+oIgDGQIko4eSHncjh8CtMdHLVQ2M72OCaeXu4oBHJ3yNPUsMmT5+ocLLxjGTzRB+kOE/XMKFiaoRSGnIgUbkXPVru7brcyj+dyl+hzoQ2OiyGTi6tgwQF9lvqVLjhCgV0a2SyuuLNc8dm7d7h1eEzE0QWpNdquL3jrve/y+MlT1oNj295iF1ekAmMR+N15xypKiuVsl7jKk1468fD6Qc+NpXzHfhhYrVZcXa1Zb7ZsN5f0/U6iit6zWCxZLpa0bUMMEqq3uoCcSp3AWqVbAWA6ccSjjuV6gUsQ80iQCkfVG1wbUWTF3bKvsW0VqCeuNjuenF1SvLSETpEMj82zmsvKHqdKmf2mGvzJ4XQUonMsF0tyHtmtL3FF2EcHt+PB4XscPzsmDBGXJe0ZbD5WUXA5T93MooLVTVXgKnNrgkZTZud5drzmvrD34EvGaPMtZZZ0lIULky4tmmYZ06itt57lYkHXtbz76ve5c36X4/GYQCTpvgnw87Pn1tSPRe+gfjePdrfVgvKJedwbuFDQCrDdbBjHQTnT7Kz6GlGKQRhq59H8SRomR0m6fWQ1/+grv8X/8f/6f+Ps7Izj4w8nSftYR0juPHgBhPupghHzvC0sVhWyelltbHQ+h1PgMC/mnFAmTJ6otdCGmhO3dMOon/BhmK5Ur/q6SfPZc7Q+5mh9QmIu4Kp9FVmCFCLVo+IczmX174u2dKWairKvWwmwNISa1WOV72hRjkS2AV7TI9euCImQpD0BFgRnmqLQjg13Ht7BATmkavgteuOAJsbKGGjtaEIgR43epHGQzhoHbdMqIBG6Ze8dKShCbzqWy9UEKDvpsnEYVb4nH59wdXkibKbDMDPC18Giwxfp4jnZ3ZTv7DSC4cDo0PdLVvd9DPutrrYwJOZEcMLvIQDZzWZp2N1cVV71jjMD77Wf3yIj6vR+QNScyqMrnpgiZaTuUZkpWDMaZkAMrNQCX8SzbduWppEOnpQSKQ1SiD2O6tkpo+V0M+yc2TRaEdNJOckPdJ1clIJYbN8l2pWQB3ch4IJXmTcFX2qoX+RL6qKDd/S5MCQJeQsElEJVBwxJUradL+q1S9pm+saFEfEiA7D0E4AbEqxTZhW9pmS0JsLBLsladV6iEN7BmAsDjsPhiLsnhxwvD0Xuh4FhSDQls3CJNjiZY4PjuBkIi8TV4LgcHbsiURfzgOeaw6HEiD7SNGjNiDBx+iAThLu2q2lNccSyptJkbb1ztc0VpLbL1sKcLB8CR+6YFTcIh5KiG9Zn5H5dwxTGR2PgunZ16DPPp9x6xHCOxeISc5kwvTZFst38VfU8lL33VPCCUhSkVD130iAt2SVy78lL09RpR9VJQQ3rkMTpsq4zOYPTmTGHryD6qmmEdn8Yxjr1vAIYS6E68MWi8Q5fHGUUUIBGua3803kvtU7K9yT/TTUqGELkM08+J06AMl/7UHDjWNcoBiEmo0jtkE0Kz7ngQ5Tid1dIQy8EdZTKW+Wdx8egLOXTXuScLPhfF93rwEFXCeQmEDdXSXPQ6EuhaEq261o+yvWxBiRlZhjnI5T30jCY1+m03Xeaw1LDjCjxdzZFyXQPRzX0knoophrISZTZ3KO2T52Hv41DY/77/fuXmY2fQSk98PNjfD2e5fSAfrBVWdenTMe3Kh/tcumHQVlT99TEZCTLfm9+nheVXTPuDuOkkMiH917IrjSlVJRXxUKX9kGOUgtgxwxd2xKCUR3r7qiicjhiaOgWS618d+KJgBZpySFpu44bN+9wdfaMNAxTeLoEbKiigYm6jnUvJk/c1n9vTa9vwgygTWKXSU68Eud9BcrBh5ommQNfuc2UjrPIiUxatvD6XsUS+w8A7rqcOJh0yrRv+x87nZM9w+SAYnuw0K8k02ZLTtXTspoU1bVyfrSNcc/0zJSdQ8FGKYqLZ9+l6FTiNDBFBPXZvUWenJ4py/PLswUyjSE2V0h5Sq8EZ8k/B3gi08wbXzLSNFpYRa9gGcYk3vdhK3OqOrXCY8rsKOwStNqxl7Q9NwBHy4YXbx2y7FrxxnNm2Kwp44aQNpRRDEbTeG4ewtFJZr3J3L8IPN4FhlK4SJmYHf1sabyCpoyX1Ngo3Qu7zYYxCfAIIcj5USr12r6uMlVAWKQLYiiKAyNbNOH18vo0jKRaY6bG1vZq9leTg/mVlYuGgqbrHEXZW83wFUxe7EZ84N7TX2faqQoqVbcVZIaVpdWlZt1rh0+pBl+AvhQE+xBwXuj57f7T8DpXAcx+uhMteo3AfF7TvjapjqFStheg5HGyO7gKhGT+kCOEIg6v2Rq9WYgNi+WKgsMG9vX9oPwzBReU4VV176igA6QIvW07ch4ZEHmQ7ZRIf/Ce2DYIJsqVYySEQM6xrqMXBFIdTVOfdqL3ts8AnXPUYuhi869++PWxBiTAZLQL1B5rkw5djVwyLiEh7dTQDwNuFO08eaiK8rPyJnDtVupdpJxn7VpF75H3XkspSgpjh20iW6vGv57DqZhpz0TuhQTLvsuglxks8zGm+09G39otJxId8f6HcZpJ8jzEUzGZmwhw7REs9zgVP7oaQsQZ86HmJB3KF2KcGvq8pTBoxCZq4at3Rb2QgA17EqAxrUG76GjaQB0eWaBtA7vdSIyA88Rmgec261unDLuNUEtjOfBZode+GElr57Sa1357De+V6TVVFhRSyJarTOREtmiR93i0Kt46WGoUxiII1Gr52vaaxdNwPOfBr4Ea6r2uaXZFW1Nr44yBs1xrWy51RWCmdJumnQp4kTRoJV+rAPoHXdV/mkX9Sr3/HjaxHxYZTS9sk5NM96OMeC84hKBb5FvOk0RGBmRPs0YI9+NTYnsbpC24TzDmxDYrEGk8NxcScznfZfpU6LyjC1LEepmLpHiAxoErsGocd446DpYdFKFMv7q85PTJQ8Kw5UC7YJrYkJynT5F+iBx0Izf7kd0I52NgLNK1kwArBbQzKMPANYVHZrdZgwvEEHEu1OiW06S+DVi0uo6KSGcTySnU2SY+BMahnzpsS6IJypicxlrUbNs1xxFViLKQ8Tk16sFJF0/xMj26aTp2w3BtgORMSqouep4ITTJrV86lMgST3QRIogwVzKq7ceIQNa2kHjsf2O22DMMg9sMQvFMqiFm0F3RqkING76tk2jqZWGRL0mFGpKbGHaSjs+TqzRmbrkwEzpQi+s97cwSFn0la/Bti08l3SQmKq0M5wZHSiIuRtm3xwetcokCIMkJiHLPqVOsgkrULIRC1cy6lUcZJ5Vw7t+S7eZwLUw2MfY2pKX5/C+dpnDmg3u+d/tDrYw1IphSCVQv7yQt00/nwlVcis9ttGPr54fz/kfdnsbZk530n+PvWWhGxhzPcKeeJmRRHiRooWhZti+WSZMsoymWU1V0NtGw9tLufZMO2AMMw4AY8wXYbBfjFejAMw2/VBgwY1VUeypIHWSWJEieJoiiO4pDM4d7Mm/eece8dEWvoh2+tFbHPvZkk7e5GZznIm+ec2LEjVqzhW/9v+n96VJdHuroZMRPi1M8LePlWIvhhCy7f9Aq2ZBrI/MNIebbMvlM2/7JYpt4oZm0xThcoJaYmkjwUx0vIE1tktkGlaaNQTWbaLmaPqCRC5HbMgyTFQAqRaDwiWlMkZqFjZxO1yq0EMQquNTROcFa0vgr6nMi+b9qIoW2X1SWXgTuuFbw3WCs0Lrt6TMvNRx7n7OSuZu6U8RUgacLd3otNAzZhs4cM49wqV6/K6E1B0/6uXOBd8JlwSabCXco4akiZhn16lkbn41y9fY2heODY2xIorpF6Ls2uEZn6c36LGUKrVsYHeoCaOVAOjRNqaqZM8YcnUk7pzu6/vAGmWZ/PDOPT38KkkZZulpz2nfb7hzQixOyGzUy3MeUyKmUy621i1EDRPWtGjrSUFGmN4bhTbVrGlEGQptsCNPl7udQPjdHU4Azn1cIiCkgOF0rqF3Nxs8vLUy4vz2hIuMUS0y3pfCACjbX0Q8J0llXjOWoCSaxmJwNzo6cINVg6eJVTzjmCpLzxNBX017FIxVWZsqsmZr/AlAFR4gYK86lWBAZBCdasIVOdNxqn5sdJmwYtpZEtqGqpTrPnl8BWlb0paZ8YG9iLq5rPhLm2MMfUkzY0X3IzxU80RiXX6zJGXcW6YQeipHoPHzQ7S92qFhNClXPFejqP4VO5m6bPTSa8NJIz2XI8CDlrME0xVkqVUIKxw5Sim6iW4BjVomjz3A25PSEXsUsZ2FhjGPs+Z0bZCnDUmh4xtskB8Bovpc/NwCK7Wsq7mSrDC3+WyXQHCUcOfg6+xvKJctHrLmpUbqdUC0bMtrmZFaWu4yk4+Fsdb2tAMu3TpZP3UVgZAJsnBTESgs/051lb3vtG2vsxXxwiPNDJV79WVsu0ib85KpR8TwUYJXOmbNo6yJO5cMrrh2LqA8Q8WDK9EmiV2BeNz/AlFVdAooI0S8l22N+IygKfduGpzcYoTfN+deEESYt6GWsq2ZYW+CrCQzcpETXZF9bXmFQr6BZk4q5590+grbjYvA+c3j9l9OtsehViSPhRhaVZLzF5U14vlxxfu0G/2xB2vdYpmQ/o3ia+n/kyP654V8obzX67Ck7m5/YnTkhRN8+ckWOMUfCYOQHKvPReuSTmrr69wchtL9a6PetJ6bdEdYtMM3O6Nj34YvnKmdQnt2sfnuX+0zrCpSijNQbJaeGS7182L92ghGqpy69QXG/VNZOJ15h9X29WAsohpUIZp/O97SyLYHQjT7HGzhS7pQWcLamKhXcl5g1U11JjIs4I15YGH0owsvZlY9Uy4Yy6iNYiHLa5e6RUbE0sm8TCBuJwqeUHgsfJyOG6wRmhXa5xKWHMGhGtT+NT0k3RdbQucSsZNBOjdmIddUEDaFetWoaW7QGFmru6Qcrb5XlTg/rTNJ5VaataiN495Q3O2kmxM6J8LJIrUYt1iEmYNKVxpqSKQUrKuRR8mCwsud0xeEKMmu0CbIdBwe3Mkls2s3mwZDUOl1SdB5boFL9ijFVriN5Qwb+dzfMidOsszwy11tbnF+doef+6BFCQA5k+nQmgZnLsYoKr72OKwigGiVaBsCirb5qBg8bleEAUbNcKyHn+h+AZhwFjbWXBdtYWT5TGomSZbK0gpnCMTDxCxtq6bGUGQlMcK+lfyn1njcE1LYECqvK4FCt3Ph9CqmMfS8JcvaIAzP35+K2OtzcgAYrwlDkLX+4TnSwmI1FdMcEPdUJBWe+pfq9qJNQ1sWdC3Lue6frpuZOWMjehzy8sE1UysKi4I1t5kkmK3kVrqpiUNN1stkHbXGsgickmSX2ibZqqtRpRn2Ig1UmlomfyqZZ1WjKJUt1M9YO9/aNMSilEXaUv9K7WGZx17JZb2tBqyqMxpJC15myiRHKefE5LswasSYXyM/dY3X2IceJBGPod56eniLGs1muMGJwVcIYYUgVbRgyLRceNW49yeXnOMLymG2NUc7ZhojmvIyqQJHL34Da3zh6v48ysVQ8/yhycgZoroDVN3aRALHpESgCaZkk17UJ9zinRby/w1tbYiUmFy7E6Vk3SrVMXVynyeNad0NueW5eP5sGrCKlCKC3CG2FG215AY8r8EgpSI+pS8vUtq6iRAjTj7LOymdiZFmYJUaY5VaxTOt1rBlFKQm+3vLG6x43LR3Ghyw02mMK8kEn0BCGtLSm1IFmXr/N4n/+gWBGdQBIhilbalTQyQbnJgloAdExqlpeUMJK5Teq7S+0zktR18Prha/Rhy3I4QERwJI46SN0qr/VISoHDVgP8IsLoEyTPwkautZBy4alYBBhz+TCt3TIfDAlkIIbEdkhsRpUJAjibM8xy3xXrRXGtpqLEZZfdqwd3uX5yE7wnYvBBx98YBSMxx1sUy5eRHEacJ7cxBle5PqYYOmuU0j8mIATVvImZUZTcF+Udp2ijvRUm80DnPF6Fu0TU+rJbbmlHg0lTna5yvclgMsZSRC5CyEH4OdAVUfBaC8uleVJAUqoIo1ZfE1Ou15nfPweKFsttnSdk93aRfQhIqrxEZX9KRkgWSnkSpWMovZI0uDxnqIFaMEyuZlX2k9Lfas3IyQplrxOHGo9SjgMrIE73ESOm3o+UMm8Os1HIsW0PsRzN+3ru3p+rbPMwiLc6/ncASKAgTT0S29WWsRk4PrumE8Gq5m5EKePrZKkm9mnx14GtQTxXnjSH/sgUKzCzbpS9owjuSf8rQngS3jNlQK+3id974as89foTHF0eq19xjlJBJ0yG5SkvzpTdUs41KqRDIKRAirrpOes004akfujZDllJbmoflAyeuNe2AkhKSq8RkBRzIT2NCg+rkf/ww/8rf+LX/08ViaeUcnqZzSZiQ8gZAJSg15RBlWjQsEaZWyWJmoE5mdGQK6eMq6miYQxICjjjdEO1hvXqgMPDa1yendD3u6olTPBCqjtEEF6+8XV+/Z3/np/6jf+LLrisJWcmrTqmUyxC2Vz3cwhiilC07AraYJ4qUwTP0G8Z+h3rg2OabqECMHjCONAsVmrmra4gdbeF0eMlKdNmFghBAr/0fb/AzYtH+P6Xfx81qHlmRhdUkz9cJBqjAlS9akJMhpjDP1OaeFSsJFyOGTIEnElYgSRZyM/ED2JIps19o59E11CCVNVNp/dsJSBmimV55eA2v/LOX+YjX/goN8+f0rlJoJUdzijBlJWpzxOw84btqO1vHSzEZwuZzkkj4DKfyjY19L4lJgU5jexoTFTLDglSQNOCHTtvSSFixbOwXqvxaoVGUoIhNlyOLdGPNBJYtJFv3vgk54sL/tsvfwSXJv6NonlOqaaa5rsbtD9WTWLBxPRcxjolTROd3rhKCXQz034UVCMexsTlWeKiV8DqSgB51odCzvIqfBwFuJPBw//8gf+J3/+bH+bxe0/l9T4VYhNjNEsjz6VCPJeKKEE309WiY71eZCuPHlqmwFWrzNDvsAjGTQVAi8u8KEQlK62U86jrNVtDirx31mK7JQHPL/7gv+CP/OofY9mbDC+LojHxf4QQdS2Lyq1K4VDAGYVyQL8sKVWl0FoNlPWgcrXqTKkGxBaXz1wZETSOJopk62h2AYloZeCm4Xz5Bt84+AbvevG9eO8Zh5EU1W1TUnK18vMsEkpQF6mgyhgKztSqomCkZFaK+JrMUECaNXaKLSmCPpX3sfXdygdC+Tu76fIYFx6TaU8r7qupEG2cgc+3Ov53AUhqJ6RENJEvvu93sN7ygc98UCdwjAQmE66xTrXHqv6XCVQGJeV9ckIjU0IaVYDq2Mw4GWTS1Krp0cwtJmXcJYOSVO9ckMnJ0Qm//sHf4Md/5cc52lyrm3LVJosWnrK4l6lGiEZiq6+4EAXpZFQGS5FsVyVrBlyhT561r2xytYR8/rBSEIvgDKRUCOM0NeyLz32Oz77zN/njn/g/Vu2/TOYaDyMQsxAt0eEhQPKQJIAt/WcmoUTCimW5WtN2rdawMAYxub6CsWyGgRg0eC7nc7BoLcfHx5zcX9PvdhQ/umIo/X7BDJHAL7/7X/P60W2t8hu1lL3GvxjEStbAZ1kLNeNkJoaSxiYU4VBAYZ0zs0NTq7XWkd1tKJKmpFs3sKdxkiCOG02XFfBZA0sxsWm3/Np7f4kPfvGHeM/ufaRQ5m7+XvA4SazWmi1vIvgoBA8hb34h6cZizWRyFjTrJISom7tRDdNazWApQaM+ahZIpMeQcAaMKZlDhiFY+rQkJYeViJgdnRsVQAjcW77Erz77Md791Q9zFJ/FJJQsLw007QZrlPNHeRUs27HlLC4Zc57MMHrS2HPQ9jROZ4BknWMzWs59x2gWGONwcSCFAddscc0UqN4HONsZ+rTANR0+eqI/46jb0biYU3zhrBeGsCAlS8AQx4EXD27zqec+zR//6g/ifFcqERFL/EyCAHgPm153s3UDS6uBtdR5qPMohMR2NPTR5rWX5UhKNEQ6B7YRrAQwcG2VAyJDYhssgYlMb3Z7JeESQZJBUA3aW8/Lt17m1z7wq/zxf/ffYTA5cN1AiFVzr9tTQSRMG7KIYSfCcrmom5ma9HMMQp7LdVYmqX/rZl5KgEi9557vp6y33JfVCgOMZuC3n/8kL7z4At/ze+/Lq9HUQFV1gRXCvhxzJFRlTJ8n2eIh+X2kWlVKsLR1LbZRronSBzHkKtmiVX414FVrQtU0+azghlw/aNrAlQH79PCMX37fL/HYG0+w7FckG6ssDiEiopYlBaKoAMsKhsaSlLISWf6IBqRWUJDdpgpA7JRttBeknq07RoAWP+yUNsGkmqUmGQRJsQyaEjStMnICNyovQvCZyuHbgxrmW1/y5sff/bt/FxHhL/yFv1DP7XY7fvZnf5abN29ycHDAT/3UT3Hnzp2977344ot89KMfZbVa8eijj/KX/tJfyrny39lRkfkMOJwcn/DrH/mP9N2OlDQrZvSevt+x67d5cM2k6ecy0yZnrBiTC5xVOnDdRCeQkTu8/pR6vua5W4vJqWXOWqxz0z/rNDC0aCBis5VAXTVfeuFLfOmdX2JsR6ZgIm1PsYhEUSGYZsGRJvtB1S0x1TIobTPW4TJpVwEe+v6zjae+R0a8NRhYd6WC1Et/FUuFyYhpu9zwme/6NPcP73GxOt/TzqcBk2wBUKAhxjCOid0uMY6ZNRSNaPfea+nu0efFL9imxTVaebZ0nTIoZlBgtGprCDGnaAvr1Zrlcq2fVYKgDCQKw2OKvHr0Tb7w5G9zvjzlbHFCkeLGOpxradqWpu3ouo6m7XAuM6hmgVtS+lKReJRFnIWedkIWitP4tG3HarXWALegbLXe59S+qBHzzrrq6w7Bq/k2RsQ1uHYJInzt8a/w2o073Ll2m01zWXTKaX3EwKr1HC+TxkMkGDxsR9XYm0Y4WFoOF4Z1J6xaWHWw6oSDheFo7eiWDcE6dtExREtMBiuqQQ5jYtNHeh8yzTkQVWiOwbDzS4Z0SLRHBDmkjweMUSnjowQ+e+Nr3D24x1ce/xo759iZhmg6RI4YfaNdmiJjgIuxMBqt7wAAwf5JREFU4SwdMbTXSKtbpPUNxvaIXg7Y+Y4QNPvGkvABzocFm7hkKx2XpuMiNfRpyeBbUlAAGWLiYnBc+I4dDefRcJkadmnNdtAAYwHGaLkcW3aypF89xmV3kzuN8OLhXb5x7TZfuPn1CQgIgEHEZYANZztdB0cLOGgVuKm6Y4li2QXhjUu4u7WMpqVddHSLjq5raVvdEJPr2MaGk61h6y0RXZfX14YnrhnWrVTZUdZvYeWsciXP8AicrE65WF7w5Re+yN3rd6tyVRSCmNcf2SKHMTSLFd3qkG611viNpLI2BC2oqTEGeQ3NXNlFFFyNG6mZaNkaZzOpXWMdjXM01mrF2VzCorGONqe8ni1PuH94j9/+rk+z6TZqlcqWkUJXUArdWesmhSa7xueOO1DAVZhTc/dR3MiL5Zr1wZHSD1iXA6l13duc7WKtWoSKwqNKixTxpw7TpNmOIUU2dsvvPPvbfP6pz4Ghxv9pP6osi1ku6n3y2Jopnk+BySTrm6bRisNW5ZTNcqRptD/VYl0U0mzFlXlmT6vzIxR+pVS9wBJjdmeq9acoMcX9Iznt2lmLM5ZF8//ltN9PfOIT/MN/+A/53u/93r3zf/Ev/kX+5b/8l/yzf/bPOD4+5s/+2T/Ln/yTf5Jf/dVfBdQE9dGPfpTHH3+cX/u1X+PVV1/lZ37mZ2iahr/9t//2d9yOOpEFhmbgP/6x/5Wz6yfEHNgTks8IOdagO5PjKyprS0bbCkgnf1xBmtWCkNIDG+ye3JmBk5ImNd/Qi8krSSmypN8sv54cnvHLf+CXGduR7Wo3+1yotE8xVfOiVCCVSbRiypMmYMqGx9RAdYvkTa5M4pnkLARBuopiTacralHdfDPPQXkHyWblbzz5dX73ud8hSuSNo9e5eXmrWg+mLotU0q0YINpcnhyU6r/4vBP9ONL3WtchZj9uzG1PKRF9ItjSRKHtGhjH7MJRH28SBSwHB4ecLpZsNhcUd5WaM/N4m8hn3vEb3D+4y9HmGncP73D98iYQNQ3SFBBZQKipxHIT4dzM9FwC0+oopNrPc55lMYJrigBL+bICZhIxjHg/KAAzGrQ2omPjmpb10aMsFmvun7zCp7/3EySJvHbjVS7Xl6z90dQmAl2buHlkWLSCD8J2EHYBDteO1lWRu9feMjclA89GBFqLD7DdRfw4snQa+LluBUbBiyOahjFEJI1ghCEuic0xAw3BWlyyrIJFgiWkDYO75Dee+l0Q+Oxzn+QjX/tpmtCyHXa0Ud0nyZ8y0jOkhm06xi+vQ7tQ6xVCMo6dCMa3yHiKyBYjcD50bNKasVtjFgfqfnAd252QRo/1kZbAxjec+QPi4gBZHiHWEfzI5vKEMIwYC85GLoaW2BzB8hiaDpMS9xYv89K12wSJ/MLzn+T7X383robe6nzzKXLR61w/XkLniqoDUQw+wmUPl6MqMavG0rWWzk0uhLxtKJgcE9s+cOEjQwgcLhLOBm4cgEjilXMIYjV3uAYFF7mh5vuSSnpy/R59t+NyeckX3vs5Hv/kYzmmq1hO1bIcYiRp2W9MtggELxjn8EPQde19joXS9a6xPzm+Ik/9uRI3yamyYU+p+TIXYqJxE6WQ6Vyu3D24TZTA7z7/WX7gSz/I97z8fVjj1CKaY/FKcTvrbA4kVcAytSfLcFRmFNK7iQzMZtk14koKfK/3KSnMbddhXUOMiXEcCSHHlmUtMJX+jDpGPgZ8CJw35wyu5xc++K9559fezcF4QAjUshTWOrXsqiBWEJLK6FCiP1SGW0uKPrugJCcLZLCSrSNGbLW4lxiZlAPuyeOtwK3JsUNlDAxSiDslK1wlfADJvDYlNFgRmZg0s4y99fGfBEguLi746Z/+af7RP/pH/K2/9bfq+dPTU/7xP/7H/I//4//Ij/7ojwLwT/7JP+F973sfv/7rv84P//AP8wu/8Av87u/+Lv/23/5bHnvsMb7/+7+fv/k3/yZ/+S//Zf7aX/trtO23x+gGE+I3xhAl8IUPfJavvutL6oOtMa4aAGTFVupgm314Be7FNGV41KVRivORZltJiY4u6LlYTvTTWphsxtFRV5MU4TOlq9b3AJJJfOxDH+PujbsA7BY7ij9Cctn5gphL5DyQq+g6BSpGX1vJpXJ1yZRqRPecgK0svKK5p8LBMQMqpQ5NgupzniwpUi81SQhu5JPv/w0uVxeYaHjj8C7p1bmFZLIQFP9wobcv7VJ8OGlhzlpkscjF5XLQbVTa+slPqoLVWoFG2F4OOLHZ55pIXot8rVdr1geHDGOPH8asohUAINxb3+WLT/02oxvYtVvuHbwGvL+Mjlqd9uGn9szMgrYXvGyKwCjnI8XdJhlwKUGYAclpdhkEx6jzWrPQtdx8SspLoqA2VjFkmw4xjteO7vDiE18H4O7117k8uEDOsoAPCSuB62vDojX4KGwHbeP1pcW5Mg7TP8gVchOZyl/f0haB7QS3tmy2sPFw0AS6Ruf+G33LRThmlQYMl0hQAqdeDGl5gBXlSujHHpccfVryze6Cb9z6JgDfuPEFTldv8MjlU6RuyWbY0dkjBu8I4yVIQ1ock5pF9ovndWYbUremT0AQ+sFhJLFjjW9X2MUBkut1mKbBpzUDicto2Y6JgZbUtpjlEclpwKxpLSldY5DEfd9gA2AX4BZI00FO4zw/3nH3SC3Bn7v1VV5e3ue57S0SQhQ1h1/0Gr91fWlYOp06aqEwhCic7yLbYOi6hoOlgsSqt+R1mEdKY2M6Q9catn1iuwvQew47aGzi+hp8itzrwdNocGNJExWhxMIZBIzl5PoJfbdjbAe+/NwX+YEvfJBrZzdU0cmui0I1X4BriJGFoK5M6zAmE+ehAaAhSI5PStO/EtA5k2Fveqh3YyJtK6svu1jmF947vEsSOF+f8an3fZL3vPYBOhoaA7bGUimnTY0xIvMcpUnGYUy2rGRplbIFGFElLXiGXcQ5i3MtXbegaTutIZTQ8grOMfQ9xllCjhlJOQmBUjMKMNmQGmLisr0Agds3XuFjH/gV/siv/TcatlautRbj7BQmkPeDQrIoWQkrQC+hacGS3ytmi35MkThGrdVT3gtm71tcV6V2Ta4/lWff5IJSgZGyHbIEOAc/xZ5Vy2yCmL49QPKf5LL52Z/9WT760Y/y4z/+43vnP/WpTzGO49759773vTz77LN87GMfA+BjH/sYH/jAB3jsscfqNT/xEz/B2dkZn/vc5x76vL7vOTs72/sHVAKpEAKv3bjNb/7gbzB0vQISqwGeTdPQttnUWYrHZfdHNRWKZDeEnbluzOxc/mdtZuorWelUbUPpfYU5s98ERsoGrv9KrZZpg4dXHn+Z3/ye36zf3K62mgJpFIyU4FzrGqxr1VRnXTXHTdYSo+4iNwUsVXdCjXeZa/pShUMJms2Yi5Ictx+wOzOvFhBmDLcff5XffednyV/l/uEb1LRNmKw71ToSa/+VQ60KKqWntMVpXKxrctqhychb0/pKmq8xguucsiDmADTlJjEsFx3Xr99ktVzvpVPnlvHSza/yjVtfAWDXbLh38Hqt11HjRap+mqb/FStaniMynzOl8nEZg9xfxR1W5oCdz6H8nm23UOFWSNSCz5WQe4rrK6XA9vKE0/u3+cITn+FydQ4Cu27LnZt3JnN9inRN5HDtAMNOaRtZLixNI1XjDhGGMbLdeS63nu0msNt6NpuRzWZku/WMYxkXcEZYLx2ubdVtEIXOwfWlZ9EIfXvMaI+RZs1glsR2DaYhiUVcS2g6duKIdsnvPvdFvNWKxd4OfPHxT6kmaB1j03FhHL1bkxY3iItjfLNEXENxY2pykIBr8N2KbbPm0l7jgmOG5gBZHSGuRX3tOn9su8S3a3bugMEe4u2StDiAHBheVrBpWuLikN6uGGTJIC2xWdZNIUnk9rWv0zdbELi/POfTj3+FURwjlpCEPii76+HSsOo0/qqk7gdpuLcVNt6yWrZcP2xYtEorPgW0T4GHU9KqasarTjg6cHixbAYhRA3wvXUg3FhEnAHbdNllbGdBm6kCiPuH9+ibHoBvPPF1XnrkZWKe15rGP5WRUHytXDkhpHoNdX5D43ItK1OsRFJZn4vLcvpXVuMVq25ZovVHllnFQjBDa/cP7tarPvvCp/nm8Tfx41hliHNKrb9cLOm6JS67frtuoaCiW2DbVuVplbOOxjWZh8VlxUgQAjGM1QrhrNF9plMiMslKjvKiaANLAUQRmxWxovwJIUYuu6k6+Sfe/zFefewVVTSTsgOHmEjV5aRtstn9NNUEMsSolp2QNO6r0OOHqPWfvI+MY2DXD2y3Pbvdjl3f0w8DwzDgvdYGCyEoJYO1iHEosaSOYb1fknzfpDFmqQAfA6JxXTFpDFXYx5RvenzHFpJ/+k//KZ/+9Kf5xCc+8cBnt2/fpm1brl27tnf+scce4/bt2/WaORgpn5fPHnb8nb/zd/jrf/2vP3C+0Bb3ruczH/wkrzz7zbyfZbdIDr4kaYqZBlglRLRmSlPT4qZgqzR33+Sj6L/lmVRCsdnGXq6rbhpqEbFJtJV4jVhBQYyJoev5tR/8NU4PT+oC2612mpGS4y3KplXBQMg/7eSvizkmQvGYAYum/KZi3ZnU3/K+IqLVKHMgKRTK7UlTnqw90+8KSPQ9gon80g/9+yrQkMQbh68To5YHN7lAlbUaaOhDwPvMa1AhkGoqIQS894rMS5ZAHWstcBhiplbOYx2SIEHfyTUNw3bANA2uARcddgyIa7lhHMM4MvqR7XZD0Tl7t+VTL/wqu3YLaNn1++vXGeyOdtwvGJfqfyfLyPyo5HxlrqBbRzJCybAptjfSHOTk75vJysYsIFjN3ZnoiOw+IzJcnnDeXvKVpz4/63/42lNf4fd/4SNIFBqbuLa2tFbY9QkRx3KhAYTDGBlG3WR8jFqscAj0IXDQWlpn2O0iPpOL+WULBw1tq2DKCayXlktadmFkbWFpPceccY8VF+Y62+QJriO6RV4jeT66hl1KbOKOTzzzsVkfJz77xC/zB776k5ikO3eiYUwwYpDGqUXJj0xcKjq3iz/ciwZKK3EVmDgQY2VErONiDHjr8HHUYF1GxJdoYL2vQa0AabXMQ2+wJhH9RpUi0/PVa5+ua3fb7Pjtx7/MH3j593E0LiAJYxC61rLuCkGVSpkhNdy9FHY+cbR2HC5dDhYXQtQxKQGWkHS8vILgcQx0rWG9bOicwa1bthu4HAaOFsKiEW6uoY8jl2YJyWpgZArZ+qDVsHu34eTwDaJRsLlbbPmt936aF77+HlqvFutauC1bmGKM4Ed2uy2SY59ijNgsY1IsrhLtQTGZMdcH5e8QQyJQKd+LBVVNFXsyt8yKwqVSFO9aSBW4f/y6yjdg1+74t9//L/k//+v/G0uxSpCWM5yK9bpaTAphl5T/TGu6uJSkxNnNsmPUShMJvqe4YYwYgjF4Hxi9x49qpQ4iOFe2Wv2uBhYnwhDxBE7dWW3H/cN7/Mr3/hJ//D/8H+jGjmEYsbanbRNt6zRFuQqM/J+cFZcSSCzuF7XoTMUAJwtvtTAJ1TKbKGnIcV+xNoIfi1W7PLLa+0E0oLfsKcYq/YMpynsMuG7Bt3N8R4Dkm9/8Jn/+z/95fvEXf5HF4tt7wP8njr/yV/4KP/dzP1f/Pjs745lnnqFUvX3p+a/z27/vk1NdBIFAyAhZfaTFJGdzxUZnDOKaKQgn5+M/DK0Xx82c/VCLw00DrN+hCrFiUaCcyxNHN2FTA4Cwka88/xW++MIXp/YD2+VWBzRDSy25HjQoNRZAozkHJVJcktJNlxQrnWfTxCrpV+r3MxT3gUhO46s+xZjTyCRno+xbSUrQa0L9jF987vN85dkvTa9L4o2Du5qhEAJJij1BSZEUVEwuEGF6RsxBXEq+lNNPowovxoF+t8Vlc7pGhy3oOouzqYa7pHyfpnU4LMY1GKdMhteu3+Ty4px+t62mxdePX+V3nv3kfL1y7+B1Nu05ne8omtmc4r+CkjIHSgAcV0ioKONeAGG5wzTWqQrZAj1KTI2UQZym2Ty4MEGIgTvXX+Glx7+xp1p+/YmvEGygHQ2LNrHsDD5oNs2i1U1guxu5uBggRAYfaJ2lsyjoiZrlESWxsNDHRAoQdiMXKbFat3RdKS8vrBbC5Say85FVKxyaHbtwzpm9xSjZDRuG3CcJDcNMIJHbN17ktWvf3Ov/28e/x3n3OZ44fyILWiEZi5gEXjcnKcyxSe8lUmKjdKw8Wm3VbDw1aFEMlghJTfeaNaWgH6OadMmA09RgpYYvR0ioWT9MNVu2dseLj/z2dJHAl298nVePXuP43vOMUVmSjzplQS0zY4yG0x0MIXG0bjhcWlwm+tuOgfPLkfPLkTGkak0bfaQfNfNtHD3LzvLIdTg+aGkaw3LVcn6RMH3gsIOFEx5bR75xsSO6pa6xoPPKAEkSw0HPydH9vf7/3Xd9lo987I/w+OtPkvHTHoiOeeMLfiBqfUSVUZLXdwjEaPDRqLleGpIEJfkKCc03AiFkIraisFGVulrAbb5ekkqt4rrWdRW1/bP+/8pzX+ArT3ye7379B6slpSyl4jIt7pK6wcq05IrMjpKQ7MLQANASV5gQwvRABCRhwoAPAcTQdItsgS/KXsJlBdOHQFVHJHLZXdTmRxP5/Ds+y3uf/l7e99XvYRhHlfvZstS2CsYqmKquOFPly5wiQkSzzVK2PBevwLTL5Ti4mAiSiERMNJNrSUBso+9clKg0vXrpvxLJElOxpFvdw5Kl7VZ8O8d3BEg+9alP8dprr/HBD36wngsh8Mu//Mv8g3/wD/g3/+bfMAwDJycne1aSO3fu8PjjjwPw+OOP8/GPf3zvviULp1xz9eg6zWy4ehhj2K23/OqP/jv65W7vs4Bn9H322eUJYY12tICxkqs+Tu4UKGhxdqO8FgqtPPleSgF85fo5CM3fTeTNNm/8mmpmcilrYddd8Mnv+QRnB6d77d8uN9U9FNOU3pWC1mYQYyk1Y0DqhEshToGWsaQUl2j5HG6UA1OLaREhE4plwVDSYs0USV2EhKBVVhUYwbAc+OT7PsGu3e2992V3wdZucLRZY0oEVDMLswybuaAp5HYJZvnrebHFBHZk2F5SyHycMXSturSsFawD1zRKUhQijSsARbW0JlpW60MODo85O71PP+yAxK+/e2bdycfJ+g227Ybrm2lMhYccDzFF1gWapiWv5yXzxiQoFYXzBq0WEAUb2itmsp6UHSFNfVV+BJN46YkXOTm6t9eG+4d3OTl8gyeHm6w6FUCDj1hncc6wG9Qd05IIaBZFCJHTMbHtFbBvh8QQLY1ASJ7tGDkCGjwXITEuHetVg3MaY9J2jn7ncT7RushRPCf5iJfM3po0KdhJxKRcRTpFXnr219g25/vzvznn9o1P8J6TDxMCYBIJzVxLAiGMtASic2AyF03SIGkFawFZCB5DDMI4agxO43QjJccXCEE5caQhJkNICYMCByuCiwVG6xgkk8Aa+nFEvEes497RXe6t7u+1//bBXb54/RWePXkfve9ZukRrVUBoTTvRANY+sV46jpY6h2OC823gzr0tZ5cj297vBRqWcS84eBgT/XjJpg88en3BorOsVi2bywEzRtYtrFu40fTcC5ZoWwSHpAg59b5fbjg9ONlrf9/u+M0PfJyf/KX/Ls9RqVg6xbyeBSRz69W4MBFCLqSHWIxTwi0rgZVpahFUrVIeZ1Na57oWw9PfQ+EfKZaq6rLK6yZbaneLHdtus7dAt4sNv/Xdn+CF/+29NKHBOkuhd08VCOypFntHsb5LYRcWhdEysyhUHYKiyGbZFWJlA7fG1oq6UFzYSsBWiMaijewW273nnx6e8Jsf+Djvu/e9NKEDMYSYNLUdyVafEvyb21MzbrKsznVoqkKUUgXwhQSz9G+xqFRyNWbqlOTYDsmBzaNn9EPuA6kJHCWGkixvQyFfKzEt38bxHcWQ/NiP/Rif/exn+a3f+q3670Mf+hA//dM/XX9vmoZ/9+/+Xf3OF7/4RV588UU+/OEPA/DhD3+Yz372s7z22mv1ml/8xV/k6OiI97///d9Jc0gm8skf/jXuPPHqAxtDREtza7SwzcRok1Wgnqs+/hLsNaXSlswKYLIQlPgSO2W41I1civJaEGpOi5XMrJnvb2zWxKzhi899gS89+0VsDs4se9BmsalEPLbGmhQa7lj/aYGzSIhaudJnNr9KHZwnXMlSMSijatEuCiArlO9TP8z6I2sPiMZplNgU6xxff+IbfPnJr7Dq13UMJAqjHTjtTmsefEwahDqOHu/Han+aCJHS7J1Uw9J3iTXSXFIk+p4w7vCZTKwfRsYxqsZmtB4OaE0TX4jMkMrQaI1huVqxzCyv9w/u8tl3fIrDzXHtexMNJ+t7bLqLmZ3sTWdh/Tcf90lrmFlR6jGdm/f1dP2UUl3Bo5Tz0xNBGJqeL7zwOyz7FTboHHK+QTB87fEv0Ihn2YgW98IoXXmIbDYDEnVDuhgCu2C4v0nc20A0K6JdswkW3AEjKy58wygd2yD4DPj6nedyM+rGIRqrY6xh67V1B27guj3nyJxzJKdck1MOuOTIbDhoRlYduGXi9x79GjbYqf3BYTB88ebX8KYjyQHGOJbLluVyoamEKSLB00li2TWsVkusWzCMDaNfkBDWqyU3jg84WK9omoZF61h0DYhl8C1wnTGuMc2Cw6NDDtcLFs6waC0H6yWHx8fIYs3p2PL6dsn9YYlv1ki3rPNpHCO/c+srGAxNaGr7V8OaTz/z26SV0gAsHNkCqBv41sPpDprGcLjUQPsUE7tewcjrJz2XWz+j5GYWbzEFRoaUuNx67ryx4Y2znhCTZuYsG3bR0gddw9eXiTZsSMFnGZfjPgQ23SWn6xNMzBp2hIPLQz737s9wdnSaIbPstUGtJFHTVmPMsQL69dHr3HeNpW1bFosFy+WS9WrBernkYLVkvVqzWq1ZLRcsFx3LrmPRLVksljRtSatvMTmmgxLHkLVwTedV5eZ0ccJoRy1hkJfkcrfiq898mRcf/T1C9FMKb6LGspWlWGRkWbJK/aCKgcl/SwZEtfAnSgiYxBDJsRRRrS7q0puK2cWYsot5Vi6CXKvGKzDbdJfzhY2Nli8+9zt85enP07QtbdNm0ksNCPdBlcvi1E0IpLnM1jgOY5pMDOqwTUPbdbTdkqZpcU2Jl9GYGZerAzeNppY71+CaRqsJ53FwTUO7WNJ2S6xr671NZpUucS36jqZaofy3GUTyHVlIDg8P+Z7v+Z69c+v1mps3b9bzf+bP/Bl+7ud+jhs3bnB0dMSf+3N/jg9/+MP88A//MAB/9I/+Ud7//vfzp//0n+bv/b2/x+3bt/mrf/Wv8rM/+7MPtYK81fHiO77K1971Jb7vUx/ic9/3W+xWW6y3mGgQJ7jG6SKrrgidkMZkhr/iqgGKT2z2nzpRJ+6KVK0pmn+tbv6Y/XemQm39pYKSDCxgqp1gjOW0O+U/fP9/4Ae/+CFeevQlvvH411kMC1rfsuk2OUZEUDbpyQxTzH8xeP3MWOa1iwRqalxVQXKzCrio2R4z4JHIbIDZkpPNO7O7ToDEGsOu2/KZ5z/De7/xPs5WF3z2nb8JwPu+8QHuXHuVs8UJx/E6xeWlPCBad4Ziecmb90SQVJC8mkNNNjeWILZSI0d5Okb1VSeQpJPZAo0xbHaRrgm0nSN6dTck7zEEVssVx0fX6fstn3zXr/DoyRN816vv53/5of8ngvDOV9/PdnHJvYPXeedrc/3pQWAyufZmn1W776TVFpPxXsZANZsWCDOl+yZy9k3ZgCj612yUBe5du8vl+oIf+tyP8PHv/hUuV+d810vvJRH52tOf5098/YfpLOz6gIgGyd072dFk2v7z0dPjSGaBay0meQ66NSFFhjAiWJKxtF1D1zrMeIrIwJiENkC/87SdY2EU8DfOsPOCj9AZNeKGZHJ8UGQIHcH1LFYN3XLNneXLvHZwlz/+K3+M/+kj/5KtDSxDx5/6wn/Px25+invHI4+e3kBsZLFoISbGcUsaBy53Add7VinRNkesVh2bzQaDwTWOpm0JMXJ+fsnucod0ltauWa0WbE89O6+Bgo2NmJQI20vSdkeygvcd7vCI9apl2/dc9CMpB5b3uy1xHLm8GAkx8tkbn+V7b78fnPDpRz/Dejjgx1/8MX7r8U/zavsq73DX6WxZBcrPcrGLRHFcWzW4XHwtpsTlbuTscsyMopkRk/1hnyGUrLlDP0bune44WDqOD1qWneV8DJz1Wpukc/DoKvDKZoeXdbXSxJi4e/AGN09v0Y4dX33qKyCJH/nUj/PlZz/Pp9/zCf7Qx390nwit2CgyKCqacmnTOAZ8iLhGCEmtY8bO2FdjxMSESRGYp7sDMqM3yJbpornrdVNRvvJzuDYQXeTdX/tuvvjO3wHghW++m2674LPv+DTP3H6B1XBQrdLZ6PpQPWOuiCVJ2fpqqjUvFkSZ26Hkkiovq1WFHG+SFGRqgVEQl0t7OK1N7UvWksC2u+Roc42+2dG3O55+7R08/sZT/Pvv+9d898kHucWjmmkzVxDLHMjZolKAgabcqHcgA9pY+q9YS4rcsrP7mELvPnOdFYtYCTsQwTYW1y4IXqkbrAYp5vgTm/eSicMmpYRtlw929kOO/yxitIcdf//v/31+8id/kp/6qZ/iIx/5CI8//jj//J//8/q5tZZ/8S/+BdZaPvzhD/On/tSf4md+5mf4G3/jb3zHz3r52Rf54Mc/zNMvPs9upSavx195iqdffAdYpSaWCgDKxBGaxtE2bnLXzDXUYumo2Q+Z8yKW2JHJupDyxKsZObYErD0sBTinzoqSxeDgk+/5JB/86g/yg1/5wRpQeevsFh/68u8jmli/UwBAif3AWCWqyeRZSpLldQMr+1+OUSn/lO1TNaryHqohFauNrdlFUwT7DKxJyUaydTHfOX4d4y0/8fGPcnKoLgMbLB/5zI9x/fQG58uzKrSukpCJSM4iKpYak7OY7OTuyJM5xoAfNfJbxNC4hqZpabuOxaKha7XiqzNas8RZw9hvVDCOVAGk7oqGrltw/fpN/GMjl6tzPvqJ/14XqIAk4YU77+EHvvph3jh4jSg58bligXTl3+x8NuVWwTRNJypANbM5Nj8PNXBuDhKl9o9UC1Z5XkrwxRc+xx/8zI/xxN1navHA1XbNf/3xP8rFwTnpoM8dYHBOGAaPS4nGqAXJxwKuLSkFnIkkGZE0cNBahtDT+w0pDkQ/kEgsLaxcTpmMiX4ocDnhnALw3aj92UqgkZS5ZCwi6uo01tEY4Xb7Co+/8gjf9+Xvnm20wkde/zDP757hzvJVYtxWq54fR+LYc36hWT8XG89u2zNst0CibYXIjqbVdNzT8w3np5cMlzt2lzuG7RZjEsuFsBnuE9KOxhniMHB+0XP/pOf0dMAPPePmHFLiYO1YLQzLTkngbBoZe08YA+fmgtPmnJ/8rT/CcqNCN5nIey5f4E+89N/wiUc/ic2U92RNdjckLvvIeunomskNA+ruKCRkJZOpsxo8LCigbYwW2esME8MrcLEZef3+lmHUYNXVwpEQLneeROJgIRw3A/gtfvT40TPieePgDb7vSx/iHa++MPGEpMQf+d8+ytn6lJPlyUSOls0gb2UzDDHSDyNhHHNQZeYnCTHX3DKI1bRZ5zTbxbX5XzNlRnZdQ9e2dF3+17a0bUPXNnRdyyKTxe2OLrlx8gg//Jt/GJOtbKcH9/mvf/UnSCHy+tEd3Ty9tqG6WGrXzUkLy1rXN1QLdNiTRSXVNkVNI05VG0y5yrXGKClVcqaWiCqnBVWGnc20+VHrGyVJ/NDX/iA3Lx8BYNds+YHf/SG++/e+j0+841dJVmiajm6xYrk+YLE8oF2saLoltl0grkNci+tWtMsDutURy4NjlodHLA+O6Fbratlou2X9nmlaxOk/XEeyHcm2YDtss8C4BbZd4LoF3XJNuzjAtQuMa+q5JltcjFVXvm0cTdvgWrXC2KbRkhjfxvGfTR3/S7/0S3t/LxYLfv7nf56f//mff9PvPPfcc/yrf/Wv/nMfzfNfeTfP3n+ef/Pf/r/0RIJ3f/67caHhYnWmqC2bj1JUuvS2bVh03V6FR9Af8yjueVBQsYxMwUnZ/39FCy6VGCdaXlPjPHQPypU0jeWNw7s8cf8Jnn/lBX7nud/mdH0KCQ43R/yhz/8I33z0RXUPpZxpE6VaYlLylMqc6jrJfsJsgRBbSLzqq2WzmSEEkw0f803Q1gqUIgbPrIbNzA1hZwAiAa8fvs6P/taP40LL+eoUgKPLY45Pr/P9n/8hLpbn1cSs/5+ivcUUThirsQXVRTZpPilR033bxYrF6pBusWJ1cMTB0TUOjw44Pl6waArVeTGNKiiRlAv7iQa8mqzJNEZYrZbENvKhl/4Qj95/go+/65fzHBJunT7K83ffw28+/zGieGxQa0XJd5mGftJ69c/JmjJpjmUMpvPZMEK5OmXNo1h6HpT2GbpIrNpjjJFx0bPoV/zA53+I33zPxzN4Ajc6nn3tGX7/Vz/I7Wu3Wbz0DIUBcxhDDdIcQ1EVIyFsiEmtS44R12gw4nnf40SIYVRtXAI+QZs1JxHN9pjWiIInP6gm6gwwepquY7QG+gtc5xDj2PgdZ7sLPvTNH2DV72tQB+Oaj7z6B7htzvByxsquNNV02BF9JPicTh6FYYgshh0xLFgsGhIJ5xzDMHJxtiH0IzZGhj4RxpFh17PqOna7iHNR2Vz7LX4YlEchJjabkWVr2O12tIsFRwdOrZQpEAbNoIghcvvxO/y+z32Qx156DPddWQ5IIJrAj770h/mfb/0vDHbLmi63V4vg2cZxsDA6f2a4tmssXasxPgnonGgMD2olFRFaq+sxJsHHyMYnNd9HYdt7+lE5YRondAtLv4tsx8S6TdxcJi6Hnns7JbsKzhMIfO/vfZDfe/LLdUafHZzyxGtP4fGcr844OD/Mz5y7jmbzs8zppLKmHyJNG0h4wsydk2HVtHKKMvjAoatKLLXo20OvSpH+aMcPfeUj3Lp8lIPNIWcHJ5wfnNL1Sz78iT/MnWdu8+TdZwnRZGAIhSK+rNNiGVf5GqbMnxgJpR5MvlQDQ7UfQlKWYt1j4tQupPZRdfFEDeoV0+Q26JiGGGh9xx/80o/y0o1v8Mq1b3J6cJ9Nc8mHP/Nf8erzr/DG8g7PpndiXanmTo2x80GguLWNwdgmK3aF9l7lfQhTSIK+R1KFtnCZ5AxNRGo4A0jew6jUEolEykG51loEC9ETw6SoadZNHu+ohohv53hb17J58pWnievI1975JQCst7zw5ffgm5FXnvymauAaPoSzhm7R0nUdbQYLNeAwTZtgQSRlECFbS2asgqTMcJi/r9UzNSukWBGcc5M7KMNxDQBSc9rR+RFHJ4fElLh9/Q67dodJhqffeJpn7j/NO++8U60kqYUQppgCKa4Ng7VUsjeRTGJWwFRdeDla2ofsGqkUN9Wao4RFRYOHXJk9f3+yIFWuDNGMke/95vfSDB2/9/hXGZ0HgRunt+h2HS+8+C5euf7SzMyrh8aDmEqhX3gLFOwUkqtJ/IgxdIs1Rzce5eD4JovVmtV6xWq9YLmwdJ3QGLTmS36WWTqsOcSPEUfJw4fgR4hB40yM5X3xu3nUP8aL5qucrNXCIwjXL27x+L2nefL4WVKUWWv2pPBD/p6OB4Vn2jufCuDNn0k+V55VBXYt/Ki/azyQztfB9nzot/8gLjoGu6tpm25wdMnwIy9+iPNrbzBEaFx+XtTb9aOCw6PWYKywGRKXPeyGgYWzWKeZJNtdz6pr6BysbGRMCR8FFyLeBx0/H9n1gUWbM9icYTcKg4dlC46AtcJytaAPA2IdSYR+13Pz9Do3X7vJ2Iyzrkr0O897+u+idS9hbMQ5o8I8jAxjnDjtSPSDh2CI3tN1C8QsMGK43G4Jux1myhFntxuxbke76Dg8WGCsINEz9D3eZwbQGLnceFZLh2NDahuO1g0hJnabnt1uxI86Zu3o+NAXvo8oQjPoRhNNpG922K3lJ37vR4jdOYxavXg3JsZkOFi1k1t0NpNWC8et4wX9mNj2ChpiDu48aKYNdeujAkMDO5k2fB8SwxiUMNAIXWMZhsjZbmTZGLomcX0RudglBnQtP3X3WR699zh3169TyHdO1vdJCZ556XkG2+vp/JCJfXnu5q5dPFmUJbu64wRiSjsfiNmbgZJirZ6CJB8ELWU9xhS5PtziideeIUTPjdNbnB2eMDrPyc37PPnKM1z7+k2iiZjMRDrPkJyGQGoGihqCYgX+8/o7Jd03VpdSyu6vqZDmfmbQLLYsg5aSIk1WAIPxPP/yu3js7lM8ee8ZvvT477Lrtrx27VXe97UP8MKL7+Lg+BA5UgDm/Vj7pMbdhZATFgrPTqI4QEqhzJlUVeu70YKaksemutYrvpTipcmKUI7LLOOVEz1EVJ5aGubWZJPPC1qt/ds53taAxGC4/dRLbFdKKvPY7Sc5OD9AnCCtYJ1Dghrkll3LctHRNs3kEigiLamvrUQSqz9Mf1pjMG07meIT6luMqQrFCljIKDIHrpqSuRMnK0sZTOsdIXh27ZaXb+rGbb3jHXffgRHDD3/lwwxuoA0dxZc38apoy20GKSTVkOZelpTYm1jV5Fq1EzL2kqLOZ79nERwF5eb+YAriFQSDxYWGaOD1a6/jrQrPG+c3acYWt+t4avcs8wiJutVmX6Oi68mVVQBXtSIgIJZ2sebg+CZH12/SLZcs147lQunKrUz/ykITSTTOMnhhCIHKQQA4l5ldo+VW+whci7x89g3O1ve1hUm4dnEDUuJdL383Jlzl6s3N2hOQDwKTh2lzV68sXV97Z6apzZ62d9fEJNTXm0OlnJdE3/TVQtIMloUYrqUlB2+0BGNwudCWJI1V2PjAorGZmE2tGqtOC4M12T1irXC0WtA6qxkseJwIPqVaKTVFrRlzcTHCAXStPgsx9CGwSIYm76Jd17C91OBEIRE3gcdObtaU89pHCfzgwSXeKc8SlxFrDcM4ICky+hJrkzXykBh9wo0DdrVi3Vj6fmTYDRrnNbvvdutZryPjOHK4XhITjJtRY5tCURy0k88uR261amlpmgbQIHIyMZQgPHX3SUw0BCfYQcVpkEBve1JKNN5xJIdgVA5cDhHj1FUzBnXwGzMVcwO4dtgSgdfu7QjDiDXKqGolE2SiQMTlPrDCHvFUAsaoTKBCom0Ml6NhMyq9/2FnOF5E3ugTJjne/c33QhKOzq7XWnZnB6d4PG1oacdOeV/IG9PV+ZwXbAXtokGhjRPCiHLwRAh5A1PQUgDJlF1WPisuypTJBMVObvJCOTDNlZF3vP4elrslO9lw4/IRvs5XCM5z/ugpy/vvre7h+bqbw/6ifSnY18JxSgI21byqGT4ysaNOMTRVouYNPYMppjEtZtEqSYzSt0cioxv5/i/8fpIPPPf6C9hoiS7yyiMvsTNbun5B2iXCKkBT8sazVSZNVhtSwvtB5UYqWTeixf9CmGWSlnhIU5VZH8IE0kqTKXtIpmOIQcehyikyrYPOs5LAobGXMY+Vjn/ZC7/V8bYGJAAvPv9VgtPN8JmXn+cgHdKMHct7BzQ4xIE1LjPbTQXz9ohiBCqtbykDXjZ0k8FL/c48QIhquXDZRKabYtmCpU52qZYLqSAgJRiakVdvvgqAi5bn7r4DgKfeeIpoc1nrHMVe0Oc8LWuqiDnFKJSFUoi0QtKUzrnVpxzVPVLAyww8TQtfah+VzcsUHCPC3ePXCBmQXD+7STcuSFFodp0SYxZNp4BAY2txq8nUKBVRFWCn5xuadkW7WOHajqZztJ3QNFMQ69yuUi07BrwfubzY0DmNF0qxBArm6wTatmV5sORsdaLfS8LhxTEpRla7VW5TygJ0NmdmYnkSxamen+whe7rklWPuBJoEwfx7M5NKFTypbuBFwCQG15OMbnCL6FjlrK5xMBp/YURrBqWEz1qizQ8cfSJEwyJX5DQoO6SIsO5aRGAYAkOMrFpL9IkhJDpna8GtzkC/C1gjNI1gneC9MjQ6K4xZ0+xWK+UCioGxHwk+E4/NBFZC2XdJWiXUdNnXHgPCBBxqbyVhGCPL4CnmdyEh0U8TIvdVjGpBoB9gvURIDH7UTIgw1yJh12s2g+TCnyklgi/xBPoMG9WsbUMGJAmiRHa2J2V+hzKwY0iMUeg6gzVwviucEAnvI9YIY9AK1beuqYvn/r1AEyMuk+z4vF4aq67cMalGWxQgaw0hCZc7rR8j6P26RcNFP7JwhtYljhdwOkRCcrTbjhgTR+fHdZ6er880UzHmmR0nmPwwAF7lXJZD1joaZxmjIcVCN57dAjM3QunX/aAOQauIl/IcKWviWhclFcsKgmC5vtOaWcY03NopdYS3ntNbp6xfOqwKXZHH+4pocYOrNUdTVVMFHKVaeZpZyEvq8t5arZqgfl6QozHkApMFFntSBljGGvDCYliy2q6JLvJsBiQjI3cefYXeDvje44eBcRiwrq0yPuTYlhhybF62YMSQsEFjccQY5YQJQd3/lmwFK+2eAA4kSl20aXEJiMEkMneUHjGEvF9kkE7CGqFt27x/TtmT8/nxrY63NSAZmp6Xnn2RaCJubHj69jtYsEIQXK+l4xWQFApjqZYDhBqMJKZM/tJvaoYzKU/kskkWfDH5M2bVbwtGLmAkMU8vqxtSmvn1EM5X59y5pgy1R5fH3Dq5qZoEIMHgCRV9VxfSAxp6VVImtJ8Xlvp01aQ3gaG8dcYiBMpC06DXQv5W753RtrOFjp5qfo0m8trRa3jjcd5x/fImDQ3BRCxTwGp1HaEmP2uMomgS1rhKaFXeU8GIw7iGZrFQKmdjaJzk56vbKAIjQpgJiJRgBIbgGcaoWU4YkpjMZFvMyYHGOhaHiwpI1rsD2qGpQmsCIfozUTJfZLZwHyag8zwqbzXTOh68vtx73uvzK1O9rsQpTRussioO7UCUiImWAzpWrZpio0Br9N6jVzO0j5FF67KFQa0LKSnYLJveZjfQtY7OORLKVVL2jWWjqb1KNKjXd7lv+yHgnKFxlst+ZIyWxmiKY2uEo6MlMSQ2FzuC99niqLFec0kYRo83I9DhrMWXDSJB8KnA/dov2yFymAn3iEq3b1Mg+KnvQPkf+tHjMoMlIlp5Oj44hikkdjvPwg7az5A5fq5kvmRFoRk0qy+YyKVsps0sL7PdEBFrtBS7aIp6PyZ8dn81zjAGrQPTNZZrBw2+7+gvtjpWUtZnjv1Cx8Mag+saDldaA2fRGs4uRrpW11zbWLrGcDlYtsFw4ALLTjhoI2djMdEnunHBcrvi/PCM88NTvATa2dxDJGe8TUpPneVFac7ypR8GvG9yj6tl2ALKUh0ri7UukykDZD73691TqaOjpI6YopRJbQtAExpuXD6KCw5vR+5eu4O0VjdiVNnRon8T4Cjgg7wWtAp5JgmbVU4vFgikKHqTPNhboqXVeY4UuvxCrhaDBphb53RfEnBBLfAxRh49fYLD7TV27W1ev3mHy+U517bXGf1AP+xoF0uEkk6sYEBLSnhdTySMGTC2wXcdzjp8UOZrYeJ3oq6gYvnPLiqmvp28BZCytUMtL0zfE41tVPeNWjGLtyCV58XIbrvPs/Jmx9sakNx/9B5n109A4MbJTW7de7TIhmlKi/rZqOBCNdJpw4FJG03T98umLVJjEwr1txEh1aydiWWwaBDFdTJH0VL8J8x8qsDXH/tq9f2/8MoLxDGRJOYgTDsDH7PtqpybaRglTW6mZquwL18o/81CIBXBWrWHvCCnL+kTBS0B3jQ5UHcKbAO47M45zwHEq/6AG9sbSm2swSwVjEieuDYajAnZH5mqll4Go3K/ZNeNazoWqzXdYolzTic5miGioFGLkrpp/QBgc8aNNSBEnNH0wpDNsjFoYKSIY7g+VpfT9fObMygwOZsePPZm2d4xU8b2r5+69gpAefOjjFzR6wr/BRIzSFbNebA7kiScNxzQsWyEMYPQBJxdjPh+RIJytLSC8iakRB+SAq+kPApqHTGMPtA4FeBNq+4dn/lt2saRYsQZyWXmta05wxFrNfU3xESTUi7upjwwwQf6UbVvlW2yN3aJxMVmh1jH6mAJjc39p9aRauFngopDSLW+ihin75CtKUX0lk19GOBAhNEHnHOEkDJnzf54GGA3BFarxDh6nFOgEyIPHinRDq1qt2ZkIzu897Qy+efHoPNaK81qXNu2L0RX6hJdWChVWrvWcrBu6TdDjT+wNZ4ht1dgsbDcuLHkaOU0PirB0MbcV0o3v2otrrWcD9BZJTc8aIXTnceaBjHgknDt/Abnh2d457lcnbO6XNd+0Xmd9sBbYi4vprk/jkFjfWyshdWKy4VsuSnKn8zAfVH6SmxGEc+FHE3KfGF65rTYEodnRyz7A85XJ5wu7nNqTznYHtabh7wm6mgL2dpClnUuK6YJVxRDps2/1E8rmYIwgdQpRTnHiEwNnKzAAF6zUUorlB9KGU4lCN/12nt4/fg20QReeuIbPPnGs8SQCF55pkw0Jc+4cjYNfc84DoACVNtk2nrrGMceax1tt8iViEMFJYWoTXIWJuNAjRc0Bk37h5RC7pdI8gpAdA/Lrq0YiBIJUap7rSjlMQQuLycm2rc63taA5I1HXuf88BSAa/ducHz3GsGr+Wh+WCPqB88dNYGRGUKsSDlNFgTQ3S9rjkayaRSwSYNTDfOgrLKJURfYnG5c9/rJlJVIfPXxr9Zr3/HK80reZbN5Uqj1E6atqTxHf0+JGRiZPwcFBCI1H7y4mlJ2A00N248rSVLeV03Azjoal1kyUY2ueFjOV+dcLnSyHQxrbo03WbQtYwikVFBCfsEQEa1tSg7ByunHJXc+az0mF6HKGTbdYsFy3eGcYG02g1LEU6YFEtUblECw+DGtLtRhYMwcN0UIlsCyGOH19et1rly7vJn9vwXgTKCydlcZjzTzEU9DzvyEzM5fxSf7X3rgxNVb5TiHUtskm7MlEEy2JojGxqxSizOwHSLGWHWLeDWV+5horbr6fHbj9T5gjcHHSAiJ7c4TY8LYCaRaB6ulI/jIsE20IuyCmmmtUXBjrWThTbWiTe2fMoRC1DiQWOZHioz9sNdBm+2IcwM+FIbkpCzE8WFoAGLIwb5xEtK1X+scFCRqHaXotTKps5PlZf9Q7U/bGfHjiHO2arxlFtQRE2jHBhsNo8BOenZhx0omltOUlSGT15egAcCERJsLqVlDBiwK0trWYNsGoiElT6wbAzij1o3VQmvgdM1E971aaLFDUJeZGA1svtiMDK2wsLBqNKA3ZiuGMYbji2t8M7/XydF9br322GSFKNbVVOgF5EHLQG5bCFp0rbV6NqZUOXgUgEwEYWTlLRXSjJp7TAbxM7ksk+JXZbZkN0lKHFwcsexXnK9OOO/OOG3usbxYUpIB4oz7Q3/uR7hRQdOVz2qq7kym572kKHfa1pgt0rlsRiwWl8kKV1wsiSl+KGpkLCFEnr/9Lj72rv8IAi8+/VV+/+d+JMtdLYdirEVquaUMBmIgBo8IRCwSPB4IfsCPIyPq9nRtm9dI0AJm9ZjeVa07qVIxFOqL8pyr413es+5LOX4GpukR3mTdXj3e1oDktUdeoe92GG955PYTtJcLQvLsEejoqkekkK6VTaxsLerDTWhlguLGKK6NCBrwKqJuC2erACrWkbmWMB3Z/FVAQJHOaTLjRSJfe+KrAJhgeO72c/OvT+hC9tYPReebHpldI1k+6LyXag0JUU3ClYgn5ZcSUS4cYWKkmQOhvDhNidwu9yUHvSY4W5xxkQHJelhzo7+hvA5X2gEQA1gJGIkTYDITW25B6iJa5dW5huXqkMVyhWsMbSdYl3KQn7pDXf6nmnaGKEY0rqFzNK1uok3TYq1ADIzjgI9RN1BruL+6U3vyxuXNPY2a2c+p88pYPBw8zEaFh0yM2efTz3JVdQc87NY1KHA2f1NilIHRZe0oGZZRMzhiEpwobbpkptzWKpfG5RCIFWRrUFvvA521ZIoEmkYz0SKR1mk8nW0N3hvI7MBkV1hMGpMSRercSJLBLaJE+DGRrK6x4JVmvJg60hVEEEPAJz/5yVOhJ9/vm9pvMWq10aQEhaXQWEHZdUNC16QPgdEH2rbRAnZpfre8xpICHe8jeHXxKDvmzPU7PYLWN5jMuDyYgYEhZ/lJLcGQpvxXnIVlaznfjrqJx0QIqQYBp6Tum0Vn2J5PZTB2PmKMsMz9py4yfb/LrWfwWvvGWQWZPsDoc2VpC71PdBZWreWw9ZwOkcKQdXx2vfbB6fH9mXVC+3jatIr0nPVa6Y+oGYhjiCwMmChZOcmXzTb6cqjL21CCLQsQqUBFdPNVGZFBgqb+1A00psjhxZHGfgEXizPOF6c8lp7M15V2pv1GF9FcFYjJ1ZyKhZ0p/s8Yk4knZwoUVCWyycpKzNkvoVTqDrmKbshlPYzQNi3W2IldG3juzjuRaEgm8s2nv4bN5TFiiPhxwKWmzr3Ck6L8Wk0GVCVDiaw06XoIfqz9kGLUDBiZFNE6hgVVZktJtezEohBMmUP61WK/lTpP6n6Xr/EPcYk+7HhbA5Lbj78CAt3Q8cw3ns/1XFJF8SlPGmNm5jKqUWAy1aHF+MrOX02LRZglKJHfeoMptmR/50h1QCNoTZWiTeW2xYyCY4q8dv1OrWHz6P1HOdge6N2KzxI1fZd8+XmcSp0z+XyZHAWJlklWCtmFOC1IKVpjua7c1QgWWzeR4jqJ5CydqmxqtUprhfP1GRfLc0hwuDvieHdMCWrbD17TOAQrniS2lKvIn00+XvIzjTG4dsH66BqL1SrnwWdaZ9QdYwCH1KBWgK4Fj2rpViyHB2suL3e5LHgCA03TVKI8Z4R7B1OV6cd2T2il4VQ0uTLm5QpTT81m00Nm54PHdOXsv7X44WxBsz+rps81UPHqEZzH58BuFy3L0GS3js6RcQz43ufq1onel6wBFVbrhSOKYew9BmgbSzGjDyHQtNA1xSKYtbrRa3vy2CWEkKaxTFHdNzFKBYreR5pG6logZN/z3pvnvkrK8hqDJ+R1VKo8X+2b0ps+TAXTtDz6bD3ONDtB3VI+W8lCjA8pj56ViGgYvL6MylRT9PUH2tGNbQ5yhdEOeDNgWM30ilStl+q0EZxJdI2Wh/BDoBiEKqWAEdbrht12IA2R1gouBx4KAo3BtW5yHwDbwWOMZdFoMHGM6ho11tA2ht4Heg/rRri+NmxCYufVgnV8cq2+z8nxvboZK0KYZdqkElswl6vTKMaUgRwa81XWe5FfD/R2mv9egE8hFywWaFsBebEwVLKyoArX4mTFcnMACc4Xp5x09zRdPFMMFMVnb83WJT7bZIslaNbAlGuBxSjT53lj3vsu1cCS46OU7NHa4g5Si4sxBkzCWH2nmEnbjnY3eOz0CW5ff5mzw1N2T2w5PLtWuU5SDDVEVueIBScYXH6uTMBOCi1FlmU5czIWRSAPSu3/mQKdABN8Vmxlf+RkphLX7oz5XsX6nmdEovIGfavjbQ1IXn/0NiRYbJc89eozFSikBJIMpCkDptCU61Eu0jNVmyqf1X9F1GXBlgsSxdLhaZYhUvb4NE3mmVFEtaug4CBmJ/Q3H3uRYFRQPnn3KVrf1sU+mQUtxYKoE72AkTz5M0BAsgKdryzvVGIO0mzuzFSVGbhSWmyEbGUq/ZGq9qYBadmCgiBWOD04oXc9JhkeOX8UG6xCO1EzcQEderuYwU1DSjnSPAODyVSq/0SUybFbrDR2JQd/pwz2MnxUq5ZUSFP7pEiEpm2Ry57ddqulCVLk9PSM3TCwWnTcOF7zWvtqnVPP8ByNa7RSdO7XmcSqc2Run3pzOPIWQCXtf788Rn8v47UvBIqANFkYlO9FGwhNBiTJ0vmGYdTNIGZrRIiRVWPxUeNFVMQkohhaZ2laS28jZxcjJk3vu1wZVgtX46h0TikyMLPxMFYIwZOsdv5E/VFmLerGI2vWKZHSzJdNmbv50UbnZaEaT9ndpHXbpkDG6RBCrntkUtYC0zRKe5eLBodqcPnMVH0VMub2jyHi8o5aykDMAUlxA7a+mQGSES9j/rCMVqRsqvM9OWfW0zmrtQFL+j0qvxad4+howflZTxj8ZAlFiakWravj0FjDstUN0BihMxr3UjZvayw+BXqfWLfCujO0NrDJvCrHZ9dqu06PTuoMLb0yNTtVcDjXlufH6DWOwZCDHEVqWvFbQviUMgncNGAqojLZWPbspOJ2TcXCJbjouHF6C0mGoek5O7iviQ1pYs6uoOghjah1o6qyBFcHu2YFFXCUY1qqaytfP7nxy81nmYtV+Zre0ZT0+Ljiqfvv4Pb1lwkm8I1Hvsbjm2drfZhSdLD2TJGf89HJQG1KTdbHFdbyItumuZ9qO7RtJeso73U1tk/2nzsbzLo3xpLRmcnRZvvZtzre1oCkVPh98tVnWO8Oq/ukmKpSUpZU55qazlRiN0o2XkHbMVslSv70NOnKGKgILxpVzJkryqdhqrUl33GmDUCKIfv+Y9XURIQXH/2GBrQmeOru0zRjU7WLsomrCVpyLMlkGSmCvGpGcfY8dSRWUBRTXSFXerAsDm2/s45kFXyMPiPjaq1Rl5bJnAjGWEY3cvfgrk70YHns9PG9TaD0m0hmyiUHb5X6D3N3TQVHuWBhLvhknCNEwQdI2VUjom6bJFLBSNE6BW1/XUdW65pst1tWqxWCYbFc0bQNxwcrjg4W3GlfyR0H37V+N8tFx0UIE4ibg5IHjocstCub38OPSZuaf1H2BGWdfBWo5B6lIm8g2FCDcl2ytKFhN2qtFCXJyttJ0qDeJKqxWqPlFdpGy95La9g6cDjGGEkElp3BzTIDU9KaNJkCKbvmtJanj7Gmces6Yq565ZoeWbM0CeuMWiZEEGf3pqdpLRarhHZR2x2SaM5ZDqyGifeAlLPEYsLlewYxJGsrOVcB6WKEpXGUgG4xFttE+lHTenUzn4bSo1lckpUb52ytCjwfxWbPZTMyip8CdynxXMXAberccFZlR5PBnEiGcQkw2v/rdcMYEvd7r0URgWgMq8bRtraClNZpZdVh1GwqZ8ikVNpGa9XFMEa1xjTWsHAaAGzEcP3yep1/Z8cn+1M2zTeuMifq9v6AfAkhEoKHnOFRfCLzubx3t3Rloyv3LXJvZvY3Oe7MzhS4Mg+evHwWGy3eRe5fewMWQhOaGowv5cGSHtwoZ4pAsYDUVhSFd3r5ug5r0G0GIQUATrt1+ZF/0aQUPZOFVUlUWISOp+8/x6fSrxKM5xuP/B4/9PWP5NixhERmz8mu0FmKrUjue6909XP3iSllQmbytlihKkDJ563ROL4CzuZjM0HT9MDP0iaU1UHnwpXYkzc73taApPTJe7/8AaxxFUSkDKMFTfMqRZWKb7MKxTKZQM1MOaiqMCOW2CojNgd0lngMj8/oH8rE3TdJFcFDmrI6ik/UAH3X8/IjLxElshgWPPLGo4hXohyZCcT5eJewIdVSdeKZRGFO2VtMYtSXLkaweYMu5GDzoCxrlKeiccrVotpGrKyFesuESQrSrIBtVJjv7MCdI42/sNHyxMmTmn6bTSNlPRZfqvJIhMzImuvzzLKUimmxVlq2FpKpZuz6elVDnPojiSYFkpK6CkLZCEymLU7sdoPyjqzWQKJpG3Yx8LJ5GYDjeI1HF4+xfPSA4aWX6Yd+mmR7wzETwm96zDQOZr9eOT3f0Or2Nl/rGUBUk3EBtPkCEcFbz2iV6dRFSzs2DD4iNhFGr8FsItWdISipXDIW1zpcZnEVNFaqtQ4JgSgJa83e25ZN3RrApwpYU8r+lMkLUwOftam56nOOoVi0jnVnMsmbsGvc5B0TYXWwrGXXY56/SRqSBFZHTp1FZp5tocLSR+gAZx1jtCyWXXUZDF4tdM5ZDeDIrsFmscA2Da7LiEvVmmpd1FijFtViLctFA9eWVd4U+8e1dk2Ty6z3pmeQsTJkYgRnlOo9RDA21T4tmTPzTX0+txLKZNy1WuhN47mmDDWJiZlRC4sCQh9SsU2QYsIZTd1sGsuwi+w8LJ2SpTVG3RHLcclit2S32HJ6dKIMp9nq86Y6bl6bczySKIBEA4dr4+pN5u95FebMdP2HLbLy3uVnKk9UwPD0+TuwyeIZuXt8B98ECGZC1HnESrxgdWnsN5Aqw+pjr7h7CodHzRoqHfFgWngqgiq/UzG+ihiwZl8mY3ny/BkW45Jds+XlG1+ndzs6v1BXtC3bdnGlZ6bWEKiZPjlwtdI/7PXulW6tiuAsu8YUsDJVgDei2T16bpq/VNyVqgVsMo3oE/+LsJAAtEPHsy8+n81TGmRHKqmR5NSlicluQr161LAQ9o3wphQ2M7JXShqyUCZV01eJz5g06ZnbpbhvmNZDJHH36C7nqwsQOD6/xtH59Rrpr7YYU4PnYii+VCgQXZN/MndFsc4ICIUTRWrWAXlCjd5XcrAauGUVtEkO1CqMkc4Vv7Rep9k2JhclzGm8XeTusWao2Oh47PRJYtK4jJAXZ9EUdHw8Ca2RUojQyr2YTXZd6Hkx5CwOyZuPpFKXprgBtEuKEhiDDqixiThoHAO5DzfbDQjVhdfvBu6a22zZgsDNcIvjZs3BtWvcvXuXYRj3FtIDS+otLScP/0gVm/3tpj5CX3B62MwKUjaVIthKQKGI5BiSMY+DpfEdPoKzKdOsJ5aNqSndIpnl0VnN8pBJSKuWOgnHB7dHXRMxGayJjEFbEpJueGOMOV04j1u+p3I8FMZIgzQdfsbHk5xQbQkCh+sVi9ghIvTDSAyaYpxKEa9sDi6ady4ur9fvekJItG2Dc5bGmZrWKLLPwgywWnR5k8gMD3nPqeuWyZrn2paYoHMuZ/aodQERVs0xNqlIHezIkC0kRTg4KzULKFlbx3bumtj7WX6klMsrKFdM9fgIU/ZGCYSlrAfBJf2ZyK5bo3LQGRiMsPOJlRNWrf67GAXnG9abNbvlFt+MbJaXrC8P99r5oFFhkqlzi8noI9tdz9q2GNNMtPFcXUtXtO35BVd30je7fgbtHz15slqqXjt8ld70rNJBvsRkV+H0/ZhpIfLiZJ53sweyKlhNpfMpHZMl5YMyIb+LydmSdalX64TU+1L2EIHrF7e4vrnJq9de4mxxyhsHd3jq5LksK/cVgRIsG8KUmjznibnqXqn4oVyRQbUawkP9TuWQMoLLlYRNMpPMLtT0pGkuz/pjAiJThtW3Ot72gOTxl57CnliGfgfIXhEfQRckkol10iwISTLjaAEaIWTzVKqxDYUPQEwBGdnCIaJBScWtUgHJVbyfHhigMgneuPYGl0vNTrl2cYNrlzcQ47SNmTY5JaPrJAmGvGGjJmt1m2Q695lFpWzoEwBK+T2FuIn03mdLiexPqpQ3amNYLDpqANsM2DXOKv8E+q5+4bl38AYAB/0hR7sbGfxQXUUpRcbRE3yfXWiOhNVA4YrV54FhmZ5eNAhMFwSaBCAT+LBl05jBfR/Aj6r82rxwjRVc29C0LTH4WaCklit7uf0mmiAH1/x16IXBR5puiXE7gh9mYBMmkUr9eRV3pAdO7F2+90G6+kF5mBSckF9UphtVbTj3dbRhCmpNlja0uciWjmGT6fLHlChJ8Vp1Wmnd58F79be0r+WV340o/f62Dzhj6H0iGQhRWDdWuRJ8nOK2imBMmmZ8sRmAEoA6xTptazyJztnLi23mjFCWYUnKZGqA5HOckpmsMKV0QHFVSkzYBHEc6H2eQIXcSYriZrBmzNkntlpMawGx2VBrYTRNix6TybFLmvVThW4/uWxGMzCKr32bUnE3FnfTfB5lWPbQDX/adK2VnBGVN8YIkt1Z80OMMrmKlKD47F7SBmBFsCaoW68zWqeogcsxIaNltTngjZt3iSZycXBeAYl1jbr9MnPtA4eQ05ioYz76QEweyfFj+7Np7w2vAI6HbGDzLnuL42hzjfXugG13yf2D1+ntdtan+SaSELFVs68u+iy79CpVcEul9MrQnfbjWyaEOG+7zDIVpSoXUyCoKrNl/U9ZmPrw47wnvHrtJc4Xp7x+cIcnT57N2WTlHtm1ki0m6hq3mUk27lllqkurKkD7/VuUEfJ6rLGRUeV0NDkWqGKbEgOmv0/DshfJMuvx/xIASYKnv/gsw1mvpFvOQbZczF0BoVoYJPMmTFq/zHLhS263MNPc82fFnTNpNbkIU84hL9i67poUwp+Z7WWm2bxxIwOSJNw8e4Tj4RbG2fy9ApxM1dykCiypIKdO72rJ0CYWDgat5hjw3tcAJ2u1sq+I4IzJRe0UbBRA0mb3VoiJcRxzNUgFJ8MYMnW8cOfgdnUVPHn/KSTZYk2uwYjj6BnGEVLAkAiVFVcQcRQK6KyG1voLxjqabkFleC2mVpn4BxKCmKzlZIHbNNPebQxEk3BNQ9s6xpGsXSckabbCxfouQXIdnnALG1uMdSyXay4uLgjjMGmqFEaYK5rQFc2tBCSyf/rBv/N8mGVE5rvL3u1V6Mk0J0qqY2FWtVOWjU2GNrSVe2exaJCUgziNqS4EZy3W6TwNEXwI7PqYXYETGPUh1fiEAr/aVhlFt1vNThljokWIHpxzOFfSIKXGL4lYDA39ZkeKw5RKHrOAN2Gvm1IO/k6iTLIhgEiq42+toREF5jX9ayYMBd2MQxxzumyuOhsTEHFWaKydghiNxiOlJFNWWbEmlo2F3A9JwY4qJxGyYF57waUpy2Y0Y83eMXlDsFKyjKYpJA9MkDw58jPGENnsPGeXA+d9xI+TNi1bj72/43DdsGytFlEU5RxxSXJAvJCavCnlfcdaw24XlElXEp3T2BXrG9abAwCCCZyvz3gsPYFYi1ibq7w+/Cjugfm89l7d1eq2KRrEFCS7vyBm7/5Wx7fQtgXDE/ef4e7xHUY78vrRbR47fao+Zy/tuMjUpK2aYkYmy7bPbH+amjvxXJU4lkLmaIzUPq6vUcFZnLUPJmAAJYi2PE+Ao+01blw8iiThYnHGncNXNdCXSf4UpbJQJUx3TzOZqf1Vgn/J7zkHLPP4m/JuGlOoJT5KDbXKt1WUpPKSaT5is/fMgligere+1fG2BiTNruWJF5/GJlej8gsgUBmjbo8Qs6WEnL4k1I0Y0YVUeAIkD3ThSBApRZbKYhY09U9XnRjBzCdWhc6pTrT9BSb03ZbXb71GNJHWdzx98hytKRk2WdsyKsTFFMheAjXT7P5JBWipK5BSTZFMiRolnbdu3Szy+xuZal8U+vsSU4II0SQkBMZRVDNMAe8nxG+d8PXjr1VZ8vS953RRCjVluWgVNqerhVAW+5hz4MmuGzJwy0s1QXFDxeAJoSGOSkgXzZRhUxWP/LASDBiDbo4kiB4kQdM2jD7SNI7rR60yu5LYNPcJGYneCo/QskJsw/rgmO1O2Q81f38SAmUcpx8PIo56umhgD5m/Zb5IMdk+ZGOaYRdqVsqeGykR7Nxl4zRbyxhaZ1itGuWlEN1wyCZil90dF5uRy+1YU3Qtpj5z14+MfqDrLKtFQ9eom8QKrDqLsxqUaqzQNhYjWqNFiVX1nUJUArSUy5OnZkHbdLg873QuwrIZJn4JEY6vH7EILSlp4bhimSx9WkAvKOOpszaD3NI9RSFQS4IPQRll67AUyJiqG6cG+tX+njalInRNXvc1W6IyeEI0h7jqsvF4q+8+EYIljEzrc2KGnsjSysjG/H67PnB6OXJ2ObLrI8M44/dJQB/px56zy5GjdcPR2rFeOI17KVM0d1skF/FD5aEYYRegaYRFAxIjzlvWlwpIog1cHJ7pe4toVkuYNuRpg3/I5M6d5n1kGD22mea3fpTITE0PgO8rzoZpzPOXH/a4+SHAU/fewWff8UkQePnG1/meb/7g7NP9tabgqXD7TGeLbCnzSL2pNitUWVaX22VlSj3HcVqnVf6X+5U7ToNTslEmDiItXvrMyfM0vmVwPXeuv0zf7Fj5g6nDZ82VbN2fy4d5mIGxJWW69H1iav48xiVl74GdOKGy2N4r5UWWJ2W8Cvgq90k5rqnM6/8SiNGu373J8fn1Gu9QUkhNNvdb6ygMoBHJlU5VAJTNMoaCFudIT7WoUg0xRl06ZO0pzbggsnKlv19ZKnPhOD92yw2vX7sDAt3Y8dS9pzEi+Mzop9JDSCabZfPkn/DW7ElZUy4xI/q5bt7JWmxB3RVsUSd97SuRymUyT+ELQAmSKqnOpZ+Jlleuv1Tf6an7z9Z+KPVWRAxN0xBDoO89YwCTIhJHjJOscUSSmdxfpW0xRsahx/uRLi7JCRykEbCiFnhmNT2YAlnFaJwJgcytknCm4/zsnMutbl6r1mKs4ZX2tWohuSWP0dlDUus4albEBNvtJZfnpw+ZfZP6MwmuMkAzwJAHrWxKJbV0gjXT+fnsme85klAhGHN/le/kOTHPsrHR4LyjT7rxtY3QNiYb+DQ7SUQYhsj55cDl5cg4aqBxShHbGG1dSqQxMA6BMAR2O8/xYcd62WCMauBNo4RoJb6huEMEstWwuCdAiDTOslp3NG4+3tpfpf3lMM4hyeX4KSX0cpnynJTY9p6hHzDJI21L65xSuwP9GIlBO27ROZ0j3jBcKujpFi3GkCnvFZCUelRlMH2OWbHW4H2kH9UKYpxo+43kjJzszw+JFS2OBoDReWJrCFl5KeNcsVoZ5zzAs6053y9yuRt543TgfBPox5TBhJlSsPN/YxK2faIfBy62nptHLdcOW5wre1dZ9dNuXgLnt2NgZaG1giEoIMkWkuKygbyhmPkM3cPb+vcsjrGc9yEyjIFFDIjJldbratlL1s//nbtF1HU9Laf5GnoTYJLf98n7z9ZTr1x/8cr1DwP+s+zA2sIsW/I9jZT+s9ToovyiMagVulji92NqckyizN+XWeZkrMrV1B7D0yfP04aOoem5c/wK227Lyq+ZkIQ88CrTaR1zKaCA+XhNFpQib+fgb2q/zL5EEUT6e6J+p9BOkJ9dGXfrxND3+XaOtzUgeeS1x7m+vUnXdopOM0rVXGtbGfRK52vcgQoPnzfYmE1X5Tqgdq6pgzkNjl4X80Y0gaApUDYz+83udRWUpJToho5uWLAYljzxxpPK4FdqDCR1RZTocZPjAYq8LMKcRI2Gjill4cg0mXLzS1qzQA0I1SqtuWiaAYkhv0+qG6HPJmtjLRILOZv6LJu2wZqGVX/A4HY8ffJMfre4x32iVptc9AzdUMVOJHMh1zgp5EViLGJ6oh/YWsNidcBiuUZQBBJDJlrKmvoc6pV4EpMg5ZQza8AkISXDomtJtmOHIwQFYh7LYbxGklNu8SSL7hrRap8dpcTpyRvsNpe5RkqZD5MfttJMJ2bnJgFX9b2ZUJj+OwO2s3lXp0vFPPq/GANFsy9BbSb7eRvf4EfHalxgsh958OpysSYHUyYl4QI4vei5OB8wMdJlsqgxE1IlCtdOwgkQI34XOU0KNA5WjlLcOsbEmMDlYGhTBVqZ65PMNEKtFl1eNKTIbjtynrY472hsQxMb+t4zbBLDqEHQy2XiYGmr1nl5uWHc7RSFxkjCsFx1GGvZ9ZDikk1/zvVjoXNK5BZ2G3zSfl+uFogk+iFla40OUYiJzWYHwdO1Drdc4Kyw7QU/6tpZtLqod7ue1mmMUts4nLesxhWNb+hCYeAsTS6ByEUJmu0lVcbrLzElNn3g7snA6aUC+RI4NLceVI23bI8RNn1ifEPpEK4ftRpIC4gU2y5VQbHWMo6eMbU4Jywbz2YD680BbnR0u2UFSTEmrZ5cUOesJVWJm1eRnb2L9xp/U79aBGn5fkHf+Tt7LtGU9nfqtzpmlz1x8iwuONpxUdlyv+2vX9nnJ0A0fSCzvydRP1dqZ3tCGf+Z8pJSImXQXD6vsiKBmMhTbzzLcljhzUg7dpOFNBMS1tTfvPZmHppZl2VYVZTYqqBOABiZ9sGJPI75MD7cS3ZlX6uKcnUrl14SjY/8Ng5J324+zv8fHWdnZxwfH/N//R/+Is9snsdkEFJ9abMNeYLsEUPESMwBj/nTNO/QfXRY0lKTyGyTnWm3xigdeVmgKWXBP7GilsU/tSYvVBPZLjbcP77HO157Yc/nJzlXXHKshjW2CvJqti7o1CiTa8igo1IG54crWVSa6IVznIoPgWEMNcW5bH41m8ApwNM4EqU+Nsbicknrru2Q1rBLG15vXuXxy8dx0WqhpzEzTpJy9PdUAyGlqLVx2oUGY802LkX0uXR5t+ToxqNcf+QpVofHLJYO22aXQaOaqikdPAeUEQiJMKiGL5m8zlpDGLecXfQsD47ouoaEEAgk6znhhCZ0HKRjTEo1h//Vl7/Byy99ne3lJWLnvtqr4G+m+cwW+8OdNeXY/3Q2bPtIi0T0I7vL+2w228yDoy/trFZNxkVW68izjzXIpuNyTDTWsRsjVqhzd9lZtr3n/skWGxRwKADRtOm2W7BeLtlsdwzDjkamd/QIrms4OmxZrxpEcrXa7BIVtA6LVg7WLAuC59rSEmJimxpo14RocE5oG2EYPP12hx89zcqxPlxirSXsYLsdiaFjjLBeRw6Wyolwud2xu9ww7AbGIbJcOrrFgsV6Sdu1bLaRcVwyhDOODwyWyPZyw/ZiS4zQLFvWRwc0rePswkNq6NpA1wqbfmB7fkEjgdY1dKsVrm3Z9ImLTaJr4ejA0A8j2/NzXAy4xZJutaAfEy9vTpG44rATGoG0u+TmImowdUy8fhmRtlNQR112eW/TTaUfA3fubbl/7hl8WR8PzqMHra8lpgAWTnj0esf147aODahLt8zb0Qcut55ri4aDznHn3iUvn4zctxt6etpNh4lGSSaZ5kGJP9jb9IoWXMB5ARdG6LqWa0eHuPaAQlG/D2aYNsq8gKaYhqsr5sH1cvVESurGfP3gDjc2t2hCqxV/32wpTlgo/z1by99iBV9Ztftn5cF01zIS877bb8dsPzLC1259mZvnj7DarTFxYps1Ri28V6XMVGFee7NYL4oLvIAhZvtYyneIsVBl7Fsz6rjk7041h6oNKb+TTC+WpjAHgM9/4TP8D/+P/zunp6ccHR29aW++rS0kj50+jVu2MyACKUkOrpoH7SgHhjNJBSb7g1NBxozXQN0tep/gYyU20yOhEfvCOL5J42SqeijFPz07nDjaYcG1uzcQu2+uN6LlqQsAKRk/BYyU+VZMzN4rA6a1NnMTTLwjMaQpKFWEMWgaKPm+IbNnVpeOCNY1+nwxJDxGIuIa2rbFNa2CCmdV8/ALntw+rZteypkTmUjNiGSGP9TeXt4vg54y1Y1xyjmS0bxrWppuqXECOZ1ttwu4AK5RtlwbJjcaUKnKk0/4YWDY7ZCkVhRnNbjTCgzDjnZcEZ0jRq9QYhSup+u5dYP2TfKkFFgslrTdku1mo5qITczTU6djP518UqamBTuXTVdlIPO/H5CAolqHOKzrlBMmzxPncuyGNRy2lkO7pF8Ky1ZdU20il1xX64Y1Bm89j3baN6amWSvpmHUNXdOyyiniJbaoAP2EUpUvOw12WxY69yyMrDF1w0tZEWidmrhdNCTTEJPJbp5EGwLLtQJj57SqtLGGuEgsDiIpqZWhaVJO7U6k1rM8yEXyolqAnFWSN+sshwsYRjA20BjNkMH1uGUm57NC0zW0bcOR01ov1gScSzT0dK7PiqvgGos4y6oBnNdg2M7Q+y22PSB6ZfT1cUHTGZ6U6/RDg3UDzoyMwZLsCAREIl2b8GKIMVtBy3AnQBQwXGxG7p+PDKO2oUycmW0kbzJULbRuKylBFPoR7p0NNE44XDc1PiaHLyKomyoCox+xXWTZJhqb6LYLmtjuxYLp/C3PKH+XNaCupL3pmqb3Klp9bd/ehp+vmyltc+vDtCTS7LOHrZHShypFXGh44vTpB6+pRoEZ6JlMGg+7lIefvfrnA/Ao31IepmHMZEGeA0KNB60gAsMLb7xHrxKYBSvuP3fed2aKD2H2finFLCrTnhwqYJKkim/aaxsVJO0DyExAWuJE6jtdTe8tfCXpate+6fG2BiTB+1pyuVbQLRaKGoiqpjBnDbZrScYSpbBJ5toyMVX3jCloP2eciJjKzDoNvpmZp6QuAilINPsGJ3KZaZHNU8Fq0FHxl+bBNMbQNU01bV+NCp+PeYSpJHvmKCgatNbrmFWWzOjZGqFtWxbOYG32e2bSJCMG4xqETKQWdOlaa2naVmNqQt7ICgIupkOKdagE5VJTp3V95I4Qq0GtudqkbZe4pqUQ8VinVhhNOZ4zuRY2TnIBOHWNhTHivVrvwxDYbS4YBy25rRYmIaWRFHbsdluabkCMpZQK9/0OSDVK3ohmKg3eMwyepulwTUPwyktSzN97yW4y6QpFSCMmV4PWaHyNyrdKtHf13N5PU3+KTOmoIRd4m+bhlA0moim8XevoEgq6i2+4ai5CinCUpqDMifeF/R3vKnoqR5GJ8yDytzhKfyLgcrsmjav4sqfHGJuDqwHXKrAWmLJFUmLhSpxB7WwKICzv6rpUpiUpJZruyitmAL7uZK8+TrNQXpGSzmtyILAYaFd6ByNw0ATCYcjMtKnGYC0FlOQ4IiYRvcdJyG8dOY7KmWKkxJUENEtHf/rgadKWR6THB08MPv8cCVGtdiSPEIhxpO9HwiyDgzx0gcTlzvPGmcb6rBYq6o3UusuUadEHdec1ztCqj672ZU1bno//bG5MgcRTf6ucM/W6Mn9jDJk+fqZJXz1kf13NTs8gSdpH9A9D9292FDBF+lZTd3bzqw15iwdePS3z77zZV1JOwimKi/Z9kLjvWpk1p+xd1b1Vr0sPFKos/VMU2bL2VIYUS8r+2yYe0ufl8zJxHma1m3VAfc53cLytAUm/uyRlQrTCuqcbX6odY8TQtQ1No1kdwXuilIqN5IWpHTxxemR+j8xNIBHUu/AQrCxUcFEsIXPBuOePE/Wx712bW5qSBoApbXz5fGJILHOsmN4LsI8zV41qwSmXTNd7GmNJRrlD9t7Pan80RlOlnXO1poaYzBwYQgYBqbYlhqB+4aAl6r1XYRvJbIE5BVM1MpM5zkye/8U/WVxS2SpidONtuiXFzBljBGPwfmBzcaY8Kslnyn8V6CnpePrB45oW27SknOIsJLzvs5YPfS/4YYsPic3mgmHYkWLEjz3bzSXjOHCwXhGyZSBEpd6OIWGN4/DgFuPoEbFY2+g/02CswxqHMQ5jm8x0qH+L2CvCZP7X/tKXSZrPPitfK+mE8WEyYJqHuasrnpjdssiPJKmOcz1S2hcbV5/xkGemzGBaNK4qqKZXuvIFYVqhs+tmGqqugzS9EPNQw9nnBcQ8oHmm+p3JWqWflxiq/dcqoGz/PeeukGpNTTMFAjRWjYiGNk3WRURoizFQINm0Fwva5A0bmZ4xf7iNiVuryM3s8py/Y22XTPGlWqwz4MNICJoR5sNIDCPe95BG7CLRLADGnO00kOJASoGubQnjSBJL10ZWC4vdDAhFsQlVsas1vN5sb62IXNmco9daM94HRu9ZuEDCVubh+ZYl8++X28nDpt4MINV2CPNA8u/o2F8I9cSbwof5nPu2AM2Vrz7sseXEnG43zw+tkjz7ZpbrIvM5Ps2/Yl3ZkxMz0E9KNX33CsxgmvMPtrfM2emJs/X4pu87cwu9xXXz420NSEga3VzjL/Ks1s3cVn6NRdfOuEmygJe8QeZ+snkwrZEKRCZgUszPpXpvnjOiFgBr7MzykQVUsY7UUawwNm8IUnkkCrDIrSclTZeLNlWTbDHPRkpmQAYgRQM3GQAgONOyl/hdQBL5nSXVGZuIalpICWNdtWiUEvKIr8RvIcTqOioBjCYTfRbLFChxli08ExQtKrdPTKYVzqDLOoxrcU75P0r7vB/wYeTs5I3ajwU8qhWlnQpFJYv3iRgGDXAsgCZlNt3kcsnvJc5awuhIwSLJQWxo7BJrEkY6TCO5bZOFAgp3xLeTuvadSKn9zfbNtKiacp7ebGFnyW2KkJhuvWdNi1kTuyqw5lKmfPhtyI9YtTXYw1OzV5vtOxV7lI0mxek5VQgGtUxXbDNzyen6m91o/hzKmkxgZMpEyXNzblApSkuekrmM/dS3+h3quRKXUco1lD6e96FaKHXNSLEKlnG7shVNsWLsndf3yEDM7M+kq5dW12wC55Quf96PD1w/41KZ2hw5iCMhjFjxuBR4/GjH6tFegX4Y8OOAL0DHD8Tos1KicWEhelIIqIs8TudKOYGkGUOFC+rhAGAWzDmbSGkfdex9a/6ScqV/p/l2ZXK91ZGmXwoPz5UufPh3ivn7zTbch5y+OjZXFd3ps6ufTJM+pdk8Kp8UQFJvPbUtXpmwxaVajB3F2nk1Yqa63h72DlcWfWnNw7pDxPLtHG9rQCJGYy0qCdrMMmFKnQqr/vWK6NBIemMsTdMq3W5Qul1rc9BQ3vRq8FAGDiEHKiRV3rVOTnXt7E+dAoDKpKpkU3nlFaFYhGUhkCrXKPfC5PKJSTK1enYHZcFlis4pk5/fVgBQ71gniDXlfiX4Sf3ZyZegUyraSgliiNkNE0jRkjAw688iRhUE6E9TFmrRnkubxVRXTelfm4GIdQ2uabCupetaLs5OQCw21xARBGtcdsNYrOsypb8GV6Zi2s+pN6UWjzGW6t/O7aqBZQaS0ViGanJ+s7lWFuybCJ60/58HP3v4R9/2kRK1UNWb3T/XaZy5IKR+twox0kOUSZmlIJbZmR6UKleeqUas+TPy3Wb9OAck+tkcKcyABPvdU4HA/F7lureU/WkSopLB3N7dpxumBJKrTdS/6/33ryODQVvqjuRr9kBJBixSgYvM6Pr3XrsowLOOKWOcHhjnPeu4lEyZufZ55e3kyq3T1J/79zUY0yKmrQrWsoFmNW3kV8ekgI4CTEL09e+U5YRWNB8riEkp0jaCc6LuoVhcUWP+ns9tlzpX5/0y/XJl4BN1zu69bFnhe/E1V463WOsPDzV/i+Pq5VenWv573y2y98ckR7/dJ5cJsY8wSTOlpoCUq3IpXplgCriLAq2TvcyVEgNT9qsH7j2Pp5vMMPtYRR46Ag893taApGk7um5JRcWzBVddJ2YGBPLHhY0yaKlRZY0sjoekwZIuux0mwiRIUfPisQo4nJ0qJxZoUKwEhR56nkNfNNyYYzqgINXCuGor6ND8XLUyqImzQFnQDUSjrIu0FKYaHVAunfy7xYJUYwfiBFIkJTwh1+WYTNSTn3LSY2KKEBQgxcKymQrAoYIiCgBBKZqlABHjsLbBNQuc63BuiXMd1rW4psPZFmsci6Nb1UpRhHXlSaktKhtcltIzDcI8FJBPm+AD8m2+aB6yekpfxThbZf8/OCatPU3jqGdm7crnDBgy+ZVMyyGBsq76EnsxOU5S3bQ1aLSY14WkhHC+bDRxryq2zynHq6XN8yXOQJ22xwflL7m2UmvekAxkK9y427Hb9MSwD3xs61isFixXXdbwJAvaRD94kh/ZbD0U9mVjJ23NWJpWC2F2XYd1lr4fiT4iaWLWNDmYU4zBNU1OYbeMIWElEWMG+4XsJssXYw3KQYH2RZgoA7QJSu2eZqmTKcYrhq+yacznLzPZ8LA5sPf1ws5ewec8ZOBNMLFaUtJkpZjvldOcmrbKatm5AkokB1Bb2yANU/885KgxfFIK2E2aesqAtyYOBLXUqDVmwPuBEAdCGLK1dCCmTMqWSuDmfAMvqLFIqtyu2av9p6zYb/mdPAGKklNic+oDrwDyPcB09VaS4dUcAPznipk3VSom+V+s4VNGd44hygkJe5jnTe5FUYLzGCT25c9VMPxmx9sakLRNqzVKZqlORbiWjbRUPS5595X0K5eXt87mzACtjBh8UHdDYZSfaTaUDVc/USpqn9UhpjQnBRQTE+Q0J1TAptztGqxpZgJNA2JLxcWawivkXPNJICgQmjWsLoBJwBeCJX3WZFcpbSkBv4XxckLyUzR+DaI0Usl9ihujuEwM4CJobEirQKNZ4FyLNZ1mhthWyepMyx5B0MzMOCcUEhtm180X5r7WTOljeFCBekCJkL3P9r8z07TezApSkcy3PiarxP6/EvRb4kGm3yd2xyq082chBvw4sttdMvQ94zjWYpIhEzKl6Lm+Eo6WhpNNj7NKXpaS+vGH0XPn9ilp9BoMHgJjitA0uS628OitQ07ONpycbTk6XGKjh75Hsp8ngrKexsiQEqt1xxO31rSNwUct5LdoHY3TNbIbAqdnW56/1RIQtqkhNWuMJC5Oz9iebQnDnBBNcIuGazcOOL55fW8+xBg5PbtEhktev9vDqKBp8m0IUSyLVYNrhIPjI9qu5d79M7ZnG9qobs6STj9ml2i7aDg8PuDocMXde+eYccP56Q4/aIVkjCGKRRrL8bU1q6NjrLVsLzf0lzv8qJlF6np0HB120C5ZrlZY67jYDLRGWDZ6TcQxRsE6R9s0dY6LCINP7MZJuJcgb5O11yIT5m7i4qZ9S/Neno8xTVRkRWrostf1blIBKBo4/i2Pq6AeHjgxtzaLVH36StsSmU/uW7xDyiClgJdef/cDPo4E3xPiWIvOpRSJqVS8LVbeIuveXLGYIvvK+zzkmrL35ksK02sBIzNxdaVX3mycpgDTKsdn33igm4X/5LCZh9xKn555iMiPL3vOXqul+OjTZAOosXLaz0VG1/sKWen/1sfbGpBMRwEjRYuLFaBQKoqKEIKtLh0SGKMaH07jFmJSTUrlkHZnMX+rMSBTyudFPPmey4aqFg6dmqZqnwWoi0xBpZMfWYfSGK2oaEsap1H+EzJgiNmMZjJNtrKllgkwab7zhRaDRu0bY3DG1cWyp53kPtN+UReJdR2IxTXgzDFiLF271LgN45AcsGlMkwM6bSamKwI2t+Dqqtw75MpfBYvniV3B0dVrZc/a9XDIXsZjdu89DSm7l+bq01VzycwCkchstUEBgPdjFoqh1uyJSWuvhFjOhWphinG6rszPWBhwy/l8rmSHlXPaiMg47Dg/O6Hv++yOmixiIgZnEu5miztsOL8YWS5b6GxeAondztNvLjBRtx+TwBkDzjKGWOdpzShLkXbRcrnrCT6vL8hFHYUW0eq7ubvKhlfcPXJFks1lbIwwjhNYnvd9DJrOO4xBKeHdFd6K8ow6nrF+KCkSx6hZYilXFk6REGLO7ihadEmZV34eP3o9Zw1hmNhlU25sTJGIh2DZboS2bdhuztieXzLuYi6aZ/Akxk2L6VrGowyITi6RccdRGzHO0ccFl7sdxkQOcuaLCnnLG2cjd+4N2svVZWzUNWktVixr42iNITlDsG6iLLc2s1OXny7XFWrq713bsOiaXLRS1/BkgZK9mMqrvz3suIrb38ytWeSMzbJx/0v6nwee9BCLhrpgFzRu8RZtSnkt+uxO2v8XirspzjOXRmIc6/UhTCA5zSfuzBLCdGpSbOa5zvMYPvbUnfmLv8m5q+613GtXMdTDOu3bPh5U7OTqjatFVmaksKEabqpbNeX1RXEXF2ClgF5By38BTK0h6gZRUwdTzH5N1R6rtgkZvSrTYEWWokGVwTuaxpFSxJkct2CUZyGVYBwRZRgVMy2q8qOYWmUWu2A1bbWUbzakGpOSUEtMikrZrUAkCw9TIqb1+4UJQM/NXEgpkVLIiydPrhp0qa6qSKF7L5pWi7ENIg1Cg4hDTKMxGbadpZpq0GkRLiUNdZrE+4tlbtZNaQICVy0KexaJeWGE/B1d3KVTZ+CxvtX8dg9Iz70mlc9kdsLMvmtMou9HUor0/Y5x7CuBW8lcUAE11a2IMTGOA9vNJf1um9lnueJWiXsm9Hnf7EuUt9bAymdzv7ox83TgGZi1htYmuq7FuoZ2YVivF3StIyVN/94OvcbrZMuhA4IxNKslOEcSWB8sCVEIUVgsO1aLhvFyR5QadZOBkAoeW6syq7CxzinjqVHQbZ0W2yspyBpMrnPXh8LkWP5R3W8hRvrRgzS42lWqace8LuSh3aaVgU0G8SlbQdXELzn4QjcLnQvKKKmAQ+t9jGmf3psMZCQlSIHoPTQOFbtXcoCSuqkWOc4iAW1jSaHwMwjRrREnxLijxoHkuItx7Nlut3pWRBUFyGnrkHxiiEIXI7sU2BntzwCMOZutxM5JqU81s7a2rfDUowccrjIvCTqfojh2o2XdNay6Fp8sl4MhmZbGKfdQ03S0bVcry866Z9ZfRUGbfz6di+kh1s2092PvfHrIhQ/Kn6uHYEStVS5fuiet6lqND/0Xq1xVC4z3A9732RozEPK5/QD3vGnPWlbclw9Yab8NzDAHIwUQ1Oe8xfvvWW2u9MkDlqtZy6e3SJAmN3+5cipvMb+2NjDP1+mDlNuSdEMEwL9Zhegrx9sakIxDrxkrRk1GWiLca7XbWYea7AYh18Go3ZsifhxygJUCg2a1wjRLjGvUClEEUuHCqIdOFCMauBZCyEXYYg6+NIjNhGbGaBaP1TQI70eSJIKg2ozLcRVWU3CRgvTVAmJqTn8GFpL92JDBgqugwZgWazuMaQGLsx3WLWrw53TMNRl9l/liL5/tB0AV//dVqL6/8NKVcw9bP1fpmFOexQIzczX75Rrm+1dV54pfXJ9cFoOgQFErvWrq73qhbi5DIsTAy2dvEGLi/sl9+l2/Z7WaRflMSzJR08wH36tmna9HeKB/Hy4cpv7+1qCknJtZS6SENOrnalmzdK3UEgqLztEtOtpG51PsAz56nG0wdh8eLZYLDo4P8saYuHG9ZX1wgLNCvxtYtguimyyHBT1GBFk0rA7XXDtsmQfTSWYV3uwCPjqkUWtKEy3etdgYaZoO2mK1KO+acgxGQ0wWxOJcSyFcaroOH0ZsMzJVB55ppaDxG9ZN7lDJ6dgZ24op1VmLpUUw5GDw/B2tRDzFAphMmOh9wtmk2qApcSKxbnpGIIbMXZIUTDbO4fOzLQlHQKJyi6j4LRtktqzKpFcISvjWNoYYwaeARMFEaFOiRU3h0VhOk2eXyOn3EXxiFCatVwSziXS2x6SO1k7jFULi3oVn44RrSxhD5MXXtrx2qspOgmrZFWNwrqVtO5q2U6CSwUrT6s+u7WjbBa4pafDap22jlpuEUCvIloQErq6f/dVSf3/4gtpbTXN58WCWSHmWpWR+XH3sg4HrszWT59oeYAk7BS0FuPgBCttLSZsm6u91x54U5YeBsavtrVrbQ99YP08P/d7su3tI8epz5g+/us/NvloE7N4trnSyTEqUZCuLD2/GILp/vK0ByTD0WKs01NoJChysTOXPm7albVp12aSIH9Ukl6pZfaI1xzZVGyjU6WVWz6l3609RQFBqiihFs2bwGOsqta8KK21jyIXnyL5gQH2cRjcdUxZK0XTEVvOqyQGh1jR1QYk4jGkqKJmOudtjBhygzq6J30LFzjwbYYpvmATmdIeyqGF/8k5/p/21smc1SUmDImuJd0S1O9dqbExj6gYvJqHJOQI2gSmF28jBxRlIRUhRNOJPedA1VUlzkiElQgTnDNYJcdSCYvcvN+XjGgw6gZBZ5k2aXH+uaXC2wXsNsntg+db+fNjxbahITAu+DIlabrJDJA9BuSoBrdP5tBsDGK1VNHitT7QbEmeXI6TCfaPtTKKZS4umoR8DJ2cbjg+XXD9eMPrI2ckW4zqsWFIYycU3SFnxcbahXSxoum62CRQLn+BTwLUeY7XfXTDQtNgYFJAES61XVvrPWXVFiMXYlqZd5Mq3Cdca4hhwXcJEZZqt8zzbkaNRenvXLsE62k7wC2hzm6wp1r7EGAPJanC8tS1tC2Pr8W0iiUdm6wERknE0TQPGYVyHazyh0UopWqSSnLWV3ZjW0jSJ5FrERM0IpMEZIWJo2pZCsU2kbt7VsigleN4SJBFMIlid+DYHA5uYcEZYisNLJGZ3cLGtzudTTHC5GxnGhta5ukiNgdbm2LtkcAKLxmIY1Z2H4v+YDATo+57Li7N9QZim+V7XkAiu6Wiahq7ruHn9Guv1EUlatWDYprqX1NVks3tq/vf0uzH2QVn2Fr+/Wcrq3vHQjXl/je6l0uZfNUvz4a4jtaZ6QszcMDnmJcQhu5LGmRsp5Gs9MY6kshc9tKHzt/uWb3bl20XR3XuxK2863ftN8Yq+4IMo7urn8ztK2QW/9fG2BiRTwFtQP2nTTkRk+fMmWzoSCQlZQwpZ874Sz2GMZdEt6NoG17hJIAmUOg2lr+coOkkhVdPLrTGYXNEUChusbrwJwblO22UbnFvQuC5nnHQYKWnMCkqECZjIFT9cQaHT3w+ZQkk1wflHVy9L+0rm/vmHcmPsM8uWGA0AH0a8HxlHJWhSPgP9F3JMS+7tnI1gNbumW7I4OMYZQ2MVUBiDxrE4dKZKwRa6IysJmF6bSvG/vMGFoOPdWINxAimnKRp0/L1Sw19uNhqcnDJ+gTqORZHR/stAMvtjXNNiBo38T1O31F8eHIkrgK6u+KtwZn8TJIOiRC6IeMXsVOKB2kY1zWEMNJ1Td59EEMvgI/0QMCFqkUZQS0vu/wT0Q2A3RI7IwNkHfD9q1lO3wu8uSOMOEcOYYBfhyNkcwFqi6iW7iqvtIo9xNhHkbLaQQj7f5BTx6XVj0xEkB34bC0YLIWpgXMK4DuMCJk2F4pQ1WP3YSAKntZKSsbQLYRxK1pypHDmJBGEkmYRtOkzT4qLBNgHXGWiVj4gYScEryGot7aKDpiN0FkUHI5ZMNoXgCRinWWTWLRATCWOgNYm2scTYwGJJYzuOb6wyHb5aJc7HCxaXGl+jnRJx1tB2NmfreIgGg0X6HrzGh4lzNCScREKZvDVGSvaArQ9aULJbLqg1SVJilQzjMGaQalktWxadJ+ym0hJqqFV3Z6mBVTX++SzOwiQlGEe1IvS7DdH39P2GIC0lvLV81UixmphqUSk/C4g0ObuncS3ONTRNQ9O0NC4rkq7BuckS/FZb9pR+/q239v1NfO/Hm909K4kNTbN64FoFLMrlUsqalDi0lHzONOr1Z+izO1kzjt5czfnWVXf2G6H/2ZMmVwwwe3+m2dd42Ps/5JMqzvadm291vK0BiWoPTeawyMRa2aqRSgBhjJlyO+fHx1DNaLC/iVtnWSwWNE3WcGrfas+WegM1YBZdoIJWwJWspTnb0DSL6joRabCmxVrNPCGDmxLIWTlE8rG3oOab3AOAQx4AFw9dYG8yF6bvFnAx0e1rhk4gxClAOISRYegZBhUywSv6jyEwjL26opJunsUPXt6PYm3K1hAxDudaXLsABwatq2OCY9hFQt+zvtbStC7TxCvomMi9Sr2evFiybA2ZjyTF7G4SQ2cNNpenHYPGL8QAYzSMQcml2m6Rs1tifuds5ShBpxTabY0RahrlTRkHdeFI3R4nnHHVsPlmg7R/RWLSW1LBw6RUgi31xjZv/lp9WehyYLYPkYXNgWS56KIfAiZqnZSRRJNjPoyz2FwbqHGWo6MVrrEEH+kHXzWhEuoREyRTUncDi87inEbdz6Pz86Pr75nGB0TwISI+gnHERoNYlVk1FwnMrskxwuiFTW8Zo8FJrBvjatXspcemMn8TWEkYp9k0kUatMx2kEEnWqQXh/93eu8fadlX1458xH2vtfe6zpfSltGBAEXkEqdSKxj9oRCS+YgwhmOAjGrBESIgRNYr/aElMTNSYGjWCicZGjSAqDwmPKgaK1FYomAJSLV++lEJf9zz2XmvNOcfvjzHmXHPts8+97S9fejm4xs255+y9115rrrnm4zNen5F72xGMSQA5SDwVAW4HbrkUC41z4BiB9T7AEWwIxrWgZgc2EFJDsLGB5xwUTkicEIyBg0eEh3UE46K4mAhoTQI7B5xscfqSk2iqrJ8H9wx29hy6ISGnzBsC2tbAEMM0ESEwBhB8u8AiSTptMlJAsOWogfDVpOdq22Ghs6dmB2eedBaaDIWUGDvrgHPnVsAQ0DjgNBLOrB2iDXqSERjLHFSLXcUevMWjXeY8kczNEBOo2nVGA6SQXG6zD1B95GTdhIDqrOlrnJK1Dm3TwvtGMzHFrSTupQbeN2PWIU1/xGqQf2+RjY35vEJHWWmkfpeBm/YZpkpmnTmaf8fYYQjZRbTGEFYI+ppZXUIb39nWgi0r0hFxWdXBE5CyiUKrP+oFTc/5v4Kp1XsP37TC8qkEaWMAopDzMCfEMGia7xjVX4KFdOBZ67Bc7qDxmdUVVSxDJjlzGBPnJKvE2EbAhv7tbA4cHV08Rzo+J1I96q0ax2M8zRFS+qTKAgkhIAy9RppHDeAaMAw9um6Fvb1zWK0OSsBnNh9ny5JzTqoHkxbpY0KuPSOZN2bUxBnI7Kx54MtGIrwNDEYIA0AGqYvoV/uwzSWikSnpK9EIAjMPBZflSS06asEgEMhYDEQICUAQl5o1UmwPxoO8pGZyCGiVzRfQTBPNoCk1kXIfRuFrcc6DOWFf+7Es+0UryLO3mpkVAKx9yOXz3G5U44Y1a6Awv+kZCMX94oxUcRYrj9ZVUfdhDIy+H+BJ4jNCkoKLxgLeWnHN7HUwRnh5dvd6EAHdgcTUpNBLfwwDYhL3mdNNtG0cnB1T/MbbGwEKaVtzDaIhMWwClguPhp26T9UVlNTKYSCWmGSwGmT8OCfEhT15+AWVQo46CCorJCOyZK0wjLj3nEPCAHK5cndQTV/uI2UCQmtBvoExApRgjPCkWCdWOABB2z8kwHoPlzxoGLTmjQGlhCFJGrxRwCCBpcCQAixJwUKn8RdeCw+SYclwayIcpwrFMZgMjAMaYjQwaMggdD1CYFgAAxkkJDiwbsojZ0Fm5IQGbYISjFtiefI0dlonYyQy2m5ARIPV7hreAycd4+zQoKNRKSl1qZj1vREVZtbdbI0tG2G1aDlnZd7I9J2M+3Fwb9s869E0wn65xGEIMww91uuDI84mc8x5UYi8y1aWRjhpvFhfnHVjdlPJYtK/1XV0QW6NC1lfjmpgvltzGBQ516BtTx++FLO6iCSGJcRpIO7oHpI4SynDEcZyAKgw5JZGjpawwynN47erDw6d6H8BIHHWl8VR6NbFpEXMqr3nByCDdoz4zmmOsmhb2+DUqUtx6aVX48SJJ0ldFNNIVoqROI0xZsNW7x01ibYYtGpkvX2WnOfbONJ1Mn4ufssQxGUSg/glYxgwhF6DfQetkCqbaNevsV7taxprnLiwQgg4ONgf6eI1EDDXAcraqixQY42L7N4ArKSIZktJ7is1348cI7qhQCwAIYQCIEM0MAHCfKmM8yWmNvOW59Pn7lCaARDBEunCx7AkRsOUCEHfyxpTDFL1t3ESjBxiRAhmTMdNkEyMPI4SgYjRtgv0fR5nU5/9IW2xelpUHbdtXS5h18zgFBAGofKux4dYAqWvnVqAArVgCrBG80dYic76CEtjcOaQgD4kxCGhf/gAKTGsMxpDY2UsxADHCZJwHjQ1nGE5wnCE8RZtY2Hqu9m2DgEgGAVLFoll3vjGwFtXFsrJnDAGMA3IuFJI0Vrh7ghpCQwDPOV+IK09FDUOSLPcnJfBYiycJxgHjBWmHTTeGcwGqVg3WNJ8FaiTsWJVsF6AHlgACSJCSFLAmsT1KJqhAAGpDC5AICpmEkCCsdI2kVrVSNxrCSOBmiEIeJeBwdp/xhg03sPGCHYGAxKGRAikJSTy2CvpZJlFU8GSVl+NySAmo6nEBsbIe85HwCTpb8M4tWPxaB/RDbFsXJlw0up4T5VrqAASHc/ZnQiWbCHvTFk7Iie1dFIZO+PorrdGBTYX2vxRa+Hj/CtGmo39MgZZK9d8+GpynwbOuhGITGJdHJyGCGRA45yXv5tGgser0IGjG3yBbXpDhxl/cbXn5/4jOFWI0UxPImM9pzpvpkNLzaORhE5ATIg9jmrduGaNn5//6WQ168JyrAEJg7X6JavboFfN0RRTotCvC6JtmhaLxSm07Sksl2ews3MGi8VJLBYn0TQLeN9ocGhGvyMJ2mhGq65/JLrI2sIWl8pWGbWh+v/ii8WonQ+hRxg6DEOPvl+j69aFHCgXGUxFa9BMHU6jeRWyiMQQ0fdyLq4WycjZNBgK4ZxUXJUCeqDRV0m+0baJRmutLQyuhpTYrXLVZNN6jAGki7BtFqJBkrC4ilUlwDoPq9ojs1hVUqoWGtb/6hmrZnvSv9WzU5wpQsCZjwGs86VuUYpJQQ2ru08ytXLAZIkzAonbIiVJ2XZSWiCVxbW2GBylAnFlQZmOoVETGS19fd+Jf79miSUqBSUbJ6y+0bSwdh+GRqATImMIrFWsCd4AhhiWhKOkIYMuDQhdROs9Gkd45KADcZRMGtIMGSPziqyDaXfQLC3aRrJTSoYIFKRWa48hTfWFBUwLY1pYoU2FtYCBhUGSeCCS8ySWoNaUxHph8jMjg6aReCpnWAJlbebbicpcDMAQnBGAlZYLVVK00FtMpa0mCX513iOyQ0o9DK+xdAk9lNKcCDCtjEtOCBFoOD8FAayBIwYdWiln3xQCQaOjJsFStsDl2kgoJQ/kBY2gutrPGGrl4wRHCZYTnLVIZNBFZQ8mcXuyktiN1oxqadHn0g8SU8Tsi05gbaYkEBDvDKFpCI0HQiKQciHlsSfxHSSWKZYezYyf071fxjCBJcjfSF9Qpo/ZWCA5T6ONebO51p7fOlG5PYkOXWNsG4HrBleKDSNhiD1QZatuYBrkxISxGKr8bY0RgNIu0Dby0zQNmnaJ1rca56ItKL+zcnsE9tpQakawUgbjebf8nApNORca41oj+4IMvKysMyexsgxrcQ0NKwxhhSGsEWPOSOSNvj16s/tfAUhkwzQgltTXneUJeN+gbQVkLJansVycLK+dK1zHRbJbxtqqROdEl5WOP19Q6Ob7m7En02O4EGBtI8bK1ToFdAwaFCYAJCiNd30eAor1grNWgpo0SwdfGq1CYgER10wM4neU+IisZVAh3xKOiSrNUYGapFFrgb+kmqoiYasl5Lk6X9ZUWFccYyysl2yhrEkRs5jNoy7mZsztn/R5Gqu3lti0cV6OPZ4yAZosMEyERLJIOiMb6YkTp9B3HUCj2T/GpC4ornzyea9grT8kkTLWOBjrpDJyWVgOjyQZF/XiOIKcqXJYf0t89TFJLygOklsrsRdA48RyN0SGd/LcOYmLpO8ZMYz0/yCJP7HtQjhLSFPWY4AjCf701sByriVDGFlpxDJjfYvlskHjpQ1gICiwIMKY0q2gPLIBkweZBbxp4ayMG2sDOFk4m+BMADMQksUQPYzJfTMAkbFOefcmRLZioYgRTSNgMiVpuzUQwkKW/vZOU3rVreiK63Gs5s0wCFE2EdoRi2rrXRl7RBaJW4BlPjStxzIkxPUKhAjrUgFjbC1gGgW/mp7PhByII2NIXEmS1q+bJ5G0iQzIaMooZG2KSeYnM2MIAd6iPBtB2wmGCM5ZxDCmhMsCwGVM5ZiJEIB1JzwwZMTNZK2F97IGhpBgGwtrxDIF0oDTrOTpvSaGuJPUxYaYiqs75nLj4FIIUDY6AbiGuMQZyVTVVut7JVC+3oHzZ+WYagGYzKO8O1egpJrFtdVkPKzS4rNruBxQnX+y/0osmkTJT3cNAMAupqKPg4yB9y3atk6bXkjqtG8mrqHiMirZYUcDlqPhwHjtCYjJH2VeI9jSegbD+x0gJxJN9r+oKc9rjWdZC3DJriEes1dl3zkqc+iwHGtA8tRrr8Op05fC+wW8X6JplvB+gRy/UQ/K7cFD8nmunFuPvgtbNqbbzWScMo8lwUMQq0aoMk6CFp6KQV0p2b+XKlOjbqMFiUKDcyV9sFiAdIPMdO+AaqU1GOKxmF4dMJsLZQHiiklqYcnmRucccqnqadS7HTUqZsBoUF9erCB/j7poXl6zZuxKUb2iKgqyAiAab+ZskUeoJ+ZR8x8NCeM95sMSsQTs8fggSYGIVHUW7ZaIsVwu8Kg1sM4DxiAOsfSTuEzyClhGS+lngCSOxnt9htlfVOtom6rLdHE8jFkrrUPHETPB+QYMRgqapaTP3xhg4Q0MB3BM8E1mNmUkeCTrYV0EQgdwSWaGVfOyTYNuXdK3IURYsKawa4trUJYYYRgAaDZDCb/XBV1V/hL8yIw+GbBtwcqNM0R5fxhkrlgaYFOvrbZIHBGJQEhAGhBSlMWfWYi53A6GoQdxwIHuEsY4mMbCkAJFa2GNbPoS36GcxmxK/RcDsfokaDA0WSzaVq+Viby4hHPkTBBrRQteO0IToqJE5QsyDSIaMAQkCMAFotaoEhCilhMaY30Mk84pXY9SGseFzqUyr/U5hpAKWAWA1lskYgwxIaKeHxNYjJSAdRckJigrHZzgnGREDTHBJ7WOZXerro+m0gJyIDGRrgmU9FkYIMSSiZPnv8Q5SM0kQ6M7K09/Rt3Uze193HHL8frlCaBHCXmtb7k6XbX+KTgZgcjGFypgLdNYwf5GywB9nMyHm1+/zO1PCetuha5bTdqWv2KtKxlDTouOeut1rWnK+3KMxL4450DFzbdFLgRYMm6t4Gz+4xDwI4fGODTNiekpNGwgxl7jWSTtOcUep0594XxXL3KsAclVVz1T8toBbECCQ5ORNwbzaF4XTXkq+Xu8AUwqAFKsDJKW1Q8duvUKfd9p0FCmDpd4DUnzSmWRBkfkwEtpjprveJwomQLfKKFb33eyiOlmmWueZNCQj005PkbXkmyFkSkl2n+Kadx49V6zBiyaI+DgZcEkqVvDoI0KxxJnkTcjRj2HR3cHzAhLyiaddW41/xYVXsnqvF2WxbZwVTCQX5TsUmLRiAsWyCqXavbWwBLDGvmdM1BZrQJIETEEGGvhtVpYtpRIUOvYam0uNMtU2mENvG8wDAM49ROIuqGHaPszydoUzJb7qxanqG2LMcBYj3bRAm2LGBP6bgWOEY2zaD1AqQNFiA9Zx1BkC3IL2EVAOghax4MQIYXjrG9ghgTvLAJL8GRI4gJltUbUVh0mYSIN+7s4dYpA1JRF2pFaS/I9pUx/DwQ4RFoAxilizOeT7BEPwBuGxwBCRDLAAA/PAd4OugkLSBiMQzAWFg4ODE/qCyeDHg59FOJBb6IaDyKQerkFYwQMGAIZhqEEZ8UtE5KyzVKSH+uEpZkjwBK0mvkwoKB9ubNEyUpLSS2IViy2xIgMDKuEPiQMltAaFisSJJXW1NW7SWKBCsmeWiOtNcWamt2quhvrmMrrQwSHHk5gnNSimaj0YyYJc8K6D1LPJ8e1QBhhrTXgKGuCIYJXPslUbfb15sSQ65/YWQJgrFcrZJbSafqtOH2zS9gaoN/YJWsQkad6pQmodTVPxPEznnyznn262vB0HS9EbNiUqXZwlFuo0nPHRvHGGTcKzUweRXW1be9kJRXd6tARY1q0OWQ98b4R95C6ipq2RevF8lK7hA7f5+EGHVL8qudwFOYBIIqBcRrGMp54ubjrPN8a5VgDkskGOMUjm4B443uVv1u3yjFeoi5+JtT0XbdG368kZqPP8RtdWSTETzpaG/I5MwHTlGCMFRTxyPQIiB+egRwHQoWdVbIiYkolJmIIobSRBHEUDCX7hwy4vODFKODHWCvn0oCupN9zmY48F/YrWhHrojhyoBj9LdpPKsAvgZGD+nJWivQ1A2r5IZuJsDKVuDyDlBJSGMDGYeAB/Xof1nqkIQgLL9F4vJrykSn2NXqTsxqrtOJizWYYANYAjQNIKxiTxjxwShjCgMQJ+3t7YrA0VGJscn0X6CLOqtnLZbicyzuPxjfiXtHA14m2t7ka5Q/Pp7IwEEPUjJ8k8Q1jZjFIacW9ZTQWWA9RfP0KSJmBvluhX0dxDxgHGHEV9pHhjRDtRVY3lPrD+65HHITWXDR4iTVhY4Fc9oAH2aThC2jZ5BnIuIOMQ6IGTBZiEk7VhiDWgEQOEQ1O8CNgchK7whGeIhpioYtng8gGnTmJBCHPY27gsAdrxKIivHgG3lssaICDFlPjiJgMetsoBwYLuRkiXFppLY4WCQSOAwInIeGzBjFFUFhDLCC2gHWT40Q0VsOQbtzqhrGUFRrNZogM5M09ZkJABbaGlAHVFkteBupt0wgA1fUmwRQq/2w1cQQ4I9V8xaVVuW0ymDcG1lkBmylh3QX0fUBsrAQzG8A6gnUGoZd7sgS0juAMMGQywoyH8qama03TNBIQ3vfohwE55mNziCeNHZESRSNQIKLJ8fKq2jTrgXXkjlgBIP2vqKRZp8iKqLwYJxQDh2mh83e0ZUfMVyncl7PeKgZsylfi8URHwpD63o6+ycQJHCWWSQKXNrBPtVYiq4lEaJoF2hzT0u6gbVu0zQLeLyRpIWdHVr/H/pquXZP2bkoZH3qAvjhYndveeRtyvAEJ10CkigLbguJyMOWgAaFhGCSdUlM7Y5USFeOAIQyF0TW7NlIGCvkiINGWGaVYmjx/UrbMOCr+rAM3jYO1jgrP5tikvld5xcW6EaO0Q+IGqNwTSNMlAc1o0e+bHFCHArKgqc9RN06jYMNqNLmUCM+MpWpKNhJfIym9LPweRVWpsDNX90M5fgRVewgmJbAxSBxBKQLRQPUkMQ/7JIt36GWSYBqdzcTgKFYmcfsghxWM6FQXlRglJocIiGyUn0TiVDIZFZNVf67H3t45LNsGztkCIBMLoIFu8NlNlsFIBizGWvimQYiDEhzVA1Pbnycybwl13aI5ybPXMQeBrVIELpXvC9CSxSexgJE8jhhA3w/o9g6AJMGowbUSL4IE6x1ABv0Q0fVBNK8UkYYOcVijoD0KSEbo162WQChm8qKo5l0vPyu14CWW9GrbCqsqSTZV0SgJyBVrwYzEYkkhjnCpAyFiMBYdnYBUbEmIJIHTIAkMHHgBiwCLiCXW8DBwZoCnCANJcyVm9NYj2QXIiO5myMBzh0WMIEQETRNmFuuMIyAZgInQZBpwBICDeGiixEkEFgZghrg4E2zlGpUYoKWLaKwGjWtrveB0JGJYqOvG1HFXmjFkJBOGhh6JJUOsSyiF6rzzMEiwkCJ/MY9VnTkjB4y0zxhC6IEwSKYVaFTarDHwzqHDgAQDh4TGAc4ShuxfgaxjAOC8A2JC4x2EnNKALIEHGf95vOuSIEoXBKg6Z0FIZS0p4L+WDCJAWTdCfdB0BapnVbVmVH+UdWKiIGQ35ubuStX/etS28roE5Povhxp2CFdobSpCsUoxxnYVIEWHTzU9y1EvoP2exwAKJljFfaxXB9P7JJ0HpV5RI/wtrlHXUCMFGtVd5JzXelUOR1mPprhNXiROWK/3tx+/IccakBRQkP/UzaLrDrBaHWC12sfBwR4ODvaxWu2h61YYhh4pxRIExgogvG/QtAs4ZXYti7u6XaLaQCWYUfF7PRgTq3asKbIM9QNXD04tMKKxKMmWLkagMasCABC5pJOGzAOQ1/Gy2SlASFE0zfwetJR4Dprl7HrIaF8JtYypzMYZvGjAqJpdnTEAG02JlPOX/3k6jbm8L2kCZQMuVP4VCietfGytDHLfwLUtQp9Gy092HeilqbhlpMBaHPTpU9LRQKWPOAdB5nYlgiWGM9mVlABitE2LnZ0dPPrIw+j6DoBm/VjZMQR4jER6RBIgCQISZyprA+sakLHozD7W67VmOm0ukHnxPQTnpqKApqRTGzMpG58XNmcICy8WnQRUGrZYrEKUYnCWAUpRWHDbFoEkMBVGXTWJQRaIajULKSk3jFjlbCumYN94GAW2RmuS5GrY071CskJCkuwphwDAIFRWN6NAOi/ATISOG0QskMIacdWBkAC/A7SN3BcPiCz9nUHvgAUwHGjMSw+KwoC5hhDeQeN6kl8gOqtuGDGLI6yBGCDxRCvpN+MRzEIsGyCQzmsDhiUUhYQIgJV2M0s8hLGMXKogssbAUIIhKF8LAYnAXBfoHLVZo0pKGb9ghCEUrV7AJiHAICroMNaBktQqMshWVhmzMGP2B0MCoa2R2KHIAV2fNCZGY2pSgnUGo22R4a24bVZZ29bhSYbQtA24D5rRo+DcjHW2iqjWbiwjhYgYCVLyIiDG6ui8QE3WuRoI6LpbHbt9WzwMTHK76yy7EfpX3zusR2w/dTlmwzpIEBfykft1ZRXCZMqMr2jyhQvKJu5h3vI5552hbqeABbH8r6e3BejYcOXHadqzsx5NO9YwygG5jW8LY3F9pmEYkLZS3h2WYw1IvvKV+/GVr9yP/b1z2Ns/h729czg42JUOyCRgyjaatCiamEEXWC4W8I34wHPtBKDSfFm1jfxd5Qmg4psdReJJFLRkd0ecgoCxQq8GeEbZ3MhYKfZGUo49V0UshFzMCFEoojPfQc3CJ6mMSiGtaIMBGEolrkS0IFNcMcJJIeb3EKT0utW6MDWwlxRoVxYH+WzUHHKymLwz8iBwtYACeo9Wf4wVN4zRFNJSCp0Q+h6rvV0M3Rr9elWhcYmCI6vfA0ofEAGx7wEArmmRA2pZzadlaggiUg0dOmvFht548bserNYg08A6XZBzZeiygpjRoqQ+fqNAhDih6w6wd+4hhAcfQN+nw4tJUYFyP45qzBTYZZM+w1gLZ8y0kJ+231oD7whdkA1woYHAGW+FPoIr6lqT5Jp+cRLM0HpCgCcZ28MwICRGz0aABwScniAD752w6nKCDYNox5Cib4YySZ08fyJSOn7WYobiNtGUhNFVSuNPiIS9A4ZfAClZHKwSwAnN0qD1aqXLbh8yZRMIsFgPXgoJcsLB3qMlXioCSEEYUm07oKWIRpJlMPQdhtUKPAwKgEVbtN4Ajcxdv7CI/YC0YhgEOAMFPuqisRbO5ayRnKMgBHRDEjM4jIzVYllNDG8SLMkIkJgmsag4J+UnZG5JG4ZhgLESMwDNzEl6HnGvGiTSOCcFNEPfYYgR1jk0jQfI6LnEYtssJKagH2TcWWthEoMNw3unhlUGk6R7L6zBLo1cMZMUVQiR4BAinAeapkXf9UAapK0VFs+rhY5sWGMw0OY8yXMib+rVdlvhFl0EisIn2V41EJiClemmzdiMO+HJH3kkj//ndXy7ZFVhA1AcBSYyCD/PMeUUChw2z5tvdfMc58MvEwWI62On7c7vy97XYxhkfaW6b2mcxyUbjwzapkXbLtG2SywWO1i0y7Hg7WOQYw1IbrvtHaUaaG2qqiFi8VeTAA+vWRHWjcRmDGhgqFoJmEFpDFbLwKKMgDIgNO9e3UGJI4gNchTBCEioKnUlE5CzG4MZKQmYiJlFL7tYlDskppyyOurI2VcZOSqraGZSlOvldFXrHKzW1SE1w2fgEmMAawHAEiynmlkGDTVLqfQBFUCQ14NsXRnnDRWtSBgwjbqQxhlF2ucZqKQYYSiDFoPV3sNomgbUEKzDWKywWoCyi8maRgGUGZ8/Ech41X7VKMus9U70DOrH902DpmlwcHCAIUZAA8dyv3FiJIibqPFeAw6h2U0oKYyLdoG4OIH9ZomhH5RdlY6gjx41Q1lUaj2NwZmivmmV4GxfNFAS9JCQYNX3G0VlhbVjBlA/JIRBMkDY5KwzBoIEy/UMYSINAyxJNU6xEAEnFi1SGATAJUZjDQxH8NDpUi6m/KzRjxHG8uyNIVhKMIhgeAzsAWYkDGDKX5RbthqTERKwtx5wwgYY69AnB04BhglNBuMmgxHZsqWzDDr2SGiROOGhg4eRkhSplIANHW/DCkvs4rRmKEQmHPSMrkvIZh6iBNN1MCaiXSxgGsZ6iNg7kHITimnVSkbwjdR8KSyoHGF4QNM4ZH8iMSQw1IhLBAjwVsjHiPI6QbBW0q2NNXKbZJBIrWysGyhJXIfzSl6XxLLJPAgoAmFIEX13gK7vxY04mHE9IYJ3DU7wJWhbL4BErQVkJH6k8aYsA0lTehct0PSEIUjKNKtbcugHpCgpwzFGdH2Htmmx3NlBOthH6odqXUjKTySzXwj9JhEWG4rept6/ZfpMAAtNDpfYCbNxhs2dfTtyGOfj9Jz5SkXJyyiFsAGGNu+nPglPNnaJ1dpoxuZ6kfFCBRhGSPjYZOv6k7FJtjRldLOt3dVJ8lq6pYnohw67++cOvd91azwWOdaAZBh65KJ3AApSy1knkx9jYI0raZrOudLBubQ2ICasEX0kpMhlMhseN7aCcAFwoQ8HJM4iFesFaLQd1J+nGGUzzdo2SFxDIRddYnU76PY0AeD5ngiWRyrjTFZEFSnZmBFTGxZJJ4aDYQl0k3Uvlcwe1s0m5tQ9bUdOvS3FtVjuCZRhRi2qATNKGiNPaK0xgsAYgcaIJ8VY+HYJ4xpY3wowcDlDQPpdwIhcL1P9y8OAbty6VrDEJxQfNaubKwoxXI6TadsdtIsOi7bFyZOnCi9NVOZbBjTVLrN8SsYAEEdgYgi+bbFc7mC92hP20JzdNFl51Zesf48euFwXhAvjKKlrI4NGIRoDDAvzpbfy2hrZJEnP3g2pkL1RDrRhAJSA0En2CVmYJIXjEGNx62SwmDkmrHVy3hhEa24JjRM2TzA0FVTHJaSPrZHnGCNJxgcIHHuAIsjYwjxq8vMBwzdetHVrYVyDOOR47ZGPBkU7N8V1WeY8577UPtKxkVjigbr1GsMwFMbNhJzwQwUQpiREc2SMMHl2nVS85Qy4dPwZgMgjuhMY+l6sS8OAFCK8B9qFQwxSn2WnEbDhLIkbBdkakhUI7T8N1LbWwjRO0/zzLpBGUGKsKiSSmROjAghASPsAxKFDigOMt+omlnEUbQ/fSCDjMNhy/uzacZZK4LjRDbmxQpQWQGqtZLCWJAAIi8UCTeOxWq0w9APatpmsF6DRApj1hRCiAECjGUHbJGs8eeNXofJf/mM7wKiPk3E5roE0PbTA6RIRz8ij+TA44FF/qEbm4V3/EGLIYGQ8b30bGQ/Ux+cPdenSto/jtW7T5J63KkH1wZMFaaOVh5u/eTRXB026kscYx8ntbPqRjpBjDUiIRnKjCRiBugmIQEo2ZIp7gAqNeN4Y5LtWNhjmgoJTBg56vvqR5EAr2bQlTYs0UyHHguR4E7FsZF+PZLnEEGTR1xTCcr0UwWpFMSSrak71IjVvG72OqaKiSzT0RgozVTNPapdxaadRKukCfiQsrtogAWVvqMZTDpgaZyVrLEztzqlHaUxR0izNOBGzW4yJkGKAcfJ8UpLMGr/YkTgHuQnkhYcTayn0qtpvLWbUXFKSgEbheZCIiDRI5tTQrRHCILTrzmltFA3Ws1JZVK6lMUFKppUBW2a+RQWIc7yMb1o432IYqloR9RpA0n/iw+UyrkqfqMZdMozAJeCRrDDDchjQOoK1QBc4JziV83R9rJOvJos7aZE1KAcJax6zUzDAKcE4DzYWxDlVWq1c3qNpNTAYXIAxFCwCYu1ITGBqkExTNl5xoQaZPWTAziL0g8YUWbSt0xgGgvWNZqwQclp5GQXKEMc5kJzGcW7U+mIbC2edpLcPg+iiMWC1v1/4RBwZ4Qcxcs/iomMslgsQCP3qAMSD8HvEpC5D4ckxxij7ZqvnlsJ2kaRgo43AEIC+Fx6ZsycswDnpdwQimaEWnHlRoDE9OWMjVhupKCZ934EgcWqOLAIMAgzWSerSQOM4YhhgOOlz0uh7jXNJKWIIMYfYyHjMoEgBmtHYrMYaNI7QB1VMdN3LcS5J4+uk7IO45mKM5bx57mYSvcQSdN7YVKUU52myuTMf3sgm6wxPsIpKXmemu/IkRH6yQVarSLYW1DrkttNXp64360PHnkdGgK2to1ERrM92GNfwCLQYk7VZfk3B8+SzGsBVB0wB/7Y+39J2jNeegJVt339seOR4AxIJqGnLRj0Ck7xJm/F1NvVmhkSqtGhSLUrT1TKgyKDCkIN1DKGhr9CfbmIxBqSYCrtk4lQmpNEFO0feixVEggctOTBTCeyS/HwSCnUarTw573wCvJDHMpX7R2JlItX2YbRkZEUjo+3EkgFQpJoIxb2RyTbkZnXTyQO2Gnb5j2y6nyDkGkorUDRSTRlEQAyAdbBOgiwzYLK+EbCp/cwxay8ApbG/siZWtEx9ftCAXpLyzDCQ1MgQeqxX++i7NbxvEAOQ1mt0vTDhdt0aXdejbVt1KTlJVuWEEGLZ3AuzZG4foJYXLu4zAZpJN1ZIsJsCw9z+GqfI/YxWKjm/ZlaBS59xDLAmCQsppIJx48fMppQYqy5iYhgBkM3KrHOCkxYF1OJytlmAjQXHCOMbkHWSjqGbuRSYNFgspCT8pqJliBAjYTUQ9tdO+E6MK+NRwLp8xSoraIwBEQbWAG27FOK1IK4AIok3StAQyyTuIrHeSH8ZQ2haXyj8T5w8gdXBCs5Y+MajX3doFi1iiAh9j6E7QGiNFuZ0AByanZ1ijRzWa3gr4zCEDo23gLPouw7WWzSLBeIglgEnObxipaCIhABvFKSlIHEiRgBKjBrmTQYh1FlKVNYSIrF0pRQw9L2sL2o+yOsBEyFE2fS9lQrFzjkweSTv0J17SK2pIwhkteQRGSG9swYpJvTdIHV3eKyEk5iQyCDEAE4CmJwBWm+wDlaC7quAcQBYrVcYgtbJihHrdafXzTME4z4oXQBArLfOhpKlVI7eRATVMkPVi/E2t6KSLfsqbzvt45YpkNh+ycMgQt49Kt41r+V86FbG1ZwmiuH0uxv4qjSkuHm080YFRQ4c94X66+fpy/w4q2tuXnrzhGVtewxyrAGJbyQ9CYrq6yqXZaNGHYCjQkY7SauLktBP53zyXP8lxxgwZTrx6jx5E6qKrqVCBsVqWdBYDkWsklWQSipt5vcQUCojRsIipE3CjprvDYreaTJgRYsfp2oZbDpgkroBxtx0sViMIapUwEjO6hnRbz5Gvl/gSnaB5BEunapdn8FhZqIcs2pyUGoBV3p8tj5xsdGPWhoMCYkZB72c1saoLAm2Om+ugEsQ2mtDsiEaIlCKUpq8XaLxHsyM/b1dtWREOGsx9MKg69nDaB0k6wBWll3m0THFAEIalEhK0jSHfg1wwnK5A2MM1qsD9Bp0K89r7MPJLC/gCkoqJmmubO1oKcjuL5bCbs5oQcIEtDouEgP9wOi7KGnW1eog1jB9ETNR2hjnBKPVrI3ct8kWyBTEXQNCMgRvd4q1qxpuSEzoAuGg8xiixDeU9Fcd92N2lSumZ+F96WHsQgpAamo+gRCIEfo14FudIwmOvVg1kK2YCWwEfGYQC7BysiR44wDL6JMoDcwRKZIQoxlxfcnmSzBpALGkQTsDNItGaPgHcW01jUNyYjnilJCGHq5doNk5AcCAeuE1MRCLiSHhMulCRGQpRphjMIBsbVBLickWHkZUZaHoz0Wx5bL/kpF1zBonlp7FCWD3UQW2utnkcaVIMPTCodR4g2FIWHcDTi4csgFYjHQGfTJYABLcnALiEBGjRdM04m7RIi+iLET0cWSZTrqu5rWoni95DEcWxcuYhG1BVvWmP3HZYfNQRk35cD68sR0s0HQZO4/k1oygYtyVJyDignsvHTpodAEd8TmAzNA7PVVpVV7NUWmrZU2p978a71U4sbp+9XoT7NQg5HAzj2j99uO2ybEGJFbdMLWmAWwgaaBYMgpCVOuANUDTCFn/WJAub9xUiF5zxdeJL4NGuDkBPJR9r66kDuc2iTtImVkNCSFZDTkJhR2UzFhhN2vfpOHWEdWmWAGOvCmO4CYHmzKyiRdIZZHKgzYDF+gGloNFxa2g7dLVpRyb8UjxEbPE6xqliCcU0JFN5DnWRUBcUPM3AZwQUkAgQhjWohUmiaUZY1xqt5BVk7aIs/pas2IM56DZ3NtcCO7WB/tIKZasDGsIpnUSWIwFVvsHYIbGzqSC7pO+J4XC5HmLJSwT28mYIk44cWIJa06i6zo8/PBXJC4oxTKJR61Y2paqTaP8S4NunAZ9yBYTCa51xHLPIPQDIUQJYvVG+nS9luKA2TozPqxs8SKJGaEMJBR2xgHZZM0pgo3OAVIbTYxIsYelFmC1lhmWOB0QugHY7yyGaMt5RnZQU6wAOeVcmH9lU0qaohyjWG2aRtopWWSDzo2IFAc0sUHSLI31eg1oPR6khEEDKWGM9HtISDZTwUt7YkygNEBYWCNi3yNFhmuc1tnpQcpzIrEmwtsSwoC+78GR4bxDJkQksvDNDsg04N2E2B+ohUCKAzJLkcMYk1pL1WqmLkGxVNrClFrWGN2njTHwjReivBiRCQxLHFx2x2C0DEt/5YWn0lKjuIvZM0JkcSlVa6WsN4TAklrsKI+ThBAZDTXwjTATpxAKCZ+hbPWRQWXIiMWWuYxzZkjcj8aNxDoFp1x92pa8aJvNDRWj1Tm/ewhU5KU1K2gbV9OzTDbcyVlocy/JG0J+PSplk01YNpnpd2j8cPvePNJJTNs4adxWyc9seoyejVDRRIz3tBUAbm/W5JY3j6ON8227txoAXUiONSBBdivwmF0wWi70HdVGsjk8gxNjCIvFcuvgzhDCZFCCrKFkBKoavG66phBSiZicyaKbT/3dPDlrfoDsjxWTNBX/sRyp39Vr5YvktFDOsQykFY6V1MxY5TUgKq6CcdNTTQx5s5BJm/LIozEeIMc6ALlfUfX1iNylno2FYSDTzY+gSfo+pSh1Tzkhx7HAOJCWlpdble9a10gwZba0YBzTXD0l0qJ5SisCigmJxMRvWNKkU+ix7tbo1wdIMUgKq/cwBDQagBdTAvZ3sbd7Dl3fw/lW73W0GFlNwZVnDOG0AMGWLBYxuTvt224Y0PdrHOzvi8Zb1KBR7cgbE0pZAbH6GB0z6y5gf/8ATdvIUpYimkUjwYccMURxE4UhoNNHcXAwIPQd3LZdqbj3UlkpmMc2iaVEeTK0DVDrU1Lq9zj0WK8isjvUqO9zNXisBy8EdpzGcabjNhO9OZefq/LSaLHGEKIEhsZeASkQQ8KgbWNOpZ6T1EQxWK87nbdrnetS68laj6HvNRtESwO0jZyzH8CapYSUBJCkBGg9mhzwGxOj73pxxzoL7nuEfpDvJ6khQixBzaYU5xTgykhIbMraFBMjpAhLEj9RCBI1iy5n7jhLOgY0NV/jZMKQ2ZkZY0wJlTmTXSjZ8mRIgpKTKiB5vUppDLqPidEPUtIiJnHBaTa7Us+rAkAMb/KaAwVgjYLYgBA0XoR0u2WJfRGjjG6wDMka1E08slShJrBGrh0h9cSvNv/8etzseMvn1TmOkE1PQqn+W3bzyaflN5elsg5Qr9t5vh34KEiy5f1NtLixCpa/MpYpyKE6G03g0vQMh85fnWtD8uXrOxsBWx24vAUcbr/lQ3KsAUnZyDG6EcYfsRTUBc+yGGXndJXLpIz7zCxKBNjDA6sE1ykIoUMZHuPDqN0cI/YWTaYgfs7BrMpLoIu/Xky+N+EfEQNlNomSYbBqqEwEZBrgaiPPV5U2AdkfnYdS0pS80mbmakHJWSzZOpE1IVMmszHqjtHAx6yhZRA1blyS1ihEYh7WtXDNAn6xhGtaxKFX1w6BbJWWXdIyMc6iwo4olgnJROECBhMSOAYkJAz9CmEQ7oxmZwFvRy6T/EwoRnjfYLHcwblHH4Jrd9A0WiuCBJRJBkodW8OFVyWDXcoAgyQeaNEuVKPskZeuHFOS08ozW3Cu+ixuOnFlWGexs7MUtxQYICtp6xQBDlJkGAQwSRE3ZvS9xjT5ZgRCRONPGcymBIgiaYqwDAgAEkuQCuh2QGMxdB12d4HYy3McM7uAgBaRnACS/Myq6ZeiaPjD4OB8RHZNZrdeiAJIwtCpNWQcl3KPAryHPiCmiF5dpDEE2dTBEhvivVi5lFQsEwc610p8RuhhUgBb2WyFh5sQYgA5Ka4XhjVSCOhXDBgLo8HlcVBApGUNrDEIoYdJDrHvJGg3gy2mUk8nJKltQ6zF75T4ULKMUCxgJm+u+T2lDsjlH1jBDhgINCB5B1uPK51rrm3hIOUMUoxlvIXQi4VEY2b6QUBiHwWsWBIG4BgGMLviDnYlgFwAlm9aGGMwBAdgLdcoezkXJTCvMNMsP1kNo9b8IQobyGDc5vKx+SWhUsyoPv48uKNWNDcQyGQPR/VislvrKpGbQdU6uFU2d9/zgZP/v3L4nIewE21+WrWLtrh/tkgGOxNcWHVLsT4dAWLO09ytcqwBSYgJZDQ1TjXLDE7q4Zx/kVo2jG6etbWirNXVhi1AJQMWtWbotlJzfmxeCsDEVJ41hWKpIQK0mFeMsrhmf33JpsFojchm7HLd7CJSLTIHWFpji3VCFjQcMqmVyaVvMlg1pHFS5+lbAEUV11KfIwOTTFam8KFcuAYoJbi4mgYZU7NuyKD6PSksl4Eca+3gXPQtZxcBkLRWtWQUcrckgMRaA98sJNWRGKL7SzpmjpfJINZZB9+02N3bwzD08L4psQJy+zoCePrcWd1dSU3x2foVmYXRsGlwcCCU+dBnijI+tCcURAtLrrxnCPDWwRpbLAQAYGwDayVtPObgQiJEyDUYVDheYnLgGACy5VoEgDVg1xgDhhR/VGKRqk2Zpt4oI6kEa4cwIDoHICFGMxpdwGDrwXZHMm+4GmcsG/D+wb64PVjOl8dIJprLriaOoTwjlxLWqxVi6OGbpcyJpBYahgSApqjkYeIes8YhpkFcuhAitBj3JUMGwtiLVipOcxgK2LGmkWcbOlAKIHgY52UTj0Fq+kAAe87yYxZSxBQHkCH4VgsJgmCV3CzygD7KXOKUgSjExVmv9NnyKYN4BL+UN88kbK9mBDHFGpx5b4zBYnlSwD8nhNAX60YYekBBWmKLYRAgPQTGah3ROom9yqUqoDNLKhxLgUGQgXMOg65z3jn0LBYwKCgCctKAAOVxbgpDduMdWu/EGtYPSoMwWoZHZSy/nGyJ1Sq0uQ9W1vJ8TL051+u1alyTKr2VFXo8OZf9PN9bHUtYNLfHDDzq43hERYdv8dDrem84hADqDrlgU/SgbXT4F27xofdqd9O2Kz1WOdaApO9W6n/VTRpQy4Vq6NUmOloEGCWLhi2cF7K0LLWrBaT1VMw4CBLntOByuoIg8wQSnyomg1viEMoLITTLbJyUSbhsuQ5QZXIoMJrAd9XEc+aHLaRguhnn+0HeGKa6QJ62PB4lG7SpXCQ09mu+6TJvpLMVeORWcXEFEJSWPwOg3AeFTl9jTSDxDkjSDynKQs9aHdmU1Nccl2B0faieOUnflQDdIAGbVoOCjXUgTkhJNMOYpECVPKtM+a/ZPcbAGYNudYDlYiEpmtliRkmLpqGMkTr9MQMb8ZNLLaGmadG2C1jrEGPlrydCThkm0rTd7FZMCYmEhtsaK4RnKSAmCb7u+oBls5C6LtQDUp2mADYyVvZDK0y3STNkUorgGEFOM1+4skBYJ/1RYpByGyEWgqYFWwekoNfJw7tKkeAA0BpsWoAdjI6pqKm+QxjwyMMP4aGHHxRQoq4KKVpnxvR2Y0Aw6uJRiwOAFBOc94W7Z7FcwCm5mzTTIsQeUB6eGHq1Lk4DSTNnSxg6jcOQYHMyBhQGaQPLGDLWCR19EqBn/AIAISZhVZZxLtePzICVInNkJLjWk0HTOISecDBIMHkIAw4OVtjfswhe6d0NIQQJiuYYwImQEumcE7crwVRp5IxoglRnTow+DoCTatU5yNuqRdJaqTVDxoDbndLvMTG6XpSRGBP2DhJCI0A41+ZiI04VqWMUtN931JIVpP7Nzg744ADr9Vi7S6xe8iKptSzHSA2B0XgP5xtEnU85HVwSFExRhAyPRI4FGGxAkdqCMi64ZalD2fQnrgsa9+PaXakf8ZGn4sl75QVnhWVTLrzp11aIC0lt7OSjzBL5Nop+wdtRxPY3qu8ePveRd5KfywZQyk+olMG4gBxrQGKsgXN+fGOitY5aZ+Z30FEjG6H1aLyQXVk7FlQrz45qvFFPgDEIisYRvQWEEyZoPYMczpNd0vFy+WhmcZ3k2IvcnpxlUw8cTlxSjVM9kZAJnDa0AG179iWzTuwRJMh9FV6TCfStz1dtVFmbKYGzeq2cXp0YTAmJYokFoQJElAwrJYS+k7iAGGF9g9h3aE+chvUtnGtG91UFbVIYxsyqTa0+SYE+IoJxrlh5OGqgZ5LgSUBAXE5/jjz69QkJQ3eAGE4VoilDki4edTGgFEf2Xc5rnQAsqcoaC49NDoguab4Z9JJsjIlIeEGIACXDipFhUoSJUG4IFMsAp4AhAUQe0Ri5JqDRqRbkhIPD+rZkdRCRkGWFAVYp4NPQIYUAZlIrEwEmAUktU9aV1GfyC3nW/apMkASLDCzHuabp1pTURSBBlFJjqsO6W2PoewEpLFqzxM4oP0e1xpY5XCwGjK5fI8dIdOsGZ06flo2PWcIotG/ZUgFoOjLKuBWlQsC8bNQaLs0JCAOIJBYI2cWxXiFElqJ4bQ9jnJx37wDOSamBskYoEBBuk2yBFKAZvEEfHFZ9wvDwLjx6LBtbLGpDTDjY20ffBSSW1NzMiFysoro+GSOAizkghYh1t4bPxTMHCQKORBIrpVlTuU8TA4gJRAO69RrrVQdiixQC9kN2rYk7MJKB1ONhGET0XYemaZFCxNB3AEm2I/GYjSfjWoZT10uMj2ESZmi1oHSGJG1daz6xPhMkWZ8SAEokaeh25Fva5hvIcSv6Yvx9IdW8cDZNg2MBTK0mOsdHZeIxnLscookBddsel2y5WN2WapeqD6CN46fnO5+MJ5dtbGPt37zvzdNtNLdgvJoo6TxyvAGJ3mQGHfWPSNWJOlGoMilm+vi6jyvmDWRUMiG3AorbhfIxqLbLaiCXM2eQkVgrwspDN9ZMNveJ+wcVoK8QdtI04xACQKQF1TaDiCoYVZBrtoiwaAN5U1GtMbul8vEEjBFuQCl0VWOTYhEpIMdko0k5KC+otrikfLG8cEqIHMSY4CSzKMYB1vkChEbTJI/9WywW+dFSBSYJZBzASsMPCOAYOuQ4j0wDHgZxmQ2hl5TnGNH3K4QYQTxgvV6Ju4SgVhVxEzjnpf5QCqPFVi1FMQqza4xJf0fhvtDFOAORWo3JZHoZDiEAIUahsYfElFgNcAwxwpLBwWqNNRGCup2sGcdPkosg8AiJCQAbBzgCF1eaBcyANHSgOCBzwMB4Be0OiYzUkCmWxhqAyrOPCmqLEmpZx5YGZIaAYRhwcLCPvutAZOCd35KFlsfnOIazZTGPo/z8EzOGoQOrFa0s/oAEdFsDsBldVyEqeJc4IIskAanZAqFF94zyvozziBFCwv56wN7BCkCOp+IJYeGoXVOx+tRLubUGznt43yAMAywNiMMSZ040cDkGJ0Ts7a1wsB+Qs5LG/qBRqdHruOCRklgq1usVmihWkLjel0wm58SNpF+JKVV9zGDvsL8PPPjlh7HwDqlnhMQYhoC+W+PAOVAj8WiJGRw6rMIuiBgpMoZhjZgCuk5qLZECMaFnGTAMHdarleBcZaMuYygN4LCSqsXMlfGizAK1XjIkFd2AYKu5M66+nNcB/XpZx7buvdONuzyzw+9O9tZDf28FJduRCheAQJViPLalvvdyXLWGThXMuoXTq0zR2PmOfTyyAf4eC6jKQ3QLMLmQHEtAkgHHxz/+Llibb2G0XAC6QWxo1+JjFm1xsVjissuvxCUHl8HSOPnz5lKzSzJzYYDlehCNDZpskHlgjpT0VHzvebMCkVZOtJp1kLUf3hyvo0uEuRQqCiHBOk39k9sfgQ+4aqu+k1NAeRqLEiFWBUOZ4p6KNWNkgNWlmccpKWmv4kIIGsvirEOz2NGMGeWzMA7etfDNAtY3GszaiGVLF3TnFwj+JPpHVvg/X/h3PNl8C8xpj9aflLbHIEXQ9N6YGRSkcigYY0Cm3BI49khBWEgNRfSrfQx9P5qRmQtgCUOPkCJWB+dwsLuLvl+DU0DT7mB57hK07RJkLUIIYI5wxsM1Hoi9FnLUNMqU0A8d9vceRUoDnPUF5EjkPklgKysQzmnQ0EwbfQ4xDFoQMmg8hW4eGlPDzDDeleDdzAcj42wcHzVQk6yKPFYFRLimkRokYQDHAAdhtbXtQsFzBIwXEi6S9HjvPdbrXTyyk3B6KfeQ2GKICetOLDt+cRLticvg2qX0bQiywQ09HnnoKzh37pGSOp13kNw+zplGlZYm/cKF4ydqjEm2XV/+pEtxcrkcl2ILeL+AdQ36YQ3nFnBti64LCDGhWSwlkDJ04GGNyElibyBpzBYBnrLtR6wCewc9Hjy3h4ceyYX7pHljNl29YVRWMAXUmYMlx18wJ1hjcOWTL8XTr70CTz5jYYkxpIT/88U9fP6BDonFalr3RXURAATrHbxvEWPAulvDNRIcHlZ7AoCsh/Ne1xCDmIKugRJT45zD2TM72P8y4cxSg8FTwkHH+L8P9Vid8jiz0whpYYr44v2P4v5doNk5Jf3brzEMHRAFKC93dnDy5CmACCkEHOydw7lHH0YYehhjJLA3RjRtg0XbIIYBJ06cwqnTp7E6WAm/iaHivk5J+ViICsVDTiQoSlxeJjNQyVgkP5fs7iEFNhN3JFdrt659ZQUtKpDyParbkKvnweNR+Zw1Bsj0B/nV5PEdARSkGdWxG5YFymOsUqzzOWsFdDokKyW9HDTC5Ro4Q8HhuJdutnPcU8rp1Jooe8T4nboo4OrgXGnL+eRYApIHH3wQAHDnnR++yC2ZZZZZZpllllkei+zu7uLMmTNHfn4sAcmll14KALjvvvvOe3OzjHLu3Dk85SlPwec//3mcPn36YjfnWMjcZ49f5j57/DL32eOXuc8ev1zMPmNm7O7u4uqrrz7vcccSkORAxzNnzsyD8XHK6dOn5z57nDL32eOXuc8ev8x99vhl7rPHLxerzx6L8eCxhb7OMssss8wyyyyzfBVlBiSzzDLLLLPMMstFl2MJSNq2xZve9Ca0bXuxm3JsZO6zxy9znz1+mfvs8cvcZ49f5j57/HIc+oz4Qnk4s8wyyyyzzDLLLF9lOZYWkllmmWWWWWaZ5etLZkAyyyyzzDLLLLNcdJkBySyzzDLLLLPMctFlBiSzzDLLLLPMMstFl2MJSP7gD/4AT33qU7FYLHD99dfjox/96MVu0kWTf/7nf8YP/uAP4uqrrwYR4e1vf/vkc2bGr//6r+Oqq67CcrnEjTfeiM985jOTYx566CG88pWvxOnTp3H27Fn8zM/8DPb29p7Au3ji5Oabb8Z3fMd34NSpU7j88svxIz/yI7jnnnsmx6zXa9x000140pOehJMnT+LHfuzH8KUvfWlyzH333YeXvexl2NnZweWXX45f/MVflIKHX4dyyy234LnPfW4hVLrhhhvwrne9q3w+99eF5c1vfjOICK9//evLe3O/TeU3fuM3SqHC/PPMZz6zfD7313b5whe+gJ/4iZ/Ak570JCyXSzznOc/Bxz72sfL5sdoD+JjJrbfeyk3T8J/+6Z/yJz/5Sf7Zn/1ZPnv2LH/pS1+62E27KPLOd76Tf/VXf5X/9m//lgHw2972tsnnb37zm/nMmTP89re/nf/jP/6Df+iHfoif9rSn8Wq1Ksd8//d/Pz/vec/jj3zkI/wv//Iv/PSnP51f8YpXPMF38sTIS17yEn7LW97Cd999N9911138Az/wA3zNNdfw3t5eOebVr341P+UpT+H3ve99/LGPfYy/8zu/k7/ru76rfB5C4Gc/+9l844038p133snvfOc7+bLLLuNf/uVfvhi39FWXd7zjHfyP//iP/OlPf5rvuece/pVf+RX23vPdd9/NzHN/XUg++tGP8lOf+lR+7nOfy6973evK+3O/TeVNb3oTf9u3fRt/8YtfLD9f/vKXy+dzfx2Whx56iK+99lr+yZ/8Sb799tv5c5/7HL/nPe/hz372s+WY47QHHDtA8sIXvpBvuumm8jrGyFdffTXffPPNF7FVXxuyCUhSSnzllVfyb//2b5f3HnnkEW7blv/yL/+SmZk/9alPMQD+t3/7t3LMu971LiYi/sIXvvCEtf1iyQMPPMAA+LbbbmNm6R/vPf/1X/91OeY///M/GQB/+MMfZmYBgcYYvv/++8sxt9xyC58+fZq7rntib+AiySWXXMJ/8id/MvfXBWR3d5ef8Yxn8Hvf+17+3u/93gJI5n47LG9605v4ec973tbP5v7aLr/0S7/E3/3d333k58dtDzhWLpu+73HHHXfgxhtvLO8ZY3DjjTfiwx+eK/9uyr333ov7779/0l9nzpzB9ddfX/rrwx/+MM6ePYvrrruuHHPjjTfCGIPbb7/9CW/zEy2PPvoogLFg4x133IFhGCZ99sxnPhPXXHPNpM+e85zn4IorrijHvOQlL8G5c+fwyU9+8gls/RMvMUbceuut2N/fxw033DD31wXkpptuwste9rJJ/wDzODtKPvOZz+Dqq6/GN33TN+GVr3wl7rvvPgBzfx0l73jHO3Ddddfhx3/8x3H55Zfj+c9/Pv74j/+4fH7c9oBjBUi+8pWvIMY4GXAAcMUVV+D++++/SK362pXcJ+frr/vvvx+XX3755HPnHC699NKv+z5NKeH1r389XvSiF+HZz342AOmPpmlw9uzZybGbfbatT/NnX4/yiU98AidPnkTbtnj1q1+Nt73tbXjWs54199d55NZbb8W///u/4+abbz702dxvh+X666/HW9/6Vrz73e/GLbfcgnvvvRff8z3fg93d3bm/jpDPfe5zuOWWW/CMZzwD73nPe/Ca17wGv/ALv4A/+7M/A3D89oBjWe13lln+X8hNN92Eu+++Gx/60IcudlO+5uVbvuVbcNddd+HRRx/F3/zN3+BVr3oVbrvttovdrK9Z+fznP4/Xve51eO9734vFYnGxm3Ms5KUvfWn5+7nPfS6uv/56XHvttfirv/orLJfLi9iyr11JKeG6667Db/3WbwEAnv/85+Puu+/GH/7hH+JVr3rVRW7d45djZSG57LLLYK09FFn9pS99CVdeeeVFatXXruQ+OV9/XXnllXjggQcmn4cQ8NBDD31d9+lrX/ta/MM//AM+8IEP4Bu/8RvL+1deeSX6vscjjzwyOX6zz7b1af7s61GapsHTn/50vOAFL8DNN9+M5z3vefjd3/3dub+OkDvuuAMPPPAAvv3bvx3OOTjncNttt+H3fu/34JzDFVdcMffbBeTs2bP45m/+Znz2s5+dx9kRctVVV+FZz3rW5L1v/dZvLa6u47YHHCtA0jQNXvCCF+B973tfeS+lhPe973244YYbLmLLvjblaU97Gq688spJf507dw6333576a8bbrgBjzzyCO64445yzPvf/36klHD99dc/4W3+agsz47WvfS3e9ra34f3vfz+e9rSnTT5/wQteAO/9pM/uuece3HfffZM++8QnPjGZxO9973tx+vTpQ4vD16uklNB13dxfR8iLX/xifOITn8Bdd91Vfq677jq88pWvLH/P/XZ+2dvbw3/913/hqquumsfZEfKiF73oEG3Bpz/9aVx77bUAjuEe8ISG0P4/kFtvvZXbtuW3vvWt/KlPfYp/7ud+js+ePTuJrP7fJLu7u3znnXfynXfeyQD4d37nd/jOO+/k//mf/2FmSfk6e/Ys/93f/R1//OMf5x/+4R/emvL1/Oc/n2+//Xb+0Ic+xM94xjO+btN+X/Oa1/CZM2f4gx/84CS98ODgoBzz6le/mq+55hp+//vfzx/72Mf4hhtu4BtuuKF8ntMLv+/7vo/vuusufve7381PfvKTv27TC9/4xjfybbfdxvfeey9//OMf5ze+8Y1MRPxP//RPzDz312OVOsuGee63TXnDG97AH/zgB/nee+/lf/3Xf+Ubb7yRL7vsMn7ggQeYee6vbfLRj36UnXP8m7/5m/yZz3yG/+Iv/oJ3dnb4z//8z8sxx2kPOHaAhJn593//9/maa67hpmn4hS98IX/kIx+52E26aPKBD3yAARz6edWrXsXMkvb1a7/2a3zFFVdw27b84he/mO+5557JOR588EF+xStewSdPnuTTp0/zT/3UT/Hu7u5FuJuvvmzrKwD8lre8pRyzWq3453/+5/mSSy7hnZ0d/tEf/VH+4he/ODnPf//3f/NLX/pSXi6XfNlll/Eb3vAGHobhCb6bJ0Z++qd/mq+99lpumoaf/OQn84tf/OICRpjn/nqssglI5n6bystf/nK+6qqruGka/oZv+AZ++ctfPuHTmPtru/z93/89P/vZz+a2bfmZz3wm/9Ef/dHk8+O0BxAz8xNrk5lllllmmWWWWWaZyrGKIZlllllmmWWWWb4+ZQYks8wyyyyzzDLLRZcZkMwyyyyzzDLLLBddZkAyyyyzzDLLLLNcdJkBySyzzDLLLLPMctFlBiSzzDLLLLPMMstFlxmQzDLLLLPMMsssF11mQDLLLLPMMssss1x0mQHJLLPMMssss8xy0WUGJLPMMssss8wyy0WXGZDMMssss8wyyywXXWZAMssss8wyyyyzXHT5/wDagY2Ui/+blQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "from perspective2d.utils import draw_perspective_fields\n",
+ "blend = draw_perspective_fields(rgb, up, np.radians(lati))\n",
+ "plt.imshow(blend)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Perspective Fields can be defined on distorted images, we provide an implementation assuming Unified Spherical Model. \n",
+ "Figure 1 of [DeepCalib paper](https://drive.google.com/file/d/1pZgR3wNS6Mvb87W0ixOHmEVV6tcI8d50/view) gives a good explanation of this camera projection model "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jinlinyi/workspace/test_folder/src/perspective2d/perspective2d/utils/panocam.py:66: RuntimeWarning: invalid value encountered in sqrt\n",
+ " fmin = np.sqrt(\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAGiCAYAAADX8t0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7RtSV7fCX4iYrvjr3v33udf+sxKb8pThqqiCqeiCkoggWgEEkiM0EiDBrVY04OZXhpaI9Naa0DdyHQ30iAJ0wJBCQqKKqAMWZVZmVmV3r338nlz7bnHbBsR80fsfc6+592XmcUIsnPN/a1173HbxI4dO37f+P6csNZa9mVf9mVf9mVf9mVf3kCRb3QD9mVf9mVf9mVf9mVf9gHJvuzLvuzLvuzLvrzhsg9I9mVf9mVf9mVf9uUNl31Asi/7si/7si/7si9vuOwDkn3Zl33Zl33Zl315w2UfkOzLvuzLvuzLvuzLGy77gGRf9mVf9mVf9mVf3nDZByT7si/7si/7si/78obLPiDZl33Zl33Zl33Zlzdc9gHJvuzLvuzLvuzLvrzh8oYCkl/4hV/gxIkTRFHE29/+dh555JE3sjn7si/7si/7si/78gbJGwZIfuVXfoUf//Ef56d/+qd5/PHHuffee/nIRz7C1atX36gm7cu+7Mu+7Mu+7MsbJOKNKq739re/nbe+9a38/M//PADGGI4ePcrf/tt/m3/wD/7BG9GkfdmXfdmXfdmXfXmDxHsjTpplGY899hg/+ZM/OflOSsmHPvQhHn744Wu2T9OUNE0nn40xbG5usri4iBDiz6XN+7Iv+7Iv+7Iv+/L1i7WWwWDAoUOHkPL6hpk3BJCsr6+jtWZlZWXX9ysrKzz//PPXbP9zP/dz/OzP/uyfV/P2ZV/2ZV/2ZV/25b+ynDt3jiNHjlz39zcEkHy98pM/+ZP8+I//+ORzv9/n2LFj/NaHv42o2wXl4XgSizEFWZ5hjUYphVTuEq0FIQVY3LZCoguNsYbRcIed/hZBGOL5PgKBMRbP90niMcl4jDUaBHhKIaRAKXcsay3GlK/WYIz7S7MMrMFYMMbiBz6+klhj0cagtUYqgRTT76SU+EqCEOR5gUGgdcE4SSgKTSNw15lmGbk2SCEJoxABGG0IAg8pBBaLsQLlBRhdYE2O0RoLeF7oEKoFISzWFGhrMcZSGEOaa3ReoJQCAVIKyh7DU4qyC9HGopQg9Dx8z0MIGKcJaaYx1vU3gBAghMBai0BUh3LvrcX3FUVRIAArICj7190whS8Ud47H3LozQBld3mU7OT7lsQG0UgwaTTZXVnip2WQ9zfCUJPQ9huMYY931KKXoRBGDOCHXxt0fpfA8SaE1zWaLIwdXKbQmLwqEkFxZu8xoNMZYO7kmKRVRGNLrdAmUINnZxpqcKIpoNlvE4xFxkpIbSeB7JPEAJSx54a5jYWGOm46tYrVmYXmF5WPHQUouvPgcly9vsjTXIfIEg+GAcxeukhc5ubbEWUGmDdZYAl/RCHxanQYHDizg+wFZbtgZJmRZwfrWNp35JQ4sLGGtJU1S0iwhzwtyA0EQMn/0LSzefBQTgq4vXiZ9PP1KMHU807VNTflbtakt/+SsQXiG0LTVs1l+sOUQMYLJsypEbTcL2oIsv7Pld0K4NkgxPW69La/Fo06OtYfM7v96PteP+2ryeto2u61l935fD0dc75O9vpMzv1fnEbXfJ/uWz53Ic1rPPEPz6acJL1xAjsev3ialyG67jfjjH8eE4a7zvFqb65/r7VHlH1hM7XMLizIFvgDsEEGBtZKdfsGgdQBCtes6q2Ob2vv69c+2QQG+sWRXr+D1L5KmI5S19Ho9gs4CXqOJMAaacyAkk94VzJyhEsNut06DtQXj9auM1s/hhx5hs8Hlc5edrhKKxaUepr3Aju0QJ4rFuQZ+ILBAhntGNdPn08z0ddV/9f6s+iMEgvI7A6TlXzUHVH+2PIco9/EBYUslsLMDUcTORz7Csfvvp9Pp8GryhgCSpaUllFJcuXJl1/dXrlxhdXX1mu3DMCQsB25d7n/lZWSrzcWjx0kbDYwQFFh838NTEc6aI0CIEjSALnIsFikswneK1LdtTDIGAXOtDiBIkxhtCoIoJJKCIsvQugBASYlX0k7WWoxwU4Q2AiMkRlpCIciLAqzFAoXWSEql7im0VlRDQ2OwCKw1KGsJlKLdamAsjJOUZDRGGUuAoBEGaN8jzTIKA54Q+J6HF8kJKCuMIS8sHgIvbGC1h9E5eV5gtcGTEs+TCDRaKLQ2GGGR5cNhPA+lZKkMJJVVTEkHoLTVFFg8K2hIicQp6cwKtK36nMl+QsiJxnGAyYmvPHfNQrjvhUAh8IREKjcNBL7H+cY848VF3jIcMb+9hUpTd+wSHBkHb8AY5sYjDp0+zQ1S8NL8AhurK2wbS64UxrrzdxsRWWHwAKUkyleEnk+aZwSez+rCPM3AZzTWNKKQJEkIERjPY3p55SNc5GTxmEa3R29ukTweIHRKPh7TaTSQUqGtpNftkowbjAdbRFKT5RnxYEg8Tjm8skCytcWo7dNqd2g3AuLRmL4UHL73Tm5oRBxePsOZM+dZ39ohEJJRVmCMRQkock06TLkUX2Fl9QAISR6P8Sz4BsZbfdIoot1q05qbQymF1QXxcIckTVg4eIxGJwKvBAKUE9gegATcJFRNSrbctqh9v0uZ2d3TrBXXTnwVuLS1mVIIt29tOE1BS3mcqn0CB3zMjOaozltX4HUlXlcF1aQ7qxirSbyunOx1jrFXd9X3q59nVvHVj1W1u34cM7Pd6wFFsvZ9dS4109a92luX2WuWuDlPGIMcDmm8/DLdz38e/+pVRLmwYMaMPmlzFKGPHmX8nvcgT5ygFYZ7bludt7qG2XtWv48h0AICLD6gMYBGYpAIsD4ChVN1BdZ62HSMDVqIhrimL+tjt37uXUCs/N4DlLFkwoAEgaEdNeg2m1iTE+oY2ZlDhCEIDaYA4YMIatddv9slIse47UmwRYwv+1hpaC/0aM11EUnKxuWrbiEZWBZaAZHVDNrLtLsNinKODcujV/e+3v6qRyYAonZd1XiZBQfVc14dq9qnWph4gF+ODYZDeOIJeOkleOtbodVyx38NF4s3BJAEQcCDDz7IZz7zGT72sY8Bzi/kM5/5DD/2Yz/2uo8TZhmdYpvOeMiVA8uszc1jmi08v2JFDNaCFBLPExRFQZolgMEag/IDsIIiz2g0mijfJwgjrHWdZoqMPM/wfcc8GO2R5xnWGAqs61xbdrIQKFHeegvgEUiJ1gXWuKFQFDnGGMeylPt4UiKEQKOB8r01iFIzFLogLzSeEBhrSYsCpSSe75MnOUWhMdZijIfnyZK1ASk9fD9Aa40VCuUrpOdW1VoXGK2R0rE32liMMY55oJr4bYnqmTIQxmKlY1OstWCcgveUJE4z8sL1t8UgSpXjHmwHWNxvjt0QQqCEAxOmNki1tUhjUco9pNoYhJRsSHjkwBJHVlY5vL5Od2uDIEnA2unEWz6IQhe0Ndx/9Qqj/hanOj3Ot1psNRoEjcgxBXmOkAJrLKESbm0lFe12B601G5ub+H6ACCTD0YhmIwLhAKI1BkpAKhAkWYrpbzPfmyNotMlGmjxLEVLh+RHFaMRgZ4dup4s1mvFgG095aG04d/Y8QeTT687x9CNfw/c9UutjrGK7P+KFZ1/k7nvfwuLNt5EpRfbyWfKNTTwpKGypHIR7fsBy9uxFLJI8L+i0mnRaEeM4pb+9hScVaZLhBT6L3TadhQ5nLhVEPTWZiXYp1essW+sTXLXCsuxWsBMRU/Ahma6kZpVcxW5Ua4hZ5T5pyoz2rNppxLVgqGrrXhbrqr31CXivbV6LNZkFHLNtnv1tL+Uw28V7AbvZ/pg97+z5Z7+vAGR9m1lgtdc5qvNPjl8UBGtrRC++SPurXyW4dMkpoBmp72taLYrjx8nuu4/szjvB969pq2Hva6iDKmrXIKhYEGhjyt8zJJWvYYRTtWDRYAKQAfHVV7BGIJoLuOXP3uO2Wv17tb6pg7rJuC9y8lEfigxpDUpJ/DBCeB75eEzYyCAswPqQbrojRU2gAmMZ0HZHtBp0DjIp0XaAkA2iA4dY6i3hNQIwgla7TXhCkY1i4sGYwdY2zQMNCt8jN2BliWv2uB/Vew/HfgTl+9kxqGrv6+AwqH1fX4h4gLIWMRrByZPw5JOwseE2fPppWF/n9cgbZrL58R//cX7gB36Ahx56iLe97W3883/+zxmNRvzgD/7g6z+I0+kEec7hS5eY6/fZXD3E5oFltACEQgqBlBIphWMHlMJatxov8twpRikxSmIKTRLHSKnwfR8VhuR5RpalFKqYPBk6T7FYtLZIWa7uLYBESQvGgBRY685tdIHQAoGlyAtyY5BK4SlFoQ1SCnxPlcDCogvjGB0sWZ4DEIUBYeBTFJq0yB01qRS+UhhryPKMQkuU52GMJYpCGo0mhdakSezMIX6AksK1B43WGmPyEri56wFR4RCMNW6Vai2yZDky7aimqs0IS1YUJHmB1hqEQJS8u4XJ8tfa6QMthZsGtAHfUyjlURSuDdV+2lg8JZFCOFBlLUka80rQYHTjzSzGB2lfusiB9TX8LJtOgMbsUhatNOPOdI3j/W3WOh2uLi5xWikHfKQi9D18TzFMc6JGi7n5OYo8JR6PEEg205itfp9GGNBuNrEW4iSZIH2LxRpLmqVs9bdZml8k7MxjB9vkWUroeTSbDUajEcPhgGarS5FnZPGATBvGiebkC6fpdSKM1qB6NJtNstxgjGZna8DTTzzJzXffw8Ebb6fb6XHyhRc4/cpFBIbcWKw1GOPGuJKCwjhgmRcF3chHRIrU4Mw5aYJnLR1fM0xybNhDSYGVUwUwUS9lp16HKJmsvqaU+e7tZpX5dfDNBFg4NsVSQb36frve23L7We187WH3VKp25vc6k1L9PqsI66eZBT1wrcmqvk/9fV3xVsd7NfZjVlnuBZDq4OR6AGqva6f23V4r5Pr21hjC8+dpP/kk0cmT1wUiu87leeR33kl6773o48eh3UYIsWc79wJl12tbNU4jXRBKASIvvy3K19ABAJODSbBZH72ToRYWGO5cJctbiDmxC9zMAkQfN6YDHIjOmIIU5c6AVy4QY2kx1uJJUJ7ESoX0fQcKBGBSkD74i6C3gdgdyQYgGmAV5ANQBvQARJMpVLBIbfB0BnmBUCHNuQZkHkUU0deaZDgm6gxotBPGNsLilQvl3X1bH9M1A9KejNzsvZn97RpArTWcOwdf+xqcPw+l3gJgcxN+93evc/Td8oYBku/5nu9hbW2Nn/qpn+Ly5cvcd999fOpTn7rG0fVVRQgQEqxBWktnNKJ15jS9rQ0uHTpK3OmBlBRFhtEFUjgTQF7kGCPxPOWUuh8Q6Jw4HlPkGVIpwihAKh8P4W6Y9kjTBG00Ukos1t0oKSiJEqxxrIlSCmEd62C0RSkfKTRSuocxLwqKoiDPC3zfQ1m3DwjyPHdKHY0xhiTN8XwP5fso5aGUR641RaHxPIWnJFq7Ka3QGp25hzNJxviBTxQ1CXzfXZuxDggFISaP8ZSHCCWFNhRFhrUWrzTCa+P8XyQW33PgSSlBkmsKbQh9nzDwsNb5RBRlGyrGaBcYEUxYIhBYYbEGcmsQQhD6PkHDJy+KybWI0hcGAUoIisp/pEi5urlGPLdEdMsdXDpylMPnzrK0sYHMs9JXZfekKoBOntPd3ubozg7Hg4Bn5+a50moRBR5JrlGez1yni+/55FlCo9liPI4Zj0cIIRgnGQhFp9VCKcU4TTDaTJ5UISRFUWCAVqsL1qDHO+gsptHs0Gw0GY7HYC3CapJck2aF8yuymtE4RqqIVtDAk5ag4VFojzyXxOOCk089zQ033cji4RMsj3ccE1LaONJco01BrgW6/E4AShhCH4axIehGzM/Pk462UaKg0Yg4e/kq4cINCCzCWscM1pmG8tr2oqvrinV2QrseszCrwHc9ykDspVxubXFwtECkg2uAw+xBZk1Bs8ebXfXbmdfZ72aBzyyDMz22pRAWz8pdfVCdZ/aaZ0HJXu2vv59lLyq5nvlp9lzXA5B79YWZ2WeynXUsqMhzgosX6T38MNHLL6PiGKE1e4kArBDYMCS/8Uayb/gGzOHD2CiaAPh6f82C2Hp/V+8r04Ji6gvh4cwz3XEfz7eIsI2DEB6YzCHb4UX32mggwgDZNuTDDWyegQnx0BPoOwt6fKb+E375ewV1KvBdba+zMSaJwTrm2vd9hDHYNMH3PNeGIsFKgRVN8nGGZyUyaiIwWCNJ1s+g7IBgadWBFlEZUTIgBpkiQh/8AGSEFBYrLH6rRQ9Jf+0q6XafTmMDeiFjWhjkNSbB+hiugHDdv6RuunktqUCNZwz0+8jHH3fMyHhc22h6NPF/dEAC8GM/9mNfl4nmuiLLIWwtUhfMbW3SGeywvnKYzZVV+kAcjwjCgCAIkCVdLqR0Tq/GIFRAsyHJVDJxRKX07ZBCEWdjhsMBvhKI0hHVKudXAVBq74moiilQsrR+KFTJpGjj/DUKbcjy3A1cHCjxA5+iBBxZkTvnVykp8nwCqHzp4XkKWSpuJSu2pSDNcrSx5HlOf3ubvFXQ6XRod7qMx2PnpOl7IAPSNEFJCAKfcZZhrPNxAWfGEdgJg+B7isBX+J4hzQtC3wMpSmfYqWPvbo1WgpNyxY51TmfCOJVpBc7BU0iankczikjSjELryVguitI5WYA2GvIcH8Gwv0HRnmOsfNLb38KF0YDOyy+xvLNDJ89Lxe+OYUXJyhiDbwwHi4LV8ZidVotTvR7nowZicZlOp02WJWCh0WjSH+xgTYHRBisgSRM8T9FqtBBCMhgOqGxRxmiiMKIRRUjlETWbgGY4GjIe7RA2Wsz3OjR8yXiUEStFjsZTkqwwjFNN1PAZxwlxCou9JkpAjqXdaSKs5dKZ0yjfUMQJUaPJKB3iHKcds5bl2jlcI0A6oHJ5Y8hQaC48cJW7Brfh5ZLBIGOYZozijPjcK9g04+A996I6IbZEFnspvb3ez0521cqrUlmzQGYvM0H1fq3Z57dv/wLf+dz7ODw4cM3+lcwq+b2YlzrNPNvmWQU0CwaY2We2zQCPHHmat164g8D4k8m5fm7Y7S8yy6xUK+3rMSv14+wFruq/77VP/TqvB7yu1z+iKPD6fcJz52h/5StEp04himLXNteIlOhuF33sGOm73oU4fpxeadYshGDE1EcHpkp9tm2w20cpxBlfAhyvoK2lbVKUtGTZBioXCL+Nzfrge4j+BWguQKcFpgkyBSJku4uXZTQ6W/iZT6TcwqVy1Kwrb788X1i73rqirL4rtCZJx7S7TXQm8a0maLZQvnVzVRiAV/awDEh3LrJ27jTtKKBzyCK1RegMM94mWD3omJHCgp8wgUCi6a5LCMem4IHXQIgxyAh/ocVcEDLaWGe8PUT4GtkSu0yY12PVYApIKoBSv+ZXFWMQwyHy9Gl49FEYDnfvN3UgRPg+3HgjfOUrr3nYN0WUzfVk2JunMxo4j96qO8pVuVcUrFw4S2dnm/XFA6z1uuhS8VtrJ9E0cZo4n4DyCEHYwFpLUWisLZBCkiQx8WiEFA6oCNyKuIo4kUIgpHPmcc7FzqShPIW0js7T2rECUnl4vqXIczxPkedFaZZxbIAUnhvDypJkLgLEnddF5mSUxBACpHQPr3RmFqvB1oafMZrRaEBR5HS6czRbbbI0Ic8yt48XUOgCZAmwrHWARTpH1sBzfilKuT9PSecQCQgpyfIcY6HQpvRhmOjncrKbRsBMHIyp1u9MzDhplmMttBohURigjaHIC0x5oKIoHJslBNZqtC4IlCAb9/HCFomUrGc5o8UlVjodDo3HLG33mUsTRIUTrd31YEpgfjzm/tGIE1HEUBtGCi76Hs3uHMNxDNpA6bsjhcQYw2A0xCLodFtoaxiPXeSN73l0Ol28IMCYApOldNtNfN9nZzAgS2Lnp6QkzUYTkESh84EZlU66SgjSeEymLTrPOLi8QCgEUknme22E1eysuZD5xYU5stwwGMUoadDluFMIZ54UkGpLkWa8+P4xT34g4Vv/9RVC5UDhpSubKBUw3/RI4wFe5O9SVHWgMav8631YfVfto7nWr2R2FV4HMNNjW660t/jsjY/x7rP3cGiw5CazPfavdny1ibOu5O3M6+z1XC8rwquBmd+72ZW5eNe5u5ltySwTUz/P9RiT613Lq/0++9te9w/cssptJ657L92GziwTvfgijZdfJjpz5lXZkOoYZmGB7C1vIb/9dsyJE/i+z5wQtMptCtw9jGfaNhvRU/fRqIwWVZSHBHJrkbbAH1+F0CNcWAGdY4eXKPpX8Q4egt48yHnHTCgP8CezjgqbdFZuxBgfFQZTZ+pyHq98QyJKfwh4VSdM6Xl0l1Zgbg6rLeQJKtQgDJ5zlAM/BOEBHmG7weKx4+hkRDG4SrK+RqvZJjpwBOn3wBZQbIPfKHul5UCIimq9LlzvqIa7o4HCXwhpRRE7F69gBmNk1EV44prxXn+Gqmezel/9ptnNAO0pRQEvvwzPP484d86ZayopfSMn+y8uwv33w/d/P/zqr77aUYE3OSA5c+/9iLWrrJx6CVnoshenwEQAzcEOR8Yj5jdbXDx0hJ12x624pWQcj0mTBGudHR7A93yCoOGiS4DxeMBouI0UpdOnma64HRCpzudeSvdIQJSAxb1KDLm1ZeipRHk+WZY584/RpGmGMRAE0gEC60KAQ99zihlQcspCSOUUpMYijZvqtHa+J3UxWjMejyjynG5vjlarg1IeaeJ8Zdz5JWHgk2aZY46sJfA8fL906apd4pS5cOaVtNDkuS7DYUW5uWOrbBVmLUTJiLj+q44nwO2HIC80wzil3QhphD7G84jTlKIc7IU2eFLgeQphNcZIlMiwmSRDIKzEkx7jXsQzQYjXaHJwPOKWfp9e5kw52Dpwr0KRYTHNWLp4nvTqZVbbbS4fOcqW8hFCkJVgS5VRQNZaRsmIp79xk7c9eggpBKPxmMAP6bQ7CCCOxwRFjrWKTruN8jz6/T55nlOEIVHUQElFGATkWqMRNKMIpHIO1LkbD8NhjKcESeJ8ZG6+6RDCaJ56+kV6nTlOHAk5e+kqdjByx7aUoeSCHEuWFcSrhi9/zw5Jz1KkYzJrGKYFvt/g8OoyaxtreN0VbCB3zUKzE1Jdmc6Cj/r2dQAx+zcr9W21MDyzfIrLnU2eWTnFvVduwrNqcu5q/FWLgFmTA+xmOiqWZi8HUWrb78U+XA+41K/jSmuL37zj89y6cYzFcW9G1V/bV7OgYXbbWeV8PamzCHttv1c/G2H4/PEned8r9yKZmpkm5s08Jzx3js6jjxKeOYPq95FFsceRav0lBKbbJXnwQYp77sEsLkIQIIWggQMUolocCuE+M3VqljABLBoHWly4gdu3zbVjywcyrbHJNqKQiGaEGY8ods5TJBlqZwMxdwKkN7Nnrf3B4tRUVGrgtldzqK72spZi2MfrzF0XlEhAqgBU4PayXSAFu1Me3wfRKRW0Ab9NoxFhrKC/doE0SckyjYwzuqspfq+LaDQR9MrGlce95jrEdCKjAQR4TZ/eUYFBk6qUnAgQu8x8danAR3UdlVkMrsMYVmG8m5uOETl7FuK41qQaIwKgFNx9N7z73bC05IDJ65A3NSDRnS6XFxfpHzrM6gvP0VlfQ+W5U4iVcrQWpQs6O31uHg7YXFpmc/Ug2wKK0l/DmAJTaCyWosgoihzlhWRpzGi4zQRrVqv96k+W98FahDUlW1GyFgiXl6TalXJbYcE4Z1fP950pRjpMWpQhyarMq+L8WzyKrEAKZ97wPXddtkTgsjyPNoa80FjrwpJlacYypS04yzL621vkuWNLwqhJmsYYoxFC0e30GI9H5EWBpxS+kmhjSvZITS5fl8ezFnJtyMrw08l4lGLCkAjrAIfaNRvbaZ+YEuwoZ14pNAzjBGMNrUZEFAZkWe5AiXCmLrQm9H2scXFJ1o4R1hCEbaRskyYjciALQk76AdvLKyzu9Dm8tk43TQmMC7+uQkpFxShoTag1UZ4zv7nJEd/nxXaHs50usa8QniIpNIVnee5Dfb72Tdvc/+UV5rtdlFS0O118X4E1iCKjEQZYIUEp5heX8PyINEuJggBPOH8m5XnYJKHVbNLtNBknBUEY4QcGJVpYaQkin9FwzE5/wBNfexkhLTv9MUuHjnD86HG0/BrFmQvsFAW5hSTVBL4g1xoCwVMfHvD824asXGiQG0OS5LSaLRbnevTaLc6v73DgxK3OXF1GIwo7XTXWb119UpudJveaNqsJr2JLZkFBXVkXsuCLx58EAV84/iTf8/QH8LTadby6gq+biOq/z25fP9/sMeqfZ5mLSq4HIIZhzAsHzvKHJx7n48+9D2XVnj4gdYWwF9v0amCl7l9SHbMenlw/zl5+PtVvVlh++9Y/oZCab3zlPnytEFmGv7ND4/RpOo88QnDhwoQNebXVsY0i9Pw82YMPktx3H7ZyVC0VUf3asTkI53XRwKnOPU1U5bzaFoIxNbOfMEhb8ToWT6coDEUc45kRDDYRQRN/+TC+zcF0QFZxINe5ijq4EBB5062re5SV2yk/dM6ZQXDNYXYdpLrDwoL1QLTLnxwowBgQBeQF6ZUXUL6lNTfP/KGDZGnK1XNnGbz0AgeWD9E6fBtEwYTVeW0RYCUCHxUuo4ix5aJYT7e45tmrA8OK0ayPLY/as2WMyyfy/PPw1FMwGl3bn5WPkO/D4cPwDd8AN90Enre7z19D3tSAxNnVFPHcImcfeDu9SxdYPHua9sY6kwhzIdyqHIsyhgNXr9Dpb9NcXGRzcZmR55FmMamOoVSgaRpjk5g8y6icu0y1up6wBbYMKXZo1ZamGYEDBABGU9L9TAaYlMr5JVQhs76P1trtY61LxmWcv4hAuJW5cu8dk1BMwIaQqpwIJNa6bBxhoCaJz4x1viq25COlFBRZyng4oNFqE0ZN8iwmy1KUlDRbbawuwLj2ZHmOkaWfjBBo4/xehKBMolaUvjZVnzBhc6ohKJnMN1SPQ2XGsViu3qlRueDAiwJhHQAaW2eqaoQBjSgkywuyvMCKyleiIPD90nHYgnGhuH6jjQkixxRh8H2f3PN4qdHi1JEGB0dDDo9HLI9joix1D2TpaGytRZT3AK3paM0DScLt/W2udDpcjCLORwFffVfKZ//mVQ4+12BzYxPZnafX6dJstZE4Z+KmLwnDAG0laZZjrEB6Eh8fhEZrix+GkBfIvKDTDkAogkCgjUYpz/kKeYrIFywdatFuBrxw+ipxkmOt5Py5S/QW51hemefSxSs4/m56rywwvNHwpe/qkzUsacNQGMnSwjxHlhdAKq5sbRHbiGBeonPHwAkBpoYDhKjfud1KcbJN7bdZkFI32cwq2DoYuNra5oWlswC8sHiWq81tjg6Wd42t+rnq8mqMRl32YkPMzLbXYyhmlX3spyR+xn++4wu8/cJbONZfwe6hRmzt77Wm5ev14+uRvfq+UjpYQTMP+dcP/DZLa/CuL0c0Xz5F48UX8dfWJkzG9doDYJpNihtvpLj1VrI77sB2u5PVcHVvJ+ASx3Y00OV30wG1G2JSrrwLEN4kjLcaWy/0LpNLzb2bRxBYBBnGpAzHCaHJETbBb1pktITsHgdR5vugYO9g1pnrE9fCI1G1UQi8qPE67oMFclxve26VWnMPtbrA7lxEBAkISbiwgmg0EKIB6QZht8vyDUcpUo2yISQ7ELZKIFc/B+w5SrUG3QdPIkQLRAcPtcs/afYIFfCqf67Ayy7zqLXOSfXMGQdELl2a7cApEBECDhyA++5zf93urjlib77tWnlTAxKkQiiH5WzosX38RsaLS8ydP8PSK6fwK0pJlP+sQWBppAlHLl1ifjhkfWmZ9bmey02RpghrybXGFAW2dK6sT2KqvAHOZ0KWmSFtCQwcraW1dkyJnIIhS0WRlg5POOAirC2PKZASlHZMh0vCZh0LU+pJWSYmy/MclEIh0EIglMR6EKBKcMS0xUKWGVmtY2U85fww8hzPD4jChqP486zsUh9tXXK1MAzI83SiSHQZUquNJc2LMqpo9y2Z1Gqc2BGnppHKvGWty3jy4odSnvhvUj7wj9u7jlMUhrFJMMbQbjZpNhvIOCXNs/JeCHJtaPge1hiM1QgjyMd9gmYP359jsLOFsJYkd6xTLuBCr8dwYZ7TwxHLOzucGA3pVM56lb9C6SNU3e9WnnPj5iaHpOSGtkea5zzRz1k51QMr2BmNaLVaKOnGhMliUBKhfCQugkbYguFwTCMKkNagEVhROgWjnG+JlKRZhjIO8BlrENJDG0EY+ghbEIQ+hRUIobDacublU3Q7DaSnKAoHSBthgPIkQsIffPc6F29x9zVvQnt+ntW5NmGokH6D4bmLeP4S0hNIvxxjFueLpGqLH3avwnetgqv7zrURI7b2uZroK8VloExk5f4ePfwcuXL3IvMKHj3yHEefO0D5VO1qh2A381A/d511qDMJYuaV2m+zZp1ZxV5/7yZzS+y5fBenFi7wm7d/nr/z5U9cM/nPMiD148x+Z1/lt3r/z35/vfM5hrLK0SN48Jkex889yuHf+3XmnoqI+tfPploHbrbVIr/zTrK77kIfPjxhROrtqY8LD+iVr8io0mzuV1uqQiGx5X01gE0TPCUQfsuZwsvjZqrgpx76Lf7ms+/lW8/dDV4bITwaB2+GLMNkY0SnA17Ibj4u57WDWes9NwWS9f7fbaq5HiSuw02XBMQCmR3h6QSZxJD0oTGH8HoIa0AWYMcQdl2ekd4C4GGtdHlIxCwfycznovzsg00g3wGv667bSiSGiBArpmZLObN3JdVzomtnCKx1oOzsWRfGe+EC1GrJXWOeCUO47z7sfffBoUOg1CRHSeU/tMPrkzc3IEEgpHKsgzVYA1m3x9rtd9I/dITlF56le/kSXpGXY2aqEIU1tHf6NAc7zHU6nDt8hHXPpz9KsUWBtC6XSHkapK1AReXEWirWUgFL4aJvtHbmE2HMhDmpEo8ZY1zekXLb6TLGgZHK1OEpiTFlpI91AMOZRSxBoJAyJMtyrChI5i1f/Y6YI0+HHP1KqVUoc69UEUHWTpYm2hi0LVAqcyFqwjEjuiicr0mRg/Sc2aoEMWmuCX3llK7WpHlBUaY/n+bjcJ0z4UeswZRZXusPtgWyluFrn0j4wt8ds3TSY+Ul3x27vE4pLMYI0iwHYiw4pZ95JElCBdTiNCX0fQfscKHIyXgbP+rS6y2wvb3pwErZ374QxMB2o0G/3SGZn+fA9haLZ8/QTBLnh4S7P3pm1eij6cmMb/8MfPBhGOdDLutt+guLNKSk0AVZmiJ0QS4k4yTFDwJCTyHQmCInTw1+FOH5Lg+KBsJGgzB06f+jMCDwJFo7fxptDEJINvsxrW7A+uYWjUYTP/TpdRqYIuPkC6fYGadTRlBCYS2nHoj5wke3JjORFoYdvUOaemADOr6jlVduPISqJSExlsks4qnpPXs19qH+edZRDqYKqwII9VTVArDC8PnjX6spVsvnjn+Njz73DXioXVPxLDCidixmtqv/Vgcue/m9sMf29XbXI2YSlWOku1Ir4Ldv/yLvf+Ve7rtyywRA1dtUb9teDrSz4Kq+3SyoqYBd1Zd1gDcxrloLRYEXx0QXLtB6/DH+2pknGQF+tkWiFYFo1swhM/0QBNh2m+yBB0gfeAC63TIIwM1zxUx7qjbVw2Vl2XhrNEIqsBq7cwkRSGiuQnlmCRRpCtkAFhvO96DshTu3DjH0Uv7me36Z/9sT38JfeemdtGgQdkunz8pxFJiqWVG2ZO8cKdf2/LWye7aqfzPLk5WfbZUF1kCRgNQ82nqUJ46s870v38984xioJugx6MS9l2XiNjFtgxCgx+uY/gh/8cQMS8JkbnfNKX9TDWgeLA+QQJoiCg/VDCchy/WrnX1Oq6uyOHO8Zwyi34cnnkC88AJkWe2Sxa73wvcdAPmmb8IePgyehxUCjYOEFW8k+f8XhkQ4xesyVlh3r4TECkHcnePU/W9l4eI5Dpw5TXNrE1XWcwGYOOlgaI43ueXkgIXuAU57HhuWEow4hFDVYKmsE24MyZLtMJOomso84XJp2AlboY1rn/sepFLT1bioju1YDFXSYL7n8nJYwPP8CQDQxqCkQrQVL98b80d/YwfrWR741SbGlqnQlY9fpn93bhfuuivzUpG7nCvGaMIwwiPAUx7tdoc4jl2IdBAQ+IosTSiKHCEMgafIC02eu5T40/FZG6g1dsblapkCFqMNo0XDI39jzKM/mJC1LW//NwGyzDok3Yw3yeRqrSXNMtdPUtFuNvCVYhzHZd4TF6HjQpM9dz2+IksGoEJarTZJmpBliUt25yniPMcaS2uui+p1uRAGXFxaZmlrk+aF8/SGA5pxvGu1lCtL0tIYD/wC/D6sbifcUlwg29xiZzjkytw8A18h2xG2bIsLyRWMYxcu7JW2doMbS3mhaYYhnuczjsccOdCj3WsRtDqsX1onywqs0Oz0h7zy7CsU4wGRkgzGKdYUSDTWWPKscLWVcCabK82YT//QOklzOu0YDImfuHpJfkRW5BR4BL02BGLqMyJwvnh296pX4SaVephgXWbNOLNKfdqO6YiRuEnrbPcqp+cv79JyZ+Yuc6G7xrGd1V3HmAUhs9+/FotQb99e69/Zbapj1rdNfJcYsZJREPNL9/0eR/94lYWkew1Auh44mW3vLPCYzSNhZ153gQJrUdai+n2Cq1eJTp+m9cwzBFevgjUUUpOXMZ2F1AyDmHYWoaycPqPdLvroUfTtt5PfcQe203HpC3BAw+IiUMa4+1Zvh8QBkU6tvzQg0yEEEQw3MIVBdlYQNcdaoVOkjqG7XHrtVyaXgMB4fOT8W/j8oZf4ybf9JudaW/zdpz7EgdSV99hNVsz6eewV0zQrr8We1LOPVKPflr0BDoRY0BmYhGRzHZWP8FcWuG98Ez996+P8zi2X+Ikn38O7rtxARMeBEVGp3frIsoBGtkJnStJ9kG2mOUmArA9+uwQGpaoXVWaUkjFRIS5RnEbhUkPU2Y9ZgDIBC9Yit7fxX34Z9dRTiJ0ZTqMePSOlAyL33usiaMoSABUrUr1WPeUD3Vfp6bq8qQGJAyNMImSUVC4FeslGSCnZOXKEYa9D59JFVs6dpTkcTZBeoSxJUKCVoTOUHFq7QjcIOB+GnGtGxMoN6iqDqJyYHKC6tcYYV2jOgvDUhM6sojqgRL6FocoKW80qqszyWgc1VaSKXyZcKwqXRl1JReHStxI3NV/8Kzs88hcHbB4u+I6fmicYSaTn4fk+vh/gl+mZ/ZIeFSUwyXWOF0jyPCOOY4oiJywilPKQShE1GlgsSTwmtRZP+TQbDhgkuSlDdCc8yG4R1aVVZiMmr0JYtg8XfO7vjXn6Eyk6ApnD7Z9vTHK5OCbDok05GZeskMlzBoMhAK1mREtKBsOhA1pSkheOBQmkjy4Kl43WpGR5QhS2HcuTxgzjBKQkCELmej3yPHeRTWHAhW6XxB4iGuzQ2d7maByzmKYYDFnToIPpBQsDwrqHs5EmNM+eYfHCeUbNJulCj/7CIsOlRSyWLE1J4oQw8AgC341P6WhdVdYUAmiFPr4v6XZayPYBTjQ7FAaMLejv7HDp/Fmk5zNKcoJGhzgpsEVMGAQoL8XkDvSOiown3r/DK/cmu7SdkALVldhU05mfZ33tMiacRwXdiVly9l7OOmHWQdr0Cdi9zSwwmbVVu2l3CkYE8PTyKYZBzWMfGIRjnl45zbGd1V37V8e8nvloL/+U1wIe9d/qzER93/r71Mt2JWKzAp5cPckfn/gqH33h3ZPooFnZi9HZi8mpm0L22qZ+LACRZUQXLtB84QXCs2cJLl9GDYe1fRwT4nhEN5dlsmDsJ3TyJiyvIO64A3njjXD0KEGrNfHlqFSdtKVXhnDtymp9UhlI9upRo3wUBsIWqtvZxQi4i/Tw5ledYtXjMmOpB56LyvjI+Tv5qYd+i34Y88/u+QOuNgb8d49/G8dHrxa1UYdtsz34alJtl+OuNsOp1ia7zUAJWMfS2Cwhu3oKvwPCWOTCKngN2sB3n76XH/uG3+Rkb50fev4d/K1nPkSniK7TDgd8BHOIZhebbmCTC4jGHCKYd78Lr7bgm+3xEhZ6ERAisHhMIVR9fM2CEi9JEC+/jP/cc6jZDLyz5plOBx54wIGRpSWqEhpVq6rzVTAprL2+HnlTAxJbVtd1JIMoP08jTQTGJRiLIuJjx9laXGTl3Fnmr5wHk5AGBUZYmqk3UTDtNOWWNGUlHnOy1eJKFKDl1C+j8hWZDHHhgIM2LsWvLENTtRYTh0+tCxAuasYBqBLgCOnqDuD8AirWoYrcMcaZGjwl8aRBWMHl4ymf/L9u8tK7Y7KmpX1Vcvfvt5Ceq13jeT5SqEk+FCsc0PGCgMhTFHlGkiSl30hKlmUUeU4YRRRa4/sB3W4PrCVJYgqtXeI1T5GkqctOWl735D5AmYRMVG8meUcsYIXh8u0Fn/3vRpx+X44pS1ksnfJYOqXKujWVuBA5a8poHOsyjqZZhu7vkBUFnWaDdrvNaDhy95syF4rNCAMfox34a4c+o3RI2GjTbLbY2LiKKQqa3TmkhHicE5Qe9HE8xkjBlSDg0uIS60FASw9JD57lljMFjRhUUT72xvFjQogJa+wVBfODHexoyOKlq+RRSH9xnv7hg2TKwyvrXOSFnZgXfVVWZtYF3aYLmRRhiPJ9UD5yuIk/t8h8oOl03BrDOfhmKF9R5DkqDFHKw2iXIO38asLjHx+iI7t7JpKgepJwU+EFHuMkw+90kU1vQvdX93LXfWVqY65WVHsp1rrpoG6CmAUr1VRasSyFLHh6+RTKSPzCI/cKPK2QRvLsgdN8+ORDKOPvGb47yxLU5dUABTPf13+/nuraxZB4mZsBajulKud3bn2Yhy7extGdZWZNIddjTeoApH6e2T6cqFjrsuqiNbLfp/3kkzSfew5vcxM1Hk8iZerXKwBpBdJItNIYCUkDvnJ3wcX3LfCj8XfRaB9yFLxwd8jNcuVVWAN2DLkA38MzkqZy9LzAqewB1T21YEdgPKT0sdkYWl2IuteCEZiG6FrrzBiBKFkBJ7dtr3Jrf4VnFy6RqoJ/e+uXuNja5n/48ndy59bhsm+up+ArqQeA12V2tOdMmZYyvwMWRArk5cLXxQrZ0SaCGDHeRAQ+sj1P2ArA8xA2A5Pz8dMP8DMPfZqXe+v8wwd+ny8vn+f/+cjHuHVn5Rpz2bTZAmsl2SgnWz9PsFgQtAUinHPsyET2Ut3XLh+qrerjvFowC2OQly/jP/II4tIlxF7mmQqIBAHccosL4z14cM/oGYkDHpV5porUqT+nryVvckDiJnfnQ2IpCkehqZJdyDMXnSGEQPoeW4sBn3tbg2cOjnnf54e8/YmAA5seQeGX4arWUVfW0sty7s+2uRr4nOq26fseeQVFSmWPdIBBSRf9kms7YT1cbTw78QPwlPMS3JVADAsGlJATn5SKYTHaZTANgwAlJYNWyqPfOOD3f3iL9WPTOgH3/0aL1k5AFDSdf0EQojwfISXGaIzWFEVOXjiSNYoiotBnNI4nwCdNU/RohFLKMSNJQq83R7PZJknGzq9EqNJfR5cJzRxbMzuR18gjd43KcuobMj79MyPW3lI6npWj8+4/bhMaV4tHlT41dpJ4jonZwPkFW/Iip9/fIUszep0OnU6XNBmTFznaGowGm1qX08OaMszWJ40HiEaHbm+eNE2x1rCxsUGrzEkzGA2Jx2PHaBQFvuexsyD499+3wxc/rlm9LPjApy3v/UM4fgqWLwlkCXpdllRT1udxqyQ/y/DzjObOgIOvnGXY6TBYOUC8tIhqt4mDAG0srchx6J4SeFKwuLpAmhk8f4yVDVSnhxCGsy9dotWZR0nLgbkmZy6ts7m5SZIWjDJDKIWr8BkIHv+OAXNpwOFHm3z5nVsYBe11hYwEat6nk3co4hFXNwc0ThxFeeIapWe5dgKDab6I2ZTfEjeR1CNWZhkA2L2mqyaoi+0NLnQ3+JGvfJRffOt/JvcKoiLgRx77KF849iSX2psc2VmZHEfNHGcvdqRqw6wfRiX17/cymZiZ19nJNPZSpJUsxF02mzsoK3n32buJvZTfveXL/ODj34Y/w5LsxczMHneWV6nYJmkt1hi80Qhve5vgzBkazz1HeOYMoqwZ8moAqvpm3JWcPKF55F3wyY/Dmds8Aq6w/eyX+PtPfpRe7uNYgWq17k0pTjIIWpBvIEwAasFtZ10a9x6gJwrKA1EAPqK96LZ7LY0k3DldNtLpFQRG8a1n7+bZhUsgIFea3z36DBda2/yThz/B+y/ddl1GandPwvU5tQpGVzDQw2qNRSNMhhUCtMQYgS3WUTonWb9AuDyP7M0TeD2ELMAMXYiabIHqsJB5fO9Lb+d/vOcPGHkZ//nEV3l64QI/+cQ38/FX7mcua86Akul7rzOP4CDJ1gae1S51QtDbG9Rd25mT/5W/VmVqxVrnI7mxQfDMM6hnnsGW6S+QcjfIEAIRBLC66oDI7bdPGZEZMFIHvwHXPnOvV97UgITKJl9WsHXgpIpu0aUC9dEUnFpe55Nvf5I/evAlNrtjfuODgr/w6SY/+u+Xeeip6TRXn4AlsJJlzG1uczmKuNCMWPcUBjEN8RXO8dP31MSUUYW+uugSl29CTWrOUP5GyZKIa3wxJCCUxC+LK10+kfDpv7TGl7+lT9KZHqO5JXnLZ1qEKqLV7hCEzvRSARJZolttDEkyJssSkjTFU4IoDMvCfxpjLHmWTto1HjvmodPt0Wx1SJOYPE+JohZSSNI0wWpnIpj4Gojp3FWFRBeR5flvS/ncfzumf9jsGqFeBnc+3qbh+aQ6RxtXLlyKqm9FOfZdnhXKYyJgFMcYY1mY79HudBiPRiRpCsL55VSp7ZU0ZEmK5/mYbITG+clEUcRoNHQMS9MyHAzKAnsuFNh2JF/8lnXO3xjz9l+b5+Hv3uJf/h3Nr38vPPQl+M5fbvKNnw3pDcZOadj6WrZ8tVPA2erv0N4ZYM6cI+71GHQ7xHM97MoSttPGU5KwEaBVQCNqgoowO1t4CwcwZsTG5hYIgR8EZFZx/IZDDPrb5H4IRUrlTHzulpRsDr77X63yn370KkaClwje/utzPP3RMXEEKmoxikfspJq5haXJsJsFINWt2ouKr5ty6q97MRazJpD6tgbLxc4GN24e4hvO3sO/fOt/dr9bwXvO3MP5zhqX25sc2VmeHHEvxV7J7LlnGQlq3++lmq53bfX9BC7kt5s2+eDJh/gP9/wBmcrJVM6PPvoxfuv2L/Dywjnu2DjxKi3dGyBVIKoCStZa/OGQ8Px5/HPnCC5exD9/HrWz86qT/ey16sVF4puP86lvvsQvfOx5zh0HK2Eh9vmR597F0wsX+Xc3f4EffPFdtOLCKT0BZKkzn5gcojmszWEwREQCB0Hk5HweBq+CVMIHUVUBe+3w2+u3HpSVvP/irfy/7/4saRmFhYDn5y7zo+/59/z0V76d73rlARr6tXKFzLpbV5+nr9YKsCnFeIwerpEmIxQGFQXYOEZ4AdYXeI02jcPHEVET4gTMBjSaZUbVNpRJyZSFv3D2Hn7ptofZjFzujpO9NX78nb/GVw6c4f/89Ae4rb96DVMihEAFLdT8Daj2YaQwkG05xibsXQMGXqs3q+g2bS1mawvvuedQL72E2N4Gq8vnX4AovXsq/HjwoDPN3HUX9F77vK/FU70eeVMDkoplMEXhVtnKgRFjCoRQeIEkaRT8zr3P8p/f9gSnDq2hlZuChi3LF9/p883P3s1qLlh5+WX8OC5tw2U3lqAjMoZj45gDacqFKOJkq0EsJUZbx9+XJhwpRZkt1UzYDlmmXK8+KylwkTN2Yu65drp2NKQN4cl3DPjd/+YKp+8ao/3axVu44bGIwxfatFpd/MDVUJHKm2RgRTi/Gk8IfM8jSXzSLCHPUzylCMOIPC/IixzlqbJar2tJkiQUhWZuboGo0UQol0Jf+T6ezkvzWPV4T8GCiwiCpGn46g+knPymjNt/I+DlD+es3aUnl7l8JmDxnE/geUgE6aRasPOtcbV0yoRLVk7Dia3roSRN2djcxi70CILQgarCUel5UZTVNyXKU+R5hpAK3xOYLMEGAWEQIqRke3uLIssodOmgpiRnH4wpEs1H/9kqj39km3HPMTvhZsjD7yhYObPE8bWbaO+MWLp6hd7GVUQ+zS0jJsPHTilPQOU57fUNWusbmDAgPxmh57sUR1bpvfUO9DhGtudBKmSrB1awcXmDPMuRQjK/0CUKPLIiJrcS5XtIm6N1jmgLNlYzPvgv54gOSzYWMxDQu+xx2590yO8KGKocUKxv9pFBg2i+OXFmrUZh9brXOnKWQagUaN3noR4BUkVegGNWZh0hjdTksuBDpx6ikzV3Pdu9tMk3nX6Q7XCIkRrPeNcwN7OKt/59vZ1V++XMdrOfZ9eqs4R+JamXcfvaMd5x/i185qavcL63xlp7i0YR8Fef+FaeXT7NjduHCHWw6xyz/jXVeQRMcoEIa/HTlMbJk3gvvoh/4YLLnDocXre67qxYAKXIbriB9J57KI4epVic4/Lb/4jx8gVu2+jw/IGLbEUxURHxc3/8zXx26TG+uPQUH3pxBRn2nClFCXQyQu9cwp+PyQdb6J0R0WoPV52mV1uJzAaWGq51NP3TyU2DA9y8vcwzCxcnnXb79irfduYe/tfb/oS1xoAffv49tIpwRrnb2kt1J3Iqk5Dr8gKMa3uyfgHJECENMiiw6xv4vQOIIMDEI4KFFQhDBBLsDtgEfAGqg3Pn3V33WgC39hd515Ub+OSxpycDbCdM+De3f5GnFi7wE1/7MN98/i58o64BJkgPFVYslYVkHbzARdZ8HaAEaxFpinr+edSzz8LGBkKX90i4zOATl0cBRJHzE3noIVhYcOaZr1P+NOwIvMkBiTWgSzONEBaMLpWPJG9oTq2u8W/f8yc8e+Qi/dYYLafTirSC+08e5fj6cc4ux7ws4cSFi6z0+0R5wS4iu4znbxaam4cjDiUJJ1sNLgYhqVAu3boQ5EZPMqNCmTF18sAKl6RMSJydtjL/OKbBmulKWwhB0jX8ybdu8OQ7+tzxlTatTcXXPjiYtD+IBXc+3GM1WyRqugq0QshJ1E6l2N24NQgpaDYb+IFPkkiSeATWEgYBWeqhC6dQjauS51ZWOmd7a51Obw6kIE1ihNVgrfPREdb5LjDNFqG1JZeGU+9N6b4i+I4favH0X8pYv8Mp9WAsKHzL8a9GNNfcsPV8hVCSvMzKKhBI5ZxbES73i7GUIGX6LGZ5xtW1DRZ6HTqtBnmuiBOXv8RYS4EgCvzSp8egdY7CkAxdErXA90mSxI0Z4fK5NNshCy8YDv5Rl8G85uG/uOn8LzLBB/6XAzzx0R0Ws3l0p8da2GJ7cZ4l73bal64QnD1HFMeERiMn4ETsUmaUo0qlGSrLEDs7iPMXUV99Gv/oYeztd6KX5vAOn8DanI2rV9GFJgg9FhfnaS4s8sITjzimyw8IfUk/1eTWctcftgi04Mw3pGzPOyp/4azPwatNjn/pMPmyQArDlbUNusfudxFNYtqmWXZkVgTXgoA6LewqhzjSvwIDVZGyHBgyzRZR7X+iv8LRnQOMvZr9ujzbW66e4EJ37Rr/kXp76+G4s4DiehE+svZ5L7NN/dqq93WQlngZ3/LSOziyc4DDOwc431tjo7HDK/OXeN8r97Nw5p7rgqe6M66wFlEUqCTBH40Izp6l9cILhKdOQZJQVqxkVur3avJZSmyziZ6bI731VpL77qNYXHQRfUKgBCzHc7xl4yjf+cSD/MS3/TK5Z/jF2z/HX/2Tg/zQxftYWxYUcysEpiwZYSNkuo1cPgQypFi7iMaAryDdKVfr7KEc/+sAEXdtgpW4y9vWTvDi3BVC7TEMUp6ev8gPvPAufuUzP8znDr7EHxx+jm8/e88e5htXIJV4G5uPEJ2eo4fQLo+JFCSXThNKl8DSP7CA8FqYfEC4IAkWDoAZY4LjZUKzzEXViDIjq1cWvNs1ikrgg2B13OLD597CZw+9yNifjvFvO3M3b9k6yP98x+c4097kr7z8DnpZoxZ/VO8E4fxHpAS2cE9czcv+emKtyx9y4QI88ghibc2NqWr0iPLJLYMJaISYG25Cvvd9zkyj1B739s9W3tSAxGiNVRIpnZNhkTt739hLeXrpHF9ZOcldjy9x2wtLfPJ9T3N+aXuybzsO+JY/vpW4v0M8HqGl4NnDB7myMM+xjU0W+32CYndhKTfpWdqF5u7+kENhxrlWk/UoYEx5m02VMVMiS/BRBiWXETR2koPElg64xjIBMtZarA9XDmXc/Gyb9/zOEo++d5Pf/751APxEUASWAxci7np2hUbUQnlemb21Wpo7B1hrXTG6kpBDCAg8hYga6DwjTRN83yPwfbIsLZWnm+YsVViyYbDTdz42Wruss1I5/wljnF+BNs7x0bjQZXy4+TMBKhVcvlfzyI8lWOWiat75v7V48i/EHHzKwx+AERaFRAlQUUia5hS6cJlxpZ3U5pnMy7tyD7gop53BECmh3WyAgDhOKLTGWsvYuFTzgadcATpj0GnpF8MCURSR5RlFlhIEIX6haF/yMMLy2Cc2GS64MXDjY01ue6LL8C7JwqDp0vQbjcVg2j22b2rRX1hAbWywNB6xMBrTGI3wk2RXJsypM2TtQTcWkgxOnsW+fBYZ+JhDh7GHDhDGQzrCp3PkEK22T56nnDt3mSQeIbIM4zuKQ6QWqUFFigvHRww7BULDgXMhh7IeN50+yKU5QZxrRqnmxLHDCDVVbHVmYZeiY7dCnV5H2XR2hwJXa8SKGfHLv4Jp/spq28gojpUOoNeYGQCL5OjO8qQtezEas5FA7PH99abU2euc/a2+n6p930vb3Hn1BL72OdI/wKOHBf1wxOm5y7xHGHzrTba9pn3WouIYf3OT4OpVgsuXCS9cIDp/HlkLN6+3r35d1YOgS+bNtFrkq6vkhw+T33wz2fHjmEaDWbHAUtzlLevHeNsLh3nHrUt8/o6rrLXG/Lt3XuC//co7ODaMoRGxKzdG5yhYgy1yhNelcXAVEcSQVVc3CwD+6yuwbhZx//oxPnvoBf7SyYf4p/d8mkIZ/um9v897L93Cd77yAKnMMbt6zOJGXQqEWGnI4g2EjtGZwA8V+WCDaHmBoNtFhC1C5UEgwRRko5jwwCqiGKHHY+RcA2EHIJqglplmZa0bJSvn2apfJBKf9126nRsGSzw3f4lAeyRezqePPMvHztzHTzz5EZ6bu8Tpzjp3bR4isNdRyUK4kGEAhmA7uDwme/S3tS7l/fnz8MILrhDeNQXwnL4QWPAV9ugy5u5bSW64ncb8Kkq9MdDgTQ1IXLp0161aa5fbIc/YGfZprxd85IsnWDsc86/+xmNcWOwDoAqJFZb7v3qQA89IxvlgkjnVSsFGt8Og1WJhu8ux9XUWBsOJw6Kbudx0JywsZRm9omAz9jkdRVz0XII2pRRSyQkHZowuU8+7zK5SirKSrYMqu9KvWxA5HH02xPMkLzw04r/8wBXShkFouPcPu7zwthE3PdvjyKUeskwf70wDYjJAnR+HmU5wwk4mM09KGo0GaZqQpRmekgSeR1EUCO1WzcJOE8GBY0ICJXfN3ko6j3AF6EJPatp4hWvLaNHw5b8TM1p2O9z0hZD7//cmZx7KOPC8Ik81eBbhuclVSUEUBWS5ZBQntaypYsJaQvUYTXOcFNrQH4ywQKfZQAnBznDsMu5asDbH+oowDMtoFIMwBaPtdWQQMT+/QH97C2stceoYls3jBU+/f+Byj4wF9/9Oj8W4wQ2noLdTOqMKS6gkRZ5jhKDRbpJ6iqc3Njl0+AirniTYXKd5ZZ1oaxtZFJMhtGsesRZbed0L66ppnj2LPX2aA1YzFzXwLl7GXF0nbQVEw7GbPJUsU81L8hKA2SXJheMJ2oNwKFl9KWK+0WGeJssX59nq98lFCy+a2v/hWuBxPUVfV+LVdjnTfAaVvdpnCkwqpkThKr5O8xWISVjp7LmmET1iV+gwXNvO6zEcs7LX9VzvGq/XDwK4Y+04UREgkNy0eZiwCIiDlFfmLjPwE3pZaxe4s8bg9ftE584RnTlDcPUqqt/H39pCln5LdT+Svdo7fW9dnptDh0lvu438+HH0gQPkvZ6j3ivn6pnrksBS3OEt60dY6Sd851eP89hNm4z9gk8ef5bvOfU2bto5XA7M2nxH6BbRfkTj0K1lBd0Colfj0v7rikRy9+Yhjozm+IEX38lXF8/xe8ee5XJjh3987+/xC1/4bhazHrshtAa9BSZBqFVEOI8/J8i3TjO6eIn5YzcSLh9HBE08lYAonD8WXRACFUi3cAwOIP2o9A9pggjYrTZnebuKM6w+w239Fd5+9QbWoyHvu3gLv37j44z8jH9036c4Opzn/Zdue30dIQTQwKVS3gExzzWA0FpYW4MnnoBz56AM/57uX7WsfL80D/cfQ9x2DOaXiTcysu0Rc/PdSZqLP095UwMSgTPVaK3RWpMmY3b62yRJQmhgZyHhF//6I7x0yyZWwOJGgwefOMTDbz/LR377ODrN3YpfiAmzYYwhk5LLcz2uttsc3Olz8+UrNLIcWSpnxDQZm68NK3HKQpJxKPB4qdlk7JeOr8KWDIiLrhFohHKZOK1xgCHXmrwoQ2uVwleqBBOW8wfH/Ke/foHLx1OwcPtX2rz/N5a5cNs53v0HBwmsX4IcOQEjU/8Fg6CsHFw+NMaWTh9YfOXRbrUYDAcuCqhMy1lZfCwCawxVtQqBwVqDLz0m6eWExBMCW4A20xTsWIvx4bnvyjj1wRwrYe6s4t3/qkXrimThrMfy8y55WF4YF6Zdhv4qz8Piaua4dPdTFSOErTVQVGQsWMjzgs3tAVobOq0mrVaTwWBYFhysWJ+MKPCxRpCmGWEUkacjKALm5haIxyPG8QgZeDz3niGXb3aOvkefbnDrVzo0tM/t53v4hSvu50tDI/AwVjMcZ3QaIZ1Wg6zospVrRLtJ69hR4htOIOIE7/JV2pcuu1w4WiOKaYimC8PTZabKaW0kWRii0Rg/z2Ftg8Bq7jOGW4Rgp9PmvC/ZaTYojKOck0XD+RMJ4ADJiRdazHVaREGTtmly/uoZWktHEIGY1DqpR6fUAUddOc+yCHbmu9nIlGr9HOMmmZBpkqRxuU/GtVEz02d7ep5ZBqduptkr/VV9mzpYuV7UzOz592Im6v3SzqPJsW5fP04zj4j9lDO9iwzUNguxRCYJwZUrRKdOEZ06hb+5icxzFxVjzKQNrxYWWS0t8DzwA+T8POqmY4yXFxjfdDf5XA+j1CT8tv43218CWB536SUN2sUaHzh7mIeuXOJzR87z1OIlPnXkBf7mc6uo64EMIUDVea8/X7lr8zAnBousjnv8nac/yPPzlznT3uRTR5/iV25Y4Ydf+CC+ts6/osojIprOVJOdwoQLJJtniUdbaGEZrF2lE3Ug8EEJsD6EC7hIH/DbLp8HCIRoMTVMVlKvlVu/mzB7NwPj8b0vvY0vLZ/iR557L2uNIX906AWen7vCzz74SY58bp6bZ0LFpzI7GiXQAdHHBVuXQExrVwDvqaccKzIeT2nl2cgZIVw+kTtvhts60FHQUiiR013s0h9IxpmlFYo9CZg/S3lTAxIpBEYXFEVBkiQM+lvESYw2ho0DCf/+rz/Fi7c7H4C5jYi/+kv3sL4w5kF1kEMXOw75lz1uymlP2KmJpVCSs/PzrLXbHFtfZ7W/Qydx9W6md8pR8L61HEtzVvIBF5oF56KQvudRlIyIELvLfrtKwJY8LxgOR4RBSCOKkKFECcmoXfBbP3qFF+533tmrr4R87H8+QiMJOfJKmzuenndgpKqIBjOTkotYkVU4symZmDJiRQCB7xMGPnHsCj8pKTFSYrRzEBZYhAIpnF+LS+CWE/jVutddR6HNLpYHAVfuLHj8BxOyLngJPPBrTU48HIIPxx73aWwJcqtL00+BbxVWuX6Pk6z0C3J9ZSmzwpaUjZVi8vuED7ICqw3b/QFZXtBuNOi0W4zjpCxwZ8i1waYpgafwPUmRp/hegDYFRTwk8EOSZMzGUsKTH+iTNQ1+LLjrjzocWWuhIo/VtTZGSmw+Imr4hGHEKM1oNSLnWG2h3Wwx5yvG4zFjK/GjEC2bjA8fZP3IYbpa01jfoLWxiTcYoEZjyFw2XFGmcRc4k179flqjIc/xjKVrNZ1xwiEshRDseB7DVsTLlxS3vpDQisHbltx0vsP8HW2arRa5MYyzgvlbVie+I7OhuLOOoHu9n10TUvu+YkUUTFJIV8BA4eIP6seozn+9wM06SKrLXkBktm2zicX2SqZW374sj7YrB0gFrHZnsRBIa0EX3Hq2w31PhiQp3PDKZVZ+91OsPhcTXLmCrNf/2KOtdcL/mm3CEDk3h1hYQJ04jnfLrcjVVazO6L/4BGmRu2SG4tocMnUgUnc4Xo57eLnB0+e5aXiAbz/zFh5dvcLIz/hPNz7BXzh7D0dHC39OvMfXJwtZi3dduZnAKL7x3A18/wsP8I/v+0N2wox/cecjvP3qDTywcSOiyoZhNVgPomXywWnyy4/hLR1g7sBtKBsz3hmyeeYl5leP4M8fAdnAmTFcLwpbOY5aro0UqnsjVd+/eq+95/It3LF1kANJh//Hox/lr73/l3ixd5XPHXyJn3nwt/n5L34v87scu6vRVxk7a0+gEGC7wMCFGvczOPWKqzuzV4bV8lWAi5a59VZ461uh58HG8y6aKswRUUEox8zPFRTWwxJdByT92cmbGpDocoWdJDGD/hZJkmCtZWcu47e/60WefOAqSOhs+nzsV2/hnieX+f0PneKtXzlIM3beyxrAuiq7zrER95BbpwSEsCSBzwurK1zqdDne73Nwa5uwqPJMllKi0cgYbhyOWEpSLoQhr4Q+Q89DqbKqrHF+EdpajHYMiqtlYl0EjCkQDY9Pf/c6X/ngNgiIhpKP/quD3PLsPCcfiHnPpw8jrSO7K7MMk7oxcheqtTUnpipEunropJQuvXyZXGz6bAk8pSiEa6/nS3wlKYwkKzRpnrsaMkqRZ47lqbN7uQ+P/M2E9dscI3PkqYB3/GqbQEu0tdz4BZdqWAomrFTh0q4wTjVplpfXVGW9rSlGt8MkKZmpJ5PDXdp4PCbPc3rtFs1mAyGlSwCnC6xxzI/vu+iePE9ddV1PYsjp9Lo8+65NztwzBgvzl3we+MMFJJJ2p4s0EpMXNDxBp93CCkGhLe1WQFEU5Fq7mjSBRxKPGYwTNJLI9xBCEIQBmZDk7RbxjSeQOzuIzS2C/g6LSUy4M4Q0m+bEEQLllffa2AkQm/jWAMpY5rOchSJn5QnDbX/PcvkgJNJwwytXmedF/P6IvlSkqWRxrjm52XtNs7NsyGvJXiv8CtwUTLOyVmAlYpqIe1Zx1o9XD4GtpA4kBNcyILMmpb1YnVlwVWcT6ttBjcEo7fL+5ibe5ibB+jrexgZev89P/XqCvwW97ZxO+iRRsdvh8HrsxzX9FobI1VXU0aPIw4dRKyvIpSUX2VEzG/thA1smsZo9xuxxK3ZKALlRqDRHmAKVGz7x+Ar/6rYGLy3lfGn5FA+vnOLIqf+jAJLS7FIyEwLBBy/cTlBIvDTnR555K585/DIPr77Cs4vr/I/3fol/87nbCQ1gC7AZdrwByoI0iLCNtREyzRCNCL/n0RQKK5tOITcqMCB2vVz/7s0yJq8unpV8/0tvpx+MefeVm/mpx76dH33Pv2cQJPz6jY9zx/ZBfuJrHyY0dfZpr4w7NQAUS3j+KXj5DFxem04KQH1SFODSu996qwvjvekm8Mu6ZyaHnZOQJ5C72hg+DVR+BcsK+Nf6I/1ZypsakKRZijaawc42aZI4PNmw/P5HT/InHzhPHhiikeKDv3mcd332EDo09LZDbntu0UWUaINUsswKaiex2lOKvzR1aMef9NsNXmw3ubQwx/HLV1jeGSArsqQcJ7ZkCrpFQbMoOJxITkcRZ5sRWrkoGINFiqr4naDZiLDWkCYJiU557P2bfOYT6xgPVAYf/ncrPPj5FTwvoDOynDjbLH1HKGdPUbIFYtoWW7a/MjNZWzphulcpJLacmo21FEXlb+EiaKQUoF2eEU8plBSlNUFQFIa8MEjlHGI9lZJX/h4CnvtYygvf7sJO/TF8+J/0WFgPMMogjGXhrDcN4y1Fa4s2OVnuzFmVNtq1ki0/2DKD4oQhqR2qAlZZlrPZH9DrtGiEIUq6TLOO5ZEYCpe6vTRpFbpAKYsMLF/8ixvkDXfy+z/ZY+Vqg1a7jef7rpJzkRNFHlJJdsau2J8UzjcnywpkIFASAl8R+E3GWcFIGxphgBQOAPqeR5xlNOd7jMIADhzA70QcWujgjQUbX3oYef4SXp4jPM9VCS1NbtfG7TgRArRnaQ/h5hehMTA0inUXNvr8SRas4SF8vLUL5EcOk66skC8vky8tYX1/4otU/VWgsB6uWhtewN6RLHVTUPWbqn1XJVKry17pnva6yllGps6+VMffa/tZ09L0IHYCOEQJAoW1CK3xt7YIrlwhuHoV//JlgvV1RJoiswyRZcgyKdlNKmdQYpBcFjTKKJPrqTI3RoUzp0YR8uhRvFtvRd1wA6LdRjQaUN2P2f2lwusuIYaxCwNWcgLMZjNtBLgaIs3yuxEuck5YjQwbHOtbvvexo/zsR54h9nP+p7f8MR995V4a5r9elMxrSn0eqK5X51DkEFYptgAENw0OuCiUoMXhOOC/f/QDfPRb/h1jP+c3bniSbz73Rb7vpXvds6ILCBRIib98BH+xTL2QjUH6BMLiL98ChFiTQGnirlGxTPhXC6ARs8Xuvk557+VbudjcRiD4+Cv382LvCv/D/Z8ik5p/cecfcWKwyF9++W01s1k9jFhNuyLP4JVX4LHHYHPDfa6ezFlGpKo78773wfHj0JgJGW6tgNAQvwLZ2AE41URby3D9PK2Fo/hBuOdY/LOQNzUgScZDdBK7CrBCkEeGT3/zKf7Lx1/GKvBSyQf/ywm+/bdvJjQ+WlhufH6OxraHFSDLh9lQ/lPOzCHKMF1bKuu6jTYVEIchV44c5kB/h1u3tuglCb4u/TOkcMrfuhLOHa25ezTiRJJyst1gLQwYICbOqGoy/CyiJTl59yZ/8Dc2GSxqVAFv/y8LfONvHKJhGkilOHzOlbWvchchZRlhMwUgsys9579iy/woLkdKYYryvdtPl1ldrQXPU0jhlHVhNbnWKOWq6oaewFeOmShKk4JScpJS/sodBV/4v4wpIgem3vkvWxx+1HMMlCxr+WjQdmb6FJYsyyemHzHxEXEgy5oqbb/bvAIok/mjEgFlgLVzTt3eodVsMNft4ClFkiZorZG4LKu51jTCAGMsRV7w5Hv6vHj3NgALayHf+NsH8aTnks5JgdYWX1o8z8MiKIylEYVYa9HWEviO3h2PnadE6PsYJFuDEXnhQFAjDPB950NTaIPneQhfMhQS3QgIjh/lyngLcdcdLFjnPF2cuUB64Rx2nKLyrDRh2ypTP7KMkCpqCyyVuarUQmtIYmRW0PY85MmX4eTLk4nJKkU+P0++tES+uEi+tEQxP49utbBBgPV9pO9jfB/r+6BUeb4puzFreqkib6pQ4FlAUFWGrfKT7I5n2503sxolsyaauvmlWktX5Hbd5CIpGQ5jEHmOzHNUnkP5Xo7HeNvb+Jub+Ovr+Gtr+JubiCwrAe+r80W+mU6jhSqrYNd+F+DCcqPI9Wm3iz1yhO7NNxMePYqIoulq9nVM/M3eHGGqsYWeAJI6k1S9b+CyY1TSFaDRiJZCdQJoBPzIpbfyr0fnudDu88XVk3z6yHN89Oy9r9mGP7VUiz2jHQNaJFhjkNJHBKVBT49wobm7675MqlLjIeLLvPtcj7/z5Lv5p/d9ntjL+Yf3f4Z7Nw5z19ahElMXboUkfMeSkINqg9RgKyY5Q6cDrO2jWiuIyQjOAd8tipItRAiIqsJPNapfvwgEvaxBJ3PXGGmfH332/Zxtb/HLt3yZy40dfu7+3+XosMt7Lt+KnGVgrHWh4JcuOYfVCxdqjEgFRGpgxPNgZcUVv7v/fpf6fXZsiZLpaR50QMRcAlOAHOI1lhCJx2CQMTcfItXXwwf96eVNDUhGoyHSOKfFIjR88f3n+eR3vYyVoHLBOz99kO/432+lYQMQFpELVi61nA8HLnFWNatJ5SJgBNOEZe5BdxlYrbEYDLYwE/+PS70ug16XgzsDDm1tszR0uT0mydVKYCOwdHXBvf0ha77H2Sjish+QeapUrgIpJNurOZ/80Q2u3JyDhRNfa/Lh/88hFoZtR9tLibQSUSZXo2yjqByVKt+WStlbXJvLlZ8z8bg/rTVVLSBrbJmxtVqFu1TuMgiQRYHRzv9CSoUfBGAsmS5I4tSZe7RBScGoZ3jkh2K2jrvzH/tKwAO/2kRmFo1GWuc8K5UAIUuA5JpcaO0SzdW7DiazrJ38L01ftqZsyk2FnAaQ2rJfrLGMxgnaWOa6bZqNBlmWkheFM1kJSa5dPaS4ofnsd627PEkG3v2bixwVBxEdi+f7ZHkBRiOtK3iYZi6hXOAHWGsYjcfMdVoIpRgO89JB2QG2TrNBoTW5cSW+KQoQgizLnDNz4FMUBTupYXT1AlobgsCnfdPthAsB+cBw7vOfozGKSS9eQO6MCOKEVpoTGY2Qrlhk5RuiCpf8Wzqv7dJp204KUrpOKsFfURCurRGsre16vkwYotttdKuFabXQ5Z9pNNBRhG00EFGECEOKKMKGoUsiFQTg+9gSKNfzfdTDgiNcUOZepcnrZodZOFAHIm4sOHOKyTK8LMNPU1eGPUmQaYpKEmQcI8djVBwjRyO84dB9Hg5RcbwLdFzvvNebkJUVeFZSCIPBUkhNYDxMFKEXFykOHMAsLaGXlzGrq7CwQMv38Ur26esSIfCiJqE/IDUa8K8xQ1V9t9vvpfyu4YN/AEwCwrCoV/nBF97BP3zg99DC8C/v+BzfeOk2OnlU27PGtFa9rgvK8ty4ZGMuxYEZp4hGh2keJydGO1ORMDmWAhMPIWhQpANsXhC0V6aAJJi7zsVXFGkOeUKQDPirT97IFw+e5nMHz3Cqt8m/uPNL/MNHP8pCVmbAEabWO4F7MHSOq3yRg/QhmEPkA1yl4QoGVzC6cAxE0HRzo6jD5K9PBGKy/BQIVpIuf+/Jb+Kl3mW+uHqK5+Yv87MPfpJf+qO/xtGqeGA9hPfFF+HUKbim5sxuRpPlZbjnHpdhdWHhWiCyq1ElYAsPld10FUQOYkS71yVJ/nwhwpsakKRJTKg8jLJ87aHL/PYnXmLczhEGHvyTFT72a7fSTIOSQXAPkxQClEtHrgsHLCrFXvdPUOVkKoUB6XwftHZOnLqM6fY9j1wpzi0tcrXdZnmrzw2bG7TT7NqlHGUq+rxgoRix4aW80mxwKQwwQBoY/tMPX+DFB4ZgobPl8Yl/cYITlxZRnl9mXi2dY+VuPxE3JB0ImJpC7MRsYycAxYKdVkM2xtW5KQqXJVVYp5i10Rgr8ZSHF4boQlPogox84neSpxpjNKL0czASTn9DxjPflmJ8aG1I3vbLLRYueBPlYYwp9bDzH0GIMn+Jpij0rils6tTK5Ftrps9WBbKsrAEzXM0gYy22dLStEsXFaYrtWzqtBq1Gg6woyLPcpdiXijzPef6hEWfucBEqy+d87vnjiKy/TdiaYzQa43mKUBoaTVfQLi4MgecjBCS5RghJEATE4xFZXjgWRUgKW+AHPk0ZMEoy+oMhc+0moa8wWqMRZLkDMBvbQ0yeIqRHEAREUQB+j9y8wsDzsasdLhQJeadDujOkLWDFk7TjmK3eFq1xSnMMQVE6NQtHJ5ky/428zuS01xQr0xSZpvgbG7vGmhUC63lY38d6HngepmROrOe5SCHPQweBs12HIQQB0vfxfB/leQjPI5ASoVxWYeMXfFNHMwqglRV0HvsaQaFc9EAJ4ERRTBgOUZlNyjaKonAF54rChVdr5wBc7SOK4nVnOq1f66t9X4cwnvEYNDPO3Aj+6kHeErwHc+AAut3GlGYYISXCWlpAV4jrT76V2VgIKGLwAoR13jhW+GAlqihoaPf8VZV3p8aNEvSJWVgAeE3wDoOOwY7xdY9vO3sv//Hmx3m5u8ZjB87wxwdf5NvO3u3OLXK3ahYBpDsIFboQ2HgHojYI5VbXNij14ghsgM7G2CRBddoIXWB1AXigHJclmnMIpfCDFmARXuUGfT03X4OLz4rcOT0fkabccAF++Gv389z8BmvRkF+/8at88OIdfPz0fahrcuOWvJ0Ga31MuoYIV1B+EzDYbMfNO0EIsut61BpkZ6VsyvXitF6v1O+Q4/Xesr3Kzz3yMb7zw7/IejTic4dO8TMPfpKf/+JfJio8xOUrU0Zkr8iZup9IqwUPPuiAyMpKGbH3OkX6IFZd/zAAFFLkeEr/+VAjpbypAYk1FjzLi3dv8ss//AxbCynCwn1PLPN9/+FOlnaajvmQYkIaTNK1G4GuMo2WN7kyfbg53EywrJJgrUuElReVmUKVjpXO02QU+Ly0OM+5TpsTW1uc2N6mkRe7bezleXxrWc1zlvs5a0HA890G//E7N3j0Ay48uTFQ/OV/dgN3nlzFj/zJASomRAgmAMWd31WPnSDk6nS4olz11Z/Fhf8aoynynDiJXdVYAbq8fiWd86oUAs+XeL5XppYvSNIUKUuwohyIMVKyuZry2b83Ip63CAN3f7LBXZ9qILSt6ApnGiqdhz3lwpyzonBgxLIbyJcsU2WyEaX5zDFKdmK6qV4cAeR+l6UZKy+z+GLBUx7awGAUgxB0Ww1C3yfLcpCCYknxlW8eMJjXSA13frbJgeckuR5gjaE1t4QUgsgzhEFAYSxpnNCY62Jxydi6TVeSfBQnZS4al+58p9/HFJper4uSgm4jZJxmGOvTCBRSKeenJCVpkmGMJgwjmt0F/JaPtYKtK2v4niLLHNvT6vUwfkCKYc2XnC9a/KP/14BTd6bc/CL8yM/M8d5nGywYjUkyTJ67CbpUihOzV727r/eczXwW1rrw1Tzfc/vdG187cVZmCZ+p02VLwE//VoaRIE3Oyug3kLMnnvh2McmTU086V7+W17OGfb3z7K7jleDL+j42iigWF8mPHuHz7xjx9//Sp+j3LG+94vPzn34riikANICylo629KQlFLP8xfQarSlgcJVxmqDsiPDAjWBSKHKsapFsrdEIQGbb6HRAM4gc4AxDMNY50Pshvr0e/xK4fCK2gcDnrs0jfOuZu/iFu/6Yq40Bv3bDo7z78lHmhjtYTyFEAL52xd2UD0JDe9G9As44ZMGOEWHTrbiFxXq+82EQLaTvMtRM+QELZAid4ziymt+KNWCHQAiycsktGQ7K7KHNo6CaeMPTfOLJZT6/eJR//dBzbEQjfubBT/L2K0c4Ol4FShbcaqyVYDTCn8NmCTtXz9M+uID0C/Aa2Hgbsm2EOuIQnZUgotpgqWfNeT2jZxaA1L+rfhG88+ot/LOHv5u//e7/SD+I+e1Dj/HOTosf+vUu4qWTLtvqrp2mE58QAppN57D63vc6RmS2SN7rFREAh4CrCJuATfDzK1glwW/+6Y75dcqbGpBIJTh1e59f+tGn2Fp0N+2WFxb4gX97DwfX2+iSHTDGDSAXleH8KepRDO7O2slk6UIsXS4MqcoJRTvFrkqWwlMKWR6zKiYHgjQMeX51hQvdDic2tzg4HNHKs/LYcnLeahWzkqVEWcy5izEXHvf52m0F7/qtgzz4pRVU9fBN/CzkpH0gJj4V1jrYY7HI0uRUlc6upvAqfNatvhzDkBU5eZkYTVADZLjrLIzB5jm+7zICBkFAUeQYbRAKojAgyzJsYPnc34q5eptD0ysv+Xzj/9RBZSXrNGE1JpgBbQzaWvJCu5Twk8Fev14xyUNijCmfh5L5KQHMZOspteKOIlz9Hhc9JR2AlBKtC3YGI4wxzLWbtFoRcZrxyh1jXnxr7ELEL3k88EcdwlRQUGDsiGI9p9VbRDR7oAKSNCYIPIwuSHPnxhmGAXmakqQZjcg5gg3jBKM1YeCztbWNH7hcJRLDcJxgbUSn6eEpWRYYtGBdJFCrFaG8EK3HbF/ZphH4DAYxjSjkwNI8i+IAcZKhdcqlxhoXbsjZXoTTx33Ozi+x9Y7b8XsdBmvbbF+4wqHVEzSLsYvsGQ2QoxFyNEKUGUKvJ69Xwe+1H3sAh2tW7eWYCzI7Scrnkshd26q91MG1jMUe7fg6vq+OZcMQU5qrTKuF7nYxCwtTM8ziojNPCUG0dAbZ+TJxa5NXFje40tnm8HBxcp7qXOlOAo0MG7aQ8trCcyYbkY/WCWROY2EBYRVCxKBcDRMhPBpLx7A2h3wTYwTCxmgNQmuyYZ+d7TXmj9+OUC6bqLUGnaYo34UQOmfYMjhbWlpa8PFX7uI3b/gqZztb/OHhF3h86SwfSE8g03Ws50CGlTiwRIHJxuUjWmCSLZQSWGuQrQVMso1SFtWYAypfkQwhBSZPkVEVlpu5KA/Vo2IMQKLTLUSyg2wuQBDW7lYNtAgF4QHwWwTbL/L3P3mEzx+7yHOrfZ6dv8w/uu8z/JOHv4uwEOTjIXa8RRYPCfU2aukQuQlY2+wjw3N055cRzVVk5xCYBpMRv2dl3derlPeKWaucT6u0CU79Kiv46Jl7Odm8xB+En+cDfyR526eeIr3YItL+9DmoO5tjodWEW26B+x6AG274+hiRPUXglgcHQKyBjCl0THz5FVrLN+JHf/YRN29qQHL+phG/8gPPcuWgy9Vx/HSX7/+luzh4se0mlHJlbWv2T1OGwVpbrbKn5gNZRRgwJRVc7g49SVQlBJPoGCso/TGmvhCVC8d2GPHU8gHOdToc2trixuGIwNYVb7mvskhp+At/GPHQ0z7PHQV1ZgmbBFTVvx1L4HxHKkAyiTCpauNUSc9E3WzDxOzhnDzLCBbr3udZgjGucJvzp3CROy7ixmWcNdaSZhmB7yPwiMIQbQxxnJR9a3nyvUOe+PbSiXMg+PAv9OhdcQneSouBA4aWSfE5i0tm5hiTve6uAx6mZEmn/gLTKeEas5Vw7E4JSZCeQnnTSd9CCUo0O4MRutDMdVt4vYAn3j9ga9mZ+25+LOLQVz2K0jfG6AKsZbh9FVNk2KVlsIJO5BLTxcmIZhhitAuJ9r3SrKUL0jSj3e7QCHyUFzAaj9gZaPzApxEGpGmG7ylakT9ppVRu/6gJWEk82iLTFt8DrQsXbq0LgjBgcWEBJPzhwYvEbTcJrpwOWYlbLK7M4YUN8o5hbd6w9KEPoSNglCCTEWI8Ro7HiOEQubWFt73tXre2UDs7zs+l6tvXeBZfr7/F7D57gZO9ZK9trgU1U3m9vhkWQEpMt0vR66Hn59Hz85i5OUy3i202Mc0mptWiaDZrDuS7z7cQtznRX+FiZ5OhH/PiwgUODxevSa6eRAEXLq1xcGlIo3N4F5C2JsfqvksKiof0AqyZo0i2iEfaFdD0m/hRiLA5BBEKjSBAiRBsgY1BKoOQVXIwAzYFk5UXW8XcFCCqZ0PytrXjvPvyTZxrf4XzrT6/eeIZ3nX5NhreHNnWZbe7Ttz22mKVM1mLUGIyMHpIPkoIuvOk29s0FlZRbY3QKVY5lk61fGwiIZov2RUf/A4IidEZJhniRV1Mf92V3eiGvKoIQDbQts3yZsBP/M4t/N3ve5KdIOM/3vQY7322xzc/vuiKieYZhZCkw0287S1ku8v88iI7V67QRqBUE8IuqHnXNyZ17MjXzQpUo7pK++ex++lQM9tJsJbupSH/py/4fGxtiaVLGdIKhn6KZ5UrRVA3zXieAyIP3gPHDkNj7jrg6U8rEXAAIdfxOwGj8YCtq+ssHDo0SaD5ZyVvakDyn/7i87x0uzNzHLrQ5vt++U5ueXlhAg6U3M2MFFpja5V4LS5JX5WfQ2NdZd6SITGmrI4gKaM8XCIyqZxrktPtgirBeQVyKhZES8mVMOB0o8HTQvBAlnE4zSZ5AayEuG0w5T0+fElxy4s+mh3WIs3L84uMfJesrGIKJoAEJtq5AlaUUTM1yFP+L/1IrHvVpe8IRuPJirUxKM+ZoYyFIjfYwqUll0KSpik2tBgrSfOconDRKZs3Cx7+oRHjOYMw8Pbf6nDXwy03OZaJRnQZOSPFtOCfy8RatcmxjPXVxGQdYCtGZBrtpEtma7JyKIGO77mH32Xtr8LelANidprRt6rZM4pTsjwnPhzwpW/ZBgF+LHjvf+jhx4LCFAjfRwlbOuUZkuEW61gWllawQhKnGdZYlLBkacwoTsocLR55ofEEzLVbZIXG832aUUSR55OU/WHgs7UzJE595pqh6yPf+RVtrm1yIJzj8iuX0BZkWeMHaylyQ7Pp0+20ubR2mVduHjNuuWrKh16JWI6bqDKLpzGaoLWIigRWCnTYRLabJVgtGQytEVpjS/8LWRSIwQC1uYna3sbb2kJub6O2tx2rUhQTyktUZsHZv1LEzOt0ZF6f3XgtEHTNftVqoPwz1fvKtCmlAxbdrgMc8/PkNfCB72OVmvyJKgNqzeRS4+6ukcWkyw1bq/zJ4ecYhjHPL57jfWfvpsqTXHKaiEhRdBbY2bpKo13ZKUv2skiQwlXxsarJaGtIsn0FQcp4a5P5gwdJdkZ0l+bwTM54lGKQZMYShCHSb+PrEd2lI85cKMqWqxDVUiBc4n5bJCCV85Ow7sqiQvG3nv4GfvPE14j9nF+++RH++h/ezPFLiqS/wdxil6B7oMxL4SP8AFeTSzi3jP45VGceqQTp1hWKwRayEyECAX4XFQYgJNKvolPURIlaC6awpEmGaiq8zpyroCuqKBu7+2ab3LVb+WAyrOdRyIAPPNnjL912mH/9ztNsRWN+4a2PcOulD3KnvQ0pQ4xOGF16AQYDGr0jdJZvID9wIyIfO8amZCcRHow3IMzB6/wpQEnFgsxmbq2bpWIHEgcxPPU8PP8SB+KEBRuyEWq0NBTSsBPEzGdtJALh+3DwILznPXDiBEQhiBQHfsKZc/3/KiGwgPR2mFuVDPo+Wpc6oroE2PWcu3E+Pf+fxsLzpgYkT9+zBhIW1xv85f9wJ/c+uep8NsSUtndvAF1mdq0mAGunjIMQiFKRG1OZeQx5UZRMhIdSCqW8CeAw1pZVboVbNZVK3ZSAx7ExzuxjvICtlsdnG5pDecadozEHdA5hjvZKUGGgOfJQRuBhODIespqMOd/ucqndpR810bIsUS2mRfBEydpAibm1RnrO1GNLE6+1dlJnpnLK1XnmnB493y16tEYXLrW9ryRYRaE1WZ6jpHJ1gsaxc3rVBt/zyVrw8F8ccPpBZy478nTAu36lQ3vsoyO3v9YuZb6r5SNc6OwkwZcDc7Y+4UzYyemHKcFlr0kVVEVFBYFPqxmhjSHPcxdhICzaFGU4s/OnESXNYqwFaUgKzSe/c51Rx3XWPX/S4aZnmhRS4ytvApj8ki0qipzxzgY6T9HLhwiUotlsYqmulTKyxWK1ptmIEMKQ5jlSCNrNBlnukyQpw+EIz/NpNBtkecHVfsFcK6Kp3D3b7sf44QUG232UcMHMeeFymHhBSCNqkOY5p4aXOHN8ROFbopHk8MmIOdmgKAqQPoPhiLnjt1SBWbuYXVsCczwP43lleXXnBMv8PMWxY9coYWsMohap4o1KtiWOkXHsIlmSBPIcq/XEMVUa45xNy3thrUVal/dDo3lleUghDZ6R9NYOIHGgoAIZUkq0lC56R6nJK76PCUNso4FtNNCNBrrGbNhWC9tuu2ssr6Hy4LC1fpgFTrb2Oqta6r8LwNceN28dopVHjPyEl+cvMQxiullzyu4J50URLLWJ14tpv1og28AmO4hGg3gwIh5ts3PlMqtHDzPeLgjaDRoLK7QOlorHZDTnDMU4IdIZ2dYGl198hrnVo3T8BuOrOUHkYW2O1hLfF+RZDozxg5xkK0aKPl7kI4xLCPnAQPKRl47xm285yXYY84tv+xP++ee/A18GeB2JiOYQgVdWu3Vh/JYYPdjBdubwgi6Mt2ku3wDtFUTgY7Mh2BAxcXydVTmOwcm2X6GQzlwiGpUTqZgqPJs7Ba4LEAlmPEA02ohxijd3lI7XRJ38Mn/1jw/x6OENnji+w8PH1vmP713j//7EfTTzHhJD70QHq3MEIUIE+I0AGqUDqxmDbLq73VrGOXd+HTJxOOU6I6a83mIEm5fg5Fl49iQMRpNtJYq5vMlWMMIISyY1a92U7oETNO9+B9x7n2NIJocOmcaqXU+d1+H+14MSnIlGyB26cwnWjMB2HaNlobCQ5TmjQYI1Ocb3aHc7UBhCKQm8KaB/vfKmBiQIaIw9PvGrt/PWRw+5/ByiVGalmaI+6Tha35k/ZEktiNJUo6Sz4TvzS2nasbZ0HsWZTMoHpAIasox2kWWkh/NVYRJaK6UkCkM85RKBZVnKBQGXGpL+W6+yqkZ88IsRjUQQJR5KexOFCeAbw4mdbVbiEWvNDhc7PfqNJrZM0CPKfxUAqsaaKXN+UDIj0z/ni6GLDKzFKwGWlKBLB1NjDEa4tPJKKXSSusypQqCUS4rmSYVSipfvHfPwR/sYD4JY8IFfm2flRZ+0yInCAE9JstzlO1HIso/spGieEJRmsmtvrTPv7AaVlS/CxDRW8iCB5xNFIUHgo7Wb5o3Wpb8QSFyOkModp6oVZC1cvaXgmQ+U5qah4Bt/8wCdRptEJOR5jihr7BTGoKREUdZPymOuXniFZneBpYVFQh+GSYLOC7TnQRnCHPmKonBgz/c9hJR4gU9LKcIoII4TRqMxSZohhKuiHIQRJndj8fL5NZI0J/B8ijwlTnOCsOFKDTQCBuOUraWMKwcTENDZ9jhytslct0PgBwzzgnFmOHJ4wfVjmTLViilpPBlLtc8T0yW7FTfgQEC3i+52y6q8uxOeKRyg0cZgtEaWwERojdIaqzXaGDCGwBh8a4lVyn//zT/PIEhoZwG/+KnvIjKBS9MvBEIpmlIyVgqjFMbzHJvh+2XU2e5BZGptZ4/X+vXMxmLMDse6apmyHbuPJRDcvHWQuaTFKEg431ljrdmnW6YDnxxTOPZOLfbQwoX9Wp1CkSEaTcaDIeeefRHP91k9tIwKG8yfmKMoUsgG4Ksy94xAqCZBr43VCXm8Q7PZdcdPB+gsxtLEaFfaQXVa6Nw5/Vvho9McZN8xHlYgVIgSPj/87Fv5zM3nGfgp/+X28/yNZze521uBpM/40ku0jx53zIaoMskEEF9CNpsIvQODLdSBm0Dl2HwLs3mJXDaJDqw4VmbSmwa3svcQQtNcPOYYD1tG9AjhontGm+AF4JXMSr4NXogxGjlYB6/p7kXYQ/XmOXFB8f1fuI3nDj9O4mv+t9u+zAcv3sqHLtyNQILX3YWJRP2d8JhG+giqQnuvS6x1+VOE5xxx99rPGNhYh5eehVOnYX1r9+8l6xtYj3YR0Q9ivnxfyu9+eMy7Fh7kLw/vILKzfkfC3YM9K0LtaiDXjuxXk2rbyI17o9HjDfBBhV22+jGDpGBz7RxXr2yRxWNUFHLkxuPkCRxcXWV1ISoXhq//rG9qQBLEku/6vdt5zxePuaQ51j0rTk1ZqgRZdSUmEUzCThFlnZlK2wkEDpgYw64QSYdFTAlG3IpfVcsb6ybgCf3tnBVctIeQKOUq6QL/X/L+O9i27L7vxD4r7HTCzS+nfp0DcgYRSIIEo8AgUYYklqwwKs+oNGNbI1ma8T9jjz1WjcflmpE0U2W5JNOaocThiAkiKYIRgSAIgAiNRgd0eq9ffjffk3Zca/mPtfa5+56+r9EEgXJ1aQGv773n7LPD2vus9V3f3/f3/aGkohENLw9Tfu6vbPGrP1zwD/7pGm//hj5EGJ2JUwBZU3NxtMfJ2ZidrM/V1Q0mSRpWKGFa6ShGrbU+QyH8PmdsjMU2nu5U6hDUeAGoAKmo68qHtozXY7ThjdbAGQRaR8RRRC+3LO1oJquGt35myPt/bw2dQEHNLC9J44gkjucrbmMdtW1o75DAhVocvp9bky9/vsEYbUF304aufChHgPRGbkIKH8pRkkzFNI1hVhRzMazA+RAbbfjI33MjHRtXIyYnSh78bMrylw3GQdbrocqCqvJCNCEFjTE+5OQsVVkgpWayv+WB64mTOBRKWZSOKZs6lCAILsASkkh4xsx5QbCsvNdHM5thmobhMPNmbgcTlvopSRwxy0uaxhEpS1VW9EKZAWcr8qLw90o6hiNNMpMMtzXnr2X0ziQ0xrG3dwDpGrqXhD599aS8OLyx8Pfi+qqdwLvbdv1FLGCEoAmhD2Ifgmqt5FsgJMPfAqh0wQtvTjhIDcMypn72PLpJ5mCnPS4c9S1pz62dRlo7KdE5TvuvCyi6n3UL23dfO86crft+F5g8sH+G9XzIbjZmuezNv7+LTQBCCqYOhuUUW95FZ6tY65hsv8zKch+d9ciWVqmaKVG0TCQcbrQLvRRkNj+ysxXF5k2UVJx64nEQfWTaJyH3oFhrEuer9ERLAi9MsyytCaDClQ1CGYSKkQ28Y3yJH7jxEL9x6Rke2F2iHN8EkyIGGYkBnAa9dnjlDuTK/cgo9t4maylIjZvuwGyTcnZAke8T9xNE39ff8gul9qkRQIaz3qcEHWpAO6A5wFFg9+7i0lX06llQp8BpVGxpdm4hBwMUEqETsrNvRW1U/I0DyedeafiV+7/G6dmA5WrIIWRu78AxTXY0K99OvEFIqLcgPgutq2s7Lk+n8LWvwYsvwmTsmZ7FY7VDv5Rka+f4xY/n/Fd/7us0K31+4Nl19KS1EWzDXu05doHePU+Ob48pCQZ1ap1GHDDeuoOM9rl1Z5/JZMpotMvB/tgXRc0lV75+4O9FqtlYPUfczmmvswm36OH9Bmij0Yjl5WX+/D97hJ/49MNkxSEH3WaeiKBfaC/PWp/ea60D4eZgw3s1+JtprPX/GuN1FmElr7UK+gSfeWIaz0BofRjCAear7raYnrHWT5a0As6gScFblT/38BZf+dF9/urPv5WH7pbcv3WXpWKGbg59K49mJ/jfjZDcWlrh1vIqkzimCWZXLfAwpqHNc7bBAM0YQ1OVNE0ZnBHbujbMwUmrsTEhvdk0jQ+BNF5rEodsG6m8k2ucROyerPjMT+7wgU+scupu4h08naWsKmaFF8MmkcYYQ1FVVHXjwUkwmDNztqRldI4O+t1ZswUmrVZHSkmkFXHk02uVUsRRRKRVYLwMs7wMbImjqg/7tUujm8Tx4veUZPuSi1+LSXXEcNCjnyU+NbosEfiaMqYJNY8CwBFS4RzE/RXWN04xzCIEhqIoSWOJdNZnKyGIlaA2jllRsdzP0FHMzsEIaxrqumY4XKLfy9gbjZnmFSdWB0g8U7fWS7DWsnMwoqob4jih1+8znhVMpyNEJHhFj9harXjrtRM8fv854myZ7dGEcvUSJ998P63qxoYF4HGApDt5L/bVInBpv3V64bUG5gCkfa0ttCc7+2sL2bU5YlNp5sxGYv1kZTr7XgdGeIK6CyAWgYbo7LfrB3yvgW7xuhbZk+45HPf+4drU8dTGVU7OVtjIl1DOM7GLwE0C0kHfGpaKLVRkEFKxd/06+cE2py4/CKKh3huTrA2R/RMIEWEnI0S2jFD9cCIGU+YUd54h2TiJ6p301uhxjMPA/jZiaQVECs3EMw9S+AtKMqChvL1JvLGE0AlYi3UVf3zmNvtJwUeunSXamSKSIWLoU2hF27vdCbsVrrnDJ6rcegm5fwW9ukRRlJipoXf5bSBTnLU0szHWzqjGBzhT+1DPYIXo5BmEEjjXYJsIoaC+dRXZW0effMBnDuGv3dUziIevelYBrgy3+bmLn+RvfP1NXJKPI0TUOeVvA2y8nuYcNHveeC056UOVe3sehHzjGx6UdM9UdL5ZAkSkYXUZ3vEO3Nvfw96y4R8+8T/y165/D9+ze3/nO+h1PH+662ihfbeE5Ov5DOAsrjnA2Zz8YMTO1j437u4zmZXkRUVdB6F97Z2ojRP0l9d413veycmNNYQQjN72NpYvX+bg4IClpaV7HvENDUj+2U/9KEORzDNnpJRB0CrmYZS5cDJ81nbsdttoQevpYYzFhOrBrRATIbynRCtuC+6iMghNWy8SaAGBnIOQwKwihQjmY/7YJmS6OCHRvT6R9EZbSVNzZneb03s7rI1HKGf8ANCGZBZuVaE0W/0hd4ZD9rO+XzkGj5FWz9IClMY01GWBNc08TNUWqGttx00oi+6Aoiypqmp+3Ur6VGchJchW1OtVNDLY5SMEWkqU9MAtL0pqY9HKF5czxlCUFVVdUzfBYdfYechsXjso1BZyHF7yq8Y/AXGkfd0d5WdYJSVRHPlzUKFAoLFMZwV5WXqNRyfLx++M8By0rx+yZv0spZ8l4HwftroX47xzbxLpYKHvME6g4oyTJ88x7Gc05YRe5NmUWW3pJZpeEpFXDVpAbRyVE0wmU5YHPWZ5gdaKNOtRN4aiLKgrrzNYHWacWO4TaU1R1Vy9cRspJVmWsXcwQkvPzh3MKgSS86c3uHzuFCJZ4qUbd+k9/Dhr953H5UAGgUx8VRNwRGOxCEwW2ZGWFWnzCJrO9razr3a/3YLtLZvS3b61kL8Xi3MCOMADkuNa93Pd8++e9+L2wKsYn8Vjd1sXkCxOB4vbLzIoXaCknWNptENsJqQrK5SjfXZfeZ7102fQ0mEkKOlQg7OekZhnUcw4rKfsrddtNUamQ4Rsqfs2Na3xN1u2kLB9v4WQbQ+0ULHbW37M8Vl5IGRgcF3pPy+OKy53OIE1e1eobjxHNFhGnTmNG++DFcwmJXle4uoxjYj89zVdRTND6yHZ+UcQswNsvsVk5i0HrLHEgxV0f80bxKngR6LvnQXjcF5zUowQ6Qock2L9XWnOQnkAezlcuerdVff3j25zhBEJA9DZU/DoffCmh2HjNAgPOhqsDxPP62aDv/cxh/fsdZ8cUIT9ZLwmKHHOM14KMAWu2KIxltHOmM2tMbujgqoxTPMKiZ8v6sYwyFKKsqZxmov3PcBb3v4m+r3kdQOSN3TIRhkJ2gU2RB6ustsNHOACYBCHK2svpIRWJOkL4nkWwTMpHIlLCzxY8QDHBUYhpBPPQzV+da/0oVBWBrDSOqX6dbX/onuXwh5KJSjptQVVnHLt1Fm2VtdZG4+4fOcGy9MJzAV3YTgMs3RqGs6P9tiYTdjLetxYWmYnSX0fzIW1wZm18eJOJQRCqsP027AvIeScMXDWZ6RIIYkjPT/2HMAAWkmsFaFYnSNSEjPX1niggBA0TY0QMXnVEEeKNE3mq1Vr7TyNsgU+rWjWtIyWOzrQtwBFKZ8G7e+fH4Cts7jKQRTRGOcXhEED5OzhMzAHOdKbranQF34TN9faTGY5tTEs9XukaYa1hqoq5yvC2gShsDE0xrNvd29dozl1jlMba2gzo6mKOaCUStJPIs6sZtzdm3B9Z8YgjdFSoHSE1oqyrDDO0c8yjC45mBYUlSFvnPeM6A9o6Y3GGGwwwipDLSWlJMv9HlGc0gjBtDIsZam3g3Dzjx5p92JKFpkHOBo+6U627RTWTXPtJjjKhc+272u8kqALFrphki5gaf/uvtZlLbrAoz2Xw6n18Dy6+1hkTtrf2+0WQcwiK3NcW+y7xf07B0NTEzc56eoZqtkBm1eeZ+3UaYTOwI2Jsj6oHuhl5rHMeQ8cTkRCxyi9Hvbc9mg4kog7Ny/iaO+3kNJxmKHRPUb4TeIn2Cj1+yNM7I6j53XkhjWoQUIlNWYyZVArRK/P7MYVzKwkPXU/af8SLsrQUQ+pMpr8DvnmPhgvKBXJgGzJh56FjnG2oR7vEGV9RKQPg2HumLBY0GIgE8jWj1zPn60t3ofuW+G93T148km4fh0ODnhVBd75+YW2tgLvehM8+gCsDoJgtQUOAn2kZo4Jc8nxhRe/dRNADG4cjtGanYlwCX5ZITBQj71Tb5rhZI2VUOzNmE4K8qqZLyyroqKua8qyJI4iylJQlTU6shSznN0DSBJ3z+/KYntDA5J2omxTSVvPkflKu51sZfsl9K6m7ahg2nAOzVy3IIUPA4RstnkYp00/VcEjwuOCNgwUhGNa+wHRhZCQs4dhB9eKX/2gIKOkYwnvNxL+ZMmTjFtJxvbqOqf2trl05yb9fOZroLRXHiY5gdeYpOMDTk5GbGc9riwtc6A1lXNYZ6hNQ1EWCAdKKyKlgseIDV3R9pOfoI3zWTRKCCItj0zgRVVTNxVSxt5tVQqMs5R1430JBME2XZElMTjLLC993wT2JEu9+2ETnFQ9OPH9r1Rw0jXgjEXKVp9zeN99+nALCt28xIQnhDzz4gW1XkmUl9Vcy3EIMv0zIELfN/bQJM8GFGSsIbcVzliGwz7L/R5SCM8e1QYnAwslvHAW26CEZn/rBkU+4uyJEzQNRNo7sY6mJRvDlOEgZfNgyiCNSJOE6axASUmapCAV2zs7FEVOL44YZDESy83NPdaXB5yKM5YGGUXVUBSlf1alnYcqpVKeoVORTy0eDOitLGFLUBnYw8XZa3ynjp9wu3NOO52BX193gUFb7Vd2Pnd03f3qfXV/77IrXXBiO59dBCaL59h+ls423ePfi+lYBDiqc9z2/e5+ur+3xzxOIDv/6Ry9xpKObpH0h9i6YXLnFU6sDoiHAyjGyOU1iE4h5rxSBfTDHoKpGG21s+Dn8ao7+q3u8LfartOiAYigeRAKXO3PQcAcoATfDf899WaEUX9AvrOLvPIN6qZi76BguDxkdTBELV1g7rqKQPfP0b94JjjBCkQ88FNxS7oALGmctNA02KZGuClOCGSceSv5qsCpCIREyLDv76g/Bxx9ksI4XNeeBXn6ac+IFO0iJLQjWkQxF4XzrnfCW5+AgWUu+pv3Zxss9H8755XozhqcrZFRehSUHEclH9sk0AN34O8lfgFrjaGZ7qKSChWrIB1ZAjEBV2NKn2a+dzDhxvVNJnlJUdVY4+ZRgqquicrSM+lKoO0e2m3j5JnX3btvaECilfKD/Xyi7tCMwvnOkh5kCOEnLG+4GkSurp3s7BwwzCvSCu9o6D2xDsM0Wqm5/sJZ5unBs7xAam8cFkfRYR2RFigRwkVCIHSC1DFSqKMDsjgcvoQQ1CrmxsnT3F1d5+zOJmd2tliaTtDGF2YLzmyAr/qqneP0dML6bMpWmnEjS9nSmryuyPMcgH6WEUUapQTSSX8d4TvrLPMHO9Z6nlkDDil8obhIGaZFTdMU9NOUSCu0VMGq3RAphVT+dyUF/SxDSkleVB6AhP7rZZm3oi9KXzsn3D/nfHqndCAtOOFwxh2ZQdp74PVihyPWYVjNBZfehrL2ITj/iHT1KsxDP+3j4+jeDP8f72jbsLt3QFXVLA37DPp9Znk5F826AFSlgKb24KvOJ2zuRQyGSwx7CXUxoaoaJnnFs9e2sBYurPc5KAx7oZCeCM/dYDgkn47I85y1lSUGvR6MC25t7uGkQmqNtoSwl8E54QESgl6akKUpSsfcublNtHqaKI0xJdzTSbzz7en+fFV3cDhht2GXloloSf/2810Gorv/9u82it0FMV2wIBc+t8hWHMc+LA7Fi2xO93y6bEpX7tht3X0rju+fxfM4DuS0TQLaOvrliKTv6/6Mb72CsAXJmfsgnyKX+hCth8kiwfdswSHMs8AEXIrPClHhi7ug6/hONhmO4bx6xyFgdgPRWwXZD+dVgtOY8R5qIKGekCwtUZSW8cE2Alg6c47Bxlmk7IWOa++AZ1GV7k5HHeTsLKKZ0Yw2aaqKtN+jHu/TFL5Eg+4PEb1VZNTzNXbqAjFYDkCqs68/c2v304DTUBawuek1Ii++6GvNHNk8LH7a+yKl9xF56CF4xztgddVPQq7qsBaOQ8M6izUlpqnZ3d5h2FNI40DFJMsnmQtnwX+uKUAlIUT3GtcgIhADX3HZ5AjhKHbuUE/HDM6e9cfXGVDQNILRXsmdKzfZ3trnztYeZW2oGoO1EOkIGQqNmsYgnCcIJI5+JIirbZpx9u8JQ9L1ERFivgo2obIpEPxFDodIKcThwCbwAitjUAG0tPk5uFbL4OvESOnDFD4q5H0UvNmapWkMZVHiREldVSRJQhLHPk00CEZb0KR0gooSpFTzCai1hG+/PO13qGVMmjjm2ulzbK2ts76/x9mtu6yN9sPz3v2y+ZV95Bxn8hnrRc52FHFNSV7WinHVMJ3NAIdWPVq32baAecPhBN+yOULK4GQrgxhW+UwhY5gUBUkc0U8TdMgo8qEPh3KeNjXWzfuirGrqpkbryGcOKk2cQF3XONFgGh+CkEp6gzrn+01o6YFjMKcLKVIelJg2/OY1LbRAEKgaS1XXgc3iSIiq28/ySIeHVG/HEXbLOMdkmtMYy+rygKyX4ZyjKEv/jIQDSCkxjcG5EnuwTVnkCE6TSS/3PJiVSOFY7mdkqSbvFOXTWjMtfPVfKQRCaiIlieKUqh7TT2IO9vaYlRVpmgRWyT/bVeMBybDfp9froaOY/UnBqYfvowlFTbuDQjfcceQ7xVGG4LhJf5ENaSf144BIF7Qcx240C58/bkrvhoMW23FMTvc8j2uLLE2r6zjuvcWf3XPp9pNc2ObY83GOpMzR1R6kPcbbd5hsX2PjwjkOtrZZXkkgWsGHRkJ+dkikNvUIr2eLcVYCNQKNMw222kMmK2AFQqXHHP3P3lxdQLODSJdBDHEmRuQF9JeZaxKEBmYgMtAatRyxMriPfLwNVtIb9BHZOm6yCbvXYP3+dlR+jQNbnCmwo9uY6QHlzC9s4ihCpCCjGFvOcGWJ0Cnxygk/KYsS73vypxV/fqsmfYbM1RfghZd90bvxgl/JcaGZkyc9CHnoIdjY6JgBCRBJABettbz/bk9He1TjbUpTMTrIGVw6TdQbIpJlzwAd7Sgox6BKSFdeA5z6p9fUgnJ3iziVqH5EksXEy/cj43AvqpralFy7eosbV64yOhhRNRapNFmUoOs6LNL9QrVuDDIK0QrnwBliLUkjwXj/ADOt7nE+R9sbGpC0TSrvNurBR9BGhNHLOItx1juSBmgigztpVTdeAIrXVcydB8GDjrAwb628pQgOri54LIQJUilNkqR4/5KGYjajrmt6WdbOgjhA6xilE6TSYfIOk75oB9AuovbDXfu7w5EnKTdPnmJzdZX1/T3uu3OL4WyKNLY9TPhYYDms5UxRsCHgISn5ZhzzioBZXmCMYTjoo6RCCJ+g6LNxfMdJ2VrVy7Yszlxbk6YJeVFiraWqaowx9NOUONLoEPYpgijYgxKfZpylkrpuvAjUWBrTIAXEcYRsJIWtfDYQh6GV1s5fOhecJ0M2kGvTkruX3LryOpwzwQPFzQcGjzsCIHXWg9DwDLUpmj4UdPgZ79fh5mCmLEu2dwzDQY80SUBAWXm3Vod3oNWBtbNVhUCwt3UHTp5l0M+Y7O0w7MfEWlA1lrxqkNpnCTXW0jQ1S72MrTwnTTKU0vQGQ/rZjKVexGQ64WA0Js9LkkiTaoeK9ZwtSmONEJLJbEppHfFGSuMaEqGPDZO0f7uFn3D8ZNz+FHgw0nC4du9O5C3IWGQWHEcn9XYfDshVyZ3BHqcna6Qmnn+mPd82NASvPsfF61ncRixs271Ou/B6F5zYhc92Bb2V8KJj6Y4KPLt90QVwEpBlwdXnX2SwPmB2e5PKGtjex+QT4uwivf7A78kqfJwtxVSK/evP0T99H6rfemMEcaqwCLUEIqLev0O8dp7vStMZbmJwzT5iOEQMz9C6vPrzCJst+fo9RBk+Mw36sdc9zQWc2QAnam9/L15bnOmchfFtXJmj4hQzmaFsQ7x8FhH1EGaGqyfYug6sdwXpMvPCf7YMjMBxItw/RXMOqgpu3fLVd+/e8X8fQeudZ6ANzayswHveA489BsvL96g3E/owPCnOwt7mTfZ2btNPY5L+GpfPPOJZVCS+6nDd+Qy+D7NVDrnGxWsNcN/NMOUedncLnET1L4JqkIMhkGFNzf7mXaqda9zdPWBnd89DpDghThXW+ZC1lSpoLhvqxpfYUEr5RasQSOHY2x9xpijor6wwfp0cyRsekIj5aOHRQzuxhKxfzzS2ehERfrp2MeywNggkAxvQttZNVOvIcyZhFG1t4f09F2jls2qiKALnqKqKsiwwjWE8Hge2JCFKMlSc+f2pTuXLlhWRIaXuyHMk5j/m+jEhqKOY2xsn2Vxd4+TuNuc377A0y4mamrkdZ5tZJCBysGYt7y9KHleSF7XilarmYH9E1stIkiiAKS+aEohQJVmGjCB/6FbLoaSkl6ZUdYMx3kxtkhf0XQqxRitBEmka48FHpH22i7GWJI5I8J4e0kmmRU4tfPXgNIm9UKr2U5S1liTyA0mbst2eQ9002BBC08rb3bfNOUcdqjg7FxiQFrARTOsOUeAc0LRgRnbugej8V0qBiQWmqCl390nThOVBn16WUVWV1xJZS1FWcz1NUZY44M71l8iGq5w7dRJCTZCqtoyLhjTy3iKzWY6WEiEsxgoP8HTM5s4eS0sDEmXZGzuWhz0Qiv3JjMpCU/rVitaaLE3RccLu3ggGKV96+BlO5Cs8sXMxfD+OAofFyfu1fnaBzKKrQ3e/7TYtUOkWle9O8m0qcLuvrf4B/+aRP+Tjz34vF8Ynjhy/ZWMifADj6P052rqfWWQ02vcXGaLuubfn0xXAdt9r++6F9ZtsZSM+eONxhDucaLpApN2HdF6EnuYHNIVh7+aYYjwm0pq9W3epq5J4sEa22iBE7N2mZY1wAhklrF1+wtNcSIToFDkTChH1AEu0eu6Y3jjaKtkQWYU4tudeowmFWLkMWIQ41H686kkS3d7qLrDabSxCZdBPOQoF79HybWzTIFdOg4U4L+mvnEZmK/4adALJkjdedKWPyYvI/3MG3D4+I2X5CGB43c1az4Dcvu1Td2/dasVqh+fe3a8QiDiGEyfgiSfgXe+CLOv0zWu1Q1VWvxeztPpmdNwKibv9eAyAEyI8H9Gr3nLO4UyJo2Lr9jX2rl1hdZixct9lUCXWJNSTCU1xk9t3t6lGWzhrSLMeD953iq29nN2DWbBNsN6rqvZGj3ESU9eW6TTH1CaUXnEYC01dMd0d019en3fBt2pvaEDi7KFeZP6acxjHocgvpP+2epE2K8YGsO4t4WWHprdzTUHrxEr4+h7WzgUEh1oTR8idd0SxV0A3dU3dNNRlRRynqChBqcgzMZ14r4B5CMI/2+ELfYh5OERQHB7fgZGCW+vrbA0HbOzvc3J/n1MH+6iuspujz+eKsbzTWC5LwTVhuDYxTJoEHcU+pugcUqkwQPssJG+n7z+vQ4qtc76CbWOkD7k4S17mGOuLxsWRRsoIW9VBTyJRUtIYR6x9DRcdeS1IUfq+imNf6yXSDXXd+CFNcihcFdDa9reMgLF+umsFs9Y5qsYGG3dxOF44b7TWLtIOn5cwGbWgy3qFrBDM03/bwXu27rj+WM79n4pxOGYzryFZWRoyHA7JZzNMUfj7b0xIZ1aYukTpiLoYc2dLcnJ9jSRNqKsZdeNIU6+78eEaSVnkRHFCbRqsVNRFzcpwSF1O2dv3ab5plqKFZ5pmjQMpWer3WVoaIKRiNJliH1/lF574DD/79PcfASPtM7HIFHTBhjjm9RZUNBxaWrXSu+7U1D6jgqPKh7Z13V0P2RPHnf4ev3X/l/nea2/hwnijXVPPz6EtUr8oJF18xtsmj9mmy/Z0P7PIorTn3QUW3X0KYDsb8a8e+zSP7Jzn9MxPkN3Q1WL/yqqiv77Eg299EwebW9yuDzh36Sw2L3AK1s+eRwbQgQNXTiBeRggdUl1frYY5DNu+vqJnnz7zPG/fvshGOXhd27etZXOPhlfuNcG+1sTr9xMgPkfzso5p2RpC95FxhkDSX69Rg8AizcfQNjMlDaRB2/PhbtgSKLyq+/WCEue8h8jLL8Mrr3ggYg59jOYr1Pk5CB/Xv3QJ3vQmePBBrxGR8vj9H9cv/sAgIpLh6dfIpOl+O7svLyIRgwOKgx2qySbpICbfvY0wJZubOaVUnLzvIgd3bjG6c4O8rEjXhtz3yEWE7lEXBft3d5gVFdY6emlEkkT0ehm2MfTShLTfo6wNW5vbVGXlHZiDbKIoK/YPpqR7JfL1RWze2ICkMZZGeStvH145vCGtZiAkxITJKDiDtjO6lGghkVL510NGjbUuuKwyf+b8BHi46vYPpJiPYN7LA5ASEfnsGR17v4Ak7aN1fJhR01lMdMM03p6+A0a6AAgXTNJahqZ1YIVKR9xYXWVzMOCVtVXu29zkxHjM3Iv10AJ1jm3WrGUFwf2m4WbV8HJmmCRR0L34L5F393bBMA0iLeeeJdaZEK7yoKJuGkzTUFQ1xlr6pEQh46MMJmtaKXSkqKWl6hnUyKOMKNJIrairCqcVSRKhlJxn4YCnAIXyacXgi/S1wtbG+CJ2CkVjfMryvE8DNWI7WUkEoNLVk7QPjHM+zBdrhVbe3E5IidWCP/iPdunflTzwmQTT+OyaoqzYPTjAuiGDLEMIwSwv5rVRGmuIpcI2NXVIwb7dlDh7kkTZoHfx9zPRXkU/znOMaZjVhklekiQpUvqQjpaCNNY0xpBGml6qubk385lNcUwURVR1zd4452sfavjCuW/yU8+/37vedib4bhputx3HnrSvdyfZdphd1IZ0Wze8wcI2jqO+JY2wPHnyZW4Pd3ny1Mu88+4DKHd0ojJAfo/za//unstx2y2CrONePwRJrwZw0MICR65Lvnj2m/z+pSf5S89+7xEtylHY4LcvXMLm1jbDFMZ7d32YUwKxon/+fnSvD2iwU4ToQbwOUnM0U+S4nn797cn1G/z2uWf4R1/6abR7fSDm3u3bOY973bXj9ydkjEkVB7pg0KTowTrCboc+SQ7H4fCdPrJfEYEcgGsh9LdoLU06GsGzz8ILL/jfm2NcVcPvAnwY5uw5H5q57z4fmnndQORVV7yAK+7dN68+/cMntymmNLMd0lTBdI+oPyTqay488gB1XjKeNMwO9rn29a8z3hthneDsow9z6vw5pNBMt++yc2eT3f0pwsHaypBBv0eaxt5xu/FsiJAagyCJI8q8YGfvgKookdKDktFsxnJekRTuNc+9bW9oQGLCAE8ILYhgQt6O8VJJL2JumREOWRXbhnakOJxkraPNXDGm8eAioJGWYZmHAZRP9bThOC3DUjtAGP+aiIjiDB0nobbM4b9DR1n/4B7J/GgfyvYLMmdMDm+qkY5GGnTlgZIDcqWY9fvcOX+WpfGYh/f22ShKUtN4MDMXXHiMIoGhdTwCPDgruNsYXskSxkpTyNYozquplfQpwAJH0xiqqpqLdoWQZElCLZU3PasbJq4gjqK5QLOqG6q6QaSSr//QFKMt7/31JYwNFZgtJEnmw12mpJclaCVpGkMTKvTWAYxoKYKYqvV48UCirGpqYw8z7jpZThKfwdO2w/ANtIX85pNSEKe2rE6tLF/8C2O+/NMTPvrfrqCUnKd7O6CqGnb2DsiLkqV+j+GgT1EUNNYgnA//aSU91dk04Aybm47h6kmG/RWUMlR1SapbcaokVpI4S2iMpS+9M+6sqBBKMhj0mJUGV3t9jpYSg6Csa3bGOVlPsrOu+bl3/wG5rhglXsgcOKNXAYhFFqF1EzWdbdrX23CG5tXeIfO+7Tzp8GodRnef7XuVbPiDS18HAZ+69HX+6jc+gjKHBoPtz+aY/Xffv9d0fa/hfBG8dLc/br+C1uDNsZ/MyKOKf/62T/IjV97OerF8pC+61xsZi5xNWEkjyukEna2i05yrr9zhxJkTLCUD7P42am2Jln8SqlMd9sjZvtYVvXbr1wn/41v+mIdGp/jrz7+f2P7/cwr4VnctbOUEv3r5a6RNxM9ceTtRqWG6Df0NDisCd1tn3CTD60n0vdkR56AsvW/IN77hM2ZeI3WXVvuXZXDqJLzvHfDQExDFr9rWYkOYTPuw0rdo87pkxoBSr8GSdD/kxyFbzaAcI2OBmxwgkgyymDS9EDKlaoRVRNkENd3j4O5t9g9GyEjTzxLMeER525taptIw6HlRsLGCKI6D5YUvUBk1lrKsqKoGkCipcEKS9Xpe6iAEibKsLGUMhgrZa77FRfj2hgYkhzSiBxfWedmqFAKkmIc8pOf95+6fJtSkEVpihcGaEMZpBTlSwlzweAgGWuGkDJoT26peQ5NKIl3rdyFRcYLWvky3QCFDbrwQh6Gg+XW0x+q+JpiHUeasiXBYYXnh/k3yuOKJp08gbWvA5tmMxjRspQm7Z05zpqo4N5lyYjqhX1TMDxuIEye8KjoCLtQ1Z+uGzaTmVhxxW0r28exPrBVKQGMcUkh6acKsKIM9vsbhkFKQJEkAMYayqqiCq6tUksY0/Mn7d/i9vzXix/7FCWztJ0mlIxTezTZLU19Rd5ajtfap3SLUgKkbf3+U9zsw1veTCg69ni48HOZMsMg/zMTyvWzb/mzxmWMOAIXw2o1BL8MYQ20brr2z5A//5oiy50jGftBQAl9LKIxZ1vosHGMMw36PNEspi5LGc3MUVR0cZCV1VQET6q0KY06xsbqMpUYKixJuLh7GOXq9HmmaIITgYDKhKkrc8hJZllAXU6aF50L7vZRelrI3GvPK9i6f+JlvsjUcgYDdbIyRFmnlsRPwIhMCh66qx03+3Z/d9N+jT/C9/+7+bN+729/n2Y1rADyzfo07vX0ujU++avvuZ+7FhiyCieOA12u1bwXaAGpp2cnGIOBub59//fhn+Dtf/fFgF+8/5z2JQFhI6gaLRCQ90qhHL90gqm5RypTB+mmElBjRQ5RjZNTCvUW+5dtlRhxeeZOyVKWM44L/7s2/yyP7p/jQnQeRr8tG/LvZ2kq1x1+fQqKd5L96x2+SWM1PvfwI0hb4tOhjPuOaUIQvArmED/Qd05zzqbo3bviwzJUrEOwR5u24jJnBAB54AB591IdmUoH3aYlfdT5GWD69/g2Wmh7v3Xv4W/Z1XZXU0z1kMSZZPQPp4Hgc1Q48rgI7AyRmugVCIWVCtHoaoWVYjEts45jsjKi2r2MpmZQNRAnnHn6YE6f7mMZw56Ub7Ny+zerqMucvnmPYG+IOKurmcOlhnKMoG6bTnKIo5+FpQcimVGpuMKpo6A/6DDdOkEf3uAcL7Y0NSPDswHxCD4CjnVycdVgBQihfLrk5pPLLgeHJ99/lrV88STrWtF4jLqiFWzDSIlZnLY11vn7NkRHWzZ1F21CHdxFNUDr2rqjSG/X4TJ4WDXQpRn8MEV6fu7xy6PTqOmLLpx67zS/+5JN89HcfQDaewXHBMr4sc+qqJNIaqTRbwwGjpQHXixVO7h9wcX9ErznMV2gnvnbIVcDpsmKjqrgkJTe15nqa0CjhzccaF7QzmjQV1HVD3TTeUC7yroJxHGGt8iEXPENgrOGpD4/5zX+wh4wky3d1YDM8wIrjmCgAzEwrqlpSFP7LkCUxWnn9ipM+8OBdUl3IEvJpZ91ZYz6ROK+DEfMBRcyL3s1Bnr/DHtwoRZYkJEkMzrG1NON3/8MDNi83RIUgm3qWyMFcGNvqfp1zTPOSum5YXhqQJQmRMczKkrlNvpLEOsKZhtpaRvtb5NMJq6srSO3ZJ2cbkijCOEhjb0CHgDIviKIIqWN29/eJ2mNbS5ql9Hs9Tq6t8LR4ji9+zy2s8h2yk42phZ37cd5rku0yFseOgRzVfbRDTDds024njvkbDjUYizqQz597lkr5VVSlGz5//lkuPXuCLnPVHovOvu4FHhZByeJ5LF4XC9t0+6B7jPZ9Iwy76QSARlp+576v8YNX3s4je+cAX8UXB8o5xDQnAmaix/5sjFbgVI98ajh94TKDlRUQEtXTlKPrRIPTqDRF3POM/7TtkOsa1gnCCb65fJf/+m3/jkc/9bOcLFY7R1mEd+3d+k6cx3FN4EedAm9nfvxxzk1WmemK/+w9v0xk/iI/fv3NCMTC09E25ysjqxO86uloJ/LZDF56yYdltrdfHxDJMi9UfeIJOHfO/z3PeJri03a7oMShrWMr3uT/9vBn+S+++XG+f/vNxyLjycEeVV1y8+rL2GLMsN/j0sopD/ZduKb22kzjnVSTBOFm/pgSoqUTh6w+Cc4Z6skBZu8GozynmE1ZX0px6WmWl1ewNiJJamRUU5dTNjaWOBCC0gm29ybE2ZBgUD4f26q6mQOR5WEfqTVlWWGdRSsfLo6jiKppmOQ1DQmNSWjq1wc13tCApHVIxRJqqCgcHU8IITHOYJo6ZEAYrHJsXSz4xb/xHKdv9nnvH5zBF0pz89W2D9PYuQgWfMysahqcEERhEmzpBm+17jM7pBDoKEFFQcAqwr+F1I121e5BlA0yD8e88J+nfADPqCAtlW7443de4V/+5S/Tn0Scv7HEXKRrLY2pyYuCqsiJ4xiRpminaZRmN0vZiyJeWVvh3MGYy3t7JFWDWlgDuzBLa+tYt4aVxvBQXbNZJ1zNUkZSUodT1cp7ktSNL6xkg8EXHE5SxhhEpPjm9xT82//DLrv3GS49HbF6J8IBVV1jjWeBoigKRQz919rhAU9R18RakyWJL4NtgyFYAHhN+LwQnVVp6G5jrWfIhAtfVn9i3eKCDua26ioIhxpjED3F7/yHB3zzg150KBxk01bOGRxmA/B1rmVMvJHa3v6YZtBjedAjA5wtfLq4sVTUPv6KoS5zsJaDkUKtbYBwRJEjUp5FruqGleGQIh+RRJK15WWSXp9ma5MkEjg0xsxI05QsjjGp5Isf2OLO5WI+Lu5mI5y0h5mQnTu+yIB0RZvdcbNlQbrakZB4iuDV9u8cs3/V+fuIyFVYfv/Sk50h1/GpS0/y8Wc/iEAdOZfuPhaP0W3tNLQobO2+336eY7Y5juXpnncjLTvZaL7xi6u3+a37v8x9Xz1FaqPwGUevtmAbUCkiUeTVkKXYQaM59cDjwXgQcBJEw/7OGMYVpy+/+R5X9u02zyYsVykSgZWO3zn/LP/o7b/Nf/2FnyGxraqoYz3/XQMhi60LLY8/5sXpGmtln69uXOMfvO+X0E7xQzcf99byr/pMhPf26DAoznktyGwGzzwD3/wmTCZH9SFwBIgAPiOy1/NC1Xe/2wtVdRv+6YKdBK9w6lr+gXANT9xdYuuBbf76O/4x/+jpn+Wnrr+HuIkoQ22xG1dfYn/rLnVT0dQ1Ugh6y2s0UjHbvoV0DaXRKNEQ01AXM3pDhU5WvUbGGh921t7N1zU11Ds4PaCcjMBK4mzIyoXLxHEvjIMFVNNwzgOi9Awbl06yfklTlPvcefFFqnpCr9cDaTmYTDGNXwAOh0PSzKd1T/OCylhmsxlSapCKOElJUkeuIjYPSrh1h+Lmndf1JLyhAUkreHTOUdQNUfAK8aOHD6nUja9WC5Y6dnztezb5zY+/zObpGT/yy5cRIS24peuFlPOKt4eF7Xz12sl0RlJWJGlCHPmVazuQWWcRTiCiCKUThNSHgESGBzSgmDmub2vcuJatCIXqcGHpG5gTIcjTmt/6/mf5xI9+g4OlgvuunOX07WHQMhis8cZiWmlEks7dYxGSuL02ISjihJdPplxfWebM3j5nJlNWi4LIdOxKRRignUMBPWu5b1ZwIS+4lcTciDS7WlFo7Z1tlcaEcBF1hVSKpjY468iLkqvvrfnlf7DD5mVvUjbc16xtx1jhRat101BPp6RJQmLNvM6OVt5To6oqytr4yr468qGHYI5SG4sLIuTDwofteCIOwcc8JLcY4Q+gT/qsqTjSIUW55ms/sM+nf2aPVvsnLCRjEYTPflpvjfO6s6azjsZZRuMJVVWxujxkaTigKHxBqsb4PJNIKZqqpqoq6roin40ZLq+xOhwgTc7JE6tIHRFHmr3dCUmsGS4tYUVEJKFqjHdtlYo09plNL54/4FPvu4mJDqfY7WxMLQxt5l13+O6yAYvTQTsBL6bAdt8LZc4oO9sczZ45uu+umLb9eW1pk5dX7xzZ+csrd7i6tMXl0ekjoKG73+7P7jl3j7v43nEApLtdF8C0jNBi4ATASsNudmiI1SjDb93/ZX7o6tt5bOeCd6xsDKqBuhE0kcBpwVAJBsJB6kOVXsRuMbPbCJVy8sIFZNIL7Mh3ang+3M9S3ZuPN0Y6/tljn+Pt2/fxV158L5GLOTrJLnJF360m8Bbmi/Z6h+3sdIWNYoADvrl6l//0/b/IP/ncX+IHbj167PYuicHsIViDooa7d+HqVa8POVJ1tz2FdnwOe9Pau6o++CC85S3ezOxVsZMWnkr8N6EGxsDy/Locivv31rh4sMQnV1/k7z7xL3h69DQ/8bnHcVslwhnKIp8zrITw9LUrr7C9tYMpp6Egqg9fZ4lmY6VPP1uDssKlEucMzczXGpRSgR0z298jO7HO4PSDnv2l8R4tTEDU/vR0BrIHYgVB4uU4GHracPLUOps3tyAWJEnEidOr2EYxnjWUtWFWVIwnU8qymuv4kBLhfNgeHMZKjGnY3LzF+Ma11/EcvOEBSfubn3jqkGqplQwMB5igD8l7ht/5mat89odvcLBecu6VAQ88v4Z/aLzmQyrFPCPDghP+gfOW84448jR+Pp1R6ook8e6aqg17SI2OUm98FszPDl1YZSeTBsB1WBER7mdgKTpiKiEgT2p+8WNf43e/75tM+xWqETz44jpxqbDOYINmQzhDrBVEmsRa6qpiludUdU2WxPOQCjimAl5cXWFzbYWV6Yyz+yNOTqZEtjModEJhAMrB+aLiVFGxrxV3k4jbccx+AHFNXWGFCCyHB1c33mv4pX+wxZ3L/ksgLJy4lRCXkkoIYiVxWlHVXijbamF8tV5vX58mMWXtXVxLZ4i0JE1ijDXUpvRGd3hPmRaQtuUBfPjML1KlOCx02H2GpPA6IyGlL1iH4OoTM37rb+zSxJ17gSDLI6xt5mnH/t614ljvLmNpiy0Kn/EymjDs9+j3+6iioAwuh2XdhOdBYJoanGM23sdZQ5YkpFKRaIVxcDDNGU9zhkXN3sEOwlka551wlfZZSrqX8Gtv/hq3zh+ln3fTMVbaIyAgfGteVXflXgJUOOrp0fJE3X21epIw3M33vRgS6R4P4MmTLzOOj57zKJnx9VNXuDw6fQSILDI392rHbXfcNS1uvzgdL3qttK83wrKXHnXovLpyl9984E94ZPcciZWUuyOylSG1zqiF8t/3WhINRCdxxu/RFRNEz6DSkz6zxhag/nSpua+nLVXpkZp4hWr4b97629w/WuODdx9EOAmuwDkDVoAUCJHx2nbk36l2b+CTmYjLo3WkE1jh+ObqXf7++/4X/unnPs4H7j7yapbEaNz2JmL7Nly77n1E7mHtfiQso7VP3X38cbj/flhff42MGUfLMISzxEPzEkhpmobtm9eY7W1yaW2AuiDY6k34J+//DC/Xt/ibn3w7vUKjI59JFSk59zGajMaYpgqLTUekG6QSCFKU6OPQlKXGFLuM9/epDvZZP32W/omzECXooQdQ81C1q8Hu4y2yh549Ukm4hu69FSBjot6A0txhc2efS5fOE/cH7GxN2NkfU9YNZVHQWItpLFVdEcUx1A2mNvSzhChSCHxYfX93xM6d26914+ftDQ1IpPL6DItDOT9cWpxfOQrhgYQz3Dk35RP/6xf5+ns3qVIvfHzn588QVYchHhUmv9ZgqxWtCiGItKLf6wWgYqnKkrIsmTYNOvKGXkpGxHHq03uFpk2xFAHstK6n84ffMc/0abM6ILAiAQA4AbsrU37+p77EZ9/3ElXsOXddK574hjeOar04rDGeFlc+jdmLM2PKsqCsSma2IXUpkY4Qwutpkjii0prbUcTdrMegLLmwv8+FgzHaWb/iDWxToEwQzq8FTjQN643h/rxiM9a8EEfsxDFFVVPVNTrSXH1rya/9Z9vceaSe3zPVCE6/FPvKw1JA5KvcKlVjnc+gMaFOUOUahINaNEilSNOUxhiKqiRLIqIoInM+rFE3jWeelO84xyHj5ACl2uwbLxrtzlbO33Ac3sNkcsHwqb91wNZ9h+cNHkypfRPCNOG7LTzfNb+XEl8jqNWuWEdVVhwYr0Ea9Lw+ZZYX3lguCG+1kjjbUJUzX+TQOvpGsZL0cLZmMi3oZz0mkxH5bEIsHLXBF+FLfCretY0Jv/q+F0lKTZk0c2fb3WyMCeD6uCF/kc1ot+vaVrUW8d2QToI3KusWr++GZBbX1sexMKVsePLkyygriBtNpRu0USgr+fqJK/zYS+8itt2Kp0fP+15TWBdYHBe26b62eF6LjJF71esOIy272WT+pgCyOuGXH/4jPv7s9/D45iqDfkplNXUMkYbUOYY9EC6HcgcRn/Y9KCRq5bIfMYTE10p5PbDrT9+GddZaMs7b8yt3+X+89Xe49Ll1Lkw3oHGY/ABrfMq77gmEaCvDfrda29PtUyYW3hU8vn8G7SRVkFw/tX6Lv/f+X+a/+6O/xHs2L/v6dNb6UMw3nkE8/xzMCl/87sjOxJGfQggPRC5fhve9D86e9WGaDmtyfGut/XM8GJE4N6SY3WY2bbjywlXG+7sYY3kiO4H+QYnRhkmv5lc/8jyzZcPf/uR7WNlNMLVhZ++AsqooipIkiECFVDhniGJNEkcsD4eUVc2tG3cZHTyP1IqoN+Ts6VVU3APplWJxv7eQoaODpqbNoWsF+SIw9ca7dLsps8mI6mAMUUJtDXe2Z8iDiu29EcZ5vV5RVcHVW5CmCUorqqrBF681ZJnvv9FkSlWUXH3h6df1FLyhAYluK+9ahwvVEgVgGkNjLJW2fOMdW/zaX3uBG/cfrmaSXPGOz50Kpmp+JS6VDKtbP7U4CdIF0zT8Q+t1kM4XdIoiyqKkqhpm1rG03EMniQ/PtIo24FVfLNcOOmECQ8xDFM625vYerFw9t83P//kv8eW33vDOjaGt7Cdcfmk1sCMNztTgbGBYgihWKqQEpXrESUyezzgYT3xYJIrm6c6E406c5UBJbm1s8PXBkEcmU84WOcOy8sK8VmQhAOsFuPNwTlFxsai4G2muasltZ3ny4TG/9Pd3uf5IeaQLZAMnnpZzL5c00R5QOeYCZRnAoDFmXptIGhPGB0mkNHlZo5Ug1tqno1VeSFg1Xlzs8HoQBzhrEaG8gLUOZ+yRCcq7+np3wTo1/OFfm7BzoWH5lmTvgj28lcbhdhqs8eBFurZkQRsSI2QBybnQ2Sej+8rGo4MRTZ2yurxEL0sxJseZBpzPXtJKEAmoZmOasuDqdExz4X5Orw9YX11nqZdwa2sbZw01hsYIqqJkdTDARPDPvu/LvPWpE0ir+P0Pv0JkFedHG2xnIwpVQyBvjwtrdMHDgg/lEVZkkWFp7bq67qlt6wKdLpBpjyGAW4Mdbizt8B9/+Sf4J+/6BJVuyJqY//jLH+NTF5/i9mCXi6NTx+z91QxN99zcwu/dz3R/dwv/xMLri+fdfq5SNZVsuLx/ihtL29TS8ENX304ta/4/b/pt/svf/mmczdAJaCGIqpqlWBGpGpqb0Oz6M47WQC0hZHT0CCrhu9GWqhTp5BEgdX60xEuDu/yTx3+b//NXfprMxCgVga38eGWqUGztuwlI2rNp26vh5lt2zqGtolJmvsWT6zf4h+/+N/z3n/xJnnghQjz/Arz8MqIsj9m9OPK7UMprQu67z9eZOXeuG+99neebgs9FBFKcs2ze2uSZJ5/BOkmWZUipefTKOmvjjNuJF0KXkeE33vsCt/UBH/9Xj3Dyxcg/d86ilCZOEnQU+arsxmcX1nXD7du3kMKxOsy4dOEi0fp5kpVTaK38WGOND9t0evHw0r2+xTloqpp8tAtKMNrdwlEx2h5hXM1sWlCHshtSKSazUGNHCKTSHqgKSb+X0MtS4jho/wQUeYmEUODTg20JnF9bfV09+oYGJH5S9ymYJtSncdYT5tNhzed+4Aa/9ReucLB+9OF88NlV1nYzCB3uwYadU+3AfILxA137GoDXmWgdITKJqmukjkjTga/eK45TfneGui5NKOQcgLR6kfZ/zz1wm//pL3yJl+7bRlownTv1+DMn0RVY03hAYs2cxHAOZEh/FkKAbKvvNtSTGZHSOK1RUs+NxarGMJ3lCGfRUcQ00TyVrXPdWk5PppyeTlmf5SGcQ5jBQ1+FkVsCZ+qGUzVsJzA+2fCeJ2OanuXGw4crFN0Izl/LUNp/aaQUGCvQWmOMz9aRocJw1Yh5CrExhqIo0VrTS1OkFDRNTRHKXadJ4kNnZRXs3w/pSicCMEHghDlaYBFCppEA4XjmRwpmS5aP/OMhn/7bY7hgyQ4EUS4QDcgi6IUQ89BaO3G1YFBJgRcphtsajieB6aygaixLgx7DYZ+69tfQgiUEJElM0xiMqbh16xr7o2VOr69TGbBOIITXrRjnWaAsjXnpTROyXPLRX3uQf/UzL4HwK/Y/9+K7+czFp9lNx5yfrIezPAoWjmuvJQZtP9/mbvTD321dm5JDENNlGtqQDrRF9Ry3hzs8snuWH3jlrfzTd30iHETwkVfeyvXhFrcGu1wcnYRjvlX3mja6zM4iw9G9/sX3u+qi7hp9kbAXwG464YH903zw+hP83Ft+lzrJqWXDf/qVH+UXLn6aJ8/f4N13HmNmoKehJxxaGIS5Cc1tPK80ArmxcDGC7+awnFhNv47JmoiZrthLZqwVGX//yx/gdy69yK9e+gp/6eXvQUQxyrVi8Yq5UOq7zpLAvbivx/bPEtnDyVYZ+NDXl/nwFwsOvvBvab4WE5UL0urjwjJKefDxwAPwyCNeK3JsjZnX2/r4J9pLBLa29ijL0oc+jF8gJSLlLc+c5PaHJ4eXauCpJ7YZ//WSv/KvH+Xh51YpiwLnYDQeM53C3MYCz/ZuLPc4f2qNs2fWidYvIQdnwNaU+ZjZwR5pGpH2ViHpz+dDnGe2pQoDNSU7d69w4/kXsUJSFDmtg4UlLI6dnwONMSH8reZzi7WWYb/HYNAnjsKCMICgJE6wwQRTKM2g3yOONKdOrb2unnxDA5KWcRIOomBpXtU1dzZm/PrHX+Tpt28zPIiPABJh4E1PnaA/9aGLtkCbaRyNDWnBLRoUXsDoU24lomVjCOEWpUijmCjpBYGa14zMbYXD3tqJSgC49gbL+Wg4zwwCnLR85U3X+XcfeZrHnj/FxnaPz37PlSOzw1u/dsoLb02DMbVnVjrsiJJiXr+lZWKklERaB0t3Mffn8PoHN0fmLrjVqkQyjmPyjZTbK8ss5QUXRiPOjUbIbhpLe4kh5RrpWFKGj38q4Uc/n/CFP4r5+b845fNvqZj2HCt3NUsHka8IPLeo9/+RwXVRaW96NneBBsqq8RWWrU9v1pEmijTWNJRliXMQxzFxHDOe5RC+UC3ENM55IzsIFSlD3ZrQV1IK7j7YENWSj/43S1x5X8XBWT+4nfpmxKlvaK6/vQwCaH/Czvh+b6sLCzjUMOG8Dsl5fYlxDhuEuE1R0TQ+1rqxtkIvSZjMZtRNHcI4Pr1cO0ddzhg3FcJZ1jdOYkSEEoIGQVlW/h6uaPSy5id+7RIHzrJ12j/vWRPzwRtPkOua/XRy7ATdZRYWmYTjWIduaMZwmOi4FH4veTXDYjqf6wpfK2moZMOPvPxOlqoe3TYse/zwlXexn0xopCHqGHgdNyUuhle67V7Lg+77iwxJu91if7RtL53w7tsP88Ebj/MLj3+GcZJza7hNb8/ydycf5amVHUZJyXIT03eOLNVg74C9DbbB5Q1Ih0i7RT4qfBBs8Wjf2XYqX+L9d+/nqxvX+cPTL3Jt6QAJ/F+/8FE+d+E2z63c5rGddQRe1+NqA3KG0MPv2jkdtntf93ox4PxkBV073v5UxI9/UvGBr6Y8dn2Aqg2FnCFE5B1oF8My4EHHxYs+W+b8eVha8q/9GUGWcxGgcbbEllsc7G5TlDVS4bPq6hrrHJf/sAcfOvrZD/7Jedb3enziL17hI/+24qHPD9C1pc390ZEiixPSLCWNNaurS6ytLaOiCDPZRIgIo2JuvPgcS6vrxL0lsDW2rrBCUeQ5+XRMpGBpZRUpc6pmhzu3rnJrc4soihkOB8FxO+RcBi2jNTYYX3qTzLKu5uP20tISaRqj2oV7IAQkIJTyTtb4+lpSSrLB69NDveEBiUAipZ92Ghybp2b83o+8wn0vr/D9n7yP//ff/drhxg42tno88MIayvjQSmsZ77Ml7DwjxmtAwmQNoeJtACOdNE8dZ0SRD9W0AkXfAgjxs114zWJMHd7rTJjWZ11ILbl+Zo8irvk7/+JD3Fnf57/9jz6DlQ5lBMNRgpWOyy+sYJqQzmyagAdkCGGpeQiIwNYY68Wug0EvrHj8dk74kKtzzodykhRnLUVZUFU1EkmSJRRCkes+O0sDni/WubS/z6nxhKyq0d1hW/h+SnJfW2KoDB/6Ssx7n4oZSccv/2jOcycgbgy1hLIy3mMDR6R1yD7xSnFr7Twlsg1rNcZSm4ay9iGZWEckoSJuURQUZUUcRQx6mTdSs76isHGg8PfCYwkXnH3FHCyAY/mGYuNqRBVbXn5fwWzNIms4+wXFQ78dsX+6fvVw2Zl5RQA2guBq2zgaE1LKHThxaGFf146DxiCUYnVpwKDfYzKd+XNuDMY6sjRGWa/CP7CbHIwPGC6tE6kUbIVzFUoqUpfylqd73L22yc3HG+6e8tqGfp3ywP4Z4pciXlnabE/z2Am5+7Mbwuj6hQi6EWgPKlopqsZrSnqdLmk/s2iy1hbUc8Dlg1NcHJ0g10eLXQgEb9m8j+tLWwuvHx8Mbc91kZXpvr94nd9qv4sApbuvWlX8+Evv4sJ4g36dsOXglcEWB8OaRzfPEFdrKCdZko4EMLM9hLmG1A2Ma+xYIi/c1znr1hS/wK+4v3tD87npKn/x5XeRmogvnLzCdjbj0xev86N33spPXlml0glOeQ8lrPEMbD0DPTimN74bbeEYzkFdI/MZ/8m/PsFDn4fHXowwtkZaaGxJZlJiG/nQvROHISmlvJHZ5cu+0N3ZsxBF3wYIWXyq/Xk6B1VVsLt5h+nOTbb2trl9e9vr4SzMipyyaoijiAevrLJ8kCCdYDQsMcrx1MNb/O/+8Tv48C+f5hsP3WXrPs3lOytEUeT9hZKYXpaRxJpICGJpsabGGk0+y+nH+zTxOmcfejNp2gNhqadjxne3SVZW2N/bZW/rDktLfbLUkMQ1e1v7bN/dZZqX6Mpi8E7QVVVinJ/fvPmkY3VliTjy2WBp7JMLpI5CVqVFKIFEIEKmo2hvn/bsCsHXS6rjdWCL7Q0NSHCePnf41W7pGhph+Jn/6TFqbfjFv/Ysty94iuzUzR7jpYrz14ZcuD5s4YY37Wq8uNA679WglJhP5uH/4Xgu6DwC4xCnxHHiwz5t3C4wHSJMTJ4ZcZ7yFCEtK9Bw3Qq7Unr25cztJS5cX6aMaz7xI0/PJ5eHn9/g8pVV7pwck04lTVNTliVa+hCSLyLYotUjVX3mac1a+nRZrbRf1TtBbbwg1IY0YykVadqjaWqiSB9es5RYIZj0Up7KTvPNlZLTozGnpzPWi5wkiGqlDSyAdtSxn/TTEtbGiv/kXw2YKsd+XrIZaXa05sDZ4BXC3AHXh57aMJlEa+E9T4xBNt7RtbR+9SGVJgr3oCxLyrryGh/t6wk1xheYaoGiakN7wUi9CeZsTWOJpoIoEmyfs1x9b+3DHvuC+38vZuNpxfI1FfYRXHo7zRfSk/SyFBxUdTWvIm3rJlyLB9DtZ6217B+MyfOC1eUBy0tD8qJgOsvBOWa5D0f10tiLl+uC0d5d0t4Sg+E6cQWDLCZyEWLmNUS7J0oOhj6b4OLBCQZ1yiO75zDCHZlwj1v9O44Ou91QRTtt0nm9ZUlC6TIcXtrXwwOXdpXXFtMj7KMFJLFV3BfCMYvNsymSi6OT82MveqQcF2pZ3MfiNS0e6TjGqHvN3dYFKBfGJ3hk9xwSyaXRCa4ub7Lbm7K3PEHvR8SNYKAcPeGQbkK9/yKlqVGiRtcx6sJbEOlS2GuF1yIcp1j5zrfL43XesnuORhp+7pE/Yiub8OmzV7jR2+bRvRNE7SnES2DHCBtWLrYA1ftWu//ONee8QPXOnbmb6s9OpxgSYiPZD8LtQtVkKiF2MiBdi9MSd+Y06qHH4LHHPBD5tpmQEIC0FdgaYwVIX2BzfDDm+WeeZLyzg441eVmQpClFUWKcpWqauR3BUtXjoRdXOXO7z4sP7vHso7tsnp7xWz9xlf/9P38Py1+IcbHPmhOA1Jo08SEQhGV1tc/ZM+v0V09iexmT67fZvbPFdHSDE+fuIz11mso0bG5usb87ZtUaijz3gAIwZcnUwc2bu2zvTqhrgzGOSV7grCNJIj+npQmtMFUpn0GJgL3xmElegvCmlasrS/TSmCTWIEFYgVLe/0spP/cZa8MC7fWFxN7QgMRYbzQ1r/rq4NTNPrUwfOnDt/jSh27jBPTHET/+bx7k3/35l3jwuVUGowhEcGa13gCtabyCRCmPeoVzONECEj8MuRBo8xOnRsc+xVe0RmltDCmwJTLoROaoxvkJWkhJV4MgQg6gtRYZ6uz80Tuu8OW33wAgm2n+wv/yGC89sEd/XxFNJWU1YzqbopVi0O9DADg+BORHFIG3yfdxQH8cKSU68v4hjfFVcW0IhVR1Fa5FEscxWvs8coQM2SrChx6s40BKdlfXeGVljdUi59x4zIXRiKSuQAjqxHr/Ducza1SjMNqwMhOsN4YLjWWsGrYjzTWt2CSk7SovurL4/pIhQwkcUbDet7bC4SjrBlnk9LIMGZC4sj7sVBQlSRKTJQlVI72AOYAzaw5BLAKEawXLUFvLzTdV7NzvxaYrVxSnv6KIZnDxjw5N3wgi5zbfV0pBHEXEQYgmpSQvSxyWSCvP2HRAzJyFsI6yqtndH2OMj80Oh4rpNPeurc5nk0VaY6oKW5dMR7vUxpH1lxkOYuI0QUmBijWvXJrOZ9nHdi7Qsn0P7Z47NqyxOCEfxz6059uyIm3GTSh2DnjwUXLIlEj8NNt0Pq87n/dD/PE+m3DEWmr+d7uf9tUu4OheU/c6F7N9jrsuOu+9Fhzovv/w7jlUMAJ/053zfPrC0yDgy8s3+V7zFlYiQQoIN4X8RSL2kKJPKU/Q9AeoaBlcK/huk6hrDjmo71778O2HGdYp7968jwcOTrCVTnh+ZZuvrt/ikf0TCOcnQFQCboaQzlcpbbN/vqs6Ejz42dnxTqo3b3acVB2RlDjpSFxMbGtKabDCFzqMqx4uUvDA/ZgHLiDvfxROnAb17Uxz7XjRgG2o65x6MmK8f0BRNczyEissW5vbbN3dJIkSerJHHMekGTgnmOUzbOM1HNZa3G7NhWf6rMcDPvr7D/F/vPz7TNKKL73jDs+8dMCbf2OFPM8REuq6JgvZK1nc48TKkDNnlumdOIOI15FCsnq6xyvPP8VotE+eP0s+2qVCcuXKNW+U2M9oTMNgMCCOIsaTGpSkaiQ6irHGh1oaGpQSZL0eS8vLfiwRAqU1k1lOWVTsH+xTFRUoRRQ8uLT24RyttQcgwf3C4l3FlRa4xs99SfzvgXU8zqf4ttoCH8eyvPzoPr/10y8zHdSoRvCBPzjP+790gd/72Cu89csnw6QtQLh5+MWDGouQoSJsK4wMXMpcI4FASIWKEqTUnTCNCKm9fhspQ8G9lstvq/O2+3RdT4zW7dMT2TfP7POrP/4UVWSQRvAjv/UQD7ywzs5qTjaRyCrU7JGaqmo4MGP6/b63FZcS6fzx2uF+Xr24ta4Xgto4yqpBCEESx/5Bspaqqoh1hE6igOwdMuhzcH6F7zBY4QstVUpyN0nYHi7xtf6AEztbXI4nxH1DWoJygiT3adDSSJQFIRyxg3VjWTUV90vBgZRcTWJuAJVS1IjDWjSh3xGglCKOI5rGsxzjyRQpBYNejzSOMcabhTnnKGtvxJYmMcI579obwIiEkC1k5wOsAyph+PrHZtjIv/DEr8TEM8/aXP6Uj+/PfWKcZ16U8vVvolgHgzyJjiL6SlEUXrGutaQom7BiYH5May04QeVqtvdGFFXD2soS/RDCcc56XYkx3hRO+gwyV00oBBSDIUZmRBFUQvDy5f22t3jT9qX575FryyEcnczb675XmOO4Cdt03mv/Sfx0WtCyGx4MtELXbqinTRVuFvZ95Kt9j2N3NSzd87/XNvfar+j8e622GL5pX42cQjrQFbzp6nl4t3/nG6ev47D0hffzENU1XLENVUU+KknPnUGtnUUUtyFVIFbARb43xAHw+sR/f5b2gzcfQyDomZiPv/xu/vjUFRpl+YWHnuTPP/8YqW7dZBK8W1bpQQIWZM09a8N8u805X0yuLL1fyNNP+59VFY7bNoEOQWKBZFgnFOmMIrHcWS448ei7OP/QR2B1FR0p750ivjW4mz9ngUm2zlLP9rHlhL2DEeV0wvbuiKYuyIsKIb3XksNh6oYkTSjLGjcrkFoznRZMJlPq2nsLibBYdLOaCy/3OPvYGT46exMvfHXM//DeP6KIGn7+B77O/+nGD3Li5SHWWZqyZJBlrKwsM+inrAwHpKt9SDJcWAZESZ9ssMre7j7j6ZStb36TysBoMmV5dY21svT1wXo90sEQ4UDHCWeNoCoK8skUpKY2fg41dYVpDE5IJlXF/t5eqOJu5nNXP82C5kR6RjrSZKnX7rWZqO1irXU+r5quEu212xsakBhr0cJ7h0jpUy1HqyWf+CsvcPuCd+N7+Jk1fvQT9xMVgrPX+1x4ZckPqqFSsG3dUoE8z6HMydJs3sHzdN8gTpRSIlWEUpE3Ums1J21WhzhkIoKQgzaDxpMnLRvSBLdP/HvOp5fOehX/7qPPcvPsAQCPPrfB9376MnElOXO9TzwjpIFJellGExmqqmQynfpz7mVEeIpfSUJIqA19BIGSc5RNg3EOLaTPDpKOBoGUDq0VUuBt+UWbost8EjUOEMqzQ+E5K6xlr6p4eTXlv/iHtzmX5PzQZ1I+8Nk+D+x5EKRNMIWTnoHCOaRzSOvYcIaNWc6bhORWrLmpNDs4ZmH4aQFjCyadM95GXCkm0xnGNKRpShxF3sQujtBRRD7LqeqGSHvXXCkF0jqccJgwFPmsG+9Psn/J8vIHvZ4h3RM89pvp/HlLSoXWIuhufJ+0uh2HT+314M8QBxaq18vIZwVFXXnQ57xuSTiHUr5KNTis9W4mo/GEsqpYXxmyurxEVVbMypK69gUhI62IlKRuCoyx3Lg6ZjI+werKMjnw8v37ACireHT7wvzcjwtrtJO2usd77Wvdybs7+beVd21nHxM8AEk51I50zcjbJz7gvbmJWne4agFNVxPSbV1Q0W4vjtm2e87HXc9xgKX7d/e6FrcXDmIH2sC788toq2iU4ZmN6/R6DaI22Nk1GF+HvKQqNXp5HdXLEGIM2bLvGZeA2wuptWde77j9bTeBoN/E899/+srb+S/f8evspTN+7/zLvLLR8PB+P9xoh1CJB0za4IV038ETtNa7pu7uwrVrnhHZ37/HiYv5fYusRkiJGqxy40HFf/+T1/mt7yv4SH6bf/61Vfom5ejTfNiOgNcwBhVFgbWWyegAk08YzyZM97cZjSdh0YE3H1SKfr+PEL5QqLWOJJFIHcFkynQ6ZTYraBpveOjHAO8gbYxFOMfZ2wNW4whtJH/hyTfzhTPX+OKl67x4Yodfev83+Ftb76RXpiytrZOmCUnk/UcQmrqwWLOHbaYgJHdv3Wb7zi0EvrimEILJ3gjT1B5wFDn9fg9hIesvobTGGMPq2gl2tjbBgjENcSyRAqYzw97+HmVRURQeXMVRTJr2SVKfGbnUT1nqxyCgKGusCbo64ftTBB2Jdc5rS6Tyi7HKHHs/FtsbGpCAp7zbcInT8Ac/cY2n374NApb2Y376Xz/M+mbKLK157+fOolxbGs3NaXrnoDa1f5CA3E6p64o0y3z6UgdwSKXRURyM1CQCGcSM88RPryfpVAv2aaIupAVzBIj4L0VgTyQ888gd/vjd1zDaMRzFfOT3H+DU3T7OWU7e6iEKn+arpEBL5eu/RIq6rqnrmtF4Qq+XeVdZhDdMmwMl/9MaS1P7wneN8+Xr2wJxWim0kt75FdA6CpoLPxzUxmAsgW3x+3TWUhUFxjS8/O4Rz79/zFfWG/7kQcv/5qUN3redcH9Tc6pp/PqmBTfOe3i0AwNAhuWBsuaSqNlVim0puasld6SiCcBQhpCSEALd1F4Ma/2zgJReVyMEWexV4FVTYxrPomntqUbnHMJab0jm/Ge1EDz3sZImWEA8+Acx/T1Ja8Qba4VW3inSBGZNBSbMWm+Br5RDGK9tirRGK02vl1GODMYepj+LtgoxYj7BuuDKV+Ql287XRxr2UjIB05mvJIxzqMjbSBvbgBXsbN1lNp1SPzZkZ93rR05PV1gtB+EpC8fkKLtwHEjpsg4tKFgc2rtAoLt+bZmTovNed/pqdSWtfFVzGP55rbYIhBbBiFt4/7i2CGKOY1XswmuLx2h/F85ngCVGoBUsjYacnqxwY3mHO8M99uNtlu/sU41vY/MZykWItYuQKGAGbh1kEIg2B37v+sS3uILvXOsGyk4UA374xuP8woN/QqkNv3T/U/znXz4JpqAucmSSoXUKIsY7j327U4YFV4NTfkza2ka8cg3u3IbNLZjNQh+3BU0Pq7U7xzzbwwmBPH0aHnoId+Ec1za+wu/+4E22ViyfyZ/hs+vP8COb7+C4fjTGayamkwnOGVw5YzybcvfOHawxlPkUiQ3MsCVqw69KhYWGL2jVND4TLi/8omCW5xR5QVnVmMagpCLSEVGsvIN1SDwwxnBiu0dmJZvZAdlI8cOffYDnTmwy6pf8wVtf4sMvPcD3X32ERGnv6IxFasFsNGFnr2Y6m85TbKfTKUopIhlR1AYdx6wsDbx1u9BMD0akcUy6mlGVJZPdHfJpzmS0TznzBowYz8pPpjl5XlDmOXVdI6QgzXqsnzjFyuo6SZKCbdCuIFFBaxg3vnZaVRLFsddSmrDIa50UJCixOFLcu73BAYmbP3cGy9fef5fP/Mh1nARdCz72iw/xwLOr3lirETz+5AkQISdb+ImlrUEvpabX6/mB1DTUVcOkHqOjmDiJfe0aHXlr+LZOjWzBSns+Yq4faQWxLlixO1q25XDypQUjYZU8zSp+9c89xf5KjrDwtq+d4T1fOucnOGvJJhJTeTGuCBOhUpIkjqibhqosqKuK0XhMEif00iSktKpDMOJ8oUCvK7E0DogjWnt7rf3wa03HowVwTmCcpWksQmmUPrz2qmkYj8cUS5Znf2Sf6WqDsHDuq8uY28t8JRM8axJO4HiTMVyazdBByAqEkFcIW4WpQzvBycawgeFyDRMhua4lV6RkIjzToLQi1okvhCckWnk6V4aqyw7PKGilqJWv7VNWNVEckaUKUXqAUzcetJVDx3M/5IvSqQoe+3cJUYiBSiVJIp891DrTWBvoWBvCfYGtE+39DuyYUoo8VMT0PAi0hRPnD08LzHyHUFU1W7sH5GXNxsqQteUho8nUZxoVFVJJDx6l18RMRns8O7yNkf6L/8juebRt++G1QyLHTYGLE3i7nVzYpvt7O+y0oGPRlv6wxvShh8lisbzusVug0DIr32qqfi0WqPte97Xj19GvZl/a7dtzTmpLhKKswKWSR7bOcWN5h0ZYnhp8g0uFL8I5css0aDZOPuBTTO3BnA3F7oGbgT4NQvOtr/A73xKj+cmrb+OXLn+VWho+cekp/s7T38dS2UdnqddftDq4eWd1eu1b6UlCqLucjTm4eYXkxh2SW3eJJlNEXuCaJrCefkXk5h3f2a8QyDTxBmbvfBfi/HkY+FTVD1fr/PDdTf7l0ue4m+7zP5/7HO/Ze4iVsu+fubJEKMWd2zfJp1O2t7eoyxIpLDp4Gbnw3Y21BPQcjLQ+TqZpaOqGyWxEXVUeiDSGqq792Co9g9LvpVgbEiWMoa4qkiQhiXUobwFCKBjBnYNN1ldX+PEX3sJXXtriN9/8NNtLM/6/P/hVPvQrbyGeaqx1TKuK/YMDIhUyQp1fYNmmRkmJRbA/mlDVhtWVJZaGA+LUUFYW4wyT8QitFNdeucJsNkW1DLXwGUCz6ZTZeDxf2CspibIMhCJOk2AXEXFwsI+pK06u9P08qCRRpENIuSbPc+LEm+cJ4UL2JD5DS0qS+PUZ/b2xAYkjKHkN1+8f85t/8WVGKxXKCL7nUxd4/6fOIRpPxetSoho5t/huBaCe0RBkaeotwZ3DmoaoqueTvDENchCRpAlKR75OTcuICJjHKeciVv8Fs6FgXQtQWrTvNwgpxYH/N8rymz/0DM89sgXCpyd//BffTJL7isXWGGzdzBXPQhx6iSgtkTIOX36HKTwwcUmEkP5cfVaP8ALWUNytqmt0KB+ttCZNFB6PuFDW3oExPkQiBHVjscJPhN5R1WexTCYTjDW8/MQe33z/Pk7Cyq2Yx399GbHbYKKImdZcdY6rUnHi5IBHmpqLs5ylqiRtvEV8Wy23Za/ATwKZc6TWsGEMbxFwRyquac2+g1prcqUDQPP+JU3jnQ0L4zNiYq2IIw0ipShrqqpBJhFZlmKNwVEROccLH8zZu+CpxTNPac4+F6OFxCmIggHQoRlaMJ+T7U0NKb2NC8+BCfoXx8Ekp6oCLxCeBRv0KzJk/RDoTgIL5LVNhsl0SlXXrK0skaYpdVV72+bGBPv/mCRSCOG48sjBfKp4fPsCyskjE3D3571AyHETcftaCzBaWHYcIGkHFNP5zCIw6bIn7QTPwjbd1mbYLL5/L0DVfb8LJI7btnv+i/voXn/LFkkLSdPQc4rCgYlANIp37F7g9/g6Tji+tPocP95cpJ5Y+ufeRrR6H2IOvXIQJ8COgBr0uXYQuceZfXebQPDWnQu8ffsCXzx5lavDHT595lk+9s37kEnf6zBw4Eoocm+xrofggmRZ9I4/d+e8Zftkgtu8S/2VLzG4cQtpvIaqmR+fTtj76HNqIs0sipidXGf43ncSXbyEzoYk2SD0mWFdrvKXX3kfv3vmG9wY7vObp/6EH/3mE7ztyXUiJdm+e4eqqhmNxz5TTyuSJCZSrbWAwklFpP0sba3DWcF4PKOqamb51FccL4qwMPMLjCSOWVryYZAkTeb+TVVZ+SzA0o/vS/0eJzZW0MHWYFbW7O6PaMoShGIohvy9P/whvnrpJreW9/ny+Vf4ubf/Ef/bL/8QG8MVVByzu3mbppiBs+T5jLqqiZXC4Kvw7u0e0O/56rtCKaTxt8k0NU0p2L5zG6QX1hZ1g7ENk9EEYwxVWRIpRZxGxHFMkiREOiLNUqq6ZloW3L51gzTtsTQcomJN5QxNY0niiF6vj5358c3LAiKcEBgMUiicEAjn7l0OaKG9oQGJdZ5eKwYNv/vTV3nlgQMALry8xEc+cZHegT4ygZi2fsoC+g7JNKhAE0odeev1pkFpjcOn+Oo46bAN7SBySIC2qaXOBZGBc/MJSAS2xHubBN+T+arY8vyDW/zuD7wIQFwqfuLXHmN9M5tnwHi3Um//LUMGjxQ+BbYxvhKuFIJIR/R7PZTwwloh5ZzuxJnAxvhJ1Bjjwx9JAg6UkCC8tkYp7Y3SaCdIX6ywC8YcjqquKIuCIqr4+sf2mK01YOHBLyzz4PNriMTRBFGm1h44bFU1u1rx7PoGl3Ccms04MZuxWuTIUEXXCTdfOc172Pnqw+eM4YwxzJqa3UizrTVbSrEvDXld09QNSTBJc85XBPagJMY54QvohX7w1GNCFTW89P6SfNkiLFz6SsLaXe31HkoSB7t9v5ry99iIdoAS3kG1BVLOBSGqz6yZ5VVn8vQGbdCmDvtn4HAFdfgciTBCF0XFnbs7rKwM2FhdJqkqxtMpVW0pqxqtLVGUcOtxn7UhnOCh3bO+UNr8KWX++3GMSdteizXpApPjAAscgotuNk53+45qCjgqQL3X8cTCNscBLHfMdt/qs/dqi33Q3V43DrG3QzVYw+qYysBaLHnb/lmfrYXjyZM7NMVFrFoj6q0iRIBwToA85dNHmYFYO1zMfIeac8GnwoFpKtIkBhG1M/+rthcILk5Wed/mZb584hV20ymfPnOFH7r6CCkJhz2Y+Jvb9ZMQQYxLh91xDvb2fHXdO3dClswWSVEcZpmJzp0NIvvukJwP+oyWl5msrXAjUkyBlc1t4r19hFBcuu8SVgica5iOZ5xwOW/rn+Dm+/fZTEf805Vf5T+/+QF6jUYpRWMMWRqhtQ/BRHFMU3sNSFXXOOcYj0tfIT14AVV1RWsyqZSm1+95E81QkyyK4rlXR1lW4Tvt6GcxcdTzgKoxaBWR9QakaeL9hZghpNeAIBQGwfnJCf6Dz32A//sPfpIyavhXb/4CT3zjFO+8fZk4iiimM5q6RNiauip86F8r9ncnFGVFb9An0toblxWhhpaQxLHCOM/klGVBUdRzo7Ik9S7RaZKSxRG9XkY/y9CR194J4eudpUWNkRFpmmFtzXg8xpmGSEcwHNDLEvpCMplOKcvCs/Za+z5svMZOitfvgvvGBiTW4ZTj8993iz/5wB2cgjhX/Nj//ACnXupRmWYONuaiKOFr1jgOvwgiTAp+O/xqXQifbqk0UZSSpD0fu5tnZByyIeA1JEKoQ+qxFcsKv3X4v2cxrJuHaQBGSwWf/OFvsr/iK4K87WtneM8Xz0GbkmsspvFfnLYQXxuWsI5QWM9PapHUCJJ5zFMpdei8FzJNXFiZD3o+XVgpTaQVcSQxxmGE9EyQaJke39dINWcJpPAi4nw6xTQNd99d8vwH9wGIZ5L3/sIJKHwGSxQFYBA8Qnx9BsvubMY4jrixts7y+jqrec6FgwNOTyfETRPq97TKbQ5DXnhHwIG1DMuas2XNTEr2gedNww0hEYkXeWnlhax1Y/zKJtJY4ysFgw+hSiUZXYRrb6mwGgbbkge+ktKrNUZZpFQeTBFSwS0+GysIbY3zz8xcjxKezdpYysobsx2GB5zfXrTMvV8xGhN8agLQ7FaeFkHEcnAwpWksq0sDsjTFuZKqMTQN1EsVOxc8C7NS9Dk9W6V99BBHwUDn5fnvcNQErdteiy3p7q/LknQBQvuv1WlYjh6ny2AstkVmo3sc13ntOI7hW/19r2McB3BaJie2Bmca6lmO7Uf0IhhKuDhbYb3osZ1OeXFpypaKOHHycWSyevRgzoDdBr1BqPf+Z2qHGV+Ops4x1nHjpWfY2d7B4ej3UlTUY7gyQKmUKIoYLsU0NvVh6CghNYIP3H6Af/3Al9jqTfjiyatcW8l5aDQ8XAwIIE5pFzPzEFN7/LLwXiEvv4zb3ITx2GfNOAemORKO9GHgoyDECMHucMDt5SV20pgq7WEjRWUaIq196QvbcLA/8jW5Yk0c+/opxlh++nce5vffcYVZ1vClt97ihQf2eO8rFxFKohobFiDQ1A0HozFV6UMvTShw2bLLOoR4l4Z9tNJEsV+cVqG2i3MWqRSxkgjhw9pKxj7TJNLEcYQKacbWWvKqZjQtKCrPnlRVjRSaOFWsrK+zvr6BEJIPPfUQf3DuOf7wLS+xvTTh5978Waov7nPBrrGxsUrT1NgqJ1YRURx77yjn6GWZfza1H5eLuqSqG6RWFLOcsihx1tAYQ5r1WVpeY2X1BEma+oSHeobGEGlNlqU4mPe3pULHlrosGO9NvDeVVvSSBK1kcJZWRJEmjSPyoqAsS9K2iKy1uLnFxesD3m9oQALw0hP7/NrPvkCVGlQj+OFPXOYdXzoNOKywtG6oAIQvgg0hiXbEaXkO6w5X5RAcTXVMnGYoHQX6t91azIGOZyJUCAH5zJZwwMOBNDAh1prA7HgNh1WWL7znGl95+y2ccJy+O+BHPvkgy/uxL55nDXVTYZr6MINnDq684UxVu1CGPoRZhH+olFIoIZFCembGgrX+/JWUqAAUpBBorfx5O0iTJKiSLMZ60GPgsLpyOEZVFjR1jc3gD/7aTerUgYV3/Mo6Gy+ltDNim+mTJinGGkxj5gCjrmp2Dw5olpeZrqxyYzCg1zRcGI+4eLBPv6rRpkGGWLSfycM0ESb/CFg2hoFznAVq4dgtS25JwS6aBm/7XwUDvDiJEC4iL738smoM1x8uufFYCQ42rkc8+tU+cSQwVqO0B2wto9XWAHLOYRqvt/H3xvlVFGCEoyrreUXMLjPQaktaBBB4EtrKRq4NxyFxTeOFv+G5OhhNKMqSlUGfQb/HNGQR3To7Je/5fj03Wmc576GN8BohRSuVOjbMchwwOa75J/gwDNIFBl1w0NVatEJW1/l3rwm/244DGIvnwjHbHMe0dN/rbr/I2ixqStrt2+sRzlE3EkOfunSsZ4aBUkjRsD7a4tJuzPa5KZOB4NZbz3FmdmrOdvlWQ70H0WkQXcv4P0OzDXW+T5FPeOm5b7K/P6aq8uBA7TgQbbjWIIEo8hPIcGnoi4GKiGEv5qFbFeceSdm6OOErG9d4cvU6D+6vc0jbtT0i/fPYNFAUiN09eOEFuHoVigJnDC7Un7KBJbbOhefvcGFknaNWkplW3O33eGVpwDSKsCIYcc2mSAlxHCEjr+Oo6opIeWG50l7b4hdjgge2T/Djf/ww/+b7nqGIDT//Y0/z6D/dgJHlYDTBWUNVN6FSdzBilF4HkWofptBazy+1XTyWoX6WBHpZyqDfQ8exz3zBj79JEs8Zc2Mdxvm5w1hD3ozZH+2BcaytrpL1MoRWFHXDbJazPzogzwt6VcTPfu1DvHJpn+vLO3zlXbe59CcDfvjzMXbHMR2PibVkY20FYRV13bC0NMBaR1GV7OzvM80LbFPTVA0I4Yt1KkUcRQwHA3SUIIQgSTOss+R5TqphMOj7OSIsQMezGbO8YDIZUxYlAs8QLw8H9LKM4SAjL0qKsmRW5PRFRpolWGeZ5SVVLUmSJBR7DUDQLS5hjm9vaECydWbGr/zV55ku1QgLb/7KSX7wE5dRVkBb0h3mosM20GBdmyfNnEltmwu0u3X+oY+SFK3juafIkZTe8CWb16kJ/xFtNd82tONcCNEELYg1c7R968wBv/XDL1BkDaoRfPCzl3j02Y15qKYxzVyjkSYRiVTBpt6ffAso/CX4mgMqGJlJeWgq5sNEbg7AkGrOCrUVjdv06TatxKfXBm2EUMHl1K/iTWOYzWZUdcVzH93n1ptzELByI+Ydv3EShcQZOwdsSHFIg4YvvjGGqqrJMj2vo2CFZJIkPBdv8NLqKieKGafGY9amU4ZFSRJCJiA7dv4+rNPG+bWDc2XF+bpmJhU7ccRdKRlFmrGUlM5nEw0HA6qyptIl3/jQhDrzGTJPfH7I2qRH7gosoIPXTFu3pr03deP7VimfCmys8yF3C03tw0ItTd2KnCW+do4K+/KlCrzFPJ1x3xh7+P487Oivt64Nu6MJVWPQ0t+PzYsVReaB8LnJuq8NExCAwzM4MCf4jugyuhP1IhDogobua4thmy7QaO292tZNnW041A8sWr1323EZPt3tFkHU4u9dwLTIDnU/v3iN8pj3IfRf4ygrS7/fYy2BRAkUBje7QX9rh3M7fb58bo9J6njpjOFdLx8ZWMCNQS+B/M5UzrWmZvvGS0x3rrO1tcs4r2ms8GG8KCZNEhx+YtJhPEwiwZmNPmvnziP7a9SVJaLkpHD86I2H+PqFHfKo5tfPfIkfe/EM8dQhtUDEEZgG9grE3gHc2cZdu4YYjXz6bgtcQhjdGBMWgO3rfpNGCkZRxEGvx9awz04vow5ZY73AwCIEo9F4rteQQnoWA0mvn3bE9n78a4ylnlV88LfP8qlHr7B1JucbF+7wG+e+zrs+e3I+5kRRRBxHPh03nJdQGtsYhPSOyg5QArSWxEnEUs9Xs43TlCzLSJMonKP/5zGXpTY+rF3XNbPcL2ya4IIt/KBJ0dR+0WEskVKMJwfcunODsjKsrp7gfTce4ieeezf/r3f/Dnla80f/qzu87+5DZNcaJrMcYRuklKwsLSGVYHd3j1leUAQNB+14LhVZL2PQy0jjJNjGJ1gh2DuYcfvmNYzz5UJ6KwOqxp9nWVWUs5yyqoO2EQb9IVmW+sSOOCGNY+/DElvKxoPOsm5QVqJURBxZyqLwhFqc+Gwm57zB5utob2hA8ocfvcHLj+yDgDM3BvzorzxA/0BjnPVOc2FCNsYDksZaVBCX+cHd/+ewYFpw78RrC5SOg4g1TEhz11XBYZw/sB/BGr6dPA63B4fBuZAUGZgBv4qG3/ix57hx/gCAS1dX+MFPXobaBbM3r9RumoYqCBlt5uu++FHe8zTtddqgFpdKoKRqtWKBkfH+IR5s+XNU0DFws0gRCt5ZnwPhwuUYJzrmaB7JFWVJkedM1xqe/Og2Zc8gDLzlDzZYv55gTBNSo9vz8mJYhAgPp0BHXqeSJAk68jny4MGOEAIrFbf7QzZ7fYZVSW82YWU85ex0xlpj5oMKiABOwrTT3lzn6BlDvzCcRzCRkomS7EWaO1qzp72BmTtlefoDvsSALgVv/vWUyljKYPnu72lEL0uR4b4ZpRD4FZvvU+PZI2PndXQ8O+RNLrUSoZCfB8NSBiAoJJFWFNWhL40QXmfS2tqrMFCLEKLU4V4UZUka+XDS7qWaKvPP8dnJGsM6Y14YNdz3rlzhtRiI7qS/yGy0bTGjpftzUTdyL+CyCITudQ7d145jUu51DceBlu65L+6jC3iOY4mc8FlUkdakuvHfr3IHdq+xmp3gYnEK3A2muuSlIzV4GrC7IPRhum+n5ft30ekQnWQLjMq9msM0NXt3rlPuXGN5pYcpMw4mOZbYZ3JIhRP+++a/bRIlNUZIhEq9j1I0QEVeB6KY8rE/OcP/892SMjZ88v7n2ftqxdlmCbG/j7v5CuL2TdibwniCqOs5yAU57zAhvWGctTZgFD+O5FHE1jBjK4sZxRH5YJm43yOREm0dKoRj26+usX4MzPOCMggme1lGPp3hcHPTxrwoPPC3lt7Y8a4/OsEnf+oaedbwhY9s8c6rF1ibeY1Fm6ovpcTUlQ+9OouWiiSKSPoDkiQmjiPSRBOH0ES7GKmsC9mZltk0x1ioS4OQfgGhJJjGex4hJHGUMCtheWWZWV6yv7vLxsoqg0GPvDHs7O2yv7+HaQQb66eJrOKvfu17+cz9z/LUyVe4emaXT37sJf7KP36UsijAGPb3D5jmM0zdhHpj3qG61xsiBERSkKUJa6tLAUDFpGmMCIyZszCtHDryi+yyqjg4mGLqBmd86GaQ9ej1eyClL+LnHEXlM091FBEJ4RdQSKJIUVXeMmPY75GlKcYYyrL01gwES4SyetVTfFx7QwOSz/3gDerYkk01P/hvL/Pgs6tzX4u5z4MHpygpcPYw68BaG/KjAQ6zOlpmwIt7YqTQAVjII5oRnMN1ium12pFDQNIaoBnmPiO4w0FPwp+88wZ//L5XQEBSKD7+C29ieS/Bhe2t8aAkjmKUlNR1TZ4XGGsZ9LJgUy6wNoShQsgF1Fwk2aq/jW0DV24+ULROesJ5u3olwmfmK3JBbSxOeCGUxetUmqahmPmB4cW37XH1HWMQsHE15bHfXyGtI2QiKApfdTaOozlNa5rG19IJ+4mjiKzXo/XjMKZhPDpACMlgMMBpjZOKUZIxjWM2+wO+WeT0J1Mu5wUXyorEOpTrTEGBuTq8J36SH1rL0BpO1TUPCslMCG5Hml9/fw6xJSnhwa/2OXMtpaoqnHNkSUoca4qyZDKd0e9lRMF8rU1tq4ITq5KesiWEdawTJNFiHQfhwYgQ6CA4TmIvtivKyrMowgPNSIs5SGlDRdAmFYd0bqBJLDsXaprYkTUx58cbaKuPhGmC9AVn/QpQcJQZ7OpHjgMQ7TaLolSxsM0i4OiyHItsR/fzi+1eAKX7/r3AzXGfW9xu8RwXj9ECq9bUHcAqkGnrvyOhmeL2rjDZOyBdOc+DxVl69ZPMooYrwx1yVZE1CuwW3vV0ZU5RtePBeH+Lstxnbbj2+sBIYFYn29dp6h3OPHQ/xc4mxjrSOGFU+ky4yd4BTdOA8B4ekRJEkWcJ9vf3OLk3ZriyDQiGS30iLXnIneR7b1zi8yeusHq34toLn+H8H0ewf4CoDDT10R4UHFJu815z3kJcK2oco+UBt1eGbKcxhbPMas9GSGco85zW6VrMtW6Sg9GYsir92GS8vw94Ab9nJL3ZlpSKOIkRePZHKsUPPPUA33jfHtfPjnnmiV2ee9Me7/98RmNrZMgCibUiG/RJ08SXyIhi4rTvvTS0LygYK79Aa4z1zEHTkOc1k1mOaQxxFHnhfEiNtS5k3YlD7tE6i3aOKNFYJxnt7TLOp9QCL6Cd5cxmJXGUoqTEGMPaaMDf+/xP87d/7H8gjyo+9Y4XeOsHzvDAJ/vURUHTGGZ5Ac6SphnD4QqraxsMhkNf9qSckkSSXi8l0l6I35bjaKoKqSWiLJlNcs/WN4YkiRn2+/T7fXQcoeOIujFUjWFWGxrrqGqLMgKoGGYa40K5llDxPE0TojgiiSKss4wnPrQ8HC6HuezfA2O0sudppfd99hwf/p2LKONXynPPjTAZ21CvxrkAUqQMheaCQALoghKlW/Oz2NNzBAGWs2EyCKIdv0TvfN5PRoc4xxuitYyEJ1K86c6dU2N+7WNPk4dQzQ/8zv08/Mz6IRixvjKwlIIkjrBOE0eRN0CravZqQ5Z5rxElxNx51jMjIsxA7b5CZUZoKR2/Cg/xgTbWK4JOgrCdsdA4Mf/CyTAZ5rOc6XTKZK3iqZ/cJ1/yRe8e/cNVLj6/hMBR1w1xHGNdSC8OYlatNVVVUTc1cRzT6/WJ4ijUJBLUVRVYhpq6rOgP+qS9DCsVVmh0LJGRZj+O+eOy5MtNw8XacK6sWKkq+mVFbEOoSBxqPQ7vlDe/T5wldoKVsuTcpy0f+Zsb/NE7K9IX+5yyirEWTISklyVEkQdQddMwnhakaUystXfKnVOR/hjWmlDDyA/aUjB3L/TdGkSrUqCU9GyXEMGvpm1+ELHWESntRbnGhlRgzzYhHJG1OKXYX27YPuHBzFLV4/x4g+703D6PQSP8KmCwyAzcCzi0P7uai+57R78Nvi2ajS1u7xbeO64tbr/42rfa9rjreS1Rbnfb+fECyE0zSJ1DUFJtvwBFRf/BdyKyJR6Y7LFc95jFI64PdtlOxlyoQnUfuboweUNVzjC2ZHXjfGAp7wWrOufpDOOtm1STLdbPrCHqnBpJr9/n4JUttvfHBEzs9Q1x5Bdp1nkh56xkImE6npBEt3y6a1ly4cQqF89c4v/yj0+xszPi0Zcihvl1bJEdMiEisMOBJT56YhYjBVUaMYkzdgZ9biYRI+EoGnCN827DzhFFAlmXDFLN+voJemnqWYo0oahqnn72edIkCeOHD4MkcUySxCitgjBeksQxeV56XZ+zOAGXnxvy3q+d5dbp5xn3K37/w6/w/bce5GQxpJelRElCmqWo4ONTOTjIG2oZM542GFsCjqVeSj7dpa6aUPpBo6TPYpTKa3BsYIvrxhInGVEUUxZTmqok1pJIKtJhghSKWCnqsmQ0GqFkSX/YB7dMUVRUlaGsKvI8R+mYd958iL/8zPfzL9/0u0yTkk987Bn+/uaHOXXVheKbXiwcxTH94ZDl1TUsjqrKyeKYXi/y1YKBoqmp8oayrJjlOXVRUZUVWZox6KVkvT5JlqEiTWO9yH82q6mNoaxqyqqiqn2JkaXhEpWFvLYkgZltwjiulKI2FqksWa+HMZbpbEaZ5GRZ3xfsex3tDQ1IEPDg86v8xC8/gjYyDNbMszHa8IR1jrIoqBrraTitUW1sPtSPmc/DUh+GakLaLDAHHwLh+fa5bgPmnPg8syZUlG3rP9CGYCzONlSp4dMffJFrF/cBuHh1mQ996iJJ6QclH2JpvBBN+MlJColz/kErg0J8PJ5ShJoHSnq2o90WDq99Tp2GgckYO2dHCNoSIbwLqxSHfgB1yKxxOGxtkFHkc+yLGULC9XdMeentByBgsKN556+dwNU2rFyUDzEZMy8258GWIIoij5gd3lWw7UVrPQ2pNP1sgNaRT80rG5SyxHHkaUQRkaTepXaWF7yoDa/0e6wJwUZZsTLLWc8L1uqKoOfvPDSHKzzhfFViJDz4SsTDL0ck+5KpnXGgFHtCMGoMk0gjk4Q4ipgGZb61Lrgk+pCXMz6e6mvlBLt9rE/RVu0zQWA2PM3qWRAdhHDMz9MzepJIe8YliRTUhqKs559vQY1zMF5p2NvwLrDDMuPcZO3IZDqf5sKitiWO2g26uPo4JmLx7+6/tn0r47Lu++3k370ji23x3LuMiF34nYVtFv9e1JOwsF332rrbLQIlAXMUZuuCKq/JNh5AZKcRQnBpeoalKuN2f8St3h7b0S0u1ANITr16Am9mTCe7DAZLIS2y4fXUiCnHWzT5DusXziGEZlpJnvrGU9zZPqDIS7+YCuOP1oo0y0K1V7+CtxbSRLOWKNadIxlNKbZn9G6P4Guv8CYMo0GMVVALQ+UqIuN1ZW2l8sPFWCCE19eZrWRs01At97nVNIzKhmlR0ThHP0sRMqI2jlme+4yPyAOmpeUBS8Nl4gC8l5Fsbu2yd7DvzRutC4U+NW0qgTNeNxYjGS4NSRPvn1E1DXVd8x88t8IffvAWd5bHfO3xTW68u+RdVx9CSOn9caTCWiicYFZLdg4O6GWSXn/Js0+TMXmjcMTESURv4PPG4lhTVo03AisrpJCeSTASEWkEEQ0JTjisM/SyFGdrHI4siTh/9ix7/QFVWfoQ0XJEpDU37mxTFDPyIkfHCf1Jxs8890G+eO55vrF+hRfPbfLHH7nNX/6dN7EyrufJF3VTMysqNu/eRimfdZT0PaibFgVFUVGWJVXpLQmTJGLQHxCvRmQ9n6hRW0dpoc5r6tpS1jVVFT5XVyE7yaF1RJ7n9Pt98tr4zMwo8ufx/yPvz4Nty+67TvCzpj2d4Z47vDHz5ahUpubRFrJlLNuiPINtqCoVNGVMNHTTbQqa7qCbaggCiii6gOgGEw1EEN2AowwU0GAwBk8ySLaRZI2WNeecL/PNdzrTntbQf6y1zz3vZaacAldEKWpHvHfvOfcM++yz91rf9f19f99vGg9DomKLTFMUOV3fsVwsYgnO/q9AQ7J7J+eH/tnrOTis8LjNhbLJnyFAErB2vaVpWvquRZuEtpXaKtvESUMqE9XId4lHoz28D2z60M+uyCHYJF7ww7QSvUg8m0i+JEKVUiIJ7MwrytqgrOD9v/wQ978wTbgm0lvObtmMb4ESraOVsVCS0/mc9aqmygxamo3GJZZqom7Gh1iPjYOpBB9PrsxEJsX2wz4mwaoWkERk1kuklqkEET9z2zTRz0VpQuuY3jQc39/xtn+5x97zWVrZe0jMSl7k9F1Pl1Y5Qiq8s/jgmYwmEZykCbK3HV0ba8Jd15HlVQSQ2QgloesbtFJ4JREBlDSMRyqi+K7jhrUclzmmyCkDzLzj0nzF5fWKsu+JYXoDXUBkJqRAeoETAdUJlIMZMLOOK0DnPH3bsdCKm5nhmsk4sZa66wgmMmja5AjjYwkqgLSWzroNaNAqgZYgktsiGxFv7xy5MRTFBOsCXdfivUMrjdaSrnf0LqTXii100W9GYbSKzs9CUK0yii6w24y5b7F/du5sXS9i65cBmGx+hDNg8kqT8r0T+L1MirznMfeCjgE8vJpoVAG5NfGf0y9jZra37b/d+/dtxmXb4+Tex34tHckr3T98np6Y1zORM9TsQaRW9M0ck1c8tNhnvx1R9Rk7XRlt4f0MxBnQCCHQ1nOOD6+yd/Agyq1p6zmtDUxn5xD6lXUkIQTq0xvceuGrXHrgAkKBqx2f/MjHuHn7mLb3GKNAmrOMqeBZrdb0aXVfALu94/ydjgPryH1A9JZd72MZRSq8UBQe1tKikAitk/dSEnJCHEeKAl73OnjiccL+iHxcci4EhO3Yn1/nhaevc/1wQdtbBD559UT9k0+srBQK21s6F5J3ise5wMG5A6RWrNc19WpFWeTpX0FZFLEd10jGZUZRlLFzSEetQ9t1PCAlf/Cr7+b/+a5/z32LKUpIGudo65a2t9RNH5sWTEU52afIxhiTY13PeDTl6PgORVGhMkOmASESawuk1POut9i+R5kck5U0dZPMwQRG59huyaqu6eo6dgoJyWg0ohqVnM4XLOen7Mx2qKqKIBR3jk5Zr5Zok2PykscPL/P7v/od/PfvvkHlch6pHuHchQew8pDgoz9W37aYVUPvQBmNlLBYLjh1PW3TYpQmzzJ2ptFUsSjzmNYO9EJR956ms7RNR14UIAR1XbOu6ziGp4tGEDuGFqslCBhVI5rOM8pVDBRt4xVmjE5MXE+WGfK8oG0XLOYLbNe/7Jx+pU2EDUf/2raPfOQj/NW/+lf51Kc+xfXr1/kX/+Jf8EM/9EN3XTh//s//ef7u3/27nJyc8K3f+q387b/9t3nsscc2jzk6OuKP//E/zs/8zM8gpeT3/t7fy9/4G3+D8Xj8mvZhPp+zs7PD7/9rb+S7P/46VC83+QPbrKdzDuejc+dyuYyTqnexJilEdKUzeqNpUDpHZyUmy1N/+ZAWGSnKMKTPbl2cIrEjgbChdeOBONONADjvNnU0QWxJfu7KER9793P80D9/gqxTkfZ0Dts1sRQgomI6Mh/R+AwR3QTbruf45AQpYDIqU5uvjrVYcdYd49JsL1LpYOje0EpCSMmxnNnLD86hrfMEFUFbcDEIru975vPTKLAiXgRHoxVf+PZD3v4rFyjvxH0zRm8Am7Uxf0WqqBkZrIiV1kwmU7L8rKf+9PiIxXwOIln7J2t2pQ2j8Q5VNcH5FqVEyhgCowRaBIKzrFYrrLMopaIaXMS6bK4U57qey4sFe6s1ed+TWzfoguN+qli+kz1bE0LYzKoxRwM8goWSvOA9LwrBUgqs1gSj42o9RMHh0ekKBORZZNqGTKRBtzGAi6E92xPdYI3WtE0T83kIWOfoextdcr1PJUQojEmAJJbaZg++lQe+/60s9zoePb04nJln1yVnk/RwG0CEu1mGDVjZ2l6p3LI9Ub8SaLj3vbcBwL3Oq8OjOuk2r2X8mXrjXqBz7/vdtf/37Nv2bbZuv9Kg90qfc/h9+7UlxDybEMgcLF96gfuv7CLUlC/NrnFQj9lto4mfDGMQ8bOEEOjbFcvFTUaTCVqN6BeHqGJE09TYrmN6cAmlkiHZlt6kPb3Nzee/xIWHLpEXFfWy5guf+hy3bt/mvkvnqZuO4/maRd0jCGRCINuO0jkuScX51jJuWmQaI0V6XankxrBwkwQuPEEEspD6xZVE5Dns7BIuXoTHH0e87nWQ54TQE5yNHxGLoMHVt7nz1DWev37EfN2yXLeE0JNlJVIZrHV4ZxlPKgKSvBpTJgYyLedQOgZjOtujtWQ2GTMajVDaRGZXCNp2TZ4lRsIHemdpuij2PJo0/OzrvsB3fP5Rdo4zirxAkJocAKEMQRiKao8g4PjoTgySK0tOT4+ZTHYwWtCsD/HpGvTe4/qhlR+QAh8k0519PJLgLdb17Exn+K5B+I5RYWLauICu68jzjLbvOTqao41iVFWs245nXniJVWPZ2dlnd+8cs90D1Kzk//1NP8MPXf1W3rZ8CN+1nNy+TrM8ZpACtE1HZztWiyX1akVmDMZoylHFeFSiswzroldSZz3WB3rr6XtL2/U0TQNCMB6NmEym0Z11tWK9Xie5g9ucK0JKjNLs7u5R5jllJslU9MnygdgerWTUx6m4RFkulqzWK649dIUf+ZP/Laenp0yn01e4+uL2dTMkq9WKt73tbfzhP/yH+ZEf+ZGX/f2v/JW/wk/8xE/wD/7BP+Dhhx/mz/25P8d3f/d388UvfpGiiEZAf+AP/AGuX7/OL/7iL9L3PT/2Yz/GH/2jf5R/+A//4de1L9/+oQdQmYilGtj4bQwW8LGtNdLj4/EIgoirz97S246+a3G2RxlNWY42E2UUWiW2IfHsg7X5ZmgKnqGmCunvab8Gp9aN/0mIJlpx1ZK0Js7z4DNTrjz1prRaHfY5MhYD+BiMskJ8SBTnikBmNNPJOO7/oBlJk7gPQ2vstl39mZ5CpnKVc2lwSomUJGIXICRh7KCJCUDbNnRti1LRc8V2PdMu570/fSnSq1KgtT7TpAhBZkxsf+v6TbeS845Cl1HsmtT41kYVd1FUMVlTQt/19H2H7Tvmp4f0XUs1GtGsa0ymKasKLxQ9sU1vMlU0dU3XxR55nQKqeqXo8owb589R+MBuUzNbrpiua3Z7y8RatE1ltrtmyuH4pe8yCUJn1jED3kxg4eDIOo57ywmw0oqFVBRFkfr0OzKtCVkEUTEjKBq1RWG0QIU4QFhn0ElcBtC0Lb6uY5t1SgwNIWb4KB1FgBKQQjGdnuOc3ePC6d3T770sxtknSyBliy3xW0+QrwJMXmnbBgn3AoZ7f7+3XfjsMYLM65c9f3hNufW8V/pc28zIa9nfe7d7FRyv9Ny7jOOEwAlBI0FefhArPBmCN57cB7aB7hjKoVQTX817y2pxm9F4SmZGgCWf3UfwjnExxjVL8BaEB1lt9tbbhvXRNS489AD5qKRde1748pOcnhzxxjc8hDaGq8/fIls3XKxbzpuMqQtUdUvZW/SgaZJnR9EnndpGqC9SKQbIgopj2HSCuLgPF8/jZxPE4+9CTMYgzxYcwjqEKSFEa3MQSDNlvF9zrvfokxV5ltN2HUVVMtvZwXvou4513XAyP6UYjzl/4WLq8IOAp3eevBqxWi3xfY1QEqEENlg6Gxcaq7qhOTzdRFkEn/K3pGR8nPNjv/neeL3sx24jpfSmxbVue5aLOdOgKaoxVVkhhODatRfwwSOVJjOK4zsnG2hvlCbLCibjimocGRTnHcvFGiUU5WTEar1EScF4tku9OL7LfkJISdf3ZDpjOh0zXyxwIVqwn9vbZX3tBqvVgrIc0VYNk7rg//ap/xKtDUIJTFYw3jkgeEffLvF9dOnWUjKuSmaTMUVuEFJiEfQhsFi22CFfJ5XEu77H9i6G/iWfqnpdo40hS27kCJJFxbCwBpFiR+bzOXpvFzpJ0KAlqdzebUw7exsjO8ajKiUJL1/larx7+7oByfd+7/fyvd/7va/4txACf/2v/3X+7J/9s/ye3/N7APjJn/xJLly4wE//9E/zwQ9+kC996Uv83M/9HJ/4xCd497vfDcDf/Jt/k+/7vu/jr/21v8bly5df876ILcAgGa6RWBJx1uMHylwoQhIJ+qBjOJDVOBdDk7wDuaE6B8AR8PesvQTJoyN91iFGPu6ATEjyDIyExIUPAXvR6yMwVMFjV0z8siPDIrCDq2HShCg5AKM4eUTGQ6R2UIncAKhhNRVLB0ophlJTZEvihS6JdsibFjuRfDUgaU+imZZIx8JZhzEm1hWbNoGXCFK01rEcljpSpIzUHoFYXyTa0wtAm+js6H1Mwc2KMjIYtie2BGecu3g/SmdxPwSsV3Oa9ZLVKoZarZZzlJJkWU7brPDOUVYjsizDEpF5VhSxjbatkUpRKkXTNDRNQ5ZloDPuTHc4mk6RbUvZOyZdy8FiycFyycgmFmub7UrlNsKW1og4ac8C7ITAQ9bRAave0kjJkZS8ZDTPNx01seXOCU/ddAwmdQGPbrvYRppn9L1luVpRVRVVUTAaVThnWdZ11P2koVFKFfU0SaMkpCYfKaQSm32L59SrsxcvK1kkADKUz0ICKGo4BPe81vbE/UoCUV7hsa90e/t3ufVzeI2BTbkXzNy7CV6ZefmtQNSrHaPt5w/7ci/oGd5PZ4IedaYAkQay3XseDXduvcR4UhJ6hw09uswRQuGaBc38CHTOaG+HgEVgCUHju4ZrT/0Gu/sV2djgGsfTv/kZjm7d4g2PXWG3h9MvPc2V23OyrqdCUIiOjYw62ZszlJnT96yIE0wUXZ+xvqEaIx5+CPHww4RLlwizCYxG+O4EvKe/8xzZ7iWkGcXPpqLBm5Cjs6MiPdXlKRcmMw7WS5YnNctVQ13XaKMxJqduNOu2AwS2dzQuMUpCkBcj2vU6RnhkjqbtOJqvmK8adGYInhTLEBeiWVZg8tgto00W9SHNmtzIGGGQWOCu72m7JNhsGqzrqOs5WVFwOj+h6ztWq0WyWAicP3+evb0DJtMpJjMUeR7t542h69rUtnvE8nTOaDRmtnsfWTbh+OSUdb1ieXrM3nS8ERcbY6IuIwSqqqRuapqmZTQaM51MmE1XHB0vWK8XVKMRxmRkeWzR9iGGwuZlRdft0LUNIdho9+Ac48mEqsxjnIgLuLZjsVzRWh+N0LDRRLHrGaQBUkRhqvfRXn69WqOUpixil2HXtJtFslLRFVdLhXU963UdnV29pMpjub/vY1lGKokPnlFRxLTyIic3W5EDX2P7bdWQPPvss9y4cYMPfOADm/t2dnZ4z3vew0c/+lE++MEP8tGPfpTZbLYBIwAf+MAHkFLy8Y9/nB/+4R9+2eu2bUvbtpvb8/k8/RbXK4PpVJwoE6MhiZ4jIq77N33yJLpcmFiWMRlKaXRWbCx/o/gShieJYQgXA38QB5qzaldKfeVsoo/VmrvLNhDHBG/jxbQNRoCNFkKnMLyBQg1BbFbT29k8UpAAyQCiErUmRHLeS0JSIVKpBrJk7NO0bRRmagXOIZLXiA8Bj0In4CGlwnlP29R0bYMQESRtvAB8oMgzrI0XeZZiqLu+Q6sUSAcE5xBCMZnsEKd6SW89CIm1DiEVRVFtAuakMkyzgmo8o1iecnznOm1bMz89YjKZ0TQNXdfT9z2j0YhyNEoaoAwlNRNjNtOB1rHfvm1avInHvsgz+iyjzwWnoeTpLKMtcqZ1w+t84HLXUVmLIWA2X188zzZgDhhaVySCHMjjCcSFvuf1gM8NayG5JQW3lWK+t8O8s9yeL+i8RypB8I7VugbA5Wajd9rfneB8oG1j+UamCIC+62maWMLLM40sKkZ7Y14tMmIboLwSg7HNVMjEhqUoobsAgePuCX+7DfiV3uve1/9awtbtfQq8PAV4GwwMz9t+f0EczO4V177SPm7v1yvt7/b2amBkuO23fp69afQBufcdDs7fT7AdzfEN9GwEGAjR6O5kvkCagCpWFIUkKIldnXDn6lPsjj2jqiKceE4//5tUX3ySB4JgdG2Bbzv2bXRhHboIIwPCZvzwMSlzsyubxYuUWK0IZYG6/wLyDQ+jn3gboZhF4WdwBN/Qdw3HN2+jhGB37zzWBU7vvEhpFDovMMUo5X9JQpCs5se89MJT1IsFxkTdmpASJwx3TlZYO0dJyXJVY7KCg3MXKPIK5wNN03DzzjUgJFA+Yne2y/L0CIFnVJUbRrXpoxmYA4IX9E4xKkf01tHamq5dgZLYPpbp27aNGofOkmc5s9ke5WjMahVtC7q2xWQFRTkmMzlNs0ZLWN68zqiKAMEYQ2dblsslL77wPG3TMJvsUBgdE4XrhtVqRVc37O/NqNsWuRLM1Dh6YylD1/cYDKNqxMnpKc5ayiLj3N4upVeLqgABAABJREFUq3XNcjGPnSlZQdc2mCwDlzpEhaKa7GD7HndyC2MyOh9o2i5WIIREacFYqyhuXc8RUmHyLF7PqRNzOIfdxlXX0zQNWhtG4xGTyQRr+2hZv2V8FxKzvlqv0EphigqhDJmJYLJuGmSypYnGng6lFTvT1ybH+G0FJDdu3ADgwoULd91/4cKFzd9u3LjB+fPn794Jrdnb29s85t7tL//lv8xf+At/4WX33y8lTgjmgbMyTbI1HyiyyFqkSV+kNeZm9IkniDYm0YURuITgEmMxUJoiSUYGb4u7WzQ3C2h8AjNn3hGblTWpHOOjY2tIpYpBFOu853Q+xwcXW96ETgZDg3qZ9FwYmAetdBSJpTINaVUvpcKn/YxPFRgdqTkh4sUc7d8HncYQGgXWs3FCxHukkrTJBC3a48f+86F9FRXbYQmBPI+mOM716OS94Xxc2RdFhdYJJQcf7a1TmcQl6ti7WKcVUlKUkxhmKCSTyQyC5/jwJk2zputa8qLE2i46I65r8qJESZXMqzxGKkg+AsbkKGVoZJt0MupswE7ngROCXmteMprjqiJXinHTcrFr2Wtadpxj6jylc1tTzOAI8grMhBDopIbPCOxax+PWEbqOuZLczDQ3e1gmP5R5CNQiBnI5F8i0Yrmq06QSz2GbSn9aqphSnNizYjSjmu6yhUs3+3PvRPq12ICzM5oN63jvBLy93dvSey+o+FqTvXiFv28DlO3X3ta9bGv1wys8RtzzD+4GUWHr3716mgG8vJIp2vZ+38swDYDka7EtIcSFECZjvLcfyx4ICA6TZRxcvI/5yZLV6RGZNYiVpX7uq8zaFUVv4fCrcOeEyXrNTEVhu0+p1ir5TAwOBpvOOthkZg36MJ8Z7HiMm47pZzscj0YclobZ/k6k2I+vUUwtXdOzPL6BbdfcOVpgXeDN3/zNCAIvPP1lFouandkeKssx+oTxeMR0f49mteIzv/bvOF2uqMZTcmNix4+S+FT7rcqcIs+ZjEbUvSWvxljvaduexbKhrGb0fcf1G9cxWrA328H2HZNxhU8at6gvlbFVVmmQFcHC8fFJXFgJg+0Ddr2mrMZkRjMaTTGJRcnLgrbrWNQ1y8UpeTFiMt5hvjzFe0+WFzTtkuXpEctF9HTxKQYilpM7bG9RUnLx4ACjJIujI4SQTMuCbDqmyDO8iM65XdszqnKCTbb5vUVrFc3e6hXT2R7TyZjzB3u8dOOQ1WpJUY7IiyTsNxnCRbNLqQzVZJe+bZAiLs6bpma+XCCIER3j8Yjd6Zh1XbOs1xFoVGNsb9M5QdI0ii2bf0tdr9E6mlVWZcVqtYQAblhAp7KeIPrC+ODpbEBnMaQ1hIC1cTE6IlCeLPCFobpy39e4qs62b4gumz/zZ/4Mf+pP/anN7fl8zpUrV3hLSqQ9CoFr3nHHB3rYTOADqoN4YQ7rWk9iUZCopCCPtGYYyqAbXwgh4sUcV+3ERM8weHrIzQg0AJGQPE8GIAKJYdnSiGzX5UiDR9s29H2cYJ11hFGFENH4DMFmH6ISPU7cg4uglOB9+gwbtshHtgi5YU20iiBjSD0ORMtzKWPWi3WeIGQyW/PJf8THzpfUphv1KWLY9XgstlZiG40KUSuipEKbCGS6tkYEh1LRECwMCk/nscFj+waQUZiLwNo2JmaajKqaELzn9q1rOGc3YEYIQVmWsZQUIu2rRHRBtc6ljpYYVpdlWWLHYjutlmdgcvAE0eNxFIbpaDO/HFUE5yi7nnHXsec9561lr2mZ9rFUNbBXQFThb513wzacksIHZsGxE+B1KupfVj6wAtZEYHLkHY1zLOsWZXQyTfIJWMfPI1LZrbOO2WhEPqrSuRYnS3fPe8PLO2O45/YrgZfhttv6/V7Nxvbkz9Zz7339e7d7mYX4WimtNPKed2XnbH+Ge/dx+++vti/uVfb3XtZn+xi82ue5F7gMDf6vlmvqXAMhCucxVbRhtyvAINdr8qMTJlejFbtwDk5PqeanqGSZ7p1L3W0KqTQhuGjiJSUhLUg2oY2k8muaPGyVc1qNWExG9NMx7O/iJxPMqMI6R314hFg05EazqnuywyV101DXDX1KrZZGM5qMOL1+javPv8D5K49gheLWzZtcPB/D2iBw6+oLHB4e0fuAKUZMxmOkiKF2zsbUb+liaVokz6Qb164xX9aYLOfSpSucO38B7+OE+eKzX0UDRRUFsVrGBHcnLE3X49NiqBwJenRqCOioqim52UfJsLF6yPI8jVWSk9NjDu/c5vbtO3Rdz67SOBewtk0J6pF9bdY1y+WKtm6SF1M0NSzLIgltS2zfURYFVZ6R5TlFUdC2Ldb2adwpYndkys4JAdquxZiCsqrobM96vWI0GrO/O+N0uaZu1tTrNWXVUHQdSiq8kBCi2afJc8az86yOY4PGYrGk7zqqqmSxWpHlGcYodmdTVs0durahqCryPKde1wyz4fbi2TpHaFuEWKCVoiwqnHM0TYOSIYlWo0BbG4VznsVqiZATlDAUOmbn5GvLpF4y7S1537OcjNBv+Fow/2z7bQUkFy9eBODmzZtcunRpc//Nmzd5+9vfvnnMrVu37nqetZajo6PN8+/d8jy/y69i2JQQTKVgGgSXpWSpAs85y4vO4RCxvSwBkQEawABO0iRKiJkrae0VSxIqXcxJL+I9bph41NkELBLwiKWaKPiJbzGAka1hLX77EM5ShQfQE3xUnWdaR28M27OcL7BlQZ7nKXthMCRi4945zKaRqIjgYvh88ZOeZd4oKVPXSazzxdphSMCE1A4m42AXXxWEoG+7aFaWGB2lVCrVRFZDpvJN13UIBFmW0fd9MsyJiLnvLYSWMs/YmY4py4q8KAkiJEYlsK7X1HVD0/XYro8lngQysqxAj8aMqhHLqqJrG5RWURsUwGRZEuiG1IGTvpV0XIQgWR3HgdpuAcqosTkDXxBit1XSvFhnaa1lkRkWxnAjBJ4SUAjBTvBcrBsOlitmTYsKAbn5fl++Vh6cY8PWaWGIbca7xEHBE62+3brBSsFKKV4MgesEjhC0UpAbTabkRqwmjUYZeXaaEUH3cb5k0lVRpJjeb3ti3WYItm9vl0a2J/CBQRgm43tByfZ2Lxvy8mPxcqFqrVquj4+5tNxj5BLFvPXY4f239+deUDPcH0jRCFuPa4ltu6+03Quu7mK7XuUzAjjhOMnXXGrGOMTdgCQkltT31PMTynwCdQdHh3D7Nty8DkcnyLYjWEvR9xGoIAi2J3iHkxIh4tgipEQaE68NpYjp4mfmh0JKgpQEKVgUBcezGUc7E+pRRTXbxYqA9R4fHMb2iOMTfIA8zxhPJmgJtu+5czynadq0aIC2t5w/mCJExbL2LJueSdvikYwmU6TRZGWGr0+59vxTseVdKZaLBXXTUpYFZZFF7ZjWOO9p2g6VAu1WqyU3rl3j/IXLKBUTx/NixKX7HmJ+fMi6iYLL0hhGZUnT1vQC6qYhkzF4r61XyCKKKJerUwQ9o/GI5194luPj4wgYqljWXS7n0TJhuYpl7LLk5q3rlHnGZFKhZMWqbrh58wSjDVk+ResKETy5EkyqnN3dKXuzCSbTHJ8uCMEzHo8ju5JFRmO1XiLxKBlZZRdiSKdUKnbshYA2hqqqOD2dk+UFRVFw4eCAq9duslovqJoxRVvGMEGlCAhkACMl1bjC9bv4hWM0HmP7DqkNwXua3lKpnDwz7IxL7hwvUMowHk9o2y7GdGwtoKM3VVwIdF1H0zRMp1PG4wlK6U3+WtvF59p1bHsOIUoBzGiMWXXsz0/I6wbpXdJ1Cqrlmu7kfyZR69faHn74YS5evMiHPvShDQCZz+d8/OMf54/9sT8GwHvf+15OTk741Kc+xbve9S4AfvmXfxnvPe95z3v+495YQB4gE4I9bXhCaV50juvecxI8vWAzeXsfrYh75wjIu8zPohW3SI6i8WJRWsfumhDzSrB+Q38izyafWIKJwqMzZmQDgQY8Gh+jFCJEF9kQ/EYUmiULce+jurlrW7quJ8tjUJZRQyKv33TG9EQTLZ/KQi69/0CWxJqhTILTCKy0VIl9i/oO5z29Z+O9ElK7rfeetm1Yr9YYY5AilhSG0L4wDLiEmOTrYp3WGI1Shr63sbOGwKjIOdifMR5VKB39AxBnepuZm7BcrViuVsznC+q2Sa1kWSzNdLFrZrZ7wNHhTay1CEF0ejXJxE6Axm1ceIeyUkjfgUrqcddH7w8hzszzXAJORivatk2/x++DXc0qa6luK/CClkDjPV2Rc1hVyHMHmK5ntlqxt67Za1tK5yicJ7OWDVTYtLTcPdkPLBmkhNwBsXjYCZZLhJjEKaAmMLc9p95FBkcrzknI54f4PCdkGd4YnPT8vbf8En/gi9/OxfXeyybTeyfY4Vx9Nb3FMNEOk/3wuKE5d/v1thmGe4HP9kR/Lztya3TKP338V/mvvvTtFItzm9e6V9S6vW2///CeAzs07KsjDnT3+pIMrz+wP6/mkfJKAGXYbpdzfvJN/47/+yd+D6H30HXxX9vGf6en2JsvUS2WyNNlDKPbRqTpVYX3ZyxbXCalayOW6Ya/RX8igUJGyjY3eK0IRcFJUXEy3WE+LumKDKGikaCrG26vVgQCMnj64DjWh1Stoag1OztT7hweU1UFq1WNCD6aALYdTV3HDpnTgqObTyLdmnFVYqRiOh5z6f4reOfo1g23r13DC43JK6QUNG2HMCIlw3ZUVRWTZ6sqjU9RBH/n+JTeOspRhVTRW0caw6TY45En3spLz3yBcRUZwKsvvRSPjY8p244IxGzfELyn73N2ZzOOj4+wrkVKwa2b12nWNVqpzXkSF0lE0agFKTV9G11HtfIEJ9jZOUBpE3V/qQ1fK0VVZZSTknycURUKZRQn8zWBMUhB27dUZcmoKmibGmstgcjKTsYVQsQ03K7r8AGy5ErbNjWjyQ7jUcVsOubOyYL56QkmOaEqYzhjtQUmkxSTGX23pvKOpobVOnbl1URNhxKCcVmyWje0zZqRmTIejzk5OUkO5vGqMlpDCJgsj2LVBD4yk5EZw8npMuUKtUn/CIbAVEr27tzh4ZNjxj46k999ZoNyntnN27yW7esGJMvlkqeeempz+9lnn+Wzn/0se3t7PPDAA/zJP/kn+Ut/6S/x2GOPbdp+L1++vPEqecMb3sD3fM/38Ef+yB/h7/ydv0Pf9/z4j/84H/zgB7+uDhsgAomUrDusPgUwkoLHpeHBELjjPbe955Z3zL2n7eLFoXVGUY62wuUAREKLLqqMuzYmG5osxlMrnUSIIa5ekqHQyyjeuwacOPQKfEr8Hco38URwyQRNENXJWil8iF9L7pJzXmIpqrKIK/6UgSJSualLk/NQ1onUfqT2YlkjsjDOxRwJIYfMGjbGac6D0dEbQwhASmwTkyS10Vux3bFMtVlxi+G4xc+TZdG9b/AciUZwntl0RHs5YJyjqD1+64jFsUlQFkXCjQEhVrRtl4CPp66XkYHJk6qf6PhaFOVGxCuEJxvKScPOiYB10FowWU5klNwmy2iw6ffOYUzGZFQCPgVGdUij+dI3HdFnnrf/0gG0UasTgqCzFul81MtkmhtqykujETp49GrN1DqmtmfS9kz6jp3eUnl/NsENrZPinss47dddgCHR7yMhGDnP5bSiCb2DJ7+EuP0SbjTCVRWuqri9H/DnP489fBDdKXxVEfRZu+YrbfeyKF/r94GtuAtY3bNtT/r+FX7ffk8IXBsd87OPfIrvfOGtXNmyv99+neE5wzXnOAMq2wLWQOQ8t8HQULK5dxsGwXsB1b2s0YadcQ65XiNXKzDPMQpfIHxqF3XiYb2G1WrzU1jLy/oLXvYdpFb9tCBCSIQO6BBzc2wfJzQlJb0AOx1RPfwI6uIBlA729qgdPPnCIW1IonPn6JsVJosT3/HhHXSec+niefJxzife/EVMrXjfZx/i9PiUer1itr+H2STuSqrMUOX5Zlx69qtXUVpTVRVtu8bbEbdvXiPThtVqyfx0hTQ5O7NdEIK8i/qu6WzCqCw24lrnYn5KCIJ100TX0yTYds6la9KhjeHg3Hn65R2CbZBKkV+sOPRzLq12mIwm1PUK7x1N2yKDZLlec+fObdq2wTkfx20ZXaNtbwkBtFZkymCKMcVoQlaMEmPtQBhs8qrquh76duNJpbRGqAwbMk4bSd33TCqYlAVGt9RNE1v20zif5znORufT3kHdR8CTZbEz0pgsjiFCkOcF6/WavuvIMsPOZMx8sWK5PGU0nsROoizHZAXBeZySGBRZkVFN9ujbddQUprnMWUfbdsnfRbMzGXF4uqRtWopkMrder5HEfB8pZOyMFCIJXT1hXSNH8X6BpGljt18l4DxwQQrOC8HEWURwDA7mpIaM7Wnw4KXrr3Dlvfq1+Jq3T37yk3zHd3zH5vag7fjRH/1R/v7f//v86T/9p1mtVvzRP/pHOTk54X3vex8/93M/t/EgAfipn/opfvzHf5zv+q7v2hij/cRP/MTXuytnk05IP8WwYo9bDtwnJRekoA6SW9bxRQQneUlWjjAmjwcvmVRtsygkYGJtFxXNNuYZaGPItAFEsoNnAwYEbIyvRICQQiAibRudWwlDUqVP5YzYBiqkQCVxqRo8ULRHa81yvWK1XqOloD8vGdmCzMdYbiEF2ISB5HBc4pAdBaIQQ5/iJBe9WqI41xMTgHvrEDo7e4yM+oumXsdXC7G8pI1Ox8VvtBibd/SxNSyEQNPUm3yDruvYGRWIfc3P/MCTfP8vPk5W59h7MoSGbiCT5YwnkYFaLhY0XR+zIooytTNHwVXfd6kmG/vuhRQIH5LmJllMh8By3XB4usD6CGKq0ZTJdAr0+BATKKMeR1PtVGQ6WuUbk9G2DbfGS37hB57lrb9+LrI9aiitxPPDy4BrLbaPycFCCLogOJWS5bjghpTkgK9r2vmKHe+45BwXvedc35OFs6yj7QmXbWAlxV3n9Vk1Noq0s6aGW83Z84XAjRr+xOc857qPMg5fIGiNG42wkwl2OsVOp7jJBDsa4cty084u0vNftm2BpuGv92ooBkZi++fmM2xt26WRzfOF5zfOP8O1yRGfufAM77j5aJyQt97zlcDPtrZlGyBtv9dwe7vc47cA33DfUG7zEH2D2ha1XCIXC9RigZzP0fM5crVC9j2i78nFgj+iPfnyY6imuGfv7j2GcFfk8rBfzkehOGwSsqXSEDy9dyzGBf7iAea+cxy5junDTzB+5PWIqkf4nMy3rF94DoJnvYyeHYTYkbI726Fry+i5FALTyYRyUtBchn/76Ff4zvkbaT63pmnWLE4lly9dQkqNtw6hFdoklsU6kIo2hWOq4Dm6dQOlDUVZ0ncdktjOWpYFfdfjCh89M3rLcRfFl3HsiIuJvutprcVojc89dbOmaWrG0xB1dLnHGMnFBx7g6NrzOOdYTnv+/ut/nT/xH76dmSsxZsR8vkRpnRK/A/VqHUPfQiDPMy6eO8dOVW0WgyiFlyWYMkWEKOp6yWo55+S4o+uaZJmeukq8i8y51pRlxXRnj9nuPo2XtPOeutfkFPgm+iQJKWi6lrIoUSaHziJwhDxwQ59wn9sFQjJHDIQgyYoS5xz1esl4uktZlezOJtw6PGU5PyXPyxj+J3VibCzeSZQR5OMxeb1DcI6qiiX/OHdZGiEosoyqLOltYFm3hJAzmU7RSoOUG4be+liGgVTaFj1SSkbViHE1gsWci6HjspSMhSATW2NWCGkMEGcLrMSAWyU5mUxe/brY2r5uQPL+97//rsHx3k0IwV/8i3+Rv/gX/+KrPmZvb+/rNkF7pe0zRvMGKZk4R56YgG0fkeFo6SCYCJhozQOzHQ6l55o3HApJKyReDpXm+DxlhtyG+MU773G2o00Oqp1oMcYkZJnKOT6xD9ujdkiDYRgm3cSOeE/AY/t+494qRRQqKjW0ZAmcl6mVU6C0YnnZ8csfvMr3//NHqY4zPA7fp7i/jYYkshiDsFalAdC5YWVPbMWSUQvS9RYfBFkaCEWazPuuiyY6XRdLWEbjBqdVo8+ccdPjY9BSXIGMxhO6tqFtW8oyJ9/J+HcfeJ5fe/dL/MAvPLE51m44FsFvMhMIcVCuqiquNJZLnG2oV4uoWRHxWGmtyNPqLZY9PLG3SIL36aL1HJ7MYwBX6kaq6zXHR7fY3z/H3s6YYNuU5QNaimhUJuOKSOaKX/0vn+Wpt8x546/v4b0j14bMZCBgXdcJ5MULsGlahIC2i4OsVJKmabFKQWaYFxnHPvCCiKtdI+DAO3ZWNftdxznvyUMgA7IQSH0YDOr24bRCnqXzhNTenfq/AOhFT7Adu8dQ9Esy27+Mgdms0oXAJ7DixmNs+umrKoKVqsJnWRrEo0YBFTVWqNTVlPxygojHz4sz1vBeELENRrb/1knLLz/4ORDwoQc/x49+/jsxTt31PO55Ltw9/W/GJe8RISC9jwsB7xHeo7d+F85B36PqGr1aka1WFKsVrFb45RKxXCK67oztvOfn8L5at1QGLJZOOjKv72K/7gKWbOmLtjRmNkArJNm4RO2M4dxFODdjySl3vCCMx+ye26UoJQ+aPeTBoyAaAhlCl+B6vNbY5KPRW8tsd4dpsgyfjMdMxhXOdpSjClTAy8CnH3iR//G9n+a/eOZx1FFG27RcvfoS1sYuQOeiFsQ7h1ASpTTj6QSTuuWEAKl0FK3as1TzvouLrLbro55htcIPw7E4YwR76xmNJsxmM9ZtS9c21PWavm/RWYG1Dqk0qqgoJjvU8xNc7/g3j3+BC8sJf/Az7yLzGmU0pBRcpQ3nDvaZVaM4JnmH7TtyE6/xprPMW8W8ASEUXd9w+9Z16vUqmTO2jEdjLl6+SFFkrOqaW7dvR+fStqFrG1arJYvFCbv75xlPdlmtA6EaI1Us3UxGORJPJ/u4eLIOu15xVC35B+/9JH/sM7+Ty6tdNNGJux/Er2VB3dTU6xV5UXGwv8eyrlmt5+SLEqkkxuSYLMNaT995kHHxNp4d0NUrTGp6UErR9j1122J2d6PlvjZYd0TftuRVSV6WnJ4cpwaIeJ7KLdZYBI9fLhi5nse6lpESIOKidHPdiXRFJjIgJH4gaE2fZ5xMxxzvTPjSaDD6+9rbN0SXzattz2nJba3Zaz17TcslqThQKpo5DQcKGCa6IAOucOx7ycUusBSO2wTuBDgWgob4FKVifgOJUTBSEHwW+8K7hratWa/XGK3J82Jj5x38MEFvDcJhSz+SmACIeTXWdhtB5SYFViS31BA9IRCCUVXRHHh+9kef5fC+FuVIkzipfReaLoCQZElPEVsCiS6BSZAaQ7ySkJNAbx29dZis2LgJShHZka5rcc5iTBYHJ+tSiSy6hkohU7hb7Kxxzm26a9q2QYoocPXO8+X3HPPTP/gkVZ0hfXQZPStdJT+XNJgNoYgISZ5WDdY6fBJidV0baU+TkeUZDIjcOwgO70U61oI+KPJySjk2ia1pqNdLmnrN4eFtgndMqyzSuEmDomRkHTzwxTcd8u+++yoI0JmKpZk+WlRLKdAmCsgIsXU5IJI5UEDpmM4cMzAc3nm0lFg8LqX2BiG4LiXP5hlOawzRZG0vBPYI7DhP4Rwj5xk7R0XsItowgiTd07DyTt9rqy1exOKFE2ctoJttWCmmTTmHals4OnrZNRaAoFTUpuQ5Psvi78NPY3DGgDEErfFK4ZMAD5W6QAYgk/6FARANFC8wr04xN2/wtkOD7q/THj7LtJ7GazDtr0jHWmwBC5zbAAxh7QZoCGs3LIbsOmTXIfoe0XXItkW2bXx8+pzbo8XgIPLqy66zzcvhOHtabclsZE9fxpMMOiEpEaMKX+bMXYcdjWm0JL98jvyRBwkXx5DtsX7+c/RWce7C45TTCbSHIHLk+MF4jS2OMWWJ0g30PfQ9O+OSxkWwszObUuZZWujENGBcQdO1mDIjiDh5/KN3fIpv/vL9XF7tcevWHVarRcqGSR5CKZPLdT1edswP25RrFYWZ49EomigSBbF91xDcmeGjTWJbJQR5UUZGU0i6Nn4Pk/GYg/09WttzeBxjKZqmQWclNLEsbYzGVDt0dU2/XpJ5zd/55l/lyuGM737uCXKTsa5buqahKKMVfhAwGpU4H6gbRW6igN9pQfAC4y1tu+b2reusV8vETqwoioIHH3iAd77jHeRFzmK55JOf+hTPP/88Lq3onLWsFgusdXRNy8H5ywhdomRB05wwQqF1Ksd7jzEaawyiC3x+/yX+2nt+iT/30e/nfDfZTOR9bzHGUI3GrJYLsrzAGM25vV2ef+kmy+UpWZ6fzTdS0fd9GockJsuY7B2wOLqFsh1925FnGd5a5vM5F85dQCvF3s6EG7eP6VuFyTKyzESTOBvLNN57MmCHwDngXGiZNetYChLghEhM5FnA4gBIPLBSimZnRjPbpdufYkVceLuh4+K32L6hAQmAEzFX5Mt9x0wqzvWCx43mktKYzSol0tBNabHao+voszEhMMFzX/AsguO2kNxUOU0Sug51/KFVbIi9VkrRd/HCcd5hMkOus2S1fpaee1brTgMpSa8QHM7aFGAkzsCI3Ca5z4Y0V3j+zR9+gU984Bbf9KsXMX1sHXM+Tm5d39M0LQEoyoqyKKPeRXiUjIyIGBxf0/GwLrIjIDaAKoKhQN+3dE2bXGKjN4mQEYB45zfxPoO7rJAQQrST7/uegEfpDO89R69v+Sd/8EmOd1su3pmQkaN1FlXbqVtnU7zxQ9JxPO5SKsqq2pS3uq5PTrY6Oh8mwVlkggLOR4bKOYENAnTOdG8cV1kqOvOW6yWnRzdZLeecnp5g1IxMCUymN0F4Rklu7Kz417/7Kdaj2H0ljaIsc6SMxkp95/AhDvZGGzIpqNfHINi0FyulqKqSvo8thEoKVnUTj9tABzuPUTJl98BcSVZCcN1oFILQdmTOU3hPReBACHZdDESbWsskdYQNp4sXcWW2uS03yPYuEPKy7VX+JiBO8nWNquvf8nocJt0BgIRXACGbktAWUyOLJf+Pj8davghw4fiX2G3GG/C0YYq2gMnAhNwFTn7LPbz7s20+48v+Fggb8H7vHwfWI+CHQ0uglT2VyNFhq9emLGF/H/Zm+N0Z6uIlrA6cHF+PJbQ8Z7R7geneDKUVfnWd9sXfRBjD5MpbMCXgaxhdADkDIQl+jhJLhCgBBTowu7jPuSagSovOcrQ8O7bOebTJY6dG1xKExKZPtSgafvLbPsmfufZ+Dtwut24fIbVi59x5lDIoIVgvTnB9g0p6OpUMJfveInTG7sUrFFlJ3zXMb10l12eMnrNRj2FdIJiSg4v3oaWka2v65QlCSGbTMZYofm3bmrpek5cThIpZZCoIdFah8hGaObtNxVN7t/kr7/8QD//MPm+e30/Xe7wLlGVFUcTuPoRAG00BCOGi6N5FwzAXAqenx9T1mi616AoB41HF3v4May3jbMrunuH+K1d44YUXECJm7HgXE82DDyzmp2htqEYT8rxEK0HvaopMEnzUrUgVbesrn3NhPuGn3/QblGT8pY/+EFkX7QbqtsV7SVHkNE0dLeSrCWWRMxmVLJbrBJgiqMvyEu+i4aXScQ7JywldWRPc4DUSGI0qvHV0fZvCCTNGVcZi3aCNYTSeRMO4EMi855J3nA+BSQiMNsNK1AjGZobYkDFMUQNwP5GKqybjMM/Jd/cZz2bkUpJJhwqBTL62K/MbGpBsMmeExBQlqwCrEHjeWmZ9z+Na85DSZDpgC4fNHMpJZEiDeBpposOmZy94Xmcdh0Hzki6YS41TMaqaZK8sQ8CY2LliTEbTNvRdPAFyM7gVRlFWBBrEL5A42QY83kbzsCFrZ+jaOfP3OGtUXpY9P/37n+Sj330DmwUuXBtjOo31gbazWOep16vYIy8lfdti+z5eJFWJSGr8beYlOuj5TdtZIIpQjTE452iTZXC0fRebzBnvHFonpfpGPBPrhggSoxKNkOqmYXXF8a9+/HleuhJbvqbzEhXUxsFvsJVHiCT7HdxvA2feKYqyLGmb2HqcaU1vexQBSXR6dc5HN0bnkVak8CuBsOD9mqyoICtwzpOXI85fepCj29eYnxzTth3ZqBjmtxigNYJf/a6rfPFNh5uZSsi4L1muMSqufNqup7OWNqV8eu9STHoU563rs9yf4GNAYW40tYvalcHSWpDKdVJsylGjqmDddDRKsUISVCwNHY0KRBDkSqJNwXt+8PuZLJfkh3eQt29ytfks3aoj6wSZFYxbTxUE2rJh7162bZWEfsvta4Ea0uEaAAJ3T+av9g6BQJavef2J2dRjMn+CbrtX4hr+47etz7j9qq/2DnL4draetwHPUuI0LEaeee7oMjjc7dmZnOebsvcizl2AgwOYTDZskRTgfMPtZz7LjbalWTe8811vJdu5GBmH9hB/5yrelJSX34bUFsQK1GUQJu1pA6JAj68Qm8YXoPegUEg9Jy8UWV6gU1eddWeC2VhuzVnXDXbwnxDw8Yee5+ff+xR/yL6NCwd7nMxXqNEu5y/eH1e37QrpVhvGNc9MLI0KyWrdMO9aXFaCVFy4eIFJIXEhrqILo6Oos7fcPlmzmC/iQsz1XLmwH69lFY0TJ5Mxh0dRYFuNO0w+iiJXJDozFJMZZnmH2TrS/0+eu8V/950/z1//9/8558MkeTTFa1Oq2MFjVFxI9RY6K6h7CKlUs1wuNloL76PPRtt2XHvxJTKVU44rvIfd2R57u3scn5yAkGijYsifNggpqNdLpG/Y3ztPnu1Qr+eEfo0Mlr7vyWRMQS/ajAcPd+m04x+/6ZNU5Pxffv0DlKsY8BrH4NiBGH1FIhu1N5vSNHdYLE4pqypqGbXBC7B9B0FjsgwhNNV0hu1btLU0TR2TxKsidt9ISaYNs+mEvj/FNg1lnnNOKXbrNZdDdKUe2nW3L5ChHDtIFKwPdAJuS8XTWcGR0XgZrfrL5QJdFggKVKbRRqHVa+Ebv9EBiZQoJSnKAt3rTYdMCIZTZ/kPzvKh3WPad9/h0T7nTVenPHhrggoDVXx3XVilf5ec5YJfshSKmzrnWGpWUtOlOugQOielRqsxbd/SNHXs1Mh0dAmFVIaIA+6gk4htx33MpBnASAJWg9g0EEsx61HPz/6+Z/jV77mGzT26E+zfKBCdoE/aFu8s2piNBiMCgggw5vMFeVGQZxmZVont8cgQ+xGElOlEFtFsLYRNHdXa2LJLiFblSkU1drSsT1oB55LVfARWUkU1uw8ee07y4R97iSffebqR5+SHipPDFfW6idb+KYwv0zoCNZeEv5uVc7THz4wmy3T03zCKW8entL3FFFHD0DY1XdMAsS2PlP4ZdbMS73raekUIkOUxGXlnZw/bdzgfW5W1lKg8w4fAbz54m5//nc/SZWf2Yn3wG9Gk0goVJEJE4Nl2HTbEEo7zAaxDqlh6cs6jU52lbftU2mFjuz+k/g5bSLqjGLY3+M0AISUxD8ZuSkFWEQ4O6B64QgfczI/4fb/zFzgSt7l0S3HlmuLdz13kD332bdx/U0cx5lCuaJr4cyhlvOaL7usDLltX2cv+NmxOBKxwZ8hAgBUeJwPabw+Mr/Ler3WfeDn4eCUjtc0jlYTcQF5BnkOeI4qCUJYwnXLtYsf/8O5f4iOvO+TFS47FOPDQWvJrH3knl9u97Q8cj0Oz4NbTn+HprzyJrKacm42QukVI8PUR9bOfhmJGef8bkWZwfLkQ6/abvbQIMQJvcb6GUCK1oFv1tDaWZb3ziASMRfD4LnYN+qT9aeoaoc8+dWMs//Rdv8G33nqY9774AEW54ObRkhdfeBalJOMy4/zeDKPVZpGgkn5IqiUnNw85vnkt+pnMSkxRkqWSLkGgs+iKuuMFqy6gjInlyxA1InXTUpQV0/GI+WJFXa9omjVFNUljJgQpKEYVpd1jdxk77YKAX3vgGf5f7/p3/Lcf+x7y1rBcdiyWS7oQGOU5e9NpPBbyLBbDaEUrxKZ1WCmNVjF/KyA4OT3l9s2X8L5n/+A8RqloCjefgxBIqZOhpsBow7jKCX6Nkh15XqHUmNOjBtwZs6u1JENz3+mMzCpaY/nJN3wM4xQ//olvZxxybOvou54iz6PlQ1NTjidUZcF0UnF0smQxP00ZNzlClIm997FEqSTI2AkUiAxtDOWMY/ZqtWI8HlNlhvOZIhwvOFicMulaBp1jPFs5cyjYYjFDCDhjWBclN4TgKe85YgukW4sQgvV6zdHxMef2z8UuyyyCuNeyfUMDkkHHoHV0s/TeY62KKwKtONlv+J/+6y/w5XfcYlYb3vn0Hv/bn30H7//ShIntzxiJbSHs8NrANDim/ZpaSOZScyQUN4VkNegWgkAqQUYGIdDUa+p1i8sychOjtobMmmht72OmStdtgM1Z7PfZFysQWOn4+d/9HB/+/hdpqzgxTk4zdo6zDbgREMOehEzJjG6jGvfeRX+AtsV2HX2ekWfR8EuEgA8OnWUb0JFn+eYY5HmBlJqua1LXTTymMVlYIpVKEyn01uKdS5obF8P1tODXf+AGn/1dt/Fm65jedJwenmLaCMCUil0ymdFkRkYn2VjMQEqFDNFtVhJBSWEMWkFV53TOx8wc52jrNYWRjKqKLE8Ay3ua5H/QtiusC0idAQHbCYrMsLe3z+nxrWg/L4jakJnmn//AV7lxbnXXuSZUdHONYDYyHsYYRlKilWS5blDGIN3AhgEhNZoGsbmuo2ldmqYHoWoCX9uNvj7EfIqN4+ZQgnF+E/Fd7kyj4V18NX7m/l/hWnWbIOCZhxzPPOR49q0d77nvLZRHj0fw0TTouo6AJIESuV5j1mvEao1Yr5DrNaquY2trXSO77uu/OF+Fjbj3bwC96jcdacMWRKBXDv3bNES9EugQWseSSlWd/awqGI3S7yUUWQQkRREfU5aIBOJf2v8yv/TOn+Xp8Zmh/QvVbf7R/b/C//np33PXe7luwc3nvshXv/Qk+ajgibe+lZ3pFNcdQYDu+Ca+qBhdfgIpauL5cQBsgxGAArD49pSbz38ZWexx7vIVlvMaLxRCRj2T9W6z0DEmIziLCx4pY9ur0Hd3+7w4O+FvffOv8ZZrlzDGMNuZ0IfosmykoOktXd+flX435VVPURYURXSMXjctTdvEMnCI52sgRjjYrqOzbsMa5nnGeDzG2Y6+6ymLgvGo5Oh0RVOv6LoGneVkeRb9OrRkVE6ZtWcdG71y/P8e/zQPzvf5sY99UxzfPHRNx3K5psxzRsngTWuFsRLrYwq5MQaTvJ/iWBrN5hCSVb1mvF6yWhg66wg+kOVFNISUJnZDSUlVFkwmJa5vWS8XSJXjg2CxdgjbUGSK4Dq0LshNxvn1hNm65NbOklXW8vff9B/Ie8V/8/HvQCsVx9MQKMqCvj/F2R5tMnZ3d6ibjvV6SVlWZFme9kEQbMDZbnOeCFXhxQLo6Ps2ASdNWK7Ibh8yqWvOrWtU26YmjLjA3KjN7qIPk2BfKu6UFaudHdz+eQ67jtNbN3Bde1Z+TpYGYDk5PaEqK7RW9BZ8/tqu429oQBLn8aE2HjtUhJD0zvLSxVP+p//6U3z1jbcIEo4mHR977IT3TXcodi+w3zU8WC+Z9e0rr5K2wEkZPKVt2QceQHAkFS8KxQlx4pCCmGboDU3jaNv4JQ0GXT7VvEPwNE3NerWKoscsi8JQETtOpIiTlVWeX/rB5/mF3/v8BowATE8zpifZ5rVApERjhRYSIbMYUAdRa6ED0vY429PUNX3XYQZhlM5iG6+QIEJc8RD1DwGB0pYsM7Ek1fYx6l4moVYSsCqlYu+61tRNBC95kfOF33GHX/mxG3Sju4VMo2OBW6zwLgV+CUleFNRSoZUizxRlEY14BNHqXqTBrMwNZWYgeIxRdGlAbOs1Va6ZTUeRKdMpVTh4yiKnaVrWdUvbtazWa1bNGpOXCErGozHT8YTMxE6CznX80vue5/Nvuo3wELbGbKljJ8mgsxFC0HsIIZbCtNboLHYqOO9j4nQCicjoZuuCSOZzpJZxF7uE4lJkg0hV8olRSfTpE4hRqeTiQgApmd13MQ6iwI3ikH9x5d+z2045zhcbncpptmSRLSMYynNCntPt7JDeMba3BtCNw60dyjiCjPoeXPwpug65XqNXEayIAbAkXcnAtsimieAldY7dxYTc050y3BdEYJ05rJQ44TbqKRUka+XIOokM4mUgZhgo469nC4vhM/o8J5QlvigIRRG7hUYjRFkiqop8NKLIc0QS3m6LcDe/b7Q5L4czgcCxWXKULZFBJJYQDpopP3Xlw3zwpfdxX7Mfr//mhJtP/yYdissPP8L5B1/Hzt59QIuwt/HtAr17H5m5gvRdYhTPc2b7tv3Gd4B9bt64wQvPv8ijjxnqkxusVk1yTU7nlgsoLTai+d52mDyLrfFZRmfv9qwVAX7tgWf5x2/5LB/8+DspSs3y9m3aENtICQHnegafFO8sUsVuO6F0DMgM0UxA63g9CxEtDKQUZFlOkRXkmUiTv6as4vHvuo5V3TAajxmPRhydLCJLsl5i8oKu1UiV4QJMyxEXuXTXvi+zlp9494d4+MYO7/3ig2RSc25vxGq1pustWZ+6WKRgUmi00UxKg6LnmaefpncOEVL3nolePXXbc3xywqpeY7IcJeL4F9DRlyovGFU5O9MSQbTFf+rpZ5keeIrxLnUnCXVPpuLnbdsOYwwHqzF764pbO7GMPc8b/vY7PkLVZvyhz3wL0ktcbzGZphpVrFdrtMnIjGY6qbhx65jF/IQsz1FKbRojjM4oxzOU1pgcgncsjlqcXROaJbttR7VaoaxDb7LYxFmMilTRnC+cqRkcsNCaq1nJdaOhLMBopkCeF4yqMX1ybkWcpchDtJw4OT2mLAu0LGg6x2vZvqEBiQ9sUNlm6JPwzGN3+Kf/+Sd55nV3zh4c4sr6yksXabThJa25Xk2Y2o77mhUHbUPlevQglNseANNgqgFFoPKW++k5RXANxaEQrILDK40sStZNFGZlxsTANx/D+ryziBBX1tZamrqJmoUAmYmGYm3h+PD3XuXnfuQ5uvzuL3F6krNznMdBJ8SJqWvbJCxVhOTgmufFxrZdSkUwBuf62Pdf1zGVNy8jqNCRlYgtW7HsUpUqlm76HqU1No+AxvZ28z7WDkZrUTOTZxleBL762G1+/n/3AuUdSVuCT2eY8HCum7A3nqRMC0/dtqyXp0gV67FNq+i6nnFVUlWCIKMzZd/1jKucTMeE4BBCDPoDhLNMpgVFEfMq4v5ACBKIq7FRVVJkCq0k63VD066j+Ng7RlksA2E0Vx9b8evfc4t3/to5nnzDCUeXWoSDrFeEGCMRyy0hIBjM5aIOp25a6vU6gjQdWyHrxm1cWocSjUsuuNZ7ut4hnccqvxEQCyForcWnYJIhCGsoFQkZVe5Iw+6FC7EtE8fPXv419ropP3z12/nv3/wPAHjLySPM9ZrDbL45hwR3l1FimRC81DDVtD34AmQPUoTYIpoG1Y6Nlm3zWnfxGoMI3NrY6TL8szZSykMXzAB0vOdGfot/euWX+OY77+SfPfAhVrqhcgW/74UP8MmDL/FfXP0uLrbnIqhTKpq7pZ9B69jdk/6hNUGc+SDc64cyNPeXQDZ8jq+j3HPXRwVuZ3MO2gmvW17kE7tPEYD/61M/zL+58Gn+6eX/wI8/833QLjh+7nO89PwL9PmY9/yOdyJHl4FAWBzRXHsBfVCSHzyMcCdRgCzPRUruFXmdC0DPdDrhgde9gfG5+7l59TmsS4xrikNwzqeyoScIhXUB7VwSqmpa21N1hkZbvAxcPt3hXVev8M/e/Bu84epF3vDceS5fuogkdo6F4OLPBLCzLE/+KbFU3DmSXi5EIzWjybJ8c+xt0oRBzDuJ3X+xVbcoivjTeYqioCxz1qsFo/GUspvQSonJM2wvyDPDJbkfM8USq6a8ZHdZ8T982y/yF5bfx5ufv4wRsQtvVa9RUrCzMwUElRLsVCOKcsR0orl18wbzxSqejyoxtwnY6axgPJ5SliN2d8+zszNnta6xPlDkmswItIyl++WqYbHqCPoYU87QxZj1+pS294xKQ9s2IAT3tXucW4/5MmfxKbXu+Fvv/DDBeT742Xeh1wLhBEVe0qwj86LznKosKYsVTb3m9OSIrq3J8orJdBdtClTKmjHBkklJtu7ID08Y1XXShbABDFFgnrjaYbEgFX3wrKXiRGteLCuOs4IgJd7HRgwVAohT9mZ77M5m2L5juVpubCY2JnJS0vc989NT/Nhz2P6voGQTUilkAAwhwJfecJ1//sOfZjFpMb2i39IBPPDieaomT6OyIAjJPCuYZwUj79nvGvbamr12TXXPCmJDxIQzYn1GYAdLE+AQuCMCd5TAG83KRbFjnmXRQdKdTeBZlmNMllxaLY330Wa9VHzi22/yG+++zVs+usevf+AWvUpo1sPOUU451xuq1PZdMmzLoqeJd7S6wTlHZrKYbKmjaXZcPckkqHW0TU3fdxvwglabvBqtYmuulHLjRaCVoe876np9ZowmRQQpQmDxHF6p+fwPnfL2X7lAo3o+8qPXIcD4SNNXgVEbHW+lkCjlUqCdYlm3tMuGLM9xqSMleIuoMgiRHYn162ggZb2iqEYIIRhVOXmeSk9CRHFgGGzfZKr5AkrFHI3MpMDANcFbMlmRG81y1vK5d93md/3iQ4xPDZ963y0IcO5aycWrI2yIQX0BGFwII/UcEKl8Q/oOhIiDchTTBYzUMTsoRB1J19uUYxTDHG1weBGPqRRJOZ9CrIaOrXTKAjHHQpkMk8WwsGvlIUf5nD/1pd/Pfzj43AYpfPOdN6O94nZ+TC8sJpiXgQlJ/MUBwQVUlrqtsnjO9asePcoRyXxPl9tg5uzn9uTuswyRxSyacO97cWZQFgj85rme2+dfx8HT382//s6f4zRrmHaK/+Mvfzc3H+34/OUZO3fecJfORtzzvq80bd/Leg7Tew6MtvblP3brheVGcczvu/ZeWmn5xO5TIKCVlv/uS/8V//rCJ3lePcvk+Ru89PxVfFbx0GOPEJoFYtzhVocsnvkMZvci2ewCojmCLAc1+hpghHSMDaP9K4x2L9H3a5SS9M6nMmG0VbcuCvijdiIyEl3bkWUCXWQICb/juUd4ev82z+8dcWu85Hu++AaOpzUffuSr7L2U85C6SFWUUcDdtjSuxoVYnrVovAzY4FMUR9i4M2tiBpb3TfIEit+UMQatMsalYZzHMrvWJn4ZDTRtQ5bljKqK1fqItqlp6hVlNY6lH6nwXjB1JZXNKFrN4WiFl57v/eqbKbziX73t8+wtR1w51iAVXW9ZhppRVcXrxTsUMZi0LAqyLMOYNqZn+2jkNpvNuHzxIhfOn2c6HqNMtIfvekvdtKyWNSenh7T1EiECy3XHfNnhfKCpl3TNimI0Jh/tsmpuU+TR48lby15fcaGeJuPM+JUap/jAs0/wy49+hao1/O5PvxnfevI8pyhyTuencb4Kgsm4omtPmJ8eQZhRjabRkFEqwnJOvlqQzY9Qx3eYLBd4Z8/mLtgs2Ia4lOEPvdYsRhNuZxkvOcd8k2kG+DiHtk1LluVY1VE3NVVZsbMzi5rIZK0/pKkL4ty8WsdqgJzuvKbr6hsckETxZ/AeJHzhzdf42Huf4ds+8hhX7z/mI+//6l1LuDc8fSWxCeKu+xGCWmteMhNuVVMq17PXrLi0mjPpmqSvFJHX3B7SEyosAtxH4IIQrIXgJMt4Fnihrun6nkxHZwMhBEpqEEMnZhZXzc7Sdj2ffcstTsYdP/J3H+VT77uJNbG9au9OwXLScXC9jCm3ItrMKytQeUFejpIpmWc8mtLbjt5amraOfh1ZhpIKo+JKWAPO9di+o0kCsizLKcoyCmJDytuBjTutszYBCEPXtazWK7q2oyorvPfM/ZIX37zmXb9wkb2vGv7e3/7yZon6bT97mV9//01MrZJvhsCHlPiLgLpN7bYC7y1tGzglIIJjb2fEzrjEuR7vAq0VeJ1hUot1nqmUUZOEwUISxFn4oE0BgtHPIDJT1mqCju3NTavICsPRQcPbPn+eR56d8U9+35exWUQf7/7EBSbXNad7PeumwYgqUbdDoFkMWSyLHKMj/dx0PV3fn5UpNgISUohfSCWvgEygQ6m4MlOp3z+EmH3hQ1o0y3ihSynJjEYXcYB1eE6yJR+48U288fQh/vGDv5DOTsEbTx/iUn3Ab+w+SS8dxplXFJlKwGbgexB9lL4oHedFV8TOF6eB5DOmUlexzNgMWmG4JIZrc/s6TT8HN9fhCuqFo5M933ftW5na0V37tNOP+L5r38JJNscKh05xCgPrsT1d38vaDD/FPbczoOLlYOXr3YLr6DOHCYrvvvUOni/vbI7rU6Pr/MmnfxDvGl44/QrFMyeEoHjiHe9mdnAO6hfwq9usX3qG/IErFJMHEPUtyPcJakLyuvwt9iCxmkLQLe/QNB0endjOENtTZWQ2lMnS6lXQJaMykWdoqXjvMw/z8OEe/5/f8VF67fj0/S/yf/ro+/nMwVVu7C44uLODQG6yqTq7ZtX2ZLmiX9cx88larLWbmIfMGGazKV3vWCyXONulLh+BVoa92T5FlqX2WZdAQ0vvHLZuyLPIBBitadYrulGDT0Zt1kmkhcoWnK9nfO9nHudv/c6PEAR8+NEn+al/9KM8femI33zwOudPJpRUFFnOul6xWq+YmWhk2dUrVq2gczAez7h9+xZaa/LcUBUVDz/4IJcuXqCqqrjGkaCMRmea0bhgdzZlNMo5PrzDtVu36Z2MVgZ9T9+11MtTsnKEyse07YJV3TIuNW3TorXiyskuea/ZWRfc3FnSKcf+uuJHf+Ob+dCVr/Arr3uG3/mlR7C9RWcZWhvq9RqpM4yO9gOHx8f0XQXOoU7uMF4uKJen6K6NTGQ6Hwf9Hym3a+MoHuLY1eUFt6dTbpqMOq9opGC5XOJtLEPFhowzJ26EwFnHerUiz3Oq0YhRvaau15vOSO/jwnHwNWmaGj+ZvqZr6xsakCgZk12dENzeW2A6xf/mf/wd3Lww50Mf+DK9ceSd5vydXe7snfLmpx7aiLIG7Y5IE+RgXGSVZK4y5lpzdbzDpK25f3HCbluTB4caLM+3yzrpgtcCpsBESu4rChbG8EzTcM1ZOinohcSrsxbfgVr2PqPbbbjv+TGP/QdYPmH59LdFcWLeKH73P3uUn/mRp7nwYrUR0yopkXmO1BnKFBjjNoGAnrDJu+n7lrZtU2pwZE0Egq4XBOei+2xa2dQ1KVDQRKMpBhdOgc4yTJbRdz1CKbIsp+kalosFQgjGswlP/HKGquG576i58cgagL3nM97+iwdcu7BEL5JNfwARInBo+xpnHbPpmPGoout65ssVbduy1pK96YgsM6xrR+eh9gqtI/sgg41dNTJ2KCVb282FEA3cUkqyikCsTOeOT6xUXTeMqpIr16bkXtMbz2ffFelU6QXf+ukH6IXjqXCH09MTrG+pRlUEU6m1VQqRBu1oypRlNir9e4uQsf0wZiKe1eOjAdvZuSdl9CowOgKrurMbKnWY7ZUSKUQRismEYlwigIeWlyhcTi8tz0yuba6PxxZXeGxxP0f5KQj/skl72KRPAMQkEKKgtyAXgkwLhAGbxMVBCMgiMBE2PldI8OqMCQn3vMndJaLt+wOPLO/jwdVFGtXevU8I3n78GM+Nrr+Madl+3XuByfb7bX9eRZSDGl7++b/ezfYtLhM8vL7ANx+/nrE9i8X4yuQlcGte99kVz91c8dg73srOwcNIVQIB7zKa209RXHoAPboPEY5hPCX4DHfjN6A4QO8+8Jr2o18ecXTzJHp8CI9Ebpyitcnouxa8I4Q4SUgp6XuLbzz3L3Z55Noeb7lxkb/3no/hReDDr3uS/+ZX38+7rj7I9cURR6tj5mrOuYP9GCtvBKs2Ts53Dk9SXoyLzJmKY1qWZ+g8x4eOUVUxP+2xzmFbi5QdxmSMRhWd9egk5ra9o65but4yGY0osoxRVbJYNvRdQ9fVGFeAUPTAqC9598lj/OBX38W/efMXeG7/kK8c3ODT97/I73rhjbw1u4+lWuL7nsl4RFkY1ss1eZZTVrGVuHcdrRgxO38/F+olJ4e3qNcrrtx3P7OdaTQzsx1d39D1HWUxZjwdJ70FrNdrlus1u9MZ586d4/j0lKsvXaduW1bLE8rxlGw0RRVTVqtbGBW7yOqm5uHbu+ytK370V97NX//PPkKdWf7t677ID33lrfwfPvVtXK2OaSaO0Tr6J5VVxWJ1B01k13eKHJFlTE4OeahdM0r2CXIzqUVdm0jatWDPtCEOgc00yzznaDbjeDwhSMGybnDBYWROWZQsl3NkMsaLgtWYuh4XHSF1cc7JiwJjDE0r6LseQioBCTbgZLlacVsdvqZz+hsakGxYBwIHhyMObo+wWeDXvuVprt4fXScfeeEi7/rN1/Hxt3+V/ZNotLShq142NImNlfmgqTjUGYezfSprOWhr9tuaWd9ROsvG+kymIXAo6QiBCoEdKXl7VfGmELjjHbec48g7FiIlkqa0XSFg2hSw6Fmpmk9/522OLjQAvPFz+7zt18/z4e+8yoVrI4a2YCUVXmiUjsmMUsSE4s0gHeJjVBGNuZq2pe97TJZtykh9HwVJZyWImPTbdS1KqljuCSJ5AYRIsaaJ16asC5NldE1DfVpTSI2vBJ/8vufwKoCHN//MDPGS5cqXJqjlgNKj1XnvAm3bUZVRYKpNzM5QWnN8chrp0bpj0kU6et4EOiciICGgZFx1t3106pQ2Ld1TZ9OQTDxkCQkhyLMMraKzq7U25vgIRdZnCAE3Li25djkKzs7drnjw6g5t5rB5YH93hp9blosFSEmZ3BRdas8VIglRtSYzOllfpxJSSE3dIQLpQDreaaQY8ngGHcDgwKvS4KKkiKU/HwhCUk5nmDxHIRm5MorQhOe5UQyxyp3hvvV5Cp/zrsMnKF32qhOx78BL6J2gUAFFQBlB0NDXgbxNOk8HNgYeg0yOpgMr4kG4CGi8ircHLeo2ONgus5igeXh1acMIbO9fLOtIHlldvuu5vMLrvBLjc3ZFx9t5+vefCkYAlCkpPbz38HFKn/Hg+hyFy6h1x5OjayxufYGj51/i3PQA09UoHd/ZzV+kvfMUZu9R9Oh+BHOQYxATOPocSnZQvTZqG+D0eEVrhy6+ZDKYDob3yYuHCPyC88ikbVp2DQ8e7XPf9QljWXD/yYwX9o559uCI52aHvPHwIiOnsUZSVSNCAtDjMmfVWXprk4FXQ+wgE3E8EDKWJJuWLM+RSrNYLPBdSuclifqbhrYwyJSNNaoKpNYslkuWqxXj0YjJZMR8uaZeL+m6lryLHWdOKKq24N3Hj/FQ8SC/+0tv529+64ew0vPP3vwZ3vf8o0xshVGCuq3xto/ZO1pR1zUmi06xwrdIVWHKKecu3kdValaLBXmR47yj7VuuXn2Wm9eucenSZR5+9LHkQJucXpUmeMdoMmYyLfDCc+3mLUIT6Lqa9fKUvJpg8oq6qVi3S6pMYPueK7dmHKxGfNeTr+dXH3uWX3n8Wa7uHPOvHvtN/sTx+3l4uQ9IGhn1c3mWkwlJ1jZcEJKiaclcFM6LponCbCE2+im2/4WoE+u1oq4q5mXBcnfG2hh65xiPK6zz7BjDfLFCKUVZlbRdTV3XmwgBnTp6tE5dmt7TrFdkmWY8GWNdzMHxRDZFiFgu1ER94snx8Ws6p7+hAUnMU4kDtwwCLwLPPXTIR7/l6ThgWsn3/7tvIgjB48/ej7GaQcYnxCCyGSaLtJIeXFUFCZjEyXilNWs94XpRMXE9s7bmQr1m13ZDAT2+nLg7CI0QMEJwWWkuKs06eE5D4Hbw3AyeerP0iyZq80ccn3/vMTYLVAvNuz52gemdjAtXR5y7MTrbZ2Ibq5ASfIhgJK22o5tiFG0OCmwpFba31Os1TR1t74GYSyEE3lma2kcFeWpr7LouCthMFv0AXI9IFuVKa5TWOBcpRZNldG3Lc6+f8+ITCwB2bxe87lMzwrHj4ucL9DpNPOliWdc13nt2pmPyzGwYpywzlGU086nbjrrpqfsumhptjnSg7x3LdRedZBO3KogTfZbFwTfTchOXraVEyiggnYyKjc17EEOnS+Czb7kZ3U2BN3/xAOMU5crwyEu7VCpDjKPdctO0LFerGD5VlvGYyFhQECJ6GhgbWSvnPK5pNo64G+DLNskWE5chGloNXVSCqO43WicnX4+UBlPsEKH42SR7ZOacZPHYX64PKHzUcZxv9zaT9+ClMpQtRHxLvAO7hsZ2qCKL9W0JyEDfe0Su0eJM/zFIm5xmsyp3AmSIYnPZJdZFRLCzCZ3c2t+vVZo4AyFi6/F3a1FgW49yN0OzXbIxQEVIMuT/VPVIzG8xIXC5nQGQ+4wH6gO+MrnGkVnwhTsv8Ni5+zn/yFtR3TXwFr98gebGk6jZ/Zidy1HAqksglWmKczDaBfHaMj8ATDWFk8NYkhE+ni0y2bV7l3JOxAbchgBKG7S1PHbrAvnCo0aab3ruAV7YO8aJwK898gxvvHOR6XRK23RkVbHpQFFGUxrNovMUZYk4OU2t7D4tbAJN06KUZC8rYlyCMfj1iiG4s+s6rLWsG0s5nNMhLnbyIqderVFaYVx0Y27qNW1TM54MnkuKvMl55/GjXCjO876XnuCfzD/Bjemcz118kS/sX+Pddx6OybxS4lxMSs7yHGv72GmYZRjh8HQ4NSKvZuBajNas10tWy5K93QmTasRLvaUsK2zX4pNWQyrF3u4UowXz1YIXX3qJpo0aMyEiI1ov54yma/JqjC4mtMuawsSw1Mt3Jjx0uM/9qxm/6yuP89kHr7EoW37xkS/ze77yFp44uhR1P0rh2o5q0fBI3WHWa6rTJdKnuI7BWyWVgNm48w4jJLjJDkfTGYfGIHfHrL1DCBhpRdu1QIhGdyF6Vy1XNUU1Yjya0PcdXRs1hybFZPghIiR1HbVNS1lVTMZjbN/TtDUqmfKRSkRI6Fv7Nc7krWvrtV+G/8vbhoEq1toDTen4Fz/8WdZVBwHe++k38NYnHyG3hjc+8yBZyO5+8ubLOzNKi3SzSCLUKNgMPhpgAfRKcmQyni1HfHw649d2dnk+L6ilxG61IkYV81lWByK63E2k4j6leIs2fIfJ+SZtuKQkI62ppiVf+I5Trj20ggAPPDflXR+7CA7e8Nl9ylqn5WCIoVYy1dVVqvPKqNEwWUZVVZTlCGNiqFJm8nRfhe0t1lnKsqSqxhTliDwvMMrgnKVrGpy15FnUarRNTde1qbzkcc7HSR4wJiZgVqMx+aTiyW+fMz+IvhWv/8IBDx9dwATDua8UjI+zaNCU7O7btqUqS6qyPPNjIfrLjIo8im97z/Gq4WRlceHsO/euZ7GKKF54i/CWYFv6tma5XHJ0PGe+qFmtW7wLaKnQSqCTG2qRR0MjYzSB2P9vpefTb78eV/Ye3vaFi2ivEF4wOy3IQtSr5FnGaDSiKstNG7BNDpEDOxW/cpFKMdFzxady39Ce6ZMOJUC6gON0GhkpcRf1mbAmUiiELhjv7SPV3WWJ5ybX8AkdPLy8jAoD83A2SEniKuSukAIDykAxAllohPPILEQ/LmL4m2/A1QHlAspFvYkVgeDCRmGPhJD0mD6HXkG3CtBGB0gVS9ls6dDP9uEVru1tEDXcd++AFe55vOKsm0YSwciZiPW3gx/Zfr/4qjoIHlucAyJ7dPzGkouPvhVTTpCji7ijL7B+6SvonSvkBw8h3CnIBEaG9N/RJRDlK7/Zq2zFeBYdUYdys4vmfYT0exK3ihC750SI4vpxPuF8t0tucjKv+eanH0T62LXy4UeeovY9WWaAwHpVp66waDpYZoaiyJECiiJPZedklpgiMVbLZH6IoCpHDN9SBCWe9WpJ00expU7iSaUUZVEgBXRtizGKyXhE29WsE0syGEvuLie88eghjM95c/063n31IQBujhf80kNfZtXX0VRQyJgQLokLnhCiB1TwaOkx1IhgQRXYYGhax3y+YD4/Zb2uuXz/Azz+xjcynk7QRhOCS7EZEQCMJ2Munr+As47Tk2NyI2PeFdC0NYuT24BA5yOcLlm3sbw17nLe99zDFMbwvV95A4/fPAcBvnLuFj//8BdxviVbrNi9fov7nnme2dVr7K7WjFyIHWoQO2SUPCvLJBbWC4HLMrr7HmTxLd/Jjd/x7Rw/+gbUI48jp3uUoyrOcgKKvKBer7F9h8AzGRXRAsE7siyjLCu00ZRFydCVE0Ic42Tq0HGup2ka8iJnPB6TBqzonwTp3JCb+eK32r7BGZLotOedp5eeX/2Wp3j2kdsg4MLtXX7gw9+MsYb90ylll6OIyzkhogFOBB8xpnrjEJo2IVIoXRpsBzv3uAYOMQtCSQ5lxh2lyZzlYtdyvuuYesdou31YiK3lW1zzaREP/v1ScT+KhfQ8mfdkD1keOKy4NWn5nn/1MOVc0TnPmz99PjoWJtpfSkMQSdiZ5wghk12yTyeDSF02sTsmEJeufd9jvYtdEznkWYYYHFZ9ZISciwmZw2qiKHKc83RttEKXKnXkiIAP0f8lM4Y79695+l0nOBOoFoY3fuYc03XBqujJ24AJgkVYkOdFNADyMZxLDwnHIQIVZy3rek1vHavGIjKL0rEDBQQieNom6ld2prFGHFmHGBW+blrWTYPrFV1nyPOcnXGJ0fHbM0oilKAqCtZdoF2f0iwdh0/03Di/AgEXr4+476UxCoGQIZ4PENk4KVBBUuRZAhwKHwK9tQitCSHExFTiAOh9VPV3Pmp19vb24sqv7ba6aKIHglYiBR1G/Yn3ARegHM0YH1xE+BadlUx3xxFHczYpPzN+cXP+PrK8HN1kuXsaDlv/Ns9V4F1ANHHw6K1FNqDHiqAlKk+QZg3rIyhmUHeQJXNV7z1BphNaC7SME3MI0VOsV4LOgwrxfrmlbh3WBPeWXTbX4da/cM9Pzl7mLmA2ABdFFLFGZx24+2j9p4KT9HxvoTnmwWsZXI53P3/hEHHVg2vob3yFZn5Edu4hst1LsUyjJ7FUs70P4t5v6rfepJYIaRCix1qLkAbpE0DxMTzPCYEkgRMbv7BMgm07sszQty2PHp/jyvGM5/ePeXH3hOcvHPH47fOURc6yrrHORjbOBzKjEW2NkIKiLOi6ftOJJ3wa5whY25HlBfQdRVHQ1HXUsojAYrlgNttnXnfslCaVl8AoRVkW1M2aabZDmWeURc56NaeuV+gsR/aSiazIGwlaclGc53c+/wQfefSrzMuGjz38HD/wudu8bnUfQmqcj67TJoul4LppKLLYkqxpyWWHVRlBFSwbi/CC24d38MHx6KOPsLc7o+66GIYqJZ1d03QtTdNhtGE0HnHf5fswSnHr8E5yvAZcz2pxwmhxTDHeIStnNKdrRrlHacX7nn4EqQwHbsqPffw93Bodcf9hSXbnFqOnn2E6H7x8ts5YGUvrkVlNQazB40Kg1Qo73aU/uIC98hD64CKd7bh5/SVmO3vkZUm9AuUtWrc4HygyTZ5n1PWKPC/QJmM8LlmsGkCTZ3nyGfEbwWrMChtK4ZEVbuuGTOvUsl2yWq2iKR8DMxo2ervfavuGBiQuiRd9CNy8uOBj732WNrdknebbPvUmLt/ZRwDnj3ajuRJxpTAAj+H/sH0rbHiSVP+PixiZ2n2H5N5o2SUikCHQCMHzec5VrZjYnt2u55y1HBDV/ZAWQwN3venDAgiMETxR5Pylf/kmvvTJOc/s1rzxs+c5AXopmZ7kBOKJIZVBKhOpcRl9LwbqLrrmDSUMNp/DO0cQ0LVN1I5YgQ/RabUoq2iWJiXORm2FcxZr+01rcZblyeKdNNgNwXoSrMNpwdVH5lx9eA4BDm6OePxz+3HhLCQOl8L8AnU7T4ObAXwK33Ks1zVt10ZmpO2x1tG0NaWrkvVw/EzC2dTN0qFrTVFER8CgREwT7npyE70OrLP0HawbjUAyLhRFntF1PUIqpuNxep+Wpx65yXIU2Z37X5gwvWPOTODSBBtPHbE5R/rE9OgUOuaJDiVSSvIssjxN08QJmoDRmkcfepD14oTj4yOsCxijyLKKajLm1s0baKUwrWV3OmU2nTCvW/p8l7d8x3di+xX0HaNZ+bLJ+Znxtc1+Pbi6hE6AZNheaSqWIZ6SSkR9SABI5S7Rk1zLBb6NwJ9C4jsYlVEgF0QU/+KTQLtPAtcA/dpjew8jSVbGspgcdmKrdiSBIW1h2IYYh+HhA/AIvDp4GT7bAEhyIMNt3QveNqm+nd21APmP2wK2vsPp1Se5sjtN9wSe2V+gXoT25pfx7ZLxQ+9AlhX4ExB7IO4BI5s9//o2LQXFeIeurTd+NQwsrRQpM0YSGFrWo9ZMSYVIpmmNc1xcTnjdzQOe3z/mtKz5zUvXeezGAUJGrYTrbdQvhQjmMyVoNr4ng2t1GheTbqFrWsrSoZVhOpkhEImxiaxz29Y0mWaUx84x7+NCSJuM9XpN13UYrZiMKw6PF9SrOdmQSp5prA0IGTBZzvtvvZX/7+mvMC+u86WLN/jShRs88swFdCo/932H6uI4Wa/XLJYrppMohjeyQQtFXkT301W9oG97Tk6O0UoyGo/wPiD39nGrFfW6pu9auq7n/IVL5GVFXnj6fpc7J6f03TIa9AWiGeP8iLwcYbKc3lSs2jkzY9hfjvDKUrQdv/sT+1x84R08dLvk/DxHNiugSBP6GTt6VseMN4KQrKcjriO4KTWTBx4m3z2gyAp0vWK+OEkW92CyHO8cjW1RWtM1DW0nMFk83uu6pghxTDYK1nUNqS3b+W7DeAhBcgWPTtkirSaapmU0HlGVFV3b4qyFVAoPIUoKXtM5/XVfBf8L2pquI9cKmwU++d4XeOGhqOR94No5vu3Tbybro4DJ2DScbfG9A7zY5o4TQ37GhqQBK17sPobshfj7MDQOVFnUnoAFDoXilnI85WGE4EoQPBhCbDkcKjib/Yj/OeXpM89slfHerx7wHSsNQbLKPTed55muZ57oMqFMRDchXsCQ2kJFJKo3q+4kNvPJObNta7y3qLQKDqGh7zrarqXIowmQMSbWfV3Mv7CuJzhH1zYgBZmJDoFhELuKaD7WKc8nvvkqbWkRDt72qYvMDksaGqrRKLU3J7BjW6yNgtqjk0H977C2TzVvT2/jPgsZ7fnlRn8RzlgmFVdtbRftlWXSkbjkC6KVRGsoipIgFKu6p8o0RZ5Rt/GCyU00W5JjzY23tDSVQ1rB/hc03Qs17UiT5zkMLbhpN2Q6vkZrrHN0XQsitkXnRsV0ZCGRKSZchEAIjjzPmFQjmuUxVZFTtz2ZMZzb38OnAb6zFiUV5/Z2eejKfdw6nrMsd9jZ0YSws7Xy2D6fA8+MY4eN9JIH1ucZVFGvNIlvuIJAVFgbgSwTE+IjsGjmkGexLGO1QBqB6gW+h1CEaKePIDiJ7QMuBJQB6wUayIzAlRKhBT1gW8hDvAa0PlsGuC4BlWEnQ0D08ZJSKqZN98k5VzYgTWRbArH1WDCUs86gRwZUIu7f5l5nccfX0NMdyPZ5bdsrwbjIUvpuyerWC9y8ep2LD+4gfWQAvjq9TXt4Fd8vKK68K+IeNwd9LpVlfntKR0LAaLLH6Z2bAClcTmwWaYNLgdIafGwHRkpsErcHL1HaMF0IHr91gQ8//jTLouXzF67xg+ZN5C527Z0uliijGVUlWkqqomTZ1WRZTp7KNkWRp9JQBB5d12H7HpVlZCFjOtkBkiN0iGMBUtH2nsqITQ6ZT+WlpmmZTKaMqorTxYrVck5ZTciygixzOAW0nuB6LtT7vP/Jx/nq+Rus844PvfmrvP/JR9mTu4yritXS0TUdWZ6jjaG3MTVcC4MKLUbkFEXJaLzD/OgmpHyrm7duoo8VVTWO45GH0WjM7u4Bve2wrmO1nBMXKJrpeMItfUrTp+BC71mvl4yaNdV4B51P6JZLwrplt6mpThcY55DW8Z/dusS8iI0MjbEUzqfU6GHCOGPbeylZznZYX7pAk+XcWa65dfuIfrVivxojpaKul9jOsrO7G/fFWbK8oGtzpDVI2UagphRZlrFcrZIGBspMs1is0FlBWVYp46xnG9gPnloIIrCta5QWlEVOW5Q0TZ20cOk6l1uT79fYvqEByel8DtZy5x0d//47v4LTnrw1fN9HvomLd/buebTYGKnFQ5OMqbYK2kMbbghn5meCWM7xm/u2i9/JCXEI0Quxxum8o+k6vHc0RnMqFV8RkvMErjjPnveUPh38tOzuCr+xKje9JOvjUJoJya6WvF5rjpzjqvXclopV8NhkpDXU7ISUUUgUCzt45xITHCG27Tus7TfGaiGJofza0zUNTVNTlhXj8YSiKMmLgrZtadsGYS3eO7q2jkZpOtt4alhrubm/5LPfFDs8yrXmrT+9w+GtW0k4CjplR2TGRPDUQF031E2XUjbbTcePT6FzeZ5TlhXGRDO1AOAcRgTGVcGqXuODZ7VeU1ZVXM05G4+HjOBsd3c32uEHx3K5YlVbVi30/myiEgLmFzpeemgFEqbHGU+8cB4TJIvFknUTo7vzzOBijOmmW2joCspMRtN2rFYrRFWk1UOiVqWK1D4RWJ0uFyzXdfx+jSbLDJPJiBdv3EzlGoGzMJmMEFKyqBvOvf4NDF/lIOTcPhtXquF6GQH5fjdl1k02f98uedy7CQchWuOg0mtLCTKPTIdv45PLAtACZ2LLr2vjQfCZImhAJ3ASUvqKB1+kFOP4Z0zUlGMENPPIJTUdGAP9XfIJgWg9InhEITCIMxv/Iu4zJu6vc+kzBpDp9TWgnUPqoSaUrrNugcwK0K/NE+HVthDAtgtuPv15jm5do0ezHyoO1iW3Rmte0Nc5drc5f/Gd8UOHBsR5EBt/2N+mTZBlKk0MEtt1YLINjW/SgsRohQRciEYybZeM90TUN/Vtz1uv3cfuquT2dMVXz9/i+viEh04PkCmv5XS+4Oh0wbmdCWWRka8aGimZTie0dRMj7Al0dSwPCyFpmppRShBfrhb0XY8PgSyLi558VaBGJVWWb8ZXLQLT8ZjT01OstWTGUOQ5bb2ia2u6zOBdNFCLLGcc237g0+/gp979URZly4de/xX+97vfwv5yRlnkWNdTr9cIQmxFnp/GcrTRyODIRINThtn+BY4Pr7M6uc1kMuEk7YMQd9iZTHnggQfJi4KsKOlXPXfu3OLmrZtcunyFgwsXkFrz9PMvJtfXSPl1XUt7esiOEFys51THR0zrBfquWozABE1uNa22eBGoTc84zQFBKlye0ZYF9fl9joqclbUUoxFKayZKsawbTk+PYhRHvWa5XLCzsxsZEimo65iBo5Rm2XuCi+Vx5RxCqsRgxIVslml2phXLdWTPhYD5Yp7mDDal1shqQUjC5PVqzWy2SzUa4Yku4oP9Qvca87C+oQFJphSttvybH/g8y0lEl2/96sN80+ef2EzS22WVuGJMPdmkTJEzpnPTWbMNPEIYHOhgo8YTiR1huy4W0srEY23Par0mEMh8FlXMSnNdSW4qzSTAuRDYc549aymEjSZoIg7kptebte0g9FTAOa05p6EJcNsHToRgLmAlJd0GSYtN2cZ5twFX1sUyzLpuaNo2rvClSMROwHuB93VUSjcNo9GYqopiV601XdfibI/to4q875rkdaLRUvPR73x+Y3X/xl8/h36qo2nt5iTuuhYpFVlmNk61gxgvz3JCgNV6TZEN7rIxLyHPs1jySZ4ihFhCKfKMcVVxdHxKCIK27aJexkZhXZmPmExn0RdBRBJ/PKpYLJesGouzLlGK8TjcOV/z0uUFBJidFrz+xgUmk4ymaVjVa9qmxWSGIo9ZO5GN8qksFC37i7LE2qgmH4Cisx4hkvDaecajcWTtsgLbd2gjUMqgtWGdIsKDc2itomhWaSyG6f7u1ln58u16eYdGxY6vc80uY1uy3aEybNuMSao+RZLEx04bYRPbJwVGCLyGfmUJuUYIidLxXGxbR7ACJSxaxHYaoe/WeUjOmIzggS5eOr4APY7lpJGNZSGr7/5sy8bhe08eFCpLZpEiMSYBhAVhEmOV2JHgwKjoNdOsO8pphiBd5O0csKjRLCKX11yuedkRAwK2XdH7gCPjoTc8QXlOcanb49Z4TVtI7jxykQsrgXAr0HtxZ39bwUjcTKbJyzG9Pcb1PVJH8y98SGXCWJbNtCL0yc5ACrq2iZ1cISZ9P3HzAnurEbcnK54+uMML4yPuO5zhPWgt2d2ZYp2j7XqKXFDmGW0TA926vtvooPKi2KRYyyQgVzqe332alAa92nq9YlxVtDbGKihlEDK2GJ+K2PWRFyXT8Yg73SmrxQldWzOZ7pHlY6a7U8xQXjzyvO/Jx/i3b/08jbb8y7d/njf8+8vkwVPkJW3z/yfvv2Jt29L8Puw3wkwr7XDyTVW36t66Vd1V1TlnNqOpVpNsUSJlQZZkW34x7BcChg3BD3oRIAgGJMsBNmxTAC2xSTUVGJpkd7Nzd3WFrtyVbzg3nbjDCjON5IdvzLX2uVXFLhL0Q6EncM7e5+y11l5rzjHH+Mb/+4ce751sIIymHwfqupbxnBwqDVhbMl8esz5/iM/p530/QEzM6oZdu8M/uEfwI+v1mvXlBbPZjNPT64x9T1NXrFZLdu0jjIIVievjyLWHLdcfv07tHUyWEnCQxGc+SBkLRgJJJQbrMHaOWpzgTo7pViu2lagqrVKki3O2OecmxkRZVWx2LQ8f3ufk5JrYKFiLG3uKsiD6gXYnvMDRDfjRSwBsjBRlkRVGooaKITKf1fT9lhSDOMa6mq7tssnawVx0soTQiGFa3/fUs3lulQ9XNvd/AjgkVTPjCz91ny99UCDL5WbGz//6j1KGInM8Uq7mZFKabhrIDpsgeR15cdnDS1OrJqX9JJkyGqJAdI0cVBGQeRVJZFHee7EAj5G+E1JVVUkCcFkUbI1ipxRvWoiF45XvfpPbReAnv3Cd1a7E+txQnzZ38gYOn1spnjWKpxUMRNow8gjF2yi22krOSwKlEjGKX4p3I/0w0PYDbhz3Jl5CjJzc+0R67MdEG8Vevmlm1E1DWVaoshYVzihmazE4fBzYXmv5zI/INbCj5nv+8Q2Ul12SMTJwY5ZQey+QsjGW2UxcXt0oKMn169dlp5WEa2GsoSjKXGTJObBEcXvVmpOjJTFENm3Pdica+tE5jLHUdSMtneDpMo9jHEdG56nLDqtlgVFK/DZee+6SzVLSL5+7e8TpRY0pNHMzo6xrhqFnt+vou56iqpg3dS5MpPiYUIuqqkiIkVDKhaw4Hspkff30Gj54iqqmqmeiZqqEdumDuCP2vefoqKEqKwYfGJOlyHHy0/FOxOPt5jGDkQn/Zn/MzNd7LsXVpsP0vP33WS04ISNJQ+oVIQyYusTUGh0taQRdHBKJy4XFDUkk5zHhE5AzbyaFy9TCtAqChqIE1ybCkPa9cSyMPregDrAk5UlB4Qy5Fc30wh4p2l3nhLRbSlGp8/9rEgUQjJIiyGQFSjdiV8co869iylNUyxu86wNH3L58TGkSrVfcGo6AN+iKwNvzx3zwYgn1jf+/FSNKgbUlZbOAzTkgbQ9lDWZS7xDp+h47n4Eiu54qxigtRJN5cifnNS/ev86Xbz/gfN7ypZsP+IHXniMlCTeczWYMw0g/9BSFpiotuu3RZUmTC3FJ9iWjWTLfhuDRRlNVDW4Y8CFvkpISWanzuMJQZo7BlL9VNzP6vqNuZsxmDeZizcXFY1ZH1zgpSsyUO2PAGMW1kxv83B99P7/2gS8w2sCvvvRl/oOP/SiVb4SQrhTdMGBDwEdR8hi7o/SegKZ3LaOqpM1bFPRDS1OVWDMw+IG23fH48UPGcaTM8892u6Xvdrxx91VC8FRVw53lgvnbb3PdDSxSZEYU5ZfSUk2jEP+ptOejTdBnGSw6aX73xQf88nff41n/In/tjQ+jUoNPkv7d9wNVWTJ4aZNYO1AUJctFzeWllmiP5YpyeYQi0rdrtGoY+47tbkdRllhTEHSgKCrKQuZZlMKFyDj0Mq9Zw3LRsGkHKtNQVyVD30lsSE5EnnbxVVVRl2JvYIqCFAJlUVCWJT50UqhW5deN3290fFsXJJtnHb/5F7/KWHlM0PzZj3wfz799O0e2k2dixRQ4NV37/TdTAbL/NqMoShFTyDuIPJ1nerNMyWnfojn8TBASQSICRWEpyIoL5+nbDld4aUNUJdYY+hh55caa/+Lf+QztcuDph3P+0//LT/ADr86YpUiJ7Eb3zNr9Zk0KLY1iBsyIXANeSLCJgbdTwUOlaWOUtM6MjvSD7BImopH3fu/EqnIqZ2FLVosF1orN+nZzSdu1NI3IiOta2NhFVTO0O5zv+dSPvcnFaQ8KXvrcNV56cIvQSAhUSoqYXbL2YqMYGYPAecvlkmq5pO8HdrsddVWJWijEPOFIcaa1RkW35/UoEkYbTo+PMUXLdrfj0eNHpASzpsmmb552GEghUlUlu3aX0ZoSUxV7RGwsEp/+TkmFNl7x4U/cwCRFWWhREVlLYQxlUTK4kc16K6mpS03Mzr9KgXcHd9WQuUVVIQXifDbn1o0bHK8W3HtwH+fcIZ1VKR6eXXJ8eou+7wlqw6yZEVBs1muqxUSY/PpWDcji/3bzUBAS4GZ/wtI3TyyB7yxMDq8hC7ZWijiF3VpFVLUYoI2KsYWhGznWJVTZayRCZRTjAH0fscfZAyYjIjH/Ipt/kQ4QPNBAHJUkkuY3YjVcrocnNlHGIKZKFpIDa8XnBMgyZcvubGS+LNGFIC+FhllKpBio62IPgsR2A2UttvcmBxaqw2ZCTRj0t3gIP0uyUurTZyB5lrv73Lqo4Q60quO16lVS9d0oVV854//qD60VRWn3bUQ3DJDKPacsZT+IEGK2X/dEFMGYTFSN+XmeH/vCe/jlD32RYCK//97X+Cuf+DClE6OwEANVVbDbOcbRYwoJu+x9yNES0j4J/pAdFpIscPVsIZkxZYHyer9rnnbUs1qyqlKSVoI3Qq68OL+gqLdobSlKQ3++4+joGsE7xrEXdCCAURIL8d279/E9rz7HH7z4CveXa/675z7JX/zt72A1m3G53gCJ0XmaqqTteja7nrqumM8axqBw0ZKi4ujkJmcP3sD7QNM0uNHRdR3ODZRGs7p+ndtPP0si8fjePS7ffIsbfc8NFHeGkYAXu/wr12lKg1YTpJd9iIQTovBVxfZ4xT/9zof8jV/4p1zMek7aR7z4334Hzz++hdViRmm1+EMdLVdookR6KFAxcrya03VnXF5cMJvPaaqScRiJmciaUsIow/HpCZvNFpUSs+WKfpCk9vnqGheP3pTrndt6KsnGVKEorRjZGVtSVjXOSYJx8o5KQzKGszOROq9OTmnqRpRdKTG3fwIKkk/88Ou88Wx2ZH39Nj/2qQ9Iu0OuPBPjfPLv3yMOGUMWYqIsKCmmvcETE7fkyiH/kn2w8E7i/sVSLkai+INjjSGmAyu5yH1U5z19JxkQVVlirOI3f/arnF/rAFg8XrF5fJ3frGDpI7d94DQGjhH54oTcHCbPwxKjSFgFJyRO0ohP8DjBA6U4S4G33UjXdhnenlo60t8LSqSrhTKS0llVVHUtrGznadsd4zjQdW0mfy1FNrc44qxRfOFHLhjriB00L/3+EcW9QFHVUvDEiE5JXPzSIQwxpYQbR9p2x9HxCfOFFDvDOBK8w2hDXdcidZOzjkpRcmSSmD/FKDd4U1cMo5OQr3Fk4zdZ6iyXfDaf0Q+9oBvWstluaLucAlxVrJueL71PkqHr3vJdX7y5L9omBERbjXiYivW1UULEs1IZZpg6oxwhYozOuT2wWh6xXK1o6poQEyGKsijFQJWzgNpuh9aGqiy4du0Ua0veenjG4ALXXnz3Nxz/B8Qj8eZMWjYqKW4Op3uE5Mnx+/XHuEsUM7WfCVRQkIVoZQCnIC2gbgp0mUP4HHS9x5QWNdeYHkwQtCRYMedSiSxB5bBrbqSITkDyQopNRmEMzK5XT3wu7cUZFgNjIW6ykzDG5hHPQsgvk2K/BixCtB7GkJ2FFbpp0Ent0ZEQAsZGMVdJgRBLTFmTy/9/gSOjPKpgqe/wtH4XKv0hnXXcNY9IPqCqf3XFyNX28uF7Jam6piAMkh5ugliOTzVXQgvfAiHqxyguxqaQRUoZzdCPfPjLt2kGy3Y28unn3uSsbLnVSjBc13Us5jMSyPylDbOmZtj0FGVJ37V7xDiE+MR8G5MgovPFina7ZcKdxZE4MLjAvBLUY/Qe0NkDo2S33nHt+jUWszlv+fv0fYtzQpiVFrJBm4Q18Lx9lp9+68N88t136UrHxz5wl7/wRx9gFgrKk2VWxDlp4xpNDIGysBwtZwxjwJsZupM5ZV1UjP2Opiooy4JhGBgH6Qmm0VHvtrxoLS8tV9w2hnq9EUuEjJ64SeZ6Zc6OSWYQBQzasC0tXVOxns/oViuSNTx3b8mLD5/hI+/5Co+WG/7ed32E/+j3/ioaTWkTxiiG0VEYaeluN1ucdxSmYD6bsVqNXK53dO0WHats7V5RVBXaVpCgKGqWC8P5xRn96FBaPFaqsqRqFozdBmMso5Pr5qMgmigt0SNasb08k2tHYuxbLrWhqioCmrJuZP6oKuZJPGZO3ymj+ybHt3VB8rEfegVXBuqh4Cc+/iHu3M/M+QkOQXbWB4uWPEFmvw1trfxv3kUwPe5KdZvIGup9gZL2iMjhW+GOpJx4qLVCJemzTZHb1hissYze0XWSH3PxvoFP/JB4R5SD4S/8yneiHLgEj4zh7ZhotGGVEjdRPJUC10KQi7ZvRU3vW+0nBACb4JaCGynSW8VZU/PM6QmvbLe83ffsvMv+9SLnI+T03aKkzkY4Mcok5nPP1zvPMPT0Q89sNmc2W/D6ixtef89GuAv3ZrzvC9exQeGi37cyJu+S4DzOuz1ylUCIbjExmzWMbgSjiL4gRnEHlNaTeF2Yyb1UWuSSrjn0dF1PCB5jDLPZDOdGUBqtEm50bDdbUozMm4Z5UyNSY8d6vaG1HZ/9/gu2cyHfvvDyCadtk0G0SUIt48iarIvNvgoqRKydZI/yeQsrGTdC5nUUpqbJ7Z2qLPAx0MxmeaHI1vAxMvnLSJtQlDYxeJJpWF072o/5CX242noZled+TvRtQsWt/hiLfuIx7zymYaMLcEFQD22l7ZGMfPUBUgFlEpGIiw7TlMRKmPjTDaWMKGgSUJqEWwdsY0lWfEf2/Kz8XrRGyMG7hJ0bKYA4vNHpcZOozShxezVOCLApt5iq0hADxC5SVFAUYvumlaWuxTwv+lHQtCLnzaSEtfLqSRnZqfoN2AFSBXr2L4SWTIfFcKc/oQklrRm4d6QYi5L6j3/qP/fw3rO+vGAYRrQtUCQWixVDv6MbBk5Pr1OUtYRKxhxuNm2fkqROWy1keyG2yj3hvCdW4uQbfKDrO46KJR94/RYfe+l11s3Ap556kz99tthvqCKSWSNFjbg6xyD3jdYGF+X7qUieYie8G6nqGhOz31AOpUQJt8z7Ob3zLJtSjApjoKxqVssFu82WedNgrOX69VPWmzUnpx2+me29TqJPRKWpTc0PvPFe7pwd8dqtM7749ANefvaMO68eMZ/N2Gx3lCX4nIY+Mmb0KAmZPI4UpmAzdixWxzzuWpzzYvjlHafacENrnnGB0wePKGIi2uKJtSLmCUPpQyzEYTub2JY13Y2neGxLLpUn2sRiUZOcYzGrqX3Bv/PJn+CTz77KUDj+2Uuf469+/od57t4trDY0tsIacVmtqpq+H8RsUidKazk+WpJiZOh3VIWhTIl+HAlJM18sCDHhQqSazan6jsvLc46OjrNMN1JUM9qux4XEbreTlpvS7LYbCdizBjcMxOix2fcqxSioW0zUywXzhaQZOyeI7Th0PDj/E5Bl8+i6kBDf++pT/MTHvlP8EPRUJIQDZyTPhipzSlCgtSUltSetwuFGmvgi07FHWBAr4okkm3LxMqEj03MSkldirFTMIJOD0sJ+TwAl/Oaf+xrblczk3/OpZ3nXy9cIQRakECOj83ij6YuKc2P5WkzMU+S5FHgueGYp7mPVD9N4LkymdEegUYrbRcGN01O+6+SYPgS+tt3yRxeX3O97XIxEBWVZspgvWa6O8M5zeXnJZrfbh+9pnS2Lw5Zx6Ln0a/7wxTc5P21REV742nVevH+HVHkSHXp0onzJyIXSSlCQzBMhIyZxypmpapnYlAPsXvWkVCJ5x9XlVULmEl3f0/V9Nibr0MqwXC44Xs0lbyKlfTz2rK7QErOcpYkDoxv56PfmQLoE3/PxW0QvVtYxpb3zopzLTNLTCuc9u7ZlnM2oK1l2RM4qHjEib3YYI5lAhRX06bXX7jL0PcvFgtXRESa7GCoknbUbBvlsKRKHnvr4BrasBJHJ4zFHxeyPTbHjcXUJCua+5lZ/uj9P36jFs0dWEthK0qPb1hMeOZbXayllIiSb/T+UIpbQDVB7sJX8n47gQqLdDSyOK/EgCeCVwfdQztnHPKkr70G4KipPYoKE6OpJ4C9doVElJTb0ccx7h8x7QQmJdVQR40HZtEc8VUoYY+V19vdyvmfjBqJG6RrnE7ZaEf0OxjPUrOYQK/Evdjzdn7LwNa0deLgYWNeO+glxwTubZt/4SCnhnOfem2/x1utfww09MXpB4YxYomutMRoerk65dus5CcTMTppCrmd/f6UsA9YK+q5n125ZLo9YLBd5DoxYo6jLip/6ygt87H2vA/CRD7/Ov/7VD1MWBW0/EGOgrkr6YaDIKp3CanbDSFlXuE02YNRitJfyfR2Dz8WSRhlN8E6yjxTE4Bn9SDca5rWkAPtxIPjA0WqFc4623TFfLLh98zr37n+BdrdlvjjCZ88kMGgtc+Yzr57w/tduc/fGOfeXaz7+vtf53jeepYw238vCYdJGZwfRxOgCVWkJrhduibYcLU8YN5eU3Zb3aMP11RFNLo4NYHOxkdTBnVtks2k/TSUUQSkGbXlQVLw9XzIuTzi+/Sy6qvEXD0njpaDlGfmtq4rvuPcMP/XyB/in7/sMF82Ov/Phj/A3zv4SVhVy7Y1h7HtRLVa1uF47R1Ka4D3WGpwbaVvJoonaslgoVvYEq5D5MAZsYfHBs9lIkN7m4QWbzZpEYHu5xntHVRUkL63oorDEUTxGtBaESRxx892tLdZW7NZrLi/OBc0sNMF52s36W7qHvq0LEhTMu4p/85d/kmYsM2qg9rvbw0ZHsXdoRZGyO1PcFxfTkp5yLtuTLRudXzPGzB+RBwPpIKGN2ZskkePiZcArdVjIVL4BqrLk5Q8+4osfvk9ScHTZ8KO/916qnSVkvojznr7vSClhi5G6bijKEm8L/sjUvGwM11Li1jhw6kdmPlClIO6w+8+MzOYp5iJM0WCoteb7Tk743pMTLkfHK7sdr7YtaT5jNZdJate1nF2sadtedjP5JYnyJ4bA5a0Nn/yht0ga6p3lR37rOWZmjlomTGHRtgTEvnkcOtos/SuLco8IFKV4AIQoA9tkGW0IXs5FDBiMEBB01kklUawopZjPGobRkaIQlH3wDH2POZqLXXtK6CiR7nbyMlEaY7UYys0tL3+35L/UO8PTH61ou55ZVWOsEZIg7G+6iOxCl4s5zpV0/cBFLwqi5axBG2lKaK0xRSHXrSgy4dZzeblmHEZ2bcd6u9vLoeu6ljbVbE5VVux2G3abNUeLlRAPOSxj0/cTHnZR5oIEWPiG2/3pE5yRK3fBE0ti8IngIrbWNLUhYsRGLEtpJ8O0BJSNoqgLghM+SIoZtbCK2UqKEWVFaVOXByTHBdBSX2LEWDiH7imRAWfCqhuefMPR5SLQTEURqBLGHspcvOzdWEuNcp6UiiuEdIhRCeqzb8VE8APdeouPgXq2IkVpS427kapeUuzJoP/ix1P9NRah5gGXPKguOS923BwzuhU8hBaKCtQ3x01iDGzOz3n5K1/g0b23CJnkOY2pEAJG+ogUsxk6eqwtmM+XdNsLgnekGHDO7xG9cRzZrDdoY6iqghs3bklOive0g2O1mGX1F/z4vef5vw+/x7Ya+MN3v447iaxcweglkXc+a+j6gaKsMKZgOa/ZdpcoVbB3iJ2UFflaBB9IROFiZVOuaQ6NKdJut8L7CpFKy3wsao2GsirZbTfM5zOWiznXrh2zXp9zdHKN0lWMY7EvLM/OHmOC4Re++iP89nd9lbYa+ZWXvshf+eiHqc/tnpNmrCCS2hi89/TDQFkWdLsOv+k4NTXHIfAdKjIrC0yMKG3yzJ/ngZSVRJmbMR0KCGXJRhvOULxdzzmrapwS/5Uieqp+y8liRVlVjLFms+s4OZrT9wPWFlyLK/7iF7+XTzzzMo9nWz7yri/zR8++xve98QJaKcYQsYVl17aUZUVIsN1u0XZAK43VGlvVJIQIq7SntwVD39I0c4Jz7MYR70Ye3r9HjJ4YRvq2FUfbnKTe1Dm/JnqstaQUcSHk6JCE0Vayz6y0dUY38uDtu7hB8oyKskDFgtIa5rPqnUP9Gx7f3gVJhJ/46Ad5/o1bUn1rSbK4ejPILiGiVNrvjsn9PaOFfb1HN/KuW56u9kXGAXs4+JNMO/sUDtyR6ZB2m9oXSJP80iioy4KdVXz2B+9xfr1DJXj/l27x/MvXc+dISRhbztIBCN7RtYFxFOZyUZSksuKeLXjYzJkz5zhFjpzjZOg4GgfKqa00YeHqqqOiHBo4qUpOqpLvOj2h05rRGC6948u7Ft/3uCxjNSZik8Voec2qtLz5wz2PnpPY+Jsv11z73cSFOWPWNBhToLXP+S1iiNQ0TYZNhZlvyxKUxZaluOIGL7sqrTDGZnMnSea1iky+lZ3QFD5lTZLAK5K8js8RiTl/SL7GvctsbsSgVcIUhpfff0k3k5Tgd72yYnVR0m53DP1AVVfUVYXJO1If4xQkvHditbagH0Y2my2hLrGFIYWMPhizt3fWCkYni4WosaDd7fZtxKm9V9WNFDFadvjzo2ZvCne1KLm6x14XW84q2YHMfcPN/uTrbpWrz5sKmaF3bB9csrhxhHIKXViSU4xJ0JHyCkqxVwQA20dbZieNJE57ueNcichuQ8IYSJPyJXuURLJ0N8lOMnYJyVNURBcwNjxRkKQI0SeUDxgrDrhGAaVYuhQ5i7FBAhSTNoikUlQ3wSVC/tmhkpNWQb08YXe5o9/uCMOOIUlROFt9s3bN1bP2zdGNp/oT5l6KjYflJZdFe3hOChAcFMtv+vyUEo/vv81br3yZy8ePMDkzJSqFGwZSguVqRVUVxBzlUDQLyrKCxQnF2T1ScCStc1tTSKXjMLBcCrFUa1FFBO/ZbLY8vrikLG5T2IKx7VheVLz/3k0+/u7XWVc9n3z6LX7yK+8hxMgwjsLhUopd21LkXBWTQ+xsUZCS23PqJq5LCNmcURtsUQoJNqttILdtnJdCZ1bgYxTHZgVJaQYfOLvYUFYVdTPj4cMzLi/OCCGw220pqxqtFdvtlqOjY37o4XfywqObfObpN3j55BGfeO8b3Pj9OVVh6UcxHRycQymDd4Gq31J3A0+tN1TDSBPWeWFM+7bh1fb7oUs+2bcnPHChNZv5nPKpZ3iA4e7ldt++0SntTSp3m8uMBmu0LujdgPNS9IzOUZaWD739Lr73zffwqy98lnurC/7Z85/lhTdvs+wEmQkhMoyOGAXtDz6iTWSxmFNawzB6XJAAUpNRqna3lTY4iW635ezsIWeP7qPJXjVKoVKY9n45NDESIqgYMsetpqlNPh8mp0xDDIM4tDqXCz8RSxBjztcK7xzu3/D4ti5Inn37Oj/5sQ9SxBwpnXc3++jtKxNRRqFziBuAyqRFDSoS8iibhpu0Cqb2T/byn9ot+1on5kVPFpkUJ8VCJsruYfNESjKp+RBQRrFqa2Y7kSf/4O8/T3VZ4K4EQnnviCFS1Q1lVRO8qHe6dsdgeqwtqaqauq5JtqCzBfdtgS0qynHgdOy507ecpoSeepnTF6UOSEr+WmhNYwzEwI2UuNnUfPCZZ/jaZsOX12seDiIX9kZTWENZNlSzmusPG86u9fzgP7iJO++5MCPtrsKWpXxmpfBulDTPqhbGvNX7dGEfI2U1yw6MlSxm0e0VOSgFwUnv2kztrwOKFRJU9Zxh6AjDwPFqyXxWSy96KhrzhCKFWc53yVCrt5Hrj2a8VW14/8s3ecpcRy2D2D5vt3RdJ+e5qjNFJ+WX0ULczBCqnOKDwbniUEApFGVRsN5thYRYTD4YeVzkt+a8x202tLsdp6sFi+PrzI9XUslOQ5nDsnhAPBQL11D7kqNxzo3h+I9vDiRZI/2QuHzzEeXpCfPaIOIRhXPijlrqw+8iCdfEzCuxJieh7eE+CxraC0cRFPWqINuTkLmpaCOtGJUQ4zQBLulaR6ccRSiofEnlC6ySx3dDoAkGxLgYk83PYoCFgTIjJRjh7hB6kqkFYlEZqlGJ6DvG7Tm6npO8Y35i8V3Po8sBj6KZL9FFgfpjio5/3nFrOObELZj5kqVvSFevlq3kzzd57RQj5w/f5u6XP0e722Ctoes9292GpAuIntl8BinSblva3QalNcXiGqYoqU2dlXKagKhqhrYjRsfqaEVV1nvQVClpOfooKOV21xKTYug6ooP3fuWETz3zJjcez3m4veDe43OM1nR9z67rGUZPYWXc26Lk4mKNLSqck+BM50a0Fkv4lDcELjiaei73ZIgSQ4BwWghBJLXzBcNgGfqRwip2bYexBYNzdI8fc3p6yqypgMR6fUFVN5IfpTR1XTObzcWmIFX85U9/P5+//RY3Lxb4lDk0ShN8pKwM5TBy4iPNZkvlPUUSefqEvKaUstFk2qOFk/u1FNW5tT+bsb1+jfNmxpvbHY92LS+eXGNeNlwzj0gxCGl4HGnbUebfGIiup57NsLMaqyr6cYdR4og6DI4yWf7s576Ljz3zVUBRXxZYqxm7kaZpCCEImX8YKQtLM6uJwe9pCcaIt5AxWtYp7+jaHbawewT2wb036NsNVitUIwVSGAQB1kpRKENhLHUuZLXR2KJk9JFhyPNjL/5fKqdmpsTert5qTdQRaw2L+ltDSFR6p5zk2+BYr9ccHR3xv/ov/zw/+dUPY1VOvlW5oZJ7lyqfmD2CkcAUsmirlHBjJ7tXbfachoPzamLaDkt8vfyZ+rExeCkcnPTU9mmGSgm739o9mc/kICIfEsM4COnVKO7f2fD577zHT/7q+0huEhSD94HgA86NzBdLMQ5DSEKHYsVjjATHlVVFWUqQ3pQ5MA49buiw7ZY7zvOc1hxpTa0kAfXqofJ71tneV5KOw34xjyQuneNrmy1f2azZhMDq2jVO79xiPev5xPvucudXC9JDlwtD9UQrq6rrbAO9zJOUZ72+5HJ9ube51sZS1XMWixVHqxXWarx3wgUKI4WWBT8hPV9JmNViKZ5ZFdGJhLAsBA2ZkolThLqST621zhkdQjoLKkEJrz+1oekLnn60egKh6rqezXYLKJrZXBAqmyf+mDJBWuUxknLkuSByhRHVTF3V3Lh+nbfuP+Di8jKf9UmZFffv04VAjFBay7XjJbPrz/LCD/8YR6dCsr16o04tmal8DiqwsR0b2/Jcd5MndnLTdebwGirB0Ea69YipPN3o0KmkKGeYOmFMJCbZ3RVZNZNMDs4L0G8GTGMpcsUytUpCSLguicooyfMi0qmYtj9S0x3wqpAS4wgxOkkrbT02amxtqBpDdBBcoGoM1uaM3ZhYKpH6TgyvOO7w3Ro7u4YylvV6w+roCAgQB4Z2TbcJWN1iy0ToWzaPLmhOrrO49aIgdvsz9c4jcEjU+cZHIvHK7D7Hbs7SN5hkvqWU4eAdZ2+9zOsvf014YyFycXmxD7ds5uIpYbSi63va3ZbSambLY1747h/j9PotSIpXvvCHdLtLxtEzjCPWaFZHR9Iizeiv1Yp+GLlcb+m9YzmfM59VDKOHEOT1X0hc6o4Pbp7GdYFZXbPbDdjCsN3sKKuCoe9pZg3GFpytt4Qku+WuEyVfytIn70Ke/yJHJyc453DO03UtKbvdKaUoioJr166zakrhGAVHipHZrGGz3TD0A4vFElOWfPWVu2y3He96/kWqakZZ1dn/RxJsZ/MZXz3/Ir/11Cf5vq88zR23YqENehiZDwP15ZpydFlVObl1c5DhT/dJLj5CTnpPCmJREquK+1rxoK5ZvOtdLE6uEYPn/HLN5XrL7dtPsTo6Fqfa+YyuaxlGxzCEjHAbZrM5bdtSVSUqJkIY2Vw8JIRRzB1jRBfwS9/7B/zwa+/jufPrGDR2ks8moS73vXAQ225H37ZU2TOKGMSMEbtP4za2oqpnaA1vvfEqZw/v491ASkJQbmYNZVFSlJWYqUVB2fq+p+1HnHOMo/RSx3HMCL60wq2xmS9nqOuSpqrEg0qB84HfePyQ/8ff/ftcXl6yWn1zp+Rva4TkBz77fszMgtIklfYzrsrSq2mB1UodbNRR+9bMPrI5t2Z0RllilGJE+AIZ5M+90YnIekBH4hUCrDDQtb6Sspp38xPjXKBMg06aO28fc/utY3wIYhjEBFjITarzjRxTzGTJhiqB96PsRkJgdAPD2O/VMWUp2RIxRjCWe6Pn1WHgk6bgplHc1pqbWnFDK06UwGo6txZUhoT2RC0lu1+L4lpVcVqWfO/pCZfe05UlzpScbzXmV0554/GZoD/6kKNjjLTEhGnviFGyd0xZMIuR0QshJeQsmHZzQd9ucWPHanWE0XLtimzDHqOnGxz9OEmIpX0DmrqqmDU1ldVPcIC8F2g4RJtN2iJGWSEAhoSKYJ3h+bunkJJwDnKLRBuDNmLt3g9DTrGE0h7ySFxURAxalzmSO5JCf1i68vV0PrDerHFe1EBTQjIoccENPSHKbtpoKXB0WVE09R6BuNo4mAqLacFTyXLslpy4Q0vg6jJ49fv9js+CnWlsNac5UYQAbkiEPhCSQxWGGCzeBWwB1dISgvAXqlVF1wXcrqecVxSVTD5aK2yjhIcSwZZANj7b3xPTPZX/bZSiriB0JcaCOipIRgqZMEiWTn/ZYc0CawWlmWkprPctVNczXtynmC8y38iwOlrImwit9LxtQzP3+LMzHrz9iPP1lmvHgkTZ8lvbwf3zDoXiPe3tf6Hn+HHg7P5r3L/7Kt572rZlvdlQ1TNO7txivjym73a0uzXbXYsCnn76GVT0zE9uslqdZpQ3MVuc0G6lyLdlydFyRVHY/N7AO8cQAheXooprcjvSO4/VMiCs0Tz7eMXT8YhqVmAKmcus1aJgG0eaumIcxd/HVobj1ZKLTS/op5ON2kQCt9bka24l2yZLY9047EH8aUMkSbkFi7qm7+K+7VdXFd6J+/VcK5bzGZvNjm63o6rmpBTxfqSZLYWkOo7c4ZSf/+h7qN3A3J+zCh7TD5I4nQ5cQEFD5ASlK21tRZ6LtaJNmjOluDAGt1oxe+5Zts7hXKAPcFzWBO+489Qz3LqdsEVFjJGqrgBDUTbMFyc47zk6OmboO6w1tG1LWUj7bTZv6No12oV9YaQU/PVP/hjOB0xh8CFirKZrW4xReyTDB4/NLe5xEB7JVASm5EXWi8QIhLal3a3Zbde5fZwOyC+IOVrX47Y7hmFkGAaZQ+OhAxDTxJlEDNCKApPnSWtFUdk5R+gDQz8yjCNv3H/0Ld0P39YFidKTx+h0PjNbY9++OXTOpUiQBTfGsJ8YxSRJVA77wfnOIx3A16nAkF205Luk/Hu1lgnZ6EPK4dR3DDnjRil5H1cHfQgRn4sVUGiT0Z6U9nbLMaYcT28xpt5br49DLy6kuaVS5B6twGZKQudGR9Sat2LifkqUIbEkcd0aXpzPeFYpmisIzxNf4QrvRGGU4npViYJhHOhS4qm64a2jI15tW94eRvoQJMshF1VVVRFj4OLynKYZWa6OKeoFx9cbOZfeMQ4dm/U5Q99xcS4x3nU2kKNpqKuC7eWOh4/PcCFKy0kJEmULITDU5YJsPZuvs7hUDsOAc475rKGpD4RakSam/QQlyE5u05FbbzqhygpjS2LME6dsHThbb2n7ER8iRVlTN6K4MapApyHbLEuar6QnS4CgcyNGm4zo5fE1/dIMuXajo2y3nD+6ZDxaUVeKohBi6BPX5hvdF+/42Tf6dwIwmnpZMjpwHdQN4kkyL4gUEBOuRwrA3hN9AmUo5gbbQGEV3QbKMuF1wighkXol8LcvwLcJM8tw95Xf/07MQCMdlpASJoLNPJRUK2KAmZ7LbjUl6qQEZs7XERKXD96mxFPWc1QSw5KYIHlHv96g7UjdVIwebFVTakVpFIubz2Hm17/BWXzHESVq4F+ym/N1hxBAAxf3X+fhm3cZxzFnLe1YHh1z+5n3MFuspEjfOdpdS9fteP69L3B8tMIazezkacoyG8ApqBenhPgqzjnKZibuvnveWGLX9owxsJjP8DFSFEZ8YTIaHJKM72EcqQpLDOKplFKiKgtRy+T3XthCnhMCdVWjt71I/K2WfJMJJWHqmiWGoWc+XxKV+KH4lPYLm0cxOMcYZDG31jKMA6N3NPWMYRjouoHgI7OmRqnEdnvJ8ugE5aQ9GvsdTdfS7NY07Y6wuaCMARXjxCzMrZepqZrfWy4ArvZBvdY8qhrWR8c89I63Li/QsxllUfGcKTlZnUASgn1VNbQR6vmxIC1G0e42HB8fc3G+ppk3aC3+TsaI/LbvO1bHJ/ixZ76YAYr58ojNeU9KDmstWmvGGFFMbTAJ8qzqmpiNFVXe3Ewoc/Ae5z3VYolOYo1gq4a2bRnciHcD6/PHotxKGWnOBdmuHxiGbSaER0FDEPVlUUnae0yRth/oh0HIs0acVXyMhL7PcSUcWnP5JI/jnwDr+EMqbx5Q6eDKOuU07GffK+z5qVDQyoCekI+YeR7TkTNh4qEanNo3Yg/v6IdeVCDGHLIb9CEuOuVqPKSID5EQU0ZQ1J7TMJG7hHOgGV0mgqqcgBkDaRxEdRIKgi0yNCZx90YbjBWnxOA93o24cUBpTVlWrBZL5rM5263Id1EwpMiAYq00m7rm9dWKGyRudB1HXQde4sal/XOwz58m4ym5USVoUhJJ8dExH1wd4VLk/jDwSttxz3mcMXilMIUlRkk96EePsQXaljL5KIMxUmX37Yau3eHGQXw7nOPSjbRlSdeL1TT7gkLaKuMg5kyLpiKVdn+NfQ4EXM7FfOxyvaYfKuazmrIo92MjhSjoCeQ2TEbGslOenG8IGX41ydANjkePHjMFiY19y/byDG0Mq6MTbp6ssEq8SeazGS4iFvxVJUmnKeGDY9f20urJbS6lhDzrup5w7w0uf+0fEFJidf021597F+956d3UzcH1MEe8oJjQkqsj+I85soKlLmHo5U9Vy3VVQIgKTWJ2vSK2FTk0Fj96XBtQqkT7xLhz1GUlRbcXo7MQwBYQVOL8zQtOnz4Ve/oraM/0NQKxg1RIbIEbEvXqUOCrCXWJiVrBXE3Plwu427aMzAnWUnqwWu7lx48uWc4s1bImnD/m0aMHJB+5OFszKxXPvPu9zG88C9+SzPdfXn3zjY9Ev1vz+O27jP3Atm0ZxoHT67e5+cx7aZo567P7bC8f8/jhQ/qhp64Khr7jwdBzcnrKSYbF9463RYH3kihttSKkgEmafhi5WItFQl1XLOc1u34UxcY4UhbFfhERz5GInVucc9R1JQW3tXTDQGkN3nlms1m+T0dRihlFOwbJo1Euy+Yjh6gOOX8hBGxZyIZlPJgXOu9xw0BfVrRWMatFtTP0I3Ul/LK27cQDqak5XS3ZrXfodsMyRq65gXm7xeQChJQo8xCZWuFKT75CV5qXGQWJSuG1ZlgteTSfc1HVrH0gKFmETxczrl+/xdHRCVrDarkiJEGAdruW1dGRbBiLihg8i9UKpTSL5QKUyHCXywXD6GjqBmsr0Iau3WGMZRhGmvmKbntBDA7n8jkMQQwHQ0CXCjcO0pJRglr5GNFWsrGWJxV918kcozXdrgWt2OwesFuvxUNkHBi7nSDsacoQMvgg7R/vw36jpkhURclisZBMMWOkhW6knR5CEmM1JcKHiZ+kjLTMlSn3dIhy/s3J3FePb+uCRIhTZv+hp2o3M4c4JG8cdvl7X5BcZKjMO5myaJR65zQ+4Xn5MVGY0hJCN+ztc+uypFSFtIkmDDBD0zHm5F2kT5mZpYcNsRLjtJBvJB9DbtkoyXJBlBrjKBwSQUcgRimEyrJElZXcwEPPOA64caDv2xzgJoZDU/gfCPGoqmvKZk4oax4ouGc0qbD4ruNaSlwjsUqJldJ7XqUxJqNPUlnHicirFTopCjTPzyzvmc/FLdY53naOC6DXllYXtN4JChQjMXhiCKToKYqC6viUIkthjdZ7BCp4yXmRtlrK6p0DmjEOIw8fn2OMYlZXTFLro9Vq30Pv+1YkkJstaEVdVZRFiTEWlChvpmJyuvZaTV4p5IJPeuA+QlnVFFVNWVQ4J+d8GAcuzh9TGMWtkyUKRVmW7NZCaK2qWtpGWtP1OzbbLu/0pyRqGTui83fEQdp17eN7PIoFz737GbhSkLxzKb2KhlzljPDOf6dp7EmRUNcwDOBGKSRUEjVL2cgk7nJQbWGhmheEVIikt2roL1uGy0AqxBcktHn37TVJK45vnxIG0CaBkQUiZi+RhCz1o5XXjkbL2D1HOCQLaSdqoDCKOYfSYEIIH95/QLm4RqSk6zyreSQ6+TBxGIipprx2gybc49Hbjzhfr7nx3udYXH8qS9O/hSMpSA7Mt/j4f95LxUi3u+DB3S8zjCNdL9lQpzducfOZF7BFxaO3X+Py/BHn54+JIXC0OmK1FGOrBw8eEmLg+p13U+VrqAxoE5kvVhAlRM05TzeObLqe1WKWx4TCh2mci5X6tEAXZSk8gX5g1lTsul4IsCGilYRI1lXBZtNSzxoGFyhLWTSLwpC6AVNUQj7P40srnZGSqTSR4ttai8/KummOdKPDBc9mFylsliy7kWF0aG2wSmF3HUcpsdLCG7tx/w3KPGdPsRL7dvOEfEw3dK7c80qALwvGpqGvZ+zmM87rilQ3JCQGovQe54OgFbniH72XANCiwqCompII1HWdjeMUQ9RYU0jgZyH27Vpr+n5AGyn0jNW4LqK15uzxGYvFgpTAljVjv4MU6HsxkjTGoLTBBfFFckHa/r0HN/q9Ed7mci2cj042ddP7dk5C/aJzxBwdElMieLkWPsn86V1gMgJViMljURXyf1ozm89xztGEhPeRXSvjQxsxSRR1pKjdIgrvPMH1JBLt5uJbuje+rQuSffEBh0JC7Wtyrk7H06738JO0Lxyk3XKY2g9ckavoSdgTNX3w+Ci9vsLKjqLtBwbnqauCpqr2WRKgCJkkOyEoOmOsKfuDTIugzj14EB5Lyu/PGNGApygIzZgRE3EPlayUIrdp6roRuNMYhr6l7zts8NiiktTeLMuq65pbN29xcnxCYQucGzhvtzw+O2c9OL6cIrVSLLznmtLcsYbnyoLTTBTetzwm5u7h5O2/LbTiVlVyuyoJwC4mNilx5iPnoeehi7Re3pt8Nk9ZWJbzJT46CQizgqwEHWl0ibE1PpukeTcy5BwG0dz3nJ2vKW+e5htE8meMVmhtsXaRSXVCzuq6gV070NQ1dSVFm1i+Z9lkViFMihxjNE3TMI6OoC0nN06yTbIQdd04sNucs9tcsttuCasZphRlRTf0hBBB5VaU1gyjEWt9pfbQJpngp5SW5FTAFhVd2zJbrSiqr7eEv1qETK466hv87CoqEQ7DHzgUJc7B0CeMTtgiy42jeH/EJL4iBdI6UjoxKLCzRgjIoxEX1tGjXMLWJclFkS1rhfcJ5RTWkF/k8F7LDFgVKlEcleL8GhMpu7OCcEeUmoyY5I2vL9ckXROTkeyRUkm/J7b4FLm43LCsOxQFrhspCsOzT9/i6Jn3o+tvTq77ukPnkxZjftP/8ojJ0K45f+s1+nbHODqGoRdU7Zn3En3gwb2vsr54zHqzRhM5Ojni6PgaVVWz221ZzGdUVcUwtKx0NppD0cxmrI6vc/n4LXwIrM/OscZQGIMxWuSbkO3Z5RQqLYXG1Gru/IGMWtg8PrOFgfA8Ej7v2KeAzmEYpIAgyobJWgYvIzHmlkMMnqQ0jCPGGOpK3I6n66gzh8R7zxB1LpQ0BZry4pJFiFzftNhxZLbZomOSHCnRve5FDCDo+LQ25ClfNjYx0RvDRVVxZi1tXdGXFa4qhci/3pAu1vjgsMbic/yE9+LpEmPg5PQmL73/g6AUZVngXGCxWjCO2Sws38+S8i3nNimFNQVtu6OZzRgHaYn5cUAD5+tzTOatldWMDRfYsiDiiabI1gWyHgytRI+UpWXoOylujCZ6yStTGoJzQvP3IQsAJCIkhrRvqWilJUiThPNBHLPz3G0zum6tRKA4H2mUResCW2iKMtE04HxOlJ/sMQLoTL4mJYLv8V44lsMwfEv3xrd3QbLvDKo8+CamxxTkNi2W2cExj86DE2vKz57QjCsLkDRLM7yeC5JMYhXVjvhE2KlPGyPOedpuoOsHmqqiaepc/cfcysk8lvxO49W2Wh4MRVESJ6qiUldIqiHnwmS3wdw2ckgFHWPAGruX2xVFQddOslcxY6trgVsH51gsZty4dioGXrlf6XzictPiveyaOqPZYbgfI29oy9mdZ3h6NuNku2W5uaQYJclYy5tlv+XO/74q4DJKcWQUR8BTRuMAZxUXAd4OgTe9o1OJSluSLdiebfbkz7ZrabsWhRBWi7LCFgVVLbyN3XaTdwHicBlCynD/FBwoC6jVgoZUlaSTOufE6bXrGMfsO1JWVFW1l0UHnSiueNtoU6DKEqsKjC0zedoQlaKoNMdFKYz/scMayeNJKdF3vbT2lMY7h62qPUwuxN/DueuHUTKFlGa5WlEUJf1uy2JVYMppzF+9D55EQgDuNvd4urvJpPOIHNCU6bGTL9n0GgpBKXyfcGPC2sTYQtGItZjOt9DQAziqxlJWYCoFocD1ibLWoBt8F+l6jy4M4zqiVcTOLH4AZQNlYfIO+vCeOzPwRv2QZ7sbzJTkbkQHrgdbTcA7T1RXKozcuH2Lto/sdgGtJUxMGyFtBhPpXcv2zQsuhorTxYLrd26g63dCyO9k3LzzUPkEfP3PA4G7zSOe7249+Yp5DB1Q1yTR9Y/eYLs+FzXM0DNfLLjxzAu4oefy0T22W4m2L6xmdXQqJmB1IzttBSfXrmUCci/VohLiqDGaqp7hnOd8s0VrLcqJzDFQGR4IKVFoxRgCpimIQ8zzJYImZkPBZib3SWktzkmCawiRuipxo2fW1CLfTYn5rGLXDXQj2LJkHEeIiZQt58VIC1ImmZeZH3YwUhMOUmhbrq1WHJ1fcjyOVEOPDhFx+4+Z8yfXQ2vhCcmbv7I5ncJClCIpjVOKV1zkfmE4UwqfvIQAdiNptxYLdB/286gxBp/XDu+9JAsnSSSeVQXzeZOdcKVoDjlaQystqIgtGAdRSPV9h9aaQW4adtsNSknRH1OUa73dMjpHURTE6BkCXKzXuCwE2Gw21HUNKRDciDGKMOq9UCOMuZCwimEYM6k45QIk7vmTRkNhy8xHLBhHT9sPwm00JTpBYS11WVBVJVEZVIrUdUVVloQgc2zT1FSlWPw/evyYlGJO9xXVZ2EF7Ze4kVauyTckZ3798e1dkOipKs7TqVJXJji1nwikpbCvR+SvXJTsd5LTjh/22TUCL3JwYk1p32JQSstOL98YuhCWcfSB0Tu2bceu75nPZtkh9MAdSXkgQ5aapbR3FVWqyBdPYE1ri4yalHuLdaVydPcoibkhRmLf4ffqIpUHZUAbQwyBdrelns2pm4q6aVgtFwKDGp2lq4myrDHa4smfzxYEJcWXbSqcVTwqLZc3b6Jv3Wb3+uvEt+5yWymOjGGpFFV+fyojJymJudBUIIr5jnijlBpmyvKUhe+rLLuUuNCaS2M4Pj7mrG15sL7kcrfN7Qw5xrED5P3N5pKdENyI0YgHiTX4IHLDSSmUW8V5Jydjx1pLVZX4bAPftR1jP1DWFVVZoIzm937yLX74d58m9pF+DKAULoAyGjfKpF/Uc6L3UqRqxbWTa9QWLI5ZM2NwjhAlqKqu5Wa2WjMMQ+61s0fjtAY3Clem7yVvpygszaxhcbJk8vl65/J5FRUZ9Mh//tJ/y//h8/8u15ygAOYdj08g9t1X4pCmIrmsFSkphp2nnFmsdBjldRRUJWzWjqqyWKMk7M5IS6VrRb47mxf4QhRDVimClyI0xEDsHcbUmEJeMCmxNb9fnfG33/Wr/Huv/nmevbyNUoqilFZSFSKmfQSzFdiaGCND3+M9FFGcgRe1Q7stl496ytmMsl5hVc/lGWxHRaEDqxvPYmYn36A1+8fONvIhv8HzHpcb/pOXfon/4jP/C+p4paWT0hOPTwmG9hHt5WNSjLTtjsJaVtfu4IaOi8f3Wa8v2W7WNFXF0ckJJyenFGXJMIwig10sQRmRewYH0ZOiIiaF95HeOXbDwDz7ShTZHTXEgFbIWEwJUxYMOH79e17mZ/7gfXuiZ1laum5k1/coDc55Ul0Kj6TQJCJGS4Fd1yXDMDBrGoJzNKWYfJHv85iL7X27WwvaTIqEGFjMGvxmg3KeJYqTGDh1A6u+3UcWPNFuyRvHmFKupNX+ZxnTBlsQ64adhnjtOuvFis/ce4s333qdWmnmi5mQM/OcrrJPR1FlLyE72UeIw2zMLofJw9F8SVUWnJ894vTaLfqhRyvNdjNgbUkK0mLxzjG6kbaTLBgfgtjlA5vtBoUYk4UYZDPlHVZr+uwTEpwjJmlbBR/kXLouW7YrFBo3SrpyDEIeNdYQRkFSjDYUZcnkai2bTS/jY/SMIRCDoneKZEqsFm6P1sIZi8mjVMGiKbDWUjc189kMreSaTDw7rRXbdkff91RVybxphMAf4x5INGZCjf4EFCQwwekZd7jSvpnaMykeeCRyHNARxZQ+OxUjGT3J1d2kfpjyIVIMe88RBWITriaIP7P+rUU7g/OS+rrnrqhDj1OpHByWeRg63wBaGalKc0jWhFwopVhf65n3NbPQSNCcMXlwhGw05CVpdnC5gIGqrGCSMQPjMMjuvCjYqISxluViKSx5A/0w4IOoCXRGJ2QykcyILls+F9bS1A33g+eVfsAAJ0ZzXWmuGc1NbXiqKmmmG7sM6KjRQaB7tWf8HlAqgIVSLEg8Gz2jVaznDQ904l5heTyOnHtPG8VMLcSIcwOXFwNlWXN8fMxqMaMwGZ7Ni4EPckOXE7cnbwUnBYD0ZzUrY/fnsOs7+q7n7Rd7/snPfo33/PYRxVYM65SeeuJ9nuQ1fpT8GVuUJGsZB8dydgRe1ALnmx0xz6ERUKbAeUfXDyL1VTkjJ+drTH1uIThHVCqprp0yP16R0fM8kr/B/QB87uhlPnLtj/ja8g2unX0H5N97tcmQpv4Oh9eLUlPJDiyAbQzjKMV6UbIvLK2Fo5MZLkAaM60iKpSBZpHYPfaoWFA3WrgjhTwnBIhzQ/JiUU8AB6iY0FHx+vFD/senf5c/f+/7eaG9RcYuqYtEt+5R0VLlyN8YxG4tTv3vZDhdOIyaocaSdr1loIChpd9eUqnIjedfommabzaTfJP/v/rjyYvkyeOLizf5rWuf51NHr/DD5y9989dIid3ZpSwGvfgR1fMV3ju67RkXZ2f0/Y7lvOHk9DqL1ZGkrmalXVFW+BiYzyrKosAawziMjF3kcr3lwYMHEsA2W2KjKFRSDCgMKSSizqTtJN4/QxP4ez/0ad796jHvffME7wNaJ7a7Lkvxe4iJtpW+0Ga7RYwFEylEmlpaHSlF+s7LfKUSpIgpLN7LXJQiYGQeq1Ji2XWsxoFlCBg3MouR+soOekIjyV8nFeNEOlJJEWwkqkjpC7xS9E3NuDrG3LpDPDrmYXBQlLz11hvce/A2GvH26PqBwfi9MZtsBg0acQSe+CyCkkeMtigQHl49J4G0zVbHDINERqy3O4wxDENHiondThKN/TjQdy3aGvw45sDNyDpu2NYdJ+eNKCOt+Clpo1FRyFuF1WgiITdhgxdUXGmDG4XYXxhpoZha5uqU5PpOG5zRi5vrMLaMPjCOPitDoyBEAvEc0HcQ5NIY3CA5RXUjERpTSynExDCOxCBCjaqUdnIMQYqxnJPjXGB0Y15HBSH/Vo5v+4JkvwlRh4E8ffZJNw2Ji+WGXd3x9INrHCSWKnMz4h42BA7eIikdipLcJgkxkPLAEK+NTKzdL3Q5fjsTtya548RN2DeJdERj90iNJL5qcQBFdtpGG7TR7GYD/93Pf5R/9+/+NIZDYN+UHRGCYxwT3o/7ScCYAlsUWFuglGShuKzEceOAdyPjOLLb7WiaGUVR0LYt5IXRZLQFJTHSs/kcpQucj/TDjs1mzcX6PEuU4XFMPIoB7T0zo3nx9IjrRpHUOUeLkacezDHT1DLhw0xS7EPhNp2PSmluGM31+ZwX65o+RvoY2YTAm8PAG23Hw76nDwE39pydPUYpOF7OCD7uizCdbYz35z7XQlabLMMWKbPWmmg0OorBz04N/Npf/hJnJx1nacPpWFIWlrI0gMnheUISDs5nM7uSURlGo1kt5lS2RBnDtt3tpcd937Pb7qSnjxjmFVZjC7NHcmImuAqylyfy2YLl0err2jPvLE6ccvzGzU/xxuwhX1zd5YfPvuMJ/sj0nP3rqANo6JCWDaJWpiw0xoIfQftEEsPUfA1zsJ1PtBeRo6NsiBegOW2IQZ4z8USEOyX5N7tBkkKbWsZlcIqkIp84+TJvzB7xe7M/4ofufQA/BOm/B4/aPqS5eXufomqMQVcaoxImBepCxqEuIrMiUQPn28jZdoNzkaff9wL1YvXHlB1P4k5PtFymk/QNXuBzq7u8MnvAr9z4NN978V7KlL0/9JP2dePQ0boSs7hNGSxF6BlGR799zNnjhxADq+WS0+vXmc9XJISkbk2BT5FtN5BsRZPI40Ux9h19rHj99bsURc3q5JReeYbdI5RXBB8IBfgYpZWhDUWeu/p65NHRjl/88T/kf/2LP4EdLE0pmymNxpiCstJ7L5/RBbSOlNaAFl+MkBAOSVnlHBUjkmJrCVqaJ02MrFLkeBiZp0SZEqVSmGnue0dlnfK5uzpup03nNNH3JfzGB+5xs3uRpr3FaA1mvuD09lMkEjaUvPraKzy89wZEh9HiSWR0YrVYoFXK+VmGwlqRDSNu3DoXTxNq4ENA24qkDNvBYdyas/PPoo1hu15jrJDvhXSvGIf+kG4ePGVpCC6gjRb+X+H423/l9/nrf+f7WLpa0PcMBjmXN2lJKEuiGs1t+FLaIdMmKkaZJwbnCIO0n0eXiffeZZfckE0eD5xIP+my8zSs8xw4rYtKiZ/WMAyEy0vKvqLbtftuwTgKD68fBra7LvthCfI20Rwmc0kBCtiHlP5xx7d1QaKubhchFyN5qt2rMAIPjy/4f/3cL/Nv/8qfQoa2HNJXnZCKkG+MvGLtC5KpVRMIQVJjp6JHFjLJ2JjyRmQF18xmUmQcHFAzryXl35t/10SuDSHgUwKV8iCRS9POR/7Ov/F73H32MdVoIVt725yGCwnnFEPfMQ697Ki1/MwHT0JRlJI4W5YV3jtR6wS/J8duN5eUVU1dV1y/dkrbdsKVybuI46Mjbt28RVmUdH3P5eUZZ2fn7DphkQOonBtjjeb45k3GRcUXllv+r3/tU7xx8zH/2//kB/jxN2/ydEosUJQoinw+mEII1aF1Iemk0n4qEKLVAriWEu+qa9LREUOM3OsH7rYtb/c9w2ZDKsUgKDIVlokJDSuLAqXJsmoxPrsCqJNCRr6s5Ys/9JAv/OA5ySfiUeSGP2axXGC0tINkV+DkBnWBYRR/ER8SUVvuP3rEYtZwfLxCm4LFckWKIvWNITAMHd45EpEQJ4RM5b563Be1SokyrGyOqZ54v/vRdmXiTtydP+BXb32CUXs+f/TK/jGGK62ZJC0Yaw5tzHDFJj4mQTS0EjxAV7BbB8KuZ35tLjky+bXqSpQx3okJ2tgzdU8ZQsSUmjhEqpkUXIWG1coinniSVVQYRSg8/+zZj4OCX3vXJ/kPX/15lFe05xeY0HPzZIktxaPCe4GohzESdYWJA74f6XcBHQf6pJmVSyKB27dPSElRL06YoiW+tSPhe4cuLHp/ntI0YJ945CePXmbUnr9/+2P8tTd/nBd2d/bL535OAdYPH1LXM9bn93G6BrvC+3Muzu5hVWJ1esLx6Q3qpsE72TzYopQo+CHQ2SVj1JTDyGkjLdzzRw8Y9ZKnn34OlMEaSwf4PP/FFOndKDbeKWEUDF1HPwy8XZ8zas/HPvgGH//iW/z4518EZVkeNxA9xhqIuVUTgyC3KebNl6YbI7qocDGbDbrIQmmS8yxjoBlGVs5RxPhEa/GJcZvdl6+KE9LVRyoI2uCVxheW7XzO+WzOJ1664H//C7/Mi48e8zf+0S9wdCkuo/cfvE2Mke1uy703X2dstxgDXkAFjNHMViu2mw0+ZWQZkdPGGBiGEYUo6qY5RCsl7YhyS91Ukq1lTS5UI36Uze+UED7dU8YkyrrGuwFbKDGHDIEiKF55+hH/37/8Mf7af/v9HPcN2sq1UyjJ5NLZ6TtvnLRSjM7TjoGh2+FjYBwG+q6TzaZzB6FBlBaoyuRS0pTfpfGZhJo4DOX9PJOvgTVqb7nTtTt2W2klkRLWSuE/9AO7rsONTki8QRCoiRfHhPJrjdYwq97pD/6Nj2/vgmS67dXVXTfIZRGo62K+4Rd/9tf50nOvc7KZZ37GoRCIVy7QVJkevs+OrNl7JOwrS7VfQOX3s6/0tRYrXXHgC7lVczBDI+WFEnF/RUuB4kPEhUhM4x4q7IuR3/7xr/CJ732FF169gzXFXs8/+Z6QxLk1RUdTCWEpZIQnxUjAE/uIt5LMaIylaWZZMRT2UtY27PYk2tVqiRsdo3NoXXLt5JR5M9vzMupmTlIXgtRc6fMqlVgul9y4foM2nvHPfvRLfOF997Gt4m50/N4w0pSWG7bimtasguOExLFSLEAQqn1ReZiwtNJi3zxxaPLPGmN4fjbj+VlDSImND+y04jJG1iHgUqJD4RByW0wJwxQ8lvZolrUiG9dG8mm2JwO/81Ovc3EysDovKW/WHPkVxlrIfVlrLcoKCU5rJyRaBYyOYezZrIWwWFWF9IFtgSktpW5QCtYXZ4zDSF1Vcp1iZIwR52RXJrWgnAdtLPPTO4eW5JV74OryGEj8wekX+PyxFCJfWr5OIqK/QZshI6n5+4QfoG7y703ZgC3/MgMsVoYLp/FefEi0NehKoSLMDIxR4T3YmTzee4UuNcGD7z1GJ+rGZkRKfmffilmZNfBa85jPHr0MwGdPXuZi9Zj3qFsUvUePYOsZMSZ22x1tO2Ay3ymOG7zbUc5OmJWa3cUZjx9tCU99B91uy3PPnFDPZofE6j9mRnniXyrhnEONPjslfz1AEol8fvU6AJ86foXfO/0i793d3hckIItVGB1BVShTQ7K4bk1xtKQ+eYqTYYtl5OjkGkVRZVfjiCkrXEhsg+FR51GFjNVuiDjr2bY7vNKc3DhhdbRiu+2F3F42gEGr7JqKpqyER+KGnrFvSRF21UjUiYtVzz/9/i9y+6OWo3ORyIuniaPIC1BhS3EZ1uJBYYylAo6rmiYllustjQ803jELQaIN0rQpTPuJUlC5bAyZi5GJV7cnwivFjkRrDa01DIsF59rQVjVjCqjouNzuGFTgE09/lV96z6/zc7/93fC2JIQP/SCITt+RksdlboUtCtph5I/+6IvAgfA/oamQF+X9+5XFelZXeX4PjH0HKhGD2SN/KLFRCFGiH1CIusxafDdMqw0pKYyVROqTds4nvv91nru4wc9/5HtZJCEQhySeLH4cCV4UnUMnIacxRtzoOMSb5HpDzvK+GFCQk7p13iirjLxr8AofxkNRkj+oUWq/qY5JFG0xRUbncT5inNurrpRSOcJEPLO0FR6cSmnfrUhaXlPa0GrvGPzHHd/WBcnkPSJkm0l9MPE/wFvP3/3Z3+J3v+vzPP3wOsZN/X/2FxWQRTDty5TcNiDv1IU7EqPfL4j7KoRDYQIHV9aUCxiRm0obxmi5+eI040+/d/p9WUqX8nvTJvHpl17h1/7U5+iakdVFzaQiij6i90ZegegdVWGwdSmwGTAMY3Y0BaUTeCDGPfG1KiU5M8aIc45hFH5J13V0bUtRllRV9gPJXigAbuz35KaDcknOh9ZCinOu5SvPP+BXfvSP6GvHsq0ooskkRIuvFRdNwxgihfccWcNpWXDNe66nxDUlqMh+Rzud5FyMCXKeDhNdkkXuuLCcas0zKeFTok+JARhRbHxkmxK7lHDZbXWKCNDaEkKG103iMx9+wGc/fF9uLANhSYYrUz7nwga1OcDP2AJrHUYPe/hTpHQ99x884Hi1wqSEG4dcSOYdJ3C0WpJSous6dt2QVQQ6k9Hks9ui4NqtG0+0ZxRXOCn5/7z2/OJz/wynJTn3QX3BWbnh+nj0RJsmIeNBFVLQhpyem0iMDqpKJLrWsC+CDIrlyYyxl52XFhNbRgemEqKrC4lhF5hXhkYuINEkelVkVDAh4b/SvimrbJYX4DdufJrBCPFvMI5fv/5pnrn/U6h+5PjmDeqZpOjOZg3GWnatZ73dYuyKy15RtIpFY+iDuFUG17NoLNVseRg3+7M33b//vENhqhJDEhVDihAdMSqULfKwVDwuN9yrL+Te0IH/93O/xr/15o9fIbfKXbvedsSkcOPIerths7lkWc44unaH6vptbOoxWX6vtUGZgm70XHrD/bNL4S0sjpktV+xGx5u7SxazRrK5rMbohFLiU8H8iIuze/sIC6Pkvt1ud/gYMSpRFpawlPGNgk+8/y4ffGHOz/zB8xilUCFiUyBm/sowdJRKMY+JY2VYuZEGRdUPNFpRvIMjMJmzp6kv8A2OvdIxyeM3WnFRGB5qzU4rRmMIVUFMHkPCby9BiQBADT0qJfrK8Y9/+NO87yunvH9zk+Sl+PVe2jRjVpoU1pKUoutHQSbT5C8k5NFZLWpG5yXGYy+BzaGezgcS417qLDw+TYoKa/Xei6OoxBTMZPWd9D/lBPjsoupd4OhyRtuM/KOf/gzX35zzoY/dYexHSRQPca9SmTLW9mM3TmiSrFFTa5e8fu3niGwSWlc1RTnFWqg9T9ANB8sJlYuRiZcYk+TPaCOoDQTG0eG9qHoKa/cu6ft1gGleUky5ceRWuNYaW/wJQEhgYiGoPek6pXziy5G/+zO/wa/9wB/iisCdh6doP7Vnpur9AA7K+ZOTmZiKkLDvwcU4XcArBFqV3Vzz6wmZNPfoFHsHV0kYzmSwOKVJZv+ANPmNIGZB3oNS3H/3mv/+f/lpNiciF2vuaR48fCBhekWJsTZr4yPeDTjvGZ2TID6FOOu5kBdPlYlMYkhmrWUcEyF6rLVSdOTf7b2TVF/n8OOIL0senz1iXCzlBtOadrPFOb8vqKZzN1Xjj+2G/+rnfo9HJ9t8jTRzK+mnY4ZGvR+BxHocWRcFD1PADSMpRJZlxW0N7zKWp4qCRilxxJ0KuGnoX5kEr855CiiUEsOkfMOGlIRclxKDCpwBZymxyd4B5Mes5yO/9PNfoK8laSPqRNcIQVlahBL9rbP/i0q5GM59V2s0o9VS5Dlh11dlgVjaCwF7HNp83oQBXxYlIQSc8/TOH0akUpS2YH5ynaPT5uvm9akwmf7/I6df4BOnX96fhM4M3J3d4/p49MTzFAiRFHFGHVqo52KKVlnJ+NmtA9pElgu7L8KthlQBcQrOSzSVFINKScIopeZyM7BaVZRWroMtFT6C94lGJUoDlVbiVOkT2yHwj2599NBSIvE/nvwOf+n+8xzVFVVd5TldZchYE1wiKCmiU+g52244W5doZQhmTgyBG7dP9lyvf/7xjYuUaYNhq/rQX3c9ySlU3vF9bX6Pzgz7p/7+tS/xO6df4E8//PATr5rCyKZtefD2mwQ/MGsKVosZJo5UszlxCLhxFNflCBe7nsdt5OzikhB9Nqpz9Js1hoHlqqJpKkafSMGhQNRbhRXycFRZGSjwej90GK1oqpKhH3Ahcm57vJKxPzaRf/jXX+GHPv80R7sSFQPzomAeIscJjpVmicDvGpl39wulmkasyt8fvj6RDZPPR1SyP3LAhTU8toZ1UzPYHLQYpH1elOLWarS4XJtCcneSUjDsoQEenWz5r/713+d/85/9JIuhEj5Xbjn7kNBJERJ0bUfwkUN+CzRVzbWTFavFHKUVjy+3XG5aUkwU1tDUFVVhKcsSYzRlWaBz4rkxQpQ31mCUKFVCDtocvCch5pneebquE86Nd3gfKd5I8INwvmz5m//m7/I//+IPcvvRgpSmjKeDQ/bkT6UBlVtFKSFqmXyNpQWTxL+PAzphS0tVF7LxCAFtBQWWXC9BNGw2NBPn72xPkaXCVVGSiKxTpO16ymx85p2gy0brvcHhNCHZzCsUBEk4OrPZ7I+5B+X4ti5I9JUdesoVIyS6euAf/dAf8I9/+KO4QhaWpx6dYqLaV5wHYuuVYxqlKWXLeEndFeawWNGLn4jKjqEHt9WpkA0ZcZgqa529J0KI2dX0sFdV+88BOu8plFG8fu2Mv/fvf4b1abdfm47PZ4Tg2G4HlBKfkSrD/ePQ45zAykVRMDonIUdK5F7yvhIhL77ejaSoSSnL0ZSmyFb01lrqWtjfIYg76vrygjZbHDd1Q4iJum4YhpEQvXAvlOb46JjqpOK/+dO/wyvvfniY3xOYYITclaVroxv3PIkpM6NLicF7PHDPjXy+KLhxeoNnV8dUl2ecpsQiRmYpMEtJoucnG/srpCwmxEp+IGd8Is+lhE2wUPCuTFbsfGIDbFTi95475/nLigWJR8uRQSe6RmR4Ouk9ojU1YJXWe1RD24LKaAqjGQaNNZ5d7/HJ4AdJlp7s+2dNI8/J0uQp3HBy08nTOUprTp6+c9WcdX9cXT5HPfI33/PLeBX2/9eZgVfm9/i+i5eeeE4EXJ9wY2DceZQJtLHAj4m+Ekh53PQEemKcUxcVOkaCAj8Gqtoy+IDvRppVCWW532lVBaRVyeX5yPHSUNUWo4QAqxPgHegDMXtuIq/MX+crqzcOH0jB107v8eaNDU8Vd/AhUOo9FElyHW79OsPFYx6erYV/FcBHuH77Dtdu3sHaAq8qYi/+Mk+UGgrZxQHf0OBsv9BeKXgVgEGIT4dpUwqScf9vpwL/t+d/mR9//H4qLxJSNzqq0lIWlt36EUVZcPLUe1isjum3awIR78QLoh89m25gnRrGNBIn12YF7e6CxdF1mmaFMdI+LiapJpJlMgwOHzyz2Zx+2xFCZHCjbGDUJA0OdJst9/uHzFvF7c2c6+uKWxcV1Z0tH/zydVZKs/L6iTn2HSfpsFNX0yIqq9BhWpV/RKXoUHQadgrWxvAgRS6MxiUxTitDvoATf8wYQu+whcH7ifQp98PYjcQuPFFHvvyuR/zyz32Rf+Pvfz9lJ1b4IQRsCMRELvRLlJW51hhR1CznDc18hrIWbS1l5amcIAJVlZOHVcIFhw/yVSlBO1KMghpolef3mDcWgiT4EPfI98SPA0FPFg+K/Xu/PO35e//hZ/mF//OHuP7GfI92TAh8SAmtLFVTZ0WkFCXDOPD47EJQ/Gneyyiuygi6d542n4Pp/RVGNjoxI/MmE2UnQ8hpLhLEXlo7E11BMXHzpJARQ71sHKk01oodg7VCWDdGCpI6+W80iL7u+LYuSKZJ8OoRdOS3vusz/IMf+33a5uAOd+vREcqlvcMpTBd9Og5qlxgmdGTyHfGi2FETTKVRWfKbpn8LbEIM0uNTSrBQk1EFlbjS8pm4L3ITG2OpG3n82XzD7/7VV3jzpcsnJoL5I1kohO8A4ygupYIcyC69HwasNTmbQqBKawtRN2S5ViLlJMhEGAfZbSjxKhH0pMj+HHV2HhT51jgMjGPL0A/YwtI0FXVd0/cdfS9uqTdv3uAjH/4Sv/8jX+FqLJBKUEYlBkvk4iGEnB8jnIwxJGxRY2zJclbz6OyCvh+43G4xVcOghJZZKFhpxbGGExI3jOY4RupJ3r3/verJBSVlNOdKQZpy1kajYKYU10zi9PUjfuBvfjf3j3vurwYeLgeeemvJjZBoU6TLXASVAmAxtiC5zCbXwtbQutzr7q2PbNsWk8KeDFhYI1JOpfZFZFnW2NGjvKQYi09KSbM45sZzTx/s0nlyPz99wk8df40/PPnKE/dCb0buzu/vH3tAVBS2MBQLQ1kXVFXCeUhBUJOgFMM2YPSMelmhvGLsI2EEtKLfRGkN5p5R9sYiegncs1pRzQznZx1HJxWzpiB5KBUo5Rk2G8r5CcaK6uPjt15hXbZPvPd13fOll8744buJy/WGa9dO9pPh5vKc9cUFfhRvl/OLlnYYiN5xtKyYH69YnB5njlXmh6WIGwY552WJGnbSejEFB3+Rd+5QvsGRNyLT8fLsPr0er/wcPnr6VT5x8jI/+uBFppabMXP6u3c5vnYH3IZ+GCmTIoSRerYkDBu6vmfnNfcue1QhnC8hOsLQt0Ju1AZMQSQvCtYQgmOz3jCbH+OcRyuYL47YXj7Ax0hT18Iri5HYDzTdwIlz/NzdU37s73yQG5uKW5c1N9cVzWCYVxYT1JOnY+Iv7T/7tIfXT5jbTWN01JpdWbApLG1ZsiPSGk2Xi5eYEk2SLKzRC/pZlnmuyp9LKYOxIsfXWrxxinpG37Xsyie5UUnB7//oK7zw2lN8z8efJbhAQEic4ygbyhBF6loVBfPGZlQzEFyPqeZoFSlNQsURP/bsxu6JFv2UgRYzaTROcwlXp+pD2nmIEz8l7X2nhC8TWZ1fSZdW8Pr7LviNv/w1/uzffJH5RZmLOxE/aEBbiZ1YLufZwE0ckK3dMA4hz21k1OPgAzOM475YmniTdWHF6j9JYSUE2kM7PGVEJvpEcGHfUZhUpVVdSWE49AQfKAorrWprqUrJJJs4WxPSYuyfiJZNurLoJJJKfPylL/K3/syvsJ13+0fVfcnJ5RKVtPAprhxSVB6KkEmXLWSnIKqIDOlPu+OJPazUISZaKb2vQFUeDLJBOPQAhayo9iF7sojJC2gUzjh+/0+/wqd+4k2CffJ9mtc96/UFZVlLeJZR9P0ISchTZVGQYuByvZY2jLUUtqAs1MGSPiMUIWYyklJIpo7k5+BdJrpmVU5Vy5+yojcFwzjsjeH6vkdrsaCfvB0ePrvlH/7EH7JdPGkTrFHMTUVViD20uAcajBGrdudGcYKsaiEE1w3LY0V77y3abkd8FKmKArRlAHqj2ZaWhwreLAsxWXOeI++5GSPXExQp7VUiMCEo04R6aNtNvWRFYigFGr99UXP7spbJRoHtDVWQ4nQENimxVbDVkcEG2jxulDYS454iRVHIddeWdhBS2sTdmc/mDOPA4BwJMbVSxnDt6efR5+cMbUdI8PQLL/CB7/kQp6dPyn0nxcwkKh2U4x/e+Qi9Hlm6GZuyFYhWRV6fPcQrT5Hs/vHTWE45AG9CZepKxmQfYXGyoN12VFphKkVVFvRjwu8i2krOha5KTB5fIQJW0JfaQDUzNHbGxeUWmxTHFVgGwvCYsrlF2p1xttmRVkt+Z/VFTFSUwTIaTxEMNik+fvxF/u2XP0jTXAcU3o9cnp/z5t3X2O4GTk5ugN2izE6QLyOOsraaUc/neZKddqIaW1b4oefRW28yr2bMjmspRlIiRf/HtHcmZOSwCI7K8+rsAUEdkLnV2NDqgf/+zkf5gfMXKKPCWM24XVMwcvvpd+FGcXN+fO8trp8spa3iIhtvePPROZvthqPjkqppQBnC2OHGHqUNMTiUsaDFgoAQGLdb1Kgl4M0oiNCNPeN6zVIpThM0zlGNDp1dmG1Z4x8VjO3RlQEh7ZS+9FStQWX8/4lzkue/aec8OQ17YJ3bL4+sZac1XhuSMbiYkRIvjp6oHJuRclhjFDShCPl+CH6PeIZsyOac7LCn1ubF8U6iGK4c63nPP/yJT1J/1nPt3ny/8Zi4GCoJx0ZZKHSJsdJCNVr8XOpZg7GFBATS7+d9mCI9pPU9qfj2LZWMEmnUfrN7gO7jnus41TYxRo7O6ifee7CJz/z02xy/XfPjv/Q81oljoVYIgdzI5tB5cdr2wdN1Yox52Gyk/T5M9r9p7zsSkzi3GqPQtd4nQYshp8qtorRvtVhjsY2lH6TYnmlN8J6qKJkvZiitaVuLGwYKa/cydLGKkJaPNWK8aYzhWvkngNQ6mfQAeB355Itf4f/5r/19gglPPOx4M2fRSgbIFAw3ubQC+wbYtIOWG00yY7pOwoFKa4W1rMWCV+7RlFs3Ol/wQEph3zslG6oJ0VbeZ4jpipGaVMw6JYJKfOIHXuO3fvarzHcll0W/RxlUguPziug9ndvgxoK6KkU7nu3Uh76XrJVKqmshf0fc2BMyd8GFSZOeiVYpUtiCqixRVjxGxnFAowjWistgWckuviyoqpoQp4A5cSMMvpXzdWT4h9/zabqh4+bdBfffvcmtGkGVbDQM40hRWMa2Rynh3Iyj33MwTCZLtl3LlBPknWcXtqjZDFPkXUoCpxNlUzEohYsRj+JNpfha0zArC5rRcZ3EsQ8sYqBOUMSIjUl4R1fRtZQYrSeYRNVZhllOr8wTsokKmye/EphP4yaMqHFkQLFV0BFpU6JPigHFYCylLTE2stntGPpecj5G8SRxo+PSbfJiWfNDP/EjnJ4eEUfH44ePKYuamzeP8yA46DYOJbj8/ZXlG/zR6jX+48/9e/wfP/g3AWhCyb/5+k/xVnPGebnh1nCyf25CzMqUEhmuR4iP+4LFJ1JSNPM523WkKk12dE24caQ0ljgqfLRUuRgZXeZEaVAFzLViVhmq60tU60TWYx5jljeBCoqKk9U1vjJ7k9dXD/mPv/hv8x994L9mNJ7GFfyN3/lpfvXFl3ntyHH97iVVdcKj+494+6238d7QLK9Rnz6N36wxu8DJ7BQVR5arE0yROTspW5Yb+WRKQeFbqu19NmuFLl6kOirwfUdwnnI+F6nrN6tJnjj78Lhcc68+5z947Wf5W8/8Jm0xYJPhP/vcv8fffuZ3+MLyDT68fjcKMLZgvjhC0lEiY3tJUc0Yg2LRNHTmiFfvf412e0nKBGiVVRIuBYqqwo+Osdvi64ahiOB7FqWl1J6Frqjvv4U9u0C3W2b33+L5LBdNDHuzR5XHUgK8yp3HhJBbgbIz+DISCrBOXZkeZREeQTyBEmxIPEyK+yTOkcwTraYiO4gKKvj9ApmCECVDyDypyaAyL3Ymh6ROG80pIwU1RXnkpyVxIyYktBfiNMCtu3Migd/5cy/zZ/8/L1K0UmxKC0Lau6U1ewfnum5ELdTMEBQj0NQNt25K7td2LS6qsm7IewhXOH/TIao7LfOoykROpenHkda5K8WI2r+fk8u5CCmuzPGzXcXHfu4NTu/N+M7fvIUOCoygHSlNQoVAyoWJc4HgfEYvcqsltzangu5qF1taL5Ma1GQiq92TeL2Xx9uykJBGBdp2pBCZW5m/tdJENN4ltK1pigalFd4NpOCxSmO1piglcNYaad3o4VtAH/m2L0hy1aoSn3/3q/yTH/goP/K57+Sz7/0ar915sH/Y8WZO0xWIbfFhEQLIjhVclfimjJJMQWwxSa+wKgtKXXJ1PMZc6R/sgdWVDBVZRHzI7rAZ8hL4b4LQAAVfeuken/zeN/if/PJ38rnvfIvPnLyF8YpilMyPozijaYrM/pZBWpW53++EKJW8yIynCjXlAECV820iCqUMZSnkQJelW0lpqsKS8Kgosr4x251Lro3k3ZSlEGqrqsnKEkFNxnHgE+9/mXa74y/81of4pX/3EwA0m4Jbby1pjx04CRlsypquHzJioHBOHB4rY6QIHDwhiuupBIgNe4hX5c/jnM8yO+ElTNdDUBfNGCO+LGi15tWUqLU4wJb9wMxH5imyCIl5dohUCkIB9VgS1WFXZJ0gYEn6MIdCIE6x6jJ0KiSIUOViNCoYMbRJ0UZp85wXlk0sGWPCtS12NpddqhdTNR8SR6s5hRJ1R/PMnSfWxauw8NVbO6rIF5d3+TP3v48fffwdrAtpfTzVXeN/evdn+S/f+z9wVq65NZwcXi9miXI2HnUO6nJCAEGphCFRzxTdqFFaUC5jDOWqwm0ltVQVos4pNNgy4ZwQf2t1UHeURlEuLKF7TGKO1vW+PZJQvLZ4zAfXz/EX3/p+/qOX/uv9rfnTX3yeV08ueKO5z53hOmdnmsuzB2wvHrJtOxKKi4sLxr5lt9ty48Y1bt66xfxoSZlJsDGm7D6aX3R7AdtLhqFneXxEXcm1tlWN0g4QS23vA9GPEpx45bqjIlK+iersUbmhCRX//t0/xa9f/yxfKd5mXXT8xMMPcFFs+aPl63zn+lksFmxFubpNt21J0VNXhscPXkWfnNAU4JMmeLdvI4cgiiNjDFZpaqAqLI0bWZ3dZ2EVsxSZa0UZExUP0DFR5fFh83xzcJrO893hw5C0jHEAZ+Rc6KSoeksoIkU09BHOQ+AsBC5CYA2sU+IyRpyZLAjyuEyJkMSADDX5WqR94a8Q47xDcCj7BVwpcksltxXTpNOBGASNmWI2AIyXzc4zXz7i4TM7uqUDBX/mv3mRz/7APb7w/Q/40G/ekqTovEhbfSCj+hAZQ6KpCnRRyOMyylmmhLE30EazvrjIG0yyAibs2y/TDaOSyH5nsxlVVVJXchV2nRjfeS8F2OQ/ZayicZaqFxsBV8pm6JmXj3j3J475/I/eZ3ZW8N5PnzLxyCR12ZOcIBYhRnxGjabAVmt0DsQTHxpp0x3URFdbTkrrvburVYdrppA2ckIxjqNsZGPCd4PYHhhLRGELnWNNNN6Pee4zskaWBcYatJpEHYqaJ9Gsb3Z8exckGWJ6cHrGV595nV/47Z9kMI5/+oMfB6AaCm6dHXO0nTPv68NzMly/b7xNnIJ4sBP2OZukyIFSIUb6YZTCpIqUqcwOrVKUhFy5GiMTWMq7djUlNSI3RlEWCPx8kJ6d3dhxea3nF/7B97Gb9fzjP/8FAI4vZrz45RvcfeaMZd1Qp1J2fVk5I0ZfUnAYEzI8FwQqs5KXspdkZQJTTBGrpc+HkraJNTZXzQcbfB+CqD9iYBh6tJdQuMFYtJEU3TITrC7v9MxUw7/2P3wPX3rfW2xWogy6+cqCD/3mbT72l96g3/QURnqX1tp9Mqe1Nl8COYe7thUL/cQ+WBCEwCw7HY0P0hd2dYUxUxJmDtMzmhhkwoj5BgzacJYioSjRlaJSUCRFmSJFiPQn5zxzWXJ7owllS9QyRrTXqAChSqjJ1j0druV+N5dUdvuVtVYDtVJUSJggQKxrXFniUiJpRTKaQWt2pmJtI5dJU7Utaj6HdxigqfwnqSuqpvx10A6bDH/99Z/m5fnbpMxdeaq7xnu3T/Hjjz/IutiirpQ0KSS8FgVMAojSBlL5l9Wlps4kWlPBEKC0Aq8nrSlPKoZBUTZCCN51gdnSQFKoqK6E9iUKIir1GNOh7PV8C8p95nRk0I6/8sr3c/H510g/lZEppXi2eRd/9TXLetWxdR3jtqF3CpsTmbe7lna3JfiReV1R6si8KVmtjigLude1zv4HKRI3a/rtmsIP2LLE1hUqtw9UJp+nJJbaZ/cfcrm55OjkOsvlQuTsdYnWghEohKN1Vm74mYcf5MXtHZ7prvOV5dskEo+rS/5nd3+Mf3L6KQblMEEi2pWxlFVDDB5KmC9brFb4oUNTUJc1utuyAE5dz82L+5RDi40OS8IqsMlT+oj2U8s17T9Dynj91EYRe/18UZ/g7qp9q7gYNV5HYi3tyUcLR7poeGMWufcux/y1OQ83W877nj6GPY/OZMPCqiz3KHVIiT6nxqokhXyhVbYokF2+mI2FvHOf2j/sUYiJpyCLZcptcEEZEoegUhsMdjT8wG88w6d+6m2+9h2P2R6P9JXjZ/7We3jlO885u9Vx/cEMlBgraq32kRg+Rtq23XPKTObembzB27U7xmGgKkvKUm4GFwI+bHExoxJ5OdHZ1qEojPBg9NSyz4gFh7lCqyyIiHDycMbTr6746nc85uJ6x5vPXfAjf+tZnv/DY95674bL2z3XHy0y4sHB7DOKfYQCkXwbLQpErbFGNp7JeaIL+7a0IjElOseYROygMiF1QhJzB8AHx3q7ISZFYQuUFqR34hVKKy0wDj2jG/K5hbIsc2hi3pQbsUAQBeafAKfW6D0xOmIK/KXf/VES8J/+tV9kLBwk+FMf/y6iiqioWPQNwkcXyBTkwhLj3iRMEBQpJoL3UpUbI2Y25HaLSgKdDiPKmr1WOwYhl0622gkFMRGVLJbTDTct+CAy25gC803FD33ivVil+O9+8A85O90B8J6Xr/ODH3s3gSRJtdmKupgC97RYOFdKU9oCH3yufqUHaIymquqM4HiSHvC98BnEJE1n9ncQsmpZ4vyQraKBwjCra2ZNI/p177Odssa7MfurWE52S25/6ZRgIr/y4S/QLkdUhGe/fMz7f/0mn/7pt+jWA4mCrteZSyOtqzD1jVMSe/XRYYygVtbazIaXGybEgNWG1XJJP4wMLuR2T9oLX2KEkJGWpq7EKwD5uQ8RiyEWhh5NGyNo8O4aXVnwuVsj//l/8Jscu8D3fu2Uv/grz3PncQG1ODzW6JwzJDuMJxIsrd1bNUclsrs0kZ1TwiqRx1Ypt4pSknCXjPBpq6l/4zdIxpDqmjifExcL4mxGms0IsxlkJnzKf5TWGBR/7v73MQ81d2cP9ujJc90Nlr7mRx5/ABtzoCBSxLhRwq+qpaF3UF9xXn3nV60gKOhdJGpFWSsKjNjIJ7BFYtMOdOOMQskOeCQxSwpDQhNR6S1UeRPULG8AAihLIvH82Q2qz7c86i/3xbNC8ea9He96+5SLdw08bB2F2eCTwqsGF1tmiyOKasFysWC5XFLPZti6YucMXnvmRbnfeSfnYXdJ20sImmqOcEFTZv7I1dZd2D7EDg/ZrVvUeMm4PQUj98rpjes5kiESk6M+L/ix8f3MQ81znRRbSSVemz/mBy/ex8+99UH85jGBBlVU6KHHtDv09hx7cc4zzZJiu6U4f5Nro+elfgsmt3Kjw+wuRMrJAQZMgFYH4uR0vUOU3b1WKkfMp3e0nqb2i/A9eiJrFQhO8YWbW37x3/oyf/jiGWZb87/7P/0Z5qxwl5F+Ls7Bq6rEXW7EVl4fCJ5VVeUiPWISdINjMjcjJZQWW4EJ2RizDf10C8SY1YX5NYtsQzBxMVyISGiSuKpOn0U5mG0s3/N7T3P53MjL7z9jtxq5+6E1L/7BDV76yA1SbuVohPOksi9UVVb4EEEbmXO8QytNWVX44Gm7jr7rGIeRo+WCsrSi5IpXTmiSzBitsoRWwa7r6fpxT9YfRieZMVdVMFNLJSZuv7bgQ799h8F6Lq53XNzo+er3PeJP/eJ7uXlvQbIJY/V+/pvO17R5npydi8JI1IcS6wWFKHnUNC6QDanROdndaAYnLt66KDDaYCpJXh69p+16UIa6WeTNl5C+hQArPMBhkPgRqxV1XWZC8lW1oJwjl+f3Xf8kr/CbHd/WBYkfe7xW3Ly3AJ34zPte5gvveg0UXLtY8VN/+GFefuot2magTCVJT2zjDAZOjnfxoE2XXZIgDVJEZH6D0ZR5gQml7KSGYWQcRqkMC3sFitb7CSM3YIGMpGTZZ+4oigJlp9E6cXnU8vvf/zVQYLzip373RY7PZjz99jFW2Rz+lG8yPfnUJmJuDxlbXiFpCq+lH0aqqsooitj/ThwGlEKllAuyhBl6Uq6eRWHjCF5isUsrvJW26/DeEaOWKl0rrCtQZeTi6Z7X3/WYpBPLy5r3vnyLo3HO858+RbmEU4GLy+0+2VhydnLcbEo5blv6xiJbVnskJXphe4fgCUkY+EpbfJIbSSklHgBOItRLkyc6DoTkCXqdrr/S8u/CFfgEd29d8LWn1jw63fKlGwHzkXdRvd6iV473VzPeN7/JPHjc5TlHtmCWIjZcMczTmXcCJKVJuf2zV1ZFGR0HIrZ8bo1I5ggBFSPKOfRm82TLRilSWZKqiljXUFWkqqKsKlJZQlFg7QO++9Uj1rXjpQfXMT7yvs3TOO335yABrhupVlXerYrQ5OrxznXMaNhsRsqyoJiL90qlkqQeJ8Xx0RytwLmEjwmLFCMWBWEHcQXm6MprGpKCIhqevjfn7e4Rt599Ye9CDNDMl4R1z527NWdJ0Xc9zaxG24p6foRiJLgBEy8pUuKkrlisSoHfbbHnSchfCp+gbCoqPJetNGrNekuxEHhZpUBYP2BYX1DoxMncEEyNGi+w9YoyBtrHgaAKVIpUq5qnzTFHbYmm40NvnvKhdMSqL7BvPkDdfYP52JHWF8TOkXygbluqYeSaG8XHg4fT1QVlcClyWPPSHv2YOrtXx4JSWtovE6yVZx65NycipWIAOmAwil4p1jHyyHneKnpen7Us1nPup5HffvqCe3d2XHuQuHvznPe9XVNGQ1KZwFwY1Gab5zGxoLdGfDrEY0J+5zh6Nr7dozTWGo5Wq706sBsGHj0+Y/T+CVQkJRln86Zivpihldz3Y4gMQ58zXti3HIiJ93z6lFXf8NKrt/no7i7rVc/9l7bsbjvmrxWoANrm+ImiEAsGLS3VoBBPpDApVA5clnEcxUbBaEbnpAhQkuUjTqWwJ+YiKIiEPOYww1xcDU42cNP1FG5fRgyS4tbrS07vN/zgrzzL53/oPtEmPvcz9/npf/IeVtsaHXWGLsWwbbKxT1Mgp1Z7HoiokjIqoQ02RYrCCmckj56UN0MJtSe7aiuy3JSEAxmdE7lySsS427dctDHSsi+rjJQYXL5v0ErWjIwIJT+5kWc/FGv/ZCAkIXqCd4SQ6JvAb3/wM+yaHhJ83xde4OkHp3jleHDtct8fk8o8Q+1MfiSHqlOM0BzS+5T+qISzZRc7FDppdCk3WBxiXvgO+u3Dofa79xDFTnmMo7RGzLRrVUzusp9935vcv7kB4Ok3j3nhyzcJKvLU28cYhOA2tQZivoGNBpuRH5/bdCZXtArkJoshc2MS1hiCg6HvcCGKhLeq5T1kQ6HgPS4JQ3scxT7a5lhurWw+f4GiFFv0KRPn9eUjXr/zWDgvlzPe9/ozGON48Q9uiqNhZYmZk6Iy7GeMDMEJWgxRQgbFaM6A0vvdXkyR6CPGl2gjN5vzA1MZaG1JUgW+D5SlpQQIQVpXCLw5TYACYeZAuCTW/W/cPqerpHd/88GS02FJqBznb2/4XLFm29zk+vU7bALcPj1lZTWq22G7FrPd0gwDR8ZQhPAk8W2adLWWCiCPkZTIeROgzCQPv7r0XHmJlFDDAMOAWa/3/59gGqT8xFdbnvn4d9FWnvd2lvnwCbAFqSj2xUwqS8ptpNJLlC0pihKVrLSj3vk7mXbkQIgMbaAsDX6INI28b6OlB60U2EKBFYaFzcuhIkJx84lzAYJO7jZrNpsdt555EXPNPgHPJIEnwffMV09De4kpSmJ3Tt/v6DaPqVTk+vXrNPMT7OyUkZI4JsqYKCrpD8QwGRH2JB+J1ZK6CejUowv5hG7oGTf3Udt7pNHTMkenwMNH59yYN5TjOVoZynhG34NyI4UpuBY1VklK6l/+lOW7m+9iPlie27Sw/RQqCjdNS3+CIqW9r8ie6bk/y3Kvkg0Yr54rSVlWTxayamLh5MfExEjg/0fef8batp73vdjvbaPMsvquZ599Og87KVESSYmqkCWX2Li2jAQ3iC0nxg2gSEJsOYBhw8B1gS3Y+XCRALKBBIZs4EKw48SyHVlQoy2JoihRJMV6eApP333v1WcZ5S358LxjrLUPSYk0fAMQHsThXnvtueaac8wx3vd5/s+/nAILozhRhqMUWcZINIbgDIdtw6JpZWP1icntCalLTI4cO7dr7jx1yrrueePCAU/duEg9qQgx4YpKzK3qFV3XSxGdVRTyknLcQdKUdcnJcjUWG85Z6fKzX4UNGm0NqRME2hg1qtyMFpfTGBNoaUxiijm9NnsOqYyqKHjnpy6htOLxl7aZH1eczBtuXDvi4NKS2RtbZyifFm5FUZaEIKP3GEWx43ufrfBzfEQeecUQwRjaztMpyYnp/RAfIneeBoweqsL8M0qaTO8jvgvjPaL1GXEfIPSRC2/M2LhXsnGn5NLrM24/dcqDqyte+8AR3/mJ66OyJ2VUMSryviGjK6N1tmgopGjMIaKDKZxxBqVF6jxY5It1hCUlN9rCa/E6ow8JH85Gu3JeNKWrqOoJVTWhnkyoq5rVekXbrjg9OWLdyNjG5ObRWSsKSmtweURWhf8GfEhGqa6Clx55ky8+/RpRJfYONvjAZ5/EncLFtIHxeYPLQ7+Moo9zzBgHlCSKCVp2ChzmfSbPH1EqdzZSEVsznPBM7spFz/CRjrHOecY4XBghyI02zGKVcvTa81s/+KJc0BG+92PPYFuDjYYnvrKHDrky5kwhMuQTD2iJyjevOrdQGSWeJV2uiBNkSepA0EN8ErTB5/joIZ66zym2fZfHM0Yznc4pXEFKkUnlSNFJpLf2vPDUTVbTFpXg8Rd22Tqu6SvD42/uQSkKGlsWzOebkBRHJ0fjc2t9Zl1clhVd35NSIy6y+ftqzASSkUPfi+sr8rHibYftXe4oHKGe0nSe5BdUzlBP6vHnx8JUDaz4xJtXD1hXMm66fHeT7W5O3AZz4jg5XXD39g2a9YoQIqVSNNax1pqjtiOgePSJJ2iXC07uPeD6fMYsh4zN+x4Xw1hs6HSm9AHZiMZwxocK2rccX6NYUSCbWIzMTyPPLucAbPUJG+8w7m5DdQ1cjMBXxFVX+AcKimJEWlJZkpwwVmNRoK1lFi2dNrR3wGxNWRwatEk4k7ClGYO5FFAohSJAfEBSm5D8WaEuw3B8u+a15/8QM3mEnb0SHz1FLyhk2Wv65SllLFk3nnU6ZmtnC5Vapns73LjRMp1eYntzg43NXZTWtOsO6JiWGq1K6HJ17j2JhKFgHheo9pj2sMHakqJ9AOEB6WQfTk5pFitM6JmjsUmz1XbiiqzOgn9sDlEbkqtlXAGXLVTlBgBliCMfbWgMRp6ElhGkoBtDEZgbiKQH++ZclA2zXj1Q78WJU2mSK1lZS1tX3F6vOPA9iyR5SFLUB5LW2MIRY+J0saRruzGegk7WvgSUR4admxNUhGbiufvYCj5vWXc9k3rCbL6J0Zo+BE5PF0jWliYpxappaPsOEkQUy+U6O3iqPD6KLJarET3u+yCb5bCRJ0SRk4n43gdOT5eQeRh9L2j14IIt9KOEUYrHXtsimoS9Cde/uMnNR45YTjtefscDrn9uA+NNLhp05qbYzANKkPkSXd9zfBIyUV5GGMQzw0KxS5c1w59TtIh/1JlD8yCFHhocUTSJ+mYg0o4ZXQlUC4+9sMmkKUgKPvyfHuMXn/giScHHf/QNPvS5J3HhzKzMuphHWiaPNgc+YpKsrFyMiKos82R8gMzvSLmISmiSEuECWgw7g5d9wVpHVUFMa7GOR/aKSV0xmU4xriT4wGK5zEnyFUUxIYYOZ/UotBhcbaWJRwCD5pxXzx9xfEsXJLKpRBrX8fvvfZH7OyeoBG/7yhWeev4CXddQec2V1SYhdSStpYhJEaLIvFI2jBkKE5Gk5RlthqrUAFuNpkiZSGkNKQnefWYRP+KostkZIfuNCwyZbBkGqZbGGsuX3nmXm9cEybl0Z5N3PfcIOslNsXM0FfQGKT7EUbUYfVPC+XFxNmXT+fcPJDCXNFEprNKEfHNo3YuMLIkzosubM0mhVDcmOPYxoUIkBIXWKyYTqMqSGCJNK0FWaRJ47gO3ZI/ziqc/usnx4aEUMkpmlGZI9UVT1DXzFHmwf1+4FPmmdoXDZrfZru9xRSGLBzIbV9kUKEXZaAbHT02E5Al9T9/Ljeh9L5wB5WhOF7RtT1VXcv60mIMFH9DKcDJdcXvviGgS02XJI3e2qIwlKrDbG5RlwXK14t7d21hj6JslVVXS9R2r5YqNzQ1eufEmTdOwu7PL7Up8MJy16NTTnx4TF0umMTEHJiFSp8TUWaauZGNSS6hM33/ti32A77/OkUiEYUSE2PWfCYU5x1kBHZMobM7B/aya8a9f9VsUTPJzjLCvVgRlUMZgCjuiNEoPpoEJtBZEzFoo6lyx6zw2OmFy6wH1PHBy7wb19pT/k3+ctemofcHF27epdA2+w7UHbJxuURaG9WrNM0EyRrh3B7t/n0JLMa5ixCgl90AQjw49/JlJ5ArYJN+LuUCzBGyCSSJvJn5UW9gYzsihGSZPMRK1ZpCtgsDkKo8Co47nzq06O6cpoWKCUXGgHv5TQ0iaLkGTIj0KM53TJJGVL4CF1rTVBL25RYqBk4N7tH0nPiqQeVYS7qmNZtW0nC7X4gRLyq9flqTBn8IoxeUbc6qlZT33HF3vKK9XTE+EHKxiK51z8jJu9RLyh4KmFUdnpTS9D6zbjC5zZg62XK0fQkCDzyPEoSiJMfM7zqwJho4+xphD23Lxkps6rTVOOVmfup53fuwCv/8n3iDaxPMffMAP/oenqLKKReWRtvAuQClN13cYLcqmmF1IZUPP6hVFlkwLQh5CNkNDLBVMVuyk/LpEBCHc4ZABeGsMrrBj0zqMNGIC1fXUJzN0ITLk971wjd+98wZ3rp5w+/oJr7//hPd8+ZHxFiyqXPCrAT3O/C4fsIUdmzaX/UBCiHib89oUBC/7R9cHtNKCiLQdphKiqnMmu4wzTgusE9PGhKbte0xUVNVU+FpOeJPWGprVKTF0wmmxkraeQkKFPn/mOQvuGzi+pQuSuqoorePGxX3+4P3CvShax0c+9ixmnfDJY6LGREOvujEQSPghAoOldBZgNBiiQa6q9Vn1O4x7lBrJzgLHqrPHSthczrbJpE2Ukm4o/8ww0dMqQ+Ep0ZqOz7z3ddZ1BxHe+9wjXDidC2M6JkJSuZuSxU8bK3O5qMabd4yVHuBEo0ZHvwE+VWLZSu/z/FFrUteOoW/OOsBSlCI3DKE/gykh6817VquVJLYmIfpC4sbeAbcfPQZg80HFpS9NadpmhFq1zix2rWjSaqCNyOeR5LVrI2Zu5NHSsBEM5zymhMnOmypr/eV8wKSsmZQWa4RMdniykIKTbLs83yM0x5ycnKByMN6kKnGFQxnN8XzFg10Zl81WJVfvbQlCZuRz35rPaNqWGFr6mDjuT1gs9Ri9vThdUFc1Vy9eYm93j/3T5ZkLqynpfced41O0FlJZl3pMTGzZkrc99Xbe/vR1nO+hadCrFer8f+s1NM1XFwrnjojMuVGIxb0azXIePkZEVi7KocAeJwjDY976M/kaGg4VExYPwaN6IawNm+5DG26Q4nDY/IWYF7Dec10bOD6Se/HogP/hzmNSuyfYWRyj0glKKTZjRDenAjfnjW1w0ByugeGFhryxjLfL8Mf5r/P1M9z7gr6dhToM960aCqwUGQ3UcnURx9cgnbdSUYpmJWTHqLJV/vD7VGYzqdylGoMvSnxZksoKbxKndsob9+9zsDhl4Xu8K9jYuUSPoW2WRL/GGMN0NmVxtM96cUTXLEenVJ1VFkUh1unHi3W+ZoV7YIwWcnfyGSUUNYwC9t6cUC0c67nn7vYRN/V9riw2RULaS5GxXK3ld2VET3NmKR68l7XCy4hAGqccVeH9iBz3XW748sY+cL8Gm4QQYg4g5SFu33AODVJMmTziDNnn49qLW2zeLzm80nD38QXHj3dcfH1jHAHJUitEVmM0OhhCCLSdCAEGZUiXUZDB6dTkz18rUQQOxpfOGopC1IIxJrrcSFgjBoRDIlXpisyHI5NKpYipSrGPMLlYcU3Je59/hDtXTljVHX/4vhu869VrmFbUM5Hs9poSdVngrAQGyH6WcqhqRs0zH8YpMeL0IYHOeW9EQZ+joFQheNbNit7LNdP3fX5/loE0Lc65JfVkJpYPzgl3UBmqekoMvbgmZ+7MarUSvom1mS6QeIuH3dc9vqULEms0Ren42Eee52RD/Bfe9cI1nn35Si4KImEg9GS1jRwxw+dn3JFByiThd3ocI5zh6mcjHsgE1RQhe3ToXPnKdSG3n8oLl/x8fp5cRZsMpSngxsVDXnrqHlEnNo9r3v7cZcwSQgq5K4OUGWwqFzGDZ0HK5msxzzYTWQ0UEynJza/zfE86gx6lDGVh80IqXiB926BzRo4xhmDEsdXYHOCEkg7Oe3wvxK8Qk8yYreVz33GTkFntb//URcrOZthaFpq+awm+p8g3YlLihGitpW3FdVKd+/0pRpoQMuynCaGFGEkZ8pbzInNf33ec9D0x1GzMJlSVYRoUJ8sV7ckRZT3BFtu4ySZlWJO8Z902PFiupDCZTHjwzIJ7O2LmNluUXLm3JUXguFMnyfmpK1JS+L4Tx8XNGYW17OzsMqlrNuczmk66VZPHXCp/fk3TURQRHSUkLGpDXxSst7fxj15HmzzuC4EUAir/RwjQdbBcYhYL1OkparFALZfoxQK6Dq8inU1EIjrkbl09hJEMl985lE+Nf3/oMv06lc/56199LSQl/4MoQ8xY6A830BgkmaTTi+MYVY0+GcMxjIAYXh9kRCI3CA8VW2nsxlO21B7UbuS3k/KIcxx3Dgt4jHlZNyhijlLIMLkyOTdEPr9hxKEyX0BklnZ8fNSKTstM3isodQXTKcxm8t90SmdrjqJGOUXqF7TJkKoNfL/mYB158d4DlkDSlqqoKGKiKB1hFbJs3nJ87yZ9uyaGHqsVAUghUDiLdY7FqhEXz6FhyoW1NobCOtbtmrbtzooqrdh9c0J9ajm8DHd2jnk13qU+ks08piiuwkGea7Au6Hyf09AZCeIqL0JjI6fI6JGcOzuMJvP6qJQ4kQ6d9dk1muW0+QMcCkedIySM1nRdN6I8dq145g/2+OSfu0E0iS99+B7vunVFkMOYVTzkwkFpiqKga9bZUyjhjMQ3dH750PVVZCQoRog6ZlM1RgfS0jl5X1quL+sKMX/zPSkm6rrKhFO55ky+Nod7JcVESJF5LPi2l6/zyQ+8xtHGmhefvsfRYw1P3b04rtHCudMiZc/7gBRxOXhPD+tSEHnvwF2yYogWU6KuHKtVQzKKZC1d1+G9p5gXmfSrJQl6tLnw1LXBOtnjEkMDLxuidSWT6YxYWgh9JgT3hBCZ7OxQ2YoEzJoz5/Q/6viWLkj6vuf+tVN+69u/CAqq1vHnP/YhZsWUXnv6fMGGKFI1sXpPueg4QyhAipHBVfD8QjbkAsDw/WFxlJXbDqStc4s16OzmqrJ7KxlhkWpb6bNuM5jIC2+7y41HjgC49sY2Tz6/RwppXDCGXADy7w3eSwem5bWcjZ7O9YqZqGm0Ro/mk9IpkTkj1oHRFud61us16/WS3hcURZnlzjbzdHLxBnglHUHTdgLnxcDKeb70XbcBML3m/Z9+lNJVRB3xmcwkhZIonIqqzvyUM1v+GCN97M6deCFHifzv7GZXeWwWYhDZmXNYK0ZVfVQcryRLqPee2hm65Om7ltXymKqaURcTysJjCyfcmq7neHnC8/WbLDL/5ZGbW9TLAqwUtcvVmnXb0fWDXNoSS/FfKK1la3OT2WyaX69h3a2km9MKZ4SfkkDmv/lkTOtSSGW9J/SWFJWwQ0FGHNaOn+dIkL1wQbKAIBtH5Vqp6/ik+X3+b1v/T4rTju+78yz//ZvfzsYJ0DTg/VjYRB8gRkwMqCDcEzXwcM6gkBFpU+MHAqgz34gQzqMUjK9FNn+BykmJiD1DCvNjkrTZkqidf/P5azwhnhYj7J9iXnB1VuLIY89+JKdZn0tkHm7i8XVlQriQ0uWKSkrQxphHLyENSGgSCa0xYGz2+JDXrYyBDOF3oSdMJpS7O5xuKP7lk7/BbzzyHHFa8z8e/DTf337w3GIixaFue/rbD2QM6krado3vW5ZNpJ7M2drZY7VejOmowyZWOku7OmFxcExhFVZHfFL0XjrTopKF/+jklK7rx/tfK0XhxNSwqop83xu0WtF2nchfU2S2dlx9Y4NbT5+ynHbcuHDIE34bi6ZtZQw6nVQkozN/JNF1wj/QKqfCJjLPQtY3HwKpz0TK7JZbFJaBVXOGTslIvMucNaUUzlik8BgM0eQcWmsgippLhcztyaDc2z9+gU//yZsEl/j8d9ziz//qe6lbh46JgEiSFYpJ5Sirijqr1BaLJVobqrrGx0DbNNh8niSbZUCa85qdZbxyXh1Ga+q6FjTYulzAVoJMGT0i3SqP/Hof8HlNNXl/mVQV33H7SX793vN8ZuN13riyz/NP3eGpg0vgZa23rhzl0GiFjlkt5gw6Qdu1JBTOFVK8p4hCj0qbGKNYH1griI8RJlTXeXrvqSrxYclO/1l9k0m+3hOMlwZRy/1IpjG4ohZ1WI79ds6xWq1ouo6Nco5WUJQPW+V/veNbuiA5aRf88rf/IatSIOMPfPkpnrx/mbquKEKkNaIz997jcz7CYMMrsrg0FhtxVNac68BU7tTO/X2YNQykVJ3HOTJLHGbKcYTyxq5Mn3kGCPEpopJiOe/4w/e/SbAR22ve97lrbKxqlD6HruSCdCgKBu9IeSkCEYuXR8wXOJl4lheCDD8OrUf2RJIOpCqJUTxOFssl66ahaRqcK3DOSbjXee7NOXIXKJzVvPaOfU62JYL96usbbN8S8qjWBpuLsrIoMNZS11OUNiT6HBC4pqpq6TBDxIceEy3WFlgrrPLBBGhARGIS2DH0PWWSvB1ilFRQBL1SSlFNpmxMK/aPTiWDJ3qazpCcYlaWFFkldKrW3HlmAQpUUFx/aSdvUprVuuHeg/3sWshYEFlrKYsCShnLKAZTObI7aD7vUcZnIQQmk8noGeCcYblc0yfF1pajLB5GM84DFQ+ZR5373nhUFa/srfmtJ+5zZE+x997Nn3/tg9RhQ1Aq70Wh0/csD5d0bcPMKnzbE04aXOwxNkLb0y8aCpcw3qNacYY0RFTw4gfhAyoFNH5o0s6ONGR2DPdKGk38NGRERIoRUWYMXVwa5d3jkblMwzWHMmNQ1/D+Ve6ch7FASAE3JPGq8f/k/7VGO0skCW/KTlAmieKjnKJcQfBrDtc9e9euYSZTsBbKbKDmDMqVJK3wWhFtQbc+oUdBXRLqji+86zf56OV7bPs5N+IpPHj4Pckt7DF0JGVZLI64cfsW09kGRVWTYsd0OsOaHNvge6rpnBgibdcSfIc1QhQdwj/LQpJV296zWrdn/AykmO5ipCoL6qpAaU3nOxkVWEcJ6DxqcM7y+Es7fOYHbxF14vXHD3hvexnXiSx/PqmYTSp6H6myL0dpQ042N2LQZcVF2YcwrrUxr7GFlULSZ3XIeD3nDXYw7CLmAqwQQ7uQkbNhxGyNQTuNiwlrhATrvacHLt6Zcvm1OTffdsLJVstrbzvm3V++LOtKK/Ldwhla71E+Ct/COsp6KgTaEKnqKUVRZY8PuVKLwsooEGkOZYNXZ+Or7O0Rokh9jRJ/kLp2sv4msM5gc2GVlKLp5Bwp5P1ao6maku9+4Wm+8MQNehv4xDtf5ge+8A5myzKPSTSKs5R5ZVVOwZbzIMKEmEdn/lxRrmRUrBNFkTOCvBeSr7GgxHPFuYKqqgTtD0EEDf4s320UaWQu32BWiRWRRPIeawJ1XdF1LcvFgvl0hikc7iFE8+sf39IFyWt7d/ncM68SdWJ2WvLtn34cewLBBrS21FWNMYaua2XEkIPdzhbzgcwaztQaMHblQkLSY1FyHk0ZZolDQSDPNUDgUjQMXR7qjNAlx3ChJG5dOuKlp8Xmfrao+PDnnpTZXlbngLDQx+ZV559XQxEit7bSAjqrNMiM5X0aYwRvHJAddfbOY4yj3bAxNcZa3GrNuhGvkdB30iUO0H+S2fC0LrNSSBROL773AV0lpK5nvnKJnWYDSpXd/KRQqStxdQ0x4LMFfFGW+XfLOfZByIgDSa4sK1DQ91kqrTXee5p2Td91Yp+cUS2thXPSdy0pRawraK2lmhRsb21w//AU3zVQVLS9prCaSeHAWfoKbjx5LJ99Ujz+0p6Mo4IsMF3X589LKtIYJdPFe5FAbm5uUZFfQ2Is1oaOKMVA2wsfRxlDVTrKwrFqOpQpxTX07KMZj693C59/7LCw33eHdEoMAXf9JtNYjRvxqKABWj1n3fXEzRptoV1EjILZREEIhLbHG6S78oKieIQwqoaI9ZToY8AvPabzTLWnDB0q9BJsEwOExOp0ycG9+4S+ZTbdhNAwn21QOkPoOo6PTlmv11Rlhaktn7z2Gr3ymGj4wJd3UBFcMaOoKqyzlKUQniOgjCVpzWLVcPv+AZ31QMfexQvsXXmEcjYTX3trSdYKoWN1D92dYHzguFUsQsXW3i71fINVr7D+ANt36MffBedcgod7VW7GAF1DXUwoZlPZfLuGOT17rZgQtqrnnj386g8uE0hJgdPFmmAnFFZTOyiqCSqPUCERogetaJsV840djCvpu4amX5NCT+kMk0lJVIrj0yVdK8GYYvGvQBscitQJOd2HIBlUnagIBwR0AJSsMTz98p6MtU3i1tMntKon9YY6jwh8iCLhrGvZaPN6FrK5mQ+y7jathL45K02Z1oLSKAWqD+O6Nvhm6LxOOWuzP5LOaKIUjyQhlg5GiVrnDLNUiIx38A3pNE9/ZZebz5ywrno+9/QNnvn8BRSywVojhVBMmVdhFDEJ8XTgh1jnUEiQo+/XkASNMUYyWgajMK2l6BhC5GKSNOsyK18K53DGjNwPUUJqrJXnSGpwoxXUYkD/vve5d/AL3/d7HGws+eJjN7h55YR3v/koWptctMXRNr4NAxImPB6TkTxgDDF8yEAvZRv9FMeRux3GM2tR8MxnE7TSY2xI02aZeN4jUxTeJaQzkRgKZRykAh09VVnSVhXL5Yp1s6YoHFV1Lt34jzi+pQuSFz94nztXZCN5+sVLXP/DLU6WR5RFRVXX0uVbK7N8PaAleUyQT2okEUJ/NsNWmTypz2ag5x0RY+7Qx2nyeZJdPnQuKNI4Q1Gjw57JN5MCMInf+v4X6Uophr7nD55k66TGZ0jwHKaCVkJhEogkjdW11oqo5fljtriX1wXWqFx0SKfmY0KlgXEuF1TIrH+llKAYRjIZ+l68RcaZv9bjwqOMHpnvJ3sdN992QjCJybLgqZcvUvkSb8HoAClAMhmqzFSvXEAUhYM0GMoplA4UhcxojXa5GzkjGqs8vzXGsLG9yWK1ZrVasVycytOmLMXTJkPxiWXbi+qgKKR48T2untIGmGiL1bDeXHLz6gEA85OK3TcqWrUmOulwNjbmLJbLcbw0zMNThOVqxdHJgs2trZEUF2KkKKTY0saQgqQbF2WF0YrluqHzHjPZ4QPf//1cv7pzhnxwBsSdP9Rb/kwP/T1xz+3T6g6DYa/fosjqr/SW51DGUMwMtDB30PSeo9WSrt9CK005r1n2iVmtKZMYYA1cFCm0xaupHOb9fcSqyPHRMbPZBFuWkCKH+/u8+MJLdNceZ71esbG1w9a8ZPPpJ2mxpOj5zMf+gKZteOTaddx24v/4Z/8lJ9WC6ark5/7Be6hDyeXrT7E5r9namBImMyb1hBS8xE9pw+c//UXeODiiqqfo5Fhs7rDx9NOUW1tnISuxpzt5k/t3H1A4TV0VzHdr5pMdTlvHkamYzwL9aoOdrT1M8bUWT/lUlDK4UjgUpiiF41DVoLbZU5cxaFrdcccdcN4nZDh8COwf7uPVhNopLj/yJCHC4eED6kK6TmOdJHKHKFyEJDEOqyTKpqAcGo0OmtPTUwk2S5kon7kizpXUWrFcKfo+cLpckrsYYm6ovNaUzok01Wge399l46TkcHfNvceW+J1IuRi8e7TYjUdPYWVkqY1wlZSV96WtoZ6krCyUdWdwdR2+rpOsoc4IuXMg24Kk0cqY+gw5CT5mxFOKFGvs6EQ7SG3FYTpQp8gzr17iU8ubLKcdbz5zSP9IYisn666ajrZpqKrJGKgnI2uJrwghsFotAXHkJsmoobQqc+6yF1UeYwyuqLI2DTEi6exqUdmZW+fQOmsAnb1dnBRGfaQqSmkcU+Lieosf/tJ7+H99+PdoC8//9wN/yDOvXsG3DcYaEQU0olqyVkaj1hgKa9DWZYpAvjeHc5QbyWEvi9lYLYQwuqsaNVj6izusMQbnpED2cU0MPpupeWK0QorGMrDHlTZgK0LfkZDRtrU9p6cn1HWFKt7ivvh1jm/pguTT73qZaBKTdcH3fOGd7LVb9LFltV7RdR1lKZ3VQC4sCvHIjj7gQz+m8wozXDrg8/9LDPkL51CVAWLOo5qHmXN5oJn0GRH0fNHCmUuJVoo7e6d87r03AKhXjg/9/lOCPGR2rBDx0jmi7LkNSSoWeQ1pUKEIk19n/kJZupFEJmz4CNnvY4DKExLxrdXgbDqMezTaCDdjkEabbFg2jE20Nty5fsDdqyeg4MKDOVde2RCmthYHzIKCtu0ISWDDYXZMfh5jDMH7cf6fUkCjx+yNYSNXMMquy7KS95bZ6ykjPShNVRY0fRAoEsVq3QihNo/YQh7fFUWFVYqNieaF67fOCLmvX6FUjraVpGdtDKWzhKqi6fp8vgc5nWQ91HU1diJd36NSlgyKMz19lC6pKAvqqsIazXK54NIT7+Dpa7t57Pe1j/N2ZSNHg7NLDqQj33fHBBWZ+wl7fmvcCM+JTQDZjFSIdAlOlgpbF2wUka2ZwihNILHQCh8hdjJuUpacozIaRwoap5KknMUVW/UC3BSUpu87bt8/5t7BCdVkxtbFq9AvKaabRG1ZrXti6OliZLa1g7KwalasnacpIrqPVNsX2C62uHptm0Ibquk2aEsyAltHBRFL5z0xtBhbkaJ01UozclJS6OD0Fvr4DpWzLJqO40XP1a1d6nrCztaEo4MVB4dQGMPUFPK+vuYnkouSlNno5/ghABf6bepYsjBr9t0Rreqo0llxk0g0XcvpYsnudomrt2i7nqOjO5S0BO+YTWZo42i6QYYtRM626/LIwopdu1LosqJMhrJb03Vr+r7HGMd0UuWNJOGKkkTHuu1QZB5TBntTiODSaHxodOKJl3Y53BVi6M13nvCumxcwRjgiaOH9bG7OKcuS1UiclfdfFgXTac3+wbGglObsd+nMpXJKiTuwFZmpoB9G3EF1ztuCca2xTtylUTLWSEm8Mbq+p4+Stm6dFHG997ztzmUu7M9Yzg64demYm1eO2DmeSkMVZA1Yr1c0zTrzaip8UWKMpe87mvWSlAKTsgQtapOyKhDqkB3XzhiHT1QIrdroETVXyOsacl9SVnBZ64gJnDmzgTfG0MdE6zvhdHj4gc+/h19+/2dZ1A2///RLvFLd4rHuIlYrjNVM6zqPwnIu2DDCUQoy30XWTrn502i2d473BfS5vy1KRwgFXY5Eqcoyu2lDUSZK71mtO0wQD5k4KjpTNnaUwjCiidrhwxqtLVVVslqvWa3WNO6/gYLkxgVxBb1+5wIf/MrbqaeOrijGkUrbtTTNOhMfpZrXSoHRGCwkcd9rug6S2JUXuTMfFpnRHhgYiwvOWORmkPsmeazKRURMeQw+bMDybPlZ5DG/912v0FQyDnjXc1fZuzfLG34e7ZxDX5RWktWSpPoYNPyji6ECNKQoxF2VjYvk4YKchBDQMRI4z5ORH/SxHyF+rQU5UjlHxve9ICsatBqgw0CrPK8+ep/jjTUqwpU3N9i9N5Wix1ohExtHWZk8MuvxvRfXWq2pJzNihHXTELyXzs46sBB7IZgqbcbPL4aYiceGpheUq3QCOw8GPiEpwqpDaTuOpJQTGHXdrPEpCvrTd0Ls0o7nn7g9XlNPv3yJwpU4LddR0zaEkEZrZEG7oCpKNmYTrHPMZ9PswCmdIrkTMbkr6XMuknNOFsHCUdYTLu7OxhvwrYjI+eOstD173JlWARZmxZERW+86luz2Gw/9+3gkKCuTw7ci6y7RrY9ZHR/jd7dRKTCpSmzpKAsDlQSo9fl5uj4XRRoqk3AxCgSfFqjpFVAG7xNvvvICN9+8hzKW5eKUC5euUheaWQUhKpq2Y7lcs729g7GO05NjGrsai36tpbA00RPaNXbrIsZVmRxpCCFCGrKnegpnScrSdksJj7Q5UTu0HL/5ZY4e3GNno2Q2rSgKy52DUw6PllSb2/RH9ykwuO2LLA6PWJ8cMtnckrtUW84jn+NpDID9avRj129SBylIjuyChVlT+ZIUI4vTBdWkpioqHrn8KE3Xce/BPmVZUBhNoYT8m+op8/kmy+Ux2ghJerk8Zb08BZIkyaYcP982aOuY1CWhKzk8Ps4jDckd6TpB64wxWKNpGhnfCGqssNpKYqsRImaIiSdfusBnPiRN0q33Lfju33s8S40nKDWMTHs6Lwo4Y8w5ozhpjKqqhOx/ZKzJZmyK2tnR04k82hzVOBqa1uNDzC7UgkoAZ6ZiQyMzqGR6n91Kh6YrUi4Krt/Z5fVHDzjcWPHSlbtc/9wWoc8NnNZE36OR8YXSYok+n085OTkhhgqVkjjMGjFECxlRiEg2mcmox+D0bPL6nLLiZ1hXh3FKCCkjPtL4hqzktK7EOgd5PC3hdBWb5SU+eONtfPSZz7OuOz794Td458eujwZvyYgxpDaGuqowVnLRBME6EzdYa2TEkkUU6lzjo4Nk+/R9D8ZQFYU8R98S4wTnrNAOBgl2Eo+uEDwm2JFPYlQcNrpcHFaYSYDoWa0VXSdjn9PF8o9Y4c6Ob+mCZMgO+dHffB/lQhNTwFon3AMkUK5tGiFPdlKBDk53WmuwlpiEHBZ8R9dBa1qqqhqrRM3ZDC5FmcUCmR8w8EsYRyU6Q2Jyc0ZSUtkhVczYgpdN8uRiyxfeI5152Vg+8Nnr1I3N4wqB9WIe+1j7cCem8u+Hsyo4JpVJT6IiIklisc+F0hBDHUj41I0pv/LyxRtBTMYSthBSXYpRLCTOuYgmZBSUtGY9i7z0zntEkyhaw3u+dI0iOXw2YEjZnrnJkq+2bUSerKAoptT1hLZrgUjve+h7OtXmhczinKT5+r6n1+CKiqKsaZoVOuTz74R/0flAeyoLNFo0+r5tSEkWi7IoqSeCTJDyGC4ETtrEc4/fAiQ/6MmXL1AWxQh2FWVJ2/VEZcS6PATaRiTmdVVSlLXkZCiTw/3yPFhlNDPP1hMqE3UdxlrKeoNyMmexDlSFyYz1c4WHOis6ziNjXwshWZglR1Y8VCaxYs9vfdWtMvycsZoyF51GJXbnlrA75aTRqCpxvEh0Rw2woigLNmaCMtaFASdJvj7vDX69JvhIVe+CDyTfsX/ccPv+knv37nDp2lPMZpusj25z9fFH2JhXLJuGtuvo+sBsNmG9XhF9R7W5dTYSU7C7PWHiC7SpUaYcF//BfDDExIPD+/TtcojKRAGls6JqCD3p+BZ1WrIyifsHC1JKnK7WrNctu8pwVJbMLz1OaSuMLZlMpvI8agjhhDNcajiRmZAeQNmH7fYv9ltMoqw9B+aUU71i289YHh1ish9Fig6fFIdHh6zaHmO2mUznnOzfZms+IWmYTuc4K+GAKUaa9UJg9BRpm4bT0xMp4JXcJ72z1HVJWZa0TUPMKrOU+QZaCSqqjSb0AUPAlo6iFBKjMVJoWG15162r/KL/LMEkXnv7AfOdDZLPIXc6e3q0LXVVii+GtbTtGmvdSGYdGqeYFITEpK6lIM/j1OEIaYjckK9toejbHpNfb9SSMF5mYqgkx575zFTGYpRw9VIS+azxlnd/4Sqf+LZX6IvAc8/e4Qd/7x3Uh5YYoevFJr4sCnZ2tqknW4LkFo7NLSnU1qvF2DoOrqdaZZJ+/jpkMrVS2QMKWXtDEOWYNblhNS5b54ucdhjfl/VESN0x4oqCjY0tQkz4vmXaOL7nK2/n4499mcb1fOqZV/mzz307lxebedSS1+GiwtVzrHMUSRqurlljlaWoaoLvaJuVhOeZwdgzW/MTSdlYjhBxhaP0jq7rxchOCWq1XK3xfZ9N2HqilQT4EDw6eNAGC9nXZ0j3jRAbqlSxWCzFp+nk+KvWpK91fEsXJNvrmgu3Nnj203u0fpWJj7LJmsFkqwLnCtGspyAE1CSBSkK2KpnPN2nWSznhKdGsRWlSuIKqErXJ4PQXQsBoO5Is09hBZXfKARJT2UI4Bfq+k85eykh8VHzuqTe5lfkvj72xw9OvXEDFwY/hbN6nVMp1iHzPKp03F4H9JHsg1yoJkZhqlWei8Rw6Q5ZwRWS7DnhAR4PWZ48VHbrMgGPO4VADGYy8aWoFUXGwuzoj5C4rvv3Fa9TOctKvRd8ehdQqc0k3vs5h7NO2jWjgrcObnj4nUKYgr6fvuhzrXVBWNdH3KKWpqwk++DwaUjm7R3JvYpLCMfievhfmOCGybiJlUbK7s8tiIZuTj4H7F1ccbaxBweX7W2ycCDFRIa6H1jl8BKXDSMKbz+bURbZwVlLIOWcJGYkaN095xwIVZ+KezsS81dF9nv/MEa9sXMBNt6kmBRsbBbs7M3ZmNef1GW9FR8axXf76xKw4tCfAwwXJ+Z8ZjhATbQDVw85UiHbBGqKCeZnQFaTdGU1fsuwDbR9ZrjqOVcBqxaS0JK3YdGIupw1E35LimuW640uf/TzebLBz+VFOT47Y3tygmjqwFUnXrFcLVqteVCQhsjy5z2R+geP16blXKaTASTkDU3Hn3hGPXZ+ORXiIkf39fU4WS2w5JaUHMlI0msm0JkXP8RufZ328T11aNmcVZdFzZ/+Utm1pOk9VVsz3rgGaO6+/zIVrj1FUs3xS1cPoRzorT5TK9uJfA9O64GVkA3BgjrnfH3BhOWG+uzciretVw8H+PU5OjqjLAkJPoGRra4ej4wPmrsf7DmsdwXuKuoTQ4bs1p6sF3kdC36GUJqRIu1pCShwenhVSgn5oHgrgjEKoVVYQhapwlKUjxEAfAqUVsvXGScXFu3NuP3LC4caK1zcf8Oj9XcpcgDShJSqNq0qKrPywZoJCPISEZyBNXt/7UXmmVXazHgJK0+BaK83Eat3S9R5rLU23JvieqiqkoUuCMpbWUA2pslpcVSPZ1C/I5991HU9/Zpvpny842l3zwlN3uDM94sq9OV3X0PeByWTKZDLF2AK02AlEFK6coN2azh9lV2mHSYkupwHje1SfbQhyhACKh8i2VWXHz2EYlw8Cx4HwrrRhvrGDDz2Hhw+IKfLg/j1BS4DT0xOe7C7wzHuu8oVHXuf1C/f57GNv8Ce+9B6SF8Sm6z3VbBMUrNdLtDLMN7ZRW3vSyGnDenXC4cE9sZpI2QyUAU0XjxdrLT71pGQoioKm7Tk5OSUlRT2p2d6cEXzNcrVi3Qq6bUIceUjKBNJIxpZhWzIlWkUKF6idE0VWJiFOpF0AAQAASURBVNX/cce3dEHyP/7uj7B9d8p2qlkGT+chGQ/RE82Q+CnzvbIscxGhZLPsu0xMUiOi0rXNyCAeuovTxSqPEgyFs+NzDF1wphQwSIgHdATy/D4N9BLZAFWEZuZ54R13WU07jNc89fwe89slgTDyJFSupIfNaMinGeof4ZkMzx0JMQc95RmmSC7PSE3wFoJj7sZj9IIiQEZFNH3+HcYM9tigpCKRGysbon3u7bdoKpEZPvviReanJcoqNqd1juL2mEKixEMCbwwRsVn2fU/DelyszgjE5JkkY1Gl6VjFkJEIjTbikEgU/k9g+EE1EoeNMejCZZjf0fZSGNZVQVlJZ75eLnj50l16J+/h8s1N7NLik0ZpSwqRGL2QgbWmaxsgMalKTB4r2Gy9PPgLhBhzivFgriQIibVu7LCMNiJBXhzSLB5kx1tQ5YRrb3873/bed5ATzcfP7fzXw7U1aLYWZsXxuZHNXr85FiPnhwo+QbNO1JViPlVjEZtAArZyEaUVTMuCSV5DYkg0bcvNOyfY7Rm6bzghUtiSelJQGMvNey13br7K/Qf79PGQS9eeYuvKDoUJbO9epy4Vi1XL0fECpeWaONy/S2hP6ast7h/cHkeVSmlmG9uYruD1G3dJynL90avEKEqPBwdHHJ+eMp1vYPePGCzhp9MJVy/vweltbL8gBc/+sYxEl6s1be/Z2t5i15RcfPq92MkmR7dfpT1+QF8F1qmknm9Sbl9+y5lLJN+jrJwQhRKbf/uwrHe33xwLkiMrCMlkviF8jrZDW8fJaUP0nomzFNZik6fSCVPMMSdHLJaLjG52VM5hiBwdH7BaLYnBZ2VMplWnxEiwTpL0m7sx4RtkoqREQMj65JxwTArnBIX1nrKQTXTV9sSDyOWbm9x+5ITeRe48teCJw0soBa4siNGzXi05Pj7GFUXmSuRAz3x1xugz4ip8BzeoebLSJCE3t4+Bzke6rs9mbR5nRXzQtS2rlYgRdE6j9WWJNXOqIqeaR1kXQwyiMAkJYw0Xm22efeEiv//dr9NUns89+yaXvvIOjDYELWgAWqO0o64mVLWMXlVGpNrVghi6LDlPqDzOH43erHiTwFlOzvDfMF4aGjwhkOZmEBl/h9SjsqrI2oJmvaasKjY2tzG2xLiSud7hg4ev8/yVG5xUaz7zxBt87xvvY7ausCiqqaGuJnR9Iz9fTwDNZLpFNZmQchxHTLL/LY4f0DcLUXkhSqwhny3mdc5Zi80ZOM4ZZpM6j3Vk9BfiSiTzOU4heFFEmew+nbKys1CaqXZMXOKxCxc4WK740mrBN3J8Sxckf+Yr72A3TPGXI32MrL1nf73mXtNy0q2JGWYDgZPIki7ZHPS4kIk1ejZhyg6oCvLNLJ249/2YqHi+g0rZ7Ev04RkSywhAQpjYhSpxzmZjGs9ae8qFZbJwuN7w7j+4BF2ko2NIFTbZCXAoOoZCZAh30hk6Hl63HeXAQghNSYiiw5oZE6OZzdAxqSxHHma5Mp+VDtQoRq7MwEMZ7PFFfSNF2PbhhJP5mu/6g8fGTsA6w4aZMptMGOTF66Yj+I6VF2viGAO9lyRhn6V9enBGzSgKKcv9nKXtxKnQGkNRKlSKzKdT5tOSddPS+YDRirbtWbddnm1bfPAEZCRnnGO5PEWbMp/LSOvXzPZL/KXAxde2UIuCXonawXe9yC+VQalIjA2+awldQ7G1iZlNpdDNXKK+FxXRQEHS+X34ILkQw4hP4tAL6nqSxw+R1bpheXIE7XrwR/sqRATOSKrqLV/PwoQ6lGz6Odt+46HHDxyUBJQTzcQ+zEFJKZNWeZhEOxSt1iqcKbl8bQerDDNTEpvbNH2FVQnf9dy5f0y1+SiPPbPF8bGgNZvTgks7E4rZJl2z4P7BkQTDpUizbjjav8Nsvk3XrGiWJ5SxlG49Ok5WPc2DJa+8+jrXrz8mkuoYuHv3AfsHB8ymM+FYnBtdXtzZYP/my6xsZFYa5pMC3XjuHi3F8yVGHn3yMXauPksxFWXT0eEpvl3wxlf26ZLj6Xe/m5K3fACAMmdnJhFB27cwSGDHb7DpZ9ShZBan1HWFDnLmjSty4W8oiprairSyyCrAzkc6HF2zpq4nbE8nQOTo+JCT42N6Lwiryc7Ikrkl6hdImdwYGGIRqrIUDlMee7TZibmqS6yzoqxBkndDguW6AWCuKq7d3ubz/U02j2v6FFh3HZUSWb5E0ytIgi4rBVYLoXNoVGRMHUAltOroY6DIihCtxcCu7QTdbFtZX40SbkfvPVVhqN1ExpzGCF+ml6Jq2bTirKvE7yeGSExhLACcc1RVzXd9+gk+9V1vsHFaU1Ulk8mEGIKsFV1HVc+yAaScv5QVhFVVM53NWS9PhEcyjo/d6OkkPk5SWI2hq2rwrMr3fh5N2UKkzLlslPu973n5pefZ3tnl0qWrhNCxXq/wmeRbTTcgBv7krQ/xH576OK3p2dW7zHZ22fXbeQwkz9+ul9STaR4VK3yU0DyjDa6o2NypZK3tOrpmTUQoA1pp+RpJZO66iDFQ12Kw17XiaeMKaaScFTVSH/pRAqxCQGtP8i0Vhk2t2FJQKyG9W+3AWIoEenHKN3J8SxckrrUjL6QG5kXBxcmUdwBt8BysG+63LUdtRxOCREIH2VSTGjIoFMY5bCEISte1YwaKgixtO7dpcyYHTmOxkG26s1TN5ot1MBNTStKsjBFW9WZr+Yu/8O384K++jZefecDlL89pUpPnlbJ9eM9IRhsKHQmF06PKRXgsCKKQolTDKo9wtMYaSEn4C8NGSMryYSSIK8Uss8u/K5EgSlLoSKKKQVjlOkH0pCjF1p/+1XfzA7/1DK88cZ93vHyJwaaZpEc5nyIRFJSFYVoVEANt76U7C56UfVBiDEgMxjC9ZeTmNJ1AhSQJk4rZknnwG9mt6xyYKEGDMBQ0YnbUZnJfzAVo76WwCUTe/9uP8O6PX+bg4pKyK1geH9OYxXht+L6XRYaE0zCdT2nbIWVYZefCXMCEwKDOEnRE5/cVKG0xBjWGGLl7/z7L1YpJPRGDtjzq2dneHAuS8ykt54/z6EcCvvv0PXzyC/+ClV6z0GsKzPjz54sarcBYMVTk3L+FBDYLm2z+/vmfk89CsW01y2WDnibMpEb3sjC2yXL/wQ20rtDGoXVke1aBsqzYpF12HB8txZOgnNN7gfU3ty5QTze4dfNNrswu86u/8E+YTQyN17zwpTfwfc/pyREhPkqMkaPjY+7dv8fO5obcfzGKes5armzXXNsEqxLHi5bTRYIUOTpZ4UNgc3uTzQuXuPz0+0GVQCK1J1S6oywdRz4ym+9QzC6eO+sJ8fg0KHVuqfSBrtcU9fA5y2GC4l++8HfYUDOmscKk7DCKcMH6DqrJlOn2FbrmVD5nbVi2HU3Xo4sp/nif6XTCm8sT+hhZLk7QJApnRxOwmESiSZRCZEhXbbtepLWZAxez1XhhXZaxZuQ0JOpZSVKaddPTdUIMttbiY+RDH32M7/idR9i6W2O8ASMZLcZoGfsARVEIwVZJwutwbxljWK3XxJjEZLHzuJjwNkrOSx51a2PpssdPDIHJpGSwna8nFVabEbHocmCmsU6UPLOJjCzKs9F4n11nB1TyO157kv/z/93w1GsX2Iob8jkqWc992wv3JPjMjzjLftLWMp1toFLAmkz6PEe+HTvDoQDJN1JIEIjoZDBVxc7WHvVkRt+3NOsVp8cHIg5wlrKe4PuOqnC4oqA0NcaVxKiyl4uiqCa8/+AZ/tbnfpzvOno3l063SLFHW0Pfd4QoWWPB9yyXC1KC2eYeVZWbnOBHJ2KioZ5u0K5P6ZqlFD7qDEU31mJjJMaEdRHnPb7vWDdrtBFUNziH6x2lCVgFM2vYKiw7hWHbQqmzk+1DyK7gd5tlhf9vwTreBYtyamzzzs99K2O5OptxdTYjpMSi7znpe067noX3nHrP2sccoGXyzSThR+c80uQidC7Dybk4GDbqlMbNR24mccsT8tdgT28ErotqlIqKa6Hl2nHJ5d/fIphsr55S5lHI+EXssHWeVSpsimL0FBlltyAd27DwCbc2j2kUpDgQwdS4y4/dcWZupjzbHKDUlCXH+VHjKEUKLEaplwqSjPueL15DgfinoBkogWLSKaohraEuxRG263tW65bWn3mmDGjMaB6n1LjhjqGHKY8p+l408vrMlTb4AbVRI5KlAZczPrwP2bwnZsQr4KOjbzvarqe4JeQ1ZRKEjt4PKIt4NDjrsupBilFnxT9lHN0hSNswt5ebU0KvBhtyQUgG1K2jbdasV2tCkgiCvQuX2d3efojMytf4evh7YkA0NGXSFGHOVpg/9HjFGeqhlMh2NQ+jK/K5P1wARaALMkoKXaA0iarUTGryGG+DlCJ91/Lii69DtDy4f5NLjzxBqT1FOsH7gnv37vPoIzvMpgW2nLH/4L6Ym4XA9oWreO+Zz6ZcunyFuYnM6y3uvnKb+/duYozL0HBg/+CAo6NDNjY2cYVEGvgopOOdrTmxPeXBgWJ7XrE1qzhZtdzeX9K2PWVZsLN3mStPvw+lK7nG/RHdwWvU1rPvE3uPPM7Otadx1eThEx0VMfk8dxdUxDdrlqcNxu3mxGixCNfGcD1eHlFHlQJoix/NwIYMlhWL4/ugLdV8j5OTY4pyRop9ljZb1l1Pt14SvB9VKUYrkRwjHbpPHp2gKiu0EdTNe/GAmNRT+m4YiWqUqrJKQsjt606aApUUk7pAJMkNvY9sNfU4RnVlSeEGHp0YbmmtWa3XGOuo65p103FWl/WIYSMoLZlZk+z+OaC+Cmj7jlXTUk8mgkLkNTPGhLVu9NhIKWFRJDxlUaCNoKXrpsUoqCa1bJg2YlQYEd0dNvnAS0+wXq6wc5jMJyMy0zjp8kOQAs8Yh4lJ7n2grGpU6gl9k0dCZ4aWAzYuwZsmK3CE12aMwbiSerqBLQppMoyRAkdpCUhMUFYVRVGKLUVRgjK4lBulEHN+kqZr1/zplz5IWdX0XUvf97gij1kGEYU2bG5dwFqLcwVKKfq2lcgDWwxDNKwrKet59pfqUFmNI9dSjlAgUDiXx/iS5F6WFYXSbGnD3mSCK2tm1rFRlDitx8ZRjnN7cL4glNJY4FpV840c39IFyWDYg2LcTOWPNH4NcvFsFgWbOditi5E2BNYhcuo9+03LQdPR921WluizTR3QppB473yTjtBc9v0gnUH08jkMnh7nDM4UoCTzRo4EMeLyrFchUmGfyUIhilfKoOYRVz+Rvg5hXgNcOxQfRNkAz1JO5HXGzKgyenB2PduE8pk8NxbKELgCcZiVfxhcaIfnHaK5h4JGCFtq/Czk5cThbQJaGNk55qTLvgN1PcnmZ5HB/mEwkXtIcK30WNWj5DwZPTjZZvJuRrBkPKUkYj0XXeJBo8UDQTtiUQiqVE9Yr9c0TSvjF6OxRqzhRxJelu/5bCRkjZVFw8jcfGDL914g8/E6SOB9L54uKrtLZgO7wZmyzTb8CsX2xWvsbG58FbIx/KnOfT+f0fFcn7uqHvo5zv89RLo2UJeCtA2Pjwmq/GQeWPlEF6HQ4qXirGwYpB6dFrS9oV17qumE2zfe4Pkv/SGz7ats7V5keXiLK297O5O64JUb+xwfn7Cz/X6cjrTrBeuVQLcxRk5vv850tsWFK9eZz0rmE0tRTeT6aFa4siamxNHRAQ8ONphUdd6ozt5nZSOUka7pub3fsX+yEtdfL86ce7sb7F59iguPPolxpVwn8Yiw/yoqKaqLT7O70bN98SqYh70SEhBCT9d4ytrStVA4aPue0B6T0hY33rzNpJ6wtbMNCD9qIIcP/jJioKVwpaLtO1LomWxegAStD3RdS9P0bO5eICwXdH3L6cmJJClnVHMYkYKgEEPxqPP6UWSuVu89SmvKskAxGBOKlXhM400u5yd7WLR9n+9BReVKqroaeSo+RNpOPEzqSZ1/v6YwhkldMZtN8iaW09LzVSoOqkJolDRvRQhdvoe0+AAZKfCsdThrSMjYUzhGRvJeVB53KYO2RnKkYhwD4M4craVUGMI4E4myKIUYnJO9Q4xiLmYMrReUeXCxtQnUWHdYtC2JvpUgu14aRqPP3LshozNKYYuanQtXxPjQOrS1rJYLcc7NpNn51g5VJ8Vu33W4ohwdV5OSRrJZNSSi+C4pKErJx+m6Dm0cdVGNzxe8cDgGFEm8nBK9b+i7jnq+iS1LkpdRt9KGarpB71vWp0doLevioOQ01spnqBWldcwqzdwW7NqS2jgKJQo7/dDCMpIbztCjc3vIGX8x8c7tHb6R45sqSH72Z3+Wf/tv/y3PP/88dV3z3d/93fzjf/yPefbZZ8fHNE3D3/gbf4N/9a/+FW3b8qM/+qP803/6T7l06dL4mDfeeIOf+Imf4D//5//MbDbjx3/8x/nZn/3ZcbH5Ro8D31OkEqsklnroJB4icubi5PwGXGpNaTQbKC4CT86m+Jg4bhvurdfcXzUsfE9AEVGEYImhz/Jd8mhEdOnDIjHUP0NnoWWQKOSi8w8YWwkNmTQqELoEFhkjhkF912dXvJgD7gIh6EzqHLxA0llHnndBk9+7yMdj/jct3RWIVO/cMRYVkJ9Pj5wIDVne9rA5mxB3h5HRGRpjx0Iu82jy+TJGy5hHyQLTR0VMGq0lo2N0HVQKvEgQB2XKMGoabJMHXxZrZFzHOZ398E7ERdDkxU6uqZhRNHIhp1LCmjPUY71e0/ctlalwrqAYUoeTyN2yhYAYEukhLCvLEq3NMHrC2vMwfqL3CcmRyOc/Jdq2ZbFY5fM6uFVaLj/5JIUzX2Vmdv4YRyjnjuHx+qsf/vDPKkXS0A7PH0EnUd0kFJ2GzsOsgIozNCUlSN5nb4mCsO7YP1xRrla88uoNVquG1fp1rj76BDvTLawxLDrLankqvyQFTk47Dg72mcw2WRzvY4uKyhV0RzewO9vU9RZFZdE5KNFoQfKMNXTdirqajH4TMQpR8+Rwnzuvv4jv1vJ4rTlZSK6V955HLm1z5fFn2bn2DNo42Zz7Q9LhG6Ar3M51nJtRIV3uVx0p4Js1R4cLpt0Ma2DVKE5OW7plj75zk1s3bhKT4qln3slsNkF4EzIGHs75gGQqoFsd0bUNzWqNm25kGazh4PAuW3sX2dzcxbdip79cnBCDLOgqI7FFUVCWNSiJVFAZESyLgqKQvJrFcpELawidxyjYmU84XrV0XU89qbMxWaBpZQRbWEdVFYQk5n5SjCdCH5mUBfWkZjadUmQu3PHJCVolykLM/lDkjB3JSQnZh6TpepbrhhQCdVmg0VhbyBizKlAIctwFsueQLAO977NLrXxfKSlWBqJ+DEK8jL2n84HNzY3ROr3vOtZNQ1E4ui6PumLKvilgTEAHn0fRgRBlJKySFqRdKbQtBL1IeUSWN22TiygZkSdsUVJN5kzmW0znm5BguTwVAm2KNM2a5WpJWVbC24hCfF+vG2L0aN1SVBOsK9jcvUC7Xsp4WhnKeoZzjr7r6XKMRwyRxelSTPJcQUiRGCK2qFHWyZqoVqLUcg7yBCCBhPMpM362WskUHhKlMdSFYk7FdKrRGTUXJ9ez/BzgbG8d9p3zcxqEvhCRYq1XihOtuF39L2CM9lu/9Vv85E/+JN/5nd+J956//bf/Nj/yIz/Cc889x3Q6BeCv//W/zn/8j/+Rf/Nv/g2bm5v81E/9FH/hL/wFPv7xjwMCa/+ZP/NnuHz5Mr/7u7/L7du3+ct/+S/jnOMf/aN/9M28HH757h2ubW5yqarYK0rmxlArzSRvwIwdgcD9DxUp8pWYbwGFUVycTLg4mcCeYu09h23LUdNy2nvWIbDynnXfj3yEsw9I/gwpoUJC67yZAirDekoPo4hhlCsd/WiqlrcVhcz5rTX4fnCTjbkISHmME+iR92ZzcaIz12QY7+js0XKGHnFuFDQ4tJ6ZvIUhVpqUreYHl9g0ogwxnEsUVg/XWEMRIkiLPmfQk+XSXozD0JKU6sPg9ufz6EUSiJORRbwshShnbYbJfT9aPMuNIOZoZRHQUZ39LkBZkQRabRlcN+W1x3FDDzn10mjFfDYlpcTBwQGr9UrItq6gLktsZvgPoNswSFJKOpVhtu79GYLGcI6SdKKiLjhL+wwxZBt9eS9aa1xRcOHR7YxGPYx8DAXH8L2vh5b8UUdCfBy2S4dVMvPuIzQ9rBaBNJeiSlLEFcpkjxsg9J4UEiiPqWZUap/m6A7HdoopNkA7+mZBbE/Zuf5epjWEhdjFrxbHbMxKFIH2dsfy5AaurPHtmul8k2pzynxzK1tzl6SkWC5PcvGZx5IpcXh0gNEwqWc4qzm8f4f7t16jb1a5w4/jvbG3s8HVqxd56tl3s3f9WQTF60mrO8TTu6hyB7PxiIzwvmaJJ/en7xp859mcVRytWrY2JvjOk3xHlwwnq47ClewfHXLjzZsEHGVVcOnCJpsbKc/f5b4UZFPk77asmVdzXn7xi7ReVG6HB/fYu3hEkTN0dnZ2aVYLCY3Maa0DEdrlJGib3UGtMZTZN8lozca0InUrdOgpSpsl6WD7PA7Q4mAcYsQZSz2p8zol57AqxJ8kpSgNVg5SkwLfoI2j7QR9UEpLrlCec4vVgVxxA7+nUYp137O3sy33s9ZCLu17UkxZLhxRRqOVEGWdMYTQEXwYCcHOCUIiDq5uVBUpBvt5iMGDkjWtcFKk9X1HyLJg50Sy2/W50cvjtRgDMZxtvFo7MKWgJk4J1yUlnB7QYSG9T+spmzt7KC1ZOApFWUvBd3p8IEGl1oo3lBWiaVXPWTfrcQwsxZvLduuCrvTeU8RE6KQI07aQfK0UMa4UsnI8C1n0XYdFofIaHdo11hYYJ4gNfSQpmNZTXLfGhp4SqKymTooye7uMLerQiMIAl58h6OP+qcY/AopOazrj6GzBypUsXclSaYJfc2t58sesUHJ8UwXJr/zKrzz093/xL/4FFy9e5NOf/jTf933fx/HxMf/8n/9zfuEXfoEf+qEfAuDnf/7necc73sHv/d7v8aEPfYhf+7Vf47nnnuM3fuM3uHTpEu9///v5B//gH/A3/+bf5O/+3b9L8Q3qlQGWywU3YuCuK4Ts5BwbRcFWUTDXhi1j2DKWaoCShp1TDbI5xhRdOfK2lhK1MdTTKVcnUwKJtfesfGDZ9xw2DYfrNUdtm0mUaSwwQlbdaK3QZA2+BkWOMM+bNnp4OWn0Hjm/OApPQYGNebaac2pyISTkNtnYY4yoINXq4EBojEXnuHspPOT16bxtx0xmPdv5ZMfVSjgTMqckh8xJoFqKkvEgLrQDEpD/TFIsDb4DRufY6wyLDqMwpZUw/J0dK3BjzChNVEozqUuq0nG6XFGVFZBYr8mQdMjFgFTcMZ4LeVLCbhdoVY+AotJCNA6BrAaII0ltKMIAJpPp6PLbNA1N0zKpSspCOhGlFM7ojD6J543OMr9usJXPH56kO2cuTkq5qPSQDH3XyvlJguoV9Yydy1fYyp8XZ2/noa/VW77/tbfSr38MH7VGiK1OsgU5Xng2i3NIkvAlOV1H5qajWXWYskS7CpRwgA4OD0kTmG5u8+iTz3J44wUu7G2LaaMq6Pya6XSTsihpW0/0HTs7Fzg92ke7im5xSL2xwfbuBeq6wjpHUpo7d++yWCwFRkcKdudqjLY0zRKSomtW3H79ZRaLk7EQjFEQucpZUkw89eyT7F57Kr/xCIs3CKcHmNllmF2VLrtbokx1rjA5O6L3dOuemMQxdHfTsu48hdMcR4VfHzObXcGs1hTOUU+3xI7cFpweHrFenqK0ZW9T0IDj05b5xpy2j2hTsL//gDdvvM5qtRqh7sPDB1y8cAUfembzLeB1GdeOzYTBKIUz4o+TSGL05QqqskLhiX2Djh6tE64Sn40uJk6X7YgsLVcrlNLUdU1RlDKa8YHSWaYzCdnUxkoybtvm9WZI3hXfn6oqWS48Xd/ifJE3ck2IInH3PgFRbOfLQjyHQqAoS1CaajrDhZTzVHReO4d1WBo+tEHpQMy8vZ5ESPJxdl3PAHpCxKEosrW8Dym7hyaMNnQJOu/zyEdLU5SdR93AmTs3ylZkdFs7gm9lpK77vDZ4kQwr4eatl6ds7V7BlpW4zMZAWVU4JV4jVT0n9B0gaJ94QUFZT8fiymgp8nov66UtJwhQKN5KxookWackn21GJGKMhF4TlUh8U/ASHaLl98g6o7B9i1ktsd0a23fCaYvZYypTHuS9n2txdB4xDyvNsN7nb6WU6IHTBCfKsNSGzhb4siS6CjKBOSVI2oH6/4MPyfHxMQA7OzIf+vSnP03f9/zwD//w+Ji3v/3tXL9+nU984hN86EMf4hOf+ATvec97Hhrh/OiP/ig/8RM/wZe+9CW+7du+7at+T9u2tG07/v3kJFdbMeJ7sSNv1mtOlOaO0dRlRV2W1EVBaTSb1nLBOvasZZ6JOBIyJ08zIgjD3/M3VJ7tW6WYO8fcOVJd8ehsSogS7X3YNDxYr7m/XrPo+3zTCwEWFfOIRWVoMo2/TGzmMyaSC4IBjgRxQpWbCrSRCl5nZQfIRRfyYjyWUyGIxDUgpkSZp6CzgU/u7WW0Y2TuOqh1hidRA+Oc4XWeddfJjFMPBuXPgLCMU4pc7A0W/X1MD5GESZKn0fdS4etsz22thpBQShI3u07Y7U3TMHBDEhJxPoxy+m7NKhnKwglp1BicWCUJ6TcKSXkI4cJIFodPKfM/ONvMUqIsizxqSngCp3HFYrka8zRM7i4LY0EXZ4hIEl5BUnlvyZ3EGLSVH2Ny9xVTwpU1e5euEZLmySee5Nm3PcI8j8nOj1/eioz8cUcicbO4zzxM2AjTsyLprc+boE9wGqAsLLXJ10eSjIumj0xMwqieyXyaLw/xILh32rKOBtN5iqJnUk/ZfuoJdq48xXq9ZL3q6D3cvXuXR649StdLoTublpTVo6wbGUnUdYkuJhgriNf95oBP9V9EF/EcVKyxzmV5NZwc7fPmqy/iuy5vSBLaaPJ1Z51h79Il5ntPyoKeEsQD6FaY2VXUXCzuU/K0h3ckXG3v8bORX0qkEOhWK0EM8jJdViWdb4lRUVYVh6sVy3WDj4l6tkfY6PE7EX0kThuny0AILQf7+6wWRzR9YHNzlwe3bjLZ2GNja4eyrFmvVzmIM7FanNJu7jCfzQlb22hjR55H73ussdlevMgyVEfTrUXJ1a8g9lKgAWVdZI6VGnlnxgoy0HtPkbNp1m1Dmii2J3MmrsQ5NyJNqrA500ShtPDTYkYLq7JkuVyyWq/R1qLUmWW9LoaGJo1jYKUUTdNQVeVoE3+8WAqqayWuQ7yVhNOQlBSFIiLIDU9KksUkt5c8PnNoaudw00qUQt6jlIzZnbOsG8XxyYLei19J0/bEMDQJ4aGCZLQeQKFsiQodSgkHY2yGjM6KRWjbFc16Rb3hpUGxhq73ImHuenzfY8sKhRq5HICksqvByypb4+cCZOBjqHyjKj2oOtO5kRGZ56YgWUhK0KEYUcEz6RqqxSGTKHEhKkqW2aAYHXmG50YtZxti3gzyYjQ8PgGdgkPgju858IloCnDyHozS2KQwwQvdTw0jfEXjH/bs+XrHf3FBEmPkr/21v8b3fM/38O53vxuAO3fuUBQFW1tbDz320qVL3LlzZ3zM+WJk+Pfh377W8bM/+7P8vb/3977q+8LOziqNFEXG6sH3HadLiauuq4rDquSWdRitmRjNtjHsGMumNpRKUSqNU2dLdzq38g+ohmzo8g9Wa5yWNNS5c1yfi7Jh5T0HTct+23DctnRR/FH6cxvTEPpFJmJK7syAToQs2x021URTBEw0FMES9QCrhmz9LldMyHPbrAEeZblCdBKSm0ZyJXR2FzVGCItqvAEG34yz0UtKAu0PSqI0FER5RTgLGNSkJOqgIUU4AYfbSxrTs3N7AlFcVLWSgmQyqViu2uynkMO9cqHWdT0pRsoy28L3gaQTWssC51xJYYS4uFiuOD6NFE6ssOuiyKGCBboYhjhyKLJbpI5jEaW0WMjLuqDysFhz44lj7m4d8szHdka+SIwyd63qGlfNUJyRe0OMWC3zWZNRIu/Psi2stbiikPMaE3tXHuMjP/ARXF0zcVCf48G8FQn5Zo5A4F/vfpR3rZ7gR44/+NBzDKrqQZi2DoKUzOeyWMQIbYKmg2mpcCoAEwk7BEKAk6Mjbt66wXJxynSzoFkeUzjN9OLT0kn3J2xubND24vR4++YbTMvrVKZlZ2uHewcrqmpCVcjGcefOXS5f3Mb7wKf2P8uvfeBTfPfBO2WxzYmjxkiY2v69O9y99Tpd24oHRYwC2wOmcBTOsb0xY1YO+VI9fn0qBnk7z6IoMuKcCF1Dv1qx8LC3d/4MJtr1UuT/SjO4GwPUlePwpKMNimLvOqtmQTXbQxnHR6vf5falE/4397+bqSsorCIqj51dJURLc7RP28PKQ3tyzKuvv8xyeZrve/k8lqfHpCiJs0UhGSVVWRJjzD5GEjZXFgVFKTJZlYxE0a8WKC1hcIWzGCMcCFtMcMrS3r7B6ekxISaqopQU6j4w3aj4/Hfe4spR4OlblyReIjdV3UjSFu5F13uW64am7bBWsWpalssjpos1dSUqHuuc3HN5HN11PcaJj0fX9eh8j1gje0hSib4L+GHzNkbI/X0vnA2tKao6Rzasc7OTg+yM4t6FY6ZMuNru0ftI6URWrKKsW24ws1SeSSWOz9NJYLVuWK2acSQegsd7g3NqbJKMEtWM8ispKKJszJKEa+T+JrFanTBrtrGuxBSFJMjHgCtr6o1tYgj0XUvyQQINVUZ7TSDqRJ0mDEnmZG+pGGWcpLVGpUhKck3rbHanYkSniEsJ7Xt0s8K1K1y7xvTtWFSovO+c4T95ncn75vlDShR5j4FEm2AdAye+Z4mjn0xYA03f06REGzyabPYYI4aYs3MUZBdd+ZUKW7xFvfZ1jv/iguQnf/In+eIXv8jv/M7v/Jc+xTd8/K2/9bf4mZ/5mfHvJycnPProow8VJJmQPfIzUgr4LnCvWNBaz+WDHVxRsCoLTpzjpjGYlJhr4ZzMtWFuzPinPr+Un0dSONs43vLPTJ1j6hzX5iI1XvWepe9Z9j2nvWfR9yz6jn6sOIeNXxjfYwJvLlbWVc8X3nWLx9/Y4+KDDRkFKY027mzklCJaBbmgc2ZNMgJfy5gnEL3PycGglCAiIUj3JPLYrLPP88EQfB55nBE0pdsfqmrFYAdnMql1HEXlCrzVgU984CvMTkq+684TI/lWa3kdfd/jg8f7IAm5mfynM3GhKAsmVYkziuPTJShFXRYyj82Klb4XqRsp4kMQJG3dUBSWsiiZTmtSUch4CJVNndJD3BdgDJAabh5fBj79/ldpS89Tv7ND0zT5tQniBFK8KD1kF4lHitIyyhr8CXwQwplzdpTyAdhqwsXrT7AzqyjdeQzj6x/faHFy1x3wnzY+xVKv+eHj70DnW3y4R2x+n6sgnGqbC+QYofGQNGxV8iDRkNnc5ST6ruXmrQcot8HmbkHfrunX97n4xNtYrltW6566mEKKrBYHGKVxBm7evs2F3S3cNFEVBegSowJ37hxxcnrCbFqwXC14cOmUj77t0zzzyas8WlmsUzinIQUO7t/l7s03sueCXGNDumpZWKrCUdU1Fy/s8OQTV3DO0C+POb3zKpuPPCM24XlG2Rw/4OZrL+P8Glw9QlApJUK7olkuiIh0PDGMVBPWKCaVoe97TlfrLN9PnCz3+dwzX+bFi7f4kfkHKFZTjg7vYIsJYfWAthG7+q3dGZevPs5iecr+/n1mm9scHT6Q+zNF1stT2mbNcXPAI488TlVWuKwKGfgdorjTRN8Kodu3lFaji2LcgI0tqaablJMNtHV479ndu0Q1mbFcHNM1a1CK+WyGmzteePoObzSHXL+/Rx1tRuWyw7DW9KGXuIWY8H2VOWsK3wdmkymXLl4QF2Ut15isH9kBdAJ9jDTAcrkSx1ijqZyisJZVl23w+37sxsmoCknyuFxKeYQgd0KMUfhnRvHi47dpNj1/9tPb+BgpEbQGLaibUeLLovL7cTGglPBJtFES+Ok92gSsDSSyw3deD5UpMMpTZD6N1eKbpLWgtSaKw3cIXhykx8RfRYgek9GmGMRYUhtBQUiJO5P7PLf1Mt9/77uYhpohq2l4/0mpvKdl64Xgsd0K0zbYvsX2HaZvMb5FDdLkty5ucM7C4fwqcm49z9/vjWalFYsYOY2BZYzstw0nTYvuDVMtMRl939G0LV3ncaXOQX2GGILYXOS5b8qxGkpp7P+S1vE/9VM/xS/90i/x27/921y7dm38/uXLl+m6jqOjo4dQkrt373L58uXxMZ/85Ccfer67d++O//a1jrKU4KivevFG4bQsm5lekTd3kX4GHfj4Dz/Ho6/usnWrFsazEaa0GPsUtDkbQQGlVjKLVIptY9kxlj1XUJxT7zxsjjP4j+QXNCIhYFFsFI6NwslcMyX6GOhizEhKw1HbcNw1dOJWT0oKPxAoSbzw9F0+9j0v88jNTYhBihUlceTDTROTQH16gDRUzCBG5pr0Hp+D8oZgu2HkkZIENYmJmnBHUhJX7KCT3NiIDl/4TpGzua1saPKbBsvvYclI3Lt4wse+92U+8rGn0EZh4lk4WozZWySEsQATfwQxKTJGxizRWWxRMp3UY2ppWRbCqUmy4LhiKL7CmXFU9KxbSXo2WZ7oyhKlJPE5AVpnMluIdF7ybAdC3u2dY/7g217j8t0NkhLFU6KX4sJqlKoFWUJu5b73+ZxnMWYe0Qz+BYN3QUKKn43tC7z72Ucp7ENl79c8vhmUJJF4vn6dj298niqWeBWx57qgIbCvQ+S99bknb4Vzlx1/Eyp1oOxDL+De7Ru89uorbF96lOPDfcL6kMeffJJo5ty7e5MLu5skNZNrPRQoo9i7epnDB3dpekPTKYwt0Spx6/YD7t27j+8X3LwZme9s8NLjN7k92+fVJ97gIy+/i9RGTqKna054cPsBXSvmSgMJcfTKsJbpdMJ0MmUyneFKKT5stcH8kXdgsllUioHFwV2+8qXPM9vcwkw3CG0YnxMii+ND2i6ijWLQgQ4jPYWiMGCLmpPjfbZ3L3L/wT0atebVK/f5zOUXeGN7n42DEmcdp4slN958mSuPPkXXd9y+c4O6nrJcnrCze5Gyqrhy9XG899y++So6BdbLY7QTE735xhbJtxJLj2z0xJ7YC/xutNjPS4KumI25cko936GebmCs+CcZG3GuYDMEbr75MqEXb5aiKEkW7u6ecnPvTb7/c2/n0Xs5YG29RqFwhcV3PdYoqnrCZDJhOqlHX6F1I+TYMq8dSsl6aKzBFQUkhe57gg+g1oKuOIe1jqJwLJsWtEQzRO+RJUHUgSnz0oL3ORVXkTLBFyVN0slsxe986Hk+8MrbmJ+KTFxlv5bey+dYVJU4oeaRjVZZ9myMmC56T3SRsaVKIjHQxuSm0WGMOOVKntmQ6i4he+3ylNPjQ7a2d0kx4OqpGCD6nhh8Ll4sMQhqlPLIuHeRf/3YrzIJE37gwXdJ0+Alc8ZYI1YNzZqiX1O0a0zXoKIX/kfMm8bXWjEEFsnrUHqoOBk4iDFFAonGOdZlQVM4OqVosnhjuV4BipAVOkPgXlmUwnMxhuSQ3LDgxUlZG6IOqChcuCGUNZEeegl/1PFNFSQpJX76p3+aX/zFX+Q3f/M3eeKJJx769w984AM45/joRz/Kj/3YjwHwwgsv8MYbb/DhD38YgA9/+MP8w3/4D7l37x4XL14E4Nd//dfZ2Njgne985zfzcnDO5qhxWTQG5UuMic54Pvl9L/HZj7zK0y9ezickkUKfg9k6VmuVNfHiOtgWVkKplOaBDyhauu6Qsu+5VJY8Mp2zVZaUxlBoCSd66Ew/dNbTcNJQGlxSOG2pgc2i4HItfgshRo66lv31mv3VmtNOrJbvz0741//9HzJZFugwJAafy7OJIu0VFMOMF2DCIrZWchFY57LGfGCVizeI9/6hYUbQmmD1GOdtsGOXMBQ7A/9BED/1EJpz/l03JvCrf+o5bj9yjC9DTsjMSZ9J1AZVWYp3CZre93RtJwtSFAi1rMQTJMaENZZEGNETGEyiQLxFNFZZWXiDOONaLXPavu9pu47T5QofEmVZUlUVtS7RQaBJMa7KSIGJfPxDX+H2lSOKTlNNa5yxJBLr1Uo6HTPwcuTmb7P8EjWMsYazKpLngQCslKSmbmxO2ZqW3/BN+o0evfL8wt6vc2yWfHr2PF55SGedyXD2Vh3MCxnXrCL43FyVmuzoGfKjs9oqJfbv3+UPP/UZVn0kaMfexcsU7DDffYxXXn+DGHrmE0vnO167c8DJ8SFlVXN4/y5lVbKgZ1pr9nZ3SUlzenJC363pOknXLjdrPnb986Dgd5/5Mj/8a88wKyakpFkc7ZOyVXrMzp3ESFVaysIxm02pJzOm8zm+bbj9yutcNDtMtq9QZO+RGAPL+zf48uc+w9IHnnzvB1gd3KdZHiHrQmB59IDFyQrtCpIW0p9wgc7WdesMOq3Zns6xKTKfzmhi5Mu7r3Hq1vy76x/lqa/8bynMhNde+zJJw2Qyx9mKlAKr1YKt7V1Ojg64efNVYojs7FzkkWtPUE8mlGUlnjZtw3y+wfr0UBR3vsVo2RR9HykLWfuEV+UoygnVbJt6toFxRXYazrwDICUJ69vc2hXDNiQ6wit4sLHgxsUDfv3bv8SP/eK3E5tAVRQUVUUMntJJ84YSibHNXj2xLmnaZrSNjylilMrSd/ECwihsFP5F1/esVwu0hvlsI4/jtLwHYwk+5CYhiRAgz359JyGZ1hW0fjWinEFHOue5efmAf/+9n+Cnf/nPUXmDM9KOlWVJ1/Xic1IWhN6zXq2ZzkSpVBRDJIUUDkOnJehL5t1pQ4iWIVVMrj8ZgydkLKvHe14cUk2MIxoagpciPHsWDTEjkEh95Nic8H999v/B++89xk47x/qOqu8ouzW2XaEH24ivWXwMxzBG59yfDyMkyTqSMXjrWLiC148OWRKYzae4wp0Vf0lhrMsmex1VVdL2vZjfxch0MsFkdde6aaRQyfLpGDzBaFQMeX/IkSPfRFv1TRUkP/mTP8kv/MIv8O///b9nPp+PnI/NzU3qumZzc5O/+lf/Kj/zMz/Dzs4OGxsb/PRP/zQf/vCH+dCHPgTAj/zIj/DOd76Tv/SX/hL/5J/8E+7cucPf+Tt/h5/8yZ/8mijIH3UYbXHZA0LrOHJJvI185V23+a0/9SWMN8zaUmzR4xmJJyFci5Ai6+BZr9cYaykygc45yclYdx0PVkvutQ0vth3zqmK3KNlyji3nmBnDRCkm54yQBPk/85146GIayVMgIxPDhXrChaombUPrPcd9x2evBf7sg3fCkeKy2cRZQxf8SPwiP6vKzxdEsjGOBsbCJUVUEg1+smYkpQpxzeO9p8/z+BgGWbDDuixVzf4ZqIGYOxAOFRAzTyKTwQTm4UvvvMXvf/A1UNA7UejotxRUZ2cljbJXsZAXWHpSlbJI5c8U0jgK0cP8Mw3cG+lWUCpLLR3OKAqnMEoUBMumY7lq6L3n9PR0JFa6rFYYFr/7Fxb87ke+AgqOttbY0mGDbMyxTrkgM2dokDpL89V6OO+ycPnRTVGP/zbIjd869vuvcdx2+/yHnd8BBTeKe9x1B8zayXitxCikNOekZNXAugksTnuu7JYSvJVADEpc/pACXdPylRee5+T0VDaW1Qm1fYqLT78P3zesVwsmkwm+9yxXHUcH97n5xstoY/Ftw3xW8eij19jeuI51jhDl82ubNeRcn7v1Ps/vvQbAK9fu8eX2VS7d35RrO4en1VVFjIaUAk4LV6KeTpnPNyjKkpPTBaGFYm+TdD4vOUb8+gE3Xn6BVNY8cnWHejrn+P49bFWQwhrfR4HeU8L3HoMes3JEwZPAiAKvtIpyOseoRDnd4E615Pb0ASj46KOf5H9X/0mK1yK9b3ns8Wf58hc/w+Wrj3Jw/xaHh4dU9YTtnT2uXH4U73tCiixOjlkuDpnP5jhXcOnqdZbLQ5rFAcE3xMwLsMZgbS7utaWu50zm25STObYocyGic3Es712ub4N1hsl0zvL0kBjF4yOqxMHGUl77d3yJ7/nNJ3ni5JIE52mNrUpBY4weJbIDzD9ES4i3SUaHtSKGlL2TZE2OUbxogvdUdY1KSgzLMkfEpzwCHa+/c4c6Gwlb5xgdyPPr6Jygkx9//5f5yPPv4vtefQdVUeK7kMfJEXJnv+p7+uDFPO4ceBC9F55H3wma4XL4QhLkJigpXAojqHTvvahBFcLFQ6OtJYReHE+DF5KvMuJhhMJ3nXwmORTU+J693vPfvfR2UlzRrb7I7sFVrORnyFvnq0/HcE6+5tfnjliUhGqCdyVd4QjzLXw9xWtD2zX0SrPev0PhPT6N4wVBp7TIyEkBtGI+rQU1UhpjoHCWXpHHg0bM7mLMtheBqIOMpVTAYB7Kgfrjjm+qIPln/+yfAfADP/ADD33/53/+5/krf+WvAPA//U//E1prfuzHfuwhY7ThMMbwS7/0S/zET/wEH/7wh5lOp/z4j/84f//v//1v5qUAmaSXCZoqybw3RM3tyw/4jT/1BY631ly8t8G8qymMJuo0qihi/rgNg3Y+4jshH61Wa4qyyMmHnWw2pkAZSxMid7qO+yHgek9tNKVS1EqxbS3b1rCtDe6hC0WdMUaHajqdiazklcj/l9ayNYEP9Y/ygd9/hDZ5qnmBd5FF33PUNBw1aw5WktExSG6lHPUy81b63OatxR4fxipYkUaugzUGZwJ9jg3vQyTSZyOhzHnIhGDxOMnSVDWMx+QzGCaRR9srfvVPPUfvpLLvnYyJIoxOrCrzUwYC7SBrJsF0MsXmuflgv58EShnD/QR+jyMxSwoz6c5Uzs/RejBPUxibxPZby8LivafrJWa7KAumdQXGEEn8px/4MicbEjS2mDV0LlBqsZetylLMwYzA5GOWxTjKO/vEh2V7SP/MHzkRqGf1WBD81zoSiX+785vs22NANpo/nL7EU+21/Hf5hT5CoYQYn3E0ypnm1EMfYOLSqPSh70g6cvP1V7h140bOPgps7+5y8erjNM2KrmuZTOYYozg8WeKjjNliTHjf4FSkLgzTuqQoCnHgDIGmbYicxRh84soX6IwQVL0LPPeu22z+SpHn5xpdQj2ZsLmxya0brwsZd2MmBOOi5OTkhHa9ItQVFy9dZtCCpxRZ3bsD3QGPXn+cNN+mOTnCuZLOB6pqwuHd2yhd4nsZC6Zc0AcfSEbQwOF6I0nR7mMk2ZLV0TGfefI5YrZgPp4s+U9P/AE/+OK7efpt7+X2m69y+9brFKVjY2ub+/fe5NbBfW7dfJ3drU0uXnmUnQtXKWwBKcg1hmy+Vitiv0Yr8b8go7nWWVwxpZpuUs+2Kao6E0DtGVQ/cMLyuqNIoBXaOtkgos7o7IKT2QqA042G3/rhl3j7L1/PiB855VYCEVUgGzTGbFYoviBd39F1HUXhZE3KnfF5s7m6rijLkuVyxcbGBj6IZbvOu65SUrQPfkVnmIMcMQTJXLGC9CgDxiqCk+asc55f/MgneMeDR9mIU1wBPniKwo4y/xAT7XKNUuIZ0vaD2WW2VsihoeNoOYGKWQ1jC5TqMYhBo+99VuqJYjH0Hai5FP4hYJ1k8RA8KgaKGIR02nfYrsXEwDYt/8OD9xOURydNHxdYyrN3/TWLjYfXmfH+NwY/3aCfzOmnG8R6QnAF0Tq6rpE9wMgYyBrJ61ke78v62/vRuJHE6A2TnHi4OOeonKPpOpp1gzFSNmgtPjN938o5TjLO0iaglCHpSMIwRAl8I8c3PbL5446qqvi5n/s5fu7nfu7rPuaxxx7jl3/5l7+ZX/01jxiFCa61wmayVztr+Q9/7tO8/th9uaGCYaOfYG02oImRqMSh0sd0Tvsu70/SKmWp9lqNxkM+9GhvpL1MIgkOKbIMkQUCWtzsOoEzlWbTGHatZddoNrQQaLUS+90/CqsPJtCWIiG1SVP1FbUt0BNxlY0bUlT1MXKaRz33FwtOuoYuRHlP6ZyBWd4ZMy7DYDevBoQGg9YWEw1DlkSMnhg8fS8FlIR0CTFT4sZVfs68msQkzHIb+K3vfYlXn9wfb5q+yKFWwzhDMbLHrSsyuqDRSs65sYbCmqxGEkJhiCK5HTxOEvk9DsY9eYwUU0LnwiWkRJ/VRr0PhAjOlRhb4EPEtC2ruCSEM8v3V57e5w+/7Y1zn0XicGvJ5qLOiFqm8mbEQzxZpLvQ4y4uENSAwA3hVMP7mW5s8ei1a98UN+QbOY7Mgv/5wq8ylLmJxCdnz/EXD36Q4TIIQKHFhfXsBWi2JgXij5pQzSlUJbE/QVHRrhv2796VkWbbUW5UPPL4O6jqmmZ9RNe0KA2bWzv4vuXk4DY3X38ZrUVJNZ9W7G5O2dzYyE6ViTt37nByfAhK433Luu/46COfOusGFTz3nXf4rl95FJ0U1mlm0wkbszld0zKpa1xhqesJVVUJ4rVcYo2mrCSorFmtmM49y5uv8+rzz7O7s8GVd7wdplsYJcVyCIkHB0cQYW93G2UGAvA5/C4leh9zty/XvVaKQgWUSSxW+3x+5/nxc0gkfunJj/G92+/G9x13796gcCJNf+LJdzKZzNnfv0fTLAnNCaf7N+nWp8y2LtA3S9YHCx55+j2S/Bx6SpdVFUpSyou6pqy3qGdbFPUEa92YlcQoWZWTqLJtgHzKyMjFyYYXooTf3ds5JOjhmoE/eM+r/NAX7/DMG5dBoreyMzEkAr2X9N+YLFqJHvB0uWTZtMymk5HkbY2YGCojJpXeR6azGSnK8wknDPH4aXtZk81gZXDmETSMQGMMaAxFUdBk9AWlZH3J18yLj97kV973Kf4Pn/lhpqbA+z6rCtOYO+N7j3OWjfmctu9YLhc0bZA1Lzemot7q0CqPrbWiLCfQLzA60YSOhp5qcI8GVstjirKiLCpC21BYx6Rvceslru9k/CchZMPLJaggKcd5xLSyDdZbXMq+OF+1SAhCgzEkpfBlTTfbpJ3O6adzkjFZCq1FHTQEswaP9x0mo9PGGKazOdu7e6xPj8YGDoSjM1z31jl636OVEVTE97TNmsmklmJUS6qwVkIO1sGM97hw9PKIPyUGzu0fd3xLZ9mkGDOxUjaoxgT+4w99ms+/6/UR73LeMu2rPA4Xfw89bNp5Zjns3ClfNEqZkcgmN28k9R0pRnwvElVrrcRSWzdWlzFB5yNBa+6TuNsLe75QsKkNm9awbR0TraiUptZ6LFCGjbYte6I5X/iddTyQQ50QJ8OJc1yaTmFvDx8jp23LYdNw1DQs+o7Ge5oQaKOMVSJDuu+Qx5M18TqrbPLcPAXZXWOQcY7v+xxCNbDLbR7fZIM0rYkkXn5in9/78KtniwTQuSDFUTbgOc/zEbRDvFqSlmLWOS3ysTy310qRBjtu64gp0rbdcAVwXrmjiOhslx8jrJsOa4xwDhAkzRhLlSXTKUWWyyWniyVxpvjYd7zIwfbyoYXgwfaCx97cJcaI0YbVupVzKC9uDPVjGJHln5UbUI2FmJYqBWcMdfHHk1m/mSOR+NWt3+O18vZDr/3T0+eJRIk7TOJPI7BxXhCBaiIFipCze6hEwj741NRlwQe+9wfpuo5XXnyJ0yaBq/G9WHNr07I4PeZ4/w77929zYW+HZrXEWk3lROnkykqyhIjcf3Cf+w8eMLqXonjRvsIrWzcfmoPffXTB/pUljz7YpqpKNuZzZpOaFYmYJkyqCuMcx8fHNOsVRmvqyZTpbJN16zk4PGa+vccrr7/JvcNjnnrsSr4GDZONC/IZpcTrr99gZ3ePra2E1Vn9NsDXiCRX5TXAhLzBK0WhI1FrZvMpL1198+ykKzi8tOSl993lOz855dl3vA9Sx97FR/Ex4qMYd+3uXaVw14ndGt81uMpSFtsUbg+jLa+99EU2NjYpiooQepyrKacb1LMtynqCy+OZMdzzoWIkX4dKjURuMamKMo6wjn6xoO89R5fah37m/uYp//n9X+ba7R3qztL3HmPFiXi1bmnajqIRH5SUIm3b0nc9e7tbbMznUoinQWkjqGrf92BkdLRs17StxWhD6UpK51iuGxgtzTMyos9iNwbn5xjJUQ/ZlZUgI5t8dM7z0fd+ng/eeJrv2n/bWNR0fWA2nRFCEpVWDAj10NBZS98HCXEMXsY32qAQREwZI47X2qGME9JprhUKYOosOinKvmPj6AEbrqAIHpOLqbGJH9HUczduRuKG7wcVWNmGDW/z9xVJK4Iria7Au4J+MqOvZ/RVjTdWOHx5FaDvAIVOcu8qrKhctBb/Fu1H1YuxjrKesTg5xOTGz2gFRtRRIUYJVNRW0CjnMNmS//R0QVFVdF3Pum3pfU9KAWOc2Izn9zyKQFAjqvLHHd/SBUkIQcKYlIIC/uADX+FjH/ryQ4+ZrAosVkbi6UxjH3sv4U0kSGea7IQQ+7Qa4HY9zvJSjPjYEaJo1rU2+Jx5opSmcNmoRg1pkND7RBNEWXO312jVUmst3BOjmWnNhjHMtcbUPd4G3no8pOzJx3Chn3mjGLbrmq1aZIw+Rta+Z+V7cZntfR73NCx6cTmUrknn0C2ZeQ5Qq7DMLdr40SVWUnX7cTacEEjXaE1bBn77B17k7qXTh15n7wJJpVwwyA+FKOZMfpjNy5scybMxbwoJyVrQimzylB8/dE+I3fFAsooxj22SEH5jTIxamFylJyS7Q2tN4RxqOqXrPS8/do8vvffmW4pB8VJJyGiqNJqynkhBlSKFMnT59Uhi9Ftk0iMyJJuFD55mtaTXRlCK/0rHqV7x65t/wJFdPPT9N8q7PLBHXPQ7hASxjVQTM15KCUnzjSphVAQlo6kYAsn3aFeinM0GZQZTb1HQcXB0RLFdMZs4UgysFwccHezTrNcsFwt0ikynNbtbM7a3t3Iys2axXHH7zl2qqswW5uCs4/d2P8tpsXzotTeznlvvOuXp37vIbDphNpthjKJwhpgk9fXk+DgXP4aqnjDf3KbtI4d3T9hcB3YvnPDgdMnE6rHAkv90vuSy828mKMZzi4CCPKYx+XPUeWEXErfWmq5Zox7ZYH/n4dd+4hZ8/OKneSbOmacZOxeusVgsKHrPtUefIAaPDz1d2+CbpeTOuIrUt5T1jHq2wfbeZaqyksLPGOrJJkU1kdGMlfeP1mNHO4xQx/FhLpKH4Dm0QsU8frUVISbqsmRxsXvotQcT+dTbXuF7Pv0Mj7+0g/dLysLR96Iys9aNqsfCWfquZ1UWVFXBdDrNBmciyx3OcUIMLJum5bA5JIbAxnwu91DOxtGZ3zaMtMdrNBeGMUYxhhw4cllN2Fv/0Ou/ubfPv3v/J3nvbz6BM4bCOXovqctVVdG267HBGpBaraEPorbxwaODRik3+kNFwKCotaUwlgvVhEopJtZRaI0j+3D7PgciapI+x2Ea3tBb1vDhPZw/VmbN4SRwkacIkxm+rPBFiXclsShlPD6YuQ2Ok0MnlFWR0nz0krpuBifaKAWeNpkHpynKmrKe4VtZ4xJSS4ghoBevK2vpQsAaEUf4EDk4PGI23xjJrwBd54kpSNZXXvvU6Gj7Rw4FHjq+pQuSSVVnUlTghSdv8qs/+FnWdffQhzxfTEQ5khUbKoLSkXXbnyXfZuLXmVufuPGJqc6Q6zJwJtIZIzlGmYXm8YO1BpsJj/Ih5JRXIxe0GI4p1inReI/KJFILvPjU6/y7H/ptnlpu8/77j/Dtdx/hieMdpqHKNwTjzZry1wxf545ukJeiJOdibkrmZZmnKil3aBGfIqddx2HbctL17K/XtDmHQSszXsAMRCYFZpANp4jSir73dN7TdaJ++eK33eEz3/EGahgP5bV9IJ0Nnh1o8S8YSilZcAZI3CEGQEIk1CZv7kF8ZfquY5DkpdymDMQ68UQZOifhExkj9vs6SraNWNRDF/oxVRmlUVPLFz5yh9W8R3tFtOOMi8PdZZ4rSwBgOZ2K9XSUAL8B8RnXnIwchdz9k/1KhPyasPMJyfzXw0cGqe/vz77ElW6Hm4WQK4voWJqGF+s3uXi6Q4iJg/vHpL0Jm7NK4s4ZtAMInJyNwEChrNjEJ2RkEELAEJjVmtfeOOXqpTm999y7c4fjA/HaEH5SpK4s25tTtrc2qCuHtQVN57l78w6TyXz87LVOLNtDvnzlVZQH02lCEdG9QkfFzbcfYb9gmc/nVFWN1pZIwhUly8Up69UCqzWT6YyNrR1Olw0PDsVe3hjFvbsPaNYNV0rx2jlPEUxJuAEhDiO9iI5SrMUYMEo+Q2Pyecn32dj1aYUPPa9sHLK2LUW0dMZDgovNDi89dgP3gZon7z9JCJ79B0fs7DxJs16wOD1ie/ciuzsXWC6OstGhYdUsODm+x2S2iS0q5tt7tHmG77JyZnAkJo9GhMieM57yGjAYUqmUGHkcSpOU8J82dy7QNkt83/JgezFcSHI/Bc3JZM1/fvsX+V9/+duZ2TnGSEDdZFpRFIKwSHifYbpZYww5ENNjlJNPN/9eUaPpjFpGZrOaEGTE6rNjbGEtXTYME3J5HIuToaBKQ5GTDfNiEL5c78LZx6pAR8XH3v4cv//qi3zfy+/AJClKurYlf2z0fc+67bL6L/8OH0nBS4iktagYmKfAnMiMnolKWBLaCGqgYWw+ZCETJPfcqTxXhJxdd+dD6qJStCbw6vyAT196k89cusEXd+/iC8vfev3/wodO34a4Cp/VHIOiJeVFVimyV4n4nZz92szBy5YPol7KXilGQ1K4omC+ucPpUaJvF7kRVzn2QzxgBsM2ZTTOSuhorzxVVTKZTAg+sG4MsD4boyfJLjN2WFPEKO4bOb6lC5KisDjjuHlhn9/4U1/ARoP1Gp+JTirB5kpIkrIAanEGDIHOi8xrYHCf74uHzVuFiNNikCTeH4w/E4PI2GKK2QDG0nu5UGyygDiCiu2xGOHEEGRkpNSotEgkbmwd8P/+4CcIreY3L77Ov3n2cygUFxdz/rvPfjt/6RPfy0VfUSlFoRXF4Cx7bs76UAmaF6YB9km5Uy+0okhSuW8UJY/M5gN4wGnXcdQ0HLcNx31PG6KEr/leLN5NIpkzBrgxDhcklffexgm//r96gXf/wWXuX1ny5tNHGK8pOkNrRcoreKtc3AlBX5KKIx+3dAaXbd51JpQNrO/1ek3XKlzhMgdG58VZ08cgn2+el4eYSEFQsLqQDUacagXtck4KmTMTOsXtR054+R33+KHfege/890vcbS94sK9OcFE9ncWKMT2fbAzt8YwyHwHrxG54M4+k+EGHDZ8pSApzfXHn2byX3Fe41Xg4/PP87bmUR5pL/JzV/4/JBL/+/t/mt/c/EOeq1/lI6fvQyvFlavblA56xItkvfLoGJjXCnQkISZzqu+hKDLMq+mahhBgd9Px5u198V1JcPPWHW7fuileFD5idaK0hr3dLS5fvsh0NsMYR0iaBw+OmW5t5VyTHmM0/fqQV6vXub97wp/4n5/h1/7Si4QiUraWv/jv38/nvu0W3eOGajUZCY3T6Zz9gwO899RlJc6bG1vsHxxx/8GROPlah+9n9CGwURZMbSs2s+PtEWmbFScnJ/8/8v4s1rbtvPPDfqObzVprt6e5557bN+xJiZ1EVZWqZMlNXJXGchLAiWPHgZP4IUGQRyMvyUOAAEGQvBvIQ2IkSGzEHWyXqyzLskolSyWKEoukSF7ehrzN6fc+e+/VzjlHl4dvzLn2IakS7WICXGgRm/ecs9fea63ZjPF9/+/fsN11PD47x1hD2zY4K+OEJkFWe3fdmEaDNAAx91qdPeBPeY9F3/LrH/4S//Yn/lMUiv/m/V/mfnPGn969x1eHL0G34bOf+hyViqx2HafHB8To+cG3/xByoG1ntIsT2oObtIsDchbvJW0t7WwBZKytJDdJG7l3QO4DO2Y6SQGcScWrQ7HdbXF1w3x+UFAfKRTEnVR8XB4fLbl1eYBNmgc3rji6avnVP/oE3/7sR2zeyNw5n+Oso20bTJHixpQxWpeuWhR8ftgxeE9r3XQPjAaVZBnruqpmPl+w2+3IKELwVJUYIO6WG4wxorSL10YdUwumGN2tJ5NBpRicZ7atGWpPsInX7t3h+fMT/u9f/R0+/fguNy8XxcQtoIo60YdADJFZ5Wh0RZ0ySScO6pYbbc1R5ZgbXbhGezjxpzWDU1EiXdJUhIw7ilKQs1AFclWTrSOV0cvZIvO/+/R/wr/zwm/TG4lCeKm7y8u72/xfX/63ef69V3h590J58RJYOhpdImujtQUpS6MFQyoIkuwBRS0vaL73pNTRzA9QRk1NSPAD3ntUtiXA0DBS3jXCl0sx4irHrG3ph16KGwXKaipnCNEKFygFctRkFYi+L+crT8XSX/T4WBckGcWwCPzeX/8un/roBYxX/J1f+1OCSyzWDYMLHG1mjJLO8kMMPkiHPBlXcQ3mlBsphECKCV8SZ42R0cwou4tas+u6olmXNFo1QDSGEMUdcZR77hEb6Qzl90l13lcDf/qZt3n9/gt86r0X+b/8j/9tSWXcNhw+PeQ7izO+53f8aBeogIV1LLRmYSwzrZlrzbwUKdNjj3c+c7xUzlwvvdS1px/WNYd1DRySc6YLxSDHe7YhsguBjR/YBM/OB4YY0GhiG/izX3vML/3xqzz/owP+H//a1wE4PZvxxvducHm6Y/ADxkt8t1KGlJVAzkq0TjGCc6ZwQa4VWWVj3+46Ib+VLklpLQx9LaoDV/xTYipcnCSujChHxkguRuEEOWdwThZVhSIbxTd+5QP+1m99UVQo7i0A7v7oiOc/OuJHnz7He09d2WtIjxD1ckHJpEgqXaG8gWscmT1kuTg64cZRg5lann/c6z+z0lveq+/xv7n3r/Bv3vrb0/n98ubTvN69wDvNPRKJlDVWQ6OEMyJFoRQbVAp0RQ6erg9UtYMY2aw2EjDWb3BNzWqz5nLVoRQ8enzGO2+/U7xZMkbDvHUcLlpeuHuHdjZHaUdQNY/OBQU4rYWtEkLAD1uWl+dcfH7Dcz9a8Ol/8By/9S+9Pd0lf/WtT3D54sDy+YD60b7brquaeTuDFFks5mRlefr0igcPH5CVwWrxTwkxYoDTWYULg2BB5Tztdpc8fPgRj8/PJm+ey6sVm21XzJwUs7bh9ORGUXqN6dWlW4fi3Av3jh7wP3jvN6iHxXRWYoT/xff/Bf4/r/4uT8IFd6pTXI4MGwkDfO7Oi5w9eYzOHdvtFh13xO6K3WXN4XOvoO2MupmxWa2mNURGXCXXpYwGldEFuk/T9RRjZLfbcLVes9xuOT48pmlmWGMBQ1a5oLmOmBNXB1v++h98kg+fP+fBjStCFfnk0+f5zO+/yO9/+R3e+G0xqzRGeBWpoMTOCsFUmiuDUnkamypkpDnyPpRS03pnSnr2ruto65oYBmor/kRai/9LLjYE0/EsCjwdNaYUFfpac/NLf/oG3/vkPR7fvmI53/Av/6e/wUcvPuG3P/ltfvNPfhnlZS2xKXOjbrltK+Z1w8LWNFpR1TNqY2Xce10yzbXbdPrDxF6fOo29z8Z+bY2I9DbPFngnCbj54Ig8PyC6BrSiNyu2M8PnN5/hnfaHXFZLnlRP+T/+4H/LHx59g986/c/5Hz7479IER/Li85FiLAGGY7rwiDJT1puiANQSu6CKIlApijHmaM4mKMr42bQSkzeTRMqsS8GJknMfvBcb/6oSlWLfSyxA4RU6K3yjFAPJOFQhB6uUQOcf34r+3MfHuiAJKvGDN+/x1e+/yQtPTvl//bO/R195dFR85dtv8vZr9zneznHGFHmpSMH84Mv4gemiVtdwsbESTjmRfRYik/biPmidJG1OTnkyyxPpU5BwKhOJRjT2Wu/tcwW615OpmNLw6PSCF89v8caPXuC3v/zHE0nrC++9zuv37/LRjcdQyNlbMl0MnCeFSZG6kGIrpZgpzaHSHBnNsTZU16BB2Ffyz4SIjd/88cIFRWstrbPcaBvhpGRBlnySfJ6N91z1Pe/Nn/KFey9y+71D/uQX3+fqtENluPPwgK/+8av8l3/tXWFq94k8GFIuxYDeB6e1zmGNQikZEaVpZCT+HovFgrZpQDGdu5jEN2AYeryXmHFbUBNjNFUWBCoWPoncPLrAwOI+qLTh/p0LPv/2S7z5/dv83X/qW/SVWFgfndV87e++yLtvPuaqX3LTHAPjjSqXypSAXBJEJ7gzjVwkNbmJKmW5/dxztI3l/tMNd28sfnx8/F/r8cP6Ab958Wt8afNJ/k93/5/lfMJz/oTfuPoK/87p73BlNth0wOjyM17fdaXJu0Q2DSiLMoGqrsV1MfVYEzlbBuatQ5F4erEpluADP3z3HqvVuhBTE21luXG84ObNG5ycnoovjptx/+Eljx8/4e6dW6W7Tjx5dI+zR/cY8sBgA5//vedp1ntXWKXgtr7Br3//c1w0W6jAmT15czabC4LgHB9+eI97Dx7gnGU+mzHseumkU6SuLYdHB+Snayk8+g6vV7z//nv0wXNwsOAJDyFLsGJMSUYS2ohhVs6Tx0wsCjRpWOScruyWo37Of+vsr/Cni3cokxKetEs+e/FJfj1d8NHxFTeeHpG6S4ahR5uWdnYCykJOnD36EJt6jM6E0OOHntgN7DaXHBwc45wTqHfsvDOTwmRsQWIpArqu4/zyKZfLS7q+h6rB2AofJIF39C+q6gZjHV3uSDnz13/3E/ydv9lDhq4OXJ52/Obvf5Xjzft8ePMpr57fBvSUZSVpuz3OWYSMaogZzs7O0OaSqhZPmxCDFPAIIjq6j2YkZytYTQiyYYodvSZlS8aTc5Kir5Cfx5E5uahxlARozrc1v/Qnb3JxsuHJrSsujtYsZ1v+21//Ct3rK9q653kvKI/JMvrWOWHUyCuinDfZDLIa749Ryv8s+qzGEcy19TMrcQvfGc3GGK4y7LTm4MZN5jfvkIwVOax12KqRzxKD+JEkxT/z5G/w3OEt/uPb/xmd7vj24rv8z+79i/yDxTd4x7zDp7avQ8qEoSMDzXxB3bRCqKd4m4yjxDKuds4JSbVcr6Ngw/cDrqplH9JKVGnGkIwVU0QymkxSEnsx0gxylnBFY414j/QDfd/TNG1BYMRh2/demkVjJv7PqFr9WR4f64JkIPL577/CLFf84JV7vPPSA7KGW2eH/JU//RSrgx0nu4XcFFlOTspxMsbRJUVxXKBHouaeE7CvfHNOBC/kLOstzmiRp1Lg0/J7YggELyFSknlgShW59/uPKRZHVMvNsyPuPrzJQOCPPi+EXJ0Uf+17X+B0fcjlbI3KRsYdaey8IZduZdT861GClRQq5VKgKE6t5VBrKqVwSmEYBUd72PHHxz3PXjyyGFol0uq2POdG05APDviMugHxTfqXIq/Uc06+4Xjr+AmvvHWDLz98hcdXK47nB6QUWG52+Ci/O6U8LQKVq1gs5jSVdCljlwWCpJwcL4rlvKQDxxKINdpK+8Gz2+7QWolmvqklpCspclRC6MyJHKQ4MUZuLEXmuYsjnn90TNSRJzdXeBdx3nDn8oQ7u5t87Q9eZ3nQcdiJwZGQV/NEsh2VAWOfJNwi+Vxm7GyVmCdVjUMZw+Hx/Od2D7w83OZL20+gUDxwZwDUueI4HPBqf4d/9vJrrPSOg3BAdtPUER8zQzewmFvitoPuCfr4BOvESE3pit6vOVjMODyo6TZX5fKIdKsLVleXUyFbWcW8rTk5PWZxeEhVNay7xMVlx/nTC1LMbLY7zs6eslyu+dE732e33RJt5MaHLbceLlAHe+WRdNQVb75/h49On7LZ7Eg6cXhU0dSWqmnpup53332Xe/fvk1Xm5OZtXn75Vd79/ncJ3qNy4uj0BvPWsLt8zONH55yfLbn52utyXWHYbPoSOyFk9/l8QV3VeD8QvCfHMq9P4jsySjxjQdtWesPf+PALPJ9u8NHsMVV0DMbzpL1A+Y6//vTLnNkVy82OubU085pkFqyvHrO+OiP5nufuvkoYdlw+/pBt11EPPe38iNX5R8zmB8zbI4bd9lqxdm2jzJkQA+v1mourCy6XS/p+Rw5ielaZqqhgBpoSVCny4QowPLKXfPXvv8zJxZy7yxtU3jK4wIOTS5LK/MJ7LzEYIVBqlfGFQNsPgcvlFfVyLe8hRfrdgDaGk5M5Y35o7aqCFAMh0HWduBwrLQndShAd5wyVM/iCKitVMi7ViEapsfWbbBicNTTa8ObZLb5070UO/yH8k7tX+NTFbf7K5jVeb47RD09RZIRfqhh5gjmNq4uafFpyng7w1JhOmwOULDBFUopIIiJFx9ZowmzO4Aw+RXzK4nWUIqRIhShMVA4iCAglw2vo6e3AYtvwSxdf5M7mNn/n5u8QVeRv3/xt/kcf/vf4Gxe/ylAHmvlC3mOaU1VCLhWHajG3TOO4ZkRQYiDsmEZnwXvh9xhDiIFmdkBVt6gMVVXTtDNS6IVDco0/mFMJyCtjdO9lTKPLWrzbbUUgMnEq5X7xfkBbKbgZkbISgvkXPT7WBcksO2apItnED169z5OTJWR48d5NXrn3HG9+dIfj1bx0Fblo73tCDKAkGE5f24xz3ht1TdP/621s3j9RoaaQpZFNDEykMpFOiQpIa1VQEjHREf6DjG2stwQdee+V+zw5uQIFd5/c5OUnt7HR8uaTF6hNhU4aiBMRN8Uskk49boWKmBMpCbzsVeIiw0dZiIsuJY6tlRGPglYpWm2El8K14qssdNPHndCTvP/802cFV46RMZpf3N7hC998DjLM1jXDaeJTPzylvVWzmfcs+55V59kU1c96t6Prdux2G3JO1CfHZJ3LcVKkKCiDMXKMpWuSz5pzSQ21lpwqKVBiJATPerOF0iU4IzcvWpcAsHLzJvmcrlcMPrA+6Vnd6EFBu3PcOD9AG8dXvvU6a7uR12RElxJaWUJIE+IiHBE5KjIvVZNlfIFjWDQVWvNMsvQ/zkOhuBVOAOhUz4UVhdNRmNOkGovlU92rgGKjrxuxZfpuEM+Rek4g4LNlrke3VplTo2qOj2aTrD2EyPmTh6yXT0V1kTJWZRZNxe1bp5weH+PqBpRhudpwdbVkNpuzDgNVXbFeLXn/3R/Qd51sWl5z68GCpnLYxjxTJPf9QBUspx/N6fwaPRfo2FU1PmYePTnn6dOngohZR13PmB0cYK0hDgON1RwcHZL6NWdd4AcXazrncKc3MU7jQ896syGmzOC9WGCj6PqBHAN1VRWYO5C0IkVNSFa2tcIlOd4uWDw4Qt2AKjgOfMu58VzaNb3N1MlytARMJtuW7GrC4PG7JVdnD5mdvoAfOnyItKfPw+VjiAPGOBmfrZ5yeHQ63YeqQHMpZ6IPbHcbLq8uWW539N2W0G8l4Ezr4ugsXLgYw9h5lKYro21F7jJ/5Ttvcnx4xPPLE2ZDxVAFzg/WrNsdx8sW0ymWw1a8RAq67AdPVdVUtsRSxIBKYIxlMZ+VvKfiGZRLRkxRMvZDTwzSXVdVRS4E5NpZ1suNdOzW7TkHOWGVILaNs8ycZV5XNLOaSs/5pXf/Ce6eHMH9F1kvO1mLoqCVotDTE9l0hD/UWOAUTlhWIuMfl7qxIfVK4bXBG4e3jsE6dtqyTYFBBbKWBrS1Gldyb8hJiMcI1jAMHY2r0dYRuw7v+2n07HTFF7af5cZwg0U+4LXuFd6ZvcdHswf84NYHfHX9JcQBSXg4MWXCMBCDLyRWEVXkKNwRyrnep7zL2jMmxI+jvRA8i4NjKETXsRsXhSX77hxpfFUuvCUvqKEqJO/ddkPK0LYzabqj+NWEFItTb0SnKAKE/Kwa6s97fKwLkrGg2LQ9f/rp90gm47zhF7/9GtXgeO3e8xxt5ox25TEGuq5HIdX3HuYavRlE3REpJzGPstGyYY/Vckr44Ik546zFGXEsHEc0UMKLYizsc7kgYkqEoFBqEGMZZ6lchbGWb73yDrtaPAHe/OAF2qsGkzWv3b+LwYDaKyJkfysb83VokZEMloHirlieO6A5U4rHMaJJ2JSpyDgUrdYcWceB1syVYl6Oy/ha8hihpGeht3GxTDpPklmdFC6Kmc7nNs/BAbAQKXIfIl0MdCGy857L7ZarrmMXI9lZ+igZO7m4tOprx5QsKg5xZFUlkC8LaqEM2Risq8qxjsU8PNEPA94HnKtomoambUrolZFMnxhZzzouDkW+2ewcp+dSyM62DVVRX6D3M9eR0Dp2rKZ0dgLvxwnhGY9RioFVF2mA/2oBCT/b49KsGbQomo7igqZk2DS5IgNLv3/7PkIVdlRHB2hX0RiDccKo365WhCwupbN5O4Fngw+cnZ3z8P59+kE6cKMys8Zx6+YJt2/fom5alLHsfKIbAjdu3+byaofWmu1my6P79+i7jpGnpZSitoa2rqgXzTVEEvphIGwHhq6jbWuOjo+o6oasND/80bs8fviQGCInN25Tz9oS5DZC05l5banqlkd94HtPtzzZerSLXK16lqsrulIIKARVqyrhffX9IOm5TcMYAJm1hFCm5CYUDCXXODtZJ6poOfAzztslg/acqRW3vaVpWuGrKUvoOlJKNAenHJz2LFeXHJw+x/Kjd6gXR7RHN4nDDmM0TVOj8oBSaWpmQBCFzW7DxeUFF5dPGfoB0y6ENJ723hdGS2OiUAUR1tMIVCvD0fEpLz56nph3oOD25SFtX3G52PL0cMVFvcFuYLcT1+KmbQk+4qxjMZujjaFpapq2wWhH225Yr7flqhdO0WgmqAqyKIrFip7MsN7QNIDKxAyVc2gUFsVR01A5w0HlmBtDbTRVyQ+rjcaNDUDO5F0rBUbSqKJ0iTqRlBAy84h2IK81PkddW8bG9mCXI1cxs9GG3jqCq4m2IlcN2YlTdwZSGMh+U/ySxBfJWkvK+/U4pYgfukIkjVjX4NoZrmkmb6JA4Cv9F7ltbxFy5CurL/DO7D1Wes3vNX+fzz98jVHhNmZt5eIoq4qyUxXVY86alAUdGYYdQ98Lqh8i88UBbTOj73cMQ8fV5Tm79apcm55+c0lOXoQBjGpQhItS1vtxHfZexkTOWqKVSUHbNmUsJPvNth9I0ZOiJY2/82d0RvtYFyQgiMZ7dx7xzkslV+dqxpe+8zpKKV7/6A6zLCx0Mmx3Hb33TDqq0vRrXcLiKJ15zpMpz37zL5d1KUxSzuSSgdD7AWvspM83xqBz4YsYO8FWsRBpR2grDZHgB7ZHA2+/8AHBRJrO8ep7z6GvQFvF6XBAIjJaK4/KE8o7iinhKld8QuRC0mXDFHmgPNMUx8SEImWNV5k+Z/wwQE5UlSQ4qgw2w6FWHGnNsdHikYJ02OPXXr4mx3K0cAYwUV5XOo1xU84YpZiVLmec26ajQzmP5Wf7GLnq+0nxs40RrMSvY4y4/uUMRTGTitRM1muBfa12OOVKuSZSPa2DLObbLZvtluOjE+q2pus6MpHLdsX5oSBs7bbi9MlMuh1lMGhiLhLhMopRgC8ksbFS1AWDGC3vJ3QkZ1xTU7cVgemU/Fwf5+4KrwQWPQ4LmrQP1VPlNI1rcN95FpXYYQMobajaanqfZ/efsDg8pqqkU91u1vzo/Y+4f+9DurLQaZVZNI5bN464deuUdj4rEJHi8dklGc3xjVtcLT8ipcTD+/dYr5aMKjVQNLWjrR1HBwvcQbu/VnJms15S9xarFbP5gna2QBtHSnB+9kRknMYyPzhidrgg9AOxJI+mkZQeBs6XlzztguSl+MiHH91nu9uhFVRVU85phix8JqMDtsiyQ5BFNZCoa0dKia4f9tlEk3IhUQXHYmjl53RgXZ3z/K5lOyjqdgF+QJFJfkNGc3R6m2p2jGkW3Hj+da7OPuTw5Dn0wQl10xBmC2IprkYlTdftePjkAWfn5/i+E7Qmg44BU+SVWglCq0BUJUqx2W2v3SOqEPSt+OgYQ0qR2+eHzHZiEfBkseSj8JjF9jnatqVtW6qmQVQbAQoCLO6pkuxrXUVmI4W/rYtkWk/3gFagipy6MpZZVeNiYuEs86xYzFo+X9XURqwSyOIFNVp8/eRNI+3SxKRR4srttXTiwUZM3GdGybhGkZR4CgUSm5TZaeis4SIELoaOLoB2DdYoKoQk7ZRYM4hKR4F2hKzLGEKV9Xyf7G20orIG329YrypcPcO6CqM1KYjCSWkDMfFCfwtiRKXE5x69wey0ZWt3fPPgWzxWj7nhj8X/w3v80JdYhgQx0O22QmxV4udjjEblTOVc4bIlGiW+QuvVpSCP3Y7kd4TBopoG0gBJ1g0hHVei4pkCGOXwahTOyj1grS58E8hJnmttRYpK8m0GTwyeaCu0SSi9lyT/RY+PdUESYsKnyH/+1W9P3fmvfP0ztL7GOk3rG9ksywK13koEdc4UiSllVFhC0bSa4NiR9PPMQ/3kVpLJkDI+ebz3bLZbrLU4K5kT1shWrq1wSBwjh0L4ICFGHjx3zv3nnoKCk7MDbv9gwXa9xBYCrXUOa+QnpxA3hUi9VMnZGAl3SNGhktgBj/I7VdCN67AkShUjI+iGHuscWik6YJM0j8hys+RMi+JAwUExc6sRMm2tFJVSU3YNgIsiRftH8Zhy2SFHH4DxyFbGcOAcLy4W8v5ASLTBsx4GNt6z9p5djKQMfQz0IRS7/IzVtkSOSH5CymB0ojFyM/kQ6DrpQoehE3WU0Vwc7lgeSDd4cjFjvq6nU251CQArtvsjupaSwLOMqiAo1tMj6Fs+a85gLZX9eabXPPs4t0sGJYvxcVzQXitIMmUxzWUmnxOUzBQh52lAiuZ+t2HWOmaNLA2Pz5a89+4Pee+dP2O93kjaMZnGGW7dOObO87eYzWYTQpiyoh88KFeQQc/y8pz1cgmFi6UQyf68rTmYzzg8PKTT1xVgcozrynF4dEI7P2C13rLZRQ4ODib5rS5ZKtZaovdTkZyN4aOnSz669wEXF1c4rQklVsHYCmcjfb8jhq5cJ5nNboPaKera4Uxb/B6keRgR7K7vWW52HC7mgoyVzTyEiNopFr0UJF4HlvUaTaY2kEOPDjuCarDG4WPEuQqlLWdPHtB3G+68+ln6zRW2bqnaQ8L8FN9vCMFjbEtMop45v7xk2G2kDxjHtaVYFzfWjCkGhylGSJnNdksIoZBQxUzQuqqQISEMHn2uODpv4AW4Otixu+E5Oj6SlN2ikHGuIqqSFK4FrQkxomMoV1mm6zpmTY3TCofCGofOGYuSDCUtm1Z1WuOmOqOgCroUq9eaRcr3n3mMiPCoEsm5FCQWX0QBnfUQapJSJKPpc6JXmlUKbLXibNtxud6A0sxmLSkl+sETQqYyDpWiGH0luxcAlNtaGs0KFeW1chIk3BozjW2VUmTv2a0k9bpuZ2DAB4/vd2gy/dDj+65khGneiHd57qUb/PDkI96av8f37ff52vZLxDCIzcTQ8+jRfYL33Lp1m9XyiouLc/rdjoPDQ27fviMjmRhknFKKJFGMSoaXVZm2seC3bK6CHNkkYYDjSC9myGkk5I+2EsUjUMkounIVMQSGITH0Pc5Wkm9UpNuhl6JkpCf8LLEz8DEvSHKG+ycXfP+NewDMNzW/+O3XoIxoRug/xsy26xh8kMAk9gZHWu2hdqBMJnKpAkt2QJLMhvLtn3gP5U8oJAvApwE/DOXCFZfLyglnxFlxczXWUGlF0InHry+5OtlAguceHnHj4YJhGBi8R/cKra3YdGs7Wbe74mOiRrSGPE1VxuIjTYl28u+pfFNNd/v+OMjP7LkzSolBVCqFzUZptigexQQh4oCKTJUzYdbxh1/4Jrf9jNcvbvLFD1/mKNuCKI2Hdc/B2N/Z5eCNaEve//36w2nNcVVzXNXlmAvje4hRrPFjYIiRISWGFOlTZBc86yGwDRLiFa85bOYUpWMKUmz5PPD41hXJZFRU3L13PCFmSmmqytBoi3XV1B2Phd61KwFgcrEdgRMxgzOiFKodP1ar/NweF3Y5dYdH8VmEJGUhsC6jZLCEIUFbQ/RyDnRF3/Vsth5rDac3j6QwHQIPH59z/96PWC2vivwyUzvN6fGC5+7cYrFYoLQlqwoKkhdCIOTMdrNmvbxk6DvaWSOBZrsO6yxtU7OYtxwcHuKaGTu9u/ZpFIeHRyyYY6uGs7NztpstB8enLOaz/WimLKBj1HvOmaqpqRtFzlLQnJze4L0fPZDCPWdWqxXWWYx15JRpm4pZ04A2dF1PDGJ4hs/UsXgOZdl8By+IqEZUZyjhH/kQaFLNgRdCsNeRy2pTHDHFYE1nyGGLrg5waotyDaG7IGyfkoNn8/Q+rpmzfXofax26asjDlr7vmVdzUvCFl6FHUHIae4FCa0fTtMXjo1yLUaIrdl0nJmpluc9KUDFTENEQI9vNjrsfHvGnX1Akkzl/ocP80KLSaKWfpsJbjCFLBEWMmGHgIGfmTUutDcfaYAGXFFaBRWGuF+jT9Df/ZJO37xL3z+fHn6amdaxcBvgMZ3h+/8W3eff0CRfW8zf/wT/FUTqmams2vhdPHZ+kMBu8pPa6isV8XgoKy2bXF7lyLChPLMZiZTxbVjJjLTkJGjJE2ZRVs1+fxs/iw8B6ecHhyU2sFZPOPkVWy0uUEmPH7WaJ0pbX8gu8sXmJHx3f41HzhG833+Vzj17HZUkkPz97wkfvv0fTzqgrQc2MVkVNk7i8POfqSu437315C4KQWOuonOPwQCTgxmgUo6+Lk0JVablmCl0BBBmRtUyVHLM9l89aQwgKP/SEuhgp5tIIkwjB46q6cPb+EnBIAL7xi++wawbI8JkfvMSty0NGmR4ImXXwgc2uKwd5tAtWjD4R004OE1Q4ylIzspGPRsCqPGdv3T5GzD2rRpeFTEKbyOAHKU5G1U1VOdq6pp8H3v7Eg4n/8gvvvsaRmRMq6T5SSvg4CDGtvIIEtomMzpYiRxmD0fZaAu1+ZJARTkyMgzC0814lMiIuIreVsmu0wpcoaq5twGmqGQZlGMpx/vade/wbX/77ZBv54rtv8K+8e8DN9YwjYzgyhhNrWWgt3I9ygMbO6CdQqD/vkff9M0phlHBfWueeeU7MEvSXMoQszrR9TKyHgXXwbL3n6cbRjVC4CnTac3Z3LXtzVrz40Ykch3Kz11UNxfdkdC4MYT/CmQpAZPORn9VTVaKA2lmGkFEpQOv4eT+e2tWEkByFBU3eM1VyhsW8YmYTKnnqpt5nTpSq0TkLeaCdzSZOUtcHHt3/iIuzx9IV54w1iNfI87clMM/V9KnlYhU5bgLaGLa7DtfM0MYxPzjhxs0th0dz+r7n7PFjLInFvOHw8Ji6mWGcYz4T23o5vYrZ4QmsE/cfPGC7ESn5/FA2hjw2G+SpCxyGgfd/9AFgmM8aYgyc3jjmgw/use46QgH/d9tO1E5kVI5cLa/YbSxHR4dUxmBVIoWBSMYPPSm3aBQhRC6uVhwuZpKnNAz0PtAPPTkFZrnicCpIAhduJQVJzMQ0IGyVREweVx/Sb56S+pVkL6VA6K4wrsLWLdv1JVk7lstL2pBZHN1CobG2wlnLNicMxYdjnPcbjaXCaCFNaqUnDofI09MegRqLCW3oh4HtZocxhk9c3MXk75ASPLj9lGQSLkqxV6GYA62rcMYKOqo1lTZMpvxOlDx26kL2K+Lez3j8F6TZ00qcRrUuxNKxWdn3K5kCAJe48AjsUKy14bwfuAqBXc48rQf+jU98k3/4+tu4oeL0/c/ySw9OORh/x+QpI2ON+awt6kSwjRTw3RCmVGvhQRjx/SirvMC6GrKRlKgsik0fAmpQzzQrxogaZdhtWD59zOLwRPajruPpkwdorVkcHDKbz4Vn1Ce+eu/z/O7zf4w3nj+5811+/XtfYd7N2G42bFdXNLUjp8DD+x9R1zXz+Zymrpm1DUornjzcSOClERJ/7RyuFoTdVdWkQByLOqMVKeZnzovSkveWispGZ0rRI4KMYejLCZdrQ9K7B1CKvu8Z+l5Sm7U0taQ0USD+osfHuiBZH+/49mffJ5pEPTh+8buvcxAayl472Xr7GCVAqRCsjBkdQdUz88mCHYj+vXhW5MQ1KHmsRvM+tfEaApHZa75HGVnOlAVU/EpikjwY7wd2ux3nh2u+/9oHALS7mi/+4A3x1Mh5QihilGo9RmE5pxSJfpALxxiMNpIx0TRU44yRXMKRVMl22TvMjiOf0VlWayHzJphkt8bkkuZZMma0fmYOmHKYWp23X/qQddMRTGR2dUgeWi5QXIRAHiQrw4dIlTWHRnNsLYdGcWAMM2eptN53Ute4Kc9oUcbF7Segv2vYrhJ5svxRTWMhgOfadloSUylctt6z8Z4L1XF/9zon79acVxt+4dFdDlwlr6k1bV3hsxyXEAJ1CRu79uYYLyIxXHv2X3MKPHz0BHV4i9dutv/Ia/q/7uPcFg5J/kkOSYxgtcQhKN1M7xW9N9bqd4ME4V0LwcpZcXrzDpdPn5CePiHkToqRF57j9MYptqrZDI7HFxt8v4EDeHq5YbvrmGlXxgQV84Nj6gpQmhsnpxA65vMZrm4IKaCyRiv7TBf84QcfwCqx7ToqW03XZea6WkhUDn3XcXW1pK5kRDsGCb791ru8//5HhEI2FHRRZv8xDFycn6GA2eKA7eMzlJLU5pwy1jju3r3L0fEhOUU2u64Ejlk2mx0+JqrKsV5dsVqvOGpPZGSTx4JkOc33ydD7TN3MSSmyvbrEIfeFUkr8N0KgX57RHN9B6YqQMgeHp0Qvqp+UEtZVVK4Scmje+0OQ5F7s+k6QA8XUaFCI19u+o2paKF2xUZq6muEy3Ji3zGdz2rOaH/zwU9zZHvKLj1/gC7NDFm1Fo6SZgD2yMd5yI0GTa/8+GnE9AwWOfxdo58cQ0fE55dwpRVCKpBUB2CbYKFijWObMDiXJzFrjXSmEFNSq5ubqNp35HqGCd176kK88/AIhjgaM4jws8mJVzLw8w+Bp2xZnjdjgx5LVVZCRFL2k5RqHMWpSq2hTkaMkCoc0EKL4Qu3H5LLX5AxX54+kEKoaduslRme22xVdv6W6qvA+stvteOXRCe3nKvzC88e3vsM3H3+TF5/coqodi9kMYyrWm62gKixEtWcsZibpWEeHB+SFuJNrJWh6VVmxvJ/G/ft9ThrnsEcax46xOLXmnAhxXC4UzhliFDGAdKuWfrtmt3tK3bRYK5lBLka6IRRDNRmp/iyPj3VB8s7LD3h08xIUvPDglNfu3abSdqwOQIl/QAhyQ49z1/Gk6Gubl/xXfu+IGKBEcy60t7EnK0SrQr4aofl9QXINys8lzrrAvuNdLDdjIoXId9/8keTvAK++fZvqicGbMBnNVG6PTkhRkgijeqeoSWKBBsWsyJUxkcZ7K6TM8nf7TCE2vkUpnkIczWvG2WFZbCg268WHwRSphjHi9rexOz547hHBROrB8dKTW7SpIltVoLpEygk/BLqcuBgGfpghBU9lFTfncw6cLTJkxUwbaqVolGJuDI3ZIys/TSybx1bqWp0ynv5nkK9y3kY+jVVqcqd9Ts154e1fgXcgkmiqiv6lNI2BtHN0KTMkkVFWWrNScgzSM1hyIdnmSSA8dfHBe64uLuDWtYLg5/h4WjgkGs1RnOPy/tZWQF28GNCaHIIkKJfiox8itpGwtPEhharl5Vdf4+ig5Yc/+BZnjx9w++YxJycnpZiwnD29QrsGv4k8vdyx3vQwFuMgKJJxqNxhgfmsRWWRi3Z9P6FyXGugUko8vbyi9o6Tk1OG3a5IG0upqoQfpDKs10t2g1jXt8dzhq2XAltp3nr3HqvNcC34MGONYnl1xfJS3GOtdex2W1JKtLMK10C/lWvFVCUHCs2u62maihhTGb/mcv/Llw6Ked+gs8LrwLm+ZOh24nejNI7EsL2A6PEB9OyArDrxJkqZfhhQKhIuHnN69xNoP5DVjKAV1jr6rsdoS2Ud2tgywpGGagz8G4NAx3vUaU1rFI1V1N2GReMwWTgfOgVutRWvP/8CJicaa3De8Dd+6zmylvvpyDSoIo8fi4ep9i+8L3WtIJHrRjZrNSGfP+WevVaU9DnhtaYjE63jshsYnKVDkZuGXmn6gs5JQyVIj0IksClK0ZsV2F5z98ltal/Ru4EfnnzERm9p8gKrCk+Kkq2jtRzXYaDrPVXdFIM2gyJOwXUpj0VJFAO4pKcmNKORUGBZnVIJr9vXXgprS2xIiqyvzqjbBTn2NLU0DOv1hrPLS3JpPNtV5lPvv8jXP/cWu3bgrU+9z5uru8xmM5q6wRhxRV3MWta7js16xeFiLuiltbR1Q0YECrIFaqyrhf+TxBckJeHfSbMbyjibggBfb/xGzuG+IZcxm3CytBbXcW0szikODxc4VxFiZOgHYhaOnjaGYej+nJXr2cfHuiB56+X7rGc7dNS8/sHz3Lk4AVW6VCWLimwGYVKhyKb8kzfSyKO4PsqRKlK2wVggrJzUJCWT6AJ9rfLMI3FlgkszpswkkyhJCrE05UxS8O2v/kjeQIbP/9GLbNabUllbnLM457DG4qygIKMhWAhCpguFWBZjIoaeYehljOMsKVrGHAmxui4eKIV8lFMqltAKCryYUhZLajQxF9+gMcMjF9izIEspZc6Orjg/vgIFx+sD7pyfkkkSk6CE+BejEklcWYSmMEM0OzJDIYfFmCTIDwhdT60V87pmbi2H5WuuJSnZXV/oriEk42owzZd59mnP3F/lkcxeIVR5S2ssrS6/RxWbalmmisJHMTgjN3VBkTyZIcM6J3ajk2TxO/AhcPn0HhfnT3nz1Vs0zU8Z2fz4LP2/wiOSuLQrgoq0qeYoLp4p3nyINKmD2Vw+vFb4PqAt9NsdGEvTuGtjSISoHRLWGQ4PjzhYHGBV4vbtE6q6RmnL5Sri6pp6ccyThw/RWsyXjJGRlYQZpmKW5NHKUtU1OVl88HSDJJJqpanNbH8/FgTLuIrbd1/k0YfvM+xKTMNo+Y/ECgw+0FZyX0wnGRj6geVGZJcyhk303Y7V5ZOyCBcZfhwYhgFtNJlINW+o544cipGh1OLsdj3zWs6bVoqQo9R3SsieOcOib3HR0lvPqukYckR14gcRvYecsNpAjOy6ivnsBNcP9MOArYw0AiT67QXt7BifeqypiMHvX8tYiXKPAZ2hrRwz51g0jrY9pCbRWkNrDK6YM1praemoN+foLKOqghWSKncNAQadNFHLZhyI2GymtXJvNTA+xvHKfsQyosx5OpfynwQMRtMZTacU6wSb4Fl2Hl0ZfJYxypWPDCGilSZeLWUTVUjeyuALUV+QsdHNVRWXZKUVtx4ecbw+4NHpOY8PznncPuFkd0C2LSmVpHKUhF8WB+1+GNjuusl8MU+bdppC/caAOjX6qpT1KyaNIRRuWsl/MWa6ToCCOGtyjgy75WQu5qxl1rZUThND+Vmt+Y33v8LXP/sWKPjml37Iv/j2f6O4UAt3cLE4IIZANzyi9wP9bsfT83MODg8wRnLVRrRJaYurWpyrSEOP991EAJcGao/mKJ1HnzjZ+xQoM67davp3pfe+UCBIEwVptaZktKVIFY00yn3PZvNsEvmf9/hYFyTf/cSHZAWLTc1XvvMGLhli3jsKmpJK60vUdL42rhmZwwrNfh2ULkOX+f8ExOc0xdnnnEhaYbRU6YlMUqLXHrkpWouBEmO89LWNOBVyWEyZe8+f8/ClSwCOz2e8+s4tVNnMfUoMXpATKTAqKU6sjGiMLdK9nMkIcuJDnPIkhsGTul6KG2vKBS3Fx8hlUUphsps4I87K5aCKg+1IXgPhlSQ1+pyIMienxIPTpzw5voQMN5aHvHhxS6z6tRQ3Y0EIauo6RgMhpSsoOayitpHxWhcDF6slzhhYr4SsaB11VVHXMsNujWahDXMlY6ADa5gZi0XJJle2ZF1+976/+8mNP9r9EmuSLrPRsSuc5nkYykhIqcmaf5+BVIBOY6bnj3/onWFlwFvH/OF9aBuwFpyTr4lv8mNf8JN//imPne5YGnHzbJK4tF5/mBhR7WwPoyuDrTSXVzt26yW3n7shi0iUzTvFnhBrBp9QJjMMntm84fR0MaFsoHhyfsGdu3e4Wi3ph4G2kbGL94Ht+oqnj+6x23T0uzW2VlRtLcWc9+z6jvXyirZpODm9gWma6VpTWvPyq6+itxpjq7L4CdoYx3tJmZJppJnP5zK3joHMGKDmUVlM9UiB1fJyj4S0rZAV8zhiBesUplLEPuPqCMrS9x27bmC5viDlyOGiJm4Tqa7Gia1sXEX+f9C3VNHRO8+2GYitph0cYwqvHzp2g5Amo7+iszW2PeLQOFIhVRoFYdhRkVG+Z9YssLslh8pgYuLmouZz7nkaDU1RvwjwJZ25ul5UXhuTKBI6iaoilTHOeM2OF2smY6Im2oIOONCYaS0cr0FZE0dFn/x4QiS1ISuGnEnWEipHZywbYBibk1TWqAy9yiy7ARUzlatROGbzGl2k5U1VT5LaZCtiFSZ+UyzqP+tkFJFSwljLp/qKm+sTHp2c8/jonLfNe9x4IgnTowKk7zuc0cwaS8qZ7a4r3LrCBdH6WhGSEI+58ne1R0iUNtiqBR/QRhHxpd5XEweRES0te81ovDkWAdJotjI+SRJn8sXzT/Lc6oRHhxe8f/sR958/59Wzu+X3aPpBQl1dVRMHT+0qNNB3YjZnjJ1I3CmLl8x6syPGgC5FByNSbAzK7te4iSeoJlaCFHApEWLGaIXTimQNPmSsFdfcYRCV6YjKaC3Fk1GDRIf8jKjwx7ogObuxBOCFBzd44/3nJ3hJK6n8fEx0wzCNbKzRU1y9niBHppts5FNcT88VhECjdaZyarqYyAKxqfHm1uLQkfMI48vZ1JQwNqWg+PuTEjonvvfl+5Nc9pPfu8u8aybnwIKYTZ4KIQR2OykmbClGXLkYjDE4dx1BycW1NE4ZHH0cypyQaWxjjZF8BeuwIx/FGJnnl/9lxTNkVEENZEOKLnPv5hPW7Q6dFS88ucnBZgbFZM5qQRVCgZQnxGKar0qlPcpzQaONVOIHc4H/QNwEffBsuo7VdjM5tEromMVqjXWGeWU5qmTm7dA0CPG1okgOlRgvOeTP43mP+pqHSrLFIGg/C85aoYr34liiTB0gXK9ZJn7DxE3K0BpNPWvRxlKfPfnJwkKwT/kyRr5+2p/H6+zHvnbVmhgH6mBpU81xXFz75Vk4Brj93xGPgt16ydFRgxvVS37Hbrtkt1Gk+oSYDb7bcnn5FK0VdV2VLCKN0YJQPL14yuXFJTkGlLKkFOm2K56urnh8/yMp5Iwmnx5RVQ1xCOy6js1qBTnRNI38O3rv5aA0zz3/PP7pIEe0LKwhRC6vlgxROj8xNdsXLGNDgRKu1/GiYdd3fPj4rJjjibpqs9lOaJCMM2U81TQV4nidhCuQA+vNEt8PXF5dcTRvJXI9SqhiRgh9Q/A0KXOwa1kMNaiIiYnIDhs0GnHRnGmLrjSquKgav6HSmuh3qBhwSeG0yJhtf4WxGhW76ZgAJKeJWiTbz1AwpgnJvkB+5ptTUasl6bVc3yOPSH6fkoK8PKJJqFjudSBA4XfAkDJdSvSAshXeGDoFy95zsVqxsJrWWnLxuFBakwoaNJY/IWZ2vafrVriqoqokR8kWp1bvB2IIuKp4O2lbrNLDXu4dxfRNG0sMifrC8cL5c3zvxXdZt1vu33xMeD9ycnCLMuAV5Ucc0BqMdTiXqFzF4eEhPni22x27bpBiMyZSKV6n44uaXFCVrchBiLEKCQLUWZx0Bx8JIeEMzBon/KUodv9aGypriYqixhJbenLiKBzw5Xuf4j85/EMG6/mD177LK0+eRyHk7b4XgYZzFc2NWxwupFHwJWtIl9BF73t2ux39EKR4soamGhvTclmUsNDpelK6ODbsx+CmcLDGZhqFnKOUUCVx2IfAMAx4P1DXjXwmbzBaE9Te2O0venysC5LxJvwrf/xpTCqKmGuYfAiRwfspat4Wox4xttqTv8afmHgTI3oyjmZI089Q/E5GBGEcv+SciSEi0seyGZUgPX1t85P6R7GbRd77xGNR1wyGN969wyzVqOmMCDqRCk6WGRELkZhBT6fUVERYa6hcRVU5ajfOLVOxsJdgvBCKcVQqXJQQUYOfNnhTfpcrc2qBQ2VEJYFrsVT9cuy6xvPDuw/kAvWWNz98UY5HEq+KEdYLMQip9tpMUmvJAtJK0CIK9G20IthI27QowEeZH1elAAzBE/wg6qMhkLIscM5ZYi3ws7GOlPW0LlvA5SSpQ5EpkLA1lpk1vPXGexylijubA17aNOX8/lgHqYCfqPP3s9X931XpNPbfF2StIE8/7TpOCYZBvv7ca13tkZTrBYlSzOzAv3r2OX6jvUlFxS+uKwgfShGjNdZ71NCCNWImoDW+D9w4nFE3DSomUIHLqzU+KpI2hJhRlaK1M8J8Ad0ObSzLrSGGyOFM0fcd292GYZDOKHjPdr1keXXJMAyAdFQjNyXEgb73rJdLVE7M5gtM1XL29JLaLp7ZR41zJCsGcz4mhhhYrtcM+aEkOZPLPSwbw4hqphBxpsYazb37D1ktl3SDZ9a2pNQV3lWazoNS8v6k4LJkn2jaWqzQYyL3PXNrsW2N2m6ZV5U47aZM5SwHh4cc5shi2PEb929z+nt/i6Qjzy9PeG0TmcUOlYtBXx6NvoovUNyhkia7ijwia0iXqnIZG5exxDPXwXh9XfuvmoqOPBXC09U5ksKurUP712K/2QJewQ+On/BgvmSjE3/1+1/GoxiUFCNZa5LRrHedOC4PAzb4Kdhyt+u4uLzCh8gwF+MwXZCsETE1Wja4fpBxWYwRHQKHt56XZiBLsat7SwqRpp1Pn1HktjK2dlWFQqzQQTb1GD2fffgm/8Xn/4jBeT58+TGXf3RJu51Nm6KMXgKVsRKqWNZFoxXKVXjn2XU9KQaiMZioiy9NkAgPDWRTuEkaTAW5F0fsrgelWK13nF9ekRMcLFqsOZyKShCCrVVGioORrG1E8VL7ms8/fIPffvMbDNbzneffY9P8KothXmzhE1op6qqS9b9yHB0d472n6zpCjEjWmRLkopgIkh2qsuNFMZ1/xiY8jVYRRdqs2SdJa0OM+79rFYsJn5wTYwzee9br9URv8OW95jIa/VkeH++CBLjx9IDPf/9VISMpyDGX8YqQWWOIxJLIaq7xR0Z4ZD+3lvHKWJhMt22pCEfzNNg3G1OxwViYpImHIW6vgYigLqOGW56u+ODuGY9vXYGCW0+OeOnhTayy1woSeU/jgjF+xVSkrWksgkIJmFPsVCdz5spRVzV1VcloB+mPYzFxyoV4GcqIZwyri0EQCh8GZJSlr0mMBdI0xkwR4ptqxw/v3gegCpZPffCSlG9lM04x0Q2eEOLkW0AhiWljqSsrz0MKJ2Vk3FW7IktDYa0tN5gUlTlL9T3m1oxfMQY2W4EmjdY0TYN1jqquwBh8OT8+pH2B6jL9fMv//tf+Q7azHXfOT/lf/lu/yeubG8yNoQWqGDlpW+Yln8JMaMj+2pnKkaym9zmGB44bhRTLmlyY7D9RmPw44eWnff/Pkc5VKvDFzW0+p08x2XASMuRH04Vqx4v22uinLmqryZZfQdsPNFqTtUXZC7KtSEA97FBZjvfuao1WEbrMbZPRdU2oLME7+n5D9J4bbUOs3ORlUFWWk9mMg/mCy+GSaA3t/BBTzzg/uyCmxJ3TmtN+xs5aZl1TMpLEXbh2lmAdbd1w2M6w3pNCxBhDq2ChMqapqaOnXTQctxX+bMA6x3OnN0S+rQxGS0CkswanNVaLP1DrHM5qmtrhtBFjLIXI6Av0rg4EdbIxoguSk40hHh3J3D54DlYzbvtPEHXCBM3cZxz7GIHMj53jLJ2oGmWBmf1zCtJDThSZW0EWNSqbafw5LV/jujYWwtdgk30ueUm61ooexQ7F+XrFle/ZpsSg4PHBiv/zr/2H3Ds+43C74P/wo09w0h2SU8YXcmlVVXTeM3Q9mURdN9R1I/d2Jb4eR4cLjo6Osc6WBiiDKjkoZQPu+oHeSwMXQmB5dUndNLKBhcB2uyYEz3a7oq4qQgz0XS8KyMLLSDnjvawBVmuapuJ0aTF/Q4OD957/iI2VjByFIqYg3b3fojVUuqI3PTEEkaheyxwLoTR0BQ1UIQAaY8U2YRQ+JFOThg6lJAFcxUAmY11DPTugaVr6lCfF4chXHELYF53KSGGgDZWCT169zAurW/zw9D73Ts740a2HfO7eG2KzXzUs2hrjLH0vZHlnLG3bUtcVNZnVesN2t2Oz26FSpnaOpm3FUTfn0lzKNZFjsSko7228BlUZPUEmKxnPgCn7hcI6W3g9BuccXT+wWy4JMeGsnPdx4hD9XwYfkgxf/ZNPMu9LV8vomRHxpUILhWhkxsj5CS6/hoyM/5s6CDWdmDSNKfZFSsxl7DF2JUp6ZxEyjF1xIsQ0WSzLTRmlS7aK9197xOWJOC7e/eiUm4+Opm58MuDRhhFmHJU2poQEiovktYJlXNByZuh6+sIfsdYWp1epYgXOdlijyVVBUYoJ0DivDbGQ6LRGBU00BjVIl2OsE2dGpfjg8BFnR1cA3Hlyyq2ro4nwOr6vYQgSUV+O+wjLG22msVQIgWHoCX4oM1ApSKx1+xFTQZus1WVvTsRYTW6aY/Jl8APkSE6B3daz2UgAlLWWtmnQxjJyfzKK92885ny2Ydt23O5u0/WKh96joxgiLZcrTm/cpGlbGpVplXgy1FrTKl3+DiZnsUsePEaJhNlpRWUlwVikqJ7dkKmdlW5s2k3yT45x/sJrf7+5ZSCNc+28t7AfuUvjc6+/npGT8cwW6WIq1tY9xvSyKeZMk2O5Bj1zXRaylHnh1mn5naUASyfk/ML0rvb3E9iiNsmLw4mHFGMkn57KNekMf/Dv/K/IStCBW4Miz4Qs+rVPvMlouCRE2Vt7vklZ3LlxJPdskoLzE6+/MR2caYEdP+iPHfeRhyHPGY0Cxy+9/8ECrRcAQsZ2E+IgOSnjAc0KGb1ey+mUouTa+Rg7dkAVe3gKDD6uA2N07hTVMM4MyzUVxuwtMlErQpaGJeTMLib6rNhZi7cVzeyIxY1b0MxYry/JOXGZNedPHqCQBPIULbZvuGo6YlK8d3ifTz91DENPShHnHH0nSJOzlqaZU9c1TSPS7IPFbLKMr5wgtxkjDVrKz4xDtVK0tWO33dC2B7iqkbFMCrTzBV3fcf7gQ1TO3L51g6quuTx/gPeBxlleevklLpdLnjw+I6XEzeMj6kXD/J7m5v0DPvxEz8XpivO7K9JF5uDoBK01IQzEXpHjFq2ER+FDYNf1xXVYRvsBXxqoOBFWcwqirJG7DqUsylgShhwHQWy8mDHaSq6HfhgYcsTgsRrms6Zcx1HIrEruX1UWRK0UL1zc5vXzu/zo5D5PFhf82a0f8sYHLxAGuReN1tiU6fqe6D1PHj+mnbW0sxm2kGVzQdOHYRCzPaUn7l8s9/RIZk0xo7REp+hxTSn33P7Cu9Ycp7HpQrhc1jHlJZFpmgYUDINH9z3PyOj+EY+PdUFysGr4zFsvUmUzzc1kISwjixgnVv5I4hzZ4tcXHnImj/+u9u6tsnfmaVMcxzMiOVQoo8WmHa4tYHKSjNIolUg6A5Jnk4ps9KrZ8N6Lj4g2UXWWV965Sd1JgB5ZOhoprsb5XhkW5IzSGVVGLkqXHT3naWwEY4FSiqcYCCWOnCL9NVbmr5J5oHBVLZb2WeBiCQSUvJ2YSucARK1RXhxo0ZrvvPzOtFh/+t1XCCGTTZ6g0ZiEP/IsJyNNhWNMxbgppkmC2nVdiSzXWFecafU4ShJL/to5shPkRKRsxVYf6eJSgSx9SMQQGfzAZrNFoWhbKaw0CqPh4ekZwcjnu/X0iHqw02jMaiWx7WV0N5BR1nIZEhqDUbJwGS020Q/Prxi6nsZabIrUWnF8cIQjo4Kn0ZrGGOZNze3jQ2ZaSdeVfrbgqWce1wqY0ecG9sXbdQwm/xhMf903YvL2mFCcvfvnM681FjfsiaCMfy/ql+mp8qdr98Szr50zxZJ9b0utkFk1mKmwHt/fj33cZz7D+OdUYPz9+xy/eQ3tfPafn0GMxvc9Ni1TgvdPvvD+31IGnSnugUw220gxEskY8nQPj8d8fP3rJeVkCjYVpzIeiUhDkG3FkBVBaS43K843Szo/4DN4IBkH7SGD7+mGnqDFQhwUumoxSnETCaZz5IKMaVzdoI0hFyFA1TtuXR7DK+BN4IftPV7e3MRaw3w2k5TfqpI1JUVyGZmk6LCVm45dKAGMI+JslCaUEbe+VmTNZy27rsM1EpA4WxxhjCX4nqbdYDVEH8gpCxJjNQaNVjL2aKqKw1ldxoaZdjbj+GDOZ955kQ8/cQYKfvDmh3zt9wsXRwsXJVtHSgalEsYaej+wWm/IUAQCoTSQceINCiodsVaLUqkgVUppkhLBgDGWbugFLdj0QKZyBmc1kYQH6soWTsxoGzFyE8v+QqYKjs/cf5Xff/VbdG7grefe58L8AnUvthbWGIbg6fp+OtYpy3rrnGOxWHByehNXz7g4P6OqZOznB0GYrpXR5JTROkEWDuSe0y/TBmlGUmk6hFi+vwcLoVhrZk09FSSmuJGPaMxfCg7Jqx/c4e4TUQhIBV4WlZxLiN1YwamiftGTx8g0ukEWcyGf7j1KZHsTOPHHD6YeK1kthc7Y/USYNhdduhutZH5MOdGGTN165kNLu61oto43vncH7+P0nkQPP2EuTJ1V6diMNiiDaOPVNSntyAgfIWWkKJBLXmBHn4UshlLlpjBYZ2nqhspZrHU4K1wMQUsiMYzFSSIMfrppwjCwWDbsZgNv/Nkddl2HsYLGZGDwHh9jmXrtzXhIsejkxSfGWEvTiOeDzBsD5IwPXhjlscMZQ107VA4k51DaimmbNuI7UQozay3ZyE3rKuFvOD8QvGTYhCTR8k1do9AkIgfrGVeHa26dH1MHV444pbPX9LuNhG01bSFD70OnUHLeH18tuXe1ko0spGIIpDhtDui7jn63E/KtNlRVx+tHN/nrX/w8jdEQwp5D0vfg/f6/47/H+NPHOnmP8cl/y2LzFyAuORdn2bGI13ZSTDD+fJFYkjUoUX9N6alKrrDRUG+PIuwLDLRmogGXTTtnCMkXxEMQwJxL0VRGXioXp+U8Xvv7zz2q5fYFmHyGiQeh9zyfn8jPKIXViGruR7Bj0SRlwvV03evHca/OG3/P+I3yH4FF9pVNVtN4EZ5dR6JSDEgxEVUm2YqBxBB7ApDbBe74OVaXj9l1Ow4ObqBsjfeee+sN99dbgveCflqHyokKTVKakBMmF0QqZXIUCasvChdbkIqUcrGQd/hYJLGrzPHDOfazhsPNDFdZ5vMZlXNYWzZDq1HKMfRxQkJ9iEK4L0jskHsB2Mpr7dHp0jqU82Cto6kr4vgdpdDWYnKibWbcOD1h2K6oK8vR4RH51ikxerreo3Lm+PiIyiS22x05i63+yckJv3TvE/x2+BbzXSvIT2msrKqF+6HFLMyqhDZelGHbjsq561X1VIzkJMaWWSmC16Q8YFzG6LJeaAdJHEx3ux3L5ZoYI7O2onUNVaX3Hk4F6ZM9S67lqfEsiF5OiS/d/wwH3W+jo8FuHTs/0BpxZ521LXXd0PUdy6srjDbMZy1N21JVNYuDY9CWA23pdls0CW0t3veFB7IvkkerC23M3gBPSaGdy6Y6rjBpXMmV/FdrRQyyx7qqwvmBURFnlYglgjZU9hoP6h/x+FgXJL/+e7/A0Wq+FxCU632/QV+HdcdRCNee/OOdyvidvdb++ohHKQRWm07a2MyURTozIRN5/8umv49IyvF6wb/0b/0aF3/7K3z0/BnPPT6WHy8Lq2x4chMwIsaywo9vSn7X5H0yXiBl3leIYYmiElJMviBjlzsiSKOdvjdj2KAVdIdSGDFW8BqdilQyRlTK/K3/4Kv8M7/1JR7eveTFezeJOVxbwNVkuCO3mNof8evIVN4rm5QSAq3To2dJnqpyKa6kQBphxowW05JxwSvvlRHRKpum0WLVn5Js6iOhF+BX/+gX+JWvf47l8QY3VJh03WVSjpb8XLq+Tj1zzeScpXBKac9YL0idUnqC0ENKIs/zmoveE9oZual+Sv/OTxYfMUqBMn4Nw/TnyntuB0/ynhwGCOWayFkK5Jx/8iuJemncLEfftDGAb8wb2T9kOdpXG+OTRl+Q/dPG+0yut3I+RkIuFIXC6GUg17pWmsWqRXxz1HQe8xgZnwVSztdffzxPOT1z3U1PUc8eRvl4+/c2liR7lGZfhIwhaZniOzTe5+UrIwqb3gfpOI3Bx8Rq2zKESB8CQ/REEwlkBjTtwQEYTUDGLKPnhdVgmkY67S5ClvC9WdWwUYptilTF9GxIUU5vaVxklKlLoThhUwVtGQ9HuevHzXUs6vKIPqmCzGbSEPmrX/88v/Ktz/Bcf4PG1M+gyyP/7MfvhTFUMuv9nS6eRbqsMfvz84x5pGJCtKfRc3muNobKOXLlpmayritCgBDledZKoWSt+B1lJPn2kw9e5F//N/77vHD+IkfmphyTEYlU4/VVUK1r72lqCI0mxHHxzvvPXVBkKfRSOZP7AjmX9SVGCSsYEdRRLDEVtdN1pyYU8NnbTcY2/9O/+5u8cP95FlctNkW0k4Z5VCGNlhAqZ4zdCxy0lmtCK4r0PU9ozHh9/0S9Pt0X187XtYVgbJhzVvu+5fqOWo7dKJnen9/Rev4vfnysC5LXP3ge02pGm3aQg+x9ZChW8WQK4VVsycfxwfR8YDpqjF9MF+d1a+RYFkVdTpLTsiDvIV/ZuDNj46pQUyxflsVbyR5qsub2+oTbbx8TGykOYvE5GccYcSQeKiGb6vHmhT06Q5lT64IQqDwtRiklYqlwU0qYrKa53wgRUtxetzHQl9GINmKm5JwTnbyzxcEQfPTEIE6xPgTczvDqO7dJOTGoHVr3KGNAOWLa2xPLYVaSAKkU5ECO0kFlNDEErLWlMdelE2tpmnaC43OKhBQJnSg4UqnbR/OnylWTS63c6HI8nbMcH59MgYXDMLDbdSNFgpzhNBzhnCOp+MyGKkXo6NugCuq2vw2VgqH3rNYbRktvGXHlooCyE99hrJZTTpw9PuN8tWXeVNc202uPH/83rcWz5Kc8xmea8QZIIjMlBLIPQgBVkieRg0jVkw+szs65vLgEhOi5W11Kd4piPj+grluS70nDDt9v2Q0CndtyfKIfyKXIUqrwqEaLeqUgyTxczJLk2h38IDyXgpBd9wIZL5M9rJ9LPVUKw/G/aSxW9/LbVLgjI/KTAWPEgXgIxcyvRCRkJa8/WhJnbahmh0SyuB0bjakqMJbdEAg54SohSIeMXN/asO56Hi4fUNUzmsUhV6sVy21HLsmq2joWTcPx0RzfeTAjnyiVzdoiTh6J2K9xB7eFvNmtqWdH9NuVjHl9oO93oHq8DxgrQXp+6Ke9Q/gBaVp3Jqh89F1CRjghBmwUv4sUAyrLdRpTInjJILltTmlNg63MtBEzvtNSfFfWlkJEjnnwAWvEhykjZnyPn5xT1fWEmozjwZGz4b2X8bcSjyIh1gesFYaXsQ7XzDFKPkfOcHh8k353RUbGJO1sjkqelCKDl6C4xcGCwfd85r4BU1M1lcht/UDVSPGbtEZbBzljjKWu3LTW12VMm1JiCLI+hmLeqLRBqVJ0BHEBzhlyCsiATTJsnFFYI5wM1H6fkYJFxkHWWqLS5BQmxGjc8EERw8An/vQFNtuOMHfUrVj/X11eivWD1hwdHzKbzcgTSV1ew/sO5xq0gpPjYzabNcPQj+Cg3CN5XFdl1ITSGLNv3KUJuLbKlKJcK5GIaxTZgIr7Ua+1lr7r6ftB5NWoMn7/S4CQoJh8RcbFStQjQZQZYwHxE/PgfdW3R1GYCpCxoFBKT1JN2YRSIbJKxaf1vtvXxU9jhLHH6lEpUzqq/WaUETiMQmQyRrppkwE1FhB50n2LuZhU47rINgUYGMm3Y8UtF9TotidFiFTzY8DWqM7JuoTpFchVFnXR+OdBjpEaR1xG09aNZBS4CmtkTllNsuIy2imcjuylEFLGiuSx3NzXu6zdboPV0qWgNX0KgtJoCQwcZ6xaIeZHWjY7BQQfpnM8eM92t4MMVeUkB8iKNXmMqfBJ5HWbtqVtW4bBs+l20y64Xq8JIVBVdiIaTsZqShGR60sbSYlNhAleTmmfJD1fHJFI+L6j73cTIjW5iE6PjPcD/XoDt45/zveE2vuXOEd2kRx6qBsyCu8jzhpSTFxGzYPOo+wM7wc+uPyQvtvhtOGTn7rNc3ffoFtf8OCDd7habhkC5BixOrO+umS33UzcEY2QdRdzCe/qux4FHBwsuHF6wsHBjKRq3n7nhzhruPncLdarLZv1mtD33Lx1i8dPLsk5szg44PTGKbtdx9XVFX4YyvWouHnzJuvdkqfnZ/RdJ/dIKfunzrvcy6Pv0HbwVJWlqd3ETaqrigysdx3z49uctgeknOmywSrPzDmMESvzkCK1h6NGSNStE7+gTnu6nEgx0GolhmtWkMbtdktWmls3j8TB0iFFYpHNpxRLAF45bch5qo9vY13L0IurbLM4gfE+qFtcJaNQYyxR+akws84+y0VSXLu3M2SJQohlfKNK0SLdqxhb5ZRYLObM521B99i/x5yFK1LIjJWTDTzmSDd40q5jtRZ1ijaG9XqDUnB6ego2F2dVWWeiFpv1lLK4QWtFGvz0Go1SGONINuKqlhC3ZBSurjg6OOXyLND1nqREAdjMFnT9jqzClKVS1VKwhaxK0yP8CZFRj6iSISexDJjNZnItBs9Mt5O/Ez5Oqp8cE6bw7rQxci5LoZdiJvqeWW1omxqVF9PrDT4Soqy3MQaaJnNkhLC9V1WNjfD+Pq6qisXiANcsqJsZzjl8t6PrV5w0Mw6PDvHDQF1pXCXeLX0vCkmv+jL2pzR1kWEobrQhTXucFCUKVEKXpnZsetW1PVLWUOH+SbSjGrM4iFpP6cK6OJf3fYerKkCkx9vdXwLreDX9HxMcpbTCFyv1lClWumUzU8/+tFJc615VgYT3oXxjRgFlvCBS2DxBkOOPjjL/cdPVijIu2UOb0+9CT74UIHIqRUaPoxfSPrGXfdsoc7lciKKRIQpLWpCTkfcCKf0YXwYNJmPGxSlfdwqUsVBMuSRc5unzpzIzjSkQPAxdz3K1Ev+Qqpq+bFVhMlTI7wpRDIGGkMustsTRe/EK0Ea68RwTfUhlzIGoX5RijEUXebHDGilQrLVim60AJ5JSQ6Y1FTmLc2aIiW03kFMnrzVyccbjoWqRds5qlNZlpJQZvBj69IOgOVpr1GiiZxxt3VLXLdv1Ut5fVaO020PXpfjbbJaMiKfKpWst3VC5wuRyyoIMHS6an9/N8Oc8UoqS7FsKrBE63W63PHnymN12zexoxgfvv8ejhw8hJ04Xc3JObEPP5WrFo6slu86TMATfs11dsllvSOWaAaisojXQB8tuuUIrxWw+IyjNdtNx9/CQpB33B0+DeBdcZFgNge2u5+zikk0/kGPiuJ3jM2xTYplg1wvnxBjF+dljHj96uEfMfHFhzgKcG6NFQZYzTe24cbzAWOijEO+cs6i6Yt0HVpstIUUWdxalt5XwtW7whHXEGMt6u8FoQ/CyedTOoVRHXVXTuEEgd0lM7ocOyY2yrLYber+gdpYc+zI6yVMxOzZDsXSqRhmC91w+uUffy4ZehcDB4bFA71q8HowWIzBBgcx0LMhxf88NfdlYCioZPYMvoWhZCpNRAmSKZLSyqvBE9B4dVKNySVSDvsRVxJTouo6+H0gx4qqKRTHoyjnjnFgFHB0d4qwDpAgbO+kROR1CwA893SAIRBo5Z9qgjKFuZ8T+iuADV5dPySnio6yzu27Hg8ePmLUNKQsZdbm8AE3hx1jSENhuN1hbYY0lhgFdgjPVtYLQWkGGffAM3pdIAFscSAdMBl3VMh6qaqyTNeTq8imPHnxEjJHjwyOa6qDEflSknLlablA64pwc977vSemAg8WiCBVGZWhmHAVKv6rLHlYQqODJWVAkZWu2/cCJrfEh0nUdi4OFjFtzZvA9aAlbdE4I/845KieBlxHx6JItQ09FrXiX7Llb/MR+MVYoFFSuPO/aZEGV9bbfdnj/lHY2B6WeCe38Rz0+1gWJLiS5EUTPSi7w6P1UeVpjJ824unbwBFHeoyPA9LvGavCZi2RCVQrgpbTAUWW2O8rYZNagC3xelp88mjiNhRMF1bh2AU5z1fJVClCZ0ct2khmLitHYLEw+IpD388myIIvHjZpmexNxqqhzSk1eCMAlcyeWQEA9QulpWvBJQm7tohBEtTbFMVH+66qqLIhgnC7HUVxubSUzbHKisoZ2tsBoGVUNPjD4ouyJgeDVhE6Ni29dVQyDk3moMmUeXko8rXHWUaPw3pcAwlAY4YkcBKaNITIMhqqqcK7GGDnmi8Uhm/WazWZdjq/iYNbgZo2MzYpEL0RP2G3Fot64qdCpRoMmP0zXlhSLAoULiezahasU1lW0TbO/yf9/9DC2sICubYDr1ZKnZyv6IXJ5ecX8+PmpK7IpsWhbsJaH9z7k0cOP6PteOqMwsFtdsVlviheB2FA7q2gqIbDlGKkqR9POMLZiteoZGumEGYP0Rtg4y7guoQghyThJKYah58mTM0YDP5FXJnbbHU/Pdwz9UHgo49x/XByliKychMW/9OJzvPriLe7fe8RmF6gqRwiRq6sNvRezPmUsdTMrhaMQH32MLNdXHB0cUzsnYyMi292G84stxlheeu6u+JSUgoBinuiMoxs6uV68mM0Za7BkamueGUGNa1RKEj9R1TOWywvmx7c4UDcBiV2wriX4nozA/WM21Yg4jAtLDB5bj5t/EqfXso7lEMDGCXUVL6AStmltybi6pmxSZURT0IF+GKZgT+ckZHDoByrnqGYz6qaeJLNKyTnYdYISjsVbylauG6SQm27gLIjLOHZLKWKNk5RY14KyxNjTDzIGMErGL3kbsMZwdHTCRhu67jEpiOHYyZ0XeXr2kHB5gVKa2Xwhn2XoSxJuFmdUZcj4gi5rhkHQ17quBLkpa7I0SEUZo2UN0towmy04PrmJ0oamacXVOXYFYZKRF8nT7XpyhtlsxtHR4WRtcL2rHpvUcWQyDAPb7YYQoqghncVosDrh/cDlxdmE9IUQJ7PJ6D3buAWlaZoWZ7W4ujYt/dDLtV8sKHQhrqYUCaFMCKaGW/aucf2SdnpswKIUdVrWOVPOpUnSgForKN7BwQKlNCcnJz/TevWxLkjG8cPoI5BSpu8HQunwtR5zW/TEHRnXf1UO+Lhhj6jEWDGj9uWLFCryyHmfdzNKiHXpJEpzLAhJqSJVvj4qksLEmFGWOSIle0kx7AlfI11Kl/eTy/9QqsiKNcaORLVxHiiLeC7eHyMka3ImqzJjVEw8QK1Fvqp0IY/qfVV+HVGZpG957x4rpEgpIFAKtTUFyjTErKfFSxtD8IGcxbtgIqhVlsZJcuS2f7YoiTkXrkqCEIl+EMTD2skV0ugi92bkxsgozDklipxJvp0mAyUfPNkHZrbGFBVIU9c4Z0WJ0/fsdlv6QTxRun6g7wd832NGOdwkRVXlczjZ7HZhPM0oI+d5IldPYJv8zEuvvk5V//8BIYkJVGa37clZsVx3XD49I1CjtWz0xmiszrRO0qVv3X2Jen7E+299l+1mU0aAifXyshRtsqlpBW3jaBuHUZqqFgQKbeiHyHK1RaGpS0GUrnVS3ns26xU+isFZiEGaMgVd1zMMEhFvnUWpzPLqShJvjfCmYizs/4KMGmsKQonwnozm9OSQr37ti3z/W9/jnfce0A+Bi0txkhwVI8ZWKCUusyEMMiLNkrezWi2xrqKqGuniux1aKebtjLqqpjXGl1Go0dKJXlw9pe97gvfsthvImcPFTJxyx4ajFPtjhZayxvcdm+VTjk8+hdaGvtvgGk3dzLj34TucuBkpCnFaaRkFp59S7GaFGBmipoKanFDlHmA8C2X9MsaU9VEaG7EniMK5GobCiRL0ZJT+tk1NU4vqZ0ShtQZjRkt/S9+rqSmbAkZjKvdrQURynlSFIQacVkQ/UFWSWp6rGls1mGFAK8Pi4JC2vY1S0A2J+XzBrdvPszg4ZLvdSJBk03D3hZcwxrDZbOnCiGBHgu/wHWJLH2OJPEhltGxIaaDve6y1wm9hXANlXZJ1sHARVRnTKxnloi0xIyu2NtRVzc3TG8JZ63tiyhwdHTGftRMqMgoXGPeg0gSHGLm8vKTfrnGVobIVTSXxDUYr+r5ns76itxXtrKX3A3VdF8RS0e06+qHnkkuOjw+Zzw+L/1QqSIkv0vtyLWRkvVUaESle970puV0IcpxTJEWgIP2moGIxRZQxWOdwzk1j98o52rb+mdarj3VBMnX3yELvfRCr+DJ6mHTeI0ow/Zz8aYScRgRh/M5IWnxG+jeOWHIuBmPjWygoSpmzkSFd+9ZesjgKp/Yk2VHRIAQ+hRk7pjzKKXMh0Kp9UjBZzJO0QhsFWU9KCWfHbk3e7liwScx0QtIomAoCU4hi03sqnA49XomlQBoh4WeUL2V8lMf3lYrjakooo+nphQCZHblsFGQponZdx2rZYbRm3jbUdVXkfyUDAcg5irHdGBgYAyl6UgwMZYPXSgoSXXItjLZyQ1g7co3RSuOKXXLT1PjBs1xvCHEl4U9GZMNWK7Sz+JgwBxWd7ZknRdPOyvc1bTvDWifHyJjSXWSM2vspjMWrmLg56UjVhMuB0hyePMfnP/0GTfXzv/2u1IpzfcEr8QUMZnJibdoZIWbCamDdBayzxGy4cftlNLBoGuJ8ztHJMUd37qKsJSTxsQihZ7tasl6uBHHKEj0+b2vms1Y2krpivpgzny84v9pyfnHBbL6Y8iXluhb3074fePToHB/Snl+TYagTF8dLbq5OOG3mxBhZXV2xWl7KrHpyFS7nvygYUkoy89dCIDbGUFeWtmmpF7c4PXnIrLkg5p56fiAFs++nIjcMvYwj/ICtGnwfqYw4WhqtUTkTfST6hHaGk4MjKueK1NUKcZjEw8UZh7sFh/MFQ1WxXK0Y+h2L2XyfB1Xuq5F4PnqPSFMkaE/fb3C24ersHlkZbr/wBvPFcRnT9BN5UWvhR1BGhtqawgvL0z0dU4KkJvSj67sJlh/lpkZptrOOelBUwdAPO4ZByMfWicmWEM73DV7OWbKNikfRiGZVlRT5Y4jpMPTMZg2jFQM5T0hDpiR7B+m2ox9IfiAo8FaKgeQD2jY0B4JI+ABV1GBbTDUjK8eq6wkoTHNAGgZ2IfPg4WO22x7bHDBH44ee5fISo2TDHCM3RnTbGlm3fQgMq/Vkwz6Ofowt110RHYxrY7fb4ONASgHfb2WdTAGjYN5UHB/Mianh6dWSy+WW7a7jYDEvtuyTNkfWhlz2HCWEUecMTW2pa9ngnSvxHkpRVY71eks/BHrvcc5wcnyC04LKWGtw1QFjCvHQ72iauaDNdU0IHu+ZmuU9d3IskmS/ktgBpFNgHLcVBD6maWyotabve0AiQELlJyWQ1poY/xI4tSqu87hGYqU4d0YbibNEE6rCnt4XGsAzN+0eNR/h9jIPKxeHQpEK/DH+LilY9iY/ZShDnmCV8V/3JKFyzU0V6RhlP45qRgGQUYrl0Zq+9tw5uzEhLjLLhVz8IWRBEfhzvFn27+9Zr5XRyXScS44bvdHXLO1RI25Y0BX5uzZS8cvMuRCixveSrxn6ZIV2M7Iz/MMv/YhPvv0KblXJDFbvVQ3DUDpRP3A5SPaDLLJWiKmuwlZCKmyM2MuPPiu5dHljJknwkTQM01x6RMNGy3uRBQpZ1o2LavFg8N5LErGSBUZpg6safvDKhzw5OufXv3mjpImK90iIGVfv2eLSLclxPFzIBrpcrYkpiWxzNmcoSEvwAW0st27d4pd/6Qu8/sLJs53tz+GRybzrPuDfn/8W/+urf4Ub6WSvKstMY4Sh36K1o9stGXzZwILn5PQGJ8+/wOHRCVerTu6vOLBdLdmsV4xx7EYr5rOaxaxm8OIZM2tbqrqhOn6ZvP6Qo5Nj6mbGdrkuChdDCgLLDSFiitPnEBM5B5y1rBYb/viv/hm/+odfJH/UEXxgt92KIqHk4Uzqt6IiNmYcR8rYSGkt3Xtl0cqgVMusXVDXNUNS3GhvsF6v8BT77Jzoe8n/CEGcSFEJHzy3b9ykbVpikhMVQ8DClKg73tMxeC7sFf/xG7/LP/H+13i1uyOBY0WxM28bUXABxFi4AKXgLwWZqOskNG7odlRHB2TtuDh/wvzgBkO/pW5mRSrNXk1GLJB9wBl3zX1XDByNdVCCC1WK9P2OGEJxZS229irzjc99jxsPZ7z59gvsdjtmTcN8NiuvowqvY6/siynRGI2xZioSpWD00piV9WOz2dC0M2R9k2C/cVwQy4g4BPkMPnjWTx5wsDii7ztisVYXBCuRcuSjjz4ixYgPnqqu2ew63rv3Df7hS2/xa/1XscqyvFqx2ezKz1opFrwk8RpnmB8cSmFUIjGC7wllzDYimm3Tslgs6LueXddPMPnoDB1jYLO+4urpE/puS+UMTVNRVw6FGDKGqAkpo5Vh1s4YfH5mb1FaDBo/On7EPDTc3B2Xe1WO1cnxMdF3wtXK4qtFSAQlaeshJUjgB0+33eC0xFu0s5m8l2Y2FX5jkaKQ8LyUEtqUBirFycVb1lhZ95UpRZJA/RJZEgK27D8pjeNSKVxiCTu0xuKsI3g57s65vxxpv0oJWTWWqm7Mrck588PPPsQZx2d/8HKpAq9JNcnXHCnLv1xfY8ZqY9zMy5gmF3hRTaSvn6bHHguU/Mzr7YsdZHNII3lrTyAzpUr1NvJ3fvXrfOG9V3n56rZU5CmS9RjvZsr7GlEQMUCa0hhHJKUURaPltoyKKMXQqBUX9MTHVBz7xo99zVsCrgUElshznSeDuFxu1Kws2Jr7dy/4w1/9M1598CJ5WTgw5XPG4ImhR0/HR95vDIlIIPierqA3AuWOEmQrxm0l7VheV4h2cSQxp9Gmv3BR1MAYBW6MLQocK9btxb8gp7zPw0kZbOK/+JU/4fbTI5IZUaKID5G+7/DDFucq2vmhbPZZOp3KOW7dOKVpai4ur4jR03cdgxcXxYPjG7zyyit84dOv8tILz/28axG5Hkj8Qf0n/Gft7/Mvr35TChKlWK93XK23DD6z3W5JSQzzEhUpbrl6cp9Ww/Gdu1SzeYkmyKTg2Swv2W23jMFo45hm1laidEiJxXwufBhtsM0C6yqODp8jxsh2uQag63ZcrFcMfsA5x8FixnrTl0JQFrTl6Zp/+OW3eOUPT7lzcSJFbNkMh8FP95qEs+WpCEkpU1XCM7LOFOM7V64TTzd4tHUo5Tl/8oAYArOmIeeGmDK77QZlnOSgHM55Env8IJB7LrLhrh8gSEDj5nKJq2pBLHLGp4Gz+JA/uvNtbuxOeOXJbZFLb1aycfUdZn6AtpJ+arUqCRNj6SDjz912ja1aNsuntIsT5osjjHFimX75mEUu4ZYpYor3SExRxjMl8iaOxFYH3geIgmYJepsYho7oO5TRRN+jSKTc8fD0CV9//gH/2tv/HIv5grZthA8yjpcY15piXW5l/TNK1t8YkwTS5T0qu+sHhqEnK4PsbXu0WNavEnKoDF3vS3hmAK05PL5JjAM5yuhOK03XdaWTz7g0rlcabhj+3i//CZ++fJ1XL1+kbhppeFLCaCPWB4ij7GazJqPK6E9QNu8HrIbaWeqmEc6GtaKWQdZqycDau5WmGAlDT449s8ZQVdJMOefQKhO0p+sHtjvDbDajaVpan+h7zzCEEmAqo/v7h0/4xvPf43/+jd+kTsWYjYSzjnZ2wHJ5Rb8Lhfs3oLVk//R9YF5X4sOUpJjwPmB9wGhDigEQbp/RhqwyBoWyQrj1wZdR6Z5fNvKSchKnAV0Ql5QKOpTzlM40Nt5jAKQxhTStpNhTSk2KSG3/EpBanRUTGBWTKGvKnPLy5oY//Kd/wFe+8eY1dQv7DXaa6e+3hZHASnn2+HP7OZr8Z5QZwzjyEa+EPSt9/3zG35ZHCGz/WnIjTlBK2fAzGs333nifP/7cW3zqwxdlwS7PmVQaBUqzjJ4MhRiXtMwwxxsnZ2JO6DGfq7ykhIw5RhOcXGS7o/V2zEXOO0qnC1Q7GVaxL4ZGYqc1Fcq2xMrxu7/xp1wdbxgWiaqqyVYUKcEPYhiklMRWl25vHGsUNyrpBmKGKB5fQ6mSdOHAWOdk87ESVe4mf448yZDjtf+mEIjB44euyJgl0dgYCwVVcc6RfeAHRz/iW2++zVe+8yk2aoOOi4K6FOt6JzlA02ymwOL9IA6ItbOcHh+y23VAJIYBazSvv/k6r77+Etw44TxkTgyTK+LP6zEoz//74D/ibfcjzs0Fb4ZXUCgePznjatVzfOMmu24gZkM/eIa+4+ze+5weH3P44kvU8wOMdfTLJbttx3p5MSEUMUlQVltZKmtEhp4zh4cSHlY3rXSDRq4rWznCbgs5s+t6PnhwRtcnovcYXdF1Q4F85Zw185ofvvIhF6crPnzjIbe/c3Qt/mIsamWhnPwusvzZNZa2rggxseuGgopJp3r1+EMeP3mKUgatTBnTWIauI2ThPMTgaeqak4M5jdMsmooUZ/RefDEihl034LQl9Tv80HP29JLFfM6237FaL3l/95h7h4/4rVf/S/6p7/wyOgSS78UIbxjISjZGpTR13ci5T2FSgqWc2G3XtMdzDo5OiUOHMYbT28+zvjxj6LZy/2pF9ulZZBThjGhriOM9lArqaiW1W1uLJmGVYthdMkQvGwmZzq25WlzxZ2+8x/mrS9549CLjgrcvma5x9rQmDpnO9IQgoZb9MGC0JsYZ1lhQcl7JIqttKjetv7kQe0fbhJQVIW1Rw0BVV6xXlxgr91su0RepILLC3Sk8t4JQnh095mx+wX/wxd/mX/3b/x36XeGfjD41OeN9ETtEyaeZz4/k3i3CAIqpozFGfEe8h6aeIivEHl/QESMECmbzA4bdkhSEWzReoyBNkLKWbOoyHhJkous7Hp9Fjo8OOD05gpzpdMfvvvoNvvzg0/zKvS9MzV8GXFXjQ6brOpwVrpWs9YLm6Lamqiw5ivqqLcTiWFCkg3ZWYlWKmdtkIicO2T544YIYVZC/ssIX91ZZj/fKKLkOhHumVGlIE2S9T7YfG21tzJQ+/OTp+c+0hn2sCxJdHPCyGsPWEt5Gvv5PvM07v/CAr33jU9MMfXrkvN/e1T7lMF0rIkZjLUFOSgd3bbQzGTWVYkDUNuMccH9SUxmrTJ0eYzGyn8PFwsWQ+sjw9GTJb33tGzw9XNEbP8FiI9/EwEQCS2WWr5QiG5ml24ykyk4jlWs5N2VFSKXVVBQnP2sxdiTYjrkN0gV47+m9SHmVktmwkOooRLFMUglbzVGu5ruffJc/++Q7qKxYuzXenxBDKAWFeIqkHFE5C/FJUVQ+exdJyqmYgvoKbyXlSEriw7DdbqcixVhxdKyLFLl2Y6LuiN7EqftKMeEHL/kYCFJgjMG6iugUv/XXvk5fec7nV1yqJSf6iPliMUURGK2LkmBsZCTg6vLqqtQoSualOWNdhS6Moh++/QM+eO89qrrhM5/9FF/67BsY9/O9/b5ZfZc/aL5JJPID9yN+uf9FSNB3AzEljBHL/YPFEdiK+x/+kMpaDo5PqBeHaGMJ6xUqK7SueO7uKzTtnPMnD+m2W+ZtRVNbck6CQrQztKshZ6rKkX1EayGLjmz9SMZHsFGe0+06ckqsV9sJYUBl7j35gG9/+m1Q8NaX7/PF/+gTqFgK8HLfGaVRRoqQpq4wRtQcWmu60nmOxGZrK7a7ge/92Xt0Q8RULa4VXC6GIOcwIymxQ+bo1g0O2maS8KYY6XZbdoPH2JqcM33wDAUhOHRWiIox0/vAg+OnrGZbvte8y3cP3+Gzm1dAW/x2TVQGYihrQqRPEa3AF9UI5T0rFFFdUN++C9qQwkAYerrdhhQCQ79DaVeUNgqMQbuKrMWGvOsG1FgwI0W3LXEVbQ1WiQHZ+ZMH7LodXdeRU+bqxoZH9oy+8vydr/0B/9p/9M9jk8D7st7J/en9tXRwMrtdeS9AZR1103BwcDjJrp1zbDYbnLUsFgeTsiSUdPFRdhuKbLjve7L3DGEgeY92DlyFqxqWV08Zuh1E6e5jLCiDVqyrNYPx/MNPvM0PPvUBv/DuG2gE2SD4oj7RaOWw9kCQjLoRjlcMVHVFv12jdC5WCeCDmC+KSaRD6UHWn2ltzLiqYn54wubKixw6eYYg623wAeVmqKjoh4hmYHm15Pz8nKauOZjPZFSVMjs98Hh+wb/36f+cl5/c4fbmlDEkUinFwWKBQlQ3QtrXtPVcIkC0whWSqjGa+awV1+BhmJpHkXpTiLjiZDswjqFKc14a8rFFkgZ277j6rJtxnprXnAHNXomjBRUBkVKHslav15ufaQ37WBckPkS0lhvEx0DMiXc/e5+v/9Nvk3XGZiG9UY75SE6VE11mX2PRUQoGpTV749f9vC8zyrGuoSrj98aNfrTnHQsbradxxcizmC6AstGq6WUUUWe+/rkf8N3X3geVCVZY73lEaFIWy2iVC7lwLGRk4TDa7Mc2ShXvEVUWlL2/SkYVTgqFB8Nk+EbhnozMeZSoI1Iaf1J8E+Igx10pjXE1Cc262fAPfvFbLBcbZtuGpVnhh37KcBiLMWMNBiFmKYAoBcpIFNsjSPsDPcqQR0RqLO5yivg+MPQ9W60LilEVDolAqc6Ii2vOGWtFiy++IwO7wYtr6xC496kL3n7zI1CwOe4xp470pKiq9pOyqegcrwGtZIzkg1jTq1IkKePQNmOKiRTAjds3+eSbL+F+DsVIfubPiX9z8e8TiaDgj+tv8S8s/xZsM10f2G7WPHr4Iev1Fg3MD29QuYrFrdssTk5xrmZYrxj6Le38kEV7RLuYc/X0FGc1V+cP0VqY+G1dM18sSKpmuRmY1YVgaphY+CEktpuOlJVkOmlRXQlXQKCPxhmG0LPbrLh/+IiHr10A8Oi1C1YnW04eHRTZvphPSRKponKWeVtLp54Sm81O1lYlXZ0pAZIpK7ZDxtULrGsxYY01e2O7qWMvhcnlcikeP0GCGVMK1FVNiPKZm8MFbWML98CwLq+LhvuvnYOCqBO//ek/4o2PXoCqYX11ha0ctdaE3RbfDySjJ6WDUmCtI+cE2rC6eipjxbqhnS1Q2nBwdJOLp2f4YaBqhBMxYrlRbmxpvAo6Ve5YrM4YlSEO9OvANsno8eJqVTYsWQ8eHT7labsCBd99+Ye8fesDPnnvZbKOpGIv4EOYzM2cE8JwM2un8cVItJVQNSk0Xc4otRVTMdibDmZRFZGFVGu1ASvyYKU0bTOjaWe0s4UUl8aw3a5IvpOCOCWGIeL9DlfPGGZi0X/VrPmdT/4RL/7ohIPtDGddyaaRhrUPXsYIwZNCJBaEhKzK2MtPCHgYPMF7slLFK6pA5KOxZDG4bGYHLJeXrNYXk7WCOEIP1E1H087YaQnyPDo+JKEnJC9fLmnqik5JCN+fPP8Wv/fKn/DP/dmvibMEYu53dHjAbNbS9T3Lpbj3KmOoVI0iY62MF0dEu3JOCLl+wHQ7QJBAoxRD38t4bbdDmnI9SclH1ej1fU7SIcZmdmwQxE22yA+ELqATWsmaO10nxd9GayPBez/D42NekCSckRsihsjFyYrf+ee/Td+KtM1Fs++0r/FBnilQys6n1ag5V9PX2LGPg5U92qKmjVyMg8bNMU0Eu7EDuC431kqR0jWkpOSeiOpL8eTokr/ztT9icAGdFN4KrApM73kiw41/psxilS6ulUwuegopkmIZ2UhtJpvDfkSyt4ROaUR3Ujk0mqJgQxsh0KYk3BFrylgkJ2JW+H7L95/7gO9+4j2yzgQT2NUyInFVXeaLXgoUY7EqTxwOnRXBS2jfaO8vEKH0aFqrQsaVin0qTkb0J+2dOkeposCGYlturBBcK1cxmyus1TRWQqjc4DkfLuhVz59+9i1WC4HGr+Yrllqq+pjlpkxl3DTKN/eeDZq2aQmbbSlcywJgLLlS4k+QEsZVfOYTr3E0a6+Vtf8Yj3FqROYD9xG/O/sH07f+uP4OV+sNep3ZdR0fffAem/WGrGA+O+D1Ty2Yz+cs5g1NOyf0Pav1Fav1ktumoprJNWmMoXYWZw3b7Y66cszmc1xVcb4c6LqOedNOtttKiWvj0/MNXdeXrks+bSysfGvFMn15ccZmvcFo+NEXHhGcFCrBRT74xcfc+E8PoCy4WslSZYyirStBRoxwD4YQi0wz7+XwJThSmxpjZ+IaXJQfMmLNcmEjRooPHz/CVQ3z+YHEEFRuMrgKm7XwhpqKWStOtDHDfKbEvXNn+PClR9Ox//YLb/Ngfs5pd4A9OMJZMQ276nb4oSOmzKDGjlWXTj0KQhKleGyaltBv6UsYZdXM6PuOdn4ox0EbMXs0Bm2sFMwq0xopRELoiZ2nC75ImkPxmkhiZlZkyqDoas/6UJw0Lxdrvv7J73L3gxuorfDyRNpe0TRNIcGLpN0osHVF3+0YW50QI1VdT2q/sRBVar9e7RsxNfH1lFLMZi1521E1M5SSczMW8nXdkHwZjRiN17p4Dm241Eu8DmSd+eZrb/Ol0zf4/ONXaaqGxXwhjr0qk2sngZ19x2Z9NangUhL5b+V0eS+avu+4vFpOyE0IEW1LWGRRmpEz2jqsbTBVQ/CezWZFLoRtoyI6dXKNhczTvuNquSLEyGa94u7zz7Foa4KVQn1wnn/3F36Hv3b/izx/eXM6XtoWaW2hJOy6jt1OVE5NZQUxt5bBe3a7Le18Qc6Z3U5Iq845mkZUMF0nCipjLPO5FHy77epac6PGudN+v7n2vcmEcGyqy7envbKgJLkgz03TTBzDn+XxsS5IxDI+0fvA2nX8vb/5HR688nTqrAV2lL9O6iVgbwkv3x3zF8q9MS2uqaATufy8UXJBTiAHY6GiSp5MsbFPaSqEjDKM5mgFAGBPjlXTe4su8u/+k3+fJ8dX0+8NLkx/foajcu0hoEEuhctYbOVroxr55/EC0mWjf4bQC6SsUKlU/lkQHUlR1YV8lUuXk1CF4GiUZKYMQ+TSLPl7f/VP2MylIg82sWs7UbIEMSmTUYdBKYOrDNooEuXG1mqcJRUJsby2dZa2KFuGIOTbVLI4pqKgeLCUQzGhUblAuyEG+tyzVRsury4x1hanWcmssM7y8IULfvC5D4lGfs96vuOpXbLtewZ/jlJQWcts1pbjLQd2dGFt25puGOgHX+5pSVvVumzAyvDGJ17l5bu3rjnx/uM9crmWSDv+bvt3uWceThfmN6vv8sHlQ57zxzw9f8LjR48YhgGnFcezBTklqqZhNj+AkLk4e8TTq6fM2hl1uyjE11iIgYoYxPBstjjAVhVZiVIJPcYLGAiJ1dW5SEYJQohTkUwSNEEZmtmc3eqCzXopnKKQ8Drzg698tP9gCt756j2+8juv4xQ4ElFlQpKhpTaGuq7FTCurqTOFPPkDaW2LT42dvoxxaGuJo8orywYKEZ0Crmqom6b83jxJJrW2+2stRoldSGKEZo1haALvP/dweu8Xh0ve+tQH/Po3f4khjGGQlvrgGFM3QiSMkstE6VC1MaJiiIn1aiWqJVehXU3wA8c37rBeXRTJqkYnQX+dUVQ2UxsgyX3W78THZbVeM/SSQDuuB0YrKmPAqTKutPhT2B5IQRJN4ltvvsPn/+AVPtm/xGyxEEm93UtkxSxROGbWmOlaFOXaQMoNKYaSa2SJIQjBFiFJjs3fmA+lisrNFZVGCJ7gt6Qo7s4AQ79B5UBOGuMq2qam63b4YWBT7wqaDOvFjt/7G9/mK08/S7OrpLC0lpwdthKlYVpt6HbSbHjfk1JRidkKazVewVDMAOfzeZG0DmLeFyO5GFHmFFHZcPv5F7l150W2mxXvv/c9VIo0lcW6MQesnKta5NNPzp/inGO+mGOrStb5ct8+PDjn//bl/5B//e//T3DJTs2n0pq0FVfp3a6jbWpmjaCE1laluJKkYe8FeRMkacBqMdKLSRpX+WyiTDR2TxxPOaNSRiNj1Mlba6IvjNxEoQOQcxm1A2SUiuU+FDRJG1PGSQEf/c+0pn2sCxLpUGFIgW9/5X2+/cvvk+y+otOxaDkyxLQvSIweUYL9SEZByTIdOz012WKPRC5VPOGVkg109MzQWpN1sS3LAmGpksuSCxIxdgV7v5Py2lqBgW98/i3+9NPv7isdRG0zvg9VGO+jXHn8HZn95jj+6MjHmDw9ymfcFyOM/zru6/LzGrGap0x9ymehOKQIj0OTVSrjqIxwriNvff593v78R9P7jyayrrYMvmcs/XI2WHfNyr24bRKlKh98PxUnujg5DiQUQl6eeDBK3GDHeaYeC7JSoU/ZPTk/cwPFJChH7z273a6MGSxu7nj7Cw94cPdiev9Zw8OjJ6zWz2PKrMZaR9M27A/QfvznjGExmxHCihClIB0Lpa4fuPvC83zitZdw5mcLmfpZHlqL8dn7T9/l7x797oToAHR64BvNt/jrl19hu+u49dwLLC/O0cOGo6NjKcSMJYdAWF2SfEdd1cyPbtGFhLGxWOsn5rOGmzdvsPMSCGetZYhingXQ+8i263h6tWF5/9v4YeDk9Fh4PknIb9oIGtBvViwvn0qRmoWfcH57xfmLy/21r+D8xRWbF3fceXwsx1KP16nkiIiixmG9FD7GWlF9KSUEViPW41rLfSiEaCExx5zEpTPJ5iemapKBZYylco5ea3wIpYAWHpL3cQoODJIcSSLz/kuPGOx+wd1WHd966S2+9tYXUCs13YviltnIqIZcut4SVFkk6LmoK4IfxHYbiVWoqorKOkhClA79lkYNtLUi50i33bLb7egHUYwJUT2XTUjQTrkP5bgYa7E5M+TA05tL8h785f7z57z3Cw/5xT/5FLUWwrg0LWWNKedhXIqU0lNO1jAEYrElF6WGYrMduLxa0pZ7Z4rryNJ4pJjK6CASfM8weIahZ1dUgaOXUNvMaOpG1t4YOTn6/5L3Z7G2ned5Lvj8zWjmnKvd/SY3G1GkKJHqbNmyaDs+ie1E5UpygthBpVCF2DgI6sInyUUcFFIGgiANHAe5qCAXjm8qFQQHZaTgFII6SHJiJ457S7Yki5ZMWpTEntz96ueco/ubuvj+f4y5NimbOuUAR8gQthbXWnPNOZq/+b73e7/33WO5XrKs1njjx/P/vSde5nef+Bp/+rVPJj0OuXcRIVXHqDg5PcX1A6XR6NKm5yrlo6oqmc3FO2Y+m8n6rzTrphWdEXL7r3D2csl2Z7dgd/8Sp8cHeKBIApp57dze2mY+3wK0dPSlTb3TG5u1gs888iV+/fHf5ftf+05UStJUTOJ6165y8/a95BmkmVUVRVkmXp9ltVzy1ptvUFYVhTEila9rnOtpmo6qnrG7t0fXrPBDi3d5b8qeP0nkz+gkwT8FIT4EfNIOEuXqJMWQylgoxWxWj/yxGESGIrcUv5fjWzogEWJo4P6FU37zz7zIeqc793vlNqXlJyXU3LarM0qSI/YUjGxCEZuoyohuTOXENEHj+NqcWZnUiTHFD1P9TeWSXDru7R/zy594nqY6f/6DFcEzlYTTcklJjxFtSNdDyvgYg43c9uvTBp/Rn0lRNsOnqU640SmerzG1oSdYNaEmQcyYclSM0gwXGz77Q39wLphCQ1d39HSYYWqTds5R2ZRVK4UyoLLscSL4Re9H4przQmK1xoziPVKPyiiP3FetJAuRexUp0vlNXhCeZSPy1/k+gLDVD3XDZ779RaLefCpweHWJLhRqkE6JEERfAKPH+TWWubRmXosugg8+8YZiqrmXPPLIw+wsZu95Yr6XI8TI/dt3+bWz3+bzH/76ufsfiXxx5wW+482Psdja5cq1G7z16kv49TH7V68TtQh+rc+OKXRke7FNXc45ODymrgZ2i3lSpoyUhWW+vcv6RFpGtZHsNOBAw7rruH3/hK539EMQsqgPYxeNNYYYHKcnB7RNkwzeEsQb4ebT92nn5zOodtFz86lDrt3bwwepV5flJOhnizL5GxWi3KtEMdUkHRqTECpSm773gXW7TuXNlNkFz+jAnYihY0eBUjTrNbP5YmwjL4oybbwi2qe1dCu88tjN8w9GwUuXX+PNnVtcv3MxSRKkbD/KpAopkBa1V0NR5Hq+BFPBS9mxb9fs7F6gaRrq2QKtFe3ZAW2zou86eideQE3TEBJZVsBC2VTqskwKuVJGnAjpsg5YDfcvnZw7/agjn/mOF/j0Vz5F1YoUfV7LxvUA0cFwzhNS2csNnn65YnAiKR8jNOs1y9VqXFPE8HISyRpbSlOZrbSWk9MzFD51cgWB/ssd5rNZ4noIDFpVFcwU7G7y/iCqyC9892f5nqOPs7eejw68MSpUAfPFAqXNGBhKkiiol6yXhrKUQMy5gcImuYHkHh3D9M95j7QxBtpmzWq5YrVcUViD9xHr8piK1OuWxWLOYjHnbNmwXrdorWg4v+4vy4b/+alf4wN3HuPR1dW0h0jQU1YVVVWOTvDicl4kb52e1WrJ6ckxs9mCvb2dkX8VU9nJek89m1FXFX3X0CcuXeZSbjYWSNAhJG4JVqYuq4wYCl/OjkkvUbqmIgoXpiRc8d7WvW/pgMRozcDAL/753+XujeOc9I9HETY6bDYQA5gCAqXSJhunQGWzNib7XUJMmD5i4m/I5Jgy4sS12HCZnR6W4BjZhREFzno+8+yLvPzwxqKWPnuw08T1qS1XG8EwcnBybhDFjSAjnenob5MymbwRixGTvDqjRbmMk0sBMUbQE8E0b+Rx9NFQ+Bj43e/6OgdXTyk6y1C78fy7emAwA7orQGux/yZS2npEaiSwljcviiKVvyY5fAkaspx1/rkf76nOWYhWRJU8hFCTnPVGzUo1fQom5RlrgVl44eOvcby/pGoK4R8JYsnh1TPKWYVWin7oiSEwDAOLuiA4BzomkSfJoouyYD6r6LpW0JNkFLbYXnDl6kVsUob84zhihKOjFV9/+Q/4jfd9mZVusc7grMcGAxF+Z+t5Pv32d+OcBAVbW9uUe1tU8y3WbUfTNazPjpgZzc7uZZartfB8tJbOpCDeQ9ng0A1iV5/J00pDcJGuDxB7bGGEaxMipyengh4C69UZXbOmbfuUgYVx/vkicPOpQ3RQmF7jy4AeNCoo3njiPh/+7fdRYKiswVhNCCp1PiT/FWNwwY9+VeMCoGVRHIaB47M7nC1PadYr1qvTUV10RB+1SclqGFtKQboTXN/RdQ1b8wLXnXLWa6p5zapt0ErO55XHb2G8jCVvAtYZGtvzB9df5crLe+DkvXLi4NMi71N5N4sZWiMlXmPTfXQ9ZV3La4c1s8Uu2lhOTk85PTmaOuFcVrAlKRdLaVQngqlNZaEYQ5Lil/mmlYJKc3R1KdqAKb6v25LDnVM+99SLfPrLn0wIvGw8ru8IEZwf6AfH0IvxYd93gnRoDVFJQKgVoa6FFDybsbu7J+tw4kIMfTcixiGtA76usDaZA6a1KetoWA2ulyAsO/a6MtLVw8aCDvVQ8tb+PX7l6S/w3z//vamEkZSpke6PuqrwNqlcC/EB58RxWHh2hmEQjpTd2kqyBzolS35sux3lIiKU5YzrNx5n6FuCd6NVhbUFRTlj2ThWzYk8C5R0Lx6fcTws05o8Dd8/uPwq//Hhz/LDv/f97JZzrNbJW0hhbYkxImbW9QPL9RpjHcvlkuOTU7qula7BIIGQqH6LCaVwOgKz+ZYE2MtTTk/Ppu6pIAKO0rqdMDVrR8G9zCvLKXgc0bJUxkklU1nrYgqcQuIE/dHHt3RA0sWBz3zXi9x6+JD3/f5VXnvmLt4GjNcEHTDRMqqkInoeWk2bb0YUcmQn3RRSUnCJgEeUjhOZaLlGHdPATTFA2rz9uNAKcc7aydBOlExDKnNMWiZvXLvDF555ie/94kf4zMdeZD1rmbUlznr6QjbeyUAvjf1Utw8xEr1KZMEpu89oj85llTGtmZQCN7GAHHzkrhr5nI0ZzvlALkbwUe7f21cPeOHp1/iTv/UdPP/MV7l1/T4qKh5++zLDVsBsWYpBOiVmVUlVCcGVKIvQkGFlGIM3kt5IPkyGhkl+IUYlyWQ3tvNmOXGjswBcQYiaojAiQqWEHGn0FMwprWnmPb/73S/z7b/2fm4/csyrz9xmcVpz+eYO93dOOFmdMne18CiCT1mVYnC9ZAIxjoRLgO35nOXZGTpK/dZ5z/LkjOOjNVd2Fv8rRvm7H8MwcPet17jZ3eV3HvoK/8evfJr/+elf563tu1xs9vjgi4/xlRuv8vzd3+Vx8xg+eHb2dtPioHFDx9npAb5vuXDtUQ6bHlOUaCPyzyEmvkTwaM0Iu2qlkq4BuCESnNzLIem+OC+TqtAK73rOTo/pmibphiSzw5hJ1orjK2tOr674737+I/zq/+FL+DJQ9IYf/Lcf56WPv83ZlY4r92oxzBMilwTWicxpC7E4Hx1TkY6wpu1ZNycp8OpSKaBPGzMb8uVSxsvonfeBs7Mld+/eka6gMNCuz7iwc4mu7TlatdjG4rqeQhuOdjuOdk/51Oef5cUPvs7R3imXz/b5gd//Lp5/7CW+87MfpG5LvJMgOetI5CTBeT9y1qxSmLqUxd87kbe3Je36lJOTY5q2ZzZvaJqe0+WKPEWN0VRFKa3CqePGJgJvTkKM0aLFESJVKRLk1hYMi8DJxTVPvvIIt67dZ7nV8Phb17lx+xK/9tHn+dRXP8yimYmkwrqh6zuGxMFZbG0xm4l1gNEmdVgFrBVX5aIsqOsapeR526THEVK3lVapJRVGXptCgoUe4WhUVZmccxNHTiWDtxBwBJZ+xapoeer+I3z94ltEFbl2dpHvfe1jfO6RF/noa+/n0XtXQHWYILyiGDxGiyS8V4z3DCt8F6PkfKRMN4x8oRFVTbo8JrW+qoSqlWXJ3oXLHB/ep2uXqdtlSWErqvk2/dBjVOTk9FSMA0MJMdLQYZyhcJZm1rHVzvjUCx/h1x7/Ao9+6QrP3n2SqipREdZNh9KKWVFjVOR0uWK1bqjrkqF3LLa2mdW1uEAnMvHQdZiyxJqS2Xybrl1hbMFisU1ZL2i7lvXqLJX0y+S8ricRUC0t8iGGMQARNHrqVM2/M9akQD9rQaUyP+8tINF/9Ev+t3u8fu0ubzx0j+//Nx/j4u0dfBHQQfHoq5fZOpuhNoi9MUr3SRZvgelmwkY5I2XtmbgEUYSY0t9Jx45JGcgUdfsEq2UNkxzBZ6lym+rZqAnKb+3AZz/8Ip/+je/koTsXCVpO+JlXH+fxm9cZjE9dMgkujSNaSSbK5kk6oh/5s/UkHZ/1WkYtlbHUIVlkHMmsaXLlcGXzb9LdGJzneLni8OSUe6sDXrj8Mh/4vUf4xOef4f7FYwC2z+b8wK9/F6rUlPsL9vcvsLe3l9QfzehzkduQBYHSY6Yh52ZQWnQzlEniTsZSlhXz2YztrTnbiwXz+YJ5giCzLkEIwhMyJiu+CmPfGMnyJl8Iy0sfe5sPfPkGH/mNx2nrHoDZuuQTv/EkZlCchSVt20gA5QND3+ODp+t7ur5D50AuKlZNw7prsWUFphQeC5G+W9N363NB4P8/R4yR5ckRhwd3ebF8hfc3j/IX3KepCmmts43hk597lut3LnF4/ZC6EJdkZQyr5ZI2Gb/V9YL9yw9zsu45OzkSw7kMhW0gVHqDES6eUZ71usc7iSyiymhhKo+qSN+uOTm8T7teE2KkH5xIXceJYG6tZnVtzdW3dnn2+UfHoFeh+NAXH+XSzV0OL6xkjCTYN4s6ZbdVY+zYTip+TJrT1ZI3b93kzsF9Ts5OaJpVKqVmorFkw86LV0/ulhqGnqOjQ+7fv89yuRRBvaHHB1iue9p+EH8Xp6kGhekCb1+8w8O3L/I9X/gQVZcW3aj4yEtPcfX+BW5euJv4Bg6yAWZMlgNukIw7/Ysx4to1q9Njjk9OOF2t0GVNUIb51i5FWdG1DVU9E3nuoqCsZhhboWz2OynGcSJcOdFtKYuS+WyWAn9NUVVU9QwWhspX/MAL38VWNweEA/NdX/gQT7/4KJ95+MucnJxwcnpK2zYYrdja2mJvf5/5fIYxhlk9oyiLtEYycu+ck1JXDIG2aWialQSEihQYxnOJhzxDxpKcTgZ3MQk1ip6G3D+FrN+97XHK85e++P3srbcAuLl7n+9/6Tv5jtef4Q+uvEqneiHKe0E2pKYVUmdSGthMiHccuwzFH61t+2Sy2TH0LpmXprJyCGT3sIiQhC9cuoK1FUVZY22F0jZ9fiBiKcuZkFSTjpUrPI+9dZ0PvPqY3DcdeOj2FT79mU/x2x/+fQ66I05OZBxr5SitJuJHA8fV8oz1as3WYou93R22d3ZE+iCtmaSSpS0KhqFPnCWHtgXVbM6lK9fZv3iZxfZOKv0I8igGpoJ2lFXSeKpKkVIoBEXJWjKkNVwMbgeaVgj+mcNUVuV7Wtu+pQOSk3LJc7/4QR569QKvffAuANYZnvvMB7l+88LI+RgdatOGPcm+5w4T0u8YM8PMD8mR8Wb7LZDQlNwlo0fBrLFOm148druQTe3UuO++9tAtvvP3P8QnXvwgb109oCsGVFC87+3rfO/vfRiv/bgRjC3JSiVykR+JVXGs7yZNFeI4cbMUcA5c8uCRQvL0+BWQiZoTHBIhWwWmLCd4R9esWa/OOFFnLE5nfNfnPsydvfsMqSvo6mv77H+pYvfmjDUNPmowNapYoGw9CmIJVsQY7JnMK8kblpFMS9x0S6qqxtoSFzUuSj9yUZQUZUVV18xmM+p6hi3yhLIISUWR253F78aIIumOY9HOeO5XPkSwgWa7E+i1s7z/xYd44ivXOLmwTsiX3ON+GOgHgXaHvhOzMu9wfuDuwQG3Dw7onUtBkGa2qLl07RrXrz/0x1auAWibhvv373Pz4gH/41v/Jy5fuI438nTNWlEdW37gN76d/tHA9u4+IXiODu7RpO4CYyz1fItu8Bwe3EsLhxpLlPL8w1j7J2VBXe85OFkzDFPAnkltMh8iy9Njjg/v0/eSXWZ9hAzAGa2YVwXlTKHKyId/53HmbbUx8KBuaj76+ffhSk+wJOl/4YtEpSayasriojKI7mikG3rOzs4IieMg8tfCB8j6EdYWkiBEaW3NC/Xh4QFnZ6eyWUUv/jVFiQuKGKVmP5/PmRWWwmoO90/4wV/7GIvTgrKTYMArhx7gz/7md/PW5bujR4pUbAQlzXNUhAgl8Isx0HUdvRM+jXeD+JGYgvl8m52dPRZbO8znC6pqJhuHNpRFSZHWncIK6diHiE5ty1VdU89mLLa22N7ZEYdlLVonZxdaPvzWk3zH7Q8zCzVEWC7WNLHnk7/8NOZEsZ531FXFfD5jsZhT1zU2OxdHn1DYMAYZLqmfhkTYDckvqGs7hn5IyslOrp1keZFUP1XSLDLJIkI6tWTgiDgj5M0/xkhvBh46vMj73rrGE3cfAqA3A2/v3OPTX/kUO802p3otOiqb5owxazilpxEZOx8zV2bwjtPTU05PT2naLhmUJuffzEHK+4UXbhExsrd/iYuXr9I0a3R6Rl3XEmOk6zv6vsMnUTStDdFEnnv+Izxx6zoqKLqi580Lt/i23/8An3zxQ9x65A5VoakKg9WK4Ad8uq8mceac81R1nTRtIrYQvgloAhqTtG5C9DRtw9npMW3TCBennI3jalZXzOqSuirFmT2Zj4Lspd4HsdHoXeKMyT8RhpPAUfZN4ScVRlGVBVuz9+Zs/i1dsnn0K1ewg+HrT7/N3UeOAdi/v8VHvvg+7lw9RkU1bcZkzsHUbRLjJIecOR5ZiS+jAvK6FD3DWBrISnVKZ2E1vVFykIV5k3SZSzQ5ivTR876bD1F5y8HOCbcvHxBVZHe54JG7l/nAWzd4/dptWbOURpuJL5E37FxCkiOfZ+qVP4f4JKMtDYGJJKsglaImG/Q0M5NmiRjmCfFL7k9GGLphYNaXfODLj1DZkjeemHQYHvrqBcq3FFdf2OV0dczsQCWJ94pqVhPrGps+N8vGZ5Kr1EkD1igWtR01ZJwXrs8QxPwpBJ2X9THIMpZRrVYlb4WxDVRJy2EeDUopZq7i6a89Smw9w45jvS3ksllTsne24FP/5WnuXj3Be/HMEXSgH43yqrqWc3EDQ7IYD0BpylGqfmvvCpcefoS6tn+sAYkLnl45ftj9EM9c+igv8gpDcnMu2xLTeD403KC7XrG4sE/XNaxXJ2xv76HQOOdYnp1iilI2yRR0COKw4WGSAmFZeIRH42NajAGCSqU0RdeuWa+WdK0IPWUF4hzkKBWprKG0hsJqOhyXbu9w4d4ucX7++pQyPPL6NQ6uLFNrsZIAE0auiGwaYmfvgyQRUt93I+E9RrFKD1HURWMuXeaNJ81hHYTUSvDY1BVkyyLJ5HtC1GzvXRYUKUZsVeFcz5NnT/DQ8grH9RkzJ4uuN4FhPvD4yTX01xVei6eI1gp8Ngac+CM5V/I+MJ/P2bG7wrNAcXjnTfYvXWPopQ313t2bzOZiFmiNEVn6qJLujYz5WuskV69SG3OZgnBDWc2wRUVZVtiiZLnd8Ode+O+47q+xPQjCcLbVsKwanvQ3uHr7CkVhKLVN6GuWD5dn6nzA2lxWFmO1HAhaMvdNxkI/9NS+IkSDcyLeFtNaTFRpXAlR1Go1JooxTMmUS2UA8UtRYOHDN9/H1fU+H7rzGF944iUAXrz6Cp987Vmee/MjNDQosuS5Rls9BiNWazBxTEC10olPKNpFsYTF1hb1fE7f9dJW60MKJgVNyYFVDEEk2JXmwsXLlGXJ3Ts3OTs5Fm6PUuImnGT2bVGINH0s+M6vPMMr73ub7fWc08WKe9ePMNc137V+Bm8cxbZBkQ0mGYM9rS0+pv1MRWaLLZz3GGOZbW2h21b2iSQwpyNUqQR2cnyAc174PzFA9On9YwqwQiry5467vM8hYoeJ4qAVInGRkG83DGMnVczJ9Htc/L6lAxLVyUN48TveHLGej37pfcy6ikfeuEK9FphI7ocayyf5XzaLChF0ZBTXkn59nbRHIAHR0wISkplcqqHkGm2Mot2gUra/cabp8zMHI6CjovSySN2/eML9/RNQsH+2zcMHl9ha13zwlUdT7VSNG3au3QSmbDOOgRepxqqn2CKd/yiKloMkSIETCaeQrT1kSD3Xn5m6j0SqXnxfrC1QwSRVVM1rj96S9wzw0BuX0IPm6sv7lK0dxcqUWmNWllVds7O1YF4V091RuYuIxDexzOsi3dPcTi0BXdTZa0he3w+ezaBQgjQ1OhlLVjwFPTmQKYLFxMhQtLR7PX3lUBEuHuxg0Ozf2wYnEzCGQFmWY5AZc9cREdd3rJqOvutQRnRnQsj6E4rCauwfYzSiFFx/+BofXX+MS1euseoVh3E5BiT7dp8rO1d4bPEkc3+RWFnKYs6FSw+BqVmtG06O7hN9T1nPwQ8oqlTrTzXgmBfbSNsNnJ6thRwYg3BmUlu2HJH18ozl8oxMWtwsTwmfSVFaQ1XIZuB8wCjL5fv7IjVe5rHKWFYwGC7d3ZVnXWRUEoYYGXxgCD3Lph0XQg0yH5NuiHNeOAMAUciAKJJ/SRjnhnSMCyGzrEsqa7GFJQTPerWUcylLhsELDG8Mpp6jGXj6bE7frkXOvpf1xuG47w64erJD5VM7axwYnE6dMBt+WFqJb1OEqq6YVYVA+1E8mFbHd9FWU5bi3Lq3fwkgefVIQjEMIo9eVaV0HxlLVc9YrdfEKN5PIzKoEBQxlefef/oYV7rLFGXJQ8urfJmvMlSO/uJA+WZBTY2SZr8JKU7cKRciOuqRpOpcIHjRwJBAqUhIkyCL9+8f0rYdxpqRe5fXIEmoRDq6tJaiLhMCkFq403MS7loc/2ZvvU01lBTe8v67N8YOxq9efQNrNZWeMYsVHaKJVFglJPSwybqTz85O4SpGylIRwgxjhhGtpbB4Z0TyPZfLMwqdrkXGkUKbkq3dS8JTcQMqzaWuF2kDWwgCUZYFz775JLvDHtfvO/bOtjndWnH/wgmnVxoevfmQoGsmTglYjKPOEQhi3nc99+8fADp1OIl/T4gQvHR0+aZltVrLvmEt0CXH9EG8cpIAYmQqu+Xgw+YgLq2tudJwjgoAIyk8pAQ3t9MPw38DOiQhBIY68PLHZDM0TvPsi49htOGxt66yWFbkYTf5ojDVpONEQpUvsouPJR0Vx4UDzhvUKa2IfkJXJmibcYBm8Z+k7JHW75hQF5mpUcHdi0cc7ZxBhMvHu1w+2UOjePaV98mZ6Y2SStomxm9T3JO7d/ImHaeryuMnnfvU+ZOJSCoFKzlUyf8lSIweW1g1eqwb5g6XoihZVy13Lx0CMF9W7B1sYY1l/3hHJr7KbpHgcQx9B2EmLWkuB1Z6LD+JMmSRzKTCSJj0KdIen2RGnqJk6CpBr5kgl9ERLwQfNgXxQr4/AXRpOL0inTEqKC4d7I6lo72jeWpBDszrmrquk6aGoneOw+WKrmlYnYn+iNYaHWG+2KLe2uWRpz7OjWuXKM0fJz6i0Krk4YcfofWa1fqMQ3+MSwHJVtzi+tXH2a2ugLJ0vSMWYIqa07MVxhiGtsHoKHoEwROVlDS8dwTnOTs9QGvDuuk4WB5zulwTki9I7i5QCvzQ0axXuKEfjQ03hp0825QFW6PHTDSPoUx0lJbr6R6N8zSPyhSAhtRW2A1DCjINk85NylKRzgmdeFvBy44aYiA4PwYFwHgthS1GN+jgPV2zTlwVRfCB5vCQw4MDqqqiKMpRyTWEwNA1NMMKtZK557TnhFPW69X4GS7xVmJCAcqiSEEB4z3Tes4stZuGIB0Kfd/z9qtfl/JLVVNUM65cvk5ZloTUSaSVzB1rS8qiFG0drYSHkTJxnctbWkoh2Vfm2nANU1iMtTy8vCaosoocXVgStHTxZGfcjJaNBP4QcC6VDFI5JCBJmfOBOJtB9EKmTaT8IW3mubNPp/cT9ddCyMYqNxxMgpXChwBbzKRzI42TnW7BdjeDELl8usd2s+B0tuLm7j1W1Zrtfp74QTI3QozgPZnPE0JIehpSxjNpfKvUUuudo+s7aj/b4OKJr9bYDbjRBozOTQsiiljXM7a2tlmeHjO4gWbdCJJkLYMzqE7x/hcfom9a5jcL9g63eOMaHGwdc3f/EHv/A+CnhFGSHEmG+l7GdFWWeOc5OT6mbVrxvtHStZhdza2VxNH7LOgnfCPnA30vnUBlYUW9V6mN5530p9IYlfhEMutc0J+CETlHnbiUuZEjeFELfy/Ht3RAEkPkjQ/cZbkr6qA33rjE5fu7oODi0bZEeSkMHqsnY1lF44NLG/L0AEKCt6TeFhlS5k3atNMLx/fMnTk5cjWpHCLBc0itdBqRAMqZfV5fA40eePX6TZzxWG94/xsPUziRCd5a1ZAWdB8mHkrO2OUzU/AU49iLn0s6OQOYiLspCIoZaJH7k4MUPbYjq/HvxiCLqZOoH6SFTMWID57bV+/TVb3c91s7mBN5v0qXBAIBj0125bYo2VpsM9uap9Aq9blvlAiUSqZpKgd3k/IqUYJBgQwn/yBR25Ur1qnFL199bsXGTNcnzPD0t5Xh6LJsHioqLt3bHe9JYSx2XqOUYrHYpioM/SD6G23X06zXdKsVeI+J4vVydnpC7waqec/q7JBFdYPeO6qUyf9xHEob6vkWb37tNW4dnHL86BlOyaK/Z3a5vH+N0s9oTo5RuqBdL+n6TtAEhGcRXI9qB7wXl16IDEPD/buvM6u2sPUWh4cHWBVGHRgF2MJivWe9XtGslkJeDOdXnMwXsVpTJKXfPKqSEAaeiM3E8HdASDmIFJTJR/BDaqs38gzKshyRzkyHkjmZ1Sdj6uLI2SyJ/S9Qt7GWsq6T3HwcUYnMN0Dp5IAqR9e1goIpRlQmJx/NukWdyeu8DpzqJatVM3IWirIQA8LEOVBpTnvvUveFcNDmdSVckr6ja1u8GwhuwPUdrm85OToc/96WpZRRjWFwQzLJTIq0RlOWemNuSxuuzA0rnzcMmACxkrb8G6uHxrXi/oUTvPLj9Y3zMLW+D25I1vJ+1P8xWlNVFVoXVFXFvJKEsKrC+PurVy7LXPVeuuFywqBVSn5Uaq/vxs5GuYdirKlS8JI5FBnlGoKnXGoeOrzI6Y0V66Llpeo1nrz7MKiQiKhBDAVTYpfLkkMKUuvZjMViOyFqjAmNWF4MwptJ6Hc2BDWJKxOSyaBXkiMGhlQK92xvbxNcy2oV2N3ZYrVuiDGwOjvlqBcTv1A2GGN43yvXeeHpVxiM56XLr/OnXvs2qliSiS3ShEAqT6YxJBsDxhia9Qo/dFR1zWJrl3peM08tvoEoLtd+oGsb1qsVEU3fJzO8tJZKop7J3pkftiFoOY77xKlxAeddQo5ICJhws/qEjhyfHL2nde1bOiDBar727TdxhXAgnv7qDeZtTeaDjBud7EJkhj2pLulD2EAPNjQ9SBLIWeVQ5c6aqUslk2IzpJVhvVGvZESzpd6ZziB9zYeiq3tefuQmKCHkfui1R8cyRT58hjbTuUi9MEnUb8A2Wc43Z6bSdaDIM2xTYyVv3sLETwvWxmaZAyAJAEgw7dRdIiUrh+573rxyeyS0Xry5Q9UUohVRlLihH88lB3/Oe9puoDQRQsRaWXhyuzJIPX3YCAIzcTJfg/jcKHwQkzC1WULQUyAFmROUy1Wb7drpXhZw/+Kp3MYIl+7uoBQU1rK7d5G9vT2RHlfIxj4MxOhouw7f9dgYKctSJl+IDCHiB1HMfP3lr9GsWq7sz3n04Wuin6GFrHthf4fim9UmiRFCj3OK+3cPef3WLfpecbe9zYDAottsUzNjfXbC6dkxs53LrM+OMLZAF7Vsbs6DEpNDUvurc46ua+jPlsRVS8MR3geqqkh1fE1hxUn09OSYrm1knGSNAlJ7p5a2QKtVCqJlbOpUZ3ZBAipFEF8jawkmnrtMgerzhqpHTYXMKarKkrKqkrppJKn7kVsQQUozeTMWgTbh8ZS2GMmAMcZR1rrrhiQlnxIHNc3XmDI/adMdwVRZeL3H+0jRJsRDB5a2oe3alG0bQufp2jahdyJFHlMGqZSSrq+mYV4XY7lYOsEE1RCZdo3RjpOjAxZb4lqbjSvr2YyiEAlxY+24zinSfdmI2JT3mHt3MYfHKOdgZxuuXeXRC4KQANzbP8IpjxsGaX1NvALvnZSu0xiuqopZPUOpmBxn7djBJi2g2VrD0Xb9+L0PvINI7b2DoCisKOt6xASzD8JP8QFQa8SF1o+OuHkdMyFy9d4eX7nxBp0deGX/bZ5862FAE70Y6xmtknuvScrTEW3F1qIoSyKaqLL/WAqQXBTxMF2NSZ73TtY2rYWIGwPBi/EhNInwGhKZObK3u8Pu9hZ933Hv4JC27XGDIJJGa2azmtlszsduPs1/9L+Ntz0vXH2FdTFQDTO5BiUJaIiRrutkLe5kw9fAztacvrfECHU9Z77YoqpmGFuksk5L27VirBeza7OY/XnnWZaWRWWpqyJ12GRCqwT9IUkskBLRjPgL3ySrYwMupvUctCkp6xlb25fe0/L2LR2QDJcctx8/JurIfFXx6BuXKbw9t7FGIHM6ctasEBLcVETM5QlZQH1SEhQQQ+A5VCb8pHfNXTZaYbRNQjDTpp4X0rEIshH0TJMQjrdX3Lx8AMDOas6jd69MkemYJSZlvBDxygN6hA9HGJUUe2S0JF+3Eglgla19yfGJOrcRCtyoN85/ujfeB9quI8asGyBBTgietVvz9uW74iUR4NK9Xea+HgmlJFlppTQxTYK+awl+wMzrBLVPZOLMdckeICmaQWmdTAina1cZQUGymZBatbXK5Ds1dljFfIPGEQAoeW0wkcO9FJAEzd69RRIRmjGfL0a4Wys5x9Vaukw65/B9TxlBq4gJEshZa1InEZydHtGsz7g9W/Di119JC7ZIUv/An3qOK4s55x7EH3FEoD28w2ow/MFXvs7JWQOq4ub6tnBIIsz6ArvuOV2KF89cqfQMhJR7fHSQfEzMyAvSSiUhsIGgCk67DlOU6bnlADmwXK5ZrZajWVuOmwVWV5RGU9ppvIeYlFoRM0V5TkIazFmoNoao/bnr1EajPEQfiCoSlKIoUtknf2C6HyNPKMRxk886PUpLmdEiULWPiugDQy8dbJP6cXLkzoqUJKFDH1LHh6EskthYEiccvCNGKTtqpyi6pK9jAm3VjQERwQs5XIEP+ftJaEoh5E+jNezvUdgSrUSfxG/ID2glDtmVqaV8U9hUspIJa2zy7EnBHBtclekpgTk5Qt+9h0quyxwdE5uWa7MrmKhwwP3dE7rQ488GFCK2JtcuXW9ZK8gYS1HaxN8R5Vs9bmQRawqUimOJTHQ+RLlX1kJDVBqtBbHw3hF0XrMNHknIBDU1KakpADNuenm8lGbGI6trqPBleuu4dfWQ+usLjDa4qp/mfjq/vLYLyqrHtSVzZbyTwq5zntVyKYFn8IIMBVDaoVQvpejByBqV2tNzEpY1brKgWFXNuHb1Gk3bcefuHZSCsrDs7uxQliUfbp/gQrvNreqAN/Zvc7J1xpV+P62DuVtM0MnMy8jJWFmWGK3p+mEUNvTeSzdg27FcntG2Lf3QQ/SiJ4Tm9OSEGCO7exdRKNbtgDWa+ayUkRdkbtmiAGXo+562k45EYwvKssZUJYUtsGUlmjQp05f57rjg/hsQRvuR7/lBPtF+hK+//jbNWcPT/iGKfcO6aendkISdwgi9jZNTqVGcZ/PnIxRL0lRQKvWOq3Evi0oooKTNyTtw0dGR/jbpjxhrpW1Ka6JLCqtjSWTag1569M0RXXj6tUconU0baEitewatMv8EGfwhEMJGFqcm9CWBGbnyvlFyScFIzK6+KYCJycIc0GN5auosGoaBphM1wKoshK1tZbN13tHWDUeXTok6Uq9Ldu9tifFXIddutOhWjKSvEMEw3YuUpQrkvwHTK+miGTc8JVl8vuRcdsrS7VmrJV93FnkLTt7X6PP4VL6dWmk623O8uwRg53RO3QpEWpU1tigmFIoorYDLJSFAUFIm8jGCS4JfRmPrSghwyYhLK0XfrhmGXoiFRlomz1M/39vhnOPtt+9x/2TFwckp3oMuSs5Mg9ceGw16pThbnlIaSzXfTqZtA10XWDU9TbsWsSdjCFnlVCe5da3Zu3iVg4M7Y1dLWRZ47zk9OcYN/bnnmdECKW9pKju1bYdUTiisJaa5JZmvEPSUD2O7t3ipbCB0zhOSF5U8T43J9lMxvTbdPhG7ymUFIYTaopIW/DQnfOL3dE7ErvQ4zidNDHnXOJZarcnS81BY8VMyPiT3YQiNtEAqrTBRU7YW7RXBBFEPzfMtoSApNZnKj3kdUBNCaVJpLCREU6dSh1cTXG7KgqquMcaOc1+lhMsYO3JFMpIbR+RRoYJHHx7JlWZ0TggJzN4648J6l1s79zneXdIXA7NikVAsM6KMRidfqBCJKt2vVDLNKIpSRZq7qTyixXqjHwaKFFjkNc0kz5qopLQqiFMANEU1w3iPj7njUdYCk64vIyQ5oby+usqir1lWDXf3junmjsVQYFUp6Ey6x1JScHgfMVbGmc5dJhKObiC7Ee8HYpxJIK3k9957tPIoNYCJWGWTCCNj46J0sJl0iwPGKKpqxny+hTGGw8MDQJCbvZ058/mCT9z/EP9u9zfo7cCLD7/GM6snE6eIkX9T2JImtmnMiM4JWsxIh5w0JtSpadYslyuapsGlMmHwDjd0DEmTZLGQso4yiRAbPKt2QCvF1tY2W9u7zLM7cNuwWi4ZevF+KqqasiyZVQWLskLjsdFTGsOsKmi6nt954433tL59Swckl7b2eai9wne3H6HoDbOnSnhKjQN/uV6zbNasm5a262i6lnXXJbLYkFoGYyI2JQVFVGJ1ywTCMtYcZRKF8XujwaZJ57PgkQ84oO87upT9ibql9HTnBcek/u4vfeBluZgIH/3qEyOPhUSKyixmSAJU+VxIhKLEgxjXaaa/yYvgOPnjFNiMr48bSEyuCfpA23sGF2j7AR8igwuUpfylSRofVYTjq2tWF8VRdOt0xv7B1vgaBaO8tY9+nDxFWVAkK2+dIPbM54hRFqgiLYDChk9nGxM0P15AWtTjxO5OUeZ4nZM/yTRuMhE21xnu7h+PJYMr9/YotAUTNkSm1Li4KzSFsXgNLgVMPmUQaIWyFlOUOEichAGXMiVtRP+EYFnUJZXJbOX3dsQYeP3ll7l595D7q471+oyTkzP2r1ynq1uiihS+gBMh4mltRTVWF3Rdx+lqBdqmewBu6ITEZgzN6hQ3dATvEhlSFlGt4eTkeMwQc00ZGAPOUWjQKEHEcsChFVVpsabAI5LzJMSAtLGwMU43D2MLTCjGMqpSYAsZd0WSoXYhk6WTLabWWFNSKEFlvHP0fki199z5Ic+zH9woIZ/nr1bSBqpT62YW18uOxzYF0TkLLgrhSqzWDYPzzPsa4zWD8fQzRzSR6LI+S96aw+galbEPFYVQ3CcZ9qx5pHJ0nb5JUxidS5AZhUwZuU7IiDYFkxzAOOplnvUe+76nsdUMjAFjZd3qe6JbceP4Krd27hN05OjKikvLvaTSy3gdIlYmYyBECcrKwhIRiXpRxE3IW11B8ORS2nolHUkhCLqkNMTUzefckDh84AJYI2Rcow0mz1mVyfQp2YtRkIIoQfL10312my2WdcPB4pj7i0MWh9dS4KzFnyvkVuSQykApARyvKRPkjZQcKlmPy3ouSRAtPkoJyLmeGAPlVilBG5xXOE1aNyEEihRc2tSpePHiJbxznJye0PcO5yPaFnz3nW/j3z3xG6Dgtx76PX74K9+PH3LJSp51VVnsWouMgwr4KGVNrUWfafCe5WqJ7crkuO4p6znzoqBIpGaX7ASk26fClBLkKiUlruB6ZnXN/v4+s3oGMWC1ot7fQxMJQ48OntoaoSuMsykH92ldCJ7D26++pzXuWzogCSbIRUconGU0iNNQlyVVWXJxb2+Ej0E2rm4Y6LqOth/EXGgYaLuObkjf9wNtL1LT7TCkfu+8OsjNzuI6MW2GKoln5d0/mDiK57gYib1AhtmB1BhNuz3w2nXpEJqvax59+6q4iOYShcqaI9OGnHyzSCdBVKADo77CmDFtoDCoiIph7M4R5CRdj9owFUyBgfM+SW4PqV4s3QR9N6Ctlc3CWLQp6K/fY7Un1uXb6wXXu2uUlZTNxEpcyIeQOC9AaTRVYUcER+Bx4R4ISjUtpqNurBLJ8nyuUkoQwqKUhiD6aRHPomtjRj3ekJQpKoU2EvzduXQ0ft7l+7spaJRsU3JmNTLLQ4zi5BxF+TeGQJ/kpVXQFFpTpHEmHjsaoxSXLuyzs7PD1s5F9nZmXLp4ga0NVc0/+ogcH93nzbfe4vCsYd22nJ4c4bsezzG+lKDQBsvF6grz3Uvcu3sHEJO4ZdtJbVx61nFDx/LslKZpRo0ZrTVbW9vsXbgkz29wrLuGrpUNN7cCkhBDqxXWpDbrSOpgknsdmGBq8WZh5HIoQmqxT5NVbbStp79fzOdYbQQaThtwDBEXHMZC13Uo1SdkTVqrUYLaESNDL10/zvuURLChpUDKlhm/zzLyUmZIrZOpTFoWdnLQTnoaZVWxtRDjvbbrCSFSNgbjNEPl8XWAGop2QheCMBGljFpIcOr6Pm1qOnErvPAEks5ENjiTgEsWfm2zxo4ZCYSABMRjN82k30ESatRR44ionV3Ki1cl+PEhzzCUb7l+dhV4AYA7Fw946pWHZAIl2DXfk/zAYvB4B8FOjq4+RJwfyMRIonDyut7R98tUUkvzcFznpu4dpVQSeCukJKc2rQFAKUEsfJBuxeCTnlGEy6f77DYL3t6/x8H8lHv1MTfiVekeil5QIa1BS9cg2oovlcrE6CgK30pMCG2M6MRTyk6/3vU0azEMFCJvjTE7bG1tpTVCSLRKorgcL4tTs+8ZQqBtpeQ99C3r1YpWmyT+OOOp+4+w3c85q9Z85cJrHBdnLLpqHA+C7DgUAZV0ooyRIMr7CKaUsrYpKaoZ27v7lNWMsqzHIFZ8eRw6OMrCUBYFWkmybJWgRVbDfDYfBdl0nPiJKA1lLeTiTUJ73n9SEgdQ1xWXrjz8nla5b+mAxBsZhCoqTLAPLGzvDodrLZbNs6o69/NcNhAHSze2sTnvpTTRifBV07Ws25ambWm6TlQ7099nQmx2RpS2MnmPgIjpxCB1SO/gq0++SZtqmw+/eYFw37FsVqkGLIz5whjJIoAcmoRUusjrTczXm/kpOfXPS2zMBNU4vsfIzxiDkYRE5PdIyovOeWAg+2/UCQo3xqKt5XR/zdmWSKtfWO1zNV7Hb7V0XStZQVkm0zxx1yytZm9bOBqi1mjGDSKfl1YqeSAIXybKKE9BSLqGdP0jepHugc7BRNr8Ro2AdP8ejN9jDNy7fDKOg0v396SjJNXgR0g4La69c2OWrSIEN6QMUBaYrpNSSJbytsZw5coVfuAH/yR7sxlFNWNWFWNs9F4BEjcM3HrrTe7dvccQDWcnRxAju7s77N+4MgqLWW/wx47bt26J4BHQtMcSVCtNiIG+WXF0fEST2P6ZW6WVSn4/irZds143krX6jXuokNJMkcXzMik6oSVsdISppIxrjLRXaz0iLLlkkW+E37BrVZDM8/S08UXRLnE+YANUNZRFgRtajJVOCMhqrEknKJ2HTyJPOpFtpeVTHGAVwj9BxeQQnLrBjHS9dH0mxmp59oAtCnZ3tsRw0Dl2AnTDQD1UYrIH9OWALzzzUFOX5Sig6J3wqcr5FkVZ0LUNXbNKKIyhbVqUz+6pch+KokhaFCkgt+Lho41oUai0S2T12mxYl4m4xlgpD0awZYV782Wa119GlaKOq4InDo5haLm+swXPyj2/d+l4Klvkd8xoa5pLznlCdKmMnNprYxCkLIrCrjUa5xO6k8juZVEm5CoHGdk7RTHZ3SdAjYhKuj6b1wVh7LJLzHsu9ntcbPYgwvH8jKOdU/QthXcBH8Qhty4S1yc1NQQL3glpGsJoihnTuti165Hjk9dKWSJTuSoKL261VEmtlRQgJXQ4laB86saJxNFg1Tvx63EB+qFnvV6i7jueuPswv/fI11jZls+VX+IjB08ItzH6satzcEFUWIuSqlhQlNXIXUOLJENV1Wwv5mIfocASE8/LpJVVkEGdkowRkY9xbH2e9od3QT90rqMyJY5jsit7j4mahx569D2tc9/aAUkyqzHejGJg43FuY37gGDeozZerUemweiBzlZfngIOxzCGLpJcgpWlZtw1N27LuWppWEBfvPENCCpxz+CiMZhccX//grTGoeuKVq5RrGPqWQaUYM5FCszhQ9s6ZaqkZWmScJDmZiWFCRNJVjPciZy6jr09aBPJCoFBUZcWqEWVOFEnlsSa3VPoY6FTDrUv38MZjvOHGnWuUusYVov5HBGtL6vk2hZGyRVVoSqvpBqlz5lKKVoI+WJXbmr0EJbK1jdebuSGySE5BWL66yUxMsoWcFT/4PKcyjuLOlaPxFl29t4/dEB3Kdy5zE2JUVPWMrh/omzUqRuaViGYNSSul73tKW476EoNXvPLWkotXK2ZVQ1V2XFhU3xRCMnQdB3fu0rYrqfMGx/7ODrt7+/iZYqiEh1SEgrIxNI3UeBNTSrJIPM36jJOjQ9puSKUBBXiq0jKra2bzBV3XA5rZbM56vcb7bgwas5z/2NyFiHTVZYnWya/DBVQQ6Fobk0o1aWNLTs0ZkVDagCkwxbnJOz0jrQieZINu8CFSFHI/lifHNG2TFmopCYgYVEiERRnLOrWIEzwxlZiMEmJqWYgzbteLxopN2jdoiy0rQmwZvBOStBLRqKIoCQFcFDXVsqrRRcWe3sV6EZzqSocrI2UosUUxnqNVOkk+B7Q2FGUl0F7ualOKsqrG8oiM1ziWl2JGFbRC643l+1wJR8asTo7ISmlUSO2p2tD4gfrWHfTgcnoiCVRhubF8eAwCb18+IiYRNFkjGEsdIXWQxISsZRK5tTIerLWUVcViPhcUofaUVS1BgcndN3pc0yRw9CmYlOhFqolyPfl1CefOo4RsCSIcWiHJPnV0g8+EL+O05+2L9/BlRAcJWEIQ3Y2JW4MEMzqkz1ZEZLxmhMlai06ojXQ8BcqixyFcDEE5Tuia07Q/kNrLE4cxI1oIz0ppM27aZVmibcHZqsX5yHK5wrUDj796hd+78TWcdjz/8Ff5tlefpDAlIXiK7HRdzDDFjMIWzOqSWVGKfpNWlFpQ6MJsEpsnZCvvBwrDuEeqabylVW8cW/nr2Gma0S9jptb4B7bbsWwO7NbvzcvmWzog+X9f+iWuzS7wya99nAvDDqU1lNZSGnMuSjt3lxSAPjfZ03+88wNGiDD9zfg202sLa5lVFRd2dt/x59572r6nTa2ybdfT9T1N19L4lheuvU23inS+5zuOn+HS4iKt6RiGYQx4YnACQw9sbMST1oaxkuVpo7HaCLIaFPFcDXkSeNvECsbvx1qOgqinSFdPLZOj7Hpw4k2jNIfxPm/uvS0Bi9NcfX1vIyOQjSejKSEMYwbn8oKjsoR/HG93hubR8jPpesg1dTUGHPl3m9c0tninZ75JVtapBTVnZT4KdB5U5N6lYwDsYNg/3UqITGqzy5+T9BHWTUPb9+LdMPQYFFElGwEk69Y2LWhp01muTvi9L/7G2FFSVjXf/dx38Ozjj26OzHPPa/MpCanO4fuGi3u7XL56jcPjM9kksBz7M5aIjkoZC2ZDTd/1uCT9bIxh6FtWy1NW65VwFVJmabS0WRbWJq+ggq3tPXb2LnB6esKdW2/g3YDRUmqLaupwMlrGSlkUVJVI0DsVIOQsWY3k0amiKG2X2hiKshRhNGvl7zaOECNa+hwFzShELTIMYtS2Wi5lY0zoR+YKOedEpyMFIRGIQWOMbNggm5s1alSULYzGW4stauZbOyhbY0sR7hsO3qBUajR4zLyXEKUsJVQkhbaahd/ChiTvvYBit6KINWVZ0DYNgdRZEiJuGChnMj9UIdojSjGKs51bn2LWUp7WnRychxGykBucSx6ZuyButZ6maVivlqzWZ3SrFdfrkgsR9OBBQzSWcGGf/W6L0hf0ZuDuxSNcdAxdevcYRzl3Y4x0V6TSymxWo7Wi68UNuzDJERaHwqBVEAQiOjQWTUSriNZhVGLO5HqiT8qvEVQxBgQE6bjKXZJjCUen9c9aIoonDx7FBoMzntf2btGohl27i1JlastN62jIIm15oMj7SSAhwY5L3X5RQZ/k+JtmTdeuExcqsYJiRVnU6ZnlzDALg4lmyeA9XZ9RFZHX9yGiTIE2Uta2xrA/3+J7zj7GwdEZM1Xxvq2HuHJxn1rJ2JhVFXVVU5Wps0WrjPcCloaDAAEAAElEQVRuJMwba8kGyjvORfRGEjcFHBlyz8H8CFzm3+XPSUHLtH1GXIwMQewcBi9mmkFrVFEyFP8NBCR//9H/J9fiJf5v/8tf40K/S1XIwlpqqXnNy4KtumZRVszKknlZCndhiizOP4x05Ie6+bNzRx5wTF82gxR5P5HnXRjDYjZjEw2IMdLrgcfaRzh5dUkfBi7t71J+m6HvB3o30PV94nGk8lC7Zt0mY6bUg++CEwv4BKGapHqZa8sCQctA1OnnWulxYdtU39vUVZH6vmSZPmWHhS2TEmyG4gJ90XP3qii0Gq+58ub+WObIAYnSYkPv3SAunqPt+3TPpzJNGCFzEFKkinFkrIekRaGZFuop884R/dRZEILYrRVWIFofczv01IWzqhtWc+HA7J4tKLuCsSth45FKCS6mDd7SJ9v0SMT53HpssGWJKSs8YmtPjDhnUseUoF1ZNOjdjwD0QMlmIF3N5nzwwx9l3bSsWseWB+fhdLnmzvIeZyGZ5jmNbQwu6194R9e0nJ0esVyuNngUUpawVlNaS12VzOZzcYwtKyojBm3z2ZyhXWOUtJV67ylSxpcJpcbohAJ4TPQoHcDnLpHkgJ0zWWuozOS2nGWwH0Qy89qntKKuRLUXYOj7xAuJIwyeJhUQE/nUjgFKdupWSKeM0ZrBuRQvKQKGausii3KOMhUoTd+3nB4f4vsVzfpMCJpKpeeXlE5tgbZmLM8qpVDLiHZyHUPp8EVgvrWNIaT6v4wZo6V7x7tBEKXgx+vL8+EcvpvQw6woqqKeblIKsGMM4BU+SNdE27UsV0u6rmHoejG3GwYR0bKWbrHNsL/NfucpjCEs5vS7OxTukL31Dne3D1jNW7rtwGI9G7vDshR/RrkUiTPhemxpKYyi73s6L0F6FSoprXmHT8Td7cUW9UxK5saIr83gBqqyILvHSlnPj52LMZUQsiaLyO2nZ64UwkWSJO2pk8exQe7n67s3afWabTdDp0BPOB4QUgAUoiP77whxe1JwbduWtlkBIr/ugqdZrQiun8TxQmS1WtO0nTyvKEFHXqezmKVWIotfJZfmuqypqko0Q2YLqrQ/FUbzhHmIP/Xqt1Ppkp1hwd7jW1h/vnU2p2NZBTvn3xn7SAv7OxK5d9vzzs08lVL2jWAjz19PpPeBHnBEmsFzllzOB5n2uJRCKm3QRYEtPIfr9l0+653Ht3RAgoIbrzxMd+o5Cks2PSKy7oI1ZlyUjJHFd1HVbFUVW1XFvCxZpH82DbBpg86ttekBMw2CB2GuCe+aXiU/fiDQyT+ziu04Z7ubUzjDrKrQ5cSBye2CWbY3w9A+hBSsNKybhlWzZrles2rWNK10E/ngGbqBPiCKphk6T/wK0vWhsjCaxqSfRwUagfuqWsS+ghfNhswDyWJT/X7k+LK0y24fz7l0tg+VWHOL0qXBGImMs0OmVmDqYiR9Gq1Tlpna2ZJJmDZK7O3zXFNqDJKCnmSfddKD8fm/k/CUALoiwjaWdTYei0kT9ejCKd5KWWrvZIvC2THrjRnOlh9I1p67przFpAwp5ycYI9odCU0JgwMjBmKqKIhRo0rDVl2zVRbvREdiBN9AWEFxcRpiShRurzzyBEf37tLcvY9kOJ5+6DhxS1orxoChDbijgciM6D3tesnZ2QlN007t3QrKQuaFNZqyLMZxak1B5j8ZLZByWZbYai5S2n0j9ucR0YqJGpvkymOMYCXrVjqhconYGwNj+caCbDzJWNEYaZPfhJZ98JioWMxqiEJEl2DdjyhIDkbHciUkJVdNmTYx7zy2LFIQDdpYyqLGFHNmi11sUeK9p2uWtO0xbbOi65qkOplMxfJaYi1FWWKiQjuPSu28mfA6lC0qyV20Rc9gegk8kzCc7KHiY1UozfrkhGHoKGczrJ2jSO20PoKaPEC892NSURR2lFePUdEPPX3fsW7WNO2aplnTtq1Y0/tAUJpoZGOgngkvIkSOmxV919JfuMze7gV0WeJjwDRw8WyXuzsH+CKyvOa4fGdnLNnlrrngnXAYEsoQnEGrGdJ5kvxfEupWlZZh0Bgj4yym5y+rpmJWV+heiVeSkmeZBbhChGyWmNdFIokTkzL1vkebLonEKaojzf7ZNsuq4ebOAXfUEYtmMZYAibnhIEx8FS88mGmtkIC3bVu6tkEnJDFLMRCLcU2OwRG6HqU0O4s5u9tbLGYz5vWMxXzOfDZnPquZVfXIU9JjkJAQtpyI5VKdhr1+m8GkUp2JgnzDKER47sh/r3MArs7tTWMn2zv2IzWh8YmK4GOkdZ7GO9bDQNAGbyyDMbgQpRyfyOhnZyecHB+hjWY+3xLTRitO2DolX33fsV6dPXjG73p8Swck2mk++PJTWGdFPCn3+2uBmkIUgqknqTyGSOMCZ/2AXi7PBYhaCdGnLgpmtmBWpH9lySyRE62WLgqbNlKbaqDjEWFsRP9DjkjE6wmi1lHajDd4fQKJR4PR7/z77cUc2N94wwmiCyHQdBKYtInb0vbdSMjtBzfKHm+aoIXgU2EkE8YUYrSm8b5ntTzlzB/hvKewJfVsxhuP3B7bZR97/RpGCXN7cAMxBNEiMYbgRCQqIpbq3llKK9c2dgOESFVYtuYVRmsCkRDdlIll1GS80XEkJo6LnE4eQXHK4KQzJBGNc7AaRW65sJb7F06FxwPsHW9RuoJxAmfkJS2CIiZmcTGhPYsZ3g9pg4ypLLDRfmcNRmkuXrzM009/APzA1t5FPvCBx5mZ89mOFLAHaA6hXADnH3xerNqmEf0b7zlbnhGVpjeOrpCd0DhN0YihV982nJwci6hdKtHYxD8Qx90kJ64VmshiMZfxG6L4D6WNZ7G1xd71Jzm++xaaSFVocQl10pmQJcsVYriGctKybg1eWYyyGMuIsE2ZXSIAq+zMm5C7CGerhqK3GAJ9atWPSICRN8eYdUxMGq9aUxY6odQJircaU4gKpi7nlOWMqMTteL1a0jZnDF2TiOxuJMNKVq7GwLmsKnb39pnPF4J6eYfGMa9niZfQU9QVFclgr/K4MmBswTD0DD6itJWkKUaUc8zqWsp8ahJM7Lqe0+DRGgpjKIqCuqrJ1ggZceraM+4dn3F8ckLbdSLl7oMQ3a1F5Y6K9N7ae1TXYWJgZEdpxdoNVMFhuoTg+J69kwU8DM447u0e8tjNK4AESD7dJxWjcBmS9kVRiBZGPa9RqKSFIeWPwYkWkTjdDhBX9MnGIJf/svaSVtncbQoSQtgsDST7gEzeVVOXyShpHgLvf+sh3rx0l6ACf3DhVR56cx+FtN0KaisBpy0ElTGmGNeWmLSNtFJszWqGYU7wUYJBbSiNZVZXzOqaeT1jXtfM65rZbEZZFFLqOBcyqHN7Dee2CME0pgY2lf8CHQykgMRrEQcEpByfxsvYnJAQjIyEqASthSgGoD6VoHwK5nyMeMApw9oFWu9pBsd66OmSflKI4ukkpo4XKMpqDEiVEtTv5OyEo+NDFvM59WwGBLFkGRTet6zWa/q+4/U3vs57Ob6lA5JLxxd4+PgaVa5P5TJLQhec9+gQRrKX8C5kYwsxIyHypyFC5zyt8xzTMJJFE4pglabQRpCD1P2S/5XGUFsr/4pi5LHYbyALHlUkmCRbnzqEMiw5HRsR7ubP4zSa1eZARMa5MZqt+Zyt+fydVaW0iQ8JOh3cQO8cvZNNdXAymAbn6QbHuhs4Pj1luV7RDwPrZs1ytWYYOnwYeO3am+M5PvbWw0JM9R1uGJLEd5ocOhktBZ84Jg5XFISqoE6TSwzHLPPKJmRDEI+opLU5X2p2Yh5bm1W6JzErREoZQivN4IZ0j2USZk+bEKYyz+HeGT6phO6eLCgGO+Hk5LEhZNbckh1jpKwtFx7ZZhga1icNq5OOoRsgGmLUojujhBz8fX/ie3jqicf4I/31hlMR/ii23zWmjYk0O/Q9bd8RopTpQukYCukyMV5jVpHlqRA+BeaXEpW1ElQDlKUdEaqsqIsSPgCkLpUIi9kMNzQc334NU1SAxVgxycuCgUbrMSDxThZ5W6agvShlEwaMnXw4YkYXvEiqN6Y/N06HoSd2EhB515O7q7KEeg6ujNEbSFsY0U2vLPPtParZFmVZg1J0bcPJyVFCQdaEHIAAZepIUFo4WdYahmHg7OyYsqyoqgoFdG0jwa5SbO/usLO9i9YS4GzrjkpLKWKoPLEMIhJl7TRvlcYUBtf2xOBF0MyKd1UfIsaUzOczyrG0LNsbKpdYZab37ZKz5QmnfU8wlpg2QgsS8ISASYGDShorqDgqIoO4SDXNmsV8Thha6RYre/ZOpWXLa8+d2V269lEZz1pRlpZaFeP8yaVKlMETadsOH2LSeRE0V7gdkfW6pVmvKQtLVZXJXdaOWjZKaYLySXhOoYxGI2USaWnWROy0KUaRJLCphChlVnmeT999lF/heVDw+sO3Ub8nY46oKG2BrWqs1lRlKaUopSlskWTrU6eVljXcWis8qSJrjUyowgNLhRwKNrPLMRjZjErSH8q6tllrmdZ9Gy09A1FFSZo0qFS+RuWWaTEK7UOgHRxDCAwRgjY4FEPM7tiefnA4IrYs6AZJYKTUKoGsIPCeqiyxhcUNPafHB6zXa7QxzOdz0SsxhvVqxcnJMUdHB3Rdi0+JaF3XifOj0/w5IxI5un/vG616545v6YDkxu1r7B/vAoJwqCQ5rJTCYrE+jOZWwXuCCoQwucBOX1WCdGVUpCVgBDzEwMjTxAHdkZQ7p8GltZiwZdTEpvY8ozWzwrIohL9SW8u8KKgqSyggKCkKmKDfFYJ71+OBn+fWtOkHm6/d/BIhCtHMlBV1Wb3j5ZDQg5CJggKd+iQk5IJ4W7R9z6ppuFpc4VNvfoS79RHffe9ZaqNYNx3BJ4REy52sq4qhW9O65ByqFIPzaFtgfcQo0XDJsYUsnKlNNIZzG5Vcj07S/xO5Sm5N4iuobAHghQiXn5OaugTEtVgWhMW6Zqla9o63KLLEsUQ6CR5VDENktZb2P6Vg/8qCb//kkwzrlpu37nLz7WPuv3VCVJ4YVELrJDD50gsv8tLXXmY2Ewj3yuULPPbwdcrCTlfle2J/hJ5fQ2wKzk/NGCPN8oyu7Tg+PaXrnXRwhQEClH1JMfQUS8Pq7inNei1KqbakKKK0/Bmd2l7lPpvU1mdswSCqS0KyiykgIUrggqUdRLSrKiusgcElPY+saRAVQwCX7O4nSJ7xPosUuIgHhhhpuk70TVB05YAZNKaXf+16RdEXQtzMwnMK2XCi1OKV4hz3QpsCZSu2di5iijppZAwcHd6hSyWKwQ2iEZHmv7VlMr6rUsl2yjCtNbSNBFrJjioRaT11XVOUNWU9x1rpoin9jK1hQTkU1K7CmgKDxxRz4T4MvQRvZYmxBX3fC7nTyALuo7SlFkX22smjPgXfMY5+JkopfMqAtfcYn+aP9xLoKMYAPSsNZzdWQOr7RuwcCB7CIHM1WC4ud7DOsGhm2MIym83GOcVY4pAAK8ZA37ej5pCQlu3ofwNREB6j6LtGlIFtTVlVon5rsq29lBlCEJuK7I8yySeE0U24KMrEC5PgvOvkNVVZMatK6qLg++5+lHALrnb7PNM/zrc9+bRIq2/Iw5tEhjVKp3Jv9iJ7x2o8LqgZeSDmpfjBJFKCTnVui1Cc+y91/k+mLzF9ttxrE8zIhWpjz9DDatVxslqz6nucErVdiorBieeQtgWzxQ7aWnzMpHZL8AFlFEU5E16RG6TNvG2knKqFZG4KixsGlqcrDu7f5fDwPkPf471na2srtaB7Vk1Du5b3UVH4cn3XoKInpqBFa8Xu7jaFLbh4YQPR/0OOb+mA5E98/ruYNZW0bCnZqHKAoRLByTmTzLamFtcxuk/ZgvcJ3mUKaDJsP9m9Aam1eAQp0ldhiTsy10Gg6TiSI3MMkclFoodgCPOBbm/Nk8sbVLagtpZZQlfyxJEWRTWKA5nNOiMkhGQD3lffaDLFjbkzvSa/fEQMQbxHjAWitECrXCw5z6r+YPM+4lcE7dFPadST08LXtC3t0DO4QO8c6zbJF3cdp6s1bSdunlVhsVqeQ1lWqasHlPLyHKMS+W+lCQFpm/aOkNpH8+eF/Ew2Znx2n8w3a9SKiYx8hT/16x/n+37zY5zN15jeYGJSviTVao1IWMsKlHUSPDsXZjx25RIlBfPtil4rVqc9w3IYZbKVAhc8b9++Q10tWCz26fq7nK3XPPrQtY1HEwndAbq8QFg3KLNGza9sLFyyCZyennB0csLR2RKFZrVcUtQ1T7/yOP/g//7XWIc1h2f3WC1XjC2NRIpyjo29BKNa4XwU4TJbUtYVYOiGVjposqy296P1vPBfOoaupTQVxlRAn15f4IIi9KKIqpUmZhQyyDM0RifukyBxXT9ItpZac2MIuLOW//Gv/4VpnA4Kj8P7nCREjJKABmS+KiRAqOe7zLYvYkzBMHSsVmf07V2GXlqCc1JCWpzn85no41g7loxkWqlxIigVURisLXCul4W3ayFGirKkni8Qm3mTWmtlvfi//sf/AeM0qoXV4X0Z47OaRTfD9a2grcagjBLY3ItuSsyIj9bJmkKNYzakrgzp/hAIXgE7VtH6LiFVySsmeMnfA4nHw6iki5Y5pA3U2/vSDdZ19M7hOnGdrdScP/ml5/juFz/B/LSAAVwQgmn2LxqN7YJPZZZUUg0RXUjHTVWXovjc9ZLQRJEW8N5zcnJMs15RWjFYDKn0lpGOjGbLKUuZvCxLiqJkVtVSKkmcjFldU1eVIB0bHV2RyP/+pe/BBI2KGnVpuqffKNdLU/Hcir8xA8ldKucRkAdK9BKBj9vDubeKmVgvJRS5LxJkuhBpB8dp09KHiLKGoBUvLl5mdjinXJdS8uo6zpaCWFf1jLqq2d7dQxnLqu2wZqDe2WO2LYm6d72gKInDF1VkvV4RY6AoSk5PRYVZAdVshlaG9XpNs17RNOuxS+vw4IDTk2PZGxJny6au1qKwCU2auGB5PkmXHSOJ+Y86vqUDkuu3L6Nm6Zu0L+sU9abtE60huHGVSRMUIf9wnkSaN9zRE0N+MQ6w3HKbAw9IwjCIPXouDwgJLq9tk7S7NHZIhhdRqJWlXG3zejwe1+EMAwpXRVEa4VuUxoigjbFjmah48F/qLtrsItoIPd61DJA/WKWvcWNR3vzTabfPaIQoPxLBOJMegLxcG8X2Ys42c3JglwfoFBQIUpGF59yo+CcTtR8c3eCEVBs2Xptq2G3fCbcgBnrnIalZZk6PLPbCZVBKpTIBSfwn/yyiosJ6xd7pdtI0yNtfzlay/0XqrgjgmiX37hzzlVtvUlWGs1WDGyK+CUQn9ykGR4iG4DxeDXjtRRHSR6w+n9lLG1EJ5QzfHcIgXhBKJaKoH3BDy+H9uxydLmmaNcbMGFxgb75g6AdWByesTk/RvdxjY1K9XAXRDQkBFRMRVCvmOxeo6hrlJ2G/zJWJJBJ1FAn2IehEXBwgVhLMGEtZiOOuiGCpce7FwaVpo9PCKyVC56X1cXDSceGGgeAHSAGQClP74vgc8nmlbDTzBHwQs7zgJRhtVqd07Zqh7/BukE4aROysKBIxtyix2etF5QQlbUAJngujs6wbN1wQ7lPjncD6RTl2HDk3jFwNpTQ7w46oV0ZHoQ1RiYnh9vbu1PGjdSKrOpwLRDyVMZDQqcF7dNpAcgt9SDolRltMIWaeu9tbHJ2e0fYObXVqodfTrFe5c06N0zgnWzEGlC6EcK0ti52LqQXbEHpHc7KibdaJXBomlBUJz8uyAHRCL4QAOjhHP/QMfU+ZfLwqrTBWJAl2azFeM8awmFXMakGlClOISmkhYoJlkUUF7RQ0knWHOLeO5et5t8PkLuJv/JIpWdn8fvwM9eDL3hHMbK6vCklAfPS41ObbeycdUkH8YVwM6XeOVddKt57W9AFWXc/JWYMxBXt7W2zN51xpH2IYejxJoM9oirIgJk8xHzx931PPDLYoWJ2d0r3xKjt7pzK/lVhE+MHRDwOr9YqzkxOsNVR1Tdu0LJcrJhsFQUe9E92aaQ9TeKcYNKP0vTWFBCEpoA8hghcH+hDT3qsjOgiS9V6Ob+mAJENbkJEyTTaggs0gI3VgpAUtB7qTT0xMQcJ05Ex6/Eoc4bOxTBAnca2cIU3ZViZcMcYCQY0BNIbkv6E2O0DiyJNwwaUsux8DI5mQspBak8m1KpWJBFWxWlMZQ2mLDW5LQVUYaluIUM4Dd1Hmn9qYnBt4yYiOPBDxRzn38T0SlDv+zUi0jQ/M9ilLKZIBIeToeTyT6eWoUWdis+vIpcw3bJSY5N5J4NINjuXyjH7ocM7R9gPdMDAkuwAX8nNUU9KTqwKKEQkarzwFRURR1Dy5teZz//klZtsiira839KvB7kvNt2LgGhyeM3QnbGOjt0L+zz80LXzZGil0fML+KHl9OA+9XwXuw0xeIauQ3VrVkPL3YMjTs9OWS/XlLVmGDqOjw5ZLc8YXD8qehLDuPmJkuMM5wxFWKG1EU2EvqOq51TzbYaumRb2vOJGCUpUCnBzdiv8gKzfoMcSHExKp5uqx6EfRDDOCxHU9R3BDSPE/26idZsjMCM9OZFQVhCNEKOQWrVmuTxGZQQUJeWUEEQjw9jRZVjG3ebmLJ/kvZN2Ypek6NNYy/PcaIMyeqKBKPHxMGUlnBI/YJKlPajR5dcY0dwR7RmTeCn9qNUzlo3R1FFRu4hedTijMbMqbUAlxqqUTE3lF02krAoW8xkuNlhjU9dZ7g5jCkYyqhqjILRF6nYJAR8D676DYo4HhvWa1d3bONdTVGIsaYwRXoGxaCQ4nyW9lMIYCitBRGmtvM5KxpxdknO7sCC8OpXKhPtx/uFvzvvNY1oT4vkfTxvmuyZcm4jIu7yHmr7k+X/+8+PGmJRj8J7eeZqhZ913NMlepHUD3eDo3EBRlaPekvdOICmdgjeSIrJW9IPw+KqiQJlilP333tM0feKvmCSTnyQiE1pkrFz10HecnZ0kmQfx1jk6OuDo6BBbiKfRMEh7ee7akm4muSMh0RlyHprHjHD1zlcT8s3I6NgwDJm+N4ncKUG1x9KWYGC0bffgw3nX41s6IMnjJhNyRGvYo+PUH++cZBoSH+hR8z+XdLJgVlYkjOPGPyaMY5Y2/vc5JCWOi2hIpZuQsqpNl+HRYCtlLcZvGIulfv78PmMmMgES4yKDkuvqXWCTBrjZhZJrpMH7kYuRohqM1lIaKkvmhfBaqtRRVFtLofWYEeW6ag7ylEr96WNcsbECaCBuBDtqcvMd/38zG2VSV50CPFnsx6vK90NJm67BwriGVeeQoM37kJ9T3lwyAe38MxR+TO8kc8j/BufEvyhpi/gobX0+BPoh0hnDvBJNlnsH9+gOOspCU0ZFsEUS8bLCEzCWxXzGs88+w/ueeJK97TkhRqqqfNdzPju7w537Sx565ALtyTHBr/CxRHvH4ckRJ80Jq6ah6wdWq7us1ysOD6AqC65cvU5R1hzev8/q9CBpuIALmkBBKLaxEVRwoAZc342+GMMgbZU+kY6zqNbE0ZFNqaiqjUeuxgBOp/N33tO34hPlQoKlvU+dVeK+nVEHeT7Tc+HcWI9jj5ECrEkt+0XJbL5gvliMC2vX9Qx9h7WGejYb1TwH5ynKaiMETu+d0E/525Zh6GVcZ3EpJS3thRadlTAMUnayacPXiroSbQ2tFcEPDGGgb9cjohNDkM9WWkqPSqMLSzCa4MVgznvPrJ7RtC0zpdkxFbMbN1I5pEGVxTmENZ18SoyE3KzQ1HXNqnPMqlrON7dDp3GlUpmmWCywdS0BSYxUWjGvCnCO2WKL+WJb9DEI2GtXKGcVs/lMSiXmQe2m9N7pm7yJTf/eMSs3Er/peWd9mnHGpzGQQGnYWCty0JujwvGzp5uz8f8bn/vAmaTVe2N9T0kgMtaHEOjcQO8d675n1bWs2pZ1P7DqegY/UFjhdnR91paRQC8i4mnz+Zy6rmUPCgGlAmVVyr0HQfBVFOKo9yLSiOglFYVlcIKo9IMndSmntUyCEu8966ZNiZjHDY62aVBKs1ovExrRAIxzcHP9k+Bep8A7jqid3nimdVGytVhQ1jXee5bLM7qmGXenEHLHm/D2YlJKlg9IiEriaqEUzX8LAclGfj5tmuNvMg8gcUXSwwgBRilpAjFOHgqTV8o0lAPZF8MnGXWBRcdARJ1HU0KMmGmnTQtUFDIfjPU3lycy6lxHCigJnlAEJUDlpqBNDoKm8COmc5ItPqoUl6lwLmDK6I6Pgd47zrpOFrdR7VTew3spLRgQzZa6Zpbg1FlRUBdW1AGVojASlRsl8YjdKB/lCHyMsdhYMt4BIW+iKPH8qqKQMtgDP3+wLJUn0ubvzCYKMb44L36KqixZvNvAyiPgPFQzBrgueHwQ1dau70d/onYQ2DoA861tZottthczHrp2JfmLRIkyk//R+AFKQRi4/8ZtgnOEvme9PgUUjpIheN64eYv1eqBterq2pe9b+k5CUrFTD0TvMCqOWZbW4gYaQ0QXGlPsQneKGhwxBLrmjODr8d7lcphN/i4x+KT7ETBFgQpZsTeeI0rmzqwc1AXnk0KllGYyh0OlMa+TCq4mjJnfpkif0VMNXmtBA7NnRlGW1LM53i/puuVYJvKpvFGVJVprun6Qko5zuBRoSWlQAhlCGImUIzqmhWMiImCpjdiaJFTYoZSQYKu6ZrHYAsTVewi5NiDS9W7osUOPjm7KPJUa1ZV1ar3OOjC7UbN/43Hs9g64AfpTYvTngqm8aYckBmeUZjGfcWX/Em3vqKuKwkxO4jYhFyYhZVVZUpZCJM3vm+0aJABIcydsJF8JQcpr4fkc5J3JwDiWz63D6bV5bVMZjZYxFFET7e0BJEOpc9NVDPIekFXIwTxpjfPn/mVkdfp+CEHMThGSfu8dfYj03jM4aXWVtmZBWtu2Fw+jFGCHtAcYIwFISOef5wNKJ/HBMCIeo/mcmnyffAgj6TiEiI55nBhBxIB+kJKzSD/kPQghkLbtaOoZgqdr17J/BZ/uZ5w0bTYCxhHpSEGlyUlsemZKS5C7t7/H3t4edT2n64WHcuwDzsvcyQlFRqtVkHXdpWscj7RJnp6evPt4eeD4lg5I2NiYc7QL00YkXTOT2E2O3uVmkgLwOPIP8kRSKJTJhmFaICqffA6iTNGs0CjICCPHKamIy7s80Mqboe8cxGwGLCifMg2ZeGNQNULpeiw3ZY2KHDqNe/wD4yBDwiglAz4hNzkoyguEkO/DiK5Eo1l1Pcdthz89kQwvwa5Ka6y2omUQPTq5x8YYpAZs7Mh2r2xBXRjqoqSyhsJo0Xkpy7F1mvz8FOM15+vIAcsYbJ1PfzaypvzfG18fHCoPvu4bHN/or/OzKKylSNNmXlXnVsxMxLNJhdRoIXSp1eqBc37gv5UiuJ7LO5eIW54Sja13SPIsNH3HjQuXubK1T9f1tE0jnBrn8D5QVNKyqrXmZGvGcrkzmj4GZQhmgSlKZjayWmrabkaMCJJjRRhsSJC+63tUIVDw0Ld4FZMaqpIxopK+SxQC5bpthRsy9MIJSZs/yLgOY8lCCIhVumfiVyIaI33f03bdaIynVeZmMW7emaslAn92DEAg0iW33fx1MZ8RY6BtVvSpQyDLhOdpkg3oUGoKTJQeg/xZVXFxbxeNeJ+s2h5rLFVds79/gf39i2SxPiCZk0lQp/FJ18KjlaKeb6euLoTAm4TDVBoCNZpyZ1cSoxgg7EF+34ywjpB44silsTNmz3ksxXf2iJxLss7t8GPeBCFi0u+82kASNsbpufdV74I/5GBkjFw2A5KNBCpHEEqde5W8xTsxDSnLSkDRDo7eO6ISPy0fI60PIxdDJAYgqsRVChKMyOvjeE+TfJFw16J0l+UzydiuYrrvch5+PJ9CG5QSAUASOTU3VIS0YW8uNzFEokkBn4KIlN+sLRiGxA9B5lQ3CDF5GDQxWOZ1AYkUnN2rQTpbROwwK0jF/AhS7qNAy/XnpHVcB+OEgOc5DZJUzuY1i8WCuq7Fayd14FRVhfGGoUsijIloLfwmP+5DOcFGJYsTvcnW/MOPbyog+dmf/Vl+9md/ltdeew2AZ599lr/7d/8uP/RDPwRA27b8rb/1t/jX//pf03Udn/70p/nn//yfc/Xq1fE93njjDX78x3+cX/7lX2Zra4sf+7Ef46d/+qelV/+bPGQeiSeC2kQDkIUn16hN4lroVA+dIv1pUpP+RqJeceXMyp8CNSaEAwUxoRgJ9tMpxNfagE1ulSniyY8hJMjMGjWN0rQsxfEk5NVOB3RaFWQQTXDdmGnmkZe5L0olsmba4HPkq/XGwpECntTMrkAISeRJIieqUnuoSzck+xr0LknWe5fq5FMWMyRlxahg2PHsul1h3afBTAgEnxQcU/a2vViwM5tRWUOVROlqa6iSnsusKKgKm6Shp+eVA5X8zMafn3/Z5n9swCjvcozxn2RuQUVMPP9ieUY5Q0vnkOMnmYVkRCiGiLJsxlYbbxTf8d9CXI0sZvNxk4oITyAA86Jitlc8wGHKwVrmRcm/wV9LBNF8d9K5KTVqOmS1S5UGTOb/ZN6TVipxKCRIFSuAMJoFgkDBw9BPZZngRxt4gZflo7UWd9ciGQlmHZqYAhbvB4GtnWfAMZSOaigwcWrNzwtnVErIdNYy9DdSSTKjL3pEB8qiyE+MzC1RqWMtk09zB9tmgJjLiQoxkyyS1HjOBvM9t9YKYnRuJ4WQ5pWO57PRzK2RcRTHZCQfcn4TFydKlHF+fL77N4xhw/h+8Z2vS5M0O/6qzYmSApOowamAjuLDxAZiNZ37u4zndwlM8usEdQ3pDCfUJKTuKhcCHuido3OioYHRuBjpvKN3ni7xv5QWzQzxA+uklGRF0bkdPIMLrOctu/02Gk2ykxKn9aRFNZ6n1iMq56P41TgniJTJcwKDMgZtItpHog7oGHB+8kCy1hAGMVjcvCE5SJUWewkKQgyYZA6pkDUWNQU7SimiDhB6mpVwvcqyJJSWfpAAx/vIMLjUFZokDhLy/uBzyfNd6eyePAUi5N1BCeFYKz3yTaS5ISWB2mBsgbEl1gqRW6WEYOg76XYMkUwjyyVC0hwD0dgxxuDfY6jxTUUBN27c4B//43/MU089RYyRf/Wv/hV/4S/8Bb74xS/y7LPP8jf/5t/k3//7f8/P//zPs7u7y1//63+dH/7hH+Y3f/M3ASkH/Nk/+2e5du0av/Vbv8WtW7f40R/9UYqi4B/9o3/0zZwKcluZNm0lN90pxyvX3uLx2zdkc1Vq6sdnI+tO75EXp7zRn3tf4rjIQvqcuDnhImN3CnFsyZVkLqudThtMXjMyTBrzySeEIEbF2WzJK9de5wO338+inZ2LbEOII1w2Bif5SiJ4HsgwFOiNrCCfiBqXi/SijUzPJNGpwnvars8nLG2h4ybiN/4+ZzoKZQyHV4/46ode5lO//p0YNGEYaBNpUkhUAiEVZUkbI433Y7BYFtJJFGNMpNOEbqVF1Kip06gsbOo8SsqJlaAuwvqe5N5NKuVlI7+pnXoiP8P0LJz1eB0w7nyb2pTJbZRyVA5BpoCAlI3lifmNB+/GbiaRY9r8psAzd1bkAHcas5l7JHCxVhlhUvSluF8XQ/KHUZARNaUiZXxgyueIEtnUz82BjbE9fmUaP1knIp/YCPsnDtPIF0p/G8Okxvpu+VLUgb7yVH2R2q9JSN90yzbnjLzPO99p5Decu90bn/sAavlux0Q4ZXwe+dApE8/3If+qtwGvAsUwCTXGGPOik+7ddPpxfA3j78YbpqdrmEIMde57eelmQDV9zuZ1Kolu33mtKp+a3OSu9JgAetDTIqem6/eZVM7G2IwxKT/7JLAliqJRC4+ndQOdc4TcFUJguV5zeHpGPavZ2d5mcE7EFJViNl+IUFwiUDsvvC4F1EbjlZRJnBfScgwBNzj66PhPj/8K33Hz4zxy+hAxyGbvvCBS2vkJWQrSzh6zMaPPaFsu6esRbdHaY4xPHSRy/3wq3+RSf14/R8uKuFkKJ5XCA9pIEDREMaoELYRX4Kxc8bVrr/FweIitsMXg5Pr6XkqmWkEMQeT6vU/BhCFEj/dq3ItiPK/xnAMTP47faQ4rxYh+W2uFFB8D3gfW64aqmlGWM2xRUM/mrFdLkbgw0rE29P0ocZAbD4hpL4ii8Sh5eSTyAIH5GxzfVEDy5//8nz/3/U/91E/xsz/7s3z2s5/lxo0b/It/8S/4uZ/7Ob7/+78fgH/5L/8lH/rQh/jsZz/Lpz71KX7xF3+RF198kf/8n/8zV69e5eMf/zj/8B/+Q/723/7b/L2/9/coy/fmCJiPKThIdckINy/d4pc/9lv8n2//RbRPsuQqogIELfyKjHponTInSeXkPTmfFRD8qI4XN1jSbHxmJkY5nzeNHAQkyH4jaRkzNqVH0uo4sWPg6zde5vnHX+D99x5FqdkIgWltE0yeJd/TUpwf+ANBzlgS0sK8D1r8RPJAJG3QeYkKUUhOOgUtcj1udL70qSyTN5WspJg3S6UN0UZe/MhLvPXILb7zVz6+IUKnJxhzE87UWko5lSAjs0LOyYWUgft8XYoQPdmpc3O3kWRc1DtnZZG0DcSETcUobP/U4l2maL2wFoO0xWZLAGJEF/DqU2+wCHOeuf3UyJEpkseRYerkeDCgy6u3YoLZ3w1+5tzfTIdKrbZhDFo3MkwFcUNrRo0biQa9ERoq6MuBordEt3kOOejYLI0xnm9eovKbqzy5UKS8epxvMuTC9BZk1E2NgUj+vJA6jcagIY6T4J2ZNhCMwpee6Aui27hr42dtnLfKc/UbBX1qfCwxPBC2nAtE86sf/PN8ku/y/mMGOF1PROwgettTuSoFY3GKqDaRmCQDnzvRhEfxLue4EcScv7IHT0ed+xpBLOFVJngnRFQpopLNXIQFPZHAWdPjIvzBI19jpRsef+FRopOx4pxDZTFDL/ypMUBTSngYztMN4mTuAsxmNYv5DIVwqpwPSf9lTmk0Q5TuHuf8RklEblWIEeUnXksu+8l6W8i4CuIiK+umdIQ4H/jypT+gY+AvHv/viLFI3jOBwXmMBqtVMuZMvAwFuYkhr4mS80nip5IDtdKa6Cctq3z92Sg0xEBwuXQWx3OM4zidfibdV6lUohU6iHbHoFt+69HP8/7T9/PRg4/hhoFmLaZ+1hbU9QxF9laSUSCUApPWaxlJRMFMdBoPDyYAm8nMGFgr8WMqk5BjTPfzbLkiREElfYiU1RznpaUfrSiqeUKBIk3b0PfD+P6ZKJvXA63/KyAkm4f3np//+Z9ntVrx3HPP8YUvfIFhGPjBH/zB8TUf/OAHefTRR/nMZz7Dpz71KT7zmc/wkY985FwJ59Of/jQ//uM/zgsvvMC3fdu3vetndV1H100s3dPTUyBnkZkcpAhl4D8890usZmt6BspQpog+EUa8AiX1VsmaU1DAxqTO/3SCslPdFiAm6E2ySVkRfR4Hm0FAyItBxHvS4pP3raxg6Qm5dp3g46Yc+C8f/U2CDkQbsDZtlMlUy/uADiKsiBIZ7Zizr/hgJrfRt5+DlSgEqJBRE72ZBU6Bikr1ylxD7fqOwfUoSP4T5we7StDjwcUjvvahV1ltrSmrCh2kqyA7dA5DN76HAqwCa6SLwhqVQCVZIETIx0+ZRr63SoKLnJkYrchcoUjSKwleZNOdcB+UmiTnM1LkvUj3Z95H3w+8+cjb/NtH/yOX1vv8+Bf/BxZ+gdWRuizpBtEVMMC8nkFwVKpne2uLsphhTEFlKxa1mDaW85lES0GCOMLmJj7mwemIY6ljQkUS/J/aur1K75PH6jhe1fiOzjhBCk1MLVoqbZ4pMN/49DxMInEKEPL7KpXah8e8a9wFx+AlXYC0pgqJWYKQjGxtXOgY7PDuR7oWbx1Rg7cBE5LcutpIDsbbFaevm/DJ5t1N0KRGFJEJ4R2v+cMArKxAO151OPfLZGdw/rODlnKfs44ylNPHbaBnU4YyzZ+QEhqVNxU1+bKkT3/H5Ye8qYfIquvofcRFGHzqHHOOznka72mbNev1ml4pVCHdHkTPVhWY1/Dm7TWrwvE/ffu/5nh+wl/84p/jyTuPC8FzGChK6SoS/RdxJi6SWSdKkjzvw6jFlMeHMRIQ4KexG5KCoTV61L4Q9281+tfIz6aAPndluWEQvocXyX2fbAhCVPjoeXPvJmf1iufe+AQ3zq4zuNxlKV5m+TF67xI6oMYEIJJvvRnX8qz+rWMAnRzTozmXlBmjSbY95I60vC/lpEHa1FMimbqcxnPSWlR71cCd7fu8+bFbPPXqU2hUEibUDH0HUXy7YlKoDjGt40oqAPLZMu+k3CqBeC7zykoxBSLG5JZ46SZzztP1A7PZXAItY4lRJcPWgRgFsSHxIq2VLjCtFIUVsvZZOBs5khswsqwn8Ru5m58/vumA5Mtf/jLPPfccbduytbXFv/23/5ZnnnmG559/nrIs2dvbO/f6q1evcvv2bQBu3759LhjJv8+/+0bHT//0T/P3//7ff5ffpAkMKAuf+/DzfOXxr/PQvas446go5EaEmCBQQ5Y2kygwJjEmRshculo0KnAuqyGhEzER+xKuglHn1yqQbFYpps0+RrRR5+CtfN5SL5bvPvfEF/mDR77GI/ev44wIEmWzOAUj2qCs1OJjqvOLCR7jRjatu5sbDyhl04CN4+BUJHTGyXsNCRXp+n6E3aWLw4yqliGTHJnW2aAjL3/gNd5+5CbGG1zlqNpafE9CwFo7LkDGiIfEhb1tFnWFNVoGtVYjkz2O/wvj+M7LtyKr3WYUQBQzpRSnRN46CFnXJPRZAtCpdOWRCetSINOqgd956su8svcWZ7R83b7NjePrlFYz84F1L0JtMQSqrsf1LaU+Y9/PMOVFgt6mnkU++OijXH74GrlfL6bPCW5I99HjgqOIirN7t6msxUdNc7aicZE7d2/RdR0qePa35uzt7lIUBScrIWhaJQ68RtsRmdBBsvOb27fpi55qKLm8ukjpS9F/UCTdC00uu+V7mp+x0kL000mEZSSmjk9axtO5PXwEQ6YF+PzxTijkG8UAUYGzMj6cdVRDuRG8v8vrH/h5fCC6UEwbmlzru3/yZhC/GQCoOIHMWYgtI3taR4yVklguybS64+36Nq1pqUzFjeOH0UH8lHTq3JGyR8SFQD9I507vUvdPEv4bvMdYzWJej6ipT/dX/tYntc98/oo7hye45EMUEtk5t1j3yRBv6DvcIJIEWhvKWc3+liVqxdp1vLV3wNuLuxzsHfLCh7/G+0/fj2rC2L2oU8syeQVVamwZNVqB0YQgQnhjUBKlrGBCkG4PuXkp+UmlWTeMxGXnpfyS+R4K4fKowRCDH4MHpRjRapCAbigcB/Mj7m4f8MXrv89D6+sUWqOUJasFj6ahVo0IAir1NKTRJCiGBESmsBDE3yvz4YyRJDQjvhnhych1LuJ6L6WPohS/Jd87Ot+B0vSAVh3a6NH7padnVax5/fG3+PwTX+CTv/+dFGU1ckxiDLhhYMRDx3UvonRaK6MEdSqqZE5KSkSzTL6YYJpUotGpVZkoaJlPIm7zek5ZluQyK8oISq0UVidMT4ubb+5iKssKpZagpnuiVTLvVJqqygqmf/jxTQckTz/9NM8//zwnJyf8m3/zb/ixH/sxfvVXf/WbfZtv6vjJn/xJfuInfmL8/vT0lEceeeRcvHB3/z6/9ZHfoS07oo5QxLQBTVoahU3GawmZiGTJ8SmLlIhSyLDjIqYY24dVes+owgOeNnkBjAL1bUSJsnkmYh6ZMJmjc4nEDxZH/MLHf5VIpClbnHYpipZ3d37qkIkx1RFjvr7chpYg/hzAJGgul1/iiJZMPj4qEa+8maB55xyrdcPYAYSQE89zbMJ47Upp1ouW3/3klwhGoOjjvTOu3q4ZO31QzOoZs7pCEdjdWrC1mFHazOkgQckBnyBJhRoJrRFpL54CwjEJHg/ZHESAK0Txb8lIFkgZSBkSPJ7rqrJQHl064ZXHXyeYQFM23Nu6x9VbFymtbAxizKfxZA8dAUb7uEVoA9p07O/vM18sxvGUo7W2WdGv12xfvMD95SFrH7m+vU+cLzg8PmSxtU2c1RycLfnyrVu0qyWXtiv64gKrrkI5z1def51bd+9htGGxswdKyJUzU1J0Da/u3+L/9e3/H5rFmq12zg9/5c/zvoPHWMwXFEiLsi3F36VrGkQ8zaQWUU1pC6q6Zr7YRivF8uyUtlmPmWD+Z6w9x59Q6V4YrZnPZ9I10PfSWhvDBBEzBT95Tk2kcVhtrXnxxtfIPmMfeflDbDdbaXylMRCEn5P9ZAbnkkiT1K8zomGMTUqSEkz3XcfZ6gzv0usYgcO0Bkwlz8yJKKuS2dYu617TOY+mxygJHowtqOt5GoByMS9ffp1//sT/g5PyjJ31Nv+XX/sxHjp5iOXylGq+Q1nPEnoqfIWua2nWK1FsDYGxi0xF5nXB5bibXIzz4M7h4XnEJAdU2thRmG0THS9sSjpCEDnxXPIgmdYp4W4d7R3TVh3BBL564+vc3z3gUrNL3gxHgnGQkoF0jSRTxjxGNPixzCpoZhglrAGl0dZilcLanm7oGZynLNTIZVBaiwBbQogy/y+3jutUPgohCGkzdf8d7Z0STCTowC994Nf5/lvfy264CErJWFQkxFfGY8jkbqawO6+tMU7rnSlK3NAlfoRw0sQTTQLISXclofUjqpPRY0Mm8Tg3SBABsrmn7VcpjTOBVbEmqshvfuq3+cjtj3NxvY9PRqXGWtEOco6cUCsfUMqPyHdG4CJKuIMqJE6MfIa10v1XlCVFWaaxmEpRWgioWpv0HIwgdkmIMCe72Tog73dGiUSALSxb27sbEhbyHHMZ99KVDauMP+T4pgOSsix58sknAfjEJz7B5z73Of7ZP/tn/OW//Jfp+57j4+NzKMmdO3e4dk1O5tq1a/zO7/zOufe7c+fO+LtvdFSVuG0+eOSN19mBz3/wS7x+9SYoydZjkSeRmibTxu6l1JTvKZ3WlkIToyY4kf6V8kXWIQnjwphbxFRgfAAygfJ7p0G6AWGGCNFPm6nAWCnjMJHf+MDnuLV3FxQ0VYsupeaZyxIjeSokJwudu4UEgfCpdeycPodK8uGAItl6s8FzyG3JkZHYKxlv6rKAVI6ZtCdiyOUf6QIhvc9Xn3mZO9fupc+NHO4ecvX25fF+pDNiXpdszSu2ZjVlIQuoC0EgZweDV/ioAHN+QUaCkWxuBwL/pqQntV0m5rzPHSPjX46bUF7YpYdeFtKgIm89cotbV+8C0FYdywtnLOY1RVFIF4j34/2IyU9HF9A5TQgOGwa2thZsb2+fy7oBtPYoEzk9O+WF124Tup74kKfSmtn2tkDDePzQs1MXXN2+yPZigSoqgf6IoCNFWeBdYLlc4pyjKCv6uoah57evf5kXd1+hL3uYwRNbH2Tx5iV2lCUOLafLJbPFLt57Do/u4Z3Ue602YnJWFMwW22ztBsqy5vR0zd07t1gtT6d7h6KoZ7JYKblu3IDvO2Z1xbVrDzGbz2nXa+7du40fHNbqCSpWCpTGeY/RmsJabGFQaD77id/l3z/+S7J4R8VffP2H+N7XPolP+j+yqShmW7vigzP0rFYraX12nkDA2AKtRMlye3ubeWWpq4Kz5Sk3b97C9S7pP+gRFSUHVunZyviF2fYenYYhWoYgmfz1rQ5LR1lV2NVaNmEr7seff/gFvrjzFVBQ2YrPXf0yP3R0TZx3UiapUknOJx6GT1B5YCKnK9KmTpzG0OZ6kpcUMhFfSiPBWLQtiE5MEFVqqQ/G4kyB85G6nlPXlSgXr1f40KKIlBaOdg/pSimLv3X5Jq9ee4OLdz+S1oK8uaopqUqdi8I/iBtnn7RSvCAxIZD+PmPTGmM1RVnR9b2gLMagfACvUplECOExCXplsnUIEVvIepvtJopSOGH3dw7GgO31/bf4neu/y5976wcobEGIZkQvSGq3ghrKz7Iei2h9SFKklKB1hbXjtcttmEoyIcbknq1EiTgFHCYjBxk1UUaE8mwhaLfOmjSCnDkf6HVgXTSg4O7F+3z+Q1/gB7/wp9BFgR96lBf+iHS+5O6vMKqmjt1r+fsQ0FG4ICHGMRARhdyC+WwhaFWI9F0rKHZhxZ077S1BqVE3B6UIfrJByRwiuScC8c8X2+m1MgbYeG0M/5VKNg8eIQS6ruMTn/gERVHwS7/0S/zIj/wIAC+99BJvvPEGzz33HADPPfccP/VTP8Xdu3e5cuUKAP/pP/0ndnZ2eOaZZ/5XnoHi1pU7/Oq3fxZnpZgXlBfb5vR72cvT5gnk2rNKMP45eDfBk3bUJoDsDzFu1HFqm8odOxOrOm/qjIurfOTUniWkx4kA+8reW3z2iS8wGNGOWJctvfEpapIN3xiT3lvqe+Ng13piiStGtniE0VU1ncBGNM/G9csCo0KA1Bvvk9lVDEFqiV7IpApBhqwp8EEGvwLaRcdnvvdzY0tsVJGjSyfwkgxGlUijxEhdVhRWSFJdn4zWnIgS+Y1Sk9Q5J1KU3FBZzMa1OfVej/deSzCltBF9gLEWnHthpu6qTXi+rzo+/8zzuELGT1/0HO4fYWqNjjo5aUpmYoxhGAQCZ1YSUiufNXDv3l3efPMNdnb3mc1qZrW4thZljYqOr791k6PjM7Tz3D08Zmtvi+0rV2huvc3QKXAd1y/uEZXFRzhZdZQDDK7ldLmi633aUFPxKgy4wXNWr/jqI6/QF32+fbz2yBt88sXvoOt78IGAltq5Fl8RZUJy+zVkZ+eiKNKGKF0Iu/sXKcqC0+MjjFJ4NNGIWmtGGFCKsqoEwleyiLWDyGmrEFA+z7us+xHG8kPUihA0mMhvP/l73C+Oc3zArz3yO7zvvzxCGKTEESMsFgvsYpchRnxU9In4nEuQwQeBsBOfwcVcvkytiFqN9dVNwt0oyZ7mqjIGF+fcOoNLO4Yb+yVfu7nkqK24MpcNpp7VkGrpVPDSla+PAXBnO166/nW+7/XvxrYqdaYFhq7DGEPb9oj+T9rUrAjbDYNLZUsJXEwGYDfWq82sPm8K2mhcDFhtQXkyT04pRUAJda4o0DFSouhdL4JxMRmDFo6D3cNx/LjC8bkP/S4fe+lD2NxxQ+qaiHIPtdFj27hSSn6e11El5zchyEKOdoPYG0i2blKQEURa3mz4WvkwbvTZDiTbBeS/Dd7hBkduLb2zfS+vCkQi/9+nf4Hvu/NJ9sJeaut1qfRkxsRt6N34O+czYdSP+0AInqHfEDPzG2KTCEqEzWuVwQeb6EHJaiEnPGn8GZPKfGkN8jESB7EICXuepmwBGOzAF5/+Ih985QM8fO+62A2EQtaRFIDa1GHkkwSDU31CpeT9s+GhMlJ+rWcz6nou3lNAXc+xRUWIgdlsMbZGR1KAaCxWTSJ+8t5+0lZKe1qW1pB9VTxwlFZ4J1IA0q7sOTi4x3s5vqmA5Cd/8if5oR/6IR599FHOzs74uZ/7OX7lV36FX/iFX2B3d5e/+lf/Kj/xEz/BhQsX2NnZ4W/8jb/Bc889x6c+9SkA/syf+TM888wz/JW/8lf4J//kn3D79m3+zt/5O/y1v/bX3hUB+aMPRVf1/Ifv+2WWi0l8KuiI0y6VYBLHgqREulEbHgMUNia79FGi4/nNOk8IkkrrqGWQSiLCmcutT5Lh5NprnnhEobNkPQelNEPh+O33/y5vXHp7XNCCDpyVy1QDlPONqVYHjJmDnK5s+IUxeDeMjq3y/hkuV4w6JmEDbkxZJ2xoIYQsFpTLJyIxLvcvC/AkETVjiErxpY99maMLJxuIBBzsHU7BSAoFZrNaFk+fGecQMMkC3BB9HMlvkNpds45BmBa4Cd2agrxxgUDUNhVZoEj2maxEqFOeJrVPuUevXr3DVx97ZXNYcbB1xLps2ekKCmvRqsPHrILqpP5bKmylWCbo1qjA3lbF9s58zOpkXCmGtqEy4AdHSE63x6dnXKwLmpMzjs46lqsG7yNN37DuHUOEuG44OTrkdLmWWrC1BO/oug6tPBdu7HPv8VPeuv72ufv/yo3XOOuWaJ/8VUJguVoxn89TUNVTV2JidrpcEV3LwnlKH4lJ0EsjXUpbiy1sYVk2LWVVEVyPdz0koShiRKOls0lp3NCPY99YgzbFBIcjuhyyMUgGfWf/Lrcv3ZvOX8Gdy/e4tXefK/cvTUrK6flrpQkqZ9MKjRn5UOPYiYEQjDz7jJImtHKzXXOaHxktlc2vGTQ+KvYXBRf3Km4frGldlG40BNI3WkzGurLna1dfPjd+Xr70Cm/v3OLxo4ckc06QuHCykmR6kLWg1BbnBC1RhUkbX3qvNMA3EbcR6kvfGK0Jg09EXIOOubwcKbwnOvFMOT1ccRq8rGlKTNqOTx1nszUnO+fn71ce+RpvX7nN4+uHE6IY0LYQZAEhVOosIabYuJ+y5eYSmNIaHXTiyLix0yTGVGYOU1kPpYX74h0ey/muvDiWvHIC6bwjoDDBcWtxe+qAVnB76y6/ePXX+NNf+T5cL+W9nGyOujBhWq9VQqJjcow3RmOKUtCnEAhxwPs+JYmi/xESYoK2aBOxcUIOUButsCrvQ2qUVVDIuMwlwlW1ImQ3QAVvXnmbL7z/C+y8/ScwvWZALBKqqkKriuwADRm5MmhL6ni0gtRYO4lZFuKWbG0h31uLNoX4oNmE1AwDfd+mrglQCTES4Tif+ElZ1DCOyKVzSYQxBHwKUMSk0o/P+/T4kPdyfFMByd27d/nRH/1Rbt26xe7uLh/96Ef5hV/4Bf70n/7TAPzTf/pP0VrzIz/yI+eE0fJhjOHf/bt/x4//+I/z3HPPsVgs+LEf+zH+wT/4B9/MaYyHUornn32Brz7+yrmfBx0YtJ/65n2U+mIM6JjbxRDZXJURjDjWBLMsMBubVxaM0amrI8P32exOGcnOdRKTIkXRxk710EgudySWNXDr4gG/9fTnCPo8NfakXmb7PYbB0cdhvOZ8vvmeSt1PJpJN9s9jtYg8hxIMpxUm6oQqTJ1BWuvUxjt1xaRYG62mOntIEa9K13a2v+Qrz36NoRjGc48qcrR/ksSAsvCPlN5QSqBClRnvGZZNG0a69/Kf79TyyLyWfC/h3DpKZpQba9FRMtPpWZLuaKBMmRpa8Znv+F38A/f/cOuYpm7Y7XeEo2MNOkireAgKawLWBMrSotYDhVFc2N9jsb1DVRbn3msYBg7u3WfVe4a2RTUNqrnKbFYS2pbXbt7n6PiEsixoBlitzpLgmMMYS+9Cen6KYegZuh7nHRq4c9Tywkfe4Gjn+NxnHl04Zrm7ZPtsZxwP3ru0iMdkX15jcwdACpS1ESg5pLIUMYgIVVnQtC3aNeCH5Bws48EF6QhbnZ1ydnI8dgVYa9DWokxB9F4y69y5orTMzyHwyvXXaOv23Pk3s46bj9/h4ZNrKTBPkDtJvl6l0mUqwUUfk0haGPlRmSs2+jDljS8jDkwZ/Bg8IsGM0R6tIk3n6NpBWtEjSYF3A03VmsP5Mbe375w7//uLQ7528WUeefMqdnPsjTA3yTvJY4e0eMdACHl9Su2oeYSn68zvkzN1FY1wm/wwZuEx+JQwBWwUH51SK5zR9F3H0Pf44NDasGzgcN5wvH167vyDDvzGRz/L+17/S+OcI3UY5pKFV1m1N0znqaZZpki2BiGAR0prYzlVEiDnBfXLvKSul/bhfI054Mpl4+xLJvOqw3cdSsHN+vbG/YHWdnzm4S/wsVef5Uq4lBRHJSUhr8dR+DDq/AIi36dasHTxaJS2YmgXA1o7QpBnotBYowg2v9+kDB4jaGOxRYH1YfQWEw5UFtqUdfDQnr//UUc+/7Ev8m1/8DEu3744oiGrlfCztrd3MMYSVeoyNRYTwjSWtU7WARL8Z4XjXMoeg7K8nwQvIoVDn2gBCdcK0mnlBpeCkinQiCkoynxL4d0wJmMmuUcrFFX93gCHbyog+Rf/4l/8ob+v65qf+Zmf4Wd+5me+4Wsee+wx/sN/+A/fzMd+w+Pupft89tu/cP6HEbwKOOMFRsyZf5ZbjyK6ZVLJJTONxevCjwRMyPl36vpIm6C1ZlwIM897bA9MEzVvfmZTvVNeKSUiLfoRQQd+8SO/ytlsifUGZ/y4b67ma7GNTxt69g3YVOvMwY3WnjikjTgtwmOpR0+EQuLU+SNBV8pAErlNJ26ANUltM2WTIW1MQmCbOlWiirz6vje4ff0OdVPRzjpZk6Jitb1iKBxFLPDeiZx60g4YJflllU2bl6VPvicS6IWR8Jg7aUI6T+lgmUKMvMGMr0W+FZ+ULLUsMGqIATYMsW5duM/XbrzK7mqbk60zub6gOdw6Yl01wiHKNfS00RlrBBWLmhArqjJSWs21a1ep6/r8cIyRtj3l7r0Dbq8dzXKJXq85fetV9h+/xmuvnHLn3n2GvmO5krLIer1itVoxqyuq2ULO3QeGvk/dVXGUYz7qj/jijS+xaOc0VYs3HjtYooq8/uibXHr+0lgu06keLHBqwPnALGmxhLxZksuSYItqHDNFakFv1ytpRTZTRlwYw6woyLqRs7qitFZcUX3AWpWkuyEOAsuHvKgVkdcffhMVNNYZnPVop9FBcfOxO+ivFhgH3rlkCaGSnpROHjppzCW0RMXE7NfTQqy0GVGVsYtO5XJsTKRBWSNCzCT0gUvzwOULNVcfus7x+k0Ojk4wWoJ0N8icMMbwlUsvoaKicAWDHbDeMOtnfOGR53nuS59gVy2IMdA0LSrxoFxyPJYSjU+lCyGG5kX+3BjPyUMKyrL3VJ6PQnKPkDZv6ejJbasZUpdxUNazURdC+Qa37TjdPUN7LYmRgt31Dl975BVuX77LlbuXplbS9Om5ywRSmUylsrYI6KQVNAePCUVOVyPdGbJ2ei9JY+4mETuE/KxTW68xFKWG1DmnlXj1xFigQ6C3jtP52eR1E2Grn/Papbf4+iOv89DrD6d1VG2sFSnJUiF1v01liLyO5C7GwgjXymmVnp0jl9zjuC7I+j6iblpjioKqmlFVNYMb6NqWoR+EvO/D+DyDipyUZ5s5E8ZplrMVv/6dn+Ev/S//Pb6Pac1S6b5lITc/7g1CLjdp7YcYU9COIoQpcYsh4hTTOAyB4Bz90NN3HZnELIiRjJtR1iI9V1SWjDDjNUvwY1OZJ80/La3hFy78VyK1/m/peP7ZFyiHio+/+GE+/7HnAdhZbicdj5ii80lqPaJTZBrTwistfCJuswGC5tJIipazMBgkImWKsN3/j7w/e7bkytI7sd/e26cz3HvjRgQCCAwJIJHzUJmVWcVKsovGruLcZLNpFKl+oMzUar3I9Kb/ol9lpj9Bb3qQWXebmmKzSRZZIytZOVUOyAEJIAEEYrzTmdx9D3pYa2/3G0BmgZJRRlh7ZiBunHuOH3ffe6+91re+9S0/wZ/y/lBURY0B6qnMMp/T6mZqjOH1uz/jp8/8nL/xo7/Kn778bR4ePWF9WNH6hqvVlda9K0xtISU7pW10c83XkhGPMBExJAq1E9SNRiISQc6FymLZjED6cQis3wusqVUA+foTYvB2657Xv/BTvvGHv8Gff/mHHBY9Nlg+8/prnJ2esz85sDzvsMZwvF6zXIjyrPeBkVDOKcS4iclvMLiqVvsZVYDI4ceoLQayUFomjuk4IY6ltUaaUCUVvzN1iYJSSkTvIAWSS/zpF7/Dy49e5KWHz/Pf/9Y/xyTDl976HI9OHnOxuhIir88wcVbftfhk2O09fXjM0AfMoiXsLwXutDNVwpTo9zseXmy4v+05DAM1CdMmzjaXvHPvPuPhQN/31N2C46Oa2la0pqXtluzGyObqUprlIa0H6rohBIHAz+9cclgd+Mb3/hJ//OU/ZbPc8Kmff5LkEm++9jZf/9ZXSWnEYLGuFsQgE7zVIDZNQ0BSfX2/xyAVTwZD2y5IKbDv91SqHyOpCjE8eM9R09DVNWBwTgbibLdlM4ySIq0lauwPPSl4LRWVNOPj2+ecnZ7zO//v/4x/9Xd+H18FmrHh7/zr3+WHn/0Jl7euOLl/TN200oLAgLOSP6+qCh8UETRGmzDq+rM5/22Lpohwi+Kk0qsoCpjSE0Q6HRscI3ePA4Seq8sLanPgqL6C1IKRaD0pMfq7d77Plx9+CZsM//7ut1gOS/7zn/w2333++zy6+YTjxzcY+p5HD+6R0tQMcRwlBdB1R5hG7iNog0PpH5TL9HOZfa66M1LaDuowmhI0lDStyamtmIENxkH6IC2WC3UopcPscOvAYux49Z1X+c4nvksi8dd+8Nu8efNNvvm57/B3Hv6uBj5G1CUTHHrRJYozsmJVZa0SbZpYNvmJ71J0MJKkEgoHQStJlqt1SeNkJCYHc0HPbZ0D66gbh0uJs/VDxtrz9fe+wree/y7BRG7vbvNX3/0Gf/ryt/nag69wvD8qSI41SYin2iSzqqRzeIqCfOQqxlwFWUyqMSLpYAWZABi8pGR8UNmhjPYm8OPA1dUFu+2GTFtO6kCaSgI0Yy1D9GyPttzanHKoe7bdjvXlms//4DO89dpbvPHiz3nljZcKEkFKxXHIui3ZCUpWArkQPENS1NFMlAJBcTI6ruh5RgsNmBQk5WotrmlF2brKBQamIIuyX6TieGRtkkW3ELQewxiEo5Ob0n6U42PtkIQ68L/5Z3+P/8d/8T+U1/7Gn/42f/Rr/55YJ5q6FnEsY0uVi3jtMhGyp1+OpKWhJqnmhqIQKN9AkQpro0bI2RGYFqU1uVRVc9wZekyTM5JIXDVbvvnCd/knf/r32NcH/sVn/y0keO3Ryzx/8SzbZi8IgsmRQiznFwMsmhFG9S6mhoL5WnWC6eaTS/2C1v2Dcll0sRkgaaXOOI7kipun51GevMnA+8/f55mHt/m173yRb/7WtwFYb1Z8409+k3/1O/+W3dGeG4+PaOpa+CNP5e5J10sKTZJNX0iAqURWow/iQEXl86CQds7RKpJjkpC6Su+SpF0+YygRgoxlxNqKRzce0zvPf/VHf5s//syf6XMwfPa913jlyYs8PHosYlcxIySTsQ8xMXqDqwWBGcbAmz9/i5vP3GR5464+LSndvri44Pzqit1OJZ9dza1bp6zXHe+8e09LHS1d7VgvTlhWC/buEtt0nNQdfjhwOOxL6W3TdmwPPYyGn37h5/z2v/srtFVX0n6n/gZ/+bu/xf/46/8T42LEbcDYROVkuYtS5BTJWc0zG2PZXF3QNi3GOpqmxlnL/jBy2O84vXlT4GhraZyjJWHHga5qdK4Y+nHg/sUFT7ZbQoh0bVf0MWpVyi2dUTFc3tzw3INn+dz3P82/+tt/UMbga29+mfNnLrk4veD0wbqkImOMEMcyHllUqwSo5Ck9S3gowiaVJ6OmT7OSkH6jOjFGESLiyLLymLjl/NEO019iwgFrO7EDYgDY2C2P28f8kx/8I/6XV/+1rFUTeenxCzz3+Bm+9fL3+OTj1wh+pG071kfHVM4SvGe330mlSD1p9FjlXMQwweHFOJX/MrvRnEbUfL1zzD+hnVN05xGOxnazYa/+6Pq45uL0kl//6a+xTsd896XvkUzCu8A//JO/xx986o95fHLGc5fPlO9NGPzoJQLXaxDHA033qTRBSqpSLfYwt52QTrjC9RpSX9CWGKOUkc40m0yGO1MOFEU72FpbWoxu1xtW45L/8qd/i5/ffJvHiydsmx3/+S9+m39hf483Tt/iq4cvaQATYExYq1yHEPFxr85CLPeTnT0U+UERHgFbcx+ZSRsq2GxgMjqebZfH1FbHSJHKnNYy8nNVwaHd8423v84vbrzLd5//Idv1jhfefo7X3nyFH3zyde7cu027FRJq8mPh4+T00LyqMFeTlg7amlorfaGUR0N5XcXgkDSxrCNTyoRz2smW75gaCE5cFUvT1Byt11pSnNju9/TDSAqBxeqX91WfHx9rh+R3v/PbtFXL+89IuebRZs0X3vgM9555SKzEIbE2L9ApIsyTSTw9IE0LQiC0idCaiZm1dVNKRptnOZP0sxOsH0mgXvw0SaTsKeTFaQwPVg/5+ptf5tVHL/Lff+V/ZqhGXLK88uglvnjvs/zpy98WGyIfxw9eFnHOg+pR+Cg5ZYGqnmYjLBAPmdSbhYystVRpcmIy4pJh2Ay9ZtJXsd16CzjDbr3nG3/wdS5vbETUysDJxTG3n9zi8z/6rKA89jmOj9bFa88OktWNyRjJa2ZnoVIDJMjWpHCYIcpR5YnjzFgboyVp+drm0W8urSwcBLmdED2X9RVfe/3LnD6+wflCcrgmGe6c3+b21S1ef/mnREXQaq3Hl26ikX6MLNc3WKxvEOM5xsDVfuTsckd3IjA2/sBuM/LevSfsdz1+N9B0C+pGBKnuPH+bZ95/zGY/sL04E9n76AkpUbULTN1hXMXRakFbV1ImGgOuaeiMY9+ccdwf85s/+Rrf/rU/L1FbFzs+ff5pvvKjX/Dw1iNun5+qcXEKryvxd1bJkJGzcfRUlcMZ2G527PcHYfIHz3azkfJAA8frFbcWC1y9LHPv8WbLO2eP2R4GIOGsEXTLQN12xHEkjmNGzAlVJNSBr/zgSxyHo5l7AOtxxW/8+NfYdFtinVG0gBl6jKvJFTLTqDJtJpnzQN4qdRFltUh9SeaEOmfWls9K5Z2kFysj94GFyk4qxVbLpd8+eYu//PZv8dJ7L+CeV0ffRAZ6vvGT3+DffOFP2LcDZhB0c9EtqJyUrSYM+/1ON1vtu+QUGUgzRkRiigxUqGWqtjEFcTL5f9ZCtBiblPQuG6lV5C74gEc2Yxcsvl3wWz/7HI9PLsrTvFxf8fzVXb7+k19j2+4IuYmh2k/rKsCRnbncDXxK6YhtnAcMmacXledjCy/K0zUNXVNrWjVpxYdG7hp0CR9QWkgkQtbf5kl7zl9689d59sltbm1Pebx8wmAHzsMlf/t7f50/e/7b7IYBG3MBQlS7nVMncs0lkNGATbLDqaDHBg0qnSWoBv2irbFVBbtA8KaIx6Hq0ZZMqp6GMHeXlgoUj2mkKuY33vsKTaz587uv42vP2a1z/uof/hVOhhMuTq+4exDp9kFF7iBphZIr69no+Z11BP1Cq//OispSqVQL78SKVogosWr6NginbBwHYsip3oqqzmJqmpJy0s7EWGiblrZpaFvRODEYmm7B7nBgv91+5Oa5H2uH5GXzAt/51A8YG4mYPvngZZ4Jt/n6z3+N5JCa61q5AwWymsGeepRcoLE6YRNj8oWzkRcP6OYdJCrJhkDIZamgGDEhDgySQghe8+UKk0WTuPPwNnWq2DUH3j4V/RTnK1598BKfe/c1Xr/zU0LK2gXyxxpb0hMFcU85tTTzGNKU0y1hozooySgXxNii65RAhN7UQWlT9vzFmdEAB0wmnBqSi3zxu5+nCo43X/sFQUuub5wd0+wqvvj9z/Lw5kMWbUvXthNCEZL0X0meTCA2JpXvywJRuXwwl68BQoLMTgiT55+NIvqac1Xx8q2Dw+CL0ZHxESN959Ft6qFmXx04X1/I55Phme0NXnrwAmfZQOs5s35AjImj1ZL1sqXiQF1JlHQYPI8ePOHOc7fw+x5jDrz79iMur3Z0iyX73hPGARYtu9FQOcftmzfxjy9I40DtLMbVWFNTN5HtIPnt1foY1w/sDj2dczRNix1G8Of81re/Tuta+qonajlw2sPlgwt+7cmXeLR6KM/ZIukUY1mtpaGZ03yvcJokF9x2raTUtOrj7OwJbSus/t12z6rr+MSdZ7i9XoM1ROPwxnGx2/Dzhw8YxgHnpBrD2Yqm7VT1cerYm7kMAM88eYbTJzc52H0ZnwT4IfLC28/z4MYjUnKEyKQUHHyZHyXOyJMiI35Zu2e2iaJlmBlyzo4wSZVEFUVAEUBQ9VoVAatr0bywmroyxlBT8bvv/jWMNSzMUuaXjcQlrN0Rv/uTv8a+GVnV0mcpxFDKKI2iG/mmvff6u1hQuey9TbeYUVv9WJTNvXLyXJxKE+clm5GrpKJkrmqwTrgD4rQ5Xty+zCcvPo03Py4nvlhfYF3Fq++/zMbsMFWlZbdG9CzqptxD3mCNIgTCXUgqTigbWpUq/DgWqQDQtg3Giq5MJnmqI5Y5FlmQLCgaUNI4OQBMEEbL1974KmZwnF7egGdgtCPvtO/xwvt3+c0ff53B9LSx0UBSDKizDtuKBIGkaLKui/ClnLNaqquijSGnOkJRwg3RF7s5aV3loE72iLZplbhbXExASqVTFE7K0XbNp9/9JJduSxUdQxV5cPcRo+l5+RcvkWqxm3iUVBrI4m2FtKrlx9Lew+AyWqMaJHnOJ7RKLBdEaOuVpjYsupbBC4LsgzT2SyZ3C5fy7YKMOEldWmtVw6QWCYAE+8MBUmS1OqKpG27dvsNHOT7WDklT17zx0puFDPrpx69yygmfPH+Z7XJPt1gUaCqEyDAMDOOsGkTnR+kbYaayq2TAWEf1gdxXHhRhR2dmvpxnqpWXTpMi3lMWkL4xATY6Iol92/PO6T0AXLS8eP95bG/40pufJQ6BYBSVMajUecIQC4wpIIwteUHJ8dli842JBdnJZbEpyblCmsi683xiQhelmRk2Mj1X5Yl7jRit5cnNc4KT6PPk/ITGN9QXNau44PhIUjbzHidJoU9jcvlvFivKCIY2+cspLr1+C1glFacSZeVoZnJIcjmowTB4f80RzUbPBkPrWxkXB5erqzz0nG5P6ZqWrzz8ElWshO9SxOmEpd/oAkxJNDucLuyxP3B59piwDSxOFozRstnt2O/3mKrGpMRWy3t3e4+PhrpqGBUxCqbCNRUueeIwYGNiP0gZZGSkazpsVdOailuHWxzGHckmDm5PVDGnjgU1NdU+8tzuDqPxmtqT51TVjUY9YjyNeHZYY6nrFs8404ewtE1VNobl+ohzD4+enDPGyOGwF97DOJCiOH7OaGmj1TSIOvoowpQyMddbnnl8k4ggKfMgYb8/4Mea1XZJMAFTGbrlkqZuGQfpAEui8Eam5TlJjOVuxIXAqmM/dbucPpPVJQtSksUPDYxDj4mTsm3+tPee5x8/x2q1gsbQxkZQRRPpqx5rLU1sqA8dyY40dcU4jsJz0hx8TpsZrfhIusZyzxfZhK+Znw/50UgjueBxqS33hJkI7s5ZUqqp25Zx2JfVbL3j0+9+GudqTjenGK2dPV9cYCpDZWuOwpHC+QlrAikFRW818lfEODvvEnFYYgQbmXUC1g7AfY+1jsF7fITDYcCaXbELBfuZp6uzY2lNSUVk/Y/PnL9G13fEGLm9vQXA6DwPjx+KQ4TF2VqVSOUaY4g4oyqmVkiteaNPQi7EKm8icy9QZykpapuStNxw1SQrUGCQbDWNpe0WuKri0Pf4cfxAtU+Inq/f/wpd6njl8SdwUVKLD597xFiNhIOnSrUGoaIfVLetohyupF2bpqZtpLQXpp4/rqpp25Zc3YQG0lmYLXNAUhgwVUvjhA8k6XsvDqMf8OMoDrVRxWYjTfNqp8KKiwXWWra7LdvdFqJwEZeLJS+++Dwf5fhYOyS7es/bN98jmshyXPDa/hVW1RLbG/w49SQAwMqizX1YStmcGitLIkX18sukmizBFJdTBlYmp8J5Rr1rFPIz0ggpp3MEzUglcs/+yVWz4cHJYwCOd0ecXtwgxMQn7r+oBlVr/tWAFaGzfG1RnQ6FFI0xkmbIQnDKg8mOUSHgAl43hgIhqtZH+oAFnAxb/p55yeXZ6TnBRWwwnFweUfkKExOn6YSua+S5p4T3eTMwGCsI1rwEeioBBqz0EyqqiHHqXTE9w8mhycjuNEb6eMIk3uOc1cojKWsOSVAnUxkuVxsAal+xPiyx1nE0iA7BaGYqjxp117XFGk8/GoxxijIYzjdbfv7m23SLE144OZF0zHYPKXF8dIOIZXN5TlU5rjYHQpycqWQcVb2QVIKFupbqktFHmq7Dec/+cGC1ashKut2iw9U1Yz0STcJEQxc7alez7w9UpsabQErSit0R2G4uCd7T1G1BBTK3Z7U6YhxH+v5A2IsaacwIAvD4ySMe6zxzRjrA5sZrpdrAzPkP2dm1k/MuMGThCVR1TbVy07JjSoG6mDAV1G3F0VFH8AbrFqTdfrYOsiOrr6SMDKpDZKXXUXnN5NLbiXOUydS5s2w+p5RORmLyWDshkUJq97hYkbqEqyva0EofERvpq6FE9taKeN6h7xm2O+q6Yb1aM46eumpU3CoqGTBr3QSt8KI8x2k9zia42q/KOXoVRywQqpnS08ITcoR2pN/vFBE2mGT5xPGnsCewe3dHHWp85TlfXJCcwWbp8xhJyZJKRcnkPJUgZ27jrCUihQPei4R5QsjDh36YCg7UmhThSAV2RfFUA7wkEuWi4AohSDo2l/K28TaxknTQM4ebontiPQ+PH2Mr6dTbKLIlKB2McZAKJDNxqTCGOIrNzSkiCXhUHIwgPY6ynH0uVsiobXk2Vp1vSQ3vdxu6xYos9ghT4Jf0/j7x8EVGHzg5O+Fod8S+OfD45hnDkSdsgzgfVgIf10pjvKaR16KSRhfdQsQDa3FUhOcDddNMRQJ57GZ2M6fQuvaIxWrJbrNhc3XJYrFkfXSMMZb+sGe33QgCqjITzjnapmW5knvruiUXlxdcnJ1xOOwZ+z377RUnN065vLjgoxwfa4fk7cU7PFo9AQPP7u7wif4T1JXjsEnYkBjcgZGJ0OOs5Wi5wDhHPwxKFFRjbBX+T7LxhxhLCmYei6SYG7KbAuHndIDRUkwpZfOCuCRwrlanYNRcbl6GkbeeebcozL7y/kviHRuoggxNRFJI0eTFI3DivNkXM8dKNk4VMDOT7Lz3QT1mQ4hZ6j4TRVVfBaOXnLVXKIZrHpnlyCulxNANbI43JJPoDh1HmyNMgkUrlReSF3fa4VK795rpWQq5zZao0ZbW3BMm40PAhEkoTRM7ErFpB0yXhA2eknQ8xcvVj96LlUuiRGuNBadpG22qdXAHNgsR1jvZHmODFdVXcr5ZNtWcY5Zn4Bi9J6ZGOAaaW40Bmqbj0ZMdbXPGk8fn1HWFczW1axm8p21qxr7n/NEFmBqvqo4pBVbdghRHxqGnrmvp+GkFdm27BTF66rYFLwqpVV1JSXA7Em3EBks1aCVSTBgCueQ7O6UU52Ei2qHziDzeGmFlpzYbPbI7aqRUNujcc3UFKacjor4nkxvRn9ULL7luq0J+ooEz90hyjtoCuKpkU4yxsok3Hrub8DudljNEL1071zV4MiHNLpkcpOj9tOXriXI6QjgfpiROio6GUe0eJK1TjTUuOYIN9JWIxFkzKSo33RIXPOPo6Yee7eaK9fpIqmqCJzFpenitBnwK/yn2aIrDkzokll0/KpKgzyGjR9lBiYHgR/zQ45WT5YNn7LfUTQ1j5HR3g327Z9NuOLieo2oB1hKMqmCnnGrR6yhpCiiIqlENIb2WunKK9E7BX2UlEPB+wCTouqaMnEigI7wdpJ1Hnnop5dSdyhSgjDoTqauK28NNluOCTbPlfHXO0PR0Q1c2/6CpGbHvEIzFqBJ1JsoDhVck1UWWJisaBymSqGpPHKTxXkZrnbUEI2qnCWkBIH8C/WEPmTyqlUPSZVd+9l7J1FS8+uAVHtx4iK8Cj14+59a9m8Sg31GJM5LVWjOqba0gMav1ESHKs1it14TRi2KsEtqN1b0gRpw1JaXaLdd03ZKh3/Pk8IDL8zMuzs842e84Oj6m6xasV89K6sdahsNe79vRtAv2+x2PHr7Po8cPuby4YBxGYgxcXSWuLi/47o9/+iHz+IPHx9oh+fnybc4WF5Dg5pMT3JuRB+f32Ww34oQUmWCrMJNjuVxTVzW77RX73U7yX1VFVUlDLutkAUAieskRuqqmqWuquiHGyDD0FLlcsqodOtFMiWqKOFNMZdLk8reMQvzs7pvlfj71/qv6Uzaps3yySWBdQUpyGdmE6GS9kzRLwyRSXihaw2+iXGfM50kJEOEio9LxU/v47JJQ4MrcVC8vhO3Rnt1KejAs9gvWlysqa1kuurLhJRUUa5pWOkqqpL2PQbota9pF+CQWCAQv0ZOr5dkHLRGMiijk9FGGDg3yrEeFFbMyblVVHFULhlHy85XyJg6HA4c4YKzl/PiqjMHNzSkxJinDrUX63XvtlGsyUuCpmwpbLbAqj6wuKnsPf/a9t7Caa90feuq6I1IzeHmm1ljuPzzjsuu4cbTm6uqSECJXmx3ePuLGyVrQqzjf/CvVmOgUkk0sFgIFbzbn+HogmYSLjmqoClom6pBKyA4eUl4XmZiYZ5PMyXEcixBSSpG2aVktV5yPF0Asc1iIxalMV4l4hafiVCApl13HGEQHIkadqlbE8WRayRyM1zdemyIpekbx5Em9qNzClDcviqtpqqjJW3ghfcYpqLiG/GUQhenzpVx/FvVbvd4IyheLpWQ4pohTR9UawzJ2uOjwziunJzL12XR0XYszC7a7HWBYLjVqTo5UVYUwnyvBSrlsyafOHlC2I3q1lXOEcMh4g2zUWtIcYyJ4L+mIFHF1jVPiobWG3dUD2gZSGLi5vcl7p/dIJB4tHrKOLxF9KGJrT6e/QgjkvtC5wtA6LaM2UFVC/jVE/EzjQypMMklfUbqUOSLqt+r6zjee+6QABdVKKU79xlLixvaE9bBi0265bK+46DYs/UKI8YqO51RPTuNKg7hE0r9lDk9zIFcy5sAkRNR5tIxjwNhRnjMWbCW6TokSjLmqASP9bqa+MFH7zMj8qhtXvu+zDz/Dn3zmTwF455X3+OI3P1Oc4aZuWK9XtG3LOPSMo8eYRNt2LBcdfvQcxoF9DBwfn7BcLqnrzGGxVHVLf9gRQ6BpO+q2gxSpmpoQRh49eI/Li3N2uy3DOLDZXFJVFTdv3uL05m2Wq7WmvYRLF6Jnfzjj6uKcsyePuby6EOG9ID11Qgjstlt+/sb/ChyS947fZ98ecNFy+t4R+3c3kucKQSLtTMaxIttcxYpLf1E81pgJYdXEVM55NTGoWkoXRqJG4sELMTHn3Y1OWIstk8Zmd95kfkqOttA0h/w6Gcubz/1CbibBK/dfmtADsg2ylDSHyYZWGPSkqZqAYkjz57LDodFWYjLg5JSLRrFQHI4Y0kxbIE1/z1CRcp/Wslvu2C0EPu/2LUfbFctFS1PLpun9CDEqJyXnf41ConGKpNR5yd0rs36MDUHq4K0hqRHJre7n6SVxSiRSxEwGua4rcSj0TpwSAAc7NV7MhFaA27sbWCOEU2sdY/CqkTJTzzQO49bUdcd4OCdGQ27qNybP6D1+HHn/8QZrW8Zw4HBQ9VU/UtmENY6YAk/O3mG/vaJZnrL1a3aPdkAiDFvpk+OFcyAkMonWZZMRAzMOA6FK+EqMvYuWahBDXdcdbV0xjgMhyaZlzExXgUwQlH8Jgjfg/ahpLmlY1y5OqLZ7fDgUR3S+P+ZoNRF13Skyoqm2vt+x6Dod9lQQhmnGzlORlLlljBVlYYXBc+l9Ge98jlkaZbYY8sWRSazlrnOasKTUzbRmp3fpujUl2DCVnb5DI13vR9kUraWNHS4JCXK0ntGGIshlDJgUcVXFomtF+l8RxOAH4eCUDc+TYm7/MAFY8rWZ55avTJ+XyVVsBhOtCoTlNK7cDwbqtqXRsUXJnP1hR1dJ1eDp5kY55+PuIa/yAil5DJHJYUtFBC+T/suGbXLllpk4XmqDc4o2p8yyU1MUdYtSdCr3WIIuhNRukvIuyA7CZP+sMdz2N1mNQi7edjsO656qbwQZUqJsTg2HGKXTda0IdgjaWsNIFdKMWJzJ3wIwGmxVUyVBc2JSpMhZKnQcgKau6BYdVa36Pwly6Xp2qvM6yYFVSvDZy9eKyNubz74t/WdSRuY09alVT03b4KylXSyw1rA/7Nnt9xhjGceH7LYLjo5PWK2PtIHmgrqaSv37vsePAxfnTxj6nocP7rPdbtSp8PQ6rof9jrMnT1it18pHmmz2brdjv98yDBLMZHHQyaGG7WbDRzk+1g7J+3ek/0U91Dz31jMM/VCiySIfbTLhSjgKw/6A97lkqipMY1ECjaQ0AoOiDHJ4D8MwkMV6slEtXUMN0qpZfy4T2ExOUYbBmZ1jdzTw8IbwR25sjrlxuRaIPuc6iyiZRJ4FSjYGkkDq0WR+CtecmXLfZfGHmWGbEbCyYcsRZRKFx2uHmRt4dXbEvrFd7div9pDEIbl5OGG9WpbJGqMU6CWFv2NIIhsfNH1TobotTAx8QyFaZR0ZYb4HcrfhSJJW6Elr/p1s8vk8+UEYpsaHGWouInVKfj07Oi+3d3N7Si6LxVoI4gigRtMHT/ADYdhCu8S6jjH0ksobBwYvUsvGiNKptQZXL7BjYrs7Z+x3VM6SUqCul1xdPMFHuBj27DE0ePxwRWdHmm5F9D22aqQxWdOU64whYDEchoG4SFJ2DVTULI3U/K9uvUxXV8RxzzAMnJ7eYrc9x8dA/+geu34rXB7X4MgllVGJl6KmKtNKBLT6XiNS3ShKqbvqO0h5oVRveR81lExF8TFFQUKSyUiJKWOU8sTVI7P/TUjkEs3ddqDtapp25oAkSLMPluoL7RKcpbznu7o4UExrMl9bPk9x2oVjImgIum4z18GURmX9MBIi2MFho6yd3vYMqacOjaSjmDhPzjn6fmCz3XB0dIQzgnf6IByhcRxZLRb4GKmdI5nrvJaM3Jj84BQtCT5omiSnW5V/FXx5VsEH6e6aN98QuDh/QlOtSSlxuj0tz+nx6rGWRsvhZrw0Y0xpBZB5Krp0rz9Xffah9K9KGFNp/xRJy5Giqp9S0FmrG3w+f8IoJ29Sw84bu3MOk8D7gRvbY1bDEhJcNFc8NI956fACucQ3xEyuFxsdrWH0SR2VWCpt5F4UkUlib43yYCRVIoifNfLvlOecEcffWUPbSiPRTBA99AdpeBqDCIbpvYzjoOkiERpbUnNje8zZ+oJHNx4x3hjpLpfFCdkfDqQoaH7XtmpXR3bDwP5w4LDvCzq5ubrianPFyckpbddSnVf0hz1Jich93zMMPdvNhsPhUFSUQxSZ/4w89f2BzWbD48ePqHJ/tiSVR8GPsgZn63faexT1UgG3v+j4WDsk9+48lI3w0PKJd55XvX5Xeh/kyggRqZFUS/CjTJiqotbmSSJ5m0ltWc0uFhiywNNq1zLykEilJwGkQmKFbPQUirx21Tl94/jZjTdKh98XHjyL2QaGfkflajCyQYAaZ1MrxG5AFyZRBtlqREKKJaVhnTTpCiFv4mqoc7SmlRCkCc2ZAyIKrlJ0TMx07Rn2NM6yOdqyX4gi4PHVEafmBpWTrrHJpqLnkp2YKeSTL4yykku0Z6A0SZ4uyeBjYhhnFUskLWWE3FgtL+rijxgxzfn94qAKPwU0ZxsMj4/OyujcurqhURhFdVdHVCK5ACZ5nI24qqFuQnls/TAQeqmDwlg22w1VVXN0dEyKic3VBZV+9+VmR+sO+mQiVexJqSLFPVfDgbhecrS+jbOW0Q/0w466bQghUVWaOnAiwR3swOikU6uLji601HWDwbFY32TRVrzz1uvsDgdcs+LOrefoh4Gz83ukkLRBrME2rZY/Ti0KCsScI1qmuSNS/uK3ZcMtUZw8EVfLxuOqmhAyajJxWjAq8BdlHc2dhtGPGC9zL1lHSkZ4WbM0hjjP1x1t9NR+HEltI5uxXmeZvyY7QNc9+UzcNuoVhwijz4qjpjg2zhqqpqZppLKjj9DHhOlrrZCA3o4MLlKDkiNlQ+0PI9ZWRAw+BB4+esSibXCV9P04Wq9JJLrsfJpJPySlmOHPyZYApCgCWxq0JJ2z0Y/stlf4odfPJ/a7nWqfpIKi7vuIMS2WAzcuT8oYPFo/0TbykurMAUxSJ8gYin7NHJ1KMWGcVGBk3oOMiTz/yrlCyBz9yHDYQ5KeSUKC9SI6qR14pbpG0VF1LKKKXGKgijIXh2HADIaTqyPMs4ardsOj5ox+9CpS6aiqLBA2df7N86lSDlq251lsMvcvyymvGMVOHw576qrCNSJ01x/2+GFQ5NUyDnuGpmUcDsoTCgVpJQkvLCHE6Tibi62vefHx85ytLxjdyNu3f8Gnzj9VxnzoB/r+wGq5kGyAMfRDzzgG+mFQXpiOhrXs9nvOzs6kZF0J0957Ekk0acaRa269PufML8tjARM6msc6B/vllYw2moxm6p+nENBfdnysHZILLdW8/eiUk8u1GkVNPaSIiRbp+CzGROBA2byzUFRGSVxV6ccz6UibFuUc52zClMmjXnWukTdmQhky/Dr9LAY5RJVhN4E3br1NsDLQd+7fIu0T/XhgMEPJSwMYK/nf0jNHXoVrOdlpWhgrnXOJQZqaAWhDwLnIV45Qs/hYmUJJIi3pOZE/TzlPnoGjGbk4uSS6iPOW567usOi6AtXmS5p0UjQ/HmcOXdR6fTtVPhjQDsuZ1HoQVMVPmz9kw2u0zTdgUnkWUcfbhyCdRr04ZpWOeY4jDfDk6KKc9cblSfGX5qXEeQoYBFlJpsUYMWh104rDO45gpNFZU3fsh4EqRNarFSJLLjlgjKEfdsSItBRvOsbUsEwOM0JjLKvVEltVNO2S/vKx9rGR+3HOEb0ImBlgNAODFYfEeGAzytj3F5zfO+fesGfo9/S7K9quwxFZ1jU713AYDxhnNB05yriE65VoMeb+zjIP8kZkknCmQoxSDaNpueADlZHKGFvVOFvh/ZSSiIBL1yTLZM5d99wLAmCMlAXXdQOZHJsdayZOQ1l7MRaOQCn5Lr+PSMfuaVyLKzxzRtDgRHSERkJM1G5CACpXUdWi7RC9dMNesSwpm1AHTGuo+4bD0COm1uDHgRB7audYLZZCroyew+FAXdc0dYUzmppL0/0rFDQHQmc3nXuPaMWFIrchyGYz6iYpZarSBV1ky+U152rqZoE79BxfrMvzP1ufq1MqlVBJz2k1oMldXzMKO1XIoM5bJEWp9hAiaZJ1YAxuHAGRFs8gljEWowSSGBIJ/VltkbGmyPWj4xBCZAhDuX+A566exUZLcIGL40tcZ+lsx2KxpOuWVHVdNtrgM2eqL+jAOA5CwNcgJOjjz72wvPf0hx1D3zP0Ykki4kiN40iulPLGiDK2kedX0jVIV9y8nlMKpeiAlBgaz7P3b/G9lyHYyNu33+G1H3+SumkkQHCOYRg4Ozsn9yEbhkEIsrNCjCylMKFYUwolfZiTMIMq59yrPBHz28vaQXcMnW8lK6AOWa5eSimxXK/5KMfH2iHJgqWv/uwlgZcQnY5sXPJgWGtI2jwvR9xZ+TPEiEvSKdEpTBiRyD5HhwCZGAuppGcEljcF6s6DFEkluk5JCFdSSx+nTokm8d6z9wk2YqPh7uNnaEM9M4qTxyq8jqFMlliM6ZRHnpyS66WJeQKaXEXjKnBZPTA7CEJaE7AiEXRBSkWPfGc+BLKXSTZWI+c3ZDO30XH36lnati3NqlLewTU1gp7K2oSrBEUo9f15IaSpmHAGN8l96iaoLzK9RTAYq6Rc5ygt2LPibAKVe5dKI2kCFSBFztbneg+Wo6300gghIhV6T3v2hoM3uNGxUNhV0muyICtnudxtpDKkrogm0Q89/dBLJOssbVOzWjVszjcM+wMnz55Sx4Trdwx+wDW1NLZDFUG7JdvNmZZLWoZxEMRos8WHRM/A4BQtC1bL3gcYztn3B7aHPcZA29QkfwDf01rompoxSJWDSwEbREQuAO1iqX0ycrolXnsGeWPOUXZMEeMqUjKEFKnqmjEkmpoSVYqjkwApvSSlIpQ2SYzr0nYVNlVgRADKOkvTVHotOThgFpnPR+pazDZxp4wp15zjjPLemWOS119GAZy2Zxfmd9aO0EoiDJ0K8a1MR6UOiXcDwYwS0fuhVDf5EIUwXTnapsLahu1uR11VtLWgED4EITw+tRFM6OL1e8zLzFnphWOqiqhN6jBT6XFKU8UhZdNIjKMnRUvrWpZXC5GuN5En6wuVyBd+hZ2lZqJWqbgcSBhTSsMBqkp4e85NukdSwqv2CCN2EkNVScGAsZVs5gkqIxF6Qtayq5z0ykE0pazLDfa0wVzI+iiOl/uXpNqJwIPVA0bbs0g1MXiGYU9/2ArPwwjqIU5JX9ZyXVmsERVSQRNyL6GpuZ44q2LXD4M4236cdKcyZWD0UlWVS4Lr3P0dSTHnAMl0UwCATby8ewEbDcEF3r3zPj4FrOqKTGmUnv4g6HROsSh4Rd4HrBVUKHdOnyPR14Iu5nwdM9v3dK0nbTxZnHj5QdJqErhn6kOuPs2fT0DbLfgox8fbIQFMMnzq9U+Q5cUzHAZKKM3v0wedxaBSn9RA6YPLbzJZcc9OVR9Gc+MK9RWirJvkxDO6Ij1UBEhwzunASQ5NSlUlFXS53HB2egmI/sjzw3Mcr4/lYhUyI+X+CVNTpJSS9GiJk+Rxhq8LG7w4JFO0koI4IUMQkRuj6YwCgTMhOqPXjeM6FidwX8xVNoZQB85ungFQJcdLV8+JYm2QUrPsJoA0XctEVTTFYp3DGqekRXk2tlRfTPc3+SATymIwGCe55XkTtcxs1ydASsJA3/eDRGoxMgwBa4XA3KdeuvwC68OKRVoqCS3OyL3Two0plFz0MBxE7yU7VAmaruPGrTtCbPUDITnGQfqnNG0H0TP4iO9HBmMxywVV08A4Srmv77n1zLOs1sdgEuMoPWyqZsEwBmwQ4m80DltVVMbha1c4JEJqbRh9oO/3HMaR0YsYkw1QGcPVVU9fVTSLTpwJIoumo/eew+ixrsLYSkmGHpJntVzi/cA46FykKuOUjY4xTrvm1vgo6cPW5HzONIaGSWQqI3dmDv5BqTKJiiCIUyBOZW6K9kFXMR8KM2vYLjpU9ql3zfEZ89QJCrSnCMiAD55m3jMx64uEIKnUlFjEDpfEpA524BB3BL/CANFLuimniEfvqVLEJ8M4DtpAMgcVViTWVfvjmt+UUwxPo0lq20Y/4JBqM+sqqqqhqr2iC14UVgsaZLS3SYXDsWw6utCy7tdcdpdcrq4wraOKmi4BrK0KMpsruJx1jD6UTdg5S11V1JUo21ZVRYiR7U44GV1bU2ufsaoWtFp6nSRMECJ1DmCyoKOkfupZK4msfC3z5NDvlcsAt+7fwCmX5976Pr3dEfuafjzQJ232VtXkivegzoyUyYuzlisBQwxEL98VYlTSZk6DB/zo2fixqB5b6xhHX7iABkcykaapWXSdKqbK9zpXF4FCQbTEibTG8MJwl5PDMWeLC85unHO1uOLG4YZUglpHVSWWS0Ed+sNeA4Zp75Ppq2lSNedZbLIoymZkSxGvHFBbDKZUNylKarX0ycg8s7n03QpyaRU1LYrb9jp/8vT0Nh/l+Ng7JCdnR9x8eDK1M59Hb8WTm1ADgxgTP4P9JvhJYK5kpJ9NGKcsGDDBkWoNbOWKIciRVYaqcutlk6I2M3OQpjKvBydnXC12YOB0e8Kt/iZ1oyqLMychpqjlcLGQRGOMOnDX00JzwwVMDoCZNvjsXadssAuMnnSRSTmaTktJ2xSBoOuVDb4OnClC4rzl9OERh3GrMGucwc2mKCya2SS1zkmE7KS3gkE6ZIIQjuu6Vr2AoJPcFHSokKbI/JGs3WAngSIlndV1TdN2DKNA4+M4YsNIXVmuVoOozBo47tes6zXLxZKpy2h2wmRsY4JkKjabDV1d0bVtjmPBwGJ5ytGtFfd/8TOG3RU4B+sjFqsjum5Jf9hydXFGPwxY67T3Q0cMgcpEFUCSfjkpeCGDWUfbLQkxkDRFGKNBQWVCbSeHJNUsqxPqxYoxJNDozqowWEIqjQYfwHsqV+OMo+k6xv2BGHcMfsRVhhAHUgpsdxcsuzVVVYuAlxW9nWyQYpqQoqpqAS2lr2uF39Wxcw5jHEZRRokGBcmMH/BIYuEQ5D5IMoctfhw5bK+Ue/RBDCulxHDY44isFrXe/7RGma33fExIY35KmXuUDbcgk7aki6aeJyFFog/Ugysb4eBGvEvCn0mRMASMlfbsTZPo+8jog2jZRHHwoqYea+UWhBChfvrmuHbV5SetGhv6A3Yc2e62nNy4Rbtcl2osGyG5VNpa5DMYa9lHgzENbWw52q+5XFwSqsDhuGe1P51FvaqarMFc6d5bCT9CHBxXNr2YoggQVo62a+j7A16dlxgD49ATQlClXoqDIahjIkavPBa53lwJIzL7UyXSOI6l8+3poyNckHF4ePSIfdix20rFWrGZGE2XMAV+iiw4J5tsLlzAKrk+5pYhDlNbRXekqkTEx2QMpQRe0MWqEhSkaVsWq1VpcAmo42+uBbNO5f2f5xVu97c5W16wW+44Pz3n5L1jvPcifGYdrqpZrMQpSYeDtKVgsrmCIilSlYs85k7DfDEw19kxZV/AoM5V7l0je8piuSzk3jmx2Wk5PiAczaoihsCtW8/yUY6PvUPy8lvPU0dZtSYbCnUycjmZRNTMIKsp5ZKdljxAhYyKQl8pkcpkpXiJAMnLEIYc7UFJOcyRCmNy8ysKKvP2K++yaaUUan22xN4zXAyXauSSIjS5ZwbTphuTVqMYLUuezLHV8uOM3DBdqkZVSZ2FieQ6F+nJ1RKJgE8qnhW5NomnwDKxbw9cHes9XK0w57Azu3I96l9PKaQCtZvJm0byq123JIbAMBwQeWSHqxuFYlMxfpLymRjcuUutMZaoEKxAh5m1LoRmIQZbmlo73urcOJzsSpfco8OaOljatiEh0W+l+d1YhtSqUagoJXvOqdR0xWJ9xI07L+HHnssnD8riNMaQrC3nqOpGrqfrtL9IT1M3VF1N1lORzUIRMpVsTs6qOm+u2gh45ws52kVHEzqslQi1coYUxcBKSbTFkMuwG2pn2e0PvD9caOSWIEWBsPGEGNjHiEHUdm1VSQOuGEghd6HWBnRJ2PgxRI2aVBdm9BjV70iKUMrGmooeyRzuzxM3z5aMlGSuVkyRcZAUptGS0/TUx/vDDksgpiN0q1PHZzLC8+RHQhQzy2lMmoi95VlP8uLZScFI40troBprbC77dR7TiXpl8AFvhIuRkiNZSWn5IOhS29Qi4BeV21ZVWJO7tc7W3MwbyXYt34BBlXP7EVclUojsNhtc5ZSnEXXsE66yOgSpPIfNbkPlHLWrWO0FXg82cN6dcXzRqQ6OpqO8v7ahlfPEvLZz+kHQDack1hBGdjtR/+06SUludzsJRPyxlIYX/ZVIVnDOTm/woXD2UkrqAGTHNUgJboykTeDoas1mseNsccGT8SGL7QwVKp1uHZmDlJVawdAtFpzcuC2k8RjZbTfsd5vC8Si2U1N6IUSRjlCHhLYhBqsoiLRfyCmOnD40SCpQ5lFU51ruu6ob7qa73O5v8RN+xna54/zGJS+/m1OUpjigjkqCncWKy/MnQkEoDfckKHbueqffqQJ1ar0R4syWpcQwjhKQOssw9Bo8dYWasFyupKtvEg6StVYdl4pKmyQ651gsVox+YLFa8lGOj7dDkuDVt16kihWYqLoCM4ck78aYgmSY2QKfl8Y+7TmK16rN3DKykc+WF6MiAbkkECDG2YafpgXvlWFtrSWaxIOjB+y6PSYajh+uiI9GLrko341OmAx/ZS86aB5+ApzTtKiUUGRzXhJTIo557btTXo2zDlNrE8BE2eAiI73KrWejmMt4C0piDI9vPSY62cyfe3SHSidzMSjq0GXjXdIoJFLQPD4wjj2H/a48Wxkx4LDPrmMpA35658kluiVl46Zy6YwGlAZySA64bVvqpiHGxOPmMUF7wKy2S8bNyFhHjm7cJPiB/W5Lv78Ca6nqDoNhfXTM8fEJcezFmBhXnIy2W7BcH/PM3Zfp9xvGcSR7ldY62sWKqmnLZmqtODghJpJr6ZZrhFsjzmYaJbJOOt/ybBbjqcJjVWJUtV+XKpqwICHlh6vFgqFpJP0AYCvGGOjqmnZ5QrKO/fA++/0GaxBDpMhT3sBk1CZkLegGkPPoXVvROEEDfaA0Kosh4vsDxlhqA6PC7xMkKduqJTEUfkn+VS6bz05lYhwjxgScRurFGSWp7oaeIXvxOZBwDowr1SfTBFMkZPqx3C9p6pmS547M6aAiYyK0Nc11QzM2BSEZ3ciQBoISnTFTf5+gFGEhJaeCJuS7jzEUMUNm1yY/T+NR8GAjtEpjpPQ1pxrHYc84zkpyJXd1/RGok7PfS8WIjz3dlSC1gcB98z63tscTBI9WsemY5NLdQthU85rRBvE/a1ItwVWKEQ/0o8dZp6qhAbfdlWAxBC8kbhUyE/KqEEZHFezL8yjbdWetOl9SAPDcw9vcu/OA4CJPnr3k0/tPqt1SReU0Cdo5nS9BHdJKWypUVS29W5zRzT0rc2vgplN50CoeawyuljGNZiLj5v45ExnbaHGFLeMrSJDcW/Q99aXj5vkJ9o5hvzhw/swVrqshahfeIpEgo2itYblai6PjpE1ARuZzIzxJRes1aWO8vDfGFDFGrjX4gWoYqOtG5jiGpm7oukUJMBedpJqzw+lcpakvCf6clfsf/aALa5bv/BXHx9ohWW0WPPfgDg5HNCLWkx2S0sMGWSC5M2KG+2VTz5uVwo7K5LYYJd1FJWNF7MxqTU3dBMbNdfHiAEzETMnfTTL0xkDlKvaLA0/uXJAMtH3N3QfP4JIhN+3LV52s5G0pVAYxsAXzyYtfLy0SpLxyGMp1lLPlDc2oVLfJLamnpmK5fC8o8pDlhjO5sZA5dBHcf/ZhOf8nnjzParki5xxzVC8ohnvKSZtf21SFhBr36W5Rh8ZO0VIe0YL8RFEV1RGY33d27nIUkPS1od9zpe+/99L94pB05zX78x1n1WNGL2jN5uoSax3dcq28BHB1K+TfoIz6ShRPq6phsVxLi4KTW5zevsuj+7+YOVEGV9W4ao7DC3fGGLB1Q920in5EKRWMEZsdsumhFMfaGEOsIz4jJKmiYynfET21tRjRqMOQqJqW4KUv0Ha3IZkKo0KAwrERsSVjKmLKG5hlGFUfIqc+rMUZUbRs1AkMUZwzNEVA1o4hCgIwQ8tk7MSDsClKVdA1tdYJXZQ5GDl7fEnbtqw02kpQevrMia4Gg3ClRcgqSKdMJkhUHASufVt2tCd3P2FI1uEqW0qsRQBRUgTbzVYqepSoaIPBhskh8S4w+kGNuqyb3Fsni++ludOjEXdOq+YO4XnTyPeXFLWFjFAhbMMUi4heTjuVXfMD8gNlQZAQ5KeuKqrQsN5JGiC4wOZ4R6VlqbGsXyBKdVsIER8GLZWPs2dHuR/nvDSW89ISIerzKM6tD1ycn2tn8FrTCxIkVc5JE9OUqIzBtq36m+owqh2r64q6qugH+Z6Xz1/gW/wAgPfuPKR6t1FTMnGarLVoqCdrTtGXoT/g/UDXyTwbDgcp2QWolDeTciPVaS5bK2rg2QZZ5VdlxyPzPMRBqHV/8KQgSGRudjr0e5yreOHhHepPNvR1z73j9zgLTzgaV9f2CJ1WGOvouoWmTWvtNSNdfknSUDMjGnUthQfej5pSETKu6KXAfrelakaqqmZQ1VVrrKaTJNB1dS0aMg6ZW4oEAVh077A5rWlYHN98evZ96PGxdkhuPTnleLOepVsmOP9afrggILIpi029XqJkbYb0MqytHniOmmKaqmdmEFi6tqHCPMqLMRFdLHBzFqsZliOPbp6BgcbX3H18R2r1NY84d6XK2eYpoPzfpwM+DU1K/5UcMprMs8jGRIz4mMtozVPAg6sxphZV2uBLtCM+SYIQSBYe3nlUPnL3ybMU798g0agaFmuryWEIASn8nDlLTFyYfFu5TC2P3/xm0+y1FIMQLzVySUhDvZzrzJ1CIZdraxWDD2AdZ+15Sdms9itcqBhTz/mTB3g/CgelW4iuS5R8uPcj5hCp7ZQiDDFinDT8MlFSOsent7k8e8Rue1nmVuYpWePIIlukqChPwo+DiEY5h6srcXaKE4I2x8qOqW7WNjBqlY2Ljja2GGegWTAOB5xBSkJzOa8xjGPPbruTyGY8CD9AyYdZ8CtFVadMkHzUvLop9yAjELH9Xh1zGINoJGy3sOxaltplNGTExU5ID4lixHNX7nzUTUdtajHiRhySMBwYh5G+s1CtxC1rNF2bcgpCUJcIjK5mMxicTwxmQWogWS/vmFTIZyhDfs66SduWQ7DqiNUQI2N0eG8x0dMkbRCoIn+HMZG8nHV0I8GK5tHogxj9ZHBWy8a1ZXyC0vyxpIGuHVIJk6+0PLyZPcj/vOZyGHUmM2TxAXfEzMAS2TTrpqEJS5Z7EdYLJnCf+5ydnemmqvYS6UEkaOSk+1PQEX2eso4TwaNl5QOVVWQasQ8O8Iij0HUdi66hrgVx8V5SCMKxEv5HxErqIIxFcVV6RQlHD5OoK8vLmxfLnb57er+k6iYyp9p6rcDM6ZdcNZSikEXl2eaZIdIO0h+sEs6aFU5VUB2dHABJV2tVdYYp5ajPe572ieWZOYxV5VoT+cTlCzShpm96Hp0+YVfvORpXRdvHZFXcYjNljIX4aqVPTbsAJK3iauFTVbntQl7DyRFQ9V5sQU8yol7XtQQgVSXnrGtsVZNTpdLMry5OslyTnRwxoGr+V1Bl88yjW5xsj6ZSpGuqqHm95jrsabOk/JyJPnMOyYR+aHAuG2xMWnI65SHnKMykMSLfKX+J7onDYbWhkdGNuhtb2r6h61ueP3+OKrOadcMpHoKxpDR58bMb0y8GkUrPkUkqtfyC4KQyWd38vMiPE+w7beTJOoxzpQdPtmci7Z75HGCTY7HrGOuR47eXnJ+fa0Sgl5lQ9MmVxYPC9MVGZiOm9nUiy2lcaHMV0zSOVlM0UkY9kmI9PZOUKzT0/nWzcJUTQxQTh34gYanrmrqqWew79t2Bk8Mx6/ZIepYEL63L667oTVjEsFSV6qZoz5zgRQzNWMdy3dEsOkKA49ObHJ/e4rC7lIjJ5LFCx1NuPGnknJdviKE4r0IkY6r4UacqP7Q8nK1vGHzNYlxQUZFcAqaIpukW9PsdfhywrqJ2tWyOJOl35GZNIgv8PovADAVFc85pxCStztNyZBx7UgrY4Itz7TJp2TjpuppGNDTW6xZeQ0b7al8xjo4qSAWUixKBGWOoayNQ/xA43xtSdcQuOXZ1QzKG2hgCwueSqaVzdyecmZRuEeuItSMOQQEXBtaNm8oZUWK0gTEkjLecPYocm8AzPlFjeTQ4HpmaqrKwH4sMv4+JIRrSdkE11tRjTRgD+8OeMQRCGBm04VhljTSXMwKvy7Aq0TxEJRA6Xfvz9W4mFJDscKQyJ6zNYoxPLa6nHPrpMPp/mX+LxZr9Ycd6u6LyFd2h1fES8jQ6B1whuFuSy9V0OT2ajYuc26rjZ40luiSgmVHnRqXi+34ggVSiLFdUdQXGYkcPCZbrtVTueY+rWpq2YTjsxB5ZCQJACfFGqqJe3b5E7Sua0GBS7nkkTnE+pHWFKzoaDkghSLolr3Wnpa1GkI/Kmpli7bQ4SjpIYirte6QoV370aeLjSQrbYKyubx3T7HyGkHjmwW26vmWwA13oaLsFbVwKT6OqJZUbo8rie6x+L0yocAxKgi0OojYR9IJ6u8oJn61uNOCxGCuoCcZgKpmzdd3QtMvSjC8HgAYwea6qCKfsFULKR+f14bD9kPn3ITMyfdAl/0/+uLy85OTkhP/Lf/d/4MXtXRX7CcX7tbog84TJLGB5eRbhmUyIzMhKrtDIHBKKwwKUsttEUpg2d4PMRgIt0U2lNC1DMoXHod8dbWTb7Hl8dM5L95+TBQ8l3QGSl5YR18i6OCx6lIBpjiRk4yavzytwbIY5r/my188VE0TbiiOTFSJjJASvTQUpjkG0kdREdjd33Hi8gv04u7QZOpM5MDC7nskYzi/CKM8nO5PlN7mSSf8reVAzbTwaEU621xQmf0IQApKkz/YHkVauqopkEgffs2t2dGbBCccsl2tyWiymqRcSCTb7A65u5XuTVAe0TYexlnax5rUvfp3F6kRSFrbi8vwJP/vhv8ePI1nXJs879XTL3JmcxYy2Mb0/z7Fc/ZMm6D6RCDYQ8AQXWI6rwqMJXr63WyzZXl3g/UjVdABFUtz7UZGwVKoeZKxk1LLyYjZyzjqCH+j3EkFa5+gWK5quI/pR16BE0FI1JHB4QbZSNrqCbuVqIp8GiAG3WONMWzZSo/Mm9D273rOpTwnNEX2yuLqjc1ZVNhNN5ahrx6GXEtDzQ2BpE5VJ7H1gM4o2SJUSJ7VE6PmapCxeuqAeLRrunB5zOL/g1sUDTozHOMNZcPyUNUNd0yg5dExCiD0bAvtmy52m5o6LLM1IfzjQdQt2ux4fBw4HIXWuu4X2FpqiZRHdCsU7b9qW46MjuroqPZ9yiiYjKjn6xiR2h54H5xuScRNKYWabcJrWfVlvajMscHJ0xG57xc5ekuqAPfekMeFM1gCR4GjOyZofXdtIqnHWOyoHIEJ69hA9xlWqOFwRU6QfBrwPrNcrbt26zXJ1VPqNpRRL41MJLHIaeSxBSg7HQgyk6PFDT6gCD4+ecHN/iu0leCKJc1FQVEUD62ah5E9TELnDXkislTVFVymmWNZuCLH0rBpGEV+0RhyCgohHbWqINA5dL5ccrY8w1mpFoM5r76V60CrKrw/v8mrLn7nvcfRkzbJfYIKkp9rFgtXqmNX6iHEcubx4Qn/YK3m4VV2XWlIzVUXdtNRtQ1VNHZVH7wu6NE+jkpKKtClPKnj2V2daNddhrHYZLvozFFuV9WAoazyVfe+Pv/d9/m//1/+Oi4sLjo+P+WXHxxsheXIL00JBD+YoCBkan5CQvADze62dIPSpTDgP2XUPGJAoL2uBFCKaKdFziFFKhlWAq2RIUizRbi6/SinhhpqjR0cYN4cF0XNk8Rw7u/58cVNaJ4snZe/XYGaw/tM8Esj8BDOzTEYdg2QSMVmtKBHc0lonTbSKdPAUsJloqMeG9dkaiIw2ljxpjnqtGiRx1ia4OcPrJa00y03nMSjORcoOifo4KCHN29m+nWEZZa1jiCDRV1k42fCniRQnYQHdvsHaxL7pWaxOhFuTRH47pkgataIqigqpSRM06iqJssehZzgcWJ/cYBggBc9iueTWned5fP9dNXZTumP+QLPYXs78TYBPIkVP0q7IhcSZnVAUfo6GKlVIyJ5FkSxRnaDsXDtXqQw4JO32WzddmS+S0x8Y+p5Rywgx4oTUTVue42DAb69UdlqIdut0LOOtlTMhiHx4VTVgM7Q/NUa0lebRNTXoQgvBY20nwnL5CShCJCX5kkI6UHGwFW2U90TvGRN0NlJXkTHzchIcVYKuEA3BGHxC8tsID8AaCBhsnAKal26vePHuHeLtI+L7hq5t6c/P6J88JsYdoz3GmsQYE9uQOKosC2c5HFY86RO3jwKukW7J0sbBl4Zl0Qj/wlVqg9KEcuTIGivR8xgM3g+supo82wulXR0McRSjki7lHnMaKgcV87XzYUdCKqQqa1gPNc437FNPsCKIVmmrjdFrH5l03Z4KcmlxtiKmoWzOMg9UjNA2xCDX5iqjZf1BtGXCpOCczyctEtDmpxXWTT2KMroj6ttOOROOcZT5XwXH8xd3CuqX24qI+nQkGOl83dQNy/UJTudiDr6k0eSehCEkMGQyrIEkhOMQZblF5Dp9tn3JEIJq5qQcJAr6ELEEFVDLrUVSSjhbCVKqqWqxAY4X379L8Co6aISw61zF8uiYm7fvMBwO9MNeqxPVKhhtlJkSdWrLqIvQnDx/cZgCfuwnlEwDVnHYREsFrVqMMWnlHYyD1WAvXttfhBOTeTJTQUVKiX43dVT/VcfH2iGxM8M+XxjzB5yjy7JAM29kHkHko8iiT3+XzdeIdxqImtqg9PeQrS/LlSdtK60oRcqTy5amecWhyGRXss5BUnhUjLpNOV0yoQwFBUH3hpxmKRtY3sNNue65F1ucD3VkyqfUkRqGEWMnkpcfh1JWl2bPNOmmHlJgH/Y4jSSKoJFOVDv/biubUeEuPgUlm5TRDnAmX/s0rrn1u9GxT+TSUHutpn/sD2AMhyFMC2bu9CRJPeXrEkM+OToxRsmT2qmDszD9AwbheThr6dqFdPisamKI2LpRxESijnGQHiG3n32B/eaC7eZSxjBNDkdBAAxqLOI0LEx8BqlM0gorFXUrBsDkktV5IWe+N1ueoXUV1s2c9+I4SrMxg8FWVso/m67ArbmHR+HyGMiNwGAshtBVdSEyZ8dFGon5kk/OHK2UcpWAwzUOlxqZuzESmblb+pxcqkTiPA2YMVEhcu19TAy5dxGGEC0mCGm3NobKJGprCD4ypsSN2lAZyy5k5xRFBuU7a2s4qj3jYcuh71kvOnjhEzhgMwxcnT/EhJEUA4dgCCnR6DXmqpgE9D6Q6kkyPDslEnULp6qqKnVABOqOPpVNytpKIPpOmqp5v1cRvvn0ULTWVYoWquMeNQ1YpphErHkuTQvi+hFjosnVJJqayfakrmvabkkdAsM4SN9EHc9cNZLXiXPy2bqyjLpBWWNwGtDlFLt1rqRSx3HUQI+ibGuNEfc1JeGgpED0uex6qhypNC0pR83Qy1p1VmULnKQmhDhMcdaNUXKm9ngRp0EMlqsyCTZ3GJegbFDRs9LgT/te5aoy62qyQ5ERQZuF4uoOq6kWVzVkIbUQJpVVo8UVMUWqqldkSoQcR9VZiYqqGCNicVXVqF3NiuBJgxAh3ovpi1jtQpyyrYi5ZYjOh0S2NEWMkzSJE2bx0YxM5cVZ9lnUPJjcS84VB7NdHH1gvn3Y8bF2SLIKqJltUuaph3RdBCZvyLPNThGFskeS4/vpvAYhIZYSKiuDlkXKrme9zJQX1ojYao7elUqfyTBY7IRkxEhEZJsNUvKY7y/nBs2c34JCftHMrh6N8oxCvJM4mj4BrVjJzo9GEFoS2DYO4wTaE5nkUaHKmVBUvnb1ki2SI65chdHy0KyVyhxi1nu1ac4hmcZHIgWjjkkq4+O0RM7q+NnsgRsnBstoHtQahuFAdE77UETtrDstUJhk5Q2UhoXZSTVGGrPZTlCDrAWDOiQYg3WGyonoUXHOUlID6bAOqmTxg7x/dXTCzWfucthtZUG7644YFLdEHclizsqcnQNJKYyk5FWFs5ZoaHJB9b3qqhlBKYQ069SGTPNENiptV58jM11Z6DzN3UozTyqrlLatOC1ZXTJl7tJTZEnpZ6Gl2FGIoM7VZQ7JW3VOWtXeYbaGja7RGKk8LBJYm9jmhnwGFtawdA6PjPkYDX2IDCHxYJdYVRI4nLSWwygpnCFmfNGqQZe7v+otZ/cPePOQV+7eojHCV4ouMcSAD+BrGIKUtnciNcyQMvFdyJdNbaRJoBEdDt+2xOB1/ipyYCylz5QKohlFNpp2SbtYQQz43aEENynbFrJTFTFJxjZrpjR1TSjXM00n9ROnf+QNP8kaNdapQyQpIzP6Ym+CSpdXVUWFUdL6hAA4B8RIZcEYcUZzECDk7zwXEtYkIaNWUuU1DGMJ1qIfQcuYBckVSQcbpanhOMpl17UovlpjJAWSUG5fBVEIpbbKjDVHjFl+wUAyOFuBcYzjgHO19BkKowY3Na52NG1HDJFx7LEuUFUihOi9V2KtJzESk6NpGpqmle+wA1Yb34nTVGt1nl4jSp4lBwqFWadm02Cqhqpu8UFaP2R7O44D280Fv3jzIM6qqvKGcST4wGi87oeBEAykfrImaksKuTwHfhokTWqrWriRmyoiCHDdWgxWib0ZtZVrjjOHvBQdlMpMPtLxsXZIsgy8eGzZcVAXokTWWv8/d1RmCwkKXqGOgplPC5i9X4zGlHIRj5HS0yCjICUdYVX7w1yXN885awPXvNkUs0qqmSYQExGqXKPm54xez9xThclRyVFSyRNnlMFlhEMMR66hj7qgMwPdWln04yAlqPl7MuHR6GJzuSDGVVikP4xcJ2g+qkCnMeQW6aYQXsumlJ+Hlkgb3YmTkfe5nILTr8vaCLIDJsZBSJOuqtWpGcvzkx4QOqZReglZJEqTCEucisx5GFUOOo9PcRNSouus6G7ofMtbQ6X5bRE3MtSNPKPlosO98CJXZw84f/KYFI1A8tcW6Qddkkw5zhuRvKqS+iExhANZU8AUhyDN5o4p15z1Ip5ulpifsWIz08zTOSpjN6UfrTHgHN1iQd00hDDix6Eo7BqXo9A0fT9a6li5skElVaINUDZAZkFE1hDSO85WrjylEGXjN0hZtI+GYEVTIoYEyVCT8Koim4KhMYnew+UQWTemzNuYEmM0VFYix0M0HC9qbt1YYa30Dqp9T50GUoosa7h703NxsLy/s4xRCdYpuzcgMvpWlIHjQAxJ0jc5AlfVWvmIJmNMktLTFLFONuZ+t8ESpLNwGItQYJyn/VJSxEkwkKysGUMgjmGaXdmjz2M/c37lOiLWNiXlI2lm4UuURGzKiIwrtiwG4bY0tSPFIOkxVNFVq19K2tloQJSU+5FTFtIFVSL2SnRjpH1Bvmyp8rDqGCbE7o5JnHFJMWvaqKq13Dvh1faY6KWqx0nwInaiwtUdxtaaXgFjpW1CXUmqQ0igmvbFUrdNQTX6fk/s94RwoD/sMUvRGKow7IEQ9uQmnyFGfEii6Kry/UUNWpGupAhFCFFTtFVROs1oCH6Uvmx+nIJqY5RjM8npi51O0t/LzKXik3ChFYlBEY05ajQVh0z7jpw3KFKfCw0owVjeD6XwgWK/8yydkuu/+vhYOySgXr3euPAE7az6JW/UVtehboJmyqvnt+WFoT4rqAdbnAZli+dHXByblPBpUpqcNDBmV2CY0jWz780Tylkx3DFacntAMFOdu5k4ABNPJEf50tG4kGu1iRW6WaZcFWPys3Ilmg1pkkR3lRMJ7NETQtJ+GyP73TZfLDmVlJ9ujIHoR4akKpgx0DWO2smmfk23gFRSWpDI+i+GTPCkbKrZUMqzmxYH6q1H5Yjkxk4h5tylLrSiw4D2IxJHs5CTQfL2Bb1yWCTarepKiV6ZZAyukqoSdENyNmGs4gnWlGqkGALnT86pmiXL1UJKxaPHVZb1csGzd19ke3XJMI6KQOR0ymwe6vVlJy4bK/2H+gglRyGy5EFktCe+UZz4GkY3f3XyiBm6/6CByJFSVvTN1zYHAOcaL1UlfJS2XUwonzoPMUnDRmOEi1MmTXaSgaR6LPOS+ZREKCtmh6RwfWS+hDilNpvZZwOSYiSPtd5rjaQWnTWMEUZjWDeG1hnCGKkMBAMXY8QZMYitNbx4c8V60RJj4Oz8CWzPoT/gbI2tK2preXYdGcbE4x4OCrO2eo6UJIVjjOTj67rF2ZbFclkc9tLNe5qV4sgl4Ty0NVjjpSqnrknO4oMnaUq4uK1xIkYb2alFtC9EraaY0svT+7X6Q+2KBZrlWqrr1DmUq5K0ZQiSinZOegMZvd+cak4pYV1FtzqiP+zp+56UPItuwaAiZ7mSJGJE4MtHjJ3aaWjER912ahO0ezEZZUV7ROm5Ui4mSDrXsmx5wke99pT5dRbBWCtSUlKuVpRIySpEVHzRTWt/GKUH1uiVXxJHjPX6/RbjWmA/NdVzDa6uGcaRmHYFJZe0sidiwTV6fk9BkOMkwplUkycHEYCQ02cdrIP3pVonzQTkxCHIat0ZXZ9S6fO9x2nZ+bznTLkWA4ZADNMzjjFgYsAaB1HWZibDR+VWZkcko7HZydrtNh+wNx92fKwdkpxCyEJoySGdbOMUcVtnCjw199Jhchr0ZGKo01O/MFNkHHXi5/wq6AZYtj+K4ZVGRk5JfpmZLHnK7MnmtFAeueQSh2ag3bfiAymqINeaEZ/rX1TQgpkHNMU9lE0XRA1wjhRJOkJbewNjEAEjaySH2fcHjV6sQLnJTIvbWVWsFBQiYdnXB9K6ZjF24vilKTWSUgQved1YNiijz1ejG2O0Md6EAOUcrJQJ1spb0N8podRofjf6URY06tgYbaxmjFy7m3v7U519pRF5bzz3n3nIK7tXiwOHUQKtokoSMRmCT6Qw0JaFrOTLEEhBOnm6xoqseBKC3+3bz/Lk0QMevP+eQPeuwnxI7JCfR3FGUKOr83RCGfIuIyQ1byNv33mb1x5/WuDdzOSPkaHvFUJH0zPXpus0l0x2uwu2USKhPG+uXaf+lB3nnK+pXVPQwpL3T9M9zDkO+ZxDPXC2fsLNzS0ar85KcY5kYw/BY3EsbCIFcd/VbyPEQFNZKmMYQ2ThDNZH1o1jURnOD0HTm4lDkrWUuUMLsbE0JnHUGo46A6HnMPTsNmcYP7BYH3HiLNbK/dZVxQvHkVMvjqU18PM7b/DpJ6+wcoZ1kzhqV5i00PkzwfIi46/9ahQFkxJ9lcYfpQttH6J4E2anVUmpVO9lnsV6tcA6MVTOWWrnSCHgQDkatqyHqPOBvCyyoxsTmMR7p+9zu+9wimAkEsaJ89nU9RQg2Fma1VlxBvTfi+VKUYpI13Ww3bLf7aTc10IKor2RtWuElCqkUu8DPiSaJqdDIymKNmRKInKXsuqn0eBSN0uAq25LkxqWfoWrKoZxlBSjc1RVnpO68VpDjKK0ihG7LERORW5iKM6eOBUSAJgwETYxBqOaMkHLu11dM7ndKHoljkQWmJMmgYImk3LH9chVdcUidCIuZkxJtXovwVDUstrgR0haIReDilyKHotxlToy6rCmiAl5WzPFgZTePtcNgASFk7J3oS2og0OK+DReMxxSeZX3uXpmVSZqgfS4+ouPj7lDUgI5MIYffvpn3Lm8yfOP7lCgdi2Z1d1tMoL5HJDxJXlfiTwmCItE8dRLFDk7B4YZIqC5aCOe59RTYBKKAVmImFRSTJB485m3+dntt/id7/4VMryWN8WCAhntupmSRJGze5LzTjm7XPGQDYWJ1zk2uZGbQSqEvFdZbJOjcqgVZo5KNpw7dQKzqrdP5M0X32Z44cBf/cFviVM4c+ZEc0fUFlPKWiE56jdlDK2hNNoCMbBOKysEGREiWzZG1llxSIz0sknBq6FT1Ma6gjjliAJrSwRiFVGzBt568V2+/+mf88o3XwXM7PpSQZ5SMuz3kYpI1znpU6KQ6mKVpeFrXAV1bQhjkGgiGbqm5plnnuXs8QOGYZBISFONpDQRAzGKyOW5NmuEaDWpk5/hLE1z3l7wP3z1f+T/+D//t9RDTRhHFgtR3dxvznGVCBqZBLlc2jkrSqQFuTPlnvN5DQlrtMmjvhL1vTlik/xfWVEa/WlpZltjrRAPpU26L6TnnCIyBjbHV/zJ5/+Yv/n673J6uS5rMRt0sFRWqhqoDINPxQFHnYvKJUVAK6ympyyR2sGLJ4bRa3NKm4oIlpQwyjc4k2iqwIJz2F3SpsCzxwZrWowN3FhIRVUfIq0dabsI6UBKsKt7/u/f+H/yjT/9r7m5P4IUsSbikKj3wUXg/cuM7MkYZrEsQR7y5iqkRUDTkjBtJJTXvVa+NU1FY6R7rUTH05qXvi1GBEEAI/KnxQ7EOQnZJP7w03/El+2n+fz9T1ObClcF5WPIegkxCy8yleKr/SNF/LDHth1tU0tQZV2pRiGhXDw5Rz/IWhUeXH5txO1FXiD3VZHzK9fL5GoUvf408V+Ci/zJK7/PC9sX+MrDr0r5a2c12JTuu65SQTMNQLMWijhskFONRtEcK7EMuZHfVGpPScfIeIjy6eGwJyLtIPK+ktsQeO0AbsdKzqEcqEgUwnpK/P7Lv8+nHn+S1x6/SoypNMfz3hRF51wJFFMusJCUmjFWVLaHHlOFgp7kgHUSDc1w/5Sekf1pQlXExtuyh5T9K6WC0pX0stqoKfg1SorNz2tygv+i4+PtkBARi27Yrvb8u1/7Ln/ph7/G84+fLU5I8VNngjjAhJIUPHraqPO/SlVBrnxQZ0S6e2rFR1a7MxajMKhJAnFiE1WdB1s33ZS5L1PEDeCt5//11X/J6dXJVOOdpomUHaZEBlHRRZOdleyDiVEr16a/i8wIhIgkc+4CCRDHER9EvC33bDDK0YmzvhElagnKYVGir3cHfvKFN0jryDd+9nXqvhOZdSPXHII25CoOkNXUQ96QBHVyFuqqIRc0l7475O6cgeiF+4EKdBmL1r9TIu/CW7DZKVJIEyk8lfU2LcbkAq9/8g3+/NXXif8+YbVlgFGxo9y7RVAQiDZvzAkfAk3tJPebJIINQZqY1U1NGAYaJ23Ij46OWK2P6R8/LLo0uceK0cgsz8dKtW6MpuJ8CDMdiijVJEZr/0n84OXv8/7Ne7x/8j5333uO3faSmBJ13dAPPa2RfjviyHjSuMOTShWa5PQdmFm6KCUqm7i5SrS1VBX4aBiCcncsuvFKPF2ZSKvisnkTwliSOiTGaOFvMgWtqF3A2cT9Zx7xzU9/k79879f5xOEFSJHa9NRmxFrhZsSl4eAthxCoFrCoRkmhGeGPpAS7uCCZhip6arunthYIhGTZuYaYKqp0YFH1gqwm2Iwt/WiobWBtPG302ChpnOxUR28YY2Q7QOMSa5cKvuUTvLN8j7eP7/EHt7/DX//pb2JTorYR4xKNi9w9kXn0ZO+IscoLXG2ZlJdORjzrKVE0KjLSUVU1ddvBYU9/OEglRZIIPW8EZh485JDFpKmQUM2eNVL6nIz06fnOJ76DHSKv3nuFrmqo6qrYH1LCZaeoILITQp2dmmEYSYyCsKSB0QeqShRYQdJRPmgnbm274LV6o+0WGNcQkqZYNOXs6k5LdvN4TPY4aQByaLa8/szPee/GA766+0vUptNqGwcxE2VVYbagjFFbYwiqaV2F909Vlc32hQnxzYFKJKcvvfcMfQ9IR2pBGhIJVUjGS4VergrKG3l2/lPk3tE9fvDM9/k//9v/EzZUIlSm41ipkKOgJXJlpRJJbV7uAlppC4oSgOcx0u+dmpIWALI4JNnRELucnZOMphmpQLI612YVODElxmGYBaGpPLPtbmq6+quOj7dDohu2cYafvfI2P37153z2nVfVAZmlQ+Y/zw4D17zt6T1pQktmH8kToyiBWiOluUY2XmNMUdk0Jkm5mW6o2dDk75W5oc4AidfvvsEPX/wJn3vntQKUT1XIZnbB+oORCHoiIWbnSw1RcZTyZpcKGoIReC2rzcaY6PuRGCklZ9mBqVS6PEcyJm9g2bN2Ikkebwa+8+Xv8+KTu4xtwIwWNKef0Y/c8VhUSEF6jcSS73TOqOaBk7RIzL0xLJVWMuT6+byx5ZZsuS15tlYxJk31yIMJUVUMQ1D10GlOOGt5eHLOz176BQ9OH3O2vOTm1Q2JcvShGyMOUR6LGMTxsFaEmyqNOnPX5FxJ4FrHbjdSGQkTK2O4ffsO2+0VQ9+r4ZtEprLBQ524aCwmZIMQizBaKdnTNRCJfPNT3+RqccW9W/d46cFLLFdSajcOPX4cqVyFtSssFh9Gxn6HcRXtYs3Q7wg+8HQDtuAHbiwCC2shGHa9ZUzQNkoytjOupEb8h71n3RpaG/EpcbWXCL1ylkUVScayG2q8vYHFUsUrXLPhx7d+yIPVY/781hu8/P6XaVONiyOu2svGnuByWHBljgl1h/E9df+YRXugdrLGzg4LLmNFrCoW3nHkInWzIwFXh5qzoSW6iiUtDT2LtmeIlot+TWhPSOMBN16xsAecjUqXtqoN5NkPsKhg3YJJ4LHsRtiOhh8ePeKi2/GHn/wBf+/ef4ZNhtFHLodIFwPrOvLirUh1AY97TR1kPol18j0pK/+qiq5uCqUCIwn5snaGUNeMfU/tRLNDQBUlGAIG4RLljUcshm5cUDbdzOV6srrg/skDfnz3p9yrv8In4ieLwwKGLPYo1ysLLyGp7GhFcjzFTNDMasmK1ug9OFfhMIz+UCJqYwzj6MEa6mbBYrmiaRo5dwgkEs1iTVULCpSbGxrrpA3E6IFA3/Q8XD7gm+s3+cc//yfc6Z+VdeRHLCJ4lxFFY8SJCTEqGiXoo5TUhhnBGyHBM4v2UwHvAENdtdhVRYwBqzo/VVXTpiW5dLYURRixi6XRY0qCLuqoPFo+4kd3fsQP77zO59/7ggQI+mWLbkHTdlxdnpe1r6ZCbZI6Pkmk5aXpob5nJkecqQI55VSazCJp7fyM8p6X95bE9B9BcYUflhSFtuqgESf0GxRhcU8BAr/k+Fg7JJkHsVvv+MOv/RnbxZ7L9UaZ3ZSIPJfCZXj22jnIUf7kvGQFVtCqmhJh5LJVXY1GVf+ibrCAUT0H7CQR7EMo15O/M80G+VAf+L3P/RFX3YarbsuuOtD17QecqOLVM8/Z5z/iPFmmdEeOSPXTsiEXSE4myOgD+35kCLBcHU1pIsRgZVY/xRhZkSJWfgwGTOX4N1/7NperDQ/CE4Z2wOyclv6Kg7ToWq1GEk5BJpjWTS3lwiYbZyWbMSkWJhIYR10ZTDB4rT7x/QFvHUlTLyXNoAs0Q77MUKZsWNDHZwDX1Pzi2Xv8/NlfEGzg53fe5MblV0qbcxl6S4gBbFWcMh+8aApYi48Ro5Bt3/d0vqUOkmJolx0mwqKzVHVF4jkO/YF7774l8HFUkmwCgYwn6F7xnGJ7SqSGGgubSNHwzq23ePfWu2y7Le/efpdYJ2rTaQQ4Yp0hRC+Nu6oaYyXtUlcdJ7de4vzJPdJhAzEK18ZIlcaqiTx7Isz67WCoasdRm8uqJiMlzokgLHFRs98H2jDQuERbG4ZkSbbmMIwY5/DuNlepwRjHOjXsg+cPX/gRGPizT/45f+Otf0oaLI3v2I2Bjkv2Y8W2fga/OAUr17fZV5jxEcdmz95XnMcT/OIU27RsDlvSIWBtZIiO83RKOjmFumV72JL2kcCene+Iy9uwWEOKnG8s1Rg4afZS4m+E63F5SCxqw1Erc2lMhsse+uhYnDju333Eptnx5uk9fnH7Hp85f4m2svjWsO8jV37gRuN5/hTsVeLJ2Mmcl1mpUaasZ2MzoVMCg3Hw5YlHP3IYKnWYJRtjjCMkS8Thowho5YBrknpXm5ARWFIZQGstb919m2ADb959m3fuvMvdd14S7psxBR2ULUbI8cYqYdhVhWQ7pQhk3WaoPsWIjwFXLajrhsPhoHoiqLBgIHlhBNVNXdoPSJm5tFMwUSoAxRkR5yITM010DO3A+8t7nLdn/LMX/yf+dz/730t6YxwwKQrfjNw7KJY9YdpoNQApiHMS3p9yVkQbKqczcxsRTfvSTMFrDtxmHW5TynZMA5viGkq0l0jsqz1X7SWXi0t+77Xf49UHL9P4ppBZh+Eg3L0ghNbc1DFqcJLtelXX5RrKvmOzY6F7nE4ckzekvJpjKJx2kqI7MdOKmTwxjUCyXkl2qvP2Y2d7V0pwdHTCRzk+3g4JkgP80Wtv8Porb4KBy/W2wExz5rB+4PqPRhay1d4tefPMzObSTjs7HsWpkYhjEh6NhCSaIsZpHk3zi54cyWrEPpuYVuGxHz33E3509yckmzjUPZtuw6IXeXLZrKb6/fx9YIqDkR2TwiiHArtlByMz57OTlpIw1vf7A4dRGo7ZWbWLQBlC3srGJj/PzAiPunA3Rxv+3ee+DcD56oJtI/LYQb/fmMz3UIVALYeuq6pESeI0muKRBx+KQ5Zl1o0RvkiGN51qgaD3g9Vx0zxnVCE1McoK96poVCFEW0toAt977cccmgETDW/ceYuv/PjLxeDniCiqqFPuDxRiwqpoXAVgBjaXZyLXXFU07ohqoR1AfaTuKlxdkVzNc+OLXJw/4fLyHKOpx3mK8JomQY5I5vM+V2zFBDbw+gs/ZtNtwMD7N99nt9xxY3tCyuftDEa5DGFMgNexDGwuHjH2e/luawvB0JnA7RNRde1Hy2IhYlcxgQ+JccxGPRYhrLZx1JXFLSsOBxjCyFED577lLJ6yNjtciuxdA4sbpGTox54ny0e8fus9AN48/SlnqzOeTS+wMT2Ne4b9uCTVFWlxA5O1EYxl7E647C274YpoWuLqFJeVZ7sVexLJLwnWkboV1AtZLu2KQ7qN9wdM00GzUINg8d0NHuwCNgTWlcD3uzHQ1paThaRS+ljx5GDAGm4d15yvL3n7+D7JwHm74Y9Pfsxz791lHCPrRcXRouIwwGZIHLeJ546gv0ocaLXnR8QkL9pDaidCknUwoa5Gq6cC/W4nOiMaKPgIybZUjWVpm4nfUIKYyRaU7uPqCBlkXbz57Nskk+ibgT9/7Yd86Rdfxg2uSKeXoF7npDWWSCiISPBK3NSqs0K6NpNGVAxBeFBJNuGyxmJi9CPjKJ3KvaJEMYjOhnShFsRVetBYQZRiKA1Ar+wFT9rHAPze8/+av/Pm3+bGcEOQxhAwSuIs6ZYZ6iRrXBrlpQz3zW/62uqbnkHhlKQklUdTbChci+K4TJa58CxmDhsGLppz9tWBZBI/uvs6P3vmDT73zmdVtr0heM/m6gprHW23YLU6AiRNIqrKko6yVhsN5utP5auZ+p6Z8r2TndEXMuk9I0Gk8neJ9spfRiqVzHSPpWy/2NlE23V8lONj7ZAA7NoD/+Ibf0h0MrBXy02BpLi2gOZpmynqda5WJrMApNbm0qq5aJMhhkiIsuCkB4Wlsla9/AkCK1U3MZdeZtJX7reRJXxl0Q7VwLde/XMer88B6Jue/epAvRMHSXo+yPfFnLNUhyk7I9kzzs4TULxWyWMG9dblgVjnyH0K+r5n9CNCf59FvUxMbJnXFjuLWqZgIPLtV7/H+fE5GPCV5+GNx7z24JVyDolobMk1WyXqFYejoAGCiogdM8VJsobCLodciUMhtcozANC0SRLJeEl1GHWI1AG0hlAiRSEdXy42fOvV78v9mMRbt3/BmMaJIAwlCnGVmRwCBCUhSV7VGIMfDxy2V+wXa5arBYtFTdNY9rp5WyfPYLlccnrzGTZXlwXZ4ZdUv1w7UqbUUaKVbbfhjed+xlCJ1Pu903tsl1tOdzcR4rSolmb4OA+ysZKG2F4+IhmB3K11YB2EyFEHi8bhPbSdEPHOL4eitukHzxgSi9oyRs8Bw7ioOTqRaobFsuZwsIxx5LTt8X5gY+9gSfh6qQ6kYTSWb770I0YnG4Z3I9+/82c8e/U8wdXssZhGGq6lBHHs1eAKetQbxyF1VNZg4oG4P2BSxEptIgMe8FQxYocrge8JGBfBRKzpSfEKo6RBMJhu1OaAIhFuLBx3Ms8Chkd76dh7c13hLNyzV7yxeh+Agxv40+VP+eSjL9BuWo6WNc/dWnJ81NAH2IwD6wae6QbuHSp8VWPUQbAqsR+8qJFaN22MOSjKeg/ZTvkAnXO0bSOdcaMoakbVYCmQRUaK49xZETsRCNy7e79UYP35p37ExR9e0vWLYitz5RdkxCNzCDTloLyrgoqgxHozodA5+ZRRl6hlscZaQgiMfU/wAVuZ0j+rP+yRtI7wE5ytqFR2PoZUnIO36zfLHHqweMAf3Pp9/tbP/mapKpH5PzkNuR69yD0Yim3Lm+uc3D1VteXlN2t4GRMhTWRZDGV8pq0oOziaJkuQrGjYpASb9oq+PgDwePWYb738LT75/stMqdqp+iXFKP2fwsjYD8UpjNFi/EhKkdWqKiKdk1WZHJHEZA5M+TlNQam1kjZME9ex3Ls+D4tRKlm2tbJXzDmcEozXv8SgXT8+3g6Jgz/62re4f/tReelidZUJGoDK7Gpttjz0vPAFCXF1rQiIlg6nmbopuVx2ei3XulslVIYY1MmQKoMKp9QQWbyjFxXLqnGaJwZMLBPhwekT/ugzf0ay8sKh7dmv9tRPnJzbGs0FWoheO2VmKCzN4MZUnJECn4GmAlx+k0Qv5Lx0jvY1JaDOWlKYNAtiSZ7XYY0rpbMZfdmstnz/C68z1FMJ2Tu338P89OtSq6ffHGLCVI62qek6HQvDZLw0QhEnPGmEqAzyiEYugp4UZ4ZsQMy1VFyI+lzs1H1TOB0ZqrYYR5kDf/Lad7hcTN0oz1cXPF4+4WgvHIxMaLVGUi6VIi5GN/mc6w4h0lqnnTEr2trSONG12I4D+22ibRtQ9vzt28+wubrg7MmjUkWT+QImj0cZ4FlENzuMgfs37vPW7beKrXl4/JCHJ4948ewlTJR5nCtJspOIOsvZz8sonKulaqoisV6qzoHyhR4/2dOmyOhFuOti5zEJRm/oHLpBDQw+sj5qWXYVi86x34OLntvVBYehY7ANtr/EEGgRpctvvfBvyz0lEn9+91/yj1//LCZYmUZW63J9KBFfbSVKTxUMRpqdpUOiqmtaB45EZSO9TfhkIYqBrU1gVVU4INjI6CyHfpTxbWpCbBlpOCTp4zSEA8f1HmvlEi72Mka31qK18OB84E/DW9xfPSYvjrfuvMvbq/u8fP4STy4HNnvPZ16+wXpZsd8ldj5w1Ca2w57ztCKpsyXrLhN/hS+Su3DnhZKSdCvOJPd+DCy8J5lK0z5ICaaZVDZlYRVjUexE3kQeLB9wdTL1G9mstnz3c9/jb37nOVmXctKCLAYfpg1SzyXOUk5H6LeaqRIjKnrStHOFV0klZ1HBEAJj8FjdhId+z3DYS1O9lIrmTlXXioo6cQZM5I3VT8v3HqoDf/z8n/C1t7/OjcMNdX6yXse0mkwuidYAgyTpoRzpl2eHEQXedH0sspMXi9Mwj3knLk3WwJIKl+t90HKKdrvccVCHJNnEH7z2h/yV732Dk7AWHZeMbMXAMAx6CfJ6VTXChxn7UtHTtIvSUkNDsFkAOxujBNmty8h9rrIBmYsFPdH3y00q8p/nE5nTlk2XKec0H2K7Puz4WDskD2495k+/9F28C+W1y/VGymx1YwsJUWBUhCFG2XCrWvKReSOMCWwyRXTI2klgrUTvNkNikyR9lSZEJVe4xCgeo0T3kSzFW/aBDNcZ+Odf+j02s83wUPdcLXYqiS4VJBJBGEyy5IqfmaNeIua8oU9pnOl9xkz3kWvrQ6na0AmYcnJAXFtrtc26LkjrjOYz5cyRxNsvv8t7z9+7FtK/ffOeOBNA5oNAhnHlX7naxmpphKBGlqgprqhEr6DpEakaytWL0+Kaj092DIM6XblRWemQayGnr/ISHbqBP/jcN6eLN7Btd9y/8ZDjJyf5JSIRW1U4W+Fsopr1JQJouiU3n/sEx6e3Ob5xzI0bK9adpZFCAanCiYJ4WQd15VgvVzx/90UO+y3b7UYWcMw8mmnwUvmWMprl19FG3rz9cx4ePZjmg0389O5P+Orbv656EoK+JDW4QjycG4iMWikRKo50TWDhEvse2tZyddXTkdgMkZ2v2BxGunYtxN1qwTZ4Dr7nyAQWY2B7NWCAxaKmqqEfAkc28mJ9nz1SkmuUrPzzo0fcu/HuNIcMvHPjPe6vH3H3yQt0zYF20dIfBuJ+S9M11Ks14xDZ7yx17blzc8kYEldXO7q2ZhgiIayJaWB1BCYG+kNP13VUTcvZ+chmD8fHltoe8IctPhpOmoa6rdhtLKtlzapN7NOBToOV/QCb0XB6XOOsZRgD719u+NFn3iS6aVU+vnnGvefv8eq954nBchgC7z7Y8JmXT+g6x+XlSLOEm4vAbrNnM1ZEH8o6LVB5jKU0mMRULp3Xd0x4HyW1Y8aiOFpUmtX2FMzRqO1yMwVP4OHNR2zb3bV1/O+//B3+7i/+Hku/KAhwtnXZdpgYCwfCmlk6Ik02SXh0IiZirQio5eqQlJAOxxjqWtRR/dCLo6n8qa5blPvIgVYWUivd1Qm8fePta+v4Zzd/xo9v/5jffOc3FJlRx/4ayqHIZdk+p3RTSdknWf/ZGcyICSmLUE5IcNJnP6lhT3olUgAhqF000z4izytKykYdEoCrbsO/+NK/5B+99Q/k89ZhFQW2ymkzaGBVi85VjEHQNk3HTpWEbnIMsoOihqUgI/nRGVPsjSHffyKTb8tn83tNtkiuPL+8n6Bj/NHckY+5Q/KdT/+I+7ceXbvbQzOwtwPt2OjGPRE788aGE7EgKaMsvrIag1gqPzJHI0NWksLwJGdJUTbXmLIHqF6hLlgpVzOFYBQiWo6Qr8nwi5vv8s1Xvnvtng51z1W3UZ6DIgKlPvxDeufoIolAUqJX3lzK/aTsiOSUiDgT0iZcnKOy2PRBZdRESJGxEKmsdmFNKdJ3Iz/61E/YrLbX7uHdm/ckyshpTDJSKW23vRf+Ql3lhniZXCYMdyGdqfKsGtJCtk2mLILJxMijjcUZS9eczzz2E+IqzkxV1fzoEz/h4fGTa3No1+15dOsJX/hFLru12HEE68QhRaK6ovZoDE234uT0Djeeuc3xScWigdrIHwOcHHdsdiKXHkMiRU9bO05vnHB645TdbivGyxhxnCSWmpomTr4Ic7Skdz3fe/F7BWHLx0+e/THRRark9KYlwhPlXnT+imHN1UjBC8RfmZFVE0kh4qqKcfBYHxhiYh8A29A2hnVba8ToSSaxaBc0dk9lBS06HDxtV1FVhmGwhBSUg1MxehhDzWoJP37xfbbt4dr1b5o9P372Hi9evkbdJhoH+37L9mpgvxu4gaVbrzkceppWesA8fnTOsNlhTxZ06yMurnZSdo9le37JbnsgrRvWN445OmoZwkjtIOz3HHYDfhSDe3LTslouaGtJG1RxxDkIAa4Oia5z1M6UdZVc4s1PvH3t+pNN/OQzP+W3v/8V3L5miLDZDQyDZ9k5lsuax5sDzx5bblQ9l7tQ7FBQovN8rcu+lzdTeV/hZ1lLXRlZb1aCqsKViqoRQ0ZOJWo3yi2KmkJ47+h9ds2sNNPAg+OHvH73p3zt3a/NbKhuPfXTG7tuWAX5kH5cKQcY3mt6E4w1NE2HqzTVYyxV07GuW5xzQn43KhinznmMkWHYX7MNZdEaQ3Ced07euTYGF90F37r7Lb507wssQjfbJK/bz9yChMn8FQRZXkiT2rBuzgVditmBVHRAN+xS8prPWE6vTkwM2qhOjkjkrDqjr/pr9/CtT36bv3z7L3Fzd0KuncpVlEBRq5bWGlLpM85SLMZQOsznIoQ0v1GMZuJmGMh8YPWmrdzcdZRV5wPK8ZN/25Kiys9QwJZ56uiXHx9rh+Tbn/8BLli8pKJlspjIk/qK24fT/Lx1ouiRoX4lQk3Q1OQVZ60HlzcjN23wKHqSuQrFYyyJwjwZVdDHmAKHCUdF+5/YxL/84u8zVCNd33Joe520iYv2ip4RG7QSxoyIboNn6hWQeSq6qBPa1lzUUCvtU5CdrjxdfEoMQ8/gQ4F2py6iGc6XXi/SM8FLF9McMaiAT0yRx7fO+eGnf8xyt2C/OJCsiK9dLq/YHx1YX6wIMRSBOGONNqryBeItQ5SUGKdVPW4GMyZUQMoAxqm2yeR5Z12BRFLCZWT0uU15KpGiDL/EQq6ymNbyzU99Dxst3dByaHQMTOLJzTOqrqJOtUZDEYyIel2XXBZBoWaxoukW1I1ThXu97oxyGMMYPJvLA02t1T8pUbmK09NTHj58n/2hVxQsgbFKGp6ewfVDXrlYnPOTZ3/M8rBk3+xJJtH4hndvvsu229Bub5LdyykVlAjZWcXoJuDVsFq6JtBVhu0+sV5bdltBIA9DZNkYhtAzpgipZ1lXPNnuaCpHlRI+RlaVbKrDIG0I6spgnKH3sKojrU0MdUuMPbFp+P7NNzAjVMbhq0AVHC5Zvn/6Or9tvsiqXuGHA/1uYBikOeFht6NZdCwWFXXt2Fzt2J5vMCFw2BrarmXROWzlSMOBw+7AYS/lok3t6E4anrnZEMeB8/2AHwRFO2x7FqsDRzc66tqw2w4sKgk6Dj6Bc6xaV6Jkaw2Lu5H7dx5SDxVj7THJsOhbfvbi2+zXG04Op4xI6XlMklKsa8fWVvQ+cWNhebgLHGItfWFUeTjEgPgTsWwwZfSfQkqMVtq45DA2FtE0uL4BZVuQsvYGltGOvLd6VwMTeV83dJhk+Hcv/js++9ZnqKIja83ngCqLZuU+OtN3ZcJ+KGvUVo46o6I59UqWDsgIsjznEJNqjoha7TiO0uQzBK4H85OXfrG64Hxxjomm2KH1sOKbL3yTv/vDv8UL/QuQUrHh+cjlrtlpyKR/OXuc+S+KPlursvnqHFhTSsOxKUelJRVeuSmYEiGzhNHKpHk/mNGMXLSX18egbxmqkT/4tT/iH9z7u9hQzdJIgqo4V9E0rTTAtI6qrghjh7GWum6KM1JCtzSzt/kRmtxqY86znM8xEKVGMzksJVBXK50dNIlm1fkjh7sSmH+E46MVB/8netx9eIfPvvEaVvsqPPvoGSpfcbWc6eYrRB1iJESJ3GKcBsaQMClC8hiiqD1aEVmSjT6oZPVIDB60UiFGT4qe6D3RjwQ/ErzXGnmRuPbBa+8Fj/cjwzAwDiPj6PnRrZ/w1uk7/OM//nssRmEgN77m829/hsfdOVdxx+gD4+jp+4FxFC0J70fGYaDve3nde5GZDp5Buz0Og6cfBvphYBg9o/4ZhpF9P3AYPMY46rqlaVradkG3WLBYLOm6BW23oKoaKNGXpWlElKeqaqq6pmkbvvf1H/KZN1/jM298qvS2+MqbX+Bkd8R7t+7J56qKpq5EPVIjPFc5rLNyf144CWOQ5lNZZdVr7wwfwHtpOph5ePlPbhkvwyyjmT8vo4eMsLGqN+Oo6lZQHuN469Z7PDh6zD/9o39IFcSD78aW/+IHf52zG0/oj/qitOtswplchumkEstYIRi7im6xYnW0pHICRY8RhiiCWSGpRDbqCMtMk3sLnsViyenpbdUY09bmaYLpE7mM8INr4N+//E0+e+9zfPXtX8dgsMnymz//TV44e4HX7/5IN4AcHU9/5BnKmMUc5cWIH3u6Wp5109aSYwyJzcGzbC1dBcvGsu5qcUKsoasrFnVF5xLOJHova85GuLzsGX2iayq2o7iHzkRWRx1VZbm/PuPd9j7/+Pd/l3YUo9X6mv/2B/+QhycPubx9Qe0sfhCyo2ymkXHwhKHnaN0Bhn63xymfaLcbGQ49q1XDsquJ40A/imLNOET2+5Fx6OkaS0qesZffSVUbbDd7oh9lbwlekMZk2PSJRVcx+Mimj2wPgaud5/t3f8bLZ3f5zTe+JLB8gl//yWf57Duf4Luf+5GQmBc1N45bhph4eDGy2QfWq4arQco3T7sESQW5dN7KHpIdcfKr5Ag1bxijD0WUb3IIlCNXiSaFVQnyuThihu+3ix2Pjx7xu9/5HdpBOEQuOP7rP/zf8uD4Pu+cvsvcE7AmizuKfc3TspTRqix6DLFwH64hBmYipEvaQlts6DuMSaVp4ziM0mUbo9VrtfC46oq6bvRPzf07DzjdnfLr7321SC985b2v8KX7X+TffvIPSspHnCknImDax0bhVn3cgRBzWTBkTuGErlKuGU0huSp3821E/6NucK4iyyaU8m0zpfpzPyrrHFXTwsqyPdnxpXe/SBNkDLphwT/643/Igxcecfb5LTefeY7TW3e4cfM2xyenrNbHLBdrFss1i+WKxWLJen3Cyektjo9PaVqpHItRnNucMpZ4Wcn5ql7rqlrsss3q1TpXrAXjmKfMXCXS9FVVS8fxpqVqWupauo/XdUPdtDRtR9N04hh9RB2Sj7VD8jt/8FcYnUidN2PDX/n2b3Dj6pjdel+aQFE8U4HIxEkYGf3IMI70gzoKoy+euJ85EdnJyA6HTLBQXhOVOk8MXuF4/TkG/U4vPQ70nMMwcBmv+MmNN/jL3/06r7z9CS4WQia7fX6L3/7OX2KwPb3Zi9OjTcqiCn/FENQJkesUBygbpAzNznLNZHRDTFXddKyPb7BaH7FYLGjatiApuVRWslrSXr7rFnTdUiZWU9N1HYvFivGO4XBz4G99829R2ZpoI81Y8+U3PsfnfvFp3j6+h/exiA9JdY4uBiwxZaVAmfRCqpTW4baqMa4iGem8ia3BVEQsY4AxgI+GmEQjICEGxrlajEPTYqsG62py907r6tI4D2BMgXdu3OMrP/sin3/3M+waSRmc7I/5a2/8FgvfsVvuZcE6i7O54mZSwBSExFHXHeuTmzRtRdMZage1hcZCZcAlgfurSnpS9IdeyhnDqGhRxa3bz3J0fKIRx1S+na39FAtOf7wdefP2m/z97/x9jg5H0sE4WV568hK/88Pf4SfP/qTkc6c/OitmuhJZPlxKFz1HrSVEqCsjTmKIVM7gjGEMEKNh3bY4axh84KhrqJxljNA5ka/OGjx1Suz3ArNXtaP3YJIQjBdHax4enfHsuzf52k8/N7tZw3/2zq/xyuVdrm5rCbkP5MaMJBjGRFKnwRJKEzmDIUU4HKQragiB0Qei140zwf7gCaNUj/nRl81Svjvq53xZUykZvIdknXDPMOyHyG6I7MfI926+wT96+6/y+e1L2GhJJnG0W/H3/+iv8vPn3qVaw4vPrnjl7orOqThglE09Ocd+hOPO4VLQ/iWmpH9Ly4B03Qkpl5sozkhOY2KMOt2iH2ONqiAr78k5p8GFpF+vmgvavuU3f/QbHO2PAdi3e75w7/N89Rdf5f2b90iOsl4zqjBvYmqV6C9qy1OrjOy8i3igbGLO1SKzoA5CLl3OlUNBezBVVUO3WLBcrlgt1yzzxrtcsVisxDYtlnSLJQ/vPObL97/M1977Go1viCZik+Uffu+/4mzxhPPFmUTuTy2o3EOmVLrNHRdydZ7cx7wNR8r3rHogrqrKfctrYoeq7DQ1HU27oO2WtN2SuulKfzMDDNXAaEf++o//Bncu7wBwubrk848+z1/76V/j3vPv444qFosVi8Wa1fqYkxs3Wa7W1HVDVsyWZ16pA5o5bpaUbFG5LWQ860RXKTto2mHZ6LnsbNxcDkSblrpulbjf0jQNdVVRa9d0aVugjl0YGccDY79nuzn/1Zt5nknp6Rn+MTguLy85OTnhj//k3/DoC2dsljtqX/OJ917gyY0zbm5ucPPqRGyX8iXmd/l0oPlRH0Am+5RU5If8/qOca3Sei/Ulx7s1fTPw45feAOB4c8QLD+/y6MZjnntyh2asP3CtMDkb5Xvzf4wK3szCKUntxmlDK4JmM2LkLPVTjpRhPV2oTGXNxlh2yx2H9sDp5U3eev4tzo8uqILj5fsvkkzi0PS88Pgu06XpNptmEPKHHYlrA/Q0KpDPlX9ZxkT/nZLkeKPK4OevyuXG2eBFGzk7Omc5LGhSzbdfkbLf1bDki/c+y73jB5zubrDsl0AihhHpdzLrpIlRATzH6vgGTVtrWbBGkfm6cvSVEv1BNkJRtQzFEIYY2e93HPZ7eQR5UI2ZhIqeehaDG3j/5H1eOnuJt2++xf2T+xh1SE63p7x7+i6vPnpV0KunjqCoXmKa1wmwRNaLrDuh3XV9Tn0ZQpJ3SZPENNOEEIh7Ki6XG7dWn5ETYDvp+01VY6zlQfOYfd9zY7PmW6/9GO8kZfON977E48UlXdVwa3/CeOgZh1CAI6yhax2uaUkx0h96gp+Vm1aWrmsAQxhHht5Pc8gamraibhrGYWToR1Lu1q2fbVpBFWIYqbSNwRChqbKGT0KbAvHTW7/gk1d3ud+d88aN90gm8uyTW7z04FneeeY+z1/e4dgtSqAQlR7hDKpflKiATR/xOlaCWKkDMt9D03VNmrwOFl0NtiKl+dO/fsyXlsmp5JTYNFecLy+4c3GH15//MbtWuCRf/cVX8dazb3bc3NzERDt98+wHA4Xr9EHDODnBeY6Vt87SE9dvR1e0mdIL5X1m+vR0g4Z3bvyChZcS5Tdu/hxvPbe2N/nUo0/xaP2I5bDkqF+X03zQgqbisBRe3fzJpadfm651XjF0LXLIr11/YNfPq0df9bx3/B53rp7l7dO3OV+eA/D5e5+n8y2Xi0tOdzepQ1Vsgcbb189eNoPJaDxtO6b3mukeyvWYa+8y8+fN9T3OzL5nhlUXZCkjeST4V7//h/w3/80/5eLiguPj4w95FnrOj7ND8ta7P6e+I9F55SsWvaQ+vPM0Y/Mf/Tr+v3VsZiuSQ9PTt0Jk6vqWdmjxlcdFpyWbHz6V8/f9st+VhVtyhb/SDZjO+UumQ97w9VTkXTLaxGFxIFQBGy3LQ4cLFWM1UmvH1vld5KvIucYP3ND01l95zJfJRx2H+Xcm/Z9JhuACVyoqVvuadb+SBoMmYmMmheouMjOw6DMxxuBcTe7nMREAP3hhU5SrJcMpN/kTh2/0o3Zz/YuPZFNxNvbNnr7uhb8wLGjGRhvxgY0ffKBFl+Gpw9ncf2jaAKfPlNtgzmuZ+YfTBjJ/AmZm2HIeX3kEPgXpnkriYrUR0m0y3NgdifFzCRet8qXStfHOPaJAu+am2Xaj6UYDRb9nfuQIPuUGZczHS6vatGFcrjMTmub0DAACIr5nk+FQDWxrEbZqh1rskQSoVGRxxevzwujlWpOUXzI5r/8hR0kFXDv7RztHNFo6nwzbdstYjZBg3R9RBVfG5D8gcru2PsvLH+GjH1jPH/QePuT7xDlvQoO3nm2zI9pAFSpWwwqrlWYf5pj/svP90ov7j3REGwk2UIeaQ31gX+8BWAwLOr/gaeP4q92b6fjAOPzKAUm6dMwH3vqhEfhTn33a2Zs7zv/L7/0B/+C//Dt/oUPysSa1RpvKYjHJyh8MLvLB0Po/xcPIPeSBc1F0A1yorjsAfNgE/HCqYznx/MdU+NnXIwzmP36YN6DfXKL1+Tv03yZMkUUykMRkV76eNq5rvscHJ/sHo66nX5hd21N+zEc1v9euOemz0EUWzTQGVp0Om0zhWKSnziJOyTySuD5OHx6FXT9HAoFGmR4vCNQek/9IG5J5KhrO0V32iiSXzgef69OexPycRrCQaVOcIlvM7N5m0alCK9cDM6ZoajKhE7FWfFor5flk7sNkxAphOWmX1WvO5Px7pnGc3nN9jiWYeoc89QhyimN+3unO5FnO9MCuP7MEDpcDaCjPX75PGm0aHDbzQa/N9Wl2Jy3zn57hr5rY5dfm6deeXt8fzYmwadZuIk2tMvIWU+bZf4BJvb5mJjuSnn7Xtef6SyKSv+B7E4k6NHqttqyDyYeayJb/Px3/EbcUkxwuStWei1UZg2C1f9bcmfooTtov/6IPefH6azEHDWUt/oove8p4z985/zl+SPDzYcfH2iGZlzraJPnSRJKo9j/m7Mnf/x/8LR/cGaKd1MPEMExG7YPf9bQLMtvmf4nLXCLdaxvoU9diZndSJnu6/t65BZwbQhuLuqNs8iLp/IHbfcqQ/5Lb+CXHh13z9Xf86v17hg6lvCFOr8W5+UwSyWaWeN7qUppE52AmXkZWOMi7yWwD/9BbmSDNyXGRHU0yabni4MMW8Ic/qES8bmiSgRLXf/BzkwPwy86XK8jmr+mZ8jwwaUqfFFtvmGMNE6IyzZ88HzOYUebnBzahXEmlTyhrBs3emlOAct7S7e26s/FLjojRXktPvS+fO+XrN2VE5Zrn5aBPn/Xp5ywlmnOH5zpOOa2nWe+z6+eYD+HTMcT8Vyk7Xeb6Q/qw45dMUGVGlH/H0lfpP+w8H3zfBzera9f4Kza1+a9/efg1s4PYmaOe1BH8/89ecP2aPsphnnoEimjmUn2jDkl+38wT/1WPfT5lnrYi5kOe8bXXytr6qMeHec4fsn99NH/k4+2QRBsKQmKDvebJfbQExX/48bSzkJ76+8Om5rQXPxUfmES0ovRpZ5HJLzvyPV3jw+hEveaZJgop7jp6Pp3/L34+kxE2WVTrQ1aCMnRKrtDoZjtxHyZFyetArvlwJ+qXPoOntpdfYpzLxvHBW5l+X/ZHA2kaA6AYs/mzm28kJl9J3lGzrUgzxdv0gcd9/WJ10KYN6HokIkJWT+nNzG/iKRuQI8Hs2MzP9WFPaHpOH7bbzUWt0vVH91T+3swew/w7P7jpTg7XNIemZ1dyPUzzZSrHzJutfGbuV19zqcx0fdfc1/K52eybOUOQS/M/5AnN1pFe+bWfnzbFJuU7mLhX6an5eH3OP22vDEZTN3P9EVM21TSfduXjeWZ+IJL9KLsW12/EzLgSyUR+pZ34qCb2L3rfX/D7j/rxHA7k9RhNJH5gHeUlOLvpWTq7zJKn1+5souclbJSzZgwTz+sD1/wXDMLTv06AimBGE+QeUvjo6abZaT581X+01z76F320M37U7/hYOyT/LPxzLND4li/97Cs0Q0shOuaKgjLT1FiZXxXBGqb853wDmBs6M8mUz1jvak7052wiFNrP55wZR/j/sPensbZl2Vko+I0551q7Od1t4sa9EdnazkxnptNNGhtngnuMDaTrUeBX0isBLlno/aCMBPiJspD4QQ/14wkh4ZIQD1GqJyFUSKhKAiRjG5vGTjdk2s6+z4w+4sZtTreb1cw56scYY8659j4nIhKoJ+K9t0Jx7jl7r7VmP8Y3euDh8lV8avlxJEQ8sb6Lb7n/HWhiU/FO3qVgxf/AvjfCVx0qZsY49mJXJ8r5OPZEmoroG4OSkD0LbS5OrNP2ZYyOHF69+wqee8dXACbceXQXb3/mG7OjJqnHedOUir7GsMuEGiG+7sDZuslflsOgcATKc2Ki4g4bzftAlyI/E6MUFfz805/GS60kVXr/q9+Ouxf3NFyxGjOVNS6FsmQ/+dBieXQD88USviFxYvdGILXfgEgJSYDaMEQwSdIw5wqpG0bGODI2mw4XZ6eiKZnMzWTwAIA+dPjCU5/Co8P7aNMc77n/AdxaPbHPNcsiYui3ubAZ6bw5Am4cBIys+TLGpI6Yck/wDk5LHo0jgxMhcUJoJN+CNRUTYxw0IZ+T0GDv5Z4UI1pP6FmiVXLoKkX86rs+itEPCCng+577ffDJVbl+BAg6h5xdFLoe0+gTyndLngwq93N5U+3UnSMs7AbTgnGCA2MWBHldDMByHqq2rT157uX5A3zq7ufQhQ43VrfwzmfehWYQ36LgCfPGoW19xk61r+a2j5gHIEXG2ZYxxCrygypHy+rsTOA9EWazFj7Mqj1y/XXdt68ev4TPveV3AQLurt+K97z0gWqsV11TMDtFfdOZuv4l1/VmCjAnZOM1ri/c+zReuvEcAMa7Tz+Ap07fVtG512p/5548tOsO0u59171794Y9tDN50ehHfO6pT+Dh4Stw7PH+Bx+U83zVO3YnZ7df1333v8BVN3v//qtv6Jk3NSD5H+h/QEcd7lzexZ//hb+EMDQAOTQhlEiIzEwpx70TUU5b6pyXsD8LQVViVGf1Iy2mZ3srOyFqorJs41MQlFMOg/RZq6HC8M4jNC1Sivj37/x5/E9v/XsY3YAfevUP4ac+8dOYjwuRqrRQlRFIR5pYLEnKV2ZoHR3JlcLq8GeMtus32G42iClKcSrnEbyXmH4l0DkNM3POnRLHAePQSR4J5+BCg5SAcRzUeTNIv1ICzTx+43v/PX7pG/4FXPT4vi//CH7kV34cfd8jjgMARggtbt1+EgfLgzy3QAE2lo3SwmhZmYVJrWYX91XOApMUDfCYR3e2EzOyhCrOohZFlISpEmGMCev1CgDhH/7Bv4vfuvFrAAF/7rN/Cd/+3AfR94PWyXGIpm+08D/NLOmchO21swVu3nkLbj75NNp5i3bu0LZUBH+GpNceEjBEBBCYI85XGxzfONGCe8JUui5hHBhnpz2++LkvYr260MJmthVKHRC7Hi8f4n/+vp/Dp48/jpvdE/jJT/9ZvO/Fb9dva6gs088p4uL0VazXG4AA7wgpMeY+4T1vWWITGT54DL3mYFAJMHhg24/YbiNiBFrXSuI9GnGwDFjOPbyTUOHNNmGIjKYNaILHrCU0Dui6Dietx+UYsEWLECST5CZs8Re+4WewalY4GJb4h7/79zAbWw0V15o1IIlUBEniPD1vppVjBoZoWgnO+TK8MwdX2RyJiyrbwIEj5HpEUi3MS+2TYYMnFrKHvnYG3Lu9yKC2RFckbLoR//bwd/D//OH/GaftKd794H34b375v8PxxQkIgPeEg7nDU7cXOFj6XFdJa8vhbNVh6QkOhC+/ssXFdshJAkUIcpp1FRmgkFaiNEBy8+YJFgc3APJ55a+6JlqPHV78ybf9R/w/3vY3AQa+8/Hvw3//a3+xfD+5twaF1TWRAuudV4S7feUDT14y/f5qIDCVNY1Wy/XPf8//Cz9/4/+D5CJ+4oX/C/7gp/8oPIcJrigA1gSiIuxNoiWv0gBcMYbJWKafXNHzq74v87RpNvh/f8//hF99zy+hSQ3+xNf+r/jQl39wD+QZj5GnaiPsTht8tZ6LrbxHXhqGedHtqa93tKOvdxWBWa5PfvqLr/8Q3uSAxKJTnnr0VsxxgEhjjmVPKWkBPEOSVWlmiOTmrQCd93C+MDoRSkR9Kpn7vOacqNJtOwKh1boplr9fGIYV2pNmhRDGKPlCvHNwPAKU8NLxc5IimYEnL+/Cj6Tgwsq6m6ZB+5zUwku6AUn8T5wPymjEPe7yco3t6gL9OMDqWJj6WGosiLQrOQCk3kFwUmSw7zaSJyBYqGxA1OJ2zjdYLBYSX951SEvC5kS8wV1yODo7xjhGleqlPzFGzOdLLBYHeU5MJU0k1XKHvi8Jkox5END3PYgIjSbbkbwHLidbCiEgeK0llA+KjDUpkXPQol/MknsiMdgLUJX03CPOZqfSMQaOu+OsUQpBYvR1lwih13wE3jdo54fqhJoUICbJKLklcCIEr3MwOMR+xPriHEQO86bB0UHAdn2BxeJA9lJ1/hsHnBwucXJyC+vVhc6VJJYrxEVdLomQfER0ou3w7NGkpuILgopq+stcok7kd5HzvRcpfIwMckDTCNgzDc7D0w02lwO8bxBjRLvQyKBNh7Ntj82iwa0bcwTvcHQoocPeU85NkJLsYTDDY8TR4SHaRhy5Q3DZhEVEWCyXaMYWMUqlB0tue3a+BlKP2cEBZrMWYwS6IaJtJIHfetNjHBPm8za3GbTCckxSLmE5azCMjG0X0bYe88ahH0a4GSE4hzEyYiKQY5w/6vL6IqWKxhZi2/UJz72yxsUIIMogoo9iClRwzBE4Xycwb/CWOwss51JbxJhC23hs+xG3ZoTWa6pyVg0QkPPGAJB9UNnLzHwAsISSF1VgvozJTLQs9aXc7HB7lL+/WJxfcaPde43WQM9dbfq4nn1Ln6/XjuoklBHsPZ3vqxDKzdUTcMkhuYizxSOMboAf/bXvkUNB07/zfVTeb+O7YgpfXydVv7v6y0zdudYUEIaA2+d3AZbij/dPXsyCWWlMBVDwZH5N8AWmW4CgKe8nbRuAKpm8r11XCI3Yh0/TdgxbioxeepaF39e53tSAxEb7rle/WfL4k6T3BpQIpIQEq+pqWQo5U+eUxlyrBEk0B5La3VVlm7URp2rTDFY0LwdSNgVYil6n0hu4qrnAouWQLJkJCSNeOnoeiSJ8Cnji8i68htgB9q7cdB4TUMJFfVU4CwAQHAgeMY44Pz+TNPIhFNVvZ5uHMFqpeZW+Ws3JQCTzNPQbJADejZoUyMM5Se7lPSHFEVta4+zgkfQ3ERYPlug7yWHASYrYOeewXC7RtiV1MAOT0FY3F8nQ6v4QxNPbxue9ZImFSr4g6bO3sM6kOSb0O6vO2zRNMdFZ4jip+Z37wWCcz88AiOlvNsxycTOqpBByAeQbrZ4ZEJoZwmwuZdCHAevVObZb0bhYMijnJFtjO1+Iu3UaAWZsHOHiIqHbbgH/GM4R+s0aMfaSO4Ml+2bTztHOl+i3G92KNZG37Sk+MKOXOXDs0ESZ6+vMzqZVg2ninOyxkpBL8mxYeffgCdtuxMV5h5YIPPSiZWDO4baOGd2qw/3IuHN7gSZ4bIYEPwLOM7xqYmzOAXGc7aPk41gPfakNA+D8coPQEdadwxO3BChcXG7QrS4RhwROmlfGtbhcEebzEQeziOFyhc22Bx8fYnGwxHrLaBtg1gLn5yu4sQMdHCLMFhiiA8YI7yIuz8/hiTA/OsB6C1yugds3g2TZNaJNkoelqreNGBkvP1zj9DLCHQVQkr0VfQR8zIzKBIyLDePlR1u85ckFZo3LIMERYdsn+IXHorFzX7R/BVCyZh1mQMtZOOe03lQEUUmmZnvF5nQvUiN/Ua5mbNEOM/RNh8v5GcwAureZePqwKT+z5cuACKO8o2zaqhu1/851LL3I/fUdV7FOBgsg0TN+unyE0Y+Yxel9k+Jv+nLSVPbmVF6baqeN8FRjsDOm/b6/DlShitWTCBW3L+/Ap4DoRrxy8oKkIFCH+923X9dSbfJTKja5qSS2m75xHx9W6zz9kX+ahqnGTIVO0cTM+lrXmxuQ6PVNj74ZoQkYx0EBhs+mGeedVGhVSbpeDKtbUBcickQ5R0G92fIGNq1JnmCt5TA56+Y7gqyZEICr5Zw5YdVc4mx+ChBw1B3hqDsS1bR1BEWqmUq5XL7LEob+TpQl4HEYEFkyTuaLawIi95OCpL7fII5S/Kofe1EXg5AS0PcbMCcEH7C+vFD1ccRFOsfpTACJSw7L0wMtR25E1uPk5AZarWNgKZPZilHpZw6WSVK0S3EcAUgIrPXbanAUE4/MhWR5jBOwaeuRpUZx3tC6OgCJqxtSiuipx6YRELXol6DkNOzNUiVLxku1qeie8lL51wfMF4focQGQZJ5MnBS0SUrppplhGLZInDAMkqF11rYYug6cIlYXj+AI6PstVpcXWMxnuc4SM7CczxCHDmOMcFU9iRxQy0B0Y9aQuOQQks1b3ijVxTpvwuSSnglne0cf8FrZGo1kNl1d9mgBSYlNHhh6bLqt1PbRvegJiN2I07MOt24s4J2YJJBYK7tKtt7IBEbCZiN1o2btgMvN+UTd3bYBIXmMiTBvvWiehgHbbQQnD7cZwL7D4XHAfJEwbx1WqxXWqw7jGOFWay2B0CBB9hT3W2w2A3i8wOI4Yda0aFuPbhhwer5Bo1k7m+Uh5jNvxwmRJTfLwXym1ZoLE73cjnh8IZpZN/oMSKiJODkCFheEdc/5+KUEnF0OOFwG3Lk5EwEliRYqeIn+mbce5MS/KcUdZlAxEefExJliBBFhNl9KVttM5iz3Rq2yL7E0E0yhjMpFj0W/RN902DYbDK5HE5uy36iQEaN5ArgK56ZKgp+yyJqJ5e37Gtd08+6CEft31yx0c3U7A5LzxWk+G/UT9ZhrWuq9aGNjsizYaWcIBTzsWIr2GTnbPwUFGMCcjs204VZQEDjcHuOgO8T58hTnizNsZmscdEcZvuVqzvkVOoqabel9e4DOXRVrk0exM4TS131NV1WnLW8m2hmZ0qo3hkfe/IBkPs7x1PlbYf4f5q/BbCYHX4olmQkEQJZxEiMhiT8CFYdYuR8oDH96rOVvwwAlDJShgXJsjqa6HbOUJTvmdPkY60aq5B51xzjcHsHUcpTfPd3xnE1BBpBSrqKYNzoTghMTVLftpc2JSF0uAkBOiBkNMj7LDmlkbOh7bLsNPDmMNML7Ps/PZr7G6lDS3lMiLB4tsylGnOzmuHnztmqFitOs1KZggALsMNZgsTg7cq7/MEHpTihZUq2Hc5WDYrKy4SJdJk4YNdNoHEfJD+G1Xs4w4mJ+hqS5VBb9Ej7KkTBAIftKwElVqg+AAzkpbNVtzsVvqZlBCl41eS8BEd6JRkgsTgROJq4lpDiCvICx0LSIKWkqd7mj0Zodw7jSvWUh1YXIRYoaHigaEp92Clnx9BfbCjnjL9u+FMYikVMJw5DQeIf1ugdp/zkljGBAy5+7lKqtRfBgbDcDhsMWPoitRyrjaqVpvduROMSCIsauQ7feFoYGSObRRGg5gcij7wds1x1SH0HeYbsd4UOH7azBcjFDihGb9QbDKAXjum1Ct9lgcXgI7z3Wqw04jui3A/qtzPnBjRZtcNhsIoZ+RIoJ/nKN4yZgOV9KhV8DwwQQJaREYvKDmB7PL0f0o+zdEL3U1QJATcLJkjBrCOt+uhgxMh6c9rhx2KJtFOQSIwSHgTUDrRaizKu8c37FLK0hoRVZqoVeYzpTMAKAd5X3gEXx+OgxH5Y4o8dILmLdXOIk3izg4tpoj6qVHMZW1bmRL6Y9qtab888pq8xyXR4TTR/MtKJcN9YFkJwtH2OkccIwr2TEKiCNY5/N2KU1c5reeZbroACdnivmRFwBU+EJmS/sCJ6kBTsd4bg/wWF3jPPlKbbtGueLUxx0R5PZmly08zuX2cIElNSTXr6/PiHmNett/IaumM+9Pbh/y3XXmx6QPP3w7Qh9WzE8k4jraBuVKTM6BaweAUGqLwYHLSevUnwtmRSbyWReLXOkIy/1ctSZNdYaDmtR0Ys5JZ4ePMa6FUByvL2B4/6GIoQ6gsakj1KcylGVxCiDLyNOcmic95gvFhjGQYr/8T7Tzx0co0YiIDNR5xzGGDGoz8WsnaFppsW5mIH1wQrrYxlD27U4XB8pfWQ0PuDw4BBtY2szBTyyPtBDKpqPmIpele1AZdt4ghWIK2psdcoyUAmoI2CSCrYaKRS17HmMI5hEAxJTxDAOOPWnWuocWPZL+KRVMtU0k4wQGeB1pQaPb2fw7RI3770Ny8MWzntVoRv41cOaGCkyeBRA7FiK0HmSaJfLiwuMIzCbzZVJO4x9n9dzPp+j77vsm7QriUUaMbpB9gd7hLFBpkoTMdj2I2FMdTikOPkmJhBkrwWvFbBTQt9FeJV4IxL8wRI3jg8wxoTN+SXSeqNv0T0bE1abEQcHsvb9IOvkWw9VmACO4IkRfMLq8RZpKFIsMxA8oZl7iUohRt916LedVKmNIxKAzifMZh5u3mAYR4AjOEY475FSwnq1xnzRopnNsd32ubijA7BadWiXPdpZC04JrSPEEdhuIhYHPRbzRdYaFeElIiHoMSV0fcTZakCMsh/9WEw2gxuwHgfwoMw/MyLZ65ebAeebEU+0LQqtEtPLPACzwOgH23oepOefNDut1G3y2K7XmZltNhssFzPktDQ1Hcr8lPc3UHWFFLDsDgBIBtfVXKoVl1e8ls9HtcN2gctrPMKTnzt7lUvX811Gjrmq+VS1c7g9wmxYYD1b4XTxGIO3swTsnoVJQ/rPmOQs7Y9z9xztEtOd+7Tz4qcVSw+Y86KIOdjpuS7GwKPNidQVugms2ks8Xj7EU6dvvbrvV/VhzxeEd+8o+4B35+b113faogHQySpJRCSKn9Qbud70gOStD98BN1JW5SewOv8BeboIEwTIgJpHWFVaKlWnpGpQAGaGIVKpkXMoqDnAxjHKPV4YofmPyCGpOYdKnczwEB+Vx6YhYeCkv4nj4SaYKecBkE3MWTtgG7eOKjF0KumvBXh0XYez81MwgMVikWtiJK3AyVq3JqWk2fNYxy/TFYKVCCfM2xlC05RCXUafWUDSeDyiX4hj8fHpTQTfTDRBzMBaa7OI6YOKjZsAUsdKoZOcw0xzmm9WR0iOYM9ahI9ybR7WYmtRpXTz1/HaljgCSmrvMWmKcAeQAhJmxnq+yoBk3i8RUpMr+coWUg2J8/BmDvReCk/5Br6dY3E8RxMIPgChkZDfBIAEW8AxkEZI2fEE0JAQHGPeOHAa8LBxOD+/QN9twEn6G5omg2aQx3wxYLNeTfcxyT4TDUllsonqBL13VboM5wGMhoEBlirXDhJx0wSHxjM2nQCqmBIGENAGDJFxyMDFZQdQAIUAiiMM7qfEuFz3OD6S8ucpQZ1WxTxhQkLbeCBFDP0wLXCnLEic0MVPZdTierImHgTGuks4Sgmb7YAxRvQDw+u7PYnfS98PmM1nGOKIEJEZ8jAkXK62aJcLcYB3gHrVYL3tEZYDfCugdOQxa3ScRbMlxraP6PqY/Q3c4LNk3mHEi6st7myTVqU2U6JFizk8Pu9x62gG78x53mHghDYA84ZwvhYNCDGLZk3XXqro9hhHyhpJsJ4bUw/viMxU+aZl0lgLy/pb4IDFsJR2XMJmviom7St2VNXCNXvuDVy73b3mltJW+ZAzHSyfERFuXd7B48MH6NoNVrNL4OJ1+jDRitf9mupnKmT3BgZBRYCgKivzpNkpn7DrsDvGYXcMMLBpVzhbPHqtzl/z+T7AYBRBdjIG5qz82s3KU+ZE6XYGIK9/mTvBG7z9zQ9I3vb4nfDJY0xRw3f1CxKmLpUwgazmqveuLQqVJZCoGCAh5bBbJnGSHGNUZ01zJrUQsVpqNx8UNaUkIVhJtTZScTHh4ewBtmEDxw431rfRxrloYpRoM4s0JEXYLHJH2nJagwN5A8lPIXiE1eoCfdfJZnck5gcKANTZkdOkcipDomGQRC1PjiQltm5N8UPR6CVGHuvDwxJbfvz4JPurmJYlpRHr1QW892hbB6fhpdmkgpQ1IEmjCHIooxJxx4ToCBw1nBoGOqVfMhdqDqhTqRtA1bkc+k58U5QZmOPrerYCayXfRbeE5waRE9IYJRLLN3mNCVaKO8A3UnYbAGKfgBQxW7TwQfdVhATlAECSfx0BPCR4Kk6li0XAwaLB6amAQ1ZQbBFFwpg9OB2g7zoMQy97tCQmRXQjRgUkxA4+Nrq+O1Ke5jQhAMF7DF4qrJjmaTbT0uINMJu1Mj/bBE9S+j2CEZuAYUzoxxGXqw2a4DFvGmy6yi5BJDtND1U/JjSNV00jVf0i9H0Ej2mPwMWUEBWcMWzPKWGz0u0pous7+FmLGBO6bcTSlYy6lICu63EQZb+NMbtXKgAeMQ6j+uyYtO0w9AlxGAAs0LYBzCOim0uoD7ayPwH0IyMmwAdJHbCgFl4BSaQIFyNOEmEFoNcig9BRMAPr7YhNP+JwLpo1MdOI5nDRBjAPAnS8K+AcY1F8wYQtAer9MKAfRqmQPZF+K+RRZnEqUOsfITWY9wpIKGEzW2FPU6C8d48tVxlSJ9cb4EZcvfN17kRWMORny/hMG3T78g6+jM8CAB4d3Mc7X333niblyssYaM2Er+jDG3hJ7oz4FNq+vOaVOx+3cZZNT9tmg7PlKRJSMdlOmqMdJPUa11Vd3nt2t5M8+ZNp6vaw33t7bYkM29V8XXe9qQHJrJ/jztk9IBISR+SQtqwqExBgvhcmSSDfIgTagZHIGGXKCDJFNvankTdBCpYxlOGmbDKxy8o2k/NqaikZD8Tc4tCFDR4tXgU7RjvM8OTqnqq3kN8JmHnHgVQDY85vlprdiLSkQnFK7wZ4H9C2yP4IwzDmUFZDrLkwmRPC7Z0DnJTjnkijCvLEx0a0BVZE7uJWCQu8df4E2tlcTBneY9bOdI6ijiuCWcKME6uPqGp9UkoYhhGhCeCBM0hhTgIgkgO7WEXmsIYUj7nqrNjhKUf2MGoiDi1DP+6AOGCzWGuKbGDeLeBTkPX1XpNyUfYjMbMNyIGZMCbRSPXdVgFEizCzsUGKwZJoSJj130iAA+aNmIO6zYA4jlhtNkjsJPV6tUcB0W4559DO5hhTFIlZkDIARqTKqZUdQjQfEi4/uZZTIgAHoiCgzxOa4LGct3ChxfEJ4fBItGsXa8JsNmYnyHC0xPLkEI13aNqFOBTHAV79dIzlcusRZi2WswazBSNosbq2B5xLOXw6JQiZdQE1gevHJE60jVNNky9roePyYAyDgtSk7ZrTATl4NZ0xAS4EDHaetIAgaQJAAccO2WGdGcQJzIRZE+AHhicPp2n/na/91JyAEu9w4BewIPHkI2ZIOGSCCw3OvET8gdV3wEk4+qYHbhzPpO2Q0G0HwANHBx7LBdBHicCBKwUGjfO6zOTUhBh8BiOFJFG1BwykTr+r94rngMVQTDbr2WrnfsrC3p7WwuXfMmio9QZT8FJpNt6o+JzbtLfS3hDs+9sXT+aPXz18Rc0GVXu7mhDU87JfBHE6AgPVvP9pjRQnyFH6XPP+LEjqW6Ygi/DE+V2E2KBvOjw+eIA+9JiP80lvSOdl2r/dHlfv5t27bKC1FmNnxfZQ1Gst2O53bxAo6fWmBiQ3L2/jcHWYGX9KEmaXqCAyi84I6h9Sb2qRrFVCjxHmwWAOkTFFISDOZ2+x2o+BLauRkWttN8VYVQWVQ+NdgNQISVi7CzxY3gcAtKnFU5u3wJEAiLIJRDpO+TPztYhgrc4pGgsBUimKtLjerNHOFnBzDX9V/xMBOhEpCWNPUUGH5j2JSpwNrEjuCPMp8epTUbK2MgEXTxY96BMXT2E2P1BAJuAlsajQU2LxRwFUPV6SzInT6SjaJwI41r4iCui8FJuKo0iyzAmjhptGnWihb2WNQggT59ZxHKdCoxPfjOF4yBqSo3gCT61oWlTLA6KKkQBxiEjcoZkdKHPzSFFCo0cGYi+akUycSLdOAhAJ3gMjEbpemHTjZ4jNCXx4BKKIw7ZBjAlDLF7+pFL3fD7H0IuWRDab7JVxYrLxEmWjRCbvwkrtzkSqLbDPBcyF4LHqIhaHLYYxIbLDo4tRiuA52ZM+tDhaLnF2scGd2zcAYrz60iMsjm6Bh07NpgC3AUcnN3B00GpXZC9FWiPEASF4RDdHGgndggHflvUBAD+Dc3M0sxYuJLSLHn3ngJgmZXtcG9DMl4iOMV8mzFSr6J2DTxGhDWjaOWbtCJoD3qlWjiOaWYALc/hZg3YpIMJ7ASyhmSO0cwBetUcLLBDRLhe4cTwHM7DhSyzXDWISH6xmwWicgMHYJLjjJWY3b2MgYOlQIiOoMPb2cIF7b7uNWePRjwkPH6zghgHNnHEaO6w6ixjzk7Bo8FSxzpzQeELwDn1MuRbRVdoQ3gMm5c6QApa9AhIXsZ5dTjQSggf3gYBteNM0TT7OLVTsqd6PO/ddd1Vi3+s+88T53fz7g8P71f2c66pQ9YOBHbNh3S8TkJDN1rsa2Wn/OAPPqaKFJ3M+yShtQKFCNU9ePIVGAcmjg1fRN1ut/Dt9egJK3ii42+lxuepVqvQghq9o8unOc1dddvcb69ibG5Bc3MZicyDq3ajEG1DtBDJocM5l3xLJuKphStmRSZ1TmTHGJH4OUUJmyRECEVIaQbDCayJ5JxbTQSL1JYErYWJUHDIls6mYGIgI68UlHi8eAABCbHDr/An0fZ/NOra3LEEYQbKyxnHMycOYBWylGDGOI1brS2y7DcZxhHdekr2R+FPA10SIAGX0pFJaHEd02w1SlLBpHzQzLZmznf1tMy9F1M5OHue1ODm7KW1wROQEthwJrZ+AEU4JPjTwPmr2TSDGIUucKcUqmR2AlOCDOiqOY17nbI/X05IymBIwYfcBFuETJYV9EOdcA6rDQZc1JMvxAIHb4rire8PSaZJL8KFFaIUosDneaFiwuUknS4bL+8ebo1XTlFDYMSUQBcznS6xXEq0zawl97xC99HOMI+IoGrqUEs5OH2mGYFnP5CJGFwEGfHLw0RfCVzEIweNmhixARDLwSnrzPkYcBQmR7/oRadB5JKe+LUGAsxMN0thHxCHBzw5UixcRXUBjadJtH1kHyMOpPxDDg+FB7QJZnWT7ixtEzNCnOYgiQjvHbGlMo5yRMCOEdom5A/oDL/lsglcRgdHOCL5ZoJk7MA7RQBLiYXsJP/cIsyMEGjE/bJAaiYgaAUTvwW4O17YI5BCIsJwFHD1xjNsnC0RmPFoHLM4EkBABbQsESB6ZGBLi4QLDwRESGG0+S7I/cxRZM0M7P8By3iD0EeczALxF8IyDZUAPCSmW8HiZoqhzQAr2AfNPkdw/nhM4ZjFGZlS5HU93o76nfORTwKLX/Z01JAX1GzgxP4JMVwBkFkySkLCYxKtDsHNNWd/0s93r9Z1py3X78k7+/dHhVWnL88yArmxxOk82Ftt3SlnyPVf1zOhKHZY81VzxpB3CFFfcvngSQSPmHh88wNZvcMw39iZLInjKe+tpoqsmuNYw7Y2dJ/dMrEE7OHR/9a5s7NqPrrre3IDk/AksN4cCEDTN8m7YLgEa2qvoNGsXNOzRTCpEGCGHWiRqsd9KCnr1HalUdMkcMonER0AlegCIHHO5ZXO2tZTu3nvEFNEMkoBo3i9w9OgE/dDD8jSwOps6Z5VfVQuSxhJlo0glxYTN+hIXl+cITYOmbWEp3sHAoO+V8GeqntU6IURompncn/rcXzs86o4nEESnKjEQOYEiod3MEH3E8sEC3XY92ZNNCGhD0HT1gIXhprHDOJZ1Ssl8SQYkTvDKxDhFxBgziJAImhLCV6R+0myaQpAJYjby3uvfknE2jTFHRCQWB2QPj0W/QNd0WGyXQCzhsGIR0/G7VCWqggKoBE4jxr4DuSXSyIDiNnamwVbCnAGE/J4dl50QtqPjY1xeiglsHAekNGJS2kzBR9u2CCGgV18SQIh/O7YYQ4/5sMhFDaeEUjVscUS3WWnUkoQ3gyMaB7gwQ4pbeOU/6/WABkDyDn1kRGbwesBqe47EhIvLDjwOoGFEHC81DxAQAmG5aNAGh30eIgBpTGKO8N7j8LiFI0aTWjSxR5saDNFhkzwieSwaRmjnaA8cUpSSD5Z/BkRIJP4tYdbCQ7QcYIaHAUUHdnNwEEd0pgQ3OwBjkL2cgNC2GFJSUw0wRMIYAU9OSi4kAcVNaGQvxQiGF0dr8ztjQtsv0cQW7diCmwadl0zNBpzFKdvokMM4EmLUJIIa/r0dE1rvxMGcPIiKSM/MCE0rZwSMYbTyEQ6MmB28OW/getaLqqPeFxMNABMW/UFOkEYsAky53RyLybhyfrZSOcBuEQ3xVJrPrLjGoDXT48mfk6+nLex/Z9et1RNoxhY+Fkfjib2kAgS75q3c771rot7IwinAV99fq0cq9Z9xEZuuDNzqVkgcc2f9ArNmg3acZfiS58deyXtTP2k748IrAd1rzWY1N8Xj9Yr7di/G/nvf2EV8XQDyf8XX+fk5Tk5O8H/7+38Db01vR4oRl5fnOSrFB5GESTN5AshSGpsNl2TarFhbrdqUyBQh2JYkzVVlxHP8uIIC8zkhfY84opXw3BJyq1PtCCONWLsVVgcXePribRN0bM9MTyxgTDhFYVXi7zFis1lju91URIjhfUDTtgg+ZDBi5o4UKwdSbSvFESkOarZR80SSNuRfZXEaPQMAySdEH7E5WOHo/BjOEnIZ82xaHBwcYj5fViCRq37a0kw3r2XBTSrmeV/aJEDDlF1Oaic+Gy7nJzFW7NTsBAWf4zjCHDtTjAihgWsCIkVs/AYhBTR9qw1pm+pfQGq28s0sq/Pb+RKLwxNsLh9jeXQTi4Mb6sMirrfeEXwjhFuSxDIaAoKT7KeNYy26N2DoO3z1a1/FcnkAcJLEdkmS01kUR4qSmn61usRqdZFBMRMjUtLqoIzZMNuZzzLdcdzi8nKFYRSnXtGQMG4ftbjzxBMYxhXu3GiQmPDCK2v0lz0Qo2jSwhw+ePQxIpAwz8vVCg5iEm2d+N40Rzdw86bHnZsNAKeO0gAz4eGjDeZgjNTinJfwJA62QI/kRzUNBVBcgFmciE+WI8bIGEcxS3gPjGMU8wEI3jl0g9Qc4jgU51WWc7BczHF5eQnHEcOo4JhmSGOHxXKGvh+BocO6E2EFoUXTBBwdL+BixAFvRUNJATfvHePkcAZOCV987hxfe2GNYTRtHaFv1piRxyF5bHpCPwKhcZh5j26MiHD5HDpyWC48vvWbb+LurQXGmHD/wQoXjy6w8IT7F4xXLkZT0Mn6JcZyucR81uLy8hL9MOa15RQxDwneJWz6/YRedn6MFpZzV0RfIkIXthjdiNk4h2eXGXoRxwxWlE/BKOYclNfalzV9NZ3E1LzD5dXGpY1mWwMFO03fz9OhAoxEEafLxzjcHsGnAM++aBNQCa3AHlDZNWXtw6ErENN/AgO+aij5OxJt1ssnL+Boc4L5sJAxvF47u92t/6gGtkNxp3OgzMim2wpcuomWfPoWWdProcSnP/Pb+Hv/41/B2dkZjo+Pr73vTa0hOTm7iWE+iEe8Ov5ZLojJRaQOYBWSJyqTyIZxzXnVSQGNCuhlZp6kQJ4xcwvTNSmJYVqA4kBaJAJF5KOg3AUvcNAdSEhrPoMliRi4dvCE/svqFyJmqu12g67bwCJs4IpUOgy9hFSCYVkAQxNyDZ80mg+KMP4UI4ZhWzF/0qQaJXIoR6hwgk8OLjqE/kSeh4YpEsRPYRxAEBW65UUoafd1zsmkR51nVHOm0F9CLi0UOlWZdEWCLfIJTcBl1MRStv4hSAhMjAmJR5EmoyTSWo5LAKJpsXRHrJokR7qv1FlZop8k0oaIEOOAfrNGO1vCOQ9WqTgmJVw6954II6sPDzuwI3hKcDrfTdNgvbrAYr7AOI6ypubMqOsOsKT5H2bouq0QdSZ49uJQqf4vtVSbJTAGxmEEgzGbzcEQ4ANOmAUHDGu0jZgBRg6APwBhyIxhfnCAlhhYb0S7AsbCO3gF5ubQ6nyQWjKaHSaxmBEAAYYDHFJYonEHur8TiD0W1AGc0A0zKaHAA8BbnJ8lMBESe2wQc12b0EgG0eSl/cY5kGsQfILzJBmCyaMbHA4Ol0hxRMsCwMRyIvl1xmHEZuMwW2jYvm/BaOAdoetGzPX9nEPACYCDVwdvgkZCcUI7LrBQp1nEiOAILUcEJnS6DkJ+HJq2QeKIrh+zI3kTvGhFwGi8aXzluaYJ4DGpxrBEW2Ta5SRFAZEDqrwXJcu0QYMC2LJQBeR1XsQFeCwagBrQWtSTnrYsfYt/NRWtQSVA1Iwr01/e1SlUoMjO3qQdgmlaQDumJ0Jhh6o68Bxwa3Unzzfy+PwevNjTHOxgjuml2h4qY/svJ9FX49L1unf2FlQzjV1UZjwG1be777z2Mm1vNZf7d9NeG9ULqjb4is/2mnrd600NSCR0LyKOQ9aMiLc+oKevHKqsLUmZEcr0G1BRJs8pJwCro9iSAhJmRiKSugLZL8OpWlUXmLWdiZKjXqDyHECq/hVQM8kzAkPK0PBhe3+xf47jgGEYkDdqJf2Y+cKAACCOrjFalcfC5C11sXM+by9zls1ZCilVhJD1nup76y+LCStFLcrnfM4d4hQcMBXAkQkCqeykYIWZc7r0OIr/TQghjxMKVCRXSapMLeorpGvsSFijiHFm3kE2haEeEVtcFQD4DF6ZGVLpTZxpSavHipOux3ZzgcXhCdzMgXwBwHAAR6k8CyKkRBLKrAXtoP5AcA2ODo/xyisvic9MCOp4HIt5EMJsQmgwm88xjoMCF87zN6GktVqJoaHr4izLScw1UmKRMQuMcdhgOV8gMaMfIlyYIYYWNHQYU0LjG/jgQNsOTB79sEGKo6aidpIFFwnj6hzEN0Dk4QkZHMlaAT21YFqC4dVEKHMSYkTDHZYkn3kkEAsw67HAQA04RYRxi4SADgsM44iZjyCOQBqQ4JCoAZyDpxHe9Rg4gDjCIcEFqbRNqZMCkxo6Pp/P8/4VrQ6pb5qUYGgDo8v7Rs6WD141jU41soRuu0GfCPAAvEdDhBYK/G0VdbuHJsDBYYiACw6UCN5rvDgltF5CrlnPmvMBLsmeADWYzWYCZFgiiThB69yI02Ws94FqCjNYEHJQZK6KKZt/leKgIiRcwZNk3e3+iqHlXwonKt2ZcifKzVOmbVNqydr3glhME12/f9K9CjBUdgcwrmK6eXr2n1eAU49il/VOnywQjK/5rnwzBRLXQofqSO+yktrcU4+thgh161mbVr8v38gCBKsB5tEaEK2BZrXG+yYrvm5lXvN6UwMSpxEdzE32GQBKBlXbfjLpnKtgWiXN3YUdxx5ghg8t2PucTh4o01ubAcoJR0a0WaLJNjfzxbDvdpCjMmpztk1RQ9OkvgAAsadJREFUYn3I1TlA9P0GgPSnATKAijrNGK060oqLXnGwLb+X/siYHNLYYxilD9IvglX5bUKL2XyB2XwB3zQgENabS1ycPdZU8PUmtfeLI6b+kUNHhziqQysLQYMld+IMqGykMUlOEPGL8ah9asQ3xmnyLTF/mG+IAU4GI7KCCLLQyQo8pqigz1TpZU13CTDbh07XKkWQDwAcQruAb+c5wsNChmXPhCxluuAFZDFLwT9tO6UocxsCNtsOoW3R+AbBt0gAQmjgg4R0WtG+y/NHeOXFZ9H33U4vGTWaZqtnwiKFk+axkb3DaIJUJh4he4EBdF2H7uwcjj3GMMPoAN+2GMeIfoyYN4Ruu0IaegXvHm52gKDSuQB0D8qaGqmLxORBfi6aJpKQXibAkURSNSyAgNIWREByC4AjQEsALQhzNInhMcBjwDxEzGiE4wFMjK0/xuAOAOcwi2u0cYXRtQABAwIcMwgRgTsgSn4bEzhGnRuQAg0wDlxCG0hKJ3CoBBylCyw5fMbR52riEUDHJJpIZoyISDGhW69FsxZESt+uRhweHmGM4jgegiSLY4jDc9sEzFoG9wNADl0nZRtmsxnW6zW85SPSfoCt5lOEk2WY0Li9/czAbtGzfWZrrzBBoYCCzOFMQLoSsFxxVbS38DSqkIndsMM9r3w7T/4lE3SqZ2pGenWHEqzg5g5muOJBmrR6Xfeu7vLup5zfZ03kd7KBBaP2RXtC0+O992zhVq8DBPiK9eY6fT/nz0zz+vrakv3rjcORNzkg8SGgbVpEp2CENOcIzDFzx3FSGRXnTTVV5/kgNUiySjAlMd04goMvi8EVyNAfU+RNsJwGrKKLAZW8mfUXUgN7zsKoKdQpUTYDkf7IORgYMOdbSbCFDJ7k8NlWsh2nAM1+V9CSzTwgON9gHEaReAHAOQQfcOPGbSwPjtE0DSwU2eybfb8V7cMOUbNIHjLzkZlBrC1SJ2ADVZFLXpRKekpJfCZEK2A1e1IW+MT0xJkpxCjqbO/M/0PAp9P5MUac87eY1sZ5ALGkic9zZ/5GLpsDnWZcZI7C4Mchq7UlH0YCBk1ix6KNc0RwvgCkIUbNEgykbkTfbTH0PZomoG0XmDnC8dENEAFdt0ViRts0ClAjCAnkHY6ObuDy6AzDo1eLpqemvmYi1L8TJ/jgAefFEVd3Y2N+0s5pvRpgHCLSEEE8IjiP0C7AScxQDsDQbTHGhDGxABDvcHO5hA+tRp0FyWrsjOSKkyizRyBhuUwhgzsQYUweZ+MMAGG4PAP5Bv5ggeAICR4gsaGvsYCPjDRuMA5brFnrGgHwRw5hHhDHAd3lBSh2ADqQb5CaQ4RASEMCd0Mul+CdmDIbzdLsicFOwJRlUE3MaLz4BRFYzTWy1w0YWD4gr4loPAdwHOCJ0MUBq8vHsKKd4j8hwk3feSAxKEi0k4TLy3ELnjLNsSJ6m80Gm/Vazl5KkJwyBpihGl4TSMqZLFrhSpBCYYk1Y6yZVd5KACxswxwrCdU79/TyEy5Z9aVqx27YAxHGUpUJVrdZ9ws9rtqaICkVCKp+cH5J3VYxf+WZULOegNXXY8E1OtiRdPc6tftM/SuXMU4b2GmF919ZC8jWhapp2nnfa/l77HrN5uy+2B/ddT3E5L5rJvCK600NSAAAROo3YrlAaoclixAxMKD/ae2WGp96AEQlk6kl4bIFcJZwKxmMMWYlFNwiPMxcU/fDDlSJCtndUMXj2nlNPGYHXlFMQc4EJgYn5CRjRZXJGT1nXK0vtgRRUCIogIQAGJOWjLL5EJPDfL7EweGxFJlT35FxGEHOo53NKtNRvRx2EmRmxxjhY1Tia6HMVdZCiNbAOzWPqJRnIb5mSopVFJXTtUxasGocR2G2mtI/qXaHKhMOgJK9lVM+r7ZPMrHW/luafgGx1RyDxXyWkpYokFw1aaxrsVRAkCHrpXuOGMrUkPs+jj2AhPOzU2y7LVJKWC4OEYJH0CilqKnZrV4S6QTO50t47zHGUaMeKvmGIXtT20opqZYJiGQRNoy2EWAszE8I8NDrGAERtfsN+gt5b6CEbb8FgdE2EorsgqYEiwPCzKFtpgRXnD4TCAkjO/AwIHnRDDADvvHohwGr9YDZbI6LLSEEwuHCA+aYrRyiHxskXmDbrbG61MrQkH3TpAvc9GJ+ebTqETVhGzmgnW2wXB5gvRqw3cR85kIIOD5ZgseEoeuR4oDZwmMcIlqX8OSJQ3CSaK0JRbAASBPWNeKLYyUNGOLX4x0Se/QEjCyh7WO3zRu/aVoAjGEQf6bAlKN+TEPjwGjbBuMYAYyIMWG9kvpRkgvOFQkWcqZTzdGoMuEaHcoMuHCsKQulioYUWrWjzc/RXBMMUH1fni17Mj9LUEI1pSDWo73sq9cx9gkAn/DRCd6Z9q8yDe0yyup9GRJV464jgK548Iq2rujEzt27FlcCioN+bvjKJq6/eLper9PV6dfWh+qzHch6zbu4mvSdRvbA6tXXmxuQKDNwBHRhDbCEP9piulJkG8Auc6esrjSJPzMuuxclJJVgWTQVxqipQza3aWZySzCzjjEOeVlBisYk5N2MxwePcdQdI0RJoGaQls0x0lnOCAbDIWmSsywyAFlzMDnjyuRr0GNdIrgsmKSqDob5n4QQJEw5jmAmjIOEBY+9qLZj0vBmZkQfcXrrEZ54eDf3pxTiYzCi+FK4knCtEEvpREpR/WnEVGWp+0ESGglWMKUgNIfPQrRHjArIIeVcG5IvRiYnpwivAEjxaH8JtzZPYBbN2ZI13BsAFSBll0RzNRibRlLNWyZQqmGurKNYiaQPospP2G7X2FyeIXiHxju0TYCjJc7PHqMfB3FQhgNTwtAPZRsp44ua7O3o6AS4OMNjeojz5SnuPXpr1gSZrZ21lpGNK2cBxoh5EKDtgjHEhFELAWZ2FSOc1ygsFpnSN3MwxKcqOCdAO7SYzwnBqWZI08Ubo0huLtqOlDCOazmH3gMc0PstXr31Ip4a3w6EOdi5YtN2milXQSojIJFDSoRm1oAApGHE0G2xWl1ieXAIgoNYDOXczOczDN0GhAGN93BBMtWGEBDaBeLQIybR/FAf0Y+MHgm3oziyD0m0KY4oE+0Uo9RGVjrx0s3ncby5gaPuGK5x8NQiBY+4WZezoLQiuhEpRfRDFBACMTf3yWEEIWBAHHpQOBDQExP6XtPJK81nPX+CPSX/zxhtr8b8naQscLrnDSJM/TUYQBc2OFs+xpMXT2XgonKMPHMFY6nZ1FXgBGCknc+z7wNPPs39qZ81k2O5qwIIk5bk05dPnsed83twSR3y1TwM1DyAMj3Muu1sJ0HuS+5dJZCA98e8Z+aofssaKG2QwRMaXdZAiPdAA9aLC9xY3y6AyQRK3hn73uSXF1uiN95Ztitgxd61uy9KW9X77VBzvW5lrb4e/GSXe/1b/iu+NPlW33b4+Ht+A6c3H4qjnvoVeO/y307NOl4dVomMUXIm3M4iKpzLOQG89zmBl5h9XAErUVNPwyQQKqeJzQk2ZSmiBj31M4kYH33vr+D5G8/sSQYm1Vi21bpyb8zOsFc7nE3nigolqPMKZOmi9M0uAw/Bewx9L5JcNE1QqgAR8OqTr+DjH/51iY7Q9zn1E1CRRxF72azmZNl1HdabFTabNbq+lyrFaubxXhK1ecu0WwEZ5wjBebQhoA2NMBlvfj/ix2FJpWz+LT9MBiOqsTk7PMWvvu+XcLk4h2lpogJIqf4cFSgaVUiIQ4ex7yDVfCPi0El15aFDHHvEoRdzRorA2IM4InGUbKv9BpxGHB4d4fDwEPP5AgdHJzg4Oka7mOPs7DGGCDGJQMBhcLJ/Q/Bom4D5rMETt27irW95G27dfAKffNfH8Om3/U5Zb4iZxipRpzhi7Dfoui0iq2kQSROiAaPWC9puI/puzPvMzkkaR6RxAMeI0MxAsyVodojm4Aaa0IKHAXEYsVy0NV0HQNh0hMerGcgvJGSbkHOWBO8wDh0eNPfxH971C3jUviwAk8wUohoozcbsPaFpPQ4Olmgaj6bx8MHj4OhQx3iJOFxiuZzh+HiJm7dPcLicIzgguISDgwXaWcB83uDk5AgHB3MgDpjNFzhYLjEPDp4HTZQoaewdIfvcSH2shBCEuaSo4enO4zNv/y38zjt+DT4EpSVmarK09XomnFdwIu+LMaLvhdv0/ZjPlSNWwSBgsVxiPp8JzWDoGRGnZAcB+7P5DIfHJwAYY98hjlKawKpgmwRSIvkKCSAAF4sz/If3/gJOl4/yvfm8oGLodnbMX4uK8WaHssAayUCjQhy8e3clYGUQoIISuNLH8ORhpa3y+y+//1/hxZvPQ6KVjNVf5cxa3ptRhhHdrOGewqNKos3z4Gptat2OMexJizz9rNJc2VBfuPkMfvXdv4RIGqJeDbU2/V+LLKrPDaNMRkJ7t+W/aeeDKUco+6Uo4Qo/kz8ZlkE8Ox3rPn8j15taQ+IgkvyrN1/Bb7z/3+Pp87fJYU8Sm28heSiZyjHZTVccFPP7YLBmaXUiMQ5DlnzJqYOeSZDMk8Oj/LdaeF1Zlazy/boTHx09xGff+kkcro/wjgffWHXRNngBThAhe8pcaScBVd51XN6jHeJJ1qHpjNS7VYQFygBtcE6SQnkPGKFlzuP85Hd9DI/uPEA/22K2lUyPzjkEb0X1tA0jpKShvBpFUksw+YBDM9QOQ67xQ05AYlQn3uCDEgKbLz20vszvhLFq7g2gcugj4JWTF/Dxb/h1fNczvw+3L5/K4NOOqU2Z8x4hNCAnGWid6zF0G7jQwDez7FhNgEZDiPbGeQ0LH2UfhWaGtm3B4wBOJSU+GDhYHuP+/ZfR9x3mbQuoBiLve9XMIWmmWg8c3Fjik+/6GNKW8QOf/EPwUcsfxDEDZ0eSEGXoB8lWmxhh3gAc0Q/AkBiUBqy2oxTxU0armx5AX0l5BKh/D/cE9oToPMZ+A+IG49CIidM5dNHhbNsgss/ZRgFxUg4+gNSM9PjgFfyHp34R3/rst+MddAiOjH7rEX0AQ8x+3gdstxsxh8SoPJPEZKKJ0MDi40LjiBiBOIwInsBxK1swMXwIGEeJOGraRpKQOY8wO0C3WWEYesTkkCBmx5RGdBrMltSc650dFNljHW/xhSc/iQTG7//yjwK80LljwDnMD45A4OyontTvaRgTxsjYbKPWdRLzTiLNseM8fGgwrnrM2haD9tupdnVQsJFiwpZHeMRs4oTW8Yqj7gHny/6xfUokPixEOFs8wsfe+Wv4lue+AzdWt5SKTKVgEHKBy8JMFagYfaoYlv0+9QvRmytxv8hDryFdsc7n5Cr3r5sVXj55Ab/6nl/E//k3/nvJ0p37Pmlk571VR8hGOk31Xsjpbv9s0JSLXhrfmSCNGkxZawTRAFWfPXvny/js05/A7/3yD+CJy7vTIRIyR5iqSpDpXwZtExZQZc6dvm56Y3VNuQNfdcuVT+92C3WfXuf6z9KQ/J2/83dARPjzf/7P58+22y1++qd/Grdv38bh4SF+4id+Aq+88srkuWeffRYf+chHsFwu8eSTT+Iv/sW/KEmrvs7Loil+9X2/jFduvIT1bAWAs7+HMZKsys9aC4GMhu5rRCLqQcrJ0Az9m/kCKO8xMGO7tjC+IoVnE4WrwEVmPozII75853N47vbX8OKt54Uh6/97KLhqJ44xR+Tol9X/rsbp5VlljrWWp1xc/iUIaHJOC7vJ+CVLqEQ0MUolx8vjc3z5vZ/H+uAS5ydnO90RJuKcmc8kCds4DCK9KVJx5OCdRiqQaGDGUe+JlrtDpMl+6LHtNthsNri8vMTFxQUuVytsNht0XY9hHJVox1zVV6aAikBUAcLoI75473N4ePQqvvbEl0GOJM28byoJgBTgMpAkw2gIDZiAzfoc3foSY99hHDoM2zX67Rrj0MvffYeh6zH0vfjhxAFDP2CzWqHrNui7DuM4Yuh7bLutFKwjxnZziWHsMY4RY0wZlKXIuRaR1JwhvHLrFbx86wU8OH4Fjw4fqNysmihOGJOAEecIy+UCs1aSBzbtXEJLWb7vI6PrJTxDcn9YLhHV0EHDd8ceadggDmvEfoO+26AfevTjgMuzCzx+fI5Hjy/x+PEFzs9W6HsBlsOo/w8Dtps1NusNtpst+tjj87c+jVeXL+Ozx5/A2F9i7DbYri/Rd3LPerXC2dljXF5e4PTRI1ycnYG85F5JkdF3Hdp2jqEfsb24xDh0GLdbjJsVuq5Ht+3Rb7fYrtfgKAx87AeMvaRnH7oOQ7cBiOBnS8wWSzRNg4ElU+0YWXPCiIYkjWI2ZY1Ke3DwMh4cvYyXbz6LF4+eQeSIrt9iHHo4cmjaOdrZEgeHJ1gcHGN+cCzgqR/QbXsd41a1kT3GoQfigM3mEt12jdXlGS4vTjF2G/XHGbFZneLy9FWszh5idf4Q68vHePjqS4U+kSSeMwfYlLTC8TjmkP6czoAjvnbrS3h4dB9fvPsZjDRMaWb+HzANcEoWds8mxchpITtilsNINQiWdMiEq10S5Qo9roWU2sxbk5daWGBIivXL+Tk+9baP4fHiIay4Zjn4e8oVGLOVz03wS8VcnnmHamgqUGPUwZ7ZJ6l1S1SBMTLJstB5AogYL9x6Bs8+8WV85c7nJaRa6fYeUKP6o0LxJz6TVACU/W5mu9xm7tn0tTZblPtA0zb38dV+t6784PrrP1lD8lu/9Vv4B//gH+Dbvu3bJp//hb/wF/Av/+W/xD/7Z/8MJycn+LN/9s/ij//xP45f/dVfBSBRAh/5yEdw7949/Nqv/Rpeeukl/ORP/iSapsHf+lt/6+vqg/MeL91+Af/x3R9F125x3p7mmiayBoWZmHaimDfqDc6ThD/6EOqlMidHSe+eSqy+rlxO5EPidW/XJBshFx8Ke896vsJvv+s3sW03eP6JZ/J3o3rUl3DdInkkY9bRiv9NVztjDa59aApuJe1LOZn1jhGkD0fZ5MJwaOcHSFHU/EgJw9ALICLg89/yaayOLhGbEWc3TnHn5btISZzvZrMFwEshalWyJucFgCQ1RUn4tpo+0qgaIM7zZpJBUknQ5UgaZGfVGBOIhpwjJEfuZDAB9H0vGVqdywUDV2GFj7/zowAxPnvvE/jeT/2opMy2Y0qS7GuMfc7T4rSIGjlCHDv0cHj4PKGdL2VsoS11h+KIi7MHaGdLNLOZpicXM5CZLljnNMYBfb/FsN1g1IrG5qPUNA0cQYEowQeHFEcMMeLffsMv4jQ8Qlg2eP6JZ3Dn4h48BZivCGjAMPbwJM+xE5PUto/o2gOMrpew6QTAMdyM4FyDOPZKmNVUlxKQRhA1knyLkzIPgJ1HZKDrR4ncoaiErQc3HggH6owt+W1OTx/j9PRUTHftiP/w3f8GIOC37n0UH3j0QYQ+gFyQ9XeAcyEz1zgO8N6j2wY4H4SBMESwSRHBA7NWTUecQE0rOVFiDxdm6JmQSCLzUid+WcMgZ8ryAYEZwTtcbsXB+uzyEi+9lDBvJHHZ/YcbbFdrxChZdL/01CdwPn+MIfT45K2P4snPPYnLiwu4MAMn6VfTNABK2HpKEUgtnv3qFrNA4iey3WJ9KQkMh+0WD04fwrdzxDii7yTEO3h18mWG4wgQY7XZIAQPJqnl5NTcKuZnEo2QRhtaZezM7B0huYQvPv0ZgICPf8Ov44c++xE03RFsgc1gMpWuje/uahimN5E9mTVuhSRNkpq9FuNSfjjJBlt96Yjx8PgVXCzOsGnW+O13/Dp+6LN/BGBLxDjh37nLigsmN2SyCGRtRJ3vpwyRC42v74dSWtPoGPHO81E/oGIziYj7/M1nsG02+Ng3/ho+8NLvwUF3qM2WcVM1+dk0QvXLrYV6QJOp3JnUcvfE+2V3sXcwV+nPNFPr7grtKbWuuf6TAMnl5SX+xJ/4E/iH//Af4m/8jb+RPz87O8M/+kf/CP/kn/wT/PAP/zAA4B//43+M973vffj1X/91fOhDH8K//tf/Gp/5zGfwi7/4i7h79y6+4zu+A3/9r/91/OzP/iz+yl/5K2jb9g33IzUJv/r+X0bXbpFcwurwEmgILhZnQqBGiMWRlatN4FytZk/ZrIIqRZY9Q9DqrerUGWO1ePmAF2dOiXKgvOlr80FKEc8fP4PPvuWTAAGvnryMNdZoo3jfc9p1rNKoDfVZyKrICWipZIe8MafqPa6qdVoYLXMuTKHPupwLZYwjeASGYcQwSLXZvuvQ9x02yzW++u4vYWwGbFzC+Y1TmF9L4oSh7yS00nx5dP692sWtgu+oEpsc8AIlnROiyrCU/pyztLoMNqbZF6GgzWqdZJMWi5nL5bIAhKZt8dLdZ/HizecAAM/c/RLcgtEMloBNYYljpDQIY/YB5CW/iPcBy+Mb8KGBgASfc4aI/wBh211ic/kIs8UB5vMlOIkfhp+LqcKB0XVb9EMP5wLm84WYcuKIOA5o2pmGVicM44DNeoU4jhjGHn23xWa2xife9xvY+g3crMOLt57Ft331uxFcU6XYF0fJcRwQh6iJvxjgiLO11HTxmsomsQd8A/gg/6rDsxQ47BGHTvxirFClZfGdLeDGCIalvCcQJySOYDcAJMkHu160Raenj/Do4QMwM07vPMLzd74GAHj+ya/hmfFruPH4lp4B06IR2naGWzduaBLDETGNcNFnLZjkWSFQYnTbFeDEj4CGTqKbKCF1G1xsRnSDjIGZ4U1QqOgFWEyGluNo6DYY+ws8cbJEIMarp1tcnndgECKNeP7GV7CZrZBcwlfvfB73f/t5+I0H+Q1MOxrHvpwxR0jjiMs44FHb48aBR1TnZ46ElAZ4HhCHDSJLYccxCkAcOjHvzeZzyQvECQdHR0JjFPCFIA7+JXkeCT2KjISQM+wa0xrdiK89+SUAwIu3nsNzt7+K97/07ZmG0A59yL+/hjof1V31P/oSFNVEMasUXkt7j195qdkMBDw8fBWr2QVGN+Kzb/ld/N6vfh8Ot8d7Uv2VfbtmEEZGc/6pPc1H/XiJwWSjHQT1oWABRyj268zI9XV96HH/5CWAgM8+/bt48eQZvOv++6cA5np0oevp9I509T07H2Sclb+hnfurFakE9/0lqXqZWdKUB7/e9Z8ESH76p38aH/nIR/AjP/IjE0DysY99DMMw4Ed+5EfyZ+9973vx9re/HR/96EfxoQ99CB/96Efxrd/6rbh7t5SH/rEf+zH8mT/zZ/DpT38aH/zgB/fa67oOXVeSP52fSxGyF28+h8+99ZNIWnzq9OAxRjeitWqnVKTcYldTBgVhwhN1IANMrNkxhZlZDLvVg3HkQCyZWXPSMr3Y0CqzMiMBPEk5bEoRY0pKZGWDfvS9/xZdK7btLnR4dfkK7p0+XfAtVe+tFjcnS88htFMoO7HjTqQW2tssORuoES09fDFGrFeXmg22F9Cgc5O0P/ff8jLuPyUHKIaI01sPMbYD5nGB4BsQQZ1SvTBp70XFzZJ9dRw6jMOgDqgl7Fj8RQhI4iGfM8bqUGw2LA026VxYQT3R5qQ8I1a3ZdaK74aZXJz3+I1v+nfZGfdifo77N17COx99o+QtQZGMnBci45xHM1sitDMQSY2b0LSiTeKEcewxdGKyGfoNUuzRtEsQefRdB2INVVVH6zRKRd0QGoBHbNcbxDSC4JHiCB6FaXa9VNP1JHVbHEnY7yu3X8JLT7wAkNQXeunWC1gvVjje3sxaQK8+Ek07g9p9ZDvoGImleJ6sLwMY9P+yuQ0IJtaIGoKC8KDOulLVebUdFYA7jJExDBHtfECY9+AUMcaIbd8jJcbhodS1+Ny3fgqxkfM0NiNeeP8zuPebT8GS4OVyCUn8OYLzurdUANByD2NkNO0MFHvR7oAwMuASwIgIPiDxiPV6jfVmq2MoWkvoscgO79kZT/6NacCsneF4oQ6tmmxlvVjh1TsvIXnZcy/feR4PDl/GU6u3oWkaAd4ArDIrM4Oj0J84RpxdRBwuDmRpUkKkFo43aDzQtg04SAFMYsJiqaHefQ8QoWln6LarHBHmnPi9OQ8FWg7jOAAs3xUTiwkkAuJePnkBF4uzPN7ffNe/w/tf+o5MR3cZ4UQipskXVys79j6YiFuYsLrME69iwrtgQO7pfY8HR69gdCNAwHO3v4Lnbn4V733p2/K7JqV2slA2/WCfd+5qGfbBSK1RkfHzlWHR9bNc/61Y5+HBK+iD8oN2g19797/Bu155nwLlvWb10eoLBpimwuXXdVVrbQK4mbGcmWzKMbGu74yIshtOTsr4/y9A8k//6T/Fxz/+cfzWb/3W3ncvv/wy2rbFjRs3Jp/fvXsXL7/8cr6nBiP2vX131fW3//bfxl/9q3917/NPvO1jeEXRJAA8OniAgXo03MJCdWsmbmr8wuh9nmxDhWbzjClKKGdW++uRscXQHA12+LPGRY9VSamuzDMxkjkvav/v33wJn3zXx/N4kot45eaLuHf6dP6saC+Qx2GfZaa9s9iSGdQVM0mtTgXVewpFg1IyakJ9Z1arS6R0ploJKMETD39mRmxHPPuNX8aF+Y0AePjEq+iaDvO4hNO8FsEHhEZ9T5ix7iUCxWkUU/ZLqKuIgYAEAZs5sdruDlCpiiUEez6fwzmPfhBCLaCTAQfMmoC2mWWHWRAhpYiHB6/iU0/9dlkDSvjik5/BOx59oxYa1MlSxk4AkEbEfg2OI8gHROfQr1MGIylqET81ZzgX4NsG29UpOioRXqZhsURyPngEN8fy0IEheU4ICcPYAyDEsZcq1KnMFVPC8ze+gpePnstjeOn2s7hYnhdAAoC8quWjmNygJqxiagQI4sgb0E6AWJkEYZZeTWISXq/mTIvgIGBAg4u+gDkGY+gjQlxpWxLCe3xyEykxIkZ85Vu+MFnZr37rl/ADX/rDcBEKVtVRM0WMiTGfi7Ov8x6klbjF4VgcQBE82sWBRK9sVlLhN8wRZgt0qxVc02Lpm0kYeg36yxkr0W2StJBwuWEsW9WqOkJoGqxvrHH/yZdy/x88cR+v3nsZ7zj/JrRhjp460Vo0Ta4HNfRbAKJV6+KI1TZhru+NKcJzxMiiIfSLJThJvaPlYg6khMbN4HRPEwHb9QYMMwtb3aUAB2hote5xLdpYJGHZA1+69xllZnJ99unfxaODV3Fr/WS5z4SWel9U5MWEhp1jqmSmEh927qGqH1MMsiO+5z8qdq7fbdoVXj5+seIHD/G5pz+Jb7r/3qx13mXeQhKVR+wCj6t46M7jk+HvMOp6pq57ZW02AoCXbjyP6Ipv4O+849fxo5/4o7h3/tbpzVcqaFRMrcKkd/tuY7zWvMIMyy5e97ymveIHedVgygvz0tVm9zdwfV2A5LnnnsOf+3N/Dr/wC7+Qaz/8L3H9pb/0l/AzP/Mz+e/z83O87W1vw+++/T8iuXKAHh88RPRjTu8u81VSApsqy+yZE41h3lkiZTQhSNE7tsXjkpwLJQS4LEoRCziJtCnvMgAkjpBmO46U8Bvf8u+zdgQAoot45dZLcF8rWgIrrFaHlTHH3KepK5L+5pymF9d+cNJ52CcE1QQIw3UEHwTQDH0HQLQ9uUIwUTYBnB9e4Avv/czknY/uPEA324LXEUPPmvBMCFkcB3E6HTpYNFNUfxDnCAhakZOUn+9s4qLAofwvwyofM7quzzk6oGYxyX4q+UJMU2bM3DmP337rb2LdXuYxJEr4wp3P4Ic+/+Nw1IDIF1McKGd7TWkEpxGpAyzfQ55/IKtrnW8QmgXa+QHADBcCCJajw6tPATBGkWCbdo6UGvhtjxsnJxg2Z+jHATEm+CZIgbXEqilgbMIan37LbyP6QsQeHL+Chyev4K2P31EIvUk7IkJnoGDSeul5lZMnEx2TmjTCp7al6yEi8groZU8lmObRntRcLHYuycGFFg7Aw5MHuH/nFdRb+cGd+7i8e4k7p0/pnueslWO2Mo4AqEGEOI0GahC12q/4SKi/l2WNpRaRAijMcXyjyY0xdhiVgS8zr6q63c7uuhvxylkCIWC+8GhmM6zvrfD45qP8huQjvvruL+BDL/8QZnGmIEQEkrZttTJwwDhGFZIarOMMY5yDG8aj9QaOZgA8XDOq2YwQmhZdP8DrGQfJGfK+wWyh4FMj4kqVbM4chfV74+RZAgbwpbufy9pmELCaXeITb/8t/OBn/0jRwGaVfdbRTuYtq/SvE4gZWvumEoyyyfnrl+rz9mTGplnjlZMXqi8Zv/P238D3f+5HcevyTp6DGvtMf32dPmR0cT3DxxV4DFTASu2lkbd7xe1fvvE8EpWzvGk3+LX3/Bv8Hz/2J+HY27D2LoNUcgaLts/Wn6ozvNs5wTeF/5Ux7K9waQt731EFlGoz1HUtX3V9XYDkYx/7GO7fv4/v/M7vzJ/FGPHv/t2/w9//+38fP//zP4++73F6ejrRkrzyyiu4d+8eAODevXv4zd/8zcl7LQrH7tm9ZrMZZrPZ3uf3b0w1KmeHp0gNw/XG0GtQIBKPMd4M2rNEJH8ls/XZpTMZU1UPpWI+luci83U27UidGCxlzYipvh7evI8vvv2zhQAASC7hwc2XM8NnY5zaj1QRRksgVqJxZNlTiuChRzMT8BOzc6zLzKNGrdkcpMzFOwEjYo4q4cy2yVNKIJbCYC+881k8vHN/sgbnJ6fYHKyQHifRXDitH6PzGBqp5ZHb17BEypqDclxrRmQ1aHKfk6XqtuRbJXopqd1/Npuhadqp35AySRBh06zxuXufQO/7agSMV45fxsVygxvDk3A+IDSzHPnjQ1MxYQNaohWxvDPIeT8kAiNSh24t6vnQNJgtj7BYHKqTKiHFESF6jMOAbrvGMPRYXZ7h6OhIc+p40YrYAVenRDSEy/kpPvPk70zWIPmIr977Ar7lme9EgxZmsJStL9oX6DySATuu9/2OVLqLY6s9UfssFUZFZV/tPGMHJSaLAiF89e4XsWlXkzFsZis8c+/LePLsadkLRMjF153LEWbiKB4gviAO5Fs914WYhmYGaBK3cUxSpM43uS+T/l3R53ocFmWRSDLvzpaE5BOefctXkHwd9QZ88e2fRTffYrZaaA2bJms7EwAf2py4DWDERNhsez3Xbe4SuZmsH4nTtJ13YpSaScQIoZ1IwTExzI/A1mnCYrLWj3GxOMOrJ0XDA4g/w+fvfQrf8+UfwKI/QP3o5Mqg1/ZF/ZX0LTPGHTVnMadf8eId0HCtjK3LeDE7x+ODh5OvXr7xPL5093P4vas79e2F9rP2wabkujHuNmjvqM6G+YPs+mTUAzAtxp62V0HByycvTITsRBGfe/oTePWLL+Pu2Vv2u7ILgjL9zN1UmiqAlqr9UVEF6fvuJGcAN/VzMYFwsh46cZajqnZfKe28/vV1AZI/8Af+AD75yU9OPvupn/opvPe978XP/uzP4m1vE3vpL/3SL+EnfuInAACf//zn8eyzz+LDH/4wAODDH/4w/ubf/Ju4f/8+nnzySQDAL/zCL+D4+Bjvf//7v57uYDbMMcQBSVVcF/NzdM02b34GtEhcglq9UadHz1k4bYFUIpKnpzQUUALsuBwhLT/OnDCqet8qyVqIVC5+pT+ICPCEL7zjs3h09BAH20OsFpfyfiY8PniElbvErJtLMiyVoAeNqpH2OEf5CAgRBz8LU7MgH2YpJe+1fDpp5IAcGiWeNBkgyHmkaL4DBPGREADhPauzaMIQO/z2d/wm2m6G5CKG2QCKBHaM+3dfwVuffwecD2hnc42gQUbvhTiqQ6RqXYCSVbSALANiuqbMJa2/zkOKkrBNzCAOi/kSbWgmDEXKEhU5gQG8cFOcWW+sb+N0+RAgYD4ssJpf4KWTF3Djwd3SJyJRf4cW3kseEslHosxk0BwdBj4lnEScGDliHLbouw5hNsPi4IbkZ/EBKQ66Hmr60JBj5wiRoZFIQ96XRJSjihwTPnXrt7ENGyyGJTbNGj55hNjii09/GsmJ2dFVhCUzh7wOkAJ4eg7M+ZFyLoZy1RJQXkugOO8hk7cdqUvbywRLM41CQq6fufdFuOThx4AYRvjoQcnhmbtfwge/9GGEGLKEx2CQmktLLaapwCE8mifSt1VOFudjeVNW35gmRDWRk/GCkBUKeQ1s9wIehBi2+NLTn8Wsn2PwA5KPmPULdM0GX3rqc/g9X/r9gDNG5Atjqqe3stHbzBfGUR9Rq1ou91oVaTsbBRbq0HJyv+reiRAj7bx84wWsZpeYDXPR2jJwY3UTL958Fi+ePIdvvP/NhVTYXsmM2bjiPicvvnv5x843ZY/saapqBrn7+y5HJMYLN59BogRKDuwSZsMMLnn86nt+Ad/1ld8Plwvo1Uh7n1Feh6P3O3aVGVnOzhSUZPgDAJrxG5N1JADbZoPTg4cgLQ8CAAfdER4c3sfnnvoEnjx/qhrDFd255qJd5GRjVIEqA4aK6eX9zgwJ/Kc8D5lu7Ix7b165+u71UR6ArzMPydHRET7wgQ9M/j84OMDt27fxgQ98ACcnJ/jTf/pP42d+5mfwy7/8y/jYxz6Gn/qpn8KHP/xhfOhDHwIA/OiP/ije//7340/9qT+F3/3d38XP//zP4y//5b+Mn/7pn75SC/Ja13d94cP54D718C24dXkb95cviRPmOEqdkChVTcdof0fNa6H/pzqrHFBUksjAwmkyLq+VXC0E2OqymGOjSbPmDInqPZn+kcPp8jG+9PRn8Qc//uM4Wp1Is4nw+z/xQ1i3KzxaPNTnGMMwoO97CWnVl1keBOtrjFEdI0Ub4iZ5P5Qhj1GTPRVJ2w514Rm+klYkMsYqzIJUhZ2EcL7wluewWazwez76Ycw1EdoT9+/iG77wbrz81hcAzV0S1EcihxqigAJJGOZzeLGp+B2V5GjeB7RNgyYEhNCgbVrM5zPMZy1msxbz2QwHBwc4OjrEwcEBDg8O0fhGzWklF4edlaRmrAEjvnznC7hz9hR+71e+P6/V933xx7DcHuDFG18DOArb0do1oBI+6ELI88Eg+GaO0C7RLo7Rzo8wX57g4MaTOLp1D4c3nkQ7P8TRzSdxcvNJECwixBJaRaQ4aBi1hekKmHQuVLWaoARE+hAR8etP/Qo+/MIP4n0PJfz+oDvC7/vaD2E9u8T54anul7K/CapVs/+BbJJylsUY4n9VrVS5X9eyVuHX+XocleccyjraPUaInWadfXT8AA+PX8Uf+c3/E9pBzn8zzvCHf+O/xcOT+zg9elCIoZW5t/1RtXtVngSDMKR7uWnanKPIkunJeXH5jLvqbMu9Nq5inrJx2349XT7CZnaJ7/ri92LZiSbhXS++Hx/8yofxO9/4UTCx9nW3vxkfyHlVfzBzRN53iKzJuuyC/F/F1Osovhij5OMZh1KOoQIPxttfvPksDraH+N7Pl4CE7/7K9+LO+T189YkvINGY913WfrFGvhmBM/PwRNs27e/eSKp+1/2vv9v5dfLOTKuJ8eydL+MDz38nnj59GwBg2R3ihz/zEazml/jak1/Mc557oKC68NJqxg0F2oGvWpysC0+ZbWbJhchN2svD5uzxkYHe6eIRNu0a3/+5HwOpSvl4fQN/6JN/HJ9/6lM4Wz6+nrdnsLn7sZ5lo71Zu4n8d9Zy1pNT04wd1MU1iMk8JhUtdlblXtPX17j+i6eO/7t/9+/ix3/8x/ETP/ET+P7v/37cu3cP//yf//P8vfce/+Jf/At47/HhD38Yf/JP/kn85E/+JP7aX/trX3dbYQyIPsLHgG/56gfxTc9/Mx4cvoqYkkZwjNm51HLcFGlod6Jt9grqJxCs7HI5jHb4K59w0rwaISgTlhwBKUaMY8yZSeU9Ca+cvIgnHz2F3/O5D+NyeQEAWHQH+J7Pfz9urG9hc3yJEIKaH0qkiBFHITas50WlZZXYG01e5lxA07TwjeTDYGaMvSTqinHqXFtzbAu9lf6qZsPUG0bIPOEr7/sCPvRvvx93X3waQyMalaPzY3z7b343Lk/OwEg5BT9BU7WRRTNU85mgzoopa5PIUviT00q5fpJrhXT+rVJrTvdv6kIyR2UL05YU9DaGlBIumwuczh7hx37nj03Ui09c3sMPff7/gMeLVzH4IZthLJGdMfFsorE2nCgbjeCTzfkg1Xzb+QGWByey/+KIsd9KJE4v65F0/En3bhx6LQ2g0MCcq5XmeOfw4OAVEAh/+Et/HD5K+44dPvDKB/Fdz30vvvz0Z2V5Y9SsoNaO7e+y77PdmVEcpakw4yzPaYXb4qNlZ+AKwFJLTLklzkwYBDw+foCnH70d3/a17863ExO+7Znvxt3Hb8Hjo4cwDZqtcyaqKhBkR2XYXt2ng8Z8CKU4YwZkEOAxAWqqeSn3WGVgl82kdt9Xnv4cvv0r34NvfuFbswQbkscPfvKPgEB4fPyggA/tnGirCqOwz6w/9n5rfG8+60mEDV0dbzVc3IpOWpK04hhcaYIJGPyAxwcP8YOf+UO4dVFMGy55/Ngn/hhOl4+wnq2xe5nJtaQOMDZVzKf74KQGL+U9YEwCAYuAWD2W16V+XSmY+XjxCN/3uR/FjdUtABK1+PaH34Qf/eQfwyff+nExj5Pqtozh8v5u2eft+3CIqo7VtNRwTGb+E2BiYKDaR3oPg3G6fISbq9v48Bd/GEvNPXI5P8f3fPkHcPf8Kbxy/MJEYLyK2++CjwJ6qwHVA6xRcbVJM3jLZ2Vnguq2868KSKv5ovzfG7v+s1PH/8qv/Mrk7/l8jp/7uZ/Dz/3cz137zDve8Q78q3/1r/5zm8bZwWMAQIgBT736VnzD8C68cOfZDBoYusl3EochG8+p/G1FMysuLQwzafHeaoOBsiR5VTguOQfPjMgJpFJdligo4XJ+jt//uz+EkQYMQfwXTlY3cHNzC9/5lQ/hcnGZgYatttNKwuabIJ7yxkBcXvYcfUOiKaE0TIgaVynYhXGro66zsugyB1I4V6hEylK8aGDOb57j3nNvxTd84V343Ld+EkPTAwzMtjN8w5fehWfe9SX0yx5taOHIqaQvReVk2jknd7McEMz1tlUTiR30pL4mNYgyQJiFvULY9RXF54LqdZXntmGDdz54F9754N34jXf/2/zWZXeE973yHfiE/01ctmeY9UvJZUGUQ6ONSQljEqAjdX2SpEH3UgG3W18gxQHLw2MBqQAYAcQCwMxPh/VZWxtLkCbpziWE0SlATAq4AMZXjj+P/+az/x2ONzcRSUJmHRyW8RAf+eJ/i3/9zv8vvHcYkvlbIKvwrTq2SUcpHxadyyuqsO5zeTchi8XEMHV4nLwpv4gQ3YjRD/jglz6E5XAwefVBf4jv/PKHsZpfIoUEn3wt2FeSdf0HT/ZDES6q3uXnZS+5HKWm81K9fipNU/XKelyMx4cP8Ac+9eN49vZXNaGe+IPd2NzCH/ydP4YXbn8Vdy6enJgCclvVvrzqX0LRA9T7m8uIyu1EoOiUoU/9WfKbFLTk5I0svhdPXNzFtzz/nfjs05/IT2ybDb7h1XfjdPkI27DBIY6KdoSQNWBU92mHd9dmu0qsmfTKviusdmej2UNqOt1lhsyMVXOJO+f38M0vfCt+/V2/AjDQhw596PDBZz6M2dO/jUeHr+KJi2mEZ2m96s1uJ6v7rmKsJQ/LtQ/m/k/PUdnQBMLl4gzf/ZXvw43NLZxsbmK1uMAYBiRK+MHP/mF84d5n9GwxJnMw2dtllndGBQJNPrump/ItVeYzLm2UvWj36RNE2OtWNZ/XtzW93tS1bE4PFZCMDZ44exJvffB2PDx5FUZonUl5OjGiqVBk6kolyyx96GFNuYpsmUZmBqmdX+iXWjxtJxhYqJB9znRq0oISvvc/+21YDEt89d4Xc5jdjdVNhLHBO1/6RlzOzlXSpty2XYZ262iSWmoYx161CgEYBsn4qg9apln739LYww6UgRb9L3ECj9MIEsBhuT7AN335PXDs0c87xBBBTFiuDhGGBr/3P3w/1rcvES5DfjZLUIyscXDO5RoaKUtTAMFJPJQxPNbsu3pQ8u/m7csV4eNyaJRuSkSGapFMXT/HEt/53IfgOGBdOVTO+wVubJ/Ae+5/GxyHIgU6yc4Zcy2aFikOIJfg2EkKc53nodtie3mq6fbnslcUCMTYg2OEVKpOkl4+RnCSVPeJGX0nVXCh+TegABMoY4sc8Y2P3oPjzS2ctY+kEBdEQ9Ig4FZ3G9/z3A+gn3Vwo8sh26CasVUAO58Geb/YuSlHdtWsvxAqA/ZTYgcAuXw6iho2S3dU1unu46dw5/we+qZKGAbAkcc7X30PHhy/nCU+hkbqoPh+1dDA2txn7vZn9bcFyFlOoh02SDq+iWaCp/cRgK7p8J1f+X043tyE52fzTCYXkVzCWx+9A8fbE02xWOUPshmxcVQaJ+FdqYDGTNEZNdzjDCgrnwVHQKpAlvkmkayPFJ8saciZGS46vOul9+FkfROLfpnnYDNbwaeAD37tQzifn2VtKWsYPhxNZk3JYl4PmfJqhSYChY3fGZa6BqnYJqpnR28gyPiI8PjwIf7gp/4o2jTD0fYEjh1GP2DTrBFig/e/+MESvaLv2wVP+7y0+mSyr3bZaz0HZKjqNV6+fzEl3L68g+PNTbRphhvr23jx1rNIlPDo4FV80/334luf+07hFzkD944QttuerkUG11yvVklRYVqsPZC722/a+f5KVEP7n+cFfv3rTQ1IsoYkBdy+uIOQGnzLM98hB84Z1q7CGAEBHQCcMoiKOmZTSK7TQuWQEVBRVkZkgChmQlIz+rIaXB1Ik6oDloNM++OjR0h6Ko5XN+Cjx82z2zhojsCOpXw2DITIaxNTsQNfI42McQQPmrSNnErn9hKCsht7CIrxIeo++Yw0RXrSCqs2D94zwkZCaFMTsV1qcqnosFiJlHvz4ja8C/BNUCdGIbAxcgZzeTo1ZTwrwMopsSdHp6YPxRyQgaYmmyoXTeY++zZkdbzDrf4JmQ9P2M42+cn5doY4DHji8ZNw7NBjDa+F85zzcKERx15NtMZxBBNJ1ksGYrdBv70UnxnVlIxDj+04IA09xlEqBCdOCCEgqW0fZDV8Yq4gPQwdWi9rQsocvSa2cgCeWN8VhtI4CVHXNfTcAHB428U70fEGHXWQQFkDnHo26v1fAQjRRgHkeMK86tmVd7nJVztkeeJHx7JQE0AUUoM750/tE0F9mYfDkxdPV8wY2axXr3GGJfZuLkSYq0xYFrKf9w6V3VX6OYUmmWCb+rsC1kRAGFo89fitAIQOmYYkugh2CSEF3Lx8Ine5gJmKoU6/gGMApNWAJ3NTRNCJgzGsY7K/maBmM+MFlNfqKnPb4fYEh90xCITFUADJul3L1mCPG+ubUGQMT5YZ+SomUwS5SSsmmNTfUTGH7W8k42oV8cP0lsxoAdy7eAtmwxzkCEfdiayDA1btJRJFtHFWHqTSBKN69z4igd0xvff1mevuiWGduysvBpgY9x6/HfM4Qx96nKxvAhCN+uPDh6D7hMV4WB7I03RdX3bO926Dk185A8kK7pV3X9HEFL7sMqL9B94YHHmTA5LzgzOAgcPNEY76YzjncOfi7qR4nJKtzPBs6iQTq9xhpheTOEyaJ1Cl8Sj35c+AAkgE0QBABUyMAaAQyUwsCWeHj4uGZH0TLbVofINm1JBEKu+DEhSREs3XwkaohNrARTJ1dMiOeomLo4QRU3BFIMwkxUmzmLZqHqpNJZRDb4kIMYzYLoSZOyYs1kLMPHkc8KFWFQX2D0C1Qas+WFl6GZYxhn0CkCW1io4bsa2woDIRo0Dyv71NCKL0b9uu8zOHOELQPDZMFvUTkYatZNllRggNUhhAWnLA+YAYGXHYgkkq+YqJTXJEjFFNXgwMw4Bh6CDRQoOm+R51vZwAknFEYsJ6vcYQHIL5jxijQik2SABGJEQUDYlPQcGvR6AGPfV5/9RALu8hrveQnBIyh06d29qkn/ePvi+j9woE6hJWDAiAo+psGMPcd2Or+azLxFw+qAtcTreHbWjtnBZ+s3PsvJsQ71rDkoXfWhN4LR03Iq1aWJT3ePbZhySRRPeBaDIP+W4DI/o6O1NlHNBnOW9fA1fGLPbeqZ0skUKFvUwiI7iARSKCr8qhz8YFLP5z06wz46mBUO2Aak3sJb6i6ffWnxp81EBSh7Q/3xNMU+iqq1LXg4D5uMj3Hm6PQOwARKxnl4guwo9FW5vpwDVckiaLX+0Z/Wmj105V/UMx7aEe+u5GKnxJ/mA4eCxHpZ/J42RzA4Dso9Plw6wtY2sHAmKsivtrayAqYFG5AeRxkOlKdvbfzgKQnnW+5vurmpw8+wauNzUgsWRQ9x69Bc6cechV6198SSbmlzSVsmQddpW25ZDlo86VBzEAqOnECLH5lagYNdGeIDNnyhv38fFD0ZCwABKflME5tembtkUZY3ZonVT5ZZiTqFMfjTGOCF4quUpBLfETcW4q0WYQRWXDMICmmWGMEmacKok0Az11NBkwYDMXc4eZbKz/bQglTqNCH4Qq3l3PbiAHrv18qD4yU7+YSntepTs3E53LhNaiGgpYL0RVzpL1jbLJpo0zNDyH95JSHpbpVxv1gDjHktUkIdWAdCByCE1AMz+SSrJa0CuNUkG2nR9gNj/AbL7A0G/Rb1cYhw6ces2rMVpiVzB5HBwegzliGEb0bCXrCT606PsOs3aGxayFc1puRs8CsYNLHgzRpBnI9t5XDJwmxN1CcQFjOApaWKXt6jthbjUjtJ9caBSm521ijKBCUCdXDRaAkkgqmyRs7XcYhe0VZfA1E7R6T845LTRY57woJqzi8X6FrsbOXflAgdSUqQLCSIoPSURyVQboMgPliZr212+aMOjyftb+yHc8YbD5PFExRbCBmqr1qUllui7EhJAatGOLPnSSG6Y+cCg0oyKxYLA6ymrNIdWuXs8k9VxbL6o+MZFq0pTucNlvpu22NqnqW70+h5vjPObV7ELTQlQwgid6kXyV1+0DiCvu3r+lWsDp3WXPTft71UFQQLK+pcAx4dHhq6gNddjZU9Ax5UFwGYXdY7xjb2RZJV720P7LdUxcD3Ly9ivvn6zKLmC95npTAxKbhHsPn64GnBGIokmFI1ydD530MmU1GLFPZMJzbgDmifq3NC+byjQR+cp+GkAR++X2xBLb/fjwEZgSQmxwuDkS502N+RYbrdeB1AtrkTd1Xxjei79D30uK6kiEuFkhsWRLdd7vM4KaGOrGdI7Q95vsz2Agz1k4MzPM5MMNYbMUDQkl8S2BzrmER2fSX82r4RmWOkHO2q8WFNVWrkxhktSrWilVnUskj5jpWOfGIjDqQ+FU65EJIBHYifMeAMzGOQJCAZQOIJ1XQrHFhzADOSc1a4YtmKMmZxMAwgCa+VKSqCGhaRda90YAnfMN2naBoVuh77c5fNw5h83qDG07x8nRMbpurZOVcr2hlEQbsl6do9tKnpoLt8KQBl0HIG0HbLey9lZvyVu6fN2TWV+mRMpUykQEz9MIMluZbPbjimjzlLnskrwKAtoblH7VeSwwPTsQUOvYFWC0x7brA81lDznzu3BwTVvOOhUIkaW8DL0qlfqe9rO0MWnOWq0e8aloSKJL4JzgqvJF2SPMFcDJ5t6K4RiTZM48I6UEl4rWY/rKmlntgKH6vgkyAgzJ++TQjjP0oUPXbpCQ4OCRzbx81cuQAWEVaI/rL6p+1l3irN0lXc8JpiGCI3/FHCLvYwJwtD3O67CaX2TtoYCuur/VgGrtat25mvZWe9AK5NXmtgKstCeTtiqfxAwUUf6u2iR2ONoeI8QGox/wePkQjIisj5s8uDOLPPlnr++736ojQdU+72+NvC+rPup80WRSdznpVbDvta83NyDR68lHT0lq87yVMSF6xURRS1BcNgVD0xnbtWNHTsWRK9e1UeLNKOFbjuo3lJ92GQFxJCFp69kKIGDRLzDr5gJIbFMYXaJCeOxKKdVvhRSVC7nOiWmJYpI+W64Pee8OKqn4ikg4qQLbakKxompRIntyEbuGssmGmDIgySatqi37SKJrJP9Gye/iRLKkqk2jRlaI0Ep4110nC9dUbQg4V/5lbZSy2aHkwbA6LkQOXeikdgQJIPEIqmnyGr1kwIqEwTEjphFpZMSxgw8NZotDIElaeKfgz3lJO9/MDgCob1LskXjMNWpiHDV9fIvQzJBiD44jFoulJKdj5Llh7zR9f4JzB5inEr5JgXNRNweHuZ+jCUFy7gwpO0gbLra5MUKTAXA976hpckWQlLBKcrMdc8tEk2JvmFJbSexlZ1DhKtFU84gCBkyqKyaHWsov+8FakttqAlvgV26hAgb2DO1ow/KQVCCYAPe69gkrHCOoqUyBKUUwpdIFbWzqn1JAYH0uJ7OvzMz4ntAgX80zK8ZS+pUJR+GxFrFW5mjSUN0bUHKSD2YBREroQ4fZMK9vm15UNI1XJ5Go17/Qzqsv3Q92Z50+taLZ9XxOn5Y9ftgdZ03VanaJ5GOedzP/FSDBO21Mu575hWoHJ8ACwjemaV6vgGIVgDfhpvoCu08Riy/PYljiIpxhNbtEF7aYq0nnil0/acx2dhlj4Ymlvco/aQd87Z4A6/dVY2NQLqR35dgnb3n9638VgOTOw7u5Oq8tkNvd9Ao6iialbP7y9xQA1FK7Ja4uGjG+knjb5RyhtqzsKoNXixX6RioYL7ol5t1CtghPHdmMUFtiLJOSS59JS907yRyazRrF38MHIZSWtdYOdw4tJjOL1O9FBghQxkAKIKDjjy5iuxD/C2JSp9YqiRSLXCV+FDFrNMwMxGNECAkuejRBNEwMhieHYi6p564QI+EppONUbUZVBLHE+Ms9ZgZLWiXX5nMb1tmPpx3nWpaGAY1yyLk/nMzhGEfE2IFZ6s6EphUGkaOiBKRKHjVJWMc8YujNrCNJ21JihGYOkNnDHTaX5witpKmX2jbmUV8Ycz9IqHATNCV8igiNy9K4+JA4TVAkCbFSjGAnYIVAOR9JLieQgQgy8aTyR9m/xv+MCeEKQjNVQxZyedU66n6QCLbpmwz0YPfTfHzLGeVM8GtONQVDtNvbHLZfHruGz03a3tXk1YjDc1Dfhcpk46j0OU+maelKi7UVf3Jv1lbVZ7K+s3qy6l8tRXPdrk3aZJ6qaVENiTSdsPVrzPr5PoGbaI8mPZ5OjbaRMSDZfEzXq/R75522QDqJEqughUPlhkkPmMWnMGtI1IekdJumY2GjEbw/xqtGl89AGeFk7GyrMd1vWT9Xt8VV93dcBhb9ARb9EheLM3TNFpfzC8wvlzbKzJXs70kbkB0l/IQwQQyohYs0PU+vMf7dLVyuVD4nuuqGaZuvc73pAcnB5hBH65MJIRQmogzN5l4Xx5iV2SCzsEBFrTuR6chNzq9JIpYJdO/Ka+/gPSHGOkU7ZOMxYzW/QFcBkkW30Bp41VarELrkC0ma7EhBl6r6Q/AwH5OmmcGkOivwaeG+CQDFKnV+7rNJapYlVL4k58U5MzF8o4W8xjFLcyMN2Cgg8dFjuV7mTJj9MOQwaEmQ5sv0kFZdJkn+klLCGAkeBOcSYhINgpiJCsovC1OtiRJ3RoIV5yVyWaHqqTCtskaWDhlYN+ucpnk2zBD7hO12ixAazJsW0IOd4oh+uxEw5TzaZo7QzCozloIclfaZJYw1pRFs9YQc4EIDJAEE3nsxMTnCdn2OYexxcuMJSIZYWfvttsu+O+Qc2DlJnc9AEySaJiLmkEZiAo3iHDuOQ4mSIie0gxnjOMqSu+KY6X1l98/0UoiZlV3IavGKmRKQo1s493rKLu2PKdQ2rHiNZiIVaj0hc6pNMO3MLvSoqWqRimUc08iUisHlXmMHOMmYc3jrBETU7cr7ax+SSLIme+YUPZs1yBDzrANxbRaxB6sX2Dm1/mYmQAJSjJ7xtI/llylTMFhZS/yOPWYKSBIlbNstTjaTh/IvE9lu/1dMouWuZHaFUXHloU47d5RAgBrG1IYTuTNF8edbbg/h1B9vNbtApHgF9Codns7AzljN4Y3tXuQ5n4y70rjlnk8YR/XO+nTspa6XvbTsDrDU+kFd2OBydoEnLksOFenObr939lUuM7A7qJ3+1abCa2bKZRq6v+j5ad2/u7vvNXHezvWmByRPnD6JkKzsFoNyJUldmkxxKs1HVtmXyUqVyrhWOVO9qer3wVTgU6/ryYbEvm3cJBbRkEil32W3zPH/KdfXmT4DCBiSQ0caVip5TsZxxND3qsUQxmh1PnwQB02Xmb+Nj8GxmIZcUf3I/HkxPRBEyyGMbUTFXVRDImOYbRaaLZQBcoia5MscbUtCNwl39T4IxkjTDLTjmDKzns1CmV/b6SqZEVUfUnGWtfwq0J6nVMxOWQmglZoZhC6InRwQk80szDFfHMh8kWgahmGbmXjTzvP8siEgSLiu5EhTE54Pkm11HIppg4E0DrAcJGAHch5D12F18QhHN+8ieIc4DECScgfbbovQznCwXAgYjREpJkQCZu0cznsMiCUPCTxaN0cIDfpcrVkAjSV2y/vQgAdHqYZrwMcAqRwG+Z15j1RNgMcOmK8XrVgjGBbZZN+R7uvXuyakrUgRQpRZ6nhnwqj7gGFChp0fVHuHUCagGlfeZxUTsWeuoKwGQMCSnTVH2bikhTNrFmq37sAolr06HWx9HqfCw24RNAOPOePpDtOTn5XTsUnjtrZmMmLe0ZAwurCp2smrOO3AxKx2NfsRnmegjyZzO12A+uOdoOc8gOIHVU+F1eryyWHZHeJycY51u0J0I+p1KO+rmOtV3a7PAF7n1snWnPKMqy6qfmSzZFHBYTEcYK48oWu2WM8usbPsr/F2peEkyShjGgupVJCl20D3et2rXYdc5LMwGZsdDyq31CMvPaRr5+yq638VgMSxg9e8I5J4cSc/wg6HL74cwsyS1rOZqvntqlatOuPlmKN8qJ+YCrlWg0/aB2G9WKHTDKeLfomDYamMm00oU7WyvlsjJqImWHPOSSrosReNiRLX7PyWGJGjqu4TQttqDR4Py846GV91GMRiEWHJmTLB2pmVbtYhBnGaPFgdgiFF0yZZZVU6z6p1BmIULYTVypGipJzXYhxHuHFEioymFUAVY0LwQQoF6u2mrTK/FnJqlFBiJpEmAqbs88hJkrGpCWrri4akjXO45DWxXINuu8HQrYUEMqGZLSQ/izrXxhg1aaoU9QNDImwcwTtoITfRrsgUJ0mmBtZU8AFxHLC+fAQXWrTNDJw6Mfcl8Y2ZzWYY4ojLS4l4CKHRIoeMcRxkrEtUgMShoUaqy/oAQLRwlkiv+CrYnlbNDtv6mJPlzkWkoKSYFwDs1uzKJ2HKNAsQqR37VPekLKYGAJicnWprWleUL3EeRmZdXJl1qh7VxJR3X4hJ05WPnhHTidV/cvdEuxCrKBuKVSXv6imG+D5Vb2Fg2gGgaq/Y/6cwhmHakkwjMlCb4imXF8SYMGv0lE0wMqjYBSRmVs4zUGxkk99NOLuSVuwMsLhdGDCZ+jjY7VPSac7tsm/MZ6zMF9WDxfHmBPdvvCjJ0epood255umerCefJn9MZn4KlKpeXHvVG4hZM87q5zqPGZQAWPZLyV7M4m+4ml1co5GiK3qlnzAX8zgqAJJfsjtgHTFPZv2KAWAfZORx6F0V9pTz98aq1LzpAcnd06cRuMlStl2T3/VfnnxnDq7ybclvACBXEUXZiFm9ZQdvB2HXC5XPqaqWaccRlYDLxQU61ZAcbA/Ff8FJwqscxgtCrdLmJAzbanpY1VuLoMjjZIC8Q4B4pIvqPsK7kGuC5ORqWeopdkmRNNKEsHMNh/VaHZ3njw4vjgEg19Qxs5iEDo/ZvFTmOWEcDQi66kyoVKt9jKZRaRrd7+KoK4DHtEkM55BrvgDiEwMwQrWukoBNOFwCg4eIS7qAKX5nwxyUCMMwoLs4A8CYLQ7RzJYApDYROS9ZWTlhjKN4FhFhHEcQNH17aKpieZwdXQmyLqLKSRjHHuvzB0iccHxDiu4xA8F5wLMUhOOIGc8AKj5BiRmehXBwioBLueK1+JA0mtFU/GZi4qzSrxfVqQRFzrJlVgC7Vufa9rY9iBLSXnAE19tJ/6yZQDkfAjIMIImca5ls68u0XjRtaOc9U4JZh4KWT+U+Z8nfyPoznY8Jra64kmVp3iXmBdNL311tsnEp+yZV3cnjkOXZ8cPgnU7DaBpnBp2/MVNNZeKdaP8rJ31bVwK0REY583XvCJJLZTaKEytTwrbdTAW6bJooQAQ1szFzVDZLScv71JgKcK2/q5BUcSiun7YxcwlvzuMsf59sbuZXni/O9lGE/pmBc7W9JpE4kwenoKSMZjqPV135yXpvoezfWrgCgGaYYbk9BEDomg0u5xcovl1TqEbX/AQ0RYS2mbVUO32Atjv145q2UV65C7rKTNh85tfXbLPKg/Va15sbkDDw5MVdeHjExAjmMFBdNjm7PgS22XYJWm2Fs4OVE8IYQidSLQBXd9YEObP2igeUg8wu4XJ2juhGhBhwvL6RN1ouMZH0IJMk2JJhxUk0giMPhB1iQeYnI2AkpSSZHxWYOO/gXYBt0KvMQ9kUMZnOGp0AIMbq8DJ/dLg6gvmGBO+lyGAIGlUziqmJLJ+KAo9cUbUkLndaUdmHRiu6mtlLQYYyFKfanjzpVB0qopzyvE6XD2gmWCfMPRGja7dZkg19g361QTd4hHaGYH4iaot1TZvL149jjxDaDJyQpTaIFoQcnCeQrYP5kTAUADC2l6cYhw6HN+4ieI+UBo2CVk1WkoTjnMQGnjV4yliliq9DpGKyISb4KD4k2XnVuZycK4QA8YkpoLvUMqpWmQGqKL7g9JQBo10TU0B17y7zLGppyeNCWhXYgJNzextxqsmYnN/SAAmMk/mvGR/tqp6LSUPR1xSM7Agzdmbz6Z6ABdrnQQwEDnB16njdV0VaLKAmR8UYvVHNbGZQ9WSWTucu2BAwub/q4s5v034AlggyAx0FPo6DCEcQH5Ku6fSBnUglpQEqNuX5tH2Skzdq0cJSg2a6OyrqOWWIXKK5OJUKxUQEivKv86XGlPnQGYY4NkAC4HT+CAWJVs1bKnX7WOclA6IKoWRsku+vaf8bu8o8y/MTJTVbuYayz45XN+CTx+hHXMzPkFyE55Db3D8xV3yoA6zBTr236/5PR2LRTtd62Ex45bR5p7SjBk1X9nbvelMDklk/x/LiCCnKZkysqvh8Wq8gZkAxcVSXea7vM2jke/NrUW9cU2PbvdMbWUFBkQAJvR9wMRftgk8Bx+uTyaMgEkkajFLTRhiyJbtKbES49McQdKHh5rhbwgRNU5FSLPNzzWYpNuNq01YHdl0BkoPLo0wU7ApNo4RjwKBOrqVsfAEV5uMiYcBOtV1+0qblISEL81UTXZHEbAJdXjIxgZW08jVDcMrYu2ZbnFrHGVo/Q0Mz+NAKEOIEE9OFZit4CQJOJOdKABiIaZRU8ikBFDGOoi1pNHKGIIXzCAyOA8ahx/LoNtrZHEQS9eR8gJkyUhoVEBcfH2+p9iESonMecKgAiQMlSbRmTMEp0QaRhkVzWV1XnRPStOW26ob1dOuK301NhnfYYE7WpeH29jkDgMsF3bhiNvmc7Ow9qyI7MUrovinZk2UvOuy8o9IqTPaPJQbM5zb3vID56iAbQc5cuz77VVP2l2hILFOrAJICZIz52VhIu8j5nVeZeEsFbGusvG8CBK/ASLXvDOrv7IM9PkPwfIUPCU/fw9peZnOMKtmkAUl5QFyl1LBQPVN6N+1bTYkKsOGs4QQK3TAQjeo5Y4NH6+P83eXibHegk1mafkQa4Lc/RwzO0Wlm7t8dw6T/V35j50QdWpnAxFo2QvuvC3uyuYmQAqIfcTk7x+gH+LGElhvvEb413fOT1kl2cz6zO+t4RWcBqI9OtvPs31B4T/0CApHSzPq5N4ZH3tyA5HB1jNl6BvOgz0l1SPIj7RFOIwY7h6EIGjVarKQjvWlHwQojJ1fG1WuSszhRCUstkrEZcbE4ByD1L26sb+aNaCpEcSCVd0uVXEYcozI7U6NcsYt4ekjMhgcgg5FiWzSOMx3Xbp4C06JmTYMS74mG5PIYdSn4UvKcs2lJnFk9vPMIwedid+I3ogX0SByUa2muhKdS1q7UxDx3dceBuCRZ0nGKY4763oyIMWJFF1m1Pk9LtG4Op1k9hRAmOMtJQoWhSlMMWPZe1vX1AXCcecc49ujWA5yXHCXghLHfot9eopkt0M4PVDIUcxJTRCQGx1hSn5Nl741Iau5JOrYYI0aeakhSz0ijOBEH76pSCqbZI1XdSwIxc/IuUnuZ1d1wXNtOsidK5lOiGh5Ptk/Zh2amkUmsIMv+yZoIFNqoAHL5SMwvlFXEk3WuBIgCUqpfaAoqkuIiowOkCMxoQk3jr6Krdl58XctGAYllhy19LN1hB6kkjophKAEodEsPX418MO0/qufKy6n6eIdx6nkv+U8K7HPsMRsUkCChazv9vbxflqOcNUvaZ2d/6sM3ZfzZL23n231NTwFqJYtwTQug4KC8qcwtF5MNgPPlaf3GHd6qPlG5DdtzVC1YoXtmii5rucMRdnDO3r7eNYvkcF8DbZy1mTdWN+GjBxrgfH6K3veSIn/vugaITNqsdp9t9MnhKBqbyW6pyhvUoDx/kMGnNXH93LyR600NSE7WJziIhyUEsNpUrJOTIUjOB1BP2NWXHDiazH8BHpwXMxPWvChGEncPF7Kqm5xD77sMSHwMOF7dzFVMjSCaJsGpBJtSkhTwqDq03+udHuvYdTzQg5fzj1TEaFeCs92X/QoyrROHLCKH1dEuIEEBGcwSaZMka2sTAoJG7hjhsnBS8lVoMpdMtVKZt0So2AEo2qECLOusrGLWYqQK3EtUDABKkpsjjWAmdG1XaUjmEiWRwVDlpJcSyAugyczSJG8woAm/UlJHV5LIj8Z7kAvKTAeMfY9+e6l9deg2azRNA0cSteOcODwmrbRroEp8mV2lKWLEUaIHBgziQ8LmQ+LRRyng50MQoAhSU5HmnEnCDQnT/Af5bJDl8qEJQ8sKXDJaXe0bAxlEhchXGpBai3cl4dy5SoRcYUwMLqDK+lw6vQ/S9fPc4g7oqvD65FODBXa0y93777d9GDjk/ZNczEDXZUpSKI+Bjx3sv8O+zdTBO9/mkZex7zLU3adqhI8CRnZNcD4VH5JEnLMY50XPqIzLuqhDuoEcA1h5biaIzgpKVFNyzVYg5xCoZBeu8wrR5GEDO4UmHK8LIDmbPy79zYOZmmuuZAgViDVT8FW8Y5o0bAeg7J2vMlgbSf5uIhgSbm7uwCcxEV8sztCHHtwhz4XszeneqGl1vV2Lcrj2E9vfT6VO285ICZgqSwpwswi8YgKk6pZd8f+1rzc1IDnaHGPZH2QmCyjRxvWbBoVGTtA1ytcyyTsHVXWGaufb7wuBlBArJJkQCLV5Og8QoXMdLucXACRU8HhzQ509jYlLbopJpdwUcw0byoSXKjpXNr5oEOrdqBKJUtc9NXIeRHU6CZkh5bl14pBp5o51DUjWx3BOtB+AJPsKPsA1Pjsc5wOr7eQYBN29TkNzGZbYzE3AvxV/KyDExiQZCQQCyCqW9SaMaVSNSKp8VgRYdG2Xax+34xwOYaoKJtL1AFKyZ8XPxpw7M3BLsgZOzW1OU9kzxI/DMYGox8HxLdWWMIZxQN9FAAk+O2Yz4jBg1oYSigur9Fv8Sbz3IiX6YrLxycPBIcYBtYmOM0hAIWS1FgLVeagJTr0veP9kyXoVrlJ705MyrkLiCnivWfSk7fpi2xvyjlKs0foyvXfya/V3DbQLAy9gZMoGaPfBaTOCrCoaoz4s+h7Lf5FcQnKpfrI8k89f/d595rDb9124kgeSB2wAcvqmMs/VGcT+nDNrlFZs5W9K6MJW77X3a3RLrfn1BEscKcex6tfEDFaBMe1N3j+TQ63f6tn2EwQ5GcGEvdf76Xhzkr85X5yCJ3v3ir1W7XGjR+XjKYioUPv+e+orj8lotWki6y/rnWRATrQkJ9ubCCz76WJ+ht51+Xbr43RHXMP4mSuAqPcRsJ8J9+oBMAj7lhvexYPlF4ZmsLXw8teYo53rTQ1Ijlc3MOtmogZ0brLGZc9URHZyOPSqUJzydd00pkm4ouErEE/tJW1Ey2iDU2nEnBTJObRxhnZoMesXOOluZA2B90CiElFjh581NFmcGrHjYb5LnGtqrEwui3qvtTvKBpWNZLUTKNdxIecEdHhC4AZtNwMT43g4kegaZeYhBMza2d4clXURR1XzySg5MAqTZHB24s3zoLQwIcHndPCMRCR51kw7ksTfJrFULE5Zq2Vp3YV4BnjMhjliGtEOcyAROGd9pVwbJ+cu0UyvmSqQ1U4ByHvVZNizMZsD+u0a47DF4vAGmmYOTiOIkJ1Mc8I9nRrziRJCmnRPapRNYkkpr/Pl4NHEFiONaPsZht78dSw/j0mU+5THigjbOk8YZ/XELku0fbabE2N3P+UwUyCvZb0P8+MMhNggjA1CDJMWrX2vgN7q82gXjNZXvLnuUA2yCkOp6QBR6av55sjn01pINkcMVpMslZcxwEiYD3M0Og4z39RvmAAP0yBllXrp7xSz2H00LXGhgxf/I3suVYOysRSBgIE9GjjtE2HWz9EOLUJs4JLNQXE8JxASydk1sAzQhNTm11U/9nxkrmJmKPS3pkd7d9F0jurZYwDL7gjtMAOxgETmK2h/7gYX5lwmZfrrflf2B1t/YP8YuClI5DWvArQkdHneL9C2M7RxtpN9fDrL+3CWS6IWE5RtmDt2pRIoQVUCtNKjst9Q5n0HZ9Rrz/tP4oqZu/IifiNZif4ru87Pz3FycoK//Pf/77ibnhKiTA5Ro0NMvetIvffzZiooWPgt7e1k1hNrETX5O0DpQqU5URND9oxP0MRk0/8FbBSAxEgYeMDge6xnK9y6fKL0j4DsCMvWRwEjFxfn6Icxg5ca9GROPbkUFe/EgMc4YhwGdWyVy7QGpib3Wv+mSNmUHclMG5Q8I9KIbbvBYXcEikDjxXmxaVq07Uy1Iw4TrUwFOpKCPlP92prkqIPKw76M2RUSmWmcvi+x2rQjJN+H5A0xUGVtiTbHIbqEkUeMISKgwSwtAK0NJJE+PhP3pplpSwTLeyL9SvC+yZuEnJfImDQiMbBdXYDTiOXxLXgfsoOrmUWMWSSkXKCL45jNdU6jcmIcxXFWTWEpRfT9FkBCz71ERXRbYC370vugGXHFMAMze9QFGivpu0i3deSTma2M2QlhN3BWKOGU4FyVj6JsSZPsFADpWY1OayWB4Nnnd5ojtfXJQI79vsvX2Myf2JHQ8nMEEE/+nLyXLU+MmzhrFvBkQHGXKgO97yRFv6bwt4JouWMTrWvVNnjyquq45Od3/T2YOdepuZqI8+SsiXq9gBLzT0o8NSv0rsPoRszSDMQuJ3urB2piAvLb9xmO9T3XUtq95wqgcQWUnCIO+9yAYcX/jWEzMyJFXM7OMR+W8MnnSup7naveV5oy4cW+u7LLO+C8YMtrlH07Gkjrxv4by9eERwf3sewO0cYWTrUl15mA6vNkglkGo7uTmZFpxedsv+zyxEk/X9vloezbKYL79Gd+B3/vf/wrODs7w/Hx8dUP402uIbmxuQm/9DppnDP11cQwmwMIsMWyWeNYbUqVhsriCHAA1wRUL71JgFDIBNqIt9ySMoEnssRUnCGkh4dPC8yHRX6XfScJvgqw4vw7ckG6HOqGXIfzGqK0s3nZ+l/mqYTgBnj1YPeVM+SEqAF5bjEyPHsc9IdSTycUIMc6BzHKPErOkMLocqSM9Uf7JIAiwVnOEiNGtYq44gNJCwgmTfZmf2c/FQVVZY2BmO9z8CyREbMowMVenkFSNbFxHOGDpNCnHVAIZqQ0ZvADZvTdFuPQg5zHfHlT+qLsJJn0qhIMwHBa/LFWwIgfjTjDhtBi7iWBXkwJMTJ82GDoe3id9zYMGBaD7pOmpOjPM2b7E9lRl6rv9gDJzvdFy+gyuChvpcwwJ3vvqs9sIfc/RTXlyJ294lv7WdvwM2CoPi/gpTb5cQb6tn6mjdoDPPlvvV81b9aOJS1kBhb2ef6svFPCtwso3Lfh2whE62GfZdNG1nYqkyeFBpV6yLQ9dd+LL1SZV5saC7uuFQRNbNHEdk9bWVMSW2+GsagpqAGVtajhRj2qiRaCdiFLQSH18tfgAUD1PhWivJesyhE43t6s7kDxPaMrwFH9vhoM8s7evIIb74KWWvg04Dfp7OR1NajbvYVxa3Vn/ztrkGs/utIx2xO7mg7pW/Uhl8HVe35C7x2y033WmO+8tcwZT/bfZE4mBWGvv97UgASYTrDLmU3l8xQlsRY5W6xUTB0M1LlzlSZlMwmp5CshXi5vAlNryyF36nVtr1ezjGlgdpibEY2JY1OF6vNYVClgDM+IiXMO5D2CDxIpkkSV7yALHrWAXd4ThoLL2d65igYnhEazgGqaeewSswJeyl4l8XUh83dhIEUkR+CYMGCcoH3ACBvBB4+g24+rjSwaFfldAJ0DyGokFEQv061mLY55/UPTZGLjDGCUyQYRIQCItRYLU2c1IdwRNMp6Oe+ysxePogHxbFmBFWCkEaYujyOj215i7Du0i0O0swN4F8ShFwIwJHOshUC7yl9HJb0GEKdHL1qeiliIPwkDDWHWWkr+irhnIOyqPWvrXdYCFWG+0ofjf7OXSd/KbitgkwUd/X767/7nk3uZVcjhzMSThjfL/ok5YsV+F8Emyt9ajTtG9YlKUrgxs3KqT1vRioEUwGitrAIhKx8O7amBytxvFNCZz3++ruDO9uoJN6xZKiv6kGel5ILlMimP2X63TKN5p16heWMuOY6c93CqPTTCbPS56PwK36Ddhnd7vQM0jH7R5KvCgG3mbEpNIDZwM4VQ5cW8+9nu1OV7p3C8XLUWq/CoaUeueD+XX8qedVM6sX9z3fWqn9fTkDdKX97UgMSYadYWcH20DF0nIBESGZEGsm4NZZ2iig/mKwEiONeoep00/0c5a4b+mZDbryNXAJQ6F7nJchBRH+663/ry+tB5cnCU4IMHSJKOMTdoNLMnSACAEDDOmoLi7EvC1FUCNxHce9FCNE2rFYHLvGZmHwcIUHBq/sB0X6qUmSwDahoRvGhbnM6FMcda9Z/6hAEDfAji/JrzjzgAMRPqmplCm57Mt7rGeh9yG5ng5nBXeZIyyBGVZmgbeUbDScn5qYmHBBB4F9A4D0ce3rfwoQVBNBDemWnL5/o3xAAdmnZGtRPVvGWtU00kqj15xUavSLo8Yxo/EMMFRg1o9yItrnltfV3X9P/mroK3UTPt/MlVdHVfIHxDV5lz3vnXvpsctNzCBCCBNV9HREoDEo+Sg4YjYpRospQiYuxViBmR0qD+Taa1TZgyeZ7QjomQsyPdUPXzjV0iGOZienpebDT1u2o65hQoWU2qzGere8dxzGZ7ACg+QLx3f25PabJFxtVXbcrKSgNGofG1eaNqY3dKMpmv7WVAZiR5qWv/oOoleVb29kt9H2d+NHnaBOaqj1dDk+wJBANx+R7jZwbUd0FVBUZqylNv4es0UrvXmxqQTNCyMlE23wtdI6pUzxL0X+eTSPnQmb9J7cnPbKpRmm4efXfiBKlXZuooyg1Lbgr1EXCFsE2YRe67q6qOohADZViJE8YUocdSaqiQxfxrZ7zTEE9SaSxp/2VORJqCEKIUQQS07az4GXAJ+bJ+OufAkrBCiMM4YuSUnS2z9iQV849zBHipPow6bJdsu7MWwUO1Dmqm0UgjMyHVEmYBg+q3YzkIGLqmXlPjW34TD+eakho9r7tmeCWPpplrjhcHoqA+MkHAFFl4csAkcqTae/VGqQ+9+dgU0GGTWm1doNSzsIXfAS71NeVPluy+BiKc9/0uuPjfwcbXcXERZt7QZXQGbwj3vcZL6n+BnXJcVzdql7/2xte8RDMTM2hJXP2exvx/1M9YtYA5QaOBGk5qMk2AvpORMl0sMoHqIqtKzQWGlLQM9ehyVJvSCKoyDGfTQj1RWSHAgEsTbm60NQtJ1qZqrPZAyQ7nliM8pQV1nheqnpPjvHsQ9Skd59653MMZFcMxQXpvoFc9qM1MtCKWP6UGE0rvM98qWqirN98OEMldKnwvj+2K/ryR680NSIyBOicagqhOcVkqZVWJW06FKluapq/OLmfqcyCvndq7RGNS5bkAZcBQQIX0h9OOipckVJZoV90pB8pss2YiQm6h+CnEJD4YKY5gZjTtfBK5A4IUUzO/BttcbEkHU3bqimnEMAxacyZkh1vrjwEncwwVjQbnXACmtszqfmZoPnQAxcmX6q+ogBLvvFikUoJXXxWZc6tkjCobq4NToOB8i6Zp4Vyja+vLd6TmEPJZK5HBBRngcNj3mcDVB2X/3O19BS7SDOvfNkb7cOJwuUebTPk7ffdefY6rnuVCzGx9qm7tA5/rh/O/X/+51856/Reba95b9v1GafLP9Hqt7+wWcqolbV7jrqpVBb5mUirApAAS5piByi64iUk1NlF/j+Uzk685e8RVMreppLkCFfqV5dipEZwxXmJzhDegnnIR1ZJJtJqwrPUwwWxXQKDC6CugwPVk1yjjKsGC+Y1vDtZu7jD6TE+vxiHyceIsTBNZxidcuUEzybgWiNTvz5mIps9e/wD2fDBf43pTAxJGSQNfnLxKPgvAksfsPmfIEGWDc5JkVLa55ekdllGxoKx9YF3Hq7lANitUkSb1GxOnoqFICWMUoOO8+Bf0Q49hiBkIEzmEEJThJWHoeoj6vstAQ8xMMi4iBwpFcxJ8gHOSx4JAiFX13xhHLcanmRe9aF0sm7KoiGW+rby6sFbJpQEGFvMFmmamUg1nICK5MwIYhOBbNO1ctRStmD/CDMG3Yhbxba5hU+f6sMOYnUd3VndPYLiCI/PkcNbmkL2NMj1MPH1RLpZq5jeiadX6+r20/3x+x+699d9XqDdsXicOk2yAsryp9PvqtxdQY+HElfTL0DNR/KJYJcn8e8p6GvVh2dXYcO7vxMF0Z44KzM8TtXfyipBY1pxURDXGkc11lYmQ8r7R9dH/TVDJ4ez5mWI6LHtsd+6q9idXYUxU/23f0lWf/WdAlx0e84a/y41/vcBJ5l7OZbjiHRPuvbMPppq8vFcgNCqmATH2GMceY+wRxx4xDohJ/x62iHGY7D9DGlSZZguN3ZXiVei0CLVKO0BkvmvVuc4jIkwdD1HhA/MnqbUdcv8uNqmvPaWpAY/d+3dAQ/ne4nmrg2S0Lf9NsLxMzIxEOwPbaSDzxNwR69w+nLBa1dlvKhO9nayzkzbeGCR5cwOSxNlcEHyAmTqmZ5wh/lxVYbAMVgoSltLw0KqsBQca4KGdxTMm5EIxaSAj0eIgZBLrNHyQlIiL6SVFyUnBgFaUVc1IjOj7HquVlZ738L7BOAw5i2ntF9O6VkMVS9npbEKKcgSd81geHCKlWIX+akipJl7zWrE3cUIcx0rNqZE4TSP/hkayyXoPgtPnZjg+voXl4gghtHBewYZvEcJMC9J9PTpmuoLwX7EXdgWTIkSVv68CKlyd08kZItQ0gqsHJ+8El7o6dX/0R1aTJkz+Lftj6j9Ug9ac3p+R/QTGcUDfb9F3WwxDj77fVvWOZC9HdXhOUdXwsUR85LDoGCuibmegTEuWmLQzBMr1j2ogn5PZcXnOCFU9zzau7ARejQsVM8AesELewzWwMvhSA52aKTlyFaHckeyyFGyq++llJ5iA7HRcItHMyb1EchmTtnpMJbqr+psE3HvNVGz5fGqAZFpHcxIn1L5M9f+W7r+OhvpPADZXgOev61JeXUGQ/Ruq87tT2aE8xYw3oqOR/StAZYwCYGLsVdvS58/MjMRJTEgMMS8xJ0Son0kFpiWNQDnteUeQ7oOaQNS8erd/wB7zLn2vZsVebwcmA+l88sr+vGJ25atC4Kj6vHqD7nOLxqxo1O7xgpZPYJ5W17azXp3lnK/LpqM+f0CVbfZ68PNa15sakIjEXdU5YUspXW0cKmq7YiebImGTAMmJWUSIhRCa2nmyqOoU3ZJlLQSKSWe687J0nz9DWUiV7hKSmhsoZzrlxBhTxDAOEj0Dcdoi6jIhM6LonYcPXvwdNCzYiCGrj0vJQybROAI+xAlVqgAHtO0c4kvRoGlmCiJaNFr11vtGisr5Bj60aAxshEa+800h3kQTIpntmTuiAxmDMmk6/8hPTqWPMrXVu6f7YsILJ6LHax8KM6GVt8j6J83bkbLzoEQ6yPwHmVfVMES9z3J9/P/a+/ZY266q7t+ca629z72Uey9Q+hJaUFBEHkEqtaLxDxoRia8YQwgm+IgGLBESYkSN4j9aEhMTNaZGjWCisVFjEZWHhEcVA0VqKy2YAlJtQ2ir9iu9956z915rzfH9MZ5z7X1ve7989nDqGnB7ztl7PeYcc84xfnO8ppVi1nmTkwQbynk05CfCel0YuVhifRK4yFrfr7FZH2C1PsB6dYD1ah/DOKBbLC1DSi1x7tbZRmFEMNO1Bf6FZiZRIsUAPlfi0+fqIXdJsyMmfYQJtSDIFRgjWkvqAYw2khoN+phE8az9m1rKFNzH5agbEhOyBl5iev5ElBJYmQkgxzj4ERQTMGnv1Tap7AiMUb4pUHVAxLFrnrknh0jmVmLbancjp7fydTFGii2ajckEj6XKVlfI0/q9CvD/M10goNmyGJgyTdVnk0/8q5SQ8x7adg/LHd/zO4jdRyH2JcbDlDKw5WXsLcCXT8XuLWuJRDYqmLL4EtT9rYB10A1I2/GCFXKbrDWfFPH6VP/cJeTOZ3xI8JPPbbPia2zr8rD5iJdUa9XmrW8IqnV6rrl0AXPsSAOSqdLj46gh5mSy3YP6OV0g18Ik7jpKKaAxVrkkgZ4i3VT4yU5UJx6N+pXuCupBcFnN2woXQkC2YUi+SDNQhhFDz1UpSapzEoKrCIQxJWxoDd1Z5oZTeBUYNE2LrutYADVLtIslmnaJJndoBHh03TEsFsdtV2cxGBKToUIugrmtvkWTvO1ep71HqAqI6ppzmTfPT3E1bD+nrkooyrAQRiklzzsq9nePIx+41w89+mEj1412uicDiRH9ZsVKummxd+zJ6LoF/MBCV+JsgSiAnNmTQEBmdxuNA4aBAY0G75KcSpwbPflEUqGJMNKIMmywWR9g068x9D3W65UUP5OYGt7PV9YL1cpku1QFhRwebYWkqlHzIePpnAVEuNBSsFFjBgUI59EoUTCSiLRYpj+MVIXtzynQRCXInDKAJIhkF4zh9R/eRP54c58CvLlJYU7bPKXq2QqzHBSpmqLACq9YG5WOgjnebHh2SECvFVAnAcIcvA1Et5SyXj+L7k4dR98oxOsaA7NNbtG2HbquC2UAOrRty/+0rg0SYp2Ubdq9cdiiXYBmh+KPj3x01ca1odC0aNrt692NWM7zjzCWHsOwxjCuMQ5rDOMGw7DGKH+bu6KaCV6egK2NOgceKxPkd7Pih48nX20DI2lF4FNBWGfwzBmq7opgxd/l8gLhunq9IKkU8Jfv7OkFCPejDUi4EAQvOLEa6O5UdwiABDelJDvSBKQC3SupC8fqh0x2S1CQkVKoDMqDkywgEyzkNbtkOizVTkoDk8Ko+lfVbCsT1wvvdlrktmUTcNIYD7GSNAu07R4Wi2NYLo9juXwSlsuLsFgcR9ftwX3itUCJPs2tNoU222+6MqLyD8Aipal5toLRmNL2dHXLlNZt0GBZTS+2NgmYGMYB49BjGNic2/e9uSzGcUTf99j0G+uDjXUonqYphhBTJxdzy8hty8BgHHiH2rVo0GDoexnvbGPKQyhjnENBMolVKKMAj5wFKDOwzAJwy6j8y2JWJoxDj816hdX6AMMwYL06AEDo2k6yijSgjzjrC14wj7tDoKKuPZWRQeiFAVDXTZHfEeez+nSUiwZS+MOsa0Xnkz5aBZWtA11fqhyoerdLPbLnbCOmrSnjF5lk9ZlbnccRb9P1rHuPQhVfKHDTxa0IZ7ktUf08B2ZqKnfAEpWBW0kgANDgTXhelqq6/GmTG1AZGNhklntxeLhCMTDC+76LWcpdbRWfdRLbrC3RAnh8HwfBtgxUug5d26FtWrQdW0jb1j/nqsTu7kqSTejgKBZejDJxB50LqJyHporbPwVS4g2X9y28akuBBuktc4vdRusatAwr9MMKRdxGCjZJ3UbEm90S5pJb1MKbqJoB0l75MuKX7YZDL1ZgBJAcWcJ8VyEfj7GJXTTgLDMDpC5pAUWhWrOi4Dhuu3l+rg+36UgDkqZdoG3cuuC+a1cuZqayr4JPUJSRVlUEIPUwOLBNi015kGwklwL1dzsWlUspnzPbj7EdS5NapNwi5SehaZ4s8RoLLJfH0bZLLLpjaLsFunbJ7pR2T2IzzuGkrUhnRizD7W3wa9KOz3c85hz9rpB0+F4nNddGGDEMG3OFDOMocRLsRur7jcW26IIe+gHjOEBjcKho1cztJrJlgzN5FGhkQ0qEcXQ/MhnIIsvWIuLYG5QROQFtt0Tb7QmA4X6w64t3rn3P5d6Xyz3AwJ+KdclCGqWQVUrIyQFsyhkNAKJRdrUCusqIzWof6w1bRjY9B/nl3FhadWoa18eBxzZu55wXUfH5bqcaNwUYCbbbNqEZrZMpeLt1Toc31O6LHJYEGd/jXIy7S9Xv58Mj+mgKAYj1/o5M1RogA3znCZilS/vm7sRdDfDQPn2WqnMGIAAXE1Q5FIHJDgoCIQr1YgoCMo4cIK+bpBp27N6hVkoiDIrDZ1T9VrM899ldpgQCDQXDOAC0qsc3/BfyvASuD9SKlaVpOznxm2sPsdW2kTpEjWyq2J3UiGW2ya185kdZPFZ6LBvzbQVazxqkmqv6+py5bMDu91JwDW3YIqvxLmNvmUXmVrJ6Mfz35GnWlpTI5mOaXOHjS9sdr2IbuT+2t1DcoQ+S/ipIJ0AAcbhYL5X/xLfV3HMA/1jH7UgDkpy0poQsTBIUKMqmUAl1yCasyhIYJoJDA0SziK6iisKeLbu13PjuYmL5ACrsEShoipTRtQu03R66lsEEZ5fsoeuWyM2CU1VzFtMy+5K5DPj5gkHVv8/9q34PTQBiSeHHut+o4zzOdS8H4vaSqTNwxPwwYOg32PRrjENv4CElNpFvNmuZ9OziSClh02+w2WwwDHrwXhIBxgG7/ThAy9wnwHaqMPM1a5lCBan4VkCroWbhS2oSSHagQ99D68FwxpYUcsPIwbrdHpfHT+7+ICS2YiTm9/7+w6CxoH3apWiaFqVkezcHKwvfdAdjJk5uV8qNHO5IXKytDNisD3BwcIB+2GDoewzjBhoEmUWAu5AgEVZFspuId4IqXHgLbWb7evbs2HBpy3Z9ERSngxSbLvWlFNXm9rsjQJjcKb9O1R0cKIX3ef/jnCcHBFrsJ5xhVVsw5GHhRWY9mZArMgdxtNVkaXdhS5+l2OcorN3S5JYJeX50E2t7U0ZqZL6EzZaqJZ3/qni8ndbhrbazy6sAiNkq2idWcCQ8q8aAIDvtoLAV4AlDBtlQrHs4j72DcKjIpQt0XvOp3I0AE/2sEfcRW2K6dhFcTAv+KQdn7ibneeznpEv11dM+p+rHOd+Tc4ecOywWx7e+ZcAi1Xft52Cp0uOwYavLuDYrDFtgNmLlfHS5ba4as0B5fJxttmTeqYVV9YXJpCBXHQntEBzVL3G96Mie21Y3pSMNSJJKy7BDMYAhJ2CaWdUYlU0gRJ+4l9mGa7iUkCmFjAQBIebOUSTpgw4BRV13DF13DG3LP9mqcQxtuxeQftr6yY9Vl4WndAIOqmqzMBABEwUf9aPvEGqh6MGQZev3QoSh3+DgYN+CKlcSYLk6OIuD1QE2mwMs2g4XPekiC6xNOYnJUNwfiRVv27YeNCntyG0LyCm1XLRtgJ5sq3UDCJBAvmR8AsEzNaTqmi2B4HoZSwFlQpEgv6blNo5jj3Eg9MPGBGPbtEAi3r2MI6gZQaUBNQIWbBfN86ZtO5w4+VSMw2DBgqoWqIwYAWQ0DkKE3+w6K6DCSeYMsgrGfoPVeh+b9UqsL2uUceQgx3YRKtPys0YKRweodSb5UQqVElJhbFsi/tZzderZ4fcCUfDQ5JOdUrpGw/xRUKC75qStQW3jBC0xbxN09x7kH1MGQGJN0LVlcgCxWLL1unpOSlt82IG1tvs03aCwZhZXbqhtRFFUu6I2d6E/sGpECE+Ez3AKlyQfY/DaMt8puUOoUg+2cYnnHYU26bXiytJq0JpRFMvAAymcfaLwaJtphKBTEyQZQUriRxdhcsWaZC7HjDaW26mSc1zOoMNysYdusUDXLbFYsDV5sVii6xbo2oUfggqNq5nI4mjxi12g6sd5affmlJ+WcwugRTvRwLo2eN7zHIhp0xzLsmL3UL9CPxxg6FcYxjUonOdF4JikFDYDOgPUK8kZeARqsp2kbeOTFG3uGsMJKtMLgrvH14y0Hf8bzrLRQmaq8GwhBuQHqiatoUADACoEJmWClVJGTg24wie7TpqmkzLiS05l7ZZom6W4TpZomuXOXWhNQQhNSEFI/OffhSfYeRD+PH9n/XLS3YrGWQyDnPq7wSC1RzabNTYbtmZs1ius1wecYtpvMAxS7CiAs2iZIklRTUuy4+HbVoGGAzAQCw3N3jA/LkFO+81oEpeP52uFAWGo9NRhN4XDng0VKiq+tRxzgmTHgEvaE6GMCW23ACih6zroCbht24rlAch7xyVFeiMBhQ1aKbXPisYB6WJxDNQVE54MlorvMqQhw8DFoXLis3eyakkqLCDGHpvVWawFjIzjwGAkczXeRurQ2M4lsYoy9+MkWl+VmJ4enAKANSufztfJdLSPZAwqHDy5DnKtz+ld8EavspZMnsQbiVr+TeY2iUqeFm9I9rVeJPcl1A/Qrx2cbXdpmxn2+vBVjH/x9hsksOu46jFVj7SNRoKio4oPRU+/rhotY1g9h7Y64H1jRbFTFOlgpnj9BKwY8CO7Xq+K+KlGjbpYfYxN2u5si7rWqXqKyu5tkUaweLLQYwIhjYS+73Gw2udPK4Dn49V1CwMn7P4Wi0vHMTDqKsoTN1J0HT2aG+JRN4Q71pt+cS790bZLYPnkHe/iQFy1rihIGcYNHykQ3EJDGVE00whc26UQSYyk6iXVL6GxoUG7NgK6z/ARhyPPx4LgcMQBiadVku06qsI4EXwk2HXJzkzxhZhzx4CiWYp7RItzdTIBWwnm4s+appVna2t2TU5dBOETqr87F4l1HQw4dl8bJw1RwTD0WG/WWK8OpEbFWkDFWgqsbTD0Gzf/D3zNOA4YxtF3IpmFmKLtpmH/L0uLLNYnBwmOmkjGhdB1WqtBFnD2QNVSgNwkdG1rnymOL+PIPlZygGjqLYVxDa+fAk6uc0J2jADAVvqca8VGKOg3axAVtN0Cy70nWaaGKxoJGm6TuZU26wM0Y4umXXJQbNOiYETZDEEIwwrPJQ2ulnHiLJweyA1KaSRjnHkw9hv0630crA7YslL4TBIGI5zlwAWPfM5Lz00QnC9QMCVwKjhCwKICO1GMphSi4gUQYUL8LcUPKsSM80xz3UKkUKTKbyphPOPgqiXCBba8ZAsD+UZEFadaGPyIhPMpFH1nAA7y+Gm3dJb6WOwyUas7MR4z4VcZviQKn6AC3QSY3z7WngHAcXHn1Y86ghMQGDFasOLUME3dQ3qmjJr4azeTgrFtcpdv/fUknVaVXMTTsR1pOp38c5ZdCV7LwWfsrib1klGXcLZ6PyAyNaUJKGklHqblQF5xE7Vth0W3cDfSYhGykR6Fphj0fN9Nh3fyd0pcbLJtFljiovpRBDnjqLc4FT3niF3sDFxGKUin7qIaQLsLKIJx81K4GhbcHFYLcVzeY6EjDUiohPMSbHImU6wxrZFrlizYhdK6O6XtGISkpNkKiQU1AmgJloCtNpwDYDwaOvavdyF4VtpqHuW/C4aBXSYHB2ewv38WBwf8b3//NNbrAwYP7QJ9vzZhXOy8CRf6YxlBw8iWCgBm2hdTZQzo04CmQnX/VXh6VLb76rUGB6dhh52EgoNG6q2Ql+DX7BANflQBaLuyrJpBwFI8nl2D/RQc5XouICVQajjCH2yFKaXIGT+E3HTIzYJfatY2fS8fmAckNG3HgMJOZO2R04JNpYWwXq9Y2yeuY0Ntx0+ijHahGQdSI2KxZ6dIM1YuGPo1Dg7OMHAcBm7f0AMJaNvO+mXjGeaeW9JSNV9zSqaAtUx/AVW7nTg+lToM5nMDOOG6lOxK/kw3BQI1QME6aVsqV3L+Hh1W64TNxdq9EBSPANx43IcLRm+ggWebN9v9MTis91Q8CH2MCho+T7nv5ApX/mY3pQPkqCArc77Y0Mke5uAH1ThQqA4MEIodOlcBi23pUvHb+pcm/Q983sY3olyqdF+dZ353lgmt0sbXcHhD3Glre6K8DOiE5CnJFOE22AsY1FkVLSuysXJ5MH2h9CTOz0IYCoMWLkrowegacKtZK1qzSkEyWz4XWC6PYbnYw2LB7qLl8hgW3VLKMiRZ+zof/d07gfIUoMS/Hw2LAny8RtvWRkLTOeKi10wgseyye+gAfX+ATb/C0B9gGFcMVmwTGVCI8lrWPTsoeP2P/xsASRK3SZNbaM2MpLU12mPiQvF/KXN3txeaPi8OEqBM3p2JckEtDfdrAa3RMk305zhySufBioHG6Ucextmzp7Fa7WP/7Gn0Q88KL+zJXIBDYjMWKGXk+hi5MXeWgrOcM6PVnDg7w0yfIjBlwSERUpM4oyUlqeOyG5FZwSyQFWdSYFPxIAhTLvI22nUqwFKKAFAmvIAc6XRthk3JFA4DmoJUAD27xjKkCIBkU1ktlNSgaZJUnmWBRzkZi7OkKrqSlsyYnNAIb/rNhoPxGo6LgTyfU88T+s0aB6t9HCsn0S330DQ6DlKxkwqoDBg2Bzg4OIvNZiVAcsDYD8gNW0Ysrkh4oFaOOK+AoGhTliBacV5lYLHsUEZCKX01hAUwv3+tCVP959bYs1J0qKt31cpKGmTKxeZvpey97Zbxod9GRZEAD+SEg5/kTSdAXB0OAuxmfY/Nnao7O/sarWzalrj2bBzkuZp5xTexRVHPs6o1AhxITddyZA0BqNyz3Idsc9/nRXyAJxnXlabtUpI7ozKUfhBcJihTlaOlFLEk6j1iefLHBADBd8U8jchXg5xyvQM2B1ABn8Cs4LbxtBc6AyYDyS6JgqTJC5ph6FIHW6TghSD3tDyuhnl5jRMIwxDTdmXOHZwF8H/kOdxLLZ3JJ6wvsVguseyW6BZ7WHQS79ItpGhdY7K00d8lqWELsEzByjmoAsHSc/682TrMkQjouicBeEr9IjCA4WDbFfqeAQvHtaw9a4gk8ZwKCg1mnX40OtKA5OKLvwFPfvJTpXqoulK4UFQcNJ7QLjSmjOefZDs8lQ3bQNUDnc7HXiKStNVeMk04hZV3vj024jLp5XPOQuHYjWG9lsh0BidFAEUZx2o2VWAE4PokDdfLUJCgu329Xg+sSzmjDAXjMAY+CcI3t0ZCI4fcbU12U4x68i4BKKaU62ygFH5yfAkRpJw2R9OnlHWVu0RSoUoaE5RdRCrYSVFsVnU+5YySzPErICl6Ju9uwLEYkr7rQo2FU9NmP01Y55KZzuWfuF7aduH8ahfIKaOMHKfTbzboNyv+rAxYH5zl+BMpIZ5AoNKjX6/YMrJZVxVhc9ug1Z2YjjlQmdZ1vpUisSqNZ9VUM52AYTNoxWwQNPG7FmY0/WAy0SM22EbntSbQ3ap9UgqXlk4+f2yRFapOkQ6ayfthCrgYQFOlGkGJqkjXz+5YIAG0hIm7ICFs/qdu0uATJ4DCGU7KFTduaPslBimes2J8IV9r9ohcAUxuhgDxoHMjIDkPhKqUlKapaw2fbeWlz5KYOzgQSJN3J0hBPVIM4eMZIEG1nlNy0AIfCbne4atjzmTv9Dkm1i2dE3Fq2zSqRj30Lm1lKKYscTgUr/PfKp0h1zcpqss6NlEfkMI8idfGj0opnBiwOcAjIQ5GgZbWcGE3UGuxLo25iyS7qPW6L23bMY93WVcCn8795RaenfRLfgEDmEU+jkV3HDhWP59dQiHFWVxBJ07ed56XOx1pQHLy5DPwpCed2NppAXAzrZEshEnJCr13d3Dp1ieVUOn7DdabA6zXfLbIesP/+s0aowSNkijtcegx2N+yi9ZmESw1EDmjQWvtr4G/iNsEIAZ0pWTWgFHqXBgMUTN4SqAGE1+eC2j/iDOTqBDSmOxsHABVZksS60WDBLRcHXGx4EAxLm3N1pqmbcTdNGAYB/T9BntLPnxPz+OwXV4CEvgMEipFit0BMVBTXS5W7AdAZUa28324iFNOHES6Xq8AwBa6AhaNJ6p4kJIUBtPMA12RDtYs/mEc0LQNuq7lM4SCG3EUfy2ndrfYSEGztu0AKij9BuvVPlbrFfrNysrSUxmlOm4DSpqI7qoiIYGSuys0gHvbPRaFHdAPXjPHBQxVv9s8k3kRsYfpA9urAq5qZBds1rKaZ843f7/F3oZiZLoD9l2lHxDGS0IVfpybCmR47uzc8UIFvr7dNW2q+ORyw3biSc+rmj7RFSePCc/f3GpnyMCkP7/Yd5i4WpSbxmV5t7rcIgByq4w8K4CrGogWS58dE8uhCezhf2ENajtiDIGNi0wgK+pn1WJroGPjS2Gck8bwwJ6bbd2FMZDZzqzSuaTgLdrfIl6hipeVVRsRwIXryed6QJQ2h2oYkeKB7wZYdDrVsTQI08vlWxyZqeskhXHoB47zw1qv9QrMGYmLITZ6dpIG2ma2siz2sFzsYbncw2LB/5aLWKNqe21sYRiqOLX193kwj1iLWwYrgZ507MS5bwp0pAFJnRI7+c7+s/Vp+I7sXs4FD8dpy+99v8F6tcJmwxknB6sDrNcHnIap7gqdyKExOglz0yKBT9FV3xoRL+hdBb3UP85CttjWZGvZpgR2QQSVIItMi7upALEdkgo2mrhfkh8ixrEYGWrO7tpOCpPJe9SCIm1VC0PODZZ7ezj+pIvQdi0SsSVmlAMQm46rOS6X7GKrZ7UsWKKqRoSfo8KuDdaSMGGeTedJ2qbULlB1yVlEPIZEBYvFntQ6kJ1NdtARLWVsvswBXOiBalQJmKZbgOTAu1JgAbEpN2hzi5SXaNsW6/Uam/3TGIYey+UeugYY+zXOnD0rh+O5yw5UrO6CmsXNKaJFqhwZuEBUYX0eQLJrNQTDIfNZYnHSLhOr6uog26v3VfKefI7oV2FXr98VVSRqgqfkawqw4xmqa6T/0U0V1IZ3P7TFVj4JqPVtHxT4WwarORjqp6rjQQsr+q4cPha2FmO7IgzT2ek2Aw0OnNhudwMgRaGOm8Id4TVh/MtY5IBFVPBT3UAJQAmWKhLXksXBAAKUg9IngBK7Lk35Io6ug5IwAwT3RH5USApR+5Hy0+YYVcrfQZACqmjZSuEJ4Xa1rBKwaFvOOCk632JMBGS+hewo0s/qIYgWPBsS5b+BEVhr7flRB6lsm5Jco5tExmicLWjWriBL0zn+Xiz2sLc8huWSfy4WexLjsgybMz352g+N3AU+zmtpQTWq9tuZM//n/DcJHWlAwmeHyB/V0co6+auRxyjpm4OlvopbZdSU1zVbO/q1fa9WDjb7ZSkHLjQB3VGIaB0IsnYkSXfVCoYNGjQCfkgsJ6OiI1hchpp7kyhP8h149erkKc4KgszK0jioIbXOBEWUE5eDJoAtE41aLgqaluNzdDFrFo5aQZIEcLZdh+PHL0LXLQCwi2m92aAU8Fk6SfLcqYGdQJlYqCmPzM2k6z+cBKvm7SK7zqZp2JIAFp5ISY4HYDdUGQc76K5pWywk1ojnjWZpqNlfzcEi8IhTkalwMFZKxKc6AyA7AE/aJdH3VEjaqn5eXtRtu0RuVtg//RD6zQpnTj+MzfoAZeRy8DxPCx/qCJJ04tbHPRwdoINOGsArvPNkDdKJguiPiLvDWlfFypwOImDv9tdWlpUw8YIeszYwXuCbY1CrWSj0+dCdaKh7Y2ozm5BWJadBwKb6J3Z7dZcE9YdI7voKfdnRJ3LWIVcMjmCnzgLzw1dTCE6tUZqW3TZQEhRScCrVytkZIA/ZpbX83Sl0ikjjqrgdXCxP3Z3+LAcRPIej1YldgdqmZIUoo0UkzhPtgzVDxyOe4ZNg1ieNX1OQaU2rQKOADVTDj7roFkVWV/3Tq62xOgbJ22eYJoxr5Cu0zVXvvJ0RXOo9FTTS1wujdmbDTiemflxZyALs22HaIKRwkrHTwcFZrA7OyrKXNqaEpm3RtQtLg150XKtFU6HZotxy4Tn5u2l2VcyN8qmGI1QKzp59BI+FjjQg2QUpiQibjdfQWK32zY2ykXiNMvYYRk6pHAY9EZLrdJSRd6hd13kVWHOzjMhAndIVdwz2WQh6M82vX2WkFlVKqk52ikdi2z0iVKRGhxb+8pUZhLBYGBI8swLg+Al+d5zEOindXZEAJCmSU6iARj5hmE8Tbu2nl3vmHXzbNlgsjqFbLKUdBSNx7YxhdBN1bhopMS7/Iy4W5qCNmzXB94gxE5ZqJr9Thh1QN458Umdu2ALTdguo/9gVnutEPXAxSeArQZ4l/ORALEnvDlxTYUpEXKMmJdVcMKCSsqjVBotuiXGxwGa1j/2zj2DomU/jOLDCFitAG8EI+bJ2M3mca664XFCHWBwbUEyoqhLg1gaosOU5YcI3pFs4D3TuiCIKAs7eUoFxBSj6jMJeGgNOCSgOEsXc5eNUCeoUFK/O81JpxF1gJPYf1tcIXrbvYFCu32wL4KgeqieEImTV0wIAtusN0FH1LFeCsTVwxRibU4FV76XHrjigSOFpZvGxd/k7kCTGSNyjuZGdc8pm9dCNg90kc8Gy7QLrCCSuuTh+cFkZ+OQanJBIY2t8jsWgVp3JOua5Ap31iNqoCFP7YZQ+kMWT1CAzuCUTvPZReKber4NXzZTkz1TJo/PifLMTpFiqnl2AtpXXTcU1mlrjZJ4oWJxY6zRlu4wjNiPrSuuD9NtrsDR+BIAAEs4c2sNSsoe4AN3SD7gMPdIjQB4LHWlAcvqRh7B/9hEcHOxj/+CMoMAzQRknLgYzSr0SYjcIjzVLUw1UHMeeDz5LflImAM6C4EcJMBhRQFJC3lGxWlHU1M1JKfK+5J+D2ISq2S+R9GTVJMKaszaS7MqLZ8MogDBBkMW0zZaLaHbUeAv/Lk7ZZEpA4xCsyuhIUiBMytbLxGzbUCCoYQWolU0TfFdV9J0ZGIc1xmGDRk4V1dgNABilumCtJgDbhYWid1zzQ45cT2RpD+MwcsG2JPEZpsW4X2Pxd/g5IDocJHU4MlIzqfFBRQScuM8k6wYKDgV4AGSHhwlXZe4ACQP61VmMm40EvA4YNkDbsRttHAc0TbKzPaL1QNtfE/k7guQLYjRcGsGEi0KTdTx5o9bj9+uuVdtBE/VqbUx8HlAAENWMJnnblvIU0aiuCjbTQZtVHfwlt+tRDvE55puXrxjcFfvd2TUR6raLRdWnFH7Xe2uDRIWMfI5VvCF7Z20tTRM+T3hCPv8NPKieCwDVLXt13oodgFapnW3IpBqPwr0ROAJwt6nwPslGQkGYj2tS73L1eJUxCarcgqXM2Js48yWxWwQU+w7Ek6urZ4fDIwkTlk4tZgqGicIxId7veE7QLoDgM24y92Kb0qTHYRxtiRkI2H5y7KNlJqV6jfusC1dPGlzrEjKrpBY8q+tuOa/siTSx+IHl3zAUDHIoqV8ddEbQoTlnTm/eO4bl8hj2lsext3eMSxjQLg5v05EGJHfedSuWy2NQcy3AE87Pt4H5PXmwZfInxdbOTE2RBVxA8vfZzrchKUOuyioVFgyjmPHbtgWXrAYAkrMJihXIUmVtJwsD0LiEJmcUEaiFuET43nIPpRByYsFdNJZDBFICB7ypsEhIUlJcy927MNSaIKWwAmGQlC2KO4co/5QSFsulFfzRNF527Shoyf48yOLWjCARlnytm43Z9KtxL5wTX9RSpJW+5VutZSJMQmo8hZdADB7BUd1ExJad1MgZMqOJGXUpkYyZja88V+dMoQKUjAR2m5GvPScLRHbrCCtLDs7TJS7iDigFfb/C2bOPcJwJFYCKuOYYkHSLTuoYaM0X1QIu0LWNU8WR4ZY6Fc4xPoJIZJtYInbJhK1dPJIoVRWpulZc7CrntL9Wiyrw1BptKa8R1OzyTbsG3Bb9hKhsbJcI+E5ceVPdHAXopG1QQOSC2Y0zbiFKcN5Xs0bkiYGEapwodgeVVoG2se5opYsmfY3XhAbwo+R3+8giSevnIklAJPQUaJL7JzyBYiqXBdGyWPFtAhJV3qTwt1k0ScdWJ7avFOjXsfhJqO9vCjKAui0Fp/KeJMXXGJV488LTsOJjnMs2d3XA9e6KP7V1JLy8ukY3Y+YiJHmbsUvltd5NIfAXsPka2qG/VG3W5261SvoMPYpim9xdGnvA98QDSEEeUeXs1/klBepFMNBAWG/WOH3mkepaIvY+PBY60oDE/P+BrXli4zXAwX/a52E1BxAjFgrLsafwDL6Ng8OoCoDVhVgpPWmLuhMsu8XM23KVVga1SSyxG00DpEbAgwSWqZskZYltkFONwe2yXVIAVgyusvnfdbeQUyNgpOMjzZl7aJrM1QcXS4kf8UDNnFhYc4EtDyAjSNBu4UU4Fi4U5pqCwUzbKggRYEJhhQX5UvSsGMBMhnHxjX0PgAOG2SKiWRAMtnLOBooo8MPHnn+q28gEpfSnCNgzS5Q1T7ImgpC2wGME4Vt69HI672p1FkO/kX6PIgJYUevx7Dafa7lm7eN6B7VYSX5Z9VltOYEIMYo6qlJW8b3J5q8L0xgDYrdGQZnCA2q1JaDeW+bAZluIGjAwpep92i7SReFfcIWk+D7fIdc70wBTgmxIgS+lFMVRis1QAYnYOLhyNJkhcmmqzCp+2u3bfbVXRa6lwLOJMnfQUCtpA1Umv0LQp6KUCU/4q3oclU/O7xoIT6aboaAC2RRBXVIykIK7NTOqmsXBEiQrIMxp2nrHrj7zZoXQNp1cXKdU02RsKsuNKWDvmcVZKc9q3OJ/Q0EebCMYD3cV7m0DBJu39RiHXtk3afqVPSLVV9M26I/zJGbo+bSu+RzlhKWqI01x6Nb7Y7v1u9w8lpPojzgg0cnLv8Oqd6rS0M+jnIhBfPVMDDU7ymgZNLlpJM6BoCUBOGAxYRwGzqhIYfBNcWqGS66sIlGxabEYjv2Q/S4RkgSGMuDSmgsFuZCk03b2bCKyDA0FVhrvUgoHspVxQGrFD0ok+estlyNXc2zKkqbbmtVEJ7+m5mmtiyT9Vd6XUav7kQSSjtI/yMF2fC0XQ8t8BLllccQFGJalWI26joNq+fRgj4XJua2OI08pYSTYCc9WcdA0iggSmRu6i4GCRuF9iFYJSjzJ3AoKLxl3kKDPA1IZ5YTesxjHkTN8JFunlNHOytC2V2vbdvjqeoi7U1U4ziOXDFHAku9U1fQ+KQmurCZ/EDzQMXq7YcqPFWVdFZlvreMlfD+wLXiT8o0mSnxLb9OO+/16Cmtdv3N56O+wla7CF7L+pwAnYgwJHEe4L77bnjop3Q6o+pS2ywGe8X5/GcnVcSe8S6D7W8/xlb2DVMBVr6tVYOWoyUG5CPhSIZl08wJwMTGbK9OBStVP7orHKCUkKW1Sq1FzlYQNoSvdur9uxfY5w6tu+lgFS8nODYqKmV2txS5XAGsf6Dsm/KXwXn2PeeUipEwwC48eyaBrSdeD9jJa5SoMEqx+2kZuYvKg6a0+I6zd8FW4rgrcF4Zr7Du0rZHMJOjtiZdogUAdRuYT1c9R9iqQ2QlYtuloA5JqBHYtXd01+wDrv5w1mDKkOZrFRZidE4Z+wDCsbMfdNR3axRIJfIS0xg6YsE3wWA9yIYDMJwf7OMsgiRJyRccXpOT1BMem5fNQiDhWhMiO3SZSV1Kxan7jOMrheSMH6hYGLuo+6rrOJgkHLilAkTiRrpX4FVi/y8ggLRWu9EmECgjxqb6cvtp1nZykm9BKMByXaS8YBz7Ir+va4MoqGEcycKBpaE3TYBwJRL25b/Q4csh9RCr45Gh3lJCOzTxUgRddXblpfM3KOMWsLDs0DxL8R9nO4+EqhNyvphHAlgAaOEtrJWcJaen3sYzIiTiSfbH0nUrQH1TCbhCowIi6HWVK+j0uXlnwZhFOZA+1XyshXy0TmlwTVtGW4q/25agpqJMUlIftrCBjJlcr4ythN1FJpiT9nVFBpCCdHSwUi/6NIC0RzBWjcylrFdUKYDHojsquDtaVhtWip+aQni9l/Y/8IlMW2YKHvf/m40eS+HUyGRGfUvF50hAdT/XvE1SphLq60znviE2AiCvaWnFH0MPzLhrIgm60UbF2p/r+lLTPE0WK+g/FDjlrVo7yth4bt1Bkg4LAFFDUT3fdTnq4rbnf1M0+jqOcItwGS9S2w8PftT0mAQt4hyb37rJoGJ8SKpkByIGN8RgJ1SvaL5szqeKrTil+R1j5OtbB+mS3mZVtysUdfYUnYqgFuQz/G1w2hoJjuh+BaGSJokxV02zWwB4xSwPgU3yTnVnCgXEu7sdxRCY2+mWbGXqoHwMaKpzHb2fhiCLTE2N1EtPIJvvcdPx8IhM4wbuOlLyWhmh7y2ApUsK9lXRcVTotUNWOSOAF7JOWP88y4dgt1MoBUa2BGbaQNJaZwqEQ4haigrEfrF162BzXMOGzEjqpGqjBsQb8SkEDYGwaKZtPKD0XFQMRNn0PJD5wLwMoCdjfbFDGUdrJacZAkqw2HqPoQrG+a8Ez4X1iX5NMGhGAReNEiAsh6TPCuov+bp5MnB1CYt1q2w5NBkq/Rr85wGazQW8p44MArd5KbTcSCM1yQ91t0Xzq2T7ifYLuPKoMjaTl8INwNjCjc2D7uG+d/eRbPIgZC5Wk04dWf1P11WQzVClIAw2pvtDsg6LxWFbFYDp9RrhNBTjkHnJ+bJEocua3Akp9H+q6P6IMObNkAsrOYX7WaRDfJ82yD3a5o/xbt5jU2W36eTLeeBOpmtuq8d2FsJs04NCbL2BEmleBWSTrs0MI8neo4s8AlQSeW9rP2DZ1dyYf+9h2UoAW4ILN/clksWeqjIStnQrCTZ8X+h+67pMqjL+m/9cAwXuvbc9VwPB2G30f4/Wd4ibI74wWVv45MRbVyzA5g2JgdHQ/qZzWjaPW2q1sr9Hdh4TUeFZX3WdvQNLWTnEI1bwhq9S9a2H4xmv3itimow1ItHCV7IatOJRWrdSzSBwOygRpbFfv+ia5oJMj7xOAJBkQFYAAm8ObdukCg+IkyXKYX8NZCNxaeXc25VJGtihwMazGgol0MhVJTQZJvIGeE0OwWBJCY4g+S+XKlHn3hTEDaax2WSkl0FiQmgXHichzdZI32cEIV1jtMQ5iaZHibm3bcVnz1Fptlpw4SNPiPUT4x9oHvKg65MIxMOMw8NLJGSmPZm5lwDB6DRgaQRosrItUl0xKaLtOAlnJzqsw5aDaKEF2zr5I1S3C5elTpSB4yPh6BQZaJbHJLe+YMGLc9FgdnMF6veI4Gq5YhASSE5V7AbytAWIDGiJsTCAnxz6RFGhUMtP0kYufSvAG4Zur28gUQ/UwnXXm7kA4OLUWXskuiII/KLK465avXAFRHML4i3y/Sykl6/D5TL++zvVvKaynvBO+7wrk1B2y44GovZQ/cXcM45P0Oj7NOh6NCxNVCo3XUTCp4wmCg0ZdN5Vid6WXpppMlJuZ8eM90yGPvI+8k4+yKkz4+TXcbtSgUNrhDmlyHVi13b9XS4zOXwWz3uRkADN20Z5E9gLoWEVoGXNcKtJhnSpJlY8i212k+3yZWlp8rQYX3+R1ttGM6zz2IWmj6jtsaYTmTYmIUFACiIy3nGOdSP/Zerb7AlvR2u9qBpOBIi0g6l6HzMkhBmrAln2Az+t4DHSkAck4FhQJ7mSzvVTqzJ6mFheEpecGK4bqqmq81aJQ+b5SWOjJBPcwcIAlQTIvQID8V9OddLeS2hbjMGCz3mcXiGTn5Nxam9R0D7DCVuQLjJ6xkzO/gyAptqwAx+SLCsjIbUbGgvutFS+JkDsOXG0aHn4CB4KpS2MYSA78k1LTIii6xQJtu+DTcVXgKdIvAuCC1QY5o0nZTy2W3TO3V9Kapc9c94WDUzmYlov2jKWg73v0w8BWoYDa9Xm8wKTkvMU5BAFA9ocPcVy6OVe73JQbSRUfTfDl3KBZ8Lk1TQIS9dis2D2zXh9wNVsiyfphQNX3GyABWVxiptR2oA4G1npukKfmZsQ4EgFMycS4FI9jEzXf44psanJ1N0qMKQlnFU0lFDmfzI4hjC0lCOrwn6Q8l/HZtkP7WEyVOUkUaVR0jLGCBcueH6U1R4AZiEqctl5AYCNltKqF52kbVQXsADymJGVdTYUzEVzWVB0E6jbSZP7BwAORWG9UIWqzIu9Tqp7pb9iR+SH8KRZvHZwLye/TXbLOJ25PBIgJ8dwhK5mgA5NqIGJg0zqZ9Cl1qycxJcQDKF8laxOS4oTkrIWne7suVyQQ7ALG74TK4iTjo44iDzJ2oMVNS0C0JNrI+ChUilc5U90Tuhn47hZBzRaLPMfk5ji39H3BEqdrVFmr16TAt4p/kHJFaSdW81+8TQ6OmM9FDobVMCq1SBufwvKHWUDPAZAmdKQBSdO0dhIqK43kptAdqNYjikV8h0HT6peVFWR6f07h2Qn9sEa/6ZEyW1HYsqCnHOqu2325pRQ26fcbKBKyYmPm3+azaLLEcoxFLUBkqD0BhkxLGXmySAwHryOe9np4HBFXb22a7MI1+WQjgsWMbPo1K1fx1eac0C3kBMqmQc5tBexqHqeQ4aMVS/n5pHEkUpG07TokgINgRwY9yJqezArWTrlMaqXgkWLLqMePDOMgh7NxYKkf4qZzwdtYgZSw+4wK30vrqxWF3UIZzNsyrPkU34N99P3KjtYmkIxxDyqDpVUv9/akEq6nK3umgi58dykpdtIRyqowfCaa3GQ3IRAtC9qXqSGbrYWlshp6poPKHBHsaTL3w+uNhwFUqPKozNpxvUXFb33zJ7IOYCVi6c/y3oYXkbscArCwl1csSEAO8TiYWkUc8NT8caVjhnHTeqLAoKDSFVaJfQ39r9xLtU6pmLkV41BtouQi1751Nyj0W97jpwBPlEIopsUxaoE/8jy+XJU7+VglV37mAlfhUSnOgLIm4AmT5/Ar6z75fLHO15oy+eeGH2SgSnxTBXhT+FhBi45jCfMeW2Pu7YTJ4C1AbA+v59wuMuUsAo1AE1d7QjwSpHqWbsCCFdNYMnmP9SYIE40jcvkR1rett8lY6ntJCk9KyAC7mzlb0ycOqnUeLbZ1puO56UgDktz4ybKaVWChoCWIRhVGyd05wiUTlhohrQGvrPV11J10wWrBs67r5KAjvlADSEGcrgsBJoA/m0+I5dZZnQ+Aq8uuVxyHgQ4aAc3xB16sDeDgxgJxzWRVomCXBXgpgUbwOSxBWKrQlR2Ezh8+ANAPoeO0386q9DVieeKnyHQvnl2DpNkLyU/llGDVQhwUOw58pkzbdihjMauCmvs0yG/oe0deal3SA/Umu+9kv8scCCmJWnuFx2V0EALlF1uElCe600gAW9mQAYzG/9Kv0G82WG1WKMPAx22Po2XYEBH6vkcZezRty+f2tB3apmN2TDIz2JIC1MeOqpk/KvttAYL4pPixCUz4vA/gI95rfxlqJH9I9UwRyinudEOMAjnfKLwnyfhB58UuGS5zMOrb2FdTHGXSpm0u1D0LCsmh2Q5lkfSK4DMXEJB23qMXeDxKDFy1zUxsFtW824aKTJknsW+KUhhLBciqo6V/JdVjiqRZNxOumEUoqBsLMK15qHBE+67ZQC5RuZ1Wr8QvdQ4FUDUl3gSENVe9m4QPfrsCXVemyf6uX0E6isqt6ZvlvyYNsR0U7DEPW/fH8QbUEFVv0KbTsQJDgT/Gtq0b+FMixNpB1XXyPj8nKDw3tNVBCQW5OFVoMnjVNPeRVtc9g5FR+pFkUxPeAUi1WN1wTd+1ey5M6UgDEiAOQgLgJm9bOlJNlCeRLkW44CAZVA7DD1cAJYWqroCfpUExYJRM4JaIAmW2Jk1Bk+tUySdZ1Co4h6HHZr3GerO2z4e+B6VkFVOzBDO2ChRsYZGlxLJVIU5NdwOpxcZqJxUyC4TV7SDIroGkMmoLpMzYrBSQVIw1y0JIkVRBFNEwFcJ6tY+2yVaqn9nDfeH4E+2bcD7reE5ARvLzTDRtVwOJAQTfvwo9DWQMAkN2GTQSvNSIg5Eswc0kgKftFshUUEYGIpvNBsOw8VRuUU6DBPsSFXTLhRwdvrTMHJ2j0139lnwIQpX5GeR6mlwcBUlcCQkWaGZFvsKOLD6Hf6Wd73DBOQVCMndVGMP3oLWSSWydM1Dis7KOF6gVYxRyqhp38UotPaY8dtRe0Bf7mXRBgSdRCnrmC6I5Pf4nGTNSzDoif07VJv1SAQXVYLDuSh34qK1EEnedrbNtztRtkHoeFD/k//jYaFd8vagVZEquzKJLyuM9IC1W60RsvQvfoOU8ICnMQQEXCmC193J/BKXnsqR40o4Do8gCYY79qskIGne3rSenQLZGW7uMIzaPdsGYCqj5PNI5yUIKtZULxirrW5ybfJlXXlWwuMvQVllTlEWVetiGRArU1AKvsXEppbDJSyZv7W9tkYERXZO71uVuOtKAxA67I/iiFkYzqhuRB40rMS1coc4K4cliNZ+9IUG/KhnDA/SRw/H0MDc1ZVqAJpEvBEgRtiie5cdyb4nFcg9ty9VGVwcH6IfeTmJcdB2OHTvuR81rFb6U5Eh7BUfyTini5kuEJ4ju6LRUPABkSmhaoOtGPmBwvRZrTscAxSxIxfhG1lfAo9jI+F8kLTglMDAcB3Rt4xk9jQc6cT/0KPMKUobvVau4CZ5rnqhrCrCyRuSFmdT33eTGc0+SP9mKkyXwkQCJa8dkABg32N/fx6Zfo2myLM4iPJG0Xuljblp0iyUWEmui0lH99TZuwSRtHJuABRPw5IJs926K35MUvdg2jAx0OtUxA6YkSxDwwkedI/pYbxeqMaqf7t+hmnN8vykbhL6QXzLRIuETm2TQNa5rDCKqjYnJ762AztS3r5+DMApoTQBnHU2UjhmCggKumpnqapgmmF3qI9S7rJsw5aCmm+t8CKDHvSAytinyxXmolis/EzCq2NjQZO4ZQbFAaLUf4umfm/uQYstFroTR4vu1RWKJDFWzaxbLdaLYVJxI0j6/Fyp/MInT8KdEy6BNj0l7VIYbK6v56uvMQVI91rsCPeur6jGxWUA23YKcViAMl2luArPfI8i330NquXemaipiz2zNTAHSZJ1GCzSXj+gBKdRpoRFNCyLO/UiR76j/Lin065yyq6YjDkga22kDcIFa2PdPpaBIwTEz5cmu1k8O1VtrE7m6czSYLsZcAKLwSgGRBjOyAoaAGAVLqhDi/TZgYe61LWe9AHxi7TAkLJZ7QJJ6H0OPtFhIlg1V/chaqE2OGVcqqlTs3WExUZKKq06NHCo4jj3GsQRlLoqgqKVHTx3Wp5ILnVFNzkV2k2SIeyGpyzHbCCmYqOVfFFQuU2U3pWbDkLHC5/wAuvtiqwszNqeEJMAnq9UkHOTG8ydXrjyulbIByoh+4AMZ+YDCVuJ/FLACbdei6Vo0OaNpOuNxIZ4bDD4dpDnHtGPhZ1DWpvxcPiAGfLrQdMVuwX7KK3mmCS2d40F4WZA3/DoV226azhaXEOe/8qB6np23VM91Wwc2spOGAJUQnu7cooXAPov/SaGzsZGCVdQKUvddffVi6Qu7zp3m+ogvrINVa+wD+2tHu6tnbLFAlSpbNCms4crqF5+BWkHatKi+h8Vi5SZZNVMEuaSuVnWFmP6MLN1qc618rbcUueL/rbLJJp3XwGxudhL5KHMz8fe2sdup3xSI7HbWuOqlepR0vWib7f7aKmGWqsmcr3hBgZ/hPv4RFXeq17wtzFR9H4EIwre0ozd6nYIciw+zQHe/Pwa/e9+8U7yhZ9e56lmeiNk2gJXlzsUQj6HW3ZJ4PCs++Sh0JAGJMu6BBz+Nrlu4DJNOj3KCLzNHzEwSg7BZrzCMI59WuFyKhUB9bD7cowTWNU3DlU6TT1QqEpxIoxzcBoszyHL4nNWUKAXDsPZgRi3gRQUjsb80Nw3fK+lm49CjgBEquwi4lsX+6jiWZ5bcx3HEKGnPXOp9ARQunNZYgC3QNMmgsYImPksFEmzZWOEtgDODNus1Vqt9tE2Hxd4xtE0Lku80ndl2+Cmj7TppD2fyaK0ULQzWyEmQVkAsVPxUfhAAGgvWmzXKIAXnmoy2Zd7wIkiyJviAvpFGsdLk6vBEroPSSGq0gxE2p0tZ+pSt2iskeDYRsDk4i7NnvyInVI4Yxw3GgTNm2rbBMPRIiSxlWs2TmpljWxHiQnDxZOhhHE04KWhFYldgkevb3Jib0QSGzDsN2jaZSMViqAg6J4HcxqJvZDVXDHYQYRg5TbptGjA49OtlNfG1WqdEXAJ62itFhabCLgE0EgjFwJ1agwzYBoBlwmpy8Je/X6/VwG4F29lOjdZ3c4CdrFGCBQpqvAISxOzsz45pwhoTppq81ncqeK2smB26aH0U5TUV0PFJztmoDoPmTgpI/DMfE91BR11Ifo5SbHAYE0cm2iYeQz2+IVpPdGBM2cX3JnV965Skiv85aYRHBqViWXf+/OjuIfl/yJixvivj6jHSe/ksLgFok/lnafzadgVbIvv148pth2SWA+WlWb3r5ruyTQ5e4hrwDE5Y6rDdGza49djwg9W1Ly0CzznChOn8vbiBDTVix3eh3IIOr2+6BNIUdWUzY7y2FsfxrdcHWHQc4ziWgqZdcOHMpoW6CMtYxMIoHRV+cOZoxjj0AApW6/1qPM9FiR7tiq9C+uIXv4iv+7qvO+xmzDTTTDPNNNNMj5Huu+8+POMZzzjn90fSQvLUpz4VAHDvvffi5MmTh9yao0GPPPIInvnMZ+K+++7DiRMnDrs5R4Jmnl04zTy7cJp5duE08+zC6TB5RkQ4ffo0rrjiivNedyQBiZrBT548OU/GC6QTJ07MPLtAmnl24TTz7MJp5tmF08yzC6fD4tljMR48tkiTmWaaaaaZZppppv9BmgHJTDPNNNNMM8106HQkAclyucTb3/52LJfLw27KkaGZZxdOM88unGaeXTjNPLtwmnl24XQUeHYks2xmmmmmmWaaaaYnFh1JC8lMM80000wzzfTEohmQzDTTTDPNNNNMh04zIJlppplmmmmmmQ6dZkAy00wzzTTTTDMdOh1JQPI7v/M7eNaznoW9vT1cc801+OQnP3nYTTo0+vu//3t87/d+L6644gqklPDud7+7+p6I8Mu//Mu4/PLLcezYMVx33XX4/Oc/X13z0EMP4XWvex1OnDiBU6dO4Sd+4idw5syZx7EXjx/dcMMN+JZv+RY8+clPxiWXXIIf+IEfwN13311ds1qtcP311+NpT3saLrroIvzQD/0QHnjggeqae++9F69+9atx/PhxXHLJJfjZn/1ZDMPweHblcaMbb7wRL3rRi6yg0rXXXov3ve999v3Mr0end7zjHUgp4S1veYt9NvOtpl/5lV8Jh17yv+c973n2/cyv3fSlL30JP/IjP4KnPe1pOHbsGF74whfiU5/6lH1/pHQAHTG66aabaLFY0B/+4R/SZz7zGfrJn/xJOnXqFD3wwAOH3bRDofe+9730i7/4i/SXf/mXBIBuvvnm6vt3vOMddPLkSXr3u99N//Iv/0Lf933fR89+9rPp4ODArvnu7/5uevGLX0yf+MQn6B/+4R/oOc95Dr32ta99nHvy+NArX/lKeuc730l33XUX3XHHHfQ93/M9dOWVV9KZM2fsmje84Q30zGc+kz70oQ/Rpz71KfrWb/1W+rZv+zb7fhgGesELXkDXXXcd3X777fTe976XLr74Yvr5n//5w+jS/zi95z3vob/927+lz33uc3T33XfTL/zCL1DXdXTXXXcR0cyvR6NPfvKT9KxnPYte9KIX0Zvf/Gb7fOZbTW9/+9vpm77pm+jLX/6y/fvP//xP+37m1zY99NBDdNVVV9GP/uiP0q233kpf/OIX6QMf+AB94QtfsGuOkg44coDkZS97GV1//fX29ziOdMUVV9ANN9xwiK366qApICml0GWXXUa//uu/bp89/PDDtFwu6U//9E+JiOizn/0sAaB/+qd/smve9773UUqJvvSlLz1ubT8sevDBBwkA3XLLLUTE/Om6jv78z//crvnXf/1XAkAf//jHiYhBYM6Z7r//frvmxhtvpBMnTtB6vX58O3BI9JSnPIX+4A/+YObXo9Dp06fpuc99Ln3wgx+k7/zO7zRAMvNtm97+9rfTi1/84p3fzfzaTT/3cz9H3/7t337O74+aDjhSLpvNZoPbbrsN1113nX2Wc8Z1112Hj3/844fYsq9Ouueee3D//fdX/Dp58iSuueYa49fHP/5xnDp1CldffbVdc9111yHnjFtvvfVxb/PjTV/5ylcA+IGNt912G/q+r3j2vOc9D1deeWXFsxe+8IW49NJL7ZpXvvKVeOSRR/CZz3zmcWz940/jOOKmm27C2bNnce211878ehS6/vrr8epXv7riDzDPs3PR5z//eVxxxRX42q/9Wrzuda/DvffeC2Dm17noPe95D66++mr88A//MC655BK85CUvwe///u/b90dNBxwpQPJf//VfGMexmnAAcOmll+L+++8/pFZ99ZLy5Hz8uv/++3HJJZdU37dti6c+9alPeJ6WUvCWt7wFL3/5y/GCF7wAAPNjsVjg1KlT1bVTnu3iqX73RKQ777wTF110EZbLJd7whjfg5ptvxvOf//yZX+ehm266Cf/8z/+MG264Yeu7mW/bdM011+Bd73oX3v/+9+PGG2/EPffcg+/4ju/A6dOnZ36dg774xS/ixhtvxHOf+1x84AMfwBvf+Eb8zM/8DP7oj/4IwNHTAUfytN+ZZvr/Qddffz3uuusufOxjHzvspnzV0zd8wzfgjjvuwFe+8hX8xV/8BV7/+tfjlltuOexmfdXSfffdhze/+c344Ac/iL29vcNuzpGgV73qVfb7i170IlxzzTW46qqr8Gd/9mc4duzYIbbsq5dKKbj66qvxa7/2awCAl7zkJbjrrrvwu7/7u3j9619/yK27cDpSFpKLL74YTdNsRVY/8MADuOyyyw6pVV+9pDw5H78uu+wyPPjgg9X3wzDgoYceekLz9E1vehP+5m/+Bh/5yEfwjGc8wz6/7LLLsNls8PDDD1fXT3m2i6f63RORFosFnvOc5+ClL30pbrjhBrz4xS/Gb/7mb878OgfddtttePDBB/HN3/zNaNsWbdvilltuwW/91m+hbVtceumlM98ehU6dOoWv//qvxxe+8IV5np2DLr/8cjz/+c+vPvvGb/xGc3UdNR1wpADJYrHAS1/6UnzoQx+yz0op+NCHPoRrr732EFv21UnPfvazcdlll1X8euSRR3Drrbcav6699lo8/PDDuO222+yaD3/4wyil4Jprrnnc2/w/TUSEN73pTbj55pvx4Q9/GM9+9rOr71/60pei67qKZ3fffTfuvffeimd33nlntYg/+MEP4sSJE1vC4YlKpRSs1+uZX+egV7ziFbjzzjtxxx132L+rr74ar3vd6+z3mW/npzNnzuDf/u3fcPnll8/z7Bz08pe/fKtswec+9zlcddVVAI6gDnhcQ2j/P9BNN91Ey+WS3vWud9FnP/tZ+qmf+ik6depUFVn9v4lOnz5Nt99+O91+++0EgH7jN36Dbr/9dvqP//gPIuKUr1OnTtFf/dVf0ac//Wn6/u///p0pXy95yUvo1ltvpY997GP03Oc+9wmb9vvGN76RTp48SR/96Eer9ML9/X275g1veANdeeWV9OEPf5g+9alP0bXXXkvXXnutfa/phd/1Xd9Fd9xxB73//e+npz/96U/Y9MK3ve1tdMstt9A999xDn/70p+ltb3sbpZTo7/7u74ho5tdjpZhlQzTzbUpvfetb6aMf/Sjdc8899I//+I903XXX0cUXX0wPPvggEc382kWf/OQnqW1b+tVf/VX6/Oc/T3/yJ39Cx48fpz/+4z+2a46SDjhygISI6Ld/+7fpyiuvpMViQS972cvoE5/4xGE36dDoIx/5CAHY+vf617+eiDjt65d+6Zfo0ksvpeVySa94xSvo7rvvrp7x3//93/Ta176WLrroIjpx4gT92I/9GJ0+ffoQevM/T7t4BYDe+c532jUHBwf00z/90/SUpzyFjh8/Tj/4gz9IX/7yl6vn/Pu//zu96lWvomPHjtHFF19Mb33rW6nv+8e5N48P/fiP/zhdddVVtFgs6OlPfzq94hWvMDBCNPPrsdIUkMx8q+k1r3kNXX755bRYLOhrvuZr6DWveU1VT2Pm127667/+a3rBC15Ay+WSnve859Hv/d7vVd8fJR2QiIgeX5vMTDPNNNNMM800U01HKoZkpplmmmmmmWZ6YtIMSGaaaaaZZppppkOnGZDMNNNMM80000yHTjMgmWmmmWaaaaaZDp1mQDLTTDPNNNNMMx06zYBkpplmmmmmmWY6dJoByUwzzTTTTDPNdOg0A5KZZppppplmmunQaQYkM80000wzzTTTodMMSGaaaaaZZppppkOnGZDMNNNMM80000yHTjMgmWmmmWaaaaaZDp3+L69eH7402rFlAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "xi = 0.5 # distortion parameter from Unified Spherical Model\n",
+ "\n",
+ "x = -np.sin(np.radians(vfov/2))\n",
+ "z = np.sqrt(1 - x**2)\n",
+ "f_px_effective = -0.5*(width/2)*(xi+z)/x\n",
+ "crop, _, _, _, up, lat, xy_map = PanoCam.crop_distortion(equi_img,\n",
+ " f=f_px_effective,\n",
+ " xi=xi,\n",
+ " H=height,\n",
+ " W=width,\n",
+ " az=yaw, # degrees\n",
+ " el=-pitch,\n",
+ " roll=-roll)\n",
+ "blend = draw_perspective_fields(crop, up, np.radians(lati))\n",
+ "plt.imshow(blend)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "pfinference",
+ "language": "python",
+ "name": "myenv"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.19"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/external/PerspectiveFields/notebooks/predict_perspective_fields.ipynb b/external/PerspectiveFields/notebooks/predict_perspective_fields.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..bb58365c763321f86fc0cce378ead277d0340fb4
--- /dev/null
+++ b/external/PerspectiveFields/notebooks/predict_perspective_fields.ipynb
@@ -0,0 +1,206 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jinlinyi/miniforge3/envs/pfinference/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ " from .autonotebook import tqdm as notebook_tqdm\n"
+ ]
+ }
+ ],
+ "source": [
+ "import cv2\n",
+ "import torch\n",
+ "import os\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "from perspective2d import PerspectiveFields\n",
+ "from perspective2d.utils import draw_perspective_fields, draw_from_r_p_f_cx_cy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Paramnet-360Cities-edina-centered\n",
+ " - Trained on 360cities and EDINA dataset. Assumes centered principal point. Predicts roll, pitch and fov.\n",
+ "Paramnet-360Cities-edina-uncentered\n",
+ " - Trained on 360cities and EDINA dataset. Predicts roll, pitch, fov and principal point.\n",
+ "PersNet-360Cities\n",
+ " - Trained on 360cities. Predicts perspective fields.\n",
+ "PersNet_Paramnet-GSV-uncentered\n",
+ " - Trained on GSV. Predicts roll, pitch, fov and principal point.\n",
+ "PersNet_Paramnet-GSV-centered\n",
+ " - Trained on GSV. Assumes centered principal point. Predicts roll, pitch and fov.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# List available versions/models of the PerspectiveFields\n",
+ "PerspectiveFields.versions()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dict_keys(['pred_gravity', 'pred_gravity_original', 'pred_latitude', 'pred_latitude_original', 'pred_latitude_original_mode', 'pred_roll', 'pred_pitch', 'pred_vfov', 'pred_rel_focal', 'pred_general_vfov', 'pred_rel_cx', 'pred_rel_cy'])\n",
+ "roll: 20.19 deg\n",
+ "pitch: -68.75 deg\n",
+ "fov: 65.36 deg\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAErCAYAAABDzICRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z5wmx3Xfi3+ru58wz+SZnc0BYYHFImcSgZkEGMSoZFKUJUqiwxVty9eWZEXLsmxJtiTLV9e2bEm2SUlUMnMCAZIgIpGIDCzi5jw7OTypu+v/otKpngEJ3r/v577QNjA7z/TTXXXq1Am/OnWqSmmtNWevs9fZ6+x19jp7nb3+1l7J/9cEnL3OXmevs9fZ6+x19vr/9joLBs5eZ6+z19nr7HX2+lt+nQUDZ6+z19nr7HX2Onv9Lb/OgoGz19nr7HX2Onudvf6WX2fBwNnr7HX2Onudvc5ef8uvs2Dg7HX2Onudvc5eZ6+/5ddZMHD2Onudvc5eZ6+z19/y6ywYOHudvc5eZ6+z19nrb/l1Fgycvc5eZ6+z19nr7PW3/Mpe7YP/7rce9p+VUtF3WvyjlEKjQJegQSlQ7mulUPZZjcb+FcqxXypfrnnGVKcoRR3K1SHf16YO81mDrfvkhpf5wpt+n7ff8w/YefKSte+gQenQGG3qQCn3gLmvAOXwk5YNX3u5d+1jhmb3rCFMWT5oe085hmlteWi/sbQ9eeGdHNv0Am+9/8ep5XVPkqRBo9Da8FC7dnheSj4RuK+xvHSUWDLE9+5znteZnt3IqdlNFEVKPVtkcuRF0iT31ChRm1KunzWl1uik5LGbP8u2A5ey6egFoF27QWv3vkIpHbilQJdl6F9doc+3XBn5c3Ih5GHdfpL9i3h2vU05fb+Yq9Na5MSu59jx0hVkvXqQbct3NJC4lksy15eXiEr3jKp87/7RhgFaa7TWJBV99C/o8IcWPHv5svuZOLmT8dPb6AwtonRCY3XY9HukfaYArZx6KC9vZRA+36zoXa0pbT84Or0MlKZspRRpkljJ155GZx9kQ/x7Vq/Rlgb3jNaUFHQGlqCb8tTbv8ilX3g3Sb9GUeogP65NTq11KeizepoEOXSUKPudpxG8jkqxcZLv9U4roLR9YNqYJLaRtg/NR+X5tjIxw8qmaTbsuwClA5Nl3ZYi+9HRIHnm3/L3FKZtioRSF2hd2hY6mQJIrf6Ydhi+l3R7Xebn5kApsqxGXpTkec5Ac4DmwAD1egOVGv6gFTorOPL6Bxk+upXxl87z/eg4a41f1MfBfgRLqa38eP6X2j+unQ2zuqetfiqlDN2UvgeV5b+0277ftZOJMiJHa83yzpMceO/X2fOJ91JfGDTyIu2t1z8hQ5YmU7YwtMrUVZa2v5XlcWlkG0pQ2tq5xDxblKAUZVkAGJ3y9jvYAG3b62gptZV3XVKWmvsf/ld8t0u92u2I//1vP/KK32nhLYxQh453HeScj9IVxUeYGPuq0qHkuB5rY3HOlSAcrA8G3Jv9tEstr3uH4TvcviidpevMtQ21tUuv6j6bHo4djAAE/nNonDCdzgxbMOXAgHfOFlSoAq0USZmIb4Xj0LHySAMX8zLwSHkagwHwzRfGqihTZhcnOH1mC+1uk0R1GR44xWBzGqXy0JfCYUkzZITc0aojIxeMK1YIrHFTjsfKOoK4W4KZ1kgw4NpGqSFRlUpcfxCeczyyz3Sby9S6A6gyCdyqAEONjstUwvGL/pf3PL8juZA9IrtSSwER9wPTtAfcKrQhfgXnI2Tv3/Pu/45G87ovfsT3g3EIeN5HvLbg28uVM3wWXUT97HpG4w2nMValvScdL6RJikJReu02xtG7B2/cTH+6d0snX96pWwNYak7vepFv/sP/m7f/+q/SmB8VBhNHffReMIGi3xRCFiV/peZVwIBzqgTeRP0h7YIHJaXlm7wX2wlfhrAl87uOMHxyE2mnYQYLCuGU8J0XiajXD0WpC0dxBQwk3ik6OcjznIX5eVZX29TqNeucDH2tgRZZrU6j0Qg6oRVKGTuplXWIVtYT6wi87rpX7AjFq4YHvMLW+75SgcfE5tjrtZEay1lt26yhLH1/a0or085mWPBaAQ9lUpKUiQCTgTZ0GQa8Otgo3/3a1OvAmi41JWGAhLayrDVKaYoix3s5+53p07JiwZ0fNTZA0uYtr9MJrfnWw7++Rp6q1/+WaQI5wg/jXH/DUFoaf+MF+jtcOthlUa6ry92wBmIdn62cMvvnFfW8GTtFJ3C2jOj5VwQCXnWw+heql++ohBBBEM5YFquDP/AChkF32js3Is6iE5IydqLuLUe8wvg/pcJvnINGeXsUmiWEp9oOrdFasbgywsuHL+Tw8XPodGsMNU+yaXwfI4MnSZMiZpftb8ctrwRatqlqqGJ06593BtwWpqwxSYT5rJbpGSE71Rk7DawjMFGkS8OR85/kxcvuQ2hZLLOR9Yl55uTHGTBBTahHjAalv/dGPLr5SrTaCFnoYBzgkHVKepUVkLkNx3n2uq+zNDbt7zteymb5EVncxNDsiCVOt4LTDU4yNEIp1nSBjhoawHoUqPGDiqCojte6DECgpOSlm+9heWqa5YnpCAgopal0tQACrl0qyIltuANwa01X/FekBlWAIcAx2kUqvJZUylqHwU7OlWJl4zRPfejTlFkeved7vtJIH0n11ZfSDNq6Ah0hGmtoLcuCbrdLvV63zyQkSUK9XifNMmq1On4Y4X207VP3y4E4tBkJi+Y6YOFBJtqbTyfvzmHGCDDw2jvDwGTzr61Ll4UHAg6cOkfpmO2jWWVpgYFxWklh7IfC2SfBTymja3gZeKjLkrIsjc9y8lxqiqL0kYE8z8mL3PJH4//T5j1Db2n13Mi7i5a5CFdZlqauoqCwdepSEvfK1/8mMEBQYGFWtFQAxxf7o5RjacxUpTHRAx1pgjf40k6G34H5qupItSnT0ZYk1SY7KhL/diA2eGyDdIWhVsTPipGlAQvaA4a1jl38IVGOkkLlDKsTdCXvrmPIhONyxsvRTKBblhI1VQXuGU1UdHpNDh0/h5cPX8jiyhCN2jxTY88xNnSYLO15ZxT+C7RLfxmkIImManA63t8LlyL9sPbla996yVABDXRwYqJ10W/pQJ2h9xESNPVekzvf/184tfOFyPnGl30vqt19sxZwSPmQRfiiNaz3mscxnmfCaQrHWW2lFsx1BlajydMei+OnWByf5tlrvyH0FgEuHMlCH3T4zjSlAoCkS/df2YiblF8dQMkafbPvuPKr4B1hGL1cOaNpjeLK2CwHr3uQotZnYdtxPKAk8NEjTDHNWG1T3DZPrlBQFTU2lnMhrdGAJciuUook4rexeab4xJavhDKY6de80eXxH/srVjeeQeWpFSll34/7XdLmLucAHRvkO5GFsd8VZcnqyipFWZKkiQewaZran6yih6Indeif0IfBRgbHHr7XQFHrC3XQa34iUCAbpwGswyw1dlxhHbF1lLpEE5xqqKMU5VnZcDKHfQfxvAUHao0j0EHntPOBwY5rDwwcECgpy4KyLHCRQ40BP4Wj13VWaaYNSufk/RSXG0CZe6atOgILr+b635pA6BXYhrhc2D9SqYqxkQZxTWTMFaCV81axctruCEZIhL19HbZKrUNoMaJXkGbpoHRkB+KCksWOyt0z1Qd3Fo92fI149/Eq+ifUIQw2IQTn+ODK9KPoaAjzCg4Ia4qVbaeNZmgS8rLGyZktPH9gL2fmpkhUhw2jL7Nh9GXqtWVA0896nNzxPDrRUZk6lGw/O0fu8jyE63SdIzvBj/sJMuENrStXO3GoOF5l64udkufPd2O4fWVgZZTV4Xm++sO/z/LYtK8jqkkFZxzEWMICCY3M5Y2/fSGaQpPyV5EtzyLJugrNzkjLaEM0GrV383qX5dFZUJqnbriNleF5W43UGQfyTBwGN7VniVEWLDoAHdCIMaKODiDwKOJdTL+rOw7CrOVjVaZdpNH9lLrk4DUPsTJh2je747BoVwAFSiKsdaQiBB8quvMKAuTk3DsoDyycXmrvSHw0QInvBGAJvAw2zwMFpXnhXV/j2GsfJe02SIoUbxis/ypLRL875RHWSILEyGGIUbKzl2VJkee02x2yLKMoChPRQJMmKYlKPajxvWaFWMqyQpOkqiKjQZcDm0uWN59i/9u/IZxBAE8xhzTRYNM6eU+jdfY4V65LNIX5y0VlPCscUKiACwlJtPM0BAcrcYwYtGmhL9JBO14XZUle5BRlQaldxMBNoykj175fXBdqT2dRFBZA5JRlIUCFjHxI/rw6N///PxhYT0EkkMPJvU1ecZZNu/kQgvxXC3AO0NsbgfLF88b/aVwgx/lDJYsTKNy9tya87ayUks/IHANNLOVVy6yDDK8ZBQqFCUxZ+5wvSvAgvBrqioxH7HjMCKMq1NI9O2cZR1pKEhaXx3jx4AUcObGdPIfRwaNsHHuBVnOeJAlz3mmR8dhNn+Xbr/sUeWqQvLBdnqrg/JQd6IhkIO2Mo0XY3kso98uXhX/OfqHx78toSnBkju0xf9DrGN7KVW8PUus1OLXjBb7+gf9Mt7kaj5J923yRQXzU2lJDfwcaPNNDa30bdOS4oq+idke0IIFAJf/F/6toDy3SbS0DML/hOPuu+maQBRkxiWTKGLVquzTaht5d/+F1W7bM94l3kvY7odM6ekdF7IojBcFYOOPowqq9RpuXbr4bF5Kb33mEMlmbZGxk1fWn8vel4wnRC0FXJXIiCIme87jAlhUNTir0h+8qzk8U7XIITl3+DPs+8CV0WpJ1DBhQSsUk2HYpFSbTAljR9u/gKMyAs6QoSuOcRJJmURSsrq6S5zlpkvr2pElCkiZkWUaapqHPnCPUIb9E9HbEtUKEvA2/NHO7D/Lgz/+Bqb8gABQdO3eUGGx5p2f5lqQoEf0NIXQLAkpXp4Uirmxhl4RG2f7U1l8Rhdyr8qDdgNM5+KLw01dOVvMiN868KHBRjLIsguO3ANGP/Ett+yU4exdVMKBATA8I22YAu/l5lYGBVw8G1gv5m1oRcmxHp35UIEzLuiFSHf8tPJNXBv+UU1TpZMTr1hAGZoT7KDt/7squ6rle88ETIwfZke+vAgt7z4XbFcbgWLZQDXtIZ+IreqVLi7C3ln+/gueRfKFi5B06r7Sz121y+Ngu9h8+j5XVAVrNGTZNPM/o4EnStIjRF6B0ytYDl/LN9/whd77vP9FtLa2JtESygVFqUSWRAjpHts5oLST8uLrxMhLqjB1sRISKQdhaey7Hj9DoDFLrDYCCF664l2+97c8pkjx6RYVXK2XZ79erw0cCgiApa5yrV8BFQpekU11bpXcEkVAKgKDRLI+eoV/vmDtK8+SNX6LTWhLgaQ0pvrAAvvTatisb+XAmRXzn3lEq8UAnBgaiQ4kdoQMLcVlyrtcadeDUnueZPeegL2dp8ynyZoeQvCp+tIQCrpyKnRLG2Y1gY/54I2PV0o8H1wEIbuozJKbpqOdjxuuoI2Fl4zSP/dQn6Q+uAlBbHYh468qQ4M+V40aZpXdWEnq4P+Qo1vzkeZ92p029XvNypbXJnk+UIklTQp4P4pmKzjpH6u9pT5wGdKI5ddVTPPgv/oDlrSfZ8OyF0l9TYYUXFd92MSoPNkTZmtYZ8XsD6ICGlD9d4akrS/hAb89diD6+QqRKe152h5bp1zqehyZCoe0qgfhZN+9v+iI38/9FAAOBxsDraBrCgisHHP63TxN4pLkmZukUIe5k7+38iADRUYG4ah85ZpdrhEDJKv3zoH2iXOVrQftaC6eVqHudDH9PiAoZBe57U5dG+WxVWY7vIdxSwV69zcOXfJnloTnPK0tYBSzJHArhIHEmTAVhlHQKxxG97xyTlmF6pzLmuaJImT6ziRcP7GFmboI0WWXD6EtMjhyklnVENU7Ywrs7Xr6CWq/J46/7LF/8u7/B/MRxSWzAD976WNqkcgqv6pIH7eJUV6sdxcVm2zZYMt+P3sto+U+sCNVAQSg0PJfmdZorw+Z2UvLtN36aZ679moOjgMl+Dwbb9p396BzDepeXURFxkisZXD+DEqNXAkeEkZVGTle/k/SJkOv8xMkwWlZwZvMhXrzsfqLJHEuLWxroZWeddsV/qpi/0utYmhIZISSIgjMZ4VnJsSBLEggZY2neLZOcF1//TZtUZ67O2ALt8fmqmxW0Gr4nSUKiEvzyPl7hEiMv4eoQvfNKb4bLdnVV/F05OvSe/6tv8wQWtx/3L9RWWhZgOM5olCqjMrUHcIIy4ZQ9cFhHH/r9Pp12m6IoSNLEjKgduExMrkCiEgEANWbevUSpMg4QgXG6hPC6l6ek5Mgb7ufh//MPWZ2aoXVqiqHjm2JidPzRccj5E88zFwHQhpYQedDRm8Iy2YS+kLQc/zg7ogQd0npaKZDgwQFCO29fpH1O3/wUL/2DL1AmhVldYcuM7akBBmWem5wCbUb+hU0ErNKG7TsvJ0KPTF6CaVeiAp3f7Xr10wRVEOAr0V7APYOccCkn1pVQjCzW33V/B2wrQ0tKOfcrBbt0UMT/RGhbVLQuOzSoCAHijbKjam1aoRyVxEIRAIBjkWlBvTfA/PAp/vCH/hGPXfxVgxBVeM0DAtn2yM8Zx+BuaghT7wqPWF14VYXXrAFz6FWKsWJpZYSXD+0WUwJH2Dj2PM36fOCl63arCAmJzY3QjMxuYtORC9CJZv/FD/Dpn/oljp37jBV4238ygqLAe0xJj1huKhlbjf6EchyDlW+nMz6qcj8UJ4ASrk+FexfPpkVKa2XU/53Xutz13v/G0d1PQvReLDtaOScv765/aam9niPB0GgVgJuK1FR0fHhRMsdSFnjs11soWNhwIqJMJyWP3/wF+s1VW4T2v2XExYdhBaOUA2RWmKsjQi1a5YBo3MpQvrL6kijZf+tEcULFoj7NwpYTHL/8yYgfeaPD0uaTlVGe5L0I/SsqdQXllMtVpe5r74BcN6robckzL7K+DfazGDAFwx5sWUnBi++6g2OvfTRqW3215XnvAZzCAi1HhGiDddZuRYXvmUrE0jnBoshDVMA6uLLUAQjYxEEvHdqAMw88XXv86N0l9bkkPk1Zy3nxvbfx2D/4OL1hM3U1+dxusk4zRI4E/0WnC0yncdEMXRbE0Q0TRkfLNkv/IRKdS6HXzp7YW1pED5RrE+BC8CGSkgsHXrC8/RTP/txf88wv/wVD+7aRrtZxG3SU2oFtFyEwdBe6pLAjevezxr9JUKBlg8ST2jREayjsHgXf7Xr1kQGtww/O6FYSiCAWeM9MKt8746T88/KnSPvMj55AJ4V7BdB+pYFpvPYhb99rTuMihbX/Vvmmxa/qKM7bNx2EUUlXHR7Ua150wpR4IVYornvmnXQay/zlO3+DT7zvFzm49WnKpMBbIWloIm+OqHudS4vG4ACBNc7gFdk5doBev8axE9t5+dD5LK0MMtCYY+P484wMniJJClGGm3oRa3ENgkKhSPOMc/dd77wwZ7bu57M/8Ss8d/U30EkRSUaURKbwZUfcs3yOx1mVaQ3hoGQp3jGoeNOXmKFRZQIeKO8YUIqkTGktjUWvrw7Nc/sP/T7zUyd8eVVn7/ntwdk61VZoCJY7lKkdr1SIBHlRQNr4BDc/65QfnPOJ5c+B6fkpEb0BVJlwetvL7N/7MJrSF+4cfdTG9dloihM6GfRARSYiURZMVkCeeSVMcSgdAwFpG8JoV8Z+NPtvvI9+swNu6a0GnWjmdh6J6cTZrkBDGNQFUB+Mf/gu4kUFFDi51Gu+l0bbAXNrj8SoNRrkiCJOXf4sz33/l9Ey90FDtjKAr9bW7UCjNAkyUc71ZxRvFKbTjajzvE+n0/F8k7kZWZaRZmYlgU8E1AHIuIS4ws3Ph5oML0wnkjfbPP1jf82+D3+aYqBrO1cx9dTFdjWZ9iP7OLkxAKCQlyBtSYgQBItv37fAT1kfEYCvM/VOb5zQ6mj1hQM/jr9FWdDtdmweQO5XBfQH2hz+/nt4/Pf+K6dueZTG9AgT37zY5mVoMQ1gMZLIBShLCHkwVmZ8oixiKWHARL6VlQhFafMNiqIqWetfr3oHQs817ySVV04VSWXYmATMXH01xOv1UDujHZQoARKd8ODln2Nu9ATXPf197Dp+GbW8WTE89qoMHZS8Z3ttXVZI7+I4Wx2GrDF+KjTTtUUY4fgl7RMklVaMLW7iuqe+j9tv+mP2nX8/B7Y/yXVPv5M3PPIhxhc2+7aEtw1NJtHOucVX7lT5XnheUZQFKrV9VSbMLY5y4vQW2p0mWdpmcvQ4A40FlC6C21XVMmUbTQjKGdRzXriWWneAfrMNClZGZrntg/+euamjXH/n3yHrNb0SRXDKYbqYs1Z2wncK+ZwtxeE9HRtimdDjDJT5Oiizk1pnSLyBVCqqdXBxMuJvUqYsj85wxw/8X7z7E79Ec3U4EkRPt16nXU7YdUjmWnfqKuIEsUxqhV/j7OXPcWptWc5Im7rMvTLNWRg/zdiZLSyOT1NmOaMzm9l47Hweu+nznP/M9dR6zYhuz0dLYMXsimdlZMckFRo5VALB2DJLMzIqSjNNVZSJ+V2kFHlGXmQURUpeJPTzhKKwP2VCXijKQlGUIVmtPz7Ni1c+zsinP8TyLV+gGJsnmR8nPbORoxuWqB+6xkb4SlRSkCQliSpIEvOTJgVJmpOqPkmSkyZ90rQkTUvzjCrQqjTvO1m2zssAt1gOvCTZrRuFaVzjqL1+ixG6tn2/sukMT/zUX1JfHiRvdtFZ4d91OQNOkZwsOB0O0weuxADsw1REsC1OVrRW9Pt92u02WZbhkrJVkpKlGVmammkDCz5K/775XVp5SwSoNwbf9b+iM7bAUx/9c47d9BA6De2uLw8y/sK5Xm78ICQy59o7dlNH8C4lMozuBgVQFlV9E7IZYAplqe3Sc+UjPlG9wiL285x+v4cEJjotWLjsIAd/4g7mrzgAqYYSNn3pWmrzQzjb6UC3txc+8lLigbQOfeQFJw514hR0TVu027FzvRUSr3x9b2DAh4ACU2IzFIypEt87dfGK4F5SztiFEb4GVJny2ic/wH/7wY/xxJ6vs/PEJVz/1Lu5aP+NtFbHTHRgrf1DaROFcSEmrTWi/6JXpIKaJXXmISeASgAK7V8gKkT5xqxDjNbRU2jFdU+9i4cu/zzzw6fpNJe555q/5pnz7+WND3+Ia559B82uFRhRkezH9c0+eIFUYoWGfTLJUkDT7TY5fmor8wtjaF0y3DrFSOsUadr3fH/l5gSjEsLw5vPE9E42nDqHE7v2+Wr79Q733/qnzE0d542f/YcMLo9F7FvbjqB1WnxQspOsMqzf/sAF/6gkm7U4z1PjAUJ8DS1OgjYgoEwL0Iobbv8Rjpz/JPff+gne8PmPkub1qOy4baLM76iL8QjYlWJ8zfrcigGSfWtNA41D9hZHKfqNLu3BRV5zx9/h3nd9nJXRWfqNNjd9+e9y/zv+lMO7n+D8Z18TkewjBDqmQ0JsbZ2ICZkm5HlKr5/Q7Wd0u3W6vRrtTo1ur06vX6PXy+jnNfp5SlkaJ18WNsoBAjTJ5kTjuIixS6+/g+zhGxj6yx9j8d3/C4Ds5DbG/uSnWfiRP2G6PY5qtyJ+Yesh4n2YGklUaUCDAwxpnyztkaV9arUutaxLLetQy7pkWYcs7ZEmOUmSk6SAcqPaSlTN9ZV3BjrqUPex3+zyzIc+w8Yn99I6M8GTP/Y3gHGY/WaHugcDtpPWGHxbkpXvUseDNM9T56PthzzPWVmxq2e0ghKTG5AlZFmNNDO5Aq49boc81x/Omiu/U6sDg8amLm8+zWM//T+YvfDlsPrIXsOHtzEwPWF3bw5lBn9mDbxrh1J2qaNrjgMDDrQZzjvQENuF2HmitcnRCaMMz1tl9ceBAre0z+UoaV3S2TDP0Q/ew4l3PUIx2PFyVT89ytRXL/e7Z3pH7dpVigiFQIphalf7doSdIZXt2uCcnN4ohZ9ycIDg1V7fY2RACR6GTllrqmxYUiQgeeyisIgYC2q1eMKWq2BseRPvuO//4JPv/GX273iUA9sfZ8Pcdq7cdwtXPXsrG+a3k5AiKfGCp2IH7sItWBSvXFvCW15RfFsUZgMq12Q/2vbMqFTg3guK7k2MLWN8cQvXPvUuvnbj//B1zI4f5zNv/T0e23sHb/3WR9h96FqysuYVtQoGA78CPwMPAgsceWWRMDs3wYnpzfR6deq1ZcaGjtOoLVWAjfJ8U75JKnbIvm/NA0pBLW9yzvPXcWLnvmBYdcLeR99Me2ier/zIb/HGz/0DJk+e8x0duetDX52nwUwP+S0nRCP9iF/jw8phJKtkQ/CAyXeT+FwxkCjF4OIEraVxdrx8Oc9feRdlmnNq+4t835/+Avuu+QYvXXo/e554PdXseSXKdrQoUYvjpOtFFyWLpcuNfqRmSOcb6lqLMxwhjllBiNqDC0yc3s4FT97Eo6//HCujs3QHVimznLd86qd59rqvc84LV5PmNSF7AmxoKLUiz1O6/Yx2p0a702S13WC13aDdadDp1un3M/q5GfHLgYmyACVxo/OkIEt7NGo5aZqTJjlZWpAm5m8zZWVG5pCjKQCzvhpdgNIUtS4HL7qbvZ+4hYXzvsXxWg+AwaWECx4f5sVbG2w870s0Tm9Ek0CZUGqF1imlTuzvFF3WKHVGqWuUuk5ZZmidUZQ18qKG7g2g9RBap8gkWre0MhWAoV7rUq+1qTdWadRWqddWqdW6ZGmPRPVYY56F7ACoRHPi+sfY8tCVbHnkcr718/8ZEmP4z//qmzj8ugeorbbilzwQjkGbL9MCQ6nOJRo35adRlGVJv5+T5wW1Ws3vepeohNRu651lZvto0wiNSwwEZc9cMAmZDsf63Q6VYu68gzz74U8zcngb48+fx4sf+IqfCkbD1FMXoXqpAS7a2SOjLW5Jn8cXSqzy8OouILLQPQe6PMwWiuh9g7vlIh1eI1VoqtZhTwCro0Wzz/Trn+LQj3+D9s7pyKaiYeqrV1A7OUxhNxUK4X3zoZS+Q7tfYbpO3KH0W1fHEfdEuTbG+w2AslMTrw4Q/D+LDNjOFV94ZofbwngpIZSaMCeqle/s6B3r4S55+XVcve/tPHjZ59BJyfTEYe646Y+5/6r/xd79N3HdU+9h58mLqeUNRwaJNJ5OSCpGTcnaXEgK7Q8oiefZYoNbDV0FFlj0LcJm1dGaQnH9U+/m4cu/yMLwtOCPZmF4mr95+29ywcHreONDH2bTmV2+4yOAoQ0TDdckNLGNFSi23W5y/ORWFpZGgILRoWMMt6ZJVFU4YrcSjQI1XoliE5N4es7b9xoeetNfApoi66NVyeltL/OBP/o3tIcWOHTBY6gyZeL0Dh8M8vjMc0ZHIwVJkVBj0SMWmNiH4zC/5Ej8VtV9BrPuxNrwbnBpjLGZLVx71wc4sPdhes1VDl70CKsjc1x5/7tZHD9FXu9S7w2EgirFS8cvLJZdBi+Wo3l2h8kSR30EXiplu7JiYXQyrPxZMM6wrg7Oc8lDb2VgdYTR2c1Mb9tPkfVYmDzF5qN7uPThW+jXu6T9BmWp6PdT2t0Gq+0mS8sDLK80WWk36XTr9PoZeZGgSzfNoklUQZoW1LIegwM96jXnGHvUsj61rEea9O1Iu0ApkwCcJIiRkLlKu6+BGT3Z7Gq7A1vIri7pjC6w6/YbqS/WmJ064efWG3PDNLuabV98HXrTUepzDcPDsjo770LNytuCkMth5bxUaFJKbaYvyrJGUTbJiwZF0SAvmxRFk6Jo0O83WWkPosl8fyobZcjSHrVam0Z9lUZ9mWZ9iXpthUa9bYBCYpaZFbU+U8/soTk7xuL248xc9BIA9aUhdn3zRhZ2HBNLC6XQKaFUMcIwI/WK7IvXnCPM+zlJkoSwf6nJMrP9cJZllYipdWZaWyBAxeYpbwdXp86wtO0EV/zh3yXJU+77V7+DtkuWB6Yn6IwvsOGpi6QE+0GjD/urxP9tRtiGAT5M7xF4iH+U/n1Ltg3/u/ZKiC3tnpOJsE+AXaVUFmgNhc5ZOf8kR37kblbOPUnz+DjdTfOUzb4vMZsfZOMXr0IX2u6r4GgMICf4wPjycZzSdas7qM1aE7HdfYkiSpoUmxwVdr+DV3O9ajAgRzfS9sTsVJbR2g2RhEGWDt8pmlw/b72EN3CaNE956/0/ycvbH+PM+GFf78rgPI9c+iWe3PMNdp64lOue+j72HriBwc7YGlwRkxukXwvaTZuCEITPa31+oN22ySPMsFJCK28GQhTEFjixuJVrn34nX3/tx0XhmqnZnbz9nr/P4tA0L5zzAKuNBc45cSlJmQYFrzJf3vN1KIoi4czcBk6e3ky/n9KsLzE6dIx6vW3tRJVJLsEsoOFqHWv4IEKTU8fPY2xmC1PHz+fkzueYnzzO9NaXefjNf8WbP/2P2HT4Qopa3xcm8Lp3wFgH6UOo0shZzyd5GcCWUOAYwyFH1U6mtLJhQy1H7AHkur4bXBln09EL2HJkD9tfvoz9Fz9Ie3CR5676Jjfe/qOMzW2xRscCGed4K4wKOR9qDb3+UVXVCi0KUlFZ8aUrFQYAEQKjWPFQ1Lstzn3uWhKdMj69zbyhNNPjJ9i0OMjSiQ2srDZZXBpgeXWATqcejfATVZImBbVan1ZzlWajy0CjQ6PepV7vUEv7ZFlunXzh+9LjSrEnfkxxYJwz3IlKQvgWBx61nxd2BdXmh8lKw7POhjlvLBvT46AV40/uoTsxL2RK6opjj5MTa5P8NBiAiUAo1ScBMr/GOAibf1cnlDqlKOuUZYO8GCDPW/SLFv28RVEM0OsNsbQ8BjaqmaiSNM2p1To06isMNBZpNhZpNpbI66scu+5Js7eAhqlnLmT4+Gamnr2QrNOMGhE2SjJUl6XJ7E8IIf2wQZE9KkfqvM23yYscpRKTzKYLkiT1Ww/XspqXxzDHDSpZmxTqHLapUtOcGWPH3a+lVJpnPvJXLO08BsDQsc3suv11HHjnnYwc3Gb7uwJalAMaztfrICs6WPHw261cs1NX2ul8AE9hdC5ojU4ZVTaJrxTZ+G6fBs3qzmlWd55m21/cRG1+kP3/+EuUjX4k35Pf3Evj8IRfHeDAivA6BBAS+LbmswAtUdvt5acF5HkEOpSr0le3TuBVg4Hq/I5rTBLOkcQrkw6+3V1+3sw97oxnBBRsOSICMb6whVvu/Xv89Tt/nTzrBcLzBq99/ANsmj2X+eFTfHvvbew+eg2bpy8gGvhKK+sF2dakvOnFCYhTGPNARSg9fYJqKbx+yOuerwq1QejXP/leHr70S6y05gEokpwXzn2QodVxfuCOn6XeG6RQOUq7swUcp7Tln2CuYJ9G0e4McOzkVhaXRlCqz9jwUYZaMyYJyjmKCsuleK7nWvyotGJEXVJQvdti50tX0WgPsfvpm/jKB3+Lotbnqdd8hXP2XcfuZ26i1jfRG78RkwaTtSsdfhByo/gK2R1rCQgjBydvAVMq/Nm7FfTtgYQWkLDS+EZniB37LyPL61z28C0cuOhhdFKy7+o7uebe95sEQtuQMGsZoWRxxfdlKLcSpxJlSWmV4CF03vq9FuRObuqjUUycOIe8V2NutQkv7IU3m2+fZZWZBy+hyFM0xkFlaU693mWo1abV7DDQbNNsdKhnXdLUhPllFFCCN/95HaASwhVx631EjQhn+n5zm9bIhDetCadfKuhOzXn2NM6MGxJ6GY2Tk8SnAwpeeTGoOFWEbEiDJZvj+e3aW5CqgjTpAcueFuN0THShKGvkeZ1+3qKfD5MXQ/TzIbrdFu32FHNsBpSZShme59g1/9aUUyRMfu1t9NtDTD59MbVO3fM0xo2hHQZUEpLW7El4zm5Z+O13zVtZXibv5+aI4rJAl/hdBmu1Wgj92/dVYk5PlTtfouO8JaeLqsjQGmYueYGDt9wNCpJ+xp6/fA9pP2P8xXOpLQ3iwueoMB2pfdFh3j2s2NGx/FlUrmx0wwHHUocEStmJpdaUNts+Vcqvdih1SVnY6QCx7NCV2To0xcDBDZSNnP0//RXOvOEZ0+JuRm2hRTHYZeozV1P0S8RGi152gpzHzt1HLirgOHZkbrOiIKdKKRrNhu0vF8GxUxnF/xvTBOtdwskGSXECqi296xhcez+U4xyDfUiHvy578c08/9z9fPuSL/vH86zLI5d+kXfd/THe9PCHScvUlOGNbbiiapztcMxWzhAFZOvdr88GVuBn+ixtEf1Ro0QoTeYgBBMzubCVa559B9+++Dau3ncL91z91xRZn0cv/iqNXot33/mPqfcbFnfoyFg5NvqybUizKFPOzE5y8tRGEw1oLDA6fIxa1rFtllt0Vkyi7StvSyJ2yGiQbK9wUjrhvGdfy4ld+7joyTdx8KKHefq62+jXO9z97j9i87GLGJqfFE5a+5GED/FVygzJnxYERXw2fIkvbcCDJdPPNVb6VU4Z+f4K3Wq4pBQDy8NsPbgXgHOev4aJ6e3MbDrM7MYjHLzgUS564g2yN6JLuveITNumgHVjhXDm2bU1yKY1FEqqzdp6I15pk4Hf7tZYWBpkbmGY+YVBM+LvZSyrM/BTGdRyejv2Mzo2zVCtS7PRMaP9Rp8szddMKYVYSJUGAWKEvGnhQbzOESeiGn0KCCDMrWr/2dn5YEgCXywqoDs5Z/4uFY2ZMT9PviZcU5GzaFpM6FzkNyTqFhZm7WBGPC9HdlqjEk2W9EmyFerZnGeWWV2RUhQD5MUgvXyEXn+ExYuep737BQCyE9tZ+OJHeXZ2gvTU1Qy05mjTZXBggWZjhVrWwy3BC+OEsFrArIkPHik4VuzuhAXdXpesVvMtyLKaOYjI9pV5p6Tf76NUQlYT0wbrTWM5J231PB9ss+9HP0PeaoOGzQ9cwbb7ruXUlc+w4bG9IKPZ3iY4hO8co6jEtSWyxcHn+J6xHt5v4mX7I8ytQ5KklhdFOM3QlakCADHFG76WacGRD93Nyfc9CKlG9RO2feJmlvceR7UzGvum7D4BApQLW77e9EBk/2RDZduVcXVZltBsDtCo12k2BqjZvgvivF5Zr3z9P5gmcKbKY8F4rOJCUUHqwCq/Z4m1kgpjBBJcwqEImTgZ05paUefW+/8+B7Y/wdLgDK3OMAtD06wOLPDZt/wOcyMneMuDP0a93/KM9k5BCEpYd01Mo1J+80DnFNyDoZWCKNsInxgpGqbjpyJD5NxTQsJrnnwvT13wTa5+9hayosY3rv9TyrTggSs+S7M3yK33fpSsyND+LPAAMDxhGtAuGrCFhUUbDRg5ymBr1oZrJehxhlj24VpBcZvnhKYayp0zl6FF93nLkb0sjZ8mzWvcfNtPcOzcp5nbcJQzWw5w/y0f562f+sekpQkzRsZWCf6LvnLbOkfRFv+QCIVH5K/nmNdThNDZzgETOV5NrdtktLsJlGZgdYiLHn0j973jE5RJwdPXf5ULnr6RNM8kPLHkJqBL3z/SlSovkE4Oo7f9hyTCCBJayPZWZFJDv0hYXW0ytzDMzPww84uDrLab9PMUNCRJQaPeZXxkkclCcarXIK/lJDsOcv5FT9FYHSRAlAjS+M+xW10LCZRsiIya4Qwy+Exz7bgSdkQ0IuBkxLwvJgq8b/B3tD0WN83pjS+YYsqE5syYpc3xPNhHfyKqrtIuWqeC7KwHviLdcd9HQNO1zdq0aPor5qFSGqVzsqxLrbbIgD5OqTXz7/tLdNNsYTv+rcsZXl6mT43e/BiduY3MkZhchKxHs7HE0MAcg61ZWs0FalmbJMm9pMkTGt1o15OtoNftkSQpyk7PKJWQpilJkpiRpi1pdXWFPC8YHBpyrtr2gzCgoSM9k7XSHLzlbmYvfhGAxtwoez75XpJeRm1xgNbxSXxYz3SGoTSEiKwJUGCXeApsFuyB6CdHlx9pW6Pj8wDsoUvuLAOXHCi3KJZdHxy5plSak+96hKN/9y50VkKh2PjZa9j8lzfw3O/8OVs/8UboJTE99n0dFcha3ycb4EXJ8CVJFLV6jYGBBq1Wy/dR4vdHwK9+qIRVv+v1PUQGZNfLv8vKM8QZ+D4RJ349ZIcGJQqDA2GALBMm57dxy30f5XNv/j3e+c2P8eCVn2X/9sfo17p847UfZ3b0OO+582cYWhm3FUjTpSIZNV8Hx/1K2B7xrPtUnU/37ZQc8IBmrZNzSwAn57Zz2QtvZGHoDG/71kfo1Fe476pPUaYFd137F9R7A7zloR8lLbJKYl1YW1vqhJm5CU6c2kyvV6NZX2B05AT1WidqkbKd4paieO6qWCgDu1X4vMZ6hf4KRlrRWhlj28FLAcXo7BZe9+Wf4ksf+rcUtR5PX38b5z53HRc89TpcqHbtFIqp022B68KELkDgSAkALkxuCFMftcPIXxKAhIY41yA4PWWdkvk+GDEX0bn48Tfy7Td8ls7gIofPf4Izmw+w6ejuqI+Da7SGTPJMSFpsNis6pcNUUEicVJVuMm/mecJKu8ns/AhnZoeZXxxitdOgyE2yWC3r02ouMTy4zHBrmdbACvVajyQp6TU7PLk8zPLgCt3hBXojCzTaQ5a1Gj969/RFpj/iHa5VKu5ZA0DD6FRjssRlhMCXrSsc04IfWouT4pyDjqMGRdana8FA0qtTWxyOZMLTJay7hDbOTMnWBgBT0ZuqtYgAm6uitMAwiJ9J+9a+HvesL00Um48tMXvj4+bZXsaWu/cyMfwEGkVR1imKIbr9MXr9cXr9UZaWx1hc2oBSkKY5jdoKg605hlpnGGzN06itkCR5aJ0qzWopTPLZysqK2VfA8lopZUfLyuw2iFlSp1AMtlqk9jhjvyWykkAQ31eaEqVSFnce56X3f8UkeJaK3Z+5hZHDW9FaM3xsM+lqw1Km/PShj+65CIbjf6QjQWDcGyG73vU9mKV2ZVjKZwGCk+GizL19cHUH521/W9kp0cy8/hkOfuyrJmFQw/g39rLtD95KnhU0Dk3Qenyr8DCxGZW2xvFqvdG7j45qE5FpNpuMjIzQbDbIssTneThLAXZK1wuXlcE1kbH1r1cPBrwQx/OvkXMUTtM792o5FbpkZ0oFWY/8K5+/hefOu5/lwTl+9HO/yeff/B94/KI7KJOCRy/+KvPDp/mB23+ejTPn+PCkG/WtR4c34jJM+IoES1O/jiOTI3Y0a5MsIk0hQXH9k+/hyNZnyPoN3nX3PzRnGFz6JYqsz9dv+J8M9Aa56fEfJCmCkzAlKbq9OsdObGVuYRSlC8ZGjvncAG/ZrPDGxs37csK3MYUSMCligBAMeOTCUGXC1PHz/d0Ln3w9B/Y8xFOv+TJ5rcvd7/pjNh/Zw+j8Zv+Skp3gCwzOUc4PS24GepyRCLIZbdJk+aCSACSCS1OiXu2Pjvf9Z/vSgZDx6e2c+/zV7Lvqm/Saqzx7zdfZeOx8sQTK9XtMp/A9gluydslF85KORnF4IFOWinanwdzCMNOzo8zOD7Oy2iS3zr9e6zEyOM/I0CIjQ8sMNNvUsj4+70PQl3UHaM1NsrzpJHmzzcrEGYZPbo3kIY4RVAEB4lvtkKP/Jmq31Q+Z4CYdoILKFIjlhw7l+NCtuKQUFgMd8sE2AGm7QbbU8nIuHYm3UNbwqyDgoU1efZ2R9m5K1CoHBpIu7Z2KXFoNxGvKBTdFc3E75y1c+QKdrWdAQ+vgVkb2nedBapZ2yZIOjdoZy9uUftGkn4/Q7U3S7Y/T7oyw0t7F6ZlzSNOCRt2Ag+HBaQYHZsjSJZTKSRKYn180CZtloC1LM5IkoVare/oVikazaUaiFanA860qP2Y77+c++Dk6EwasTezbza7bXu9tZH1xyPQFGhNVsysfxG57rtM890tXg0Y6VYASKWPOTtgcAJs7YpIFbbjf7vgn+9Z1qQMCZWnBjdbMX3WAl//55ymGTNRm+OFz2Pnbb0ct1sh3LDP+5UtR3czwxotMkCVp117p0jaCoVA0Gg3Gx0fJsszmbigS7+M1SpxM6K29NZohUfq7X68+gdBRL0b68ZSBIAIpFLGiucsnfkUMwCdwyKedKGZ5nVvv/fvcdd2fMdgZ4Qe/+otMLGzl7ms/ST/rsn/Ho/yP9/8cP3D7v+D8I1cTbV4i/c0atPHK7AqtsG1WgRcu/ORJVoFW7XfccgU4/oSSp+Z3UKY5Gqj3BnnvN36GTm2VJ/fcSb/W5Uuv/y/U+wNc99S7bHhMUWrF/OIox09updOp06gvMzZyjEatXeGZCns6OHrd95ZgJ/TBCcqW4tsb5dhqVWGf+KTDcU5pUePm2z7CsXOfZnbjYWY2H+T+Wz/BLZ/6p6RFLdCjCXO7OAceeO8iRz7UJ6u18hj6Rq/prxAdtIpImNv0pjzyQon4PihuUqRc+uCtvHD5vRRZzvNX3MN13/ghBhfHfd3S2URkyikeR68AJxIWKMcDbdS8109ZWm4xPTPK9Mwoi8sten0zUqtlfYZaC4wOLzAytESr2aGW5gJgaf/jAK9rW5JnDJ/ayuk9z1CmBUubjrH52cs8LcG1V5WlorO+D6vfV7kRgEScFCXL8tSicTvKuWiRDuCqrL6j6Q+tUAyYLXRryy2y1Was+14dw7yx+U4mv2mJoQUIjUEQKqnkFocKgjtdhxNO56Sz8lGY8KBOSqbf+jCkpqEb7rqadGUgiKg9otmohkarnFq2TC1bptU4jkaRFzUzRVRMUZSb6XRHWW3vZHrmHNK0T6O+zFBrmlbzOL3uKs16D5d5naBI09QmoyWeB0lqQtEqUcEQ+uYEsKlFBymlOHHjY5x87eOgIFtpsvcT76O2MuDYH6J13kmajDu3RC6WwSA72kYeSivbStx3wlK6suzKAM9n2z9FWXp6Q1Ki6JsyrCDQumR59wle/uXP0N9gzlIYeG4zu3793WRnhtAa0tkBhk4O4ZOWvRBpQbuwp9ZHSHBTliVpmjA0NMjIyAiNugVk9oCvaMbYMtHzvtSBVaXGrCh5dXDge1pN4P0aVRMRN8w/ZF+MzYdzLUFRnLPyhtIbZ6fBodCpuV1cvP9mVgbmGV7ZwC33fZTx+c18+Y3/mdXmAtMTh/jT9/wi777zn3DVvltIyiyKUMiwZVhqoyO/7U40DLCnwkwt2q+1P0QofiqCSPhdpJwS2+c3z5zn3xjoDPP9X/s5evVVnjv3AXq1Np9703+k0Wtx5fNvpt+vcfzUZs7MTKB1yejQSYaHzpCo3CukVyhrSC3+xSNo79zx368JI0XOcc0XETgILa26CcXI3GZe/+WP8sUf+Q3yepdnrr2dc5+/nj1PvEGU5YqyCh3HGm0/Bca70Ctom2/C2qBMQBaVKIFsVpCpkHlLMEqR5zGSsH3/ZUwdP4+TO15gYeIkL1/8IJc/8A6qW85KDQnZzlq0SRHj9WDMdAmdbp25hWFOTo9zZm6E1dUGRalI04JWc5Wp8UXGhhdotVaoZTmJAN5hP4LAA2E/w1UmjJzc7v9c2HLU8FDYK7VGd6Ux8+bfqqgzvmsrc3K/HljyzlOHvx14qyZ5+UddWNWHVzX90SXKulnjXZsfQRVZtRIvNyHpjTC/6h8IQM3rubA/ktb4kgnQax/xNi/2NqLIYFG7W2aZv+Y5UJCuNJm6+2p/OJgvTYbLvPzbQYgu0eUSKWdI0iO0hgdBtej2hun2NtDtb6TTGWW1vZuyPI80vY5GfYZW4xit5kkatUWSBJLU5JoE2x9HlxBtCmdSOL4Zp9WenOP5D37BnCapYdftr2Py2QsIOqFi5+LLFPP2ZchzMt3j+n/Nq4IG68B9HoDNWzOJTzY/QER+dJA751x1WYqjn0s6m+d4+Vc+S2fHLAD1Y+Oc86/eS+PouK0L1GLd21TlyqtsMyUTIbVthJnCKEnTlMHBQUZHh6nXGySJIlFmGaqf3rQASmPzuCwv3I6DcpVc8v/GNMFaVxf+1bjlZ8FRhLlZou98g7QSOigM8Zp68cZA2R2u9hy4gTw1ywzTIuU1T72XiaUtfOptv83M2DGWW3N86pbfYnb0BG98+Eeo500jDKoiOZEhiAFOTEqAYmHU6NMHI+5o/50UgIQgEAatrd1y1bw5vDrOD932S/zZu3+F/dsfp9NY5lNv+/eUSxM0v/nDrKy2qGVtJkZO0Ggs40JncRDTURhKdkYwMkjuvgMEPoyl4lY5x7COHazKheAWKNj99M1c8sgtPHHDF8x0wTv/iC2HL2JkdqPnswxxOYnyEubjbMobAip948Jlkc8QxEYBBeu1vSESTiqK8nhDHWSm3m1xySNv5eSOF9FK8/T1t3Pxo28m69dDD3hQFjgP2KNEXSsFTNCgy4TVToMzsyOcnB5ndn6ITtcsHatnPcZHZ5gYmWdkeIlGvUeCOB1uzeWM2zrfO8Nh6x45sd3dZHHzMbP/vpbbyArH6CXMvW15j++qCnCoVB3YvQYARAMGzzcd+loAABM9DMbbldednEenbsOhEZI8Tt4KCWkQdnIpIz3Qlk5vu6IsNXmFPeRjjyy1z3EquHm/66VzQrJ4IS+zr32K/vgiaBh+9jxah7YGWXS2tcJCCQiUMolmKCiLgk57leaAppYskTWPMTbUIC8aLK8Osrw6QVluZbW9idX2dpKkoF5bZqh1hpGhU7QGZsmyNiZqECe6Kd8Ja+etQUFS8OL338by9pMADB/eyu5Pvx1VJvipMA1mY6dwsJCXLpWgyzzk/xCcXuiK4BSFIPpppbIsgjmxuMNsJ+x2+bN2ReSkFITPGlNff2yZA7/8eVYvPgFANjPIrn/1blrPbY4Aa7ABdgDG2r015I28KCiLglqtztj4OCMjI6hEkShQiT0iWinxmrPJOoic5Y87pVFurGfOinhlvZTX95BAKBob3XVKHKXjEEuqeNZpXKT8KjROemMdt98Z8LSokVrk75JALjp4Ax/57L/nb275txza+jS9eoc7bvxj5kaP8313/SNaq6O+oMgXEsmKV6j1R0TBsajKv06X44iw4JbGH0vrK7PeoDpvOba8kQ9++Vf5+Ht/kaObnmNlYJ5PvfNfc9P+3Zx7+GJGh06Rpebc9uCrrDoqQZN1nu4wJWXb5oyro8s7U2nQqgyyBK91/fIKnHPNyYqMm+74cY6e9yQzmw4xu/Ew9936P7nlb/5P0jyIn59Hcw7ZhwwFqLT/BnfmiYtCfCG6RJRDAKGt/m8vj6ENtsA19xRw4ZOv48G3/BXLozOc2PUcJ3e8wI4Dl7paPQ1+NYQWqzC8Sih0CSvtAU6fGeXE6QnmFobo9TMUJc1Ghy0bZpgYnWOotWI38gm+aX2n676sOClv8GzfqvBreHoTab9GUe+xPHWKIuuT9RqRY5LOW1oA79AJ5QX+qvB85ON1eEjyV4KECogxvAy5IM4nlML4ajS9yXnfj40z4+BXLAT7FBYRhGW5PpRrL7eSJo4kefcUURbe1VGbooGNrvBCOFP5vCFHUdb7TL/lES9EU1+/jqTnlvuZukJkL/St6xVnYrK0Rq1WoO3RuqsrK14vsywlTQvy3mFatRRUnVKPkJebKPQOer0pZnrnM7uwm1rWoTUww/DgcQYHp6lnKyhVBt4qk/AnTITn1PSlL3D4bfcZXNDL2PPJd9OcHRVCoa2K2FC/8Atum28DCAoE2rHvhn36A06wYEKbkH5hd+FLHDhRUOSFjRRgIwGl90secBL6SGtNv9Xl0D//Couv2Q9AstJg52+/g+GHz4lBgCNNRByifDTfh/hpizRJmByfpNUaoFYzezpouwW0Sl2Uzw54osPAXF2l3SCqpCjCSZFK2byI8pUA7drre9xnIODceA2+a6SEAxYtekPug9XWeEivqkPnezPvnEqsgN6uRVSZf7dM7+bHPvfbfPYtv8tTF3yTMil46LIvMjd8ku+//eeZmt+JQqImBIhxWZgVh+f0vOoMdcWg2M9e8ZXCRQS0LUSREM2nSfQQmAEaJhe28/2f+U0+/p5fYH7rc7THj/PQP/wJtv7Zb5Ae3SMoEcxwyunB1dq2yNGOksz0Nk0aMfuFcGLgjKmKZDxELZXrUpyfHZ7fyOu//Pf4wod/3UwXXHMH5zx3LXsff7NvtuGNNLoVp+DRmiM50BKiI64wK6PuebWWVxGAcoBDg0fySjxpB4JKKUbmNrL76dfy+I1fIq91eea629l+8GKUTtd2R+CGNTCKlXaT02fGOH7KAoBehkpKWs1VNk7OMTEyz2BrlTQphOFzvHZOxVaSiO89RHIRICxfHB8qDhhNa3aSWnuAot6jPT5Df2DVgAHfdOnJ3QchwcLwuw6Sy1DjLnRMdSMl5ctzXzsg552sM/jaTask4X3nWG2/md0Hzf3G9LiXpZgENyLXVkxMuTIyFbbBks4ntMsJuh8V424J2fI4LICAIKcCeFRkBQ0r5xxnee9BUFCbGWb8W5eYUXRVlnVpdd11gnWstkeUUtRqddI0Jc8L8rxPkffRGjqdLkVR0O/nNOopmpxEzdLI5kjT/STpEEU5STffQi/fzPzSFhaWtpGmfQaacwwPHmd48BSN+gJKFT60HtqlyYfa7PvRz5IPmCS7LfdfxZZvXRGSAlXgnT9uWCYFiv35tWyjxq52UbhzEZStM8ztV8AGBhSU7nwA1zdahyOBKwDA9UdR63PsH36D2VueMf3ezdj2B29m7Gt7hRyGjpeJo/GAxk5NFCUqUdTrDUZHR2g2m2Spzc1QDtykOHNXzaFyiYWOT0WRi6iA9jkDSim7cqei9t/hetVgoFSFTxCLnZgUbh0aRJgW8HPV6xFldnmxnRzK9EBAxQ0KZVTD4uat0eVN/PBXfpXxhS3cd/Vfk6d9XjznYf7nB36OH/zqL3HO8cs84HBOS5bjaJA7eLkn4v3vg+PyTkh8Z+oI+6D7v0V5a+ZzvRGB+YVRFvZdxGuO/gn3/5MPsTR1iMUNR/jyB3+N933iN9lw6lxfU5BI69B8Qp5d8+6dfLDe3n2IA5vsENbzRbbS04vyu8Xh3qlKmxLgwBrd3c/cyKUPv53Hb/wcRdbjnnf+CVsP72VsZkvEBllG4Gv4FXtqFWTRRVjWveK2R0BHlCZES0DG4ItNmxSXPPw2nr7ua+T1Li9d8gA33DHN6NwmX1oAvKbMbrfG9Mwox05OcmZuhG4vQ6mSweYqmzfMMj4yT2ugTZrIffMjRBKDugjEafGE7DRd4aGO30NRXx2iuTBOZ3SBXmuF9vgsA4vjWO+FdM/unRAOjomqRit0iU2qVJWH19oNd1sacjfNE+bB1zwe7LCC7oY5W6yiMTMudFz76fzgs5T7xrfJkVRaQBApScRnW5ax1KGE2B/Gz0og4PkKqjLS05ScecOjFC3jQMe+vZfm9CQSWclwuRcyYTe8GbC8S1RCrZaQZSndLvR6Pfr9Hp1Ol1pmDqQqtQktp0lKmiakWZcax2nUTwA18mKMXr6ZTm8zyyvjLK1sJE1yBprzDA8eY3jwBI36ImnqHGvJgXfcyexFL4OC5pkx9nzy+0j65gRV73ilGSGcc+ChvdJR3/iPFkDIgZVxiKFsP29PcMI+nK+cPNicFADE2QEY4K4zzckf/RbTP/SwOY44T9j08RvZ8KlroPRI3NcfdrkMdJZ2+kNrTaISBocGGRkeoV6vk2YpiVJ2f4cgD0opG80Q229bugo7FVDqArQ20wylPTMBk1Plt/LG9G2vH85L+E7Xq9u0GLj72k/iXI9TJGk8heWx3ySGMdJYOWfiJHjt4ICoSGwEQmauim+lO5aLxgZ6g7zz7p/m3Xf+DANds23syQ37+fh7f5792x7zjkqGAz35SrPeiCiukXU0X1LjnGq8hCxwbZ1y7K88Tzl6cjP7D++g180498w2vu+vf4nhhSkAzmw6wJd++F+zMjQb89I1oGKgXXLjmktOYQA+imAVQktF9OVa3sg5LB8mi4qSFQGQFjVuuuPH2HDSgJi5qaPcd+vHKdPCK6AS7VFRY1RcngcPoaIAHN2z1QNpJM+9AHjZlZGNIKvBJcsplC1HLmLLIXOoyvLoLC9efi/RpaGfp5w6M8ajT5/Pnd+6nIeeuIDjp8bI0i47Nh/l8j1Pc/meZ9i55RjDgyukSUnMtoiaOELmwiQ6esI3CclB5bTVtSnx/Mx6DYbOmNyNvN5lecNpwW/htCty5UhwfeTEIOr3dYGZDg960ZKxuvBMFF5V4DZUAeFAXSQuLehOzptbZUJ9ZtRuX1xpjRL0IqOWQjdt3W6LXue8lA2HR/OAotEa984rtBtCO31HBcYqoBhqM/vGx8zfRcLU166HPBFeHrtZjgBN7h9PjhsBl6JWBwrqZFlG3s/9pkNaUJEoRZIaR+Q4pVSfenaGoYGnmRz5OpMjtzM88ChpMsPK6ggnpq/g5cNv5cDRN3N6Zi/t7hiLO07x8vu+ZnblKxJ2f+oWBo9sNmH70G1hFO0O4dGBJjkl5LCPc/RaW8dndaDU4jRB+wOasszJ8z55nhsn6g7zKQrysvAnCRpGKuu8zRJeDcy+9WlO/tQ9flOhDZ+5ks3//SZUP/VyYmSlMG7b1l2W2kZeTN2gGB0dZdPmTUxNTTE42KJer/kzHxxADTl1HjLZiEZpzxwoKIucosgNoOu26fe75HnPtw3c8cUFRdmn022zsrq8nlCuuV51ZGDLzPme+QFdEyl9mMuyYRIn6MKwevHztib8XR1dBDP2SpMRbgRuUKQHzEBW1rjp8R9kYnErn37rbzM3cpLhlUkmFreEN/3CfZ/OJUqWCFw4W+H0X+lvmZEtHV2UECz5ZfnZ7jQ5fHQLi8tDZGmXiYnjNBvLjB68grf/zS/xpQ/+Gp2BJbYc3UutNxCVo0V5kpMuociRGpwb8acIMAQkKp8JvBBts/Lw3cNRmqGFSd7wpY/y+R/9derdFluO7BHlKcGbakHW0vlz1IUMWjrNaCARS1qTqBw/cnOJqy5ipZ1jCOWpChBwfHQGqJY3uOzhWzix6zk2nNxFa3HMPF8mLC4PcPzUJMdOTrC0PECpoVHvsmXqBFPjMwwNrph9/Qmij6/D/Sva71hfdTTemWjvrw2oMZ3inWelU7Qq0UqTFAlKJ4wfOZe5nQcYmJtElQk+aiIFJhBX7ZX1KBbtEXpv141HjfVipX0Xh+bZPfNFRd5oivMmlIZSlQyc3MDgwa2UWU79zBhl1kOnmrRTD8T55qhozf/admm78Y5LxHPTLi78K+XdAgWCw4q7T0c2IDBkLXDQWcnwM+fSH10mXWky+vgF3llJm4eTVTkt6XhYZaSwtUliBmidTodavY6z0CpJUElCVqvZnexUEC1lZM+oVUGWLlDLFhlsvkRetOj2N9Ptb2dldYLl1Q2kyV5gJ9lDj9B901eZ2HcuO26/UThdqeZWb4VeO0HQrnLfdhltDbwtrTM25wj4FlNoN2KW4C6U7VYsRrv/VWhrHJ6kfmyMznnTjH1jD1t//y2odi3w3E8vGGFw2fxFaQ7pqtfrDLYGGRoepF6v++hLOBApCLbfQMifbuhAnwMtWGCQkxc5RZkHnjr7p5wtK+n3ewYIFb1XfWqh0roqkutfv/s7j5r5CG9Vw1yk1+t1hgY+ZKoc40NXOosYFKvikISjUOKV0p9KFRxhFL60NLoR+tGN+7jtpv/Krfd9lB0n99p13/GIxDn/4E7dhiFEzwrsilo3sKL9G3rdv4XQ21JLnTA3P8qRE5vp9TJazQXGR06QZX3fHJTmhcvuZHrzy7zmzh+l1m/6kiCEOr1hcp7GvhvapuM+WEu65Z+lL3RueOwVHIRzcM5ZK/ksVgnTnCde8yW2HbqEjcfPD0umXP+vicqIPyJEqARd302EbR1e3qzxcVnlSHAR5M4pmLsva+m0lji97WU2Hb4AFkc4PTvGkeMbODM7Qr+fkmV9xoYXmJqcYXRokVqWr6VJ68j3itQwYZhEfka1mc63CIfhu0aMYKU7Wd5wgtmd+9n56A2Aoju0hE4Kau0Bkn7N72exBgys4zpj5x3+jsVFvuWEQ1Brb4VRljnYBV1S6LD8S9vT2IoiLDf0IVg0ZVZQZjl5o0ttaZDZK/ehk5KJBy8zdsLZHuHgQiOkrQo0hTyVIOiOxxHsjjoxNtDBLgaZkrzz9bh+TjW9qXm6kwsMP3sO0aorW4mS0TlLs+OTOUrYOihba5IkJsEsz1lcWqRrtx7WujR7CWQ1u6FNHeXAgHPIuNG81De7KZDv2pS8GKLb30Knt51+MY5uFKy+7UuMnBph69EWQ4OnSZO2YJM4WU9Z+6jNFEPVJRkb6XwPYu1/6WUm8NY6VDdlUJZ2xC/6A7uJEHg7Ek1H+Io17V1nmP6hh9n8JzeTnRmK6EIbuoo8pyhKv4thq9VidHTEbheceBCGUuGo5yTBgU4sf01eQWFBhaM9Jy8KvwIiRH1CnpMp2vaXgqLI6XY7PlJS6pLHHv0PfLfr1YOBf/dtQmZ3ZXGRCkgn0oeK0kfy5IxN9XLPafGHf9wprXPUwaHqiop6/bF2rZ92yfK6vZlEz2IRZ6TgomzRUpzxCXcTfMhKlArC4Dhh96IYAEJepBw/tZHTZzagy5Kx4VMMD82hVOlBTaATs/yrjLeRiLa7cVEOp6s2+SiwPDbOcSu1P78gEC4iHaJNpi8ldwLEsTpLtX9jviG811o63JemLFtgNblgXdGVwhejljC7YXvDt0Wtfd2Vbwn1c7WutVqxuDTAkRMbOHZqgpWVJlAy2FphauIMk2NzDDR6lXdC0qmj3RvaqAly9KOQnPZ/y3B1LAyR86/yY3r3czz0o/+Zt/72v6GxMrzW6Ue8CMyI+85NDUj5Xr87wki12rf2W+EcpYMwoV/jHFxiVFm6M9u1/SkCHQL3lmnOU//yPzG871zO+eS7Q7W+mVqM7kM/OAcop6gk/XJ2TPZjxVThwtmOJ9VoQemUxPdl4CzKzC3LLhA2P/yrNFqVlM0+aadBkZsRY61mdg50oWpztkBKWZb0el3mZudIEnt8cmq+Sy0QcIcSGariEbi570CiQH6ST4DWCXkxSre3jU5/O0UxCiqhXltlqHWckaHDtJpnUKof9b8foduO8vbfgUEJFgF02GzIa4XWZiqiKD1AKEU0x21g5ANUOuiej+AImfbtV2YL5bgPS/KiIM9zdFGSpAnNZpOx0TGGBlsGANgRUZZmPlrgzkHA0usHJFaOnLMvCtOf2oIMd4yyS3D2g2vs8czKvhNNi7hlhYrHHv09vtv1PWxHLN2dCsbcISupVJ6ZgqMVexe0U/nvQpa4IvJAvlwZDYh6VCQf2jKksCpNVjQqoWxhpNcDJZ7gUK5DY+HAH2Goq7Z3nTJDqNm81e42OXx0KwtLQ2Rph4mJ4ww0ViKjE4q2zkR/lzSPyKAJA+4ab3+HvrTKRzADqCQALLEGXEWGC992GfHxIuFvhMZITlZZpMRXTsi1f10FhyNaV3UsFUbIUqO/XcJXYJn5o6j1ObXtRbYe2hvtpij9bj9PmZ4d5dDRjUzPmChArdZj44ZTbJqYZmhw2SYCylY5A75GCdaqhWOUds0Ozib6m8Bw/72lNd5m2zky0+bV8RnOnP8Ch6+7jwvuunUdCqxOViiMtcB9FRgTagpvVZ3gK13K6qiW82hBVNc8LeVO4bJDnOOApfMOM3Pd0yTtBprSpogkkcMPkUjlDWywYUJYBQ+10J9oyk+861+0bJT3pc0yt8M5HLKu6sBGr4kOgFaamZufQPUzJh64NMiMBaqmQ0z73Kh4dWWVNEtxEc1aVgOFP+QmBsfKh52luq6BmL6PnAUpqKVz1AbmaTWfo98fo9vfSbe/jdn53cwtnk+zPs/w4CFGBg9Try3aaR/XL87GmHs+6U/b3ABKwiFLrp/sToJ2iZ153vRrAJsObIjXIABJ+4UcG/uoqH23LF2EStPPzTkPaZowMj7G0NAQzUbTJAUmygM6pxlpklgZIKrDAwILcJ3jz4u+WSlg22+Sz61WaXPYnbYR337hgEAvRANKbVfaqHXtznrXqwcDwjlLPQgjyarxdaxwigvYjRHdCXoQ7I53KMqinsgJeZfr1DKuyQpj1f+Er8ON2MA4Q1dxnHELZSW+EBWV4X4q9CoBXqSd04r5xWEOH99Kt1un1VhgfPQEWdoX89lh5YE3IjGZxMvx8EZZOmMfNxEjleiKwIGO9i1wfSUYySv1s+SrzCmRRgPt6K2gAGFU3U1V4bcEd2rdl+U9+Smmo9KY6LMqEh56w99w6SNvY/czNxJ2JlSstuscPTHJ4eNTLC6ZrWGHWivs3DLN5Ng89XoXecCRk1MDrOK9DgIyciBBV/pFKAjRo4EDojP9XvpSgXy5YYpLKc3qxDRl1mff2z/LrkduprE6FA/cJW8ihyipiWJHazTFyWwEGjSVN5Rlg0d5a2TIRAuqvWxlTdiIyD6oguPvvJtisE17x0l0lqP6mWyVKMk5iiqIEW32jkJsGmadv0v4CqsgHD3a0i6AgFvy5YooBRAow3Ne8qPDkaT+m8/LFx7k5Z/5S/b8m5/wb6apGfEXhdloRyWJp73b69LP+9RqNcrSTJUpG7JOEjnAkGDJMYDgUPxmaXZoI2iX9kopSOhTy05Ry04xUH+SfrGJbv8cOp3NtDtXMTN/CYMDJxkd2k9r4CRJ0jUAwHa8jAgAdp68DByxYMGDBolafD8RyrH0S/n1z/tnxFBDyF9RFPRsQqBC0ag3GB8fozXYolGv+50Ck8Tabtu1do9UJ2lRXS7p0eQ2mP0gtNYURZ+87HswH9RTe1vtVtjkec+/V9qtlQOcdPli/7vBQNTZ8rYWB3vglTqe07Lv6TCyjOyPBwTCcUeFyu+lo6uYJt9wHY6ussubtJZ1Btqc49LCsJg7KjJi/t21QxXcmn73XGxZneAaOssy4eT0Bk6cmqIsYWz4FCODZ0hUKbrdOUwJS9YCAi1MrnIMcn8r44gkvQ4ouGYoSzoqKFd1sxRZadgQSAiabVw80l7LIu+4Yr8eGXIvYlWzrWW/EHHpFd1RxZEZutclzH9KyoSB1VFu++Hf470fH2T7S1eysNTi0NGNHDs5QbtTJ0tzJsdm2DQ5zejwMmkatk11cm7+1V5+fB95x0EI8+kw8vMjrMj7yRYj6rHf6XA7eI/YKHojqBQrk9OgYHbXyxy6/h4u/OY7ZEeEigX/IvkjLNkzurieoQmDANlxHnTId6LXlaAldkjfCQBKvelsnmH6DWbTns7GWfLBDrX54eAMfP2Bj2F3RAtiImEObHHq5UeYaLvm3d0vA68qKNonqAkFKLV5n8Q5W8tZp/4oX2aSOBoUnS0zvPALH6c/vkRtZtjjFJUoMReO55PWmvbqqgcLri6llD8CN9Iv67Bcwi7Kgh7nXQNrPP+D1GvfXkWQ8STp0EgO0agdoSgH6fZ30O2dw+LyNpZWtlOvLTI8eJChwf3UswVQJWWW28z9oEMGKFg+R+cGiE5y4u/6SjsbozzIkv3v5Nk85ey+9o7aTLGYHW8HWy1GRkYZGmzZQ4MSkkRGyj3zg69Sgj6NTTIsKYoCbVc5FLqgyHM//WV2fBS81oFepaAsDHjoFwYgGZkVK0iUqO9//w6EnmvxLbF1rTusxT+LXAXvBDN2d96B+7bqMMBZzxASu8j1jENAF+Fz2AY50BWapEV9eAMoebg+LQGOxGQEByRp6/VqHDm+hdn5UdKkx8bx4ww0l+LnnbJphGNGyLGEP+E9CWJkWL/qJqXj1bY+32cypCI+e5ikS7SCuakjjM5uJs3ryDBi1dG7LFtXbzU8L6uK7699KHC+2t9hdBbNAevwlnS0frc0r1yiPxVMntrBYzfN8MUP/jsu+uU/YunBa+n3U5r1Djs2H2Pj5BlaTRcFCPWtddquL9a2SVlD7LKbHX8i67TOpSW9GlwimSfB+iAnd1WXCRgwAOi05NlbP8vOh24yuQPy8ADnjL2bjR2buRlydTSvMPbw4NEaKRVkz5NUsSleTZWZ2nCRR1Ol8nOg7q4ckaPg9FsepLthHoD+yArdDfPU5oZtd1e1Ifwp9Ukyzt/Xgv7KfijVUDOeLvOMQtmljkFfva1zts8eoqMtgHd8l1FXlSjy4RVe+tk/Z+Wiw9TPjJIsDFjnsZaXzun0ej16/Z5xXrZMt21tmqSRrnsOJYkfnEXRX69Mtm9dTpFDEQ70CG4HndRAQZos0mo8Qz17jrzYQC8/j15vO9O9K5hb2MvA0FH0rZ+gVq4y+dBu2882D8CvDih9n0rw5MkgRAOcKfCbG8nec12uAq1lWZDb0HuRm7yLkZERRkdHaTabJElKanMCzHbBFW0TwEmD3zLZJTMWRWHD+rkfzZcUfkpAuCET3XNLSW0fu3yFsjAgQnhTr0DO3ukoiv2dr+9xB0KCUkgLJBytoVkLoRTzXQLxK5v1Wp39lSF97XbR86jdVRdGssEUBXrMJ7edJSIiYd2J1mJr0kCaLRIq5fmCEMBHCpEbgXvUudZhLa8McPDoNlbaTZr1ZSZHj1HPehUaQhqeTGKKEvwEr8K7kkb3hkDpgpJQWQyoJHCJ+iSK5hjDdXz78zz4xr/g5ts/YvY/cLwIKM7zR6ZdVr3+GgdirAvOvFe/WqfFtt7qUxUvE+3QV60vGPo8T1EvXQRlwsKG4zz2T3+O8078CbtXRtgwPmeOA1aS++s1IHyWgCT6WyXis2zM2nJDPoZ7MGr5K9Tt3gWZVV6mBe2xGf/93M79HHzNPez5xjvxDu87tEiWKx9e9xnnYRW4OerqyFI6Q6/c69Qf/LDCjfz8HiHajoe0pj+6zPFb7/UElY0e7a2nGXpx5xp6nWaE7nRCvF77ZcQgRBnXPKnDnhmlzxIPzsn8L0fYGplv4yJvrvCSUpShKWt9Dv6DzzJ301OgIFsYJGnX7QNuR0Kn9wZsFkVOp72KUimQoFE+sXDtXHKg2fzlwJuc5nLOV5voq9yw0/ZLdNy0Cu9ECbSAok89O0E9O0GeD9LLd9Ie2MyRn/wLVt73aXb8xP8kWegy0HyJJFlE6yKsEnCOvrr1v63HJw6u06dVDTLBBjPSdln7LvFybHKU0ZFRMpuYmSSpybFI3KS35JTMCRC7AurwU9jdIEsbGSgKEwWIBtK29w0wIUQXSrnJUBnqijC2kHOlIqD33a7vDQz4TlxHGZTwheJmbDqdgFS7w6Erwil01gJYlcGjUWvAjd+QzsVSpYITBQdOBME+7BnaovzbVWMrOtsL93d3BKF8jdYJM/NjHDm+iX4/ZaR1hrHh06RpEd4TiqNkz9qvgt9WcR84PniQ49gm/w4O3hlVP0q2jjtQ7VYiaLSgRVYPil0vX83d7/pDjp3zNG/6wk9z7gvXkhSpiRIlgWfY+uPljtLYVNi3vj+K+BTntqlI26tj4cAnM88YMGsMQnv9jOOnJzhweBOnDgyifnoQPbREb88znPn3P8kVf/Cr1Gc24V2IZh1DKniowrzhWle5jvasK1KWPl19wIUkdXQnPFYtW9utw6HIerRH5wK1acm+Wz/LOQ/dTGN5ZA1tYYtm2bpQa5XbThaDLlWa7G9pLwRR7pCYz/U66fpY6L1QA1CKREOpEs689glWdp6I2r6y6zhTkgxbVkSfHLlqx8/wveetlZ3IevmIVBnhHM87Eekz90V0LOKvj535NpojaK08JTknfugbnHr/3ZCYN2pzw6hOFtMvIlalNisISkq/532/bxxUvVYnSUyUzJ/P4TvYJrutF8Zz+qbcFIabEkiCD9Axb8MxxIT3BM0aSJIl2H0nsz//BZZe/wytO95AceACzhRDZEuX02zsZ3DgWdL0NFBEciltoPZ8DVNyruOrrsKApYJ+HpbuKaVoNsxWwSMjIzYh0Az2zJRAilsGGKJ6sfy4bY9zkQBYlAVFYTYDynu52ZCocMCgIK0lDDSbnmeO5tL/mEhFWYpllJENcoJtG5m8+sRBd736I4wR7lPYe8eMMG0ug3Fe84TxckYugjPBOEtjXVGkkFSjvWGPRp4YZBwN0AXNUXa1e0OJetcYXmEQHPNlRASIzjuu4IiiSHmp32Xu9ChZrpgcPc5wa4741LPYsYSRhGCXdT4BrIgQnCgpTIU6p5RYHhErgtJRXbK9kR4Tv+t4PbS0gd3P3sS3b/oUn/27v8K1934/r7nzQzTbwwL+VYGGvATIEo3U0b3qs1RTSLzRDGBR3neb7oSbEa/QdLs1jp6Y5MCRTSwuD5CogqmxBqdWhmkPLYGCMxc+w70f/R3e+F9+iebCmOVbVUas0Rb34oNuLAmeTLVOp8gi5fx2EC0pzi4HwP0dgLgmOtfV2XgN/Wab7tBSVNX8joMceO1d7Pna9/n8Ea8rlW5bA2uiR5wbE87SezXHo2op6xkro5tu8bBSZr68tI7RLJsT4M7WWNa7HP++b4JfyWGulV3mNEbvmIUsR1M84rt4Ek4LuyDCr9Y5hKkp7QGBBEyRgQbMqixbg+9nB33sI5L3Vp9n3/Q4Rz76JXQWNpCpnx6zI3N3GE8osyyNo+n1uv7ku77deTDNMpIsEZvfuFdLCxzLIFvGVSN7Wlka/VJAjekxt+JMEfb8l3kU4P1EFGlIShbf8BzHf/6z9HadgVIxetsm6uXnKPQF5MWFLK9ewmpnD/XaUVrNp6nXjqDoCYoCsLBsiEx1KW64Zap9uxxTl5o0SRkZHmZsbIx63ey7kKZmg6CExJ97FbHF8kwTVjEolAnflwV5kVPa0X8/6bF46SFWBuYY+uoF5sCk0iwbLIuSZtKgKNzydu11sPRAwk4jICIeuPixbZcSQFLHUvxqrld/hLEYkXqfJK7gRz2mDwasYgQCQ4MwSr2MdgbU4SUTataioeEdYwBdlk048sApk8MBwYGYv0urSMr1tC849uwOQgRQEZyjM8Ayh7rXq3P42FZe2vwkz37sw1z57Xew5cAV0B0UBOCTO3xJLvyFjsB61UUah2Oz80OcUZLjHa2bT3Ul+HnzSic6NgY4Ld6Xz2nFxY/dwhPXf4lec5VvvfnPOHLuk7zlCx9j65G9gbkVHlZHQl6MLdhxq0QkvXJer0qvgB2S3LW0R07JnBVw5PgG9h/ZxPJykzTN2Thxmq0bTzEwssDhuQnam4778o5d/gj3//jvc/Mf/TPqq0OiZtk6HdUBYrllsNMx8dVitDTCrj+s5EXv2ntiOZgrrDoYcGFojaY7uEje6EihIilSnrv1c5zzwOtpLo368sMoNS5Qyk1pQW3ixa4KIGKHq9YpI9In4Tcl0DOqGQPVsD2whgLmL3uBhT37SXo1ykbfF9/ecYoy66N6mW+Pr0+zpo3rJQ96epVrpdtv3oF6Hb1X2jKVq8+XFexDWCGgLG8klCRMXyhYumw/B37urygHOxHIq58eD2eLOJ1VCcqOeLvdjp0SSEkTs+GNSlJqdbMtcTRFIe2Oqx9n98XOi44fWkeyZwJhJYUrS7sd+Vyp/kUBpjXFYJczP34X0x/5JuVgFxRkJ0do3r8T9AwpsyQ8QcEuyuJi2sUOOr1d1LJpBhrP0Ky/TJKsRksKCTUG0OJG2KXNBSjM82mSMDoxytDQEIODgziJMztPiuTAqJ8dCLLlloVZ2mjbW9itjvN+nyLps3jREY7+8L0s7znOzv/j/RS52XMgSRK0TlGpIksyv+KkRFswVfrphLIsQbncGy+ssb3Q2GTUV33KQHS9ejAg/hW8cVThDJEPQSuiNzw0UKKACmgOvti7Xv/3mhSl4EWIKxOFaqskqvJaRIKqfBG5GBzijTig7FreqLTweWV1gINHt7OyOsD27iWc7rS47cf/GU8c3cs19/8gu599Hc3OULAvFU5B1TxUSbSO1NPv4ILjhbb/x6hcY5Xb8iROaBL1y1GuilLb/CObjl3IliN7OHLeE+hEc+S8J/jrn/w5bvraj3Hlg+8m6zaEM5TqRLW0wIGIBSEvRDwRvVuVLRVehjXcg26vzpHjk+w/vIml5SZZmrN56iRbp07TGmib+suU4VPbOHXR01F7D11zH/XVQV7ziY9R6zYcN9fOr2qEkXUGSdIudUhFH0PGM3ZaSiZ3Blq8L/eRLleGALPrZA11RhYo04Kh05tZ3mTOmD/v3rdw+sJnOXDDN7nojvesTZr1BARQ4h5JIuQRp67KM9Sj5iN+K2VC4euJg5OZUldG23hc6afPspJj7/omkw9dRn9sifkrXoBSMfbUhbS3TNMfXKXRGwkGRvp7HRy0qNYHCmK5Dw7Qyeba6FqwHF4GZIKSCu8bbOHsYLBZztkoEro7pjnwy3+GruVEa7KB+qkxz9iQG2Jo7Ha7dDpdktQlAmpqWQ2VKGr1GtGR0M7J2ZyDxA6Do6kS/1zgmVwCGICTueemBqI6cFpqlk33dp7h5L/4Aktv2mcOArLtH7j3PJLTgwHg0CZlH4oX0GylLC+l19tFv/8mVrKradb30ajtI0kWfI8Zx2wiJEVRhLl2rf0GQYOtQYaGBm1SoMuhCCBNJaB8VCSACg1+FYCbaiiLwp4fYJx3rvos7D7MyQ9+i9nXPU850GPqv95Ac/8GXL6LQqEyAzySNPWbUWlKGw3ITU6Eja4orcShWxq/s6yLQgKUKiwCAUqx0u27Xd/DpkN4jZQuxN3z+KniOSLjL8rwplHhGQwwM3Kcl7d/m3OPXcHE4lZS/Uokhk6PKQCX8OKwgTdTCjGFoDyWQNtlPuF1W7b4Q4CEijr71pTA3PwYh49tpddPGW6dYXzkNDfd9WEOXnQfx3Y9xYkdzzJ1/AKu+dYPsOfpNzKwOhq1p+qarXp75wACGq3Tye7ZaOQh7a27XTWwa7goTWGc5qnRZL0GFz92C0fOfdIXtjo0x9ff8wccOv9R3vTFf8jE9PYK7wQ7HWapYrF1ZEW2LoR4VPRA9VMAzYpeL+XIiQ3sP2SmA7I0Z+vGUyYS0FiNw/46YezEzqg7kiLjkts+wMmLnuTx93+Caz7146T9xhpH4RoXJU9VPaEzukqMmrUGFRK64rnaGCS6+dA1ZVRo8IDPF6NYnTjD2NFd7Hr4Zh794f9ubpcpr/svP8sT7/9zzvnWG3x0IAABHfEiosr9Ix+pOBFPe3XDCuEgZKEeNvqRbnDAISRvv7LtXzn3GEWzx0V/8GEe/9e/D0DSr7Hrk+/ipX/wV/Q2zNOYG0XGuNxJfVU65UjZRwLRoo1W/rxTCIAgXskS92Pgp/L95LVZ+ydw0QOFIh9d4dA//V8MPXEe6dIAJ378diP6eYpOSxqnJjw7fQu0ptPt0Gm3/ZJBbe1bkuBXCWAdurdxSpmj5YQMhokfxAg7OCezxj/mnRyJBxtt2+n4mRQs3fw8p37pC/TOPRPreZ4w+OWLxbYOoRxFgdaHURxB6wk0l5CXF7Kcv5Z2cjmN2gs06k+RqGm7L3/h91xAQZZlDDSbjAyPMNAaIEtTr0dJ4hx0fJS6P6zKRxdK6y/cwUGlOSsgzym0piBn+fzjHP/B+5l947MUQ10A6gfHmfjLq1ClwneKUtSyzOZumHaWFlwURe7rCjqszU6I0scKMBpUX3pdHcnHd7q+h5wBZ4hV3HnO4qzVK3Ev3mNAqHzsAjWMLW1keuIgX3rD77Pj5CVc9tKbuODQaxhb3kRSprGBVQRvrkWVETMqJkfM5YZXX4FbDoh7y/cKiUVAWSacmp7k+MmNlFozMXqcodYsiYLxmR1cf/eH+Pq7/yNlWnBq+3N85Qf+LQ/f/Jdc9cAH2PvU22gtjwvnXg3Nh1lUN3US2GtVVoURlBOs8IRsuva+1Gd8I9+Tdb7iojEUsHvfjdy3uIHlselwEzi+61n+5qd+jtd99SfZ88QbSPLMj+RcJE+hKutfdcxQz3Yh7cIRhDEor0hjP085dnKclw5sZmGpRaJytkydYuumU7Sa7egtueJk9MQO0n6dkZPbmNtxgDLrszJxhrf+7m/w8k1f4+UbvsHu+96GKirqUxGjAOt0fBOEsVQCIVWARETh2jaG5LW1yM71vtvvQAOrEzPsvucWxo7uQhUpOitY2HqEyYMXcNnnPsjpPc+w85Ebw/uhEO+85dRdvDOeUHgB7s27FeKiqRAvjGtH2E6mlYgSKWWBcZg2nL/oZS76ww+Rtpv0Rs0Jbelqg8Hnd7DpjtfS2TLN8As718FlcYUuGoBzesLpyy4Io13nNE0bQyRAFIjCTRxEeu3kzQLBWEwUZSPnzDseYuozNzH85Hk895/+LzMqLBWTt13D3BufpDbjkj5jALK6skKpSxKV2l5xkxaQpsbxlIIO1ye+7ZHzs1ZAEc6NQPBH8CsCGMgoiuOjQrd6zPzde5n//kfIjo2iNi6ih9zcP9QOjVP/9jYDXnDZ+YE3/khfptH6LuAxKC+in1xMXlxBu3cRqXoBxUModZJEQb1eozU4yPDQEM1m05wXIDZdcu2XkTXtKzbgJ2yFbcCBm8cv7cFEBTkru05x7AfuZ+Ytz1CMtINO5ooNH7+O2vSQ1xINZnli4laqhA2I8rxvoy6Ehnt8HO4r299yBYmlPrRp3X1A1r++hx0IXaHWxOlwz/SVdBw6PO+MhwtpeFYo/6hsRFKkvPmhj3B844vsO+9enjvvPgZXxznn+BVc9uKb2H30WkaXJknKBOwWo2FAJGfl1ppPZ5f8ciZ/3xkWFTdVE69YUEIqVWhJkaccObGJ6ZlxEpWzceKY2T/Atk1rxeUPv4d9l3+dY+c8aTpWlUxveYk73vc7PHLzX3Hlg+/n4sffztDiBpzP9s5ex11tfH9ogJHhBL/Ox1twyYewZtvcCXkD8slgk8q1feXrM38PL2zk/Odu4InXfN5XpIFLH7mV7Qcv49Dux1gaPsPlj7ydgdWxqCeqURf1CklKeCp9Qz2dAVIaet3nokg4OT3GC/u3MDs/hFIFGydPs3XjCQYHOtGI0MlOmJPWDJ3aTGNplCs/86Pc+9Hfod9a5chVD3Dpl7+fS7/yA6xMnKbXXKG+PFIZXbqpMu3buF4YOVzWVFfCaa7dDpx4B+Pml70TEasIvOMRRlibfnbbvaLhnIdeR5H1qHVa9IaWWJ46SW9ghY0vXMzq+Aw6MWdfeEnx+Tvew63bEpdNHuau8U6iCtY8PlhTlMavwlD40aGOH4lK0rWCqUeuoHFikqXtR8kHVwGoLQ6SLg2w+cs3M3fFc2tG62tWDDi6rQMMch8cWaSP2umB2C9Cy/JsLUp+JSyllAsH6sQ0RtHoMvGVa6ktDjH/+qdY3XMUgPrxCTb9+ZtYvvQQ2ewguiy9/Gg0y8tL9Po9fzRuSHyG1C6Lc/AAlMn7KMFF97TG7oOvREN0oM0BAXffPWNti8t293wRwCKfWGHxXU/AmQZbPvJhFn7kYdo3HIj6dODOPSQLLcNzt8besa4CmIyILaLLB+h1HqHkAmr1K0mzS0jUHrJ0P6OjzzM5tkKjkZlkQBeiTwj2R4h26Ca7tA9NWZQ+18BNjeR2N8RCF6xsP82JDzzA9NueJB9ddavafZmtJ7cy9uWLBdDQdpli4iMwWpsIQ57nYXdKaZntAMitDHLTvS7aomw/aBEVj6aNX8X1ve1A6BxHFEcPzsEthakMuSJ3Exk9wvve8CjFQG+I9935z/mTsSNMjx9ieXCWp3ffyTPn38Xw6gTnHbmay198I+cdu5qh9iSqEM5dCXp8zZZxrh4CmU4p/egDm3lKUJlQtDcHvvRut86ho1tYWByiVmszNX6ces2ezmUTGnWpaXaGed3XfopP/djP0a93AktLGFya4KW9d3Pgwm9xwbNvYM9Tb2ZoaTIIpx8NBZ7KEGbQD1ugEwWvtBXE6OjX1fxvuzcDss9kOLri+HTCJY/eyjPX3Eat16QzsIROCx678XPs3H8Vb/3CP6bTXKRI3X4Kbo21pcH5DRGaXOs4JDXKOyUHLR0bQVGWipm5YZ7fv5XTZ0ZAaybHZti++QRDg0v2OXFQiGOZl0NTzuDCJCOntrL12avZ8fhr2H/DnfQHVtj3ts/zuj/+WYZmNotRpQMRAThVE7OC4deBx8oCMh3qlzrmjrX296vI1rVAr7kjyhJAI9FMvbiXgdlJ8mabgflxekNLdIcXWR0/Q3NxlMHZDVE9rxgxs8zyrPM+M/BRBjjWA0S+jf5L4zBcwpufBVIJyoajExXW+zu+qX6NgVMbKNF0Jxco6+akz/rMGEm3RtZuMvrs+Ugn5o/ojRf1CFYHRxYahJddGajyIXEJBOw/cl7ewQnzlDgt0wO42GhnSy3zXa1g+n33o2sm3D1x+9U0929m4OUtpMsDlg5DQz/v0+12LM+Fo1OY9fFJhibxgMPx0vedDr4jHENvWaCdpXF0Bj0O4DPsxulVXGvcKgu9mjD8yWuhl7Ly9mdY/NDDJlegn9B4fDu9S48zeNvFGL1wo3C3R0XI3fJRCzc/3+9TFCWoR6Dcx8DolSTpVRTlxcwv7aUoTzI58SLDrRmSJN54SF4+H0CX/pRM95PnfZ8Y6K7e+BLTr3+KhUsPouYajH3mUmZ/8HHK4RDpUN2MTX9yI7XVAXSiLRBQAaxZQSoKtwOhXA1jE1GV++yYGhLaDUDQXtFC7wSlWzMb9grX9wAGghHG1k2yjiat85pZ4aYsMMB6X/eKxzB+v2WAqbldvO/On+VP3/ULdJpmmZdWJYtDZ3j8ojvYd969DK9s4PyjV3PpS2/k3OOX02qPEi2rAmdVvXKsi5PszRAlisGF+MLeMnnCy6sDHDy8jdV2g1ZzgcnRk6RZ7t/3wMOagl0vXsdFT7yVp679YgDeSUmvuco7/tcvMT6zg3Zrnn59FZ2Mo4rguOIjaQ2xwY9oE/JyTskaIhfn9VBA4gm0R5fyqaoDCLm066wqQLH1yMVsPHYBk9M7WRmaY/9FD9BtLnPH+36f8f++ncnTO8GvwV47VSSGR/62srfX1KaCwkrnq4Gl5RbPv7yFYycnyHPF2PAiO7ceZ2RoCaXEng6VK0SVAmCqrQ6y4cCF1FcG2Xv7ezl89bfImx0OXXsfl972A0we2m34r53zRxhE4Y79Ucmm3b1en6LQNBsNq7ge0segQIXekO2MpVeAM//LI9tQnrfZio0v7UVpRdZtMnJyGwvbDpPXuyxuOcbE4fNjmYe1h3+FjSzE7bWAJNCH75/4no4jQ26Uo5Q9OS+GNIlSNjwc7q7nhDtTM+jUGNPG9DjkJvrVPLrRVhv3UQCmgj5XruC146X2QhkADDJb3tO4Dvh2YMKFo22zjawrb1M12AQw8+Xq7uMsXv8cKEgXWkx9+TVk/Tojj+8m7bhTWA053W7XzDP7Ta1MJWlqlsmhCbvZWT4kKmyUIyQqAAXbg2XEpwDeS3HIkz91UhAVgiYatVxHK+idO83ML34V3TKrPga/eCmNp7ah6zm1pzfbpDnLYmcm7OY7ZZn70wKLojDykaY0Gg0GhwZptVoMNE+RqG/Sy7ey2rmQxaWtLK9sYWjwNFOTLzA0OI1SRQSEXLtLn3SY+1UCLjnQnI0QgE+xWjL+5YuZ+F+Xs7z9NAd+43OUQ71IpkbuOp+h+8/B702AIk2TMGCw7SxLKd/x5YGp1Rk3ODL5pOa83QQxsLN883byVYKB73kNgvONvpNYzxYIJV8PH8gCbCkhShDuXnTotbz1wZ8kKdKY6DLl6udu5UO3/Ro3PPUBWp0RVgcWTIhTVB0IdvdiogPtQkGR+fmOLh3+0kZ55xaGeenATlbbDYYHZ9gwdow07QXAowBl3zZxaNIy48Y7P8Lw4hSqSMl6DQBObX2ez3/wV5iZOsD4me2Mn9lh5nQ96SrQWg1NehYG4+udUDTMcw4mQbm9s0QEJL6U/8/xS5hx4Yyh1mty8eNvQ6uSt332Z5iY3gnA3IajfPX9v8tqazHuBPGX8u2pGlFVcdDO+BCVg4ZOp86zz2/n7gf2cujoBpr1NnvPf5lLLniRsRF7IprtXyUMsees0qKtdl61n7HlmStQZcLG/XvZ9tS1oKE3uMS+N3+eMqlsAVrRgiDDUqbNvvFZloU2O7nS1TKE05GXHK16+i3t7gCZinJqUa7LcVBlwtjRXbYYzdz2g/5zoEOzdkVC1cmt9xdrjZrWlaes23NG+JWs4Dp1mBCvlI/Q3s7mGQ9OGicmg2MvnbOroB3x2S0Lk+MU6cik4/AnyWlnIYRBKTUhp8IZ8nju28uxP0nPQQkCLfb+me97kGLILAcd/dZeBvZvRpeK4Qf2QDf1I+Q879Pv9VHuxFFd2uRG5Q8iCofi2NC31n4OPlDgnLoZHWN3u8Pd0yVaF/YdMYL2o3XLn1IT7zVg6igHe8z+ylfJd80BUHt+IxO//TZQmtbtF6FWapGN0drQWhQF3V6X1U6HXq9HqY0uDQwMMDE+weYtm5mcmGB4aJharUaWlbQGjrFh/B4mRh8gTWdYXNrEgcM3c/DIjSwtb6QslN/Nz0cZ8h79fs9u4dyn3++ZBMHSbiDkni80aq6OnquxtOskB377M3T2ngIgXWySnR4iXWwy+UfXU7Yhz3PzXZpY+6wC4NGgpCwrIQcOJQqddoMldHiuKPFLOR3PEQDt1VyvHgwI9CTtRZByHIwn/BGIFR7SOxnphCKzZ0dLlAk3P/bDXPncrZEtKZOcBy/9PHdd80kG22Oce/wKpuZ2kujEv25AlJxbDm2QP9Kcm9/BgCtsvoMWDkMrps+Mc+DQdvr9hPGRE0yMnrLhJ6P2yrXXefPE2uhEMXlmF9fd8yPUewPceOdHaC2bjODZqUN89sO/wP4Lv4Vbx+zoUlZqfBhLgC0HNNxQOg4UCWOrdIUXodXKOcuoV4JzFG7O956MElzwzOtIihrjs9u55TP/jObqMAAHdz/CPbf8MXlmzy6PoJU/wNWOlgRYcyQ7BjoH55qN2Tr44NGN3P3gRex7aStaF5y/4xCXXfgcG8Zn/Q6Pjj2h0drfcw7FQT3fep2wed+VJDoh6TfY+9X3k/bqoODga+9ifssh0f5ybZkKv922KdkIQLM5QK1W8+3zvanEUlz3WSiEG1WYMm25jnaBCUMWt3vROXRZoPl+/Mg5nqfzOw6ajXnkJfymH23IR6LYo658cnXG30mZCv3qnjE/yTo7p4W16hKQyydMH7Q3T/tqmyc24LdBjvgiAZgEAdrqndU9HfOjarhlmW5k53INNEJfdRwZkaNnqVfhl7Mdmv7UHLNvfdSwqpex8TM3ovIUpRUDL21Fl4l1BAXtTtucUYAOoFeZgUHi9xWJHYxbhijpKx0I0KbDwyl41tlrl1ToRta2TX7r3dIetlNSaAs4HO9SzcJP3s/qm14AIFlsMvHr7yA9NoouYeD2PT4qgMYfENTutGm3O/T7fRRmVcDQ4CCbN29m69ZtTEyM0xoYoO5OD7Tz8SpRqKSg2TzG5Ni9jI3cT5KcYX5xE/sPvY5DR29keXkDeWG2+e31enR7XTq9Nr1+l37eNUcJ21UDjnceOBQFyxcf5cC/+zSd3SaJOpttse03b6E222LiC5cz8tJ2sjQlUcrmbKQeVEqbJ38npKRJRpa5JaDCoitn1Su6j41qGOxrIxxuiiPn1VyvGgzIzPPwdsWIq+DureSJh9eiE2ky1nwBoBX1vMn33f2P2X5qL6pUjC9sQWlFmRY8ceHX+G8f+BhPX/BNiiTM5fid+CrVC3Mv2lX5ich0SmPeKEvFsVMbOXR8C1qXbBg7xsjQHD4j2hcqs6xDRqeyo/IrH34vk6fPZXRuC+/5i3/NyNxmABbHTvGFD/5Lnrvs65RKh05XgldakygHdExCjFsSFAa9SaBHGHU3Ig19pILj0YLtrH01Ag7Rfwlj85vZeuRiyqTgnBev4XW3/yRJkYHSPP7az/HkdV/2J7NJgYtclDKrC7yRFF9KyKh1wvTMCN/69gU8+tQ5rLYztm06wRUX7WPrplNkabHOqNEpjjPgFjlLM1gZvdbaA57nm1+4jC37rgQNneEFnn/zl2NfJq6qka9KvQR68TvGcevwavyMw9uyw9zTHgi6JaX+YdvtEiCYGs2KCQNMFjcfo6h3iXvklVpmAHHchADyFQK8vEJxPrGp4lDN74rU+e91GA1V+kprKJOSzpQ9d6FIaJ6a9GTH01vrgZQY5npI4yMC4SeOMFSAhm2vmd92CqWjZzQWNEZyoKNfTrhm3/I4vU3zoGFw306GH9/t6Xd5UlpD3s/p9bohemFLcfvrqyQgVQnJtae/RIuogdaE6QSrNw7smLX64djdMH+vwz78vs2i/9Cs3PwS83/vXrOdcqEY/cObGbjPTE/VXpokfXEDZanJ85xut8tqu0230/Wb9DSbTSbGx9m+bTvbtm5ldGSEZrNJvdGwjjPxQicPHqLUJOQ0a0cZHfwGw617UJxhYXErB4++kaMnbmBpaYReP6ef9+0UhNkZsCy0WTZY5CZnIC/p902i39IVhznw25+he84sANmZQXb+yrtoPbEVtGLjJ68nJSXLMhr1ujkUyvWwt1EYwJYkZGlGvdagNdBiZHiEkaFhGg2zRbFLpPTJq1L1o58Abkv9nacfqterjwzEQ6zoCkpaNYb+ZapWQc6K+kd8WSF6oDWMLm/kA1//FwytTnDl87fwloc/QqPXAmB6/DB/9o5f5ouv+wNWBhasuQroCRJMCDWMSiJEroLR8U7I02pNhFIUecaho1s5fmqKRPXYOHGYwYHFGANY5IYDB8o1CIcrAGi2R7j56z/Jya3Pc85L1/P+P/8tJk+fA5i1+l/5oX/Lk9d/zoajbcliGiMwTiaVVPkvMs1tzoPvJr/roSszKlnUSTAkQDCDcuShSMqM3c/dhNIJSidc9cD7uPzhdwKKotbnrnf8N46c94Tgavzbkyna6eTAfwZWVho8/swu7nvkQqZnhhkfnefyi57n3B1HaNS7siBiKbRyEDkYGT6Ld0ULl2lx2q9x8VffR5LXQMH+G77Bkt2hsFqLB5RWKbzrFv7CiZ2UMl+Y1qEs5zOd8ZZareMPhlKzckUL2dDecUuQAIOzU9SXTQRndeIM3aHlADT8JluxZHhjJJG2jjU5OFRbkRVC8644cz7isf0UGbgyPClAYXBmMm8Aylrfn1aY9DPqZ8bWqSsYzZjfdsTnDalkr2iXM7Y6NsxgQZp8z7XaeFZcdrrcmMm9F2mXFYxisMOZ9zyAW1s+9bkbSNoNX7JLDC1LEz5HY/cQCMg+SRKzMZSr153q43jggYA7Mc/SSUnpDspxkQwbMXBt0kVp59RlxFILWyGBq6K/bZ7ZX/0Ketjo6cA39jD8P16Lzs1xvLX7d1CsaDqdDqurq3S7XXSpyWoZrVaLiYkJtmzezMapKVqtAWo141zTNCFVCS7/Rlqx6hRAP+9TFB1StZ+hxlcZqN9JWc4wv7iLoyffzumZm+h0RymLEAUp7AmGpZ0acHsXLF5zgIO/9Vl6O4zM1U4Ns+sX383ovRfQP2+ejV+6isFTk2F6Mkkq8qi8HUjThGajycjoiAU4AyRJCiolURku0dhMvbh+C4CttOEA7cMCBFlFUbXsr3R9D2Cg8gPR7mHiVM/Ke2a70ggOqLjjhA30DHImzkUedp24jHfe9zEObn2CNz/84/zoF3+TjbPnAtCrt7nr2j/jT977f3J4yzPGLMZeOhgU7ZyOo9d+qYKz8CbQPtPr1Xj58DamZ8aoZ6tsmjxMo9EOWMJPR6w1CNoZcxUQudJw3ouvZWR+E0XWY+uhS3n/n/4Wm4/tBaDbXOZr7/ldHnn9JymyfvAKKmKON0hxG7VXckGF6I7QTvei9DF+hOTLCw4hkd8RFzM6v4msNCPNtF/jjV/5++zYfzloaA/O89X3/x4LEyc9oYHT1akcR2coPC9S9h/ayN0P7uHlQ1PUax32nPcye89/maHWqtlMxWMW7ZVFMsbJUcgbCOVH+REV7jjruWXfVWx6/lLTnrFZXnjDl/1e4B7E+LJDQdE23q49/fXCdoGpwaH70mOQ5AWvcmmi9hmDTPysdQb15WGzegDotVZYmTodl63WFO2pXMufV2qLa791iMLtBYDiaKqU6p2VlXEloyzSfZr/8mab/qg5dyFdbVKbH7S6uJZyN9Xg57mdg9cOUMXN8qNfl2FvQUMpHpQRBGXbVvr5dRcFsC7Tj6LxwCOMps1fi9e9QPvC46CgcWySsTsvI8zZmx+FcXgK42xcMxXKRgWSIAtaUxaFmUoQACUQYT6XcmTv+kH0tdZ2SgQX/o9HnuajiEwqTTnQY+4Xb6d/gQ2lH5xg8l+/nWSpQVkUdLs9ume0nQrokaiEWq3G0NAQG6em2LZtG1NTU7Rag2RZRmY36jFnQ4hDlTyY1JSF4XFemDMIer0e/V6fvN8n7/fo5yvo8jnqyeeoqa9TFAssLe9heuZ9LCzfRD8fNucHuDMByhAVWbrxAId/6wv0ty4CUDs+yq5/8R5GH9pNltbImgmbbr+ahMQPDMxqAfNjpr1MH9VqdQYGWtQbDdI0Q6PI84Ll5VXm5xZYWV4l75cUuabINbrQFH1Nv1+Q9wqKvqbMNXm/IM9L3D5QflmxtSev5vp/Hhmoli9GKs6HSLRc0S+j6GsKcEvL7L8ivAWKa559F+ccv5JjUy9wyYHX8/c//Qdcs+8dpEWGVpoD2x7nj9/3M9x75d+QZ52AFqsOQMW0aFF/ZKRQtDtNXjywk7mFIQaai2ycPEyWdcXoQoepWYfDfHawBUJrDKtG5RkXP3ErZZajlGLq1G7e/6e/xc6XrwGg3+hw163/mXve9t/Is7adahBJYnY+cE0yplVshSYR7XCAx+2y5WO42k5DJNraY+2Li8CG4JHWcRjU8c2UbPZ/GFie4JZP/3NG7RTI9JaXueO9/5FucyXwt8KYCH/YPpqZG+b+R3bz2DM76fYSdm49xuUXPc/GidmwTEjKngoGLIT+ZQ6GA0rOSAanEtES5lwAk4F/8e3vN9MfwEuvu4OVDaf8IyazuhpCNj/K02CcSZallh6ZPyP+9dtDyvKEM6k4lyDjgd4kScShMEQiAoo0zxg9vgM0lFnO/NZD9itdeRYnOiHsb+xMBDS8Q/NOLcyxWpSCSdZ08hKv69OhKMsDz1g/wpPPCsuP1tAfXSZvmSW9tcVB0uUBzzsfPvVRDUmxJUfHnHZRAr+8TBxIgwP4Vg98bo6lv9TmdDqfvCVCEdrqZ1i+pu22ueKZLOfMB+4zhxJpGL/tatKZIS+7MjKR2/B1ALrWSSbOUUKhS3r9Pp2uS74rrDPXln/a7sBqpbEyRbB2KgAPWD1Y04FvpQBxGs3ihx5m5R3PGjlarTP+r29BvTRKr9el3e7Q6XTIi4IkUTQaTcbHxti8eQtbtmxhbGycRsOcpZBmKSpJA6O1TS70CYxuV0C7GsD+7ud9E/4vzE+/b5IE+70eeb6KLp8m43+R6LvI8w7LK1cxM/+DrLSvoyhbQDg5cOH1L3Lo33ye/iYDPOuHxznn597LyKPnktlVG8OP7aScTllZWWFpeZmlpSWWl5ZZWl6m3elQak09q9NqtGgNDKJIKAtYWWozc2aWM2dmWZhbYGV5hfZKm16nR6/Tp9/N6Xb69Lp9+t0+vW5Br1PQ7dj7nb5dsWRkVXn9qOQDvcL1PSUQVmBi8DH+Jx4ZBfOLHzW5sJgWxlYJh68hrD+uWKW0qPHmh3+cpdYspdJMLG7jh+/4Vd5/588yvGLmCJcHZ/ncG3+Hv7jl15gdPeZsqvRxyDGGa8Y66IDllRYv7t/B0kqTodYsUxPHSNPctmUtH1xB0XdatLPyytDiFI3OkP97bHYb7/nkb7D72ddDaULsD77xE3z9+36fTnN5LYE6tMavuVcqMrFRW6thWmWNtERHSnleyRGp4BQxB8WIy9Lj+nnjyd289XM/Q73bAgUvXnIf33rzn6MzTeS1CeLl/Fa3W+Pp57Zz38MXMD0zxMToHJfteZ5d245Ty/oRNZK2UKRzBMIwRfFf1z73bgxX1wutbXvqGqZevgiAlYlpXnz97QFYOj5KhbB0eJdoiUv8QSI6rnGN/ujo/VC8BH+hrQgZwNFkZdW0VZ5hnzB+5FxfzNyOgwT0EHa7jOsRl+w7cSvS+SCVnjZtASgqrMF38lY1LyB2ynM1GUZaJ+pC+pru+II5oAionxkl6WeWJufI3Iha+35wUxpyVB79VFYNOALjkbB7vqjIs4w2SAZJHlvn7sCq3Xp55YKjLF73IiiznHDii9ea7fx13B95kdNut8nzwjtudFjHDlCUJZ1Oh+XlZTqdbuh/26bSJvyFHfC0L8dPwZRh7tnPQUseaI3PkyiDNdJA59pDzP/ju6BWQqFo/dE1qC/sYmXZJAUWRUmtVmOw1WLDhim2bdvOxo2bGB0ZoV6vkaap3SMh7BoommDBWuHBSm6PI+73+2ZFQLdLv2ecv4kKGHDgVgvk/T5FXlIWbZR+goxPQfkAea5YXr2ZhaUfotO9nJIac2/ex+Ff/yL5hhUAGgcmOe/n38/Ys+dSy0xUtCgK9JkayxYEtNttur0eKMXQ0BDjY+MMDg4BiqWlFaZPn2F6eoYz0zPMzc2zsrxKp9Ol75YzarO3QalLu7wx/Ph7hVlNUBTY6IDtPzs8WceUrXu9ajBQDQdJoVxjKJT4ToRJnZD5FUzCZppRtOjoSgXOqA12xrjo0I24DIpa0eTGJ3+Qj37m/+L8o1ejSkWR5jx20Vf5rx/4GE+fdxeFyiN+lMHVhfvWKTjnML8wzIsHdtDu1BkbnmZy/KQZia4HBKRJd1F47zflCMZZy/WMrLk3vDjFu//6X3Lpo+9ElQllWvDYDZ/mtu//t7SH5vEHXLhQrigvFBUMb1S89v5fALDAf1euD21rUb59fh3MZL9bmxqoUFzwzM3c8I0PkxQpOil5+PV/xb7Lv05w+zE/Sq04dnKcex64kOdf3kKa9Lnw3INcdP4BhgfbgvZAt7xCZr5GRgRChnVEuah9LbpzuyK67qx1W1x8+/tQdqnrC6+/jZXxM3znyzme4KSra1qCJLqfJPzt+kDomewj44w8M8wdaa0lipCCqTHbEpdm58D57YfQSSFY45yfBBrifY8fKwRa52cOMUoEQAjQYM3eBALkaB3a4PVFTJHI0bF5zlTb2Wh2TwR7ml9e2QYO/DtOPjTC2Vu7pB3YKArv6AM7hJP8TiDC28rQ92FenQAs/Hy9+9FopTnzngfNCYUaRu7bS/PgJsMb3E6dBibl9nz7NElCt2rtcwXyImdpeYmV5RUUioHmAFlWw2UuyGkJpZQHTI7/JiLieGLD8b4tNkHN9o9bNaFtR2mtyaeWmPm1r1COr4KG9K4dZL9zDb12jkZTr9cZHhlm4+bNbNu2nQ2Tkwy0mnYaIPWrAhKVGI3Q+AipAzMuJyDPc/r9nH6e0+2ZUX+vZ6Yd+nmPfq9Lt9uh3+tRFga4OR3zcqYBvULCQyT6b9Dl4/TzIZY6b+bEW1KO/NpXyMfNDpfNF6Y495+/j+HntpvVGlr7JZtFaaY+lFIMDLQYH59kamojoyOjlKVmYX6B6ekzzM/Ps7S0zOrKKiurK3S7XdOnWq7iCDFFBxvLNfeCJoIdbLjB9KsEAvA97kDoDJrrcHtbans09Rft/yMAiiddKLovUsVFhkrC72Z3KLg5bSjbfupifuJzv8c3rv+f3HPlX9GrtTk9cZBPvOsXuPmxH+atj3yEwfaIiEisbR9W3WbmRjl0dAt5rpgYPcnI0BxhA5+1iMi5NUXIYnXnjHs3rUQ7tHzH3bLPJoqB9hhv/+zP0+gM8dgNn6JMc5698na6zRXe+alfYnhhI2FU6wzPemPZ4HBN9Sp0kAJ0AD8RYZL/7ntr3KK9GtblofxSo3TKdff8MNNb9vPslV+jX+vwtXf/34xPb2fLkb3heaVYWa3x3ItbOXxsAq1hy8bT7Nx6gka9H9HmaNeVWj0oigBX5bfjlXU8Pgei8o4WpftPGnY8/lomD17AmfOfY3nDKV6+6etc8cW/I2ir7F7nHL1yzsgREfpG+88CAmsdgGRVx8RzygE133BTVvhoj/l1jiwUwvDJrWTdJv3WKstTJ+g329RXzKjFMgcX8ZDOLfCxKi8xZeGxddonn/S2ODht6agcoohH2oEhWmvam6Z9QY3jk96pS2qcBjs+mChFPPp3feXW5vu+iDvA66uWLXd0CroqATD/rEaZDWPsOypJSCjpbZ5n/q1PGDvYzdjw6dcaIO3aoBytJf2e2elOJaG7SBISewAPGrI0I2vVTJg9SfFJhJ7XskOVBVouamP4YyoJOuE3S6xGSqwOlaVG1/vM/bOv0bvUJNqqo8MM/uKbqS0PUm/VqdfrjIyMMDAwQJqmhjZbT6STzunbehxoMfskuON97Si6KNC6oLDJjaU7WdBuJRy60A18pP6oinzNofU3KNUTrP7APAv/6nfRw2YaqvHMDnb+wtsZPLgJUmX3HTD0JGlKrVZjdGSUWq1Gs9lEa+h2esytrtLr9SzNOtrRsETKWGxeY7u+ruF1qmqOpnbL+73tXv+d6vWqIwOlKmyHCO2XdTgjVVFAaSzc/Hb0mhAoLX47/+nHTGrN2CTUgbEDrc4o77z3Y/zol36TjbPnANCrtbnz+o/zJ+/5pxze9KzJpPcDLoPES2V/a8XJ6QkOHNlKUcDUxDFGh2ftHG6Y3Y2SELXgORhB04JyvZZqOfYzN8IzypZf7w7yli//E278xkdI+3VQmpcvupfPfugXmd1wBDlqMeVVOGIsQwirCfDm1Uss5fPd6UkVzrMaFwQcRo32VVDxE66oWneAt3z+Y2w+akLsyyNn+OoHfpelkWk0mqJQHDk6zj0P7OHA4Q0MNNtccsGLnL/rEPV6F1wIMjQgtLEqEI6HKsGtIKhO0CgZpl8n4qWUAHGiHRpNbbXFxXe8x4yoE80Lb/wSqyOzkcEyMi6I8/qY+JIEcwlALtxX1T4QfPUO0hArGOCUzT7jQjueX/aeVaiBhXGaC2MAtEfnaY/NOW2DCDSL9yqXk8D1dDJ8ozzNfhQuy3CGwo+WY5tgvhURAev5wvea9uZw+l3zxKTFPqY8F5I3ZZZ+1OuWa8UtlaN7l1FPlFjn5NGnzrhsbm/DSjEtYfIHnOE3B9yY7/t5zupqm75dB67RzL/tMfob50FD6+mdDD5+Xiwttn6zzj03o9LS3TdH4eY2TJ4kZjles9EwJ/S5tpUCEGi3bt6Em3Vpkw21W4boRCqAs7DXQOCam14oi5Jur8Psux9i+QeeMCLfyRj+jTcxtH8Hk5Mb2LhxE5s3b2ZkeJhaVidNMgOGkqAHTnO1xp8L4Ob/8yKnX+Rh7r/vpgF69PsmL6AocnNyYb9ngABO7FWY1nb9jY76qLSnEPaKDot/54ss/Pq/QQ+bZMH6Y9cy+bG/Inn+h9CMhAhKWZiEwCyjWW8wOjpKs9lkeWWV6ekzzMzMsrKyQr/fN1MYeY+87JtVGzaCucYWC31yPzL9u/p8miVktcRGp6s24rtfrxoM3HfVXxmCBSL0FK0xyLJFjijtUZ6xNRWjI/5UmI1YwhcEsBHVoQMitu+mOuWy/W/g7336/+aq528hKTM0mpe3P8ofv+9nOLzlmYoTNoWXpeLEyQ0cObYZdMHGyaMMtZYMdFFhz3wnUIEmkcylHMRAGF1fWYVJlZC8/w9cOD7tN7j5Gz/Fm277GLWu2Yf8yLmP8YUf/lXaAwu+CWKKOJ4CUAK8WaekEgeG1kOLqvKXpVn2twjRR/Opkcla060ML0zx9k//MwaXTG7H8Z37uOfW/85iJ+XbT57Dw0+cS7uTsWPrCS7b8yLjo0t2FcpaQQ6oHtkrtl7HkPBMNB1SBQ4VAOOjCp7+UJHjx85v32zm2zUsbD7GgdfcFfHYyfd6tMdcCfUGeuJWQbzaIyoCHTm6KOojnbDoIW9YlKbebTE8bRI880bHLJf0TQjy6GRFUmXqE8lzVgGjSIWjUR7wJS8RnnXOW+6iFgMI8KZbyp0GnZR0Npo9BlSR0Dg94WU2wLkgr6WWjjocS2t7wNurAFxComppQ8EyjyC0LgAIZyZ9u/wSNzOK7Pdzet0e3U6HXq9PWRTkrVVm3/Ow4Vup2PCZG8g6jWD7lIs0aFZWV83IXSmfsKcSc+5AnptImp87tgDAT3PgHDd2aWBQcY3JETDPCoha6SfZn2Vp5srbbZObsLz9GCv/4h6oF1DC6F9fx/b7Xsd2OxUwNNiiVquRpBlJapIdg8ya3yGPQftRf+7m+ns9up023W7XO9e83yfPzeZARZ6T9/uURe5lLJG2rKJQXu7crn2Y/uq8/QWWf/2b/lTF+oM7mfw/foz0pa2sdq5jbukHaXcvRVOnMdCwSx4z8jxnfm6eU6dOMzc3b8L/uZ3CyHv0dUFhNnIO/I1aDymQoagBdRIaKqOV1BmqNWnVGgxkdTIVpmbSVFGrpQIpvILd+A7Xq54mOO/oVUSm+TuBDS3xtsQxsSMVNnddky/f80WjRXudsbLP2dAYwIbFbXzwtn/FeUev5qs3/DeWW7NsnDuHqbmdtuKAqcoy5ejxjZw6PUGa9Nk4eYxmvY07FtjQWhlFSHvnqVJeWQPOkNhNiZ+1LcM/qbwdT/KMa+/9OzRXh/nau3+Pfr3DBc++nkZ3yBcvXF3gqw5/SsK1dtQGw+2Bgfjl7bn7wxboBdfHP0OPOH2O3Jx9RinYevhi3vLFn+bLP/DbtOanGLj9vdz3rb2sLDcZGVrm3B3HGBlZ9g7GhCl13Mc44lSo0H0Xramv9lMc+jfFaHGSo7kS72RdqbrSUYrGyjAXff3dPPSh/8qW5y5n8vD5og+FfEu6IsAkcwTsrzWaqyzfBENFdMcZZnOVAbT4B9xP6d/VqjSrALRxGkmZsGH/HlbHZxg5uY1auxWaoL3Yezo9n0SxkR64qRsd+isGnbZN/k9j9NcMXET7oumCiK/uD41OCoaf30VR75K3OtRPTKC1phjsoDo1VJ7gjt2RCYQhB8BIttMN6TQD37V36qYNiTc3IVtbhJn9q+E9WV8/z+l0OuiyJEkSumlC2i8Zue0yiqZxPkNf30NZFgKWGRnu24N5kiSxSxxNFlRaq1HqkizNzHkOcq+GCLRIB+/kJuaLP15cB5uvxXsGNBTkeeGdHYBKFM25cdSXL2f5w48w+MJOdv/ZD9IcHDNz/0kixDiegivdUnVlAACWfh8ZsMmBpXbLJB34Cnw2JwsWhB0kVWi7j2ZolHaDscQC0JBxr1BkaUrrqe10ntlE77qjNO87l4l/+h6yY9No/Zfo5Gry9HKW228jLy5hNHuEsneIdnuZTrtjtwcOCY4+smQVLFjMoA/OSqQk1FRCpkzuR+ZXgZk3S6UpU+Nryn4PFNTqNZIs8Rz1vP0eAIHSYej4Ha/f/Z3HYyMvGhDd9C0LSGyNsgc58wfXOvwQu8m14UctGhs/qQM33dNWqI9sfpo7rv/v3PrA32P79N6otDxXHDm6hemZMbK0w8bJYzY0bZcMOpCBnQtWob6qXdKhWtxutOZXOAFMieQwty+4dwtKiec8ibj54xcu/SanN73EDd/8MbK8bp+1UYsIqQRnHoEn7dpiHJRf2aG1yO8QqEGW7wyvK0xkDUMYH3p0ot3bpShVUSQ5D1x6O4tfvZXVR68GNNs2nWL75tNkWeG8T2iKz72I4ID5nLgzFuwzvnsC7a63nOyYvA7t+8ZsPhSecV/oaucGzgLQH1xmbtshNhy8kLRfiyMwwnwqqCyhd3VLJx9aF96USh1GwdX+wYNPFfhQmTpw766OzTB/zn62P3md/77XXEGjyboDPjEyarP0BN/Fsvh5ZlGGHxd4Byu/04LPbr46OGxnpEsra6UubOa0PFXOjrrR5PTJa13USg00HPvwHWz80mupzYzEAMDVVxr59KPiSkTAy1EVQHiGyHlm7ZtZLcvRqUuT9FcUpR/VpklCvd6gVq8zMDBAkirKiVV6mxaoP7OZLE3NQUOJGfWVWtNum7lnfyoqmtTOVQenrimKMgy+on4SXanw7ZDgPgbOzqGau0Vhtgnu981ufS7RL8tq1GoZg4ODDI4NsPLW5xg4McXwi+eY6UpC5Mu7ZbekUuPn9zV2eaZ1/Hnet86/9KCqLEsv1+ZvN93Rr/gRHUCGkD1QdomvIi/dCYmEaQTryPNz5lj5qW8z+oc3kZwcNKArSUnTGqhN9MqrKfUuVFKQqidIuZd6bZk8L2l3uyaPoaI3ylPgfjQJilSZI6YzlZApkyqaKDEtTbCoeQpdXdDudSmB5kCTrGYOQcqyjHrN5In0iz6dTodnn/0Pa+Sger1qMPB7v/uE4GXlFa/wxKMTOWoQz/rEGiVQpwcDTrEqQuz8mC/aGT97y2coxzDFof4865OWGX53Q6Xo5ymHDm9mZnaERn2VqYlj1Gq94Px8neZ5g1RtVm88JBdsce9J7BeUTI4INSbkaDbQiHkWnHEYnanE7A1mzptXFYe/Bp74Kzr+WMUwyne/rV8JvlVcb+SL3IjdvVwNHZqPYSmjwqwUOHl6hCf3bWVxcYDhwRXO23mU0eHlAH6E0/eOXrsydPxtlDjnKJGQsdoGW4kf9bgKhHKqta9pSqqX57c0tjGiXUubz4rXa4x04LfkquupMlY573VMXdobsrVUygrmth/i/o/+B976e79Oc2kUF+Z2z4Y69NpiJH3+laD4DlDJEuRI2ETilV2mpihKRVGY5VDm78T+dkvZrBOWe/7rwvSFLgD3E/7WOkdhzpnvbD/Fvv/0H9nzs3+P1ovbrZ+L26WtwQ9TEta1Roe7uDB6FRhYMCCMkLaF+tEqLnmtoO9D1yFnAIwc1GoNslqNZqNBrW621dWY3fjQ+DMtlFL08z6rq6vGriljN5I0IatlPjdIl6VPTFPiBEMXzNMVfQl0W7uMCz+HKQSXse+W7ZVlaWmvUavVqNfrDA0NMdAyKxYSuxuic/4mwJX4yGmcJOocemFH98Hx57nZ+jdeFhoSL0H5/Am3EiKximxsTpjWcQzQZWkSKtNw0JOTMWUHGA6kqCQhSfn/sfbX8bbld30//vws2Xr8nOsy9467Z5LJzEQmSiAhIZAgAZpiRSo4BIoEKW2hlNIipS0UggRNAsSTkUzG3eXOXNfjsmXZ5/P746NrnzvJpN/fmseds/faSz76fr/ejlCCONLJkKIooihKhlnGcFgixX4ardcRJ9uI4zW6rQcZ9O4hy9cdBRS1f5rRxwgiERELYbIoWgqssNkUnMO++WyjCMoIhmVBVhUIIWg0m3Q6LdJGYsIx9dwnqU4L/+Uv/wJf7Xjl0QSbNlKdOnliXvsw8gz3v03XhITsbLbWULVtJWVvFrCqvtGXCcdkE9nQ5wxhK4qEg4d3sLwyRqvZY8vsCV11sNZW6mbYsH3OpyFCmWBFfdr/5tm+cOw6bNtZiSq+me4n1ya7jMzXsw9l7Xe7oPR3s7NDjmc1BTUgYNovhFOtOWQaYAet1bBLONRBmIY7FaMgzxOePbCFA4e2ICXs3nGaPTtO0UhL35aXOSwBedlO4sfZ3RNesume2tODQRb+RzcnX7Fpmxv6lQ7lnxk6f/rG1ic0hDRC1H91xhPlzyh/lnDtm/gvinafhXOf54VbPsvln/zm+r1fQSYInxmuH7ucKhlRlhF5EZNlCVkWM8hiBllCNozJipjC/qsEstJgQCqBlAIlQwB69vmqA12/j6x/kRDS/KuI4pLyO36H4a4FjqXjdE9fSBIPSZKcNM5Jkow4LolEBapAAwkz4s6fwL+rzrTCtWhZpvto9ot2TtSOfDq+vZImE6G5NQrKv+tEOYKyjIgiiJPUvb+sCgYDiVIdkiRxFfssAI+EQEyXVHFOtNIC5VMIOyAQtt188Foy+91MrwU5yqq5K50UqKwciI0MU4zjmImJCTqdDs1m09RBiJyWSkdk1FaPGyev4rfak8oBMw8AgvOArcQYrgZZSXNt5RJjhZUaVTmiUVCKNEmIo8hpdAC/Vwx4tc8QQpBEsQl3FFRlRa/fo9fvU1YVSZLSTA+SRksgrkXKK1nrvREl94L4HEIdMeWFNY2MECRCkIjYgABDI51wFWiKzRxb66cCKqHBQF5qJ0q9z3Vf4jghwpqOQESSsig1IHgFx9cQWhgeoVoyoIGizsZHN7VFneIsv33lI2BEzhjuJ9Ft5ABGBKTcIzMTg5PlDV46vIPVtS6d1jpbZk8SR2VAYgKiqgJVb43WB/1QAme3JUDb+ou/UomRd2i1jmtlqGIN+dIm84H/bne4ChEEwb3uo1/4GgPUpWzL3O1KrEsPZ+31yGiHc2Efq1ASlle7PPbUTuYXu3RaQ8495zgzU+sIYYmjZ36jjMc+U89BOA72yjqLDOcdd4/yl4XjZIcjrjh++UPsfOYakiI1l58FJNVndtP4bHq3HSVR/0Uo4zBlbKJ++whqTlubnohnxm6gDBBzDotGrrOXBCg5H1vXYapv+wf23X8LY/PbRlp/1l2jJfYKsjxmMEzoDVI2eikb/ZR+P2WQJeR5TFlq6d5qfjWjhiiSRJEkjiVxVNFoVCRxRRxXRKLS52NFJCQikggkCJdg3TAFzZwqCUpGVFIzz6qKqGREVcVUMkZWCfmWJQbf8lmIJStzfdbm97mZ0m2SRFFFHBckcUaaDGgkfRppjyTpkSZ9YpEhohJBmKzIT4EbI4Ur4GOBQ1kWOoe9kaSt/bru16Fc1kEpS5MwRoMEEcVaqotjyrIwiYMGpGnDVO7T86IEiJmCMz/9GWb+1800lpumnTJonqoxe2d2srTUIRktsChl8vGXBsgYO71NnZsk2hwxPj5Ot9MhbTQ0IDGM0+4Yba6K3CoK/SZsG61ELm2URcC4/bUm+2MAAizz1BqLEtBaikhAkiY6ra9SJqFQRVmWTpORpCmNtOH2n32gdRwVaE1LHMckcYINQa6Kio3hgMFgQCUlURzRbndotXSkhlQFVXUPg95jqPhGGs2LiJJ/QSQfIJF3k4qeU/vbOCfQNZvC3a7Q+lRLc2zkhsTqwiQleo48HdQgpd8f0G43dbsjgZI6+6RSBa/k+JryDIAVJG08fT1E6Gxy0VnBgfB/6rhRjVxrEJUhgHXZQIxIS/ahwj3NPsgiUoUiyxq8dHAXaxttup1VtkyfIoqrOgPylBRlJX3ll7l9uJ1Hm+LXMWf0pDtpAhUQkJCpW1BlNqPwjL8mgts+iuBEyANHD6vyMqzLOsuEt1khdbMWxvTTMaYadzftEI4nKf8gap0EqjLi0NEZnnpuB1kes3V2iXP3nKDZLHA5xcPnuS4Jn3nO/bHvEUEmthFthDvrLe36Hu1Y4x29rFlGt1/ImONXPMjJSx/h2r/7bpK8iV+d+i1SKifpKAP8QpOKnUdVGz/bupEEODXwrPwY6sFwa9D3zn+un3ED5s76fVTTKwCKbGwdJRQbW07z9Fs+zqv+6vsQ0o+fMpJ6XsT0+gnrvSara03WNpr0+inDLKYoI6yvVRQpkrgiTUu67Yxms6Ddymk17b+CRlqQJprxx3FFHFVm3StsJIRba8rkvB/JFmhjsm3lPGWZiAmHqyprM9bE8+gHbufY3uMATF59N9v27qcsWxRli6JskxdtirJFWTYZ5m36w3GkjM28aQ1DHBmQkG7QSFZppGuk8QZxNECIsgYKpSleU5qQtKIs3FoLYaTbIyJYM+b3qiqJYkElSxKVEsUxMTr5ji20AwVSGiwoQEwWzP/SJxledYQtv/E2pxGQSjvIKWHBlJ1fs/7cfFvTgHBSb14W5JkGAbbqoVWpj42N0e10aXfaLuOeEBjVugUC5p8Q2LTfCm3usfH/1hRj0zyXJv+/NL/rthl/EDQK9OZGH25oBRwRaTt+ksYIhE4s5ABNgTAhf1EkTOVAEwoZ8CGbFTROYhrWVCMleZbT6/XITU6HJNGFk5LEAAWpyEsd4TAYDMnz06COItuX0Rx7I3FyCzK5GKFuJ1XPIqjcHFhy7pJAmV8qZQ2sJgOh3ReEhlc7Gp4G5XmOkhXNZpM0TRCxDtf0qa6/8vGKwUC4oGyY9tmdU5T2nnNQ1H72DhqeSRJgAM/dnKZdYNTu9n1BG4I7MM/0zdlsOQbBYNjgpYM72ei1GeuuMDt1mshmXRPBE80LrCNJneOKoL22bYFM6wCKVx/WpDwRshlz3tjVvDtQ+E6v/q0BAcdIRibALfDAwq7MsjHOKHX52b9H0yrbxjp48IeiJr3WhsZQOQX9YYMnn9nOkeNTxHHFBfuOsW3Lspb+wtlzgML31o1PCDBEndi4m4VH1B4AqsAb2rbZQTl3je8PzL10EXf+wH+gaPW54S+/n3TYCe7HCeMh1BhtQ2gmcN+Vcg/x+E7VrhVujxh3WmtmUnUvidryFAEYfrm9bkGGWZfD8VWsl+WBN3yGc+98K+0XLmBtI2V5pcXyaoteL6U3SMiL2DGeJK5oNEomxgeMdYaMd4eMdTM67SGtRknaKIgjabRNitqiNA20gFj4b6aJwXm3Fuz1hsmHavtAsrQzrxm4IooU5fQ6i++9x/VT7T/G1ORJkMK9S/siaD+FskrIi4Si6JAVY+TFOHkxTlF2yfIug+EUinMAZbQYA9J4nWa6QiNdIomWqcplkENn8wYdJ38WnIrXnipvhlOeYWqAUxFFWuWexBF5VSFE5BwRoyhCTJQs/sKnWHv3w3RvvxDRS10hpbofAAFIxQBjMwboolkWWBVlqaMXTKGgJEloNBq0Wi3a7bZmgrHWWjgaoSzl8gvRahj0F+n8PiqTXa8yCYEADxCk2qwNUCPmK4Xpo2edQkAcp0Y6l+R55rQAQug8C9YHwy4iO0fC+I9FQpcPThKd+lgqyaA/YDAckOcZQkCjqcchjhMNAPKMfq/n/RGkBj4NIq0Jy55ElkcQnZugfS2D6JuoxNO01B0IFvDcSWF9NKTSkn+lJJVSVEqOMP+zbHFwe0FVwuWviCJt5mi1mzSbza/wBH+8cs1AJILBrNEyfQjvGleLn1SekW2y/Z5tswS/1aTkmmRbt1D7hVdngqGgNBg0efHQTnr9FuPdZWamz2g1tQUfNcoasB3D7N27LNWy/amxbu8V7ppkpQAvvvnn1sbCM9L6NbZr2mnRaw/qS8Q1C48XxUh7hHvsZqhkx8G2YdSWpkCHpkl/r5tX1xr9kvnFMR55Yicrqy0mx3tcsP84Y6aIDGiJwbgUuHFRAcMOR9KCNOHjTvSbgjURJhEaQQXmT2hCCnUJyoHV2UMXEBdNnn3TP1K0+tz4pz9CY2Ncj6MQ/h3q5Tfn5lmxgFC5cdy85EVwU3j3yHuC4VDq5fZg+DEYV90Eht119/twfJXbXvNPxH/ym+T9BkpBHEnStKLTHrB9y4CpiYEGAN2MVrMgiSsiEVYLCMfXrnPlwLyfrXqf7Gx4xVO93+6T8iDCf6/3yV4fRdoZceHWJxjs8QmI8m2rqEaFGMSO0VjBIYkFUZQTRwXNdJ5uQN8qmVCWDYqyS15OkuVT5MU0eTlOP5ulN9hullpJJHok8RKN6AxJcoYkWiGKBrgy2aEKk5AG2nHT/ayqijhOqMpKmzFA2+FFCUJrPRBQtTOWPvR51t/3EESK5nPbtDE5YPoaB1ogKBww0PRZM968KMiy3IU3RlFMs9kijmMajQadTsf5A7hyyM4cZYY+8uDC908aU1GQk8F4/9uc+tYHQRmfABnQHSW1NIxSyMk+1cyA5qE5wzAl4R6MY+2BXxSlSSGt6YGtaqh9M4TTJrldqvS+TpPEaDn0+Pf7ffqDAUWe62yCDS1lJ3EMCm16KEoGvR5lUSCA2DgB6nExWkelENUaauMzVNmzqO6tDBtXUIhzaHIniXoURE6l0HQdRakUpc19UVvpnqzZ714TbtaRAU5aE2DESiUpioja4vsKxysGAzYJUG3vmkXumaLwC9C103OhVxK4cDYCiHmOsghUhIOCUzP799bZ3WDQ4sDBXfQHTSbGlpiZOkPkHBAD5ueo16hcbAfePNcBk4DcnZWw2Z9qHAqds8CADSc5Kg+AAqZopSUvmVqHkTArn3lvTYsiakw97IZFyTbfue+x8mPrmI1wtx648B6aWZfdh68kUvVSyAJFWUW8eHCWp57bSllE7N6+wDm7T5OmVvVnIZYlKn78PIj7SmvEQTI33AphfEltwyW1/BDmj1DKx7GOPFEJGFvayviZHSztO8CBmz5P2Rzy2v/z72ivTtW0U/6Jo6tEabu98v3w5XtDxiXCbuCXwcg8nOVbvdEvM1JOsoaqiuj1Gywst5hfanPk6yr/bgHrb/scszffzXnPXcLMVI/JiQGdVk6jUWrpJlgf4doWtk9OfSdcqKm9rA4Y6hKeMEDaORegTS+KYM06DUC939YPwUl3QhBFJvHNRJ9T77kXYn9TPrtB2RmS9DtONe0TUymoZQu07xMIctI4I4nXaDVOIFuageUZZEWLopymlFspq+2Ucpa83E3GfsglkRiSRMuk8RnS+CRJvEhEH6gCAOfHCgFCCSqpVeYIk5HQRBAIISisdqBdsfqhL7LxgYd0PyU0nt6OrSg4ulAcM1HChOsVFGVFkedUUhr1esOpvZvNJhMT47TbXS0pB/4AdX8hv+6dsKBwTNeHXOoflIBIxCQCssI4ByrvHyCNgOBAT1LRv+kAK99zFzO/8VaX4dAVjwITDQBFaaIbMNMaRa5tTutkwIXA2O1NemYhBFmWMTRJjJx/RKNh0voqyjynNHxCKAVSESlFM4odT4j8ynZrVfddooqDlCt/TtS+HtW9CRl/PbG4kFh9DjjlwJOva2o6oqwgFApJ/n82pJOoLjxZ/4koNuafquKVHF+bz4BBPO6wdCLgmaETmktY8xUet4mXhnT3ZcCDHxzPZCOruQhQNwr6gyYvGiAwOb7IzOQ8YXrhurq3Hi7nO+klywASOe4m/Myz6fbRttcIuXDtCDlDyGLq7DY84xeKboMtYKI8WsQACYJpsBjoZdpnnxxKsva9M0u7+at/8aPse/F6brzzA0wv7MU63gyGKY89tY0jx6dI4pKLzz/O1tlVnfEQTYwsoPTRDf6dtdDEEQymhauRcFPhx0oEqTeVBUUIEAFgEsF4uXN2vQqSvMXcwQtZOucARIpDr/oSRXPALX/0E4wtbcMx9ZE5rq1QFWhMQj8IO8dmgdciCcJxN33y1wT6LyNqS/fM4AkG1EoJwyxhaaXJ6fkO80ttNjYalKVAxJJsfLX+wrEezV/4ba7+7Z8gKRq2E+65dfAesHdHpMwOCracWy+1sarvJfsMNXLO3xuCB6sdCMoY2+m2e9hcu3jL0/TOP1XrYjU2JJ9eJ55vAaaIT6TnpgyS2Pj9ZZmqkVBtGlwTU6+UIhZrxOkZBM8BEZImlZykrLaSVzspqu0U1Sx5tRO4ikhkxNESjfgEaXyCJFokEhkoWaMHLszN5CNACKI4IstzKqmIxmD9J+5k44MPQGJMAllKcmDOMUsPqn0OBCmlq+KnJXJdRrtlIgC0RqCp8wN0u6SJTg+s58T7G9l2WiHCClCW+Vt/DjsfOhmSMHUXDPMmJoojBmqgQxWpHKPWCRMVxe5FVn74Dta/8TE6t11I49ntrgaBjUKI4lj7IViA53CpMEWyNDhHGf8CZfMD6PdXVUV/OCAbDilynbExiRMaaUNrFdC+IM5UIRWq0vQkAq0JqGmrleMHducqLJ1VKAaU/S8h8hdIxt6CbJ5PJXYi1JcQ3I8Smd5RJneEUEAUkq+QGGofhyiOiBPt1+ExiHD4XJMI9fI8eOT42sCAVbP4tWF/Me1U7mdrB6k1w0pvYtRBSv/ms5aezS2s/kbNBLTncs13wdlpoT9o8eLB3fQHKZPjC8xMLWimYgh1XRHrmYYj4oCrAmKJnueOeILoH1G3Jwdtqr1G+LGoXWPboEbaoG8MVd2O8tozIjgFVuFRGxuh08/V5iXsTs2mXh8VQDG9sJcLnr6F+173F7xw8V1cf/f7uPb+99A/tp2HH9/J0nLbmwW6Q9OO0bm0hNePqah1NESJ+p9d2LZPtvXa9u4ZO+5ZpoeB80mI2G3eBb+J9Xu3vXAFz7/hk+6641c+yG0//Gu8/g9/mokzu2rzGgLAs5Z5Vr6Voz9tAo7h82x7LbYdZZTh9UBZCTZ6KWcW2pw802Vppckw005SzUbJ7PQ6W2fXmN2yygP7jzEfPCMqE05f9hTHrnmYffe/JhhVv4dce0cbAA78bNpLL6cBPMt14ew4L4CaFsG4VxkJ1YI3Dyg1U6w6GSe/6W7iYUrVyZwWSDYLsq0rdA5sRRh7ub1PGo9/x9SMKltKndI2zzMDFir8hrS0xz9H0CeJ+yTxSVo8jiJBynGKchtFtZu82kVZzVJUOwFJJPqk8Wka8VHS6CRCrGK1BjpbXYSQOkthlUv6w4x0PKb3Y/ew8QP36XLA5ogXO8QnJwxZsRK6dhorK53yOM9zoxGJSJKYJEmNfVxL/O12m7nZWS0Nm+eEdM3tUQtclHTzZP0BbNiklNKQt8iZFoTJoyKEMhJrQhx3KYuCwXDIcDjQ4abtIWvf+AgrP3Qn5Z5lxDBh4iM3QB7pWgOVru6YJClJnBjfA19nYZPztQEX1hwAUMmKwcaAwXBIVep0xbqmQMPUbwCkROlczfqz0jQj1IXaMh8esnoAEPJHDQYiNyaKebLBXxNHV9GIX08Uvx0RX4BQnyXipI4CMDzNFmUC5Uw0/skCEelotDjxIZzCvEsD3q/mcVA/vuY8A8EScd9qTN3S1tq1wSHC4cMTmRAEWMofvj68x4y4e5K5NhL2vKLXa3Pg4C4GQwMEJhcRLvwv4C5WanPE13/2bdYnPI9S9TZaIiGE2xT9sWU2xheZXdhLXDYckLIaZ20zVYYgCs+gTIrcswxcsBY8cAGhxUWH085ijgmxiFGFRtappv5zABJE7XdlFv+1976Hp675NOtTZ7j97f+DJ674HGP/46dJs29k1/ZF9u85TZJYb+u64t+ryoMl6l4o3MIRQhFmsqthhRp48IdU3mdfKQ+a9AgF1CxQYzn+ZuZk7uBFJFmLsjV07zt98RN84d98mNf//s8wc3wfqEAqssCmBtyUYXrmDaI+vnUATHCt+U2J+o/BYYldWQrW1hucPNPl5OkuK2sNilKQxJKx7pA9O9bZvnWN6ckerWZBFEGZ5qiJDTqLMwymVlCxZOLkDra+cCFPff0/sePJK2j1x2wjXWuFk+DNegjokdsK1iYd3KuCZ4R7RjlHgZAOBOFulvOMzJMbDSP9OkdkA6KXb3ieYrLPzr+6maMf/CKgaL+0lXKqT7F3leT+JMhYWJHnBVVZmEp3NsFNoZmoCQlUKsjgF9CJzeA2mCMAcpJoiSRdopU+g1IJpZygqHZQVPsoql1k5Tlk5XkIcuJoiTQ+SiM+gmBRxxjGIMuKYZ5DQzH4sQfZ+KH7nEbAHsnRacRay7WkqiqGg4yi0LH6UunshHGS0mw2iB1jFsRxzNTkJOPj485MUJ9g+1m6/aiUsWcrfPZHQ/N0UTRdLCmKPGDzfMymcoY4grjZ0KF+rYSl85/n1A/9E/0bX9RgR0HzgXNI799DUZbkea4d/VINBMrK5yUARWxV5gqUcbKMjblAKO1p3+/3XcKkSOgY/yiK9foyBaR0ESftnyUCQaamr1V6/1uy65i+QHvwxzFxEiNiW0rYAIF2RXbpSQZvfY7WPywinz4Fzdcj4vOJon9BJO4iTR7VayKJiJOUIi9qgEAYx8AotvUclJs3Fy1ly7gbAVuOrNGXO165z4BDQdb552wsxF7rUbQ/lCHk1mcet8k1kTAkJ2TO7lbH6WoNUvWv2JK8vX6bAwd3MhimTE0sMDE+bxwg674FjuW5/R4QNWdfNmQ98MJ1UrywzNssFLPqhRA0ig733fI7rE2e5tIn3sK5z93IxOo2hIpc5sUg/TcBKzNEd8ReK4IF6cCWCH+unXOLxIvTrt+vRGsUjq7/JJhZ3MPlD72De9/wZ6hIsbD7ORY+/K+Y+cY/46LPfwfxS5chZBwwEd8Hsy08yKhpLfy1qjbXgS+BAlEDk9Z/wgLBsN+1HmOpgjV/2D6GYzG+sJ2xxa2s7DrizrXWphDA7T/869zyRz/BloMXbsKq+pEBEQ37E9LU+g3ByPoZtE5iNVCmoJSCtfUmJ053OX6qw+pag6oSpGnFzNQG27eusm1ulYnxIUnsbdN2p8mkpGhmXPbP7+TJd32cwdQKw8lVLvvnd/LC62/j0Kvv5aLb3uQAjBu/ICFWHZ8E6yrIzV8H0sosPxlc7+3y7gFBemjNaBQuWsLuR3Pe9ikElrJZMP+Gxzn/P76HjQtP6OBtBVP3n48SisHOBVPkptBFbEzcOWg/AF3drjSJgez8eelYuDPhmNq216bdpbrWiWJsnwviaIFYLNBKnkTRpJRzFNU55OV+7XsgtzMoriUSqzTiozSSoyBPUUYF/Lsnyd75HON/fh0b3/owqlu49zWe24bKha7kVxT0+wPyvNC+AElM00QF+IyA+r5ms8nszCwt4zBozQJ+av0Cl3YOjSCh4/5xaaEROjufjcu3NNDvrYBCBaYdpRTFzBon3/cZTr77dsqJnh/PMmL8z16F6mutgM5voFX4hQFx1sBuNYfaJCFcSKQsK4aDPoP+gLzQpoA4ikij2N+jFJgCUpGhE5HxFRDhzAvfZunWtelPFCFMFsjEhPQpq72KFNXWDQa3vsTGe58gu+o44x+5jrFDu6GxjlKfRlWXoOIbqcRbidRFtJt3kCTzmg40bAincCAuNNMoJR14DpPEKXC0Tsg6gHy545WHFgab/2XtzW7ORUC4RY3R44eXGpsJmV/A9S3JqBVssVcG8eaW2Pd6bV58aQdDAwSmJhZcOxwVVzgvWPvdp300AGFEMtnUoLCdwnfe2u7Tos0tX/w+/vKD/5pPvufXGVufZd+BG7js8bez+/DVtIcTZmw8KDIuVHidHAFlddTdMR7d5ZChGTvfSFGh0THVxGr0V+HH1X1j5P8gVMQld7yPR674LNncaf3YRs7Sa27jM1fdz/n3vo0rP/0dTJ7ZYykiHr3aNo9SULOeDRN3LQkNqrZFVkWBRcNu6M2zhB/QkTz5buxC/Z5vFemww+yhC1jZeQQhI1QsKdp9Lv/ktxCXCc+85WOoL7yTLS9e4jaaM8eE/bE2y5Bf1IebAB2Zb95hTjddJw3Z6DU5fqrD0ZNjrKxqANBolGyZXWXX9hW2b1mn28mJIhN+J+oDYuXqKilorU6w/+7XcviGexlMrZB1e/RnFrn2b9/HSzd+meHYOu2NCQ+Qg/Z75uv3MAKEy9jnBt3DN3uPG25LRIN9764zU4swfQ+c0M6SEdAOvJKKjXNPsOXTVzP54LnMv/kx9+z0wDTdh3Zz6jvuZaO/jiz02JRlZeLQdcW7qqzcJLmoEUtIa32uT5/bGaPqaXBtrGlIMASdjDQ+RiM+Rie9l0pNkpd7yKvzKeQuBsWVDIoriJIl1Hv/jAbb2fIdr2H939yG6mggEJ+aoJrdQD4yzcrKKkWRY7MONptNl5sePAOxa7bZbLJlbo5Wq+VyZzjGZxmN9AlvUDapEs7z3xVIMkBARMJL6gJsqmTLSOPYj5FUCtkoWbrpMQ5/8OP0zjtGrUS2gtZTu+h86XyUwKRo1kze+nko6UEjCpAKEUMi9DWDXo/hYGiSNEHDaiuUMH4N0s2TULo4kGVdjjsF5kS7bm0CICXQvhCJBlIWUCmhgYBslRSXnab/nicZvP15qp1rOvLj0d1M/8HriGigEmteeQqlTqDkLRTqXKTaRqd9H63GE0TCZ8U9Wyi/ELFZh9KS2voatXP4Co5Xbiao8aL6BqljgJCdUJtg/UcFv4ZMB17Yex9Htz7NOacuZ9vSfrqDSSKV4BmBcUKrvd4joX6/xYsHd2jTgAMCtmEhg1RgEZV9ysiAWaYcEivMEyxvsqTCP9mwc7NAp5d286ZP/Ts+/v6fY2NigSev+SRPX/VZZhbO4aKn3sDFT72JLafPJSkbo10aobmBWtRcMAJRHBhynNBxybA/9Wd7SBYCn7pq391v+jS/2OGJ22+ms+M7yb7/N2vtjMuU0+c/wef+9U9x4Ze/ngvveiet9UnXHpdcB+qddYSXmu9DPcbY3hcApWDksaDITNio/8PIMgzOBmMkBduev5xjVzzI9ueu4PD1d1GlOU+9/e94+2/8J/Y89hqWdx6iaPVpDLs4kGOohXKgx4MN/96zga+ge4EGZ5glnJrvcOT4OAtLbfJcawDmZtbZs2OZbVtW6XYyoqi+UEQA8Eb3YdEasPvRa+gsTzFzaB9nLnoOFVcsnnuQXU9eyXlfvoUqLZzaNXiQAY62fbZjI4vUvlXVGb4FBCG4DOfWRea49WHfYbQJzuyif6+CLHbSxKOnJyZoL22npGCw04QVloL04CTps9M0n5mjEBmqjDQAKAuX7Q6hrEnXjVaYDKg2EO4qt0DdWbtuwyUOIYmpP9N/q4jEIs10kUbyOFKNkRe7yasLKMemkHe9j+KjO1i8+mGKb/w9s0AS0t+4Hvmz95I/0iEaZiSpLk6jHQKjGvMPP7fbLbZt3aYTCUWJt1GHPVUmFbEy1QGVNGYTkwsgiAKxfg5K1dewldAtHdVmAz0e+f55Tr7vi/T3nWTy4YtQcUV//wnfACnY/U+3Mt3axWq+SlEUKNBlgHNbgwASYwqQxq5fFiXDYkBuqigKBGmkIyK0V7/XJtjy6N5Xx69QawaxO0Ha+Y4Eisj1DQMIhAFUUkC5ZZ38LQfpf8sT5Nce1+DNPDpabTH7a28lXuzq/WGAiJZflhHqkyh1GRWvYaP/BopiD532l4ijpU0ryEZ3uD0jIsPTcEDZOnZ+RW/x4PiaHAitZ6SVChiV8DgLg1F+rO2Gtmg6Chx6APadvIpHL/wMn37t79EdTLNj4Tz2H7+G/SeuZvvSfrrDaWKVuPdZLbjAOgvuoj9ImZpYZHpiARvC56VetQkACM7Wh9rXTXJBuMGdFiFktG6CBBc+ewuv+vK3cvcb/gQVSWRcsrDtRRa2vsgDN/0lO45dyqWPv5Xzn7+ZidXtRFLXOrCDJkZaoIINDnpth9oBq86rdekstC1kRqFWIBwtK1XqeRMcOTbJI09uJ8siLr79m3jsW/6U/swZ95wqzbnstm9m59PXsbLjMMcvvZ+dz15He3XWLBnlnmsBlQMKaOcXgcW49VZ5O/JoZ0LVv966wsyRQBf2qGlX7NAo3LV2OaMEW166mPb6JFd/4jtY3PcCG1tO63z+r/8Ml3/qvWw5eNHZBjMYR/ul7vthYVZNDR8wzUpGLK80OXx8nBOnuvQGCVEkmZros/v8JXZtX2W8O6wx/BESfpZP/oxCcc4DNyCImHvpfFCfhUixcO4BiCRxFROXMZv8f8I2W2ZvxmpUUPGSvL/Xm4QYGXvcOLhEMsq9ZsSch5NwrMbAloZVUpIudFAKqlZOtmMFgGiYkhwfQ+aKzif3MywGVH1VC7OKbJ6RAMTpleldxepwMSxVjBurGsi1XRMG9jja4NHhZrxlT0oEq6TxGnH0NNVGh2J1D6J5GdkP/Q1qekPf8LnXUPztO+EDz9M4Pkez23UgAMO4LBPQ2n+9f9M0YW52jkaj6ezPtnlWenSJnqTUOQGMbb4oSpfUiNF1HMyR/StMNkth9q6d/3K8z7C5wMwf38L25UnmP3gbgz2na89qH97B7J3XEKcJszOzDAYDVlaWyTOdWTCOIpqNhk6mIxVra6sM+0OsEKCj7cyYKpOnH5/MzJmigyVmi4HZqbH0SQmBiGOiNPbaY7sHMBq0Zkl2+TzD9z5D9o4XqPZoLUBtSUjB5B++luZ9e3wlQ4VfH0Kg0wY/CuoESt3CUJ5HWW6l076LNH3WrFe3jEZAnKHVtpojFjAH++2rHF+bmSAYPxEQA7HJKQiv1rfIxHz3PNNLBPaZjbzNO+/8UQaNDR696LOsjp/m2X13E8uEsf4MOxYu4NyTVxtwcC6dwRRxFTMctnjp0E76gwaT4wtMG9NAuEUtQvW4fCT5zAgrdKp4Z+LA7nCsY4YbCwE+f6B5vumrkAmvvfO7Ob7nSQ6df3+tQVVUEsmYFy65g4Pn38euo1dy0dOvY3ZhLza9sXLjFM6GjaKw/fIRD7VxrTEpPw71SA/7abMs7RhVGfHsgTmeeWEOUFx07km2NxsM7/oGHnnn/yEddCnaPYpWn/vf+9+5Zf1D7H/w1uC9wrUzTPoSNNDtC3/WjrtphxqNSgiv8uc08bGbQfhXCA/+7JzZmhJ6X+r1PHF6F+OndzF1Yg+Xf+qbue8Dv4+KJE++/W/Z+9CNTJzZyeix2UfBtC9YJJ4t1sO/BsOYE6e7HDo6weJyk0oKuu2c8/edZu/OJWam+iSJ8Wi2vKU2ECMU2c1kXXs0tjTn0lLPHDmHuEipmjnLu4+SN4c0+m38ahuFv8rwmBH9hgq0SDUtjgGlwYh4AGAgnqO8yoFBoMbw/WuUy1DnyxpLH3NuwEExsUE51QcgXm0hTjfo9/oULyRU0uenj4J1Se1TCED1/ITgyMHPcJ0Gcx8iHido2P7aJ3sUHFBMD2ydJkUI4mgDeBp57d2ob/qcvm2jifjtD1KtXA8P30258C5SdZxYnAZyP1euXcKl4d2+bRuddse/346r7ZTCJQWqbIpl40xZVdIBgBptJwQBYV/8OgwXrVht0X54HyqSnHnfPZz4rk+h0goqwdhT++ldcphtn7iZeGXMgax2u00URSwuLlFWBc00RQD5YMhwMKDf7yMrDeyTKEb7hqnanIqQZhuWFKJSHeevvAIyjnQmqyiCOEYa7YJdo87bf8cGxa2Hqc5dQSy2af755Qy/63HkHp/gCwXNu85h/P9cr8MYlQhU93WjmZ62EwjxMYiuQakbWO+9lUZjF+3Gl4mijRF/DLuFtMlBur0U8uv/P/sM1I+RDe6YaMA88ZugpnWzm0GAMnGojkgK6GTjfPNtP8uwucGz+76smWZcsjp+htXxMzy778s0iw4TvTl2zl/EuS/dSPrldxIPEibHF5meWnSmBF84IxwbzyAMqjEIy5909wT03HfYMrYA4js7dUCY7YIDWsMJ3vrJH+cvv/vfsD552r2/SgqquOTNn/p3bD1zPjKqzDhEfkPbFlkQYp+NZ2COu1mGEUCuyOjOfV5+r1XwkrYHBJ4s6nEYZjGPPbmdQ0enaDVzLj7vJNOTPUBw8Z3v5vmb/plzHr2Fxb3Pc/r8x8m669z1Xf+RpGix97GbzwoUbf9DPxTXjto8jXBYIephgSNUOgqnxPxg318z9ViTSwhIDDFsDsbYduBSorLBhV/6Ol688YvMn/8MG3OneeLr/5rX/t9/jVA6B7pjWLU/dUBlYUA4wlLC2kaTg0fGOXJijF4/IY4q5mbW2Ld7gR3b1mk2ik2StxmC+iD6wcHPowkxcr8L4ip1144tbKGzMs36ttP0Z5bozSySDnbrla3q8zTqS0LgMFtb6/aM8ler2lX6olCItnZod78j1sp5qFtGb8vYasfqgI06Vagi37JG1dE21uh4m8GZDJVrTVskBC6NrvLs2Q6qsJTIpdqus2oPl9WmOXDaOjsAm6bobDDW9zUcQO+sZvZ/Q5L96ydhMtPr8/O76Tx+gCISDO+6mLx3Hrm8kDheo9U4RDM9SBKvYE0ZNox6enqaTqejQ87smBswZ/MqAA4IFIV2qtSlgZVrj9DZgxzttntL5xQI1kwgRdv+OD8QIVl902Oc/NFPoNoFSJj8zNVM3nsJ+fevMfOZ6w3f9bkSlFS0mk2yXGcBHPYHVEWBLCuENJ72KEcfBNYsIdziqq/HEVIT6SJGURxrAOCwlAV0osaEHdhYmqH5tzMIBMWlp1n5j59C7qoDgXh+nIv+8P2Mje9mfjhPWQnK0kdCWAneN0qByFHVfVTyGCp5I1l2JWW5g3bzi6TJUZyWSqlNwKIuNoW04Csfr+wqLLv3/ylVX/fuKjd4IShw1B/NoPz1qrax9P1jgxm+9fO/yP4T19RpKxCpmCtevJVv/9yHeesXf4LGF76N6tRuJsZXPBAwi7FmXzbfvQ9B2Gp/qJHvVvy2Gf8cMw51nSJkd2en4FtPXcgbP/vDJswQXSBGKI7sf4i//s4f49lLbyOqEpK85cEFWoaPHNMfbbSqj4/wDm1YNSBmidR5fW1M/Ekzb4YJb/Sa3PvgXg4dnWZirM+VlxxhemrD/T6+sJOL7nonZXPAG/7XLzJ36GIAhuMr3PnBX+P4pffrFMbu2XZDCWfzqr8/aKM9bzaHGFlsm+dR1eZEMdovuw7qW0XoU5aUI2TErieuJ6piGr0u13zsA8SFrnJ24KbPc/qCp0YADH6MN20I/10AVSU4tdDhnoe38fkv7eaZA1NIKblg/2luvek5XveaA+zfu0SrefYqYw57OGbo+7sZOIwAsIAYNgcdJo/vAgVFa8jynqOu//bKTVsbQ2RGnXZHGHP9XdakYIGAJexGqpcKWekCNpVxDNO56hWygrKSlOY7Rn3t89bbMDUFsqIohqzOHUcl2gyQHBmHTDuxRQJjSlNEwv4lWId2O/k1Gpl/YtPSFLVPYIwKbhhsZgTtAKpqy1+Ygjj2GjPWynjsK3Ne2b0RoV6zRPX1xzSZWW8w9gdX02SNbuMhpu47zWTnE7Qaz6BkSm9wFcvr72C190ayfC9KpUgpaTQaTExO6neLyLXcTp2wGgJTF6EsSvK8cFEXLgmTkTptWeFKVro6Y1BESgaOn9LOpSlCVBmNzsb1Bzj5C3+HHB+Cgu69F7DjV7+JfGKd6U9ejzgxrotTVZLBYMjy8jKLi4vkWUZqqiZKKYmUqSsQxaRRTBIlRHFkQhz1+rOScqWgRP+rgEooVBIRtxok7SZJq0ncaCCSxGkFhHGM1NMagm67RiIiIqIYhu94jqU/+xuKG47ruRomiPUmlBGzv/tGbmx9PbfeeisXX3wJ4+PjrgS0rkERExv/Bx0JoQtDxXGE4ARU/4CSj1BWM/SG7yErbgRajtfaRFq62qJ5jjHB60qJZ9nMZzleMRiwG9ryoDpvUe4/hAcE2qPUAwNH+81nJcyicb/rDYAQTK/v4Ns/8yvsmr+4RtNkVPHwRZ/iH2/8XZ7N+nBqD7NCMDO5gLCMxz7HvcduOs3q9b4MGmILYVswY/rk/imdStMWvKhJFZs4LMEvoVZEcNljX8dVD72LpGxy9YPvpt2bAmB16iSf+OZf4La3/A+y1gZu442ofBwqtcRN+fEPGYOmgMapBVPoxTUq7N9Zzgm9hBaW29x1315Oz3fZOrvKFRcfpdvNzHjYcYy4+M5vpGxkjC9t541/9MtMHzsPgP7kArd/z4c5dcFjTnKy9wjHrKkR4DADn38PpqCItcEHwNKtxxAU+WdsUno7bKH8r9aEZUdAwdzBCxFKm312P/kqznnwJs04230eefdHKBrDgCHj58uBM+VfqqAoI44cH+OOe3dyxz07OXJ8jG67zzWXH+YttzzDdVccZW6mTxJ7qdMSs7Me7jc7duE6sZuzDnHDmmeiiph76TzzLMXCuS+CTQfrRs4hD8c1LGjyTVNuHYZz4OIJzHnvVGhaYm3SlVdHWyBg/xVlydraOqfPzHPi+EnOnJnXxWMGQ7I8R5YVqqqQZUG/t8bG6jL93d723Hhp0jiJ2T2sAuBHsNbsPjXrQNjxMvu8tsfqO91lsVDBGrBGWmMKs9rJECb5ZWzaIPxztASuGULSjSj+7TMwVoKC1ifPJX1kG6AJfLKY0kyPMNH5HDMTH2W8eydxvEyW72Zl440srb2djcHFzMycQyxMamH7PivkCOXooy5dXJLlGUWR68JCUiMap4aWlfEj0P9shkYVnK/seVeaWBpzQ0n/oqOc+LW/otqipefW07vY9e/fT7I0TtXOmPy76xkOMlZX1zhz5gyLCwsM+n0aaYOx8XG63XFmpmbptruA0HUBbHIj3FTrwkgm/LFUOlNhKSWFrMhlRYVAxTGVEKY0sMlmqGwSJbQmw2WjNKWWjUOlWwPtgvUfuYfl3/0E1e5VPTcLHSZ+9VbiU+N0P3MJ3Y9ezRe+cAd//w+f4NnnXmBjo+ccMr0DYDAvbi2Y+VIDVHUnqvwUshowGN5Eb/gupJxz2gq7dO3WjywLtKzgFRyv2EwgpTK5mnEbrkaT3Ef/f5RPiFD7TEg4AqksIN4K2LKyh+/4zK/wx9/wE8xPHaZRtCmSDBlVvLT7IY78wAc495r38MZ7vxWxvAuUR7320M9yngBs+tEeauRrIOV5tZfCug2rkdupX73pXQKIq5TXf+EHObXrWSZXdvK+j/wWn37nf+L0jucoGkPued3/5fSO53jbP/8ks/P7PBZxqXiFHxyP70f6bFpmGhCJaFMYoSNElnGFP6iIE6fHeODR7QwGMXt2LLB/7zyJSXbiIYduy/jSDnY/+Rrydo+Z4+dy6x/9Mp//wQ+xuv0IvZnT3Pa9v8ybf//X2HLw0mDIbSdGmDUepDnbqbvcg7fNCr8Q3Nlh8kDOrc/a0ISzJAhj3YWM9ZgLQVymXP2J7+DE5Q8znFjl5GWPcujVd3LBl95aa4PTVNjnSciKiGMnxnjh0CTLqw0iodgyu8b5++bZNrdqajb4/mrL00i73Fh4/u52i7VHb5pHO8WiNo7hmt1y8FwXPrm4/yVkXBFViR+gYHl42FFf957BB4dyu9+3XRlmU1VU0meq81KnvVaRZRkra2usrKxQFiVxHNNut+lt9FhZXdNZ16KIbrtFhCTP+siqRMSC4rw13TgJ6UvjCLR3dWS2rbKD6FUsbrCc13U4j2p0n4/u+mAlujnyaM5rqJV5lhgZLOF2r5ZfImPK0NJefvMp8jcbrcByk87/vBJKr/62cpYSikit0EweIBEPU5S7yMsrKMp99LMbef5gxZaZBXZsnafbHriehP4Wsqp05cJcpy325l5zrcuDre+z6ndrbgsZZFQLzzT9VIpyzxInf+OjFOcsApAemWXHz7yf5MgMVVSSPLad4pkWG4MlyrIkiiKSJKHb7ZpiSXru8jzXKXhdAz1cs5oWMLn+LXM3l4rIcM44gTgxNRN0oiDHi8EJslGk6WctgiLSc1ZtWWf533+W/rufdomSGs9sY+pn3wEo+vIRpv7DmxGDBhLFcJDrXBbS7EjzMr+vPSBwVMAJGQohXgK1BOoW8mI/svpmOu07SJPn0PoO/xwllPE6E3Xa+BUOoTalqzv78Vu/9ZhtbvBS/X+nhjbpXz2b8vbFGq1UAWww+yOyjbYbE7A6tkM7H+NP3vFTzK7u5ryDN3LXFX9Lf+qkW6njq9u44csf4KoH30N7OHF2xm/DLhx+shJP0J/AvuTSaiKCVJCj91gdwSgACfwg7CttlwQc3fsIX37j/+ab/+I/M+ys8fm3/VeevvJzyFhLANNLu3nrJ3+cC555HZGMqYdxuVe7h/oSnf4np5AJ2l2P9R99mPb+PXh4ikef3EpZwbl7z7Bn54ou6oRC+1dIg1j1ZpFUDMeWEQpaG5Mo4My5T/H5H/wQ63M6XGjq5D7e/Hu/zuyxC7DcpTaKls6E/QzsUDpiQ+IVWRaYmO2vcGvHP9iet6eVnw8s8bcTZgh3TcOg3NgpJA9+85/w6Ls/Aiimjp/DO379t+iszNgJ94cUDPOYI8fHeOHgJGvrKUlSsWPrKufvP8PcdJ849vnb6w9Qruu6WQqb+a2GdWqbCWzaUQ8YNzsC1sP2YG37ST7xqz9LPtajuzDLu372N2iuTThA5LlAALgCMBBGDlitmxOK8RKP9U7Psoz5+Xn6gyHtVovhcEi3O0ar1dKMoigYZhlra2v0+n2KqqTVbNFqtZFS6hzyRYHJWUYsFO1mQmzU/lVacujvPs7w2jOQRex+97toPLAl8KYOGXd9AdbwgRs1Qd3xyjuf2r1ttUGhTVbZPeeiSXyCmHDd67HT8xWbpECaaZphb0lW/vTTZG/WCbDa//dSpn76jYhKBFskkFaDxDJa0xFTyVm64zeztrGPLO+QxBUz08vs2HKabncdqJw2QErJcJgxHA4pq8pTMOVHJBw0G91hi4Q5+iM8IAqZkJzrcep3/pL+TQcAiBfG2PlvP0Dr7v2UZUleDinSIaLXcO+JY11RsNFs6IyBUeRqFKiqor+xQW6qLmovepu0ywIxQaVsCWxFZAoLIdBhj5E1I0VOLa+zTppshugERDY7Y6iWzy8/xfyvfIzhNUf18FSCzucvZsuH30njxAxLP/JFGkfmGP/Hq9x+cTTGjKfVjilb3VJpVb9+b0SaJLTbunx0UeicGLovCUV1OVlxJSAY6zzB9PRjoPouW6FCIVXp9um99/8yX+14xWDgv/yXx+sn3F124n0nLRG2BEUXXRAmTaRwiLtGDoV1dvOEJpQBn9t3D39z66/yuv/9P8lP7uL59/4aB6/7BGU6NB2J2Hn0cm6+7QfYf+A1JLLhNq1rsPKLNmCLwSSZjYSroVZD7vX+W4XfZh1MCJLcvSGfE4qHr/97dp64lB3HL6VIhjx440f50hv+iGFbq88aeYcbv/Rd3HjXd9LIuv7BIbNy7/O9obZ37e4M2zVyu16pyCri2QOzPPnsHJGouPC8U2ydWTMqJk3cvF1ceAbs5kjWSMaJCx/iiz/w7+lN69DD2SMX8ubf/zWmTp0TEEU72nY1BFqOUIVmvodvA+WzvRmg4/iXneO692fYXRxYcANjHQJHmbQmsv2pZT75oR9jZddhQHDNP3yA6/7+X4B0QepkWcThY+O8cHCS1fWURlKye+cyF+ybZ2pygC2ZbZlPPaoifHc4kmf7XD9sOKmwekEHEv2zaz4uKMrmgH/68M+zdM4R4jzl6z78i8w9f4G5IlhbIbhyU6HXgTTNsipkrZ6FytSwFwLyvGBlZYXBYMjK6gogSOLEVIobEkWRq2kvRMTM7AyDLGNtfY1IRLTbHbJhRhLHFEXucq5HKNI4Io3RTGJ2yMHP/g3lrh7RQou9b30P0ZExUwrX9soS3bMO46bxrXk+SE0R3JgKM/LKBC8baTjU0qiR+fSv1owltgWBlF75UloTgiB762GW//jT0KyIFlvMfdM30XhmDiWsicWq6r12xaYAFkKrzRuNJueffwFKjrGwvI1TZ3az0R8nihQT42ts33KCse4iVZWR5zmDwdAVYxLCStUm1bAFNUpitaM2IZFd0KGpTxhBCiFQ40Pmf+Mf2PiGx/XQrTeZ+8n30PrEJSbdbmXab83KhjK4fAmaNyRJbIoooUMXK0mvt8HG+jpVqcP14thkAFSKSql6Vknhn2+FTqvhtEmSPFHQn6M4dpkVhRCIBIp3HmDtVz9PtXNVXzdI6Pzh9Yz/zs2I9SaiW9H/lscZ++g1RGXq1pMuRy280Clwc6mC8dPvjGk2UmZnZ2i32y6qo9VuMTMzw47du6nULu68U7C8Imi3TjI7fQ9xdNrxz6Iq9SqUinvu//cvt+j96v9/AgOOyYzIHyrYAMKRdUNrw43mUbJ9eQRuMEIwYJ9QKfjCzH28sOshbvrrD7Nly0mOXng3X7r1Dzix5wnnqJYULS558s289o7vZW5hP6MOT3Ue6KVlL4ValjPqbRwKS/VNbu8IGZt/bp3E6H0kKNIhy3NH2XrqAn2fkBw8734+/Q3/kYWtL+nhlREXPHsLb/vkTzC9uCd4F/gsekH7A4kxDK3ZBAaUR6gCKErBE89s5fkXp2k2Si698ATTE32nAnQ3uSMMuRplZPZqxdHL7uG27/tFBhM6acaWly7jLX/w64zP7zDDXRtV7yQYzIlTkSn/XP9phNiOpL21IEbPgXLPDei1h1FubZyNKevPL9zyGb70ff8JGVe01qZ4x2/8JjOHz6MoYg4f7/L8S1OsrjVI05K9u5Y4f98ZJscHhPb/UFqqb72AAYfqfffZt8Nkl6iNN2Zd6euNc11wSQjk9FqR3PHD/4MXb/4SADf+r+/l4s+92a1Xm1NEY3zh1oufE8vcvK28kpVTy9oc/6dOn2Y4HBCJiJWVVRqNJu1Ol42NdYaDIUmaUJYVcRxTyYq00aSsKvr9HkoppqdmWF1dQ8rSOFgJyiIniQVJFOnCN0JQXrLMic9+AjVWkj4/xZ63vQfWEyqpXBstAPRDFqyHYETre5zafY6WGWYnVRWYPwMJGftesAJDFMWaWUURLt+5YUqVAmXrXnQKlv/8k+S3HAdg7H9exdQvvg5VQSVLV2kxjKQQRrq1qnWBYMvcFmZmZkypXijKhIXlWU6e2cva+jQgGOuuMjt9mDg6SlH0zRrRz7VhhnZN2EJOKgAHmPXhhsXSfXuuVbH8c59h7V+Y0tKDhLGffxPtP7kWKozZJ3YmaCXtvrbOnXrO0zQmTTWTtKZoKXVkwerqKhsbPX1doiMCFIrCpJ5GgBLWIdTkt7Gf7XtV4OOhQsoibMeQrZzhD99P9mMPwph28hVnurR+/mYaf30JFAYQjuWQKOK1dgCOvLo+EtbJUYxoDHCmCZ3eWWsoFFLXWVA6G2O32+Gc/fsoioqDB8+wvHYlIr6YJOkz1v4SafKMB77mmQ8/9mG+2vE1gIHHdEfN/+qSfB0Rh9xH2AENTo8yZvtT6FNQ0wyoiKPHt3DyzAQnb/xrzu/PsW1xLwjBsLXG49d9jPtu/jPWJk853jK2voVX3f1tXPPge2n3p92A24WsD+mut4TSSfHhcgiar2yHwRBJ9zEAQwHidL8LR2ScD0OkjHOc3VywMn2cz77jt3jukttRkUbMs/P7eNs//xTnHXgNkYq85sUxSNs+5f5PfTk73uj6YfIaFUXMw49v4+DRSbrtIZdddNJVHBSmrzpNsFU/2c0eTqVn0AbT629Ccujq27n9g79CNqZR9I7nruXWP/wVxpa34lPYBp7hQZuVW1h+pYTEVv+LHDDRGyBU7VogpOoWCMsQgz56SCfDCx3RR0DRGPK5H/15jl/xIAD7776Vc3/hV3numa0srzZI4oq9u5a4cP8ZJieGRs0/Mhchg1b1cQt+CbogAtA3Ms410GCvGQEDtXVJsFkFT33dJ7nvu/8EgAu/+EZu+sPv14DCLdyAeQZg2cUyK7undKa6UmmpdXVtnTzPqSrJyZMn9TorC5SCZrNFURRkmZb25+a20Ov3tESKYDAcYtXvw2FGt9Mxmedyw+hi4khQ5BlpHJMaW+/gTUeZ/6vPQqJofWEX27/tbYgycs6zbkTDDWt8BGpzVFvPwTTYteQ2n71cBeeCpDQBOBeRrhSo7dKR0wqF/yqzzwQwfOeLLP/h5yCVRGfazL7zPUQHJk2mPRmsJr9GYuOFHkUaEMRCsHPXLl17ILImPQxoi1lemeTkmXNYWZtDqohGush45wXarRNAEWgdpJsP50yHcOGZuh1mD1owYIW6RLLxI19m7cdvh0YFRUT7t15D+zdvIq50W0dpvu6OcEzRgoEoFjRSU//AaCuVFFSVjnxYW1ujqjSojEwIaZHn5KYqpaVM2ttepyZuNJrEsU3hHuwsIdx8a2AcoXZssPzzn6H/zqe8f8DT25n+2W8gvX+nB8cBO7Uqe70ng7UUCL2MrDXLV4WAJI6M1sTmeBAu7XNZlnotAYqUKLkGEd9IFCWkyUO0GvcgogyAJEl45PGvDga+hqqFprHB/6VV3br+eIRo1XFWtebV896xxtGv0K/AIU/cIJ48Ncvp09OkScb1h66nnFx097eGE9xw93dywbNv4J7X/R+euupT5I0+GxPz3P7W/84zV3yOW277fs5/4WbioulUtOEkWCSras0xLXCMwjXWM3ZzypJpERBlRzxGCYtddAqioLyjvWpqZTfv/ptf4b7X/gV3v/6PyZo9Frcc4u++9ae4+Y5/yavv+TbSoh025+Uni2CgR3mNgOEg4cFHd3Ds5BiTE30uu/Ak7XZRB2qB+p3wMabzoUZk1HkTJdj3yOu5Oc350nf/Onl7g5MXPcwd3/Nh3vhHH6a9MucaM3JnTYjFXWFhjrePW+jlWucmOFxTbO6DQ28h0PB3hGYji+iSrMU1H/tOzpz/NEWnz6Fr7+bk1HM0Nnayb/ciF557mqmJPqM1OTb1q9aPs7YuuGH0Q+iIW+NL/jqzBhX4omEaiXrVKDB7cB9RmSDTksV9hykbBUnW9IDLrVU9TpqhhBKvfaw0xVsUy8srHD9xgmGWUxaFl4SVdkLu9weG8WuV7ul5XVRZ17qHNEmolCRtNGg0moCi3+9rBpckEEd0x7qsLZU0m00Htotz17XkCSQvjSNz0A6EdpxMm0W4jsLxNQzJ/OzU3OERjHtASExUFFjEqUSEiDBhYinCpsQNZtJHC5nHRUa4Gi/p/eBjrkxx6y8uQhwYM6WN9XqJDG3Rtu7IgcLIEFalFCKOaTdbXvUuhKlgJxGiYHLyDGNjZ1hZneDE6XNYW9/OcHgDzcYSnfYzpPERoAwqAwYrbBOIrcJfkUoRxYLs2x5n/d/eqYFAJWj96dV0f+cmItlwmgD7fO8VryvyuX1rHf6MtklFiljEbotHQpCmKROTk6ZKo9FkCEGj2aRlAFRlylKH9DLPc+MTYEGJN1UIoX0FoliQXXGShV/9ONlVx0x3BZ3PXsLsL30d8bEpRGLMPnHs2mR9ZTQw92BA+y7o633+DOVCDZMkodVqsm3rLJdeehEnjh9jfX2Nsizp9TVQlkqSZwVVFYBJeYCi6pOVN1FUr0aUOxnr3EEcLZ6NSJz1eOXRBFFFLP3lfjnUCW+o4vHXeX9+R8gNYAgRmJl+j9IknDkzxYmTM0RxztbZkzRiSWN9qnaPUoKZxb183cd/nssefzt33vqHHD3nEVRUcWrnM/zD+3+GC595PTfd/n1sOXXh2Te58gQidICsSQGGQISbw5rUHTIID3ddXebdxCMMIbFMtZF3uPnOf8n2kxfxma//TZbmDpO1N7jtLf+Dkzuf5a2f/lEmV3YEYCocOxE+8qxpqRXQ76fc+9BOTs93mJ3e4JILTtFs+Pj2sy4fV6cznHMrxdtT4UyCIuK8B99C2Rxy97f/JkWzz7HL7uPO7/413vB/foHW+lTQAb9KPCpTbjZqc+RVMf6ce2cABILfLXixaNOFKjoAF4AA46nmp18/vfHAdXQ/9i5Wvu2vUK0h6kP/ldfKKXY0hUkXatqo/FqvA1C3amsjXff4DQGJOutv9Wfg1rB7TxAXrQwQ8L3UQYZjp7bTXB9jMLPCxpYzDCZXGDuz1a9+iyusZGg+h7KpzSippHYC7Pf79PsDOp0OhZGIEZBlCpBIJWh3GpRlqX0G4hgpJSmY6nQJ3bEurVaLtbU18rx0tuMkTZFSl+jtdLtadWqIfXHuqtsL8QuTVJWeO6cGHkXOZpxsn2xyLr+E7ToQtZmyZj679GxeAH2NVusmJk7cqYiDOVMjc2aBaWwe23vbi+TX6BDJ6FiX9p9coiudusRJXs0du7z4GMZjc+5rUOWk9KhOc7wEq+h2zjA3/RJpPMFG/wqG2R6G+Y0k0Xm0Gk/SSI8HaXANqKjtCTcyFKWunFhVJfJdL5H94uego5MKNf7xQroffgNimDqQ7yIihM09E9rTvYbB5oTwbfeigYgiBNJVKtRzY32IBIkwA6Ksj4N/lk1n7TSLZoysRF+KgsHbnmHtVz6P3GESCfUT2r9/PWP/7Wby9QZCDJ15pqxKrcUQMRYUBS2tmQrAM/LQZKErTArGx8doNFLSZoLogywkSRKjlCLLSz92GOAaxbTaq3TVl1hevZws30dVvYuxzp000kO8kuMVg4EHLv1HbnjyPX5Z1/QeAQNVBEs/lMJwe9EiXLvn9GK1m89ft7A0wbETWxCiYuvcaZrNXKuW3aDWEWokE8558TW879jlPHn1P3Hv6/6ElenjlGnG01d8lmN7H+fb/uQPmDt9nmlbwDqC0sq2D1YqdAvFqswN4XUsx/EuVeu771CdBYSf9UKMDOM2vwpBpGIueP4WZhfP4TPv+E0OXHQXMq54+orPMuis8q0f+W0aeae2uMJRF4YhOG+HYL7W1hvc+9BOFpfabNuyykXnnSZNjINUIO24fvlJ9kAu4LLSddMv/LAlQsZc9OVvoEqG3Pv+/0bZHHL46i/xyDf8H2786L81Mf31NaJ3vQxgFI54hm8xtMS03YY0Kf8MVHB1MD/q7HNSI3COACkGg4TnXprkxcPjZAd/mPh1d1DtPkl+9ROsf91n2XnbW2r315YnAcANwcYoKKwdvlUjmmnCWaldbu9wKusaBKrfqaC5NsbEqe0MZlbIu31Wd55g/MyW4JnKrVHto6bnw5vvhFEnK3r9HvMLCyyZCnrrGxWTk1NkWU6apsb2afeKYPeuXaxtbLC2tkaSxGxsbJDnOZ1uhzzPmZ2bI04SyrJkcWGRifFxnX+gKKiqgt5wyNTEpPYqz4fk+1d0myuBeGmcUiovNeNV0GGhcMcYwsF169iOlAo+EeBPB4PB2OuT1Ki+TWQAUkvio5EVTm1tnA6t/V92Mjb+5ROQ6E3V/tNLiI9O6HYHoW4hU7G0yoIZu3ybzSb1CJtgDbjLbHbHjEZ6gsmxEzTTLfQGV1KU+9gYvJG0OEmn8SRpckr7ZSnl1PchsKkq5UtD798g/893wJTOmph8eS/dn3obYrXlbOXCVoeyxecYmQYDAESwURW4yAANEJUOEjNMFKGZpqtI656p2xoJC5L1hoqjGMcCgzmyWpTB615k9bc/iRrX6nZxukv7515P+rcXMSwqlOwHa0b/bTRSmo0mRVFSlrqUuJTehBLHusxxHAXmVBR5nlFWgqLI6fUUz5c5x44fczkcFMqUpU5YX1vXmo5KkhiNgohSiqKk3z+OKk8gxFWU6jrWem9jrPMYr+R4xWDg/CM3jDC6OpNz6GfkEh+uhyHmdmMGtu0ghtU+aWWly5GjW1FKsmXuNM3mQD8/NP4KQgHIPbc57HL9/e/n/Bdex703/wlPXPOPZM0Ndhy/jOkl44h3FiZqpX5LSl05U6yTByNjgFvQm+2M9e+eoFv537+zTuh9/wSC2YW9vPev/wNfvuVPuO+mjyAjyZWPfD2NvO3bEvAGq5ayvMyCGAuellda3PPATlZWm+zctswF+8/oHAJWxWjboGpr3PdoJPyvxkhryb8N0LHqN5lwyR3fRNEc8uB7/oDJU+dw4V3fEHjjKz+Oyrw1XDuuIT5c1S4AFf6uglUYrImaNCMI2qdG0EA4GYqyjDh8fIynnp9mfSNhvDvkiglJ7wtv5/Fv+Sj77nsNO5++YvO62PQsA0YcLgtCPZXdE8aj2bIb4cGiG9+Qq1MfH29S8YxrJIZU/ygVQkmSMmL705egIsnMoXNoL08F8+8ZqE1Lq0vJBu01//qDAYeOHKHfGyCBtNEgbaSsrK5oVX8laLZbJHFKs9ViOMw4fuIEY+NjTE1Nsra2CsDYWFd7V5cl86dPU5TaFDA1OcHuXbt54cAByqIgbSTkec7q+hrNRgNiwcSXL6CXNSlnNyifbaOKgqZIoSsRhUCVoaEpAGxnBbD+OjceWMdmv661L4C2P9sscAijKbCPlF7QUXqJBy1QuGGUCoYx3T+4gt4PSeRETucvLiG2zm6Rpkrhmqk76/kwZhtJoL+Gu9jsSwvylDKRHNKFGAoO0W0fpSh3McyuJy/2UJTbSZPDNJLHiKIF49iWuLVQGY94BERxTHRmEvU/r2P4obuIDk3T/TdfR3Sm64CXHkOpywmbganti0igc8YYW7n0/lZREpmcNwYsiIgIiYogIak5OWr65B7sgaFLvxzVaK8yNMc6Gzce20Prvn0M3vQcjad2MPFTb6f88iyqUigVhHOabWjNHGmjAQjyXIcCSpNbAxRxUtFoNgJfBaGzPlYFMbE7t7q2zvLKGkpZ7UXl4GfaSEiSVIMjBGVRUZY5ValcQ5L4URArlPJmNnrX80qOryHPwOM1Vl8nmaourFgJbkQj4Ihz/WbTELOmI8H6eocDL+6gKARzs6cZ6+isfB74Ksddw9eGLbNAWQnJsb2Pcv+NH+HmO76fbScuwYd0gXfOsMxeBe0Jwt7sbBNGDZiXuG/1RefvwVNqRtXGHjB5SW4zUJFRxXMX386ZbS9y8x0fJJYpljh4f4zQVYbgs37e4nKLe+7fydpGg707lzj3nHniyOdf8HbycGLCZvg+OKFbWHgja30BjeIjPAFUSiHjgude+8/seOFqpk/tMy+wtcXxY6ZsXwIzgRBgQth8s0YUwNaB0FxbJ/QhJ1XulBp5hp2f+aUmTzwzzan5NmlScd6+eS489xTtdk7e7rO24zizh85FlKm7ZxRkhk5R/qhx9BFzQNAS93HzKq8f9jnWcdASfs/KFve/xOSJnaSZjuvHEKiqmeuhLdMAQei/LgzPDKFtp8tKZ8LaFpZWOH7iFFmWUVQVs3NzLC0t6eIvUtFsNsiynCwbgknwIqvKpV61Y9BsNqgqDQCyrDCSdMXExATtTpeTJ05oCRBFWWo7dVmUAMzMztIf9ijEkLInqfKCRiMh+57naX96L9HJTgC8LeAXToNj8w15EIXttNuXdndEcawlMhHruHDh51gDBquNwDnq2j5KVZnPdu1ZTGUZtERN5Mg9PdJn5/zuFRjmabUKwr3TwRmjOhYItm/fwcT4hNHI6A5KfDVCm/Wx1++zuLhElmsfD/1QRZ4XFKWgrPYhuRHYA5REPEMaP0armZMksa5jUJY1UicQiBSKdxwgOjRJ8sRWfc6k98XsE2tbJ+iPXWNRbFPqCuc4GUcxnW6bNE1J04QkTpyjozL0Ky9yirLE0WlbtMjtP+nqKNgET7VJD8CaAsq9y6z9i3sY/6MbiY6OGV+Y0mRilJ6fmf50x7p0Oh2U1MmRhllGXhSgtCmj0+nQbndqNE1JiVSVZu4WqBhAqduu/yVJTKvZJEljiqLU2Tql1BEzplitdSK1/a2qSaTax+Gjbzsb4agdrzya4LeesEvaDZqwi3qEePlY0ZCECS+lKL9w7G/2jv6gyYEDOxgOE2Zm5pkYWzUbVgWZ+OqP9FtVeEoOTh2mABmXxDLWZgaLRyxhCJhVCHc8Q601tSagudUTghz3EFX74/lk5ICDCtegZUyjErFrsLFDm0yL9XoxoyaKACQIwcJim3se2Ml6L2Hf7kX2710kjgNKFYAB3wdLFW2H60zUX2tsx8KWDjXjZhG/baaq3xsFjNO21UlUluiNjJ2vEWEBmS2QYtpfSwY/urTV5q81MKDHeZjFPHtgihcOTlCWsGPrGldcfILpqZ6ZC/t++xxHjt17zw4CRl8eMv+zAJX/p8Mzcw8GFI+/8xM0eh0u/sKbHAdy3sw6EUjtGW4pKB+nbf8vpURVEgwYmF9a5uDhw4yNjbO6vkFRljSaTaRUFIW2b5alZu5xHJM2msRxzNraGkop2u02SZK4nPNpmjI/P6+lH6VVocPhEISg3WozOTnFqVMnEQiyTKfITtMGjUZKHCdk2ZAiz+GcDfqfuI3pf3kr4rFJhFCkaQJK1Rz6wAP4OjUUmnEIEC5nvPUHsIlplDGpBWNkqtJpJualUbsn6rNrnM2Up22jpgvLOJTfHO73TaF8xpSwbet2JsbHnUYB8w4b9qml0ZLVtTUWF5coioK8yJmc0GaJ1bVV+gMdVSRpoLgUeC2wBeiRRE/QSJ4Fhs4J0CZnC7GUZw0BoxXCgZyaAORojgU2AllZJzx9bmZmmlarYdZLQ/dLSrf/i7JgMBjURk4GPMrDKfuOyM9djS95VKCiCqVryFEUJcPBgKqyuT38fKQNnS0xSfQa0zW19FgLtJNsEsduXSlbhVP57K4206FtsjD1CtI0ZnysSzYcUFQFVak1wBJlTEg2XNWACCndfo2iiJcO/wxf7fgaqhbW2Z/3hLVs3IpGdsC99OxQkMIlKkHYe/wEZFnCwYPbGAxTpiYXmBhbxS0XAZuqL40CASznCVCm2eSiSnxrg0VXAyjhsy3z8T02t4mRdwZAyI6FYzBWDWbfsxlg1N+piIKmeT4t3Im6OxJ+1QSdsIzSOhCeWWhz7wM76fUTzj1ngX27F4n8HqgTITtrQhDqND2RNH2oqZ+NRBr02+lUQuJXa6sdX1H/LQAhjggGt9W0UwKUivzvm3iolwbq330LrJnAMoLjJ7s89swMK2sNxrtDrr/yJHt2LmlTirLtDSRKNfpcPwcvy+AdmlTu+voguQ1SO+/sme59wbzXzqngJ/2haA559i2fZecTlzF2eltI6yAENljCbJ8RgQnZtPPugKvSd3ZaDaYmxpDocKixsSmqSrG4tES706EqdVrhoiioyoo4kYyNjZNlGXme0WholefY+Bhrq6ssLi6hFKRpSrPZpN/vozCFb5RifV07c1VlSSQElVQURY5UkjStSNIUIsXgB16iOm+dcmpIwqSWuoxGITWx+HbtBj0PSIggSVIPAGwBGGHXdTC/Dq2igbGxbUtpCyuFwNCAA2EZf+QKI43g5UC7avaEuyYEBpZEGOaGd+y0BZtV+BwbNopyba1Mgprx8XE91koyHA6NBTcDHgGeR3EtcAOlfA1VfgGxeJAoOoig1NeaZoWMTQ+NcH2wGt1wfbo9FdIfP7oALneFkqmnXSIiinCV+2xYXi2/hMLUS6jMGpKBZsU4YxonQJ3mWHnfEqVAmlUhBEma0KRFVVZYQK1BbkKr3SSKrS+FBgq2eJDlHbYGhzJttXUQHCdT6MgScOmpRRTpSqfrPc1DlQC09B8L24fI1frQi1CYCJXNKfpf7njFYECNfPOLFc80AtxliYw7zHXWIcQzIP1zUcYcOryNjV6TibEVpiaXqYngCu/Utkna8pMlUDUC7XiMGLnc/SgcM3BM1KlrR64Twf1qtG912u2dE4VPeW5/cQN0FgRiB2VEYaMCIBBm1huFZP4HTeDnFzrcc/9O+oOY8/ad4Zzdy46Y6Vdt7qcnLIG0JFT9DSOMt878AiIQ8DY9tuDH3F+roPabvakWDTHCW5VdT9j+eM9g62pYHx1RH6+ggb1+yhPPTXHo6DhCSC489zSXXnCabrvAQgDdxsi1xUssI9PlPgfE361Bh2rw5qqA8dfW1qZBRhkpyGUbtFJpCCaUcjHr9rRMSja2zPPYuz/Gjf/re4jLmJc7nGks6JdwOm8bPSAp85J+v0d/MCBSkqwoQShWlldI0gadTgcRCUp06JQduzzPWViYZ3Z2lizT3ti93gYbGzo/QZJoR6miyAHF9Mw0q2trbGxssLqywvj4BFEcUxalYdB6zcYmMqEohzQuy8k+8AIkkny2T0yEElCUmvlHkc5XgPVMV2DjJKI4NiBAmwFsqmArhUs7n25avE1bGklQgwCbYa7EOo+Fs+oc6cz8O9OBsOvFM3Aboi2Mc5xziHRJc0BEIFsFYphoST3SVfX0DToaQQmBTljpAYHtSKfT0cxMSRppSpqk2gSgBBIJbAB3Ak+huAnFFZTqLYjqMEn0AIJ5rKZOYR3nREBjRvaDuc7mlAlp7OZwRn2/MvtemWJXcaSZXaS7pc0iCkpThjnPc7I810zYabnUSHs0Y44ineGw3WrRTJsuVNCDLD0nadqgkdYfE4dlj+0zDcWuVIUspZlfw6eMJsMyb897NOC06ZL9k3ASvxAxUez3d1VJlCyd5siV6jbAS46M5csdr1wzENCn2lAGANUMWx01m4UQBRfVwg6FQFaCI0e2srLaodNeZ2Z60ZVddLXCHTOps1z31lGAUNflU2fVpp2GwRk/ekNbDRAIGLw7DJNyKnrDwc5Gv4Nlz6amuT540KEfpfwzIuGqwXlGWW+MnWxrE/O5HfQxP9/lngd20B/GnL//NHt2Lbvc7ps3KG6MPVRze6GuQrMbOWDKIRFwYCAEUK4Po0VMwt9E8Jt15vQXOr+E4Ixj/gKUsuYXCwQsIDPSbTD/CkXR6kOWcuzwFI8/M81GL2Fmus9Vlxxn29w6Uey6gq0RYKUbv749qHIEbBOAUe4ZojYeZ/MOCW4MT9q16WJZg/coNJM2nx2zcL8rZFKAgJduuptz7n8Vex++2o1DDSTZ/hrqI/AV65AVVakTBm2srzPoD7TtPxaMdVqMxSkLK2tUpSIvCpJGiqyUY9JVVRFFMXleEMcRCwsLpA2drjWOE2P/13HjAGUJ7bZOOjQ7O8P4+DhHjhwFNJO1UUhRJGg0WyYFsiIre/S/82HkNq0uzresk0rpQbCV6AzosQJrFMc00oarFaDt3BZI+qEWCF8XVmn3C2uLtw5jNnKgKHMdciZiUnw4oJVIQ9OZZcx+/kKHZoykd7a1IogiGF5/kvy8JTp/cam2mwvhyvlWUtum9X6wqENrSHSaeG3Ptk5xSkGSprqcryIYL4Ggj+LzKPUcpbyZstpHIXcRiyeJxSNEYmC0AhJbpVTYTeronZeq/WL2YMudsZoQoVzyJGV7YbWOhvHp6yOklCwtLVKaCoObTL3u8Oel0pqnsioYZkOSKKHVbNJqtWikKcJEw7geGABq/TSU0poqDUp1WKetemjpsp5Dm7bapEqWlab1RusUx2mNPwhski9PizHrWFf/9GtZGD4Y+rq9QhwAfA1gICRbyn2yJDdgaNgWOyqKEpsJux5PgVQRx47PsLg0TrPZZ3bmjCmMYw+rdg5VmXXGHnbahqOosJHgGKYjCBY5GTRWW5MjPfeoxxLLQFK0C11Z5qccw6B21dlHdfR7XbINObC9xD7bb5ggUNOdP7PQcUDggv1n2L1zWY9rTdT2zGnUZODtyeb8SDMcyHWN8G0PAQ4YAhYsaK/u1lfZzW6BpH2o7ptXS/t2BA6Lemc4ooAaMSUFLQlXqFKw0FnkwVs+x9ov/xvSXHDZRSe5+Lx5mo3KXW77EyqFQwDiyJCov8GG0blRCMGXW2sB9DJj4I4a6NXja9es2/y1ja5MgqHIMHELJvRzZKId7apmziPf8ndsPXA+zdWuH5cA6QlwmgApK6qipCpysuGAQb9HZrIExpEuIauToGQU1UDXDEgTirIiz3KarRZjY11WVlaIIkG73SYvcsMwQVaSLM8ZG+syHGaOQXY6HYbDoSaYpWIwGNJoNl0cdqvVYmN9g0ajQZ7n9Hs9nWSm1SK64Azltx1y20TtHJCkKXmeoaSuaQBactX2WB3uFQW54x3Bt3NhmXVwXkmrCdBAwIImax7Icw0EhIiIk9g4d5kkQDVGOLqXjcTvyIdtR7gihAeiiaL3dQdY+vd3MvkTb0CZdzueH9A2K0DY+bb5NCKTmU9WGmTlZYEVvly1WkzUhJUoOIXiE5TlxQzzG5DyepQ4n0bzUdL4EHnRN+MSLFNhEvu4Huu94U0kRj9jNlIcRa5taZLSaDRcp0KaHwILIQR5mb8sBPhqh0JRyIJiUNAf9mk327Tbbf1u4Vtun1+WJVmWoaSk0+logOjMFpHOO5AYBl5VVMbvyYZIRnFsnP782rDhqbbKp7NCKWW0NPU2WB5piZadMe3H8cr6/TX4DLz8Edo8ziLCurY4lwblmenpUxOcOj1NkmTMzZ4mjiuXEFYzAasqDh3kzHNq5+y7VX2UQmIchKH5DVLfaKH3u3+OfYY5aRlkwPwsXo1Q3j7nHhEyvyDsyF7hpIOz9dG30be9bsqoES7g9HxbmwaGMRfsn9caAXel71wNFgTNqI1pDZLaU0FYk2k3zpZq7aOW8Xue5JgeHvaIWl8s9TrbGIyi3FFmGXbEfg2rG/o0w0oJjp3s8PCd1zH/Tb+H+Kvv4eo//R4uXt6l1ar4GQ1YgAMvYvTdAcgQtTmxuDCA0uFeCcaz1ocaBfeEwP7PZcUc3Wpu/YdjqHddlVpPcVg89yBPv+2zXPU37yGSaD8AZd+pnBmgKgvybMjGxgbDQQ9lHKEEoAVG5YBYHAkqGSErnXgmiWPGum3a3S5KKdJGg6qq6I51HOMsy0KXqhWCQX9Aknj1dp7n2Bwfq2trgGAwGJhkRRmdbker7436XdkUuqIg/6FnYC5z/Y13FyhhPNJjT3wbzQZpkup898JrCu181sOiwZrelNQJkmyBIMuIXOihVMbjXNFIGzq7nNE2KGU8xs1fW+xHL5PNeQT8dhVeuyoENqNimeRsfM/jrP34/UTLLdpPbdfhlkoZtmoZt4fXAlwVQFuRL7VJkgSUlWR9XZtsHNBVvn3WW11EEDGkkT5BIznMsHgVWX4ZG8M30GkdY2L8CeJohSzPyLKcosipyhJlJGGda0AQoaXuONbqbZsoyL1PRE4roIv6+JA+m83P0h2ldHGhSESa6f5/PCol6Q37DPOMTrtDu9XSPgDGPKVQZHlGksQ0m11sqCVYk4VZI0aCt5UeiSLjFxC7WgWONgjhwxYVfl2pgBaF2nW7PLHaAZ9f42s5XrnPwMvoGwJy7VQ4oZTnFrYdFIdyBEtL4xw/MUsUlczNniJJchw59eDQS5XmPuGM8KEtFrep9BGipLqyOWQYNf5epwXBYSVoFQCBEWIs/I0C8NXMhOOIXrKIwpv05raaE2GvE2d9rmPotY7jnrOw0OZeqxHYN8+eXStGoxm5muSbQtjCsbHveFk0adsVMDARjqNWyftxU5vXjgsRIOB7Xn0ZhlCFE3O2EEwV/sYo6653QqHIspgnnp3iwKFxIiHZ8eWbOP6h/8TDF/w88d98gAu+fCtxlZp2SN+3mubDP8/DwLPtD7v+wl1ylkXm1IgC7B6ymhkUvoaDZxz1VX2Wdwf7QwmojGYAgEjxzNs/y54HrmHupX1O26UqHTJVlSUb62v0euvISsc5R5EGAATvjJTS9m2smlUT6narhYhi4iRlZXmZSkpKE8fe6/Vot5vMz88zPj5Jp9NlbW3VhahNjI8bZ8OcSESsra1TVZJmo0FeFGjbu17LzWbTecE7ifvqNcr3Hq5NvdrWp6xyl8Gv2WqSJsYkEMcBv40cUfVr2cyCkfatOcASdvcOK5lacBQnWpMRJ0ayNvUHpA7by7KcvMwpqtKbAkRkqtU1aTfbJKnXVPiaBEb1LCXl+IDVn7mX/nc/Damk9cVzaa7rCIKi1JkAdZ8j83wTuS8MowKdqz+JtSlHSZCC3kaPqpJ+f0moTEhkJGOgxJpQYmGc5KIlxlp30G0foje4kf5wD1m2hbHOU7QaL9BuRTQbKXlRaFAgvfpemo2u8BEJLjmR0Ro4MOIAiU3CJAI/Gv2vlBWdVoeiKD2ZExj7vNF0KGOfj73aXgZMXIjAD0Bpu/xwmFFVFWNjXRJbDhlFt6OBqc0CaXmWrCq7sBz/s5EiTgNlHASVCkwKgVNzmB+7Jn5Y3oryzzTvCr/XIlC+yvE1awZqdq7wvCVNBkGP2vD1hsIxo7W1NkeObEVKpZMKNbIamaw/NzijFGEesbO30QKI0DSh3IJy0qpdJUG76o22ZLfeUwvgNr/XMyDP2PFO+coT+xAg2TY7rGCe4Z35R5m+bYftiJ6TpeU2d9+/g14/4fz98+zZvexMm4APMwp6pb3Ew3Nm3MJ5FqLO+2tYIkRto6BRBeMUPCuANTWth/Lj5nGXCF4a2C0FCKcqFOEbgvZ6qUgqwfxSk4cen2NxucH0ZJ9rLj9Ge2E/n9gYZzC1wl0f/EPmz32R6//u22mtTQSjZB7rTBhB95zaMIQKuq01EIxlMhYACMeEXWdVCCwsOAquqfcy+FrfH25IpD8vk6J2Wza+ziPv+1ve8Fs/iOhFKFnR21gnywaURYGsSp2YSEQQ+z76MfFOcxhpJ01iEgkDYyKQso+SkiRtGLu50A5dwyET4xM0Gg3W1taQSjE+MUEltQd7u93W4XHbtzHoa6kSIMszJsbHabfaDkBYWzdA0opZEodxZwABAABJREFU+OAdyIms1lc5O4SmpBG1SE0IY5okxkEs8DKx6m9l/UxMLQaTY95K8qGEFoYjC0DEMYmpOmft4gjtV1AUJeu9DYZZpss8M3IoSS5LhkXGMLN9bbmnW4ezsiyodm2w9p/vIn/rYYgBCZ079hGp2DAw47eRpKZv5ilKOCYC2umy2+nQ6/dNnvyS9fV1zWgNUBJCkJCaVvgosSjyREuhkLKk2z3FWOczrPcuYnXjSlY2rqWZ7qTbepg0WaDVjEjTlDzPPZhWVqjzdnhDkE163wiVVFRbNuBkV4cbVpX2xpcWMGjzWFVVunqmzQEQCA9SmVBnaeYsMOna4kaASSet2znWHXNjWeSFBkBxYsxVer3otMZ6naC8maMWCWIYdBQ4ItqcC6FmydZWcGsr0BKFnNBSPBsxYImwsNEDhs7qDJijC+3sxyv3GbCS19meHAqS5meLmjU6kYQy1WDQ4NDh7RRFxOzMGTrtnru3ntJXBChdOMLn7ep1BmAntnbPCKuzjQ19HUbf7QZ9hGF7kKXMYHtUaYljWFnYSRluLQQxuC83Q47xeeL7cpeF166sNLn7/u1s9HT44N5dy1oqHxmD8Alh/LgdD1UfVWRUcfKCR5g6fQ7d1TmcTd5p4AK/g9FuOCwwAgy9jQYIfUIUm7vsdgbazGPt4fV2OkuLsO/17j5lBS8cnOSJZ6coSjh/3wJXXnySdjtHLm5l+/OXcPja+5FpwTO3fpqlPYd47Z99H3MHz/WTiWYWKlTBBwjOOhj6JROCZhVOmKfMIZAKOuIggWM0fs36y5UDD1gtVPA8h+NMulcZagYAUcWcvPIpnr76C2z7h8spixxZlkbaghippSbXfxW8NxhzBdiwQ6XIswFFKRFRyvT0FMvLK1ryrGI6HW0iEAqGwwF5njM5OQlAXhYMBn021tdJGymNNGVpUScuiqOYTqdLFAuttehvaIlQaYZb5Bnd7hiDq49TvuMYrKYw6cGPmsxIJwXJivYLiOOYONHqWcfYbHSGY1AYDYAGATgAjgMDdn7jJPESrQWtVuJQmhb2BgPWN9bJqvo8nO2QwKDMKNcq5sQMSaKTNNmQOHnNMqv/5TaKq+bd2olWW7Tu3+UYSFVVDPoD2s0WxMKtz3A/2vWltTNrCBExHGYUReFCIkOzhZfGo4B5agYYB4lulBrQaT1CEh9kbeMGhsV+ivLNdNtP0209R7NREEcRw+HAtdfSy5rELASiJaledYz+dz5C4+69dP78Gog1RbPt0fH7iZPyB8Mhy+srmrGOHiF9eRkrgii80LS8uoJSSj8/imikDYTQ6Z6VlJRV6ei7dtB0HTHk2e53YcCDe4tX/RvaYIEmwTjo8dSNtRoeJwwZ8CTNGNqoFx0OiSnT8AqRAPVMI1/5cKpM2xUHdkZJfU1l5qVrjcrKIuHQ4W0MhymTE0t0x1Y0qjSSfEh8napY2U75Z/kwCgLi6v9q8CDsm83z9P8Fo232XbSFeu1hF2YoD3nZVrdJt8Gw0fDhlqmLetsAnxwvPATGblnHf268gzdb9Ae61sA99+9gfb3Bvj1L7Nu7YnJfR8FdYbxp2G4/fJbRCuHvimVC0erxiR/9fu5+72+zuOc5ZFy6yR+1XdnPruVmbOpH5HoStmnTnNh9ZVunrL3cttb3RQMFO6gSbSuX9AYx9zw8y0NPzBDHJa++5iivuuoo7bY2SUUyYf+Dr8WpYSLF6Quf4TM/9qu8cMvtyKRyi1zXpTBZywiTfIwCAds+Fawlk9dfVSAr/Vf58qRe4tLn7G0ul72VnkY0L8JtSm8S0B98NTiAKi2Jhw1Eqbd8a2GcHX9/Fc9+0xdZnT5BjKQRRyQRREqrayO003yE0upgq4o37bHZ39w+V5JWM0VVOXGs2NhYQ6EY9Pt02m22bd1KVZT0B31tFshzlpaWWF9fY9/evaRJQqfTIcsyZmZmNFOqKrIsY2ysy/jYmDYVgEuaI6UkjmPW81WGP/gkyT/tJv7SNrcQo4dnYKIinY6cNKelSGEUJ5EBBdpru5LaIbC0Eqbl6SaDn5VgI2NvbzQapEli/BDs+PjVLdF1G1bWVl8REAiPsqpYXlul3x8glSJpJJRfd5zl//vpGhAAaDw7R3JiHJRNdqQYDIcm0ZC/zjJRT5sEzWaDRrNJNhwyHA4DumB8HEzKYv238mNfagnczn8URTp1dVlSlgVxtMDU+OeY6NyGEBnr/atZXn8jZbWVZrNJt9tFRJF+XlFSFKUxIxTkSZ/Brc+z8sd/x9Jf/SXlOUs0PnYRsvLMMvQlCKM4nEbm//HQT9D0o5IlUlXkZcYwH5LlGXGckOcFvf6Aoqg8KHbE1A6gpb/WMdA8X5koAPPPjq0DkI4iWMKs0YYwTqUOX9irhBdKdQVRA2IrqSNdqlc2Fq+8aqFRd9UI9gjPcvJD4OChbfyGREvBkaNbWV9v0+2uMjm56J9NPfzQSpbW8ctVkdv0ej/I4eBZMhwZUdExKOdvMMp6RgcsiJLQHfOYwz3NSnqMOvmbq0bEvuB3CyDs4qkDIQ88bEu06t4AssAc0esl3Hv/dpZXmpyze5lzz1k2Wl03GziThZNO7V874oGoZ4BA2I+9T97EoSvu5NG3/SlPv+7v2f3Mq7n0y+9m5/PXkQw7SDzAqrMqDwbtAASC5lmH3f8USL6mbcINnP5uK9XX1deYvipOL7R48LEZVldTts6tc/1VJ5ia1FnVQpPNzqeuorsyQ29m0d3fn17iSx/8Peb3H+C6j30rrY3AbCCE0UDUfVYUMuiAoRDKgJPQJFT7zYI0M8uuX/4WJ+WP9tMyp2AofZ15+7wKqUqqOGfvF69h/ooX2dizQDa5wY7PXsrEwTlOve9RJn//dURVrPeOoC75hfOirO3cl5+1/yIBzTRiaqJLb5gjogaRUIhYOxaurqywbdtWjh49ZtIK6/cMhgOef/45nfBGKaqy4vChwygUaRqzurZOXmgb+zDLSOKYOEm0L4LRZhSvOU1+SpF8+EqKT9yhG5xFNH/7crJffJR8fAOqjklhK42XeuKkNdsX7aCmjJOcJ2V2LWs8GJskNWFo4MheN7Oa5wUr6+uU/w/ObArIy5w4j+hOteh/59Ms/+g9m8G1gtadeyCLDZ3V63DQH5ANc1qtGBEL46qk14xPsANxpJiYmGB9fd1J01E0UkirJjDo7lZI7fynBMKYkrRUahidUAiR02o8QZocoze8kSw/j4WVNzDRfYZu5wW6HUFZViatbkXR7pHdeoDyB55AvvoUNCvYSEk+/Gqy0wADA+iEc7wTRiUuTORBXuQ005YJK8REM4FzPCQAtIGQaadRvYzKoN1sMTM96/IXuFmOrKBg6KYzCQTrwexLv5eFB/oy5BQ6JFFG3lTr6LEDC57vKIRTUHrzVRA2X/ky3l/t+JrNBLUjJPS2YeiBESNESinByZNzLC/rEMKZ6XmjxsajphG+aYmkjSawTxPuik0NClvsvrvQE3tn8C43OUK49jgVs1FNj25yj4EC67fpv4okRTogLVpEyiNwP02W5+sFI4LnbkY6wbmR8sECwXCQcO8D21hYbLF7xxrn718mjtQI6DD3bULKgVJoBEy59WwWWFwlXP/J7+PkhQ+xvOMgL137eQ5deQdzRy/i4rvfxb5H3kBnZS54jn13/bUKtL3O+S6o8PUeo6ngDmfK8Fw3gGGEQEovE0Up4cWD4zz+zDRlBRedf4bLLz5NsyFr82Wf112dZefTV/HCTV/0wFbG7HvoRlZ2H+X27/8dXvW3H2D2yL6gdwHDDXuowj6Z1eQ0ZEFPA891qSrjJGWlGj9m3ivYjSoOPpr5qY2lAx/SRARUZGWPKi+Y+/gFDGWPjd0LyFbJxhUn2P9XN7B4/UH6+5cYf3GLN2U5Hlcnms6z2X3WAx9HMRFauo7jiDSOKaWgpxTNVocsK+itb9Bud5ianCQvCtrtNhgGjII8y0mThLIoSBKdj0D7ELSYnz/D5MQEjTR1SX263S7rGxs0xlPKcwrEz19L2R6idutqctFqi6knzmPj9jXSHZLGs9rLXkugJXFc0khTV/EOIYhN3L3ufOQq9VmVbBTFAWAO1bpsMg1UVcXaxsb/g1e7pwsSGDZ7LH7fs3DlKnO/cCtr3/okg9cd8lcPY9pf2qsdOB3d0maOtbU1Gs0GQirjtY/bK5EQSKE98jvtDhPjE8wvLDi7taU0erl6c6BmvAKIiI3NWptKvMNlaPsGiMQSk93PkTWOst6/gZX1qxhm2xjvPkycLKMm18m//lmG3/UwxeWnIfHAuvW3l9O59zxUIpwTp85kWxqaYtMhRxAJZ95I4rQ2R7byo6pvMAduEGCdEv1ews37WLera2IopSNQrNnEaIUsQ64z37qjKYBoSoodS+QXnqb50B7EQrfGZhy7EyHfVbgEWXZy7EU24s68O3RGFEE/vtrxNYGB0AZaJ9wCq2Z1Tm8jvHphYZLTZ6aJ45zZ2dNEURUCnBHGqJ9pF5yz4XvO7c+Z9oRM3dvp6xK3ZUHuUeE4owJTrkF5wk+MMs+ohemPMHAByEjy0HV/y6kdz7L3yLXsPnYFU8u7dblhFW1KVnTWQ9lIBM9UfCifltiGw5h7H9zKqdNtdmxd56LzFkhiK6MrT7AMcNDhY57Zb+qDCn45i31xfHkHN3z8R/j893yIqpEh04Iz5z7JmX1P8fDb/5jzHnozF97zDmaOn4cokxGm7p9Ts+i46jCWkem3etgW3urZrnLOd8F6M6/L8phHn5rmpcNjNBsFr77yJPt2LxNFoadJ+GiBUBHnPnATB15zB0RSe8hHFas7jvHW3/0QWafHwv4XiKqI6eN7Q1yKnyGF1V5IYb7LoB/BeCgUQtqZMhsYC5pDImRnPIA/wo6QBSPBM5V24qpKXfZ02O/R39igEEMaR8aYemYb2Y59nHzHkxDB0vWHOe+jN7D1gfOoWlnQD9s1W9hGmcxndl9oqccCqyiKvApdSiIEUQJ5pZBphKwKkghyWbK+ukxWFJSlJIkiirLUtQniGBFHNOMmIorYuWMnL754gL1795piOousra0xNT3FmTPzuq3DoUtznHx8D9VyRXTFCkxpf4H02CTtjQnij19Cua1HmqTUogIqSa8YEAloNBqu7K8U3sQSGbOQV8ZZEGYiTYRdRYBQzqwgpVbTZ/n/l3h3IFLIi1eJ/mkXs398IxvveYbBjUf0u9cbRBsp0WqT5LlpF6ZobxYIev0NpuW0KwpkMxhKoRN0RcbvIlUJM7MzrK2vuZoEfl1pBuv6HymE0ir6yIbGOXtxkAhHjkilIqfVfIokOcF677UMi33kY5fR+u4/YPDtd1CevwBWmDF9iI9MMfa7N5FGbaJO5MwAlvE6TY41WVqTHh7I2igqKa1flE3YY3mQ2YlSO/DJoM1CCFrtJp12m6IsTXVGDXqFlNrEFOnoEaXQzoQB81UKVCSRUwPKi08zfO1BstcepNy/yMT/vJn4ixe7PWXfp+/zdmQrIMgwPJpAc+3+b2i9STGt8cPLcplNx9eQdCgEBAFFr8XmOmAc3CdYW+tw/MRWQDI7Y0IIA4LjJgOPif0ZHAm3tNfij/C9VgoddcBwYYnmohqosE9w6DA8b4fbe3hb1hq+3o+G/jWqEq555D18Yu8v8U/v/DBp0WJyZRe7jl/OvkOvYtexy5lc2UmjbDOCLIJBq3kGBJ90+4oi4qFHZzl2osOW2R4XX7hAnCpUrWCO57dhf1UgrvsnelCjqI992NF9j76eC+/7Op65+WP+fKTYmD3Fczf+Iy9d93m2HbiSC+/+Bna8cDVJpivFufcFc76JQFrJWXlQZpeGCppitUTuCcH6WV1Luf/RWeYXmsxM93nV1ceYmR6a/mwGm07zo2D7C5cwsbCNscUtrGw/Tm9mgYV9L/Lwuz7KzX/6g8we2Y+MCr/ARegP4IlT0KF692pzKM56WQ0nhefDtR6W11MYqUiaKmomPXBvQ2dDkxWRgLgp2frAfpqDFrNP7SbpNSnHM1YvOkUx3ae50CXup25edFissZzKoARr6EymxSXX/Ahh6tlXLjNajKCdxuSV9s6P4xilYKw7wfp6j6KEooROo8X6xgatdgeEJIqaLK+sMRjmzM8vkqQJiIhGmupUxyY2HqWoigKG2qs8iSO4ZkDW0O1tHpgjyhOaT28jypc9uLKOXEpLxZWU9AcDyqqi3W5p238YvhyEwbl5sszPakwwIBXlmFR/MKR6OS+1r3gEtFAKxAMzyEaL4vp1Vv7dvZBKkDD2p5dTnr9MdGIM1hsjS07PX5ZlbKytMz097deWGbtICDCmAhVBI20wN7eFo0ePaXoXMijtjabBVCVBmDwRVUlqvO+VsY1blmCLNdk1I0ubpvkUjT1/SfF2SfGWFyniBJ69DPbeBe3Ar6IUtH771XBwHBXr9iRpQpr4SpdlWblQw8jQ97IsTQZGTD0CbYbQjHIkhNBSB5O5UEoZ5IOoiOKYVrOlI0BM+23FRxFFxuykQw9dzgMUql1Q7Vkhf9URhre8SH71caoda5BWIAVjf/Iaxv/4RoTUJpw4yEppfSCqsjBZCkckVwsCnGbOEklPOB3Xe4VaAfia8gyMfA/+Dx4sjP46GDQ4fGQ7VSmYnTlFszFwtwlD3WVUcuj8e1EoJlZ30N2YoZl3icuGk26d9BhwihAkCKPXduqeQBK1MpTDVMHvgLY72VYruwn0XVJ6ohDeZQGJS+qnPLNqDsd5xz9/iKy1zovn3cP8tgPMbz3Ao9d8nEbWYWZ5N7uPXcU5h65n54nLmFzdTlI2tSrOjSaeaQborqoEjz4xw8HD40xPDrj0onnS1Fbu0//z2hA8eDIM317nQNNof7CAT9XCCQHiMuH6f/wBTl7wCCvbDtdu3vn8dVz9qe8GIBtbZWX7YeaOXQBVEkyCte+HvgN2Xs0YikADYAFZCA4Mkrc+LJj2njrd5oFHZ+n1I/btXeaaK07Rauosau49FmSpcB71hmqsj7HnsesoWxkX3vUm7vzgf6dq5Dx/021sPXARF9/5VqIqcetCOSYQAAGFr59BoO63+zJ8tw0xcp4P9bkSARNx8+Emz3RHVsiypChy+oMe2aBHkWcIfMGWSICSgm0P7CcWgu7pKcaOzLJy2QmymR4r551ky5lzCYGGBYPWoxyFrtoX+Up9QghTNlUhVURewmCYkhdtStkkL5sUsklRNcjLhKyIqFSKooGIUh1xIGLtsb+q+xn1YpSq6HTaFEVGXlzK4EyFokCpnHYrJooKZNUDMURWPQQZgow4ljTbEYNr1924NZ/eqglsIWg8NxdiXh2SpRQQOft5lmmHuzGbo9+EFG6CrsL/0eApkOjMfBWldoZ75aR48xHCetWSLP/Y3ZR71gBIn9zCxO9dx9Kv307rtr0or1XX8+OaqlheXmZiYsILc6LuvquL/ehiO+Nj44yNjbG+seEkaj3/wmTFM0zLr1rnxe76b8GRsL4YVmYVlKUu11vmfdJPKOI/exX57itRf/i70AqAgIL4jr3Ef3ERRZ5TilKH9UUxSRoTR7HOA4Bem41Gw0SKaAZdVhW5SXI0GAzpm9DJqvQu4tKlZ9bNV7atgUloYnzMODhWDixoHmNrCBgwFUvKLT2KK06R3fwS+WsOUZ63iBrLvDRr+tX+50uZ/E9vgszkO7damyC1ue1fnucoObqOnOeGwaJmHhyNsQKSXQOv7PgaChUFQWcv8zJ72krTRRFz+Mh2sixlcmKBTmfdMYPwiKqYsdWtfOq9v8TCtpdoDcYZW59jcnkX04t7mV08h8ml3UysbqXVnyLN20RV7NB7jbF7rmgGOPwevFTUbnDE2PH9euddTKj72T43IAz2rxKCsd4s7/r4L/HX7/sJju9+wj04b/U4teM5zmx9kWcvuo2xjVm2nb6QfYdu4LwDNzK5tt0RY990s7mk4Onnpnj+wCTdbsbll5yh1QzUUoEO3mlVRm1kvpXB9QF4sExIBc9z9wvGF3fwqo/9EF/8l/+eKtVONESKl679IkVjwOs+8rNsPXiZvt0Oqn1nwMwcQ1UBw3dD7DU61v4ZqsRCNCwlHDg0zuNPTSGV4opLTnHx+Yu6yiCWSPswQ28j9KYXWxp7/4Ov5blbvsC5993MmXOf46k3fRKZFDz43j9n7tB5zB3a7xiz24h2qBzjD9aTGzsfaSIMUNi8lvRDXAIgHGRC2QJMCu20KCVlUVDkQ3rraxR5jjJOiknkfQps/2OVwrrJ7jeImHl0NyuXnkAlksXrDrPlnn3ouu/SlT7VQEIQmep+OpNdQl41GOQp/azDxqBFL2uRFU3yskEhE6SMUMqH6ek2SITQvhFCgCxKbZdVJToplUniU0HaaNHr9dAxDC2k0gxIKcFG37bDDS46GkMSiZxBNKA87/P61UWEeGoflewQRTnI0kJLMH0LQ4ITIVCqyXA4REnJWLdrd53ZBlZIsNpCuw58LVULDG0q4pdzRAvH5isdwv0TVN94hOzrX9BLeCNl6j+8lmihTXy6Q/PRbV5jO0L5ldLZEtfX1x0gsJodbdCRtXNxHDM7O6PzDsjKhcvFxjwpIm1TF5gEQCZVsE2f7GRSa8pVuKqNSkqnOeJoqq+//ln43/8XLlvWDR409SYZQPLhV1GtRiAq104ZSaTUoEFKSZGXzulRKZ/G2Ur6+r0WjavavDn6gvcJsdplEQkmx8eQVUWeZbjaJIZmpCaLZRTHqPGc7OYjFNcfo9q5iurkyIkhajyrz4eC5n37mP6FbyDudYhi4UwsYeimA2tCkTa0aasyhYhsuWKfpcL78WgTVajPxgGNV3J87UmHEDU7bYgIgUBFFHHs+FY2Ntp0O6tMTCzVGHPtJgRbT1/IN/7lf+JT7/0lDp93P+tTpzm55yl3TSQT0rxNuz/FxOo2Zs/sZ9uJi9lz5Grm5s/XmbEsM3eSoGGphlr7TG5BAwJGI8LztU8WedlqUMF5Q82dBGofKwRTq7t49z/8Kn/9rT/G/JYXa69O8zaveuD9XP3Ie2gNJ4hkRFIlwSOEBwSAUoIDByd48ulpms2SKy45Q6dTEjYj7FkYynK2HBGhQ6iq96h2eAnYH/sffiPnX/E2Xnj1p9nx3DWcvPARZFpw9Iq7+fSP/Biv+78/x9aXLkNZf48RUGZfF3qhW+9+v5zB1/muawest01ZRjzx7ATPHRin2Si44crj7Nm55hM82rmwTMlIgiAC7Y+HknOHz+P4pY8RlQnXfezbmN/3ImfOf5b+1BJ3f+CPeOt//Rma6+OuHf5uy/BHbXq+u07j5BKdKPdbLbeDCy0NxtyWmZUVMssZ9DYY9Hs6MVCk+2fj3FE6JXZtvJXytkwFsw/s5eD7H0AlisVrj1KmJQwj7TkvQNc3SMirJv28y9pgjLXBGP2sTVY2KKvYmaQiURFHJWmS0W6s00gGNNMBaTwkjYckcU4kCuJEUcqCUkp6gyFZUerKa2ZLlpVkrDvGxsaGqRkQmzlWIFKkSsgLQDVQtFCqDWKMKB4ny1Iq2UROSsrdS7rPq2MsPfI6Vs7MEkcZSTKgkazTSNdJ4w3iOEMIXzHOhgoKIej1+8RxpOsciAiEiWgKAK0lMY7oKH1WIl12PR3CWPG1HKPGLAVwzgb5zz+iPesldP/yUlp37AGlaD68nWi+45iwJQQ6DFf/bTSalKX2gI/jWGc7Nb4DItCSISCKdRKn2elpFpeXqUrNzEvDgGNDZ23q6KqsdNy/EAjjeCkduNOgtTT5+KWq/LoXoN50GvU/H4BztMMniy34re+Ef/v3iI+8DnH/RSB02d5KVYGmwgJI3PxZFbsN0VNU5j2W5itcnE4gCNR8GgydEULQ7XaI49ikxbbgUbj06ZGrmZCQFC2qL1yC/NxFVBMD+t/1INmrD9cnVkH6/FbmfvqbSBYncSHrwkd26FBOL+hYjUqSJFAak4szcakaPXe+FKYf9lNEnXZ/peP/AQzYl3lkspmNCk6fnmZpaYJmY8D09IJTgYRJJkafO7W8m3d99D/y2Xf9Gs9f9gVU4Ewi45K82WP3oau55Mm3M7Owl/HVrbQHkwgZ1R+El/bcDnEb1xNrd7lVVTO6GQMnPgXSSm6OudqrlEOMlpVZLfaW+fM1IHj/j7M6ecK1L2utc8cbfp9D+x7gDbf/MOccuYZIhvkM/HtQcPxEl0cenyWKJJdffIaJsTxsgAcEwgMyh4NGJ9E92rYzcEgLyi9qgBOou838RWXK9Z/4AU6d/yh7n7iFvY/fwoPf+AcU7R6Le17gMz/yk9z05z/JuY+8EWTsGyACAmrbKoKA0ppe3YbW1IGL/lkwzGIeemyKI8fbTI4PefU1x5md6QWdVcH42ZnxZMG/x9+SDtrsevoqhIDW6hSv/cj38ukf+xWGE6ucuvBpHnnX33DDX323DsFzzF5pZu2Ygn2mR+b6Y+QXksMP3qylH2ZDEJUJW9RaAFnpSoHra6vIPCcxSQHjxE+8DTsN+L+uiAY+/app0uRz22gsd8i29NjYv0hvbpXk4Fb62Rj9fIy14SS9bJxh3qSUselGSRpldNIl2p11Oo01Oq0erdQy/ZIoso53+MRPxq+gQlBKwbBQFFWBNJ7gkaloqGRJWUZUlU5EY1O7eke+mHZDr4UkTuiOdUnTBmVZsrKyilIx0ZVDTsytoIDk5BgTgzXyNKYoOwyyKfrDOdOXiiTKSJN1mo01Ws11GukAqfqOWWTDjGajiUgibKlPFy/uxlgzJSmtqcc6XEqnVo9kFBqCauvuKx1uWaTAzz+DukCbP9LnZpj43eug1I1o3bnH5I4IMhpK/T5pwJ9m3JBlGY1GI9CW2UMDHq0a1+meJybGqZRkdXWVsjTzAaYcr+5nI9VhmoUxh9isfakpJiUr5XJBCISp+6FQkUR9y1HUf3sYtphskcfbJD/4apAnKE9Pon77R8nzFo3kLtL4OLHQoZ6WGTq/FbvYjQQgXfloTxtdml8irM+AEDYCQOnuW/8IdNXMTqdDURQmw1+MB4OhRsGPoBSS4WsOsfGzX6B41VGIFeG0RycnmPnJbyJ5aYtfAUpnBlLCtsnQKKddNLqlSJCkKZVxeNQli3HtcJEbChPiaOZWmbqRo/TzZY6vGQwEfCb4Hi4swfLyGCdPzRJFBTOzp4nj0gs+ozU4wzFVirH1Wd7x979Muz/F49f/AzL2yFoJydH9D5OWLa699/10e3MkZeqfJQyhPwsDqTF/MfqL1w24pjmmWgcuVl2rfxllMn48bLxtFEXsPn4l3/ixX+bvvvln6HeWGV/byvrEaWRccfDc+zix60muevQbuenuDzK9sjNgyPqYX2xx/8NbqCq44pIFpqcGXsIUInB2CiYotJHbLjlp2F7imWKdPARShgVEVhQ2V04s7OL6j/8rDl19O7f+r19lfHEHX/72/0xv+jT9qXlu/55fZv0TJ7j8C+8nzhsOmLhxM84WIZ51HXAnItfPkJyubyTc//AMpxeabN+6wauvPc5Yt0ARxOW6MbBYwDLOkUiFkfdvPXCxDgdAseWlC7j277+Ve7/zfyOTkqff9Gm2HLiQc++7yaxbj94xwAUDoGqgYBSd2bapYMqczUGhcwPozHr99TXyYV8TC2mS/xglgNW6OB+RANQ6ZGj67P8oGgsdxl/YRjb3EsVYxpM7G1RffDV51UApQSQkjSRjrLXAWGuZ8dYK3cYGjaRPLApQlXOuEi63v1lvRrISQmekq6Qu1VpUkn5WMMhK+sMcqXT9+MpGKyjFYDCgfijDoDST6bTbdIw9v8gLhsM+g8EQWRXEsWRw7lFUQ0uwnUMdtnWeQTWhqmKKsklejDEsJsnzaYpynEE2Rz/bBuuKJM6JxSpRNA/yJGq4SrdbkSQWDPk0r3ae9DrTjNimwa0qqX3tjOd6EiUUsgx3nV8L7pMXAEI6FREh3nWC8tsPaTLUT5j4D68hOtUxTp4gFtrY/BbWCyVYCiB0RULr1JhlWU0dbecsjrV5R0hJEsU0Gw0mx8dJk5Sl5WXyLHNx+zoZj6IoBc2GLrlr7e9JHJEkgjjRhaCSJKE/GFBVxjs+kZTffwD5K4/ChJ4r8dwE6ffdSHTfVsqfe4Lmb52LOvMShXoVWfk2RPQw4+0XiBObUMk76gX4W687UxIbIVBVYKYRgaDnPnuNo55SDTwbDZ0+W0SChATQCaq0tkMX64piI+QIRbFlhbV/dRf9b39ImwYASkH60B5tNhjPmPrQu0ge3K1zM5iy0mHOG+27pDsjCWizbXIUgS2RrfwqcdzHcn+sVtBosUWwZr/K8TWWMN68pEePXr/FkWO65sDs7CmSeOjtLVAP2w/QleUzSkFzMM6b//mnaPemuP+WP9W2afPCvNXj2cs/x4GLvsTeg9dx3b3vZ99Lr6aRd80jA9ueGyCCgdfRK7jFFIitNSZozyrXZm2JsV4PApsQyfEA+xh0GEtV6jhmoQTnvXQjX/9PP8cnvvGXuOrxd5LmLe5/9V+wMbZI1upx/6v/ghcu+BKvu+t7ufKJr6eZd1Do7IL3PriV4SDmogsW2Lql5xiBQ6nBnFjBpR5GFzpFmvE2aWrDjYTLl+5tTnXCYiU+PVHnPvRmFvY8x3BsmXMfvpXx5W3c8V2/ysLe5yjaPe5/739nfe44r/q7H6TVnwyhlgEBm2BAbZ70ehGBlkexuNzgvodmWF1P2L93meuuPEWzaR2P6uBHuTkxI2K6r2oXKH8diqiIPaCTcNEdb2b+vOd54ZbbqBo593/rnzJz9Bwmj+0ORthK3gplpUghggRAXmoLAaT1zxBKaAAgJbIqyYYDev0NyiJHVQWJECR2kxtpws6hlU7rh5deZDB5RdVktT/B4sYM/c++Fm58CSLF+msPMPHR1zMzdoqx1irjrSVa6TqNpEAIK4Lod0oltWo5SkycdVAVz34XumhLUUiyoiQrNQAY5CWVAu18JZzmB2MPBoy6VBhbNTQbTSYmJmiZHP1ZkTHo98myTIdQKkmaJLQ7HVYvW3aovPXsnEtaFomCRjIkiZfptI6iladNKjnGMJ+mP5xmOJwgq6aRzIG6CMEGarXH+NgqneYqaVo4yS2kE9pzPXde6GmaQlk5tbWd8zqctavdS4AeENjdG5HsLSg+/Di0tUTY+dsLaX7uHKcu92pyD1Zq9MvMvRtrIC9y0jSt2ai1T6h2houFJIqhinUhJyklc7OzrKyuaF8OB8w1Yy6rijRJSdOUosgpy5Kx8Q7tdou1tQ3dNwNgVVtS/tRTVD/+pOtT8vBWOj/0enhyAtkqkWsNkk/sIEruIonnyctbyYvXkFd72DbzDFW1Sp4XQcloRVEUbGzohEmCyHn12xTJsXHyQ/hcA277B2RSSUWr1XImDim9E60GM5HxqzDPaEqGb3uatR+/jfKiM64USnRqnO7v3UTy7FZWf+/vGP+1t9D8zIU+sgKTlyGOXBSB5VtK6NVpC3/pbJGR3g9exhgRQ82kG9JpzVn2WlcB8ascQr1C74Lf/q3HXRPseqtjXEFRJBx4cRe9XpPpqXnGxpfrkunoBzcbhHvDbYwqznnoNR/lS2/978Rlg91HrubIvofIWuuuKXGVsuPYFVx37/s5/7lbaA7HsGl4PUoKWVvwemFjuIMBtVcICNPCasHnbCgrJPNWCjTvMVKjXXxSKB667m956Pq/4QMf+QP63SVuf/0f8OzFX6RMtLNJVMXsP3QDb7z9h9nywnXcdddOzsy32Ld3hfP3L+HSWxuThZ88z+y9mjaIDBBucAMpP+hDzQ7nz1u85jOt2eHSG3Ft7gR5q8fcsQsRwPrsCb70gd/g8BV3adQlBXsfv4lbPvLTjC/sqI3YZiYWvKd2pe7LqVMN7nt4hsFQcNH5C1xxybzJreB3iGUAlhna+Rfme22ogneo0bm3VFUpejMLfOYnf4WlvYcB2P3YNbzxv/04jWHbg2SjCUJYnxrlM2o66V0DSKVKrB8ASqEqSV4MWVpcoCpKoki3RSd0kQipHfsii8y0vjRg+EbqsvjU9EMBWdlgpT/NwvoWlnuTZIWuBx/f8gi9f/4FaJV0Xpjlhu98N82e1sQIC6SDbWFHJwwVM6KHYUYCohipBHlRkuUFw2FOISUlOuzMAmnrHKpMCGIVxKPrBDZaMp2anqaRJLpefKELHOUmRXFZlgb8CrrdLhdccgFf+NDvsPLqQ1AK9v6rdzD2xXOQBmTVzWHCJY2plCDLMoaZJMvaZPkMRbWdsppFiAnNIKOCVnODsc4indYySTygLHOtHlc6yVKSGBCDIC8q+v0+w+GQ/nBIhVP4vuwh3H/6c7OTUv72Q2Tf+zQISA5MMfct7yI5Ph4IPNTH3xbrMQVzbPKk6elp0jQ1yXEEadqg2+kQ2zYb0FiZypK2BPMwz8nyzM3R2voaKysrLrbfmmziKCGOBWmaMDU1yczsFP1+j5OnzlAV+pnl+JDyVx+h+p4DkCqQ0LhtDxM//kY41GU4HFK2MpgqiE50nE0+inYwyN5EJffSbq+yde5xknhRRwqYEL+V1RV6g42XHVe7y11mf2EFmpoISJo22DKzhbIsyfMsqKxoBcCI5P/H2n/HW5ad9Z3wd62dTr6hbqicurs6R3VQSygLFDACiWywccDGGDD2SzDGBntsAy8GDGOyx5hkhBAyUSJIKEsttTp3darqqurKVTeHk3dYa/5YYe9zq4VaM3P603XvPWefvVd41vP8niwDgihA37BB/wc+xfBrngOnjKQB8V8eo/kzbyQ6PUf3J/4Kud6i9fOvR2cGKTgwEYWRL489kcJZ4dVFUXgLSF4oW1RKeyuP45UuANfP2IEdVb53ZfnH/1b6gy8DDPzXn316Qm7vFKBaBZw9t5u19Tat1iazMyvs7ARR1ZwrtoIJDVHs+FTJgufu/As+9s6f49Wf+kccOnM/T973h7xw20cYNEtNQKiAxavHuPsL38hNz34ljf7MjgfvnDmV4+efdo2Puio3Si3z2pH7z3xxDofSdswnKPjcg79Dsz/L3U9+HXmQcvKGT/LJN/4aV3e/YOIkNCTjFnv/+u8ifv6HOaCmufXGVYKggkwmpiKunaPX5naurhVcVVBpCcxF5ZbVTkvmCVDWMXDfMXMtwowgK7uajRvbPPyeX+b51/+x6ZanYdf5G3nDb/9bFs7eCjZy3fnHJ8V/Bf669zScv1jnkSdnKHLNHbcsc+y6NWRg3TEVIS+qZnPxRcDAToFv528Ya3Uhy/tfufUpPvIvf4a02UdowV1/9A3c/cffaPKEAR83gCw1BLuWrtaD8C6AHLQmy8aMhwMG3S3G4yFSGCGFbftsmLwpbuLdG266okwh9cLV+g5zlbA9mmZpa5H1/jTjLEYITT3uM9tcYVdriWThEo/8/h8wPLSNHIY88A/+DlPPz1kmb7Qrp2H5VdLGXzkBBgxKRmkYZ4rROKewPtxCmZ9aBqYzgza553megx+7qZQXWuZYSxLa7Tb1ep00HdPrbntGl6YZWZFS5AW5ZYzXXXc9MzMzdKNNPvLzP8N43xZyK+bw172H+Oy0Bbluf8vz4gRhVigGA9srITNugfEoZTTWNBoHkcERBuMF0qyFUgFS5kThJrXoCu3mNkk8RkrttTuNKa87GI4YDocMRwPG6kv1JDBraRP3TLnld63Q/92PQTOHUcDs972Fxp/eYFZ8hwvQADFhaM+WiXZaLWhmZmdJosSAAauNJklCLUmQMvBnX7vgRxuln2Y5aWZAj9lj48rZ2NxgOBjadsJlT4b5+V0sLs4zGg+5evUq43FmgMXcgOHPPkTx7nOmw2IhiP/oKK0feR1yrY5SBWmaed+3++laCSOapPkbKNRdRFHO3OxxkuQceZ7R7/dY31zfwUW+/JdAMjM1QxhEjMdjtC4jPbTlpYGUBB1N9q3PMPiXn0Xt3/JHQL44S/1nXk/9Q7cg0gh1ZIPRtz5J8xdejx6EtvIqvgWzEKICCIR3h1XrDDj+lNs6CY6OVaFsO2Z39rUHZ67+hgHblrKk5PLSj33pNXilYODnfvbpCYFjMDB2QIKrS3NcujxHHA1YmL+MDIqdpgN7ceUeYqew2jE496/UnL7hMzz0pv/O13zgJ5le38/arrM8de8f89ydf0F3atmpwggtmV09xJ2Pvofbnn4nre2FUnurinbnSqiwf21bPZUMUFe+a9HlhHABbQNvDBAo0zh8tCplXoB7Th5mvHDTx7jx5BuI0jpCCgaNDb5w3/t4+P7fo99c80ONLxzl1X/zj7n1qbcTpg2sms7OEbqlcoRbXegJaGOJZ8IR4AjKMWh8Fqtlpu4uwgupamBheSf7htYUccozb34/j77rv5PVTFfK5sYCr/29H+bIk2+Awg/2Ggqo1hDXCk6fbfD48SkEilfdeZUjB7cQQuH9bBV46g25ziICEwE0VWr3xlu3Zx6Vu7FVRiYKnvrqP+HRb/49tFREwzpv/qV/xYEnXmXXz7aCtp3wBNYdVQEU6IKiyMjTEcNhn+3tTVAFEmWAg6wG+2iLpau50GLSqmMZpwaUCuiNmyxtLbDSXWCY1hFC04j7zHWW2dW6Qqe+SUCK1gUFiqd+8hNcfecZAG75Lw9y8L23WiZso+uDspKk0orC8ichnA/V+I6VhnFaUGgBMkTIwAcOIgRaaQqFbwSkVBnpbXrKm1KvSZIgpbQat7J54Rlal/tsCt0YbV8Gkn37DzA9NcOZzrN8/pd/HdXIiE9Nc+jr3oPsRiWPsd83CrT0hWUGw5Hve++b5qRj0Ca7IaklKBUwGNboDxcYZ/vIihm0DglkTi3ZpFVfolHfIJApCNMxME0zhqMRw9GI/mjItQ44yk20XCiwZuhwX8bogx9F3WEyIxrvv5GZH3gTMi2DcZ2ByLWv9W5B7UohlwKj3Zmi3WohReBpLAwD6rW6dxmYBje2Al9RkOeFbTpUME5TsiLHBU9qBcPBgG6va0tDG3P20aOHEUJw5eoVRqOxAXoHuwx+8VPkb7hs0HEqif/HTST/8V7UpgnELQP8KJ/h9suCTQjJi7vJijcgRESz8QxR8CS9/iZpkfL/7iWIw5jZmV0MB0N7ppz0sQseaPQ9K4z/3afI3nDWlEsG6EdEv3c7tV94kHhplsB2TszuvExwdhaxWfO9B0xxJOFlg+m2GHiXTRBKu6dmL7M8J8sza9US3iLgQJ6jA00lTsDSlOPZ0iq9l/4/BQM/93Tlr0oQlobNrRYvnd0HFCzOXyKKx15jmdCmq8aEqnJGqUVryuPhmbz9/sWDT3Lx0JPc99lvRxYhWii601c5fvefc/yeP2Vj9mJFrRVMbezh9iffxR2Pfy0zm/t9YFgp1S0U0JX52PE6QTgJDCiFBdgT6aZXZTp45F6NMrCqKyAoAlMyNSwSvxYIzdWFE/zZPf+Di3d/BB2bYBSpQvafeID7P/S9LJ69E6Hkju515r5uLi6f/Zo1r66p3cWy7GXJMLUuhWmVsNw67Gwf7NibcmtmL1dS8dLdH+ehv/uz9KeXAYiGTe790+/i1o9+g7UmlMLby3WfeSI5carJU890CMOc+++5zP49XSzq81vgximqY7QfuhgKtNvBEtq5NSzNriXDdu+75wgEWW3Ix7/7Fzh378MATF/ex9t/+t/SXp73e17Shl0XpQwAyMekwwH9fo8iH5PnqfE9am2L31RpUFuma9bT1vmZCCxyNJfmEavdXVzZ3M3WYIpCSZJoxFx7hcWpS0w11pCkFEVugp7s91WhuPD1J3j2338GgMWPH+aeH3orUklvGXAVA0vLg0ALk+5nSrPmZIVChiEyTECGaAxQ8Ode2IYsymp8ogRaURzTaDZ9meAsy/ER+rbmgck0MO85TVEI4QORk3qdmZldPHrDhzn5U38Ggab1kcPs/+63oTO3LcKeMfNTSnMqsyxjNDKV5XLbjU9riEJTc9+USQ5tJz/T3S8IaqR5m95gke5gN2nWRmtJGIxo1ddoNZaIom2UShmNU5MF0u+TFhkmnl6iULYRkiArMhwnCpCEiaT46SdJv+9ZEBCc6xj3wNkpHzjqTE+lhWYHGFBWm7TzqdXqzM3N4TJ3jHlfEkUxSRwT2CBJpxAURW7SAnMDCtIsYzQegTVxO6VHKROQOBwOKYqchYUFNrc2jMm/yClu2aT/q5+kuGvVbMQwoPZzdxH/wu2IUejN28Yv70jfCn9RygRPMkCujpLlb0czTRS+SBQ+RFF0yfLcCnHHt76cl2R2apYgCBmPRjtkEDA3Iv2ux0i/63H0rA1yVQL5+G5qP/F64k8dQShnIbENvqRCFMLSsbEcCVEKfIHJEAgnWkS7vTTWs9xa4TSU3Q1t7EDZnr5C41WJqp1CKhASLl75d19yFV4xGPjpX3iUsIhw2NYNYzhMePH0AdI0YG7XFRqNXnU8fnOvcbVXmPdOTbYsCONAhAvXU2xNXyZKG9YNoP0B77VWef6Ov+bJ+/43qwunTYMRe9tWd46bj7+dux75euZXjiJ0cI3fyI2i/OflpGmJF70AFk7kWxKyglN4YnYapqA0Q4sJQORTQYArSw0+9cgU26//EL1/9Z9Y33/CC6R42OaWh76eOz/6HbQ2d090eZwQhk4QVYbvrKSa6owqWiYVcyoVwezVf1Fpj1sKJag8y9+9eiQ1S0ee4VPf8Z9ZP/AiADKPuPkT7+a+P/ou4kHbfENrKhSAUoLnT7Y5/rypIfDqey+zZ6HnxzwRJwC2dr4dJ1DJvbHMpJx5Cc0MIPDCy38mkJWmVdV5bS1c4cM//BNs7bkMwJHPv5o3/Oo/JxonllMHtj11gVYZ42GfQW+b0agPWjn5iNaFBU7a9jAoGYG2QtOBOw8G/JpLBlmDqxuLXN1cZJDWkbJgqr7OnpmLzLWWiIMhrhBRyVbN/gnbzKV3/QYP/dafkrcy6ldavP47vp54rV66VoLQbr005v1CM0ozsqwgL7SJGK/VEUFgIa8t4+oUAcfIHKDQxmdar9Wo1U0UvPGFqgn+YK5X3lwqgDiKCIKAosgZj8fWegBJUkcGAcf/3l9w+Z8YkDb3S69i7r/e5+nUgYeqNUxrzWhk7lPYPgWFMj7aQEqi0Fgr3OeNet0GjrmASUGhQkbjNtv9PfSHi2R5AyE0SdylVb9MEi9TFH0GQxM/kOfKFOgJAqI4ptvftvMz/4VCErx9lcH7Pg6dDFLJzA+8ieYf3ISLPXJgyKyPrCgi5XFVqlKSVxvrwe7de4ji2AsHF1QYxzE125PBWfuUb39rgvPSbMx4nFK4bo/Ste42Z6NQiixLEQL6/T6j8ZDxA5fp/dKnUNeZioliO6bxH+4n/u0b0WnVgmrGrQpdlt6tuKeEdueX8nzrecbZOyjUfgJ5hST+JOgNm9ZZ2LbDuuQR14CDCQ2JQEYszi8yGAy9NQVAh5rijWcZ/9hnUHdf9Yq3WK+T/Np9xP/Xqwg2GjvAZinrfNqpLgMXgzDwVTyj0NC0qxbqSx37lOCyo6ZveexlXilrqkC3nKH5w+3zhSv/li/1esVg4B/86c9z+6m3VASnJs8DTp/Zz3a3wdTUClOddcCZxeUXvVdZHa18pyqmSvYl/MdVc7DRfEV5D7suQsCwscWLt3ycx+9/P1f3Po+Sub/9zNpBvv1//E+mtneXD6/KzMrBKj8sY4Gv+RiLyLSFCaIEC1UB6d0E1pVQna853IbSt7dCPv6pPfT6IbfevMz0Dec5/vr3cvwN72XY2rBfE1z/2Nv4qt/6GYKiTAapghSNutYyUJlriXWcZmx+n6j654TTDvLQlX+qqYnVvQCNmjBPaLpzl/j0t/80F257CKRGFJL7P/A93PmXf68Ej9Y9oAp49kSHZ15o06hnvOa+i8ztGuCRm54YCJbr28+lv8DTzESkpdWq3PU716Ti3jFj0p62TEyJ5vzdj/Lx7/sF8voImYW88Rf/BUcffrW5vigospTRoEevu06RGROmtIGlRjBRWs00PnLezd8JLrfGnnVpSXfU4eL6Xpa3d5HlEUk4YmHqCntnLtKub6KdydQJ9MoqYRmqq82vW4pP//ofsXnjCiKXPPgvvoa5R/fhT580mRV5ochykxmghSSMY4Q0KVcmAtqddZvC5lwZdgxaaxPxX68TRaHxZ2vlA/AEJqJd2KBI5/cMgsAwTyFM05/x2Jiwi9zORdDpTNMb9Xnqp/6AzTeeASXY9y++kvaHjuL8qUYASu+C0UCWZfQHfdCm3n1eFGVAoBQksQmyGwyGNJoNY71w7dR3CBOtFXkR0xsusN3bz3A8i9YhYTCiXrtCHJ5Hq01Go5ER/jJAK8VoPPRrGAQBcUcyfP/HyN58EYDGn17Prn/xVsTIuGvKZjz4dUN44rTHwKRz5oUx8ZsodEG702Fmdpdt/esQtFnjRqNpXUPmNm5/tLUwpKkp61taB0KqWSTGDZRbwafo1la58vsfIL/VWATESp3GD30FyZ8dxtUdqgYrV4MYXbMgrOncG74dmHSatOwwSt/EOL0RIbZIok8ixeVKYF2ZCaAoAwEnX2YArUabdrPDYDDwgFsDxR3LDP/8/bDLWgNySfiJw9R/4o2ET+9BqGuEgQcx4LpxOguONCW9g/KaMAwJg9DTZVHkxgVmgZ4Uwvd3KGOtdXm2S8bgkJJ3QYjKPgsE5y//KF/q9YpTC49evKcyZ4FScOnKHNvdBo36Np32JqXhYuei2+9dg9AM8VbN7MJGxNpp45h6FS7sbOftJiwENAYz3PnYu7npma/izA2f5bEH3sfFg09ShCkHzt1Nq7dA1SJQlS2To7bP9S2Dy/f9gKwm5OZWUaIrTLiSiqj9nSurZH5PRwEPPzpPtxdy9PAGexcHiO4uHvjL7+W6p7+SR97xK7x02ycQSnLL599NUESVJ1AGqtk92JGh5xbJf8cTlKMjTAqfyVxzwklUTHTafK4rqFOaaxxALXGDKC0vlhl3Vvfzlv/rJ3j4Pb/Eidf9CXMv3cz1n3tHuZRWUqlCcPz5Ns+dbNFqpjx4/0V2zQz9fd1D3LgmLAS6bNFanbarZ+BEo9DlHmpPb9pb+d2qCmcet22XJabE6f7H7+G2v/xqnnvbX3LLX72dvU/dRpGNGY8GbG2uM+r3kFITh5IgsKvgyvyC7RRHpfWqAx1WiCpnSbL0oiWbw2kurO5ntTtDoQTNpMvhufMsTl2iHg/xFLyjjkfJHMw/gbRttTUwDlj8zGGStQZzjx+gdWkWIU0gaKE0eVYwzjOUFoRhQtxIEDLAaGc2bsCI8vKRQhC4MyMgqdVIbKEbrbXtXW9ztYUA4Uz/phZ8GIam4hrGbdDv9Y0Q9VkMZj+dabXX7xE3auz601sJL7YZHdigZvsQVNdBC4VGImSAynOGozHD4YgwDImT2MRtFMalIYWgliTkeUEY2fEIYRUQf2DKoyQEYZgy1bxAu3GZNOuw1dtPb7CH7f4RpDhAPVkhqZ0lSy8jpIEV9aQOaJuSGBLJkNp/eTVb0efJD20z9TOvRqaRSxnHZTMJe449IKimbovyf9dMSwPdbpdavUGz0fBjN1YETZplJgXamqqFFIgCtCiQ0sQXaK0IwsAWvFGIilAzMbMuKl4ylS+g/8cbuPyfPghrMa1/8UbCT+/1xZDcmEq+b83kaAi0bf3OBDAXuky/A9CqSxL9FVpvkOb3M87eRhx+GsHJElTjCh2Zp1ZL+LqXFAGtZtuWj57UDIIX5gg/coT8W55DXOiQ/Nyrid9/O3JQK8dRIYfqy3tZRdnG3uAv7b+jlEILhZImddDFwjiFrBDaxxtUZUapGFuOpitn3M1clK2Yv4g4vub1ZcUMCP94WF3rcO78boJgzOL8RRMw6J7rC8rseJhjuOzQVlyjIF2ixImAkgorr2o7jqeV8xXXzDuLRpw/+ihP3fPHvPoz/5B9F2/HC8YdksPlPVc399p1tJqmhxLlNdXv7ryH2zq94123mY8+PseLpzvsXuhy280rrpmYv7mKUs7c8TFW957k/r/458jcNs0ppXX5JG9iwwvqyTTEyqV2Tl7gK9C4fuG60qxIV9wEAuG79rn9KTGSWxUj3Eo/sQbyaMTJB/+cxRfvZObiUQ/4BFAUkuPPt3n+RItWc8Rr7r/IzMyoUufBrbP2a1qNbXAIqHSTmL1yZmpjCZ2UEj6UsjxlJVDUJg5C27a8oiK08/qA9b1naD+7h2FvyLjfIx0PkML4nA14sBzXFgoxB1Za10SFxh19VLQKMLXjN/tTnF89wFp3Bq2hU99g/+xLzLWvEgWpmYEzq2q3JrYWgRCoqCAsIh8U6LRuX0Ql0aAkojDlZfPCmO7TNEcEIUEUEoSR1/4NeHJHp2L/coDK5trXanUCGaC0Yjy2sS9S+va2jlG5+IQwDIiiGCEkg8GAXq9nTPSFLRksSgDgSVgIikKRF2bcaZahAoXOjJBzR0HJgt5bztH5+BF0LhmNRnR7PdI0pVavUW/UTNxAbrTbelKj3WwyGA6J4tBU7aO0OHlKrBz8Cn/2tfCzvEZ3sJft/gHGaQdQBHKJduMitXgdKMpDQ8UC1E7JD24TPz9fWgMqa+DGYepMMPFywZ15XviWu6oAhKCW1FhYWLAZKyXHNKWXE6IosjEBmPLBqjBWj8y4HLLMNl/SyloH3GnXlXNo5qKlZuNtz5I9k5B+vuk/L7N/ShfHhGsSd3ZLAO+BfxXc+fMTkOa3Mc7fCDoglJ8nEMfR5JXUOhsAy86YAkES15ifnafX65XWCfuplBJ1/Qbpdz5B8j/uQZ6eQbhGTRUlSchyLfFWjkpauv2sBGkVug9Cey7KOJnqlmrHwC2dODu1cT2UqyWFCUik8hxZEUbnLv4bvtTrlacWVgII+/0Gp07voyhgYe4iSTLasZFV3ILfWntBRQ5XBX5l8zE1vtFMHH6X9uT9Se59j5rcSpeSz41DBQVCSc/UEcKaXty43JUVZrNjDUrBVUomsfOCHV+qIrbyqDjwY347+eI0jz81S7s15p47l2zzoUmh5c1GQlXK22vbxVGXU8A+cALsiIpAduLP/vRmaG0ZaInctaYMsqscULMvk4Y3Zb9Qon37nQp5mb+dGc8ha/M0VQiOP9fh+ZMt2q0Rr3ngErNTw4l1E+WNPAQp0yEr2FmUYECj/TOcD35yz+xCVcyW2vtx8d/3AAGNKnJGoz5bm2v0e1tEgSSJAqp1JgT2sFozH7ritvC7Ykx5rtWNsE1WlBJsDjq8tLzfggDNdHONA7vOMNcytRVKBoztT1AyIQNKJcSSc+9+lkN/eRPxMLQR/gY0KQ1amOifQkGWF2RZTqE0YRQTxTWEZS4mKNCBugrtVJZRBgFRFFGvNwgCSZpl5FluaMrtTOUsSxkQRSFBYECAUgW9vgUBaeYosrzemo2rZ6KwwEUpbDzD2NOHM0MLKek/cJG1f/Ik+7/rHRRDRX848CbhdrttNN48o8gLwjCk2WgghWQ0GpLUEs+wJ18lQi0diW6/zWcmY0GjdEx/tMDa5n6GoxlAUE+2aDfOE0fLaJ1Z+qie9zK18+UUDFWtUlq1bFkqLZQmzXIK6/t3ila9XmfXrl0EQTjxrCgMqNdqRKGtkQ++RoPJ6igswMjI8sx/z9FBOcZSHcCauTe3Nhn0+7ZJUam124twqbSU71BVMqrKllt587dLRYSiuI5R9jaUbhKKJwnkw/gIUiwYsAGG1bvOTM2QxDVGo6G3lDgzfWirDGqhvUtAOJeY10T15MbYt6oRC9VUbROvUVYHdEGHO3mN49+ayk8qMWpOubFmIxPLUQISIaprDOcufWkw8GWXI86zkAsXFsgyyezMEkliGLZ/rJ1EKfzFpFnfTUxUv2UmWF1SHyThvsSkP6aUe2UzHA86dOUudjyyCCYF1YTwKsdQfii89W1yqy3xO6DizM2Uh7akkaognJiZn8+Vq3WefnaGKCq45cZVkjivXmznWKacGRPzpCtAIE3rXK79XunGmJyFa0KKn4Lw9F1e6xoFVe5Z8T8I//0yg8DP12sClTv4EoBOUNunFIJnX2jz/MkWrdaY1zxwiZnpKmN3AqUyMg0CVWZVeGZSDcZzjMd+XZdgxx3Y8n1buMMKcI2bl3m2Kkxa4KC3TTrqMx4NkVLQrNk8Ya3tfpcAyNzW+kGLAg2GwSBNDIFw5lHpmUdv2OKl5X1c3ZpDKZhurHFo7jRz7RWkcI1epG/l7UClYyRKmSC1IAwRgWD9VZdRUynHfuceH9WsLTMap6Y4kNKCMI6Jak2SIDCuAASawK+pJSg7P8dwjBWgXqsRJ7GJPE9ThsPCaifOVFla3IwbwNWvl4zHYzY3N32eeVEUnqbc+RUYrUdKidKFP7t5XqAxnd+0zgxY9n0CzOKo1pjV73+UopGSFzlZZsaolLYtb0ObtWDmGNlmRcbUXBZzcv5q7Wmt5BWT1cPNGvmMBwWBzOk0LxPKs/SHuxiOb2QwmmO0eQdxtEGr/hJJtIJpnGReUgovNCYFjgNWltIr/NQbGZwwqAAoN+LxeMTq2hqzM7NEYWg/kRS5iZkwTXPsGIQpQmXKGYO0DaSkVB5kOMufAy5lsytHl4pOu0MYhnS3tkHnpeB3Kqz+YgqW8KRnXAba8173nuM9YXCauvhjRtk7ydXdaFUnCj4LeuiVrqoS5PhvPakbF0F5bL3WLgNjybJe09I14Pbdn3M3aSfIneJVATJuyEqAsGsmTK8HKUrrwo4FqDwPTwOO14oJWnPgzH1Wfeore31Z5Yi1Fly6PE+vX6PV3KTd2jLzrhCAQ3oTM/ID9/hnYvMrU678JibvcY1Itv/qaz6afPldwKM5L6B22p+hQqjlj/IRk1qllx32Mx8xURWAlLxj51C73YjHHp8jzwW33bxGp53iSjdru2Yu0hQcLZQ3qoiDyXlUMJR/nnbBT5WXcPtq2GfV4+Dye018hfLP9X47d0610wwqq1RBtrhytn6hDJN0Zlyt4YWTLZ59oUWrOeYrHrjIzNTYC20j5JQj+4qhoVpq1wn5yfl764CuMBGtqVbsMtYP5QGBeVC1wEfOcLBNkWek4yHpaEgYGkuAEXSmQmD5XG1riJfMwuQQh9Z0Z1KzwAgRDeRaMUoTzq/u49LGbvIioFPf5NDcKebbS4RBtcCIBUF2qspxMcuQwyBGBtIyTwjHISe+/TE6L8yx8PkjKCVMNb9xBjIkThqEYQQywFU1NHvukmLdqkq/f2EUUqvVbIlgzXic0u8PKvO1lGkJNwgCX20tjhOKoqDf6zMYDU3wmQVKzpVRnsGSuQr7viMjEyimQBiTt1JlaXCXiYAQbL77JIN7rxC/OEMhckbjlCzPvfXERM0XqFxVOhXaEGjbT15KaZrVTLjkoAp2zdG0VeYmsg7MfYpCgc6Yaq2wa7pLrz/N+vYRhqMF1tK7qcVrtOtniKN1IxyqwrFi/XOUXf5b8oUS19ogTve5BavGSiEYDAZkWcbszCy1WoLAZASMxylhaGIHXFopwqgNQWDWOCREAUobS4qz/IjCDaSy92UTF5I4Qbc79Ps98rzU2PHrNjG1yq/azs3ynQkJK038hda2W+EF4uADpHw1St1Mrhsk4SdBdym0RuUa6V1bprhTFEWGDh2l22H7QMUKENOUpX1LS5D74SzZTHSBL2W48PcplD1ZjrdLG7slxY6dLSWhixtx6olTlqWt0+EClP05tfJOvIyS+MVeX4ZlQLCyNsXqWoc4GjI9tQKiXMDyx7VM2YMEJvba/C0qAhhx7YY7ATAhs6v30v45JXieENmTY5l4SX9TZ9L2Cz0x88mfVRORnvjEDXQnsLkWH2Wp4LEndrHdjThyeIOF+UEFNNhRyBJAuXub+DC34NKOWVy79mCsBTvWonTJ2DvvYG4l23HAzc1XTyyEv0ZU1svKpTKlTVdvXVk7e28NJ061OP68yRp47f2XmJ0ee0GscULZmsXdbf1cKyOtlDae0PgrY/BgQBXlNX5lDRiQWqN0YVq+joZsb2+SjQYmx1xK6knkadGBCHc/51pw3eKcRUe4oD07Bzd2rTRpLrmyucj51UMMsxqNuMcNu0+zZ/oSYZBdcxZQyns2TL64a6RjrQxCGpBh9yLsJ+TNlOPf/xnuenGa6EIbGYTUWnVkEGJbtlFm/5SMb2cJ3ThJqNfrJElClqWMRkOyLPfPduMwP22VtSgiSWKElKTjlI2NTcbjMXmeGWaoS5CT526/bS0A15eiapJ1e2zBYiCFT9/ytTasIM4ObrP2T540BWMiRS5MtDYIZGBaw+YWVAgpSJKEJDYui0IVhGHEcDSiKBSBbYAjLFBw/mgvqO0aOP7hzOcewFirR62WIIWiUV8hCpcYjnax2buBUbrAOJ2llizRaZwhjrqUMValkMWd9pJ8Pam7qHPlrSomQ8B1HAThq6VnWcbq6irNZpN2u40U0lplRBlkaB8pbSGtIAhQQIjpgmjq9QvPg6pCyNRv8w5H0BCEIfVag9FoYMtJV+Ikqmyu+p5b3vKXnVAISYGw/QKU2iARf8I4extFcYyx/ioaySeIgy55GJJluYkNQZHENZPOqCe5uAvC1Q6IWh6nPE/yx3kHOJz80ytO/gxrT8dVbwDatXGnIsSorK0TodKnWjrLnLQWBsfnPa4S3v7BK329YjDQ69e4fHkOIQpmZ5YJXDdBjwas5ikkVf+rWwBNKUyq5mtdQRPeDeAPwMTK4tEhOxaMqnhzg6pILrvQuropbplK29qEBr5jjyeeNfmWW3Jtn1xxYVS+p6ufK8Ezz09z+Wqdubk+hw9uIaQPtjXMVZtDXaWl0h/kUIOupFlahqTtIXQEXiEut9aeiTjttQLGLOeyfzmhXbGI+PWrroq5zorsSS5VxTNoGymv0Vpw+myDp55pkyQZr7n/ErMzQ6tRW6FgA5jQzheuPZGX/jW3b878bw+aDcZxY3HmZokA7TTriqkPTZGNGfS3ybOU0XBAICAKJPVWwwdTGUuYwhvDKu4Fx7gF+GYmTnNUStktc+MUbPSnOL10hM3BNFGQcnThJAd3vUQSjUqKcvPVduekIAicWVZWaMKB5lJQFErDljnivcMbnPj/PcRdP/EuonHd33uSzoXfK8fEgtAE0NXrdRCCNB2zublhGaITOK6trJlzHJvGNUEYkucFw9GYXq9nYgg8vZn7O7ihbGEhZ952e+iBhhBoLREovEtHQxCEZHnqadKZxVWQs/pdj5PtM31MdJgzViNUxfcbBGXOvBTadCj0jNbkhIdhaOsg7OQ5lVNZ+aw0JZeAAQTjNPWpZKYVrUYKRT25ShQuMxwvsj24ieF4N+N0nmb9Ip3mWeJwZKVEBay5RysT4Orz0LW2Jm4XQe/2Uvsxa2eStuCh2+0yHA6oJcbVk+U5cRxPVMszjzQWjsCerzAIUGGIVpk5C0LaQkplRo8RnIrClmPWgAxDoriGxqSJunTd8lXhXdW1tvQoKmvsPhPCAOIg0CglgRFB8JeM05S0uJX+6K3U4o8ShpsktZggC0jTlHq9bi029tRKMcEPlK1d4mJ6pDAlhH3xH0sr2ma6+MNk13cnXZSzNGvqYwfceolSeJe4qiLf7DL481apx0Dlu+b3ilx7hYDgFYOBc+cXfZxAHO9oNWqZtDe/+8NScuKqmKbyu9jxuXm/YqB0zBM32eq1Dk7tuPHk3UtAVr3WEvjOaydknWYibsBvlL52oZ3/zuyYAptuVW5tKWcvXGxy8tQUjXrGjdevEQTqmoXRFl0rUQaKaLfUjoKsCW8nkYnKfSZfVWIva4BPTHlH+2Tzl0Rb07RH6FSEcmXgbj+9RjAxqRJ4XLhY5/GnO4RRzqtfdZm52b4N3rFI3Ucza1NFxa25O1QOcHpScxMxz9W2xro7K/5ja/oTTthgrhuPRvR726TjPkEgSMLSRaN1Yf5XZRaAQ+cmpcqCFGfms4fW1ROHEiQJYJwlnF05xOWN3SgtWJi6xHULJ2nXu34NJ4uylM8LZWCrmJUMUWubAW81/FGWM0pzFCC7Nb+Rq284w7lTT3D0f70GVMnojYXTarN2neI4ptPpGIGeZfQHA9tTAKu5u8pp0hfjieOYODYNccbjlH63y6A/MOlobh3s/vgUYldIRZTU5udto+WV0lQLc/nAK6mNsB6lJQ+x4Hzw4BW2vuZFf0sVKgoy0LFPYXSalTcHVwSRtClhQRDaErCmPa/XZi2IcOBzwudb4X9CCmN9UIokqeGC7tyzNCBFQaN2iVqyxGB0gO3+TXQHhxmOdzPVeolW4zJSFn5/TIVGU6jHlaMuAxwNzRZTI4b3XqL28YOIcSlQpaQCyM1+uDgKuhAGIcPhkMOHDpcasAChDQCVShCY0HXCMDLVDnNl+x5ECHOiLIC37kBhK1/aeA8ZBMRJQp5lptw0lfNtz3RVsE0cYL/MRikqraJm7wN7AIXICOTfINIx4+xuBuOvIsz+mkCumODVMCKJE9IsKwV1BZRURWjVPSWEII4iNJh6F4DW0q+lo8+Xe8kqaeBSaw2Q2jG58iJKRdMBgRJ8V8rjiy/2/aqc+9tfrxgMDAYJreYmreaW18RKSVl5cDmH8vMK6qkyukkRa4ftbyVKRuj/nkRNpZTf8aos+CQoqhJYBSzsQE5VGVN9r7yN2PG++Yb2t3q5+wrQis2tmCefmgM0N92wSq2Wlxqdv5u4BuNooW0QoT0AExaNUhDaBDa85LHvuWj/8hmOGWlfwMl96rfXg7mdC2Au8BWytauf7/YMG31r/b+VCkgawZWlmC88MYWg4L67L7Mwt218txVfvbEImL+rzYeEG3eVeTiQYUGExsGXCo3aSOL1Q5cICknnwgJ5mpGOB6TjIXlm/JhxaOo3OB+rtulfLkhISumXtgyQK49b4YCL21NBqSEKydL2PKeuHmEwrtOqbXPd4gvMta8iRSWbAWcql8hA+Jry5vkl2jOPcRkBJrUuVxpNQJTUCcKIetopdyzQnPm2z9E5uYe5L1w3Afx8MGDDuAEA02hna5PquRG4winS58cnSY3QBqP1+/2yst9EQxX/IL8n1aPiBI+qaNN+NRxh2mhpITAd7ZQmjCLb68AKdQFFe8zy930B3ag0CIoUIjYpjGZdTTEjR2uBaxWrnatBIITyaV/j0Yig0fCAdILtVg6OFwQaX8Mis4Wn4ii04Nmfak8qAFJktBpnqCeX6Q5uoDe8nrWtm+kN9zDTOkUSb5j4hsoYAxlQGpIFOlQMX3OezR/4PI0/OQZZWbrYCGjtc9fdiXf0qTG9HzY2N5ienmZ2ZtbPxbAead0OIISpOxDqmEKN/TO0vV5RnmdP03b/hQwMqJUhqRBkLgsE7V1H5eJWfp/grXqCSspxWvVFmv1rJJ9GioxRdj+5eidCfAQprqK1JoojhsORP8uGlVSCAbHSaeKRjve4wFVVOeovDwKqa+gsEH5Kovqscp7lHoEQ1SBB97/Ae5Gr46yAKU9XX3xUE69XDAamp5ZoNbfBG0jxk8Cj3RL5e8noxuiES2XAWDO338RqOp1H+sakXM1pnRC+lAfDP9ceWLtKlnmXTFvsABZQft296fxVXvw686vfMXOxtJSg7VjLh3LN7+M04LEn5ugPA64/usb0zNA+RFBaQCbXAHa2WcZNaHIPKLVxo3Bpvx8mcAg3cztXtxKTd0FfiyM963BMATH5nh22rmyBW5tqyKXWmtW1kM8/OkWRa+658xK7FzZQhYncdqlCnrtqF2ijcRqYG48L2MEyt3Ig+O9O2MC1BhRhN+AzP/LfmXv0OhbfexvNvqn5HgZurcpoZ6FN5UCDyAPQ9iel7Ur7x/nV9wLFHX4hYZjVOX31MFc2F5Ci4ND8aQ7PnSIJR9baYMYopO1xbjWAsnOgpTErEJW1BqSpaTWbK4iTOmESmwh5YTTXsN8o10BA3hzz/Pd9hHt/eI7GlVmk7WDXbnfQWpNmKRvrG7YwkAsOLQWtFCYOII5j/3OcZmxubdka9YW/vlovxBGsWQ97GoWz4FSv81RaEZqOsCqMVJhGLuPx2Gh4rqGLhNVveI7BXUsTR0ZHChHpcj21Runc8w4pA9v0pzI+k4iMQPgGMWEYegFQ5XEOCBjt3YJyGyeQpSlJUrOBhIUXPh7IV84MWhDIEVPNZ2gk59nu38JwvJ+ljbtpJJdp1U8TReNKQ6uS7+b7t9n6nkfof8PzyLU6jQ9ej9A7bIcagkDgnMsmeNNEt5fmecGVK5dpt1pEcWTp0u6/lkip/TEVoiAIBHmuTAyNK/Lj+H31+AnpgxkFGmFbKmvbv8Mfe8+fdmABr7RoL/Cwa1m1YjgKCgJJq92i3bpMb/ASFy8fIwjew3WHT9BorNpSwJJu1zRcKrSqpBAKL0LcmJzMUFpPAJZJWi3J1X1meKPjCY7fT87O4Rz/3Mr2Csy6BdI1Miq/VU22dTEHXyzg9Eu9XjEYMKWGMdqEg0KVR5WHWVeEBpOEDpMCn6rctl/ywWUOOIjKPSvEVcG210zVLbSs4iP7vArQ86ZHf4l4uR/l4oqJfZ4o5FOtr1D9ttPVtRY89/wMyyt1FuZ77N/XtcSsSuSxY//8Etq1VRrLnsBIhR3M0l7r/e52QGUEavV+jomUi/ZyMMDPxAIe5eepd6yn8M9xtTPLGghmPze7ks89Os1wBLfffJmD+1atkNd2HSpj8O97EQsW5Gh/rcMAemJf0Nq2/S1TC3WRM+z3SJdzdn3kOk58z8e48KbHOfyH97PvQ7cRbSYlGhemMpkUZVc4H9zjH6Sg4jbAHmJTdtTRtQmCW96e5eSVowzGNTr1dY7teZ6Z5jpa22hs+5wgtCmBDhaWNyqtAFqQZTnj1ATDCRkSxA1b5zz2UfdOQoXDmmnQFZR72z+4xonv+Siv/5V/SEO1GAyGrG+sm+59lOC6CgScf71Wq9FqtdDa1KFfXVs3LW4dbNZQ7Trp/NNVOsaCGez9vY9b69IyYNfZFWvylgMLvMbjjMFgSJ4roighiU2L3u19V1n++08gBxGqlZZEHyl0UFZ8BGOFCCyTDcNqEZ3Kua6ML00z4xeXoqTPCgOv8iHnV85zY7UIw9C6jfwSGDpRVlhoI3EciBJo4nCTXVOfYzjex3b/NvqjA4yzeaZap2gkVxHCWtIaOf2vPcHm9z1MfngLgOav341calbOqa0+GYYWCFUUBrf+SnnGnRc5V5eW2LtnjwFQ7j9hskN8pogK0MS4Ij9CurMgTTyNPb1eK3agw55tIQPiuMZ4rCgK19q6Qj/+SOvJVO+JEqvu7JXaSL3RYP/+/TQbDZTWzHGRJJGcOXs9L527hWPXn6Hd2uTIkUOkWcb21jarq6t0ez2wa3Utdy2dpPqad5wQt7ThMKJXOksQa37qinvAzdGCBhGY6q72Wy5NtQQKpXDVFTigmTA6lPD7lWGBLyObwE5yUqy4X8WEZBQ7T4b7Y0JTq37qPHbuMU5Q7RROLzMsN7bqOD332fmZG4bTwbUnIu0kp0dt5XeEdlfrl70f1fcroKgKly5eanDydIdGPeX6ozZOAKyhRU8szcScHFK241bg3QVlHKH2grS0BLgvlilH/lo8fp9cTP1F/9gBcrT/6cl5h6XF/F5qfIOh4OFHp9nuSm68fokbjizbZkB25x1/wAIZZQ+csH/rsqqcd2/g5qM8OvfMXhUU4xR0wajfJ0/HFkwq9v/57Vz6O0/SP7LGc9//YS688wmO/K/72f2JG43wFKaIh2E6BWhhI/Q1uJQ2u9duJcqccOGPwziLOL10kEvrexCi4PD8CQ7uOkUcGOEphcllNv5v4w4wmyPscSpZjdKCcZozyjK0FgRhTNxoEoYxznbowVjFkhCOEkQh0bLMYT/0+J2s3XCR59/+cfb/9n2owp5B7dJGS8tZEATEcUyr1SJJEtI0Y319g+FwRGrN38KtlQMEYAWHJBDSRvtfCzTLWgIuErywJa7xY3GxHRqJc59laeZbD4/TnM5USCAiUj3i0nd8DvFIh/q4Tv8bThud4God3c6gZuJenGZn9k2UDWNkxZojJEhFGIUmkExKisJU9AtE4I+AYBJAuDMvzGEjL3Jbn0BT5EXlrFSZ+4Tnu+Rh1jrarF+mnmyw3b+e7uAG1rZuZZjMM9V5EXXXS2z8wOcYvvGcaasrQC41aLz/JjN3KW2TnHJ/igpQNo+zu+fLnprX1tYmnXabTqfjs4uFsJZKG0xoSkcLtNJkufJr5ddFCGudcGAAS5uVrpRoY82ylpSqmIVSwTH7VZ4xt9KgKZs2SZqtJgcPHDSVI+1ZBti35yJSak6/dAMnTl3Hjde/xNyuTaIoZHpmmk6nw8bmBsvLKxRFyVPQ2ltn3d84Sq9gV7dfJV24vSyHK50V2a3QTr7prHCuwJbjdaJyfzcG4eom+NFgShOXMEZUx/IlXq8cDOjqrK8VmmLyHyaFhr2FX5hK8Qdh/EtmqcvAiMpdJ4fhWaQ3YlaeUwEC1ZH5HMxq9HRZf9/dF5y/qiL8dQWhVZbCAx6PYCprwwQps90NeeLpXWitOXb9KrUkn9y0Ug2xwl9MzsSOwccKyEqpSWtidhqV1q7VbaU4kUUDVaSrdIlvRQUkMPHca7GxCVkUOHfRtcWOHDDS9ldBmgoeeaLNymrEkUMb3HrjMoFLh9Xu2doDSiPQ7LwKBw6qbgI3H/eZCRTM85wsTdGqQKLIx0NUluIz5u06hqs1Dr73VTz/bz4CgaZ7bJnj//4vuPjup7jud1/L/BeOQmqar7jvedHsaNgKX2l/l1L6MYGpIPj8pevYGrRo17e4cc+zzDRXAE0gbSS7NVOWYLBiX7IANS8gzTLSrAAREMYNorjsEYAoO8hpd/5KHkUwjAnykPmXrufKsRMADNMRd/ybb+DMt32a5K5d7Hrsuso+GwEShqF1H7SRMmBre5vVtXVfsre8Xkz4N/37orKvbr18TEi5j+4MO8Bg6gyAUgVCOCtHGYcxTlP6g4HXvLO8YG1tjTAI6b3hIvkazP2317D6G580DykEjV+8kcH3noCa8rTpnhUEgakLAARuTR03sm2GTTvfHC2lEe5B2YZ2p6/WT19Y60BRkNRrFRBraVc5sF41uVsQ5NaP0rQcBmOm289SS66w2budQbvG8HtPor77g6jZYYU5QeODN5BcmEG67AhdnpnCt8HVEx0BJ06wLgM6l5eXaTQaRLZ3gVEjlNFHXXaBlKgwRKnMdqGsrIXj1RVriskUUtb1YoKEZRAQihghcp926PleRfRoAbqdIgoJg4hJECqoJTH79+2zcS/af2poULN392Wk1Lx4+hgnTh0B8RKz0+sEFozPz80xPT3NpUuX2d421tuJpGU9Set+/ar4hAqwdhs7MY4SGJmftoOCNApCGEqi0PYIcY25sOfAz9XOTatSrnradmLJcKhrLb4v//oy6gxMLEEFEYnJK/zC6B3fE0wuyeSXnABwAqRyq4mXAwJ6gkJKpjIxxopw9k+uEGk5wspv7mSid0QIVzbVgT4HFFx6m2fopUac5YInnpqj3ws5cnidmelROQQfMFEZpxt2tY6NM9k6gaQ0YJilE+xu2L62tganKfodsEvk0vXcgnjm7INnYNTYZnvhLO2V/dSGUwhd1jRw7okq48IRP04ImPeLAp5+psnFSzX2LPa4+/YlwnBynR1xO1BjzMVl4Z7CRmM7hiYqhysdj1lfWzV578MheZYiJcxMtaiFAajcM36DrAVCBOz76O1cfs9xtm6+YtYkVKzffYHNWz/A/OeOcuS3HmDm2d0EKii7vHkKrjA43PQ1WhUUWnJpfQ+nlw6TK8n+2bNcv/sE9ThFytBaAIQNBnJ95KXfcCEEea7JbD/zXIGUIXGjQRDGSFsi2ACxCh1VLFYak9rYbndoTyck3SYHfvvVrPzIOfLOiPVbz6FHgpv+y1ez9urT5FNDoq0GUWSi7BuNBvV6w+airzMam1z7qnCqvjxYqgBUY84v5+Q45oSJXWvDCIUg9yZ0G7UuyoAurc06meJGfWNuR9saAYYW03iEijOmfvJu9O4x+Q3bhgTXYsI/20P4mhVUnBPafXTBn8JW+jPm/4pGa9dV2KIu5EbDLzlTCQjcFlA5946qhZCEUezBuNYKXShL3y5DRfnzWmrPbl/LPRUCkuYqzXe8j9G/fI7i5ktQyyfYntxO6Lzv9tLK5L5ttWulnOZd4YsVQOAAnBN643TMysoKe/bsKfeSANNnwbparKFER1Co1MeNuHxupRWBK2hl2wwrZ2Hzhb5MMKQwG+RrAQhABxo9NyB91SrZWy+gWxnNH38QOYj8/EzmiWJmZtYUw9IuoNHRmYed7J6/AlhA8OIRjl2vmZvd8KA8jiIO7N/H6uoaSysrdvEN/zOjUzj1sCq3tBW+BgxWoEFFbgj7izHAyco1EAaSOIlJ4tjXh8hzgSykCRwtXAVSdpxBx4+r8niHtekVvL7scsQ7xfMOQDwBCEoUUw6u1EJ15VtGOxLVd60mYX4vfYqlLBf2nuYe2ou+6hgnR3eN9uKY0jXfc3e0Zh39cotaxVvKzq407Zjxwounprl8pcHs7IAD+7cQouL7csTqh6ptl61SwDqAUg3S05QRvca8Wh7eMnhp5xgNIxJ+T0rNxFzuuQEAYVrj7B2f4tR9f8nchRvZd+J+Fk/fSWflIFE6mafutrr0T9pbKcHJUzVOnKozPTXkvrsvk8TVXHOj2TtTYWF/V4ViNDZd5dKxKW6TpqkvVyuF0egCKcjGI4aDgbEGCJv2pGHQHxC16gT2YAaBK/xj5hz36hx57wM89e//DB25eqNmDwb7N3j6P36Q+S8c5ugf3kvrpV1lu1JrujZz146MQGvGWcyLS0e5srlIFIy5ed/zHNh1hTDQyCDy22zuI/36KYzwLJQizxVplqMQJEmdepSAz992nQKr2KRKs4KkVqcz1SGOE/r9PkvnN6ifnqXxyG6mnz7A6mtfJO8MWXntixz6/QfZ/clbaE416CxMUa+b3uzdbperV6+Sptnkcfdg0i9FqVVW37RkVVrxrNvKdH7a8XLWqRJIOoaplatdYoSDKVZkwF2a5yhl0tS0BpEJmn9zEJSkf5spwYyG4LkO4mKN5EP7IVETjDkIAtt3wNKHr3JTAgKBaSZTBMZF4NpLywlmXF6t3VwBVSiSWuKrKgobLOnz1O04pC0nXtoKNdfwegH53j5b33iS9Mgm7T+eIz0RM/ymU2U8iIb6x46QnJzzXywthqVW7kbsOXMVCDiztOVBSinbNVIjhCaQDvSZ/wMf7wFKaoJA+lRMbRt0OUCgbbqwKoqyMJcTWc46JgQyCAnigmLPNuMHL5O+9Tz5vcvoxQHyaoPWt30VYrlmwZYF5sKAiU6nY2KrvJyhkqGgrRatWJy7DFrx4pmbOHnqKOL60+ya3TT8XpiW2wuLCxRas7Ky6vCKX7sJQevAuCjpwP9eAQBVQemCAqWnR0mtXmNmZsa+p0jTlDzLGacpSglydMUqZ281oYBZerLWtbKi4St7fVkVCM2il2Yb825JXF70V5iUv7SilZYiugx+8HaDinbhp+I0TX/PqogTlX+rv0w+uCIC/dtau0Y3lsNOELj0t9rRFbaC3rX/qiGW6n1gZbXG8ydmiOOcG65bIwz0BGLy11tBKrStK0DlMltF0JnNhAYtrZe8EmhTmiDLFbJs2BCe/Whn3rvHA3bcboVkHnHXX/1DejNXOPGaP+X0vR8mGtdpr+xn95k72XvifubP3UpzY5Egjyr7VK72xcsxTx1vUksy7r/nEo3awDICk3aEZYouXSovCvqDAb1un8FgaOsOaLLcNr1xzMQyVVSBxMQIBC79ThjDXpHlqKIgTkxOsFOyfB91rZn72HXMfN1+1l913tONChQzx/dzw3tfzXhXl+0bVtBA+8yciWbWeLOc1zo0dIdtnr90jK1hm6nmBrfuf5bp1rbRdirE6Ur1aiBXhlm7ToGFgiCMSZotUx2wAhj8Myewozl9Uko6nSmmp2fQwNraGleuLJla/J2c6ScOEQ4SFj56C6sPGuGx8qYXuOmv38BcY5EoCul2e2ysXyG3fnHXAMpxwFJjdDRpd9qDogoo8We4yhzdd6D0rQpHlDaFz2g+JlC2XDMDBGx8gpCk6ZhCKYIw8udaaGslk5rRq6/aNB8IHtoFuST51CJqfuzHZ4IGbZyArRngizg5KrZnPAhMxsVoNPKZD1EU+XXy1oEKY8wzkzIcBiEaA/SyLLPanRnDhOaqd6wXlSXVoISioKD5P4/R3ooZ/J2zbP/w0wYI2O8yTJC//tWoNESI1NOLswQ60OWBAZMvNx7hek9gfjabLfLcZYlQiUGQPsZDSm0BlgHqRZbZ/bRTsEC/sOfXBcX5eFEBupGSXr/K6CvOMnr9ObJbVtBTY382xXZM44e/gvDphZ1cH4AwimwMg/nM8TjHD6WjNzvzxfmrALx45mZOnDrKTTecZnZm230dAexenCdNU3q9vl03sy6ONzkNvwoC3Hw8jduNLWtMUP4tpW2ZXafdaRPZctBCGBobj8YIAVluukVWLQK6rFLnvREmdsK4Ic1MfQL4l3x9WWDAgDCn/fp3vTjXlARcPVQVaVPKdTtUp17oytV80eF7Q+WEuCshiSPknTerMCvtKsGpyt+V9q4uXl9UNpRyYyfcIjsGOU66aK0J84R0kPDk03PkmeDmm9ZpNlLP+9z8fOnuStyCz6l3hOWJV/t/hdo5FscNJu9bpvppCzjKlZ3o2DgxFwdYBOGowYN/+IOM2hucu+OTZLUB6wdOsr7/JM+/7n8TD9rMXDnKnhdfxd6T97Lr4g3UuzOIImBtI+QLj7XQuuCu2y/RaffICxNxrFzwkC58UJYJBssolKIzPcPU9Kytlz5mMBwyGA4Yj8Zko5wkqZHECfUkRqBJx0NGw6HVJI3lRWkYjsdlapTdP21BoEATDGOO/M4DbN5+CYQBAgSaC1/zFOEo5OZffiMzo7BcH48B7XrbN5e353jh8g2kecSBuYvcuO8ESZTa+gDSltYt6aRQijQvyHNrCBUBMkqoRSYWoCrwK6qFoUdb56BQiiSps2tuF81GncGgz8ryElmeGU3Cmp5lGrLr0aMIDXOPH6W22ma0uE3/2DL112i2P7VtO/g54gEqzb/Kl8alozms79bSm4d2ABYnTIRwfeUnD4zXGYQLpiutLUJKhO2Yl2UpLtOgUIq0yG3DHLOuzo0jZUAWDhm/atncNxXEn5sniWOCtTpqOzP3FSYmIgjs/yLAWS3L8VdTqG2XxTgit+VsvSlcicpEzPyUpVspAxPXMHQ+X20j8culcBrzBGfw9zN8qigUKtOIs3WCICB9/RIbP/EIumXKVdcf3kO2t0fxzA0MPvUGctVnqvkccWiKWFU1fxezUSoG12hPlsvaoQgDhFz3QiEi7x4xW2dKO0sEYSCBwCpZBVmqSt5jGz8JXO8KAxD19JDxHVcZveElRq85R354A93Mrh3WWFL/yXtJ/vqwPxPXjNxbZHXpYtD4vS1jIUrevjh/Fa0lp166kROnruPmG04zPb1lxomRCbsX5jk3GgGB7wCphJoIjLU77xWvCoXjXGHGF6AgKVBTQ4r5PvrgNrFMaD/5ALGILbs3Z0oISJKEIJCMxkMyWyDJXSJE2ZtECpd66FyQbgTXnrsv9vqy3AROo3Lz9AFV3rRUubbyLxii8gfdH5wqqPBKwjWDN0qILrGDf5LNaxVU6jpXBKQThI5pCYXWhUHayvm1zNOFsOkyYmJ0XuBeU1pS64n3ALamr/A3b/2vjJMu8soBtq8/xtT6HsaNJutbC9R600TDFkEWI4qAnfUTqsLd+dAr9hbPdJ3AL8dnwNakO0Pgg/z8vey9J3h8lSFMSCEAkt4UX/G7P8bon22xdN2TlnmDFopxc4vu7BWiA8+zPX+B1tpudp+5g5knHuDhRw4wGMLttyyxuLBBlhdoVWqcShVk2Zjt7W3yPGd6eobp2bZnVkVRsLW9jZaCdqdNrVEnzTJazWZZO936X0fDAb1ul+2tTfJ0ZLQQNKNxhpRDojAgkJI4iigKo6GhFY16wsKjR5l/+CjD3VtMPb+Hi3/naXSoeOkbHwMNN/3KGwhHkU2vkh5EWtbO+dX9nF46hBCKm/ef4MDcWcJQl73FETaNy9RyL5QmywtyJQijGnFSM0LWBQI6geQhoSwPhzBBbZ3OFPPzcyAkq6srLF+9QqFyE4xYyaMXQJTWmD6zl6npKaY7R1h+/m5eWPgkeZzy6HUf5oa/+kqw2o7PmLD0U8qsyjmtCD7vJtgBkt3Lmcd3ZhJU/yr1gmpEOGilyLPMFy9SWpMVBcPxGITw6ysF3nRfKMV49zb50a55/nKNxuk5GvXEnI0igtg8QIrABwg6i5Khy8r8d9jqwyACber6D4YDwiDyGrZhHYYvjMcjAy61YpymSCGJomAyhVJr7wapMkGtsa6EwhewcqV+gyAgu32NlZ/5DGpuZM7nU3PM/ecHuPqLH2PufXtJ5SV644Osbd1Lp3mSRnIZKBwT9bT1crtR3Sa3Z3EUEUUxGmOiLoqiVJw8KBC2JoYiQBKqgCIIUEFBrhzQsTEnolxrHSmKfT2INMkj+4mPL9J/1/OM3nJ6UtIXgubv3EHrf92FFgG5zsHWRqhe5lI5o0j48+IWtgwUx2ropXq1OH8ZpeD02Rt54cWj3HzsFFOdbV/mvZYkvh+HoTNNGASIMDSxDW4/nbyRGh0VMDVGzw8oDmyjDm9QHF2nOLROsW8LtauPbo9ovHiIvT/5j4ipVdbdASizXlEcMU7Hlt5N7IWvbmrPuakAGfiqqaKitL8yKPD/MoCwGij3MjBt8noce6kQP8Y/o4PCmmBLYVz676w4qxCz15m8mbH6HO0JQXvUjQUsBp1OjNCDGvMdr61PzOdlGJ2YjFDQwOLyMb7yIz/I/37nj7P04J/Ag7AOnFUBQR4RjZrU+tM0tuZpre+hvbaPqeWDTF09zMzVI8TjpkGd19y5OpIyQNHVHJ/E96XNBAesnLVBlN932olDmKVJjQpIMvvQ3Fjk9b/1f/CR7/5XbO49M7EceTJk8fRd3PrJb6LenSbPBZ//QouVtYAjh9a57siaR7pOMIzHYwaDPqPRkFqtxszMLkPIMrB14GFcpCZwSylG6ZggCOl0OghhC+5Y90IcRsT1OkmeMyUkve4Ww/62CXgU0B+ZbILQVszTtqa4QBFFAbUs5rrfe5CnfvTPue63Xo3MAs6/+wkDCL7pMVCCm3/1DYRpXIJNAUrFnLhymItru6nFI24/+BzzU8tW8ymj0pWGvNCMsxylJCIICGoN4iBEBFGpoVVBtRQmKLWi/sRJwvz8HNPTsyYWYGmZnusAZ9dVCWU0VYyfO24ktFttOu0OeZ6xtrZO688PIV4boKOC5Qdf4PDvvo5ou1ER2JpKkrTVrsrxIXZaDBxQtuzVfua09p0UvJMxGWCrKdC2pgNobZh6mmU2nsTs+ThN0Zg0NAdAnJlfIEiznPTOVZNGCETPzdAaThPFkc1KwfMRU8FNVABIlceUGqaoCBTss4UQ5EVumi3pMpBRa+3dAAjTRCoIQt8W2TErd35NbIHyT3TxBK58sZCSIAg9ky+O9Fj+uU+THzBgJ3ppisUffgMik4QvtWl+boZm+zGiYJWt/u1s9m4lzTu06yeRIvO8wc2t/FkqCE6Ddn80mk3PGxTCgwECV4OjXEsD/hRBIIjCAKUC8jSnjP2q0JTSiCwkeW438XOLZEfX2PjBTzJ6w0uT7FZD/W+OMvVzX4FQMbkoDMACU5dDlg6lNM0YjUZI2TBBqFUaoyo9So7prIS7Fy+htOSlc8csIHiRdqvv7y0FvvaAlKYnRhgYK0iapYyKMemNS6SvOUd+x2WKG1ZRu7uo6REk+USdD6endT5/G0f///+Q+tJCyYN30J1Wiu1en35/UAGQ+J/SNStygckW3HobnphUZP+21/+DAEKznGbQdm4CXC72Dh3T8RRKV0A1NxKKIOWxV/8Bp2/6FFKFRFmNKK0TZXWi1PweZ3XzXlonThvms3GDztYiMxsHkCrw2rLXhJUNWNGuoZJDDa5evdUqKoystAXrkvHb7xo+WNXk7ZN8ZJ+5tHn2JnZ/3x/Q/5c/SO+tfw5SoYOCPCjIkxHDzhqj5hbN9UWiYYOk1yHpt5F5NInYNbjKYM6NYNBimWbglXpR1klwpjCv0VXn5iJ6PQBwt3oZFl0tVQvMXDnKG37rP/E3/+wH6M9e9Z+NW1s8+q5f4fwdn+JVf/rdbP3RG3npfMzC3IA7bl8xvc9zwwCVVvR6Pdu9rU5SrxPHMVpgWowWBapQvslPEEiarRZra+tsb3fp9XoorWg1Wj4Iq91qUa/V0NrYxhqttg0GKwgDyWg4pEhHFF5QlQCyPzQ+5Omn9zP71CGKXSm3/dJbQMD5r7OA4FseBeCWX30TUWai+cd5wjPnr2N5c4ap1hZ3HnmOTmPbnAGNrRtvUgJNY7cQGTaIoxghXcEWSZXplT5kzysIgoDp6Sl2795DFEWsra1z+vQpUmvZUKoUJMIxRSFpNdvMz80RhBFbW1tcvHSR8dhoFjPPH6R5YY7e0SUG+9bZvOM885+5ye+0dBaCkghLGsIwcYQzu+LPdZXfSFG6RURZOMDY8ayPtNriGXRJ40BRaPIsp8gLnCsiy0zcSCAD7/t151hYIZUVGeMHr/rhth7dR0iEE1hYzbT8X1bMx8JeV/I1X+vAA2iBK8MshCQXOUWRm7a4Gt86uIxJCCs9A/BWhKoK7gBKnhe+rLL/nrOkCijmByz99KcY37IGQLBcZ+GHXkf8/CzDBy7T+cANiH4I5KZKYbjJRvce+qODZHmLqeYzBGLbgxZnLayazo0GXa6rlAHNZrOUpMIGulaqKBqFzKxjIDVaS6Q2cRZRGFCokDRLvUBSyoZaC6Ot60ZO/+uOs/F9n6HYu+2JXwxDdD0nPr7IzI+9lWC7hhaQZSMTj4FC5qYcdhTG3ke+trZOHMemUqSwXV6tr71aDcPVLUCU8mjv4gWKQnLuwvW8cOp6bj32Is3GAKUKmo26oUdKmnM3i+MQOZaIlxYIlzoUnz5Cft0ao298mvRtJyDcwV8Lwcxf38fBn/t2oq1plNATZcadDpAXOd1uj9HI8KnC9Vtx2yGkT1N2lqmy1wb+zL6MLvuyr1cMBnYoAy/zeTUatvJ+dVCU4sn9FeQx93z+mwiLiM+85dcZNNevRRT2VRt2mFu+jgPn7+bQmfuojdtI7cyxRvN3moz5v+KLswTuLA6lYK9M0BalKSfscuotf7HlNl2OuWOWDmkqJTj+7AzDM23u/eWfYzVq8dzr/gAVTKb/ZMmAPB4ye/F69py6hzBLShMTJWOtrpOujOllFp8qFzNMuoyQL90NZsii+rO6BNXbVS+0HyycuZ3X/e6P8fHv/FGEFnSWD7Jy+Fm0LFg+cpwPf/cPEMy8h9YvfhevOihIYoVvXW7XrNFoIqUkVwVpntkqeuaz8WCIEKaFahTHbG5vM05zhJDU6w3TMjfN2Ug30RqiKCLPC+SspNFqsb1lTKutqRk67RYSQZFnrK8u09veICty33ZYCEizAlUMCcKAw3/4Kgb7Npl+ai+3/J9vQgvF+a99ygMCqQNu+403MexO8dTZ69notVicWeGOIy9Qj0eA9FkB46ygUAJNSJzUCaLItgvGB0yZJZF+26RjShqSWt1YAWamSccpS0tX2druWquJ9pYAx9TDKEIISbvd5uChw/S6XVZXV9na2qYoLPIRpoxy1K+z+Nmb6B1ZQgeKq298hvmHjiGUdBipQv94bOyYprug9CYIW5TrWjpy9RfcWIVSHgwIXY2MLt0jqjD+9kIV1rBsQKTR+Gw5W+HAoqkRoGxwXp6MSF+1ZsY8Dug8sc9oc17CTYIAd5+SDVhXm6gyICcqhJ+T1gbUBITWVxugtCIdj70WX61oWLpK7DgsMFHajNt1vTMxDEFpKbDCWrdTVv7j5xi++goAcjtm148+SPLwglF2+gH1T+wrV15o4miFXZ1Psdm/i2F6iPXuvbTrx4mC5Ym9qgIBZyFw78WRKTld3ViN9vES0oElYeuPWKAUVL5gMoCMFcVkJLiqmpBev8zGD3yS/ltfNL50gO2I8DePwZ1b6Bu2mP03bye8PGXjjLSt6GhpRSvS1Nw3jhLCMKDb7dKZ6tBqNgmC0u7idlK6filW3/HKKoYn7N/9EkUecOHKUV44dR03HzuB1j2i0ICbqvXIBcNrLdDEpNspWirSQxuM/t5jpK85N2kR0EAeMPu+17Hnl98NwzqZyIxAx5n3DTBIs4ytrS3GaWpoyFqNnBvA0ZmUZVBy6bpxv5ey65W8vkzLQJVYvE4ygaShSmD4Q+j/ZFLGCyDKa9z78Ley99LtfOSr/wuXDj6FLxFWPprp9f3c+di7ue7Ua2ltzyOUCcYpFWe3KKALbYK33Op4JCxwZY21pQjhKuFpc/C1tpX1nBnMWRu0BlHYaNrqvMzP8xdanD3XotMZcv1cwbH//UM0NxZ47J2/Rp6UnR7z2oAz936Yc3d9goUzd3Dzp97DwadfR9zv4Fwpfp2sVaKU5fZAOeW9ggLdHDzDtsxHurFWAEdpnSl3xJmqvIVFV7ZPg9CCg8dfy2ve90M89M0/wx0f/vsMO2s89fbfpDd7laI2pPiO32Pwto9z9S+/mfpDb0IWEejAZD+EmkAYkhM5CBtdLDEundFohBCCpFZDqYJ63YACE1ErTMvRvKDX7zEYDJBSkuU5l68usXtxkaRRZ7SdkVutX2BMe7sW99KemuHKpQsU6dj2GzCNjDKt2eoNmDoxD2lgAo/6Ibf8wpsQEs59jQEEp7/lYbIiof8j/5x+r8XBhUvccvAUoUzJlSYvNHluczfCmkkpC0OMz9/uUAVcCU9XeMHW7rTZvWcvSRKzurLK6VOnybLUBs4Z07GL5BZIgiik2Wyya26OKIro9wecO3uObrdLXhSmhbHdY10SBYufuoWzX/85ikbK+qvOMJ7vUluaLvHyFxXuOwqYCEcak+ymGndgNEHtGZQpjuTKG5u/gyAAIRmNRiZQdDz29TKkFAyHprV1YDVyZwoNQlMdcTDok2Up2ZEtikPGtBstN2memzMR68oGWglbjU9eqwz4SHp/+uyeVYTj5FmxTYKEQEptSukK4zePwsisTaUbnaic3yzLTXS4MnMPbEEfZVtuV1PydK1g/V8/Sv+d54wxaRgw85/vofFXB3zAbPTcNCJzIrjcnzAcMtP+AuFgi97wFrb699BMnieJz/nryvm5v12xHGi2Wi9rYi6UIhuNrMvEWU8soJWB15uVUr6CZZ7n9Lo2wHpKkH/ri2x+30MUe7p4a8Bjc4T/9m5YrpP90cdo/9DriJ9a9NYTRw9l1ocBG8atMibLjKVg6eoS8YH9tgKhmEixU5TZbL71OxVAIDUH952mUCGXrx7khRePcmj/lklZtsjd30tbEKQh2JUxettxtr/t82R3X4aoKMnFbckoYvqX30znN95CoQNkpJDS1uTIQWD+HqYp/V6fLM89KESXdCdlYCxkgV13m/1mPi8tPWXa4iuDA18mGKgI0oqJr1zMlztA9tqd43FarPuuFuy9cDvf+Lv/jc++6dd54r4PkEdlWgkCru57jr9493+gtT3PoTP3c9OzX8nBC/fQ6M/gKvp5U2tQrftcajmTARo2+rwiPJ1Wbba8sMJWuk997Xdp+1E670yvH/P08WkEiuuvWyUKc3QacueHv4PG+hyf+6afZdTeYOrKIQbTa2T1HkWYcuXYo1y9/gmmrxzm2Ge/hqMPfxWtjd0IArc6FW3NIT7tpuMbkZRAoMztduvs1li7vZjQTnc4CextPPjQWG3UMUvBdZ9/J4POGmde9RHe/Bs/ye4nX8tfP/Cb9N75IaiPGO2+zEN//7/x0r2f5q4PfDszp65DakkgQpQ2aWRCaYQ0Wno6zhiPh6yurhInCbV6neFoyNTUFFpDrVYjCG2BHqVpd9oMh0P6/T5paoqcFLYandKacV4QBCHTU9PU63XQimarzXA0pt/dIh0OUMpYCbTSZEVGvtalM+5AEiDDgFpR4+5feQciFJx9x5PoSHHu736acGWBY7/xOm7YdQEoGIwL8lwTRAlRrYYMo7J4jRB+HUV5SPx5cZHa84uLzM7MMB6PWLp6hV6v54vReMGA1WRtY6HZ2Vl27ZpjOByxtLzExsambRVsmUOFEZU7bGip+dIinZN72LjzHOPZHqv3n2L/B++tHhMQZWyAE44a5QV6VUC6dGM3J+fPdFqjN6oKV2EtIEmM1lmv12k0mozGY44fP+4Fv5tHUWjyPCcKI6p1RhzQ00oxHqfGOvCqdWjmoKF9cjetbIo0SsmLAqlMSWdn2dup0BgLiNPOKgi4AqIcn3LfMTzA+I1d7IZLDYNynZygT9PUWDy0IkkSwjByrAgfmKq1aS8NqFCz+c+eYfvbThoNMxN0fvE2Wu+7AYrSmiIylzpc4QP2XoKcVv1ZpOjSHdxDb3QbuWrQSE4gRNnVsdw/c1MZBNTrNVxqslsEpTSDwYAsywjDkHqtjvdQWVO8svcIgoDQWkXqScIoidg6cJHRj3+B4u0XvDVAbifUf+sO1E/fgFqOyP/10wS/eDP5Hy+Sd3JvLRFCEMexcZMZZuANuUqb+iQmMDnn6tUl9u3b6y1RLh7NsTa3s46zl4XjNFIWHNp/kjSVLK/t49ylmzm8/zihzMoMLYMtyWa2WX/LE6y857MMr78CgfIPEKsN4s8cJf2KMxAVtP/z26i97z5SlUM0ROuCMIyIwpKvD4cjU1irUCX1adsyyzYxqzYw8+DV7p2wdOms1a8UCAAIvVMN+CKvH/nhJ1/2/WstBe69Ukuf5Ih4Yq0Mw15ntkYFOSdu/Sgff/svsDVzCYCgiCiCrLyPBqkCOpt7OHrqNdz43FvZd+l2asN2yXTVZPEOp92XgY+uU14JTJRSvsCPhRcVVI/3yWAJXwhBoQSPPraXs+c6HDqwwsGDyxifrkmxUbrg8k2P8IV//F/orO/n7j/6J5y5/yOcu+9jDGZWK3MSNNfnOfLIW7nhM1/DzKWjSFXmzeJMnJXelU67VGhfXrRc74pE90tfAgl33wp/s6fENfgRL79nAlSU8+Q7/if7n3odVz94L8dPBUx/818y+tc/z9qhU65lIXG/xQ1/8w5u+ut3EW92jBkWidKmpsB4NKTb69Lv9QCbOVCrEQQhcRyT2XTDOIqJ48ibnTMbXNbtdhkOR9TrdUbjEUoVNOp12u0WoTXNp+MxoKjHCUIX5OMxa8tX2VxfBa0Q0nQtbNRCds1MI6UgFBBIQd5K+fw//ShX3/UwBBqRBRz5vXs4+Cv3EBV14qRh2gUHIUJIV+TaMni7H54ITUBhGAZMz86ye+8+pJSsLi2xvrZmBIqlQSydVve93W6xuLiber3G5sYGS0tL9Pp9a6Y0wsfkcEsvtCf23GnmWnPuPZ/jhe//EAjY9ej1vOpH/h4ilRNWPmcRK1/KmnpLJlMNQNv5fhiGvoCK6Y5Yo9Vq0ul0aLWa1Go1hJCsb2zyyCNfYGVldYLW4zihP+gTBMYNUgXykc0nHw5HVsjmbP7a5xl/y3nQcP9vfgv7338fm5sbDEZD8syANqXcnIwoqPIHLwilwFeH1GXhI+ci0FqVnQ21yYzp93tIm2PvSme7+6Wpse6EYUAYRT7o0QQcKl8gp6y5odBCs/UtJ1j7D59HNwoooP3bNzLzH+9FjkNvddCUdQ6c26Xcd/x+G/fVLrqDByjUDHF4mUbtOFKMJi25uDUI2LNnH7UkKfcU6G53fYpbFMUszM+b5lpOSVSaQhc2A8SkI6ZpRhYPuPLOz7P6XZ9G7+l7a0Dy1F7mfubNRA/tZWNti3GjS/5Npwn+5w2INGRmZtbWDjDzKJRi0B/YHgaFBQBqYuwCY3nau3cvu3bNEoQlmHD77GnVbqITpFb5R6mC9Y0RZy/cy2B0kPnZKxzY9zyBLMhVwXB+lY2/8xir7/o84/0rvq4FGuSVDskHbqf+B3eRvuMEg+98mKkf+2riD92KLrA9SWwQYhiQxImpzVBkjMcjVOEUgQr4FTYg1VoFTOdJYXmNDeKcsHg5ZG+o47Hj38OXev0/BAOlplG5FVUtexIMVK6p/n0NJijNOQhYm3+Jj73jv3Lm2Gc49vyb2X35Zk7d+CmWdp8giyfrcQdFxMz6Aa47+TpufP4t7L5yE/G4UUb962okra2RXsl3L3NuS2TtiatyGLBWDhPtbd67cHGKx584SK3W59gNLyJFWvle2UVw8+Bpnvin/yfXf+Yd3Pjxd9HftcSZBz/C6df9Fdt7LqBd8yIN8aDNvqdfzU2f+FoWXryDKK+DNTkbInapI2Iincxrgh4UTEZyeMRY2RMHhTzz11BGS3jRVn5u9ylLBhxPTnHit95APc5441dcJNy9xHNv+VOe+8o/Y9x2AUGC6QuHuO2PvoW9j9+PSE0Ht/6gT7e7zdraGvV6nT17dtNqtdja2qbb7RKGkfchK6XpdNo0Gg3CMDS555h0vbW1NaIo8hHNo/GQ1Fari6PIN5upJwmRlAhV0GrUuHDuJcajPkJoQmEKpyRhSL2W0KzXiMKQla0pnl7bTf+n/zvFt33UAgLJ0d97gNt+/22EhU0N9JWptP9/5xon9ToLu/cwMzfHeDjkyqVLbG1ulIwIPFg1mqcgSWrMzO5idnaWQhUsXV1ibW2VPM/NfbXyNQI0Lu+4FFwIPFOpCurBvjU+9yu/RjYzIOwl3P8930n7zG4vPBztlGqQ1Va1828HXjD6vgJCIl2xE2v+bzYbNBsNv3dSSrIso9vt0u1uc3VpiStXrpKmqbVcGetCrVanUAV5oUy9BuseUUqB0LRbLba3txmORhRZTtEes/6xj1Ic6xKOY77tv/0Ue87fwGg8ZHllheXlVbrdPllmU/Ym1mOCBeFS+czzzNn1PlhrtSjBgGI4HJLnObVaUhbVseAsy3KiOCaJE+uyKM3UZZ669T+7lEJd0Puqsyz/3KdRHVNJsfmhw+z6gQeR3QgDYlz+eHnmtS3prO08qgDRpezmqkV38ABZvocwWKdVf4IoHHqgWI5JmBTWuXmENIWfBgNjiRO4fRZMd6boTE1VNFDt71OoglzlbB26wPnv/hBbrzlRxgZsxUS/djNzv/MamqNZVKFJ05TteIW8r6FrlIFWu21iijR2fibQeDgcmgJZlV4Z1cDQZrNBrVYjjiOmOh3qtfoEAJBVhcruubC8TRUFw9GIra1N0rTG8tqbSbM97N7zErP3fZar7/w0a+98hHxxq6yOVQiSi/O0P3Av4r03Ii52yK9fpfuzH6T9s28m/uwR0E65tPxBuCqE0jZgKoNqnQXX8TQhBaEMfC0BKYRJa0CXcQSVeBqEo2uzl48f/+d8qdeXAQae8pv9t9yu8vnLgYGXu75yT1GJ0rTfTeMhj7zm93jigffztg/+KEdPvZbVhdOcvOnjvHjTJ1idP0MejiduFeYJu1aOcOzEGzl24k3ML11PmCWT/bCtgC60qT1QNdPt1Kg8ulaFNcXa4kBaMxzUePSJWxiOIq4/epJ2c9sP3rX+dOY7CYzmlnnuXe/llr/4ZtpLe9Foxq1tLt7zEC+++YOsXfcCKsr8UgZZzMKp27jxE1/LgadfS9KfMuvmu+RhIraFnCjyhijNX3gBXkkLq1oDwFsDvO+pohNWNcRydzT9nuRvPtti2At47X2X2LOwSZGl9IdbXNz9LCf/wYfYfPAEKjSmW5lF7P/Cg9z0gW+kdnYBrY0pMctSisKk+iVJYmsB5BYImMY0g8GA8XjEwoKpPhZGEUktoVar0e/3jf81DImiiM3NDbrb20ghaDRNmlFRFKbmN0BREAhIh33WVq+g8tRUMxTG9CyFoF6rM1b7ef7cUZSGozc+xdZP/QEX3v40SGMhuOkP38DN732ryQRx7pgKZWsgCENmZnexuHcfQSBZunKZ9ZVVstwUojHWA3OoBXgh1O50WNi9h0ajwcbaOpcvX/bFgbwBp0KjTqKpCgOo0u7O3GoVFDz143/A0hueA+CG33gL1/3um8y5sD52Dyjc3SqGJhe05JmOTYWL44goimi3WiaQq9Wy/uJtNjbW2dzcotfrMhwOGQ5HZGlKXuRG6Np7N5othJBkeYawQMBF5SuMxSYIA1NXIjflbfO71ln7y49Do6B+dpbXfvd30c6n6Ux1aLZapFnBysoaq6trjIajsn3vyygxE5qjX+NSi3SWAjBlknu9rikOEwa2XLJRMrI8p1E3jaW8RdJtIM4CZEahLYhQWtG/7zJXfumjFAsmzqj22d0sfO8bCZZrfi93toI34yxdSk5pKAW8u0ajVEJ3eA/D8RHCoM9s5zhRuO3z9HObHimFZM+ePSS1hF6vR5aZYDZp3VUCQRiFzMzMUEuMlceBT60VWTLk0js/w7lv/zDZLqsYFILw0UWiH7sX+dkFktCU4HXrkReF7UViLCm4dGC/X4Z3F8oAgjRNJ5YhCAKSmmtpbapaCgSz0zO0Wi3vQqvub/V3VeSMxiPGacpwMESpglS3WNp3lPwffQjxng9RzG6Xh7CQxC8s0nnffcx/8n7izSnW1jdJGTP4zoeJP3090bN7KpvkAElpYSvBujtSemJcoW1oFtif3kVtFV3pgYCzYNnAZHdY+f/YMvADP/qwEajiWiKszJRJdujB9Mv+PgkGRAUMVBYDgZYFZ488wuOvfh9v+si/ZG7tCBpI4wFLe57jxC0f59QNn2Zj9rxxJVSGGGV1Fq/eyLHn38Sxk29kfvm6sqwspV9W68LWhs982lr1fzdObTmW4QuSF05cz8XLiywuXGbvnotIoS2as0VGvE/emvGVZtzYZmv/S8ydvBWppUXziiwasXLL05x664e4esfjZPW+n4tQAdOXDnPDp7+aI59/K63NRVxwmkbYspaucE0lfdMJB7e2jvnYf/0OVJkIju9ZxuWbdJRoI88Un3tkivMXY2667io3Hj1Hv7fOsL9hgt6AYK5J/2tf4tl3f4De7it+LrX1Wfa//yvZ/aGvIBm3aFqN0aeBAqNR6tuIuk51Kyumg1qaptSShEOHDzE9NY3x2eY2L9sEV169eoV2u+UtQ4EUjEZjBv0+Wxsb1OKYudkp1teWWF9bRmhlhIyQCCT98QKX129HCMmtR86xb3ENPVXwxPf+Gefe/DhIjcwCbnz/G7n5fW9BZlFJz0JTqzfYs28/U7t2sb2xwdVLlxj0e9cIFqNlmkDXJI6ZnZtjfnGBQimuXr7K6sqKiTi339sJAkqQVvrnvQDYubf+d7OXV950nKd+/A9Bajon93L/9/9jgkEC2phJHXeSlbNZutjMy1XUi6KI6akpWu027XabPM/Z3Nzi6tVlNre69PtDRkPTfdFkcZQ9KUysDwSBSdNKkpj+oEcUBV4Ldy2inbVhZXXFpEtqoxEPv+tFtn/6CRDQ/qOjHPiBNxIFEUkSU6/XSWoNojBmOB4zHAzJcxNg6QCIe00GFpbMuvoSwglVI5CUUjSaDdNhLsuREkbjMY16w6TOggnmnGB+xkXgdhELBEY3rHLxVz9MdmQLgPi5WRa/881E59pM7HgF9Dle6qLbq/Nwmn61v4t5hWz3b6U7uJEgSJltP0scGZCaZbl1B2EtdnsZjQY2wNfFXEjPn+MkZmZm1rrKDP1vH73Aqe/8Y9bve85bPIPtOnO/92rqv3YnW2fHZHlOFIbs2rWrdJNU3E5uvN5c7iwggFaF4d9Ke+uAkK4d9WR/F2UVuCSJmepMUW80bByC8MAANMPhgH7f8NxABqR6RP+O82x9+xMM3nQW3RmVsiULqD21n87v3k/9ozcSdBsktZh6vUavP2QzXEHHBeJKuxyLP6fWOlEBA6VFFlszAFw2ThCE3kIgrbDHnnUwBoIybsOc2J1a+OOvAAy84gDCpf3Psf/s3VQ1f/e8qjnCve/e07r8e+I6p6lUD6KfTCUdR4DQkiNnHmBu5QgXDz3J1OYeorxGPG5w8NyrOHjhVbz+k/+MS3uP88Itf8OZ6x5ia/oyShZk8ZCLB57k4oEnee72v+I7fvO3qI3a/onWOGRae+YFKrfd8pQjIlVZV8sO7SFYXZvlytI89VqPxfnLhIHwRKa1toFtrqa+MtaEIoe+pLl2lKEa2GrIliiHgtmH7+D+x25j6/BZXnrLX3Ppwc8yml1HBwUbB07zhW/9RXrTV7nvf32fN59qhCmyI21EsUPoOHDlQICrSGi3wEoWL+QFnihdpoV530U5Y5lWwYun65y/GNFpLjHT/AIrl3sUxRgpC0IpUEKSFDV2fex1zB2/nRNf96ecff3HyGtDRrPrnP7H/5v46izTH72d8Whk0HwSo5RmOBwShTHNRoO+7VEQxzFTU9OkacpoNPa1CtxcxllKEseAoNftEtkWvK5UrctSmJ6eptVssrm+waUry8zNzTDKUvrdLbTWhFHCcLzA5Y2bETLgthsucGCxhxQJjCV3/+rXodGcf/MTqKjg9LseYu8jtzD7wiGklMwuLLB7/36KomD58mUunD1bKSMqKnzBADhhm6vs3rePRrPB5toap06etKmELiC2ksrqhL4QxmRfti401pdAorWpkuaEd3lOy7MLMPvkUepL0wz3bNA/sEr38BLTzx20JFQNwPVfMRH02twzjmM6nVnCqI7SNfoDOHtiwMrqZba2x/QHBWkaUKhZlM3FL0mttCwIS4wCYb1fOUIopCgIZEYY5kRhRhimTE/FDEcjsrTw5hEZaLIHTP49CuoPzTMaDBkxZDAI6PcHxHGXODaVCJW1IhktVtisC43vROj2aserqgZptGktnaa2zbOksPX7lc36iCJDj1XN1n/bsUG3HgJEABv/4BkPBMLzbRZ+4HVE5zt2nfwhtWMHF+Ak7J55C5XTKsOynPYkqFHMdJ4jCFK2erextn0H0+1nicMrBIG01lIYjUZsb2/RarVQhbF2eMsJ5vlZmjIajWg2moAw5+Kf/AlrDzxjFq0QdJ4+yoFfeifJY3tJ04yi1WV7e9u6m8p4ACfUXa0KD8yswuSbnAmB0BAEgiCIDR34kvJuh8xP517q9/usr68TRRGtTpt2q0O9Xmc4GNAf9Cyv0KafSCQo5gcs//yHyPdXLAGDGuLT97PrvXcz9cgsom+sgq7QEiiazRrDtQ5ZWuCswtX+MODknIvnqKRoeosyNmAwKF0FwjHtko5KyixBoaORV6TlV16vGAwsXLpxx8P9nuzQ8q99lTRYsRzoql5avVaXoM5+R1v/fKe7yI3Pv2XiWxqBUJAM2lx36jUcPfUgw+Ym5w8+wQu3foSzRx6m215BC8X+i3dSG5dIzYAPQ3RFYdI4hBSm94ctT6x9i00mtKI0jTh95iBKwb59F6nXBXleWJO1iRw2S1USp4m2xeZlOw1NsBMJA8TH93DTc/+Qg3/wTi698VNc/spP0dt3hSCL2Pe51xqgIkAIk+GAK3gCZa97z3DL4JhSsxA4Z3OVOTvLh9c43d/ajlvlrK0qnn6ugVZdDs4/hCg2TUWwoHIApSCOElSh6azv5lW/+0858MiDHP+G97J2wwvMPHcji0/eSS6FScuyBz8IpGm4owx9JElizJaZ8RNnec7W1haDwZCtrW0WFufJ88Kj6zzPWVpeYm5uzgC5ILSKlzLmtkAyNTNNvdGg3+3S73XZtWuRmalZhv0e43SWK1eOoAm4+boL7FvcsgGbRjhG/SZ3/9rXg4TLr36WW3/n7cycOsCh669ncf9+upubnH7hBfq9nj/AckKw2pXWml2zsxy4/gbq9TovvXiSF5971tCNTZ0qexrokvmjCYQ0jXJsyV7nDzZpe6Y3fBBYWnVCuEKK7vpos8nuj97OcN86uz92G62zC44a/Vgtx0cKQRRFaC3pDUKG4zqDcUL3hKDbGzIcbtuS0y5AF0yqVEogUsIgJ460bWhjrDDCCmNDtQGImNFIkauQoogY5wlQh3F5Xte2JFqnCL2LIBgQyR71pMfR938Fg8sX6d56hT0nbyCcadPr9hinGVmWMxqNbOBV6Kv6RVFsOuRVGuaUZ8AW/BL+8FcCbQWqMGtfb9jCWXaRhRDG5RVHk1aFSc3JWtom0YBQkvlfvI98Ycjw9iUWf+R11J6dt4XNSg6rBDtbJ3jA65Qs88hJ4VjlL0Z4KDrNUwSyYH37Tja3b2eqLQjlRYQoK7Vubm7SbreJrQvP30eYZcqzlNXlFeJ9sVnTLOTw+7+KzdtOQSHZ//43sfcDr4eNhDzI0ZGwFr7Mp/8NBgNGozF5YTIcakliA0ytYNNl+V1/iqqYTZQACCt+HXgyt1A+KK8/GNDt9xlMDdm3dz/b3S6qKKglsf++EBCvtml++jq2vvUJZC9h6qEbqP/mu1j90LcxzHNmdz9ElPSJbFySlKZOBkLQbNTZLvqmzofj96KS6m5Bmxu374IpymBAKUsXmUuJxUvNUhkvyWqHVau0O72i1ysGA3FWZxIbl4MoUQ47rtl5vbiGON3PcmL21Ilq4FtpGguKsHzHokPzfb9ENAaz3PTCW7jx5JvpNVc5d+QLnLjpY9x2/KsRuFxpF8hhHh6GpjRsnqdeixdCopSdgxS+lK0GVpZ30e01aTU3qCcbDPoZw9GI8cjELwRWS3d10x1DLzthu4hxxxCcMC6Zhc4EtUvzHP2997D/g1/JyoOP0jtykcYzh0gxJXqllEhCo2VqbZauKBmDWcfSUuB9b+JlSGTCLwcuehxtMiyKImU0GPDcyTmGQ9g3f5pOYxPp5uSYlMS03bXMFyEQhWDx2TuZPnMdZ177UVrPHSZOW6RqmyzPqIsGURQTR6bsr/btaY0pMJWScZoiioIojqkFAb1+j5ls2peDLfLcWA6Gxten9aSP1hGZieJV1BumDG82HlKrNUhHIeev7CfNQg7sWWHf4gbONe4rTQpB3G9w16+8myMfvZ/rz9/H7pv30+5MceXCRa5evGAK5FQ64FUDUAMpadQbTO+aZc++/YxGI54//jSryyvenCucJUCU58FrhZ7pSXuVpNqZzNGPFKJSZ2Dy5dNvteD633ozopCIYrIiYilUBHkeMBrHdAcJG1sB273QFFVSKUrnoFOkGFGPR4RygBR9pBgQiCFhmJFEiijCFuLBAyTH2tx8wihhY6uL0jHjsWQ0FmjRANEkL2rkRZ0sj8jzAK2bZEWTEQsMM0X+4ZSph25hX3tAPUoJ64ooDOn3B6YVbFGQ5RlFURCEBSFGa4+EKfYDTnCXrhjHxL1rxzFcTBW+PM+pN+oVnlbuTSArGnnlfGkPAtx7lZ9aE15tsvcH38z40Cbxk7t2XGCe73mml4blPpek7mgFC7SrhdhLwCAltBvnyYsmW71jbPVuZKrZR8o17x4t8pyRzdgJQlMy3PFy03Jc02gkNgZCgRbMPHWMY7/2DTRO76X1zEFQkMsCqYygi8KQRqOGlAFFUTAajUiz1HckLQrjpqrXaiVZVujT0XDV4uJB7MTaamQgkVoilakt4lq+j8djb0lxsRam54XV0AnZ9fv3EqqIXR+8i87p/eg0Jo1W2RoeYLN7Cwf2PkcUCguMtOvlRRybDopa2wBHt1VecS4rIJZvV+NV5ETm2jWLUGKHCh2Y/0uF+loX19/2esUxA//6hx7H2fsnzWg7qbrqJmDid/d3GQlfYXDVQe3wdzh7gve32PfkxCF0AHsSLns0LZXpQqUnH+ZwJFj0qWwnPRss6J5pzFjG19nrRTz8yDFGo4Cjh56hVuv6tpzu3q6RhFbK+rRMUA26AgYoGYMFi+X47SH21gi3hoE27VqFqT8fhqEtvxlV4hTK4iyleckQ2OSeVXfRMUEj/FFm7KrIyLMRve4G/e42V1dnOXnhNtr1de647hMk4ahEhBrfElrEdWb3XY+SkdG6hKnnbgBy6UbJ0ozt7rY3M9YbDdqtNmEU27mY6N40yxgOhvT6Pba727ZnumJxcYE8z2k0GgitWVldZjgYsG/fPuI4NtoFDmm72uIGoSv7fLRiY63LM8/PsL7ZZN/uTW46eo4k1gSOgCtV66I4ZmHPbuYWF0nHKVcvXmRzc8O2FC3BVHnAzfemZqbZvW8/tXqdtZUVli6ZoEDt1q08Dp7dOy3eW3DsvjfqDfqDvs0qwNOaizx2Zlc9EWhWWracC8EDQGtZccFpo1SytR2xvp3Q60fkRWigh8gJ5IA46JJE2yRxH622QI9Bm2p6Gu3TpsIwMLX5K1YOWWGIZn2MBtQfjNEI77ceDkcgTBBoFMY0Gk3W1rcZjyHPa2RFk0JNIeQMWZ6gtIlfiMOcZn3MTHtIqzEkDEak6YjRcMxolDJ8cJn43BT11SlqtRq1ehMpTYnkQrkMArygKBUW6c/2eDwkkJJ6vY7rHz8ajXBKURhGBEFQiUnSX4Qx6/LMaRfDVKYwKhuM6Kxzk5q98HcoicaZnG3apD2Xjs95VjLBoAWFFmx1j7Hdvxkpx3QaTyLFiqe/MAzYZ1Nhx2Nbu8EGtSVxTBSZ7npRFCJD2wDKHh1lz2qhFUVekBU5WZqZiqK5Scvs9rq+3K4bWmBdaGUVxMk13AkGHDPzPS4oeyKEYUBRaFZWVsnSDIUpiHTs2E30ul2GgwHNRp12q4nWJnjR83NhCrG54MMsq/PS+dcxHO1i355T7J4/W1ou7JAKDYNhymAwqPSuoOJ+017GO3nqhL8MbCVH1yXUxsyUkq+0CrjvC1HJNNPK8yuXCvzEM9/9MrQ3+Xrl5YjNmngN/VrXgNOCKH/uoH1PnBNvOoEo/M1La4O77w4C8DJXV4TY5DjcCXAHJiAoGfQ1aNoiNSHAtkYNdWARlvSmqrzIGQzGnDqzh/4gYXH+PI1G35pzTO6vS7mRgdHwBCb2IC8KxuMRg/6APM+Mu0CAEKU32GQplON36NeZexEgijI7IVUpWZb5Uq1RFBHHCXGUENja3D7mwTFdv0QeXpXraRkQqqDIM/q9bQbdTUbDbVQxJsubnLt6PYHMuWH/49SiYXkAXH9vjIvABZZtbW3RaLaI4hhy/FoKDIEntYSZcJY8M6WJ03FKXwwII2NCNAU2TG5tFIU0bWqhi3ju9fpIKWk1jYYcBCFTnSkb1a2pJTWQ+K5vRZGTpSm12BR9iaKI4SDjzPk6m9s15mY3uPXYsgFxhTG5Y01107MzLO7ZS73ZYmN9lRPPPMN4NPaMu0T1JXk1mi12zc8zOz9PnudcPHeezbV1CltW1aV/4YVz9bCUvzqrjgtcG4/H5NlkmWtCTVYbEg5qbmepHNZJYeQ0CotClYLBKGSrG7G2VaPXj1AqIAihnuRMJ+vE4SpxsIVWXYp8bOJhcifoDHON4sj3lZfWFVAyPBvIVjmXhrGFpJnxRec2qC4IQ+qNOmmWMxwM0TXNrl2zKDUklAVhtE0tLJjbNUsUXyZNEwajJt1hh8GoxUa3zvp2k0AqGrURM+0+nUaf/NZzbPy7J5n/x19hGh9ps8e1ep0wCBFFQQG4QH8tqkWWzO+mQZHwgWhalRkbSmkb9GUtg3ZL9Y49xYEvHDBzRYSqvmXT+rnwjKvq0iuLgDkXoOk6KSrrW5Z8rqpsHuhYfuu04lbjeYRQbPVuZat/N53GEwRyFTDAfX1jg927dyNkQJEXJnsnDPFWTXudCMoKrcaNacYYKAmBRmmJCkzvBmWVAiyN6MrhKZRJ2zTuqZcHUl4D9iuGp8cKw6dWa9DpTNPv99nOcoQW5DZFMYwi0xXTdsiMokodB7+3BlwIQMo++/Y8zLkLr+fy0hGSeMBU+6oF9dr3qAikda2BDUQ395E+jdHMQTgg4FoQe2VOlueHyXRIpyhSOUfuAwcMvPx6mZV7udcrBgPSFv2QfpNLX6R77ZTz5Siq1gSnaVWv0/5ib/7xN9Cl5ulvpy3RVF7aDUBXvovnhd7U5y92t6qGZtmxWsThg7e0EehZlrO83OLy5Vka9T6LC8te6ElbGcpK+LK3tBCEIcRAvV6j3W4z6Pfpd3umMIcqKA14emJ9pChZugNJOPCj1eS4hSluYoLvEp9j60q9mhKsZYMRF2ToXAguuDFPx3S3Nuj3tkjTIYKCJBDoIOD05WOM0jqHF5+iU79SmgvtGE0UbIDGBBVtrK9SSGP2D6PQpPoUyuYH254ESvta7jIIkYlEac1gOGR1bc3Xez986BCR9c0KIUnTMYPhkHarTbPZMFkgRUEYhqaIh00ndMFcRVEYoCaEb4kbStNH4NnnIy5fjZmZGXDs6EX6gx4CiEOT777v4AHmd+9mPBqydPESm+svUKjCo3xnvXF7EUcRnalpFvfto9ZosHr1Ks89+aTRdMGLAK8VMimYJ4FAlWbNnIo8N5XfAul99AAqUJz81o9x8M/up7E0WwKTCsX71DQ7giwPWV0PWFpL6A1ilJJEkWC6kzLd3qaerEGxznjcoyhy0rFpzuPr00tTUTCQxhJg3ELSnwuTpVP4zn1hFPqzKGz2S54rW3FN+Pr1roBPHCekacrW9ja9Xs/QERqtCzqtJvNzM+RFjmhqpottCrVBlgn6w4Ruf4rtwTT9YYPuoEGwGKP+3QdQ8xlJNg2BIs0y8q0tRsMR7U6bKE4QQlMUxrIiAG0tmdoKjCzPqdvCWH4XrUvBgQYppc/o0D4Qt9x1t/6l5aFUpqoar4bSqqLLFFEccLRoQ1d4VuXrXjhWuYWxIlnrZeVaKGjUTgCard6tbA/upl13gAB6PdM0p5bUCBNbCMpagqQQVggqZKGsdl6CFykkSmrbxCjwlkGEKTM+TlO0DU70YwQy2yK4nJRTkioWU6fJWNCcZQ4om2clSWy6R0aRB2luXN3uNosLu9nUG2R5znA0QqmYMDRR/A58O8uZtPw9DFZZmPs8l66+jrMXjrF/9zpJvGGBj+FhyvFEH3Ok/PH28UQWuDnrkiuVDWVAYckOKjLMgXmD/PxKexe7pYdJGfK3v14xGDBIxi3hpKmiymC8beiaG1hid6Y3b64Edg7XK8La+z8mP/SDwpm+pHiZKWsTUOUCEEvQUd5AOAasS6bqUJfzVzvz1nAEJ1/cg9Kwf98lkkQDgZX/lXgIgX+v7IxoPpBS0pmaIo5rdLe3rQkt97XnC1XgXAnGKlGGczltwCNfMRmhqrXxZWbZgOFoSGiDpOLY/O8YtKiiUECrnEFvm153g8GgB0VKKAVxYFJZtCpY3tzH8uY+phrL7J97DnPsnJ9Z+DV0lp5ACqTQhNJaJyyjCgLjytCh6Quf69TusSCJIrDaVZqmdNpthpHpvLe6tkajbuJWaklMHJlsgVa7xfr6GlJI1jc2bEU3A17AuHaCMABh1sYxFCeQXjwpOPNSzFQn51X3bEERcOlSjzgIGAnNbXffhSpyXnj6KYaDgadUF8xkEL2gUKZs8uLevexaWCBNU65cuMjG2poBPt6k5Xer3FdPNiZ2xZgVSw+vv0yYmIOsKOhMdUizzPRYt2Qd5hGqkfLEv3sfd/zkNzC3dsDUwK+cR2kBbn8QcHU1YW2jRpoFhCHMTKXMTA2Zbm2RpysMBtsMe6awi8n/zu0cZKUhT+D7DLi1ENJUWBNAEESAqdVf5LkBydI1+5JkqcltF8JYbVxHQGmzFoIwpFavMx6nFIX9vsoJQsnhgweIY/v8ICDLTEOc8XhMHA3pNHvsVlfoD2M2sxZX/4+HKB48i3jiAJeu3kxLD2jEK6C6DEcD8iKn0+mQ1IxvnKJSDVJr3xApsu45pbXV46VN7wrtGhn6cILHtzVmkveVvGhSHSnVd0cVRpCUSKFKN2U8VZW8TMdTLC8THmdqtO3VoGyWk7YKk2NaBa36iwBs9W6lO7yLVv1xQrkGGlZXVti7d59PZXM3NsfJrIYBigbQlVZJgVQKLSUBGiUNbxIio9GoMxoNGagClKi0cDdxJtoqaBrrdrUgX0gxQU/CWjxMkTJjqSuKwpRFDo2roeyWaRZsbJUNIYwAT21AbphLw9+FKbiEdnKu5PVReJapdo31zVdz6ertLMx9ligceWui288wCMgpQEvT+8SthzR0Y+SE9DzJuTn8llRly8u9BMaKUCULl50jQLxcfNjLvL4sN0FJtpOCVzhkVnm3qokLDxAqCMaOevJbpdHAPM/1nnfXW5Rg7+TuNyHeK597IDARjVtdmBJdOoTrBK0v7QlGUGvN+fMLbG412TW7xsx0n9IHX10Md7AsPTi07sCKMMFxjYYxW29ubhEHCUEgTIrOeESepYbotasypz3xuAwHs76TxUS0xrdBBU2mYcDAC+Fms0mSmLK+Ao3Kc7pbm3S315HCpHNFgTSlLrVG6wylYJw1Obt0E4HMuG7vEyRxgdauOFFlfG6eQhifnEppT01BFJgyqy6gTZR0IYOQMCyjnoWQjHOTo53lRji02220UgyGQ7RShLaanWt+opRiu9f12lgQGi3VrBeeMXjzrbU+nb8Az7+QkCQ599yzyfSMYNCrMTU9TW97m9FoyMc+8hH2799rms9MQi+zD5jSwnsP7KfebLG6tMRzTz5Nr9+3ufHWWSSYcANV4CjePeAP/iSetnqCoQVp0iwvXLhgC5CUOccCweyJw5z92s/z9H94P/f/7N8jOT0DFpxpLdjuhVxaqrG2GaG0JIkz9s1uMN1eg2KN8bjP5ro1meY5WZZRLXBlBH9gnwlBKAllYIMDjUk4jEKf0ubibbTWRGHowWBuc/KVMvSQ2vTLssCQNIK1UGxtbSGEMKVxMSVuDx48RKtZRwSQxDF5oewzE5rNBuOxsRwNhyMaos/W330U9e1Pg4RgM0Knmo3xHFtillrUpZlcRetttra2qY0zms0mcRSbjI3CVEJ08Rlxkpj4HG/tNJsXhpEHD6ZJT2kd1I6D7uDLpZ7vDrKg7DjqqMMCAiv1yxqGJT8smajjsM5iYL7v8YVVcKqatQMojnMiFK3GKZTWbPdvoze8m1b9MaLAdNHb3NxkZmYGpfJKpkwpinShKUSOEKEtiGY/lRKJBm0aOoWhAexJHNNqm+JUWZ5BYapqBoE0VSsRKF3YtOKRucYuQRBI4sjUkhAyMKujtT/zYMCJtEI9S1NKtU8zHJlg40ajYXqdZCbgT0eBt065nh/CnjPTgtsAi2bjOdK0Q29wG+ubd7Fr5gsE0tgBnCtASIF0cklLq3hiBLYLFLS8b8LVyKQiWX1PO+FJaY1y1FGCh8l7fanXKwYD3lSDswKU7Mz5nhxxlukdDjZMQAeqJ2LiU1G9UpfeBFG1PFTIzm6Qf0NTQuPSbFHe0fFci6AV2r9pGLuumF1L64cUkq1+wpmX5omijAP7lk0XK5eZYFGrE/hmY83vUlaQnlsvadwctVqN6WnJ2toqrWaDWt0EAxZ5RpqOjeac5zaISPu5+Opp7rBb4nfC0IMbrdGYBh5Cwmg0QApBEgUEFGiVk2UjpFCEvnBF2fzDCDPJhdWbGKZNDi0cZ6qxbDQJSquHT9NGWEZoNm7c2yJNM5qz8yTNaeOH1YYxZalpdBKGEaPh0FQIrNXQylR029raNuWE45havU4QBKRpSpLEvub9aDRmc3PTgJwoYmp6iu3tLepJ4nvCRzZLBK2N6TAIQGm2NgMeezxACMWtt64yNVWgtWlSJMOQcZaZtKmiYGlllT27d/vGOKBJanUW9+5lbnE3eZZx5aKxAmRZBgir2VbWxSzoDpNn9TgYOsptZcKJE+ZUBC9PtE2TC+ySl0Jm6sxeglHE1rFLPPxvfpu7f+pbmD57gG4/5uyliPUt439tJAPmpteox8uooseon4EwKV6+rK0GrKYehkHljCjLKKUJYg0CktjV3DfVAX1BFbR3y7jo88J2VDRMNiTLCt9V0BSuEV7LTwcDtFamzasUFFnOVLvN4uIcQppaB0kck9jnjUcj64M2/tooijh/xwtc+Z5n0ZEh7GY/Ze/cE/SGc2z2djNMOwzGHeKwT7u2RJ5vkecZnakp6vUGsghI+6aLXGxpywBvuy2WuUsLlJTKLfi1oMnxG28NLQGAA9POwun20YEoTyKOBtx3PAlZqVhRoty7WFO1UR6ASvC0e5ao3FO41BnDZWjUXkQpQW9wK/3h3bQajxFKU0a62WxZrV34Lq7eRSFAFZpCKCtA5URnWSGMRo/GF9Vp1OqodsFgOLDA0HQ7jKIItCbLc/qDgTfZA+jCmPBN8SZNo95ECEjixPYpMfsdhiFZXtDrb5g+ERXbQ57n9Hs9U2Wx30MpTW4ZoJQm8NtXcBRmvC5QGARSKDrtR8mKaQaj/cT9HjPTJyjVZ3v0pfS04ks+O7eP1eqdVayMUXFiTDih4mWI2S+rPFfXXktfKts9c1L+fvHXK3cT/C3wYoJwK5K96v13E5mwkJnhV+9khWsZaOR3wY+hVJvKgCtNNZrTnBtrQrfC0pdPnTgN7kDif3fvVhGZ1oKTJxcYjUIOH7pMvZ5aAOEC8LQ/qP70aypphZOPdu9qCUnN1N8e9Pt02i0CKYnCkCiKbR/wnCxLTY936y9WPmq9bE5i8n+doMFaN0wdb6ULlK3jnWcpUaCZ6TSJo4BAOIuIAC0JfMcrc6/17gJXN/bTrq9xaOF5Alnut0vRqe4vlukJ+54a99lezmjMZNTbuyCIETJgY32TmZlpwLgLoihC2e6DrnXqeDwmsMWDsixjOBiA1gTTxiS8vrZKr9ej1WoyNTVFEsfMz82ZmgKRIW0T4OWYoUk/HPTh8SdDRiPFbbdts7AwJM0FoVbIICBOYnMoLQ32B0P6gwG7ZmZotdrs2b+feqPB+toqLxw/zqDfr2BO4UnW0Z9Cew1KVDTJKln4bmiOMQv/htmJSmyAY6JSSsIotLUJzEet1V3U16bpHVhm+8gVHv+x32fPD/4zVh87RJ4XNGtbTDcv0W5sURRDhoMxRV6YksAeLFvzIqW24gNRLakHUhIGgWkgFQW2iZSway5RWhGGEWmWkmepBY0uWM0wwCCMGI8LH23tLDfuzA4HpoNhFAWEgUQXOUJr5ud3GYAgAv8siaTZbNJs1Flf3yAITZDb1r5lXvqRRyg6mV+jaC0hClKmm5do1a4wGE2z2d/HIN3FWu8o28MBU41limIbNa1IanVj+paCKK5Gtrufdl+kJAgDdGboTXn3mNOeK2fU0wIlEPB3ptzrUoWwwYxlQGMVPHhFsXITjeN/5d/C8U8LUkVFWXHKj3MnCAHN+gmUkgxGt9Ab3E2z/ghaD9Halc6WO0pTlzQrCkUhMJY/xyctT5S226PUptwuUUSSJGggThQungSg0K4/STExSdewTWPcilpDq9kkimNkEJDnmXERBBHdbpd0nPnA4+qNNrfX2b/3oAevyhaiynLl91jZI2u6rmpv9TN7njM783lW1r6Kre4x4qRHq3nJCGqNUWbtWUKa81HYgnZaaWTo3AYug6E8+1Wl1FucKQGEsvUwnJXKBTJXCzBN1jn54q8vI2bAaek7tfzKX46DUJKwE45etIqKo8BzQXedWzw5sR6l0BfVL/rnugYfZQ6vKWwCFjmhK2btUpCWJjwq9zM+NSqlPZeWOly63KHV6rN7Yd0ezEl2PuH+8AuwE0CVoKYEHdBsNuj3e2RZTi1JMJ30yiCqyB6UzFY8G43GjIYj8iL35is9ISy0rTOek1tzb1FkCAFhIAgDiRQ27oBKUJI2gUWO4LKixktXbwYUR/c8SRgYQOLxmSNWe31pPLIQy6mXxZDu6lUgpDE9hwAPBFShaLU6hGHg91BpTS0xecuj0YjhcIRWmmazQRCEjIZDU8rUan4qzymEYHs0pNVuUaslVlsxa66scDVWk4CTpxI2NwS7965x8NDAupMsKAlNRsbM7Cwry8u2+lfI1tY2x47dyK75ea5eusTq8rKxuFRM6CUZlRzaY0Rv5sJrZLrKlBGT9xG6bE+tS3eQIyOB8EF8Anx703bQYvfV6zh1YBkEdA9cpfdTv0Jn65vZ/2JEs7ZBlg0ZDEyefBVEStuzXQjphb477k6zNxYCk6qV1BJqcYwQ2AjsEiQWhSYdDymUiTcw9zSMKwxNQFeWKcbjzOdhy8BY2gpbtCvNMxsMaqwSeZHTaZnS1d1uj6QWIQNpCtfYdMowDGnZ9LCteIPj3/8JBvu2JtY+2Wh4828gFc3aGo1kg1HWYbO/n95wjpXuYbaHfYbZOjNTPUajITOzs7gKhu5mzjrnpKgMAgLtauwr6ze3zNxnClX5hPN1l4Jn4pqK9lTyXy/WJwFA5fLSWFSt1gIuFqWMG2KS9jwgNUOQQtNqPIfWIcPxjfRtDEGWjak3av6+zsJRDkhRKEWRWd/4/03bf4ZdlmV3neBv72Ove70Nn2HSm/ImVVJVSYVAggIBaqEWRk03YoAWMGpoYKaBZxqY7lYDwzODaaAHL2EEQhKSkEOmVKUyWSZNRdqIzMjwrzfXHrv3fNjmnDeqQFkf5uYT+bp7j9ln7WX+a63/ssWWxlAZO2DGPysIzBpGkUn34NtlzbWoujYdWKJBYh/cC2hBVRp5Dm06yjApalOwbNuTH+xK0MBkPEFj6IqzzEw4VcqQyDnOf0STVlFYPgH73IWEOBiyvPh5dvc+zsHBU8TRiCRycuciA/schSAMBKoW1mmEwKcHWrqgHWC6H+3fnX136QfpN6tzvORJ5sJ38HrnNQO6yVRZHr3WhVpYo1Uc1XYanOPoI0ZLvePzp1ZRCi+Ird/bw7VzbifsrJ0r4K+B1h+FQSfc4raNt/UBcWkNtxnNMbSH/ooi4NXXV1FKc/bMFjKoQDebpdm/DzgDrWs48Wxbu84VsgSBpN8zU9jiODKDJ3wLliTQysNpcZzQ7fTIeyXj8cj0/JYlVVV4CErVJtqqKzPsx3iyIALrjGkz+c38a66tSbloQHJ3/yKj2RwbC68zSG5RVeZ6HbWm8JGK8XKlG/uKtiyLwq6VQOiS6WREZ24JIQzDWFEUaCF8cQ9o6tpUa7tiMTOquCaMIgQm/zcajwkCyfzcHIuLCyY6rGuy3Iy2lRY/k649RxpZqsqKN9/qcf9eyNLykHPn7oOYA6QfUOQUyeLiIpPxmKLIiEKJEAGvXH2FNEls3ty1nDYo0glF04J4ZdthaATB7Jz2Z7z+17RyL2a9RfN3aQ12XZuhON1Oh7n5eZbXVonSPq+/9R543+e8j60v7jD7R/+Y4s9/APEbC9S1NhGScC2gjbOuhW1uk811K6UIhDQGuSpNTYatCwjDEIFtKUOQ54Uhh7LomBauKl9bYx0ThTFKC7IiMxS02qU9Qj+oJsszkiQmikICKclmOWFgmOtmWUZRQJ5LptOZTRtJ5ufnDDVwIKnCkue/91fYeeoWD76S454tXqusQ1SjdUUSHbK+cMR8b56j8TnG2Qr3989yNB4x39thRZpiNqUqXFeLqzFy0b95vBJBbTtOXNTXRPVN3C/8PnK6yvnPJ/wCvzv+Cz9ZHdk4AyedCC20h7ebPLLwR/LfiYYKGMu+KqSi13kJpSLy8iLT/Gl29l4ijGO63a6/Gx+MYTCQ4fExw+ExD114iFS6LHrLZtgWZPMKiG2Ln7IjkNuG39Cu1yf2SbME2h+7KAuDzmjT/eUQVSGEnYehT6ycAKqqZjqd0Ol0mEwmNv1hasWUDgilqW1Au1kaNPehNa4mrdO5y8LCCxwcvo+9/WfYWPs8gcwbX8D+z9VYNd0KqtWtZx002QRXDcLcIDfOxXPy5WyycxgbwqL/PzgD/qVBC0W7cMXbD3dSDW3ObPOrdnW0OPHFW1XhllmBls2h/gsX49IDjZdsoxznRbYvHPxmbH7riFnaL7c5BbduL3Fw2GVl6YC5wbDJF7UXWAiEbp3P7Whc9anf9g94iO7tmm6vy8HBAXmW00kT720Lq0QCIZEO+g+UdQwiqtIUeU0mY6bTCcfHx77HXuJmXLtmNgcvNkpDgIUKW0pCa4bTOe7sPkQSDjm38iJBoE/UPmhc/sxek9Yglbu1k+tjN34njW0hGzYXZ9ZoPB5Zh8B48UVhCiiVdYA6HTOtKy8LojCyJCchRZFzfHzIwsI8AuimKaEMkNoojyiK6Ha7jIYjKlWzs5Pw+hshUTzloYt3gJwsy0hTQxxj+owN4lBSsrSyzP7eLqEw66NUm6K2dXf6pKS3JbZhEmyc5xM+of2IcaBahWYuQsDJijlOYBGjMArppCmLy8usbW4Qd7q8/faIn//xt3nzuRS+K4CkGfxUbEx5+69/js0//24Gn94gFIGnOcVFrh6OaxswjbJ/N0raXHBVlYagq6pAu/7rwPLLa+ugCz/S12wTyWDQRciAfJZRls31KaUo8gwRhJaISRNHhkyrLDKgptPpIYT2cLFStSkytUWHRZFzcHBAGAfc/e5XufXM62x+7hL3PvymizRACTqjnm911Bpbv2DrhYQmCQ9Zmx/STxc4mlxgmi+SFX20zNhYHRNI5YuKnVH1xtRacY3rLXfogERIja5bCF7r1eivJjjC/65lFJ0eOflXTn5zUsC00Ki0otocE92aQ1aGfKudm/YtaaItnyZCkwp0UNPvPo+aJBTVaUbTR7hz+yrr6yvML8ybQM9GzVVVMrUEYUVRsL+/x+bmpgshrCybfaqldr0ShFFIrDVVFZHnY8AQDwXS0JSb4miaINIHn8KSdtnCQUzadDKeWEevlcr5Oi6VRnNwcMCZM2cJrYF2rZGqVmhp2xlbe9LbEYfMCaNf5wavURRLjCeXOTx6jOXFF0/ud4GvD3VInOmQsA6B0HZfCmNn3XohvB1xqHQbRXBpFe9c4hyor/Ep/7OvbyhN4JdPt6N2W+8qsQbRrpFu/AW02WRepkVbmB2sYb1FL+zNbTStMQ6BcErLFDOhlOUdsAvjnYTmLO1FareWtC/H23DMw59MYq6/tUIYVJw5vW2h9ebSW6c8MVHUGwt7Gu83nfQf3FUhpbmWOEmYzGbESeTvVbQ+IJAEgc2DB4qgDojCiCg2/waDvkcYhsOhiVhcnlI4xkZjuKva8MOb4lZlemK1ebdSkre3HqWsAx459VV66YR2RXlLa+FyydLCZS5d4ARXSIEIJAQRka22NkzNwlLmKrIsJwybgU5xFFFpTWWL8YoiN550GNLpmj7w/f09ptMJAk2ZZwRhSCAD5ufnOX3mDKdObTCb5mwf3iMLx2TDHl+9GgM1D1/ZptvJyTJFnuUszC8gg4AwiqiKglopoiii1+sRBpLJaESZ56YoEBO0S+H93Qde7V3fRqu0lRndRH3ayY6wZSfiARmyyrjFTd7pdFhaXmJ5fY3BwgKqrrl/Z4fP/MbrvPjyiKIo6GtBfZhSbUz8VSWvzTH/lQ32/sKriAQGv7Jpno9zGG2awecbbTTSQP81VV2iMYorzwukFJRVTWg/p1TZKF6LDNVuSBewsLBIEBiCoSzLW0XJRg46aYeqrslmGWmamBSQUmR5RqcTkySRrQ+A2qOJAoFpJ62rChFIxs/scu/K2zz1F76N29/3sncE+m8uMT1zTG86MEOEhCsQqxHCRIhoV9dQ0UkPSKJjDo4XmBSX2dqb43jcYWPlmPnBxOxbYfaNdrroAUfRVbK7Vkxln7V/WV3aOAjOwLQrmNyfVCMz7v7B6+ATBwV0rKguDpl94jazT9ym+5MXif/5go9MccbFiquvbFCNcDqUwjh7Ob3086jZt5CXZ0HP2N6+TpzEJEmKxrAwTiYTC/uHaJ1wcHjA3NyAXq9nOlFcICRsd4GEQGt0GBBp6OiOHZA09OOIoyhqWvxcVNxSSCZN2ui6PM/N+70qbv6jvdb2SBPrgHZ7XcY2bSCRPu0lpPbr1q4ncy9HKCREyeLClyjKRYbjC8TxIYP+LZwFd89aYPL9gQxABqaw1sphEJyM9t1zaox9237gr8k/S+cwvENEwL2+gdZC17Lm1qH53ueL2hG3bgS2aYNw7+ekBRXGKWifrS3cJ9sIm2JFL7A2n+OUm/N6nRg7D6y59Ma7PplCajaYUoJrb64wnUWcO71Ft1PQpnY9oeOF81Yf8MEaff6gjjgRnbu3xnHM8PjYk52gBdoxFNod6cVQWJZDV8EdBKjaGNxOt8tgbo7R8THZbGJHA5vUgGs5qsqKyI771c6ZsgU5e8NNDsYbLPbvs7F4w1cZOyPmVJS5TtG6VeNN+x7awMDZWgqUgDybks4tYeA2U1GstUbXNaVSzGZTg2pg2o2MAgrodrpooCwLhkfHFEVu2pqcUyhgcWGBy1cus7i4xGg44vobbzGbzcg6Q176vh/lYC9hHHyAR4anuLIWEQenmWUzjocju9baQt5wsL9PGAZ0Ox2qsmR1dZXD/X1Pq+o2qiO+cvIsnJy3layXMecMuKpit6IOxnUevo3KbcQeSEEYRfT6PTZPnWJhdYUwipiMhrxx9WWuXr3LV18POB4JkmjKqeWb9PUu+Vs9Zt0SHSpUt6K4MmLw959h5V9c5vATt5iNDuh9eQVJkxoJw8gqI9N+aUTC7Mu8yNDUyDqwhDz2X11RCmz7l42zWkN0XF93r9sl7XRtVfeU0taeaG2esYmYzVAcR2sLmtl0TBRIumlsOC+s4yraew9TXKeAajBjGo25+D9/gHqlYPd9t0BAMAk5/0+e4fqffI7gOLZtbW4zmRSSxkSUQtXG6bNjhUN5k6X+Pnl1iUl+jlv3lpif67K5ekwSFycQPrepA0dI5RjszKY1UbBuazjto5Cmz9wU9Ap7kw6yb7oRvBb52qgv1FSnx8w+eofpd96keNcuelDS/Q8P0f83V6BhvcZFlW6KhkF/9And6Zwcd21hmDHofp7h5KPk1WVkPmN7e4fTp08RBKHlAKhxhadJYgz5/sEhSZISR5aAwu8TadZEaKQICKSp/u/3+mSzGXmWkyQJaWpqpky3jr99I2OukFlAHBliMuVSodr53ZqTVqXtEAjKquT4+IjBYI7xaOziVP8eKQIf0LY8DHsTDfoKEARTlhc/z/but3Fw9ARRNCSOD3GBElYGHM2lSQGbokK0KbhE06QHWobfipFHtU7YMisd2rYsuve+09c7TxO0pvfZS/ILoR205FZeCGgtTvslnLtpjTs+2m5VyPpjnYRkjVFU/s/m9LYYzr5BO++5cZ/cH6ygPwi9NJuuLaWHRx1u3lqgm+Zsbhz697eLawCzuZSrp7D3gyOU+DqQ8MlFbXKEWhMGpjK8rpQxpLRycMrVRXjN01yPEGbspoesTKFXEsccHkiqqiLPpqi6NG3MwuQ9IfKb1q1ArVJu7z6GlBUPrb1IGFSNc2UXuS1gGtvCgktJtPgQaMGlQlMXU8psStK1o10DQzO8tLjAeDKhriM6nRStDY1wEsfkRc5wOKK0DIOueMY4PSmbmxucO3sOKQN2t3fZuvOazYfbXPewS/QPfieHP/y/oH/fz3D9eJ7jG5fYeOlJ1l57lMHWMlILP/kwCA017fDoCLRR6pOp4VAPhFW/DrLxDu0JAfcbuMntWTmz8uCNgNXAzeEMuuJqF0wh4yKrmxv05+ep65r97W3u3rzJzbdvc+N2wL29eepas9jfZnX+JlFQEBAyeGWVMA7o3Fjg/ne/io4VW3/kZS7/wMdZ/8ePUczNQCokJu+fpmlDoWufYV1b9rfWnmzXOJj0UDPFru3k+PZirQmjiMWlZTSQF4VhlVNmopUGgjAgKzKGe7sopehayulsNgGt6PY6RJHr6+eEgnfoi3T6ZBgw/8un0Ei2f88NysUMNAxeWmP+sxt0PjmHPjZEQFIKgkAQExkH2cL6WEVr6gNcGjJnrvsmvc4Bw+lljodLTKYxGytDluZHuLyxrwOyUK8SyhtYh7R402QjTZ/qFAahQUOtmiI6o0MkLmft9p1TLCrQVMsTsmfvM/3tb5N/cBu1lHm9E726yOJf+wByFtpC0MaNaJxW95z9ynoHIAgj78xopQnVDM1zDMcfISufIJhkjMcT5uYGXgZEax/EUQzAdJoR9AOCwO0dt2FM0OAmsJtOlJC5uTkOjw5Nd1AY0h/0LRdA4Vut20Fnmqa+28M49k0w1Q5iviZos78/Oj5kaWmFKI58cbBPnQkMUtCwOtF8Y66/bR6TZJuF+ec5OPwg+4dPs776OQJZ+H2jlXv2mhBNEEUESFvoaOQkFAGOt75tBd02cOhAu+3e/P5Bu/nOPIJvIE3QtHW4DLS/gra+MJlqf21GvnSjJJ3R1S3D5oWv+bPTlc1uaJ3b6VGs0EmJQxm069O0h9JaUavKC3Pr9A2ULZqjay2oa8Frr69SVpKLF3aJo7rxmJ2/Y4+jtPJ9rr6FRHJiatkJqNjejC+wskpBWUOktKasSkItqaqS7e1tNjc3CYKmG8IZ/bbj5DeFmwsgjYMgpeTo8Ig4jBiPh6i6sA6LyVkZeTNPTErJnb2LTPIBp5Zepd/Zpm4xsLnn7fpXpWX/cjkuBz1qDcpFFWCGv6Cpy4Ld+/cZLCrm5hfNTHkpiYlZmAuYGwwA13+umc2mhlSorkEpe42CxcUFLl56iJXVFcbDMfdu32c2y+1KKL8eoNnfj7j9/CMs8D+Q/bO/ymzpgFtLB9x67xeJZh0W7p1h85WnWPvqEyzcPks6Gxh2OaUZDofMz82R5TlFWRJHISGNw+VJQqyw+wmHui22joyJRrF4uNEZ3gamjyPDuLe8ssLy+gZJt8N0Mubaq69w//Ztdne2GY01N+8vcjTuEYc5p9dvsTg4JAgEUqTIQLL42gbVhRnnfvRpDj5ym3xjzOSpAw4+eYOVH7lMeJCYawhFi6HSFcQ1vdVFUVhyIFtopzSqNtG/so6wuee2gtVWTgzKsLKyghBmAFFeFDZekChtKHGz6cQWeimSODKFZLWphel1U/q9nl/bE+fyA4BMZAlYBjtQ/YK973jb/g5W/sMF5FHE4KuryEloc/6Oic981rVrmudnUC+zDraQTmji4Jj1xatMi7Mcjs5yZ3uR8SRhc+2QODJpLe2cZtu2V5eF4by33BdK6ROpAg8de8IlzFRIW5jbOOHCF1kjNPV8TvbeHSbfeYPZR+5Rb0xBtvSlBnmUsPSXPkRwt+s0Ik7Bet3sQzmnW4VfD4dA4p07G/zoferOlxhPP8Q0f5rdvefpdCtLKtXoedc5JQQcHR8RhgG9brfZA1b7aKlB2da70MwHSNOUfq/vHZdQBvR7PcoyIc8zg+Zo7EAsM8vC3XcUmU6T2g5UUkJb9lvxwDpYAUEwnc6YzWYMBgOODo9MN5edVdOG4huaAUGb3c+tp/Op+t3XyfMVJtPLHB0/ytLCVYxmFA2abYOWuq49gVhVV8jK6lVLNqWxqUm/Dx5ADURzN0I2E1Pde9/J6xvoJnDFPo0jYG7ah0gnvF4jBMJZ5NY1tZwIx6rVuhHtrFwbJrCbwcE07WmFbe/SfCcQtvDCVMU6kgjdOn9j3DTKdTz519b2gK2dPgtzE9ZWRm4f0HzaRSXYAT3KT+szoy9NDlTWtaFl1TaH466VRgG0HVWBEYyqNuxlUkh2d3aZX1ig10nZ3dslTVLm5wbN9becp7ZCFpjN3Ol2UUozGU+YXwgZDQ+hzixvurNaZrNPsj539x8iDkecWnwJVZcNMZNdH2kra92ERGGJMtqiobUtylK2WBCJCGLiuEMYpwitmE2nRHFM4GYSSNNHXlemjSibZRRlbm9MkcQhZ8+e5dz5cwQyYHd3j2uvvUldVdaJdPW9TZ4+zwSvvtElCiO+a+Ej3P+p/5Zf+r1/mzo1fflld8bu5WvsXrqG/I6fpre3zNobj7Dx4tOkX9lA3I0ZjUZMJxPrAMhWPr3lkJ6ICZyCaGIv5wg45jKH7AmEpdKVxHHEwvwCK+vrLKysoLXm+PCA166+xO2bbzM8HlKVJaNpwu3tDWZFxEJ/yLmNO8z1KyBtJtwh6L+5zOj+Lt1785z5sSd58wc/D1Kz/f2vs/rpC4S3TATlUjWmQMvIRFU6fouKqjLV/VVtCgarWjt/xhOynLh7e3MG0tf0+wO6nR5VZaYQlmXtNASm4rtkMp2CMO2J3W7XojET4ihkfX2NIBC2UNUWiVkSI1eg9/VSlMOnd5hdOTaR6d0e/U+vUxU1g8+voWfC1wo4Nj6ProUghUKXldE3Ntho2AZBqYJ+epP5wZTtg/McjvpM84hTa4fM9WZWdTVsk6KlQIIgMDl5pVGOMlhgax+El2UXvAjdbn2233VLps/eY/bB+9QrM6gFwUFKfWpyUu9Xgrm/9QzJ5zf8EWh/p13iVaHcmGwvq7I1e6NxbO3TJZABneQudX2Vaf4Mx+NHOTi4xupqnziNKbKG+8J0oZg9X1UlF85dMMGNsI4ACqklCNtiasmnokjR7XaYZbmhaRfYlkEzb6CqzTMSytiZLM8oS8MtkCYJ/V6f6XRKXdeGmj3uoLXpOEBDWZcn1kNpxd7eLmfPnmM8HjcBaysd6NfQ/vokUuu+NakVITQLc1+iKJYZjR8iiffodu6h/Ypa5wpDbhaCd8iL0qSfIh98aRpeQxtQ+PRtK0g1Amqfnbs23tHrG+gmaB3xhOVW/pe+MEWfzId7o++hbVoGRMCD+XbdiH9Lxza/176ksOn39ythtO0Jv8hPe2p7g/ah+dyc+VNVhrx+bRU0nD+3TxhqW0HtNbi/FDdiVKnWPHnhjttAgdoqfqO0VEs5NJ6QT0d5hSB8AUxVlqjEGKbZbMbcoO8JTYCmw8EvYSsdgiBJU8bjMXEc0+t2GQ1nVJWhg9WB3fwE3Ny5TNHLOXXl1xHJFlUWIiqBKAVCNbmtIDA5ZudbOeFWlrywqjS1FsggQoYxURgSJz0cPam23m89q8GOFnY5VqUUuq4IAkGgTN7+3LmzLC0vM53OuHdniyzLaBAdgSNoNU6LJg4jFpeX+dLzkvE05/TGLkfbW4T/cpMr6hO8/n0/jw5Pcv+vvXWFRz/z7cTjHuWsQi3nzM0WmR5kJlro9WxkF/iIyUUKHmpty6pHDJxTa9bI1a9Ii+AkiUkFrJ06xWB+gbIsuH/nFlt37rK/t8/uzjbaGq394wF3dlfRWnBuY59zm3uEgSn41FoZqNxirclel8HrKwgEGz/9MNu/9RrjR/Ypzo3Z/wNvsvY3nkBVGrThK5hOZ2bEtF3HunZT3AwhUVVXNv9tEAGXItA+g98UsblbjuOY5eVlAKazjOk0M9rCnNbO+8jIi9zAwn3DJDmdTEApLl2+yNx83yvXyhJnuRkBdV0bOa5qD7VrrdBSsf87bxrGQQ3zv3QasRNSUtL50iJ1pUBUfp86BSCDhnwnqM3ermtH7+oesPmMIbTZ4+IZzc7BOlt7y9y8t8Lq4pC15aEJSJxht51NtR2kJS1RErYt10Sb9trrk7pP0BDJGH0nENOQzi+fJf1PZ9HdiuH3v8z0t948Ic9o6P3URQb/4hFcudeDCKg7iQa/l5zzg3X2nKGR3iAaODyQEgJNv3MNpefIiots755hbm6PJEkpi6rR0wLrXJZoNFk28yPHfTrZOj5Y4xdFEVrWhLFEDkqKzoh6cYpan1JvjCk3h9SLU9KfvUzyK+eYjqdkbiYBhnOg1+vR7w/I8owwCImS2BB0YXRZNal5sMttPB6hVE2/1zckZ05elUZL6xjS8uidFX5g+2ur74NgwuL859k9+ASHR08RhUeEYVPY61BhiaTSNWFkZ7fUyrOZmnHYTbeabn3Wu2ktYqE2YdNJ7/C//PqGkIFGuZ2MzI2gSo/Cu2vQ7m8ur+hiN8u/rYWbbtVSJtZwmo3kOLodCYpVqlZ63YZphJkHvKAHXaIGPj75HuFTC7fvznFw2GFtZcjy4gytRZMicBZbOJfGPRCrBKXpb1faTOdq/iZPnNI4Co7dpzlmVVYI7NAKaPK1bmNqo1DcmExllYRSynAU2Ar4hi7T3F8QSDqdLkU+o9vrUuRjymJi3ieNKRtlK+yPztLdvEH+p36EL370dYI8JDpOCY9T4sMunaMB6dGA5LhPctQnPu4QThKCaYqcJuhZjC4DZBCRxilhnIIMEPafeVbGEvg6Cw1KS1BNmiEMAxaXllheXSUOI/b3D7h+/QZ1VXuKZL/2lpxHCE1/rs/q2gqDQZ9XXhvz0lePSKIRF85soVVNSMLDP/HtzNaPuPlbPmcgVSur25dfQ2jJu3/s97HwylkCAvIip5uaiD62Y3kDadocpXcGzAEErXoS56a1iUlszYCUhto37aYsr6yyfuoUScekAt64+lVu3rjB8eEhZZFT1bVhZaxh52iZncMVwrDm4fO7bK4MMQ6YRAlroJ0TqjQyC5n/0gZaa+KjhDP/+Ele/2ufRkeKu598lc6/36T76iIViloVlGXl94cxdoYsSGNYG5VViE72GsP/YEZS+31/6tQmUkpyS5TlGA61je5nWUaeZ4Cmm5oakbquqKuC8+fO8vCVy9TKGW1jmIvCVInneU5RFJRFSVlZboqqoq4gOzti9JEtE2VOQuZ/+qwpetQKMRYoUaOk8hPmnJ8vcarNKnuNpfm2EYBDfGywU1UVqp5xem2bXmfGrfvrbO/Pk+Uxp9YPCIPS11SgNbWukdq1GQo83ixMSsU7tN6Zt6rBTvdsUpXG3FQXhhz8xS8y/S03IXQhpoBAE19dYuF/eR9iFvhrboxXox+87vTODn5Oi+Pf165SXpo5FI4pzxSaKhYGr3A4nKcoT3P3fsFD56ekScpsZgi9Amki+cFgQCdNLTtgRRhGyAB0XDNb32W6sct0ZY9s9ZBs9YB8+Yh8cUi5MEZ1ClSnhFCB1MijlIX/7ZvpfOY8Va0oitLrPaXNNMqwKOh0uqRp6lFMxw/h5mu0Wt4AM9Z4b3+P9bV1ZrbDwKGBiJMG2OngJko3f3OpP1cInib3meu9xPH4vRweP83y0nNIUfsR8y71IgRQGvIlV4xZFC71ZJ0wN+jNPh9xIoXRdAFpvw/95f6mr3fuDKgSjTuxbAkugIV4HNRlN5Ibn6idEXBWT9uiQ63RSJ9jA7cHW9CL0KAtTWOrF/bkMA8aB027paBZDJrDccITPGk0Z7OQN64tEwQ1F87uY5ioTsKQDhoS0uajpHlQCDcRjhZyYV8OSjjhLZnbUUr7+y9Ks8ZBEHgnoLKjdx3lp4Ol3OQuNxBmMp2Qy4But2tRA7fmxjSlHbM5ozCgP5jjYH9qjJeUQMTd/cfQGi6It1n6/3wLN49T3v5DX2B64eCkMNnrErUknCak9xaYe+00S1+9wtoLj9M5WCQMY4Sb3OWjd+yztNfkjCS2wkSbQrOV1RXmFxaZjCds3d823rEGN9+7+ax5lmEQsrCywMraCkrV3L11h6986RW+8OVFqirgyUd3SJPay60sA578p9/FbPWQnXe/iiwiVFihA8X9R66y/0M3uPJz384zn/okyX7CJM9Jotg4A0HoZ014iNDrBieHZoFOFKja3HkYBszNz7O6sc7S6ioyDBkeHvL61avs7Wyzu73tSZbQpoYkSnrc3Fpk92hAr1Pw6IX7rC6XxklV9p6k+d5F6wqFUJp0rwt2cMvSp84y/4UNjj5yj2oxZ+uPvMK5P/dBROGQutrWh2AhePtzy/j5iES4uonmvh064iL01ZVVOp0Oda3IsoLSTfOz/6raDJ6pVW0h3R4CKIqcbqfD+9//PtI0RghjiOratF4ZXo2iYeLMMvK8+VoUOVvffo9qOQcN3eeXSV+f95EaWlFjWEZNvUtTKOacDjC1Ke5+2oVkfkyQMMp+NjOkR4tzI6Iw4/bWJsfjAUW5xubaLkk087pDY0byCiGa/ncfzbi3OYeu0U/OIHtVEmqm33aL/b/4BaqHhuaXtaDz66fRcU3x6AFLf/lDhFvdhuba6gQ33Mw/S230rXD7UtjgB5eGaQodRa0g1ITCjbS3dUeyYHH+RfYPn+V4dJ7J5B6D/gi0YWSMo8ikA1vRqzmu5auxKrlOc/KNQyYX73D8xA3KxdHXGjIN8uaApf/pE3Q/fRFVaaRtv3WogDPahmyo0ceipT9d0bNvR2y9Dg72WVtdo9vrkmc5rd3tAxptVZl7jgY5FRBppB28Jvx8GOgtv0gmV5gVG4yrU/R7b/l708pMS5BVgK4ClCoM2VYYouqavCgIAzNnRXjugZbesekWJ0N2MLVxuludPb/Z6x07A7Uq/ZI07QwWVtJ2swjpjT84221rByxU4BuulCVEEE3LYrs442TkbVtVJLYFS6GCmqBKCLRpQTLnMPQVzna7h+aO45EN3DnwzFxCCG7cXGI0Sjh9ap9OZ0pV1b5dyr3fecR+LrbWEGruvPs3ODx/jVpWENSG7S8EpEYHBgUh0Gih0LIGJekcrbD2xjOsvfYuwiIly3ICOx61rksfGQY2/1NVtZ2e1whhbbm2wyBsTfQy1+xoU5XSBGEMwniTUZwgg9D0bIuIg9EpjqdrLPTusjx3hzBPeOSffpSF25u8/Kd+nmxteBJ1EiBnIad+8n2c/dkPM793hoAEKUN0JBFB2Ezpc2vnFJ2NTJq+WE0YBZw9f45+f8D21i5vvXXDKD/hSHH80zL/hKFwXl1fodfvcXhwwMsvvcRwOETVmus3lpnMIi6cOWBtObM5X6fwIR31ec/f+z4+9z/9fTSaU599Nze+89fJF0YUgwkvf/dPsvPul3n/T/x+6l8ZkKapUWiyGdVrRd+ItRUroU0LJeDTAABRHLGwuMD6qdPMLy2itWZ3a4sb166zff8+2WxqC+YK0JoojuikKWHY49UbfXYOIhYGGY9fvEe/W9AwElp3z+a7q9pEnkoYqlNlI3ClFCILOPUPn2T47l1Uv+T42+4w+sB5ep9aM0qDpnLeObRGwBsd4Ay+dONRZcNEKSxJS1lpBv0BK6srlkjIMGS68bII0xmT5xllVRHIgEGvTxgElEVBXdU8+6EPsba2gkDb9lQ34MjcS1EUlpo7J8typtMps9mM6XTKkCMOvtOyDirB0n84jygcFTIe1dAapNYoO4/DF/RaL8fUxhgegjAUHiZ3Pr2bIlhVFVmW0e2GdJOCh07f4t7uGvtHK9y6t87m6j797hhTOObObzjpa1Wb8daiYYJ0QQzYFkRndYRxiOu5jMM/9gLHf/hldNc4WGIYsfB/PkXvJy+x/U9/kcW/8R6S59Z9W6M7pm9TbhmzNlLa6Efn/LWNinbxptE3YehUOgBxNGRh7iX2j97H7XubXLlY0h+05nG0QlSHPvkUTCHp3lwnvbNC99Y696KK4WNv8zUvDcEX14j/+2ep3lhD98F1viRpgpoqj8RIaThYnD1yBbGuNdikOb+elTTpsd29XdZX18lmmWfO9evjbUIrRYhxqur1IdnH3ib7wG3q08eoqMYxvdbqX1LXPQ5lxSgaNSiUhvil08z/v7+V8N4CaCgr56waJ6esSmtjQ7PfDZ2s35m6JVvOWWhSEO/MG/iG0gSu0MZacb8IJn/bwKfaPnwfIT8wZtNBxQookxl1VFCHJUWSUaQT8mRqvnZHzLojsu6YrDum6ExQsmZx9wyXXn2W07eeQjQoHK0Go5bD0n7M+I3loQS7WabTlLduLBGGBZvru1R1aYbD2Pt1Sk8GwYnxrEEQIJFsvPU0e49e5dq3/hRlZ8J/7pWOFrnw/Mc4/8K3sPLW4yTDRXQlTASVF3YUrIGPckt0YxSFIdLo93rGEbAXVdUVUpouhNpFc7bDwUU7IEFpAz0pTRiZ4T9a5UDMvYNHkEJxYeNlkkQgRYwUgtO/+ji9u4u89Gd/lqMn7pxYzrpbcOsPfIa9b32dU595L2d+/UMMbp1BVA1/uIsYzbI7JMcvJlLCytoa5x46z+7OHq++/Jq5vtBBkY0Bd0Vug0GPtfVVhICtrS1euXrVrJMwCvto3OXezoBBr+DShUPL4d3OpxlB7G0t8+6/83188c/8U5ZfvcjmF57mlT/4H9h596voQLF7+Q3+0w/+MGub7+Xhn/gEYRZYOW9qFZr/N9FdgONYkCRJzNLKMmunTtGfn6fMc2699Ra3brzN4eEhRZZTljlVmYNS9Htdup2UKIooioAXr/XYPQhYWZzw5OVtQjnDnAGERQNc+6qwUKYxmpaPw3I2VDa33n1+mcWfPcf+97yJ7tRs/7FXOPOFecQ4aFIMfr/bKZY+YjVrFzh0xs2SF9KPNXb95ZubG6C1qQnIcyOTQlpGNTMDwsyWCOl2OqRpgtaKIs/Z3NzkkUcfRQb4iE9IQShChyGZlIF1CgxBUcp0OiNJEg4eucPkskGzkns9lj53BgKJqm1XjFXmpujXoExaWZhXa98S4lhJTxLNOAUmPMV1XZuURRwnBEFEEChOrW0RRwVbexvc3VllbSlkaX4ImH2rakcwY1JHVWUKNoWvRZH+IQgwpF1Ckz9ywO5f/CyzZ++CZciNri+w8lc+ROfXTzP+zhskn1+n96+uoKsWAtDat6qlL72fZ2XX60dcgWcLanZOQV2bEgRrhJuDa7rpFmX/TYbjh7lzd4ML5+4QBMpT65oCRbdjtJ2LAfRzhk+/xb3v/Az773+FamBz9W31XQvm/tNjpH/uWSZvKApdMAtmZnSxEKSJaUkurLyZ1tzYplot0mHrMRzUfvLl3CSjs0bDIWura6SdDkWeG1K2wLW32gUTFmGwNkVKQXBvkehfLdD72UfJ33Wf8fe8xOTbX4eoQaQVUNh1F6OEwb/4EP1/8E3I/Z5p+0ajberDpCcj6toWpWuNUBqBIpChd9wdiuX2qXPS3iEoAHxDpEONl+hPolt5bWrv/QmaXvOmffBkZazWoKTmrUc/x5c//u85WrlHHZYoWaNkjZYnC7w6k3ke+9K38diXP8Ha/UsElWmNUm0yJNFsADe4wcFGbc4CT44Chr1Qw5tvLTGdRpw9s0UcZ7i2DyFaLTBS+CIjgyZIk+vTiu54hff/2/+e81/9CF/57r/PzqWrRvm1n4YGLWuy/hGTxR36g9OE0z6yTsjynLKsWFpcwBmX4XDI3NzAc2XnWU632/P99k50DWpQGWENAlTVjDTOi4IiL0iSjv+MEAZyqvOM/dFZJtkSG0s3WJnfQ4gAV+yoFfRf2eDd/+Pv49Uf/EW2f+vL6MBCe0KjA83k7A7XvvfnuPE7f42ll69w9j99E6svPEEy7NvzGcn0zgBGkURRyJVHHwEEV59/iaKsTVdBS+kaGTNDixaXFujP9RgPR7z2yiuMhiMDfTrmPARVHfDm2wugNQ9f2qOT1ibX1s5re+OmWXztAk/9k9/NvWdf4F3/4PfxwR/+I9z7bV/hld/zM0wXDym6U+78/k8z+tDbPPkvPsnaC48iVUPI0yhU87NDDjqdDqsb66xtbpB0u0zHE66/8hp3bt7i+PjITKHMMlRdEQYwN+gy6PdIogStFJMMXnijw+5hwMbymKeu7BJHCkhOwNaB1H7YjLLRm8n9Y51DZec8GLi3rjTL/+cVjj92l2o9Y/q+fQ6/8zZz//rcidSWEMLWU9i7s0iADKTfB4EM/AjqyLayZlnOysqKr5jPchPBK8tSGUiTKy4scUwcRSRxAgjyPENIwQc+8H60rilLhRSuety23AkzfTQII+K0S6oU8fCIODb8FEk3Yus73vCFg+ufvkR/ukAeZpS6ojaFDzhc2sxHUibL6QqJa7OnTErUpaZajB8a0wVgx3RrBVVlyHCkHb8shWZ1cY84LLizc4at/SXqWrC6eIgUmtqiY1pbPoIo9tG78HsatCPlimpGn7zO/v/4HNWmDTRKSf/nHmLlhz9AeHtALUqKs0fM//AzMHMBWdtUOxigVTflwB/hnHYbPPiUyQlYqKXKzLEkEtw1ahBSMze4TlHOczTcZGdvhc21HX8cZW/SOdTl4hGHH73K7iefY/TILXRU+f0pqoDocECxcoQoQ9Z/7COs/72Pk09qqmSPPM/Ispxu2jHPSCq6nZQkiVFK+24IFxSZezNpBNd4J6VpIz/5Mj/Xtel+6KSpcQaM54gIzPq4tArSHs9Ag6ikoDi/z+zDN5l97AbFk1sQnLRlaEAJguevsPzXP0r6hQvoykH/LqFhUN/CXlIYBMaBUnb/K4W0g7C0ViAbMj4T/jW1BO/09Q2MMG6AkSbP5TaXhZ6U8EUxynq9rk0FmlYVd3myFjz8lY+weuciX/74j/P6ez5FHZdtqfOLVwclO6ffJKhDhgtbrN6/yOB4jahIwdYdSIHftKqVtvAvd/6W56S1YjROuXl7iTQpOH3qiDCSPrL15lY0i2ty7WZegMl9ueMGnLn2Qdb+9mO88m0/xle/9V+R9Y+a+xGQ94e8/Z5f5e33/CrRrMfCvYfYeO19pJ9+BCarpJ01U1EsDBvbqVMbBIEkyzIQgk63i6uAdfCbwLTVDPoDM8MgDGl2upleGIW1j7LDwMwKH2cp9w4eJggKzq29jKayvePW2ZFmQE+0O8f5v/wdhNdWuP8DnyUe9dj81PvYfe8rjM/fR4c1VW/GzvtfYve9V+neX+PUb7yP05/6IIObp5BlUwkrNKS9Dk888zRbd+/x1vW3CEPn/WqSNLFG1QyeWV5ZQgjB/fv3ePP6GxR54eFmV9nvilDv3ulzPIw5tXHM2soEZ6Td8247BOZnwakvPEOV5szWDuhtrfL4r3w7668+xpd/979m+4Mvo8Oa48u3+cL/7R9x4Zc+zKM//lvpHs4bZMOlC4SJ0HvdHmsba6ydOkWUxEyGI268+BK3b94mzzIziS/PKMoZSRQxt7BAr5sShCba10oznimef63L3mHAqdURT13ZI44aAyFE6KPVQEZNpGX78qvKpI1c8VFZ1TbfbibpBdc7zP/zC+z/mdcg1Bz9set0f3kVuZPaoki3350jrW30b0bBmq+GrbDNT6CUJkkSer0eZVlRVhWzbEZVNzl2KWx6SynCICBNUzsFsSbPMp54/DHSNGY4PEYIfWJwVBBIX1UdBAGBhiiOSdKEMAyJoojhxgF3nrpmlOcs5tJnnyFKuzbfLsASSynlOnYMOqBUZecH4GXJoaDSpihM4NAoL+VRTwM953lOZGcpuCmYc/0R54Ob3Nk+w+7hIrUKWFs+QEqbp9atQkznjHilY45dL03Z+9NfYvg9r6HtrIngMGXp776H+R99HDE1tUtlN6fzH84R7vZMJA4+xdC26V6lOvXgvhfNz07fOb3qnoXT/p4jQzp92BSvSlmyOP8yu/sDtneX6femzA0mfu/Vsia7sMP+d3yZ/W9/nnzzoOFG0BCMU5aef4SNX/gg2x/7CgcfeIUL//B3sPITH6TOFKQFc/0+h3bAVK1UQ5YlBYEICWQT4Tsz7Oh+lVLQri9wCqG19AYVgaPDY9bX1+h0OsxmM+/AnbQpGjWXUTy2w/Sb32L2TW9TXNpD98r2oVsLb9AA+X98H+Jv/QBSX0VHux618qkY7WqBFGVREqSmi0tZfa6sfEgVnOAVEKJ9N3hd+U5e79gZ8EVpLWWBxpN0GK9Z2L50c9e6VoZDnIagRtBQrQp7wIWtDb7tx/4Ejz/3rTz37T/GzUdeQAUNrzQCis6UO1de5M7lFxFaEGdd5g7XWb17ic23H2Pt9hUW906TTgcmekMYpKA5hCW1aAotwAjJWzfWyPOQixfukSSF96Z8ROnQLeEWt/m7q+w057DtYuUyH/jFP8b5lz/C53/X3+Huo8+ZNpkiRWhJmRgYrOxO2L18ld1LVxG/NSDZXWbrradY/fK76XzlAlWYsbS0RBiGHB0dMxj0zVx3BVo2HRAIQZGXdFY7FpExCruqKjtJ0KQ3atvf7NIbB+OHmGQDTi+/Tifea2A7nxgVVEoznpp0wpUf++0s713hjT/x44gs4gM/9EMcPvEm9779Ofbf+yrl3AQtFZMzW1z7np/hxu/4ZZauXuHsf/owa88/QTzqMxjM8ciTj/PmG9e5f/cuBtWojWGTRnZW11ZYXV9lOplw4623GB4f+zUOw8DWEwgvV1JKRpOQt+/0SZOKKw8d4HlS3PP3zGHm4TvESGjBuc+8j3xgIq66qum/vca7fvgPcO/jX+H67/9FpmsHVJ2c65/8NXaefoOn/uUnOf2Vp5EqIgwCur0e66c2WFlfIwgjDvcPuPXi2+xubzGbjCkLk9+uq5JOJ2VlaY1uLzWItOOo0Josgxde67B3GLK+csyTV/aJQhMJmEciCIPwxOZ2ufSyLC30WfvJf1WtrDNQW/4K06I4/6PnGX3yLsUjI8rLY4bff5Plv/UYAQ3sKwPh502Ebox2bFIYzvgmcWyGRsVm9GtZmqhfac10llFVruXTQuradBBoBZ1exyBeNj3Q7/c4d/Y04+GxqcuwaEBZlt74uFqd9ljvODYDrsIo5Pq7XmA6GIKGzTcf4szeRWYDM9diKmeILHc22KbaGvY/MBMGXa0Llpfe7Bv3Hk7MozB8QBqtaooiI8tCer0WzTGaXmfC+c23ub11joPjOWol2FjZwzCBN1Tjrr7HAtpooZi9a5udv/QZsmd2XDkUydVV1v/qNxE9t0pV1rhR6+E0IZqmiMAVSlrT7WqiWiiWpyVvvRz67YIdr//sH6RlwpP29w25kD2PSzNpTRSMWZh7mf3j93Ln3gaXLrxNMDdh/K632fnkFzj+8GvUc7OW9RUk2wusfuo9nPrFDzN4+xR7H7zK+NIdHv2r38/S5x43EH9QERExNzegKAsm4zFt/wktPJeLuwvjBChPqez+1VXt14jWWrQRkqIqOT4+ZmFhgao2E2C1xlB8r4/J3nWXyUevk3/gNuXpIUR1G4ox9vGoQ7jTp7i0B1KTvHCK+f/1W6g/9UGO9lc4jp9haenXkaJopWWEZYa3NQlKk+eFSeFKUwtU1gYRD8AOUmu6+Ry21aA778wbEPoEFvSff/1f/+RPeCPZ1AK0oCQBhkBC+83vKlJN7st2IDifTboiHQfZmDKHOip468nn+MIn/h27Z26YKU51QFSkFMmsSR+0Fx0IqpjecIGlrXNs3nyEjZuPsnT/HP3RkkkpeD6BtpUQHI26fPYLjxOEFe968jpJrJrcHXxtWOlTHbaIi5Pw96kzp+l0Oty5dYe8yCniMa89+1O88B3/DC0UH/y3f5qiM+bO419g78KrzOb3TUHhCSESBKMO8fUNzr3xQTavvpebPzNiM73A4vyS3+xYL11pxSsvv8Jjjz9qOf2FRQRqstmMLC+I44RZbgrU+p2QySjjxTfeixAJ7778c/Q7x7bew6EOEgiZFTWjWUFvsGhaBYOA8eV7XP+Bn+TCv/p2Fl+4gowE09O7bH/LV7j/8S8xPmfQArfPhJL07q1x+nPv51t3/hD7n8oZ75vI3eSmAwIZsrC8xCOPPUxVlbx17U2Oj4ZNtIRuPFGHiDikRgtefGXAvfspj17Z5eL5w9YjFpzQe846uQVv7ROtNXESEycJx8dHgGZ2Zo9X/+v/yJ1nn0dFBoIPiogLn/oQH/j5/4pHeu9heXUFISWHewfcfPMGe7u7FFlOnk2ZzaYEUtPrden1OnTShCBwm7VRUEUJX365w93tgFNrU555dI8orJsQDpAy9IaxrszEPjeuuigLTxJU1YbkpaoqCtuXr7Rxzp2cHn/3Le7/789DpAl2Es7/199C580F7+AGobRELSGx7aYwxtcY4CSKiOOEJEkIwojd3T1GozFlXTOZzRhPJmY2fasWQWmYTCaGcrjTRQhrSLMZ733Pu1lfWzXjuwNJe0y0y627PamtfokiwzoXhRFVt+Tv/aG/yJ1T1xFK8jv+5R/moV99htFwxHA0YjKZMh5PTJGtRS7qurJ88OZZSGnnTdh+d41B3IqyJkkSb3hO2A8rm4EMiOOETqdHEIQIP87b/D8rYu5snWOS9VkYjNhc2UNYrgOEtMV+xrCruODwu19m7099kXo5M6cpJIN/9zDzf/3diK0ErfG1GuZydHM23ewVZ2BqXZ9ECOy52rUDZrhcCyIA3zJ3gnWUhhtEI9CKZoqjvR4hAg5HjzPur9D/3l+m+oO/xOSxO+j4ZCqge22T1Z/9ICufeobe0QqBCCiXh1z/gZ/g9L//GL3Xz4DWnqWvVjVlUTCdTjk6OiKOY28gH0RBNJgR786QY+abmAAiYDabmXWhaQl2DzUKIzqdLlEYsr62CknF8co9sg/dYfqxt8ifvke9MvkaxkdqSbjTJ33+NN1fu0TyygYHP/gZZs++zfy/eB9z/+j9sBejtOTw6KPMZpcZDF5m0H/FXIdunDCz3135n/bomOlgUz44CIKAMAq9c+aQQ/Nszbp8/kt/mN/s9Y6dgT/5Z/4NUZngqicbYh2Tn3NFgW3gxW0E3/auG+Fsy5zj8TfsfSZyn3WGvPKBX+H5j/8s08ExH/iF38vK3fNsn7/O1vlrHKzfZTp3TB1+HTjGGqBk1mN+f4O125fZfPsRNm4+zPL98whcXlzy4stXuHlnnUsP3eTUqX1bBGmK19zub+oO7OE9sxg+VHCoQJomyCBgPBrbliDj5R9t3uBLv+sfMJ3b5+P/4P9J53CF2dwR26df5tpDv8rxu15hduYeVTI7eT8aZBki7g5Yv/406y+8l9UXniHZW7I3CsdHx2xtbfHoo49a3WSdBFUzm80oy4oojhlPpoaVMA64fXeVG3cvcXb1VR4++0UD/9njGdRHUquQg9EEwpS5uSVbD23+Fcsjdj76PJu//AGS6cA6dAI1V3Dw5Bvc/sRvsPfu1yjnxicEIpp1WXzpEmd/+VnWnnsaMQpRtebilSucv3SBG2+8ye72jpUZ7WEunxKRRlm382E7exFffmmBQS/jA++5SxxVzQK2c0LQgrasPJ6QV5OT7g8GZuqjrbsgqbj77Atc/d6fZrS54z+7enieT37ph9j89We4c/0uR4eHlEXGbDKhLHKCQNDvpczND4ijoHEA7Fq7rVfVmhdfS7lxJ2R5fsr7nzqg0wFtR7ZaPdcqEFSUZeHTAkqZXGJV1eZ3pYFPa/ve9n7FSqvqVdz+/36O6bO7ACz8uwtc/H88S6AjksTA3VEYGCg+No5Ap5NYNCAhjmOiKCaKE46Oh9x8+yZFWZGXBePJlKIqcaOL/XmFJIoMeZawi19kMzY31njXu542oJ1FI6Q0zggIa4SCRmfY+ggD5Rvu+9tPvc6PfP/foA4rlg83+KP/x19BbIWMx2OGx0OOR0PG4wmTyZTc1jK4QkYXsCBcrUBTa1SWFdMsJ47M+O022uT1mHVSgiCi2+2RJKkfhVvrpnuhKJ1DMLAOwS7C1jm5KvhyY8TWn/0Mw++47ovOgq0OC//7e+j9+CUoTMrEzSJx3pFjj/TP2UbI2sq1NifxOlehfd2D3wEPBpEuSpWOeZMT+85Wh9lJp9oMRNNmPdSVEcPf+xbD334LLmxDoP0xg0nK4EuXWfupD9L/0iXEKKYsCgb9AXEccvzu63TvrRLvLPg2R7S2zkBFVZbkec7Esgs2dqUxNG5NJ9OZodSumqmoTqb8sXHQv/u/IQNL+wnqPXuI77hP/tFbZJe3UP3c2wXvMOUh0a1Ful+4wOAzl0mvbiL3Oyg0+3/i00w/9DbLf+tjpF86C5XwgXJZDtjZ+w60Slle+jRxvOevAEzKStr5LT6IFpAkiSFNqipTQyOldQYC4xCBR3TAoCPPfeW/4zd7vWNn4Pv/yt9hcWezUcrCkf5YYVcNItB++ZyFdjpZ+2EgQgg/9tPJteuXFLboaLS8w/Mf+zluPP083/wTv5+LL7wXHVQUvQmHKzvsnL3B1kPX2T1zi9HSHmU68zSibaEGwdnXn+S7/vZfJlAxUkiOhnN87svvJgpynnz8VQvDhDad4YgmHEIAnu5QtxUBJ1AEszcb0gdtBwwB1HHO9ff+Evunr/HMT/4R4myO/b0jxuMxvbWI/NwWO088z5sXf5XsyTtUi0ODhLQ9TyV56h/+US79zO9CWI/92vVrDPoD1tbWEJhRrEKAVoq9/X2CIDTjkScTI0g64SsvP0pVwXuv/Bz9zpAmFrLghJYUVcjheMZgYZkgjO3zM2uCEKikgqQmnvZsDttxq2tqWTE9tcP2tzzPvY99kfG5+03qR0M07vJNf/bP0Xl9jUeeeIKV1TVeeekqs8nMCLPLR3pDIjz1cduoVbXgiy/Mc3gc8p6n7rGxNmnWqq3ovDyaPwr7UJufm2cbhaZNzxWRhoEkikPEpZJXv/cXeP7xn6MMTMQ2f+s0H/lzfwqxGzObjsmyCVEYMBh06fc6xLGBUw1MWbf2h3U/tOCV6yGvvpWwMMh4/5N7zA2M5+96/bXCKzJn4GtLCuQY+CpXG2BTAq6tyBH9gJEHAV6ZT795l7f//mdQnZr0/oD3/OB3Mb+7TBTHhIHpOEliUxuQxDFJEhvkJDKpgTCMKMqS1157g6OjY6q6ZjyZGSa4B5Szu4qytLneusIm7Pnmb36WbjexPesG8qzqkjiKCSPTStu0hhqj4yJpVwz8a9/97/nKt/4KWmg+8huf5Dt//g9S5iWz2YzRaMTx8ZDhaMR4MmUymVAWpRmaVJbGUFgj0XAoGHlQSjOZGOrs0BHVeJ3SFi9z3XGc0Ov1SdMUtB1+ZBU0Gooy4s72OSazAYuDEeveITDrdfjdV7n3V37VOAIKks+vs/iXP0jn1dVmGFmTGLY61PBCOCPjkAHnBCJstGjP0SZ/8jbDK7nmlly9l0cEpPQ6zzuoFvH1jJT2Go7/0hcZ/fGXmkMqQbS9wNKvPMXSz7yX9Noa1cxU/1e2jmTQn2NhfoCIDPuovZtmeJRFB6qqoihy8sK0lbrFdbfhHMUiLzk8PqL2qEtNozmadIg3tOYpImVAr9sjWZIc/tSPUz6zfdKeKJDjlPTaGr3PXKT3uUtEbywTTlPc5FaEYvjRN8gu7TL/b95DcJSe0EEOLRuPL7N38BGSZJ/V5d9AiNI+KxfwSMNaKRvyKClNmiywHS0KRSBM8XjT9eI8FfPli+/AGXjHNQO9rWUqZWdzGxceXynu1tMKkLtR6zRbL6wFwogGvvCsXs7T95JmqE7TrQEf+NffzaXPfIDXv/nTBMcBm69dQc5CVg/OsnbtPE/wcaq4YLJ4yP6Z22w99CY7529wtH6f2WBsjBCapXunEVWNFjmVkrx16xRlGXB6/SZCT1B1asXBrafxfJsRxc2rga+xguYwE7tZ/XjmpuAyKFKufPa3s7G4zXh9i+jlgPF4QiftoIaahTcvE7ywyuTmeR56dp3Zkzd589Kn2H/iKtWFA+okJygjll9/3Bf05HnJbJpx/vwFs1kt5BmGEUVdE0WmWjsMYqQsiKOE+1trTLMOZ1dfphsf2bUXCMtD4HgXXKtYM27TpUbM/QdFjCyF9w/MWpjnKSvJ4PYG8//6t/OhL3wvb579Am98+Fc4eN8blHMTFt94iP6dda48+Tjdbp8Xvvhl6lq7KtCTa43ZFG7BfU84mvs7CQdHEesrI1aXp1ZBNTLpPWTtisIaRdZ424b729muypKVBJYtcGFpkc0zp1lYXuLpX3uWtc89zq//1n/CeHOHC//8Y0zfLqirIUEAS4s9W9th94aqUNrlcbU3XqbiXnDzXsjrbyf0uiUfeHrIoC+8U10UpYdxnZGv69oaVFMDUJUVle2/bwiy8PfkSBY1gJQEwqTnwiBg8MpDzH5hBzkPD/+bD7FWniFaMoOCotikBuIksc5AQhgFtqDPFDNpDTdv3jIoijZOaFEUHqaEJuIVQpouGGHotYMgoKwyHnvkYbrdBEPwZXK+pTJ8A3VV0wEiO/XOGRpzPy1VrjTv+4+fYOXmKa6/70We+sqHQZn6kiRJqOqasqxtC5+BmZXlq3frZgqBLbRqh9r4AuggwHExOBjXfN/Iltk7yk4Izew6hV5+AYSEOKo4s3GL2/fPczgaIIRmbXkPV+o297NXGH3sLcYfuc3gnz3G4t99hmTcR8RNLYA/ZmsvCintHm0pXk8nLOweEiC05Vdo5N8fqp1Scz6/dJ9rqt2bfdkYNbcvBWYuSeenH2L8B19FJzXy6gb6n32Swa++hzPhhGw6YZRPqOqqCS6BLMsoOimpSAz1r1s5N7zJw+fSDhNTdNKUPC9wnQJmb0nr9OQneGJwhrrZEbSVTTt+CAOTmk6/fMY4A5UgPOjTu3qWwWeu0PvSQ4S35yEzgaNBRTROTalORXpzjcGnHjGGPRJeB7XTg4PB28yyc0ymF5hMLzHfv2a60Gyqqgk4zR5yqGJZ5mALas35FbqG9pwYR/p3As76L7zeeQFhbsZxBrIhFXrwJR4QFOG+sw/EKfEGwmjx62u70VBmSl2LGSoA1m6eY+Xe93B0+j6qmxNnCVrXprVQC+RUMpgt07+3xPnnnkaHillvzNHaFrsXbrJz6QZnrz5umBSFYDhaZGtnlTQ5Zr5/m6o0ijpONELEplbBdQk4h8Bc6QnHyxkT92vXjuSEtapKqy+0abzQkv7+GeLtku2jHdIkQQrTjlaVObu7O1w8e4nFySL686fZ+fsdrlz+PsKnJuw++SLjjXvM3T0LwqRV7t+7x/LyMlEYmQFJWhGFsa1sjomiDlWtmM4yy0eQcnd7jSiYsbn0qo1WhX8+pk3H3LMrFFKWzMIEJDaV03aOBCeeIzbikELQ7XSRw5jeL13kqV86y+zsHjsffYnFm+d56NRlup0er371qmnzEieP2yAR0rmJOAcLAWUe8NbNHkFQc+nCEdIqZBfVPJg3aySz/eza8ou9Z+sELCywefY080tLFHnBm6+/xc69bcLxJu//5T/K7Uefp/cLZwllzfLKPEkSWZmuEUgqVaGVIo5jLydugA/A/nHAS2/EhEHNe584ZtArbZGSsgObDOmUxhRZ1pafv0EBlB3ao2wBmvDDS8DXY/rnGgTSRPWRSQUkSczaP/1OetGAXtgjWYx9caD7F8fmd0EY2qlpwnL21+ztH7C9s+NRiKIo/QRAfw2iGYCklPajopWqGQwGXLz4EEI68iyHpmnfTlsUJYEdZOUiXE+m4/9BZ9jn0c+9n0e/+D46cZe6Y6bAuaE1ZccUcRrCosQ6V9oiLTVSKjODxB1TYDlMtB/m5LoJ2g6JUwTOuazrysxayCPS1HS6KP8+4zTEUWkdggscDOcIZM3y4gFaKxgFrP21b2Lw0D7pr58iErHt0zcPs/18/X5zUt2C75V1ZqQjd3NG2xlUpVGOf6PZUl8zkZv2XnLvtefzGroVhDqDGl1dYvB3nyZ+dRl+bZPjex9ixCkOz9wlEIeUVenRHudsKK0Yj8ZEYUggmshYWMIoabkqnF6KIsMjYJAF4VFDI4+mw+Nr7gVXr++9puYG3DPVprUwkAHzv/g40UAw99mH6V09R+doHlE1RaU6MMeS2hEz2bPMYsKbK5YC2RT7SWm6vGpVGSQHgQgUq8svkudrjEYPM+jtEYXHft2dpDn97Kjqhd1DQoAMA5QNFlwrvHzgeb2T1zfQWujgICv4wpzphLPYOrstCzS/PjGboPH4DLLQFiGXI35QcWuE0AR1yOqdc+bvfjKcPfYJ26TRJaQHPTb2L7Hx6iU3yoaZmgKSt26+i7IM2Fi+BkypKglVhUAjE4kQoSGasGcRtnD3D5QAAQAASURBVPAwDiNqN0Ht5AIhhSSMYlNMlMTMZpkZ/uJomjFrVxQVe3sHhrM7jk2rViC5e2eb+bk5FhcXCaTkjTeuM+jPsdE9C28Klt981Dg/tdm5s+mU8XjM4088DrjODkUUx744Mwhi8qJkdnhEN03Z3VtkOotZX3iDbnyEM1KBUzJCojH5WeHmBdhnqJQy3QmBaNWduyd0suXGwfpRFLK1tWUUb6lJ31zh/I1vY219nYVLS7z81ZftJD8r5G4MtIOU3Hm8KDgIAu7cTxmNA86dPmJuMPXPGBp0Cv1AUZHGckPQgkjNBnJtbAuLi5w6e5q5xQWyacb1V6+xdXeL2XRGkc+YTSdUOyXnbr2L+YUe/V4H062g0Er6NQuDCAJtn4v21yWkZDITfOXlmLLUvPuxI5YXZhQWQkcbvgAzjMfklEubFqiV8lXNbnFMd472BsnvMGkcskAGhHFkCv/i2OT/05Q0TUnSxHxNXKeA4w8IjYMZ2PvRhiynrEqKvGA6y7h3764dDqMpq5q8bOoEvMHQjToLwoDJdEwgzCCWc2fOIKThnJBBU9ftorxmWqCLcPGKvmESbKlLBaIUZFUGStDtdgBhZkGkCUXRMURFeU4UR4YfPwioHASulIGUnRxps35RGJHnueUN8UMETki/lzuMks6zzDjkkeMl8VcJGpKo4PS6cQj2jhYIwpr5/iFCCOK788hbPdM54vaWEAaJMFV+jS61z0Y7o+qccXdF1pGo25vAyU3r6l3a7ASVnHAr36bXxj+H9rHMXLTG4aCQ9P/WM6DMmOpO8gKT2SLbO+ucOXVIUO+fOIZz9LMiZzKdMej30X4mhGvdVp4sqGmTNnJqpvyZLhQNqNK01T54V+5cJ1ejcaKcs5DnGXXVYe75iyxdfaShIpcCpCCUgWc1NPZNooS1CwIklqPCrQ0u2Ajs3IIAVzAahmOWl15mZ+/9HB4/zubal0FUPvXulZ+waTT33JSiVhVU2jt5ntPBZFbQonn/b/Z6x86ADEwLT7NPnOo18JopPrMCql2tSjNNTljnwStEIVrKC++RN4pfwwkiRUsUgraED04ROOejCf4aj92JmEDXVllqxWiyyPbeKeLwgCR8k/GosBChJhiNWFs/befChyc8HYEgimNEVfnpV3aLIGy+sNPpkuW5cQSqym4cR4mprSOwj0CSpglBIInCgJ3tLYJAsrq2ShSF3Lp1iyzLeeyxR7xh19qiFaHxQm/fus2FC+cJg9Awmdk2LLO5A2vwBNPZzApywt2tZaTMOL3yuqlGxkFveEhJ280XhBIh3Ohqp8pcTtKFCA0k7CysM+ZxbBwi1YKxFdDv9Dlz+izX3rhmNpRoIxPYY8hmD7TOb06jyfKAt293iOOKC+eOvgYJ0wjciLwH9aDZKEZmhTDMYlEcsbi4wKmzZ5hfXGQ2y3jj5dfZub9DnmXkWcZkPKIqM/q9lPWVZeIkMp0BwjxboTXtmgYpZAsmF2ZYjqqpasHzL6cMx3DxzJDN1SFF4fKhtWGos10CJg3golhjaKA9YtZE5UK56EH6iDgIDCVrGIWkSUKaJqRJQrfTJU0TkjQlTRLixBQChpY8yPdt06AAVVmSZzl5njPLM4ajMaPxGARUqrYFg/XJhXYRijYterPZ1CIdirOnNlldW8ZE07Vv0TU+aZvt0aYkLX2vqpVvZzbP0ofrHiUQAtMXjiBJEiPLwUmHwBAFFSilCGqD4ilh0C+tfLyP0o6xLvAib/5kO2+8EXWyZhCGUhQUeW5TBV5yvSwopUnjGafXbnJr6yF29peQoqCXHiOlJJaxlZmadkrAras/nGhrOryKbnxn85Or5TEq0F2HtGhAs27m843x9zq0Bbc7YmIney57IXRjjNw6mjoCRRjsE4evMsvexcHRGZYWJhR55m+pcdw1k+mEJI6JLSFVGwxxaQLQVs5NOkZUpS+K1FozHk+o66qJK08K5tc4BE3YIXDISl0ry1sQnmilbK7DBR0NuZGza9KlVwDtEQtzBpPbb1AMrTVLC28xmZ5jMllnMjvFXP8OSjQOsPlGIQg866hyQY9WCBF4vg83T8LodP110Z6v93rnzoAdq6Wt1T0B21oBwsHJ1mBoJ6la4waOuKVvF7o0RAuqZcid6THRohMW80X5vyFo8vm+gIXW54W9fmeQBfd3HqaqQhbnXiGbHlIURuG6KEoKweLKGnHaBSKEDLFuCLPppPHA7fndEJA8z8jzwkBDtqCmtk6I1jCbZhweHpnIII0s7a5ga+s+SilObZopbzu7u4zHEx555GEj6E2ggluG27dvMTc/z+Liohc+JaQZhCJDgsAY9rwomEyndDop+wdzjCYJq3OvM9cdWjpZI6Cu+E/jCESMIg+jyLm0SKck2jlE94xplJCH/jR2Wp1z3MwxT506w87OLrNpZrsDGgfY5yfd4noZ8L4mQgju3OswnUkunj+i3y38ujzo8z/oCJjuF4tbBWZUan/Q58yFcyyvrTKbzHj95TfYvr9NmefkWcbw+JCiyJif63H29GniOEDVlb8g53Q5FnCtm5kRlaXddd8rDddvJtzbkawuznj4wjFKVbYroHEIapcWsCkBdx/SV5E7JM0oryAwUawMQqLIOAGGFMh1AnTodjp0Oilpkpo6gCQhikxawEznNMQseZb7YrDKOr5VaVIeSivyrODw4NC0Mtb2GqvK15oYVMKxdTpWO5hOTE1HHAdcunyRJI1t4Rtg0SiNW0unCM1YX2Uptis76Mekr+zaWG0kpfRIhJSC6XQCaOI4OsFNkKapafstS+pKWXTARF2ibpwKbSNhoRUikGaOgG6e+QkjbJ+HUjVVWZBizhEniVX+JihoghgjjZ10wubqbe5un2dnf41TawW9buHTK21BNuf7OmhZKxrSJ/9gm51sEGaP095b0Bgtt7d8zZfd49obJOv4tgoFtbbOUwuBC3yxoVsro/+T5A3K+jRHx+sMeuvEyX2qsmzWw5LE1bViMp0SRokJLE/sYPtMhETKxiGQIqCsDNullJI4jsy9nFCeTWVXGx9wiID/3uqvWtWEUejrZJqYxwYRno5ZUGHaF2m1/Tmb4xyEdsAipZMXY6dkoNlY/Spv315i/+Bh+t19gmDmgxrviGqDUjsuDjQtOXFkeLagUymCQHgb+Ju9vsE0gTP8DSDs2tGMYNS4kb9GKqWPIoX3+p0n2jL62uQ6jDRZh0DYRW85BsJI4gk/23m2TnG0rrg5vL0GpWE0XmBn/wySPaheYTQd2gcl0YEkjAWT0SF1VTC/uExvME8QJiACM3RIn+QpcAao9lclobaOh9aWrlQxHo8Zj8e+KttARRXb93eIo4j1tVWEEOzv7VGWJZcuXbTDNPDnc5MXtrfvo7Xm3Nmz3oBoHRDFCciAIIiolSlSc6ONoyDh7v1lJAVnV98gDpt8ueHXxm9wUyMgAZO+qNuQvRC2xar5ucltYSdRmiK1ws6cd/lOKQQLi4umk+NoiC8KdP5F27FwwZBoIgNtN+0sk9y6m5ImFedPH1tZUv5ZfP1XIzWmC8Okcs5dOM/m2TMopblx7W1uvnWTsiipioLx6JiqnJEkEWsrqwwGPdI0BjRFUfuN3N7wdV1RFKXJuYchURTjUixRGLO9L7h2MyWJCx4+v01d5Z4QyHcD2OLA2sKQzmNz6+EVmkXYgtCxAoYkaeJb/9LUcAJ00g6dbsekBpLEXJvtBgBNluVsbe2wtXWfPM/Q4I1mJ02J4si3N5VVxXA0sh0DnGhrVPZ6ZGBaouLYzI+XYcDR8bGPEhfm55lMJmhdk6YJURh6Z7Fx/8zLDSaaTqdMp1PK0jgDjhLZoYxhGNiI27YlhmZKZK2UYeYMDGxr6iAMDXIelZRhRVDWBDKgFoZ4SOg266AhS0rSlFk984XQLuAwSroJboo8p64VcRSbivc8I+10PYpz0jk1Rxp0j1lbusv23lm29zd5qLONDCrcUB3fNncC/hLNhYgWiZaVC7s5GyOOowNu75AWfO5QAdH6wRn7tiPgo32nL/CRqPM7hICAhqvFBQhS5CZdkH2c3f1TXDw/I+eYoiz8RTliurwwabIwjpEWHXCFmw21vKCp8QkpK9NyGEdRs2ZWR5s7bSdGHgBbaPSZ+4NSitAOKAuDhtQH5wiBLeATCBFRUoEyFOjaRjfCIzPCyqfyzgRIwtBEOVorBv1DlhffYnf/UQ6PLrO++qp5BgKvQ931u84SZVMUrdjU6AhLsW1k+IGU9n/m9Q3MJnCL1f7diTd4aBpHMOQERgdWGC1qAD6P4jxQp6TNb1QjnC1P+sRsCWEOYs5jQBMfQmq3gayHVDve9prb9y5RFCGd4AWKfGgPZUXBtSupmul0xGw2pT8/otefp9PtE4SJeQh2iI7zCr3vo8HMRzDXUNWK6WTGdDojEJKuhWRlIBiOhozHI+bm5xhYCteD/X3CMGBjY90rAbPmTQyys7NDnudcvHip9QxMxTNCGIfAmDtG4zF1XTPoddg76HI0TFmZv8Xi3GErssdyIdj1Vs64aSQVkZvFYKmXPYxvtI7fFO5iXO5SKTui1o1q1WZEca/XY2//wBzL9m03PnkbGRBeubSPr9DcvpcyyySXLhySpgWN0mpLpotIrexYJRcISRhKFhYXuPzoI/QGA7bubvPmG28ym87I8xnDoyPqqmBu0GV5cYk0iQlDU1fhjiPculmYDjcvIAzpxwmmSM4R2hh5n+WaF19PqGrFw+e3CYMxWa58YZ2DJn0+nEYxNe6nWX+D5ESeHTCOI5v7T+ikHeIkpttyAOIk9sWAphjPGNKjg2Nef+MNtnd2/AJqAVJMCMKAXq/H3GDAYNAHrRmPJgxHYzTCXrdC1U5mpK2bMYREWiuCMKCuFaPhyChpmz7a3z9gPI7o9brMzQ3odFKjWD0tr4mwyrJiOBwyGo49J4CmNTrWRkGuTdldRxBK43inCePehPn5ed8eFycJUZwbZ8VyNVRVQB0ExsERmlqDLhrPtCyNg1eVlcllO2HTLhgxlkJISWTTLHVdM5tlRHFC5Ah6WqiAe6ACWJjbIy9iDocb3N9d4ezmjpdjHwj5l/291Y/+q5MPKbw6dNKqnAZ3uYDmCk44DA41063fm+/xE8jdSGXl9bN5l6nlUP563cAujfacGWGwQxRcZzp7nIOjNdZWFFGeU5SFNeqxd2yNEbR1Gm0dg7MHwpPXBaGBydGYltGqaoyVdaSE/WwbE3Dr06x0s9eqynAaxN2u1U0WfbPpAZMGNjVAYWicharCtgM73d1U95trNnVdjb/WIAgazfrqNUbj0xwcnWVhfptu58ivt0PA3G0JIc3YMqGc+LVu952hAe3XO0cGCNBOpKwhcJGqOa2F6wKT35PWEKOdV2gHKrh/7lodHaiNrOz/nGnwjwucg6NoU8v67y37odAuQlPUlaYqa2bTDKUU4+mAvYPzSA5Jg2seym5y3gpV1X5srhaa0fEBs8mIJO3S7Q3odPvEcQdTCBLiHZ+WQNW1ZjiekGc5YRCTRhFhFCAlzGYThqMhSZKysb6KQDAaDZmMJywuLJLaHKeH82zEXFYVe3t7CCG4ePGih4GEFMRBbM8tkTJEafys936/h6Tm1u150DVnV14nwPRpVxbOcptBWl4FKSwRlFU0dW2MvHYRvBveJNxo10bwhDDwu2HEK3BIg9CaIAzJstwOqnHPV/h7xB2r0WJ2LRxUqCnygNt3U5Kk4uypY8Dl3XjgQ81P/lqlIApDTp89w4Urlyjygq98/ivs7e5RVSXj8Yg8m5BEAavrC8wN+mZ8tHU8cUWUju/A0tHWtUJIbLudURJmlrot3rKtba+82eFoKNhc3WdxcEhZGtkvLHOgWQPrZNq8IDbSchtcSmG7RAy8H1s0IE0N/J+mJiXQ6XRIk8QQCFmYHI/wSMos497d+7x1421G45FZq1bKplYKVWiG9dhQt2Ig2aPjY6qq8pGhQUekr2txsK25d0EYRhwf7SEwLYWrK8sGAq9rZjM7P6EsGcwN6Pd6xGFo20vNOk4mE0ajEUVZWQPUjFv23ADawPNKNU6hkILpNEMAu8EBnTSh1+/beQghdW37tcOYMixNZFlX6PUpo++6Sfyjm+j7IQ6iUnaegtYKP6f6hJwZAQz92Fyjx1y9RRC4CXPuodrPWSMghWZl8R55kTIcL7KzP8/S/M4JQXYIhI+0/Jc2ltJ6v9bgpzfrlrWT3pFy16Mt5OFtiHNiaThT/F0r5xS4KNfp59pW1NeGdEnY9KxtfRO2cjdNXmE8Pc3u3hIL82N6vZAuPRzS1e5cMOiIUSyOCtkpWqd/lP0+sGx8rshVYA2v1wQni5zb6+adbaeLwHaD2aJyKf04bZMG04BxdAWmFdENKivLGiUawi1zL8opI6Onhd07WpmfA4mSmlQWbK6/xtt33sfO3hUeOvcCoawMmu6v2tpW1zlghxgp9wy1RrWI2b5GNv4zr28AGbDtXc5F8rBecyobJ7eiMd2E80LYTSRABE6sPRGGgXkFWksEYevGzd+MljKKR9tOgge9H1WZd1eVKXaqSkU2K6hK0y9/MHyCqu7QDb+IlJn3EdtbyfnCrgZTaIWqCmbjkiKbMB7GRFFKHKdEYYIMjVPg8lZm8wjiAJJBFynNiGMhzQhipWtWV0yR4Hg0ZDab0e8NGKxvGGOswc2kdqs6nU4ZjswEw16v54VUBoFRMsoNWJEgJHmWMZ1MzBSvEHa2SvYPe8x3d1nobbU2nZ2h7qq3HawnG7hWopAYz1OEARosOmKKD9t7yxVSorVFBQx9r4dyo4iyrDx8h1XsbuBP4wc0+dG27tSYDoJpJnno3CFpUjSIgIMp/TN0ToBxXoLAVJdfvHKFlY11tu7c57WrrzKZTsjzjPHwmDCA1eV5OmlMEErqukDVNsIRoKSgqvBV93UtKcuGk0DbyMg8C+372ouyZGc/5O17EZ1kyumV+1RVaclitHea8aRNRgbcRnYMcEEQmsr4xKUBUtLEfHU1AUma0rFjkIPQFJZaaj+zRrWiLDIO9g+4d/8+s2xm+u21tghRk1PWukkL5HnG3Nwcs8wW29q+fCMHZmSsVtpfqylgMlMzj4+PTYdCIOmkibk7C6dpXRoa47KiLEoGg4GdP2HyxsdHx5a7AIvaWYfA1guY59zAstqlGZWLSDVUNVmWc3R8TBCY1I1fZ2csOprRb7vLzg++QvLpJeL9DqUdOexQHmnnMBRF0SB3jUX1OhCwc+QVdV0xm01b7ZmN4+oNqXUIAlmzvnyTuzspe4cLxNGMXjryR/USLuxnrVr1Jk43uqyBtN1H7PO3G8TVZfhn3drH7vqU9QCcQfP71u+xlj3ABiPWCJr7t7/19UgGRZJiShJdJS8/zNb2Kg+dv2vWRZw8tnl+ygy9E64wmhOpE5fadBNlgzAgLwozh8U7TBY5El5LndAXTvd5xNOuhRlAlSHlvO+qkU1YThhKwOkzfJGhQBjn1SErxjv1EuJRygBzf0oTysDOq1AsLtzl4PgMw9Emw9Eplhbu+toHX8/iUBjpupcErsMOgV9750S9k9c3UDPg8jQtX8pH1ACBFygp7IaUnNgoSIXWxoicqBnAKhb3ILRxZ127lo2/PLxirsJ2yVo2slopsmlmjH9lW7L8GANBVc8xmj6KYEgi37AwTmsTO4GzAmZgcueJ2jGYqqLKK6oiYza1LUbCwFQuypAyIAxjhAx8WoEgBASRDIh7HeNoqJpOJ6bX75q+fWcJraBoDdPplPFkTBiGrKwsewpKpVSTM6pN/sgNZpuMRhRFQa8bE+iK2fCQG7dOUSvB6eVrxsukHTG7e2ym8AEtWKomlAEVte3rNZvejdGFxr+Wdg3LqrKjdBsBjqKQMAitAj/pRDTRklnrJi3UbmDU5IXk9r3UELdsHvvft1/emdDgilalgH6/x2NPPUXS6fDiF7/C3dv3qMqSyXRENhszN+iwvDRPICVKVahaWp517fPQojbRjxQmTx9FEdlsZs9ZGfRLKYq6aoYFVRXTTHHt1gJKKc6u3yOQOXXV5FmNf9yil8UqVjuV0fT8h6YN1XcGOAcgPYEEhHFsUkbOCQBQClWU5FnGbDZjNs3Y2d1lMplY2lyFsJ0eqhUxGkRH2UKkiNksRyMMlN6KCqWQaPuowjACN22trDk8HFKrEFWEdOYXOR4FngFP2EsMA4inGdNZxSwrCQNJUWS+tdJF2s4o11obgiqzcQ0vvs2vN7GIZa1rwfJmpHPBLMvx8Z+E/MqQe3/iBY4+fhuRS9Z+7LxpfwxMS6cLWrIso5N2yClwiFZT/NZElO58RsUY6uhsNqXb75tgwUZvAqfclY0QNXGUsbZ0k3u7V9jeX+XMekYU5tbhbQr62rLesN65+xVuadyl+cCn+ZTdeN6psM65R9mcXj4ZkbrvXF1XeyMbx9DqRX1yX54MNDRpcouqfoij4SmOjnsszI9OOP+I5opd7YQI3HS+dkGtRKoAKWoviw5d1u5+20GjbpyONjLs9p53DOyxs1lmC61tsNRqbRTCOACuK8UhhlEUAWasfK1UM+64tQbuGKbhye4le+4ohDMbr/P6ZIWtnfPMzx0QR7ndky416TgizCAzwDsq2jl9/lm9s9c7dgbqusnBuDyuk4XmITrjYPqene/gL8fBVc6L0S5X7ZjzpC18NUbBfMB6/ToEDBmRqQg35ERVaXLT2WxGWRRGeVjj1rjHcDx5lLLqkcovIBj7DSKctyiEVfyqBU0Fjbxrc73Y9/nRzRrb71mi6sITk6CFN2ZChMggIopiE60JQRgZxa7qHOxgEykslGuvKwwFqytLhixIad9fboq5MLUQ2sTvRVEym2UEAXRTSV0cMxrtMx7BwXCNbnLMytxtq4SdE4C/f1yk4N1vENp0EASiJitLgjRBEniqTGfUfZW/9bjN/G91QnFJGdhhISc3nTm/Nd4PKBBXhe5QqO2dhMk04NzpQ7qdoqmibSlk9zL89qZyfX5+noefeBKlFF/49GfZ3z2grErG42NQFavL8/S6CRKNUtaj18LkOe36OIWEpQQOCFGqpt/vMxqPTS4ZLNWuZQq0EwNv3Z9jOAlZnd9l0Dmirl3tRXPR7TSJK4gKQzMkqNvtmoK4nuTw8hYrRxdYFMt00y6JRQbCKEKEgVc4GqCqDCPebEae5waSL0qOjobs7x/Y9IYdU23b54QUFGVpCv/sNoqihChJTJuostGazUm7ThGDeArymWaaC4YjGE8Fk+kctZpHINkbBw/6bubehXlegYQ4ykhjTTdVDHqabgpxZAID36Fj6wbcPiirym517S4KbxwB1wbt0giu8FMNSva++xq7/91rVGtmJkjvFzdIXptHCRttSlPV7xj7alWbotq6pqXgvC7xRlYYXWfQDDPwKIxCojhtIZrav7cdY3U7xywv3Gf38DS7h2ucWrkH2qFsbs1agZhob4FmiuqJTeHES590uJvo2IZdD5CJ4begdjd34hl6RwJMlOp+54bm4C/YH9BcRkWafJXJbIWtnRX63Slh2Ow34T/TBBRtZMOvgWiK8wyU7+q53N9dTKr97xya4vWFlR23B10NWRiGvgjaBHiu+6oJooQAEcfkuWmtDYKGpTPPgbJEWAe6eW5N3l8GAnRgnQlwrcGD/ojV5Vts7Vxmb/8sZ0/fwLUL1rWdReFrD0xLMdql7Zxeb57zO3l9Q85Au+XHu/a6JcUuuvUWou2lmmIPF5G7h93UxkkP+Wqbh7TbyRYeOqUZoOuaLJsyHQ+pytzC0a7WPGjOb49dqy7H08cRTOmEr1p2psavNvLVeJLm4VviHZ/GwJJ+uLvV7bs29+pymHbYnGkr1LbWQTITrsVRIWRo28AiO4wiMvnGICQITY9xKAPQBbp2Y4ld/hpUjY2+KuraRKfdxLx/NtqjmB6iq4y944cpqoTTyy8Tyhm4Kl+rgL2D7+9f4nOTAChQBbquqcucOO0ZZwBp81L23u06OIa8NhRqhD+gdk66R5nsyzqMTfV08weniOpacPt+lzCoObN55M/pbqCRTYvqSEEUBaxvrHHp0ccZD8d88XNfYDwcM5vNmE4npIlkZXWJOJKga+raySpGYdJsXA+dKk1R5IBmeXmZ+/e3KMvKO5EOEahtS+B4GnF3p08cZmyu3EcE2su8C6C0NnLhFIlpCTR0wGmSmA6BJDHtoU++xU8++3d4+rUP8/43v4254WmipG/JE8wBVV37tkg3pKWuDYJWlCVHx8cUduRx4DgJpKDX7yOkYDweU1WlhWchTjvkecFJSXGMgjCewtFQMppIZrnwUbtJP1UkUU2/GxKFijCoTfpQGMOjtJkvUVUBZRVQVAGzXLJ/bAx9GEA3Vcz3a+b7FUmkkIFrzbLdDLUiCJwouA4VJ1+qmWjnpDrQjN+zw9affonJ+3b95Dkxk8z9yAUoGvkXrXsW2hSndTup5cQ/acibfH7rc9q1GFfkWY4MTPqm/d7GEWjOtrSwwywbMJ7OcTxeYL6/3zJora3j/QqL5Alpq8hV67pae1RgJzPaFIXVASf4AdrG3utKW4ao25drrtdNnPXVU0I0Tok7tju+uxKtCeQOYfg2s9kj7B/Os7a6b8l6hEfVfY7eyrXhRZH+OqUQtmi5mabovbLWczFr01h/70u5tJh2xt3pABPhm1RXTtpJvNMh2teF4WNJMU60KZqNiaVh+swy027uAjfRcN23AgDtuROwDqQQklMbNzg6PsXO3ilWV/ZI0xEogZTtVJO7I1ec2HrabTv9Dl7fEM+ARiMd+1XLkigPuYvGgxSNgPnbF9aK4bAE12LR+KeSVv7KH8oY1boqKIucyXjCbDZB1RWuvuukkW5MPQjGs8sU1QKJfJFAHDe+Ci0nwBLUuBnzbffXuSFtAQO3xub3rnoUTPeCuzfXgwtGkLG5NK1qlCrJy6nboQgZImTgOwNCaYhjZBiDI74QDr42xSuqqoxypWY2nlHmM3SVIVSBUiE7R+eJgoy1uTf9lpai2Qyt3ekrubUyqIuykJp7OmWRk3b6RuEK6Xnv/XrrpufVedDNk9BeKNui6SHJVl6yvWldjmz/MGY4CllbHtLrZq33iRPnE8Lk8KNIsry6wuXHHudw/4gv/sYXGI+n5NmMLBuTJCFLiwPCQGPoQmkUJE3LqIfvXMWvvZ6yLJlMJmR5YbkALDGQhQa10qgabm3PU1aCC5vbpKktnPTyLXBjel3ffxLHvh/eUQanaUq/2yNJE775ze/kzjNv8Avf9q/4zLM/y2O338+HX/8OLt1+nHgaGQcgz7+mkwNtSItGwxHT2dRWfgviIPB8A3Nzc2g0R0dHhixHGcVmnJsKLASstSDLFbsHsHtg2BS1hjDU9DoVvW5JEs6YTrZBZ6yuLNBJYqM/WnbaTfQwz8/sgVoJykoyyyPGk4jRNGIyCxmOQ+7IkG6iWFlULM5VxJFpwzScGi2h8nKnLYrgIiRBtTZj+w+/wv5/9SaqX7aeBaRfXqbzpWU0DXOi1fw4CF0oxWw2o9vtMp1ObF2YM/zmIyeY/dB+tkde5IRRbB2ZE7vAgV+WvlgBFWtLt8m2HmbvaJk0mZBEsxOG2u1nc52SEy0EtIw2zq1u0qwPGn180CP8fjQi2ii9xilo9qcnCbT7rwV5NdfQchrMkEHLDCg1cfgyWXmOvYNllpYmdJKaE+lox5Fg1x8F0k1A9IFDk2IWCMvnoe3fHSNmCzGz9yJa69c0LGgbnVvCKq0YjycsLMzjCnhlK0VqPisIE6O78zwnm2WkaWqd+qTVHjujLMvWU6FxYGgImlzqKI5mnNp4kxu3nuLu1jkevvgGWlTeEdHaFB3apTApNxE0xEPNad7R653XDNj+26boxJ1JEASuqKHxFl3hjfEXHLzjIooKdG2UsK7R2uWXNdjCKSlCBAFoU5iVZxnZdEpdV5R5ZQrbpKIFLZj/S3dO8wulI44mT4Au6EQv4/pjmnytE97GfdBa2zkJJ3aLf3jOS3F5Nq0NdNq4Y+arsqFwo/Bci1urjdKum9bCwJu6Qtlq5dxfmSvedMYj8Ea7rkoTBaDspEdBYE+0P1pnms+xNv8m3XTiBdg7i8JxFzjv3dKxWkFynrLSEAWSrKpM3CVbHRTaOIbCahlf0IPrgXWKwj2Tpkfe/a1BXvyjxIqLUWEKbt/rINCc3jxCCIPAyNaxBI5wIyAIYHF5iUeeeJKDnT2+9PkvMhpNmM0yynxGv5/Q73eQQtnqZ2Fzmab400eRLQUpfEbC5q2rZsBN6SJv7XJ6Rv4PR10Oh10G3TEri4d+XyCMQpEyII4TOw8gpNfrEUcxcRLR7XbpdDqmUNDWCMRJgowjfvdzf4xbm9c5GGzxpYd/mRcu/Tqndi/w9PPP8vBL72F+tNwwtTiNIARaVUymU0PTKgJTcBWY6ZydbpckTcgyM8MiigS6MrBnUZpWLSkCphnc29Zs7wvyAoJAszBXs7qsWBjUSFmgVMV4NKTMcoJAklpHwPjZ2oF+9vkbRMSQCWmCAMKgppOULPQVSguKIuB4EnM06jDJUm7ej7i3E7IwV7Eyn5MmRokqbfLnJptTW2NgnmUdVow+cZ+t/8tVyuUZOqr9NQBQCRZ+9CIyD1G4gtpmDzRqwBilPM/pdLuMx2NLSnZSbl3k5/SeQlGp2joEYVMPYxVV0xWF3ztxNGF14S73986bdMHqbURr8p7fyN4Xkn7vmUk/Vie56F81xrG5WOsqiMbE2yyZd3xP/JKTH3eI74nFbKlN0/4nfcuhUtry65vUTRSOqerXKYp3s3+wzNlTe26X2L3v9KRRBsrSHouWnvByZNNczehs56A8YCNcoKJb9RIumLDaWiBIIiO3RVH6c7haKddx1pYRmZiBWnk+M2ybytRZCSmJLUX8aDRqdRrhQYzmybs0jymSXVm6ze7BGQ4OlxmOF1iYO/TnV0ohOTnXwwV7SMsJ0abX/k1e7xwZEI3g0hYSezceBdDuLRo/AMc+GMddLYRGW1pSpTLQJVpVaFsMiMDwojvPTmmiQBF07abvQFWZ4xpPS9roDK/cEQFCBEymF8iKVWJ5jVDu0pAaGeF2ZBSNk2NRCFURyKgRohZc5Yy+smxljp/AK12M0Dhj3/SmC8uWqPxSecdFmxy7A9yA1sY1+ULhNnSzbVtRiPZrDYCSbB9eAKE4tXQdKZyBxqY+XI2EuXY//MXeq2x5rAChBMqSuiyIkgg3IhUao+0KOdEtZ5Am0m/INhq0Ad12LlvegFXGaBhPIg6OEuYGM5bm7chS11HiNaFxmQIpmZsbcOXxJzg8OOC5z32e2WRGNptS5Blzgy7zc12EqME9M2hdc22UkO2fMsrLOkytSnZHEmQcg9oBS94Q1Epyb28B0Jxa3UKKGjBcBe1UgIsggkDS6/V8i2C32yGxXQNhHCHDCMIQIWD96Dy/87P/DT/yib9JFZZUYcmtzWvc2rhG/yM/yZXX3sUzX/4mTt+6RJDF1lnVNj0yNR0PgTQFenGCEMJwFNgoZn5+nslkSq3NeNm6qskLwb1txdaepig1Saw4e6pifUXT7Rg1oGpFURpZMmyDin5/nrIujYNqH1sg7QAf62xNp1OfZ3Vy4r9qRRzVrC4UrC5OKauYvcOU/eMOOwcR+0chC4OSlYUZSWxYIbXSdta7STVUyxmHv+0W1WLGxt98muzykK0//ZKXOjSkr83T//SGn/wprbJ2Q4oct7/GbN9SVwgp6Xa6zGZZS8bbMYH21eXuj2VZUJQRSZI6sW3Ju4k8HYmPUoq5/h7j6Tyj6SLH4wUWBgd+n/vAxeoddzxtlYrQwtMRO+TN7xftdlsTZTsDyYnrsgHLiX3iPuL0XPtlIH4Pt1vkyxTt1Sd66l0mN4muUVYX2N2bY3nxmDTJ/LV5eF80RedKaV8b6/SVOa+ZZdFM72xZ20ZlNlfassTtgABMlC4DSRiEZNmUPM/p9XotZKAJbrwzAKRxhBSaWZYxGo3oWOpvadGGOArJbS3S10vJIIRtDTTOkwxKzmxe5/Xr7+PO3bPMD8ZIWZp1keLkXrH3Y0jkXM1dU6/wm72+AWegEZqTXqCNd3RrznzrwTUXCyhleO+1oEahdYXSBegCA2G5FkJMlOxuSimk1ghLrhAITRian7t9SZpCv2eg1OHhhOPDMWVdM50F3Np9DK1reuFLBKKmqlVzD8KlA2xFrhuSA+i6hjDEdzm429W+89YT9LhIst1z72J/6b3YB7xZZwSF8BXcWKrcxkDZozgP1H1auwXVrT+IBtrUmmkx4GiyyqBzwEJvxxxHG7JoaQs1tVI+knUv5/QIe57GaJuizbzIiJJu837neSv8xnDen4/6bfTnjumv++u9vEPS3OK97ZSqhlPrRwSBMeDu2Eb+bdeAFAwGfR5+8knyLOPLn3uO2cQYwDyf0esmzPU7HkERfj69mwdvZdleohkUolGWittNuPN1AbVqUS1De57C4ajPeJayODhivj/2U9ZimwYwbYBuPLD5PQJWV1aIopA07SIj08KJ4zXQGl3VqKrk3Ve/iZdPP8cXn/yVtv/EpD/krStXufnQa6zsnOLxlz/MU7e/CX3LzjiwRqaqi4amN4wQGMMXSElpZ8WDoKo097Y1N+/BLFOkieKhsyXryzVJatpqa9vmVFUlAs10MqauS5IkJo5DH507xVvXxiiGrlU1CFo6Ax9caB9kWOhWQBqXnFotWFkYcjhM2T0asH+ccDQOWZrLWZnPCIPaipKFXEcBS//mIqKQjD68ze4PvIJOayOGswCd1Cz82CWCcWwGgQksEnoy6NGWRAqLkpZlRZimpJ0O2Wz2gBg7BAmi2Kyv0hrqmrIoCcOIKIzwHRlSfs3nzQVWrC7dZZb3OTxeoZdOTGW53UNOYpvgt5FHLxT2i4l/TBBkfm5ixpNcHf4x4Ajc2gcRLcelbQoM4uWMoyvia65DSImUBu0RqqWvxIQ4fJUs/wD3d+Y5d2Z2wsxo+yzLsjSkYYFERM3cmHa0rrU2o5FtxO6DQ0Cjms9YLe6vr31CqwPDMCRJEsoyZzKZ0O/3cfUMvu7KHd3+TwaSRCY+UJhNp4AmTVKjB8OQoKoaZBrtr8d5aVoIpKfY18wNdliY3+bweJO9g2XWV3fRwkzrVW0923oOQjmETDfr/Ju83rEzUNZTdyZ8lHvCMWgiaBfSmcXSHnY3EXdJVWbUdY6gQqBMe7y2hXfWjal0Ta3NoB9TNOLFFjBRnaamVjVZVlBXBWtLp7n8rtPs7WyTpB1u3jvFV29fYKG/zWpni6oyG7JWkBWVN9g+rGu5kKq27UpYr1iDslGjHx6mXftQ4706A699S6Q5rLGP2joIjTCBuT/PENZckPfaT7pfToTsSGHRRCPCHRvBzvFZKhWyufgmQVD586MVdVmjhEN7WhsXt0ncPdgz2kgpCqUZLjKHVYwtTWA947Yid7/3stJ+e+tuBO2Vb9ZVCEFeCHb2OqRJyeqyI8dpL4XJQ4ehpNdJuHD5MiD40m98nvFoTJZlZNmMbidi0O+AH56F96RdOstvUK0tq55xBrRlBXTOgP+qHWm4vUfTi0pdS7b2F5BCcXptlzg2eflut0eapERRaFIAdniQmyBYK0Vv0DcskpYjwDskZUmVF5RFwXQ2ZWtri0fvP8tbf+FV9lfuN4pTwNr9s3ziF76HXjlgGk7Zm90hzvtkmR2ehbaG38zhSBIz0nc8mTAcHjMaDamUYDSB198q2T1QBIHi7GbF6fWKJNamtiU0MKoqFUWem7VSppUONP1+1yvKBjI3URfasC6KwKxdrWqvtL3wWEdLCFOkZR6H2RthoFheGDPfn3A46rF7OM/uYcpwHLG+OKWXTg3SqIFCUqPJntjn9l99jmrJjLZNX1wivtFn9q59+v/xlJcD7wy7mEEIixDY9IM2aU+pNVmeWd6J0PMPNDJsakiqqiTtdAgCk/IsyoKwMK22TRrCBVXO+Wn2QhJPWZ7fYvvgLPtHK6wv3zP60HL/CivQZtncbmoFZdr/6sRzcPhC8+eWjhX4gunGf7e6wscfJx16QaP/XbrCowAnjObJ56u1JgxvIKrLHBwssbwY0+uZZzSdjplMp1RlQV3VLMwv0Ol0ELbw1R1NCjM1MLOdTLp1miayEP4+oEmRtoOXth0zY+DNXnUzMTwK4L9vPuOCFJD0ul1zf5HlONBmmFAUmZkJeZ77dMGJS8TVzVmdhAJds7l+jePhCrfvnmJx/oA4NqiTSdgaNlHX4WL0tfZ8MeIdQgPvvJtA5a0HaG7Yr2Nr4ZtqcN3M3nYLXSuUrgiimrrKqHWJEJXh6a/caFYriLY/U2iJEi7qbnS4WSlp02IxVaG4fu02o8MjOmnI4dGQ5197P2UpuLB6lfmO5HhYo6mJ4xilEyaTnCxXlKVG+1yNyeUp7aap0RQJOb4Bms0goIHC/Ia09yAaKMwLEq4fHwwaYgp/Thh7bSEgG00J7Ta8+btfg8aRxfE7Ca2pVMzu8WnicMrK4KZRoKLp1cZes1d7dsO6/lvzyBoI3V1zFEry3PA4CBF6GXARwwO6qH07zTW3dFMTNDT5ysaLMMfbP+wwywLOnT4mTWra1MyOgSuQgjSOOX3uHP2FBZ779G9wsH9AUZbMsilpEjI/6BnioHaxoG5dg2uLtac3Eb+RSaUNBF7bwspaGYfAybu0SlKbS+Jw1GeaJ6wvHbG6rEnTOdI0tdMCOySJaRdMkoQ4MbMD4jQ1OcDEOAJgDKsqcso8p8hyirJC1RUvvvQS9+/d5/EnHuNjP/17+Kk/8A+potKvybXHXmA2GPEdP/bfMPfamnGI6pzpbGZ4EqS0dQqBpSMQTGcTprMJs9mMWsO97ZLXb9RkmWJxvuahsyW9rjMZTc5UKU1VltR1RSClSccUOb1uxzP2aY1XTE4+HBud47MwetoZY+egmR/MDAVriDEpLqfwA6lYnjtmrjth53COg+Ect3b6zHUDlgfHRLaeKT875u7/9kXKsxMA4ht9Nv78e9n/468x+PFzsBOariUBwsPADbWu4Z/QKOFyzRqNoq4FShUEQUCSpuTWKVLaVL8HUlKWFUVe0OkYLhZV15YLpbY96Y2To7WpL/CdNZYIamGwy3CywHg2YJD16XdHrf3VmHJBEyE7J1zp2q+7j5OFsCGINeLauxBmjzl7jbZFyye2ZuNIO61p9Ztzpt1n2+pAO5lWquGFECC1QFDSid9gkn2Qnb0lLnTvIQQcHR1SlmZwkwAmk4mJ1qvKEAHZS3E1bXlRnLgGF9w0aUu809nEMi6AbfSQEDadF0VIMKkCK9cPOgIOhTCfc3YxoNPpkBeFOYYdrawVCPvM8zw3z9c/ObyD5ZxRgSHgGvSOWV68y87eebZ2VzmzeRcRNm2UKMxQIhvQOBoC4Yqd3sHrHTsDUDbGGuO/4A2/+c2JHlU4CbNRo1WJqnJUbZSaUqZWIIoihDYG1XhLpoe4ritcf62rMDWGSXvLogBZC7RI0CLk3naBJCMrV7hx9yIB+6jsZYZFTl3VaKGoA0WSRMi+IAoFRQF5XlHalkAX7RdFYQpAjLQZKK+18Zy36QoJrdbD1xbY5fBTDOzPZgyzWxcnDC3P2nmwtASDr/Xh2xPJLC03aM3ReJlp3md98RpxNPYC4o7v4GB3C679CUQLLaC17njkQihFmWckab9VZNTyqu2JBPjcJ0B7NrdLWbg32uDaKxMHX+oa7m13kFJxan3ovWe/ltYRiKOA1bVV1k+f4fWrr3D39l3KsmQ8GRGFgvlB18iKNfDerRSuRqMpJjLPX/u8o+EMUL4yv1aW/Aq38RuvzCxByO7hAmGguXw+Y2F+zrICduh1+747IE0TwsjAkEEUQRgRKA1xAmWJLnKKbGaJd2p/fUorVlZWLBHVCmuvrHLzS9/C8x/8NR6+/i6uP3SVMsq5c+ZN/vV/+//i2R/5Lk5/9hFUoSnLEiEMcVWaJsSRSRNMJhNm2ZRer0dVwRs3Km7cNvn3i+cqTm+UBNK4rI7aQQHUiqIw/AVCQF2VzGZT0IokTmwk/SCJFF72sOuptG5gcucsWg/SOVoN9XAjc7T2VBRWbCzt0++M2TpY5njSISsiVuePiDZH3P9fv0T25BEA4U7K5l94H8lbc+hQMfcT51q89dLTMpu2NYkWll9ECoQryvIy21xPGJoxyYaPwc5QUJokTSnLkqquDdsjyuqWgtDyjjgZbBetOie6rhWBLFlZvMud7Yc5OF6h05kSiLod9Bvniua6/IK67yU2VWv3oTDq1eloF8g5Pe4c7zYMbe67nTrw2qhx4B74iwuQjB4SDWUzdp/Z9YzjO+TlFY6Ol5lMU/q9KWmaUFaF13N1VZLNZqSdlFIKk+KyxjkITDW/2SeNTm32pmh+OHmZjRJy7xf44VZJElNWOdlsSq/b8X9vIwWts5jvpCaKjRNQFIVNkQhT1wkIYfZelmV+wqlun7x9NGka5k9v3uTweJP725ssL+7S6ZSeLl04UhCN5WsJWsd68Ga//usdOwOVb4lwSrvp/fcLIcwFtfNF7lK0vVCtTDpAIGy7oqSuKgIZ4ggXEMpDwWVVeS/S5eVDOx5T6RKkIpCY8xJQlBJV1dw9eIq86LIQf5E8m1jjYUZFVlVJnGCHWyjSVBJFIUUhyPOaoqgxdYsCQmdGraG3t6ydlIvWtLwW5GeKZsw5BQ1rguFW928/iTTYly+acRtMtB0F99nmIQv3fg1aSLaPzoJQrM1fx7TxmPynkMK3N7ZlX9uHJVvC7a/KRUIaQikJA0WezYjTHo2QaXwe0hO1aO89n4TTdAMLtBVWm03EOh7jacTRsSkcHPQzD6G6a5aYfHOn22Hz3Fl2t3a4/sY1SlEw0WNISwaLc+igpHJq082sN4+G2kX1GiNnpUSXwrbeacqqtq1KLnJTzcUL4VEhF20fDAdM84QzGxmnNmK63ZRezyACaRLTSVOSNPF0wYSRgXSkQYh0NqOaZeRZRq2acb2GfbL2zsDa2pqRv1rw8V/53dw6/wYbNy5w+bPv5ld+z79lMnfMaOGQX/4jP8qTix/l0r//AHlWUJSVbX+EsqqJEsksy6iqmr39jJevzbh9ryZNFVcuFCzMmb2n7D0HgUPBBFVdWYY2gzBleUZR5HS7qVH0tYtKmuhM2o2tHMrSIu9qWrac42iesuNw8MRPNDrGIA9u31V0kylnVnP2jpc4Gi9wLx8Q/N8/y+wjO8b5G0Zs/M/vofPcCvWgovulFaI7Peu9tjhNrFUV9pqVMKkVJV26ooUCWrk2Y6i1Z6ALAsueJyVJkpIXhUF+hKAWykzYixNjHFtOBVbPKd3UISkUaXLEoLvHcLLGcDTPwtwBhDX5Q4eUGyNUt0QnNTpR6KRGxTU6qdBxjUpqdFyhYvOzDhXpb5yi/+8uQ+H4SxoHyztwwoRcDu73as9H024b62bkzAMGyP/kdIzTj87BdYyCqiSN32Ay+xC7e4t0OxOTggmCpgIfmEwnlgOgbkavaxNwmDkabeXidPdJa9X+2bUNm19Lj2ibOSDCthlGZLlraW7p7QccAndfTr9K22mS54XZ84EjGHI0zV1DmFfVdq296OGQF3d9nc6YtZU73N26xM7eJudO36LSyqJ7hl/Hr7+NNkMhUfKdmflvYFBRewFOQj/mIgSBMAYdIW01rh1t5CLmICSSHXRoOwd0jaoralVZIQkJQoVSpTFYQjaTsZRCiJZi8jzqdigDeBa0WZ6yc/QkQk9J5SvUVj6EHRUpQwv/YellpSaQkMRm7GkgNbOZbX+sFTJ0BrLp43U1A2AKGR1SYurotNtRRlm536P9RhItx8Ktr5NOt9ZeKLwwC78ZXYeCsaPa0ptqZmWPw8ka3eSIuc6OcbqEO6fwe76tRIX7u/3P62L3hL1ikMRRyLTMLcdD5DeRU4muGMwVGLkowzAlNkre5xBb5znpEMDOXodKCTZXjz3nebNeAik0URiwefo0aMHLL77EdDLj8JHb3Pn+z1GfmtgK9VZ0ZL/X/jgQzGJ6by+z9Nx5Fp87h8wSWyDYFAu6vKdz9PxnZcMWKETIzuE8YSB46hHJ8tICaadDr9slTmJSOzkwCENTFCgDW1ALlCXlbEqRF36Nkjg243CTmLwoLBGW4dV3/cpKKYL7CR//6d/LF7/pP/FdP/fHWTxY5+d/3z9n5/Rtqk7Bi9/7y+yv3efhv/cR5E5EGEWWVU/Z42iOhoqvvHzMaFKztACPXqos859xZV1E6ChXjSMw88ta1xV5blsJ46RVFNsUE5uCJ9Ualy0IZOgdr1rUzV5wDq7AcjjY9A4eAjP6RdW4tlvHjREIxdrCLklvyv0fuk7xu982dUmZZO1vPsncL5yxTram/wunoHbKU3uj0gppPQrlW7oas2j2onQkOAbpkDaoEdZZVMrwISilKKvKDEqyUz3NmoU+WDEb1OxJ2XKMnP5YnL/HZLbI0WiJfndIKDXhUYdyc0T2rl2m779PcfnAcCic3DBe/OVhwuLfexeDn76EqIJW23frrVbGPezs9IB/k2hQANEyvsI9m9Zx3PEdrOR1n9U/dsqiEJo4ukdWHHJ0tMjKkiHeSpKUPLNoizD1M2VZkqSpCTpsQV9m+TVcUaZTSuIBxLq55mZxHPuf012a1kyQENI0YTw2540ja+dcMNZ2BlzkZs8hwKeCyrKyTkCjx4MgIO10kI4cTLnCcnsIbX8QpoD71Pot9g5OsbW7ztrKDmmSWcSzbjkmrYcuMMy27+D1Dc0maNZQ+A3Z/F0iW3lkhwQYwiWFIMD1AAsv9DbS0o0Y+vyh1tRJSdWtLZRUo+oMdI2kBkw183g6pG2wlNYcTi4xK5bpyJcQ+tDExj4Sx0flgZQWAdCAUUhSCLqd0BiCwpFAmMIB05YnTkb2CLSyAi2aHJZzBJoN015Ho3xUqEzVZ4uu3wiytPfkPD0X1UqPFGi/hGbjOQKX/eEGZZVweukqUVj6YkXzTJS9bumdC9+rj/crAe3pVz1GIEGFFaSKXEwYna0oFzPywZTOwSILb55HqtjyeLdsr/2+rip03G4jPKlXXBGUu9aqFmzvd4ijipWlUfvddpa9JApgeWWJ1fV1Xn3pZfb3DiiKkuAL85w7fpbt/+E59r7lOjpUnDixfYWjhDM//Qwbv/go3beXEdOAutZUqrJjba3stdAM0XqOpiUw8CRBh8OE4STm7KbgwtmUft/SBXdSkiQ1xjyKEWGIdpP/yoK6Kinz3CgDmt7nsjLrPzwekmUZQRiQJClSStI0pSorsipDCsHD19/F9tlbjFcPOXvzCt/zj36IX/zdP8K1J59Hh4rbv+Uqo40DHv+b30r/+rKZHCkEkHM01LzwasF4WrO5Do9fqREo6jrwCtEMXnEpFIMIlKWZI6DqmjybUpU53U6HQAZEUlJrU1+hamWKZO1+cG17wu54A+wJX3DnlFoYmRIvTzsNzcwMGyQo7YyyDT4sRzxBTfVHvkr9g9cMulf+/1j78yDPsuy+D/vce9/y23LPyqy992029GBmMAAGg52ARIISQIA0ZZGyKFJ0kA6HbCtkySHJEi0xqHAwKDsoySHaosxNIk0LIMEFHA5IcLADg9m7Z+vp7qquri2zcv2tb7n3+o9z730vq2eAnrBedHVWZf7y97vrOd+zfY9i8Jc/wPrffAYCGxwnCnMiXgxix8O413HLVWclR8WlhbCyk37eX3BLOx/r+0P/EOdpgyvYhsoo7T3WC++AtJY2nRJLsJ907jRi7BTZkvXJQ07Or3M23WZn84DsYMzk+Cbl7W3yBxNO/vVXqCen7zzzDgaf22fnP/so5Wf3Em9M9BSmlyXhotIYVJI2HVhLeWO98sL0PsEDmsqjPSE+Dkp7vA+dLlWkoHe4K0vq730DtfmQ5tHzPKw0+zRw4NFHnvbUoRqDajWz+YzRaCSAyRO6VF4kZbrgoUh6q0sSfpz8SfX+lEUeuAGkiiVWAVXVisl4FHSJ7imVCCbAGakWMFZ60hjdcRBYa6WpnY6dHIVTJ4Y46qZJlML9/fMBFBTlksuX7nD77vM8OLjCkzduJU9V1K1xSElnP1ap8q2ed9+1MF66eBQirXDHGxmutSgZZx1VVTMcDrtDdWF2MsG6bqmqJWtra6jQCyB+lslyKSVTCqdbmqFitnlEXU7ZvnsVsxwwHA3lwAWh4xs4mX0Y8EzKr+FVFhYqCNlwyU1mwhzE8pHhxZIzz6DMmdV1UKAWnLAC9ut6o1s9TsuHeFxsHKKQt/ZZi53UNDsLFlePWdx8RDuq2PziTbY+/xTKmZS5G5GdGC5B8PVQp6yPC4KQ5KXxIU50cHodo2v2Nm5j0gWIl6J/aC/a5h5PO6hpJxXNuKLamlPtzlhdmrHcO2O1N2O1PWO1NacZr9AuZ+eLL3Djk9/H+u1rqNaA9gn5pgOdhLYoAh+9E8j8OnAUXhzmez4rmS8yLm2fMygj6Ye8ZQwVjcdDrl6/weHDA9544w2atmFVLcBbtu9fYec/+QM8+PFXufUnf5Pqyvk7hGM7rrn/o19mfvWYnd98ivXPXCW7PcHXOlijHRtYtGLiowORiDGG4XDAcDjiG3eGaKV5/4uazc2ub0AxGqEHI7Atynl82+BDr/R6VaWEKgGZkY5FzoJtLXVTUw5KfAi9xASxLM8xgZcfCy//8vdzsvOILM/ZOd/nD/7NP82nfvhn+fwP/xJt3nD6/nt89i/8PM//pY+z+xtP4yvP6VnLK6/BsnK88LTiqZtyZpomELh4cb1KIpqAuqZpqKoVQQrhbUu9WoU+9CaUaTqxoIMi6YR09/eoeKPxo1EhQc8J+vShlXKo6klgOJmdsl5ynrUkXlpJljv9iQcc/DvfgNKBg+x/eJ76P/teDmnY3TgjUuvG90iu/wCAo5Ls7oy81Cgd8gj63ANxnv2UOQVOwiBt2wpNt3dkzlygjW3qmrquMdkwrJNPc02d1iI6Qc7i+vg+0/kuZ9Uaw2u3qT/+JtMffYPlyw+xm6tOo3WXG7XIWP9bL7H5X7+MOioTRXO04jvPV7TzPN2XaG0m7uK4le/AG/18jsSdH3zm6d2DEeiT/BQPonk4ovzETdRHD7B/+Jc4/oHXOdmco1c5zDPUeYE+HqKPhpiDMdX0EuOzHcqTTdZff4LlW8tkZPYG3y1hBPLpm6r38scnI0mqusgQQljFeDyhrqsAOEMfECWh15QsrxT12py3P/g7nF6/w/Bsk7UHl5kc7FGebKBOCtqVJ/cFbSv5cmiF9uJ9kDyCqitZDuuW+sEoxd6lt3n46BoHj/a4sndAOVgQgc6F1sbKhVyCPkL61s+7TyBU6X+dgAyITqnYgCQeEiXd6Tx46xN3dVxrh7iMlgshczCZYT5fMBqPRQDmDcvhlNnuEcdX3+boxi2Or92hHi658eoHePGXf4Ci2sErTVaspfpf5R1Vu8WyeYLJ4Ji9Swbnrkk5Yyv8+t63aN2ilMZ5cctkJhx2JdSlCmmFqY1CzPao3DXo6BYUJC/hC4NVFp812I2KZnfO8voJ8ycOWTx1yOLGEdX+Gc36kuJkzJV//DLX/8GHGTzYJHZndqpPYxpKS5QKySBi+djU3YpOaHS2O/Nqg+lyi/XhQ8bFSbI0+kmJ8qVzRcWQgTOWez/wFd78o59m+sSRxBaN+6aCpbyzyRN/6we59qWPUJ5toZsiKUpjhEJZkj+jheFDwqgNvbd7MCS6kFVPSXh4eDjEe7h86ZxINw6Bw18rTKbZ3t4my3K+/pWvsFjMaZoaa2tGoxKjPawMV/7++9j83DXe/NO/zuEPf+Mi85z2VHszDve+weH3fwMzLxh9Y5u137jO2q9fo/zqJvo8D8PrGMOMNokZMC8yRqMR1o84OM7Y3VE8/8yI0dqY4Wgs8XRtUG0j4rxtaZuqSwy8UPbj091KSYyhVXDbSCa9q6rkPeoS1uQcrlfbbBxtM5mMaeqaZjbge3/uX2H74WV+5ad+juXalNWVc179Tz/Jk3/1u9j72y/ztdcUi6Xn5rWGJ28MwItXxqFSxr/yIcbvpB1zXVUByMXwwJKmrVlfm2CU0Gk777AhBJEAdFC2US6nhDVSkS/GKForwLoNFQopYc33FHhQnE0gF8qyjm1w+j1H3PuPvoIbi/k++aVL7P3FJzhsa6b1GICd9eN0ni88PlrGfQ9GggcCWkKMOvYe6cRjVPI+ec41UgJXtzWO6HVqyYLF2SrFarWUrp4hGc5HWZoAT4yzW1xmsdcOMD/1T1n82D3e+u438NuLTniIgIVGQy5gIn99k52/8BGG/+wmrkbKOFUnOeI4o4BQ8Vp2S03iPwle3QuGRLzDKPq6IQUeVDRgOv2h8CLzTOgBowXRqsxjbo/I/t4e1k/wP/Vr2I0lbABXL27V3EFxb4f9v/MxRl+8yWq1TGAkGWk9BwsX9qoDbZ0917fyVagG6RohFUXBcrmkbW1KLO/eq7PEh2dbPPsrP8zJzdt8/Uc/wZd/4h/QDlbkixGD0w2GD3aZ3Ntn7e4V1g72GT+6RDFdI68GDLNSuiWuquBNkrsTc208UBYVl/fucOvOi9w7uMwzT75F5OmJIZGUNO4f28vf5fk2cga6D6HH8KTo4hEqIDy8WDTeCbvYcDTEqOg1kDjfbDoD5RjvDVhMznlrdIvq+WNOnrrD8dU7THcPWY1n2LxBOc3NL3yQ7/vZP8qlt55G2X5nrmDZK/Bo7h89gbWGra07mLzAkKFtQ5bb4DL3KGratsK7Fd7PUYEeMwF6b0XYmqgAZPYSCZBEjbjYTjlOv+t1Hv6BLzB/9iH13pRmfYkrWhJ5fzh3+dmQ/U++n41Xr1OPl6gdQ7Yo0asc5XoaL0qddNB8NP+JQiLZ9ZH0ADg6u4J1hkvrb6BVK7XgSicB4xJ/gfxeFM3ee3RruPGJ97Pzyg1u/dRnufMvf5FqZ/5O6A9UN075+r/787w5+2cMH20xuXOF9VvX2bh9g/G9fXhQwIlHNQRvgAjytm0ptCExpEQPCN2BVSjqRvHouKQsWra3Fj3XPAIEjGY8HrF3+TL37t7l8OCQtmlD73FpUNR3LQ9ub/Lin/sxdn79KW796d9gee0MvcoY3tlideUMO65BgV2rmb78gOnLD1B/8nMUb08Y/85l1n/5OqMv7lMeTdDkFCH2Xw6EJ2CyNuHrb+TUjeX9L5Zsbg4Zbe5gigIq4edwbYOtG2xraW1XIRCffigirYWKDHIEZkcPoaJHrE3L+vo6eZZR1RJ79o1n1kyJGfjGGt7zq9/N+O4W//yP/Y+c3TjAjmve+DO/zr3NU+x/8H1cW8t48pqsV+R0V4EC26Pw3mKdpw5eAR9drN7RNjXLxVysGh2bCxmqpr1opBGt6HAm4rXoWd/Bxr4Qiuksx7BevnvPtm0lLGTkbBljWL7nnLt//lXsdi17//kNrv7HL5HNFHtb93hwfJXz+QhYZ3vtjMjn32Xyy3tfSGYMHxqjmzEXRjuFTcqnr42DrAzUuUZJnxHnYudBTwpxOEfTNiyXS8Zj3b1PX4DnnvrKgtlH73L2w2+x/OAj7FZ9Eag70Oclgy9eYvTL15n/2C2WLx8w/kdPsf1//RDq1ogmdOQ0SodyQQEAsXqq26HOAImzkdLCWDp4cYj9xMe0QSoYT/HnPc8sCsg8br3CXl1hnzunfs8R9XuOsM+c4/aX+HFPfj7+eMgP17n09z/KpZ/7HvKHm0Lws1qF8XZytK8lwqFK5yv+IBlL6YXi2VwslqytjVI3T21gEMpHR6NhALQxN8TjtaMtKurhgtXmGYvtI9bvX2Pz7Zs8fOlV7NYpq61TTp+83X28NWSrksHJJlc+9zIv/v0/yPB4G2M0i8WKppX+GX1WR4/iyt4DHh7e5PDRLtcvP2I4WqTz1oGy2CTvf2bPQHRdRzINEs6TRLTI9iUDCVm0qvtFH9j1rHOcT8+FW+DpGb/yEz/PnQ98gdXaOS4whz2ugLzyHD71Bv/iT/wVhrM1hmebjE42GJ1uMT7ZZnC2zmC6hj7Z4oEdYMbHjMf3g57UKCVMgh0E1FgrlLrGzAjSQObgYutdK54BqzHBDam1Dr3U2yAwZaDrn7uO1477P7Ni8eQj3KB5xxxQ0GwsufUnPsUtp9B1RrYoyE/HlI/WGd7fZHR/i+G9bQYPNikfrZGdj8iWBaoO5YqqSwJ8TA7QWs3B+VVys2J3/S6x3DEq4uSuCwLeepviSunyOBjd2eTFv/xD3Px738Gtn/4cb/9LX6LeWnQfFu9ZYam3z6m3zzl77jZ3AZwiq0qK4zXKt7cZv77P6BuXGd7ao7y/hV4pcpWFvhPxzfrJRqIOzqYFi6Xhyt4ZZRETx0jWljGa3Z1tcI7XX3stlG21WFszHg1S6IRocXrQdcaVf/Ietr90gzf+1K9z8INfZ/tXnmT3E89z+oG7nHzPLebvO6DZWYLx+NJSPXNG9fQZxz/zdbLjAeNX9tj5rafZf/UZxoeXKfIi9A8Ycftey2ioef97xow2NjB4/HwKgZnPWqlKiDHvrrlXWM8eMIjWhihDjVKR78Cl0MFgIIxmzloG4xFVXbFaLiWkUA6YTWdMJhPW19eZzxZsf/4aH/vGH+HT//Y/4vCjt/C5Y/nHXiF/+oSb/90PU7y1LWMLd9YHC1lIhJpAS9wmIi6FAJS6rsgyQ1kUEgpynuXKBgKUeP9lX7USoqMYRgBSlzkfwJGL3i8VmsKYSC6TBQAlpZ7eewGFo1EigWpurnj7v3iF5oawAeZvjLj8772IvlvilMPolt2Ntzg4eYLz+RpGWdZH5xcuaRer9+IKDl1GPYTkRxW8AyrFZqNy7xyj3ZxFMSrKoiR3ubS/1uI5UU4qF2IyYYxLAzjjaK7MmX/3A85/9A6Llw+xW1V38ePxORlhPnOZjX++x+TXb5DfW+Psj32Z+vKUjf/gI4z/7jM0C9CqQStDFipT+oZHlwon81bR4EhaswPvjyf59mXC4+6EBGa1g7Uae21B+9wZ7fuPad57gn16iru0xI/ad8iX9LG9j8dDdjJm5x9/mP2/+zHKu7viNVGKpq1DxZvv5ta7S92XfmbUO5+YRwVwdn7O3v5uAAPgcRRjw1l7RH6ppt45Z757xGz/ofy5dMBi65jV2jntYIXNm2SoXZhXbwDKaTZvPcFzn/wxrnz2ZbLZEKUgzzIm4xHL0HlUm15eBoqirLl6+W3euPU89x7u8exTt6UHROT1CPLjYgno7/4o/y5f/W/92/8NqjHCzBcLjRLvtQZVkGcj8NITYHp+Th7IQvIiD92UxCOQBcstz3P8uuXBe77KVz/2S9x7z6vUo8XFhftWT2/UymlMk6PrAne6Q34+YTxTDI42GBxvMjrdpni0zujOHmtvXoXWorBk2Ypq9QjvGryHalXhvaUoBzirqSsFPg9VEnLznSP9PVm0EWPkltmLB9z7yd/h8Ee+TL0zCwO8ON5vOr/+fFqDqTKy6ZDieMzgYIPh/S2G97YY3t9m64s3KY/G6Y08nrPFLp9/8wfYWXubDzz5iyiE0S2VugSkn8hBUhOh2LL44iCUVnjlmN085tbPfIa7P/Yq9cYS3Ri2P/8E9XjJcn+KXV/h8vabzyveg1rmMni4xdrda2zcusH66zfZ+dKLmDojVl9E4+Krr29y5/6E73jpDpf3zoNikHXPMs3m5jrPPfsc9+/d5/Of/TzLlbQkBsdoVHadLOmS8WIiHChcbnn4A1/n9h/7La7+9e9k6x8+S+tqqq058w8ccP7xt5l/5D71jRm+tDwuPcyiYP3OPtdefYGXvvK9DL/4Hn7+E3NeeLbgj/7UFnlmhL++DwJSLDiMLMVsu7fuf0w/aY2e668N1rmAooxqtWI8Edf3fDantS2DcsjZ+TmDwYDpdMpsKkQ7XnkWgwW//VP/jLs/+VkIlLzje5t84C//MJc++yQgFTyS9CYNmBor5YguZPUbGQxVtaCpVkwmo3TGmtC/3T8mlOO5iz0JYplt6tgWwkhtK+2gY5Z1URTkWRbunksx2zaUfBqd0dqWZqvi9l/6PLOPHQGQHRZc+998gMFvbsjZCorZeUdVDzg4eQLrc3bXjhgN5hcUTkzG0iEB0Cuk2iHMX7rCOVmX0K0yWaB9cE3nEYlrcrF8UAcmPWEjHA2HlHsZ5z9+h/Pf9xaLD35zAKDPCwZf3GL4ietM//4P4d/YY3f4NRRL6u8/YPZvfI3RX3qJ7JUtjNKYLAsgwARsEsEK6Qx2xEUueQT8Y5Ih9QxKe0rwOF48y6Bw1+ZUH3tA/d4j2veeYJ+c4nZX+GF70ZLpXwAPapGhD4eYN9bQX9um+sgM/+Fb6OmAnV/8IPv/48cZvnm5c4cjgPL4+BF37ryVPLay4p1LUSlSlYfJQs+KcC/Tq1UAn0qTZxkmM9z4V8fYlx6xuHLIfP+A+aUDFhvHtFtLbFnj8l7Vxu8h1/sXPFsNuPKlD/DMJ36U7S89T94MEghBqVROr03GdDajaeqeQS73s64LPv/Kd2Ftwcvv/zKj4aoL09BVFngPn/ilP/JNBnfxedeegdosyKshKftUkQ61AjSRIEjjnU2lhXHRs8LQNMJeNx4P+dpXv47zjvW1dcZ3bvJdn/o34b0LvvjyL3L3Y59jtn8Y4uZg6pysKrF5g8vazoMQ19Y4WlPBoIL1KS2QmMITulTsffKDvPgf/XFylTEoDN5rlM5wvk1lLzrkP3gXm9S4dInFoxjid74PCIKV0Gasf/kqa1/5g9z46x/j4e//Ag9+4gssrx+D9mx88QZr37jM8vIZ1e45zfacdlx18fk41NzS5pZ2UrG6csr5e+92irXVfPDf+9fZ+9SLpKoArziaXsV5zaWNWyjlQqZw745qHTgG6LoJxs8LglysnVjJ4FFesXZrlw/8lz/OU3/vw7zxM5/m7o98GYD3/Yc/jV0M0c9r5k8cMH3qLrOn7rG4fEC1dU5bVsnN58uWppzS7E6Zvuct7vEbjO7t8fH/7X+CbiTjluCitVZzfDqgyBs2N5bpQMveSFe7rY1NvPPcfvOWUOw2DU1TMxiWSZFGT4iEFgLLg0e8JCvY+YXnGPzOLg/+0CtkL6wx+OI22YMR6/efYO2f3qAdN9TPnzL/2D2m33eP1QvH2EkIJ4xrTl68w8kLdzC/Cev/6AU88L4XB2jlJV5fN10CIp2wFVInnSxmOaL+HXIkenbiKyR+34Ga6J3TWnN6esru7iVMlqU2qGU54OTkFGstg9EwlD5q1HxM8+/+EOVvbmD/3K/Srq+YXznl3odfY+8LTwSm79CAKSo76xKBlFEKjaOpK1bzOc89+xRPPfUki+WCxWLJ6dkZ0+mU+WJxQfHZ0K2u37HQe9fVV8fyQe9QeIosY1AUQsxUlOIujbFzlMRCraNxDU3bsHjyjOVLYuXracb+//kFxr+zhdfRw+GToi7yFTvr9zg8u8HxbIvM1ORZE7xvPbZT3yUUKkWyzry34jb2JjEE9sMd/oIG6L4TQalzsbRZpXVwzgqQWq958H/8DHa7umBEmLOC4Zd2WP/nNxj/6mX07QFu5eEMTqshTbHH6PqbNPsNl/79j6POcvRQpzMXK7hiQ7LktEgHLnzxF3M0CMyavidMosOH8NWge23nBQSuvveA0//7r4LxF5VkXBqrUIsMczAif2OD4ss75K/uoL++jro7wK808//1q/inDuFv/yDjv/IBbk6fQIdw6uNrPF8sLrx9NyEprUYpNrc22Vhfx2QZtm15eHBA09RpPaJ1p7TkB7S+4Us//XdY/vg3ePxtH9te+ZHVmLqgWI4YnG0yPt5l7WAf3WZ84/v/Gav1c8rpOjd/57t47pd+H9tvPiUGtpdz7AMwVAraIDfyPGN//xKnp6fM5wuUBqMkjGFMw7Urd/nGm89x/+EeTz9xO3irdAK08c+7ed41GMjmuSj7sLBxOyRXxEJwUYgMc4Ek4mL8qyxL6qqibSxPP/1Mir05Z8mLHPuNNb7jlZ/kQ//8X+XW+z7LGz/06xw+/Q10m/Ghn/9prnz1PVTjBdPhI1Y75yy3T1lsnDJbO2I+rliWNX79FF+scLkV91TaRE9xtk5uilDuqAm0NSivaduuTaU0dwjZpCYI68dqVS98T3WXXf6pGL+9y9P/zx/h5s9+lIMf+jJ3f/IzLG4eceUTL/PCX/yDOGVxo5p6c0516ZzVlTOWV09YXT1ldeWUantGs7HADmuZS3A3KacpD9ZCSYrsdNMajqZXKLIlW+O7BPdF5xmI4+pZJxE5RqGgU8yzs16Sm9DC+ut7fPAv/n6e+rnv5PU//Gle+3c+yRP/xb/EzisvsPOV54WrPVe0oxWrrVOm+/c4uvYGs6fvsXjykHrvlHaykgQ+YPhwh2wx6B0PEY2zec5iJVUEZdGkcSolncrGoyFbW5scPHzI6ckJ3lmauhKgEClue8kzsWY4hri8Dxaed+R3x1z5rz/E8uopzlhc281dn2eMP7vH5HOXufJXvxOeqVl99JDTj93m7D33WG6dg/Jcf/U7+NKdlvWJ5snrOXUl9cKRcCcmz0a9Ll7WUOJJX6g9pkh6Fptznqaq8B7hwcgMxkuy5mg05ujRIxSwNpmwqioW8wXz+QwUFGUpVQdGqmq+/NoZ81P4wC9/hI3/2y6/9ac+QX4w4L1/93tZzZYYk2O79JnA/0GwlBUGj2tbpucnrK1NeOLmDQZlzqDcZHtri2eefopiOOTWm2/y8MFDDh89oq6r4EHzHc9AvC+h9t41Dc5bia+bjNwoMq3IjCGY67JCKV+iDR45WafR72xy/d/7APf/w6+w9VevM/rHO9gQVumUepBdzjMspmyMDziZXeZktsOl9QN0FkBkAmJe4rC6F56L4Rsf6sUjMOt3wHzHE9GPfBFCoZ4scR6nZB2Kt4YMX9lh9v330GcFo1cFAEx+7SrFnQm6FjnrvMcay/r4kOn8KvPVDuvLIzY/MZHip7x3jhTBG9NRHqcj1vdkvMOKjeezkx+ojv/g8Zd3lVRQvL4pBF7GQqvQixzzcEz++qYo/i/vkL2+TvZghFkU4EJ3SOuxpmH2J16lfd8xkz/+Eyx+6Y9SuwXn115nY3ONLjmwS0xdLZfJsygD6o1ba564+QSTyUSS8rynyAt2d3c5PDyQKjRIeUZKwWg0koqZO8OLO9kaTF2QnQ8ZnW+xdrzP2uE+6wdXmBzuMT7ZYTDdIF+NME3G2ZV7/Nqf/K8wdcn7/8Ef4tlf+WHW718VIOk9Xgc5myOhOGdT0ixeDAtjNDeuX+fg8JCzszMgsiMqrl19xN0HN3h4uMu1KwcMBxVyrb55OfXv9rz7agLXdpdKJEM4TVGp+vTHuYgGZUOMlpi9RjMaTZjOZmysr18gQ1gsF1TNirXJOmZmeOZffB8vfe4HOXzqTb7+vZ/i1R/+JNZYXviFH2Fn9UzoEy2xosY23Dp8P3fP97h0/Tdg8xWqjSn19hn1pTOqS6fU22esv/oUEW5H8pTo/mta21HTJtKRMA3X1f7HJwo3mWbohuUjj0JcEyiP17nxs9/NlX/yHRx91+vc+wOfpRktufE3v4f8cEh2OGL8jb0OaRuNyqEtK9pxRb0zY3XplMWVY5bXTmjXlgwfbRIbhuA9s+UGi2qN7cktCjPDe1INrSj/OOae2k1cA9EN6FPnQVQUehDDC947tFVsfG2fl/+LP8Dp84948H3fYP239pisLouYaSGbDlk7HzJ6c4/J7Bmsb3FFQ7O+oLp6wvLJQ1YvPmL93lVoexnMwXV4dDLEOcWlnRmxrlsFdJ9lmvX1dTKTcefOHapqJRZVKx34JKetfwl67trgX3M+sNl5oRr2DRSvryUSnpjdr+iqB3STM76zyf7RE7z3176f7CrM33vAo5duMfjtFzmfWt73YoZWK5bLjjoYJfHgtm2Di9LEHlSJlCadJVxSON/skR7lKjCyZcnrsFqt0EZzfn5OOShTMxyjNflwiMlyYUlEcef+gtffmrO7nfHB90zI3ngvG39hi9Pjc0bnQ6Z+zunpOWuTTYqyxHof6F09mZLEQI3i4NEJZZFzeX+PLDSvUiHJyof2rFf299ja2GD30i737t3n5OSEpm1QvkfZ4ySZ2LaNlNcBw7KgVApd11TeYZtSxq81zkmeQvRcxMeEGPj6p3Yov/yd+PsKrAcdKwB8aAvru30F1kfHVM2IRbXB+WqdrfGZ8A0krvAAJKwNpWThu8Ha0l7hVGBMjZ4e36nJfilqvGMXk0Zl8z0e5RRWWep5w+Zff5a1T11l7devUby9hm5Met/+Hc60QZU149Ex0/k+1WyLyehUFAzBAxi9FuEu91yFgfGuB577DdG9w8X5+35VUjSEonMrZtR31NF4T/HWOpP/z/Nk9yeUX92lvL1NdjTGLAtcG1unx2qabp2UgeblR+Sv7DD4717AL3Nqd0rT7nF8CqNxTVGUyeME0LZNqiQIwiu8mdyFa9eusbW9lfpGCD2w4tLuJQaDIY8eHcrP8DS1VP3kRY7WisFv3mD7qQmbR1dYO7jM+NElBkebNA9h2KyxMdrqwsjp1IBXikdPfZ0v/v6f5eZnPspTv/lxxsc70Rq4+HoFhOq1ppF8GznzIr8X87nM4+pVyrLk0aOjxMY5GrbcuPqQ1954koPDPZ5+8h79ks7Ol/N7P98GGGjSoYp8AOE0A9I5Thsh8bGtTZnF0b0WE+BMllHkBYvFkslkgrVO4r1KMZmshwQjhzEZpim4/PUX2Xvteebbj7j1HZ/m69/7KZ75jY+Rt4XQh7YO10w4ffAkZQvbJxn1wycZp4RGeby2QvQR2ORQBaCkq1hjcVZcsR4ViIg6KtXwDt3GyYIEZWE6QaE8eHGFxriNkGI4zLRg9xdfYOtTTzN98T5nL91h8/M30S4PnyIXSaOh8eTVgHw6ZHh/gw2uEswg0B7lYwKQjOloegXnFXsbb6G1Bx96ouNQKUb7uHDqgYA40wgwvolS6vSrQlnN5levkr16ibYMVKfE5iha6oe9wpgMVzv0qqBcFZQHm2x+8RkGnxyRFXlvJDJm7xVHpyV5btnaELdf6r+goCgLNjc2ODk54ez0FGddivuJEuyZBuGAOq/RPUFqQyKetT7Ef8VFax0XzksUflpr8iIXYqGiYFSMGC/H3Pjq05S3foBf/tIS5+c8eR3p3Bd+Lwr6thEeAKdcqk923qX7QQCPKgC76MVJPSKQcjvnBKQakyWw5r2nLAuctayqFcvlMgn2wXAo9y6ESJrG8/lXTsB7PvLyhMk4xznD/vk1Bos1zqtzNjYmgOQC7OzssLN/ide+9hoaz9pkHW9b3n7rFs61bG5uc+nSjiTTgrSFdgqrWpqzJoHtSzs7rK+t8fDgkLfffpv5fIZ30vTJI818mqbFt5bJcMT2aILxjtZZmtbRNAtqK55HTEbrZM9jrkFc55gkW9yXGnqnCTwJnWs8eoPj7yksm6N71M2A6WKdYb4gz5ZS5xvOTxd3FoNAB09bBMuRXjf6KFLvi8d9s+EMPg4Q4iPJl1C3NeN/ssugHAYwHF3wcfDB2lUC0hWKjckjZotLnM+3GI/OgjKKJcgxP6i7F9GAiSV+cs6E18AT480kpsgEBHy0FcIPux0gVNsT86my6ZDd//jj4FUKP0aqXxOpt51Yxt5HgiJ57+EXL+Nq8QA5ZSnyN2jafZarfY6P3mBvfz/cM1nTxWIhpezBolC9lMgsN+zsbKek1bOzU45PjlFKcXJywmAw4PLlfe7ff8B4POLo0VGab5EXbPzT9/DU159kf3c3lUH6ABrm8xkMFCrrsckGPFKtnVMPF3zsr/1Zytlat3cROfWNoHRcNHkObRvKBNHJ8F4tV9y/f5+nn32GS/t7vPmNN1guV6A9164ecufuVR4c7PLkzVPyXNqPp54m7zJO8O67FrZLGb5WKJXhnZTYyRnVeD8EX4A3WFsL5SpKOtwFko1IyTkcjTk9O2FVrVhVFUVeUpYDVlUlDdvwZFkWFtChPawd7fHSJ36chZ6hC4NxJrRjVZye77Oqhmyv36apzzk7PQtJIj4tqDFCM2yU1LZqdIg1t+F94iNozDlRUKkhE/377Um+To24EelQc7T+vPeBXjJw3eMxdc7mF58AI2GG7p7LxUyojmCdRndY+JroFOUFWJdxNLtMblZsTh6It4NgBamOBiUdOjoYAJ3iimCtDxo6LgPS7OLvKKUoVE4791C44CkifR7KY7ShjtaMio4MYZnL8jyuVnrnVZUzX+RMJkuGwyZdvNSDYCBMfrfeuM1isZRYW1unspvEdhbABarruS57EToPug4IxJbE4jgIgjBxk0vyVZ7n5HlGURQUeUFZlJI932reertiPPRc2raIzorOWBmHDsLPI3FrH3jJI72uQoEhgKi41yqRwiSlF6z0WFKYZZJ0ZjKDdS61w42tgJUK/Q7CXr5554wHh0ueujngietDaXGqFMYEz4UG29bMpqfMpgumZ2e8b/Ays+kZs/Mp5yfS4dAYGI2GXL68z2A46OWfqB6LpE97ob2hyDNuXLvCeDTkzTdvcXT8KIAIOQu+aVgfDLi6u8u4LFFOAMK8rljWNU3bUNkGTxXJ8vGhC1z02CVyonh2nQei0SLufvl5R5KGgsxUbIwfcjS9wel8i531WhqhEanUO+ClIhNoMmZ7JFDKh5bWpH3sHYPf0zhL8hFLXdXkWU6W5ekOJte4iuCmU9Sjcs6gmLGq1qjqAWW+kLvl4z54OqEUznlQpin8gk1eOBXAZtM62iRq/DedQwqf9GRgvDvJsIgJveEedjwE4ZtKpeZkAMoalBLg7L2lzB+wrGZU9R7zxessl0uGo2EC67P57OJyqy4/ZDQcUZYDFosF0+mU45Pj0I1Ws1wuWCwW7O/v88ILz/PgwYNUbeGdIysKhsWQR4dHXNrZxUTZhyfPMxHHbZu6aorskDmW0zWuffnli2OK6x9fGw6Gp3O0e2/Ic40NfS4igZDo0pY3X3+D5156kQ999Lv47G9/muVqxaBccPXKAW/cusGDg22efvKQLDM0TfuOEubf7XnXYMD5OgJwwIIyxGwgRY4yOYosTEgsGa01eV6ilcTkJfvXoI1mOBwzX8wYj9coCuGCxyOWlNZkWb/OlxRPyushpS8gsKN5bzg4vg44Ntfus5hJfLJpGrFArE8bCJbhoGBrYx2lJNu7DdnAEgeLCXmIu5OMCA5U0vwBAwSUm7wJUQA4nwR5zJaOjGPxkikU3opgEStDgEGfvKPLt+iidh6f2h+LNa1Z1GssqnU2Rncps2lC9gnARBQfBHW0aqKbujuOJGsgHti+DIuVmSL45IUZCmqLtU2gou6sa4WwPF4sbxEB1bYthfNEz6oIVMXpeUFrNdubcyENUkhqRwBza2vrNHXN0dGxNNuxlrZpyMv8IhCg7wWR2UUSHxmjS70HXAACkUJWBJdKrmljDHmWB0CQk+VdH/qTM8fZueXmdRgUUosfc01ir3WlopJUF2hBk1tZBSVluhyPIDWTJVmtKpq2IS9yBoMBpydn1LbG5z4pY+cd3vrEGtjWFV5JWMF6zRe/fEKWwYc+sE4RqnkiwLBty43r19EKhoMBb755i9PTKb/6S78UTxBZrtncWMM7y7Xr19jd2RZ3fe88xvE774M3RtbaO4sxOVubG+TPPssbb2ru3b+HsxbtpapoZ3OD9fGI3BiU8yjdsKgrbNOCdYlfQZKKJUk5K0LCqIs0xjG5MpyFQH/rbWC/9CJctY5gV8Y9Kk5YFOss600W1Zi14Sy5WZP8c92NSDkDSokjUKvQH0UaCkWaXx/CEomdLowVdXH/kysehVUiu+q6Dmeo4/GX+9Pdo/ho7VgfH7Ks1pnNNyg35kFQhzGrcAsisFExt8bhXYvSUqVjjHTWiyy9WoNfORw6AKH0id1fe3z+EbSksflOZoRRB93QJZbGZe5kVfpuSNLUeGrK/G2W1UtUzS6npwcMBgN8MHaWq2X3uVFnhBLQ8XgiMsB55rNFoquW3DApU719+zZXr14hC3k1xpjQSwWKcsBsek7TWoo8T3thjEkGbDkYhH3qwIKPsjCtfWeNCfBRCagLSOiEr1IKMlBhfAK2tLSnbxu++sqrXLl2jaeefpLDg0OOj0+4duU+b9/d5869LW7eOKXIpUeGdVa8Ju/i+TYYCKOWEGsfZYPrJ8fojMwUKCVegf6ByEwOSlE3wjmujXgUBoOBLK7W1EFxq3AK46IGO40Y52tD+EFKZES4r6oNprMdBsUZZXHKWXAhepAMehOVk9QNj8ZDykGOd5a2rRFT2+F9lqwb71VIA+iIeRRy+SNlrFKm5zrziZ45XmqUUJfKnKKrjUQlm1AwfT6+ZFYQO4VBTNiJxyawtjmP146j6T7WGnbWbgMtqZF1eL94IElr2bMyiJznchDTuJKFF6RCCBBqHcsQxdIwRmO0pWlWlFnRfXa43MJGmOF93RuTuOXbJrSu7rlZj08HKOXZ3pxHPBOAi6IsCibjNY6PjpnNl9JDIHQyy0KpUF/A6Dj+aBUG4RgT8iI4cKHuP2abp+OuhNwoy6TNcB48BFmWpeSdt+6uaK3j5lWxI6Ps7ZIxwxrrTNx+yVMTPU2xmVNUEp7YxCUpC6CqpQHLZDLBOcdgMJAWuEWOd9I6dzKZMJ1OE71t3TTYUL5750HL4dGS558ZcWV/kNbBO8dqtWR3dwcFLOYLiiLn6aef5uDgEYeHj0LPdc94MiTPDc+++Bzj8ShC9HQu47mIVTmhVyZOqRCWkbj7eDzkmaefxLmWB/fvg9IM8hxvLdVqhR4McNYznc2YTmfUbYv3DhOUmkUly7KpVgGYimVpoiJDpUokBZIHEO6R1l2MW/SyAuXYGD6gaiZMl5sMywVGtb3zECCzC0BCSf6TBMeCVRxCC9396K7sBcusw8VyFlJ/AFJVgnOOuhH+hjwvcY4gx8Lros6DFAYZD0/JTM1itc7m5AFaS38JHas3vEqAKHpocQ5jPGWuyTMVkpKD0saSGU9RaFaV7UIjBIx0YW3SpSF6F0mvC/sRAU8yiBAjKnA49N9GZI/QU6OlnLvIb7OsnqVurlFVdzk/P2NzawtrLcvlsjeesOhhFJubW8krKC28VQICMXQ0n88lbOc9JjPkuajF1tpgAOScn50xGgyC/BQdMShL5vM5znmyLHp5g/GmIjCKS6OIoWWSi6Bbh3RWw/wltGLITCbNlyKICY267t+9S1kWrK2tS68Dc8L+3iPevneFhwdr3Lx2mvIO9Lcib3rs+bYaFcUzRbCkvAelHUZnGJ2jkDarMQbqQco4bBAd3gflIBsW+Z1t2yZLzDvJCk/gMgpGglUcUJ1QucKj4yu0NmN38z62rXBBQTjXuWU6JC6ua+89Godta9qmhkhJjNR3OivKwYRYkFYmtRLtA+SI0i8eAvWOCwtdco2gY0fMPlaJmTFeju5AhG9eECgxLi9roDg638fomu3Jg6CEotXTxQl1P54X3rsH3nsXsfMFxNhfVHAgQkdplYaFB6PAtXWyojrnl/wryzKsbS+Mn7gGyQoWCtyzaU5RNKyNqwRatFLkecZ4PKLIC46OTqhWFdaGyx3G008oi+LM+0iQ1eV/xPBAnJdHQjn4i+sta6DJcin1MSaEC4KXADS379XkGVy7rNHaJasvCsBoRSSBRxpG4DPXYSEjUJF9i14nlNB6ixUivOXj0ZjxSDGfz8mLQmLw1jKbTlkuF6kGXilw1jKrWr70lSlKez7w0lroHSDrsWwbRsMheWZYLOfJpag1bG2tM5mMiXkW3lu8bSnLIim7d8Qik1s6TDIsprOO1WrF2dkZRhvKYkBuDEUWZIH1TM+mLM6mwTrrMqsDLAbv0XhsNCXj52uJ4WuQZmbhXOk0BE9uNC6W2vbS+KNgRynKomI8OGa63GOxWmNteBoPSIQCHQBKVmi8j9G13jNM+1fqsb2Hfk5SD5yH93PeYVsbqNpzYW+Nd/ACJXP3EXnWMB6ecjbbY1mNGJUnKBXd2RbnkMQ920rpNwqTKcrCUOQ6GHs27SM4jFKUuRbOFRvm3zMk+jc9KlalXHqLuBaxT0mnGCH1XnAypxjnlxBIp6jj6zNzRmaOaO0lWrvG2dkp4/GYNpSW6uDF7fZVXPaT8TiMoQMDPhgBfZDnQghRKcVwNCLLs15Ye8TR8TF7+3tCtx3KVYuiEFKgqgpcGPF4xLN/0cCI/A1JSvbX0QezMCrZ1EXTY7IsdSnVSWZ6qqqmbY4pypLJZMwzTx1z/+Eet+9sce3KDKMlZGjMY/f0Wzzv3jOATrEf76XrVhT/mclRSrqXWeukCZAXS1wbQ10txIIzJvVmbuqGzBhx0WvTdR8Ll61tWrIip20sWSYgw3spqUDJpW5txqPTKxhdsz45xFlHWZbhMGUhHmxTeVRmNFpJUyDbNtimwVlRaLLBtneoezG1JFkgKenkjg817OG1qWwvxd86qykSNqV3C4KoUwpJ8qQjEy121fulaF1WzYjZcpPx4IRhMSXyHSTk7nvWvby7xPI8XQexSFccEQwR0Xb/DluCFCe5IAyl7t2EdrqiBGKFQnwk96OuY3lXt67O2TAdefV8mbGqMna2puR5t0ZaqdAMaEhVVZycntDUFdY2tG1Dnnf97uPlS25JL58TEVzkjojWl/Pdv9MpD+OJ7HdaSaggy4wQkRiD0pr5ouXRUcPGOqxPwn6lMEC3Agpw1l0U+EHxK+96THYKhbj1EkNfOEODwZC6rmhDDFAF4pTVatkpiTBf7yJToezr2dRyeFSzf8mwvSF3N89zmqYRgVYWyaMQBVfnEZN9MJGKVkmcNcvE45PFVq49AJwGk5S4cOGfHB9xdHTctWT1nkGW07Qe1zbUdYNt2pBb043D6CB3QttXlVq8hvPtSI2dvCLtK0qFvKHg+g7VCE5FgCh3K3lxFKwNj1hUW8yWa4zLKVq1XJgSCF9CqnAR7e81aCdMkUkhxD1JUrInkPsGBZ0nMYLTCOhaa4VspighArw+EEgL7rDOMx4ecDa7xHy5xbA8pgiVJ03rRd610pY9M4oiy8gMZAbxbAbF0915yQPSylEUGbYSIOZRoV9KfwZRbsS8ocfWzEo1DT2LPAEfJzk7/TVy3l841xL+cZTFbdrlPnVzmTw75+zsjNbWQZF28izKyDzLMcbQ2pb5fJ7mF8WjFB7JfYgeaLxne1u8CdPzKdZayqJgtVyyXKwoNtYCmPdgPOPxiMViyWAwCLqp7+ftlH8EAF1Fhmx4F9rooIyHfmVkaJSUp7Cm7oUbrXUsl0uMydi/ZLm8P+Pu/Q0ODwfs780ueBh/r+fd5wwEN35y5aPAK7Qq0LpEoWjalhjhds5Slhku0JKK2zXE4L00IcmLAltVyVLyRK+AXBHnpGNakRfiEtahjMgLkdF0vsNyuc5k9JDcLDidLUVYhkXPsgzjTXINFrn0ndcaVvWCplmKWzOLpDQ+CTUV7GnvHc5GxU7avOgViMQcsRVwt9kkV6zE2bvWoDpZEkFpOU9s064iKEyutHCwgrSPvbBRcLbcpbE5V0dvo2jSuj3uvVBIrgBhPLHdqukly0TgEAkrUh6F8h2nQZwTJKlU5jlV29I2NVmeyWf03ImxqUsEWFF4SAKdT2t6Ni1wTrGztUxsgypgrSwzDMqSs7NT5rN5ECCxiiDU6/bT9nxvH6K1GiyUWJbmYr4ApH0zRhLOpG1px1ZmTDw3XTng4VHNYml54poDQvKgMY/1Do9nIVqYnVtYEazayP8eLJlcZ+l3o5h1of2tUrBarVJCbvcRXSilbhoGuQAnpRR3Dyqc89y8IlUC2sD6+rrk5gDL1YplSMaM+S06Wk8hsVa+L2NdVRUDVdK2LVUNZTkQT0kCvb0ngGPfOpqqxrcyD+1FqecedGZweJzWNEZLQm/YH5wAicwYDOI5zGLVSDzP8c6GtbAeUVYB5GkjbdVjN83G+ZAP1IXuQEoWM10xKo6ZrvaZV2PWBmckJNxNKv2uD/dFI6Wczstdcrqzhrs7HLWbfKcT/D6dj/hILFuhtVBAO5OFRQvgnYS/Og+gd5T5OXm2YFlNUGrIoBSg3NQ1tqmDp8CQZ9J3xWjJcugSDcM4o73jPSgn4YJcUdfSxyAy0PoL+QxRNkKXU9CRbllru/dXwRp/zAMAPWOm9+9oMJX5Q5arFU27j/evM5tNBSzRM3yiJvUwHoXGd7alqUU+WSs5LH08UxRFFzZwnrXJGh7Jp2lqCbcVZcmjoyM2N9dl/0IiayYZ7zRti8mkQo0Lc+iZkckw63utIxj1dKcl/r07PVqLQRHbqkdZHQGFtRajPc88ecT9BxvcfnuLzY1TisJcAA+/2/PuPQNRKXqSwBMXRIkxJd4rqqoOyVWE5CtNE7IiFaCzTAhGnCPLM1EKwYrxIfFGG0NVi/uyaWqyXBCR8kHYGo2z4tI5OrmG87C5/gDnQ+zIJ8wVDqJPQj4myUDDajXFeclY18kNp5IiVIgQEUXmQ8ke6aBFhdd9z6ce651BHbWgJ7pVNDop1gvWQmwo0bPOIMb06QRBUuqe4/N9lHJsTd4WCzTMXQWiGzCd2zJceBe8FahIhhPgWyTHIU6qd0lVVLCe2L1M3kIuaZ5pbNtict9ZwGEq0l0vo22azvqAwGxnyQJYOD0v0cqzub5MsV0d2ODKwNk+PZ9JKSFd7wtRUjEOHwSZDgmeKrLPRSvEJYa+bmoy2CLPGY/HzGeCprUxGB3+GC3sc709v3/Q4pznyp58I3buVJF+I61kJxkkmawDgbIOoac5HZhUiCVLsGj7a9aG1sd4L/chlOLGcEKhFHmWsVotqRvP2/dXDAdw+ZJkIy8XC2xrhV2wlfCCkAKJS1mrDBu4N5JLWnVn1TqJ7Q8GA5xzLJcL2iZP7Zw7EBYBLLR1DW1LoTTK+VCAo/BaSLO9kTPgypKmbaWney8LOoWsoDvfKgD1ENazPkInhVYG5204xsEVbVtiW+QUiglAVEGq9BiXR8yrHWarNYblFKNcuhcRZPveP+IdjyaSgGvb3dMoPuOGJ4UZgb+6OM8gQ6xzaOtomlo4I/IizDv8Xryl3qd90qplVB5zOrtB3ayTZ0uqVQOuocwNxsRGX4T25q5zyyeQ04mkyJ+isORZhrVy73S/OV2Stt2jI1CBxN2RwnjJUPApXycZYlH5E7ggVAeStVdk2Yoif0hVP0HTbqL1fYmnJw+oTmfVe59ybGwrlSt5luN9JJeTfh/ee0ajkXgJQ5XOxtpE+EGadUlWtlIxMJ/PqSphOhW97jHolMMzKAsiRX8KD0S93jsESe6r/s/j3qsE9NJWeBEsSkluggseb5xLHCIxL2Jn64ytzQXHp2tUzQZ5Pn0shPqtn28jZyC6Xl0i79A6pyzX0HrAatUQk648MCgHgAqucVHk0mWsDq7PQagNjQcrWqFG4q+I9T8cDGlboXaV2nRxNbVtyel0nyJbsTY6ZTFfXoRjvkP9+Mh1IMrVtjWtXaGCmzBm1YvSEK+ACYmOdKNL1r8PAsUTgYRKyaI+WoCETQ8bmyptogssHIDuKoUj4nxXPhVRISrVn8e6+KYtOFvuUGZTxqXwsUfu/f7ZiwI5zkJ1I0uCsH//44u7xL4gsJJOC654rTFakqgybVi2dZhJBGPyeqNCRnsq3wwhAyVVBVme47xhOisoiobRsOoEQ3DVl0UJzjObzwKCdyn8AxHQdGI3WVvveLoM4i7B1WAboYKdz2edQlYhTGB04qjXWqWS2YeHLVkGO1sdgANSmWofjcfQRRJ9CaGFFzhwuGQ9SUgtSzFM8U4YFMHbZTzLxZLpdEZRFBCsnzzLMVpLCWLT8vCw5nxa8+R1zWgYwnjAomkxmWG5WjKfzZL3znup4VfBcusL5GgFFYXs5XK5kvk4T61rlqullFyWpaxRtPisw9YNxnqGymByTaY1Rpl08kMRH9Y5posF1rZI18QgL123VEp5cmPIiyIk44qXsWnF3dymMJCmtVYqCVRoB62k8kdDCDd0ZyQ3Bmc0WtcMijMW1Q51O2JczLt7EbatK1GU2xOKgoOSVgG0+3Rf+hU2/dv2rUq+unwX6cFQqwqtNZnKiblGzneu/e79PcPykNPZNRbVJt4tsLamKAKbY6jvV2lM3efE8Xe8wmmQKCwaKPMMGrA+GAUJHaX/kYwIpS7MLxkd3ie7hwCGLnha+yaJDzwhMSSjoSzepqqfoG4uU+b3kneBCLSDzDUmY2Njo+vl4SXhWSUSXeGDsdYyHo1QyN8HpbQmb23N+toaq1XFdCpyR6E4PTvjyuhyGqtS4lmYzWZScVBEL1mQlx033EWgRVjrTuPL70Xvruqdj+QuiT1aDMqqRMCldGdgGuN48sYhn/3ik9x9sMV3vLdN+Qa/1/OuwUBXJiED916j9YA8m+AxrKoleZYLUNChp30oa/AeLFIWERVMFehVFWIhiOIQC9N7R1WtJInDS+KHyUwQxBLzO5tdoqpHbK/fQaklVSPcBjE/wAXEG8t68sxQ5AXGQGNXTEYF580ylepFwSS/p9AxUzJsmPdBmPgu+19Qq0qC74Kln/awn7gXrRpx78Tvpq8hnCCHoJd5qkjVCoTPWTabVM2IvfU3KPJO0aZD2H/jMNaOqMVfuHYREPRDHB1sCJ8fAU6McUeV6wRxz1aS8YpJq5PeK8uywE4XrQMZZGuFkKeqDavKsL25JM9dsn50sHKLIqeuG5aLheQ6eHGd55nuZhOtsGhd+b4wljURz0CYi1YMiiHO+5CxLlZ6cpUH61OHmHVcw8wYqtpxdGIZDT3jUVQvFz8zrm6KRULad1FQYRy9pE9JWBJWNmsshNCFqx2tkni66Tec0Tp17IusmdZaprMpq1XFrTsCrG5clSqILMsYjyYsVwKcxdKpwmc68X6Es5PnRagV16HqYEWeS85E01qqSv7dz9Woqpq8qhgNh7Rty2q+gNbiq5rMw7AQauRYyx3PX4yPL1Yr2mDpeR8Kl7XGa8K+i/JqaqGpLgqJCWtjUDrwhQSvhwB1kStSqOEhxPR1vCcu3Jlkbcv3x+Uxi2qLxWrCMJ/zeI19hADxvvXPq1MhTNdT1vEJOjKdlXAoOvDeky0SngSvovHTSiWWU7172ln1Kij1wpyRmwXz5ZDFskZjKTMTqix8WsfoMkxdIvXj0isNCmFYFPKrgoy6cXgMEU71QwVA6JTayRmvonHQAz8qVnZcDK/ig4dTPS5PRdmXxRFaz2na3cBs24EQAuBDKbI8pxyUWNtQVasEtHNjaHwH1r33FGWJRtE0DeuTMXkuzfaGg4KN9TWq1UoqOrTm9PSMy/v7qb0IinC3clarlYDzsL4Xq5NEr/Qsswh50mlKp+uCEI8yOAACFXyIBtCKNnjRYn4NwJXLp4y+UXHv3oQXnz1lNPyfO0xAt5li6QwZDnaBgrb1ye1GEOBKKdomusvi7wbE4zzKRJvYh9CDuJPrpu6ssNCVzTlHXhQoRcgitxydXAM8G2sPARgNR9gyCkWfPlPciRajFWWZAzWZsVy6ts9iNr2gBBUq/H53MFWwJWLXtVROGDZNoQJI7lnUQRdIeCGKnqAceofeR+vBK2Idb1ynhPgDIpYEqAjINKfzfbzXbE3u9o5SikbL311PeSuVQgFCySuv7cBQh87T4YsDpQcY4gX1EntVKDRSxuRsKOvs+TG9BxMSTL2PBWeS8CNVBo7pPMc5xeb6EhN6DOigiDOTS6OaupWa+PA7cjHENYZ3PaHQP28RCDhispJc3py6rqmamqaxPUsmqO4+EIh7HOObwPmsZb50XLsMRa7oM57JWpvurCAWlMejg7UrtejxxXHUUiLpvJBhRW7xlKsTvAvWWuq65Xw6S4rQOU8bAPNsPsO2lvliyf3DhrKA/d08ZJX7lEvQWstysRT+j5BMKHFvURixrMqEMt75Ys5oNCKrKjwSY88V4tIPBEoej6ky5rMZy8WSZrWk8IqtwYhRUVLm0nhIBUbSeMJa63CrFcv5HFs36CDrMiNspZ7Qj8CJF8A5JzwKTshjsqJI663i2fRdfbZGEv8i3YYQwMg9d/GyRiXpPWW2IDcrqmZAazMy09DHAz58hhhzsv+pg2tff0WZ0Bcpj3sDeiajjzc4vCQmElob9iPkFnVqJFR5xPCXsxgFo/KY8+UNlquczXFU2dGLEDyaaQ5duV8QWgL0w9xQXc2AUg6jHUYjFVdR8qhe0l/QWS7ewejzjvsS/mG0JORmsSNlAFDOitHY/arqAJP3KF1RFA9Zrp6maTfBn4efRekna7a+NkEj59wGo0MrjS5UyDOS8RkjbZ2bqqapKrauX0Up8QjmGEajko2NdY6Pz0ArVquas/Mpm5vr9EslB4OS6XQq3k4Tu0OGux3XFpFFSa+rCAS6tY8gLQnP3hM92BGFKMDkWah+C0nUSlEWDTeuHvHV165y996Y55454908794zIMMJrvKMslwnzyZYr6mqOiQ1yWQlg9Ol3t1eRdeHCFVlonLr0L7WMQGRcDh8igfJhkkwtmka6nbE+WyXIp8zHJyhjWY0HidLIy1iOOxtK26izEDbLJlPTzg6nIV5BeXkSfXnuemEecrQh+TCiePtYvhEDEyMx8svuKBcIvWsTyQ3CRj5hK/DjUtXLyn1CK1FuElJ4el8D6MbNkYHJNd8J1cuWMXxm1HJi1KSJKpo2vQ+LSSQxd/tn4Lo+vPpPMhjyQ3U9UpqxmOJXTgPaE2e5akZVPwg52ywZEvAs762IJbUxAS+2G1vuVxJ7byVMEEqvXFR0YeWn9ojNf8BbAaLKQoipYTdy3tPXTdpfSR849A68E30QKwxOlHaWttyfNrSWs/udqhuubBCci6cc6HhSAccfdzV+JlKEbM7oudNmDI11kooJN4Psd5kX6uqYrGYMx5PWCyWCXx775lN5yitWFWK+dKxu63JjEUpYbNrrRB/NXUjCVKRpcw5rCLl48S7l+V58ujUtfSMj99rW8tyuUikJtZZjNKJBEh7h9IZhTGMBoV4GzKpxohAGu+xVc1sNmW1WpJrTak1JjQpiqWGLhDBVLalqusuZgpgLSbLGIyE/6ANIYPoNYllY21rJTkxKrwQ8xWFF3NOFLlyjItTThdXWdVDxoM67WF8orchgenwVeiKNS7mGvgokx6/S72r8JjQ7+6WgF1lHSok6eoiT3IuAQHboMIdzDLNxuSI6fI6i2qD7ckJhNBuVNzxMx//3Cjn/OMD9gJhxaNvyYzGKVmDWLKpQkZ/fHkXp+4Di4v6LcuyUNMv7+GswwbOl65pUP9+RO/AXZarp2jtFYy60928sA8Aa2vrtG2TCJzoXpVkpHOe4XCY7o5zjkuXLiEV71JOXuQZ49GAxXxJXQtB09HRMZubG+F9ZFxZllMUpeTNjYbdLqoY05fXdj1uOuSUjLH+fNGBej5Kjd6piGtBKBs3SMOsWG2gFDeuHfP6rX1uv73Ok09Mv8mpe+fzrsFAR6Si0WpAUa7hMUgTKJ+yxmNiYNO09E9/JLOIQqC/2bF3c+tsWJxooceYqRyYWAZ2er5L3ZRc2rqL1vI5kkAhHAcmHLxoKUgZnCTY1NVM2OvaQJcalHfg4MDojkyoy44Nh8VDVzJ4MSbs0SgvVvdF48ATedPl37HsizCm7nD4WK0YDkpUvBASLQN0adoB82qDUXnGID+PoyC26ox8DP2M+eiuTmWDMvAeqo68ByqQ9JAOaXhpz9KVvRTrS6GNYjTIOV4sGYwnPQRLUPo+5WAkjoUQvqmqhvNpTpZZxqNVkBbxD4EVTQfiDR+soYCl0yXuQJryDuelzS7EBKZu/WNb3rAb3RlV3Xce/0b0MLlgiR6fCrhYG9U4m1/ML4kb68V6VhCy7ZEMd9XdpXgPVNxrBQSvhMmMcP3b2D/BhbfwVL2kqbZtxepX4uZcW1ujKAuOz6e0dsXmmsWFygutNbZ1eC2gWjwt4q2RBCpJ9or9HjyOumkA4QcpBwM5VwEsOG9p6jZRIItF2HbnGQK7nZRmmjxwidB5bOqq4uDwEcdHx+RZxqAoyTIdAHm0OAUyWe/JrcbgWTXiJbRtK4yHTg5tlmfkoRTUOR9KNbscpKpqEiFTkKaBU0tyfxRiEKwVU86WjlUzYjw4T2Au3R3fwfXgGwhJxfG+BKXjfTp76WQpdfEbjx/D8PNESe3CvjQtmVFSeRT2B2cxypLnisxITHlNCQHRfLmGHPWYINiNN2X6x7sUpUSyfGRgKcEyDFRpS6aECMhKx2mRShq8C+HPHm7qV1WkvQ9GlySImwsXL+bqKBULluK4SInoeX6M0XNau4emQFElj5xH6uon47HQWFerlLd20bqRr+PxJHjWarLMsL2zTZ6LXlMWiiInyzTb2xs8PDgGNNPplNVyyXA0SMYV2jMYDFgtV3IeI39MWLz+nl/0Clw4GcFAjF5F3xl6F0YtxSUunRlP7P1ACLNPxkv2d8+593CLR0cD3s3zbdARSxWBcwXra/sU2RrWGdq2Scl5SivJG3CSmZl6dwdrISlR3ykSHwSNKDMd4k2ddQziZrY+ZoNrjk6uopRjMnogcTov7s+T0IBid2eHxWLBeDiiLCSpSuFpmwVtswTfJWrFbPRorUsGfmTaS0sdVr276BfRs4//ddZw/L4iWFYqKfM4M+d7CjjONjgCVP8EEOJNwZ02q7Zo2pJL66+haNPaq3RsgtWpYy/y7shppSK1SLBcZT9cmGl0n10IiUQgEP1bEdEiOl2hKPIcTSv0pqGvhFhTAgDyXJSmDe7FmItR1TBbGAZlQ5mLIknYWKtQuqOSpRrH5+JYe8vkwzrJz+V84aN1JrFt8f7QvRd0WbmRpja9n6yBjfH0AEgfnTQo7RmWNfNFzXg0Spn0fbClCHka3qfxCQCMijMmoonQNdqkJNX4OybkL8SBKS/IP9IpZ1kWYsriyq6qCuss53MRLBtrLoGJpmlQSLlkayXGHsnDnPOpjMpZG+ZLGhtE74HCNlKz7pwI2UjkE8ctIRFQ3ks9e2aCV8PhneQ1rFYVp6enHB8d4520lB2NhmRGgEAeqKwjSHHekymJWQ8GJVXgJlhVtZQj1hVNJayMeVGgQnjDtqKxnBchlmmNE1IRqUxPiYQ2Vu9hlMJkFaVZ0bQDlM8wqsX15ij3tMsI0Ur+7VX0niqiWaBCi3PZ/mgxfgs3Qd8SDl+llFYLK3MLOtfBUBIGwcyIAtTahwqcBYP8nEW1zarOKEPjmo7jJFbg+GQ0EcBF6sXiu5ym6MVS6Vh6tA7lul6JsQVdJY0nlUAr11E5Ry9ZzPFJnAOQQGmMfVvfAZRkRAShaHRDnh/S2idwfhvNfaKRAjAZS5vjtq6pmzqEVztPbEzQ01oLL41zzGdzNjY22Fhfp24qMSC0DxwnA5RuWVsbMZ+vaFrPo6Njbo6vd7LRS5Oh1WpFVdcMB4Nuj6PeiGyTYbESKAtSLLJn9g5D2pv+T0RfOFQ0nHu/YzIjxpxz3Lh+yN0Hm7z51vo3P2uPPd9GAqHG+Yyy3KYoNvBkVLW4YYyRRL+yLNDGsFoskysm3oIofI2JCiJm4CqUFqtGm6xrNaqDpW5Mipt676nqEdP5FmU+ZTSYo5Xh/PyUo+Njrly5zMOH9zk/P2MxXzAZjXuoXDqgeV8RyUFiHN3beIgVJsuJREJEgKB0t9yRKYr+hfadAiXREUUtmhRC5zLsXL+g8CpWJqjQvEh1SNpfFB7ew+l8Fw9sjO8DHuuQdJ6EvG0CXkbTIdUEYkgZ8nGLos3QARn5iXAM6N6x9RHjEEvwlJJQUJkb2qamNAXed528nHMp+UziyyGkhGe5VNSNZmujDgQouud9IZwDS93UyZWXegz0z2e0XWJgWEWBGgYbyyGC4ouWkpLFgLRfaZvTI6VFotSWy4rTs5Yy92xtlsBKXO+xMZYKc+gJexcQXjozcW4JCMp5L4pc1FKv2qHfOtd7Lz0tvIBtPCGJT06kJA6uGAyGHDyq0MpT5DWt7RjMYg+QCFqihS4hm7bjXgj8GXH9lBZAlgXCIu89Kubn0AOJ4YzGZLjMZKGSIjARVkuOjk84OTmlaVryLGM4GAbSFoVRiiw3ITykugqLeN5CUmPpS+zQUbcNi8WSVV2zquoAcESI53lOkWd4Jx4OaVKmMVrqyuu2FaCnhL8AJfkLrfMYLJNiztFyhG8HFMWc1jta74LsCuAmrOWFP1oHkiDx1iUL9wLA7z2q248416iQ5eiExlpevKcZYIwofqUcWvlAkR2Rr2dUPmK62mVRTSjzWc9h1UFdVOzJEoflw00K8k9dtPIjUPfYJJ8cGd6mjijyij4zkoKYrBE9HZ2nzdPUoQNlUqrdekQvTfwdfFe+nWd3WfIEniug7vcEgWcyHhOZRtsmcFvEqrFQWqyUlAwbIzKrbhouXdohy3IJxboW7aUUXTxiDetrE9rg8T4+OeXy5T3KsiASbxkFw+GIKpTqitdBSIE6j1gPgMUF8lEWdOsc8xE6SNQZneF4pPsWQQ7hjnhlUNqwsz1lbbLg/oPxNzl073zeXZohgMrJzDrj0Q4gwj62ZI2TyrIc20a3Jynmm2rBewJWpQ0PE1Ed+uuXZfUbjyilOJvu0bYFa5NDskwW7eTkjLoWy6goSpbLJRubGxKP8nJZcCuq1Rn4WghrCB3hvMY5JZm7Pjr8ROCkrPIwYB2sx1hH2wm/nuWtTbC4u5yCFPcNiNgj7mKhUpWt1hEpqiicXYrVKhVJfzzOKc4Wu2SmYlwcykEJB0MpSboyJvbX7g5Svx41ziVahKnsR3VKWIe1l7BJAAIxjwB/cW2weN9QZJ62Xl44yHH8zglY7O8/eBYrIRtaX6uSZR4t6jhm2wppSLRifW/Ng7rv/tLDMildKYA6R4hlPu637X6l26swByFf0snyt04xX3jKvCUzYpkn5dgdjJAEKYmQJpRhaiPtkLXpxcwhKZT5YsG9e/ckKz5dbil/jNUAReBKF6+bfL4JnB5G60A81HJ6XpNnDtwKBSyXS+qqTuA7M1lSOBFgeUgEU8nNHc+fDsmLVdWtvbfdme4DXN/9nkLROsdyWXH/wQGvv/4mBw8PUUozHk8YjceUoyEqExcvobJIygQtDilLjn0htDEXGCEHZcn62hpbGxtsbW4yLIWtr6lr4VRoRNkMyoLBoKQscvLMUOYFo7JkWBQUmSHThjLLGQ+HjMqSMjOsF3MUULcDSq0ptSFXGkNq2NuBoB4Y0KiuD4LuZNw7kgd7T98TEF+lwh+5p5IsaIxY5VoJ2ZV3MQwknhsfSm9Hg2MUnnm1kVQ8iSq4oyqP96RTNOESqd4olEgSFcC1XG0XgEgcSwg39KunogLvfUYC7UEOxpCUVjqFaHs6sfsS7nDyvrn7wBLPPpATuV5QdBToECitwyenl8gnDIcjvPeBd8OysbEpFTFZTpGXIsuNwWhFnhuGowHjyQitoW1qTk/PgA7EoTR5yKep6waTZ9x8+skgXB7f1Q4MRD3RrywKNoOsq4prqtJ+9F6QniRzw+sHQ83NG6c4d/F13+p5154Bo8eMJ3toLR2aqrqmbR1ZlieGslgCkxA8nYVgslTQEwaugsWYUzdNd2A86UBHAWyMDpaN4ejkMmDZXDtCKJDF6lwsLLP5jO3tbc5OTxkNRzRNTZFpjLLMV2fgKxQ+ULoGwhbrQzZmh9Y6Iai7jUmu2ggDOtuyj+oT53hAxN7Hf3QbllzuwQWUlFtE4QEhe9yF0kcQwbSo1hnmp5TZPOQ8EEpdukPjEVKNrgVmVHA6nc1IUnTh9gUBHgWZjzH3GBtUHcrulkPyAIrMcL6oxTMREkfjHZBmHv2qAlm9xVIa52yuNz1wKL8jFkMASPju/DymfKIHQKueIOpNqSdWZX5a6tPxXly93ifq3771ZAOnA0rizQqoGkPdeHa2hLxlOBzS74QWt8+FMFhkdLSupSgK+XsIocV1l9wBK/0GcunAqLQhhlk68SVYJ88yRiMh5cIN8YGlLzZ+mi1XrCrLsHSURUcQk8rICC29jaFppBupcPpLKDCdI9XtRfp3WlN3cU/o/0zOs/Oes+mU+XRKs1phW8ugHLA+HEv5cWADlRyjBtdKcprNJGFYm9A5UklORvSiSFKq3C/pK5IFGSSgqarrkCBZU69W2NZ0XScLg24kiVSZLPUqcU44CYzSDIsCVIHJ4e2pY9WWaDS5EQ+ODSRHzgfHe5TRyiPcJT6UGWq6oNzFMxm9oo8/qvfz+G8f9g6vQ0Oc0IPBOQiNv8BJOCa8wSCfkpmaZT3BO4XSQS75mEPUO69JUcXE224wKrxWxhvlXteZ0SiF0x7tNK0XHgOUkq2RgxCvHdFRl4SOlzCQtQ5tsmBYqrQf3e3wF+jehSBqjuIAz0086yiOEzCt6oqRHXUWNyp5IqMR6B2MxyNJWgzesu2dHaq6xhhNUZS0bY33BmNCYnluGI9HrJYVzjoePTri0qXdCzlDSsvvNm3L2fEJ1XIV5hTm0rtT0BFf9U1+lV7vH3t9+pjOeIlr1HsfhUr5BNevn3Pv/uKdZ/CbPO8aDKyv3yQzQxRSflSHpg9ZaOuqvA/cAR0CjlaCC5Zuapsb3ERGSJe7Sx7dt+HnkX0tWi51M2E622RQzBiWc6Kbend3l53dHWlr6R3bO7u4tpWYSgbWLqiqI4xpsV7KYoxBsp6tlztFRGYEodgph96qx6UPt1SlH2nVWd0p6aZ3ACJoUP23ihZoRHPp/eO7dhczunRnqw0aW7C3cUCexZp81SnonlvN9zwqyYLpCW514URJDDV6NvC97mYR9qjgLTC6swh7Q9VKkWmwtiHTOTEMQmjrm5k8gMbu95arAVpZBoNV4oiIax8tau+DsnAxKTBk5YqU7AkzREnE2+PphICPPAkGXJt+FkGddKr0eB32wwuXQfwsOSuO09MVrYXJyKc6+46boANjChUSCAPjofcslwuxGIyhKIquJhkBWJPJJK1xBJ+KqAhU503TirIcABXn03PKopRYeS591VcrS9t6yjXhlZ9OpxhjhAiskPczmTQ/qqpVumvOdfcugb0LrWvjiHwStH0AcOGyeGidpa6W0FpGZcl4bT1ZWyhFa1vqVS2lZKGiwSjNIM8oC5ErxhiccSHU1e10x/Qo59gog9NSCWSGA3xRUpeSV1CH8kkbki2NydCh1DJ2r7TI32NegzEZowKGhaVuC7TJMdqivVQKOO9prMV6AQbQu+Oqu+vx/iWvHAEIxCz87sL3nt75jaDBQ9Na6rpBlxoltIoSD/fQVKGDZyB9M7qiyKasmi1aV1Ka1QWJkj4yioQgo3z4rFTwpjoQ3amezsr1ykooUoOyHo+wvaI92oHTKrj2Q1+TyMsS3s07L/0inOvm+o6liGq8e6xt0NzB8iTe74E6Tj87n07Z3NxCKWFubNtF8Ca49J5KCVlQXdesVlVqDy4NomrG+ZA8L+Q8YDDak+ee4QDW1saSr7JacXZ2zvb2VpIjAEVZ0MwbmraF1UpkVW/BIyFVZ+R1+tLTM9B8XOloQPdFWx8VRCOmv6HyrI0bfujjbwDP83s97xoM5Nl6+pC6WgWBIb3eQeK6qSsUMUbdcVJ3cSKXDl6MQ0alfwEoaIO1jtxkWCdNjQ6PdmnbnJ2dR11rYiWCUaUwlyiQxXLJxtoIo1ums4cUeRUUHJRlkaoHnEWQsxJLzImZhDaiHmMkRda8lzvQ48K/2L88vFrFpje9TPFwjRLgQcISHbNh+GlyU4cs5c7A5ny5C8DG+CHKBHdl9B6EpkY2jMOYSL8K9MDVhUMXgQ2i9GLr9fiZcmhVUnbde7gwE5WEnUb6PzT1irwY4n0v9IEkBBZFLDEUlriqLsmyhswsyfJCmvoEHvnkOvOkmn9UFFDpH93i9ORIH1nTnwv9fSAAz/A7eIyK3PwdKGjbrvpguogUpsKeaV1sHBLLhlQCZ1G5xEQpsXzqUB1RUVcVZSlEPMYYyYhXdKCU6MWIlpL8Oy8HrOqGZVUlt32fKGmxrLHOU+Qh7GYMTdOSZcEjE9jYBoOC+Ux1e5y8UGlxkhcr7nAS4yLxUU4SyXwopn9c2egsoywGlEWJKYTIqGkalssVtm3C2MOwvAfXsrKWtm7ICwmJSEb3RfkQQ3YXmnwFeZApIYoq8oymKKhbKS9r2zaQmoVkTa3RXmz3GDt3Xpr+eGdBe4Z5zbIpyIsxZVaxqhsa37luW2elaZuHltB2Pd4XL9UtyvvwOZ2Q9ukUqsdxf/fEH0Wvo/NUq4bM5JjEtueJToK2dqiCQObjGBanLKpdVs2IIl/J5waQIkCuq7JJBkk8A/7xofTG7gmeSB/KKzVZHnICYoKwknHEzt59tSYJxD4pWu+lKqQKidadARgUbACkOvTFado6yJD7QINnH+++SuyjIm285W6Nx5PQ0rsOnyz3aTgcJi/dql4xGo2QMKDwOlSriizP0CYTIKo1GQYKWFsfU9c1TdtycHDAxsYGKlPp/OkQLmjaNvAo9DxoPWx1wVijA4nx/qQeENH27O+Jj6/SJNpwb4Kcc+k9UAqTOd7N822QDsmI2kYQ0XA4DLFpucSrVZXyB5xtUZlK3dr6YYNUVofUlQI96zjQwwZ6VI1K9eNgOD69jMKysXbcKYSwsPJH0H1rGwbDgjz3uPaUtjmhLAQIGK0gz2kbR9OCcyGjPihkZ8W9a1UoAUxoNSLaaNV2HpC0UT3B+diuyd96bnO86shtjE4VGPF3BFDJ58YyP4VhutolMw1rg6NkiaTx9DrwxXWOFmbffu4SWVRKGlExa92TYvMEBR6VTD8cQppzfAOJZQ5Lw2K6ZOA2O8USntZZ8rwAJQx4rc1o2ozhYEbbzFG6FJI4RRdrJVpscW4qfXa/u1nQSMRs4QvrTgQ34X1UFEodIIrcBJ1l0gmvpgkoX+UslvL9yYhQUgfWKXzjUxlVpIXuxtwJ3Y2NTarViraVsEHfGlV9izwqHAivke+1bcNiseDu3XucnpwwHA5Cgl4n0FeVZMQabVkua4aDYfDomDBeCc+NhiNOQ4KuS6BQ9SwT+Uz9+Eb2wFfakcfdy5JeL6E4L+REHmjrhmolxEUC+pWQqUXvCpJE2HnmJK5sA8ua1gpltCR3oUNGdZi9EgAc7HB5/8yQW0ORGZq2Tb1RrG1RTgyH3JgQ3vNYH8vaHG1TMzBLnFujag3jQlFkJgA8cZEbo2isFbkRzmerfCgh7ZUcKuHXd71bKOcu3NfIdNq7UuFaEU4Q3inqxpJVikGhA4hS6d3qRnI4ykGOVophcYoHVvWE9eExUUTJ6yPD6cVQDwEYRg9nNGH7MlopAShde3lpd5xn4q6xvTsZc1C7smlZCxs8GvFOSgltZyG7eP51T55GD0ldAwqtzrH+FM8WniEKcYe3bcPR0RHXrl1DKc3m5haz+ZT5fA7KMxwMmUwmrMI9XC6X7F/aSzX6zkriodKKTGd4HYy38Pl5nrG2tkZVNczmS5bLFWtrY/oGSp4XLBYLWuvIVE+u9FgIH/eCJMPJ9y5YlGu9y+cTEIiv0CTo4KJUU729fnfPt9GbQN61rmvW1tYSGQhe6l9xPtHO4mMP9OBCveAmkfeJdfB9Nii8JHPETlBaiysRoG3HzOZbDMoFw8GCVJIVrVIF4FgtFpydnbCzvQZ+wWr1UChuA4KSpDdNW4NrY4xMxZ4cxD7ycXPeqQQ7wRzjY9EajCqmu9Lx98IG+mg1xlpaHZSwxJ/ldSGL29MlInpBvK0dsKjXQ5hkEe6GD3W7XEj+6j9RrV0AC8jeRQKY+HPSzGXTO5dxVJ/pJaiep0TeuxXh5SSxiR69LUiWfFkUiVSnaTOs05TFkrapBESqLqzSJShK2U3f9RrDJp3uVu/4uUxBBaHDhbF0oZMICmSO1jtMZy4FQahYripQisVKQh3rGwWeFR6F9TaRuiitQnilAypZLslusdTWZBlDI9nM6WKnfVMXxumCoKzrhulszsODQ05OT6nqmhT/1QbrPcNyQFEWeGXwtGhlQ7WPCY1uZHUiwB5PJtJwKJDS6HAHPV0fDnwsIe3OVFQMnbO3OxNi/ATPiwPftrhgFVcrKdnSCKGQVppMRbZBLS3Oid30wqN9l/iJWMDaGXHVW915CBKgD2VXEeh6KRUkdCwt+wREIfHTu1bCUeFc2GChWQullh4Miwq2Bo7caBRSUdE6aaBm0tzF8ou0xDhHS6ww+SaCP4iJFHaM68tjT09XW6+oa2FULXKN8jaN26Mln6H1qEyFKgLLqll7J0AOF6IDfr4DAr1RRMhycfhdeaBcEY9XjsyIR03Ov+LCtFQEPDLv2Ksj3UMVvMYBsVzwUPSG5L2XnhN4vG9Q3MdzCc8WsEi07adnp5Rlyd6lPWk+tLnJaDyWZkRBd1knrY2dlQ+ZzeasTcbiqXAK3VrhrcgRVGZbvDHkzjMocyaTEXXd8PDhQyaTpxMoJexHZjLquiIzo+R96zb0Wz99WdUvG+yqf7oXuGD8eB+Twbt3Sev9Lp93TzoUqmzHo2GwIFVCrNoIHWM8WFrl7+hR3Z9pTAxyITYa49IRQBQhnue9J0MSmk7Pdmnagq2de6i8QtswdNV9UXgGRcZwfxPcOcvlAc7NUnmPDwi1bTxNHWqPw0KKxRiEMtDxzZPcLrE8L10UH1FrdLt3B1t+HhJAwsU30TqLXhIt3g+UkoQzo1DBtd65PyMxEizrCU1bsj25S5E5rIsgiqBPVMrAjxfcua7oJ4UfUGkP4mWM1necp4CVCC0vkpZEAIT3CehKGMBQZDllLtZ0FtrxxjMQ4+vGZME9V+C9EjBgLW3TSk1vACeiiLu5dWvaZd124Csu/cWfRY9AFCT+gv5SPcuIcKk670Fk0CyKAoWirhoWC2lTnGdWSmpd7MrpkmWhAp9/DIUpTAKFEThGS73PwtlVeigItcLWOo6Pj3n77l3OpnNsG1tQy5xa65jPF6AU4/EYpUQhyBwlOWqxWDKZmF55lXzWZCLZ/MvVqhuPtT0hr9Kd6PY8Lu03kdTpHsrZ0CiyrEhtx+P7ZlpLfwbvpctiapEteSJyL+QMeiUAzQbiHe9Ck6qY1xI4IJQK966vVHUA3CpymIiBkamMIve0mUleh2Sho1BGYZ0XCnMjHSIXFVKZEDwPWkvvPmcDN4a4quTvSsh/8kw8pau2BRc6hvoIofrnLgBbVF+8pJ+lZj7hjLcWmtYJeFIxaY+YT0nTtGhdkJkVmW6omhCyUy2RUTW9v+/ZmPHexdvx2GBU7/8XX0kgbrJkmcL6AAaIJcmIXO2Db6UuvJN3IfFQd3sYlV7fgHGewDcTP/0u8H48eyh/N01DAYeHB+Bhc3tTPEZaCOlsINdarVbM5wuMyViuVtx5+22efeYZAZhO0VpFXmgJKy9sJ2szR1HkjMdDqqrh+PiE5XLJKDEPKtCQ5Xli6My06Slq0jl5p6wSvdLtjyf2NBBdJMYJ4Q7HXivRU3rR6Imy8t097xoMHB+9gTEZeTlgUI4AgxIyT5T2EPWkEqa8SKrgvQoJeprHXYmQha8hDi3MIEgJjChGEBrSg7Zk+eFf5fTDv8jGGzdZf/s6Xdwrtju14JdUy0e0zSO0atEhWUNaomraBppaYa2+UEHQT5pKyhzoJ8tEYZPwXbgsNiCNfjhBsvG7zHvhu1Y0G0vOX7pLPVxy6dMvkM8GUh7U3UqS4ubCtzhfbuK8Zn34ULKfY8a60emidkCgf6Bccv3FV3UVASH00bOkE+bpfT/8K0zc06xVnD79gGyVs/v6DVToLua8Z1RkzNsKNRjSd+2j5MCWRUFdV1R1CcCgXOK9Y7VaMh6PicyT3gYCHKWEgyIe7LC+aYfiLQrrFIVNHHoSKvRyHaJQNh53dY4+L9GzYbhsdBjDS/jGB3dl0yqU8hR5cG3HM+O69dNao7PuakUFLEyM3ZlrApGSzqT9sYAlQBuJfVYtx8envPXWHWbzBc4jLtgAYsXCkth3VVXSW8A5irxAyq660q3FQjMcDhgOB0g5VUteFGxubHJ2eib0wVoJkA8VQSLAHzuEUaCr/rkgxEkNyrqQlS+Mg7GGKEkppTDO47U0AyszQ6bFK9DPqpa+CzIG7R1ZAHIuND+LYCiV4sWcIbl0CeSmdtWCbpJnDu1ReYYxOr2nEC75oJQ8LjMUxqG1o26hrsU7pI1BSo8VmTL4NgrlznhwoSdIkUlopgrMjNZF70XfiqNbV3oGVE8cxSMeKYCtlZBBnsUwp6Pdq1FTDQsNdUueaXKzoG7XaZ2hMG0yZqLh1uWE9O73BTXfezobozsO0fOmwONQ2pJnIrOd7wCBDzpBjkDYmyRdVRqHXaupXz5E3x2TvTVB1Z0y8wEQDUMjrKa1KI7wVHh2w2d1oWdQPDp6xPnsnI2NDWlIpIS7YrlcsVwsAEU5GLKqas7OThmPRzxx8yatlTBBVdUURUFelLiVE+o/bzCZpyhzxpOheOwePuTJJ59MZ/z08tscXn+N0devkB3fxPi8N+9ARxXlb5JTXeAy9aWLJGo+nq0IEFz39/C7qR9E3C6lUOqbVLN8i+ddg4Gzs7toZTCZRutc3HVKXJ9G6UB6oXCuSexT3nmyTJL1vFc468mTmxhI1negSnU2lHKJUGzWlpw+e587H/oKrz91h+xr17jyV9/H4s6UBV/Btg0oySwVoh1QNAwGLWUpq2mthsAjUNeeeuWxVglS1r1YjFJonSXF/Tiikn30YTN7QjEKsHCYY0hEXP8aZRT1xoKz997h4Pu/ytl77rL3qZd44m9/D2ZaSIYtvS5ayW6I2QkqWQbT5TYKy6Q8BHz6nehdiJZ0OE4X3EnxMy6i8aj05ZabHhFRjMcn54CCdrLi5IV73P/4a5w/dchT/+SD7P3Se9C+70WAssg4X1UIDXNM/JO5OOcpBwOmsylVXaKUE4Y0D1VdS+286REiBepS08vW71sWiZhEdolke/RomGMMMgki7bGXlyy/7z7Vdz1i+E+vMf7n19LaSZ6CJDK2rRWWTaUwytA0YAzkuSbLTJLSOtOp9n84HGKtUPZKy2HdxUPxqR9BSpwlKKi49sFDtlgseHh4yGy+FC8QnbKJbmbnoCxLmrZmpZYMGZHnXa8C66RsylpLtapQ6/ImMblpbX2djY0NHh3VwcDUgeDGk4fkqXBC0nnsJ9LG3IbcZBjnca1FWWlmY7TG9I31sGdGCx9HZjR5yBMQcNeBvXh30FroXsPZcs50lqHvFFiUNz70A/Hhbjhnu3Os5P1iEyPZA8lrUEpJW9gIFBUYrykLmYP1JoCoBt8GkpksQwUggyMoQCmzxYX0QCeeEFMWoVRVzqL1jqqxWN+dUzp828PPqid/0jLgkFwV5QihC8DA6Z+5i1opxp/cZu3tdXIzZ1lv0doBham7vVRRWSTTpgMh3Yp244n3q4e7wwUNXgnJ3fBE2Sdg3vtuMv05PO6+9mHfOc8wb6wx/TNfwl5bMPjFa5S/fJXs7gTVilzOs5zJeMxyVdE2FY07xbMNDIF5N2Qld6WqKo6PjxIYpNdYzCjDYDBI5Gm3b7/F/t6ehM+sw2rLcrViMh5j25a28fhQxhqJrUajEY8eHXP16jUhDvOejfs3qbIVn/1jf4O2XPLkq9/NjVc/zMbBNUwt5GIxvp8kQ1+5O5/kVseY2gGA2JU3OaRip8ieLFRhj/3FHfuWz7vPGfAerS3eWqH4RGGpaSNkSYMJA1IuKYOoBMBjAkmKED3I95ICwlFvLTh78T4Pvud1Hn3wNovL51APWP9//Vku/dz7ce43mK2/JQLdW5xyoC0+d+jCYUpLM3DMcy+tT43CKk/jW7K31ii/ekkOQ9/KNB3pj0IlN6yOC5kWubOku4ujeuEDCYHoXFFvzTn6jjscfP9XOP7QG6z2zxi+vc3z/9WPs/2Zp/A4qo0ZGC9BR+PBeJy2OGVxmcXlFp85XGaxmefkiTHKfY3y6BC10o/fJ2KWzjvczjF8EC0AD853fPKoGJ/XScAqFF456tGK0xce8ODjX+fhR99gfvWUnVev8/J/8+Nsvil9vV3RojIgV1jjcVmLHc1ZTDw+15A5XNHK6wYOM1JM7y6p33warR15XuMh9IxoKTMjSWSBZ0ApcbnFJMeodC+4WsOe9XtD+LAm8YLYrZrFdx5w/gdusfzYA7K3xmz9x99J8YUtAVJGzpRC0aJpdYsfWpphhZo01OWC6voMX7QcPV9zul5z6cFV1s43UUoHshPF8fEJZVmQZaFKQEuyV1fJEYCM7hI4o6CKlQPWOWazOWen51gX+y9EIQDRJ1y1NeyuOP7IHfK3nmd08lToqQ5GF4GLxUsOh3c0bUte5LjMMh/MsFsNas8y+rURi+kSvBBXJSIl1eXLaKUlmSqCz/DeRklVgatr6TioFMZ7Cq1SmarEneXMaifgLtOK3EjmdWZEFLWxHbOmS2rVXR1hrITxrhOaAg4c9aBhennG8HBItsjBKWmchPA8+GjJIonEyVWdK9pBg54LY2dywyooAsWvR5INpT+SyL/Wh17yWloEZ7oruY26FO/T/StCfo40ToLcOJZNIwmI+Ji+hPvOKYwcapqhZhpVaXylUZXC1+JtteFeSEtjyLQiuz9g669c5+TP3OHe33mFwVcnqL9b4H9hnaYpe0o9eqf6Bk3nsSLIhCDekmKNyCAZRhe+3eMgVBa10bJ43zG+yfBLg18a1MpAbVBW4xuNajWkPwpsyAm5N2Ltz3+I5b/2GtN///NM/4PPUXxmj8EvPEHxK/voe2Pyoghtgyv86hGNvQx6G5gH4yg6g+SsRv0TkAtKydnIikBmpTV5WTCbnvP6G2/y0osvYJ3i5PJbLC8dsVasoVpNM2+gVrha4VaeeumwkwV2bc5b9jX2J5elztIaRveu8uH//s/y5R//n/idn/xrfPZf+ZvsvP00N7/w3dx45SOs37+Grsve2aan+H0Cjl0CcWQHDeffdT9LJFHRUxaNpTjtd/F8Wy2MnZPWq52jKSbeSdJIOkTxw0NM3ScLU9CiDSgyyxwqg8XGOY9eepuH3/s6R9/xNstLM7xxHTq2LbOf+R+Y/5EVyqxAe7zxeC1uG68DGImzD5dKXFPd3y//rQ/y1J/7fRDKivpxwjgjMT/AKSsxxzT7AGvjHeq5IlEKnSma3QXHL7/F4Q9+leMPvUG1d97Nw0M7qXjtz34Sb1z6I3NxF/9oL27YMBcfvwK61bR/+o+hvnYFolD0XdVGzG+Ij5QedkAnuU3TtLo4pfMWlKIdV5w/f8D97/s6D7/7G8xuHOPyUOFRSxz0S3/qn+OKFls0ouhzJ8DFOFzmRJGG73ntZA5pXjD+zNPov/dDGN2itSgeay1VtWI0HARBLSfZex8s7C7fAjoUrdGpLXC0tCMitiPL8sUjpv/SbWY/8jb1E1PIPNlra4z+wQ2qDxyz+thD/HqDX29h3eLXWliz+EkLE4sfWFxhcUVLbVp85vjZXOb0E3/rT/D+z3xviP/7RPsrfAKhlr1PSuTjmku4IYK36JFyoVOhC56FmP3uohLsXf7lzTMOf+prLF9+xEt//eMUr62xGq/IYu8XYyi2Mmb5jNX+lPmzx7z17FeZ3zjnfO+E+faU1dqCtUcb/OidP0zztYMAAgieOtdzbRIApdzreIgypTHeo2pLgSEvBMhlRtz/MdwEXamt9h5DNNTFsh4MSkyWUVVVCpl5egmsjwPfeFVDe1/vHY8+fMw/+89/mfKkZOONdXa+ss3uV7dZf3ON4lGOrkSZ25D9n5Sh8zz40CHtuOXyr+yTzbNknGtc8D5JubPPM1QIKSRPYcjL0SokKwbfj429R+iG773kfqM8hdaoomDRSPMkPHjjqf7zN3EfPweroFWolYal/FFLjTrP0NMMM8vR04zsPCefZuhzjTkzlJ9ZYzywTP/kffwPfhLu/TaHv7KP/sQlxl/YxkwzOrRCL6R2UWv0rfjUoVl1rux3bEf0miponj7n3n/7KXwWqnRcODNWoxpR/qox0IR/N1pCApWABrUyqNqgDwe0L52y+rE7rH7fHfSjAcVv7wsw+LV9Bg+GoM84nyrgElrfSzI5goF0flJCneqqIbSWvDeCjMky3r57l/39Pba3t/jS9/89vvrDv5Bo4mXZgrfWExS/glajrCZXBcoZtNUoZ8B2pa/NaMGD517hwXOv8Lmf+Fts33ma61/4Lq5+4cOs37uOropA7kbP8u9XU3Xr3A8bxHL4x8O9OvZa+Z8bDHjfgBOyEMnWzaKHCHwU0J4Uq3Y5UYMFexuvAqe1M6Dh/KmHfOMP/TYHH3mD5c6M1Cnk8c8eVNhrd9/tUL/FBMAVTuKxSjgSOtc/EB32XpwGKUEpeARidrVGXbBQfWE5+q7Xuf/7P8/Jh29RXTr/5vNQUF+aUl96d+0kv+U0lMdnoaQtXr4wQR+74iGuT5lgxzoXFYpckk6pKhRNUXP2/AMefP9rPPye15ndPMIV9h3zcIXl8Dtv/f81B4C2tGhnKEyFRlpMOy+UvDs72wFThtOOoizL1N43XvDYrTBA4TRWl1uaJ6ec/+gdzn/8NtWLJ/iBjZMVYPbclJM//9lvPrhvLusuPBZ5n2og9dtt7ITnFcPhSKy1LEvVHZGLwEavk44esw68RUSvtQhr5xSxCiZdfGVZPHfC4U9/jaMfe4P80ZBn/i8fJz9c4+jKQx5eu8Xhd53Q/qEH3HrpEW8/c85qa4Edtxf3szfH+bZm7eYYdXaZR0ePWCwWeOWDcy+w3XmEf6NXbaO9Am/JvGI8LCmNSeGBi5TG0QoPZ9XZlEwWk2Odc2jvJA5v8gs1+RHc9ZPL5NckUTMLivn0/WfUaw31esP05oy3f/AeyiqKWc7k/oSdb2yx++UdNr+2wfjOgPzMQCPn6Mqn9/j6H3+d3/xLn+aZv/EUu7+1jbIxt0Y+SwiwNCoT5RaTpDuQFr0AJpVVe91Z4clZQPA+AJlSDDMhbWuseADZslB2ytqvd3HfuCoWaPrfePxwWgW5eFi4ccr0Xztl9jOvUb4xYfMXr7LxiSsMX1/DNCa9cwSlFz0Ivb8T8h2i15FO4XYAQZIpVWnxhYPMp7nHwb1L3fTOR4HbW7H6A7dZ/cu30YdDit/cJ/+H70X9kxcxh5cYDSY0odGQ848ddy33KQKF6B1umiY1xioHJYvZjDfevMV4PKExFV7bC+luv9vT/F4vCO/TDJc8fO5VHj73Kl/4g/8jm3ee5NrvfJQbv/b9jB7uJa9bzC1J3oLoJYDkGYihvH6+gA55pd/O8+49AyrDOymFirWzcWYi3x7PWowJgwGBq5jc4YPc1kzu7fLs//Q9bH3tOoff+SYnL9xjuTvFZ48podZgpiO0lVicsjr8Uekr/a9t+Jkz8rXVqNYw+fpliQ/SxceC81U87OGYGn9xYUEuReLOVhDZeZTXjO5us/Pbz6BQnL3/DqvLZ7iiDb8Y3sCDrjNUI61pBVmKUFGtuM50GKdKc9Do8O/VYoNqvsGGOsPMQn266+pxBQz3on4xrBEEkfPSICjlCMRs8ACI2nHF2fseMH3ukHpziTff4soGGaUi2neSeStzCn8P4/aVRtsC3Wbyp5GvpskpXnuKI6/Js5qUCY40rGqaBhPY+eQySFa/uNwlIcsoKd+K3QgjHlh85ICTf+srzD92H7dRX9yDtJnfZE6PzQ+v0h6oVqOdwdQ59dmArC7YHw0p6oK1841EPSud4yKfhrxdtK5baynLkgtkVaqzfONr4u9m2jAoCjJjxFrPWmYvHPLgD3+Fkx+6jV2vwSnK2+vc+j/8Jq/tL2k3K9ygFY8TsPwW1jSAajV5lTOYjdh4tI0ZaK5cvcxkbcKdO3c4P58GNkaxOhzRUjHB0yrei9x5xmXJ0EgOQJYbCZWFhlOy3CF+KSZP6APSC+cEr5DzFm0Mg8mY4dYWs8NHF3oh9BVVXDMVOBac82g0m29vMN+Z0wxaOduZp9qsqTaPOXrxmK//xOuY2jA4KVm/PWH7K1vsfHmL9dfXefbvP4WdWD79Fz/L3q/t8txffYbRK9vJe5YZg9Ke1gUOEt25cm3ooxDna5TChwqGOE+Jivrg0fXJiZkrhcpztNLUWYP59BrMNIwdfmJhZPFDJ8o9/jGd1/Md5zojKOGLP/OFY/XCOQ9eOOfg3/wGoy9usvPzN9j65HWy8+KCYZHWOwKSBLp9J0Meu0gdp6Iim2VsfOoKdmixuZeQZ+7whRNQWjh87iB6eI1PHl+JNcWD+tjc4qPBbVU03/kI9FfQ51/A/cOPMSjXGQyE+rpJAB0ij4jMS+5cFiiq67qmyDPyLKcsB1TLiqOjY26/9RZrb97k6saH8XmLzy3ehBCubrHhjzOt/NvI95UBDHjlQMn8bFHLvC7cQ0W2HLJ2/ypbX3+O8VvXUPOiN2Z1EQi42JslMmf65LXDd2Is5uwlMPQugYzyj2u9b/H89I/8pymOIQvqk7tTJmdkh6K1Gg5+PDwK08PGBCXU7bPXnnptyfTpAw5efpNHH7zF+ZMHNJMVajli/6//AFd/7lnMvJCENa9QIlXwrcLbnuvGCtjA61DyooIlrIURy3VotV/yFQdkdC+hK/y+yYy4CemvcCDlCQIJ5WnXVsyePOD4g29y8uE3mD7/gHprjjeOyev7PPvf/ghrX78iytEGxR/mg1OC6h1B0YJyAqq+duejPDy7wYee+kdsDA9IMMt3sdju3nT70iXQRVd1YMuDNO9ELKQVZJK3cfr0Qw6/4zaHH3iL8ycOadaXohys5ulPvswTv/I+zKxA1ZrM5kHhG3H1tQZswfFpS15uoPUQ7Q3aGQFzXmHdDr/8Gxtsb9zjqetfTaEKpeHq5f1A8QlFMQjNgCxvvfUWh4eHzOdT2qahaZu0ZxH5u7Wa6olzVu9/xPLDh6zed0xzfYYbN5388qBPCwa/chnzaIA6z1DTDD3NyRYl5WpIvhoycCPyuiSvSsZqwkBv8Duf22RcZPwbP7mOcWAb4cXoPEwR2JASCKPiyvM8WFf+gqCNTYCgC6l5rzg9OeNrb32d2098lXt/5Mucfs/dbh6/29OT6bo2ZLOc7LCkvDtk62CXveMrXF3cZHAwojwbUrYDRmZIXuR455lOp9x+6y1OT86QBjjRmlPd2bcOX1dMTMbmYMigyBmUhTRR6vNLpHMZBJdzuLYNpZdd/o0xwlFijOHys8/hleb4rTvE0JxCSR8ILKvlKqkoPCFB2eGNpx7WTC9NefTUMQ9feMThc0ecXjtjtV7hctcJnP5aecgXGaOHQ9buTDh67wnL3RX5ec6Vf3CDo7/wMcZvrfPhy0c0thFKc8Qz0FqH9cJbYF1XuRA9V9Z1NfoucPFftPBkJg5ovaexjtpbWm9xmYPC4zOHKh1q4vEThx9ZWGtRWw617VGbFr/RwkaD32jxGw3NtSXNC4uUk5nE7sqQHwwYfn2d8Re2mHx+m/Er2+j5t7ILO/d0X6aECydjdzZY26qLICmCuDW0PmNlZc2cBqc9PkNypHKLy1r5mrf4ooXS40uHvTZn/qe+QvvSiQyg1ZhHA/Ivb1P+5mWKT++Tv7aJPhtwevoRlssn2N35PGVxKl602IDLy/mQ/ZAE08FwwGg8xnuh0c9Cq2KtFMuVVBqURcl73vsexqMheW7QuYSDdQaWlqpd0bqG2jY0tmFRr1iuVqhcsbm3hc88dbni7vf8Km/+wX+AHazQTc7w0S4733ievVc+wPbXX2R8sIepQ4ggrHXMH3C+ozOPTeU6UriLexuhmIRT6YXn4R//o5/5FvvbPe8aDPzUD/45OlgOMWEh0sXGmvvo2lXphb0YbmcAdlm3qN5hM6EjoMflLbNLU7565TKnH/0M9js+xfCtTa7/lY+z9upViZFEgRIuVle3Gd9QJzdfungBMiUXDPQAjYwvdhyL1o1WOsVLrZXynMi2qHUXm+nYwIL70DianTnnL97j6MOvc/zyLeyo4vrPfoQbP/9d5IthJ+wC8Ijuny6pxOO85vNv/girZsBHnv1ZimwWwECgEL6QYCXjN8akJKvO1XcRgWnVMb+BInJDqbC/zovLvdqdcfrCQx598DaH732LxaUzLn/2ad77N76fjTv7F9Y88tujM84XnkWbMZhsyPv3FOB0vsmnP7/N/u6b3Lj8JtFHoxRsbaxz48Y1tJKmH8ZktNZx7+49Hjx8wHw2paqEPSzW9sv7hySsuJAa3KiluTJj8Z4jlh8+YPUdRzRPTPFDy+BfXGbjv3yfJBC2sijaKIo8pyiKQBUszWxGoyFlOeE3PrfBcAj/qz88xrYriqIgyzKclc5n3nuyPMe2kuBoQsmcEC4Jva6ClKRqAghrmjaFbrTWtEXDl69+ll/+0D/kwXvfwAVL9x2PB9Uo1DIjOy7JH44obq8x/+I+vLbOC1j2mh1WD1ZU5w2DfMCVy1e4dGlXqI5DF0etpeNhFjLkl8sl9+7d5+GD+9R1DYo0F+c8bVWRO8vmYMDWeMJwMKAsy1DzH4bqO7CtgmfBWYe3beIzkDupEmjSRpNnBSpwUSgt3exAknMlidKltSbFU7sQWHezwWWe5fqKs6vnHDz7iIMXHvHo6WNm+3OaURsSIrm4tj0ggwfuTtj6a+/hu37hGuqBwTpP66Ubo3VCX9xaS2ud3EmimHFBLhJGFXyjPv4J444tfhHvQR3aK7fWpXkIH0bP+6rEU5llQl6ldSBrGrSsfvSQ0//9G9TvnaEWBm5dQn3uKruvwPpXtxi+PZK8iACEkj+xb/H79MlExKRDOCC+XqWYdFhrH3lV6DyWSuN9QWsNdROqQYLMtwEspZ4BKrxn4Vj+8NvM/ndfxF5dkL22weC3LjP4rcvkX9tCHw3EiAoCy6OYz5/m9Pxltja+wWRyt1Oe0MlGEDDqPFs70stGQJtLcjgmpNZVRV03bGxs8MTNm+SZrHWWGanW0YqqWgqrZdNinRCDLZY1s+mc3f3LuOfO+OpP/x2OXvoyo7tX2f7ie9l65SW27z/BuN5AOXXh7PbPxUXF332Noq3z8HY7JLoryHPV6QM8/MIv/N5g4NtIIOy6n3XGj0oJD6kwshdkko5tLm1aykLxBPKNnqcgXeMAKmtDcftpBr/xR7j6c/8yG9tPs3zqAfNnH+CxTL50VXoCBMkTXVQ+WBGpm18YWky0SyuX5tId+kjaE5OaOna+CF5CjTG9Mj3V7c6FeLz3qFZTPFzj0sMX2P3U89hBy+rqKWfvfZsHv+9L7P3aiwyPNkSJpThc90SQYm3JqhlR5udkuoKQMBdf08/sTbxwvmv8oVTHJkcAAMZEkOQ7sBQujwmc7wbIrKZ8uM364S43f/U9NEXNYu+U45fucftHvsTuq2fsf+4pTCs8AJmOawGDMmdeteDjvvi0nvOF1DXmWd0phXCA54sZ1lpMbtKexXheXuRS0lX3vFJB88T110oHtzboeUb52ib51zZY+7mncKWl3V9QvXTC8kMHnP07r1L+5iXG/98n0QclznXdCqX+XM5lU1coXQDS5fL05JTRKCf2R7eB90GbSFdrU6MdeYTcJrbgjeW0WV6Ev/sEEiwtX3nuM3z+/b/Ccv2MbJrT4vGF65RXmHdxb8jef/Mco3+xR3Y6ImsGYDVvHWyxWGXUl2+x3GrY3NyiWW+YTaesVktm8zmj4Sgw74mwqepKXKZFwWg04qknn2Rzc4ODw0OOj46E3z1a967FSmIE5XgU6Ml1yvVIJDzhivugdJRROB88iFF4BK0UGS2dt7HbbmCyNKnLovSKj+HGToDHW9xVzMi9MK1mfDRmfDTiyhf2sLQ0RctiZ8HJk2ccvnDM4QtHnDxxxmJ7hS17uSXx6/UZJ/+n3+bX/xfrPPnfP8/eP7qOPs+IkXId7rxwK4nQjmWECiT/4h33ugMNHoUL5FcGLyRMWUajbGiG5DqFneRW51UAsUPql2bM/423aJ6dM/iNbTb/8hPkr044/uoP0s52Gaz9NvnQoTOpClE6mUMBbHRmaVI4SdnE2ao08piLlPin+rIURepVoVqMceReUzUe78DaQOMtC5K8m/bSkuVP3MJdWrL+X36Q4tVtzMFIwqtJR6ikB0MWAEV+BjjqZi2tsY6Vvy6Sr3XrP59OGQ1HaKM7j6/zUs6qFGUxEDnmPbP5nPFoGJg65c9gOMCYjLppZRRe8tDyLAOjePva59EfPOb6r/8gz/6//zj5yTqGQsp12xprAldmqgjwQZcGxZ/OdKftI1gIW5TOUMyBSM3Suu24eJZ/j+fdlxb2srjj6KILRnU7Ez5bJeUYFUPfNd9dhRhfjZZ1d6kB5qsrWFcwNG9jzgvWPn+D9S9cF1wSuP1JSlQlkp80wphh2TsIHWCJvguVxh0z1mNNuyfSoHZKVavYrIceoo1xwMDIKJOSd1fpJeS1Ib+1z+TWvsSPsg47iTWd9HWygDyeZTWktTlb41OUtuHu6mS59NeMuL7pJESgEIFOX4HGDG8C0ZBO80tJT15Y8HBSRmVWGWu3d1h/a1cs70GL8iohUtvakJ8ARVaCW4K3oHSykpTy1I3sU5EHIhTfMTi2jbTzLbfLNFatNcPhiDzLxaWMkioC1d9beXEioumHrOIarDLyWxOyW2sM//F1bN7itivcqAVTSrWLs1iX4ZHOhJEDowmKyKOom5o1XXL//n12dnbIsiy1ELYBCETQFdemaaSvQDkcUORFaGKihKJXG+Ez0JKf8P5XPspzn/sAt+/f4s2Dr6G3G9yNmtX1GedXT5lePmW+P2W5Mefhn3mNyXtP2f7bT6O/nKNaT2lqZj5nVWXMplOGw5KiKHjiySfDWGoqrSjyAhOIcSQr2bFarXDOUQ5K9vb2uHz5Mg8fPuThw4ecn52xXC5S86PZckntHaNMo0zIJ7BCBNY/XxGc9omF5NwFBZMsynBFIyNd+GOyLIAQ29tpcW/pcH4SZ4Pu3PFE74SXKJxyimxh2FiusfH2Ok/9+k2ccSzHS+6/54Av/C+/wsEHjnjHo2H67Dmv/LnPsPmTt3jy//EC65/aRVXBeNEKtAmcJsL056BLSk6CPUg/3ynhcDJlDxA6t9isS2tN1TYSnn1cqHvZMw34NaneWf/LT8N9TeaMUJx7h1lAYw2tNayqCqNLyfuClIcRPawitlQ3XkmQCng7/k6Q5Y7OGIrvRc/ACHdQKSeVFsaj6gbbKjzSPdInDgn5Xb0omPwPL6AqE96TpPB6u96tRZB/mZmjdU3TjPFeGCAjUHEIi6OPHmslIbzpdMr6+kZn2JloeYuHMEyG+WKJNpoBBdHr4fySvb1LrB7c746zl+qWzBSYL+yz9fr7uLS3T91arJJOodEQqJqaPNOplPYCb4bvkgJVf56xejPqleBqj0BAhVBN1AvRyHtMPXzL59sqLYyLI198WtzuAKne6MPT/7ePbh1B7vFuxEzrCBjkP810eRO8o9R3kmDXKCH0iKetJzDirMXNQrhwvRBCD/HKmgor4OPsg7HeV4VLGRc7kUA4K6AjpGz6qMEjdg2XQemOza6/DDJUBY16R5Zqok6OpUsoFvUazmtGg2MInhalIv1kmHPYGxVCG33gkkBaUvCemPAZXaoajdZZR37UE96x58Hj3guFJlsVwfPgaFux9GJ/B+8tRa5p6hXZYEQ8HkppmtagNRRFV3oZD63znvl8zs72dhenVEqYwPIisNOFjG3oNbOSfYtjfPwORAjo6M6Kqgz63jAYpz4B1/9fe38e7NuS3fWBn8zce/+mM9xzxzfXpFJVqaokNLkkhEBqAxbQgECikXGLyW13G1uEg4BoIyvaETjC2OA2YIUBN5ihsWnAmNlYgJiFUEkloZKqpFLN9d677747nXuG37j3zsz+I9fKzN95T9QrR//Vurvq3XvP7+zf3jmsXOu75hCCNCwZU1ESq8Au4L1lHAOXyyXOOSlFOpcWwuoDl1auur6yF/0wpIM+I9MqMUoZaaE5k3L3O+/g8cC1x4dMzlsmr3Yi6ELyU9qBR+Mj7jeP2b24o3/bEhzM/tU1JmZDjAu2/YSjxZK+75NmvdtJG19LCCO73YjpTZqjml1jZLPdMPqRyWTK4mDBu9/zHt7xznfy8P4DLi8vWK2WXJ6f02/WbL1nFwK2a7OQSUA5rSFBXAMqzINolFqCW6thKiAQ4KlAwgeP322TlUDWVLc7d9EU8CAHY6/dMbYSBKggS88YpyMP3/2YT/0fPs+rX3eP3WHP/OGMZuvoLluG0ynL1w+4uW25uXbYxy32tKEZGtzUYEZD771WfkluTpP20GJyoFful5DBuPKGmgEUfmrlfOEk4t2PKRMlvpGuAdxFh/lol4BBCIx+lGJKYOxAxBJig/eRXT8y6RpyYkh2HaYaBrXL0uwxripnQMFMVgLlYdlUrMc6gLdYm87WpHPEaPCxIeDKZERwuXVbvqz7lRm2jlUVreKycHagcWtGfwRxgkGaYcUS8K6G6RCTVr68vGQ+n6dW4pX8MrJvui4hBDabTa6w2sbkwjq/uKTtpmy3S1IX3DTWru0IHi7OLzg8usbRtWupyNRuJ+WzHZvNSDdZEIbkXryK8+rp1/SRwZDujVEFSy3AMadBFuj51q63nlqYe0HXwofsZ9YZGBXm1eYpgKwU8iSg1edU+Wy089wYpqx2z2DNBa09zeMw4t/WdKsivMqU1edePBcq3ZVRW9TXXqK/1WRFSZ+KJTdaZAXFtiH9BPJBivKuKOPLoynLZq4crqgBLdXvYpmLvnu9OwZgMT1HS3qq8M9wQMzOzlmppiUexiIjyfUI5N8Ic3JS0lZ9yApuakGc11VAjhZaSv42zbO2Un9B18oz6RyXux2T+QINdgQYhgQAjw4nxKsVMw1cXoqrwCWN0DWpR8BsNuXiwqX+BtYnda+i9pijcDRzIvnPioVAzfG6bbp+mhOe9nr0IztxRYQYmE0mzA4XWAvjGNntBg4PRLsnVcwL4uNWerTSjEfpyhjDbDpl9J6+7xPTt0lTaKR4jc51WG347Cc+ydn9B8lBF1OnveCNCNRAQ8PB8pDl6cDss2nfY4DgPVO2OALDeIDjCbPZjGfu3OHBw4cQp9hJm3zv4yAggVQkSWpwECP90EuTpB2XFxc0Tct0OmE+v42xdyQDJxD9ACFIrYURfMAMI77vGddrhs1GWj2Dcen8eu8ZhjGdmUygaX9CTB0BlXcQfDqvztE4J+1oIR9KXV/5n1rYqkJzso9gSdaLKPElq2eW+Gng3f/o7XzF33o3zdrh1g63McQh8rOvHvGxuye897k1zx1t2Q4Du9GneJoQGW2A0YvrYh/xG2XMplg8cvqenqsYi3wTQqkZuAVal2KpBp+EfBSNprYIFiCZ5h889IMK/ZTZ5IPFm8h6s8OYyMQ2aK+CSIntQuWgnON9/U4FkgF1A1f3qnab4wpynfo0xtRgydGPxcWs81XhnvkPSXGorXv6C31i4e3Qdkv69QnjOMXZXaErRJlRupDJxeC5OD/n+o2bKei1uvKYSPMZhpHNbsc0HW6sazg9PUvxQgGGIVXttMbSuFRyPe56Th8/Zjqf4WNkvV6XVtkB1ustBwcLVsslJpY0VZ3XnkzLVgCztx/aC8VK2q1imEiUWjq6Z1/8estgYN9skd5aYRQdsepb6d+m+jwmhKAtLYvWXj0nanwxbPobDH5BZ34OY3qS8UzPvprt86uyf66IbnlktgyQq8EpGCiabuIcuUiDIPk0X4m+11QpKbwEivxFmGsziVxsVi8BIbX7QgMnRXvS0E8VpqnVqWrisN4dYu3IvL1IKV0UfyPGJEGSLSTl8OohSusk5aJ9CnZpmzY3OlFEWVooK7YRZOxDxplqRVFtLKpWq+hdOuAZ0jovZhPOVyssMXVyk2sckw65mLeslpqqWvatH3o22xSgpxTWNKl0aNM4mrZhGPrkzsmnNmZ0r8SaD3XcZ56yLRTLmym0C7lJUN+nzOEt4Jo1zp4wDLDZbNhuUxMTa530HdACQmTa0vUBaNtUqrTve9q2Zbo4ZLde0e96gvfMp6lvwPnjx3zuE59kdXZJI8xwHH1G2CEk5m6kh8G0bRlCSC6aoO11A60d2fkZ09kxTdNw85lnef3+fbbbDU2TtNfgRxpnU2BshOACTgR2FKGtQHkctatkGkf2UUpwU5Ry0s57GEYYBsI4AIHJJKXOqcVpHC3Y9Mwk8IXG1PoWQ04ljZiUpkWkD5p+qUI2VAJV6V92ParLqAIMJtGdsckFdv0Lx1z7wlF2JSg/CBIcuFxPsMB8UvucYz7vRpQHExSbRKFD9cGL68KoA7soHZlfGtL5UJ6SpkJ+DSbtNQZLyjjQOheI5SEg7dmFLlzT0O+2cl6TeA7R5dipzWaHtYaua0g9XdML96x/Mf9Bcaeq8C28X/3te0HlplKcBIilGKZA2zp5j5YrVvduibsS6ZBBTi0BFQBcNYl3zQUrLMM4Zzo5z99JbgPJqhIrorFpX7abNf1uy3xxkNmP0st+p85USMxgCKHFSi2Zoff52blzqkmttLtJQ99vODt9zMHRMUEqTeq4t7sts/mMxcEB2/WqxDXUIFdpqqL5OqujtmortWUYE8unb+V662BAUjJU88ttiZVY9+6+2jQhFsSoVuGYOLGcYVSE63/L7QuEYJl2rwrwEwOkmqLy9EGDuDLzV+Qn6MgIAND+CchSphEF8ema6nflMojZ3ntyy15hVmVjihBQEHv1UcWfFgoYUKIDtDtQck0A0eBjJATLZjigdTsat04EYyiuAGuqngJCDvLvmIlBfpYmLF03Ee3viom92r+ogC5PSAAHpVBOyfUWMCGV2BSQWJtSLyetxY8DtpFc5mgYfdLYF4sJm7UtB4ECyJ48ecLh4aF2sMAYy3y+wLkm9clwDSlYr9QaSMAvqw5l/DpeWRGbaa9YfcrGxdyKNbriMthuNoTQ48MkRQ0vI3BA13U5jamkb8r7KvDkx2QRIMLJrdu0kyld4zh/8oTdZosZPfdevcvLn/8c7EYshl0YSBYcK0FpoWSBkAr8NM4xSLpeHUU9cRuW44Ror+H9lovLC5xznJ2d0jQwnaZaDj7YpDEDkdRxLsWXpKDQGMIeaAIqZh6zNSb4ERMDbYy4cYRxSCnvbSt+/ZSKCens5JRM+Z2u8+BH4jhIXEXM98Qo57QCv6mPg/K9VLgqDVMFm9mTrIk0rgiyKHOzRqpYJmbuo+Vy29I5mLcJ5Gr9TvWbKwC11iTXg4CAxKZiscChkfg6Vj2fpvAMylArlo4lWTGsczhrcC6yG4Z0SoV4o5xZccBgrAPn2A0jIY6yty6PfwyR7bbPfDGZ0XUhTHm5nEUqIbRvjUHeqxaCWnNNSo0hFv8nCVw653DBERQc5U2Ie+sUMfk8J04rloZyQ4YrXbsEIsMwpwAWiR8wSRs3JoAZwZe4htXykul0loPDi1Wj4p4Rgk8WArC54ViKQ9E9qKCTUSuIZbW8SEDPOtSiTUzneL1ecXLtOtY1RMbMiHJLdF3nzNeq4HizX5I+i1u1OCltv4lce7PrrccMVMShHxTzhMmNFfK9JCKyEiCUTHZFSJfbjGiSBb/E6FjuXsCYnom9R9H0y11BAUHQwBeTNwRIDUSMya14a40mvSPda8UsmgPpDIWJUCwiziVzcBTfYApeDEUTrJcnH4gSZDmOfu/9Vg5X6WpYLbMApxgjg2/phynT7hxndhUI0AZAkM30Tgs9ieUE6aiIpEuKKcwAYfTZDK9xBUr0aRzCFU0BFyGm9TZCiCWOIml7FivVG10RggRmk4b1bsOs6wQAmiSATMCYwHQ6Y7laCm8tEbKb9ZbaLGaAyaSj6yY0zUZ8oq7QhaxFZrL1JfQhm199rj7F6t1RSSu5cVxMfCyZun0SOKZT8ksHWZ6prYAhFTVBU5X6IRdU6rqO1dkZIQTapqFrOzbLJZ/45Cc5ffSIMIzEfiSGVIzHNQ1NowWvrMS0iCAUWvbe57oTaR0DM7fkvD/i/qlhNt3xsZ/8SbbbLRA5v7jE+xnz2STV7Zdpp8yGpO2nA+KAmJtRKQ2XEqkR70eJsxgJ48hus2UWIwezSarNJUDI+5Fx6IlR1qlpcI0j+Fp7V59tYLfb0g+pvod1JbXLBCvtiU0+a1qK2gtIz3Z5cReVAN9M3YVGctpW0f5jhO1gWPaOg87TOs0OKKb0EuegQcZFHCgt63nOvVsys6hAlYwlxeXIMlQkmn6bAIFThaxrGcaqfbKOWwBC0k4dfT8S/CB7ZgtgjpHtbsS5kem0KcI+Iys9J0ang2YHZLFXTVfPadSbVbGJZIhSshU81iZLWsBWWQWkOiT5Eer4qcVyzSgViiQlzbk1xowM4yK9UdYhKbCpKBgxpoZUxkjsl2H0I8vVksPDo6yYmpoZ5j0A7wPGjBXPNPs8s1KGjIIqArvNirbtcot55Re77ZbNZoV12t1XZmRtlnFGLeoKUxQQlIUoe6ZjrfndVV7481xvGQyob52IBNWZ9LdVu3/x4yu6sbpYKlig+pt8qPYmBYzhgN1wg8ac0pgL6plmn3YGFmmyqqUrw0z+klDAyJX1sEIgyTweCEZNVYqmCr2p31gPSq1h1huRpi7amYE6LW4vBdCYLNQRoa/5+WrSU3DVj1PG0DJtL7Au5n7qRUAaqfhWXCwaGQzJtF7fnwSMaCuuMufFKBWrFIWbPLUUnGVLcSLRpoNohUkzclKPod7qQIwjk85yvt4yDUdpdBHRPgN9v+Hg4IDLy0tdTRQKb7bbXLgnrW+qHz6bzVheXuKsY8RQm15z7IfSWqXNRGHQZbeKedKY1GugDgZVUq5J11lPjIbdYMVVMdL3A9PJRI6qkeepUEsm/hACs9mMruukyUhyL41+ZLvZ8soXXubJ48f4YWDY9UQvQDLElJpmNGI4YhvtSijMn1JqWscbA3RmQ2NGHp81PHsjtYPe7XYJOAhQb8Rk27QRCBjriEHTx5IZ3xrLZDITQRPzWqR0xJ6x71ON9zAS/Eg3DqmTnw9EgsQd9IxjL6BYgECMCQyoVSMkq1mKyzWMMabiUgyp0U/XEJmkmgQSgKyBeXoeszDK5u6QBYoxoqBioEoTy1YpE7PADyHyeDmhHy0nx31qViTnlmDy2dZTGLNSU8zRik8VlGQzvDAXdUkUl6Xyk8o8DrnaqyomVrXCppF9rzRBPUHG0rgGb0di1KJRlogGeaWzsRsG2s5hY+qsaZUnqbA3tQjWP022eBS+WnhbjJpdJShaFcGMcJJsaJrUJdJHSGW3dTlNabCTAV8lK8o0xfWU7mtcj7M9o58SabBGY3i0MqigQqMZQqPsgWO92YC1LOYp3bastyhfFQbx3jP6kYaGKL56BR5RZZElVWMlZTP4oU8uuaYju5xJPHK9umQ2nycrZwbzZT31b6M/S3dIlF/r6lcyLoZawb6CFH6e662nFqrp09ochZoFnKBbnUgmTLW55bEI8SiYyRaBssvGGLb9HcYwZeHugphOspiruHNGj0YKbuwJg1hWqBJuNeLOpk7U018Ja1Oh9kgOoMxEmXc/Zj9QrJ6pQi/dnxZM8ZQKDY1YreM+jRZKSgNkNxwQo2UxvSiVETPB6X1agEhlXymLq0GDqQe8LomROuu1Nae4VHTu2iFPzXrZ71aDGh0rpGZBQemiNKlpnQWpPJcYWAID1qQAtuOjeULCfpScbGWonidnT1gcLNLakATifD5LWSBOXCs2+bzFu7J/QDJYi5UWVsyqivqU+QbxXZn8q6T5BrEwOTtIwFBKFZxMupxGGEIAn0yyzjmpKqhrhbh0UhVCjc/o+57XX32V+6+9xrjbJWA6+tyVDKFOPQHOObo2RVzr/rjGpUhnLaYlIMFZz7TZsNoe8tq9HYvJinEYCBFWYYNrkqY4n06YEuhim0qpCtgPGIbRM58fFqBfnR0fPP2wS/OLUjozeiJjBl7jMDIMuwSIIvSjZwg7XGhomeCCw0n/BbUwKcPLey60Byk4coxIczKh9SoboUZual2zQQ+GKixVs64M5FP9iNr98fplYo83F4MIJEtE42oq0KnALCrPiPmcGRHWxVpV9ki1PEUxe3EzlZBV87tm9CS3gcG4JAgDyWqFGcGI1USFmJMCNPIM5xwaS4F8b9ePGBxNk+5VHpJ5qAi5nNsm5yI3L5JzVOn+qKtWFR5THE15Xs562ibNwfvq0L3hEn6sQ8rntXpPBKzHuS3DeEyMLcbGvXFlKGOsAGwjcs0RI6xXK4L3HB4ckorKmX28o/sZVYFMPNU5BVh6c1ob6xwNpEyaGKUrq6dtW7FqJufROAxs12tc01QVfovlwWS+r/LI7J0R9LOabtQy8GbL+fNcXwIYKLmM8vYilGMSOgWNp9+X4B2TzFtqKosFACj4U8FtMKx2zxNjpLN3Kcy8BoaaNlfM//WmZXNmPT6qIEBNB0QqCKr4MAUDB59881ZBhNYWEKGbegPIz2LCKaAmXc6l3Pqyhle0VnmW5qFnbVKyK4wxbIcDwLCYXOQDkIlDrTGyOPp9XcdsxtVysvLyvG7sazFqitaWsMnqYPIa1eBBOyHWc66FcLZTRLAmMusaxrGnbbSKHRiTWssakxoRbTZj9ax0XVxcJCCmGRLWMJ/PaNsW51IQlHNWigORgWkOZtKR6MHIGNFkwJWPVF4/5c7STthAPw60RJxLXf3Oznvu3BiZTDoMRSCnzoMpdsB7L2udLBpN4/CDZz6bEUNku9uyvlzy4O5rhH4g+CQ8g0+WBBOrCpGSd940Csq4wrjJ8ww6c2NZtJcsh0OeXB7S+IfpHrGIXVyuSAGNA/NhwsF8jnOexqYqa9EPRAnBzqV2M/kGhnGQWCI5z8EzDjt8v2XWTmjGLvWED7AdI30IPNlseXR2inHQNB2L2Ywbx9eYOUuMHhPBab0LY4k20DQ2VTcUK04InnHs0ewUZ5tcr4A38IIK3BML6ND0UaH15O4IVS8JuH85oXORg3aQ3glJHup3fQhohwVjbXYJ6fkQTpXBpYJoYhHwmR5RAa3Ki9yqFCz8QNOVc3iiSmSL+PaD8FQr58UVRY6UsZJy7jV12LIbvNAu4LSIUuGFMe6NpJzQWlDmcyZfUCtrWhxKlpmk0Jpk8era5ILdbD2jV3cvFS821TvI+6v0bvJY0ydts2LXX2f0HU3bFzqAcm5icptGyfRRRZEA/W7HRYwsFge0TZt5hr40x/9IYK0CBKsgQIGHEeeFjTTRMkjFXe/T3841OaCdUIJzS/Jm4r/BaEyZ8KaooKnQjFq99qVPmnTej7dwfUlgANWWog5Z8VbxHxZmnPcnCS3Ifr0QQq5IlxBPyU8MsWG1ew5rtjTmQQUudBxJ40xNYUrHraCpYUaEHerCSEPQwhLqw9fVUoJS/h9IJ16RdV50PdHCGPPix5hMurIVNh9AfUNZh7SPchiKdyUf3KhMKpaeB9vhEGMD08kyuxayG0AnouCneqEPPlcU1KpUUCLAqU1gGFybYiK8mKYxqR9DGnrx6aorJfuMZQ+tUTOWLWbBbPLydJ3lYruhm83lM7GUmMgwjiwWCzabtcL9TNir9ZrNdsPBIgULWmOZdBMm3ZS13UhtBJ9jODLDyhpyKHVRaiAttJgPV6Gwco+WViaBQ4/HmqQJb/uG7W7NTEoij8PAZDpJTMdo3EB6qTGpL0HTtDTW0fc9s9mM1resliv63U7WNWQ60ewYZ2xuqOKMldgVNXmXQ1afkxDJ52vq1rS2ZzMe0fsJjd2IO8TgfeRyuaaXWAZ1yUwnUyZdaoZ1eHDI6JVR6dolgJniDxLdDsPAOPRstyv69YozY7l+GJi1Eza7kftnT3h0fs566IUfGIg99nzFa6fnLKZTZo3loJtwbT6ncxobgVimbC425X2yyoQwEsTUa0PiIcmXW6WjmSgaXKJ1HwLeJ+C1BwZCTH0GpEfE6XrC5bbh+nzE2ZF+LNbPdF8JKDTCIdKBhlxMLdOWgks9riowCrOO1V7uCR+onkEWftkKiwoik9craa4+xWUYmzIZSC6pBAhsqvJY1RLpB5/q7+eZqKCV+chZV3O1XgoU6nOUsj/0PuVLJssB5VcKcrGWpjWMwVeyTu4Xhat0fIrlmWVFssxu2jVgGMcJsESVpzpeK/FuBf5l2fWWcRi5OD/n8PCIyWSybymBXG9AK4rmgHUBsEUj17g6i4uWIEAm+DHTjCH1EQgjeGOxzb5IrsGOrl0t9WtrTNkPcoXfGKqS1l/k+t8RMyBEaZNZMoivTws5KMhS83g0FUAg5hgdE2MuTpOq/SXU1o+H7MZjGh7gWO8hYgOZyarPBRJaNxIopAhXhbky/FQLXZb0ivlETS7Z/C0BhYKx0aAsJW4FRDlwUQFR7gWgKF80A2NywGCOjFV0GwMhekIwMpH0Cx8iRMumX+DMyLTdpHlEdQekdxrRlmTG2cyZeEo5OC7XU1AhV9dTMKX8pdmPQVDQgB5QNDYrJG1VD5WsbdIQCzBRop9NWs5Xa9GqlHek9d5ut8zncwlILPUsjDH40fPkyZOURSDWiKZpk6aopjb5WzMtZBMLGFE6qf4sm18DhX2AFUlC2WUcGHFmwBDp+46+H9hutoyLBaP3+NWatm1TQ50gWSouBTkmU6gXQBw4Pz/DGMfl5UWOiNf9zcM0hoPDwxxBn+aqcS1i0YhRAsmqORqIEhlvTeCgveDJ7iar/jrHk7sZKBFSG+xN2DGOI7vdgHOWpt0w7SZMugnWtnStTxopCqZjAg+7Htc4xnFku9ux63esVivWmxVhGHCvP8EZxxg8Y0xxJ8a1AgQUVHoud55lv6YxkYldcjLfcDyfsZhM6CS1sGgY6fyl6o1k95e63IIA9aztUQB3BMZxSG4fyRbRmAHvAz6m54UQefXsiNEbbkw3jN7nYmNRlAFtHZsAQqozYMRSo0HF6orz6DGq91YZ+b5tLe2rtt81WSgWS1Zt+YiZgE11PqOcUV0Laxt5tKcfBmbTCTYq34wEEv0NQ8DaFmypfVKfnMw76x4JyrNyDwYdnACyvAeGekNSC/mGiCNlopaspj1RX/Ir0/6qGBdrh4IO/btxawDGcZp4iHW5AFVdC8JIsHM+7yo8BdyaaFguL/HeM5slt2Q9DhQMjCOGBqzGqdV8OdGEtZbGlGZmeobU5Rp9crHt/Eg3meKaBPi1+6e+sl6XzNqT6CJbZXTjjG5XyK6HL3a9dctA/gMISVNSMCC7oSigpMaYWAXbJPOk3fN/xMx01Y+23t3G+46Zu4u1xbSvGmkGAaYifc2vzRqd+K+VUCqt6aoGnZGVIC41occYszkwo9h8GCrBrgc7kuqL69wUKJjizgBFuZU/HuX76ZDtjde09OOcxm2xZpOPZCrAYoXYbbG2yLzUcpNbyJpiKlfmYiXfRrUiTYkzmYiKUMwuAl1vY7K2UbMy1RJyEpU8LPghaSp4/NgTmRaNgiRYDg8OpTvhoCsifxqWy5UIsGRabJuWg4MDTk+f4BrL6NPB8T4xjjco+zWbLCYdIWVluFRzJIMRBQSGZPpvmhFrA7uhZRw9l8tlynBoWybTCX3fY21qsIQALqdtiDVAK0aWyxV3X3mVRw8fEmIqgayHNsrfakbM4LPyEUYFqVhChBGDj7LyVoVhOj8H7ZKL/oTlcJNF8yAVoVEGgsF46KNn6LdJ0LYN22agbbZcLtfMplNc43IqYIiBfpeyAmKI7IYd2+2OzXbHMA6y9i3R2BTgaRsBqoWuCtVoEGtq0rMJsLtY8/BiyeGk48bBAbevHdN6n/LnK1Bb4mLkidHk9q+qmKTfhywcU+pkzKmjYwi5yVBqnBMYRsO91QHOBhbtik0/FqAWE4Dy2TKmY5d06nx+TR6byezFSCaKjitW91Pxh3KuoqF0vs2Hs3Zrpm/ZfBZNERAKhkMxzY+jZxzH5K6TImNGhNwwBqzzNE1ESk0UZUznY6rdy+e98Jj0b5vHG41aM+UcGpuBQMDS97DrPZIdXAk8XUzqD6+AlDIm/ahpNkBg9NNkOTZUtFYeVCuM2jSsXmJI9LLerAlEFvN55vcCSTGQ049z5ghqpVNXr8wbK+cH4jiSJWBM8CYGxBVnmDuX3LN16mA1JkThzQUpMp4poE1jrjR4+a1cbz21UOmQ4mMWXCyIRJZIwWqs/GeyytlsrwsuzCRmO26KF4DItHs9IaRYUnZijKk4iQbOyWNKJcOYBaTiUBXkJRgwCpAQ9KZCutq49JrEGNInlcZN7VOjIFVrsLgCEKyIsgwaysHPlQBNQqiqkEaiCN60XuPo6MeOSXOBc5JvnsEFWdvcR7xqgkv1B2ofMiYFtRhZKwVyORZEo+mF0BNDkSYqsZgJCwJKB38vKFP2JwJIZznNv55NmhRw1nZ7Z1zByHx+wPnZGTkdzCRLz8XlJbu+Zz5r8l7NZ/PcN8CYZE4fYokA3qddYYoVsleatFF1M80VpxSS0vHFxOZCCLhGzcYdmJYQRparNW3Xcb1tk69dLFHRRuIQxMSdArcUXC4ODjhYzLm7le6LozZHCllzgHT4nZbsBQmyU2hjGLxPXe5izP5rxTyqWbZ25KC54Hw4YTXe5KC5rwujsiVriRHwfmB0AWdH7GbH5XJVYhdUA4nFrF7723M5WwXZclZUC87m3+zWqwJ+5TveGIIxnO961rtTQgg8d/MEoGQSKLVnxUI+EQEXYhH6XqK0cwxTTI1yRu/xAgi8xDZ473m0OWDdd1yfrSFs2PbqlgOMxYPEEBTAr9auAg+q+VPmaOTPxCZi5gtkOtS1KEKuBNXuyX85fya7wYQbJ/quPosxAfcUb2vY9j3OTclZ37bwpnEYpWcAirJkD/fppZwjOajGiNuBPJJ8jlF+acE2xNjSD7Abg6SV1uHbSFxEkBdVWQBBrZmu0I3KEeEVjRswxuP9FFWusnJHWb8MlDL4yjPN4FtpfbNZ4/3IfLZIjYhQmaOAwOd9DlY3rVhwTUwlIaOxNBozlXsSJPmZPLMpziilE7fsXbJAWlVwz00s46wtozEE+n5Xunu+hetLKEesPojKFK7+iKp1r4qSOkrfWpt9YpnwUyWfgraMJdKx7p/Bmg2dO80Hfb8kZbo/iEAtXDsRprZQjVQCD7KpKIMESr5nSetB/KmgpnZNXcnatv6h0hgNYrJ5w1D0bAphaACWjkKb9mjOuJJWStlJcxl8hw8Nk3aFNSlOQsc8+irV0SriLiBFkTryTluVu/VeU7hciaWIISdI6Bolq4AseSxLnacZC8tTYKLtZmP0ObZCxzBpO1arLV17mOlK371erzk4OOT8/KxYMOSG4APn5+fMZ/NE2MbQdslV4ERIOWnlmlLXZC8rYJNxe6UFZJKKZV+M7JfyfkACAtXPG2jcQD/MaNoFXbvNdQTGcWQ+m+WsCy0I5KyTOgAx09tmvWaz2Uh52SjYSs+IuIOsas0mgzqj5xDwAYbRM4yDCACNWhdGprsTIwfulOVwxHK4zbQ7pbF9tQMyZxQQpsqDwafgWDNSQG1eVwGKdWqert+bXJl+VFOM5bCUpj2mAucpFzzGyN0nF/Q+8NytExaTCU0umZw3rwiTiJj0xfw/eqJofwEB+QJehmEgxpRnHsVlMvjIvcsTIoZrk4vUZEYrbWLApAJM6haNMaXGRcgWT0QzVNdEZtnZ8pTWWEF/8mgVmlPwtM/eYj6He6y9ZvR5XypN0BhiTGy+MUEEzkg/DEwnbRJq2kWSxKfGMd2XjIcl7irzk6hAE+GDJlsQMBIPYqTmSdTurwZjHaNPwZmDF3ch1RqZxMeSi7bIC3UnRjkLGjxdAx4NyHR2wNqR0bdACkoVSZvZcsHMMdOyyYqQ8gEFgOm7Q99zOXoOFqnImFUgqkAjBJAgc7U01jysTg1sGscoNFi2SYBxSFbDo2wFM3nf8/7u7XtSLpN7S1LGrWW326byx7ayLnyR60uoQFiQa87tLFReUG2RcCVwzZhyWDOAEPN7thgYdsMh/XhMa+9jWUs6nx6KlPaVzfZa8jJX+ZKXR9Wi5JD5UuYwFxZCD1Xa7L2OYKHg8xwnkQEQGYioCdcq4Wc0mbcozTUzp/S7JmtYFbDIDFz5YSKM0c8IwTGbrFOBjhByoQy9L6UDFq1B20anZ5kc2xFDyL7llHIkvjQf8LHEZWTxnnGM7qtGriodhnII9T5ZilyTgZK3ndobG2IYpPSsXmkv+37g5ORaZoqBiKsY5nK5LOZ6Z1K9gem0ErajACJfCUSqt1AsUtX+a/qeAk6ltWwviCp4YyphGwJdu2Ozm/PkbODm9REjlRB3ux0cHtK2HX4sldaMNYQxiHs1nexhGDg/O09g2TiiM/S+z8w+xEA3maDBcCrYvQilEFN3x2Ec8cOARWI5avqTMxpjoDEDi+aUi/EWq/42R+5uBq1F0y7oKEYjFvwCmIusq3TYCGh6aQWQ9ZcKc5WGjLwzNxIyqR5IBs/awIzkfw0m0hO5d7FiFwLP3rzGQvY9PSdmsE1MGn/wQQdKIGntPkTGkIpw+ZgaUKXYAXLQ7BgjF9sZ57sFU7fBsmQ9aO53iQ/K54C0trXlzQiAtnu0VgCcCr3axaBWjMwAMvdPQZRJKVbwnwRVtsgVLJfpXIsXaax8jKndsrOhBBOOnrFxNBIflLpBSqrbGHK11tqqkWlLzk5WgrOEVV4oxcCsxZom87hxhMEbccd4YlQfewGGGjtGvRwZxBdAmoejNKxBmzZI+u+UEC3O7jc+SXxZHRrlrYX8c+WfvTmnuBLP2dkp8/kBB4uDdLYjeczBJ0BgnQh2U2+OEaUxfeaaVHFQK/saAUsmlvodTrromliKfOUp63xCoB/6nP0WI6xWKx4+fEjXtRwfH+e03C92fQlgoOTXBnwGAEF9TiJM8muFMSiyKyhIJmRLoyCNwNwMt/GhZd7cw+imyGZrEQV9RiBiVTPWd6vWUd1pNef2ynyyeUiBTKWN1iZMdQEUjTvm5+bnEMRMGCkmexEp8g6FIalQk9lnrEELeBQLgbWGfpwTMUzbFZr7XLsB9uZbpDIafW0lqE6/CymNx5hERF7ASmkzW1J78rqQKgtGRecSRKVMqwRFFtOnImOVLXrsbPR0jcUPfbHeyLoM0nxmOp2mrAIyRscYy8XlJX2/o2laQb+G2WxG07RYu8OQBO84DvmpVGtc0OjVq2QM6EszPqs/DoHgDQMDrVsTuc7lynE432GmMAwp/WwcxwRSJqlC4TAMTOczxvVaouHTHjXGJr+7jwJmiqsnhPRZq217Y3KlhUSAMkjETD9mX3WNK9VKECWNNgDz9gkrf43VcItp94TWrLNwLgumVB0LNtDfGlOqomlaVq0BKUjIv1DLRHlubacp4MCUe+KVsZgUyBswPFxtOdvcp2sd00lHJNBI11Hvfe682RjLpOuye9AEqd8vQsiHwCCFY7wvFUJ9MNxb3cBHy0H3hF3wldAvi2sQoVwLeFksg2bXJPO7yfPWrytV63PTmHTOhmQp0TXV5VFLShSgZohVBkK9hzF/B4khCbFFav1hMbQ2lQEe+xHTNrmgTh3XNAwegwOnrksB+xg060Vzd7LCZ1ImhzFNDpzFNJKxAaNYAnSfjbgA9ly0ZDVD1rQUN8r9CyqgkFcz13AJONcz9guCtzgbyQVedJsSypcfPEUXVIIvzCsSJOhdzlmIXIznjOPI8fG1yhIq/FUBcdwHUcqTU6ZYoe/tZov3nrbtSKWak5Lpx5HVcik8rpFS5F5kQ4kTGyQgVt+hlonZbMZqtWLoH3FweMBbub6ERkWeLOTkUAQJDFThpuYuTb3QozKORYAaKwVEYhGZSgir/jkgMmnuJR9QFs4xT1QkGcZErHElIt6U5+XNMSroBJjof7JJGoClR8qYEumZNixKCd9y6Eyhk7Qu2RUhB7zISXmvxgeYDGzSZ6LxxeI+yI4MOVjbIfW5bd1lzmvVoJh6TMUdQIpd0GwI8YlGyBkCQYg7uQRKASllV7kHhTxQtVBBNVVRH4Me3ijzSUzD7CmIGumanuiZto6z7TbfowczAsM4cHBQUgwjBVzstilS/fj4mpjvDNPZTOreW5x1BM000fenHSI/LO+77qOpIo3ltxFy06moOxNza9jkm1xCjKw2UyJJs9TaACH4PHljDJeX50znU/rdjtmsHLdxHKXLoaQpBV+sQhG6rs3phUnDTYOOMaRzRsoiGEMqSauatAr3pE0KYBfBYY1nMXnM+fYZLrbPcTL/TGKWeniqd6VPcyX+tOdRxXm1M7X2UwvyWIRLiXIoZzkDF2JlISsWRrXSBN0v0vN20bDtPZfDGmKoHJOJnouRIRXW6tqG1mkMkVaEHLMrIUaS9ScE1sMRy/6Y1m1pmyW+cmVUtk+UnxR+o9ZHESMxVjnsUAsEVRiy6BZi1PFnnpgZWlFkCuiIWYAVPFAC/TKsNApdOowJOHzOWY9GsjSC0ha5siwm5BTKXP5YD1UWwEoXaE21JABMi7FNoseoVpnEF2LUegcRJx0TFbAWOqmAAOwBnhCFoeCSUmZUFpmq5kvEup4YU8vmAjZ0D2MGYQrMag6af4pJvgWpC1CYuoHg2axX+HHk4PCQ6WSWZYfWm4gamqzWNdl/Q4nRMsBkMmG5WrJaL+kmU7p2ggbVhpDcp8mKIG5rkZ3DOEpb8lKjBhI/67qWGycnHCwWnF+cc35+zlu5vqQKhGkBQ17DbN4wNjMoQFJwEopSrTrnXYtmrIJC5WOIjvX2DoYdrT3Nz97zH+t2iInbuirwpGL25GeGsr21mSVr+SYvYhESWs1Q7QmVcJMrpIejdQESAELuNfn9xoCG5RbGIbaEuqKhvlPHJEh2208xBLp2g+arqgAHRaMxj9HYUr1QA1FijMUlEMt7NcYhM1qZm5dnqj0lr5tkSmj/gezHlrK2KrRiDHvdCXUx0voFOufwwy6tokR/K765vLjk4OCQhw8fVrRV2OnZ+TkHB4dYCSDqui5pgNLdTmMg6rgB/YcCtQz8SebWmKuxKWQRGhEQowprqqqa5tG6HcZ41tuZpIQm4d73PX3f44OnaVOcwOXlJUdHR6zX69RTwabudRfn5wz9jsa1GagSk/bTtg2zyTSlf1FHa8tYfBLXwQeiT7/PxvYogDyvu/QvEOYza8/ZjYdsx2M2/U0OJg8UDeqCoWi3mH/1XJcYkCzINV5IeUKRFPmrWXskE276JJOJUGCWekFuKzEQSS7XcTE+QbRY6ANMivkRsKJV33ajyWcf8Sjm7GsFudFyun2OiOVg+oRoyel9sZqBCuNqmTJvsAIaEqAK2FDBZqOnvwIWAiicqYq5xfIdvSfmcxCrfRIhGkzJsIp6RlVrT2sWYos1ASfuBYgpKDjnIERiMKCuIYkT0LOtFYVRWtRxOpJANgZjmwQCbAMmWR58sOl84IjVfJRfaYlmos00mxUPs78OSgfExH90uYply+QPG7cjxTF0GLsp1KGac3WmdU45ZiNGEHd0buJmdP80I8anWJQY6PueaycnzBdzWTMB9VErCBarRETKYWuQrY00jWMy6eh3O5aXF0xncyaTKTY2WCepqf2OhMkswcN6s+bJ6RN8SNUSDw4PpMlSWgcrazGdTJjcup2ao72F660HEEb1G5psGqyK66G7rYF3qTGE5NjnQKi4z3gqt8LgF2yHY1r7RNLoUoAJxJz3r8Reo620wCJkQ0F9WlVMhagSQ/o7MRpIjCppXKnue74H5JAV7nbV5F6CCgsh7q2ZKe4Ao+/SKxOzTYkHsWhQRjSWfphiTGDS7pI5KqNzBSqayVCKNpViQymAzUn0aa5zDzkYTqWjCsEaXOxZG7Ig0nVQZpjekeq1x2wNshoUFKosB5MQcWsMnTMpula04pRRYhjGga5racQHv3fOreX84pwXnn8BTJnfdJb8x6PssXONmM1sNeKr2F8+ixlKVYxK9+iNgAaxKjk30rieXT+h7w1t4wWp79jtduz6nslkQtd2OOcIwafgxr6nmUxZr9bcf/11mlwfIaYYLpsCPTvXMWnbXHiqdD5ESgAPjDmH3KImex2jAp+cC585Z2JGh9OHDKsXWe6eY+JWtM2KrOULk9bY/3JkE7PMFTn1dSStKfmQq18oxZsCgquVLBq5vgDxg+spyOgincu8dxkc6j36sPKj3pvXrFIEsjwVRp0ymTzL4SY7f8S0XTHp1vkp2ZJoZC5iohdHrgRRp8tXAyitxkUbRM//Pl0Vy6huEHUJ//SNav3z4PX3dUWtzLtUzAO0hNjS2r4AqYxllPpF7EYIPmKjwTiDyXJM0pirocfqXcYoEGiJWMYxgasCoCpQhypddap22ucc+Jhr09QvjPl3Md/i0z1Gx5paPDvbEzF43xRFruLZUeWU/ixxQ6mqpM9vTfFspgBOVXaUb4ZUa+XsySm73Zbj42vYppQaz26qCszV26fF8eazKSEELs4vUkvlYWAymUqdD43HkfbfEbqu4+DwgPV6zZOzJ1wuLzk5OWE2mxGtTZ0Uha6M3P9Wri8JDNT++LzARhZJ+Y1EQe5FHmfBV5m8MnGkQW/7G3g/Ydrcxxp1SQAqaE2dr1/7JgsPz35OITBtUpSEdmUeVgElfyZgo6j3SlvIPNjk19Z1KKaZKMGMNcNThhlLLqi+UE1FyjjjPhpOJneI0bIbJzg70rodOY5BJ2zFZSBfTemeakpKZnONas9xCSggKkFQZS/Kv41wi8x8qxu01K7ujTKXEmSlCcr6PkgpRiXoczZpgJEQ2hRYJ0IwRNjterrJhH67TQzBFMvQbrtjtV5xdHiYIp2tYT6b57731jqappV9qoGM7IPuT6y16IqQyoZX9xYaS82kAsYma816e8J64+i6Lc4asQ7sUnc+73HWMpvN2G53zA8OuHj8BHdsuffqXdbLVQomFT1OKzg6a5h2HV3XYEkmvwKokiXFWEvcbUmhJmPaBz2PMuyggJgkOC0mMfkAzvQcd494srvD2fYlbsw/hbHjnmggn1WjhyszYi0YlMGU0HVZxRKBXs6ESpZE59l9p0IOPbc6jaIZWlMa+exh7qxYxGoLi6ldg+3qmvYZFGpBNGCIcy63z2FN4HB2moV2rN8jj0+mdBFkRhwxdRp3LPaUMn6yAEmgp7hdQC2PulP6Jgroqq+KzeRsK/0zXlHQgBBbYmxwZplot3pMBka6X7L+ISj9KxirYoYqYJZjBFwCAmNoCNGINcDmueZNFZ4Sy4vzeyt5ne8pwctlnRSh5FRF3Z9Y7rMuxQ0No5VYHFFkhe8F4YcGDTwtRYAyb9bnUssVCl+xUKe8r5ZLgvccX7smZYxr14o+p9rPLCqSMrdYzOl3W5ardVIsdjtWrmExX0jWVAHrNlqODo84ODhguVyyWq14/Pgxk8mUk2vXaDttGS5A6Q1E9ObXW68zkOcgG1ktriGWgMDatBtjdgkoQ6795xqkFkLgYnOLCEzc60VIGTKT1L0Zj9YwGtxqggb11HUK1JekxvlIeU8GFuyjtszvsqYvBXkkyE4DNPR7KgyTQLe5roEe+IrPFcZgFTgozUa0QI4G0Ci6NcYQfMPoO5ztMWYgQq5iWBdGCuquiMn0b5xmaCT06yUBWq0kJSK1IlJBvBnkUEWuy/25QZKAILW8oK2ZFTdI3QnNFEGZBpojH+maBmcD3kumAyVgc7frOTo85MFmk5GtMnAfAk/OnnB4eEhyzVjark2NgnaJweZulJp6miZI2YnKZ5gvoceyy4Dm51YAmGS9CcEzaZcsNzdYbeYcHaxJJYlHxjGV6Z1Np3RNw3w+px9HJrM5293rrFcrLi4vUrS2msEj6cl+pLWG2bRLvr+mYdJ1uW5D8D51l9PzEXfsMhpOAl997DGD3rQxwcR8n4mwaC/ow4zVcMTF9gWOZl9QNl2AYCU6VDtN/w/5vKFCV1Y2p0hVDN9kOhAhL4zqqhuiHJbCQ0z+frpBQa1aI8qB03db6kY8CvFTyvB+yl2iScPF+nl86DianSYXUEUJNQOPRsFA+l+i2khOQwtKyaBgIvGFLKfSbJXPVAA0v6cCp7XiUmI19gVVogP9uSJieVcIUyIWZ1PrapVNtZUlPyQPJ90XvAq7gLNgHTjxZ+fod9MQoyN4wxgNMbo8r6KARYr/yJRS7EKnBmRfK5ewKTRVEUJZr+rn0nshXVbSZr1vCp+qaSxGYvCS0VACIOs29lC5luI+YDX53RHwKI/r+x3nZ2ccHR/T2Yk0yBKeK4Bd+TYa2CvH0lrL4eEB63WqeDkMPSFGVqslx0fXODo+IruKZQ+ddRwdHbGYLzg7P2O361mulszCjK5tcVbq3vz/OpsgC075dxZMaI1pubFCQfWh1l+ZCu7mA+8N690dDAOde1QAA0jwCuzunPPg3/xpmvMZt37gA7mkLsoMM/NIJs5gIr7p8bOe/vqS3e1zZq9fZ/GF2xgr6TeB/Q0PIVXlIkrqkVf+iZEiPtUU68XJSLYWQCkQ0VSCEbCR1Yun9Adrjn/2eQjFD2o1vQ2I0TH6lsatsO3AeLhjuL1md3PF9Y8+j9254tMilmp1GGL0xDFWiLYIwByHkZmuLrMQjhJ5dXYU4GX/eShFXDDS654cqldlOhS0L5vDOO3ZvPSYsDsifOKdxGzQTO/e9T3XT67x4MGDwucpTOHy8pJhGOjaDkNMfQomE9brdQJcPtFjXXVL9zCGWps1FZMwhTnlWQsrqrSVJIwSbbWzC7h9n8vHc26NgdCm8qTb7TYF9vmRUfrI78aRYJIwTzSRihCZgKS++pQeaGE2mdJK1oGmJdZBstEHGucYzJgYQpMYxJjzClXwQTQSTV7JDxXylshJ94ghtqzHG7jtlsXkHlLDmBoA1IIrC3lh1vmsxjobR0F2RiWFBIy6ZLRipljmYuWY0kA2oBL5lSVH96jsTC0sMhjXvc89HwR050qfhtX2NtvhGtN2w2JyVghV35G1xPLgfJ5NilzQpnUhBBiLm04BQ/46lcyt5HZ+FSlWJ1wboAP3uMvgIAsorly69mbvURlijWEGGFq7pWjc5at6X3lAARwKCEIIeAtNTNZIZw3GSSlw4xIYIAGBHEDsApuveEh775DmbAa+bEouTIeeuTSQulpzen8UUFOUuhpo1vFEFTTCmh6IeG+J3pP71qC8S6tUVvRbzb5kmMH4whnjsxc0r1zDnk4xO1coJIuyBAgNkWHoGceReDywfumMo1dexPkOxKWwhywROWSC8LKO6zeus7xcsd5s2O52hNHz5PQxm+2Gk2snTKaTrGRJjDtt23Dr5i36oaffpbiloe/p2o6u6xKAewvXlxBAmMmG3Nc+z6uYt2KWnohMifVD0v1qSpOfxzBhO1zHmSWNXaU8TSA6WL/tIa/9uo/w6Js/wXP/y9dx6wc+iOtdImoTiZ3HL3YMJ2u2t8/YPP+E7YunbF44ZfvMGf3NS8aDLWE68vb/4Vt415/4FRBTrnECA4Lv1YcUPP0g1cX04FcxB0Wz3icgIGsNUdqbqTnQyFjXLz7ild/wY5jB8c4/90vBX0H/JhA1FxxwAABVVklEQVQnnu3Riouba7bf8NcxH/w4P/41H2bzwhP6kzVmsHzj7/huDl++nqwUkiWQCVPWXYsyaUCiF/+mMnFlwjUP0HSVTOg1V5XDEQRJh3bk9L33OHz1OtOzgwyGNKdV93icjqzvnHP6ntd48JVf4PR9d1k+e0b4a9/M5P/2ewCHouQU5Chlf9uG4MdMSyqo16s1fd/TNg1GKnrN53MuLy6lbXCdelNotxYiiZTNnguipFLKIZX3hhj3mFc42bH5ZfdZftfnGd97yfo3/zaGR4bBj3ShI5DcGcMwMrYh5XMPI9PFYbYqNdJwh4rmrIWJmzDrtNlRchnYyjyIWoNiyPvrnKNpG3w/5BiBQBJS0hA4gQJjaEJi6MpgTTPQ/a5/yfbhs1z+j+/GDAOz7rHsf6HzQunZyKvqjBT5qtxRwsCVYRXza4lBiNL6VZVgZcD1W7QXAgIAMofJwqCqQSL3+msj69/wkPnfv0FzdypbqZtXSeFEBWyHYy63z+Cs52j+iOxS0OmrlWFPSglAMCmYNlr1/QJSol3dcsUnT67hQS5qJi/J5zAS5V1PfvcXWH37Aw7/0rMc/pVnaV6dSfp2EaSFmqsPMsooZvchLAANekUAii46mRYyp66zgQS9qF+992nsky413Ip6jpLJJK8swPjsklf+5P8GwTD92ZssPvw88x9/jslnT7DLLgvjVFdCAWZSKoeXznD357BsIJ9LKrBn5DxWilxegIgxyU0QvEuBfhR3TkRSP/dKWetjEtgI+swYWX3Hxzn/j38Yez6luXtE86nrdD9zm+7nbtF+4Tru0QI2jUQjJivs5cU57W6Cf9cT7v/uf8adf/QNXPv4l2NDk+k776EhBRviMc4wm0wIPtA0julkwmq1Sj1Q1ivu91sODw64du0kVYmsIimNiUy7lrZxdGPHer1mvdngvWc6nfJWrreeWrgYmeymmSGpNl4EB7nAjAqSWnhqfvIe6pPtG8ZjRj9n6j5L03hoAxfveY27v/HHePitP0NoR972338rxx9+B0++9jNsn3/C5sVTti8+YffsOf2NJePhhjAZiS7sHZay07B+8XESuF4yHlCeEnI9eCOHNZmctflE3OtTUBjKfqZDOmN1lgDJEvDcE179jh/l3rd9lNv/7L2850/9KszO0R+t6W8s2bx0yuU7X+fyy+6zfvsjNrfPGQ43xCblAG6rV5jRsHnhjONXbxYmxBsJTGMaopTAHYcBYwytc1n5DwRMEHYfY64loVkJOqkYIwExvVvD+Tse8qnv+FGe+/CXM/n4ojByA+N0YPPMBafvfo2HX/UKj993l9VzTxjmPSV9BPi6nyMebPDeEeOOiM38evSpkt9yebkfIEVyTyyXy9QG2ASssxwsFjzSdqBU5adFC4/KefRRISF5C7k6XeYJmeHGzLCiC4xftmTz7S+z+faXGd91CS59Y/ebPsrqj3w5B4vkxhiHkWHo2Ww2zKapYdHy4pzJZErbtrK+ZYxEaJuGVqwFTnpOaMVIDRDUMrMZSNuUTdPEhq5t6Ycx89RcBEfArMk/pSu1VoXL736Vi//sE8Twc/ibGy7+2Afx2ykHs9f2QKqe1+KnVUlSny/5TKRV7rMgn0c9IEAdMR9EYcixRfqzFmiqrpz6hlavK0Psv2bJ4//8M/RffUn/FStufO+7sWMVp0BlnYuRflxwtn4BsBzP70tFRhVKaZWS6VgBSCaPYvUS0JPdhoANrpQ+jpEYRqmWaOvjmdak0k7VDTA8u2P5f3qd8aUtp9/7Gc5/56sc/PVnOP4fn6P75EGK+qdam7zOJqvaUbcBw+APMAQau9vfMgWE8mOVd1WenzQ2XXGij/S7kaH3dJNIN5thJY0wDaIE/W7e/4Dx5gZcZPnsiuW3fgGzbWhfO2D20WdY/MjzzH7yDs3dQ8zGYWOpMmt2liff8xEWf/+ddB+9JVaFAlr036UBj1Q8UKU0jhhCymaIgeyGtKQYHVVoBLhp8zfxrRY6ddB/xQNoA+HWmv7Wmv4Xvc46/gyMFrvscPcPaD9zg/ZnbtN94hbdZ28SHx0TN5Hpv3iBkwPLz/3eP8fhp97Gi//Lv8XRJ9+BC41uQJmPyErXWKbTCZFI0zom047Vcs1ytcSEwGq5JMbA0eEx3WSCMS6vRxS+P+lSjZLdrme1XrG7uOCtXG89ZmASML1uWFRwnLcnYQPRqmwpCUwsm4fO3ZSfjTFsh9uE6GgXr3L6oU9y9zt/lNNv/DR+ISkV24ZX/8//gs//B/+Q2PmfX+DrFUkpN6OlWU1ozudM7x+z+OQzeHzWNtLwFMUrAND2w+lYKACo+VKep84h/xnJtdlNZPPcE+7+hh/jtV/3E+xuXXLtp15i8flbfPI/+Pss3/mA9fOn9NeX+OkANr75nGICAG7T0p0uWLx6Qju0udpnfrVhXwMDxsHn8bdtk4uhaNdBWxG/F79Y0UQV9Jm8TruTDZ/79h/nc7/mo7znL34jz/7wu/HtwPr2OWfvfZ2HX/Uyp19xl9XzbyL8ZS62d0wfHcAnXmBsB7x3guwDGmi42245OTnhcnmZa1poUGMMcHFxzs0bNzJYa7uOyWTCdpuyLpxrcbbBh3HfTUHR+NSfGdvA7suf0PzcEWawWRhBJB4ObD70gPV3fZ7dL71PPOnLfCKYxzNCtCz7Odd2p0wnLdrOd7fbsdttU70AaXMciKlSImJWNEZM4i4F3ipQS4pW1sxUwEYRQClTp8GMErXsHK5xDFLYywgqMCZZNixafFsslRYuf+3rPP4DnyTOUgBV+/UvE5oPsNw8C8ZwOLuHRvEnd5Ka1svZS2VQVTkx2QSv9LLXtCLTQYmwr/lDRSIZVJtYW84SLRonC2StzFMsUDd6hvevoIHVdz5g/vduMP/BG5VWCSq0Bj/lyeolfOy4Nj9l1m0EjGqwGeIKoDr7pgAWOatWI81FudUy+hiSmzKk9DMXDFGDRLPgLxPO2n0Ef2PEnrbw7A6aiH9ux/nv+gKX//ZrLP63Wxz9+ReY/uQR9PspawBxGrC9FfNxJETHGOc4M+Dirqy/KWb32g2STfa1+0xpneTE0LiI3XZg9NC0HtukoPHG2hzfYqJl9rHb7N7xhHCQzk2cjfTvOqN/5xnn3/4J7LKj+9w15h95lvmPPE/38ZvYhzOa1w5Z/O0v4+F/9U+Z/9ALHP8PX0nzaJ6VDgtIbWklTyH21OwqhAHwhCAZRtaVYxuT9SeE0r5Z56r5aYakJBgbaT9zA/+Tz+Kfv8Afb6H1aVnaQDjZEk62DO99BL/655LMWbe4Rwu6z99k8qlnuP7Ku3jm73wzL//Wv8PjD/00t37oa3npr/1KDj/7IiaUGC4kcN3aQNc2jGPDMA60bcPJ9WscHx+lKqxiEdxs1qnhVDuh6zpijqU04j50HLRzZrMJq7Vmx/zrLxPjVXb55tdv/Jb/vNKS92sqa61oWe2ajH6etxZTtbOOz6y/li988DXW3/1HWX/NTxMm4xd5AJXAdzSrjuYsCfzp3RNmr1xndvc6k7vHdKcLmvMZrm8xoxPLbNpwr6XbMkKpOiqKudpIalMuUGJKzQSdQ42vMbC9c8Hdb/8x7v76H2f3zHkZczDkFmRX5yc0aYeG9nKGu3ub7cc+wK0vzHnhfs/s5WOmjw+Y9DOcNB7R5+QcWCXkSKpcJzX1rTBz1Xz0vmIqi7mUbcpESIzPS0/0MPHc+8Wf5hO//Z9z/s4HvPT3P8DtH30npx+4y+n777J84QnDYvfmwn9wTE8POP70bW7+1Ivc+OkXOXz5Fp//xHv55Csv8sH3forr154AaV21U9czd+7wqU99Mgvm9LhkoZlMWt77nvektsfG0fcjr75yl4cPH7LZbhmHgc1mzW63FUFWSfC8+BE/7zn7HT/H5Mdv0P2L27IAkeG5Jetf8yrr7/gCw1ecQxsK6h0N7aePmP+NtzH5G+/l9Ce/gXlzwbte+CRHh3OODg9YzGccHCy4du0aXdvx8ssv84Gv+xDnD+5z8fAhy4sLlmfniVxSOz1c1jCjWAYMTdtK3IDN9fRH7xlGTz96dn0CHf3gWW+3bHbbJIC8BDoaoXRrpP1zMmisf+ljXv/TH8XfToFWk39+wsn/5Svp797kcncbHxoWkwccz1/D2pCEsEkUpt0xy0qaUt8i25d1tUXfNGT6zMxBzMNBQOj+U6tr73zVmTuKlYQ2usjj//qTrL4rNWHqfuqAO9/1AezjtgIYMPopT5ZvY/BzDqfnHM+fiFm8irFBqwiKmyYX3UFovEopFvAQQqrtMYwjfvQMXgCgD1hScK81NqeTqfxS/dwYkwPDwvHI+lc85PJ3vsru6y5gUujPrBzzf3qdoz/7ItN/cYJZCQIxMLx9w/iONYt/foM4Qu9nvL7+Zjq34c78p9mzb5iy2nq6AogrsTrCGSSUI6DfiRhs02Qw2jYNrmlEW3WEmad//oLNV73O6hteZfNV9xmeuyRO/R6oBsAb3OmMySduMPuR55n86DOMd5Y8+gM/RPNgzvU/+vXM/9HbMb1ksoRSRyY3qst7POP+w2+hbbfcvvFRjBTWKq6bdLNaBoy4evJ4aveoiTDx+JMN4/PnDO95TP+++/Rf/ojxpTPC9Q1R5dUV3qd/274lNj5ZeiM0lwvu/JN/g5f+5q9g/vKzmGCEziOa2TCOI+v1OqenqiVx9CO7XU/fJxdq4xq6bsJUuiqmQP7iAnYuudT/yT/+7W88W1euL61roRKk+qiNofRbVt97WgFNGdxTqVHtNX13nA98/pf+BD/7bX+O5Xs+Dc3PAwIiNBczukeHTB4cFYH/6nUmrx3RPlrQXMyxuwbjXWZKdRBZInSfFyqzHdl4Ca25Uodc5lIcaNIHoNKY5BGRyPbmOXe//Sd47Td8hO2zZ2Xd9HJxj/ibdUd3esD81escfPYOh595hoMv3GZ+/4TTl9/Lz3zqG7lx58PcuvnRDLpysGZFbPudH3WvjHQoFAuH90RiKnoj+xSya0S+IsGaWk/BODh/9wN+9rf9EPe+6ZOELmmir37rJ/jCt33s59X8J08WXPvMHW791Evc+NgLHH7+Bt3FFMaklhrrmIqZfRhKJHAMkWBFGDpLN52w3WzkHTEz7M12y2q9kraiyQc/nU5pm5ad2WGsoW3b1CExg7284WBgfHbNw//sIzSvzpn+6B3CzLP76kcsf9Pn2Pzy1wi3tvs0f94y+eHbzP/yO5j9i2ewZy2WhpaebX/Irk/tl7ebLbPpJJUKHQbGYeTk5DrnD+9z7dYt1k+e4MekTjtX0q+srH/i0jUQrRmT/tvk31nnMGNI8QXGMBJzF8K01qaeOdtfdMH97/9YBgLtRw85+Z734x5MmLRLnBs43zzLanebSMu1+asYM+TYCVM9S7Nu9oOwdMEAKbyiO6y7oE1+1IURieSeIKYmqVpiCECNdWprRfKD5eSPvJ3dLz5nfNuW/oNLLv7917j2h95OylQ2DOOU0+VLjH7G4fSS4/lZdpnl8RuS68yQ63dkK6hVsFONK5Gr1K4PRIkbUDNORHz0ISRdAIMzDn1UtnhFsZhEgzlrWPzPzzD/X2+z/aYnXP67r7L9ZafEhSceeFa/+iGrX/6I6Y9d4+jPvsD8H9zCnDc0r0xYfsc9hnetOPzzLzAOCwJtCsqmVNHLa2ZK4Z2iIe9bBBCglpanbqmbfhm9T/FI3hPGMQHYpsUYj1k7Jp8+YfLpE47/+nvwiy3DOy9Yf909Vt9wl+37HiZXQgpmwd9es761Zv3Nr0DvaO7PIUL/3lPu/7Ef5OAH3snJ938tzWeuCWAr3VYRgBWNoVE3TnR5bUWVyGC12AKk/koOoI4VfQvI2DW0rx/Svn7E7MdfSt9xI/G4xz+/pP+yx/Tve0D/ngcMbz/F31wT52LttRCmwx77GY9W3P21/5gH3/wRnv3BX8wLf/vfZP76M6IsGmwMuMbSTTr6XZ8zrlKvgoaunbDZbtnteoZxYBgHRj/QSjC1NQ1KYCH4cl6+yPXWAwgzAZVDEyO5KU0ur0sdlKUHaT+vPWmlBusi03svMP8rH6J928cx7/wRds+e0d9c4g92hG7MvOXg557l7X/2Wzj+ibdhdk3x8asAR0rL1oJDDql8lFP3cq0AU5XaNRLZqaZAQfxZMzElP3g/Kt+wvbbktV/3Ee5+54+xef70jShR5907bnz4y7j2429j8clbLO7eZPbkmGbTYYPbM9GH9QKioXF95kYKcvbymnWho86xbHyOxM7NeEo0cYxi1TSVQDIlqru/vuEzv/En+Ox3fITdtfXefPxsyFzYDJbpkwVHovnf/NiLHL98m+nFDBOS2V21ycxYY6RrBgyGvnfSKEV1jXR4N5sN89mczWaDxjSkyaR7Li8vuX3zFpBMYvP5DNe4VMfbe5qmSRW7cq8IYXIGdl/5mAf/5Y8QXeDk+z/A8t/+DJff+Vn6rzotWksEAriXD5j97ReY/dW30X7yGDO66gx4Ju0Fl5tnWK0XHMwvGMeR3W7HYrGACD6GNL7plH69BFL/he1a5mXBxhTdX1haLYGK4FHgmeMATGlUpf/FINK06qehzH9415r7/91PM75tA0DzmTknv+v9uM/P87lpXc/J4h7n6zusdyd433I0f5nGbfIS5nFWIKAG0Qrs6vsyIzYGE9ijaSvfTbEbKqyUHpSXFPSrvKRAvHRX+4UZ1/7oSzz6Q5+CNnL5219j9oPXmfzYMbvhgNPlC/gw4XB2wfHsTJImKhCQkYG6y9KvM0bT2hkIgBFArU1sUhvkKHXkNQ5CQAyJ7kMArLjE8sNiprlS7wRYW6Y/eIPZP7tO/9UXXP6OV1l/20PCyQiTyPabnrD90Bndzxxw+OefZ/63bnP4Pz3H63/pXzHe6TF/8F2wNbR2ua/ZZ4GYw0HLOsqgyudXah/oncqLIkDq25H6d0Rck8C8a1qaRhYxgL2YMP3J28x+6g43/t9fxXh9w/Y9j1h/6C6rr3+N3bueEI6Sa5iJZ3zpMr8vTj2Xv/5TrD/0Gid/6hdx9Ffeh11OykhjRp0QPJhU4TSDnLg/T6EkjMgArZ9yRXfN9KwUqXzIjA32tMU9OWDysWeIf+P9BOvx8x3jnSX9208Z3veQ4f0P6L/6NcIzy/0lNDCcXPLyd/497n/rh3nu7/0yXvi738Ls4Ul+r3MN1o3EmGqAqGC31rKYzZiKa3Sz2bDdbej7nnEcWCwWqdU3huhz66Uver1lMKBVBEF9zhSiMoDkl+si68FXc5syJw0+jIBbTVl8+Gs5uPtrmTUf52T6LsKkJxz1jHdWbJ89Y/3SIzYvPWbzwmM+/T0/wOHPPsedv/k1HH78OdyQSjDmQ6VIXQ5oTiFRRqk0UbkykmVWGYLaDMxe06UclY+a4ovZMITA2OyYvXydF/7iN7C9fc7uzgX9rUuGkzXD8QY/7wldCm7cPPuEY15i8dnbHDy4Ic1VSpXGJMAio28gQmN2JVVJzMhXAxdTxkptyi3sVJmNkXvUcpMDHFUICYL2k5F73/QpPvHbf4jzdz0oB6y6zGC58VMvcOsjb+fmT7/E8RduMZH0oWwKVWARQdONFHA5Z5lNRoyJbLdaPlUHm9ZiuVxxeHjI48eP0lxipM4TPz8/T90jhdfMF3Nms1kCD9bgkG6B3udiR9FGVt/2Cg//wI/hn13TfeyE1//MP2F8blX8vRHM2tH9+E0Wf/kdTH7wWeyjrlKaKiaPYdadcbl5huX2BifDY5rGsd1tWa2WTKcdXdfy6PF9bt++yfJimRrljGPl168sVbG4ojCmKvusZa/rQk6ydzFUDFz+M0rLJreZ9s9sefD9P03//sRg3b0JJ//hV9B+/BCF1Sr8WjNwfXGP881Ntv0hp8sv42h2l2lzqotQYsYUpFWNsjASgZ/PVaKBTD96VvOeJxBr5LwWgRVlXkr3enZTvItRsG5Mttgt/vptVt/2mM2vfEy4NnL2n3yexXd9MxenLxJjw7X5GYezC9GUyxBKDFOai8SiVkGHGrGoPmeRCzFIw6hU00M7EIbKn63iNMp6+RDBJhN36lpJfraJKRVUg1hNBHaG7keOufGRYw6/fMnyu19j/Rvv459JcQX9V17y+A9/gvP/8GUO/9KzHPytOzz5fZ/FnPwE5j95G+1uVUBWBlKFjvO+oHQU8weFI8r4qjtroJqAgYHoGSVrqWk9ECUOyxYwG4HR0T5c0DyYc/BDLxE7T39nyeaDD1h/46tsvvp1+pcuiNNxb5/8Mysefe8Ps/yVn+XGH/kQsx9/jjgWa0fmEwosQxlmPQ/liRgjqdEmW433pLYWQsg0SQYQ+pwQBQyPBtNPac+nuE9fp/nsCXE60n/Na3kAZnSYocH1Lc1yQbuc054d0V875/HXfIzn/umHaLYdWEfTAEzoIbfRTlUPwVpH6xratmVxMOfi4oLNZsvy8pL1as3h4QHz+RyMkWLQX/z60ooOlRVHT22Kci4EpAF4JZCuEGFaSTlE0kBntblOjJaJfYjF4nZT7Okc8+SEo599Ppe4TahrYDjaMB6vGY422EcH5Gpg0qI0DUs2m+JPUu0+ZzEIryoxUkrgpSNUEmzKnFGlYW9pQwhMXj9m9uBEliim99hInHr8rMcfbdmdLNnduGR3+5z+ziV3v/tHufbxF7j1L9/LZLmQNQv4MBJCpB/SvBo75AOsAMfk8RpZc52zET9xXupq46oThYID5MCney6ff8InfucPce+XfAo/GTBeAlzsFWIyEJpAu5wwf3jE5GKODTYxLwUYUd0Nov2ZBMqc9GromgFrIrs+afKIZSmEQOMso5Qmds6lwklXrp0g4u5oijGWtmmYzaYpAt9YRgLONfT9ABjCZODs3/sET373x4iLVESq/8CTsqER3L0Zs7/3PIu/+nban7qB2TpyutzeUpYVbt2Sxu1YbY/Z7SzWbOnahvVmzXQ1YRwn7Pqe3W7H8fExl0/O8zNDjDhTlZlWgG21kFWtSrxxD4wWWAK0D7wR+jPRYKLFYfAnAw//m4+z/cYniV7OGk5+z3vp/uW1RC9q9dqjKc+1+UPWrudye52z9duZtwcspvdwVi1DKqBLLYqalaZgx3L+a2Ek/0wASOcSbGbkaY6VAkHZqquBfbUZ1G4aTv7w29l9zQXh5sD2G8/Z/aYz2j/+Nm4sTplPVmiEQhbARp9r0MDOvdLKUSF4zBbJIOW3Q9SOhyHHCKQS0DpBU/ZXrpTWbKU+gdkrSkTmp2XLs243GJqfWXDyn76bw//+Rda/+XWW33WP8R1rsDC+a82T3/8Z7JOW2ETi7/wI7vYl5ve9B+53FRswubmaCvhMazG+oRuiyxyiKFFvZi+IAk51qkNINfzbySRpquL6yndneQJm55i8fI3u7jGLn3iW5S/7Ao9/20fpv+wJe5cBmsj2Q/e496f+Lkf/8/s4+pNfiX19kS2fyRoYSH0ZwGpmUObjRagbU1KMVQYoJMjbJxRTDTfRQKR0FY1p34wzjO96wvZXfYrd+17H9I75X/sKmgeHHC6f4Whzm8nlMdP1MW0/xfYt1icrpgZ4Gwd4T7Qpddp7l+rGCM8wPgXBu8Zlxef4+Brzec/jR6dcLi9YrVKJ4sPDI0zT8lauL6GFseZEx7wsWX4agKoHgFVEqeieMhFZTjXtb/pbgKdzj6vcZEQbqup5eYs7n+LOp/DKCcqIouRca0GZGs3qpRtbaiVUJkDRYoMw4jw3IY4UuEEOPEwBJ0Xjqf2lJkepR0wAu2npNlPiowNm3MzI2GmVEicafgh4JN1RGYxvMCbQNKM0rEhzzSI9uw3SuIpQ10vsB7E66KimYqt5ltoB3dmM9/65b+LL/9KH8JORMPH4ycA4GRinPX42MM4GxumOcTawfPspn3vuxzn59DPc+dF3MnlykMAespbqjqlM1nq1jce5wDhO8H7ENh05mls0XB8Cs9mMy8vLbLnIqWsxsFytODm5ARhc41gsFpJm18M40jYtvd0x3tzw+Pt+gsvf+Dlorwj2nWXysesc/NW3M/uBF7D39gukZBrO8n/fR24YmbZnrLZ3uFwf0TaPWa42dJNJLi0aY+T8/IKD2QFd1zKdTrmUAEJMzFarPYEf1Z+rxRIULxSGrONR86Y1qeHV7pkN7avTtLcLz8P/4hOsftXDRCMry7Xv/XJmP3CLoERjTLZUC9eUnwOLyRlts+Nic4tVf5vdeMjB9B7zyUXS5OX+msDSVORp2TpUW/D08GSCzLSY95mSHks+e3JmXdE00yuLIAPoPn7I/I+/i+X3/Ry4SPx9P87Jjy1YfHZaBGuMVe19Cag1GotR9kDxWbZ6RqQVslgBIow+gYEYSgnoN7E3Z0AU1TIQU81InbvVUsq1D1znLQOKgA2G5vMzjv7QO1j82efZ/Pr7LH/ra/TvX0ITCTeKj9r/uk/w8NYjbn3P19J++mhPWUovuMI4zD7nvgLvivKEgoYofQLi/nNksaIfGbYB7xqatqVpGgmKTe8KwiNwke37HnL5rZ9n/dWv44+32MuO2Y8+h+kdZnCYwWJ6ixkc9Onf0cP6m15l/rffie3bzNezhVcHJcSVAgUDMeg5Tvxwb+j5bO9LkRroCHkQInhpFmZEcWzuH3L0Z/4Nwg7iGBMoty5lPV07SS3Om1ZSh0vVVFMvdZYphqZpcuMkJcoQfZIxBox0751MJjz//HOcnp5yfn7BxfkF6/Wa6zdu8FauL6nokKZjKMLKqXVXkKQKZV2xYpJK5g7tOOhDw6a/gWVL65ThU5lEi29Qc0EtxcejAie3izRVygzFx582yorMTCtos71K4xlM9rdrlKoCgdrkp+b2si7ynRCJcRSfTtlVLQdctOOUE2hiYXJeTJDa8sRaR4gdxkScC6I9BFEa61LI+hqzV9pTPtHlz2CtEDky5so4by3t5ZRuNcvf3Ateq0BdFJNgivsw6dF5vcSSE7S8cQ0EIpo+2DWexgZGP2HsByZNi5oyE4iwbLdbjo6OuLi4QJBX9ZzI6ekpL774YtJMrWE+nzOZTthsN1ibAMLwvnPu/xc/wvZDb+7yaF6fMf+Hz9F++jjVP5p42Locl6H0V9SqiKGkIBoD0+YxS+5wub7F0eIRTYhsNlvaps3WkJTZAIvFAX7b54cn0x9oFHF+Y730V6GtFMcxmJw1ohquf27H7qsuaF+dwTTy+Pd/movffC/NfWc4/oPvZP6XnklaTbb4iNiJ+vxqtwxM2y1dc4+LzTGr3RFn67ezHS45nN6na1aUxarb9qYnqAlVi0plwF/NK80jFg2LtGapK6nJFRVLmu/V58jrjaUfOy4ub7H5/nfDLz+HX3wPnluz/L//FLPv+WrMro6+LaDaUnqNZBeXCI2a32j1Ta+WgZAyPHKMgM5chVz6QV+W3ENGynAHT7DqSk2KRAFHcW8f5OsFbJv0XPug4+BPv8jBX32G1a9+yMV/9IWUYlkYAbtvfMT9v/AvufUffR2Tj5zkTqvJfZrZ4N6VeUB1ApSZqCKRAZ5g9D12AdlFFUPAhwE/jgzO0nUdTdNimqYSyNB97ho3PvfV3PAGRuXN6b/s4tRmdF4bWgnv1fWRPdVxaPXOmFFd+tlYBaemuJt0ijpjLaWfAa3SoM00GDPwUOtAxC27BDyiuncN1kaII9v1MhdMS7SdLKUlNiHmOaRKqtC4htBEBqkVk94VsoG+KIPpGTeuX+f46IiHjx6z3qx5+OA+b+X6EtwEMf+XvQRVwJtQR0a+kaoCnuwBUSNA0/e9n9GPhzT2CdZsS2RrIf98r0UidqOanxMFFsK2e/guCd1Kj8rEWlXKqhh6tgKQyusqkeV5Z6tF+jndazKDICKtdFWTSGN0tmrfnMWdCj3prCipLVbjrk1qO5o0hCG7ShR5an61CtfMIK4eahHGKV1IUlTUlBZgHEZBpo2Y08htp69KTtXustYme14rh0H7ksfa7JyuGiAlweCZtAO7cZIIvrH0476IGMeRa9eu5bmYWIRIxHB5eck4DLRth3UN09k0WxJsa7n8JS9z73v/Mb0GIgUkHdVgtg123WA3DZtvep3hy85pPn1E9xM36T58E7tMprVotOZ/XtS9ZQ4R2mZJ6zZs+hPGcUpoRwYpPjSZNERruFxdMISByWxCN52kbpLeowe7Nikb7foYyQA3afGh0KMyH2IljA3L73gd94k5toUnv+tzPPm/fh6aCKPh+I+/jaM/8VLqCWH1WOwL1GhIAX0UJp02eORw9phJs2S5vc52OKIfD5i2Fyymj+jatZK4DqWimUIXRJvbdddxBHqfForSjqd7sTFiAcn+feTfEYbQcbk5Ybm5RogNk9Az/0Pv5fQvPCQcjaz+rdeZ/5rXOPhrL2Aw+Oc2NA+nqc2wMGKtq6BB0WrN1BiABGxI8QHe7/0+nw1lylctA9X6ljnLmsi7k6EoFsF69QxmupP3dZHx/Sv6r79g+MoLhnev8bcG3nAZGN53wf0//y+5+R9/DdN/cDtFrmOUMb/JQGP+bn5MtvpkCkwKiuyDvXI2FLAkOkq8eoyGMA5Y62gmE5q2wzYunctLLXFcxQDIH5r6rIJ/z5Jm9AMjWNkUiW7IPE9pWZWfPE0VxELwobL+KhDw0uclSrdQ7daq8XAaQxBDchEbVGtPrubUaCgS/MBut6Vt2yQ3suyJYJ20EUgWcSt8OBpwwTGOA5nqszxKcsTIu5DaF03b8uyzz9D3Ox6fnr5xf9/keutuAi1oohpa9Z+Ktyx6VSMXwR9j8VFnI1SM7PojfOiYNKfsaUYm5u/EaPLBK7nAFWQ2oCVV1Gqh/xOWtudT1KCZjAPzhlUFIFTWKhipKCvne46j/OxoGpctGt6X0rrOGskvrjFfelzShMjrkohWLRMGHxypotcgDHJfEzJyf6AwXXUb1HwoCnCqcWeQ8QevPv0oLjaTmbiWRzUC/VULMkbmZG3qoCerk5la3pQ3MkP9yDlH2zXMp4HVRYuxU2L0YhEp49ztembS37vvd3kfdK+HYeTi4oLbt24Dhq7rmC/mWGe5/Oq7PPrOn2H2sdvM/t5zuAczmgcz3KMZ7vEUd9FhL1vMxhF7g/UWAkWTLSu4P4d6MjEKCXlm3RMuN8+z2t1gPntACIHdrk8pQl0ykV5eXtJgaSctTeMYxwQGtG2qFS0pE4QxKSBEGFAQMJSEU5SgomLdCbcHzr/jHs98zwe4+C2v8fj3fQYmETwc/sVnOfmv3knoNevH1LPJgDK9R4RStrQVyuuaLdfm9+j9gtXuhE1/je1wTNcsmU9PU3qi9XmPrgJ7QyH4Eglejlgyi7pMLG/w1FZaX4yWYZxyub3GeneMDw2tG7m+OONgusT8xCHj/+dtnP17n4EucPZ7PsnsR2/SvTZj84susD9pcA/mebljVKEV8plK6yyAQBSRZAkImeY1A6dSTatJpZ/fUM7FmDyVGCVAzBhcVqyUvdbnSN8nTx4MzWdn2MuG7mcPGF/aML59zfCOHZvnO3juHHOyJCzGlLr3woaH/68f4+R7P8jiL7+UeuxcuUqKYf4gFeCphw7Sopk8b3Un1I3FdILCciVGK9GEH7UIVzr3xqZUYmtUfavlSh4KxcpsyjCNxlEBxor7wmQgYLPFV4Fztcb6iEpZKQ9LNyXlSUBfkGTRELDR5uenrLUSMK8WD2NIxZjkmTF4dtsN0+mUpjG4bJGqHTLKP0tLb2uNZEqFvJ5ZNCGKqw2pM2n+XXIdPPfss2/c6De5vrTeBJVQ0x9jZs6CTKAyO4nWXBFLfSg2fQoebO2jStiTTEGycSn6VkzOYlpRfiLiGQ3HzT50w957ooSU2oy2ipBXsDJq9z1F3RHR6OuDLWVQYyTGpL3oYfW5CY2hcQ6Tg1LI66ZP0oPuMpNIpuKMcWLq6GdM0qAN5Zc1IFZkLhu0Z2qKlKAubciUvBKe4BPhNm1DOebKBNLpDQIISiZF3OvqFcRHilaEU6FkTcn/pYAUbaRU/nMczEZef2KJcY4fznHdPLvIQ/BYY1itVpycXOfevdcy+k1AJTWRevz4lDu37+R3priBjuOPvsjsw3cYNgPLy4sMNAu4u8r4yjooPZdVzoSUwWP+SDZ1PjlltXuWi9Vtrh8/JBIZg6fvR9q2xY+B9XqDiZGJcSIEStdJJ+bMcs5iLuZlBHhd2SWcNXjJ3ghEzv6Pd/G3dmy+/oxH3/dJ4jxAgPnfvcX17/tyWGtp5vTcIqoLcM818PcQJaX7qIlYG5m5FfPJlk0/Z7U7Yjcesl0e4mzPrLtk1l7QNCvRjmLx/+sDY3EnFhKua8YLaM/AXMYULYOfsOsPWO+O2Q0zIpa2GTkWENC4BK6iN5z8yXex/mUP6N9zyfCuFWff8ylu/z8+yPjshl2A7gfnqKobY/L/5tLpIQlpX4H89LO/wl9iFu57wLxaQOUzb7wM2hpaY3dyC3hdm2w9KLEdkQTgzZnDnTe0n5kz4RomRnbhFjv/dcyP7nH83M/gn9kyvrRiePuS4R1L1t/xKnbVsvg7L+ayxYX2yzuzhaOaX7EkqDVF+MweH9m/oqyvMQX8GUMK+h4GMGNptNZIqV5bWTy5mg5eQUkDBM2gqQFUGpF1JYXckszyhRvr+pefs0XT2MTTSWAoCfxCk4akaAUZk0Usw1LbIymhso5XwUXoWS0vODy6LnJTVi+vc0JOtXLrrIPWAEMKuN6DZ5oWL7JOLIulvseb0d0br7eeWuhcLttrjcmTQMx7WUiXE1Ghm4r5CnIJMbLpb0IMNOZxPmhRVRGKAVNTw95AjLqJ+nmsmVjMoEA3yApYSERkxd9a0H0WfNXmF3NMyP6iBAKqHHp1CTgrpS/3fVg6nAJi9oMp1eSlmlPSTi3GpKhY9Y3VB001OwmFQC0gSciEai2iIGQVKBGXi7YUcKTjUOBUDoWmCMa8RnWxojo+QwtP1Qy9bVOLYSfBMsosvR+ZTTaEeELkgBge45xaGwprWV4uOb52zL3X7xUaMoCUj31ydpbmbw0uGg4PD5hOp6zWa5wPRJcE0TgOIsQFIMX9fVeGhdLoFY2kbGhhjokxRElxXtE1l2yHI9bbBW2zxPv03nFosfM5F+cX3Dg5YbfZEkkA0mhVTz1Pql1YVzW3UTAu26aEZKKkH8Jw2PPot3wefzTy6Ps+SThOGRPTHz7h1u/9CsxZQzQhWV50HigZCM1XtFqKFcVqyiafOz1n88mKabdiN0xY7w7YjXOW25ustjdwtqdrNkzaNZN2S9sMWOOJcUyAU2jOCCiyAnzyMEI6B963DGNH7w/YDQsGPyVGhzWR2aTnaLZmOlljzLgHMjCR5sGE6//P93D/+3+COA1cfucrHPz9Z4gzz/qXPOLgB5/J38kautJo2I8JCMIDShCxKVqq0gllbXT99iyOMrSSxgaV1KdYbKo9qixVJcshi+0iSEiBt9vxDgwds+WW9rMHtJ87hB++JaAjQuuJbRUPUAfIZDJTgVplNhj9RgIwOfpiT8IXOtVB60j3jQ767vRT8J5+u4WuxbnU7yDRgs1xN6osJsGXxhBIqXa13z+thxEPqr5UZcYVuREQ077MVnhLyjKwBGNSoKwJOGdLlUahEevSZDXGJVv3qr1RK3fephDod1vW6yVdd12AivJYl5dOz7xJTQcS4LCacbMPohGFjczDqYDPW7veegtjYQp7/jBZkJjsimhIYWHYKRBMkVlmwCHig2HTX8eYHY4neD8yeo81Lm+cTtTkEgcVY6QIqUyHMiatHGZNCgC0zuS6AUq3dZ/rZN6Ram3G7C2gxg0UUGHJwZR5TgkI2BynsD9G9QGVlSynZF8L1WAliNFiTVCAnL6pMuDK3hhdJwwlHzr5NiFmMFUzoMyfVK4VCCOItJSXzUAAQylSVJhecbGU0bnGJQAg1pMQI35IPcQhBfcdLlJAzGY352AGJgapmVDmM/qRyWRC2zSM6i7KYMSw2WxYrdYcHx1hTDKLHR8fc35+jncW78G5Rtw61byVysy+zzw9uDpp1GtTXbrP6PoFZt19tsMx56s7HMwusulwGHqiDwJIDNvtLucN25iqQqaUS3mtapkV4M37KxSUM09EYJ3/8nts33sJTdG+uo8dcOv3vwd/a8f2lz7Cvjqh/fA1oi9cWfe+tMYwmU+qJlqmnKWdfiLrEumaDa1bE2LD6GfsxgX9MGXTX2PTnwABazzODjg7YO2ANSPWeKQ+aFpn44ixwYcW7+Xv2GQmaU1k2g7MpysW0y1dM4CYbXPDGR1dGzGDYfEPnuHgbz/P5Xe+Qpx7Hv++TzD/setsPvSIcTpg1jZnI2VzcIyMWkxISzDHyvOc8WARyirgastA0YuyGN0HC7KvWkE0YlKfECO++EgW2sm6J05RpQsdj+wGsWHrb2LNwMRd7O+VWhh6hxnKuFVslYxZ5QO6x4XmC/cxFY1kJpJ/U8imuPWMgIgkSpK8KIsEIY7stslt0LQtrm2xTrCKKRAlnYv0Boc08aqZopwdW42iFKQT4Sw3plerDFEFKM0hKTAQ/EjwiY8GscKlrRMrp6Eomypl9jBRLIynauq0Xi2ZzxfMbLJuR1Sh0rgJeY6BvZbHaqWoTWtaObHiZylrpQSdf7HrrQcQJi5VFkwtAoLIajSYgy/SyutXIRYB5cOM3XiIZQlhlTGxhEpRCxaDmonkFSqg5PmKYLWOuNZ4t8alA2aqA6MHQgjTGFdQdazGSxTLAOk5FmG+odKME2KtCxRlM09mCnkl9DiQISkFdeuGpzNuiTntSDolxoIylQGniP7SQjbgs79TQVHtu0ovU2KrNkXGrZka2uozVmc1Pae8Sy+t6W1Mcjs0LqUO6YKMPuztW9O2Ag4Cs8kWayLL9YTnbzj82GPshAIibZ77YnHA2flZBUTTGPzoOT095drxNYhJuzw8PKTrOoahx1qbShPvdrImsuAVkMsMWbubsX+lfk62WHNixXyFcYQYaewpzqxZrm8y+FdpQ88wDEy6lmHo6dqGzWbDwdEh9195FY0ItlaqhZmSTmfEnSLmF9RCkySWMNiQhNcwG3jw3Z/NnRSV2M1ouP8nPoa7P+Hoj72d7sPHqce7Mgyhi6vppzUgzme9XpA9os2sIVk0oqd1K2bdihAtg28Z/ITBT/G+xYeOcZwSK7dXVbahDAEwJuJsYNqMdO2GadczaQdaF1LuuCFF5IdyJtK5TtpT/7Ylu688Y/YjN7n+3345m294xPjCht0HzxifX6cS1C8uaT++kDoBZCAQQlIYfBUbkNfDVLx9b+Ax/5QtjfW0qmqfmY7zPSbvcYTKyqeCTl+qlsI39oSByBAOGcIBM3eOM7t6WEJHANmcuD8Rk5SJjPnylxUcSIEk4ccaS1BbrdI39h5QeBexDOFNWjIrX/chErzHDANN22K154FNmnk6c/KOWAthnaoj8bihLI1cQeRW+a6lHrxKEzC5/HQ6jyZVUbRgrPSmkX10GTwjoCZeeZ64X5RPS/xdCJ7z01Mmd54hWItTUaQ0ggV8ioEQZTQ6sSRWSl8GSiYBFLIc0xiHPWL9ea8vreiQrHlmSgoEqPz1FLSYhZdQQPJVJxN5Pxzg/YzW3MOQgvFU2GQRFcvi5KWN1RqQsghSt7cKSVmT/X01Y88apQZ0hMq6IAKIvZ/VbCllRCmElHxcVR0CFfzVSUqFY+IeMlRAkoCGpltJwZ0r1eSMjWhb3vyMWAUTJrmA5DVIEQzKXK5ceYzpzKOd1BRd1oU1oMQjlO0OuOq5xoC22dX1QNCtMrWyp2avap21jtkk0DjPcj1hNp1zvtowWczpx5Bya+XQDOPAyckJZ2dP8rx0pNZazs7O5OAaWms4OFgwnc1YbzYYY1Mak02BqDa6JPTzNqnbQAmcag1ANQYosd3x6p9CM9aOTLsHLLdv53J1h/n0FUYpqGStSy1FV2vcIkX77ra9RO4XeqECAtkUnRkyUugmih/bM3rPk2+5x/orn+wxZAyMd3qu/XcvcfAXXoDzNmmclv2AsD1ZUICdbvqbsZGs5V35Xj60sscGT+c8bbMFLuQ7DSFaQnSEYJI7rErrwwSciTgHjYukWMKQSwKnRVCrnggYOZfKgiyAsXSfOcRf67n/3/wruk8eMf/Hd7j4dz4PDvytHgKsv/4xi4/OGAVUaLR6zhCo562KhEma6RtjA8raK0OWL1QAq1Ko5Hc6Nf2sbRqsswz9QDChgDVTgbYq0C4/Jxo2/hkillnzKAunxDuqQkta2RD93RVgV4Hkek61yNw3buyDoT2WrW/JStgVbEMR7OUpMaeahhBwGo/lUl8T4yqglFFNjUYkfdtoDZqSC5QtchYMGqgaIZpSKCqG1B0zIowyyS0tqqazTLxDrT1pBNpqvBSHS/eHvN6G4KOkW0bO+x3z+YzjkxN80IBESacU4Z7S4aPURkiggQhjTOtiMo9SCouloJ7Kxbdw/e+qQFjMxkr3qlmlDbQiaLSqXIwxRWoHjxo7d+M1QnQ07jG5ox6JuFX7teZq+d3i88neK1O0YzX9pypgyaCWD6EQlrGVb9RYSafTWuIhC8yicVNF0tt8kG0GCYX5jeMo5XZdTrPJNGrUL1mAjXbpU4tEpUIQsRjjyUF8Ulo3PdPkM1CvkQouDeLT12frnikBSGkNi3gLsWLypoxT40OCtJTNB8kkAJAqi1VBgyZS0jcLzWRwERWMWWaTyGwystm1BG/ww462cYw+lBxek1oaHx8fl7WSNVBaOL84TxUL2w5rUvGhw4MDzs/OpCKmwblWrFJXhoWc91o93VP7YvXOAk7riOZ6+2bdQ9a753h8fpOjxatM2oH1ZkPbtkwnHbt+R992NM6xFWGjHftMrNJH8x7HDIrVKqWV7kYfGdqB+9/9GaIWU4pgtpbF37zN9T/8DrpPHzAidig9C1lY6UqItkmlkdZq3ZtcaWjF7F0LzgwEZZ/KxoMxI84aGqSypjG5+IqYYHKQaVY4TdWlUyoWapBvrJ6tl6a4mgizj5xw8/vez8M//FPsPnj+BsC0/uaHdH/6GfwYs6BIPKtoW/s0UYjBVEReFII3BwdZySnbtL/P8nPTOCbdhEFcSsbaHFBdWw8KeCifh+jYjc/gzMDEnVVj3Qf5WvGwNJ6q4gLqu6MugNC58DDl1jEGOZOq+dZLVCyseX5vWJhYrW3JHlAAnAwhHj9GIgErhYscTqyWRSboN1MROtXFUwfJGEPmj7oOqkRpsKhiAv1HCD6B4SgZOyLcI2SrlEFjs8TNpJhYwZaCAqGNFAsWckC3zuDsyWPmiwOark3VR7P1wpYCfjHNUIMLrbPYGERJNflZe0GqNeh8C9dbcyagjCj50ILXnBTDvo4AGggYQhLKUUsER2V56X/b/gYxQsMj6lYKNfpWgjLGpGAQazDi/8cWROq9zx3iFN0jwi3EKHnBok0oU/Upj0z7GMjapSBA56iRFpCLCZVmFuWgGWLqiGiUiMtGqzUiP0t4V2KAGiySDoAi5BQzoIg1CvoUgWHY67ugbFsFo7USeUoCMV4rNFbnO69RXnNhZNSxAMXyAKkneCvtSq1rsI3DSjnMFGxT/Kn16oCWbS2FcZI10mNiz2K6o+8btr2hawx+GCSQ0GcNte8HmrZhMp1mBqzgMMZUmvj8/Cw1J7KOSddxdHiYWqra5G5o21SdTHPIM11nRqgrvC9YUHAqwqc+W1kQxRIM2pgts/YRu2HG6fkJfT+yWW+ThuMcBsN6tWIYBmEkVM+Puhn531Gr3Xl1AaVzOIbkyz7/+kdcft2jNGYPk48e8cy/+1Xc+Z4P0H3qUOhIhIjsq9HPMCSuasq+xwJ4dBczfbF/6R17QMDsf6aprdRzFB6gQEBde42zqUKddTTOSQqrwUoGg0GDdav/9FxAOZfBo9qcwdB98oA7//7XMvtHt/axjYHhF12wO97upQ8WIFDxgAqov6lYU0tFfLMzULtdECZdnmTl3DaNYzKZSMOfpExZl85cia6PwtfIAlMFXe+vM8YDJu4Ma3bVetfjTH/k3TWmgPdss9/3pee1iJRqg8JL9SzVYCIDgQzY9teh/FebsPUkVvuJuuUifvT4YWDse4Z+wA8eRTV6DyEQg2f0EIMhxpHRj6kfiE//heBLJhQxWw0KrpP19V6yRsLeeKwRdxgmBR9GbbDFHnBQC0P0aezjMOCHnjAOxDCm+CiZ/2674uzJ6V5gYjo/RWaZKgheXajJGusywI/VHPLW6t69hetLswwoWpNFUZSihx/K4iSeqgJACCmP07AbbwAjzpylBSh1Lsvfqv0p5KjOoQb8qB8fnXQQx05MEaro9ytTZh7f1VSXCnnXmQR6JWEfZB3eqAVYmxiulUps+RTUZjQDzjZgohBllXqZmVBJCtG+A6qJlti2iPq46zVTrUkLFSkoit7nSGT9fq4TYMsDMjsQq47GRbRtqhbmRUOxVk2lQdIQ1VpS/IhG5u50b4Q5ZDAZ4Wi24bVwyHo75WjRJN/6fJF2XNbFGBh2PTdu3uDVV17JFptM9BYePnzACy+8SPTp6B4dHTOZTNj1u1TXQMp/jn6k1KEtgFPHky9j8mpkLaWsTqaBCKVIjOzNrHuddX+bJ5fPMe/u4Zzn/PyC3XbLzRvXca5hGLUBi5whFZJqhZJYi9QUx5fiN9oUZ/R4N3D/3/kUcRJwDzuu/akXufZn3oY9bdPaONXYjRQtMpkG0XFXxFOoOVZzJmkr1e8yneie6r8zfi3gvrbMIX+nzAGbg0wxqXaFszabN3Or8RgIGiAYlN5isjRWgYcawEw1Tq0LECLE1zqufc8H4Xs71r/11VSW2kB4pqf/wCXt69flKAlgegPo2/+s0MK+wFVQrot8lUeoNaDwh6TcNE3DpGtTup3WMHFpNL6SqFF3yphSpyQmOtmMzwOGefOQzKtlXbL4r4dTJCB5OHuHAGGJMpc95qz8M155rPJZ3W/yd2veAlL36A2vMxlQZuAhD0rm9YhtI3ibqrM2JbMrKS8GP0q2AUPOgMsZExKroG5SjGji2XKjPDONRZtIFWuJ0H/U4PKQA8/Lg1URluqgQYBOdh2YHOSeHhu4uDjj6NqJZFLsbUtZb0zuI5L4o8XawBji/vrLcK66b77Y9ZbBgBZGqZm+Bu7EbE6JRDXF1kg6q1RJgITYsBuvYdnR2FU5hNVZzr7cAk1JSK4wIzWw5hxmeWeKtCZrykUCFi1V/SxJKykVArWiYZpP9buY1xllDEYOXIiV778gnoQnDVrFJVkXmja5MUKl2UfAKhMpQXMKGPSRMcbct16VUuR3CfCU4hr756xi5aEAoEjIZmH11KSuWElLsdbiGo2YlTriGmk9epzTdMbCALL8kBRMRblBmmsYUyrLRSJHiy0Rw/lyzp0bU9YXOw6Pj+kHn7fdGuj7nusn13nl5Zf3Gaww3kePHuH9SOs6sIaj40OOjo5ZrlY5h7lpWsnRZR9YXTHJlzWtabGYjpUc9v5Rzb2xaybtYzb9LS5WN5lNTwkhMo6BcfQ0mHSe5HWBmIuFpD0KBFIbVoGe2SqXnhHwY+Diqx9z/vUPOfpfn+HGH3oX7ccWaLlVJG6mcGMFBRXTrxh1IfEr4KgKjq1EfGH2eQ+iWBzIAU9lca5AiZjiXopmo6Wt1UURM9BM/CUQYnKRKdCIJg0o7Z+kNldAJQVXBslASUfQnxrmv//LiHdbNr/38zAPqRjPt57R/cMbvNFQWgT9PvgvVqI34H0SnSgz3hOfFd3qv6yBrk3d52JMhbRiiBhXgkcjCAiXKvqKAHQbjCGEKVt/i8Zs6ew5ctjyOdvbLFP+3qfzMp/My/a/ubeP5QEVT1YlJIPpdJ/JDy9PsfkRZYzGkMesoACoXBpJ045mxHsHvTJmA1iidQyDCssRtUgrvScrqytzTkKCsphpEFb4g4qPEExFC6EMKqafM/3FSBg93o/ZKlY8GmUfSgfS5FD2w45HD17n2edflG1XmVQUYt26KEWWVLY553KMi0EJ88qGvYXrS7IM5MAm8ROFmPpXpwWvag2gvmzVqqrqhRhCnDL6Bc5cYs1QTL/qf8paJRStKYggAaKmIQmRZQFX/GdGNj9mU5K+RAM/amCTvlsHJSXt06Tyk5KlEEIUs6WGBSYGm8auFpKCLrV7XMyUnMpRliuiebR6dIpGVh3RyiyXOt2JcM4+KzKjyVpSNOJ7KgSu48tH2QiTo/ItGWjbBqdV4OTz0Y+yN0mDM43UU4imUrRLPIVBCjGFkPddVYiSkWA4XuxwNnKxOoDwGsH36QBZKZwhZjHvR04WJ7Rdl/LzIT8jAuv1hvV6xY3rc2KA2WzG9esnPHz0AD+ONE2bGhflSoZXtmGf0jOjfzMzq+66blPWJjJYDMy7u2yH61xsXmK+fEBkxfHhIbvdQGsMwSczIVFcAUa1j0A0agYuQxt9EmzjODCOAwMDZ193nxf+0w8y/zu3iSst8FXNwUZM0InUNPtGmJgVueqDSDk3ZR2urE1m3oXXZSte/Q45M5rCm0BmAeylp4esibhDUnaLF1dXEIBTaNXkjSAD+AScBECFiI++WAn6SPdfv0B8tWH3Bz9LvDEy/pIz4ixgNq487F/LSfWl8Q2fxVhkCzJvXV89BQiPc01yabmmIXjPMCY3p3MO61yZf4zS4rm4WhKPLXuzGZ/BxwmL7hWcVTduJRhkjIl200hSRgAS+6H/K+dTOUqxjBTtuZBZZt7CDwqavrJVxdJXrVl+1p4FJb7x33K+MtKTsefMJxIANjGm6q0YLH0lqBUnm+yW0SDdZP6vRmXybmawUyx/Mb3UpCyCILw5kjLlYvDZKmAUVIibtzyznCeVc9Z41ssLlhfnHF27JsptKZBkBOxkAKXPMkj8RMlyA7Li9qXEDLz1okMSiBWjMnmtq16IY8+0lhc1TQJKBOrgF4xhwsS8gjFqyi8EYyXn2os2mR+YMZ5ugG6WIs/0lBoLR0RjkR1O1gCyaddQIkyLkEz3q0ac10A2Nt9T1fUOIWahWDeRUMGIpCqpmbC4PUR8ZNOqEFt6C+orSidrvyBPnmlk3yQka5NNkhkUlDGq1SXnyDpL4xqJAeCK5UGZURpvFPSbimxQ3CLp5j03gG5sZhIhVE2jYDHpmbQjF6sZPkDjTCrXuThiGAa0q5eaz09OTnj86HG2ouh6jz7y+oMH3Lp9B3xKB71+csJsOqPf9ckP3TS5dGgWjsov9zTAsp4q/MsVqz9NAQJ6s+xO41ZMm8dshttcbu5g7asM/cBs0uFC0u6bIDEZGbBKjIe1mOBzZLKxtvJ5pnQ37wM3/+w7GM9gGEVY6nzyKPYvI9qOjDyDYqiATKVR1Mz/DVcGArbQnyk0aY1q+WR6THEnKe20lXgTa5QGlb0FrDX0/Zg7AaqlrsyDcl4jREyOrUhR2sUqEKh6B+jxGGHyPz2Duz9h/d9+Cv+eNeGlLe7nFm+YooqF9M6QrW/pXJVzqn9b4daFfq4IO5OqsbjGMZ1MsM4yDqmXRURik6SXSZSMkVgXP5Oa2RmIGUOgYz2+iMEzdQ8yiMv8sQoULntc6F2RoCoVkZBBocmULvv4ZsJlT5CaonAUpoBKgnxrVvhq4FGvpciUfP4yNMmINX9P7ok+EqMn+FZocifAC+Gj6b/cGEriiawWN6k1f3lwXip5DqG4DEvQeRD684pOUM9rrdWXKrJRGUv6KEWxY8zIw/v36CZTZvO5FHc1efwa6Jsyp1JgqbFVvcEYc48EIyjjzY7uz3e95QDCJKOSP8uPY6nEZSiVw1TQ6UGgZiRCVsYy+BNidDh7mokyC2lLKkA0Dvq1zJDUvK4BdOp7MdkKkfyI+eDLhqSiFEmr1XuxyWSaUoo8Ifr94hVRAvckLz1GBT/yny81B9Q/HypQkXKkVWsuJStVy8+xB/KM4vcSFrpnUirNkFRZz6iTkm6WK6TpF/U+FfCoCU+WQCp71b5bKHmyeR+F+eZUH+nHoMw+vVeDdErt9uJnIx804TjynoCzPYtpz3o3Ydc3zCYt2+2arm1KsIwEbW63W25ev5H3Qeeor7h//z7RWoyz2MZwdHyUshCkqE/jUoChCviixCjyqU6OqYar+2BqTKovLrq21otU6/x8chdjPMvt29n2Ddt+4O6r9zh7cp4sapiUXpfCjEWjDQyjpx9T2dExBHZ9z2azY9cP9KOXYjgQL2xeZw1wzMOXZ9ZWphwgStIx9H/KqN+wV9X1xo8UeBda1A6VVujdWUPrXKKvxtG2DtekQMG0tikmBpMYqveJt3g/MoxDKvYSSxDX3hDlfxog3A/JhdKPgWEcGUYvlhTtKFi2TbWs9gdvsPgt78d9dsb4oYs3zFnfVtbW7I1ABfRVRejNLg0+c9bSdi3TyQRjwI8j41isblrAy2sAW9hf+NSMptSKiDGy8zcZwxGT5hRr13vgNUMosW6WgcocqnnFKNHu9btMcQMGYgGd8parjZcKGL2qRBkBGjVA1LUxV45fzJ9bUr8G5Z+qDFmkUFYFfhNQEDAAWNOLBaah61q6tk1Bxa6RarGGFJupluTCu/VvtXYof8+8bhgIfiCMA34YiH7ERC/7rJaACPHK+cxMpOxFCR4O+LHn8aMHyc2wZ40zWCeF3KzLheRAeWRS6LREfm0RqPfiX3d9CY2Kxj0Gmq9YC/8oGOWNASsG6ewUA9v+GjFC587LY/If1T+EMaUAQUMx8avGkv/YH1P+ZTmouhxJYPvqfVfM5JTNsdbipTYCAUY/SOqXzfelzShBkqC/l3Hl9anQoKqjgnSKib6yakQRFt6DVWQc82NK3rUW3dgHD+V5MkdF4KY01zBWsyRsRsooqEFTO+UAGu0JkGIyQBlskHiDovlkkKbbYTT2oriNojZmsYZrizWPzm+y2sy4cd2zvNhgTKRxTgBmIvBhGLh27RrOuVyrXw+WwfDk9Amr9ZqjxQExGqazGdev3+DBg4dS+tfQNC3DOFZ0XBh9opWK9jIxKZrXX5nMIFBSEwBXdJxI49bM2wes+udY7V7kyH6Gfhx58uSM6wdHdF2Dmmp13wImg0V9rPeefhjwITCMUghHauQnbZi9K/eQiLHKQa7Aj2yXamZp+2LlbsukVS2FzN+YvZ+jvE9BQVKAhGHbVP3TorQni2XKGdaznQTgSG5NXr9Dfs5WjBBzxcEg9URGrRSo5cGz+TgT4RWmmN7pfvKQ+W/5AOMvfZJzuaupy+yrM1ymkP/OYMuUe/VjPaZai6Nr2+QWCJ6+H3IAsRWrVeKTV8oeC3gFkuVO2vomTdCwHt4GwKS5VyWJKkWL4iHW0TSufVuXjrEEcZuKilU5oYpBKcpFLWqiggtZK1UUMUoD1DuSNfto1E1adszkNTV7Y1XemO+Ql0uZOVI1ylS4zJkdTgCYc1YEqAJR0Dg3pbcQA8USXAEBHUCMRMmmizHnIWGNWhjNPmrWz6/KTD2feQIla8KYwOryjPXyGofHJ1irNBdxpsG2DcMw4AXAGJJiakhW2kDIlrNMw28NC3wJYOAKCkgCtpKy8nORQ4a98lLIhkXDbjzBEGjseSECMQXqM9PCSolRq4dREGpVfUmZco2U5Ddpcet6vjklr/hSsqCKyn5NPtTaICmdlrTgOvkad2UvXEYd+4hON/oqkEoHStFhKPNRrTqmVatdFWpiqhF58cHrQzUVptyPMbSuyR3hrLESrWwKZ0MLcmgKpdQwEIqOGjCKMiLZdzmcpbZ8YVzKdNOZC/vrYAACJwcrYrzF2fKQWzcusSYy9D1N24n7RdMlU6+D+XzB8vJSdzlffT/w8MEDDr/sCOMjrnHcuHGd2WyeXQVd27Lb9YxhpLh6ZGVjoWkFensgS+hD2VV+v94foFi60ndmk7tshpusd29j3t2nNZepPHH2exapkjSzUnFMfcbehyzwRl9AgPcqNKTgVAaJFVjOWkoRctlnXBFizmaofp81NiraqkCAxodoPXb9T5fNOYOxQjNBQaWskcZF5LLelOhrU8ZQrpgrbWuKmA9SfCkESRmLmb5MHq+ey5+HI0Ywn5vQvnqH6GVssd51w36BoZp3gNl77htHbUxqXNY0EiQYIn3fS8ZATNqec1ibWHHuhpgFELkITY4kF9YaA4zhBkO4SWvPacy5iP5KCajWoQSt1a5G3d9auNZ0nxntlc9M/lzpVYdtolqghI4ywrwKyIrJPWaaq1e+jKWMMMPEwo8FhEQB4zFOgYA1W4ipYJVaq/aAbdTxF4CaQSslSy2qO0DoLrccN2UV9TupymCpoqvy7eqyvnG2us6pFs/r9+5ijOVQLJvGmGxBtrYhWapBm6trWqLVvirZwvNW7QJfagChCvx8IGqRWC10JY/VTF60YUc/HmPMDsMl2twmLZQSbXlORsZRUyqqw2qq6RolkChfNfmxGJMRa47GVQZplEGZbDIrgr0cKqjNbMrwqwMhJ7ReeudcOpwh5cRqAGReHmXAe8JRAlxMJMaq2p4eJAEtNtch0AXbBziFUUWsmMVyvILMy3tftHhjCgjIAlwFREzVGq8wiGydMPslQTOLCaqVKGgja6oRwEeCgePFGmcjTy4PISRz6mp1yfWbdxgHL4WckpGwH3pu3LjOxcV5tlwocZpouPfqq7zz3e9OQ3CGo+Njjo4Ouby8yHUIrLWpfWukmhOZhnJZaP1tdYjzctfHOJZ0WlvRIhGs2TGf3GW5fQfL7TuZzH+KIC4rHyM2qGVFBJ2W1pX19yEyes8wpgCzUaoO+qiuoZqWytpjSG7EEIXSC/t8A6uPFbPVX+6VFNcvFcCQGKBkAMjZrOM71HWQNICQK0SaKkhQXX56AGI1qFBGJKAh5vLAXuudxOKaC4pMhRYyTVRL8qaXTnCQuefnVNYJ9CxVjI2rptjqb3mUsYa2aem6DmtMcgENfSp+ZZL5WuNYksVNUo0FzRQAZ/a2VXlTwLDdvROwzNrXMIRsNs80aMp3YrWZeYZS6Kmm57w0Vz+K5Zmxeo/emFmj/KJ2F6fvKOVc3ZMr6yrPuvr+siMVoci5K2zZEuIMQ8DRgw+MfQ9NzEHRpRlWZcdTC0HM6k5WylLdByndFZOMSdb+EmRp6jXRp+ZxicxUIJB/HfN6KYRLFh9PHHc8eP21BCKP2zzVIGfJxeSmDZKdFYwXq1YkmEgI6axfVeL/ddeXEEBYoaAskItAzSwi72RFgJm4LYEJgz/AsMHErVTKLwtYIvplgTVYBpNMJkaFnZF0o1iES6GNNN4I0ZbGHkkIJg0zhIKac0Afcigq10duA5zBTAINoWo+pPSfz4JJZkEMKbI0Z1MoXJFugUp8cd9VoeafEKXQcJToUBmnSQuF/q+kG5m99dcCRDqWmr0FWVPnmlx/wBgj5teq3OsbzBnpP43VKP6pmPcqP+fK92sRm/YoAY/5pGfaDZwt5/Q9TLsJ6/WWxlkJnioHqO97bly/wctf+EIWZAaLJl0/fviQvu+ZdBMMkW424ebNG9x//T6DTT43VwXDZmtWlaqV0l/LWu2ZNkn3ahGlZNWq6HbPZJNobNbdZzfcYtM/y7a9y3xyRoyGUQpV6Y4HKNqICLjk9x4ZxJfufZAKmxEv4dq5MIowhihEGARo1+Zyoy68PatELNpzNi/Ue27yfLIBCqSgUzkfMQaicZkuEk2l86TCSYu95EZf+cyl51prch2BVHSFXMRMrSMaRAkChtTaZGJ1lit6fcN1RdIU+Z9PaH2qswDee+BVp0P5x55LwDpijOzGAT+OiS+KpUCLm+W1yK6P2m//RjGtb/bxOv14i9Yt6Zqzss7G5NErQ8paOzJ1A6baFx37/pwKfWdQhPIOzUAo48zC7+qyv8kcKoK88oGeJd2F+hzqNgnvNL7wTZExEUsI05SlRkotVPeTGx2msbim9E/R/jq6zmoFSvtxxRJQj0TlXy6Pvj9r7f5az1ezyrK02QPwhr2C59Ez9Gteu/sFnHPM5we4tpV7ksvW5sBDgzE2AYIYsFr7ICKFmK74EX+e6y2DgYb7ZdKxLEJCRWlwpoJ8SeBJu0UD2WXg5xxNP4ofPPPuNTBJmBlr9sz/xX0gZYWRZyjQUA2DYnou1hsj/eHJwlA1lSibEFV4IZHPpipGRMkCyIGNmCxATSxlLEOMNE1axhjquUoWQ6OrUUzyWpegJogskDGEYHnu5BOEaDiaPsbaXQY7KTBRyh2bIN8t1RGtNk4yyTLhcrOb9C5rdQxBsiqEA6iPVRdSARBgpJOk0nZKzXGVlaFYEsqBVQavQM5mhhFFELkcLAVvv/M6zkWuHw24Dh6erTlebGkmM4Z+YDJthfH33Lp1m5c/D9vtRvKvZW4mQFzSNRc89/yLklwOnbnD5dnnuHfvnNb2xLAFlqXmAGSGF/MPgvsNeV4ioygV8NK/AyEF7JkS1FlamRqscVyb/wxn6/fR2B3TZs28m9HYdF/rUrxGhNyPwXuPt5ERzxBHTOgZo8fGiCcJRkvaJ2VYKQ7EyZInIR8x2Bjw6V+JWZLkRgIUgcbZnO9fA2k9i5khq/COSMXAJlsDjNB940rrZWtlfbTbZFT+EIg2ARItnFMLnOAjHl8Cc2Ng1MBhrSEitFrXC9HRqhirG/koJrkqmbLjq8JBRbBXLkaUiev9JVZHaT7V5XB0XUfbWPy4TgHXPpmh2tZJI68G5yKpN32qKRFCIDqwMRJs0U4RwFrGJ3zDGEKc0zVLDmefZdKcU9xwyXtuTcqoN1lKy5nM/KcSXlrC+ep5zssa8zp6VRbk/OeYEShyobbKxApQC3+tBWXuqq31BjLi1IS8ihwrkF7eI+AAiDQsus8S4pSJu4+xKpQ1q8tggsO5TqqplvEkK24keo/3A8F4qXxZc7VyMBLPUVtboZIQxqy8aaZV7p2hMqTCo0qnCWiVDCVsQxwdD14/48WX3sXR8S3ayYTZbEaMKZhf36VB5vV5w0AYx6yMfrHLxDfNG3p6Pb2eXk+vp9fT6+n1C+V666mFT6+n19Pr6fX0eno9vf7/8noKBp5eT6+n19Pr6fX0+gV+PQUDT6+n19Pr6fX0enr9Ar+egoGn19Pr6fX0eno9vX6BX0/BwNPr6fX0eno9vZ5ev8Cvp2Dg6fX0eno9vZ5eT69f4NdTMPD0eno9vZ5eT6+n1y/w6ykYeHo9vZ5eT6+n19PrF/j1FAw8vZ5eT6+n19Pr6fUL/Pr/Au7avPCeazhHAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Load an image\n",
+ "img_bgr = cv2.imread('../assets/imgs/epic.png')\n",
+ "\n",
+ "# Select a model for Perspective Field inference\n",
+ "# In this example we assume the input image has centered principal point\n",
+ "version = 'Paramnet-360Cities-edina-centered'\n",
+ "# Initialize the model and set it to evaluation mode and move it to GPU for faster processing\n",
+ "pf_model = PerspectiveFields(version).eval().cuda()\n",
+ "\n",
+ "# Perform inference to get predictions\n",
+ "predictions = pf_model.inference(img_bgr=img_bgr)\n",
+ "\n",
+ "# Print the keys of the predictions dictionary\n",
+ "print(predictions.keys())\n",
+ "\n",
+ "# Visualize the predictions (roll, pitch, fov, and principal point ([0,0] in this model)) on the image\n",
+ "param_vis = draw_from_r_p_f_cx_cy(\n",
+ " img_bgr[...,::-1],\n",
+ " predictions[\"pred_roll\"].item(),\n",
+ " predictions[\"pred_pitch\"].item(),\n",
+ " predictions[\"pred_general_vfov\"].item(),\n",
+ " predictions[\"pred_rel_cx\"].item(),\n",
+ " predictions[\"pred_rel_cy\"].item(),\n",
+ " \"deg\",\n",
+ " up_color=(0, 1, 0),\n",
+ ").astype(np.uint8)\n",
+ "\n",
+ "plt.axis('off')\n",
+ "plt.imshow(param_vis)\n",
+ "\n",
+ "# Print the predicted values for roll, pitch, and fov\n",
+ "print(f\"roll: {predictions['pred_roll'].item() :.2f} deg\")\n",
+ "print(f\"pitch: {predictions['pred_pitch'].item() :.2f} deg\")\n",
+ "print(f\"fov: {predictions['pred_general_vfov'].item() :.2f} deg\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dict_keys(['pred_gravity', 'pred_gravity_original', 'pred_latitude', 'pred_latitude_original', 'pred_latitude_original_mode'])\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAGFCAYAAADKL0tCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7RlyX7XCX4itjn+nHvO9S5velNZ3pv36llkniRAgpYAIQZoZhr19JhmGEzPNA29WNMgREPPWoMWjRMIOWR48tJz9apeVWW5zKrKSu8zr/f3+HO2iZg/Yu999rmZr1XdizX6YzJy3Txu79gRv4j4fX8ufiG01pqH5WF5WB6Wh+VheVj+f17kH3UDHpaH5WF5WB6Wh+X/X8tDEH5YHpaH5WF5WB6WP6LyEIQfloflYXlYHpaH5Y+oPAThh+VheVgeloflYfkjKg9B+GF5WB6Wh+VheVj+iMpDEH5YHpaH5WF5WB6WP6LyEIQfloflYXlYHpaH5Y+oPAThh+VheVgeloflYfkjKvanvfA3FgTvfE5w/XyJmfosT50+RqlcYPHOIlNTMzR6PS7fXqSvwUbQ7zVp7OygVQgEoC2mZ+aZmp1HWjY6DNFa0wt8QiFQCvqtBiv3bqICDw1YlsvUxBwTY2Pkixla3T4qhNCCTr9Hr99l+94iYRiiVEDNdTleKOFIBw0ICSK/Sm2rTX5PEkbPRIOUEtu2EUKAAOKUJUKgwhA/8OMvsCwLIQTNUoVWvsj0+jKe7RCEIa7f54qTZ+noaUYnJhGWhRAACq/f4cb1a3Q7HSzL4ejRY1THJlEaFArbkqwtL7F09za2JXnm6Wc4MDeL4zqszjR4Z+EK+X/UZWd1h2w2y9NPP021WsF1bSzLYnVljXffeZ9sJstnP/sytVoFKRS27XDtxm3eeecDZmameOWV58llM0jLodvz+J3f/n0arSahVni9NkL5CK2wHBfLcvH63YgkAg1k8gUCYZMrjTE9f5Dv+dJnqOazCEBohQRUdG070+GNIxd49eZjFPv5iBaGjlorQ++4diHMeAiNt7HB8q/+It7OdjRnHlTiyvS+bwSaPyznjEi9N9eWnnuR0e/9CkJItBTUsy2yfhYntM0cgaS9Ck2S10bAcIobgYjqH8p9k75GCIQApXREk8H1Iqovfg8ieu6++oYrpGf30QJyfia5/v57zH29G9fY/up/QHe7fwidHkiq4TUS9Sf1wO9exwN+UkKjhMbSMvUogZ3PM/LMC4x+7kuGnqk6UsszRauITlon7THNjG4Q8b16iD7Jb/uLFtG1+7ti5nYz0+HNI5/w2VuPUexlMXOa1HjGc3rQcdO+6JGptWDIppP2imjME1IKHdWXbp/eN/dE8mrG3MyxdP+0hr1sk3/1yu/xfZee4/TqoaG5NdRVEbdbI9O0HbogRdjoAe3f+DX6H5+7n5ymqmhtDjFZcBzE089jPfcyARIpJUopbNvG93wc12HPafLvv/ebHF6a5IfPv0QQBFiWJFQhArAsC9/3sW2HXt8jUOBmMnieh0CTyTj0ul1s28J1Hfp9D0tKLMvC6/exbRvHcfCDIBnnMAzp9frYrmX4gobQD5HSYIDn+4ShQtgS13FAafrNJiOXz1O+ch6720UL8CpVln7wP+NP/fN/fB9d9pdPDcLNNYf5X7ZYciS71hZLywVyKzYH56Z55vnTeAQ0e03ure8SBCHdXg+NNOxRCaSAzfUVtIaxySmk7aA1KK1RgY/n+ezu7qK0xHay+IGH1oqdrRUePTrL448fJ0By5t2P2en4hEFIo9FEIbBth2zf5/nGDpX6dkKwwQyTaBWBLwItNForwiDAduyolUQTXKFUiCUkKppFKgyRlkWm38Px+mgNi26ebhBwKvCpKZ+z6yv4YcD45CSWZeMHPttbeyBsyuUqzWad23duYTku1eooCkmv16HZaDI+Psn21iYfn/8ESwqmpqcYvVfgqbPzXGhdZHx8gvX1dc5/cp4XnnuWXHaEwA9ZX9vg4MICKysrnHnnHV544TnGRkfpdj1ajRanThzj5q2bnP3gLM8//yyZjMXm2jrzs1PsNvOsb24gyOL3FEJLHMuh1+9FkBaihY1jZ3GExOs0aPl9VpXitdctvvjqi4wUs4Y+ekDnQr/A9196PmYzyRoWIs2QBswqBi+7XMEulfC2N5M59yA+OfhlGJy++7WDa/bf3774CSiFdMxcFLaNN1IlyOfRgIyYq+GpGp3iQQPeFDG/pN6YIUYXCjHUthggB3wy9S4GZIbZXdzm+N6Y0cZN6O5HjVTTNBrVbtF8+zvfHYD38cf7fnvQdQkTfnCV3xXoAKkFUot99Wt0EOCOjZuvxICOQhiwNqAhIoASqe+GHxsLZSL1eX+fBqCVIqZIjeR930PJy/H9l59PnhQLAYnQE9MiAktIPYf0Z4Y/C9NflYxv3PJ9aBp9nfy6r+77OgkIoRnpFfm/vP4j2MoeAvWULHjfOGpApAA4FjbidZH8FIYEqytDfUruj7+MhBINCMtGSwFSQqNB4PnY+QJKKaSQaKVwHAvQVLw8f/X3v4KjJSoMcSwLAMu2CcKQMAwRQhhlKJMl7PfxfB8hBGEQopTGcRzCIEArjWNZpv2RAhYEAQiBbVkGuIXEsR18GeB7AZZl4zoOvvJRSmPZNplshkazifbMWs84DrabQbVbCK9v+gbQ6xLmSw8cmf3lU4Pwa7VZ2s0GSgTYYci1G7c4NTPNE0+9SiarWd/YoN7cxev1qO/soQWUa6PkMw7bW+uEnodSIZsbBqzGJmcQliFmu77H7vYOKtTMTM+SzWVYXVum1WmC8vj4ow84dmiU2uwEdlbT3qqzub1HGCpGJ6fJZrMUl+5Q7rVAa5QKkVJGkoxGKQVaI6VECoFSilCbP+37OI6DiL4PghApBNK2EFqbgUIbbRtolio43Q5jrTrStpGWTT1fwg98trbWUDpgamqazY1NGo020zMLFPJZVpbvsbOzxY3rVzlx4hRuJsvtm7eYnZ5iamKcjfUa12/c4NxHH3Gie5xcvsS1m7eYO3CAWm0Ux3VZWlrk3LlzvPjC89y5c49yqcTRY0eZPzDD2bNnef+9D3j22edYX1tjfHyMhQNzVKslzn30IR98cI6jh4+yurTEc88/Ryg0b7z1FotLy6DzCKXwfA+tQ9ASLQz9HEvS77aQOiT0OnT21rhzU/NtS/PlV1+mmM2ihUYqozfrCHTEfdppzHT1MNuIGJCVyzL9Qz/M7tn3COp792uRD5yV+6R/QCtFZ+kefqP+h85p1WnTPPseQ+giJMKyBp9Tv6VxZT/2pFu4X/J/UOv10Dvx4Pf7Nc+0RJPWUGLumH5uGjCVMn8YBu+MVMnOzu97nB7immmlbT/u7u/EfoZ7H/5G7X1QT+MqZSZD8ehxCkdPmKfrNO0Gd6p9gsh9jYnviqeb2D9iYhjkE1V2oNkNdT7VUnNf3MFIh9VGSBi6POl2rCkPt0Fgnim0Bhlpv7EwIQDMWEkhBxXG2qtIt0ckdBFDnkW97xVj3YnpGtexX8BK3xOPV9Q3EWvmgOr3Ce7eIdzbQSgNvr/vacPkiwUVYdlYn/9e9PxBkBLlZpBuxliHNFiWAVvXsQnDEMu2CH2wLWNrswTGmilkMj+0EPh+iC0tpGXh+wG2ZSycgR/iunbC22UkPRigd9DR+1AIpJSgTTszmQx4RsjxfaOohWFIEPoIS5DLZel5Pp7nIaXEyrrsPfsS/QMHces7WJkMvYkZmpMz+ynywCI+be7o//zo04S9Hu3mBpYKkWiqDnzpi89y6NQxfvvr3+bW4h7dtiLrZChUyji5Ao4l8Xodtrc38XpdJBohLAqVKuWRGu1Wm8buNoV8gbGJSdxMBrQmCD3WNtZo7jXIaZ/RssvEwhw7rZDVjW0yTo6x0VGk5aKwKDR2eOTuVWRsRhYCmZJSpWUNTCxolNIEYWSGiAZBKYVl2Ugpk/uUNsAczSbaToZt26XqOAghaRZK3JuaZXVnh92dTSSafL6IwmJqeh43m8OyJFIqlpfusr25jmXZZDJZ5mbnmZ+fwxICx3VYW1vjwifnUVqRyxc5eOgII7WaaVsYcPfuXZbu3SGXyTA/P88TTzyB69qAYnNzmzNn3iPwQ06cOMazzzyJQKF0yJ17i5w58x6FbIEvfO5zTEzUUAKanS7fev0NVlfWEFrT77bRyo90P0nGzaGUTxj6aARKC2zXxS1WUE6BY8dO8OXPfYZ81sXSGmO0FQ8E4CGmKWKQjtapUEMQhgoR2nB/IWNGkzYpCoRImYcZaJEA2++cYf2bX/tfMGsnT0q18Lsrdf9Jy/3oPfz9d0P5/eV/Q4MF4IyOMf0n/jTZqdkHPs/w3IG2JoRGC2kYZXyphsR0m9bnhzFraA7cL6QMvtdmoM26i+shrfnG9UX3REKZSpnvk5oTWWJw06DOWDs075UKH+weSUN/CpzSs3ogmESuiCEgHxay7hMEHmTmTbXTXG7siDHY6qEaY2EkttKkLDEpkN4nV0UYnBIaSFmqkv8GYCsg4oXmexX46E6H7td/H//qZbTvJ/X8ocWooIgv/wD2qScIdYgGLGm031iBdGwblIrGInqNAFQrjZQWnu8hLYu+52E5Nv0gJAwVjuPieT62ZXRL3+uTcR1sS6J0iGPbBL4PaOzInagj5UyHKnIVCaS06PX7hu9qhRaYZ1kG6KWUdLrGnK3CEEtaBGGA1gqNJpPJYglJfeYgP/7X/uIfSppPrQkjJDJboCDG6TS2UUGP3Z7i977+Dtn3zlNv9wh1lrHaKKV8EUsKhOUQasDJUR2fZmdrHa/TQiqPxs4m7WYDkEyOT1Ct1gi0RqkAW9pks3kmJmdAW3T2dtho9Fm/uIi0XEbHRxkdHUMqhdaCXgDdUoX1yRmqO5uofm+w5KXEdTPGpGVb6HIZS0rsdgvpeXQ6XZRWoDQ5yyZjyUSpiJejbVmJP7ng9Vgfm+LKzCG0tOkLs0DGp2aQUrKzsUq33aJUqZLNuoRaEwJhqJmemSPweuzt1dG6Sy6fxY0midaaqalJer1jXLt2nW6vhx/4yGjBCmkxf2CB+t4uzUadjc1Nmq0m42M1pLSZnJzg0MEFrly9xt3FuxxYmGV8rIaQFnPzB5i4eZfN9S0uX7lCufIMtuuQy2SZnpik1WjTabfJZLP0+wqtPBzLRWkV+Us0oJAyQy5XoN1qoqwet27c5DXp8MVXX6LgWsTMSwojy8d0TNx2kHC1mIFGSsBAapYCLDuCcpES2EWKIZqKBbEiM4xItWeew281aN24jvK8+PJoHvNdeYbyPMJ+7wG//G+F5wdouPcrxQ/+/rtdN6Ttivu/19/leyHIzswx8ce+QnZ2bgA++zTBGACEEBFj1CgF0orHSSD0QIiKn5GAAERaVAQi4v42xbAdj51IoYXQA1U6BjcjqJl647EeHpEB+EmRAqwHAHDUvFSbMcxeprXZeOUPP0VEc1AnfSRpi4iEjuSuqM+xC2YYDfWAVEqTuiB5L7/7BBg08wFC0MCEf/98S3B/aDyGNe00Xcylhojejat0X/8WqlFHt1qg1ZBg9YcWAbJUIjszRyg1hEbgC0Mf13HMGAAy4hwSY563pGWuj0R8UEjLMoApLbwgxLZdlPIIwzBRphzHAdfFDwIDsgqCIMC2bTzPM75kx8Hr90FrHMel2+kSqhDHcXFdl06njbAspGMhbUm/38e2HTKZLI7jEPimbmlJpBZ4fVO/VgohBVn308HrpwdhDFBYTp58BXqNDUI/pB1KmjseAsH41CjFfAlX2lQyFlNTk6zuNljfa2LZNiOjo7SloNusGy3N7+NmchTyefKOQ8aRYMFOq4PSEsu2GZsYY0MFdJsNhFIo1QPfJysEo7UKjz12mpuL97h48w7Ls/Osjo6zvbZKr902EpRlUa2NMVKtUSjkKdZGKOQz2GFAu9nm/McXqDcaIKBkWzwb9KmFfrLA4rWTnrLB7g7N0UlKI6NIpQnCED8MCEKF7Wbx+j2azQbra8uMTc0CxgfRbjUI/JByqUyr3ebqlctYEmZnjVbSbnfY3WswPTPL2voaN25cIwgCpmdm0BqWV1axnCwTk3k21td4/4P3+czLr1AdKbO+toYf9Hn11Vc4e/Ys7773Li+//DK1apUb129w5PBhjh46zIcfnuPd9xVPPf0MO9s7qDDkS1/8HO+++x6bmxs4OkfoSaTl0I8ASSBBajJZB8/vEfp98D26ap1LFwOEFPyxz71I1paAIIwk2NgvLxJnKinmlV6fKQ0l4mg6xdwGlP/ui94wGMMkrVyeme/5fsLPfs4EAEb3ay2SOhJAievWoMKAoNFAeSYeIQUXA19uxL8e3BIZMelBXyEOPos6mGhJgvsIkfSTlCkzqi9Nw0STGkgWw4AYA9FABbJzOdzRcWQuH2k5Ud/2+ZNjmosYBO8Do0HnByCW+jVaMLFgNWiqTrU2vtD0IRnnlFwgEYnzUadoMmwujlqXmE5jWg06IRKNcEC7pE1RG6SMhZroNhmDzwDkZGwOjufCPjkoEUJSkuc+mTGqPP4wTM77ZCf2XzcQcIxQkpoD+6dGMsMEyfyL6RdXmzb3i/RcGvQnXsNho0Hnd38Ltbcz/LshDAgLq1rFGh0bCDP7lqvIZMk9+gTO/ByeF+D5PkqF2I5tAF2AHQXsSkuC0liWRRgGCMsyPEUKvMjcHCiFtGyCbg8IsSw7AdkgCAjC0GiqShntXxqTNBaJKToMAixpXE9aKVzXpe95BH6A4xjlK9AKFULGzaBCTRiq6HeXwA+MNVVoXNdFh4pup4uT1di5HE7G3T+gDyyfGoTjeaeERksLJ5PDD7sEWoEOkUKys71NGMBIsczETJXPvPI4y7t1vvXmWXabPXwFoQKkHZk9FV6/y/LyIu70NM+++ASjMxOcOXfBBHgpTafZIOh7ZHI5/G6HEJ/tjTUKQvC9L38f47M1rILHrZW71FseO3sNeqFFtjJKs7mL1ppevY5n2cxXKliuS6A19U6HS1evYheLLMzOc/PWDbaCgI1QMRIayTiWaENlPkthoucqXpcPF+8SKEVldAzP91lfXUUimD94lGZ9l82NVXZ2NgnRzC8cot/rsbq8wtTEFJOTkywvL7OyusSlS5cIw5ByucL1G7eojY5ycOEA4+NjfPLJee7duU2oQizbZWe3zuFDh8llHBzHYWV5kbffeotHTp1ibXWVJ558gmKpQC6X4+0z7/Dmm+9w6OBBpNYcPXXQSGki5L33z9Lu9sk6WZ586gmyuQwvv/wib3znTTbWt7GzDn6vjYikUiXAtrMIy8JrtRFaIZBov4ulu1y8cB7XsfjcK8+TdUSypgfRn6TxIKUIiOHAmlji0TGzUwnjkPvcCyCMiUrrFJOJfhECpI2dLxl+IwzTClWMLgIdKmwZaTcpoM/UxgYahR6wpkTvuY/xRv1MzJpxG2AA3DqCG5H0P+bVaQ6aNr8OmetTpIlNZoNnatIML4UPqTYIBuAc8+AH0D0SOo25Nx4hY/qPGX+sRZLSOM0zY0uFQEgTfGXGhvtLjDr3FZ3UH6+9+LJ4rGPiDyBxH3wk4D+INB4IBmktb1/EdOqtFBKFSoA0AWA9oI9Og18yX1JjF81hocUD6CvRkd/3PkV0QNBBw5KJNvguFir00CVpYSXuUzrCOjWhHyDQpNT8yGRt1pZq1NHtZopMAmFZFJ55juLTz6GlRORykMulTN37ihj0P5/N4FgWfb9v6o9N5EoZq2O0XqzITagx896yLAQCP1SEWqOCENc10dCO6ybjadk2vudhWRIhBH4Qks9m8MI+YaixbQvf9xJa+UGA1hhXpBDGYqpCLEsQBjqSBTWu4xISEvohAh/HMQG4SoUIbZPNuGil8YOATreHfZ9Q9eDyv8IcbSTDwPfod5sov4/lZLC1xve7gCbw++xsb+P3fe66PlduXTGDQ59+t8XO5g4oQW1skjDs09jbAS3o9XrcXbrDlRsuL01XsBzjf9jZ3DGm3VKZSq1Gt9tlbXURpUK2N9e5fPlj7IrDu+fepdHssLG2SxjAxMQU+UKOfCPP1vo6KgzZ2d4kk3EpFvNsNXa5ceMGteooCwsH0Rocx+Lmtavke4GJuotmsYpMHJYVm6tsJsOQY50mnyzfw/M9Wt0eWmnGpmaQTpba+ATSEqyvLbOzvYFWCt8LmBgfY3Jykmwmw5FjR3EzNnfv3OLSpUtkMjnm5xeYn5sDLSiXKxw/fpxr169z+9ZNsvkih4+cwM1mQQimZ+eRQrJ07y5vn3mXz37mFYqlIkJopibGeenFl3jttde5dPESX/7C501koA45dOgg7W6Pcx98zPzsHI5tEyqfYiHHi8+/wNe++S08z8PNZvA7AVqHCGlhZzJ0uh2E1kgNWoKbyxL223h+kw8//JAQwRc/8xw5O9I8lCBmezLNeB7I+2JGN8xAzXfRnVFwkblao5RMmRo1SiuzmLVGqxj0BnrB8vom127fIVCauZkpjs/P4tpRJH2aKcZgknwBJvBFp1lf0hIpB0yaBIxSQJpmorFwIoZrSckWqfWWArpIRUwLGkKAL42bxFXOQEDZJ/nEH/fz30EXZHSdTOgwAOKBZi0i4BlEA+sUnVJCl95HIRlHwusBDYjHWSWCxz6RY8iFsT90RSdq6LAAlpKnEkFlYGKPr4jNyop4a9CwZBT7RKN7I7/kQIJKgZcgiiIWsfxIrK2m8TMSK1M0HRaYBvPs/jLc9bSgJ4buH/Q9fnAkGMTPSmiUNlcPKo/9siLVOUMaNZg7CNyDhyg+9yLZo8eRrjsQ7JL+ieTzgOLRbxGNHddCWFl8zzPaKqB1bEERSFsS+kFkelZIKfF8H8uyCIIQYVn4no/rWAONOVKSHNdF2xa+5xmtN5qzjuMSBB4iNLQLfKM5W9Ki1+/hOhks26Lf62NZFpZlgw4I/BAbaXilH+JY9kBYjEzfYRji2i6OFWIJC18FdPv9B4zm/eVTg7BSPmG3Rb/bBa3J5krY2bxZs506fqeJJTRon1azwT2h8M5eQTqwvrbH7m6LjJ2jVBtDuBaOyCEtl72dbRPR6vm899Fl9voBbc9nc22H0IeZmTly+Ry+0uQLJaanDrC5sULT6/K1N9/n/avX8ITFXj3EsjNMTI/juFmUEJQqVSzLZn11hcD3WFpeot1p4XV7zM/OMTMzg4z2nY2Nj5FxLJyPzqJbTVRggjasyBEfT0spwLEsRlGM9roEK4uEuSLTcweR0iYEhLAYGZ1ASsnq8iKN3W3y+SLVSsXsU7MtkHDo0EFU6HP3zj16ytDV93xCEQCS0dFJZtodFpcX6Xc7NOs75PN5lCWxLIeJ6TnqjSat+h4XLl6kXClRGx1Bo8jnMozWqtT39njvvffIfvYVRqojoCEMQhbmF1hdW+b9c+/zxFOPkXUybG1s8sjJ46yurrG9s4fOCfrdNplMjtD3EaHxD2sBQlpIIel1WwgV0m9KPvzwHFLCF15+lqyV2uu6nxWJWPtMcyEdLcKYCUcBXnqwkBUkHMmIRAqlRRLAotEoFFLFAlO801nQ7PZZXN3gyrXb+GHIysoaE9URJkYq5tIImXTSVPOmnmmh0VR6hWHNKXVNGjzSQkGarYoEBEQCZFqISAsQg7pSWo2QoBO5Y6DxpvcTX5i5DQqeWj6GkPG2nZgNptsYj0REWzHQmpKI43g8Yq1FCpTSKe1Opasyo5DCQjXAooTr13NtBIJKL2/cAXF08X4aapH+lNS7X1nbJ7pEfRgG7ISUEUjFfY0BEqHRamBJiOkfb0mL743bl5i700/VAw1ZpMYsLegk4xUBd1ynSASkND0G/TKa9hB1hvoJOrIKMdT+2IkTtzcZZ52Kp0jaqgZATWT+TywFw/EX8Wo0F0rypx8n98ijicY9mL0DYU3Fa3q/cAQgjEBjWxLhOgRBSBAMAFcQrW8rjg43AVlaQ6CMFozSSMvCCzxs2zHasOMYzTTwyVg2gQ6QcYuUwrYtlDBmaWMQM2NrWdKYuAMfRzoISxBohdAWmUyWdqeDp30Qhnf7PQ+kwM1m0FrT7/WwbQfb0tiOjdfr40gLYX06eP3UGbO69S38dp2sBaVyBSdbBGmDtMgUKzjFCqGwUEKh8Nlp1Ll9Z50bV1do7bSZro4xOTaBdC20BIRDrlihOj4FtoUWgm4/5JML17l7c4m8k+H4kSNM1UYpZ1wKtsTSkC+UmJiZRWZz9HzJykqT9fWG8R+Pj+PYsR1egJCUyxUOLBzEzWQB2Nvdw81kmJ2bIwgCPM/Dtm2kFJSrVZyDh4x5hRQbjU2Y8YyUkgkBB1XA090Ws+0Gjb1dAwE6RGmNtGwcN4PjZgBot5vcu3uLdrsFaITWeJ6H5/mMjo4ihODmrRssrywiHYnlWLTaHZrNLrMzC9iWw+rKEivL9/D7Ht1ul9u3bzM7O8vxEyfY3t3lzDvv0Kg38TyfK5cv8/RTT/L5z38OL/T55huvs7G9w9LKGr4X8OKLz/P0009y6/Y9Pnj/PGtrG3S7XR5/7HFefuUlSpUSws7gZAsoJQh6fbMdAQiFheU49HvGNA0a4bcR/TrnP/6Y77z7Ed1QoIRCopBaoSPznlmDCYsYTDAjCg8z3Ij5E/tyU5xJIVFagApJtDfkwP8sDHNSCHY6PX7j69/g6q3b4Ae4gc+9mzd48933aHS6pm2RcJDcjsaXAb/6+Bssjgz2LkspEqaX1rKGmfegf8MAkvotutdUpRFCGbNv9DmeIwnjFgIZmdcSX51QvHXoIm8fvoiSw+bNYe4d03oYoGCgZQ1fHpkhBxvAiaNq4zWQ/BIx4kGSC51cI4DFkXV+/fE3CGUcqjecEGMoyUj0L25qor0lZn0GbtAUHYQwJnAhB5/392go8YTe99yUmXnw3QDwBqCWGumor/uflAZbRAzQArPXOT0fhNEwUxrqfnrsL0P7z9N9YyAIpOKkoyA3TVrbTXckvl4mc1km83dgyo8n6X37HYYtL/sW7v0gnu5fbOExJmbHcXBdBzDrS0pQKjCBW5Er0Ph7HUIF0rJRWuE48fajECnNa8ZxCYMAgTbBwVpjS0Ho+4kPOO32CcMApQx4Cmk0aWlFSToiy5rjOkjbwvN9pG0Z4UAKQqXMb5aJju55feMTlyYuxvuUmvCnBmE39KhVR6mOjpPNZrCxkEpgAUgHJ18mUxohFIJAe0CfbqdJ6AfMzcxSrdUoFXMUXIusELjCQmAj3Tyl2hhE2qFSPiroU8znKGRtShY8+/gJXnnpCfJ5M/C2m6MyNo6ybLSwQVl4/QDfDwbSbyT1a20c/q6bMSbRUNHYq3P58uVoAEKCaFtTv+9xxVfczBVMOL02gxSGAV65wvbJ06ydPM3duQX6SrE4s4BXqXG832F3e4OdrTWECrAENBsN1tY2GR2bZHb2AJZlU6/vcvfeHXrdLp7X5/rVa+RzeV58/gUePf0IAs3tW7dYXl6i2+1w584dxsYmOLhwhKNHT2BJi9WVJVaXF1lZWcZ1XaamZ5iemWPh4GF2duu8/sabvP/+OUZro0yOjzMxMcYLL79It+/x9W9+i2tXb3DyxAksS3P4yALPPvM09+7d45133+fo8aMIqSkWcpx+9DS24yCkgxBW4usRmOQoSgUQehEICyxL4hLQrW9x9txZ3jn7Eb6O4FFESVmIIyrNkvSkz82xlUgo2z/j9NAi14rEx2hMzTE3Nnwl1AKtY4ZimHwA3F7f4BvfeZuVlQ38rofUIZ3GLkG3yb0793jr/XO0en5KGxkwm+tjS/zGY2doZDuQYjpDAJoC4/vNvDEDjEB1CHgMS5ZSmP2giZqVAgRhtDNLmtdYmxbS1NvJ9Dg7f5WzB67RcbzED5kQDaOtxVHGZp9k1M+knZqE/GmwTvX3fnPoQJiIOrQP+HQCzPVch9967G1ujC4n96W37Ih0lQzTM6FVDMgpuugI6ROcSc0bQ0NttMA4yC/WsIRItioKQAvNrbEVfGmY8bAfmYE/Xxt3h4q0O5H6F7U6RZ/BGAyAMz0uKcEqhVbDAkn8fJX6ZkC3/e6amB5Jvcih4UjaEAWHpYW7qJJBZDqxuT6uWw/1MO7GcEIkkvkzvAXtflohhsdLCiIgtqM5qoz7T2ukSVsHyGirqGmrFOaztCyj9EgJocKWgpzrEAa+AbfoN8cx24kiRhKZpx2U0tEulMi2pjV2tE01DEICFWJFAV62bUzhSGGsRDoEAW7GxXEdlDKZFjPZTJST4tPB66cGYUtYuLaNFFCybB6bmeIzjx1jrOwihUYLBydTIJ8tILWI/CQhQdhne3cLFfQZydr8sRee5JVnTpPPSkLlEyqFQqKlTSgstDLay93lRbZWljh1ZIajx2ZZODDJ+HgJIQP6vR67O3s42Qxu1kVIUIHPxvoanVYDRwpsKXAsSa/XZWV5BddxeeTUSarVETSa9Y11rt+4jsYMku/73Ll9h+16C2f+MJbrJr6sIAy567hszM5zt1zlUruHlStwvFqlks/Ry+XROqSxvcXexirtvR0219aoVkcZqU1Qrk0wc+Agwsmwt7fHpUsXuXLlKo7tcOTQYWzb5tDBgzz15BNYUnL10mU+/vAc4+M1ZmamCZWiXBlhfuEQUlpsrK3QauwxMT5Gv98nUIqZ2Xnm5g+xtdNgeXWN2ugY8cKbGJ/g+eefp9/zqO/W6XXaKB2AgMNHDkZbo3qcP3+edruJ7wdk3AyVUolyuWT2BufyaGmBkIlkGc1xk7XMzdLr9hC9Jv7eBu+deYc33v2YbjSeiNh8Z5hUQMjvnH6Xtw5fIIlETpjDACQGZjXzaiKco0xs0b7kECIgMA1SArpKc2d1g9feeJuVxVWq+QrKC3Bcl0CFZByHXqvJB++8xzsfnKfjmzbEAaw92+Pnn/4WW4U6rYyJeXiwxqITJrgfPGJgFiKW8EWiSScaW2QBkPuZXMy0tIoEShOoRmR5QGsWK+vcGV3nTm2dperGAwA/NtArjPnRmLgjnpYSJEjukSkGub+/AyVKD2mKMSKk+Hn0qmllOmwV6/ziM9+kb/v3a6piQCspBr5aU9+gL1IyaHsqynhgTYjrin3gSSOII6QHlB0GgTcOfcLvnHoXJRVpICRVB5qUlUQM0QOdEhiHygB498+HYVDdB8bxXBgSCNIgH/+YBveIVpiAJiASSGM6xQCcEsQY9CddBs8TKD24PN1Dvb/P+5R0DYP5HQtbaVoN/D5mTaBxbAvXsSNtNZoXCFQQGHAWJIFalm00WpMd0ST0sC2JCnxsyzJ0sGSiZMUaqoqirJVSUUS0EwF6gGVZaKUJghDXcdFa43v9hKbxHmPXdQgCH62UyeRl2xCBOkAYmvmbiaygf1j51CDc73vsbO8iw5C5apEvfuYJvvzqE3zPl14k4wiECvE6HbyujyVzIHMoaVKUNZt1dlYWOX5wghMn53j88YNMz5ZR2qPXbtDZ3sUhQ3V0CjtfJBSSUMPaxjJ79S181efytQts7+7R67bYXlsha7vMzRxkbn6BYsGAoAp8NtdX6bTq2ALazQYba+vk8zlOHj/GxPg4j5w+TW10FKVDtnd2uHLlKq1WmxvXb+D1+zx68hSVSgUhZCQRmcmS3Vhj9aMPuX79Gs74JM2jjzCxsUJo2WyfOE1lpIpWir2tDTZWlqgUC4zWaiBtQixyxSrjU7NY0qa+t0ez3mB2ZtY8I2LSszMzPPHY4xBq+p0OKvCQUhOGPn4YUqrUGB+fwJaSfrfD+voq/X6PIAwJFFhujlyhRLvT5Ttvvsn27o5JShIENPbqPH76UXQY8tbbb7O9s4NAcO/OPcaqNZ54/AmWlpc5d+5jAl+xsbbBgfk5Xnj+WQrlIjguViaHdBwC30S2awRamK1kYRCgwwCLEO21CDoNPjp3nrOfXMUjgk1tPDRIeOvIBf75Z3+LSq+I0FEwlY5NbiKlXZmyn1FEug4qZtraBx3iq5BOAB9cvMoffOsNdtZ2GC/XqFVH8AKPXKHAzPwBMvkSXq+H8D2uXr7Cex9dpO2FhMpIw2dnr/H6kfMEMqSV6QyBVQKEKRCQIjIf61iz1JHWlTZhx5rlACRj7S42B8qIcSW4sl9TijU4NB8cuEbf9ug5fT6YvwJCJYBFYt5OUW4fTpjEBNK0T6YprIeuiZsQb/eIOCxDG6MSPBg2uTYzXQIZ8sax83w0e31gTUj1bZC5Sg9odZ+2pjGChEnsIIR5bwQPlW5AJM/pFB2jcYitAtH/UggsLCq9Av/sM7/JmwcvJBmphiOnhzW+VKy7eWbUPqUHlpkHlfstCinBR6S1xXhexNeZZw7Ae/D98Ps4jiK6Q6f6kp4EQ228v7VG+08Jc6kxS4nFwyOdesaAyoN+pQkQ9y2JVk9ZZSzL+GEtaSGSmANBEPhIada6ECaVsG1baBXgWBYScF0HASaBhm2htAHZQAUoHSKEWdtWlPchCOLMivE8N1JenGHRdexk65Nr20aGUcbCmsvm0GGI1+sjETiWRej7aBViW0aYqO/u3UfbB5X/FacoBfheh+beBqdPHaQ2kcGTTS5d/xjlNfFbm/Q7daTjUqiOUxgZQziZSAbXdDpt7ty8Rru9y/W719nYXKHT2KXd2MXNuFRrNbL5IuXxSdxCBa0V3VDwO996k1/4xV/ho0+usba2w9raBuVSmemJGSw7g2W7zM3OMVYbBa1Qoc/q0j0W791ibXWFUrHA/NwcrmtMD5lMhkcfe5TRsXF8ZYD4o48+IvA9Hj99ijErpLp8G6nCSMKykUIyEQQ8ub7MYc9jvDZKc3ScpdNPs7RwFD+TZWxikkKxZCaM7+H1OoRBn9jpo4FMJkcunzcZWXo9bly/Rq/bMXvVNARhwN7OLtOTUziOw61bN7lx4yqe38Xz++zW63S6febnF3Adl/W1NZaXFwkDn0Zjj43NDR45fZpTp09xb3aL3157jZ2dXRbvLoGGJ554jM9//lWUErz19jvcunmHjZU1jh85wtEjh3nsscdYWV7n9de/w+bWNlPTM0jb4eiJk2A5KGmD5WLyh8WRjBLHslD9LpYOo+Abi6yE3s4GZ94+w4cXruHHSQkkfDJzi3/ypV+l6/QZb1aiBAvpEoNV/FEnGYIGGp6I0tcRWV00IZpOoHjr/Y84d+4CXtdnfGyCiYkJGs0GoJmenmF0dIpyuYbWEse1qG+t8c6Zdzh/+SY9rU3i+Ke/Sdfpo4Smme0OGGAKgIk00zjwJ9HQEoYfa4k6anMMGCry9xrJ3orMkjJivjI2JzLM7AYKn6Dv+Jybv54chnBu/jp920u0ZploXToFQDEgGUtVrFRKiJ4da7QiYUyDMlA59TCbTcZIJ/2NLpeCVraLEpqO0+cXn/0mLbcb/RiPc+wHHzBvC5HQZ8DM0+/jtutou1zqM0TfDYNAOkvUQGUzv020R+g4ff7RF36F89O3SGVFTOg+CMJKA12KBpGANKSXDs3Z4bKfvvcr0iK5V2vN7dFVbtRWIgVyALr7D/jQ6fvTD46yasWCYuIv3nd3HIKWuCJ8H//mNXSUXTDVNJI906knJ3uoh3tBbD0gan8cb61T9wpkIhhmMplki5GIBEWjfRuzsJnjZs5a8X7yyIyttEr8skiB6ziESmFFuae11rhuBqVVlH9aJtkTTUauwGjGtoVGY4nIQhZbRJTGlhLHssk4Dl6vhyXMwRBSmEBfx3UTP/cfVj41CBtChfS6bd565w3OnHmd9z44x80by7R3G+D1KBeLlCo1hJtBOC6lUhXHzRMgaWvBO59c5d/90q/zzdfOcPfOBp1Gm3KhQmmkirZtlAZbZhipTlIqT+BpyU4/5JNLi1y8cIfNtR1q1Qmqo5ORadTk8axVazzyyGkWDh4w0o4KaNTrOLbN+MQE0raM3hatdttxOPXIKUZHayCFCZDqe9ib69QufESpvoslB3sqZTR5ilrx5O4mvauXaLUaJruXbfau9fo+gRbkSmW0lNRbdZaXF/H9DugAFXjsbm+SyWQ4cuwYhWKeeqPOJ+fPR8FacO3qdYLQ58WXXuDZZ57FdTIsLS5y794dGo091ldXGR+fYmJqlmMnTuFmMqyurnDzxjWWlu4xOT5KrpJl708Lrv7TPq1Gm9e+/QZLi8ucOnESITWjEyN85tXPoDW8++57zMyMMzU5gm3D4cMLHD9+lI2NDVrtLjv1Nv1AoLTD6NgkUtpI28V28whhslo5tpEAY11FC4HrZAj9PmFvj/7uOt95/Tu8/8kllIDbtTV+6ku/zHppl6zvMtqpmAUYa1xieNYlzH1I64oYiYr9/pJQ2Oz1At4+9zEfn79Ar9ViamyUkdER3HyOdreD4zgmECSTZWJ6lum5OZxsjm6vjd9p8e5773H2k4t8/cBHnJu7kTCbZqZr8mOnTIrEIJFI/zp5FTFAq9j0ZhhEzKCkJYlddvEsExhTsYSBprdPI4UB298tNrgyeS/54tLUPXYLLWQUACSRyPhVyAEQJ6ActTUyU8bML+mPMEATa7+JBhw1YvBRpxhw0ljjQ0XRzHSSNp6bv86bRy4kYB3Tw/gwB35vYisCwgTXQPS7jJihHHxOiSkJw48sC1ZKuxep/5O5ZZrKeKdCNnBZK+/wD774S9yqrjIA6sF9MU0H09Q4RMLI4L8fa9N7bSNZnDgi9/6r04AoUt+Z95aW/NQXf5lvH/2YwDK7FAZArhMrSQoO73tEHByW+MQjwWQ4jiAN3NC/eJ7e22+ShOkLiSwUo6vTWi7JdwC+FSbm/cG6foD2nHpuAsUCHFuSzURAps3hDkpppLCivNISrZU51EFp7OizkAOftBACPzrQQUfmZ7TZHSKlsXSazFtGGDaBVi6O4+AFvgFxIfBDE2yby+UIfJ8wNAdCuI6TCNJD274w670S7bz4w8qn14RthwCBpx0u3dnmq187y9e/8SHbK3vknBzjE7OUilWytkNGCixpIa0chdI42XwFH4uOcrh6e4M7t9bpNnzKI5O4xbIJrhIWSAsLcISmPFqjVBtFAaEQ+F5g1H43Y6KXLYG0oJDPkc24OI7FzMwMhWIhHnE63Q4bG2afMMIcyqC0Oahgd28X3/cZqVQAQb/RwP74Q+x2i3TGJq2jRVYA6UocNNntDe7cvkW71UTrkFa7xcbGJtXqKAePHGN8ahoNNJt1Vpbu0u812dpYQaiAw4cOcmBunmefeYZKucxefZcP3n+fSxcv0mw2eeyxR5GWZHRslNOnH8G2LTY3Nli6d4+RcolCoUiIpFKtcfzESVzXYWtrA6E1zlSG3//j5/g3f/k1JsUYL5WfodFosr29Q73ZIPYQ1moV5ucPYFkW9+7dwrJCHNtM2G6vy+TkBK1Wm8vXbrCxtUej3qbV7DA3t0A2V8ByHGw3i2WZU1nCMEAjUUaHQWpFv99FihDVa9FvbPHue2d5fes8P/2l/8DN8RUQkA1cxjuVfUJ7vGLjqFSdLOAhZhb7+oBeoFjf6/B733qTTy5exZGSwwsHKJWL2JbF7u4OnudTq43S7nRp1BtMTk5SHR2jVBpBC5tszmFt8Rbfvv4mv/D4NwnkIO90I9NBJZHLImXijUzIxOAcaaFEzCilvSXBQjETTz7HmlYEwJYxDSc0ibUOPcykP5y9STMzOBWpleny8ezNBIBgINikta4hjW6/qfu+7/V91yXS1mCYTJ9k5NdMMVYt9VAbfSvkl575FtuFuulfFJQm97V58CAS0/0gIn1YUEhH9ZpAp5TlIQG7AeCSAum4nvH2CJnAAQHXx5b5h5//ZTZKe8OKpE4LTDEEpyEveqeHo4jToDZwt+wfzzRhH3zv3N44xX6Ov/c9P8e/ee5rtDLdZGtZzKeGM4cNzMqJjUOT5GJPw6FIZmJMV0Nb1eviX74EgZ8Mtzt3gMz8wkDj3Qf0ce8XR7b490++znYuSvIRNyD9zEQbH8yzmLI62kbkug6ZKO2wESiN3xalsCJBi9jyIUQSpKW1NrtehEBHiT6CIMR1zalKQZzOUg+C2pQ2Zm7HcbAdG98PEm089j+7GTfa1eIlZm2lzT7mjOsSBD72zjaFd98kv3KXT1M+NQg75XFkJkdIQIDCV4Juu0fGcZkYH8eyLLIWzI/k+dLzTzFVLeFIieW4FCpV8qUSWoPUNkKZyLIg8KLJoBEiJAqxMdKHMuYBS1hRDlrwgy6b6yt0mg0EkHUsXEdiO5J+v8O1q1cQUnLw8BGzNUhrdrY2jUYaeIhIA1nf2ODW7TuMj0/w7DPPcOrUSXISsoFPt9ul3++jlEIphWcHeCMKnRE4womyqkCzscft2zfYWF9jfXWVsZEq49VRBBYTE9NMTc5gaeg0dlm8eQ2v0+Hg/EFKhQLZjE1tZITnnn+OkWqV7Z1t7ty5w9HDh8lms/iBT6/fZWysZiKZhSTwfXrRAQtmHUncbJ5CqYLlOCxXN/kPP3mGb//oZfqZgCc/OEhzp8nBhQW63Q5vvfUWWzu7hCGsLq8R+ornX3qZrXqTn/+lX+Xe3RU21nZodzyOnzrN1NQsO9vb3Ll1jc31VfL5EpWxGY6dPI3tZECayPa+Hw4xI8d18AMPpQOjJ+gQRyh2WeOffeY/8OHctWThlvo5Sp0cGrPHVESaWrzhKJoKQ2CSnrZaC3ylWd7a5jvvvMf66jqukNSqFWzXRoUmy83mxjpCa8bHRqmOVOj1e2gdknEzjE1OMzt7gKAfILXm9g9ssDw32JIE0Mp2CdCoKJmAMhuljeChByf7pA2esYZn0viZpPCCyKzFIBAr9iEbDVgk7wf7igcm25hRBVbA+/NXBw/Thv7vH7iGb4WkuWOa2cf0ezAAxL/t+27oUp36U4MxSQFzYlqWglBqmtnO0JNujC/z+6feTQ7tMBaCOHCMJBAoLXwNP/9B7Y/7lwaYAQ3ui+Ld1/dyL0+pn0+6/cH8Nf7pZ3+deqZD7KePXSYKIs13IKgPWqeHBa+hcUvLJ4OxMWAZXZs0cqDJxfdbSvKFG0/Sdfr8qxd+j7//5V/gXmUjiomAMNUelR5zRHLmdyLTiVTb4nYOCSqg2216r30d//qVpC5ZKDHylR/CKqT2zOv9c8wA1kyjxntz1/mvfuif88bCBfqWn7hELAQWA6FNaZ2caufr0PDeCKAlglw2QyGXw3VsVBiQsWxQAiks0ALbtglDleTZtywLFYZJoiUibRVhLDtOxkWp6Gx5YXzAjuuACvG9vsmkpxWSyBQdjW2oDIhnHAeJOS4x45rDGnSosKSg3KxT+/3foHj2HdztYT7y3cqnN0fbDtl8EVs6CC0Jo1iIZq/L6uYGthBMFvN87pWnee7ZY3zhs0+QzWhsS6OCPr5vzlrUMp5YinZzl7C9y1jBISPBthy0FHg6NAcV1OuUShVqE9NI20ULie/12Vxfod3cI5vL4Lgue/UmFz65hCUtHj35KIcXDvHIyZNkorDxzc0Nbt28Rb/bZWNtnZWlJWanZ5iamiJQitrEONWFQ2w5WQKl8LwAXwf0CwF+RaMcyHjG+W/bNqVSEdsWtFt1lu/dpVoscnBmnMePH2CiXAAtqE1MMTEzhSWAIAAVEoYB0pImIs+yyOcLzB9YwMlk8PyATy5eZHN7m06vR98PaHZ67Ow1qIxUsW2b3Z1t1laXkCJECs3uzjaB1og/NcLZf7vH7S/vomxNZTtH8Ft1pCV4/oXneeLJJ+h0u3znO29y+/Ydrt+4ydFjR5icGOe551/CC23eee8cN65d5+SRw3QDj9L4GJMT47TrO7RbO8zMTAAaicv09AIaC2k5OE42WblSGp9LqIIoslzjuDYqG3D1/7zGyh/bHZpTU/VaFNAbM2RjWrZ0PDEFCCtBNaPpQKwOewjubu3wjW+/yeq9JXK2xcL8HJVKFbQ5DzpUik67SzaTpdvp0ag3GR8bY3dvj1a7w+TkFKXKCIXSCJ0jmrs/uEv1dddoDVqQ8RzqmbbZh6vjLTEKpURK2xhAU7LtRETaxZDNOqXlJSBt3qfr0CmGmGh4MkpcIAT1fIebY6t89taj2EpiK4vP3H6U66PL1LPthB2n/ZYP0noHbsEHgVts4mTIbCxS7Uq1dEiRi5m9QtHKdMn6DiI6beiZxWN87eRZlitbg3bGVg8V7ddOtBPua3eaJoPvhj8bs7qITIWD3/eDRdwHGQqm67Whufmtox/xL1/8XXq2N6BPqsfp8U6bWPXQa2y9GQQdxjRXieactGh4fgBDyVEQPLVyhIlWldBSfPP4h/ztH/pXvD9/lTCy2qTbBwyCyJP5F7VtHx0G1gHTtrDZpP2bv07//XcRaqBl5h55FGdsPNW+7y4M5YIMP3z5RS5O3uOv/cC/4ade/XUWy5vmLPdYXIiV6ejBg7SikXVDWpGpGLJZm2IxSy5j/MG2FSdQGgipCe11vP3ImMNDNchR4HlmO5KI8oUnsoRSuG4GS0p8z8exHZNHRSny2awB9SBIgrDigF2is+mlJaHbYeT9t3FbRkn02+0H0md/+dQgHHhtut0WoQZpO4bJCECEtNp1etvbPHP6OLML44R0WFq+hRAhXrtBfXubIJSUa5MUR0bRloVC4Rd9tivbjI8WODA1jtAhYb/L3sYGXqdDbXSU6vgkxeIIoxPTWLZrmELosbm+zM72JssrK1y6fIVyeYRHTj5CPpcDDSMjIxw/eYJMLovWiq2Ndc598AH37tzl1PGTHD18GI2g2enQ7XuMTE6xfvQEV6p5bj4KWwuKIG/mmx1K7NCcEoSA2sQkkzOzqGgRdxq7zIzmefLUNM89fQTbUgQKFBaum0doi16ny507N42ZNgoQWFtf5+69RZ5+9jnGpyapN5u8d/YDltfWaLZ73Lm7RKvd49DhIxw7eoyM67K1sc6N65fZXFtmvbHG6n/p8bX/11Uap/1kNEtnJJk7cPjQIZQOWTi8wFNPP02r2ebtt9+lUCxSKBSwLcnU9BSf+dyr+Cqg1dzh1NFZDs6OoUKf8fFJMtkcKgio764xVi3gKY8AQb5UQ9gZbDeL6+ZAWNi2je+bYw91pNnKrMX1v1Sn8YxP+eNUcncNM42xweHu0Q86CuUziT4wcUyJby1AoQi0ou0HnLt4mdffeJtWvcNotUalXDKLS4FjO6A1ge/j+T61WpVMJsPK6iqlUtFYSoRJhScsh4mFAzT/ksuBf5Oj/JEZH6dr8fI7j9K1fZMzVmsDxEiTCo80gxfE4U2KlEaXaHaRjhsDm+EWkWatTS5czF5Ug3n7mLuOUopozbWxZZ5YPsxnbz0O0VWfu/k4j68e4vro8tC63W/evb8Y5hcn5hg2waa2oeiYwQ98sYZZRoNkpJahVy0VfdvjBy68RNZ3Ac2p9QV++JNX+PqJc1ECDxiAwGDfVLS0UoC/vy9pcB5uc7q/6fijtM9bqUHfBIKZxugAWYGTG/NcmLrDrzzxeuSaGNZ798/aYYrGwpmOhLHB3QrDtEXq3vS/VA372q+ZaYzy2OrBpAHXx5f5b7/yb/iVx98wwkJM+oQuZg49cBv+PiAd0E3jffIx3rUriRAgLJvcqUcpf/bzCMtKhKYhC0PqATGgP7d0jEfXF2i7PX7xye/wV//kz/Abj7xHx+kP3RMnC4mj1+MArUjNxrhyFFnHplTMkXFtbGl8wHE+fxlpv5ZlEYRh0g6lFJaUJp2l4yCkIAgDBIIgMNuLtI4Oc7DkIBgsni/RIGQzLioM8bw+jm2htSIMTfKPJFf1nZvYy4vJ7JTtYSvQdyufHoRbTZQXkilWKNYmyJeqaIxpGR3SbO+weO8qnW6d85cucvnKTeq7u9Tru+TcPGOjk2RzJWQhj360zI3/IuTMv+6wfcjjnXfe49r1a3Rbe+xtruPqkAOTk0xUx8hIC9eyKBbLTE7N4mYyKIwp++aNa1y5fJmJsXGOHztOJptNCC8ti0plhNOPniaXy6OVotVpg4BSsWhOwAgC+n5A1/PwhGL7lTw/+4s2/+0bmn/wy7B03PQ9Fzo40ky+UEiWFGxv7zIxPmXOteybQwxWV5e4c+8GUobsbW+wu7vL1OwBZg8ewXYzdDttLl28QLvVZGtri6tXrnL82HEmJ6Y4efIkI9UR2q0W169f4969u+zVG8zMzuNmclSrVU6ePEk2m2F9bZWL7cuc+zurvPNXbtGpeMmEFj5M/qaLK20s28ILApTWzM7NcXDhEFrBzVs32d7exrYsspkMQsD0zCS2I/mDr/0em8srlLMZdre3mJ89wKlTJ1hdXWLx9h1Qiu29OuMzB5iaO4Swswgng+1mCOMTS7RJ4O+4Lhtf8AgJOfXXXYKSWejOjiSzblPdrABxVLBGi8FeUZNtL1avInDWZsp2leLja7f44OxHNLd3qRRy1Go18oUSoR9i25K+18PNOKxtrBvrQyZDLm9MjvVGg37fo1wus7q6Tr5QQh9zmbk9ymPfWqD9iNmEbzck0/+2grNj4wnQIvLpCrNPOd5/GvMvA74DsIyT0w8FOGFSYMdpK42yGu3HjMzciU1XDzQ845MyWcg28rv8+bNfxgmNsIAGx7f48Q++xHphl5DBs/bp6QPBQA8YfVqTfJCpOjZWJiMRnZuaxAJHzTXNjiO8QQvFSLfIj5z/DMV+Fg3cHl3lK5ef59jWLBvlvYRhJ0+LpZaoY2mteL+mvl/Dj4tS6aC2qNWaRNAYbBGL3mvBbH2U8VaFSq8AQNvt8X//9o8SSsU7C5dNTMA+0sTuhf1FR3M5Nlmr6M8Ask5ZPtLAKwYTaUjIiDU9gdSSz994AitJywq7uRb/8qXf45987tfYLNYHAksiwqXGOK79AVaRmBbh2ir9Dz+IgA+EtCi+8DLVP/4jWOUyaJMHPm2OFkNq6GDuV/p5fvjSi+YwD6G5VVvn733xl/jb3/tzXJ5YIhSD4xBNEGFsRdJJvUndGkDh2jaFfM4cARv5dK3IAhcfuhMfPWvZduIjjk3cdrSXN7aYxDtm4tORhJDJ/LGkRIUmgtq2bGzbig5zMBHa0jJZulzXNbmmm02Ich5oy8Kfnb9/cjygfOrc0Y5tk88WkU4WbVlYWYscNl5rD609emjeePdjrq+t0w5he7eJ1w8ZG6mSL5YJ8pKlR5pc+b4d7nx+l24t5Nj/nKN6RuKHAZvbGwhpU8oVObhwkJy0sIWmPFKj0/fYabfpiAKT0zOsry3R73aQoZEoVRigCLGFbULMVZQBSYLruhQKebxejzAMaHc6nDt3jkOHDyOjVGW9csDZr9zjvR+8R32qj7bg7mnYmocDF8HqmxRmgW1zrVLj/F6d2ZlZJiYn2NhY5+6dW9xZ2ebf/fLvUpuaoudBY3eL6fEJcrk8tpsFAavLd9jb2+OtN9/Cth0OHTrM+PgYQeDhODaPPHKKa1evsLG+wVbfZ+7AIYrFvEnygBEqjp08wdv6Q+7+eIPCWpaT357i/PcvoWyzCorLLhMfFbh75y6WJXj0sUcRCDY3t+j3PZ55+hnOf/IxZ89+QC73MuPWBHdv3uGl51+g02ry+muvs7rxCdPzh/E7XQ4fO0JpJI9tCa5cvALuOvnRKSw3SzaXY0ousHj7GtKOsmOFPiZ9h4Uo2WQutjn0ey6LfyGgfcwsrrmftWmd0lx97QbX+49w/MBMtNhiBmJALoyAD63MoRHCohdo3v3wAhcvXSXs+SzMz6BCs03FkRbSduj0OwgpcRyHVqtJPl8gm81x794i4+MTCCnZ3dnkxLHjeD2fvufjbDic3DpE/0Sf3omrRli74VL/9gruSc227FC2cjG3Ik7tGHvyNBHv0KnAnQhPhgAuyfggkmu1JkkMM3wjkeY90JwDqXh28ThTzRof65vJ+tTAZL3G0xzDFwGOshMhIWFmKZPx4EOa2afbSqK5Rap5dFfM2rURGFI4nP4dQFua5++dYL4+xsLuJJulOndrG7TdPq/cOU3P9hmU2Dwo4hMMU+C8H+kGHF/rgYkaYqAVqX4PBI6BVyAN3EZTnGxVeWR9gQO7E/zcs9/gbnWda+NL/PmzX2a1tE3P8sgqNxLCTNKH+3XgFFUj8EjLDUoPNP/ExB9PCXSKdnpfbQN6PL56mKlGjeWRLQBsJfnStaeodUr82xf+gB/+5BWObc1G6VuH64j7bupKfwcojXftCp2v/R7hznYkYAnssXGjAWcyMcWHxzj6vP9782TB524/ypGdKa6ProKAvuPzzaMfc3likR/95BX+9IVXGOkawUdG0onGCHDJtqrUOgCwpCSfzWBJQa9n3Jx+EJijB4MAy7Yh2dOuE2AOfD86xpBIaBykqXQchyAMcGwnAWfbsQmVou95ZpuUJQlC4wqUlsD3wkSDj8+sT8bPslFjwy6O71Y+tSY8NjFJLpfDFSCUQkuBkyvglmtgZwjQtIGr91ZZXt3A80MmZ6Zxjpe49Gd2+Y//7Bq/9c+uc/HPbtKeDhi7nOPZXzhAlgJoC6EEOgAdaqxQM5JxeeLUIV555UkeP32IfAYsGSUGlzZC2pFUr1hcWuTatau02226/R5amJyj7Vaba5ev4PU9nnr6acYnJtFAvdng2vVrNDst1o82ePsHb7G6t8bCz7q49cgbqWF8Eawe9DsmGq5l2dzu+0zOzDM3c4Aw0BTLI0zMzBFYLjstj5u3llhfXWdmbJK5iQnGRgoEXo9ieYTp2QWk5dDudOh2u7iOQ6/XpdPpoEJFxslwaOGQydaiFGsry+xsb6G1MbMIAZvdHWrVUZ76n6ao/Y7g2jOrKEuTado4HYsj16Z4afJZypUyd+7c5cKFSzSbLW7evMmJkyc4cGCep59+Cs/z+M6bb3PmzBmmJsYoF3NMTk3w6pe+hLAtbt64ypEDo8xMFui0W8zNzjM+OUXX69JpNwiVOXM5XyyRL1YQdhYnk8Nxs4DAcmxUIyR3E8J8yPKPG3N5ZlUw+/MW5fPQu7zH119/h3tbdSJxCi1UkuPJLL5oW4EWbLe7fOOtM1w4fxEXwVh1hGKxiG3b9Hs9lAoTyTQMQhqNBv1en3wuR6FYRCllctBaDo5t02g26fZ6jFRGaC7uUSlVkUcKdGaNEDdxqYDabVH9TZsPPjxPvd0zJmmGg8dizVJFoKzSfuLY5BmZWwearwGQWHtOzNY6Yjg60qoTf7lGK7ACyVSjhlbJmVRRMbrPdH0UO7SH9N/E35o4WuM/kShgaX9lvB8zBq9Bu/YxBR1bKIaZfBqoX739GBnlcHL9AGhYLe2wVagjlaTgZQxYDAkGJJp0WiBI93NfI/b5kNOvA5Pzg+qIgU1rzWirzLGtWX7w8ouMtysoofmtR87QtfvM1cfJh5kksCgWnmJNONbiEmt8AiZxbLIYoktMJ2KSJr7Q/UROg7F57mSzyhMrh8l7GYq9HIFUvHPoEq/efoyfPPNDCGQk3KTrSWu7sH8gte/Te/9d2r/1H1E728koyEyG0gsvI7PZpDlxH+53EUS/pYZHa814u8wPXHl2qO+VXp4/dfFlerbPzz/xOpcnltBSR0eOMrCpa9A6ZYlRILQRmiwJ2YxLLpfBtiSWMKZjKSUqCJFCJObpWCuOo6EtaxA9DRD4QcRfRWJm12iUUrgZFys6slBG15hjFW0sy8L3B5HW6Zmp0XSi4xL/sPLpo6OFi4vk4MQYh6ZqOIQIKbHdHPlyDWlnCbEAl35GsfZCn2//7TX+3b+5zB/87bvce66JVzRsI7tr8cI/mSa3EeXNlTYqktZ73T73bt+gUrQ5fOIAmYKmHzQJdUC/32FjbQ1CyfzcIaqj4ygpCbVieWWFy5cu0el0kJak3Wlz48pVbASPPnKacqXCyRMnmJycQKNpd9rcun0DcbnLoZ+WHP6PeVZ+wKNfVQgFTl/SLYDdM6bCIFBkG3U+39rjUa1wbQstJD0/pFipMTkzAxYmKjjwKDkWn33mMb73c08zPV4kDAIyuTxuJm80Os/n4uVL7OzsRKZGG88PuX17kZnZA4yPT+D7fe7euUl9bxcpYX19HX+7z7PeaY4cPcr1v9ulMx0gAjj2szUKNx1Ovj3PaG2UF154gdHqKDev3+SNN95kanKKSqWCQjM7P8dzz71Ip9Pjzt172I6N1iEQMjFZ49EnHsOSir2dO+QLmlavzdZei24gqJZH6Tb32NlYReiAZqNJoVTh4OFjCCuL5eaQbg4dSaVozfbnQhpPmrGf+F2LwnWH8oc2hZWA5s4Gv/+N11ne2IqCNswijE21Jv+qxZ31Ld549yzXrt7AUpqZqQlyuQy+5zNSqZoFoQK6Xp9cJkelXGFldTWyhBTY2d4FIJPNsra2Tm1sjL7vEYY+pWIuMrEK7h3YIHQU0hcUPrbRgaJ8T3DttfO8+c57NIOAMEKxNDDpJGhr8BdroHGkvSnmXiGtyNwe1WXCrBNNIEkJoiPzNbEmzX4eOqhXSxJOFvuoU7fEmm3K/Zd+AaIkDsDAl5lqdtSGQXDSANTTAVbxteVenunGKEIJjm/OYisL3w64MrGYanfalhAJM6m9ycMacfTUfXSOgSVtrh5+P0wpHfnd0z0fb49wcn2egzuTfOb2owBcnrzHB3PXTBejQ0QMVROP+CCwiXj/bTpgaKjZRvuKtUYxuGcon7UY1Bmb29MavETwhRtPsLAzyY99/DksJVkr7fIzr/wWGs2xrVlyfia6V6aytT2gaFDNJp1v/AGdr/0eOgokEoBdGaH2J/4UhSefhrQlJR5rdf8kjIOt4hILKt9/7RkmmyNkogC93Vyb1w5/wg9eeY6/dO5LzDRqA9tGZC2K4wPiQzmIwFkLRRxRLzApJLOZLI5to0KVmKbjvM0xuIZRWsr4WMQYZC3HTvpkgrhCww+ViSdBgx0f6KMG4xaGRtiXUhIEZoFKy0r6L4VAhw9cqPeVT587utfj0OQY3/fll/mh73uFk0emEaqHFNEmaMtBS0lrLuDunwtZ+opHp97C2guNqTSaBzKAJ3+uxsTbkubONn6gKYxMkivXUBK0CGl7XT6+/Akb60ssLt7l1u17NFsdVlcWcR2L+dk5SqUKk9OzjE1OgjTMZmd7mxs3rrO6tsrN69cZqVR45smnKOTyaK0p5POcfuQR5ubn0ELjt3tsnl+iKdt89FNtNh/vIzSc/M4EE7fLLD5WwrazUW5TU1zfY+LqJ4zcuGiilKVAKYnWNsJyEdJBhyG7G4tob5sw2CXwG4DP+voStmszN7+Am83Sare5dPkK9XoDpTU3btzCdrPMzi1w+MhRJicnCQOfG9evcvPGDdbWVjkwP4+VtTn75xfZeMnswZz4XZfJf2sxsppn/FKRRrNFLp/nmWefpVyp0Ot2WVtfp+/1QICUNuWRikm1qSVvvvkum1s7SGHRbXXZ2tzlmWefZ3mzyy9/9Rvs7LVYW1/HtS1OnzzBwswMnfoWK/dus7u9zdjYJNXaOAuHjiKEg+XmQDhmkecES38xRGfB2YW5fy8hDKh8ZFPclvT31thevsPXvvk6y2u7EWhEPh4FAYLVRoPX3jzDreu3qRRKTE6Nk8k45PN5er0ejWYTO5Mhmy/g+QG7u3u4jp0cbzY2Nkbg+9i2TaVSwfd9glAjLIeM65i4hVwOaQmuz94BAW7H4WjzEPl8iTDwCFstbt+4xVsffkTb9w3g3c+C2K8dw8AfpyNNYgAcIjFdxn62RCMljbep/6PAJVLMeaiIgYCQBM9E9yqtjAatlQlMSpjmd2EWMWikLJr3XXkf1sRmekAPrAKHtqcpeFk0mkuTd1NAnq7EvMbRzcManB4C3P1/yTOTesTQ9ftplTZhA4y2y5zcOIBUkh+4+AKlfh7PDviNR9/GswJiJS8OGBqK1I7aEJvSE25xn+UgJqv5PQbfgYN6+OIhX3lisYDTaweZaYzyxy++xKu3HgPMtqqff/qbxs+aVBkLJoYe+/3v4eYGrV/9JfrvnYEoY5QAMocOM/qjP07u1KMQBZHeV4ba9oDo85SwMdsY5XuuP8np9Xm+eOMxhBZ8MnWH/+Hzv0rX8RjpF4wlNCZByjWlIqFPm5yRkKJ1TEPXtikU8mQzLqgoWEuFSU7oOPgqRRhsK9JuhYi2EZqdL2iMVTJjzMtxTmkRJQtxbGNlU8psqbMtOzGDD0t7gtHSf2Jz9Hy1xKufeYbaRIFMXhAETSwrpN/r0Gu10FqTLVUpNUdY+LkMJ/5xBo1m73CU7iyi8PwHBY7/qzzNzTpS2JRHRskWShRHRqmMjKGljY/k9ladf/3Lv8M3XjvH8soe9+6ukMsWmZqaxnYdlFbYts3M1AzzswewLQtNyN7uNjevXqFczPPk44+RL+RwHAtLgi01uazLiVMnmT9wAITALyvO/nd17r3SAgEHz1X5vn9+HEtLJvaeZnl6nh3LQbmuMZgqRdDvkV26R9hqIRB0Oi02NjepVMaYnD4AboaNZotf+o+/za/95jfYqffZ2tpEhYqZ6VlGR2scPXKYQiFPp9Pi0sWLXDj/Mb7X58DCAaRt4bgZFg4eYnR8gn7fY3FxkWKhSLlc5tIzy5z5vhsoqSndcTj5P5QQzYDquzb5TYtuz6PebNPxPGzXplwts7KyxIcffUTP69Pzely6fJnjx47x/HPP4nk9Xv/2Gywvb3DxwjXGx8apTUxy9PQTNNsBV69eY2d7k7m5aTKOw5GFQyzMTtLaW8eSJnsN0makOs7YpIlit2wH23XZeU6x+5KRFGuvW5Q/kghCShs2quFD2MVvbrF+7za3ry8itcDSJgjGAz65cZs/eO07NBstqsUSpUIBx83QaLZx3QzZbJZut02r0cSRFuNjYwShx+raGv1+n0w2S7fbRUiz8X93e5t8PocQmu3NdcYnJtjba+I4LnLUYveQyV5WauQ4EhxidHIWYWdAgtdp8u7rb/Hh+cv0wmAQOJZkExIMDlEY1tRiD6LCaGFahZitTio6xMS4WuIgnkQLZqAVR07nqO44Iju97PebCwVxUkqjHcsoACxui0lEYwA6jt4laXvio0+eFatCKYDcF5k08IcnDwJgdm+MkY7JtHR7dJVupn8fA0qYecIuBrQcAEg6gUgKpKPX2CUwFPL0wNNsxND7XOgy2RoB4JH1BZ5ZPAYaPpy7wcWp2/tuEck4iNT/RrCJfk7VPjBLp6pI0Sbq1kCAiU2ielj4iDFkrF3h8dXDZHyXn3z7h5jfGycUil994k3eOnRh+Nn7hSTPI1xfo//RWZq/9O/w795O5q+wLPJPPMXoj/wYmbm5VJyG2Kf17ztuRA+sAiYHuRgIcFojleBPXHoBS1n89Td/mOeWjqKBtxYu89Of+Sott5vQwIoTrySxZwM6J88UsYBp5o8lIGNLirks2YwTpZk0+4djni2lyZplCXM6kpBioBlH1qrY7+sHPgiBZUfmZ01iotYonIxj8vUHIa5rEwYeyXRMCzli2GH03cqnBuGDEwVGJ7L06fLGO2+ztLpFt9XBbzVMlG15BJHNk3GL9E/mee+f97j+X3qEeXD3ILcBhXWLR//7HJ17LaSbIV+pYmeyII1EUSiOMDI2gXAy+EqyU+9y7fo9bt65R6FQZGpyFts2ezgtaSGiCNyJ6UkWDh9ERBJ0GIbs7dXZ3tk2hzxHiQWicabf69FqtsiO5rnwN7rc/VMeWsLohQw/8NPHKAU5jlwbw7mk+aDTY+2xp+l98XsIa2OA0Sj8XpfmXp16o87G2hrlUpmR6hh2tkx5chbPLbK80+fS1WVu3bpLs9HgyNxBRktFyvkco9Uapx85TbVao9vvsrW1RblcMfvTIuZj2Q5zcwfI5gogBKurq1zgGr//4x/RK/g4XYtH/9E489szZLMFyl/V3Ll5k26vQ6fT4fLlyxw7foLnnnue0bFRlpeXOP/xR9y8fh1LSmamZ5ibm+Wll16k2+vzB1//Bls7O1RrVbwgoFAocfjQEUI/pNvp0uv3sWwb27YZHZ0imy3SbjRZXlrEC/r0lUez32dm/iDSymDls6z8JU1QAdmF+Z+VSF8ghI0jbELPRyBQOkAFvsmGgwnIaoUh1+4s8vaZ99lc2aCaL1EtlynkcuSyeWzLpl6vI6VgamoKpULW1zcIw4DJqSk2NzeRQjI9NU273abZaDA5Pk6j2SCby1CrjqC1pu95SEvS7/fZdnfZnWqCgImbVYpWiWyhyPTsAtlckV6zhfS6fHTuLOcuXKYfmExhIcbXK3TsH439f+ltR3GktI6Aa1hzSPsuB6ZYzbCFL1LH9H3rfagMQVPUnvgZMt7+kVoQSsWHsJsvEp8wsel6yACbaPakepouSQRwyoTtBjbHN+dAwNLIFru5VgJg95th03WRCCRxBqyBhjvo8ZCPNaUBxtHcQwksvosVIe6JE9r8yYsvkwkc2pkev3n6DKFQDCwbDNNApNoQWyAisj+IPkOUSiSF4ZakrSgDSkTaH4LP3noUS0gO707zk2//EDnfpZnp8P955TdZrmwN9TWuL9jdpfkff4XGv/1XtH/7N1A7O8kYyEyG8qtfoPoDf8JEQUdtMrsDB64GEZmFB3gYg1McZJgSf8TAynN0d5on1w5R7GX5O9/6MU5szqKE5ndOfsDPvPD7eE4wALIhKwcDgUVHKVflYBvRIIWKwrIF+VyGXC6DY1vRCUdO1O4oL7VlIC+M/MUDN5EpsYnZD3zjX44C8MwZwyrxJTuOE1mUTE5qrU08StJcbXIUfJryqUH4zfff5e03v8N33jrDhYt3qe908XpdiqUctdEquazZd7n+GY8z/3qX9e8L0BaUrgme+hsZsquC4//YJncmwM0UyBdHwHYItU78YdK2yBYrjE3MYtsm41WoQ/wwMNmKopUdR6RZlkWoFL4KaXW7SMtGWg4ISbfX46OPP+be4iJ+ZNsPlGJvr86F8xexszZ7/02ZG/8HD21D4Y7kqf9rnvD9JmFRceK3Kixfv8v87BzTBxfo5wuE4xNR0gRwfZ/i0h02V5YoFPKMjY+jEPihQjh5iuPTiGyeMAzptpsUXJvDM+N8+dWnOXxgAteGUrnAzNwMUgpC7bO4eIfNjTWzVw1jFllZWWFifJyDBw/iFwK+/hcusjHfBA2Hf36EuW/UmJ09xPHKCSY2R2g09rh18xo3rl+jXCoxMTZOMVfgySeeZGpqknt373Lj2nWOHz6SpDAcH5/gyaefIQgV61tbrK6t02638bwAy3IoFssIATdv3mC3vosWAavr6xw+eoID83M0tjdYvneD9bVFxkdHmZ6aY/7gUfZOaza/GICGkfcl1TMWaIltZQnCEK0CpDb+GyeTxclItC1pK8175y/yjW9/B6/T5/DcApVSCcuy6PX7+P0+uWwOIST1epNut8fo2Di5fI6NzU2EMCk4XdfFtm2y0da1brdHNpNBhSEb6+uM1qoEQUCz2WRiYpxbuUV6NTNXZq6PUt9tYlkW1WqNsckZNIJixmFvY4133jvLlVv38OLsPknO5ohvRAxk+NgAnWidCpWActqU+kD/3ZDWNajtwSWlOYhYj4jNkantT5G6puNnioHWpVKOWB0DeQQwMcgMt3f4t6GmCVOHpSWn1kxw1m6+yXJl874eJHtDB10eDvxJacPpviY3RNiw3/QYv6a3KMWNG5hS09/DU0tHOb22AMDbBy9xc3SF7y72xG0Z6O+x/zZ6SpT1L603D96lXQeDPop9zR/QBmCuPs5It4BA8IVbT/LDn3wGAdweXeNnXv6tZC+u1hodhgR3btP65X+Pf+kiutM2CYSidtuVEao/+CepvPoFhOsOCYFpH39SX/SnVCyoxcLiQHAYqgONG9r84JVnaWd6HN6d4u9+688w1xglkCG/8MTr/MLjbxCIMOpiyr+vB1vejH/b7PWOTygzZvroiE9tDnPIZV3yuQy2HFhyBOYsTK1NVr9kDkdasJQyOqrQmKUTc3cSzGVFqS+DBHgF0VqRhu8nqUaitdTr9f8X5sugfGoQXu74/PY33uWb33iPzbU9tK+ojYxTKY2QsWxG8pLVn2jy+v+4yO7JPiiY/k6Ol/9CkeyipHTF5uC/c5ChMntutSDQg/1zYJzuJgG30ZbAJMjQSHb36qysreD5njGjaZOz0/c8lu8usrOxxczMLCdOnqRQKqM0tHt9Ll+9yvr6BghBvdHk8uXL5PJZWn+lyNf+/E2CjCa/bfPs3ypT+8BiZ3OT1e/cov3NdeZmZjl86BBBENLsdGk6GaQ0J2VIrXmkVef79zb5/N46td1NwtBHY0DHtm0yuRxaCtAh3WYd5TdQahc34yNtTbPdYnl5jYWDR6hUq3hBn1s3r7G2skTGcdje2kQFAceOHuXYyaN0/29F1n7A+HXH381y/GdGmBubA9slmylz+PBxyuUyrWaDZn2PifFRBBqlQgq5HE89+RSFfBHf9/nkwif4vhdNMJu9vToHFg6iNXz8yXk2NzaxhGR9dY3Dhw5x+pFHUEHAlSsXuXf3NrbQTNZqHD9ymKMHD7C7sUZ9a4P56SkK+RwjE2M0/oqLN64QIRz4+TxWywJsLMvF881WJjTYlotrZ8nkMzR6Pb71xluc//gCNhaFbM6YfLRCODaFUpFOu4PnmX2++XyB3d09ut0uo6M1crkcy8srhKGiVhul1Wyys73DzNQUnVaTdqvJzMw0rVYL27Yp5PNmK0IYsn5qD6RJ0nFgYxavF5DJuJRKJaSbYfLgEULhoP2QXqPB66+/xblPLppD3rWKNAEDxkqYaM/0HtzE5JjWgKJVK6LFe58umDCj1F/8U9qemWChTjTR+CdTzdCNUT2SOJVD7NmMzdOx1jmkxyX1D+qIfXb3lRQWx8EsR7amyfkuSmguTt0d7gNEezljRq+i6PDhgKtBZ4cT5qcBPBEgYkab0mDjOob3SadbYrS9vJfhj194CUtJdvJNfvfUeyZwMK2cJW2LrATRWKeZahJwFV+Ver9fkEpr+GlZLCUTDerVEqkNQLihzf/u3B/jyeUjaDSvHf2Ir55+G39ng/Zv/TqNf/kztH71FwhXVwZ9jtqSmVtg9Ef/HIXHn4REw0ybn02jdKpxw78zPEcYzLX9e8+P7kwz2R5BIHhi7TD/j2//KKOdEj3b55+9+Lv83olzgzOdY/CVqWMoo/35qJS/XMcHpgx2s8dAXCjkcKJzhtEaJzqWUEOiTFmWhQasCHh9348CrHRyXSw4xwfAhGFo1rgySW4s2zE7csJBvnkhBML6XxLaUmP5qa4CfOnQVzaeByoIqZQrFPMFLGljVQVn/+Y23/5vluhOBFh9wclfqPH5/3qW0dt5msc1J3/KxW4JUJpus07QayETG1iUMUgpeu0621urKAFjE3PkCzU0EoSi3dxjbW0Jz++CUPT6HZYXF2nuNZifmWNyYop8ocCRo0cpj4ygMecgX7lyhSuXL3PhwgWKxRLqx0b49f/8At2cT6Zt85V/eZKXbp3EtUxQVXt1DxEoxicm6Hk+nX5As9NnJVtgrzySmL0trakGPtW9HY7du06h3TCpzVSI327TafYpVCbI5Ct4geK1N9/mt37n23xw7hpbOy2uXr1BuVRifHyChYXDjIxU8TyP69eucvHCJ+xubfHIiRNkHJu7pzY5+xeXURnIrAlO/Hd5Rhp5srmM8WdYknyhxMzMPI6dodfvceHCJzQauxCZShbvLTE7O8/0zAxLK8t8cPYDfN9nfWMD3/M5eeIkzzz9FFLA7Vs3uX3zBuVSgdpImcmxMZ596gm0Crh38xrPnj7CkfkxHAsOHlqgWh0h8Hzu3b1Du9dhc6LOzc+b3KmVyxkOvDuGmylg2w4qDECZk2CUBNvOUK2NUqiUeP3N97hx/Q7CD5mdmqRcLqIlBIT4gY/WmkKpSK/fp9VqMTIyQrlcotlqsru3y+hoje3tHYSQTI5PUqvV6LRbZDIZ8gVjxu51e0gp8Pp9dnZ2qNVqtLwWq8e3Aci1M0yt1nAdhyAI2d3dpTIySqk2iVOsIqRNVig2Vxa5ePkG91a3oqhjjRbSRPrHJkn2AWvM+0UMuhEMPiCwJQn+YfjQ95hbD9VJykwqhr+Pf9vP4e83/6YiURlcP/AW633nDg/dep+iKPa9P7g7leRovjxxb+iQjME2o5Q2lSZWct0gEcd9/s77nmqKcQkMkqgMP+/BnRBC8PLd0xzZmgHgW8c+YqW8nTz3uwH6UE1pH1gCXYMrho9XjF8H9aS18xgDB1ioh/oy1q7wf3rrTzLaKeOLgLfV77L+mz+Ld+4DwtXlJPIZwCoUKb/6eUb/7E8w9mf/PJm5+WFAFSS0j+eDEESpHkm038Ecja5h34Ef+6wZUkuygWvaIASfv3uav/b2n6DoZWm5PX7q1V/j7fnLqOgY2bTJH4bzW6ezgAligBYpx4km4zrk81kyrjntSEe5n3Xk/9WRPxggDAJsxzE+4MhUDSQab+D7iYXDCAkmYQdCEIQhmXgfdXrNPCiTywPKpz9FSZhzcoTSoEK29zbp9dv0D3v89j+4w2s/uoSXCcntSl7+H6d5/u9PIO726BIw80GZ2r1CspyE9uk19/A6DYQKEFGi/0Z9j+2N9Sid4iz5cpXxyVkqlRpaK6RS9NotVhbvsre3zdLSIt1elwMHDjA6Oo4QAttyyOfyHDt+nLGJcbQQ+EHI0uIyEon1vVV+8Sc/pjHSx/Ykn//3h3nq2/OUCmWqtaoJLdfQ7nb45MIn7Ozt0e506XsBHWHxyfQcNzJ5tBBDe8Nsr0eu28S2IOh3aO3VKZQq5KvjlMZncUpV9gLF+cu3uXrzHlev3SZjZZgdn8SVNoVcmUOHjjI2Pk4YhKyvr1EoZKmOVOiMe3z1z3xAs9LD6gtO/dMKI+dsdnc2WV66iyBACmNu29zeY27uIJWRGnt7e3z08Ue0O212dnbZ3t7lxImTPP3Ms8zOz7GyusyZd9/h6tVrHD9+knwux+T4OI8/9iiokLXlZYrFgtmPl3WYGBtlbmYax7G4evUT+n4TJ2PT6vWQtsv09CzLq2vcunubiy/fpjHeBg2PffMg9k4Gy86YtHFBb3Barm2jHYfK2Chvvfse16/dYiRfZrRWMwvblqBDcpksXr9Po97AdhwKxQKe12dzc5NSuUy5XKLdbtPv9ej3eji2Q7fbQWsolkpsbW/RqNeZnp5iN9oWNjU9xe7ONrlsBnsuw/ZUAwRUVguouz3qjV0mpqfZ3muSyeZRCqZmDjA2PYu0LCwV0NjZ4ne/9k3urG2iLEGo/OQ8YDngEvt8iPHpQakDxdP/IlObFWtW0Z+Q0WECcj/zTmtWsRa8j5mrtDajYwWH4fzEKU0npZanEzsMIdeD0Di5J6oudfzyaLtkcjQLWKpuUs91UrA0CKaKg8aSFolBoFpiThdi6IGJBp22Duxv1z6KRQoXcdKVxIoQPavaLfGVy88jMPubv3H83KCexHwcN0XcBzrxUAyuiYFfRKbV4dzWcV/2CyQPNIMM9cM877G1Q/zv3/xeXv01yU/81x36a0uoVHCQANyZWcb/7E9Q+eL3kDt+EqtYMnMhmh9K7/djps3kYojscZ+Ml2Mw74aAKKLVcPMjEFeCP3Hlef6L97+XTGizlW/y33/hP3BxahFpDY7fjI+kjHcMp/djSyEH1kkRQ7NOrjUZtrLksy5xutC0VQLAjfJMJ63TGiElYaQ1xxmx4v3EKgzNyUzSJO9QyljB4kAwg3MCz+s9YLzuL5/+AAdho7GSczMDHXDpkWV++advcOnVXZTUjN1x+Mr/c5Infq5IuNUk6HsURZnp1QnKpXHcXAElIpOdDum39+g1d5GhT7e5R6teJ5PNU61NIm0XLAvpOIyMjVMdnUBLk6mm3+uysriE3+9zYH6ecqVinORBCFojLRs3k+HYseNUazVklCRhbbrJz/7l99iYbCFDwfO/PscLvzaP7ikae3Xq9TqT0zOUymUQgr36HlevXqHTbmJLgVCKtZ06F4tjXJ85Qr1cjcLbDUcLdrdo7KxT390mmyuQr5RQ0gI7R3l8imypSqClSSLRbTMzUeW5J47z5OkjuLbAzWSYmZ3FzZrI8uWVFS7cucQf/MgF7hzdBg1zX83xzDfmOXn0BLYl2d3eZGNlkdDrsrh4D2lZzM3Pc+jwMUrlKjs7dc6ceZerV69y4MABHMchm8nw7DPPcPDQIVZWlul0TY7T+CzO0dFRRkZGsB2La9evsrO3kxwB5vX6PPX0i6xstvnN332N9a097t5dZGpymgPzC4yPjbGsVvjwM9fRAkbXSrx4+TRzcwcIFQjbNsArJBoLy8mihWRtfZXdnR0KuRzFQh7Hcel5fZN60/OxhKBWqWLbFjs720gpKJVKKKVYX1snm8lSqZTY3NpEa9MHISVLS4tMT08xNTnJ3t4eruuSy2bNAvJ9stksnU6HeyzRnTM+ocP3ZsjaGbpeDwVYtkO73abX6VAZqeLkS8joSMduc5ed9VVef+s9bi2vG5MepPLgDnxaxpeVrPR9ZtZURqcYUmO+FnGv+PTcARMXQ/cPv4qE+6cVXo2JwRiYXpOHwtD7FI6lOVf6u3263eAbA0gxA42FCEtJHon8rCvlHXYKjSG/p4hYWNKDiIaGh+tEo43ze8SR5CqNdnEfdWL430eWgWZHcstA+zNgH0Uya/jijSeZrY+hheb3Tr3Hbr45ROP9Vv6k3QlA76NP9OxhrTYG9bSG/d3KA8BYa4KNDYJPLvA9/6TOX/3rDiObEMiQjtNH5nJkDx2h/LkvMfaf/TncuQPEQsN+60ucKGb/c9JzMz3qsW9WxkdZpgS5wb0p7VrrIZrYocVPfPR5/sz5z2Ipyb2RTf7eF3+ZuyMbA3roaP96YslJj/y+oEetjbma+GQyhW0JivkshVwGiR4yRQeRb9x2jJ/Ysm1i95DtOImfWEbJksxeYXM4jBASSwgCzyP0DY8yfTf/xQfa/GHlU4OwW6hilWooK0OQk9z+Cz5v/os26yfN3tpHPqnyI39zhrlv5Njd2CEMPPKlMrlCAaSFFhaFYo1svhYx4BChAvrtJjsbq/QaDUr5AuVKDSUt/EATBMqcEuTY1CYmGJueRkd7tqIMGvj9fuQ/ijZhK0UYmS13dnbodrtmP+k0fPBTLdYf7YKC018f5/P/9jBu36axu8fq8jIT45McPXqCo8eOUyqXQGjanSaLd2/TaeyxvbaGrWBsaoa12iTXxw+ANO0RGk51Wkxub+AKTblahejgexDmDODKOK6TRyBQgYfX3qPg9qkUNa6jCZXP+uYmI7VRpmdmCdG88ehF3njpElpoKpddnvp/j3N67jiHDx7i+LHj2EKys77OjauXqe/tMjk1hQJy+TwHDx1hpDpGo9mm0WxjSYFSAb7nYUuL6akpCoUiO7s7nP3wnNEkvT7rGxu4mSxPPvUkQgrOXzjP+sY6d+/e5eDCQebm53j+hZcBiw/PvkfYazE3PQ4yZGZ+Fu/HbJoHTVDCC+eOMbKVJ18oks0XwXKxMgW0kzGnMFkZJJJ+t0OlUKRYMD5a180gtcQSNkJI9vYa9H2fXD5HqVSgUa8jhKBULiMtyebWBoVCnp3tHSzLIp/PM1IdQUhJr9sjDEMKxQI729s0my0mJyZZXVmhVCwyNjbKnckVwpxChILaxSJhoHAzWbY2t0BoKiMVAj9AI5BuhomZA9SmJglVQE5qVm7d4luvvcVWvWNyTEsdnQAzAMsYmAcBO6akTaPpwJz7TZORSTjWTkg4Y8pMBkMMNNJCRIQ8AxNiWmtmcJ/GHICeflZ0QYJz9yVRTvk9xUBDGShNZg3YWJyK9uJ2nT43xpdj5SnpRxrptR6w2iFAjWmW/pcQcLiO4WbuU4f1/Qc5DKhnvptq1PjytacBuFvd4I3DnyTa+EC7jU23A5Lve3LqNf7TQ7+nNeH90eLDmui+38OA/qWLNH/uX9P8lV8kOPMuIw0HS5tDRq4/FnD5rz/B2F/4S1S++GXsWi3qo76PTMO0HDxbpqW4wS9DYBoDZmKpEQN6pukfu/LSZuts4PJ/fOcrfP/1p5Fa8MnEXf7eZ/8D67m9aC6mhalIq2YQrZ64LUQqeIvUQQxCY1mCYiFHMZ/DiXy+Qkhs2yYITfrJOKucwPiAbctCRj7g+FxipVUUVR2aPciRnzhJyCNE0tZcLrt/IjywfHpN2MkQOlnUfIWP/67Phz/VozepkT049q8dXvqLDvJMyPr6HqGWFEoV3FwOLa0IdM2pQrlilVylhraMxGEJ0EEfhCaXL6Q2hyuUCiIJ0UJYNtJ2sKP7QBCGiuWlRXY3NyhmswgpUNFi2N7e4s6du5TLI8w8dYQrP61Y+6KJfJ36ls3pv+XAdp+9vW3WlleYGJ3gwPwBhIRsocDCoSMUyxWkEHi9Lvfu3KLf6TAzM4ftuighaEqLRiabTK6iVnym3+bR1g5+s46w7GgLnkKrgFa7hRIW+VIZLeDW3UV+9at/wJn3Pqbd6bGxtkG/22fhwCEWDhwi/4VRrvztFkFO4+wJnvj7VZ5zTzI+UibrSsYnxllYOIAQId3WLlKEaGUSMQQacvkiY+MTZLM52t0OH378ITs72/hhQLPV5M6t2zz/7HMcO3qctbU13nnvPba2t1m5u8zRQweZmR7nxeeexRaSt946w8bmFrMzM7iWxfj4CC+/9BxCKfxOi5mJCpYt8ctw7Ue20DZkNyxq/16jA5/V5RUOHjnGwaPHkVYG6bhYbp5QSYrFMlOT07i2i21Z+EEQ0cwcH5bP5amMjFBvNvCCgEwmZwKydnbRSlGpjJDJZmm12gS+hyMtVBjQbjZwbbNH/ObNm0xPTVMqlWg26pSLeUqFPIHfI/D67D5prAG5lsvc9oTxA5dGcCwbFZhgEdu1abebhKGiNFLFcvIUizVUEBL0WuxsrfP622dYb7SSk5+MRK5TAYcDfTbNo0Tqi/sYber7BwJMbFLVKcYqYt1x8N0AgyImqwUkEcOw3zKdtiIOA9Tg3bCmKVKhXgOfoUl2YwSHQ7tTlPomB/eFqTsR0xpohYZew/B9f3c1+gE/xPLB4DAnkXw2CtXg8AkNkUY9AJ7kNUFRc57t9115jtFOmUCG/Mbpt+m4vUibjU21caIVEkBOaLqvviEK7vMlG8FIJWNlzNWD9/F8il91r0f3tW/Q+uqvoBp7SV2WlhTCHB9/r80/+ReKf/hXPuD6xDqJ9rtPWx2MoYiIpxJTcGzBibX6JCEb0XahWFNVAzqjjUXS/ItngpkT6EHdsYAngIqX529950d4cfEEAG8uXOIfvvIfqbvdweEmDP8NB+YlM2NA00Q7NmcDSzT5rEsxlyFrOyZ+R0ZZxbQZaxRR3EpIqJTJPxHVY7YpkWTx8rx+AspCiNQ2OENn64H70+8vnxqEFdA84nHmf9rg+k92CXPgbsPjf8flsb/p0rraZmengWU5jJRHsS0XIilTRJKVMUNCNpsjnzcb95NFoQLqO5v4/R5hEBCoACnBQqPDgPrOLpur6xTyRebmDuDmsigBoQpZXllkbW2Zvm/2sW5sbnH3zj2ztWRhitf+8h2u/4Dx91U/snn6rxdQN9vcvXmTlcVFJibGOXjoMAhB3/Pw/QDHyXDo8BHKIyORVKcJfI9Wq0Ho+Wil6dsOVyYO0MiY4xOFENjAaa/DU6u3CDeXsXSACj06rSatZoNCrUZ5bJpcdYw2NrdW9jh7/gYra+vUt7c5trBAKZuhV/L46G/s0D2gEAEc/pkch85keeLkIU4enSeXtUCFjFSqFAtlhJC0Ww2Wlu7S6bSQCLrdPutrmxw8fITa2BiNVptz5z5ka2uL69evU61WGRsb49SpR5hfWGBnZ4cPz55jZmyEU4cXyLsu8zMzPP/MM2gUO/VdFpfuEipzhJfX6zM/u4DS8Gtf/Srbu7tcfWyJ9YN7ACy8XqX51i7XLl1iJOswWasyNzPH0SOHsSwHYTtksnmKxTKZbI5QKbJuFinA9/rk8zk8z6PX6yKkYGSkQrfbY29vj0KhQKFQZG9vD60VbibD7u4uvu8zWqsxOT7O2toqhXyWsbFRpBB0Oh3QimI+z+b6Ou1mk+mpSRZ37rEyb/ZWFhpZZusTJgub0nR7PdyMy+bmpsmdHiVt0QrcbJGZ+cNkixWCMMSVmk8+OsdbZ95lu9nCC0JzemHs/xPp4BIRSeP3myz3FxFJ+HFA0HDASrqkchpjTqeSQxcOa5kD1TYF0HrAoqMqByBPrOXt03DMjQMFWQy/DrabwNzeONUoacf10WU6dj9V3bBpNP46tiDsr2twnUhM9UYLj02RJtl/HKGsiQ8bMLcrPUiMkjw3pdXHDTu4O8lnbplUltfGl3jvwNUULeI2pS0YcV1poB0WoIZdESQgPujcfep0UqdAEO7u0Prqr9J9+zvgDbbCCNvGLleoPv8q3Z/4PFsHJUuVbf7Jy1+lnm0nGqqhw7BpOC2sJWCWkh8GW44GwXEDIWfQPykG7hKR1JfIaSnLQWyyN+tgolPh7377xzi9MY8GfvvEWf7Z83+AZwfEYt3ANjOArvjkteExNI0brK/BXTnXoVzIkcs4A6FPaRzLHFGINpHQxGtBg1bauDWjrHPGT2zjez5CSgIVprZ9maL+U6etXHulxVs/s8jql1tm/+9Nlxf+qypH/mcXux/TPyT0PVTg49o2WdtCKt9IRiIOfAjo99r0ul1sx0VbkvhAKxV41LfX6ffaIMyB8LYFjZ0t9tbXqZbLzM0uUCzXmJk7QDafR2sIAp+bt69z+84tlpeXWFxcZHJiisnZKd79kUXe/ZOLKFtTW87xlZ8+RnnZmAlU38PSmlqtSqB8vNDHDwPjkI9s/5bjImwHhUCFAVtry7Qau1iYBb7pZHirOMaqkwFpIYWFBOaDHjPbSzS3V+h3mrSbLQrFEjKbR8ksmfIYhdEJQuHQaLS4d/cO86NVnn/sBM+9cIpzf/oO15/dAGDitQzH/kWBzl6dO7euEPY79DtdE7lbb+FjMz67gO26NBvb3Lt3m16nxfrKKrlCkWKlxtz8IcbGJmm1e3zwwVk2N7eYnp0hUEbiO3b0KNNTU6jQI/R3mJrIUcy7oBVBGDAzM4tl2bx/9gMWlxYJgpDFxRVOnX6EZ194iVDZXLpzmXc+e5kgo8h0HL549mlGR8bZ2Vzn1OE5Th+dx9YB42OjZLNZ0DAzO0suGkcwubcty/hcbNumWCgQBAGdThvXdalWR1BKsbu7R+n/y9qfR1uW3Xed4Gef+c7jm4d4EZEROWcqlSnJkixbki1juapkY7AxNmVMGWiopmtY0F7drK7q6irWaqCLZnVVA0XjoihsjC3L4Ak8SbIkS5mpnIfIjHl687vvzuOZd/9xhnvuixBO1uLkehnv3bvPPns6v+9v/pVKFIpFOt0OOcui1WohgXyhgGka5EwLz/UYjUZRrDCwt7vH+sY6Vs5iNBpRLpUIt0RkDxawultjvD+MypeZOt1ej+bSEp7vo6gqs9mMYqFAu90mXyijWDmqS6sUy5FErAUet95/nz/8o5cYewEBgjBm4hJnHKHEKQ4z6RnFGTBMCWCGMCfc/gMEWmRUhCQSTKbcXEqzwrik8VyCSNR4iDmHn9hh5zdmsm59pyvK1zgnWmQlwYgEhkhyrsGFzhoIOCx3OM0NFmh9Mqr51MQD000eMreQz9cnZVIyUkjW8Q3OSqeLz0rWUSaLCqihyhfe+zgF18LRPH7jyRdxVDejmZjvyVmV9FybcXbf5qAd82OZPsSZe4EwRAQB0vMIDvcZ/etfxb36XpRYnGi+1s4FGn/6J1j+mb9I4/s+z5+7/jk+vhtJln+08z6/9MzX5x7pCTjF6lcZO8dG51NJi1VEc8l416VyLcwzxaUNo3wPmX1Jj6CScSgU2b4SsI9ifc/3l/h//OFPsD1oEighv/jM1/nFZ76Br4QLe5i9UltzypnJzDuxqGVJ1tkwBMWChalrafEHIaJkHl7gkUQrRJ7Ui/m+Pc9NY4tVRUGGAVoQYLSO4nEIQlVl8h1Y5bPXBwbhl/7hAYPHXEQAK98q8Km/usH6V6OC9QEKQZwsKAhdBoMerj3l0QvnOLe+CvHmysBnNhkxHY/RdJNitUmlvoxi5PClEnGlvs2k18KfTQgch067zaDXo1atsrK8iiokpqpSLpTY3jpHqVIFoSLDkH6vx97uLitLS2xubHDt0x3+8Gfu4pshxY7Bn/j7l9i5t0K93khfRM91uXr1fdrtFq7rEgRBVGQ9CDg+bjEcjVnf2GJpeRWhKoTSp9c5xR4PsESIOxnT8wPeXdlhmC/GxDVya7/gOhiDNqPOCXnLoliug1AJgxBds6jVlqg36pGkIyX2oMtSzeLWU/v80Q/fQSqS/H2VF/7eKo/ULxPqBl99+RV++V//Np3hhO5gxN7hIfWVdaqNFTY3d9AVlUGvw/Wr7zGaDKlUq7iej65Z7Jy/SGN5Gdf1mNkO3V6PqW3jBz6GFtXnXF9d4+7uMV/8td+g1Tql1x9y7+4uH3r6GZ5/7jl03eDV117l1ddeo1AukS/lyefzPPXUUwxfcDh6pg/AhbdWadxpUqk1Ma08337lVV597VV0Q6XXH2DbNlYuh25EyeaDICBfiMFYSDRNZTKZoKgq5TiDTyfO8FOpVHA9j5ljU8jn0XU9tme7UW3QMEzrJS8vNdnf26VYLLC2vhrvuYOqapTLFVonLfbyx9jLUXz340c7FHJ5Aj9Ik32MRiMC30cA/X6fSrkSv7gKnh+QK1dZWt/CC6Nk7950ynvvXuHtK9eZuj5BnFlHyljZGIPy2SslWGdsZhn56QE7XObuOSDFCJgQlujzVFeIEBJFIaM/POsRm4CYiCWgZBQxRGXwZA7YzNuno04kwLmiECl44ugcSOgUhxyVuxmbb3RlixooKUJlbNIZqTsBzew1H87iWiXgkA33yt6btbPPQ8ai5z96usVHYkB7a+M2763fj2aV2CUfAPXFzx/moPWwdumnMQDIIMC9fYvRr/8aw1/5JYZf/CWGv/yL+PfvkQKZplH48As0fuzPkn/8CbTGEkIoVOwC//W3fpiNYZ1AhPyz577Cq+s3F1W2CQNG4kinZCTheROQcfUiBVWJPZaVuYSZMHOJxiGRlhNnqcTeqiRpLWNbh4z3MhZcERKebe3w33zjx2hOSti6x//3o7/DVy6+/dD1XfDcFwlDE4H6fJbJGs/fLSlDdFWhXMiTN43IwSrOE53YgZMzoMQ2XxlLyEpcZ1hV1TQbniFD1NEofdeC5TWkleeDXB+4nrBXCFFtwc6XKjz9P9YxD318x0VVc5gFi+l4DKGDQCJDj0G/zbvvvMEjl6M414ntYM/G+I6LYebIF8uoeuQ2Xq4bTId93NkQTUS2wH7rhOmgj+cHlGsNKuUaBU1jZbXKdGYz8ySogu0L5znc26PXPo147TCk3+tSLldwAw/djrxwP/sPL3Dx5Qbj4Yh+p0dzaRnHsZmMI2eku7dvs7q2QX1piVCGtE5Pabe7rK2uU61WCUpR1aiT00NE6DFoHzEbWzh+SLFcJaeo5B2bxF4tFKiFIZ+xJ5yoLkNFoZ0vgmFEHrehgqKA67sY+Ty+43LS7fPFX/01JkoZ43mBVhE8/f+u85z7OOXtGkJXuHvrBrf2TjnpO0ih0miuUCwUQQiK5RpbOyr379zAtifkCgp+6KH5BjnLRFU1cvnInjqdTXjnyhWeeOIJNtY3ONjdR1M1nvnQh7h37z7vvf8u7b5LtVxjtdGgZEVc4wvPv8Crr73CjZs3eOGj3xUxLUiqlTKVaoXKQZ/husPjv7GOGEtOTtps7jyCPRrx9tWbNLsD+oMhSEGpXIHYliJ9Hytnpm+9qiq4vkuv26VWq0fOdY5Np9tlqdmkUqkyHAyoVMsUCnk6nQ4gqNUb1Op1Oq0TTE3HNEwMw2QynTAcDsnlcwRhQOuwxdbmFp7n4giP1YMaQ2tK5YpB6AcYms6w28MyDPQ4LKFULNFpd5jZM0IpMTSVTr/PytoK4/GI1a0duge7+PYU13f59kvfxnNsPvGx5zE1FTWMCEJiKxMykbYWQ1dSIpORRgSRhIKM7MtIyPkGK+MayMi5JSH0Wakq+i2WIlIpba62Tlom9WOlUFICmaBeFj6EJJJ6E6BfwBZJIlel406lvLi/EC6fbrI0rlCxC7iZmsIi0zhRvRPbXeV8YmnHWeZkYRRxu8XictHzhRTzUaYPyczt4WI3pqfzI1c+yWvbN9joN6PsTplxJ1J/VopdmNfZgaR7njwjnvd0gn3tKsHRITIIIAjwbl1HTiYZlibpRaDk85S/97MUn/8IQtNJJWsUkCGPtTf4a9/+If6HT/8q9VmJQAlSlXZqeMgAcaJRyGK0jBkvkbRZkO7DlPESGe1BUs9YiOQbMX9GytSBEEq8T3IubUrJ9957nL/x4hf4W9/za1i+HqUNzRQQnZ/ZzBamDnYs/CvnX8XVnxazkxULFpqqMJpOCUJJVJwlSnUcxsyDrmm4rrcAwpCoqOX8nMZnSuTzaN+p+MWZ6wOD8OX/pUmurfLIvyig9GYErodu5ilWozJympln1G8j3RkirgnbH/W48t67mFYFdzbD9xwK+RL5YhFUnVAqkcpXVShXGzi6xmTUjV+iEM+ZYFh56uUS9bzF4+fXeeLZCxx2urz8xjVQo+Tguq6jajphECXSHo9G3Ll1k/POFj8yfpz+isNTv7/KaDDi9OiYpVqTc+fPMfMcbt+6ybg/wPc8jg72cT0XoWl0Oj2Wl1eoVmpRHVfNoFir4xLQOz1B+g7+1Ec385iWhTGdogV+fL7mh64mJTXPJRyccte1eXdtB9UqoQlJv9PB9kNWN7bxXY/O4R63Dnvo/2DEn3hnhxuXWnz365fZ3FymNxpSKVY5f/5R7t29xWg4RDMstiuRd3B0xlRyxTKFUoXxsM90MuJw7z6bm+dxFIXpdMyg1+fy5cuctk85PD7kynvvgYSjo0M+9Oyz6LrOpUuP4AQON65dw59N+P5PfYFyo8b9wzbLzWW21re5cesW77z1Dq7nsb6xwWGrxdI7Of5K73N8U3uT4JU2J5YKgU+9uQyNJr4i2D84QIY+uVyJUqlMEEoM0yAIIm9DQ9fxAh9FUSkUCwR+QLvTpt5oUKlWYTCg1WqxvLxKsVik2+mwvr5Kq3WCqkZe1Z7vI2UE5K3TU4IgZG19ndu377C6ssrm5iZHR8eEYYhpWjzz3gU+/F8+xonZ4XJxi9t7d1nfOMd0OsPUNAq5PISS6WSCqih4vs9kOmFjfY3T7glhEOD7IUsrqzjjCUPfRwldhp0Trr5/HatQ5qlHH6FiaRGjKGLVbkTRFtSRWTvjItGLiXlMgaSQfOrOU3zX7uNIwAi0jPSWBZK5+jDrBZxILEnTFOTiMT1ck5aoDon7yUpwCVCGKWhGUnJMvZNhCXj6+AL/6Ff/K5amFUxfj7FZJsJUhkmIGI90bUjgXS6MKJlT+lsiaMkzLcSct5Ak6xnXkF2Y51mpNfr7uYOL/D9/+2d5onWOkp2Pv4vaJDb7s/dwZu2TUT9gR5YSb2+X2R/+QSTlhgFnr7Pyu760TPWH/mOs8xfjeYBI7ZiJ05PCD11/HlcJeOHwES72VuI9WQQwkR6suRvVAgOYZSRkAq4yxdNES5Ecv+Tcqtm1FNn+s9fciS8BY1UKfuT6R/AVn/VRnU/tPhY9UyYs1MLt6T9z4J0/J3IVXHS6SxwkkRJFCHI5HaEWGI1tpC+jqJwYqH3fRzcMVC2MSiJqUR1hEUZFHlzHnTON8TopnosIFm3E3+n6wOroZ/5+k8v/axHaE6TnoRoGer6IVDSkEGhmnkpjBd0qEsZl3gIpmcwmDPptPGdKsVCgWC6jKQpa6KGEHkKAqqnopkV1aY18uU7kyxb957o2s/4pH3lih6ee2cELRrjONEpoGQQcH+7T6/XZ2trm3LnzUYEHAbZjs3//Pku/p/Dh31jBHU45PT6mVqlw7tw5JAJdNzh/PkoZKZEEoc/JyREnRwdUKyVqtUqaaSeQElXXKJQqlCo1UDQkAs9xGPW62IqKp8Y8TVzvEhkXmlAEipSs2GP8TotgNsEeDplNJtTrS6iqRb5QYWnzAr5ZYOx6DL5yzGP/Is/T61t86PEdNlerWIbC2toKm5ubKIqK77ncuXkNbzZBEyAUwWmngydVtnYewbTyzKYTDg7vMxz3ODo6YH11nWKpzPkLF7h48SKe6/HG669TLpWo1WooqkIQeJw/f4FiuYrjOLz++iucnh6BDJjNpkwmUz7z6c9QyOW4/v5VDo6OOTg64dzWDk2vxnfvP4syCNjfvUupWIgOmqGzc/4CpmEigFKxgmFaOK6LJKoLqsRSsWGYTKfTFJSr1Qr9fh/XcSgUCpimSbvdplDIk8tFcb6e42HoBppu0G53CELJ9rlzTKYzFFVF13Vy+TzD0ZDJZEKhUGBm2+wfHLC2vI4x06nu5WlqtTgm2sPzvcgpq30axSTLKIdspVxGhgGOa6OpUZm0MAzJ5fIY+TJrOxfIl0rIwGcyHPKHX/06N2/fw5eAUCOikBgw4ysB2UXvWkmWEspY6ogSuQoMNHKeSc4zUMM4/YmY25qzPyngypjMJerAFNrEHCznD5xT1SzykiHA89bzWsTxOFL7bKaNgqDgWpzrL5P3TNSYVpwN20quxfSSc9CahyQtrqPM3JN6gad9ZUAnkeZk3O4hTMeis5Qg71p8fPdxKnbhASl7HtZz9pKphPxwOzFI38e7eoXJl/4l/t3b3xGA1WIJc30Tc/schRc+SuPH/yzWhUdS9Esk2sWFlJi+zo+/90kudldSAE2k3rRpfB6y3uRzEMs4Psl52+TeZAseYELkPEZeETL2QGbhXGRBM2uSQIAeqvyZ9z7J9+w+joJC6ij1gLYiA8BxpynDOt/wxfZxWGs06ci12zJ1KqU8lq6iiigkSYvjhj3Pi0w0IpKmVTUqbSiIahj4QUCYSd6ktE4omcYD43zY9YElYXUywXdsCEG3iiimRSAltmNjGDq6pqEaJoXmMtNeB28yjHgrEcW/arqOZhp4YUi9YHF+Y4Wb93ZxAKEp6IrAtm1mjo2qGVFawzj2atjvsnvvOpsXK7R6bd589zaun+Nw/5DRcMT25jmaS02ECrlCkdu3buG5Lr7ncrS/hz2pMxyPqVcqnD+3g6KqeH4keWmazsbmJkJArxNXHwkErj1lNp2iaAaKGmVCcV2HwPexZx6GWcR1HWTg488mdHyflplnazaM/BWkhCQMSwoCQlQpMZ0pYWsfX9Up15vk8lES9sAPEbpObXWFzoGNdD288RTpTSnkJZWKRaurMLUdTrtDKktr9PsdprMRd+5eZ2v7IqgavW6XlZU1zFyOtc0djvbuMRn1uDMdUS5Wsawo1aiZNzh/4QKe67B/f5f9/X3W1lZZXl3BQ9LudrHyRSrNFd69foPd4zYvfOTj3L1/wNb2OsvLdb7r4x/lW9/6Fu+++Tq1+hKNWoOJ7ZArl1nfPsed23c5OWlhFYosLa8wGg+xbQddtahW6yDBNA0cxybUtKh6iethGBaFfJ7hcIhlWpQrZaqqQrvTptlcolKp0G53mUwmlEslDg73kVJSrdYolcocj4+xNA3X99D0KA6w2+th2y5bG+tcuXKFlZUVVldXODw6AqFgmjnGkxH3d+9HlVRUlW6vy8VHHmH/4JByuYoiFFRVZTgYUMgXGI6GABi6iaqq9Hpd9FwOM2eQd2xGvQHObEwg4cqVd8jlDB69cA5NRkQpIYGLeCJIslilEqXIcvUJAZILtOhBsJp7U2djaFOHkwXxIQFpQep8lamUM3d7ngNNRLjnNrhE8sk+nzOgPJdCMr2kcVFnJa/5E5GxtJAAVyQip2rA+XVGSk60CRk1YTqTjHQ9f9AceLMZsTJTW2y8cGU1GlH88YLwKBc2C2nP8E+OCTsd/MMDnHfeBNdNVhZF1xGmFY3fMDHP7VD6xHejlivR0zQtrqOeWeMzI0qlQTHfwlSZEkuA2TVLJN4sO7SoRRELvT/40KRNtBZKCt7zcxn9Hi5YPOZ9LO4fRH0kj35A65E5MA9jf+ZX0q+IpGmRGITIbGzkOmgZKno5jzJTGU8mBH4Q1QsOgrSPUEZJPVzHIQgEuq7hFwp4zRX0TjtiPhwbZTb7d44quT4wCAfTIQgNI19GMfIERATBD3wCNzJOq5oOqk6hWmcSePizacQdC0noewz7PfKVGo7t06xfIF+4xGvv30aGAntm0+mcglBorqygyJBO6zhKaiHhG6+9we7pIXqliiPy7O7t4ozHbG9sUWvUEaqCrinU6k3OnZfcu3cH17ZRgoD26TH5QolHzp9H0zRcP0ilCc/1EYpGuVKm3+/GDgQh434vKgKwtIZVKCIleK5Lp9UGoVGqNwilR//0mNC18Ryft1QVRTdoOA5ursjh8haV6Yi17hFCKOQI+QE7Mt6HQuEob3I/qBOqiboEFKmiCAPF1Jk5Dl97+VX6/ox8uYbj+ly7cRvNzFNbXkUvlGgd3mM2G3H/7g00PU+lUiefLxJK0M0CK+vbHO7fwfccXMdmMpugGRpmzkISMp3N2Nza4nD/kJe+/QrPPfcc5XqNe/d32VjfpFqpouoKd27d4Gtf/yaVaoWnnopUQ/linqeffYYXX/o2k+GYw4NDSo0mfigZTWc0V1YZDYbs3r+LZWgcHe4hCSiU6oiYEdItE0MIAj8qwh0KsO2IsWs0GrROWkgpKVcqFHIFjo+O2draplwuxjbeJdrtNgqgCYXA81AUgWbo7O4fYM9mnD9/nvu7UTaxfLFEuVJlNpsxGI0wLYvhcEi30+HChR2Ojo8QKJGTmIDReBJV35HQ7XVZXV2hfdomX8gjFAlCYTgaUaqUcT0PVdVRFI1cocza9gVaB/eR7oyjvXt8ZTTBsn6QnfXlFMTm6jwRn4Gsk1Rkm5IyUtemdjyZAHRGeoip2aI8KVNAQc5tgKm4ELeZq8aZizTZplmJPCWoSkrbFtRwQBLOlHolx0AdSjI277g3Kc4Q4jnBT5mIlABnGIcs2CZgcwYoFsNvMqpxkQBLMsVFaTnbdwLg4QMq67NX1sY7Z6iy80nUqe7d20y//HsE7dMorCWTMlEA+sYm1e/7AYy1tYgZUFSErkchnhlG5oE9kqRzE4i4DOF8jUjWKBlbqhkQkfN7PEeZjJs5L5a1d6fMSzqWeDAZjiZM7svujZgPIRn2IoAmo8zYq1mc6MJZyc6fuaZDsMhsJZHKUkRjlDLai6yDXlTiM7pB0wUV1UIQMpnNkCJK5CEVJfKUjtNU6pqO53uoqoKiaQSVypyxkBLf+Q9cRUnELtmaqpNYG6QQUcUJwPVcPM8Bz2M2HuF4HhgmoRJljVKkRHo202EPx/N46Y23uXr7DhLBaDjktNVCFRrN5gq6mUPRLerLaxhmDg8YSZ0rd0955/097ty6jzMec27rHLV6PT5sPp7r4Xk+uUKRnQsXMHNWrHIIcWYzusdHrDbKGGpAKD2kAlIRjCZjDo9PKVeb1JdWUFQNCJmOhrSO9gk8myDw6LSjBO6VWh10A9XMU2kuo5omIBkFLt9UVb7R3OS9nac5LjXwVY3kpClCYAKGlFhhwLmTXR6/e5WcY0cZWXyPXrtDudpg49wFtFKJru3z9Zfe5rU33ufOvT1s16fWWCKUYOaKrKxvYxoW3myMa0/QdZ0giLwqJaAYJrpZRFNNHHvG3t5dJpMJ0+mU/d19TCPHE089zaVHHyUIJW+++RbvvPU2ebPASmOZgmXy6KOXufz4k4xnNpPpNDqomkYQSsZTm1q9ia7rvH/1Kkf7+9iTCfbUYWNji3M75wnDgGvvv0On3QJJlEpU17E9F8dxEERJ0FVNw7Jy2LbNcDRECMHS8jKu5zEZT8jn85SKxTj+N49umExmM4IgwDRMTMui0+niuR7N5SWCUOK5US7nnJlDVVS63R6TyZRytcqtW7epVausrS4TBlH9UF23kFLQ7/WolEogQzzHpVQs4vteXGVF4Houw9GIarXCdDJB1ww0TcfzXIb9AYViBUXPUVtaRagq7myKOx3z1a99nTsHx3go83q7KdFY9IrOyCcREMdAlphHIk/ruTiQSDILl5z/zKU8kX4mEwRPP0tAXcyp5MJP3G1sX5OxiJV6wSaAE1Pb7HAeBOD5EBdoTSpRJ/MSZwB13sHZ2F8pk1CWbJrPzFLIeX3n6LM5IxO5/oQPjGc+mGRc3xmOs+rr7G8y8JGui/3yi4y/9CsEhweR5JsFYEXBevxJGj/645jnLyByeZR8ASWfA00D5EKv85jmxXOTmBAEkcZlnnhDmYNvwlTE+59geCiIq9TFmapEDI0p6s+1KOnqSpBhHNaVAdiEYZSEUQUqZOQYlfALSrymQhAloFbS/UpD5ZgzgItHQCxIx+mKpxL22fOSrN1DdErJuU8YBSnRFagW81QKeVTieHvJvHyu56FqKqqmRcmFMsxd8uTgIWaFh10fHISFQIQBznSIErioscdliIheaiBwHcb9U+xJH83QyVXqWNUmoWYQJDyN53J62qEzsGkPXAbDMaNBF11XqDeb6LoBUiAUFd2yaK6ski+WCVDxpYrnRiBfLZdo1BuYuoalR3FtM8dhZjsR15KUmdINJApSBhzs3qFztMulC1sgAwIhGc8GHB7uYlkFVte3qTdXaK6ug2YQEuLYE/bv3+Z4/x6h79FsrqDqOkEYEIYSzchRaSyjmhZCRmqovjNjGrooqmCimyTehYnDSRIvp8iQlf4p54/vohEw6LcQKtSXlskVimxsbVMoV3D9gIPDQ46Oj2g0lwhiRwNFkVj5AvXmGqpmEvourcNdJsM+koBQ+oyGQwQa6xsXMK0CtjPh3t3rdNonHB0es7ayTuCHbG1v8djjj+J6HoeHR+QsC0NXyJkaugrVSpFqrcps5vD1b/wRnU4Px3bZ29vn/M4Ojz32KLqucOfuDW7fvMZyrUbOtCiWK5w7fyH2OhRUynUgqj6Sz+XQNQ3P89A1jfF4RBgGVKsVVCFon7ZQVYVarRp9FwTU6zUs06Db61OpliMTQhhSKkcSriSywcsgMmXopkGr1WIyGbO6ukKv00GGknq1RrFQYDadxnHEOfq9PoNBn/X1NYaDIaahUy4VUVWBbU/QNIHvR8lDatUKju2AjMqdzaZTJpMJpVIJx7GjYH9FYXl9i3JjFS8ICTyb+7dv8+JLr3Hc7eNnkDAiNyGhFJFPhVQQCSGUiUSbIRrJNUef2DY9B8WFTE2JI84C+SHl/kmI3YLx7yHPSf+M/5PzvL3pEwSpRJ+khUzBPrk7tcctpvZMwCXbNpGk5/NPKP0ZUEdGUouIGZuUr5BzlTmLBHpRCpax5JQwPhlHHhIm4t8tDytxqtKE4ZAyxLt7m8m/+iLDf/qPmX75d5HTcdqnUBSEqqIWS5Q+/t3Uv/Cj6I1mxmYan48UJARJ+Nh8ZKTjZXHpUoARGQYrWqMk8QWZvYMgkPGeZbY7MW+kKzZ3PCVj61aYt5ufPJn9I8H8M2r+M2cuK/yevWIpPtUIZW+b2znSD7NmjbNajixDkXkj0j4UBYqFPJVSAdPQQEbRN4ZhIqUkCMPI5yde+zQ2PX6o7/8HdswSQkXIEHwHdzIg9GwUJJoAXREovoczGeI6DpqRwypUkKqBYubJleugW0gUlDBEhB7jQZ9Bt82438U0DCrVJkriYk/EGYVCoOomzaUVisUSkTt8SBgGtDundI/3+dCjW1zcXsINPHwpQJGMhkN27+9j5QpcuHiZan0JiYIdhrz8+pt8+ctfw/cDZqMRR7t7WJrG2vISmhIlJShWaiyvb6DqOmHo4czGzEYDCjmLXC6XIQbRQVZ1C0UzEYoOKASBS/vkgMlowGmhwmm5lpZRk6rKKFdCJE5cSGqdEzZvvE1j0KNZbwIKqqpRrdS4eOERmo0mSIH0Q7rtU3zPJiB2GAsCRpMZ1cYKVq5A4NmcHO7S77WZjseM+n0qtQZarsja5g5WrshkNubq1ffJ5XKYlpUSyvX1dZaWlxFCcO3GNe7t3gURoioKB3v7fOwjL/Dc88/SG/T55re+xfUbN1AVLarrW8zz+BOPY5o69mSMrgpylomiCCwzyaGqUG8soekms8kURVFTu12UL9pgMBggw5BSqYRlWbRPW+iaRqPZoNU6RhHEFZPGCCTt1gmKEBi6iu+7SBmSt3KcnBwzGo9ZW1vDDwJse4ZlGBQKeRQB3U6HwPep12rcu3uHWq3C8soynhdxtaqmEMqQbqdDqVDAtm1UoVCvVePc5GHkye26uI5LtRo5sRmmiVBUXNfFD0PypQpWvsLSyhaBHyACl+P9XX7nd7/MSW+EL4ndEGOVs0gyzEVANQfhBFxZACySNyaRis4A1vz9zajyUsols92QUL+M0EMiV2R6OkMgE2In5l1EH8y/l4tts/dmbYYRAMcnJQPMWWbiOzlAZZ2wEgYhqXWclYyiTFpn7M/pkM+UjDwzzeSsJm0fTMQxn5+UITLwcd59m9G/+lXc994hOD6E2GNWAPraOo0f/0lW/vJfY+Uv/edUPvs51Hx+njRFERFIM4/hPbsXyfyiZckyDpk1feAeMWdSYkCOd2NujZCJ1kCSAP4cLxOgFRlaSOrEmjWKpMB09qhlxhOtZzzWJIFNKiQ/TNoXaZsH46/P6j4yfSjxM+Izt8CkkjC62XcuRAhJIWdSK5fIWUZaM1jVtIXKS8ioqtJcohZxVac//vrAIBzE+6rIABE4uNMRgTNBkz64Nt5kQOh6mLkKRqGGVPT0WArdIldtIow8AUoMHx6hO0UTAaVSCaEZ+FLG+nolfQklEs/zcT0/AmklqsDjBwG7u/d45aVvUMhFKcQkksFwwMHhAZqms7l5DitXYm19m1pjiUDRmPiC3aMW165eY+/eXQzFYGv9PJqqEfoemqqhaQbFUoXN7XNomh7JnaFk2O/T73VQk6xDQhIEkbTp+QHNtS0K5TogCHybbvuY0WzMe9VlvmVVuFFb5e3NS7y2eZl+voQiIlW+GfjsDLt876TPpWEPLQjQVQ1d1cjnC6iKjq6ZCCmYDfu0j/fwXAdFCEb9HkhorG6wvnMRM5/H96d0jw/oHB1SyBfQTINASBTDZGPzPLl8CSmg1+swGg0QSqQV6/WHUfasRx8DReG969e5c3+P1nGbgmmxstTk3LlNnnjqSUaTCbdu3qJYLGIYJjkrT7lcplZtYBg6d+/conV8iKmpdE/bCBQKhSKKbqDoOvl8njCM6nba9gzf98kX8hRLBTrdbuRtnC+g6QadbhfLsiiWihwc7GNZJs5swsHefYIgsqmdHh/QPTnAm01YW1kil7Pw/SilnGHomJZJu3PKbDpme3uLbq+LQNBsNoHIm973fcycSeu0heO5rK6sMh6PyRcKGLqBDEOm0wmmaWBPZ8gwpFFv4LsemqahKCrTyRQZe0oHQYjtuFiFCo2VLRQ9j6YI1NDhcO8+L778Ot3RjIAkvETE6smIlGVlt/g9X2AAAVzVx1G9TLszqkkRSeoJ8CxUozlLGVOgn6sAk+YizZoFWdVscv9cIJcLRDzTJLXZAYtjjMeykHgh+03az1yEStWk6TdzQBRynpgjeRaZ1UTKM8Q6le1SGI/GM1/3OZFO+kzahakmMu0zlvKDk2Omv/87yNiB7+wlYo2YsbyMVq2iaEl0BXPgSccTpTRJQoPSAhzp6iUFN84mI8n+X6b9Z/coZdpiMTUVKKXMVNyKARsIRVxYI8zUaYa5oLFwriSZruemhgXpNyu1nmHq0q2f7072DCXPSaXjVEKfr0yaJjMZUxbI03Waq9bno47zviPJmTrVSomcaRIGPkKIKIEHc8/3pIBDcmn6B3O5+uBVlHIF/GRwMkAJXdzJAGfUxx0PkEFIoVjBzBVAROrGZH1DVELFwCrV0HN5IvVwtKFB4NPvdXEcO61SkcSTISW2bdNqtQgk1Fc3KTfXQDUIEbgS3rp+jy/++m8z6PcYDfscHuyjaRobG1tROUShoWo6q2sbLC2vgKoQEGLbY1x7SqFYRmgWiEgqIwwQgKpoeF6IUHQ0PQciyprSPT1hPOijCokiAlx7zHQ8pFSpouYKFOvL5EvVaO6BS797TKtzwmmhxP7aOVrFKq6qs19dQaoaqlDTM6MFHucP7nDh+B6KDEBAu9OlP5qwurVNtbmMBJzpkO7RHuPuKePhkHqzidCi6kTLG+fIF4pI10Y6s4iziw+iDCGQKggDM1fAdmdcv3GV1skxnudx9+491tbXObe1zeVLl5FS4e233uW9d97iuz/2YRrlPIHrc257h+3tbYQQHB8eMptO45KANpPJjKefeoZ8IceNG1e5f/c2ndMTZCBpLq3g+QFOXOUKRBzak2M4HDCdTjEMIw5JGoAQVKs1QhkxV41GHUURtFvH9DonTIZ9wsDH0BUGnRP27l5HFx6aItFUBdM0aLdPGYyGbG9toSqCyWRMpVKhWCzh+C6dXhdN18kXC9y4dZNqrUaukMOJs6c5dZ9RccpoOKTeaNLvDTB1k3w+jwxDZrMpuq4xGo6iGqiKQhAEyCDEMk1GozG6aaKbFusbO9TqKwSBR04TvPfWW3ztmy/Rn7l4YYAIE/CNOXPOSj7RFXHgEQF8c+02b6/dBeZpKhfDgxaBPPltTtMyUtyCREyKedlkGTGJfMiooisZeShDQinp5sZ086P5nFIm4qzEtthDolZfGHcipS1IMQlNSgAotgSL2A6KyDAdIv1JwCobKpOF4eyV1TKkz0zGHwN6WrYxTs+oCAU5GSEnk8V1z8zSOdij95v/Cvv2zZTlijTeiao/jKWxeHRysR+RnJDU7jv3SE7PQGZ9Hljqh1xJ38lZVpT5+iWheEEc3pPk3Q6lJEh2WDAvLbkgEce/ZY/jme1/MOuYWPg8mVeyJyRzS9okKgFJqlKfr7acn2fme5/CbxbzU0Yrc/Yk6IpKtVwkb1kkjr1JGFMYBgQxdiQ9Gbr+xy84/x4gXKxUsQolAqEihUDIAFV6BO4MQp98sYyey8WLm6Qoi7jn+fseRIdKinmFEwG+P6PfPcaejaPKOWFURceZzei02yAEjaVl9Fwes1yltrKBali4QmEqVA7afW7fusnh3i6GbrKxuY2i6fhBgB+rDlVNZ3Vzi/Xt7cghJgbczukx7fYxXuCmaiDCgOloxGnrlEq1ztb2eYqlSszueQx7bWbDLiJwmAwHLDUalEoVAimQqk6luUy5Wo9mHnjIwEFTgCCyjEskrVKN91d3ONJMppo+p3thwNLpIVXfBiHZ3d+n3FhCz5co1ZcoN1cIpcAedugc7VLIWehmLnJCCkIU3aLWWEY1TALp0++eMux1IPSRoU+v28W0iuycv0S1Vmc2m3H12lWuXbtG4Ac0anU0BTbX13jqiScgDHCcCY47xjJVNCEwNAPHdnjs8mU81+aVV77NSeuE09M2zXqTaq3B088+S7GQY3/3Lp7nomkGhpXDKuS4fWkPBxeQuK6Lbhg06g2GwyiG17IsSqUyp60o0Ua1VmUyHhP6PuNBnzu3rlPIWdj2DEWAH59BGbiMRx0O9u8z6HfY2tzAylkMB0Msy6RULKKpGoeHR4zGY1ZWV9nbPyCQko31DaSU+J6HILJXH3VPeOdP38d9JGQ6s8nlLHRNQygKo9GYarXKYDDAMA0UNTrnnueiazq9bpe8mSOfy+G4Dp7v0VhaoVBZQrfKkbTiTbl7+zZf+caLjKcOKEqkjsukA0wI2IMgAKEI+ebOFV48/x6+CFKzQkKAsoQYKeepIDNFDRaI4hx7539kqaQQsUSc/XQRtLISjxCC/dopX3z26wRqEuIRqfAWi9knc5ILBDdR/85zbMcAPBePMkMTC+uVSDpCEamtMhlhdh0TgpydwTzEKzuWdAmyyzF/biIFJ+kZkWj1Bmqttrg22ZuBYDrBvvoeigznQJydhxALYCLiikBIiRrvryLJsGsRCIl4IxKbcPrIGGXStpl1SBTVUQ3oKMWkqszP3ZwJmLMBoRTpSQ0z6uuFK7lfJIqUBxkduTDezIoJyOYBP2ueOeuwl5yPLI+5sH5nxhR9OnfKWhzZ3NksjBkuXVEpF/IUzIgWJKUWtRhws0N3PY8Pcn3wUoYiysaUL1eRQk34j7RCku3YBLGYLlQFoaixckCiEqJ4M+xRH9cL0PIVzGKVME5/JyTge4w6p0zHPWTgMRmP6LbbqEKlubSCbuURKKgC8oU8S+vrmIV8pL5GwXNcQs+jWq4jlCge2fdj0FckQhU4XshoOMPU8xhmDinADxxOW4d0O6d4gYeiKtjTKSfHRxQKBZaWV8kXSuzsnKder8V58D1G3RbtwwPKhTy1RoMgjCXNUOIJlUKlgWUV4gQUAePJgNGgiwg9hJBIBW6j8c1Ckzc2L9Et1eLDLVFdm/p7b3Fw5V0Mw6BcqRJIhVBoUb7tWjM6OoHLbDLCn83A85BhgOe5DIYTzFINq1RBhh6jzjGjbgt7OmY6GVOpRWu0tr5Dc2kVx3Y5PDygWMzHZRAjHrdcLFIolHACwa//m9/j6y++jFBU9vf3yeXyPPHEE3zkhReQgcdrr73C4eE+a+trqKpGpVzl6SefRNciDcPS2hquF3Byqc97P7OPpmhomo7jugwHI0IpaTQaeJ43l4jLFdrtFqauU8znuHPrBoNeG3c2RTejexUhIxCWIbqu0e93uH3zKpPRAFVVyOdz6LrO0eEh3W6Hre0tbNum2+tTLleo1WrIMKTd7qAqCpZpcnJ0RKNWY/Ihl5tfOMIuuaiqwnA4ZGbPqNdqjEYDcjkL0zSiYH3PwzAMRsMRlVIJwzDwAh/HcaK0rZMxmmmCYbKyeR5Ft4AQ4U157603ePu969hB9BInVWhUlQwBy4JidE4mhs3rWzd5bfMGE81Opc9UHj1jG/7OXr1ZSiUWkeZsO4hT/8Vtk5/Mr8kIFaEwyk35rSde5vrSfgpui17SD5c80ydmpLCo37niOOIhsm0z/wrS+YcZEDgbNhQKybWlPTzNf8j32TFlViG2G6bgm6H2WTW33lii/IU/iVKtPmQp52AVuvbcWzl8SPXkFFFECrZp1SiZfC1iNXxmRWUSJx0lh4nO1lwKnJcqjIhw9LfMeFQTaxSyv4v58xaYm4y0m9HlnG33gDA+H2zMJCzMPLNvizc8aM54SL8LTOWZ5y1oFRKmKx75mW7nJpkIz3RFoVQoUsoXMHQd3/ejohfKPE1lxPt8ANUD/x4grChR8m5dN6MUkQgCSSQVA6HnMh31CXw7GkLMvSoyJHBm2LHqUM+VUPJVQquEWaoj1ch7OQo7DBj1u3Tbx/S7bVRVZWl5JfZwBiEFmhBoKFhWkfWNc5GdUcYvZig5bZ0wGPaRseeapqlomoLnuxwe7DOdzNjYPM/WhctohSIhAsKQ3ukpndYpw0Gf4+MjTMtkeXk5JoYKhmmyvr5JvdaI7AShH0m5YVQ7MwjDOPQhJAgljuvjehIrXwFNBySzUZ9R7xQVj9CbMR0PyZfLeMUqh8tboOmx+gwK3TbPH+/yaN6K4mfjDVWEwLJyKJqFVDRce0rraA/PnmIoMFKHTFSPSn2FxuoWhUoFKT367UNODncplYtouh4xDUJjdW2TYqmCqigcHh7QOm3hhxIUlb39A2qNZR594jmmnsYrb7zH2+9d5d69Xc5tn8MyLc6d2+bpZ5+Ow3dchsM+qhrJ+8PYyUqoKoViCbmi843/7D3kuopjR5mySqUSiqIwGAwIgpBKucJ0Oo3UzKaBqWv0OqccHOzRbh1j6BqmZeH6PggFTdOxbRsUgWGZuJ4TJVoZDzna36N90uLc1ib5QoGj4xOKxRL1eh1V1eh0OsxmU2q1Ovt7+yBhc30dTVHwDZ9X/tR1pnWHE/8UoSjkCnkm0wmKKjAMg8l0gm3bFAoFxuMRxUIhyjHrRaFMQomAu1wqoSgao9mUUAiKlRpmoYKVL6MSoocer732Gt985Q28UJLUXBWCSCoWca3SlD5EBPx+9YTd2gn36yfcr508nADEUsNcsswk65AZwHsYQZMP/EIiKSZkOP00K51kWg+NKd38kF/88FewtSgZxcMcxyIaE6lAExvsopf0fO4J0CXshiARVTOSazgHgoddc4cqeHHnfX79qW8RiJCULIs5YV64Ap+wfUp42sJ+9RUGv/QLjH7rN/A77blq1Lbxj47wDvZQDB3riaceXNJ4dEJRMTe2SGNgYiA6IxKmY3K0gLFpZ8AQkli3bOx2elYyGhQRt4lClRLpPdIUqAlrs6Cen2e4StZViIgByAK0yLZJ/p+qROYzyDq2ZRqn+5GCIIsAljVhPHBjhlN5KObFg1swoJwZw1nbcNKvDGUcZcMDErWqQCGfo1QsYpmRv4iSjfH/d/AHZ68PnKyjYGlMRhNmoxGBF2KYBTwZEHouEf5HntPOsINeKGHkyohQ4jszZpMhIDCKFaRmEgCKoqGaRXKqij0d4nt2FPYUBjgTD6FZ1GoNVN0kFFE2E0WopPFkMsR3XYJAohlmpEYUEt+fcXqyj19fotlYQlU0gsDn8PiA4WjIyvI6imGi6jqb249wtH+P6WiICgy6LUb9LoaRo7m0jFAjbzdFEXi+TyAEK+sbTO0Js9kEKWE46COlwKo0QDNRUPCdGb1um1yxRKVax7CHDDpH4Pk4oz4D1yYMBblcAbNYIkQwyFc4WtpgvX2I4rmEMso5XbhzlbsbNvcrywRSRHbmfo9ybRlN0+meHuLaI44P7mJ9uMqbP3rIh/73CyieTigUqstbKIrCqHOCKlx8147Vb5JAgm07uH5ItVKnP+hz89ZNpAypVKr0BkOefPJJ8jmLJ/Wnufr+Fa5cucrq6hqNRhM/8PFcN85UVWI2m3Ht2hV0Q9CoN9ndvYcQgkq5QqhJ3v+zBxx+tMvaOzUM3WA8GlMoFigWi4zHY6bTKcVigWKxwGQ8oVwpUSzmufb+26hCQ1NVhKKytbPN7v4uqlAol2vY4xG+G6W5FNJHU1S82Zi7N69Sr69yYXMLM5/j/u4+p6dtBJLVlRX8wOOk1eL55z7MOJfj8OCA6WSMoSnsPX/K+8/dJ1QlI2NCKOugCFTdYDSeYNsOjaUl9nZ3WV5aZgB4to3vuxQKFfq9PhubW4xGI/wgRCgKpmGiCAVd1zGsAhvbF2kf7aH4PuP+KW+/9QaVSoGnH71AUY9j6yPlY6SmDuYvuRSSV7ev48QFEF7fusFTJ+cgTX6RQFaij4qJmBAPgaUs2KVi5BlCki1bNyeGC+RLRKaWeX1ZGBlTfCXgj86/y2ubN/nU/adIpNiFESxIVCK2CUvOSsUiJrYR8Cagmcx3TkBTMDgz27NqTCEF1VmBf/Ddv0l9Uuaztz+EIiOflblGIQaJ6ZjJV34f99q1SGKdTVPKHNo2he/7fsJuj+nX/xDv+AiSXPILmgOJmsuDqqIYBsUnnqL0/EeQiooIE2YpweJ5/vDkx9Zd/tELv8efe+d72Bo1MnOP88dLAWlayggMU0YF0tzSqfR1RjIkI1gt7HRSHjA5HqkKV4ljxechOimYCwgJU3V/lnlaOEMLfOB8D6N/5msSTzA9nsn3yW/fSTDOZozLisBzTM8whSLz7wIvdGbk8ZyLORNNFUyGI/TWSdqp0DR87T+wY5b0HYaDLo7rYOQKmMU6uXIDI1ckDEOEDFEJEKGHOx7gjbsEsyGz0QCkglmsoBq5qMxfvKpSApqBVaqg6VZ8WCOuRfo+o36X0HNIsstGhCRSB02nE46Pjsnncly6/Cir6xugiCiMynPpnR7TOT3Cc22ODw8Z94asr25GElkY4LouiqqztrlNsVKJPfvCKGmDkIRBgEvA/e8a0alMCAIPU1fp93soQmV76zyGYSIQjEcD+u1jpDuDMGQ46GMYJuVqjVBVMAslmiubaIaJkD6ePUEGHqVSKUrnqaooms7e+g63Ns5hK2p6cA17xqV7N7h8dA/TdRn2h4BKsd6k1GjSXNtE0TS65/r87n/7Pu6mpEkdCYRhgNBUirUGipkjDCSjTpvO0R5SeoQioNVuR8lBti+wtLpGGATcunmdK+++w+rKMvl8HkVVqNXrPPbYE6hKJEFeuXIFx7FRVMHx8Qnb2zs8cukynu9y5d13uX79KuPJFInC0vIyt5484NUfuYHUQNigqALTMplOJwRhQKFYxDAMHMcBKSkUTe7duc6dG9fwHR/PnmGZFtvnLiClIPR8LMOkXCqztXMBq1DCdz0UKbByOaazCfZ0wmwy5ujwkNPWMasrdSxL5/DoiGqlxPrKCoZuMhqNGI+GLC83uXvvPtOSxys/dgvPDJCKZJqboes6nU4nqlOczwMSSzdQBEwnI3zPpVYrE/p+lC9bBjh2pCYPAh/Pc8lZJmEYMBqNKRZLaFaO5voGVqGEIiXOoM/v/e4fcO3OHl6cUzkJV0ISFXcRkU3XNjxe37wVeaoKyeubN5hp2Rq3CfGZ24WzqtIFaTglLXJOhUT2MzKfEd+TpXhJSFBSGTwJYZEMzSmhkMx0l198/ssMzOn8+Rnp+Tt5VSd/Z22y6U9MGFMFZkzEE8/pbLhJ0tfZSwBLkyqO5vL3Pv2rvLFxk8QLOUvUw/GI8W/9Os7rryHHI+R0QuIFDRL36vsM/tn/xuBf/iLuvbtI20Z6HngexGEtUkp8VaP0hR9m+Wd+ltW/8Jepf98PoJkGSgq4cVKN2MFLZP4DqNh5joo9fu5zv8Cd2nEMuDEIxps5V1rPQ8Cy4VRpezHfqcU9zpoyskku5n4EWU9wJbMXWcZJSkmrMOTFzesESvhQxusB4MyAYQqwyRlI/jtzdh64HqJIkA/7Pvkzg9FZaXsuZIvFUtpintErynVvUNRUtNFg/orUl9DjFKN/3PWBQfjk4BjPCzAKRZRcjkBREIqOVahglepIoRLKiDsVQQTE9qiHKqBQrsbhSSrIuWuHBEIUEBqGZiKEikSJ0oAIiTMd0zk5wp/ZscN0iJQ+k/GQzmmLQi7HxYsXKZXKrK6ts7V9PjaQh4jQp9M+4c6t6/Q6HbbWNqlV6whUwjDyyo48/BTqzVV00yKMtSj2bMre5IBv/cQ9/ujH7iJsgWWYjAd9+p0Oj1++xJOPP8ZTTzyFaZggQ7zZmEHrgN7JAaEfUK42CRWFkBAhNKxcheW1jSgnLILQ9+m1T1FkQDFnoSsgRcg1Ca/VV3DKUTEFIUAJfHaO7/P8vXd5pnWfxwwNhIIvIV+uIz5T461/MqX3CZ/i10NG/ajurqKoEVMwHFIo1ak1V4CQQeeEk4P7jAc9As+jsbwMms7KxiZrm1sEQchkPIrAw3fxg8heNp3OWF5ZxbRy3Lh1natX32cwHHJy0qJebzIaR/V/p9Mx9+7eJQhD8sUi/caM1/+L+0zzNgB5kcNzXRQhKBbL9Hp9fN/DMnUMTcV3HWx7xKDfwXcdDM1geWmZUrlKvblMvz9AoLDUWOLihQsYpkWx0kCoFqBFHHjooyqS0Hd4/723uXnjGtVKmZXVZaQMGPT7DAeRU91sNqN1esr6xgYrq0u8+9E73Li4n4ofE2vG0koTGUQmjuQlHQz66KpGtVIlDHxMw4jKU7o2AolpaMgwoFjIEwYBk/GYXC6HH/iAIAihVGtSrDTQdR1NlbjTEd/65su8f/MenlQjqUjKVOqTUV5I2oUBV1d20zG+v7pLu7AYCjMncmKBMMavX4ztcy/f6EqAhYwIJlmklokD0VxsSEAieqciu2YgQkbmLO3nzfXbfPXCW5mCdGSI6aLEm33WWS/qReXhPB4zyYYVyozr1oLtcFGyTq7muIzpG5wWB/ztz/4yN5p7C2soRwMmv/87uO+/l1mnMxK25xL0ukjXffB7KQmCkFkguZWv84YrcOoNlGoVGed/TmJ2SRimxHk1o6VI3I1eOLrIKxu3+Ouf++e8v7QPsQ2XGAwjPkxAUhM6tgnPVy9Z+3nmsMS4nI1Bz95yxjKQ2YhEs7CYnyxRd1uhzs8/92V+/rkvM9btDIMzty2T+Td50EJylofobjJLu8CoLYDrmRln+NkHpjKfZ3ro03vShDSI+OzG2JUxQaqKiB3lovuCQiGKFPoA1wcGYV8qmKUKIlcgVJLUlSAVDb1QIV9bjjJjpYsQr0j20Mf2qMiDMPobGeJOpsymMxQjR65US0OQBAGeM6XTOsKdTVGFxJlO6XfalHI5Ll+8iGWYhIFEoFGrL7G5fT4CVBkgAw97NkVTVQqFaEGSAPhQSnzfJ/QDer0+XijIFSpIRWG0E/Di3z7lpb+6z/LbOayRzmg84fjgiO21NVabdQwVKpUSO+d30A0DZEDoTAicEeVCPiLWQqIqKgpRxQ03CKI0noaBROI5U04PdtFCj1LRxJmOccczCucusvvoUwway5HmgOg0VKZDnnDHPH98h9XeCYEMOHi6zzf/7h6DD/moUyi8EdBp7TMZ9iHwcWYTnJlDpbZEqblKeWUVqUgG3TZHe/dp1CpomoJUBIEU1OpL5Kw8Qghu377F/Xt38VyX0WjMSavFk08+yTPPPoNhmdy8c4tvvfgilWqNfn/AaDRO7Y5KrCIrrzb49k/f4eTRwVzTNAmjMB7A83wqlQquYzObjrEMjdu3rrN39x66quE5HoV8ibWtcwQiSmsxHAwIQ6hWq5imTrlcQTeLrG0/glWs4ccMm6YoSOkwHncZj/p02u0oHWW1jKaq3Ltzj0qxQLNRJ5CSbr/PaaHDuz91RKjO32avGhKEUVhVLmfRap1Qr9fjcKQwtmWqtDsdVFWNgNb3MQwdTVWYjMcUCjmm00nsTRlBne04FAsVBCab5y4iDA1VBLQP9/nqV7/ObquDp6iAOvdJjr1RX9+4ycScJ4gfGzPe3Ly14MQyD+eI/07/n4q/EakR80Yp4J2JQxXZHxF5cSPm8bhnMBqAQIQMremchigB//K5r9LK99Ne0+xP/w4nlsXEGNnPF58XpZ2Uiw3Ev7tvgKVJVFIRAffqJ/zdz36RI+cW0z/8MpPf+DVGv/QLuG+/mT5M0TRUK/dwQh5TRmN5hernv4Dy2R/i/qVneW/jUa5efJZrzS1efucG375yDU+GEVOlKhmglKl0m/1JPxOSJ0+3yfkG76zs8jc+9wu8uXoXmUjuYi7hziXeSNyZl0iKa/Mmf8u5ZDxf78yMUp7szILHn4mYUUwYs6SVIqBq53m6dY6//7F/w//t07/MfqmbPiP7kIgZZHEc2ednj6PMfJ5plzTKgu93wu/sxwv8hUyYgHAhDjoZ47yqcfwkOWcSRUbjIISC+x86d7RZriE1M4r5lVGqSimjtJWoCqplUSxX0wQUCIFUBGHoMR31EN4UJfQRIiL49pJHqLr40zHubIJqmFilGkahSr7SgCTVpZAEnk3n5Ih+t02vc0reMnnkwnks00CEElUkZa4USpUaG9vnUAwjLYLuODZ37t9lPB4iZaRiFKqGDCSDXi/yaK0uUV3dYPhDBb75ixN2/5SL4kLlSzbdzim7e/eplaucX1+nUrLQVB9VCbFyOTa3z6GbkRQkQ59Rv4M77aMDhIIgDJjZY3qdLvlclfXN85RqdYSQuLMRd29fo99pMWydsLOyws5qE7WQ4/D847TWz4NupCpFpEQNfFaHbU4+3OUP/9t36V4Yg4DCsUn5KI/0PQbtQ8a9E4bdLqVShVDV8YVGqbZMdWkVgUANPMb9UzwvdqaTgl6vj6YbnL9wEUUR3L9/l/v37nJ4cEClXKZQLFKr19nZOU8oYTyZ0G63OW23cJzZ3OFDUSlWKhz9J1Ou/0fHC6ynnIaUyxVcx0MRCr7rUirlmY4HHB3uoSCZjqeYZpHLjz+BapkopkWhUuHk+IjA9zE0ncl0Srvfp9MbsrFxDqGZ5Eo1ROzsl8/nsGeTlCjdvH6V9967QqVcZm1tHQFMpxPs2YzlZpPBsM/XPvYOg4v2wtlXV3Rm3ozZdBI7dakoSuQJrxsGR8fH5AsFTNPC8wM8P0AzDDqdLoV8lKFLVRRURYmqcE1n1Go1As/Dnc0wrRyVxgqlyhKGaSHi0LJ/8zu/x+5RiyAmE0r05uOqIa9uXY+SeySYieDVres4isdc/boo+c0TJShz8E03Rc7bxNJz0kCJ7chnwTCVz0QktSUxukm/ASEjc0r2uls/5reeeIkgQ8qSM/PHXTJDfP84YA2JpZcwrm8s505pZ0G/7BQo23nyffjuL8GH/uEdTr74j5l+4ys4b76Gf3Q4H6uqUf3U91B86umF5wkEai5H6bnnqX3+hyj/2E9xunaBV6cKN40qe4Uq75wccXp4HwOFKzd2Oej0QRFp/YzU9ECcsCUGzCRTYCLDbQ3qrI2qIOB645C/8blf4KX162mefEkcEaJk7meuOs+m8Pxgl8xIg2fga24bmHtsRyuctOD77z2NFij85uVX+c8//094eeNm7ARHKr3DXHpObf7JU+JjnvCPmacno3twxDKybi5+Nx//A/NfYDpkjG+Zx4lYCk4+j0OTJJIwDKKELONxzJCKqKqg8sFW+YPbhLUcUmgIGSIIEEJGBnwRecIShtizWcQHKjq+jA+XCBGhjTPsELgjppsOV/7aKdf/fAvfGRLYkyjjUrGC0C3QTIx8iXJtCcWwothbGRL6DoNuB4WQc5ubmHqUyUpRBJoq0DWFOOKJmeMSoqKbeUSsPpxORxzu3WM2HqLF90zGQ4aDAeVSBa2Z5+0/c8o3/sEJ/WejRBm1N1RyVz1aR/soUrK20mRnc5knHrvA6toS08kYZKT2FYqOqluAigwcBp1Dxr1TQtclCFxGwy5CQqO2hJUvsbKxSWNlBaEIbGfK/bu3Keoan/r4h/m+z3yEDz/7CBgaxxsXuLm6TV+34mLwUcC80+xz8yeukPOnrNyDxj4s3yyxoZ5H0y2kP2PQPiD0XXLFcqoCDKVKvlRDj8ukDfs99u/dI3BcpO/RabdYXl1ja/scjz76GLqqcf/eXU6Oj1hbXyOUIYEMcH0f3bAAhU6nTfu0hec6hEEIUiGUCs5TKt/+ydsYbXXhLBVELspElc8hQx+khzebcto65vTkBFUoWFaeXL6IVShRrlbp9PqsLC9z2jpByJCN9VV2zm9zb3ef6cwjn89TKZdRNZ21jXNYhQqBhCAMUVQdIQT9Xov26RH2bMZ0MorCl0yL+/d3adSq5D9e5tZn2lx+Yz2lf8ZEhaZCtVZBBgGe46AI8DyPbq/DyuoKpmmmiQ10Q+f0tE2+UEQ3DKSMakoHfsBkMqFYKERqrCBKB+r7DpIATTOoN9epN9cJhCAMXQ7u3uHFl16h1e1Fn8UUoZ8bcrd+xGdvPYsWqmihymduPcudxhEDa7Kw1knscExJkreZhLykROohBC6JK5ZSxpmD4mZhuNhnIsGkn8TpFBXJ2JyRd81UtfqJ+0/w1Utvslc/zQhCiRT+cHCdfz4XhRSRBdKYsGaaJB7TksU+s+rW5FKkYOe4wU//N/CX/jp87n+D3NGUiT5bIOGqlaP2vZ+m+slPUXjiKZRcPlVc6svLLP/ET1H7wp/Ce+w5Xr9zxDdeep1Orx/F6ndbUbrfyQB30AYn4A9ffoN+nH88HujCJqQ501IVRATQzVmJ8/2VVK96r3rKz33uF/naznuxE+ucCVtcxwhVUo1r8ri5GPjA2iT3RZ7CmX2P95wU0COpWgqZAbGIVu30l3nqdBsJXFna4//0A/+UX3ryj5hqztw34cw195JO9u3M0BZuEQ/9PcKmrPFz3kLOFz2dSlLVLE38ES9UCGl+9NRrPulHSnBd5De+BvaceTcKeerVygPzetj1wXNHE0bxY0Disy2USEseeA7DXhvHtjHzZcrNNcxCnLxCSlBgtu7z7l9u8we/cJvrP33K2m+qhAMHVTcx81E6w+Q1l6gIPUe5voKeL8RJ/EIUAnzXod1u4bouoYxLEiqgawqmqTIa9GiftFhqLvHYY49TbyxFXJqUBK7NyeEe436HybBLt9PGyhfgUoFv/Nw9vvXX7zJr+NHqhrD2ZQN9GIUjec4EUwvZ2VlCUUOOT07wgxAZhLROWuRzBS5evEyt2kAIhTAMGPbbTAbHTAenuLZDuVoHNQoRyOcLbJ07z9raZmz/kQSBQ7liEYQjOp0DdA380OV9L+DKucvY5SoICMyQpe6M/8tPu/ydz8Df+Qz8rR+EP/ffh+SESWN1C003ETIqGjDqdxBBgAx9hIiyT5nFMksb2yiawXjYY//eTTqtAwxdpVSugFBZW1vjmWeeQldVPNfl4GCfyWzM9RvXOT1t4/shpXIZTVNx3Cm+7xL6kQ08KKvc/PNdHv83W9SvFgHITQ2KvRxmaGBaBqNhn7ypM+p32b9/F11VkUFIuVTl0uXHKVXK2J5HvlRkNplg6TrTyRQEbG2t06xXqZZKCAGT6TiK4a030M0cteYqqmERyCjPq+s6yevErZvXuHHjKrl8jo2NKEnH1J/x4rPv8b2//ThLu1FaT9MxeO53zmOrNlIJ46xgEybjEZVKmTAICIMARQg0TaXT7lCtVMhZVhzGEamrR8MRlXIZAZimiaoq2LMZiqKQL5XwPJfxcEixHDGiqxvbKKqKRsjdmzf43d//Mr3xJFLHC8m1pV0+svcYn7j3ZEpUPnn3SV7Yu8zNpQOyyuN5IYGI0mSBcuFaFBjIpgGM/MHm/cwdKxdBY/5r9EsoQhzN40fe/SQ51wAkFztr/ORbn+H3L72GJ/y0/Vz6+U7Sw+J3iad0Mo9kjPNMSJk7Uztj8neGqIcSBiN+8J/rfPTfgOZHWKeFKoES0q+6ULQwV1dpfOFPUv2ezyIMk9yFiyz/yT9N8bnnKX3s4yz9mZ8i3Njh5v1jvvatN7m7e0IYBhzu3qJ1cBc1iBzzpAyYdI8R3ozT/phXr91mFktsif0+lcBiFfXZ+agoPH90fmFpTooD/u/f+0V+9+Jb+CJMtSPJ+pzFznRJz6zR4kbOP5s7RUVCeSgTkyKR5B0vbAJQMmY0kYKibfI99x9PtSTt/Ii/9clf43/45Jc4zvfnBUASZiujZxbJ2DM/ifL3QfDNnm6xMPLkzCSfLC7AmcMvk6MR3ZvtLanAlcwXgEEfefdW2oNSLKI9+hjFYp4Pcn3gECVn1MEqlAjRUFQDCCEM8H0HZzwm9Dxy+RL5co1QUbHKOoqu0s932f9xlzs/7TK+GCIFXP6fTUqv++h6HrNQQqo6MiSt1agoKlLRQIF8sYxvT5GBH3O2AaetFoHvcX5nJ7L1CpBBwKjf43B/j3q5yuryKqqms7m5ha5ptFsn0cHwXFqHe6CoWIUy9vcYfOu/vkXryTGBIdN9MSYKO98oo4hZtPCBz/tX3+Xi+Tq2hL39FmFoRik1fY/NnR0KVp6dcxb39hU63S6EPtNhCxSdQmkJ1cgRiEg9rQoTIaFQLKPrJoHvMhiP+Vf/6l+zfW4JYRRQRI5Bt03OMCg3lhm6E0y/T6gHaJOYMY7ZKN2B5t0hcumU3VoD3SqChMDzmHRPUQKoLC/heDPGoyHr65vkCgVyVpG9+7cYDU4ZDrtcOH8pdj4S6LpOIV/Asiwc12Nvd5dOr4NmaEwmM1RVpVgqk8tbdNon+K6LInRQFZzv0Tn3b0vUOxXe+pN3AFi9X2fprRK2Y6NpCoau0umcMBr0mc0mFPJFKtU6pXKNqWOztLLEwdEx1VqNYj7H6ckxQRBgGAZT22ZmT/Fsm2a9RrvTZjqZ8ORjj6Nrgl6ny8rKNrPZDN1QsadTBCq6qtDtnjCdTihVqjj2FMsy6TYnyN+d8Pzgab70+dcAKMxMnvzNdbrLYw5PjjBNg0ajzmmrRRgECAGe59Dv9zh3boe9/X18L1IHh0FAv9+n0WjQ6XQoqVHyGj/w8TyPUqlIt9tmNp1FRSVUgaoKFFVhdXkL37bpOaeErsPh4T5f/9bLfPITH6VWytHLjfnJNz/Lmxu35y9yoPFTb3wfr2xdQyohipzz12ezCmWlxciuJR74LhvWMU+0kDSImev4tjQwRcyLsAshCAU0JmV++N2P8+XLbzA1HG43jviLr3yet9Zvc1zssTFopE49i6Eki+NYBKK5GJfEuhIPJzLpifm9sUPNWZt16DrI2Qzv9k3sb36dR6YnzGLVcCgkw4Zku/YMt35khW6txKd7H0Mz8iQ2ZqGq5B57Auvy44RAbzDmvTff597uAV4AndYJnjNCxUMJHcajLqVqnak9wfem9Acn5BqbvPbuLWrlEs9f2EKECdFPppBIaTJdXxEj9LPHO+ihiqdEntdVO8+PXvsov/Hoq0gh+cE7H0IL1XS+Z+3n6e/J/kpI4o/mZowMcqe4lZEpRQbYBEgChIzc9cJYkoy0KIJP33uSf/z8HzAybRDgqD6/eek17lVO+bkXv8BTJ9uoQnlQek/OG2evuWL5gcQqyXBTaTZzV8KMirlLWMa/ft4mq6URyRqKVCuQBXc8F1wvlY61j3wX6rnzDx31w64PDMKhM8IOA8x8JUpWHwTsjLpo0zE3FBW3VMXIlaNYVkXiLMOtH3S5/mMzhhc9ZHweircFl/6JhuqBXrJAifNMx6qWkEiKlEIigxl2v4eh6xjFEqPRCGSIxKfbjaoJXbh4iXKlzHA04Pbt2zQqNXZ2dvCCKA5W03TW1zcxTIPDg30C30VISahKDr9vwsl/PObCV2oorsLeJ/vpgtdf1TBuB6xsbDEZjxkPBgycgF/+za9SqdZYXduiP+zRG/RZW12jlCtQyOVx/IDm8mpU2L7bjSvkhHjelDCsEgRRxEIYhviBx8HRIcVqDdMwOD05Zr895LA3YmPrHDkzYDoac/HCDkbJ4PpqBfXNBkvHfVzLi/LVAcIHFBCBQBLi2zNc16e5us2412M27jMatAlx8UKfUqmCZlgEUqFYa7KtSO7fuUbo+7RaJ5RKVUqFHK7rcvvOPcrVOpqqsre3y2jQxzA0wtizNwBcP8DQDQLXixgpBc7fXaMiK7z63A3Gq5HK7fxLy9TfLHDn0UMC16XbbTEa9NEUFcPMU19aQzctyrUIVEeTKZaVx7EdmktN3nvnbZBR0YR+f0yvf4vR1Oby1nnUnsq410FFYqg6xXwezcixvLZDr3tEEAREiQoEIghQgf29XRzHQVENHis8QvDSmM4jAw6aHRBQumWi3JQ8dfMiTuhiouP7AbphMByOkWHI0tISrZNIM5MQzvFoxMb6BgcHh6lK1AtC7JlDfr1AIEO80EdVFSaTEUKJwrVGwwGaolKr1Bg3llGEoHN6jHBmvPHqKyi6wcc/8WFeuPsYy7MqqYtILPUsj2p8ZPdRPHzMUIsBSUlVt6kUmxDalEhkCZ2MpRu54GRD3CKhaTI11CVgHL04EYDECe1FyEd3H2N92GCnu0Kr1Od+rcXEnPHxvcexNS9ObSsymb7mT0vGlVVbn5W+I8BQSHMqIlInIZmR7qQkitv1fYKTY2bf+Cr+wX6kSgwDVFVGiX1ChdMll7/3T0N+cnSJP3P9ezhUujh5Bd0TkUlI+NFbLVUcP+T+3iHvX73DcDJhag/p9/v0W4eoQlJvrOKOozwInu9TyJeYjPvYvTa5fBVplfj2W++z0aixVsrNHd0I4/+UKBmRSMAi+n571GR1XKXoWlxrHtLNjRlaM/72V3+Kt1fucat6zKPddc7iQLpt6QKe/V2S3fR5aNB8V7LfZe9NWTWRaGDmQL41aPLMyQ7f2rqW4toLhxf51O7jfPGJl2jnRnxq93F0OWcc4t1cGF7KfkmRnjVEJkAqKTiRzDPMMnDz8UYSdpgycWH8tYw4HQI5X+vUjyBMB5V6YgshUlCOXjeBKJWirJHqohnuO10fGIQVGSLdKU7oI2SJ56cjnh5GIHPBzPEHhomrSryGx90f7HPzT3XoXZ4RmPNNFS5c+l908vejQ2ZPR5hCoJlWlAozeWnCgNCfMR33KBgmW9vb+H6Ibnbod9uEgY+CZDAcce36VTY2Njg8PKJRrvLohYsIIVBFwNR1I+lH11hfX0fXNW7fvoFE4hY99HdCnvlWjaOfhMMXBiCgeGwwq3qs/L5BXW9iFavkilUCFCbDPr4f4rR7jKYOnh9SqzYolcqAguN5zGybMAyo1OrY0xmBM4XAx5tOGMhjas01Qi2yx56etpFCZX3rHKEfEaSTkyNc32H33n1MReexRy7yA5/+LvSiyVdfeY2TlSKW+z5aeBqtqQ/KFKQlkFJladQj1zlBqCqBW6LfrOI4PUbOhNPuhFA3qdSW8aXEEMQAUEA38gTSYToZc/v2dYS4iOvZnJ6esLa6ShhImo0m7U4L13bQDQtVVQnDAGc2i2LF40Qq9UoTY6zhWR4nn58QaiH5iUnx9wRbxhJey+F4/z6u7UYvr6pjWnmq9Qb7B4eUa7Uo5/NwxPLyCkdHBzTrVcaTKLf4+Z1zVKo1Xn/zLTQrh6IqqIqKZeXYPzzA0A2q9TqNepPr18c0mmu4rguBx2w6jrl/Sad9RL/f5dLlJ1AmAYZmMFpyaVcHIGHjdhN35HLxpS16Wg8rl+Pg4IB8Pk+xVKTba+N6Loap47iRZH7xkfOMRsOo3rQM8YKA6XTK6uoanu/heC66rjEZj1FVFU3XmdkzsB3q1RrD/ojJZBapphXBdDLGcWbg+7z71lt4js8PfvZTSCNDngQgIl+NlWGFpAxo4iEbJhQmbhy7FkS+PglFTL5N1J/yQYVfcqXEh2xWq6j/JL49JAqb+d67z2CGOk+0tnll+zrHpS7t4pCVWY28b8UENUSeAQMhEgB+ACVIgHme0SojLWeap2rzICAcjbBf/ibe3TuEvR7ScxeUl4pU0BSdnF7k9//KgFsfdvm17qt8/s5HWR81on5EiCQAIfADQac74srV69zdOyBAZXB6RL9zSLFSQVEFvucysyfkCiWGwy7j4YB6o85sOkJ6Pnb3lMJKjmFvwh+++AY//P2fpKCBlha4iWJrI8eteYpggOVJmZ3+Ep+78yy/8uS3eG9pn9+8/Bo/dOvDfPr+k5Hj00MEsQX7a7xti/bSOdOSFYYTPuthKUWze5MCUapRidoXPYtP33uC19ZuU7PzHBcHfHvzJj908zn+5h/9KCfFPmNjRs0uZjXCC0NNxyOzJSejD7MaE3mmg+wZSbUkAEJJgT11KJQs5L8O0zmmSu1MV/F7YtsZ7YACmhat3wcThD+4TTiaSUjg2zjDU7ZHPVQiB4k1z6MgJZ1LM25+oY1TCDj3OxWsTgbjZeTotPUrBkgl4j0Cm9mohzuboIQy8vYUEQDbwx551eTiuYtYuSKarlGpVFlaXsMwc4Qx5z6dTrl18xaEkkcvXKKUy7FSr7K9vkIxZ5CzNFQ1etGHwwGmaUU/XYXSHThZ7/Ltv7JPYEmsvsaH//EShUOVSy/XKZTquKGCLaG2ska+0iAUCiGS6WSMDHwM04wKMwYBU8fG9VwIJbPplABBoVIHRUMhxJsO6J0e4kxHtFst2p0Oq+ub+CGEQqVQrrK0uo6qa4ShT+DZLDcslpZMnGkbYc8IKwo3PmaTaBu1iUAJQLgSxffY6Le5PB3wxGzEE3s3+OjNK2wUyuwUCnzIcVBdybDXRfoeMvSRMuD0tE25VOfSo09i5gtMpyOuX3uP+3dvU8hFDIOqCAq5HPVqDYhKSQ56PSajIb7n4DluDMIqy6vRHo2WHbovTCPNwq0CK/tlZte7yK/0Gfd7hL5PPl/h4uUnMPMlzHyeRrPJyfExjXoDVVWZzaaUCkWODg8JfB/d0Kg3apRLBSqlEoHvc3J8RLvTYXNrm1q9wcHxEULTUFQlrpBUZvPcIxi5YmTHF1GKy8CzCQOb1sk+t27ewA8D7I8pBHqI6its7S9jmTm44xO2fJrNZhriZjs2pmnSPm0hBKytriCExHEcVE0hkAEzx6ZULqGoKq4X5Z+2p1NM3aCQjwo7zGY25VKZ8Wgclc1UVYbjMYpmEKCwsXMxSn0qJN50xL07t3jjvavYfpgSOJj7v6ZFSCKKkIgHMSGKZaxQply9fMh/MYWBWLX8cEfkBwlwVkpVBFScPGvjGppQeLS9GalP1YBry7sRLcu0n9P2rKT74INTSTy9/8HvhRAQBHi3bjD9yu8z/tIvM/rn/yvOKy8Ttk5gAYBBqBrisfPYP/kZ1v7T/wPmd3+MQIerS3u8tHktBhbwlRAZgm2HXLu9z1e+8TK37+3hODbDzgnD/imhN8MZDyjmI6etyaiHaugouknoO0ynY8x8KcoWWGlEXuVeyHGrx7u37uIj4hq/CiKtsHZWSwBaoPL84QV2+kv8pTe/HyPQ6FkT/vFzf8BUdVHDxEjwMDYqu2APfiSlXPD+Tdo9mEY0VuiKKCRHSYuPPHiuAL7n/uOsjav81dd+gIqTx9Y8/ueP/Q73qi12ektUZ4WHSsDJuU0dp8jEEM9F0szfPLBe8UDT/lLvZxl7USc+DgmY82Af6dlb5PSQ4/G8qaoi8nmSuvcf5Prg9YSR6WBFEKDKMNWpq0i2p1NqtzQe+8UGW79fZv/TQyZrcRWJELSp4Ol/UqfoVgmVSOpVCFGlhzMZMp0MILTBmeAM+2hqZM/NmwbSs9GExDRNKtUaG5vnKFWqsdO9RMoQ13Y4PDwkDEMuPnKR8+e3sSwV01DQdYX93fuMRkMeufgIly89QalUw63Blf/OZroZoHjw9D+tUviay/aVKhfDc4QocTC9glR0SvUGxXIFKRWQgiAIOGkd0x/049J3IVJR8D2PYbdHqVymtrRMc3U9StOJxLNHnJ7sc3S4y1KzgZXLYbsebiBRdINipUqlsUQoVHwJL7/2Fr/xm7/Fy99+kxCDa9/X4Yt/c8LRRVA9ge5rCBQUl/jFCdAVBcvUsDQF3fcJzBy2abEjfRQR4ox69FpHSNdlMhgyHPRZXlmhUK5y7pFLmJaJY09xZjY5y8Q0dHRdRdMEYRhgGDog8DwXZzYl8DxkGIJQKBTLhFKgaBoHj3fpNcYAbH+zRsE3aO8fod3xsaw8+UKZXL5ILl8ARXB8ckxzqRk5M42iakrTyZhGvcbpaQshBKZpsbe3h+M6CCG4uHOeYa/HaDCkVC5TrVbQdZ1Br0+/1yeUIRubGwhFI5+voBkFhKrh+x7IAENXGfa7XHv/fUJCbmzuAmCMVXjDpVwqU6/WkX7kaKIpKoau0W2fUq2UKRaLeK7HaDzG0HVGoyGOY1MulQAYT8aEMsRxHAzDpFgs4tgz7OmMnJXD8zwK+TymYTAaDlGEQrlcZWo7uIGkWFsiX6xQLFdBegTTAX/0tT/i22+9x9TNVmkRSCWSgCOpOIyRKubzYxVz4lgSEZP5Nef954QtjT5ZELljlWZM6LJgqAgRZ3qKsj1pQkEVAlUoXOyuU3AtJJIry/fjeN5Egpn3+50S8z/oOLQI1NLz8O7fw73yDs67bzP53d9m9MVfwv7m1/GuvU/Y6y5wEwLQm0uUPvVpGj/646z+yZ9k/bFPYK6u88M3Pk7VLuCpAV968kVc3UegIAOFbs/h1deu8vLLbzKaTBkN++zfvsagtUshryEAbzZBVxV0TYXQYzodYVgWEsHUttErdaqb59HLdVQzhwQc2+HFV9/m7mGLQBFzoImrzcl01nOl9HcdXCbvmXz2zlN8avcxAF7cus4fXHg7BYrwDKOS4MzDGSsWpMiHeldntBHJ8i9ImkkvcSW96POIUq+Pajx3dJ4PH13gZ978NFqosl/u8v/6xG8ysKaQ6m6S+cdqgBQsMyYVMR+PTCaWanWyY8nq1rNnSGT+TkB+Ls8/ZEopwD/o1JjJGa0IhKrN1/IDXB9YHW3kCzjTWVTgPk6LJpFRmkgUXhi2GGgabz5j8tLf3ef0Q7EE9IqKX5DU94pceGUNtQyKZuCMB8jAjV526eNN+whvggwFqmaytr5JKWexXCnw5HMf4+7+Pleu3kLVNCzLRDdUxpMhoR+l6gtkyN3de1HMqxaiaCLOngMHewf0e10u7uxQKZWRqJx/7DJv/cgbtD4dcSsrf6Cy/vddvIsGz769RUkt4arDKGA7iBzCEHGpLlWPDhkS33M5Odon8D1q9SZe4HPaOiWfz1OrVggQmPkS1SXodVrgzQhcH6Ho5CwDz3Oj4g9IpBcgCBmPxlTqS3gzm9F0zEuv3aJUrrD63Rf55o/fZ/9cyD/5/xj83E/kyA1naFIlCJIdiet5SkngR57etWEXfzplUl+lXCzT7Z7ijAac+j5CVahVyxi5HF4QoKsq5WKZjh0lgmi1TpFImvU6jhPi2FMqlQohCr1+L8qhG4ZR1SwpopzSvs/UHXP8uTGBFmKNdYzfmHF8tB+PScEolbn4yGUODo+ZTCZsbqxx795dRuMRyyurHBwe8Nhjj7K3O8bzXGaTKNHF5cuX8VyXl7/9CuVynWatjvR8rt28RafTplCwKOXzNOt1dvf2sPJFTN2klC+gSigW8xwf72M7U0BBQWVmT1BUj1P/mHuNIwCqkxKVw1zkpawpGLpGr9tlMpmytbnJsNcnDCShHxWdODo4wNQNyqUS+/sH9Ps9cjmL2WyGZRiUyyW63Q7T6QTDNHEcF9OM8s6OR0MCzyVnGXR8D5BoqoYMQREqWj7PaqXI3RtjhJS4kxFvvfEm7gv6AhaJuKZ4as3KqIrTGFmZVR6TImpWNZsF47NVchKJeu7Jm4FvQQrec4kmOpObwwb1aYm+NeFO/ZiRPqPo5DJ9zx1sUjsv87CQh4cuSeRoSNDt4rz+Ku6Nq+BHHtcyCM6SSgAU08S6eAmt2aT4oedR6410AXPTaH0eO9niu3Yf5Xcvv8Eb63d4ffUeH771CHt7R1x5/zad0QjXd2gfRtEEUroEvoMITAzTwptNmUzGGLlcpDmcTajVVwjzFSpLa6j5MhPHY7lawdRzTEdj+r02vgffev1dGvUqNUtHlQIhVebVerNsiORyZw1P9Sm4Jn/5je/ntfU7DMwpP//hr/Lx/UdZnpbP+iXNt4k5EGfbpP52IjoLD6qq07uj787cm/T/sD3L+xbfe/8JhFT46be/l3dW7vOH59/jW1vX+WfPfp3/42t/Aj1IIEnJnLdoxiK2o4ishiajGUm5FZEA99zjPOmDRCOU+CFlj29sHw4SUM0OQEBiOE6c5+IeU4/wB64PhsEfXBLWNQ1NiHnFovlegAzRwoD6Uodv/r3dFICXv6zy9N/ModsaT/38Coprgmpi5MsUqk3QrCgzVlybOHQmSN+juVSnXsqzVi3zkReeY221zvntNQp5EyElnmNzfHSEaVisrm6gqHqkEiZg92if1996i95oRChUjo9bHB0ccuHcDhurK+haNOV7nxjx/s+OkVrkLPb0f2dgDkAMfRpfFfi+jabG1UUk+K7NaNBnMp5Rri9RaqwiVQOA0Pdonx7Tbp/QOj4mBOpLSwg1qggTSIGRL1JZXkbVjHhFA3bv32XQ68SxslGO4fbxMSoajcYKKxtbmOUKPhq96YTffP41DreHCCH4lPwull74AWalMoqMKksh4I5qcEXRmM5mBGF0WFY6LZ6YTQitHI3VdZqr6yAk9rjHdNiN0iqGIaHnMO52UaREUzRURcPzIqbitH3KaBQ92zItTMNIcyEnhLhSraPpRhR683iJg6e6ICH/rkLxZhQmZOXzrKxtoVsFBuMptUaDTqcNUrK8vMzx8TGFYgHTsui02+RzFsNBnyAIsMwcK8urXLh4ET+I8n97rstkMmFlpRnZs2/eolIu0WzUMUwT3w8ZjybMxhMuX7pEpVojXyij6XkkGoZhQhiiayptvUtnZQQCLh6tkyeH7zns7+1RrVSo12qEfoDrOJEXv4BWq8Xa6irLzSa+6+I7Do1qFc9x0VWNcqlMKCWz6Yx8LodrOxhalC+cMMRzXBr1OpKoFCNI+v0e+XwOIaMMcaZloecLrG5eRNGLIH0mvVPu3r0XhYqI6EVWUpqoRCpNorzSC4n1F4hq/BNz92myBfFghqoo5jMGgozqeFFSzqrxksQRkWpT91UePd0EAXvVU3rWKO4rIiTZ/M5Zz9yz6TbTcYUhzltvMPxnP8/4X/5znCtvIR0bAj+u2z0HLa1Wx9o5T/6pZ2n82E9S/9Efp/KZH0CtNxZU9yLOmmGg8qff/y5yvsHEcPjFC1/jpbfe5ZuvvEl33Gc46XKwe5Pp8BTfmVHIRSF4w+GQXKGEFAqOY6PpBqqeA0VDKibV5W2MXB3Ligq7qHE2PF1Vo8IKXkirPeRr334dO86jLwF5NulDTHfLTo76tIRE8szROX7k6kcQwPXmIb/y1LcIRcgfd2UZphRTHwLA0dcR8s1VvvM9n6tyH/w+O+5P7D1K3jeouHn+xkv/CVuDBoES8r9/6Gt8c+taPLUkXjc5W6loDsxjdpNxzsd8dm7Z85vVACSSejr4GJ9FmvJUpgud3H92LRa1DGd9vzIy+h97fWAQXu73+VHX5s/4Lk/4HmpWXpeSQA1Z1sfs9G1EAKv/VuOF/6KEpRRYe61C470iYRgQSomi6uhWkVJtGc3IxYU/JJFDiWTSaVMi5Ls++gyVpQqT0YC333ozig0OPA4PD3BshwvnL7G9fYGtczuohh7lihGCk3aHt959nzt3d7l/b4/11XXWl1cQYYAiQk6X+/zbn72KXfTRZwof+jtFatcNCCF/N6T11n1aJ4eoRCUcJQHObMKo16dYqmJaRYx8iVJ9CakYhBIC3+P05JBxv0etXotUnmEijAgCKYnC5jRUzUJKhTDw43u6iMBnNhoxGU1o1FdQlTyqXmB5bZNCpUrvcZ+rf25MqEh2ejV+5s3n0Es52k8/RXd5jZaqc7y0zsH2Re5oJhNJlBoytu+oQrB5esjSoE+tscrK+jrEjumHB/sMem2mwz74LqPBgFw+z/LSSsTZ+z4nrRan7TaVShXDMIiKXQRxWbTop1yuAkqUi/nZIf16pIpu/oFBMcgBCuVKnVq9yVJjCd9zQQZUaxV6vT75XOSUMR4NI+ny+JjV1RX2D/ZASvKFfJRGLpDkzBz5nMXNOzdpdU5ZX1vl3OYGruPiBZKZ5+L5Po1GjaPDAyazCbm8RbPZRDVyrG9fIFcoYzsOiBAFGG3ZuPXohay/bRK6Phvr64zHIxQtKmdpWib94QDHc1jfWKNYyDObjtE1lWajTuf0lEatRrNWJ/B9nJlNuVjCnk3RtShpiOs6zGYzSqUSQaTCIJSSTreLYZkUSyVm0ymKomAYesTRo1KsNCkUa2iaQRh64NrzV1BEGerSfMGJlHpGhTjP2RsTsBj05nfNfzJveHR3Vuo4Q2Ci+NzMjVliLASaVHniZBsk9K0x+9X2Q9XOD1LvechTIl2Fts30D36X6e/8FmG3g3TslJHIMhFqLkfxY59g+Wf+Es0/+9M0fuRPYz1yCaFpGQkqlraJ7JqqEjmuffjoEk8f7gDw4rn3ecl4j+FszP2712gf3SdnaigiYDYbYpoWqjAJw4iRNiwTgOlohlVq0ti4SGV5HUXPYRWLFCs1SoUK0+GMwXBAd9TD0HTwQ0QIt+7uc/XeAa6MwryywliyQonaOBGKjFDjz7/zvWwPmgQi5F8++S1u1o8fsr7zvUzx7SHb8J0AJHluohrOtpXxnp8N+UkGLYH6rMzGoImQgsudDf7Llz9PzjMYmjP+x0/8FvvlbqZ93J/MrEHifJeCrkyP+NyHSmYfy9yBMJFaRSoQJ82TjGDhgs4hwwBKyH6bjiXzffrM76Tr/w7XBwbhz3su56RkXYZ8RgYU5jMmNMCrwvIJ/F//Gvz0zwk+9l/lqPUrBGs5Lv/SMooX1UESMkSGElUzsQqVKH2johIKQShUhFCwnSlHe/cJZkNGozbfePGbHLS6OI7L0dEh08mErc0tSsUyitBoNJa5+MjlqLpNvLqj4YR793bJ5wpsbWyhKyo729ssnW/y5f/sLkcXxogQHv2VIud+O0+jtoyu6wg/RAYe3dYpvfYpmgahdBn2B5hGHqtYjmKYUTCsIpWlVYRhRd7BgYcMPaaTCb4fxFIwUUhKEIGbbhZYXtumWKpEkkUYMOy26Z+eMOy2qVTKmLk8ARI/lCiqRXVzmXv/5xB7VSJ8+ND/T6f11Vt0eiP6QuNKfYmXayscnb9MbWOTwuYO75pl+gjcwE8JpO57PHL/BtXJBEtoqJqBounYkzFHu3cYDjpMpmOCMKBYLKGbBo1GA8M0CQJJEIDrBoShxHNdZBBG81YUFEXDsiws08SwDN5/fpfQkGgjwdrX85iGxc75S6i6yWg8wnPsqHKQ65AvFBhPZrhewObmVpQis1KmVqsyHo+wpzMQglwuz7279zg+OqKQs3jiiUfRTY2pPUkTqBcKRSaOw+7BMaqqsbLcpFjKI4Feb8BoPGZtYx3dsijX6ihKpP7K50w6H7JBAXUMk6+cYs9sNF0nl88xnU65e+8ehWKRer2eqqpkGBD4Hrv377LUqFOrVhiPRsgwJGflGA2jogqKouJ5Lq7rUi5X8GNveE3X6fX6CEWhUCzgeR6u5+H7AX7goxg6oR8ym9jkLYtcMc/mufMIoSXF65ASBjOHaSjxZEgofSBIa84mQJNKs0KkZyIlNWecbiDD6adS8YISLm2X2OiSEpnJ90kx+QT8L3U3yHtRadIrq/czfbFgD16kYZmwqFDinxwz+bVfwXnlJUiLJUTzVKwcxY9/kuZ/+hdo/vRfZPln/wrVz/0gaqWCYlkR+C5IcBFBn1ctiscjwTn1ee63dlA8wbTq8sr3XGMyaBFOR4T2FFWoKIpGELo47hTTKiCkZDocYFo5UHWsYoVSfRVhVVDMEo3VJZzAi8L6PBfbmdLr99BNi6W1VaycifQDQl/hK9/4NgeDAaEIo5CrJEXpwoznZgBJFAb059/6NKpUaBUH/PxzX8FRfbKXOPvHgjqXuYaTuXr2gSsrdcrsv2LO82WBMYt4gCqjwE0h4fO3PsyfuvoxFCm41jzgf/rov2WmuSnYp+xjPMd0nIlkmzknyb9ZqTfrqJV8lk4zYcAy6py57XmunflOAm0WbB/a5AOC8QcG4XzyIgqBCqhqVJIwNMCtQBhp0ljag5/9n+AHjwRFPUft/QLFfYMwjDzSCKMYTUOohIHLYNADoWHkqoRKZAcKkBz02/zCr3yJL/3qr3N4MsAPFE6PW4yHIzY2Nqg36iQGf1XTqNabnH/kUXLFUszZRvlWh+MRR8fHmJrO2voqr3++xZufjjjE5TcMHv27OueaGzz1xGM8+eTj5HP5aLPCkEH3lNbuXYanLRShUq42EKoO8QEiVND0HOVaE6moMYelMOx3OT3ZJ/BcpBQEvsd40EcGknK1gZErUV1ep1CuIGUQpbnstiEIqJarETGTUZxmGEj2Pz7h3g9MQEDzZRX1H4353a++zvU7+zizGSenpxSWllF1C0PR2NzYwr94iW8Uq3zVzNNOYlIA07V54sZbfPTWFf4jZ8bnfYfvs0d8dNChfHLIoNshn8ujqOCHPqqiUS1VEUIhkJJer0une8p4MsQPXYSILCQbW+eYzByEoqKc17n/xClIKL2r0zyssry2wcz1qDWaGFaO0XRKuV4HoNvp0Ww2OT1toSgKqqZFWalKeU5Pjgi9gJyZ59Ijl5ESbt66Q7O5jKmrrC41yBsmu/f3aZ12qNernN9eZ9jvoqpKrIGQVCoVDg8POTg4Yrm5xObaGopqsLa5g2EVcPHpPxcRLL0nCF7tMR13OTk+xLZtNjY3mM0m6JqGCCV5Q6fX6TKbjtk5twUCbHuG73kUCgX2Dw7J5QtR2cHZDHs2o1As4LgOlmVhGCbTyRTHdqhV68gwKmYhhGA4GFCqlJFSYE9t8lYeXVGjUo2qRr5YptZYgjgOMQgCrrx3jTevXGfmh4SJNCwlkUdp7JAl4nzEWeIglLl0HFOnjNycEpNsUn+RBeVM/uqI1oq0IlAo0irEIOF8d4VSbAe+3riHj0sCskr8E3eRPi8dl+/hvPMG4y/+C7yb1yH2PBVCkLt0mfoP/yjLf+EvUf3c57EuPIJ1/gJaM16jRJpKxxLXwknnJUmSULhuwN17R3zz229h/RY0b0Sq5rvf36G/NsCy8qgyZDYZUohL1U0nQ8y8haZo+GFIqBo0Ni9QWd9GWAWMXIFqvYZhWCiKRue0Ra/bQVFU8oUihXIFXygUqhXCMEAJJY7t8+JrbzL23KgqVbzUCYpIIVPtRYJxilT4wo0X+PDReSTwexff5sXNaw+AxUMUGXOpOP1jEXwjMM3oSTJqfJKkpjKRTc9eSQLORP+S9KVgBiZ/9ZUf5JnjcwD89qOv8a8f/3ZcozjbWZJCNcyoyuXDJ/PgzDL240RDk+SoVmLghcQRTEEhLSwSStJiFw/t+eGXlB9UGf3v4ZiFmOfLBIEUktASuCXJ7iUIVLj4NugjIJQ8PRvDqMur6iq+gCgWMMoIZOganjOh2znG9z0qcT5lbdJn1m8jZYgrVPZ6Q5TOgGKlBqrOcDhkZXWdZnM5PhQhihq5xksJ/3/a/jRYtiy778N++8w5z3nne9/8ano1dFd3A90NNNCNBgiAIEiThDmIthUipdAHWkEpTFt0hGnzg0mFHKL8wbYCAkGCEwwRIk2BJKbuRo/VNc/15vfuPOY8nfns7Q8nM2/eVwWwECGdqvtu3sw80977rOG/1vqvbC7PyuoaO66LTBKUVERRyOPdbZI45Pb1E375x94kNhTZM42X/i8Ol5IG15++ghAatmPhOA737j+g1++jZMx4EIBmUq6vYJom8WzZa6mVqCmJNx5hmjZOLi010VRCMBnRiSXFcpUg9PHdgFI59SoRIHSDam0J27Tod86AhCjyabVPqDSWMQwHTdOY5ENe+Q+2ibISy9X50j/ZxByMGSUxk/s70wbxGYr5IkpJTCODYeo0lpp0Omf0pOIegkrgYugghIYZ+uSThFIST2V16tFeikKEnSMq5dFNnSRJycnjwMfSNXTTxPc8JuMRiqmnJHQQGk42i4PG0eE+ey/1GNVTHtVbH15ivbCO7WQIE0Wv36NareIHAf1Bn1w2S9jvY+gahqHj+T6bm1s83n7Ei88/w/27t1ECKpUqhUKBfD5Ht92l1W5TqxU5Oznl5o3rdDo9Hm9vc+v5Z8nYFoVsFong+PiEQX/A1SuXGQyHHJ+eIOM0Aa5cLJLLZak2Vzkxz3CvpAIusy3IdnVce8iDe7cplKtkbJtsJoOMI44PDymXKmnW9ukJGhrZjINUkl63xzPPbXJ82kFKSRhFVMplOt0OzWyT0XCI67kEQcDyUpOzs1MUaQLWYDCkkM+TSJl2FdMEuq4RTc1+hUIJgWnZlKt1CqUhcAbAqNfhvTffJPA9fuTlF6bk8QKEmpqqqbI89wLShMr5m8x90pkYWYCf0yf/SQpMFuXkVLAxE5ALXoRSivhgl8z2A/7iPQUd2Np+SP/0/4NVbmBubGLfuIlRbyAEKR2oHyBkAkohxyP8H/6A4PaHEM8ywgWaaZL/0S9T/OKPIRznIrytSL2t2TXPeE2mDdy1qUxDTD1gCb2Rx4d3HrN3eMR4MmbcPmblH8HZfwXeuuLRzw/4/C+vMXGHyCgkpxsIYaBknJK+2HmKhRL5yhJumKBZWSrlMq7n4foeMpF4vstwPKJerVEuVRhNXAIvQApB4Hmz+Be2ZXP34Q71SpmfeOkW1oKGTJXxxWSgVKEoyl6W//itn+KjxgETK+CXP/sNXjy5TNnPLkjvJ7YnvMsLUPX8rOdr4ZxraupYTXdS55eYjv202eWc9OL8NPNjSqloTor8H37wi/xnP/ertLMj/l+f+22eOV3nhdOtBcV+Ef4+z0u6MApP3tmFe/048Yf4+PemYzs7z/kFq4Vrn776xHDK9DB/xGdPbp++Tji9jqlFqUgsRViQSB12rsM//3GDE1dPMzQBoRSXxj0y3gidBCEkSImlm8ShT7dzTByFZHNlDDuP1CwyhRqF2hJKt4nRCNGIEPR6PbrtNsViOfUalJhmLC8umAQZRpydtjDMtKMTWpqgEqqYj4Jt/sGffYNu2UML4eZ/Y3Lp/QLP3LiBY069WyEo5IvcunWLZrMBQqXEBjJmPOwjoxBNpaQUaXOKBHfSJwp86vUVaksblGt1lNBQiSL2XfqtI0a9Llkn7S8plSJO4rSxgGaQz5fRDQuhCSQxo1GP1ukhmogpFCwe/qk2x8+ndWi3vr/K84+v0lzZQNONtAuP72IZBhrpgytMEz+K6HX7SClYWd+i5eTZM0ziJEHJ9EcXqT2JmrYgEwIDeDr2ybbPCIdDojhBCoEbeJSKBVaaTWw7k1qHiQKZWrPlShUlFHEc4IVDHn+phbLBGAme+WCT8cTF9/15tnAURZSKRQb9PqZppCVF/R61SiVt0CDAMAyGozFu4JGQYDoGQegT+Gn5j2UavP/BRwwGYyrVCmsbqwghOT09w3V9/CBgY30Dz3PxPBfTNMhmMmSzOY6PTzg7PWN1eYkrly6hGzaFF1fxN9NHrPymhiYFKo7od0+J/Am9Toc4CFhZauL5LqZlYtsWju2ws7tLHMdsbGyAELiTCUmSerVhEFIsFdGERuD7xHFMLptNO05N44/dTgfD0NPypSAkCmM0TUNKiW2ZBIFPFIdkslniROIHEdl8EWGY5w89Cf5kwHtvv8PdBzsEUiG1aRRr5ipNlc6MFGdeDDL1FOe+zdwTFXOBMoOyU0hvyp8rmNIbLyjyJz0mFMHd2wz+v/8M75vf4sf/ocfnfhuad3yiowPCD99n8tv/lv4/+lX6//TXGP3GP2f0j3+V4T/8ZQa/+ssM/uF/z/Cf/hrB++/OM59BoOcLVP7kn6b0la+iZc6zrM9hUDW/9jTeO8toTQllFMzD52GoeLh9yB9873Ue7R7S7/XotU7pdY5Z/p8kuUepkNn58z7Dmoc+TUh0R0Ny+RIKk1BBZmmFXHUZzcxSqtbJZPMYuoFlWrTbHdrtNkITVBt1MA1iITAME284ZNTvQRJRq1RS1CmJMTSbdz54yM5JZ8qfP1VjU49tivdNldLM1xR8cf8mP/PoBQTw9soOv3XzTaRYMLHOp2bRlrrg4F6o8p2jHPN/+FjUd+ahL3i8asFtmxlqs9KluRE/PfHLh1f5a2/+FGaic5of8F9/6V/TccYf0z+zc52XUi0o1qk3O0tE/KN81XNSEjVHcM5PMzdb5+V2s3WT7nOe8KaSBHrdj59AgUzUx9//hO2PQdYxu3pF4kjCQoJKW+ay/F2dpV/J8W27wKFmzG+xmMR8qXeEORliCoVt6SShT69zQhSH5EoV7FyJIErrKBEaZq5CaWkV3bKQMiGRklkg3fVcJq6L7wdEUYQQGppupB5HGLK3s4vvBSyvrbO8vkm1uYTUBJEh+eh/H3D4+TSRZeO3TJ77jTI3r1wnY5joQoGKkDJCKYllmWxsbGDoJrNatDh06bYOScIJhqZj6jqhP2Y07JMrVFLKTmHglKpkKjUSTUOpmCRyUTLCsNJ+pXKagAYph3Sv1yXj5FhZ3Uwzi1GE4yGnB9scl0955c8+RpqKUtvhJ3/zOpnEplQpU19ponSFFAndfouT4wPG4wndwZBOr8/B4TErqxs0lldZunKFD0pVXrEcbqOzn83B1iZD22ZomsyLOQTUk4QvdM64eXxIMBzgeWMsAzbXl8lmbHTTAKFNGbLSGtDVlVUO9vbY3d0mXJG0vuCBgtqdPJXDPI1Gg3anjUBRq1Ron51hOzalUol2q02hWCBOEjRNI5fN4rouqyurHB0cgoSM4yBQ7O7ucnR0xMrqMk8/cxNNNwhjiR+EhFFAtV7BcRzu3L2Loevk8znKpRK6rtNpt5lMxqysrlIqlTk+Pp0Ku5Ry031BkmRARFB8R8fUdKLARUcyHva588F7aUeqjE024zAej9jb26fZqFMuF/E8H9f1ME0D308VfzafBU3guh6JTNA0Hc9LPVwEjEZDHNuiXCkRRiFSSgzDwPN98rk8IOadl4RI14uma6BpBHHMk3Y+ShKO+3zz93+fezv7BFJOyy3SNazNn0wxFyiLlH5qKiTljKhhwcuYZakuQsWfJONmHXTmgjgK8d94FTVt82Ym+lyWJJqcH0QO+oT37hLe/pB4ZxvZOkN2O2ni1eRcGGuWTfapp6n/hb9M7oWX0jjvwrlnXtjCkk6fO9Q0vjqFGzVBIhW93pjX37rN9994n9Nej5OjbQ4f3yGcDMk4WbKHgo3fTI2d8VXJ46/1yWRsNCAIPYRhUWqssrx1HSNTROkmjaUGxXIB3/MYDyZ0uz2klOTyWRr1Bvl8CS8MmXhjRqM+JBG6LlhbbnJjc51izoY4xtF0/InHN3/4Gv0wmivFlJYzndNzaPd8PpzE5K++/VUakxKxnvAPX/w2+6XOXIzP46WLqlQt/FyY0IVDz4c1zaWfK9gF4OP8b5E2epBTFGdKJ7mQSnR+YJVC6X/hgy/z9UfPA/DG+kN+5bPfINbj8/uEuexM15+6cKD0r4W/F2K7n5gsNTMyZ4eajemFm53VDZyrylmuBYC4fxfefH3hmBqY5seNlD9i++N5wihiWxLk5RQSAWMCxSOLJb3GU5aNvQBngWIzDlketPFHA2ToMuydEUcRxVIVM5MnTCSJlGkmaeAjAcPJUW0uYRkGgimPtNDwA4/Dgz1Go8GUEjAiimOCKGL/4JD+aMjy6gq5fAGERqXWoLm8wukvCB7/RxHoULyr8ezfsVkvrFLIlyjlizx1/RrlUh7b1NANQRSGbD/apl5rcunSVUzDABUThxO6rSOCSQ/pTxj2eth2lmypRoRGJBWh0jFzFfLTeGeKDEhGwzbBZDSNnihMTcOfjAkDn5XlFRrNZdY3LmNYNlIlTIIev/vT79NfCxCx4HP/epP1ozJ528YUGkmcYFgOmpnCoP1ui6PDXTxvTL/fQ7ccMrkiQjOoVKqsX7vOSSbHe6bJW4bJ4Y2neHd1ndfrS3RNaw4zCS1dYOthQL3XwZ4M+crnXuRHX75FkvgkccCcc1UIdF2n224hkxjdMDj+7IRgKbUUn/1wi8nRhEwmQzaTZTwak8/l0n26HSrlMoPhAKUU2YxDt9uhWqtyfHxEsZCl0zpFk4qlWoPnnn6OMAjZ298jV8yihMS2LTKZDNs7e+wfHFGvNdjc3MA0dZIkwh2P8H2Py5cuEccRh4dH5KY1xLZt02p3ODg8IpfLMv5cCnNaA53ibg4nk02Tp4TA1ATd9gn+ZEi3dYbnuqytrTIaDTHMNC5rOxkePnwMKOqNOgqIwhBtqrSCIMC2bJSC0WiEaZoUCnlkkuB7HgIYDAaUymU0oTEaj9B1HdvOMBMoURTN2yV6njd/zIUQGIaDSgQyDhj3W3z3O9/h/dv3kWjT7Gc593wvyN1ZYgpPliT9IRJAfVzIXdwWjuG5uN/8faLtbWZKWTMtWpc17v4I7HzGwCiVPwG6WxSuM8EosJaWqf7pP0vtz/9F7I2tj8GBs8zZeUKROO+iO3cgtRSqCwPJw0eHfPeVt7j3aIdev8fxwSPicIRSIb43xrFsNKmx8T8YOMcCZcDjv+iSFECzHMxsgUylilWoIo0sjdoqlpUlkpI4jvHcCaftE4QuqDdqJEwTGeMEFYYMOy1skbBeL+OYBgqoFDNUi3k0IZBxhGMZHB2f8cN3P2QiUzh9McK66HnKhSG73l3hL33wJXSpsV/q8I9f+A6Rnsy/u/gzT3r6pPn+hFmZK101P0R6DHm+Ns5/Lq6lCxGDxUC9gGxs8zde+QWudpeRmuLXn/8+37z84fm1TXNl5sdccOHPkZxFfvGFg1+IYfMJnvS5UTPz4+cKWaShmDk6NB0vkgTeeQuCYH4UbXkZUa2lyV2fEpH+1DFhhSLOSMKcnFsvxgTMiSCTs/mRyZDN0QCBTFl71PRGlOIzkUdn1OHMG6CEoFBKk5P8KJrHFYXQQCZEvotmm0S+T5xIdCtDnMh5dCFOYo6OD5AkLC0vIVXC6ckJvU6P5aUmzVoVgWAcRynb1Ut57vxfI+I8GAO49X+zyT3UOHKOqWQLrDbTel6ZRAhNoSXw+NEjZCy5cuMqlm1hWTaPdx5OM4Ij+mf7GKaDrhmUKvW0Z7EmSBJFnChAQ2gGQjNAaSjSzGm310aohHKlgook416XpUaNeqVAomnki0XWzSsc7m1z+FKf7f91AAIa97I8/T82GHkuhlL4vkevP6LaXCeTcTg63CPyJnjDLmeRRyxhc+saaPqUSi5tsoA2zT4PI37ww1cplkogNI4Ni0rgoy88IRqKz/sukYzZiiVHDx4QdzvIJCKRSUrOAZimSb/XQxgmRtZm9IsuygJrYnDljSUAPM+jVqvR7/fxPZ9Go8Hh8RHVSoXV1VVOT0+4tLXF4cEhSZKQyWTwPS+lwpSSzdUVijmHS5sbjMYj9g+PMK0NfN/j6aef4fDomEePDlhbXceyLDIZG8e22dvbYeJ5XLn0MlqzwclZm/GUYi6bybC8vMTdew+oXalxuJ56Cvmhw2V/C48+UmiYukkcx2iaYjzscfujD8jk8pRKBQqFHGdnLUzTZGVlGSklw0EfzwuwbQvPmwCKXC6HkjAejzENI+0/LATGNLlxOBiSy+UwLYvxeEwYhWkcNYoxTYtBf4CS54aKaRqUioULykvTDMqVOt1uiAr79M9OeP3VN1iq19lYbqTGwDT0MOstnT6h8gI0d+GZV0/quRmGyfx3KhcXS0BABgHx6THud75F9PAhs4CsQJB/+WX+4d9/nw+utnjxqMav/NpfJnn9Q7wHD5BTuFnoGka1hpbJpqfUdMxGA+fGUxil8h8ppeZZrjNBORW2M6g2ltDrj7h37zF7B0eEYchw0Kd9dkASjrHLJYSZhsziOMC2HfIPJ6z8G5PtvxYyeFay/WWPp769jpUrIEwLgUGxXMPULew4ptftEcURUsUYlkGpWsMUOnGUMOh0QQnMWGFrJpvNBk9dXuXx3jG7x6e8NewymYTohonru9iaiaVbvPnObZYaDV68ujnt6a6Yg6rT+LCYoQCAJjV+6cMv8ntX3+d244B/9dTr/OyDl3j56PrF+Tt/OZ9dcY4iL47s+SoQUw93upie0G8Li+eJHTlfU0ITF5fS1BPd6jf4z1/5Bf6PP/1PGFs+f/+L/4brnRWu9Jam9zczPZ4gilm4gLltIBYUsgIlnqx+ngHmamE007UsAX16yPmYIpBpHDIdgzCEMDg/e6mM8TM/B5YJQqR68FNsn1oJR1lJlF1QwOOUilITGuUwwAi8dGGI8yD87G4bKuFPhB7fx2TbtDEMkzhKpkaNnGLu6aQJwB108YYDTDtPfWWNwJvQb53Mu1UgE44P94lDj2wuR/v0lOVag/VajbVmnavXr3L74UPutPf5zn+yS/dyWrt89b+3WPrtFE4NAp/b9++SqIj2sI3tmOi6xePtx/Q6HW499+K0HhaWllYQusbDhw/T2lYZk0QKIzPNZCaZ8vHKefOJyWCI5eRx7Azj8QAVByBjRv0uIglRSUwpY/DC05fZ3Fzn7vYuXqjI5HJUbqzyzf+iTVQC3YWrf98i2ZnglU10IThrt7Esk0KpiESnubxB52Qf3x0STAZYdg5DUxh6CmEOul3arVOiOMK0bGQck0hFv9dD03TGaJjZImuhTzaJUmWswEBhhAGt3/0GlhC8rGkUNIP3dBOlGyiloelpy8rG0jJHuQ77t9L4yMZ2A/1uQj5XYDAYYFk29UaD05MzyrUK1WqVw2dX6QABAABJREFU4+NjlpaWODx0ieKYTDZHv9enWq1yeHCULlBTp9YooemSMA5ZWV7F9wPeffsDLMvEtg2Wlxrs7e5xdHiIEGlG8Yu3brG9s0P3QY84jlEqVYZBEHJ6+ojlRo2VpSY7u7scW23OKn0QsHWyRDbJInISz51g6kba+1eAJiSnJ4c0l1cZ9nuMJyOuX7vBRx/eplKrYFomhmWzt79PNpulWqlwenLGeDxMyTeEhmmYZGwHGSd02m1sx8FxHMaTCXHiUSyWEEKQzWaQSjIcDcnn84RBQBxF6JogjiIc27kAkaHr5MtVwiRk4vnYhs6gfcbv//4f8LM/+3VW6lUMkcbj5gw/Ii3PmQnGWWea9AG+yJa1IKKfUMzpQy59D3l6StJpE9z+iHhvJyXPmO0tBNnrN6l98Wus0+M9vcVhuUd/w2Cr8HXUV76W5itAmiY9jXeftzectrmbXywX5O/H5d2CqyYANIIgzXy+fe8RY3fMoN+he3aCUBJHB09KQi/lBI9DF8+b4GRzCN/j0j82OPiliKik2PnfRVx5J4chU/IYqcAbT4ismIk7ZDwaUygUaNSbeH6AN/HRbAeihMjzcTIOW5urhJ7HZDJmNBxQytl4nsswMChXalSzeY6PDgl8D11oJFLxwzfeY7laYaVSwlDJeSx/hmyIxRQoaHol/trbX+O//No/Z2h7/PJnv8FTrQ3ykXNueF1QSQt6U53P9WK+wHkMdWEHxDROOjPE1LTphGAxq3iOSMwdtIWlNf2CAL66fYu/9P6X+ZXPfpNH1RP+2x/9N/y9b/wVsqHFzOudXaKmTRGZ2cUsWI4X9P/0RtSCfjpfQmKemT9DhPRZHoRSi8ssPR+kLIFcHButXEav1ZglQf6hcNIT26eGo6MFD9gcgTlVwCDIJBGWnEEd6Q0LTUt/pvtXleSrYUgtjuh3WnjeZPrA6fMyAaUUSRjgD8eYukWp0kAqg0KxSnN1A9NyFmIKCWenx+w8ekilkGe1XuPy2iqf++wLLK83WF5v8sGfOeXel9NuQ/XvG7zwKzVKuep0AhR+HPDh/bs8eLRNFAvOzro8frTN9WvXqFZK6AKSOCFOFJlskfX1LUzTngoESeCO6LZPCQMPGUeQJOgiIRj3QSVkyzVErkiu2kCzMiSAkjGjXpdgPOTlF27yo59/hs31KuVCJrUQE8mDL3U4/UoKjy5/02TltwS90xOG3R7ucEzsTnjxxiVKjoamYuxMltXNS9i5FMaKQ5+j/W0G/TZHR0e0W2d4k9QD1G0H08miENMwQFq3uFOp851KkzvZAqE4L1k5p4hT2EnCc2HAl6OAUhxTsBySBJxsgVpzicOXBviNGBTcfG+NQpIjjiMqlUrajMFNCSo816dWraWQqlJsbW1xdHREvV4nSRKKhQJnrSOUUDjZLO99eJv7jx5zetpidXWVp2/eII4SUAIpY3zfZXm5SaFY4P69uziZtLNStVrFNE0eb2+zv39AsVhic3OTOIqI45gg9LE0sJ/PMSqncexnji9RyOaoVWusrV3CtG0SlaTWcZImGLrumLfeehvP9ykUcmSzDkfHx5yetlhaXkppPaVEKUmpVMCdTDBNg3IprQ2feb4ZJ0MUpqQihmEyHAzJ59P473A4wDB1DEMnkTESSTiFtE3DZDwcI5NzgniJxMpmMDMFVtcuo2smIok4Ozrk+6++Sac/Qs1KSaZbKkSeVLazD2cCNf292JpOjkfEJ0fEh/vEhwfEjx8x+h9+ncGv/QPG//pfEj24O1fAAoFmO5S+8CMs/blfwiyWeOHkEiho5UYcFLvpWjMMhGWlP6aRJnuhpokxiyVU0+vSPl7B+mSbw3nbRqnodMe8/uZHvPPubUbDEWfHB0yGLaJgQOSPMG0DpUPo+ykMLTTiKEAToOsWlftZVr+bliudvThm8hVBNlfA0ExAYzwa0zo7Igh9SuUKjpNhpZLnx158GuGPaLVPCQKXUqlAsWCxtZznpWcv4Xoeb3z0kDc/vI9h5rCsDFbGQSlFuViZu6aGJuh0enz7h2/gRgnJtEp8dreaNqvpFTCL1yrB1x4/z5emvNLf37zLty5/mI4Jn0y1uKiY0jFd/GwhiWnByzqvtZ3N0ez3HIv4pKU1fy2mJ5qdy0gE/9FbX+PzB9cA+Ma19/nNp185Z8oCZsl/M4arCxXNM0NhbsAJFjX33FNevO/5sc9haZSal84JkY6xrmnTEqbpmws3I1stkoOD83v7hPH9pO3TlygByFQBG/5UyT4JBXwcrZpPqEKRQ3EzjulrEcGkj4Mikysw66iWhD7uoIehaVRqy0jDIk5iwghy2RK5rTzHJ4e4oz5CKjSVMmRFocd6pcRnP3MLI2+zvb/Dex+8j13VyXUtoiji5b9bZcPcwFwxsZ0M3fYpSiXIKOLh9jbdwRDf81hdXmZtZQlTB2VAEIQEUUIcS3TDwtANkAZxHCOEIvSG9JOAYqWBYTpE3ojQ9ylVa6gpa5ZuZcjVGkz6XWJ3mJZ3KcWDhw/RjZhCtc7e0RkCg8Cb4J0MqR5k8Uoxn/3VJobnImVA+/gAXdO5vr7Ez/z4ZxnHCb/9nbfwEoGGCULHsLPEoU8wGbP/6AFWNksiFWEYY1opuxeagWE7xJE/zzgdj0dgmNx38pxpGsXAp6kUy0mEIReyBYFLScSyl/aXHi1t8ABBr9Olapep3u8T1GNWv1skk81wcnzC8tIyjuPQ6rTZWNvg4PCQjiZYWV3l5OyES1uX2N3ZJ4kTbNtiOOwTBR5IxaXLVygWSjza3iaKJU7GwjF1ctkMhmXx4MFjRmOXK5cvsbzcoN/rIRNJFCb0ewOuXrnKeDxhd3ePZ559FkPXME2DMI756M5dEplQLldZf1hjkBvTuJtDSI8Xb93ig9sf4YcBrutjkqQtBVHouuD0aJ/6yjKdbocgDLl67QZ37tymVqtj2Q4yEZydnlGtlLHsDPt7B4xGQ7JZBz8MiJOYWKZ5rYPhgJXlFYajIcPRGITAtm1k0kfXdcaeh1SKXKFAr98HBZlMBmuiUz5IlbY+FHiuh2lYZAt5DB1ODn1UEnLnvfcwdZ2v/tgXqeSzGMgLwmsueObZVjOPcwr8CZEaFWFIeO8u/vf+gKTdWpDQau45LW6aYWKtrFL+8a+QuXoVbVqF8Ex7nY1BjapfmLYHnMqKWcLLOZ7IDGKeZXmf1ytPM78lCKEhp23/ZmErKVJF4/kBh4ctPrr7kNF4gjsec3a8hzfpUiwVMUwjDX3FMaaVIfQm+H5KvuFPhvh+SLbcJFuq8OLvBpx+5QMah2WKdgkpFKPJCNd1ieIADI3m0jK6ZjIa9OkOx/iuS+z7GJrOpbVlynmHh3t7HJ11ydgjxmGAFykalSYZJ8twMiTyAkIl8CcemtCJZYCu6eho7O4d8dq7H/HjL9/CFAIh0yKFVOfNKkbOkYJsZPOfvPXTvLe8Q9XLk4nNeU7HBaCAJ5Wlms/JzIUVi19+YvXM35rCzItZ1tOLuuCBnn86hYoXchOUUlTcHP/F9/8Uf/0X/gFCCQph9omrUxdUzscMioU3xJOfn1/S9B5n35oeeVq+J0QaSly8H1BT9FNDmRZq2qgFQLkTot/7bay/+FdQmeyFLOo/avvUStgcgpCgB2kK+LTAZX7pchFemF5soBTbhsmNJJ5bFp9JYoh83rAUwbiLiEOypRJRHDMZ9hFAoVSZw1FCpHWDYaiRzTlsbG5xfADDbhumfMmu53Kwv8vYfZbxIOCHr76FG0pu/dsmvO7Szo25cbCJlc2BUJTqDYSh0z07QcZpA4VWu03GdthY38IyTK5evUwcx7zzwUfocTrprU6HWBg0Vzfp9bq4kzGaksjAY9A6IVso4rojMrkCdq5EmCRpH2Z0NNMmX6oyilxkFJAg2DlqcdIdsLK2TqnagCShfXzMZ4bLfOFvVji64rLVLtFrnNI9O0ElAYnScUOPD+/cw8oWsQyTMEljkUIJti5d4+TkgMmgj0gCvHGIJGVm0nR9ykGuSJu962nSG2mzB5UkGJZBVzc4tTLsORmqSlFSMSV3zLrvMiuKyQL5yKd+9JilfInJOEPhXxV59v0fY7gZMXmth31plXpzicOTU65dvUI5iel2OywvLdHqdCjka8g4wfd8Ll+6zPHxMWvrK+zsPAIJtmGxsbpCNltgPHY5Ojlh0DmluNLAMgVPPf0U9+8/YNDrk3nKRE3ZwQqlEvcfPGQwGPDss7colsocHh4x6PdxHJuM7XDjxg3u3L2L0HSe+mCdX/pXnyFZEcSHI2IvplwqsrqSwolZ26HfPWPQ91NBIROEivHdMe+9+x4ZJ0e9ViObzXLWbhGGCeVyhV6/i+u56IaJZZsMhn1M08IwdMbjiH6/R6lUwvM9/CCYl2wolWZJS5kwGU9SFjDPI4hCdD1t0Sg02Pphk5sfbqEhmAwmjMIRlmVhGBa5YoX8ZEK/24Ik4vGD+0RByJ/4E1+l4pjn3oemgZJz4Z1C3LOCmPSZlr5H8M5bRA/vEe3vTZmqPhlqE5qGME2sRpPSF79M9uq1tIRInJdCvXiyxa//y/+MmlfATPRzOTJDmsWieX9uGGiL3tU8Oyi9Tm1W2zlV3kkCg6HL7XuP2N8/ZuyO6XaOGA96ZB0LVMJkNCJXLBL6AZ7rksvnCf0JnjchX6wSxQmF6hJ6tkKsGVzdXuPP/+0ySzt1nDDDUPU5OjlOQw+NOr7vo+s6GpBEEY/2h1i6RrFUwgsDTFPx9LUNztpd7u+0UDLGKRTBVOiWhdI1MpkMZ6dHSHQ0oZMv5hmMYqQUOIZFlES88/6HXN5c5VK9ijYtD5slVqaEFlN9OEWxXji9xN/7/f+Am+1VVibVqXhe8CjFuVJSUzhXyZmyYY7ypi/FBfRkERpOtdvUCFILyk+k8nPRw34is+ocQp4dRwieP93ib3/zl2hOSjx3tnXRxFuwBy54tHND7hxoP/feL6Ik54Qf6ZWeK9qFPtXTRiILAwRzRECDz3wOdndQk0l6v70eqttDrOc4L5X6o7dPrYR1d+FmBR97BOcDPv1nBLxmZWgXK9QnQxqBm8ZMleKzUYSB4gemReQNGCUukpQHtVCqoVkZ5JTJRxMKoWkkGgRxjKFC4jDAmBLvC5kQobi3v8/xr/1jsqUqRqaMRKPbbWHdcXmuvoKVd4hlgtAFCI1CsYpjZTg52iUOXQQQBAHvvf8Bt559ivzZGa7vkSiJpguG7T6TyYRSvYmRL1K1s5jdFqNBL41lxQFu7xRh2RTLZSKZxts0kTI2KQRxGCHRyebLuO6ESCmSQHF03MHJFJlMhugy4cWnb5DL5nn85gmeUjSby+hCcXZ6RIJk57SF/9YdatVl7FwBQw/p9zo0Gmn/Wyubxj4j30XJBEjQlAYYSHWRPnRG5aeS1NuNwjT7WdNNYgV908I1HXZVwrFMeCkKySrSLj8opJRkhz1y4z6Vzhm98RC5W2XPyXN0eMTy6hpOxuGsnXIq73f2qFZrGLpBv9tjZXmZs9NTrl29zuPHD9ncXOPk+BgpFMVijnqtTBRIIt9juVald3pC1dG5urlGMWdx7eoWrdYZe/sHrK2ukMQRly9t8nhnh8FoRKffS/MWqhUKxQIPHzwgn89RyOUoFwp0ej22t3fxexM+c+kzdEo9dnqPGQwHBK7Pyy++wL379/F9j4nrIZOIOAzRBTimydHBHvXGcmoECcHKyjIffHCbarUOQhAnkrNWi0K+gB8E05pfnXK5jO97oNKOSWEYEIUhpWKJk+MTxqMxlmVjWibxtOY4imJ000gZxVwXoQSVTJF2q4OmBE4+RxQl+FFMJlvAyZdoWBatkwNif8zjR/d5/b0mX7j1FNmTQ6JHDyEIEY6Ncf0m5sbWlL9DQSKJdneIHj8gPjok3nkMcp5rnMqCRSGjCfRcntKPfgl7fQOruYSeySxKhrmiz8QWmbE1PY4AbaZEmHtMcyRtGr/WhIZUaYtGpVJyEyFACnXu2ZHWQPtBzKPHRxwcnnHWbjMc9fDGA8bdszQBM5tBM2xk7KfNT3STJAmQMkHXLWIlwXCorC1hZ7MoYVHIlSiaRYoPMrQ6PVxc4jAkZzvTZiFZdE1jMp4QxRFBkGavr6wucX1zmYePDzhp93nl7Q/oDz38WNJYqpPL5HG9gJE7wbIi3MmQKEnQTZNavUzRMRBJTH/oojSFpesEYcR3Xn2b4le/TC3vMFcSaMw7B6nz7HVdavzEzrPTiZrjDuf6cKqM1ExjzqBoFpTuBX95+sl0os5BEHHh7xkkPEMw1GxiF6DsC19eiOXOuMC/+vjWgje+sE3jux/XP4vVybOvLqzZ2R2r82qAmYFwnhvBeYhGLew5fz2rJAGxdRl17Qa89875sZN46t3/z6yEF8EEKeW8d2ik6eznypRCj0wUkShFC3jPsBmWKjjZAoeaTi300TTQlAIpeSaOua0bdAQkYQrP5oslHMch1tKm6IZMC6SFJtB0iAKPs9Mj4ijm2o2bJHHaiSiMQlwJbm+C7HuUyh62ZdFttaiUahRyZaIpubpuGGnzdE0jl8tTLJTpd6MUmp4mwrz1zrt0+z3K5VSZD0cjzk6PqZarZDI5kkQgdIultY1UwZwco+IQgYQ4wR2NMDJFNMMEQ8fUBHHgMhl2KRbrFCsl7HGffruFjBNGkzH37t9BUxov33qKz7/0FELXGI3HHLZHxOgEUYKTKxKEftrHuNNh7IU0Gsv4foCh6eQLeYaTYQrrWjbECWHoogtQUQhKoBkmAoWMY5QCy8oggCjwUUkE02xZwzAQQmAZJknsE8qEfcPE021uOBmqSlL0xmhJkpZdILCUpNE6QnROqBVKvNfYxBtPqNfrHB4e0KjXKVfKHBwcsLV1ib39XbJOlnBa991sNuh22sRRmhVt6AZ37t6nXl/GDzxuPXcL6fv88PXX+eKXfgTb0On3u1y5dpUwTHjnvQ9YWV7C0ETKYW05tFvtKV9zkVq9ztHxMX4YMhiO6fX63Lh+jeOjI4IwwrJtDEMjn89z7/4D3NGYp556mkajQW84YH3rEqfHR/iTUZq9HPgIGRP6Lm+9/Qa2k6FSqeDYNkHg4/k+K6ur7OzukM1mkUkKt49GY0rFIihF6AcMx0OuXL3K2VmLfj9V5rqhkyQJuqYzmowJwpBsPken00GQJpn1er30YZeSKIowLQuhaUglCOME3bQp5PIEfrr2jMDn+Fvf4Ojd12m2jxHzzE6B9tYb2C9+Bq1YSikn+z3Ct9+6kFw1lwS6Tub6DTLXrqNpOogUejZXVjHrdSBl+jp3PD5BiM5lSipWZkmdC2+QvnueWa2JmfCfBkZEGuWWSqKm9IPt9oD3P3rMSbtHELm0Tg7ot4+xTR3HNHBjnzB0sSyDMBKEvo9pGUSeTxAn6E6BYqlEplRnHEqq5Tq5TJZOZ0AcR7iuh++7aLpOs9YkZ+okiQfExHFAt9Mlm8uyulwlCWJU6GOJmK2VBt9545huf0yhUKVaLxLFQXp/OownE+RwgGFolMoV/CBCE4rP3rrOPd3gndEOYRyTtS2IIw6PT3n77kO+8tlnsZAItLkyuZhMJC4oppliFQtKkqnSnjc3UGqKiKiFOZwdY0ZYsTgX50bWTKdeyENetKoWwxbT815YEzMDYrbL1FaQMwU523sGby94zrOLVVOFPqsbP7+D2TkEyIsJZvKJ3IjFntvnHvyCATPbdh7Bg3vnJooQKMO46PX/e7Y/RonSovufTk6gND5qrLKbLRHGCXHoEYxTJWDmi2RzBZ6eDHmmd4oxWyKClLheKZaSBE0TDDQIEHiTCUJ3sHNFtKkS0ISGkgkyDOi32wRTJqRMtoBhGpiWw/bu47QGV6U0i91OCyEEpWKF5tIqfqxI4gCURMVpJwzD0piMBoxGI+qNZTx/wnjUJ0HiBj4PHj1mZWWNUqXGwcER+VyelaUmidIJYgm6hqbrlKsNoiik0zpBKR0hFW6/i50osqUqmmkhk5DJsIdt6GTzhSk7WAVDGAxabYJ4gh965KwcpqVz1j5l7Ab0+30Mw2I8nDAeT7hx/SqJTNjdeUwQeIzHPfzAQ1Nw69lnmMQxk8kQbRrzQ6i0RGnm+U4NhZTkIsa0HGa5eaZlE0eKJApSQR4nWJaFJlQKlcYxQuh0hMX46ZfoBiH59gnr/gjTHWG4Y3RNR9PS+KE1GvBScJ8HvRbOpSvgjxk8fkBp4xKt0xZJEuNYNq2zFmtr6xwdHbK2usKd2x8gpCJjZXnqqec4PD1i9+BdCoUCumFg5vJomTwf3XtEo9en3elw8+mnyGYLtE5P8f2QkRfSH0xYWV4jiiKOT84oV2p4QUgYxTjZLPcfPcQLAnIZh9WVZdqdLjt7e4xHA1bXVzF0g3eP3mYwGjOeTHjqxjVGozHj8ZhgSpzgBz4CiaHD3u5jmsurtFtnCAHFQoGj4xMMw8SYEsqMJ2M2N7aIk5ScJu2jvEa330uNAMuasqklmJZFkiQp+lIu4087LxmmkSJDMl3Hnu+njUuESD+f9i4+OztFExr5QgEhNjkLAl7o77EZh+gdQWiY2LY5N66VO8F/5fuLwS/Om5Wn72mmiXPtOpmbT5N/7haaZaW5KTMoeOZxTGHNRQE2j/fyhBCeb9NvzutjZrG52ZeSaenM7O+0NiaVKTqen7C3f8Kdew/p9UeM3SGtsz2yloWQAXGkYWcLIBRhMKJUqBG5LkEwIVeu4oYRZrZAttjAsLKY2QKFnMCwbMQ0efTo6BBDT/MREGnTj5Jt4bohJ70OvheSdxwq5SI3Li2RNUxeeesjXn/vPp6fxoztQo5sqYiSgm5nwkBOGPkeSkoMzWC53iBvCiYTl9D3ePe9j/DcCAxBFMYEUSoTpUx458OPWKqXeG5rFV0sKMy5Elocv/P5WYSXZzzKi1D0XDFOj7Oofi4q1sV5Ple78z0WIWymfPtPKOAnYeqZN55+vAgfL14DC57wgvG2kMo9A40F2pzTYq4oL3i66nzf2Wfak01E5med3t+UklNKePstcN35t7RGE23eo/p/5pjwhZmYbgPgnudhWDahVLjuCBlHZHJFnFyevJRcH7axpqUHs8FApBSJPxFHSBUxFoKHusGb2IyHPWQSky9XEbqGEAoZRwwGbfzxmObyGrlCiTiWKBLyxTLXbzzF3uP7jHsdxIyZBfDDAD/yMewMpqYjY4Gum6Ako/GI07NDCoUCK+ubxEnE0eEu/W4nzXyOAnb3d7FOz9B1k7XVy1imhdB1sgjGQVoKkkQBk7GHbefTVmZhgJAh/qhDHEcUKxV8b0zk+9Qay6AbSKnQ0LGzJarLJmenuyRRRBD6vPXBbY5aXQqFKpppo5KY9tE+680ajXKJWKWxnu3th/iBR+hPqJdLVItZmKQZvnEUolSS1pnaDgiIfD99FOKIJIrRdCONEccpRC8ECF2HWAe0lHc79NE1iYzDaTmATi5fxA8jTMehU2nSU3XKjk1l/yGlQQcrjtCnRoAR+twMT1D9U7aEIEQwClxUqU7/0T3Wl1c4PT2jmrU5bJ1SunmNwaCHJqBSq1KplCiU8rzyg9cRYoLf6+JHIaVSgc2ty9y5cxvfn2CZaTzY0NNa6zv3HjAae1zaukTO0BH7KZuYYaZKZ31tg7PTE+I4ThWi73P50gYSxWm7xbXr19GBbD7LvYePGI8G3HrmBq7ns394wsalEseHu0TeGEXaxhIZEwc+9+7cRjccisUCpmkyGg1JkoRqpUa/15+2u0twHIeT4xPUUkQuComODsh5E5qizmQyRp4dUxcS4Y7RLR0zjtEHPYqBi6MswvGAfBRRL5foDrtocUJGSYgDnJFJJfLQAp+K16OkG1TDkMtJPId94yhC13WMjIOIIuYw4xPSRyDQMhmMao38575A9rlbaKZ5XlbIDP58QlDOZeM5RDnLoF0U0POziPPX81dzwThLwJqbDCjSCmepNNrdCR/cecTO7gGoiNGgndKNugPQaxi6TZxEMGUbU3FEHEcoXSeRCWEC1ZVNCuUqbqjIFSuUq2VG3oThcIyrm0w8nyhKWF1ewrJtur0OpqFx0mrR6XcIpGBztUmtkOfw9JRWq0W1kCcIIyaRolKr0LQd2r1uugaidB30ul10x6RWq+K5PjKJuby1QhLHfP+N9+l3hwjToFSrMOgkxHGMrmsIqUiCkB+89hYr9RrVvIO2ABsv1tCee5WzCVqAYYVY0EPi3AOceYZqQSerhbipmu2/AFlPkeyU1nTRnlPT/8+V/SL/dDr/auH3TJcuKuZP2NTCohMLX5xe88yrn60vNbU+xMK+82OLmfctUUEEhjHl8T5PdhMXVqdKeczHo/P1ms9j/fTPITLOlDjlD7vwi9unjwlrOnIa051tIyEYey4yDEAXqESRL5axsnks08ZKwgsu/uyGpAAhFcZ0DC2leDmOGGoaH2kCd9wnTiLK1Qa6YeKNhrjDCaVSmWK5woz7NUkS4jiF4dY3L3MA9LodhErQEIT+hIO9bVbWNjEzWRIh09ZzSUyndYap6Sw1UtJ43TBZWd3CdjKcHR8iEwkqIgigULDnrcSUkqClsV4lY/r9HolUrK1ukEjJ2ekhUeCCiom9Af1oAomkkK8izByJAkOlVJwYGkgNpWlYVo44iBh6IeO9I+q1mLXVNQadHpZKeOGpG6Dr9N2QfL7M1Ws3efToAcFkzGDQ5+233sLM5NGFgSZ0oijA1ASmboBhIjAJAw8l43mxv2noxCItpZFSEkUxpmGhhCCOI4SU+G6Y8iBrBugGm1eu0OuPqToO5UoZd+IyUorg0tOcJTGq1+Zm/xSr20JKia7PYFUNB4W5fYe65RCEIfbhfbaiGG33I1aFoP1qDGGAkNCoVbE1geH5fG7Upn7Yxdq/R1gokNm4RC7vsLa2xv2HD9jZO6BWqyN0wc2bV7l3/xFnrQ6JSJVNrpDHcTKcHB2jazoGGsV8gcCfsLu3x2Q04LnnnqFYLrO3v0en3SLn2GxubpDNl3j9tQM8N2Q0GlEqpa0si6Uq/ThCIQjDMIXMkoj93R2aS6tMRkMEkmI+z8HePkKBppn4fsBkPGF1ZYWyjFh+87tc7bWwjDTj3jy4y2oYpgjGTAkJjURJTF0njqJpG8IUcTD3brM1rYOeE2Y8mnbNUjIVzJqGnM5BIlPrPEKxZ2dpfO3nWDncQT68B3E4F64z/M+5cpXKz/4Cej6PsKwUHhRT+HgmsBfgxqkvfFF4zHTvYieaBQWdKukn648vHkDMS3BU2lUIDT9IePBoh49uP2QchoyGfdrHu+gqwXEsAgS+75HJ5BiNeniei+Nk8Scj/ChEd3JknDyVRhMvlpiZPKuNIoP+GCVjSBIG/QG2ZVAuFkkSZ05oo2k6j7e3U872bA4jUWRtneefucR4MuDxQYsH4TG66ZA1dHK5PEppZOwcnVaHRMbEcYRuatSrVTRdR2iC4XjIB/fHBL5HpEAzHKr1WpqQV1S0OidImWDpOiqO6XWHfOvVN/m5n/giOd2Ye4IXoMvFoRbT+Z3pqwXjJ4WTp/uLhX3UYjJW+uY52jFN0Z05oYI5KcZU5C9cwKKS56JumK+e83jtTIGee8sL3uwcjl7wxJ+AoIX2ZBnWAovVgvJWUkEUQRgg33sbtb+H2NhE/8zLYDvpuZ6EqmfPwMJFaY0m2tLS4mjyabY/VhclXUvrYxOpaAvBu4aBFBKkQpMS3cpSLFWw7EzaxUVZbNeWeOr0AC1JH35f1xkJjVrsp31op7CJkgodBSpBFxqhN6bXjnFsh/HQJZctUKzUiZXEII0FIRWB76VCSgoSpSM0DWSa7amRxjoP9nao1JoUK2WkjOh328gwYnN1jWImh2Ho+GEChkWtvoSh6Zwc7ZHEKW/paDRkZ/cx6+vrmI4DKoXK49BnMh6yurZOplAkjiOW1jY5PdoncsdoMiKREZpmYdsWQiVICcrQEUohY0mv08K2czTry3Rap0zGfWQS0WofE/ousefy0rM3uPXsdQauR/f2A6RKsBwn9WY1gZSC/tiDSUi2UEg9QxVzeXMVp1Dg4e4BwtQR2Pje1OuRCb43QZvS5UmZFv9rhpUm2RgaUTBJk9+EQAkdy8kSJgmlShE/8BmNRzSbS3iuT7vd4dLlLbxMhjc1g+czObIn+yQyQTeMNHN52pRAiyNsFPgelqYjw4isrtHceciGleXYzFDafURu+w66O6E4mWDoBrHvYbkTNiYjwmEf3y5x+fIVuv0eO3t7bG1uYBlQKWbJ2Cb9TocgDMhlMzSbdTxvwmQ0Zjga0et1uHr5MpoG7x3toQNJGFEvlRBK8eGHH/DirVvUigUyusn9uw+ZBC7lWo1MNkev1WFt4yqnxweEgZtWZsQRKg6JQp/792+jGTaFfA5D0xj3B8ggpJQvcHp8jHOyz+dPH1MMXJI4xhQgkhhNSSwp0wjfFNXR9JTjWk+0qbfDXAlrSmI+4b0IlcKV6fc0VBynlaMipRkdAT90CoztAqW7D/ni51/i6a//NHrgIZQk8UOiThthGGSuXUPL5FJYcip4ZvJr9uwuiKOPeU/phaXQ4icxMX0ixPbE50KoucCUSqCkTrc/5qM7D9nZP2I4GjMYtEnCEKECwsAnl60DEMcB2YyDECmiY9gFlDBQmkW+ukQmX0YzLXKOQalcwzBNxq7P8ekpcSSxTYO1Wp6N5RpH7TH9/gjMNE7vhzHryzWubi5xenDGeOjy2jvv0x0OGIx9mo1l8rkcg9EIPwgQpJ2SJpMRTsah1mggE8lk4pHLZUmSBNcLGAwjMtkMpUYNb+KSyATLtnGyWbRBaogpoYESCCV48GiXu5sbvHjtMpqaVwnNx/58zGcT8wRsgZp7p4uwtJILnu/MaFILylY9MXvi4kyqhd8LPvnc+170cFMlJxdenx/liaW0YPwtJlctfD7zcKeKflbfnOqE87+FABWGyDdfR73/TurVum7qDT+8h7p7G5aWEJeuIJ56FmEY5+eREsIQNe9pTeo5z6zU2Rh/iu2PVycsBEIzeFCp8EYQMJZROnFTiCOKQnqdNsvLywiRwp3H5TqNfpeGm7rtVhRRUyptpD2zrDSdnXyeRyoVZDNu1DhwGfsulpmlVqvNmzUolSCETjzlnY6SkG63w3g4otFcRTd1WqdnKTQsJDLx6bSPiKI0OcwbDdlornF5ZZUXXnoOM2vz6hvv0Zu4CF0jVyhgWBnixEszhZGMRj22dwLWNi6RL5RRiaTfaVMuFqhUyoSRJE4UmmFSayzRb2v44366SJOEXrdFoapwcgV0IZAqxh0PCd2ApZV1NDNtqafpBpNhB5KIfq9FIeNw5doWo3GPo1aXIPYRQqPX7eP7PtlsPu1jm6TNv8fjAY6hc+vaJX7+F38GSPjNf/nv2D1qgy5SREOl8USVREgSdF1HJRJN04mVwtRNDF0njjySJEbTLBA6S8urGKZFGITksjl8z6fb7VKpVHGyaQZ0tVolsmwelC+xtHWd1uOHrCwvET+6x6o7RNfF1EPWiKIoLcVJUuWhJQlPhT5bUnLF7aXrQBMYmpaiFZpGLCWx62FsP+Kqk0O7egVvqc6rr72GHA7R7t7G3t7hRTvLmQw47XTYvHQJXdcIfI9yuchZ65h+t8vVzVVW/QmZ7hnWt34P1Vxmo9Fk89oW9p33KP/gOzimxRcHA6zRGfeDCLv2JUI/xLZsstkMuXyRJA5JEj3ldhagkbC/85jV9Ut4p8fcaO2xcrbNlueSHZ9gTlw2d/voYYAwplm+Mo1xzgwVmFryMiXsP+8LsyAoAaGnORNpVdEM4kv/ncFoqdSYVhkYJjulJhNS8pHO0SFvv2dQqtXZXFnGRGEqgXPpMnPhPPMsZsdTagE+FAswJMAMxlwE7qblRRfcMcW5Vv44WnYeQ07vWQqJVGnHo+2dUz568IDRZMJwNKDXaTPqneA4GUzTJApd/MjFsiyCwCdOQnRdJ4oSJAb56jLV5gpeBMJ0qC0v43sBrheCHzB2JwSex1J9iYxtkjdcXry5QX9wl93JGGXoZPNZLCcHSKoFg+LlVb7x6vsc9QSWbVMsljAMHTSwbItW6wxdM5AIsrksGcfB0m2UDpOJx6A/IAyD9G5Nh2KlTt7QyBmC3mhEEIRMxmNmhCtxnGDoeprtrTReefUt6sUCW81aKqenCu1iA77FcT4f79koz5XlguJdnKGZ3zvbXUwRkDn0/ESM90nz6hw1npaVTddOut6fAHvVzDA4V6zwCQlUnD8LiFly2cUlNd+PKUytACRqNER+99vw7pspD/SFHSTqcB8O91EfvAc728hK5Xy4bBtaZ+nPdNNy+dQJPL8yPs32x8iOPn8lK1XKpom7v4tKYuQMSpIJgTvg+CCkubSM42RBaESmNb2vFM7WNDGtQTt32h9UljB1A6vXJvQnwJRiD40oDhmNehQrdRAaYZygRIJMFGEUMx716XdaVKs1KvUGStMw7SxnhweE7hiEQsmIQa+NQLBUrnBza50f/dJnKS+VaXd6+OGEmIQkTjg9aZFIjcvXb3B2eoI7GCCUwvNcdna2WVldZzSaoBLF6vIyupJYukYcqlRpGRaZUgXfT2EtTSlUEjDqnKApRaFcxg8j+r0++UIJ03II4xihGxRrzbQkqnOMQDHxXf7gez/gxo2b9Ec+mDZB6HN8uI8h0lZoTg4mkwlJHKFLAWHCja1VMk7C3Q/fJQ4nOI7NeBKioWNlc/iBh5QxukyQSRrDMSwr5dsWgiiOYGZtCw3LcshlCxi6SXfUI58tUK5U2N3bw8lmqDfr7O3vUy6X2djY4PHjbeo3bwI690YDtr74Ve48uMuKZdBpn9FsLtHrdTF1neLxPgWZkoYsJxGmUCmMHcdEUYzjOEjLZqKZOOMhQqW8ysV4gPnt3yFfrvDCYEz5ZA8jcFlNEgzbYiVbIElMcoeQGba4fvyYlXKZIPAZDAfU3/KxOqc0Ah9jMiQ8PqBQrZE8fpeN4xP0CBIFZV3DCD2eDUP8177L2M5SBUzTYG3QBxS9JKETx7QV1AZ9NgOX5vEOzcNHZH0X09DJRTH6iUs2STAMg1ilHl5sZxkub9J1XcrFMuPJBF3XsSyTKAxxQh8ZBuSWVzju9rBtG9uyGU/GuJ9NPebie2mugeM4mKaJ7/soXSe0MxhKIbxJSjW6tM4gjFki4exoj9B3OTs85Ld+69/xZ/70n2K9UcGYQ84gZ97GHHlTU0GTXvtM1J4raOZe80wa7pbaCKHYGjTPBdRU2gtxrgfOs3q16emmDdxV+tMZeLz/wX0ePj4g0RJOTvZwBx1y2SxCQBROKBTKeEInDENMKwOhTxAEmE4OZSqy5QaxZiKNLM1qmUngIYSGruscHx2iG2nilalp5LIZNF3Q6np887uvctr30XWB4eTIZR1EHOMN+nx4e5vRJCCIE8rVGsVigSgKGY9dJIrRaEQYhjgZg2q9gQImvQG5DLjehCjyiYOQbC5PsVxgNJkgg4ClepN6Mc8fvPom49EYw7SoN5YZD/qMRwOESBWtrmA0HPG919+m+tM/QcEyU8RkrpQW/MT5XC4qCDG3j9SCBzcj55g3Zpgbf+rC7p8c+z2Hnp+EkhGp/TXvcLSw+wXfenaaua5I181iupOYe56z6zs3Fma5A4vnnil22W6hfuffwvYjzhMQz6/zgvqMIuTbb8DHvjW7aIGwLMxnbp1DBJ9eB/8xPeHpSeMkoj8eoSQ4dhYv8NLL0gAliQKXk6N9qvUmhUKJs0KJ+qCDrhS6JuZesK7rxDLtM/yF1hGvNdY4qzUY9yGYpM0eEhRCJgy6LcIootZYAj3tjZvIGHc8oNM6o5AvUW8uA1pK9GBnWF7boHN2zGjYQ0jFrNmxISNeev4GpWaBTr/La6+9xWjk4iMY9gdMRhOWlpbI50s42RyHezuMej0Ekih02d99jNBMNrcu4diZlLknkTi2ge8rgjBkOBxhZgrYlsGoN0i72MiIYecUFfuEsURoOtliWj6lGSk/rG4Y5IplxsMeKvKQUnFw1KE3/JCrV64jVELr+BQRxRQLGTL5DKOxJJfNEHohYRiTIPnGt77N7Ycfsrm5Tn8cEkQpDZ9u6liOA5ogmNFtKokQOpqYNm5XyZS8I+2djNDY3LqE67pUszmWlpc5OT1lfWOd1fV1Dg8OWF5eolGrc7h/wPrGBuVSmZPjY5ZXlmm1zghlwrjS4KEO21+RXP2oTm3rBrcfPuSlWkDuZH+Oc83ioULXadtZolwB/eoNtvtDnrpsU3t0B0YpsqImY0x3wqU4xjAN4mkbPqEUznjA56MYMW4hZcKyUhiTPihFPYkR3jitT9e0lI5OCNSgR6BiDKFhGinb2gw704D8eIDT76DrBkJAKU4z/LekJJYSX4EdeehKIkZpI4a0FnuhQ8s8yUMwtrPcWb5C4dpNdnb3qFZqRKWIQjHPZDLG8wMa9RpnJ8dcunKF06NDTNPCth06gw5v/W8PKWQLvPR/X2HQHVAsFFhZWWF3dxfbtikWirRGQ2S5QbFYwvcDlPSwLIeltQ1ODveIo4D+6THf/d6rfOUnvsRmo4SYwsxCgFjEHxfhwYUX57DlzPMW8893Kmd8Z+sj/ssf/K+wkrTr1MzDVnNhpc1h1FSsKeT08yiS7O2f8uZ7t+mPRrjuiH63hYp9iF1ITCzLJPAnSJXORxwnZDIWCoNQCkw7R7PWRDMzqERRrtexLYtJ4NHv9/C9gISQ4Y9JLu9vMR6OccMQKROGLrS7E5aaNdbqeXb329gqS61W4GGrw97xGDufp9IsEfoeQgkUOiPXZTAaYpkmlWodf5oMppMmiB2fHIKQCKGwbItKpULG0qgXMuzuH/Fw2+OhlASJQugGlWoNwzCpVBt4nkcYBzimQRyFJCphe2+fV9/7kK++/GJKKawAoRAy1XrzkMB88haU86L7ONeBF7Fntdis4XzPc+TlYnr2BUX85E5TQDndd6aI57HW6bWImVJfUNbi3KNfVLLz486gatT8/Iues1AK9egh6vf/3QUvVug6+uWr6M0lRC5P/Pgh8uwUNRr+Ibr0oo+vr22gX7027VU2wwP+l4CjpzfXbbVwlWC5uUKxWuGsc0q33UKTiukjRhKHtM6OCQOfnoIz0+HZrE5e09Esm/q1K1gP7pEEPn4QUg08vnKyw+Nckd0ooIegRdqJYpYEMhn1kbGksbKGqdt4/ph253S+MKVKPWyhUlpNK5NheWMD41hn0EkTthTQH4347ve/y9OTZ7m7fUC/FyDRCAOPbrtDpVKmUC6TqLQ7zeraJmemRbd1gkjilGVKKcajAaVCMY3Zpbma2FZKWZdEMbWlVYQBum4z6HRABkgZMuy1UZpBqbGSdiMSAiXTTlEyThiPxyhhUKqtMOz3SOKY8WTC3ft3WV5ewh/2eP76JitrTd6/9xCvmDBZUlQ+dAijCQGCk0DRetxh/yxkHMSpcSRjcqUyaAamnXJ7u5MRahr7jsIAUwCJSscqkWiagRA6uXyeVndAr9cnXyxQqVY4a7fJ5XM0V5aZTFzKhSKVUhlv4lKulDg8OERKSb1e4/DwkEtbl3kl/x4//HO7lL6lcW3jGmEYkr3xFOHJPjrn8KmybB5my7iXrpMIjW6nk3ZvuvkMbqmEfP0VMoGLjGN0XUefKlKlpwmEcRSnCl0IDF0jmmZsMrW+DV1HaDphFKLPHnshUJYgNmTaojDSGWdssvkcsttBkELiMsXQUNPj65qOkmnilJYkCxBfqlKUlPgIvHyRvGmSjEYkus4kX2X03Mv0Oj10z8OxbRzHJpwKf9u2pz2KLYRhMBqNsC0by7LwPA/X9tl5qYUuutywKpimiW4YafxYT+/KsEz8KMI0DYQGsYzShC7bBiT5co1h54w48tjdfsAPbJPMj3+R5XIOZkJ4AYY8F2xwQfmmn87/XSwvaWeH/Nb1t/jF+5/npdNLC3J9QUCK2XlmKlgjURrd/oT3P7jHweEJnucz7LXodI5I4phyqYLvKsLQxdBtFBBGEabtICcTkijCyZfJ1xso3SbSHJqNZaI4xo9CJIooCnEHHuVikVp1mX/6l75L8zfrVN8rcHx4iG0ZFLJZQkMnl3d49voqIgx5fNjh5CRECB0r61CpVZBIIs+l1+ulaJ2S6DosLTXR0Il6PcLJhERKPH+CF0xo1ipsLi0xcQP6oxGlWoGVapnHj33akwTbylGsLjH23ZSERaSMXIZpcna1R62TxeqmuToKxYd37nNpfZXrK0vT9pXaOfo/UwriorJ9who6n8qZDp55k/Ngs1r42uICOEc25JRA5Q9VYGqxkcjF61JTRfbk/kLMaUXOFfHM2/5D4q9PGgLy7TdR3/xd8L35e1o2h/WTP4X5/EspdzlgvfwF5HhE9NYbxHdvI93J+UHDII0Jz86hGRjP3kLpOrOmD+eD+O/f/ph1wookkcgoZnllg2pjiVAllKoNpEgVXRJF06L61CPp9VpoaCTFEg+bSxRNk5c/8yJbT11l9MPvMfz29xBBgBCQiSOe6bV4GkWo6dzJZPme0IiSeEqkJ/G8EceHu1RqVfrDPgD15hJoBkEYYug6um6gCx1NS2kZ0bS0/EaCkhJPSt766A7v33tIsbFCoVxHyojO6Sn5bIbG8hLDYkB2YqMnAsO0qDWXEBp0jw+nAxLTbZ0iw5Dl1XU0My2nisIJo8GAerlI1tQJFdi5AgWhM+l3IEyhdqEk3miAaTsIwyaZZgTK0GM06FOu1HFyeYxMnl7riCSc4IUjDvZcbl3d4Od/5kvs7O4QOzFv/o0Ba991cN6J0E2Brlv4UZrp2hmMUZoOKsHKZlGaQaJAFxqGaWGZNmEyy3pPiHwPXZ9FgNIHolZrkCio1eu4rkccRZiGgWPbuK5LPp/WbLc7HZYaDVpnLUzbolQuc3p6RrNZp9U6Q1u3+M5fekhoJ1QrVdrtDivLK9yeTBg5ebbCgLJhIE2T+MYtdgcTnl1dw3YcRuMxoRtz1upQrtR5sHKJz9SraAc7uKfHVBwLA5jYJsm1Z9GP9tEHXWxj1iBEkNg2nkiTnPLZLBYSOVF0Mlm8SzdIjnfg6oCJCUagUfWe4V4s+fEf/xKHP3gF/dF9KpkMk8mYTCaT1uUaBrZpEo8GWKS1i+nqF7iaIJIKT9O4q5vYa5dZaa4x7g3I5gucjcYs5YrYY5coihBCYE7pKofDIc2lJfqDIRN3kpLZFAr0BwM0XSeTzTBY8zlrDtA0jYNGi61eI20DGQQYhkGhUMB1XQzDwNQN3MmYjG2ThBFJLDGtDHYmT7kmaLcO0VXI/Y8+wAB+7utfoeCkJV3zwNE0BvhxgSc+/ufcI0mVcC8z5p/c+g7PtNex4nOxM69NFWrerF6i4YeSnf1TPvjoHsPBiP6gQ+vkmIypYSJRKpqS71gEYUimXEDzBVEU4WSyYJiYuTxmtoieKZHNlVCAZTsgAk5PT9ENHU0qcpksjWqZG1vL/PrS9/i3f+GH/NS7L6BrUMxleOrSOsP+gPZoyPsf3GE8DhmO+pQaS+TyBUbDPlKmoaxESvrDQUrYsdRgNBqhkgQnY7G+VOf+w200zcI0dbKVKrZlsFzL0biyzu9973X2jybs7u4ToSNMnUKljGFYFHTBYNAjCVPGwDiRTK5E7PylPb7wX2+gTzSEpuNOXL7x/dep/8mvU8846RhrCk2mdKRzj5NzJ/fjmlI9idCeK4EnYOwLWc7zWuVzJb8IA6ffmarPBQV7gRhjIRNspnBna2pOJCIW3p/u84d53TNDTykF4zHqjR9eVMCNJeyf+hnMazfSZ3eakY1loVVr2F/9Oubnf2SegCXElMjm+98hOTpAWDbmrRcxnnkuVcBTJC4th/qf3RNWKUGAUlSrdXJrm6k1KUFgUCrXMQyHfuuUJJze5LSzkkIRhwF6EvP8809z7ZlrCEuQvHCDD+58wIoXkElSWFSplGAiIwS3woCz5hoPfBffG6NJBcQk/pjRoUui6zTX1rFsOy29UJJkBmkKDQ3odXsM+yMq9SamZdI6OUZGASEGUSzwTs+YeF46XjLh6tVLPHp+wJ0XTvjir26hY6fImiZSvN2w0yznJEaohEG/SxAGrKyt42Qd2mcnZE2dK6vL1BtN7u7u4UZg57Lops7w7AgVRaAgdMf0zhKKjWUMO4NMYoaDHpZhkskVEIaJZVqUBQy7pwRuWrr1eG+fH772Bi13yHf/cpv7f3bC1j8xiCJJLp/HNAx0TSfw00SOtPuPQBM6mhSgpaIuiWKiMMJ2HJCSKAwAhUwUUiqEZqDpFvXmEr3+ANNyqFaqjIZDRoMB61tbDMcj+r0eGxsbdKYee3N5ibNWGvc9Oj7GNE2cYpbf/Zl3OPkRl8arDsvLS+w82mVra4OPPtihbdicWXk+88JLdAYD+r0xmlA4toGug0JSKBQ5OTqmdaQwCiXia0/jLq3zwVuv0yjlqJWKtMYuz7z4OUaXb/L+qz+gVi6yurrCzvY+Wzefojdx2d3d5caN6+QtnYO9Xa489xwPbt9m9IUVfuf/OWSYheqBxS/99Rxet4+wHYbL6xxFGuVcnv6gy9PPPs32o8cAFHJ5/F6H5wxFsPOIxLJ4P4ahpuH5E5Rl4sYxhV6LSGg4uTK5So1gOKY/HICAXC7LeDTCnUwoFou47gQ/8JFI7EyGqHVGlCRIpQiiCMO26PxkSOykcObjF09Y+iBVus1Gg067TRRFZDIZRqMxTtaa1rFHGLqOZZrEUYxlOpiGyWbW4fhgByKPRw/v8weOxRdffp5quYSpLfIfzbxfcUE2XBR852Cn1BLOcgOUgN+//D5/4aMv8/njqywK6nPZrhMr6AwmfHj3EY+39/Fdl0G3RRxOkOEYL9HJ5TKEkQdJjCFMEhUShgG6bpAkCt3KUSk2cQoVvETRaC6TsTOcnrXwPRd3PMKbjKhUazSbdcaDlN8g8ieYkcaDF4756C9v81P//FlkoJDS56krq/y7b+3S7RsI08YplnGyWXRdJ5/N02p1EdNQnW4alMslbNtGKcF45BL6LkkSoaHI5yw2l0tkLYft/WP2j09RcUKUxHRHLrlCiWKpjB96eL5PNmMgk4Q4CplMRtimRblcYj2GV//MI/Idi+f+uyYilpiaTrvd5Q9ee5uf//EfxdYXZ2o6K9O4sJijFf++4OUi+rE4zzMw+pwoZI6UzI86y7o+f392xlmpj5qhKgtXOqd6uRD7+Ph1zpS2lPJjxuFizTNJgnrzNWi35p/ryys4f/rPozWa55nWagomT9el0DREoTQPlQhAqzUw1jaQgz5KN9ArFaSmLZRHiQXI/d+/fepWhjKRU1JvDSeXJwIiOS3KVgJdM8nkclSbS1i5HAoNMe1pEhcUd352zE5nj9OzQ3y3z6DT5tvfeYUHRpY3Nq7wTq5IhzQOqE9bIFpSUTdMGstrFIoV0HQKSvJTkc+fCyb8TDAhOxmDSks60pZTqbiQccR4MKB9eko+l6dSqZPJl1jZ3MLO5kmUIhaSWIb0e22G/S6NZo29r4z5l/+nD7F9AztOs7GDMMQdT+h1elTqSzRXNzGdHDECKRSeN+Fgb4fjg0OUF/KFF57l53/mx/nJn3iJz754BVOApgykkiRCIJwM8TSfIAk8BmcnxO6I0BsTei6Vag2Ejq4ZKCUwnALlxjq65qAEDMKYb7z+Af+/L+zwzn/qYkw0RCflINZ1Le1eY2dwMrl0iqVAKJ3Q9VFRgJjWQIaBjxBgOw62Y6Pp0/KueVKHRrXWIIoltVoDx7bpdtrk8zksy+L06JhivkASxwx6fSrlMmftM8S05ddoOGRtdZWjoyMGPw/f+qkPQYeiWSAIA1x3TKVSYtDrpsIpn6XSrHPzqacxzTSLuz0tM4qjkJs3btBoNOj0uji2haGn9KbVtTWKm5e52+kzluBkHcx8Dq2xhL66zp3ugGEmS2FtncJSE5XNceZ67I8miHKdlc0NGo0a733pkP2tCYMm9C4naJcMQHB8ekYYRaxfukxkmPjCILEcJokk22hwNJkQVOqMnv8C765dZ++pzzKsrzDWTQLDRukWmtCI/AmHew+J/CHeZIjj2KQ12glJkmCZJkEQpEmLAqIoIoljLNNA0zTGoxG242CZJn05YPeFFuipp3P0+SEU0rh2MLXagzDEMsxpqV6IY9t4rpvSmpoWURCAAN0yKFeaOHYBUzcIvTGvv/4ar731PkEYz6Rd6rB+TAE/uV0UPYlQnGWHAIwtn3/8/Lfx9PBjnpFAw4/hwd4Zv/ftH/Jwe4/hoMfp0Tb99gGGJtA1iFWImhrEvjfBMi00BUkcpyWSjVUylSWknadQa7K0tEISJdNwj+LkcJ8oClhqNslmMpimheM4HJ22ePW924xbLkqH9/7cDtafNTFlwuO9U777+jsECWBnKNaWKOQruOMJQeAxGA2ZTFwUgvWVBmtLFXzfI0oUcaIYDMd0u31knNCs19AMRcZRPH9zk6xl8mj/lD94631GkcTM5rHzRZTQcewMge8zGPRSL3gaZqhWK2RzOUpxESswee+vHvHgz3WJkehCYCjFndsPeP/hY2IhmLNGLSiIBSz641MozsMM55n4akGpcWHf2d9zxbrw6Wl+wLcvfUSsJZyXJi0ci2ni3Wx/Un995gU/AZJ/HIVRTyjbP2RTO49RP/z+lP8chNAwP/9FtObShQqC2T2cmxepAyameUxz7zyTQV9eQa/XUXraBOXJ8fyjrmdx+9RKWCk1TdzRSIAwjlBqCmMKhVLTWJiupc0VhAZoTDbhlf825PjLCRM35puvvsZv/Ma/4Hd/91u0ehFKZDgOfF6X8N36CvfXtpC6zoyTtOGOyBoWq6ubPFcu8/NRxDNJTE0l3IgjfvRkH2N/lyT0QaXXpwuIg5DToyNM3aBebyI0A10YWFaO5uoG+XLl4v1p8PYXD/mnf/1thvWArdsVTMPANkziIOD0+IRcLk+9uYSdK1JurmJk88SAJCHwXQbtM567epmv/uTnKVc0er1t9nbvkTFNLCHw+kMymQLN5VWKlQrJLOsv9OmfHjHsnFIoFrAyWSQQJXFK2ZnEhH7azg5dJxGCvT8peOtv+cQ5hd0RmCPIFwsIkVJOikTDNmxMTUdoCikSpAxw3S5h4CGQyDjGtmx0TSMIw9Tq09P4khApB/HSyipRLPH9tNm557rEUUytVicIAqIg4OrlK5yenJDNZFhuNjk9PqbZaKTZz6bBtn3I7/yV93EzqXIo6nnaZ22uXL7E/t4Oatptamt9hZxjYOoKXQPHcdg7OOLOnfs4dgbHNllZXcZyHLqDITt7u5ycHLGyvMT62irlchkvCNg/OmDiDllp1njm6RuUSsV0PQlJFAcUinmKpTKnrRaZXI44lnQzYx79/GC+HoJMRG99TCaT5d69RxwcHlIqFygWCyjg9LRFEEZUK3VKpTJxHHNy1kLaOcrNFZQwWFrfSKkdNW1ukookods65ejgMUJLELqGHwQMhwOy2SzFQoEwCAh8n2KxgK5p+J6XdofK50nCkCSOmTQDjq/359c7eCEgXgfLshhM+adzuRzdfg8BU+/aRWhpJvDEneBkHKIw5e02LIvm8hqFch0VS4gjPvzwIw6OjucQ+6cTKedJMwBSU5zlBvOP/mDrI95efnxBeIJg5Pq8+d49fvDau/QGI/Z3H3Gy/xhdJEghmXhuyvmuElSi0IRBrBIwdJRmohlZMqUlsrUl7EKBXKFEqVgi59iMJxNa3S6e52KZJs1mk0qlShIneL7HcDxk7LqY2RxZLW2Z52Ujfv0XX2G4POGk3cdVFqVmcyoxYwxN4I/GdNpt/DAgV8iSdUyurtX48c88g5HEtDod2r0OmoB8LsflzVV+5IWnsBScdVy+9crr9CZjvCDGzhQpN5bIFktMvAClIPADkiRiPOqiZEStWqNUquCHMUro6EOTzNAmzkne+hsH7H99iAR0QMmYV157i+OzfposNGsZOVPGF+KtH3Nx5y9n8c1ZKdrH9zlXlOKJ4yilyEQW//TF7/D//sLvMLDdC8eYg9DT99STMPMTnvE8m/qCEv8Uq9L3UK/9EKLzml796jWM6zcXLnYxRH5uXFy8S6aI4tRjnmZBn9NxLpoSn3771EpYCDEtTRBIqaZcpzqmYaCZOlImRGGI77qMRyMwDfpft/mDfxaw94sJa9/SEYnClRofPD7i9sM9oijBm0zod7s4TpZMfZlhJkcitHncYLPX5se27/GFvcf8RLfNyhTinnGVNpKEL/fPiI4PiCMfU9PQpKTTOk0zYpdX0XQzLQNT08xs06LaXKFcqoESKFOw/RdDvv93e4zqIdmOQWU3LfVwTItRb4CSkubyMkEYEYQJSjfJ15oYufw0ZT41SI6Odnn44EN2dh/w7e+9wWgEhhAkfg+SiEqpgmmYlEoVStUGSujphCYhKgnnvMBSSeI4JlExJD6D7hlCCAzTof1lePvvuoS1dLKtFjhjfVpTOiU/0SGMQyIZYdopzaBSAqnA9yZMhgNUkqALQTJLJkrNwOnICrL5AoZpU6lUGI1GoBRr6+u02i1c36PRaHB0eEgcRSw1G5ydnVKr1XC9Cbl8jmqlwunojFf/6h4HW935irYSk+FwSCaX4fGjh2kajhDksg6FrI2MA0gSbj13i3K5yulpC9t2UoXku2RyGa5dv8LR0QEHR4cUi/lUySnBpa0tDo8OuX/vLivLNcrFPOVCAcvUuX37A85OTykUSlSrVZSCVqfDwckZD1/o0bsZzK/Rt2LuWjusb6yzsb5J4IdM3AlBGFCulAmCcGpUC5AK27Q5PTlFM3Q0w8AwLYqlKsVKDTQdTTfSphpSEQcuZ0d7yMgjDHxqtVrauCRJCKMI27GJ4yQlwREaSZwQxwmmaRJGMUEY8vDZE4JsNH8+o4Jk/zNdgiCgUCgQx3Fat6xpaUKbpqU1yEqimwYTd0KcxBiGQS6Tw/c9hGmSyRUpllKGJiUj9g8PPkGkqPl/i+9dFK/pQMYi4Sw3nH/LNQN+7fnv4JnhhWONXZfbd+/TaZ9xOqUElZHHrJY4TsJp2EQQBWnDEoUiVIpCY43m1g2MXJlMvsDK8hKmoeN5bkrkMRzihwFLy0sUchlK2TSkNBqPODw+QihJrVQm5zhkpD4VeHCnecjv/IV7iJJNuVbDzjjIJMFzJ/QG3Wkmvka5WqdcKhGGAcN+l16nA0rijsfksg6XNpZwDANkQtHRWK+WOThosXM6YiJ1nHwZ3cyg0DB1DSKXfveE0bBPnMhU1pQr2Nks+XyRKIrxXI/gyMNopyI8qMS88bf2OXyxP21EL5kMJrzy+tuMozBVcGKWhcxCvPY88nqRlypVumklC7MCgZn+Xpi7c/2wuK+cQtWlMMeLJ5f57z7/e/ytr/8zHpdPpxC0uGAIfFKnpJnihU/2Kj/23ifoPtXtIP/t/wSP7s/f0/J5rK/9DCKbm7/3SbFxsXizC9cxC8vM4tZyNjjney78++/fPrUSTrMtp1DvFJrWNYHj2BhoKbm45zLqdZA2bP/Hgt/7BwPan5Xk9jXqr+qpRaYgQdEfj9jb26Nz2iJjO9SbTYRuMLQdzvJFZuXbOoqqO2K518L0vWnyij7vdSlQVKTkpjugfbTPeNCm1zllMhpSrzWwnDxK6GhGSpARyeT8OpRCZQ0e/rWY9/6rIFVqAgrvKoKjIZqp0+q0GAz6NJaWUULHDyKQCl0YCMMiX6phWhmkEiSazuFgzG/862/wL37zm3R7AqE7SBJG/T7NWoW15RqGlpKe5IsVqvUGQk+nQUhFv31Gr32CkBGakKgkYTQYIpO08UL3Kcnb/42Hu3EeeHOOBUxk2mFJxSjSh1BO6/tMwySXy6Wcs4lCyJgkCjD0FL6UcTRtMylJpmVJCkFzeZXucEgUx1QrFYajIePJhOWVFaIwmuYH1BgOhlTKFQaDIbGUVGo1dnZ3KNeqvP6jD9n9M6MLKzLoeTjZLEEcMxiPkEicbJbD4zb37t6jXi2wvtwg51hcvbyO4+j0+z12Dw7o9Do0GzXWVxrcuHYNKRV7e4d4E4/Q9Xj2xnWevfkUvuchVNr6TaiEL37hZTbX1zg+PsEw0lidaVqUylVu7z3g7a8fYEh9LqCUULSv+DhZh2qljGM7nByf0Wq1qFSq1Gq1tISq06HdatOsN6iUy8RxxGg0QNMElUoVzbBZ3biMMOyUM1woTE2gyYRRt8Ow0yJr2dimQ5xIusM+dsZB0zSGgyFxHJMv5ImTNN7uZBzIajx68RTSpHZQoCmNwy8MiC1JNKWxTOIYVMrMNhmPyWaz6EJDKEUum6U/GBBLSS6XYzgaI3Qd03GoNpbIFysEYcxoPFlIzprKowveyidZ/eeTPbI8xtZ5JyZdabyycY83Vh+l5W+IlCu8XCZjZTjbf0zspt2EQKbd1IRAxjFSSaSm4Uc+Vi5Htlin1lxDcwoY2TyNlRWEZqGkjqmZ7B/sMBj3KVfKFLIOOcemUcyy1SjTOztCqQhL17i8scxnn7tG5HsoV1y4jQc/d8qDnz7FC2OiOCGJFe1WmyiOKFcKOKaFoZug6SSazrsPj/jmGx8yChJytkOtWODZGxus1Mr0ey7ffOUtHh0dE0mBlStSqtYoFEtMPJ84SfA9DxmFeOMhug61eo1qvYnrRynb3pRroddqEbVdnDNzbvNM1kJe+zt79K55CKkhFDzc2eXV9z4glhrniUJzdzgVIdN+0jBTtmr6e+YRTmXt3FM9N7gW18W5bztT52kN+1ceP4eVGPz+9ff467/wK3z30h0SbeY7p73pZ9nZfxiEe6HM6A9Tb4uKVCrU/h7qf/wN+Oj9uZIUmobx7PNo9caFXefO7JPvLcS357FudW6Ezp6FlIjsPDY+Tzj8FNunjwnLZH7CBAkqwTB0bMvAsU1kEjAcdJg0It76ex6v/J0ubj2NJ135fpl8WEYKAyU0JGnBtR+lbDbZTIZ8Jotppj1sbzfXeFxbmpYnpWMjk1QtG7qRlpYU8mnG83SIbsUhX3KHNPa3WT454IptU8oX0/jGlE1MknJH6ygmoyH9ZMTj/1zx4d8JiErTQyVQfltw9mifRw/ucHi4R6FYoFgs4brBXLHJRKLihCQMiWKF7uSRmk6CxihQHLfHHBwc4boTep0+lUyen/jcy/zpn/tJvvDiTQxNITSdTC6H6dgIYaaLXSV4wx7DzhlEPok/wR0N0l6l65I3/x9DRteSCwsmv6OjJAR+SBhGxHFMGEb4foBtZzBMG4XAyWTTpg3TBZJ+LyCZllPESYoyIHTyhRKlclr2kiQpaYJj2fieRxiEWJZJr9+jXKkQhAHD0Yhms8nZ6Sn1ep1+v8vk+Zi3/8MjKv1zixPAbU9YaizTbXVQUarML126xPOf+SxH7R7f+N3f59kb1yjlHJI4oFYps7m+yunhAYc7u9zYuoSBDolkpbnEoDfkvfc+QGhg2gblchEnk+Xuw8e8++77jPp9VpsNPvPCLSrlEp1eh8OTI5QQrKyuEn3RwW3GPPfdFQCs0ODmw1X6NyOG/pjBcECxVKJWrTEejefhAWva6SiK0xIghSKbydDtdjENg0wmg0CjUKpQKFcIpUIJLa0xVhD5Lu3jfaJgksbHyxV09FQQK0mukAcUcZxSfoZhSBzHBLWE8dWQK79dQ0Sgxxo3v7FMa2NI0iRlVlIK23bwPB+hCUzLYjJJiSlKpRJBEKRlXbqOUpJMLoMfBkgETjbH8uoGQrfxggT5pFycxqxhLjuf+Pi8krOdGYKClVEZgJKf5Wvbt/j1Z3+AawVTwS5IZForKzQNFYfoQiFEGgZJwzMShMI0DAzDRrPy1FevoGdLZEtVStU6mWyOyXhMp9OlNxySJLC6vMxKo44hFbZu0B1O+Dff/C4KjRsbm+RNHRmOqZdNVOzj9YIL91LsZvngf7PNTm2HfqdDFEo03WJpqcHnbl1jqZxFRiGTsUsQxLh+QDZfZG2lTjFjQxgx6Lap1wrsHx9z0Bvjaja5xhIJGprS0IWGrkGvdUowGaeGdaZArlTDyWQpF3IYQuJOhvT6HeIw7QjnZLI0O7WFgYf+FY/v/+1dvHWJ0iBJYt5++312T1tETNkNhVqAfqfxzvTtjxlaM4WjaTMClVm7w4W5niZdzVTwE6A0W/0Gt042AXhQP+Zv/uyv8Y9e+iYjy5uf62KPgSd+P7mJc6V8se9v+pmKY+RH76P+xT+HWTULICwb6ytfw/qJryG084y1mbKdKdwZSjAfC/XkPZ1/f/EBWLQfLqaZ/dHbp48JTyFoEISZbEqlJ1RKQ5iE9Hstzp7z+f4/8rj7H3okdnonpqux9b0q2XwNu1BGCR2hUg9XCEVCQqfTpnV2ksYBLZtI6DyorXBnbYtONs9wyqFr6lNCCQHZKSQ189BtBS/EIT8ZuPxU4POzvVOeOj3ECNPOJMlUwegahN6YVtji3t8MuPOfjkmc89WnhVB9U4Mkptc+JQl9CvkcnutN4Zhplp8GupL44zG66ZCvNshVqqmAkgkSmHgue9vbRMMBX//JL/Py518g50C5JMlldQwBgRcQxVBtruDk8mmCmYrxhj16Z0cMOmdoSOKm4v3/8wjnVCe/rZ+vHgW57XPLNgpCgsAjCkM0zUDXLaIoQRM6iVLYjrNQnwdRHBGGwRzdSOuWdfLFCt3egFw2j6ZrtLttcvkslUqZXq9HqVgk4zhTRVym0+1SKBQIAp/A98lvlvm9n3iXn/2Dl1jaLgKQHVuU21mMQNBs1Om20haXtmaytrxOpVrg2vVrjCcJb73zIe1Oh35/QLlU5tqVy6ws1/G9Cd3OCZYp6bVbXLt0jaeeusnYG4GmEYYxk/GE5aVlnn32WQ6PjgmjGBB0212K+Sz1WomjowMc20YzNB68dMLX/9kzGMfpsNqhwZ/4nRcQuuDYb/PgwUMcx6Fer6MJQa+der+5fI7llSUMw6DX6zGZjKnX65SLRTQhcCcTLMumVK6QoLOyvoVupqgJpCEIkoCzoz1ax4cI0vrkKI5JkphMxsbQdcbjMZoQVMplkjjm9FqPFz+4yo33V6YPPKz9oEjj92x210+nhlNqHKRhJJ04Toin3ZI0bdb8PU2g6/f7KKkIg5BESjTDQDctKrUmQreIZXK+2GBBOH4cfp55MzMB38mNudXa5E88fgkUjGyPv/jRl7jaW+Kt5cfz3W3ToJjPYjs5EiUx9BQGRaa16rrSCfwEJ1dh5fJ1srUm0rRZWtsgmy/ieQHuZMLEHTMcDajVqpSLNUzNREPh+hPuP37IMAgxc0WWGlWevbzE5eUqrf6I3/nuG7R6E7RAp9jK4oxTlr/aoyK3fnOLt//UAwInpNqoky3kiKOA0HNpVgt0To+Z/P9Z+/MYy7L8vhP7nLvft+/xYsklMrOysrbuququ3smm1ENSpChSFEkNKQtjD4SxARkzlmDDBgwDA9jGwJgR4LEHxng0hiWNZIra2KQoLk1S7L2ruvY1q7Jyjz3evr+7nuM/zn0vIqu6OUVgbiIzMl7cuO/ed889v/P7/r6/73c6wTUMKvkyJS/HM7s7PH/jKpPBkLfe3+Pbr75NJEz8YoVipY7reqRJkmmwT4iiJdFyjmWaNFsb1Ko14vkCE4lBiiFgNBwQhgGO41Ct14mVpHJaeuRWFB+4uAObV//+PlE9xTINwkXEN775HYaLALmKMmtZy/N3T2UBjkxmdJWtrrLjrAbKGXFLnqvPnk9Ez8tb5iOXrzx4EiMTcBl5c/7rr/we/5e//C84LPX1fh+p867G0DrAn4twj+z70deDJeq734Tf/51HHI6McgX3538R+0s/AY6rr5Nz24odLUTWCXOuh3n1+vm2KlY+1isy17ljsPr9H7eKeHT7xEFYP1wSmSawnGFbAikTwmDJg5MHfPBzE17670MGn5WPLCNKew7Nt3OkhsDNF8kXqwhlaCcfpTQBCEWv3+H44AFCpRTzOSzH4qBc4RuFCr/rFTmqN0mLRURG2jKErnGZpq5LrxbnK6TeTFN2O/s8u/8hfubMYxomaRJzvDzi7t8NsB8v8uzv72AkYj0a3YlB+T0zI51JlEw4OTpgOZ9jojCzGyFUynI6IYlicoUSwvawciXyzS0MN4fM6q9SxlR8h62dKtJYcvODH/Laa2+jIjBUymwyplIqUq6XaWY2jdpjSRIHC5JoifRT9v7qgp3f97j6P+QINiQoKL4vcIZQOnBQShP/lAKZpMRxhCGMdXYbJwnCEISZPq1l29kDpH9JSaUzcWGCYdHa2KJcrjIcjfB9H8/z6PX65PNaxGGxWLC1tUWnc0q5XKHeqHF6csJWe4ter8vg+Yjq/zvhhbuPcXRlBMDF/SZfe/nT1PwKykgY9E8BSaWY5/ruReJQi1TU25sEUvDGex9w++4B5coGcaLIFyq4fpFbdx/Q6R5SreSolPI0G1UajRpRnPD22++x/+CAernC1kaby7uXmS6XvPb2Oxwen1ApVbh2+SLNaoUkijlQJ1jfDvjMu1fhip547cik/X6Bq39YxXoyx2IZgNDa6IZlUm/UmS/muK7OhF3PJZXalk4IrQ3suS6d01OATKHMolCqUajUCGNdMpAywRSS+XjAoHPEcjYmjgPqjTqWabJcBAghKBUKugc1TrA9m6ic8vy/uKDhcz2DYKUmz/3WJZalGGXo5yqOkuxeW0RRpFEQqZhOphTyBQ0GCgPf81kulpimSS6XIwj0GMnl81iOq1XDzs9XrPSAzh66M3DzPOQJI3fOX7v9GT7duYQlTRJDclga8nff+FkiMyEw43XZqd2q4/q6fBQGIYa10ooHw8uTr7WxSy3wytRbW5imiaEUtmnQ73aZDPvkPJtWrchuq8RmOcd4MKDb7bIIE6QwadU3aZTrLOdzHuw9ZDabcXw6IBB5apuXcGKbz/z7a2zcrwBwsjug/d0Kz/zJVSaflziOQ871mEzmvPn+Hu/eeYBUilIhx6duXObG5W2SMOTouMfd+3vMg4jhPMEqVGi0N0lThaEUlkxxUAw6J9oDXEClUiGXL2AKqNgGT+xsEI2HdE86LGYLpFQUcnnKlQqunwME7j0Td2xTvpcDBctmwmO/2eTin1a4/7UuqaMDeLc/4KXX32SpFAoDQ53X5s6yXPFosNOx5yzYGStIEQEYZ1mwDg8fCTnq7CDATz54ikLkrYdGYqR868q7/O//yj/mle07pOKc+MW5rPjH1n3Vo7C0QsF4hPrd34bvfwdWfb2AuXMR75d/DeuZT2tv6HMLhEcH9ll2LSC73vWJrBchHz0nHZBXEP75jPh/Yjj6bPGrWJwc0+2cEgUBt05u89ovdFA/XeIX/uBJ6ke5R37p8rdK2PPsomVKGISajGS5SKHhZB0IUmaTEQ/v3SZczvE9h+lkwng8JldrMLj+JL0vfQnr4sUzdtpq5baSHBSCOBsoAhBSsjHq80TviI0kpD0d8+ThQ77IgP/4jy3+5n+1weFTI1JbYS9NmvfybN4r0TAagKkHp5IkUcCge0wwm0Cq1afCxYzFfEouX8R2/WwQW5hunny9heXn9HUJwclwwNf/1W/xjT/4bV5/4wHBMoclbILZHFNJGuUKjjAwHZvaxmZG2NKfi0ARWTHbXze58Mce+39jSVxSGBHc+AcOhQcmft/CcVxdy81aXrQzVbr+HiRpmpDKBMu2121J5xmJK4nKWr3JdDYDIE1SneE166QyZbFYsLOzzfHxEaZlUCwWODw6pF6v0+12KRaLmJbFhZt1nty/yN3dE0bNBSj4wvs3aH/Tpy4q3LnzITKNtCqZbdHtHOEYKd3OEVtbGzz+1OMoA2azKbPJjGAZcXh4zKXdq1y8fI2XX3mH0WRIteYikyUqifnyFz9HECz44PYdCqUSwhBEYcBnnnuW0XjIu+9/wIWLF8m5HipO8D2P0e0uG9/ycPMe82r24M4V/bePef6Hu+TcHMV8nmC55OjoSLvbVMu4rk0YBnR7XSzLYmtrC9txmM3n9Pt9KtUqlUoFmaZMJ1Ndf67WMQybZquNaTukEoQySOIIIWLu373JbNKDNMYwBHEUkSQxjuuAUownY2zP5vIPGxgHq8z2LHOojHN86oNdFvESwxDk8znCKEApST7vM59PUUrrckdRqMtJrqPVxZRepBpC8zyWy4Uu46CIomgNRZ7lu/I8Kk02gM4e/IzFk4tdfnLvSS6NmuRiB4Xig/oh+cjlJ/eeWC8kTAGNehnf81ktGh0vB4aNcHMUWlt4tSa4OeqNNgW/gEgV0+GQ5XRCFCxoVMvs7uxgpRHPXNum7An6nVOiIGajXsfzXFzHYne7yXIZ8OF+j5PBjFKhRKPRxPN9SmmBnR/U2PlWHRTM2gHLLyguPbhE5Y0CUsbESchkMaM/XxKbFqVqRWeHMuT5py4j04D37++x1xuC7eIVivjFku67NwymkyHzyYgkWCJUSiHv02xukC+WWS7nuJZid7uBCgPG/QHBIiCfz9NstojilJW2TtHPoR5EFB96PPkPdzBiQVxKuf9zPXb+fZFLf1QisaQOKArefvd93r17jxTOMXpXX84MPz4a94T4eGBU54LOeUj24wFOZ9Nb4wafPt49i83Ap48v80s3P88fX3+db155m8hMfqToxiOkLbE+pJ630lQ7H927g/o3vwUfvn/WhmSamE88jfcr/yHmxcvnWM8/vvac7ZBlt49EVB1Tzg3x1ZfzdeA/77A/bvsLZMLnzlGmdDun3Llzm1465LmXNvjlf3KdgysTjnd1TaNy38WZGlz+blkLRKQpwXRKHAa4xRJ+o41TqKKywrzKAmsYLnlw/w4HBw/pdbsUcnla9Rq1SoHL1y5jf+55RLXC+dpDKrWIwbTZ4vULu7xru6w8MZRS7HSO+Pz7r/O5u+9xY9Dji3vwpR8sePrwJrY9AgVPfLPF1R/W2Xi/QDpJsV0f0/FAaOhOJiHjQYf5dIiMl0zGQyzTws0VSGSW1Wdj0TBsPL+AIbSMWYDig5Mxf/aDO+wfzUmRSDUnmHS5urPB5z/7NJutEpYhMGyXSqOJny+s77gzBLsrGe0uOfwZTXKpvWqy9WcetTdsrJmWvrRtaw2jaPk03eCvZKoz3YwFrbI6kO062sVIZiQuITAsiytXr5GmEiUl9VqV+XxOsFzSarU4Pj5muQxob7Y5Pe1w6eIlBr0upjAolUrs7e9RrzaYHozZunCB7z7+HsoCf2Lz3L1rxG/O2NgrcXp0DBLd/+kXeOmNNxFyzqV2g1ajiuuYbG60sG2Tzskh08kQmcaUS3mazQbl6ianvSm3794i7xmUfIeNWpUXPvscwoLbDx8wnExZTGdcvbTDFz/3GcJoycHRAWmSIlLFjcev0fQriCBlKmYs/AAE5Ccus86Eysynea/AYrlkY2OD4XgEQpBKCKIIz/MZDIaZT2+K53kIoNftawKIqRc7vW4XyzTI+z6mYVGtNSlV6khpoDA13Csky8WE6aDLZNBDJhH1ehUDxXIxx7ZNCvk8ySyi0HM0yco018+kIQRJHFPouziphW1Z61rWakUvpcS2TWzbYrFYkKYpnusxn88xDS3gIVM9acs0RaCz/yiOOQMsVzOgsYbg1j97JIvSrz9/fIXassCFcYNCrDOhu9UTIiPBkRaW0lmYVIp8zqVerWAKCykNUsOl2t6hUNOaz83WJhvNBov5lGUYMV+G9AdDbMuiWtUWqrbtMlmG/OE3v8eDwyMc12Gn3eBT1y9QchVpsmT/4IDRZI5h2Dx5bZfdjRpGHJEmMcVbLuGbS1ovlvAmDspS3P3SEZZlIcaKSX/IbDrDtj1816VSbeDm8sRxyklnwouvvM0iCJkHEflyhXKjqTUJkgjtyAaT4YjlYoGwHIq1BqkwSJQBlg2GYjaf8vJb73Dz4T6xaZMvl/ALBSzHRaL9q6NgSTCb4c8tqu8WuPbmRdq3agAcfm3M4OKC/NjDHOhkxUIgU8UPfvga3fGE1DDWScwqoVlD0+LRkucjGd5HSrc6fotHeACPQMTZ11zs8BP3n8RLbLbHdRTw8oXbpIbkf/udX+ZGd4fAeRRxeWQ7h3WrLO1WoxHyj/4d8p/896h/8c/g8GAdEYXjYn/5q/i/9CsYpcrHjnU+IK8ufCVFqTP7FabKut6td83QQ84QgtUhHlmRqk+aB/+FgvA5qCmTpYyjmMKxSXNS5J0v9/nez+yBAc0PPZ79p02q9zya7/qQJsSzMdFyjpPL4RWrKDOHV6hRqDTAdFBKm28pIE4iet0OSEmtXGGjVuHJx69QLOUJ61UePvkk86z+qqQkTVJtw1ep4Vy5xsHlK/QcJztrpaHvJNGetkJPSspUFGYRX/xjqB26fOG3LlHsenjfjYmWMZubF9i5eAXHL2RqKtq0fTrqM+ydIJMYv1BECjAsAwMDBwMLA6lSFvMZtl+kUGoiDYtUGUhpMOj1OD49ZNAfsNWs81f/yk/x7Kcf47PPPYbvaPhHpmnWhqHN2QUgDcn9X10QNhQigcu/aeNNLBo/sDGnRjaOVnf+UV/LJI5Jk5gkirAM3SpjGLr1RUp5BksJg3xBSyPm83mSJCFYLmg26gRhyGK5YHNzi+lshuM4jEZD5rMZO1vbnJ6csL29Tef0lI2NFnGSMKjNuHPlFBRcOtpAvbbEPlXs3qszGYwRQlAuFPjyl79IY2OLP/mT7xPM5+xsNrFQTEcTHrt6jXypwIe37xAnMbVaFSEhWIbs7Oxy/+EpL7/+Go89dhVTgG0I2u0mUkpeeeU1LeTvuhRzOVq1Okkc8cabr6OQFHyfarmEY5scTg4Z2Tr7b83K5HM5wiCkf9QlSRJyhTy+7xNHEaPhAJlK6vU6xWKBVEpOTztIpdjY3ESYBsvlksl0Qq1WpV6rIlRKsJhj27pvXQmDRnsL2/N1b6dh6PGpJB9+cJNwOQOVaF/nJMIwBL7vkaYpQRCAlLjrMS6wLBMpE5aLOcJAn2usLfwK+dxavtL1XGazKYYBpmUQRgF+PkcYh0RxRC7bFyFwHJf5bKkXZOs54M/bVjC1ZtcLBY2ghKkMipHPzqQOAg4LA8bu4tGMxIB83qder2F5BfxSDa/UwPCLlKpNCvkyru3hOi6DQY9u9wTDhEIxT7PVIJfzmc9Duv0R40VEdxZTbbbYaVZIghmzyQTbtLi/t8/JeIJbLFIoeNSqNl/5wpMk8xGDXo/S6x65kcuVyQ7NhxUADp/ocpo/JU2XhMsZFT/PbrOOJVNSqcjlbGoVj4OTY24ddEktF8cvYDo+qWGSczyi8YzpsM9iNsUQJm6+QKnZwCuUiCItwalJkpLT7pBxAmapTKHRYBknpEojfjnXZdTvMZmOWEZLconH1pt1KlGFJ75xGZEKwkbK/V8aEguptcSl0kpiEmbDOd968RWmMkEZAonSJiYZvLuug67nhI+kfh8pN6zG35mQxUdgXnVWWf7SgyfYnFb5X/3wZ6guC0Rmwn/3+W9wq3HA9qROaelrx6aPItDqI68phTo6QP3Ov4LXX9FGDEmy/rFRKOL9wl/H+cpXwXbOTnWdhYv19+JcHfO8aMfZtfFIQD0bs+eehewYaoXLZ0saqT5yIT9m+wu0KBnrMzo7EUWqJDcLe/zOf/QhYS7FG5v85P9jm0Lf4co3y7hLQRzMCRYzHNfBK5RQhoVtOli2j1uoUm1tYroeKbq/TKEzAylTBr0eBhLLEIxmUz64c5ehZXP83PP025uEqdTG9n6OSaOFYZu0treZ7F4jte31+St0piqz/0eeZhj/h/8t/Kd/r07rXg73UJF7KaZaqZDPF/BzBdrbF3Swze6IUglpmDWdZytAQxhYloltCEwk4XyGlJJ8sYFdaODV23qhgYaHR4MJ89GYn/7al9ncKjMZH/DaKy+jUoltGEzHYy3g77hZdiVYbkv2fyUBAaVbBtt/7GBi0HrJxZqR1c50RmtYFoZlZzKj+urTOMEQBnk/p72C04Qka01SCu1dK6DVbqMQpGmCbVksl0tkKsnn8gwHI2q1Gp7nMhgO2draot/r4/k+w8GAfM6n3mhw2ulSrVR5//I+0w3NNv3UG5d48N49rly8SnxrCioCFBvtLSq+z3NPP0O+0uLW3UNef/1V2q0KSbSgtVHnytVLWK5NEEYcHBzqWqlKuXJll08/+wIPD3rcunufOE042DvgQnuLL37us1iGyXS+ZDybM53M2Kg3+ckvfgHbNkhUjG0JomDO1mab+pUmy4JeiZd6PmmacvHiRQaDPo7jIFNJmqbUajXGo/HaCUxJSaFQoN/vk0qpM0rHJpEpvV4P0zDwPRfbsuj3upiGSa5QwLRdyrUahapGg0yh3XUMQxAs5synIwa9Dkol1Os13YM6GVMuFbFti/lsThiE69GtXcksCoUCURiiVEq1WkJJXT7J531AYRpmVsM+k/mTUmrTeN8HYZCkCpRuHykUiiyX0Vqs4axOtvINPqv96XLGGUatVrA0ujXpen8LgOPiiLE7P1/jAiWxbINCqUCp1qbc3MQr1ijXm1TrdbAtxssF/dGYcBlScG2evXEV3yIr+8DxyQnDwYhyPk8h51EvO3z5M08RLpe8d+eAo94U03LY2Wry7OOX8Q2D/aMOb75zk/FoSBzHXJQ7lHIVjIXJ1Ve2QcGkuWDv2gm26WHZLs1qiS9/5nGubLcI51M6Jyf0TjtEUUK13qLZ2CCX84nTEElCEs+ZTccsF1Mcz6HcrBMJSaJ0hpq3XEa9U2ajAUmQYFo58sUqrp/Hth0MYRIuAsLZnGixwEARpTHFepWa2+DCuy2SRcS1l7ap7hVAwN4vTBg3As0DSHXwEFJipPD+nXu8fvMmWjohK+mtkyx9T1d8pHUIXfu/n7tn5+bWRxjEqx7gs4OgUGzNajx3dIWnTy/xH7/6NezU4rQw4v/+E/+WgTd9hGPwsS2Dn4WU8MFNDT3vPeA8dV8Igbm5jfdrfwvrqWcQ5jlVZnUuSRGr7PZH4O6r3bNsd539rsdzBtmvlxY/+jP5yOH+3O0TB2HDMLFMLeO3/pQMiEuSH/6f5gx3Y0QCX/jXm9x4pYUVGlz6XpF4MWc5nWDaLrlSEwwtWLCy8DItE9PLU25t4WSkHwMy6T7FIpjxyhtv8p0fvsob795mHqSYpss0gT8JJd/Nlzi5dJXDpz9NUqloSzrTIty5SPezn2Ov0eQVy+YVx+NNy+b7ps2xI4ldDT0UxoKvfGtJcTLE+dMJ1WmBSrWOaekAbto21VYbr1g5Y7UKSJOY+XgAUYSt9PnGpITRkmg6pZgvIhwDaRrYXol8dQMsl0TooJeEMT/8/rd5/703+P4PXqczTFHKIAlmTEd9LcdnOwjTwXRdDn4lZbmjEClc/FcWbgeUVBROTMw0I3JlJgCW6WBZNqblIBXZ6lLSalS5euUiSRSRhCFIiVBiPXFatoPr5nEdj8lkiuu5bLQ36A8GlEu67nV8dEijVmM+HVOrVbEci8lkwvbO9lqs49YHt9i5tM17nz9C2eBPbR5/e4PlYkKjUeVw/wBUimUIrl67BEZKuFyQSkVte4eHx13efec1Ll9oUSvmcG0LpRLyhSJ7B8e8e+smwjLwPIdc3scvlJgFKd/89nfZ3ztke6NFOWfTalTJ+Xleevk13n3/fRr1Kr5rcenSNpZp0O8dU6v6NJt1nA2PqKiLGNaeJAljqpUSjXoVkPR6fabzMfVGg3yhgJSK4WDIeDCiWi6x0ahr+c7RCIVga1sTh6IwYr5YUqvVKVeqIND+trZLvdEGw2Fj6yKm66MMMIXCFAlptOTehzeJlwud9bouoE0OLMvGskySNFo/+lImpGmE57sYAuJgiWeaWEASheQ9D9PQBgeu44ESSCmxLJPlckaaxPiuy2g4wHVthAGL5Qzfc+kMhuvpJT3HWl1NPD+uGeORlg0Jjw3aCKXlK/eL/fVkqHfWmfPmZiMTwmnQ3twijSVRmpBIyf7hPqlMKZSKFIp5djbK3Njd4fT0hMFwjBCwuVHjhaeuUzQNptOYd27doT+eEaTQaLXJuR6tUp4ndqpcaBS48+CUl28eEhguxXIZx/FwvRzz+ZzG9/I4EwtlK05/dkyl2cD2fRbRktv37pD3DWbDHstFoE1aKlUcQ5FzBKW8x3Q4YDroM18uteRusUauVMb2PFSiSJKY+XJGGAZEYUiqUgq1MqValTCIEFIgJDimwXTUZzYZEsYBbs7HcX0cx0ekJo1JjXixRNwPufxvayBhsRWx//MTUiVxLANklvGaYEjFy6+8yclAq2lpR7DVzH6W8a58nPW9XBGT1CM3+MfleudtDVf/9RKbn7j/FCj49bd/gp+69zQCeG3nLv/4s39GaMZZ1vmR8bRa50UR8sXvoX7vt2E0PHvd9bCf/hTOV7+G92u/gXnhYrYohFVcX2W6Z0zuR9/jkVCatbWuuDSg1i26a0lNtfpMNG/nkXrxX3D7C7Kj9QXYlq1XWAa8/5/E7P+chgI2v2Vy+b+MEVFI/cSm8nbKdDLEMA1K1RqW4yAEpBId0ITUZFxD60Vbhj4lhQVKiwooFJPlklfeeo/7Dw9AWERxwoMHDxnNF6S7Vzm6cJlhoaRlF9GrFMuxURcu0H38Bm95Pm9ZNq/YDm9XLV75qkJlV+4uTcqzBV+49R6/9N6Ya34RYRrEqe63VRJMy6WatRWsoF5DSFQcMBv2iIOZltOTMfNJH9+1uLK9xTOPXcI1U0xhYLglCvVNRBbcA2Xy5ocn/Na//jb37k/AcInikMGgp2tHhsh6kgVJS7D3GwnKBP9QcOHf2JCSef6mmtuYpgipsC1Hn6Mw9ALH0ipJAJ1ej/fev5llwHpVJ2Wa+fcaPPHkU/QHA4Qw8LN+V9Aw9XA45PKlS/T6ffxcDtf1uXfnHtubbcbjPltbbUbjqYa7bZtJc8m96x1QcPV0i43DIrZls1zMGfR7CNDtU0GIaxqkaYKQCU8+eYNLu1d45fUPmE/mlFwbV2ji3rXHHqNWrdPp9LT3skqQywW+ZfATX/wclmVx2u9QrhexLEESzPjJr7xAs1nj1od3cXM+AKP+gOef/TSdXpdXX3+TQqnMsLRAGhoqSe4sKBVLSCEJk5BiucRiudA9t0KQyhTXt5nNpgRhsIa0PNfj9PSUKAzxXBfXdUmShG63p52PfB/DMDg9PdEwcaGAYZqUK1UKxTKGYUPWs2kA89mE6XjI6ckBji2oV6vMZzOiaEmpVKBQKGT3R+D7PqZpMhmNcBybarXKYDBACCiXS4xGunZdKZeZzaaYpv7/cqGlHD3PRaoU29L1Yg1j51ksFownk7NJOJvRzhJgYz2DnZ+jlZIZOTDLkhRcGjXxV+SsxtH5qUVn2kpRKRdwXRffz2MYJovFks5Jh3geUHBcWq0mlVqd8XTBu7f2+OD2AbPxhGYlz1a9hKkSbDPlyWuXuXv/gJsPukjbp1opk/ddcr5DpzfkWz94g9feu80iFdQ32uxevEgShCQqJU4jZuMRubcVjdsFUHD09IBFa0a7VmTYH/DBnWPeunkfhEGr1aBUqVIql0FG1Eo+s+GEeJkQLgLy+SIb7R3CRGFgYAKObdE/OWE+nRImMY6Xw/fLuE4Bx3KxLZM4XLKcT1kudG+6ElCpNylXatiGRbhcopQiTSOSOGDU67LzbyvkOy7KhAd/Y8iiGK0DhJQpiUywLJNgvuCP/uzbTJcxmOb6vgotrXUOWtWvn/9OfeQn520F1aODIJsrzxK3z+9fpxB7FCKP/+z7f5VLwxapkPzWp7/Ld3bfy1S9fkRGOZsif/93Ud/6UwjD9Zub29t4v/rreL/4Kzg/+ZcwMzni86D5I+Iy56H2bK91XfvcIF6bS2TXtfrZ+rfXH0L2Do9Az+KRZ+R/bPsLiHXItfzdzoUdLly8RP8vGdz8TyOkDbkDwfP/uQ37C473HuC9MSPqagm1UqWaqUplqwo0ESORqT55mbCcTpjPFniFMqVGG0yXte6KAVGacHh0xL3793iwt8fJ6Slb2zuUylVSBFGcslxqn0fXMnEsbev14d27bLQ3uHp1F2EY7P9cwjf/riSxwQzBCBRKplhxzPU04SvH+7Qmw+x6pV4JprqHMk5S3FwRw7RBKQxSZLJk3O8wnwyI5lOsJOHT1x/jl37uL/EL/8FP8sLTj2OKBIWGn6SyMFyPxIJACMaRYu/4hEG/SxpHzGdzrWylfb8xTMHBz4RMHktBwYWv2+T2MoUtFDKNUZnGtCZHCAxDrPv8DFOLt8ts8ZMkKiPo2FmtL5skTRulTGzbJU5iWq0WUkmm0ynNZpNOt0sUxWxtbnJycsL29g6j4YBapYZje+wfHJHzfZI0ZnNzg3d27jFr6ofl8x8+zundY7Y2t7l7+zYyjTUUZrl6cXX7NvVanovbbcquy7ULlygUa+wfdrl58x222xXazTI5z2Zre4Oc5xIEAf3BEQXP4Mr2JvVKgRc++xwYFt976SWWwQzXEVRKPs88+SSu5/L2u+9zeNRjOpnSbFa5evU6UQQPH+xxktcLDjsxcQcG82XI4XGXME5oNmvs7GxiCoPRYEQUJNRrTVobWvx9PJkwnWY9wpUywXLJbDJFCMH29jZKKhbzBZPJlFKpTLFQIo4i5rMZjuPSaG5gWi4bm9sI00EhdA+iTAmDOR9+8A5JvCRNInI5D0Mooig4g4aVzkYtw8RzXKIg1Isc2yJJ9QI5TVLSRHMiBAopEzxPcwMAXMfRfeJCYWZchJyfYzKZsFiGGQqks1WhVqQU/RxLeVaeWk9Iq3n4rBDHhXGdfEbOulU/RKpzvrCZFoDv+9SrZWaTKcPRiPl8QZwkbGxv4mXMace0GAwGPDjuMo9j/HyenY0aP/XCM8g44vUPHvC9N24SKcHG9jatZkP3QKeKJJHcunfIg36AVWrh+Xlyrs1nn9rlQqNAv3fCeDzERLDp1njunV0Apo05+48dYSrFYrZkGkncSp1SrUEYxQgMbMOg2x3y6hs3Gc1nOK5N3i9SKlU0/duAYDFnMZ0SBAtkmmAaBtVGk0KlRhTECKmwDIFrmQwHXSaTIWmaUC5XMS0Hw7SQCHK5HIv5jOlowGw6JEkDTFtwKdrmye9f0jD6tZCDvzQmkSmmqS08pZRk+DTHJx1efec9QqWtNx8pc3K2qPqx+e6aBCo/EpQfPc5qJABUgjxbkzpKKXYHG/xn3/8F8pHL3An5f37l37FX7WaHFuuAqfo95L/8Ta18lWq0ShgG1vUn8P76r2HuXgPLOvcufORdz5+yWJ36WVuryJI3tSqxkJXpzhYUajXgV1/PXahau2Os6zB/oe0v5KIkANuyNBTyRIW3/wtJ0AQzgE//32zqb1kYCmQUMe8OSKOQSqmC75eQGOveWWHoh12lClJFuJgyHQ2xnQKF6gZOoUapuYnh+mtlPqEUaZpydHTE/t5DSuUiW9ubIDJ029BMZMs08G0LS8DNd99DCJMbN57k6tVrtL90mXf/XsIbPwVf/48gCAVJmhG7hF6xFcKAZw8f4kYRqUxBSdIkYTIeYdsO9cYGzdYmluNldWKJSkMmgw7BaMALTzzOX/35r1Gvl+iePmR/7wEChaFiwulIw5DtHfLlmh7AUrcOnR4fc3x0RJpqjWClNFwVFRLu/voSaYM7EOz+locptUKWHiT696XUCmaGMM5JemrFHIWGmoVhkkodhMMgXNt/KSGo1zeYTOfkcnmCMOTw6IjNrS2EYTCfz6nXa/QHPfKFAt2uflAuXLrIg/0DtrYucHJwzJXdyxwc7lOsFXnxiZsoB7yZzfU3NhgOh9TrNcbDfmY2Do7rYPsFXn37Fr/3u7/Ps8/cIOcamCb4rsOnnn2W496Af/M7/5Yb169RyLskUahh8s0Wr771Dt/5wffZvXIxywJnPP/M01SKFf7kj79JsVjCc10EKdubLTY3t/juD37IIogRhp7MSpUqxVKee+IA0EId+alNzvc5PTnVrlE5L4MZHZbzBd1uB9fT2uKO6xIEId1uD9d1cF0X13XonHaYz2a4rotlawZ6r9tFGALP8zAti85pBwMol8qYpkOt0cbPlyCrZelxkxIsZszGI44P93EcC9d1WCwWzOez9TMfBgFpHFOvVhHAeDKmWCyiFAz6fRxb99IPBwNcx9FoxXhEIZ9DyZTlfIbnOszn8yxAO8xmM1zHRSqtZ75KjrTM4BlzdBV4V3OWlHI9cZ/Bdor2rEx1qdXT9kt95k6wrvVlqQY516ZaLtDv9ZjNZpTKFXL5HI5rIYTBaDik1+2RJDG1cpGnr+9QcAWT6YLD41MGwxGDaYBTquLl8viOi+vazOYjDg6PGIzmmmnd3ubyVovNgouKI1556x36gwHBbE4hl2djYxMMxZPvbeAvbKSteO+zD7l/cIjlF/DyedxcDtvLs1hEzGYz+r0BYaKYJSl+tUq52QRToFRKqhIME8bDAfOZbhUrlkr6ubQsTNPCcU2m0wHDQYfJeIiSEsd2aDY3KBQrGjmKIkASxSFxFDCfjJFJQrVWo1pvEAcpn/qTXXJTF+ko7v/qkDCnkx1hgFQpUqaYpgUSfvjaG9w9ONRSvnLdrHju30fVos7K+I8GqI+1FbG+petjrMaBkGfj6C/dfYZffftLmMrgbu2E/+ZLv8/cCc+VKRTye9+Gg731+wnbwX7hC3i/9Dcw6o2PLR7OvhHnzl+tz2kd3M+d+yr/lutrejT7X+8vzzJluWJNn99nvWj55JH4L9SiZJq6BSZxFN/4nz/k8Mk5ADd+t8Duv3R0uqULVIjMXjAKAlTGwNVuHgamEBhCF/+TYMGk38MwLEq1Jpg2yjSxvDzl5hZuoaJ/j7ObgpIEywXT6UT/JOuH9VyHYj6HYRrcv3eP2XjCU4/dwLUcJJIP/nbI4JmUZQ5+0LT5PeHzbxyP79sui4xkIlC4cYy/WKKkIk1CZpMBaRJTrzfI5fIUyzXa25fw8mXkqtFdSZAx1VIe17e4eetd/t0ff4vOcKYzj2iBjGKKpSqmVaBY2aRU38Q0bESqoaJlGAAKmWjrNWEIjr8Y0n9OE4Z2/tildVDAsh1My1ortkglMUwjGxQqWzxoUwSlFIZhYjuuNjsXGp5WqyxEGCgMCqUynp8jjLQBgAKm0ym2bTMcDqnVarieR7fbYXt7h9PTDr5f4MHDuzSaFYShSOIE1/E5LY7Ye2oECi7vNQl/OMR1HfI5j9FgAEphGlqV6dKVy1RaLXqTGS+99DK2EMxmExqNOtvbWzx242n604hX33ifQXdAtAxw3RwXLlxhc2uXg9MR7995SJRKOr0O21ttPvfZ58kXq3xw6yFHR6cM+x0qxQJXdi9RKOcZThbsHZwymUyp1apcu7qLvKzbfdzYpjTPceHCNjtbbZJwSc41yHuCajnHxQsbpGnAcjlbB6mtrW2klMwXC8IwpF6rU6/XCcNQOxcJ2NzcxDANojAiCALKpTLVapUk1WL8rutTrTawXZ+t7QsIw8oW3BoiTOOIe7dvEQULlJRUyhWcjHgoQFtRGoZ2u3Js8rkc89kMwxCUSiWmsxmmYZDL+0ymY4QhKBVLLBcLTMOkWqmwXMwxhM6K01SL1cRRlJlGJB+baD8+z2STZJZZrFCZ1aRnS4trgzYIOC6MGHrzR2qHAIYhaNZLWIbBzvY2jWaTJIqJltrMvtc7wfdtmrUSecck75jcuLbLg8NjXnrnQxYJVKsVqtUytmUxXywZjsaEoW5B2mnX2awVMdOQasHm2Sevcnp8zJ3DY4ZhjJ8vUC2XadaLuBbkbrk0buVBwemzE9SNHMVGgziRqFR3MiRpzEnvlFmwxC8W8HI5HNdDCQPLcZhNJ0xHU5azOalMcByXWq1JrlgmzJ51KWOSJGQ6G7IM5tiOTaPRxDAshDAxTINCIc9kMmDU77CcjDGUxLRMaq0W+WKZfKFEnCSU7vpc/aFWUxs8u+T083OSVGLZ2kQCqb3EBYIkjPj2915kMJuvu1NWwSVjn36kDHzuG3E+WJ9/+eNh+2N13uxbJ7X4O6/+NM8dXgHgTx97i99++kUkKSpNUQ/uwb07Z/Vfx8X9mZ/H/drPIrwcnMuYV9t58qCxIs9yzp4ROB+GdUZ8Hpo+q++eV+bS6Hom28mqZs4jf9eKWR/9rP6c7ZOzoy0zy5rgxb/c5Yc/fYQSsHO7wK/89tNcblzAsk2UkGssHSVZLKb0u8ek8RLT0OHUyN5YyJjxsANSUak2MW1Hs/WkRGBgWD7Fept8pYHMXFNWK+f5fMaHH9yk1zlFoLL2FK2i1e31ODw44PGrV9ms1yi4Dv3HIr79c3soA+oHHp/+zRpTKRgaJu+bNu9k8nxKSQwlef7oPi8c3uOx7jFbgy5XPJdSoYBlmZiWje3mqDU38QtllDAARaJSvvXyD/iH/90/4hv//iWGywRpOAgF4XyGm8/j5HJ6kAsLt1il2NoAy8h61HRwjKJIuyh5kju/sSD1wJ4Krv1mjmSWgGFgWha245xbuengG68tJiVJFJEmKZZlYZgmCLGWLJQyzfAYk1p9A4TeZzmfI6Wk3W5r8Y1CAd/3OD4+plGvM5lOKFcq2T2Ys7nRptfr0Wy3uHXnQza32ty+fsJiQ8Ogz75zmdPbx1y7dpU7925nMI/E9BwS4M7d+0znU9xckXuHA37w4svMpwMeu3oJ0zIoV0oUyxWixOC99++wt7dPrVrFVIKiXyJfrHDSH/Ht779Ip9uj2axjWwaFXI5ytcoPfvgK77z7ARvNFpYBnueQL+b44NaHvP3Ou1SqZSIVsdzQMJeaSsyuhkV918exHO7duUcSh1TLRUrFHLZlspgtODjYx7R0rdf3fcJgyeHhgc6GHRfLtDg5OWE6neJkPdlRFHJ0dIQQkMvlMAyDTqeDUopcPo9p2ZSqtUw5Smutk+kLx+GCblfXEQ3DwPNWCkS6Juy4LsPhECkVvusxnUyRqcQ0TZaLBXES42b63zJN8TyX6XRKEkVUq1WWy8U5NreJMLS++HK5JAiCNSt03af5I1b7a0btai46t4uBweP9LVDQzU/oZT7DK2auQCNeO5sb2KaBY2sv5Nl0yknnFJlGVAoel9p1/vIXn4c05ubdfX745nssgpBme5Nqs02iBEJYYAgeHD5kMp1SyhcpFQpsNit8+TNPEcwmfHD/gO++9i6zRUS1XOXyzgUKloVDStE1qBZyHN7q0vpmBYB5K+T0+SmGaSIMk+l0zGzUR2YqdPVWk3Kljm3p7NoWChUnjAZDlksNT9eaDTBNfQzTxHJtRsM+09GAKFxgGAa5fJ5Go0GhWMR2HMJoiUwjFvMxSRSwmE8RSJqNJpWKJnFpNNAi53kMDnts/dMC1twg9RX3/uaQ0E1JMxMYJQVGJkRkCkHnpMMPXnudSN+MTMCHMw6AeDSgrMwJVtlt9mvryKU++ldpj+CPeQGjg1Z9WeTvf/cXac3KxEbK1y/8Macv/WvkP/qHqH/9WzCdsELLrd2rOM99BmFZ60C+ym7XHQtKnQu02UJWrEopZEIlnHO8P8tcP5rVn5G5RIa6npOpXD0BSkPSitW+5xLGT7B9cnZ0RsC4/ZTNv/q7HSIvJTe1+Ov/n8fYHle5sHOBaq2imcOCzINUt+yk0Yxh54B4PsZUumVCxTHz0YA0jilW9KSjVxkZoUMpDMMCw8YvlLAdbfUlV9mBgDiOODjY5+T4EEPojLDb1U48G80mVy5f4NqVHW58+irf+Ot36DeWmKngp75+md35FsLQbG8lBPdNiyWaMaqkpBgF7I4HPNs94eeCOT8/6XG9d5KZ3meiLMKkWCxjmKY2phAms0hy56jD4XGfYBZjIIjDBUkSky+UtFqNuaJ3mZh+HsPPQaapvRo4cRjReSrg+Cc0A7b1XYviyyoTaNB7WaZ1JiWXjQYpE5JEKy0lcYxlmtoCDjQ6oUcsZ29mcunyVWaLBZZpUqvV6HW6xHGM57qMhkPaG21GwxGWbeN5PkfHB7Q2GkzGAy7uXOTo8JRqpUa/36O52eDN5x6iHPAXDi/ce4wkjimWihwe7aNIEcLEtnxkHBMu5xwfn7CztcMTzzzNe/uHvPjiq3iui2ULRqM+zXqVF154HsM2Oen1cF0L3zMJggXXr17hs88/y3g8YzAYE4ZL0jhkNh7wE1/+PLtXH+PuvUPdumVIRsMeTz31ODs7m0ynM6azBZGnWORjEGAOFXKYMlssGE/HlMp1qtVNfvDiGwQh2LaH4zhcvLiT1VchCkMMw9BmEElEFIeEYYDt2NRqVaIwYLnQWVCz1cSyDMIgYLFckMvl8TyP5WLBfDbDth1qtSZersTOpStZa5uuu5GmjId9Dg8fsljOdbaaPewyq/u1NlpEkc62PccFpRdLjqsFPqbTCZ7n4fs+JycnOI6D73uMRyPKxRJCwHK5oFIps5jNtae26xMnySPw2yoQ/+jt3BR4HipUcHXYzuQrU27XTrKfqPUfgSLnO+Qcl273hH6/TxIHFHMOT167QCPvI6OUwWDEyWmHk94Uy9E93IVCnnzeZT6fcHpyzHQ6RaWK7c0WT167iKMSZvOAO3uH9McTDjtDFqlBvlymmPO5tFHmK88+hp1G3Lpzn/fv7xELeOKDq7hzG2lL7n7ugDBaECchg1EPFUc0KxUKfm6NLBVyeSajAePRIAuYCjfnUarWcLyctqYMdWafRgHRck4ahRT8PBvNNkIJnQEbBrmcx2jUp987ZbmYYRkWtu3SaG3geT6FXIE4CJFJymIxYz6fEYUBhdds2q9WADj9iTnDp0Pda2za6Nq+wsisMi3D4u13b/LOh3dI0InWKus7E+EAPhLc9C6r+3wWgCXnJrKP/sJHthV/4NMnl/lPfvjTPPG2xd/5P06xvvci6dFDWC7Oxk+xhP25L2iK9/rc1quEM7hanH/Tjw1DXXpUj752/lp+1GJhLVKTJaKI1WhdtWJ95BrVjz7Oj9o+cRAeVWrcfnyTf/APFMeXYgwp+Nnf3uWpt5sIoetOg/4IL5fP9I9NHW3QGsmGjFmMBiwmA2QSaiLTcoGfK+Hmy6iMoasQKEOLaEuVgEoIZnOSKCZfrODni0hxRqRP04STkxNu3fqA0XTCh7du4ZsOzzzxJFevXWbzQou3njziO599CMDu+xWe/YMm3U6fXL7ARnsTwzSZCnjTsgjRddpVxobSgveulOyMethRqLNILQzNfDZDYFIs18C00KR27X866Z8SjIdMB2OK+RK26SKkQMkUjBQhUlQSEIcRpuUCJirN6icO3PmNJUlB19yv/jMfP3HX0L4QBkmk5QZtSz9YegTpCTtJYhACy7J1HSMbSCvWKtkAdt0cQaANw8MwIJfL4edyGSGrwWg0JIljGo0Gp6enbG9rYY5KqcJ8MWcwGmBZYAnYbLbZM0/Yf2YECm4cbyPeCcjl8nS6pwwGA4ysn9WwdU0qDmMEgt6gz3Z7g93LuwSpyZ996/v0u30Wsxm1ag3Htrm2u4ttmRwenTKaTBiNR7QaDZrVMld3L5MkirfffB0ZzqmWiriuzY0bj5Ev5nnrnTcYDI4oFlxc26VWqeH7eU5O+rx3eJuRqeur5YGPZZgcn5xyeHqMm8uRL1fx8iWGoym379zGsk1836OQz6Ok4ujwEClT8oU8ruuyWCw4PjmmkM/h+56uV08mzOdzcpkOd5zEdDodTNPE81yEUHS7p6RpimU7IMxMK1uXV1BaJtIwIAoX7O8/YDIZr9fxURQRZeIcQmhVJaUkvufpHnB15oQTxzG5XC57flIs0yRNY8IwwDQNbW040S0/MmM4J7HkfA/wqgXk/DTzqBPOo0F6lY1cmNYpZhrCHzQOs3F5fi9FznOpVMp0Tk4QKqVZreA7JtWyz+7FDY46p3z39XeYhgmtjQ3am21s0yKOIxaLOZPRmNl0Qq2co5R38SyD7WaJq9tNTo6PuXn3AQmCcqnExa0mNy5vYsuYTueUvaND7jzcYxIk+NUWbq5A9bBI604FFOw/ecqxfUIcJliWQ6NZ5/KlC9QqZYJghkwjUClBGDCeTbF8j0a7jUy1OhrCxHM9Br0O02GfOFhgmQbFQp56rUHOy2GZFlEcMp9PGY4GyCQhnC/xbI9Gq00+XyQKYgzDwrItbNuic3LEqN8lWC6xLYu88nnuTx/DjAySguTerw1IbUhShRRCk/SytDeREpVKvvvDV+iMJzqWGecWW9m9XRscZOSldajLSnlnBgyPZsHrIZFlwz8yI04Vv/z1Gv/gf5Hj+e9BSsrC1loCAjC3dvB+7Tewdq+cHf38ouB88ONsqIrzY1BkvTNZt8iPCpFiFdCzMbyuF58fzupjw3udEa/eZw3nf4LtEwfhO08/xf/v7xu89RVdB/7UK01++t/t4iiDyXDAw/v3sW2XzZ3LbO5cptpooUxjXSYWADIhXk6Z9k+IFjNs18ctlDT5Si8i9cCQilQmKJkQLmbMJiMcN0e5vklz6zLFWjODgMmSwJTBoM9bb77Ocj7j+Wee4skbV2lsNZjmAv7r5/+MqRPiLU3+yr+8wvROjyRKaG9dpLl9kc3Lu5hejpu2zx+6Od6ybE6EYKI0DG+bGekrSbDiiCSNSdMYggViNqVRqlKtNak1NzHdjAWuUpSKGA1OQaUUS2Uc28LKnKCESrENxXI6RKgE07awbBcMkySVTB6THP28FhSpvWGx85KvB4+hjTOUTJAq0dZvAt3XnMlknq0I0RNsZhAfZ7aBqwcnFQbbFy8zmy9wXBspJYeHh7SaTWzLZDKZ0mg26fa61Bt1Op0uSSKp1mr0en3a7S0ODg65fPky9x/eo1Kr8L36WyxbGor+7PvXOHr/gM32Fsf7hxhJhnBYWnfZMEDFMZZtM1vOuXf/PjKKuXb9GrGS/Nl3vsd7t+7i5wpEQUQYBGxvtmnUy9y8eVP7PDfrGAaMRwN2r16mP53z9T/4U3IlrYQVLRdstTd4/Mmn+d6Lr7JcJuTzeWbzKb7n0m41uT/cZ+rqFXfh2GJrY4N8ocB4OEIqCNOEZRCytd2i1+9lfr0Gs+mczXabOAp1m0iSkEpJu71BEsdIpQjDGCEMajVdI46SGKkkrVYL27YJgoA4ScgXi5TKFaIoYjqZ4Pke9UYd18uxfeGyzogNA4HElAmzUY9e53j90JdLZfJejtFgBEqTvUaDEXEU0ajXSVNNxisWiyipmE1nlAoF4ihkGQT4fp7pbE4UJRTLZQbDEUoIXN8njmMm87lGqbJndZ1JrP/5yIQjzsPVqwIb7EzrFEPdKnandkJsZmxXJUAZSAMsW1AuubiWy9XtNj/52U9hJgnv3z/k1Xfu0ulPqDc3qLc2UIbAFBaGMNnbP+KkP0RYNvVKhSd2L/LC47uoMOC1d97nzt4+o/GQaqXCxZ0LCJnQruV49vGLJLM5H9zZ5627h6R2jmKlgecX8fJ5VD/h4g+0/+yiEdL/zJit9gbNZgs3l6MzHIJpMJvNGHQ7dDodDMvG9wuUSmUM28U2HZIoYrmcEwZLVBKh0pBytUytuUGU6FnSsmwc2+H4+JBev0sYBNi2g+vlKVfrOLZDuVBmuYxI0oTRZMRiMSMMFiSJvnftzS0cx2PjxTIbH1ZBwNHPTpleCkiTBNM0UIY2zpFpDFlQGo+n/PF3vk8gs5KDodCyvcZZ0FkHn3PFiHPw9Pql7O86N1hp+uoUkRWzeiX4ol57Bfdf/y7b9yVWque0TjPi9udyOF/5Kv6v/jrWxUsaYV3B5Zzhy5qDtWolkuuT0PXgVaA+F1QNMkeps5NU536+vqZVVp2NZ6mynmqhr2nVI5y5IqOEOCfs9D8xHP3Bl0751q/sI03FxkmOX/+n18nPTCbTKfdu38dQJptb29i2iyFsarUGG+1NTNvWxCqlBSWESrSFm5I4lq3Z1GlKnCawwvWzS0rCgNmwj2EaFCtVEJrMs9HeodHMDLzXt1yzmFOl6Pf7BNMJRprwzy+9zEtbD0DBsz/YYONPDXr9Hq1Wi1KxjLBsqo0Wu9cewysUODUEL9sWf+C4/JHrcU8ILFMzjt0k5tNHD6nNJlwZ9/na0X1+LZjyc9M+u0lIuVik2dokny9mg1aiSEiSkOGgBzLGyeQCDdMhmi8JJnMc0wSVYhpaflA4gvt/KyKqKYwQLv8PFmkvzAaKFjlRSpIqvapNsi5809TsaCVl1qguMsWrFJmmWS04k6lUBpbtksvnKZaLdDodisUi+XyBbq9LuVRmPBpRKpbwczl6vR4brRad0w61Wo17D+5z4cIFFoslxVKJMIoQnsG7LxxqKHpu0/5WjvF4ys6FbSajIUJpPWLbtjEQLBdT0jTBtCziNOXWndvcu3uP7a1tXnjhc5iWw3wR0hsMiZKEg6MDtrY2efqJx6mUikRxzOHpCVGqmE7nXLiwzQuf+xKRtLj78JDD4w4nJycUi3muXNnl4u5j7B10uH//IShJ3vfZ2dqhvFsnKuoH1z5Q1GpVttsbOJZFHCeMhiMEJuVShXqtQRRFHB0fEYVLSsUCrWYdgaLf6yIllMpl8rk8URTT6XYwTQvX9TANk/F4xHgyxvW0Glocx7qP2DCwbb0QGvQ1YmBbNsIwKZQqeoFmWiRS6w+L1UIvG/6u4+D7PlJqX2hhGpiOqctDaYrrOuRyPkmc4Pu6bzYKQxzHodFoMl8sQBg4rkcQZFKWUUSSpOTzeQajUZYlrKat1aSaZcRrCPBsKv645CGUAp/taQ0EnBRGjLz56oDridJAsdVusTKh7/f7jMYT9o+6JNjk80UqpQrlUpXJdE6vP2I6nTNbLKnVG7RabaIkZTKZUPQ8jk5O2etOGIWCXLHGdrPK5z99Hc8S9IZT/uQ7P+RkPCNUFtWNbfLlGmGkF5KGgEG/R/1PPOypiXQUnZ+dUakWyDkOnZNTZsslveGAKE5ZLAPy5QrVVpskVcRpQqoSfNdh3D1lOR4RhUtsxyGXK+B7BQxhoTAIwgWzcZ/paIRKNDGpXCzTarTxPG19aGVzhCRl/3Cf4WhAksR4Xg7Pz1MslTBMg3KhiDwNeeYPL2HEgrCa8OBXhkhTK7+ZpkEiEyRSa8ynKQawt3fA6zdvkiBAglLp+raKc/dpBVP/KKKWHp9kyQYa+larQCXWwXJFHCUMUC+/CMESUxkUYo/7Twr+r/8v+N/9c8nDv/kpjEqVFXF2PdLWxLCMBCjI/mp8aI3UnCvTinMLABArz8azAL0K4B/ZPvqeq9fOtlXQ5pG68yfZPnEQ/q3/9R3mxQQ/tPg7v/00T3QrxNGUe/fvkaSSS5cvU6tUMYQWMxDCpFCssrl9CS+DkFfBUmTa04vpmGAyRkgdJOI4QaLZvCJNWYwHoCTFSg3T9cDQ7Q8Ik0qtTWvrAo7j6hpzduwoTXj3w1v82Te/zfc6b/DfPvNdYlNS6Xv8xD/dYv/2AflCkUariTBE1vOojcwvXr5CpVbTE5dhMBUGDzCYh7qdB6C+mPGVg3s8f7JHIwxoCcVWtOCZo4eUVIJl2jQaGxTLFdJVDUGlLGZjTo/2CJcTLAEqDpj2TinaJl947lN86onrmIbAMA2Saw6Hv5yCAcXbBjvf0OSuONJmDKDFSPQEaGBYlpZMNM218AaIrAUJkkQzQ7XEm4YlDcPkyu5Vur1uFtgFs9mcWr3GdDrFtCwqlSoHh4dUyhVGwyGNZoMo1hOz73mMxiNKlSK3bt2iUqkxbUacfkY7Jl2+3yJ6Y0q9VkemCaNRP1tdG5hZn7VlmSikhqdNi/liQSold+7cwzId2htbWJbN3Xv3uPvgHpPZjGIm21iv1fBcn3fevcXLr77JeDLHFCaFfIFioYifK/HDV9/kzXfepd6oYgpwLZvt7R329g945513aTTqQMIoN0V6enjaewrHMvEMhWuZVEp5Bv0urm3hew5KJmw0mywXc5I4whBkbOUqcRRnzkaC2WJBrVEnSZO1uUKSJtRqNeI4Jkn0oqjZaODYls6So4h8Pk+1WiUIQuaLBa6Xo1Zvki+U2dy+gFSazb6qgemnSjGZjFkuZtRqmnHdHw0QlkGpUqLX76OUolarMRoNieMog5ynxHFCqVRkPBoRhSG2bTIajlBppk2d1ZuXy0AvjrOZeFUH+/HkrI9kx9mi0EDweE/LV3byY/r+9NxvSoTUCdhWq4WByb39I15+630G4yWbG1tcungJYWg+SBzHDPoDTnsdvFyOgp+jmCuQ932WQcDD0wF/+tIb9KchpVqLje1LCCySOGV//4BFEPHGzTs8HMxRuRJeuYzpeji+q9nv0zHj0QCVJpT3Pdof1jQk/UyPQ/cUUARBQK/XZ75Y4vk5coUiXr4ApoXlOSyDBYvFlPlsiIpDhFJUG02qrTZxKkiyDNh1LE5PDhn0e0RxlBEDtSBL2Rdc36qiFlOSMKDX77BYzghCLapSbTZptTd1apdIbMOkmPPxTJPKvxEU7+m5c/+vTZhvJyRphkihZVe1K53ERC+AXnz1dY76fVbCMUKsulvO7vVZU8/qBbUOUmsxR/koXKzh4ZXRTTZ+owj1vW/DaLA+VG7jEvf+7ld446sG9+pd/qsv/x4zNzg7zjkofMUPOl8GFllsNY0ztHQVeBXn2N/r0zhDDle6CY+M6vPHzq4h+xA+sqlzcLjuDPgk2ycOwqftAEMJfvXlG/zynacoeC4PHtwnWMzYvbhDvVpF4/eZD68ChIWfK7J98RLFSpWM84yQSveKipTlcsJ4cApRAElCmqYkachs3CUOF+SKFWyviMr8g1GQpBJpmOQKZdrtbQzDykKw/hBD4L39ff6Li3/Iw40JQsLnfrdF/M0hSgraW9tkM4hupxAGGCa261OpNlGGBYaJVAYPLJe3TZtFVicWgJMkGGmCbZk4joNtWxRQ+MsFhmViWCbCtDBMR5O/BKBSonBOp3PIYHDMpH+IR8JP/9SX+Ou/9LP80i/+NM3NBsqAB39tyXxHIhK49M9snIGxnvDSNMayLJI4xrQshKGJWoax8g5+ZEischXiONQKW0rfJdN0yOWKyFQSxxHt9haT8YQ4jqlUKpx2OlSqFRaLBa7rYpomJ8fHtJoNpuMpF3YusPfwIZcuXuDw4JDdK1d5ceM9gqb+jL58/0lmRxN2d3e5e+e2XgQIhWVaxIk+zyTVMHwQBKRJShRFYBh0uj3efucdHuztcfXqVXK5PLdv30YqheU4SAmHR0c8/vjjNBoNPrx9j5Xu+3Q6I1gu+fKXvkCzvcFpb0AUJ1qTe9Dn+U8/xRNPPM50tkCkEe2qx6g81A9DDG7PYDAYkSQpjm1xbfciJd/DQlKveNSrBbY3NnhsdxfDNDk+PWEymVKpVKlWaiRxQq/XZxksyedzVGtVUplyfHKETCXFYhHf1wSp8WiE57mZWURAr6u1pS3bxrRMuj2ttGXZDpbt4ueL5PIlfc/PFdyUlBzsP6TTOSaOdSDN533CMAB0K1IcxwTBklK5iBDoLLFYxPM8BoMB1WqVXN4nDEPyhTyL5QKZplQrFUajIbPZIvO5FucmvB8BQ6NfX02MZzXALDtBcKOvNZmnTsBBMTN1PwcrCiHI5WwqlRLd/gCvWKW52cZzbG08YVucnHY4PelgKEG9XuPShSbtRpFgsWS5XLJczjkdDDALBUqVKr7rYpkCyzbZO+7yxgf36E0XYNm0ti9SqrcIwki3HMURQbBk1O8hZEqtWmUr1+b6a/q8Z9WAW9f36I0GpEqRppqpXK82QAnSOMZQKa5lMRoOmE8mJHFErljGKxSxXBcpDIRpsVwumE2GzKZjkiQlwaBYb1Cpt7CEiYwjNuoOP/X5x3FUyNHxAeOpVjAr5Avk8wU838cyLSrFIvFygSEUg36XxWwCJwmXv15DJIL5dsTxLy605auUGJalx5swMaRGJJVMCZYBf/qdHzCNIs0nQKHEeSZxluUi1vf3LCslg2fPstIVVLtGUpRChCF0TpG/93XUSz84E+EQAuczn+NvnfwCX3n4OAB/tvse//yZ769/rtd/54K90siMsYKIhf7/2m5zvVOWR2dJij6VM13oj/kEZ98bawQoWzis0YDs73qm1e+NUHo8f8LtEwdhZwTP3Knz9176PPVigbv3HjAZTHnuyRs8tnsB2xSYQuF5Dq5rZwFDw2WGaYEwEYYNho3K6Hf6hFPSaMF0cEI4G6OSiHCRiZ3nCnjFKlIYZ0VjkakJCYUwhJ5MsSiV66i1yAFEArgZU7gvaN/yuPb/tZiMxmy023iut74Beuio9Yfe6fTw/AKbO5cwPY9ICF61Hb7lugzIMnElsbIWEcsyQSnSNMGxbFzHJE5iptM5lUqdre0LOI5W+hEoVBwx7Z4gFyP+8le/yFd+8isE4ZTvfufPGHS7KAX+gaDytkHxnsnVPyyg0oybJ8jUl+akaZoRbbSBu4aZlV7ZZn3Bpp1pR6s0Gz86JCslyOWLjMZTqrU6cZxoQY5Gk16vR7lcZjbVWVKj0eDk5IQLFy4wHPRpb7QYDPqkScJ0OtHsa9clDCOsvuDyB3Wqhz43XttgsdCs8Ht3P0QIiVQK1/c1q9fQnrGGYWpSzTIgSVIMxyaSCff3HzKdTUmShM88+xy1coU4irlz9x6T+Zw4SSlXylzY2cb3PKI45sH+Pp1uj2Ihj2Uqnn7icVzb5fbt+5yedikXcpRzLpsbTQqFPEdHRxztP6BtVblyu8n2vQrFoctgPOHdDz7ANAxs28CxtZjCq6++xmkG25smFIoFgjDk4OgI23YRQuDnfJSUOkvOWnwq1Soyldi2lUmhSlqtDaIoIk1T0jSl1Wziui5RHBFlvdqNRoPlMmA6m+P6PsVyjWqtSXvrgoaOJwaV9yzK75ks90YM+h2Oj/aRaUKlVCaOEqbTGY7ropTK2pc0YjIej0mSBMMwiJOEOInJ5fLasCHQdpmWbZFKbeSRpIokUetJ70zW4UdNXD8uO9ZPwdVRm8f7W7xwdA1bZnr06mwnicJxLVqNMrVqhc12m3KpxGQ0pD8cMByP6Q+GFItFWrUqppJ4luD6lS06J4ecdjvEUlEuldnd2eSFT10nmo1I4oB5tOCk1yOWglZ7E8fXZQITgSUEo16fyWCICXiOzeWLl9nZ3mGxWHLplTalQ5/GGwXiI90D7uUL2K6PY7uYhoXnuiymYxajEYvpBJFKHMuh1mhRqTeJ4xSRSgwpsQSMel0W0wkqTSmWKhiei+VZVPIGT1/dIg2W3Ht4wtf/8FuMFgFBFJHL59lob1OrtgiXEUKCbRqUC3mWsxkPHz5gNJ0QK4Xr5bn2rYuUD/O0blfYXLaxXY9EotnSGAgJpjC0SUmSIKRif++Ql958iyCrgZ73jz7zHFbn/py766t7mcHNZ+QuIIpQL/+A5Df/Cek/+8eo997WvcuAMEysJ57GfuJJykGO/8P3fpGdSY3taZWtiRahWbk9sYKls6z3LBteYcEZ5G2INeF3fRLnWFWrJeSPqt+u2pPOWp7E2S+s9ll/fZQ5/iMegR+7Wf/ju+jta7/hcklAN7fHnpK8f/MDPv/8c1y5dpn+aEIQC1xs0lhnsytBCOKU8XjIdDSjWm2SL+Y4PTkmDpcYSqGNHLQi12LSI40XhFGAYbrkinWUYaJkQqoEcZKiTAPHNjCEZDToMx5NqNVabGxtMZqO6BwdkoRzhFQ8/o8ctr5lEdUU4Vt9atUm9WpVQ2loxyYtXq4/wG7nhCgI2Ll0mWKphOvlODp4QBjM2RM2Q8fkQhqzrVKuO44mFqFIUn1+drhkK40YDwaUZUy5VCIqVygVShwe7jGdjLVaTLaKLPgux4d7fPP73+HDO3soHFwhuPQvbVrf0LB06dQldbQJu5JyPcCUlKQkGKZNmkS6viK185Rh2iRSIQwT2zWRUYRUGsbW/VEWG+0tlnFKGMV4nk+v12X38i5xEjGZTmhvbtLpdtje2ubevbs0mnUc19X19GaTTkfvf3JySrPZ5N7t23yx8ATP/b2A5U6CHC8ol0uMJ0OWi5mu9WW9yr7vEiURhqF7k01hYBkmqWERS4VjWYTBAtMyOe2ecPnCRWzTYqPR5Pj4hM5JR/fJ+i5JFGFbBtVak25/wP3793nmqcdAKEaDPhe3t2i2Wnz3pZfwPZvrlkMwHuC7Ls3NLV58632sV2L+zx/8Mt3lkLuHd7i4u8MH79/C9z2iRPd/b1/YRhiCW2+9TbU5QsqUXC7H1au7nJ6cMBgOKZZKOK5Ds9nk8GCP8XjMZDKlWq3RqNXpdjscHhywWCzIF/L4+Ryj8ZjFfMH21ha+EIzHE/q9Prl8Ds91MU2DwaBHqVDEsmw8L4eSknyxzPY3FbsvmsRhhEp1p8DD+3cQlkMcR/j5PPl8gdlsgmEYVGtVTk61tWSz0WR/bx/HcajVazx8+BDHdblw6RK9+z2UUuQLBebzOUpJpNLIhbDMM+zvIxOXTo7PsqWPbqts6ZnuRX7zd/43lMIcplzN7EY2dwmUUJhAo5rn1j29IJBK0OuNUdYEL+fjOg6VSoGrl7Z45+a7HJz0+PC21vKutzcp2HXixQLXMAmDJZNxn+54gFS67r2x0c58lWcYpMwXC+3RO1+SLxTY2NggDgOUhCCIkFKRvL7ka//Lp3H3LKxY0GhvaELkZEochpi2S5zGTKdj7armOFSqVRKpwLSQQN7zCGdT4jgmjEMsUy/mq7UGhmEyGA6xZcpTu1tsVcrc/fA2R6NQN5pYHr7t4+dKWKaLKQSu6xEul4gkZjwcsAwCIpniFfNUSxUQJvHhhJ/+z1+g2iuSn9hM/D7RYkkSJ3iuq3vJhYmMQh3DUollmLz48qu0Ww2euLKrS2hSZTFMrgPx+aC8zgfPx6p1/VXBeET67T9DvvXGOvCud3NcnBe+gPeVryI8F4Cnuzv8l3/yG7QWJW70tlbJ7DqOanmGVQaq33R1PqvtjNmcfV2t99Y/h0x+MFs7iI8F5EctDsV6n/VX45yZU1YLXyGzn2T7xEF44zsmMVN+z/weJJJnn7zBc88/yWQ+xzSFZqKmiiROSbNgYaCYjEcMul2KhRKtjU1SIdm84NA9PmI5n4FKNdEIhSAhXowxDG1kbZgmKo31c22aSCVJU0gNRRwsGHQ7OJ5PtbGBEia1ap2c53N0cJ/FbIyQitJdgbqjkEJrXydJjGNZgEGKJk4IAcFsSvfkmHqjQaFUBmGQK5bYvLzLyckRy8GYOYIPLMU9TPwo4nLG4pNSYSL41NE+IklJ0wTLtFD3P+Dg6uN0dy6Sz3u89+67LOcLFBBIxdf/4E+wXINACSQWQkpMQwfT4txDvWUQyxjbtrGVIk00I3K1ElSpZuMahpkNIoUQWkhAN7PrWo/tOITLpQ7+wsDPF8E0qeSL3H/wkOvXH0NKyfHJMc1Gi4PDfZqNBsFyyWik7QuPjo5obWzwcG+fJ27c4K233+HJp57gpZde4vpjj3H//lv8tb/2S3zjG3/El7e+zMvvv8TOxYv0u1pkAbS5RBCGWLZCptpa0TAs4uy6TNsmjrXvs0xTXM9jGYUEUUASx3zhhc+wf3TIG2++RbVSIVguMYQgWAZ85jOfZbZY8MMfvkRvOGYym3N4dEKpWOLaY1cYzUZ8+OFd3vngQ/K+h+s6tLe2CaOY2x9+wIM791HKoOKXqJRL5At5ZvOQWx/eZz6fcPHCDkJYmI5Dp99nOV/SqJbwLHBtkySJ2T/Yo1ytIJXCtCwsy2Y2W1ApV0nSlGKhhBCCOImJopAoCrmws8P9yYQojjENg1q1ilKK5TIgDDXZL1fIMx6OiJOESqkCCC3W4rrMJ0NUsoIAFWkcEgVLut0TZJrg+S6jwZAoChEYRGGM67rEcUIq9bM6m+m67ErUI+f7RFFEHIXkczmGgz5BGBGEESU3pyeu9Sx2fsI7+/fP29zUwk21+cRZXfkseGsAU3Jhu0380hscnRwznsyI05T25ib5YpF+5xDDUJx2OoyGIxaRopjPkyv4VMo5rrZqDI9PGEyGHHb7jGZLKtUajeYGo/FYM9J9m4LrcLS/lwmpCnK+z0Z7AwxBsFwyny+QUhIEAVGwoBIWKJXLLOYzDNPEECae6zDodjRyFkUgBJ7nU65qadrBUC/alEyJ44DJcIBl6/FRqlWJE12WUcrA93KMRxNeee0DksWU8TIikFCuNPDzJZI4YTabk/PzKKGwbItO50QznqXCtB1sw8ArlMCyMYRJzvZJ30iw84LBbEi0XGQwc0qUxJiGmXFKtJAPUmEYWmf7Oz/4Ia16g1apqCFWdQbvrpPKc1nl+QC32oRSyJNDkj/6fdTe3iNjRACiWML/6b+C88TTmQb0Km8V/OTejfX3q1Y7UFkAzlqNjDMofIUar45+Ju97ht7oWLpaNZz5/q7KJutKy48Yzjrur1qt1gfT8LfSsL1az8WfLB3+5LKV0iBGME8UkTSZzEIOj7osgwSVat3RNE31hWcXFwQLRoM+nuPR2tgAUyCErr22ti9QqNR0ZnbGOdfwlpTMJn3C5QglY5TK8H9D146SOKZ3eqpXy/Umpu2uCxG5QoHHbjzJxuYOmAYpUqt4kTIc9nn44D7z6fQsW0ef5/HhARXP58alS9SLLqaRIFWK4xXY2tmlUq8jDb1UCFB8YJrMo5g0kQg0Dd6WEiE1McKxLVwFm8f72KnOYk3LRpgGCEUiBLNUMV5KgiBFJrodag3JZZ+nEAZhGOpe0WyIrPr0TMBQEplqARSZaNajaVqkqSKVKoPvsyEpTAzT4rHrN+h0uyCg2dzI0IQqy8z4vVyucLC/r+uBwyEbrQ2Wy0Bb80URhqXVy7r9Pq7ns1guqNdrTKZjLNvm5KRDsAy4cmWX0ai/hrEs29af33JBHAR4jpcxKARhrAUvHNtBJSmk2mRCCYO9wwNc38X3Pa7sXqZSKRIFAe+8/Q7HJx1sx9POQeUSlmkzns556ZU3uPNgH8v3CMMIU5jUaxvc3z/itXfexfVdKgUPIVOq5QrT+Zx7D+6x2WrgCAUqYXOzwWIxp9fpo7WSU2q1MjvbmwSLBaWcQ7NapODbXL64hSBluVwwnc1IUsnm1haOo/WYx8MRfs7nwoWLKCk5PjpisVjg53IUSkXm8xmD4QDXdSgUCqRJQuc06yN2HQwB08kElcpMsc3Dcj38QgXDdND+v7pf25Apd299wHQ8JI1DisU8hiEYDoeYpoXv+5nkq6BSKTHOiFh5P0+/20OlUgt3KEUSxeuSR5D5F69LOI9Azz8ahv7zt0d/XygwsxBsICiX8riuT6fXJVfOU2vVMW0L2zLYbNXp93u8e/MDZrOYRq3O09d3ub7ZpGjCYjojSRM+uH2HeZhQrjXIFyvYtku5WCRcTDFImEwnLBZLPN+j1d7E83NESUKiwLBtTjqn9EfDrNxksZG1r/mez3I6RyUJ4XJJFAUsFzNc12aj3dblN2FhCBvfdZmOBoz7febTKcIU5ItF2u02tWIBS6WQhCBTBCnj6Yi93oTjhQH5Mla+gOFqsSLLcREIwnDBeDKgP+yQqpQoSfDLFartTQqVKvN5kLVxCnKuS7iY0Tk9YjGfkcgU23NIMxRvZdPHKttFL5JNYdI57vHiS68QpqluN11hwCuAdlWjXZcbzkO0WWA8OSL5l/8ctfdwfb+FZWNfvoL3xa9Q+vW/jfv0p9cOcyuJyXVN+dx7CGMFmujzXS8IVu+5IgyKsxYotVrorUpy68RWrR3mOPf7QpwbheeIrus+ac6y8exAGRtaq0GueA2f9Hn4xJmwECsmpkEi4MP9QwbLBY9dv0rOyxMlIJWu2VqmSRIF9DsdBAbbWzt4Xo4UtV69GKZNqdbAsCxmwx4qibMLEyAkJCGLUY9cMcXxtTSkBEwU4+GQcBnpPj0/R6qUZhYLhW2a+H6ewvUbpChOjw8xVi4XAqazMffvBbQ3dyhV6whDMBoMEVHKEzeu8tyT19jevcR7d+7x5vt3SFLNJvbyOcZDE6n0guOOaWA4gmfjiKrSSlar2oHnaRhRKrDjCFMIojDCTCIcpVC2TbTSh86IC2kUkQibNI5XeS6WECglsU2DKApIVYppaNJXGkdnsImAOE0wM53eJEk09GsIUClpEmUZh8D1ciRSUavXmc8XVMoVDUV6NvVmk26/x+bGBrdv38ZxXdJU0uv3KBSKnJyccO3qVQ72D2m329y/e5/HHrtGt3vKzs4F9vf3aTabDId9NjY2WM5mTEcjzYg0TEzLQVgQkZKEujZqmbZeyBgGlm2TpLFuaRAGwTLA9lwePnzIU9dvIKUiWAZYpsXu9V3u37/P/uHrXL/+OArFcjnHEIpLFy6xt79Hpzek2Z5hHnfZOzjmiRtPgmnwvR98n3y+RBJLJuMxO9s7FEtFRr0u/e4JT9+4RDFnstmuI2PonBxy78E+pYJHwfPYaNS5m/fo9wfMhiMalTKFfI6c7xOECfv7D5Gpvle2beE4NoNBn0Je+xB7fh7DMNZZU5qmtDc2ONjfz0oKkmq1qgU4wogwjCmWytiOR6/XQwhBY6OpWZ5FhZQw6XdIs1qclAkylswnY05PjqjVmziOg1J60nUch8TQY8s0LcrlMt1ujzSJKRWLHJ+cgFK0Wm0ODg50Bu46pDJdLfyzzOIsAzk3U5z7/0cnoQzOO5tUMkgzqytm8q8ZgEPOc9lptxBDk41mi2C+YDqbYCrJsNdhNp/RqG9QKZuUcjlcE564cpFX3nyPh7MliyDAdkts71wCpZiMJ5iG1q4f9ntMRkNs16NQLlMsV7AsE9+1iRczlGUxm0wJgjn5cplqo0UUBCyDgFyugGvbjAZdlvMZqZTYjoXt5ajWmxn8uSRJUlKZkIZLFuMxpu1QKhbJ+R6xTCl6Bte368TbZV56+zYLaRGGSyxDkChJudnCMh3MzG847/nIJMG1oHN0oFvQpCSfLxInEi9XQAoT18kxX8yJgyWpMAgnE0QakYYhXqFIsVTHdSz6nRPC+ZRUpVgrtzVSZJxmpC2FYVq8895NdrbbPP/Uk6zqwOfdr3RQFNnrZPdYZQFLIt94FUbD9X03iiX8n/rLuJ96FuwVYqcH1RnJiXNBdpWd6pYnpVb16XOeAh/5fo1IZ+Eky1vORug6i10NxY+IiGRj/Gy0nsN5xLnXzv3fWEf3jz8Jf972yV2UUOvVthKCSEmOuwNef+smD49OmAchaVYzMFRKv3OKjBNq1RqW62UTxNnFC2EgMXH8HIVSmZXKiMrIVwIQMmU+HjKf9JGxbnCfj4dMxyO8XAGvUCTN8BADdAZqaTGMMAyZTibk/Tyel0OvrzQrO4mWHOw/oNc5JpxPmPe6XL+0w1e+8nkuX7mAKQLqJQffMrAQyCRh0Ovh5XK0ty/g+HmkMLll2vyp43MPwSxJWRoG+Su7WJmtllS6DcWOIx7vHPFXJyN+JVzw1TiiaplnjedCIUk1SzhNMR1bt08JME2BKcCxHFBgWRau5+L4ftYmsqpPZPdJalF3wzAQSpImsc6oM8Xu1sYm/d6AYqGIaRpMJiPa7Q1GwxGlUokwDJjPF9TrDTqnHXZ2tjk5PmFrs818OqNULNE5OaFW1oL/21tb9LpdDMPg7p3bPHnjBuPRkKvXrnLv7l3tg6pAmDZRvHJ0sjBtiziJCeZzZJLi2g5RGCCEWtceBYJoGRIFEfPFgvliwXg8xTJtHnvsKo/feAzDFHR7XXr9AYeHJzRqDarlMu2NDUzDoNPpc3jSoT+akkhJe6NFwfeZzxfcfO99ppM5OT+H57g4jscySnjp5ZdJowTf8xEoSqUiUZLw4e27OJaD6zoIJI2NTV57811OOz0c1yFahuxsbpHzdMBbzOYoqdjZ2aGQz7OcL5hNphTyeS5f3MVAcHrSYTKZUMjnKZVKBMGS/qCPaVsUy9rysNs5BcBxbOyMTZ5EMYYwyecK2LZLs72J6+dYWYwLFHEccLifcRGAer2GTFMWyzmu5+K6HstFoAlznkcYRYRhiBDay1rKFNux8TP29mIZQqbP+/HtLAf68ZPPWTax/j77dz2przIbA1zHpF72iZZLHEPQKBWZjoYcnx6TIsgXirSbdV549jqkS3qjCd95+XUeHpyQYNBo7+A4Hp7lUPBzpHFIt3PCwdEhiYRcqUJrc5tiocxyHiAkNOt1ZqMhk2EfqSTFYol8sYTl5nC9AvPZnMV8xmQ6Jo4D4iSiWK7QaG1qshOCVCgcx2LQ6zAa9Fgu5limSb1Wo9FoksvnkWlKIecSBxOipfaNXsynSCUpV+q4XgHb0W5buVyeNAoJ5hMmoz6LrK3TwKDR3KBaa+D6OW3lmn2OjmUy7J4wHnQJQm0i4nk+xVIF189jmD7FcgMlNBS9mjuE0JC0SiVGFvBSqfj+iy/THY2zVtOz+yyMs/B0vjCRGdbq1VTm9gVguB6FX/plvM+8gOE6ep6CNauZLNslGwerwLxS+9Nv/PERtiJNaRc5Y51NKyWzBcEqQz07w1VGv3KdO0tqzi8ez2hn6vw+q/cVKzTAWI9hITJ2+CcMw38BFyV9wuv1gACJZDafcfvOHY5PjomiAJSk1+uymM8pV8r4+RxBFJEoSZqeQVhKZfXPVDKbzTFsCzefR2bBWYnMnYiUcDFm3D8mnE2ZTUbYjk2hVEIJU1+8UlhooQ/TtojTmIcPHiBjybVrj/P4k09TKpfXqywNececnOyxd/sWNd/mP/jqF9jaaWGYcO/BfV555TWSMMQWiumwh0xidrZ3qNTq7Fy4RL6ks/O+afFN2+N3LId/XygQ+i5KppqslaQYSnHx/fe4fHRAK4nZUJKnw4CfCZZsm1q1JpYpcjXQMtawaRoIW4vooyAJQ3zLwbMtkijImLj5bJzI1S1Zk7NQkjSOkHGi68VCYDkOpXJVawWPxziOQ6/Xo1gsUK3W6HV7NJtNjk+OKZVL9Ps9QNcKpZTk8nkODw9oNuoIJdnabHNycoif8+j1OpkCU0CwXBLHMQcHe5k9msDxfEzLIU0kcRRn31tgaLjdtm3NNE+1A5QwDEzDQMa6z7Y/GPDe++9zenpKpVwmlSm5fA7LsUlVyjvvvMvDB3tcunQBxzGRaUylVNLtOwcHmKa2wguWAa7r8dyzn2I0GRCGAZblsAxjYgnXbzzNeBZz0pmwXEQEYUihVOTKlSuYpsVwPGE4HCKkol5vUGm0mEcJ9x8eMF8syXkO7VYLyzJ58OAB8/kcy7L0BCIUR8eHmNnEY2ZjN44yta00pVQuE8dagjKMIiq1CoV8nulkTBRFVKoVSuUS44kmdJWKRfL5PO3NLS5euoJhOdma3MBEQRrTPz1mOh7i2CaOY+M4LnEUYzs2pXKJxXwBKKrVCvP5TJO4qhX29vaQaUqxUCCKIoajkc6WVjW0R+aGs+1HgXAfzzTE+uvZRPboxCWArc0WKlHMp2Nuf3iLcBlQKZd4/PplmmWfvG2QhhGz2ZQP7txjsIiwi0W2tnZoVsuUcxYqXjKbjFjMZnR7XVzPo9luZ9rxBr7vEy2WjIdD7ty7TxDF2I5e2JSqdcIgRsYpMpXMZxP6nSOWixm5XIFcvkiuWALHRdiaUBguFwSLGcFsQhKGVKsN2lsXiGOtcCeFgePmuPnBA7736k1+8Mb7JMLEtm3am9vkS2X8XJ5gEeh4IBNIE/qdU4LlEmUY+KUKputhuz6pAC/nEwQL0ihgMuoxn4xQcUQSxfiFItX2FoVqg9l8jsi0GvK+Ty5XQCmIk1ijVaadmTxoUQ/dty0YT2Z841vfZpFJ5QqhkIZEipXC1Bn0u4Jj11/PjRBRLOLsXkGY4lHsOhsSRpbRGmui1bmAn42uNdyb/Vx8LIieHXedfYuPQNvZsVZSrmu1rCzQn8lV6pj14wLwR8f9GbHrLDH6H9s+cRDOV2rkimWUMFkTtoVmGMdJzP7BPvv7e5weHzPo9ahWqrSaLcyMFRhnYgVSri5IN4fPxiNSKcmXalQbm1QbG2CYpKviNtpTVYZLZoMupAnFQgHDtEizCd7M+oelUkRxRKdzSq/TZWtzh2KpSj5f4rEbN2htb4FhIoSp74JMUal2LB6PBgTzMXfu3OHm+w8JExcMhyhcMOx1aDfbVMs1fDdHqVjhyu5VNtqbSCAUgrFpcrJc8u6tD1kGATKVgMCIY/KDoa7lCYFtWRhCsB3HfDVcUnJcTNNGSe0yIxAICdEyXItrKJXgWyZf+eLn+Nv/s1/j8WuXsbLBY9pmNrgybypDrHsdtUqWXOcb5UqdRRBSqzfo9weYhkG73WZvb59iRv7xPZ98Psd4PKJQKDAej9nZ2ebhw4e0Wk1OOx0uXrzAw72HFAs5Pnj/fa5fvYZMEq5c2eXk5JhytczJ6Qmz6RhDSN3fLQzd72oYqFRqMptlIZMkg0ljLFNnWYYwsSyLNE1IwpCN1gbNVotOt8uHt29TKpaJ44TZbEkhn+f55z8NKGazKUpFbDSLJOGCVrPOU088jmPbpGnKdDbn5KSDY1tstdvcePxxUiRH3ROm8xmu61AuF9nY3kaaBvfu3ePB3kOKeR/fMbAdG9t1efPNd4jDWCMvrkOlWmM6mxGrFGFbKAmtRhPf0+pTQRSQqIRao4bjOUznUyazKaZlsrOzDUCn02E2m5HL5ajVqsxmU3q97rrnV6Ypw0Ff90rbtuYKLAPiKMS0LOqNDUzHo1RpYDueHnsCLKGIwgXd00P6vQ6GUNTrNUajEfPFAs91CaOQJEm0z7FpIgTYtk2hkCeMQuI4plarMp7OspY39Qkht3M//VFM6vPfizOlozULFUW71cDA4N69PSzLpV6u0igVaZVzPH3tMmGw5KXX3+W4O8DJ5dm8eBG/UCSVCb5rculCm4cP7nJ4eIASgnK5Qqu9Sb5QyiRDY+azGfP5lNFoiDJNyrUmtpsDw8J2fWQcsZyNGAy7mIYCoag2Nqi3tkhTqVsAAc9xGHZPGfd7xGGE59o0GnVyxZJGrpR2SAvDUEtcjmcMFxLplWm0t7Ac7fktDG1bmCwWzMcjer0ucRgikwTP9ai0N8hVK0gliIIQgcAyBaaMGR4/ZDkboaQk5xdxXZ9SuYowbRwvp8WU4hDHUASLOWmkWX2JTElkSqx0aUhHKgVIDKUwlGD/4Jg33r1JrESm36/5NutFFKsecoU+xCrUnb/P+rjn+4vXdd6PDIpVdqv30X8/PnDOvj4CT2djTs8nWRA2dMuSIc45KCmyLPbsd7RvwCr7Pd9iJT4WeFenIDi73jON7Y/t+iO3TxyEK41Nqs0tKvUNMJ01m3BNJEpT+r0epyfH+K7LxQsXyOcLmrlLZvSdplpoQ+ra8HjQJVzMKRRK5PIVMFy8QoXqRhvL9dYw81lrdYJQCUmkSQwyiTWpwDBRlolE130ePnhAsVSktdFew7C5QpGrjz/Jpd3HEIatIVKlkAK6kym/+4d/zL/7wz/hnZt3iWIby/YxDZPO0Qm+k+PihUvYjqvl2AwDx/G4dHmXq1evkd1LQgXvGBb9VOl2qhUrT2oKvOs65DwP33UwDEEjSShJie2Y+vpWhhFogkoUhCiliTZf+Oyn+Ss/81WuXNqk3axhoLSsYJpqLV9Ty4PKjCCAWnk6A0JgOz6Xdq/Q6w8IgpB2u639dOs10jQmjmPKlTKnJ6cUi0VOjo/1PtMJjuMwHo/Y2GihlCRfLBJEEalSzGcLNjc2OT3t0NrY4Nad22xf2GYyGWRi9hLLtpEowmAJqGzRYBLHMYZhYBomUmk3ojSOMwUtQ8v0mRaVSpndK1fY3NpCKsXewYGWK+z1aNbq5L0iN248iRKK926+y3jYYXOjTqNRo1jKU6tV8TyX/f09bn14C8vSQTmJU3KFPImMebj3gHKhgAEMpj22HtuiWCoxHA7J+z6VUo4wmHHl6lU8r0gsYTKfEyUxOzub7F7ewrIU/fGITr9PPlfQnxeSg6NDxtMpfj6H49gYpsnJ6SmmbeP6LoaprSnn8zkCSJOURq0OGT4ihKDVbFAsFhiNRiyDJZVKmXKpxNH8hImYU65UqdQaGJabcS1syKBFoSTIlDt3NFlLpjG+52FbNtPpFMuy8FyPfq+PbdmUSyUGgwECgSkMFou5Lh0E0Wo6Ws1Yf86M8ShRSwGREZMYqf7t8/DgOYjwfGYDkoJv//9p+/MgS7LsvA/8Xd/fvr/YIzNyqaysqq6qXoAGuhtrEwQoYhEpCYIoUBqSxt2MFCnKRmZaTCONRjLTmEgz2Ygc0iQOKXAwQxKESBAE0EAvQO/dtVdlVe4Ze8Tbd9/d7/xx/b2IrCoQ1WYaN4uMjLf48+d+/Z57vvOd76NerlCuVLhyZYPvf+k2WhTS7wx4+517vH3vPvMoolJvUypWcUyHUrGE77kcHZ/w2pvv4gYR5XqDjZ1dBRnHaYZCwKDfYzQZIoSkWC7Q2lijWK3heurek2lKGoVMRh3ixCdfKmLlSli5knJ4sx382YT5ZMRsNCT1A0zdoL22wdr6Fq4fgKahGTq5vEOvc0a/22U+n6LbBuVWm9bmLk6+hGGa+J4LMkWGAYQe7nRMHIUYlk2+XEWYFkI3lK6347CYz4k8j0m/Rxp4iCRA1wW1Rpt2exPHNEl8DxOwDYN6qYQ7HtE5OWIyHCDTBNNU8r9RrGRlkzRFMzSiVDHoNYA4RcYp3/juKxz3+yRZPNRWwUYFV01cCkaXxsjTI+Hyc3IVwJ/ankqfeSpoq4c+8A4VqJ+CyrVMWkJkwVisMmJx6TiXme5TtWhYvecP3C7h3B9VL/ry9tFrwsIk0SwVJFsbGHaehIzSfplhJiVREDCdTFc1TE0IlXVKRTqJ45jZZMxsPKSQy1GvN1cm5hIN0yrQbG2QK1RQxsnZikwovdz5bMJkOCAJPZIkJEoiIiBOEk6PjxCpZHt7B5H5Cxu6gaaZaJrB+uYmu9evXlp5K/h7NPd55a277B93SLPMcj6dMJ/NWGuvYdoWIDF01dMqhIZhmAihvqOTzyGEzlDofMFyOJIQRhFpJsZQWG9T2N5k1UguIBUCS9eRfoipK0eUFEnCErUXBL5PzrL4gU9/ijiY8+Uv/Cavv/KKujE1TbXDmCaW42CYyl9YpsvKoFrlLS0Xp9M56+sb9Ht9bMsiiiIG/QFra+t0u10ajcYqA7ZtiyDwqVaqdDsd1tZUxlwul3n77bepVWvEScrW9jYnnXNMy+bxk31IJTev32A6GiKk6s3TdJ3FzRRZlQSei2XZmKaFJgRhEGDbzsVEEEbopoKONSGyLFotwSqVGqZpsXA93njzDicnJ1RKVUSqEYUR9WYD2y7y21/4PV599Q0qlQpSpiwWc55//jlq9SqDwQChCabzOZPZnM3NLa5fv0ocR7iux2Aw4vFnpmgv5Xjm5g1KpTL9bg9DKD1jy9QpFktEScqDx084Pj5jrdmkYOewdROZxEyGA+olh7wJeduk4Ni48wVaFtRajQaNWo00SZjNVb1sc3MTQ9fpdbu48zmFfI5ivkCv2+X09BTd0DM96oDJeIIQAsuxOf7UlEcv9PFC5SlbyGqYa1vb6JZDKrRMNCfBdxdMJ8OsTz/AMHTGYyXgYWftNb7vKzi6Wl25Kq232/R7PYIgel8Q/v22DyNkwaNqh6/s3mG5Tnzq5/K2QioFtmWxtdFEF5Jmo0QxbzMYDLn35IiT0RwjX2J7d49qfQ3PVbXjJAg5OTrmvNNHmDnsQpVKvYVuWUokJgyZjEb4nstiPqNQzLO+vaV8fk09sxqVDPvndDqnRIEPacrGxgbVehOEQRhFGVEtZtA9ZzEcgZTk8nnyhRK6aSNMCykFoefhzmbMphMW8xlJqLyp1zZaJGmCYRpomk6pWGI+nTAe9Ol3z0mTkCQOqNVq1NvrFGsNvEy6VgMcWwXtUb9L7HsIKTFzRex8GTtfwtB19jbXqdkGBR0IPNzpBG8+YzGbgpRUazW2d3axnTwgkEmCkFlJK6vtxkmC0CCJY/wg4Le+8hXmfgBCzzJKljpKF3FTvF/G5anLy0UwFk9lvB+AqN831pZQtcqMtRUKKLgQ1lj1/C73v8yANVgm+av9iQsYeXXMchmg1d/aSr7zw7Lgi0C+/N6rV33EVPgjB+EkVRZ9GCZ2oURzfZNcsQRC52LKzwr5ScTh0QHHJ0ekcQRJnEGNGromiEOf0aCHZVo0mi103UDXNXWCUomWauhGjnK9jV2qKIk3lNKTWu2kBN6UyahL4E6J4wB3MePs9ITpdMb21i7lcgVd19F1DdNUfbR6Fsz90EPTdZxcYUVlT4QgjJWL0MOH9xiN++wfHpAvlSiWSoS+hyYTTCExNIGuCXzf5eT4hJ3tHV5++RPUm8rdaaRpfNF2+K5u8CCVnDWqlH/uDyPyNlGk4CiZSqSm8QOLOf+u5/ECYDo2umWSSEmcDShlNWfy6OFjfuVX/ndeef1tUmFg2paqGyPQDQspwDB0Bfdmix01EJTWcHt9g8FwRC6Xz4LtlGajQef8HMdxEMB0MqHRaNDr9Wg0mxzsH7C5uclkOmNra4tet8f62gbdTpf19XXOzs5pb2zw5OCARlupbV3Z3WU+mzCdjLMRppM0Dd78iwPisoK+0uWiSiMTgpArAwqhCWIpsyxZwb2tdpskSTJv4w2uXruG67n4QUgQqhJHvzdgc22bF57/OKXyGrNFzFvvvIsXBExnU/KFPNevXSOXyzOaTLn38D4HR4c0anWKTo6c7ZAiePv8Ht/4mUO8mwKkJAx8CoUSv/OlrzCbzSjmLEyRsLmxRrNeZT6eMZ0s8NyInFXk2es3sQRowZzdtQbrzTpb6xs4pkXvrMuoPyBnWZSLRQxd4+T4CKTEMk10TUfTdCaTKXEm7dlqttA0jdlsTpImbG5sUi4VGQ1HLCKXhz84YP+zY47Ojun3+yDIyD9lnEIZYVjEAJpA1yEOffYfPWQxm5IkEYVCAc/z8H2PfCGPH/iMx2OWdohJooxWbNPM0Iv4qcn1w2Lo5W25EBRC8KTa5R89/1Xmln/xZPZ7iXCvps9sEtQ1jUrZwV+49IdTvv6dN+gMJmhmnu2rNzGsAqmmo1smYehzcPiYk9Mj4jSh0V5ja2eXXD6Pu1ggpEQXgqOjQ8Zj5Y+dc/LUag1MK0dqaLz3wmNm7oQ49JiPhyATGq02+XwZXbdJpIZlG8wnA0bDDtPphDSRWLZqcWq2N/CDgFSmpIBpGgw6Z4wHPQLfI5/Lsbm+RrvZpJBT8HDoe6RJjOe6eK7LbDIhShLFZK5U0XRDJQaGiWM7uPMF3mzGZNhXznRRhO3kaaxvUm5u4IcxMknQZIptalRLeca9Lr3OCYvFHCkEumVRb7fIlcsI06FSawE6aSoxdD3z387IRkKQLBGVKOb07JxvfPdVghQE+sVIUBf74tova7aXLrWMY4ijS+PnfRrUZIFtmZS+P5Bln7HUZl7163IJLl6WNS5vS2gaga6BfikYi9VxL1thL5GDl5n1ZeLVBQC9ep9cfczFAuD9JZjfb/seiFmJgpSFQAoNYVrUWm0q9UYWyJYZnqqZpGlMt3PO0eG+IhIhlHNH5DPud9BkSrPdxnRyCASWpmFqqmYqtCVrWOlES2EgDBuJTppmMAgpcegy7J3hTkd48yn9TodKqUy90UIThso2pSJJyTQlTVLmsxnnZ+fUW+vc+tjLNNrrq89Ks0L8aDjg/r13iEKPzY0tDN3OSGUJhqlh2yoDPj46wtA19q5coVIqc/36TeqtNkIIPOA1w+QrpsU3kpR3Tk44W0yJwkgtWIQgl6ashQFNmfCy72IlKbajlJJAkkjVd92fzvjVX/8Cdx4c4qcmfiKIEhW8dN0kaAuGLwTIJEJDtWup1aBqAckXipi2Q61Wo5sF3fFkjNA0tre3OT09pdFoMByN2NzYYDabYds2aSbunsYJ3sIlTmLiJF7VC6MwJApD+p0uzz97m/lsytWrV7l3796qZ1zoJk9+2uP8swGu7qPCr2CxmJOmCcu+vDCOSWW6qv0EYYjneSRS0un1SCV0Oz3q9QbVWp3d3W0kGvsnxzw52mc+n1HM57Eck3ytimbn6fQGvPraaySx6qFOkhTdsGg225x3ukwmE0zdzNbycPv5Z5l/WnLw8RGHrT6JjJCkXL1+k1K1xdwN0IhZb5RoVIpc2d3Gtm0ePdnn4OgI27awLRMnn6M/GvH2229RLOTQNLVIzeVzTKdTBYXHSlpye2MTDcF8OkPTNLa2NskV8nR7XRaLBYV8gWq1xng6Vf7DmoZtmcRRRCfqs//ygMEPBRS3y1imSegplaftrV1MK8fa5g5CN0BoCpVCEkUB8+kE3/PQdSXLqUwkfHKOQ7VaYzgcYtvOalFm6DpSwmLufggQ+OGbQimXeY/kca3Dt7Ye8E7zcJVxSFAL0iyar8DE7H0asLPVJk1S3njrXQaej1UsUG+1sJwSujCIQo/RqMNkOqE/HFFp1Givb2S+zIJSocBsNKLfOWcxnxGFAbVGjfXNDTAMolgSZ8YR3/zpt3m8d4xMJDnTpr22pmwxnRzuwkMmKSQh85GSmxS6QbnewMg5aLqBZlgIIfCDBdPpiPliShC6JDKh1V5nbW2N+XyBrpvYRo5auUa30+H09JjxSOloC82k3togV6uTK1eYzxdZP6vE1DUWwzHuZEznxpB4TWLlcuQrNYSVwzItCrZJ5M3RDUFnOODdew/pDYaEUYCZs2lubJIrVfDiCKnrJGiUyw3yuSKpgCBNEbqO4hIKdCHYjnx+bnTGH+sdsxuEvPL6mzw+PiHxfdJHj0ge3iftnCPS9FJwvCjGLsNROp4w/83fhDj6ALwMWdZ56fELePfi9yrblHwACr4soXmxqMtel/UFSymzuvDyrReKXwixGourUbzMkEXGgtYujlFeyoAvRDx+fxTgw7aPHISX8lxymWFljcxRkgKqprXMKpFLyylJ6Lt0Oye4iylpFDEZ9YkCn3azTbVawzQNbFPDEmBruhJZtzSElrCYTQj9gGKlSX19F6dYQYpla3MGO8QRvfNjOieHmIZGa22NOJXESXoBbyCRMsGPAg4O9rEMm7X1LaQwWdvapbm5icjYs0uG3KwVkxgJ7nyaiZEr/VFN17HzFmHkMRsOePbGNaqlPAXLJG/ZbO7usrG7s6LGR5rO0Av5l1/8Ft88HxOhPT2JZRfOAUqaBQlo6ORzudV3TIQgQBCmOnMvUpC9aSrrxjK89p9PmG8opyTDMFSL1KrOprG2vsVstqBeb+B5Lq7nsra2RqfTwXYcppMJuXwO0zToDwY4js18NufK1V3Ozs7Y3t3m4PCAq1f3GA5HXL12jcPjI6q1GqNej3azzmw6VT2tUcjR4f5KWSba1bn7Z2ZEZUlgxui6gWGqLN73PeWVmsthmcpjWDfUdWjUahQKBSzL4uzsnPv37iu/1HIFhCAKlNEEAh4fPGE8HWFYyhLR9wOuXb/G1atXmYwmCDSCMGY0mWKYJleuXmV7cxNd0zg5P2M0mZLKlHK9wP7Pz4kdyVuFRzx88phCoYht2xTLFQzT4dvf+Q5Hp8cUCgWEENh5i+Zai+6wizBUiQHDYO/2C0RS0OsNiOIETdfY2t2hWm8wHI45Pz/HMHRajSaOZdPr9vA8TxmAaMru0Z0vVt0S7VYL0zSZzaaAYG19DfMzJcZbPvOrEf4Lknqtymw2pdvpKI1qKbDtPE6ujGnlV8pqJDGeN+Ps5ADXnWFaJs1Wk9l0phjY1bKqA2f612maEIUhSSLxw+DyDKUmoOX9+FReLFdzAVIxae/VT/GMkH9269vEmtKVV4IJ2XR5iYUqM8a/BBr1Go7jkCsUuXrtJuVag4U7J5UBupZw/OQR/W4H3TBpNNs0WxsU8hU81yeJQvzFgulowGI+pVAsUK5WyJfLCMNQvd2uy2w0ZD4eExZjXv+PDik/18By8qrF0DQplsrMxiP63TNmoxGalBTzeRqtNfLlKkGkUIMkSdEQ9M5PmU4HyDTGyeWoVMvUy0Xq5SKWoROFMWmcMpvOmE0muIs5QmjUmy1Mx0EzTKRQQR0kgau+w3wyxiBFJDHpMzrv/hd97I0iruuhCx1Lg3a1SjCfcnxyzPF5l3kYIwybXKlEvd3GsG0K5ZJa5GbzdxTF6IZOSkosEzJlJHJJxPfP+vzh8Rk7gctW6PHJcQ8zTPjGb3+J6S/9Q4Jf/iXCX/5HBH//fyX8jV9HzufIIEBOxpAk6Ff3QNNIMgvW4M4dotPT942fS+NIZPXdy7Xby0FRXgTa5fjiEp9gFaCfAqWXL5XLaTcre1yuNYsPLgAulUaezoyX2bi2eq92OVu+tJ8/aPvIQVigrdRUtFRBE4vZDHc+J1cosbV7nUq9pQwaMtKDlvWKJVFAt3PM+dkB7mRGo1pnvdWmaJlUcyblgkkhr1N0dPKGRs6AJHRZzCbk7AKlcgPDKVGstylVW6AZ2Y2r3IVII2QSIjS10gmjGC8MiJMEQzNWhfjO2UlmxL6NqduEYUScpNQabTZ3r2U1NMnJj0a8++dj4kRydHjE0eFjZBKqBYNloQnJyf4TNqpVnr91g6tXttCFMsg2hUGz3say8go+R5IiCKTG41Tjfsb8Flxe0AgcKfmJcZ8fnwxZW8LJUpHAkiz9l1nfXeR7+AuXUI959z/2OPg5H+tIZZWGaRGnKUs6Wz5foFyuEAQBvX6X9Y0209mEcqVMGIbEUUSr1eL87IytzU2OT47Z2dmh2+1iOzadXhfHsZnOZtRratUugCdPnrC3d5XpdMqVq1c465xSqzXY3z9gsZgruy9N8PhPeoyfiUhykthR/eFxHGOYZuYnKpTQiJCITO8aKSjki2ia4Nazt3Bsh+7Zqeq7zuwnR6Mh25vr3Lp5E1NTTPmTTp/p3GM8mtCoVLlxbY+NtXWSOOXBg0ecnJ6iGRrIlEI+n2kHu7z11tuqF3zT5dVn90HA+ZUZ+2dHmLql5CDDgCtXd9nYucHdx8d0RxMCP8QyDa5e3aFRr7NYeBzuH6ALQbVWJVeqgG6x/2SfJA4w9VRZIuYKDPoDwijIjBPybGxuKih6OiNJU67s7FIqFumcnzMZjXFsh0qlynA0ZDDsI0XK8PMxiSMJrZi3nz0gkYlyRrJtBv0+SRSx3l6nVKpx5cp1hDRIpboX0iSCJKTXOWU2m2AaFrblYBgmvu9TqZSwLEsZQDhKX3g8nRLFaTbhXUybHw5IPx2aIy3hQf0MBHzlyh0Oy/2LyTObNcUy6mZvVBo7KY6pU6tWMDNWeC5XwZ249M6OGA17xGHExvoWV3avksQppqHTapaZT8ecnp4wnAxBkzTaLeqtFvl8Cd9TCm2GkPTPj5lPRsqwIzbofmLCq7/4mEKjqO41b8Fg0Medj/H9OU6hRLW5jjCV37OuWZi6ie/NGA17+JmHt22ZbLTX2Gi1MGOf6+tVrrYqrNXLnB4fsn+4z2Q6xjAM8vkyrbVtnHwJx8nhzudoqSLUmQJm/R7hYq6kSAs5jLxDe1Hj/udPufNnDklFgJFGaDJlMhwT+C6z+UQxwhsNWuubxKkgTiQCTfW7GxaL8YT5aEC3c0IQ+uhSIKIUooSbkcfPjM/4uDsmnyarq70ZuPxM75gfuvcOyf17yDCEKILFgvg738b/u38H/+/8z/h/7+8R/MN/gNZuYbz0Eq4ZEuqZLO14sholTwXbS6SuC9Y1K3h4BWAvvQmWo08s4W8ujamLIPhUVrykMV0iJyzbl5avE9rFsZAd3+VRfhliv1xDhgsI/aMG4Y+smLX6YDW34nsLxoMupm7SaG9iOg6tXIF8vkS/e64MGoRQQaOccvhHInZ/LcHGpFGtUCta2JaOYRpITa06wiBm7oUMZx7TXh8Dg3K1jtBV4NJ1m2K1gWWbzEZ9otADVIDSUMIOB4/3qTXaNBp1LB1iQ7VcjCdjTo5PqFVqVGsNErIaMxpoJna+RGt3l1defMjX/5sFz/0/DfQwJRERnf45frDg1u1nyRdyHB8eEM0WfPanfpLnb9/GtA2SJOGk10M3dKJMP/sCllCTViTgm4bJiabRFoJSGLKbyXwLKakkMZUkZmsa0ROCDoJ3nRxzwyCKIpboTppKIpHw+M/H3P1zAeZUYE8yU3iZkkQJmqZayXZ3rzIaDdnY3ODhg/tUKnuA5OT4hM3NTU5PT1lfX+Mk04a2TIs0TpRmcH+AZVmAoFwpMZ1PyRcLeK6LY1qUK2XG8ymVeo3XXn+Nqzt7DMd90iRBIJndhod/wgUdUg2SkhrJcRyTRAlJKrHzJoHvE2c3l24YpEnKcNDH0g2q5Sql22Ve+e53SVLJ40eP2FhvEUXKcq9YLFIulwjCgE63w2w2YT6f4+QKBGGM53msr7cZjAacdyfs7FwhTSEMYpr1JjevX+OVV76LaRr8zq03GZWVyXy4Jom2BP5xzOHxKZ7nsVnfoF5fwzbfZtAbMOj3MQwdyzQhjdlcb3N+dsZ0NmU29zg977K9u6PkKfWErWaBQ0envraBbsDZ+RkHBwcgUpqtOpZtcd7pspi5oGU1L01jPpsRxxGagI2NDc7PzhjGYx48dw6Zq+FrOw/YmAkcYVIsFun3+0RRhGlZODkH27Ix7Tx66JPG0Yow584nhPGE7vkpAkmxWGA4GqLpGuVyGZlIFr4LQlAul3FdZY/4lG6SlB9CQnm6ctzJT+hn3sHd/JTfuP46f+nVn+Sy9rS6ET44cZmmydZ6m/M7d4GEMFRQr6ZDrVonimJKlTqG0CHtE7hzvElIFHoIbJrtdZIoAqFq7oWcw3A0wFtMmE+nxJGStSzWy+TEY6Q247U/+oCdN2vkfjkEXSfOVLEKlQbFcoM0TZkPehQkSt8+iRmPx2iGhWFYFIslKsUilUKRoqUj7YSb2w1mc4/X3u6xWMzAypMrFik311nM56ofH0k+V2A8GuDOp4S+D3GEjGI026JUr2NbFtPRkLKvUUlyvPbzj7FOQf4vHkIK4iQiJUazNKqtOo5dRpMGlufhLlwqpSoaAls3GQy6CE3NQbpuUqm1mQx67PozfnjRJ58mWZC5uB46krXQBxSJNNZ1TCOrDacSORxdXPnxmGAyQb96FU1oTC2Pcqqv5sSndiwvHrtM8ro8lJaSz8uq72UK1kWfcPbsqj673NlFGF8NW7LGJnnZBWlZHpErGHv1mSuEkdV5UaaA8uKAv0eG9PeQCSspQVPXSSKPUf8cTWg0W+vYOdVTp+kW5VqTnavXKJSrpEIwuS752t8OGXxCYoSChIT94ycsZkOaZYe1qsOVtTpXN5tsr1dpVPOMhj2iIKZca6HZedKstiuFhtR1rEKF+voWlpND5cOKjKRJiYxDBt1zOmcneO6CIPBxFx4H+0cIqbO5ua16e6OIKE5IpSBNBZEmuPOzE776N2f4a5Lmd83MbUkxIMfTCe+8/Q77T55wtr/P53/oB3n5ky9gOoLxsM/R4SFLH8tZpk1tmhamoVbvy2pFiOCRpvMNBN/IFRga1uriL69hPknYjSO+L4n4mcDls6HPNVSgTlNJqkmO/q2Yd/7TgCQP9kBQCGwcJ6ea7gWrgFaslFh4LkmScP36Tc5OzigVS8ymUwWzFotEcUy71WLQ79NsNDg4OKDeaHB23uHmzZscHx9SbzR4+OghOztbTKcT9q5e5ejoEDuf5979+6RJysdefJ7FXLEuU0Py4C+ELLaXBDFIW8orN+84GJqG0DUSmZLLqXY0wzDRLQtN13DncyqVKo6dw7YtdB0KhQKL2Yx7995DSkk+lwcJnuezu7NDpVxiMOgrqD5NSVOYzRfsXd/jueeeRcqE2XTKYDhiNJlQqpSo1iq02m2GZY/fffnuaryH+ZjJtkujXuPw8ISjk2Py+QKGJsk7Bi++8BxpIgmCEKQk9Hx2trd49tYzeL7P4/0D5q4HAtbXWiRxzBuvvU7OcSjkHXXuC0XOz89XQh2ObbOzvQWaYDyeECUpGxubFEslTk5OmE4mFPI5SqUSh9Y5DzfPVsd7fH3EoKrgZMMwqDfq5At5hsNBZqdYBd2kvaaMKFi2b8iENPI5ePKAxXwMMqXZbLBwXTzfp9ZsMJ8vCKMQyzKZzuerPPjS5MBTKeyliXH5s1/u4ZrB6i2/fv21LCj/wdmCpkGrWSHyI4729zk5PkAKyebODlvbu0oSN04ypEiy/+gJpyen5PN5Go26Ejwpl5T4hQDXnTPqdZmOBtiOTaVWo1QqY5k2ZmSurv8X/8M3GLSnxFFErV6j3d4kjSWaJrJaus503GecldjSOCFfKNJst2jVKuB7FC2l4mdaOb701W/yW1/5Gp3RFMPJkS8UKFeqiKz/PAh9JDITawkYj/qEgU8qoVKtYtkOplNACoNCoUB4PCU/MYlyCd/5i4+5/xMd/CjEMC3a7U1qFSU0EgMxklKpSOC6LGZTeudnijwplalNuVJhbX2DZmudvUKeH18G4OwKBUIn0PRL0LFcQbRuFBFubCJyDhddGReXVg6HxK+/hhkrSLqfd3n1epdEv3itWELQmnhqOD3dsgZLUtby91OtStm8d1m046IkKVZDc4lgP9XOxNNz8PKz3j+yV5u82OVqH+JicfDRcmC1feQgrGsCQ9NIooBh74w0Cqg1WuRLVTRUcNY1JRmWLxS5+sx1vH+rzJf/3wEnfzhl60s6Ik6RxPhhwDvv3efxwyeUnRytWolWo0yrWcYPFgz7A2rNBvlSiUSDzISPVEjSNFWKWrqDZubQMJFoqhYnFHlKyIjxqM/hwT6z2VRlSNM52ztXcXIFxVxMYlIgTlMCEfPqzx3zW3/jCV4zoTi0ubq4ijCc1SmSUjJ3Xe6+9y6WqfPsretoWkK/1+Gtd95hMByjaisB3c55dvE1NMPEME0QS3eNVEmACsE0lXzRtHnHdjgzTFxdSWteZhU24piPBz4/FXpcQ9Xlz38k5q3/NiSqq2vjDDTyvkUcR4RhyNKVqlytsvA8Wu11zs86pAnIBHKOQ6vV5OjoiHq9ztnpKe21NqPRCNOymE6ntFttNF3g2Bae52GZBp7rsrG5wXgyptVucfjkgFqlzKA3YG9vj+lswnw2RQjof3/C8R8LnxqNUUOoti6UUpplO2iaRhyFkKRouo7n+2jZXVit1BEojeU0lTxz8xatVkspPAnBbL5QdWg/oNFocfPmTcqlMkma8uDhQ7q97qq2VG80cCwHmabcv39XiXCUlVPXfD5n/HnB4Lq3Ol7fjBhsLbh9+yYb2y3cwOPo9IzJbEqhkGN9rcWNa3t47oLXX3uD6WyG0DRs28ayLAaDPtPJFFM3CcOYUnWNWCvw1p17zGdzZCppNBtsbm0wny04OT5FypRms45lGxyfnDCbzdFN1TNdLBaYzWaEQQAy5fwzLmH+wg4uLCR0P+szn8/pdjsgJYVCnvl8jrtwiZMETTewnCKt9S0sx87OswCZqNaY0YDpZEiaJIRBiOd7eJ6rREyqSk2rPxyusoGP6lsugSfVLp6ZsWIF3Guc8s2t+x987arG9/QedrfXsQ0Tz/XY3FhnbW0DXTdB07Edh9lkxMnxIbPZFF3XuXbtBlvbO0RhhIaS/PTmMw6ePOa810E3dNpra6xvb1FvNHDnC0yhYwba6hiHN13e+Y+7FDaq5EsVrFxBHVqaEAdzCF0W4wFx6GFaDqVynbxtUbEEL13b5sZGnWLO4Kzb4c7DA956eELPhXx9k3K9TRDHykRBSoyczXw+ZT4Z0R/0iKKAJArJF/PU2m2K9TpxlCDDWN3ztkMy0ImO1MImqCa89l+cM/h8THtjg0+9eIuP7e2CH5AmEVIoXgxpyKh3Qn4xoOGOaGlQtgrc9l0+cfaYjx3e4YdGx5SWGTDQNy2+UF3jd2ob3MuV6ZgOHdOhZ+U4yZX5SrnF727vYf57/z75H/0x7Oeew7p2HaPeeCoYG6mGLgW9tYS/9ou/wy8993UiXZnUrKQfLxOfsgz2/TDwU9vlgLxU/JDLTHbZtkRG/pOrvy9WCKy+5+Ug/P7fF0Xo5Z+Xgv0yLc72v0JA/4+Go1OZIqKI6UhR7au1OuVKA4mmjOSXTkdCkBTg2//mOV/497ssyinVdwWt7+iAIi0gNLxY8NqdR/R6fT7/Y5/h6vUdpnOXd99+l/VGnb1nb9AZzwgXIRJDqUmtVjqqV3jh+lTKdWzLZjjuk8QBmlCSbEIK5pnUXZpCsVSlVKmRZHVWMpJAZMO3f/6I3/3T+4QFNamt3y9REg0KGzkmvTMif4EQqWq/kin9yYTf/MIX+fjHX6I3HjHxItCUcfqw38d1FxiGhaYbxHGEQGbG9wFpmlkRCgGkDKXgG4aJXShQjSOeCwKqYUANMFiqAIOdptxME978pM7rfzPE27oYAM4phEP/kiOIkvvY2t5lOnOp1hpommAxn7K1tUWn02Fra5t79+9jWiaarjEcDDEtk/l8TrPd5qxzTqFUYn9/n3qjznQyodloMOwPQMBZt8NiNuOHPvdZvvjFL7N75SoPHt0ljkNSJ+XBX4mIyk+PIb+WEHg+pqETJwl6kiiTC03Z+xXyOSIBvqsg4W6/T7lax/VmGJZNLl9gY9Pi6HifKE7Y3z+iUi4Txwm5XB7LMDF1E6tsMp2O6fROKRYLCKHhLnwsy+a5557j7r17RFHIbL4ACZGT8PZPn2PFBoEer+6r2e0Ue2yx1m5hWja9wYDueYdizsDSdUQa8sy1PSbzBa4fEsaqJ7nRbHD16h6ds3M63R6WY2PmC9RaG4Tpexwcn6js/coWILAdm36vRxiEK8GEnZ1t3p1OGY1HSCnZ2toiiRMODg4JzYjHHx8gQsDJrngsePRyj2dqNxCxUPaEQrC1tcF0OqE3GKFpGq12m043pZLGjAfdC9EdmeK5M06OfEzLQheKEHV8dEQiU2r1OsPRiOlMCbnpfNj24TlAIlIe1s/U89mwtRKDX7n1Lf7Qk4+Ri6337SVzpblUHywVHMU0T3RqtTqzmctitsC2HGaLKaN+j0KhwNpamzAMsAt51VkRpyRBSK/fwVtMEZZJq93G0HTiJMYwTIyCwXAwotftEIz9iwMRcPQzE95594Qf+moLANPS6HaO0YUgjWIEGrV6k5xTRMgUfzbgSnOd21c2OTIkv/3N7zINU8DAyJexSjXMfFHp7OsLfD/AME0i38OdT0njBAyDnOOg53JYlo1mqey8UMgTeDOKeoH5bEoyB+vcXJ12fzPm2//lPlf+uxbeyOETz92i0+lxNBojDZ1oMceOAl6a9XjJn1FAEpk2M6FTCxaYmjLfEUCYKdvNNIOv1tr0pUDTNbrVluJupCmaZqLbDhEJ0cMnXNm7ymd+6qcydzdIRkNmv/kb+O+8A1KJqbpVnX/652IONhb8V+1/xsIM+LN3fgwnMd83jMRFoFvC4R8V5V0mPPLp8C0lKBrOktkMWeOt+lh5ua588YGXE+mLvWVZsryoP1/+PJE991G2j96iJFPm4z7ubEIuX6JcaysSDZnAdpqgCZhvhPyz/+g9/sWfvc+irFa+z32rwbrVBk1HokhbKRJfaOz3JvzzX/8d3nz7Pr/1xd8jTeGTL71I0dYoOToFU0MnRUdkq5mUKJyzmCh1n1KtSa5Sp7m+g5krESNUppmtTKIwIE1VPS2Kw1X/rECQFCRf+1P7fPnPPlllFSKFjfdKGKGBaRdobFzBKddJEQiplHbiBN6694hf/8JXOO/NCUJVT0mThPPz84xmjwrAQqAbJnGSYGW9lksDcwFoQkIaE/o+Y8PgG7kiv+YU+E6hmImlL6kIcHoNvv0/eiz2nr64hX2lLpXEalKQ0qBYqhH4MZpmcHx0yPbmBqPRgDAOkFIyGPTZ2Njk9PSMVrvNw8cPWVtfZzgcsrm1SbfboVar0TnvsLe3x3Aw5Nlbt+ien1Or1Tk+PmZ7Z5vZRLF1bSfH4cE+koTzn4gJtwUbX1URQvPBmEDUkEDKwp0jdIFpWiSR8q1VbTxqck9C5T88nU159+4djo6OcHIFdXMlCYZh0l5bJ4yURvhSbjEKA9zFnJvP3OTa3hXiKCQMAiZTpfecc3LUKzX2ruxi6ibHx6e8e/8eT/aGyLbBD77yDACGJ9j6tsPsdkquIJBeSLvS5Lmbz5BGAbpMKOVTAnfMxnqb559/HsO0uXv/PodHx+ScHKViESdnM5vPePTkMYahI6QSZijVakwXc8IwJo4SyuUyOzub+IHP6fEpMhXUqlWKxTznnQ7D0UjJI6Im4knRw72R8vKXthCRCsAf++0NZtdD0jWNdrPBZDxiMh4pBMtQfZ9SSnRded0aVo5me5MEjUSC0JWrUpqEdLtnxFGAY5nYtkWaJHiuS71SxTCsFZt52brx9Gj84MSTaCkPa+d8+uQmTqwm25++/wlGzoI7jaNL2cnlvVxMgBKJYersbK8z6vfpnZ1hmwaT8YjHj+8zn07IOxY3b1xja3sbhE4QqJa0OAp5+OAuo9GAYrFAu9FirbVGqVIljmIMBK7r4nsz+r1T8J62tqt1Stz7kyd0r3WZTUb48wnhfEoSxeTLDQrVBrquk3MMcrZBmiZ0hxN+56vf4qvffYPh3MPMl2hu7lJutHEDf3XOLMtmMRkx73fwx0NEkqIJaDebNBstatUmvuujo1DIvO0wn4zpnB0zGY9ULfs499TxznY8/tVffZO7To/3Hh8ov+7pFH3UoeFO+UPDYz7jTiilCTrgxCGt0EXLgt1SXAipLBjeswsM0bO5Xs3Bqcw07mVCFAWYWT/x17/9Xc6HYxKh5nej3qDyx/44pZ/+GXKf+CTlP/JHef2//DS/9h8IUg3mZsB//32/xt98+TdYGD4sTR9Wm3j6/+9f32WoyUUQlR/IWFf8hfeNMbkiZfEU3L30cUqXIzDLtC9xuFb7v9jvpR8ugu9HXTN85CAczMfMZ2NMx6HeWkfTrdUXkaiaw+PnR/yD//otvvNHTklMleM7rs4PPbjF7WeeZ+fKNTTdAKkIRgiIhKA7D/in//JL3Ht0Qqu5gW3nCMOYJErRhY6JQNOytoUkZjYcoKUp9VoToVukmo7hFKitbZIv10EYyJWJrrqw43Gfo4NHLOYTAj/CzSd88c8+5jv/5hGJma4usB5qbN2pokmBphsI06LSbGMXSkqURAoSNEIhOBuNePO995hMZsg0pdM5I/CVElGSJMrNyNCJ4hghtGwiFOia6tt8irqSSgIvwPd9zFyOYS5Hkg0GgSCyBa/9QsTme4K9b+uUxiAynL74eLkKU1AMmsbe3jV6/QGNegOZpAS+z9r6Ov3BgM3NDQaDAZVqhWnW8mKZZmbUkLCYzUhj5VFsWYrFvHBd+oMBJ2en7O7s4M5dtnd3eXJwgOU4vPH2W6qXuJLS/bGUH/jP66vvljsR3PxHBfxKrIh4SNCVS1LByRFHEZqhyhlpouRITV3DcSy8xZxOp4Pj5JESZf+HxtWrV7l+4zogieOI4+MjRfCKIvKOw8bGOpVyGU3XuP/gHvsHT3AcG4A0TikXi5RLRe49vMeT7x/z87/6A5Q9NaHlYovP/eoevh/QTU9ZaxdpVIqstRrsbG8xmcx4/Y3XKRYKFPJ5RaorK5Wx40yjOIxUlvX8c7cxNI3RYIjnKxvGdrtFPp+j0+1xcnoKKMEVy7TodrtKuhBBkqRsbW1hGAaD4ZAkSWitraP9eJlrX6zR/Iat8lgJ298pcfMrDUYfC5AypVjIY1smk8mENJVsrLUVUjMckiQxhmmjmzksu4Bl5yDDXCzTIHAXDHq9rL5uUC4Vmc0mhKFHKgVxcpkhrWalp5mgT08/c9NHTzX+1Js/tsp6a0GRv/7tn+brO3dJxZIo8/Sku5zUAHRdo1ErogvonZ1wfPSYwJ+Rsy2efeYWpVKZNDtnhm5yfn7O/v4T5rMJuia5urfHzpU9ZCzRAdPQSOOY4/0Dzk9PkDJV6n1Oldp5gdxMHWf9qMQnfmmPb3z+HbpJR5277BrWqyW2WhVyIqBgQRwF+GHMG+895N2DcyaBRr7YpFxuYFgOhp1T80cYIuOQKHCJ3BmRv0DKhGKtipnLK3EOXQfLBqETeS7+bMZo1CeOfBLfxTQNqu0Wa5P2U6e8dVqi9NjiX/3J9/jdw7c5PzjgB2fn/PHuAX98eMT1yFM6AqtLtdRXFsg0wUthLDUGuskb5Sbv5CoKPRQaGTlH3UNCIGVCEoXEYYAldCbTOV/91neVhkF2THouT/Gzn6X88/82hR/5IZ4pfxx9qd0vINBj/tcXfo///lO/xtT0eHrL5rTLRd8PQXiXa8KLPmH59BB8qsLxwZR6FUBXRFrtqcD+fmOIyyxrsTqApw/te6kLf+QgPO530TSdRnNNCcRLFE1cQGQmvPZHz/mn/9ldzq/On3rf+nmJm09a2I7Dld1dru1dR7dzxKggJKSy/wqFToLBk6NTXnvnLv3xAi+UJLHEsUwc20AjxZ9OiXyfcrmGky+pYCZT1bpi2JTrLSVRZ2QTFCJr0E6ZT4cc7T+iI/p89U8c4BsBL/5KfRXMkJCbmrQeFVkKiyMkSRIRhhGWU0RYNrEgcw9JWLgz7j94j7sP73J0cpQFsgt/4SSOVJYnJXGcomlGZlGmbrCLNjdJmqiDiKKImefhZnJpUkg0PeUv/N8T/tu/Ivmv/kbC/+0X4Q/9XYE9FOSfXEAhErBsC0mKbdtMJlPa7XWOjk/J5Yr4XoCu6+TzBbrdDtVqlSSNWd/YoNM5Z3Nrk4ODA65fv8F8OlemDGenlEolTk5PKZcrFHI5dF2j1qxzfHqKlXPo9zuqtngt5ebftXGeSKZ7EUgoHBnc+McF8CVJEqvWEMNULVIZkcw0LRAqCJMq0tUnP/Fxru5dQdc1BoM+nc4Zi4USEtEMg0qlTD7voOkap2envPveHYqlAkJX3ITQ83nu2WfRNEG/30PXdZI0JgxDyqUSH//Yi6y9tMnmq0UKvxbSLY4AsBOTZ7pbXPnnBf7V0Te49+gOTl5HaClhnLB34xZnPZ9vvfIGKeB6CxzL4pOf+ATFYpFur8fp2TlRlFAplykXC7iuz3v3HqJpBlq2eK1Wq8zmM9UqF6Xkc3lu3NwDLeX05IQkTigWS+QLRbrdHoPBAAxIKvD9v7pL4l+oV202N/jZb36aqeESpQmWadFqtej1+srLWlPqTUkqWWTqW+VaDdN02N69gtD0i4CnKZH/s5Nj5tMJlmmytbXNcDhiOpvhet5TQfdfF4ABTkpDfvbB9/Fcfxs7gx07hTGfO3qWT3SuMcjNs/0s37uaAlkakAgJa+0GjmOha5JwPiFnCHa2NiiVijj5Er4fsPBcfH/B+dkRUeBnxDZVirLsPHGcEAcho34fbz7FnU5wLIutrW1sJ48dW3z+2y9z43wTgNO9AbkvC7b/lwLTj4fUNzcot9aQScx62eZTt3bZrhVIvAUnJyd4vk+SSkq1Js3NXUq1Bu7CzbgeGjnbYTbsMxv2CV1lMShMg8raJna5hlMu4wa+cpPTNJycTe/8lEG/g7tYYOgGupGj2d7GyJep9Co4I4P6gwJIGNddrv3jMp/6fyR83+I+f2Swz8fdEfU0JncJXRBCrFokl4EmkvCdQpN/1djlGzdeYPz8SxiFPJCSylgR+dQbLmWgyi5VoFDC9+495OF+JsZyqey67LJ9brhJNciv5ltD6vzJ9z6Da4b8zy/9DmN7sRpDSqKSVQsTq0dXAy/bzfuh56dH4tNj9eLZy3OmRLuYiy+P4lX2K1c1X8hEP7J8OV0xvS6A7OV5/SjbR2dHy4RyqYRj59TxqF5u/FzEaz93zvCKzw///W3KnUv1HQkvf2cdy9czQpVGpdFi68pVnEKBVAiS7MxoGQgwDzweHx1xctYh8JUYeT6fQ0shDTwWszF2Lk++XCcRAqlloplpdpI0AyNfQlgmqVDrdU3xp4EUP5lzv/CIrX8i+dzfWefJp6akJtgLnfV7Jdr3CzhT1UuaovD++WgESUq1uU5tbRvbKSClIJseCKOQs/NzJTWYrZZSqQIOQpLKRBlNSIlpmKQpaJqB7RTQTWflKyxEipCSOIpYSHjLtPCzAWh4goqrU9Nh6wCeexX+4n8B6w/A6WfiKBl0srm5ycL12NrcYr5wMW0H07Jx/QVr7QYnJyfU6zU652fsbG9xfnpCvdFgNBohkbiuR7XeoN8fkMvZHB0c0mqvMZvNuHH9JgcHh5iOybt33kHX4NnbN4mCOZpMqNwxqD62GO8GBDV1k9ffMine1am9pZMQqpqSBNs21UBOJYZhE8cJaRKjWyaFYgldNygWC9i2hUbK0dETHj15QKVaRdN0okgF8Vu3nsFxbCaTCcLQlFhLnGCaOu1Wk+efu42u6wxGIw6Oj+kOetSbdUrlHM24xLU3apwOzzimC4AdmXDk88PvPk8tv8Vrr91FyIRWI08SLNjeXOP5F19AWDleeeMOR8enCro1dOxsgfro0YOsdJKgCVXjRabEScRoPMZ1FzRaTfJ5m8m4x6PHDwijgJxtks/lGfaHzKZTlACdYHNjE9syGUz6VH9LsC3arLVaq1stShKKkxytLzmc9bpEUYoU+kq+dTabo2uCRr3GfLEgDiNMXadQyGM5BfKlKrrlZLCbRNNSfHfGcNBhPB5hGAa6ZRPEksXCy27vi9LOxYTz9PpfIjFSnZ948iJ1v4idwdGD3JxYS/n08U3KgRKmeYows9qXMiWRSNbaTXJmjtjziGdjQnfK0f4ToijEsZRBx6PHj5jO5zi2zd6167TWt0hSpRedSiWa8ujxI/q9cwxTx8rZbG9tUinnKdo65liy8fUiW19QQc1d9xm8vGDjUZ0bj3dw7ByVYpEo8EDGdHo9BpM5d967ixf7OOUipWodp1AkNQSGbZHEcVYqmeHPJ/jujDgMyDs5Gu11Ut0kFoJECizTxgs84jBgMhwwHSsjlDgOKZTKNNe3MXIFXN9DIslP8lSfWPyJ/6TI3/jr8Nf+05g/9PiI/+A3JnzivYD1NMTU9axdVM1niW4oaUapdOZlkhBJuFuo8LhYon3zOjduX+fZG1fZXttQmesy0xQZcVQqbo3QVOdHEicYCOIw4ve++QqLMOQC1M2CqoRqmOP5wRYv9ncoRg6hFvO1zQf8n1/7N/i5J5/gUbVLaiToQqKKl5dqtEsqzTKSylWEfDoQL4fi8s8VwvLBYL0abZpKdqR4X1Z7ibGlMuz00udmL1kuBr5HGHq5fWRilpQJ0+kYoVsUK3X1xXRBnEt56Svr5EOLf/FX79G75oGE1kOHxXrMc6+0kElKEsekSUqUpui2Q2t9k/Ggy3w8WmWCqr4tSJOYQb+L5we01jZI04Q0SViMJ2hoVKsNdDMLshnWnwrUgIgTvPmcKIyoNNaRSOajITJVnagi1mh9SyC1Ed/66wO6L/og4fZvrpFbWOiBRPOziyE1gsWCxXxCuVTFsAugazQ3TKajPovZCJJ4tUpCQBxFGKaVZdIaiDQjBKSZTZlA1w3QVK3CFCYyjYmjUA1qqWRBY1LuaRoLJ8+nA4+aTNFzOpGl6ux6BGtT2Pu6wJiqBYaQAlO3WFvbYP/wmBFDDMPg+OSIG9du8ujxvZVvcL3RIJ8v4HouuVyB09MTKuWSEjpoNZUNoaHT7/WRQmdnZ4f9/cc0m03eeO01qvUKZ8en7F29RhrF+K6nxNwD0Aoms+cSorKChdbecLCEzc5vxkSaEjRJ4mTlq6vpGlEUoZvK3cpwHGrNFoapXH7W19e5cmWPd955i8nEU5rGkdLa1Q2DarWKaVmMBwM81+PevfeoFItUazVMw8QyLSzLxrJsDvYVY/6527fRNJ3eYYeP3bjNrOwTVh6CgDW/xLpdAFGg7WzzSiPk9PCEB3deY3OthGNpuEFKoVAglUq45IXb17G0FKKIG9eu0+mec9bpcnquMuJitqi4/+ABh4eHLOZz3n79VQa9cxzHIop92o0alhZiaXDrmRuMxn1Ojo+Jw4ByMU8+X2R0OiLyfbRnUG1e2U3veS6+51KbF6jWqhzsPyHRoFQskM/nGY8nuK6n2gxNk2KxhO976IZOs9VgPBzRXivQ754SJQFpqhaRsZtw5h9TKBUxdB2rUCCKItIMilv6XT9VV3vfLHRzuIEhNRItoeEVOaj2mNgunhlQ8bOsSFyeKC9nLOpzDCko2iaNapXp4JgoTokCl/Gww9nxPgs3wp1PKVSqtLe2GY1GJMIgRhl/DHp9kjhiOpkQRAHtzXUajRYnh8cIBLutKp++tc3R/SHjb4/Q3k6wfkEnbCQMfy7g5W+2YS5xajaGLRiFCe893GfhzUlTkJbD5uYWuXyJ2WTOwvWo5nMKktUF3bMTFMSeIgydQqVEuVInSQW5QBL7IbmCpZKGVNI9O0aXAlOm1DSNNF/EqdWRQKFUYT4bsUnIjdc7vPDfJHz6NwbIMiQWiDTA1nT0RBkc2JZOnOgcC5Nha4NJocLm2QEb0z6aTPE1g7vNTaZXblB2PcI4QNdinru+jXRjhsMxw+kIbakrLRX5dVlWTKUgjiJ0TcMQGqen57z53j0+9/EXWRrfptn1dGKLl3u7pELyUm+HX7r9DV5vH/BPb3yXv/zW5xGXSxLLhcNqHFzys39qWwp6ZIEwuykuBDYuB8yL8XmhxHXp+eUY/ED8y1jPWYlEXOoffvq9H56B/+u2jy5bKSBNI0aDLsPeGUkUoElJqW/hjAxe//FzXv+pDgjYfDfPD//qDmuHJbYeVVU/bpISRRFBFBFLQDdXQUkzTCS6ygZRZCUhlWzl6fEBo+GA4bCH73uUK3XsXFH5DS/roJcIA0kYsJhOcJwC5foa5cYGtfYGmuWAzNwwpGR6PeKdP+0iNSifmnzy77fIn2psvFVGSI0kTUgin/Ggj2mqhYfQLSWbaeZorG/T3thB6OaKIbckJ8dxhEyT1QMyTUkl5PP5zAtWuXpcLLIuet4ygANQ5ZdD4Hcsi5PdNb7zC2Xe+rRECshFBpbQ+ZlfhmcHAisb7s32GpPJjFarzXA4oNlsEMchURRSKBbwfY+tbcWQXt/Y4OBgn0q1Svf8jN3dXY6PDllfb/P48RNq9Rr9fp/tnV2Oj48xbYvDo0OiKKJZb+K5Pltb25wcHUKiroWWSX8OX45BA2ssKD1QVoWVbgGx0DEM5ZsaBAFhEGJalrLKc11kKrFzOar1qmJjdnu0m20qpTI3b9xE0wTTyZgnTx5xenJCpVxBGYPoaEKjUikzHg549907FEsldNPEc10KuTzPPXubaqWCJgTdXldZQUYxuXyO1l4bra1QHGM/ol4sUS8VsIROGCe0dq/z7dcf8eorb1GrFNBkjGNb3LhxHdM0GI0GCOGy1i6Rt20atQYyTXnw8AHD0QjDNJR+cKuOZWrIJGA6GSpLzihkOuozGZ+TxDNqtTxOLoeTKzGeT1ksxtQqDppIWFtroRuSwahPlF60KA0GQw4PDwmjEKGrQOt6LkGg+obX1tcAGA4HmIbB5sY608kEz10QhSFxmmKYDsVKHc20lW57HCNlShx6dE5PWczH5G2LMIohc7kScsVd+dCODIHAzO47UmjPKwBMbXfVN3w5W1rNN/LpPwQS3dDY3tlAGDm9ypMAAQAASURBVCboiuAoSOmenRGGPk6xwPb2DqViGSeXZ+EuiOMYz11wcnLMaDQkn89RKBap1pskUkM3bUI/YDFb8OorbxJ/cUZ4GtI4r9F6rI719Nkh6TVN9ewmIYN+D9fz6Q9npFi017cplSo4toNh2OSLZcIoJAp9hsM+89mMwJuDTCmWy9RbbcI4JZKQoFPIl4gXHv58xrDfQ4YRBAG33CGfi6Zczzlcm4/R4wRN6OQMg1uzMZ+7810+8e5DPvOFGDOR6J7IWOWQqviPbzl0qzXEj/8k71x/iVfNEu/5MV/K1fhidZ2vllu8eutFkpde5rlnr7G3ucZ4OGay8Dk43md7q8nO+joa6h5OMzlemSoSGRJkJtUZx7GiH6eSb37ndc7Him+i0Jxllin4ZHePjUWVv/TW59ma10hEyt99/is8Knd5uvP3/VyDS4lp9s9KTnLZP3x52GSvzTD0i31cfq1YBsvLDIdL/5EXGW6aphdJtvxgoE7lUoL1owdg+J7Y0dkSQkYspgO6mXm0kCnn1+Z88c88Icql5IcGP/t3r1Oe5/jYN9sIF6IoJggjgkgxFklTvMUs0ywusraxQ65UJUUnQSj2nUzRSAi8OafH+4yGPSzbVIbdCISuZXRyDU3o6AJIYhaTAUKmlGstpDCQ6ORKdZrr29j5kspK7YR3/3LEYkciYrj1d2wK74YUzwXNt22UkhZ4syGht6BUbSBMO5OSlIrlrZtU600ajUZ28S73qUGSKAGGNE5J4gRTV8pKyspR9fOqOnFEkiRomoFumKBppChYGiRCShYy5eAzbf67/yHgV/80SENgpzoySfn0myk/Ow35XBRhGg61hjInSNIUJ5djPp/Qbrc4OlbBdjKd0t5Yx/M8wijEnS9oNhtYpoWmaQSBz3QyZjqdcm3vGp4fsL65ydHRIaZp8vDhA/au7ZEr5HDyeUqVEqcnh4jMCFvXdaQBwxcDVQ8+1sl1NZI4JA5DBBpCNxG6pmq0iRoTQkjWWy00oRFFCXfv3afT7eD7PoVCAd/zCIKAQr6A49gMel3OTk+p1GqqrxCBZZm88MILXL16hTRN6XR7dDpdppMZxUIBx3ZYX1vH0A065+d88xvfwPM9TMtiYYdMbQWz+vcX/O7Xv03RzpHTBHHkc+P6DZ574UWiRPD2a2/QqhVpVMs4to2m23ge/OZvfZnpzEUzTCbTCWvr69RrNcIoYDQaMJtOAEngLdCQVCsVdNNAkiBTyWQS8eXffZ37jw65c/dt0iTg2Zs3ydsG/rjPte11yvk8hXyZ8/6Ik/Oz1URQKORwHBvPdQnDgHyhQLvdZjLJMmBNBeb5fE4URxi6TrlUwjIthsMxkpRypYxpOhSKNXTDQmiCJI7RhGQ6HtLvnDKbjHBdlyWL9Kn57YOFNJaZrVIkEqwvqgBMbG8VhMVTWfAHsxwyDobQBJVaCQwHYeTJ5YsYmkHgzqnVyrRaLcJAdQgUnBzjQZcnj+/RHZyjaYL1zS22dq/i5IrEkSoTFAp5zs5O+dZrb/Hm4xP0rslac43t+g63X9sDCbOmx/nzA0QYcHLwhMGgQ5JpQl/d3aNRa1DMF3Dnc+WwpkOaBBw+ecBkPCSRKaZlUanXKFXq5KwimlSEzVQoMaDQmzHonRMFAUhBIZfnuoxYj0Miu8B6HLJ3ts/tk4d86uAdfqj7GDvyEYlEixRxSo905gWN7hbsPyd5eLXJN6+9yBt7L/GVkc/I9/CmUwJ3ji9SZhvbzK4/x8DMYZqCjVael5/ZpVUssZjFdPpznhwd4XsuRpZlxEkMWdKQZN7wq6C2RDSSlOl4zte++xpBsmyCEwrlA17q7bLuVrg5WePP3PkRDKlxVBryt1/8EqEWX77ygJKUVJF8+YSaa7XLqz/BUwF8ubBbLfCW4esSk/nypzwV8OWlh7moQounH/4A5POUzOb3sH0Pillq2SNkjCAiCT16nTPOolO+8JcfMd4M0GL4oV/e4tk313Aik2dfrZPEEX4Y40UxSSrR0UiCgFGvg6nrtNqb2IUyjfUtyo02UjNJxRLEkCo3jANEGiGEkrpYYvKqcK+rmrIG/nxE4C4olCsYTo4kW5lIXcfIlVjfuUq53uD8B2Me/7yq3zZe17j5DyXT3jnFr3rYXQUNR4HHbDwg5+QwnULGEJRopIjsJw5DJpMpwjCQQlsSB1cXKE0SkljB1ZZlEScxYRSSpKpGHEfh6nnV1qRj2Tk0zVCewFL1O8eayT++fY/j8oz7L0FYsSCWynw7AUNKbiYRz5UUVFgolRmPJ6ytrTEcDSmVSoRhiK7rOI5Dr9cjly8wnUzY3N6h3+2yuamyY8fO0ev1abRazGdTTNPCc10WM1VncxcL1jbXOTo9pr3e5sHDe7jzGZBZt1km5vM54h01tMqPTMyRwNBByggpUoQpQNcuPEF1ZVqwsbZGwc7TbrVxFy6vvvKKmoCz9prBoE+93uDZW7eoVirINM1aeIb0uh3K5Qq2ZXP9+nVMy8L1fN5880329/cpFApoQgWVRrPB1StX6PV7BFEIEnwnwsuFAFyVWyyCiG++/jq9/gjbzKMbapLRnQp3j8f881//EkkssW2LJE24fusWwqxweNqnNxwwWyhjhHa7hZCSk+Mjzs9POT4+4PjkENKEyXiAEErZTKLUw4ajPkkaMhz0WczGiDTGMPO8/d5j3nvvPhpgGiZra2vkc4XVcCsWimxvbZGkMefdDlEcoulKhztJE2azGUII2mtrJHHM6ekpSRzj2LaSyZRgWgZ2Lodp5dncuoph2kjUwgqZkMYhnVOVUSr0SU1qysNarurJ74/KF0mHYC0LwjPbY2b42Uvel+0IPphJaOqO31hvY9tFdN0hjUKS0EfEHqeP77IYDRmPhriLBcNBn9l4QBR5tNptypUqdq5Aik4uV2A+nuBORwx754zHQ8I0pbG5SaO5hqXb6MLm6hsbOFMLaUje+vhDfHeO7y6wczbrW1s4Tk4tvIWgXCkThQHz6ZTzkyMCb0YaBRTzOda3tqi11giTJBOiMHAsB3c2YTrqMuifksoYSUKpXKS1tUm+0eKRU6EUeHzy4F125wM+cXKfF4/ucqVzgJlEq7ikGRZarcpxa5u//Qst/syX4C/8luRX/5MyZ8Gc016X+0dHjNwFQgPDNNnY2aW5tkmt1iLyY0I/5ODoiGIpx9WdTXrnfe68d8jXX3mbx2cnigOkCRKpMr6lRc/yIJQDWqZcKASm0Lnz7n0eHZ+uetGFVCIcTb/IJ7pX0KXOn7z/GV7s7yCBf3rjFb6z9iib25dj5hI4LC8eW/55sX7LAm4Gk39ATYtlkLyoMl+Gop82XrjIoFcuSZcy5T9ok6iseWUn+wdsHzkIXyTiSm9ZAAkR3/yFUx794ASAZ75W5TO/soWMBY3THFuPi+p1MiGRUgWfOGbY7UCaUm+0MMwcQjPBMCjXWzTXt9CtHKlYEp+UwbZGSui69M/PiLwZWhIriAMJmiSOlP+nadsUK9WsB2oJbwuEbqBbOQp7Td79G4KoDMYCPva3TJw+kMZo9xbMu11Cb8J01COJEyq1hqrhQkblV8YUukwZD5TAgmHZmLZyPsl8F1ZFfJmmiIzBHUVB5m9soGkCw9AwDEWaMAwDEMRRgi6UpnZKSiITZmuSu/9OiNQgkBqT7S26uiC+NMQcJD80HqA/eUyz0SQMI8bTCaZpK7OD7V3Ozk5pNpqcHB1z5epVZpMprVabbqeDRHB0cMDt554jjGKuXbvG/v4BAHfefpuNzU02NjfJ5XKUyyXOT0+ZzWecnh6DTDKIXblpLZ6JCSqZ8MlbNoZuEMURSRIjhFB9wSgCmq4bSgRf1wkCn3qtxksf+xjX9q4qlCBKOO90idOU0XBEvVLD0DTW19pomobr+9x7cI+Dw30lzQgEnodlmjx3+zZxHDMcj4jTBCkkrudSKhS4fu0a165dJ4gj3nzzDQ7SE6Su7uH1oIZTLBBJ+NrXv42lm+hozOcepWqdvRs3GMwWnHV7DIcDkDG2bdBaaxGmCUenJ/T6fQzDIEkiSBNm4yGBO1fGCVJNS6HnEvkBpWKNXD6vxFaShMQPiHyPct6maCXEiUd79ypeCocnJ/ieSyFnUq2UVtdfaALLsrAdh0Ihh+t5+L6PYejUa8qa0PNdDMPAsizCIMDzXHRdp9FooGsGk/EEXROUSmVsu4hlFdBNE8M0VhOT7045PFTs14uWjvdlBMui3OUpMIvN7UVZdUSIlF5hmmU1F+/8YGVtNQGhgUIfTIs48EkCFy0NaFQcbu1sEExGuNMRT548YDwZY1kWV/au0Witky+Wmc3mpFJiaBqD7jnHB09w3QWm7bC1fYVWc51yqcpsOkOQUnti0bpfBAnnH5vi7wnsQonWxiaFUolytYrruuiaTppIZtMpB08e4i1m2JZNpVxhrd1WpYV8UdmYypSUhDiJmA8HeJMRMomwC3mcfJ5ytQqGhZkvclBp853rL3HU2ETP/IFJkqwEIEDX6RarvPXiJ5G/+O9S/NEfY/urLcypjVuQfPXHj+g7U8ajEWEao9s29bU1DNvBMBx0YWJpBo1KndFwgRuYvP7OQ4bjMd58zqDfx48CisUiz9y4yUZ7A00YSsFQExfZJRJdV2jXsoabJhGxH/F73/wOsyhSHCIBQqaYqc7mooYAWl6Jv/LGHyIfW0wsj7/18m8zNS8JplwqVUhUl8uFiMdSGWvZliSfHnaC1WtXEDaX4OdlLF4SqpZZMk/XjS8/zqXdX66/vD/7/f8LHO3ki0ihq4wvg6LOfjzm7l8KkQYU9wU/8j82yc2VgMfacRErUWpMhqFn9PaU0aCL5y4ol+sUSjUSoakALwHNoFCusLG1Q75UI83yTpa1J1LiaMGoe8p8PEQkCSJNkEnIeNhDpinVahOh29m1UFrOUkrVjE7C65855+RzCgbb/qLF5m8ZK80UQ6ZE3oxx/wRvNqZQKKNbTnZSJcLQQdPQNY048JgOhpi6gpGFYWCaFoZlr+oCy3qDAIIgUO5Bho6mKyhl2Rer6TpxvIRlQdd1NGEoARBdcPhHY6bXJKRw5Z9ofOuVHv9CmHzJsIiyi60JDSeO+PHYJT14TK1eYzQas7m5xWAwJJ/LEfhq4s3lcqRxTC6XYz6bkkpYLBbkCyUFMUkglYyHYwo5h2Ax5/r1a5wcHbG1vU3n/Fw5akmYjIYr8RXNMAiihP2dCYGRoCWCl3tXcUxLBaQUtaCRksj3SOJIQfAZvOW6Lq1WE8exub63Rz7nIDTB6dk59+/fJ0pi8sUChqHjux6lotLpXXgus9kUibKwPD46oVgoUK/VeO6559ENnbPOOU/2nzAY9qnXa8o1RdOo1+t4rsurk3cAMCMD7TRmq7XO933qU+TyJoPxgMPTYxZegGNblIplLMvBjyPeevttSCLylomQEcVigVKpQhwnTCeZYlscEfouYeiRcywcJ2MhCxWsxpMhCIlmZG1xMmE+HbGY9NCjGS8+cw1HN8nnCszmc0bjAY1yHvNiHmE2nTEaDRFC0mw2SNKYbqdDkiYYtoVpK5ENz/MwDYv2mmK7TycTBCnFQgGZSnxP9TKXSiXsXIG1jW2S9GIc66SEYbQqGa0G+odMPk/Bd9mxXmZId4rj980ykt9/7lJzgG0KNteaaNoSEJcUCmXKpTJpHBGHHpapce3aNTY2tkliVa8sOA7+Ysage8rJ0WOiwCVXyHNl7xqbmzuEQQJSI5/Pk8Q+k1GH7qMjWr+heALeRkz4k3lM20Em4BgW9UoZz53ROT/lyf5j4jhER9Jutdm5ske+UMVdBMpIXtexDJPpsEune8R42geZYusma2vrrG3s4ORLzD2fKFUdA88Q8rFHb/LM6QOM+MJCUuo6fq7I/Y1rfLl9jY6d593HB2ztbHAzXOPavyiBhMGuy+OfmJMKQa3RZG1zk3y1QqFUZjGdI2SKYWiUykVcN+TB4xO+8+Z7vHP/ESESaUg2ttrcvHGV5565yvUr2+QcO2u9TNGElvUPqwCoZYxrTdPUtZQp+0envPruvUx6WIJUsPSqlivhpw5e5PNHzwHwle27/Prem5fg5PeNEMmFBGX2gJrrxYfgxR8ck7Bk8r+Pg8Aln+Knh13mqMSHPv9hAXn5uNA+Wnj9yEF4a/satcZS9Uoy30157b8OCeqgu/Dy/9Ui/HKPs9NjgsAnjSQSDU3TMQwdU9dw51OGwx65XJ5mawPNsDPDZwUx67qOaVnkCkWq9TpCVzCvRMtelyBliEx8ZsM+o34XGQV4swnBfEGxVFPtQwgFfS+vixBoaUw31+Xb/+E5qQmFkclP/MqzFM0aqaY0mzVSNBlD5CthexTkKxOJqSmhPiU2kjLodVU7ja68ONNUYtk2lm1jWspMXKZP1xmSOMb3PaJQKWktIQvDMDAtC8uyMA1DWRciSBJJXNN49IsR0gSnD3u/bLJYSOaJYN/QecU0mQkNLQvohcDn5e4xeRTEHYYBxUKJ07NTms0Wnuexs7PD8dEhlUqVJ48esXtlD3exYHt3l5OTU2zb4dGjh5QrZTbW1zFNi1wuR6dzrnSZ7z9gc22D3Z1t4jBceQebpg2WwflLSjO6cK4j74YkUYJlGCpTtgwSmaoacppiGga60PE8j9OzM2oNpTcbhREylWzv7AJw3u2qdZqmSFi9fo9KtcrGxjpbm6qn8+TklP39AwbDEYVCSfVrG4ZS1DIMnhzs0+31qFQraLpGr9vj+pU9XvrEx4mvqsBgRyaL/TnlSo1SsUC5VkXqJm+8/R5PHj8hn8+RyJgw8tm7fh3LtpEypN00WG8WqRRybKy1yFk2i8UCz3OBFDKbucVihpRJxpw3QFcENXfh4tgF7HxJsf7ThCBM+b1vv8nrb7zN8dExUZSwtbNLPuewGHdpVksrluZsNuPw8JAgUGWHQqFAtaosLP1A9YYXiyUGgwGLxYKlTq9hKhcrXVdtUJ4XMh6PiZNI1ZGtPE6upFAeqRS3At8nDINVRnEhw7pEl9XjF/+/qJdV/cJKovC8OHkqO/nw7GGZ2ggQKYYOO7ubym0Lg1RYnPUmvHP/EbGU5PMO6+0W1XKFQr6EO3MhiUhCn+mwT//8GE0kFMslKvUm+WKFXK6M53qqh9z3CVyX89NjfN/jyqst7ImBNCQPP3tGvlhAxAm1YhHfnTGZDjk5PyJKIqrVGpVyhUazBZpFLl/GnXuIVJIEAZHvMup3Cdwpug61Wh3HKeDkighpUHBKuAuPJE0ozQZ8+uBdaospehxmEKuaB9+6cpuvPvcDpJ/6NFutOtKNGYwTvvytN/D9hKv/3yLOQCM1Yf8XXOztCkJYypZT06lVq4S+S5KEJMQMx0PmixlnZ8d4YYA0DNrra2ysbyGkiW0ZrLcL3NrbYGetjUCsrFaXGWYSR+hZuSeOInXtU5U4fPO7r9OZTLh4w9OxMpeY/NU3foKmVyTSEv6nl36H08L4AyPhw7SkV0jKqk6s5sJlmBeXxuWHte1+WC/v8ju9P+g+lQ1fHu8ftp/voTb80Q0cDJvm2iab23sY1SJv/GcxwxdVBnvzfzPY+xUdGceMh0MO9h8znYyRifKgNHQdmUZ0zk/RNIPNrW2VEZJiCFUnVpOxqp2aps50MgKpIGvLKSjrQSHQlwIWachi2qN79oRpv4dtOpQrLYQw0BGKqJWdTF1KojTi2z93wujZGCHhk7++wc7DOq2NXcr1NWQGsyyzfCFTvOmISf8ckUQYQsPQBIaW4k6HuLMxQhfEqIneNE0SKQnTFNN2WIqSP3VxhCCOlUF6HIa4rodhO2iWhdB1RXaIFYyrmK+Szo8lDF9SA37nX+oUHgtSQMoEieSOYfCbTpFZrrACAZtpjPvkIdtbW/Q65zSaLSajEfVmk/l8TqVexfUWSmglimi22ixcj0qlTLd7jpN3GA0H3Lp1i05/QHNjS8GuSUQUBkznc67cuEa3p8oKUsjMG1iSFGF6Wx1vYd/AfbIglilhGGcmIEI5cSWKGBOGAUmqFjNSSJx8njBO6A+H2JbD1sYWe9evI2VKkiQ83t9ntpjjBwHlShUDjVIupwRKpORg/wln52fk8kWkFIzHI8qVCi+/9DK1epWUmHsPHxDFKWEQUSyWaDQbGM+q+qqcxcwfjikU8qsJ5datW9RqNeaey2Q2Jwx8kjimWiyxvbFFkEh+92tfJ1jMqBVMHt17C3cxZjIeEsUBSiBNQ0egJRJvMUPTNQqlMpqmqV53CbGnatJC09F0nVRIJrM5o/mcyWLCYNzHdhyKpQqPD894+927q/HVarfZu36dKIqZjifoQqNeqRFHEf1ejzSRGIZFoVBECpjMp+imyfrGJtPplPFoTCJTpEzQdZhNJ8RxTKPeJJcvUijXSYRGkKQsFh6e668gwfdvF2W6DxKtan4RJ1PNOs8m2g8PvhdpzTIrWtqoVupFdLuANHOYuQJSM5gHAYE3o1wqMZ9OEYaGYVm4kyknB084OTxAxCH1WpVrzzxPa2MX3wsRQmA7DnEcc3y4z+H+Y+IoxDBNNrd3eSZ5ho0nDZBwcnuAfstkMpvw7t277B8cECchpqlzZWeX7e2rOLkcvu+haWq/ugbD7hnDzhmR76ILSaVcYX1jh0p9jSgVBJkDlGEa6DKhcbrPZx68Ts53QWRK8JqG0HQG+QpP9DyaZdIqm7x86wr+ZE5vMOXu40NO+h3KT0y2f6sIQPeFBdPPJ3gLF1KJo+lUHId2tcqg0+He/fc4PD0giEKEplGuVbh27QovPLvH9e11vNkC1w159GQfU9dYa69h2zYISZTGyuIqq1XESZy1LMVIFKpnSY3JaMrXv/saUXL5+l6qzQIf7+/yJ+7/AALBu/VT/l+3v0bChb2gjipL6rBKrpZPylURl4uMNNv98iltmXZfCuEfxsC/sJ99evyqEqx26eUf8BJ7avuwsf/7bR+dHa0JNN2kWK3Q/4sF9v9tRWxqvqLx4v9gogcZfJDGeIsZh08eKY/SzGLw9OiYOEq4snuVQqGUkXIAmaLrAsswKDo58obOeNBjPp1RqTVorm2ydfUqlUYTNCPLVzP4gIQ49EnjEMsy0DWxWsFoQgOhoWkCTSbsb3W48wtTENDYz/Opf7KJiCSWYdFsrdNc30Qzray4L0AKdFKCxYhB94jQm6PJlFGvQ79zrjJnQ0PXDUzDRGYtWGrBkSo/4azemV6CTlTWmBCGChLXNI04TgijkDAKs346AYkkLWs8+MWYxAZzCjf+NwMRZCpC2XItRcNY3+StXFnV6NIUA8lLsxE3zw7YHnRJxgNKlTLT6YRcPseDu/colSskUUh7Y4NB7xyhweHBAYZhUq/WQOgUSkXOO2fYeZt79+5RrtbRNCVIUanVODtTzj8yleiG0s4e7roENXW3ld8RMEuQKLlJXWjEcYxt2eiahm4aSvM58IkC1Xv61jt38FyP+WxGqVjCMG1KxSKGruE4DpPZjLfuvI0XeBQKBQyhMx2PaTYaPHPzGYwswA/HI1zfx3U98k6OYi7HRnsNQ9fpDwZ87etfIwh8nFwOKSSLpuq/1hYSrRszny+QGXxbLVe4cf0ahqHT7XS5d+8BuqZjW4rtbjkFJq7Bb3/lW9TLJj/8/S9QsAUymOPPppiWQ7FaRWpK9lRHJwxC4jBGFzqaMNGEklH0XQUX5/MlJLpaGMqUMHSRaUySxqRCo9HeIl+4cMiwdEGrWsHM1MWCwMexbYqFAo16ndlsiu975HIOTs6h2+spQRNLITemadHv95FIKtUKi4X6/oZhYZo2puWwsblNkkAYxvh+yCXVXla6vVzKXTO4/TITternV3B0tzAhFktzdvG+H3l5T0hEVvLT2N7aoFAoYpgmcRQRhT4iidFkmln1zZgOBgw6Z/izGePhiFyhRGNtg1yhhG462HaBOIxI45DxpE/gL1iMx+hCp7m+gZUvYuYLmJHFre8qpGVad3ln5wHDfpde9xyhaWxt7lIslClVyghNUCgUmYxGGAjmsxG+N2M47BFGEXa+RKWxhuWUMMwcaCZOroC7WCjOyGLGzfE5P3z8HrVgoYKP0PBMh+PWFgfXniH80R9H1wQ6cO/JMXceHeJFPsPeufKctmxajW1u/e+bWHOd2Eq598c71Bo6/lzV4Bfegul0zGDYZzpTi69CpUJ7a4dEgOPYrDcLvHz7KrutJpPBGC/Qub9/zswLVgEmzdjSWga7qlbMzKEuibOsVKCnknfvvMf9oyNSKVaKcRf/gpHq/Nk7P8KNcRuJ5B/c/jp3GicsQyAs0ZJsfteyFjmhJDdV1quCrZa5+b1/bXfx/myv4unnlgezHH1L8aNshGfP/cH57fcSgOF7YUdnTNaz51y+8ufOiHOS/Ejn+/4veXJnFzejECmChCj0ODp8zP2773J08IRhf8jG2ibr65vouqGYmyJjx2oC0zTI2zbBYkb//BzbztNsrWOYFk6+wPbOFTa2dhGGRSo0lk1qmlQManc+ZdA7IYk9hJCKcavraAJcOec7/6dzvHWJHgl+4P+zReXMUrJtqbrRc5UK+WIZMma2FBnhgIQkmNM53ef08JFynolU76VpWhimQRRFRJnesZCpsptDLVp0y0Y37Uz1Z3WaVmv8KAyJo5A0TdB0gabrSJmSM0D7wyXOPqco+1tf1mm/o6v665KIgEAIRawZpSmpYa6y77004trhI35sMeTlJ/e4ub3F8dEhzVaLUX/IzvYVBv0BWztbHB89oVQu0O10ubJ3HdddUG+2mM6mJHGIu5gynU659dyLzBcum1vb9AcDfE+da4mq9eqmyeRWTFRSX7b+ikEUhUSBsiLUTVOJQMRKIN6wVBuMSBJknIBm0O0PeOvNNzk9OaHWaKIbOnHkI5Bcu3GDQrGA5y6QaapgVkNnsXBpNBpUqmWuXd9DaDAaDbh77z36/T75XA4ZJ4gUtrd2uHHjBr1+lyAMCPyQmeYx1CYKQvdsipHN/pMD3n77Dr4fUC6V0JAYhkGz1aTf75NKMAyTIPIhlriTeVZXOySKXa5caaObKZqWEvq+KkEs+QBSoqcRoTeFVFLKly6cvdKEJE5IEqX+JrM6W+R5xIHH6ckhs/mUyWyG7WTi/QIqeYdWJU/BMtnZ3sX3YwaDIZqQNBp1At9jPpso20igXK6QpjAeT5CppFQuMRoOieOYUqlIqVQiVygynoyRQK1WxXEKFIolklQQhGo/y87FbFgvZ6FskcxTkKCmQTF2lEKWUAxpb+Ux/K+btKQ6N5qCZIt5m1KhQBKFpFGIkJEyQpESd7FAF7D/+AHd8xOEBu2NTbb2rlNprjN3A6VshyCOQh4/uMfp0T6ShHyhwM7eNSqNNhg2YRChIbj19jbWRCc1JO99+pjUSKjWyty4+Qxr7TUMIUhjRbpy8jlC3+fw0SMG3S5RomRZm2ttamsbFEpNFotAEThlSt4yyY36FJ/c5cWHb/BDgyMKaYIuVAuf5xT4Wvs6b155jv6NW9Q219hpNuienbB/dMadh4dMA59YQLm1TmNjl0K5ys6TJpvfVMS9uy/2iD4rWMwmHB8d8+jRI8azCVKoxfPG5jbrW1s0Wk1EAovZgpPjE7Q04drOJr7rcXhyzqt33uW9B/dJkhRdM5EppGmSZZxqPl+KWqRxosZymqBJge8F/N63v8sis2LkKXUqNVJ2Zw3+wts/hpnqnOcn/E8v/g7BpZalbKhnwTf7//JHqMc1VKasadpFMF4l3Zcz4Wx0igsO9QVyeVnDYfnqy/Cz9q8Nxr9/aeXDt+8BjhYsKh6/8ZceMVkL0BLBj/3SLt9/eot8qYLMqPqZPAVCpMg0ZtDtcHx4gGNb7O7uXjDZsi8opcygG4s4jTg6PCRNUq5cvUKhWETXNEzNwDIcGs11NrevYOcLKzhAE6BJiZQx3mJMv3NC4M3Q0gSdFNKYd186Z//fUIy7K29WePEL7UyZ5WJlFIYhs7lLsVSlXGuRarqSMSMjgMQB3mxIHHoIodpEdN0gSVKSVMlRKmGDgCSO0Q0L3bQQmjJQNy0bEBmZRfU8ykzGME1jrIwlLaTESGKef+kG479RI8pLDBee+0cGdmSo3rhs8EgElUpN1aPX1plV6woWTpLV6lQHNkKPwr07Sh0nCLAdB89XylPjyQjf97FtmzCKaLdanJ+e0F5r8+jRI/L5AqHvkc8XKBSLDPp9ytUyx0cHkEQKxhEammaSGhqTT4I0wHAFjfu2gpnTFCGUl7DSjA4yCUFl5qELMA2Dq3vXMW2b4WjEZDpBahpxkrBYzDANjXKpzI0bNyjkc+i6zuHhoapTJwn1egPHcQgCj3qtSrPZYDIZM8lYsqmUTKdT6tU6t2/d4vbt20RJzDt33uFh/wkT0wWgOsyhC41ao8b9hw+ZzedEUYjn+zi2xd7eVTY3N/DDkNffeoder4M36zMdnSKI6Y1cvvL113CHE/69P/bTNGtltCTBm09Vzb5UQTNsDMNC1wRpkhBFsep715QmkEwiXG+OEFDIF5UAShKjyYRxv8dsomz3Tk5PWSYVw5HK5uq1CqVSEU3XGE9HhJHyH87lHGVFORwR+CpLtiyL4XBEFEWYlkmtVlPCI9ljpXKJ+WKO67kITcNx8jhOnmazTRCnLIlliIv7OZuFnoL1lpuUIKRgbVEBYGp5LD6UCfv0O5eZzipr0gS7u9voukIQADX/GAZB6OP7qr67vrXF7o0bRKkkFTqaaRJGAd5ixvn5Ca47J/BdSuUy21euIkwTqRtIoVMsFEk8F382Yfa1DrW3lRzp6PtC6t+3gaFb2JZNzpB89uXnYe4ikpROt8PCXTCbTZBIavUWxXINsszNNDJNg/mE6mzAsyf3+Nmze3z+9B7PuyMsMrMEIRiVaty5/X2Inau40xGGbvGtN9+jP50xGY+ZuXMSQ6Ncb5Ov1JGZiImpmezYdZ7/Jw0MX8OzI77xR4+JcJkOeiRRiKabNNob5HJlCrkijqFTzZvsrW+yGM0JYpt3H5+QGhpBEPDwySNm3pSUlEajwc7OLrqms9TEF0JHZn3AQqhsd5lcSCHRpcbp0TmvvnePCJT1bQZ0yEsh79959Ck+fX4NgH+59ya/u313NQ5ENrbUO9IlPoImFP9HzzLh5eNLNEZcLiRfKlNexEmlx3DBor7I0ld4jBBKWCrzOkZc6pN/etff8/bR4WhD8rVfPOLxx8cAPP/VJj/4L3co5svs7t2gtb4FmolEy7SQMz1P1Ao1CgNOjg+JYx+ZKoceTegZrGeja4LT82Nm8xnrG5uUKzVYnWANgY5EJ5cvsrm1heXkAI1UqtOtIP+UOPAYnJ0wG3bRYp+hNuI7f35AXFT60D/yS7sUFoa6qYWmVvJpwmTQRwhotDdoru3QXNsBw1FuIYhVzUBjiVYLomxFbZlmBs9Aki5XboI4liQSVTO2LNWOc6mgL7KgK7LzkyYRJDEVU6f+k9v87q3HANx4L8+Pnl3BVBKuq0AMGju7V+j1+7Q21/mqleNhc4NxsURkWYp9naboQvBM55ifKuZx53O2r+5ycnyohDYOj1jb3MFx8jSadebzCVEUMJuNGPUHPP+xl4jjlM3NbfqdMwQJZ6dHdE+P0bK6tW4YirhjaAxeUhlScV/D6auJZ9ma5Hq+Ou9S1T31JbNSgG3nWGuvc33vGrZjgxA83t/nvNdhsZhTLJVUe41hZK5FZZI44tGjRyzcBYVCEcsyWSwWNBoNnr99m631dZDw+MljzjrnnHe7FIpFRIpiAFeqLNwF75zeISiq61bp57Bsh9vP3WZrZ5coSXn7zrucn5/j5ByEpnqhdVNnOB7QOT1ld73F9mYTXYcg8On35wz6C+aDHj/9kz+KpqdombxjEIYIQ8PJWzh5C6FLwtAjihIsO4dhWKhJIYE0Vhm8WK7YJZHvEvsutqkTJ+Hq9uz2p3z9229wdt5H1wQ5x2JtfZMgTOj3+wgpqdWqRGFAEPgkaYJlW6ytr+F6LpOJgiodJ8d8scBzPaSU5PN54jhmNBwqoR2hbO1cP+RibluSsy5PGBfZwOXMQBMXgh0z28O1soz6A4nwqjKXTY6pYqmi+Adra3UM01ElJKErzXjLQReSNI0QUlCoVLHyRcI4RktVWUxLYw6f3Gc86mE5FqVylc3tqzj5MoZuK0IgElOX9DunHB88we8tuPJ7NQDcRsjoB1UtOQlDNFIqxTyD8w4PHzygN+iTCIlmqV7cUr1BoVRjPveQaYqVxlwXEZ+79x0+9+43eaHzhHwSYSAVSqKp83uQq/LGtY8R1GvcvLpJGvjce/cuR6cdjjodUt3EKhRpbe1QbrSoVGsEcw8dKFkaH3/uKi+826L9pkJLvvvyAd1tF5GqILq9e4V6Y41qucZiPMXSBNutBrdvXMGyTB4fnfPKu/f57a9+nYk3JwXyTpGbN2+yc2WXRrNJuVJVkpVxki3EtRVCpwmRmbEkJJmHehImfOOV1+hOZ0oQST695JJAJcjz1974SUqRw8IK+FsvfyEzdXh6WyVgYjX6LpVALv5evlisFAqfLqEsM3fI8tvVmIWl4uHlHBi5LIUKNE1/CtP+4KLz/+Ca8N3P9fjWz52S6tA6yvFH/t517LkJaOimw9rmDrt717HzhYyOri1zyEwCL+LoeJ97d98l9N2s91fiWBaGptHrdjg/OaFYLLO+tkUUhCRJrN6bJoRJkmmWCgI/JI5SiuUahulkDOrsS8sEGQeM+2ecHT/hu58/ovt9MUh44UstbrxaXZ1smU0cnjvHX8ypVupYdgHDtChVGjTXdzBylcyj+KI6JdMUz3VVcEFCmmSDLs4sDA0M08S0FFytZRaB779AcnWFJUv1LBkF7N3Y5Xd/ssPY9rBijT/13su8uLlHnIRKTSvzgczl8piWjaYZHB4ekWu1edXKcfJ9n+XLpRqu7ZCmihxnpinrx/tEvR66oTGZjMgVcsxnc9a3tjk5PmFtfY39x/cxLJP5ZEQu7+Dk8oyGEzbW1zk5eIROQujNiQPlDIOUoGlEcUywljDfUee6/NhCH0ogVRCRriNJCcOQNE7QDVMZrseq3aVULiOTlHzOoVwqK9ZuGPDw4QMODvYpFEvIFOIwJI4iruzusrd3FSGUWcOTx08IsxasSrlCznZoNZSSUZKk3L1/l+lsSs7JEUUxp6dnXLt2nU996pOkNY2oom4Y81CSc/IITaNYLGLZ/z/W/jvIsjRN78N+33fc9S7vTV9ZWbarqrune/zMzgzWYTd2scAuCFIQIAAEBCwDpESQVFBEhCBGSGLoDwYRIYVIhURSDAQJQwh2DdZgzayZwUzPdPe0rS6TlabS2+vN8d+nP75zb2b1zO72Ruh0ZGdl5nXnnM+87/M+7/N4tLsdtra3sGyLOI7p9TqgEiaDDkkcMZnEVEo1cp6HUIYJPdaCb771iG984w0+99mXWV1pIoViMh6QRCEqBU3WIy7NREwSQ4CU0jHEPq3xJxO0BjfnzWqsUmjiyMcSl5N8bn6emy/dw48jdnd3iaPA2FBaFsPhEKU0+VyeSrlEvVal22kzGY9NkKQ1URwT+OY5c3NzRGFAt902ZQPb9AmPMsGPWrVKp9ebZbaXg/rKdzMhXyy8YZLmpVENeDET/n707mpdeLoAXtaJG/UqjldAYePlCriOh4pTIn9CMZdDavDHPtKycaSkfXbM/s4Wk9EIScry8gI3b98xEpiZ6l6lWGHU7dI9P+b0aJ8omKClZm5hns/tv4I7sFGO5umXjsjXCnT6XY7P+/zyb/4ex/0uk2BMsVRiafU6dj5PohWp1uTzBaqTCZ/bfJ8/8eE3+crOByz4Q3JJhBRmbghhIM7I9dhdusnb89fxHYtgMub9Dx4S+iG9bo8kjnAKeeoLywgrh3Q8pA1rC3Uqjo2KQ/xowrsPH2EPNLf+YR4ZQVBTbP+7EYXWHNLxELaN69rM16uo2EcKTafb5bTTYez7HB0f0R0MGAUh+XKJtes3KOTLlEtlXM90ciyvrOA6LiBJYhNoW9m4ne51aRxDaohnAP1un2+++TZhakxa9ZX68PT44cOX+Nnt10HDdxe3+Se335w95jJnvvrfx7NWZskSXNl4TaY2tXPPxp24fG2hs33pMnCcwtwztnO26V++6Ytb+wsj+BNC0p94E/6lv/WMoJTiTSx+5r+/w8J+KdM/znhj0mKuOc+9ew9ozi1cAgJX2GpKKfr9LlubGwx6XeMZ6zqEoc/h3h4WNmvXbhgykzKN2EmqidPUbEBaEUch5ydnuI7H8rV1VtZvkitWsi2dy41Np5wsDHj482O0A9VTjy//wxVEdGl/RQYfdy7OcWyHWr1pZCN1ghYaJ1+mPr9KoTKXOTKpDBrDZPdhQBz6CJ2SxiFxFIEQOK5noOqMqJCkMUkSG9KC1kjHQTq20YmeElqyvsuUhJ1Gl1+8/RAt4PZZjR9/ssKTp0+JYpVlwQBWJsBxTLPVpNcbsNCaN/UYy2ZUrvL+0ho9N28mh5S4ccTXiGkfHDDXmKNer1MqFlFpgj8eM+z36Ha73Lh5i/F4wsLSMmenx6BTDvaf0704RcUR40EfVJqNdgthScLQp3NjfFkP/sDBwTF6sig81/SMC6FRKs1EOkRm8whzzRae5yCFYtDvc+3aGmur11CZjeR4EpAmKYEfoLSgWqtxfe0areYcrm1zfHTM997+Hv1en2rFwJ3j8YTl5WU++5lPY9umd/Hs7Jw4SfH9gGI+T61SxbmWR3lm8CRPx+S9HKPRhF6vx+LCAteuXUMpA2c/ffKY48MDIn9CGoakaUInmLB32iaMVFYkNePrrDvk8PgcQp9/60/9SVYWmzgWQEoQJcQJrK+t8uq9G3iW8fJNVYK0bWzbyyJ1I1CgNCAt8yUESRLP6rsAk8AnShOwLAajERM/QKUKx3FYXFxiMplweHhIHEeUyyUEmigKjCSh7bC4tMRgMGA4HIHWWEJg2RJ/MsZ1HOq1Gr4/JgpChNCcn50zm2rZ+Zo5xWx+Xe3yvJqZLIxroCGyEtq5F61P/+DjcqETaBbn5yjmCwhhGxegYIxOY6ROSZOIvGvkLONgTDgZc3q0TxgG1OeaFEsVGnNNbCdPPl8mCn1UEpGmERenx5wfHSBUSrlUpjm/RLXZYu68xuqmYUk/v3eOvxBxdHDI7v4RAz+hZkvuOIJb9RqelyeXLxpTE6W4c7LDz5wYpavSqI8Xh2bqSIEtrZnoxu9eu8cb97/Awe2XWb9zi/bZMXt7u5x3ekQatONSai7SWL5GoVrHEjZp4OMQc3t1gVfurDHonHFwdMLm/jHHF31WfqtAddMFCVs/3UW/XGQ4npCmKa7Q3L+5ynKrzsnpCU82n/PGW+/Q6ffQKsWxbO7euc2De/dZXVlBazXzH0dAtVql2TQ+1WmaZlwXMevlnerIo0xGLARYieLhow22jo5JppvldN3ODkdZ/Icf/ElWxjUSqfjvXv09npcvXhhPf9AxE+2YZshXNuJZ7Tf7/OLKl8zEnabxwwuZ9NV/Xwk0DYk3++HjweYfoy78iTfh7mKIUPCVX1zl5X/TRKsUKYyTyzQTBPByeeYX5rGkPbsJl8xJMz3jMORgb5ejw32i0Ofk2PQWLy2t4hWKxEpjOza2cNBqamWm0CqmfX6OShJazQVsN0euWDLQSrNl5CMx2tPKgsf/QczgloYUPvUPqrQ2i2htIGilFZAy7HeJw5BGs4XjOkbcQwnSrOYlHZd8RtgyqHSW52cmE2lWY9IqQakUx3GRWa+vUookjlGpGYD6ipOS7TiG6g+XiiwaUkvy9a8ccVodYyWCn/nWChdPT9nZO0Vpe3bLXNfL7PxiVJrQarU4PTulWq2wvbVDvlDiyXDE+NVPkyhlCF9Jwp3xgMWTQ+5cv87p8THXb9zg7PiAfM4lDHzy+RKNxjz+OGBpdYWDg11sR9K+OMl0hAUqjozUopAIaRtSli3o3A9J8xqhYO5d1zDEs8GYKmW0s7PWpDhKiGNDWhFSUqlWKRTz2LYkDkOajSbXVldZW1lBSkmvP2Dj2TO63bbRrK5UcBwb359w+/ZtKpUq7U6HOIoIg4ggiOgPBniua9pS1q8jBTzf3eX9Dz8gSiLyOY8kThgtGpRCRmCfpPiTgNFwTBQEOLZNpWSg8DAI6HU6CG24BhqFlMZPuD8akWoLmTNqb1qlhgWvJA+f7vM7v/MtGpUyt2+s4FgClSTEYYA/6vLlz7/Kay/fIU18lDKWe5ZjVNpUZoUZBAGpBidXQEtrFvxOp3m3fcHmxgZJEnPr1k2kFBweHqCVxnU9bMcmikLCMMJxHBr1OtVKhbPzM5IkwfVMzVNakslkguu6zDdbBL6PSlMc2yHneeTyOcbjIVEcw2xZzFSFlJ55d5vxLGZtTJf5rGDOL+Mo03d/UurN1oUXj6tFPFN6uQIkkvMsmvUaWhlyo1CGnKW0wg8Cosine3HMzvYG48nAtBHduMHK2g2E5RAnGqUF+Vyei5NDDvY2OTreJ00jytUyK2trLK1eZ+JH2MKmEHrc/a4pbwyrPt9b3aAWjPli74ifG57w08EAH4viaEB53KeQLxANx9w6fM69548oRL7pakDPet0Hbp6n117inZc+z8arX+TIzRHmC/R7Xfb2nuP7E/wgQAtJpdWkWK+jLceUBJSmXCoxGg5A2bz3cINROCIYDBj1+yitcAo5FtwVbv+LOUQCg3mfrT/VxnEddJxga03v/JxGtcLBwQH7hyf4YYjrCNZWlikViiw053GlxAKarSZn5xdEcYzSKWEU4Xp5LGkhhCZNEkPQyiKxaR0/SQ1JS8fGxjQKU373O99lGIamzDdrA7qEke93lvlff/Q1pBJsV8/471/5/SuqjZcj5GrilcW/2VaThYIz5v0PGltZ7Tf70bCuswyYS9LXbC/N2GBZ8jurNwshs3Ll1ez3k0HR8MewMvQuBNeeV/mxf7yOE2e9jVkE4VkOaLIJELG/f4CUFqvrN2i3zxkN+peGBIBhgSacnx7R73eIkoharUGjNU8QGnjKdR1sRxKrxNgAohj2Ogz7ParVOpV63dQhBNiuy8LKNbxCgbOTY5IwAK2Ye9+i+kRhjwUr/y+f88kezYVFbM81mUDo0+t0KBRKVCsNLMvKBoxCSqPlKzPmNRps2yPNnGWmsNiUBRpnLTiO7ZgWpdTUSRzLRgrj7qS1Rlo2lm3MEhKd4Lg50myjnr5m+anF/JsaVYX6/zThexttxpGe3nkUgoXFRfqDPsvLSxwcHnP37l2ebW6wuLDE2dk5N26tM+h28ZsLbDl57iaGUGZLwZeCEfLpB5z0howLBU4OD7h5+yWOjg5ZXF7l/OwE13U4Ozth0B+wtLTExekBaI3rOEyCgEazaZSepIWwLGzLoXhs0fp9C1UQlLcdLC2JkgDLtklShS0ElhTgOFiOTTCZIKUCabO98xzbtYmjAM/LUSwVsaWF5+QoForYnkOvd8Hp4Yhbd+6C1qRpTBSHLMwvcO3add55Z0L7IuTJ0ycsr65y0T5nrtlkOBqTpppGvY4ljT+y5Rit7sFwgDqMuPHOHNqBUkfSG/RJtrcI/DG2FDz84B1GvTaOY5NmPAJh2TN7TBJFolMszyZfLKJ0CkmCUBotBIMg5sn2PssLDX7uz/wU33Te4MnGcxIEp90Rv/Krv2OkW4Vh5as0JgkjbNvFdbSRA0xTUBnpDsOkdtuCxlvG2DvfkYSTsYEjJ2OkNAIK44kPWpFzPRaWlnj65AnJsaZZr+PaFsISBGGI7/soraiUK5yfm0DDc13srMtgMBiiNMw3mxwdHSFsmygV5KRBlAxZ5dLujRfWvkvWLMD8pMrrp+vYqUU9LPEi9Awv5iGXULSevoc2EOG1tWWePHtMIiVKCSyhEdImVZIoSUEpcvkCzWvXGfWHFEoVlLDI58uMhyOcVNHrXdDvXCAdSa5YwatUKVYrFEp1E4jrNjpNSNAs/H6R8p90KB043N+Z8HNDn4oyJEgdwVeigJ1SkZJMGNuKO51D7veOkUplGZcgyRcJ5xo0XnqJ39vvMKq18HIey/Uqw8mAo90t0igl0SlYFoVinsb8MtKx8ZKEXqdLrVIxf6vUGA56HB8fEviZJCoaIR3mWvMUKhWksHjptwM2/0KPcphn4bDC/FydYadLOw15en5KEIYIYSG1YG3tGvPzNarlCk83nnNx0aE5V0eiKeYKXGhBr9PBsmwOD08Yj8dG1ztJ0VikqTa1UvQsSE2TqY6yIFUxUsDu3iHfe/SYH3n9NZzsTitMH/B0BPzVJ1/hV2+8j2/HvHZx7eMjIkNhpu2fV0eQGU8q++cUoRHi6ljMnO/QMycw81ezpk+d8YwYmEG4xNX3vfJBzJiXs/fJhusnrgl/4k34L/1Hd2iJOYrdHMI0es1ky4TIqFFKc3K4z3g0Ym3tOivLq7RaLQ4P9jk7PSFJotnWNQWswmCCEIbcFEUBIqPmG+Wo1Cx0WhFFIRdnZ9i2TaPZQoOBQASZAL6mVK3jOA5HezskkeL2/+yw+A2bqKbJn6aM6RDFIY3WPPlCnkGvA2iarfmM6acAhRTKtKQIRTAeEo76OJZpp3JcjziOTHuTuBwI5uorojDAsl0cx8YgMYokazsRUuJ6HkJaxLGpnbqOZzKITOxbKrjxiw6rv+sQLMXsbh6AEiR6JocNwqJWq7Ozs03++jo6VXS7bWzb5vjkhPX1NY4OD1lZWWVj5zmytczK2R5lkaKUoiiA4wN+UsN7B89p2x5zrRabm5ssryzz7vfeRlqCo73nFHI5qpUyR7shtmWjMkmTwB8TJwm2Y5PERvVr/V/kWfnnDklD4gwUKjEZkbRtbMtDpzFxbNxntFY4toVKFZbjMBwPefjwoSG61Ork8nmSOKXX7bG4sMTy+hobjx9x7o9ot9ucnpyxurKIZdl4uTyO45DL5cgVCvhxzLNnzwjCANdziJOUbq9Ho9GkOTdP/CSiN+zxwYcfUq0UWfyuzQ9vfBWVhyeb7+J6OQaDPqE/IfBH+JMRAm2g8STBsh2KJQN5p8mUWKTRKsYfDc1ckBZamsBK6ZQ4STm/6PNrv/7beJ5LqVwkGYfEqebovIfWAqdUQQgLW0oSmWRqag6KJFtMFKGfmbkX8iz/Hiz/jpEDtZ2UwB6DStl69owoTnjp7j0eb2ywu7cLqUFhHMeZuSm5tks9yyZPT05IUyOrmsvnSeOITrdDqhT1RoPTs1OSxKAY+VwerSWjsY9XznB8fbk4CSEyyzsQyMs6Wnbcay/z93/5b+GljslvxWU2ki1h04HOjGQzzXL05c+tVs1cn9QxLTEYhEk4Dlpa2I7D2to6Tq5MGCYEUUQuV6Dg5jg62iMkIYliJLCwtEJ5rkXqR7TbF9Tqc7iOQ851ODvYI++PaUV9/tKfq3LtwuOrvS65rLw0/aQLcYCz/4xRqc7aqE9r3DNksIxVe+wWeXzjLpWVOb7w4CafWgx45/EuLi5Pnj7FH/cJxhOEU8CtNCiWS4z7Q4wigjDdFkKgVILn5Rl1+qSTMZNoAo6FbbmUq1Umk4hcvoi0XKQlWRo1+en/3T1uqhVKUY4gHNLttjk7jRCWhWXbtJp1kiBgcWGeZj3HS7evo+OY9x9tU2lUERKjK57Ps7u9g1KaRJsuj1zOI400SZyQqARHmK3UtF2aFlSlldHYVilSO6SJ4lvffZsHN2+yXKlkRKgprcvc9Xm/wn/ze3+ZelRkdVT//k0pS4HFFUTm6kY90zbXZIznbKDJjBSWbbTTdXxa95WYDVVphVCX4eBl6SUb8ldKwwgyfoR+YQR/kuMTb8Kf2l0G4WY1U0P2EVpkSiQGNuu123TOzplrzLGyvIIAcl6R6+u3KFUq7O3u4k+mNSB1OS215uL0hCiMWVm9lukD20z8KJNCU7TPz4ljxeLyMo7nZdKOKmOoWZmAhxHyUNpIKCqlKO6nFPeZvWcYDDk9CiiWygxHQ+bm5igU8ygyL0hh4AULI5Y+6hrPV+lYZhfUMhOmSGYw89XwR6UJGrAwEaFtmYw6VgrPcw2DOjaylY7tZAuLeQ0D6ZuNy+5bVAYuiVaZj2VWY9Aw12ySKs3i8gpHx8fMz7fY293lM5/9LO+//yH1+hxbm9t4uTzt9jmf+cynedo+4fNWgvL9zEJQUZCSz3fPudtoknz0DqVohLe7iRr0qMzP02mfESUJm8+emADFcYjTBK1iJqOhab9CmpYsaZMmCbbtYHWM41SapEghsW3jCmVZmfSntIjimEa9QRgGzC+tMgki2henBP6YcrlGkkmC9vodHiy/TKlY4v69e/Ta54RhxEcPH3G0v0eaKKI4IY4ThsMxazduAoKtjQ2kEJyfn3NtNU+322NpYQnXNdrNYizpDnpcdM6MQpW0SEYRRCnL1xd4trGBUjG2XUBKC63TbMyZxSgMJsbgPLVREgQpllbEwQQhbXLFEsK2DU8gywKjBPYO2wDUGzVsaeq6sVJoy7C+pRDcurHO0ekJo3GI0Km5brZNHIUgFFKDShITnQsHKdPMMzo05QFhJEz7/a6puQsIwpAgCHBsh2ur13jy8CMcx6FYKeHaNq5rMep3CXwf17VxS3l6wz5hFKKF8cIejcdcXJxndTNNGAZQzjGVzpymE+af2Xj9AWUxS0ny2rr8xfdlDOLy/39AXU1rwcJCi0q5SjueYHt5bCRREqPCMaVGE6UtLs7brKzVyOUL9Hod8t6Y7skxk1EPK5djfn7BwI5WDiFc8kUXfXFKHAYkqSIeDLhztsNnojF5rRBnInNCulLzy85dak193Kc+7l+ethQIy6JdbbFz5wHnvQ651OK9JzsU3TLt0wvCk1OCODD6+naOamsBp1wxSc4kJAxDbMdBAeVyidPDAxAQjSfG0EEISpUa1eocjldA0Gc4mlDL5dEqoVmqED8bkBRHHIxOmIxHaJ2YdqNqndWVVWoVo5Z33j6nXGwx7F1w7+YyhwdHtC/O8YoFTg6O6XW6xLHhvuSLeRaXlphvNOleXLC5tQk6RWthWhO1QGWZcaoSpq1IaWqC9mFvzDfffJef/bGvkRcvtqFNN+JXO6vZzz9gHFxBWsSVSG7GR9L6sv5LlixdIWIx+1sW2MlpF8IUzZYYyVmRBVuXu64h9r4oY3kZQvygMf0HH5+4JnxttYWUCYjkheZnIUBYEt/32d/bo5TLc//WHQqegbJMUmDRaLZ46f4D5uYXQF7tIdRZVKIYdNtsb24w7HdNDSGrO/vjIaN+n0q1RrlSZWqfNsXo0zQlSRLSJOb87ByNxcraTVbWbuJ6BS6BcCMkopKIYa+NhaZSNg3tRgvVxEFk0pj+eEwwmeC5HraTw2homfOxbBsh5SwSvhqJqTQhjkLD/E0ToiicRcNxYvw4HccYF8SRsTYUwvi9TkVMTMiVNUUJw57UApSA1dVVDg4O8TyP0chIOBYLBcbjEYV8zpiXFwt02m1arSbjyYSj5VV27txj08szcF00pjfXAhbHA+b3d3jFH3L74bv8nAOvrC6TBD5Sp+g0wXYcisWiIVplib9tO7iuQ61ahDQAleDaDrZtm2BEmwUiSQxMFkYhSImwDInOzXkkieLa2nXu3r3L/IIxnj+/uODR48ecXZyQpDHlchkr08HOFQosr64RxjG7e3tIy2bsTxiMBozHIxzHodlsMtdogIb2xQXPNp8RhTGO66LSlMFgyPLSCosLi8RxQpKm9HtdwmCMSo18oT8eILL6pmlNklmWB1oZAY7Q97Ftm3yhhJhqi2ejwSxUmBqZlkbYAEMyjBVM/Ni0dgApgLBIwgidxLiuixYC2zWa3VbmnS2lmBFZojA0LlSOg+04mXaN6c1P4hCB4mB/D9+fsLp6DWlJDg4O0anGtsw4cz2PQX9AHCcU8nkEgtF4SBQGSCnJ5QtoDYPBAKU1nmsU5YwfdshkPL7cgKfjXzAzx/hBxBR9hTk7O8Q0u33xD/qFf09n8WUqUquWKBVKCIzkaxxH6DRBpxFJFFDMF+i3u6gkwgYuDg7Z3dpkHI5wPI/r6zdYWF6mVK0zHo+xNNjSxhOSwe4mk6cf8dXTbb4cDCgJM18c48k5+3wzDfjU2JNOa4NSygw5kuzNrfDw1qe4/6kH3Ftfwx9H7J+O+fY7H9KbDBgHI2QuR3VhjeLcAnFq1j2kJFcsMZmMEWlC5E8YdNuEwyHBaIhCUaiVKdUa2G4B281j2zaVasUI6aQJBQ3XalVWahXO9p8zGfVRKqFcLlOv11lcWqRSLuHYFvOtFsPBED+UPN/vMByNuH1jlePdPR4/fMRFu02cJrh5j1whz0sv3WV5aZ6c57C8uEylVEZnfulTjssUkpVSorSBp5U21wkF733wiK3DoyvdJy+OgauEqu8bS7PHTH/SH/uL+etUWevq11TNS0ppRJKm/5bGFtfKMvipytaUkDsrlEw37xlE87Ex/sc4PnEmfP/uLU5PL4hVFvWJy5NL0oS9nR1UFHP73h1qpTylapkgUXQydxspbbx8gfX1G3iOw9HhgSEqZMGDzODcwB/z5PEj5hcWWFxcQqC5ODvDdRxarXlsxyFVesa2A8PM00ox6nfwx2Pm5uZx82WEkFxbL3ByvM940AOS7LaYW67ShOOjQ5oLy+SLZROJKQNdpDql271ACIVBV0xEJzGSlAiJ7bjEWQ0bDVpe3ii0zvyCjZSkZVuoNMW2HCzbJk1SVJrMbpolZZbtGjMJPWVSX4n2tBYUimUsy6ZardJud2jNz9Pv9rh+/Tp7+3tUKlW2tp5x+85dNjefcf/+PT744ANWVlZ54/gIa3GVx1HE67kx65NhJhACKI20DIHq2qhP4a1vcz9NCIVFmsTk8gVkEDCIY7pCMtbCEDJQFHION67d5eDgCKwco8kELTSxSpEZ5KxT01rkuAbFEMDp6SmFfJFCvkAYR1TKFTwvT6pSTk5POD89xHFckoxl3ut2yecL3Lh5E41i59kG48mEre1tmo26QSa4FAmYm2ugNFxcnGe8AgONxnFEtVqlWq3Ta7cZjIacnhySxBE6iei2x6BNrW88GiAtO6tzGa1tAabei0anKZbjYds5VBqhpeEpkMTEUYpleThunkCleJ7D/HyTg4MTxhmsLC0LoTBSfmmCBD788ENSaVOq1hmMR+gk5t7d2xwfHeMHYUaKMoFrmk4ViCRGXEsRhRMUgpxbJPaN+47jOjiux6TXZzKeYEuLVmueg8MD4iShXC1TKBWpzzU4PTpGAF6hgCWFIRdqRT6fZ67eYP/ggMl4bEoqgktiinhxI72ac0yPKRv++45ZC8hVl5vL15ru3dNASACOlCwvLrK7v0Ps+wiVYkuJ0JIo8LFqgjj02d/dYtAfkEQRlXqd+eVFQj8gilNyCNxcniSKCIMRk8GQV453uDHqUEDjCgNrztSYbNvogWfz1pQhjF4Awmg8ayFQtkvoOGxWl9iuL1DPF9je2iWNAnY3N0mkRaoVlmPjeC6NpVW0lcN1QobdNihjeeh4Dqob0TvaJ8qITUiB5TjMzc/j5fOoWHPR6VAop+hUID1JrugRT0Z0g4C9zaezVkXXdVhaXqHZbDIZjzk7O6NerYIQuLZDtVTh5PicRmOOg6NN/MmYKIyJ0xg357GwvMTy0jLnZ236nT7lYiELEiULi8v0RwNAGdg5E/NQSs/Yx1NoWKUplrRRccLvffs7rM7/DNWci/jkeeGLSeeVQfVirqunwyv7Lox0ZgaRm8cIhLwq8GE+qBSZ+NQUbwaMDamY/WoaVF7KXuorMekPDh4+fnziM/7WN98g8hPS2GSMUlqGkKAVh/t7THpd1pdXWV2aZ2V1nk9/5lU+9epdlhca2FNCBUbecDzxsaTJIIwr0/T0zUas0piT4yO2NjfY331OHAbMz8+Tz6J1kxUY5rXJzBRJEtFrn1PM5Wk0WmhpoS0bKzMon5tfQljOJRMOs2D5vs/RwT7t81N0EmW9l4rOxSmxP6KUsynnbXI2FFyJZwtc2yzIybQOZRui0VRLdxaZaTUb/CpVaIHJElWKUjFWppo17UtTKkUlJjCR0lyzVCtMaxQIJEuLy+zu7lIqleh2u8w15phMJuS8HP7ERyBwPY9SuYhjOzOUYjQZMxiOeP3Tn6ETRqiv/RjvFMr0HZd+mpJ4HtJ2jNdrklD1fX4yifkzYcDPRQE/Nejxk/0u/3Yc83NxxA2gkCSoMKLT7rD1bJtGvUE+56KS0GTZmei8JS1cxzZtC9l9EwKiKKReb8zqicN+n+Zci/v3X8ZxHKIwJFUpY99o656dnlGrNdBaU6/XZ9e82+vwbOMppWKRhWYLoRXj0YhWa54HLz8gn8+jlWJne5vBoA8Cs7nHJjBI45Aoa2cRpr8iu38mwItC4xiUy+VwbSdbSMwEV0nCeDgiTcxmjGXQEqE1QqWgU5Q2tdY4ihkNhgg0aRqSqATbNspLWqUIZQKvVEgsy0VpCbYDUhAGIa7tZGIOtoE5BSRJRBRF2JZDLldg2jUp0YRBACplb2ebKAxYnJ9HALvPd4xYR87DdR28fI5evw9CGHGOOCKYTIiCEMdyWFhcJIljJhlT2svcvsIwmjFK/6DMd5Y9XFmorqLUf/Ay9fEWjyn0d6nLK4HV1UXTiYEpCZh7J0jCkPaZaa9rd84QjqRQKbO6tkal0qBUrhH6Ia6U2ALjD/7sEZ/afJdXh+dUdErOkjOBGJR5fyNMYdC3afAPoG1jaWoXimxV5vje3dd48+UvYn/xa6Q6xQ9GPHu+z8Mnm4RJgpZQa82xfusWtuWitDB2oE4W8MUptk7xBx0Sf0Qw6KHjCMt1qLbmsdycYcpbLrl8Ec9yiCYTLARRGKDikMO9Hc4uTpikMdp1qDWaNBoNWq0mtrSo1WqGdDccZn7fitWlZY6Pjnj/ww/Y2Dlg5/CCREqcnMet27dZXl7GsW1ajSbj4Zg4NL3OURxSrdYol2topUlTNSPjTQlRQLYealSisABba/Z29vjeo8ck09jrEyaSl4z8q7Xkj32JqaDHZYA4HVaG0yRmf5/O+dkXZr0SUlzZT68EE1wKWF56El8dwZ/s+MSZ8LvvPWJ+YYVyzWQcShgj+k6nw/nxCXOlMndvrnNjfZXrt6+B0BSEhWMLk01qU0s7OTxlNBixsLjE8vIyR0dHxvc0ia58aGNtOBh0AePxWS6XQetMW9lsarZtgTKkrc7FGWmqWF5eJJ/PkwJJNhAs22FufpF8Psfx4R5pFF1eVK1Ik4jO2QmxP2FhcZkgChl3O1QcyUK1YDJnaRFGCYkS+LEmic1EtC2JZZlMwEGSZESdacR/GYllEoVhJiBg2aRJTBpHZrMSoDKBaaFN5hKlCUmqZotXsVjC80xbjeu4zDXmuLi4oFyu8HRjg8WFRdrtLmvX19nfO6DZavFscxPHceh2OiwstBiNRuTzeUKleCuG3eUb9C9O+NQrr6I3n3Dr/IxS9rmllMa7E7LI3zQJLGjNz0Y+URKybdm84eUZphHJwQmxSo2RvTbtLq7jEkQhKlPNStOpV5WZDPVGHcd1QKSMRkNarUWac03yhRxvf+cN0kTx5OlTgsDH932qtQZpapyohJDcvHGTw+Mj+pM2ec8oHjmWaccpl8rkPEMsCyYBw+GQ/qBrAh8BvW6bYDKENCIIfYQlKBcKSNsmCCYmY9cGBFVJQpSdgxAWadbDayZuakwsLA8h88SBf6X+pIijCQKJ5+bpDYwxQqvVZBIEhH48m7FaA9LJGPRmakrLQVkpu3sHZoMRFhqwLYd0GlBqQ+wTRr2eqdJPFIYgJKQxoe/T63aMRnu5RPvi3DCilaZULtO5OCdVJmtxbIeF+UUOT8+wzO5pXKCkoN/vkiQRzYUW7Xb7Enr72Iojrv4uSxvMMDZBgkle9GUGzA98GWZkHSEQWqJMd71ZC4RFtVLAcV2SMPPZEQKkhZtpdINmYWGZxsIyvV6P4WRMsVylmCty6h8R9fsU9rf5/MUx83HAgk6MsIzKsiKtcWybSJl5rTKv36lwkJCCkZPj0fJNWjWPe6/eJznpMvJBW3m2d/fo9Lqcnu1ngYqDky9Sn2/RbFb4zL1bPJQpe90JTi2HRlEs5GmfHKF0aDYtDdJ2qM3PU6jW0EISJcb72SsZXkm1XKLbaUMUMxhmcqUZ7Xd5aYmlhRa2lDzd3CQOIoTn4TguC615Ts9OyHs5eu0uk8yhLE5jhG1TqTdozbcYjob0RxMKpRKOlJTKOebnm0Z/fmkRURY8evJsxoI2vcMJdjaO1ZRFrjHXNkNtLCkRKXzru29z9/o6K416hor+0VuYgBk5apr+mA3xcgOejj+zvnJJpJMwlVadtUiJjw3ZyyH4QhvTNLi42rd8uQmr7/vdH3V84kx4Eo7ZO9jl9PSYNI3QKPxgwsHeHp60eHD7Di/fv8P6nTWEVKTJhMePH9LutCkWi7iWxWQ45OjwkGKxxNq1dQqFEjdu3OL2nbvki6WZJZWZrCo7ezXzmk2yPlUhpLl5GBEKfzJiOBxQqzep1GtIy2SrnmNhCZVNXAtpG2KUnfn9mvUl4x7qhPGwx97eNhcnhzgqYn2hwa3FOveuz3Nrqcb1hQrVgkPekdgZfGFJo41sZxGT7Tim/qEuIbVpBJYq4zqi0sRkYVmtVFpyBtskKLCMtaPQEpmZeCEElVqVk9NTVldW2N/bN7DQ+TnVSpXxaMzKygphGFKvz3F23iZVmrOTE+6/8oAwDLhx6wabmxsUS0UeP/mIUqlMrlwksV20l+PNic/XvTxtyyIRIqugc+X75YC3BOS14n4S83Log5Sk2AjLA2Fnmy0kcYpruySxaU2Qmf9ykvUIn5ycMBgOsKQk8CesLCxQ6ba5drjPcppQr9eJk4QnT58QRQmubbgGwWRCIZ9nfn6BB3fvkc/nCKKId955l6PjE0BQLldwbBs/CFhbW6PVahFFAUkas7W9yeMnD4njAHSC1jFapSSJwnZy2E6O6c4oM9gpimKSJMFxXZN1ZqL1RmknJQp8kigxmaplo4RhWQqtDCqCRtoGFg79GKFMP3GqFakUKMtC2K5RgVPaMO2lGbfadlHTHnNLYgkr68U3iEmSxvhZ4JAvFBHC9G5KnRKOjYH7+dkpQeAz15wj1Zr9g33iOCbn5ahVa5SLJU5PTknThGLJuBRpYDQek6Yp1VqVfq9PkPV3XlycvwC5XS6GM2SOyxLuFZjuY4/9vkNMF4Ep9UVdtqIAM0s6rVlcbFIuV9DCMrK5jgu24XUkUYhtW1QqDTyvRLXaIAoipNakcYQTjFh87w2+dPiMV8MhCyrBtixc2yA3088epymJ1sRJksH/Bqq0pIV0Pfrrtzh2C3Tmr7HlJzx46T5Bf8j56Qn7U3/1RFPIl1m5tszqyhJxEKJiRef8kD/x+Vdx0wARh0STCf1OmyQYobLWoUp1jmKthuV5COkghMliJ6MxUqXESUQQR0wmAzpnh6ThBAfBfGueWqPB8vI86ytzfPr+DZZbcwwHAzSmNa1UKhGHEY8fPWZ7b4+j03Mzzy2b5dU11m6sUyqVWF1aZTIck0QmKLAszdJii8l4ws7Ocz788EO2n2/jh4HhtXAJ10uZudppkNM5IzM0IQtmeu0B33z7HYLUQPt/2Pb14qY7JQCKFx4gxJQGlmk3ThGYWcw41Z2+RC+FfvHVpyIkOgtOs2F8OXL19Bwvx7q48txPWhn+xJmwlpCqiLPTIyaTAUvLS3Qu2oR+wK31dcrVGpE/JpoMSHXC4ydP6I8CarV5TtsDgjDg+c42KM3N9RvkcnmEBIWiMdegWCywt7dLu31uIB499ag1hfxer0MUhCwsr5IrFEgVpEKDTji/OMdxPRZXVrFsJwuFFEJobMeob8VxysX5BVI6XF+/jh+MOTk5QSWRuUnCvGcUmqb6pUqel29dY66Rp1gpopF0un3yJ2dwMeS8N8CxLTzPeKMmqYmAHMclxrQwaU0mkaazAWhuThLH2FeMDaY3bZohWI5NnKaZ5rKJHoVls7i8zMazTRw3RxAGdHtdHNtmPBkx12xw0W5TKhc5OzvFto1cYblUwskIVKVSmW7PtPycnZ7yxS9+hd3dLZaXl9k/3CdVmrDZ4je6XapRQN5xiZMY2zbuTU4S8yBNqWvTz6cx5hl305gtkWcUx9xQCa5OeKYAJ0ecplhaY2dQPBn8k0QRjuvSGw549713WGg2cG2b6/0LGh+8QxJH/FSScrr0GT6q+mxtPUMpyfO9PdbX1+l2OpSKZdM25rmgDJQ6CQK2tp+R83JYtoVtW0zGY27fukM+5zEadWl3DAtY69REtZmOrRAQhj6piMCTeGmOVGOg4unU06YVw7IMW17ILLLH9PCmKsVyHVzPM/3mZESUDDrWwsBgaQoqiTOszDJuYpaTdQNEJKFPmqbkimUcL0esDZkuTWOESkh1TKo0omGTJgprlGUP2vRlzmqoQhuCIOAW8oRBjO+PyeU95uaanBwdMx4NkRid6E63R6rAcsyYKdYqpr0wjAzT1bKwLYv+oA+V4otiBrNFarZGzf6vNIQyQiDwlOkMfUFH/fsWnGl2Imc/m8xZzxZLhcbLu1QqZc7OXGzHAalIooAkCREISqUCQRBRQpNzXPzRmLOjI/ThLj/SO2IlCbClNOz+NEEiSKSF8+A+6bMt9GRMnCpCpXG0Uawb1ZucSY+8a+GtX+PuV7/I2XceomJJux+xtfUmx0dHRChSS+AVclhpnub8KquLee7dWOM3fusNlJLsnY0gOWK+UuLp4Q6BSkFpLClw3SKNxSXq1QIiCnh+dEEuV0JKCzefw5KaSa+L7wcEwQRUAjqhVmmwsLBMoVTg+cE+YRDR73ZZW6jy6ft3+Z1vvUm1XiWIEi5OThkOhoRhiHAsCsUiS0uL+EFIEKeoLA1wLMmDWzcZj0fIYgEhJJPJmCAIeP/9DxGWhRIZCbfWpNvpZR0kKmtjFcRpYlDRrKoqpU2SGNKnpTTvvf+QV+7e5eX1a1ho0NPaq5iNo6v86dlvP7bbXY6lq1GfmKGx0z7gS26vzNZeMcuKlYY0nW6+YiYEMn1TI0pzOXqnhjwz/+FPWA+GP8YmLGZvmDAa9tl6NgQFrWaLhaVFgtRAZr1hmzCNGPsxtbkWoyAmCCL2dvcY9Aasrq5Rr9ZBkPWOSWxh4ZVdXrp3n7OzOjtbW4Ykk520uQcJgT9gf3ebxtw89WYTKeC83SYKI27duEW1UiWKwpmvpbkYFlKmjEc9JoMhi0uLlKsNyvUGuUKZo/1dQn/MTHIvuzOD0YTdvUPu3PwClVYVjSBfyOEWLA46XVSiqJTL2K5FFKWkica2JSpVoEytQIvp5poVJqYIJVmEpbVZzKfvq41coJQWSRQBWcM4gmq9wXg0pjXX4qJ9wcrKMoenh7xy/2WePXvGnTu32Xi2SblcZmdni3v37rG9tc2d27fZ292jXq+ztbmFk7UZObZDuVqmfXHOzVu3ODo+wHE9bMejkyZM3BxIQZSm5F2PJIpQls1zabMuJS/HEY3MrKKhFD8TjPGFz3wSI9C8Im3aI7NoohSxk5ImMUPl4McpJ0ohag1SYTGejHm22Wa52aJ0esRo9RrvKUVrd5flUQ917wG9XptuZ8D5+RkTf8JoOODGzTvEiSIIApRS3Lx1m/Nuh/2dTcIwZOf5DjdvrKFVSrVa5vTkmF6/m7HXAxzLIVGxmWgZIx6hOfwpn9K2zeJWDjeXIwr8DAQ1urJpYmRIhRS4bo5Q+bMa0lSIJopMnRRtxEiENHaAg8GQJGuvw8o2X2EhLaPPnIQBceSbjV9AMBmgMZ7FMVn9SxkIXAjN8ddiUJrlX7NnvII4MjBmvlAgDEPDUtcQTMYoBYcH+2gEtVqVw/19ut0OpUKBopM3TkvdDgeHhyRRgFevYtsSHUuCIAApKZbLjP2AMMzsQOUP2EavwMjTtWuzfsJu5YKf3n49mx/fv1x+HA6c1duyDfjjj5RCc311la3tTeLUR4eBsTfVKVpIcl6OyahPeVLEap+x3jshd77L68GAqjbSq5ZlgjVRKtDJFeiv3sRvtcjvHLCc9BEa3OxchJdDf/rzjITNdqfN63deYnNrh0alyOPnRwwmY8Zjs3E7nkNjfoF8ucbgvEMYRnR7MUk84fWX7/Luxi5hzuPNDx8TjMaEvg+uQ65YoVaqMBpOcGyb+Tmbz959lX/xC98mjSLcUpkwDkmigEnnHCzj+FauFCFVtJZMomJJQWuuSfeiR7OyzNPN58xX51mca/B8a5P+2CdNUkOQtSVLS4ssLi4hhY3nh+zu7ZPGMY5j4dqSWqXGewf7JBp6/R6ddps0SVAYVKDValKfa+Dlimh5wMXpMZJkBtsaopNCa4E97cbVU6gakjDmm2+8ydrSAlXPnQW+BoG72sB0ZV/6w3et2bcryeplDXm6oV7JlMEQthJl3PFUNvReeOcpCevSBmr2fmKKhwNCfjKg+RNvwlc/hcZ8SIlEqYQ4DPHyFoG2CLqGxOIWyoQJ9Edjet0e5ydn1Ko11lZXDU196kMJ2NIyzeCWpDXX4nB/nyRJjMF9xqCeWlSlScTF2QmTyYhavUr3/JxKqUS9Vst6JzNlHp05eWhjEtA5P6VQyNNstkx2iaZcrrJ+4zbnp0d0O220UJg+TE2YCj7YPiaOv82P/9gXaS3WyRc90g5cnHYpeg61coEgjkyU7DhESWTqjVISp4aERsYeN6TGy4FknGGyTB81u76WtNBpprglLXNjkayuXmNnd4+F+UXOzs5YvLPM/k9HvLwHURgwGA7xJxMqlTKWlFQqZeIopN5o8MH7H3Dt+nV2n2/z6muvcbh/wPqNddrtM8IoIopDgmCClBbDQR8QWLZNFMeGvStMn5wQgrGGZ16eFMFXoxRbG9inniTUL1Ea5lXCfGTEKrSEuKBxRgmoAKU1PoKnjot4+VM8e/qYo4M92t0up3HI3Moy4WCAm/PIex7lYp4kDLh+bZWziw69zgVJGpMqU+fpdbu4nofnFVlYyNE+OSaOIg4ODrg4PzEb6+EBmxtPCMZjpJT4UYCUgpxn+kP9yQQhBXFVsf3zCbf+B0n0yM/aFrK2lAz20hh2p9DGU9VxXOMrnG3EAkijECXAy3vIVKOSlMFggtLGJUdnZRUpzQKm0pjI90njKKv9ioxjpAknI9DKSLoKhyQWBkK3U45+3Edowcpvu9jKIgwz5TUNKklNviAs85mV6eGUKIIwpntxges4LK2smm4FYVEqFsnnPKI4wg98A2/nc5TyRSORqDWe5xnio5aM/ZBK0Zvd+Bc3UT3LFjSwUz3jn7z8bb568BKVqPCHLqCXuU/2mkLO3mCqyKWFgTqXl1oGXVEhQsdMW5bQGqff4U4Q8Nr+I6zs2kohcKSFbTskcQzSor12E/3pT/Ev1z9i9fdcTj58ilIOt3JVXvIs6iphFMcMr98hrVa5Xq2wvXfAWW/CxfmQ7ukZ5+0LQwa1PUrVAtgWheocIKhVCoz7PeLKIm8+fE4ll6N3cY6fKFKdfS7LpbmwwlyzzrWFJt/73vtIrTg/bbNf8Fieb/F47wg1GtIb9ZBphFAJbt6ltbRAs1aj1+0zmowplKvYMuW1l27x1nfeYjKJCdCcnWxx0e7QvmijbAvHy7HQbJHP5RkMB6b7JFHkPY/5ep1xt0tzbRXbtugO+vhhyMHTp5lLnlnjSqUStmOzsnINpJGzbbUW6HfMJp2kKbZtY0kLEoUSLzoY6dSU4KRl8fz5Lu8/ecpXXnsVMQu6ssa8HwiZ/OGHnn03ClpTPQgDkxsujs6gZgmQrXVpOoWZL99XwwxhgmmCRbaOX0VuXtRN/6OOP0YmLDITZvMlzaen0+nw4dhnfe06i8uLCGnYfXEiGHUHDEOfvee7WAhu3LiB53lZNK9ML5ZlzU5KAKfHx0RBxM2bt4lUzOHBATqJr5y9wejHgy6TUQ8hJasrK2ajSBKsqdykNHVUUkWnfU4UBNy8cYdcLm/MGLS52I6XY2l1DTeX43F5D5Eoas/MLZlg8XD/guG/+l2+9LmXuX5rlc2dIybDlLW1BSMMkMTYFoRR5lbkWAR+MCucWpaNdGzDWFQq6+e8csL6KjRieoXj2PTZyawhO18sIqVNoVAiCAIWV5d4+ucnRK/XOfybB1RrVU5OTmg25xj0B6wsL3N8eESpVOLw8BBpSUbjEUJImnNzfPjBB7z66qu8885buJ7L6dkJOk1xvSzr09O8z5B2It/PMhuT3VmWxbaXAwGfD32K6lJWJkv0p4MGASSeRrngeg5WKgjDiJLW3Do75nh1nZvXrnNydEAqLZ4pmN94ypdVSqlWw19eMVNQa9bW1ihX62w+22A4nHByfIgQksGgZ1yWECbrjiJarSa9QZ9OpwtC8+jRR0T+GFuAThPTAqJAOwrb9XA8jySJuPhMwsWXFQvfVKhfikkjIzXq5TzCkEwTWmcBpCIMfCzbMrUuKVA6zno8zaRPUxNsCcs1flJZ77yQYhaUBcGEJAwQ2jBHhQCEzLRyNWhFOBmhBXiFMhqJ0hBVNedfTY13a1njDg1XIsOhZ4zXYrFIGIbZjTFtgFoLuhen6BQqlSp7u7uMhkNcx8KyLarFIv5kRLt9geNYVCsVbMfm4uyc0XBAqiV2sYwfRpQLmcNTdvMvIelpqcWUs7Ybp7y1vMUH87t87eD+92XL06FjPr64AklPa8QmxDGlo+zxWlGvlykWK0RRzyzcWjOnFT8UhSye7ZPTU2ccOWubsaSRUE1KJS5eepXz1irdox6/8be2efDkjIVnOTwnx1G9QfHmdaq3ljjY3KE9EZT8hN7oApUKHj3ZojscQhwZjedqnVpzHteB4+NTVBxjWxZf+twrvP/ue0RBRHs8Yme4Z5AJIfHyBeYaDXzfIA0WKetLc6QPbrLx/BjyTT542mHY7dPrtVHSrMXnn42YuyhST5osN+t85v5dLs67fOPN99E6NuTQyOfO+irf++gpfpQSxxODskhJvVZjde06hVwenWo63R6TsW9kYi3B8sI8GxtPCSZjjjptTk5P8MOYJE2RtqRUqdBsLVEqFdnf26PfH1GqVJDSuKHNt+Y5OtrFtNIp7GxvUNroOmAZL3LLtlFJOtPc/85b3+PBzRs0K0XMHTfQtEnDNJej5ZMcOkMkpztX9p/A1KOnLmBZRozKyHfTDTgbxjPi1ZWRPav/kiVUXDL3/xh78B/HT9hiWuqW2WI3rTn5oc/G1jMebzxl7E+AjChCzMN0h7E/Znl1hXK5YswVpnBxlt1aWbN0f9Dj8OCAuVqdG9fXuX3jFg9efkChZEhbanbaRkvaCHoozs/OiMIwy3zNNDZEY00UhlycnVOtVqlUKygMfd4sUBkcZdv4dy3e+rsh2sqE5zOsIkKy0x7zr377u/zCr3yT9z7cNSQyrYgjs9kaX2ETWSVJSprVQSyRiSygKRcL5F3HFBumw2NGuxNMe4VN+4OBOqfRW7VaZXdvl2q1wkX7gvSrBX79Lz6jP+wx6PcoFkv4kwk3b97E9ycsLS+zt7+Pl8+ztb3Fg5dfxpKStetrnJycoJVmMBjR7nQoFksEgY8QwihAJSmOY5OoFNtxsC0rExgx11Nahp2LtNh0PL7u5tlzXHqWTU8auHrbsulYNgNpc14W7LwKBzchcDW2ZZHL6uj18ZB7b32T1ffeouXmWL95m6fFMr/sFXkrV+Dgc19iUKtzenqGZdkUCkVq9RqNuTq2ZRGFPnu7m1ycn1IolhCWJFUm8q7X60hLEkYhUkocx5pZxgGz1oUoihhPMiZ03mLvLytUDvovK7Bmya9pQbKsK+0KGkQKGJKdROI5HrawyOXyVOs1Y9eIhcL43WLZCMtCWoZpnCYx/nBAnIljOK4785OVlvm8ctrWowXRJCAcj037l+vR/xRMritG1xWDl3VG7lM4WSvTNDNNkjQ75yn+ZryKzeKWopRpoVpYnKfX6zIY9kmVmpmMjMdj4tgYP7iuy3g8JoljwiiiPxzN5soM77uyBhlhBIGWmo3GMaEV8wv33iS2Pi7Hnz3+Y8+dvtaUpT/NRkAbKU6tqddqVEt1LBwkFpaCr0QxN5SioHXm8iZxHNuYtEjjJT4o1dh/9XN8pC2e7x3w+PEGIyfkzb9zQfn1Bvfu3TQLpOVw0uny8qv30UlEmGj2T9oMhoZ8lcY++XKBQq1GoVbF9Sy+8Jl7fOr2NSooyq7L5uYWWmj2d7fonJ0QBCHaMkz1ldVlXn5wiwd3r5H4I5IE3nnvCZVKFRtFt93h+dExJ72LLClUNJoNiq81efP/0qVj+5QLBYYXJ9y/scxaq0bQ75Gm8NHTZ+zs79Eb9JgEI1IpqDab3Lp9B0c61MoVI/srJeVylfOzC2PHakksW6JJef+D99jd22MSRiAF+UKearXOtbWb5EolFJJadY7z8wvSJEASI1DMzc2TyxVBQ2zF9FdClM2MRDA1+2CaNGXcivZ5lzfffZ+UqRJWFoP9cXbfq5WLaaXoyigTXEpXKmW0H1SqZ853l68zzXaZ7VcwLXWKWTBtKo5TxS0xU9/6JMcnzoTX1m8YmDgTp5g2VRuYEpRKODo5YTIac+vWTQoLFb7+E9scPjnmCxvzLC0tm1aeLGKwhZVtvoDQpCple3sbgealO3fIOQ6JTllZXKJRrbK1tcXJ8UnWlze9SEYI4+LinIkfcH3tOoUsI5LCRDTHR0dorZlfWEIh0Bk8okXWa6wU/UbAr/ynu/TupFS7RRwpiFSCEKnxeRUWvVTT22sDivlmkSiBVNtESWyiOQsiZbSRpZC4jofj2kRRBlHbDgKZGUNcwhjTASmlEcrQUWiUZTL9Vdf1KBSKDIan5At5WLD5pb+xQafpMzjWFAvrBGFIvV7not2mXC4zGY8zZp8hfrUWF/noo4fcvnOb9997D9u2efz4MYV8kc+8/ml+9/e/bhCEDL50HZdJGCClRRAEGXRuDmlJ05dq20gBx9Ki6+WwMeYQkyhCCYGDwHEs3v3bYz766z5WBH/ur7l85VsJL0VxpkYDVhyx3Dnji40FxgvL5PIFHn34LgdxzM6TDW5GMZPM3UlIG4RkMBjQXFhB2g7np0ekScwk83cej0dIx2E4HtNtXzDt1dZa4HquUaXKJpWVNewncYqQgvAVh9MfMwIU/XsKXAGxicSnCliWlFiOJIqUgeSysoLQKmt9EySpRicaaXvoDBoVU1Z/ZuUYjiekiWGIu65rrB2FQGkDa09Je0JamWyewHM80Bp/PMIpFjn/MUWaAzQcfjWk9s3ZcmGic2EWCgMJJpTKxax32BBI/NEQLS3Ojo9QSUw+nwOtiMKQKAqM21KjwaDf5fz8glq9jmVJmvUGR8enRIkylolKz9716i46Q7iEIJEpzxrHIOAba4/ZqZxyp7vE9GnTDEdPW0CYPXn2GnqaZccJ8ZvfJXn0CNlo4Hz5T1CtVDgQDkKmFKSgGgcYWU9MjzaC7tIq4s4d0jDibBQyLjU4aF9wdHhoFsO8h5vYHH1+zHv/2wv+3Ld/iFreIZE2nUFKf3zA8ekp4fGZmRdpius4LKwtUi3XcAQcnlzg1mrs7Tzn7o01vvPWh2jb5tnzfXx/QByGZk43mnj5IsNeDyEtknDAD33mHp3TNnEiGCjJw8c7eLbLwd4uqaURlkW1ViNWirn5ecLhkGc/coH176Xc+oUWJXeOD58+4cb1a3z937zF4dEJE3+M1AoloFjMs37jFoVCEYGk3x8yGo4oVMpMgjG2bUxVJqMh3TDk5OQYP5hk8rySWq1Oc2EBx3E53D8hiU3AJ5SiVikz6reJJz0+deMBj5/u0R9OSLSabZ4f/bUBS9/Ns/LbnqGKpCprVdIzKNhCILTg/Q8+4tUHL3GtZbg/Kpu10+H1R29vYlazvVoiERgewdWMVWsx80A23KdpoH65i08D7ytVEUyyd4nWCCGyeZtl3ldZin/I8clrwmDYmJYzW9hmx5UTGvRHvLf1Edt/wea7/8sOP/nzFW6vXWeuXsbP7Nhk1qNlZbVZjWJvb5dBr8ftmzdpzNWznlkJlsCtVPnUq5+iXmuwtfmMIPCvvLe5WP54yOazpyytrNJaWEBIwaDbo9fr0Gy2yOWLxEk6qydNIxg/H/Gv/v1Ntr82pPWejatySCdFJiYiSjEMYINUmJaoi26PiZdHWplQvCVJ0hAhFEqn5HM5CnnX9BE7EoVkHASG6p597JnbDFdrDMrAl7MMQFCtVel0O1y7tsbe8T7v/28GfPhyzzxpolhfv87jx0+4d+8+TzY2KBYKPHr0iOvX1+j1hyzMz3N0eGgMJZRiOOhTLBoLtPsvP+Dw6JAoDPEchyAMyRfyCFuifY0tLZI4mQ2sqRwhKiWNTZO+EILEsgiSBFtpUq2xHYdQCI7uRbzz74ZM5s192q9L3skXUcmIm1plerEGDWiphO5oQiVfopjPMVGaiR/w0aPHxEnM9bWbBGFEHKeEQcTS6jq1RgNLKPZ3duh1O2xuPgEVU8g5RMEInYRITKvKlIglM+vFMEMxBMy4kTs/OyFomnsSNjX+kqawNZ1u2bjRU8EVw4sw1pZQKBXIF4qct7ukSJIYk/1mm69jmQAw8gOSKECnCsexkY5jHJlmdSeJzryzBcbwXVoWKBBSki+UGPsBI2vM2ZfDGZZ1/rWU5L8WOEOM1ZxKcV2XJHP9klIQhZEpwUjLEGqEMj7JvTYqDjk/PcGyJHONOU4v2pAqWFhAWhaVcpVer4dj2+RyHp7nkgpJFF+iJJCVrWZpyFQFC05KfTp5oxt/kR/yq7ff4T9+60/NYLwZqDctz0znCXrG4TArmyB59Ijot34T4pj0+Q6i22f1xms8fOpQUjH1NEZqg5aBwF1e5HFjHnvlFqm06EzaHPQumJy1GfsBSmjmmi2W1laoe0MO5Zg3fnKfX9l9m59uv8yT7WN8bbO7v894MEADVqlAtbZIPAmolaos1su8/tJ1fvN3v4tSmothTOfhM/aPjwnTQ6PyZ0mkm6e6tEyuXKZe8BBhSBwknHcmPN3c5cbaKm9/+JRJnBKMxwidkJKQK5ZpzS9Tq9TZ29sjCVNKE4+c7/DoL7f57XiT2tcrjNs9Lk436I+GxNq8Z61UpdlqctHt4uWKIG2SNKXaaLB/eMiavYZrWTj5PEPX5unTJ1lt1IjHeJ5HpVLlzp2XiFJFEqU0G0167TaLKwskUcBF+wKdTDjcO6N3uMc4EgRakGbkNxlJvHPJv/m7Hb74f6px45fzGWdTGTKrUJlin8aRNoPBmN/6/X/DX/i5P03BsU1pazpJ/ohDmwV2FtzNxpO4pHcJLv+GNmqE0yFm1mI9y2qnL3eVoSWuju/Zn64Gj9Mn/dHHJ96Ej4+OUUqzuLhEvpDn6PgIfzLKerA0ZPZqYSnl/f9swkd/M6FwIrh30eTezVXuPrjLR0826PZHpr0oVTMW82A84mB3n1q5zPr1daRtIaYOFlltV9oO69evo1XK40ePppc6i0zM1pbGioO95/QHXZaXVzg+3CfnOiwuLGbwtHm9qepWZMd8/a/u8t5PnqMtKOxLEj9GKoXreSSpTRJGBvrOYGWtIVWCkR8i7ZRCPocQphc28ifkLEWzlseW0rCmhc0kjNCORRyn6EzQ3PQSZ8HMjII/3ZSNk6WUNivL19jYfEapXOL31x7z3l/rk9qGgV3zqjO8VFgWvu9Tq1YJgoClpWV2d7/D/S9/mffefReB4KOHDymXK9y8dZsPP3ifSqXKe99780p9Lc3UmQJs285g2DjrpTNwe5qm2LaFimNj3ODkLk0aEmNWYAmBdiWP/4OQyZKaDcpROWEYCr7l5nni5viqP2JRmfp3bdTntXf+DQDro35WO9KcC8n3pM14PGYy9onSiAV/zKe3H+MduEg3x7HjICQMem10MOJHv/pFgijg9GDLqPdo0zoUpZpivoTj2Chtej5N7V3jL8LBzyaz8Z6UNOObUNjO4NQpkqsUQRACAls6pEhSpRiFERES4bhMtb6nkLctIA0CIt9kv9M6qOV5aOnMSidSq0zoRM22piRNsWRWBhCCRFh4xTKD9QHdB9Hs8/ZeTZlc01QfX4p1TLPhaZ02Tc2mmyvm0QQkaYIWimAyRAhJ6E+yRTeHJSRYmW600pQrVTqdHioJicIQ17Ep1psMR8MrW+7lcblemkVut3LOxAlnf//1W+/yFx9+lflJJXsCIK7QWS4xafOj0lltTpEeHaEz+VAAvfec+cYin058Xp10yakU73I1ZZjPEzca+IFPEGt29o/o9dtgSwrVBrZl02hUqZU9ipmxXpRL+Qd/9gOsb8Ho0SkRkKQay7LJVcrMX1vHcjwGp6fEk4D6tUVODvdZmKvy7OiMQRAz6veJwwhFSrFSp1RrEUx8YiUpCMmtpSavX1vht7/5JkmhxZPnF6TBiG7vlFQJtLQolIqkqWKuuWCcu4SgWqkx6A8pjmsUBy7DRsDv/5Ud5F7C6hsOaWius2UJVm+sM1ebw5IWIz/iotNlrtFAa+P9rpQm8kPiKOL46JggGJsxKgTFUomFhUXKxSK7e3vG8tByEAJqlTxJNERHPt3TY4LhkDAOiVTKmMxXWAi0Sgx5XsP82w7vNFK+/V92ifOKu/+kgIjNOJ0a3yAyPX4p2dh6zruPnvKl11/BnqkU/OHHdAWdFjvUlMQ3nRH6Ss13um1mqav53WUd+Oo/xGyDvuwtJtv7rr721VT9/+9wdDgJqTXq1BtzSMfmei7P+dkp/fY5ZA3sUVnxvf9zxMZfT1EeVDckwdMuaiVkf2+P0WiUdeoYmE1pRRTFbG9uodOUO7fvGMNptGkZEKYm5ocRaaqJ4pjj4xO8XI5Ws8npyZkRC59h9BKtEnqdi5mx9Z2798jlc4Sh0Sqd1oZiYt74uV2+9e8coBxzl4r7IBLjwCSQCKVMNhEbo3WjkTvNZSVJkjAaDygXSuQ9DxXHLM8VWG2VsSxBFCd0+iOksggERsgBI+hhSYs0TYhjlRG2rkAtwsRZ1WoNP/Cp1Wrs5c55+z8fEtQv6xWrjWX2Dw6pVCpsbW4y16gT+D5zc00GgwE5z8N1XYb9Po25Jv1eh9de+zT9wYBqtUoch0z8MaVicWbPGKcGurQt6zKLygaZ7ZiWmiQ1FmVpauAYlUwlODXStojTlKPPBez+6fCFeRO3LJTloITkwnLZtV3mJgbVsLSmMB6itcJJEkxLsaCZRKyqkIu9TQaDHjSb/Oi4x3xo6rNuktJZWMO7dYftrWdMRl3aB8/5kz/xo+QcyTe/9RZWGFNLUwZSMI4ClMpag7RhDadpytmPJgzvXhLMkgKM7kDzd6RRptLCbI5iOpGFkSm0bcORsCwiJcwilW2hjhSoJCIIfBPM6Yy5LCXakmhpG5EJADLx/2zBUBnMDcYKUZgGY7SUoCWdH9WkxUu4Kylpzv9ESuVJJu4i9WxckY0tlfVbBFGU2SSacorJMo1hSpKmjEdDcrkclXKZk+OTmT51IZ+jXCpxfHqKVppKc8GUiLSeBf2zbfTKIqbR7FRP8e1o9retxinfWn3Cn336+csBoi+f8/Hi8rSFUCCMt/LVR6YJS+++Qc0fI7O16PK94fjkgufk6PSGxKnOyg8WazdvUaw1CSdj4tEAWwvUMJm98Mm1Ef/8Lz7kS98sklMuc/NLVCo1ji8usKwcGk2hXKXfaXMxDBl2e5wenXHSPkEJCy0krpcHx6K5coNUSKRtMR4MKLgtNnf3qXkeg1GPcewzCf3M9EViuzkaCwvUqg2i8YThcEi1agSBKuUivX4buweFvuFXhOWU3/9P9vnq8xa3vlWnNddgOJqQyxWwXRudaOYbDZ7v7VEplrGkRd7NUcwV2Hj8BKNUbRTgbNemUCpx5+49pJDoWFEt1zk9PWdxaREV+Qy7bcLRgMPeuXGcimJTw5W2MdEgRKg0M6VxSFNNacuicGIxWk9587/okZQVD/5eCRKdbdgKaQvTV4+pEX/rrbe5e+M6rXIR8QK8/HGo93Kh0VwmrSr7YRqTqenf1Mf5yy8mQpfvoK88Ytp5o5myqHW2kWsDyc6eqc0iwSc5PjExK18osri4jGW5gIVleyytXGP1+g3cfIGgofnufxXx9OfNBoyG+TcEw/GYX/7V3+DXfu136PZ80LZh/Qpz3mfnp3S7HVZXV6nVa4Dpk7WkxHUsbNdCWJJEK3b39+gPhqyv3+LB/Vd57bVPU63VQWSi6WQZBZnPq9YMR+NM5tHBcxxyrgs2vP/jp/zWzz8nzqnZ3akcubh4aAVxJqQgLImWU90VuNRhMQMiTQXD0YROt4vnCF69v86n7l3n9XvrvHSjxdpiiWa1gJPVXG3HxrYcw8zVWY+lFKhMleWyogcrq6scHh5RXW7wr//yFhevJS8Eakk/pNftUiyW6Hbb3Ll7h+FoyPqNmzx/votS8N5771EqlajWG1iWw/z8Iod7+6xdv067cwEobMsyn802Ua7QGoHpeZ7CxZYQ3L19g0Le3FyVKrS0EbZtBnkcoxOFkDZJRfLwP/RJilcWUg0suziuR73eolAs8txx6Eo5S5gMqHFpgD79KqK5HgW8crbPK08/oKYV6eIixfsvUbME91ybaqnOrVt3iS2brcNzfuWXf525SpmWFPzpOOLPJQn/dhyxHAcEgU8YhkjLtGikZZvn/6sUy+eFedi9G5tanG1q0VLAQqvO9TXDb1BItOUinRxYjtmAM3Kd1Jp4MsIf9ohDfwZbC2HKMVZmCDHz1jaUaGb6ytMJMnuU2Uy1ViT5lOMfmiAjM25RICM4/+EEVbSMU5WwMphNGzRJZ68iIVUJqUpxHBdnGjRoTeCPSeMIfzRkPOiTxDGFYgHXthn0BygVUSjmidIElaTEYYzvh+ZzZZ9Ujcekh4ek3W5GvNGkKDbqxy+MhVzi8Av33mRim6xtxlGc/sDVa5DNOc0MJfh4juGkKbY5ydk1mx69ic/J+TmjyRDpWly7dYvW4iqOV8SyHPL5EhpJIV/CTbzLFxWw/dMDnv6VMQur11laXSdXquBYLmmSZZtujnEY8nRrm0fbzznt9GbGDM3lVRbWbiAsI0ohtWah1SRnScLJmItRwrtbhwyjiGG/QxKG2JZHrdakUKpSrM0hHI9KtUKSJCRJjERTrRS5vrLE8eMdxHY0G6/+Ysqb/2UX92cXqC8sU6o36HW6kBo2eD6fI5/L448m+KMxW5vPODs9Jo4Dkjg0TkqLS7x072Uc283a84zQRqNaYzzo0T7Z53Rvm/7FGZPhgOGgjx9FKMuMuzSZauXHWKRYAmzHwrIl7kjQeGjyvqimefv/MOCD/2hM5GXdGDpFp6lxEEwTHC3odwZ8++33CGeOcj9oo/zBh0GQNUqZUmqaarQCnZKpYJlgN82+VPakKRnz6jtcylKa3uHp45Ug44Zcksx0miDPz2Aw+EM+3eXxiTfhxZUVHC83y9QMy1RSqlSZ+/x13v5vYesvpWiD5mAFMPeuRCGYpCnH52e8++677O3vkSoDaU4mE3Z3nlMrV7lz67axPsxqYVN2MBgyzGgw4PnODtVKheWlJRSa+lyD1z79OteuX89Yu5fVJYRh3x0dHrD1bAN/MsSyBdjw9LMX/OK//4Qwdwk/WjEUD43dVpKxgadwrHE/sjPFp+mCcblQKG0k7XK5PKtLK6wsL7O4vMjKygJ3bq6wtlTB0jEWipxjxEMkKUIZ4peBfk0gMQ0mPDfHcDikWCnx9KeHnPxoSuus+MI9ae+d47ke3X6Peq1OEIQIIOe5dLsdLMem22lz78HLqDRhrtmi1+8SRiGnp2c839lFKwgCH6U1pVIBW0XYEhzbWC1qbUak7Tg4ngdC4NpGocrOrL9g+rkVWIKDn4qIGrD8dTPhrBDcniCoa+JYUa41uX7zJdyFFX7by/OBV2Bb2uy7OfZtl/NSnV5jgSBXmPXz2bZBRfKJgZDbQtI1tkEsNOooFGEYYNkeaaHO5vmQX/i132ZpElAEdqVFgublNJnVHQ2pQjP4gskkV/9Z9nknsPA7FoM7CVonSAGWbSrH4/EYaTm4xQKWm5+ZKZjarzZAWBISDPtE/gSdZhmuEIYVbVtZ6xlXskdm8NWUcXkZbYnMzEPMalvBXMLwWszaP8khEhAxrP5Di8H1hHTR9B2bSJ1MbEAz7V93bJupvm0YhhkT1mQBpuMgIfBHJHHAyfEBtiWoN2p0ux3G4xFKpRTyBYrFAufnx4zGo1k9LL04J/xH/5Dg7/0PRH/v75F8+9voKCaRKZuNE76yd498YjK3P/30s4zdgIfz+39YUsMsq5jO7DRBj0YvPHRafrMMy9Ns3tlrpEJw4jjESYSUgrUbN4yARqHMcDA28p+2zSQIeb63z/h8+MJHWTiqsvXvRRy+7BuSnBTkinkm4yGW0vj9AcF4xMHBc8Z+HxyNV65Qac1TqjawnTye4xCHYxwhjGymtDnY2+fs6IjhsAdCkaAoN+qsXb/GvVvrCJWQRKY0YdmSfMEj8A1LfXd3h83NDYLRkOLmi5duuBLxL//j9zleHlKr1wmDkCSr2ycqpVzKs7+3w9bWBp3uOXHi43qSSqXEyy+/wvr6OnP1Bs1Kg95ZG1tKSHxyTJgv2/RO9wnCIcNgjK9ShGUbHkAckwYTSENzLzKNfw0z61IntGi8Z2fenWbOvfuf9HjnP+sT5o3tqVKm+X+qlaCTmHc+esjG/oFRnNdkCZHM0q2pAOXlMJruG9Pyy5T5bDLgy4BvZreo9GxOzDqAxKVL4PcdAqY5MFc4DFprVBiS+81fp/gP/0fsjz74/uf+gOMTb8KFUsng7FJfOVnoLkT8wn++w9HXYq76dOfOBdWnMosWTHuR7094uvGUR48fMRyN2NnaRiUpL925Qz6TGTS2WFNhAZMdaq3Z3dlBKM29u3dxXNdENtrUbu/dv8err7xKvlB4YQKbRU0xHPbZfPaU05NDdtbP+K3/xTPu/mYJt589WIGMBPn9rD3IMsIhZD6hUghsaWEJG9f1ZkooegZHmGvRH4z5+m+/wcnxBbbtUKlUqdXr5Is5xpMJbs7BcS1QMVInxrDdNjKAQmSBhzAGAc35eXq9Phc3Qt64s8Vf/G9fRQbmyld2bAodm7Dnc/fuXSbjMWtr13m+s4OXy7GxsWF8aG3TN1qr1zg63Gdt/ToHB/sISzCZjImjGJnJ9QlpJsD11WW++pUvgzBOTyaYgUQJHj3eJIwMgUILszkJpbAd43WsJYzLE44/F/DV/30R7ZrrWzy0eOl/yjEqhliWi+UVUdKhXJujJ13eLNX4jVKdX80V+RUnz7vXX+Lxg8/x5JUvsJErEbg5o9WbXSeA6u5zeOd9Joni1HbRpAwGffK5PJaAcRDipxLXcriQNh9YNvvSwpkxbwVJnOAnAcdfDXjt/1rAnZgBbE3gzv/bQsaatKKJopBUQyIdfGWzd9ojEXm05UBmc2gJDUlEOB4wGfZRSZjB12YTndq9TWtSU8apnma/WaZ3iQBMs2YT8F7VC2q/GrL2r4rMv5XLzgTmviVY/udwdn+CEJkSm5RoYWWONtNHMqtX64xgadt2tmgaVnYchQid4tqS0aBHEsdUqxWkJemen+NFIWXXIe+5JLEiilK0huT991G7uxAE6E6b+Dd/g/ib32Aox3iJw199/0fIJSZKL0c5/tNv/xneWN0gFdPP97FDXEUDAK1Jvvc26ZMn3/9QBLaVmQUICIVkYFm87XhsA2kSoNOE8dBHSIdSrUYUBwiRMh6MmIzGPH7yiKA7ob6fI98zrzV3WuJP/7PP8N7PHTKpmE6BYqFEt33Owc4Wxwc7JFGIBczPt7j34A63b14z5hlSonXCF157DTsxmvGnZxd0uh2CcRsVDbGEopjLU8xXqVRbzNVLfO1LL3Pn2gLJxEcoSZRAsVzm6PCAzY0NDo4OmYQ+QsDcceEF9Ka+X2B5s8a//msP8RcSatUq/W6HIPA5ONjjYH+PKPKJYx/bhpXVFT71qdfI5/Pkci6looeUinqjzsXFOZ3zE86PnlP1BB4w8SOGQUwsDdyukxSSmDQO0CRAjCTBlhYKYZjIoY8rNDnPYeF7LlZ8ed+UA8/+4oQ3/49dgqrZnXU6NdEwbaiBH/CN77zFIIyvqKx9/PtlGSdJFFGckCSmP1mlBrXUTAPTrGibXbcpwmkEbfQMsr6KwkzRHp0lXbN5rK8wrQH77AT33e8hh0NEeMnZ+MOOT7wJh3FCotLspEyt8HxpzO/+1T2uP6lz/9tzl4NBQ+m5oHiYQWJKA6alI01Tjo6PefPNNzk7P2d15RoLzQXsTJPWcZ1ZFmykw1KOjg45OTnhxtp1WnPNmYTmZduHxfLyMl/4wheMZu/V26I1Uhg92afRFt9desJP/FeLFLY1YV0jElj6lo0zguKhmMGxxgs4Rmd9l5ZlRAwgk7mzbKYwormnggTJ8/aQf/4rv8M3v/EdLs7PCKKAnf1zggQKxTzTyF6pJNPhdbJFUs2iqUKhyPz8PCPtEzyw+eJ/UcYRNp0FHxTc/WaNe2/MUbXLaIwOc6lSodvtkM/nOTs/45VXXibnubRaLS7axk93Mpmwf3CA63mE4xE2Gs91skxNE8cxp6cXPN14RpLV1kxWIZG2jcYiSXTWQqXJuTaOSHCsFAtwLYfwhuTl/6dN7kgxuJGasbAnufP/9WCYkCsUcXM5UqXwgxDHyXF9/Rae5xJlhhaj0YAkCekj+IZTYuPWqySuN4Mnp9GprzXfKdXYzxXN5Iti5iybSjCmkho5xzNpsZom/Gwc8ak05VwKVMbyFlrjN2LmfhcWvuUQrGTISwCVD2Htn1j41wWFfBFhOVi5AsotgJMHyzX+0cJYFia+TzAckGb2gQhtGPgZpEcW5adpahyPpgSUbEJPlxILcK5E4WbDnGZ40kB1ruL+PyjhxiCzaopMNOv/nSC0QoLYN73EmVb3lKENRjTfBAXWbKOPIiPqYcoRUyealDgKiEOfTqeNZUtesiU/fLLPT58f8KNHO7yuInKexyQIzNgdDnkhrU0S4rfeZE/s8rOPP8fd82W8bBM+Lfb54uEdvnBwm3Zh9EIgcrmmfWxnjiKS734HYrO4CSnJfeGLuHfuZNfaZMEnlsuvFcr8ilfkA8clVSlSaUq5AuPRAEhwPIvxaMDWxhO2nj3Bn4xACEqyxI/87h1u7bUAOLjZZeVZg0/9jy22l45JwoDOySGTQZth/wwtFNW5BvlilcX5FVZbDX7ih16jVbBBG7e5i4sOk36Pw90t2mcHJNEES2i8QpGl1WvcuXWDhXoVFYb4QcDz51t87lP3EJHRg+50OxwdHBJOxviTEQooVmosr61TPipQ6nusPKuBhuFCwCvfWOYrv3aLx186Jjef4/TomEcPP+Tk9IgwmmBbBpp+8PIr3L5zl2q1TrPZpH1xQdm1KVnQPtpDhxOOdrcJw4Dvvv8hWwcnKGkbMxeVkEYTdDxBigRpmTVeaBBaUa/UcTyHeqPIv/UzP86nX32JXD5HfSOP15FZcRZECi/9gwJ2LPngb/YJmwqVpDNFxVQpiFL29494++EjQqVnkLTQmTnK5bZjNtks81VKZ+JzWTKosnV2OsDEJVPajPnLjVzNHsOLceALKeiLf9ZaI4bDWS3Y3njKJzk+MTErVamRXswWwaSYMl6I+Yl/dAu/GvP/+S/3QULzII8WcPNREdcWxLHPNHmf1VK1NoLhwljb+b6P45aNYkqagNAk2U0Ig4gnT55QKha5eeOG6RlLkysxipiJXPT7fdIkodlsMRwOiaJoenUAjQw06/91Sq9xwMO/MwIBhSPBq/83l3f/Tog3kWjULCNR+lIeJEnTrF9TZ3CfQmpJktUwpylaIiSnvuI33nzK1uEp16+12H5+irQ9JDZBRoCyLQttWSQa0jhGMq1pC3L5Aru7e6zMrzD69RFztev8+r1t4rzGCgU//OgemxywWJ9jb3+PWq3K9tYWUkgmkwmu61IslTk7PuELX/oyT58+MSpXO1s4js3NW7d4+sE7VAo5lLAI0RRyOYIgZhAlRPgkcTqLEs1gNZCNEBBEIZaQ3Fpb5DOffZVvfvdNnu+c4Dh55jcd8BVHnw0I5sxgbL5nU3smab1rU6qVsCyJ40ja4yH5QplKpU4u57G99ZRgNKQ36BDuxJTyeSxLEszNcygVze3HOGmCkynrkKYsTUacPPmIaP0Wr3VOuD4eYsURgVI814o3cfmm7XBXpZzaDh9YFiJNTYVfa3JtQe4NQezE+HUTidu+INdxWPo1TbxmXI2UrQxKYdkIBK5KcLRp1Yr8CXYUILQmyq6XqaVdyTjTFE8Z4wuy9jhbaRQqg+E0t6KAG1GArRVnQvCeZTHMCuZCQDmNeW3Upf7PArzRiFEY8eW/Df/ib4AlBPmeZP63FKmK8f0Jlu1kYh8CxKUYvWHnC+I4hmzcGflsC2FlVoHKMFalZeBa1T7ny8M2lTQTuUliXj7a5SiB0WhMvVL4vmxWAwQB3iDmR7dfxVXWLBPuFEZEMuVzx7eNEl/2GWfPzeBCwZWFLwjQ4/HsMc6NmxR+4icRwOTrv43/6BFdbfFtJOcqzegWBmZHm35slaZEwZiz01Pi8ZBw2EN6eVqLC4z9EfU05nPPbnCnvsrDV4/pNyfs3D9n7e+X6T68YHtyQRqHWAJyhQKtpRvGevD0hDhJcC2H86NTHty8xfeeHxNj0WlfEIwnhCrBcl1yuSI5rw62S7FQ4MHdJUr31/nXv/c2SVLh4MwnCM6YbxR5tv3YZL0YiU7LcVheu065XEVpyHcumDso8iO/eI9/9Le/Q1RIefvHdvjzf/fT9L+dsHWxiQpCUpVgexb1Wo1ry2vs7x+BtklTkJbxAHi88RQdhAzOTlDhCEdq+sMxk4mFFrbJJTM/YCENKppqlQV2FkKY9j9hScaTMVJbiESw+XSLnb0jBkGEFUHjI4fCUcrgdkpU1Rz+eMhP/pUWYTFlsBbT7LskUYLjOOgk0wEPY958+13u3lpnpVY29f9sTxEwG8Om/HJJkLokUF1um0KImVZD9qvL8Zq9osbUfadESbQ2+vHT2jAvPsdMe/FCVux+/Tf4JMcn34TT1KgnZZ6q9sThxvtVcOFX/sYTBs0IGQt+9J+u8+iL59zfW+HW7RInRwcMuu3MZ/Iy4iA7sf3DfUbDIS/du8fyypIhcqgEpCBJFE+fbjAcjPn0a69TKpcIsxTfsImFAfmRBIHP9rMtapUaX/j8F+j2ejx+8pj+oG8yD63JXRgIYvOHfbovm4l585dc5j9ymH87hUhlhgo6i8bMz+nU7UgII7Opp/qjH+8TmylDE2LzeH/Ixn4HpSWFsks4ZaUKcF2HWFjEYfICu1QIydLSMs82t7hx8xbHHxziLRZ59NlzENDcyXH9eY3d50+of3mFdvuA+dY8x0cHvPTSfc7OTllYWOCifYHrmvpbp31BpVJlOB7RnJvjYH8frRR3bt9kZ+8QKW0cx2M8DtHCIk5UZr5tzstxTI0xSVKkMO2jOdvDigOWGzn+0r/zM/z9f/yLHJz2kIGLbbn0H/jEZTNKW2/biESx9qsOugyeLbGz3u5GYx6NhePmyXs50jBCI5lMRgw651SqDaRjcbFynY+GY1463OEWRr0qp1JuJCFrZwf0u+fUowBHmsDIRfNqYljR37RtHtoeXi6PEJALJ2bcCImMBamAsJoSVw07Ote2sZWHHAtKuzkUAlvYxrFJCe74Q277I9zU8AWmEy8EHkmLx5mNIQLDNNea15XivlJ4YHp+0xTi0AQ62eRtqGTmgbum4aZWnCtj7YYQtLRPYwana5Jjxdo/gwdvw3dj6EuB3ZVEShMTkCYxrusZbWplejG1Btt2KJdLtNsXWLaV1cv0TFjGdT0SHc+Ch9Qfs5JG5MMAnal4aYzQSnnYZzyZZGN3uixyOdfR3GovYNl5UpHSmJR5Xj+n700Y2yH1oMiUBa6VvnyN2cI4XfgyLW19+R7W4hIil0MIQflnfob8V77Gr/3L3+JiewPSURZomcemArqDPkL6bDycZIGkoFgusrJ+k+uLS+w+32a0OcQ9lsyHHrUfKdArT3j79Wfk/x81kvEIS+YplWuUSjmiOKJcLLPQrLHaqPBwY5PuXIuD4zHt83NOzw7RQiIyNzTbsZhfXKDVaFErFfjg4WNsHDa3dvjMvdsszzW4GE/opgk7W1sMhz38MAbbxiuVmGu06Pf7ePkCluVgS8mCaDL//pC7Hyxw81GLjddP2fjcKd9zHlJ7T2b8GknOzXH77m3K5RJ5L08cp/R7XRq1CuHEN6jdeMwbb7+JI2A4CQmjBCEck1lKjdYxthS4wibRCUjj4GUsSm1TT5USgSQRAi1tjjojjjqjGUvfnWjm3rFRUtJ8x+HJz/u0X43Z+PMjPvXflLEw7ZspmbEEkCQJloJBp8cbb77Nz/7Ej2GJyxE24+nMRl32++nIurpIY0hYszEHs510+jDF1PEu+93sJa8+J1vpp9wgIV54jSsv+0cen9zKUGuSZGpqnkl+pYpHr53w6GttAG59WOMzv7vE2bUJS0cVypUS5dJdup0O+3s7BH4wW0CmalEa6I36vPPuO/T6N7h58waOa+KcbqfL/t4Bi/MLLC4sEquERKcmchbTIr3ZtLd3zOs/uHcf1/FoteYplIo823zGwcEBKk1AQVzVbPzVFG1B7gxu/mOJNdQsfdPG0daseVwliYG3ZqQbmflk6lmfmc4yZWmZml2apmg0dnbXU0Bpsxj7kfGGFWlCrZjDcmw6QUgcJ5f1Pg3VWo0gDKlWK/R6XVrz8+zc7TK4FoOCz25cZ/DsgrVBA/3OCIkgiiO0NkS1p0+f8PLLr/Dee++RasEHH7xPLpfn1u1bvPfO9xBoxsMeCsHG5hajSYCdKxBGWTtSxuTUmUjotD45ze50GoNSJFLw7LBD+E9/ma/80OeoFcuI1TL7B8eEScjJaxFI8NqC8lNNmqQUTx0Ggwvc2PRl+pMx7nLeSIkqxWg0ZnFpDWHbHB/vodEEQcDp+SlLCwuc+hMKS2tc653h+mPQxvxDas1c5M/qNFc3gTWt+LNxRFumiNQoVE2tMgEiYMeyeLckiWrgBvCZb2m+EMfklaA6iIxJRTavXa1pRgFSXxGruXIsqISmEnxXwihVFLXii1rxmlJYXAahQl9+hiuTjOnU1UBDaxrpdBOeTnB5ZbMzI+faDlzrJ7RjTYRmpGEAoFNEZqw+I6Kg6aQJe5Ox0SDWmBpy1m8/M7OfXUHN3cTnh6LIOB9l7UGWbREnKdXQR4Uhl15vV04HEEojz7vI+RUUgoVRFYCB5+M7EY2gzLT9yMDRl4sqaUL69AlqYwNRKCKWltFXRYLE5TtpKbHqDVZv3eGjna3ZQxQmyEFKlNAIlRDFEZVGi1q1wWDQo1AoUPAcvvK5T+M/fJuinScZxrSe5Ol9fsLR/T69JY/qc5vVa9dpNFq4dsL25hY5RzIYDCk6NpPJhKPzDu3ugGHngiQMkbZFIZenPtegNxhQzJco5hRffv0mYf+MXjhhYpX57vvPKXs5zra38ZPIyKQKibAsWosrVFvzhuCVidV4XgGpNYv5JkvfOaHQF3zqlxbYfOWMoJby+OfafOm9OUr5GvOtFoN+H9tysS0PENSqZU6OD+h3CnQvLhhPJqgk4aI/MBuK7ZhNVehsLVCmdJUBFjoyBCrbMj36Upp+eaMZkCNSCTrjPSiVsZ9TkNJi4d0cg9WIlf/Z5eAnQkbrisd/fczab+RpPMkkVjKUVAqTFKWkkMZ8+OFj7t++zb31NexpgUpfhZUvBZGYln2nPea8KAQz9We6Ck+bpU7OZuFUkvUFCDs7n+n6+IIZxQ9cFf7w44/honTJPLaljbQEfW/I7/ylPaKiwvMtfuqf3aE8cVndLjF3nMOWAsv2WF5aoVavsrXxlF63a3oepxAnWRSTxDzbeEa32+HevZcolctsP9uk4Hrcu3sXSwqj0ZyxR9WVQlqn22Vvb4+FVotWswnKyBAW8kXu339gXmtri2Ay4fhLKedfNLdp5bcsqg8BnbDwLYmI1MxcAs1Mv1djNmCdBR5aZS06yvQz27aTRemCRKVXllHQwkaiSGNFSko5bzPfnKM3GhrVotTIXKrs5i/ML3JwdMTa2jV29/ZpLrX44DPHpB44keTT7yxztP+MVqvF0YeH3L59m7PzM5YWlzg/P6dQLKK0otfrUqrWCSYDHrz8Cv5kTKNcoJBzOEtibNdF2C6p8rG0JghMS5cUhlVI1kMrs/5flUQmoxLGezlJUyaWy7NexPYvfQsvX0C7Fo5jE4iYi9cMnF3ekxROpSG4WZCkEafHB3TOj5FSkssXUJmYRqohV6xSKBWRFjzfeEyiEg6P9pmM+kSBj7hxh+fXb1LZfYo82KVpSRwgSWLTbgCc2Tb1NJkJNhSBokpNrXZ2iAwq1qwrxVpbcPP/rin78JVfTilOszsu4+opE/LqbnM18gVwgNeTmBYJXQFNDYvoK+SLSxWpH3QoBCk6k4z4/kMIiIRkaFl4dowgMw7RsHLl/C4jfLN4vcAYBnakxTPLRmlzj1MhuEDSE3rWM+55xsLyemrcsq4eJmsV3I/GyL0d9N0b6OHghdMSgE4T4t/4NbTjIG7fYmFsNuG+N2FiZ3adAMK0n0wdbQgC0re+S/yN34MoYhaFzD6HQLguWVXBaPUiWFmax7JslLLRKsF4NYNjGi/QlkWxUmPt5h1s6dDtdrGERbc7xB8M8E5S/MqA3f095v55yrPPmdaf9KfrNP5pCc/xyDvw8ks3WG1UeH7cRTsFLkaG6Li98dhAnUKAtKg0myzNz3NvfY2tjS3GScw4tPjg8WMe3L3NN77zLtqSHJ+eM+5dEMQBwvGwc3ka9QZJGOO4BTzHw7EE83NNDo9PqFSrSFsyZ5W5+WGNjc1HOPsB9Z9zaL8esf+zAT/99RVuT64BEstyuLgwsrZJHHNydETkj6gWHay0RK/bIQhikJ5BwVKTiSIyHXORCchISZr+/1j772BLkiy9D/y5e0Rc/bR+L7Uq3SVaVKtpMd09WmAaA2AgyFkQXAAL7JgR5C5o/AeCS5phbblLcI2kEQuAAHYADAaDkd09rWV1l+oSWZVavcyntbo6Itx9/3CPuPGyqgfVYxtlrzLzviviRrgf8Z3vfCd1ugDGunGcSvkyqCLRkNgYhM1krpHGOpXEKEDKkLkbEiJo3Fc8+k+qvPYPWrTnNFf+RpOP/t1RVN8ilcy1pUMV0NMxQgmSbsx3vvsiU+MTDFUreOuccxlMIcDOkrQsaC0GvXnZMdvLBefsAj05CHwLS98FFPkuzl+bdS8cP96bS37vTlg45D0IAzc31yS8+pkV1t7nxBae/d4MFy+PIRE89uYUVR3mxkYEglqtShg5EYwgUCQ+KxnsLUtqDVvb2xweHTE2OsLh7i6f/fSnOHX6JGtbW6AddJhfHGFJEs29O/cIhOTi+fMM1Sv0kzgftShFwMzMHPVGg8vX3+D2/2EPU4LoEC78K4VM3cUMty0pSa4n7Zy9xFjPbAWnsORJZiZnvjo4z1gQQlGOIj9vNs7uY278BMIN0j5q0UsMOgZpBcZLylRqQwipqFYrtNttoihCzESsfjIBCZPLVSqvxDSDwJHEjGF6eobbt25y7rn3c/X6NZSQvPnmm1RrNcbHxljrHjE5PcVbL3+fX/j0x1je22Fx8T7VoSE6R61BC4vWSBWglCRN4nxxBoGDh1KtsTjCg1Kul1rbPlYIYiN8Rm+JgoDO6YTurHv98G1FtG8xUlKu1gjCEp12m26nTRDVMFpTr1ZY391wkpJh5AQspEKEAbV6lU6nx8HuFqQGqRSdkXHWktPcb3b4yelJxrc30EeHxFjuBCFXwxJj3R4fTnuMmnfPWPNl7TfBhSPLid9xj0Wd45AqAA9lrgbYEJKmL4sMWcO0FzYRwAKWhYdgLi0EmzKgKRX4QefgRgsOeaN3T8AB8KhOGbOZKLyP6IXkMCpzvTrEVhjRe2qf86OHvO9ljjltUfjMotnJSq6BEJw3mnNGFwthtBG8Ekas42euGk1sLaOFoSMdKekKwbgvL0VKIG9cxXz4eeze3rFzyLITe3RI8rv/HvnU+/jIxj7974MyXaLXXyRtjWHDCDkxAdWqv1AG/cqL6CtvDQbF5Nmy/37lEsHps4X74YpBjaES5UqVdtrzAzcCjEkdixeYmZlm96iNEAEEAUNDddJej7Q+zNr+PgfNJptbWzR7feZeqlPZbdKd0Nz/qSOe/95p0sMW1ajEvbvLDFWrNPf3sWGX9Y11eu0W1mjCSpWR0TGiIKSnU8IoohLGfOZj7+Mb336VenmU1e0mO7srHLWOaG5tkKZOAlWogGpjmPHpeRq1IfrtNkdH+9SjKcJAogPBxoYm7jQRpYh7ixu0tndIkphSInn0D0f5/lObdKZSbv9Sk4u/5yaXjY+OsLu9Rdzrc7i3S6d5SChhffkB7XaHTr+DIfDEpTSXZxUyAGPRidc0SBOUNQzVy278Z1Sil7i1axB+/KzXarAajPFtcU4GV4YSs5MyczkisJYL/7bCg1/qs/WhhMVf6nL298osfKvs7KsfyCLCCGUkJjEIlbKyusEbV2/wgWefpIRAGacOhrW+3ShfeYUA2tdsM9D6YR2Nh1qR8vJglnwWHWwWZGWPZ1D0w+1M7zEtfu+jDDFIqYgCN7ZsY3yPV//SHiaEkZ0Sn/3dc4SJwmIY36o4mFZmhR3L5uYWO9s7TE5OMTMzw9LSAw6ODnLcfwCuQbffY3V9nWqphLWCVrPtFqly6kSBcMoxKZa9/R2O9nd57OxZnnn8EcYnx9g/3GdlfZNWL/XwpIOLNx9P2PikuzJTLyomX3WARjG7Mb6vUyqJkK6lRKcp1jrIxSlFWU/QEn7ihsyddl4zEMWigje41qINbGzvgZSkXinGQSWSWq3B9s4O1WqVnZ1dLj3yCN+ZukbrtJOpvPTDMVbeXGR6fJr9/T2mZ2bZ2d2mUqkipaLVbDI5Ocnu9jZPP/Ms+3t7jAyNorVm/+CIH7zyOgf9DhYn6h/HMdLX+IzVRMoRV4Q/f/c9nFtxkpWuKCelU/4REnrtLlL4a2UscZyweyamP+Ku5/RrEQEKI6FeG+LUmbOsrj5gbeUBRicsLd7lxMkF0n6XSqXi5DytodfpUC7XOHv+ETY3N9jdWsciuHPvDmew7OzuIKt1ts48wtbCOW5du0y9UaPT69Ld2WZZBSSlYS52HVNaZffDLTWElJSAYW2cHKkid1LSOJipj6AHtI3J8jUAYiFYUoo7SqG9hxRa85jWPGs15XfZPT0heD0qcysskwonw+rm/Lr9IawBHZPEPazVLOHmr2ZiCUZIVFhBVmtYoZBY7p9R/NZ/Dx/9GvziPxDM3IDIQhVPABu4r/xfEXgxFnHc7lhLHfiUn4MMEMc9OgjGC9akCbwQRPxkGjPsB0HYbhcbxzlUDaDm5h2cvLnp3r7XxbzyEk+/kXKmDGAZ6r5Iol0/etZr7Z6MQy3s4KoXnbpsDFH59GdQ8ws5DIh1e3F0dJjx8Qk6rUPXFZE6DokxKUIFRKUIGfSzNJ1apUzr6JDtzW22t7dI4y4iCBienOJ8aYa373W5Pb7L0sU9oidr1F53hMHtg5SVe8ssrS6hcUQfKQwylJw4fYL5qTFmxkd44fuvYxPD4oMthNZEoUXqHvsH+2xvbboRlYAqlamPTAKSOHYZvAwCGkMNDvY2CY2mbBWpUAzVqty/dxujtbdXoIKQmdlZLj6Y4Nbmt9iabfHqJ+7zqe8+wuhOSLffIQCW7t/Gak0cJ7R7KYdL6+7KSom1MQiJVAIlBgNOhMs1QVukMpxcGOczH/0o3/vuq9xa2iCRIhsIgNQGTIq2GhG4vviwVCKNU5Jegu3HaFKirus2Ke1bnvzHNb77Tw5J6pa3/s9tpt4sEe1npRKn3JdNqLMixWrJy6++xukzp5geHnLJgZVgtSuZZClEYcuT1XRthuf+R46Ccx08ZN/x9+KwkcFUvB/veM9OOJBuRBsI2kmL7/3KMoenXcT0iS+dZmFpyBkL6eXH5CA66HbdTOFyVObsmXPU6lWGhod4sPyAtdU1dJoeY6FZIbASunHCd77/Ay6eP8fs/DwyGPRSqiDAJAlr9+6yMDnGz3zuU0zPTmOsplty7UMZfCgEPFhd4tp/1SEZBtWFC/8qRPUzubFBNg6DOrC1A3hMeslKY4WDa3yd1CEyzjm7yUUuY7TYnIxgbAZHOoNtCEA72Nr1jmoq1Tr1oSHW19aZn5tjd28PG8DNj+6jSxD1Fae/VSHt7TM3N8va6gqPPvoYV65eoVKtctMPb7DGEgYBIyPDXH3rMu97+jmW7j/ACMnWUY+9w32CsDQgnoUBSRK7YES4QfB5xiHd90u1JgwUmbSiw95VXmtBuCH3MnAOdPvRBFMCmcLM1RBIESqi1himXK5z+tR5tjbXiQJF0mtz/84N4jRmZv4U1UqFOE3pNJuUy3XCqM6J0+doNw9otdp0ui3u3LpK0u8zPTuPMdBPE466PcamZ+j0eugkRgjJvirxcm2INO6ihCMZuYBIMjw8RL1aZfrgiJOdFnYkJhnThD0wbcVSucIVJIdxjMYgRGFmsvAqahZPzHK1pctK0bKCJ61lyNp83x8IxdXQCZFYKdxcYTuIyi3kZKfsAS1cbUz5EFL7+yOt1zCXrtbZrcM3fgmSPwo5c9f1tofWwdlKumA1n6iF5YyxPGEN5RxNcp+X1auF/4zMOFSxhSfChlLsBIodIxk23gmkKbbbIzNuAgjm5ii//4O0v/LHJPcX84xCGZA6+5omN4q8C2AhABGGhOcvkq6vYbtd5MQk1c/9NMHJU36fFkoDwhKGitHhYZatV70zCVI5vQBjHAlyYmwc3e8jlaS5f8DO5rqTJg0U5XqDUrXB3OkzVEolHnt5jtsf2OVorMvdR7c597JlZWmJ5c1dDo8OHMM8DKkOjzE7PsbO9i6VcoV6SXJiqsrTj5xkcbtLL6xzfWmfnb02e7d+SN+64fZSSmSpzPiJkwRRlbSX0NvZwKQ9lC1RjSImx4doNg+w1ToP1tZZ39wgTnpIKSiXKszMzKKN048fPRzig98/yxc//xY7My1eevw6z/6bcZJeTK/botNuggCdDcWQCpM6He4wjNye972/TqJVu35fJdA6pVQpYRH84Ze/xu5BzAAzw/FojHEQsbefxhriJPbDcJyMqhIKpZx0rzIw//USJ75S4t7ne6x/tM/iL/S48K8q4OVxrWvLQXotA3RCu9nipZdf52d+8pNu5KJx4ymdSRI+1RXkSsMFBzkYGnL8yAM6sqcO1nOx9ntsjRaC+3e+44+oOT10vGcnXKtUCcOIXtzl5plVbvyKu5kn7g7zqa+dJRQhWhrX/iGVj0IcwWlpcZF+p8Oli5do1BtYYSmVS5y/cIGJiQnu3rnLwcE+2cwK442asZZ2t8uV6zfYPWpy6dJFp4ojJSJQrN27h+10+eVf+TNMz0xgTMzW9i4rG5skqUEqSWBhc2uL2401Vn7W7fSJKyEnX6ggZOozP1u43O7iWWMx1hHRpJA5IUR7R5tlylK6P43vaRbG15TBSxj6xWiMn9YjCrOi3ScLKxkeGuFg74DpqWl2dnZZWDjBUm+NtU84KHpmvU75pZj66AjNoyOiksu3Wq2mVy/a5vnnP8Sd27eZmpx2wvrCjUJcXV5GBhGdRGOMIAgCOm3XoqWUIu3Hbs5qEKDjNM86ZGEIt/bfSUmJNhqbSpQPPJxcXYoxAkLYec7Ja9bXFUObAVZqVBhSbdQJoxAd9yiFEU8/9TS3b91l/2AHnca0W0eYNKYchXS7bcanRjE2IMAQ91NGxybpdnv0O0foNCbu9Yj7XeJ+F61ToqjkalPW1a2TuIsM3LQfq5yxcN+/hA4r7HRTNsp1rtTGeO3vbHPn1/aYuyl57v9Sx15J0Um3ENn6vnQ/AMTJ3ul8vTgkRHFfhKwI6TLvLAhDYWRR9jTboDlYVgigB8Qo4QtSxdeIPLAbCFxYAUY5wX+LoGsMbeuEDpTw9xBnwPal5RaSMSkJlcuXQywXk4RZo1GFszsWFACL5TJvS0dOPJYVHOyjf/8/gK+jZ++gZmao/+qv0fnql4mvvQ1aI0JJr95FC0vQF1Q7bjwjHoEqvNyxgj/4YSqf+BS2F2M6beTQELJcRqjM2PpzyAyshLm5Wd667LXMhQHrSmBaWxfcVSXr9+7S7/fo99oYk9IYG2NsepZSWGZjfQusoh8bLl2dp7R7jf6E5vuP36C6O87hzj7Gk72CcoXayDgz8/M8df4kD+4us7K1yfm5WW5cX8IaRfPgkFa/z872Fkmr6YKWsER5eIShoWEODw8JgxKBVFSrgsp4nWrQ59zMELVqA91v8/aV6xgLsXYDT5RUTEyMc+LUKUrlCv0k5e7deyyk83z0u+f53k/e5nC0y3c/fpupf95luFMj7vXcaEFfo/U1NDdmNUeznFoV1pWYkCACP0fbQrfX5/5yH2MlVgRYlWJ1jNXOTgahyOUgBQKrLakdaIZrCyVVIghdt4iVEhVrnvzHNdY/GtOdMbz9N5vMfjOkvhI4B2wdsdMlOoZUp0gruXntJpcunufS6ZOE1tHHAESWHOD68TMnShazeVNvs/puEU7Os9+sZiwe8g3vchQy5uP8xPeWFb9nJ7yztcnk1BR7yR4v/tVt+uOWIJH8zH84z/BOhFBOVUoXVEQslr3dXXa2t5kYH2dhfg6lnHoWUhIFktmZGUaHhllcesCDB/cxSeohBXI4IdGa+ytL7O3t8NiFR5ianaHd7nD33l2mR0awVtPutNnc2WFrdw9thYPslCIQkuXlB9z+6z26M06c48JvRpQ7AbIc0u/3MNnQemtzI5tfRuum8Ehfw3OMPz9iTnoVFavRxiKFRCpL4sUYsl5Ra9wUpoFKkq/P+RUhRcDU1DQ3b97izOnTXL16lYUTJ/ju2DWaZxxJ7Mk3Z+iv7fHo409x69YthoaHuXP7FkHgRhCWo4ioUmZvb4/nP/JRbt25SWoNV668Tdzv8cjjT3D3zh1fx5aeVBbkUHypVKIX93N2KjjWt1SKQEon32msG7Dhgwo8g1opRa1Ro9ls0qkkHDzizrl+TxKsO7HWyZEGs2PDSJmysbFMrdJgYW6B0eExXnn9Jba2N2m3W9y5eZ0z505j0dQbQ0gknWYT3TfMXlggLEc8uHuDva0Njg72uH/vDtVahAokYamUbwIpBEbHWOHUnJSqOMJTFBBGFXqpQIsIlESEIftnDLvT0E0s5w461BMPzXjRjVw0w7o5qE5cJfudg/SREiEVWkiMJ9s5xqWvFOdtDJkzz+ZxC19zJkdg8h2dlXQyB0xmQ8QxuyA8kzYzNs54OYYp4AVD3OMtY2kaixKWMHSM1xWpmNaGIeNaTqaN5kSaooBUwJtBxJUgIvZjEZtSQOrPxhjM5sag/JTvHZD1OvWf+0Xip5/BHB3RmoO///l/x2a9yefunuPvffdXMO02Zm8Hm6YOwPJC/WpsnODUGQhCRD1C1esegfJwugSBLAxhd6HDwtw0SilMCqUocq1lUUCv12d3e4Ow1CRONEIpakMNpBRMzMxSH5kgFAGba1uYOCEolxl+UGbmZp0H44fcPbfNpYagtiWpjg4zPDlJFJbZ39kjMLCztcXszCR37y+yfdCBNGBvc4edjU0SmZDiUFsixfjsHOXhCaQKCOMU3e0yOhGxMDnGWGWSXuuI0MDrr1zm/tomva4blRqWI2ZmZilVKhw2m9TqQ1hjqJcVo/UqzcMdqrdDHvnGCC9/vsvOo31uvH+fc7/bz8tLxmiEr9VmJNc01Rjt9KkFOFU8bYnCEla6NQ8Cm2psoJxzSmIEfja7cMI1KhC+LcQ54yxTFDj7qK1TtEpN369jh1SOXZFc/M0yl/9Oh4MLKTf+aof3/3dDg3k5NmthE04Mw2jSXpcf/OBF5mcmGQpLA1aztIXQtegSxWCZZLyfgp1/+Ci+/j82G9gxr11Z5OF3+I8d79kJb24ss3+4ze1f6bH6Cac79tQb03x++3ma9R2anR5YnyV4A9Xv91heXiIKAi6eP+dm2goI/GTkQLg6QrVW48LFC/T6XdaXVrIyqQtrASNcDbbZanH57bdYONinG7v2noVTp1jd2mbrYI9USgyK1DqiFMKytbXJUmWbB7/isrPhO4rTXy0TBCFp6rOnIHDDzosRTeYo8SUqrwaDtQ5+FuLYSCwlfW21UDcFXLZkKRT4fbMjTp4TYHRsglarxfDwEIdHhzRGRljdXGXpz/cwJSjHIVNfFgS4EXndbo/G0DBb21s8/cxz3Lt3l7nZWXa2tymXy4RhyObmFtVqjTjpMzIyyvjkBNevvI0Qlrjfx2KJSpGbzSycMo1JdR71Za08aZKgAjd0wwicSpQvGuokQXpVqDhJEEJyeMEQj7rvNXY1wB5ZlIbnn3qcDzz/LHdXVnn7couZqSmUUtQbNSbGJzhoHiIQdDtHXHvrDayEWqWCFJak13V8hKhCVC4xOTnD/s42BsvR4R4HBzHVctVrMmeoBkRhwNjUGOtbu6BCSuUKFoHGfw8VEiiBkCmdCRetBx1LeUeTtdBlesGAk7/LnCUiR0GEHKhaWSFdW0XW0+RMmvtdvrKc8m3mTAf1JeOzeMgqV1lpKn+1tblfPsbQlBKkrzF7ZqrrudfOEQs8u904jW/jSggJEIQBqVQsC4G1ziSUpGAuiRnHso1gVQakfv1HYYkbqWY8MCykGpVnxjlej2gMOaNnPaR8+gwgGIm67JwpszTS5GaUYm5OEJgpxJmzg6vj90qmBWBzS1w8rA9u3JVwpSewEqrVMpValTRpUiqXiOOYJIGZ6XlW1zdJ0hiUZO7UScYn52i1WjRbTeqjbnLP6PAwvXaLUAna23vMfSnkwUegM6XZ+6RgbLPB7KkzqFIFoS1pvAVGsN/UtNpHpIlgY3OTVvOAw/1dEt3HWkmpPsroxCRxv4NGIYMQY92YyN7BDiO1KUJl2T9o8+orbxDHml6SonHa5ZVyhUuPPUp9qIFFcnTzFrofUwkDbK/HqbFR7t6/x+OPnucvXX+Gt9pbdOuam3+hw/xXyoiWQSGRQqICiQz8Kkw1gXU6zWUJQRRikPT7KUmSujYdIQC3rpNEI0iR1iBl6Eoj1ungV8KADz//HK++fpn9ozY664QRzm4InMSt03jQDtHxAiAX/3mJBz/X5+BRza2/2OH0H5aZeD3M5Xwz3QaJAJNisKytrHD56hU+9PQzRK7132fhMs+CM4Eoy492qA/Pd7d+HfsXPLT07CCg9uVGY/wyfGiNvpfjPctWWpOyVz/izb/ZQleh2gz4pd9/hGS9Rbfb8SfuFJWUJ9esrq3S7XQ4e/o042OjKCkIlSJQDgoTIuNjCJpHTXa3dhgfG+fUqdOuVoEla/iRuBvRS2LuLN5jdXWVqfFJJiamsSJAC8eEFMKNQHRTYbrcvHmTxZ+OOTpnneTj75UZPohIEgfrSKWc47TkjrMIGmaHscaLdrgFZLSX8DQml0DUqUZ7Fqb0WRNmgAooT2bC4kX63Tebnplla2uHqZlpNrc3mZqcZEVvsfEJFzhMrlXhm4eMjY7xYOkBYRjQajaJwohypUyrecTCiRMsLz1ACMHly28ihWR8YoJOt8O5C5dYX1tH6wSlQi/a77Imow1BGLoxedrkCzBblDpN0X5IvJCuIcAKQRCofNGmqXZCHlJy8IjJRTomXnVKUFaUuHz5GneuX+X8yTlmp0aZmBwjKjk2drvd5vzZczz37LNUyxFp2sWkmo3VFYzu0eu1KFcrlEpuEPjhwSG1xgizcwtuApVOiXsJ29tblEsRSkrCMCLRlrX1XaJyg7BUxSCdIwkUQRRQjgTKJBzE23TKPRAQHkDQcdCaY9c6yD2v/Vof7HqUQHrtaNcs6YIkV5sSAyc5wJa9QWNgEPyfeRtFvnEzUJqBgxsg4wwGPWRPl6CUy+ylQ4HcNDJ/n71kZt7X7nkPWmuSOBvV6WU4haVvDPeDgNeCkOUwxEj/bawg7vVpSclL1bofokFOUBFAMH+C0tNPu8w4Q8X8uVeSiKGe03g/KnfohP1jGX429xt8zT2DxAaX0AUkIgtnshdkqJRgeHiI8YlxpFT0uglJauknmpXVDTApwiQE0pWVRFimWhsm6cUInaKUpFarsLH6gLvX32ZjeZGpbymiXYENYeOXLeXREbrtLoGQBCqgVq9z1GqRIjhotUjSlKW7t9je3qBvNJTLVIZGmT95lmpjjFp9gl6772BhJOWoRJqmNI/aXL++yPdefoPddpfDfgejNJOzkzzxzNOU6w2iSolAuS6MiZFh9rc22d9YZ29jFXodApOytbrGyr+9lg9Q2fhwn63nukRhQOh/jIectXEBuJKGCydn+fgHn2VqdJQkjsm0+0XB/mW6y0YIRKCoVAJKyqKwRCqAJGFj5QGhtD7LdbN9rZCIwE1dc4psKVanmDTN+TXVVcHj/3MZ2YfepOHtv90irfi142u6ub2VriPYmJSXX/khO4dHaPx89owhnfENbEGUw3JsvGfxKK7DIsnqHaznYrLmPyObfvYfy5jf7XjPTthIuP3rKftPuEV//t+VqHyry/b2tmu/zC6U34mHh4dsbW4yNjrCqRMLbiqFBAdhuhukrJPv09o1vltjeeLxJ3n22ed4+tlnqNbrxwri1lqMcO0IBtcfvLh4H2sFUrm6BsK/Z5qytPSATbHHnb+cgIL6quT8H5RIkzSv5yaxl+HDCcAHKhh8Xm4iCxcb8nqcEg6CRzsHbLT2usoyh2yzCTbgh0JADptYBNVq3fc8S9qdDkJIms0j1h7tcHTWq3p9t4bddTOVd7a2uHD+PDpNmF84webGBkONBkjJ0f4+UanE4cEBJ06cYHJigjCKGB2fZHl5GSkCgiDMF3KaJB6WgTiOB7UTsh5piZLu/gyk6VxWV4Q5jZeu08Kw+7TGBhC2YPiKg52SQLB2cMSXvvptvvLFr9Da32dufppyOUQIw+H+PuNj45w7d5ZPfOLjVMolJLC7vcmd29fY2lqnXK04tqZJabdbVGtDjE/NsrBwwgVF1rCxuka/30MKQZwkoCIqtXFUWCcxFiMtYSkkjCICKeg19znYWqOjmk4tCydjKoTKod28J9y66oGQwg0aCZyzy4K+gUa0r5OL47rPmSN226PoXLP1hUNGxCBjBjsQpskcUeEFxf2eTeDyygngmfyubOLFZIzrx85KCG44hJ8CFjud9GztFmE4i/veUmS5pzufEEEtzzB8sDw0RO3P/ipqdKxwtgOjJZHM+l7ho1KPdhh7Z2sL81m9zSn8K6uPu5vg31UUxGT8dbUIwlAyMjLsUA8vyG+sxpKC6XN2YZKnLp3laG8LnfSJAkVFSUZKIYf7u9xfvEO3dUC3fUgQKU53Zpl4qwQWVh47wFyI6DfbCA9p1odqxN0Wm6tL3L1zg1Z3D627qFKZsZmTTJ+6iBUKq5zzikpuHGja6xAKS+Abaq9cvcLi4n26nba7vmGJS488wYVLjzIyNkqpUqLb6bpejyShrCSrS4ts7W5w0Dni+tI91o6OeOvOA3bXe5z9/5ZRHUirlrt/pY+ouuDSrVNLqmMsqZuUNTxEq9Xk9q27bGxsYZAuqQFMmmDTGGyMlAYlNYGFwArOnZjiz/78pxmqhJhUkxrB/Y11hiYmSX0QJaX088a9k/Ryr8Ial5CFbjqdRHLmd0vMfN813C3/dI/VT/f8usmEMfyUvRz1MrSabV5+9TVHdsvWmyeFHRPnKMasg0WVr6Xi38U7HO3gz/z3OVGrEFgf89fvDY5+z0744JLh1l9zBrZ+X3DuHxvuXL3B4uJ94iRxUYlwDLgk7rPy4AGRkFw8c87VHoV1zE7r1FcEri1D4KCbra0tTswtMDYxjpCS0ydP8fyHnmd6fg4ROOGIDFrI/uvEPa7cvM4rP3yNw90jpJEE0k2E6XQ7PFhaZvVTmgMfOJz+QkT1jnV1QgmpcYvCaqeOhVSoMCQqRZ5Vmk3O8OzmLAvyjlV4yDEjLblzFHn9za0FZyxVEOTwHMJl+MYKxsen2N3dY3Zuhs2NDWZmpml2j1j92QQTQamrmPiSIZIBcdKnVKpQrdfp9fvMzc+zsb5GGEVcvXYdqQKEEKRxzIkTZ1h+sMz4yBj9bod+p0u1VvOzst3iSePEBS3SiWloBmxwIR1sJFXxu2iv2+2vmwAhlJtJay0JCbvPutc3FiW1HTfAo1Sp0rOw2435/g8v02zF1CpVoihE6wRtEkaGhwiVZHRkmECFzM5ME0pN82CTduuAMAxJfeTspvqMAopqpYEQIWEpRNuE3b0DrIgIqw2i2hBWKdc+ohTlUtnpUScJza1NOns7mKRPWjckQ26d19Z9qcG68ZSZfKf0GaRSAVIoJA51IXd+yjtClxEj3bxhX7jMkrV8Yxb1bDNBgSz78xXPQVkmX/eD52SPZkc+7EGFIEOQgTP8UvrgSXgExzoddL9OlQ8MrLUkaYL24jHHZPhsQXdaOcjbGkMzSdjPAgTnqQkvPkIwMuLOLXOO0mf61iKsYKY1AsBR1KEV9o7tafx3xw4G1RXRAetT5UycITPObvqjazcTCs6cPosQoRPOMAlKJChhESIg7Xb54OOXqCnDUCUgkK7fubm1zuKNK7Tbh1hhmJqd5/yjT3Ji8gznvz8GQHO0R/cz0KhGKAVp3KV1sM/OxgY7G8skaR8VlVBRhemFM9RHZwlLQ1ip6PS6DtkTllolQsZdTPuIB3dvcrS3Q9rrYtA0xsa59NgTjI1NIVAEKgIrmZmeZW9nh36vx/LqMpubGxhr2N0/ZGX7gJ1WTGock95gmfthmZnX3HzkpU932bvgpqJhNNIajFe/k1LS6sVsHLR5sHtAnxIWhdGJazszBokgFIJyKAmVJFLSCf+sr7O5vEo1jABBrAXNrubW3SUISqBCVyOwBpummCRBGKfQlq3tKAoIlUBgCNuCJ//HCtGhIK3C27/RpjeaugDWumYpk3o1LgRSg9KGa1evcG9lGS0znn+2udzrrM0CykFC9yOz1jwJ47gTP/aU4/s3Qw+P14Tf2/GenfDbfzelMwcihcf+l4ChRUGSxKysLHP16hUO9/edRB2C7c0NbL/Nhz/4FDMzo1ibzVR1dSmlJIGP0Lu9Hndu36FWLnPpwgWEcKIYEsH4+Bgf+MD7efzJJ6jUaj4yhkEuAak1rG5u8ML3v8/dO3dJ+k7ybXlpmaZpcfvXU0wE5V3B+d8uo4QfQp+6emaWhQZR6OBi4YxgEEUEUQjYfP5sBjlkN0qnaa4eI7yCjIP5PHpifG1LOtjK1Yv9+VsIoggVBrTaLcdcTBLq9RrrYo+tT7oMdei+ovRCj4X5BbqdDqdOnWJra5uh4WHiOKbX7WCMZXdnhwsXL1IulRkaHiEMA3a2tjl95jQPHiwiwNXH+jFhVCIMIwfHS1moZTuDpoQcLHLfq5otPKPdBsjm02Y4qpSS9rSmfdJl70O3BcP9GkFQ4vTp866dSCj62nLQavHKKz+k1eywtrZBEERUKxUEhlaribWGj33sI3zg/c9QCpws5e72Futry/Q6LdI4oVqpESjlp61Izpw+R7lURqmASr3m6m0orAqRUYlypUY5iGjv73GwtU7abeeGPh0SxC45o7oq0Klxwiw+o836w4V3rk6FSeWZbjaSMG/0yVOzLIM9HlVnrsY9ZQBZu0i6YECOvZJjTvmdlsG5JHxm7uYcq5zhnv/pI3it/cxsJQf31zhpWuOzZfddBrmvy9KzaUUQS8l3oipvhmV2JqYofeYz1D77OaeidMwWHQ8WMifcLPVoR73ciGUGLbuGGSLg0MOHrleeOWfXLr8CCGuZmZlEhSUslkgYPvex5/nQ008SCMXW7gHf+Nb3CYIS/U6L+7evs76+ypvXr6OVYGpujrn5U9SGxgiqdZQqcem1KaI9gQksrz+zSKwTtpaXuX/zGtubqyRpDxHA6MwMc6cvURubo5+6VjMrLI2hKv3WAQ2ZsjBS4fTkKHsrS6zfvUm/fQhYwqjE/IlTnDl/gYmJKcbHx1leekCndcT66jLrqyvsbG1x5+4d9vb2ODw6Ikk1/TjBWJ/1G5uPzqz0Ix75dzVUH/rDlpt/vkMSOlZ/JCTKCOrlBnHf0ulpHzS6FkwTpwhjBtCtcGSt5z/wFJ/56PspB4KoXKGdwCtv3uCo7ZjOiTZoG4AMkIA0KcKk2CRFCYgCRXEGOcaQ9J0kavY5Mz8IOf27DnnYfi7h9q9186lK2UYwvjSkXBGYNEl4+eVXaHd7rt3Mv5/xwaD0e3HgjI8fx1Cp4jp7eJc9VDv2mWGxU+5d1/2fdLxnJ3z/z7iLMPmK5OxvBa4NSzqRh8ODfa5fvcLSg/sc7O+ztrLEkxfO8HOf/QSPPXGBar2UK/8gM0apACW5s3iPdrPJI+cu0GjU/SgsHHSRakpRifNnz/LhDz9PfXj4+AXx7GQDNPs93nj7bV599XUO9w7ZXlsn+dkau8+7yHnhOyUmb5WdgbGuFm3SBJMkRIFgbKhENbJY7aIuFUTOIUmVR97ZZc39sP9fNh9WSkEUhv43Jidhuf427SdEDQDJqekZDg4PGRsZQ6cpU9PTHBwesv+M4eCMY4rOfUVRS8qMjo2hdcrk1CRrq6sMD4+4yUkqyHtAZ+fmXXvTiRNsrK8iBKxurLOy/ACJodPtYLQhjCKvgOXgqSROPMRj86zMGJ0HGdYYlzFZ63pPLZjUeDKaB4WM4eAxn1FamLwcEhBRqTUoVarML5zkzNmzIJws5s2bt/n6N77J3buLjI+N54t7c3Oder1GrVbl7NmzXLr4CAA66bG6fJ/Fu7eIAkk5CJFScNg6REYh/dTJXoZRCSsVWgTIqEypUqVeq0GasL2+wtHeDjZ1c2SFcJldPC0wDiGktOzJUVmmmNd+3Y/wDhiv6kUON2eM/gEEWyxrZKjIMUgse8wHbMU9WzQTWflGCHz722AmcmEzFKBvD5XLYOCMfXlB5rVd1+rheBHyWKCVJKkfZZmv8jz7xQdfSikE0JSSV8IKV85coPwTn0TWqu8IHLLgLoPwZlrDYCFWKbuV1iAgyb9RMdQW+Xm593ORSEZvzAJzoQbQtMTQqFcYGR1BCsHZhTn219cIrEUp5xiXd/bY3t3n7TffYHtr04n6lyqcfuRRFk6d5Oyp03SPmr7nFd5fepTpt8pg4da5DRZLq2wuL9PvdiCQVIaHaIxMMzp1AlGqUWqM0G4eIv2oz7mpKWrWcHKkxsHGEjduvEUv7dLXMfV6nUsXH2N+4TQWhVIBQaAYatTpddtcv/IWW+ur9NottE7Z3Nhge2eHTq9HJmZmjSZQrr4chpEfj2pZ+HqZkRuOAX/vZ9vsz3URwjI/P4fA0mwe5YgeOkVpi7IGKd1elwpQbo0ESrJ07w5Jt02oBJ1eDxlW6GlBT+NJWK4HXhgNaYzUjsCVwTdKKcpRiBt76GriNnXojPCTmGQieeJ/qVJfktgAbvy1DofnBh0sWAddZ+U/hEuU1pZXuHL9Oqn3ilZk+87kbaN/0vGw4303N/wOZ+3S5R+RWf//GY62EQRtePL/GVLeK2wMb4T7SZ8HSw+4fvUqpJrZiUnah4d0W0cua1LHa1RGCrZ2d7h//z7Tk1OcOnXSRzvu4lnjSE86TVyDt5TE/T4jw8PUK9UcKsguhhWCvtYsr67y4g9+QErC4n8uiSuGoA2P/mYFem5GrkWiU4vux5Sl4akLC3z2w0/x4WcfY3i4gQqiXM5RyYxgIwczJjke42S135zsVDCoUkqCIED7ntJMzUWqABWEHDWbTM9Ms7W1zfT0DCtrK6z/osUElrAlmP6K5MTcCTY3NxkZHqHT7dCP+zSbTfZ2d3nkkUcxRjM5OUmn0yVOEmZm51ldeYBSir29Xfr9DtYO1IOkVCTat9jkWbBfNIV6iPVkHmssgXIKTtY/N3MgOiNzCcP+EwZdAaFh8vWATqdLudpABSVUEFGvDxGGEdMzM2gs6xubrK2tU6vVCVSI0YbDw0MmJyeRymmFJ4lmfHyC8YkxsInrJTaGftxHAJ12ByEEWztbrpVCCKwsEZZrNBoNalFIc2eT3fVl0l4LbOKmvkiVr8XOnPtOsg+VHZk7Z6cm5ghOwsO7yAxizsDSLAs+nvG6a5Rdy4ETyv7LIuhsNQn8msnWWI66FEI+S+5Ei0o9hU8k62W2iNwJSxW49ik/hESpAYKR3d/csWYlFs9xyM45A92y8kq2hh2D2bK9vZ2TWQbfOV9SgzqztUx0G0TadSSvN/azlecCn4LrPe6aB+uycBUH+59BgCOBRrXM+PgEFsXB4SE7u4e8+tpbPPrYY4xNjJP4PZukKfXRUc49+jjlWoNAhoRC8vjFc4zUyyifhSe7HZ54aQIstMcTHnzoCCsFQ2OTzJ25wMzJc/QSS5I4RKlUrWHilFAbRitlyhL6rQN+8L3vcPPWHdpJgihFTC2c5NLj72NkYorJmVk67Q4Bkl6nzcb6CkpkNdmUdqtJkvRJ0jgnSaXWIqTypNeMc+IuRBInBPtw4bcqiBTaM5rFX+5gDCytbaCVdLVynWASN+BGCj/OVbqfkaEyJ6YnHdvewNbOES+9cZVObOj1+nQ6bb8WpR92AMIkkKZu7KGf322l097XOmWoUefUwiyRkEiD0/h2KjRedRCGbgke+afuvJunNNf+jy2M0McQFrcP/GNag4ZXX32N/eaR64Dw0/MA75DdPisGuMV678OKWKbwu4eff2zXZfbyT0HKgh+jRam6DDPfkcx8s4D92Cx1d9tAW41ODUoGLK5uEJQjgnLJR+IgcGxTpCPOXLt5HWktjz3yCCoMPOHK5nN8HQvSiUPcvH6DAPjoh54nCALeuPI2q2ur2NQULoBFY2j3U6QNCH/7iImaorEteezWEO2gSz/RHsZyUMjkWI1HzsxRCWG903aDALQm8f2S2rftuMh/0IJUNLg5k9hodGyOMeukZ9fqVOcGziBoDI8iEQwPDXNwuE+5WqHVbBGWIk5fC9j7XkwYhExejhh/dIzXX3+dCxfOc//eIqEnVyklGZ+Y5Pq1a1y6dIn7i4tUKhV2d3c5OjggqtTotNvOVShHVnNtLI4ZGgWOnax7TvfZ1YCVn5bkEAtjsnm3GSvR6UjnrWj+WhphGVkMOPkViGuGxl3nRBuNIaQMqJQr7KwvMT42zqc//Wmu3bjGlStXSNKEO3fvIoTg4sXzbG3tcPbsWUzqAoCt7R2mp2e4cPEiP3ztNVZXlomThBt3bjA3vwAIpFD0en1UGCKCEuVKnUo5onO057KcfhdhPfzq15/0MGuqU0qrlvkvumy4tqny75kVM12RxWeKZPDzcXQEMudXzGgH8HJxkgu4SN7N0fUu3BbfKdtXhfchi+ht7pfKm4LZFxxsV932LW9CuN7K/NwE2RAD472nAE+INGQqb1lAAoOgMtUpxhqnIVyA4ciMrnEOWUpB3I+9oP/gfPFB3oDo5eHG1jDPr1wg0oEb6JAHFIPrleMJljxYLCoa+dPInX7+CQKEFQQSpienuSlC9lpNOlFIIgNu3rnrs3xFKaoQI5g+dZLa0CjDvT5pnBBFw9x7sMxhq4UtH9FPYnbXV6getBn5ecXISpnZ9hSl4ZChyRmCWt2V4oIATEIYhAirKJUj2nu7tLfWODjYJok7GGOoNkaYmZmhFJTY3z8kCEOEsJSikHIU0u806bSbpElCoCStVgshfQulAKdd74iSoZ8ZHfe9YpnRvsTm0DelBWe/UObWX+xQ2hOMv+4EXRLt299wjsx1FEhGR4bY29sn1hahJPVSyHNPPcIP37jK5u4BqQrRFlJtHUNaWxTZpCRHusqY+0JIwlIE2rXJOUcniJM2H3jmfYzXqly7sUQvv5cCaV05TFvLhX9T5sEv9NElmPl+hNHGB3TCI6sCbY2XOHUaDs1mkx+88go//elPUvOlRy1srjYnyMi1xx3ru8HPxdJHcb/nvy/8XZIF3cVnvDen/J6d8Gd/OiLoCVTH9e2K7KTyfem+KEIQm5Rbi/eJyiXOnz3j8X4XaVsvQNDutNnf32NiaIyx8THfIpPmRsr1hjkoqN3psLWxwfjYGJPj4yAF73vqSdqdNge7+46SLsiNmhVgE8O5f6o4/YchpfGImcoYS3KDno2xQrixW+CiRyFZ29rj1t379HopWvsaoBVuEITf5A5+laRp6ja/w2Lzc7aZIS1AZ0KIQhacOW/B0PAwrWaT4SGngBVGAXt7e5QIOfObmtO/v8DQuXF20zUQjqF8cHjI3v4+jcYQ7XaboaFh2u0WWmsa9QbNoyP6ccr9+4tY44xrmsROZUw4SUoRBvm4ujCKnEBCYc3kG6jYYuPvb9anh9YDYykFJnWBydnfL3Huj6v0ailq3yCEcrrWwvXstlstyuUyQRDw6KOPsruzy+LifdI05fadO5QrZdrtLo1GI5+G0uv1qNZrBEHAmTNn2NraQmtLmiasr6+51iGsIyCFJcKoQqNRo3u0z+76CjZNPAFw8N2yczfGObWFP5Kc+KLEVhRKq9yADPojff0qg509xJrDz1Yc35GFFM36W5475+J+KT5BZDBx9jvnQEX2Gf59B4RAwdz3Ssx8Z9xhO16lLnv/zCBkDtlaP2zE4DMCiZReK91fiwHbWOSBpPGIlFIBTrozawWynkmtUTIgkygUQg2uQWFv5N/BwqXdWf7FH/51Sjo89px3r8MVgpqHoP6MvJYFFkWcSiCYmpjCWOmkFbXBSEm71/NEHcXk1AxLmxv045iqNVSrFbqtJkrNkGqDCkrsbm6ye7BHGveotRSf+9VRpoN5pqdOslnZoNfvM1QfQkhLpVrGxH3CqmvBCgPB5uoSyo8DtLg2nYXTZ2kMjWD7KTvbu0ismyNtNIEU7O1su66ENCFJUl/nxdm2gpMLgsDfDx/gaY2xhWDJX5TyuuRT/+kQ1W1F2LQI6e6V0QkqkxeWlqGhCp/4iQ/yza9/l2Y7IYwi9g/26XYO+dCzT/GFr36HxBi0l4h0tVlX3nNSvsYH7i6BctKVhihQTunL3+NOt43RPZ575glu312lm3g5WVSOgwghKG1ZPva3hii1FNUN5ZT6pHVlFxc95DZKMMh8F+8vctR6P5X6CIEo5L4ZhPPeUOLjzrlYR7a2sBYL6+4d6/e9fdB7hqOH70hqK4O0u5i++xjXMxUdJNjRhrdv3uXtqzeJewkKhdWOVRzHMbeu30AZy+OPPUIYBe51Hu5CZBfAFd0X797DGMOlCxfAaqxJGapX+eiHP8TJUwuoUOXRcE5R99ck2DZEi5qdnV16/djBi8L1lpYrZUYmpri+uMorVxfZbsYk2unPBsJtXGtx7R5SoYKAIHDsa5dxZIbUfWQemPiINXfCvnfYsT7d45VqlcOjQ0bGRjk8OqTeaLC3t8fc/Lzrm505Q+ftXebn5tja3HSD1n1P3WOPPYrFsnDiBGtra4yNj9Pp9mi1WjSGGsT9HhOTU5w8ecLDMS6YyDKRJO67UxSCRKeF/Mv3N+MMNgjfYuAzeC8Yn9UR3VowCGFzPW2poXygEFpQLpWoVcqUwwBhNZ1Wk5npaUcOCxRj46MEUYDwYh+vvfY6aZwyOz1LJYqckpnVjAwPuR5t6VuHVEAYuOk4Gg2BIqxUaTRGGK7V2F9fZvP+bYi7uCGmgHKC+N4jkqau7SqDb6VQBIlC2AG72TkUX/fNfwaoiy0YjOwRawcM86Ljyf8tyPt7Rb4mbA6bZVmue0+Rf0bxfYql5YEzHDA6s9d7+nr+Yz2sjnLXXMmszi3yjNgyqBFnNdw01Z6oVoDt/LkoL30ZJwmdTtdn2+6zizTKQjyDspKyDvLvP5DiHBC0TOH7WCF8m5FFG/eT6Xfk51K4Nlk1aHJimCAMSUVArAfvkxpNahJ6cR+lAnrtJqG1NCoRysZYm7C9s8fR4RHbG8uYuIOSknLUYF7PMz9/AVSFSrWBSWKUr29Wogr9oxa602Fj6T772xsI08XamKBcYu7EGYZGJgnKVYwIqNYalKMS+1sbNHd3Wbxzh/29HXa2tmgeHXGwf+D7792cc40LhqIw9OvFBUra98W6tsHi4vAqfdowej8kbDEoS5mEQFmUDyiVEti0TzUwfOjp9xFah351teHe8gPqtSrVSsW1uAnvOKybKZzLt2ZcH+GvtTXoJObMwiyjjRoKSymM0Frw6muXWd3cQARZacQzqG2MsYm3KzB8Q1Bec+tZ+XGyLqh05y2FdBkyHjVJElqHR7x5+W1SLFpkvim7JINQrdiK9HAbUvb3QUAjvBMfsKYfPt4Bab/HTPg9O+HjJ559IHmUYQrGIiP39HXC9cV7vPD9l1hZWiaNE4w2rK2usr26znOPP8npU6d8I7jLLjOYQAqJAvZ2d1m6/4C5mRnm52ZxakCWAGhUKjz77DO879mnqdSq+C3tYAdrERgQhl4cs765Sxw71nXa72OtRlvLyvY+N++vs98xJISosOSja4NO3eSoIArdfEtjSZIEKaTL6MJwkHkUVn7WLoLARW9ZYOGeyPjEJK1mk2q9ztrGGuVymW67TaPRQIUBURShAsVR84gwDFheXqZcLtFsHjEzM0un3UYnKcOjo2xtbiKk4ubNG17Jy9Lrdpg7cZKjw0OwTkITBEhJqeScm4C8tjQwfYO+WPDj4fx3EQUoOoPn3SQl6WfSOkgqTT2r2AqsMcT9HuWSM3T9bod6rUaSpCT9hL3dfU6fPsMTTz1JuVwm1c7Yv/nG6yT9PmnSR6AZqjs1rF7XEVFUGA7q8FFIbXiYkeERTNxl+d5NDjZWQad5765z3jJX3cnPEZwzykhXOePZOV+R9dzmDthfi4JvA3zbGrmsXtaXe2wzDhDawobPtkxmUMn3ULbpcyS34GjwWSeZQcI73MyhDW6nezfffpe3T4nA/0hHvilonOt0UCMuGqgsaCnagcwpG2vpdnvs7OwdS1yLJz9gg/uVdey7unY449ectr63F7wuAGjcrOjMGWePGzvoMc7mQRjhULR6o8xwo4EgwBiL9n3xrlsjodk8IAoUoU5pRGWGqzVqgeRoe4tb169yeLiHlZra8BCnzj/CqfOP0u2nCCShVAwNN+i1W0hrCLCEIqC1t8vS7Wsc7qxg0x5GWmrjYyycvcj0wmlK5RrtdgeB4WB3k7TbZGXxDjtb6yS6T6pTut0O+3t7JKnOxTIcmhSiwgghlOPMeGKdwHEctHEEJKeJbHI7LXBonCnYAilhYrjGx59/ltF6BWEEvZ7hy1/5NncXl0i0ptPrEGu4u7zHv/39L3LY6eG4eb69SadIPGlTOGxoqFZiYWKYyBO7gkCxtbnOR5//IKUo9ElkxN4RfPU7r9KOY79UNMb00LoLftBDvndwyVsWoWY6/uD2XOCRGFeKMMjUcOXtKyxvbRL7NajMAC0xhdGcxdLhsccoIDNC5DrTP9KtZknYww++h+PHcMKDSMFFr5kghfvJTs71Ajt4xVpDgmW3ecSrr7/B5TffZnd3j9s3bjE3OclPfeYnmZ2bRgiL8PUpAZTCgCh0Wcvt23dQQvLIxUvgMw2jnfapY+sKZuZmOHXmlLM1OOitaDizYEGnCf2uU2NS0mn7Hra69BOQwtVXsvfXiRMvUIFr7XA3z918FQa5Ucli/SwBEPmtdjc7z4IzWERIxsbG2dvdY2h4hJ3tbU6eOMHR4SEnTiywsrzM1NQ0mxsbNIaGaLaaSCk4feo0cS/m5ImTLC0tMTc3z8HBAalOEUKyv7fH6dNnqNfrKOkk7vZ2d11gLBVpqglLIdaawbhCS754rcXD7q62nWo3ZUlmjsc78SzaNX7Oa6bI5KTwXO3QaO02qjXcunmd+/duc3iwRxiElMsVjDYkScr+3h6jo6OcOnWaD37oQ1SrZYzV3Lp1i6994xusr68zNNSgVquzvb3N7Tt3USpwm0EpokqFsbFxqmHI/toKa4u3SNoHCH+dbUa+AtCaNI0938AFeUEQeCek8u8osvGCoiB+IWR+r/O2GL/rMhSoSLzKMuJj0Fe2LPKkNkvdfCCb4arW5E/LoeH8Dfz/syAYi++UzT/7WNadOWaXfudM6YwtLZXL8mXBEYPN63f545C3L+ls7XA8mNCpptvtuX1gst8VzmeAG4DwbU7CfXeT6c17x2p9Dc8U4gkX6A+cszbGZYD+387WFnafFFRrZSYnxx38bAxYz/T3mVG33aIcSqqhIul1uXXrLnfu3efNy2+Spn1qjTql6hDjsyeIhscQYZlQhdheh9AkhMrVJvvtNrub6yzdv0WcHNFLWohQMj49z+jUAlF9FFWtobGMjwzTO9inf7RD+2CD4VqANAlxv83R4b6v7TrCnDG+4yIKc4eaJImDgKUTzDHeBg/6wL36Xx6QWbROAAcVu3KMY49Pjda5dGqODzz1KMIYNIrDHjzY2CHG+ulvCm3KdGxI4m1pphXgEJMMQoZQCSaH6/zUJz7EaC1yrUlW0O3HvH75LRJt6cUJcRqjCUkISf3AG3d/QImA8dEGU2NDRMor0OHJrtjCnsMjTs7PZHZMCrfXO602L77yKu24lw+ByCs/BaW5HLksrOeHj2LPcL7gs3VpB//2m/Zd3+NPOn4MJ1yI7H30kHl+kUXc2clIic7QMFzU2tWG20tLfO8HL5E023zuEz9BUBbs7G4gcGIUoVJUyhGlKCCMAja3Nllf2+DE7DzDw8MkWpOkKYlOSY1GZ8Qg4+fLqoCxsfGBkfLRcdEQFjRVPJnAIkPHGLVp4qJlH10LiRvhZwxWO6MUliIQjtTi5ltKX5vJDLTXLSWrbmTMV3cjw3KFXr+PDAKsTimVSqjQRXJhGLC/s0+tVmdtZY3GUIOd3W3m5+f9kIYy5bBEu9mi3mhw794dp4GtU4Q1nDh5kr39Q8Ynpzna33ejxQI34zkrFyRx4mUnA8jYg9YZPqmku68+oMg0XY+Ff8YwOlSlXo0wnrhjrMnbxdym9NdaWGLTZ3HxDm9ffptabZgwKmFsSj+JaXdaBF6He3hoiCgKGB4exgrF8sYWP/jha0TVGnfu3eO1N1+nnyaIIEQqRbVWY2xsnKTTYeXebVr72wiTuLWoHLwms5KBlxfF+rWqJDJ0rGGhXEaYtRvlmayQOFM22KjOILheXJP1BntH4nyLICMRFYCRfAEOXOKg3j6IrrP/F/+V7SmbD6YYRO5ZtF58jS0YGctAXUoM7IOH361UWKU8NF1U/Bo4YmOtJ+qJfI+bVJOmia9N+hqxb0FpNrukNnBBsAFrJRbl24kKgjb+nLOgO3vvgmlEeI3jPIO2IG0xyBnA0yYPZNx1cAJUgjCQTIyP+5aywSdY4QJ1rfsc7G2xvrbO6z98lfX1VWKjUaWIkxcucuHJZxgemyaJXVAipCCIyphui6cvnmCmUSFE8+DGFbbXHqCTHkhJVKkxffI8UyfOMj2zQL/ZRlmH4GE1/cM9kv1dhqsRUaRITMre/j5pHINxOb8VhqgUEEQKK11FOU1irHZtg2TtmR6Cttl4Vev3dJrmCYDCEkjBxGiVj3zgKWrlCJNqJAHf/vq3WV/bQAinY6C1pZ9qrJQgA3dtjQE/4EEIg/CYhMz4FcLzSJRifXOLl155ic9++qM0KmW0NvQSw8rWHn2rXIcBAmmMV+Gybq9K6ztJJGdPTvJrv/w5FiZGCWXgEgTrVo8bS4lff4MOAeEdtcDB2iLV3L1zl3uL93PU5BgUTcFHPARBU3z84azY2mzT8TDH5GH/+17d8Xt2wg9LeR3/MEFG3DmGi1uOGRstJN00wUrJ3Zt3uPrmFVpHbax1urdhGCCVqw11222uX7lKvVTi7LkzpMY53tQ74jTPnAU7W9vsbO8SRZFjegZBfkFt9uGFc0W4KMpmjF8gTRPSJCWQKq+vZKxQY7KeudANj041WvexJK6PLnATaZTvFzZ2ICuS3SwncqCYn59nc2OD8clJDvb2mZ6ZZXV1jcnJKXb39qg2amxubSGUpBRFxN0+s7NzPHjwgPkTJ1haWQIh2NvbpXl4yJkzZ0niPiOjo6Ta0Do6ZHZ2hq3NDaQQVKtVfw1cJpOmqS+RqrwmmjkQ174SgCSHfywOCrQ4IxJa+NT7n+Gv/ZXPc+mREwgS16QjnH6s9ca7WquxsHCSKCw5CFjH9Po9dvZ2nbbug/uUSmWmp2aQPmiJ+zEf+/hHee79z1IpValWhtjaPeLVy1fpJhoRhARBRK0+TLUUsbX6gPXlRcd+ZtC/mjkTN4JRk+WWTrIvcCSjTHRDeNjZ99bine8g0x0wb7NllPnAojMtts8M7rnNHeO7bslCFJsnsAwceFEAoEiayt+t4OvzICA3IIOPKL4+E1/Aw+5CKieuIV0rViCDnDmecQCK7UsW62VMMxKlHxZhUr7/g5e5eWeJVFisdCvHpcUCtzqKkYlHixCFx93v8sAi+xo+hckZ0g8nLMfikiw7d7bh9OnTPqB6yEhKtxZA0en26MU9SpUKs/OnqTRGGJmYRCOpDw3ROjykrFwnwdDQEO39XZrrD9h5cIuj/W2sSUBZKmNjzJ4+R1CqUa0OudVhDCbu0TvcY2v5Ae2DPTAprVaT1fV17j1YItaGFIG24CY+hQjldb3ThH4c59/R6YFnqm2ATrBpQtHIJaaPEQ7tU8KRYUOlKMmEJy/O8OTF88SxZuuwx25PsLi+Swr0k8RxRCwIK5FWumDKODuhpHKzgHFIoE4TtE1QkSWSDp00KmR9v8n+zg5zE+MY4/qykcohENY4wquOkdLNqZ8YaVANFNK6NXnrxl1u3rrK1HiV4UgS4MSBhBFI4xxyxpcoLgWLT578/SZJeeWlV9hrtkizZWQG/oh8bRX2mV8o4qHHinsnd76FZLSw8vhxj/feJ1x0rgxS86JjLhqBYtQxAI2cXN5Rovn262/yre+8yNr9dUitrz+SQ5X37i5ytH/AIxfOMzRUd9NfbPZjXSZsDEmScPfOXXSaksQJnW7XGY0wcFKRxXN56DsYY4j7feJ+jEk1QRgglSTux3lG5FpzhNMKxmB1QurbAKRVhDbw2tlZFOZIShmBKa/ZAeVSJWebDg816PV6jI6MsLuzy9jYOBvrG5SrFZpHh8zNzZHEMUONYbTWxHFMY7jB6voqlVqVpN+nUqowPT1Lt9Nmdn6OtbVVotCRxw4ODwkC37ecaqdxnd0zKV00nUEp1sGzxutIK+k2WQYFpTp2zswrKV1+6Yfs3rnLr/38T/ORZ59BiRBtAz/tKsGYFBWGzMzN89RTTzM8PAxYOt0Wr7/+Grdu3mJleYWx0VFqlSqVcolWq4lUAUMjo4xNTjE+PYsql+mnGqkiwnKdICzTqNcx3TZri7dp7W0jTeqlkgeQqusvd9BjxnBUnpjlemadKABSepanc7zWy0xaId28WESegebOsfiTr228wxg4gGP7w9qBAyhCVzy0ZQvBq7OEPgzKoGr/k2e0vBNKe3g/OudF4bEB/Ix0wa/Lih0q4AIxhRJ+1KLReXta3kcsnINOfcnGtXxZ9ne3+f0/+CJvXb9DkkN42Y8olojz6/UO8sqxxMTmRpH8PrhDFg2lGLBYs8/Lfjs+PkoQhG5vZuiGcN8xCIIckq+NDHP2sceZOXEOY0LS2M3VrZarDjEy2gXf/S4bG+t8+Vvf4ebiElpKRFhi5uR5JhfOUh0eBxESd/rsbGywsrRI3GuysbJIt3VAp9skTmO2dnfZb7ZIDFgjUShKUYmoXHJcCyFJPPwvhSDwynYCiTFuTwvrCH0KFwS58aLK8zecalYYSjd7WQW0O5qvfuV77O7sAIKjfkLLpLR1n9Q6hrK1LunQ2vjpWwL8/sIKDAYtBakVICVKwvmz83zo2acg0ZhU0urAt156mztr2yBDhHYKfKnuo20f35CMtJpylPBrf+azfOCJS1RCl3n3TMD3Xn6L85fO8dHnn6GkQowAbY1HL7N1LfIEMKNJDjBnUNawu7nD629dJfaw/Tuj6cLf3w2OLsDVuQPOguGHHj/23vDOtf0jjvfuhB9+w/zzxTt+l0HExajcenRMWQcH9SVsto546bU3uPzaW/SbXQcbppqjoxa3bt1meHSEhZMLWGnzQn3mKDJ4cHNzi/29fQKZzcZ0jlr6CTiZ1m1WyxuIDwy+V1YDU1LmjOeMJSyEyIc6JHEKCMJAgDFUo5D5mVFKwkFi2hvIY1FUbgEljaEh9nZ3mZmdZXtzg/GJCXa3tymVym4QhjFUy2WSOGZubpbVlVXmF06wuLiIkorFxUV6/T6NRp3W0RGzM3Nsb25irWFsfJzNjTWwhjt3bpPqxLEbu10fQbvvo5SiVqvmcGMOpchsWpBrVZGInEkuhYO7Uq1JlWKtL/nyN17hhS98jenhBlHoIEuDm8pikQgVoMKI4ZExTp06jVAChKXX73H79m22Nrc4uXDST3ZR7OxuU65WWV7b4oeXr7BxsEfPpJRrVSYmJ6iVSgTWsLVyn92NJUzSdeiDH6WY9bhqX8vOdkOm9yxU4KUbA46pXhWgaIT7DmkFdHWgygTk9f6czZvticzgF51ytjcY6DznThKRDxbPV2IBKn2Hc84dcOGfDkvDYukPGfoNc2zzy7yFo/Aif/5+FziTJRwaQC5EMphElsmZSgZkNvBztP37u8cTjHVEv4CU1uEWf/gHf8xrb94mNhIrPURvLR3VpxMkbp1YBwm7azEoEQkhPKmykFdk/7am8FiW3Wd7bBAADTJjS7VSYnR0DEGAEAFKhm7UpBW+rqwZmxghSWLP/5CEKiLtx5RUQC2qUVIltlaXuH/nBusri2igQxkaU0yfOk91dIJYhAgZYbWkpEK2VpY43N1E6x5SWuJeh/bRAQf7u8RpQoolRTgEsFRygj7WYIX1nQBuISiPUGjfTpckPayOCyIUoK1GCUG9pqhVFKGB0Aqk0QQhlMoBGIukzF7Lsn3Ydh0snQ7dXo9sNjjCdXJkzGQRCJA2n4stwZ21TIkwVGSAMpbttQ2kEYQqIolTjBX0bUhsPaJmwGrXgHRyZpLxRp1IZmxnyysvf4dL508x3mggtbt/xga8+uoPmRobYbhSQxoJZApZWcKX74pjwafxkLwwGms1b731Nus7OxjpypFZjTh3sEWHCjkJyy8o3u04BmMXE733ikEXjvcORz/07pkxOtaSUfx9MSv2J2kzki4uIjdC0dUpt+/f47svfI97dxfpdxNu3rhNrx9z7vx5X4PFM/CyGa7OiCZpyq07d/LalSOJmVx1xWBRQUAYhD/66nibabSm1+vR7/cQuEknUegmM6U6dVC1koSBg3GHyxGf/4XP8uv/6Z/l537mE1RqCqTOJTmP1/ZcHW5sbJx+r8/o2Ch7u7uMjo3l0HSr1WJ2ZgZhLCPDI3TbbQDKtQo7OzvU6zW6rTbjYxPMzc6itWbqxCzraytMTEwQJymdTguhJN1ux0/EEfm9CaMoZ57H/TgnVmVHlhkgHKMbY1z9RTrVKI9RozH0bcKegReuL/FHX/0uiYkRyrUrYB25qVqtEYURUkq2t7eJP1rh3POXKJUi77wsi4v3aDZbiMDNqpVhhSvXb7F/2MIgqTeGmZ+bxyYxh9vrbK3co98+xEHPHkJVHhrz6l5Zf3EGr+dqUd7pWp8J5aJmHqnIJnBZ4P7PdTm4kBbQzYLT9Y8dI3EUHPSxvZLv7yxqH6yIY+9X/FeWURcgZRjspVxkwGdFqx/rsv7x/jEjlNelIV+P79i/wsPzmf61J2w5WMG1gQkPUwN5uQnIEQeX5BvX9WBTkBpFTNze40tf+BovvPgW3cS6GjGG22Mb/PHZy17bV3on/DCcR8Eg2mMoQvaZUggXO2W1OTIHLo9fBwuVapWpyUmECPyayYL5TEbWMjQ0TK/bo3VwgEQzNTnEll5j9fwOBwc7dNv7bK3eo324g7YGUSozNDbO3KkzVIbHqVQbJO0WUms6zUPSXpu030TaPpjEDRxINTpOQHt7KRVBGBFGJVACAkGSxo7zko1ZlY7Almm1CwHCGsChPNqkGDRRuUypFvHsUxf5uZ96nlpZgrTISBFFIU88epGzJ6exaLpa0/L7P2sxcsQ1FxApIR25SWpAEwQQOtUiLK6P+ZnHL/HI2ZM0qmXqtQZ7hzEvvHGFFgYtXDlRmBSb9rE2dutCQDVSvP+p8/zcZz7CSCV0+zcscePuKm+89Tqf/czzTA7XSFNDJ7XcXdvjt/7wSxy0mz7BAo+P+zXhA+3M1wy26iCIMymdo0NefuVV+jr1+6Gw647t4wLczEPHu9SNcxQKR8K1gzjxxzp+rBalY4XtAgx2LDMonigDaE5AHr25lgJy3kgqDHutQ15/4zIvvvwKqyurzE5OMTs5gTYpURhSKZUcRJZh88Dy8iq7u3s5lGqzDFiIwezUTBPXnfTDiMGxQ5uU1LoamBsO4CL9rD6sAg/pxgln5qd43zOXGKqWqQWS0GikyJjjGVRI/tmjY2O02m3qjQatoyZCBexsbzvREAHtVouJyUnW1taYX5jnwYMHBGHI3Xt3yIYl9Ps9FubnWV5aRk2U+N7TtzlsHmCM5erVK4BT7UlSR1AKgsBLD5LrBIelyAUpucW3+TUC54yN1U6RR2Ri8FkNSqIwGJOQWE3barrWYq3CpIMeRRUERKUySirSNGUzOuDtv9Nn7slTfPRjH2NkdBgjDJs7e3z7hR/w9rWb7B916CeGTq+HChQTwxPMjk+xv7HB6v279DtHYFK31rzDEMplCBmT24JHP5wkqFShq/tJT77yLUc2q+kIUfRzYKE/arj16x2Ozia5Ks8xmNl/x+I9zoNMsvVt8huf1YhzbNZ/VgZfZVlxxvT8E7kXInuu+1OHlpWfdOPedFDIhguLPEejhHfIhWw+mw2btaBZIX1GHAyy4pxF7VEmk43lHPQXozVp3EdnpQGbkPZ3+fY3v8k3v/USnX6KtoJ7I9v85pPfZ7/UyYMgWzCmxVsx+Br2+K/9NZUeUXD9qg6MPM5uda+W0gW1LmNM0bpPquPccRtjiKIKpSCkc7hLvST4qY9/EFHr8Hs/8zJX9t6m13EyiNXGCFMnzzB18hRJmg6g7FqNtN2itbfJ0d4WVvfBxPS7LfqdriN14vugpSSIIjdAxbgM3+iBRnvad+cm/beM+7FLMrxjkEisdm1ySkAoJUnc5/ZPd7i2dJ2JasD7n3ycMAwdUS1N0N0jxkfqdDpt+v1+PprT1fLdXo8iwcSIQ7WsdYTMUiD4iQ8+x/z4CMqmDjgSgrTTYbwxROuoxWG7g5EBqZXeLznba1NNpATDjTKlEJTUGJvw8g9fpdIIuHT+LMbElIIIZIWl1W1a3UOmpyeQRiJNgKZMRwckOBjc+r1ojeu+EHhm9EN+R/q773RqLBLDvdt3uHP/vue3FDkYfl8W/NixDVeAnN/xOx8UPxyQ/7jHj+WEH44Psg0JPvp+COYt/imswBj8VAsLwmCFyVsOsJLEWDZ3d0l1ysTIMBO1mr+RdSbGxgikJPDwTJxkcocOcs6cifR9q84gi3zWLb5gn7XUvANCF5a9Jw1HF1zzebvtFixAGLoJS9a6MY21MOTjH/8Q/V6Tr3zpj/jyF77GUBAyUa/6ezPQz/UXjsnJSXZ2d5mammZne5uxsQm6nQ5T0zNgLSOjo3Q6HYIgcEIeh4dUaxWODg+Ynp5heHjE6S83Guwe7HHjL/d4/dH7YDTdbofmwT7jE1OcOHWaJI6JgsBdfWsJgtAFJR4CSnU6cATgkQPhN6eL8KSU1AJ45omLNBplF2CozDS4O4s2ubKWxImbKGspBSHjY+OEUUCrfcSVX9xn7bk+SckwOTHB2PgYMopojI5TaYxwb2mVw1aHRBtKUYmJsVHKoWTx5nVW79/FJj23B5QE5YYq5C0a2b3FZ3c54zkbNai8mpTrk7VkdV7hgVn33TO/uf2BhO0PJBxeSLGSY07xXR1kBotmeW4B/cFaMMfkNnKYtLhxReG9XDDJIMoe4GLHAl4QxA3Lxodj1j/cIxmyg4Cg6OwL/2Xnmj2ew9b+Ogjha8S+TixUgBTZFCa/RjI9cWsLJDhnzNN+QqoNUoGyCbp/wEvf/x5f/tp3Oeql3Brb4vXZ+7wxs0jmWTX4+vsgoy0yVItM8ywAH/jtLIIZvC7TL8hQCLCcPXuGQEU+WMqgV8h4Ku12i2qpCknC0c4ul19+hcP+HitPH3H380dE1SpRbYiJU2epjk5Sqg1jUoHRzlkanHZ+r7mH6beJ4y7WaA/teolEgROVqZaxSjoCqnFjOdMkcY7aQ/HSetazsYX2Ggt+rKar6wumx0f49EeeY7RU5sEne7z+K32+9NUfsLi45qbJxSmtdsrbN1d5+fUbxOkA/s/77GVIqRQxOVHmz/7SpzgzP04oIZCSUAoe3L3JM09eYHK0DsaSaMv1e0u8dOUafSTaCjfC1iZ+8ppBSIsKFJNjw/z6r/0KF07PY4UlNoLDpuWfXf0Se89YJkYa6FhTr49w1Db8wR9/j+v3VpxuBwnGJmhrXIuVTlDWoKxEWgFWH7vnbn3bbDnkq0lYAcaQxjEvv/QKzXbPjZPM1hnFvWYLgfKPDoYfPgYlkB+V3v3Jx58qE84j4MI5vhtcbUrQOk8OAVlAZ5vEq+oUs2iD9b2Blgf37rG/ucXC9AyH+/tsbGzQ7/VJ4oQkSVhcXOSo2USpAJMZBCFzSFIqL0Cgjcs2pXITgKRwRI2iypCAw4uWV/7vyeC7WjfOzsG2zuCnaUqqE2q1iObuNr/9m/+eF155m9GhiPddmKYaOO3T4q0w1lCuVF2EaAxHR0f0uj3A0Ot2mZyaZGNjg7n5OVbXVlFRxL3FuwilSJMUk6TMzM6wurbGxNQUu3v7rDzR5vW/1UQbp/lrfJ/d+QsX2d3dBWMJwzDXq86yeic4YnLRhSKZx/paizEWowVKBpyZneaXPvtJfu1Xf5Hx8QYicIbZQdPu+ykpfRnAE5qwRFHE2MgYSkp2Z1tc/fU2vUpKUoHAE6PmTpyhPjJGJ0noJn0shmq1RL1a4WBni7s3L9M82sZYN6owUIpACpQEbRLXrmEcOUUKF1wEKshh6pz969uKsnYiIfI8yjngPKMVmJLg7l/oYiI4eMxJ5D2ciWV1XpttOlE0/seREFnc3H79u9js+BoRhc0/6PcdhInHhArsIM3dfTymPZ/SWjDsPhYfc1oPn3eRoOirQvnn5c7YB45CSoTyNXOlvBNWx0U9ivss7zHWpHHPtb9IhRIWk7Z4/bWX+b0vfYXL9fvEKuV3H3uFWMU+u8kJq/k1yn5ymDm/W5kTtscCr+J3GSDZ3jkLGBsfoVSq4IWt82suhMXalJ3tLVQg2dvf49r1a7z4xpvsiC5J3XL7b6aUP36CsNxwQj0qQMiQqFSm3W4jgSBU1Kpl2od7JL02Jk3ICEPCi/2E5ShveRTWC8YYS5q4Pn/h7Zc1xg9JyQJkP1rQGsqVkKF6hBQJShowfc6cHONjzz+HBF75Wx2uXeqxfnREai0mcWIfiRXERqKzLBVNVJIMD9UIJCgEgZXcv/UWn/jws1SCIF9/+wf7YGIevXjBwdZEJKJMXyjXhmqcroLCUKuE1CpuAEYUSDrNQ2689UM+/sFnqYUlTGpIDDS7mn/9t+9R/fgEnW6Pza0dYivo65B+AhqJFQabakiNn3onCAJHmDQ+oLTWoYhke8IvmEGmm6FQDj7aWt/mzbev5P3nx8hVfs0MXjeQbKWwvx9ua3Lg1PFe/h/3+FMpZsE7M9+Hj7RiufobKRufKPYH+uK+tflIttxAecOk/LVsxTFfeeEF/t1v/x63by7SbHbROOHwvb0DFu/eJ5ShF4hwNWM3gNqRGcANLLCJU7iRvr9USeX7yYSH1CTtWctL/6+Y5llDeef4JdFpSq/XdcMPcNd+p9Pj977+AjeXd5FITs6MkMR9Dtp9X+8qXmHJzPwCa2vrjI2Nc7C3x+T0FIos+207qn6oaDab1Bt19nZ2mF84gQoiKpU61kK/32N+boEH8Rpv/rd9OjMG1ZdMz82DgHpjmCgqcbCzhcBBtP00IYjCfCiGNZY0dqpBebwofAZsbD6WS1qDEZIHKxt84/d+l/FIcO7kLFOjo26aUugkBxEglHRog01z5mK31+PWrZskcZcXfn6J5llLP0xpyi5rWzuoqIpB0Oq0iJM+gZA0qhVMr8Pa4k321pbQcR+BzadvIZzzSxON1ln9R3hGb4RSJYSKPIyaDQrJFK+ybN+T7fxABgF5zVwABxcT1j/RBwEHF1NMWFjzGbybXzeyHXgs+yy2BxX76bOtagtD+IpIbHY9cx+bYc8UAlwfuAIYoVn7iR66BLpsWftYL++Tzc+piEZlyEfRSOUfIXxt2Dtgd8EG189PY1Iq9MImmSM2WIPvJfatXtaSJDHauPqbEgKh+1y/c5m3SndBwPdO3uTO6CaQOYAMIs8CjuyiZPdJOGPr3bO79sfJMIMsxL+Pv1xYqFVKTExNIYTyIv7umki/DnrdFof7m+ikSz+OUdUq1ZMT6DLsn+jx+q9sUKvXiVstJ1EJlGoV0s4RunPA7toKncNDV/sVTlJESgiEJApDgjAiE3xxLXNu3bkxqSIXE8n68jOejWMsu/cqlxRnT03z537lc0w0qtQrZdLU8PWvfp9rb18j6EtaM4bv/TdNDkcsNgs4vJPS2pHnpDCUQ8Xp+TH+yp/7OU7MjKHjPlaE3Lm7xbe+/gLWuGSjp6GVhHz9hcu89MY1x4gWnj3tYWzhyZFhoHn2ydP84k99nOGyIlACEZR49Y2b/MEXv+bXA2hjCXcCbjd2+P/89RsczkGS938bNAlGx86OC98/7Gs2rk6Ov8aDMgsYPyXJeCjdtcZZL2oicCqKGM3ly5fZ2t13qJgHZcmC6XyXFrNLke/YY8lV9uP9ltOC0flAoR/n+FPB0e+Wdhc3RFqHt//rlGu/kTJ0V+ZGRRTeA8iJVNn7FVrz0ULQ1Ya17V0uX73G5beu0DxokaSWxcUVur2EWr1GJAQl5ZVXLARSOLWuNPUqXBqpLIF0DE0n8qFBClQQYCYDXvtHCRs/YaiuCVTMOwIa41uh0sRFuAZFJ3ERZhBFtHqaxbU9urHxfWo+wrKWICrRbrVptdsYY+j1e0xMTLCzs8vc3Bzra6tUqjVWllcoRRH9XhchJFOTkxzs7TE7N8v21qbLbAPNS7++xdZHXdZasWVOnzlDEidMT8+wu7NLEsduConWCCEdFJ0NabDkczWzK+1gRq8SltXVfQpxYOC1xVX+xb/499y6ukilVMVYV/cbZFAO3pVCEoUlhHBTr9ZWl/hC69u8+KllkJAGhjt7S9xfWuaw2aQfp1htKAeSQBh2NtbYXF8m7nexOGRDZeiFyBi6XvkHTyRTIUEQ5m1Hxew36xXMfWJuowdBJIVsFQmLf6ZLf8w9sTduaM8UhlsMfGIh2yqslQz6zfRz/S/z7KywZ4rnI/K3sMegZ+E/yL1+8OQMVUoalo0P990OlrDxkZi4anLDlMHPeVBQhMvEICjOz9XfQ78oBms4lywddBsMCE42L/U4NrXMSz1x3CdNEscpkILubJfOiJMo3K+0+eKlN8k6qTMuapEgNyDQZF6z2LE9SAby2yMLN8h/yezrlkoR09OTIBQi18sSgPQ9tw4JslYwPX+CM488Tv30JCZy1/aNzy7Tel9M9+iIANfbWimVONzZYOnOdQ52NtzaFJKoXCcsVwlLFd9xoNE6IUldO1fST/x1ck1xwqZY7QJj41vjhElRJAxVQ8YaNQIREMgSOytr9Pa2+PTHnkdqTRhV2W2mrO8dQs99pfUPx1z5G21s4BAg7e2rlIJA+vspJHsbW2w+uM1Hnn2CSAq29w7ZaMasHXUwIsBaN+41MYKeEXR9OYtUg0kJhKZaklQi3/9LwN3btxlthDz7vsfRaUy5WqdvAvaaXWJtwXpeQddQWZc8+HCPl//bFvFoVlpK3H3OECthEQUHbFJzTDhGIHy3THb/Bm1K2drJMl4JCGs4Ojjg1R/+0I2ALGSweVBfjIyPLbDCX4ulIgOy16P66osM/c6/of7db/gk570fP54TFoOerIfPMzPqSQPe+PsJV/8LTdgWDF0/DtcVIdD8y3jhjAznsziIWAvrVZcMKxsbvPzqq1y+fJnNzXUqynJ6doy/+Bd+kZ/7mU8yPlr3dVvrRcazG5TB0inW9JEmIQxcz2NStbz233S5/0spKKgvS0T8ziBjwAJ3i8B6NSBtoZsYbq/us34Uu5aD4oURktGxCbrdDiOjY0RhQKPeoN93Y8mkUrRbLcIwYnd3h7m5OeJ+n9GxcTqttofSRtna2kAGiu+cvsaNv9rBhu5jZkemONjfJ0lT5ubnWVlZAgRhGHkpOxftaaM9ZCvzOn6WCWXGNm/l8sxNaQVWKI6sYq3Z57CX8mB9nSTRpKlxQ9B95iOtcKPZSiXqQ0NEUYgJNS/9J9scjcXZAmFd7tNst+j3YzCGQAo6RwdsLt+nvb/jjJGwOTQnPdSd6qwHUnhGtHKtRpnzVcU5v96tFfWeEfmsU39D83PK/mzPaB78fC9/Slq3NM/oYxnlseAsQ7+yYDxbM8bmji9jbGa/yhx/ds1zSLtwP4p7KUuLrffaRcfTXEjZezTO/733eEL7hHbnVdxbD63lh7sZBsztgtymX7uulctD024Ic07UUg854mwKUzbvGGtJ05g0jRFoWmcT0trgc798/jKb9aZzwSIjsg1gZ3cXXXaD1Q9d/OzkB1mxIDPegwuZGWspYNwrZ1nfnpYTy7yiWhCEhKUyBkFQqtIZ0vlHNsd7vPRrSxAaugf77K4usXH/DrbfcSpZSlIbGSUsVxkenaBcG8bKEBmEDhVI3UACKSU6SfNarzEaYd0P2ZhKBFZKolLIyblh/uLnP8fC9DjGpHRTxde+9zo/ePUN2v0e/aRPYjWx1kg3yRAbwo3/rMvKp3p5cCOVJAwFTz9xgeF62e/tEi+8/BYvvnoZLSJ6WhALRc9KekYgRQDGrQ0t3Jhaq1MkmigQNMoBf+4XP8djZ08SWUBLjloJf/DFb7G0tIoxcNRsEpZLaCFJDLgqboCMob4iQcHiL8e8/n9tY6puYl7WnpY51WwPSOHWg9Xa2THrEoZB65otbEqXbOSCGn7du5HCluvXr3Nv6cFDQjGFPVcoBeXv54NbYzPtaecT1NoKQ//+31L79tcpLd5FHR6820r9E4/33qJU2NRZ3evhoz9qefUfJdz46xpTchMwSjs/+pTeSQ8nN6LuVkg3nFmAlYJ2v8/K5hpx2uWpS+f41V/8WS5dOMUzT1zgzMlJN31DgMpqvjgoLRMKqAURH37mSX71lz7H9MkRrvyNHjd+Pc6dWn1VorRleB5yAAEAAElEQVTPIIpQVw59+Gku2njYWaCt5KBn6aQKnc16zeI06bK1TqvN5OQUO1tOgnJtbYV6Y5jllSXCUoVur0sYRYyOjdFutZmfW2B5aYmxkRGazSZpokkvhLzwX24TjwwuWV3V2FhfY3RklCAIaB4eEqjAS0M6glmaxK6mIgeBxOCSy9yQGjsQfLc4aF/6NqbEWrQfuq1UWGAii9zoj4+NEccxjzz6KB/7+Mfp/HyN5Z9NjtnOVqPvFJisIe112NlY5WB7Cx33kMJNdHHDFHxHYs4adXcjc75ShY65mw0lENLL7A0yc/IN5tWw/Br2bs07R5eFWWD1U30Ozw0Mb1qxNM8ORja6BTv4GRAOySUVB2B3McPNr7Z3LQMnPUioB8YmW2/5x1mOn4NfXmsf75FWBvsnrVrWPt7P12qu2laMPXLn5FGMh7Jjskw042tkZKxCUJPVL90geYdUZPUzm2XEeVZqSZM+SdLj8FxKWhmc/72xTb5x4hoG3/7ms56sLccl/OaYgR0IJeAd78BsZHc1y3xyVroAhOHUqQWkCvwkqYyQ5g2uddlUtVqjdXgIOqEzPAhwEHDjJ3ZYenaf5bs3OFi/j+63sBjK9QYL5y4ydeK0k6SNE6r1YVLju0AKGutSKEfYivvuxkpHgEu9fK6SEPpOhEqpxNHePmuLd/mJDz5FyVoSqziIYafZpa8lh0c94r7FWInsD250PGp5/e916ZyyIDRSakqR5tK5KX7+sx9HYUispZWGbB7GEEQYbUli7RJd/L7C6USbNPFzrAVCOgnMwFgWb77Np3/iGaZG6o4hj2T7qM/q9j5WhfS8eFKqfTKkAoxwiU51ReRBw83/rM+NvxkjQodWWps54QLiUXDOZGhjfv/s4H4XjizYzNjexri56Wm/zw9+8CLNuOdsR+G1RV6Be9zvBfy+KOxL0e1S+/pXCFeWED9m9ls83nsmLAYb9mEHbLH0Ji0v/+OEu/+JxkbuTKdelEgzeP6PitCzWlU+vqxQ9BaIfDpKFs1Ia2lvb3K0usTR9jp//MUv8faVWwicARfaoOMEYa2Dq6VgbnSIX/qFn+EXf+lnee7ZJ6j9/Qu89V/G6LI/BwPVJYHQA+PzcPaOvykGD31YSaohRZJSrDS6CKxeH0IhqJTKuTEJwoB2p4eQgr3dPUbGxul2nJPe29ujWqlRKkU0W0cYBPfv3UdXBT/4jV12LsWFbAnaW0cc7O8zPDTC2vo6Ok0JgoDYTyZxzfBZS0lw/P5Z61jGmT6vd9BCCkQg0MINDrfa604LgdTaTSnJXu9bm8LIQ8JCMj09QzBV5cZ/oTGVfDWDhe5wgo77HO5ts7O5Sr/TBLQ33C5gEUinxqQzfeKB4IYKIl/bd074GOPZMnC6SF/HyVOjfEBAdjqZmL0QgqRuufPnu4RNcczRHjySOnJWnq0Orp9jsmb3YrAfju2MAmz1jhJOwUu/gyBS2BfZ04pkkLRiWP9IH9UTeXFK9QQbH+1jaz6rzQxT4fPe9bHM+hQy6Ly3WHjkIa8NK18fHshc5vV3yNnqjkSj8k9KRcruxfTYtQ2O4F8tfJO7B5sIG2TfkrwP1JdFFFltMLsSYnDNC6UFO4iOBtfaZpkVDA9VqdZqIFSuqDYohVn6cY8wCon7XdK4T7vRH5wvEEcpb/6NPfpRF6SlPjLK1MIpwkqdam2IMCyjopBut0sUOv5JFngJC1ZbktQ5AQe7urHclux6CqQyvO/x8zxx8SSNSogMyrz0+lVef/1tV+ZJU3Ss6fUSjBYYna0Jg+oXExrYe1zz5n/dxdYE9WodaQNe+NaLbD14wHNPPep4H9bST1PipI8w1hHqrHVtSybTpPZhksC1aAq3F4Ogwo0bD/jWt77N6TPTNGplp4yFpG+hbyG1kjixQOBrsI4Ih7HUVwQZAKIr8Np/1eXOryaYwO2brKzhfEK2H9zYwjRN81uT2a4iBF2AnrDHXu+eK4xlY3Wdy9evkWTvknlWL9aU7bljP1lw7N9XNY9Q25vHtvSf5njvilkZgUU83I8HnTnLD/7XhPt/1mCdbDOqC+OvZ3W5hwwQhc2fv2cWYQyICRnUN1AJddCnsYo763v869/5Mv/sn/8HXrtyl9QECCQ61fR1grYaoQRRAI+fXuAv/aXP8/Szj6NC+OP5K/wPn32BtDQ4BxlDfU2gAseyDTJ94cHdHtiQHMHwzqtoBDJIRQimZ2bY3t5ibn6B1ZVlxkbHWF1ZplKt0ut1qZSrzM3OoJOUmZlZ1tfWmJ2dY3Njw9VEA0U37rH6lwXrz/Vo3Ct4EeBwbRedpBzs73H/3l2kAGs0SRITBKGHn7O2BidQUAygMt3snPWKH8SNYz0LhKu1Swfn2iIsLwbzXyuVGt1en1q9QbPT4Y/PXOZAtzn3/REAgr6gvK84qrTZ2Vij2zxE2NgpXnlBDSEV2joinIMZRF6DVEE4gJ7F4MfYQg3RG+XjsLNfaXmtaPB4Nv7OCth+LsYEljO/6yKyoCNY+FqJw0spNjgeROZr1w7erujIjq3rh1e89QvpmPMgdwTF57rMz7ulwuustXQmNM35lIu/VUOmIFO4+FtVmic1nfGsE3KwVnIIOk8qbP4cgcjbjIpHvk784snq7CJ3xl5zWh1nTruhCg6adh0LAqMsh5cM81+WBB33tmf/fchua5v/ffn3ubu0SmoH0KDwMHPWp+2CAfd4ZhQGGXD2vEFNOjPGWT1RAOVSxMz0lB996CKX/DpZNxaw22uDdGWsdj2mtCtQvkIx/9WQpGpZ+WU4ef5R5k5fYmxill63j7CaQAlqtSppEjs5xkDl30Enrq81bwr3i0epgCiQBNJxWcpBCP1DPvrc45Cm9GJLO1WsH7XppInTMTB2gExk91ZYwlgOlg4wvKjYfF6z+Hk3LEWnmlJU5mB/n9HGECYVdOOY2CSuRVQKsG5IgzUp+CBoMJ8gvzt04z59oGsCDlt9FhYm+cynPkogFEliHfRswUqnmJbJTbrgwwXW9RWJHDSjoKvwyj/osfKZNEdlwAt0COEzVshGqmatanmAnJXZzIAImZEgMwTMfQ3vpFPND199lZ3DfTJeQhZUZ6QrBwbklt37aLcGLda1aKaDsYrHj3f6vB91/Njs6IeP5hnDD/5Jys4HzbGNXN6GoZvvhAiyowiNDVikRUuQMXo9XT+DI4S7nF0ZsNbXrB316SaCJB2MNtPC3awoCIiQnGiMMlYqY/pd/qD/Iv9w4Uuc+k2IjvznGZAJNNZc9HosQzh2zoPuUrL/C5cdSwRI6esMEFXKud51EAV0ez201uzvH9BoNOi0WszNz7O+tsrwyCg6Teh2O6RGs7y67F/T4eBxw94nJR/4O27mJ8DQbUltJyQ9dP2zSZo6QpPf6BZDGKpCFu8Xnh1kDRkrOtMFLs7AFdq4kZRK5bCfGyrurm0md2ktbopUuUSsDZOzcyymm9w4tcVn/uEJ+iVHbKqtSC7905BWrYdOvBiBDHKZQLCkJhsK4IKcXKhehccYz1YIPy+24BjykX2AtQOjgo+fROF+ZQ/6w0jLxkdinvuHQwQ994ygK3jsn1UJOoJkyLwjexy8voAsvMv6zravcx7ioROwhXPKou3Bew7+nTGHB7XknffFXPidGpOvR/nbTf4w4tzvVNl+qp/XrywDWLooLpKrunlnnIuLkPvcgrPL9qkfhSic/CNeBEXkjtitIWtdzSz1xklKiR6RhC24+L9JVNd9TtCxfPDvlblycZH/8Ed/yK3bD9C46VTGn0jG1qZ47nkduPgzuDYDdCHL7B2qFaiA8fFJt46KcHUeXbte0kAJdjY32GaXR/5pmeqqM5FiJOJX/t/v4/CjIclMhAoqKBlRKZWIux2EsIyMjFEKQzqHB6ATtJ8S5Kiz2hlt71CEgkgZHj27wKc+/H7KSiKF4sHSBl/442+wud+k1UnoJIaDbo/YuLqsyQc6uolGBpzud18wvBcx8cCtCaHh43+3xsbHNOtneqQp7Lb67Pct33rxNbqJwWiwGLTBdRwIgRWu7SdQMu8eMX6N6TRFGIu0ksNmi67WVIfHeOP1qzy4v+JaoEShfm9TRzyzzvlKAZFSBMIytOoSHz9ci2or4LkvDnP9b/fZfiZxNjUbroK3qyILGAtIjx0kaxibo3SDdTwIesHbLJ/1t/cPefWHPyTx5YjB4jm2kfM9LvL9kK2z9+5o/6TjT62YBXB40XD176TMf1Uy+7VCJGahfk9QXfuPJ+jHM+vB+7tpaAbtfzwtxxG2pHEN4kKjPR09j7SMQWrjtaRDulLywrWr/Jt//dv8b9/4Lf7l7rd55jckwZalN2oRKcx/KyBsCmrrgc8YDcXBz8fPM3PC3sgWbsZgGIBlem6ejY11RkZHWF/fICqX6fX7lMplJsbHsMYyOjbC9sYms3OzrK2sUC6VODjaR+uU+RMnaIk2lWdG+en/6SSp1LRPOB3Wk18tceprZVTPUvZQtzVuakqaJnmUGIYBs7Mz+cQkF/m7CHpQFjCDBcuALa2t668W1hJKR/G3OqP+uw1gLITlMtX6EEOj42gLK/UDnv5n40R7goMFB+lV7xpO/EtN0M5QTYlQIRbH4tZpgtV+EHnGwFUBwiteOdGN40bW2c9BkJdHuRSzuKLBPh7gZc/rT1nmvhkx/WpEZ9ZD9z0YuRZw7rcr7ppnr8pjmZxiNYjaC4HbO0hO/jOd/3aQF8WldHylHTvNwcZ3/7bKYiRc+tc1RCEIF1pw6Terjt8QZkGHyIOrfPhJNunMDM61+FlZll8MNI7B5UIMZEAziUtPipNyIIaTi+QAndOC8/86YPSqzDPLzpxl6mXJ3DctG3KdP/zCV7h24x6plhhfTtD4EoJ4p7jOsfv80HWzxf/8PZBSMD83h1JOwvZ4S5Or48edLnGnzd7GGuwnnP2dCsMrIVhonbWMxxM89y+m2Bzaw+LGCZarNVpHLUidFkGlVGZ3a5P20YHfKya32YFy3QpCufGiC3Pj6O4+C5MjDFXKWAN9G7Lb08QW+v2YVKfEaUIWLAjjMtThoQq1RhmrDEJoSjF8+tZZfmb5cXe+JzQitHz4/1ajfTKlGxqOupo7G7scxqnr8bUWUuvIqsISCmfVkAIrXFunM4hZoccSBpaf/amP89iFkwhjuXZribsbR7x67TZ9H3hZUtAxIYahapWydI5XSpibmeCXf/oznGqNELUlp75XQqTQHkp5cugMn/9HC+w+Z+nM44IVv86EVD6JEOB1EZxQz2Cv2MwJk1lokdsE/xSPnAHCIhPNzStXubPsSFpCCKw8FnL7ANhtCJ97DPbNQ3t3gMK5zzRDQ+9Ys+92/FjErOLppVXoj8JT/13I1Pcl658xIGHolqBxRzD1knTyo8WTtMcNU1Eu8R2HhcFMUf+Q/5LSP+4rt5kLxFrrojV/kY01JMZwkGpubGxz58Ym5//3iFJTcftXXX21tiJ46n+MqK1IVDNzwJ4MYrML7zIuV2MlZ8Aa/D0u1LCxljCKiIKIfq+PtoLDg30qlQrNVov5hQVWV1eZnJrk8PDQLSZj2N3bJYpK9DpdhhvDDNUa0NJ85O4lDm9usf5TKbriHMSZr5SZ+W5ALS7z/g9+yBtqp1JjjXX1OJ8JVspVSlF5MEEkc8VSIoUlEpaPPfMM586exgkmuUlSFuMlL10UKpTMe6ytEKhSmcmZeU6fuUi5Nsxhs0O702f8esTIqmB3Zp/OqMObxl4TDN+VTL6mEBVfY/R1uVTrPHNVytWWXc3X1X2zwEb4OaSisB7eJQGlqAiVjzTL7w0+cnZBhbCC0rZg6tUIE1h6E85gBh1BeU+x8NWIoEWOImT+Ni+d5GvaDP7NcWecfWxmFjy/zUXvmcFwCFe+GQfQKoValAfNhOXEdyqUmoN7nF2L0qFk/lvlfP8UysgU68RZ6SFzUoN+y3czLsczhCw7dWfkZC6tz4wdc13mU3+wllRrghac+HpIZV+huu79u+OGNNDMvCqp7cS0Djb4whe+zJtXbmJ9XT8jiWWV8UF264ICm8PW+EEjx3+KsYO0lvm5GaePjjPqudSlcGvPPSYxoeXk7REeV49y7sEMAO2RmO25LtMHE1Re7WGtxkhLo96g12qyt7nGnRvX2N/bwpqYbCZwGIYOlVIWoWBqaoyL588SCkGapDQ7MX/0lW+yfXhErBNSY+j3EzCuM0BY4eq1xpEGZSApR5LHLpzk5z/3cUYqAVPDdYbjCPtvt6j88z2CvhtCsvTplGhbMveNCNN3AyOsdWUca1wPMtJSqUh+5jMf5uLZOWfjEGhf1sqcWRbUh0ry4M5dKoH0JKqAvgmIhZsyLDQoaxkqB5w/NcWFMwsM12sEAqqlEqQ9RquSs9VxhlYkz/1PNRrrCivgq8/fR24bHvmXZWTHIQYI3FhMgbOVaYw1KVEgGBuuEiiP/nk74TqWnGqiE8Fx/ILMNmdbRvj6dL/X4cUfvEin1/f23Ob7Eet8jvHrRMZ91OYm4eoKwfoaotnOdzdA+vhTmNl5bK2BmZzm6D//P73TQL3LEbynZ/mTg0FGGHRg8mWBLlle/X+k9KZB9uHx/0Gx/AuGiVdk8fwG74M9ttGL9ans91CI0DMYCnHcYIiCQS4aK5/6aDNomxBCoIOIoOmipfs/GXNwyWntnv3diLFrAVMvJ9DXGOO3vPTEBwZ9a07hy+YRfsbizXuDvZGr1Ooc7B9QqdZJ4phyuczU1BT7u3s0GkMs3rvHo489xv37i5QqZdZX1wDB2MQES/fvc+bMGdbX1qiEVURsOQhabHzGbcLhm5KJGyEHS11GH50hSQ2tdjuH7UaHhxzZIk5IkpS11TWKYhOujusNsZAIC/vr24yPD3NieorDbptOR6NkgDGJy96MyVuALIrqcIPp2QWiqEI/SeklHVJtUBaIe+zu7/Bg5pCkZj1UqlBITn5JYhTYruuZtL6Gl0GZDmrKJhoV2438Tc5WRSEbzv2FAJsX6302ZLK6Z/bdTWEEnustVK41kXjYEA+5rLe8LZExqK4kbA0ceVbTzWpkCOFVhAZ152NLXgx6YAUDR56v9WLG+VCAmiHTOdE4i95TQelQPfxJ+Z6J9t3zXNRfuDii+LnFz7H53ip+z3zNZE7M938jcLZbCoxxhtJmpBhfkZL4NYPrIa5ds4RSYkNBZUvQvGDpD1t6pYTaQYiSYEVMp7nNV770FZJ+zAff/xiRMrlEasaGFcLi02Oco7Zkcgr53c6umX+qOz9JtVqiVqsTdw+dyIivLVorfZnLqTMRCN7/2ilG6uOcu53wHfuAfjVl88wh82/Mkq47mck0iWkdHdE+2qdzsO0CA88iHpuYQJBycmYU00+5ufiAcrlM2u/Q8cHRYatDJQyJbYoVkMax04bOvrXw5TgBQRD6yXQAAbdu3QULI41hkjhmcr9Ce7FFvHvAyC3JzlOaB5/o80S1TGlPIozAoEEYjIWSD8REEBAqRe9om5/69E+w97tfZmN7BweICT+RzvccW0ESG67cXUYAKYGP9FIwhlAJZKAIooBaRTJSC/nkxz7Ad77zGtfu3GOoUSPudvjiH3+DXkkx/cOQ6uuWM/8h4vJvdLk3u89rH4i5eLtG6cD4OrUBY50wCF77TkomJqr8wk9/ji994Wts7B7RF15C1BqEUIMRpC5r8mtFeLa6JcBwUsc81Y9p3LhC8KUA+8lPw9hYwV4M8Be1u0PtG18lXF6COAapMNXqsZ5gfeI0/U//FKLTxpbLJE+87x179N2OH7smXKwfAaz+tOX/x9t/B9mS3fl94OecNNeVr3pVz7v2Dg10N4CG98AA4+lmSIqjYZCUuCHa0QYjNiSKy91YhUISY5YrReiflZZOM8MZzGAsvOsG2ncDbdDueVvvlXfXpDlm/zjnZOat94BpjGI3gddVdW/evJnH/Oz39/1d/7x77eATkpNfipk6J5g+s+/SolawQNV0wQlGue/UW12c5md/XL3xmFS27rxwv8ZaSq0YTSnO/M0CG0FnRXDn70REe4ZDT0ZECt+wwFPIWdvoGFP73OH7XE61WZ/o8qhp2mJ9Y500aTHY2+XI0WMsX7vG4uIia6urAGhj6O/1aXc6jIZDDh46RDttkaQpU7MzrK6tc/j4Ma5fv8baIyV9H4q+/4cHONk7RO+C5Y7+Yc5fOo/QyvUbtZr3v/sR0qSFKp2hIKSs2tD5aaDu3yAoiXjj6jVe/sHLfOCBh/nsxz/mmopLWXVVEdbl+eKkzaEjxzl09BTKRuwORwzzoSNUL3P2ttZZvX6N0WCP9UcVSGhvwOxFF6Js3bDY3RKjXQ5GSkkUu2YLUZSMKeCQy6v+Be8HUbGrVQ8Ufm0YdliQzTetrcgqK2OtEeJWE1DMuKt2b0SVxyjN+Fqs/grWcghTNV3hxuF8Oou0FpeE21enPf4IY+GzKqdVfbeolcttlLZTvM1nZmxPNMPkdQWCuOWewzWakSqLrXEDzkr17FrhKUMXJh8+jHxaQbhG7FprrLZViqqYtZQ911jE5a0VsckoRzt841vf4XvPvUKuHU9AiDM4O0TU82yk+9cY9ipj4eVNBdyxlnarxdEjR0F4r134PsMEutaSTiuhq1OKt/eQFhavT9DbSUDAtXs3fVe2mNVrF7ly5nVWr190DRswtDttFg8dIu30SNIWC3NzpLLgC5/+MMcWFmlFLUpl2OvvIQQUWUGWKfJcoZWpIh1h4kLJVhKnSCmYnGjTTR0T1iC3vPjq26zvDNjpD2i/UTJ1MUJuCQ5+JwYDe8cNa4+qioNBWEMsYGG6xec/+0EOzU8hlEZrzatvnOHF51+iHSdEfr1G0ndWkwKlDaWyGBGhRYSykcNmWEUsDJPdiBNHDzA/PQGF64N84+YKZ15/hbtOHnXyXmvStEtmO+RFxOKTMQzh5O+ktNcENoK3f60gm3HpRmVztC5dCN7Wsl4K2Nra5uaNq3zm4x9istVCYrHCVGtDCOH7FDTSiNaQWs2C0fxMPuBXRn0eLnNO5xnTLz1P9w+/iB1lBG47cEo8PX+WyS99keTcWUSeO+CtVkR7u7cEjWyng51fwPa6QUD8ucdPrYSbCjKfh9f/S4XqQbIDD/6rmGQXZl8TTFzZL7zE2M+mEBgrV7qNAr6tBW9txYNc1UTe7vMWn3dUCAM3P6RZe9QpqAeenuLAhYhoZFh6ViJt3RheB2apkDsNuTQ7PrACzzTkTa9Ot0eeO+93fn4eIQRJmtLf2fVMWet0uj0uXbxIkiSuD7FSHD1ylCvXrrK4tMj29hbgOJjXd9e59tkS3YYkE3zorbsY7Ga0SJnOumxvb3qCBEFZap743lMMRkNvEbrFpE0NzgFLhMAo5ViyMOTSMJTwtSee4KnvPUuZlR4kJRwtZNpicnaBpaPHaU9OMcoVeeGBVFYz6u+wuXKDnfU1jCrQLcPWu50inLgsaC9blG9QDt4DiSIX+q5yvo08Yyg7IhhYbnwtjCtgvLjyUjeAJ5opjOC0gqjCt808qJ9kyp6hmHZz3r0hq7xt0/CqAV4emek1XHPFNXWgewIHytFlTpmPMEZjAxql8vLHF2yTwKOZu6yX3m1DTP4xQ4TIe79yXHGHc2/ZU3bfk1hncDf3bRXq99EEIUIu2ClfKyRW1l2Y3By79IPFRZA6y+7yxQzoCfe7VsqR6ViN1UOKbIcnnvge337iRQZ5UMEhtxXMFuvOt8Y1hgn9y6tzwjyFuYIolszOztTXsM7DqtDu1mJFhIxThoM+GMXsVpf51R5YWL5ji+3tG2TDPTbXrlNku4AiabXoTc9x4u4HOHT0KIcPzRHbgtnpGVZWt3nu+edJY0kaR0TeuEdYRlnG7l7fo8n9TRpNLAxz010OHJhGCIO0lthq7jl9mA8//m5ce0CBJiIrNaPSkF8rKUvASo59PSXKXOnPlU/nmMh4LxLacUSiNVNRwRc++REmWinKaDIleO3t82zu7iFil16I4zbaSIymqgfHGIT2P60hkpJet8VER/CxDz3MRx5/mF6akmeaXEtefuMsL7z0EkkrZXO3T5ykaAtZplh42jEUTr8dcexrDlC29ljJjQ8MEaiqHFJIw/33HOPQ3CSJ8IBTk/DMMz/kwrmz3HHiKF0ZExkJNvZNL8a3VmwNjxYZf320y98abvNomdMKhh1evi9fR6ysVJANIQTR9iYTX/0y8erKbTTTrUeFQQEQ70y9/tRKuMrACjj3a4qNR9zfp34vYvEpt8AOficag58DDcFiq5D27cAWze8A6vyVqc9v1hoHZYz9yTlmay2mbTnznypMCjN5m/9L/wv8tZ/9HDO9Du3dmMjnHY1xvLiNLHy4iPtT1gK5eQgZEccJu7u7LB1yYKulpYNsbqwTxQllUVAWucv9joacPHWaJImYmp6iKEuy4ZCDiwe5eukycRRx7cpVdltDbn7ShQHnL7Y4fGmSzfV1Dh08yObqTU7Mz/PgvfdgpQNTKSnRpu47W3e6qtWSQ0ECwoDvUIIQ9LVmZWvX9+Y1WCkRaYfZg0eYPnCQEkl/lFEWOdIqpC7pb6yzefMmKhuSpBIZS4anBaOD7vsn3wS56ZinpM+rO8alut4Un5/DIyFtI7QQ1FyzcB7feKHyGfw6cPy7PtbnvVNBrTTCsnKfGY/oFFOWctKd0LsRVZ5q9ZkGoxtNJekWpAcSVquNUO9qVEmZjdBlATZw9FQue8Ojrg2GoODHvWRb5YhN4xnrd31I1oNWmnskGKnV3g17z3sXlU7atx9rhPf4a6L+QJBW3kgJDGaxJ1ORdfMHj2LvXHfXKadATdX7yGiDMgpjS4QeooY7PPPMC3z9W88yyBXWrwuLCyY4o8BQFZv68dxf7mV8Paz1ib6jRw4TxynaWrQJXmKoKhcMRxntTpcyzyjzEZ1+xOJlxzKyMzPkUnTek21A0umydPw0x+9+ECUiRBzTabf55IffywN3nmCy0yWKJzl/+SZbezs89u4HmOy0GPVHKOUMYC2Mr8m3rl2oiEiSiDtOLfGrv/R5Ds5MMjfVoduKuXThPK+9+qpHnrtIktYag6UwGu1D6rOvwszbLp9645OKctbhRYRweV1jIp7+/g+4dvESJ44sIrEYIcmMZVQWGCJKLchK7UuEfBMU69qYGqvpdVMOHZih04ooVYHVlpeff5Fjh6c5dnwBpQzGJIxUzG7mENilhhsbm4xyd357K0YaR5B0139ISbfBpHDm13J0G6SNkCZCSsGJY3P88uc/ztxEF6kF1gj2hoozV67wkY+9jwfuPEni+1ZXxqulSkm+q8z5XN7nlC6ZDkxbtWAHLHo4ov3tr5P+8CXIcywQLy8jd3fqJTY1TfGxT2OOHNtncQus71xXSS1bNwz5Scdf2BPuLBjeH2v+8f8In/pdeOh/9opXQHeZ2xrrAlGFnm9XO1y9HoRSyKJXQqopksYk0G2vWZVm+MFafVhz4yMuNPuha8d5fOUQxd4uWjlmp1DEr7QibErhOXErESYaZPciKH6nNNqdLvPzCw7AkDhremZmhvX1NVqdFpcuXSRNUvK8QArB9MwMG+vrLB08yPL163Q6XbTSjAZDWq02eTZi/b2G/gkLBh7+0RG2zq9QlBm9qUluLt/gxo2bXLm67EO8ltJodKlcGFBGY4QEITcmPGl88B6xjhDB4EqQrHAtASdn55ldOoyN2wxzRZY7xithFdneNmtXL9Hf3HRtzzptRBJhpWD3Xihm3RwsPA+hW1ZVzhKN9/it6k8rRSyqMQ3zKEXT8GkaQ/VcN72gGixX55GDIgqKufI6BQyXNFYCGjorUe0B+vHZT6ghGt9qvYKUjiUegePBLYoRRZE59jEpfK/rxpYL80LwwqiMi3FQl/vGEBmo0iP7SosIABSaxtf4Hgkn36Jgg7fcMBLG+iI3DdLgDTdIPariPR/NcDWiruQooFsFku5N6VLFEWSHGzXq1vGXG62QpkToEabo88Mf/ICvfv377A1LDIJgTlT1o/se0foUV3i0qp+4tWA1hw8tkbZafh7C+AfB6YzSMh+C0Yz6e6zdWKbzhIN0ZzOGrbs0cZrSanU5ccd9zC8dZ3pqgXYSE5mCNJKcP3uRtZV1VlbW6Q8LdoeKYaF4+oUXWNvcRjnXncjfbyRhbrbLkYMLWCy5KTl39hwrly7zwXc/SDuWTE5NkivBztCgbURRGFQR5FRYTgarFa0dy+HvRGCgf9yw8ZgjUJFRhDKC1kSPnczw5rmLPPqehzg8v4QxglJbSuU6L+FDzRZH2gO6wm9M9hIeuucIv/pLn+bOo0eIiWh3uuz0c775zSe4+44jnDx8kCJXDAvYGuTsDIYoYxmWitJaEL55hTFgFAdegKWnnNK6+VHNxnt81YYEEUW8+PJrXL22TKedMmHhQJHT0pr13QHff+b7PPTgXbQSWRu1tpb9LWt4WBUk7D/26Qtr4MI5el/9U9pPPem6OBXlGBtW8ZnPUz7+IfJf+muohx+F2MGqzIFF7JGjjWjVuAn9k453DMxqHjMYfjErOfj/cc9hh/D9geGZIEgZ38zV4TdvsE6a1rl7uxZ8+9HYzeMW5p/G69Y6AojgxVTAk0Rw5m+XlBOQDOG9v93la1/5Fj96+xxZaUELZxB7gSCE8O0QpW8V6DZqs1SpahKAi14uLS2xsrrC/PwC25ubtNptiqJAa0UUx+S7e9x7771cvXKVxaWDbG5sOOq/KGZ15SbdXo8zZ97GsdJIdrOcG18wmBakI8nDPzjEzvJFPvz+99EvCvqDPljQWqF8J6RYGrQNZAmSsgjczcJt+DggvEVVhhXAINrhoGl1J5icmUVEKaX2Ys9oIiyqyNnd3SIf7IExpEkbmbYwkXWkBBg2H3DRBlnA7A88maN0yrdSpoEuLpQfuQl002bxfMJ+Ddgwyox5p8afLwKbUii78QqtCjMStkRjbdp6rVkLw0Mu3BlngvamHPucU9ZU54/dT1Dq/jWrFVqXKOUYv6SfS2sdkM+GkK5tetLhkrePDlU57AqYaP1YNc41GmyTZrOBhvYKd8ywCB+zvie0348V9sGPc/hsSG/su7HqPCkFxjpvyQU+jUMb22B8u+/obBkXKu1C/5BGiLhSlMYarHb1sFEssOUe2hpefvk1stGIL3z+E8xMdTwZTpjP2wDiwpgRlK9wHrOFVithemaGwWALTFEb7t4oE8bQ39nCiogrly5ggN7zClmCaUHxkQlOXLqT9RurlIWm27V0pOX9D93H+atXsL0epWmz2S8ZZn2KUjEcFWirsMMRFrfeI+E8pYiIXjvm6NI0Dz/4MH/05W+zp3IKG/Pk0y8Sy4idLGdyZgYhUnLtd6lSY9zIwrh1EUlnQJ76luDN/7xEdeHKZwoOfysisTH5sGDLuBrjZHKSp559kcGoZJQprIjr1oC2Zs2KpGszio4oS8FEp8vayjKry3M8eO9pLl66QrfVQpc5w6FhZ3OH08ePce7KMqXArYcq+uZAs9JqF9L2ESNZSu76dwnLn9CUk3Dh1xXHfpigRiXKRmztGb711EscKTW/mo+YN5q+FHy73eKNN86zfn6ZGaVJrWTPQixgwigiKXgsH3JU16FZB9MaX8J+xzi2vqKg9dqrjN77wca77t7N5LTTYZOT5J/6HOrEKeTmOvque7DTM5W8eGfq1x0/tRIWwP2p5lBsEZ7korUHjxnNj5KI3UbezN1O0yOpw9B1WGvf9fdtdNOoS/2x9xRCan4/aa19qYSsQnFb9xqufdYJ2vkfwLV//QY3RjFGOO5WIQRxLFwol9oQCN5SU+4GZS9kzUWcthyoajgYcvTocc68/Ta9yUmuXLlEu9UmzzJanTZp2mIw2OP03Xdz/tzbzM3PkxdZJeSG2ZCFAweYnOhxI91k5WMuFL1wqcPs6wkXd/usr69wY3MTY0riKKlCRIKIEKaMpGjwRAeNIrywDM/jwvxGesGQdpjoTdLqTqKswRSqAkJYXTLs7zHY3caUpXstktg0QUvXIxVtMRjWH3OIzu41HBBHCM96VYd5A01/FWZuOLBOz4WgZ62WgkIOyMfqM/6DwfZsCuRaGIfzRWWcVZ8WguFhXyM8gnSzvkrTK3UfbK7n+ptcE3dVlVDI0PCA4JU6Q4TqeWsBOraWq++sn6DCTYS9JQQ0vD2oOX5l5D3mKKqec3+a5paSpLFxsvV+27/lGko3XENYZ1HU9+xMOiMjqgC9R/gKCZ2tiLhSwo6CMIojZCRAu4iTMRaUQkZgVYYB3njzLbIs45d/4XPMzU4AnlvY+rrP4LWH5GqY47G5lqRJzOHDR1m+fsVNhZ9SF0mIsNLtHYFLoSAlc+ttJm9m7BwvWXtPycLXZjmxOM/FqzeZ684jlGawN2TUH1GWBqxAG8Hm1obLWxvhQWyu5C+KY+Zmu8xOzXD+/GXipMvNm1vcWP42d911J6++9TalEvSFcyaGylJs9THaZcYlLgxvLRjhehRHIqIoClzYGObfSJk5H7P+LsXyxzXlnCDdEBihyQuNiAxXb6yhjUUZgcYSe1lnrAHhSj1jYrpty6c//l5UDt9/6hXyQhOLmJd+8AYLBxa5++47uXblMocPHWD55hrfe+F1sBEaX4FBHXXAGKTR1aA72R1hsBx5ImbhlYiVD2jWfl4y/YcLDL+1xrAwrk2p1byvzFiyTo7PGMvnRxnXophD/W1a1qIR3JAxXWuYtRqBcECzxjI+HyUcNppeI3JkAYUgAdeJbjggvnQBsoz9R8V8Fyeoe+531wjkQDZgb8axKz/p+KnD0apr0e+pUWjJADDQw9K+zdfuV55/nkKtAUTVC9XrP+mwoXuNP4x2oK0Q5rvwq4ps0RkNd/67FD1KKKxEaYs1jt9g1loWtaJjXbuyZmkPNA0E5zEGb8pYmJqeYXNri7TVIi9cT1oZSVRZcvz4SbRSLC4ucfXaNSYmJilVwaDfJ8tzLl++RBzHqNIhhw8dPsza6hobjxr2TjhU9LteOcTuhXUypblwdZl+f+ijmZayKBBG+DISSyDUMEaPoUOlp34LzyJCji2SpL0eUwtL2FaXodJkhcIYjcRSDPfYWr3J3uY6VpVEAkQkEXGMCX1kjQWjKaYtO/c64TdxXtBeC98VsMkChxeu1Vz9PypF2SRyD0K+6pYTvEDfjQY/DtX6Yd/6aSpgqFLLxv8EGB72nvBI0NryLElerZvgGfqvccaNzyUajSlzymyEKkZYq4gi6ct0PCrYan+L/vl9Dbu7j2C01v+tvid4otUaFF5xeM+8gb7UZUmZZWiVO4+4gcK2NPbdvpyprTdY9S+AsGrvuLGPw32FvSFCREJ4gy2E011+H+H5pj35SroVu1phYHTUfb9Wjlda+s5G4Buqaw2mADVE6Izz58/xu7//p6xu7Hjh/mPkiJU+R+9WlUQirEfcC8vc3BxCRH4l1mtD+jRMCHvLNGXx6HHunb6bpbUJsLB2csCoNeL4wYMIlTHRjonjiMJG7Ozscf3KFd58/XVurtzwFJCBHtM6Bjgp6LZiZtoJH3v8UdppzO4oYycz9HPLm2+f5ejiIkuzsxhjGeQl2goypVAYjHVocgPIKKbbTnn3u+7i3Q/eQRqkuRSIbcORbycuJH3CsPFeXO/12LU3NEqSl85YMGFfmgJhFb22ZGGmRxpJojhiaXGR5csXeeCuk9x54ii61Ggt6Wdwc3WL+++9jyTpsrbVZ1BYBiZmgPRlGH4PW48/MdpFARCVIZ4kCVJIkoHg7v+QIkvYmBiy8Z93+eD7H6YlXAqjawzTHv8TZr5j4S6tmLCWxELbWk7pkiWrSS0ktlbAAjgTpXw77fJEq8uajBkKybaMeDZp82LaqvZKmWVMfvmP6D795NjSckulYaB6775+vxYqt4EN3fb46ZSwhCu/pNl+l9u4UQZR3rzB239r2KDw5yvTygIXVArkx3nNTYu++rwQ4+9b2DumufyLvs72LcHRr0XBAUIIyySGL2QZf3s44G/nGb+ucu4yuiLzDpso3H/lYXqLJ4piZmfnWd/YIG61uHblKnGSMBz0aXWcaaJKRW9igu2dTZYOHWR9ZYUkSRFSUuQ5J06eJIpiepOTCCHYG+2x/AWNSSEZChb+pGDl+rJXHDG6NK5jUpJUMjX0nQ30bnXLOud5iTHvGAySuNVhdn6RyalZikK7nJBSxNKpyr2tdbbX11BZ5rocSYmMowrdHCFBu7wOGPbuqfPBs68K4syzNjU8r9BnqK7Z9aPsPeSwyXzA2r9rKrpMIURFbhG832q+/fUqz3hsfXhVLwS+NxoI0JFheCB4woL2Vp1WQeDL1bwhQ2i5ZkDlqGyAzkcIq4gjQSRdSFYHulX/BI5OL4j9ZglW7XH7yav/bhgO44u8rkuvXsKCUah85LreaJfPa46Lxe5Txm6AxkBb4aH3jamo7iXs5dqbl/siUYFaUArX9coKx6yFiGhvR8ReCWdLQOKMDK0d8C2K6jaDxgQu4xLMCGFzLl+5wH/8vT/i6vU1D9TypT3+JkUYn4ZocLflo2LCcPTIEZKkhfXzEEnniYswr8YSy5hW2mZmZoGZeJKH1o8AMJwqWT7Y5/UzF9jY3CEbjhBY1jZWyfKM5etX6Q92KdGYSBKlbbpTPdqdhAfuvYNW4gZqZ2eP7z/5tI9kGVrtlLTlGKqM1cxMT1KUyqUxEGC1I9iwoWVkjBQxaRST7W3x0ccf4T0P3I8UljiGBMnxb7aIhwLdciHp3Ci0cgaxtb4M14JrKwpxLJiZ7nJ8aYa/9vOf49jBAxij2R2M2Nkt+epXv8lwtEdZ5hRak2lY3xnyh3/6ZVY3t1he22aQawLDXSDMMCYHW9JOIo4dPkC33arWnbGOVztJEpCCo1+NmD7r1NLX33WBw584zd3HjvBwmfNz2ZD5JtahOcF2bBfd9sgR/CDtsCsEb0QJv92b4n/tTfNve9M81eqwLqKwY5xDVBSIbFRfwFrY2vA0pPsMftv0gsPtvTMt/M4Zs4DhIcub/1i7zkPWe8H7nnu/sm3+HBMG+z5YA1xqhftOENRVqC68fhtw1uVfUOydsmDgjt+Jaa/X1z9kNL9S5jysFR1raQGHjOWXsiHvK3PiMc/Be10iKBU3Db3eBHmeOaUUSUpdcuTIUcqy5OixE9y4fo2JyQnW11YwWrHX32NjfZ04SRjs7dLpdJmZnqY/6LOwuMjG+jrZgq1C0dNnBfFTu+T5iF5vgna7jTGuB2roMiIaY0/kykVMyF2Hf8GL0gZERGdimsm5JYxskRcGtCEyhhSLHg3ZXLnJcHcHjPYACen5pIUHfPl5CJ6dtWzfZygn3VAtvOAEtWwC7MZyllSLtzl/wQMNIR1BwwzzhlXTMKuNtXqa6nCQGNusVT7f4gr5jUX1DOW0C5m2tiXxoNYownu+gkAc4cAvZZ5R5COMKSGyVSmQ9rXjBsAqV3FVNZ8AK4VrPGFBmGDcVQNRr7XGw4imsKl85qb54RRfFEUIa9FFji5yhNZIHHVi7T0Hz9p7shVwrzYwAwNYuBULFSFNuI4NrnrDwB4TQKKeX9kgX0nzmNaOCyEXM6AnpWfgcmVsdV/i0BDCVA3fpS0QNmf5xnV+90tf5sylZUpbQQEaMsS1xYx9XzPnFTvAkQAWDszQarUQngdbWEdmYa1xuVsUU5NtYlPQxtAVESdfnUBYyLqKGycGFEJi45g333ybl55/niuXL1GqEm0tRBGzC4ssHT5GlKYsLi0SSbj/zmN89PFHsdZQWMnGYIgSoUTLksYpZVly7foyb54554uyhN/HEoFDncee7U7rklJblpc3ePLbTzHZ7pDGkoMLM/TaKQdei5g+58b62odzsmntTUBH9mJsSRJZZidT5mY6SClJIsmov8eNK5f4wKOPkEYJw2HJSMfc2Byyur2LTGK29vps9gfs5CW7RUnuO8m5xiglRinfhEe41oeJZGKiwy/+3Md54M5jtBOHjxC+1azWzpjrrgnu/I8pUsP12T3+g/0GD6+v8bm8zwmlkLZeujsISr/kSgFvRTG7PhJjgGtRxNtxTIagBF6NU256NkELZEAuI3LACMGFKOFMnFDiQKplUYwZugCtb3yF6PKFenM0jlvAju/weMc54Q9rxUvvM6ij7kviIbeUId3uCF5wU2mGY3++2P8xJpRvCWc3HvLWTW9v+TtbgAt/01FqTlwQHP9SjXztWMvPlCVHjbnlW1oWPlkWbEcRb/lrySgiTlJGwxEhRGpx+Z4bN5ddvre/x+TkFNYaojghTlMG/T3uvvc+Ll68QBxJdra3kQjm5+e5cfUqi0eOsrG5iZCS2bl53nj1VTY/bdg9ocHA0W8miB2FlJK77rqbC5cuYHGCtywduKTK+wnh+gnrmqDDWuOJ6905UZrQnZiGuE2pnYCNhAMzYBT93W3y0QhrdNXb1bX+86Es7YR0kkpCbtJqjY1g8z0GIki2YeYNnwur3eDGvNUAuNof9irJeoUnnNfczLPsXwv7F34Voa2cvXGl1gR6Sf99asJSTLnzujdCM8raBweLtGCMQqvSe2ceaS6d8DZWV16sU0zW5RaD1y0B4ZR5uAchGkZmpYAtNEbk9jGtW19z4MEQDnYAOmsMcauFiJ2gcwrYP1kVKRBjaZcAchNQo4yle8VYXa2hcdlUj1UwRsLvQWk38//dG+4a5TToKUlr1+HKDE7hNmuLXdTfoFQBwiLjFGMLVleX+eIf/im/+LOf497TJ0hkILvwitf5WUCISPinEpY0jVk4ME9/Z919xq8H443JSBje89D95KMCEackccr02yntUcyop7h0xwbH12P6gz12RhmRFSAikjiFSHD05Cl6UzPkwyFbaxu0kjat1hTPPPsid95xN9JYZCwYZLnvSw6Dfp8RHv1tpS+rUlgREZpWaE8MpDHEqXRhYSyFjTlzdRX0TZRvBCNFhNy2HPlGzMa7NHsnDevvVhz9elQ1yOi0W8xPtnjo/pMsLBziq998xuV7WzGvvXGGzsQaQkBWKPqjHItkNMwotUEZXAmjDL26AWPomZI7dElExHUZsSUirHWh6eFoxIvPP8OHH/8AN1bWWV7fI2mlroLAOkNtymr+yv9u+VDk6pw/9pVrnNoQlbco/NobCsE30xYCOGIMN5OUi8CMVpwyhpEQnItjCiQzxnEjbEURpQmoabe9rKhBVIWUfL3d44das2gM7y0zFpUiieNqH4rhgPhHr6JOnKYy8BtRoKYOfqfq+B0r4U9KxXufgbv+a5CKqiXZ2GHH87JjyiFs8uAp3yY3LGSAu4xfp7peQ+gKQnjVVtcbvxX39/XPKLbvc97TiT+UTFzywkXAtLUc3lfKEcZTALG1nFKKt2IHbtdao9TIR6Fd2DRNW4DFaMXMwiLLy9c4eeI0ly5eYGFxkdWVFYQQDAZ98nxEu90hzzMOHDjIRLeHtZalgwd58403mJmdI89HjNSAq58vMAkkfcGp701iyhGdzgRJq82g3/dCCozW3sF03mkUxURSoApdjbfLHyUQxaStDkmrhbICXZYIIiIpiLEUwz7D/g5GlU7gSUEUhTyms9h18ESjpFagnvDAJLDxiBvHyQvQXve0gPtmuum3Nn8Pim8MEyAahlgARDQV6vhF6/3QXA5eIQuxj0XLX7OcgNJTVvZuRP5yvqbXAtY4BHpZuKiAwAGJoO53aj1gxtP8ichtrdiWLM5M8K6HH+a7z/6QwhisCLSTtjEKAZks9u3eW2NGWFENRfPxjc9/CSmIJGhVYKwmabV9P2l//SqcTB1ZkM3vrevM3emOwrUu9xnfxxXrXW2D1MZOEHbg0NLCNUqBgmLaUkwKukIgI0Az1vghkhHW08RaY32PcIhSp9x3tjb44z/+Kubzn+Gh+05X0SmD9SFXgxDOgALpuI2tIInhyOFDXDx3Fms1whgmui3mDyxx9foy0kpef+1NepMztCY0vemU1laHhRs9rt65w5kTq5y+mSGyEjDYtM3M7DxLC3NcvHqZuJ2ikaRJh06rQzbKmZicZu3mVfZee5tTx45z4OABnnruBbJSeaCk9a1Cvdy0EiliJ6emJpmbm+LSpeuuy5QFVTqKzbIsidsdSixagLaCzc1dpEixBo58O+aNv5+jJuDKzxQc/26HmU4Xi0GXik6asnnzGvffeZIPPfYQ3/zeC+hWh4EybG/sYCOBLhXDzOUdC2XBSiSuasRD6TDGMGktf7nIOK4NQpSMEGwJwZaMeJ2Yy60WZ88ts7v+dd73nod4+vmXUdt9DmhFIgSxhUfKjKWLBv2vQPXccjIpyJEzp24KyWYU8VaSckVKFIYLNvLGiWUtjtgQUdi9YGArihoGv98sIRZv6giPEILCwLKMWY4Eu1HEL2R9pjzzWzji82eJz7yFuue+evPt260CMfaZn3S843C0noBWAZ/5M3jsO4x1cKkOMX4TYVM2qS5vpdsbDzn/OE/3dkeTwON2YYBywnLu1zU2hfYKnPptVzsXCD5i7wE3ZMfYVSyCjcb9a2MqKrQgBdM0IcsypqamsUbTbrex1qJVyczMLNtbm6StNjeXl2mlbTrdLlZrFpcWWbl5g8nJKYqyYDgcsrhwgJXr18kWNCsfdYbCweUJ3r17B9ZIjh47zsbmplMGNoQOccCGKKom3irXD9R5lQJETJS2SbuTiDglN6ARSAmJNKBG7G6tsre9jilzkBYZCaJY4jBXmlIpH85z9cdR5Jiu3FA45qLhYcvwmJO4k28LWtsiLIpxRy/83Yh+hBH3i4Twdh3+DB+1VZqiztc3oyt+5ryucWOA/7tWHDUQTFBONjzhZa+mPZjE6JKyyCiLzIFKfG2yNY7uzzEHuQYCUSSQLpyAtIau0JyY6XDPgSkOTnSIjKbOW0oqc7y662A81u587RfXK9XSPCc8t/MEjbUNJSZc6Hw0wpQlwgPtwmQ00z1hDI2xVelaFaGyNMh/xu8v5Ogrw3nfNhT+nNCzWAhJ1xs6xZT14eioKmGLIvee1hrt+1+HHDHWoMoCXRbEWBKr2N3Z5Et/8hVeeu0sysrKGBI4sp26GYQnY0MSiYj5uQNI6egoJ3sJB2cnuP/USbpxjAA29wYMS83G1g5lkbP15k3arzsA2e5hxe5SSRzHxGmb43ec4vjpo7z30fu4784TjPZ2HUVkDEsH54hMztLMJFGUUBjBxSvXOH/+IqpwLH6Rn+dQtRDFgTkO4ihiqtvi5z71Ee45dZTIOqCZtTHWRvTaHeamp1GF44s3JkJbifb577mXBVPn3bVWPqGZvLPFX/rZj/LYg3cRWUOhLLsDwfe//yyizDi+tIApNFlhGeZFxeY1GmVkmUILiREuiiMxWF1ijUIAdxjNCV//LK2lZy1HreEhXfJLoxHvKhVZKbmxsUscW/7yvXfw17MBv5yN+IVsyBfyIYf95+OMKoihOpaRhO8lKX/QavO1pMUlb1TJqmuXhVhw9PhRDi0tEgl8I4+wJoLMpk6lVCmVhg4QVEbRNRlzVUYUZTke+slGpM98DzG8nSdab40fx4Wx/3jnSrjlfraGcOzirQGxGAj8IEHEBf7ln5SgrvJ9AeK9D+W8/6i84BAe+AnXXvmIYf0xJxgOf0My8/p4WLyPIGuo7+ZPg+CclLzuy0rqqtXwjQ6Q1et2KfKCxQOLrK6usri0xOrKTZIkYW93B60UMoooS8XRY8eQIiJtdYjjhO2dHRYWnTIGy82bN9je3GDzEcvuSYeKfvcrR9i+uoGUEXNz89y8sey8LeFyFkIK0jR1IWIbqDx9KFpIZNKiMzFNlLYcvZ/3YuJIEmHIBjvsbq5SZgMX9op8S7ooxuJ6FZe+DWIQpjKOiOLYjYu1PhRr2Wnkg+d/IBG6JjZx41p7YbUorz2wKnx8y5QGT5Hq37hCt/vPdPvL7ANnWa/ARH0uArIFg0ndC91lAUZjjUIVGSofYXWJFM4wMdagja72ZIXxkhGaGGslLQmHepJ3HZnmxHSLwfoG3/3OUxQqkAlYn4++9XHHq39tw2CBCs3u87ii8dxSyCoUbfHhaaynGzQU2QhVZKAVwmqvpII6byhjb6w0UwgVI5kNLT6tzxub6h7HPmNrI9wy7kFjoXszBus8nGxJuNKtBnVpRR2rNEopr4gF+I5eZakwRYkQzuMaDHb5k698jWdefAUV+EWM9qmJqDLTRIWuhyOHjtBqtcEKet02rXbM088+zeREmwfuPU0iDduba+ysr3D29Ve5efkyU887JVxMW8QHJrnrnnuYm19weU8h2dte58PvfYQ2mqXpLpPthOmJHjPdDu996D5asWSUDdkbZVy6tuxCujQieyJGCEErEZw6sUQaO0W+u7PLN7/2LXRWejIS31dYWLQpybMMVRjQbgwtEdoosJpeBqc9SnrnpGbjXQUX3nqVRx68j5mpGda29ljbHRKnM2xubXP//fcyGpUMRyVZrijygiA43ChqDApjHRDT5d8F7zaKT5S5jzp4Wen9sCSO6EnJuzzIqdSw+bUnWHz+h8wZg+tr5ZWRxeEwlCCTsDEPL78ffvvhlBfTlEw6IwBPM+9KUF3KbH6yw3/yVz7Pf/LzP8Px6TkSGWFlveeCnJC+xrEZYWsCHcPvhbV8vTXBj0REuS9iKtdWSF55CbSq7eOmnHmHChh+mjphZ+DfFowFkACPaM16nFBgmbSWOWsc20iIwfsjt7AuBIVoLED+/KR2FYrel/+93WFSOPvrGt2FZA/u/DcRUo9L9x0heFFGfMjoyoAA15Lr+TjiyThhOCYiG/ltK5iensECvYkJsixHCGi3O1zdvkx3osfytSt0O12M0kgZMTExxeXLVzh8+AhrqytIKZmenebypQtEcUSeZWhhuPkLAptAZxhz9/PzbK6/xdTUFIO9PqPBLhLXm7RQijhx3VUCMEoK4bmiJWm7S9Jqo60jIpGRIElCuDpjb2fbAXisQ/zKyPeGtRZVKi/InfciPXOYjFzZSWgFh/VKQRi2HrToDggF8y/JqrPT2ORbv5YqwYM31OSYUEcEwE1txNmKMGJ8PYXwqPPG6i/aXz9erR3GvclQniRzaK8ZVD50XOPguWul71+q8FsehENvR3HkGqlYRUtY5roxR+cmmUoMsR2RZYqREgxVhBGRi0zYYFTUYYFx37ZhJVSeZhgnHzo2dmwMpHCsZ2E8LF6Y4fq4GlvniZOWb3co6jI81/0HApNUszIh/KzGM9ybFzb796MNc0iIPrj7jqTLdbY3JTJ35BfDw9bdRySquZdEvo2mS7EoVRJ7ulOLdYhiq9FFRpy2iUTJcLjF177+HYqR4iMffA+pj/hL6+hc3ZqRIN29zM5N0WqlZKOY0SBjV8BIQ1tbHnnoIdZurrGyvYd27Y2wImbx5RbC5OgOlO9rcU92AmlO8vLLb5KKhM2tnMHuZUb9AS1hmJycYEuVnL95gT/5yp/RHwzQleJ10QukdK0OS7d2J3pdJtuWz33iAzzzzA85e/U6pZVcX92hUC7SUc0/MByNGA4ypEz8uPsogIRe2mZxfoL3JQ/yT8pv0E8Lznxa8e7nBzz77PO02y20sRw/forOZIdrV6/xowvPMioVhoAhCZ3owJjC3XPDw7QIjhrDZ/OMLsFAtoyEYDWKWDSaKaDdbjGdFbSV5gN5xsNl4YBn+8S4AVak5Okk5e0Tlm/8vzM2DsOBJzSf+zuWqJR+gTtsRSQjpJVYq9jb3eHZ73wbMdIM9vZc5FJIbEhbNgJvoe6++h0acspWYmgb+EqrS2lKHm8S1hhD+vSTmMUl9B331E6hEBjGFfafd7xjJSyUY0CSjZKk8SIMeNRotrQgQ/AhrZjk9swhGhfb/14UcUNIRvvoKcNxO6RzdT/7Nv4tHrG2HP/jiPyApbUqWHjxVqe/xPJEHHPTSO4whra1ZEJwPoo5G0nKxiRVIc3qCyVzc3Ocu3Cew0eOsbq6SqvVZmdnmzj2CsoYTpw8xcVz51k44PoH61Ixt7DAGz96FSklZ8+eQZUFSbuNKgs6vR7vvXSA/lfPMDE7Tfe5ktWiYOn0HdxYWcYaTdpKx5RZqUpn2TU8iiRJidKWQyxiiaOIbjtFCtjd3mA0HGB1oIbzyFpB3RTDGFz5Rk23KIJXK6MwQWAVITQ//SPBid8TFNMwedHX2opQL+oHz/+sAVJUK6hq2+cfzm1oMbZpqtXmFVS1Mmx9pbAaamVQb5CgzMKXWWDyiuTkFxN0qkkvFWjlla9vzKGNwWqXCxZW4Eog3XMZY0giy2QEpw5MM50CZQalItOCXEeUwmKkpaINFV4AV3fPmBVee6W1sSH8f0IuOBKGI7tdHn6yZKef0b3uxHokpEdmO0FlfFQgINS1B/IlrTYiltUODYYlWHw5bTU9YwA4b/CEOXTDK6r7g1ox0/g8UOWZe8sxR7/dJs4FvWsxVVsv4Rm2pFOedY07KG0cLTWuQ1Or02PYH1HmOWkrIZZQFEO+8+TTFFrziY88QtsvU5fuFjSZs5JEcPDwQXa31ilVgdYSbMzm9oDf/+MvkxcKQ4zB9QdfPLDEyWSaqy+fxayUHLk8xebaKnefOEkx2MWYRQoStJXkyrK9vU02yLhy9TqD4QBtcgz1eINjbo3TmA8//gj9rT4/fOUNlpYWaIuSr3/l62SlRCuIUreGNODg1BBZ7xGKGEOJpUBKSRoJWkmHPBvR63TBaCaf3uLRzx3k+sWbHH+mTaYj1rf3mJqeZWq3x7mzF9C6JFcag/R1ANb7XTXmAWF8xEUSxxHtVkq01+cTRU437GRvNL7WaXFmbo4PrK7TLZzSSAV8bDjkQaNqxioBF2TCS3FCiUYh6UeSERJxxmIvKHq7ljv+LEEaUbWmjH15mbUu7SLjNnkBz/7wAsIYMiHQMnATNOB5xu2JsNbH5Ieo88bWP7sQktJY3kLybl3QiWvyS6EU0doq9s576lXe1BHv8HjHSri9iXfh6+N1GdHCcqcxoZkZn9IKC7fh6awPAZyyhiPKsIvgXBTxvShmj3rDN4+mt9zMP/2kULTUgjt/K+bonwl029ER3u4oEbwexbwehdyvqCYispYOOEo4wArBCIu2gsmpKUbZiEi6gvbRaMjE5BSrN2/S7fTIshHtdg9jIM9zFhYPcOniRWZnZymKEVk2ottpM9zdpdXqMHdgnuVr1zmycALx+5KP/r863POh+1i/eIU4kkxMTXL+4jmvMBPybOSK9k3d6C2KU6J2m0i6fImWbtPHSUyv1ULnI7Y2N1GlY4EJDRWCt6K0rkKdTa5jh3B2YXkrBMLHDYTQWO3qqYWFY38iOfpnknIC0iG1IA4KUwhPpA/OoN43J2FPeOMC0+iGFBK81bn1yVU5jP+oaFq2ornVmtcKJVuGQ18VLP5xjIm9sRloFI0Lu1Zr0AJSuq5V1hBZy/xkzM996oN0IsFzTz3Hbq5II4is67dbGusoRYlr71TiWJQQjHVvaISxqoy3Fb42OQhF9+zCah54QfIL52a4tNrn7MqA0hoM0tftWu+h+2sb7XOvEqNKlNVELQNxy4WBPWTNYsYElLWNCFQQac3Igj/JNN4PaaigtEMEIszm7JmYT/69eWThry2cMWilF2SehUtgPJOcXw7aOMY3ZbHEdCamyPu7qCwjbreRUqPUgO8/9QxFnvPpj7+fbupzgkKgvcyQCJIIjh49ytuvv0lpLNvDEQqwImI3cw1NjLNe6PR6HDt2jBnZ5n/5w4f59pe+x4HDh8mt5sz5ZaIk4q47DnP5yiq7wyEWyyuvvYoqFNYKlHDefitJMbqg3W2jihKNIZWSS2fOsTB3ACEE29vbdFoRO3sZufLkO0pRlqX73Y+8kaZeH0ISx4JOp8MdR5d494MP8o1vfIu0FYPQXPrhBf7qP51ldOM026vbmJ5gUBpurl9lb5RTGt+DlxhXyug6r/nJdymXSGCNM7qSVsLCbI8vfOaTDH//Tzk5HNRepnCAukwb0laXKE2xeU5RKlLgXQ2ZbYFX4oTvJy1GWIRMKtmLscSF4GO/0aadS9It5yzIyNUXGGscBsPX2zt8hiTz5ZdWSJ8Hdt8khHAyx39z1ZeAYG409kq4B6+KpYXMGkaloh1kYvhwt+sxXrbuYVzvjHd0vGMlLPUtjiq7QvBClPBRVfKI0Qh/webX3+5WwnVawAEsC1qxZAxfjWJu3KYT0piyFVTN2n/cUVnu1pJuix977higp+lVW8sJY/iQUsxjq9o0g2BTCL4fxYw6HdbW1uhNTrK3u03aaqG1QsqIg4cPc/H8BQ4dOcLNG8u02m3iKGIwGNBud7h84YKzKJFobTh68hhKF8RRzPzCPK+//gY92WN20OX89jbCwoVz5ymy3JPQOCBUEHraQtxukbQ74EnzpXD8tEkUk8aS3a1NRv1drHHWbCRdiNkKh7B2PLHuOaWMHeBBBu/X13lWjmVAEwZd2LDONKQ7btOKqOnGQaBrdDo5eKX+88HR9a5eE9hXxVfDpqpCEo064qDMrCs1qaTHvpVReZxWg1EYpVDaAS9iLSvhG3KgkXHMVqFdpBEQYZiIYWm6zeGphL1Lb5C3EiZ6CSvrBYWUtOMYYxTKOkGJCeFcp4WlrUkyxsWSHzIRUjT1O7ZheIDLmco85865iEROsLyTszpwlr5EgG88Ir2KNBaPnBZgStRII1uGKPWF/yKQ2AR6WSqEZxMNsR/M1TCHagO5YTTt33/CuBZ2YY868hXh0x544EKjtC18hw3GtydWiWLStO0Q/VlGq90hERJdjnjuuR8wynK+8LmP0utIN984RQLOyDxwYIEkTdH5CFPo2vDx68RamJmaJs8LjCrJdjW75zeYbHcRugQRU9qYJE5Rg10oM8688SajfIQxCiMlMo6Z6PXIhhkHlpbY2bjJ44/cx8zUHF/5xhNYE7G+nbOxu4yVkuEwR4oO2vq0kCrR2npDQroGKxYEmnYUM9nroa1lMBqQRpad9RVkeZxPfeyDfO/pFzl46ABrq6v0z+d0J6bZy1bZzUrKvGyExgNq2GKEly3S91P3vdWFkBjhUjJTExOU2YgfPPscH88yvxr9PBnH/f2o1rxwfZkd1eAz36dALsuI76ctAh1GACC6nK9bt1M3hW/84oxRYR3zV1GWGG1BmBpHZB1LoWkY2OG5mvLEjV8wdoNzF6JB1QleTjhmvTUZ81oU86hSTCQJCIk5eRruuqcup7O14eyu9s7C0n+hBg7NIwOeiWJOGsNcQ6AY4IKQvCmjMc+/LeAxrZgbCyU7z/hXVclX44Qzkatla3oFQTjcYgk0jtt50bd7rwprW+oBpBYW89byy2XJbPV6uH/LgoWj1vJMf4fvZxkqTenv7dDpTZKPMqampihLRSQj2t0Oexd3OHnqNDduXANhGQwH5MM+ExPTqLIkimIWFpd49eUfMDk5Awiy4YBTd9zJ5uYGWhWkaYfhYIAwhiiSrlbVGKSMIUrptFtEaQstwAhJkrZczgKByoasr26jVQE4gnfXXk64fsKe2rIC5MgIIWPX6ahh3toxgWgJTQQCsUPNzgX1rnTnVeMtauVLY34r+9SGoJGtGiLU27uxiarPeLuzipf576pu1V+LoER8Lalxws2qUGMNIgoEJJYQAhc4peVQIxJhYDoRHJpusdhLEKpgsDvgjdUdJjsRC7NdJg5PsbzuSAxin8O0Vnj6ZB/ksk7QWEzDkOHWtS38Z24xJtz+ypVhe2DoRpYpCWYiYmZ2mqs3t8lKT9cnHYAr5CGNNgjpwtbaWnSeufBe0sJKZ7ho4zxOgmcuxhVmc6+EGxfeO6meozltIpTeOO8tsLn5Rl6uNWEI/xvc2pK3KuJamFtHOBM56kYhJEYVFANLpzOJkILSDvjBq6+QlYqf//xHmemlVNEYdzMcOXSYpNWmzPdwXNHG4w6k98AtrTRFa0NR5Ez15lhdG1KMCt732Clurm6xvLLF7mDIH/3x11A4+kpjBYKYqdk5FpYOcmh+jmuXL6OlIOl2efP1N/j0xz/KkYMLLK9sgHHlNUkcu4YPmSYvnMLDBtpL6cCX0q3PXqfNbC/loXtPMre4xFe++l1iYnKjeOrpF+n1Ztne3uPw4hwLs7NcWd3m+vplBpnC+hIjIUIttos4zFjNEa0wseSagD0hSSMX07QeG6GNZmdnjzRNefvyKo8PR0w0pkgBGEsPeCjL+E7a4YQomW5wMRhgSwpeSFNy4WqAg+ErpdsbvW6bB+65g9HWgLcuXEEmrtGH8Q11BN779WtCepxGZdR7AKExPs3VnHu/HpsRsUpoVTpnXIwUFr6bdnlTCn7uIx9i6dARxOEjyF7P623PkG3x9eZ1FO3PO/4PKmH3oHtC8IaUfNA4RhYNPB9FPBcl7Ke/FsAlIThtDEvWcrcxVXPlWSx/SRV8iYTzMuIBo7nLGFqN8KK1lqEQvCUlbwuJug3o56gxPGwtc8bQ9Kvt/hPdJcmBi0LyoyhmgOWE0Uw3FfC++58Q8PGtTTppm6ezEWmacuDAAa5cusTBg4e4cPE8M3Oz7O3tYo3GCsvW5iZxHKFViUBy59338NYbbzIzO8dosEee5dx/4hRLly/xs2XGwtoKV4Z9NrDkMqIocgQO3FKUCiFj2r0J0nYXY3GhNimZ6HYxWpHnI7b7fXQ2QnoEY2C7AsdOVIFvpKMYdP1fPc1gUwE3Ry14sjihaoK1WevEusWgoLZKCYLcn3yLUWWr329ROfs9omouZK3Bwn0GL9nWoVKsy3NiDLosqtIiKR2bl7UGo3TtVfvnJIrAuFBwJ7IsTEScmOsyEVvKYU6/VJQmQglBiaAsCiZbipNLXa5ujljbKUji1FvGwRAE0GMP+WMchfqoAgHB0HCkG7mCdS0wec7Rw0u8774jIEpesiVnbu4yUIII6QgsKiUI1kYogQPXGcewhbFEKQgZV0IqDJ8zX0zl6VbI54aCJqwNY6tzKo+6kkUB0GPZT/oR8sVCyKr3r4ik663p5Yxzzd2AGO08WxHFRHGMKRXWKEajXVqdFnHSwlDy+luvo/KMX/zZzzAz0wMfJwBBr9em0+3Q74uq1CwI4xA8z/OcNE5ZX13l5NFj9HcGIAxvvf4yszMHOHfmR+yO+m58hUUkEXPTMxRZxuLSQSanpzmyOM+Ddx7ly998gqneLNsrQ77ytSeJEsHDD9zN22cvM1QF1hrKUlOqfs2PLlykS9hQty9BQyIEvXbKxspV7r3jKO97+EFeef0cMmoxVILVm1sMCs362jbzc7Ps9kcMc4Wp1mKIdlgiLCd1yedUwQFrQMFNKXk2SrkQuwYt2hocn4ak1ApbGE5pTa+icHQjZ0Q9TXtSckVGfDHtcsAoYmdXkQMrQtCPQr38eEopEpLpruRzH30UNTSs/Nbvs5MblBEoXTqD3/jPWaq1VG8WrwBFjYVAhJSEJ6ARYb25NeioaMfdsQD0FDiMvbaCZQPf2dzmlz/yMdoBy4DfC2NUtQL+/+MJV0EIXohiBlIyaww3hOCsjFC3nO+256YQbEYxkRBcMpqPliXTXkC1gA9pxT3G8LBX6o2PVz8fMJoLQrLVtHCADq5ebeLPvXc79uN+3Pedk5JZO167tYPgWiQ5rg1TANYSWcsHi4xjRcZWrwcrN1iKJMNshCoK5g8c4MK5t5FxzLVrVyvu6MFgwMzMPHmeY0cj3jU7jbx4jhmreP/1y8xtroM1iLWb3IXlwSjmzwRc9D2OjQEZJ/R6U8g4pfTKI5KSXrsDWrG+etMjYX0fUc92JYQYy/u6XsnCl4XEbgZC7S9eqI4J2UqHO2MztHiswsXNpdFYjOFzY6vG5R4rRdxUxtVP/2WW6gLjTmG9ScJGdtNjPXpYI72HpgvHdhXGREReCOngaYj6e4QTFtaWTKQJM70Osy3BwbaAYsgoM2gN2neAkF6AFMqQWUtiRpyYT5jqtbh8s0+pUxeWptnKMCi1+pFr5H14vNrzrF6qUJ6CvFRs6Zx2ErGyvs5ga5NebFjspkSHJzi7MmC3MA7pKoXvXtMQLtYxpRlrHbGHsSTttgv/WVkp+9pIsL5rUoiG7POIg2Hl56AiQWjOmK0jFqK5mLxHHJ7UgY48paW/7+CoCKwrIwPw/amljlFWoWyGyQpaApI0RlvF2bPn+I9fLPjFX/gMSwdmXK2/tUSR5PiJY6yuXK/ErpsHWYUyi7xgdnaC0bBPZF39//ZexvmLFxEWlJC+Z3LE7PwcCwcWmZ+bpr+1xcbuHrOzc6zcXGFu4iRTnQ4yarEVpWS6BFUyMznFkcNLvH72vA+vghW62iU2KBkJVroGExJQSqEMDEeWF5/9ITLpMcqGtGyHQikypSkkXFrf5PLKNgWuZloKU0WcrLV0sHxKFTygSjqNeToK/KLKuTRQbHriGaSjZbXGMCEFp5Wj+m3u3KBQtqXgqSSltIZNAZu+vWwFqLWVHnScBDJCG4M2llhIhrs5X/3jLxMXgmJYUii/nvy815Ea3xzCG4UhIica/w3rrkYtB9Cfx//4zwa4SlDF0tZqVIQ1LQXnz5zh3LlzPHD3PX4vmcroN9jghI99/086/g8p4abcLaTkZSRW1jRxzaNp6YSHN8AbMmIzhl9SBdP+k8es5ZgNzKk//sbv3tfObez7fspnqb5X38pCMhSCb8UpM9LwKSxHytKDXwTHjOZUNkL1+7w7jrh+/m0mo4SJnU3UaETablNkI5I45tjcLMs7O8xOTrB94zp/Qw25a/kyuihACKKdEtVoryWAo1LywLDPJQTEKWlvkrTVRhlDoVx9bpLEtNMEnY/Y3lxHF9kY1WRgQypL14HFUVE6r1f43DDC03l65qPmPewfYscmhVt4DSEbPFGn0DyIyysM4dHE4VpVuDksVgE17WPjG8dyi15k26CgGb9R/1lnHVuEZ1/SqnT12gKiyHk4SiuMaFTlComIXUtGiSYWll4iuOvgJO9790M89dRLrGwUTLYcgYkWTqFqNFZaFJJhYUEaOkbQwjCXRqQnDvL6lQ10YcB383FKoEYUh3wSDS/TD2/1bEERVkBiBK24xXxbkOUZW6OSYSSZa0dMZTkLiaB1aIKzayM2BtrlGIUkqni+awUoPJmF1iVlZojTFlGSEIj4q4iJEGPpG7z311gYlTAMz1GVQAWlLQQVClvU8xnycsGqEs6NGUtfNAdG69LxulefcQaFtRJjBPlgSNtI0laPMrZcv3GN3/+DL/NzP/sZjh1dQKJAxBw6dMiV96iRG9WKacutvTzPGA76DId9nnvhWXa2++RKoy1IERG1UhYX5shzQ7c3zdTUDItz03zokQf5gz/6MyJr0LLFm+dXUNry/vfcQz7cZXV9k0JpvvHd77sWn1q4towoQimemxfhQ+MOCWy0JY1alGrI+s4OE60WnfYMm5tbDJVhqIc4khk3NiNM1Tyki6anFQvGkHgZfJdWPKBVjQ/0v0jh2vqdViWnPdi22p3VufW07CEYAF1gTwqeTBKui1CEYMf2Z1hLbopdVCIYZUJAp5VipOG1KzvYEpQF61n5rLwV42NCq0zEGOCK8a/06TbfR917y6GRSiVTGgIvuBHh2SUu4mgKxdPff4pjR44y2e25XRuMgFuciT//+AsrYQvsVLfqX7M//ovr9+ri/cDMc1NKzkYRj+1TgM6ycJ6owk16ZGGa8f6QP+7YQ5DvF2jh2t7rkBamsCSNJ2nIPgBGwoXYb8iIL7c7PNLf5T1YYqOJQngNx8pyqCz42bKE82f5KBahcpdzixPs+XOOWvLKeXbKkmkpqCCsFrRy4La6cNxtlEmtaU9Mkk7OIGRMoRS6dOemcYzEsru1Tjbse+CVJ9WQLiepVSg5CspXehBMjBRRFYJphnKDMm1uPjc4wjP2eOuvWrR2/DqVF+yEf8OvrT/X+FQQyuOLd/zbqxrdfXNlq8/VJBbWOJpJbZw3HAeaSaMb/ZTDWgARCdcJyWqmWxHzE226iWCwucO3v/UkUewoFzdzTacdI5Aoa1DG5XyLwgu7xCFXy9xiBiNsavn8pz7Is29e4fWLK2CpnqC67yr2y5jCq6QAzoB1XWmcMre4vFNRlo7/G0lhYaAtaenO6MYFDx6a4MLqgOXdgszGCC8YwxhYG6IdEEvhwGS5wRhN0upQUWmGsfYCtfJmaISdvadcgcoaOIFKcDZ19m3kRWi4UHnK43Kx+pywodGEO0EZ7RoFiAQlLMJAMRoQY4m7kxRacX3lOn/wh1/mC1/4FHeePIzAMDc3RytpURgZXHECRsIR28DO3jbWwsr6pht74cBC0zMHmF86SNpJ6e8MyLMBrTRmZ3OH64lEqZIiz7DdFG0jkqTDxs3rnDh6kCvXrlFaN4dCK2eUeUNYWt+BSkjaqWRuZpobK+sgY9rtFpOdLnt9zajMEDLh8som/eGQ0jgwkBTCpyAEMZDakseU4V6tWLCOFz9sIsH47/04YWgtS54ON8xZk9W0Mos8tuGGjPhm1GYjMnSAAkEpawRxndqwFSg00J1aY123S+8QKFUyGA4c+Y1RNJnchRFYL9NMyN+He68FUSW3qpXn15OxBumrB4yt1204z4xFbVyP5Urlh6iOBakNKzdWeOkHL/PRj3zYk3+4/WSqlA9g3xkX1l9QCQtWheBSFOOEZ1X1xU/2QW1l0e27HK/LiFN6HNxlcbnaP00Scn/pFMH7dcm92viij30X8gLippB8J07YCbPkzw0J+UAEIIH7jOF9WtHDAQrC9w8QXJOSZ+KE3FqmpqfRMuLJUmGnJjm9ssxEq0WR53SEIDLN/Khry+ZyZI5IoTSGSEqE1kxYg5QJWrnQkxECZQ1tX7Nblq47hlIKuj0mZuYofF9R4726REaofMRwsIvRpduAkWO7AuGbLQTglUefRp6VSIQ6O+G72LgRt7ddyGFC/ML1HMkhxyiwwWaoPiu9pygayt1gEGa8l/DY3DS++xZv2J8evMaadCN8pw9LGeW68XhQi/TWtbGOTSx8ixACaSPv+Bsio+lGsDjZY2apjS0z9JYmN5LCWOY6kvlOyqi0rPdz4jiC0P0FV0+sIrDKKUM9LOkkCe1Ys3zhLLtrO+6p9neYaG6X/Y/t3wxCpIo6CCqClp0Zg1aGdN0RgWhjGGmNEZJYKVI94NRCBxnHXNnOKb0HLoXLBrodYKowtxQhfJ9hLSRJC6KkuiNDUL74Bg14AbTPiw//s6GPtUV13cPFwxr9HvjlQ4vNECpvphmaP4L3bn0qRMSSKI59abYhiSJiITHSNRrJR0M0kPamiKRgc3uNL/3hl/m5n/ks995zgkOHlmh32hRZnQdEWC8/5dh8GCxpt8vc/EGH0RCQtjsIGTM9GXNzd53ZyUmyUcGVGzvkOmV7b8hCZ5IyzxgMRnz7iR9BJFDGIqx0rUCNRUaSJI2ZmZlhfW0NYwSTkz1meimf/dQn+bOvfJOR0rRbEYnUdLtthlsZfV1gde72lsCPY/AuXUj1k6XiUaOJvHF9i1Xjh1cKgTCWazJiAUdg5MoyHYFRU2NbYCAEb8Qxb8iEkX9zL3jwYf0KAcJFR6PYR1aM8utaIOOIOI4b/ARubt0mjTDCY/SCcWYcYY6t7iJE3vzaEKIKqFn/Woi+hPmVUlb53/BqIAEKv4cMW21IBFyJBeN6Bbz00ovcddedHF5cciPuBrEiUnmnrFl/YU/4rIwYCulg4yJ4tT9JAVcOVvMVgpV/Q0i+mKQcN5rUv5sDF2XkJtgLrwx4Mop5VkIyJsTrnKC2hlxI9geWq0kJQy+ctfMjKTkjUyYsfNgojhvNDSl5Mk7YEsKFHoGpmVk2VteZmpvnFeCF6VkOLxzg6tXL3BVFvG80ZMIzDkkcraUyBVEco6wrtk8iiVLuzpRSlRd9U0jOiYRPRvguRe55lJCc70ySaUuhlQMUYZFWszfaxvRdiYCUAiE8gtBYVyJRtYUTCBl77zdyYUZZA5mCsgz5O1M1Y7W+RroGaoWFaxr5l1oB14GiQNIRTKq1xwqmzyS0tgOYomlq7ZujpuHkF40leOfhxICM9MrMGozKHQrcK+nIKwmjddWKL2w1UTVTtaTScHCqw2I7phvBk5/d48CPLIubjkIxkQJjJWWpmUxjoqk2N3YySu36usZSoLWi0IDSzE60ODDbwmjNzrDgxuVVNnOBw6uHpw4mxLgnPHZUj+ee3e02CdYpNW3hwscsprTc94cWIS3KWHLlarqVMJTWkIiCuU6EtS3WRoq9rKSOc9jw/0rwhLpHU2SURhO3nKJxh6w9dGf6V8j5ynsds5+CNyvYurtg+17F3b874T7XqHttlmyFlSRwqZQ6k+e/2ocSjVbEMkbErhet1cbdryfctwgwBjXsIxF0JqYprKY/3OKP/uzLFOrTPHDfnUxNTbCzJby340KU+Yxh5y7NgedjEJFjipOSY6dO0+5MUIxKrl69hBWu+1gcxahCk/X36E3NUJSauZl5bqzcIM8ytte3ybO+i+ZoVRtYUQRWM9nr0m1HfP7TH+Vb3/4e12+uM9Xr0Y4sT3zzu+zt7iE7LZSCYV56LneFwdV/k4DInWzTWEd2giWWOB4HZ3l6uSdBCoR2AMFglMZJQi8veNBoLngHa1NEvBHFTtZ7b9MBMiHDon1azgXvnPctpAChEVYSxzHTU5MM+yOy0q03EbnqjLJUvo+042G3IYrSTAnYGjnd2BL+335P08upfahkY52RU6WALM4wMH4sqvRIQPEHWVEj6d3z1Xoo0gWj3W2efOopfukXfoF2PZAE5j8h92/o2x/vmDu6eVis68HoB8eECRbBchdjZ4efY3V/9tbc8ZYQvBLFvBDFvBjFvBrF7FVhhnrnWwS5EPSFpC/wPwV9IdjD5XD12HfT+K46fl+9LqAQgk0p+NNWwr9NUv44SVmXEh8gJk1bCCHIsoyZ6WnWN9ZpTc+w3N9jGMW8mST8VtLi6ZOn+VLS5tvzizy9dIQ/TTq8dte9fLnV4RtTM5xbPMTI2qqQ3OLrHYFZ4WsBPQDALQTL8dGAyTwnshqhC8pRny27yblfGEAkkJFXrgHcoHUF6HDE+IkDdESxZ9Vyz2Q91b2tXMpgv/qfPo+IEPU/PwOurtjW811tRlFFRsKID5cMr/2jEeWkabx++wXq6nHD+9JbuQ1ErpPCTsCGsKTKUVkfnY+ct+gBZ84YCdSb/ppCICTEWFLpQrCdJGa2nZLokq3uiCd/teDmKYuN3KaLAGEshYZhnhNTcnS2zXQvItcFuVYUStFpSY4fbHNoBqTOyfOCQluMiFFWVmw/IZfeVIAEL795hJSEnw/rw5ehiYhKLOc+qbnwSY1OnH+gjUBpQaksmZHsFBHXNwripMPDJxd49+EeC52otnOEpSKxbkQ4XH7N1bEX+QirChcKtx6cZUO5R9hLwWKgWiP7j907FG//zT7ZjKoUbmidGIyA/UclaJtvesVuTUiJOINXBspVj/yPvLCXuA5ho/4mrdjNd57t8uU/+zo/eOkNlg4dAhmPCd9ySvDaPy0YLmmSJObokaOOsckAVtJKIoRRoAqSSNJOU6Zn5rh+c5Wd3T3yImd7a5P+zhY3rl0iH+5iTYEVFpmmdCZ7zM1NcOL4Iq00IklihIVnn3mm8qIGoyEFlt08Q0eS/ihje3fIziBjmBUI60LX1krO/3JJPuFLwHCRtziSpFHkWpT6NbYqJd+dnODs0uKYR2SspSgKABIL14Xkj9MO30tbrMmIPrBX/RP0BSjhMSdeRIc96towuj147x1H+Ud//9d5/OEHacXQSWNkGnlKWld2pUrtFaTf4JUna6r+1lTmfNPUr5dd9YANRLJs6qSmk+bbftpaoFADBg0u+WjH/jm6zpCuCGBOy4UzZ3jr7TMoIZyuqKKhP9khbR5/cWBW7fKMeShC7N9MDbadH3Nj+ykogcpzAV/rJespcMf4+fU19nvkwdtuKAyCxdswCgSsPmZI+mDe9AQV1J7e3OwcW1tbTE1PMBz2MUbT3xswGOyRJi3yokT0JlifnOKCuMm9x0/y1pXL2Ikp4qlpXtOaTqvFmeGIpSTls1ox63PKKo55u9RMRrHv2VrfV2Qt7x7uMVvm/F6rzU6eoVCc+S80/bvhrt91NHLaaIdc9OMWcsJ1H2FRCa/mMArEGEWhe00SWnyF+at0tPUis1IiddhRBMleldJYEJLzf3PE+qOKsmO9HhTjnmBjvura8MDgFGbRG222/pzRGq1LjCqRuBpqawNqm7rUxbqyB6TFWtc2bbqT8tgjD/PKG2fY2NjmyoZlsRdz/r2GKw9b7rgLHsAhiy0O1Ca1QrYTtFIkkWWm22JkLMYKFmfbzLYMWo/IlaRUMYUGrZ2x4+IgzbXrQ1YNw1U01mnQkoH/OcgLK8JnLYMJxdXHFcJYsilJvOGiNjlQaO1I/YVrrbK5uUlUSKbaEQ8sdTi3nrEy1K7wKBKVK+wwKw1ubMDogsIoYmuJ4nYjigK+NsfN921s3gqYJS3bd5WsPVKw8r6C419p1+/5OXV/ikapEB5YKH14uhkJsb5ntvVplgirlWME84aoxJE3WABjKIYDMJqJ6XlIEop8xLe+9Q163U71feFeyrZm/b2Gc3+95KF/7UoEwZAPR3R70yRJxOx0m+NLkxglKQrodDvcvHGD7e0dtrZ2MEUOtsBK0FFKrzdDt92iVBmHDiwQFXt87COP8fb5K7z2xlmsiNjY3iErLUZAVpRMiC79oqBQ2nXzkb7ASvh1ZSEylhsfU2SHJA//Lx1EprnDGu4pSiasoesjXFK6nrpn4gg1OcXiXp/J/l7Nm2/rGt7LcYQRNfmKSwMJL0ZCHMWOcTIDCOu6dEeRJDGClauXOffa88RqgFWaTMPqPSVFFxZfDCRAwQs11dwCvmf3Pr0RtkfjHsYOS9USN9yrNsZH7owz64M89NZvcMosrhzRlcs1QL8NQ1NUY+/u0xYFzz79DMeOH3fo9yAa37kO/ik84VDXt++lsXh8eN2HQFUHNu81tyjfcRQZtyjgMDDuvZpGcN8N3XLN279OIycaXjNjn7EINh8yPPU/lAg1HrbEGw/dbo/+3h5TU5NsbKyTpglFkRPHMTOzMxhjOXT4COvr66StFkIKhoNdDh46xPL1656IXjEcjliZmOSJpcN8T6acOX6Sr8wc4LneNNcmZ8gqT8L/13tOR/KMT+/t8Jk846HDis1fNUgbyo6Uq321rmtOFEnv9caO0KPqUFMr44ALdoLde7tV2Nn97s5xm71pbbrcagPuX99tZZB5k4fdOxVv/3pG2bPorjfSxmfa34/0/zwxiA9D1qScuLIeq7FaoYsRqhhidOnWh4x8usaCMdU9SQGxdD5/IgQTccSpuR4np1tsnj/LYiSYbXcYKriiSr7/lzU6gRv3WHIkSrvnLY2l0IK8tAxLwWrfcGN9wKG5aR686zjbu0PWdwrKMsKUEVo72kqBqDw0gUU00MQNKBvjo/Lj/qy9aGENW++x9A9b9g7DjYcECklmFKOiwBqY6rbotSKkxHvxliwr6ZicexZaHJuKSTC+wsN1onEAHB/+MwqBwgUELCofocsR1pSEHHwg2rCWW4RlkA0WixaWrXtLTAJn/+oA3aYWosEG8B+tfRnfhashY8Iacydqdw8CZBwiPQHtH5jgTN18BEGRZextb5JGgm43olRDNrbWEJH7PuvXkOq6frZn/55m56QiyzLSTpvBcA+MIkpaTHS6pKrk4XvuIOvvsbZyk92dTdZWlimLIRqDlZK02+PknXdy/8MP8f73PUZbSKY6k7RszBsvvMShmUlSYWjFCcYKjHRNB4qyZGNrh8Eop/TdpDybs58jbyT7aoe3/qlh7lcO8yGr+UvZkEfKgruVciyGAr/+BO1Wl3Ora/w+gq8mLb4bp3wvafNk0uIbaYsvpm1uel5009hLYL1xL3+sckS6nOzxY0c4euwIW0PNH3z1Ob73yllGWjueewXf+++GbDygCb6V8SyA7qetFOgtykzs/1PUdrz/F/n7w1JFS0JHtUrij+mDIHQDtgFfChXkXF0N4pafCN+MtJaNlVV+8PIraMJ9S8e7IN6Zen3nDRx8mLGm9PNWqwieEdAQMOUE/PA3FL0rMPe2rB66tnpvVaJVXeEt4ezbmRX167fzpP1dUyv0GkDmBEbtcfRPWJ781yX9I5bOuhz7vAVmZ2fZ3toCYGtry23IdoeiyDmwsEgUxSRJSrfb4eKFLQ4fOcrG+hoWwd5en63NDWQSe0ljOHHyNGurq5xt93j0rnu5fO4snXaXa0LwbSF4fGeDaV1W3on1HsnD1gFGhgO465/B75w2qLLEQEVTKSKnkFx5SQTUZR7BwahMDG9NhnyHM0qb3kYYYluNWQBl1VaUqE5s1rQKATa2vPn3MvrHDLIE3Qkut/VrpVb4tRhuqKSwtvzGMM1yI4yjX2xYuuF+XCgVIuEoJoW1tBLJwkSbuVZEbAtGwxHD0tBOE04sTrCdFbxyesDFD7tyh5U7NUNhkcoSx45jXFtJNiqJJXRbKTqGGzc22FhZY9qDtrKRYaotPb+xAyUZDzqqDJBKp3jP/lbtM7bKQ5i/MiwAIS1XP1KiPIDiwkcNh74NPSmY7bZpxxFKKwqlXXQFQakhK51nGMmcY1MpEHFjtyD3+1kKH+72hqrB5fki4YgOymKEsYo4bSGiBEHksQe32cPBwzAW07Vs3+Xavi1/JGf7npKFV1MqlHVYRpURKsZ/9+u2GUWxVjth6VMuWqjaMTAOqaq16ygUBzCOsRR5zvbWGrPzC3S6LYbDIViQpG59aRe10W0nG97++yUL/2JEtz2JKhxg0ihLrzPHCy+8yuWL17mwvMqwKFxvXQnECTNzC/S6Pfb2djm0tES3lXDviaOonXu4sb7t0hRFwdlX3uTw/BKLh4/xg1d/RJlnCCEoixJVlt5YduMhAue437fBPo4Lwd6c4pW/cZP/029botG4hyqlxGhNaSyjoqA0hoE2rEuHD6m7ItlKcVWyQlD9fejgIXq9HufOnXNGlKgjb464x+3Vq5evEklBaS1Fpn3ER4CVdNcte8cMT/zmiM/+nTaTVxwwr6kYm8ct8j3oEX9/0pdhBsY7Y+roHN7zrUhkREDyq/BI/jskgVRHjhk7Yd0F59GXGuL3rrBgNK/84AfcfedpDi8sNIzGd6aEfwpP2P0nxNmFp5YMaMnmicWU5bn/puRHf1cxc9bfcGNAncU5rjRD6Hl8En6SX1/bNbc/grIP53rhPhayFozmLd//H0tuPm6ZuC6IyqYX7H6ZmOixu7dLu5UyGo1odzp0Oh2stcwvzLO6dpPpmWm2t3cQQjA9Pc3G+hpCRmxsrlOWBd1uD200cZLQnZhie3uHpNPl0tXrTg4LQWEMZ9I2X5+Y4UwUcxYosGMjoCZcrej9r8E/+13Dg9YQ+/6/Mk6QUeJAWL7Zdcj/Vvlcn8/zRtuYcnbz4H4PjRaqhSiq4aiUcDW0jTyOlMGzFaw9orn4VwqQYFIoJ/x8NBRwvSka82RDtMJt6sB0VeYZRpeuYXfkSoa01r53rGvj6FreSZ8lMbRiyeHpDnfNdznYhkjnFIWm0BIrY0QkSOyII9OS9f80oZhxzzGcs2we8ZvPQFFqlNFM9lIOTLfpRE75KytQRhJZw6GZlOluyvagZKSlf8+10qtKF/xzVquwMse5RQA1vcOQF3dWuqXoWa49XnpKTdc7uzMPnUi6XtO6oLCaAtDW8UaXWri2iiUMCks+yphvCQ5NpbQjJ2yMlR7EJ0DYMAMYHxqUwgHgynyILcuqDeYtu8/6iImf6sERTT7rFHsxYzj/S8NKgFdbzRv6lZfVAA+6NVFHhiy4iIfnE7AiAh/9cTiI0JfYeUPauC5YcSSIpEUVGVsba0QCOp0OQsSIKCJptZBRTDEpXI9pCZf+mubmAwOEcVUJtixYX73BxUsX2dgb8vrFS/SLkWOLihPak9Pc+8AD3HvvPbz/kXfTSxKshUJJ3j5/DZI262vrnF5d5UPnr/AzV27w0bPnOby8zLA/IMtzx0NvLSdKzUeLgo/lOfcoRerHWwrLzGyXe+46TieBrnYI9izbQqUlQXcqEebPVNz3e8MRWVk6kJgUFZtaKPupbHTqfe0GUrCyssKVK1cqYeAINGrP1RkMkrIUjAoHfhIi0GRGWGkRhWHiuuDG45on/7uM0VxgkAvzS3X9sAnG8sDVWhGeCyFETOp0VHWOv4z01zdGubakPooSvqAOhYtqfzZ3YtMYrpasDftSk+3s8Oyzz1B4Ks2gvN/J8c6VsG3+EHS6E/SmZhBxggq2qYVs1vDUf1vw2t9XpLuC2bfdV8iAVDW15XTbr6mlDk3v6tbz7L7ff5xCrpX1+HmWcsLy3L9UXP68s5Ynrgqisr5mQNVtbKxjdOk+Uyrm5+bRSjE5OclwOERrw+zsDDdv3iCOI7Y21jwvdITRBWm7zamTp9DGsHjwEP3BgPbEBK1ulyzLK1i+0Bpb5lzIM/4QwR9JyXdlxKoQDIVgcwFG04QmM8yW8EtG82lrWBSC1PM+izEwlcUKO2702GD5jZs4tvpnq8/hlWYVwPa5Ffx542mA+p9uWV7/LzKyhTrikM8ZQr6YyoRrpB58Dtdag7QGaQzGK19V5iAc0YgDIGnH/gUgHbKzlaakkSC2im4Mh2YnOTbbY3EiITY5qsgcEIQIJSOQLgRelLAyW/D6p4tqLIoeLB8pGXjat6WpNsdnU6Zbjl2qVAZhHEpdCCi1AV0y05UcPjBJrkoGhXaKGAfwC6F34xVJkDuNH7eu3pCwD3k53PzvnDJs3Ffj/zfut8y/N2WyZdnLSoZakinHQGStQBNRWkGuLcMS9nIYlpJCu1ZwsRQIUyJxaY1Qp+pKlhxJgbWGyL9mlabMR+gywxqFte4Jm+usmZfbPakoe/V7lz8/YnBYNzyt4GnYive3uorvSx1qVSuz1Gqsdch3oghkrYRdx52IyLfdVMagrQbhUjYSUHnO1voqsRC0Wx0XCsZxr5fztQLKFuFH/yBnc7TO3vYmZ8+8wbUr59jtr1OgKYRAtlocOHyEY6dPk7Z7zE7N0YlilmZmeOie+8hGOaU1bA0ztgYF92xu8ej2Fr2sICpKJkcZ86++yqLvjhZheUAr/mqZ8QlV8glV8lfKjE+qAqRBxoLJVsIXPvER7j5xjLQUTG/Br/w7UFKjWxYRxzzX6fFyq8O6ELweRbwqI7frgsK0VL3Ioc7BVnO3T5GUqiTPc/YfoRLDNhS5xUXubBVBK11KKTdMXBPOwPlZzbP/okBN0JBZjMn924H8mpvGWlC+AkKGbm8hYutlVsVr7paUL9EUfo+JSs4hGp27qK9vffVPdS+VU2Irgp+LZ89x9twFTHiGd4iO/qmAWWHShBAQSdJOjyRtUWQjssEew3nFU/+D4txf0dgY5t4UdDZrVz5McBigKnwZcrPh+arww36TaPz8pid1q8fcNFdqT9t6t0+34Ye/UfL233L3ioXJq4JINXKaAuI4YTgc0kpbGGOJk5R2t8e15WVOn7qD1dWb9Ho9rDWuXrjdYnV1xdU+WhdCPXj8JNvb2w70ImO2d3aJkjbKWoR2eRGrFcVwSDbYw+gC4b29l6XkLSHZPVXyrf+t4M4V+Mf/PZy84NZMB/iIVjymNVsy4pmkzfnYFW9p4cpYrKBizarr4fwD2sbIigCh2we0stY7u7amvLS162bHxth9ZPkTimufLcemJZ+r61Ftcwd5YyGEsoSwGOVDz7p0YyFdyLqy1t3sI6OIuNUiljGogthqFqZaHJzpMTc9wYXLV9kcQS9JSKRES1xtr5RorSlLy1DDSx9UrB2vrRLVgZ07LdmflUy2WrTSGOnrMZXWaFzBP75BibGCsgRhM9I45shcj5W9kp1+zlC4sK7FAwKxFdXln3c4Q8kSQmAhZ37towW6wTNYdODtx3J+4c0OVyPF8k6OCQ3PjUFLS64dU5YwAiFilNEMhhl9r6znugntVsraXubJK1yJiREG7QklaiMajC4pc0tsDVGSes9+vGcu1gnhndMK3a4F2O4pxdVPZtz773t+7XkN69NEzUiBkA2UvMCX1LnBCfcTlHXoAISRCOGQ8u5inkXKQiQhjiRKG4xSbK2vMTU761JM+chVGRxMcEWS7n6vf96w/EnDsa9qimzgvCJf09/rTnL4+EnSdodWLNhZXSWNHOjo3IUrjIYFW2vrHJmYdF2XpOVBCSI0DPFHC7jLGGZKy3GjOG0M3WpvQgrcYzQvWkFGRH9jl29/5RsIkaK3Cn7xi/CR7/r1MAlyIFlHcIGIJO2RS5dSEF45VcAnhCftCS5Ww8BuilURpsefuU9eG90oJhMWaUTF1B1yy0II4lIwcU06IyqGN/+WorciefRfpUT5PhkfDDRRSaZqvVhjqRz3BpA2pCzG9Iytvefa6g9rzY797RyB8QhNbTE3dZFwaGjvrKhRxnPPPsfRY8eY7nX4/w13dHNgnJOPjFI6EynZ8Zgn/uUKlz6vsZ6X++AzkUd1i8rBDxsLQa08Rb3BghVTH7d6wpWsbySSbgGG3Obz4bImhjd/TfHKP9GYlj9Lw+R112IudAiqFpe1zC8cYGVllbm5A+xs7dButRFSMhj0mZ9fYPXGDbzBTqk1R4+dIMtytjY0C3MHOHf+PNOzC4zyssqrRwKkMKgiZ7i3S5nnCGGQEt9O0AF6tluK7/zzkvOPwQUBb98P//y/go981T2fBEc0YjS/mA8YFC7KsCcFP0ha/ChuYYUrRxJWVBsoErVl5+Rfbf2HcvtaNVo/LJoqHBjGNShP/181CW/8g9wZN+HiQDZnG4s5gMTA+rytxNc3ly4vBzgmK6gBFljwrDtRErs6zUgSo5mfiDjQ7dLzHN6XrmwRxwlSCIZK0ZZtX2OqUaVju1JYsjnBi7+saW/DaJYgQ+h8ZIaJ/3WXjUFGlhcs9mJ6LYeLKK1r2mC9kZMDgxKUEsQpWKmZ6LboTs1wZX0HoR0yM+Q3q05Nwpf4NZer9wplNU5+i/hyHtO1rH6oIBkIign34XQArz6q+cz/PuTwdJu0M8GllQGF8SFea1CAsdLXEivyUqOBKIb5TsKd8x2mepLlnuD8SsZAgUETe75i7RntHE1gyANqdDECo0jSNiJKqpLFsDZsZNm+t0QEwKmA1o7g/F8ecPpLHdK+rCIiNqxB49Zj+J9bi8Y7So3XjCOVEOAATVaAkY6KEseCJdEIA9pqz9LkuIqj0DlLl+xsrjMxPUsSJyhtyBcaRB0CbAJv/kPFwacl8Z6kNzHLzNw8MrKsb2yQJilRFHFgZoqpBx5A5xnTB5bY3h6wV2h2+7scUIqiMAy3d6AsXfSr2iJORr5blURQI5b3HTMWfm00wooMJQQXL17npbTNh57SfGYHIuXut2jBV99XcOGZGD0SlMEJ8VZ3yK9XN2AMiRM8KKNrxRX26L6ITcWHZR2GoKk0m13zrDEEihzpKXGtgYlruPUQgWnBD/5JQWcFHvg3KdI/g1v3t6musXjIQjDcGo5ceJ/a8QvXCQDCcNL+64axGX/S+jqhosZ4XRO6gGENwkCEYH3lBi+/8jIffvzxH+e/33L8FHXCIbFd32MY660jiq/+5iaXvlA6BQzEQ1h8OeSDx9HQ4L0YISuLNry6fwD238P+9wJJyK01yrb6ub8U6eLPa1745wqT1NeRJUxcC8xRzjBot7torWm3O2htKIvS5Xs3N5iammJ7dwsE9Pf22N3dRQhJWZbEUcL8wgF2dveIWx0Gw4y41UHGLbQ2FXOTsJphf5fdzQ0HxsB5aFHkcnJaa3JT8ubfKNl8CGbOCqyES3fAP/uf4GsfcP1Fm+OTYpm1hlmrOa4VP5sN+bvDXX5utMcRpSqbJ8yoC4sG3yUoU/9uCA+Oebz+XxXRaFqYgBBc+kXnNR35hhvgaATtNUE+569lg1HmPWprsEZRlrkLPftIgGuyoh3rF75xvBCkaeqauEcpKZKFdsT9R6a4Z6nHtFRkoz5ZUSCloJtYDs6kLM52yFXGXl7SV5bM4IAxwPlHNLo03PtFNy7pEB74iuT84iYH5hzxxtBqru4VrPQhNym2YaZoC4V1DcWHyrAx0NzcGrKzO8AYTdpKx5ZkvR6DN9xY016BVWUQ1Lsi/DU6oBke1Nz/H9pI5QTv478lWVmC5UlBMcqYkBknDnRox5bCaEorGZmYndywMyoYlYo0kSz22iy2WkzFMagSO+pzpGt46GiPmXalDx3BQiRrBejD0yHXpsqCPBt5shSNoxD1COoYtu9UHP9Km3jonub0H3TBwtp78lsiYbU4GPeo3XsNbSBcvXpVL9zYu671nivRQ0b+/qNKYCtv5DliD2hpzaGtDd6VDbivzEk6is6aJBoJIgUf/XeSj72mOXa84GC7xcGjx+jNzjMzdwBjLGkkmet1oYS9Qc728jILm2uc2LjJ8f4WnTzj+vVrXD7/NlcuvEVRZFRKsXpEgYPK3TLp1SEtTBvDrDEc0JrH8py/0d/j731fcfJiFUhgbRr+9X8Fr/wN5Z2iOn8uhPDMecGYcd/uQrRhG9eOUogeUs29C2Eba3z1AvV1LA6IZ0JbSPdRGZDCXl5MXYuQdfYHk8Dz/3XBxS+UHmzm9oBLiQSaVjOm7EOb1Cay2pjQa50KWd+MwDZ1iBSy4pq+xYGzjZ92n0KHKqLlQu3hfbBa8eoPX2Z9fR3sj5nEfcc79oSbExFGwQKbpwu+8v9YYfNUMaYeO2uCmTP1udWE7nvg/SHp6vxqBJqvjf89jqS21WuNu66uFV6/8UHDG39Hc///FvH639Pkc4CBqHDWmVM+AoRkYeEAV65eZeHADLs7O8zMTtMf7GKMot1uc3X5ClEcu/6rccTpO+7g4vlzTE5PkRel43rt9ljd2PQttATCZwdVkTMa9NFlUSnf0FrP1Tk6woGN91g2HoWP/EbKE/9zARZm35ZkE5Y/uauNfTJiSWvuUQWztskR5p47AQ4azZLRnFQlX2tPcjZOMJVDVov6YBmybwxrpWywDRpMN39hlN3ayBYtmw8YHv8vezz7mwMAetciTn+xzc7dwcQNQtNtKq1dh6MQDYlk5ASl0mHFI/ClEVIiIhdqTK3m+MI0R6ZTRDmg7A/I8wxtHWhL4vJ/qJJeHBHPdrm5PWRYaCwxsbCUEi69V/Mz//eEN3/FAookg/f/24jv/x1FOVVyLGox24m5uj5yjFOlZboTEQtHN2qtxSpDYQyphKmO4/wdKcvmxiZl1KrGWPi12ESd1kQBzZ0vmsvXGTvWAob1d5fc/Vstetu14Dv0smD6iuCtBwSTFyFRhjQqOTzb4eLqkH6hfScnSzuVTLdippMYYSwjpdHakhWSxELbFsxEhvsP9ji3VbKWKYxxaxMfxremChj50jeLUYqSnDgxyNixsQspyac0rW3Bvf92gpsfKFA9iywE7/2X01z9TMahp9oIFR7FCVthvYcg/PUFhPZ1tqFwnQI24IW1gQZdqtvLwntf4XpWGzCaY8rwQWvpWEvPWuawxP0cg+DUb8G/f32aJ/7hgM8/VfJP/nvD4hUouppBtscreztcb3cxVrLQapPmA2I5gS5LHlhbZenqBeavXEAojTKGU8bw1f4ON0XEhAcS1vuO/TNf763b+CMCaKcppXIMelPGoAyUHmekWvD0+wWP/PMWr//NksUXBIuvxZ4e1H1LAC/hFZ01BuW7VZlGKtBiG7296zm6HeiomXcNivy24CQLE9eEq5jw4Ld0T/DAv0n40d9VdNYlR56N69RlZYH5H40qHEGo69XeeG3cQdOGG4viNp4jMLVZWw/+7dSODZf0iPDGpDV1kLCGwc42zz73PB/7+GduffbbHD9FOLou8QFH3L1+d8GLf2uL+/90kquPjnj9l3erG566IOje8Ausgp/vn5LGYN6ijJvLsT731rBzOO/Wc911qYTc3jHYut/y0X+ccO6vavJZEAqOfVOy8ZBhYrnO001OTtHvD5EyIk1aDIc3OXb8OOtr60SR5MbKDbQuHTVlWTI9OwdIlIHp2Tm2d/boTU65+mCjvQ1psKpgNBxQ5Bn4tnqRdDRy1lrKUlc5T9MT5AcFH/gXCSuPW/pH3EI5+bWUYtJiC8nZpMWZBN4wLe5TOVM+xDVjDId13UxSALPW8EujXZ5L2zyddsgDdWNzvYY8ShjFSlc4j3U8suDOEsG9ljA8ZHnwf2pjEeydcPHHyUsxd3yxw2v/qE+VxLEGrRTKtxeMhKi4iLWue/tiIYpj58UAEZqJRLI43cXqEpP32VgzJGikVI6Oz0YI4+6x1IIsMxjpuH4PTaZEQ8Nqv6AwGnVU8P6nWtxzXvDiYdf9Os5g4S3Ju/9jxNZBzdE3Mg61YiYO9ri4mbExLMkHiskkdQQhqiQxhpmJhJmJiBjLYGQx2o2V8X1Gg1cZ1vmt2RNRCz3RjED4/1rrojcW7v6dLsufHVWfNNrynt+WnP+4YcfGiFySK8NeMWC3dOHFtpR04ojpbkKMxOqS0hiUtcRYRsoQOcZgkljRFnD3Qo/OnubG9ojMutrHSAJ4nl9weTHfQ9qoglIrkrZFRglY2DuquPN3ukyfiYl8mnV4SHPg5RQkZAuazs2oUqyOUME9s/WRAXxkIGBdKoyCdfzoriQPnxeuFYhLX7jPxMC9WnG/VkwZwyyW7v4pwFXIv+tV+LXXYeeRiL/+b0um90AYF/ZPpeJDl89zvigZJSknN1eIDy/Q31hj2M+5Z/kyVhVYI9HeK5zD8sujPs8lCRbBgnDfFMKcCnip3eWBfMSkqbPqTZ1Q4VqA68awICWEpjcWdAFvnBJ86R9avvZZy+P/wPKB/6bF2iMGfR6izNsyxo4RWhgvA0xDEdVh6DpsG25I2HEHaJwIqf5sddzGkOhdF6R7gsPPSK58SpPNWpKh4OO/0ebKx0qmrkkmrv4YT9KCDWQawn9vMMxu59GKxiiGyN5tFHqlZJtKv6laLBXItSbRaZ5vHDDMGs6ceZsDF87xLj55+2doHD+FEq4fTiG4OZWg2paP/T8PsH2y5MnfWAdg9k2BjeDQMxJpBHHs6mNLVbo81/4QU1hY1nr+Y/e+MfzYY7xu7HYKuXnPono93bHc+28isgNw9leclzV5RfCe34x57v9aEvfrq/QmJlhZWWV2xtUIOzYmw3A4pNtuk+UZve4E7e4EGyurLC0dZvnGMu3eJDu7A18W4hGl0nkxRZYxGu5hdYnwyjfyVr4yBu1LOgJ6PNaS408KkBFXPpuhOxCP4PSXU/pHDFEuK6NkQ8R8P3XTKaSgbSzvKkYc04o5rZj2ir2N5SPFiDmj+Vary7aMnPW7b+S8I+EHxHqU7PhucuFGqg0tkcy9LpEmYvnDJdm8+86FH8ZMXhQsvhCjI43IDUoVrrQISxx5T8rUZTwSp3yj2NEJSqtpR5ZDcxMcWZihGA3Y3BrRH5VkArppRCcWxNLRfhoh0cqQlRoZWUQiUEojE0tkYaadkrbb6H7OxGuWocjYnXUGQjIUtNbhzm/H6MMWpaFUBS2hODHdoh2nXN8dsZkrWpHh0FSbxTSmLQqsKiiMpNCuz6zFKWMQ3og11fiGua4NzCakSYzJk6bheeQ7LeK98by8MgKxLTjyHcl6acmGJaPSzWo3ibhjcYKpXsy1mzsUeYGViSfoE7hu7QZtoFCuTrKwLtoQW8WxqUlMCSt7Gbk1rswkxC2NcXlx40pnIunY24psRJwa4jiltW2ZeTtFKNe8AQHZnEalloUfplVSbGx1NZWBX9OYhiIgjJ/1naVsbbg1ozMBXS4s95iCny9yWo384Y8R88gc3pPv8d/+32BCuSGysa+esAJpCx5avkRws81bb3EQyJRGFDnWOAR/PZvQwfIJrXBc1FENchSSEZaXUsc3/oEyr+8r7MPKJhNsCMEfyIgD1nJPFNOylsunLW+2Is7NSr70qzm6DVc+qznxrYij34mckRvG1DcZIBINYJtXpn4vh2jNmFLaZxmYfRSNYwYDdWRtf3WGlJLOKGbyiuCR30zZujtj96Tl7b9Wcu+/j7n/3yeoZnPjsWUR5lM0nAefnw1/eSVrgWbUqfq9cbNVXbu/X9vci2L/9ZznPHY/TSfG071GIkIVBb/3O7/Dr/7T/+zHrLD6eMdKOItjOj5csZqk7Kk2h1+LUR3LM//ZTYbzGpnBe/5VwoVfVCy9IIlkVPVvTNIE4/Ohod2ewLePCtZMY0tIWaOow6jVuaPa8rqd59zMUzbrglu77sxLX9Bs3+Nm6a7flcy+KTn4XIRU7vOtVqtii5no9ri2tem83+XrSCFcXtdaDh06yvrGJu1OlyRpIaKYTqvjG18H1mmDLnJGgwG6KEEY7/2KyktSynt+IVcTGi0gsdrVrF79hMvnzr0ZMfdmTHfNkk03oxPNhQEjIXk27fGcECxoxSezPU5oV38lgQdVwbzRfKXd45qvC7U0LFzb8ICFU7jWuDBh6G9aESc0bB1Rgo1g+z7tyg4sHHjJdY468qcRhckRuUJgPbMNlTAKmOdIStI0Jo5TMBDrIYdnEg7PdWlJwXBvnd3dEUrBVC+l207Z2xvQzy1pkqKMoigzB0RDUhIhbcygzBCqoJvGxIkgL4boQrMrBcVizGDSCfOJNYiVIC0guSDJIkFZ4FvEwUSScHBSMNSG7cGA7WHJBAIhnYdRWOvL9tyYOmOsKaLCinVrMyz9hoHuVrKxIIMw9KhkJYh2JUg1drXcCHaVZLRqKLUmsoapVkI7iWhLw6TImZM5U0c7XLiZszUoENKF7Y0xRBFoA6WQzrmyEq0t2AIx3Ob4bJfThyZ54+oaa5mrP42kA3o16Qat1S6dAKgixxrD5JnUkYDE0FmT7N6lyactZccQZ5GLJNp6TCp/L+xdwZiHUwEIfTx8sci5tyxIrOW6jDiXtjwQKSxLyQSad5elbw5Tie5KcihgQwjawIy1xDlgNAdvQD7jPmISGOmIrt8HdRRIYvf2yP0E6sp7dEchI1IhEMYgpWevA4SQaKMQMiI1mjTPOS8Fj0eRK8/z/Pq7QrAjHHo6F4Ln45QNmbCB5e3IIDDcmNO0tgSTr8PsG4L1Ry1XP6XJZ6C97sbRCnzBrB/hBuVkBTQKHl6YA+EMrFBdYUNe1huPoV1qZS7ZulVtUObuczUwCwuRkRx+IWbuDcldvxfz0v+5ZOtuw6WfUTzwb5KqVLSWaU0FWnvx9Zpo/F4ZiNYTEHku9Or7/fMF48DWz9pYHmFBElDdY2PT8I4rQyVYhtYgjeTauQu8k+MdK+Enphd4rL8NwCuTMxS+08WZT+1x/qN9sHDs25JTfxSx+YBh9lzkJ0EgIydhIhkRW0tZlC6EJK0X5mFcxm3TZqw9zHvosOGUctN/qz3eoHxDbXLznHwOV5YkobsMd/3HmHQoOPKE9Kg8wdz8HBsbW7TbLQb9Pde5KI4plGZ2boHRMCMVglanx97eVbrdHjdXVxBR7BSqb5FojSLPhxTZEKtdSD6Kal5q5Wn1QFR0e9KTbLhxcSHYlfeV9I+6wvfj30lp7UnSPehM1msqhG4RgmYJDxY2ooSvdKb4ZLbHnaqoyCkPGc1fHfX5btrhYpywK6TritIYsgCsc+6OVxr7rMbaa/MoQmFZf9QZDe01weS5/y9rfxpsS3bd94G/tXdmnuEO776pXs0DCgWgMBAzSJAgAEokSMo0JdFtWbIlWbLa3dbg7oi2uy1Hh+2OsCMcdoTtbkdbjrbatkRRltlqShyaI8ABJEGAIEjMqAJQVahCTW8e7nDOycy99+oPa+/MPPcVyWKEsuLVvfcMmXtYe83rvyB2LdUrIR9SE46qZv2XsgEnjqquLRnDOxpRzu16Hj57noMmov2a4+MNGbTIypMEZvQsD5bcXgVuH29QcUS1rOkUlVUf6ENgf6dmb1HRtx132kDoI2d2FtS+4luzE1b7Np+9HEZJKCE51iq4ZFZtmzYEhZ3FnP15g4SOO5uOZ7qeSzsNezOf6741A9n7IXllpNIJx9Bti7b8oTJaPluXyLDyQ8s24KSP3G4VL46DWcWFnYplJWxaa+3Yd4nNSmlmPY/fN+elGxUv3bQyJuNXShBPDOYWabWnjZGZCJfOWbOKnapj9tA+T1054ZU7kaAOLwm8ZdSqjrCh3nvLqO47s5IbcM6z86ox6O4gEXeBm3qK0Z1WsGWYoxm0xTQUPPDmGPihbsNB/miP8Pl+wXN1AwjrHAL77s0xbww9xTruES47z0vieEGg1cQtFe4HfigG9nPKugTMeeHh6oHnU6sLvHF9zNvblSVQaRpASQogS9lpxay+k8UeLvY03YaS91DmWM5Xg/AvdRsWKLUTZvMZm80GTXDihJ+pPMmJ1bhn/lFqcoXEma9Dc2zW7oO/Klx/t3L0kHL5A5FHf95bL13vhrKk0UVrSqIbaDGXdTG1ZhmxATIjLmOfz2c8+OBDPPPMM4zmug58bSTbcd9UFTaRBz7pqVbwpv+14qm/Eljdqzz9l3se/+mK+a3RAh9y5GW00gdTd3pEZCL4J1QjE2UpaeGX2wrxXcds+oKeOrPTzxXBm0lXk+YqmYSnf83vnL5etxD+1nKXV+YGdN5603RPLkQ+/b+7QZgrs1vwrv+qojlRLn7Jsf+SH8DXkUnKiWK1h05yt5N0V5beawni8UCe/snke+P3/zAwkJc/Ern2Hvvso/8/z9lvmhJw32ccLkruxetoN2uaZsbNWzfMxRYT4jz33X8/Tz31NOfP38Ph8YrdMweIq2hDT0y24Q6zAtarY1LsAAP9qHLcKqYcT7OsFpwTfC5JsvnmXr84UgXPf6wnzizj/JFfaZBkJQLuNgOZjstQXpmsjyrHCL803+P93Yr3dBtm+XDta+JH2hMOO8er3vPbsyWvuNNkoUM25CAXJsxyOM9ZuseZcuM7AijsPA/1ix0xKJUItRM6LTCTppWLWEZ43dSDoN9fztj1iQcP5uxVPalfE0KkT1Z/6bxCbo6wWXc03pKvZLfh9irQRgNekNBzsFtx737N7sKzWm9YxUiiQoi40LI/h4sPL2gPLF1z71VHyfcJmtgoSIgsG8f+Tk0boiGnVZ6HD+bcaR2vHG54+ajjTJixv/AIgUjueqS6pTmP12gdDzoOr/3+dC9KfHT6TuPhwo7nnuWM3Qo0dnQhETURETbBsQqgPjF3Kx46WDBvljx3fU2bXdB9tLrbSpRZ42l8ZYsQezYbwbnEUhJPXpgz9x0v3Fyz0QyD6e2MFJqLMeCcxztHij1dm6iYsXxlFML9IiJ4ig9kSI4xwjJPkY5Kqg5C2rGnyrtj5HtDoMl0iFp70/e3K97froDcH0rATwydiPC5ZsGn68Yya5Nl1aaUeEbhJ33NIwJ7qlzUwMkjytffDx//oOOd/7cdrh/PeG49556+5YluzaV87m3HZDJ2E2jnuzWCUtU1fd8Pu6qMyoYXuD8j0cUEXWrJ0R5T6KViJRYvV005nwRUzdCY38xlXt7xyC96vvK3E2EJL3ws8vCveGgzzrf3A6FNY8Al7j4lrJQTJ11x2coYLixX3/dcvXrVPp9BVtLIJMa9nAo/EbRX7v20o2qFg286Hvt5z1f/RuDKexMvfW/g8Z+tJutZKH+isOUXJY+9eE5Gh5Op0Wf2djl7cMCrr16hDwWnYLTIB8E9OU13Ac78EddopOTHunFJXTjdTPe1r9cthBNC66qig6MCX/zXbnPlScu0eOKfeO77rOHMPvjJiioaJqm4cQNNUyyxX289L3Vstl4asE+vMYFl6nrdtnjLcozvjd+d3Il+CV/7a5FUw+wmvOUnPC7DpDa3rWH5/t4et2/fHmp0U4KDg31u3b7N2XMXuXnrDjhHlyLdyQqVyogvmUZKDKzXa0u80lLz6zN2q+ako6IoWGyoWL7IAFdhP0XZnE+89NEOxFzR558+VUEooxge9RQ7ulv5CAidKJ+eLXnZ13xfe8L5HLNywIFGzoTE/fGIX5kteaquiaWWlTw/LbQ7El4h4uJTVU0cPhpZ32MPPvMUzG4nHhR4QBNvC5GXBD4jwpH3+KpGfAUYPvGZecXFvQU7s4Ybt2/yrZde5dLegjNzT4yB5CoSYtjMCdZtD7XHewfJIC13lnNO7qwgBi6d3WHfBeJqzXEvrDHXbYwWFkAhxp7NDrS7tlaLlxKroHgUp8FaHZ5fMPdK23aseyUlw8qtYssDu56dxZJv3wjc2kRWIbA/81ROslWeBcng/jJGkLLCNsJ2TqmbgQ5csUdkTE5y4igFxiJwdllzblaxcAkfIl2CLkFICuLpE6x7BWcKXOVazs1mcGGHZ66esOkT4mB3UbNXW7ZsGyye3cfEpks4H2g0Mq+ER/cbvBOevXHMOnpUXc6+TXm+Vv9sPYEdmiJ9u2H+oo2531P6vVJyMsUOL4tQ2sXZq148ijDDamnfr4mLWSncThraPh5+myWwEsenFrt8paqtvjXnCXoRwMrhronFXX3liOr5jb/V8dS/mdi5Fnnkf+o5+40Zr+7WvLBZ8+Wq4d2bY94ZeutWVFkYyW4XJ5ZvFtMyscEEW5sYh6TEcpZjGot/WiAIQ81tjNHi9RkdSrDMdQNUgXNfFc5+Tbj2fuXFjwbWZzyLq8Z/Xcxj0JFvDF60/ELSxMQ9uf07DPksmpQYIoeHhwMNDzk/5RlTN3J+QIbvYHYH84yp480/UfPMjwXas/C1vxZ45Fcr6hMZvmHbqFt/yzaDs8FreV9wPvKBd72Ftz32Rv7pT/0sr/ZrECtJE3GDO3qsToDicvXOvAeD0C8dpE6NZVQIJmGUofrj9VUA/4nAOkamATee6Pj8v34b9ZYJ/c7/vsYHq8/bveZxlRvaiFmrvTEhxYq7k5US5A0l5Zo/NWzkyXrkn24QuneDcozWhG0OW3+XB199f+LVD9k4HvgNx8UvuK3PiHOsN2vadUtVOUII7Ozssrt3hhu3bnNw9hzXbt5iZ3cfVYghZMMt4UiEdk23WZOixTytz68RRAjBEnTywbPOLrnVIIWgbP1GfxVc/kAYXdG/1tAcuemUhvlP/QDDK1vOAftMFHi+qvlpt8eH2xMeDz2j8wnOaOJHNye8PVgj7xOEb1QVL2VtfyC9Ya3zMc7aZ9LEzcc7ugP7wAOfdXwvyodC4DrwMPCowr0I/7yZ01c1aGJRCQ+c3eHSbkN3fMTh9Zt0fY+rak56x2q1YT731LWn6wJdUBKO2ayhmdf0STlZW6lTUykXd2ccrVoOD0+olw2JGhFlkxLBOuAhvjEkqSRcPdtbflKE+w7noBGc49L+gt1K0dQTN4ku5CQoBVVHH5S67zmYVczuWfLynY7rJxturJVlU+McRHVbe1ogQwuRjmABk60tMc2Bz2Qm7RQSOQmqMCm470zFg+drXrm6Yq2O2ns0kFs6QlADEukFjqO1+OtVWW3W3LNb0YvjaNVRY6VG1rc4t7MTRxciPglBhYUoklouLStE93j+5gmr0pTdGWiByWFjSIrivLnpZ69EiFgjkksBZDbojQKcSYELKeE1ccc5rub2lOdUOaeJ98SeJ1RzDnexYuD5uuF2VfNEt2GW64adjNnUALed59cX+3xrNiOmsN0sU8cWgWlSy++84+LnPU/9m4n1mciLl26w8+WzNLM5vq7ZOOF3qoZbZw+Qa1fZufgAb75znfOrIzY+oX3H2cyqU1aamsr6fqekRHG86E1BK4uwAS5qYk9hJfAF52hzk4xyj/39A86cOcMrL71s5zFnVCdNzI4dD35CuPZe5fhhuPz+yGO/UA/3F2Soxijrbmd6PN/F/QsM6Hgl1lreS6ID5O7QXcmJCedoOTHkcMBgDRerUYpa4hASlz7veOCTnuf+XOSVD0WuvDfx4G/6kY8VXjfw9qnCNsbfS6KbYvkKn/rM7/OFz3yB4zaSpM5zMENo6nnZyk3K8/TOE0P8o61h5VTJFJgQFpR/wZawPcCsxVgrv/s3bnF4f0AivP3vVZx5VrKCbzi+xQIunS2GYWbBGlMGpnBu0DQ0ZWsnE9xrImAN3olJ9t3k5tsJWfkrIsQq8dRfC4QdqI/hrf+wooqOaZzCO0fsraxnvlhwdHjE2fPnuXHrJs55bh8d0qsaGHkWSqLJgAraDSkEKi9IZhEl8SqlYDk2TibEahrzYEEOcxqv5JXnf6AjNjbmRz5hrujidpFTnz9NqIW5qYzusvLdm87xi/Md3hh67kmRJ/uWnbxmM5S3hLGS/r298KwIk9p6hkzeZOu9Qfgm8KwTbrwjkhqo1/CvfC7xp4MxzYcZNe9HUO5DuOw9F3aXXNqraOKGza07dF2gV8VXjkqExsFyNmPvcMU+HR6rz13Xnhuu4qhP9F1H7ZQLZ+akpByuA94llos565hY95E6ekiOGeAS9NkFu+4Tly+aclZtYHY1cGZW06XEarNBKsEjhCjWI1gVJJJSRUgmiJXIzLU8eGZGXTmu3N5wtOmYzQxFSoKOLitG5ldiWFNbWIZ9yhroaYUHIeXEv3K5fsOeRB69NOPl6z131mHAEU8aiCp0CTR4Qg+bEGj7Dcu556HzFbs7FVfuKC9e64ji7YzmGKdGpUNRcVTqiCQS0RDDusS9uw2HXeDmOpCo8CIkSSRy60ktUKGe+Q3BbyAu4eT+gKRIBexq4tG+58PtMfs5p6FD+Hw9oxV4f9+yGJIdx3Vqga/5ik8tdonNnC/Md9kLWQkGHuxbHgg9t73nc7Mdrvp6CAMNVnjJvBYBF7NdboZCCMqFzwuusyYkV9+64eF/fgPSGZrFjiFMSeD5LtDNd5nNlzx/77u4sGo56lccvPh1fqRbQRz3N4aeuq65HSOfruZ8zkGnnTVgyWdrPyXuTZGbCFcyPZT8Ge8dbbvh8NCYYck/QOy7Ljke/iXHl//dRNiBb/+Q8ujHwYWSj5JpBiExdiAbjAE1D4LPnzWFbJrEZG1Zt9zT5XclK0ATy3FCqCZDIgVuKjsJcD289cdrvv0DkbADT/3V3ipsera+v3UWdJQRY2KUEInZU+RZdcpaQKXJ0sIARjROYvP5fqNNo0MLzKJUlGdvJXANh/XuawtY5I+5Xn8rw2L9iPDt71rx9T9zBMA9n3W8+X+tKKnoVWW3jBnUYfh+ZijOO9PmBLwfawNL6zRxztqmTUAhpj+haFEMzxxS6iWv1GuszI23Ky/+gD3jnt8T7v9tv+39yr/3Xc/Fi/fQ9i3ia2bLJd2N61TLBau2s967GJh8Cv2QeFW5mnkzI8YxGG8x7+x8FsmA8i4fJkcJohY31elrc1556cOGv3zu6YoLXxu3ayCZ155u9iAUzXf40uj1E2hxfK2e8ZQqz/qaj7YrLmUX9fSWO6q8YwqAPr0ma/g+4De951PvtBcf+wp89zd1gBUcXDlihLcjcHFvwdk6EO5cI6RIwpkQqC2jWlSZdR0fOG651KdTikfPneM1nz07Ry7us6BFQs/1ow7FWStD7dlZ1DD31Lc2PNrDxWgH8SuLim/Xjr6DK7mcarYRDo4rRHsW3jOrZ9xerS1pzHn6HM8v8wia6KJhQ+Mc67ZH28SlnYajrue43RC9oi4X+JbDPsHQLsrSqM6TPUh5JyYhh6Sje3N6dQH6LjGrOh65OOOVw8jlWx14nz1RygbHSR8sB6GuDKaQQNduSJJ4YHfGzmyHZ1494bi3UJJPQtKKHoP5JAkaE6su0IeeM7s7PHymJonyrasnvHrY02kFIrmN4zBVUkrMblqZXVzC8aWO3X7D94eOJ/qOWRac5ZqjfFe/yXPfZmgd8FVX8VTleUUM3KUGbvmaG5LL2gSerWYW0xzUnKK8ZwhFxCw954A4VDQ5zFWtKbF4Udl9UTh8o3Lt/QklsDq6DSjVbEnlKzabjhh73OoYLtzDzd0lknZ49egq60uPsvP8S6yOV6QgnISOk6T8pp/zrAOSdUwiY70D3HaOmyV0QeYUOsg42rZjs2lzL20ZQDiKTXj+qYqzT0euvU95+U8l2vPC8qqMPCCmEdSk0KXAznKHbtOSYswGkuHfAxPX7diQZyBM1cnfg7laiJgyOvsv4aSyev4CqELi/t90XPp9x8sfTrzwA4Gbb6u5+AU3ukSHZ+UzojoYe0UBscdbWKwkdKFpoJ8ieyg0gE5uO5lQljnOOUIqtQ6vzXMHRUOZUNkfYT2fuv4EsJX24PVu4DN/8ybtXqJawbv/q4rlzSIEzbKLMY4xDRkzf733w/ve+5wHYG7olK0BEYevrD9vWczh8cLAgEZZIhONLFuVpzSQJMrX//XI5gK4Dp78B55mhREOhgXqqxrvPM4Ji+WSk9WG2XKHW4fH+NkClQpD5TEs2tBtODm6Q7sxVKgqtytLKaIxQy3q2BDbD5nP2QKezGFkDtsbd/n9gaOHzBX9yK/W1McMBKklE3NQREu9WxYQOpL8kMms488tBUSEF6uan1vs8bWq4aY4jsSxnsTgx9X9w/81wEdj5G/9tHLfyzC/DPVRIcjJIQJ64LDvefXKFV6+cj0jOjmrr85RUMs6FR5dB+7tLYZb/pHnej4p7+8jC+04vnPE8aqjD2roP0AKgtPEhSrykZB4rO95WRJnovKek56qDcQYOXrAxlWvYX4tkBJUKixc4uKZOeKUddcTkuDwNFLh1HoWo46TVrmz7ggpUVXCvFYevXSGew8WCCELX5eV2Yk2PRLA1u8DAykUZBI4H/QJM8hXF5XjNrLpItqtuLRUHr64IGlkHdWEryTO7zWc22toPJAiMcFJr5Zx3nWcrVve/MCMgx2hC4keR6eJFnNj31oFbq8im+RMwGsgtifM0oY3nl/yhnNLFpL94AjiKitVxM5ucz3hM8bI6t7A926OeUe3YaEJx/a5tZlOvDiZbm4Dv1LVfKKq+bY4AhgKlo78AEbFJqqOeL9MvWdGlwlzuReIS8TBpB3i4pqw/5yt9+03K915Y+zrozt0q0OcJrx3uNrTbVa0h0eoJpKv2TDjk+p44Xs+yi+ce4h/Mtvnf6kX/OOq4RtVIhBQ51HclrGhKU3kTh6vFkEy1kUrapno3g3WqAKzE8fDn6ggwdFDypX35wzuZFasoZ5ZQLxwWEF44L77WcznJLVStzb0phwXI0nE+HhWZmysypY3p3jJxJQYTZOmK8UDlNJkXy22P1srT/54hetgcwGe/ovB6rMHnjXhYXlthnaZeX+npUTTZEjVaBZ41mSGbG2ZHDstq2DvF6x0MxYnFvf0rBbBOxHAlLm/PkP4T2IJm+b/9I8e8dL77BQ9+nOeh35t1FScz0lKWYMw7M+svedJpGgBOZdnXzawaBelX7Fl5uVFKYSpYzcdslU+aEZ/xHX4BuX5HzVwjnNfFR7++OnkJuGeS5e4du0qs/mCPkSqZoaratab1g6wsz6tkiLrkxV924JaQkVVVeAcKZYaOp1saFkPn5WU3GUmL6giGb80C5bixq+U53+wI9VQHwkP/2qz1WBhyL6cEN3WXp3ePLC6OZl4HUrMJ3/+tnP80nxnUBF2VHlvt+axvqP+wyxhbI/n+eA5Dz/8C/DY8/Azj1ZcVThHHIi9bN3LIrycEr1z3OwUxHF+5ph7c4OuYqQPCSrP2ThVGvJzZAT42FkHOOmIraKiuCDMFHA1DQ4fYGfTsewjwXv8vCYebdhXeGzWcLLvcAcrRE0IL256QorE3D1oWQkPnp3RnUQu3dhwT7KcXhuHuZ4Om4pvn1twK3ZoiHgnzNKG+w6W3NhEYo4jlw42aYjEl1XcFrhTx4itmw5eDU3J7pCUprPP90Fog8E2VlFxPqLRs1PXbEJgNltwdllRhTV9EArCqXPWTeiktTWuU8vMCY8dLKmc8PKdNavYQB+onWdZm5W7iZGkkS4kNr31t/XScWnH42XOt2+vOYkG0iqCNZ9QmN8U/NqOyOOqPHkKajUAL/maO87xlr6jySKiR/h6VfGUKtdFOMrdq8oKKQXNjS0hUIQSOibhFMzg4pYu3ykk5jxYI4iIQ6j7yPkvJV76AUPZO3yz494bgsae7uQITcpsuYcXT+qVO1deRi9EdvbOMFvs8KWnn+Ebz7zAqu3oCYhLuQTNUzVLau/ZHN9Bkynxw2pMEo+cGxsHGN3nmSs530Yzzx0hPh/+uOdLf7un34Xnf7Dn4V8Sy9Yju4tL4pGqcWQRnnv22Uxf5uUpAm/A+YeJwJVxnINVPe5I4UujQpnZtvrMg0zI+gruv3iJvutpf/kWX3gqcP2died+NPAd/0PNmeem9x0M2S1rdOsSEBULGw2K2Rh6HEyLQWco7vNJ1UF+M4Qw4F6fFrLTMWwhiOXPvVY09bWuP1FM+M79Pb/3N24RG2VxBd7131TUa5db5eVMPZGckOQGXU0gW4aGB1xVVVZqsgtjosUUcI+h9VW5Z25TZkRaNB5bhbvc3sNlI3j2xyJHj4BEePNPeBa3J40aEOrGGnn3IbF/sM+q7WnmS2sYoEVoJcKmpVsdk2LItawevDN4PuwwWOyErTE5zBtg8nLCYbc2Keu1+WvrC8rLH8qu6K97zn+tuM91IJZJOGb4eygloBzfU8J56trR8V7lb5upjbMT4debBb8uYqhEWRZOyxVEhBr4UN/xthShMlp/8qvw1s8E6gGkens8F1T5Tk18USrOa+KDJy33HycqgY0Iz8xrvtpUKOZ6LPQ+nVvKuK9N2/OdLwVKLtBwkPJ3nGCZzgnqFHn8JFlZi8IH7myIx8r+f678+E346gPgT5SAQQmGCDEoM3reexw4GyxWmHXNnGkp3L+J3Hv1mOuVQIC2Fq7ScnPhkZh4KHS8LbUsNXIiwtNVw4uuGsZ81z5x2i8y8BA8wnlNfNfv9Xz//xn6Gva+DF3vLfNbE6s20oYTLp6Z8cS9e9w87LhzuGbROHO/JqjUUSWF5Gh7YzQ+Wn/kQGTuPQ865dGjDeecp3IBUs8d53iqrrgtjoCwCSa0ag9ees40wsPndnnlTsvtTWAujrenxBlVvnUi/Par8J3PwN/9r2FnMr9nxfGFZs7L9Ywgjq/UMy7FgAhcF8fLKG3fjSc38wCdWFwF7tNcniXuO1pOQyefiWFQ+ITk9qOWHGy8QbKL+t7PRb6okW4Pbr4lcf9nKjQ5Ukp06xNLOlssqX1DHzYcX3mR9bXLtEe30NDTxQ5Koo5aY4FFs4NUFavVHWtrmLZzAwyrW3JDhCl1jOeA7BnSzBMnxh/nvwwHXxeuvU956SOR9bnE8ord4YnHH+eFF16g7XtD71I1ECKgJM2S12RYo4kRiBSDiEGBsdyebWHl8joWrGrJ58VgZY2g93Zn/IV/9WOElfATP/HPeNv/EvnNd7QcPaI8++cC7/lv6pGfKjmhNyuuw0HPfHc4N+bidqW3elGArd5rS2jenRg5SldVU+yHePf0ku2P6+kP/Iu2hINP/MFfuc2tx6wl2Vv+gefCV3LZBaXcpjLGlK3V4u6IIVpwO+lo6WYLWLKVaG3RzPpNqlvZ1CJmbZp7QHIWdSlZmmodMvy01x2rexLf/IsZovI54bGfzYQzsa73985wslqx2N0zEHTnLcM5a4uhXRG7DaEzhuCdMxhLBFWXx6RoCpMVG8RGXo+73c1l3KVF1mDlApff14+u6E/UQ7r+MLtBmA5RxXw/GR490E0hYJExQFdGOYmjlDURyXEylFAEDhizmxilxTXcauITVc3tKLxrEagFSDBrsTK003MGzgB/KgS+JwQqgbqMA4sVn1317ETlDxrHixU8HhzVRHcoiWFFftXxj6f4lJdgWeYgUMdEpfD2L8H/9T+Cf/hDlqx1PsBDfWJJovbCTCIHq9GFVgBPRpADONPDmT7Pt4eHusSnJPG2PvDhvs+9Ye397wgdX60aronjaY0cqvJgSjyM2lqI0LnEs85x2ZuVslDlLf2aR0PPw6Fj55lAd83mVh8mrqTINVGuVI7NbE7jOlzq0c0x952ZsbdY8MrVFfdE5cFO2QuJGlAHa++4MXO82FQcJ+W47Tirwr/UKWeS5T+MfFC4vwv89rLmTvJ0QZBkgj06UO+YNTX784gk5fs2PW9PFu/9gMIj/xk8+W3Yv2U05RSOgd9GeCUlfExUleOyr7jsKttwB5qCsVYtrtqJyxFAS0P5sjswnouJB21CKkNsU8rMxOLDpeRZAK+c/0ZFc6enOwtX39kTVKhchRODp+zbE1QDze4elavRGIh9CxLzeU14X+NdRewCMSVWJ0do7jblc1mTyxRmSa020KRW1jm4ZJEB4ncoAS1zUIZk2OoIHvol4dp7lONH4Mp7I2/4RasTvnL5FVIpE8gCNmkaYsxFgdkqoRsE36jAFPE7ruk0MdaUhzGkaBa39wIaMWTAiuOjYz79W7/Fn/nTH+Phew94488c8YX/vXDnceXr/1rPW/5xxeLKmMS1ZWJKMeamEd2SZ5M1Ks3AUUiuHiphOQZPSeGpI4CKDLKnPGdLs58+63RdXCG7f9GW8OV3tHz5Xz1EncGive3vV/hUhIynyo3kRXLcoQixfHknhBRx4g3UIruEfGbkMWWCUKxurri4xUqYRk1KqKp6gJUcXdTG4MbJ2yK+8MORW2+y19/4U579l33WpgpheXzT0K1bqmZu8aEYx8SrtSVeocFKikQGHOmQEr7KkI+5hdbY5KCMIVvBUNTALWGsw89x11INz/9QT6qhORQe/rUGl3FzBw21ELqUJAQmxJkZj24/RMu4bNHuspSHwzU50MN8Jh6HIv/LFDUZjOHvLB2/9O/D3/gpuP/b5F7SfzgtepRFHoKc+pwk5W2bjgeD53BZcziPLJN1B/I6gjuU75WpT3vzTg1Mg+i2SU1xjZxA8oCD/UP4cz+nbNaRJ7vIXPWupInC9J1AVzvWwH6/7aov89iLynfeWrPoIhXbStYS5X2hRYH3qrnn36KJATJXQVPkgwi/X3mOvPK2tuXR2A/hgqkjt1J4tA08KrDpE8+kxB1NNNGBJNStObuoeHjH88ArG6o07h8R6CMPbCJnHHyrEi6K4yGU/ZCGMxhLFi7Kxaj84HHL003FYVNxq4YNnj462k2kC0csZhVvO7vDWy/fwec1nyt892ch7Jjwx8GVBJ/wFZedR1Mk9i2CWkvPHLKxkJVkAZtPS1E2ydZbSmQodPOolTribDEPLmjMJV3qQBEGTGCLQKdc22xgG6IVyxvKmecd184mrr8XYqVIa7ktXow/xbZlozBf7FLVNcl5nJsbr8nsrWtb4xOll3GuIYuSDZRT9Dat9hA3xnwLSE4BMVISGguOd86fUMdDn/B8+f+Q6PfghT+TePRXDNP/6HiFFus2jXHyQslOt8/8a1WqqGZ6UM11w2lImi38upRoDrwjJTR5BOXg7BkOzp3nhW89w+e/8CzHd36O6zdvs3MH3vjPDMry5luU538w8uQ/qofzPsiJyThAhxBoKdcq2QRFKA98VyZfzvxwCBHa7lt+go5FmVuznzCWu9BoZfLzj7cLgD+BEP7Uv3vD8KE7eOf/vWL/ZWMF4oSqqSmJNNN4gRSMVOfRmAtcJL+erV/bsJi1mTS4laZzsdmOLqMC72iCOBJjzBtQPmoaTbcHT/3ViNYGUfmmn3RZMNlhruqaulmwbnsD28+Mz6F07YZ2dUIMBgAhGdEKrAYupYTm5A0lNzxPaRhwaaFm8SeXXSh5zfI6DC6WUwR+cj7yyveYK/rsN51lRU+s2lHpnBB3fm9cs8kBYiQmTh3eYk0jowAeaUfRFCdSt4z9tSSdcPsh+Nm/Bp/7UfhX/gvhHf/Y4Ty8KSnndFQ9IsWKnNT3iXBTHIfO8XCM+MwgzobI+SM73K/uLXjmbMPjN4+5vzWvQwKuzCr6ysaVVIjJc9J2zGrP3qJBQosTYX8T2SnKfx7DkYfKj8L18StK04ZxXOPUx+nma1MLL59fsLi8ouqnDdqHs82ZPjAV0QUjqjxfVLkHuGdq2Zf3gH2Uj4ZACnGoYy3vq4PNHOqewTUOsEjK21bRjLlNJK3g5d5xO3TcfzOxkFzjecoqrATekOCRToE4WPtlv70zS6JYaDvAe9pA6iI3vPCb84pb4onATtOwcHCmb2lEKT0DFBCDoCdV8HQNv5U8N4qFJYKqJT5S1Xhv8JPjrIuSKKMgzm+lnNxV1nG0aiYbkt+0Xsij6mfnw0AkCjSuOAcqiArzQzj7jOfauxLHDyonD8HeNxWN0XoSO/PQpa5lo4n5chdXNSAebRYkoGvXOM3KsMrQmKGEI6YC1jkh5nUuwkUm7t9CZ5q9h4IM+TUCg1v4wleduaTfr7zy4cTqPOxeMQAZnbi2zPU94sIjxWLcprlCMCkZoIeDkQ9NlYJBYd9SrbPCoyAVt27d5s6dQzQ5Ojxffe4qqJLU88RPCk/95Z7VffDUX+l54z+vqI/yPqVt0Wj8LAvfUWDg1EKiShrO08gRx6WUgQ/azURLSDHhprMubuspn30NQTvw2z/M+jh1vW4h/Nz3GQzc/Z/0PPYz1TA0iyekDFJvA/B+4ofH3NJ9MPByyQlKxvszuk7uIGSfnXDIPPGSgCTZMi4uqfLBEn9OOZZTNMqXPhK49i7Tdh/5RSNGE+SeZjanbhamIKhmV5ASYsdqvSJkxCvvxozclMasb4sJm2COORt6HLZQdEpxE20sc/RpLGJEUBrj3FffGzh8OLuif6WhWk32+rRGOrilRyIrQqB83g6rvaunPjlqlkpGzYOczVrA2gderbrlpbOXxqfdfDLRnoFv3AO/ecFz6CucE76G8OYY2NXERoVnnOMs8AA6oEHdcZ6vO09bVXxH3/Od7ZpZpqmoxsTvPVwj65agI+VHEZ6eV9xqbP3akNj0SusbaoF7lxULB47EeQdPHoYB6OGF2vONJTxRRc6JMS6vp5bVZwGXt2nLHR8SnfS8ek/NxduRfh35tndcSsrFmMb7YIhHT1czvlDPeXu/4Q2xZ6kJz5aKhGAxcMF6QZdrmkrYIbzqaz7/gcTf+297PvoJ+Lf+a7j/5XygtSg5eU4RHr6ZODjBErko8TDlFhAqx4WoViaTnzUoEuQ+EtgZOdqpkKgs1mGYm1floiofW/X83tzxqiRmfWIvwmObSJWZo2DNLTYOXn0IfvlH4KXfcBx88pQSmc9F3/ckhcpXgzu5uI8H9+uE6aYhi3cSC6aAN5SNzassTL5cnsvE+skrWDxmSbn0+Ypv/Cs93T7cfiucecbGadUeDl956yoVejbHxyyWu/imISShms0Nzna9GQhs0AtySG8q8IAhWais3ajcZaDPwTMBPpc7o2bll/lWJ/DwLxtwx9GjcPW9ys7P29xFFEpj+/wMV4wkhocN97IcmZE4ykhLtrYMMXgoGAmaXeklZl2ENmI2i2ao06mABzj3tPDIL1c89W8Grr7boCwf/QU/7J8UOhl2UTOvK5peEZiM52uc1Gh8ZP4jReHQcfenytyp4bHFTV/DS/AnuV63EFYPzW3Dh54flh2w4Za+ogXVylpXpJxQYNpiSfu3zWewegci8o4U0uDfl6Lal0MnIx70EAPIBFIyl0PMZS2iMIOn/0ogLqC5A2/+RxWCxzczZrOFASjk+kLUsGP7zqzf4t41MBFz94acWKZSADcqfGVsUjMRbqtFRsyuxKcmWneexF1KlKqilWUyagXNHeHhX2/YMqVOXZLhNe0PGX8vo9F80CSLXLXkBCFr4hkAIcSeGMy9vpVwMdFwBwLPjxqyNzPx33y7EmfgAtz7+QLJaSUln5GKnBaA954rzvFULrPyGRVJEZqm4fdFuEHiPV3HgSb2i+RT5VK3DVLRAbeTcrgKeBHm85q9nYqqDfQhcv1wTeMSe7OKVeVZLR0X28gNB8/OKyqBj38PvPd25LFnxy3sBV6dea6dn0NqeeAocu9q2z19IspRCMQZ3LnXs4k7fOt2z7fWgfennvNZoVyJ4w+aGZ+rl0QRrrkln0mJsynx3f2K+6JZ3hvgy+L4A+epRfjuFHkiJUqfGhXhtvN8erbDc1XFN9+45pk39XzrcWi+4HnvTylPtIkH44gUVY6pUzjY2PRCXkvnQBvPZxq4vxOe7BOLtE0/W2JK4fKi5sas4cHrJ9yz6XGZnzngTFI+strQZYbuhaFtIIAK/P7+gl/7zp5/9j8Ert8HH7osnP0tN9B4EZ7FGouhI6VIVY+eqKH+PdPMMMYBnX9S6kNhqGO5Y2HeoydqMtE89uEoqfE1FeWezze4uCbO4dbb4bFf8KRQEk4D3lcZKzuSQs/65IiZ7iBNQ0KomjmiYpUVKYyMXo2hJ9UMn2kDOd1Jroy5/D1NdlItQts8GkEtr8bhefATBtzR7cG3fzjy6C97JEwmzJg9PHWID17blGPvw3rKoAyMCaijYQEM0MTlPSFjUOdxSykPGr5e8nvy3kZ48h9VPPvnA92+WcMPf9zj+kE0Tp5aCCDLDdl+rbQ5nMxs0LKn9CaZrkoJ5FaJU6a0wfgr/HyL9+aPT93dr+N63UL47NOO+z4p3P8Z8+ergqsqkkhGfyqlNs7cyykhqoiqWTJVndvz6fh+0fIyMy+WV1nI4rY+rWeUmmJbYx3c2l4M+EZjhA7e9I8d/QJmN4V7vjSnni+o6gbNZUKi1s82dBvW6xNSKC32LDEBtaSLmDOTDJBeDInIWYOK4hIftCodiVHcVADnvWJy+KfX4L6BR3+ppt9XYqNc+IoBoUwt3i0Bfsp6kK3XdRC8RZACY39Staz1EHoDssdc/YMKqBN6zlbCSF2jpokYkto9v+948z9ItOeEM9+urE0eZJU3ty60dGKGoEVhiJgXJPaBlJRnxPNC1bAA3ht73hkjTaa7ooVH4OnKc4Rjd+Y52K0JoWcdOssrQHCVR/GGICXC7crzjRwP9yjiPTcq4f/1ZxL3nTg+9HNzFi8ph6Gn9Y5+1TNvKm7tOm4SeGKVaBSOnPCNuXASElEMJzo5oHJ8UxPPVZ6zAnPfcDPCrbq2eFlSepQonhPn+OlmyW7f4kmcKNwBkjOm+AvZY9CQEFehfsaRs+85EgcvCO//aUctcOmoorlQ88Xjji+sInPx1CiP94GH+gzzmBgYS9GfFpK45/ySF496nlvBjqsQEqqRRhxvbiMPRispfHVe843kuHO04fJuzaWL+8yONzx2+4QzmV4qsfg0xWrKVxB4fu65PPf4Y+HMZxJnT4Qzz0jODXFjOEtNSR+rJQJ9n6irKscYGfjEcLTU3I46AWYoOQCD0J4kcpJpbmyvpwNDtrBLdskmg+NElDMvVDz6yw3zm8I9X8gNV7wMKH8xRipvcL1gvGO9OqGOkWo2NwV+1piQbDN/zL4gL2NZ53iEx9DesDa5PV/ptja9EqaokSJJNKfuKxe/4njgN4W6FR79ZcNplyKYJp65wiuEzGMzn3EiuDRaiWODhnGcozd3FO5FTkk+sCUGfcqZPFqwk30RES78vuOhj3u6A+XN/6TCxWmNt2awEYb9HW2E/LkyHinzmoxZXjv+nr++PT90aMGbsryxWmnyvKbK6vZzXs8l+poS4e7r33nLWbrjDcvrmQOKQ3yFeHMxO7FYUSoHSA0AP8WEisPXzUAgFmdMg3VrBlkk9K0tVgG28D53WGI4Oyml7MIYs/n8VBhm17Z9RQgHNezO2D2a4XxjyoOzusaSeBXa1saTEx/ctEwqr7DPyEPF0pfceMHG3ZnlP1lKS+CqTBA7y/wZmMApi3XUyMZLZ0K3TMxuy91CmLsF+dRikXLPTPQjgkzRSc07kUIkxd5WygmIp2pmtkCqaOjy+yPjK+Mwb0BuCu5cxtFWS0LZczRtRYpFIYHKWT1xTFhjj3FLLTM+l2iImBI31DJjVtybU+TDoWc/W8/HTniqqXl5b8nevKJOLRBZ9dZB6SRYJKhGmXtHVXnrftQZnKPLz1UijVcOFjMWOzX9quNw3RJSYjmvqHzDyaojxIgXx1yhiom1OEJtCpsirHvlThtZxwheWNQ1tfOoa7i17glVDfhc8lbqNEE1EILRzwAfKCNzVDBkRVfjqvlA147IgY/cV63ZrRJNbUwhiXB7Hbl5HEnOU5N4Qx95X5esdnqy7kHgmwee2/sV4iuun0SuH4ehtrdyjiYJByhelFuVY5M8XpWDuWN37vGVJ6xa3nBtxYNhwowntNmJ8OXljGcax50QOUqJjfNIS2aOtldGXrpF20NiT/678n4AURgESFHixVPNFhaLxY0AE1kITFVh8+oUgbt9eooiIBPFVVVRF0lzpV4phJyIOenAVIwIl0F/Ykw5CdUzmy1x8xk4U05S39G3GzgF0btVb6rK2LZVBwGpMJQVjW53csc6rOzMgWKZ4iLCk9/zVm5+6yqXX7xOohg/buAXxcs19PYuin5Jno1KIw711rxmWk1R9mJ6FRY3CEUpIleGJ5qpPe5ttu8RbM1StFLNqoP6uCRhumGsf+Q1amfZgh1LN6fX9Dbb72bvk6YR/2FyFfRDnX73FBP+A1/xqcNbf8xA/wSWcPPtHh+LaeS4//77WW1aTtYbVA2EIyVFncWDnUiOsVoGoWlxRVM1YI+if5HUYqpZYAgypMoPbqSc6j66ZnT4nBZtV0e3HZiSsBOWuOPagOgLMaRAHzq61UkGD2HAdNY85kz7VvMsDvHO6n1FUDFUHXOpB7McTlNFIdJhgybxi4mbzP68m6Jcq8zaMTMyf3D4ThG0W1bx5O+iuNh6lviTHeoYe2IIJoiy1yFN3XhmAphQVLHSpGHNsw420SMGl072fPijhLiAdxXqqqxwZXdXCeYNbiAxH3UqfVkLJm1W6LAkoq854eW6ZlcBV3HiHZ2LXCDS9IEkVoMeokOpSKlDM05scjbP3VnFrK65vepYqzL3wrnljLONUmlic7Sh7aDvIIkjBWVGx97+nDudubZPvIPahGmMStcmVn2kT8q8cVzYnbOoHDN1LBZzXj1cD8xjtAhs+lO77LV4yrT4f7CKxFFAXlKCPlVsQreVCdx4h28ih5ueWeV5ZW/GZ0LiYhuQZO7oKHC7cfSVYxbAhZZzM09VzXj1TkufBNQRYqSrhdmOWXLSRQhKnxJdH5kraCN8/Z4lL9zcsAgmvSrvqJxjk5SXKsfLQLsKBBWSVDlMk63WCR0VgTS0xUsgopa7UWhka8Wm6pxu8YetY1E+NbGaRgHO0C93EIhFwMk4Lqcev1IzIpxDEqjLOAAZ2MXOV/YqectMTzHSbVZ4ItV8Bhi2QD3PrmnScJiKV7CUcJpQZ+ADLueYlPGPQnCUO967XDqVyygTXP/KqxwfHw38dbrexXCiLI1OeEzhIYVH5DLT0aMyuu6nYyn5OcN653uV7OkyhzwQzCthvefPndljdbKmbRNcY8R1zAPazqKY2iYTw2OwSGXymamdOnld8xkrKkORJaVkq9DQ5JBaJvjoRdgSwNOfr+N6/XXCMSHih8W6ceOmWZw5GK8pDe5XcWKNDTLI9xBPULN0zH2sg+XKAMJhszHgbJv81PItGzCqg7bRMcdlEEfUiLiKupmb9e3EYiPOIURC19JvWlLfUeIUkmPPJesZGGqXi3VcGJyIN00yj8estrLoNrBykKebXfZFRordsmxHyj8leCff2RK2k3uWz5T7T60J0aJxKjH0pGCWrxs+mwaUM+9L3m7RwEfhr1vnaWIZb+mPNvf9nTneCesuWe/g4Z5l2oXy7fsxhcm6T6KuWVCXWPwd77kDeJezxaPy6lHHbYmcnXkaJ4SoxNw0QEVQMdSmELMComb1pz5SVZ7aKV1v7Qe7pLTJEXJjjS4qGxTn1pxZ1Iibc+24Yx3Nol91PRoTi9px39kF5xYVLkXatkPUMSewO2u4vOrJrHrCPF7fKZ1aGrZfZKvOEJR6FVzytCmhCG0fWfeR6IWzO3NcCPSbnsuV5/K8JmgkRMXjaJwwT0LsIrW35JTGC2d3Flw7XNPHjr3FgsYlaoQ+ZQhIUTqwMqceKpeovOP4/JJnj1uO+2R9axF6ha63/SvdpFxWwkqsjoH0T3OykW7I4avyuZKhPeWBSe08Du0LB+bKuHaUtcsJQYMwcdMnDms87pdMgPCyR8wJEo3RSwIyvGFMCY0KWGKnYNUTMVu+zcKypcVX1HMhti2a+oyrYAMalQ3zMLqcPDUtSRoFiXmlmtqTUuS+ixd565vexCd/53fYBMuCvnLrDiXze6r0DH3Ni+qe+eFQ5qMlz8aRiFvJYmQLfbzHuM5DEmpxsWsuDRyYyPjc7PxHRKmc8KEPvId20/Lbv/M5jtfB8LQH5XWS/b5FM2VOoyJRjK68Q+M8i8aSPR6ZUAYjb+r9EGFIvi3UUVh4SilDMTN4LAb+uD2sP/J6/YhZE81nLA+y2JFq1r5yKY5ZxpZJ7DOUpTBamyklYhbATiDFNBD8kIBVVnlCjAWbWjDL2+fM5kJCCfD1jLqZDwqDRnsGKdFtNtkFZAvpM4EkTcQQhmc454Y+v+SllaxO24HGFIcYtsqppos1ILVMGcuo9JdXti6FMTtvIkxtHJnwVXNj6rwl+fbFlbk1CsX2J0Vi6IeWY3Z4cozDch4t09tXCEWp0oHgh3uV3115cLYUkjlIE0olsLtYsGg8J23g9smGPpZDUSwUO4wpJqZwgyWxL6VyMPMYnBhTl1IvngZVOiAc9dCFwLL2NFXe96yUJLG49KazDle+mbGYmbKx6iKxjSwrR+0cgURLJDiopCJG67S0CYrfRFIybOujLpBUqJxw796SizvCvFI0buh7RaIx0xQTIciW/j0qbFlADB6BkcEOxK/F6pgoZJNbJKDVSOh7QlKz3p1HndCIsEyR+byijcLhukNdyfI3mgpq2eSpsg5ZXaes2w3OwX1n53QhcrJuCTicOtLwz9ysHWKdlWLEiUG47i/mrMOGky7SZ+Yt1JnNjsAVkD0smembRWwCY5uUp5ZufmXCeEXGz5R7mOcl4xtPLLTp/UbhPZaTTEv6RqvLkRhdwpofauRXBFLOdUhk69fw42NMOLXGLWBWZOxaWlWaxRLEWd+IpqHfGAyouWJL29axYUmZQanTLt41C3tJ5rMJonLnziG/97nfJ/QRcIbDoHa+xqTWTIMToQNTtzGDvDJXvP2RUHx2YxclefxCTvAin9mB5keeZvwrokBVwcHePodHx4QsI0jK73/2d/mB7/sIjz54L089+1LG9p5mZg+a6EAEBRiqcJjXjMtm5X8Yu5Y651wXXhSOyWWC1k3O52gvpTRaymVcg4pwF9394dfrx47Oi+CoAE9IWKzXWe1tTD2qfXYbaYZ2FKuHEzdMZEjKKounKWulE80pL4jmQLzJIHtPwSzjojGWg+EcdT3LGcsyWOeouYn6rh3G5PyYABFyowWQbeFbBB+SD7QW6WNuxKRDer1C1h7TME5Kl6RBcbB1KDVrd4FuMOi1W7+Vn0p2DW9vCiW2JeJy0T1oxt1OybI0NRlimPOZ0IpbCYuD+6qhbubmlBiY4aRBxHR82R3milSVsgfGVL0XvEbipudM03Bw4YAbxytrbqD5YOZEltKOcZowUzLtCz0o4MTjMry/aJn3GNpI4tiQaENklpRFXdHgMtSm3W13Z8a8quj7yHHXQUrUztHUnk2MHHeB2lcmyJKSxMppSMKqg9UqcLxJdAmqyjFrHHOBXa9UqsReScn6xMasOG0CtKEsoTFEr0JSa/U3lcjjviqj/21gGUM7SmtEbkw/Jmuq3njPovGoQhuUTkE02XNSYFFXuLrh1nFH15trt7CalGDTJVK0cq8kjqVXqtizqD21q7l53NGLw3mxxEcRYoKAgIfkavqQODrpOO4TmyT0GH8wgygiWzPMMclxmxkxyPQu5lWs1MGDkk/GIEymSkpKBgGZKzFGT6aMrtDihVIdADuG3JPB7zgR9OV3NzbgMIEpOPHgckIpFWNiWBa6SVESlfeWLBUNjKRDaWYL8JVVWswWJuT6DgvbMACIDPPNZ9vGaWMZ+5WP9fx3Vq3JqGz1FvfsttU7Kr1lLY0e0pCnIxPrc+KCybq3jKA3RaHJibmo8ZayzkM4JSleQIk471g2nh/9wY/w5a88xReffsbkiQjHJz2f+MSv8ta3vxV1FV/55vPjWshIAVuCVso8R8PntCAeFNi8JwUjW1BToCagUCMpGI2ZNZxG8siX1Zv7MSNapqVar88cfv0lSlmYli4jBdfUtBPLnkyqxL4fNra4ULwXyPBuhuYyHqrQZyE4CCpLaBg1muIazpuZE7DEm1s4KUhV43090WaMIDUnTaVoXV2K5Vtq2Kb1bd777Doprb7LZpbsyTJmi2UpY3zalIvp5gnb9DES0OCwKBb8ZEcL4RsjGm8xLVFgUEqGN40gh7rpnCwSO2IMCEWpwToLlfIrEZzLiXXicSknY0m2TnU8sNn3MHHtQMmUNqLPioAmKueoJXFud0FdVWy6nrMzT+1m3D5Z04Y0rK2QdZWUj0LSzFATBXqw0NKAbsTgYMxWU7GqPCqJTUxE7WnEs1N79uaevdo6KbVtzyokutxxxyXFpcjO3JCeVuuOmNcrKHQq3NoE2hhQhGVdc2kxZ+YSmnp25zNSiNxetVS1w+OIwdyumtS60EQZULwGBajQf1nGgT2MQuiuUout/bd5V95zMFsisR9zMhKDC75P4IMiGphXwj27NTdXgcM24Lw1LK+AeV1T1Y4QglnU6llHY7NLn6j3Kw57x3Ef8T4LeHF0CJteWfdhiIsnfBa+GURCy1kZk6yGw7AlbKfZzlIS6rfP1GT+w7cysyvLNbXyjG50OFOFdRfFtZTM3L3Id9/fhFMRPpOAlIyfF+8yLdv+esiNaCzPxGW425iUEDpUlWa+wFeVeRJnc3qB1Afz3klWHAZviTPvYmXCvq7rHELTwVApYyquVDN4JJd66l08yznHa1lsU4FUXMyD0ScZUlNKu0DL1jcD0F43FlKEYaJ2Qj1vWG1anFY0zrE3X/Klz/0uH/7g93D96k1evnGLqq5QhOM28NIrr/ChD34P16/f4vL1O6g3z8uQ45ItzrK3dx+ZImKLZZqGV0fDYqp8yF2CeHyveCcmCp+Q1z4rdYXO9FTm/h9zvX4hLGIgDuWfL5uaD5vzuRDbEhGKxuicbZ4lO+lgUApi7txJWVJxu44WksHlMSx4stITyVGETNRklyNZeJMSse8y3q25o50zCzWpbvUqHmK/2a1kGmZmFoWobbeYHuAUR4JOgwXKgI0N5Or5yT2mWijctan2ER008lP2gN0ya6PFrSv5vlrmHQIp9cZkJpBxQ3a0GPKRSJ1dKYHZrEZJpH6Qp3bvrAmMbcxsHKO7TsZxqAFvHCyXnN9bUkukDS3rriP0kTpELu40tAp3Vi1tLII3IzBJQQbKLslh1bKrT8va2H+DCzENxxHEGmr0GAiMU2FfPW1n3oAukeOalhKECkEVFwOVCDvLGXc2gU1IBIU2Y+vuziou7s3ZrR0aAn0frKYzdRzsNGx0wfU7azwJURO6msMcffKDQoGQrQcdkXgGv+Dwv7vPHqOAGWKXCl3ouRVa5lVeEVE6tZ7MDnNBBsVwnXs7V/N6xqpvCSEyazzLWvCq1ic5PyPGRJCKLp+5xjvu3Ztzex24te7o1ROiKRl9jPTqSOLBVzkuW5J8sjIpWUGPBVrw7gmW/S7nUCTlelKZnKDxi3czuKKY2e9jmGpcX7OGdTh3Q0lOObxbdyvK5yiwC70Xayu3uh/OgwJkzIKcaoSQG7vkf1VV4T0QzVvYrlfM5kt8XZG8UM8X9NqiuducPUoMyU9A3djyMMY0xouHUZf1NE+iFncr20KkkN3UKJmGwKZCZzQMZLCOpRSID1mbVv2gGomqBBwimtvDOs7uNXz/932YX/+t3+XytdumHFWeV169ySd+7dd413e8lfTVb3Dt2m2qnCD77Veu8pnPfBavOuxIuYpyNaWKKUkMBs4AJDVusC897TmlsKVcJVKAjXSq/KkpUJNM6UJrW94DW4qsOL2+60/gjrayHMrmkK2/4trJrhrDC1aqymIUKVrvypLp7Cuf41KGL51Sym4MRs0PcJWnZPINVmuyWNRUaCoMJUmkZMDpoYdcu1u50RKMMQ7pDFuJV4PAdSbcp5r21iqUA1vcUTbmMY476GRb3zstgKf3Lcy1WIaD22c8JeP4irBFKV0VjNElS7qKgZJBaUAkWfsbFJFc+uVsBDUt+4uae+49z/OXb9EVz0beV1u3MQFkqlBoRtspLh2w7j6zqqLbdCQP69izaltSUOq6pqmEvcazqBPXDztWXSBJhWZlykG2bqeQGLp90jQn65HBCASmZQvqsoUsynHX03ctO5VnWXsQJagxR0SIJIIK2gviHW2MbELi1iyAOHZXnvPLmnONMHcKfU9UtRIN50gpEIOy13jqgzk3jiLHa/PSCEqIiT65gRkrEyKBYkaVFR2sjUEu6+QjRUkcv0wCXtztmTvl3JHV4RtVWqPEpNBGA6A8TkIbeqK2LJuG2WJO269Z94HaOWJ0A6ykitDFRC53NYUjBnbnDUed48ZqhVXUO1RdpgWMziZT1MFmsfH2eza25lgGq4oJbVPOAqNwGJn/tgVclMvRAMmCULPwdjrwD5msWWGshYFu0dmE3rRYN1sfKQp0fmjGEtBTSqpqVuaFoS4eLPclhoCvXBYEFiLq2g21znCNWYH1fE7qe2Lf53GlYT2n61CE8fizeOTKupXVt3kMfHZrStslUqPLP29NfmZRuoelkqKijDFr6+kc8ZWnriv6vsseLGF9Enj5+Rf4wDvfzi/9xu/QpY7bR8fMq5qXbh2xd/0yH3zvO/m5X/kNovbZcyc8+8IVksgQoXGl9eXgcp6sQ9njIaTFUHI1HX/5fEnuK1fShFeTT6cz41My4f1aV1FgCjFWKA9VFS+61/786et1C+GSVAUY7myMY9sqMSFdtOBpg+lhIZIYYEfe5LiV1FTisTl70rmhi0fUSCruac0Wt7emCaU2V9Tc1DH0BtRBBjDPrvOoOtxDRIZm3WZNC7GGqs91vJoJS0dCHK7sYoilixNF8xndot6VuZeY8FR7LwkdE2FclJjp61OCtzcGcJP12cTJfZELX/WDa366lkPLR40MdmOGjzT4TfBE9ucV5+Y1y3lFCoEUslwX+26xAIZxbzHHoisM9ovp/c4heDZdAAJd6M0zUHme+67EQ9+M7N0J1Clydl7jnWMdsRhmnr5qsTbKnSfx0ZSVEM2ZlpnuSp/eQmtFWYkqrNXTtco6Jua1WSlOi2tU2agjJaHdBLoQSJL45l8THvyq49LvC3Weax/snkHB8m+Nrto2kaLBtx7sNAQXuXnU4lB2dpe4NaXkOW+tDFp6oZ9xnbdIYyCFwboprtfMTHcXM17+sciLt094809auGVee3ODCgO4/iZaVmxyPquZiZkElssFd9amDJnEzdCxqkQR2mQ/NSk3DjvutGs2wYR6zijIoAcp16QU2SQDLrVS8niFW08qN96eePJ/9oNgHc4AYm696TEYhOXkJOiYPDQ9PzJ8z+BlKyn0PFnT/BylJAJyFyMu2b/rg8itJ3vu/51mHCdMlFId/y9jFrUM+1MBcXIudaDfAnPpxOOdCaxN11FLrv8V8I1hZqc+e/Ocz8lfr2FhCfR1QtZpQBHzOf+j9E4OE+/f3W7mnDQnkxtO5zIIXIZ1kKwhljLA8r7znnNn9/noB9/Lpz7zOS7fODKgGIUvf+1pdpY7aEgonq5TZt7T9vDVr3yL29dPEKDLIcukjpVi/EhKH/aJYkFWlnS04Ev8WrLRkWSki+H/Ok1+m6ynZuwJcaeazUn2EMVt74DCnnOc854d7wgi3EmJt9c1H14seLXv796r17hetxCu63qIwTKY5GM8NWlmktnlYpnTdioNzMOALfoMk1jg3oY4Y7FuSwZn1mingrrEbG0dbbE1N3BI0VywggxoMoXgU9Z+S2y5ZC4LjptvStx5XHnsl6p8RqWs+2tcWQCUpgZZMSgxSidWopAnPdxnmlZvr02EblZWSp3iYAVPNb3ydAdf/esbFlfg3JeK6zknVxWAkZgzgQS8uAzpafCRopHaw4XFjDONo8E6Qx1uOnMV4kHL3CbP1enxMyGWiplWlCCxhLfV5oSOSFNnVDGFm/cnfu1vt/zof9DgNsYGnYOL+0t6cVw/PKENaiARaklfKoOIAmErhg/F018OIpkWMk1gzEiKyHGwVuj6RCMwrytElS462qSEGPCS2J073INzvv43Npz7e7D8ijHEw66ncVBXOZ5n2Uk5SdvTR0V9oosb2qDMZsI8o1qZCeJHklK2kzvTuMtTfWwgla3fSvghISTcDF75mHJyJLz9ZxP9uuW4czSV0AC1CPPaU3lHDErfRzsTTukizFAOmorKCbc2HUEcNYZQF0TZRKEP0PY9wQnJ1agrrt5i/5iSYdUII1B+MXCdjjW/d96YePrfSjz6s47lDZ3MzJhrmf8ojKcWWTk6U8tvwnSLF0dMUGo+F4OSPpw1hnM+taSV0RoE6Pfgc3/7kD/1/Fn2Xq1GRSErUTKcY8WJJ6kgmoaxmz6ff08ljFD6CUOKasAdKVE1nrqu6dZrmnljpZVA1TREIPRZldHTSogBgyQi3/xLkcd+2tHcZMjTgQxSUfhPLiM9rcScVmyKhlIUqnI5srVdtEpNeK80ldD3huqWSNw5vMXVl7/N933X+/i5j/82XTCX8CYKqzsr+krRYKVcXddRO0/X9Tz3yqtE9QQRfO6LPUDsZs6aZND9h/MEOelsyJAGdKwCKHsyzhmm0KaFJsyuU/CYIM48eVqyNBijKfGGpuZf3t3hgi+ojkKrVv7ZiLCQ12cJv75PAYLP2f+52YLmrFXns9ZriVAOK09SxNxP3lv9nM/JT5LrcXUs7TE4yCIwRgQtHWJLpSmDmss5paHsJnSduZ/VDoP3FThHUHMHKhYD9d5ZtxMZLdVuD373P9xw9MA0Djkenu0FkHx4CuTmuKFDElexgIcYYGbWRVueMA0TFraxKaWRpYlwultKScy4+eaer/xbG9b7PX3foRopfUYtVmEJTc7ZXCvvqEWZSeDMDO47M2O/UiT19F3Hpk901BxuehIYSH/B36VMaVsqDK7GkQ8YE0yRxgs7ixnLxdxihSHQauQzf6njpXdEVnMQX7FcLjhzZslO45lr5KCuOLczZ1EJQkQmmcMp15tbg4zxEEgW2MUtnVTzvzSML2kiuTSU+EQ1mMmjrue4i5z0iaCJ3Znj/v059+7NeOVDgZffkbj+ZsWJsqyE/WVNUOVwHVgHCMlyHNqonMTEYR9ZtQlxnp3Gc1AJF3dmzCvJsb3s8kMMa3mw83XwJI0C6G7SG5g+RXO3PTreizz97g0vfQguvWHJfftzILEOSh+VedMw9w4XA0ETQYSEEJKwSdClSEgtM584s5xRO0cXlVUUDtvIzXXPYedYp4agplKY+Ieh24eQ0ZmKZlES5oz2h7NbCbeehOvvVi5/72i1FIE+kJNO43TK6d8KTRaPzBgzHlSCrPQWJT0ZHO2gNE8tJrL1Mz3vtsZhqVx9Z8fX/vWVRX4VLIXWlARVhnuUuLDkOavmdZKcEOPc0ASmrFTZRmsPmfCVRyTRr1fEvsNOAkhd42rrxpRJhREqF1QjJOWV70l8+d8JpKrohzokYyVNeQ6vwdeGdc05ON5nPj097DbeKUSviiKVcOniOX7kY3+KC/s7Q8mpJuWLX32GP/j8l3j/u96BE7Uzk6BHuP4WeOW7I0mENkSqeoZWjo06guYQB4bP74o3UbIPI9OWJgNFCafKRItgHvjqxAoe6Ssr7IMnhuGnyMS9fPoc5u/OnOMjywV/aX+Pe6oqY02Yx2HhHLPMv9/wGu7/17petxDWWJKRDMKxAP07NcGc+g5iiZPCrScTT//FHvUeXLGU04ApPeaHMmGstgAxhFH4kjWwrOloimgK9H1PH/rsPhB8xnKOqvTBEmdK4pbPEGNkwhIEdcJTf6XjWz/S40PhfqNb6fQlaD58ke1Tn92Kgwva7lMsYtXyQZ3MeHrfyTeK22cLJ8P+CE3kD/7OmuP7lW4nDd1OUi4nIt+j8g5fVVTOUwE7Hi7tzXjwYMlBpex6aEPidtuxQeiS0G4io2upWOSvtQ420oRm/O08f7X64JkTZiLsNhUHOwuSCt9+LPC5fyPQ78D8bMO5/V0WswZJkT509CHgSOzXjvvPLNmfeYvnMTI6cy2NCkE5DBZjS7msSQbhqwjqHNFBchBJRKJZaiIEHBsFHJzfmXFxUbMjib4OfOZ/Y4zsylsTySmESB2Vg/mMpq5ZxcQqQZ+EdUwEVfZ2Z5w/M2PHg4+KRMV1PTuzZogjbYuTQVwM6yqnGMIWrUxct4UjCvDiOzpuX0zcvkf5xptapI88uLfDucYTQ+Lm0ZqjTaIP5nJPCKYSGB2HpHRR6PKWiwibmDjuE20AxeK9moWsU8Wr4jVnTyi4CC4lHBEpCFiTmk4pSkfluPU2JdXwjb+cCItxLinlMkVNVE5pHMybfGanK6dFHZmu5qg6Z4mYFdwxadHKE/sx14HxM3etdb7C0gTxV/7yMTefKLFZGR6BFGXKXjCFIHvqpMTC88nOrxcAkzEHxT4SU8mczh6a1ZrYtZYjIYKvK6q6No8D5GCA/SPzU0nKl/9O4uUPp0HID+dhqsEwniM7VzlM5cYGOdNrwJBOESQxazxuyAFQbt24zuGtm3zs+z7C7qI0m6nYqOelazdZb9bs7S6HUlJJCdcqn/ovOq69OxBFOVqv6INDxZEjhJkTldkK5ieznKMCKVwSAEcFdvDDTGhim29s0dJpD0A5l/n10zFgEWFPhB9dLvj+nSVLVxSE18CEAP5M5Xk91+sWwkSocmnSUC+oisZgaC/aI17AVdx6UvjE31shXqhwlrUc46A9F9dQIQBjqBZn1phdWjpq/0XQKEawfW9JSELGdM4JYzGDgLhcv2x9Pv2ARW0LaS6WK++LfO7/tCFV4DqwspjpgS7HemLyTmucKQyf4WCLaAYgKLHLLE1H4/LUwR+t5KIcDM/PtYKkRAo9L3xozbN/tkc9hL0co8iaXgkJ1JVZv55E4xMX9hsuHczYqQISNoQQ0OwtUF+zjsqt1YY2jeI1qY5iWEfCnVofILh8uotIcZCzBwObTUfXdlRz4ff/ZuLoAQhzkD0PGVEqREOx6lICX+E1Mo8bLu1U3LO7YOHFso2z5TGUJShbCUQpWz25Ym5Q3kStcMKpMzd7PsypWC4iaHKs1j2rTmmT58W3CM980Bbj6hNK2wh9hE2vdF2g9jBvHJvQseoje/Oae/YadiRCDHQpEbB4dRsTXW8WQPZzoRiEpoiOkKFTjjnQw0AgRiVSlDGGcEzywrPfGwgN9DN46nsSWgl7deSRszWX9muSJG60LTdDZKNCLB4YtXh5m4SjKFxtlVeOWm6sWjpVIomUKwlKYt/0KudCZVRayxRKLJh8zjQflNjA7TfboX7lw4mbb03mvs2C22li5pQLi4aLy4b92tHI6RMzOTmDK2r7NcEYPTl5z4ngYiC2K7Tf5MSeMQw2nLNMXJotxn6hhLly/EDki//bY1IO3A3ngMysCwvN8K4Gj+vMcnUexJu4dBXicjOW8kwUtLRBdfh6Znj8JPr1MXFzgs/hO/EeN5tZdrSzxMPKC3uLGbUTqo2wuQCf/U8jJ/cPzMbWacLlS/hK3GiclOqDAjsrqlnQZUGliUqUc/sz/qWPfZh7zx1Q5TMfkvDpz/4BX/ziF3njQw8OLTdTsrr9L3ztae4cHTOfNdTeFnF+HVaXlN/4f/TceizRJVPq3WC8FGMml7fFRAzm2WTKV2FYR7O5TouzaXb33dc0C7zwtcKnh8z8icJy0Xt+bHeHd81m+OE94Qrwe1oiSyNPf73C9fVbwt7ieJUzxpditKJ4ImhAHfiq5vaTnk/8vRU33hI5+02P9gGJfYZa0DFbrQzAGexXzFnUw6Ge/CyWTwhhtH6dG9wmKUUTMHlRfWXE5QbBsa2Rri8ov/OfrFnda5qVCeHpJad+sjX2aa2dvTPeeww6lTtMEnAyd9Lpl+/S5HO8L0VS3xL6Dcd7LZ//9wP9nn2yWyaDkMO6r3iXWy7mhIJahIu7C87NKlwIxKi0IRGSkMhZsOKoZguSeKJKdjPqKdfc9ly34nBiaGnkuKeKlf6c9IGjtqNX5dXvEp76sybUYg036paTPtJFgzIM0ZSmpGpwi+seFxI7Avuzip1KmZOQJCQ1EBjJSTeWAZ4JWAcnB4O1osUyKWPOClUGkFBVcLCJys1Vy80u8OkfC2zyGq8OlBv3RoOujJHjPrBad6QusKgq5k1F1/WsNpGTNgvcGLMS4zLSlqEmmZIm49jK6urWSo/rPKE/HT63LezaPXjpuyPZVcTz3xNZ75rr3oXApZ2Gh87usPCOTRdYdz1WHm11zOsg3Ngkrq0DR+ueNqYsDss4i7O80MBgbgxrWgZc6I5UlJ/MgDSBS+CUo4eUzVn7TncGnv1LEeeVmUTu2/U8cm7O3kyQFLL7OOIkW3WnaobHFdzmruNajUoLmKKOJvq+o+9aNOYmMsPcZPDylX7m3W4kGe4Pz/zZNZffa0wiaRr3crJv01GNwyohLnuhGARTHlJc5prSEEpzOcbYt2va9WpIyqyqiqqeg6tICF0fOFltCCHhc5vi6+9VvvB/icTZZM8Y9817S54snsHMbYaQgirEFHASaWrBOcNIRipWxxuuv/wCP/SR97PTVJlGHH3yfOvFl+n6lnnthhBDAvqYiArLnT3OHJw1T2ov7L4sXHuP8lv/VcfqUvFKSF5jW5vSmarkgox5SDJYv8M+3GXVFlasryFsGb5T3jtNS2kwcGy3H6lq/tL+Hm9q6uyOcCQRvgb8I4RfRngaw2THCUmEZ/4I9//0et1COFUWA/AiSDRUmqTRMuNUaPyM20/AJ/67Qy6/LzC/Lex9S0kpTARpJuKsQQ/KP2zBnI1Z1UagIYRs/ZqVW/lqKKoOIQ5ai/c+x32Lj74kcmXkHhypEj7/t1pe+ZAlMEkminF38hE7pQXB2E5s3MDyjYmLJwvkciKnInZ6eIu1WwyfUYgkUuzoug2h71EHz/wbytXv1OGDadfRLOf4qqby3grhJbE/d+w0jhQDd46OWfe9ZbKrxQg3SemyK4eU8K6iDyMwRtGG/7CrrMMWIcs4txKnOru/y4WHDvitvxU5OTsu0vqc0nU9bdfTpUQXErFXurZn3QU2qqz6nvX6hHmVuLA3Z3/hqZ1ZY4bulZPrssLis2U51Ywl5wCU+M4YRx0HLWLWRAB653npvshXPxaGebW7cOVRWCfrzIR4FvMFi2bG3AlLp+w1NV1MHLWJdW84zr1a686QDCxjDBTI6JqlJLmOqtlpmjKrsjCd8bNFobz1WOTGmwueLVx9C1x/DLpkMJspJPZFeHBvh73ZjBQj675nFZWjPnHYBtaRXOOby40o8dyspBQISRlfO+3SGxQcLR6glD1XOdEqWS7HnTdG+p2Rbp7/l5XuDXD/mQWP7NU8sIAH9iqIPW0IdH0OM20psa9Nk2OiGJmMx1plMlMsKn3oW2K3QVKwf4OE364AWB+MST6bc4nP/60jwrww+iJaZWu/7OeWZkURgANAi/PD72X8qIVWzCsog2dLxBFjT7dZI8U/5bz1JXYNUR0hmSD1ba7s8PCNv5p47s9H1I2hMvMYWiMaKCGsHMbRbQ+YF8e5gz1+5Ac/wn0Xzg49jlOEL33pG3zqdz7LhfNnc6c88zFFFZ598TLrvoSGMt/N3qdrN25w+cpVc68Hx95LJvhf/NOJT/9nPe2+eV2GmuriNS3JloOFWjLbpzSZV34QqJMtyFb9+Dd3CeI/jK6KXHmgrvjX9ne5r6ps78TRAZ8S4adEuIGyAv65Cj+r8FsKvyjCfxrSa9779PW6hbDPlkfM7pFS/uZEqJzj5An4+P/zkFff14PA8opj91UD2neVw1UZmWWiLrqprz6/PrQLVB0s3AKuUeK7kGt+c0stSyawEicpfvr8jOwfptik3/6+wJf+7a4AYI2W8GCtMBmTEbHBvaWtQ1oOPzB55uSfjDxg7EKU700+90U2qFmVobeEqb7v7btOOHpM+fLfzlp5vpp79pgfnMFndKrdRri0N+ee3ZrzO57lvGaTlFfurDjslORnRHUDbJ11RzJB0PelXWN+QUt0dfsaFXcdJqQ5/xdRmtpzZmfJPQcH7C9mfOmDx3zlg5st7hkuOnYXM+azitC2rNuOLqlFa9Wy3OvKc7C/w8ILsW9xkji313B+v2ZWS7a8THs3l6ibrK0xSBGyEB4Fl+TOV0PMTjMqkxjE4rM/rBw+wjDeMIerjwV87TnYW7I/r6i28LYjjsCZpWOx8JyEwKYXSBWKNVRY9T2qg11own8iiHUy6jLOYY2na79lbdlfL360J87Hz/QLePZ7IymqZUJ3ga7vgMj+ckZTewLKOiXaJMRBECTzjmD7qTKu8fBEnVLueG1n1AKaSCn3ps6CR7P4uP14Ii7Gzx4+Cpd/RJj5ROpbXN9yxiceOjtn7jOGQD5HbpokMVmxLafTlnGcrUvG+s0sZg1Hue/o2zUac8JW8aHn6aia4J0+7sWPtjz/0fVE8chxZ5EBAbA8fuAjIpN/GP35qdWVz1HmdQC+qgxXIdOwA2Lo6NZrO5ciIB7fNEhdk3IJpluP4+134ff/o8Thm2VwPRf+lGCI8aekSAp4jSwqR+1AnCVGnhze4drLL/HDH/0IB4s5Iob10KrnpauHhOiQqrLStswrQ1SgIqlFIFOGaC3BpOJpc52y+3KeewXf/AuRz/17HV1jPN08A6NSPdIbWzx4eqnCtHriNI2agN42IMrrxbo+fT9Vy4F4z3zOgXOD0LuDCdyP42gHcCc4AX5X4RcRPqVwi9d3vW4hPE+Chh6VZLHeqmJRVyy98uDHHuJT/3PilQ+E4Y4Xv1rR9I5Z1VB5A3C3bhySZVQ+HMWyZFzcFBMh5thvRiOpqgrJcHjFuhmaLbjKXD3D4XQUAHcYoSqPHk78zn+ypjszHjhJ4FvGRBJ7dWKjlGLt+NpWcDlkCKW7ygDLmddujG/bPe0YWqKXYMlmoe8JfZvxVT0OJdQ9X/pb/VaMB4XNLLLu1swkcW5RcWFZsXABCS3at8w97DYNTbXg9hpevdNy3CUMTkOIAuqEk+w2VrHOOCnHxU+L4LJ+Ew/k+J7aWs2aCrDsydvLnp//qyensSg4OmNIZjWBnXlN5StzhQdronB+Z8ZuU0EfCX1EpKKpZyybirOLigfP7XBm7q2ESTV35ik0NRG4pNzfuMR1JrXGw/+K9Z7Y7Ee+8Rcii2v5vQQS4c7bHctFjddAH1s2sTXrQhyqQheE0CuL2nGwNwMRVn3ipDN0LqkactEcpVxvGIRMKGyLrqaW1CkzK1teYVd55bt7ZndsrCSY34HnPqScLD0b9awiHEfHjXXP9cMjNsHa66GTzAONYzY5I7BGUQ2KQB4Z1HZW8kgbNlZRQwzTUrdJQiTim8TttyZcoEQv2L0OX/6xyHpPCOroEoQ2UsXAPXsVB3NzySbxJLedRDWhvslvMm6uFBsvjz8r7hbjTHhRNPT07TpXVqQhFlqyHDZn05bmrAJf+JvHtPu5TliGp06w78c9KqMbRmgwgXlM22OHlLPoDcNAKdC9pY+5EENPu14PFqxznrqZ4erKrMt2WyE6fBw++x8Hut0J/ShWoxvAur0b/zyzqPnRH/wIjz90kUpS5nfCV7/ydX7rk7/Fcj4zIZsSQZQIXL16jRgjFy6cZbFssnIYUZ30H5/QlTkFsjKUYPfbdsYAUgNf/juRr/7b0TyuWZGSu9aJcR+nVDAoT9ux4Sm/GpP6pq7s8X4jXY/fcQIfXsx533w2vNEBPwN8AehzptxUgBcsiDGM88dfrz8xy9mh8F6ovbMWGCLMn5zzT//z6zz19jvj3RTu+0pNM6vxVQXqDGA8L8OwHvmzRRsECDHQdi0xt0H0GVij9OksxOm8zxBw1cho888SlSpQbSCEOXzu39tQbWDn1fzwzMB8P7GBddRmS8YyqGVWMhLIdIHHpCW3xVQnHxgOpPUeJVvYkRi6IXvTiEBBAxojV98PN7675jt+/gAXTJjv3ajZ+A3edSwbR+PtgHZ9yJqouaW8mHDYnc8Q7znqAre7npNogBOz+ZJmNp8UpRfH6WSPtqYgIzye2IGDlJM2HMv5ghATt9YnfPL7j6mOhLf++gyAegV7rwq393q6LuQYX2Tm4MysNhANByEFutijztHjEV8jVBAd0gbmKXBxp+HczoxKmGTZG0ENcfnBls9ZqcP+jMzB6grNI3D5OxP1MTz+/7Hp1Sfw+D8TXn1D5MamZdUrfbTDvb+/S1V7fF0RgC4KbecIvdWhdyQ6B7vLOfNZNdKDjAAjxVozwTFyhOkYC91syx4Tk6tLifWFyHf8+AwXwPfwnn/gOboHbt0Dx0m41ikvr3qut4mVOgJZKdWJy9iyCvJej9blqZ1/HcxEM1RjznBFkJSYa8+FGTx2acH6SeFtPyM0K/vGO/+Zo14Lz70nEpLhdHfq2QTzUOzWFXuV4CVmPPPt503Xa9CBR26cwypZWXfF+zGGJpxg2PLtmti3kHIpmdoZX5+L7LzqqFZ2z0c/MaNeC8/86HrCNfX09gxrOLXAB6YMGQfBbX8hv5805W5m1uWrtGgdSzt7uvWJCexshNTNHN80+E62lIazTwu3n0g8/VcD1ED2tnmNzHykloyH7Bxd2/LUl7/CRz74XVw4OAMIyVWso+OVG7e5vVoRVYi4bNkqEKiA83v7vO9d77TM+5xbMqWd09nHBdBp59vgJlgW6uDz/0HkuR/TwUtZrNfhMzq+Xtb4bnrdtmqLIB/rocd7nT5qkvNFyvtnnOd98xnNxNB6HuG5omRkD64rlTfTUSiDrPrjrtcfE3aCmzfUVUXlHC4mrty74cf/k+vcuHqdxeGwBlRrOP9MZbpRCoTQDdnMyDazGWRxjv12bQvZtz91Pcdc81teLzGTIniNDRfXn0z+2Y9v/VDP/Jbwgf9yQbdni3ffpyuaQzEChqGofeufjokT44i3NZ+CzDUonIPhIGPNL0Vv1iHj2WqcMwBgccFrJALx/Jxrf36PH/tv38yyX5AqaDrHn/uZx5g7x7xJpL5nExLrAD0VXRL6JHZgFJL2zKrI3swzqysCyqrvcK5mb/eA0Fs831xyGfWIqWU2pYDR+jfmYodeFCoRmsrjvbB60HPtsciP/N2KwwMrNTt4Sfiuv+9Z7Ue6EOj6wMx7zu/U7M9BxJK5TkJiE5Q2xlzwYgk/ISpBLZvacLqVShIVEY+VOJExzA2+0I9hjTL6fAhLvCmpdXHSGq59AD74H45uQr+GJ/9HT31deGUn8upJz51e2ATHrTvHtH1PHwIxJdqgHK17TjY9UQPL2nF+2ZC6juPVCYiFbFIe2oBje1quTf/e5mODIljo5+q7et7+D+bc81Q1fPTcV4R3/EPPc+/oOFxvOGqteURZR7IVrEAUNUStux6ud+35NlMbY8CZDLYoW0hUkpi5xG4NZ2eeCzNPddBz/rbj+35qTp0TiCQJP/QfV3zrPZGVV1p1tMmxThW3N4nVpuXMTsNcwGtRWosQzeshE69Umo4th49iEXylO9poIZnFJKCJ0G0I/SaXWFossj2T+I6/v8vuy8aD1ucSH/m7B9x+PHB8IZzav2xhba1cSWAcGXhZx6FR/ISZa4pW2ZFLDK3iQwYX62CMxEDfbnJiGahY97imr9h7STj3VTuXcQbf+3+suPmmyLV3moLhBCrv+L7v/QAfeOdbmGFlZwnHiy9d4xd/6VdZt60ZPyLgoEfZ9KMXhWRjNv4ifP0bz/OZ3/sSUW0sJb9kFGYlqSplpdfWZedFCwNKhsiuj+Ht/53jG3858vKHp3zIlP/TimDK8MVlLws9FivZXM8TYUkR3tPOUQyvb2Nww8I5fmBnwX5O2hIRborwK1gv7bJ/g3CfHNrxef+ChfB81lDnbjviHEf3BZ7+iz3v/vFd3vgLc9oFoLC4KSxvOPa+5Uh9rusdajRHC7NobUmVmOO+aaiX8znxKg7NlA2AIlu+Gaxh6tIbkoumQjLHg9fnlPlN4Tv/8wVX3xXpd80F/ZZ/3HDxCxV+WFVLIim7Y0ddLZtykqJZLFYRO+AMG1HukceUBTh5k1SVFKytYuh7E745TlGy8Xw95+Di/ey8+yE+9GuPc+m5HV550pj5PdcW/OCn7uXilZrFsqKpvZVsqdIlaKN1tck6vcnVGKHfcDCDh87ucX5nQdcHLl+9xvFqzdQFGbGD9VpZhlP3owWVhFJK0FQV5Hrf9lzkB//fc864htsP23qdfd7x9n9WMbsDO7OKc/sL5jXEfkNoWxpfs7uYs6gr+hDZZDSdqJEoSquRVuB2F7l6uOHO8QqPcrDTsDuvaXxJAYEShxyOhRamO2Z+T+e3vgiP/Kzj7JdlcPtXazj7dOItPyHcedhxkhzXN4mbm8RJK/SxZh0c66hEUZYLz/6ipvFCTaKOkb1Zw6yuT1lCEz9lGVhWvqYZxwMF3eWOVlJjzOvN/9+ZAavkt7su8uiPJ4PorCFkRal4HURLfb7klpimQRVglNKCT8YFo3gXtmnhtOkx1onveDg/r6zEqPE03nDdX7kU+d5/6nniRc+st+/fuhcufMXzpl/03D4Lqx7utIHbm5aA9UGuK6ESQdTDKbrUYXz299j5Zlyz0rQELNekWJTDPVIujxK1OHHJnNbE7I7jiX8+Z/8FA8k4eijiW3jXf7/D6kLMLSXH3R22Ne+1bfFEcEjZ2aKYb6+jQobWZcBgkOzCLhnC3jkq5yBFuk1LDDkBDqHuKx79xYpHftnGe3y/0p5L/MB/uYeed6TF6K346pe+xBsfvI+H7zmL00ACOnXcPFqz7gIXLxzwpjc8jPlxzII21D2L6/a5Tr7HsxHhsGtRqlzhOdK59Q7IoBk5r6Ys/87LQnMIj/y8IAHas4ATPvx3ao4fUQ4f1uHclrBj0WemJDgoNFKOk+Tn/GGibVvYjvQ0dvoS4G2zmu+Yzex+Ysrsx0V4RU9/b8wNKPs4bu3dz3mt63XDVqIxJ2d52mi4wO/7H/fQJfzTv3uL2MDOFeEd/2jO8x/t2b/sjLgVUhhbf41LkS2T0hVJLAmhMCMTSraY1inJwDyGQzQscnZJDZroxOefezzObgsP/nZNv6u88KfNB7L7iuPRjzdsLihVOzk+Wu6ZlzSNrRan4wbJ1pYls0jxMZNMI9QSK8tWWs7k1hSz8M4iPuZU+KpmeWafM2cvMpsv0euwcDXdG+DqG9ag8MZn9pm/0vPGXxPQSOMteaNP5voI0eKkVtBusa8K5exyxnI2o+2tlEwWNatg2bvqyMrCyFDuBjbnbqYCWJP2SF3PcucQ4dJTDt/2PPM9PSdnjanc/wfCPS8Lb/vynGbH0W82hBQJClrVuOSoVJkJzJZzTiIcdz0uJZITQ4DqrRa3cXBm0bBsPCn2tChz3xDwrDbB2umV/ddRM9ZMO+Kmta3K/CrMLgtxpmwuAALVCupbcN+vQ3tJQT1J4CQqnQZqgd1ZzdlFxU7tkBTZxEjURJLcvShGUvK2tqKG/ENmIjpWBxRamlRnGzOYWBRDWpEmJAoP//qM+gRrPjHskeCPHQ/+qmZQBxl6nKrqiI5JURAx43jSvznhRkE9aPlFKbB4L6WvcYYG9Q5mzjNzws6stqqJnD+RmzdRX4cHvw4NHc3KiOnknHJSKee/4KkkWolj0xhN5ZJ9jT1V7lFbYrylFGUwMpG8xkNGyEQBi/k8CjhBYrSG9CoZwIWcr2GlfjF09BpxO3Pu+13P/ouOS5+v+fb3t6wvJG4/Enjw0zOW1w2OVYf1LAqgreswkoxmV7xG9qbxMsttnApvw9NPqUF8Ba4ysI5kwjlGy2CuvEOSWc7d5sTc0VVFfSQ8+Ok5O6/Al//mEWEBr/yQ8m/ceAP/8vwSv6KfpM37du1wxc9/4jeJeTjOefMw5TrDozvHnD9zltl8QViv8rmPg2WvSLZ5cu1+Kmdq5N3k8zaWdI1Z9CJCdSLsPS+887+puPnWnsM3wjN/IfGW/8nxxD/2Q9LhtPRoS6cRPVXLW95UVKcNQsbLxsZrtiU0Z6C1MzzrHe+bzc0bkBWhzwPfmBh+ZeNU1XJIvGwp1CCDJ/ePu163Jewk4J0iDlKIHLzq2WtnPP0Xeq4+ae6ZJ//pjId/s+aer3hcR67L60ZGk+ecNGW0ozi6lvNzzPVckmqyBuTGsqPR0C2ZiTI4w7ZLisaFcgb2wq0nItffYWUoD/x2xe5Vx8O/WVOt7p6vZk06DbWw+cYT5XeKqyoiA2wdpbohWcJF6FvTsjUOWeWagrlEvWdxcJb7Hn6Mi/c+Qj3foa489+zscO/+gqtvO6JdBlyCJ76+S3vtiIc/mZifuMzsE43zLJuGqhKiRkKMeFH25jUHO3Mqga7taDtrUuArQ++xzOKS+V0yCydxtjyvAiphvXAzm1PsMIqVA4XY08fAZt3TJnj5LUq7Y+v+1qeXOIUHf7rluA8kanBzopsRxRrMdyn3Ao6RRSUsF0vaoByuetabgBfl/LLi3r2GMzU0alFOJ465F842wqW9mp064SVmqD5ydmi2lDMudsm8RIEeJCr9rtId2MvLq4ILjuZI2Hu2WAPmXehV6FTpNBEQQlC6LhkiVbRDHpPQ9YmuD9tacaab08mIZSx3GZmZ1kuyB4BEoToy+owq06+jqtSH5uIr2f2l2V6C0QWdPTMuA5p4gzVBJmeoJCiVpD3N/+zcQS2w1wj37s544EzFTpVIwRrdi1piT1QhJuXsswp3EmGt7F2x+7dnlfqs4FNiUTXMKj+Eg8DRR0hq51+zz/LuLG3d+uu0klisLwVcVWepnTssOWPUxkosk9o7a6/a9mse/nmHpMSl3/eQoN9Rbr41mECP5aQw2d9RsSuK+qCwqyXnlU9tKYMTV6YlnVoZpnOGve6czw1nJEM1powLYApT322IoWf3ZcfFL1ac+2bFua8Z83/h+xJ/8PLXaG8d8eQbHs9CFKJYjsi6D9x76T6+6/3vx4karlxKnKw2fPO5F1h33bCHU9d6MXqscQoD4NK0goQpbQ/GzUj7PsClzwgHXxee+Elb4ztPKM//SML1UB+Nny+CeMrfS9hhigMwkoEOAlXvOlfb99vKFVGlAn54d4dH6tE+vYHwqwobdMAjL1cx/jSvg4Unizf3X7AlXGcYsSiOPgbm8znHD0U+/5ePUQ/7Lzq+48cXhIXywKcquq41BKxhsYwIrYWhUbGvfG4Jl15jE0vbw4meUDTxSYxqlMpTbei1rxd+oB9c0Y/9UoNEuPjlilhNFrWAvgsYRuk0zjS6G0TcOLZJMlBxtWsyXNMYOxNaZgLlg2ZuofnOHgfnL7Kzt2+xWXEc7Cw4uzNj0UBIPc88eZtQKbON4/Gv7XHn8Dq7t7N2nOufkyY8iVoiVWMamCalcp7Q5UYZXuiTaf9eXK4PnixtXnuH3AXYMcRRsjJVVNqs8BE10fUJ0UglQnTwwrvt9wN4MQABAABJREFU/rvX4eCbHSDsHc2RyrNSwBuTTlripKZ0hQibTcdJ6AiamFUVc1F2Zo4dr7jQD+AQVgaRdz72zAUuLitutYmjTumzdV9QtaAk7DDhoLap/Y7QHthbO6/IGCvPFmPRsJMY7OWdNtD1PWeamt2qyjF1E2gx5vKvaM9yztx4+S4DrQwjKMPIVkIRulMqHz9cCFCn70zuO2Hqp4TURF21v6f8UsaaYGQUeFI+qGbNzypHU1X41LN0ykICM2Cx07DaBFZtJDkPTnPcUiAIHRCAxcv2yP4c3PPAjP3ouHH7hE1QnKtIKSDJGexon3IrUjEgkOHcTxJyBrocTt9kW9Og3Mzqmlm9y/HxHWIyJLUyV4NANE+WE4dsEnq5JdZw8JxjcV1YX1KuvLvj7aQsUHUwbq3hTNnAca9GjpR3Myvqmj1oBjo0UaRS7pdeSn+oAMFJsrCBxAEz2Ri9NSkIXcvuUxXLtsEhPPIbDVffs+b4AXj2PYH6Fz6L8xVnzuwRQ8/xeg053+LK1WtosBaxfbbaVawTmuR+5JJhh0dXb1H60iB8Tieqlp9DPsNEcAK4INz/SUe9gid+0vH0X4+c3A/f+CuJN/6UZ35j1KlSSsbTTitZOtbyTpOuRIoFvW3xlrGUeuK7x6xUiAngbAVHgT8A7mT+753PTUxGFjKVUaWH+0AEr+N63Zbwd73vvezv7bLebABBBX7vX73DzUfNCn77P5px8IzQXFEu/E7KmX3DFEkp0fc9YZL1XHlz141g5OPASzvDQfOS3Pv3Ll//VAifemdCDN2+8sL3Z1f0S477Pmv6h2uhPtnWiIYxa6SUuQzjyhRYmnxT3OiQMVx7UmgNFCCGIQNRMaakIjQ7e9z7yBu479E3sbN/Ho/nzHLGQxf2ubTXsJQAfcem6nnujYcgcHCjYefriRt3Dmk7Q6FJycBSYowQAucXDY+c3+HS7ozGwcm65biLrBPWpSgaIw1qAnlI9ckuo0KI7tQ6FBNOKM4Ay1hFrWmGJqHrjdHszht275lz+Z32tfMvOvauVtTNjLquWM7nNLMZm95QmkLOB+uS43YrXDnuuL3pqCq492DJpd2GvUrR1izidRJahTapzSEJsVdCp/SdosGSKnY8LFyuMS1JWAOiWe52I7lMTISwC+0Zm/HOy9mrkffXLvtssYiDWI/eK+uey+uOwwQ9noDQkTiOgTZFCvjFYOmKFA/XhGJ1i3yLFXs3LRcucxepMwh2nb4ilCpGKe+VaZUbTVzMBnqSBnFmNC14dexUNeeXM+7ZadivlZnkJJukuaTLYDz3ljVJI51GqDwRx7qzmG8blN1XbWwn+8qKY2Zpw4UzM5pa6EJHTFkxA4Jg3bnUDc0PhvWZXEou9RW2GPGwIPlcnqnh4fO77DXgNSF46/RVTOLC1LEK+NBtmL0Y2HvRKg6uvaMnzEsC2FQByqGpYVVlGBdSurblD7vRWhr2YDh3ajDAJaYpLo/Pxugzxn6pK/YlVIdSXe+J6w6NyiMfr6nWVuv+3MeU1gubPrKzXPADH/0I+4sZgp2JNiZeunKdLgoxOVPsnTfY0jy2AutRaDJliz3F3EwnIxiO9Ju2BORAbYOGJPjkuO8zHt8J+88Ij/6Mff/6u5WXPpqGz5f9nFqv29u/bSVPj860EUMRzFOLfGoBl/dmQDU5YE8j/HYJ5+h0HNkQy33p3dA3+rUytv/o63UL4VdfvYyIY7Np8VXNtcdavvIXN6iDc9/0vPWfNISup3mpY++FcYGKa2ALVtL5wV9eMkWniwLFny5T05OymSUJaivOPBHgp10fqsrNN0Wuv9Xcgw/8dsXi6iRr+dRmSOZYmvFny51lYiVuZXebJLMSgr4lxg4nCZ/rG6Mqiqea73DvA2/gkcfezJmz5/G5S8/BouLsYsZcLGs6JiUGx51l4oVHjwF4/Jt7yM2OvusJ0ay83jKv2K0r7tnfZbepiV1Pt+nxQOUhSmSdTBCHZNp1F8yqy+xra55TK83mmV/LmrBZGPZpp1gc1yu7ywrvhBiVV+7tuHPOFKv7vlmzXM8MElEUiMy8cmYxp64r1jFx1EcON4FN17NoPPcfzHn47Iw96ZF+jXPCbDajns0M4rIN9EEJwdzxIabcUEFY94EUe5aVY6927DWeuRecRnNHC+BKfsFoNXZnGGBBd17J4ksqrEVf4QQMNlBShWRdXw6jcqMNHIZIq4k+RZaLhlnTbNHtGIsa6XPb+zNd+IGoJ9eoDL3m50/JaXmNt8prAxhH0azISiRW7+sk0VRC5awnbVN55pKotMPlmG8EQlJrohESoQ9UDnaXFSrKqo90UfCzmmZWMZOKg1fs3G124c4SNpuAhMC5ZcOZ+YKQlI0IrQptVPoUEOLA2E+DNUynUWjTPB5kT8ZYCrZTOy7MhEfPLTmYO7zkRChxGRUqx7snTWb8jY6Dr9ozVvckDh/uEcYEIxG29mPKk4oiM7G3BkPDiZ9qCuNnM1iFueHFaHUijIc2rSkRc8VJlZOWYujpug1nvwbnv2ZwwN/+PmVz3kr9Xr18mc997ve4eP6CebySlSsGIIpkvIVczyyj36QoMhaaIyMZ6qBMbFHoXcpjEYDDLg1K5uxIkAgS4E0/4ZndgFTD03890g3oakXwKlOjanwew2ujx3wc92sJ7qmLezrOPef4s7s7zCTvo8BNzdnQUwV2wKe42zsz3vI1zvQfcr1ud/QLL77C7eOVDaDxfOGvH3N0f0IivO3v1zTP9RkgvgzEEnym2c0FKNzij27QlqbCcvjs4OotWhhbE04qozU6TLoc0HHcZQNf+P6Ofs8s3zf8YoP8Ednjmsdo0GnlYI/EWJhpeW4KgRBNOzRrXdEUbERiMHN7B+c5OHue+WyOoCy8Y39/h1ntSTGyWa0JIlRVjc8uqmffeMRqNyARHvvqku7GMbVzBG/lDN4JZxZz9ioPoafF4hZdr+byItJ4R1U39H2iiwmvjpDKjLZZBOMst16ZunuMgJ0l5RDZW1Sc363ogkEi3lm1PPeQss5W5cN/UA1Z2s5Z8hgidFGJSVm3HTEm5l649+we+zMhtido25NywaDlOwcaJywXNesucbQK9GoNETSjfS0qx7I2aLG2jzhVFl5YNg19UlZdT5eUID6340yDDFrdBziQCMvLI4cd3LsTWigM2mn+slrrzFUKxATnduY0viK1fbaSjAtZdmkalDbJFvA04WhrJ15Tpf7DD/dELZyoVFAyiEaFyrwABT/EppEVBUx5m9eOvfkcTZGbq5b1psNRseNmgMWHS2lgpxhEZ4BEoE+B3drj5xVdFwz5SZUYYPeKMV51cO0ex6PB41MCD01dsUwVdzYdimcxq1hWnuPNJiezbS9JYeyFyStWh8/QQMWEhXNWw9r2iV1NzDRx/5kF1cmamyeBXnMbVZeFS763iCEFXvqs8I2/Cu1B4tbjHReeMqCLss7D2ZgMbNtjN0iKYf0tJm0NTYRpYpk1ZvHlfU1Gl7ktpAWhTIlKKUJM1grWe8uiDgF3DR7+uOfKeyLH9ysvfZfyxp/1JFVevHLd6DBCARcagh/5PIxWby6RmoSfBtSuYbYj7x73ZuSNWjxKE/48KPSMPP/CF4UHf9Xx7F9IXP4e5coHEg/+mtui9/KM04mjVkvtSpOsifVMttIlowVuf2ccs33hrbOGNza1jc0JAeHbMkFxLLMT8rwmeztVWE7N94+7XrcQvnOysaboixnX3tHz9J83SMILXxQe/0ly/RfDIlmGJKPrxVl81QLmOd19gkI1TnCiXU00kkGzmej0WjKQizuvzP/U1e8pL/yAuaL3v+249DmbdhnvVLsuZQelMfiQ+VgGxMgsU4oT9C4bd8rKh8Phqor9g3McnL9EM19anNYL53Z22K0rvGbsaxTX1LRtT9/11F4QLzz15A2Ct3jwQ19ecPv2K2jYsDdv2Fnu0vUdm3XLYWveBamUNhncnyaPqqcSR6XgKgHxdBrpe0B9Pnel9KpYZdsLOD0so/Vvn3WoKQVtl+EvHW7huPLeQKyhauHSl711SVEQPKsAq66nbTsW84azywWNd6TQ02/W9K4BPCqeoFbioNEEbUgWp/JOWOw0hE1P2/fMas+iccycIBqtUUGG4PRYa7xlXbGoHEdt5LCNMKEjgNWDRgN+DfObZT2U0rFFsdi1GI/HxA2Az5AXVo+7TpErxytW3Yyu9JQxbWyAXz1dKVCu01beNj2Pf+jAECf7NOXzun38R911Kox1+KBgim+TccgdibkT6tQzrzzNXsPtVceqV9YaWNaeWi0XICF0Yh4QOxOJRe3ZrRyzWkh1zZ1VyyaB04admxXV2lpbXrtX2SRL8GnbQKRlXlc8em6Xk3XHpovEXN8rFMYpEyY7Ad+fvDaslOrYdEUc66Cs8RZjpefsokak5upJR8F5ksyw7esJknDhC4Jvrfb2+js63vhzjZ0BDJkvDXuaE4UmO1O8dltCSgAtceE4vpZ3JcaIq0qsc4JkJgI5SVUHHpRIMRh4kfeGNhgi9/9Cov53DcLyWx+LvOGXGlhbAqQrzW0AnyklMTbLGCxHyWuQtbWinEz5cUFHM5ZdlMmJ2VjU/YnRUnjuNEvZ9fCWf+j49g8n+j14+m8k7v+Uw7WcurKRM6H3IYtf7gblSMkE9FTMTPm8E0eFct473j+fm8IsBjryORGeFTfEvMeYctnbbcvXPKWM43stD9drXK9bCB9veqrKE5vE7/21E1YXLIvtO/77ip1rDERkNW2jRVsEakF/KeD6mtKWFVwWZ/DvTwh2oquNL042dlgMmVrLo7Zz/S2Bm0+aK/KBT9XsXPMUYphe2ynrEwSpTJRjfBhrNJ/SlgtCU0BweF+z3D3D/vmL1MtdcJ6QEnvzGRf2FsydoCEMyToxu1TVOZJAmyJt0/OtNx6BwM6div0vd6hX9pcLFrUjdh30EXWew65HUqTBOnqLlLEaJnAbemIIzBdzzuzss7p2bOunDMQ4rud2IkNh2MXNYwzNakgKHGOfTImokkNd5KV32lqffdmxc1kJSQmpIvSBLpyAwv5ixsW9BbUkNl3LRixccbxq0QSVr9Akg+tdEaSqrVd0spj03Duc1MSQk2UUAkqvtpaiWHJQBFKPx7E3a1DtWHWBWOYLHD9ge1itYXZTsS+Vd/P+ZkaDmrsTJxmWfIwRqnjapIRVwDVCiTBNY2qDQH1tWbz1+qAm5EO95SI8felo1U4bcWgREMNeW80oWFe0ee2Z1bUxkRhyiYm1MgwhsnAJP685SZ7DNrJuI70T6hxzr51Q19bZxyVjwjEmokDtPQfLBYebyHEbaG5CvYF+B27epxz3kZACqLDTeObO0xDZ21tw82TDlVU37EJRiO/2GpTlyEEVYRAcY5a4eV86MYERUGI0PHWfE+9SLvErWAR9MGSq5SvK7otw5wm4/O6ekFpqmWUlNp8jFMRlRW30oJSExqnXaRDYUwVC7dlW8pIG5cjmbkzGrOuYS9AUn1HQCp6CeI93HjRw7mvK2a/A1Q/Cix/uWZ3bYeeyUGdLO436J7lK0Z41AZiw11zW8EoZ0jSbO1OXjDx4Wi50+vVSJVMU3LHczPb1vk857vms8PKfVl7604nrb09c+oNpmc8o3GXIKpRs+J22eGUyNh0a/kyNrhkGS/loXXHOOfZ9hj4W4ZbAJ8XRT/jfFn2V8za1vMtb+v9n7U+jbUmu+z7wtyMiM8+55w7vvZpRhcJQKAwFECAJAuBMigQJUaQGS7JF2ZJlWbZXS7ZbtrTcbbfd7V69VvcX28vtdqt7ybJbtrXUtiiLIiVOEigSJkgC4ICBmAqFoQoF1Fz1xnvPOZkZEbs/7IjMvPc9kAWtPliF99695+TJjNixx//+73P/+gNfr9oIp9LE/vV3jXzpx8w9uf8jjtf/vPlSuaRjqzKvXs40fFmYZliKGOfvnWph08ipSf1Vb1CL4j/vCVPes3zmc0V34On3R4aSin7DLzSlhWj29s7n8bVEuDbqrK7qudRXthYrcR6rqUYMVRhYHZ5w+fLdrA+PUWcRHYATz26IXL91xsl6RevEuFhTIuZc2gDK2nlHf0X52iNbEHjDExtOtqCt4DQSB2EcbTJSRhDnaEKwGk9UpAwvSDnhc6RrHCcnKw7Xa67vhuIkzdHeslXmfAS1BPtUR8TWwgHiBd+uUGJJuWa2l+DlN5oSufurnsMbDafDQB+tUebSuuWuTctaEpLOSFmtNKAZ5x2N90gWzna9pTjFk70jeGdMYlFZFda2pIrLiVQmJg3ZnIOoCgUZ67Ch9U4g5kTOkZXzNKuGXVaGmIiaOXvQlE/YQveKGBpXUxEOS4tJIbSwtfFFuRbUtP1wWqtcDIFOFJ+TcE4yN6f4z68508Guym92BrR+zwUjbMAzmSLA8++VokerAVY6Jxx0DWTFS8CrZXYs8peJqcw5cKp4US51gVXb8PLZjn029PelVcs62DoMWYnl5lPOhllAcKocBE8Wob3aE3Z2zzceyHjfgA8QFVFnYzeHEU0jh23DKCvOYs+QMnPafj6rswO5DI3KmcXkymA1jj7DWTSO9LMxMQ4DXuCudcPRZs210x1Xtz0JoWlWOPGM48DqhcTRl4Ubb1KuP5o5O+rZvKKEtrP+UObvhGpTS8p+eZZ0sZOLYGPObBRnIxc+AV/JXkpZRhTUl4jYruuwdqccoxHzOPDO0W2F135QefG9mdPXZJ5/X+RN/8jIjpA0ZWUgk+uAmznMnZw+59w0zav+7nzqeTbG559zjpLP//z2V72W38Fb/7bn+e+N9FcMKX3PJ93EMV317xwUFadgunaFyM4/rzpOpmipnD+F71yt+IH1enJIa0S1E+E3xXG6OJv1HuvV5wDmwnvq+yZ6zz/49er7hJ0QD+ATf2WgPwG/h3f+Pz3dtRL9pkQtWM90kyVaLGxXIQScVHTfHYywmEBVAZ11TQUJzKxYcwSn08Lagtg168SgcaM89SMDCBx/1XHvxwPzxpw3wNU7y5WgY/K8z98jWlNFmSWwptsccs9rHqY9PLH+VzWDTRmQPSbl5m7gxeunXNsO7HOhu7ABvyVdr6SY+OqD1zk9GZEMb/jMmtMXrzPGTBwz/ZjZxcRYBCGo4nOmDY5V15Iz7IYBzZlL6zVXVi0dtke39qPFeKXtxNK2swd3p5RoffwJFVpTZE7YxZEhS6HMhOcfzexO7BN3fQJ2N3sSkYPOcdx5WjIuR1weESAlZUzZELHJZkanPLJeN3TrFQlPVvP5j1rP5YOGVaOgsVBQKk4yq1a4tGk43qyM2kGECEQcfTRj671wcNDRNo4gyqXWc89mxcHasb/X7jlsYfWKGR6hoKSn5wZKbe6cDSiSUnmTbSxcnhZ1qWQrSChrqnrunNxWEatrP/2sKsApqr0YSd++X/XfohmwwewHwXMUGo7bxp7/oGHlIjFZSjbiqQPqkhpd6D479lk46/do3HH/Scf9xysCyq3d3mZEZzX7nSAl62EeorCPsEvKPo2MaeDkppuoK3f3CdJJoU4sYMME/ahsh8h+P7Dynk3npzhsEepOmZu6frnuUXWwgWlihJqTcHU/8PLZwG7MdG3D3cdrHjjuuCtkXndpzf1HKxoMxBeCo1utaFPg7k/a9wyX4eablZxsAISWARDAxFhfMw71TC0NcOU2R8RAVwXtPLXy2MOYQVWmaVQmcnWgof1MvA2uMaCrDbhJORFLOezhDwaaMxuQ8OSP7klBySKID8YTAOUsLwS5ymQtXZS1O2+MqkGeAZtLRqv5OhfBT+fBS8sgqqrzhz/ouPIZe8NTfzRz45FZT1e7cTEJsvy+i8Mblt8jUtLFCHc3De9arcwAO2f/iXBNhH8gjt9a0BDXezx3xqYFqc918TzOZ/YPer1qIyxOeOaHMl/7IRODh/6Z8OAvC2lMFlkuotyZbnIx47eCmYQLc1IXNyOTmiqTScp3S40QCgfutCBKbTO5GBnUz7zyWOTaWwpz028GDl+Y683VC503CZR8uyFi/gjzOYf6reJQ8RweXcKF5tw4OFO083ckdfQqvHK244Ubt7jZj8Si8FSzje/TyNPfdkr2Sts7Hvp0w24/cPW053SEXYIBiwyrV53FSFRy33PUCHcfrlkFT0qZccyk6OijsB3mqGyKgac09IU9n+RuiUyclY13gbNdz63dnl3M9MBzb830hyAZXvM7juNVx0OXjrhr5Vk5a1O7drrl1qAMickj1wwxwTCCSoMTT3COpkTBbWhpXEBSIkXj146U6E8U0gB5JGjmaL0mqdLnTNJM13gOD1as28YIVHJGcsKnyFoTJ/esyJdN0a1egWZXU4xze5KxuVVuXFNOtiRLF3lWTvXnM1ftRWW0PKIXPeaFE7qMgJXFtc63yYgaD3BFOCMU8FSmFeXyKnD3QceltmOFJ6iDMRNS5MoqcLIKSDbHRhFrFcIxpMxuTNwaE9uktE3DSRAeWAdec/kA7+HGbuDmLjOWaDbjGLKnz45tNDrKG/seAe7ODSfXDY+wPc5sDwyHkErpZMyRPiWG7Nlnz63tQIyFZU51sYwzWKa2DU6/mRQjxdE0wFFSJXtP13Uctg2HraORRBx7chwJaeDeg5b7j9bYeA5T6gfrAx783QYUhiO49lhJ5+fE2O+nSUzW0phAdL6npSMlVbvN/65KsGTNJ3nIKZ1X9DVDWNvsyqQ48R6cjXF1fuZdyDlz1+OOK58znfv0947cujwYeYuACx4XghH2lNGkM5lm6Z1Gp/S63eMy1Xv+Nf+Oc7qiPs8y67N0PM+jnqG7AW/5Hy36PXstfPlPz8M7ZuO9iEwX+qlea1l/ru/Vcl/BOe5vGv7U4Yb7awcOsBXhN8Txd8XxuFhf//IpK23xFIHLYj8Xf6/7W52SV/N61eno/kj51L8diZtCtv1fOdozsZJBEaZldFuNbu2TncOp8w+0fM01koWoTuHwLAhz3aF4aWItJReFQ4Gnf2hkOFbcAG/8hfbcoThvbKtii+fT2UtF5+qhd6QpGrbqj29WtKsNtXmqjsea77wgwcUiX0GIKdOf7emCYxUCnXccHRwgB5mn3nqKCmxuei5/oqCvnWObQJKWtJNx6mYVXEy0krlytKZrPX0fjRhjjJwNkcPVytp7Yk0/MYOyhHOHZFr2SaRmBKr5PUojwvHmAESLIR7QxvG1d4zgjEP8Lc8dcOIysd/j8KhzaLBsSZ9hOxqbmvfWX5tFcFhk7HBsWkfbOPZJGFLi5dM9LierP+pMr5lVyOIZktqIumyxXOc8ATXqw5RIGHiMBIIjZXBE9uvI/tiudfScJQVtyIHgtJpUQdT6vStA6zwAZ/bWZ+O80BQXw9NJtu7s8J0DgtQrnbv+hbqoTDeKlL7f1jvj2F6v6ATImTHHQuomFulmcDFx4ALuoOX6LtIno16NMdM0Nra0nlvNkMaIc5m1gwcvrXnl1sDpPjHGROcDASGLsbZ5LQ66NmXwS+TS8/bM+xPYrka8BqQ455bdEXTMaLI0shSk/52U2vmIZN6LxTLPP3BCcJ5WI43aOUpO6S2PgZQo67gLuKblxpDZjxmc5+6nOrrrPf0VePHbM28R8Gro5TjsUc2EJgAOzfM0r3qPtcNjutl6S86jBQ9R+/Nrlg0y1iJnr1zk0BzBek2HuKohpUIByTkTbgkP/1PHC+9JnD2kfP3b9zzyc0rTtOAE540MJI2jGWGpxDm3y6Pd153k89xuLIz0bZtA1SN1S+bzshjSoPD6f+z49L+duPEW+NKfSbztv/dsnrvTd+viWjo99zL17UQ48Y5LZSTkZef5ofWKy3Wuc0FB/wrCbxVHsBy0i49WygvF6JY/Lzw9UOmMzzvev9/rVRvhp3488fx32S0+/HPC/R+tZBr25WmBEvbeTQZVyirVm8qaJhaq5YYs235MIGsLgD3Yso912liZjcQyqK/XjhvlqQ+MIHD8lOO+Txr4pF5r2qzqmZWe2YuRSRXKZauOnal6HU/TrQnd2gysgLVgzSnuWlspVdwyu1QQb4ja2Pdo07DpAjePR55+vQ1teOiLK/S5HVqUbgge54wtaojGnrMKnqNVw2EjBJeJ9VCpjZ7MPjCI46xP1o5hYYWlos/JyfLwzB769GcxGgqFdMBGTxo1pGcImRe/1WTk7icdhy9E0hDtfTnZkKZcHXnBh4b9GNmNCuJwmjhZt1w67Ggaz7Dry4Q5Q5WzcjgVdvsBwfp3DXChDFFBE8E5uq6hUaUfIuIDMWeGGk1hhseQrUpW4dZGJyN88pywbo1RLCajYawiIou+tlmfuqoTz3n65xyw0pJ34ZNw7qDOP589ejP0QvW054j4YvBcyTZEoHGOtXcctS2NE/qhZyz3GlUnIxzVBn8ogmoi42g9BGf75YI3ys+kNixCLJrsk5SBW5mgkSuHHa5Vrp9uOU0jXoVNZ1SqTpNN9ioTsGLOnJRRov0JrO47IDw3sh0j4jxRTUa8OKOXBBtbWXRejUSWdckpq1AWXC6KsVKyUo6Uo00rIpOcM3YuYKcQJKAZxjzgRLhvs+FsSFzvE6tXHCdPel68knjp25TYCG5vSGMP5NgzaqJp2kkOKjCythfN9yNlX01hp2ln5z1WLajnUDA3OhUi5gecOO2LDBbj7ktklmPioX8Kn/qrMBzD038k8/qfj7gBQtOCc4RQAHnjMDPlLY0ty/WcnYSZCGOpy+U2vT6J+fTv8hTnjOiyrmtkOY/+lOd3/uPEjTeb7Xnsb/lzkbUZdLnts06MrKcpxE6vbwLvX685cnMGy9doWYS9CL+B8LviSFWApkNcl8OM9XzW5qDNnlmp4DVf9XyedcUf9HrVRvjjfz2SVtBdhXf+jUDbe+OVzTqljq0eXIYacAfvnpncG+YDhciUbqkPOXmO1WlUqKzpWlh+7MfnUzzLa7/8jsS1N5dU9EcaNs/Veb+zF1bvyz5T56zWGGde7PlZFghCtYgKhM3RsbUGaRXEPN2I1SJq3agAvyhKOtkVRlVu7nr2/Z5n37Ln6t09KLz24w3prJ+fVEFTRnKmcdCGMrlHjKoyZiMHMc7XAowBmnZFHCNZ0uQYzYCLequz15o12+SU6anLOlVD7BzXz/YIicNVy8lB4LnXD2xfY5e89LiSX4Fego1p0zKOMJsib4XiUDj7fYwcrzqODg5wkhmGwUBTJVj3WZCU2Kwa1u2a62cD+z4hTiEnMzoHnfFYZ2U3RJxTPIl11zHGxFk/GMtWiS5UwWXlxjqxL0QdV56DjYC0DWNMbIeRESHJdOSKUqqWQaczu3Seq9GohmOpeKa33Ray3S7DVQlO5xzlnA4or5VzXGoCbRNAM14TTY50IqxXDadjZDvGqW6tCgkb/tFrLu1gkU3jOD4MOO+4fjqyH9SyFAo4y7qM2fZfs0NcyzBEXEpcOmjYj4ltP9L3Soc3GlNsjpqBvxyHzxjSZn+k7NaJS21gUIgx0bUNjQ9GWlOGFlgDWJXPhVIojkpNAlRebNWiESarXc+ifS5npSeiBMiWVUlYn3fWTNN6jlaBe68cMAyZF89G3K09d33R8eK3J7YPwtnrHc3jpa+47HWOI6MqTdPhvOkJ08111GrNnJ13dEXsDEyPNd36DCqr8rDUdFp7kdUiZsoEIHLplwYuf0a59DlDST///Up/jxKeiUQtwDJnc9mj2jS7efTgMhvIOUN3LgFTs4E6R6NmIB0XkdauDq2ZPdgL15rf+8jfd3z+LybOHoIv/IXMm/6+p7uxPBsLVDbQOkcjwrtXHe9ZdWxKW1sQIVRhmITCnLLrIvwSwueotXYm+Zr0/TcIZgWMQIVaUpttynm80h/8etU14WtvN43wyD/w3PvpYF5xmc1a68HnZ/zOZswWjcXElnnBl0jq8/l8ilNitdLJ1Z1c3vkhJ2N+YZWe/qGR4cR60N74882k9JYe1Ty4YAEWO3ep+TNVGCcASHlfCA3r9YEBschUjugyR27BjV0AF/Ubi+ZWhZghIuzV85m3XSc5pd077v5dkGwKX0Xp00jKiaNVy+V1y1HT4iRw42zgep/YZgwkFSGqY4yAeshiQ6ZL/bx+9x2lbLEXs52wz1Uj5ASCKFcON1w5WLFKA9fetGc4tLW59xOOq6d7Xt6NnGZhl5Q+WrTlgg1u2I8jTpTDLrBpPfthz9XTM27uI0MKRqWHA7VMy5iE021k6JMBWkQZU6JtDZDVOYVxQMv3xAQ5gQ4DaydcWhuJxphhyNYa5kWIDwRyY5ty9JwZ5pVzXD7ouLxZswo17tbpIE+ZGr0IWlkIYFWylcCFJUf6xUH1d9yGc1eb92W5J/a7o7blctexUvBlb82dzDgSh4239qxslKdJDUA1JgVnbTlNCMaDPES6lLlv03F5FYBkAyCylCEWyi5Fbo2Ja2eR091I6xxX2obXHK65Z7Mm5czVXc+tIZdhDEJSR0yOw+ds3F4K8PzRnhQjV9YND1w6pJVMHHsUcxJSoYNc0lbO2azlCt7u8C8jLQo5yyp47r18gkPos7IdM7sh049KSpR+W0HzSL8/ow3CPYcdr9msePhTpS58DGfvChb1LjIZTqzFa+h3pDhAjgaKq9SputR/VTbcxB89/9Ych5yMyGMKTWQ5HUiYjF3JuqgI6hxUmkvv6frAw7/kIMPpw/DS+4rDkKyenVPpdg8NvmltjnG9v8ko6kI/Lw1gNVjnDeidQIYy6e3bsSfnulzKl156Qnjdz1ue/ZV3Kl//Q3m6r/k7rMb7prbhzx0f8e9cOuEDBwfc7T1r51g5R6g35wyjk0QYneOrIvxdhM9OBlinpb+oEWutd47k54edJjnVf2slN3m1JvibGWUocPA8vONvethaZINImfBRuV0v5jHqTdvtTOwrF16uINNuc++5cOBKC0/NzS9rajUtUAUlrpWnf8gIOk6edNz3yfqo1QhlUrZaTCi1EQNWzIjo2nS9TEXX+5/y/wir1coAEVOqeTawyGzMrM2qRO45T8821ZGB3ie+9pi1JrU3oP3tyDYmnI603rFpPQetx2sm11mE6oguEGOmj4Y69i5QwKo4lLN+R59q3kBLhDF7bhcVvqsECei5Z1fMcztaNZysGoL2pG1k0Mzzb1NiaxNSHv38is1KOd31bMdIEwIH7QqNI5Ijq7alDQ05DQzDSFIDejnXsB8S2zwg6vDBGz+2Wi17SBkXI957jtcrxjGhKXNru6cLhuodk43Q1Oxsrm62CTHG0Z9pxIgmuuBZBcfpAzZQOuxh/YopNOPGTXQCV9YrzobM6RCJGAYhVyMqUnMaC0dtPgSK1bnrQTcxL3L+DU7pUqGJTBJr32PHAH8hitCcyInJwFaC/liYkVDF4zhoV5yWyWZt27BqHaLRpkFpJmYhZscQleAGDlcOQsPVs8g+wT5m412uZ9sbGAtAU8I7uLwKNH7D1e2eXRzwSWiCxzjWILyohL1xG998jZW1Qo40Trm8abm5GzndJ7ILVJ7v0iJb1kU5x0hVDIZUrAM1kpz+BoUrOaaMi5mTruV0GBnzAD4QfGMlopTQMZNUON0OSFghIlzerHj7lzMfTFtSB1ffmnnzekNyjmEYpiEhvsjG2O8JTYsP7RypyuJ+JwfKmLGSxHkvqz0oc3hrqHTeybOTOActdXayzKlTIyLjdb/a8Hv/fm8p6T+cecPPNzBaS2nf72lYld5ojxdzVvJC152Ts8nhlDv87M5Rcv1dznV++qznp2ctOijXcl6Gt/wdz5f/xUx/GZ74c4nX/4LDD9VBEFrneM+q4wdXKzZL+swL04sU4asCn0XogVsifF1hW5brNgDu8tnQeVpemkuLInLHlPOyVuwuXPcbvV61Eb73t4XX/Ipw8rmicGorUvUC6jdf+N451VujzukXVFDO5HQpTPklXV5y9vqmzxZlZkZTZqVg4TOShHf+Nx2HzzqOvuY4eH6OXHIeSWm07w9N+Ugd1rC8v/L9MkPxc65Gs5hOEY4Pj+mahhRnQ0XxTkVrLy7URFQdATZH+va5uvlv/YXLrG56ZDvgns3sxkjj4GDVsQrClcM112/csIk+OZNyYgYCWGppSGrxi2a6riPiUBKurt0Fb/VcKhUpNqI6ObW+bQsjAnEc6GXAkKCOrMLrPhL4rv8Gzq5kLn9lZC2esF5Ze8uQuNWPHLeBk5MNrUTGYWCM2Yjj87zTbWjI4jnbjfS9MYrlNNBIZrNqWYeGlKGPBrZy3sBDQ0zsxlh6s22/s1iqvx8jXow8IngzwmhiHEau/J7yvr/hGTZw9LQ9a0pxmmyF2BxXV2hX7eTOlHrLVFSVw2Vqf163ZQT3jRTR7MxWWZmd2fqHXeWur3je9z82OFWOv5jYx4y6QMIAZbEo8JgMhDWORnxxsmoNvLfbkUbwUko8WO1xyEBSGhVIESeBVeMZNZFypGs7SzOnkTEnM24Z9pppVGlSYiMOt+643ke2QySOiTFnDrqGu59v+NafyoQt3Pu41fRHVZwmfE4ctYHWtbyy6xlQfOXvlsJ8JNUhMV1Rt6TqgguekEWiZHANY1T2/cCVVeDek47rZz3XzgaG8hmPErInJccQMWBW0Sv3PRP4jl/a0L4ID36s1N+7DkQYh35CFFcnK449ZMWFFrwUN0oprC8lZZsmR/2c0itZDDQhFL7o5XnFzRK0HDKClQxkqoE67v4cPPzBSLilvP7v24gO7z0JY/wbhx5a8D6geFwAjbF8/yzHy2xg/RnINFTiImDqfHR8XsarsV06rBMze3nvXZ8UHv4Fx3gEj/23Hp/qoATYOMf3dh3ftepo6oWWtmex/7eAX0L4WvFoHVIc8oXc1OCI+TnOt2kuPWY9/7PFca7I6frcr+Ylelse986vf+2+FiKsbs6I53OQ+4tG/7w8TQQYF7/NlxSY1Ekj03PpuUUwB2Mx9EFKlDzRLC4M8eIQpi6TgxJOzXOJaSTnkQr3b5rWgCqlLlkNq31PqakuevlysjpNHVbdtWseefSt+HZlE2P6PcM4mqoVT2XRqfHMpDFgciJQtUOTzUxnVfCZ7f5l+mdfRjThRAgom0Y4OeishqRlgEE2gool3acmmwMbgnBpc8L1s4Gr+7EgyY3RKOda/4Gl8AcxQE5tZxBxhlTNFls3Dk7WKwKJIJRRbqYYRk3EFayip3WeGCOuadHQcrrdMfY9B13g0kFjiOWcGWJmTJngA+uuxYv1mA9ZONvb5K1N57l82NFKRtPIkKAv4DSv0JYWjT7DrX4g5RJ5qN3v8aolYEZmFyNJbWxZ07T0oxnv1LoyEcjUgXeOMWf2MVnNkmVykCnzYUbX1tAUVSV494vJX0vhNvnNKZ0rVZw7/Mv0H4LzDc6HIlfWx3xA5rIf6MTqtn1MnI0JxdGKA5cRks2eLffpNLNpPUedyeb1sz19VNR5LDNtkbsN5xFiTsSkeC+susB6vebsbEvK1oc9FL7hVhyNQMC6Wb234RZn+2TnIo70ObJuG9ZNAA85ZpwqjVg9r3EGJHTiSOK5MSau7fY2o1lhLCAqpIBr8GaExU0j/mp5awoOyv+50CC+JeTIgxu4uxnpnKXmb43Cizd7BjVMS+e9gZu8Y3W4YRgiXbditWqQjYOt8sr1M67tBiLeUPqa6fc7xkLyM8FSFcQ3uKYzxBtg0uUK+YsZ2jj0aLZZwTo550JoO3y7wkhiq5tatEnJ2lHPYBk8UZHVlQs658S4ichpQnszrCFYe05KaWpDaroOHzojbcnZUuoLHoTzka0ZTKOF9NOMgKWhngFcC7FfZhVZtBAp54x5/dB4GfwohDO7uBPhbu/4wHrNm5vGHMhSC39ZhGeBtwLtlLG013MifFAcJ6ocA59DeH5huKXoOQq1smV5a8Q7G60J0yTzXhTtORlmJ9ZF8cl+4Nefe4Y/6PWqI+HV1VKTCBfg11W3LI0u5/9uo6/Oh+5zFLxwh3Tx2clm6STMs2EuEYm4xabPHpvZ4QKE2iuimTFFNJUDIvVak9M6EbfPApMnxQqzYbZNqRvgODg6omk7VDOtA7/yDJJIWeljLBGomyPg6g8vPS1xE+2a5nLchoheGwg+EMdMFseomdNR2d3c0wZP661jN9XUqELKkdbD8XqFdzBm5dbZjtMBA3JoMjU5ocCr97fYrxLdTofchv6WpRUaD10jBGnwCLv93lC3hWil6b2lTFvHwWpN01iUKp3QNyv248hzN7Y03tGFgKrVazIWsaaYyGnAhcBm5UnJk2Pi9HRP1xrhS3U+UhZSua+gNn+2824aprBpGw4abwY4laEPUqKqpIgmNq3QNQ03e0u5IoGYIjGONjISwFUe6JrtqH9ekI3J4bKlPZfqqgQb09lfHGI93+u4PAyT2i3POQMHrVo7ZquRt96h4jjrR/qcaMWzCg2rNpBSYogJJdM4XyJc4WTVcTYq13c9saRMRTNELa0WgVTajYImNkQOT1Zc3fVcPRvIGhBVcmMEHRlDTqcxg0Ya7zjuHMfa8MoOzoZEjMoqeByQndCLnYqUbY32KdGPA0NOtI3nYNVwa98btSs1/e9QV5fz/D4sldHkYOYMTslO2OXIXjM+R5wqG9dwz9EBL5zu6aOloh0JiRBDU8okRgnbbm0P7jnaIOK4vhvYo+Ad7cEa3ffEcTQ+eNHSt5vQocdLU1j2FCYokD2BOON9rhn0GvmmFG0cZzmPs9qVwnOdpxURcWZ4S0uolgVw4mlPLSGgXkgplpnEBceTs2Eu+h5VjMVMbJiMgbXSnOWZjNIc7Z5vV1oAEBcG9k6Z2Tk6Pn+G6oVFhNXN+eioKvd7z5853HB3pZh0JnOfFvhVo+nhDao0y/BbhNcAP0nmZeBFhD9O5qfV8TKLcmF9fx00VDoCzreX3flVDW+VPqAAY//g16s2wrX2C+cVSM2B63Q8br9bzXPdcd6U85Mplm1DVdmYQlh+iPIed25R5lS0Ran2WZ3GfdXFsCldMv17GqeYc6nRLu6m7oc7D4Ov/0NtTY6PLhUPNJPTwKrxXDk5RNVxc7fn+nbPPkcQqzur1uiyKNfqtVdhLoc3p5Fx2EMcZ8fDeeO8VRiHzM6pDXsAPDZ55ahrWDeORmyClZOG6CyVaOviScmICBY7NO9zMaT1AJvHzjnxcs6bx5cTTmC1atgl2I8Rp46u9ZwcNhw0DWkYkJxM6efEpa7DrVtOt5HrZzt2Y6QNBUU7jkRGVk3HUbvGe2FMiV4B58nesx1s1JuKjU3IZSTjgDKOJZPhPJuuIyabMrNLiTH4MmVFpmRERAkp4bERcW3TchZHA7+VZ6cYiGpwJ8zAwtDqBVlUrSejSlStxNc1lTrYaPb867XPGW3OK93JSNtlsipjNsQ5SdEcCxey0PiA00wA4ynPpva9OFYHB6RxzzAki1qDsFo1XN8ORGDdNHTOUtqprJlTA/YN40ArjkvrBhHP1Vt7IsKYsmVjSpSnOJykMnhjJDjHlXWHl8StYeTWEEsfs4G0RjIUCtdRbCDJ0brhuBMOWk/jHbu4tbqiOipvt1SiCVfbpkpUVeOEyTfX0hYIfYQxeHoSjXhiUjRFVkHIouzH0VDDjbP0ujjjvkeIPk965PhghQ8NL986ZR+tL7/tWpxzjMNQsmXWZYAmxj7blLTQIMUxr/Ig4hEp53IxMMGMQQZf0uLVqcAUf3WWJ/3pzBCbFqy8z4qRGvmSuQ7GZpiSkXy40jVSU9ON0njreRbfFFa/dM4JWOqMiad+altiFtzFJpyPpM//ffmaM0HzftYrfVvXcrebg7ce4dfF2oz2wErhZeCw6MyqV1WNK/rTOfPrWfkLbeARVV7BTW1FE05mOse3n8tzba1T7Gj/nlq8/iCLfeH16o2wWxjdabUoSujOX2r1iUwdfLB8MOstddzmATFfcypyV6W2OFSKLOpli+gDyJrIsbB2FRsuMI0mBCmTnGr6o0SFCw/O7qkY/PKa7r38vm1bVquOHEfa4Fh3LSsfcFlJGjlqA95tOB1G9kMkKWXyjisHhOlQ1SjcWj8iw7BHUyy92DoJkpQov5hr4pjxZDadZ71q6JyBSwZRq7d6GMrEc1FTMvNK1Ru4EHmVNZWS/slqkTvFAHgJpD4zOkWdoi7TiCO0DeAJzgaxj/1g3r3YKDlVWHnPqkyQcrTc6iPbcWSvmcMucHywohPFxUgcbd5pVkGT7bH3geyV/TAWoTfYkwgctQ2rJjCmzDZGS5WXnvUhWk3SiZtaWnCOvcLZmNmNA30qKecCSqsZmCph8yxpmOYxL7z9c6jQc8JsH5rRpMWoL663/EQ9O9MXT0GGTvKLKDnDmMDlwlWN9da2AgcemuDYDwP7wWj5LP4SXr6xpRGHqvXNjtmyCkerBsQRx4gmiGK15CyF1APok4MoBIUOx2HXcbPviWlkFVq8BAOEaSZjfbIxVgc8cdQaxeKNfmCbEkF1Ok+dF9quoRWjslyJ4lMij5HGNVjM4xB0jiOF4iDNE3lYLNe8X4X8Qh0xCn20qP8sJ8ZkuIrWKcerNbsRru72lr0ZBwOOuWBzvtHCSiYMY6QRx91HG7b9wM19DwhN0+BDoN/vDeilZXIRSoqDOc0+UEsEk0zAlBqebV1GU8L5Mmq+KIFzz3ru+JYe5Km8Vzoa3KRqpvYlTZUD30ovhoDPxHFAVGmbborMNVHQ2mZ0ltHr+desR879dBENV6Pm3PzseuHNy0/X49GJ46EQpoh8h/ALwCdKdkuAPfDTCN8H3C/wANY3Xb/gdU7YOseRKi+JL6XI2YlZ3vltteHFG6ohrkGjip5/zzdhiF+1EZZlN9PSWV94BRejYC0w+2U4P0f8s1E/9zmdo+r6/roJlumzFZ1RaKZaahqwplrKm6n9anNd1hrUQ7CUS85p6g1mISgX133yinKJZBE2mzXrrsGL1ZAcQiwpvyygOILAQfC03tPHyK7U7Cwqti+yWlZV9CBZGfu+rgAodF1jIIoxUkW0ciQrFiGmlDhoA41QDJOQ1ZXRhRVIpMUAgMjMOnX+Yc8bBkVNyAQqKEbEkyWTJbMOwrpriEnZpUTKntNdtMlFwaKWpJDVcTZEdsPAEAdSinTemHu2Q2I7KpzuOO4aAkJUGJMxMTlcIYwwo05wjEMk52hI7a6hTRlN0Yg21MYgtkDrGto2sE+J3ZjIpeEoxcSQMoPWyHqWbS2GoApsTWvO5YgiijLL9B2W0Qx+qQlfNBJV2d5pC85dg4WoT+fC5L8pUW/WGhlHEGWzXvH6197H2XbLk8++zM19NA5u5zhTNe5uyz2SsqFiW2DlQUPDrX5gm3IBuVmEGxX6JIwCcRjo+4h3DXdtDsiaON0NjNVpqvKpvoDjIko5azkQxBGJpZ4qtE0wkhWvZUCKrb1RKAuJVGhtq7JZJuUvqvw7rWP5n8Cowq0hss29KVpv/dXBg9fIUXD4g5aXd3s8jnFIkPeIOwCMqtfAlcrBuuWobTg5WNHcOuPq6ZZBIYSAdCujtSzYBydWr07jQE6JENqCvC1NMMUBF5YypeQccdoyZVOYdeRtgKEiVyauyzUS46rOJreWsRZIFPa5NM1xN6rbEdQwEyAla2h7M6eb5++b/1x6jcz3U53OIvM1u1fvVaphh6nlapZ50633Bc/xAgX9ZZRPqBApBb9yHy+r8jOY0X4DyvuAlcATItwHvAv4Ded4SmQ2wOdKQOfvGzkffNbOnOXaX0y5W6fSqzPE31SL0kIC5p8t/ry4/FpC/KURrcpdxE0PVh/qtqhY63vrprhZ6cnMbKWapyESFeFc5xfrAjAgAsE7G/nlre5X7/G84anCdb6NWlUnMI73nofuu5e7Dg/IWdmPkW1vTDsu2Bj6nCKVvCN4R9u2dENijJkhGeAllzoOdWMVoxfs99OKKpXCDyrQq96ZSC3XerZR2cVkEUWjrJrGaqa5GutFSnVaa73NiEzyWFLn9XNOCpJWlCxGnHHUeLyOxqObbFq7947gPSk1DONo3L/OGTZgb5FNCMJBt0LVBluE1ujjhmHkpVt7Gu9pmoIKdQ68Y0wZLdOYEE/XtMQUGWPiVk60zlJwQ7Ye6drfqjkhmmlDQ3QNN3Y9Q9IyaEHANcVY2pNWTm4thCtzVEIVvnOCPx++WQndlpabMjvT4l6I1Lj9NTmq86VEZcFsJHgPLmYDlBRHU1Fiyjz/0ivszrYEhVXbWq04JXBWi18LiJoTIs6MbMyZzhnXdBgz1/tsEbGAz5k0RnwWsoPszMkMOdIER7NZc7MfrWSAIZkdVofNIsSojDESc8R7uP+uAwTP9etb9jGyRVl5jy+GKQKiZjgSlN7sTBbrx5QsU95Zz63jeYU//RIxbAXKQKbzAdWEK2cgZyEKOI20AnetOnZZiN6xHXv6FGmajrZpaMQTgmE4chwRgZPNASKOV26d2RAF5+m6NcM4MBaKVgroJ+fEOPY0TUOdl+xcBTguojEsk0gZhKML3Ti1arIQpCnaWUhO0WuWOCp6VzOW9wEpc9EhT4RLmiHGEUVpmgZUCsWmFD271B1zZHzx33ZbdX8sy1YDsCl7VCOQxVYt/F+ORfiRgzWPtg1HC53cT5+/eGzsB4PAE+L4stpc8R5rd6sEMqhOmb7qCi1f1XGb13g+qMvoeHI+blcNr+r16o3wN3jVG6yLzOIQzOCf+ZUVgp9nRE61jIsLoJW6ciF081XKeyyNVIcAOGoNd6aftFS0pXSPjzdcOrnEzVs7tjtjpNKpFnzOfbCfyIWfSXUYYL3qOD5Y49KAqBhaM5jRkX4sAIwpcIcYIcFx19Aerxmicu3WGaf7EafY2L5iHMf9jhwHe44qUONIrYUbSl8Xa1IYjUrU1WflYLUhhJbdqXn71psEms8/01L5Lw3H3O5RfqIZp5lVaDhoAy6NtAgUgFRWZYgZnGfVNqAjoon15oDT/cjN7Z4cIwdt4KALdMEO5BAzGiMNSucb1uuW3TiyGyLDoHRNi3eBMVsNqwuedejQbDzDCYc6T0+lpsy4UmcEzygWgWeF3WlPn7O14BSFYttjrtXk9E1ZFJnWaOlIzqu+sMvMykOm0PXimpYIRhYHV5ZCcvvrThm/Gt+MKXF9HFg7j69umRpm4Nq25+ZuwGHI4iFbtmXdBOvnzUp2lPq6QjbnYxQwxi3bj6MOru17IpngPU0TCD4wplhMn/UWu6TGXd4FGue5vo+MYr3vcYxEtRDMiadrhMcefZD3vOsxPv/Zx/lyfJ6Xtz27GMlRab3H+9KNAJAhaaKmHko32+wu38EJqmuhi/WfgwdXAHeC5lLuKeuECN5ZmjKlTBCHb4xaMjiPpsSYldB1lmWKCZEG70BSZNO2cOwN7zCMBphbrayNq/Rno1r0VGIcMr5pCD7ghAIytPt2lRWwfqa0aE1GV4HJEOeFs7EQHp0zd/X/p0hT/FRmhNrBYshp8fb8KUcYlRAaG25fes7rgB6ZvJyFdGo1uHPHipv+fieHU6dbr4iL+qaHgufHNge8PoQpeq5beQ2ZsI41Mq0nunjVJi8OG+vq4NKlY1bdmldefMWyR9NqKrVFqt5RPeozWnu+8QtadP7Vcn9e5eubMsJzn+OFG6h3Vb0EqvKa08r1Lp04qwdPEe7t1xNdRr/lO6qBn+qjmRSNBxYt3NOqMwisKrtilB0CKXLj+lViXvA65zQrWGYI+lI4qY+WZ+V7eHiEbxpSsrQN6q3S6xxePCnZvcRCNrDpOg5XLY3PZDW+5UubFd57TvcDeUwT20q/31nkVBbASrpu2jGfdLqn2fnJ1JhAUa7f2uGlt9SreCpa/HyK5Hydvu5x3YmqBEVBszk5h13LYfAomX4f6VGct5MQsyA5Mw4jkMkxM45bYsq0waN+bhsZShkg5UKxqeBIBK8GLluvOO0jZ70910EQDruOthitpGU4uSpelaDQ+MCYM0M2EI04z5hq9GVHVMWjrjxvVot2FYzcwqRtODKEentzluaFkJ+TW6m9qjq/a3JKz0mQTIZjGq8Hd1BIsDQky2M/AbOqTsBx9S7Ba+L4FQhOjHO5CEasznupD7YIG2dAnLMY2cVCeqE26CGrjRKMIuQEMUfIcKlrcKKMw0hMkew8WQ18FTUx4MnRImhRpZWGNgRu9gN7zTjB+uhP7IGaG8r151/mE6e/xbWrN3AJrnSem044G2xMp1fDk3ix9iicN7Qx1fEvq1P1n5xfP63ZiBoRq07rUnc1pWwI4zIEZVTrJsgRUim7dJK5crjihDU3bm2tDh8j2xw5OFjb7Orscbn0YufIfl9bFC3KCs4RQiA4Tz/0Vh6rgwYoxjmkuVukStpkmUrfum/mZ58ERyaDM5fwdJK16oRMdWIwTu4yjETUSg32NVbWSzHNJExlBsAYR5pgrIMiDu+Z2pLOy6xYkLCYIlRv9ZyDqhc+OgUE9qcX4W1Nwx/erLlcph1pMeQZ+JrCp6hO8LLPtyyJME3lM6PsOFi3/Ol/4Sd47YOv4ed/9p/yqU9/lqhlGp0yZcJqEGLXktmeTHJ359fF9POda+a3v141beV04W8QZ5/7ud4+93F6JjcvlN7heucL4XruP5VE1kiKo6EPU8ZXhGDp1VNNiw0wY+0ctMFbTktN2VYQQhYldjqNH1x6b4u7n54SjGHr6OiYYciFXtETswEXCs4QcdZruW4CB21DG7whqKP9pzEhKbL2wqV1x5XNik3rcLknDnsDYkhhpi4ecWrhqR+1PlwmJ8VW0C3uXRVSFkZ1pDL+UfBlE9KFZ1qEcVOwYKkpZU4vOcyBWgUxFK6ABHDBkQW2fWSI1rt7uh843fUM/UAgc/mw5YUfhXyvrekwZvaDMsYyS9gEAxcafOjQwhN9EDyXNh3OZXZjz619z25U9tlm1I4JoPRXZ5u8ZHOrG/Ypc7MfORsjg5aUqLe0aoYZbIaNchPFYESSeeLPZV55W5W6Si8598XXVFnVJ7budkgdiq+j7Orqlpmtto+JuT2lno2LR/t2MIhQAUyCR2pig6c/AE/+SKZPkbNxtDnTWckCTeNYBV+4c+1JYjLW8qOuYdMGcuWNxsBzfaEY3ec5TR0ks/LC0arDFQRt1lwAWIV/GseNKLywTzx/a8vpvmfdeu49WrMJQhDllbcqn/mXIlmEV856vvziDW4kGDAnb+0dR53Hh8yokV1MiPPTZCbvrU4vubqbs+hWP93Wc7lwk2mapoYZ6Khhs16jmog5MWbYRWUb7c/TK8KTPwQ+CGl3xoFkTtYtbRDEKQnhbN+zK1PKrvcjL56NvHBrx40xsUtAaMA5Q+mLgA+0q/UUGNj92F7HNBLTSDUAk0zU6D+nEjCoYSNKsFdtX1rNEd3Ec2BhxRRFGxVJobks+k4rzbCb58CrljJekXMjJHGM4zAFNs55QtNQ+RYmA1+uhVzYh3potDxTDVaViRkspzTNoH9TE/iTRxszwOVeTwV+DeGnxPF3RXi5mpKFzaj348RPOH0DqQX6bc8nP/ph/HCNH/med3P/5eOyxHWmQC4lxzsI0yLYrWs7rfi0X3MHUA00X83rm4qEf78wewGZILlMIiPxAoquGopJyZSF04vX0Um46t/rcAXrW9OJOaXSB2qNLkqP15Tyc3NPrAuBXDzg6kFde7ty443KG/6xm+29cE4J1nQQRRF2q462W3PWD4QigFlKOisbJnTTNWzaFhFPnxL9OLKNEHxl6CqHMCWCeHxwBOm43t8k5H1pGLcVcUVIXnhv5nP/WuT+3whILzRtY55rqlFwjYzn2tFtzlgRmBoB17pMpR0VasB/HqEpolN2ICebmZqz9UE63xAa2MdU0nNGjnHSCI0ozz+w55/9WyN/4q8b8tV7O6FDjKSCEjG2HmMZCg661gAhQ8y4NtBHYRwGru/3SLBZw2WEutEEIowxMcSC9i3KxmTEnrfWUpcpPVnsrQL7++AL/5rSXRfu/1gZHFA0hq2tUmtJda0p128lsw6Opm05G6DPcyZIWBzWuefrvIzBFO3Wz+SlPlgqB5TUKU+/35gs3vRTguuVIWcINn9ZnTDmOsKxZDbUBmkQc2HCajkbIkNMeC80jSfgUVWiJjKxIKOVzgUudR2Dd1zf95bCzzDGZKM2VVHn8MFxGKw/eNPAGFqu7iIvvy7xyT+fePRnhJOXLfq0cZxq+ImcaIJw3+GKs5i5vhu40Q+M2dGW/trZsJSosbYwLozP8lX9aVVzK4OVlRnGkYPOnJR+HIlpILQtTg2ss98kfu2vDNz/FVi/3LDf73EIR+sD1CdubnvGLPT7HmVAXCCL9WmnKnNUSl7Io9VXvfeFkMPuvRICiZOpd7fuL7P0lQAjYwDLmlGaI8PP/eSWR3/2gNVVmRRqbaerxBqTlC+yAVMbU2kzWr63WuGcMk3T0O8jwzga6Kzoced9ubeFLFOd00X0u4jScwdu0OIfzPelzIbrbU3DSmr0KzyL8I8Unpby9DX7t9hzkRr+W/vo0eEBN2/exIC7lrn5zOefpL/+DziWhpvXrxLVY5mg6RYXZ3PuyVdMV0xZsMlHms/teSrV20TxG76+6ZrwEghQEcozQYGSgvKlnxi5/8PGNT3VDGSO1uanqhedEtjTtKEJ+l082Fr3hWJnJwL8YujndD7O2Xd5MZCUk0BOyr7vyRKMfUaV/Unmt/7TyGt/eeZJVipJAZOBmhDgammWw8MjXGjQUkfLORlhRsocti2H646Vd3jNpd9UkaamRscpKqojHUkjORun8UmAfNiw3Ze2puwQFYYNfOp/O3LrYcXgz0rbBHIujklJmFyM4G397ZDkcljqs017KlXY6n4KTs5LpGou7SflwFLAZ1lIaqC44GwyUjXyUTNJEv/rvzLyzGOZbZs4TA5U6BqhCSt2Y2bb2/SaVRtYr2z8HdjYO3MwMq2Hbt0yxGzRbVZjaBI3tcSMZSA9GkofbgUryexgMR98JJ8TQxSe+QHllXfC9bcVfVdJXC5YTQWcKKH0ZzsvrIJn5QrQo9iKaSDxFBrMBv/OZYCFIZ6yMlUJMEmpCOwvK899d0aysr+kHLxgNbIxZW7u9nTe0zZ1EpYZvQgFES+lPUlpnI3ItGirjHxQI98AKxfEDEKi9dC4hlW34urZjmj+GE0IrBqHlDGBjSiaIlkdjTgubzpuvWPHC+9Qnvo+5e0/bS07OSasd9sTHLRO6DQRgtJuAtf3I9txZJAMPqDOzWjySZinlVts0DJkkJLoKQA2EXqFs/2e41Y4PjZWrLNhNEOKMK7h+XdkPvLnE3/s/+5YuYahH8h5oE9SUPZ1EEa0TEgZD1h3yS0cNN+0xNHYqZwL1GZFKWerluCo8loClWlYDJa5865yFiyWIMML3zFw+kDiff/ZES4uozDLBlp0KEUfTYJW7sHu2SgCMrmcP1FFxco+oWkQ78kxEgsXfE2BazXcU4qo6u75HqnyrsrVRyO7u+GhXy1Gq5CLuPqsAgdujqxvIfws8PSFXZ6DucWrfFdMies3b05ODihRHTm3fOZr1xAcuTAaitRATuYvuEO8qYuHmfb3oi1jPsuvNhL+ptPRuhAKZTZQqoo6eOJfjPzeXx5pTmeDUPfF+RmePj3jQjkuH9yAXYlxNNpC1NhSJy5mVXQy2PYlAgRnzdeNd7Te02DpuxAsFVTTuMllPveXIk9/QHHDfCM1gj6fSln83ns2h8fT/GTUGl42bWDTBbxYvSemzD5mRhVSzRJIttF7ohYZDwP70fqHV01g0whpd4ovxAHrNtA6xZF5+gORr70/M5yo0bRlYXe2o98PUyahIr1zyZXq8r5lTplUpVTXbspOLJ63RpjV2RFxOO8sqlfHoJ4hwTiOSBrZtJ7LBy1HracVZRxHbu5Hnng089E/kxkOYL8CxYj8x6jEYcRlyxo0TkjRIrI+2XzgMQljqdXlnHEYkcTJ6gDnPPuc2MbIPppRTs6bEi2RxoRyZvHsk0OlU2m2eurjIXzhz2XUwyvvyKgrRJVW5KIuqkfpHBw2npNV4PI6cKnzNDkRR2PqypSU38KJmUnDz7+m9OEiDXmxLFIjn+XzvPAdid29yvY+ePE99k0GNjGZ28fI2X5kjJDUE1XYZ2UfYZ+UXiFJiXK9Y900OGBIJre5pCqTCoMK2yxc3WdevLHjxs0dXuFoFTjoHAeto/PgnRl5S/I49iOFxzzx4mMZDfCZn4z0XQH2OJs/7sXhy571OXK8aXnvY2/k7a99gE3TEXOdwlXXoI75y7P7KefX8rZX1RkCWRw+BHxWtN+zaTzHXYfmaHXdtTKs4Xf+bOSLb+y5Pigv7zPPXrvFKzdOGbO1ISJSWo8gpZEch0kXTQpbLR3qSgSpiyxgPYTn8TPzWa7pTZPdEg3P3uTkULokfOYvnfH0D/ZTkITMhmrh4pULFpmW+qf9VyPxsoqWaStEHSE0ZX63jRrVUnKsfAJVt1PuXRf/VXrWrMrBmfDVv66M77BZ0aYRqtG6ff/WwGNi7XhTZkkW0/ecTGXO+n2iRQ7VAOm54EeieAbXMYRm4gOwJxVEHU6B5RoDS3eO8r01wzE5Ahds15TxehWvby4SrteUCz8ra/f0H4r8xv+158rvCeHUflF13oR0rl6+3iG2WHgZ1fCW5y4yOGPZxJ3bMrwrXD0C3om1ORTB9s6TpFDqFe/+ue+MfOqvJdQbN+nsxMn0nXMauj63sF6vaRqjcwPogmez6gjekXJiP0Zu7fe0oaHxDS47EjaxhJQspZEzQTONt35VL4LD2pL2ux258Dp7HI2D4R7hk381Etc2Ri03Milku61F1FrTAspcf69bt/B8qoGuf04CXXIdCJCrEba1DsEmreyHAc0jqyAcr1ccNILkxBhHA6TVBtrW8eF/Y8/N+8BFGA6EpJkhKa0XVm2L944xRoaUSCIMKZJLOwRgdKIJBDMiNfU5Ji2gM53X4g6enS5+JizgFcX4VhOnCK+8S3n+e+3Wb7wZdKWwVRusrgo50YmwaVs2bSCItXFYhBgIzYp9HLkxDGQ1Rqlz93W7Z1d+vIjZ7pBSXTq9tedYPXz9BxKps99//QeVh39RkGT0nw4hY3KwHzPi7Yx0wROKfFi6GVQc45gIXoyDW6Twa2eSE2I2lrmYbY+aENisGg4bR+ft+053e6y1NKDZUr9RQMWcqG2IvPCIGcBnvlfZvttz9Ju5IJKVOpc7KuA9d91zH13TEXd71s6TG0Pf96rnlrGWHGogcDHLc24Ja4+7CqiQopKcGfL9bo/3LcfrA673I2fr0c7bkfK//sUd7/9rDkke9a1lwApbnHeuDAMQfJEHspHK2I2YoZua3cQRQssoA/OAhGUqs57A8w8hVBBpQyV9mSIzBb+H/pLy0f/kJnc9foWjr02QpPLnxTrzQp4KLaaIseHZjO9Fe56W0lM1QCgx2XkPocF5K5c55611TJVOoMLIhqzsynefeMdPXt/wb/w/HPkSfPHyyFdvDCQpkB2xJzur95qthPAehM+L8LXlmSkPOBlCobCULWXAld/bw+Ty3EgiObEMBCUarcCsZRZFderlrun9aZcuOHxV/maJ+/8zbWX55jv+TIAX35n48H/es7sXjp9cGIXysbn3t2o/nY1rUYqKlsZ2Aw+5eqJq/kmZasGlw9MMmDiCt+hX1HodcyHAQJ3RzHnPGG1Rbt2b+Nj/ZWR/N7gBXF8eRZbgpmX0ZLfhRDhYH0BONI3noOtoUUuj1H7kYC01QxxRjTgPuR5ChTSMtA6OVh3BW4q6H0aGfuDs1i12faHZFMhk1CmP/4uZF77NhC6tIR6k4rnW5SnVFNM0c5RbYwS1MY3TTNNvoKyqx12P6LJ26RAkRzQmWi+ITVlgiBFfyOiTQsquEC1kvvq+yOd/ojxLgLNNQpxw2DWsvbVbxBhJo4ExQtMQGosW9mNiiGqo5mSHa8iZfc5k50G86R+psRGTQlLJk1M1/bw8k9XQlon7slgenvhXMuOh/bO/DLcehsufV0gjjThaLxyuWmNy0rHQnZaqUco0LtJ0Hmk92xsjNmbywvk5t+YXFO3CAC97ues7qzJFhP4k88x3x8kBfu77lOEYuuv2RaXSWDfPjIYmvGtovCsAJ0Mu21B7ykABc8hWXcvN/Z5hNErW4ISuCfjW4wRaMq4A4hrvuHSw4qxPnPWRrDAoxmldFNeL9yu7E3ve4RAe/7OJt3265frZyD6XPcxCQBjHzOe++DRkJcaM84HLXQPrhpdunrKLuaRAHRnB6zxAfiaMWC7zHGVqVdKYczAk8Dgc1m4UC03n/kDJxjTLl/5Y4i0/lXnwNxvI2QhosrXw2Hf5ybkLzlDHaRzK0I2iwMEi56w0hbM5xgvlEOaszJyWno2NOcR5NthKHSSF39tVXn4s8tt//ZTv/w+PCbvy1GoXnot+s26wSNpcIDUrDOJBqgGxg5RTJDTNJJd1aEOMI14Dzps+OnGe71h3vMEHrniHR7iaEx/Z7vnCOPDe1Yp7156//q/c4A9/fs2ffmlNCitCPr9r4VxgASvgkBrY1eBsEf1OtqbWy+3vTnxZz8ohUSLe2IJbGt15vnflo7BU+6L+XlbvQrJ/KWhTFlWKjXs1r2+CMWupEIyJ6G1tw/3eIwG+8tbI2/5Rw9mBcusjES/WPwpMk2Tqw0zXWXgQqRhOKKCXRQrDS/mYqw9qcumdRZGNcwTxuFLz9M5qWKlERDFbdDbmRGqVT/57Iy+8z4RbMrhx8ZxTKlqotdT6apqGuy9d4vDokDiOaIqor/UzS4xJcQqct37KpJn9YECrzgc267WlmHNCx1TYl8zg7cee0DUMu4gTT8rKtQeV3/03ow2dx/R6c59j/ZQyZkVdICbjhZ5TVb54ftXUyOTkiFRBuWgAyvXzebVQPeHGwdrDQWtCPYyRQYRdVCMxKDWclDMpQdoIH/orA7uT+ULjPab8GaPRWCLG45uFjDdShnGkawKbtiWRuLndG3VlMkQ2LiCE4pXWWk514sp95wr2mJ5+fqJiFMQtvRDh5huUp39sXpPhELaPCA9/OdAFj1dLpMswEB3kwl1smOwyUSjZOL6sc9ZnkqfbItx6V3c6qDrt2aIfaf5tzlx7JHL90blF5Ppb4Majyn2/XV2LQqpSvfriWO6HgewzjTPDowV0l8VS/1kzOY30aSALtE1TarzYHieLmrLA6Cg1xoTkTOsDadVyc9+TUqLBiDecOK4/khk28zN85ocjP/y6wMmTK9gP9GMiik0kqk67qrHbeVEbqIAjeEEqIV4Byc08pN9gHZkjp4TxZatzJDyj6jQMZEyRIfckFbaX5mv2l+Dj/86e+z7REk5BSr+zNDYYQ3PCO5mi8qrnYhwMj1w7HWo2DnA+FF54u0+tNeHJVM6yUR8tY6hlF0LZ19kc+J569HniT+144KMNj/29AwsvZX5+Wcrc7K1PxhjKfOO8RPHrNCjCOUeKI660XaWUiSni8axD4CcO1rytCecke+MdDxwHXkmJI+doR+E/+u+PORKHtEJ3SawdMFfnQKfdo8jCAJxNOmze08m5KpF6BUiZTij6sIiBTP8DY2+zmjclfe3E1ZB4WhpXjX51igshQ6XxrQFNTSicI0K6s1De9vrnIutwCN+3avneVYf3liL9tk+18Hslmr2u/OZqx2/u9oxwRwNcVtEQzylNiwgGdKo7UA2wyZAhdC0nb+s1TY7VSjAu87qLs+kkCsMYUeDJD4x87i/GqRou2SLhunjneuxUp2MswOZgzfHhxhJnwZPHyD4lQgjgfRlHaAQiORmoKMaRJnh806BxJMVM9A5yLIQTNh1pP/bshh3O2XjHMSq9g4//xcS1Ny2UjAB3wUkb2KXMdowFtcfEoCML4zv7vueV/cUoeLF0VKCWYkIqCo0XNl2D08gYtbR5zSn+nIoT5QPJw+d+LPHl7z+vHMcrNiZxn5XdYGRzItanlxVSNgdsGDL7eGao3ayljcJTW6b80mvV2dBoiSCkGDCh9g8yPb8d0ErkYp6/Kjz1E4nTh5juN61heCxw8qEARSE13uPb1iZkjSPRCb4S8ZfISEQZxFrDdGnnL3jr017eIXda9+KOr2LQv/aD0VLRzPf77A8rD37cJkxNly/OmYFsrFa8S5k+qz1PQbe6jFGuSqZbed7w+gdovPDSMy/gtGVIkSFFi4KklHhK5kOp0fRIzsqDd5+w3+042+5RNdTwy49Ea60rN/bKg8rHfzjyfX/TqDJTFoZk08IqT3TGWg6zKxzWKVl7jZtb56Qw50lJ+96W8S/O6CwvFIWqRqM6JnLMRLTwqhswa3vXogdW4Os/EHnqRwfe9A+awmpl5yyEYMZ9HKn81TV6tVkKkUw2FLGU8gmGKq710xq5LayF3X5WcNUg2Dm0jIahfSnnFBFCPwtMPFB++393yr2farjrs4WjeqE/pOxXHccqsOCLsRF+OQnoIuJTy3p4H2y6WLK+ZueMkS/FxANNwyOVVEMW5l6VANwfwiTfb/1qQ9zY/aQVjArNaSmjsSgviUHYPo/wHHBbAFGN5YLOcjpy1RDXaBg1B73gM2yUwOzimHDY/pN1KudJPae6DNJ0cqwQ8B4eePB+bt24xc3T01eZiLbXP6cRhsfahuCgP8KUQdUrKmyS8MObAy57zz/dbumlhrLzKk1Uk7kOd3BzuoVS8Fc3pWWcWCo6iNB4sbRPqVUkVSLgVRDx1kAPU/tJJem++cbMb/0fB0s5LtbeD8unqymPWalbdO04PjrGl2khZGOHsgZ9Q4JWuH6KCcmJzgnHq4bgPTElovfs+oG9Kk3wCM7YpoB+GOj7EQoacUzKi4/BF/5sIuxh3JR1c7A9Nu5aj83RDWKHMyoTUnEe9D0t+MTIdafg63wapXjOSmnmV5xr2UcsXZjVem+LpHlxeBfIwbNPAzcuZz72lzM+FQxo+b7Ty9aT2hYS9qzQjzU28cTRRjHGlBkFU4jT7eqksFRKu5FI8T4p2ZGCAodCQFDaLwoj1Mx/Xl0TKyX0lzNf/tOZw+fh9AH7Kh/hpbdlslck24QeJ4YAXwfPQbvi5jCy6603XLxj1Ti6xqPJ42WovG5zxMa5r7+jAa57sdy66kjUvtDxEJ797kh3FfZ32c+6V+DqDze8+7fewec++jlubXu0zNudUpzI1BqT1KIqKWAfL44uwMlmxQ9+77fxtjc/ygsvvMSHz0555epNOh/wiA3CcJnsHU5t/Yc0O0Wd9/hhYEOmXXdc34+ckXnhrRk3YBkdgaPn4Xf+WOQtfwc215STVSCElrPdaLOdRQoRil07YmUdnEfUoI5WLZKpS+l8TW5azGkh6/pV0jgbKhLIYs5H7SNGhN1lXYRiIBE++b/Z8doPeVbX6hcWHeFsPjKkAlZy0zZLyd6lYcCHxngNnBDalnG/tXGaTkqJZD6zxp5lP6uZOQHI1qppLSKpPJnDLYwwArdem/jIf3yLH/3Ll2hvFMNWz3W5Wu0JKRHO5BRKkcG8+DEYYUhoWpwLBkIrOs97zyWEP7Je0cl8E0+WtX+YOsx1sZ6l1Kco1y5lfuFf2NM863nklw5wY2EALDriBZQvOEO0L4O5Kte3bbnWym+5+4IlmgiLUGxqVYmgKca3lCKNyMR6l5sgXDo5Znt6yq4fUfEkrIxjw2DMEbr73g1/9k/9CF/69Jf4xV/9dXavMgqGb8IIL3PfDqERYdyYAe5b5dZhZrUXNlu7sSDwnlXHsff8w92OXVHYE9quFv6n6FOpdd4apqoTq9aIyVzw0Loyh7QMUsjFeGRVkuRZsanVZ3wwgExqIr/zHwx0L8HBJdg+CIWboaCjmZrop5TI4hz60LA5PpqGmOfpP0F8AAwRnGMkeM/BwZqgCjkaoCUrqUT7SbHxaYWUXnPk9GzHkGx9HInu0PHFfzPz2IcCz7w18fX3KpuXwUXh9JJRE6IGfnDBgwS2ySJHMlMfay7eYB3oMEWAzErrYi1yye1aNVyfMjd2A6vgoUbBJQ1YifgdNsjhEz85cvR85vIzwmf/pNKewsE12F4pyiAbvD+EQAL2+559nGf9iveTt1k96aonauuRRZ8LNHH52RRdSJ6USQWyQHUqcuFAcLSiPPf9wvE1x+t+V/itv5JoT+Gt/0h46ZFM74yNyzvb45whiQHtpPCUq3i88zQiEDMpaoliZhtw0TOez9MUL9zxZbq+ZmRs784eyPQnmXf87Y6P/3tGv/r2vwXP/OHIF/Izk+Nan3c2RJOmLfJe0tEqNOLpvEP7yOc+8VleeOoZbtw85cbVU0sEiDl2ofWMKTIOA84LwQWcGHAtayKSuL4bbRSieA7bltFHrr0p8thPCU/8CWU4hLf/A8fVR5Wn36e844MNToUG5dJBoB0z17YDEWfthKVkk0mlvaruuSsgK7d4rgvKrzz/ZIpzcebMqy/moRauTIocyv4u5fCr0N8F4xE8/E8cuVOe+JMD7/xvLeqYevHVZMkVI2cgptmxdc7jgkdUaQKsuwbnhP2pIxYOACn3Km52FGcksN13fZ+WIkhVdSKZsKe2+4KDK58PbO/LfOYvbPm2/9cGm5JYruCq8Z3FYlq9UgZwvrSsLZeysgmGxgKmFEkx4kPDY6uOB4KfrrEV+GXneUWEd6XEg5om6ROE05PE1793zwv3Jv7xj+z5xFtH/E74rlXmbf/whDQuSoHTnIEljmi5xXUhFueG6iRpcYwK74La9LzKRuilrqa939VMmakRC7g0c+XKZV5++Rp9zAWrlI1tTxy4zPWXr/F7H/0w73z0LRx1nqH/hj72ba9vukXJAe/rGrqNgW3CTviV79nz/v/pJf7of/cyP/P+rfUXiqVmHm0aXl+IGFKK5DjSqNq4Mpi9E7V4SDAj7xCCgybAqvF0zhEy5DrMHZ0GrhvDCUXZJCSPBMlGFde0ZISv/JGRwyfhW/8Lz3DJNvLBDwnddaunzKjo2lc5e06I8b/uhsRpPzKoEPEWwWXIcYQ4cBA8lzeHbNqOOI70o4FO+mSD11NhJsoiuNAgvjHjtt1zY7slkukax5XDDdv3NNz9PPyhv9Fw87Umda/5bcdjP+05PVab82pqmawJTQMHHu4+PGDdtUUCKrp5bqfSko6Zo4aFrzul5PNE52lXcYzq2Ea43o+cxmxtQ4DmSBBl3QTWXcP2QTi9T/nD/2HLrfvsAidfF77z/+3ZH4PgSdmxy8L17cDV062lnYsBVnGl6WSBgpU5ctWcy8FYSmWNikzBOhGr0UwUp7aHBjyx47z2nitd4PJxw413wwf+Tx4NdtG2h+/8ew1HLwg3L5URlCqMCYZoqfQYFY+RPWxaRwiwG/bsUyrORLljnQcrnLvjOU89/fs2lLRcPMim1F/4tpF3/q2Oy0/MHOyXPi+87W8oH7//Bc62A6iUaIPiAcx7PP2r+qsI+5y4NQ7cSpmvvnyTT33xazz13DXORhiyDcXYx8R+GHBO2KxXtM7hatq4OhtqNf4+OfoEQ4wMd8HxM/DOvyuEfVUkwo/8xw3PfSukYImlGCOkyNrDpYMO7x1DzvRJiQmyujLEwAxRlly7zKbszXINz+MeFj/PxUkq92FGaG49UYThBL7lv/Zsvm4f3d6rfM9fC5zeHzl9IBXMYv1fJeypw2HcxLXeeeFo3Rp5z6qjFUXHHV4TbQgml9XgLiPV6XmqDiqZDM1lyDMTwYloxvfK0Vcdd386lGyJ8v3/+2POHkg8/20D86g9nRi3prNfuxkK2M0yk56lbrBPWpbOh2D/eY8Tx30C373qpprsqPCrCs+IsEX4iPf8tA/8FMZ29VMI/8Nl5d//P9zg//zv3eSj3z4gUfie/+99fOWP9Dz1fdtyS2JkQFNaWO5g2M6fH82WZo+m9WxlnXFFOK0shDULYI6Uc+CcUdUiWoyrXTdn5eatU8Y42uxlkeLDeFQ9ImqlnLHlY7/7JX7ugx9m1ycDp77KaPibNsIPh8D3HHW0KrS3hNwon3j7yPWVEr/Q8J//8S0fLt8vYqnS97YNVzRzDPzRww3/7uVL/NUrl/gThxtOnM0HdSX+9BgJw8oLG+9Ye6F1SiikB1ETo6YyZ/b8QfNZOXCek67lIAQkZ1vE44HDrzm+/b8IvPg+JR4YpP/Nf8dx98cFN14ARaiew3qIE45OLtG0K+IIt053FrklSw21znGp67i0aglSDpAI23HktB/ok5LVo9koElVMuWzHgbOhZ9tvCU45bByHjcM1mdwnvvtvrrh6n7K9ZLL2wKc97/hpG8EY1biBE9kGJQThUuvZVH5mdPpvmYI6p3x1/sd5JG6dMDRXk5MKURxRAgPCNkbGpHSh4yCsacQUz9lh5Lv+hh3gG6+16135Crz5Z4T2urDLcHOIvLIfuDFG9iokZ3R6FPpIyToTUxSjW/sOay2r1jln/iAxEoRS+lAqytMV0oQ8tbGJYPOfvbC/K/OOnxXu/aJYKhoIe7j/K8L7/l7D/vUGrutTZEQhBJq2myn7yAQyK5852jQ0zRxWyG3Ha1YYte71jbzlmSDm/BtyC+2Z8OjPdDOAFRAVHvlfHHLLMYaL7X+y/PqlZKCFwlUxAONuzOyisM+ePZ692jzqvpQ7EBtk0IjjoO1sIk1MhvRNAtmjOTAmYR+VszHy4v2R9/zPgTc9t6Id7F5uPgBXnvA8+jNweikab3WGPkE/ZNIw0knisAt4pxa1ihRHTSbjq5KoE9Vq9GnDES4urCzssDlrWunIJoMENX3RXRMe+RnP8VdsD289bM7cu/7rht1RHc9aFH/JMmmpjbTecXKw4u7jNXdtGu45bLln0+AZDcCVM0O/nzjXa6lo6URMpaEL/tsU2WHO5jj0xHEg7DNv+Cctr/tgAwpn9yXOHoi87/92RGqVuDrfhzwLQjXubjbGWHnQO3/BWbRACjHwloFPPT94cMBlVzoxRHge+O2Cm6icBdk5CIEkwgi0L3p0L7z2n6xxI+yPMtf9Gd//H11iezlx6+E066SyTbK4k6rH5m4PmQywZRONH2LKWRYfQ9wILiJezZga9Mp6hr3N5Z76novTHnPmlavX6IdKtARWJrEzKurJCNe14QsvbjlL9u+8OJ+/3+vV14TLXlxywioJPjlSB7/53j3/8Me2PPDRjkd/5oAv//iW30nw7Q4uFU/+kSbwr58cM6hyT+UCBa6sV2Tg507PCMA7Vyse6zrWztogRpRP93u+OPaV9plaJNRiJFBjWgne0wZPI0boL+JQF9iNifaa4/6PwnYT+fr7bWU2X4eHftmxvRdCv8jYlfBDc54UZdO0bDaHBB9oHMRkrDGjKpvVqgy/NsrGMSsRq1PjzFtKKpwMIytVXvSOmyUyRiPHXWCjnj4Fxn0kDgNjdNzzCVMkT39LIjV2jw/8nuP+zzmuPyz4oLiYEedpXCBIRrIBwXKae+WqU0FJs09gjskAu/MbXD6H1JanSr03m/aMCf0QlRtxILaBzgsiyt2PO2LMfP0HMtu77AIPfSJw/Gzgnl8fuCqxlEhLz25JmzNF5ZZ61MJNvHQilgU/Ka0aSjHYJYKpKFPR2jeeaTw2/ccFklobyn4cGSK0zwVOnveMbWZ72Q5rcyY0Lwuv/7XE1SsW8U7pRawFTmqUohT6UXBZOFpv2Goi9yMZxdcavdZ1rattSu1OSPVzL1mqHotiXvurgbCtGzW/ws7x4K/OP69AvSkKLhmDcyVnnRPjk8OVFJ9TIb0Rgre1TMUxMMcIcEIIDR3CfjAj7Zw9qDf6JcQ1HL2UuPsJYSWRdmtCeXYls28jdz3uaFB6NaWWxTI7wQnrxub8ptZzcz/QxwSlnWii89TSIljkZ6oTnn/IKbKp9fnagVFtsyzXoRVe85uew2eEe39HePqPwP4euPFG5fJvOFbXIaUBKUMORGaykVXbsG4boy/1isaRvN/SNi3HBytO9wOaKy9BxpFIVSbUztC89bXjYWLjNZ1UUqSupJXTMBCuKa/5jcDmOc+n/vKOeABf/eGe1/9Sx4MfbadC+Iy9LrqgCKXRsVrSfxI75yDLZOQoDnBOM47n4cbz+qaZnN8zhA85sX7uXAZP4KfMjjiBDM3ecfS1wLv+uyOuvn3k+iORJ35sy1v/zhGP/qNDUjtDpibhrHtZZfUO56Y+n8+KR1BvEL9u3fDwww/yzNNfY7u3WroXtYgWQZyi3tOULEmWWgqjdEHIZA/AwIlRMwkH6kHKQBotxUyd2R//oNerrwkvjFTNp4/rzH/1l27x/JXM+//nDcdPB+79vY4bYhMuvpdK0pE5WYwvXGqB+4Lnihe+e33Ad6xXi/4wO1cP+cBbx46XcuLTY8+LcSxK1t5QJ2XMSkLJhdptyDohRTUp196SeeUdtowPfsixflF48ENCs1u0khQtpcWzEufYHGwIvg7czqyaQHuwYT9E+n7gaj/QtQ1NY9OFarrU4cgivC6OvHd3i6CJqwifcoHTriMdHtG5xEvXT8mD5emSaxhTwsWErODZd2TWg/Cj/6zjz35qjR8T9/x6IK49OghjUu4HHmlWrApidb+a0cIvp8THd3tuwYQiXjocNYV0/mUHDE2WbllmpUp6N4u16cQM4zDSOIsug51bXnxMGQ8sSLn8scyt/ciDvyREB5WRmUmoa+p5GbVPAeUsg2rZlZJBRKjzV+uBzROaXjTTOuGgCVafdErSSFJl1XigYTuM7Pcjo3PkS4HdJfvGzQtK7hNd77h3Z4MftJZPUmLQVGRwuW7293TjjNNstbFpEtdCwc9u/PmHu2iM77QnABKhTcKyVYOykgKEbc14lJ7wRT10Qu5WIdAK+Kq74OYeazKarD2wgvwK2ZsBB7PFECZTig+GkE+aaEJpJVJrn7/rq0IjCTrh6AXhxUeVdI8nXHbos5ERIUm2caACOF+gxQLjSHBwsgpsh8ytfcJDmcMtxYjODmPOS4lZRk1SjC2VQmkyHDUarrgCdfDwL9lUtHt/10FOxA1cfbvy2g9HGimAt5xoQ8uqbTGHKhCc4WHM8XWIa1B11oKVs7W7ibDd7ZA8l+BmZPVs9EwmFkaQ2fHI2aaXuVLXXz+VObiROTgN3P1Zz/PvSXz9Bwb6y4mDF8PCIy/rItX4LpzyyUMzy+Oc6a/ZhRMD8uWID4E3ecdPrFqOC3sUAl9S5XEoaf0CMlWlaUKptyrZZ1yC+3+n49JXO978Dw/57b92nRuvi3zlAzu+5W8fzTq5aoja7nrhnJS7OldKM+lNlLwXKoH77r3CX/izP87jn/oiv/BLv8b1vaXobTzkyBsfvosf+qEf4CtfeIrf+q1Psk1a5jsvAF4Tr7ZOcbZRF49InnNyWuvPr/L1zz1POAebPrRdK/d8quXBj6yIK+XeT1gN9lcVtig/CKzupOTL4t7lPf/S8TGvCWGeBORkSi90Gd7SdrwFeGvT8gvbU54ae2OTKjWJrMpQkNZehFBSm8YlXIdYK09/IBM3lop++BdtWPhdn3FIV4FANVpQajbQiWOzOUDUpiKt2sbaUpKhn33XsR0Gbmx3eO9Yd4aArIkQTYlH9qessrV33I9yf44M+8SXJfEplwn7kTe7ltYJWxW2zpT8KyeZ648O/Ft/d8Nf/VtHXL4huBW8d6d8Ou/pnXIcAm/xDd0UqQpayzmYMjgGfu7WrQn2dtGBrMI7Hfwy8GIS7KJUKqKytkWknKfvTJoZxmTtK43jmXebIK5fhNWTjugc3Q2miHDZBznV56q4ywxKmfpckWLU5rzUjGwEV4gmrH3G6jar4FkJSI4FQV+Q7kDnhFUb2DXepuCsxolM4sqLgXXXIqMBMyZAinOEpiGpsxYljAc4ogwpW80oOPIgeDU9rzKpkQsH87xSrPsw/bYq4osnZ3rP+SllghbO7RrxGELHEvY1xp3ePK0tqhPhg52T2UPIwH5MxBhpC7K3fLOlpqOVCaxdxbFuA16kUM0mpLSVAYzqyNFx9KwCibOjSL9WrnSBnGAoyjQXPnUXbKygSiZ4h2SldYGucfRppOYSKimJWxgq5ywVaGWlhSNSMhk1pajFyEk1LsUJCD2EAtY8edJx8CJsH4CX35uRv2nI2FXTcGlzQFOY3TLKdr9DsbJTUleeCYbBwJqNd3gxMGnUzJBiGSpf5OFcRF+N7sLRWux3zhm8t3aiCFe+5HCnCecGHvplz/PvTpw9kHn2fQNv+seeKaRb7PHkGp6TI6Ye2On7a7QMHIvwGi882Aa+K3gOFmeyR/hEMbyi4AodaUqZcRxpphKOEHLgoY+uCVvh0Z/b8Ll/+Ranr0k88SdPefRnD1hf9XOdt6bppTqYsyF24lgfrNnv9uXciHmL3hFHxSvghVdefJ6vPfE53vnmN/LVz93PR7/4NGPhlRMSw+kpl/yWD/zg+3C7Hb/+yccZmEG/1aHWki1QIjVUVtGypK5Ev7NT+Gper94ITwrDrh5XijqQBG/9qQ3dDUezVdqbttC9Kh9WeB7lvQIn5TI9cBfKSbnksfcclyhZSg/wjdYRFA5jAbgUZXG3D/ypzTEf3J3x5TiWzUnFWArkMhNVFfHFsy9pn/5Y+fqPmDI9fBru+5gtqh8FN7UEVtBSeWAR2rZlc3BgpCDeF6IAM/gpZ1Q8wQmbriWj7IbRFH3wxDHyrnHPA3EoYCE3CXenmQd3e17KiceaAy47Px2yusw3XebWrwjv/8iag9O5br3WzHvDen6vLd7sJS4PlcKb24bLPvBK5buuv/sG3pqUC89R83xjusg81GtVVydhtaVto7zwdrvA8VeF9QsCNXVLyYiUfePc/ZSopAhbvQ9XUl8UWZiIDZxATnhR2uDoQrA9AjRFUEOLHzrPfb7hes7cLPDRWJx+j1Fo5mNHf2Lysf66mkORpNSg7b3W027Kvmta4jAyDJG28Hw7KXWg4j1PxndpABeR8ITC/wav+pvlNtWMwTIiEGDdNmxWjt0wTgjiKbjhTntelfLypmS+bwWKMztIJkaLABvvyNkiZC8WD2QpQErFZju3LX1W9kMZUlDAVDkJB8/aN25PIB46DoIjBGGbEqdDtKk2OEhFsXmbzT1qpk+JXcyMlN+p4rSMdVw4nTPrnf3bVadeF7KdFXwx3CVbVzKl88KrcviccPS0sL1feeWdihwJqxg47Bo6sXnDKWeSKKsmsBtGIg4RzzDYaD5ywq06JGc8mTyMdC6T2obYW/eEOZ9anKb5Oer+6KJnl1IKMWfC3t/cAJyQY+Khn1c++e9CPISv/sjAG36pJYxucqRl6WvdUf6KwStAtZQiHuFNbcMHDtbc683ZmrIIwC2BX3Ser6giydipcmICVmm27pEQjF3LZXjgk2tCVI6f9rzxlw74vX/9Fi8/NvC1793xpp89mPbqnANbRHV2zYXddjcb6fJw69ASUySJlY76Xebnf+bDPHjpEzz/8hkuxcJVLogEXnxpxz/62Q/xA9/+CnL9Fj5XI2/BhuY7rFPVjSVDpKXXWOa+ylf1etVG+BjHt3YNjzYB8dZgDXD5iw33/craPPEB3Ohqlois8DjKF4HGJJ8ownvF8eNiFHXzAwm9Ez572PKltaM/G3nTkHidKldgivQOneNb2o4vjSOpGMpchFIoJAIIrumIpZCeNXPtscy1x2yjXvNrjtVLt3uaNfqtKswjXNoccrI+KJFeT5+Ng9eez2oeJtreGLKc42zoWY8jl1X51jgQapqtOBP1dajKd2U1nuQScS73d4Pj3/ypQ+sJjlB7Iudop3pG9vObAnscJyiNQmWMueIc/+rJER/e7nk+xekWXAFT3EK5Fe2yxyJsmkDMiasxM5S03yxvZhzXwFGwHXwlZfbFOCLCjUdgfzc89Jzn3R8OvHHfoL5GaUJU5XoSzupQg/o8RXYnVOPiGQVFF61XirIC7m0Cx03goA0ImZgzN1JiJ0ZGcdl5vq854F4fuJkzH9pveTJGRs0EZ5Hz2nu4NDIc2bq0Tyeub5WVCzMJgBoi36XSzi+OII7QCGCDRrw4EsagVnZligTrfk1Gd+HQ/r4v0bmkKVIckWIuF/KyDsJd68DQOm7sB/axOlw6yfak1M6NultkHZiHIeiUyrM7zwgjJu+da1i3K7xmNMbyOSElnZRyKNSX+2EgRhvR13jH8fMeSAyHsDu2MYjisKlj645bexvIkZ1jVGGXkkVSWCuJNZiB7UZ5vsI1PgdwRXKWihud1lDJZBJS+jxxghbOcw8Tk5KTzOHWc98XPC+8N7K7Vzl7RDj6fCLH0Qh7tBIeCi5HGsmMac8wlkxANhbAvE8lS2fEFQ5PI4nOw5gMZMm5fZ31U0oZ75l2BoxK1LrGTOdoitbKJXDpC3DX7wkvfI/y9e8fGS5nmhfqZLi0cBBn/QHLP6xNp4427MTx/euO71yvOCjYi6UBftJ5PugbnlHbl+AdWa2dTHOy1HQZKRvHSNCAc552a+QcWTNv/l8OeOKPn7G/K/P4nznldb+8oj21CN4HW8cKdDKEc+FrWGSapvkEhTzIBYvCJUPG8/ytgVdOr1q3gxTy2vKZEc9Xnj/jmV/8TciO3oVF4Hl7cGM/nRoj69twy7W8Q836Tq9XbYT/xMHKDLDAuMJq0cAjP3dAfrGQ7VO9N51uCqW0Ewmox4nwcYUN8G2YMleE6wofEXg6RvqXe/aD8gVxdCK83jv+mMIxppAahd0YrU5XyMMtYqJEm1JI1ms0oDz1o5Hx0FLRr//5wsyy8J7LX6bm62rQjzabMuDaFNSQI8NoStgVYYyaDLU97AHlzSnyXTlyoMpKS/tGsbBPdyuSwgi8ftgTAC2KPsq8KSKQmtmrctEijqsCh0ADxKIce5SvBOETbeDaILwzJ354ASwD4Z4g/AtHG8alXBSldSNnfm23QxF+cL3i2Fky84UY+dB+z4spcZpn7/kNoeFH1isD2QHPxsgvbXe8XABhPKT8uV/c8K/+zIaHnnCsjs7FcmSFl1PiV7dbXkjjZIusnaD8fbJVjgE4LcrHoxw7x91Nw/etD3go2ASmKvAZ5VbO/O6wIzjHe9s1R6UN5LITfmy94bf7HZ/OvbWkKOxT4vSB4kknuPdaQ+Mz23G0ofbeG/hPlOCFxhs1vZRm7RAawKLFXpVRbGDIsuPzzi/h9g7iC+9YRKu1GrWMBKZXykhMrMQRuo5TnzgdEn0uBrX00NtwjUqdUJ550sPzVaX+nmqsLQ2NWH0T3bFqAq6UC7JqkUe7F7KlTIMI3aorA0+UzQuCRNMfN+7PZA2MZdyVOrG5tWlgH5MxsdV9LUj38/kBS/3VMy4yp94XGVUWj7L4h05OSHWX6qp4Bz5YZLsOnjd9Uvi9Px/ZX4Lrb848/MUVY0xsh0gQMdpG7+mCp3WOGCN7Z90PuegIyRTDVfjaciamVMaulu35BmJSsx5S0FkWtxt41IUw9/QWZHB7y/HaX3a88J0lJf1dI4/+zDwd6bwjOP+lRpHzuli3yU8cdLy9bQo7VMkqiLBH+IIPfNC33CqgMlfStU7NOc052ZzkAmLLOTPGkSYUXV0M112Pd7z2Qx1f/FM7nv+Onue/o+d1/+tmkr1FLmfa15kZsO79vIC2tq70V5uBjs4RKRkHWbqfZldG9US8ZRQuZJDKu+bvnLIls/1YpsmBRc/37/961Ub4zY21f6iDuC6HNwoPfqTj6zo5DAV1WDe6eqqLRRNl0MyvIHwcx7r8+pbCbszoWEKykiLqHTwp8FKGo8X5G3M2WtSUrPbgrK6bU6JZHdCPRm6fc01F24ePnoJ7fqcu/vloWGv/aVnjpm1oVytiSkWBlYPrPCKBMUZijgxpRMUmKn0rmffkkXVRcFojt+IQXBfHl1dr3rrf2hg17Gy+7By/3np6zbw2Jr4zMxHIS4aYhc864WPBc4jSiJYWKRicg6M12wS3hpHfFs9lgbeSWVORjyYk7fKgmz5n5YQ/cbhBKKCS8uvXty3/cmi4qZkvDCMf7XveFAI/fLDmcCFgb2xb/nyJNBEYvgpX/qanHYRuy0TtNr1Uecg5/szRMds7IAhnA2CyNKD8zn7L4+Oe964OeEe3YuP8AmtQvXL7zF3e8cMrm8QQlmkzhZU6vnt1wD0xICiH4nl87Pn4vVtCzLgejq45DlcNLiRO+4FhVDrv6ZqWxhlCeao3YmxlwTu6trMU3JDOGd5zBvOChzz7f3MadW7NKMqiOraaoPSxC7WlxF5RlX3Kxm8tQocnByVkmz4U0Yl9bIKQ1O+pVFLTd043Wt5Z76fgHEToM8RhxDuHVwiutHeUbI/kjDgj8wgOui7QD4nVSzMD3I3XwJgh4mx8Yh7oY7ZacDGJ1cGeUbv1vs67C5NRXcrERUdlFisbjblYQsMTWN2/CY7glNaB5JH7P62EPcQ1PP+OyDt/HkQ8Z/1IcAbccmMkitAAAZsiROM5GxMx1XF9NtJxKNkvKR0dbtgtwHFGCOPc+UxHlbeyCKXXORtYzjkjA8lCTgmXlDf9kuPxfztxehc8+cN73vBzARf9nBVYcFj54rFM7VHzkvKWNvBY25YUthnN50T4VYQbzYpXQmDI9ZqCiJ8uYOVyMX6IlPHe451NmxvHkdCEksEQGvU89g+OeeoDe8ZD5fM/ecZDH1njeqNTNUM7g3tleeZr6rWuU00hl/fmrFYnLttvZWxXSg/VCWOOqhfJgbllTBcfnm3alBYvm1UBaUsT/we9vmlgVupAjTyIsIcwzDWMmrqbwU01GWdhp3cOKeCRrMJ1Ea6LgqZi+Gp/p1jkKdmAVwVgVV+XnOfuEHguRgQhJyXlaDODm7aM1BosrZSVVx7LXHubGcUHfs2xesGU3ZJvdC3wzvWKNzQ2KeGJYeSrq42RDyTrS00oKdsmJB0ZxoGcE4133NO2vCcn3jT0BgZYGB7BNk9y5u27LQ/3PUeaJjBIRvhE4/i6ywwp8WKADcoDR5kuCqcCn/Gez2J90rdIdA42BzYkIo+RsR/YD4Imx84pP+cCv5kjVzTzPQgPiRRIPtNNLUWkWd7sIozoHNyD566V421tw5FzNNUwLIzFsXccl6xEP0IueAHRGTk5fV/x7DsHHZ5X8/qxwyO+VzdWOy8/q2mxWVnVeuZUeZ6MWBKZfhaAt4WZePkBH3jNb3X8if8g8tPfv6V9ITH0GSfKYdOgOPph5HS7Y2w8rbexdRbcWGosZWz0XwFGusJZe8ea77S+pmiXiF5dRKVSvUGpXnhR0np7g38Chomez67vHZx0Dm0cp2NkF5VUCeszpa1rsW7M6fPlfZ93KOz+s3gymTFZkrgBGu9onC+0geVeyZA94pSu8Vy6Cc0+Mm7g6mvgVoKURwue1Yhhag/wFKGX59ZcUsiTIZ7XTJVzRuuiAa7PWXFqy2hQnGXUQllUp+BzQfI6x+ZZuPR14eVHlRfeAyEIuTeikCHZiFJfUwrO0voURd86x0PO8e52zcY5RpRPjj1fjgZEycnaK4cYFwdkPqR3GrhSgxzNEdVQIkzhNW3De9sNl0TwT8NP/lXlN79n4Kffs+XWSc/JS90UMQogmnkkeN7TBjoKxex0Byafd4vJuhaym88K/BOEVxC8qtk2WbTvaM3WeASZAE01IvauIrqVOEa8V5rG0OWv+fgBD/zOiqf/0I5nvm/Py28fuPfjbdlbt1BL8/rMjlddI53kORVKZK1ntXwqQ6FEXaCvF9ebmxpuP7u1LRHs7MtFRVp+fqdj/41e3/Qow7iehdfvZ6M736ROQl7hKQ5oG6FphGEQmzJTERBamqkpRnhRf8wYxaOqFkCNPe2Rd/zkySV+8fSUJ4aBpAUYlLGxgGVEGGr14Gffn3nXlxt+/J+t+dafDowHia/GyBu7lmMxFpS7neOh4CeP5m1dx3POM+xOedYFvtS0DAL7GIkx4jD07fHmgIcRvmV7xt1xLNGvORI3m4avHB7xwG7LPf0eJw6flZNs9SwtAvIVD096GwBwfHzM6a7nf3jzKZ/7j65xuBfu/cUDHv77xkvdesembTheN0iMpDiSnaPPQp+VOkg+oTyv8CzwFMJDKIczSzuidri+Q+ABBFcZYoBraoJxXAxtdabuKulnLemom0WADqZoDZveF0rPZxKeyPD5OZBiBbwbuGcZ8X0Dj3Gu6Rl15JXK4rPQtqcCXwjC1htI6JEhcY/a4RdsfZ918AkHb0zCo9n4r6e6KKZ03/BKw2t/PfCdH+u49sJAfwCfH3teThHv4HDTMaTE6X5gn6AJgU58GSBhfZseMVgvTHzG3/j1+5zSKeKZ3ytSP2Opt4uXNifAGSGJk8J4Ztap9XAltOyTcmM/MOQaPJx3EWwIwhwRmXKtUei8iTOphEU+WRNDNkfaL5wkKed3SImg1vWwuuZodnbVa/dnTlOuJqGglZlmwla33G7FnAtLucq0TCIX05X15/NPJ5Q/OqX3Lfi3Iqo5+mqtgcEjZZBILuvknlUufUV45RHlntbzQ5sVhyiDJvYIz8bEl8aRkcw+JzM8OSM5ciU0/MTBESdlUAhiTt/TKXKaM4+nyJMuIy7OgMNy3y3w1rblQODx/cA1poROSahoCVYcG3H88YM1D9UhCcBrfwfe/UTLj35oBavMwcoV/EndHXjIuYJwvqMgLmQDrgE/j3Cr/DvlhKMOiJDFJ+r1HOJMzwhYRJyN20CcIdJzyiSXaZoGxsRjf++YZ75rz3CsPP4vnXHPp1okLfebRbuSLiJRneRiMsTVQBdHt3beTAAJ8yjP/3P6tP2k2pHbZEsXztHiw3Mq/9W/vikjnFqmkXq+hxRht/AKzHvVCzdtnsVbHryXo4OWJ55+npt9LtlmY7SySh+FZH/x0Fq4Y1F+R5U3iXBUpPCeEPgzx8d8aLvlI2c7BiqLjtACD3vPfU2Dhsybn4Mf/esr7nrF0b0iyOZ8OHjuEBdhCsDrBCQnHsmJ45z4qBpZ/aprOVqtWAfPg3Hge85OacpmmMcIXz445ONX7uZW09AdH/Ouq1d57PQmwc3jsfY58THN/HaGcTRvr7+5Javy5LsHPvodA36EP/5TG1atoUZ9hqDCMETzOtXAQEOCUShowPmBBOEMeFyrMio/FTNUnwPepJl7Sz3tJYUnNNOSebN4XovymMgEjAMz1J8W+GfASuFbUO4q0dnpfYkv/+Cerz+Y2H+iYfzlFeNimIQAnwYeRbibagu1RJRKcGKtHIXH+3JSXpvNwJYzwwg85eAZga87xzUnRUoyn2uF12blshXeuO6Er3thh/CUZF5K8N4Eq3JQpOy5OuNQPtkJD8QVtPCIb/hwv+XpPACZdXCEzYrTIbEbEyPQldac1gPJZipnsYjOqZwzxGreaVGklbDhGxy28x88/yuY6n/15UQIVcGUQQTZ2XhCzdCJUXWy7rg5jIzRcBrmhFSXudbVZnU0Beb1b/blkxJaEq/sYyQmS82Hwk5mzrEN/Ih9pH8247Z2/e09kBs/cbfXh3P1OVQXEW5FPAuzU1I+UEhJtC5bFZQ7vExJ2gGZzwOsVmvGYceYLK2s4mnFjIiLyn2fcmzfCf/Zf36Jx9QTgqAYReS3BHhH0/JcGnly2PNkjIgTOu+5EgLHNXovKOGVwJtLxu3R3PJB3fKpYaAV4VtWKy55Y3m7PwReH6xf+btWKz7VDwzAoMrTY+S5ZBz8zjte1zS8JsyMcQK4wYCEb/tyY8Ne2ll+5gX8/bzF+ecJ5ZPUcYIUnIu174mbr6XVua59b+ZVIV7xEsg5LcYiWhtSjBHnHG274vUfEe7+7A1eePeer75/xzv/9jGXnwjTXjk3l2wyWughq0OoNU1ATaGYTMh8jwvDe04u6hNUZ2KSPy1L5Caj7koQctuHFzK2/PMPen1TLUpTFAz4nePzCteotYD5puqRrgFH2zTkmHn2mRfo+xHRgJeCMnaeMVtPb67DL6GQbntjbAGelMxPaeZPieNS+a7OOX5ks+FuH/hk35PF4b3nDSHwvV1LA6RW6T9mi+uGmoZYLPi51MEMfKksUQq4nPnWNHCPOJ5edShKGHt8hIfHsRhg2/TBOz5zdMxnTy6zEyHFgRH4vXvuZXuw4aHdKSFGbvQ9n03KE+JspmlctBx0wnNv71EH7c7xpqc2nHQNQ8oMfeJ0H8Hb4QtiIxRjttaq2rZ3saG9Pm9N2dQUzhnwyaIkDNwxC/XHUH5XhN9TeIfAEWYAv6zwSYVdue7Xa9lBhE9/YMdv/qc3APjAX7rC68odzBAIuKbKb4kN/EaNEF1UaYNwvGppnaVzx2QYhEcjPKLQAYMTviiZL2BAINFEqw4fAs4JQ048rhk8BO8tRZyStckg/K6DV1DeUIhYzrzjLpdYX8pc2kphFjIZOPae968P+Vi/43NxIBai/9YBwRMz9CkiUQEDeaUMtfd0YRHOnSP4gw/oRbU4R3dVSs/XDFcBOp+NuQrLPzkFMsSC/s06EsmsHRyuWrZjYlfGF040oVQPv+5Wjb+ZHGRZ3F+NfGrOKyrEmPEFne5UbYAJmMO4M0cYUYYTGA+UVe8mbuOlgSiYeBa3stAzuvhvuaY1pbhQpvWai/LJlHjXOZJaNR6flWEYSaJEHwgFqPnA7wru+wJv+HogB4E4p2AlZx7ynoe8511tx0f2ez417InZ2qoylrYViiFehFxHDn58fcCDCHf7wOvbhprinNxEgbvE84fWq2nlzzTzy9sdL6nwQOP54dKjXVfmqggHWXAxkVvIHWgQ5DaiF1uXWwj9HQXPsk2fU6OirBOopKxtLq0+In4GoEqV0UnRmo1wtZRQxp5qnsBTfb8HEQ79inf89AkvvmvP2X2JL/7RM977X17C5YplUKvlayVEgiqR05jSKUuzeKBJbHR6ruWzCudlvHIgTKnlYvjrcy/7uG8Hun1zr1dthHNjkbCK8jLwVISPYMjciw9wrp4klj746guvADaH1su0bCBCEwSnwpCEUiqxB85GU5fEaMSeUPj7mvlxcbymXNwB7151fFshEIfqA2H11lW9L/CDTDXCuv57hH0xWqcIn84GsHqn9xygbHLlHFZeBzw89osUxSLxIDA64bdOrvCFw0MUCAIHXWupKYGvHB3y1cM1KY688OIL7HpDjHrnCE1gTIaY3K4TVx+x1Pbl5zx3veggJjSZMsvBnjBnyBpRZ6T51tdZFdE32EjhnNNU6/c1k1FTjRUJGRWeEPgixbGlEmjM2YSKSs0BXnznQA6wesVx6cnm3BpNkSBQp41b/GoOT58yN/c9K+fofEGMK3wuwBfU2l6cCEmFMVpqqw2epvF4sayKxmyG1E4LrfOo8/TJ6u1k5WtN4KWVzaQGeOneyIf/k+v85K+s+N5fX/HgjUBbHq8Dvqdbc4zw0f6MvRjj19oLNFZa2fUjw5isPi+ujGE7Z0Lu8NJX6SkrtQd8EjsusJgBrQhHTWDVNlyfWpQs0kg5UcdCgqNxQidwsPacJeVWTynh5CklOqVvmZuWqsTXSGiO6BUjDZg/YVPDChuUeJKUuCTDwTN2veFEGY+V9no+JyWzBaoF3PPGdmGRZ3k/vxy3v7cu5dI4KFOwgCbWXjgKLaP3nPUDXc5cbhprY3s8c/y4Rf6pUXQ/f1tFwaoqrcL3r9bcFzyfHvYEUXaaObTmJ8AGPYwCXZnX17nMew/W5VFmZ0EnQwJTpFf24lAdf2xzgCLzUIGybzfFBiUcqvLmTcK/dsQrHD/l2Ty3YPJBiCI87QIf9YEblbVLZMY6ZQW1qWFJRzN+C2OkpWsEMujcurlYHeaxqjam1ntrPcrJqB6dDziEod+hmnn01y/ziSevcfXRgS/90TMe+58OOXq28ihkahapLH7ZRymEM67QtTLtyVxWmWVm1n+AVgrkWafX9qPJti386dvOrczvn34kcg5z9Pu9XrURHg/sy5LAP+zgxQlIXPPs9r6kTLde01FFH+KcK6PwLG0X84IEGyF4X3L7BsI471HZQOwvK/zdrPxRJ7wZJmPhqF7L0vOFG1cyw0qRHq6/HPiywjtEuCLwHPBhhefUBsonICE0oeHTx5c4aQLfsTvjHdszGs3TtSdvfbZDKPBM2/H5doVTWDeOrg1FKB3DkOjHhCMzjr0ZhCJMxkOcCEDbNZzdk7n+eoNJ3PeZlnEPGP7DQC8iiIRppNaQMzG7emOTI3RRWC4ahDk9Wp2XqnALmGGRvq57KlPqcrnM9l25hZe/ZQTg5CnP+qqb9nC5WEqlTacgdm2Pszj2KTPESOccbbARgZoTmVqDUoIY21VMiqbErk+Ekjq0KVX2TFkFjWnSOd47qKhT1UK4opwdKB//9p6P/MCe9/9/jvkL/+UlvmOv3FtaZzzwrm7NPSHwG/2W05wLYC+Sg6c7XLMbItt+ZBQl17pwrRfd8fUNf3Hn12SbbC3NLs37aVOIDHjVeE/KkZQNPBR8sdj1M4q5Plk58EJYd5z1I2dDnPwXe3/9h06Rct30+au1/H8Fks3140qbmfPcXvP/a+9Pgy3Lrvw+7Lf23ufc+4acqrJmFAoFoKowNyYC6EYD6Ilu0hTVHJqkybClaJFiBB0OUhbDkj86HKEwHaFwyOFg8IvElmgyKLYommKL7GaTTfYANEDMaMwzUPOQlfN7795z9t7LH9ba55z7MqtR5ZCjv+QGsjLfu8M5Zw9r/K//QuDwWXt9ew6GQytXnL9j9zqzMDSFvhYhYPW5x97YA9Ryw6dy5TPt42yY705nnbomKcYznlBWMfCOwzO8v1tx6ApEL8Pm/2Uyv3S7jtSsJ8N0r29JPY8nAxydFsVPR+GzfeBDQ+GBYkhlewb73oyw8S8e/Gw2Hzhh6TaYcRztvIoI14Pwb/uey7XwXFE+cUH5n//2ywxnK2/+p3t89D87T8oGmrLzbW0LJ0NL29nxCKfi0cPg9dRMSYvgDpYRnyzMNGkyqBkOYQpRq7G2EKKtVamFWjMhJCNaGgfiD5W3/uo5PvGfvMT1N2S+//PHvPOXD6f+xktMwKQhFeZOUbujGQzL1dLmSCx/3Z6n7R3YIYFBWx2wTPMkrYtK00PB51DhR5UftvGqlXBZKypwVGD7dKJ5TTIdlMY0NYerAua9xGhE8EFMidQ6h6tnWWKL3kpkNEQkWj5JiwmBFoe/DPz3VfkZEd4nYtSEzdrxBRmBzz428Lf+iytcuVB5+Ff3efN/dZai8Nlg7D5ZxEkAqgsWQ3ifPTzgrvPnSCHyxfWKG13iXTeus98s+1Nzo8BL/YrPnL9A6AMHq84mNhdUsNaL1S24EDjanDA64xfudXbR+HYR5crjI8OhIgXO/37i2s3MKllTdWm1b1WJUlitIimuOb4x7FpqU8hNZou/CfIpLMf0zFOtmytd32q48zKtZxMquhDE7XBcfyhzfI9ZZxe+27O+mWh0mIbqnS3NNm/tX/ZdFtJUgY06a1XwWtMU6GMgBqVWyz1Wd8daedqYLaGhIkQnKolR6FKgw5UBjvbUYqVnoeP4oLI5NE8+XRJ+UDIvRuFDKjyGGKhIKw/Fjj+7f5bqz3ypjnwub3mmFlYxklcwjHUiG7lFzy4O/MwNfHvBcXpYSPO0MTNfYFsqR6MyYuvVx8RqlSi1sMmZomUi8a9qEazgmMiiI0ngcNUxVmWby0RAMYcUmfe+nFJpU2Sp3ZtO8mEKEdc5+nLwjL1rOGtK2IRaS2mYAOtDazdnv1uFyIdWPU/0K1YiHNXK7x0f89Xt1sn2fX9NYUIrvelCE5uWT2yN7AvCOHlxljvPRNZUfrxb85ZkHaKmGa/QbZ2kKGA8CZkdo8MCOg2K2pTvPDMNJPQcykta+Y1O+ADCG4rS0uDXVfm4Kt/GonYZQyUfihJL4ZzAR0V4iJkYQsSch+cEfisFXva+6zFG7vqhcuZ7iec+OPDUTwzcvBcOn10oJa3IuDVKSW9GoWJleLK4/ymc3Di3p+W2PtLBiuNmCtSpcUk7B4s9IwakVUdsmTFciCFSgTyOPPxPOw7/fOTm6wrf+sUj3vLPztBfvlWZsvz6P2CYYTFT0E7nr5Hh+O/6dceYx0mmTRUKyMLvao6jVdw3NtCD/cRHfuJ9PPuDZ/nmt59EXsEoOD1etRLe9jAk5bdOhOvLkLHMB2hpyQasLeFe3xPFQmIF6z5hB6bVHC6EcbUvDiIkbxAdA6RQycUEbGuvdyLw6yifl8iDInRh5qmttXKJyj/794/51AcHwgiP/P7KcojBLM1GjDGhuX1xYwic3d+nA6RkMvCNwzN8d7XHmXEk4nXCYKAIFO17hoMDcoz0ecN2c0INHVHsGbKqt12sFK3kPCBidYqoeS42jwXNyjNv36BiLevu/+4eEjqOx4yixBjoJXBmldhL1knlymZo+2IK/9+C0ju9H4Sd11suWN0iF8DjqlO0YcotMy/aTPQgXH58ZDw0JXzv7/dEB6lVB2+EZrEuFHuzKhsvtHlP9vVVbO6KVkKGjsawYyHpXJxqUMwqTzFRhkwuBvzr1p0Jc63UYoaLiBkTXZ8Yq3C8LVy/UKwmu8Lh8wmRjpMk/JuQuTTCBwv0EqC26I7d/EPScyEkPr454oubEwa1WkYzUiqTz3Bq7nXx39uN3XpXZo/3Fgtw/kG8tVxEEY+qxFLYS5FVDBxvR7ZarQe2G2nCjBEIIqxjZN0JKSonY6ZUxUKMpyTc5BXPYnqCcMn8uvq9N4pJEKTC/nM215rg5D6LriQ8qoXwxKrjx/fWHDTlLhZuPxSZcr3nY+RPnz3Lj+dsNdIKnx8GvjGOFGAf4cP7a17nDRMESyP03k/6Wqn89mbgyXZoJDJU5aHY8da0NqXYymJ8n4exUtYms0pSJJ96dqymvQarFz69xAXhBwG+EsTaNorwG0FZIfTFwGsv1cqxnxvre2tji5XZvSCBJwUeRDk7KeHAUUw8DygjeyGQsNz82bHjTb99wPPvH7j5QOGlD2bO/E+d5WRdHqo2SskIIbITsmdeyylUPe1PjyeUSojm/s2B38a64593pS4S7Jq1ILSUkFCKlzBFQ06f/Z7yyK/v8dW/fJNLbxl46iMbHvvVfefZ3j1TswOxu09PA6Qm6sml/cgcdp71gKXYxDn0q3iZsVS3KSztJ14F05St5oFzPTz2Y2/nme89PTdw+RHjVSvh/+dfvsH3e+We//Ic3fwEdnHc4q2z3SeYF2x5IIPRl2Icq8BEYtFc4YApwBij9Y91i0sUa4iQ7ABXV2SmO4WXRHhZrMygEY9XYFhVvv/hLQBnf5C4+JU0WTuwsIzavfuCrLoeiZGhZCs/EQuxjyFysrKcZHZUYtd3HK5X9pxakVKgFiMzKHXuVxq8z2UtjJsTNI/s9x1BrCxpGEcMLSiMHVx6zE736nrg7u9YW8cYW1cSZaQy5GIKIUU2Y6FqnGsUF893WhDMoI/dHEabB62KNtAchmDEazdrLX6+Wjhm3s8alCuPZ0oHcYT7vhSgGEUeIUwh4N08y7wWixuc9gfKxMh0UjKbMbPuIl2ME2l6RSmltmwbXQr2mVqt/2eKRKD1zZ3yQbkiMdJ1iZv3H4NCtxXOXu8M0VsqowpfCHAT+EiFw+Dz1pwIlD0CP7U+5PHUcw34/DDy/e2WIpGGqDz9bH4b86/l9M+nDq/473ReP/TU+7QJGYsaVSolitfxWou9LJlhzFArMUSCmMBVNXKRqoVQ4SBGViFynAubsU5ewVLl0Nb/1L3b2jVvyKWBuxpNwO1fgv7YvMrhfuVtq553rXrWYij4h5J1vjotwkxHN7WkpAqv67ppFz/SJX53s+W7Y+an9tY80XU7e3Q57omRCzHyG9vMt4ohw8cysh/Mp8OJKZ6Kwg8jPFiUh4pQQmXsQHpIm7AwPgyB//FOuJQC9zqQaChGpYpEbgbhhSBsXeEUNzCRSJc6trmwmfjdHVEg8zw0o+kE+G5Td2IeWhKLNEaFXIsVDmkhqvDG39vjM3/1Gtuz1XiZ/+UhuoFS7DwHV6jjOBBTR5Ru3nO+1m3BZ7lpCyI4RqRWJLYyLPeCZwXh+6Qp6WbcWGSxpU5rrZSSCSESJfLEPzngO3/mmO2Fyjd/4SZv+o0DwmDRtRlwN8/LtNfmXTrNm93ubeSNz3TbyOM4EBoP/xTRUE+TmhERRKjeJCTGlm4V8gC//Vuf4l1vetwciVcZ5XrVSvifvGnkod9d88DVlk+o082iePjKrWqf/phahxEnJGitrNp7K4aKDYkYPMewON3Fc2/td0Gsa0Z0i6W1+ZpzMY1HWgkl8J6/c5Yf/NET9p8P7L0Y5gVoc9P+nrRCQFLH1aMT9vsVfep8bao9L4BW1l0kxZ48Dox5JKQ0b1RVUMtL0lmbsWHcos6q1AWhEyG412/1/Z6Xqpb3fcc/Psu5JzvCVtm/Bkkqe52Fe3KFzTBy7WTDcYjEPrKpkSrGx9NiBW3D3x4Y1ISjP7p7RrN720KHHvKctSYTVEdwJUM7Vrzp43vsrQInFyuve2GPEGDrYXiaIJ+s/MXdTIJcJmt0VtqNLtFKlvKYScUiACkIESWFMLWIy7Va96wgxuW8aEYfxMo9hmoUjyJGh/jQVzo+9rfPMB7AwQ+tI5erM6rAdyJcifBgFVI2BPlbJHC3C8Be4Q29kX88Eju+FiLPKXwjF46XeeGFs7gcpxXwJCRkgfDU9te8rhe/Gfipv23AoYvfNGFffE2SBLa1MiqIVsaaKSKs+x4B8piBmUe8okbZqg3XJnQhMUqmgVsmA8Z/XLi9c0ppaURNoT97590x8NbVmvBk4IP/dzMWHv9K5CcPV6xPg1jaPCwNPTVMSsVyoxIWexhYh8DP7q352B70tHBjm8tbJ/2uGPiFvZ5/uc18dcjggKkmxiuBz0bh6aR8JSofevPDjO+Cz15/noc+e8Ifux7oxAhPXg7wrzrhefdCrwQoIuSU2GRjtxMqZAMzNQM9pp4UgtFfKta4Yjq7MzjOjo54r/D52dW9TI32fVUDoxGrWQmPVi5+K/LYv9pj7yjxhl/bR6paj2gxD7Q6qYUAZcx2nmP0uXdch5/PFpJeRP7tnGqdQurtxTkyupt2aS5PM6isPNGdsmogsBAj935zxRt/fY+yB2/9h2eQcT4jKswMhz7qMtTc1v+0Imw6ZmnEuqxpe9pkz+h7xx5KlxanOJbADV9rPAS1CpePCh///W8yqsnyVzNEX6W6/iuPvw6pZv1NH15Yui3E1SyHKMKqS0294MRjNEWNKsmtijYPzdrw7TqFrKeJ0ELAAVxOu5YVNCazNpWpzKZZ37UzLy1ubBLjIv9Z3epsP4euZ3VwlhiTtUqUSL9KFjqmctAl9ntD6ZWq5FyMJKFWApb7tlCqTA2dRWzDpxQZhpGbV16mDBuaDT1WJTtBSQqBKjBm48WWDvY1WJ68VlQDI0bZacZJMOIFojNveX67zJbiacuwCXkrSZqbm8/WpSLRIgst5KJt/lFUsz1rsLlE1epQu451ErpQqbHAGBiLMpjcsWfCBBPITKa/SGVMO1HN8FlarH4c3CAzwRRQ9lPg3Lqnw/I9FWFqqaFiQKwY2YwWpg5Ys/hVDFAN1LY1xBuhC0QiNRtLWvFDWdVAXLkapWrXddxL4Kdy5Q0excGFj7rhUIAnS+Hrw8iVqnx3HI23249Ardn337xGoUUYQkOct2c3RqfQQEK+lr0o9/WFhFIkklUZx8x9oeNCiGZhL2pocU/TarCVIef5fGFrfqSV72y3XMsjd4XIo91qapoxn14TxpPgZHevNWDOTLoBUeB96z0uxsitngiT4c3iOpeDcCm0PWsd2L5D5VJV3qKBu4vRNp4H7mnivtGg+veNCs8AG8wwyAKvA86rOqcBjCifGwof32x4U4I/s39g/MES+MeryDPB2kS+9bE3QB157oUrvPDyDV6fhdeHwEmAbwXlcrCSwc4Nh4rampSWfvMIYTRqR3tcoxoNwKhwNIxWa247giDWyajNWSnFvdQ53KsKKVkDGa2VIJUuYOyEWgkS2faFVemoNbDNnmrA2sDmkj1VY8qwolb+GDsktK5ntpeqVkrOfh3x6wsSI7HrjahoOq3zXlgc7MW/ASe60cXfOWc/D5F8qMQaiVs3/qaWgurnxwyaJa6lXTfGSN/3nJyczM6IzoZsQy/XWqY91ox/kcojDz3ElatXWR0ccvnSZdTpiW1dokdkWwMeN5nUmoyowmePj/nUS8/zo8ar9oS741koTICsHUujHU8AIXhON1cHHbgn05RNisFaSalZ8FUb6XdD5k7rbg8oOrHxSFMWwfh6Swjk7RbcA5xBBxCG2WJsCgf3bnXJWyxCTCskJComDAuFzbYQqRz2vSN1TQnU4r1UCRSsDGasjYleiUGMAL5L030VVbbjSMmG8q2YJ2Zeg0LOpAgHXSCknnEYyXUWlCKOPlcHZcRIDGo50CYS9Vbfd4kCbB6uP/IcFFh4wssA2BSuV0N9NnBQVOEgWjlXyQUlQxFKFXRkCoWvQqAnUGJgm0eGUj0I1bzjdhjna0+gvRbVap7BdI+ttAlOcqEcb1mnSB+DHerpCUGzunUtZsRoJRarNaQKuQiihtiPWZy8P6ISOd4OZE9ZdDGwt16xihGpheNa+a0e3qGB11W4WJSuMimSqMqjKfFoTIwoX9pGvp3N8zxS5ZmhsF14ksxTcOto3uXivc1L3LowOhcCZ0Pirfv7PBw6C08uJ2KaucVXrtrZmO8iq/Js1/OVzYYP7O0bS9rp8Pi8g3bv/xVu/9YP3/p9KpZW2ohQUJ4T+GoUNg3QiVJFGKowKPwulioaamUN/CmJPNEUgt9JRvh14HOqE8WoAheBPw28zoVup/CBPnFfWPNC2SVvHLLx1ycJfOvbP+CMRMag7B30/GBT+dpg5V+d2XGMomRpTont9CiRdZeIQYwMxIGpjj+eDNHQ6ssxqi4J3GqwnDJMp0hAUTSYx9aclxQjUgO1VPpNAM3ErmPVRcaxkGslhEiSRMnmEVfwfsyVUa3RQpAwGRDtHnTeBLactckIXFE1w8zeE+T2XmkrMRJlAhO3Rg+1VuINQYISu46cR+PGdr7pGCO1QBFjIFzqo+bdD+OwuJxMW3Y5j5MCn+5PAGu3eN9dF3jwofsY77ubL/z+VzlxVIhWK7Oa1lFbiaf9tla99XlfYbxm7mhwSx2ZFF6zYmyYVbK0vi3U5aAWEbdm1EsolOptpUptYYY5HCmqrrQtlFjV+nfmmtEa2e87NscnpvsW4YjTE2BGQ0Ps+V86i6Uggc7Dykv4uuFxlKPtSB4y6z6y7hMB99hbyFSLC4uWRzUvMtfiXoFyfHLCkLM3vG41nBUk0AVYx0QfbW5yHhFLrJG9m0xQJWP73VrpWqi1ekhMVLxZzq73u6OAl8aTP1+bhmYNtzNk+noWt+ZFRfa7jr0u0geFmhmDebsVyC7EGge4CZhMVOUgWaeZkzEzVjeEFofHDolOhg61obt1epYJr6u2V7IaNeJ2LHS50odAF4OXT1h7wVYqV8VoFbMoN8etG3jWWC6IEU0MuTCW7N5xMMKJIHTB2mnG6iAvVW4KfC4KX+8T54ry9rFyMVcOsTaYbeI6hfevet69suKSrMq3h45PnmzYVuMkv1Iq24UhclojT8ZnE4A+36UE3hY6PrjaZyVyC693CxtOa8zCo138rl0tAg93HQ+nblaWt1Oa7T79OW+f9rj9yMDx4ucTrA7807VQPGrUwHZS7Ua1GuFKjMLB2vi8b5xsGXPhRITfBR4B9hYF1M8JfBHYuNBt+/oFgf9RhH8PeKOaTAooj6bII2n2/HT6KlNso0aO8GgCykGfUAI3c2ZQJZaKiiXbQvOKg3FSp9gcicCQi2FGCFh6xn5XmeXeNM9qBvZyDZTdahEwo7eVFJo8DjPxDDpF/VLNBBH6LkJRxjx7hWpf5Chz+55xHCwy6PJKxJVWXTgwNMVTp652twC7Fkb+QlMzC5oAMjNpTUqs7d9q9cXDUFB1ABdM9621TiVKzUkspVhZo+yCCyeCDd25w/n2AkDg6WdfIEjl8suXOLfeMzNEIqpCCYpWr1Eu1SIADoZoue7bHJvbjlethJU2GTqFxeyBfVbdWhW1JtqNg1bwPK403JwDaaR5Yl7LhysIxEJKWj0sJ5MVlbVMHiXBNvAwjo7iZNezXU4uzfLRSQrp9Dv/dzRkYHucyTKqdo+DWtjq+HggbQZWXaJLBmyJQJcCB33vwlwZSuZk2KLacuOV42FwBWrPEzG0M+LPXKuzHRlgYwrHSzskQs7Flrio1Vkn89zn47azs241RvwF8e/FDZspcQcgEXwdhQpaWPedlSHUyioIsWYnC7EOTxkDj/Vu52zd0hav9+08CxzAwFIqjKWQs+GkzRqtk3e8NErbvpvuMchkNbc6YzuIxv8bi7LqAitvPm512FjDDNxQilbWNBRD7dci1JIRrfRd4nBvH2qGaqkVM3oyg9pTVKwtZwZu5IFrVXlSBGLggSr8BMpFmEGMzIctifCOVc+bu+RUq/B8zvzzm0dca+0gFye4D4H3rle8KSUu18rvbAauq7ICPtLt8a6+pw/zXm5xtYrMgmmx/aftsZCDgAOS2n90uoeFk7LYSLOin7T5Ypfp9N95jGrlOf9WjfDHvtvKhU78GlIKsVYLrwYzpgIB+79OQk8C3oHIEoXfV+VfInxYhAOx2v9/RXBWt5aeajJIeAn4FRF+FuV9qPc2D6SG8BW4CtysBYLR5xpDm9JppBRLSRmyu4JjFIZSCcH5lKsfJSmWcnJjIATLaY+5UEUhdKh33wkqUJoh5rM/9/X0JvO6O92LucRDyuYZ4xHIMBHsqFb61BFjIgXluI6MjnOIMUJQSimTIlM1h0DVlKDIoumHzhgA1M5HcGfptElmxsHipqdmMjJ5purB8NAMyfbVatU1KXWEEIwBTyxcLRigd3YBF0DbReRzOUdTWqcuqhB0cX48ojVW63V96ebA5ZsDIRh9ppVamtxqrW+neo8p0riQYT9ivHZPePlAO46Wb+9ggdaSrZ9jCtHRw7qgNQtknanympWiajm7FIQYO0O+1kquOoEiTQYG290Svc1Vm/yF0mlyhFm52D04utWvbSUxFv5tzQ+0CRFpfSWxw6JKEfP6hjETxkwf4NzBngFeFEq1UqKqxfPaQhkKtQxstxvUIeQhGpjIiOKVIcNJzgtqN7t3VcvzqgaKWteaSjTLy9G6wRejThvkR62+uUYzWpDJow/uNgWgQ9nvIqsY6VJiGDKjCkMuZKlEDyVVmdevokitVheOEeOLg7OqWv4boBejM80psc3ZwFR+LzJZlNJulQa2sH3eXl94ee4ZqP9ex0LJSk6JxhFU/cAbCZBQq1ByYVQLKaYgHK5W9N4AIWs1gR/FojGr3jyvrIxqX9TVSkpq3ptGrmfli1X5VowcIry7Ft5HZV92D44Ae1PXMXhT3/NL55KXOc3nS8QiEGcdSPNGVd7cJU6q0glcdEVlHrLNzwb4/SB8O5lgy2qNRzYlm8HmebvleRERHhL4GBauFTFcxtPAb6pyjdnDmDCu7mGozPnfpuTaPltmjTOVG7Wy9fc1fT8Lc/vuglLHQo3Kqu/svBdfVwy5Lh66NaPdAFv/TuHrIqwQjoLNw44H1CxwP+U3FX5NIi+K8FO1cMYjciJwLPDlVWTQCqNVdVSgqLIZMqWoh27hsI+8+dFHuHD2LJ/84pc5HkZitKbwYzGMTPBoi3qYOoZA6ntyqeRaJn0UYkTyDDhSmKJgMCunBnpqM6wYNiVJIkiEWgx5jeM7JFhkDUvLSTVikj4orSVYAY/isZMnNsfJFHNKhpy2kPU8nw3P07iswfkDGnuVntoNMwuGi+L2XTI5HWVCNs0psRiTybpicxQdY9Dyu5YzX6y5yM7+MjvOn0vmvQ/N8WoOWnVZ7HOrGNe6fz401gRZOjTtOXzv38ZQut14DUpYvelIm3Rxz1MnKRjE6oC76OUyTnc2qlqZkd+jzkvhtahtwqBL0UOJU72TKaJsEkk9rKxeTFoas5YnyXcmdPpemUMQzauCuaOKRFIyztbJyNT5nuwR3fJpilEb+lDRoxM224H93upSqzhBhyv6IErJW7SOJBFiFFJKBvTxzVdU/aBEV7zM11ErO2heUwsXTUjaUx7OcsipDdl+bjkenQwhC3ElUVbR/t7rOvooRh86FqRURBsa0EvJVK19nxfs9kGsNZmYl5kdC5+rN2l3wyaqgR8SlZCEXqMp99J2h6EyF2nWSZw2VGRTFG0O5zC85bayWg6+C8EZtZxWb8xG94m139sLHai3OszVELIyNwQx4gKPN4jljcdsbUfWfbIaSQ22R30+T7Aw62+GyBc0cE4hivJ6VVPKzTicLFnlTAw7z3lqIaeJOC/CeZdXwV+rwA8EvhaEl0LgZVVj0KqZoVhXreIwySnE7+dW/Sy8qPBd4C6sLvdElZf9OcDWrkUdRIxYpz1C1YAGVxTKbGBP3bkEglCaVeXnTHQOE8+MR5bCGkuhbgpdSlM0IvgBraVMDSjaAVCBG8DRLQLR3qOLhhp+rBlV+Vzs+GHouV8ze5JJQbmR4HoUeukZKQyj9cStHgkMQehDYBWFTgqXn3uGK08/zVqUMcBYjX0sSaCUQCv0C2IpnTZijLZfndiHEAgxUKZz0O53lmGTLPP9KO1ZdXZoui6yXgWG7UDOxfa9Qi5qe7fV5UtAgnqkZ76nFs5tuVXE8qxjHiePtNbT8RG1sxlm+WT/2BVQzXhu/7A95LLb6/ElhFvgxaVWA7+6o9KUdGzd3fB2ulOZF9O19dQcNqPgtHxUjwC2bK8FV+cU3uQMLD4Du8bsctVezXjVSnjphSwvPCFq/ZJdjOYhoa5QvFNSzVOuShbCR/D2Z8EUXS55CkdYhyUWuQ9DnVm5qp/05r2qgaL87NNgD8sxWVyqi9C1WPjISztU605t3mS06e4uUmnCx2oyt6VwNIysYqBf9VPeRLQQxUJW+12kVMilsNlsLRcVA7WapSUSXFjZBh9KnlDibYabVafTTj69yRf3KYvNcbsNIWK5FOwiEWWVEmdWCfG12DRbSNu8upAFtz6rk4MYECQFQUudawkxjyn1HWOpjGN25aZ0EugdZZ3VCBuGYIIiawvy6LSXVXUZmWPyatwQmQ2mZmi7l+C11aE4OlWsHnwVzVIvVcnNMIuWJM/N0yGYFVyy8Z7HSJLAfrJOOqEWxjGjNVBJqDpi3A9uBS4hXPJn+LYoX9bAAyWzAs4C78LbRk7Ps7OEO+t1ywtiAKTPRuGTwI1i7EOllmnLNuNn+kBtynfeK+3f17AWlZOH4puteV3zPFvuSzGZ26GePjLl2WhNlJmxSplBMKKzgGt3ILp8dttTRYQ6FlIQUgxoEILfT1Ez/mSpCxZ7flcG3EYW+HuKVi6FyCXpDHFPofda3rFsqCqsQiSEyEilisWfBCsr1CCcDAXUjNP9rrMuW5oZSyaGjhAipXjxcIUQxVMs5lXGaIa7OlLXPJ55zZeh3xnTMUeD2kPV2hSs0bumvuNIM9vRvreKVVQEV1SD19hP/F7+XVNv+Cbj3ejVannidBuUOxjSOGg0Zdq8wWmymyrcXZKqLUTsEYCG4witl/xSZs8o6BjjrIhT9FJPPeVFzzprMiim+dytL27Ghk+t7+db987txnKvLcFhr2a8pnD0ctKnEhzmOW5Q+kYaMH2uWV3VSLubMrfep22xmz/WZMQOFtREhpZJ+aRuZZtWGxGGSwdXwJMiXk56aAsBtFi+BGLXTddu7cYQcRQ2syUl9tyNKNyevSGp3dJU5ShvJnT0mXXHKgg3b15Hx2zesdhnrIZzDrOBbeJSLe/d8sEw1z+TnL1F23bWSUFW9xCnDbE4nMt9VHXeHJa3b3egc+qgmudQWkiqHULxdShKF6L9iYGhFMY8UsTrvVW4frGwvhlZDX5vtS68J7c4RRwdb8+zTgGSMFRlyMZ+hBtkthwy7btJ4O6Esmy3NK4hcUFnYU6bb7OcA6ValGIJCkMLw3lTXHLZ8tYpCHt95+hrU9pNOKUUiNKxHZRtroyIKYppgud5b2rveRGe9dCkqvJZlHdg3u2SqnHe/YYafkmEh1U5P72sXDlf+HqoPPlyMA5xj57oYt/rZEm2uWmeVBtz2K2VWEn7fXuEUxEwkRlo2XXCXjJQYYzCyaDc3BaGqjgXFkJlc0ZRUdbXvPY0qIM257rxtjfaWrYjaJGlTBcjfYqLiNpSAjEptiVX9Y6wncyCZpQvFI0Y3/hJrpwwohFWYhUOeynRBdiMZmznquANO4bqIX5jEyJU5bBPjASOx4Fa7LzgxqYAsUUVvUojCKy6ZF24SvauU35vbgUvDendqN/8jGZU2HzlXElB6PsVY91SiqX2xpLncCrMxEkTIcUpY0/nazYjyvKys2PmH/dWhWXRvGBOTjRrfpJPS++xnW0x2dpyty1iJ762WpUQI+M47pA75ZxJKU33skvFKzvR0DmE3/TEfHttjneaL5yag9sZH0sFvItD+tHjNSvhlphWt6RcvaK9op0Y9JGFF7N4WARiMgvSIOiKypyIVxceLUQKPvGoLSwQu0TqVoTYkzfbSXDgYYJpkmW23ubkO9OhmyyeJHAmItvmTftbW8+uBYn95PWLzPWI0xI0QBUggZIrWgZ0HNkGtf6/tZVfCZUAwZCRpRiPcTNdjAmKKdTacl+lq/zwZ0945HcO6LYyGR3zXbRp3n3eW8bi0E4/+/o24IeaJCeKNYo3hp9ieacY6VK0kDIGFgvgzbptfoeofOqXbvC+v39IfMYUde/82FOoXqvNRWUKtVMNdJGAkAJVDMCSteXz23rqLHBPbfad9WYBkPC9MJZCLpkUxfmoo89VpQbls79wgwe/uOZ1V9aEJATMuzSu4ZncvhbzoiwvtEi3NMJ7vd3kL5fB9u0LCi9M68K03u0RQmg5r8Dn2gr7xb72v7qJlspb/tGenwXfCdoE6nIjzODINk8V8dLAeV9wW0Ez53wlWO37qu+9jzEkKlELKQuHqSNJx/XNyFArVax72uXHB176sYEf++UzhuKXBjx0r/iUsbi0MdsvhpynPRhiRIJO4UdZKoQmCybZYud3rrX2MwB+xnQy/DVEtnd3PP+uE976OytSVYLnbVedecQ3twODZmr1skUFTdAT6aM1VxAC0iXe8Z63Uory+S991c69KrXaGkd3RqJXnMQg1Bi9tenuXCxLQ9v+aNNVk3J0d+bMSwGVRNHAZlBShKGMjiWx8kBt5RU+4ZOYaAb8wuBaGmxLRd9ubroPmedbJwfN56W9d4r2zIIprytxCNNebQEAkJkYZFLk5nCllJyjoU7VNrU4kY8r4obmrnUR0l7aa3Jqj9gNcnrXn95LyzTn6X8vQ9ZMu+xHj/Cj3zLfytJ112ki7c+TP7fhylutPGXy2hTLETgHZyN4CGKEG8EXLJfi7Fie3G/fUQz2LqoW6kxGiCFBGMdxeu90LZ0i+XbHpwTJMqyhvtpX3jHy9E8fs+4iqyj0LlDCpAYdqW0PvmM5T06Y/z44AhL3InOFk3Hkys0jbgwjx1UZquXFpOvICttcjNrOFXNFvBOVf+1COD3/gYFv/rljajolUHeMhFPPOy/ftHZ/kOKyOkZvNkGl1pFaB1KqhjjuE6JKGQ2cUlq9tLOKNS/mpSdGvvLvH3F0IRNTJMZkALNaoRlUEkghzda1FkrJqJoFv06JPgbWKbFOiU7EuZFnAwvwUpImDGYPYlaC6uAhJWslU8kom1o4GgdOxpHBDYPrFwtf/MVjrj1apj7HwS3uoso2Z3J1T6MqmzEzFotehBgdBCOTUbG4g921aZt394jtrtP8WDQvAWlRISX3lR98dMMPP7pl7JnPAy2KMn9svoul4GASvO0HQadGK+0Pnk1eR+H8XsfFgz3OdJFelCQOGqrWTnNbYDsqOhbOdImL+x37sRIkc/3RgW/8uZscX6zTzc2PFxYe2XS707MbsM/uMFfrtDXmspCp7UzOxvGtIvVWY3z5DqVSgwENtweVz/3lG1x5eGR0QpdNrmyzAalCtBaslUwVpQT83Fey/w8trKmMVy9zdOkFM+aKAzf9earZELPXq9XYrOIpjXEbgT6nA0E75cv/0XWuPzi4J5k4yZWbm5HNWBxYxLQ3DVcSprriVi7Y8sDzssitcvQ2xuVyX9VqgEZdznmb9oXhjyrf/9gNLj2xmcK+7TPGMR13+kJr+241IGQLMWvVKS+cc97xgFtN8RQtXRwyEZlwIn6R26rNWd7bq4Z1qjv65hZv+1V6wfAalHCQ3e26/PeNNxQ+85/epPS+m2T3c0kCUcCs6dnqbKi2FibWajXAtVZHv1X6aIXuq5RIMUGFWtQ9Rw9TTvc0e423G1qXzklle6Hw6b95hZMLIz1wbt1z8cwB5w/2WCVBqBZi8u7oJgOtHmwKgy8NE62ozoxdppysbGFU2GS8r21lM1hpgHmB5hFXtXCYJZyDgVbcS9nsFb7wV69z43WZam16Z2tOGyr6FYZPx46FJky129MRD+KKphi/LUrXJ1Z9oovBlZ+ZrAXrQLXVyuhKrfE4I5Vv/IljbtxfufKYNfAe8mA54Wp0gKqe89eCUIlB6Xyv9KEjSbT7qybkOxGvT7aw4NTG7VTYtUUrwMokJ7Uza0NXVjbXWYWTohyVwlaV731k4MXHRl584zBHclS9a1Uiho5tqRzXQhFYr3oDsDlDkWq253Ga01uLNRaCSE4dcGVHgEzbmtlrm4wuETYXKs+/b8vz799ycq5M09FEjSlsV3aOkOXU+bAolF3Ik0G218VC9X0M7PcdB6uOM6vEQRL2g3JmlVgnLNpTW5izMqgyVOt3t0qBwyTce7jm/H7ixuMjl58YeerDJ17CavcyoXeDz1hdGlBMSrPl2BtobszFkNIii33QPuJr18pQJkPV52fHOPFLiBXXdEHRvcpLj4987i/eYIzCcVaOh8rR1ghnUhD2+8ThqiMG3Owx06sg5CqMVdmUwHd++DzPXLrCqu/pY0BLoRbnRlArNRxLNQOxoZr9mXwnT/ug7fFbHQy4/NjIF/7adet3jDCKkYfY/rdSJTyX3aoh5nmqBkCU+RpwO0Nm93fNYVruU2kGji7Xg9nAWpzF44sjn/o/vsjmXHGd0Gp6TaGF2PoIT0tILUbcFENrfOM1ym7M55wpC9ZAcd4K430Os4fv8mxpLO/M6Snlu2NALCbgdkZJm4tXM16DJ3zqRnzkPeUzf/MGV96UkTx7IAJ0QehTcrCWuSi1lrlmDXVwtHhpE0476SjCGI0a0S5s3L8hTZ+x9on1lntaesJLSL+VB/m/OuWr/+FNnv7JDfvSsYqBTpRYM3spcnZvzeF6RR+D9/CtKE6Lg4ssaeFl0+7qoZN5e3upUrWwa8s55aJkrz8uqlO+syGiJ6HjGxGBH/zRE5798IbhTEXTKaPoNntgOSfNMJmFkUnq07IuhkDXRUJKdm+5UrJaqU9WB9hBYzGQEAgpkrVS/ACtYmJzH3z9549B4MW3jr5u0b18ZdTKoJWCeVp9cCrJFOlDhGKgsMkq19l4S1FIUZqMmpG4i5O0DDMuJmTxsz2/VHUjxzh3r/eFz//JG2iA558YycHLvhxRuh0zQyONCEadOuTKNjtpis6CgkU9ZVuDaS1OeXp/kKeh063PitoECDz37i0ndxdOLlZeeO8wgdEmVavzOtcmJ4WpjGuKbrnhrFg5TRdhf5XYXyX2+mhsZOJGRs2UOlJrazGZCEGBQpcCKUKKIEGpWNg/1MLhOnLtbQWN8M0/e8RwsGSbxxfTEeyhkVO0g6CTwdLmcw5y6O7PkzF+akz5jlNjEVkAiCr0EohnAnlP+fKfPuKZJ7YUNaWa/atqrTBmUlUOukQXIhkYtZKLsikwqHnVEhPRSzX3uo5VMuCj1jkFVUpxDgC7J3Fu4nm/uvJt+yiczusDEb71p27y/Y/dNLY5sfOmbY+1cOqpyWkeIQKdy+uWFgkNtyO7718q6Z2vU5Oz6nIcdYzC4oDO0Q8h5MCTHz7iy3/xsjsXs9k626qn4hVquKIQgiO1W+i5TiQepeRdj34y8uZnaPewCEBN87z8Uz3KtwzTnzb4p1TBgsjq1Y5XrYSbEmthWAANyjd/8Zjv/YkNoQhhnK3MLgZrVODxVGOlMeFhdI/iYCYT7tlDS11MrFNHipGKWdVDLRSYAAdlCnUsD9wylsctB262eozV5pmfGPjyXzmCAHs10iehlJHtdsu43SKlsBJhv4scrDoHnSiiIyLWKME8+hZuL/5zyz9V0IKW4gaENDMAdT7mokwGiQj0XXKiE7OsW03xyd2VL//HNygrGM5Y31v1Z5pCiUspy65g39kQylRjOSl+zKTpQ2AdI/sxsE4BiZGjXLiyHbgxZrYV7/xiG7CUjGiZKCO1GBfzVz96zJWHLDXx4psHU2YF69qzAEykEOlicj7v6rXVxcgMgqUerGsW1votFzbDQFVrorG/6lgn4/mewDZtf+oiRNT2q85GUjOVpmOqhRffseW5948gcOkNAze7wqiePpBAl6IxcomhgYOTEm2LclwKW1/f5Zw3z3WO1zRvTHe896Xnu4xYTG3SVFvlh1nfEZ7+iQ2lh7KCZz88WCi1bQdMCfoXIoIXKDWdO3vFjclp1SXOrHsu7vdc3IvctU70YgK1qLVB3KpwkgPH28p2yPQpcvfBmrsPejrNVlaibmBWb1CfK0dp5NIjNrfPv3/LtbdtiGpnZteGcusqGsCtlYmpG8/isqQZGGZsyc43gHCLDJzEgxvIk0Xi6Q2jbKFoYFuE476QV8rxxcqnf+k6Q8rUYNGqMRsf9FgtDVNKpg/KQddSbE3pmTGRtYV4LSXXRzsvQQvrPpn36VELI9gzWRkmb91N0Lq7V6Z87ULsjQfKv/sbl7hx/0AkIiqWk5fZMJlAUbUpdcuVSwisVx3nzh6Y07ScuIUhuKtgTv/O5reqmSsiznwmdv8WTfP1ESFmK237wi+9zNN/5Aioc1oCV54tjz+dlwb+MkM4xuS86z7PMpcwNbCqtIiP7MrOWxy46Rlnq605McszuwRiNSmq6rXzAq2k9dWM15QTngusARVefvvIF/76EWUNIUOvgXUyxKxxjxoln3U+EcQpAnFwgpbq9UbFcn8xsgqNZrAVjtthHr0l2JQb0oYG3rWubucFL6YYgKMHCp/+z2+wPa9IFeLG2hAaoMuIOYpmah2QOrIOcPfePvcdHHK276acsWj1IgwXqu5p2l/VUcZ1uq/TpV3L0GOtlWEYvNuUEKOVTRGFb/3pm1x6mwmwvFbyvgMfTtkcunhGdQl1OlcBTH2Ml4e3odUNIFwmJPO6S6x7i38b4YOVD0kKXr8ZiURCsQ047ilf+oUb1p9X4NoDhaPz2SzJWularlcM0GI0kU4F6SVEk7hV+2N56gyirPueM6s1+ymyRtmLFhZcJ2t0EUQ8ydY8ZPfa2//UmKGmBhJtPaLyrV88Ie/ZHG3OKS89sGWTrTRJjPqI4mVzRWQiRxGTMuRSJovZdcRy2506TbOxtNynt3rFvp+WUQxgOFt59v3Hk4x87kMD47kZSTo/tf9b558jSpRCHyvrTtlfRw7WHXspsg6BrhoFY9TKft+zisEUcSlQbW+GaL1gOy2EPNKjnFv37HcRqlKqMNbAdlSOx8rT9245OWMh87yvfPfPb1jtBYKYcREmI0NglgCTV9wcdvvTDNU2abdO8FI53fL7U/NswtUBQMFqlIezOu3h7/7RDc/+xABUwy2EykDlqGROPC3WRStNOrNe0acwGRcFy6iP1RqajLkgal3RDvd6zh/uW0vTqs2sp7SyQU494+J5pg527U2Lhb/8xMDn/srLsHbnx89CSz2dlgcixlsQU+JkO3D95jFd3wOViBHvNMbDV9yzS0+5bdzaHBX1Wvv5WVoKJA6CVNier3zyb77IjfvGyfBo/5ua/Mi8o401zPLGLWwdYvLLlsmDL443alGE+dntGhPQ+Bbjwp9k6Sbr7MzNSt2BwC0S2ow7l+mvZrwGJez6zkxPhnOFT/+fb3D0oF0oFCE5eXoTGhUM8FJ1Kt+pODK6FJLAXtdx0Pckz6sULQbgcZNdBAdzmR1f61KZNWPz1GlrFs9pDxChrJQv/h+OuPQu69krCmwtL9Naf6GFoJVVChysOtYBeiorFzR3HexZCEqYmkkATjZgn8dD5bWUeQ1vo3x3pGb7nbYOR4HrD2e+8h/cRBuOXWB7brb4fSbcB1v4eItHX1rO87s9NN94v32DlRYScwBdF4SklhvskpGwbGtmU0bzBBykpBIgBp760MgLbjAA3Lgvs7lbWXeJPjk2QOa60xCC58WUjDAibBWOh63Rfoqyv9dzZr1iL0WCFkq2so+WuohT7jKxikIKSvAG3LYuljqYXAuZDZg2p9fekHnqp7fTr8aDytXXGyr7aBy4ttlwYzTayoJYAKSo34cJzUZyMBtFs0EkO/9bKInbKOi2V265SWQ6W1feNHD1DeP06rVHM1feOLpgaEKrqTIXgGosZn2MHPaJu/d7LuxF1sHSMMHTIoXAtlROxszNzQmihQt7K872HVGqgZGo7tEIudQp3x9idGSqIcozUEPgyhsKw/78sN/96DHbNypnVz29qEMSm6IxT9ea2ofJGwohTpzr9oDz990qAnaVxGmle+rN02fMUROOzpXp98Oh8pn/+CZ6Romi0MLIEilqfdIpbsjXwrpLdFE8dF8ZqzFnjUYG4DS+kFCOblyfDPVcrMSsOD9+q1Ndgs1aeeHkEeutz6MRvvFnrvPDn7jprX2bzNxFKEzSwrEsZw72kRDIubDdbOhTNK78LpLirAhPz910H7qQS2bdLpSGRTGaUm7OUxhBrHcmL75zw+f+6svk3r1QD6Ebc1WYz5My4QamvSGB5BzXwFRCFWIwYpfJsJGd/TCnK0/Py6z0J0S9zunMGQE+bR5atzXxNf7/Q0643apCqnzlP7rJsz85TBs1ZChjNYVbrcNJbVatWm/gXLKTdijrrmOdOgvvYSQfVazV2Ij6MZ+7Y4gIqevnLiFtY+ruJm2zuZycCdUG/OCPbfnWnz+ZD16Fuq1samYoxhXcx8jhuufc/oqDVaJPQi4Dm/GEnAciyn6f2Fv1dH2y/AsLKwkFZwszKsd2f6e9nDnPNwEGZBa0pVO+8r+9zo2H8+y1BmV7od7yPZM1vJiDpWLf9cIXn6F5wf4n2ntbHtFC/0oKsI6BvWBlPVrheLvleBzZVAPkbKTwpf/1dYaDeUtvzilX7ttSHCxR1NpajsFywqrWCkxDZFuVk1zZlELoImcOVty1t+KsBPbVjKB1CoRgPOKDWn65VMtVBi2sk3CwtjVLk1HUwkgyKeRGyGIyX/j+z284un+qj6Cs4Oqj1lJyxCgQj0rmOBeGXCkVkECIiRR70oLwpYm75WrPAfBJ/uwOmd+3s67zD9PCqihPfviYsppfzyt45iPb2aALLTpjf2IS9laJg3XHfhfZi0LSygrhIPX0YimBMSvbomQNVLHe4V0QOq0cdoFzq0QnhqLNGhjoOKmBG0Plyknm6vGAouz1kf1VMF5lrVx5Q6as5me9fn/h6z99A9HCQZ846CMpWFqnJQlcBE57tHnELd/eEPzzXt7N5d0yv2707OQY/XfqYdK2csfn6857nnz/hu///Iaz656DlIiOw6oqli/Ohe2YybmSx4Gg1aOCWErOjaOqTEZna1kYU7IzgPfDzoVS8y7Ysinb2+ydRpazHMNh5VN/4zLH9ytVwpyt0ua8tEYL3rReM9vjG1NESbRYhYjLV1NIuhN0OI3wn419f9baUnQmD6f0nRtbqtU84YW8+vovXuW7P3ed2bm2zRxCWMh2QI1PWiZQiH2g5YlbOBqdG07cjsBjuQ12nmkhG6e/p2jAfEp39pqDU+a1eAUL+9R49TlhL+tRqTzz41u+8ktHFq5pX2Q9wsmOlCxe+1lVjYKtFLoIe33nDdhxReXUjLXVWgb/H3OZRFBS3801xJNiXQi2xQotFXDbvIpy9c2Zz/6n18lrFkpYiKOVlvQpse46VqmbamPzmI1SEozJSoxEYjuORk5R8rQQO9afgpbirFnzkuwApqbwyvzzYsa59MSW7/zJY9KJzF8gsD03W8O3yhq5ZYO1+ZnAA432s3lWqINqjLmHoCiNsi4QJVkOzhnAOoRV6Fh1Kyvn8DKrl14/8OQHt5x9IU57ImZ48a3Z+iCrsWFZesw4jU9K4cZ2y2YcSTGw33UcxsQ6gNRKziNjLYyYAtcKHZZLNi/B8p5dDKxSRx+sOcSqdXtKkc49LStvkknY4vO0uavwvT+x4fBpP+gF4hYuP5HJwZS37SPv2FSqdT9qZWUqE1gwyMwQNa3HYo3NA9bdPbqjE05b6uy+ARj3K8++/4T9l6KR/RfYfynw3AcGxgM7FwHDZayTIdsjVk7U5sLCcDAUQ8MXraQkpAQhqANMAkE6C7+rAdQSgYNuRd91bGvmeNi60o4oCRFrXhBqpRdYp0jshJcfG4lbJhDC2WciX/v5I04utBSFcLjq2IvWRAHx+uLTzsS0r1u97wKk53O3nNMmJ6Sdn8VZ2FEiLnjF3310vu4I47QNfPp/d4OTC5lVCBx0PcE9sqK2t09y5XjMlAp9NJKP/a6j7wKqJieKCpnAoIGTDJusbMcy4VwUU5ihpaOWN7e8fxY4AoFleqmNlx8b+MIvXSP3bcsvvVK8RlnYW3ccrnv2+8gqVPY7WEWB2kBVQmp4laUmPHW9GTjoLzUGMCq1ZNQ7yjVLQIA4CksfJa8tp33l0WG+gDB5u4urUavVZCzD4c2BCd6Cs3iUoSniFplslTkTWRS3C0fPrFdT+Hnx6M0Ll2D5+xh29+ItE/QK4zUBsxA4ur/w+b9+k/s/09PdNOEkGUIWZGzAK1Oq1qPSEMXrvrMNGQJdMCBNVesHutVKZl7EoNb+bS8mDrqOTgWpBj1XmUMRS0vDcoi+CZpHyVykP+xXPv/Xb3DmycTB825dO9j5UHrOHx5yuF6TYmCz3XC82XIyWCP2UoVaA7UKYxWOc+HmMLDNGfXG4ovtOXlC2ti5Fr8/HTe7XchCVRlWha/9pRu88df2uOub1otn/6XA/kuRzbkyCfFJmCw8qRmwtbz2jIxse039IBhoDmo2YM06CPtdIkWj2LSyCYips04iYMhmlC4EQ3tG+PYfPebN/3LNA1+0ln2HL0be+i/2eemJbJzRIVDEcmOb0eoux6r0sePsao+zqWct4iUfwlgqm1zYVmUkkCUwVGWslVArezEYU5OIeSbZcsu1ivOYW0phf2Xo9yAWpp6Fmk3Ecx8cOHwm8sZ/vgagOxYe/x/2uPZopqaFlVwbkbspr6Nh4Gg7cjJa7XDrKtXyQhOYwxdC5kW69cAr8xouXluil9vPN+/P5D3lHf/wPMGV8Nv/3/uMh8rJA4XeW0YedB37MXCuS6wEhmHkZLCQ+uBnb6zG1y0CfYT9lbDqQDWTSyajFDVWqJMC17eFa8dbci7s9x17vYBTlKpa5KqoWKOPgoVWO/OE3/lPDuiP7EHe+msHnHkh8dT7tyYjtNIBB6ljnSIi1uIUqQuvyE+RhIlnGSwkPgt/mYzg6XzpdPp2zt1tDVX/98n5yvkfJvqb9p43/s6ac09GvvAnbjJ6mqkLgShmsBZRskQK1mEpZ0M7q6qxfPUdivOZF0wBF3yOGi/3HC7e39+nS2lhhMnyRqe9tdw7CqSjWSa/6dcPePaPnPDsB61HVaTSR+N3TwFLMTm7m9ZCHQ3JvtdFzh7ss79eET2cHWRud7g0XpZ55RmMOPuLxQFptRRKzjTEdHvSOFrqQdxJPXw+cfbpjs/8tUsMB2V69rkMrUlak3OlFjOApeEIZAoHp2jEHTuKWBddomBKd57OcZ8OV9P2lghdiKxT8lx1Azea3HrLubP8/AP38xP3XuRct+yh9srj1YejVSg9fPvPnvCW/36Ph353ZSAWhUf/9ZruyCbS0LMFrcVKT1JH58T0peWHqzH1WKs1cUvbKOYFo07sY7LuPeJlEDLXD+5YsW0/LA7dEnSgqqjAD/7YCXd/LfHO/+aAzQWzct/8yUP2rya6LNQ8UPJAQ7UVB5dYCYpyPBZunIzcON6yHavVutLq7SatNk2X1Tm3hZ59obaZl4CpnQ3s33fpHQPnv9vxzl8+w/XXZVC47wsrHvtnh5MnbI+9dLMXy3XKMt5VBI45bYV8qqSY6FotthpoLuKhSDuJDKM1JDde50oMsI6RdYzoxYAeCB/4O2c4cgDO+mrgvX/vLBU42TOii2EcqbXYGqdInxIpGul6zWViYrMIXiRKRymGjB6LEWjseb1wL+KdYOy7YrD8jzWV8B6q1bi791dW67pK0cNtDpzplZefGPnQf3FmCpemjfD4/7jPmacj27taly5D6y6VapbASSkcj5nNaI0SWtnajuv1I8/WrmBr69esbSZFYnvphXdu+bH/7jznfzgf8nue7Hj/f3uGK+8ppFZHXR08qJW+6+i6joK48QMSO1JakSQSFUIFyYWosO57ui5RamGbK5usHJXKzVrZgDfhgFWMrFcJkUbaot7KU9nkwslYuH5u5MJTiff+6hm6wTbl2FV++m+d5/nHB7ZdZaxGVbrNI7Vkkx0x0Gkl1OL7dbZhWz2pTKHped6mY7j4+0eW9NFwFWZcbg8L7/vlc5x5zkoRrt+f+dn/213cPFQu3ZfJWkkJzuz1Viu8uIsiwrYaan6bK5uhMIxmcA7FjEgLRRuX8ywLw1TOd/PmEeM4LioZ5uda4j5mTw5Cgbf8owPSsaAJ4hD42P/1Xp79yQ16n3Juf8WFwzVn1oleFGo2D9VyKwTPqTYnootwsOpIwaKSS7m1s2/BvdXFAtkieQTVusaVWqwtYis7VANm7V2JPPzxA1DYXCi85+9e4O5vrfnuz91AokxnwJ51kebx6IwdtohIsj4Azj1hoWmrvqi3UcTVc8rNI55olxc6ZhlBDCFy73qfv/TGN/G/f+IJfuaB+znoOv8O4V0XLvDn3vAIP3nfvfyxhx7k//TEY7dutNuM16CE4ei+wiP/ao83/s/7PPPRLZpgfVl4+3+3z+HTkTIYZCN4ucM6JeuqgwGehmKbMCtT/RoKomZdrNwya/nUopUiBtbZeNPrBh8/BRZkmaw4LdA25wvnvpN45399yHMfHChr6LbC+37tbh76+prx5pZNHhiysUWZWSmUDNtBuX685caQ2aixAqkGtDgwBybrUFSNjq/uIrf9MX1fys59tjq0KbcF1AjpOPCOv3eGGw9lhnNmNFz8as9j//xwsnxvF+zYQUyyGxWYX1BarrQJN+NfNeu9FMEB0vN8iyKYx9IHYR3MQGq1oyfnBt77Dw45PEqc3Gcbvr8qnPmq8Lp/23P1nNWxrrqeg9WKVRemfFnRwlYLGyqDQq5usLWm3MGQ2EHEQlsOeGn11cVLFmKE5KE/1IyIVUr0EkgoHcpeChyue9a9Kf/t+cpjv7rPuScTx/c7GfxGOP+DxFt/ZZ+jB2a6xtnekcmrKVhP4W0ujLVMr6nqcgv655qn8MpjimJMK6XzeotQkrK6KrzpNw6nLS/AOkTe8a/32b8G2pn3aBAq2KilDJTKugvs9RGtheOTgePByFZGhIwwaGRbApttIedMFAysEwyvMefFhLEouRj9w6rvCSmZV1cqEQt3KsKNe5X3/uNDLvwgErf26Zv3ZQ6fDLz5X+xz9bByMhaOc2ZQ65RzkBLnu56zq5XhADzk2oyTppGb17NE0E5z3I7C6bAps5C9Ze59/vevRN7yb85y4UkzdK4/UBgjvPe/PcvJPkiKppjKyNnVioOY6BxZXbBWlye5cHM7crTNbEclV6ulaJiWOWq1o1rsmdquW2AXZLEfptA7syJcX4k89s/2ufsbds/Pvf+Ec093vO/v3UW+R0kUyFtCHdnzEr/mkbZKhKqBXNQwHONIzaMBKoNMnuNyNI98GZk7bUzqQoHXWsnjSPW+2XGA+7685q3/9BxpI+S18uwHTnjPL9/F+e/3nJzL0/POnvAcGZgBUg1+aCnNpriXYefqRFDBe28XTxfS9pAr7+X3tmdpgKuP3n8fbzl3lnv21nzs/vv43zz6Bu5br3jk8ICfuf8B1jGBP+u7z57l1YzXwB1dOfOMlaJcfzTz4rutKPjeL3Xc99mOuz+UIMvcmgymXKrSPF97puIKQNRaWXYhmbXlBOK5ti42glavJ64N9r8bfp1Xm9kao4VHTM+sr0bWlyPbs8XAK8C553re9IkDrp/fItvI8eD5UrU89tgAOKoWKmreiM4XFJjTLDjAQByx4WCMCVQvC6GKGRq0AnBV3zBKCAlq4Z6vW3/iS+8cqZ1t1otf7bnr2x3XH+7RoBbCWVii0zzAVDQOi4PbNrHF8mhgiSjBShCCK5dilnrrr2zoaAjJiFLGYi3y2pwocOGHPRS4cY+jYNU84XgiPPy7K1IVVjGS3Kovbtkbir6RnniuS5UkBtZLfijGWp39J5ghhMdNFPdhMl0tdCES+8TEalYKRey5rPpLCRT2OisrSVdhvFQZ1srmgu2r7lhYXQvc/9kVJ3d5SMyjYLNzNfcHUnAuXjsn4UfYtpNA0fZNuwxI8wny9wSdDb0KD39yn7S1Z2kjCRzmxJs/c2BtI72KoDZjTaJRhWq1UOQqscmVTR2RamC76r1vcUUhAjFCDAZAGkoxQBq2N0ataAHNFnYWlIN1REuh5IJqRAkcvthx7pvGgNYf2w2dnK9sU+XctyOI5dMaeN1KyCyfmMRK0EKxSErbN6pNuTraXBfGsOfcG+rWysjCNKWTGXFaozhjVO7gwX+3Zu855cEvdXznZ+H4rsrlhwfe8Kk9VjeTc5kHRAM3jjcGOiR4y862Xm2/qJViesklMqnTeZ39v83IULw0R82YaunASXywW3KDKnd9o+Per6544DNrXnjPwM37My++dcOjn9gnvqiMsVr1QIpWMhQjUiPbMlKlszro4ux7aum0FAOpS6w6jw5my+tWfw6rXw9TLrbl4Je7eMaieDSTSskjoMQT5f7PrXn4E/scPpe4+ujIUx8+5r3/TeX+L+9Nc2NNRrwc0MudWvFnrZlo5TVOiuS87WLKmWA9uS00bSyFwaNmuWQSaerjHrTdY9jZK+05Lq5WXopqYfw3nTnkLzz6KH0IXFitbolsvprxmtDRweP2z/74lpO7zTt75DfXpOPA6357DQYutsbnQ3ZeXfN8Z0tPkWqWcvJEdiEz1uwNrnUKIRfBci06c+HuKuCmVNpPu6CW5qdaGlC58njmyhNGIvHGf3fI+lrPI58+QziJVDGg0NEwcrTZcjJ1PHLLquI0j+2ItD/tLtzU0Io4GGEKz4RIo2q0msgZITgdMOz7G9ALtVDppbcNaIDuOHDxmyvSEHj49/YmgbPjb72KdW/KqCkPReb+meo4brfoa61TB6FVSiS30IN6B50Q0BjIWNRgrMq1syO5txs591LHXuo4f23F/tXAZjtyPI5snXmoaAP8VCiFiDWqD6Luxdnaj9lQ9zioKkgghmRWtSMe16sVe6u19Wt2+zxEIfUGKLFONkaHmktBamVPAmdTz2HfEc9hEQcs9x6q0J0IZ56dk8LzXDeJf8rzWmxLOfW/3TXQ+bc6H/Sp7AR2Uhj+lfZ3gW4zs8i1UapRg4abhZVGDlPHynnQ1ek0zfCzunu0pXzMyxlyYVsqRVpfYAUitSSqcUwSHQFeqk5nNVcYYRLKRjEaWXcre0aFw2cD9bgybAp7L9i9b84pnBUO+8RhN4c81UO1bW9YMVAlUdjrrAytC0psCaFm4YbJp5tUgO6smL/a5MvkAc7eaPOpEOGR39lHRHjwKyukGjPgy2+x/t81GxhrqHCUletj5UaunIyjo54NmNo44NuotVBLnozfyaNdrm8z+D2KsIzBL1NWO1/syvn1v72mGwMPf2KPOBjI6ekPHaMRtJqXOylPabW2lhNV5ynYFut+NXiUZyx1orRcJyszXIKUaPM87d3W4HKx33U3FAw6tUQMNyqv++Qee1cCD39yH4BLj2+4/KbtKadnnp+dM6GedpoqZCYvhClHjEwh6ujsWqhxwgdvoFNLmb4/xGhe8SkFfCvi3ubyvr01F1YrX7PlvLy68ao94WmD9/DDn9ugHaxfDjz0iRUC3PPFHilMaDrB8qK5mhUazCAhheihDZ2s1EolK857ZOw9KQaGMUOMRtIhxl28LICewiDS5kRuc9NeQC3w5M8aGUPaCK//rQOONgPnvtWzJXOy2XpRt6FCPSjdzOuF3q9eGywzUc/i+As6l0+1L9D2GfNYYghIDBS17kmlqFFjhubtm2U7HsLlJ6zm9tz3E3tXE6KwuubN6dvG2NHDOj97q85nIeAnAaRzqEusnCCrEkKli4HkvY9rrZxsB7qpZtFERpBggiYIo/ozAJu76lQ6c+4F67SkQAwdBCMi2OZsvxMhiTh6t1nS7oUH8ZDzLJiqgOcBCMG6MlXPE+Uxg3v/jYksVDMWIkqNRhcKhlxNXncYtNKL0p0LjOfs9cPno4d6xVs161LfTf+uujQtZ09FJh25PJKLqMSp15Z14zshxmk/NzGtywVlOTQIGqKdH9TBN8lEogSOt5bPL4KfIyvf6GLkIBnB/XYcKXmgSEAkGsuwVrTMkQrUSvia8dtAUYgpuLzgatYYKJrJ2Qzf0EXOvJiAge3Zihwo6Uqx2uIuMmYr9bEyRAM8UiyilAL0qSOIdeTabL0zkFou9Xa0CK0SoPhp3vFQ/J7bfJvxqVbONQppjKhUzj3VcXApcvO+wnPvHpGUKFurkTeP1yM5Lrtm8oa2creKZfXQZou86Q7ZiHv2zcDQ9r5J2EwKod17kEDcVO76Zo8qXPxaz+FziWuPZp75wIZxT5Eb1r2s08Dghq/xLtgarvrO9kAuLcQwgd+s/aIBoGIUQm5efrsfY46bQugLR0kX/4kxUmNFS57WZ/2Ckp6zc//Ibx3wtT97nbynfP+nbvDA59d4sMPn0+RODTrVVtv16zSnk1PWzo7vAVWLUFk5qXj5qBIaXqkUECFGC0s3APBynlUrN8YB9IAmP9uatX9vVVnNK3WbXXnreM3c0dcfyrz4Hg9Ff6HjzNPGUhI3goyz8dIgDo1qcszVQjaldZ9YWKWuuKsLz77vOX/+vNXPOdRcl8ptenQHYE0W0+kwwCw8h3OFZz5qoeizz/Xc/5VDA03cHKk3q/e0Neuz7FxFd/+0gm1p9acefva4dBFpZIGoFkQLkcxegjOd0CchBiWhrENkLxpn8sSRTQsJKsd3jVx/xHIiF7/Wk7bzkTZ5eEoB38ZaW3piO+Ei9Ry2f5nWSgyRVb/yMh8T1oiBR0YJbN1CHhQ2xToIDduBiLDX9+z3Hfmikld2X4fPtQJ7m7eghqbuguV3a1UL32Ecuy3P28JCgnk4WZRBLT+cQmAvdezFiAU7q5cHBGrFm0+YUTcW8zySGIBsr7OykU6MorTU0YR9hXFV2Zy1/XX4gvvS03zuIml3oy0Lxp1p3bllHZaALovYzGu28z5dvm93DzZP43ahruY12W40QFoQ5XDVc/HMIXtdBM2EoKQkXk5hkY1YlbOx8rYHz/GORy5w8UxCguW4m0GDlwtG358xYBze1KktaVZlUytHOXN92HI8WM3w/qrn7F7HYSece9GeanPOUgCN7KV6iDEEMUNr4Z2abBBqLtRsEZO9PrGOgSQVmCkS28Q1ueAm7aQYTmMy5nPi25RZPhWF9QuRs09bq8vnH99wPY2MKsYVjpF1VG+4YmvgHHp+nb29A1LqXBnMa1mrTlzzu7LannqKU8kuIO30PpkMOAOSU9EplYLC5ccHrj40AoGxVjYOIjwZzeOtEv0LKylF1l1nSsHTaVXVONOL0UkaV7O/PqkanVrOTvN/am6rhd+MaS0GWuQtbQK6LeQ8cN8XOos8AU99+Ijt2cxC1U/XOx1Zat6w236TY2FOhjcHccNyyhG7IWm5aQ9VO3+3sMvbMPU6UPjkS5e4MmzbIZ+iCgp8Z7Plf7p81br5wum7fMXx6kuULBLIsz+x5eQuC0W//t+siBt2J2nBqN+MZFXzkHNVtiVzMmY2uex01JkWUZXN5oSXX7qE0Pry4mlW3RGAyzq53RAJUxK+icbLj49cedym53W/t0d40QgXDI/dLFff+I19Sud2VdPBFp0PqlTnIrGDo85ApdaZm0Rl1Qn7feT8/orDtYXSrPVbQUsmaDXFlCJdFFJoEIPKpbdtKStFMlz82opYFq7tQqhPY/H8SzDWThirLbraAU8h0HcdMSbzUofRwHNe560La79ImjoObbQgMXCwXnPQSotQTu4pRsQOHDwfPKTYCEuM7rOP1uihixEV4XgYOBq2bEshi1Bogs2u3Adx4gOzmIeSXUGoc4q7EBcQbwSetRK7jnW/oo9xmtPmKR6sVvShoxZDsV47rFMue/+54HmhafdPynh3khd/28nfmWd7afF+PyJLY/J2SmEJujG5vfhev43TalidU71iKZxRKyfDyNWjYy5duUqgcuFwxX6CUIt3pzJDqyiMGU6OR4aTTCKwTp2FDGv10xCmk1HdyKiAxIBGMRa1bB2GqggxdqSYWIXEfoKHL6x46/0HvOHmHigMB8rRWQNfbnNhGI0Ws/NmHn00zILJOgND1irWmD6bcdUn4cz+inUfvP0ikwKwCNvCYJHbCO/dGTRJ4OfCasIFvaZc+IYphqO7K5ceziyY401gT1thTlC1+tFx0VpPwUhiRDxaohOhD+opHrVWkgFj54pGRMfpFd9R3pMD6p7bAA/93pqQrab86Q+e2HW9+U0lQIxe2mOyb8yt4UElRUsJta52hEggItVilVO98OQRtP2LK75Tcoe53ra1BU1NCTZa31pJL1Ye/ISVKLz8+MDlN2+Z2s4yK9alVTKdyOqcDK3ZR+PFDkIDnbV1Cc7AFeKMhhYHnlmzHZ2U9axvTMN//8ZN/sH3vs/Tx8c7jszz48j/8PJlnh2H5Qq9qvGqlXBA0b7y5M9tLRR9RXjod/vJs5qr3GalRfu7kdBLtNZ+VY3woBSGbKHM1qw9OF2iNYhPFOcknhZ68WhLT/B2ZT7SDp4IT/7MlrynxK3whn9zgJZXmKTJwrMNqV5MXF3JGrXl4vn8fU3BJM2sQuUgRadRNNDCdrtlHEbjcBX/05Ao1Wgy+xjZ7zv2V1bgf+ldgyGlt8I932h0Q/PGvt0DLAvX7RenXpsEkxkMYRGSJli+b1MqG62MmI8xlsLJdmDYjgQsR7zXR1LAmbCs41FBuXGPhw+3wtmr/RwVCiDRDrBgZTMiSkyRbtURk/dXHm1PgNB3Heuut1pGLYZ9ioESAidFGbz1o+qMNo3RWLVW0QhGjoeBk5ynLkct4jLkwlBhUypHuXL5otEUSoH9F6N5YrrwWtrPzRhDd4RBE/EipyZ92ldMEmNZQtfW5bR3/YrAjnAbDQykGM2ocWYgFUFSRw2JJhZirRx2HWdXK5I/R9bKtmRuVOWpayc8dfkGN463JCrn91esO2HIbjQrZAJZhG1RNjlzvB0ZciaEwLpfsZc6VhLpsHp/MBauazc3XL5yk/6ZaoBCgWv3Zm+bEM3oataF85avUpq6r1kTD2XEjC7B2l52Aod9x7rrZiVqGmmx5+d5fqV5dZ9p+pzdioVw7/mCWZXbc5XLbxxdqDPtD5b7QZffGcg5G6c4U/KM2dCvVkrWAJIBVl3kYN2zv7Z9H1Gvb1dPB80XWLIG2q3Prz3w6TX99WCNPj50YgRFBGLqfH7cWKlmTOVSGbNF3boU2Vut6DuLCFV3llqefrfLVRtzOebyXiaXYRFCF7GmC43ZasL5FOX1/3pF3FoO/vsfu7k4a4t5XSj65VxobTHM5TlqvwpNCAGmY6J37Jpa54I34LCoa/DXm04Ce+3Zo2N++/kXdp7+hXHkRimLLNGr9YNfkxIWTl6vvPheiznf9/mew2d32YGWJvocPGg/N6BEK+GYuyKZ52XcqkbrFqgEhuLUbo2ty7fxHKC41XOAWTmrexDbM8rTHzVRdO6pjvu+vJ6sGG45SMy/W+yzpagVZ0VqIYlmgPQpsN8FDleJ/S6wDuZRZSelGBsDjc6bMgZh1ZvlH70mMqHIoXD1rdaXdX05cP4H3akJvY0nrGYB7oSG/FriebadcKcr7OJeTVGowehDi5qQ3Xov5BAS69WK/a6jUyXawlBRRqw1YUa5ca8dhL1rgdWxlZ71MRq7UDEF0Wr0DO1ruduo0DsWoFI5KSNHowFFSlW0CqIB79E2AXGy53a6lFh1neV6W/gINUQ3gbHCUIXjsXJ1O/DyyZbLmw3HVckSuPGARUnSRugvNwYsFodqnmObvkWYR+e4hO5sG9n52PSFp9IIO0Nu3c875/kVlEgpmVpG1sn6/yYz6505xwhnSg1m8NZKiEKIBsBDwLLyHbUmcnWkdFUOUs/eeo1iof4hV7aDt27Eaks7rxXvsDWMYiAkZyhnqMLlY+HZ68r4vBloAJsHDQkdtBm6fsvV6VJLpgvWVnHdCRIVDfM816qUsRCykqR10loIYHThaelkANk07s7j6friuQ+xcNdXO4v4dXDpnQMq9RYRu5vXPbWkIlMXOQNkuekhhRSUVfKa+RDoorgMsCYP687awMpC6d0OmLXLJgX7lyL3fqkHgefffcLmQnGlW42eFpmAoBY1EBxDTIM0JYn0fY8iDDWzLcYUaB7vxEi+m1pZOEWnMTptLVJKk3IzJq4wyax7v9Bz5imLPDz5kROGs2VhfCzk8gTEa1Mgi7LQekoHugKlRTxdhjSnzwFjS8NBqzLmcTIsrO54dnDuXa+mS1TgmWFcpBvmq76a8aqBWSkIz/7kwPZ8RSq84bfWrDZxOhAWhtCpbGA2/Re3o7fKkxbmrgohF2scEEA0UKSiwRZPxeOjO1+w/KctkHh8fn5NuPzWgauPGf/y6z61x/py8AmrOyp9YbdhgAg/tNr+1lsWPsVgQKZkjExlKIhRhiEiRCzJP4OOrMbZyCVcoYtQpDKMo5dJCNuDwstvNoL+i99Y0Z0sCUhanu7WdVqCNXaQtm7hqc9VK2/JtSJZPRcnDtix49XFaPkbxbro1NwuQplYikzAqChjqFy/196zdy2wGgKhKVscmejeV3aDICAksV6ropDFWgSqGhvOUTYQVuvwlNyLiMEJk0KEWo1NrTQClTgpxazmzQ+5MpZFmNFXsIGAbtxv9x1PhNXVFmBcqFKZ/7aw1ryHW8RlgtS0uOhiT7UAhS7W5LZe2XIbLn/tZ2VZG7wcIRioJApGYtLFiU4UDGTX1q/6oe1S4mCVqDVbnbNGO2Li4fhqfVQHJ/1Ifu+VRjojXpmlk23RzixNKFZv4ymGZ15dK3QbYdxXjh6wVn5DLmxrQVUMnT3JWSOM6ILShcgmiNFCugEwYM4NpVDVFZ26oTsJxHm+28Q1Bbv0TUEm4FmYBJURNBy+GDnzdOTqY4UXf2yLRt9Y7EZCThtIs8K3l6OYd5yiUcQe7O9xdPPYz5dF2nKtVrYZEyl5GycJEx1weyZVNbBWYOEoyCQj0wYe/NSKpz62YXOh8Ny7jzn77IHVfneRdW8G12YcDMOihnjH0e+o8SCUqTWrTqFeIRKCkTJNexYzRIID0yYje6GIa1WjRBWhSx3DOJjq98YnpRTWlwMP/N6Kq49lrrx54NJjWx78XJieuV1vWZq1OCUeHYhLf3DhtHvEadoXfmIbalvafVpf4loqY82kGN3xUlP+tXLXqoHGhOul8PXjE0+jzzrklc2y3fHq0dF7wg9+ekN1VPQjn1iZ4BRD2Flv4Lr75JOeuFXNTd/rv6woItHDU2bVtTyPR2z8/acebWHdLnNyy1zQUz+zIR8ocWOh6KX33qryYNfDbjV6tph1vtc2cSmyvzLIvsMM2G4HxrHOPMX2Tf7ZQgpCF4yRqtRKLRDFNmVxpi6rJVSuvX7D0UVDsN77tZ44BA/Zg1BvL8D9eXeMk1MHoSE3WxlExXr1Wu2dvXflfMPieaGKWm9X9+QRW+tWriR43qqP1gQBWF8VuFkpxCkMPBWBCHRiNeBGL2l1fc2SDgiJACmRcaatkokIIXb0sbNVcst3MmQwwMzUblDNi86qXt/a1tiFmLRFVY4mTxhWVxrSdSHhmsBW3JuRSWFZOLGlMVqBVPvUQpH/QePUusEpM3ZpBEznav5W9TOiiIPcsEbyKbIZi7ETRRN4Wqq9VytarYl96DoTOmOZSj6KG9cEiCmYtynBOiaVQikgXdq591rmmtYuxqm1pJH5C/vXImlj93313pGSbR+tY8T6+RaQjlZRoC5bpBSiCOuQ2DqSv2KKqKHndZLJyuTPSUP13yp9dkOaM/Ct7UETFMLq5cjZHySuvrlw/ZHM8YWRwxc73z+zSJ8MrOYQ+KSEABKikcYEO79BKgernrrdsBkyVZrhZzspV4VcSNEalsSl4p+MQHEjcCH/mseowkOf3CMdX2c8VH744WPe9BsHpOzzoqbsUxBfb8haqdlloBeKR2CVHKCEGe3FCS9CmZ8UP0s7QfdbUgJm5JRiii0FQYuQm3CPgVyV1//rNd/6C0eM+8oPPnrEA59Z7eRl8RSaddar07UUqKUQOvfSdalq2+q3E9nqxhUJVp2yDJkrlr/OHrlrhkIAamiFqvadvQj3pMTL4/gaVO88XnU4+sZDheffM4DCQ5/rOf/iyuDcItZXNAa6GL3toH1xkGYpwxwgPDUmA3WqtLVypKYsXsHjmyZsseDNAhOdD8JwpvL0x5yg48nEvV9eecy/hURrcy0JClFnthplzjVWraQorPtEnwzoY0LMiMm1ViO5kNYJqjJUK0Ey/RRZOaK3GaxZ1ZoTlOx5cUO2ilZe+rER9XzwvV/vrLh+su797x8p2XfnasqVM1fQoYuOSf4nl8LoXY/MIVIHOjROClM4lQpBCMksxe26GMJYYe9qpBsixb3e7K3EUrB8bR+SC2nzukptPbPachg/L4pFGxw9vh1GTraDEYa40h2rcTkPFba1cjxaPfImG0tbacqpzZ4Lh7a1Sgcnd9vvupPA3lXnFmdG1ko7zmEWluJ7vPe9P3eRbQerfer0euwKqBZt8Y+8wiLu/i07v3SGMTUe4k0uNgfDSM6ZPgVHvQZyrh6ltrnb5spJVo7HzJBHShk9t2adlyR6z1ainxFlFQN7fU+MgW0x5KzxH8+oYPP0AXV8R7Qykf7lOjUkObqrso2FgHCQ4HV37fG6cz29DoZUxQ2rUtmUynbIaM70UdhfJVMOjqSeQDunJ3qa7zZvi9z7aUN2Cknr4quEMAoXf9/zwueVq2/yOXLiiSmuol4SJ9AFYbUAW3YeNVD1dFGpXL9yFVHrKGdpGKO8LGK192NVNsNIHguBcKo5iHuGixDq0qgQ4Px3O85/vwOB5953wuZcsdpfB9wNJVsHMpcLZWrLKRA7byJhz1WLGXIpRqtGECsxbLJ2TgG6mSu7OIdW9z6/ztS1rU+B4BzhKQbu//0VZ5404+6HHznmaG+YgJJzkxyMXGjpcCmzPN9RGjNeaTo7nptu3nEMcWcrNIas6F5ydoBde6bj1qJWYS8E/uRdF7iv7/9/UMGvwRP+4U+esDlroIo3/PYe3WbOJ7V8o4hNqhWG+6JMQr+1zmKajGV4bTb5mQ+UT3B1uPzpJxS31PZoNWrK4H8a9ffLbxu5+iZHRX9qj/3L7pm6tdMYvtaiJNdrZlvNEPzg4ZPYdZRgSO6YR8p2i6KMMTCGyFiNGKF5lDFGxEEcpVotmxF3LGSuiNcQe8eiEOjXgRffmY2k40i4+A1rH9dhoexGqqFt3tTyuhu/69Mgn7kmcbbfdsSVLtZETZllN6BidI5erY7WDCR/huIhLFUlinDzQqU4UcfBSwHJWO6n2vrF4N2xajs4doha0XwuxaxxxUBcHgKKKohYT1PFFM4wZHPSgu01QzU6S9syCqPzPMnt9pBCPlSGs3aP65cDaQhE58uutS62pht4zhWbguWKIuaNb8rkZ9PMytPTvFTAbb5veZNfsIFEpnU8xb+op/7dmpenzhRn9bURtTDgOkUGhRNHGIfs7Qs9FLoKgf2UzEPxucyL6IRg5UyCeaFrAVKyWtNSnJXIH0HVar/deLT+1YKOkYefTMQLlcMqrPaFg5uwUlgNA33Xwbrn6kbZ1kJwDvPm/VjzFyVoQYMwEtmMlVErrRu0ICSFKg1MJ1am5vug5fvF73PACEd2I2keffBSrvu+2EGFcV+58kTmdb9nTe+1zijaMJ0Z8/KCeI67GGioulwLAiKeMlGm6JNKZVtGrDNY63SmRBzNy9wUddq/OGhW7XuLzp5ndyI8+MkVL71z4NojmctvHnng8pptKSZT3XkIMdHHZLzr7O5hWhrLjfGAskrJDPNSvczUm0C4I96c1qaUJ7CotlBvoFYlxUCpmSBC8ggNIhxe63noU2uuPn6Tq2/OvPyWgdWnDVUdQpjAiS1Xu6xkqF5KZ60P25MsIXG7Eaa2X2xdZjxJkxsNLGzEQJkY7B4uDzMKWhDOp8gHzhzw5aNjXut41Ur4uz+/QRPsvRx4+OMrSrGm022iJ2tDTXCrS75KoLpHtbTTlh5umxSRmQe2TZZ6iPuiwBMCh02y+rreLXAXduBVYQu8LHDDt9HzKrzj7xrP7mP//ICLE4JuHvuqXERZ7dyjutWMCYBaGMctz4fAWpW7SqVVwR7nzOeBr7gl3CcjkjCPzvvnap1CuIK0MjxCsPxw8qLxcazc7AdeeHRAFN7+lY4//lzkDaVy2J6TU7pETIh8H/hthePFDtvNB7fowWIb6m50or1iQthCVILSRaFPvbegbKAqiBJcyCo3LmRjy1I492JH511Xqofbp8ba1a/p3lKtZcoxRjVkcm3112DCSOeQI9H+PZZsKPdmXTe1N8clp4PUDC773e4xHA+V4awbD8/H2WJXP77C1Kqsa+h9sevVaT7rrmmznOLdpXrlfPCpMb1j0gjtl820na8Xg7VyRLDSIkdIg7CulQ+VwgMqvByET9TK/bnyLoEDQEKaFl2KIGWWpHODknbGZfY8XaO1+a25TCkTnx2WMx7cEPy5v3We4wuFtBHuP4I0VmRUZFMRKRPi3b4oLOYBKC1ZVRf3KAxa+Z7C7wFvF3hchCPgeygJeKMqd/mszbaMffN14HdF+MHOWs3Gqohw7vsd6yuBzcXK5fcU4j+IMHo0TFvpTTMQPKwr6ga8eVxDay4vQhGbzajmSFAKUZV9b1iQUsfxyejVGNX3saWslveozHup7VvjRw6EIjz0yTUv/fFj3v69xBNnR95YVwxVuaTCzTj3Qk8iSIxoCIylcFAyD0pgpc3wNwa6BugCYQjCIEwlPR1wBugmJdbuS2k0smAdpq5F5XkVrmJzmGIkxuiUucIbf/OAb/yFm+QD5amf3vDgZ9bkUgzI55HSFqFy331aPS2FxpjT+lG3OdvZS+38iCM6ZNZLDdTXDOGmiIvrj73YVKd9RwB+/PCQN6/Wr42GkteghJ/5gNmZD36u58wLpgpq2c2rGfQ8uCBwdKq6N4T9bl+VszhYA+UYuKJMBBlLq6lNyMMov4hwjyvfaSY9HrC0alSV1/trGmD7vY76VEKKsHclIKWc+oJbhWELnUyFh7X5ncIDp9/sAvJ+LETzDVXWY+GhUjnwjaIizsUcTMCp51EFeolm6efqYVm4EeBnv9xz96dW/Af/8IBHNxij1s51b/3xIcwo+brsHlVxhXJDlWdUubmYq6UKXiqsZg22Yu+qlVIHQzAHmdCYLRQlwMlF84RF4czzc9uzOU8oZnUEhWIbWhAjZYFJoRkWwA5G0VYSZmQexYWMtveHOcw8e6yYgm+Hkt03TLWB/qzjgaUtAM68YF1XSnbDwENSMZg3lYKYIYKBaKrvDbvzaAxfUeZrLfcJu7u13d8aeEjgvL9/EijLUGPDW/hyZeDqVolVqEGn8xLEe6mqgdEiygcrvKeaSXx/Ee5DOS+Rzre/OJ3lzqbS3X2xu9NmI0cWRnHLj7qlRVNiO99Z4fDpwHg5QIW9rNaGcne2/Ltd0batuFCM2r5vYUTeD7wpBC5iqGuAd4KXLelpCUxzBh4QuKjwywJXFruopbhCCBxcSZz7YWRzsfLSO0bKSgmj72lVaskUtfC93aUb8U1IC/Qpkb1pwD1ZuccjiJeAG8FbvAah6wL33ncf3//h02yKGe/aOtY0Ywm4C3hQK2vPVSoWzj4CbvhsPfTpFf/J37iLJ55JdFthXa265abCV90oQw0J38VACJG9MfOWopwn+937nORqfxZ7QcOuQSnM8m13uhe7qGZQ4brAJ2PgmVbypHb/GTj35Z5r/3aPGw9lzj6YubuvhqovGVGv8XVPbItyA9j6fZZaCNXrgRcHv7Y923INAqKeVxZPNfk5m0unxG3NOkV8c8l8+/p1PnTxLs72/fRoIsK9XeLU0/7I8aqVcO1BMjzyW2viSdM9zVJs/4Ep0UbzTLwQXYS3BeFnVLjArP4GVT4t8JtYDaAEmc6/AO9A+eMC51iWFN26rrcbGu2PIEZ4n/XUh5abZ/H30kuR+a0NcMJtXt4T+PdUeBfCIcpddT74Exxols3z5beZ02O8Cj/7/ziLAOtrYeK+/lEPLBJ4G/BWdBKOTWwphly/FIRfV+UbTQXsylTfeDOYa7IgnfqtZAu3xxSnxg+mnALbi0rpTDDvPRcY8ogyK0MD2Ll3FIQg5vWWyWubLkbzahUDbuSS59ye2joITO0td0o0FhtI2F3Oea6EphKHM5XhjL3p8HkjS+mcHERkngVRhWreuICDyvyAT3FYaY/glJfTBWl2iMlte8KzwJ8SeAzPI7eOIIvQ864CmcdHPpM4+s01v/qzG4s2eMQBL/OhVj5W4d1NFagZzfe0XbgItc/KrAmqefGXSzOdA/9BT793/gp2TDyZbVrZoRTSOT48/W66lFUa7Ay9JSQ7XVKE+ydvxus+F9EPuf2nUIQLIjykcOWUU9EWrb8ZuPCdjhfeO3Lz7syVB0bu/lZqgtAUYMsTBsOVtDatohjeQa0ZyocV3lvdYwROED4u8BUAFYax8NTTz9B40rODNu1+LNH2BPCngnAWpnX1j6PL/XIT8rd7yloN1S0VKcIZgQ+haGmLJ0ipMIy7huOPErS664XuysbbOznNcDknws83L99ZwqdxCf7af3bBKDfVDNU4yeJqdKbY+czA94Bfi4ET54YOblAYcHJhWC0MOTAvXBo6WislBI/CuXESAiLJaC0BkQQoV042/Iunn+Wj99/Lg3t70zPNzw5H5dao6+3Ga+iiZF1xXv/xlR888Xi5C3k1S6O2RZuSA3ZH+wIfU7gIOze7J/BhhO8gfK8Bsvw9e7XyMeAceAjzlTfD7V4pKyalGTdMBvs0TnsrP+KLlwJmZ849JBUl8Oj0Fl1sUF/2NiV/0J5GrRdotfeHsX3P6Qzj7T7sbfeaZGzPK2bAqAj3Aj8nge/VOYeGLjggdDEjfr8tZNW6HYHlHwWjobTWXXCjEV5kOLgUUUd6l2rWpSlry5NnFt6xX7ZiJRFVdQJrVfUuVotp2yG7mF64vSBvB3X3PZbjCg5IOLknm4CqcOFSbyAmrXQW1LHyHi/Er6FR4Fme1FCTroSHXST6ztJMnmMzMu3n9wg8gXtOCwN25yFOG2/+6YvXhL/xdw/5zR/fkqtyUoxXu+EAHkF4N8EO+eRJa3Nf/2CbbnErsvjdK7135wbbuVo+zkKeywIUoQveh3Z7p7/69CVe8QjprRLi1sD97mhnWgXj/N25AV8zBKpw75d6vvHnjhnOVC4/Zkq4GWTtwlOXHrHISBCZu8aFwEMi/JGqdDpf60Dgg0X5GrAJAo79CGL116MWBuc9DwJJlZ8S4dxS6C9D0suZU4hbnWRh6ZSUmc7NEsf/Cjv3Fv1qMkVOv+vWeX0FiS2nlNXy3pdjdSTQWmb3ShgWL2qLSlle+D0ivP7iPdy86y7m25sjET9Sdi4kzO4ekIWsX86A/Xs/vbIK/ZVnn+c//5HXfS1KWOHBz/aceamzrjvNLWmlQ8zCZRY49lpwxHQtfvunhKTl+tz78c9ODcKnt7WjNE9Ecz52J2h6meogIckQsp0WXXzW3/ZKj3vLkNOvN101SYiFqNDZ3lp+Zono3n2l3ZBQ4zx/Unbve/rErfth577k9A0vDk0GA5xM7q9fq93jNDkt3eCgmmaA0JDjUNXagQWEaxeMcWd9PZBuGi9rEKsD1tamstRFjnr2Kitm4w+lOppZXYgL1CYimnhRN1T9dyKTzTfP5KlZXnpYCuIgsyAwPGAfTFvh4GqwJvLaPK723a25iJA8bDU3cGiBx1vU1mL6Zbp2MyfF12JeO7mtwp3W9ZaHUTYr+7ahVIax0qVknM4CFKXKYh6nrWlXb/O1e5/LC9r7JqE+3Zgs/vsHCLjlnE9PKHMIG6jR99vCCFyWF7Z/2Blrs6a3XHTiBzj1ILu7oAnZ+dkQ+2wBrrRrSruHtr/s0xe/vCKMUBNcfbxQf03MoDi1uZSZSjU5L7wYGstlmtKduueMectZrXY+YiFm0Wp0rSJIFboukU+2jLcYPrdM9jSHYfSHFig9U4mYPd28Z5ervWPyLGRlq6/Y2Qq3bAD/rsVrk9zXxRmdLnFKTvpZDlmRAhotEsup7+vCXDVBCJxbr9jfW99yL69+/GhV/YqfmPST/VaBK3l8Vd/xqpVw/ysBfify1etbwEkd6lzyMoHA/QClaCAWAyYpVOUFDfyl1PH2EKfk9VUqf38Y+S0VBonTAWiNHp5D+ctd4h1x/oztC50V0c5sLDbRTYG1QhWy9xZt9X+7suZWBb7UZqffK7Lzpgl+UlD+nRYeQnhEZJYZy9ubNeriWWTnGnIiHjr30sBTiwuzwnkFE3S6u9P3/mSt/FfbLT/sDDg2jspE1SntOeZ1bAZXswYnZS3zoVVMqb/8jyqrb0S6VeC7L2YOR8eZa/UOPkoKEdXKWCpGvWGtBYtzFBeNtFZozWBpRCeLIJIZK7UuXl+gMLmdoTPPS99ZJ57krE5XP1m55/+yQi4Iz3+vcOX4CFVl1UXn8rUwr8RAb+wxlqvza1dVBo0cl0DGQFIWohSsZ7Svga/VOI60Uoqvi7DuEh9JaSn2dtbuFkHiP14blb9zbcPmv4x877Mj146sD3MfrR71S6LshY5fiJ3nSBd+4Wy/7Oyhac/K0rB2I+KU4F+q4h1E6W3u1d5jiNWaFTnCwuYjDJMt2BTjcnPLtN4tmnS70fbrFVWeqoW3R6e8XJivS+GvC09AVfmVceT/U6yywiobEsEjOYIyjiPH38qkX+7gqcClTwhfONmaDFR7T58C675nGLYMOdNylhICfYx0wVjFrqryF2PioqdQnkT5+1r5yjajQRBREkIn3gEMOK52v/dcvIvvXb7MD2vgP1z1fMBbjC69yx3xotiB9tIJHcTSfswGZDMMT6/b6RM0r7HO+0Zm52L+YCvt272fW0nFZuGoi3WaPlT9vgXYYoaHG0eClVKeiwliYHv2LCfnzk1GUDMyb7MjX2Hs3txunpvZUFjcq1/F5qMZbf62balsbpcHu80QfTUwzTvjzrgz7vMoWlEAAAChSURBVIw74864M/4XH68VTX1n3Bl3xp1xZ9wZd8b/QuOOEr4z7ow74864M+6MP6RxRwnfGXfGnXFn3Bl3xh/SuKOE74w74864M+6MO+MPadxRwnfGnXFn3Bl3xp3xhzTuKOE74864M+6MO+PO+EMad5TwnXFn3Bl3xp1xZ/whjTtK+M64M+6MO+POuDP+kMYdJXxn3Bl3xp1xZ9wZf0jj/wvwV4TlFq2NSwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Change the version\n",
+ "# In this case, we only want to predict the perspective fields without predicting camera parameters\n",
+ "version = 'PersNet-360Cities'\n",
+ "pf_model = PerspectiveFields(version).eval().cuda()\n",
+ "\n",
+ "\n",
+ "img_bgr = cv2.imread('../assets/imgs/cityscape.jpg')\n",
+ "predictions = pf_model.inference(img_bgr=img_bgr)\n",
+ "\n",
+ "# Print the keys of the predictions dictionary, \n",
+ "# notice this model does not has ParamNet so there's no camera parameters predicted\n",
+ "print(predictions.keys())\n",
+ "\n",
+ "# Draw and visualize the perspective fields based on the predictions\n",
+ "pred_field = draw_perspective_fields(\n",
+ " img_bgr[...,::-1], \n",
+ " predictions[\"pred_gravity_original\"].cpu().detach(), \n",
+ " torch.deg2rad(predictions[\"pred_latitude_original\"].cpu().detach()), \n",
+ " color=(0,1,0),\n",
+ ")\n",
+ "\n",
+ "plt.axis('off')\n",
+ "plt.imshow(pred_field)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "pfinference",
+ "language": "python",
+ "name": "myenv"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.19"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/external/PerspectiveFields/perspective2d/__init__.py b/external/PerspectiveFields/perspective2d/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..baad7828a8ba2baab8eddbc5c32a26ac16c7e86f
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/__init__.py
@@ -0,0 +1,2 @@
+from .perspectivefields import PerspectiveFields
+
diff --git a/external/PerspectiveFields/perspective2d/config/__init__.py b/external/PerspectiveFields/perspective2d/config/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cee24a9b9722a202e3668de4e0bf0ff53dceecb
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/__init__.py
@@ -0,0 +1 @@
+from .config import get_perspective2d_cfg_defaults
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/config/config.py b/external/PerspectiveFields/perspective2d/config/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..a22bd8a1d2f5592a0f9210836afd677093f46f7f
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/config.py
@@ -0,0 +1,137 @@
+from yacs.config import CfgNode as CN
+
+
+def get_perspective2d_cfg_defaults():
+ """
+ PerspectiveNet and ParamNet configs.
+ """
+ cfg = CN()
+ cfg.VIS_PERIOD = 100
+ cfg.INPUT = CN()
+ cfg.INPUT.ONLINE_CROP = False
+ cfg.INPUT.FORMAT = "BGR"
+ cfg.DATASETS = CN()
+ cfg.DATASETS.TRAIN = []
+ cfg.DATASETS.TEST = []
+
+ cfg.DATALOADER = CN()
+ cfg.DATALOADER.AUGMENTATION = False
+ cfg.DATALOADER.AUGMENTATION_TYPE = "geometry"
+ cfg.DATALOADER.RESIZE = [320, 320] # Height, Width
+ cfg.DATALOADER.AUGMENTATION_FUN = "default"
+ cfg.DATALOADER.NO_GEOMETRY_AUG = False # requested by R3 cvpr2023
+
+ cfg.MODEL = CN()
+ cfg.MODEL.GRAVITY_ON = False
+ cfg.MODEL.LATITUDE_ON = False
+ cfg.MODEL.RECOVER_RPF = False
+ cfg.MODEL.RECOVER_PP = False
+
+ cfg.MODEL.BACKBONE = CN()
+ cfg.MODEL.BACKBONE.NAME = "mitb3"
+
+ cfg.MODEL.PERSFORMER_HEADS = CN()
+ cfg.MODEL.WEIGHTS = ""
+ cfg.MODEL.PERSFORMER_HEADS.NAME = "StandardPersformerHeads"
+ cfg.MODEL.LATITUDE_DECODER = CN()
+ cfg.MODEL.LATITUDE_DECODER.NAME = "LatitudeDecoder"
+ cfg.MODEL.LATITUDE_DECODER.LOSS_WEIGHT = 1.0
+ cfg.MODEL.LATITUDE_DECODER.LOSS_TYPE = "regression"
+ cfg.MODEL.LATITUDE_DECODER.NUM_CLASSES = 1
+ cfg.MODEL.LATITUDE_DECODER.IGNORE_VALUE = -1
+ cfg.MODEL.GRAVITY_DECODER = CN()
+ cfg.MODEL.GRAVITY_DECODER.NAME = "GravityDecoder"
+ cfg.MODEL.GRAVITY_DECODER.LOSS_WEIGHT = 1.0
+ cfg.MODEL.GRAVITY_DECODER.LOSS_TYPE = "classification"
+ cfg.MODEL.GRAVITY_DECODER.NUM_CLASSES = 73
+ cfg.MODEL.GRAVITY_DECODER.IGNORE_VALUE = 72
+ cfg.MODEL.HEIGHT_DECODER = CN()
+ cfg.MODEL.HEIGHT_DECODER.NAME = "HeightDecoder"
+ cfg.MODEL.HEIGHT_DECODER.LOSS_WEIGHT = 1.0
+
+ cfg.MODEL.PARAM_DECODER = CN()
+ cfg.MODEL.PARAM_DECODER.NAME = "ParamNet"
+ cfg.MODEL.PARAM_DECODER.LOSS_TYPE = "regression"
+ cfg.MODEL.PARAM_DECODER.LOSS_WEIGHT = 1.0
+ cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS = [
+ "roll",
+ "pitch",
+ "rel_focal",
+ "rel_cx",
+ "rel_cy",
+ ]
+ cfg.MODEL.PARAM_DECODER.SYNTHETIC_PRETRAIN = False
+ cfg.MODEL.PARAM_DECODER.INPUT_SIZE = 320
+ cfg.MODEL.PARAM_DECODER.DEBUG_LAT = False
+ cfg.MODEL.PARAM_DECODER.DEBUG_UP = False
+
+ cfg.MODEL.FREEZE = []
+ cfg.DEBUG_ON = False
+ cfg.OVERFIT_ON = False
+
+ """
+ The configs below are not used.
+ """
+ cfg.MODEL.CENTER_ON = False
+ cfg.MODEL.HEIGHT_ON = False
+ cfg.MODEL.PIXEL_MEAN = [103.53, 116.28, 123.675]
+ cfg.MODEL.PIXEL_STD = [1.0, 1.0, 1.0]
+
+ cfg.MODEL.FPN_HEADS = CN()
+ cfg.MODEL.FPN_HEADS.NAME = "StandardFPNHeads"
+ # Gravity
+
+ cfg.MODEL.FPN_GRAVITY_HEAD = CN()
+ cfg.MODEL.FPN_GRAVITY_HEAD.NAME = "GravityFPNHead"
+ cfg.MODEL.FPN_GRAVITY_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"]
+ # Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for
+ # the correposnding pixel.
+ cfg.MODEL.FPN_GRAVITY_HEAD.IGNORE_VALUE = 360
+ # Number of classes in the semantic segmentation head
+ cfg.MODEL.FPN_GRAVITY_HEAD.NUM_CLASSES = 361
+ # Number of channels in the 3x3 convs inside semantic-FPN heads.
+ cfg.MODEL.FPN_GRAVITY_HEAD.CONVS_DIM = 128
+ # Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride.
+ cfg.MODEL.FPN_GRAVITY_HEAD.COMMON_STRIDE = 4
+ # Normalization method for the convolution layers. Options: "" (no norm), "GN".
+ cfg.MODEL.FPN_GRAVITY_HEAD.NORM = "GN"
+ cfg.MODEL.FPN_GRAVITY_HEAD.LOSS_WEIGHT = 1.0
+
+ # Latitude
+
+ cfg.MODEL.FPN_LATITUDE_HEAD = CN()
+ cfg.MODEL.FPN_LATITUDE_HEAD.NAME = "LatitudeFPNHead"
+ cfg.MODEL.FPN_LATITUDE_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"]
+ # Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for
+ # the correposnding pixel.
+ cfg.MODEL.FPN_LATITUDE_HEAD.IGNORE_VALUE = -1
+ # Number of classes in the semantic segmentation head
+ cfg.MODEL.FPN_LATITUDE_HEAD.NUM_CLASSES = 9
+ # Number of channels in the 3x3 convs inside semantic-FPN heads.
+ cfg.MODEL.FPN_LATITUDE_HEAD.CONVS_DIM = 128
+ # Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride.
+ cfg.MODEL.FPN_LATITUDE_HEAD.COMMON_STRIDE = 4
+ # Normalization method for the convolution layers. Options: "" (no norm), "GN".
+ cfg.MODEL.FPN_LATITUDE_HEAD.NORM = "GN"
+ cfg.MODEL.FPN_LATITUDE_HEAD.LOSS_WEIGHT = 1.0
+ # Center
+
+ cfg.MODEL.FPN_CENTER_HEAD = CN()
+ cfg.MODEL.FPN_CENTER_HEAD.NAME = "CenterFPNHead"
+ cfg.MODEL.FPN_CENTER_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"]
+ # Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for
+ # the correposnding pixel.
+ cfg.MODEL.FPN_CENTER_HEAD.IGNORE_VALUE = 360
+ # Number of classes in the semantic segmentation head
+ cfg.MODEL.FPN_CENTER_HEAD.NUM_CLASSES = 30
+ # Number of channels in the 3x3 convs inside semantic-FPN heads.
+ cfg.MODEL.FPN_CENTER_HEAD.CONVS_DIM = 128
+ # Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride.
+ cfg.MODEL.FPN_CENTER_HEAD.COMMON_STRIDE = 4
+ # Normalization method for the convolution layers. Options: "" (no norm), "GN".
+ cfg.MODEL.FPN_CENTER_HEAD.NORM = "GN"
+ cfg.MODEL.FPN_CENTER_HEAD.LOSS_WEIGHT = 1.0
+
+ ############################################################
+
+ return cfg
diff --git a/external/PerspectiveFields/perspective2d/config/cvpr2023.yaml b/external/PerspectiveFields/perspective2d/config/cvpr2023.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a45143454cd79c2b340798ed9c0ed38ac2d0aeae
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/cvpr2023.yaml
@@ -0,0 +1,39 @@
+DATALOADER:
+ RESIZE:
+ - 320
+ - 320
+DATASETS:
+ TEST:
+ - stanford2d3d_test
+ - tartanair_test
+ TRAIN:
+ - cities360_train
+ - rgbdpano_train
+DEBUG_ON: false
+MODEL:
+ GRAVITY_DECODER:
+ IGNORE_VALUE: 72
+ LOSS_TYPE: classification
+ LOSS_WEIGHT: 1.0
+ NAME: GravityDecoder
+ NUM_CLASSES: 73
+ GRAVITY_ON: true
+ LATITUDE_DECODER:
+ IGNORE_VALUE: -1
+ LOSS_TYPE: classification
+ LOSS_WEIGHT: 1.0
+ NAME: LatitudeDecoder
+ NUM_CLASSES: 180
+ LATITUDE_ON: true
+ PERSFORMER_HEADS:
+ NAME: StandardPersformerHeads
+ PIXEL_MEAN:
+ - 103.53
+ - 116.28
+ - 123.675
+ PIXEL_STD:
+ - 1.0
+ - 1.0
+ - 1.0
+ RECOVER_PP: false
+ RECOVER_RPF: false
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpf.yaml b/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpf.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d803f88139c51e1e9a25dc361844135535b9ef87
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpf.yaml
@@ -0,0 +1,47 @@
+DATALOADER:
+ RESIZE:
+ - 320
+ - 320
+DATASETS:
+ TEST:
+ - edina_test_crop_vfov
+ TRAIN:
+ - edina_train
+ - cities360_train
+DEBUG_ON: false
+MODEL:
+ GRAVITY_DECODER:
+ IGNORE_VALUE: 72
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: GravityDecoder
+ NUM_CLASSES: 73
+ GRAVITY_ON: true
+ LATITUDE_DECODER:
+ IGNORE_VALUE: -1
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: LatitudeDecoder
+ NUM_CLASSES: 1
+ LATITUDE_ON: true
+ PARAM_DECODER:
+ INPUT_SIZE: 64
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: ParamNet
+ PREDICT_PARAMS:
+ - roll
+ - pitch
+ - vfov
+ PERSFORMER_HEADS:
+ NAME: StandardPersformerHeads
+ PIXEL_MEAN:
+ - 103.53
+ - 116.28
+ - 123.675
+ PIXEL_STD:
+ - 1.0
+ - 1.0
+ - 1.0
+ RECOVER_PP: false
+ RECOVER_RPF: true
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpfpp.yaml b/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpfpp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3fa6afc06403aac0f3c1dfff9e85d6d2ff21e806
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/paramnet_360cities_edina_rpfpp.yaml
@@ -0,0 +1,49 @@
+DATALOADER:
+ RESIZE:
+ - 320
+ - 320
+DATASETS:
+ TEST:
+ - edina_test_crop_uniform
+ TRAIN:
+ - edina_train
+ - cities360_train
+DEBUG_ON: false
+MODEL:
+ GRAVITY_DECODER:
+ IGNORE_VALUE: 72
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: GravityDecoder
+ NUM_CLASSES: 73
+ GRAVITY_ON: true
+ LATITUDE_DECODER:
+ IGNORE_VALUE: -1
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: LatitudeDecoder
+ NUM_CLASSES: 1
+ LATITUDE_ON: true
+ PARAM_DECODER:
+ INPUT_SIZE: 64
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: ParamNetConvNextRegress
+ PREDICT_PARAMS:
+ - roll
+ - pitch
+ - general_vfov
+ - rel_cx
+ - rel_cy
+ PERSFORMER_HEADS:
+ NAME: StandardPersformerHeads
+ PIXEL_MEAN:
+ - 103.53
+ - 116.28
+ - 123.675
+ PIXEL_STD:
+ - 1.0
+ - 1.0
+ - 1.0
+ RECOVER_PP: true
+ RECOVER_RPF: true
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpf.yaml b/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpf.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..35a7c315879ecac0d416cccbe9cfc546e2ca7abb
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpf.yaml
@@ -0,0 +1,46 @@
+DATALOADER:
+ RESIZE:
+ - 320
+ - 320
+DATASETS:
+ TEST:
+ - gsv_val
+ - gsv_test
+ TRAIN:
+ - gsv_train
+DEBUG_ON: false
+MODEL:
+ GRAVITY_DECODER:
+ IGNORE_VALUE: 72
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: GravityDecoder
+ NUM_CLASSES: 73
+ GRAVITY_ON: true
+ LATITUDE_DECODER:
+ IGNORE_VALUE: -1
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: LatitudeDecoder
+ NUM_CLASSES: 1
+ LATITUDE_ON: true
+ PARAM_DECODER:
+ LOSS_TYPE: regression
+ PREDICT_PARAMS:
+ - 'roll'
+ - 'pitch'
+ - 'vfov'
+ LOSS_WEIGHT: 1.0
+ NAME: ParamNet
+ PERSFORMER_HEADS:
+ NAME: StandardPersformerHeads
+ PIXEL_MEAN:
+ - 103.53
+ - 116.28
+ - 123.675
+ PIXEL_STD:
+ - 1.0
+ - 1.0
+ - 1.0
+ RECOVER_PP: false
+ RECOVER_RPF: true
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpfpp.yaml b/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpfpp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5b6ffc4675592a9895aa61210789e57ef02088e8
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/config/paramnet_gsv_rpfpp.yaml
@@ -0,0 +1,48 @@
+DATALOADER:
+ RESIZE:
+ - 320
+ - 320
+DATASETS:
+ TEST:
+ - gsv_test_crop_uniform
+ TRAIN:
+ - gsv_train
+DEBUG_ON: false
+MODEL:
+ GRAVITY_DECODER:
+ IGNORE_VALUE: 72
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: GravityDecoder
+ NUM_CLASSES: 73
+ GRAVITY_ON: true
+ LATITUDE_DECODER:
+ IGNORE_VALUE: -1
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 1.0
+ NAME: LatitudeDecoder
+ NUM_CLASSES: 1
+ LATITUDE_ON: true
+ PARAM_DECODER:
+ INPUT_SIZE: 64
+ LOSS_TYPE: regression
+ LOSS_WEIGHT: 0.1
+ NAME: ParamNetConvNextRegress
+ PREDICT_PARAMS:
+ - roll
+ - pitch
+ - general_vfov
+ - rel_cx
+ - rel_cy
+ PERSFORMER_HEADS:
+ NAME: StandardPersformerHeads
+ PIXEL_MEAN:
+ - 103.53
+ - 116.28
+ - 123.675
+ PIXEL_STD:
+ - 1.0
+ - 1.0
+ - 1.0
+ RECOVER_PP: true
+ RECOVER_RPF: true
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/modeling/__init__.py b/external/PerspectiveFields/perspective2d/modeling/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/external/PerspectiveFields/perspective2d/modeling/backbone/__init__.py b/external/PerspectiveFields/perspective2d/modeling/backbone/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4a04b2020a79661b4d8d59307018db36d7e8aa10
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/backbone/__init__.py
@@ -0,0 +1,2 @@
+from .mix_transformers import *
+from .convnext import *
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/modeling/backbone/convnext.py b/external/PerspectiveFields/perspective2d/modeling/backbone/convnext.py
new file mode 100644
index 0000000000000000000000000000000000000000..39a88b6104eaa937400006726c62452551eb9163
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/backbone/convnext.py
@@ -0,0 +1,261 @@
+# code from https://github.com/facebookresearch/ConvNeXt
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from timm.models.layers import DropPath, trunc_normal_
+
+
+class Block(nn.Module):
+ r"""ConvNeXt Block. There are two equivalent implementations:
+ (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
+ (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
+ We use (2) as we find it slightly faster in PyTorch
+
+ Args:
+ dim (int): Number of input channels.
+ drop_path (float): Stochastic depth rate. Default: 0.0
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
+ """
+
+ def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-6):
+ super().__init__()
+ self.dwconv = nn.Conv2d(
+ dim, dim, kernel_size=7, padding=3, groups=dim
+ ) # depthwise conv
+ self.norm = LayerNorm(dim, eps=1e-6)
+ self.pwconv1 = nn.Linear(
+ dim, 4 * dim
+ ) # pointwise/1x1 convs, implemented with linear layers
+ self.act = nn.GELU()
+ self.pwconv2 = nn.Linear(4 * dim, dim)
+ self.gamma = (
+ nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
+ if layer_scale_init_value > 0
+ else None
+ )
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+ def forward(self, x):
+ input = x
+ x = self.dwconv(x)
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
+ x = self.norm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.pwconv2(x)
+ if self.gamma is not None:
+ x = self.gamma * x
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
+
+ x = input + self.drop_path(x)
+ return x
+
+
+class ConvNeXt(nn.Module):
+ r"""ConvNeXt
+ A PyTorch impl of : `A ConvNet for the 2020s` -
+ https://arxiv.org/pdf/2201.03545.pdf
+
+ Args:
+ in_chans (int): Number of input image channels. Default: 3
+ num_classes (int): Number of classes for classification head. Default: 1000
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
+ """
+
+ def __init__(
+ self,
+ in_chans=3,
+ num_classes=1000,
+ depths=[3, 3, 9, 3],
+ dims=[96, 192, 384, 768],
+ drop_path_rate=0.0,
+ layer_scale_init_value=1e-6,
+ head_init_scale=1.0,
+ ):
+ super().__init__()
+
+ self.downsample_layers = (
+ nn.ModuleList()
+ ) # stem and 3 intermediate downsampling conv layers
+ stem = nn.Sequential(
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
+ )
+ self.downsample_layers.append(stem)
+ for i in range(3):
+ downsample_layer = nn.Sequential(
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
+ nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
+ )
+ self.downsample_layers.append(downsample_layer)
+
+ self.stages = (
+ nn.ModuleList()
+ ) # 4 feature resolution stages, each consisting of multiple residual blocks
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
+ cur = 0
+ for i in range(4):
+ stage = nn.Sequential(
+ *[
+ Block(
+ dim=dims[i],
+ drop_path=dp_rates[cur + j],
+ layer_scale_init_value=layer_scale_init_value,
+ )
+ for j in range(depths[i])
+ ]
+ )
+ self.stages.append(stage)
+ cur += depths[i]
+
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
+ if num_classes != 0:
+ self.head = nn.Linear(dims[-1], num_classes)
+ else:
+ self.output_dim = dims[-1]
+
+ self.apply(self._init_weights)
+ if num_classes != 0:
+ self.head.weight.data.mul_(head_init_scale)
+ self.head.bias.data.mul_(head_init_scale)
+ self.num_classes = num_classes
+
+ def _init_weights(self, m):
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
+ trunc_normal_(m.weight, std=0.02)
+ nn.init.constant_(m.bias, 0)
+
+ def forward_features(self, x):
+ for i in range(4):
+ x = self.downsample_layers[i](x)
+ x = self.stages[i](x)
+ return self.norm(
+ x.mean([-2, -1])
+ ) # global average pooling, (N, C, H, W) -> (N, C)
+
+ def forward(self, x):
+ x = self.forward_features(x)
+ if self.num_classes != 0:
+ x = self.head(x)
+ return x
+
+
+class LayerNorm(nn.Module):
+ r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
+ with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.data_format = data_format
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError
+ self.normalized_shape = (normalized_shape,)
+
+ def forward(self, x):
+ if self.data_format == "channels_last":
+ return F.layer_norm(
+ x, self.normalized_shape, self.weight, self.bias, self.eps
+ )
+ elif self.data_format == "channels_first":
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+model_urls = {
+ "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
+ "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
+ "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
+ "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
+ "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
+ "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
+ "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
+ "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
+ "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
+}
+
+
+def convnext_tiny(pretrained=False, in_22k=False, **kwargs):
+ model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
+ if pretrained:
+ url = (
+ model_urls["convnext_tiny_22k"]
+ if in_22k
+ else model_urls["convnext_tiny_1k"]
+ )
+ checkpoint = torch.hub.load_state_dict_from_url(
+ url=url, map_location="cpu", check_hash=True
+ )
+ model.load_state_dict(checkpoint["model"])
+ return model
+
+
+def convnext_small(pretrained=False, in_22k=False, **kwargs):
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
+ if pretrained:
+ url = (
+ model_urls["convnext_small_22k"]
+ if in_22k
+ else model_urls["convnext_small_1k"]
+ )
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ return model
+
+
+def convnext_base(pretrained=False, in_22k=False, **kwargs):
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
+ if pretrained:
+ url = (
+ model_urls["convnext_base_22k"]
+ if in_22k
+ else model_urls["convnext_base_1k"]
+ )
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ return model
+
+
+def convnext_large(pretrained=False, in_22k=False, **kwargs):
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
+ if pretrained:
+ url = (
+ model_urls["convnext_large_22k"]
+ if in_22k
+ else model_urls["convnext_large_1k"]
+ )
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ return model
+
+
+def convnext_xlarge(pretrained=False, in_22k=False, **kwargs):
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
+ if pretrained:
+ assert (
+ in_22k
+ ), "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
+ url = model_urls["convnext_xlarge_22k"]
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
+ model.load_state_dict(checkpoint["model"])
+ return model
diff --git a/external/PerspectiveFields/perspective2d/modeling/backbone/mix_transformers.py b/external/PerspectiveFields/perspective2d/modeling/backbone/mix_transformers.py
new file mode 100644
index 0000000000000000000000000000000000000000..66121526e262e63296ed9d5324ead2cab22062e9
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/backbone/mix_transformers.py
@@ -0,0 +1,543 @@
+# ---------------------------------------------------------------
+# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
+#
+# This work is licensed under the NVIDIA Source Code License
+# ---------------------------------------------------------------
+import math
+from functools import partial
+
+import torch
+import torch.nn as nn
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+
+class Mlp(nn.Module):
+ def __init__(
+ self,
+ in_features,
+ hidden_features=None,
+ out_features=None,
+ act_layer=nn.GELU,
+ drop=0.0,
+ ):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.dwconv = DWConv(hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+ elif isinstance(m, nn.Conv2d):
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ fan_out //= m.groups
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+ def forward(self, x, H, W):
+ x = self.fc1(x)
+ x = self.dwconv(x, H, W)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim,
+ num_heads=8,
+ qkv_bias=False,
+ qk_scale=None,
+ attn_drop=0.0,
+ proj_drop=0.0,
+ sr_ratio=1,
+ ):
+ super().__init__()
+ assert (
+ dim % num_heads == 0
+ ), f"dim {dim} should be divided by num_heads {num_heads}."
+
+ self.dim = dim
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = qk_scale or head_dim**-0.5
+
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ self.sr_ratio = sr_ratio
+ if sr_ratio > 1:
+ self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
+ self.norm = nn.LayerNorm(dim)
+
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+ elif isinstance(m, nn.Conv2d):
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ fan_out //= m.groups
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+ def forward(self, x, H, W):
+ B, N, C = x.shape
+ q = (
+ self.q(x)
+ .reshape(B, N, self.num_heads, C // self.num_heads)
+ .permute(0, 2, 1, 3)
+ )
+
+ if self.sr_ratio > 1:
+ x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
+ x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
+ x_ = self.norm(x_)
+ kv = (
+ self.kv(x_)
+ .reshape(B, -1, 2, self.num_heads, C // self.num_heads)
+ .permute(2, 0, 3, 1, 4)
+ )
+ else:
+ kv = (
+ self.kv(x)
+ .reshape(B, -1, 2, self.num_heads, C // self.num_heads)
+ .permute(2, 0, 3, 1, 4)
+ )
+ k, v = kv[0], kv[1]
+
+ attn = (q @ k.transpose(-2, -1)) * self.scale
+ attn = attn.softmax(dim=-1)
+ attn = self.attn_drop(attn)
+
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
+ x = self.proj(x)
+ x = self.proj_drop(x)
+
+ return x
+
+
+class Block(nn.Module):
+ def __init__(
+ self,
+ dim,
+ num_heads,
+ mlp_ratio=4.0,
+ qkv_bias=False,
+ qk_scale=None,
+ drop=0.0,
+ attn_drop=0.0,
+ drop_path=0.0,
+ act_layer=nn.GELU,
+ norm_layer=nn.LayerNorm,
+ sr_ratio=1,
+ ):
+ super().__init__()
+ self.norm1 = norm_layer(dim)
+ self.attn = Attention(
+ dim,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ sr_ratio=sr_ratio,
+ )
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(
+ in_features=dim,
+ hidden_features=mlp_hidden_dim,
+ act_layer=act_layer,
+ drop=drop,
+ )
+
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+ elif isinstance(m, nn.Conv2d):
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ fan_out //= m.groups
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+ def forward(self, x, H, W):
+ x = x + self.drop_path(self.attn(self.norm1(x), H, W))
+ x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
+
+ return x
+
+
+class OverlapPatchEmbed(nn.Module):
+ """Image to Patch Embedding"""
+
+ def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
+ super().__init__()
+ img_size = to_2tuple(img_size)
+ patch_size = to_2tuple(patch_size)
+
+ self.img_size = img_size
+ self.patch_size = patch_size
+ self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
+ self.num_patches = self.H * self.W
+ self.proj = nn.Conv2d(
+ in_chans,
+ embed_dim,
+ kernel_size=patch_size,
+ stride=stride,
+ padding=(patch_size[0] // 2, patch_size[1] // 2),
+ )
+ self.norm = nn.LayerNorm(embed_dim)
+
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+ elif isinstance(m, nn.Conv2d):
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ fan_out //= m.groups
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+ def forward(self, x):
+ x = self.proj(x)
+ _, _, H, W = x.shape
+ x = x.flatten(2).transpose(1, 2)
+ x = self.norm(x)
+
+ return x, H, W
+
+
+class MixVisionTransformer(nn.Module):
+ def __init__(
+ self,
+ img_size=224,
+ patch_size=16,
+ in_chans=3,
+ num_classes=1000,
+ embed_dims=[64, 128, 256, 512],
+ num_heads=[1, 2, 4, 8],
+ mlp_ratios=[4, 4, 4, 4],
+ qkv_bias=False,
+ qk_scale=None,
+ drop_rate=0.0,
+ attn_drop_rate=0.0,
+ drop_path_rate=0.0,
+ norm_layer=nn.LayerNorm,
+ depths=[3, 4, 6, 3],
+ sr_ratios=[8, 4, 2, 1],
+ ):
+ super().__init__()
+ self.num_classes = num_classes
+ self.depths = depths
+
+ # patch_embed
+ self.patch_embed1 = OverlapPatchEmbed(
+ img_size=img_size,
+ patch_size=7,
+ stride=4,
+ in_chans=in_chans,
+ embed_dim=embed_dims[0],
+ )
+ self.patch_embed2 = OverlapPatchEmbed(
+ img_size=img_size // 4,
+ patch_size=3,
+ stride=2,
+ in_chans=embed_dims[0],
+ embed_dim=embed_dims[1],
+ )
+ self.patch_embed3 = OverlapPatchEmbed(
+ img_size=img_size // 8,
+ patch_size=3,
+ stride=2,
+ in_chans=embed_dims[1],
+ embed_dim=embed_dims[2],
+ )
+ self.patch_embed4 = OverlapPatchEmbed(
+ img_size=img_size // 16,
+ patch_size=3,
+ stride=2,
+ in_chans=embed_dims[2],
+ embed_dim=embed_dims[3],
+ )
+
+ # transformer encoder
+ dpr = [
+ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
+ ] # stochastic depth decay rule
+ cur = 0
+ self.block1 = nn.ModuleList(
+ [
+ Block(
+ dim=embed_dims[0],
+ num_heads=num_heads[0],
+ mlp_ratio=mlp_ratios[0],
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[cur + i],
+ norm_layer=norm_layer,
+ sr_ratio=sr_ratios[0],
+ )
+ for i in range(depths[0])
+ ]
+ )
+ self.norm1 = norm_layer(embed_dims[0])
+
+ cur += depths[0]
+ self.block2 = nn.ModuleList(
+ [
+ Block(
+ dim=embed_dims[1],
+ num_heads=num_heads[1],
+ mlp_ratio=mlp_ratios[1],
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[cur + i],
+ norm_layer=norm_layer,
+ sr_ratio=sr_ratios[1],
+ )
+ for i in range(depths[1])
+ ]
+ )
+ self.norm2 = norm_layer(embed_dims[1])
+
+ cur += depths[1]
+ self.block3 = nn.ModuleList(
+ [
+ Block(
+ dim=embed_dims[2],
+ num_heads=num_heads[2],
+ mlp_ratio=mlp_ratios[2],
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[cur + i],
+ norm_layer=norm_layer,
+ sr_ratio=sr_ratios[2],
+ )
+ for i in range(depths[2])
+ ]
+ )
+ self.norm3 = norm_layer(embed_dims[2])
+
+ cur += depths[2]
+ self.block4 = nn.ModuleList(
+ [
+ Block(
+ dim=embed_dims[3],
+ num_heads=num_heads[3],
+ mlp_ratio=mlp_ratios[3],
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[cur + i],
+ norm_layer=norm_layer,
+ sr_ratio=sr_ratios[3],
+ )
+ for i in range(depths[3])
+ ]
+ )
+ self.norm4 = norm_layer(embed_dims[3])
+
+ # classification head
+ # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
+
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=0.02)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+ elif isinstance(m, nn.Conv2d):
+ fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ fan_out //= m.groups
+ m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+ def reset_drop_path(self, drop_path_rate):
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
+ cur = 0
+ for i in range(self.depths[0]):
+ self.block1[i].drop_path.drop_prob = dpr[cur + i]
+
+ cur += self.depths[0]
+ for i in range(self.depths[1]):
+ self.block2[i].drop_path.drop_prob = dpr[cur + i]
+
+ cur += self.depths[1]
+ for i in range(self.depths[2]):
+ self.block3[i].drop_path.drop_prob = dpr[cur + i]
+
+ cur += self.depths[2]
+ for i in range(self.depths[3]):
+ self.block4[i].drop_path.drop_prob = dpr[cur + i]
+
+ def freeze_patch_emb(self):
+ self.patch_embed1.requires_grad = False
+
+ @torch.jit.ignore
+ def no_weight_decay(self):
+ return {
+ "pos_embed1",
+ "pos_embed2",
+ "pos_embed3",
+ "pos_embed4",
+ "cls_token",
+ } # has pos_embed may be better
+
+ def get_classifier(self):
+ return self.head
+
+ def reset_classifier(self, num_classes, global_pool=""):
+ self.num_classes = num_classes
+ self.head = (
+ nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
+ )
+
+ def forward_features(self, x):
+ B = x.shape[0]
+ outs = []
+
+ # stage 1
+ x, H, W = self.patch_embed1(x)
+ for i, blk in enumerate(self.block1):
+ x = blk(x, H, W)
+ x = self.norm1(x)
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
+ outs.append(x)
+
+ # stage 2
+ x, H, W = self.patch_embed2(x)
+ for i, blk in enumerate(self.block2):
+ x = blk(x, H, W)
+ x = self.norm2(x)
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
+ outs.append(x)
+
+ # stage 3
+ x, H, W = self.patch_embed3(x)
+ for i, blk in enumerate(self.block3):
+ x = blk(x, H, W)
+ x = self.norm3(x)
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
+ outs.append(x)
+
+ # stage 4
+ x, H, W = self.patch_embed4(x)
+ for i, blk in enumerate(self.block4):
+ x = blk(x, H, W)
+ x = self.norm4(x)
+ x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
+ outs.append(x)
+
+ return outs
+
+ def forward(self, x):
+ x = self.forward_features(x)
+ # x = self.head(x)
+
+ return x
+
+ def output_shape(self):
+ return None
+
+
+class DWConv(nn.Module):
+ def __init__(self, dim=768):
+ super().__init__()
+ self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
+
+ def forward(self, x, H, W):
+ B, N, C = x.shape
+ x = x.transpose(1, 2).contiguous().view(B, C, H, W)
+ x = self.dwconv(x)
+ x = x.flatten(2).transpose(1, 2)
+
+ return x
+
+
+class mit_b3(MixVisionTransformer):
+ def __init__(self, **kwargs):
+ super().__init__(
+ patch_size=4,
+ embed_dims=[64, 128, 320, 512],
+ num_heads=[1, 2, 5, 8],
+ mlp_ratios=[4, 4, 4, 4],
+ qkv_bias=True,
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
+ depths=[3, 4, 18, 3],
+ sr_ratios=[8, 4, 2, 1],
+ drop_rate=0.0,
+ drop_path_rate=0.1,
+ )
+
+ @property
+ def size_divisibility(self):
+ """
+ Some backbones require the input height and width to be divisible by a
+ specific integer. This is typically true for encoder / decoder type networks
+ with lateral connection (e.g., FPN) for which feature maps need to match
+ dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
+ input size divisibility is required.
+ """
+ return 32
+
+
+def build_backbone(cfg):
+ name = cfg.MODEL.BACKBONE.NAME
+ if name == "mitb3":
+ return mit_b3()
+ else:
+ raise ValueError(f"Unknown backbone name: {name}")
diff --git a/external/PerspectiveFields/perspective2d/modeling/param_network/__init__.py b/external/PerspectiveFields/perspective2d/modeling/param_network/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d883ff5203b35a47bdc6f7aca3f4abfb1f96cfb
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/param_network/__init__.py
@@ -0,0 +1 @@
+from .param_network import *
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/modeling/param_network/param_network.py b/external/PerspectiveFields/perspective2d/modeling/param_network/param_network.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e5fc62f1140f3b2eff5871ac4169f9e91606d56
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/param_network/param_network.py
@@ -0,0 +1,284 @@
+import cv2
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from ...utils import general_vfov_to_focal
+from ..backbone import ConvNeXt
+
+
+def build_param_net(cfg):
+ name = cfg.MODEL.PARAM_DECODER.NAME
+ if name == "ParamNet":
+ return ParamNet(cfg)
+ elif name == "ParamNetConvNextRegress":
+ return ParamNetConvNextRegress(cfg)
+ # Add more conditions here for other decoders
+ else:
+ raise ValueError(f"Unknown paramnet name: {name}")
+
+
+def to_numpy(x):
+ if isinstance(x, np.ndarray):
+ return x
+ elif isinstance(x, torch.Tensor):
+ if x.is_cuda:
+ return x.detach().cpu().numpy()
+ else:
+ return x.detach().numpy()
+ else:
+ return np.array(x)
+
+
+class ParamNet(nn.Module):
+ def __init__(
+ self,
+ cfg,
+ ):
+ super().__init__()
+ self.cfg = cfg
+ if cfg.MODEL.PARAM_DECODER.LOSS_TYPE == "regression":
+ num_classes = 5
+ self.backbone = ConvNeXt(num_classes=num_classes)
+ self.loss_weight = cfg.MODEL.PARAM_DECODER.LOSS_WEIGHT
+
+ def forward(self, predictions, batched_inputs=None):
+ images = torch.cat(
+ (predictions["pred_gravity"], predictions["pred_latitude"]), dim=1
+ )
+
+ x = self.backbone(images)
+ # x[:,:2] = torch.clip(x[:,:2], -1, 1)
+ if not self.training:
+ if self.cfg.MODEL.RECOVER_PP:
+ param = {
+ "pred_roll": x[:, 0] * 90.0,
+ "pred_pitch": x[:, 1] * 90.0,
+ "pred_rel_focal": x[:, 2],
+ "pred_rel_pp": x[:, 3:],
+ }
+ else:
+ param = {
+ "pred_roll": x[:, 0] * 90.0,
+ "pred_pitch": x[:, 1] * 90.0,
+ "pred_vfov": x[:, 2] * 90.0,
+ "pred_rel_focal": 1 / 2 / torch.tan(x[:, 2]),
+ }
+
+ return param
+
+ targets_dict = {}
+ if self.cfg.MODEL.RECOVER_RPF:
+ if self.cfg.MODEL.RECOVER_PP:
+ # roll [-90, 90]->(-1,1), pitch [-90, 90]->(-1,1), focal/img_h
+ targets = torch.FloatTensor(
+ [
+ np.array([x["roll"] / 90.0, x["pitch"] / 90.0, x["rel_focal"]])
+ for x in batched_inputs
+ ]
+ )
+ else:
+ # roll [-90, 90]->(-1,1), pitch [-90, 90]->(-1,1), vfov -> vfov / 90
+ targets = torch.FloatTensor(
+ [
+ np.array(
+ [x["roll"] / 90.0, x["pitch"] / 90.0, x["vfov"] / 90.0]
+ )
+ for x in batched_inputs
+ ]
+ )
+ targets_dict["rpf"] = targets.to(images.device)
+ else:
+ targets_dict["rpf"] = torch.zeros((len(x), 3)).to(images.device)
+ if self.cfg.MODEL.RECOVER_PP:
+ targets = torch.FloatTensor([x["rel_pp"] for x in batched_inputs])
+ targets_dict["rel_pp"] = targets.to(images.device)
+ else:
+ targets_dict["rel_pp"] = torch.zeros((len(x), 2)).to(images.device)
+ losses = self.losses(x, targets_dict)
+ return losses
+
+ def losses(self, pred, gt):
+ losses = {}
+ if self.cfg.MODEL.PARAM_DECODER.LOSS_TYPE == "regression":
+ mask = torch.ones_like(pred).to(pred.device)
+ if not self.cfg.MODEL.RECOVER_PP:
+ mask[:, 3:] = 0.0
+ if not self.cfg.MODEL.RECOVER_RPF:
+ mask[:, :3] = 0.0
+ gt = torch.cat([gt["rpf"], gt["rel_pp"]], dim=1)
+ if self.cfg.MODEL.RECOVER_PP:
+ loss_itemized = (
+ F.mse_loss(pred, gt, reduction="none") * mask * self.loss_weight
+ )
+ losses["param/roll-loss"] = loss_itemized[:, 0].mean()
+ losses["param/pitch-loss"] = loss_itemized[:, 1].mean()
+ losses["param/focal-loss"] = loss_itemized[:, 2].mean()
+ losses["param/cx-loss"] = loss_itemized[:, 3].mean()
+ losses["param/cy-loss"] = loss_itemized[:, 4].mean()
+ # losses['param-l2-loss'] = (F.mse_loss(pred, gt, reduction='none') * mask).mean()
+ else:
+ losses["param-l1-loss"] = (
+ F.l1_loss(pred, gt, reduction="none") * mask
+ ).mean() * self.loss_weight
+
+ else:
+ raise NotImplementedError
+ return losses
+
+ def visualize(self, predictions, batched_inputs):
+ with torch.no_grad():
+ images = torch.cat(
+ (predictions["pred_gravity"], predictions["pred_latitude"]), dim=1
+ )
+
+ x = self.backbone(images)
+ assert self.cfg.MODEL.RECOVER_PP
+ param = {
+ "pred_roll": x[:, 0] * 90.0,
+ "pred_pitch": x[:, 1] * 90.0,
+ "pred_rel_focal": x[:, 2],
+ "pred_rel_pp": x[:, 3:],
+ }
+ vis_dict = {}
+ _, h, w = batched_inputs[0]["image"].shape
+ pp_gt = batched_inputs[0]["rel_pp"] * h + np.array([w, h]) / 2
+ vis_img = cv2.circle(
+ batched_inputs[0]["image"].cpu().numpy().transpose(1, 2, 0).copy(),
+ pp_gt.astype(int),
+ radius=10,
+ color=(0, 0, 255),
+ thickness=-1,
+ )
+ pp_pred = param["pred_rel_pp"].cpu().numpy() * h + np.array([w, h]) / 2
+ vis_img = cv2.circle(
+ vis_img, pp_pred[0].astype(int), radius=8, color=(0, 255, 0), thickness=-1
+ )
+
+ original = cv2.resize(
+ batched_inputs[0]["img_center_original"], (vis_img.shape[:2])
+ )
+
+ original = original[:, :, ::-1] / 255
+ original = torch.tensor(original.transpose(2, 0, 1))
+ vis_img = vis_img[:, :, ::-1] / 255
+ vis_img = torch.tensor(vis_img.transpose(2, 0, 1))
+ cat = torch.cat((original, vis_img), 1)
+ return {"principal point": cat}
+
+
+class ParamNetConvNextRegress(nn.Module):
+ def __init__(
+ self,
+ cfg,
+ ):
+ super().__init__()
+ self.cfg = cfg
+ if cfg.MODEL.PARAM_DECODER.LOSS_TYPE == "regression":
+ num_classes = len(cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS)
+ self.backbone = ConvNeXt(num_classes=num_classes)
+ self.loss_weight = cfg.MODEL.PARAM_DECODER.LOSS_WEIGHT
+ self.input_size = cfg.MODEL.PARAM_DECODER.INPUT_SIZE
+ self.factors = {
+ "roll": 90.0,
+ "pitch": 90.0,
+ "vfov": 90.0,
+ "rel_focal": 1.0,
+ "rel_cx": 1.0,
+ "rel_cy": 1.0,
+ "general_vfov": 90.0,
+ }
+
+ def forward(self, predictions, batched_inputs=None):
+ images = torch.cat(
+ (predictions["pred_gravity"], predictions["pred_latitude"]), dim=1
+ )
+ images = F.interpolate(images, (self.input_size, self.input_size))
+
+ x = self.backbone(images)
+ # x[:,:2] = torch.clip(x[:,:2], -1, 1)
+ if not self.training:
+ param = {}
+ for idx, key in enumerate(self.cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS):
+ param["pred_" + key] = x[:, idx] * self.factors[key]
+
+ # make output contain everything
+ if "pred_rel_cx" not in param and "pred_rel_cy" not in param:
+ param["pred_rel_cx"] = param["pred_rel_cy"] = torch.FloatTensor([0])
+ if "pred_general_vfov" not in param:
+ param["pred_general_vfov"] = param["pred_vfov"]
+ if "pred_rel_focal" not in param:
+ param["pred_rel_focal"] = torch.FloatTensor(
+ general_vfov_to_focal(
+ to_numpy(param["pred_rel_cx"]),
+ to_numpy(param["pred_rel_cy"]),
+ 1,
+ to_numpy(param["pred_general_vfov"]),
+ degree=True,
+ )
+ )
+ return param
+
+ targets = []
+ for batched_input in batched_inputs:
+ target = []
+ for key in self.cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS:
+ target.append(batched_input[key] / self.factors[key])
+ targets.append(target)
+ targets = torch.FloatTensor(targets).to(images.device)
+ losses = self.losses(x, targets)
+ return losses
+
+ def losses(self, pred, gt):
+ losses = {}
+ if self.cfg.MODEL.PARAM_DECODER.LOSS_TYPE == "regression":
+ loss_itemized = F.mse_loss(pred, gt, reduction="none") * self.loss_weight
+ for idx, key in enumerate(self.cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS):
+ losses[f"param/{key}-loss"] = loss_itemized[:, idx].mean()
+ else:
+ raise NotImplementedError
+ return losses
+
+ def visualize(self, predictions, batched_inputs):
+ with torch.no_grad():
+ images = torch.cat(
+ (predictions["pred_gravity"], predictions["pred_latitude"]), dim=1
+ )
+ images = F.interpolate(images, (self.input_size, self.input_size))
+
+ x = self.backbone(images)
+ assert "rel_cx" in self.cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS
+ assert "rel_cy" in self.cfg.MODEL.PARAM_DECODER.PREDICT_PARAMS
+ predictions["pred_rel_pp"] = torch.cat(
+ [
+ predictions["pred_rel_cx"].view(-1, 1),
+ predictions["pred_rel_cy"].view(-1, 1),
+ ],
+ dim=-1,
+ )
+ vis_dict = {}
+ _, h, w = batched_inputs[0]["image"].shape
+ pp_gt = batched_inputs[0]["rel_pp"] * h + np.array([w, h]) / 2
+ vis_img = cv2.circle(
+ batched_inputs[0]["image"].cpu().numpy().transpose(1, 2, 0).copy(),
+ pp_gt.astype(int),
+ radius=10,
+ color=(0, 0, 255),
+ thickness=-1,
+ )
+ pp_pred = predictions["pred_rel_pp"].cpu().numpy() * h + np.array([w, h]) / 2
+ vis_img = cv2.circle(
+ vis_img, pp_pred[0].astype(int), radius=8, color=(0, 255, 0), thickness=-1
+ )
+
+ original = cv2.resize(
+ batched_inputs[0]["img_center_original"], (vis_img.shape[:2])
+ )
+
+ original = original[:, :, ::-1] / 255
+ original = torch.tensor(original.transpose(2, 0, 1))
+ vis_img = vis_img[:, :, ::-1] / 255
+ vis_img = torch.tensor(vis_img.transpose(2, 0, 1))
+ cat = torch.cat((original, vis_img), 1)
+ return {"principal point": cat}
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/__init__.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4ecdc96f7bb3e656285ab09ffc264d79c273e4d
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/__init__.py
@@ -0,0 +1,2 @@
+from .decode_head import *
+from .persformer_heads import *
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/decode_head.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/decode_head.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2d1c0205fa9c1bd5ca758a5ee6b20d9a6ae7371
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/decode_head.py
@@ -0,0 +1,288 @@
+import warnings
+from abc import ABCMeta, abstractmethod
+
+import torch
+import torch.nn as nn
+import torch.nn.functional
+import torch.nn.functional as F
+
+############################################################
+
+
+def resize(
+ input,
+ size=None,
+ scale_factor=None,
+ mode="nearest",
+ align_corners=None,
+ warning=True,
+):
+ if warning:
+ if size is not None and align_corners:
+ input_h, input_w = tuple(int(x) for x in input.shape[2:])
+ output_h, output_w = tuple(int(x) for x in size)
+ if output_h > input_h or output_w > output_h:
+ if (
+ (output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1)
+ and (output_h - 1) % (input_h - 1)
+ and (output_w - 1) % (input_w - 1)
+ ):
+ warnings.warn(
+ f"When align_corners={align_corners}, "
+ "the output would more aligned if "
+ f"input size {(input_h, input_w)} is `x+1` and "
+ f"out size {(output_h, output_w)} is `nx+1`"
+ )
+ return F.interpolate(input, size, scale_factor, mode, align_corners)
+
+
+############################################################
+
+
+class MLP(nn.Module):
+ """
+ Linear Embedding
+ """
+
+ def __init__(self, input_dim=2048, embed_dim=768):
+ super().__init__()
+ self.proj = nn.Linear(input_dim, embed_dim)
+
+ def forward(self, x):
+ x = x.flatten(2).transpose(1, 2)
+ x = self.proj(x)
+ return x
+
+
+class BaseDecodeHead(nn.Module, metaclass=ABCMeta):
+ """Base class for BaseDecodeHead.
+ Args:
+ in_channels (int|Sequence[int]): Input channels.
+ channels (int): Channels after modules, before conv_seg.
+ num_classes (int): Number of classes.
+ dropout_ratio (float): Ratio of dropout layer. Default: 0.1.
+ conv_cfg (dict|None): Config of conv layers. Default: None.
+ norm_cfg (dict|None): Config of norm layers. Default: None.
+ act_cfg (dict): Config of activation layers.
+ Default: dict(type='ReLU')
+ in_index (int|Sequence[int]): Input feature index. Default: -1
+ input_transform (str|None): Transformation type of input features.
+ Options: 'resize_concat', 'multiple_select', None.
+ 'resize_concat': Multiple feature maps will be resize to the
+ same size as first one and than concat together.
+ Usually used in FCN head of HRNet.
+ 'multiple_select': Multiple feature maps will be bundle into
+ a list and passed into decode head.
+ None: Only one select feature map is allowed.
+ Default: None.
+ loss_decode (dict): Config of decode loss.
+ Default: dict(type='CrossEntropyLoss').
+ ignore_index (int | None): The label index to be ignored. When using
+ masked BCE loss, ignore_index should be set to None. Default: 255
+ sampler (dict|None): The config of segmentation map sampler.
+ Default: None.
+ align_corners (bool): align_corners argument of F.interpolate.
+ Default: False.
+ """
+
+ def __init__(
+ self,
+ in_channels,
+ channels,
+ *,
+ num_classes,
+ dropout_ratio=0.1,
+ conv_cfg=None,
+ norm_cfg=None,
+ act_cfg=dict(type="ReLU"),
+ in_index=-1,
+ input_transform=None,
+ decoder_params=None,
+ ignore_index=255,
+ sampler=None,
+ align_corners=False,
+ **kwargs,
+ ):
+ super().__init__()
+ self._init_inputs(in_channels, in_index, input_transform)
+ self.channels = channels
+ self.num_classes = num_classes
+ self.dropout_ratio = dropout_ratio
+ self.conv_cfg = conv_cfg
+ self.norm_cfg = norm_cfg
+ self.act_cfg = act_cfg
+ self.in_index = in_index
+ self.ignore_index = ignore_index
+ self.align_corners = align_corners
+
+ if sampler is not None:
+ # self.sampler = build_pixel_sampler(sampler, context=self)
+ raise NotImplementedError
+ else:
+ self.sampler = None
+
+ # if dropout_ratio > 0:
+ # self.dropout = nn.Dropout2d(dropout_ratio)
+ # else:
+ # self.dropout = None
+ self.fp16_enabled = False
+
+ def extra_repr(self):
+ """Extra repr."""
+ s = (
+ f"input_transform={self.input_transform}, "
+ f"ignore_index={self.ignore_index}, "
+ f"align_corners={self.align_corners}"
+ )
+ return s
+
+ def _init_inputs(self, in_channels, in_index, input_transform):
+ """Check and initialize input transforms.
+ The in_channels, in_index and input_transform must match.
+ Specifically, when input_transform is None, only single feature map
+ will be selected. So in_channels and in_index must be of type int.
+ When input_transform
+ Args:
+ in_channels (int|Sequence[int]): Input channels.
+ in_index (int|Sequence[int]): Input feature index.
+ input_transform (str|None): Transformation type of input features.
+ Options: 'resize_concat', 'multiple_select', None.
+ 'resize_concat': Multiple feature maps will be resize to the
+ same size as first one and than concat together.
+ Usually used in FCN head of HRNet.
+ 'multiple_select': Multiple feature maps will be bundle into
+ a list and passed into decode head.
+ None: Only one select feature map is allowed.
+ """
+
+ if input_transform is not None:
+ assert input_transform in ["resize_concat", "multiple_select"]
+ self.input_transform = input_transform
+ self.in_index = in_index
+ if input_transform is not None:
+ assert isinstance(in_channels, (list, tuple))
+ assert isinstance(in_index, (list, tuple))
+ assert len(in_channels) == len(in_index)
+ if input_transform == "resize_concat":
+ self.in_channels = sum(in_channels)
+ else:
+ self.in_channels = in_channels
+ else:
+ assert isinstance(in_channels, int)
+ assert isinstance(in_index, int)
+ self.in_channels = in_channels
+
+ def _transform_inputs(self, inputs):
+ """Transform inputs for decoder.
+ Args:
+ inputs (list[Tensor]): List of multi-level img features.
+ Returns:
+ Tensor: The transformed inputs
+ """
+
+ if self.input_transform == "resize_concat":
+ inputs = [inputs[i] for i in self.in_index]
+ upsampled_inputs = [
+ resize(
+ input=x,
+ size=inputs[0].shape[2:],
+ mode="bilinear",
+ align_corners=self.align_corners,
+ )
+ for x in inputs
+ ]
+ inputs = torch.cat(upsampled_inputs, dim=1)
+ elif self.input_transform == "multiple_select":
+ inputs = [inputs[i] for i in self.in_index]
+ else:
+ inputs = inputs[self.in_index]
+
+ return inputs
+
+ @abstractmethod
+ def forward(self, inputs):
+ """Placeholder of forward function."""
+
+
+class LowLevelEncoder(nn.Module):
+ def __init__(self, feat_dim=64, in_channel=3):
+ super().__init__()
+ self.conv1 = nn.Conv2d(
+ 3, feat_dim, kernel_size=7, stride=2, padding=3, bias=False
+ )
+ self.bn1 = nn.BatchNorm2d(feat_dim)
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = self.bn1(x)
+ x = self.relu(x)
+ return x
+
+
+################################################
+class ResidualConvUnit(nn.Module):
+ """Residual convolution module."""
+
+ def __init__(self, features):
+ """Init.
+ Args:
+ features (int): number of features
+ """
+ super().__init__()
+
+ self.conv1 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
+ )
+
+ self.conv2 = nn.Conv2d(
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
+ )
+
+ self.relu = torch.nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ """Forward pass.
+ Args:
+ x (tensor): input
+ Returns:
+ tensor: output
+ """
+ out = self.relu(x)
+ out = self.conv1(out)
+ out = self.relu(out)
+ out = self.conv2(out)
+
+ return out + x
+
+
+class FeatureFusionBlock(nn.Module):
+ """Feature fusion block."""
+
+ def __init__(self, features, unit2only=False):
+ """Init.
+ Args:
+ features (int): number of features
+ """
+ super().__init__()
+ if not unit2only:
+ self.resConfUnit1 = ResidualConvUnit(features)
+ self.resConfUnit2 = ResidualConvUnit(features)
+
+ def forward(self, *xs):
+ """Forward pass.
+ Returns:
+ tensor: output
+ """
+ output = xs[0]
+
+ if len(xs) == 2:
+ output += self.resConfUnit1(xs[1])
+
+ output = self.resConfUnit2(output)
+
+ output = torch.nn.functional.interpolate(
+ output, scale_factor=2, mode="bilinear", align_corners=False
+ )
+
+ return output
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/gravity_head.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/gravity_head.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea631905de8b1326baf746e527dd1b18782661d0
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/gravity_head.py
@@ -0,0 +1,307 @@
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from ...utils import decode_bin, draw_up_field, pf_postprocess
+from ...utils.config import configurable
+from . import BaseDecodeHead
+from .decode_head import MLP, FeatureFusionBlock
+from .loss_fns import msgil_norm_loss
+
+
+def build_gravity_decoder(cfg, input_shape):
+ decoder_name = cfg.MODEL.GRAVITY_DECODER.NAME
+ if decoder_name == "GravityDecoder":
+ return GravityDecoder(cfg, input_shape)
+ # Add more conditions here for other decoders
+ else:
+ raise ValueError(f"Unknown decoder name: {decoder_name}")
+
+
+class ConvModule(nn.Module):
+ def __init__(self, in_channels, out_channels, kernel_size, padding):
+ super(ConvModule, self).__init__()
+ self.conv = nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=kernel_size,
+ padding=padding,
+ )
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.relu(x)
+ return x
+
+
+class GravityDecoder(BaseDecodeHead):
+ @configurable
+ def __init__(self, feature_strides, loss_weight, **kwargs):
+ super().__init__(input_transform="multiple_select", **kwargs)
+ assert len(feature_strides) == len(self.in_channels)
+ assert min(feature_strides) == feature_strides[0]
+ self.feature_strides = feature_strides
+ self.common_stride = 1
+ self.loss_weight = loss_weight
+
+ (
+ c1_in_channels,
+ c2_in_channels,
+ c3_in_channels,
+ c4_in_channels,
+ ) = self.in_channels
+
+ decoder_params = kwargs["decoder_params"]
+ embedding_dim = decoder_params["embed_dim"]
+ self.num_classes = kwargs["num_classes"]
+ self.ignore_value = kwargs["ignore_value"]
+ self.loss_type = kwargs["loss_type"]
+ self.image_size = kwargs["image_size"]
+ if self.loss_type == "regression":
+ self.num_classes = 2
+
+ self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
+ self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
+ self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
+ self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
+
+ self.linear_c4_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c3_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c2_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c1_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.fusion1 = FeatureFusionBlock(256)
+ self.fusion2 = FeatureFusionBlock(256)
+ self.fusion3 = FeatureFusionBlock(256)
+ self.fusion4 = FeatureFusionBlock(256, unit2only=True)
+
+ self.conv_fuse_conv0 = ConvModule(
+ in_channels=256 + 64,
+ out_channels=64,
+ kernel_size=3,
+ padding=1,
+ )
+
+ self.conv_fuse_conv1 = ConvModule(
+ in_channels=64,
+ out_channels=32,
+ kernel_size=3,
+ padding=1,
+ )
+ self.linear_pred_gravity = nn.Conv2d(32, self.num_classes, kernel_size=1)
+
+ # weight_init.c2_msra_fill(self.linear_pred_gravity)
+
+ @classmethod
+ def from_config(cls, cfg, input_shape):
+ return {
+ "in_channels": [64, 128, 320, 512],
+ "in_index": [0, 1, 2, 3],
+ "feature_strides": [4, 8, 16, 32],
+ "channels": 128,
+ "dropout_ratio": 0.1,
+ "num_classes": cfg.MODEL.GRAVITY_DECODER.NUM_CLASSES,
+ "ignore_value": cfg.MODEL.GRAVITY_DECODER.IGNORE_VALUE,
+ "norm_cfg": dict(type="SyncBN", requires_grad=True),
+ "align_corners": False,
+ "decoder_params": dict(embed_dim=768),
+ "loss_weight": cfg.MODEL.GRAVITY_DECODER.LOSS_WEIGHT,
+ "loss_type": cfg.MODEL.GRAVITY_DECODER.LOSS_TYPE,
+ "image_size": cfg.DATALOADER.RESIZE,
+ }
+
+ def layers(self, features):
+ x = self._transform_inputs(features["hl"]) # len=4, 1/4,1/8,1/16,1/32
+ c1, c2, c3, c4 = x
+
+ ############## MLP decoder on C1-C4 ###########
+ n, _, h, w = c4.shape
+
+ _c4 = (
+ self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
+ )
+ _c4 = self.linear_c4_proc(_c4)
+ _c4 = self.fusion4(_c4)
+
+ _c3 = (
+ self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
+ )
+ _c3 = self.linear_c3_proc(_c3)
+ _c3 = self.fusion3(_c4, _c3)
+
+ _c2 = (
+ self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
+ )
+ _c2 = self.linear_c2_proc(_c2)
+ _c2 = self.fusion2(_c3, _c2)
+
+ _c1 = (
+ self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])
+ )
+ _c1 = self.linear_c1_proc(_c1)
+ _c1 = self.fusion1(_c2, _c1)
+
+ x = torch.cat([_c1, features["ll"]], dim=1)
+ x = self.conv_fuse_conv0(x)
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
+ x = self.conv_fuse_conv1(x)
+
+ x = self.linear_pred_gravity(x)
+ return x
+
+ def forward(self, features, targets=None):
+ x = self.layers(features)
+ if self.loss_type == "regression":
+ x = F.normalize(x, dim=1)
+ if self.training:
+ return x, self.losses(x, targets)
+ else:
+ x = F.interpolate(
+ x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
+ )
+ return x, {}
+
+ def inference(self, features):
+ x = self.layers(features)
+ if self.loss_type == "regression":
+ x = F.normalize(x, dim=1)
+ x = F.interpolate(
+ x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
+ )
+ return x
+
+ def losses(self, predictions, targets):
+ predictions = (
+ predictions.float()
+ ) # https://github.com/pytorch/pytorch/issues/48163
+
+ if self.loss_type == "regression":
+ losses = {}
+ mask = (torch.norm(targets, dim=1) > 1e-5).unsqueeze(1)
+ mask_tiled = torch.tile(mask, (1, 2, 1, 1))
+ losses["gravity-msg-normal-loss"] = (
+ 0.1
+ * msgil_norm_loss(predictions, targets, mask_tiled)
+ * self.loss_weight
+ )
+ losses["gravity-l2-loss"] = (
+ torch.sum((predictions - targets) ** 2, dim=1, keepdim=True)[
+ mask
+ ].mean()
+ * self.loss_weight
+ )
+ for k in losses.keys():
+ if torch.isnan(losses[k]):
+ import pdb
+
+ pdb.set_trace()
+ elif self.loss_type == "classification":
+ loss = F.cross_entropy(
+ predictions, targets, reduction="mean", ignore_index=self.ignore_value
+ )
+ if torch.isnan(loss):
+ import pdb
+
+ pdb.set_trace()
+ losses = {"loss_gravity": loss * self.loss_weight}
+ else:
+ raise NotImplementedError
+ return losses
+
+ def postprocess(self, results, batched_inputs, images):
+ processed_results = []
+ for result, input_per_image in zip(results, batched_inputs):
+ height = input_per_image.get("height")
+ width = input_per_image.get("width")
+ if self.loss_type == "regression":
+ vec = result
+ elif self.loss_type == "classification":
+ vec = decode_bin(result.argmax(dim=0), self.num_classes)
+ else:
+ raise NotImplementedError
+ scale = (
+ torch.tensor(
+ [[width / self.image_size[1]], [height / self.image_size[0]]]
+ )
+ .unsqueeze(-1)
+ .to(vec.device)
+ )
+ vec_original = vec * scale
+ vec_original = pf_postprocess(vec_original, self.image_size, height, width)
+ vec_original = F.normalize(vec_original, dim=0)
+ processed_results.append(
+ {"pred_gravity": result, "pred_gravity_original": vec_original}
+ )
+ return processed_results
+
+ def visualize(self, img, pred, gt):
+ if self.loss_type == "regression":
+ # Pred map
+ pred = (
+ draw_up_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8)[:, :, ::-1],
+ vector_field=pred.cpu(),
+ color=(0, 1, 0),
+ )[:, :, ::-1]
+ / 255.0
+ )
+ gt = (
+ draw_up_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8)[:, :, ::-1],
+ vector_field=gt.cpu(),
+ color=(1, 0, 0),
+ )[:, :, ::-1]
+ / 255.0
+ )
+ elif self.loss_type == "classification":
+ # Pred map
+ pred = pred.argmax(dim=0)
+ pred = (
+ draw_up_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8)[:, :, ::-1],
+ vector_field=decode_bin(pred.cpu(), self.num_classes),
+ color=(0, 1, 0),
+ )[:, :, ::-1]
+ / 255.0
+ )
+ gt = (
+ draw_up_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8)[:, :, ::-1],
+ vector_field=decode_bin(gt.cpu(), self.num_classes),
+ color=(1, 0, 0),
+ )[:, :, ::-1]
+ / 255.0
+ )
+ else:
+ raise NotImplementedError
+ img = img.cpu() / 255
+ pred = torch.tensor(pred.transpose(2, 0, 1))
+ gt = torch.tensor(gt.transpose(2, 0, 1))
+ cat = torch.cat((img, pred, gt), 1)
+ return {"gravity-pred-gt": cat}
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/latitude_head.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/latitude_head.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbd1c3ecadef1da37cad705ea5e40137ca0631ec
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/latitude_head.py
@@ -0,0 +1,299 @@
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from ...utils import decode_bin_latitude, draw_latitude_field, pf_postprocess
+from ...utils.config import configurable
+from . import BaseDecodeHead
+from .decode_head import MLP, FeatureFusionBlock
+from .loss_fns import msgil_norm_loss
+
+
+def build_latitude_decoder(cfg, input_shape):
+ decoder_name = cfg.MODEL.LATITUDE_DECODER.NAME
+ if decoder_name == "LatitudeDecoder":
+ return LatitudeDecoder(cfg, input_shape)
+ # Add more conditions here for other decoders
+ else:
+ raise ValueError(f"Unknown decoder name: {decoder_name}")
+
+
+class ConvModule(nn.Module):
+ def __init__(self, in_channels, out_channels, kernel_size, padding):
+ super(ConvModule, self).__init__()
+ self.conv = nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=kernel_size,
+ padding=padding,
+ )
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.relu(x)
+ return x
+
+
+class LatitudeDecoder(BaseDecodeHead):
+ @configurable
+ def __init__(self, feature_strides, loss_weight, **kwargs):
+ super().__init__(input_transform="multiple_select", **kwargs)
+ assert len(feature_strides) == len(self.in_channels)
+ assert min(feature_strides) == feature_strides[0]
+ self.feature_strides = feature_strides
+ self.common_stride = 1
+ self.loss_weight = loss_weight
+ self.loss_type = kwargs["loss_type"]
+ self.num_classes = kwargs["num_classes"]
+ self.ignore_value = kwargs["ignore_value"]
+ self.image_size = kwargs["image_size"]
+ if self.loss_type == "regression":
+ self.num_classes == 1
+
+ (
+ c1_in_channels,
+ c2_in_channels,
+ c3_in_channels,
+ c4_in_channels,
+ ) = self.in_channels
+
+ decoder_params = kwargs["decoder_params"]
+ embedding_dim = decoder_params["embed_dim"]
+
+ self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
+ self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
+ self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
+ self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)
+
+ self.linear_c4_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c3_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c2_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+ self.linear_c1_proc = torch.nn.Conv2d(
+ embedding_dim,
+ 256,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ )
+
+ self.fusion1 = FeatureFusionBlock(256)
+ self.fusion2 = FeatureFusionBlock(256)
+ self.fusion3 = FeatureFusionBlock(256)
+ self.fusion4 = FeatureFusionBlock(256, unit2only=True)
+
+ self.conv_fuse_conv0 = ConvModule(
+ in_channels=256 + 64,
+ out_channels=64,
+ kernel_size=3,
+ padding=1,
+ )
+
+ self.conv_fuse_conv1 = ConvModule(
+ in_channels=64,
+ out_channels=32,
+ kernel_size=3,
+ padding=1,
+ )
+
+ self.linear_pred_latitude = nn.Conv2d(32, self.num_classes, kernel_size=1)
+
+ @classmethod
+ def from_config(cls, cfg, input_shape):
+ return {
+ "in_channels": [64, 128, 320, 512],
+ "in_index": [0, 1, 2, 3],
+ "feature_strides": [4, 8, 16, 32],
+ "channels": 128,
+ "dropout_ratio": 0.1,
+ "norm_cfg": dict(type="SyncBN", requires_grad=True),
+ "align_corners": False,
+ "decoder_params": dict(embed_dim=768),
+ "loss_weight": cfg.MODEL.LATITUDE_DECODER.LOSS_WEIGHT,
+ "loss_type": cfg.MODEL.LATITUDE_DECODER.LOSS_TYPE,
+ "num_classes": cfg.MODEL.LATITUDE_DECODER.NUM_CLASSES,
+ "ignore_value": cfg.MODEL.LATITUDE_DECODER.IGNORE_VALUE,
+ "image_size": cfg.DATALOADER.RESIZE,
+ }
+
+ def layers(self, features):
+ x = self._transform_inputs(features["hl"]) # len=4, 1/4,1/8,1/16,1/32
+ c1, c2, c3, c4 = x
+
+ ############## MLP decoder on C1-C4 ###########
+ n, _, h, w = c4.shape
+
+ _c4 = (
+ self.linear_c4(c4).permute(0, 2, 1).reshape(n, -1, c4.shape[2], c4.shape[3])
+ )
+ _c4 = self.linear_c4_proc(_c4)
+ _c4 = self.fusion4(_c4)
+
+ _c3 = (
+ self.linear_c3(c3).permute(0, 2, 1).reshape(n, -1, c3.shape[2], c3.shape[3])
+ )
+ _c3 = self.linear_c3_proc(_c3)
+ _c3 = self.fusion3(_c4, _c3)
+
+ _c2 = (
+ self.linear_c2(c2).permute(0, 2, 1).reshape(n, -1, c2.shape[2], c2.shape[3])
+ )
+ _c2 = self.linear_c2_proc(_c2)
+ _c2 = self.fusion2(_c3, _c2)
+
+ _c1 = (
+ self.linear_c1(c1).permute(0, 2, 1).reshape(n, -1, c1.shape[2], c1.shape[3])
+ )
+ _c1 = self.linear_c1_proc(_c1)
+ _c1 = self.fusion1(_c2, _c1)
+
+ x = torch.cat([_c1, features["ll"]], dim=1)
+ x = self.conv_fuse_conv0(x)
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
+ x = self.conv_fuse_conv1(x)
+
+ x = self.linear_pred_latitude(x)
+ return x
+
+ def forward(self, features, targets=None):
+ x = self.layers(features)
+ if self.loss_type == "regression":
+ x = torch.clamp(x, -1, 1)
+ if self.training:
+ return x, self.losses(x, targets)
+ else:
+ x = F.interpolate(
+ x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
+ )
+ return x, {}
+
+ def inference(self, features):
+ x = self.layers(features)
+ if self.loss_type == "regression":
+ x = torch.clamp(x, -1, 1)
+ return x
+
+ def postprocess(self, results, batched_inputs, images):
+ processed_results = []
+ for result, input_per_image in zip(results, batched_inputs):
+ height = input_per_image.get("height")
+ width = input_per_image.get("width")
+ if self.loss_type == "regression":
+ latimap = pf_postprocess(result, self.image_size, height, width)[0]
+ latimap = torch.asin(latimap)
+ latimap = torch.rad2deg(latimap)
+ elif self.loss_type == "classification":
+ latimap_bin = result.argmax(dim=0)
+ latimap = decode_bin_latitude(latimap_bin, self.num_classes).unsqueeze(
+ 0
+ )
+ latimap = pf_postprocess(latimap, self.image_size, height, width)[0]
+ else:
+ raise NotImplementedError
+ processed_results.append(
+ {
+ "pred_latitude": result,
+ "pred_latitude_original": latimap,
+ "pred_latitude_original_mode": "deg",
+ }
+ )
+ return processed_results
+
+ def losses(self, predictions, targets):
+ predictions = (
+ predictions.float()
+ ) # https://github.com/pytorch/pytorch/issues/48163
+ if self.loss_type == "regression":
+ # loss = F.mse_loss(
+ # predictions, targets, reduction="mean",
+ # )
+ losses = {}
+ mask = torch.ones(predictions.shape).to(bool)
+ losses["latitude-msg-normal-loss"] = (
+ 0.1 * msgil_norm_loss(predictions, targets, mask) * self.loss_weight
+ )
+ losses["latitude-l2-loss"] = (
+ F.mse_loss(predictions, targets, reduction="none")[mask].mean()
+ * self.loss_weight
+ )
+ for k in losses.keys():
+ if torch.isnan(losses[k]):
+ import pdb
+
+ pdb.set_trace()
+ elif self.loss_type == "classification":
+ loss = F.cross_entropy(
+ predictions, targets, reduction="mean", ignore_index=self.ignore_value
+ )
+ losses = {"loss_latitude": loss * self.loss_weight}
+ if torch.isnan(loss):
+ import pdb
+
+ pdb.set_trace()
+ else:
+ raise NotImplementedError
+ return losses
+
+ def visualize(self, img, pred, gt):
+ if self.loss_type == "regression":
+ # Pred map
+ pred = (
+ draw_latitude_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8),
+ latimap=np.arcsin(pred.squeeze(0).cpu().numpy()),
+ )
+ / 255.0
+ )
+ gt = (
+ draw_latitude_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8),
+ latimap=np.arcsin(gt.squeeze(0).cpu().numpy()),
+ )
+ / 255.0
+ )
+ elif self.loss_type == "classification":
+ pred = pred.argmax(dim=0)
+ pred = (
+ draw_latitude_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8),
+ # binmap=pred.cpu()
+ latimap=np.radians(
+ decode_bin_latitude(pred.cpu(), self.num_classes)
+ ),
+ )
+ / 255.0
+ )
+ gt = (
+ draw_latitude_field(
+ img_rgb=img.numpy().transpose(1, 2, 0).astype(np.uint8),
+ # binmap=gt.cpu()
+ latimap=np.radians(decode_bin_latitude(gt.cpu(), self.num_classes)),
+ )
+ / 255.0
+ )
+ else:
+ raise NotImplementedError
+ img = img.cpu() / 255
+ pred = torch.tensor(pred.transpose(2, 0, 1))
+ gt = torch.tensor(gt.transpose(2, 0, 1))
+ cat = torch.cat((img, pred, gt), 1)
+ return {"latitude-pred-gt": cat}
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/loss_fns.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/loss_fns.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea8a2ee801fecd0dac6f2fb7da4a92e6acd01d5d
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/loss_fns.py
@@ -0,0 +1,74 @@
+# Reference: https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
+import torch
+
+
+def one_scale_gradient_loss(pred_scale, gt, mask):
+ mask_float = mask.to(dtype=pred_scale.dtype, device=pred_scale.device)
+
+ d_diff = pred_scale - gt
+
+ v_mask = torch.mul(mask_float[:, :, :-2, :], mask_float[:, :, 2:, :])
+ v_gradient = torch.abs(d_diff[:, :, :-2, :] - d_diff[:, :, 2:, :])
+ # v_gradient = torch.mul(v_gradient, v_mask)
+ v_gradient = v_gradient[v_mask.to(dtype=mask.dtype)]
+
+ h_gradient = torch.abs(d_diff[:, :, :, :-2] - d_diff[:, :, :, 2:])
+ h_mask = torch.mul(mask_float[:, :, :, :-2], mask_float[:, :, :, 2:])
+ # h_gradient = torch.mul(h_gradient, h_mask)
+ h_gradient = h_gradient[h_mask.to(dtype=mask.dtype)]
+
+ valid_num = torch.sum(h_mask) + torch.sum(v_mask)
+
+ gradient_loss = torch.sum(h_gradient) + torch.sum(v_gradient)
+ gradient_loss = gradient_loss / (valid_num + 1e-8)
+ return gradient_loss
+
+
+def msgil_norm_loss(pred, gt, valid_mask, scales_num=4):
+ """
+ GT normalized Multi-scale Gradient Loss Fuction.
+ """
+ grad_term = 0.0
+ # gt_mean = minmax_meanstd[:, 2]
+ # gt_std = minmax_meanstd[:, 3]
+ gt_trans = (
+ gt # (gt - gt_mean[:, None, None, None]) / (gt_std[:, None, None, None] + 1e-8)
+ )
+ for i in range(scales_num):
+ step = pow(2, i)
+ d_gt = gt_trans[:, :, ::step, ::step]
+ d_pred = pred[:, :, ::step, ::step]
+ d_mask = valid_mask[:, :, ::step, ::step]
+ grad_term += one_scale_gradient_loss(d_pred, d_gt, d_mask)
+ return grad_term
+
+
+def meanstd_tanh_norm_loss(pred, gt, mask):
+ """
+ loss = MAE((d-u)/s - d') + MAE(tanh(0.01*(d-u)/s) - tanh(0.01*d'))
+ """
+ mask_sum = torch.sum(mask, dim=(1, 2, 3))
+ # mask invalid batches
+ mask_batch = mask_sum > 100
+ if True not in mask_batch:
+ return torch.tensor(0.0, dtype=torch.float).cuda()
+ mask_maskbatch = mask[mask_batch]
+ pred_maskbatch = pred[mask_batch]
+ gt = gt[mask_batch]
+
+ B, C, H, W = gt.shape
+ loss = 0
+ loss_tanh = 0
+ for i in range(B):
+ mask_i = mask_maskbatch[i, ...]
+ pred_depth_i = pred_maskbatch[i, ...][mask_i]
+ gt_i = gt[i, ...][mask_i]
+
+ depth_diff = torch.abs(gt_i - pred_depth_i)
+ loss += torch.mean(depth_diff)
+
+ tanh_norm_gt = torch.tanh(0.01 * gt_i)
+ tanh_norm_pred = torch.tanh(0.01 * pred_depth_i)
+ loss_tanh += torch.mean(torch.abs(tanh_norm_gt - tanh_norm_pred))
+ loss_out = loss / B + loss_tanh / B
+ return loss_out.float()
diff --git a/external/PerspectiveFields/perspective2d/modeling/persformer_heads/persformer_heads.py b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/persformer_heads.py
new file mode 100644
index 0000000000000000000000000000000000000000..8df9103a21bfd67e42bddd3bdf3313cdbf197638
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/modeling/persformer_heads/persformer_heads.py
@@ -0,0 +1,145 @@
+import inspect
+from typing import Optional
+
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from ...utils.config import configurable
+from .gravity_head import build_gravity_decoder
+from .latitude_head import build_latitude_decoder
+
+
+class StandardPersformerHeads(torch.nn.Module):
+ @configurable
+ def __init__(
+ self,
+ gravity_head: Optional[nn.Module] = None,
+ latitude_head: Optional[nn.Module] = None,
+ ):
+ super().__init__()
+ self.gravity_on = gravity_head is not None
+ self.latitude_on = latitude_head is not None
+ if self.gravity_on:
+ self.gravity_head = gravity_head
+ if self.latitude_on:
+ self.latitude_head = latitude_head
+
+ @classmethod
+ def from_config(cls, cfg, input_shape):
+ ret = {}
+ if inspect.ismethod(cls._init_gravity_head):
+ ret.update(cls._init_gravity_head(cfg, input_shape))
+ if inspect.ismethod(cls._init_latitude_head):
+ ret.update(cls._init_latitude_head(cfg, input_shape))
+ return ret
+
+ @classmethod
+ def _init_gravity_head(cls, cfg, input_shape):
+ if not cfg.MODEL.GRAVITY_ON:
+ return {}
+ ret = {}
+ ret["gravity_head"] = build_gravity_decoder(cfg, input_shape)
+ return ret
+
+ @classmethod
+ def _init_latitude_head(cls, cfg, input_shape):
+ if not cfg.MODEL.LATITUDE_ON:
+ return {}
+ ret = {}
+ ret["latitude_head"] = build_latitude_decoder(cfg, input_shape)
+ return ret
+
+ def forward(
+ self,
+ features,
+ targets=None,
+ ):
+ losses = {}
+ prediction = {}
+ if self.gravity_on:
+ prediction["pred_gravity"], loss_gravity = self.gravity_head(
+ features, targets["gt_gravity"]
+ )
+ losses.update(loss_gravity)
+ if self.latitude_on:
+ prediction["pred_latitude"], loss_latitude = self.latitude_head(
+ features, targets["gt_latitude"]
+ )
+ losses.update(loss_latitude)
+ return losses, prediction
+
+ def inference(self, features):
+ results = {}
+ if self.gravity_on:
+ x = self.gravity_head.inference(features)
+ results["pred_gravity"] = x
+ if self.latitude_on:
+ x = self.latitude_head.inference(features)
+ results["pred_latitude"] = x
+ return results
+
+ def postprocess(self, results, batched_inputs, images):
+ processed_results = []
+ if self.gravity_on:
+ processed_gravity = self.gravity_head.postprocess(
+ results["pred_gravity"], batched_inputs, images
+ )
+ else:
+ processed_gravity = [{} for _ in batched_inputs]
+
+ if self.latitude_on:
+ processed_latitude = self.latitude_head.postprocess(
+ results["pred_latitude"], batched_inputs, images
+ )
+ else:
+ processed_latitude = [{} for _ in batched_inputs]
+
+ for p_g, p_l in zip(processed_gravity, processed_latitude):
+ processed_results.append({**p_g, **p_l})
+ return processed_results
+
+ def visualize(self, img, feature, target):
+ with torch.no_grad():
+ results = self.inference(feature)
+ vis_dict = {}
+ if self.gravity_on:
+ # Score maps
+ vis_dict[f"gravity-score-map"] = self.visualize_scoremap(
+ results["pred_gravity"]
+ )
+
+ gt = target["gt_gravity"]
+ pred = results["pred_gravity"][0]
+ vis_dict.update(self.gravity_head.visualize(img, pred, gt))
+ if self.latitude_on:
+ gt = target["gt_latitude"]
+ pred = results["pred_latitude"][0]
+ vis_dict.update(self.latitude_head.visualize(img, pred, gt))
+
+ return vis_dict
+
+ @staticmethod
+ def visualize_scoremap(pred):
+ softmax = torch.softmax(pred, dim=1)
+ score_maps = []
+ for c in np.arange(0, softmax.size(1), 1):
+ score_maps.append(softmax[0, c, :, :].repeat(3, 1, 1).cpu())
+ score_maps = torch.cat((score_maps), 1)
+ score_maps = F.interpolate(
+ score_maps.unsqueeze(0),
+ size=(score_maps.size(1) // 4, score_maps.size(2) // 4),
+ mode="bilinear",
+ align_corners=False,
+ )[0]
+ return score_maps
+
+
+def build_persformer_heads(cfg, input_shape):
+ persformer_name = cfg.MODEL.PERSFORMER_HEADS.NAME
+ if persformer_name == "StandardPersformerHeads":
+ return StandardPersformerHeads(cfg, input_shape)
+ # Add more conditions here for other decoders
+ else:
+ raise ValueError(f"Unknown arch name: {persformer_name}")
diff --git a/external/PerspectiveFields/perspective2d/perspectivefields.py b/external/PerspectiveFields/perspective2d/perspectivefields.py
new file mode 100644
index 0000000000000000000000000000000000000000..6af2fad4a8f07edc971508c7f0feaeda22bc2799
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/perspectivefields.py
@@ -0,0 +1,292 @@
+from importlib import resources
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from PIL import Image
+from torch import nn
+
+from .config import get_perspective2d_cfg_defaults
+from .modeling.backbone import build_backbone
+from .modeling.param_network import build_param_net
+from .modeling.persformer_heads import build_persformer_heads
+
+
+class ResizeTransform:
+ """
+ Resize the image to a target size.
+ """
+
+ def __init__(self, new_h, new_w, interp=None):
+ """
+ Args:
+ h, w (int): original image size
+ new_h, new_w (int): new image size
+ interp: PIL interpolation methods, defaults to bilinear.
+ """
+ if interp is None:
+ interp = Image.BILINEAR
+ self.new_h = new_h
+ self.new_w = new_w
+ self.interp = interp
+
+ def apply_image(self, img, interp=None):
+ assert len(img.shape) <= 4
+ interp_method = interp if interp is not None else self.interp
+
+ if img.dtype == np.uint8:
+ if len(img.shape) > 2 and img.shape[2] == 1:
+ pil_image = Image.fromarray(img[:, :, 0], mode="L")
+ else:
+ pil_image = Image.fromarray(img)
+ pil_image = pil_image.resize((self.new_w, self.new_h), interp_method)
+ ret = np.asarray(pil_image)
+ if len(img.shape) > 2 and img.shape[2] == 1:
+ ret = np.expand_dims(ret, -1)
+ else:
+ # PIL only supports uint8
+ if any(x < 0 for x in img.strides):
+ img = np.ascontiguousarray(img)
+ img = torch.from_numpy(img)
+ shape = list(img.shape)
+ shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:]
+ img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw
+ _PIL_RESIZE_TO_INTERPOLATE_MODE = {
+ Image.NEAREST: "nearest",
+ Image.BILINEAR: "bilinear",
+ Image.BICUBIC: "bicubic",
+ }
+ mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[interp_method]
+ align_corners = None if mode == "nearest" else False
+ img = F.interpolate(
+ img, (self.new_h, self.new_w), mode=mode, align_corners=align_corners
+ )
+ shape[:2] = (self.new_h, self.new_w)
+ ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c)
+ return ret
+
+
+class LowLevelEncoder(nn.Module):
+ def __init__(self, feat_dim=64, in_channel=3):
+ super().__init__()
+ self.conv1 = nn.Conv2d(
+ 3, feat_dim, kernel_size=7, stride=2, padding=3, bias=False
+ )
+ self.bn1 = nn.BatchNorm2d(feat_dim)
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = self.bn1(x)
+ x = self.relu(x)
+ return x
+
+
+model_zoo = {
+ "Paramnet-360Cities-edina-centered": {
+ "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpf.pth",
+ "config_file": "paramnet_360cities_edina_rpf.yaml",
+ "param": True,
+ "description": "Trained on 360cities and EDINA dataset. Assumes centered principal point. Predicts roll, pitch and fov.",
+ },
+ "Paramnet-360Cities-edina-uncentered": {
+ "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpfpp.pth",
+ "config_file": "paramnet_360cities_edina_rpfpp.yaml",
+ "param": True,
+ "description": "Trained on 360cities and EDINA dataset. Predicts roll, pitch, fov and principal point.",
+ },
+ "PersNet-360Cities": {
+ "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/cvpr2023.pth",
+ "config_file": "cvpr2023.yaml",
+ "param": False,
+ "description": "Trained on 360cities. Predicts perspective fields.",
+ },
+ "PersNet_Paramnet-GSV-uncentered": {
+ "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpfpp.pth",
+ "config_file": "paramnet_gsv_rpfpp.yaml",
+ "param": True,
+ "description": "Trained on GSV. Predicts roll, pitch, fov and principal point.",
+ },
+ # trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point
+ "PersNet_Paramnet-GSV-centered": {
+ "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpf.pth",
+ "config_file": "paramnet_gsv_rpf.yaml",
+ "param": True,
+ "description": "Trained on GSV. Assumes centered principal point. Predicts roll, pitch and fov.",
+ },
+}
+
+
+class PerspectiveFields(nn.Module):
+ def __init__(self, version="Paramnet-360Cities-edina-centered"):
+ super().__init__()
+ default_conf = get_perspective2d_cfg_defaults()
+ # To get the path
+ with resources.path(
+ "perspective2d.config", model_zoo[version]["config_file"]
+ ) as config_path:
+ default_conf.merge_from_file(str(config_path))
+ # default_conf.merge_from_file(model_zoo[version]['config_file'])
+ default_conf.freeze()
+ self.version = version
+ self.param_on = model_zoo[version]["param"]
+ self.cfg = cfg = default_conf
+ self.backbone = build_backbone(cfg)
+ self.ll_enc = LowLevelEncoder()
+ self.persformer_heads = build_persformer_heads(
+ cfg, self.backbone.output_shape()
+ )
+ self.param_net = (
+ build_param_net(cfg)
+ if cfg.MODEL.RECOVER_RPF or cfg.MODEL.RECOVER_PP
+ else None
+ )
+ self.register_buffer(
+ "pixel_mean", torch.tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1), False
+ )
+ self.register_buffer(
+ "pixel_std", torch.tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1), False
+ )
+ self.vis_period = cfg.VIS_PERIOD
+ self.freeze = cfg.MODEL.FREEZE
+ self.debug_on = cfg.DEBUG_ON
+ self.input_format = cfg.INPUT.FORMAT
+ self.aug = ResizeTransform(cfg.DATALOADER.RESIZE[0], cfg.DATALOADER.RESIZE[1])
+ for layers in self.freeze:
+ layer = layers.split(".")
+ final = self
+ for l in layer:
+ final = getattr(final, l)
+ for params in final.parameters():
+ params.requires_grad = False
+ self._init_weights()
+
+ @property
+ def device(self):
+ return self.pixel_mean.device
+
+ @staticmethod
+ def versions():
+ for key in model_zoo:
+ print(f"{key}")
+ print(f" - {model_zoo[key]['description']}")
+
+ def version(self):
+ return self.version
+
+ def _init_weights(self):
+ state_dict = None
+ # if self.version in model_zoo:
+ # state_dict = torch.hub.load_state_dict_from_url(
+ # model_zoo[self.version]["weights"],
+ # map_location=torch.device('cpu'),
+ # )
+ # self.load_state_dict(state_dict, strict=False)
+ # elif self.cfg.MODEL.WEIGHTS is not None:
+ # path = Path(__file__).parent
+ # path = path / "weights/{}.pth".format(self.cfg.MODEL.WEIGHTS)
+ # state_dict = torch.load(str(path), map_location="cpu")
+
+ # if state_dict:
+ # status = self.load_state_dict(state_dict["model"], strict=False)
+ if self.version in model_zoo:
+ # version 对应的本地权重路径,你自己维护一个映射
+ local_paths = {
+ # 根据你自己的版本名来填
+ "Paramnet-360Cities-edina-centered": "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields/paramnet_360cities_edina_rpf.pth",
+ # 其他 version 也可以在这里继续加
+ # "Paramnet-360Cities-edina-uncentered": "/path/to/xxx.pth",
+ }
+ ckpt_path = local_paths[self.version]
+ state_dict = torch.load(ckpt_path, map_location="cpu")
+ self.load_state_dict(state_dict, strict=False)
+
+ elif getattr(self, "cfg", None) is not None and getattr(self.cfg.MODEL, "WEIGHTS", None) is not None:
+ # 使用 cfg 中指定的本地权重
+ path = Path(__file__).parent / "weights" / f"{self.cfg.MODEL.WEIGHTS}.pth"
+ path = path.resolve()
+ assert path.exists(), f"Checkpoint not found: {path}"
+
+ state_dict = torch.load(str(path), map_location="cpu")
+ self.load_state_dict(state_dict, strict=False)
+
+ @torch.no_grad()
+ def inference(self, img_bgr):
+ original_image = img_bgr.copy()
+ if self.input_format == "RGB":
+ # whether the model expects BGR inputs or RGB
+ original_image = original_image[:, :, ::-1]
+ height, width = original_image.shape[:2]
+ image = self.aug.apply_image(original_image)
+ image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
+ inputs = {"image": image, "height": height, "width": width}
+ predictions = self.forward([inputs])[0]
+ return predictions
+
+ @torch.no_grad()
+ def inference_batch(self, img_bgr_list):
+ input_list = []
+ for img_bgr in img_bgr_list:
+ original_image = img_bgr.copy()
+ if self.input_format == "RGB":
+ # whether the model expects BGR inputs or RGB
+ original_image = original_image[:, :, ::-1]
+ height, width = original_image.shape[:2]
+ image = self.aug.apply_image(original_image)
+ image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1))
+ inputs = {"image": image, "height": height, "width": width}
+ input_list.append(inputs)
+ predictions = self.forward(input_list)
+ return predictions
+
+ def forward(self, batched_inputs) -> dict:
+ """
+ Forward pass of the PerspectiveFields model.
+
+ Args:
+ batched_inputs (list): A list of dictionaries containing the input data.
+
+ Returns:
+ dict: A dictionary containing the computed losses or processed results.
+
+ """
+ images = [x["image"].to(self.device) for x in batched_inputs]
+ images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+ images = torch.stack(images)
+ hl_features = self.backbone(images)
+ ll_features = self.ll_enc(images)
+ features = {
+ "hl": hl_features, # features from backbone
+ "ll": ll_features, # low level features
+ }
+
+ targets_dict = {}
+ if "gt_gravity" in batched_inputs[0]:
+ targets = [x["gt_gravity"].to(self.device) for x in batched_inputs]
+ targets = torch.stack(targets)
+ targets_dict["gt_gravity"] = targets
+
+ if "gt_latitude" in batched_inputs[0]:
+ targets = [x["gt_latitude"].to(self.device) for x in batched_inputs]
+ targets = torch.stack(targets)
+ targets_dict["gt_latitude"] = targets
+
+ results = self.persformer_heads.inference(features)
+ processed_results = self.persformer_heads.postprocess(
+ results, batched_inputs, images
+ )
+
+ if self.param_net is not None:
+ param = self.param_net(results, batched_inputs)
+ if "pred_general_vfov" not in param.keys():
+ param["pred_general_vfov"] = param["pred_vfov"]
+ if "pred_rel_cx" not in param.keys():
+ param["pred_rel_cx"] = torch.zeros_like(param["pred_vfov"])
+ if "pred_rel_cy" not in param.keys():
+ param["pred_rel_cy"] = torch.zeros_like(param["pred_vfov"])
+ assert len(processed_results) == len(param["pred_general_vfov"])
+ for i in range(len(processed_results)):
+ param_tmp = {k: v[i] for k, v in param.items()}
+ processed_results[i].update(param_tmp)
+ return processed_results
diff --git a/external/PerspectiveFields/perspective2d/utils/__init__.py b/external/PerspectiveFields/perspective2d/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..90f60fdd89ad8575faafe45188bd1d968852fc67
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/utils/__init__.py
@@ -0,0 +1 @@
+from .utils import *
\ No newline at end of file
diff --git a/external/PerspectiveFields/perspective2d/utils/config.py b/external/PerspectiveFields/perspective2d/utils/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..9428742aed54dd72ae9980d9b04cc29636b278c1
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/utils/config.py
@@ -0,0 +1,149 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates.
+
+import functools
+import inspect
+
+from omegaconf import DictConfig
+from yacs.config import CfgNode
+
+
+def configurable(init_func=None, *, from_config=None):
+ """
+ Decorate a function or a class's __init__ method so that it can be called
+ with a :class:`CfgNode` object using a :func:`from_config` function that translates
+ :class:`CfgNode` to arguments.
+
+ Examples:
+ ::
+ # Usage 1: Decorator on __init__:
+ class A:
+ @configurable
+ def __init__(self, a, b=2, c=3):
+ pass
+
+ @classmethod
+ def from_config(cls, cfg): # 'cfg' must be the first argument
+ # Returns kwargs to be passed to __init__
+ return {"a": cfg.A, "b": cfg.B}
+
+ a1 = A(a=1, b=2) # regular construction
+ a2 = A(cfg) # construct with a cfg
+ a3 = A(cfg, b=3, c=4) # construct with extra overwrite
+
+ # Usage 2: Decorator on any function. Needs an extra from_config argument:
+ @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B})
+ def a_func(a, b=2, c=3):
+ pass
+
+ a1 = a_func(a=1, b=2) # regular call
+ a2 = a_func(cfg) # call with a cfg
+ a3 = a_func(cfg, b=3, c=4) # call with extra overwrite
+
+ Args:
+ init_func (callable): a class's ``__init__`` method in usage 1. The
+ class must have a ``from_config`` classmethod which takes `cfg` as
+ the first argument.
+ from_config (callable): the from_config function in usage 2. It must take `cfg`
+ as its first argument.
+ """
+
+ if init_func is not None:
+ assert (
+ inspect.isfunction(init_func)
+ and from_config is None
+ and init_func.__name__ == "__init__"
+ ), "Incorrect use of @configurable. Check API documentation for examples."
+
+ @functools.wraps(init_func)
+ def wrapped(self, *args, **kwargs):
+ try:
+ from_config_func = type(self).from_config
+ except AttributeError as e:
+ raise AttributeError(
+ "Class with @configurable must have a 'from_config' classmethod."
+ ) from e
+ if not inspect.ismethod(from_config_func):
+ raise TypeError(
+ "Class with @configurable must have a 'from_config' classmethod."
+ )
+
+ if _called_with_cfg(*args, **kwargs):
+ explicit_args = _get_args_from_config(from_config_func, *args, **kwargs)
+ init_func(self, **explicit_args)
+ else:
+ init_func(self, *args, **kwargs)
+
+ return wrapped
+
+ else:
+ if from_config is None:
+ return configurable # @configurable() is made equivalent to @configurable
+ assert inspect.isfunction(
+ from_config
+ ), "from_config argument of configurable must be a function!"
+
+ def wrapper(orig_func):
+ @functools.wraps(orig_func)
+ def wrapped(*args, **kwargs):
+ if _called_with_cfg(*args, **kwargs):
+ explicit_args = _get_args_from_config(from_config, *args, **kwargs)
+ return orig_func(**explicit_args)
+ else:
+ return orig_func(*args, **kwargs)
+
+ wrapped.from_config = from_config
+ return wrapped
+
+ return wrapper
+
+
+def _get_args_from_config(from_config_func, *args, **kwargs):
+ """
+ Use `from_config` to obtain explicit arguments.
+
+ Returns:
+ dict: arguments to be used for cls.__init__
+ """
+ signature = inspect.signature(from_config_func)
+ if list(signature.parameters.keys())[0] != "cfg":
+ if inspect.isfunction(from_config_func):
+ name = from_config_func.__name__
+ else:
+ name = f"{from_config_func.__self__}.from_config"
+ raise TypeError(f"{name} must take 'cfg' as the first argument!")
+ support_var_arg = any(
+ param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD]
+ for param in signature.parameters.values()
+ )
+ if (
+ support_var_arg
+ ): # forward all arguments to from_config, if from_config accepts them
+ ret = from_config_func(*args, **kwargs)
+ else:
+ # forward supported arguments to from_config
+ supported_arg_names = set(signature.parameters.keys())
+ extra_kwargs = {}
+ for name in list(kwargs.keys()):
+ if name not in supported_arg_names:
+ extra_kwargs[name] = kwargs.pop(name)
+ ret = from_config_func(*args, **kwargs)
+ # forward the other arguments to __init__
+ ret.update(extra_kwargs)
+ return ret
+
+
+def _called_with_cfg(*args, **kwargs):
+ """
+ Returns:
+ bool: whether the arguments contain CfgNode and should be considered
+ forwarded to from_config.
+ """
+
+ if len(args) and isinstance(args[0], (CfgNode, DictConfig)):
+ return True
+ if isinstance(kwargs.pop("cfg", None), (CfgNode, DictConfig)):
+ return True
+ # `from_config`'s first argument is forced to be "cfg".
+ # So the above check covers all cases.
+ return False
diff --git a/external/PerspectiveFields/perspective2d/utils/panocam.py b/external/PerspectiveFields/perspective2d/utils/panocam.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9ca63c2a1596cb349500d185fa75c3c83b08458
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/utils/panocam.py
@@ -0,0 +1,832 @@
+import cv2
+import equilib
+import imageio
+import numpy as np
+from equilib import equi2pers
+from sklearn.preprocessing import normalize
+
+assert equilib.__version__ == "0.3.0"
+from typing import Union
+
+import torch
+from equilib import grid_sample
+from numpy.lib.scimath import sqrt as csqrt
+from PIL import Image
+from torchvision import transforms
+
+
+def diskradius(xi, f): # compute the disk radius when the image is catadioptric
+ return np.sqrt(-(f * f) / (1 - xi * xi))
+
+
+def create_rotation_matrix(
+ roll: float,
+ pitch: float,
+ yaw: float,
+) -> np.ndarray:
+ r"""Create rotation matrix from extrinsic parameters
+ Args:
+ roll (float): camera rotation about camera frame z-axis
+ pitch (float): camera rotation about camera frame x-axis
+ yaw (float): camera rotation about camera frame y-axis
+
+ Returns:
+ np.ndarray: rotation R_z @ R_x @ R_y
+ """
+ # calculate rotation about the x-axis
+ R_x = np.array(
+ [
+ [1.0, 0.0, 0.0],
+ [0.0, np.cos(pitch), np.sin(pitch)],
+ [0.0, -np.sin(pitch), np.cos(pitch)],
+ ]
+ )
+ # calculate rotation about the y-axis
+ R_y = np.array(
+ [
+ [np.cos(yaw), 0.0, -np.sin(yaw)],
+ [0.0, 1.0, 0.0],
+ [np.sin(yaw), 0.0, np.cos(yaw)],
+ ]
+ )
+ # calculate rotation about the z-axis
+ R_z = np.array(
+ [
+ [np.cos(roll), np.sin(roll), 0.0],
+ [-np.sin(roll), np.cos(roll), 0.0],
+ [0.0, 0.0, 1.0],
+ ]
+ )
+
+ return R_z @ R_x @ R_y
+
+
+def minfocal(u0, v0, xi, xref=1, yref=1):
+ """compute the minimum focal for the image to be catadioptric given xi"""
+ fmin = np.sqrt(
+ -(1 - xi * xi) * ((xref - u0) * (xref - u0) + (yref - v0) * (yref - v0))
+ )
+
+ return fmin * 1.0001
+
+
+def deg2rad(deg):
+ """convert degrees to radians"""
+ return deg * np.pi / 180
+
+
+def preprocess(
+ img: Union[np.ndarray, Image.Image],
+ is_cv2: bool = False,
+) -> torch.Tensor:
+ """Convert img to tensor"""
+ if isinstance(img, np.ndarray) and is_cv2:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ if isinstance(img, Image.Image):
+ # Sometimes images are RGBA
+ img = img.convert("RGB")
+
+ to_tensor = transforms.Compose(
+ [
+ transforms.ToTensor(),
+ ]
+ )
+ img = to_tensor(img)
+ assert len(img.shape) == 3, "input must be dim=3"
+ assert img.shape[0] == 3, "input must be HWC"
+ return img
+
+
+def postprocess(
+ img: torch.Tensor,
+ to_cv2: bool = False,
+) -> Union[np.ndarray, Image.Image]:
+ """Convert img from tensor to image format"""
+ if to_cv2:
+ img = np.asarray(img.to("cpu").numpy() * 255, dtype=np.uint8)
+ img = np.transpose(img, (1, 2, 0))
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
+ return img
+ else:
+ to_PIL = transforms.Compose(
+ [
+ transforms.ToPILImage(),
+ ]
+ )
+ img = img.to("cpu")
+ img = to_PIL(img)
+ return img
+
+
+class PanoCam:
+ def __init__(self, pano_path, device="cpu"):
+ """initialize PanoCam model
+
+ Args:
+ pano_path (str): path to panorama image
+ device (str, optional): type of device used to execute instructions. Defaults to "cpu".
+ """
+ self.pano_path = pano_path
+ self.device = device
+
+ def get_image(
+ self,
+ vfov=85,
+ im_w=640,
+ im_h=480,
+ azimuth=0,
+ elevation=30,
+ roll=0,
+ ar=4.0 / 3.0,
+ img_format="RGB",
+ ):
+ """
+ Crop a perspective image from an equirectangular image with specified camera parameters
+ camera frame: x right, y down, z out.
+ image frame: u right, v down, origin at top left
+
+ Args:
+ vfov (float): vertical field of view of cropped image (degrees)
+ im_w (int): width of cropped image
+ im_h (int): height of cropped image
+ azimuth (float): camera rotation about camera frame y-axis of cropped image (degrees)
+ elevation (float): camera rotation about camera frame x-axis of cropped image (degrees)
+ roll (float): camera rotation about camera frame z-axis of cropped image (degrees)
+ ar (float): aspect ratio of cropped image
+ img_format (str): format to return image
+
+ Returns:
+ crop (np.ndarray): Cropped perspective image
+ horizon (float, float): fraction of image left/right border intersection with respect to image height
+ vvp (float, float, float): Vertical Vanishing Point, which is the vanishing point for the vertical lines. absvvp is in pixels, vvp is normalized by the image size.
+ """
+ equi_img = Image.open(self.pano_path)
+ equi_img = preprocess(equi_img).to(self.device)
+ fov_x = float(
+ 2 * np.arctan(np.tan(vfov * np.pi / 180.0 / 2) * ar) * 180 / np.pi
+ )
+
+ # Switch to https://github.com/haruishi43/equilib#coordinate-system
+ rot = {
+ "roll": float(roll / 180 * np.pi),
+ "pitch": -float(elevation / 180 * np.pi), # rotate vertical
+ "yaw": -float(azimuth / 180 * np.pi), # rotate horizontal
+ }
+ # Run equi2pers
+ crop = equi2pers(
+ equi=equi_img,
+ rot=rot,
+ w_pers=im_w,
+ h_pers=im_h,
+ fov_x=fov_x,
+ skew=0.0,
+ sampling_method="default",
+ mode="bilinear",
+ )
+ crop = postprocess(crop, to_cv2=img_format == "BGR")
+
+ horizon = self.getRelativeHorizonLineFromAngles(
+ elevation / 180 * np.pi, roll / 180 * np.pi, vfov / 180 * np.pi, im_h, im_w
+ )
+ vvp = self.getRelativeVVP(
+ elevation / 180 * np.pi, roll / 180 * np.pi, vfov / 180 * np.pi, im_h, im_w
+ )
+ return crop, horizon, vvp
+
+ @staticmethod
+ def crop_equi(equi_img, vfov, im_w, im_h, azimuth, elevation, roll, ar, mode):
+ """
+ Crop a perspective image from an equirectangular image with specified camera parameters
+ camera frame: x right, y down, z out.
+ image frame: u right, v down, origin at top left
+
+ Args:
+ equi_img (np.ndarray): equirectangular image
+ vfov (float): vertical field of view of cropped image (degrees)
+ im_w (int): width of cropped image
+ im_h (int): height of cropped image
+ azimuth (float): camera rotation about camera frame y-axis of cropped image (degrees)
+ elevation (float): camera rotation about camera frame x-axis of cropped image (degrees)
+ roll (float): camera rotation about camera frame z-axis of cropped image (degrees)
+ ar (float): aspect ratio od cropped image
+ mode (str): sampling mode for grid sample
+ Returns:
+ crop (np.ndarray): Cropped perspective image
+ """
+ fov_x = float(
+ 2 * np.arctan(np.tan(vfov * np.pi / 180.0 / 2) * ar) * 180 / np.pi
+ )
+
+ # Switch to https://github.com/haruishi43/equilib#coordinate-system
+ rot = {
+ "roll": float(roll / 180 * np.pi),
+ "pitch": -float(elevation / 180 * np.pi), # rotate vertical
+ "yaw": -float(azimuth / 180 * np.pi), # rotate horizontal
+ }
+ # Preprocess
+ if len(equi_img.shape) == 3:
+ equi_img_processed = equi_img.transpose(2, 0, 1)
+ else:
+ equi_img_processed = equi_img[None, :, :]
+ equi_img_processed = torch.FloatTensor(equi_img_processed)
+
+ # Run equi2pers
+ crop = equi2pers(
+ equi=equi_img_processed,
+ rot=rot,
+ w_pers=im_w,
+ h_pers=im_h,
+ fov_x=fov_x,
+ skew=0.0,
+ sampling_method="default",
+ mode=mode,
+ )
+ if len(crop.shape) > 2:
+ crop = np.asarray(crop.to("cpu").numpy(), dtype=equi_img.dtype)
+ crop = np.transpose(crop, (1, 2, 0))
+ else:
+ crop = np.asarray(crop.to("cpu").numpy(), dtype=equi_img.dtype)
+ return crop
+
+ @staticmethod
+ def getGravityField(im_h, im_w, absvvp):
+ """
+ Retrieve gravity field from absolute vertical vanishing point
+
+ Args:
+ im_h (int): image height
+ im_w (int): image width
+ absvvp ([float, float, float]): Absolute vertical vanishing point in image frame (top left corner as 0)
+
+ Returns:
+ np.ndarray: gravity field of shape (im_h, im_w, 2)
+ """
+ assert not np.isinf(absvvp).any()
+ # arrow
+ gridx, gridy = np.meshgrid(
+ np.arange(0, im_w),
+ np.arange(0, im_h),
+ )
+ start = np.stack((gridx.reshape(-1), gridy.reshape(-1))).T
+ arrow = normalize(absvvp[:2] - start) * absvvp[2]
+ arrow_map = arrow.reshape(im_h, im_w, 2)
+ return arrow_map
+
+ @staticmethod
+ def getAbsVVP(im_h, im_w, horizon, vvp):
+ """get absolute vertical vanishing point from horizon line and relative vertical vanishing point
+
+ Args:
+ im_h (int): image height
+ im_w (int): image width
+ horizon ([float, float]): fraction of image left/right border intersection with respect to image height
+ vvp ([float, float, {-1, 1}]): relative vertical vanishing point, defined as vertical vanishing point divided by image height
+ Returns:
+ vvp_abs ([float, float, float]): absolute vertical vanishing point in image frame (top left corner as 0),
+ vvp_abs[2] in {-1, 1} depending on if it is south or north pole, or if the up vectors are pointing towards (+1) or away (-1) from it.
+ """
+ if not np.isinf(vvp).any():
+ # VVP
+ vvp_abs = np.array([vvp[0] * im_w, vvp[1] * im_h])
+ return np.array([vvp_abs[0], vvp_abs[1], vvp[2]])
+ else:
+ # approximate
+ vvp_abs = (
+ 1e8
+ * normalize(np.array([[im_h * (horizon[1] - horizon[0]), -im_w]]))[0]
+ )
+ return np.array(
+ [vvp_abs[0] + 0.5 * im_w - 0.5, vvp_abs[1] + 0.5 * im_h - 0.5, 1]
+ )
+
+ @staticmethod
+ def getRelativeVVP(elevation, roll, vfov, im_h, im_w):
+ """Relative vertical vanishing point in image frame (top left corner as 0)
+ Defined as vertical vanishing point divided by image height
+
+ Args:
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): camera rotation about camera frame z-axis (radians)
+ vfov (float): vertical field of view (radians)
+ im_h (int): image height
+ im_w (int): image width
+
+ Returns:
+ vvp[0] (float): x coordinate of vertical vanishing point, divided by image height.
+ vvp[1] (float): y coordinate of vertical vanishing point, divided by image height.
+ vvp[2] {-1, 1}: whether the up vectors are pointing towards (+1) or away (-1) from the vertical vanishing point.
+
+ """
+ if elevation == 0:
+ return (
+ np.inf,
+ np.inf,
+ )
+ vx = (
+ 0.5
+ - 0.5 / im_w
+ - 0.5 * np.sin(roll) / np.tan(elevation) / np.tan(vfov / 2) * im_h / im_w
+ )
+ vy = (
+ 0.5 - 0.5 / im_h - 0.5 * np.cos(roll) / np.tan(elevation) / np.tan(vfov / 2)
+ )
+ return vx, vy, np.sign(elevation)
+
+ @staticmethod
+ def getRelativeHorizonLineFromAngles(elevation, roll, vfov, im_h, im_w):
+ """Get relative horizon line from camera parameters
+
+ Args:
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): camera rotation about camera frame z-axis (radians)
+ vfov (float): vertical field of view (radians)
+ im_h (int): image height
+ im_w (int): image width
+
+ Returns:
+ (float, float): in image frame, fraction of image left/right border intersection with respect to image height
+ """
+ midpoint = PanoCam.getMidpointFromAngle(elevation, roll, vfov)
+ dh = PanoCam.getDeltaHeightFromRoll(roll, im_h, im_w)
+ return midpoint - dh, midpoint + dh
+
+ @staticmethod
+ def getMidpointFromAngle(elevation, roll, vfov):
+ """get midpoint of the horizon line from roll, pitch, and vertical field of view
+
+ Args:
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): camera rotation about camera frame z-axis (radians)
+ vfov (float): vertical field of view (radians)
+
+ Returns:
+ float: location of the midpoint of the horizon line with respect to the image height
+ """
+ if elevation == np.pi / 2 or elevation == -np.pi / 2:
+ return np.inf * np.sign(elevation)
+ return 0.5 + 0.5 * np.tan(elevation) / np.cos(roll) / np.tan(vfov / 2)
+
+ @staticmethod
+ def getDeltaHeightFromRoll(roll, im_h, im_w):
+ """
+ Args:
+ roll (float): camera rotation about camera frame z-axis (radians)
+ im_h (int): image height
+ im_w (int): image width
+
+ Returns:
+ float: the height distance of horizon from the midpoint at image left/right border intersection.
+ """
+ if roll == np.pi / 2 or roll == -np.pi / 2:
+ return np.inf * np.sign(roll)
+ return -im_w / im_h * np.tan(roll) / 2
+
+ @staticmethod
+ def get_lat(vfov, im_w, im_h, elevation, roll):
+ """get latitude map from camera parameters
+
+ Args:
+ vfov (float): vertical field of view (radians)
+ im_w (int): image width
+ im_h (int): image height
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): camera rotation aboout camera frame z-axis (radians)
+
+ Returns:
+ np.ndarray: latitude map of shape (im_h, im_w) in degrees
+ """
+ focal_length = im_h / 2 / np.tan(vfov / 2)
+
+ # Uniform sampling on the plane
+ dy = np.linspace(-im_h / 2, im_h / 2, im_h)
+ dx = np.linspace(-im_w / 2, im_w / 2, im_w)
+ x, y = np.meshgrid(dx, dy)
+
+ x, y = x.ravel() / focal_length, y.ravel() / focal_length
+ focal_length = 1
+ x_world = x * np.cos(roll) - y * np.sin(roll)
+ y_world = (
+ x * np.cos(elevation) * np.sin(roll)
+ + y * np.cos(elevation) * np.cos(roll)
+ - focal_length * np.sin(elevation)
+ )
+ z_world = (
+ x * np.sin(elevation) * np.sin(roll)
+ + y * np.sin(elevation) * np.cos(roll)
+ + focal_length * np.cos(elevation)
+ )
+ l = -np.arctan2(y_world, np.sqrt(x_world**2 + z_world**2)) / np.pi * 180
+
+ return l.reshape(im_h, im_w)
+
+ @staticmethod
+ def get_up(vfov, im_w, im_h, elevation, roll):
+ """get gravity field from camera parameters
+
+ Args:
+ vfov (float): vertical field of view (radians)
+ im_w (int): image width
+ im_h (int): image height
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): camera rotation rotation aboout camera frame z-axis (radians)
+
+ Returns:
+ np.ndarray: gravity field of shape (im_h, im_w, 2)
+ """
+ horizon = PanoCam.getRelativeHorizonLineFromAngles(
+ elevation=elevation, roll=roll, vfov=vfov, im_h=im_h, im_w=im_w
+ )
+ vvp = PanoCam.getRelativeVVP(
+ elevation=elevation, roll=roll, vfov=vfov, im_h=im_h, im_w=im_w
+ )
+ absvvp = PanoCam.getAbsVVP(im_h=im_h, im_w=im_w, horizon=horizon, vvp=vvp)
+
+ gridx, gridy = np.meshgrid(np.arange(0, im_w), np.arange(0, im_h))
+ start = np.stack((gridx.reshape(-1), gridy.reshape(-1))).T
+ arrow = normalize(absvvp[:2] - start) * absvvp[2]
+ gt_up = arrow.reshape(im_h, im_w, 2)
+ return gt_up
+
+ @staticmethod
+ def get_up_general(focal_rel, im_w, im_h, elevation, roll, cx_rel, cy_rel):
+ """get gravity field from camera parameters.
+ no assumptions about centered principal point.
+
+ Args:
+ focal_rel (float): relative focal length, defined as focal length divided by image height
+ im_w (int): image width
+ im_h (int): image height
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): rotation aboout z-axis (radians)
+ cx_rel (float): relative cx location (pixel coordinate / image width - 0.5)
+ cy_rel (float): relative cy location (pixel coordinate / image height - 0.5)
+
+ Returns:
+ np.ndarray: gravity field of shape (im_h, im_w, 2)
+ """
+ cx = (cx_rel + 0.5) * im_w
+ cy = (cy_rel + 0.5) * im_h
+ X = (
+ np.linspace((-0.5 * im_w) + 0.5, (0.5 * im_w) - 0.5, im_w)
+ .reshape(1, im_w)
+ .repeat(im_h, 0)
+ .astype(np.float32)
+ + 0.5 * im_w
+ )
+ Y = (
+ np.linspace((-0.5 * im_h) + 0.5, (0.5 * im_h) - 0.5, im_h)
+ .reshape(im_h, 1)
+ .repeat(im_w, 1)
+ .astype(np.float32)
+ + 0.5 * im_h
+ )
+ xy_cam = np.stack([X, Y], axis=2)
+ focal_length = focal_rel * im_h
+
+ if elevation == 0:
+ up_vecs = np.ones(xy_cam.shape) * np.array(
+ [[-np.sin(roll)], [-np.cos(roll)]]
+ ).reshape((1, 2))
+ else:
+ vvp = np.array(
+ [
+ [
+ (np.sin(roll) * np.cos(elevation) * focal_length)
+ / -np.sin(elevation)
+ + (cx)
+ ],
+ [
+ (np.cos(roll) * np.cos(elevation) * focal_length)
+ / -np.sin(elevation)
+ + (cy)
+ ],
+ ]
+ ).reshape((1, 2))
+ up_vecs = vvp - xy_cam
+ up_vecs = up_vecs * np.sign(elevation)
+
+ up_vecs_norm = np.linalg.norm(up_vecs, axis=2)[:, :, None]
+ up_vecs = up_vecs / up_vecs_norm
+ return up_vecs
+
+ @staticmethod
+ def get_lat_general(focal_rel, im_w, im_h, elevation, roll, cx_rel, cy_rel):
+ """get latitude map from camera parameters.
+ no assumptions about centered principal point.
+
+ Args:
+ focal_rel (float): relative focal length, defined as focal length divided by image height
+ im_w (int): image width
+ im_h (int): image height
+ elevation (float): camera rotation about camera frame x-axis (radians)
+ roll (float): rotation aboout z-axis (radians)
+ cx_rel (float): relative cx location (pixel coordinate / image width - 0.5)
+ cy_rel (float): relative cy location (pixel coordinate / image height - 0.5)
+
+ Returns:
+ np.ndarray: latitude map of shape (im_h, im_w) in degrees
+ """
+ # Uniform sampling on the plane
+ focal_length = focal_rel * im_h
+ cx = (cx_rel + 0.5) * im_w
+ cy = (cy_rel + 0.5) * im_h
+ dy = np.linspace(
+ (-im_h / 2) - (cy - (im_h / 2)), (im_h / 2) - (cy - (im_h / 2)), im_h
+ )
+ dx = np.linspace(
+ (-im_w / 2) - (cx - (im_w / 2)), (im_w / 2) - (cx - (im_w / 2)), im_w
+ )
+ x, y = np.meshgrid(dx, dy)
+
+ x, y = (x.ravel() / focal_length), (y.ravel() / focal_length)
+ focal_length = 1
+ x_world = x * np.cos(roll) - y * np.sin(roll)
+ y_world = (
+ x * np.cos(elevation) * np.sin(roll)
+ + y * np.cos(elevation) * np.cos(roll)
+ - focal_length * np.sin(elevation)
+ )
+ z_world = (
+ x * np.sin(elevation) * np.sin(roll)
+ + y * np.sin(elevation) * np.cos(roll)
+ + focal_length * np.cos(elevation)
+ )
+ l = -np.arctan2(y_world, np.sqrt(x_world**2 + z_world**2)) / np.pi * 180
+
+ return l.reshape(im_h, im_w)
+
+ @staticmethod
+ def crop_distortion(image360_path, f, xi, H, W, az, el, roll):
+ """
+ Reference: https://github.com/dompm/spherical-distortion-dataset/blob/main/spherical_distortion/spherical_distortion.py
+ Crop distorted image with specified camera parameters
+
+ Args:
+ image360_path (str): path to image which to crop from
+ f (float): focal_length of cropped image
+ xi:
+ H (int): height of cropped image
+ W (int): width of cropped image
+ az: camera rotation about camera frame y-axis of cropped image (degrees)
+ el: camera rotation about camera frame x-axis of cropped image (degrees)
+ roll: camera rotation about camera frame z-axis of cropped image (degrees)
+ Returns:
+ im (np.ndarray): cropped, distorted image
+ """
+
+ u0 = W / 2.0
+ v0 = H / 2.0
+
+ grid_x, grid_y = np.meshgrid(list(range(W)), list(range(H)))
+
+ if isinstance(image360_path, str):
+ image360 = imageio.imread(image360_path) # .astype('float32') / 255.
+ else:
+ image360 = image360_path.copy()
+
+ ImPano_W = np.shape(image360)[1]
+ ImPano_H = np.shape(image360)[0]
+ x_ref = 1
+ y_ref = 1
+
+ fmin = minfocal(
+ u0, v0, xi, x_ref, y_ref
+ ) # compute minimal focal length for the image to ve catadioptric with given xi
+
+ # 1. Projection on the camera plane
+
+ X_Cam = np.divide(grid_x - u0, f)
+ Y_Cam = -np.divide(grid_y - v0, f)
+
+ # 2. Projection on the sphere
+
+ AuxVal = np.multiply(X_Cam, X_Cam) + np.multiply(Y_Cam, Y_Cam)
+
+ alpha_cam = np.real(xi + csqrt(1 + np.multiply((1 - xi * xi), AuxVal)))
+
+ alpha_div = AuxVal + 1
+
+ alpha_cam_div = np.divide(alpha_cam, alpha_div)
+
+ X_Sph = np.multiply(X_Cam, alpha_cam_div)
+ Y_Sph = np.multiply(Y_Cam, alpha_cam_div)
+ Z_Sph = alpha_cam_div - xi
+
+ # 3. Rotation of the sphere
+ coords = np.vstack((X_Sph.ravel(), Y_Sph.ravel(), Z_Sph.ravel()))
+ rot_el = np.array(
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ np.cos(deg2rad(el)),
+ -np.sin(deg2rad(el)),
+ 0.0,
+ np.sin(deg2rad(el)),
+ np.cos(deg2rad(el)),
+ ]
+ ).reshape((3, 3))
+ rot_az = np.array(
+ [
+ np.cos(deg2rad(az)),
+ 0.0,
+ np.sin(deg2rad(az)),
+ 0.0,
+ 1.0,
+ 0.0,
+ -np.sin(deg2rad(az)),
+ 0.0,
+ np.cos(deg2rad(az)),
+ ]
+ ).reshape((3, 3))
+ rot_roll = np.array(
+ [
+ np.cos(deg2rad(roll)),
+ -np.sin(deg2rad(roll)),
+ 0.0,
+ np.sin(deg2rad(roll)),
+ np.cos(deg2rad(roll)),
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ ]
+ ).reshape((3, 3))
+ sph = rot_roll.T.dot(rot_el.dot(coords))
+ sph = rot_az.dot(sph)
+
+ sph = sph.reshape((3, H, W)).transpose((1, 2, 0))
+ X_Sph, Y_Sph, Z_Sph = sph[:, :, 0], sph[:, :, 1], sph[:, :, 2]
+
+ # 4. cart 2 sph
+ ntheta = np.arctan2(X_Sph, Z_Sph)
+ nphi = np.arctan2(Y_Sph, np.sqrt(Z_Sph**2 + X_Sph**2))
+
+ pi = np.pi
+
+ # 5. Sphere to pano
+ min_theta = -pi
+ max_theta = pi
+ min_phi = -pi / 2.0
+ max_phi = pi / 2.0
+
+ min_x = 0
+ max_x = ImPano_W - 1.0
+ min_y = 0
+ max_y = ImPano_H - 1.0
+
+ ## for x
+ a = (max_theta - min_theta) / (max_x - min_x)
+ b = max_theta - a * max_x # from y=ax+b %% -a;
+ nx = (1.0 / a) * (ntheta - b)
+
+ ## for y
+ a = (min_phi - max_phi) / (max_y - min_y)
+ b = max_phi - a * min_y # from y=ax+b %% -a;
+ ny = (1.0 / a) * (nphi - b)
+ lat = nphi.copy()
+ xy_map = np.stack((nx, ny)).transpose(1, 2, 0)
+
+ # 6. Final step interpolation and mapping
+ # im = np.array(my_interpol.interp2linear(image360, nx, ny), dtype=np.uint8)
+ im = grid_sample.numpy_grid_sample.default(
+ image360.transpose(2, 0, 1), np.stack((ny, nx))
+ ).transpose(1, 2, 0)
+ if (
+ f < fmin
+ ): # if it is a catadioptric image, apply mask and a disk in the middle
+ r = diskradius(xi, f)
+ DIM = im.shape
+ ci = (np.round(DIM[0] / 2), np.round(DIM[1] / 2))
+ xx, yy = np.meshgrid(
+ list(range(DIM[0])) - ci[0], list(range(DIM[1])) - ci[1]
+ )
+ mask = np.double((np.multiply(xx, xx) + np.multiply(yy, yy)) < r * r)
+ mask_3channel = np.stack([mask, mask, mask], axis=-1).transpose((1, 0, 2))
+ im = np.array(np.multiply(im, mask_3channel), dtype=np.uint8)
+
+ col = nphi[:, W // 2]
+ zero_crossings_rows = np.where(np.diff(np.sign(col)))[0]
+ if len(zero_crossings_rows) >= 2:
+ print("WARNING | Number of zero crossings:", len(zero_crossings_rows))
+ zero_crossings_rows = [zero_crossings_rows[0]]
+
+ if len(zero_crossings_rows) == 0:
+ offset = np.nan
+ else:
+ assert col[zero_crossings_rows[0]] >= 0
+ assert col[zero_crossings_rows[0] + 1] <= 0
+ dy = col[zero_crossings_rows[0] + 1] - col[zero_crossings_rows[0]]
+ offset = zero_crossings_rows[0] - col[zero_crossings_rows[0]] / dy
+ assert col[zero_crossings_rows[0]] / dy <= 1.0
+ # Reproject [nx, ny+epsilon] back
+ epsilon = 1e-5
+ end_vector_x = nx.copy()
+ end_vector_y = ny.copy() - epsilon
+ # -5. pano to Sphere
+ a = (max_theta - min_theta) / (max_x - min_x)
+ b = max_theta - a * max_x # from y=ax+b %% -a;
+ ntheta_end = end_vector_x * a + b
+ ## for y
+ a = (min_phi - max_phi) / (max_y - min_y)
+ b = max_phi - a * min_y
+ nphi_end = end_vector_y * a + b
+ # -4. sph 2 cart
+ Y_Sph = np.sin(nphi)
+ X_Sph = np.cos(nphi_end) * np.sin(ntheta_end)
+ Z_Sph = np.cos(nphi_end) * np.cos(ntheta_end)
+ # -3. Reverse Rotation of the sphere
+ coords = np.vstack((X_Sph.ravel(), Y_Sph.ravel(), Z_Sph.ravel()))
+ sph = rot_el.T.dot(rot_roll.dot(rot_az.T.dot(coords)))
+ sph = sph.reshape((3, H, W)).transpose((1, 2, 0))
+ X_Sph, Y_Sph, Z_Sph = sph[:, :, 0], sph[:, :, 1], sph[:, :, 2]
+
+ # -1. Projection on the image plane
+
+ X_Cam = X_Sph * f / (xi * csqrt(X_Sph**2 + Y_Sph**2 + Z_Sph**2) + Z_Sph) + u0
+ Y_Cam = -Y_Sph * f / (xi * csqrt(X_Sph**2 + Y_Sph**2 + Z_Sph**2) + Z_Sph) + v0
+ up = np.stack((X_Cam - grid_x, Y_Cam - grid_y)).transpose(1, 2, 0)
+ up = normalize(up.reshape(-1, 2)).reshape(up.shape)
+
+ return im, ntheta, nphi, offset, up, lat, xy_map
+
+
+def draw_vanishing_opencv(
+ img, horizon, vvp, pad=(1, 1), elevation=0, roll=0, azimuth=0, vfov=30
+):
+ if img.dtype == "uint8":
+ img = img.astype(float) / 255
+ im_h, im_w, im_c = img.shape
+ canvas = np.ones((im_h * (pad[0] * 2 + 1), im_w * (pad[1] * 2 + 1), im_c))
+ offset_h = pad[0] * im_h
+ offset_w = pad[1] * im_w
+ canvas[offset_h : offset_h + im_h, offset_w : offset_w + im_w, :] = img
+
+ # Horizon
+ if not np.isinf(horizon).any():
+ cv2.line(
+ canvas,
+ (int(offset_w), int(offset_h + horizon[0] * im_h)),
+ (int(offset_w + im_w), int(offset_h + horizon[1] * im_h)),
+ (1, 0, 0),
+ 3,
+ )
+
+ if not np.isinf(vvp).any():
+ # VVP
+ vvp_abs = np.array([vvp[0] * im_w + offset_w, vvp[1] * im_h + offset_h])
+ cv2.circle(canvas, (int(vvp_abs[0]), int(vvp_abs[1])), 5, (1, 0, 0), -1)
+
+ # arrow
+ gridx, gridy = np.meshgrid(
+ np.arange(offset_w, offset_w + im_w + 20, 20),
+ np.arange(offset_h, offset_h + im_h + 20, 20),
+ )
+
+ start = np.stack((gridx.reshape(-1), gridy.reshape(-1))).T
+
+ if not np.isinf(vvp).any():
+ arrow = normalize(vvp_abs - start) * vvp[2] * 30
+ else:
+ arrow = normalize(np.array([[im_h * (horizon[1] - horizon[0]), -im_w]])) * 30
+ end = start + arrow
+
+ start = start.astype(int)
+ end = end.astype(int)
+ for i in range(len(start)):
+ cv2.arrowedLine(canvas, start[i], end[i], (0, 1, 0), thickness=1, tipLength=0.1)
+
+ canvas = (255 * canvas).astype(np.uint8)
+ # canvas = cv2.cvtColor(canvas, cv2.COLOR_BGR2BGR)
+ # cv2.imwrite(os.path.join(save_path, prefix+'.png'), canvas)
+ return canvas
+
+
+def blend_color(img, color, alpha=0.2):
+ if img.dtype == "uint8":
+ foreground = img[:, :, :3]
+ else:
+ foreground = img[:, :, :3] * 255
+
+ if color.dtype == "uint8":
+ background = color[:, :, :3]
+ else:
+ background = color[:, :, :3] * 255
+
+ alpha = np.ones_like(foreground) * alpha
+ # Convert uint8 to float
+ foreground = foreground.astype(float)
+ background = background.astype(float)
+
+ # Multiply the foreground with the alpha matte
+ foreground = cv2.multiply(alpha, foreground)
+
+ # Multiply the background with ( 1 - alpha )
+ background = cv2.multiply(1.0 - alpha, background)
+
+ # Add the masked foreground and background.
+ outImage = cv2.add(foreground, background)
+
+ outImage = outImage.astype(np.uint8)
+ return outImage
diff --git a/external/PerspectiveFields/perspective2d/utils/utils.py b/external/PerspectiveFields/perspective2d/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..35857f009cb56ddb82791ad6f13d63a4f0250109
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/utils/utils.py
@@ -0,0 +1,507 @@
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import scipy.optimize
+import torch
+import torch.nn.functional as F
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+
+from .panocam import PanoCam
+from .visualizer import VisualizerPerspective
+
+
+def general_vfov(d_cx, d_cy, h, focal, degree):
+ """
+ Calculate the general vertical field of view (gvfov) given the camera intrinsic parameters.
+
+ The general vertical field of view (gvfov) is a concept employed to define the field of view (FoV) for images that may be cropped or have an off-center principal point.
+
+ The gfov is defined as follows:
+ Consider the camera's pinhole as 'O'. Let 'M1' and 'M2' represent the midpoints of the top and bottom edges of the image, respectively.
+ The gfov is defined as the angle subtended by the lines OM1 and OM2 at 'O'.
+
+ This function can handle parameters given in two ways:
+ 1. Relative to the image height: In this case, h should be 1, and d_cx, d_cy, and focal should be normalized by the image height.
+ 2. Absolute pixel values: In this case, h should be the image height in pixels, and d_cx, d_cy, and focal should be provided in pixels.
+
+ Args:
+ d_cx (float): Horizontal offset of the principal point (cx) from the image center.
+ d_cy (float): Vertical offset of the principal point (cy) from the image center.
+ h (float): Image height, either relative (1) or in absolute pixel values.
+ focal (float): Focal length of the camera, either relative to the image height or in absolute pixel values.
+ degree (bool): Indicator for the FoV return unit. If True, FoV is returned in degrees. If False, it's returned in radians.
+
+ Returns:
+ float: General vertical field of view (FoV), computed based on the provided parameters and returned in either degrees or radians, depending on the 'degree' parameter.
+ """
+ p_sqr = focal**2 + d_cx**2 + (d_cy + 0.5 * h) ** 2
+ q_sqr = focal**2 + d_cx**2 + (d_cy - 0.5 * h) ** 2
+ cos_FoV = (p_sqr + q_sqr - h**2) / 2 / np.sqrt(p_sqr) / np.sqrt(q_sqr)
+ FoV_rad = np.arccos(cos_FoV)
+ if degree:
+ return np.degrees(FoV_rad)
+ else:
+ return FoV_rad
+
+
+def general_vfov_to_focal(rel_cx, rel_cy, h, gvfov, degree):
+ """
+ Converts a given general vertical field of view (gvfov) to the equivalent focal length.
+
+ The general vertical field of view (gvfov) is a concept employed to define the field of view (FoV) for images that may be cropped or have an off-center principal point.
+
+ The gfov is defined as follows:
+ Consider the camera's pinhole as 'O'. Let 'M1' and 'M2' represent the midpoints of the top and bottom edges of the image, respectively.
+ The gfov is defined as the angle subtended by the lines OM1 and OM2 at 'O'.
+
+ This function accepts parameters in either relative terms or absolute pixel values:
+ 1. Relative to the image height: In this case, h should be 1, and d_cx, d_cy should be normalized by the image height.
+ 2. Absolute pixel values: In this case, h should be the image height in pixels, and d_cx, d_cy should be provided in pixels.
+
+ Args:
+ rel_cx (float): Horizontal offset of the principal point (cx) from the image center.
+ It's in absolute terms if h is set to image height, else it's relative (cx coordinate / image width - 0.5).
+ rel_cy (float): Vertical offset of the principal point (cy) from the image center.
+ It's in absolute terms if h is set to image height, else it's relative (cy coordinate / image height - 0.5).
+ h (float): Image height, either in relative terms (set as 1) or as absolute pixel values.
+ gvfov (float): General vertical field of view. It's in degrees if degree is set to True, else it's in radians.
+ degree (bool): Indicator for the gvfov unit. If True, gvfov is assumed to be in degrees. If False, it's in radians.
+
+ Returns:
+ float: Focal length, derived from the input gvfov and the principal point offsets (rel_cx, rel_cy).
+ It is relative to the image height if h is set to 1, else it's an absolute value (in pixels).
+ """
+
+ def fun(focal, *args):
+ h, d_cx, d_cy, target_cos_FoV = args
+
+ p_sqr = (focal / h) ** 2 + d_cx**2 + (d_cy + 0.5) ** 2
+ q_sqr = (focal / h) ** 2 + d_cx**2 + (d_cy - 0.5) ** 2
+ cos_FoV = (p_sqr + q_sqr - 1) / 2 / np.sqrt(p_sqr) / np.sqrt(q_sqr)
+ return cos_FoV - target_cos_FoV
+ if degree:
+ gvfov = np.radians(gvfov)
+ if type(rel_cx) != np.ndarray:
+ # if input is float
+ focal = scipy.optimize.fsolve(fun, 1.5, args=(h, rel_cx, rel_cy, np.cos(gvfov)))[0]
+ else:
+ # if input is numpy array
+ focal = scipy.optimize.fsolve(fun, np.ones(len(rel_cx)) * 1.5, args=(h, rel_cx, rel_cy, np.cos(gvfov)))
+ focal = np.abs(focal)
+ return focal
+
+
+def encode_bin(vector_field, num_bin):
+ """encode vector field into classification bins
+
+ Args:
+ vector_field (np.ndarray): gravity field of shape (2, h, w), with channel 0 cos(theta) and 1 sin(theta)
+ num_bin (int): number of classification bins
+
+ Returns:
+ np.ndarray: encoded bin indices of shape (1, h, w)
+ """
+ angle = (
+ torch.atan2(vector_field[1, :, :], vector_field[0, :, :]) / np.pi * 180 + 180
+ ) % 360 # [0,360)
+ angle_bin = torch.round(torch.div(angle, (360 / (num_bin - 1)))).long()
+ angle_bin[angle_bin == num_bin - 1] = 0
+ invalid = (vector_field == 0).sum(0) == vector_field.size(0)
+ angle_bin[invalid] = num_bin - 1
+ return angle_bin.type(torch.LongTensor)
+
+
+def decode_bin(angle_bin, num_bin):
+ """decode classification bins into vector field
+
+ Args:
+ angle_bin (np.ndarray): bin indices of shape (1, h, 1)
+ num_bin (int): number of classification bins
+
+ Returns:
+ np.ndarray: decoded vector field of shape (2, h, w)
+ """
+ angle = (angle_bin * (360 / (num_bin - 1)) - 180) / 180 * np.pi
+ cos = torch.cos(angle)
+ sin = torch.sin(angle)
+ vector_field = torch.stack((cos, sin), dim=0)
+ invalid = angle_bin == num_bin - 1
+ vector_field[:, invalid] = 0
+ return vector_field
+
+
+def encode_bin_latitude(latimap, num_classes):
+ """encode latitude map into classification bins
+
+ Args:
+ latimap (np.ndarray): latitude map of shape (h, w) with values in [-90, 90]
+ num_classes (int): number of classes
+
+ Returns:
+ np.ndarray: encoded latitude bin indices
+ """
+ boundaries = torch.arange(-90, 90, 180 / num_classes)[1:]
+ binmap = torch.bucketize(latimap, boundaries)
+ return binmap.type(torch.LongTensor)
+
+
+def decode_bin_latitude(binmap, num_classes):
+ """decode classification bins to latitude map
+
+ Args:
+ binmap (np.ndarray): encoded classification bins
+ num_classes (int): number of classes
+
+ Returns:
+ np.ndarray: latitude map of shape (h, w)
+ """
+ bin_size = 180 / num_classes
+ bin_centers = torch.arange(-90, 90, bin_size) + bin_size / 2
+ bin_centers = bin_centers.to(binmap.device)
+ latimap = bin_centers[binmap]
+ return latimap
+
+
+def draw_perspective_fields(
+ img_rgb, up, latimap, color=None, density=10, arrow_inv_len=20, return_img=True
+):
+ """draw perspective field on top of input image
+
+ Args:
+ img_rgb (np.ndarray): input image
+ up (np.ndarray): gravity field (h, w, 2)
+ latimap (np.ndarray): latitude map (h, w) (radians)
+ color ((float, float, float), optional): RGB color for up vectors. [0, 1]
+ Defaults to None.
+ density (int, optional): Value to control density of up vectors.
+ Each row has (width // density) vectors.
+ Each column has (height // density) vectors.
+ Defaults to 10.
+ arrow_inv_len (int, optional): Value to control vector length
+ Vector length set to (image plane diagonal // arrow_inv_len).
+ Defaults to 20.
+ return_img (bool, optional): bool to control if to return np array or VisImage
+
+ Returns:
+ image blended with perspective fields.
+ """
+ visualizer = VisualizerPerspective(img_rgb.copy())
+ vis_output = visualizer.draw_lati(latimap)
+ if torch.is_tensor(up):
+ up = up.numpy().transpose(1, 2, 0)
+ im_h, im_w, _ = img_rgb.shape
+ x, y = np.meshgrid(
+ np.arange(0, im_w, im_w // density), np.arange(0, im_h, im_h // density)
+ )
+ x, y = x.ravel(), y.ravel()
+ start = np.stack((x, y))
+ arrow_len = np.sqrt(im_w**2 + im_h**2) // arrow_inv_len
+ end = up[y, x, :] * arrow_len
+ if color is None:
+ color = (0, 1, 0)
+ vis_output = visualizer.draw_arrow(x, y, end[:, 0], -end[:, 1], color=color)
+ if return_img:
+ return vis_output.get_image()
+ else:
+ return vis_output
+
+
+def draw_up_field(
+ img_rgb, vector_field, color=None, density=10, arrow_inv_len=20, return_img=True
+):
+ """draw vector field on top of rgb image
+
+ Args:
+ img_rgb (np.ndarray): input rgb image
+ vector_field (np.ndarray): gravity field of shape (h, w, 2)
+ color ((float, float, float), optional): RGB color for up vectors. [0, 1]
+ Defaults to None.
+ density (int, optional): Value to control density of up vectors.
+ Each row has (width // density) vectors.
+ Each column has (height // density) vectors.
+ Defaults to 10.
+ arrow_inv_len (int, optional): Value to control vector length
+ Vector length set to (image plane diagonal // arrow_inv_len).
+ Defaults to 20.
+ return_img (bool, optional): bool to control if to return np array or VisImage
+
+ Returns:
+ image blended with up vectors
+ """
+ if torch.is_tensor(vector_field):
+ vector_field = vector_field.numpy().transpose(1, 2, 0)
+ visualizer = VisualizerPerspective(img_rgb.copy())
+ im_h, im_w, _ = img_rgb.shape
+ x, y = np.meshgrid(
+ # np.arange(0, im_w, im_w//20),
+ # np.arange(0, im_h, im_h//20)
+ np.arange(0, im_w, im_w // density),
+ np.arange(0, im_h, im_h // density),
+ )
+ x, y = x.ravel(), y.ravel()
+ start = np.stack((x, y))
+ arrow_len = np.sqrt(im_w**2 + im_h**2) // arrow_inv_len
+ end = vector_field[y, x, :] * arrow_len
+ # end = (vector_field[:, y, x] * 30).numpy()
+ vis_output = visualizer.draw_arrow(x, y, end[:, 0], -end[:, 1], color=color)
+ if return_img:
+ return vis_output.get_image()
+ else:
+ return vis_output
+
+
+def draw_from_r_p_f(
+ img,
+ roll,
+ pitch,
+ vfov,
+ mode,
+ up_color=None,
+ alpha_contourf=0.4,
+ alpha_contour=0.9,
+ draw_up=True,
+ draw_lat=True,
+ lati_alpha=0.5,
+):
+ """Draw latitude map and gravity field on top of input image.
+ Generate latitude map and gravity field from camera parameters
+
+ Args:
+ img (np.ndarray): input rgb image
+ roll (float): rotation of camera about the world frame z-axis
+ pitch (float): rotation of camera about the world frame x-axis
+ vfov (float): vertical field of view
+ mode (str): specifies the mode of input parameters. "deg" or "rad"
+ up_color ((float, float, float), optional): RGB value of up vectors. [0, 1]. Defaults to None.
+ alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4.
+ alpha_contour (float, optional): value to control transparency of contour lines. Defaults to 0.9.
+ draw_up (bool, optional): bool to specify if up vectors should be drawn. Defaults to True.
+ draw_lat (bool, optional): bool to specify if latitude map should be drawn. Defaults to True.
+
+ Returns:
+ np.ndarray: img with up vectors drawn on (if draw_up == True)
+ and latitude map drawn on (if draw_lat == True)
+ """
+ # lati_alpha is deprecated
+ im_h, im_w, _ = img.shape
+ if mode == "deg":
+ roll = np.radians(roll)
+ pitch = np.radians(pitch)
+ vfov = np.radians(vfov)
+ elif mode == "rad":
+ pass
+ else:
+ raise "Bad argument"
+ lati_deg = PanoCam.get_lat(
+ vfov=vfov,
+ im_w=im_w,
+ im_h=im_h,
+ elevation=pitch,
+ roll=roll,
+ )
+ up = PanoCam.get_up(
+ vfov=vfov,
+ im_w=im_w,
+ im_h=im_h,
+ elevation=pitch,
+ roll=roll,
+ )
+ # up[lati_deg > 89] = 0
+ # up[lati_deg < -89] = 0
+
+ if draw_lat:
+ img = draw_latitude_field(
+ img,
+ np.radians(lati_deg),
+ alpha_contourf=alpha_contourf,
+ alpha_contour=alpha_contour,
+ )
+ if draw_up:
+ img = draw_up_field(img, up, color=up_color)
+ return img
+
+
+def draw_from_r_p_f_cx_cy(
+ img,
+ roll,
+ pitch,
+ vfov,
+ rel_cx,
+ rel_cy,
+ mode,
+ up_color=None,
+ alpha_contourf=0.4,
+ alpha_contour=0.9,
+ draw_up=True,
+ draw_lat=True,
+):
+ """Draw latitude map and gravity field on top of input image.
+ Generate latitude map and gravity field from camera parameters
+
+ Args:
+ img (np.ndarray): input image (RGB)
+ roll (float): rotation of camera about the world frame z-axis
+ pitch (float): rotation of camera about the world frame x-axis
+ vfov (float): vertical field of view
+ rel_cx (float): relative cx location (pixel location / image width - 0.5)
+ rel_cy (float): relative cy location (pixel location / image height - 0.5)
+ mode (str): specifies the mode of input parameters. "deg" or "radians"
+ up_color ((float, float, float), optional): RGB value of up vectors. [0, 1]. Defaults to None.
+ alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4.
+ alpha_contour (float, optional): value to control transparency of contour lines. Defaults to 0.9.
+ draw_up (bool, optional): bool to specify if up vectors should be drawn. Defaults to True.
+ draw_lat (bool, optional): bool to specify if latitude map should be drawn. Defaults to True.
+
+ Returns:
+ np.ndarray: rgb img with up vectors drawn on (if draw_up == True)
+ and latitude map drawn on (if draw_lat == True)
+
+ """
+ im_h, im_w, _ = img.shape
+ if mode == "deg":
+ roll = np.radians(roll)
+ pitch = np.radians(pitch)
+ vfov = np.radians(vfov)
+ elif mode == "rad":
+ pass
+ else:
+ raise "Bad argument"
+ rel_focal = general_vfov_to_focal(rel_cx, rel_cy, 1, vfov, False)
+ lati_deg = PanoCam.get_lat_general(
+ focal_rel=rel_focal,
+ im_w=im_w,
+ im_h=im_h,
+ elevation=pitch,
+ roll=roll,
+ cx_rel=rel_cx,
+ cy_rel=rel_cy,
+ )
+ up = PanoCam.get_up_general(
+ focal_rel=rel_focal,
+ im_w=im_w,
+ im_h=im_h,
+ elevation=pitch,
+ roll=roll,
+ cx_rel=rel_cx,
+ cy_rel=rel_cy,
+ )
+ # up[lati_deg > 89] = 0
+ # up[lati_deg < -89] = 0
+
+ if draw_lat:
+ img = draw_latitude_field(
+ img,
+ np.radians(lati_deg),
+ alpha_contourf=alpha_contourf,
+ alpha_contour=alpha_contour,
+ )
+ if draw_up:
+ img = draw_up_field(img, up, color=up_color)
+ return img
+
+
+def draw_latitude_field(
+ img_rgb,
+ latimap=None,
+ binmap=None,
+ alpha_contourf=0.4,
+ alpha_contour=0.9,
+ return_img=True,
+):
+ """draw latitude field on top of rgb image
+
+ Args:
+ img_rgb (np.ndarray): input rgb image
+ latimap (np.ndarray, optional): latitude map in radians. Defaults to None.
+ binmap: deprecated.
+ alpha_contourf (float, optional): value to control transparency of contour fill. Defaults to 0.4.
+ alpha_contour (float, optional): value to control transparenct of contour lines. Defaults to 0.9.
+ return_img (bool, optional): bool to control if to return np array or VisImage
+
+ Returns:
+ np array or VisImage depending on return_img
+ """
+ visualizer = VisualizerPerspective(img_rgb.copy())
+ vis_output = visualizer.draw_lati(latimap, alpha_contourf, alpha_contour)
+ if return_img:
+ return vis_output.get_image()
+ else:
+ return vis_output
+
+
+def draw_horizon_line(img, horizon, color, thickness=3):
+ """draw horizon line on image
+
+ Args:
+ img (np.ndarray): input image
+ horizon (float, float): fraction of image left/right border intersection with respect to image height
+ color (float, float, float): RGB color value for line. [0, 1]
+ thickness (int, optional): line thickness in pixels. Defaults to 3.
+
+ Returns:
+ np.ndarray: image with horizon line drawn on it
+ """
+ im_h, im_w, _ = img.shape
+ output = img.copy()
+ cv2.line(
+ output,
+ (0, int(horizon[0] * im_h)),
+ (im_w, int(horizon[1] * im_h)),
+ color,
+ thickness,
+ )
+ return output
+
+
+def draw_prediction_distribution(pred, gt):
+ """create 2D histogram of ground truth camera parameters vs. ParamNet predictions
+
+ Args:
+ pred (np.ndarray): ParamNet predictions
+ gt (np.ndarray): ground truth parameters
+
+ Returns:
+ np.ndarray: 2D histogram
+ """
+ fig = plt.figure()
+ plt.hexbin(gt, pred)
+ plt.xlabel("gt")
+ plt.ylabel("pred")
+ plt.xlim(min(min(gt), min(pred)), max(max(gt), max(pred)))
+ plt.ylim(min(min(gt), min(pred)), max(max(gt), max(pred)))
+ plt.gca().set_aspect("equal", adjustable="box")
+ canvas = FigureCanvasAgg(fig)
+
+ s, (width, height) = canvas.print_to_buffer()
+ buffer = np.frombuffer(s, dtype="uint8")
+
+ img_rgba = buffer.reshape(height, width, 4)
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
+ return rgb
+
+
+def pf_postprocess(result, img_size, output_height, output_width):
+ """
+ Reference https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/postprocessing.py#L77C1-L100C18
+ Return semantic segmentation predictions in the original resolution.
+
+ The input images are often resized when entering semantic segmentor. Moreover, in same
+ cases, they also padded inside segmentor to be divisible by maximum network stride.
+ As a result, we often need the predictions of the segmentor in a different
+ resolution from its inputs.
+
+ Args:
+ result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W),
+ where C is the number of classes, and H, W are the height and width of the prediction.
+ img_size (tuple): image size that segmentor is taking as input.
+ output_height, output_width: the desired output resolution.
+
+ Returns:
+ semantic segmentation prediction (Tensor): A tensor of the shape
+ (C, output_height, output_width) that contains per-pixel soft predictions.
+ """
+ result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1)
+ result = F.interpolate(
+ result, size=(output_height, output_width), mode="bilinear", align_corners=False
+ )[0]
+ return result
diff --git a/external/PerspectiveFields/perspective2d/utils/visualizer.py b/external/PerspectiveFields/perspective2d/utils/visualizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..eaad8549b87f81d61940a5e1024823fc91e1bbdb
--- /dev/null
+++ b/external/PerspectiveFields/perspective2d/utils/visualizer.py
@@ -0,0 +1,279 @@
+# Modified from https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/visualizer.py
+import matplotlib.colors as mplc
+import matplotlib.figure as mplfigure
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+
+
+class VisImage:
+ def __init__(self, img, scale=1.0):
+ """
+ Args:
+ img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
+ scale (float): scale the input image
+ """
+ self.img = img
+ self.scale = scale
+ self.width, self.height = img.shape[1], img.shape[0]
+ self._setup_figure(img)
+
+ def _setup_figure(self, img):
+ """
+ Args:
+ Same as in :meth:`__init__()`.
+
+ Returns:
+ fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
+ ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
+ """
+ fig = mplfigure.Figure(frameon=False)
+ self.dpi = fig.get_dpi()
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
+ fig.set_size_inches(
+ (self.width * self.scale + 1e-2) / self.dpi,
+ (self.height * self.scale + 1e-2) / self.dpi,
+ )
+ self.canvas = FigureCanvasAgg(fig)
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
+ ax.axis("off")
+ self.fig = fig
+ self.ax = ax
+ self.reset_image(img)
+
+ def reset_image(self, img):
+ """
+ Args:
+ img: same as in __init__
+ """
+ img = img.astype("uint8")
+ self.ax.imshow(
+ img, extent=(0, self.width, self.height, 0), interpolation="nearest"
+ )
+
+ def save(self, filepath):
+ """
+ Args:
+ filepath (str): a string that contains the absolute path, including the file name, where
+ the visualized image will be saved.
+ """
+ self.fig.savefig(filepath)
+
+ def get_image(self):
+ """
+ Returns:
+ ndarray:
+ the visualized image of shape (H, W, 3) (RGB) in uint8 type.
+ The shape is scaled w.r.t the input image using the given `scale` argument.
+ """
+ canvas = self.canvas
+ s, (width, height) = canvas.print_to_buffer()
+ # buf = io.BytesIO() # works for cairo backend
+ # canvas.print_rgba(buf)
+ # width, height = self.width, self.height
+ # s = buf.getvalue()
+
+ buffer = np.frombuffer(s, dtype="uint8")
+
+ img_rgba = buffer.reshape(height, width, 4)
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
+ return rgb.astype("uint8")
+
+
+class Visualizer:
+ """
+ Visualizer that draws data about detection/segmentation on images.
+
+ It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
+ that draw primitive objects to images, as well as high-level wrappers like
+ `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
+ that draw composite data in some pre-defined style.
+
+ Note that the exact visualization style for the high-level wrappers are subject to change.
+ Style such as color, opacity, label contents, visibility of labels, or even the visibility
+ of objects themselves (e.g. when the object is too small) may change according
+ to different heuristics, as long as the results still look visually reasonable.
+
+ To obtain a consistent style, you can implement custom drawing functions with the
+ abovementioned primitive methods instead. If you need more customized visualization
+ styles, you can process the data yourself following their format documented in
+ tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
+ intend to satisfy everyone's preference on drawing styles.
+
+ This visualizer focuses on high rendering quality rather than performance. It is not
+ designed to be used for real-time applications.
+ """
+
+ # TODO implement a fast, rasterized version using OpenCV
+
+ def __init__(self, img_rgb, scale=1.0, font_size_scale=1.0):
+ """
+ Args:
+ img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
+ the height and width of the image respectively. C is the number of
+ color channels. The image is required to be in RGB format since that
+ is a requirement of the Matplotlib library. The image is also expected
+ to be in the range [0, 255].
+ font_size_scale: extra scaling of font size on top of default font size
+ """
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
+ self.output = VisImage(self.img, scale=scale)
+ self.cpu_device = torch.device("cpu")
+
+ # too small texts are useless, therefore clamp to 9
+ self._default_font_size = (
+ max(np.sqrt(self.output.height * self.output.width) // 90, 10 // scale)
+ * font_size_scale
+ )
+
+ """
+ Primitive drawing functions:
+ """
+
+ def draw_text(
+ self,
+ text,
+ position,
+ *,
+ font_size=None,
+ color="g",
+ horizontal_alignment="center",
+ rotation=0,
+ ):
+ """
+ Args:
+ text (str): class label
+ position (tuple): a tuple of the x and y coordinates to place text on image.
+ font_size (int, optional): font of the text. If not provided, a font size
+ proportional to the image width is calculated and used.
+ color: color of the text. Refer to `matplotlib.colors` for full list
+ of formats that are accepted.
+ horizontal_alignment (str): see `matplotlib.text.Text`
+ rotation: rotation angle in degrees CCW
+
+ Returns:
+ output (VisImage): image object with text drawn.
+ """
+ if not font_size:
+ font_size = self._default_font_size
+
+ # since the text background is dark, we don't want the text to be dark
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
+ color[np.argmax(color)] = max(0.8, np.max(color))
+
+ x, y = position
+ self.output.ax.text(
+ x,
+ y,
+ text,
+ size=font_size * self.output.scale,
+ family="sans-serif",
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
+ verticalalignment="top",
+ horizontalalignment=horizontal_alignment,
+ color=color,
+ zorder=10,
+ rotation=rotation,
+ )
+ return self.output
+
+ def get_output(self):
+ """
+ Returns:
+ output (VisImage): the image output containing the visualizations added
+ to the image.
+ """
+ return self.output
+
+
+class VisualizerPerspective(Visualizer):
+ def draw_arrow(
+ self,
+ x_pos,
+ y_pos,
+ x_direct,
+ y_direct,
+ color=None,
+ linestyle="-",
+ linewidth=None,
+ ):
+ """
+ Args:
+ x_data (list[int]): a list containing x values of all the points being drawn.
+ Length of list should match the length of y_data.
+ y_data (list[int]): a list containing y values of all the points being drawn.
+ Length of list should match the length of x_data.
+ color: color of the line. Refer to `matplotlib.colors` for a full list of
+ formats that are accepted.
+ linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
+ for a full list of formats that are accepted.
+ linewidth (float or None): width of the line. When it's None,
+ a default value will be computed and used.
+
+ Returns:
+ output (VisImage): image object with line drawn.
+ """
+ if linewidth is None:
+ linewidth = self._default_font_size / 3
+ linewidth = max(linewidth, 1)
+ self.output.ax.quiver(
+ x_pos,
+ y_pos,
+ x_direct,
+ y_direct,
+ color=color,
+ scale_units="xy",
+ scale=1,
+ antialiased=True,
+ headaxislength=3.5,
+ linewidths=0.1, # , width=0.01
+ )
+ return self.output
+
+ def draw_lati(
+ self, latimap, alpha_contourf=0.4, alpha_contour=0.9, contour_only=False
+ ):
+ """Blend latitude map"""
+ height, width = latimap.shape
+ y, x = np.mgrid[0:height, 0:width]
+ cmap = plt.get_cmap("seismic")
+ bands = 20
+ levels = np.linspace(-np.pi / 2, np.pi / 2, bands - 1)
+ if not contour_only:
+ pp = self.output.ax.contourf(
+ x,
+ y,
+ latimap,
+ levels=levels,
+ cmap=cmap,
+ alpha=alpha_contourf,
+ antialiased=True,
+ )
+ pp2 = self.output.ax.contour(
+ x,
+ y,
+ latimap,
+ pp.levels,
+ cmap=cmap,
+ alpha=alpha_contour,
+ antialiased=True,
+ linewidths=5,
+ )
+ for c in pp2.collections:
+ c.set_linestyle("solid")
+ else:
+ # only plot central contour
+ pp = self.output.ax.contour(
+ x,
+ y,
+ latimap,
+ levels=[0],
+ cmap=cmap,
+ alpha=alpha_contour,
+ antialiased=True,
+ linewidths=15,
+ )
+ return self.output
diff --git a/external/PerspectiveFields/requirements.txt b/external/PerspectiveFields/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..fc6b7217f3aa3ab77c585e4e3d9684f2ada7df9d
--- /dev/null
+++ b/external/PerspectiveFields/requirements.txt
@@ -0,0 +1,14 @@
+albumentations
+matplotlib
+numpy
+omegaconf
+opencv-contrib-python
+pillow
+pyequilib==0.3.0
+scikit-learn
+scipy
+setuptools
+timm
+torch
+torchvision
+yacs
\ No newline at end of file
diff --git a/external/PerspectiveFields/setup.py b/external/PerspectiveFields/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..de776822152b5f55215085be0016dfa3bef15849
--- /dev/null
+++ b/external/PerspectiveFields/setup.py
@@ -0,0 +1,42 @@
+from setuptools import find_packages, setup
+
+setup(
+ name="perspective2d",
+ version="1.0.0",
+ packages=find_packages(),
+ include_package_data=True, # This line is important!
+ package_data={
+ # If any package contains *.txt or *.rst files, include them:
+ '': ['*.txt', '*.rst', '*.yaml'],
+ # And include any *.msg files found in the 'hello' package, too:
+ 'perspective2d.config': ['*.yaml'],
+ },
+ install_requires=[
+ "albumentations",
+ "matplotlib",
+ "numpy",
+ "omegaconf",
+ "opencv-contrib-python",
+ "pillow",
+ "pyequilib==0.3.0",
+ "scikit-learn",
+ "scipy",
+ "setuptools",
+ "timm",
+ "torch",
+ "torchvision",
+ "yacs",
+ ],
+ author="Linyi Jin",
+ author_email="jinlinyi@umich.edu",
+ description="Code for CVPR 2023 Perspective Fields for Single Image Camera Calibration",
+ long_description=open("README.md").read(),
+ long_description_content_type="text/markdown",
+ url="https://github.com/jinlinyi/PerspectiveFields",
+ classifiers=[
+ "Development Status :: 3 - Alpha",
+ "License :: OSI Approved :: MIT License",
+ "Programming Language :: Python :: 3",
+ "Programming Language :: Python :: 3.9",
+ ],
+)