# Put most Common Functions Here import os, cv2 import torch import torch.nn.functional as F import torch.distributed as dist import math import numpy as np import PIL.Image as Image import matplotlib.pyplot as plt from torch.utils.data import Sampler from torchvision import transforms # -- # Visualization def tensor2disp(tensor, vmax=0.18, percentile=None, viewind=0): cm = plt.get_cmap('magma') tnp = tensor[viewind, 0, :, :].detach().cpu().numpy() if percentile is not None: if np.sum(tnp > 0) > 100: vmax = np.percentile(tnp[tnp > 0], 95) else: vmax = 1.0 tnp = tnp / vmax tnp = (cm(tnp) * 255).astype(np.uint8) return Image.fromarray(tnp[:, :, 0:3]) def tensor2grad(gradtensor, percentile=95, pos_bar=0, neg_bar=0, viewind=0): cm = plt.get_cmap('bwr') gradnumpy = gradtensor.detach().cpu().numpy()[viewind, 0, :, :] selector_pos = gradnumpy > 0 if np.sum(selector_pos) > 1: if pos_bar <= 0: pos_bar = np.percentile(gradnumpy[selector_pos], percentile) gradnumpy[selector_pos] = gradnumpy[selector_pos] / pos_bar / 2 selector_neg = gradnumpy < 0 if np.sum(selector_neg) > 1: if neg_bar >= 0: neg_bar = -np.percentile(-gradnumpy[selector_neg], percentile) gradnumpy[selector_neg] = -gradnumpy[selector_neg] / neg_bar / 2 disp_grad_numpy = gradnumpy + 0.5 colorMap = cm(disp_grad_numpy)[:, :, 0:3] return Image.fromarray((colorMap * 255).astype(np.uint8)) def tensor2rgb(tensor, viewind=0): tnp = tensor.detach().cpu().permute([0, 2, 3, 1]).contiguous()[viewind, :, :, :].numpy() if np.max(tnp) <= 2: tnp = tnp * 255 tnp = np.clip(tnp, a_min=0, a_max=255).astype(np.uint8) return Image.fromarray(tnp)