Datasets:
Commit
·
a35427c
verified
·
0
Parent(s):
Duplicate from derek-thomas/ScienceQA
Browse filesCo-authored-by: Derek Thomas <derek-thomas@users.noreply.huggingface.co>
- .gitattributes +54 -0
- .gitignore +4 -0
- README.md +301 -0
- data/test-00000-of-00001-f0e719df791966ff.parquet +3 -0
- data/train-00000-of-00001-1028f23e353fbe3e.parquet +3 -0
- data/validation-00000-of-00001-6c7328ff6c84284c.parquet +3 -0
- tutorial/ScienceQA.py +122 -0
- tutorial/create_dataset.ipynb +0 -0
- tutorial/download.sh +36 -0
.gitattributes
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
# Audio files - uncompressed
|
| 37 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
# Audio files - compressed
|
| 41 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
# Image files - uncompressed
|
| 47 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
# Image files - compressed
|
| 52 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ipynb_checkpoints
|
| 2 |
+
.idea
|
| 3 |
+
images/
|
| 4 |
+
text/
|
README.md
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-4.0
|
| 3 |
+
annotations_creators:
|
| 4 |
+
- expert-generated
|
| 5 |
+
- found
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
language_creators:
|
| 9 |
+
- expert-generated
|
| 10 |
+
- found
|
| 11 |
+
multilinguality:
|
| 12 |
+
- monolingual
|
| 13 |
+
paperswithcode_id: scienceqa
|
| 14 |
+
pretty_name: ScienceQA
|
| 15 |
+
size_categories:
|
| 16 |
+
- 10K<n<100K
|
| 17 |
+
source_datasets:
|
| 18 |
+
- original
|
| 19 |
+
tags:
|
| 20 |
+
- multi-modal-qa
|
| 21 |
+
- science
|
| 22 |
+
- chemistry
|
| 23 |
+
- biology
|
| 24 |
+
- physics
|
| 25 |
+
- earth-science
|
| 26 |
+
- engineering
|
| 27 |
+
- geography
|
| 28 |
+
- history
|
| 29 |
+
- world-history
|
| 30 |
+
- civics
|
| 31 |
+
- economics
|
| 32 |
+
- global-studies
|
| 33 |
+
- grammar
|
| 34 |
+
- writing
|
| 35 |
+
- vocabulary
|
| 36 |
+
- natural-science
|
| 37 |
+
- language-science
|
| 38 |
+
- social-science
|
| 39 |
+
task_categories:
|
| 40 |
+
- multiple-choice
|
| 41 |
+
- question-answering
|
| 42 |
+
- other
|
| 43 |
+
- visual-question-answering
|
| 44 |
+
- text-classification
|
| 45 |
+
task_ids:
|
| 46 |
+
- multiple-choice-qa
|
| 47 |
+
- closed-domain-qa
|
| 48 |
+
- open-domain-qa
|
| 49 |
+
- visual-question-answering
|
| 50 |
+
- multi-class-classification
|
| 51 |
+
dataset_info:
|
| 52 |
+
features:
|
| 53 |
+
- name: image
|
| 54 |
+
dtype: image
|
| 55 |
+
- name: question
|
| 56 |
+
dtype: string
|
| 57 |
+
- name: choices
|
| 58 |
+
sequence: string
|
| 59 |
+
- name: answer
|
| 60 |
+
dtype: int8
|
| 61 |
+
- name: hint
|
| 62 |
+
dtype: string
|
| 63 |
+
- name: task
|
| 64 |
+
dtype: string
|
| 65 |
+
- name: grade
|
| 66 |
+
dtype: string
|
| 67 |
+
- name: subject
|
| 68 |
+
dtype: string
|
| 69 |
+
- name: topic
|
| 70 |
+
dtype: string
|
| 71 |
+
- name: category
|
| 72 |
+
dtype: string
|
| 73 |
+
- name: skill
|
| 74 |
+
dtype: string
|
| 75 |
+
- name: lecture
|
| 76 |
+
dtype: string
|
| 77 |
+
- name: solution
|
| 78 |
+
dtype: string
|
| 79 |
+
splits:
|
| 80 |
+
- name: train
|
| 81 |
+
num_bytes: 16416902
|
| 82 |
+
num_examples: 12726
|
| 83 |
+
- name: validation
|
| 84 |
+
num_bytes: 5404896
|
| 85 |
+
num_examples: 4241
|
| 86 |
+
- name: test
|
| 87 |
+
num_bytes: 5441676
|
| 88 |
+
num_examples: 4241
|
| 89 |
+
download_size: 0
|
| 90 |
+
dataset_size: 27263474
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
# Dataset Card Creation Guide
|
| 94 |
+
|
| 95 |
+
## Table of Contents
|
| 96 |
+
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
|
| 97 |
+
- [Table of Contents](#table-of-contents)
|
| 98 |
+
- [Dataset Description](#dataset-description)
|
| 99 |
+
- [Dataset Summary](#dataset-summary)
|
| 100 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 101 |
+
- [Languages](#languages)
|
| 102 |
+
- [Dataset Structure](#dataset-structure)
|
| 103 |
+
- [Data Instances](#data-instances)
|
| 104 |
+
- [Data Fields](#data-fields)
|
| 105 |
+
- [Data Splits](#data-splits)
|
| 106 |
+
- [Dataset Creation](#dataset-creation)
|
| 107 |
+
- [Curation Rationale](#curation-rationale)
|
| 108 |
+
- [Source Data](#source-data)
|
| 109 |
+
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
|
| 110 |
+
- [Who are the source language producers?](#who-are-the-source-language-producers)
|
| 111 |
+
- [Annotations](#annotations)
|
| 112 |
+
- [Annotation process](#annotation-process)
|
| 113 |
+
- [Who are the annotators?](#who-are-the-annotators)
|
| 114 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
| 115 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
| 116 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
| 117 |
+
- [Discussion of Biases](#discussion-of-biases)
|
| 118 |
+
- [Other Known Limitations](#other-known-limitations)
|
| 119 |
+
- [Additional Information](#additional-information)
|
| 120 |
+
- [Dataset Curators](#dataset-curators)
|
| 121 |
+
- [Licensing Information](#licensing-information)
|
| 122 |
+
- [Citation Information](#citation-information)
|
| 123 |
+
- [Contributions](#contributions)
|
| 124 |
+
|
| 125 |
+
## Dataset Description
|
| 126 |
+
|
| 127 |
+
- **Homepage:** [https://scienceqa.github.io/index.html#home](https://scienceqa.github.io/index.html#home)
|
| 128 |
+
- **Repository:** [https://github.com/lupantech/ScienceQA](https://github.com/lupantech/ScienceQA)
|
| 129 |
+
- **Paper:** [https://arxiv.org/abs/2209.09513](https://arxiv.org/abs/2209.09513)
|
| 130 |
+
- **Leaderboard:** [https://paperswithcode.com/dataset/scienceqa](https://paperswithcode.com/dataset/scienceqa)
|
| 131 |
+
- **Point of Contact:** [Pan Lu](https://lupantech.github.io/) or file an issue on [Github](https://github.com/lupantech/ScienceQA/issues)
|
| 132 |
+
|
| 133 |
+
### Dataset Summary
|
| 134 |
+
|
| 135 |
+
Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
|
| 136 |
+
|
| 137 |
+
### Supported Tasks and Leaderboards
|
| 138 |
+
|
| 139 |
+
Multi-modal Multiple Choice
|
| 140 |
+
|
| 141 |
+
### Languages
|
| 142 |
+
|
| 143 |
+
English
|
| 144 |
+
|
| 145 |
+
## Dataset Structure
|
| 146 |
+
|
| 147 |
+
### Data Instances
|
| 148 |
+
|
| 149 |
+
Explore more samples [here](https://scienceqa.github.io/explore.html).
|
| 150 |
+
|
| 151 |
+
``` json
|
| 152 |
+
{'image': Image,
|
| 153 |
+
'question': 'Which of these states is farthest north?',
|
| 154 |
+
'choices': ['West Virginia', 'Louisiana', 'Arizona', 'Oklahoma'],
|
| 155 |
+
'answer': 0,
|
| 156 |
+
'hint': '',
|
| 157 |
+
'task': 'closed choice',
|
| 158 |
+
'grade': 'grade2',
|
| 159 |
+
'subject': 'social science',
|
| 160 |
+
'topic': 'geography',
|
| 161 |
+
'category': 'Geography',
|
| 162 |
+
'skill': 'Read a map: cardinal directions',
|
| 163 |
+
'lecture': 'Maps have four cardinal directions, or main directions. Those directions are north, south, east, and west.\nA compass rose is a set of arrows that point to the cardinal directions. A compass rose usually shows only the first letter of each cardinal direction.\nThe north arrow points to the North Pole. On most maps, north is at the top of the map.',
|
| 164 |
+
'solution': 'To find the answer, look at the compass rose. Look at which way the north arrow is pointing. West Virginia is farthest north.'}
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
Some records might be missing any or all of image, lecture, solution.
|
| 168 |
+
|
| 169 |
+
### Data Fields
|
| 170 |
+
|
| 171 |
+
- `image` : Contextual image
|
| 172 |
+
- `question` : Prompt relating to the `lecture`
|
| 173 |
+
- `choices` : Multiple choice answer with 1 correct to the `question`
|
| 174 |
+
- `answer` : Index of choices corresponding to the correct answer
|
| 175 |
+
- `hint` : Hint to help answer the `question`
|
| 176 |
+
- `task` : Task description
|
| 177 |
+
- `grade` : Grade level from K-12
|
| 178 |
+
- `subject` : High level
|
| 179 |
+
- `topic` : natural-sciences, social-science, or language-science
|
| 180 |
+
- `category` : A subcategory of `topic`
|
| 181 |
+
- `skill` : A description of the task required
|
| 182 |
+
- `lecture` : A relevant lecture that a `question` is generated from
|
| 183 |
+
- `solution` : Instructions on how to solve the `question`
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
Note that the descriptions can be initialized with the **Show Markdown Data Fields** output of the [Datasets Tagging app](https://huggingface.co/spaces/huggingface/datasets-tagging), you will then only need to refine the generated descriptions.
|
| 187 |
+
|
| 188 |
+
### Data Splits
|
| 189 |
+
- name: train
|
| 190 |
+
- num_bytes: 16416902
|
| 191 |
+
- num_examples: 12726
|
| 192 |
+
- name: validation
|
| 193 |
+
- num_bytes: 5404896
|
| 194 |
+
- num_examples: 4241
|
| 195 |
+
- name: test
|
| 196 |
+
- num_bytes: 5441676
|
| 197 |
+
- num_examples: 4241
|
| 198 |
+
|
| 199 |
+
## Dataset Creation
|
| 200 |
+
|
| 201 |
+
### Curation Rationale
|
| 202 |
+
|
| 203 |
+
When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA).
|
| 204 |
+
|
| 205 |
+
### Source Data
|
| 206 |
+
|
| 207 |
+
ScienceQA is collected from elementary and high school science curricula.
|
| 208 |
+
|
| 209 |
+
#### Initial Data Collection and Normalization
|
| 210 |
+
|
| 211 |
+
See Below
|
| 212 |
+
|
| 213 |
+
#### Who are the source language producers?
|
| 214 |
+
|
| 215 |
+
See Below
|
| 216 |
+
|
| 217 |
+
### Annotations
|
| 218 |
+
|
| 219 |
+
Questions in the ScienceQA dataset are sourced from open resources managed by IXL Learning,
|
| 220 |
+
an online learning platform curated by experts in the field of K-12 education. The dataset includes
|
| 221 |
+
problems that align with California Common Core Content Standards. To construct ScienceQA, we
|
| 222 |
+
downloaded the original science problems and then extracted individual components (e.g. questions,
|
| 223 |
+
hints, images, options, answers, lectures, and solutions) from them based on heuristic rules.
|
| 224 |
+
We manually removed invalid questions, such as questions that have only one choice, questions that
|
| 225 |
+
contain faulty data, and questions that are duplicated, to comply with fair use and transformative
|
| 226 |
+
use of the law. If there were multiple correct answers that applied, we kept only one correct answer.
|
| 227 |
+
Also, we shuffled the answer options of each question to ensure the choices do not follow any
|
| 228 |
+
specific pattern. To make the dataset easy to use, we then used semi-automated scripts to reformat
|
| 229 |
+
the lectures and solutions. Therefore, special structures in the texts, such as tables and lists, are
|
| 230 |
+
easily distinguishable from simple text passages. Similar to ImageNet, ReClor, and PMR datasets,
|
| 231 |
+
ScienceQA is available for non-commercial research purposes only and the copyright belongs to
|
| 232 |
+
the original authors. To ensure data quality, we developed a data exploration tool to review examples
|
| 233 |
+
in the collected dataset, and incorrect annotations were further manually revised by experts. The tool
|
| 234 |
+
can be accessed at https://scienceqa.github.io/explore.html.
|
| 235 |
+
|
| 236 |
+
#### Annotation process
|
| 237 |
+
|
| 238 |
+
See above
|
| 239 |
+
|
| 240 |
+
#### Who are the annotators?
|
| 241 |
+
|
| 242 |
+
See above
|
| 243 |
+
|
| 244 |
+
### Personal and Sensitive Information
|
| 245 |
+
|
| 246 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 247 |
+
|
| 248 |
+
## Considerations for Using the Data
|
| 249 |
+
|
| 250 |
+
### Social Impact of Dataset
|
| 251 |
+
|
| 252 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 253 |
+
|
| 254 |
+
### Discussion of Biases
|
| 255 |
+
|
| 256 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 257 |
+
|
| 258 |
+
### Other Known Limitations
|
| 259 |
+
|
| 260 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 261 |
+
|
| 262 |
+
## Additional Information
|
| 263 |
+
|
| 264 |
+
### Dataset Curators
|
| 265 |
+
|
| 266 |
+
- Pan Lu1,3
|
| 267 |
+
- Swaroop Mishra2,3
|
| 268 |
+
- Tony Xia1
|
| 269 |
+
- Liang Qiu1
|
| 270 |
+
- Kai-Wei Chang1
|
| 271 |
+
- Song-Chun Zhu1
|
| 272 |
+
- Oyvind Tafjord3
|
| 273 |
+
- Peter Clark3
|
| 274 |
+
- Ashwin Kalyan3
|
| 275 |
+
|
| 276 |
+
From:
|
| 277 |
+
1. University of California, Los Angeles
|
| 278 |
+
2. Arizona State University
|
| 279 |
+
3. Allen Institute for AI
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
### Licensing Information
|
| 284 |
+
|
| 285 |
+
[Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
|
| 286 |
+
](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
| 287 |
+
|
| 288 |
+
### Citation Information
|
| 289 |
+
|
| 290 |
+
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
|
| 291 |
+
```
|
| 292 |
+
@inproceedings{lu2022learn,
|
| 293 |
+
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},
|
| 294 |
+
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan},
|
| 295 |
+
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)},
|
| 296 |
+
year={2022}
|
| 297 |
+
}
|
| 298 |
+
```
|
| 299 |
+
### Contributions
|
| 300 |
+
|
| 301 |
+
Thanks to [Derek Thomas](https://huggingface.co/derek-thomas) [@datavistics](https://github.com/datavistics) for adding this dataset.
|
data/test-00000-of-00001-f0e719df791966ff.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:235e92d1f30155266df76bc9f28fc6e4fcb6bec2c6a8c7d67f9086ea6b392a84
|
| 3 |
+
size 122386007
|
data/train-00000-of-00001-1028f23e353fbe3e.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62c90a28e3fb1bc0ad7bbcab1ac62b483ae6758291a655944d8f494bf6445745
|
| 3 |
+
size 377460993
|
data/validation-00000-of-00001-6c7328ff6c84284c.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66b5215ce71e748ade4ee629bc14fbf86762071d355a4fcd831581cc04d72d8
|
| 3 |
+
size 126235086
|
tutorial/ScienceQA.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
_DESCRIPTION = """Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
| 7 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
| 8 |
+
with corresponding lectures and explanations.
|
| 9 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
| 10 |
+
respectively, for arriving at the correct answer."""
|
| 11 |
+
|
| 12 |
+
# Lets use the project page instead of the github repo
|
| 13 |
+
_HOMEPAGE = "https://scienceqa.github.io"
|
| 14 |
+
|
| 15 |
+
_CITATION = """\
|
| 16 |
+
@inproceedings{lu2022learn,
|
| 17 |
+
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},
|
| 18 |
+
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan},
|
| 19 |
+
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)},
|
| 20 |
+
year={2022}
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
_LICENSE = "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ScienceQA(datasets.GeneratorBasedBuilder):
|
| 28 |
+
"""Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
| 29 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
| 30 |
+
with corresponding lectures and explanations.
|
| 31 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
| 32 |
+
respectively, for arriving at the correct answer."""
|
| 33 |
+
|
| 34 |
+
VERSION = datasets.Version("1.0.0")
|
| 35 |
+
|
| 36 |
+
def _info(self):
|
| 37 |
+
return datasets.DatasetInfo(
|
| 38 |
+
description=_DESCRIPTION,
|
| 39 |
+
features=datasets.Features(
|
| 40 |
+
{
|
| 41 |
+
"image": datasets.Image(),
|
| 42 |
+
"question": datasets.Value("string"),
|
| 43 |
+
"choices": datasets.features.Sequence(datasets.Value("string")),
|
| 44 |
+
"answer": datasets.Value("int8"),
|
| 45 |
+
"hint": datasets.Value("string"),
|
| 46 |
+
"task": datasets.Value("string"),
|
| 47 |
+
"grade": datasets.Value("string"),
|
| 48 |
+
"subject": datasets.Value("string"),
|
| 49 |
+
"topic": datasets.Value("string"),
|
| 50 |
+
"category": datasets.Value("string"),
|
| 51 |
+
"skill": datasets.Value("string"),
|
| 52 |
+
"lecture": datasets.Value("string"),
|
| 53 |
+
"solution": datasets.Value("string")
|
| 54 |
+
}
|
| 55 |
+
),
|
| 56 |
+
homepage=_HOMEPAGE,
|
| 57 |
+
citation=_CITATION,
|
| 58 |
+
license=_LICENSE,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _split_generators(self, dl_manager):
|
| 62 |
+
text_path = Path.cwd() / 'text' / 'problems.json'
|
| 63 |
+
image_dir = Path.cwd() / 'images'
|
| 64 |
+
return [
|
| 65 |
+
datasets.SplitGenerator(
|
| 66 |
+
name=datasets.Split.TRAIN,
|
| 67 |
+
# These kwargs will be passed to _generate_examples
|
| 68 |
+
gen_kwargs={
|
| 69 |
+
"text_path": text_path,
|
| 70 |
+
"image_dir": image_dir,
|
| 71 |
+
"split": "train",
|
| 72 |
+
},
|
| 73 |
+
),
|
| 74 |
+
datasets.SplitGenerator(
|
| 75 |
+
name=datasets.Split.VALIDATION,
|
| 76 |
+
# These kwargs will be passed to _generate_examples
|
| 77 |
+
gen_kwargs={
|
| 78 |
+
"text_path": text_path,
|
| 79 |
+
"image_dir": image_dir,
|
| 80 |
+
"split": "val",
|
| 81 |
+
},
|
| 82 |
+
),
|
| 83 |
+
datasets.SplitGenerator(
|
| 84 |
+
name=datasets.Split.TEST,
|
| 85 |
+
# These kwargs will be passed to _generate_examples
|
| 86 |
+
gen_kwargs={
|
| 87 |
+
"text_path": text_path,
|
| 88 |
+
"image_dir": image_dir,
|
| 89 |
+
"split": "test"
|
| 90 |
+
},
|
| 91 |
+
),
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 95 |
+
def _generate_examples(self, text_path, image_dir, split):
|
| 96 |
+
with open(text_path, encoding="utf-8") as f:
|
| 97 |
+
# Load all the text. Note that if this was HUGE, we would need to find a better way to load the json
|
| 98 |
+
data = json.load(f)
|
| 99 |
+
ignore_keys = ['image', 'split']
|
| 100 |
+
|
| 101 |
+
# Get image_id from its annoying location
|
| 102 |
+
for image_id, row in data.items():
|
| 103 |
+
# Only look for the rows in our split
|
| 104 |
+
if row['split'] == split:
|
| 105 |
+
|
| 106 |
+
# Note, not all rows have images.
|
| 107 |
+
# Get all the image data we need
|
| 108 |
+
if row['image']:
|
| 109 |
+
image_path = image_dir / split / image_id / 'image.png'
|
| 110 |
+
image_bytes = image_path.read_bytes()
|
| 111 |
+
image_dict = {'path': str(image_path), 'bytes': image_bytes}
|
| 112 |
+
else:
|
| 113 |
+
image_dict = None
|
| 114 |
+
|
| 115 |
+
# Keep only the keys we need
|
| 116 |
+
relevant_row = {k: v for k, v in row.items() if k not in ignore_keys}
|
| 117 |
+
|
| 118 |
+
return_dict = {
|
| 119 |
+
'image': image_dict,
|
| 120 |
+
**relevant_row
|
| 121 |
+
}
|
| 122 |
+
yield image_id, return_dict
|
tutorial/create_dataset.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tutorial/download.sh
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Modified from the original here: https://github.com/lupantech/ScienceQA/blob/main/tools/download.sh
|
| 3 |
+
|
| 4 |
+
cd images
|
| 5 |
+
|
| 6 |
+
if [ -d "train" ];
|
| 7 |
+
then
|
| 8 |
+
echo "Already downloaded train"
|
| 9 |
+
else
|
| 10 |
+
ls -alF
|
| 11 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/train.zip
|
| 12 |
+
unzip -q train.zip
|
| 13 |
+
rm train.zip
|
| 14 |
+
fi
|
| 15 |
+
|
| 16 |
+
if [ -d "val" ];
|
| 17 |
+
then
|
| 18 |
+
echo "Already downloaded val"
|
| 19 |
+
else
|
| 20 |
+
ls -alF
|
| 21 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/val.zip
|
| 22 |
+
unzip -q val.zip
|
| 23 |
+
rm val.zip
|
| 24 |
+
fi
|
| 25 |
+
|
| 26 |
+
if [ -d "test" ];
|
| 27 |
+
then
|
| 28 |
+
echo "Already downloaded test"
|
| 29 |
+
else
|
| 30 |
+
ls -alF
|
| 31 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/test.zip
|
| 32 |
+
unzip -q test.zip
|
| 33 |
+
rm test.zip
|
| 34 |
+
fi
|
| 35 |
+
|
| 36 |
+
echo "Completed downloads!"
|