import os import sys PPF_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/PerspectiveFields" sys.path.append(PPF_PATH) # This is needed for the following imports in this file PPF_PATH_ABS = os.path.abspath(PPF_PATH) import copy import os import cv2 import numpy as np import torch from perspective2d import PerspectiveFields from perspective2d.utils import draw_from_r_p_f_cx_cy, draw_perspective_fields def create_rotation_matrix( roll: float, pitch: float, yaw: float, degrees: bool = False, ) -> np.ndarray: r"""Create rotation matrix from extrinsic parameters Args: roll (float): camera rotation about camera frame z-axis pitch (float): camera rotation about camera frame x-axis yaw (float): camera rotation about camera frame y-axis Returns: np.ndarray: rotation R_z @ R_x @ R_y """ if degrees: roll = np.radians(roll) pitch = np.radians(pitch) yaw = np.radians(yaw) # calculate rotation about the x-axis R_x = np.array( [ [1.0, 0.0, 0.0], [0.0, np.cos(pitch), np.sin(pitch)], [0.0, -np.sin(pitch), np.cos(pitch)], ] ) # calculate rotation about the y-axis R_y = np.array( [ [np.cos(yaw), 0.0, -np.sin(yaw)], [0.0, 1.0, 0.0], [np.sin(yaw), 0.0, np.cos(yaw)], ] ) # calculate rotation about the z-axis R_z = np.array( [ [np.cos(roll), np.sin(roll), 0.0], [-np.sin(roll), np.cos(roll), 0.0], [0.0, 0.0, 1.0], ] ) return R_z @ R_x @ R_y def resize_fix_aspect_ratio(img, field, target_width=None, target_height=None): height = img.shape[0] width = img.shape[1] if target_height is None: factor = target_width / width elif target_width is None: factor = target_height / height else: factor = max(target_width / width, target_height / height) if factor == target_width / width: target_height = int(height * factor) else: target_width = int(width * factor) img = cv2.resize(img, (target_width, target_height)) for key in field: if key not in ["up", "lati"]: continue tmp = field[key].numpy() transpose = len(tmp.shape) == 3 if transpose: tmp = tmp.transpose(1, 2, 0) tmp = cv2.resize(tmp, (target_width, target_height)) if transpose: tmp = tmp.transpose(2, 0, 1) field[key] = torch.tensor(tmp) return img, field def run_perspective_fields_model(model, image_bgr): pred = model.inference(img_bgr=image_bgr) field = { "up": pred["pred_gravity_original"].cpu().detach(), "lati": pred["pred_latitude_original"].cpu().detach(), } img, field = resize_fix_aspect_ratio(image_bgr[..., ::-1], field, 640) # Draw perspective field from ParamNet predictions param_vis = draw_from_r_p_f_cx_cy( img, pred["pred_roll"].item(), pred["pred_pitch"].item(), pred["pred_general_vfov"].item(), pred["pred_rel_cx"].item(), pred["pred_rel_cy"].item(), "deg", up_color=(0, 1, 0), ).astype(np.uint8) param_vis = cv2.cvtColor(param_vis, cv2.COLOR_RGB2BGR) param = { "roll": pred["pred_roll"].cpu().item(), "pitch": pred["pred_pitch"].cpu().item(), } return param_vis, param def get_perspective_fields_model(cfg, device): MODEL_ID = "Paramnet-360Cities-edina-centered" # MODEL_ID = 'Paramnet-360Cities-edina-uncentered' # MODEL_ID = 'PersNet_Paramnet-GSV-centered' # MODEL_ID = 'PersNet_Paramnet-GSV-uncentered' # MODEL_ID = 'PersNet-360Cities' # feel free to test with uncentered or centered depending on your data PerspectiveFields.versions() pf_model = PerspectiveFields(MODEL_ID).eval().cuda() return pf_model