Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
RJuro commited on
Commit
79bcee9
·
1 Parent(s): 3658730
Files changed (4) hide show
  1. .DS_Store +0 -0
  2. README.md +142 -99
  3. eu_debates.py +0 -110
  4. eu_debates.zip +0 -3
.DS_Store ADDED
Binary file (6.15 kB). View file
 
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  source_datasets:
4
- - extended
5
  language_creators:
6
  - found
7
  multilinguality:
@@ -34,133 +34,175 @@ tags:
34
  - politics
35
  size_categories:
36
  - 10K<n<100K
37
- pretty_name: EU Debates
38
  ---
39
 
40
-
41
  # Dataset Description
42
 
43
- EU Debates is a corpus of parliamentary proceedings (debates) from the European parliament released by [Chalkidis and Brandl (2024)](https://arxiv.org/abs/2403.13592). The corpus consists of approx. 87k individual speeches in the period 2009-2023.
44
- We exhaustively scrape the data from the official European Parliament Plenary website ([Link](https://www.europarl.europa.eu/)). All speeches are time-stamped, thematically organized on debates,
45
- and include metadata relevant to the speaker's identity (full name, euro-party affiliation, speaker role), and the debate (date and title).
46
- Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages, thus we also provide machine-translated
47
- versions in English, when official translations are missing, using the EasyNMT framework with the [M2M2-100 (418M)](https://huggingface.co/facebook/m2m100_418M) model (Fan et al., 2020).
 
 
 
 
 
 
 
 
 
 
48
 
49
  # Data Fields
50
 
51
- - `speaker_name: a `string` with the full name of the speaker.
52
- - `speaker_party`: a `string` with the name of the euro-party (group) that the MEP is affiliated with.
53
- - `speaker_role`: a `string` with the role of the speaker (Member of the European Parliament (MEP), EUROPARL President, etc.)
54
- - `debate_title`: a `string` with the title of the debate in the European Parliament.
55
- - `date`: a `string` with the full date (YYYY-MM-DD) of the speech.
56
- - `year` a `string` with the year (YYYY).
57
- - `text`: a `string` with the full speech of the speaker.
58
- - `translated_text`: a `string` with the translation of the speech in English, if the original is not.
59
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  # Data Instances
62
 
63
- Example of a data instance from the EU Debates dataset:
64
 
65
- ```
66
  {
67
- 'speaker_name': 'Michèle Striffler'
68
- 'speaker_party': 'PPE',
69
- 'speaker_role': 'MEP',
70
- 'debate_title': 'Famine in East Africa (debate)',
71
- 'date': '2011-09-15',
72
- 'year': '2011'
73
- 'text': "Monsieur le Président, Madame le Commissaire, chers collègues, la situation humanitaire sans précédent que connaît la Corne de l'Afrique continue [...]",
74
- 'translated_text': 'Mr. President, Mr. Commissioner, dear colleagues, the unprecedented humanitarian situation of the Horn of Africa continues [...]'}
 
 
75
  }
76
  ```
77
 
78
- # How to use
 
 
 
 
79
 
80
  ```python
 
 
 
 
81
 
 
 
 
 
 
82
  from datasets import load_dataset
83
- eu_debates_dataset = load_dataset('coastalcph/eu_debates', split='train')
84
 
 
 
 
 
 
85
  ```
86
 
87
- # Dataset Statistics
 
 
 
88
 
89
- Distribution of speeches across euro-parties:
90
-
91
- <table>
92
- <tr><td> <b>Euro-party</b> </td> <td> <b>No. of Speeches</b> </td> </tr>
93
- <tr><td>EPP </td> <td> 25,455 (29%)</td> </tr>
94
- <tr><td>S&D </td> <td> 20,042 (23%)</td> </tr>
95
- <tr><td>ALDE </td> <td> 8,946 (10%)</td> </tr>
96
- <tr><td>ECR </td> <td> 7,493 (9%)</td> </tr>
97
- <tr><td>ID </td> <td> 6,970 (8%) </td> </tr>
98
- <tr><td>GUE/NGL </td> <td>6,780 (8%)</td> </tr>
99
- <tr><td>Greens/EFA </td> <td> 6,398 (7%)</td> </tr>
100
- <tr><td>NI </td> <td> 5,127 (6%)</td> </tr>
101
- <tr><td>Total </td> <td> 87,221 </td> </tr>
102
- </table>
103
-
104
-
105
- Distribution of speeches across years and euro-parties:
106
-
107
- <table>
108
- <tr><td><b>Year</b></td><td><b>EPP</b></td><td><b>S&D</b></td><td><b>ALDE</b></td><td><b>ECR</b></td><td><b>ID</b></td><td><b>GUE/NGL</b></td><td><b>Greens/EFA</b></td><td><b>NI</b></td><td><b>Total</b></td></tr>
109
- <tr><td> 2009 </td><td> 748 </td><td> 456 </td><td> 180 </td><td> 138 </td><td> 72 </td><td> 174 </td><td> 113 </td><td> 163 </td><td> 2044 </td></tr>
110
- <tr><td> 2010 </td><td> 3205 </td><td> 1623 </td><td> 616 </td><td> 340 </td><td> 341 </td><td> 529 </td><td> 427 </td><td> 546 </td><td> 7627 </td></tr>
111
- <tr><td> 2011 </td><td> 4479 </td><td> 2509 </td><td> 817 </td><td> 418 </td><td> 761 </td><td> 792 </td><td> 490 </td><td> 614 </td><td> 10880 </td></tr>
112
- <tr><td> 2012 </td><td> 3366 </td><td> 1892 </td><td> 583 </td><td> 419 </td><td> 560 </td><td> 486 </td><td> 351 </td><td> 347 </td><td> 8004 </td></tr>
113
- <tr><td> 2013 </td><td> 724 </td><td> 636 </td><td> 240 </td><td> 175 </td><td> 152 </td><td> 155 </td><td> 170 </td><td> 154 </td><td> 2406 </td></tr>
114
- <tr><td> 2014 </td><td> 578 </td><td> 555 </td><td> 184 </td><td> 180 </td><td> 131 </td><td> 160 </td><td> 144 </td><td> 180 </td><td> 2112 </td></tr>
115
- <tr><td> 2015 </td><td> 978 </td><td> 1029 </td><td> 337 </td><td> 405 </td><td> 398 </td><td> 325 </td><td> 246 </td><td> 240 </td><td> 3958 </td></tr>
116
- <tr><td> 2016 </td><td> 919 </td><td> 972 </td><td> 309 </td><td> 387 </td><td> 457 </td><td> 317 </td><td> 225 </td><td> 151 </td><td> 3737 </td></tr>
117
- <tr><td> 2017 </td><td> 649 </td><td> 766 </td><td> 181 </td><td> 288 </td><td> 321 </td><td> 229 </td><td> 162 </td><td> 135 </td><td> 2731 </td></tr>
118
- <tr><td> 2018 </td><td> 554 </td><td> 611 </td><td> 161 </td><td> 242 </td><td> 248 </td><td> 175 </td><td> 160 </td><td> 133 </td><td> 2284 </td></tr>
119
- <tr><td> 2019 </td><td> 1296 </td><td> 1339 </td><td> 719 </td><td> 556 </td><td> 513 </td><td> 463 </td><td> 490 </td><td> 353 </td><td> 5729 </td></tr>
120
- <tr><td> 2020 </td><td> 1660 </td><td> 1564 </td><td> 823 </td><td> 828 </td><td> 661 </td><td> 526 </td><td> 604 </td><td> 346 </td><td> 7012 </td></tr>
121
- <tr><td> 2021 </td><td> 2147 </td><td> 2189 </td><td> 1290 </td><td> 1062 </td><td> 909 </td><td> 708 </td><td> 990 </td><td> 625 </td><td> 9920 </td></tr>
122
- <tr><td> 2022 </td><td> 2436 </td><td> 2273 </td><td> 1466 </td><td> 1177 </td><td> 827 </td><td> 962 </td><td> 1031 </td><td> 641 </td><td> 10813 </td></tr>
123
- <tr><td> 2023 </td><td> 1716 </td><td> 1628 </td><td> 1040 </td><td> 878 </td><td> 619 </td><td> 779 </td><td> 795 </td><td> 499 </td><td> 7954 </td></tr>
124
- </table>
125
-
126
- Distribution of speeches across the 23 EU official languages:
127
-
128
- | Language | Examples |
129
- | ----------- | -------- |
130
- | en | 40736 (46.7%) |
131
- | de | 6497 (7.5%) |
132
- | fr | 6024 (6.9%) |
133
- | es | 5172 (5.9%) |
134
- | it | 4506 (5.2%) |
135
- | pl | 3792 (4.4%) |
136
- | pt | 2713 (3.1%) |
137
- | ro | 2308 (2.7%) |
138
- | el | 2290 (2.6%) |
139
- | nl | 2286 (2.6%) |
140
- | hu | 1661 (1.9%) |
141
- | hr | 1509 (1.7%) |
142
- | cs | 1428 (1.6%) |
143
- | sv | 1210 (1.4%) |
144
- | bg | 928 (1.1%) |
145
- | sk | 916 (1.1%) |
146
- | sl | 753 (0.9%) |
147
- | fi | 693 (0.8%) |
148
- | lt | 618 (0.7%) |
149
- | da | 578 (0.7%) |
150
- | et | 342 (0.4%) |
151
- | lv | 184 (0.2%) |
152
- | mt | 0 (0.0%) |
153
 
 
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  # Citation Information
157
 
158
- *[Llama meets EU: Investigating the European political spectrum through the lens of LLMs.
159
- Ilias Chalkidis and Stephanie Brandl.
160
- In the Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL),
161
- Mexico City, Mexico, June 16–21, 2024.](https://arxiv.org/abs/2403.13592)*
162
 
163
- ```
 
 
 
 
 
164
  @inproceedings{chalkidis-and-brandl-eu-llama-2024,
165
  title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs",
166
  author = "Chalkidis, Ilias and Brandl, Stephanie",
@@ -170,5 +212,6 @@ Mexico City, Mexico, June 16–21, 2024.](https://arxiv.org/abs/2403.13592)*
170
  address = "Mexico City, Mexico",
171
  publisher = "Association for Computational Linguistics",
172
  }
 
173
 
174
- ```
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  source_datasets:
4
+ - coastalcph/eu_debates
5
  language_creators:
6
  - found
7
  multilinguality:
 
34
  - politics
35
  size_categories:
36
  - 10K<n<100K
37
+ pretty_name: EU Debates (JSONL Conversion)
38
  ---
39
 
 
40
  # Dataset Description
41
 
42
+ This dataset is a **conversion of the original [`coastalcph/eu_debates`](https://huggingface.co/datasets/coastalcph/eu_debates)** dataset released by [Chalkidis and Brandl (2024)](https://arxiv.org/abs/2403.13592).
43
+
44
+ The goal of this repository is to provide the same underlying data **without a Python loading script**, in a standard format (JSON Lines / Parquet) compatible with the current Hugging Face `datasets` library and automated data loading.
45
+
46
+ The original EU Debates corpus consists of approx. 87k individual speeches in the period 2009–2023.
47
+ The data was exhaustively scraped from the official European Parliament Plenary website ([link](https://www.europarl.europa.eu/)). All speeches are time-stamped, thematically organized in debates, and include metadata about:
48
+
49
+ - the speaker's identity (full name, euro-party affiliation, speaker role),
50
+ - the debate (date and title),
51
+ - language information, and (where available) machine-translated versions in English.
52
+
53
+ Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages. Machine-translated English versions are provided using the EasyNMT framework with the [M2M-100 (418M)](https://huggingface.co/facebook/m2m100_418M) model (Fan et al., 2020).
54
+
55
+ This repository only changes the **storage format** (to `train.jsonl` / Parquet) and **removes the Python loading script**.
56
+ The data contents and fields are preserved from the original dataset.
57
 
58
  # Data Fields
59
 
60
+ Each row / JSONL line is a single speech with the following fields:
 
 
 
 
 
 
 
61
 
62
+ - `speaker_name`: `string`, full name of the speaker.
63
+ - `speaker_party`: `string`, name of the euro-party (group) that the MEP is affiliated with.
64
+ - `speaker_role`: `string`, role of the speaker (e.g., Member of the European Parliament (MEP), EUROPARL President).
65
+ - `debate_title`: `string`, title of the debate in the European Parliament.
66
+ - `date`: `string`, full date of the speech in `YYYY-MM-DD` format.
67
+ - `year`: `string`, year of the speech in `YYYY` format.
68
+ - `intervention_language`: `string`, language code of the original intervention.
69
+ - `original_language`: `string`, language code of the original text.
70
+ - `text`: `string`, full original speech of the speaker.
71
+ - `translated_text`: `string` or `null`, machine translation of the speech into English if the original is not English, otherwise `null`.
72
 
73
  # Data Instances
74
 
75
+ Example of a data instance:
76
 
77
+ ```json
78
  {
79
+ "speaker_name": "Michèle Striffler",
80
+ "speaker_party": "PPE",
81
+ "speaker_role": "MEP",
82
+ "debate_title": "Famine in East Africa (debate)",
83
+ "date": "2011-09-15",
84
+ "year": "2011",
85
+ "intervention_language": "fr",
86
+ "original_language": "fr",
87
+ "text": "Monsieur le Président, Madame le Commissaire, chers collègues, la situation humanitaire sans précédent que connaît la Corne de l'Afrique continue [...]",
88
+ "translated_text": "Mr. President, Mr. Commissioner, dear colleagues, the unprecedented humanitarian situation of the Horn of Africa continues [...]"
89
  }
90
  ```
91
 
92
+ # How to Use
93
+
94
+ ### From the Hugging Face Hub
95
+
96
+ If the dataset is hosted under `RJuro/eu_debates`:
97
 
98
  ```python
99
+ from datasets import load_dataset
100
+
101
+ eu_debates = load_dataset("RJuro/eu_debates", split="train")
102
+ ```
103
 
104
+ ### From Local Files
105
+
106
+ If you downloaded the `train.jsonl` file locally:
107
+
108
+ ```python
109
  from datasets import load_dataset
 
110
 
111
+ eu_debates = load_dataset(
112
+ "json",
113
+ data_files={"train": "train.jsonl"},
114
+ split="train",
115
+ )
116
  ```
117
 
118
+ If you use Parquet instead:
119
+
120
+ ```python
121
+ from datasets import load_dataset
122
 
123
+ eu_debates = load_dataset(
124
+ "parquet",
125
+ data_files={"train": "train.parquet"},
126
+ split="train",
127
+ )
128
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
+ # Dataset Statistics
131
 
132
+ The statistics below are inherited from the original `coastalcph/eu_debates` dataset.
133
+
134
+ ### Distribution of speeches across euro-parties:
135
+
136
+ | Euro-party | No. of Speeches |
137
+ |-------------|-----------------|
138
+ | EPP | 25,455 (29%) |
139
+ | S&D | 20,042 (23%) |
140
+ | ALDE | 8,946 (10%) |
141
+ | ECR | 7,493 (9%) |
142
+ | ID | 6,970 (8%) |
143
+ | GUE/NGL | 6,780 (8%) |
144
+ | Greens/EFA | 6,398 (7%) |
145
+ | NI | 5,127 (6%) |
146
+ | **Total** | **87,221** |
147
+
148
+ ### Distribution of speeches across years and euro-parties:
149
+
150
+ | Year | EPP | S&D | ALDE | ECR | ID | GUE/NGL | Greens/EFA | NI | Total |
151
+ |---|---|---|---|---|---|---|---|---|---|
152
+ | 2009 | 748 | 456 | 180 | 138 | 72 | 174 | 113 | 163 | **2044** |
153
+ | 2010 | 3205 | 1623 | 616 | 340 | 341 | 529 | 427 | 546 | **7627** |
154
+ | 2011 | 4479 | 2509 | 817 | 418 | 761 | 792 | 490 | 614 | **10880** |
155
+ | 2012 | 3366 | 1892 | 583 | 419 | 560 | 486 | 351 | 347 | **8004** |
156
+ | 2013 | 724 | 636 | 240 | 175 | 152 | 155 | 170 | 154 | **2406** |
157
+ | 2014 | 578 | 555 | 184 | 180 | 131 | 160 | 144 | 180 | **2112** |
158
+ | 2015 | 978 | 1029 | 337 | 405 | 398 | 325 | 246 | 240 | **3958** |
159
+ | 2016 | 919 | 972 | 309 | 387 | 457 | 317 | 225 | 151 | **3737** |
160
+ | 2017 | 649 | 766 | 181 | 288 | 321 | 229 | 162 | 135 | **2731** |
161
+ | 2018 | 554 | 611 | 161 | 242 | 248 | 175 | 160 | 133 | **2284** |
162
+ | 2019 | 1296 | 1339 | 719 | 556 | 513 | 463 | 490 | 353 | **5729** |
163
+ | 2020 | 1660 | 1564 | 823 | 828 | 661 | 526 | 604 | 346 | **7012** |
164
+ | 2021 | 2147 | 2189 | 1290 | 1062 | 909 | 708 | 990 | 625 | **9920** |
165
+ | 2022 | 2436 | 2273 | 1466 | 1177 | 827 | 962 | 1031 | 641 | **10813** |
166
+ | 2023 | 1716 | 1628 | 1040 | 878 | 619 | 779 | 795 | 499 | **7954** |
167
+
168
+ ### Distribution of speeches across the 23 EU official languages:
169
+
170
+ | Language | No. of Speeches |
171
+ |----------|-----------------|
172
+ | en | 40,736 (46.7%) |
173
+ | de | 6,497 (7.5%) |
174
+ | fr | 6,024 (6.9%) |
175
+ | es | 5,172 (5.9%) |
176
+ | it | 4,506 (5.2%) |
177
+ | pl | 3,792 (4.4%) |
178
+ | pt | 2,713 (3.1%) |
179
+ | ro | 2,308 (2.7%) |
180
+ | el | 2,290 (2.6%) |
181
+ | nl | 2,286 (2.6%) |
182
+ | hu | 1,661 (1.9%) |
183
+ | hr | 1,509 (1.7%) |
184
+ | cs | 1,428 (1.6%) |
185
+ | sv | 1,210 (1.4%) |
186
+ | bg | 928 (1.1%) |
187
+ | sk | 916 (1.1%) |
188
+ | sl | 753 (0.9%) |
189
+ | fi | 693 (0.8%) |
190
+ | lt | 618 (0.7%) |
191
+ | da | 578 (0.7%) |
192
+ | et | 342 (0.4%) |
193
+ | lv | 184 (0.2%) |
194
+ | mt | 0 (0.0%) |
195
 
196
  # Citation Information
197
 
198
+ If you use this dataset, please cite the original work:
 
 
 
199
 
200
+ > Llama meets EU: Investigating the European political spectrum through the lens of LLMs.
201
+ > Ilias Chalkidis and Stephanie Brandl.
202
+ > In the Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL),
203
+ > Mexico City, Mexico, June 16–21, 2024.
204
+
205
+ ```bibtex
206
  @inproceedings{chalkidis-and-brandl-eu-llama-2024,
207
  title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs",
208
  author = "Chalkidis, Ilias and Brandl, Stephanie",
 
212
  address = "Mexico City, Mexico",
213
  publisher = "Association for Computational Linguistics",
214
  }
215
+ ```
216
 
217
+ This repository only provides a format-converted, script-free version of the original dataset; all credit for data collection and annotation goes to the original authors.
eu_debates.py DELETED
@@ -1,110 +0,0 @@
1
- """EU Debates"""
2
-
3
- import json
4
- import os
5
- import textwrap
6
-
7
- import datasets
8
-
9
-
10
- MAIN_CITATION = """
11
- @inproceedings{chalkidis-and-brandl-eu-llama-2024,
12
- title = "Llama meets EU: Investigating the European political spectrum through the lens of LLMs",
13
- author = "Chalkidis, Ilias and
14
- Stephanie Brandl",
15
- booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
16
- month = jun,
17
- year = "2021",
18
- address = "Mexico City, Mexico",
19
- publisher = "Association for Computational Linguistics",
20
- }
21
- """
22
-
23
- _DESCRIPTION = """
24
- EU Debates is a corpus of parliamentary proceedings (debates) from the EU parliament. The corpus consists of approx. 87k individual speeches in the period 2009-2023.
25
- We exhaustively scrape the data from the official European Parliament Plenary website. All speeches are time-stamped, thematically organized on debates,
26
- and include metadata relevant to the speaker's identity (full name, euro-party affiliation, speaker role), and the debate (date and title).
27
- Older debate speeches are originally in English, while newer ones are linguistically diverse across the 23 official EU languages, thus we also provide machine-translated
28
- versions in English, when official translations are missing.
29
- """
30
- MAIN_PATH = 'https://huggingface.co/datasets/coastalcph/eu_debates/resolve/main'
31
-
32
-
33
- class EUDebatesConfig(datasets.BuilderConfig):
34
- """BuilderConfig for EU Debates"""
35
-
36
- def __init__(
37
- self,
38
- data_url,
39
- citation,
40
- **kwargs,
41
- ):
42
- """BuilderConfig for EU Debates.
43
-
44
- Args:
45
- data_url: `string`, url to download the zip file from
46
- data_file: `string`, filename for data set
47
- **kwargs: keyword arguments forwarded to super.
48
- """
49
- super(EUDebatesConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
50
- self.data_url = data_url
51
- self.citation = citation
52
-
53
-
54
- class EUDebates(datasets.GeneratorBasedBuilder):
55
- """EU Debates. Version 1.0"""
56
-
57
- BUILDER_CONFIGS = [
58
- EUDebatesConfig(
59
- name="eu_debates",
60
- data_url=os.path.join(MAIN_PATH, "eu_debates.zip"),
61
- citation=textwrap.dedent(MAIN_CITATION),
62
- ),
63
- ]
64
-
65
- def _info(self):
66
- features = {"text": datasets.Value("string"),
67
- "translated_text": datasets.Value("string"),
68
- "speaker_party": datasets.Value("string"),
69
- "speaker_role": datasets.Value("string"),
70
- "speaker_name": datasets.Value("string"),
71
- "debate_title": datasets.Value("string"),
72
- "date": datasets.Value("string"),
73
- "year": datasets.Value("string")}
74
- return datasets.DatasetInfo(
75
- description=self.config.description,
76
- features=datasets.Features(features),
77
- homepage='https://www.europarl.europa.eu/',
78
- citation=MAIN_CITATION,
79
- )
80
-
81
- def _split_generators(self, dl_manager):
82
- data_dir = dl_manager.download_and_extract(self.config.data_url)
83
- return [
84
- datasets.SplitGenerator(
85
- name=datasets.Split.TRAIN,
86
- # These kwargs will be passed to _generate_examples
87
- gen_kwargs={
88
- "filepath": os.path.join(data_dir, f"train.jsonl"),
89
- "split": "train",
90
- },
91
- ),
92
- ]
93
-
94
- def _generate_examples(self, filepath, split):
95
- """This function returns the examples."""
96
- with open(filepath, encoding="utf-8") as f:
97
- for id_, row in enumerate(f):
98
- data = json.loads(row)
99
- if data['speaker_role'] == 'MEP':
100
- example = {
101
- "text": data["text"] if 'text' in data else None,
102
- "translated_text": data["translated_text"] if 'translated_text' in data else None,
103
- "speaker_party": data["speaker_party"],
104
- "speaker_role": data["speaker_role"],
105
- "speaker_name": data["speaker_name"],
106
- "debate_title": data["debate_title"],
107
- "date": data["date"],
108
- "year": data["year"]
109
- }
110
- yield id_, example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eu_debates.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:16a1d5d57ac70e4f0b86c8488674ccf571ab2eb2ef0d2d1b575152eb912229a6
3
- size 89476072