--- license: mit task_categories: - text-classification tags: - peptide - mhc - hla - binding-prediction - immunology size_categories: - n>1M --- # PM (Peptide-MHC) Binding Prediction Dataset ## Dataset Description This dataset is part of the SPRINT benchmark framework for TCR-pMHC binding prediction. It contains peptide-MHC binding data for training and in-distribution testing of binding prediction models. ### Dataset Summary The PM dataset focuses on peptide-MHC binding prediction without TCR information. It is reorganized and standardized from multiple sources to provide a clean benchmark for PM task evaluation. ## Dataset Structure ### Files - `train.csv`: Training data - `id_test.csv`: In-distribution test data ### Data Format Each CSV file contains the following columns: | Column | Type | Description | |--------|------|-------------| | peptide | string | Peptide amino acid sequence | | HLA | string | HLA allele (standardized format: A*02:01) | | label | int | Binary binding label (0=non-binder, 1=binder) | | length | int | Peptide length (8-14 amino acids) | | HLA_sequence | string | HLA pseudo-sequence | ### Dataset Statistics **Training Set:** - Total samples: 1683280 - Label type: Binary (0/1) - Positive rate: 18.25% (307201/1683280) - Unique HLAs: 112 - Unique peptides: 1481879 - Peptide length range: 8-14 **Test Set (In-Distribution):** - Total samples: 586608 - Label type: Binary (0/1) - Positive rate: 14.64% (85876/586608) - Unique HLAs: 112 - Unique peptides: 558035 - Peptide length range: 8-14 ## Usage ### Load with Pandas ```python from huggingface_hub import hf_hub_download import pandas as pd # Download files train_file = hf_hub_download( repo_id="YYJMAY/pm-binding", filename="train.csv", repo_type="dataset" ) test_file = hf_hub_download( repo_id="YYJMAY/pm-binding", filename="id_test.csv", repo_type="dataset" ) # Load data train_df = pd.read_csv(train_file) test_df = pd.read_csv(test_file) ``` ### Use with SPRINT Framework ```python from sprint.core.dataset_manager import DatasetManager manager = DatasetManager() config = { 'hf_repo': 'YYJMAY/pm-binding', 'files': ['train.csv', 'id_test.csv'] } files = manager.get_dataset('pm', config) ``` ## Data Preparation This dataset was prepared with the following steps: 1. **Source Integration**: Combined data from multiple PM binding datasets 2. **HLA Standardization**: Normalized HLA allele names to A*02:01 format 3. **Quality Control**: Removed duplicates and incomplete entries 4. **Column Standardization**: Unified column names and formats 5. **Validation**: Checked for data consistency and quality ## Tasks This dataset is designed for: - **Peptide-MHC Binding Prediction**: Predicting binding affinity between peptides and MHC molecules - **In-Distribution Evaluation**: Testing model performance on similar data distribution as training - **Baseline Comparison**: Standardized data for reproducible benchmarking ## Citation If you use this dataset, please cite: ```bibtex @dataset{pm_dataset_2024, title={PM (Peptide-MHC) Binding Prediction Dataset}, author={SPRINT Framework Contributors}, year={2024}, url={https://huggingface.co/datasets/YYJMAY/pm-binding} } ``` ## License MIT License ## Contact For questions or issues, please refer to the SPRINT framework repository.