File size: 8,254 Bytes
4701daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d823377
 
4701daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d823377
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
Minimal example: convert dataset to the LeRobot format.

CLI Example (using the *arrange_flowers* task as an example):
    python convert_libero_to_lerobot.py \
        --repo-name arrange_flowers_repo \
        --raw-dataset /path/to/arrange_flowers \
        --frame-interval 1 \

Notes:
- If you plan to push to the Hugging Face Hub later, handle that outside this script.
"""

import argparse
import json
import shutil
from pathlib import Path
from typing import Any, Dict, List

import cv2
import numpy as np
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset


def load_jsonl(path: Path) -> List[Dict[str, Any]]:
    """Load a JSONL file into a list of dicts."""
    with path.open("r", encoding="utf-8") as f:
        return [json.loads(line) for line in f]


def create_lerobot_dataset(
    repo_name: str,
    robot_type: str,
    fps: float,
    height: int,
    width: int,
) -> LeRobotDataset:
    """
    Create a LeRobot dataset with custom feature schema
    """
    dataset = LeRobotDataset.create(
        repo_id=repo_name,
        robot_type=robot_type,
        fps=fps,
        features={
            "global_image": {
                "dtype": "image",
                "shape": (height, width, 3),
                "names": ["height", "width", "channel"],
            },
            "wrist_image": {
                "dtype": "image",
                "shape": (height, width, 3),
                "names": ["height", "width", "channel"],
            },
            "right_image": {
                "dtype": "image",
                "shape": (height, width, 3),
                "names": ["height", "width", "channel"],
            },
            "state": {
                "dtype": "float32",
                "shape": (7,), # for ee_pose and gripper width
                "names": ["state"],
            },
            "actions": {
                "dtype": "float32",
                "shape": (7,), # for ee_pose and gripper width
                "names": ["actions"],
            },
        },
        image_writer_threads=32,
        image_writer_processes=16,
    )
    return dataset


def process_episode_dir(
    episode_path: Path,
    dataset: LeRobotDataset,
    frame_interval: int,
    prompt: str,
) -> None:
    """
    Process a single episode directory and append frames to the given dataset.

    episode_path : Path
        Episode directory containing `states/states.jsonl` and `videos/*.mp4`.
    dataset : LeRobotDataset
        Target dataset to which frames are added.
    frame_interval : int
        Sampling stride (>=1).
    prompt : str
        Language instruction of this episode.
    """
    # Modify if your dataset consists of bimanual data.
    states_path = episode_path / "states" / "states.jsonl" 
    videos_dir = episode_path / "videos"

    ep_states = load_jsonl(states_path)

    # adjust them to match your dataset’s actual naming.
    wrist_video = cv2.VideoCapture(str(videos_dir / "arm_realsense_rgb.mp4")) 
    global_video = cv2.VideoCapture(str(videos_dir / "global_realsense_rgb.mp4"))
    right_video  = cv2.VideoCapture(str(videos_dir / "right_realsense_rgb.mp4"))

    wrist_frames_count  = int(wrist_video.get(cv2.CAP_PROP_FRAME_COUNT))
    global_frames_count = int(global_video.get(cv2.CAP_PROP_FRAME_COUNT))
    right_frames_count  = int(right_video.get(cv2.CAP_PROP_FRAME_COUNT))
    n_states = len(ep_states)

    # assert all lengths match 
    assert (
        n_states == wrist_frames_count == global_frames_count == right_frames_count
    ), (
        f"Mismatch in episode {episode_path.name}: "
        f"states={n_states}, wrist={wrist_frames_count}, "
        f"global={global_frames_count}, right={right_frames_count}"
    )

    # write frames to the episode of lerobot dataset
    for idx in range(frame_interval, n_states, frame_interval):
        # Build pose
        pose = np.concatenate(
            (np.asarray(ep_states[idx]["end_effector_pose"]), [ep_states[idx]["gripper_width"]])
        )
        last_pose = np.concatenate(
            (np.asarray(ep_states[idx - frame_interval]["end_effector_pose"]),
             [ep_states[idx - frame_interval]["gripper_width"]])
        )

        # Read frames && BGR -> RGB
        # Resize as needed, but update the LeRobot feature shape accordingly.
        _, wrist_image  = wrist_video.read()
        _, global_image = global_video.read()
        _, right_image  = right_video.read()
        
        wrist_image  = cv2.cvtColor(wrist_image,  cv2.COLOR_BGR2RGB)
        global_image = cv2.cvtColor(global_image, cv2.COLOR_BGR2RGB)
        right_image  = cv2.cvtColor(right_image,  cv2.COLOR_BGR2RGB)

        dataset.add_frame(
            {
                "global_image": global_image,
                "wrist_image": wrist_image,
                "right_image": right_image,
                "state": last_pose.astype(np.float32, copy=False),
                "actions": pose.astype(np.float32, copy=False),
            }
        )

    wrist_video.release()
    global_video.release()
    right_video.release()
    dataset.save_episode(task=prompt)


def main(
    repo_name: str,
    raw_dataset: Path,
    frame_interval: int = 1,
    overwrite_repo: bool = False,
) -> None:
    """
    Convert a dataset directory into LeRobot format.

    repo_name : str
        Output repo/dataset name (saved under $LEROBOT_HOME / repo_name).
    raw_dataset : Path
        Path to the raw dataset root directory.
    frame_interval : int, default=1
        Sample every N frames (kept identical).
    overwrite_repo : bool, default=False
        If True, remove the existing dataset directory before writing.
    """
    assert frame_interval >= 1, "frame_interval must be >= 1"

    # overwrite repo
    dst_dir = LEROBOT_HOME / repo_name
    if overwrite_repo and dst_dir.exists():
        print(f"removing existing dataset at {dst_dir}")
        shutil.rmtree(dst_dir)

    # Load task_infos
    task_info_path = raw_dataset / "meta" / "task_info.json"
    with task_info_path.open("r", encoding="utf-8") as f:
        task_info = json.load(f)

    robot_type = task_info["task_desc"]["task_tag"][2]  # "ARX5"
    video_info = task_info["video_info"]
    video_info["width"]  = 640  # TODO: derive from task_info or actual videos
    video_info["height"] = 480
    fps = float(video_info["fps"])

    prompt = task_info["task_desc"]["prompt"]

    # Create dataset, define feature in the form you need.
    # - proprio is stored in `state` and actions in `action`
    # - LeRobot assumes that dtype of image data is `image`
    dataset = create_lerobot_dataset(
        repo_name=repo_name,
        robot_type=robot_type,
        fps=fps,
        height=video_info["height"],
        width=video_info["width"],
    )

    # populate the dataset to lerobot dataset
    data_root = raw_dataset / "data"
    for episode_path in data_root.iterdir():
        if not episode_path.is_dir():
            continue
        print(f"Processing episode: {episode_path.name}")
        process_episode_dir(
            episode_path=episode_path,
            dataset=dataset,
            frame_interval=frame_interval,
            prompt=prompt,
        )
    
    dataset.consolidate(run_compute_stats=False)
    print("Done. Dataset saved to: {dst_dir}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Convert a custom dataset to LeRobot format."
    )
    parser.add_argument(
        "--repo-name",
        required=True,
        help="Name of the output dataset (under $LEROBOT_HOME).",
    )
    parser.add_argument(
        "--raw-dataset",
        required=True,
        type=str,
        help="Path to the raw dataset root.",
    )
    parser.add_argument(
        "--frame-interval",
        type=int,
        default=1,
        help="Sample every N frames. Default: 1",
    )
    parser.add_argument(
        "--overwrite-repo",
        action="store_true",
        help="Remove existing output directory if it exists.",
    )
    args = parser.parse_args()
    
    main(
        repo_name=args.repo_name,
        raw_dataset=Path(args.raw_dataset),
        frame_interval=args.frame_interval,
        overwrite_repo=args.overwrite_repo,
    )