Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
| 1 |
+
<p align="center">
|
| 2 |
+
<img width="700" height="400" src="images/LogoITD.png">
|
| 3 |
+
</p>
|
| 4 |
+
|
| 5 |
+
## Description
|
| 6 |
+
Introduction of new dataset for unsupervised fabric defect detection
|
| 7 |
+
This dataset aims to provide a color dataset with real industrial fabric defect gathered in a visiting machine with several industrial cameras.
|
| 8 |
+
It has been designed with the same nomenclature as MVTEC AD dataset (https://www.mvtec.com/company/research/datasets/mvtec-ad) for unsupervised anomaly detection.
|
| 9 |
+
|
| 10 |
+
<p align="center">
|
| 11 |
+
<img width="700" height="250" src="images/Samples.png">
|
| 12 |
+
</p>
|
| 13 |
+
|
| 14 |
+
<div align="center">
|
| 15 |
+
|
| 16 |
+
| Type | Total | Train(Good) | Test(Good) | Test(Defective) | Sample |
|
| 17 |
+
| :------:|:-----:|:-----:| :------:|:-----:|-----|
|
| 18 |
+
| type1cam1 | 386 | 272 | 28 | 86 | <img src="images/type1cam1.png" alt="" width="150"> |
|
| 19 |
+
| type2cam2 | 257 | 199 | 19 | 39 | <img src="images/type2cam2.png" alt="" width="150">|
|
| 20 |
+
| type3cam1 | 689 | 588 | 54 | 47 | <img src="images/type3cam1.png" alt="" width="150">|
|
| 21 |
+
| type4cam2 | 229 | 199 | 19 | 11 | <img src="images/type4cam2.png" alt="" width="150">|
|
| 22 |
+
| type5cam2 | 298 | 199 | 19 | 80 | <img src="images/type5cam2.png" alt="" width="150">|
|
| 23 |
+
| type6cam2 | 291 | 199 | 19 | 73 | <img src="images/type6cam2.png" alt="" width="150">|
|
| 24 |
+
| type7cam2 | 917 | 711 | 89 | 117 | <img src="images/type7cam2.png" alt="" width="150">|
|
| 25 |
+
| type8cam1 | 868 | 711 | 89 | 68 | <img src="images/type8cam1.png" alt="" width="150">|
|
| 26 |
+
| type9cam2 | 856 | 721 | 86 | 49 | <img src="images/type9cam2.png" alt="" width="150">|
|
| 27 |
+
| type10cam2 | 871 | 717 | 90 | 64 | <img src="images/type10cam2.png" alt="" width="150">|
|
| 28 |
+
|
| 29 |
+
</div>
|
| 30 |
+
|
| 31 |
+
## Download
|
| 32 |
+
|
| 33 |
+
The dataset can be downloaded in google drive with this link : [LINK](https://drive.google.com/drive/folders/1orrMLs0FH4KgEm0vIsneeX3qsvILMh6L?usp=sharing)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Utilisation
|
| 38 |
+
This dataset is designed for unsupervised anomaly detection task but can also be used for domain-generalization approach.
|
| 39 |
+
The nomenclature is designed as :
|
| 40 |
+
<p align="center">
|
| 41 |
+
<img width="550" height="350" src="images/Nomenclature2.png">
|
| 42 |
+
</p>
|
| 43 |
+
|
| 44 |
+
- category/
|
| 45 |
+
- train/
|
| 46 |
+
- good/
|
| 47 |
+
- img1.png
|
| 48 |
+
- ...
|
| 49 |
+
- test/
|
| 50 |
+
- anomaly/
|
| 51 |
+
- img1.png
|
| 52 |
+
- ...
|
| 53 |
+
- good/
|
| 54 |
+
- img1.png
|
| 55 |
+
- ...
|
| 56 |
+
|
| 57 |
+
As in any unsupervised training, train data are defect-free. Defective samples are only in the test set.
|
| 58 |
+
|
| 59 |
+
## Exemples
|
| 60 |
+
|
| 61 |
+
Exemple of defect segmentation obtained with our knowledge distillation-based method
|
| 62 |
+
<p align="center">
|
| 63 |
+
<img width="700" height="250" src="images/DefectITDB.png">
|
| 64 |
+
</p>
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
## Documentation
|
| 68 |
+
|
| 69 |
+
List of articles related to the subject of textile defect detection
|
| 70 |
+
|
| 71 |
+
- **MixedTeacher : Knowledge Distillation for fast inference textural anomaly detection** (https://arxiv.org/abs/2306.09859)
|
| 72 |
+
- **FABLE : Fabric Anomaly Detection Automation Process** (https://arxiv.org/abs/2306.10089)
|
| 73 |
+
- **Exploring Dual Model Knowledge Distillation for Anomaly Detection** (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4493018)
|
| 74 |
+
- **Distillation-based fabric anomaly detection** (https://journals.sagepub.com/doi/abs/10.1177/00405175231206820)(https://arxiv.org/abs/2401.02287)
|
| 75 |
+
## Auteurs
|
| 76 |
+
|
| 77 |
+
- Simon Thomine <sup>1</sup>, PhD student - [@SimonThomine](https://github.com/SimonThomine) - simon.thomine@utt.fr
|
| 78 |
+
- Hichem Snoussi <sup>1</sup>, Full Professor
|
| 79 |
+
|
| 80 |
+
<sup>1</sup> University of Technology of Troyes, France
|
| 81 |
+
|
| 82 |
+
## Citation
|
| 83 |
+
If you use this dataset, please cite
|
| 84 |
+
```
|
| 85 |
+
@inproceedings{Thomine_2023_Knowledge,
|
| 86 |
+
author = {Thomine, Simon and Snoussi, Hichem},
|
| 87 |
+
title = {Distillation-based fabric anomaly detection},
|
| 88 |
+
booktitle = {Textile Research Journal},
|
| 89 |
+
month = {August},
|
| 90 |
+
year = {2023}
|
| 91 |
+
}
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Licence
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
This project is under the MIT license [MIT](https://opensource.org/licenses/MIT).
|
| 98 |
---
|
| 99 |
license: mit
|
| 100 |
---
|