File size: 11,402 Bytes
1a339a5
 
9117ece
 
1a339a5
 
9117ece
 
 
 
 
 
 
 
 
 
 
7a97f8b
 
 
 
 
4ead4e0
1d2055e
 
 
 
4ead4e0
 
 
1d2055e
 
 
4ead4e0
9117ece
 
 
 
 
4c193c4
 
 
 
 
 
 
56f8465
4c193c4
56f8465
4c193c4
 
 
 
 
56f8465
4ead4e0
 
 
 
 
 
 
 
 
45d46a0
4ead4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d46a0
4ead4e0
45d46a0
 
 
4ead4e0
 
 
 
 
 
 
 
 
 
4c193c4
 
 
 
 
 
 
 
 
 
 
 
 
4ead4e0
4c193c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ead4e0
4c193c4
 
 
 
 
 
4ead4e0
4c193c4
4ead4e0
 
 
 
9117ece
 
4ead4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9117ece
46d18d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9117ece
 
 
 
7de3cc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
task_categories:
- visual-question-answering
- document-question-answering
language:
- en
tags:
- multimodal
- benchmark
- document-understanding
configs:
- config_name: default
  data_files:
  - split: val
    path: "val.parquet"
---

<p align="center">
  <img src="./assets/banner.png" alt="DocVQA 2026 Competition Banner" width="100%">
</p>

<h1 align="center">DocVQA 2026 | ICDAR2026 Competition on Multimodal Reasoning over Documents in Multiple Domains</h1>

 <p align="center">
  <a href="https://www.docvqa.org/challenges/2026">
    <img src="https://img.shields.io/badge/🌐_Website-DocVQA.org-orange.svg" alt="Competition Website">
  </a>
  <a href="https://huggingface.co/datasets/VLR-CVC/DocVQA-2026">
    <img src="https://img.shields.io/badge/🤗_Hugging_Face-Dataset-blue.svg" alt="Hugging Face Dataset">
  </a>
  <a href="https://github.com/VLR-CVC/DocVQA2026">
    <img src="https://img.shields.io/badge/GitHub-Eval_Code-black.svg?logo=github&logoColor=white" alt="GitHub Repository">
  </a>
</p>

Building upon previous DocVQA benchmarks, this evaluation dataset introduces challenging reasoning questions over a diverse collection of documents spanning eight domains, including business reports, scientific papers, slides, posters, maps, comics, infographics, and engineering drawings.

By expanding coverage to new document domains and introducing richer question types, this benchmark seeks to push the boundaries of multimodal reasoning and promote the development of more general, robust document understanding models.

## 🏆 Competition Hosting & Test Set

The official DocVQA 2026 competition is hosted on the **Robust Reading Competition (RRC)** platform, which provides the standardized framework for our leaderboards, submissions, and result tracking. 

> [!NOTE]
> **Test Set Status:** *Coming Soon!*  By the time being, please use the provided validation set and the evaluation code.


<p align="center">
  <a href="https://rrc.cvc.uab.es/?ch=34" style="background-color: #007bff; color: white; padding: 12px 24px; text-decoration: none; border-radius: 6px; font-weight: bold; font-size: 18px; display: inline-block;">
    Join the Challenge on the RRC Platform
  </a>
</p>



## Load & Inspect the Data

```python
from datasets import load_dataset

# 1. Load the dataset
dataset = load_dataset("VLR-CVC/DocVQA-2026", split="val")

# 2. Access a single sample (one document)
sample = dataset[0]

doc_id = sample["doc_id"]
category = sample["doc_category"]
print(f"Document ID: {doc_id} ({category})")

# 3. Access Images
# 'document' is a list of PIL Images (one for each page)
images = sample["document"]
print(f"Number of pages: {len(images)}")
images[0].show()  

# 4. Access Questions and Answers
questions = sample["questions"]
answers = sample["answers"]

# 5. Visualize Q&A pairs for a document
for q, q_id, a in zip(questions['question'], questions['question_id'], answers['answer']):
    print("-" * 50)
    print(f"Question ID: {q_id}")
    print(f"Question: {q}")
    print(f"Answer: {a}")
    print("-" * 50)
```

## Structure of a Sample

<details>
<summary><b>Click to expand the JSON structure</b></summary>
  
```json
{
  "doc_id": "maps_2",
  "doc_category": "maps",
  "preview": "<image>",
  "document": [
    "<image>"
  ],
  "questions": {
    "question_id": [
      "maps_2_q1",
      "maps_2_q2",
      "maps_2_q3",
      "maps_2_q4",
      "maps_2_q5"
    ],
    "question": [
      "By which kind of road are Colchester and Yantic connected?",
      "Which is the most populated town in the E-10 coordinates?",
      "What is the milage between Taunton and Dedham? Do not provide the unit.",
      "From Worcester I take highway 140 towards Taunton, I take the second macadam & gravel road that I encounter, continuing on that road, what town do I reach?",
      "If I follow highway 109 from Pittsfield to Northampton, how many towns do I cross (without counting start and ending location)?"
    ]
  },
  "answers": {
    "question_id": [
      "maps_2_q1",
      "maps_2_q2",
      "maps_2_q3",
      "maps_2_q4",
      "maps_2_q5"
    ],
    "answer": [
      "Macadam & Gravel",
      "Wareham",
      "27",
      "Woonsocket",
      "7"
    ]
  }
}
```
</details>


## Results

<p align="center">
  <img src="./assets/results_chart.jpg" alt="DocVQA 2026 Results Chart" width="80%">
  <br>
  <em>Figure 1: Performance comparison across domains.</em>
</p>


<div align="center">
  <table>
    <thead>
      <tr>
        <th align="left">Category</th>
        <th align="center">Gemini 3 Pro Preview</th>
        <th align="center">GPT-5.2</th>
        <th align="center">Gemini 3 Flash Preview</th>
        <th align="center">GPT-5 Mini</th>
      </tr>
    </thead>
    <tbody>
      <tr>
        <td align="left"><b>Overall Accuracy</b></td>
        <td align="center"><b>0.375</b></td>
        <td align="center">0.350</td>
        <td align="center">0.3375</td>
        <td align="center">0.225</td>
      </tr>
      <tr>
        <td align="left">Business Report</td>
        <td align="center">0.400</td>
        <td align="center"><b>0.600</b></td>
        <td align="center">0.200</td>
        <td align="center">0.300</td>
      </tr>
      <tr>
        <td align="left">Comics</td>
        <td align="center">0.300</td>
        <td align="center">0.200</td>
        <td align="center"><b>0.400</b></td>
        <td align="center">0.100</td>
      </tr>
      <tr>
        <td align="left">Engineering Drawing</td>
        <td align="center">0.300</td>
        <td align="center">0.300</td>
        <td align="center"><b>0.500</b></td>
        <td align="center">0.200</td>
      </tr>
      <tr>
        <td align="left">Infographics</td>
        <td align="center"><b>0.700</b></td>
        <td align="center">0.600</td>
        <td align="center">0.500</td>
        <td align="center">0.500</td>
      </tr>
      <tr>
        <td align="left">Maps</td>
        <td align="center">0.000</td>
        <td align="center"><b>0.200</b></td>
        <td align="center">0.000</td>
        <td align="center">0.100</td>
      </tr>
      <tr>
        <td align="left">Science Paper</td>
        <td align="center">0.300</td>
        <td align="center">0.400</td>
        <td align="center"><b>0.500</b></td>
        <td align="center">0.100</td>
      </tr>
      <tr>
        <td align="left">Science Poster</td>
        <td align="center"><b>0.300</b></td>
        <td align="center">0.000</td>
        <td align="center">0.200</td>
        <td align="center">0.000</td>
      </tr>
      <tr>
        <td align="left">Slide</td>
        <td align="center"><b>0.700</b></td>
        <td align="center">0.500</td>
        <td align="center">0.400</td>
        <td align="center">0.500</td>
      </tr>
    </tbody>
  </table>
</div>

> [!NOTE]
> **Evaluation Parameters:**
> * **GPT Models:** "High thinking" enabled, temperature set to `1.0`.
> * **Gemini Models:** "High thinking" enabled, temperature set to `0.0`.

> [!WARNING]
> **API Constraints:** > Both models were evaluated via their respective APIs. If a sample fails because the input files are too large, the result counts as a failure. For example, the file input limit for OpenAI models is 50MB, and several comics in this dataset surpass that threshold.


--------

<div style="border: 1px solid black; background-color: white; color: black; padding: 20px; border-radius: 8px;">
  <h2 style="margin-top: 0; color: black;">📝 Submission Guidelines & Formatting Rules</h2>
  <p>To ensure fair and accurate evaluation across all participants, submissions are evaluated using automated metrics. Therefore, all model outputs must strictly adhere to the following formatting rules:</p>
  <ul>
    <li><strong style="color: black;">Source Adherence:</strong> Only provide answers found directly within the document. If the question is unanswerable given the provided image, the response must be exactly: <code>"Unknown"</code>.</li>
    <li><strong style="color: black;">Multiple Answers:</strong> List multiple answers in their order of appearance, separated by a comma and a single space. <strong style="color: black;">Do not</strong> use the word "and". <em>(Example: <code>Answer A, Answer B</code>)</em></li>
    <li><strong style="color: black;">Numbers & Units:</strong> Convert units to their standardized abbreviations (e.g., use <code>kg</code> instead of "kilograms", <code>m</code> instead of "meters"). Always place a single space between the number and the unit. <em>(Example: <code>50 kg</code>, <code>10 USD</code>)</em></li>
    <li><strong style="color: black;">Percentages:</strong> Attach the <code>%</code> symbol directly to the number with no space. <em>(Example: <code>50%</code>)</em></li>
    <li><strong style="color: black;">Dates:</strong> Convert all dates to the standardized <code>YYYY-MM-DD</code> format. <em>(Example: "Jan 1st 24" becomes <code>2024-01-01</code>)</em></li>
    <li><strong style="color: black;">Decimals:</strong> Use a single period (<code>.</code>) as a decimal separator, never a comma. <em>(Example: <code>3.14</code>)</em></li>
    <li><strong style="color: black;">Thousands Separator:</strong> Do not use commas to separate large numbers. <em>(Example: <code>1000</code>, not <code>1,000</code>)</em></li>
    <li><strong style="color: black;">No Filler Text:</strong> Output <strong style="color: black;">only</strong> the requested data. Do not frame your answer in full sentences (e.g., avoid "The answer is...").</li>
  </ul>
  <p><strong style="color: black;">Final Output Format:</strong> When generating the final extracted data, your system must prefix the response with the following exact phrasing:</p>
  <pre style="background-color: white; color: black; border: 1px dashed black; padding: 10px; border-radius: 4px;"><code>FINAL ANSWER: [Your formatted answer]</code></pre>
</div>

---------

## Evaluation Code & Baselines

To ensure consistency and fairness, all submissions are evaluated using our official automated evaluation pipeline. This pipeline handles the extraction of your model's answers and applies both strict formatting checks (for numbers, dates, and units) and relaxed text matching (ANLS) for text-based answers.

You can find the complete, ready-to-use evaluation script in our official GitHub repository:
👉 **[VLR-CVC/DocVQA2026 GitHub Repository](https://github.com/VLR-CVC/DocVQA2026)**

### What you will find in the repository:

* **The Evaluator Script:** The core logic used to parse your model's outputs and calculate the final scores. You can use this script to test and evaluate your predictions locally before making an official submission.
* **The Baseline Master Prompt:** We have included the exact prompt structure (`get_evaluation_prompt()`) used for our baseline experiments. This prompt is heavily engineered to enforce the competition's mandatory reasoning protocols and strict output formatting. 

We highly recommend reviewing both the evaluation script and the Master Prompt. You are welcome to use the provided prompt out-of-the-box or adapt it to better guide your own custom models!

## Dataset Structure

The dataset consists of:
1.  **Images:** High-resolution PNG renders of document pages located in the `images/` directory.
2.  **Annotations:** A Parquet file (`val.parquet`) containing the questions, answers, and references to the image paths.