ai-tool-pool-jewelry-vision / upload_to_hf.py
Tarunhugging's picture
Duplicate from bzcasper/ai-tool-pool-jewelry-vision
71e72b5 verified
#!/usr/bin/env python3
"""
Upload AI Tool Pool Jewelry Vision dataset to Hugging Face Hub
"""
import os
from huggingface_hub import HfApi, create_repo
from pathlib import Path
def upload_jewelry_dataset():
"""Upload the jewelry vision dataset to Hugging Face Hub"""
# Dataset configuration
dataset_name = "ai-tool-pool-jewelry-vision" # Change this to your desired repo name
# Replace YOUR_USERNAME with your HF username
repo_id = f"bzcasper/{dataset_name}"
# Get current directory (dataset root)
dataset_path = Path(__file__).parent
print(f"Dataset path: {dataset_path}")
print(f"Repository ID: {repo_id}")
# Initialize HF API
api = HfApi()
try:
# Create repository on Hugging Face Hub
print("Creating repository on Hugging Face Hub...")
create_repo(
repo_id=repo_id,
repo_type="dataset",
exist_ok=True,
private=False # Set to True if you want private repo
)
print(f"✅ Repository created: https://huggingface.co/datasets/{repo_id}")
# Upload all files to the repository
print("Uploading dataset files...")
# Upload the README first
api.upload_file(
path_or_fileobj=dataset_path / "README.md",
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset",
)
print("✅ README.md uploaded")
# Upload dataset files by folder
for split_dir in ["train", "test", "valid"]:
split_path = dataset_path / split_dir
if split_path.exists():
print(f"Uploading {split_dir} split...")
api.upload_folder(
folder_path=split_path,
path_in_repo=split_dir,
repo_id=repo_id,
repo_type="dataset",
ignore_patterns=["*.txt"], # Skip tokenization files
)
print(f"✅ {split_dir} split uploaded")
# Upload original README files for reference
for readme_file in ["README.dataset.txt", "README.roboflow.txt"]:
readme_path = dataset_path / readme_file
if readme_path.exists():
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo=readme_file,
repo_id=repo_id,
repo_type="dataset",
)
print(f"✅ {readme_file} uploaded")
print(f"\n🎉 Dataset successfully uploaded!")
print(f"📋 Dataset URL: https://huggingface.co/datasets/{repo_id}")
print(f"📁 Total files uploaded from train, test, and valid splits")
except Exception as e:
print(f"❌ Error uploading dataset: {str(e)}")
print("\nMake sure you:")
print("1. Are logged in: huggingface-cli login")
print("2. Have updated the repo_id with your username")
print("3. Have write permissions to the repository")
if __name__ == "__main__":
upload_jewelry_dataset()