from importlib import resources from pathlib import Path import numpy as np import torch import torch.nn.functional as F from PIL import Image from torch import nn from .config import get_perspective2d_cfg_defaults from .modeling.backbone import build_backbone from .modeling.param_network import build_param_net from .modeling.persformer_heads import build_persformer_heads class ResizeTransform: """ Resize the image to a target size. """ def __init__(self, new_h, new_w, interp=None): """ Args: h, w (int): original image size new_h, new_w (int): new image size interp: PIL interpolation methods, defaults to bilinear. """ if interp is None: interp = Image.BILINEAR self.new_h = new_h self.new_w = new_w self.interp = interp def apply_image(self, img, interp=None): assert len(img.shape) <= 4 interp_method = interp if interp is not None else self.interp if img.dtype == np.uint8: if len(img.shape) > 2 and img.shape[2] == 1: pil_image = Image.fromarray(img[:, :, 0], mode="L") else: pil_image = Image.fromarray(img) pil_image = pil_image.resize((self.new_w, self.new_h), interp_method) ret = np.asarray(pil_image) if len(img.shape) > 2 and img.shape[2] == 1: ret = np.expand_dims(ret, -1) else: # PIL only supports uint8 if any(x < 0 for x in img.strides): img = np.ascontiguousarray(img) img = torch.from_numpy(img) shape = list(img.shape) shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:] img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw _PIL_RESIZE_TO_INTERPOLATE_MODE = { Image.NEAREST: "nearest", Image.BILINEAR: "bilinear", Image.BICUBIC: "bicubic", } mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[interp_method] align_corners = None if mode == "nearest" else False img = F.interpolate( img, (self.new_h, self.new_w), mode=mode, align_corners=align_corners ) shape[:2] = (self.new_h, self.new_w) ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c) return ret class LowLevelEncoder(nn.Module): def __init__(self, feat_dim=64, in_channel=3): super().__init__() self.conv1 = nn.Conv2d( 3, feat_dim, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = nn.BatchNorm2d(feat_dim) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) return x model_zoo = { "Paramnet-360Cities-edina-centered": { "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpf.pth", "config_file": "paramnet_360cities_edina_rpf.yaml", "param": True, "description": "Trained on 360cities and EDINA dataset. Assumes centered principal point. Predicts roll, pitch and fov.", }, "Paramnet-360Cities-edina-uncentered": { "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_360cities_edina_rpfpp.pth", "config_file": "paramnet_360cities_edina_rpfpp.yaml", "param": True, "description": "Trained on 360cities and EDINA dataset. Predicts roll, pitch, fov and principal point.", }, "PersNet-360Cities": { "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/cvpr2023.pth", "config_file": "cvpr2023.yaml", "param": False, "description": "Trained on 360cities. Predicts perspective fields.", }, "PersNet_Paramnet-GSV-uncentered": { "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpfpp.pth", "config_file": "paramnet_gsv_rpfpp.yaml", "param": True, "description": "Trained on GSV. Predicts roll, pitch, fov and principal point.", }, # trained on GSV dataset, predicts Perspective Fields + camera parameters (roll, pitch, fov), assuming centered principal point "PersNet_Paramnet-GSV-centered": { "weights": "https://huggingface.co/spaces/jinlinyi/PerspectiveFields/resolve/main/models/paramnet_gsv_rpf.pth", "config_file": "paramnet_gsv_rpf.yaml", "param": True, "description": "Trained on GSV. Assumes centered principal point. Predicts roll, pitch and fov.", }, } class PerspectiveFields(nn.Module): def __init__(self, version="Paramnet-360Cities-edina-centered"): super().__init__() default_conf = get_perspective2d_cfg_defaults() # To get the path with resources.path( "perspective2d.config", model_zoo[version]["config_file"] ) as config_path: default_conf.merge_from_file(str(config_path)) # default_conf.merge_from_file(model_zoo[version]['config_file']) default_conf.freeze() self.version = version self.param_on = model_zoo[version]["param"] self.cfg = cfg = default_conf self.backbone = build_backbone(cfg) self.ll_enc = LowLevelEncoder() self.persformer_heads = build_persformer_heads( cfg, self.backbone.output_shape() ) self.param_net = ( build_param_net(cfg) if cfg.MODEL.RECOVER_RPF or cfg.MODEL.RECOVER_PP else None ) self.register_buffer( "pixel_mean", torch.tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1), False ) self.register_buffer( "pixel_std", torch.tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1), False ) self.vis_period = cfg.VIS_PERIOD self.freeze = cfg.MODEL.FREEZE self.debug_on = cfg.DEBUG_ON self.input_format = cfg.INPUT.FORMAT self.aug = ResizeTransform(cfg.DATALOADER.RESIZE[0], cfg.DATALOADER.RESIZE[1]) for layers in self.freeze: layer = layers.split(".") final = self for l in layer: final = getattr(final, l) for params in final.parameters(): params.requires_grad = False self._init_weights() @property def device(self): return self.pixel_mean.device @staticmethod def versions(): for key in model_zoo: print(f"{key}") print(f" - {model_zoo[key]['description']}") def version(self): return self.version def _init_weights(self): state_dict = None # if self.version in model_zoo: # state_dict = torch.hub.load_state_dict_from_url( # model_zoo[self.version]["weights"], # map_location=torch.device('cpu'), # ) # self.load_state_dict(state_dict, strict=False) # elif self.cfg.MODEL.WEIGHTS is not None: # path = Path(__file__).parent # path = path / "weights/{}.pth".format(self.cfg.MODEL.WEIGHTS) # state_dict = torch.load(str(path), map_location="cpu") # if state_dict: # status = self.load_state_dict(state_dict["model"], strict=False) if self.version in model_zoo: # version 对应的本地权重路径,你自己维护一个映射 local_paths = { # 根据你自己的版本名来填 "Paramnet-360Cities-edina-centered": "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields/paramnet_360cities_edina_rpf.pth", # 其他 version 也可以在这里继续加 # "Paramnet-360Cities-edina-uncentered": "/path/to/xxx.pth", } ckpt_path = local_paths[self.version] state_dict = torch.load(ckpt_path, map_location="cpu") self.load_state_dict(state_dict, strict=False) elif getattr(self, "cfg", None) is not None and getattr(self.cfg.MODEL, "WEIGHTS", None) is not None: # 使用 cfg 中指定的本地权重 path = Path(__file__).parent / "weights" / f"{self.cfg.MODEL.WEIGHTS}.pth" path = path.resolve() assert path.exists(), f"Checkpoint not found: {path}" state_dict = torch.load(str(path), map_location="cpu") self.load_state_dict(state_dict, strict=False) @torch.no_grad() def inference(self, img_bgr): original_image = img_bgr.copy() if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.apply_image(original_image) image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.forward([inputs])[0] return predictions @torch.no_grad() def inference_batch(self, img_bgr_list): input_list = [] for img_bgr in img_bgr_list: original_image = img_bgr.copy() if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.apply_image(original_image) image = torch.from_numpy(image.astype(np.float32).transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} input_list.append(inputs) predictions = self.forward(input_list) return predictions def forward(self, batched_inputs) -> dict: """ Forward pass of the PerspectiveFields model. Args: batched_inputs (list): A list of dictionaries containing the input data. Returns: dict: A dictionary containing the computed losses or processed results. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = torch.stack(images) hl_features = self.backbone(images) ll_features = self.ll_enc(images) features = { "hl": hl_features, # features from backbone "ll": ll_features, # low level features } targets_dict = {} if "gt_gravity" in batched_inputs[0]: targets = [x["gt_gravity"].to(self.device) for x in batched_inputs] targets = torch.stack(targets) targets_dict["gt_gravity"] = targets if "gt_latitude" in batched_inputs[0]: targets = [x["gt_latitude"].to(self.device) for x in batched_inputs] targets = torch.stack(targets) targets_dict["gt_latitude"] = targets results = self.persformer_heads.inference(features) processed_results = self.persformer_heads.postprocess( results, batched_inputs, images ) if self.param_net is not None: param = self.param_net(results, batched_inputs) if "pred_general_vfov" not in param.keys(): param["pred_general_vfov"] = param["pred_vfov"] if "pred_rel_cx" not in param.keys(): param["pred_rel_cx"] = torch.zeros_like(param["pred_vfov"]) if "pred_rel_cy" not in param.keys(): param["pred_rel_cy"] = torch.zeros_like(param["pred_vfov"]) assert len(processed_results) == len(param["pred_general_vfov"]) for i in range(len(processed_results)): param_tmp = {k: v[i] for k, v in param.items()} processed_results[i].update(param_tmp) return processed_results