from osdsynth.Orient_Anything.paths import * from osdsynth.Orient_Anything.vision_tower import DINOv2_MLP from transformers import AutoImageProcessor import torch from PIL import Image import torch.nn.functional as F from osdsynth.Orient_Anything.utils import * from osdsynth.Orient_Anything.inference import * from osdsynth.utils.logger import SkipImageException class Rotation: def __init__(self, cfg, logger, device): self.rotation_model = DINOv2_MLP( dino_mode = 'large', in_dim = 1024, out_dim = 360+180+180+2, evaluate = True, mask_dino = False, frozen_back = False ).eval() self.rotation_model.load_state_dict(torch.load(cfg.rotation_model_ckpt_path, map_location='cpu')) self.rotation_model = self.rotation_model.to(device) self.val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./') self.logger = logger self.device = device def get_R(self, phi, theta, gamma): R = np.array([[-math.sin(phi), 0, -math.cos(phi)], [math.cos(phi) * math.sin(theta), -math.cos(theta), -math.sin(phi) * math.sin(theta)], [-math.cos(phi) * math.cos(theta), -math.sin(theta), math.sin(phi) * math.cos(theta)] ]) # The position of the object as seen by the camera # R rotates gamma around the z-axis of the world coordinate system gamma = gamma * math.pi / 180 R = np.dot(R, np.array([[math.cos(gamma), -math.sin(gamma), 0], [math.sin(gamma), math.cos(gamma), 0], [0, 0, 1] ])) return R def process_single(self, image_segment_wbg, do_rm_bkg=True, do_infer_aug=False): origin_img_wbg = Image.fromarray(image_segment_wbg) if isinstance(image_segment_wbg, np.ndarray) else image_segment_wbg if do_infer_aug: rm_bkg_img = background_preprocess(origin_img_wbg, True) angles = get_3angle_infer_aug(origin_img_wbg, rm_bkg_img, self.rotation_model, self.val_preprocess, self.device) else: rm_bkg_img = background_preprocess(origin_img_wbg, False) angles = get_3angle(rm_bkg_img, self.rotation_model, self.val_preprocess, self.device) confidence = float(angles[3]) if confidence < 0.5: do_rm_bkg_img = background_preprocess(origin_img_wbg, True) do_angles = get_3angle(do_rm_bkg_img, self.rotation_model, self.val_preprocess, self.device) do_confidence = float(do_angles[3]) if do_confidence >0.5 : rm_bkg_img = do_rm_bkg_img angles = do_angles phi = np.radians(angles[0]) theta = np.radians(angles[1]) gamma = angles[2] confidence = float(angles[3]) render_axis = render_3D_axis(phi, theta, gamma) res_img = overlay_images_with_scaling(render_axis, rm_bkg_img) res_img.save("res_img.png") rotation_matrix = self.get_R(phi=phi, theta=theta, gamma=gamma) return rotation_matrix, confidence def process(self, detection_list, do_rm_bkg=True, do_infer_aug=False): skip_index = [] for i in range(len(detection_list)): # image_segment_wobg = detection_list[i]['image_segment'] image_segment_wbg = detection_list[i]['image_crop'] # object-centered reference system, the camera's bit position rotation_matrix, confidence = self.process_single(image_segment_wbg, do_rm_bkg=do_rm_bkg, do_infer_aug=do_infer_aug) # For the camera, the position and rotation of the object detection_list[i]['rotation_matrix'] = rotation_matrix detection_list[i]['rotation_matrix_confidence'] = confidence # 删除不符合条件的项 for i in skip_index[::-1]: del detection_list[i] return detection_list