Commit
·
a1ff127
1
Parent(s):
0a7ff39
Added unique contributors count
Browse files- PyTorchConference2025_GithubRepos.json +640 -133
PyTorchConference2025_GithubRepos.json
CHANGED
|
@@ -5,13 +5,21 @@
|
|
| 5 |
"category": "agent",
|
| 6 |
"github_about_section": "an open source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM",
|
| 7 |
"homepage_link": "https://block.github.io/goose",
|
| 8 |
-
"github_topic_closest_fit": "ai-agents"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"repo_name": "ray",
|
| 12 |
"repo_link": "https://github.com/ray-project/ray",
|
| 13 |
"github_about_section": "Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.",
|
| 14 |
-
"homepage_link": "https://ray.io"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
},
|
| 16 |
{
|
| 17 |
"repo_name": "flashinfer-bench",
|
|
@@ -19,7 +27,11 @@
|
|
| 19 |
"category": "benchmark",
|
| 20 |
"github_about_section": "Building the Virtuous Cycle for AI-driven LLM Systems",
|
| 21 |
"homepage_link": "https://bench.flashinfer.ai",
|
| 22 |
-
"github_topic_closest_fit": "benchmark"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
},
|
| 24 |
{
|
| 25 |
"repo_name": "KernelBench",
|
|
@@ -27,7 +39,11 @@
|
|
| 27 |
"category": "benchmark",
|
| 28 |
"github_about_section": "KernelBench: Can LLMs Write GPU Kernels? - Benchmark with Torch -> CUDA problems",
|
| 29 |
"homepage_link": "https://scalingintelligence.stanford.edu/blogs/kernelbench",
|
| 30 |
-
"github_topic_closest_fit": "benchmark"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"repo_name": "SWE-bench",
|
|
@@ -35,7 +51,11 @@
|
|
| 35 |
"category": "benchmark",
|
| 36 |
"github_about_section": "SWE-bench: Can Language Models Resolve Real-world Github Issues?",
|
| 37 |
"homepage_link": "https://swebench.com",
|
| 38 |
-
"github_topic_closest_fit": "benchmark"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
},
|
| 40 |
{
|
| 41 |
"repo_name": "terminal-bench",
|
|
@@ -43,7 +63,11 @@
|
|
| 43 |
"category": "benchmark",
|
| 44 |
"github_about_section": "A benchmark for LLMs on complicated tasks in the terminal",
|
| 45 |
"homepage_link": "https://tbench.ai",
|
| 46 |
-
"github_topic_closest_fit": "benchmark"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
},
|
| 48 |
{
|
| 49 |
"repo_name": "TritonBench",
|
|
@@ -51,21 +75,33 @@
|
|
| 51 |
"category": "benchmark",
|
| 52 |
"github_about_section": "TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators",
|
| 53 |
"homepage_link": "https://arxiv.org/abs/2502.14752",
|
| 54 |
-
"github_topic_closest_fit": "benchmark"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
},
|
| 56 |
{
|
| 57 |
"repo_name": "BitBLAS",
|
| 58 |
"repo_link": "https://github.com/microsoft/BitBLAS",
|
| 59 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 60 |
"github_about_section": "BitBLAS is a library to support mixed-precision matrix multiplications, especially for quantized LLM deployment.",
|
| 61 |
-
"github_topic_closest_fit": "matrix-multiplication"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
},
|
| 63 |
{
|
| 64 |
"repo_name": "hipBLAS",
|
| 65 |
"repo_link": "https://github.com/ROCm/hipBLAS",
|
| 66 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 67 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 68 |
-
"github_topic_closest_fit": "matrix-multiplication"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
},
|
| 70 |
{
|
| 71 |
"repo_name": "hipBLASLt",
|
|
@@ -73,13 +109,21 @@
|
|
| 73 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 74 |
"github_about_section": "hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends functionalities beyond a traditional BLAS library",
|
| 75 |
"homepage_link": "https://rocm.docs.amd.com/projects/hipBLASLt",
|
| 76 |
-
"github_topic_closest_fit": "matrix-multiplication"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"repo_name": "AdaptiveCpp",
|
| 80 |
"repo_link": "https://github.com/AdaptiveCpp/AdaptiveCpp",
|
| 81 |
"github_about_section": "Compiler for multiple programming models (SYCL, C++ standard parallelism, HIP/CUDA) for CPUs and GPUs from all vendors: The independent, community-driven compiler for C++-based heterogeneous programming models. Lets applications adapt themselves to all the hardware in the system - even at runtime!",
|
| 82 |
-
"homepage_link": "https://adaptivecpp.github.io"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
},
|
| 84 |
{
|
| 85 |
"repo_name": "llvm-project",
|
|
@@ -87,68 +131,108 @@
|
|
| 87 |
"category": "compiler",
|
| 88 |
"github_about_section": "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.",
|
| 89 |
"homepage_link": "http://llvm.org",
|
| 90 |
-
"github_topic_closest_fit": "compiler"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
},
|
| 92 |
{
|
| 93 |
"repo_name": "numba",
|
| 94 |
"repo_link": "https://github.com/numba/numba",
|
| 95 |
"github_about_section": "NumPy aware dynamic Python compiler using LLVM",
|
| 96 |
-
"homepage_link": "https://numba.pydata.org"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
},
|
| 98 |
{
|
| 99 |
"repo_name": "nvcc4jupyter",
|
| 100 |
"repo_link": "https://github.com/andreinechaev/nvcc4jupyter",
|
| 101 |
"github_about_section": "A plugin for Jupyter Notebook to run CUDA C/C++ code",
|
| 102 |
-
"homepage_link": "https://nvcc4jupyter.readthedocs.io"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
},
|
| 104 |
{
|
| 105 |
"repo_name": "CU2CL",
|
| 106 |
"repo_link": "https://github.com/vtsynergy/CU2CL",
|
| 107 |
"github_about_section": "A prototype CUDA-to-OpenCL source-to-source translator, built on the Clang compiler framework",
|
| 108 |
"homepage_link": "http://chrec.cs.vt.edu/cu2cl",
|
| 109 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
},
|
| 111 |
{
|
| 112 |
"repo_name": "cuda-python",
|
| 113 |
"repo_link": "https://github.com/NVIDIA/cuda-python",
|
| 114 |
"github_about_section": "CUDA Python: Performance meets Productivity",
|
| 115 |
"homepage_link": "https://nvidia.github.io/cuda-python",
|
| 116 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"repo_name": "OpenCL-SDK",
|
| 120 |
"repo_link": "https://github.com/KhronosGroup/OpenCL-SDK",
|
| 121 |
"github_about_section": "OpenCL SDK",
|
| 122 |
"homepage_link": "https://khronos.org/opencl",
|
| 123 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"repo_name": "pocl",
|
| 127 |
"repo_link": "https://github.com/pocl/pocl",
|
| 128 |
"github_about_section": "pocl - Portable Computing Language",
|
| 129 |
"homepage_link": "https://portablecl.org",
|
| 130 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"repo_name": "SYCL-Docs",
|
| 134 |
"repo_link": "https://github.com/KhronosGroup/SYCL-Docs",
|
| 135 |
"github_about_section": "SYCL Open Source Specification",
|
| 136 |
"homepage_link": "https://khronos.org/sycl",
|
| 137 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
},
|
| 139 |
{
|
| 140 |
"repo_name": "triSYCL",
|
| 141 |
"repo_link": "https://github.com/triSYCL/triSYCL",
|
| 142 |
"github_about_section": "Generic system-wide modern C++ for heterogeneous platforms with SYCL from Khronos Group",
|
| 143 |
"homepage_link": "https://trisycl.github.io/triSYCL/Doxygen/triSYCL/html/index.html",
|
| 144 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
},
|
| 146 |
{
|
| 147 |
"repo_name": "ZLUDA",
|
| 148 |
"repo_link": "https://github.com/vosen/ZLUDA",
|
| 149 |
"github_about_section": "CUDA on non-NVIDIA GPUs",
|
| 150 |
"homepage_link": "https://vosen.github.io/ZLUDA",
|
| 151 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
},
|
| 153 |
{
|
| 154 |
"repo_name": "llama.cpp",
|
|
@@ -156,7 +240,11 @@
|
|
| 156 |
"category": "inference engine",
|
| 157 |
"github_about_section": "LLM inference in C/C++",
|
| 158 |
"homepage_link": "https://ggml.ai",
|
| 159 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
},
|
| 161 |
{
|
| 162 |
"repo_name": "mistral-inference",
|
|
@@ -164,7 +252,11 @@
|
|
| 164 |
"category": "inference engine",
|
| 165 |
"github_about_section": "Official inference library for Mistral models",
|
| 166 |
"homepage_link": "https://mistral.ai",
|
| 167 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
},
|
| 169 |
{
|
| 170 |
"repo_name": "ollama",
|
|
@@ -172,7 +264,11 @@
|
|
| 172 |
"category": "inference engine",
|
| 173 |
"github_about_section": "Get up and running with OpenAI gpt-oss, DeepSeek-R1, Gemma 3 and other models.",
|
| 174 |
"homepage_link": "https://ollama.com",
|
| 175 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
},
|
| 177 |
{
|
| 178 |
"repo_name": "sglang",
|
|
@@ -180,13 +276,21 @@
|
|
| 180 |
"category": "inference engine",
|
| 181 |
"github_about_section": "SGLang is a fast serving framework for large language models and vision language models.",
|
| 182 |
"homepage_link": "https://docs.sglang.ai",
|
| 183 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
},
|
| 185 |
{
|
| 186 |
"repo_name": "TensorRT",
|
| 187 |
"repo_link": "https://github.com/NVIDIA/TensorRT",
|
| 188 |
"github_about_section": "NVIDIA TensorRT is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.",
|
| 189 |
-
"homepage_link": "https://developer.nvidia.com/tensorrt"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
},
|
| 191 |
{
|
| 192 |
"repo_name": "vllm",
|
|
@@ -194,20 +298,32 @@
|
|
| 194 |
"category": "inference engine",
|
| 195 |
"github_about_section": "A high-throughput and memory-efficient inference and serving engine for LLMs",
|
| 196 |
"homepage_link": "https://docs.vllm.ai",
|
| 197 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
},
|
| 199 |
{
|
| 200 |
"repo_name": "kernels",
|
| 201 |
"repo_link": "https://github.com/huggingface/kernels",
|
| 202 |
"category": "gpu kernels",
|
| 203 |
-
"github_about_section": "Load compute kernels from the Hub"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
},
|
| 205 |
{
|
| 206 |
"repo_name": "kernels-community",
|
| 207 |
"repo_link": "https://github.com/huggingface/kernels-community",
|
| 208 |
"category": "gpu kernels",
|
| 209 |
"homepage_link": "https://huggingface.co/kernels-community",
|
| 210 |
-
"github_about_section": "Kernel sources for https://huggingface.co/kernels-community"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
},
|
| 212 |
{
|
| 213 |
"repo_name": "Liger-Kernel",
|
|
@@ -215,20 +331,32 @@
|
|
| 215 |
"category": "kernel examples",
|
| 216 |
"github_about_section": "Efficient Triton Kernels for LLM Training",
|
| 217 |
"homepage_link": "https://openreview.net/pdf?id=36SjAIT42G",
|
| 218 |
-
"github_topic_closest_fit": "triton"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
},
|
| 220 |
{
|
| 221 |
"repo_name": "quack",
|
| 222 |
"repo_link": "https://github.com/Dao-AILab/quack",
|
| 223 |
"category": "kernel examples",
|
| 224 |
-
"github_about_section": "A Quirky Assortment of CuTe Kernels"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
},
|
| 226 |
{
|
| 227 |
"repo_name": "reference-kernels",
|
| 228 |
"repo_link": "https://github.com/gpu-mode/reference-kernels",
|
| 229 |
"category": "kernel examples",
|
| 230 |
"github_about_section": "Official Problem Sets / Reference Kernels for the GPU MODE Leaderboard!",
|
| 231 |
-
"homepage_link": "https://gpumode.com"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
},
|
| 233 |
{
|
| 234 |
"repo_name": "pytorch",
|
|
@@ -236,7 +364,11 @@
|
|
| 236 |
"category": "machine learning framework",
|
| 237 |
"github_about_section": "Tensors and Dynamic neural networks in Python with strong GPU acceleration",
|
| 238 |
"homepage_link": "https://pytorch.org",
|
| 239 |
-
"github_topic_closest_fit": "machine-learning"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
},
|
| 241 |
{
|
| 242 |
"repo_name": "tensorflow",
|
|
@@ -244,13 +376,21 @@
|
|
| 244 |
"category": "machine learning framework",
|
| 245 |
"github_about_section": "An Open Source Machine Learning Framework for Everyone",
|
| 246 |
"homepage_link": "https://tensorflow.org",
|
| 247 |
-
"github_topic_closest_fit": "machine-learning"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
},
|
| 249 |
{
|
| 250 |
"repo_name": "torchdendrite",
|
| 251 |
"repo_link": "https://github.com/sandialabs/torchdendrite",
|
| 252 |
"category": "machine learning framework",
|
| 253 |
-
"github_about_section": "Dendrites for PyTorch and SNNTorch neural networks"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
},
|
| 255 |
{
|
| 256 |
"repo_name": "onnx",
|
|
@@ -258,14 +398,22 @@
|
|
| 258 |
"category": "machine learning interoperability",
|
| 259 |
"github_about_section": "Open standard for machine learning interoperability",
|
| 260 |
"homepage_link": "https://onnx.ai",
|
| 261 |
-
"github_topic_closest_fit": "onnx"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"repo_name": "executorch",
|
| 265 |
"repo_link": "https://github.com/pytorch/executorch",
|
| 266 |
"category": "model compiler",
|
| 267 |
"github_about_section": "On-device AI across mobile, embedded and edge for PyTorch",
|
| 268 |
-
"homepage_link": "https://executorch.ai"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
},
|
| 270 |
{
|
| 271 |
"repo_name": "cutlass",
|
|
@@ -273,7 +421,11 @@
|
|
| 273 |
"category": "parallel computing",
|
| 274 |
"github_about_section": "CUDA Templates and Python DSLs for High-Performance Linear Algebra",
|
| 275 |
"homepage_link": "https://docs.nvidia.com/cutlass/index.html",
|
| 276 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
},
|
| 278 |
{
|
| 279 |
"repo_name": "ThunderKittens",
|
|
@@ -281,7 +433,11 @@
|
|
| 281 |
"category": "parallel computing",
|
| 282 |
"github_about_section": "Tile primitives for speedy kernels",
|
| 283 |
"homepage_link": "https://hazyresearch.stanford.edu/blog/2024-10-29-tk2",
|
| 284 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
},
|
| 286 |
{
|
| 287 |
"repo_name": "helion",
|
|
@@ -289,14 +445,22 @@
|
|
| 289 |
"category": "parallel computing dsl",
|
| 290 |
"github_about_section": "A Python-embedded DSL that makes it easy to write fast, scalable ML kernels with minimal boilerplate.",
|
| 291 |
"homepage_link": "https://helionlang.com",
|
| 292 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
},
|
| 294 |
{
|
| 295 |
"repo_name": "TileIR",
|
| 296 |
"repo_link": "https://github.com/microsoft/TileIR",
|
| 297 |
"category": "parallel computing dsl",
|
| 298 |
"github_about_section": "TileIR (tile-ir) is a concise domain-specific IR designed to streamline the development of high-performance GPU/CPU kernels (e.g., GEMM, Dequant GEMM, FlashAttention, LinearAttention). By employing a Pythonic syntax with an underlying compiler infrastructure on top of TVM, TileIR allows developers to focus on productivity without sacrificing the low-level optimizations necessary for state-of-the-art performance.",
|
| 299 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
},
|
| 301 |
{
|
| 302 |
"repo_name": "tilelang",
|
|
@@ -304,7 +468,11 @@
|
|
| 304 |
"category": "parallel computing dsl",
|
| 305 |
"github_about_section": "Domain-specific language designed to streamline the development of high-performance GPU/CPU/Accelerators kernels",
|
| 306 |
"homepage_link": "https://tilelang.com",
|
| 307 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
},
|
| 309 |
{
|
| 310 |
"repo_name": "triton",
|
|
@@ -312,14 +480,22 @@
|
|
| 312 |
"category": "parallel computing dsl",
|
| 313 |
"github_about_section": "Development repository for the Triton language and compiler",
|
| 314 |
"homepage_link": "https://triton-lang.org",
|
| 315 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
},
|
| 317 |
{
|
| 318 |
"repo_name": "cupti",
|
| 319 |
"repo_link": "https://github.com/cwpearson/cupti",
|
| 320 |
"category": "performance testing",
|
| 321 |
"github_about_section": "Profile how CUDA applications create and modify data in memory.",
|
| 322 |
-
"github_topic_closest_fit": "profiling"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
},
|
| 324 |
{
|
| 325 |
"repo_name": "hatchet",
|
|
@@ -327,7 +503,11 @@
|
|
| 327 |
"category": "performance testing",
|
| 328 |
"github_about_section": "Graph-indexed Pandas DataFrames for analyzing hierarchical performance data",
|
| 329 |
"homepage_link": "https://llnl-hatchet.readthedocs.io",
|
| 330 |
-
"github_topic_closest_fit": "profiling"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
},
|
| 332 |
{
|
| 333 |
"repo_name": "intelliperf",
|
|
@@ -335,7 +515,11 @@
|
|
| 335 |
"category": "performance testing",
|
| 336 |
"github_about_section": "Automated bottleneck detection and solution orchestration",
|
| 337 |
"homepage_link": "https://arxiv.org/html/2508.20258v1",
|
| 338 |
-
"github_topic_closest_fit": "profiling"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"repo_name": "omnitrace",
|
|
@@ -343,7 +527,11 @@
|
|
| 343 |
"category": "performance testing",
|
| 344 |
"github_about_section": "Omnitrace: Application Profiling, Tracing, and Analysis",
|
| 345 |
"homepage_link": "https://rocm.docs.amd.com/projects/omnitrace",
|
| 346 |
-
"github_topic_closest_fit": "profiling"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
},
|
| 348 |
{
|
| 349 |
"repo_name": "jax",
|
|
@@ -351,7 +539,11 @@
|
|
| 351 |
"category": "scientific computing",
|
| 352 |
"github_about_section": "Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more",
|
| 353 |
"homepage_link": "https://docs.jax.dev",
|
| 354 |
-
"github_topic_closest_fit": "scientific-computing"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
},
|
| 356 |
{
|
| 357 |
"repo_name": "numpy",
|
|
@@ -359,7 +551,11 @@
|
|
| 359 |
"category": "scientific computing",
|
| 360 |
"github_about_section": "The fundamental package for scientific computing with Python.",
|
| 361 |
"homepage_link": "https://numpy.org",
|
| 362 |
-
"github_topic_closest_fit": "scientific-computing"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
},
|
| 364 |
{
|
| 365 |
"repo_name": "scipy",
|
|
@@ -367,7 +563,11 @@
|
|
| 367 |
"category": "scientific computing",
|
| 368 |
"github_about_section": "SciPy library main repository",
|
| 369 |
"homepage_link": "https://scipy.org",
|
| 370 |
-
"github_topic_closest_fit": "scientific-computing"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
},
|
| 372 |
{
|
| 373 |
"repo_name": "elasticsearch",
|
|
@@ -375,7 +575,11 @@
|
|
| 375 |
"category": "search engine",
|
| 376 |
"github_about_section": "Free and Open Source, Distributed, RESTful Search Engine",
|
| 377 |
"homepage_link": "https://elastic.co/products/elasticsearch",
|
| 378 |
-
"github_topic_closest_fit": "search-engine"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
},
|
| 380 |
{
|
| 381 |
"repo_name": "jupyterlab",
|
|
@@ -383,7 +587,11 @@
|
|
| 383 |
"category": "user interface",
|
| 384 |
"github_about_section": "JupyterLab computational environment.",
|
| 385 |
"homepage_link": "https://jupyterlab.readthedocs.io",
|
| 386 |
-
"github_topic_closest_fit": "jupyter"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
},
|
| 388 |
{
|
| 389 |
"repo_name": "milvus",
|
|
@@ -391,38 +599,62 @@
|
|
| 391 |
"category": "vector database",
|
| 392 |
"github_about_section": "Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search",
|
| 393 |
"homepage_link": "https://milvus.io",
|
| 394 |
-
"github_topic_closest_fit": "vector-search"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
},
|
| 396 |
{
|
| 397 |
"repo_name": "accelerate",
|
| 398 |
"repo_link": "https://github.com/huggingface/accelerate",
|
| 399 |
"github_about_section": "A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support.",
|
| 400 |
-
"homepage_link": "https://huggingface.co/docs/accelerate"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
},
|
| 402 |
{
|
| 403 |
"repo_name": "aiter",
|
| 404 |
"repo_link": "https://github.com/ROCm/aiter",
|
| 405 |
"github_about_section": "AI Tensor Engine for ROCm",
|
| 406 |
-
"homepage_link": "https://rocm.blogs.amd.com/software-tools-optimization/aiter-ai-tensor-engine/README.html"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
},
|
| 408 |
{
|
| 409 |
"repo_name": "ao",
|
| 410 |
"repo_link": "https://github.com/pytorch/ao",
|
| 411 |
"github_about_section": "PyTorch native quantization and sparsity for training and inference",
|
| 412 |
"homepage_link": "https://pytorch.org/ao",
|
| 413 |
-
"github_topic_closest_fit": "quantization"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
},
|
| 415 |
{
|
| 416 |
"repo_name": "burn",
|
| 417 |
"repo_link": "https://github.com/tracel-ai/burn",
|
| 418 |
"github_about_section": "Burn is a next generation tensor library and Deep Learning Framework that doesn't compromise on flexibility, efficiency and portability.",
|
| 419 |
-
"homepage_link": "https://burn.dev"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
},
|
| 421 |
{
|
| 422 |
"repo_name": "ccache",
|
| 423 |
"repo_link": "https://github.com/ccache/ccache",
|
| 424 |
"github_about_section": "ccache - a fast compiler cache",
|
| 425 |
-
"homepage_link": "https://ccache.dev"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
},
|
| 427 |
{
|
| 428 |
"repo_name": "ComfyUI",
|
|
@@ -430,14 +662,22 @@
|
|
| 430 |
"category": "user interface",
|
| 431 |
"github_about_section": "The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.",
|
| 432 |
"homepage_link": "https://comfy.org",
|
| 433 |
-
"github_topic_closest_fit": "stable-diffusion"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
},
|
| 435 |
{
|
| 436 |
"repo_name": "composable_kernel",
|
| 437 |
"repo_link": "https://github.com/ROCm/composable_kernel",
|
| 438 |
"category": "gpu kernels",
|
| 439 |
"github_about_section": "Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators",
|
| 440 |
-
"homepage_link": "https://rocm.docs.amd.com/projects/composable_kernel"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
},
|
| 442 |
{
|
| 443 |
"repo_name": "cudnn-frontend",
|
|
@@ -445,7 +685,11 @@
|
|
| 445 |
"category": "parallel computing",
|
| 446 |
"github_about_section": "cudnn_frontend provides a c++ wrapper for the cudnn backend API and samples on how to use it",
|
| 447 |
"homepage_link": "https://developer.nvidia.com/cudnn",
|
| 448 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
},
|
| 450 |
{
|
| 451 |
"repo_name": "cuJSON",
|
|
@@ -453,13 +697,21 @@
|
|
| 453 |
"category": "library leveraging parallel compute",
|
| 454 |
"github_about_section": "cuJSON: A Highly Parallel JSON Parser for GPUs",
|
| 455 |
"homepage_link": "https://dl.acm.org/doi/10.1145/3760250.3762222",
|
| 456 |
-
"github_topic_closest_fit": "json-parser"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
},
|
| 458 |
{
|
| 459 |
"repo_name": "DeepSpeed",
|
| 460 |
"repo_link": "https://github.com/deepspeedai/DeepSpeed",
|
| 461 |
"github_about_section": "DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.",
|
| 462 |
-
"homepage_link": "https://deepspeed.ai"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
},
|
| 464 |
{
|
| 465 |
"repo_name": "dstack",
|
|
@@ -467,7 +719,11 @@
|
|
| 467 |
"category": "gpu provisioning and orchestration",
|
| 468 |
"github_about_section": "dstack is an open-source control plane for running development, training, and inference jobs on GPUs-across hyperscalers, neoclouds, or on-prem.",
|
| 469 |
"homepage_link": "https://dstack.ai",
|
| 470 |
-
"github_topic_closest_fit": "orchestration"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
},
|
| 472 |
{
|
| 473 |
"repo_name": "flashinfer",
|
|
@@ -475,7 +731,11 @@
|
|
| 475 |
"category": "gpu kernels",
|
| 476 |
"github_about_section": "FlashInfer: Kernel Library for LLM Serving",
|
| 477 |
"homepage_link": "https://flashinfer.ai",
|
| 478 |
-
"github_topic_closest_fit": "attention"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
},
|
| 480 |
{
|
| 481 |
"repo_name": "FTorch",
|
|
@@ -483,32 +743,52 @@
|
|
| 483 |
"category": "wrapper",
|
| 484 |
"github_about_section": "A library for directly calling PyTorch ML models from Fortran.",
|
| 485 |
"homepage_link": "https://cambridge-iccs.github.io/FTorch",
|
| 486 |
-
"github_topic_closest_fit": "machine-learning"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
},
|
| 488 |
{
|
| 489 |
"repo_name": "GEAK-agent",
|
| 490 |
"repo_link": "https://github.com/AMD-AGI/GEAK-agent",
|
| 491 |
"category": "agent",
|
| 492 |
"github_about_section": "It is an LLM-based AI agent, which can write correct and efficient gpu kernels automatically.",
|
| 493 |
-
"github_topic_closest_fit": "ai-agents"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
},
|
| 495 |
{
|
| 496 |
"repo_name": "hhvm",
|
| 497 |
"repo_link": "https://github.com/facebook/hhvm",
|
| 498 |
"github_about_section": "A virtual machine for executing programs written in Hack.",
|
| 499 |
-
"homepage_link": "https://hhvm.com"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
},
|
| 501 |
{
|
| 502 |
"repo_name": "hip",
|
| 503 |
"repo_link": "https://github.com/ROCm/hip",
|
| 504 |
"github_about_section": "HIP: C++ Heterogeneous-Compute Interface for Portability",
|
| 505 |
-
"homepage_link": "https://rocmdocs.amd.com/projects/HIP"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
},
|
| 507 |
{
|
| 508 |
"repo_name": "hipCUB",
|
| 509 |
"repo_link": "https://github.com/ROCm/hipCUB",
|
| 510 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 511 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
},
|
| 513 |
{
|
| 514 |
"repo_name": "IMO2025",
|
|
@@ -516,7 +796,11 @@
|
|
| 516 |
"category": "formal mathematical reasoning",
|
| 517 |
"github_about_section": "Harmonic's model Aristotle achieved gold medal performance, solving 5 problems. This repository contains the lean statement files and proofs for Problems 1-5.",
|
| 518 |
"homepage_link": "https://harmonic.fun",
|
| 519 |
-
"github_topic_closest_fit": "lean"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
},
|
| 521 |
{
|
| 522 |
"repo_name": "kubernetes",
|
|
@@ -524,7 +808,11 @@
|
|
| 524 |
"category": "container orchestration",
|
| 525 |
"github_about_section": "Production-Grade Container Scheduling and Management",
|
| 526 |
"homepage_link": "https://kubernetes.io",
|
| 527 |
-
"github_topic_closest_fit": "kubernetes"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
},
|
| 529 |
{
|
| 530 |
"repo_name": "lapack",
|
|
@@ -532,7 +820,11 @@
|
|
| 532 |
"category": "linear algebra",
|
| 533 |
"github_about_section": "LAPACK is a library of Fortran subroutines for solving the most commonly occurring problems in numerical linear algebra.",
|
| 534 |
"homepage_link": "https://netlib.org/lapack",
|
| 535 |
-
"github_topic_closest_fit": "linear-algebra"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
},
|
| 537 |
{
|
| 538 |
"repo_name": "lean4",
|
|
@@ -540,7 +832,11 @@
|
|
| 540 |
"category": "theorem prover",
|
| 541 |
"github_about_section": "Lean 4 programming language and theorem prover",
|
| 542 |
"homepage_link": "https://lean-lang.org",
|
| 543 |
-
"github_topic_closest_fit": "lean"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
},
|
| 545 |
{
|
| 546 |
"repo_name": "letta",
|
|
@@ -548,37 +844,61 @@
|
|
| 548 |
"category": "agent",
|
| 549 |
"github_about_section": "Letta is the platform for building stateful agents: open AI with advanced memory that can learn and self-improve over time.",
|
| 550 |
"homepage_link": "https://docs.letta.com",
|
| 551 |
-
"github_topic_closest_fit": "ai-agents"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
},
|
| 553 |
{
|
| 554 |
"repo_name": "lightning-thunder",
|
| 555 |
"repo_link": "https://github.com/Lightning-AI/lightning-thunder",
|
| 556 |
-
"github_about_section": "PyTorch compiler that accelerates training and inference. Get built-in optimizations for performance, memory, parallelism, and easily write your own."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
},
|
| 558 |
{
|
| 559 |
"repo_name": "LMCache",
|
| 560 |
"repo_link": "https://github.com/LMCache/LMCache",
|
| 561 |
"github_about_section": "Supercharge Your LLM with the Fastest KV Cache Layer",
|
| 562 |
-
"homepage_link": "https://lmcache.ai"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
},
|
| 564 |
{
|
| 565 |
"repo_name": "mcp-agent",
|
| 566 |
"repo_link": "https://github.com/lastmile-ai/mcp-agent",
|
| 567 |
"category": "mcp",
|
| 568 |
"github_about_section": "Build effective agents using Model Context Protocol and simple workflow patterns",
|
| 569 |
-
"github_topic_closest_fit": "mcp"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
},
|
| 571 |
{
|
| 572 |
"repo_name": "metaflow",
|
| 573 |
"repo_link": "https://github.com/Netflix/metaflow",
|
| 574 |
"github_about_section": "Build, Manage and Deploy AI/ML Systems",
|
| 575 |
-
"homepage_link": "https://metaflow.org"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
},
|
| 577 |
{
|
| 578 |
"repo_name": "MIOpen",
|
| 579 |
"repo_link": "https://github.com/ROCm/MIOpen",
|
| 580 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 581 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
},
|
| 583 |
{
|
| 584 |
"repo_name": "modelcontextprotocol",
|
|
@@ -586,7 +906,11 @@
|
|
| 586 |
"category": "mcp",
|
| 587 |
"github_about_section": "Specification and documentation for the Model Context Protocol",
|
| 588 |
"homepage_link": "https://modelcontextprotocol.io",
|
| 589 |
-
"github_topic_closest_fit": "mcp"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
},
|
| 591 |
{
|
| 592 |
"repo_name": "modular",
|
|
@@ -594,143 +918,239 @@
|
|
| 594 |
"category": "parallel computing",
|
| 595 |
"github_about_section": "The Modular Platform (includes MAX & Mojo)",
|
| 596 |
"homepage_link": "https://docs.modular.com",
|
| 597 |
-
"github_topic_closest_fit": "parallel-programming"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
},
|
| 599 |
{
|
| 600 |
"repo_name": "monarch",
|
| 601 |
"repo_link": "https://github.com/meta-pytorch/monarch",
|
| 602 |
"github_about_section": "PyTorch Single Controller",
|
| 603 |
-
"homepage_link": "https://meta-pytorch.org/monarch"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
},
|
| 605 |
{
|
| 606 |
"repo_name": "Mooncake",
|
| 607 |
"repo_link": "https://github.com/kvcache-ai/Mooncake",
|
| 608 |
"github_about_section": "Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.",
|
| 609 |
"homepage_link": "https://kvcache-ai.github.io/Mooncake",
|
| 610 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
},
|
| 612 |
{
|
| 613 |
"repo_name": "nccl",
|
| 614 |
"repo_link": "https://github.com/NVIDIA/nccl",
|
| 615 |
"github_about_section": "Optimized primitives for collective multi-GPU communication",
|
| 616 |
-
"homepage_link": "https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
},
|
| 618 |
{
|
| 619 |
"repo_name": "neuronx-distributed-inference",
|
| 620 |
-
"repo_link": "https://github.com/aws-neuron/neuronx-distributed-inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 621 |
},
|
| 622 |
{
|
| 623 |
"repo_name": "nixl",
|
| 624 |
"repo_link": "https://github.com/ai-dynamo/nixl",
|
| 625 |
-
"github_about_section": "NVIDIA Inference Xfer Library (NIXL)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
},
|
| 627 |
{
|
| 628 |
"repo_name": "ome",
|
| 629 |
"repo_link": "https://github.com/sgl-project/ome",
|
| 630 |
"github_about_section": "OME is a Kubernetes operator for enterprise-grade management and serving of Large Language Models (LLMs)",
|
| 631 |
"homepage_link": "http://docs.sglang.ai/ome",
|
| 632 |
-
"github_topic_closest_fit": "k8s"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 633 |
},
|
| 634 |
{
|
| 635 |
"repo_name": "ondemand",
|
| 636 |
"repo_link": "https://github.com/OSC/ondemand",
|
| 637 |
"github_about_section": "Supercomputing. Seamlessly. Open, Interactive HPC Via the Web",
|
| 638 |
"homepage_link": "https://openondemand.org",
|
| 639 |
-
"github_topic_closest_fit": "hpc"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
},
|
| 641 |
{
|
| 642 |
"repo_name": "oneDPL",
|
| 643 |
"repo_link": "https://github.com/uxlfoundation/oneDPL",
|
| 644 |
"github_about_section": "oneAPI DPC++ Library (oneDPL)",
|
| 645 |
-
"homepage_link": "https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
},
|
| 647 |
{
|
| 648 |
"repo_name": "openevolve",
|
| 649 |
"repo_link": "https://github.com/codelion/openevolve",
|
| 650 |
"github_about_section": "Open-source implementation of AlphaEvolve",
|
| 651 |
-
"github_topic_closest_fit": "genetic-algorithm"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
},
|
| 653 |
{
|
| 654 |
"repo_name": "ort",
|
| 655 |
"repo_link": "https://github.com/pytorch/ort",
|
| 656 |
-
"github_about_section": "Accelerate PyTorch models with ONNX Runtime"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
},
|
| 658 |
{
|
| 659 |
"repo_name": "peft",
|
| 660 |
"repo_link": "https://github.com/huggingface/peft",
|
| 661 |
"github_about_section": "PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.",
|
| 662 |
"homepage_link": "https://huggingface.co/docs/peft",
|
| 663 |
-
"github_topic_closest_fit": "lora"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 664 |
},
|
| 665 |
{
|
| 666 |
"repo_name": "Primus-Turbo",
|
| 667 |
-
"repo_link": "https://github.com/AMD-AGI/Primus-Turbo"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
},
|
| 669 |
{
|
| 670 |
"repo_name": "pybind11",
|
| 671 |
"repo_link": "https://github.com/pybind/pybind11",
|
| 672 |
"github_about_section": "Seamless operability between C++11 and Python",
|
| 673 |
"homepage_link": "https://pybind11.readthedocs.io",
|
| 674 |
-
"github_topic_closest_fit": "bindings"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
},
|
| 676 |
{
|
| 677 |
"repo_name": "RaBitQ",
|
| 678 |
"repo_link": "https://github.com/gaoj0017/RaBitQ",
|
| 679 |
"github_about_section": "[SIGMOD 2024] RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search",
|
| 680 |
"homepage_link": "https://github.com/VectorDB-NTU/RaBitQ-Library",
|
| 681 |
-
"github_topic_closest_fit": "nearest-neighbor-search"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
},
|
| 683 |
{
|
| 684 |
"repo_name": "rdma-core",
|
| 685 |
"repo_link": "https://github.com/linux-rdma/rdma-core",
|
| 686 |
-
"github_about_section": "RDMA core userspace libraries and daemons"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 687 |
},
|
| 688 |
{
|
| 689 |
"repo_name": "rocFFT",
|
| 690 |
"repo_link": "https://github.com/ROCm/rocFFT",
|
| 691 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 692 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
},
|
| 694 |
{
|
| 695 |
"repo_name": "ROCm",
|
| 696 |
"repo_link": "https://github.com/ROCm/ROCm",
|
| 697 |
"github_about_section": "AMD ROCm Software - GitHub Home",
|
| 698 |
-
"homepage_link": "https://rocm.docs.amd.com"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 699 |
},
|
| 700 |
{
|
| 701 |
"repo_name": "rocm-systems",
|
| 702 |
"repo_link": "https://github.com/ROCm/rocm-systems",
|
| 703 |
-
"github_about_section": "super repo for rocm systems projects"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
},
|
| 705 |
{
|
| 706 |
"repo_name": "rocPRIM",
|
| 707 |
"repo_link": "https://github.com/ROCm/rocPRIM",
|
| 708 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 709 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 710 |
},
|
| 711 |
{
|
| 712 |
"repo_name": "rocRAND",
|
| 713 |
"repo_link": "https://github.com/ROCm/rocRAND",
|
| 714 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 715 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
},
|
| 717 |
{
|
| 718 |
"repo_name": "rocSOLVER",
|
| 719 |
"repo_link": "https://github.com/ROCm/rocSOLVER",
|
| 720 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 721 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 722 |
},
|
| 723 |
{
|
| 724 |
"repo_name": "rocSPARSE",
|
| 725 |
"repo_link": "https://github.com/ROCm/rocSPARSE",
|
| 726 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 727 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
},
|
| 729 |
{
|
| 730 |
"repo_name": "roctracer",
|
| 731 |
"repo_link": "https://github.com/ROCm/roctracer",
|
| 732 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-systems repo",
|
| 733 |
-
"homepage_link": "https://github.com/ROCm/rocm-systems"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 734 |
},
|
| 735 |
{
|
| 736 |
"repo_name": "Self-Forcing",
|
|
@@ -738,21 +1158,33 @@
|
|
| 738 |
"category": "video generation",
|
| 739 |
"github_about_section": "Official codebase for \"Self Forcing: Bridging Training and Inference in Autoregressive Video Diffusion\" (NeurIPS 2025 Spotlight)",
|
| 740 |
"homepage_link": "https://self-forcing.github.io",
|
| 741 |
-
"github_topic_closest_fit": "diffusion-models"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 742 |
},
|
| 743 |
{
|
| 744 |
"repo_name": "server",
|
| 745 |
"repo_link": "https://github.com/triton-inference-server/server",
|
| 746 |
"github_about_section": "The Triton Inference Server provides an optimized cloud and edge inferencing solution.",
|
| 747 |
"homepage_link": "https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html",
|
| 748 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
},
|
| 750 |
{
|
| 751 |
"repo_name": "spark",
|
| 752 |
"repo_link": "https://github.com/apache/spark",
|
| 753 |
"github_about_section": "Apache Spark - A unified analytics engine for large-scale data processing",
|
| 754 |
"homepage_link": "https://spark.apache.org",
|
| 755 |
-
"github_topic_closest_fit": "big-data"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
},
|
| 757 |
{
|
| 758 |
"repo_name": "StreamDiffusion",
|
|
@@ -760,7 +1192,11 @@
|
|
| 760 |
"category": "image generation",
|
| 761 |
"github_about_section": "StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation",
|
| 762 |
"homepage_link": "https://arxiv.org/abs/2312.12491",
|
| 763 |
-
"github_topic_closest_fit": "diffusion-models"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 764 |
},
|
| 765 |
{
|
| 766 |
"repo_name": "streamv2v",
|
|
@@ -768,7 +1204,11 @@
|
|
| 768 |
"category": "video generation",
|
| 769 |
"github_about_section": "Official Pytorch implementation of StreamV2V.",
|
| 770 |
"homepage_link": "https://jeff-liangf.github.io/projects/streamv2v",
|
| 771 |
-
"github_topic_closest_fit": "diffusion-models"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 772 |
},
|
| 773 |
{
|
| 774 |
"repo_name": "synthetic-data-kit",
|
|
@@ -776,63 +1216,98 @@
|
|
| 776 |
"category": "synthetic data generation",
|
| 777 |
"github_about_section": "Tool for generating high quality Synthetic datasets",
|
| 778 |
"homepage_link": "https://pypi.org/project/synthetic-data-kit",
|
| 779 |
-
"github_topic_closest_fit": "synthetic-dataset-generation"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 780 |
},
|
| 781 |
{
|
| 782 |
"repo_name": "Tensile",
|
| 783 |
"repo_link": "https://github.com/ROCm/Tensile",
|
| 784 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 785 |
-
"homepage_link": "https://github.com/ROCm/rocm-libraries"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
},
|
| 787 |
{
|
| 788 |
"repo_name": "tflite-micro",
|
| 789 |
"repo_link": "https://github.com/tensorflow/tflite-micro",
|
| 790 |
-
"github_about_section": "Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors)."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 791 |
},
|
| 792 |
{
|
| 793 |
"repo_name": "torchdynamo",
|
| 794 |
"repo_link": "https://github.com/pytorch/torchdynamo",
|
| 795 |
-
"github_about_section": "A Python-level JIT compiler designed to make unmodified PyTorch programs faster."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
},
|
| 797 |
{
|
| 798 |
"repo_name": "torchtitan",
|
| 799 |
"repo_link": "https://github.com/pytorch/torchtitan",
|
| 800 |
-
"github_about_section": "A PyTorch native platform for training generative AI models"
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
"
|
| 804 |
-
"
|
| 805 |
-
"github_about_section": "A PyTorch native platform for training generative AI models"
|
| 806 |
},
|
| 807 |
{
|
| 808 |
"repo_name": "transformers",
|
| 809 |
"repo_link": "https://github.com/huggingface/transformers",
|
| 810 |
"github_about_section": "Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.",
|
| 811 |
-
"homepage_link": "https://huggingface.co/transformers"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 812 |
},
|
| 813 |
{
|
| 814 |
"repo_name": "Triton-distributed",
|
| 815 |
"repo_link": "https://github.com/ByteDance-Seed/Triton-distributed",
|
| 816 |
"github_about_section": "Distributed Compiler based on Triton for Parallel Systems",
|
| 817 |
-
"homepage_link": "https://triton-distributed.readthedocs.io"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 818 |
},
|
| 819 |
{
|
| 820 |
"repo_name": "triton-runner",
|
| 821 |
"repo_link": "https://github.com/toyaix/triton-runner",
|
| 822 |
"github_about_section": "Multi-Level Triton Runner supporting Python, IR, PTX, and cubin.",
|
| 823 |
-
"homepage_link": "https://triton-runner.org"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
},
|
| 825 |
{
|
| 826 |
"repo_name": "tritonparse",
|
| 827 |
"repo_link": "https://github.com/meta-pytorch/tritonparse",
|
| 828 |
"github_about_section": "TritonParse: A Compiler Tracer, Visualizer, and Reproducer for Triton Kernels",
|
| 829 |
-
"homepage_link": "https://meta-pytorch.org/tritonparse"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 830 |
},
|
| 831 |
{
|
| 832 |
"repo_name": "trl",
|
| 833 |
"repo_link": "https://github.com/huggingface/trl",
|
| 834 |
"github_about_section": "Train transformer language models with reinforcement learning.",
|
| 835 |
-
"homepage_link": "http://hf.co/docs/trl"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 836 |
},
|
| 837 |
{
|
| 838 |
"repo_name": "truss",
|
|
@@ -840,7 +1315,11 @@
|
|
| 840 |
"category": "inference engine",
|
| 841 |
"github_about_section": "The simplest way to serve AI/ML models in production",
|
| 842 |
"homepage_link": "https://truss.baseten.co",
|
| 843 |
-
"github_topic_closest_fit": "inference"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 844 |
},
|
| 845 |
{
|
| 846 |
"repo_name": "unsloth",
|
|
@@ -848,7 +1327,11 @@
|
|
| 848 |
"category": "fine tuning",
|
| 849 |
"github_about_section": "Fine-tuning & Reinforcement Learning for LLMs. Train OpenAI gpt-oss, DeepSeek-R1, Qwen3, Gemma 3, TTS 2x faster with 70% less VRAM.",
|
| 850 |
"homepage_link": "https://docs.unsloth.ai",
|
| 851 |
-
"github_topic_closest_fit": "fine-tuning"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 852 |
},
|
| 853 |
{
|
| 854 |
"repo_name": "verl",
|
|
@@ -856,7 +1339,11 @@
|
|
| 856 |
"category": "reinforcement learning",
|
| 857 |
"github_about_section": "verl: Volcano Engine Reinforcement Learning for LLMs",
|
| 858 |
"homepage_link": "https://verl.readthedocs.io",
|
| 859 |
-
"github_topic_closest_fit": "deep-reinforcement-learning"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 860 |
},
|
| 861 |
{
|
| 862 |
"repo_name": "Vulkan-Hpp",
|
|
@@ -864,7 +1351,11 @@
|
|
| 864 |
"category": "graphics api",
|
| 865 |
"github_about_section": "Open-Source Vulkan C++ API",
|
| 866 |
"homepage_link": "https://vulkan.org",
|
| 867 |
-
"github_topic_closest_fit": "vulkan"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 868 |
},
|
| 869 |
{
|
| 870 |
"repo_name": "Vulkan-Tools",
|
|
@@ -872,7 +1363,11 @@
|
|
| 872 |
"category": "graphics api",
|
| 873 |
"github_about_section": "Vulkan Development Tools",
|
| 874 |
"homepage_link": "https://vulkan.org",
|
| 875 |
-
"github_topic_closest_fit": "vulkan"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 876 |
},
|
| 877 |
{
|
| 878 |
"repo_name": "Vulkan-Docs",
|
|
@@ -880,7 +1375,11 @@
|
|
| 880 |
"category": "graphics api",
|
| 881 |
"github_about_section": "The Vulkan API Specification and related tools",
|
| 882 |
"homepage_link": "https://vulkan.org",
|
| 883 |
-
"github_topic_closest_fit": "vulkan"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 884 |
},
|
| 885 |
{
|
| 886 |
"repo_name": "Wan2.2",
|
|
@@ -888,7 +1387,11 @@
|
|
| 888 |
"category": "video generation",
|
| 889 |
"github_about_section": "Wan: Open and Advanced Large-Scale Video Generative Models",
|
| 890 |
"homepage_link": "https://wan.video",
|
| 891 |
-
"github_topic_closest_fit": "diffusion-models"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
},
|
| 893 |
{
|
| 894 |
"repo_name": "warp",
|
|
@@ -896,6 +1399,10 @@
|
|
| 896 |
"category": "spatial computing",
|
| 897 |
"github_about_section": "A Python framework for accelerated simulation, data generation and spatial computing.",
|
| 898 |
"homepage_link": "https://nvidia.github.io/warp",
|
| 899 |
-
"github_topic_closest_fit": "physics-simulation"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
}
|
| 901 |
]
|
|
|
|
| 5 |
"category": "agent",
|
| 6 |
"github_about_section": "an open source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM",
|
| 7 |
"homepage_link": "https://block.github.io/goose",
|
| 8 |
+
"github_topic_closest_fit": "ai-agents",
|
| 9 |
+
"contributors_all": "332",
|
| 10 |
+
"contributors_2025": "319",
|
| 11 |
+
"contributors_2024": "32",
|
| 12 |
+
"contributors_2023": "0"
|
| 13 |
},
|
| 14 |
{
|
| 15 |
"repo_name": "ray",
|
| 16 |
"repo_link": "https://github.com/ray-project/ray",
|
| 17 |
"github_about_section": "Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.",
|
| 18 |
+
"homepage_link": "https://ray.io",
|
| 19 |
+
"contributors_all": "1381",
|
| 20 |
+
"contributors_2025": "397",
|
| 21 |
+
"contributors_2024": "223",
|
| 22 |
+
"contributors_2023": "230"
|
| 23 |
},
|
| 24 |
{
|
| 25 |
"repo_name": "flashinfer-bench",
|
|
|
|
| 27 |
"category": "benchmark",
|
| 28 |
"github_about_section": "Building the Virtuous Cycle for AI-driven LLM Systems",
|
| 29 |
"homepage_link": "https://bench.flashinfer.ai",
|
| 30 |
+
"github_topic_closest_fit": "benchmark",
|
| 31 |
+
"contributors_all": "12",
|
| 32 |
+
"contributors_2025": "11",
|
| 33 |
+
"contributors_2024": "0",
|
| 34 |
+
"contributors_2023": "0"
|
| 35 |
},
|
| 36 |
{
|
| 37 |
"repo_name": "KernelBench",
|
|
|
|
| 39 |
"category": "benchmark",
|
| 40 |
"github_about_section": "KernelBench: Can LLMs Write GPU Kernels? - Benchmark with Torch -> CUDA problems",
|
| 41 |
"homepage_link": "https://scalingintelligence.stanford.edu/blogs/kernelbench",
|
| 42 |
+
"github_topic_closest_fit": "benchmark",
|
| 43 |
+
"contributors_all": "19",
|
| 44 |
+
"contributors_2025": "16",
|
| 45 |
+
"contributors_2024": "3",
|
| 46 |
+
"contributors_2023": "0"
|
| 47 |
},
|
| 48 |
{
|
| 49 |
"repo_name": "SWE-bench",
|
|
|
|
| 51 |
"category": "benchmark",
|
| 52 |
"github_about_section": "SWE-bench: Can Language Models Resolve Real-world Github Issues?",
|
| 53 |
"homepage_link": "https://swebench.com",
|
| 54 |
+
"github_topic_closest_fit": "benchmark",
|
| 55 |
+
"contributors_all": "66",
|
| 56 |
+
"contributors_2025": "33",
|
| 57 |
+
"contributors_2024": "37",
|
| 58 |
+
"contributors_2023": "9"
|
| 59 |
},
|
| 60 |
{
|
| 61 |
"repo_name": "terminal-bench",
|
|
|
|
| 63 |
"category": "benchmark",
|
| 64 |
"github_about_section": "A benchmark for LLMs on complicated tasks in the terminal",
|
| 65 |
"homepage_link": "https://tbench.ai",
|
| 66 |
+
"github_topic_closest_fit": "benchmark",
|
| 67 |
+
"contributors_all": "96",
|
| 68 |
+
"contributors_2025": "96",
|
| 69 |
+
"contributors_2024": "0",
|
| 70 |
+
"contributors_2023": "0"
|
| 71 |
},
|
| 72 |
{
|
| 73 |
"repo_name": "TritonBench",
|
|
|
|
| 75 |
"category": "benchmark",
|
| 76 |
"github_about_section": "TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators",
|
| 77 |
"homepage_link": "https://arxiv.org/abs/2502.14752",
|
| 78 |
+
"github_topic_closest_fit": "benchmark",
|
| 79 |
+
"contributors_all": "3",
|
| 80 |
+
"contributors_2025": "3",
|
| 81 |
+
"contributors_2024": "0",
|
| 82 |
+
"contributors_2023": "0"
|
| 83 |
},
|
| 84 |
{
|
| 85 |
"repo_name": "BitBLAS",
|
| 86 |
"repo_link": "https://github.com/microsoft/BitBLAS",
|
| 87 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 88 |
"github_about_section": "BitBLAS is a library to support mixed-precision matrix multiplications, especially for quantized LLM deployment.",
|
| 89 |
+
"github_topic_closest_fit": "matrix-multiplication",
|
| 90 |
+
"contributors_all": "17",
|
| 91 |
+
"contributors_2025": "5",
|
| 92 |
+
"contributors_2024": "14",
|
| 93 |
+
"contributors_2023": "0"
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"repo_name": "hipBLAS",
|
| 97 |
"repo_link": "https://github.com/ROCm/hipBLAS",
|
| 98 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 99 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 100 |
+
"github_topic_closest_fit": "matrix-multiplication",
|
| 101 |
+
"contributors_all": "72",
|
| 102 |
+
"contributors_2025": "21",
|
| 103 |
+
"contributors_2024": "24",
|
| 104 |
+
"contributors_2023": "14"
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"repo_name": "hipBLASLt",
|
|
|
|
| 109 |
"category": "Basic Linear Algebra Subprograms (BLAS)",
|
| 110 |
"github_about_section": "hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends functionalities beyond a traditional BLAS library",
|
| 111 |
"homepage_link": "https://rocm.docs.amd.com/projects/hipBLASLt",
|
| 112 |
+
"github_topic_closest_fit": "matrix-multiplication",
|
| 113 |
+
"contributors_all": "111",
|
| 114 |
+
"contributors_2025": "69",
|
| 115 |
+
"contributors_2024": "70",
|
| 116 |
+
"contributors_2023": "35"
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"repo_name": "AdaptiveCpp",
|
| 120 |
"repo_link": "https://github.com/AdaptiveCpp/AdaptiveCpp",
|
| 121 |
"github_about_section": "Compiler for multiple programming models (SYCL, C++ standard parallelism, HIP/CUDA) for CPUs and GPUs from all vendors: The independent, community-driven compiler for C++-based heterogeneous programming models. Lets applications adapt themselves to all the hardware in the system - even at runtime!",
|
| 122 |
+
"homepage_link": "https://adaptivecpp.github.io",
|
| 123 |
+
"contributors_all": "93",
|
| 124 |
+
"contributors_2025": "32",
|
| 125 |
+
"contributors_2024": "32",
|
| 126 |
+
"contributors_2023": "24"
|
| 127 |
},
|
| 128 |
{
|
| 129 |
"repo_name": "llvm-project",
|
|
|
|
| 131 |
"category": "compiler",
|
| 132 |
"github_about_section": "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.",
|
| 133 |
"homepage_link": "http://llvm.org",
|
| 134 |
+
"github_topic_closest_fit": "compiler",
|
| 135 |
+
"contributors_all": "6680",
|
| 136 |
+
"contributors_2025": "2378",
|
| 137 |
+
"contributors_2024": "2130",
|
| 138 |
+
"contributors_2023": "1920"
|
| 139 |
},
|
| 140 |
{
|
| 141 |
"repo_name": "numba",
|
| 142 |
"repo_link": "https://github.com/numba/numba",
|
| 143 |
"github_about_section": "NumPy aware dynamic Python compiler using LLVM",
|
| 144 |
+
"homepage_link": "https://numba.pydata.org",
|
| 145 |
+
"contributors_all": "430",
|
| 146 |
+
"contributors_2025": "36",
|
| 147 |
+
"contributors_2024": "32",
|
| 148 |
+
"contributors_2023": "55"
|
| 149 |
},
|
| 150 |
{
|
| 151 |
"repo_name": "nvcc4jupyter",
|
| 152 |
"repo_link": "https://github.com/andreinechaev/nvcc4jupyter",
|
| 153 |
"github_about_section": "A plugin for Jupyter Notebook to run CUDA C/C++ code",
|
| 154 |
+
"homepage_link": "https://nvcc4jupyter.readthedocs.io",
|
| 155 |
+
"contributors_all": "9",
|
| 156 |
+
"contributors_2025": "0",
|
| 157 |
+
"contributors_2024": "3",
|
| 158 |
+
"contributors_2023": "3"
|
| 159 |
},
|
| 160 |
{
|
| 161 |
"repo_name": "CU2CL",
|
| 162 |
"repo_link": "https://github.com/vtsynergy/CU2CL",
|
| 163 |
"github_about_section": "A prototype CUDA-to-OpenCL source-to-source translator, built on the Clang compiler framework",
|
| 164 |
"homepage_link": "http://chrec.cs.vt.edu/cu2cl",
|
| 165 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 166 |
+
"contributors_all": "3",
|
| 167 |
+
"contributors_2025": "0",
|
| 168 |
+
"contributors_2024": "0",
|
| 169 |
+
"contributors_2023": "0"
|
| 170 |
},
|
| 171 |
{
|
| 172 |
"repo_name": "cuda-python",
|
| 173 |
"repo_link": "https://github.com/NVIDIA/cuda-python",
|
| 174 |
"github_about_section": "CUDA Python: Performance meets Productivity",
|
| 175 |
"homepage_link": "https://nvidia.github.io/cuda-python",
|
| 176 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 177 |
+
"contributors_all": "48",
|
| 178 |
+
"contributors_2025": "41",
|
| 179 |
+
"contributors_2024": "12",
|
| 180 |
+
"contributors_2023": "1"
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"repo_name": "OpenCL-SDK",
|
| 184 |
"repo_link": "https://github.com/KhronosGroup/OpenCL-SDK",
|
| 185 |
"github_about_section": "OpenCL SDK",
|
| 186 |
"homepage_link": "https://khronos.org/opencl",
|
| 187 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 188 |
+
"contributors_all": "25",
|
| 189 |
+
"contributors_2025": "8",
|
| 190 |
+
"contributors_2024": "6",
|
| 191 |
+
"contributors_2023": "9"
|
| 192 |
},
|
| 193 |
{
|
| 194 |
"repo_name": "pocl",
|
| 195 |
"repo_link": "https://github.com/pocl/pocl",
|
| 196 |
"github_about_section": "pocl - Portable Computing Language",
|
| 197 |
"homepage_link": "https://portablecl.org",
|
| 198 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 199 |
+
"contributors_all": "166",
|
| 200 |
+
"contributors_2025": "26",
|
| 201 |
+
"contributors_2024": "27",
|
| 202 |
+
"contributors_2023": "21"
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"repo_name": "SYCL-Docs",
|
| 206 |
"repo_link": "https://github.com/KhronosGroup/SYCL-Docs",
|
| 207 |
"github_about_section": "SYCL Open Source Specification",
|
| 208 |
"homepage_link": "https://khronos.org/sycl",
|
| 209 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 210 |
+
"contributors_all": "67",
|
| 211 |
+
"contributors_2025": "13",
|
| 212 |
+
"contributors_2024": "20",
|
| 213 |
+
"contributors_2023": "27"
|
| 214 |
},
|
| 215 |
{
|
| 216 |
"repo_name": "triSYCL",
|
| 217 |
"repo_link": "https://github.com/triSYCL/triSYCL",
|
| 218 |
"github_about_section": "Generic system-wide modern C++ for heterogeneous platforms with SYCL from Khronos Group",
|
| 219 |
"homepage_link": "https://trisycl.github.io/triSYCL/Doxygen/triSYCL/html/index.html",
|
| 220 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 221 |
+
"contributors_all": "31",
|
| 222 |
+
"contributors_2025": "0",
|
| 223 |
+
"contributors_2024": "1",
|
| 224 |
+
"contributors_2023": "3"
|
| 225 |
},
|
| 226 |
{
|
| 227 |
"repo_name": "ZLUDA",
|
| 228 |
"repo_link": "https://github.com/vosen/ZLUDA",
|
| 229 |
"github_about_section": "CUDA on non-NVIDIA GPUs",
|
| 230 |
"homepage_link": "https://vosen.github.io/ZLUDA",
|
| 231 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 232 |
+
"contributors_all": "15",
|
| 233 |
+
"contributors_2025": "8",
|
| 234 |
+
"contributors_2024": "4",
|
| 235 |
+
"contributors_2023": "0"
|
| 236 |
},
|
| 237 |
{
|
| 238 |
"repo_name": "llama.cpp",
|
|
|
|
| 240 |
"category": "inference engine",
|
| 241 |
"github_about_section": "LLM inference in C/C++",
|
| 242 |
"homepage_link": "https://ggml.ai",
|
| 243 |
+
"github_topic_closest_fit": "inference",
|
| 244 |
+
"contributors_all": "1374",
|
| 245 |
+
"contributors_2025": "535",
|
| 246 |
+
"contributors_2024": "575",
|
| 247 |
+
"contributors_2023": "461"
|
| 248 |
},
|
| 249 |
{
|
| 250 |
"repo_name": "mistral-inference",
|
|
|
|
| 252 |
"category": "inference engine",
|
| 253 |
"github_about_section": "Official inference library for Mistral models",
|
| 254 |
"homepage_link": "https://mistral.ai",
|
| 255 |
+
"github_topic_closest_fit": "inference",
|
| 256 |
+
"contributors_all": "29",
|
| 257 |
+
"contributors_2025": "2",
|
| 258 |
+
"contributors_2024": "17",
|
| 259 |
+
"contributors_2023": "14"
|
| 260 |
},
|
| 261 |
{
|
| 262 |
"repo_name": "ollama",
|
|
|
|
| 264 |
"category": "inference engine",
|
| 265 |
"github_about_section": "Get up and running with OpenAI gpt-oss, DeepSeek-R1, Gemma 3 and other models.",
|
| 266 |
"homepage_link": "https://ollama.com",
|
| 267 |
+
"github_topic_closest_fit": "inference",
|
| 268 |
+
"contributors_all": "574",
|
| 269 |
+
"contributors_2025": "202",
|
| 270 |
+
"contributors_2024": "314",
|
| 271 |
+
"contributors_2023": "97"
|
| 272 |
},
|
| 273 |
{
|
| 274 |
"repo_name": "sglang",
|
|
|
|
| 276 |
"category": "inference engine",
|
| 277 |
"github_about_section": "SGLang is a fast serving framework for large language models and vision language models.",
|
| 278 |
"homepage_link": "https://docs.sglang.ai",
|
| 279 |
+
"github_topic_closest_fit": "inference",
|
| 280 |
+
"contributors_all": "937",
|
| 281 |
+
"contributors_2025": "796",
|
| 282 |
+
"contributors_2024": "189",
|
| 283 |
+
"contributors_2023": "1"
|
| 284 |
},
|
| 285 |
{
|
| 286 |
"repo_name": "TensorRT",
|
| 287 |
"repo_link": "https://github.com/NVIDIA/TensorRT",
|
| 288 |
"github_about_section": "NVIDIA TensorRT is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.",
|
| 289 |
+
"homepage_link": "https://developer.nvidia.com/tensorrt",
|
| 290 |
+
"contributors_all": "104",
|
| 291 |
+
"contributors_2025": "10",
|
| 292 |
+
"contributors_2024": "18",
|
| 293 |
+
"contributors_2023": "19"
|
| 294 |
},
|
| 295 |
{
|
| 296 |
"repo_name": "vllm",
|
|
|
|
| 298 |
"category": "inference engine",
|
| 299 |
"github_about_section": "A high-throughput and memory-efficient inference and serving engine for LLMs",
|
| 300 |
"homepage_link": "https://docs.vllm.ai",
|
| 301 |
+
"github_topic_closest_fit": "inference",
|
| 302 |
+
"contributors_all": "1885",
|
| 303 |
+
"contributors_2025": "1369",
|
| 304 |
+
"contributors_2024": "579",
|
| 305 |
+
"contributors_2023": "145"
|
| 306 |
},
|
| 307 |
{
|
| 308 |
"repo_name": "kernels",
|
| 309 |
"repo_link": "https://github.com/huggingface/kernels",
|
| 310 |
"category": "gpu kernels",
|
| 311 |
+
"github_about_section": "Load compute kernels from the Hub",
|
| 312 |
+
"contributors_all": "15",
|
| 313 |
+
"contributors_2025": "14",
|
| 314 |
+
"contributors_2024": "2",
|
| 315 |
+
"contributors_2023": "0"
|
| 316 |
},
|
| 317 |
{
|
| 318 |
"repo_name": "kernels-community",
|
| 319 |
"repo_link": "https://github.com/huggingface/kernels-community",
|
| 320 |
"category": "gpu kernels",
|
| 321 |
"homepage_link": "https://huggingface.co/kernels-community",
|
| 322 |
+
"github_about_section": "Kernel sources for https://huggingface.co/kernels-community",
|
| 323 |
+
"contributors_all": "9",
|
| 324 |
+
"contributors_2025": "9",
|
| 325 |
+
"contributors_2024": "0",
|
| 326 |
+
"contributors_2023": "0"
|
| 327 |
},
|
| 328 |
{
|
| 329 |
"repo_name": "Liger-Kernel",
|
|
|
|
| 331 |
"category": "kernel examples",
|
| 332 |
"github_about_section": "Efficient Triton Kernels for LLM Training",
|
| 333 |
"homepage_link": "https://openreview.net/pdf?id=36SjAIT42G",
|
| 334 |
+
"github_topic_closest_fit": "triton",
|
| 335 |
+
"contributors_all": "120",
|
| 336 |
+
"contributors_2025": "78",
|
| 337 |
+
"contributors_2024": "61",
|
| 338 |
+
"contributors_2023": "0"
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"repo_name": "quack",
|
| 342 |
"repo_link": "https://github.com/Dao-AILab/quack",
|
| 343 |
"category": "kernel examples",
|
| 344 |
+
"github_about_section": "A Quirky Assortment of CuTe Kernels",
|
| 345 |
+
"contributors_all": "17",
|
| 346 |
+
"contributors_2025": "17",
|
| 347 |
+
"contributors_2024": "0",
|
| 348 |
+
"contributors_2023": "0"
|
| 349 |
},
|
| 350 |
{
|
| 351 |
"repo_name": "reference-kernels",
|
| 352 |
"repo_link": "https://github.com/gpu-mode/reference-kernels",
|
| 353 |
"category": "kernel examples",
|
| 354 |
"github_about_section": "Official Problem Sets / Reference Kernels for the GPU MODE Leaderboard!",
|
| 355 |
+
"homepage_link": "https://gpumode.com",
|
| 356 |
+
"contributors_all": "16",
|
| 357 |
+
"contributors_2025": "16",
|
| 358 |
+
"contributors_2024": "0",
|
| 359 |
+
"contributors_2023": "0"
|
| 360 |
},
|
| 361 |
{
|
| 362 |
"repo_name": "pytorch",
|
|
|
|
| 364 |
"category": "machine learning framework",
|
| 365 |
"github_about_section": "Tensors and Dynamic neural networks in Python with strong GPU acceleration",
|
| 366 |
"homepage_link": "https://pytorch.org",
|
| 367 |
+
"github_topic_closest_fit": "machine-learning",
|
| 368 |
+
"contributors_all": "5434",
|
| 369 |
+
"contributors_2025": "1187",
|
| 370 |
+
"contributors_2024": "1090",
|
| 371 |
+
"contributors_2023": "1024"
|
| 372 |
},
|
| 373 |
{
|
| 374 |
"repo_name": "tensorflow",
|
|
|
|
| 376 |
"category": "machine learning framework",
|
| 377 |
"github_about_section": "An Open Source Machine Learning Framework for Everyone",
|
| 378 |
"homepage_link": "https://tensorflow.org",
|
| 379 |
+
"github_topic_closest_fit": "machine-learning",
|
| 380 |
+
"contributors_all": "4618",
|
| 381 |
+
"contributors_2025": "500",
|
| 382 |
+
"contributors_2024": "523",
|
| 383 |
+
"contributors_2023": "630"
|
| 384 |
},
|
| 385 |
{
|
| 386 |
"repo_name": "torchdendrite",
|
| 387 |
"repo_link": "https://github.com/sandialabs/torchdendrite",
|
| 388 |
"category": "machine learning framework",
|
| 389 |
+
"github_about_section": "Dendrites for PyTorch and SNNTorch neural networks",
|
| 390 |
+
"contributors_all": "2",
|
| 391 |
+
"contributors_2025": "1",
|
| 392 |
+
"contributors_2024": "1",
|
| 393 |
+
"contributors_2023": "0"
|
| 394 |
},
|
| 395 |
{
|
| 396 |
"repo_name": "onnx",
|
|
|
|
| 398 |
"category": "machine learning interoperability",
|
| 399 |
"github_about_section": "Open standard for machine learning interoperability",
|
| 400 |
"homepage_link": "https://onnx.ai",
|
| 401 |
+
"github_topic_closest_fit": "onnx",
|
| 402 |
+
"contributors_all": "370",
|
| 403 |
+
"contributors_2025": "56",
|
| 404 |
+
"contributors_2024": "45",
|
| 405 |
+
"contributors_2023": "61"
|
| 406 |
},
|
| 407 |
{
|
| 408 |
"repo_name": "executorch",
|
| 409 |
"repo_link": "https://github.com/pytorch/executorch",
|
| 410 |
"category": "model compiler",
|
| 411 |
"github_about_section": "On-device AI across mobile, embedded and edge for PyTorch",
|
| 412 |
+
"homepage_link": "https://executorch.ai",
|
| 413 |
+
"contributors_all": "437",
|
| 414 |
+
"contributors_2025": "267",
|
| 415 |
+
"contributors_2024": "243",
|
| 416 |
+
"contributors_2023": "77"
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"repo_name": "cutlass",
|
|
|
|
| 421 |
"category": "parallel computing",
|
| 422 |
"github_about_section": "CUDA Templates and Python DSLs for High-Performance Linear Algebra",
|
| 423 |
"homepage_link": "https://docs.nvidia.com/cutlass/index.html",
|
| 424 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 425 |
+
"contributors_all": "238",
|
| 426 |
+
"contributors_2025": "94",
|
| 427 |
+
"contributors_2024": "64",
|
| 428 |
+
"contributors_2023": "66"
|
| 429 |
},
|
| 430 |
{
|
| 431 |
"repo_name": "ThunderKittens",
|
|
|
|
| 433 |
"category": "parallel computing",
|
| 434 |
"github_about_section": "Tile primitives for speedy kernels",
|
| 435 |
"homepage_link": "https://hazyresearch.stanford.edu/blog/2024-10-29-tk2",
|
| 436 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 437 |
+
"contributors_all": "34",
|
| 438 |
+
"contributors_2025": "29",
|
| 439 |
+
"contributors_2024": "13",
|
| 440 |
+
"contributors_2023": "0"
|
| 441 |
},
|
| 442 |
{
|
| 443 |
"repo_name": "helion",
|
|
|
|
| 445 |
"category": "parallel computing dsl",
|
| 446 |
"github_about_section": "A Python-embedded DSL that makes it easy to write fast, scalable ML kernels with minimal boilerplate.",
|
| 447 |
"homepage_link": "https://helionlang.com",
|
| 448 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 449 |
+
"contributors_all": "49",
|
| 450 |
+
"contributors_2025": "49",
|
| 451 |
+
"contributors_2024": "0",
|
| 452 |
+
"contributors_2023": "0"
|
| 453 |
},
|
| 454 |
{
|
| 455 |
"repo_name": "TileIR",
|
| 456 |
"repo_link": "https://github.com/microsoft/TileIR",
|
| 457 |
"category": "parallel computing dsl",
|
| 458 |
"github_about_section": "TileIR (tile-ir) is a concise domain-specific IR designed to streamline the development of high-performance GPU/CPU kernels (e.g., GEMM, Dequant GEMM, FlashAttention, LinearAttention). By employing a Pythonic syntax with an underlying compiler infrastructure on top of TVM, TileIR allows developers to focus on productivity without sacrificing the low-level optimizations necessary for state-of-the-art performance.",
|
| 459 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 460 |
+
"contributors_all": "10",
|
| 461 |
+
"contributors_2025": "10",
|
| 462 |
+
"contributors_2024": "1",
|
| 463 |
+
"contributors_2023": "0"
|
| 464 |
},
|
| 465 |
{
|
| 466 |
"repo_name": "tilelang",
|
|
|
|
| 468 |
"category": "parallel computing dsl",
|
| 469 |
"github_about_section": "Domain-specific language designed to streamline the development of high-performance GPU/CPU/Accelerators kernels",
|
| 470 |
"homepage_link": "https://tilelang.com",
|
| 471 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 472 |
+
"contributors_all": "90",
|
| 473 |
+
"contributors_2025": "89",
|
| 474 |
+
"contributors_2024": "1",
|
| 475 |
+
"contributors_2023": "0"
|
| 476 |
},
|
| 477 |
{
|
| 478 |
"repo_name": "triton",
|
|
|
|
| 480 |
"category": "parallel computing dsl",
|
| 481 |
"github_about_section": "Development repository for the Triton language and compiler",
|
| 482 |
"homepage_link": "https://triton-lang.org",
|
| 483 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 484 |
+
"contributors_all": "522",
|
| 485 |
+
"contributors_2025": "233",
|
| 486 |
+
"contributors_2024": "206",
|
| 487 |
+
"contributors_2023": "159"
|
| 488 |
},
|
| 489 |
{
|
| 490 |
"repo_name": "cupti",
|
| 491 |
"repo_link": "https://github.com/cwpearson/cupti",
|
| 492 |
"category": "performance testing",
|
| 493 |
"github_about_section": "Profile how CUDA applications create and modify data in memory.",
|
| 494 |
+
"github_topic_closest_fit": "profiling",
|
| 495 |
+
"contributors_all": "1",
|
| 496 |
+
"contributors_2025": "0",
|
| 497 |
+
"contributors_2024": "0",
|
| 498 |
+
"contributors_2023": "0"
|
| 499 |
},
|
| 500 |
{
|
| 501 |
"repo_name": "hatchet",
|
|
|
|
| 503 |
"category": "performance testing",
|
| 504 |
"github_about_section": "Graph-indexed Pandas DataFrames for analyzing hierarchical performance data",
|
| 505 |
"homepage_link": "https://llnl-hatchet.readthedocs.io",
|
| 506 |
+
"github_topic_closest_fit": "profiling",
|
| 507 |
+
"contributors_all": "25",
|
| 508 |
+
"contributors_2025": "3",
|
| 509 |
+
"contributors_2024": "6",
|
| 510 |
+
"contributors_2023": "8"
|
| 511 |
},
|
| 512 |
{
|
| 513 |
"repo_name": "intelliperf",
|
|
|
|
| 515 |
"category": "performance testing",
|
| 516 |
"github_about_section": "Automated bottleneck detection and solution orchestration",
|
| 517 |
"homepage_link": "https://arxiv.org/html/2508.20258v1",
|
| 518 |
+
"github_topic_closest_fit": "profiling",
|
| 519 |
+
"contributors_all": "7",
|
| 520 |
+
"contributors_2025": "7",
|
| 521 |
+
"contributors_2024": "0",
|
| 522 |
+
"contributors_2023": "0"
|
| 523 |
},
|
| 524 |
{
|
| 525 |
"repo_name": "omnitrace",
|
|
|
|
| 527 |
"category": "performance testing",
|
| 528 |
"github_about_section": "Omnitrace: Application Profiling, Tracing, and Analysis",
|
| 529 |
"homepage_link": "https://rocm.docs.amd.com/projects/omnitrace",
|
| 530 |
+
"github_topic_closest_fit": "profiling",
|
| 531 |
+
"contributors_all": "16",
|
| 532 |
+
"contributors_2025": "2",
|
| 533 |
+
"contributors_2024": "12",
|
| 534 |
+
"contributors_2023": "2"
|
| 535 |
},
|
| 536 |
{
|
| 537 |
"repo_name": "jax",
|
|
|
|
| 539 |
"category": "scientific computing",
|
| 540 |
"github_about_section": "Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more",
|
| 541 |
"homepage_link": "https://docs.jax.dev",
|
| 542 |
+
"github_topic_closest_fit": "scientific-computing",
|
| 543 |
+
"contributors_all": "997",
|
| 544 |
+
"contributors_2025": "312",
|
| 545 |
+
"contributors_2024": "280",
|
| 546 |
+
"contributors_2023": "202"
|
| 547 |
},
|
| 548 |
{
|
| 549 |
"repo_name": "numpy",
|
|
|
|
| 551 |
"category": "scientific computing",
|
| 552 |
"github_about_section": "The fundamental package for scientific computing with Python.",
|
| 553 |
"homepage_link": "https://numpy.org",
|
| 554 |
+
"github_topic_closest_fit": "scientific-computing",
|
| 555 |
+
"contributors_all": "2172",
|
| 556 |
+
"contributors_2025": "235",
|
| 557 |
+
"contributors_2024": "233",
|
| 558 |
+
"contributors_2023": "252"
|
| 559 |
},
|
| 560 |
{
|
| 561 |
"repo_name": "scipy",
|
|
|
|
| 563 |
"category": "scientific computing",
|
| 564 |
"github_about_section": "SciPy library main repository",
|
| 565 |
"homepage_link": "https://scipy.org",
|
| 566 |
+
"github_topic_closest_fit": "scientific-computing",
|
| 567 |
+
"contributors_all": "1973",
|
| 568 |
+
"contributors_2025": "210",
|
| 569 |
+
"contributors_2024": "251",
|
| 570 |
+
"contributors_2023": "245"
|
| 571 |
},
|
| 572 |
{
|
| 573 |
"repo_name": "elasticsearch",
|
|
|
|
| 575 |
"category": "search engine",
|
| 576 |
"github_about_section": "Free and Open Source, Distributed, RESTful Search Engine",
|
| 577 |
"homepage_link": "https://elastic.co/products/elasticsearch",
|
| 578 |
+
"github_topic_closest_fit": "search-engine",
|
| 579 |
+
"contributors_all": "2297",
|
| 580 |
+
"contributors_2025": "316",
|
| 581 |
+
"contributors_2024": "284",
|
| 582 |
+
"contributors_2023": "270"
|
| 583 |
},
|
| 584 |
{
|
| 585 |
"repo_name": "jupyterlab",
|
|
|
|
| 587 |
"category": "user interface",
|
| 588 |
"github_about_section": "JupyterLab computational environment.",
|
| 589 |
"homepage_link": "https://jupyterlab.readthedocs.io",
|
| 590 |
+
"github_topic_closest_fit": "jupyter",
|
| 591 |
+
"contributors_all": "698",
|
| 592 |
+
"contributors_2025": "77",
|
| 593 |
+
"contributors_2024": "85",
|
| 594 |
+
"contributors_2023": "100"
|
| 595 |
},
|
| 596 |
{
|
| 597 |
"repo_name": "milvus",
|
|
|
|
| 599 |
"category": "vector database",
|
| 600 |
"github_about_section": "Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search",
|
| 601 |
"homepage_link": "https://milvus.io",
|
| 602 |
+
"github_topic_closest_fit": "vector-search",
|
| 603 |
+
"contributors_all": "387",
|
| 604 |
+
"contributors_2025": "95",
|
| 605 |
+
"contributors_2024": "84",
|
| 606 |
+
"contributors_2023": "72"
|
| 607 |
},
|
| 608 |
{
|
| 609 |
"repo_name": "accelerate",
|
| 610 |
"repo_link": "https://github.com/huggingface/accelerate",
|
| 611 |
"github_about_section": "A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support.",
|
| 612 |
+
"homepage_link": "https://huggingface.co/docs/accelerate",
|
| 613 |
+
"contributors_all": "392",
|
| 614 |
+
"contributors_2025": "97",
|
| 615 |
+
"contributors_2024": "124",
|
| 616 |
+
"contributors_2023": "149"
|
| 617 |
},
|
| 618 |
{
|
| 619 |
"repo_name": "aiter",
|
| 620 |
"repo_link": "https://github.com/ROCm/aiter",
|
| 621 |
"github_about_section": "AI Tensor Engine for ROCm",
|
| 622 |
+
"homepage_link": "https://rocm.blogs.amd.com/software-tools-optimization/aiter-ai-tensor-engine/README.html",
|
| 623 |
+
"contributors_all": "151",
|
| 624 |
+
"contributors_2025": "145",
|
| 625 |
+
"contributors_2024": "10",
|
| 626 |
+
"contributors_2023": "0"
|
| 627 |
},
|
| 628 |
{
|
| 629 |
"repo_name": "ao",
|
| 630 |
"repo_link": "https://github.com/pytorch/ao",
|
| 631 |
"github_about_section": "PyTorch native quantization and sparsity for training and inference",
|
| 632 |
"homepage_link": "https://pytorch.org/ao",
|
| 633 |
+
"github_topic_closest_fit": "quantization",
|
| 634 |
+
"contributors_all": "178",
|
| 635 |
+
"contributors_2025": "114",
|
| 636 |
+
"contributors_2024": "100",
|
| 637 |
+
"contributors_2023": "5"
|
| 638 |
},
|
| 639 |
{
|
| 640 |
"repo_name": "burn",
|
| 641 |
"repo_link": "https://github.com/tracel-ai/burn",
|
| 642 |
"github_about_section": "Burn is a next generation tensor library and Deep Learning Framework that doesn't compromise on flexibility, efficiency and portability.",
|
| 643 |
+
"homepage_link": "https://burn.dev",
|
| 644 |
+
"contributors_all": "237",
|
| 645 |
+
"contributors_2025": "99",
|
| 646 |
+
"contributors_2024": "104",
|
| 647 |
+
"contributors_2023": "62"
|
| 648 |
},
|
| 649 |
{
|
| 650 |
"repo_name": "ccache",
|
| 651 |
"repo_link": "https://github.com/ccache/ccache",
|
| 652 |
"github_about_section": "ccache - a fast compiler cache",
|
| 653 |
+
"homepage_link": "https://ccache.dev",
|
| 654 |
+
"contributors_all": "218",
|
| 655 |
+
"contributors_2025": "20",
|
| 656 |
+
"contributors_2024": "28",
|
| 657 |
+
"contributors_2023": "22"
|
| 658 |
},
|
| 659 |
{
|
| 660 |
"repo_name": "ComfyUI",
|
|
|
|
| 662 |
"category": "user interface",
|
| 663 |
"github_about_section": "The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.",
|
| 664 |
"homepage_link": "https://comfy.org",
|
| 665 |
+
"github_topic_closest_fit": "stable-diffusion",
|
| 666 |
+
"contributors_all": "278",
|
| 667 |
+
"contributors_2025": "108",
|
| 668 |
+
"contributors_2024": "119",
|
| 669 |
+
"contributors_2023": "94"
|
| 670 |
},
|
| 671 |
{
|
| 672 |
"repo_name": "composable_kernel",
|
| 673 |
"repo_link": "https://github.com/ROCm/composable_kernel",
|
| 674 |
"category": "gpu kernels",
|
| 675 |
"github_about_section": "Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators",
|
| 676 |
+
"homepage_link": "https://rocm.docs.amd.com/projects/composable_kernel",
|
| 677 |
+
"contributors_all": "190",
|
| 678 |
+
"contributors_2025": "140",
|
| 679 |
+
"contributors_2024": "58",
|
| 680 |
+
"contributors_2023": "33"
|
| 681 |
},
|
| 682 |
{
|
| 683 |
"repo_name": "cudnn-frontend",
|
|
|
|
| 685 |
"category": "parallel computing",
|
| 686 |
"github_about_section": "cudnn_frontend provides a c++ wrapper for the cudnn backend API and samples on how to use it",
|
| 687 |
"homepage_link": "https://developer.nvidia.com/cudnn",
|
| 688 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 689 |
+
"contributors_all": "12",
|
| 690 |
+
"contributors_2025": "6",
|
| 691 |
+
"contributors_2024": "5",
|
| 692 |
+
"contributors_2023": "1"
|
| 693 |
},
|
| 694 |
{
|
| 695 |
"repo_name": "cuJSON",
|
|
|
|
| 697 |
"category": "library leveraging parallel compute",
|
| 698 |
"github_about_section": "cuJSON: A Highly Parallel JSON Parser for GPUs",
|
| 699 |
"homepage_link": "https://dl.acm.org/doi/10.1145/3760250.3762222",
|
| 700 |
+
"github_topic_closest_fit": "json-parser",
|
| 701 |
+
"contributors_all": "2",
|
| 702 |
+
"contributors_2025": "2",
|
| 703 |
+
"contributors_2024": "2",
|
| 704 |
+
"contributors_2023": "0"
|
| 705 |
},
|
| 706 |
{
|
| 707 |
"repo_name": "DeepSpeed",
|
| 708 |
"repo_link": "https://github.com/deepspeedai/DeepSpeed",
|
| 709 |
"github_about_section": "DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.",
|
| 710 |
+
"homepage_link": "https://deepspeed.ai",
|
| 711 |
+
"contributors_all": "442",
|
| 712 |
+
"contributors_2025": "96",
|
| 713 |
+
"contributors_2024": "134",
|
| 714 |
+
"contributors_2023": "165"
|
| 715 |
},
|
| 716 |
{
|
| 717 |
"repo_name": "dstack",
|
|
|
|
| 719 |
"category": "gpu provisioning and orchestration",
|
| 720 |
"github_about_section": "dstack is an open-source control plane for running development, training, and inference jobs on GPUs-across hyperscalers, neoclouds, or on-prem.",
|
| 721 |
"homepage_link": "https://dstack.ai",
|
| 722 |
+
"github_topic_closest_fit": "orchestration",
|
| 723 |
+
"contributors_all": "69",
|
| 724 |
+
"contributors_2025": "28",
|
| 725 |
+
"contributors_2024": "42",
|
| 726 |
+
"contributors_2023": "14"
|
| 727 |
},
|
| 728 |
{
|
| 729 |
"repo_name": "flashinfer",
|
|
|
|
| 731 |
"category": "gpu kernels",
|
| 732 |
"github_about_section": "FlashInfer: Kernel Library for LLM Serving",
|
| 733 |
"homepage_link": "https://flashinfer.ai",
|
| 734 |
+
"github_topic_closest_fit": "attention",
|
| 735 |
+
"contributors_all": "205",
|
| 736 |
+
"contributors_2025": "158",
|
| 737 |
+
"contributors_2024": "50",
|
| 738 |
+
"contributors_2023": "11"
|
| 739 |
},
|
| 740 |
{
|
| 741 |
"repo_name": "FTorch",
|
|
|
|
| 743 |
"category": "wrapper",
|
| 744 |
"github_about_section": "A library for directly calling PyTorch ML models from Fortran.",
|
| 745 |
"homepage_link": "https://cambridge-iccs.github.io/FTorch",
|
| 746 |
+
"github_topic_closest_fit": "machine-learning",
|
| 747 |
+
"contributors_all": "20",
|
| 748 |
+
"contributors_2025": "11",
|
| 749 |
+
"contributors_2024": "8",
|
| 750 |
+
"contributors_2023": "9"
|
| 751 |
},
|
| 752 |
{
|
| 753 |
"repo_name": "GEAK-agent",
|
| 754 |
"repo_link": "https://github.com/AMD-AGI/GEAK-agent",
|
| 755 |
"category": "agent",
|
| 756 |
"github_about_section": "It is an LLM-based AI agent, which can write correct and efficient gpu kernels automatically.",
|
| 757 |
+
"github_topic_closest_fit": "ai-agents",
|
| 758 |
+
"contributors_all": "9",
|
| 759 |
+
"contributors_2025": "9",
|
| 760 |
+
"contributors_2024": "0",
|
| 761 |
+
"contributors_2023": "0"
|
| 762 |
},
|
| 763 |
{
|
| 764 |
"repo_name": "hhvm",
|
| 765 |
"repo_link": "https://github.com/facebook/hhvm",
|
| 766 |
"github_about_section": "A virtual machine for executing programs written in Hack.",
|
| 767 |
+
"homepage_link": "https://hhvm.com",
|
| 768 |
+
"contributors_all": "2624",
|
| 769 |
+
"contributors_2025": "692",
|
| 770 |
+
"contributors_2024": "648",
|
| 771 |
+
"contributors_2023": "604"
|
| 772 |
},
|
| 773 |
{
|
| 774 |
"repo_name": "hip",
|
| 775 |
"repo_link": "https://github.com/ROCm/hip",
|
| 776 |
"github_about_section": "HIP: C++ Heterogeneous-Compute Interface for Portability",
|
| 777 |
+
"homepage_link": "https://rocmdocs.amd.com/projects/HIP",
|
| 778 |
+
"contributors_all": "288",
|
| 779 |
+
"contributors_2025": "46",
|
| 780 |
+
"contributors_2024": "31",
|
| 781 |
+
"contributors_2023": "25"
|
| 782 |
},
|
| 783 |
{
|
| 784 |
"repo_name": "hipCUB",
|
| 785 |
"repo_link": "https://github.com/ROCm/hipCUB",
|
| 786 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 787 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 788 |
+
"contributors_all": "54",
|
| 789 |
+
"contributors_2025": "10",
|
| 790 |
+
"contributors_2024": "19",
|
| 791 |
+
"contributors_2023": "13"
|
| 792 |
},
|
| 793 |
{
|
| 794 |
"repo_name": "IMO2025",
|
|
|
|
| 796 |
"category": "formal mathematical reasoning",
|
| 797 |
"github_about_section": "Harmonic's model Aristotle achieved gold medal performance, solving 5 problems. This repository contains the lean statement files and proofs for Problems 1-5.",
|
| 798 |
"homepage_link": "https://harmonic.fun",
|
| 799 |
+
"github_topic_closest_fit": "lean",
|
| 800 |
+
"contributors_all": "2",
|
| 801 |
+
"contributors_2025": "2",
|
| 802 |
+
"contributors_2024": "0",
|
| 803 |
+
"contributors_2023": "0"
|
| 804 |
},
|
| 805 |
{
|
| 806 |
"repo_name": "kubernetes",
|
|
|
|
| 808 |
"category": "container orchestration",
|
| 809 |
"github_about_section": "Production-Grade Container Scheduling and Management",
|
| 810 |
"homepage_link": "https://kubernetes.io",
|
| 811 |
+
"github_topic_closest_fit": "kubernetes",
|
| 812 |
+
"contributors_all": "5041",
|
| 813 |
+
"contributors_2025": "509",
|
| 814 |
+
"contributors_2024": "498",
|
| 815 |
+
"contributors_2023": "565"
|
| 816 |
},
|
| 817 |
{
|
| 818 |
"repo_name": "lapack",
|
|
|
|
| 820 |
"category": "linear algebra",
|
| 821 |
"github_about_section": "LAPACK is a library of Fortran subroutines for solving the most commonly occurring problems in numerical linear algebra.",
|
| 822 |
"homepage_link": "https://netlib.org/lapack",
|
| 823 |
+
"github_topic_closest_fit": "linear-algebra",
|
| 824 |
+
"contributors_all": "178",
|
| 825 |
+
"contributors_2025": "20",
|
| 826 |
+
"contributors_2024": "24",
|
| 827 |
+
"contributors_2023": "42"
|
| 828 |
},
|
| 829 |
{
|
| 830 |
"repo_name": "lean4",
|
|
|
|
| 832 |
"category": "theorem prover",
|
| 833 |
"github_about_section": "Lean 4 programming language and theorem prover",
|
| 834 |
"homepage_link": "https://lean-lang.org",
|
| 835 |
+
"github_topic_closest_fit": "lean",
|
| 836 |
+
"contributors_all": "278",
|
| 837 |
+
"contributors_2025": "110",
|
| 838 |
+
"contributors_2024": "85",
|
| 839 |
+
"contributors_2023": "64"
|
| 840 |
},
|
| 841 |
{
|
| 842 |
"repo_name": "letta",
|
|
|
|
| 844 |
"category": "agent",
|
| 845 |
"github_about_section": "Letta is the platform for building stateful agents: open AI with advanced memory that can learn and self-improve over time.",
|
| 846 |
"homepage_link": "https://docs.letta.com",
|
| 847 |
+
"github_topic_closest_fit": "ai-agents",
|
| 848 |
+
"contributors_all": "157",
|
| 849 |
+
"contributors_2025": "56",
|
| 850 |
+
"contributors_2024": "75",
|
| 851 |
+
"contributors_2023": "47"
|
| 852 |
},
|
| 853 |
{
|
| 854 |
"repo_name": "lightning-thunder",
|
| 855 |
"repo_link": "https://github.com/Lightning-AI/lightning-thunder",
|
| 856 |
+
"github_about_section": "PyTorch compiler that accelerates training and inference. Get built-in optimizations for performance, memory, parallelism, and easily write your own.",
|
| 857 |
+
"contributors_all": "76",
|
| 858 |
+
"contributors_2025": "44",
|
| 859 |
+
"contributors_2024": "47",
|
| 860 |
+
"contributors_2023": "29"
|
| 861 |
},
|
| 862 |
{
|
| 863 |
"repo_name": "LMCache",
|
| 864 |
"repo_link": "https://github.com/LMCache/LMCache",
|
| 865 |
"github_about_section": "Supercharge Your LLM with the Fastest KV Cache Layer",
|
| 866 |
+
"homepage_link": "https://lmcache.ai",
|
| 867 |
+
"contributors_all": "152",
|
| 868 |
+
"contributors_2025": "144",
|
| 869 |
+
"contributors_2024": "18",
|
| 870 |
+
"contributors_2023": "0"
|
| 871 |
},
|
| 872 |
{
|
| 873 |
"repo_name": "mcp-agent",
|
| 874 |
"repo_link": "https://github.com/lastmile-ai/mcp-agent",
|
| 875 |
"category": "mcp",
|
| 876 |
"github_about_section": "Build effective agents using Model Context Protocol and simple workflow patterns",
|
| 877 |
+
"github_topic_closest_fit": "mcp",
|
| 878 |
+
"contributors_all": "63",
|
| 879 |
+
"contributors_2025": "63",
|
| 880 |
+
"contributors_2024": "1",
|
| 881 |
+
"contributors_2023": "0"
|
| 882 |
},
|
| 883 |
{
|
| 884 |
"repo_name": "metaflow",
|
| 885 |
"repo_link": "https://github.com/Netflix/metaflow",
|
| 886 |
"github_about_section": "Build, Manage and Deploy AI/ML Systems",
|
| 887 |
+
"homepage_link": "https://metaflow.org",
|
| 888 |
+
"contributors_all": "121",
|
| 889 |
+
"contributors_2025": "37",
|
| 890 |
+
"contributors_2024": "35",
|
| 891 |
+
"contributors_2023": "28"
|
| 892 |
},
|
| 893 |
{
|
| 894 |
"repo_name": "MIOpen",
|
| 895 |
"repo_link": "https://github.com/ROCm/MIOpen",
|
| 896 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 897 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 898 |
+
"contributors_all": "204",
|
| 899 |
+
"contributors_2025": "47",
|
| 900 |
+
"contributors_2024": "62",
|
| 901 |
+
"contributors_2023": "44"
|
| 902 |
},
|
| 903 |
{
|
| 904 |
"repo_name": "modelcontextprotocol",
|
|
|
|
| 906 |
"category": "mcp",
|
| 907 |
"github_about_section": "Specification and documentation for the Model Context Protocol",
|
| 908 |
"homepage_link": "https://modelcontextprotocol.io",
|
| 909 |
+
"github_topic_closest_fit": "mcp",
|
| 910 |
+
"contributors_all": "327",
|
| 911 |
+
"contributors_2025": "298",
|
| 912 |
+
"contributors_2024": "42",
|
| 913 |
+
"contributors_2023": "0"
|
| 914 |
},
|
| 915 |
{
|
| 916 |
"repo_name": "modular",
|
|
|
|
| 918 |
"category": "parallel computing",
|
| 919 |
"github_about_section": "The Modular Platform (includes MAX & Mojo)",
|
| 920 |
"homepage_link": "https://docs.modular.com",
|
| 921 |
+
"github_topic_closest_fit": "parallel-programming",
|
| 922 |
+
"contributors_all": "366",
|
| 923 |
+
"contributors_2025": "222",
|
| 924 |
+
"contributors_2024": "205",
|
| 925 |
+
"contributors_2023": "99"
|
| 926 |
},
|
| 927 |
{
|
| 928 |
"repo_name": "monarch",
|
| 929 |
"repo_link": "https://github.com/meta-pytorch/monarch",
|
| 930 |
"github_about_section": "PyTorch Single Controller",
|
| 931 |
+
"homepage_link": "https://meta-pytorch.org/monarch",
|
| 932 |
+
"contributors_all": "85",
|
| 933 |
+
"contributors_2025": "85",
|
| 934 |
+
"contributors_2024": "0",
|
| 935 |
+
"contributors_2023": "0"
|
| 936 |
},
|
| 937 |
{
|
| 938 |
"repo_name": "Mooncake",
|
| 939 |
"repo_link": "https://github.com/kvcache-ai/Mooncake",
|
| 940 |
"github_about_section": "Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.",
|
| 941 |
"homepage_link": "https://kvcache-ai.github.io/Mooncake",
|
| 942 |
+
"github_topic_closest_fit": "inference",
|
| 943 |
+
"contributors_all": "138",
|
| 944 |
+
"contributors_2025": "133",
|
| 945 |
+
"contributors_2024": "13",
|
| 946 |
+
"contributors_2023": "0"
|
| 947 |
},
|
| 948 |
{
|
| 949 |
"repo_name": "nccl",
|
| 950 |
"repo_link": "https://github.com/NVIDIA/nccl",
|
| 951 |
"github_about_section": "Optimized primitives for collective multi-GPU communication",
|
| 952 |
+
"homepage_link": "https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html",
|
| 953 |
+
"contributors_all": "51",
|
| 954 |
+
"contributors_2025": "7",
|
| 955 |
+
"contributors_2024": "5",
|
| 956 |
+
"contributors_2023": "6"
|
| 957 |
},
|
| 958 |
{
|
| 959 |
"repo_name": "neuronx-distributed-inference",
|
| 960 |
+
"repo_link": "https://github.com/aws-neuron/neuronx-distributed-inference",
|
| 961 |
+
"contributors_all": "11",
|
| 962 |
+
"contributors_2025": "9",
|
| 963 |
+
"contributors_2024": "3",
|
| 964 |
+
"contributors_2023": "0"
|
| 965 |
},
|
| 966 |
{
|
| 967 |
"repo_name": "nixl",
|
| 968 |
"repo_link": "https://github.com/ai-dynamo/nixl",
|
| 969 |
+
"github_about_section": "NVIDIA Inference Xfer Library (NIXL)",
|
| 970 |
+
"contributors_all": "78",
|
| 971 |
+
"contributors_2025": "78",
|
| 972 |
+
"contributors_2024": "0",
|
| 973 |
+
"contributors_2023": "0"
|
| 974 |
},
|
| 975 |
{
|
| 976 |
"repo_name": "ome",
|
| 977 |
"repo_link": "https://github.com/sgl-project/ome",
|
| 978 |
"github_about_section": "OME is a Kubernetes operator for enterprise-grade management and serving of Large Language Models (LLMs)",
|
| 979 |
"homepage_link": "http://docs.sglang.ai/ome",
|
| 980 |
+
"github_topic_closest_fit": "k8s",
|
| 981 |
+
"contributors_all": "28",
|
| 982 |
+
"contributors_2025": "28",
|
| 983 |
+
"contributors_2024": "0",
|
| 984 |
+
"contributors_2023": "0"
|
| 985 |
},
|
| 986 |
{
|
| 987 |
"repo_name": "ondemand",
|
| 988 |
"repo_link": "https://github.com/OSC/ondemand",
|
| 989 |
"github_about_section": "Supercomputing. Seamlessly. Open, Interactive HPC Via the Web",
|
| 990 |
"homepage_link": "https://openondemand.org",
|
| 991 |
+
"github_topic_closest_fit": "hpc",
|
| 992 |
+
"contributors_all": "117",
|
| 993 |
+
"contributors_2025": "43",
|
| 994 |
+
"contributors_2024": "23",
|
| 995 |
+
"contributors_2023": "21"
|
| 996 |
},
|
| 997 |
{
|
| 998 |
"repo_name": "oneDPL",
|
| 999 |
"repo_link": "https://github.com/uxlfoundation/oneDPL",
|
| 1000 |
"github_about_section": "oneAPI DPC++ Library (oneDPL)",
|
| 1001 |
+
"homepage_link": "https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html",
|
| 1002 |
+
"contributors_all": "67",
|
| 1003 |
+
"contributors_2025": "17",
|
| 1004 |
+
"contributors_2024": "29",
|
| 1005 |
+
"contributors_2023": "28"
|
| 1006 |
},
|
| 1007 |
{
|
| 1008 |
"repo_name": "openevolve",
|
| 1009 |
"repo_link": "https://github.com/codelion/openevolve",
|
| 1010 |
"github_about_section": "Open-source implementation of AlphaEvolve",
|
| 1011 |
+
"github_topic_closest_fit": "genetic-algorithm",
|
| 1012 |
+
"contributors_all": "46",
|
| 1013 |
+
"contributors_2025": "46",
|
| 1014 |
+
"contributors_2024": "0",
|
| 1015 |
+
"contributors_2023": "0"
|
| 1016 |
},
|
| 1017 |
{
|
| 1018 |
"repo_name": "ort",
|
| 1019 |
"repo_link": "https://github.com/pytorch/ort",
|
| 1020 |
+
"github_about_section": "Accelerate PyTorch models with ONNX Runtime",
|
| 1021 |
+
"contributors_all": "47",
|
| 1022 |
+
"contributors_2025": "0",
|
| 1023 |
+
"contributors_2024": "7",
|
| 1024 |
+
"contributors_2023": "9"
|
| 1025 |
},
|
| 1026 |
{
|
| 1027 |
"repo_name": "peft",
|
| 1028 |
"repo_link": "https://github.com/huggingface/peft",
|
| 1029 |
"github_about_section": "PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.",
|
| 1030 |
"homepage_link": "https://huggingface.co/docs/peft",
|
| 1031 |
+
"github_topic_closest_fit": "lora",
|
| 1032 |
+
"contributors_all": "272",
|
| 1033 |
+
"contributors_2025": "69",
|
| 1034 |
+
"contributors_2024": "111",
|
| 1035 |
+
"contributors_2023": "115"
|
| 1036 |
},
|
| 1037 |
{
|
| 1038 |
"repo_name": "Primus-Turbo",
|
| 1039 |
+
"repo_link": "https://github.com/AMD-AGI/Primus-Turbo",
|
| 1040 |
+
"contributors_all": "12",
|
| 1041 |
+
"contributors_2025": "12",
|
| 1042 |
+
"contributors_2024": "0",
|
| 1043 |
+
"contributors_2023": "0"
|
| 1044 |
},
|
| 1045 |
{
|
| 1046 |
"repo_name": "pybind11",
|
| 1047 |
"repo_link": "https://github.com/pybind/pybind11",
|
| 1048 |
"github_about_section": "Seamless operability between C++11 and Python",
|
| 1049 |
"homepage_link": "https://pybind11.readthedocs.io",
|
| 1050 |
+
"github_topic_closest_fit": "bindings",
|
| 1051 |
+
"contributors_all": "404",
|
| 1052 |
+
"contributors_2025": "43",
|
| 1053 |
+
"contributors_2024": "45",
|
| 1054 |
+
"contributors_2023": "42"
|
| 1055 |
},
|
| 1056 |
{
|
| 1057 |
"repo_name": "RaBitQ",
|
| 1058 |
"repo_link": "https://github.com/gaoj0017/RaBitQ",
|
| 1059 |
"github_about_section": "[SIGMOD 2024] RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search",
|
| 1060 |
"homepage_link": "https://github.com/VectorDB-NTU/RaBitQ-Library",
|
| 1061 |
+
"github_topic_closest_fit": "nearest-neighbor-search",
|
| 1062 |
+
"contributors_all": "2",
|
| 1063 |
+
"contributors_2025": "2",
|
| 1064 |
+
"contributors_2024": "1",
|
| 1065 |
+
"contributors_2023": "0"
|
| 1066 |
},
|
| 1067 |
{
|
| 1068 |
"repo_name": "rdma-core",
|
| 1069 |
"repo_link": "https://github.com/linux-rdma/rdma-core",
|
| 1070 |
+
"github_about_section": "RDMA core userspace libraries and daemons",
|
| 1071 |
+
"contributors_all": "437",
|
| 1072 |
+
"contributors_2025": "58",
|
| 1073 |
+
"contributors_2024": "61",
|
| 1074 |
+
"contributors_2023": "66"
|
| 1075 |
},
|
| 1076 |
{
|
| 1077 |
"repo_name": "rocFFT",
|
| 1078 |
"repo_link": "https://github.com/ROCm/rocFFT",
|
| 1079 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1080 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1081 |
+
"contributors_all": "81",
|
| 1082 |
+
"contributors_2025": "17",
|
| 1083 |
+
"contributors_2024": "20",
|
| 1084 |
+
"contributors_2023": "19"
|
| 1085 |
},
|
| 1086 |
{
|
| 1087 |
"repo_name": "ROCm",
|
| 1088 |
"repo_link": "https://github.com/ROCm/ROCm",
|
| 1089 |
"github_about_section": "AMD ROCm Software - GitHub Home",
|
| 1090 |
+
"homepage_link": "https://rocm.docs.amd.com",
|
| 1091 |
+
"contributors_all": "166",
|
| 1092 |
+
"contributors_2025": "67",
|
| 1093 |
+
"contributors_2024": "61",
|
| 1094 |
+
"contributors_2023": "44"
|
| 1095 |
},
|
| 1096 |
{
|
| 1097 |
"repo_name": "rocm-systems",
|
| 1098 |
"repo_link": "https://github.com/ROCm/rocm-systems",
|
| 1099 |
+
"github_about_section": "super repo for rocm systems projects",
|
| 1100 |
+
"contributors_all": "1032",
|
| 1101 |
+
"contributors_2025": "440",
|
| 1102 |
+
"contributors_2024": "323",
|
| 1103 |
+
"contributors_2023": "204"
|
| 1104 |
},
|
| 1105 |
{
|
| 1106 |
"repo_name": "rocPRIM",
|
| 1107 |
"repo_link": "https://github.com/ROCm/rocPRIM",
|
| 1108 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1109 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1110 |
+
"contributors_all": "76",
|
| 1111 |
+
"contributors_2025": "12",
|
| 1112 |
+
"contributors_2024": "28",
|
| 1113 |
+
"contributors_2023": "15"
|
| 1114 |
},
|
| 1115 |
{
|
| 1116 |
"repo_name": "rocRAND",
|
| 1117 |
"repo_link": "https://github.com/ROCm/rocRAND",
|
| 1118 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1119 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1120 |
+
"contributors_all": "85",
|
| 1121 |
+
"contributors_2025": "10",
|
| 1122 |
+
"contributors_2024": "32",
|
| 1123 |
+
"contributors_2023": "26"
|
| 1124 |
},
|
| 1125 |
{
|
| 1126 |
"repo_name": "rocSOLVER",
|
| 1127 |
"repo_link": "https://github.com/ROCm/rocSOLVER",
|
| 1128 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1129 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1130 |
+
"contributors_all": "59",
|
| 1131 |
+
"contributors_2025": "20",
|
| 1132 |
+
"contributors_2024": "23",
|
| 1133 |
+
"contributors_2023": "15"
|
| 1134 |
},
|
| 1135 |
{
|
| 1136 |
"repo_name": "rocSPARSE",
|
| 1137 |
"repo_link": "https://github.com/ROCm/rocSPARSE",
|
| 1138 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1139 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1140 |
+
"contributors_all": "65",
|
| 1141 |
+
"contributors_2025": "19",
|
| 1142 |
+
"contributors_2024": "24",
|
| 1143 |
+
"contributors_2023": "18"
|
| 1144 |
},
|
| 1145 |
{
|
| 1146 |
"repo_name": "roctracer",
|
| 1147 |
"repo_link": "https://github.com/ROCm/roctracer",
|
| 1148 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-systems repo",
|
| 1149 |
+
"homepage_link": "https://github.com/ROCm/rocm-systems",
|
| 1150 |
+
"contributors_all": "45",
|
| 1151 |
+
"contributors_2025": "8",
|
| 1152 |
+
"contributors_2024": "11",
|
| 1153 |
+
"contributors_2023": "6"
|
| 1154 |
},
|
| 1155 |
{
|
| 1156 |
"repo_name": "Self-Forcing",
|
|
|
|
| 1158 |
"category": "video generation",
|
| 1159 |
"github_about_section": "Official codebase for \"Self Forcing: Bridging Training and Inference in Autoregressive Video Diffusion\" (NeurIPS 2025 Spotlight)",
|
| 1160 |
"homepage_link": "https://self-forcing.github.io",
|
| 1161 |
+
"github_topic_closest_fit": "diffusion-models",
|
| 1162 |
+
"contributors_all": "4",
|
| 1163 |
+
"contributors_2025": "4",
|
| 1164 |
+
"contributors_2024": "0",
|
| 1165 |
+
"contributors_2023": "0"
|
| 1166 |
},
|
| 1167 |
{
|
| 1168 |
"repo_name": "server",
|
| 1169 |
"repo_link": "https://github.com/triton-inference-server/server",
|
| 1170 |
"github_about_section": "The Triton Inference Server provides an optimized cloud and edge inferencing solution.",
|
| 1171 |
"homepage_link": "https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html",
|
| 1172 |
+
"github_topic_closest_fit": "inference",
|
| 1173 |
+
"contributors_all": "147",
|
| 1174 |
+
"contributors_2025": "24",
|
| 1175 |
+
"contributors_2024": "36",
|
| 1176 |
+
"contributors_2023": "34"
|
| 1177 |
},
|
| 1178 |
{
|
| 1179 |
"repo_name": "spark",
|
| 1180 |
"repo_link": "https://github.com/apache/spark",
|
| 1181 |
"github_about_section": "Apache Spark - A unified analytics engine for large-scale data processing",
|
| 1182 |
"homepage_link": "https://spark.apache.org",
|
| 1183 |
+
"github_topic_closest_fit": "big-data",
|
| 1184 |
+
"contributors_all": "3083",
|
| 1185 |
+
"contributors_2025": "322",
|
| 1186 |
+
"contributors_2024": "300",
|
| 1187 |
+
"contributors_2023": "336"
|
| 1188 |
},
|
| 1189 |
{
|
| 1190 |
"repo_name": "StreamDiffusion",
|
|
|
|
| 1192 |
"category": "image generation",
|
| 1193 |
"github_about_section": "StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation",
|
| 1194 |
"homepage_link": "https://arxiv.org/abs/2312.12491",
|
| 1195 |
+
"github_topic_closest_fit": "diffusion-models",
|
| 1196 |
+
"contributors_all": "29",
|
| 1197 |
+
"contributors_2025": "0",
|
| 1198 |
+
"contributors_2024": "9",
|
| 1199 |
+
"contributors_2023": "25"
|
| 1200 |
},
|
| 1201 |
{
|
| 1202 |
"repo_name": "streamv2v",
|
|
|
|
| 1204 |
"category": "video generation",
|
| 1205 |
"github_about_section": "Official Pytorch implementation of StreamV2V.",
|
| 1206 |
"homepage_link": "https://jeff-liangf.github.io/projects/streamv2v",
|
| 1207 |
+
"github_topic_closest_fit": "diffusion-models",
|
| 1208 |
+
"contributors_all": "7",
|
| 1209 |
+
"contributors_2025": "3",
|
| 1210 |
+
"contributors_2024": "6",
|
| 1211 |
+
"contributors_2023": "0"
|
| 1212 |
},
|
| 1213 |
{
|
| 1214 |
"repo_name": "synthetic-data-kit",
|
|
|
|
| 1216 |
"category": "synthetic data generation",
|
| 1217 |
"github_about_section": "Tool for generating high quality Synthetic datasets",
|
| 1218 |
"homepage_link": "https://pypi.org/project/synthetic-data-kit",
|
| 1219 |
+
"github_topic_closest_fit": "synthetic-dataset-generation",
|
| 1220 |
+
"contributors_all": "15",
|
| 1221 |
+
"contributors_2025": "15",
|
| 1222 |
+
"contributors_2024": "0",
|
| 1223 |
+
"contributors_2023": "0"
|
| 1224 |
},
|
| 1225 |
{
|
| 1226 |
"repo_name": "Tensile",
|
| 1227 |
"repo_link": "https://github.com/ROCm/Tensile",
|
| 1228 |
"github_about_section": "[DEPRECATED] Moved to ROCm/rocm-libraries repo",
|
| 1229 |
+
"homepage_link": "https://github.com/ROCm/rocm-libraries",
|
| 1230 |
+
"contributors_all": "137",
|
| 1231 |
+
"contributors_2025": "16",
|
| 1232 |
+
"contributors_2024": "25",
|
| 1233 |
+
"contributors_2023": "22"
|
| 1234 |
},
|
| 1235 |
{
|
| 1236 |
"repo_name": "tflite-micro",
|
| 1237 |
"repo_link": "https://github.com/tensorflow/tflite-micro",
|
| 1238 |
+
"github_about_section": "Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors).",
|
| 1239 |
+
"contributors_all": "111",
|
| 1240 |
+
"contributors_2025": "19",
|
| 1241 |
+
"contributors_2024": "25",
|
| 1242 |
+
"contributors_2023": "31"
|
| 1243 |
},
|
| 1244 |
{
|
| 1245 |
"repo_name": "torchdynamo",
|
| 1246 |
"repo_link": "https://github.com/pytorch/torchdynamo",
|
| 1247 |
+
"github_about_section": "A Python-level JIT compiler designed to make unmodified PyTorch programs faster.",
|
| 1248 |
+
"contributors_all": "63",
|
| 1249 |
+
"contributors_2025": "0",
|
| 1250 |
+
"contributors_2024": "1",
|
| 1251 |
+
"contributors_2023": "4"
|
| 1252 |
},
|
| 1253 |
{
|
| 1254 |
"repo_name": "torchtitan",
|
| 1255 |
"repo_link": "https://github.com/pytorch/torchtitan",
|
| 1256 |
+
"github_about_section": "A PyTorch native platform for training generative AI models",
|
| 1257 |
+
"contributors_all": "145",
|
| 1258 |
+
"contributors_2025": "119",
|
| 1259 |
+
"contributors_2024": "43",
|
| 1260 |
+
"contributors_2023": "1"
|
|
|
|
| 1261 |
},
|
| 1262 |
{
|
| 1263 |
"repo_name": "transformers",
|
| 1264 |
"repo_link": "https://github.com/huggingface/transformers",
|
| 1265 |
"github_about_section": "Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.",
|
| 1266 |
+
"homepage_link": "https://huggingface.co/transformers",
|
| 1267 |
+
"contributors_all": "3582",
|
| 1268 |
+
"contributors_2025": "860",
|
| 1269 |
+
"contributors_2024": "769",
|
| 1270 |
+
"contributors_2023": "758"
|
| 1271 |
},
|
| 1272 |
{
|
| 1273 |
"repo_name": "Triton-distributed",
|
| 1274 |
"repo_link": "https://github.com/ByteDance-Seed/Triton-distributed",
|
| 1275 |
"github_about_section": "Distributed Compiler based on Triton for Parallel Systems",
|
| 1276 |
+
"homepage_link": "https://triton-distributed.readthedocs.io",
|
| 1277 |
+
"contributors_all": "30",
|
| 1278 |
+
"contributors_2025": "30",
|
| 1279 |
+
"contributors_2024": "0",
|
| 1280 |
+
"contributors_2023": "0"
|
| 1281 |
},
|
| 1282 |
{
|
| 1283 |
"repo_name": "triton-runner",
|
| 1284 |
"repo_link": "https://github.com/toyaix/triton-runner",
|
| 1285 |
"github_about_section": "Multi-Level Triton Runner supporting Python, IR, PTX, and cubin.",
|
| 1286 |
+
"homepage_link": "https://triton-runner.org",
|
| 1287 |
+
"contributors_all": "1",
|
| 1288 |
+
"contributors_2025": "1",
|
| 1289 |
+
"contributors_2024": "0",
|
| 1290 |
+
"contributors_2023": "0"
|
| 1291 |
},
|
| 1292 |
{
|
| 1293 |
"repo_name": "tritonparse",
|
| 1294 |
"repo_link": "https://github.com/meta-pytorch/tritonparse",
|
| 1295 |
"github_about_section": "TritonParse: A Compiler Tracer, Visualizer, and Reproducer for Triton Kernels",
|
| 1296 |
+
"homepage_link": "https://meta-pytorch.org/tritonparse",
|
| 1297 |
+
"contributors_all": "15",
|
| 1298 |
+
"contributors_2025": "15",
|
| 1299 |
+
"contributors_2024": "0",
|
| 1300 |
+
"contributors_2023": "0"
|
| 1301 |
},
|
| 1302 |
{
|
| 1303 |
"repo_name": "trl",
|
| 1304 |
"repo_link": "https://github.com/huggingface/trl",
|
| 1305 |
"github_about_section": "Train transformer language models with reinforcement learning.",
|
| 1306 |
+
"homepage_link": "http://hf.co/docs/trl",
|
| 1307 |
+
"contributors_all": "433",
|
| 1308 |
+
"contributors_2025": "189",
|
| 1309 |
+
"contributors_2024": "154",
|
| 1310 |
+
"contributors_2023": "122"
|
| 1311 |
},
|
| 1312 |
{
|
| 1313 |
"repo_name": "truss",
|
|
|
|
| 1315 |
"category": "inference engine",
|
| 1316 |
"github_about_section": "The simplest way to serve AI/ML models in production",
|
| 1317 |
"homepage_link": "https://truss.baseten.co",
|
| 1318 |
+
"github_topic_closest_fit": "inference",
|
| 1319 |
+
"contributors_all": "72",
|
| 1320 |
+
"contributors_2025": "44",
|
| 1321 |
+
"contributors_2024": "30",
|
| 1322 |
+
"contributors_2023": "21"
|
| 1323 |
},
|
| 1324 |
{
|
| 1325 |
"repo_name": "unsloth",
|
|
|
|
| 1327 |
"category": "fine tuning",
|
| 1328 |
"github_about_section": "Fine-tuning & Reinforcement Learning for LLMs. Train OpenAI gpt-oss, DeepSeek-R1, Qwen3, Gemma 3, TTS 2x faster with 70% less VRAM.",
|
| 1329 |
"homepage_link": "https://docs.unsloth.ai",
|
| 1330 |
+
"github_topic_closest_fit": "fine-tuning",
|
| 1331 |
+
"contributors_all": "127",
|
| 1332 |
+
"contributors_2025": "102",
|
| 1333 |
+
"contributors_2024": "27",
|
| 1334 |
+
"contributors_2023": "3"
|
| 1335 |
},
|
| 1336 |
{
|
| 1337 |
"repo_name": "verl",
|
|
|
|
| 1339 |
"category": "reinforcement learning",
|
| 1340 |
"github_about_section": "verl: Volcano Engine Reinforcement Learning for LLMs",
|
| 1341 |
"homepage_link": "https://verl.readthedocs.io",
|
| 1342 |
+
"github_topic_closest_fit": "deep-reinforcement-learning",
|
| 1343 |
+
"contributors_all": "462",
|
| 1344 |
+
"contributors_2025": "454",
|
| 1345 |
+
"contributors_2024": "10",
|
| 1346 |
+
"contributors_2023": "0"
|
| 1347 |
},
|
| 1348 |
{
|
| 1349 |
"repo_name": "Vulkan-Hpp",
|
|
|
|
| 1351 |
"category": "graphics api",
|
| 1352 |
"github_about_section": "Open-Source Vulkan C++ API",
|
| 1353 |
"homepage_link": "https://vulkan.org",
|
| 1354 |
+
"github_topic_closest_fit": "vulkan",
|
| 1355 |
+
"contributors_all": "102",
|
| 1356 |
+
"contributors_2025": "21",
|
| 1357 |
+
"contributors_2024": "15",
|
| 1358 |
+
"contributors_2023": "15"
|
| 1359 |
},
|
| 1360 |
{
|
| 1361 |
"repo_name": "Vulkan-Tools",
|
|
|
|
| 1363 |
"category": "graphics api",
|
| 1364 |
"github_about_section": "Vulkan Development Tools",
|
| 1365 |
"homepage_link": "https://vulkan.org",
|
| 1366 |
+
"github_topic_closest_fit": "vulkan",
|
| 1367 |
+
"contributors_all": "248",
|
| 1368 |
+
"contributors_2025": "20",
|
| 1369 |
+
"contributors_2024": "24",
|
| 1370 |
+
"contributors_2023": "24"
|
| 1371 |
},
|
| 1372 |
{
|
| 1373 |
"repo_name": "Vulkan-Docs",
|
|
|
|
| 1375 |
"category": "graphics api",
|
| 1376 |
"github_about_section": "The Vulkan API Specification and related tools",
|
| 1377 |
"homepage_link": "https://vulkan.org",
|
| 1378 |
+
"github_topic_closest_fit": "vulkan",
|
| 1379 |
+
"contributors_all": "141",
|
| 1380 |
+
"contributors_2025": "18",
|
| 1381 |
+
"contributors_2024": "21",
|
| 1382 |
+
"contributors_2023": "34"
|
| 1383 |
},
|
| 1384 |
{
|
| 1385 |
"repo_name": "Wan2.2",
|
|
|
|
| 1387 |
"category": "video generation",
|
| 1388 |
"github_about_section": "Wan: Open and Advanced Large-Scale Video Generative Models",
|
| 1389 |
"homepage_link": "https://wan.video",
|
| 1390 |
+
"github_topic_closest_fit": "diffusion-models",
|
| 1391 |
+
"contributors_all": "14",
|
| 1392 |
+
"contributors_2025": "14",
|
| 1393 |
+
"contributors_2024": "0",
|
| 1394 |
+
"contributors_2023": "0"
|
| 1395 |
},
|
| 1396 |
{
|
| 1397 |
"repo_name": "warp",
|
|
|
|
| 1399 |
"category": "spatial computing",
|
| 1400 |
"github_about_section": "A Python framework for accelerated simulation, data generation and spatial computing.",
|
| 1401 |
"homepage_link": "https://nvidia.github.io/warp",
|
| 1402 |
+
"github_topic_closest_fit": "physics-simulation",
|
| 1403 |
+
"contributors_all": "79",
|
| 1404 |
+
"contributors_2025": "40",
|
| 1405 |
+
"contributors_2024": "29",
|
| 1406 |
+
"contributors_2023": "17"
|
| 1407 |
}
|
| 1408 |
]
|