import os import sys sys.path.append("/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything/recognize-anything") from typing import List import torchvision.transforms as TS from ram import inference_ram from ram.models import ram def run_tagging_model(cfg, raw_image, tagging_model): res = inference_ram(raw_image, tagging_model) caption = "NA" tags = res[0].strip(" ").replace(" ", " ").replace(" |", ",") print("Tags: ", tags) # Currently ", " is better for detecting single tags # while ". " is a little worse in some case text_prompt = res[0].replace(" |", ",") if cfg.rm_bg_classes: cfg.remove_classes += cfg.bg_classes classes = process_tag_classes( text_prompt, add_classes=cfg.add_classes, remove_classes=cfg.remove_classes, ) print("Tags (Final): ", classes) return classes def process_tag_classes(text_prompt: str, add_classes: List[str] = [], remove_classes: List[str] = []) -> list[str]: """Convert a text prompt from Tag2Text to a list of classes.""" classes = text_prompt.split(",") classes = [obj_class.strip() for obj_class in classes] classes = [obj_class for obj_class in classes if obj_class != ""] for c in add_classes: if c not in classes: classes.append(c) for c in remove_classes: classes = [obj_class for obj_class in classes if c not in obj_class.lower()] return classes def get_tagging_model(cfg, device): RAM_CHECKPOINT_PATH = os.path.abspath( "osdsynth/external/Grounded-Segment-Anything/recognize-anything/ram_swin_large_14m.pth" ) tagging_model = ram(pretrained=RAM_CHECKPOINT_PATH, image_size=384, vit="swin_l") tagging_model = tagging_model.eval().to(device) tagging_transform = TS.Compose( [ TS.Resize((384, 384)), TS.ToTensor(), TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) return tagging_transform, tagging_model