from datasets import load_dataset, DatasetDict import polars as pl import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from scipy.io import loadmat def draw_animation(id, rgb, depth, radar): fig, ax = plt.subplots(1, 3, figsize=(15, 5)) fig.suptitle(f"ID: {id}") def update(frame): ax[0].clear() ax[0].set_title("Depth") ax[0].imshow(depth[frame]) ax[1].clear() ax[1].set_title("RGB") ax[1].imshow(rgb[frame]) radar_data = radar[frame]["spec_db_slice"][::-1] radar_data = (radar_data - radar_data.min()) / ( radar_data.max() - radar_data.min() ) ax[2].clear() ax[2].set_title("Radar") ax[2].imshow(radar_data, aspect="auto", cmap="jet") ani = FuncAnimation(fig, update, frames=len(depth), interval=15) plt.show() if __name__ == "__main__": datasets = load_dataset("parquet", data_files="./train.parquet") df_polars = datasets["train"].to_polars() ids = df_polars["id"].unique().to_list() for id in ids: frames = df_polars.filter( pl.col("id").eq(id) & pl.col("selected_range_bin").eq(76) & pl.col("sub_index_frame").eq(1) ).sort("index_frame") print( frames.select( "file_path_radar", "file_path_depth", "file_path_rgb", "index_frame", "id", ) ) rgb = [np.load(f) for f in frames["file_path_rgb"].to_list()] depth = [np.load(f) for f in frames["file_path_depth"].to_list()] radar = [loadmat(f) for f in frames["file_path_radar"].to_list()] draw_animation(id, rgb, depth, radar) break