--- language: - en task_categories: - question-answering - summarization - text-generation pretty_name: LoopServe Multi-Turn Dialogue Benchmark tags: - llm - kv_cache configs: - config_name: conversations data_files: conversations.jsonl - config_name: multi_turn_few_shot_learning data_files: multi_turn/few_shot_learning/*.jsonl - config_name: multi_turn_needle_in_haystack data_files: multi_turn/needle_in_haystack/*.jsonl - config_name: multi_turn_question_answering data_files: multi_turn/question_answering/*.jsonl - config_name: multi_turn_summarization data_files: multi_turn/summarization/*.jsonl - config_name: single_turn_few_shot_learning data_files: single_turn/few_shot_learning/*.jsonl - config_name: single_turn_needle_in_haystack data_files: single_turn/needle_in_haystack/*.jsonl - config_name: single_turn_question_answering data_files: single_turn/question_answering/*.jsonl - config_name: single_turn_summarization data_files: single_turn/summarization/*.jsonl --- This repository contains the benchmark datasets proposed in the paper **[LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues](https://huggingface.co/papers/2507.13681)**. The LoopServe benchmark introduces eleven multi-turn datasets designed to evaluate large language models (LLMs) on realistic query positions and conversational dependencies. This is crucial for assessing LLM inference acceleration methods in dynamic, multi-turn dialogue settings common in applications like chatbots and virtual assistants. **Paper:** [LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues](https://huggingface.co/papers/2507.13681) ### Sample Usage You can load different subsets of the dataset using the `load_dataset` function from the `datasets` library. For example, to load the `multi_turn_question_answering` subset: ```python from datasets import load_dataset # Load the multi-turn question-answering subset dataset_qa_multi = load_dataset("MKV_Cache", "multi_turn_question_answering") print(dataset_qa_multi) # Load the single-turn summarization subset dataset_sum_single = load_dataset("MKV_Cache", "single_turn_summarization") print(dataset_sum_single) # Load the base conversations data dataset_conv = load_dataset("MKV_Cache", "conversations") print(dataset_conv) ``` ### Dataset Structure The repository contains the following file structure for the benchmark data: ``` shell . ├── README.md ├── conversations.jsonl ├── multi_turn │ ├── few_shot_learning │ ├── needle_in_haystack │ ├── question_answering │ └── summarization └── single_turn ├── few_shot_learning ├── needle_in_haystack ├── question_answering └── summarization ```