TylerHilbert commited on
Commit
a1ff127
·
1 Parent(s): 0a7ff39

Added unique contributors count

Browse files
Files changed (1) hide show
  1. PyTorchConference2025_GithubRepos.json +640 -133
PyTorchConference2025_GithubRepos.json CHANGED
@@ -5,13 +5,21 @@
5
  "category": "agent",
6
  "github_about_section": "an open source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM",
7
  "homepage_link": "https://block.github.io/goose",
8
- "github_topic_closest_fit": "ai-agents"
 
 
 
 
9
  },
10
  {
11
  "repo_name": "ray",
12
  "repo_link": "https://github.com/ray-project/ray",
13
  "github_about_section": "Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.",
14
- "homepage_link": "https://ray.io"
 
 
 
 
15
  },
16
  {
17
  "repo_name": "flashinfer-bench",
@@ -19,7 +27,11 @@
19
  "category": "benchmark",
20
  "github_about_section": "Building the Virtuous Cycle for AI-driven LLM Systems",
21
  "homepage_link": "https://bench.flashinfer.ai",
22
- "github_topic_closest_fit": "benchmark"
 
 
 
 
23
  },
24
  {
25
  "repo_name": "KernelBench",
@@ -27,7 +39,11 @@
27
  "category": "benchmark",
28
  "github_about_section": "KernelBench: Can LLMs Write GPU Kernels? - Benchmark with Torch -> CUDA problems",
29
  "homepage_link": "https://scalingintelligence.stanford.edu/blogs/kernelbench",
30
- "github_topic_closest_fit": "benchmark"
 
 
 
 
31
  },
32
  {
33
  "repo_name": "SWE-bench",
@@ -35,7 +51,11 @@
35
  "category": "benchmark",
36
  "github_about_section": "SWE-bench: Can Language Models Resolve Real-world Github Issues?",
37
  "homepage_link": "https://swebench.com",
38
- "github_topic_closest_fit": "benchmark"
 
 
 
 
39
  },
40
  {
41
  "repo_name": "terminal-bench",
@@ -43,7 +63,11 @@
43
  "category": "benchmark",
44
  "github_about_section": "A benchmark for LLMs on complicated tasks in the terminal",
45
  "homepage_link": "https://tbench.ai",
46
- "github_topic_closest_fit": "benchmark"
 
 
 
 
47
  },
48
  {
49
  "repo_name": "TritonBench",
@@ -51,21 +75,33 @@
51
  "category": "benchmark",
52
  "github_about_section": "TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators",
53
  "homepage_link": "https://arxiv.org/abs/2502.14752",
54
- "github_topic_closest_fit": "benchmark"
 
 
 
 
55
  },
56
  {
57
  "repo_name": "BitBLAS",
58
  "repo_link": "https://github.com/microsoft/BitBLAS",
59
  "category": "Basic Linear Algebra Subprograms (BLAS)",
60
  "github_about_section": "BitBLAS is a library to support mixed-precision matrix multiplications, especially for quantized LLM deployment.",
61
- "github_topic_closest_fit": "matrix-multiplication"
 
 
 
 
62
  },
63
  {
64
  "repo_name": "hipBLAS",
65
  "repo_link": "https://github.com/ROCm/hipBLAS",
66
  "category": "Basic Linear Algebra Subprograms (BLAS)",
67
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
68
- "github_topic_closest_fit": "matrix-multiplication"
 
 
 
 
69
  },
70
  {
71
  "repo_name": "hipBLASLt",
@@ -73,13 +109,21 @@
73
  "category": "Basic Linear Algebra Subprograms (BLAS)",
74
  "github_about_section": "hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends functionalities beyond a traditional BLAS library",
75
  "homepage_link": "https://rocm.docs.amd.com/projects/hipBLASLt",
76
- "github_topic_closest_fit": "matrix-multiplication"
 
 
 
 
77
  },
78
  {
79
  "repo_name": "AdaptiveCpp",
80
  "repo_link": "https://github.com/AdaptiveCpp/AdaptiveCpp",
81
  "github_about_section": "Compiler for multiple programming models (SYCL, C++ standard parallelism, HIP/CUDA) for CPUs and GPUs from all vendors: The independent, community-driven compiler for C++-based heterogeneous programming models. Lets applications adapt themselves to all the hardware in the system - even at runtime!",
82
- "homepage_link": "https://adaptivecpp.github.io"
 
 
 
 
83
  },
84
  {
85
  "repo_name": "llvm-project",
@@ -87,68 +131,108 @@
87
  "category": "compiler",
88
  "github_about_section": "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.",
89
  "homepage_link": "http://llvm.org",
90
- "github_topic_closest_fit": "compiler"
 
 
 
 
91
  },
92
  {
93
  "repo_name": "numba",
94
  "repo_link": "https://github.com/numba/numba",
95
  "github_about_section": "NumPy aware dynamic Python compiler using LLVM",
96
- "homepage_link": "https://numba.pydata.org"
 
 
 
 
97
  },
98
  {
99
  "repo_name": "nvcc4jupyter",
100
  "repo_link": "https://github.com/andreinechaev/nvcc4jupyter",
101
  "github_about_section": "A plugin for Jupyter Notebook to run CUDA C/C++ code",
102
- "homepage_link": "https://nvcc4jupyter.readthedocs.io"
 
 
 
 
103
  },
104
  {
105
  "repo_name": "CU2CL",
106
  "repo_link": "https://github.com/vtsynergy/CU2CL",
107
  "github_about_section": "A prototype CUDA-to-OpenCL source-to-source translator, built on the Clang compiler framework",
108
  "homepage_link": "http://chrec.cs.vt.edu/cu2cl",
109
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
110
  },
111
  {
112
  "repo_name": "cuda-python",
113
  "repo_link": "https://github.com/NVIDIA/cuda-python",
114
  "github_about_section": "CUDA Python: Performance meets Productivity",
115
  "homepage_link": "https://nvidia.github.io/cuda-python",
116
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
117
  },
118
  {
119
  "repo_name": "OpenCL-SDK",
120
  "repo_link": "https://github.com/KhronosGroup/OpenCL-SDK",
121
  "github_about_section": "OpenCL SDK",
122
  "homepage_link": "https://khronos.org/opencl",
123
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
124
  },
125
  {
126
  "repo_name": "pocl",
127
  "repo_link": "https://github.com/pocl/pocl",
128
  "github_about_section": "pocl - Portable Computing Language",
129
  "homepage_link": "https://portablecl.org",
130
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
131
  },
132
  {
133
  "repo_name": "SYCL-Docs",
134
  "repo_link": "https://github.com/KhronosGroup/SYCL-Docs",
135
  "github_about_section": "SYCL Open Source Specification",
136
  "homepage_link": "https://khronos.org/sycl",
137
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
138
  },
139
  {
140
  "repo_name": "triSYCL",
141
  "repo_link": "https://github.com/triSYCL/triSYCL",
142
  "github_about_section": "Generic system-wide modern C++ for heterogeneous platforms with SYCL from Khronos Group",
143
  "homepage_link": "https://trisycl.github.io/triSYCL/Doxygen/triSYCL/html/index.html",
144
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
145
  },
146
  {
147
  "repo_name": "ZLUDA",
148
  "repo_link": "https://github.com/vosen/ZLUDA",
149
  "github_about_section": "CUDA on non-NVIDIA GPUs",
150
  "homepage_link": "https://vosen.github.io/ZLUDA",
151
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
152
  },
153
  {
154
  "repo_name": "llama.cpp",
@@ -156,7 +240,11 @@
156
  "category": "inference engine",
157
  "github_about_section": "LLM inference in C/C++",
158
  "homepage_link": "https://ggml.ai",
159
- "github_topic_closest_fit": "inference"
 
 
 
 
160
  },
161
  {
162
  "repo_name": "mistral-inference",
@@ -164,7 +252,11 @@
164
  "category": "inference engine",
165
  "github_about_section": "Official inference library for Mistral models",
166
  "homepage_link": "https://mistral.ai",
167
- "github_topic_closest_fit": "inference"
 
 
 
 
168
  },
169
  {
170
  "repo_name": "ollama",
@@ -172,7 +264,11 @@
172
  "category": "inference engine",
173
  "github_about_section": "Get up and running with OpenAI gpt-oss, DeepSeek-R1, Gemma 3 and other models.",
174
  "homepage_link": "https://ollama.com",
175
- "github_topic_closest_fit": "inference"
 
 
 
 
176
  },
177
  {
178
  "repo_name": "sglang",
@@ -180,13 +276,21 @@
180
  "category": "inference engine",
181
  "github_about_section": "SGLang is a fast serving framework for large language models and vision language models.",
182
  "homepage_link": "https://docs.sglang.ai",
183
- "github_topic_closest_fit": "inference"
 
 
 
 
184
  },
185
  {
186
  "repo_name": "TensorRT",
187
  "repo_link": "https://github.com/NVIDIA/TensorRT",
188
  "github_about_section": "NVIDIA TensorRT is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.",
189
- "homepage_link": "https://developer.nvidia.com/tensorrt"
 
 
 
 
190
  },
191
  {
192
  "repo_name": "vllm",
@@ -194,20 +298,32 @@
194
  "category": "inference engine",
195
  "github_about_section": "A high-throughput and memory-efficient inference and serving engine for LLMs",
196
  "homepage_link": "https://docs.vllm.ai",
197
- "github_topic_closest_fit": "inference"
 
 
 
 
198
  },
199
  {
200
  "repo_name": "kernels",
201
  "repo_link": "https://github.com/huggingface/kernels",
202
  "category": "gpu kernels",
203
- "github_about_section": "Load compute kernels from the Hub"
 
 
 
 
204
  },
205
  {
206
  "repo_name": "kernels-community",
207
  "repo_link": "https://github.com/huggingface/kernels-community",
208
  "category": "gpu kernels",
209
  "homepage_link": "https://huggingface.co/kernels-community",
210
- "github_about_section": "Kernel sources for https://huggingface.co/kernels-community"
 
 
 
 
211
  },
212
  {
213
  "repo_name": "Liger-Kernel",
@@ -215,20 +331,32 @@
215
  "category": "kernel examples",
216
  "github_about_section": "Efficient Triton Kernels for LLM Training",
217
  "homepage_link": "https://openreview.net/pdf?id=36SjAIT42G",
218
- "github_topic_closest_fit": "triton"
 
 
 
 
219
  },
220
  {
221
  "repo_name": "quack",
222
  "repo_link": "https://github.com/Dao-AILab/quack",
223
  "category": "kernel examples",
224
- "github_about_section": "A Quirky Assortment of CuTe Kernels"
 
 
 
 
225
  },
226
  {
227
  "repo_name": "reference-kernels",
228
  "repo_link": "https://github.com/gpu-mode/reference-kernels",
229
  "category": "kernel examples",
230
  "github_about_section": "Official Problem Sets / Reference Kernels for the GPU MODE Leaderboard!",
231
- "homepage_link": "https://gpumode.com"
 
 
 
 
232
  },
233
  {
234
  "repo_name": "pytorch",
@@ -236,7 +364,11 @@
236
  "category": "machine learning framework",
237
  "github_about_section": "Tensors and Dynamic neural networks in Python with strong GPU acceleration",
238
  "homepage_link": "https://pytorch.org",
239
- "github_topic_closest_fit": "machine-learning"
 
 
 
 
240
  },
241
  {
242
  "repo_name": "tensorflow",
@@ -244,13 +376,21 @@
244
  "category": "machine learning framework",
245
  "github_about_section": "An Open Source Machine Learning Framework for Everyone",
246
  "homepage_link": "https://tensorflow.org",
247
- "github_topic_closest_fit": "machine-learning"
 
 
 
 
248
  },
249
  {
250
  "repo_name": "torchdendrite",
251
  "repo_link": "https://github.com/sandialabs/torchdendrite",
252
  "category": "machine learning framework",
253
- "github_about_section": "Dendrites for PyTorch and SNNTorch neural networks"
 
 
 
 
254
  },
255
  {
256
  "repo_name": "onnx",
@@ -258,14 +398,22 @@
258
  "category": "machine learning interoperability",
259
  "github_about_section": "Open standard for machine learning interoperability",
260
  "homepage_link": "https://onnx.ai",
261
- "github_topic_closest_fit": "onnx"
 
 
 
 
262
  },
263
  {
264
  "repo_name": "executorch",
265
  "repo_link": "https://github.com/pytorch/executorch",
266
  "category": "model compiler",
267
  "github_about_section": "On-device AI across mobile, embedded and edge for PyTorch",
268
- "homepage_link": "https://executorch.ai"
 
 
 
 
269
  },
270
  {
271
  "repo_name": "cutlass",
@@ -273,7 +421,11 @@
273
  "category": "parallel computing",
274
  "github_about_section": "CUDA Templates and Python DSLs for High-Performance Linear Algebra",
275
  "homepage_link": "https://docs.nvidia.com/cutlass/index.html",
276
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
277
  },
278
  {
279
  "repo_name": "ThunderKittens",
@@ -281,7 +433,11 @@
281
  "category": "parallel computing",
282
  "github_about_section": "Tile primitives for speedy kernels",
283
  "homepage_link": "https://hazyresearch.stanford.edu/blog/2024-10-29-tk2",
284
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
285
  },
286
  {
287
  "repo_name": "helion",
@@ -289,14 +445,22 @@
289
  "category": "parallel computing dsl",
290
  "github_about_section": "A Python-embedded DSL that makes it easy to write fast, scalable ML kernels with minimal boilerplate.",
291
  "homepage_link": "https://helionlang.com",
292
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
293
  },
294
  {
295
  "repo_name": "TileIR",
296
  "repo_link": "https://github.com/microsoft/TileIR",
297
  "category": "parallel computing dsl",
298
  "github_about_section": "TileIR (tile-ir) is a concise domain-specific IR designed to streamline the development of high-performance GPU/CPU kernels (e.g., GEMM, Dequant GEMM, FlashAttention, LinearAttention). By employing a Pythonic syntax with an underlying compiler infrastructure on top of TVM, TileIR allows developers to focus on productivity without sacrificing the low-level optimizations necessary for state-of-the-art performance.",
299
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
300
  },
301
  {
302
  "repo_name": "tilelang",
@@ -304,7 +468,11 @@
304
  "category": "parallel computing dsl",
305
  "github_about_section": "Domain-specific language designed to streamline the development of high-performance GPU/CPU/Accelerators kernels",
306
  "homepage_link": "https://tilelang.com",
307
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
308
  },
309
  {
310
  "repo_name": "triton",
@@ -312,14 +480,22 @@
312
  "category": "parallel computing dsl",
313
  "github_about_section": "Development repository for the Triton language and compiler",
314
  "homepage_link": "https://triton-lang.org",
315
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
316
  },
317
  {
318
  "repo_name": "cupti",
319
  "repo_link": "https://github.com/cwpearson/cupti",
320
  "category": "performance testing",
321
  "github_about_section": "Profile how CUDA applications create and modify data in memory.",
322
- "github_topic_closest_fit": "profiling"
 
 
 
 
323
  },
324
  {
325
  "repo_name": "hatchet",
@@ -327,7 +503,11 @@
327
  "category": "performance testing",
328
  "github_about_section": "Graph-indexed Pandas DataFrames for analyzing hierarchical performance data",
329
  "homepage_link": "https://llnl-hatchet.readthedocs.io",
330
- "github_topic_closest_fit": "profiling"
 
 
 
 
331
  },
332
  {
333
  "repo_name": "intelliperf",
@@ -335,7 +515,11 @@
335
  "category": "performance testing",
336
  "github_about_section": "Automated bottleneck detection and solution orchestration",
337
  "homepage_link": "https://arxiv.org/html/2508.20258v1",
338
- "github_topic_closest_fit": "profiling"
 
 
 
 
339
  },
340
  {
341
  "repo_name": "omnitrace",
@@ -343,7 +527,11 @@
343
  "category": "performance testing",
344
  "github_about_section": "Omnitrace: Application Profiling, Tracing, and Analysis",
345
  "homepage_link": "https://rocm.docs.amd.com/projects/omnitrace",
346
- "github_topic_closest_fit": "profiling"
 
 
 
 
347
  },
348
  {
349
  "repo_name": "jax",
@@ -351,7 +539,11 @@
351
  "category": "scientific computing",
352
  "github_about_section": "Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more",
353
  "homepage_link": "https://docs.jax.dev",
354
- "github_topic_closest_fit": "scientific-computing"
 
 
 
 
355
  },
356
  {
357
  "repo_name": "numpy",
@@ -359,7 +551,11 @@
359
  "category": "scientific computing",
360
  "github_about_section": "The fundamental package for scientific computing with Python.",
361
  "homepage_link": "https://numpy.org",
362
- "github_topic_closest_fit": "scientific-computing"
 
 
 
 
363
  },
364
  {
365
  "repo_name": "scipy",
@@ -367,7 +563,11 @@
367
  "category": "scientific computing",
368
  "github_about_section": "SciPy library main repository",
369
  "homepage_link": "https://scipy.org",
370
- "github_topic_closest_fit": "scientific-computing"
 
 
 
 
371
  },
372
  {
373
  "repo_name": "elasticsearch",
@@ -375,7 +575,11 @@
375
  "category": "search engine",
376
  "github_about_section": "Free and Open Source, Distributed, RESTful Search Engine",
377
  "homepage_link": "https://elastic.co/products/elasticsearch",
378
- "github_topic_closest_fit": "search-engine"
 
 
 
 
379
  },
380
  {
381
  "repo_name": "jupyterlab",
@@ -383,7 +587,11 @@
383
  "category": "user interface",
384
  "github_about_section": "JupyterLab computational environment.",
385
  "homepage_link": "https://jupyterlab.readthedocs.io",
386
- "github_topic_closest_fit": "jupyter"
 
 
 
 
387
  },
388
  {
389
  "repo_name": "milvus",
@@ -391,38 +599,62 @@
391
  "category": "vector database",
392
  "github_about_section": "Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search",
393
  "homepage_link": "https://milvus.io",
394
- "github_topic_closest_fit": "vector-search"
 
 
 
 
395
  },
396
  {
397
  "repo_name": "accelerate",
398
  "repo_link": "https://github.com/huggingface/accelerate",
399
  "github_about_section": "A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support.",
400
- "homepage_link": "https://huggingface.co/docs/accelerate"
 
 
 
 
401
  },
402
  {
403
  "repo_name": "aiter",
404
  "repo_link": "https://github.com/ROCm/aiter",
405
  "github_about_section": "AI Tensor Engine for ROCm",
406
- "homepage_link": "https://rocm.blogs.amd.com/software-tools-optimization/aiter-ai-tensor-engine/README.html"
 
 
 
 
407
  },
408
  {
409
  "repo_name": "ao",
410
  "repo_link": "https://github.com/pytorch/ao",
411
  "github_about_section": "PyTorch native quantization and sparsity for training and inference",
412
  "homepage_link": "https://pytorch.org/ao",
413
- "github_topic_closest_fit": "quantization"
 
 
 
 
414
  },
415
  {
416
  "repo_name": "burn",
417
  "repo_link": "https://github.com/tracel-ai/burn",
418
  "github_about_section": "Burn is a next generation tensor library and Deep Learning Framework that doesn't compromise on flexibility, efficiency and portability.",
419
- "homepage_link": "https://burn.dev"
 
 
 
 
420
  },
421
  {
422
  "repo_name": "ccache",
423
  "repo_link": "https://github.com/ccache/ccache",
424
  "github_about_section": "ccache - a fast compiler cache",
425
- "homepage_link": "https://ccache.dev"
 
 
 
 
426
  },
427
  {
428
  "repo_name": "ComfyUI",
@@ -430,14 +662,22 @@
430
  "category": "user interface",
431
  "github_about_section": "The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.",
432
  "homepage_link": "https://comfy.org",
433
- "github_topic_closest_fit": "stable-diffusion"
 
 
 
 
434
  },
435
  {
436
  "repo_name": "composable_kernel",
437
  "repo_link": "https://github.com/ROCm/composable_kernel",
438
  "category": "gpu kernels",
439
  "github_about_section": "Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators",
440
- "homepage_link": "https://rocm.docs.amd.com/projects/composable_kernel"
 
 
 
 
441
  },
442
  {
443
  "repo_name": "cudnn-frontend",
@@ -445,7 +685,11 @@
445
  "category": "parallel computing",
446
  "github_about_section": "cudnn_frontend provides a c++ wrapper for the cudnn backend API and samples on how to use it",
447
  "homepage_link": "https://developer.nvidia.com/cudnn",
448
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
449
  },
450
  {
451
  "repo_name": "cuJSON",
@@ -453,13 +697,21 @@
453
  "category": "library leveraging parallel compute",
454
  "github_about_section": "cuJSON: A Highly Parallel JSON Parser for GPUs",
455
  "homepage_link": "https://dl.acm.org/doi/10.1145/3760250.3762222",
456
- "github_topic_closest_fit": "json-parser"
 
 
 
 
457
  },
458
  {
459
  "repo_name": "DeepSpeed",
460
  "repo_link": "https://github.com/deepspeedai/DeepSpeed",
461
  "github_about_section": "DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.",
462
- "homepage_link": "https://deepspeed.ai"
 
 
 
 
463
  },
464
  {
465
  "repo_name": "dstack",
@@ -467,7 +719,11 @@
467
  "category": "gpu provisioning and orchestration",
468
  "github_about_section": "dstack is an open-source control plane for running development, training, and inference jobs on GPUs-across hyperscalers, neoclouds, or on-prem.",
469
  "homepage_link": "https://dstack.ai",
470
- "github_topic_closest_fit": "orchestration"
 
 
 
 
471
  },
472
  {
473
  "repo_name": "flashinfer",
@@ -475,7 +731,11 @@
475
  "category": "gpu kernels",
476
  "github_about_section": "FlashInfer: Kernel Library for LLM Serving",
477
  "homepage_link": "https://flashinfer.ai",
478
- "github_topic_closest_fit": "attention"
 
 
 
 
479
  },
480
  {
481
  "repo_name": "FTorch",
@@ -483,32 +743,52 @@
483
  "category": "wrapper",
484
  "github_about_section": "A library for directly calling PyTorch ML models from Fortran.",
485
  "homepage_link": "https://cambridge-iccs.github.io/FTorch",
486
- "github_topic_closest_fit": "machine-learning"
 
 
 
 
487
  },
488
  {
489
  "repo_name": "GEAK-agent",
490
  "repo_link": "https://github.com/AMD-AGI/GEAK-agent",
491
  "category": "agent",
492
  "github_about_section": "It is an LLM-based AI agent, which can write correct and efficient gpu kernels automatically.",
493
- "github_topic_closest_fit": "ai-agents"
 
 
 
 
494
  },
495
  {
496
  "repo_name": "hhvm",
497
  "repo_link": "https://github.com/facebook/hhvm",
498
  "github_about_section": "A virtual machine for executing programs written in Hack.",
499
- "homepage_link": "https://hhvm.com"
 
 
 
 
500
  },
501
  {
502
  "repo_name": "hip",
503
  "repo_link": "https://github.com/ROCm/hip",
504
  "github_about_section": "HIP: C++ Heterogeneous-Compute Interface for Portability",
505
- "homepage_link": "https://rocmdocs.amd.com/projects/HIP"
 
 
 
 
506
  },
507
  {
508
  "repo_name": "hipCUB",
509
  "repo_link": "https://github.com/ROCm/hipCUB",
510
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
511
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
512
  },
513
  {
514
  "repo_name": "IMO2025",
@@ -516,7 +796,11 @@
516
  "category": "formal mathematical reasoning",
517
  "github_about_section": "Harmonic's model Aristotle achieved gold medal performance, solving 5 problems. This repository contains the lean statement files and proofs for Problems 1-5.",
518
  "homepage_link": "https://harmonic.fun",
519
- "github_topic_closest_fit": "lean"
 
 
 
 
520
  },
521
  {
522
  "repo_name": "kubernetes",
@@ -524,7 +808,11 @@
524
  "category": "container orchestration",
525
  "github_about_section": "Production-Grade Container Scheduling and Management",
526
  "homepage_link": "https://kubernetes.io",
527
- "github_topic_closest_fit": "kubernetes"
 
 
 
 
528
  },
529
  {
530
  "repo_name": "lapack",
@@ -532,7 +820,11 @@
532
  "category": "linear algebra",
533
  "github_about_section": "LAPACK is a library of Fortran subroutines for solving the most commonly occurring problems in numerical linear algebra.",
534
  "homepage_link": "https://netlib.org/lapack",
535
- "github_topic_closest_fit": "linear-algebra"
 
 
 
 
536
  },
537
  {
538
  "repo_name": "lean4",
@@ -540,7 +832,11 @@
540
  "category": "theorem prover",
541
  "github_about_section": "Lean 4 programming language and theorem prover",
542
  "homepage_link": "https://lean-lang.org",
543
- "github_topic_closest_fit": "lean"
 
 
 
 
544
  },
545
  {
546
  "repo_name": "letta",
@@ -548,37 +844,61 @@
548
  "category": "agent",
549
  "github_about_section": "Letta is the platform for building stateful agents: open AI with advanced memory that can learn and self-improve over time.",
550
  "homepage_link": "https://docs.letta.com",
551
- "github_topic_closest_fit": "ai-agents"
 
 
 
 
552
  },
553
  {
554
  "repo_name": "lightning-thunder",
555
  "repo_link": "https://github.com/Lightning-AI/lightning-thunder",
556
- "github_about_section": "PyTorch compiler that accelerates training and inference. Get built-in optimizations for performance, memory, parallelism, and easily write your own."
 
 
 
 
557
  },
558
  {
559
  "repo_name": "LMCache",
560
  "repo_link": "https://github.com/LMCache/LMCache",
561
  "github_about_section": "Supercharge Your LLM with the Fastest KV Cache Layer",
562
- "homepage_link": "https://lmcache.ai"
 
 
 
 
563
  },
564
  {
565
  "repo_name": "mcp-agent",
566
  "repo_link": "https://github.com/lastmile-ai/mcp-agent",
567
  "category": "mcp",
568
  "github_about_section": "Build effective agents using Model Context Protocol and simple workflow patterns",
569
- "github_topic_closest_fit": "mcp"
 
 
 
 
570
  },
571
  {
572
  "repo_name": "metaflow",
573
  "repo_link": "https://github.com/Netflix/metaflow",
574
  "github_about_section": "Build, Manage and Deploy AI/ML Systems",
575
- "homepage_link": "https://metaflow.org"
 
 
 
 
576
  },
577
  {
578
  "repo_name": "MIOpen",
579
  "repo_link": "https://github.com/ROCm/MIOpen",
580
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
581
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
582
  },
583
  {
584
  "repo_name": "modelcontextprotocol",
@@ -586,7 +906,11 @@
586
  "category": "mcp",
587
  "github_about_section": "Specification and documentation for the Model Context Protocol",
588
  "homepage_link": "https://modelcontextprotocol.io",
589
- "github_topic_closest_fit": "mcp"
 
 
 
 
590
  },
591
  {
592
  "repo_name": "modular",
@@ -594,143 +918,239 @@
594
  "category": "parallel computing",
595
  "github_about_section": "The Modular Platform (includes MAX & Mojo)",
596
  "homepage_link": "https://docs.modular.com",
597
- "github_topic_closest_fit": "parallel-programming"
 
 
 
 
598
  },
599
  {
600
  "repo_name": "monarch",
601
  "repo_link": "https://github.com/meta-pytorch/monarch",
602
  "github_about_section": "PyTorch Single Controller",
603
- "homepage_link": "https://meta-pytorch.org/monarch"
 
 
 
 
604
  },
605
  {
606
  "repo_name": "Mooncake",
607
  "repo_link": "https://github.com/kvcache-ai/Mooncake",
608
  "github_about_section": "Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.",
609
  "homepage_link": "https://kvcache-ai.github.io/Mooncake",
610
- "github_topic_closest_fit": "inference"
 
 
 
 
611
  },
612
  {
613
  "repo_name": "nccl",
614
  "repo_link": "https://github.com/NVIDIA/nccl",
615
  "github_about_section": "Optimized primitives for collective multi-GPU communication",
616
- "homepage_link": "https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html"
 
 
 
 
617
  },
618
  {
619
  "repo_name": "neuronx-distributed-inference",
620
- "repo_link": "https://github.com/aws-neuron/neuronx-distributed-inference"
 
 
 
 
621
  },
622
  {
623
  "repo_name": "nixl",
624
  "repo_link": "https://github.com/ai-dynamo/nixl",
625
- "github_about_section": "NVIDIA Inference Xfer Library (NIXL)"
 
 
 
 
626
  },
627
  {
628
  "repo_name": "ome",
629
  "repo_link": "https://github.com/sgl-project/ome",
630
  "github_about_section": "OME is a Kubernetes operator for enterprise-grade management and serving of Large Language Models (LLMs)",
631
  "homepage_link": "http://docs.sglang.ai/ome",
632
- "github_topic_closest_fit": "k8s"
 
 
 
 
633
  },
634
  {
635
  "repo_name": "ondemand",
636
  "repo_link": "https://github.com/OSC/ondemand",
637
  "github_about_section": "Supercomputing. Seamlessly. Open, Interactive HPC Via the Web",
638
  "homepage_link": "https://openondemand.org",
639
- "github_topic_closest_fit": "hpc"
 
 
 
 
640
  },
641
  {
642
  "repo_name": "oneDPL",
643
  "repo_link": "https://github.com/uxlfoundation/oneDPL",
644
  "github_about_section": "oneAPI DPC++ Library (oneDPL)",
645
- "homepage_link": "https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html"
 
 
 
 
646
  },
647
  {
648
  "repo_name": "openevolve",
649
  "repo_link": "https://github.com/codelion/openevolve",
650
  "github_about_section": "Open-source implementation of AlphaEvolve",
651
- "github_topic_closest_fit": "genetic-algorithm"
 
 
 
 
652
  },
653
  {
654
  "repo_name": "ort",
655
  "repo_link": "https://github.com/pytorch/ort",
656
- "github_about_section": "Accelerate PyTorch models with ONNX Runtime"
 
 
 
 
657
  },
658
  {
659
  "repo_name": "peft",
660
  "repo_link": "https://github.com/huggingface/peft",
661
  "github_about_section": "PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.",
662
  "homepage_link": "https://huggingface.co/docs/peft",
663
- "github_topic_closest_fit": "lora"
 
 
 
 
664
  },
665
  {
666
  "repo_name": "Primus-Turbo",
667
- "repo_link": "https://github.com/AMD-AGI/Primus-Turbo"
 
 
 
 
668
  },
669
  {
670
  "repo_name": "pybind11",
671
  "repo_link": "https://github.com/pybind/pybind11",
672
  "github_about_section": "Seamless operability between C++11 and Python",
673
  "homepage_link": "https://pybind11.readthedocs.io",
674
- "github_topic_closest_fit": "bindings"
 
 
 
 
675
  },
676
  {
677
  "repo_name": "RaBitQ",
678
  "repo_link": "https://github.com/gaoj0017/RaBitQ",
679
  "github_about_section": "[SIGMOD 2024] RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search",
680
  "homepage_link": "https://github.com/VectorDB-NTU/RaBitQ-Library",
681
- "github_topic_closest_fit": "nearest-neighbor-search"
 
 
 
 
682
  },
683
  {
684
  "repo_name": "rdma-core",
685
  "repo_link": "https://github.com/linux-rdma/rdma-core",
686
- "github_about_section": "RDMA core userspace libraries and daemons"
 
 
 
 
687
  },
688
  {
689
  "repo_name": "rocFFT",
690
  "repo_link": "https://github.com/ROCm/rocFFT",
691
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
692
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
693
  },
694
  {
695
  "repo_name": "ROCm",
696
  "repo_link": "https://github.com/ROCm/ROCm",
697
  "github_about_section": "AMD ROCm Software - GitHub Home",
698
- "homepage_link": "https://rocm.docs.amd.com"
 
 
 
 
699
  },
700
  {
701
  "repo_name": "rocm-systems",
702
  "repo_link": "https://github.com/ROCm/rocm-systems",
703
- "github_about_section": "super repo for rocm systems projects"
 
 
 
 
704
  },
705
  {
706
  "repo_name": "rocPRIM",
707
  "repo_link": "https://github.com/ROCm/rocPRIM",
708
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
709
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
710
  },
711
  {
712
  "repo_name": "rocRAND",
713
  "repo_link": "https://github.com/ROCm/rocRAND",
714
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
715
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
716
  },
717
  {
718
  "repo_name": "rocSOLVER",
719
  "repo_link": "https://github.com/ROCm/rocSOLVER",
720
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
721
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
722
  },
723
  {
724
  "repo_name": "rocSPARSE",
725
  "repo_link": "https://github.com/ROCm/rocSPARSE",
726
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
727
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
728
  },
729
  {
730
  "repo_name": "roctracer",
731
  "repo_link": "https://github.com/ROCm/roctracer",
732
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-systems repo",
733
- "homepage_link": "https://github.com/ROCm/rocm-systems"
 
 
 
 
734
  },
735
  {
736
  "repo_name": "Self-Forcing",
@@ -738,21 +1158,33 @@
738
  "category": "video generation",
739
  "github_about_section": "Official codebase for \"Self Forcing: Bridging Training and Inference in Autoregressive Video Diffusion\" (NeurIPS 2025 Spotlight)",
740
  "homepage_link": "https://self-forcing.github.io",
741
- "github_topic_closest_fit": "diffusion-models"
 
 
 
 
742
  },
743
  {
744
  "repo_name": "server",
745
  "repo_link": "https://github.com/triton-inference-server/server",
746
  "github_about_section": "The Triton Inference Server provides an optimized cloud and edge inferencing solution.",
747
  "homepage_link": "https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html",
748
- "github_topic_closest_fit": "inference"
 
 
 
 
749
  },
750
  {
751
  "repo_name": "spark",
752
  "repo_link": "https://github.com/apache/spark",
753
  "github_about_section": "Apache Spark - A unified analytics engine for large-scale data processing",
754
  "homepage_link": "https://spark.apache.org",
755
- "github_topic_closest_fit": "big-data"
 
 
 
 
756
  },
757
  {
758
  "repo_name": "StreamDiffusion",
@@ -760,7 +1192,11 @@
760
  "category": "image generation",
761
  "github_about_section": "StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation",
762
  "homepage_link": "https://arxiv.org/abs/2312.12491",
763
- "github_topic_closest_fit": "diffusion-models"
 
 
 
 
764
  },
765
  {
766
  "repo_name": "streamv2v",
@@ -768,7 +1204,11 @@
768
  "category": "video generation",
769
  "github_about_section": "Official Pytorch implementation of StreamV2V.",
770
  "homepage_link": "https://jeff-liangf.github.io/projects/streamv2v",
771
- "github_topic_closest_fit": "diffusion-models"
 
 
 
 
772
  },
773
  {
774
  "repo_name": "synthetic-data-kit",
@@ -776,63 +1216,98 @@
776
  "category": "synthetic data generation",
777
  "github_about_section": "Tool for generating high quality Synthetic datasets",
778
  "homepage_link": "https://pypi.org/project/synthetic-data-kit",
779
- "github_topic_closest_fit": "synthetic-dataset-generation"
 
 
 
 
780
  },
781
  {
782
  "repo_name": "Tensile",
783
  "repo_link": "https://github.com/ROCm/Tensile",
784
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
785
- "homepage_link": "https://github.com/ROCm/rocm-libraries"
 
 
 
 
786
  },
787
  {
788
  "repo_name": "tflite-micro",
789
  "repo_link": "https://github.com/tensorflow/tflite-micro",
790
- "github_about_section": "Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors)."
 
 
 
 
791
  },
792
  {
793
  "repo_name": "torchdynamo",
794
  "repo_link": "https://github.com/pytorch/torchdynamo",
795
- "github_about_section": "A Python-level JIT compiler designed to make unmodified PyTorch programs faster."
 
 
 
 
796
  },
797
  {
798
  "repo_name": "torchtitan",
799
  "repo_link": "https://github.com/pytorch/torchtitan",
800
- "github_about_section": "A PyTorch native platform for training generative AI models"
801
- },
802
- {
803
- "repo_name": "torchtitan",
804
- "repo_link": "https://github.com/AMD-AGI/torchtitan",
805
- "github_about_section": "A PyTorch native platform for training generative AI models"
806
  },
807
  {
808
  "repo_name": "transformers",
809
  "repo_link": "https://github.com/huggingface/transformers",
810
  "github_about_section": "Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.",
811
- "homepage_link": "https://huggingface.co/transformers"
 
 
 
 
812
  },
813
  {
814
  "repo_name": "Triton-distributed",
815
  "repo_link": "https://github.com/ByteDance-Seed/Triton-distributed",
816
  "github_about_section": "Distributed Compiler based on Triton for Parallel Systems",
817
- "homepage_link": "https://triton-distributed.readthedocs.io"
 
 
 
 
818
  },
819
  {
820
  "repo_name": "triton-runner",
821
  "repo_link": "https://github.com/toyaix/triton-runner",
822
  "github_about_section": "Multi-Level Triton Runner supporting Python, IR, PTX, and cubin.",
823
- "homepage_link": "https://triton-runner.org"
 
 
 
 
824
  },
825
  {
826
  "repo_name": "tritonparse",
827
  "repo_link": "https://github.com/meta-pytorch/tritonparse",
828
  "github_about_section": "TritonParse: A Compiler Tracer, Visualizer, and Reproducer for Triton Kernels",
829
- "homepage_link": "https://meta-pytorch.org/tritonparse"
 
 
 
 
830
  },
831
  {
832
  "repo_name": "trl",
833
  "repo_link": "https://github.com/huggingface/trl",
834
  "github_about_section": "Train transformer language models with reinforcement learning.",
835
- "homepage_link": "http://hf.co/docs/trl"
 
 
 
 
836
  },
837
  {
838
  "repo_name": "truss",
@@ -840,7 +1315,11 @@
840
  "category": "inference engine",
841
  "github_about_section": "The simplest way to serve AI/ML models in production",
842
  "homepage_link": "https://truss.baseten.co",
843
- "github_topic_closest_fit": "inference"
 
 
 
 
844
  },
845
  {
846
  "repo_name": "unsloth",
@@ -848,7 +1327,11 @@
848
  "category": "fine tuning",
849
  "github_about_section": "Fine-tuning & Reinforcement Learning for LLMs. Train OpenAI gpt-oss, DeepSeek-R1, Qwen3, Gemma 3, TTS 2x faster with 70% less VRAM.",
850
  "homepage_link": "https://docs.unsloth.ai",
851
- "github_topic_closest_fit": "fine-tuning"
 
 
 
 
852
  },
853
  {
854
  "repo_name": "verl",
@@ -856,7 +1339,11 @@
856
  "category": "reinforcement learning",
857
  "github_about_section": "verl: Volcano Engine Reinforcement Learning for LLMs",
858
  "homepage_link": "https://verl.readthedocs.io",
859
- "github_topic_closest_fit": "deep-reinforcement-learning"
 
 
 
 
860
  },
861
  {
862
  "repo_name": "Vulkan-Hpp",
@@ -864,7 +1351,11 @@
864
  "category": "graphics api",
865
  "github_about_section": "Open-Source Vulkan C++ API",
866
  "homepage_link": "https://vulkan.org",
867
- "github_topic_closest_fit": "vulkan"
 
 
 
 
868
  },
869
  {
870
  "repo_name": "Vulkan-Tools",
@@ -872,7 +1363,11 @@
872
  "category": "graphics api",
873
  "github_about_section": "Vulkan Development Tools",
874
  "homepage_link": "https://vulkan.org",
875
- "github_topic_closest_fit": "vulkan"
 
 
 
 
876
  },
877
  {
878
  "repo_name": "Vulkan-Docs",
@@ -880,7 +1375,11 @@
880
  "category": "graphics api",
881
  "github_about_section": "The Vulkan API Specification and related tools",
882
  "homepage_link": "https://vulkan.org",
883
- "github_topic_closest_fit": "vulkan"
 
 
 
 
884
  },
885
  {
886
  "repo_name": "Wan2.2",
@@ -888,7 +1387,11 @@
888
  "category": "video generation",
889
  "github_about_section": "Wan: Open and Advanced Large-Scale Video Generative Models",
890
  "homepage_link": "https://wan.video",
891
- "github_topic_closest_fit": "diffusion-models"
 
 
 
 
892
  },
893
  {
894
  "repo_name": "warp",
@@ -896,6 +1399,10 @@
896
  "category": "spatial computing",
897
  "github_about_section": "A Python framework for accelerated simulation, data generation and spatial computing.",
898
  "homepage_link": "https://nvidia.github.io/warp",
899
- "github_topic_closest_fit": "physics-simulation"
 
 
 
 
900
  }
901
  ]
 
5
  "category": "agent",
6
  "github_about_section": "an open source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM",
7
  "homepage_link": "https://block.github.io/goose",
8
+ "github_topic_closest_fit": "ai-agents",
9
+ "contributors_all": "332",
10
+ "contributors_2025": "319",
11
+ "contributors_2024": "32",
12
+ "contributors_2023": "0"
13
  },
14
  {
15
  "repo_name": "ray",
16
  "repo_link": "https://github.com/ray-project/ray",
17
  "github_about_section": "Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.",
18
+ "homepage_link": "https://ray.io",
19
+ "contributors_all": "1381",
20
+ "contributors_2025": "397",
21
+ "contributors_2024": "223",
22
+ "contributors_2023": "230"
23
  },
24
  {
25
  "repo_name": "flashinfer-bench",
 
27
  "category": "benchmark",
28
  "github_about_section": "Building the Virtuous Cycle for AI-driven LLM Systems",
29
  "homepage_link": "https://bench.flashinfer.ai",
30
+ "github_topic_closest_fit": "benchmark",
31
+ "contributors_all": "12",
32
+ "contributors_2025": "11",
33
+ "contributors_2024": "0",
34
+ "contributors_2023": "0"
35
  },
36
  {
37
  "repo_name": "KernelBench",
 
39
  "category": "benchmark",
40
  "github_about_section": "KernelBench: Can LLMs Write GPU Kernels? - Benchmark with Torch -> CUDA problems",
41
  "homepage_link": "https://scalingintelligence.stanford.edu/blogs/kernelbench",
42
+ "github_topic_closest_fit": "benchmark",
43
+ "contributors_all": "19",
44
+ "contributors_2025": "16",
45
+ "contributors_2024": "3",
46
+ "contributors_2023": "0"
47
  },
48
  {
49
  "repo_name": "SWE-bench",
 
51
  "category": "benchmark",
52
  "github_about_section": "SWE-bench: Can Language Models Resolve Real-world Github Issues?",
53
  "homepage_link": "https://swebench.com",
54
+ "github_topic_closest_fit": "benchmark",
55
+ "contributors_all": "66",
56
+ "contributors_2025": "33",
57
+ "contributors_2024": "37",
58
+ "contributors_2023": "9"
59
  },
60
  {
61
  "repo_name": "terminal-bench",
 
63
  "category": "benchmark",
64
  "github_about_section": "A benchmark for LLMs on complicated tasks in the terminal",
65
  "homepage_link": "https://tbench.ai",
66
+ "github_topic_closest_fit": "benchmark",
67
+ "contributors_all": "96",
68
+ "contributors_2025": "96",
69
+ "contributors_2024": "0",
70
+ "contributors_2023": "0"
71
  },
72
  {
73
  "repo_name": "TritonBench",
 
75
  "category": "benchmark",
76
  "github_about_section": "TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators",
77
  "homepage_link": "https://arxiv.org/abs/2502.14752",
78
+ "github_topic_closest_fit": "benchmark",
79
+ "contributors_all": "3",
80
+ "contributors_2025": "3",
81
+ "contributors_2024": "0",
82
+ "contributors_2023": "0"
83
  },
84
  {
85
  "repo_name": "BitBLAS",
86
  "repo_link": "https://github.com/microsoft/BitBLAS",
87
  "category": "Basic Linear Algebra Subprograms (BLAS)",
88
  "github_about_section": "BitBLAS is a library to support mixed-precision matrix multiplications, especially for quantized LLM deployment.",
89
+ "github_topic_closest_fit": "matrix-multiplication",
90
+ "contributors_all": "17",
91
+ "contributors_2025": "5",
92
+ "contributors_2024": "14",
93
+ "contributors_2023": "0"
94
  },
95
  {
96
  "repo_name": "hipBLAS",
97
  "repo_link": "https://github.com/ROCm/hipBLAS",
98
  "category": "Basic Linear Algebra Subprograms (BLAS)",
99
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
100
+ "github_topic_closest_fit": "matrix-multiplication",
101
+ "contributors_all": "72",
102
+ "contributors_2025": "21",
103
+ "contributors_2024": "24",
104
+ "contributors_2023": "14"
105
  },
106
  {
107
  "repo_name": "hipBLASLt",
 
109
  "category": "Basic Linear Algebra Subprograms (BLAS)",
110
  "github_about_section": "hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends functionalities beyond a traditional BLAS library",
111
  "homepage_link": "https://rocm.docs.amd.com/projects/hipBLASLt",
112
+ "github_topic_closest_fit": "matrix-multiplication",
113
+ "contributors_all": "111",
114
+ "contributors_2025": "69",
115
+ "contributors_2024": "70",
116
+ "contributors_2023": "35"
117
  },
118
  {
119
  "repo_name": "AdaptiveCpp",
120
  "repo_link": "https://github.com/AdaptiveCpp/AdaptiveCpp",
121
  "github_about_section": "Compiler for multiple programming models (SYCL, C++ standard parallelism, HIP/CUDA) for CPUs and GPUs from all vendors: The independent, community-driven compiler for C++-based heterogeneous programming models. Lets applications adapt themselves to all the hardware in the system - even at runtime!",
122
+ "homepage_link": "https://adaptivecpp.github.io",
123
+ "contributors_all": "93",
124
+ "contributors_2025": "32",
125
+ "contributors_2024": "32",
126
+ "contributors_2023": "24"
127
  },
128
  {
129
  "repo_name": "llvm-project",
 
131
  "category": "compiler",
132
  "github_about_section": "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.",
133
  "homepage_link": "http://llvm.org",
134
+ "github_topic_closest_fit": "compiler",
135
+ "contributors_all": "6680",
136
+ "contributors_2025": "2378",
137
+ "contributors_2024": "2130",
138
+ "contributors_2023": "1920"
139
  },
140
  {
141
  "repo_name": "numba",
142
  "repo_link": "https://github.com/numba/numba",
143
  "github_about_section": "NumPy aware dynamic Python compiler using LLVM",
144
+ "homepage_link": "https://numba.pydata.org",
145
+ "contributors_all": "430",
146
+ "contributors_2025": "36",
147
+ "contributors_2024": "32",
148
+ "contributors_2023": "55"
149
  },
150
  {
151
  "repo_name": "nvcc4jupyter",
152
  "repo_link": "https://github.com/andreinechaev/nvcc4jupyter",
153
  "github_about_section": "A plugin for Jupyter Notebook to run CUDA C/C++ code",
154
+ "homepage_link": "https://nvcc4jupyter.readthedocs.io",
155
+ "contributors_all": "9",
156
+ "contributors_2025": "0",
157
+ "contributors_2024": "3",
158
+ "contributors_2023": "3"
159
  },
160
  {
161
  "repo_name": "CU2CL",
162
  "repo_link": "https://github.com/vtsynergy/CU2CL",
163
  "github_about_section": "A prototype CUDA-to-OpenCL source-to-source translator, built on the Clang compiler framework",
164
  "homepage_link": "http://chrec.cs.vt.edu/cu2cl",
165
+ "github_topic_closest_fit": "parallel-programming",
166
+ "contributors_all": "3",
167
+ "contributors_2025": "0",
168
+ "contributors_2024": "0",
169
+ "contributors_2023": "0"
170
  },
171
  {
172
  "repo_name": "cuda-python",
173
  "repo_link": "https://github.com/NVIDIA/cuda-python",
174
  "github_about_section": "CUDA Python: Performance meets Productivity",
175
  "homepage_link": "https://nvidia.github.io/cuda-python",
176
+ "github_topic_closest_fit": "parallel-programming",
177
+ "contributors_all": "48",
178
+ "contributors_2025": "41",
179
+ "contributors_2024": "12",
180
+ "contributors_2023": "1"
181
  },
182
  {
183
  "repo_name": "OpenCL-SDK",
184
  "repo_link": "https://github.com/KhronosGroup/OpenCL-SDK",
185
  "github_about_section": "OpenCL SDK",
186
  "homepage_link": "https://khronos.org/opencl",
187
+ "github_topic_closest_fit": "parallel-programming",
188
+ "contributors_all": "25",
189
+ "contributors_2025": "8",
190
+ "contributors_2024": "6",
191
+ "contributors_2023": "9"
192
  },
193
  {
194
  "repo_name": "pocl",
195
  "repo_link": "https://github.com/pocl/pocl",
196
  "github_about_section": "pocl - Portable Computing Language",
197
  "homepage_link": "https://portablecl.org",
198
+ "github_topic_closest_fit": "parallel-programming",
199
+ "contributors_all": "166",
200
+ "contributors_2025": "26",
201
+ "contributors_2024": "27",
202
+ "contributors_2023": "21"
203
  },
204
  {
205
  "repo_name": "SYCL-Docs",
206
  "repo_link": "https://github.com/KhronosGroup/SYCL-Docs",
207
  "github_about_section": "SYCL Open Source Specification",
208
  "homepage_link": "https://khronos.org/sycl",
209
+ "github_topic_closest_fit": "parallel-programming",
210
+ "contributors_all": "67",
211
+ "contributors_2025": "13",
212
+ "contributors_2024": "20",
213
+ "contributors_2023": "27"
214
  },
215
  {
216
  "repo_name": "triSYCL",
217
  "repo_link": "https://github.com/triSYCL/triSYCL",
218
  "github_about_section": "Generic system-wide modern C++ for heterogeneous platforms with SYCL from Khronos Group",
219
  "homepage_link": "https://trisycl.github.io/triSYCL/Doxygen/triSYCL/html/index.html",
220
+ "github_topic_closest_fit": "parallel-programming",
221
+ "contributors_all": "31",
222
+ "contributors_2025": "0",
223
+ "contributors_2024": "1",
224
+ "contributors_2023": "3"
225
  },
226
  {
227
  "repo_name": "ZLUDA",
228
  "repo_link": "https://github.com/vosen/ZLUDA",
229
  "github_about_section": "CUDA on non-NVIDIA GPUs",
230
  "homepage_link": "https://vosen.github.io/ZLUDA",
231
+ "github_topic_closest_fit": "parallel-programming",
232
+ "contributors_all": "15",
233
+ "contributors_2025": "8",
234
+ "contributors_2024": "4",
235
+ "contributors_2023": "0"
236
  },
237
  {
238
  "repo_name": "llama.cpp",
 
240
  "category": "inference engine",
241
  "github_about_section": "LLM inference in C/C++",
242
  "homepage_link": "https://ggml.ai",
243
+ "github_topic_closest_fit": "inference",
244
+ "contributors_all": "1374",
245
+ "contributors_2025": "535",
246
+ "contributors_2024": "575",
247
+ "contributors_2023": "461"
248
  },
249
  {
250
  "repo_name": "mistral-inference",
 
252
  "category": "inference engine",
253
  "github_about_section": "Official inference library for Mistral models",
254
  "homepage_link": "https://mistral.ai",
255
+ "github_topic_closest_fit": "inference",
256
+ "contributors_all": "29",
257
+ "contributors_2025": "2",
258
+ "contributors_2024": "17",
259
+ "contributors_2023": "14"
260
  },
261
  {
262
  "repo_name": "ollama",
 
264
  "category": "inference engine",
265
  "github_about_section": "Get up and running with OpenAI gpt-oss, DeepSeek-R1, Gemma 3 and other models.",
266
  "homepage_link": "https://ollama.com",
267
+ "github_topic_closest_fit": "inference",
268
+ "contributors_all": "574",
269
+ "contributors_2025": "202",
270
+ "contributors_2024": "314",
271
+ "contributors_2023": "97"
272
  },
273
  {
274
  "repo_name": "sglang",
 
276
  "category": "inference engine",
277
  "github_about_section": "SGLang is a fast serving framework for large language models and vision language models.",
278
  "homepage_link": "https://docs.sglang.ai",
279
+ "github_topic_closest_fit": "inference",
280
+ "contributors_all": "937",
281
+ "contributors_2025": "796",
282
+ "contributors_2024": "189",
283
+ "contributors_2023": "1"
284
  },
285
  {
286
  "repo_name": "TensorRT",
287
  "repo_link": "https://github.com/NVIDIA/TensorRT",
288
  "github_about_section": "NVIDIA TensorRT is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.",
289
+ "homepage_link": "https://developer.nvidia.com/tensorrt",
290
+ "contributors_all": "104",
291
+ "contributors_2025": "10",
292
+ "contributors_2024": "18",
293
+ "contributors_2023": "19"
294
  },
295
  {
296
  "repo_name": "vllm",
 
298
  "category": "inference engine",
299
  "github_about_section": "A high-throughput and memory-efficient inference and serving engine for LLMs",
300
  "homepage_link": "https://docs.vllm.ai",
301
+ "github_topic_closest_fit": "inference",
302
+ "contributors_all": "1885",
303
+ "contributors_2025": "1369",
304
+ "contributors_2024": "579",
305
+ "contributors_2023": "145"
306
  },
307
  {
308
  "repo_name": "kernels",
309
  "repo_link": "https://github.com/huggingface/kernels",
310
  "category": "gpu kernels",
311
+ "github_about_section": "Load compute kernels from the Hub",
312
+ "contributors_all": "15",
313
+ "contributors_2025": "14",
314
+ "contributors_2024": "2",
315
+ "contributors_2023": "0"
316
  },
317
  {
318
  "repo_name": "kernels-community",
319
  "repo_link": "https://github.com/huggingface/kernels-community",
320
  "category": "gpu kernels",
321
  "homepage_link": "https://huggingface.co/kernels-community",
322
+ "github_about_section": "Kernel sources for https://huggingface.co/kernels-community",
323
+ "contributors_all": "9",
324
+ "contributors_2025": "9",
325
+ "contributors_2024": "0",
326
+ "contributors_2023": "0"
327
  },
328
  {
329
  "repo_name": "Liger-Kernel",
 
331
  "category": "kernel examples",
332
  "github_about_section": "Efficient Triton Kernels for LLM Training",
333
  "homepage_link": "https://openreview.net/pdf?id=36SjAIT42G",
334
+ "github_topic_closest_fit": "triton",
335
+ "contributors_all": "120",
336
+ "contributors_2025": "78",
337
+ "contributors_2024": "61",
338
+ "contributors_2023": "0"
339
  },
340
  {
341
  "repo_name": "quack",
342
  "repo_link": "https://github.com/Dao-AILab/quack",
343
  "category": "kernel examples",
344
+ "github_about_section": "A Quirky Assortment of CuTe Kernels",
345
+ "contributors_all": "17",
346
+ "contributors_2025": "17",
347
+ "contributors_2024": "0",
348
+ "contributors_2023": "0"
349
  },
350
  {
351
  "repo_name": "reference-kernels",
352
  "repo_link": "https://github.com/gpu-mode/reference-kernels",
353
  "category": "kernel examples",
354
  "github_about_section": "Official Problem Sets / Reference Kernels for the GPU MODE Leaderboard!",
355
+ "homepage_link": "https://gpumode.com",
356
+ "contributors_all": "16",
357
+ "contributors_2025": "16",
358
+ "contributors_2024": "0",
359
+ "contributors_2023": "0"
360
  },
361
  {
362
  "repo_name": "pytorch",
 
364
  "category": "machine learning framework",
365
  "github_about_section": "Tensors and Dynamic neural networks in Python with strong GPU acceleration",
366
  "homepage_link": "https://pytorch.org",
367
+ "github_topic_closest_fit": "machine-learning",
368
+ "contributors_all": "5434",
369
+ "contributors_2025": "1187",
370
+ "contributors_2024": "1090",
371
+ "contributors_2023": "1024"
372
  },
373
  {
374
  "repo_name": "tensorflow",
 
376
  "category": "machine learning framework",
377
  "github_about_section": "An Open Source Machine Learning Framework for Everyone",
378
  "homepage_link": "https://tensorflow.org",
379
+ "github_topic_closest_fit": "machine-learning",
380
+ "contributors_all": "4618",
381
+ "contributors_2025": "500",
382
+ "contributors_2024": "523",
383
+ "contributors_2023": "630"
384
  },
385
  {
386
  "repo_name": "torchdendrite",
387
  "repo_link": "https://github.com/sandialabs/torchdendrite",
388
  "category": "machine learning framework",
389
+ "github_about_section": "Dendrites for PyTorch and SNNTorch neural networks",
390
+ "contributors_all": "2",
391
+ "contributors_2025": "1",
392
+ "contributors_2024": "1",
393
+ "contributors_2023": "0"
394
  },
395
  {
396
  "repo_name": "onnx",
 
398
  "category": "machine learning interoperability",
399
  "github_about_section": "Open standard for machine learning interoperability",
400
  "homepage_link": "https://onnx.ai",
401
+ "github_topic_closest_fit": "onnx",
402
+ "contributors_all": "370",
403
+ "contributors_2025": "56",
404
+ "contributors_2024": "45",
405
+ "contributors_2023": "61"
406
  },
407
  {
408
  "repo_name": "executorch",
409
  "repo_link": "https://github.com/pytorch/executorch",
410
  "category": "model compiler",
411
  "github_about_section": "On-device AI across mobile, embedded and edge for PyTorch",
412
+ "homepage_link": "https://executorch.ai",
413
+ "contributors_all": "437",
414
+ "contributors_2025": "267",
415
+ "contributors_2024": "243",
416
+ "contributors_2023": "77"
417
  },
418
  {
419
  "repo_name": "cutlass",
 
421
  "category": "parallel computing",
422
  "github_about_section": "CUDA Templates and Python DSLs for High-Performance Linear Algebra",
423
  "homepage_link": "https://docs.nvidia.com/cutlass/index.html",
424
+ "github_topic_closest_fit": "parallel-programming",
425
+ "contributors_all": "238",
426
+ "contributors_2025": "94",
427
+ "contributors_2024": "64",
428
+ "contributors_2023": "66"
429
  },
430
  {
431
  "repo_name": "ThunderKittens",
 
433
  "category": "parallel computing",
434
  "github_about_section": "Tile primitives for speedy kernels",
435
  "homepage_link": "https://hazyresearch.stanford.edu/blog/2024-10-29-tk2",
436
+ "github_topic_closest_fit": "parallel-programming",
437
+ "contributors_all": "34",
438
+ "contributors_2025": "29",
439
+ "contributors_2024": "13",
440
+ "contributors_2023": "0"
441
  },
442
  {
443
  "repo_name": "helion",
 
445
  "category": "parallel computing dsl",
446
  "github_about_section": "A Python-embedded DSL that makes it easy to write fast, scalable ML kernels with minimal boilerplate.",
447
  "homepage_link": "https://helionlang.com",
448
+ "github_topic_closest_fit": "parallel-programming",
449
+ "contributors_all": "49",
450
+ "contributors_2025": "49",
451
+ "contributors_2024": "0",
452
+ "contributors_2023": "0"
453
  },
454
  {
455
  "repo_name": "TileIR",
456
  "repo_link": "https://github.com/microsoft/TileIR",
457
  "category": "parallel computing dsl",
458
  "github_about_section": "TileIR (tile-ir) is a concise domain-specific IR designed to streamline the development of high-performance GPU/CPU kernels (e.g., GEMM, Dequant GEMM, FlashAttention, LinearAttention). By employing a Pythonic syntax with an underlying compiler infrastructure on top of TVM, TileIR allows developers to focus on productivity without sacrificing the low-level optimizations necessary for state-of-the-art performance.",
459
+ "github_topic_closest_fit": "parallel-programming",
460
+ "contributors_all": "10",
461
+ "contributors_2025": "10",
462
+ "contributors_2024": "1",
463
+ "contributors_2023": "0"
464
  },
465
  {
466
  "repo_name": "tilelang",
 
468
  "category": "parallel computing dsl",
469
  "github_about_section": "Domain-specific language designed to streamline the development of high-performance GPU/CPU/Accelerators kernels",
470
  "homepage_link": "https://tilelang.com",
471
+ "github_topic_closest_fit": "parallel-programming",
472
+ "contributors_all": "90",
473
+ "contributors_2025": "89",
474
+ "contributors_2024": "1",
475
+ "contributors_2023": "0"
476
  },
477
  {
478
  "repo_name": "triton",
 
480
  "category": "parallel computing dsl",
481
  "github_about_section": "Development repository for the Triton language and compiler",
482
  "homepage_link": "https://triton-lang.org",
483
+ "github_topic_closest_fit": "parallel-programming",
484
+ "contributors_all": "522",
485
+ "contributors_2025": "233",
486
+ "contributors_2024": "206",
487
+ "contributors_2023": "159"
488
  },
489
  {
490
  "repo_name": "cupti",
491
  "repo_link": "https://github.com/cwpearson/cupti",
492
  "category": "performance testing",
493
  "github_about_section": "Profile how CUDA applications create and modify data in memory.",
494
+ "github_topic_closest_fit": "profiling",
495
+ "contributors_all": "1",
496
+ "contributors_2025": "0",
497
+ "contributors_2024": "0",
498
+ "contributors_2023": "0"
499
  },
500
  {
501
  "repo_name": "hatchet",
 
503
  "category": "performance testing",
504
  "github_about_section": "Graph-indexed Pandas DataFrames for analyzing hierarchical performance data",
505
  "homepage_link": "https://llnl-hatchet.readthedocs.io",
506
+ "github_topic_closest_fit": "profiling",
507
+ "contributors_all": "25",
508
+ "contributors_2025": "3",
509
+ "contributors_2024": "6",
510
+ "contributors_2023": "8"
511
  },
512
  {
513
  "repo_name": "intelliperf",
 
515
  "category": "performance testing",
516
  "github_about_section": "Automated bottleneck detection and solution orchestration",
517
  "homepage_link": "https://arxiv.org/html/2508.20258v1",
518
+ "github_topic_closest_fit": "profiling",
519
+ "contributors_all": "7",
520
+ "contributors_2025": "7",
521
+ "contributors_2024": "0",
522
+ "contributors_2023": "0"
523
  },
524
  {
525
  "repo_name": "omnitrace",
 
527
  "category": "performance testing",
528
  "github_about_section": "Omnitrace: Application Profiling, Tracing, and Analysis",
529
  "homepage_link": "https://rocm.docs.amd.com/projects/omnitrace",
530
+ "github_topic_closest_fit": "profiling",
531
+ "contributors_all": "16",
532
+ "contributors_2025": "2",
533
+ "contributors_2024": "12",
534
+ "contributors_2023": "2"
535
  },
536
  {
537
  "repo_name": "jax",
 
539
  "category": "scientific computing",
540
  "github_about_section": "Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more",
541
  "homepage_link": "https://docs.jax.dev",
542
+ "github_topic_closest_fit": "scientific-computing",
543
+ "contributors_all": "997",
544
+ "contributors_2025": "312",
545
+ "contributors_2024": "280",
546
+ "contributors_2023": "202"
547
  },
548
  {
549
  "repo_name": "numpy",
 
551
  "category": "scientific computing",
552
  "github_about_section": "The fundamental package for scientific computing with Python.",
553
  "homepage_link": "https://numpy.org",
554
+ "github_topic_closest_fit": "scientific-computing",
555
+ "contributors_all": "2172",
556
+ "contributors_2025": "235",
557
+ "contributors_2024": "233",
558
+ "contributors_2023": "252"
559
  },
560
  {
561
  "repo_name": "scipy",
 
563
  "category": "scientific computing",
564
  "github_about_section": "SciPy library main repository",
565
  "homepage_link": "https://scipy.org",
566
+ "github_topic_closest_fit": "scientific-computing",
567
+ "contributors_all": "1973",
568
+ "contributors_2025": "210",
569
+ "contributors_2024": "251",
570
+ "contributors_2023": "245"
571
  },
572
  {
573
  "repo_name": "elasticsearch",
 
575
  "category": "search engine",
576
  "github_about_section": "Free and Open Source, Distributed, RESTful Search Engine",
577
  "homepage_link": "https://elastic.co/products/elasticsearch",
578
+ "github_topic_closest_fit": "search-engine",
579
+ "contributors_all": "2297",
580
+ "contributors_2025": "316",
581
+ "contributors_2024": "284",
582
+ "contributors_2023": "270"
583
  },
584
  {
585
  "repo_name": "jupyterlab",
 
587
  "category": "user interface",
588
  "github_about_section": "JupyterLab computational environment.",
589
  "homepage_link": "https://jupyterlab.readthedocs.io",
590
+ "github_topic_closest_fit": "jupyter",
591
+ "contributors_all": "698",
592
+ "contributors_2025": "77",
593
+ "contributors_2024": "85",
594
+ "contributors_2023": "100"
595
  },
596
  {
597
  "repo_name": "milvus",
 
599
  "category": "vector database",
600
  "github_about_section": "Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search",
601
  "homepage_link": "https://milvus.io",
602
+ "github_topic_closest_fit": "vector-search",
603
+ "contributors_all": "387",
604
+ "contributors_2025": "95",
605
+ "contributors_2024": "84",
606
+ "contributors_2023": "72"
607
  },
608
  {
609
  "repo_name": "accelerate",
610
  "repo_link": "https://github.com/huggingface/accelerate",
611
  "github_about_section": "A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support.",
612
+ "homepage_link": "https://huggingface.co/docs/accelerate",
613
+ "contributors_all": "392",
614
+ "contributors_2025": "97",
615
+ "contributors_2024": "124",
616
+ "contributors_2023": "149"
617
  },
618
  {
619
  "repo_name": "aiter",
620
  "repo_link": "https://github.com/ROCm/aiter",
621
  "github_about_section": "AI Tensor Engine for ROCm",
622
+ "homepage_link": "https://rocm.blogs.amd.com/software-tools-optimization/aiter-ai-tensor-engine/README.html",
623
+ "contributors_all": "151",
624
+ "contributors_2025": "145",
625
+ "contributors_2024": "10",
626
+ "contributors_2023": "0"
627
  },
628
  {
629
  "repo_name": "ao",
630
  "repo_link": "https://github.com/pytorch/ao",
631
  "github_about_section": "PyTorch native quantization and sparsity for training and inference",
632
  "homepage_link": "https://pytorch.org/ao",
633
+ "github_topic_closest_fit": "quantization",
634
+ "contributors_all": "178",
635
+ "contributors_2025": "114",
636
+ "contributors_2024": "100",
637
+ "contributors_2023": "5"
638
  },
639
  {
640
  "repo_name": "burn",
641
  "repo_link": "https://github.com/tracel-ai/burn",
642
  "github_about_section": "Burn is a next generation tensor library and Deep Learning Framework that doesn't compromise on flexibility, efficiency and portability.",
643
+ "homepage_link": "https://burn.dev",
644
+ "contributors_all": "237",
645
+ "contributors_2025": "99",
646
+ "contributors_2024": "104",
647
+ "contributors_2023": "62"
648
  },
649
  {
650
  "repo_name": "ccache",
651
  "repo_link": "https://github.com/ccache/ccache",
652
  "github_about_section": "ccache - a fast compiler cache",
653
+ "homepage_link": "https://ccache.dev",
654
+ "contributors_all": "218",
655
+ "contributors_2025": "20",
656
+ "contributors_2024": "28",
657
+ "contributors_2023": "22"
658
  },
659
  {
660
  "repo_name": "ComfyUI",
 
662
  "category": "user interface",
663
  "github_about_section": "The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.",
664
  "homepage_link": "https://comfy.org",
665
+ "github_topic_closest_fit": "stable-diffusion",
666
+ "contributors_all": "278",
667
+ "contributors_2025": "108",
668
+ "contributors_2024": "119",
669
+ "contributors_2023": "94"
670
  },
671
  {
672
  "repo_name": "composable_kernel",
673
  "repo_link": "https://github.com/ROCm/composable_kernel",
674
  "category": "gpu kernels",
675
  "github_about_section": "Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators",
676
+ "homepage_link": "https://rocm.docs.amd.com/projects/composable_kernel",
677
+ "contributors_all": "190",
678
+ "contributors_2025": "140",
679
+ "contributors_2024": "58",
680
+ "contributors_2023": "33"
681
  },
682
  {
683
  "repo_name": "cudnn-frontend",
 
685
  "category": "parallel computing",
686
  "github_about_section": "cudnn_frontend provides a c++ wrapper for the cudnn backend API and samples on how to use it",
687
  "homepage_link": "https://developer.nvidia.com/cudnn",
688
+ "github_topic_closest_fit": "parallel-programming",
689
+ "contributors_all": "12",
690
+ "contributors_2025": "6",
691
+ "contributors_2024": "5",
692
+ "contributors_2023": "1"
693
  },
694
  {
695
  "repo_name": "cuJSON",
 
697
  "category": "library leveraging parallel compute",
698
  "github_about_section": "cuJSON: A Highly Parallel JSON Parser for GPUs",
699
  "homepage_link": "https://dl.acm.org/doi/10.1145/3760250.3762222",
700
+ "github_topic_closest_fit": "json-parser",
701
+ "contributors_all": "2",
702
+ "contributors_2025": "2",
703
+ "contributors_2024": "2",
704
+ "contributors_2023": "0"
705
  },
706
  {
707
  "repo_name": "DeepSpeed",
708
  "repo_link": "https://github.com/deepspeedai/DeepSpeed",
709
  "github_about_section": "DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.",
710
+ "homepage_link": "https://deepspeed.ai",
711
+ "contributors_all": "442",
712
+ "contributors_2025": "96",
713
+ "contributors_2024": "134",
714
+ "contributors_2023": "165"
715
  },
716
  {
717
  "repo_name": "dstack",
 
719
  "category": "gpu provisioning and orchestration",
720
  "github_about_section": "dstack is an open-source control plane for running development, training, and inference jobs on GPUs-across hyperscalers, neoclouds, or on-prem.",
721
  "homepage_link": "https://dstack.ai",
722
+ "github_topic_closest_fit": "orchestration",
723
+ "contributors_all": "69",
724
+ "contributors_2025": "28",
725
+ "contributors_2024": "42",
726
+ "contributors_2023": "14"
727
  },
728
  {
729
  "repo_name": "flashinfer",
 
731
  "category": "gpu kernels",
732
  "github_about_section": "FlashInfer: Kernel Library for LLM Serving",
733
  "homepage_link": "https://flashinfer.ai",
734
+ "github_topic_closest_fit": "attention",
735
+ "contributors_all": "205",
736
+ "contributors_2025": "158",
737
+ "contributors_2024": "50",
738
+ "contributors_2023": "11"
739
  },
740
  {
741
  "repo_name": "FTorch",
 
743
  "category": "wrapper",
744
  "github_about_section": "A library for directly calling PyTorch ML models from Fortran.",
745
  "homepage_link": "https://cambridge-iccs.github.io/FTorch",
746
+ "github_topic_closest_fit": "machine-learning",
747
+ "contributors_all": "20",
748
+ "contributors_2025": "11",
749
+ "contributors_2024": "8",
750
+ "contributors_2023": "9"
751
  },
752
  {
753
  "repo_name": "GEAK-agent",
754
  "repo_link": "https://github.com/AMD-AGI/GEAK-agent",
755
  "category": "agent",
756
  "github_about_section": "It is an LLM-based AI agent, which can write correct and efficient gpu kernels automatically.",
757
+ "github_topic_closest_fit": "ai-agents",
758
+ "contributors_all": "9",
759
+ "contributors_2025": "9",
760
+ "contributors_2024": "0",
761
+ "contributors_2023": "0"
762
  },
763
  {
764
  "repo_name": "hhvm",
765
  "repo_link": "https://github.com/facebook/hhvm",
766
  "github_about_section": "A virtual machine for executing programs written in Hack.",
767
+ "homepage_link": "https://hhvm.com",
768
+ "contributors_all": "2624",
769
+ "contributors_2025": "692",
770
+ "contributors_2024": "648",
771
+ "contributors_2023": "604"
772
  },
773
  {
774
  "repo_name": "hip",
775
  "repo_link": "https://github.com/ROCm/hip",
776
  "github_about_section": "HIP: C++ Heterogeneous-Compute Interface for Portability",
777
+ "homepage_link": "https://rocmdocs.amd.com/projects/HIP",
778
+ "contributors_all": "288",
779
+ "contributors_2025": "46",
780
+ "contributors_2024": "31",
781
+ "contributors_2023": "25"
782
  },
783
  {
784
  "repo_name": "hipCUB",
785
  "repo_link": "https://github.com/ROCm/hipCUB",
786
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
787
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
788
+ "contributors_all": "54",
789
+ "contributors_2025": "10",
790
+ "contributors_2024": "19",
791
+ "contributors_2023": "13"
792
  },
793
  {
794
  "repo_name": "IMO2025",
 
796
  "category": "formal mathematical reasoning",
797
  "github_about_section": "Harmonic's model Aristotle achieved gold medal performance, solving 5 problems. This repository contains the lean statement files and proofs for Problems 1-5.",
798
  "homepage_link": "https://harmonic.fun",
799
+ "github_topic_closest_fit": "lean",
800
+ "contributors_all": "2",
801
+ "contributors_2025": "2",
802
+ "contributors_2024": "0",
803
+ "contributors_2023": "0"
804
  },
805
  {
806
  "repo_name": "kubernetes",
 
808
  "category": "container orchestration",
809
  "github_about_section": "Production-Grade Container Scheduling and Management",
810
  "homepage_link": "https://kubernetes.io",
811
+ "github_topic_closest_fit": "kubernetes",
812
+ "contributors_all": "5041",
813
+ "contributors_2025": "509",
814
+ "contributors_2024": "498",
815
+ "contributors_2023": "565"
816
  },
817
  {
818
  "repo_name": "lapack",
 
820
  "category": "linear algebra",
821
  "github_about_section": "LAPACK is a library of Fortran subroutines for solving the most commonly occurring problems in numerical linear algebra.",
822
  "homepage_link": "https://netlib.org/lapack",
823
+ "github_topic_closest_fit": "linear-algebra",
824
+ "contributors_all": "178",
825
+ "contributors_2025": "20",
826
+ "contributors_2024": "24",
827
+ "contributors_2023": "42"
828
  },
829
  {
830
  "repo_name": "lean4",
 
832
  "category": "theorem prover",
833
  "github_about_section": "Lean 4 programming language and theorem prover",
834
  "homepage_link": "https://lean-lang.org",
835
+ "github_topic_closest_fit": "lean",
836
+ "contributors_all": "278",
837
+ "contributors_2025": "110",
838
+ "contributors_2024": "85",
839
+ "contributors_2023": "64"
840
  },
841
  {
842
  "repo_name": "letta",
 
844
  "category": "agent",
845
  "github_about_section": "Letta is the platform for building stateful agents: open AI with advanced memory that can learn and self-improve over time.",
846
  "homepage_link": "https://docs.letta.com",
847
+ "github_topic_closest_fit": "ai-agents",
848
+ "contributors_all": "157",
849
+ "contributors_2025": "56",
850
+ "contributors_2024": "75",
851
+ "contributors_2023": "47"
852
  },
853
  {
854
  "repo_name": "lightning-thunder",
855
  "repo_link": "https://github.com/Lightning-AI/lightning-thunder",
856
+ "github_about_section": "PyTorch compiler that accelerates training and inference. Get built-in optimizations for performance, memory, parallelism, and easily write your own.",
857
+ "contributors_all": "76",
858
+ "contributors_2025": "44",
859
+ "contributors_2024": "47",
860
+ "contributors_2023": "29"
861
  },
862
  {
863
  "repo_name": "LMCache",
864
  "repo_link": "https://github.com/LMCache/LMCache",
865
  "github_about_section": "Supercharge Your LLM with the Fastest KV Cache Layer",
866
+ "homepage_link": "https://lmcache.ai",
867
+ "contributors_all": "152",
868
+ "contributors_2025": "144",
869
+ "contributors_2024": "18",
870
+ "contributors_2023": "0"
871
  },
872
  {
873
  "repo_name": "mcp-agent",
874
  "repo_link": "https://github.com/lastmile-ai/mcp-agent",
875
  "category": "mcp",
876
  "github_about_section": "Build effective agents using Model Context Protocol and simple workflow patterns",
877
+ "github_topic_closest_fit": "mcp",
878
+ "contributors_all": "63",
879
+ "contributors_2025": "63",
880
+ "contributors_2024": "1",
881
+ "contributors_2023": "0"
882
  },
883
  {
884
  "repo_name": "metaflow",
885
  "repo_link": "https://github.com/Netflix/metaflow",
886
  "github_about_section": "Build, Manage and Deploy AI/ML Systems",
887
+ "homepage_link": "https://metaflow.org",
888
+ "contributors_all": "121",
889
+ "contributors_2025": "37",
890
+ "contributors_2024": "35",
891
+ "contributors_2023": "28"
892
  },
893
  {
894
  "repo_name": "MIOpen",
895
  "repo_link": "https://github.com/ROCm/MIOpen",
896
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
897
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
898
+ "contributors_all": "204",
899
+ "contributors_2025": "47",
900
+ "contributors_2024": "62",
901
+ "contributors_2023": "44"
902
  },
903
  {
904
  "repo_name": "modelcontextprotocol",
 
906
  "category": "mcp",
907
  "github_about_section": "Specification and documentation for the Model Context Protocol",
908
  "homepage_link": "https://modelcontextprotocol.io",
909
+ "github_topic_closest_fit": "mcp",
910
+ "contributors_all": "327",
911
+ "contributors_2025": "298",
912
+ "contributors_2024": "42",
913
+ "contributors_2023": "0"
914
  },
915
  {
916
  "repo_name": "modular",
 
918
  "category": "parallel computing",
919
  "github_about_section": "The Modular Platform (includes MAX & Mojo)",
920
  "homepage_link": "https://docs.modular.com",
921
+ "github_topic_closest_fit": "parallel-programming",
922
+ "contributors_all": "366",
923
+ "contributors_2025": "222",
924
+ "contributors_2024": "205",
925
+ "contributors_2023": "99"
926
  },
927
  {
928
  "repo_name": "monarch",
929
  "repo_link": "https://github.com/meta-pytorch/monarch",
930
  "github_about_section": "PyTorch Single Controller",
931
+ "homepage_link": "https://meta-pytorch.org/monarch",
932
+ "contributors_all": "85",
933
+ "contributors_2025": "85",
934
+ "contributors_2024": "0",
935
+ "contributors_2023": "0"
936
  },
937
  {
938
  "repo_name": "Mooncake",
939
  "repo_link": "https://github.com/kvcache-ai/Mooncake",
940
  "github_about_section": "Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.",
941
  "homepage_link": "https://kvcache-ai.github.io/Mooncake",
942
+ "github_topic_closest_fit": "inference",
943
+ "contributors_all": "138",
944
+ "contributors_2025": "133",
945
+ "contributors_2024": "13",
946
+ "contributors_2023": "0"
947
  },
948
  {
949
  "repo_name": "nccl",
950
  "repo_link": "https://github.com/NVIDIA/nccl",
951
  "github_about_section": "Optimized primitives for collective multi-GPU communication",
952
+ "homepage_link": "https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html",
953
+ "contributors_all": "51",
954
+ "contributors_2025": "7",
955
+ "contributors_2024": "5",
956
+ "contributors_2023": "6"
957
  },
958
  {
959
  "repo_name": "neuronx-distributed-inference",
960
+ "repo_link": "https://github.com/aws-neuron/neuronx-distributed-inference",
961
+ "contributors_all": "11",
962
+ "contributors_2025": "9",
963
+ "contributors_2024": "3",
964
+ "contributors_2023": "0"
965
  },
966
  {
967
  "repo_name": "nixl",
968
  "repo_link": "https://github.com/ai-dynamo/nixl",
969
+ "github_about_section": "NVIDIA Inference Xfer Library (NIXL)",
970
+ "contributors_all": "78",
971
+ "contributors_2025": "78",
972
+ "contributors_2024": "0",
973
+ "contributors_2023": "0"
974
  },
975
  {
976
  "repo_name": "ome",
977
  "repo_link": "https://github.com/sgl-project/ome",
978
  "github_about_section": "OME is a Kubernetes operator for enterprise-grade management and serving of Large Language Models (LLMs)",
979
  "homepage_link": "http://docs.sglang.ai/ome",
980
+ "github_topic_closest_fit": "k8s",
981
+ "contributors_all": "28",
982
+ "contributors_2025": "28",
983
+ "contributors_2024": "0",
984
+ "contributors_2023": "0"
985
  },
986
  {
987
  "repo_name": "ondemand",
988
  "repo_link": "https://github.com/OSC/ondemand",
989
  "github_about_section": "Supercomputing. Seamlessly. Open, Interactive HPC Via the Web",
990
  "homepage_link": "https://openondemand.org",
991
+ "github_topic_closest_fit": "hpc",
992
+ "contributors_all": "117",
993
+ "contributors_2025": "43",
994
+ "contributors_2024": "23",
995
+ "contributors_2023": "21"
996
  },
997
  {
998
  "repo_name": "oneDPL",
999
  "repo_link": "https://github.com/uxlfoundation/oneDPL",
1000
  "github_about_section": "oneAPI DPC++ Library (oneDPL)",
1001
+ "homepage_link": "https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html",
1002
+ "contributors_all": "67",
1003
+ "contributors_2025": "17",
1004
+ "contributors_2024": "29",
1005
+ "contributors_2023": "28"
1006
  },
1007
  {
1008
  "repo_name": "openevolve",
1009
  "repo_link": "https://github.com/codelion/openevolve",
1010
  "github_about_section": "Open-source implementation of AlphaEvolve",
1011
+ "github_topic_closest_fit": "genetic-algorithm",
1012
+ "contributors_all": "46",
1013
+ "contributors_2025": "46",
1014
+ "contributors_2024": "0",
1015
+ "contributors_2023": "0"
1016
  },
1017
  {
1018
  "repo_name": "ort",
1019
  "repo_link": "https://github.com/pytorch/ort",
1020
+ "github_about_section": "Accelerate PyTorch models with ONNX Runtime",
1021
+ "contributors_all": "47",
1022
+ "contributors_2025": "0",
1023
+ "contributors_2024": "7",
1024
+ "contributors_2023": "9"
1025
  },
1026
  {
1027
  "repo_name": "peft",
1028
  "repo_link": "https://github.com/huggingface/peft",
1029
  "github_about_section": "PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.",
1030
  "homepage_link": "https://huggingface.co/docs/peft",
1031
+ "github_topic_closest_fit": "lora",
1032
+ "contributors_all": "272",
1033
+ "contributors_2025": "69",
1034
+ "contributors_2024": "111",
1035
+ "contributors_2023": "115"
1036
  },
1037
  {
1038
  "repo_name": "Primus-Turbo",
1039
+ "repo_link": "https://github.com/AMD-AGI/Primus-Turbo",
1040
+ "contributors_all": "12",
1041
+ "contributors_2025": "12",
1042
+ "contributors_2024": "0",
1043
+ "contributors_2023": "0"
1044
  },
1045
  {
1046
  "repo_name": "pybind11",
1047
  "repo_link": "https://github.com/pybind/pybind11",
1048
  "github_about_section": "Seamless operability between C++11 and Python",
1049
  "homepage_link": "https://pybind11.readthedocs.io",
1050
+ "github_topic_closest_fit": "bindings",
1051
+ "contributors_all": "404",
1052
+ "contributors_2025": "43",
1053
+ "contributors_2024": "45",
1054
+ "contributors_2023": "42"
1055
  },
1056
  {
1057
  "repo_name": "RaBitQ",
1058
  "repo_link": "https://github.com/gaoj0017/RaBitQ",
1059
  "github_about_section": "[SIGMOD 2024] RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search",
1060
  "homepage_link": "https://github.com/VectorDB-NTU/RaBitQ-Library",
1061
+ "github_topic_closest_fit": "nearest-neighbor-search",
1062
+ "contributors_all": "2",
1063
+ "contributors_2025": "2",
1064
+ "contributors_2024": "1",
1065
+ "contributors_2023": "0"
1066
  },
1067
  {
1068
  "repo_name": "rdma-core",
1069
  "repo_link": "https://github.com/linux-rdma/rdma-core",
1070
+ "github_about_section": "RDMA core userspace libraries and daemons",
1071
+ "contributors_all": "437",
1072
+ "contributors_2025": "58",
1073
+ "contributors_2024": "61",
1074
+ "contributors_2023": "66"
1075
  },
1076
  {
1077
  "repo_name": "rocFFT",
1078
  "repo_link": "https://github.com/ROCm/rocFFT",
1079
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1080
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1081
+ "contributors_all": "81",
1082
+ "contributors_2025": "17",
1083
+ "contributors_2024": "20",
1084
+ "contributors_2023": "19"
1085
  },
1086
  {
1087
  "repo_name": "ROCm",
1088
  "repo_link": "https://github.com/ROCm/ROCm",
1089
  "github_about_section": "AMD ROCm Software - GitHub Home",
1090
+ "homepage_link": "https://rocm.docs.amd.com",
1091
+ "contributors_all": "166",
1092
+ "contributors_2025": "67",
1093
+ "contributors_2024": "61",
1094
+ "contributors_2023": "44"
1095
  },
1096
  {
1097
  "repo_name": "rocm-systems",
1098
  "repo_link": "https://github.com/ROCm/rocm-systems",
1099
+ "github_about_section": "super repo for rocm systems projects",
1100
+ "contributors_all": "1032",
1101
+ "contributors_2025": "440",
1102
+ "contributors_2024": "323",
1103
+ "contributors_2023": "204"
1104
  },
1105
  {
1106
  "repo_name": "rocPRIM",
1107
  "repo_link": "https://github.com/ROCm/rocPRIM",
1108
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1109
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1110
+ "contributors_all": "76",
1111
+ "contributors_2025": "12",
1112
+ "contributors_2024": "28",
1113
+ "contributors_2023": "15"
1114
  },
1115
  {
1116
  "repo_name": "rocRAND",
1117
  "repo_link": "https://github.com/ROCm/rocRAND",
1118
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1119
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1120
+ "contributors_all": "85",
1121
+ "contributors_2025": "10",
1122
+ "contributors_2024": "32",
1123
+ "contributors_2023": "26"
1124
  },
1125
  {
1126
  "repo_name": "rocSOLVER",
1127
  "repo_link": "https://github.com/ROCm/rocSOLVER",
1128
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1129
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1130
+ "contributors_all": "59",
1131
+ "contributors_2025": "20",
1132
+ "contributors_2024": "23",
1133
+ "contributors_2023": "15"
1134
  },
1135
  {
1136
  "repo_name": "rocSPARSE",
1137
  "repo_link": "https://github.com/ROCm/rocSPARSE",
1138
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1139
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1140
+ "contributors_all": "65",
1141
+ "contributors_2025": "19",
1142
+ "contributors_2024": "24",
1143
+ "contributors_2023": "18"
1144
  },
1145
  {
1146
  "repo_name": "roctracer",
1147
  "repo_link": "https://github.com/ROCm/roctracer",
1148
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-systems repo",
1149
+ "homepage_link": "https://github.com/ROCm/rocm-systems",
1150
+ "contributors_all": "45",
1151
+ "contributors_2025": "8",
1152
+ "contributors_2024": "11",
1153
+ "contributors_2023": "6"
1154
  },
1155
  {
1156
  "repo_name": "Self-Forcing",
 
1158
  "category": "video generation",
1159
  "github_about_section": "Official codebase for \"Self Forcing: Bridging Training and Inference in Autoregressive Video Diffusion\" (NeurIPS 2025 Spotlight)",
1160
  "homepage_link": "https://self-forcing.github.io",
1161
+ "github_topic_closest_fit": "diffusion-models",
1162
+ "contributors_all": "4",
1163
+ "contributors_2025": "4",
1164
+ "contributors_2024": "0",
1165
+ "contributors_2023": "0"
1166
  },
1167
  {
1168
  "repo_name": "server",
1169
  "repo_link": "https://github.com/triton-inference-server/server",
1170
  "github_about_section": "The Triton Inference Server provides an optimized cloud and edge inferencing solution.",
1171
  "homepage_link": "https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html",
1172
+ "github_topic_closest_fit": "inference",
1173
+ "contributors_all": "147",
1174
+ "contributors_2025": "24",
1175
+ "contributors_2024": "36",
1176
+ "contributors_2023": "34"
1177
  },
1178
  {
1179
  "repo_name": "spark",
1180
  "repo_link": "https://github.com/apache/spark",
1181
  "github_about_section": "Apache Spark - A unified analytics engine for large-scale data processing",
1182
  "homepage_link": "https://spark.apache.org",
1183
+ "github_topic_closest_fit": "big-data",
1184
+ "contributors_all": "3083",
1185
+ "contributors_2025": "322",
1186
+ "contributors_2024": "300",
1187
+ "contributors_2023": "336"
1188
  },
1189
  {
1190
  "repo_name": "StreamDiffusion",
 
1192
  "category": "image generation",
1193
  "github_about_section": "StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation",
1194
  "homepage_link": "https://arxiv.org/abs/2312.12491",
1195
+ "github_topic_closest_fit": "diffusion-models",
1196
+ "contributors_all": "29",
1197
+ "contributors_2025": "0",
1198
+ "contributors_2024": "9",
1199
+ "contributors_2023": "25"
1200
  },
1201
  {
1202
  "repo_name": "streamv2v",
 
1204
  "category": "video generation",
1205
  "github_about_section": "Official Pytorch implementation of StreamV2V.",
1206
  "homepage_link": "https://jeff-liangf.github.io/projects/streamv2v",
1207
+ "github_topic_closest_fit": "diffusion-models",
1208
+ "contributors_all": "7",
1209
+ "contributors_2025": "3",
1210
+ "contributors_2024": "6",
1211
+ "contributors_2023": "0"
1212
  },
1213
  {
1214
  "repo_name": "synthetic-data-kit",
 
1216
  "category": "synthetic data generation",
1217
  "github_about_section": "Tool for generating high quality Synthetic datasets",
1218
  "homepage_link": "https://pypi.org/project/synthetic-data-kit",
1219
+ "github_topic_closest_fit": "synthetic-dataset-generation",
1220
+ "contributors_all": "15",
1221
+ "contributors_2025": "15",
1222
+ "contributors_2024": "0",
1223
+ "contributors_2023": "0"
1224
  },
1225
  {
1226
  "repo_name": "Tensile",
1227
  "repo_link": "https://github.com/ROCm/Tensile",
1228
  "github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
1229
+ "homepage_link": "https://github.com/ROCm/rocm-libraries",
1230
+ "contributors_all": "137",
1231
+ "contributors_2025": "16",
1232
+ "contributors_2024": "25",
1233
+ "contributors_2023": "22"
1234
  },
1235
  {
1236
  "repo_name": "tflite-micro",
1237
  "repo_link": "https://github.com/tensorflow/tflite-micro",
1238
+ "github_about_section": "Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors).",
1239
+ "contributors_all": "111",
1240
+ "contributors_2025": "19",
1241
+ "contributors_2024": "25",
1242
+ "contributors_2023": "31"
1243
  },
1244
  {
1245
  "repo_name": "torchdynamo",
1246
  "repo_link": "https://github.com/pytorch/torchdynamo",
1247
+ "github_about_section": "A Python-level JIT compiler designed to make unmodified PyTorch programs faster.",
1248
+ "contributors_all": "63",
1249
+ "contributors_2025": "0",
1250
+ "contributors_2024": "1",
1251
+ "contributors_2023": "4"
1252
  },
1253
  {
1254
  "repo_name": "torchtitan",
1255
  "repo_link": "https://github.com/pytorch/torchtitan",
1256
+ "github_about_section": "A PyTorch native platform for training generative AI models",
1257
+ "contributors_all": "145",
1258
+ "contributors_2025": "119",
1259
+ "contributors_2024": "43",
1260
+ "contributors_2023": "1"
 
1261
  },
1262
  {
1263
  "repo_name": "transformers",
1264
  "repo_link": "https://github.com/huggingface/transformers",
1265
  "github_about_section": "Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.",
1266
+ "homepage_link": "https://huggingface.co/transformers",
1267
+ "contributors_all": "3582",
1268
+ "contributors_2025": "860",
1269
+ "contributors_2024": "769",
1270
+ "contributors_2023": "758"
1271
  },
1272
  {
1273
  "repo_name": "Triton-distributed",
1274
  "repo_link": "https://github.com/ByteDance-Seed/Triton-distributed",
1275
  "github_about_section": "Distributed Compiler based on Triton for Parallel Systems",
1276
+ "homepage_link": "https://triton-distributed.readthedocs.io",
1277
+ "contributors_all": "30",
1278
+ "contributors_2025": "30",
1279
+ "contributors_2024": "0",
1280
+ "contributors_2023": "0"
1281
  },
1282
  {
1283
  "repo_name": "triton-runner",
1284
  "repo_link": "https://github.com/toyaix/triton-runner",
1285
  "github_about_section": "Multi-Level Triton Runner supporting Python, IR, PTX, and cubin.",
1286
+ "homepage_link": "https://triton-runner.org",
1287
+ "contributors_all": "1",
1288
+ "contributors_2025": "1",
1289
+ "contributors_2024": "0",
1290
+ "contributors_2023": "0"
1291
  },
1292
  {
1293
  "repo_name": "tritonparse",
1294
  "repo_link": "https://github.com/meta-pytorch/tritonparse",
1295
  "github_about_section": "TritonParse: A Compiler Tracer, Visualizer, and Reproducer for Triton Kernels",
1296
+ "homepage_link": "https://meta-pytorch.org/tritonparse",
1297
+ "contributors_all": "15",
1298
+ "contributors_2025": "15",
1299
+ "contributors_2024": "0",
1300
+ "contributors_2023": "0"
1301
  },
1302
  {
1303
  "repo_name": "trl",
1304
  "repo_link": "https://github.com/huggingface/trl",
1305
  "github_about_section": "Train transformer language models with reinforcement learning.",
1306
+ "homepage_link": "http://hf.co/docs/trl",
1307
+ "contributors_all": "433",
1308
+ "contributors_2025": "189",
1309
+ "contributors_2024": "154",
1310
+ "contributors_2023": "122"
1311
  },
1312
  {
1313
  "repo_name": "truss",
 
1315
  "category": "inference engine",
1316
  "github_about_section": "The simplest way to serve AI/ML models in production",
1317
  "homepage_link": "https://truss.baseten.co",
1318
+ "github_topic_closest_fit": "inference",
1319
+ "contributors_all": "72",
1320
+ "contributors_2025": "44",
1321
+ "contributors_2024": "30",
1322
+ "contributors_2023": "21"
1323
  },
1324
  {
1325
  "repo_name": "unsloth",
 
1327
  "category": "fine tuning",
1328
  "github_about_section": "Fine-tuning & Reinforcement Learning for LLMs. Train OpenAI gpt-oss, DeepSeek-R1, Qwen3, Gemma 3, TTS 2x faster with 70% less VRAM.",
1329
  "homepage_link": "https://docs.unsloth.ai",
1330
+ "github_topic_closest_fit": "fine-tuning",
1331
+ "contributors_all": "127",
1332
+ "contributors_2025": "102",
1333
+ "contributors_2024": "27",
1334
+ "contributors_2023": "3"
1335
  },
1336
  {
1337
  "repo_name": "verl",
 
1339
  "category": "reinforcement learning",
1340
  "github_about_section": "verl: Volcano Engine Reinforcement Learning for LLMs",
1341
  "homepage_link": "https://verl.readthedocs.io",
1342
+ "github_topic_closest_fit": "deep-reinforcement-learning",
1343
+ "contributors_all": "462",
1344
+ "contributors_2025": "454",
1345
+ "contributors_2024": "10",
1346
+ "contributors_2023": "0"
1347
  },
1348
  {
1349
  "repo_name": "Vulkan-Hpp",
 
1351
  "category": "graphics api",
1352
  "github_about_section": "Open-Source Vulkan C++ API",
1353
  "homepage_link": "https://vulkan.org",
1354
+ "github_topic_closest_fit": "vulkan",
1355
+ "contributors_all": "102",
1356
+ "contributors_2025": "21",
1357
+ "contributors_2024": "15",
1358
+ "contributors_2023": "15"
1359
  },
1360
  {
1361
  "repo_name": "Vulkan-Tools",
 
1363
  "category": "graphics api",
1364
  "github_about_section": "Vulkan Development Tools",
1365
  "homepage_link": "https://vulkan.org",
1366
+ "github_topic_closest_fit": "vulkan",
1367
+ "contributors_all": "248",
1368
+ "contributors_2025": "20",
1369
+ "contributors_2024": "24",
1370
+ "contributors_2023": "24"
1371
  },
1372
  {
1373
  "repo_name": "Vulkan-Docs",
 
1375
  "category": "graphics api",
1376
  "github_about_section": "The Vulkan API Specification and related tools",
1377
  "homepage_link": "https://vulkan.org",
1378
+ "github_topic_closest_fit": "vulkan",
1379
+ "contributors_all": "141",
1380
+ "contributors_2025": "18",
1381
+ "contributors_2024": "21",
1382
+ "contributors_2023": "34"
1383
  },
1384
  {
1385
  "repo_name": "Wan2.2",
 
1387
  "category": "video generation",
1388
  "github_about_section": "Wan: Open and Advanced Large-Scale Video Generative Models",
1389
  "homepage_link": "https://wan.video",
1390
+ "github_topic_closest_fit": "diffusion-models",
1391
+ "contributors_all": "14",
1392
+ "contributors_2025": "14",
1393
+ "contributors_2024": "0",
1394
+ "contributors_2023": "0"
1395
  },
1396
  {
1397
  "repo_name": "warp",
 
1399
  "category": "spatial computing",
1400
  "github_about_section": "A Python framework for accelerated simulation, data generation and spatial computing.",
1401
  "homepage_link": "https://nvidia.github.io/warp",
1402
+ "github_topic_closest_fit": "physics-simulation",
1403
+ "contributors_all": "79",
1404
+ "contributors_2025": "40",
1405
+ "contributors_2024": "29",
1406
+ "contributors_2023": "17"
1407
  }
1408
  ]