Dataset Viewer
Auto-converted to Parquet Duplicate
peptide
string
A1
string
A2
string
A3
string
B1
string
B2
string
B3
string
binder
int64
allele
string
KLGGALQAK
SSVPPY
YTSAATLV
AVKWSSNYKLT
SQVTM
ANQGSEA
SVGSGDHGEQF
0
A*03:01
RAKFKQLL
SSVSVY
YLSGSTLV
AVSETGPARLM
SEHNR
FQNEAQ
ASSPGTSGRPYEQY
0
B*08:01
KLGGALQAK
SIFNT
LYKAGEL
AGFLYNNNDMR
LGHDT
YNNKEL
ASSHERDRDTGELF
0
A*03:01
KSKRTPMGF
NSASQS
VYSSG
VVESMEYGNKLV
SGHKS
YYEKEE
ASSRGRGGQYNEQF
0
B*57:01
KLGGALQAK
NSASDY
IRSNMDK
AETPSTDSWGKSQ
LNHDA
SQIVND
ASSMQTSGSAYNEQF
0
A*03:01
RFPLTFGWCF
YGATPY
YFSGDTLV
AVGAPSTSGTYKYI
MGHRA
YSYEKL
ASSQDPGFGGGSYEQY
1
A*24:02
AVFDRKSDAK
DRGSQS
IYSNGD
ASPGGGADGLT
SGHDT
YYEEEE
ASSATGTHSFGYT
0
A*11:01
LLWNGPMAV
DRGSQS
IYSNGD
AVNADGQKLL
SGHTA
FQGNSA
ASSHGQGAYEQY
1
A*02:01
RAKFKQLL
SIFNT
LYKAGEL
AGQTTSNTGKLI
DFQATT
SNEGSKA
SASQDPYEQY
0
B*08:01
KLGGALQAK
NSAFQY
TYSSGN
AMNGARLMFGD
DFQATT
SNEGSKA
SARDVLAGGSDTQYFG
0
A*03:01
LLWNGPMAV
VSGNPY
YITGDNLV
AVRERNAGNNRKLI
DFQATT
SNEGSKA
SARGADTQY
0
A*02:01
AVFDRKSDAK
DSAIYN
IQSSQRE
AVHGYGQNFV
SQVTM
ANQGSEA
SAGGNTEAF
0
A*11:01
AVFDRKSDAK
SVFSS
VVTGGEV
AGGLIYNQEGKLI
MNHNS
SASEGT
ARRSRGENNGGV
0
A*11:01
GILGFVFTL
VSGLRG
LYSAGEE
AVPDNYGQNFV
LNHDA
SQIVND
ASSARSSYEQY
1
A*02:01
YLQPRTFLL
NSASQS
VYSSG
VVNAADSWGKLQ
PRHDT
FYEKMQ
ASSFPGGGNTGELF
1
A*02:01
KLGGALQAK
NSAFQY
TYSSGN
AMSLIVNTPLV
SGHTA
FQGNSA
ASSLIGGGKNQPQH
1
A*03:01
AVFDRKSDAK
DRGSQS
IYSNGD
AVNDQFY
SGHNT
YYREEE
ASSPGQLLMNTEAF
0
A*11:01
SLFNTVATLY
SIFNT
LYKAGEL
AGPSNTGKLI
MGHRA
YSYEKL
AVLVDPYNEQF
0
A*02:01
ELAGIGILTV
NIATNDY
GYKTK
LVGVPAGNMLT
SGHAT
FQDESV
ASSLEGTSGSPDLNEQF
0
A*02:01
ELAGIGILTV
TISGNEY
GLKNN
IVREWDNYGQNFV
LGHNA
YSLEER
ASSQVAKMAKDNYGYT
0
A*02:01
GLCTLVAML
DSSSTY
IFSNMDM
AESIRSNDYKLS
MNHNS
SASEGT
ASSPANGIQY
0
A*02:01
ATDALMTGF
TSINN
IRSNERE
ATDAARQLT
SGHAT
FQNNGV
ASSLDLPGPEGETQY
0
A*01:01
GILGFVFTL
TSESDYY
QEAYKQQN
ALMSARLM
SGHNS
FNNNVP
ASSFARAQADTQY
0
A*02:01
AVFDRKSDAK
VGISA
LSSGK
AVRRERRDDKII
ENHRY
SYGVKD
AIGPGGSGTQY
0
A*11:01
RFPLTFGWCF
YGGTVN
YFSGDPLV
AVPNTNAGKST
SGHNT
YYREEE
ASTLRGTGVETQY
0
A*24:02
GILGFVFTL
SIFNT
LYKAGEL
AGQLGGGSQGNLI
LNHDA
SQIVND
ASSFRSSYEQY
1
A*02:01
RAKFKQLL
DRGSQS
IYSNGD
APNSGGGADGLT
LGHNT
FRNRAP
ASGKLAGVLSEQF
0
B*08:01
CINGVCWTV
TRDTTYY
RNSFDEQN
AFLYNQGGKLI
SGHDY
FNNNVP
ASSPGSRGNIQY
0
A*02:01
KLGGALQAK
DRGSQS
IYSNGD
AVTPGTYKYI
LGHDT
YNNKEL
ASSPGTSIFVAEQY
0
A*03:01
KLGGALQAK
TSGFNG
NVLDGL
AVGDDKII
DFQATT
SNEGSKA
SARGLDRGTNEQY
0
A*03:01
GILGFVFTL
DRGSQS
IYSNGD
AVNPANARLM
DFQATT
SNEGSKA
SARWGGGTDTQY
0
A*02:01
GILGFVFTL
NSMFDY
ISSIKDK
AASGGSNYKLT
SGHTS
YDEGEE
ASSSAVIRGLDWCYT
0
A*02:01
RAKFKQLL
YGATPY
YFSGDTLV
AVGAGNNDMR
SGHNS
FNNNVP
ASSPQEGETQY
0
B*08:01
NLVPMVATV
DSAIYN
IQSSQRE
AVRRSDYKLS
PRHDT
FYEKMQ
ASSFGPGSNTEAF
0
A*02:01
AVFDRKSDAK
YGATPY
YFSGDTLV
AVGATNDYKLS
LNHDA
SQIVND
ASSSFLLSEQY
0
A*11:01
KLGGALQAK
TSGFNG
NVLDGL
AVRDRWSGGYQKVT
MNHEY
SMNVEV
ASSFGQGSSPLH
0
A*03:01
GILGFVFTL
DRGSQS
IYSNGD
APAGYALN
MNHEY
SVGEGT
ASSLDGEEEKLF
0
A*02:01
NLVPMVATV
NSASDY
IRSNMDK
AENNGGGSQGNLI
LNHDA
SQIVND
ASSGRAGGELF
0
A*02:01
NLVPMVATV
TSGFNG
NVLDGL
AVRSTWDPMIKAAGNKLT
KGHSH
LQKENI
ASSEDRTYEQY
0
A*02:01
RAKFKQLL
DRGSQS
IYSNGD
AVVDSNYQLI
DFQATT
SNEGSKA
SARDLRVSTEAF
1
B*08:01
CINGVCWTV
DRGSQS
IYSNGD
AVSDYKLS
MNHEY
SVGEGT
ASSSSGTAYGYT
0
A*02:01
RAKFKQLL
SSVSVY
YLSGSTLV
AVSPYNNNDMR
SGHNS
FNNNVP
ASRPLAAQETQY
0
B*08:01
SPRWYFYYL
VSGNPY
YITGDNLV
AVRDIERNYGQNFV
DFQATT
SNEGSKA
SAKDPPGYT
0
B*07:02
NLVPMVATV
TSDPSYG
QGSYDQQN
AMSLYSGGGADGLT
MDHEN
SYDVKM
ASRPPPAGQKETQY
0
A*02:01
KLGGALQAK
DRGSQS
IYSNGD
AVNIDFGNEKLT
SEHNR
FQNEAQ
ASSSYSGTASYEQY
0
A*03:01
GILGFVFTL
NSASDY
IRSNMDK
ADSGGGADGLT
SGHDY
FNNNVP
ASGRLSYNEQF
0
A*02:01
GILGFVFTL
NSASQS
VYSSG
VVNGGDSSYKLI
SNHLY
FYNNEI
ASSEGQVSPGELF
0
A*02:01
GILGFVFTL
NIATNDY
GYKTK
LVGDGAGYSTLT
LNHDA
SQIVND
ASSVALGNQETQY
0
A*02:01
KSKRTPMGF
DSASNY
IRSNVGE
AANGENNAGNMLT
LGHNA
YSLEER
ASSQERGGKWAYEQY
0
B*57:01
ELAGIGILTV
TRDTTYY
RNSFDEQN
ALSGEGGSEKLV
MGHDK
SYGVNS
ASSETGFGNQPQH
0
A*02:01
GLCTLVAML
TRDTTYY
RNSFDEQN
ALTPLRPKLV
LNHDA
SQIVND
ASQTLNTGELF
0
A*02:01
GLCTLVAML
NSAFQY
TYSSGN
AMSPSFMANDMR
SGDLS
YYNGEE
ASSEGTGGLNAF
0
A*02:01
ELAGIGILTV
DRGSQS
IYSNGD
AVLNARLM
MNHEY
SVGAGI
ASSSGGARETQY
1
A*02:01
DATYQRTRALVR
VSGLRG
LYSAGEE
AALANQAGTALI
SGHNT
YYREEE
ASSLEGDTEAF
1
A*68:01
LLWNGPMAV
TSGFNG
NVLDGL
AVRERDYQLI
SGHRS
YFSETQ
ASSLAETASNYGYT
0
A*02:01
SPRWYFYYL
DSVNN
IPSGT
AVEDTGGFKTI
LGHDT
YNNKEL
ASSSSMESGNTIY
0
B*07:02
GILGFVFTL
NSAFQY
TYSSGN
AMTGTTNAGKST
SGHNS
FNNNVP
ASTYGSYGYT
0
A*02:01
NLVPMVATV
TRDTTYY
RNSFDEQN
ALIANRDDKII
SGHNS
FNNNVP
ASSFLDRGPNTEAF
0
A*02:01
GILGFVFTL
NIATNDY
GYKTK
LVGTYNFNKFY
LGHNA
YNFKEQ
ASSQEVAAGGGDEQF
0
A*02:01
ELAGIGILTV
VGISA
LSSGK
AVACEDGGSQGNLI
MNHEY
SVGEGT
AIQDAGASYEQY
0
A*02:01
SPRWYFYYL
DSAIYN
IQSSQRE
AVSLSGGYNKLI
SGHNT
YENEEA
ASSSHGAGAYNEQF
0
B*07:02
GILGFVFTL
DSASNY
IRSNVGE
AARVRGFGNVLH
MDHEN
SYDVKM
ASSLYSATGELF
0
A*02:01
KLGGALQAK
NSAFQY
TYSSGN
ALRGGSNYKLT
SGDLS
YYNGEE
ASSVGYGELF
0
A*03:01
RAKFKQLL
SSYSPS
YTSAATLV
VVSYNNAGNMLT
SNHLY
FYNNEI
ASSEAAVIYEQY
0
B*08:01
KLGGALQAK
DRGSQS
IYSNGD
AVGSNDYKLS
SGHDT
YYEEEE
ASSFGGRSYEQY
0
A*03:01
LLWNGPMAV
TSINN
IRSNERE
ATAGYNTDKLI
SGDLS
YYNGEE
ASSVDRAGPDTDTQY
0
A*02:01
HPVTKYIM
TISGNEY
GLKNN
IVRLRCRTPTSSSLI
PRHDT
FYEKMQ
ASSLGGQGSNEQF
0
B*08:01
KLGGALQAK
DSAIYN
IQSSQRE
AVYSNSGYALN
SQVTM
ANQGSEA
SVGTGGTNEKLF
0
A*03:01
RAKFKQLL
DRGSQS
IYSNGD
AVRDARLMFG
MNHEY
SMNVEV
ASSYGGLGQPQHFG
0
B*08:01
FEDLRLLSF
TISGNEY
GLKNN
IVRVNAGNMLT
SGDLS
YYNGEE
ASSVRVASMTGELF
0
B*37:01
AVFDRKSDAK
TSGFNG
NVLDGL
AVRDSNYQLI
MNHNS
SASEGT
ASSDAENTEAF
0
A*11:01
NLVPMVATV
TSDPSYG
QGSYDQQN
AMRDSQGGSEKLV
MNHEY
SVGEGT
ASSYGLEQF
0
A*02:01
RAKFKQLL
NIATNDY
GYKTK
LVGDNGNTPLV
SEHNR
FQNEAQ
ASSKVRDTDYEQY
0
B*08:01
ELAGIGILTV
SVFSS
VVTGGEV
AGGGSQGNLI
DFQATT
SNEGSKA
SAPRGSGTIDTQY
0
A*02:01
CINGVCWTV
SSVPPY
YTSAATLV
AVSSTGNQFY
MNHEY
SVGEGT
ASRRTTGYNEKLF
0
A*02:01
ELAGIGILTV
NSASQS
VYSSG
VVTLWNYGGSQGNLI
LGHDT
YNNKEL
ASSQDRRLILENTGELF
0
A*02:01
RAKFKQLL
TSGFNG
NVLDGL
AVRDQTGANNLF
MDHEN
SYDVKM
ASSFKTQH
0
B*08:01
GLCTLVAML
TSGFNG
NVLDGL
AVRGPEGGGNKLT
SGDLS
YYNGEE
ASSAGTSGQETQY
1
A*02:01
AVFDRKSDAK
TISGTDY
GLTSN
IPYNNNDMR
LNHDA
SQIVND
ASSIGIYGYT
0
A*11:01
KLGGALQAK
VGISA
LSSGK
AAVVRGDKII
SGHNS
FNNNVP
ASSLTSTRQPQH
0
A*03:01
GLCTLVAML
DRGSQS
IYSNGD
AVNVAGKST
GTSNPN
SVGIG
AWSETGLGTGELF
0
A*02:01
GILGFVFTL
NSAFQY
TYSSGN
AMRGQDAGGTSYGKLT
LNHDA
SQIVND
ASSVYSNQPQH
1
A*02:01
RAKFKQLL
DRGSQS
IYSNGD
AVNGNNDMR
ENHRY
SYGVKD
AISGDIQDTQY
0
B*08:01
IVTDFSVIK
DRGSQS
IYSNGD
AVGGGKLI
MNHNS
SASEGT
ASSEAVLGGNSYEQY
0
A*11:01
LLWNGPMAV
KTLYG
LQKGGEE
GADSRYSSASKII
SGHVS
FQNEAQ
ASSLIEYPPPDTQY
0
A*02:01
AVFDRKSDAK
VGISA
LSSGK
AAVVRGDKII
SGHNS
FNNNVP
ASSLTSTRQPQH
0
A*11:01
KLGGALQAK
DSASNY
IRSNVGE
AAGRKRFGNVLHCFGNVLH
LNHNV
YYDKDF
ATSREWPANRHQETQY
0
A*03:01
GILGFVFTL
DSASNY
IRSNVGE
AASETSYDKVI
SGHNS
FNNNVP
ASSIGDRAYGYT
0
A*02:01
HPVTKYIM
TTLSN
LVKSGEV
AGYTGANNLF
MNHEY
SVGAGI
ASSSPTSGGTDTQY
0
B*08:01
AVFDRKSDAK
YGATPY
YFSGDTLV
AVVQMNSGGYQKVT
MDHEN
SYDVKM
ATRPAGYNEQF
0
A*11:01
IVTDFSVIK
TRDTTYY
RNSFDEQN
ALIANRDDKII
SGHNS
FNNNVP
ASSFLDRGPNTEAF
0
A*11:01
AVFDRKSDAK
TSENNYY
QEAYKQQN
AVRKDKARIM
MGHRA
YSYEKL
ASSQEWGRGTDTQY
0
A*11:01
NLVPMVATV
DSSSTY
IFSNMDM
AESEGPTYTDKLI
SGHDT
YYEEEE
ASSLRDGSEAF
0
A*02:01
KLGGALQAK
TRDTTYY
RNSFDEQN
ALCGGGGRNFNKFY
MNHEY
SMNVEV
ASSARDRAYYEQY
1
A*03:01
GILGFVFTL
TSGFNG
NVLDGL
AVRDDSGTYKYI
MNHEY
SMNVEV
ASSLGQTDTQY
0
A*02:01
AVFDRKSDAK
YGATPY
YFSGDTLV
ADHWNGNNRLA
SGHTA
FQGNSA
ASSAWTGRFLVDSPLH
1
A*11:01
GILGFVFTL
DRGSQS
IYSNGD
GTYNQGGKLI
MNHEY
SMNVEV
ASSGASHEQY
0
A*02:01
AVFDRKSDAK
SSVPPY
YTSAATLV
AVSAGGGFKTI
KGHSH
LQKENI
ASSEDDFTGTDTQY
0
A*11:01
GILGFVFTL
DSASNY
IRSNVGE
AAGRKRFGNVLHCFGNVLH
LNHNV
YYDKDF
ATSREWPANRHQETQY
0
A*02:01
RAKFKQLL
TTSDR
LLSNGAV
AVAILTGGGNKLT
LGHNA
YNFKEQ
ASKPGQGGYEQY
0
B*08:01
End of preview. Expand in Data Studio

PT Interaction Dataset

Dataset Description

The PT (Peptide-TCR) interaction dataset is designed for training and evaluating T-Cell Receptor (TCR) binding prediction models with full TCR sequence information. This dataset contains paired peptide sequences and complete TCR alpha/beta chain sequences (including all 6 CDR regions: A1-A3, B1-B3), along with binary binding labels.

Key Features

  • Full TCR Information: Contains all 6 CDR regions (A1, A2, A3, B1, B2, B3) for both alpha and beta chains
  • Binary Labels: Binding labels (0=non-binder, 1=binder)
  • HLA Allele Information: MHC allele context for each peptide-TCR pair
  • Peptide Length Range: 8-12 amino acids
  • CDR3β Length Range: 5-23 amino acids
  • Training Set: 43,378 samples (13.62% positive, 86.38% negative)
  • Test Set: 2,956 samples (13.97% positive, 86.03% negative)

Dataset Statistics

Split Samples Positives Negatives Unique TCRs Unique HLAs
Train 43,378 5,906 (13.62%) 37,472 (86.38%) 10,414 10
ID Test 2,956 413 (13.97%) 2,543 (86.03%) 2,511 10

Data Format

Each row contains the following columns:

  • peptide: Amino acid sequence of the peptide (8-12 aa)
  • A1, A2, A3: CDR1α, CDR2α, CDR3α sequences
  • B1, B2, B3: CDR1β, CDR2β, CDR3β sequences
  • binder: Binary binding label (0=non-binder, 1=binder)
  • allele: HLA allele (e.g., A02:01, B07:02)

Example Data

{
    "peptide": "KLGGALQAK",
    "A1": "SSVPPY",
    "A2": "YTSAATLV",
    "A3": "AVKWSSNYKLT",
    "B1": "SQVTM",
    "B2": "ANQGSEA",
    "B3": "SVGSGDHGEQF",
    "binder": 0,
    "allele": "A*03:01"
}

Dataset Construction

Data Sources

The PT dataset is curated from multiple publicly available TCR-peptide binding databases and experimental studies, including:

  • VDJdb: A curated database of T-cell receptor sequences
  • McPAS-TCR: Manually curated catalog of pathology-associated TCR sequences
  • IEDB: Immune Epitope Database
  • Published experimental validation studies

Quality Control

  1. TCR Leakage Prevention: Train and test splits are carefully constructed to ensure no TCR overlap based on CDR3β sequences
  2. Duplicate Removal: All duplicate (peptide, B3, binder) combinations are removed
  3. Length Filtering: Only peptides of length 8-12 amino acids are included
  4. HLA Standardization: All HLA alleles follow the format "A*02:01" (without "HLA-" prefix)
  5. Data Validation: All sequences are validated for amino acid composition

Split Strategy

  • ID Test: Random split preserving the same peptide/HLA/TCR distribution as training
  • No TCR Leakage: Train and test sets are strictly disjoint based on CDR3β sequences

Usage

Loading the Dataset

from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset("YYJMAY/pt-interaction")

# Access splits
train_data = dataset['train']
test_data = dataset['test']

# Convert to pandas DataFrame
import pandas as pd
train_df = pd.DataFrame(train_data)
test_df = pd.DataFrame(test_data)

Training Example

from datasets import load_dataset
import pandas as pd

# Load training data
dataset = load_dataset("YYJMAY/pt-interaction", split="train")
df = pd.DataFrame(dataset)

# Prepare features
X = df[['peptide', 'A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'allele']]
y = df['binder']

# Train your model
# model.fit(X, y)

Evaluation Example

from datasets import load_dataset
import pandas as pd
from sklearn.metrics import roc_auc_score, accuracy_score

# Load test data
dataset = load_dataset("YYJMAY/pt-interaction", data_files="id_test.csv")
df = pd.DataFrame(dataset['train'])  # HF loads single files as 'train' split

# Make predictions
X_test = df[['peptide', 'A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'allele']]
y_test = df['binder']

# predictions = model.predict(X_test)
# print(f"AUC: {roc_auc_score(y_test, predictions):.4f}")
# print(f"Accuracy: {accuracy_score(y_test, predictions > 0.5):.4f}")

Citation

If you use this dataset in your research, please cite:

@misc{pt_interaction_dataset,
  title={PT Interaction Dataset: Peptide-TCR Binding Prediction},
  author={SPRINT Benchmark Contributors},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/YYJMAY/pt-interaction}}
}

Related Datasets

  • PM Dataset: Peptide-MHC binding (no TCR information)
  • PMT Dataset: Peptide-MHC-TCR with CDR3β only
  • Allelic OOD: Out-of-distribution test for rare HLA alleles
  • Temporal OOD: Out-of-distribution test for COVID-19 era data
  • Modality OOD: Cross-modality generalization (BA vs EL)

License

This dataset is released under the MIT License. The original data sources may have their own licenses.

Contact

For questions or issues, please open an issue on the SPRINT GitHub repository.

Dataset Card Authors

SPRINT Benchmark Team

Dataset Version

  • Version: 1.0
  • Last Updated: 2025-01-19
Downloads last month
23