File size: 10,025 Bytes
54d9099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# -*- coding: utf-8 -*-
# Document info
__author__ = 'Andreas Sjölander, Gemini'
__version__ = ['1.0']
__version_date__ = '2025-12-01'
__maintainer__ = 'Andreas Sjölander'
__email__ = 'asjola@kth.se'
"""
1b_histogram_plot.py
This script reads the segmented masks and plots histograms of the defect size
distribution. It generates:
1. Individual plots for all datasets and individual plots for the tunnels
TA, TB, TC.
2. A combined subplot figure comparing TA, TB, and TC.
The user chose which defect that should be plotted.
"""
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from glob import glob
from tqdm import tqdm
# ==========================================
# CONFIGURATION
# ==========================================
# 1. SELECT DEFECT TO PLOT
# Options: 'Crack', 'Water', 'Leaching'
DEFECT_TO_PLOT = 'Crack'
# 2. CLASS DEFINITIONS (Pixel Values)
CLASS_MAP = {
'Crack': 40,
'Water': 160,
'Leaching': 200
}
# ------------------------------------------
# 3. FONT CONFIGURATION (Global)
# ------------------------------------------
FONT_PARAMS = {
'suptitle': 18, # Main title for the combined subplot figure
'title': 16, # Title of individual plots
'label': 14, # X and Y axis labels (e.g. "Frequency")
'ticks': 14, # Numbers on the axes
'legend': 14, # Legend text size
}
# ------------------------------------------
# 4. SETTINGS: INDIVIDUAL PLOTS (One file per tunnel)
# ------------------------------------------
INDIV_X_AXIS_MAX = 15000 # Max pixel area on X-axis
INDIV_Y_AXIS_MAX = 50 # Max frequency on Y-axis
INDIV_BIN_SIZE = 250 # Bin width for single plots
# ------------------------------------------
# 5. SETTINGS: SUBPLOT FIGURE (TA, TB, TC combined)
# ------------------------------------------
SUBPLOT_X_AXIS_MAX = 15000 # Max pixel area on X-axis
SUBPLOT_Y_AXIS_MAX = 70 # Max frequency on Y-axis
SUBPLOT_BIN_SIZE = 400 # Bin width for the comparison plot
# ==========================================
# MAIN SCRIPT
# ==========================================
def run_histogram_analysis():
# --- 1. Setup Paths ---
script_location = os.path.dirname(os.path.abspath(__file__))
root_dir = os.path.dirname(script_location)
mask_folder = os.path.join(root_dir, '3_mask')
output_dir = os.path.join(root_dir, '2_statistics')
# Create output sub-folder for plots to keep it tidy
plot_output_dir = os.path.join(output_dir, 'Plots')
os.makedirs(plot_output_dir, exist_ok=True)
# Get target pixel value
if DEFECT_TO_PLOT not in CLASS_MAP:
print(f"Error: {DEFECT_TO_PLOT} is not in CLASS_MAP. Choose: {list(CLASS_MAP.keys())}")
return
target_value = CLASS_MAP[DEFECT_TO_PLOT]
print(f"--- Configuration ---")
print(f"Target Defect: {DEFECT_TO_PLOT} (Pixel Value: {target_value})")
print(f"Source: {mask_folder}")
print(f"Output: {plot_output_dir}")
print("-" * 30)
# --- 2. Data Collection ---
data_buckets = {
'Total': [],
'TA': [],
'TB': [],
'TC': []
}
# Get files
valid_exts = ['*.jpg', '*.jpeg', '*.png', '*.bmp', '*.tiff']
files = []
for ext in valid_exts:
files.extend(glob(os.path.join(mask_folder, ext)))
if not files:
print("No mask files found.")
return
print("Reading masks and extracting defect sizes...")
for filepath in tqdm(files, unit="mask"):
# Read image using OpenCV (Grayscale)
mask = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
if mask is None:
continue
# Count pixels matching the target value
defect_pixels = np.sum(mask == target_value)
if defect_pixels > 0:
filename = os.path.basename(filepath)
# Add to Total
data_buckets['Total'].append(defect_pixels)
# Add to Sub-dataset buckets
if filename.startswith('TA'):
data_buckets['TA'].append(defect_pixels)
elif filename.startswith('TB'):
data_buckets['TB'].append(defect_pixels)
elif filename.startswith('TC'):
data_buckets['TC'].append(defect_pixels)
print("-" * 30)
# --- 3. Plotting Loop (Individual) ---
print("Generating Individual Plots...")
for dataset_name, values in data_buckets.items():
if not values:
print(f"Skipping {dataset_name}: No defects found.")
continue
plot_single_histogram(
data_values=values,
dataset_name=dataset_name,
defect_type=DEFECT_TO_PLOT,
output_dir=plot_output_dir,
x_max=INDIV_X_AXIS_MAX,
y_max=INDIV_Y_AXIS_MAX,
bin_size=INDIV_BIN_SIZE
)
# --- 4. Plotting Subplots (Combined) ---
print("Generating Comparison Subplots...")
plot_comparison_figure(
data_buckets=data_buckets,
defect_type=DEFECT_TO_PLOT,
output_dir=plot_output_dir,
x_max=SUBPLOT_X_AXIS_MAX,
y_max=SUBPLOT_Y_AXIS_MAX,
bin_size=SUBPLOT_BIN_SIZE
)
print("\nProcessing Complete.")
def plot_single_histogram(data_values, dataset_name, defect_type, output_dir, x_max, y_max, bin_size):
"""
Generates and saves a single histogram.
"""
# Statistics
mean_val = np.mean(data_values)
median_val = np.median(data_values)
max_val = np.max(data_values)
plt.figure(figsize=(8, 6))
# --- Bin Calculation ---
upper_limit = x_max if x_max else max_val
bins = np.arange(0, upper_limit + bin_size, bin_size)
# --- Plotting ---
plt.hist(data_values, bins=bins, color='#1f77b4', edgecolor='black', alpha=0.7)
# Lines for Mean/Median
plt.axvline(mean_val, color='red', linestyle='--', linewidth=2, label=f'Mean: {mean_val:.0f}')
plt.axvline(median_val, color='orange', linestyle='-', linewidth=2, label=f'Median: {median_val:.0f}')
# Labels & Fonts
plt.title(f'{defect_type} Size Distribution: {dataset_name}',
fontsize=FONT_PARAMS['title'], fontweight='bold')
plt.xlabel(f'Defect Area (Pixels)', fontsize=FONT_PARAMS['label'])
plt.ylabel('Frequency (Count)', fontsize=FONT_PARAMS['label'])
plt.xticks(fontsize=FONT_PARAMS['ticks'])
plt.yticks(fontsize=FONT_PARAMS['ticks'])
plt.grid(axis='y', alpha=0.5, linestyle='--')
plt.legend(fontsize=FONT_PARAMS['legend'])
# Axis Limits
if x_max:
plt.xlim(0, x_max)
if y_max:
plt.ylim(0, y_max)
plt.tight_layout()
# --- Save ---
filename = f"Hist_{defect_type}_{dataset_name}.png"
save_path = os.path.join(output_dir, filename)
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
# Save Stats Text
txt_filename = f"Stats_{defect_type}_{dataset_name}.txt"
with open(os.path.join(output_dir, txt_filename), 'w') as f:
f.write(f"Dataset: {dataset_name}\nDefect: {defect_type}\nMean: {mean_val:.2f}\nMedian: {median_val:.2f}\nMax: {max_val}\n")
def plot_comparison_figure(data_buckets, defect_type, output_dir, x_max, y_max, bin_size):
"""
Generates a 1x3 subplot figure comparing TA, TB, and TC.
"""
tunnels = ['TA', 'TB', 'TC']
# Setup Figure (1 row, 3 columns)
fig, axes = plt.subplots(1, 3, figsize=(18, 6), sharey=True)
# Use 'suptitle' from FONT_PARAMS
fig.suptitle(f'{defect_type} Distribution Comparison (Bin Size: {bin_size}px)',
fontsize=FONT_PARAMS['suptitle'], fontweight='bold')
for ax, tunnel in zip(axes, tunnels):
data = data_buckets.get(tunnel, [])
# Handle empty data
if not data:
ax.text(0.5, 0.5, 'No Data', ha='center', va='center', transform=ax.transAxes,
fontsize=FONT_PARAMS['label'])
ax.set_title(f"Tunnel {tunnel}", fontsize=FONT_PARAMS['title'])
continue
# Stats
mean_val = np.mean(data)
median_val = np.median(data)
max_val_local = np.max(data)
# Bins
upper_limit = x_max if x_max else max_val_local
bins = np.arange(0, upper_limit + bin_size, bin_size)
# Plot
ax.hist(data, bins=bins, color='Steelblue', edgecolor='black', alpha=0.7)
# Lines
ax.axvline(mean_val, color='red', linestyle='--', linewidth=2, label=f'Mean: {mean_val:.0f}')
ax.axvline(median_val, color='orange', linestyle='-', linewidth=2, label=f'Median: {median_val:.0f}')
# Formatting with Fonts
ax.set_title(f"Tunnel {tunnel} (n={len(data)})", fontsize=FONT_PARAMS['title'])
ax.set_xlabel('Defect Area (Pixels)', fontsize=FONT_PARAMS['label'])
# Adjust Ticks
ax.tick_params(axis='both', which='major', labelsize=FONT_PARAMS['ticks'])
ax.grid(axis='y', alpha=0.5, linestyle='--')
ax.legend(fontsize=FONT_PARAMS['legend'], loc='upper right')
# Axis Limits
if x_max:
ax.set_xlim(0, x_max)
if y_max:
ax.set_ylim(0, y_max)
# Set Y-label only on the first plot
axes[0].set_ylabel('Frequency (Count)', fontsize=FONT_PARAMS['label'])
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Make space for suptitle
# Save
filename = f"Hist_Comparison_{defect_type}_TA_TB_TC.png"
save_path = os.path.join(output_dir, filename)
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
print(f"Comparison plot saved: {filename}")
if __name__ == "__main__":
run_histogram_analysis() |