import pickle import numpy as np with open("./data_sequence.pkl", 'rb') as f: # with open("./data_sequence_linear.pkl", 'rb') as f: data_csi = pickle.load(f) with open("./gt_data.pkl", 'rb') as f: data_cv = pickle.load(f) data = [] pad = -1000 for k in range(len(data_csi)): csi = data_csi[k] cv = data_cv[k] x = cv['x'] y = cv['y'] img_path = np.array(cv['img_path']) time_cv = cv['timestamp'] print(cv['people_name']) indices = np.argsort(time_cv) x = x[indices] y = y[indices] img_path = img_path[indices] time_cv = time_cv[indices] print(x) print(y) csi_time = csi['global_time'] local_time = csi['time'] magnitude = csi['magnitude'] phase = csi['phase'] people = csi['people'] indices = np.argsort(csi_time) local_time = local_time[indices] magnitude = magnitude[indices] csi_time = csi_time[indices] phase = phase[indices] x_list = [] y_list = [] path_list = [] i = 0 j = 0 print(csi_time) print(time_cv) while csi_time[i] < time_cv[j]: i += 1 x_list.append(pad) y_list.append(pad) path_list.append(pad) # print(len(csi_time)) # print(len(time_cv)) while i < len(csi_time): while csi_time[i] > time_cv[j]: j += 1 if j >= len(time_cv): break if j >= len(time_cv): break x_list.append(x[j]) y_list.append(y[j]) path_list.append(img_path[j]) i += 1 print(len(x_list)) if len(x_list) < len(csi_time): num = len(csi_time) - len(x_list) x_list = x_list + [pad] * num y_list = y_list + [pad] * num path_list = path_list + [pad] * num data.append({ 'magnitude': magnitude, 'phase': phase, 'x': x_list, 'y': y_list, 'img_path': path_list, 'time': local_time, 'people': people }) print(people) print(len(magnitude),len(phase),len(x_list),len(y_list),len(path_list),len(local_time)) output_file = './wiloc.pkl' # output_file = './wiloc_linear.pkl' with open(output_file, 'wb') as f: pickle.dump(data, f)