File size: 29,842 Bytes
e4c481d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"已将Parquet文件转换为JSONL格式,保存至: /Users/wjc/Documents/学习手撕/ceval/ceval_output1.jsonl\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" <th>C</th>\n",
" <th>D</th>\n",
" <th>answer</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>下列关于DNA的双螺旋二级结构稳定的因素,不正确的是____。</td>\n",
" <td>3 \" ,5 \" -磷酸二酯键</td>\n",
" <td>互补碱基对之间的氢键</td>\n",
" <td>碱基堆积力</td>\n",
" <td>磷酸基团上的负电荷与介质中的阳离子之间形成的离子键</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>分离鉴定氨基酸的纸色谱属于____。</td>\n",
" <td>亲和色谱</td>\n",
" <td>吸附色谱</td>\n",
" <td>离子交换色谱</td>\n",
" <td>分配色谱</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>生物膜的结构特点不包括____</td>\n",
" <td>膜的运动性</td>\n",
" <td>完全由脂质双层分子构成</td>\n",
" <td>膜的流动性与相变</td>\n",
" <td>膜上的蛋白和脂质存在相互的作用</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>组成蛋白质的基本结构单位是____</td>\n",
" <td>氨基酸</td>\n",
" <td>葡萄糖酸</td>\n",
" <td>脂肪酸</td>\n",
" <td>核苷酸</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>全酶是指____。</td>\n",
" <td>酶的辅助因子以外的部分</td>\n",
" <td>酶的无活性前体</td>\n",
" <td>一种酶一抑制剂复合物</td>\n",
" <td>一种需要辅助因子的酶,具备了酶蛋白、辅助因子各种成分</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question A B \\\n",
"0 0 下列关于DNA的双螺旋二级结构稳定的因素,不正确的是____。 3 \" ,5 \" -磷酸二酯键 互补碱基对之间的氢键 \n",
"1 1 分离鉴定氨基酸的纸色谱属于____。 亲和色谱 吸附色谱 \n",
"2 2 生物膜的结构特点不包括____ 膜的运动性 完全由脂质双层分子构成 \n",
"3 3 组成蛋白质的基本结构单位是____ 氨基酸 葡萄糖酸 \n",
"4 4 全酶是指____。 酶的辅助因子以外的部分 酶的无活性前体 \n",
"\n",
" C D answer explanation \n",
"0 碱基堆积力 磷酸基团上的负电荷与介质中的阳离子之间形成的离子键 \n",
"1 离子交换色谱 分配色谱 \n",
"2 膜的流动性与相变 膜上的蛋白和脂质存在相互的作用 \n",
"3 脂肪酸 核苷酸 \n",
"4 一种酶一抑制剂复合物 一种需要辅助因子的酶,具备了酶蛋白、辅助因子各种成分 "
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"# 读取Parquet文件\n",
"file_path = \"/Users/wjc/Documents/学习手撕/ceval/0000 (1).parquet\"\n",
"df = pd.read_parquet(file_path)\n",
"\n",
"# 将DataFrame转换为JSONL格式\n",
"output_path = \"/Users/wjc/Documents/学习手撕/ceval/ceval_output1.jsonl\"\n",
"\n",
"# 逐行写入JSONL文件\n",
"with open(output_path, 'w', encoding='utf-8') as f:\n",
" for _, row in df.iterrows():\n",
" # 将每行数据转换为字典,然后转为JSON字符串\n",
" json_str = json.dumps(row.to_dict(), ensure_ascii=False)\n",
" f.write(json_str + '\\n')\n",
"\n",
"print(f\"已将Parquet文件转换为JSONL格式,保存至: {output_path}\")\n",
"\n",
"# 显示前几行数据以验证\n",
"df.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"已将Parquet文件转换为JSONL格式,保存至: /Users/wjc/Documents/学习手撕/ceval/basic_medicine.jsonl\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" <th>C</th>\n",
" <th>D</th>\n",
" <th>answer</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>急性肝淤血的病理变化有____</td>\n",
" <td>肝细胞脂肪变性</td>\n",
" <td>肝小叶中央静脉和肝窦扩张</td>\n",
" <td>肝细胞胞质可见多个脂肪空泡</td>\n",
" <td>槟榔肝</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>下列哪种为恶性肿瘤____</td>\n",
" <td>纤维腺瘤</td>\n",
" <td>畸胎瘤</td>\n",
" <td>混合瘤</td>\n",
" <td>霍奇金病</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>不涉及第二信使的细胞信息传递途径是____</td>\n",
" <td>PKA途径</td>\n",
" <td>PKC途径</td>\n",
" <td>PKC途径</td>\n",
" <td>TPK途径</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>白色血栓主要发生的组织部位是____</td>\n",
" <td>毛细血管</td>\n",
" <td>静脉瓣膜</td>\n",
" <td>动脉管壁</td>\n",
" <td>心瓣膜</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>Rb基因是一种____</td>\n",
" <td>细胞原癌基因</td>\n",
" <td>抑癌基因</td>\n",
" <td>病毒癌基因</td>\n",
" <td>操纵子调节基因</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question A B C D \\\n",
"0 0 急性肝淤血的病理变化有____ 肝细胞脂肪变性 肝小叶中央静脉和肝窦扩张 肝细胞胞质可见多个脂肪空泡 槟榔肝 \n",
"1 1 下列哪种为恶性肿瘤____ 纤维腺瘤 畸胎瘤 混合瘤 霍奇金病 \n",
"2 2 不涉及第二信使的细胞信息传递途径是____ PKA途径 PKC途径 PKC途径 TPK途径 \n",
"3 3 白色血栓主要发生的组织部位是____ 毛细血管 静脉瓣膜 动脉管壁 心瓣膜 \n",
"4 4 Rb基因是一种____ 细胞原癌基因 抑癌基因 病毒癌基因 操纵子调节基因 \n",
"\n",
" answer explanation \n",
"0 \n",
"1 \n",
"2 \n",
"3 \n",
"4 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"# 读取Parquet文件\n",
"file_path = \"/Users/wjc/Documents/学习手撕/ceval/basic_medicine.parquet\"\n",
"df = pd.read_parquet(file_path)\n",
"\n",
"# 将DataFrame转换为JSONL格式\n",
"output_path = \"/Users/wjc/Documents/学习手撕/ceval/basic_medicine.jsonl\"\n",
"\n",
"# 逐行写入JSONL文件\n",
"with open(output_path, 'w', encoding='utf-8') as f:\n",
" for _, row in df.iterrows():\n",
" # 将每行数据转换为字典,然后转为JSON字符串\n",
" json_str = json.dumps(row.to_dict(), ensure_ascii=False)\n",
" f.write(json_str + '\\n')\n",
"\n",
"print(f\"已将Parquet文件转换为JSONL格式,保存至: {output_path}\")\n",
"\n",
"# 显示前几行数据以验证\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"已将Parquet文件转换为JSONL格式,保存至: /Users/wjc/Documents/学习手撕/ceval/clinical_medicine.jsonl\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" <th>C</th>\n",
" <th>D</th>\n",
" <th>answer</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>梅毒的病原体是____</td>\n",
" <td>病毒</td>\n",
" <td>细菌</td>\n",
" <td>螺旋体</td>\n",
" <td>支原体</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>临床确诊支气管扩张主要根据____</td>\n",
" <td>肺功能测定</td>\n",
" <td>HRCT(葛分辨率CT)</td>\n",
" <td>胸部X线照片</td>\n",
" <td>支气管造影</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>下列哪一项不符合支气管扩张的特点____</td>\n",
" <td>多发生于叶及段等大支气管</td>\n",
" <td>支气管壁的炎症损伤是主要发病基础</td>\n",
" <td>肺脓肿为其常见并发症</td>\n",
" <td>可导致肺心病</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>非霍奇金淋巴瘤多发生于____</td>\n",
" <td>纵隔淋巴结</td>\n",
" <td>肠系膜淋巴结</td>\n",
" <td>腹膜后淋巴结</td>\n",
" <td>颈部淋巴结</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>关于急性中毒,下列哪项说法是错误的____</td>\n",
" <td>皮肤黏膜樱桃红色可见于一氧化碳中毒</td>\n",
" <td>亚硝酸盐中毒多能产生高铁血红蛋白血症而出现发绀</td>\n",
" <td>氰化物中毒呼气有蒜臭味</td>\n",
" <td>铅中毒时口中可有金属味</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question A B \\\n",
"0 0 梅毒的病原体是____ 病毒 细菌 \n",
"1 1 临床确诊支气管扩张主要根据____ 肺功能测定 HRCT(葛分辨率CT) \n",
"2 2 下列哪一项不符合支气管扩张的特点____ 多发生于叶及段等大支气管 支气管壁的炎症损伤是主要发病基础 \n",
"3 3 非霍奇金淋巴瘤多发生于____ 纵隔淋巴结 肠系膜淋巴结 \n",
"4 4 关于急性中毒,下列哪项说法是错误的____ 皮肤黏膜樱桃红色可见于一氧化碳中毒 亚硝酸盐中毒多能产生高铁血红蛋白血症而出现发绀 \n",
"\n",
" C D answer explanation \n",
"0 螺旋体 支原体 \n",
"1 胸部X线照片 支气管造影 \n",
"2 肺脓肿为其常见并发症 可导致肺心病 \n",
"3 腹膜后淋巴结 颈部淋巴结 \n",
"4 氰化物中毒呼气有蒜臭味 铅中毒时口中可有金属味 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"# 读取Parquet文件\n",
"file_path = \"/Users/wjc/Documents/学习手撕/ceval/clinical_medicine.parquet\"\n",
"df = pd.read_parquet(file_path)\n",
"\n",
"# 将DataFrame转换为JSONL格式\n",
"output_path = \"/Users/wjc/Documents/学习手撕/ceval/clinical_medicine.jsonl\"\n",
"\n",
"# 逐行写入JSONL文件\n",
"with open(output_path, 'w', encoding='utf-8') as f:\n",
" for _, row in df.iterrows():\n",
" # 将每行数据转换为字典,然后转为JSON字符串\n",
" json_str = json.dumps(row.to_dict(), ensure_ascii=False)\n",
" f.write(json_str + '\\n')\n",
"\n",
"print(f\"已将Parquet文件转换为JSONL格式,保存至: {output_path}\")\n",
"\n",
"# 显示前几行数据以验证\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"已将Parquet文件转换为JSONL格式,保存至: /Users/wjc/Documents/学习手撕/ceval/physician.jsonl\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" <th>C</th>\n",
" <th>D</th>\n",
" <th>answer</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>按照抗菌药物药代动力学和药效动力学理论(PK/PD),下列哪类属于浓度依赖性抗菌药物____</td>\n",
" <td>青霉素类</td>\n",
" <td>大环内酯类</td>\n",
" <td>碳青霉烯类</td>\n",
" <td>氟喹诺酮类</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>男性,20岁,发热起病3天后,自行缓解,高度乏力,腹胀,黄疸进行加深,病程第九天出现躁动,神...</td>\n",
" <td>急性黄疸型肝炎</td>\n",
" <td>急性重型肝炎</td>\n",
" <td>亚急性重型肝炎</td>\n",
" <td>慢性重型肝炎</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>2岁患儿,4天前发热,流涕、咳嗽,结膜充血,畏光,今晨发现耳后及颈部有淡红色斑丘疹,体温39...</td>\n",
" <td>风疹</td>\n",
" <td>幼儿急疹</td>\n",
" <td>麻疹</td>\n",
" <td>肠道病毒感染</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>75岁老人,跌倒手掌着地,致桡骨下端骨折,应如何处理____</td>\n",
" <td>切开复位内固定</td>\n",
" <td>闭合复位外固定支架固定</td>\n",
" <td>悬吊牵引</td>\n",
" <td>骨牵引</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>一名患者,脑损伤后6小时,意识清,头痛,下列哪项处理原则不可取____</td>\n",
" <td>意识清,故回家观察</td>\n",
" <td>观察意识,瞳孔,生命体征等变化</td>\n",
" <td>作头颅CT检查</td>\n",
" <td>对症处置</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question A \\\n",
"0 0 按照抗菌药物药代动力学和药效动力学理论(PK/PD),下列哪类属于浓度依赖性抗菌药物____ 青霉素类 \n",
"1 1 男性,20岁,发热起病3天后,自行缓解,高度乏力,腹胀,黄疸进行加深,病程第九天出现躁动,神... 急性黄疸型肝炎 \n",
"2 2 2岁患儿,4天前发热,流涕、咳嗽,结膜充血,畏光,今晨发现耳后及颈部有淡红色斑丘疹,体温39... 风疹 \n",
"3 3 75岁老人,跌倒手掌着地,致桡骨下端骨折,应如何处理____ 切开复位内固定 \n",
"4 4 一名患者,脑损伤后6小时,意识清,头痛,下列哪项处理原则不可取____ 意识清,故回家观察 \n",
"\n",
" B C D answer explanation \n",
"0 大环内酯类 碳青霉烯类 氟喹诺酮类 \n",
"1 急性重型肝炎 亚急性重型肝炎 慢性重型肝炎 \n",
"2 幼儿急疹 麻疹 肠道病毒感染 \n",
"3 闭合复位外固定支架固定 悬吊牵引 骨牵引 \n",
"4 观察意识,瞳孔,生命体征等变化 作头颅CT检查 对症处置 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"# 读取Parquet文件\n",
"file_path = \"/Users/wjc/Documents/学习手撕/ceval/physician.parquet\"\n",
"df = pd.read_parquet(file_path)\n",
"\n",
"# 将DataFrame转换为JSONL格式\n",
"output_path = \"/Users/wjc/Documents/学习手撕/ceval/physician.jsonl\"\n",
"\n",
"# 逐行写入JSONL文件\n",
"with open(output_path, 'w', encoding='utf-8') as f:\n",
" for _, row in df.iterrows():\n",
" # 将每行数据转换为字典,然后转为JSON字符串\n",
" json_str = json.dumps(row.to_dict(), ensure_ascii=False)\n",
" f.write(json_str + '\\n')\n",
"\n",
"print(f\"已将Parquet文件转换为JSONL格式,保存至: {output_path}\")\n",
"\n",
"# 显示前几行数据以验证\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"已将Parquet文件转换为JSONL格式,保存至: /Users/wjc/Documents/学习手撕/ceval/veterinary_medicine.jsonl\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>A</th>\n",
" <th>B</th>\n",
" <th>C</th>\n",
" <th>D</th>\n",
" <th>answer</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>下列关于DNA的双螺旋二级结构稳定的因素,不正确的是____。</td>\n",
" <td>3 \" ,5 \" -磷酸二酯键</td>\n",
" <td>互补碱基对之间的氢键</td>\n",
" <td>碱基堆积力</td>\n",
" <td>磷酸基团上的负电荷与介质中的阳离子之间形成的离子键</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>分离鉴定氨基酸的纸色谱属于____。</td>\n",
" <td>亲和色谱</td>\n",
" <td>吸附色谱</td>\n",
" <td>离子交换色谱</td>\n",
" <td>分配色谱</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>生物膜的结构特点不包括____</td>\n",
" <td>膜的运动性</td>\n",
" <td>完全由脂质双层分子构成</td>\n",
" <td>膜的流动性与相变</td>\n",
" <td>膜上的蛋白和脂质存在相互的作用</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>组成蛋白质的基本结构单位是____</td>\n",
" <td>氨基酸</td>\n",
" <td>葡萄糖酸</td>\n",
" <td>脂肪酸</td>\n",
" <td>核苷酸</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>全酶是指____。</td>\n",
" <td>酶的辅助因子以外的部分</td>\n",
" <td>酶的无活性前体</td>\n",
" <td>一种酶一抑制剂复合物</td>\n",
" <td>一种需要辅助因子的酶,具备了酶蛋白、辅助因子各种成分</td>\n",
" <td></td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question A B \\\n",
"0 0 下列关于DNA的双螺旋二级结构稳定的因素,不正确的是____。 3 \" ,5 \" -磷酸二酯键 互补碱基对之间的氢键 \n",
"1 1 分离鉴定氨基酸的纸色谱属于____。 亲和色谱 吸附色谱 \n",
"2 2 生物膜的结构特点不包括____ 膜的运动性 完全由脂质双层分子构成 \n",
"3 3 组成蛋白质的基本结构单位是____ 氨基酸 葡萄糖酸 \n",
"4 4 全酶是指____。 酶的辅助因子以外的部分 酶的无活性前体 \n",
"\n",
" C D answer explanation \n",
"0 碱基堆积力 磷酸基团上的负电荷与介质中的阳离子之间形成的离子键 \n",
"1 离子交换色谱 分配色谱 \n",
"2 膜的流动性与相变 膜上的蛋白和脂质存在相互的作用 \n",
"3 脂肪酸 核苷酸 \n",
"4 一种酶一抑制剂复合物 一种需要辅助因子的酶,具备了酶蛋白、辅助因子各种成分 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"# 读取Parquet文件\n",
"file_path = \"/Users/wjc/Documents/学习手撕/ceval/veterinary_medicine.parquet\"\n",
"df = pd.read_parquet(file_path)\n",
"\n",
"# 将DataFrame转换为JSONL格式\n",
"output_path = \"/Users/wjc/Documents/学习手撕/ceval/veterinary_medicine.jsonl\"\n",
"\n",
"# 逐行写入JSONL文件\n",
"with open(output_path, 'w', encoding='utf-8') as f:\n",
" for _, row in df.iterrows():\n",
" # 将每行数据转换为字典,然后转为JSON字符串\n",
" json_str = json.dumps(row.to_dict(), ensure_ascii=False)\n",
" f.write(json_str + '\\n')\n",
"\n",
"print(f\"已将Parquet文件转换为JSONL格式,保存至: {output_path}\")\n",
"\n",
"# 显示前几行数据以验证\n",
"df.head()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llm",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|