import os import sys from typing import Any, Dict, Generator, ItemsView, List, Tuple import cv2 import numpy as np import torch from PIL import Image GSA_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything" sys.path.append(GSA_PATH) from segment_anything.segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_hq_model_registry, sam_model_registry # Segment-Anything checkpoint SAM_ENCODER_VERSION = "vit_h" SAM_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_vit_h_4b8939.pth") # Segment-Anything checkpoint SAM_HQ_ENCODER_VERSION = "vit_h" SAM_HQ_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_hq_vit_h.pth") # Prompting SAM with detected boxes def get_sam_segmentation_from_xyxy(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray: sam_predictor.set_image(image) result_masks = [] for box in xyxy: masks, scores, logits = sam_predictor.predict(box=box, multimask_output=True) index = np.argmax(scores) result_masks.append(masks[index]) return np.array(result_masks) def get_sam_predictor(variant: str, device: str | int) -> SamPredictor: if variant == "sam": sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH) sam.to(device) sam_predictor = SamPredictor(sam) return sam_predictor if variant == "sam-hq": print("Using SAM-HQ") sam = sam_hq_model_registry[SAM_HQ_ENCODER_VERSION](checkpoint=SAM_HQ_CHECKPOINT_PATH) sam.to(device) sam_predictor = SamPredictor(sam) return sam_predictor else: raise NotImplementedError def get_sam_mask_generator(variant: str, device: str | int) -> SamAutomaticMaskGenerator: if variant == "sam": sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH) sam.to(device) mask_generator = SamAutomaticMaskGenerator( model=sam, points_per_side=12, points_per_batch=144, pred_iou_thresh=0.88, stability_score_thresh=0.95, crop_n_layers=0, min_mask_region_area=100, ) return mask_generator elif variant == "fastsam": raise NotImplementedError else: raise NotImplementedError def convert_detections_to_list(detections_dict, classes): detection_list = [] for i in range(len(detections_dict["xyxy"])): detection = { "class_name": classes[detections_dict["class_id"][i]], # Lookup class name using class_id "xyxy": detections_dict["xyxy"][i], # Assuming detections.xyxy is a numpy array "confidence": detections_dict["confidence"][i].item(), # Convert numpy scalar to Python scalar "class_id": detections_dict["class_id"][i].item(), "box_area": detections_dict["box_area"][i].item(), "mask": detections_dict["mask"][i], "subtracted_mask": detections_dict["subtracted_mask"][i], "rle": detections_dict["rle"][i], "area": detections_dict["area"][i], } detection_list.append(detection) return detection_list def convert_detections_to_dict(detections, classes, image_crops=None, image_feats=None, text_feats=None): # Convert the detections to a dict. The elements are in np.array results = { "xyxy": detections.xyxy, "confidence": detections.confidence, "class_id": detections.class_id, "box_area": detections.box_area, "mask": detections.mask, "area": detections.area, "classes": classes, } return results def mask_subtract_contained(xyxy: np.ndarray, mask: np.ndarray, th1=0.8, th2=0.7): """Compute the containing relationship between all pair of bounding boxes. For each mask, subtract the mask of bounding boxes that are contained by it. Args: xyxy: (N, 4), in (x1, y1, x2, y2) format mask: (N, H, W), binary mask th1: float, threshold for computing intersection over box1 th2: float, threshold for computing intersection over box2 Returns: mask_sub: (N, H, W), binary mask """ N = xyxy.shape[0] # number of boxes # Get areas of each xyxy areas = (xyxy[:, 2] - xyxy[:, 0]) * (xyxy[:, 3] - xyxy[:, 1]) # (N,) # Compute intersection boxes lt = np.maximum(xyxy[:, None, :2], xyxy[None, :, :2]) # left-top points (N, N, 2) rb = np.minimum(xyxy[:, None, 2:], xyxy[None, :, 2:]) # right-bottom points (N, N, 2) inter = (rb - lt).clip(min=0) # intersection sizes (dx, dy), if no overlap, clamp to zero (N, N, 2) # Compute areas of intersection boxes inter_areas = inter[:, :, 0] * inter[:, :, 1] # (N, N) inter_over_box1 = inter_areas / areas[:, None] # (N, N) # inter_over_box2 = inter_areas / areas[None, :] # (N, N) inter_over_box2 = inter_over_box1.T # (N, N) # if the intersection area is smaller than th2 of the area of box1, # and the intersection area is larger than th1 of the area of box2, # then box2 is considered contained by box1 contained = (inter_over_box1 < th2) & (inter_over_box2 > th1) # (N, N) contained_idx = contained.nonzero() # (num_contained, 2) mask_sub = mask.copy() # (N, H, W) # mask_sub[contained_idx[0]] = mask_sub[contained_idx[0]] & (~mask_sub[contained_idx[1]]) for i in range(len(contained_idx[0])): mask_sub[contained_idx[0][i]] = mask_sub[contained_idx[0][i]] & (~mask_sub[contained_idx[1][i]]) return mask_sub, contained def filter_detections(cfg, detections_dict: dict, image: np.ndarray): # If no detection at all if len(detections_dict["xyxy"]) == 0: return detections_dict # Filter out the objects based on various criteria idx_to_keep = [] for obj_idx in range(len(detections_dict["xyxy"])): class_name = detections_dict["classes"][detections_dict["class_id"][obj_idx]] # Skip masks that are too small if detections_dict["mask"][obj_idx].sum() < max(cfg.mask_area_threshold, 10): print(f"Skipping {class_name} mask with too few points") continue # Skip the BG classes if cfg.skip_bg and class_name in cfg.bg_classes: print(f"Skipping {class_name} as it is a background class") continue # Skip the non-background boxes that are too large if class_name not in cfg.bg_classes: x1, y1, x2, y2 = detections_dict["xyxy"][obj_idx] bbox_area = (x2 - x1) * (y2 - y1) image_area = image.shape[0] * image.shape[1] if bbox_area > cfg.max_bbox_area_ratio * image_area: print(f"Skipping {class_name} with area {bbox_area} > {cfg.max_bbox_area_ratio} * {image_area}") continue # Skip masks with low confidence if detections_dict["confidence"][obj_idx] < cfg.mask_conf_threshold: print( f"Skipping {class_name} with confidence {detections_dict['confidence'][obj_idx]} < {cfg.mask_conf_threshold}" ) continue idx_to_keep.append(obj_idx) for k in detections_dict.keys(): if isinstance(detections_dict[k], str) or k == "classes": # Captions continue elif isinstance(detections_dict[k], list): detections_dict[k] = [detections_dict[k][i] for i in idx_to_keep] elif isinstance(detections_dict[k], np.ndarray): detections_dict[k] = detections_dict[k][idx_to_keep] else: raise NotImplementedError(f"Unhandled type {type(detections_dict[k])}") return detections_dict def sort_detections_by_area(detections_dict): # Sort the detections by area, use negative to sort from large to small sorted_indices = np.argsort(-detections_dict["area"]) for key in detections_dict.keys(): if isinstance(detections_dict[key], np.ndarray): # Check to ensure it's an array detections_dict[key] = detections_dict[key][sorted_indices] return detections_dict def post_process_mask(detections_dict): sam_masks = torch.tensor(detections_dict["subtracted_mask"]) uncompressed_mask_rles = mask_to_rle_pytorch(sam_masks) rle_masks_list = [coco_encode_rle(uncompressed_mask_rles[i]) for i in range(len(uncompressed_mask_rles))] detections_dict["rle"] = rle_masks_list return detections_dict def crop_image_and_mask(image: Image, mask: np.ndarray, x1: int, y1: int, x2: int, y2: int, padding: int = 0): """Crop the image and mask with some padding. I made a single function that crops both the image and the mask at the same time because I was getting shape mismatches when I cropped them separately.This way I can check that they are the same shape. """ image = np.array(image) # Verify initial dimensions if image.shape[:2] != mask.shape: print(f"Initial shape mismatch: Image shape {image.shape} != Mask shape {mask.shape}") return None, None # Define the cropping coordinates x1 = max(0, x1 - padding) y1 = max(0, y1 - padding) x2 = min(image.shape[1], x2 + padding) y2 = min(image.shape[0], y2 + padding) # round the coordinates to integers x1, y1, x2, y2 = round(x1), round(y1), round(x2), round(y2) # Crop the image and the mask image_crop = image[y1:y2, x1:x2] mask_crop = mask[y1:y2, x1:x2] # Verify cropped dimensions if image_crop.shape[:2] != mask_crop.shape: print( "Cropped shape mismatch: Image crop shape {} != Mask crop shape {}".format( image_crop.shape, mask_crop.shape ) ) return None, None # convert the image back to a pil image image_crop = Image.fromarray(image_crop) return image_crop, mask_crop def crop_detections_with_xyxy(cfg, image, detections_list): for idx, detection in enumerate(detections_list): x1, y1, x2, y2 = detection["xyxy"] image_crop, mask_crop = crop_image_and_mask(image, detection["mask"], x1, y1, x2, y2, padding=10) if cfg.masking_option == "blackout": image_crop_modified = blackout_nonmasked_area(image_crop, mask_crop) elif cfg.masking_option == "red_outline": image_crop_modified = draw_red_outline(image_crop, mask_crop) else: image_crop_modified = image_crop # No modification detections_list[idx]["image_crop"] = image_crop detections_list[idx]["mask_crop"] = mask_crop detections_list[idx]["image_crop_modified"] = image_crop_modified return detections_list def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: """ Encodes masks to an uncompressed RLE, in the format expected by pycoco tools. """ # Put in fortran order and flatten h,w b, h, w = tensor.shape tensor = tensor.permute(0, 2, 1).flatten(1) # Compute change indices diff = tensor[:, 1:] ^ tensor[:, :-1] change_indices = diff.nonzero() # Encode run length out = [] for i in range(b): cur_idxs = change_indices[change_indices[:, 0] == i, 1] cur_idxs = torch.cat( [ torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1, torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ] ) btw_idxs = cur_idxs[1:] - cur_idxs[:-1] counts = [] if tensor[i, 0] == 0 else [0] counts.extend(btw_idxs.detach().cpu().tolist()) out.append({"size": [h, w], "counts": counts}) return out def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: """Compute a binary mask from an uncompressed RLE.""" h, w = rle["size"] mask = np.empty(h * w, dtype=bool) idx = 0 parity = False for count in rle["counts"]: mask[idx : idx + count] = parity idx += count parity ^= True mask = mask.reshape(w, h) return mask.transpose() # Put in C order def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: from pycocotools import mask as mask_utils # type: ignore h, w = uncompressed_rle["size"] rle = mask_utils.frPyObjects(uncompressed_rle, h, w) rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json return rle